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Münster, Germany



Microbiology Monographs

Volumes published in the series

Inclusions in Prokaryotes
Volume Editor: Jessup M. Shively
Vol. 1, 2006

Complex Intracellular Structures
in Prokaryotes
Volume Editor: Jessup M. Shively
Vol. 2, 2006

Magnetoreception and Magnetosomes
in Bacteria
Volume Editor: Dirk Schüler
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Preface

Plants provide an excellent ecosystem for microorganisms that interact with plant

cells and tissues with differing degrees of dependence. Investigation on the rela-

tionship between roots and microbiota are essential to achieve innovations in

agriculture and biotechnology. Similar to other industries, one such system is

adoption of biological agents in the form of Plant Growth Promoting Bacteria

(PGPB). These groups of bacteria are as effective as pure chemical on plant growth

enhancement and disease control besides managing abiotic and other stresses in

plants. Such organisms are now alternative paradigms for commercialization.

Seeing the importance of these bacteria in the protection of plant health, new

biotechnological approaches are employed regulating to develop newer and much

better microbial agents for management of the phytopathogens.

This volume of the Microbiology Monograph series has 18 chapters that cover

various facets of current scientific knowledge on PGPB that colonize the root and

rhizosphere. Bacillus- and Paenibacillus-based bioinoculant formulations have met

with great success in improving plant growth. A large number of PGPB genera on

one hand and rhizobia and few endophytes on the other promise benefit to crop

ecosystem for sustainable agriculture. A due account is provided with respect to

basic concept on plant–bacteria interaction, mineral–nutrient exchange, biofilm

formation, and bacteria inhabiting in harsh and cold tropical environment and

their role in ethylene regulation via ACC deaminase, as well as the mechanisms

of action of PGPB-mediated antifungals. In relation to plant health, the exploitation

of such beneficial bacteria may improve agriculture system with economically

sound production of human food and animal feed.

This book will be useful not only for students, teachers, and researchers but also

for those interested in agriculture microbiology, plant pathology, ecology, environ-

mental science, and agronomy.

I would like to express my sincere thanks to all the contributors for their much

needed cooperation, authoritative and up to date information organized in a befit-

ting manner. I acknowledge with thanks the assistance rendered by my research

students Abhinav, Rajat, Pankaj, and Dr. Sandeep. I am also thankful to Council of
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Scientific and Industrial Research (CSIR), New Delhi, and Director, Uttarakhand

Council of Science and Technology (UCOST), Dehradun, India, for their support in

execution of my research projects on PGPB that served as a prelude to lay

foundation for compilation of the volume like this. I owe my special thanks to

Prof. Alexander Steinbüchel, series editor, ‘Microbiology Monographs,’ University

of Münster, Germany, for his professional advice from time to time in multifarious

manner. I extend my sincere thanks to Drs. Christina Eckey and Jutta Lindenborn

from the publisher Springer for their valuable support to facilitate completion of

this volume.

Haridwar, India Dinesh K. Maheshwari
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Abstract The rhizosphere is the volume of soil under the influence of plants roots,

where very important and intensive microbe–plant interactions take place. These

interactions can both significantly influence plant growth and crop yields and have

biotechnological applications. The rhizosphere harbors a diverse community of

microorganisms that interact and compete with each other and with the plant root.

The activity of some of the members of this community affects the growth and the

physiology of the others, as well as the physical and chemical properties of the soil.

Among all these interactions, those resulting in symbiotic and non-symbiotic

nitrogen fixation are considerably important. In recent years, the use of bacteria
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(rhizobacteria) to promote plant growth has increased in several regions of the world

and has acquired relevant importance in developing countries that are the producers

of raw materials for food. Rhizobacteria can affect plant growth by producing and

releasing secondary metabolites, which either decrease or prevent the deleterious

effects of phytopathogenic organisms in the rhizosphere, and/or by facilitating the

availability and uptake of certain nutrients from the root environment. Significant

increases in the growth and yield of agriculturally important crops in response to

inoculation with rhizobacteria have been reported. This practical application of

plant growth-promoting rhizobacteria is the main focus of this chapter.

1 Introduction

The roles of microbiology and biotechnology in agriculture are very important

because plant sources satisfy up to 80% of humans dietary needs. The Earth’s

population increases by 1.4% annually and is expected to reach 8.3 billion by 2025;

therefore, unprecedented increases in crop production will be needed if the current

levels of N (nitrogen) are to be maintained (11 g of N per person per day) (Mannion

1998; Graham and Vance 2000). The needs for N of most crop plants are second

only to their photosynthetic requirement. Because soil N deficiency is common in

many areas of crop production and land areas now considered marginal, N supply,

N management, and N-use efficiency are significant factors in crop production, and

are important as to the availability of fossil fuel reserves for future fertilizer N

production (Graham and Vance 2000). On the other hand, farmers and breeders

have long known that it is often the simultaneous occurrence of several abiotic

stresses, rather than a particular stress condition, that is most lethal to crops.

Tolerance to a combination of different stress conditions, particularly those that

mimic the field environment, should be the focus of future research programmes

aimed at developing transgenic crops and plants with enhanced tolerance to natu-

rally occurring environmental conditions (Mittler 2006).

Arable land resources are limited. Thus, meeting food needs in some regions has

already led to the adoption of agricultural practices that can degrade the soil, and to

the use of land that is marginal for crop production. Nutrient depletion and soil

acidification are only two of the common consequences of inadequate soil manage-

ment (Hungria and Vargas 2000). In this context, the presence of microorganisms in

the soil is critical to the maintenance of soil function, in both natural and managed

agricultural soils, because of their involvement in key processes such as soil

structure formation, decomposition of organic matter, toxin removal, and the

cycling of carbon, nitrogen, phosphorus, and sulphur (van Elsas and Trevors

1997). In addition, microorganisms play key roles in suppressing soil-borne plant

diseases and in promoting plant growth and changes in vegetation (Doran et al.

1996). Future exploitation of interactions will be as dependent on a better under-

standing of the biology of plant–microbe interaction as on developments in
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biotechnology (Beringer 1986). The beneficial use of rhizobacteria in agriculture is

discussed in this chapter.

2 Rhizosphere in Action

The associations that occur between plant roots and soil microorganisms have been

known for many decades. Considerable efforts have been devoted to study ecto-

mycorrhizal fungi, nitrogen-fixing bacteria, soil-borne pathogenic fungi, and other

microorganisms. As a consequence of the many investigations of the variable

response of plants to different soils, an awareness of the complexity of the interac-

tions between roots and soil microbes has been developed (Atkinson and Watson

2000). When seeds germinate and roots grow through the soil, the loss of organic

material provides the driving force for the development of active microbial popula-

tions around the root. This effect is known as “the rhizosphere effect” (Whipps

1990). The term “rhizosphere” was first defined by Lorenz Hiltner in 1904 as “the

soil compartment influenced by the root” (Hiltner 1904).

Although bacteria were not proven to exist until von Leeuwenhoek in 1683

discovered microscopic “animals” under the lens of his microscope, their use to

stimulate plant growth in agriculture has been exploited since ancient times. Theo-

phrastus (372–287 BC) suggested the mixing of different soils as a means of

“remedying defects and adding heart to the soil” (Tisdale and Nelson 1975). The

rhizosphere of plants is a zone of intense microbial activity, and some bacteria from

this zone, termed rhizobacteria, exhibit different functions. The rhizosphere con-

tains an increased microbial biomass and activity compared with nonrhizosphere

soil: the number of microorganisms in the rhizosphere is 19–32 times larger than in

root-free soil (Bodelier et al. 1997). Rhizobacteria that exert beneficial effects on

plant development are referred to as plant growth-promoting rhizobacteria (PGPR)

because their application is often associated with increased rates of plant growth

(Kloepper and Schroth 1978). The well-known PGPR include members of the

genera Arthrobacter, Azoarcus, Azospirillum, Bacillus, Burkholderia, Enterobacter,
Gluconacetobacter, Herbaspirillum, Klebsiella, Paenibacillus, Pseudomonas, and
Serratia, among others. PGPR can affect plant growth either directly (by providing

plants with a compound synthesized by the bacterium or by facilitating the uptake

of certain nutrients from the environment) or indirectly (by decreasing or prevent-

ing the deleterious effects of one or more phytopathogenic organisms) (Glick

1995). In order to exert their function, PGPR must colonize the rhizosphere around

the roots, the rhizoplane (root surface) or the root itself (within root tissues) (Glick

1995).

Non-pathogenic rhizobacteria can induce a systemic resistance in plants that is

phenotypically similar to the pathogen-induced systemic acquired resistance

(SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demon-

strated against fungi, bacteria, and viruses in bean, carnation, cucumber, radish,

tobacco, and tomato under conditions in which the inducing bacteria and the
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challenging pathogen remained spatially separated (van Loon et al. 1998). ISR

elicited by PGPR has suppressed plant diseases caused by a range of pathogens in

both greenhouse and field conditions. However, fewer reports have been published

on PGPR as elicitors of tolerance to abiotic stresses, such as drought, salt and

nutrient deficiency or excess. Recently, Yang et al. (2009) have proposed the term

“induced systemic tolerance” (IST) for PGPR-induced physical and chemical

changes in plants that result in enhanced tolerance to abiotic stresses.

Beneficial bacteria that are able to establish a nitrogen-fixing symbiotic relation-

ship with leguminous plants (collectively called rhizobia) are usually not consid-

ered as PGPR. Endosymbiotic interactions between legume plants and the genera

Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium
have been intensively studied (Vance 1998; Graham and Vance 2000; Perret

et al. 2000). Rhizobia infect legumes and have a global distribution, ranging from

high latitudes in Europe and North America to the equator, to tropics in Australia

and South America. In equatorial and tropical areas, legumes are particularly

important and are used in sylvopastoral and agroforestry systems (Dommergues

and Subba Rao 2000). Intricate signaling between the host and rhizobial symbiont

is required for successful symbiotic interactions, which result in the reduction of

atmospheric N2 to ammonia by the bacteroids. Recently, some of these bacteria

have been shown to be plant-growth promoting on nonlegumes, through mecha-

nisms different from nitrogen fixation. Nevertheless, these will not be further

considered, as the mechanisms involved are not different from those of the well-

known and better-documented PGPR (Spaepen et al. 2009). Thus, in the broadest

sense, PGPR include the N2-fixing rhizobacteria that colonize the rhizosphere and

provide N to plants.

Rhizosphere interactions are based on complex exchanges that take place round

plant roots. Beneficial, detrimental, and neutral relationships between plant roots

and microorganisms are all regulated by complex molecular signaling. It is clear

that all the biological community, rather than only the immediate micro-flora, plays

a role in the interaction of the rhizosphere. The existence of both microbial

responses to plants and plant responses to the presence of microbes suggests a

degree of coevolution between two partners. Two of the best-studied interactions

between plant hosts and bacteria include the root nodule inhabiting Rhizobium spp.

and tumor-forming Agrobacterium spp. The study of these systems has led to the

discovery that plants and bacteria communicate by using chemical signals, which

are involved in a successful interaction (Peters et al. 1986; Bolton et al. 1986; Fisher

and Long 1992; Dardanelli et al. 2008a, b, 2009).

Chemical signaling between plant roots and other soil organisms, including the

roots of neighboring plants, is often based on root-derived chemicals. Forty to

ninety percent of the carbon transferred to the roots is lost and is called rhizode-

position (Kennedy 1998). In the rhizosphere environment, rhizodeposition includes

different fractions: root exudates, lysates, mucilage, secretions, and dead cell

material (Lynch and Whipps 1990). A substantial portion of the root exudates

consists of carbon and energy sources readily available for microbial growth devel-

opment and the physiology of microbial cell populations (Sommers et al. 2004).
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Different organic compounds, such as amino acids, sugars, vitamins, organic acids,

auxins, and flavonoids, which are rapidly utilized by microorganisms, have been

identified in root exudates (Sommers et al. 2004; Dardanelli et al. 2008a,b, 2009;

Raaijmakers et al. 2009). The signal components largely responsible for specific

host–microbe relationships belong to a class of compounds termed flavonoids

(Peters et al. 1986). More than 4,000 different flavonoids have been identified in

vascular plants, and a particular subset of them is involved in mediating host

specificity in legumes (Perret et al. 2000). Isoflavonoids are found only in members

of the legume family, and despite the great importance of chemical molecules,

some problems may arise because the same chemical signals may elicit dissimilar

responses from different recipients. The chemical components of root exudates may

deter one organism and attract another, or two very different organisms that may

cause different consequences to the plant may be attracted. For example, the

secretion of isoflavones by soybean roots is able to attract both a mutualist (Bra-
dyrhizobium japonicum) and a pathogen (Phytopthora sojae) (Morris et al. 1998).

The attraction and subsequent migration toward plant roots is probably a key

factor for the initiation of several plant–bacterial interactions. Motility may

increase the probability that the microbe and the plant meet in the soil environment.

By means of directed movement, bacteria are able to move toward plant roots,

where they can benefit from a wide range of exudate-derived nutrients, enabling

them to survive in and subsequently colonize the rhizosphere (Sommers et al.

2004). A variety of compounds, such as surface proteins and polysaccharides,

have been implicated in the adherence of several rhizobacteria to plant roots

(Dardanelli et al. 2003; Rodrı́guez-Navarro et al. 2007). The importance of bacte-

rial attachment in PGPR–plant interactions has been intensively studied in Azospi-
rillum and Pseudomonas. It is generally believed that the main mechanism by

which Azospirillum enhances plant growth is by the production of plant hormones

(Steenhoudt and Vanderleyden 2000). These growth-promoting substances stimulate

the density and length of root hairs and root surface area, improving the utilization

of water and mineral nutrients. Zhu et al. (2002) have shown that Azospirillum
irakense cells are mainly associated with rice root hairs, whereas Azospirillum
brasilense are mainly located on root surfaces. These differences in spatial distribu-

tion are the reason why these two species do not compete for root colonization.

Plant-associated Pseudomonas bacteria live as saprophytes but also as patho-

genic parasites on plant surfaces and inside plant tissues. In addition, some

Pseudomonas species show plant growth-promoting activity by suppressing the

growth (biocontrol) of other phytopathogenic microorganisms, synthesizing growth-

stimulating plant hormones and promoting plant mechanisms involved in disease

resistance. Initial attachment to biotic or abiotic surfaces leads to a global change in

gene expression in Pseudomonas putida (Rodrı́guez-Navarro et al. 2007). The

isolation of genes involved in the adhesion to abiotic surfaces and the attachment

to plant roots suggests that initial colonization of both biotic and abiotic surfaces

proceeds via similar pathways (Sauer and Camper 2001). Although agglutinin plays

a major role in the adherence and colonization abilities of P. putida strain Corvallis
to bean and cucumber, the role of agglutinins is not general for all biocontrol
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strains. No agglutination-dependent adherence or root colonization has been

demonstrated for 30 different Pseudomonas isolates on tomato, potato, and grasses

(Lugtenberg and Dekkers 1999).

3 Role of PGPR in Agriculture

The plant growth-promoting capacity has been related to different physiological

activities that may have a profound effect on the growth and/or health of plants.

Although some chapters in this book comment on different functions of PGPR and

rhizobia in agriculture, in this chapter we will briefly discuss some of them.

In most agricultural ecosystems, soil-borne plant pathogens can be a major

limitation in the production of marketable yields. They are also more recalcitrant

to management and control as compared to pathogens that attack the above-ground

portions of the plant (Bruehl 1987). In addition, they are adapted to growing and

surviving in the bulk soil, but the rhizosphere is the infection court where they

encounter the plant and establish a parasitic relationship (Raaijmakers et al. 2009).

Estimating crop loss caused by pathogens is difficult and there are only a few well-

documented studies. From 2001–2003, an average of 7–15% of major world crops

(wheat, rice, potato, maize, and soybean) was lost because of fungi and bacteria

(Oerke 2005). From 1996 to 1998, these pathogens caused a loss of 9.9%, although

the potential loss without controls could have been 14.9% (Oerke and Dehne 2004).

Losses caused by soil-borne pathogens are even more difficult to estimate, because

of the difficulty of diagnosis. Some estimate that soil-borne pathogens cause 50% of

the crop loss in the United States (Lewis and Papavizas 1991).

The increased use of chemical inputs causes several negative effects, i.e.,

development of pathogen resistance to the applied agents and their non-target

environmental impacts (Gerhardson 2002). Furthermore, the growing cost of pes-

ticides, particularly in less affluent regions of the world, and the growing consumer

demand for pesticide-free food, have led to a search for substitutes for these

products. There are also a number of fastidious diseases for which chemical

solutions are few, ineffective, or nonexistent (Gerhardson 2002). Biological control

is thus being considered as an alternative or supplemental way of reducing the use

of chemicals in agriculture (Whipps 2001; Gerhardson 2002). For several years, a

great diversity of rhizobacteria have been described, characterized, and tested as

biocontrol agents of diseases caused by soil-borne plant pathogens. Different

biocontrol activities of PGPR are mediated by the synthesis of bacterial allochem-

icals, including iron-chelating siderophores, antibiotics, biocidal volatiles, lytic

enzymes, and detoxication enzymes, among others (Glick 1995; Compant et al.

2005). In the last few years, some studies have been carried out on bacteria applied;

studies of bacteria applied to seeds and roots for the purpose of controlling bacterial

diseases. One example is the application of non-pathogenic strains of Streptomyces
to control scab of potato (Solanum tuberosum L.) caused by S. scabies (Ryan and
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Kinkel 1997). Here, the biocontrol may operate through antibiosis or competition

for space or nutrients in the rhizosphere.

The global market for phytosanitary products used worldwide to ensure crop

yield was estimated at US$ 26.7 billion in 2005 (Thakore 2006). Synthetic pesti-

cides dominate this market. However, irrational selection and use has led to

environmental toxicity of their residues, decrease or loss of efficacy because of

adaptation of pathogens, or undesirable effects on non-target organisms sharing the

ecosystem (Ongena and Jacques 2007). The use of beneficial microorganisms as

biopesticides is considered one of the most promising methods for more rational

and safe crop-management practices. Among all biopesticides, microorganism-

based products represent 30% of total sales and new products are regularly brought

to the market (Thakore 2006). Biopesticides are used in field crops and greenhouses

to reduce diseases on various cereals, legumes, fruits, flowers, and ornamentals

caused by soil-borne, foliar, or postharvest pathogens. Most of the bacterial strains

exploited as biopesticides belong to the genera Agrobacterium, Bacillus, and

Pseudomonas (Fravel 2005). Bacillus thuringiensis, specifically used for insect

pest control, accounts for >70% of total sales (Ongena and Jacques 2007; Sanchis

and Bourguet 2008). As for the rest, Bacillus-based products, such as Bacillus
subtilis, Bacillus licheniformis, and Bacillus pumilus, represent about half of the
commercially available bacterial biocontrol agents (Ongena and Jacques 2007).

The Bacillus genus produces a wide range of biologically active molecules that

are potentially inhibitory for phytopathogen growth. Among these antimicrobial

compounds, cyclic lipopeptides (LPs) of the surfactin, iturin, and fengycin (or

plipastatin) families have well-recognized potential uses in biotechnology and

biopharmaceutical applications because of their surfactant properties (Ongena

and Jacques 2007). Recent investigations indicate that these lipopeptides can also

influence the ecological fitness of the producing strain in terms of root colonization

(and thereby persistence in the rhizosphere) and that they have a key role in the

beneficial interaction of Bacillus species with plants by stimulating host defence

mechanisms (Ongena and Jacques 2007). The production of LPs has been demon-

strated in Bacillus populations growing on roots, leaves, and fruits (Touré et al.

2004; Romero et al. 2007). In the rhizosphere, LPs are difficult to be estimated

because of the small amounts excreted as compared to the other organic compounds

present in the environment, their difficult extraction from the complex soil matrix,

and the possibility that the low quantities produced are restricted from diffusing

freely and can be rapidly embedded in the membrane structure of the target

organism (Ongena and Jacques 2007).

Pseudomonas fluorescens strains, have been reported to control diseases caused by
soil-borne pathogens and are known to survive in both rhizosphere and phyllosphere

(Weller, 1988; Wilson et al. 1991). Several studies have indicated that foliar diseases

could be controlled by the application of P. fluorescens as seed, soil, or root treat-
ments, and it is presumed that they may produce ISR and thus protect the leaves (Wei

et al. 1991). The ability of rhizosphere-associated fluorescent pseudomonads to

inhibit the growth of plant pathogenic fungi has generated increased interest

in their use as crop protectants (Schippers et al. 1987; Lam and Gaffney 1993;
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Weller 1988; Fravel 2005). A formulation of P. fluorescens strains, for instance, has
been reported to control the foliar pathogen Pyricularia oryzae that causes blast

disease in rice in field trials (Vidhyasekaran et al. 1997).

4 Potential Uses of PGPR and Rhizobia

Although there are several works on the role of specific strains of PGPR and

rhizobia in plant-growth promotion, N2 fixation, biofertilizer activities, and

biological control, there is a need for more attention with regard to the negative

effects of environmental stresses, diseases on rhizobacteria–plant interactions

(Barea et al. 1998; Kloepper et al. 1999; Jetiyanon et al. 2003; Vessey 2003;

Bashan et al. 2004; Morrissey et al. 2004). For example, rhizobia are sensitive to

drought stress, resulting in a significant decrease of N2 fixation when faced with low

soil-water content. In a study under drought stress, coinoculation of bean (Phaseo-
lus vulgaris L.) with Rhizobium tropici and two strains of Paenibacillus polymyxa
resulted in increased plant height, shoot dry weight, and nodule number (Figueiredo

et al. 2008). Interestingly, the effect on IST and the increased nodule number was

greater when the two strains of P. polymyxa were applied than individual strain,

suggesting some synergistic effects from themixed strains. Recently, Dardanelli

et al. (2009) have shown how biotic and abiotic stresses can alter the pattern of

flavonoids exuded by Osumi soybean roots. In that work, in the presence of

Chryseobacterium balustinum Aur9, soybean roots did not exude quercetin and

naringenin, and under salt stress (50 mMNaCl), flavonoids daidzein and naringenin

could not be detected. Soybean root exudates obtained under saline conditions

showed a diminished capacity to induce the expression of the nodA gene in

comparison to the exudates obtained in the absence of salt. In addition, lipochitoo-

ligosaccharides (LCOs) were either not detected or weakly detected when Sinorhi-
zobium fredii SMH12 was grown in the exudates obtained under salt stress

conditions or under salt stress in the presence of C. balustinum Aur9, respectively.

Another abiotic stress that plants face is the obtaining of adequate soil nutrients.

Although soil fertilization is typically required for agricultural production, it can

cause nitrate and phosphate accumulation that eventually contaminates surface and

ground waters. The use of fertilizers, including chemical fertilizers and manures, to

enhance soil fertility and crop productivity has often negatively affected the

complex system of the biogeochemical cycles (Perrott et al. 1992; Steinshamn

et al. 2004). The use of fertilizers has caused leaching and run-off of nutrients,

especially N and phosphorus (P), leading to environmental degradation (Tilman

1998; Gyaneshwar et al. 2002). Important reasons for these problems are the low

use efficiency of fertilizers and the continuous long-term use. Despite the negative

environmental effects, the total amount of fertilizers used worldwide is projected

to increase with the growing world population because of the need to produce

more food through intensive agriculture (Vitousek et al. 1997; Frink et al. 1999).
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The challenge, therefore, is to continue agricultural productivity in a way that

minimizes harmful environmental effects of fertilizers.

Research activities aimed at achieving a better use efficiency of fertilizers,

including the use of PGPR and/or arbuscular mycorrhizal fungi as supplements to

fertilizers, have steadily increased in the last two decades. However, it is important

to emphasize those agro-environmental problems which are not limited to the use of

chemical fertilizers but also occur with manures and compost (Mitchell and Tu

2006). Both animal waste and chemical fertilizers have the potential of environ-

mental pollution (McLaughlin and Mineau 1995; Jarecki et al. 2008). Release of

greenhouse gases (Flessa et al. 2002; Jarecki et al. 2008), ozone layer depletion (Ma

et al. 2007), global warming, and acid rain are reported as negative impacts of

fertilizers (Vitousek et al. 1997; Frink et al. 1999). Microbial inoculants, such as

PGPR, are promising components for integrated solutions to agro-environmental

problems because inoculants possess the capacity to promote plant growth, enhance

nutrient availability and uptake, and support the health of plants (Barea et al. 1998;

Dobbelaere et al. 2001; Hodge et al. 2001; Bonfante 2003; Vessey 2003; Kloepper

et al. 2004; Han and Lee 2005; Weller 2007; Adesemoye et al. 2008).

On the basis of the beneficial effects of PGPR and rhizobia, studies using

inoculant mixtures are very promising (Berg 2009). Benefits to plants from

plant–PGPR interactions have been shown to include increase in seed germination,

root growth, yield, leaf area, chlorophyll content, nutrient uptake, protein content,

hydraulic activity, tolerance to abiotic stress, shoot and root weights, biocontrol, and

delayed senescence (Mahaffee and Kloepper 1994; Raaijmakers et al. 1997; Bashan

et al. 2004; Mantelin and Touraine 2004; Bakker et al. 2007; Yang et al. 2009).

Amir et al. (2005) reported enhanced uptake of N and P in oil palm seedlings,

following PGPR inoculation in the field nursery. Aseri et al. (2008), on the other

hand, conducted field experiments in India and assessed the effectiveness of PGPR

(Azotobacter chroococcum and A. brasilense) and arbuscular mycorrhizal fungi

(Glomus mosseae and Glomus fasciculatum) on the growth, nutrient uptake, and

biomass production of pomegranate (Punica granatum L.). Strains were applied

individually or in combinations and the results showed that dual inoculation of

PGPR and arbuscular mycorrhizal fungi led to higher biomass production and

increase in the uptake of N, as well as of P, K, Ca, and Mg, in pomegranate seedling.

The increase in N and P uptake was suggested to result from improved symbiotic

N2 fixation and improved phosphatase activity.

The study by Adesemoye et al. (2008) confirmed that inoculation with mixed

strains was more efficient than single-strain inoculations. A proposal made by

Adesemoye et al. (2009) toward solving the agro-environmental problems men-

tioned is integrated nutrient management (INM), which does not aim to remove

fertilizer totally in the short run but to reduce the negative impacts of the overuse

of fertilizers containing N, P, and other elements. The INM system promotes low

chemical input but improved nutrient-use efficiency by combining natural and

man-made sources of plant nutrients in an efficient and environmentally prudent

manner. This will not sacrifice high crop productivity in the short term nor endan-

ger sustainability in the long term (Gruhn et al. 2000; Adesemoye et al. 2008).
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Recently, it has been demonstrated that PGPR-elicited plant-growth promotion

results in enhanced N uptake by plant roots (Adesemoye et al. 2008).

Owing to the broad-range metabolic activities found in many PGPR, another

interesting topic is the potential use of PGPR in rhizoremediation (microbial

degradation of hazardous compounds in the rhizosphere) in contaminated zones

in order to obtain a dual effect: first, the remediation of the soil and then the

promoting of plant growth for agriculture purposes. It is well known that bacteria

of the Burkholderia cepacia complex (Bcc), which include nine species or geno-

movars (Mahenthiralingam et al. 2005), may be found in soils (including polluted

soils), rhizospheres of crop plants, water, various animal species, humans, and

hospital environments (Coenye and Vandamme 2003). More recently, Caballero-

Mellado et al. (2007) reported the occurrence of nitrogen-fixing Burkholderia
species associated with tomato (Lycopersicon esculentum) cultivated in different

locations in Mexico. These authors found that the rhizosphere of tomato is a

reservoir of different known and unknown diazotrophic Burkholderia species

that, in vitro, are able to exhibit some activities involved in bioremediation,

plant-growth promotion, and biological control. Similarly, Perin et al. (2006)

reported that the isolation of Burkholderia unamae from field-grown sugarcane in

Brazil and Mexico, as well as the isolation of Burkholderia tropica from maize

cultivated in Mexico, find probably novel diazotrophic species (the Burkholderia
NAR group) in rhizospheric and endophytic association with both maize and

sugarcane in Brazil. Manipulating biotic interactions to provide desired services

and thus reduce or eliminate the need for external inputs is fundamental to the

practice of ecologically sound agriculture. The challenge is how to encourage

positive interactions and reduce negative ones. Shennan (2008) indicates that the

potential for a greater use of ecological management approaches is high; however,

owing to the nature of ecosystems as medium number systems, there is some

inherent unpredictability about the responses to different management interven-

tions, which needs to be accommodated in the development of recommendations

for farm management. This requires an increased emphasis on the effective synthe-

sis of complex and often apparently contradictory information and a greater

emphasis on field-based adaptive research that includes monitoring performance

as adaptations are made, along with social learning mediated by farmer/researcher

collaborations.

5 PGPR Studies in Argentina

PGPR have been studied by Argentinean scientists from universities and other

research laboratories for the last three decades, with the aim to assess the beneficial

effects on plant growth and yield of many crops of agronomic importance. In this

section, we present some of the most relevant data on this issue in Argentina.

Bacteria of the genus Azospirillum are free-living nitrogen-fixing rhizobacteria

that are found in close association with plant roots of a large number of plants,
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including forage and cereal crops (Okon 1994). Early studies with these bacteria in

Argentina aimed to isolate local strains. By using an improved culture medium with

Congo red, the colonies were typical red scarlett and easy to isolate (Rodrı́guez

Cáceres 1982). Several local strains were selected in greenhouse conditions by their

capacity of inducing changes in root systems and were preserved at the collection of

Agricultural Microbiology and Zoology Institute of INTA, Castelar, Buenos Aires.

To investigate the practical use of Azospirillum as a plant biofertilizer, wheat

field trials were carried out at different locations of country. The local isolate

A. brasilense strain Az39, which was obtained from wheat roots in the province

of Córdoba, showed a consistent positive effect on the yield of different cultivars,

from 13.4 to 33% increase over the control in three growing cycles tested (Rodrı́guez

Cáceres et al. 1996). In addition, it is known that increases in crop yield derived

from Azospirillum inoculation are consistently obtained when water is deficient

(Fig. 1) and soil nutrients are limiting (low organic matter) (Fig. 2) (Rodrı́guez

Cáceres et al. 2008a).

Inoculation trials of corn and wheat carried out with a liquid formulation of A.
brasilense Az39 in 2002–2003 and 2006–2007 at 110 different sites showed an

average yield increase of 6%. In most of the sites, the inoculation with this liquid

formulation increased root and shoot early growth and grain number of the crops

(Diaz-Zorita et al. 2004). Similar increases of forage yield were obtained in foxtail

millet (Setaria italica) inoculated with these rhizospheric bacteria (Di Ciocco and

Rodrı́guez Cáceres 1994). All these positive results motivated the agro-industry to

produce new inoculants based on Azospirillum and other PGPR. Coinoculation

studies with PGPR and Rhizobium spp. have been shown to increase root and

Fig. 1 Yield responses of wheat to inoculation with Azospirillum brasilense Az 39 conditioned to
hidric conditions
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shoot dry weight, plant vigour, nodulation, and nitrogen fixation in various

legumes (Saxena et al. 2006). It is still a matter of controversy whether the

stimulation of plant growth and N fixation by coinoculation is due either to an

increase in root surface by hormonal effects or to nodulation and nutrient uptake. In

relation with physiological and biochemical changes, Groppa et al. (1998) found

that coinoculation with B. japonicum and A. brasilense on soybean plants showed a
significantly higher proportion of nodules attached to the main root and located in

the upper 3 cm of the root system. Although no significant differences were

detected in total dry matter production, nitrogen content of coinoculated plants

was significantly increased (23% as compared with plants inoculated only with

B. japonicum). Accordingly, a strong stimulation of acetylene reduction activity

and a significant increase (39%) in leghemoglobin content were observed using this

treatment.

In another study, Dardanelli et al. (2008) have worked with a combination of

A. brasilense strain Cd, and R. tropici CIAT899 and Rhizobium etli ISP42 in

P. vulgaris. These authors observed that A. brasilense promoted root branching

and increased secretion of nodgene-inducing flavonoid species. Similar results,

and changes in flavonoids and sugar composition, were obtained when Arachis
hypogaea was inoculated with Bradyrhizobium SEMIA6144-A. brasilense Cd

(Dardanelli unpublished results).

It was also shown that A. brasilense Az39 and B. japonicum E109, singly or in

combination, had the capacity to promote seed germination, nodule formation, and

early development of soybean seedlings. Both strains were able to excrete plant-

regulating substances into the culture medium, at a concentration sufficient to

produce morphological and physiological changes in young seed tissues (Cassán

et al. 2009). In order to obtain a positive effect on growth and nodulation of

Fig. 2 Yield responses of wheat to inoculation with Azospirillum brasilense Az 39 conditioned to
soil organic matter
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coinoculated leguminous plants, it is necessary to establish optimal cell concentra-

tion of each biological component (Rodrı́guez Cáceres, unpublished data) (Table 1).

Barassi et al. (2006) also demonstrated growth-promoting effects of A. brasi-
lense strain 245 on lettuce in saline conditions. These authors observed that

Azospirillum-inoculated lettuce seeds had a better germination and vegetative

growth than non-inoculated controls after exposure to NaCl. Plants grown from

inoculated seeds and irrigated with saline medium displayed higher total fresh and

dry weights and biomass partition to the aerial portion than non-inoculated controls.

Since in the semiarid pampas of Argentina the phosphorus distribution available

is not uniform, Rosas et al. (2006) studied the possible action of phosphate-

solubilizing bacteria on the leguminous–rhizobia symbiosis. The strains used

were Sinorhizobium meliloti 3DOh13, a good solubilizer of iron and phosphorus

for alfalfa, B. japonicum TIIIB for soybean, and two phosphorus-solubilizing

strains of P. putida for growth-promotion treatments. Modification in the dry

weights of the shoot and root systems were observed in soybean, but not in alfalfa,

in the presence of the Pseudomonas strains (Rosas et al. 2006).

6 New Studies and Applications of PGPR

Rhizospheric bacteria such as Azospirillum and Azotobacter are also being applied

for the induction of rooting in micropropagated plants (jojoba, photinia, ornamental

grasses) (Carletti et al. 1998). It seems that PGPR can replace all or at least some

synthetic plant hormones commonly used in in vitro cultures of plants (Carletti

et al. 2006).

In a study by Larraburu et al. (2007), bacterial inoculation was able to induce

earlier rooting of photinia (Photinia � fraseri Dress) shoots. A. brasilense Cd with
an indole-3-butyric acid pulse showed a significant increase in root fresh and dry

weight, root surface area, and shoot fresh and dry weight, A. brasilense Sp7

enhanced root fresh weight and root surface area, but no significant differences

were detected with A. chroococcum inoculation.

Table 1 Effect of Azospirillum brasilense Az39 inoculum concentration on nodulation and

acetylene reduction activity (ARA) of pouch-grown plants of soybean

Treatment CFU ml�1 Nodule number

(per plant)

Nodule dry

weight (mg)

ARA nmol

C2H4 h
�1 plant�1

Control 109 144 a 0.14 a 20.75

Azospirillum 103 148 a 0.15 a 20.11

105 226 b 0.21 b 28.00

108 139 a 0.15 a 24.10

All treatments were inoculated with 1 ml (1 � 109 CFU ml�1) of B. japonicum. Values followed
by the same letter were not significantly different (P ¼ 0.05). CFU Colony-forming unit, ARA
acetylene reduction activity
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On the other hand, Bacillus spp. and P. polymyxa have attracted considerable

interest because of their great biotechnological potential in different industrial

processes and sustainable agriculture (Lal and Tabacchioni 2009). In Argentina,

for example, two sporulating bacterial strains were isolated from the rhizosphere of

the legume Cicer arietinum. The results of DNA–DNA hybridization showed that

these strains constitute a novel species of the genus Paenibacillus, for which the

name Paenibacillus rhizosphaerae sp. nov. was proposed (Rivas et al. 2005).

Correa et al. (2009) showed the ability of Bacillus amyloliquefaciens BNM122

strain to colonize seeds and roots when applied as a coating on soybean seeds. This

bacterium is a potential microbial biocontrol agent able to control the damping-off

caused by Rhizoctonia solani, both in a plant-growth chamber and in a greenhouse.

Correa et al. (2009) also observed that it had a lesser effect on soil microbial

community than fungicides, because of the less environmental persistence and

toxic effects of the strain.

7 Perspectives and Conclusion

The rhizosphere represents one of the most complex ecosystems on Earth with

almost every root on the planet expected to have a chemically, physically, and

biologically unique rhizosphere. Despite its intrinsic complexity, understanding the

rhizosphere is vital if we are to solve some of the world’s most impending environ-

mental crises, such as sustainable food, fibre and energy production, preservation of

water resources and biodiversity, and mitigation against climate change (Jones and

Hinsinger 2008). The secretion of rhizodeposition is an important way for plants to

respond to and alter their environment. Over the last several years, research and

technical advances have provided a better understanding of how root exudates

mediate communication between plants and other organisms. These advances

could be applied to agricultural systems to enhance production by increasing

defence responses against soil-borne pathogens and/or favoring the association

with beneficial soil microbes. An improvement in plant–microbe symbioses should

involve the reorganizations of the integrated genetic systems due to coordinated

modifications in the plant and microbial genotypes. Sustainable agriculture should

switch from growing plants to the cultivation of plant–microbial communities,

which can reach a high productivity under minimal energy and chemical invest-

ments and with minimal pressures on the environment. However, we are only at the

beginning of this process and much more efforts and cooperation between experts

on plant and microbial genetics, molecular biology and ecology are required to be

successful in attaining sustainable microbial-based agrotechnologies.
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Dardanelli MS, Manyani H, González-Barroso S, Rodrı́guez-Carvajal MA, Gil-Serrano AM,
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Flessa H, Ruser R, Dörsch P, Kamp T, Jimenez MA, Munch JC, Beese F (2002) Integrated

evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in

southern Germany. Agric Ecosyst Environ 91:175–189

Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol

43:337–359

Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl

Acad Sci USA 96:1175–1180

Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol

41:109–117

Graham PH, Vance CP (2000) Nitrogen fixation in perspective: on overview of research and

extension needs. Field Crops Res 65:93–106

Groppa MD, Zawoznik MS, Tomaro ML (1998) Effect of co-inoculation with Bradyrhizobium
japonicum and Azospirillum brasilense on soybean plants. Eur J Soil Biol 34:75–80

16 M.S. Dardanelli et al.



Gruhn P, Goletti F, Yudelman M (2000) Integrated nutrient management, soil fertility, and

sustainable agriculture: current issues and future challenges. Food, agriculture, and the envi-

ronment. Discussion paper 32. International Food Policy Research Institute, Washington, DC,

pp 15–16

Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving

P nutrition of plants. Plant Soil 245:83–93

Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake,

soil availability, and growth of egg plant. Res J Agric Biol Sci 1:176–180

Hiltner L (1904) €Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie

unter besonderer Ber€ucksichtigung der Gr€und€ungung und Brache. Arbeiten der Deutschen

Landwirtschaftlichen Gesellschaft 98:59–78

Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decom-

position and acquires nitrogen directly from organic material. Nature 413:297–299

Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in

the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

Jarecki MK, Parkin TB, Chan ASK, Hatfield JL, Jones R (2008) Greenhouse gas emissions from

two soils receiving nitrogen fertilizer and swine manure slurry. J Environ Qual 37:1432–1438

Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several patho-

gens by PGPR mixtures under field conditions. Plant Dis 87:1390–1394

Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Hartel PG,

Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Inc., New

Jersey, pp 389–407

Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station

de pathologie vegetale et phyto-bacteriologie (ed) Proceedings of the 4th International Confer-

ence on Plant Pathogenic Bacteria, vol II. Gilbert-Clarey, Tours, pp 879�882
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Larraburu EE, Carletti SM, Rodrı́guez Cáceres EA, Llorente BE (2007) Micropropagation of

Photinia employing rhizobacteria to promote root development. Plant Cell Rep 26:711–717

Lewis JA, Papavizas GC (1991) Biocontrol of plant diseases: the approach for tomorrow. Crop

Prot 10:95–105

Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent?

Environ Microbiol 1:9–13

Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

Ma J, Li XL, Xu H, Han Y, Cai ZC, Yagi K (2007) Effects of nitrogen fertilizer and wheat straw

application on CH4 and N2O emissions from a paddy rice field. Australas J Soil Res

45:359–367

Mahaffee WF, Kloepper JW (1994) Applications of plant growth promoting rhizobacteria in

sustainable agriculture. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil

biota: management in sustainable farming systems. CSIRO, Melbourne, pp 23–31

Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious multireplicon Burkholderia
cepacia complex. Nat Rev Microbiol 3:144–156

Mannion AM (1998) Future trends in agriculture: the role of agriculture. Outlook Agric

27:219–224

Benefits of Plant Growth-Promoting Rhizobacteria and Rhizobia in Agriculture 17



Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts

on root development and nitrate uptake. J Exp Bot 55:27–34

McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric

Ecosyst Environ 55:201–212

Mitchell CC, Tu S (2006) Nutrient accumulation and movement from poultry litter. Soil Sci Soc

Am J 70:2146–2153

Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci

11:15–19

Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae
hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117:1171–1178

Morrissey JP, Dow M, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world

food production? Rational exploitation of interactions between microbes and plants can help to

transform agriculture. EMBO Rep 5:922–926

Oerke EC (2005) Crop losses to pests. J Agric Sci 144:31–43

Oerke EC, Dehne HW (2004) Safeguarding production: losses in major crops and the role of crop

protection. Crop Prot 23:275–285

Okon Y (1994) Azospirillum/plant associations. CRC Press, Boca Raton, Florida

Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol.
Trends Microbiol 16:115–125

Perin L, Martinez-Aguilar L, Castro-Gonzalez R, Estrada-de los Santos P, Cabellos-Avelar T,

Guedes HV, Reis VM, Caballero-Mellado J (2006) Diazotrophic Burkholderia species asso-

ciated with field-grown maize and sugarcane. Appl Environ Microbiol 72:3103–3110

Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol

Mol Biol Rev 64:180–201

Perrott KW, Sarathchandra SU, Dow BW (1992) Seasonal and fertilizer effects on the organic

cycle and microbial biomass in a hill country soil under pasture. Australas J Soil Res

30:383–394

Peters NK, Frost J, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium
meliloti nodulation genes. Science 233:977–980

Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudo-
monas spp. in natural environments. Appl Environ Microbiol 63:881–887

Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizo-
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Rodrı́guez Cáceres EA, González Anta G, López JR, Di Ciocco C, Pacheco Basurco J, Parada J

(1996) Response of field-grown wheat to inoculation with Azospirillum brasilense and Bacillus
polymyxa in semiarid region of Argentina. Arid Soil Res Rehab 10:13–20
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necessity of sustainable agriculture within a holistic vision of development and to

focalize environmental protection. Scientific researches involve multidisciplinary

approaches to understand adaptation of PGPR, effects on plant physiology and

growth, induced systemic resistance, biocontrol of plant pathogens, biofertilization,

and potential green alternative for plant productivity, viability of coinoculating,

plant microorganism interactions, and mechanisms of root colonization. By virtue

of their rapid rhizosphere colonization and stimulation of plant growth, there is

currently considerable interest in exploiting these rhizosphere bacteria to improve

crop production. The main groups of PGPR can be found along with the phyla

Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria.

Therefore, the examples coming up next are related to these microorganisms.

Although taxonomic affiliation of validated genera containing PGPR strains

described in literature is vast, phenotypic and genotypic approaches are now

available to characterize these different rhizobacteria. The progress to date in

using PGPR in a variety of applications is summarized and discussed here.

1 Introduction

The use of microorganisms with the aim of improving nutrients availability for

plants is an important practice and necessary for agriculture (Freitas et al. 2007).

During the past couple of decades, the use of plant growth promoting rhizobacteria

(PGPR) for sustainable agriculture has increased tremendously in various parts of

the world. Significant increases in growth and yield of agronomically important

crops in response to inoculation with PGPR have been repeatedly reported (Kloepper

et al. 1980; Seldin et al. 1984; Chen et al. 1994; Zhang et al. 1996; Amara and

Dahdoh 1997; Chanway 1998; Pan et al. 1999; Bin et al. 2000; Gupta et al. 2000;

Biswas et al. 2000; Mariano and Kloepper 2000; Asghar et al. 2002; Vessey 2003;

Gray and Smith 2005; Silva et al. 2006; Figueiredo et al. 2008; Araújo 2008).

Studies have also shown that the growth-promoting ability of some bacteria may be

highly specific to certain plant species, cultivar and genotype (Bashan 1998; Gupta

et al. 2000; Lucy et al. 2004).

PGPR can affect plant growth by different direct and indirect mechanisms (Glick

1995; Gupta et al. 2000). Some examples of these mechanisms, which can probably

be active simultaneously or sequentially at different stages of plant growth, are

(1) increased mineral nutrient solubilization and nitrogen fixation, making nutrients

available for the plant; (2) repression of soilborne pathogens (by the production of

hydrogen cyanide, siderophores, antibiotics, and/or competition for nutrients);

(3) improving plant stress tolerance to drought, salinity, and metal toxicity; and

(4) production of phytohormones such as indole-3-acetic acid (IAA) (Gupta et al.

2000). Moreover, some PGPR have the enzyme 1-aminocyclopropane-1-carboxyl-

ate (ACC) deaminase, which hydrolyses ACC, the immediate precursor of ethylene

in plants (Glick et al. 1995). By lowering ethylene concentration in seedlings and thus

its inhibitory effect, these PGPR stimulate seedlings root length (Glick et al. 1999).
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The bacteria presenting one or more of these characteristics are known as plant

growth promoting rhizobacteria – PGPR (Kloepper and Schroth 1978).

Bashan and Holguin (1998) proposed the division of PGPR into two classes:

biocontrol-PGPB (plant growth promoting bacteria) and PGPB. This classification

may include beneficial bacteria that are not rhizosphere bacteria but it does not

seem to have been widely accepted. According to Vessey (2003), numerous species

of soil bacteria which flourish in the rhizosphere of plants, but which may grow in,

on, or around plant tissues, and stimulate plant growth by a plethora of mechanisms

are collectively known as PGPR. Gray and Smith (2005) have recently shown that

the PGPR associations range in the degree of bacterial proximity to the root and

intimacy of association. In general, these can be separated into extracellular

(ePGPR), existing in the rhizosphere, on the rhizoplane, or in the spaces between

cells of the root cortex, and intracellular (iPGPR), which exist inside root cells,

generally in specialized nodular structures.

There are several PGPR inoculants currently commercialized that seem to

promote growth through at least one mechanism: suppression of plant disease

(bioprotectants), improved nutrients acquisition (biofertilizers), or phytohormone

production (biostimulants). Bacteria in the genera Bacillus, Streptomyces, Pseudo-
monas, Burkholderia, and Agrobacterium are the biological control agents predo-

minantly studied and increasingly marketed. They suppress plant disease through at

least one mechanism, production of antibiotics or siderophores and induction of

systemic resistance (Tenuta 2003).

Biofertlilizers are also available for increasing crop nutrient uptake of nitrogen

from nitrogen-fixing bacteria associated with roots (Bashan and Holguin 1997), iron

uptake from siderophore-producing bacteria (Scher and Baker 1982), sulfur uptake

from sulfur-oxidizing bacteria (Stamford et al. 2008), and phosphorus uptake from

phosphate-mineral solubilizing bacteria (Chabot et al. 1996). Biofertlilizers, that can

cater different needs of growing plant, act as a consortium along with other micro-

organisms in the rhizosphere. Understanding the interaction between consortium of

microbial inoculants and plant systems will pave way to harness more benefits from

microbial inoculants for improving plant growth and yield (Raja et al. 2006).

2 Coinoculation of PGPR and Rhizobia: Improving Nodulation

Coinoculation studies with PGPR and Rhizobia have shown increased plant nodu-

lation and N fixation (Li and Alexander 1988; Araújo and Hungria 1999; Vessey and

Buss 2002; Silva et al. 2006; Figueiredo et al. 2007). Coinoculation of some Bacillus
strains with effective Bradyrhizobium resulted in enhanced nodulation and plant

growth of green gram (Vigna radiata L.) (Sindhu et al. 2002). A variety of rhizo-

sphere microorganisms, including Bacillus and Pseudomonas species, are com-

monly found in the rhizosphere of leguminous and nonleguminous crops (Li and

Alexander 1988). By virtue of their rapid colonization of the rhizosphere and

stimulation of plant growth, there is currently considerable interest in exploiting
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these rhizosphere bacteria to improve crop production. Application of Bacillus
and/or Paenibacillus species to seeds or roots has been shown to cause alteration

in the composition of rhizosphere leading to increase in growth and yield of different

crops (Li and Alexander 1988; Vessey and Buss 2002). Disease suppression of

alfalfa by B. cereus enhanced nodulation and seedling emergence in common bean

(Camacho et al. 2001; Figueiredo et al. 2007), soybean (Araújo and Hungria 1999;

Vessey and Buss 2002), cowpea (Silva et al. 2006, 2007), and pea (Cooper and Long

1994) have been demonstrated as beneficial effects on plants. Bacilli are also very

attractive as potential inoculants in agriculture, as they produce very hardy spores that

can survive for prolonged periods in soil and in storage containers (Nelson 2004).

Araújo and Hungria (1999) demonstrated the viability of coinoculating soybean

seeds with crude or formulated metabolites, or with cells of Bacillus subtilis, to
increase the contribution of the biological nitrogen fixation process.

PGPR, in combination with efficient rhizobia, could improve the growth and

nitrogen fixation by inducing the occupancy of introduced rhizobia in the nodules of

the legume (Tilak et al. 2006). According to Saravana-Kumar and Samiyappan

(2007), Bradyrhizobium promoted the nodulation and growth of legumes in combi-

nation with active ACC deaminase containing PGPR. It has also been established

that certain rhizobacteria possess an enzyme ACC-deaminase that hydrolyses ACC

into ammonia and a-ketobutyrate (Mayak et al. 1999). ACC-deaminase activity in

PGPR plays an important role in the host nodulation response (Remans et al. 2007).

PGPR containing ACC-deaminase could suppress accelerated endogenous ethylene

synthesis and thus may facilitate root elongation a nodulation and improve growth

and yield of plant (Zafar-ul-Hye 2008).

3 Identification and Characterization of Beneficial Bacterial

Strains for Agriculture

Identification and characterization of beneficial bacteria involves morphological,

physiological and molecular characteristics based on fatty acid analysis, mol (%),

G þ C contents, DNA–DNA hybridization, and 16S rRNA sequencing. These

characteristics help in defining the taxonomy and nomenclature of PGPR.

3.1 Taxonomy of PGPR

Taxonomy is defined as the science dedicated to the study of relationships among

organisms and has to do with their classification, nomenclature, and identification

(Mayr and Ashlock 1991; Coenye et al. 2005). The accurate comparison of organi-

sms depends on a reliable taxonomic system. Although many new characterization

methods have been developed over the last 30 years, the principle of identification
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remains the same. Current schemes for identifying different bacterial strains may be

roughly divided into four categories effectively based upon (1) traditional biochem-

ical, morphological, and physiological characters, (2) miniaturized versions of

traditional biochemical tests (e.g., API kits, VITEK cards, and Biolog plates), (3)

chemotaxonomic characters (such as polyacrylamide gel electrophoresis [PAGE],

and fatty acid methyl ester [FAME] profiles), and (4) genomic characters (16S

rRNA gene sequencing, and DNA–DNA relatedness, and other techniques). Since

the fifties, it was becoming clear that no one phenotypic technique would be

suitable for identifying all bacterial species. Therefore, the potentials of chemota-

xonomic analyses and studies of nucleic acids have been investigated. However, it

is impossible to set up standardized conditions to accommodate the growth of all

bacterial strains of all species for chemotaxonomic work, and a polyphasic

approach is now imperative for a confident classification study. Polyphasic

approach refers to the integration of genotypic, chemotypic, and phenotypic infor-

mation of a microbe in order to perform reliable grouping of the organism (Colwell

1970). Some of the features used for polyphasic characterization of rhizobacteria

are presented below. For overviews of modern taxonomy, recent papers can be

referred, such as Vandamme et al. (1996), Prakash et al. (2007), Rodrı́guez-Dı́az

et al. (2008), and Logan et al. (2009).

3.2 Phenotypic Features

Phenotype includes morphological, physiological, and biochemical properties of the

microorganism (de Vos et al. 2009). Traditional phenotypic tests used comprise

colony morphology (color, dimensions, form) and microscopic appearance of the

cells (shape, endospore, flagella, inclusion bodies), characteristics of the organism on

different growth substrates, growth range of microorganisms on different conditions

of salt, pH, and temperature, and susceptibility toward different kinds of antimicro-

bial agents, etc. Even if cell wall composition is analyzed, the Gram reaction is still a

valuable diagnostic character. Biochemical tests in bacterial identification include

the relationshipwith oxygen, fermentation reactions, and nitrogenmetabolism. Other

tests may be performed as appropriate, depending on the bacterial strains studied

(Heritage et al. 1996; Rodrı́guez-Dı́az et al. 2008). However, reproducibility of

results from phenotypic tests between different laboratories is a great problem, and

only standardized procedure should be used during execution of experiment. Other

major disadvantage with phenotypic methods is the conditional nature of gene

expression wherein the same organism might show different phenotypic characters

in different environmental conditions. Therefore, phenotypic data must be compared

with similar set of data from type strain of closely related organism(s).

Miniaturized versions of traditional biochemical tests are available for taxonomical

studies and mostly contain a battery of dehydrated reagents. Addition of a standar-

dized inoculum initiates the reaction (growth, production of enzymatic activity, etc.).

The results are interpreted as recommended by the manufacturer and are readily
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accessible with a minimal input of time. The phenotypic fingerprinting systems API

50CH – composed of 49 different carbohydrates and one negative control – have been

used to identifyBacillus (Logan and Berkeley 1984) and Paenibacillus strains (Seldin
and Penido 1986), while the API 20NE system has yielded the highest rate of correct

identification of Pseudomonas species (Barr et al. 1989). In the same way, Biolog

assay is considered a much less laborious system for bacterial identification (Miller

and Rhoden 1991). This technique is based on the differential utilization of 95 carbon

sources and a redox dye, tetrazolium violet, permits colorimetric determination of the

increased respiration that occurs when cells are oxidizing a carbon source. The Biolog

system was very useful for the identification of PGPR strains belonging to the species

P. azotofixans (Pires and Seldin 1997).

3.3 Chemotaxonomic Characters

Some chemotaxonomic fingerprinting techniques applied to PGPR identification

include FAME profiling, PAGE analysis of whole-cell proteins, polar lipid analysis,

quinone content, cell wall diamino acid content, pyrolysis mass spectrometry,

Fourier transform infrared spectroscopy, Raman spectroscopy, and matrix-assisted

laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

Fatty acids are the major constituents of lipids and lipopolysaccharides and have

been used extensively for taxonomic purposes. FAME analysis is presently the only

chemotaxonomic technique that is linked to a commercial database for identifica-

tion purposes. Fatty acid profiles showing variability in chain length, double-bond

position, and substituent groups are perfectly suitable for taxon description and also

for comparative analyses of profiles that have been obtained under identical growth

conditions (Suzuki et al. 1993).

Sodium dodecyl sulfate-PAGE of whole-cell proteins requires standardized

conditions of growth, combined with a rigorously standardized procedure for

analysis, and normalization of the data for computer-assisted comparison of the

results. Nevertheless, it has made important contributions to polyphasic taxonomic

studies among the aerobic endospore formers (Logan et al. 2009).

Determination of the cell wall composition has traditionally been important in

Gram-positive bacteria which contain various peptidoglycan types. The peptidogly-

can type of Gram-negative bacteria is rather uniform and provides little information.

Preparation of cell wall samples and determination of peptidoglycan structure is

usually carried out using the methods described by Schleifer and Kandler (1972).

Isoprenoid quinones occur in the cytoplasmic membranes of most prokaryotes

and play important roles in electron transport, oxidative phosphorylation, and,

possibly, active transport (Collins and Jones 1981). There are two major structural

groups, the naphthoquinones (subdivided into two types: the phylloquinones and

the menaquinones) and the benzoquinones. The large variability of the side chains

(differences in length, saturation, and hydrogenation) can be used to characterize

bacteria at different taxonomic levels (Collins and Jones 1981).
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The taxonomic importance of polar lipids has now been demonstrated for some

novel genera among the Bacillaceae, although many polar lipids detected have not

yet been structurally characterized. Likewise, quinones (MK-7, MK-8, and MK-9)

have so far been reported for representatives of Bacillaceae (Logan et al. 2009).

Finally, pyrolysis mass spectrometry, Fourier transform infrared spectroscopy,

and UV resonance Raman spectroscopy are sophisticated analytical techniques

which examine the total chemical composition of bacterial cells. These methods

have been used for taxonomic studies of particular groups of bacteria, including the

members of the family Bacillaceae (Vandamme et al. 1996; Logan et al. 2009).

3.4 Genetic Approaches

Genotypic methods are those that are directed toward DNA or RNA molecules.

Undoubtedly, these methods have revolutionized the bacterial identification system

and taxonomy. Different techniques are now available to subtype bacteria up to

strain level, such as restriction fragment length polymorphism (RFLP), plasmid

profiling, ribotyping, amplified ribosomal DNA restriction analysis (ARDRA),

pulsed field gel electrophoresis (PFGE), and randomly amplified polymorphic

DNA (RAPD). Different PGPR have already been characterized by one or more

of these methods (Oliveira et al. 2000; von der Weid et al. 2000; Depret and

Laguerre 2008; Monteiro et al. 2009; and many others). For a detailed description

of these methods, the reviews by Vandamme et al. (1996), Prakash et al. (2007),

Rodrı́guez-Dı́az et al. (2008), and Logan et al. (2009) can be referred.

For the description of bacterial taxa, other methods are essentially used. Determi-

nation of the moles percent guanosine plus cytosine is one of the classical genotypic

methods. Generally, the range observed is not more than 3% within a well-defined

species and not more than 10% within a well-defined genus (Stackebrandt and

Goebel 1994).

DNA–DNA hybridization or DNA–DNA reassociation technique is based on the

fact that at high temperatures DNA can be denatured, but the molecule can be

brought back to its native state by lowering down the temperature (reassociation).

This technique considers the comparison between whole genome of two bacterial

species (Stackebrandt and Liesack 1993). A bacterial species, generally, would

include the strain with 70% or greater DNA–DNA hybridization values with 5�C or

less DTm values, and both the values must be considered. There are many different

methods for DNA–DNA hybridization [presented and compared by Mora (2006)],

but it is important to state that this technique gives the relative % of similarity but

not the actual sequence identity.

DNA microarray is a method which was lined up to overcome the shortcomings

of DNA–DNA hybridization. Although DNA microarray also involves hybridiza-

tion of DNA, it uses fragmented DNA instead of whole genomic DNA. Numerous

DNA fragments can be hybridized on a single microarray and gives resolution up to

strain level. However, it is still an expensive methodology.
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Indeed, taxonomy was revolutionized when the gene sequences of rRNA mole-

cules were introduced to compare evolutionary similarities among strains (phylo-

genetic comparisons). All the three kinds of rRNA molecules, i.e., 5S, 16S, and 23S

and spacers between these can be used for phylogenetic analyses, but 16S rRNA

gene (1,650 bp) is the most commonly used marker. It has a universal distribution,

highly conserved nature, fundamental role of ribosome in protein synthesis, no

horizontal transfer, and its rate of evolution which represents an appropriate level

of variation between organisms (Stackebrandt and Goebel 1994). The 16S rRNA

molecule comprises of variable and conserved regions, and universal primers for the

amplification of full 16S rRNA gene are usually chosen from conserved region

while the variable region is used for comparative taxonomy. The 16S rRNA gene

sequence is deposited in databases such as Ribosomal Database Project II (http://

rdp.cme.msu.edu/) and GenBank (http://www.ncbi.nlm.nih.gov/). Sequences of

related species for comparative phylogenetic analysis can also be retrieved from

these databases. Thereafter, sequence comparing software packages such as BLAST

and CLUSTAL X are used for alignment of 16S rRNA gene sequence. The extent of

relatedness between bacterial species can be scrutinized by the construction of

phylogenetic trees or dendrograms. The phylogenetic tree ascertains the genus to

which the strain belongs and its closest neighbors, i.e., those sharing the clade or

showing >97% 16S rRNA gene sequence similarity, are obtained from various

culture collections to perform further genotypic, chemotaxonomic, and phenotypic

analysis. At present, by correlation with experimental data obtained in the compari-

son of total genomic DNA (DNA–DNA hybridization), it is proposed that a simi-

larity below 98.7–99% on the 16S rRNA gene sequences of two bacterial strains is

sufficient to consider them as belonging to different species. On the other hand, two

strains showing similarities above the 98.7% threshold may represent two different

species. In these cases, total genome DNA–DNA hybridization must be performed

and those strains for which similarities are below 70% are considered to belong to

different species (Stackebrandt and Liesack 1993; Stackebrandt and Goebel 1994).

Finally, sequences of other highly conserved housekeeping or other protein-

encoding genes, such as rpoB, gyrB, recA, have also great potential for taxonomic

analysis at the species level. For example, Mota et al. (2005) obtained clustering

patterns for Paenibacillus based upon rpoB sequence comparisons that were similar

to those obtained with 16S rRNA gene sequences. Moreover, Wang et al. (2007)

included gyrB sequence comparisons in the studies of the B. subtilis group and

Cerritos et al. (2008) included recA sequence comparisons in the work that led to

the proposal of a new Bacillus species.

4 Prospective Biocontrol Agents of Plant Diseases

Since 1987 in China, PGPR, called yield increasing bacteria (YIB) have been

largely applied in 48 different crops over 3.35 millions of hectares (Wenhua and

Hetong 1997). In that country, productivity gains as high as 23.1% and 22.5% were
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obtained, respectively, in sweet potatoes and potatoes. Additionally, remarkable

85.5% and 80.3% reduction levels of diseases caused by Xanthomonas oryzae pv.
oryzae and Glomerella cingulata, respectively, were recorded (Zhang et al. 1996).

Rhizobacteria are effective competitors in the rhizosphere which can establish

and persist on roots of agronomically grown plants (Kloepper and Mariano 2000).

PGPR may promote plant growth directly on healthy plants or indirectly when

controlling phytopathogens or pests in different crops (Kloepper 1993; Medeiros

et al. 2005; Zhender et al. 1997; Keel and Maurhofer 2009). They can be isolated

from any other plant part besides the roots as well as from the plant surface or

interior. According to Hallman et al. (1997), the endophytic bacteria involved in

biological control showed advantages of having the same ecological niche of the

pathogen and could be protected from diverse abiotic influences.

The PGPR mechanisms for plant growth improvement were already discussed in

this chapter. PGPR also exhibit several mechanisms of biological disease control,

most of which involve competition and production of metabolites which affect the

pathogen directly. Examples of such metabolites include antibiotics, cell wall-

degrading enzymes, siderophores, and HCN (Enebak et al. 1998; Kloepper 1993;

Weller 1988). It is noteworthy to state that different mechanisms may be found in a

single strain and act simultaneously. Some PGPR do not produce metabolites

against the pathogens and are spatially separated from them. These two traits

suggest that alteration of host defense mechanisms account for the observed disease

protection. Induced systemic resistance (ISR) or systemic acquired resistance

(SAR) is defined as the activation of chemical and physical defenses of the plant

host by an inducer which could be a chemical or a microorganism, leading to the

control of several pathogens (Kloepper et al. 1992). Several PGPR strains can act

as inducers of ISR (Kloepper et al. 1992), and PGPR-mediated ISR may be an

alternative to the use of chemical inducers or pathogens for inducing SAR. This

mechanism is discussed separately in this chapter.

Two cases of study will be discussed here: black rot of crucifers, a foliar disease,

and Fusarium wilt of banana, a vascular disease. Black rot caused by Xanthomonas
campestris pv. campestris (Xcc) causes severe economic losses in all developmen-

tal crucifer stages (Mariano et al. 2001). Bacillus spp. isolated from healthy

cabbage, kale, and radish had reduced black rot incidence in kale and cabbage in

greenhouse and field experiments (Assis et al. 1996). Monteiro et al. (2005) showed

that four of these Bacillus strains produced lipopeptides active against Xcc during
its late growth phase. These peptide antibiotics are amphiphilic compounds with

surfactant activity (Zuber et al. 1993). Recently, it was demonstrated that lipopep-

tides can stimulate ISR in plants, probably by interacting with plant cell membranes

and inducing temporary alterations in the plasma membrane which could raise plant

defenses (Ongena et al. 2009).

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense is a very
destructive disease in Brazil and other parts of the world. The rhizomes and pseu-

dostems of infected plants used for propagation are the principal sources of inoculum

and disease dispersion. Therefore, micropropagated health plantlets are used to

prevent or delay the introduction of this pathogen in soils. However, these plantlets
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are more susceptible to this and other soilborne pathogens and should be protected

before transplanting. PGPR are an alternative for improving this system. In green-

house studies, endophytic and epiphytic bacteria applied, isolated or in mixtures, as

root and substrate treatments, significantly increased the growth of micropropagated

banana plantlets and controlled fusarium wilt (Mariano et al. 2004) (Fig. 1). Accord-

ing to Nowak and Shulaev (2003), the production of high-quality propagules

with disease resistance may be achieved among others methods by their “in vitro”

and “ex vitro” biopriming (priming with beneficial microorganisms).

Commonly, control is based on the use of single biocontrol agents. This strategy

must be changed because, from the ecological point of view, the disease is part of a

complex agroecosystem. As reported by Fravel (2007), a holistic view of this

system can help take correct decisions about management. Therefore, a special

approach for improving the PGPR efficiency is the use of mixtures containing

different genera or species that presents additive or synergistic effects such as

nitrogen-fixing bacteria and mycorrhiza helper bacteria (MHB). Another strategy

is to use PGPR, mixed or alternated with fungicides, integrating biological and

chemical control.

MHB are those which either assist mycorrhiza formation or promote the function-

ing of their symbiosis. They exist in arbuscular and ectomycorrhizal systems. MHB

present three significant functions: nutrient mobilization from soil minerals, fixation

of atmospheric nitrogen, and plant protection against root pathogens (Frey-Klett et al.

2007). According to these authors, PGPR induced increases in mycorrhizal root coloni-

zation from 1.1 to 17.5 fold in different interactions. Some of the MHB cited were

Fig. 1 Biocontrol of Fusarium wilt in micropropagated banana plantlet cv. Pacovan treated with

Bacillus pumilus ENF24 (right) compared with plantlet not treated (left). Plantlets were vertically
sliced to show rhizome discoloration, an internal disease symptom
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Pseudomonas fluorescens, P. monteilii, Bacillus coagulans, B. subtilis, Paenibacillus
brasilensis, Rhizobium leguminosarum, and Bradyrrhizobium japonicum.

Wheat seeds treated with different mixtures of Paenibacillus macerans and

difenoconazole showed significant reduced incidences of pathogens (Luz 2003a),

and in field all treatments promoted germination and grain yield except for difeno-

conazole alone that increased only yield. Similar results were obtained when corn

seeds were bacterized with the same bioprotector þ fludioxonil þ metalaxyl

M (Luz 2003b). Also Bacillus-based treatments have been successfully combined

with traditional chemical seed treatments (Bugg et al. 2009). Therefore, the use of

such mixtures may lead to a substantial reduction of pesticide use in several crops.

It is also important to focus on the critical stages of commercialization of

biocontrol agents. Screening for new agents should consider the biology and

ecology of the pathosystem, as well as agricultural practices associated with the

crop (Fravel 2007). This knowledge will help prevent variation in field performance

which is responsible for lack of wider adoption of biocontrol for disease manage-

ment. The formulation stage aim is to deliver the biocontrol agent in a physiologi-

cally active state to provide the needed control. The formulation must be

economical and present good shelf-life and a suitable form for shipping, storage,

and application. Risk assessment to human health and to the environment are

needed before releasing the new product, and early in the screening; even micro-

organisms with good biocontrol potential but capable of growing at human body

temperature should be eliminated (Fravel 2007). In the United States, organisms

currently registered for biocontrol and active compounds isolated from plants or

other organisms are listed at http://www.epa.gov/oppbppd1/biopesticides/ingredi-

ents/index.htm. A few examples of PGPR and biocontrol products are: Agrobacter-
ium radiobacter K1026 (Nogall®), Bacillus pumilus QST 2808 (Sonata® TM),

B. pumilus GB34 (YieldShield®), B. subtilis GBO3(Kodiak®), Pantoea agglomer-
ans C9-1 (BlightBan C9-1®), P. agglomerans E325 (Bloomtime®), Pseudomonas
aureofaciens Tx-1(Spot-Less®T), P. syringae ESC-10 and ESC-11 (Bio-save®),

P. fluorescens A506 (BlightBan®), P. chlororaphis MA 342 (Cedomon®), Strepto-
myces griseoviridis K61 (Mycostop®), and S. lydicus WYEC 108 (Actinovate®).

5 Induced Systemic Resistance as a Mechanism of Disease

Suppression by Rhizobacteria

The increased level of resistance using external agents, without modifying the

genome of the plant, is known as induced or acquired resistance. The expression

of induced resistance can be local or systemic when it is expressed at sites not

directly exposed to the inducers agent (Stadnik 2000). This agent may be a

chemical activator, extracts of cells of living organisms or microorganisms

(Romeiro 2000). The event of ISR has been demonstrated in various plants inocu-

lated with different species of rhizobacteria (Liu et al. 1995; Raj et al. 2003;

Halfeld-Vieira et al. 2006). This type of induced resistance can occur under
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controlled conditions and in the field, and shows advantages such as: effectiveness

against various pathogens; stability due to the action of different mechanisms of

resistance, systemicity, energy economy; and metabolic utilization of genetic

potential for resistance in all susceptible plants (Bonaldo et al. 2005).

The ISR occurs when plants previously exposed to biotic and abiotic agents are

induced to defense against pathogens, which are spatially separated from the

inducer agent (Pieterse and Van Loon 1999; Stadnik 2000). PGPR that inhabit

the soil and are often isolated from the rhizosphere of several plants have been

studied as potential biotic agents of ISR (Mariano and Kloepper 2000). Bacillus and
Pseudomonas are among the most studied genera of PGPR.

It is known that susceptible plants have genetic information for efficient mecha-

nisms of resistance to diseases and that these mechanisms can be systematically

expressed for long periods of time by prior inoculation with avirulents pathogens,

microbial components, and chemical substances (Kuc 1995). The ISR is persistent

and presents complex components in different locations which are responsible for

the activity of various defense compounds. Consequently, it is more stable when

compared with the few pathways arising from the use of chemical pesticides.

Despite the many studies in this area, only in 1961 the induced resistance was

first analyzed, by preinoculation of tobacco plants with tobacco mosaic virus (Ross

1961). This procedure protected the plant against other viruses and resulted in the

conception of “Systemic Acquired Resistance” (SAR). The activation of defense

mechanisms induced by fungi, bacteria, viruses, and nematodes can be achieved by

different routes, which may occur alone or concomitantly (Bonaldo et al. 2005).

Problems of variability in the effectiveness of induced resistance to diseases in

plants in different soil and climatic conditions may occur, similar to that found in

biological control (Kuc 1995). In agriculture, the use of biological products on the

induction of resistance in plants has one more benefit that can be added to the

already known to reinforce the plant growth promotion. Induction of resistance by

the application of chemical inducers has been used in some crops in the integrated

management of diseases and pests. The use of biological inducers may be an option

in the management of diseases in plants. The positive effects of PGPR on plants

usually are included in two categories: promotion of growth and biological control

(Mariano and Kloepper 2000). In practice, these effects are often induced by the

same strain of PGPR; therefore, some PGPR selected to promote growth also are

able to control diseases and vice versa. The presence of the PGPR in the rhizosphere

makes the entire plant, including the shoot, more resistant to pathogens.

Induction of resistance promoted by PGPR is active and signaling in the route of

salicylic acid with induction of PR-proteins (proteins related to the pathogenesis) or

route of the jasmonic acid and ethylene (Hoffland et al. 1995; Pieterse et al. 1998).

When the PGPR colonize the root system, constituents of bacterial cell molecules

or synthesized by elicitors act as a biochemical signal. This time, the genes that

encode for the synthesis of components of the dynamic resistance are activated and

ISR is expressed (Romeiro 2000). Wei et al. (1991) working with cucumber and

anthracnose caused by Colletotrichum orbiculare showed that this plant could be

used as a model for ISR.
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In addition to the PR-proteins, the plants produce other enzymes of the defense,

including peroxidases, phenylalanine ammonia-lyase (PAL), and polyphenol-

oxidase (PPO). Peroxidase and PPO are catalysts in the formation of lignin. PAL

and other enzymes are involved in the formation of phytoalexins. Chen et al. (2000)

reported that ISR mediated by PGPR against Pythium aphanidermatum in cucumber

was associated with an increase of peroxidases, PPO and PAL. Metabolic changes

involved in the defense mechanism of plants are correlated with changes in activity

of key enzymes in primary and secondary metabolism. The production of enzymes

related to pathogenesis (PR-proteins) by strains of rhizobacteria is considered the

largest property of the antagonistic strains (Saikia et al. 2004). Among these enzymes

can be highlighted chitinases, lipoxygenases, peroxidases, and glucanases. Plants

express the activity of peroxidase during pathogen–host interaction (Saikia et al.

2006), where this enzyme has been implicated in the oxidation of phenols (Schmid

and Feucht 1980), lignification (Saparrat and Guillen 2005), plant protection

(Hammerschmidt et al. 1982), and elongation of plant cells (Goldberg et al. 1986).

Increased activity of peroxidase has been correlated with resistance in many plant

species, including rice and wheat (Young et al. 1995). The action of lipoxygenase

products contributes to the defense reactions involving the inhibition of growth of the

pathogen and induction of phytoalexins (Li et al. 1991). The phytoalexins are

secondary metabolites, antibiotics, low molecular weight produced by plants in

response to physical stress, chemical, or biological. They are able to prevent or

reduce the activity of pathogens, the rate of production dependent on the genotypes of

host and/or pathogen (Daniel and Purkayastha 1995). The phytoalexin compounds

are biocides and are directly related to the defense mechanisms of plants.

In several studies, the quantification of activity of enzymes involved in the

induction of resistance has been used as a parameter to assess the induction

mechanism (biotic or abiotic) involved (Knorzera et al. 1999; Campos et al.

2004; Nakkeeran et al. 2006; Silva et al. 2004; Halfeld-Vieira et al. 2006; Saikia

et al. 2006). The increase in activity and accumulation of these enzymes depend

mainly on the inducing agent but also the genotype of the plant, physiological

conditions, and the pathogen (Tuzun 2001). Depending of pathosystem studied, a

variety of substances are produced by rhizobacteria and has been linked to activa-

tion of mechanisms of disease suppression in plants which reduce the damage

caused by phytopathogens. Thus, the application of PGPR in agriculture via soil

or seed inoculation can be characterized as a beneficial component in the integrated

management of diseases.

6 Bacterial Biofertilizers

Before initiating a review of PGPR as biofertilizers, it is necessary to define the

term biofertilizer. It is proposed frequently here that biofertilizers designate the

biological products which contain microorganisms providing direct and indirect

gains in yield from crops. Vessey (2003) defines biofertilizers as a substance which
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contains living microorganisms which, when applied to seed, plant surfaces, or soil

colonizes the rhizosphere or the interior of the plant and promotes growth by

increasing the supply or availability of primary nutrients the host plant. Rhizobac-

teria, associated with rhizosphere, can fix nitrogen, and solubilizing phosphorus has

been used as inoculum in nonleguminous species such as maize, rice, wheat, and

sugar cane (Dobereiner 1997). Biofertilizers have been an alternative to mineral

fertilizers to increase the yield and plant growth in sustainable agriculture (Canbolat

et al. 2006).

The mechanisms by which PGPR promote plant growth are not fully understood

but include among others: ability to produce or change the concentration of

plant hormones (Mordukhova et al. 1991); asymbiotic N2 fixation (Boddey and

Dobereiner 1995); and solubilization of mineral phosphate and other nutrients

(De Freitas et al. 1997). The production of hormones in PGPR in numerous studies

reports the importance of indolacetic acid (IAA) in the roots development (Aloni

et al. 2006). The effect of exogenous IAA in the plant can stimulate or inhibit

growth and is often a function of hormones concentration available; in addition, the

sensitivity of plant tissue changes according to hormones concentration (Persello-

Cartieux et al. 2003). It was reported that isolates of Pseudomonas (fluorescent)

produced exudates in roots of maize in response to IAA (Pan et al. 1999). Gibber-

ellins were detected in several cultures of B. subtilis, but were not detected in the

presence of auxin (Broadbent et al. 1971). Analyzing the sources of IAA with

bacterial origin, Loper and Schroth (1986) found two strains of Pseudomonas spp.
producing high concentrations of IAA (5–10 mg/ml), which reduced roots elonga-

tion and increased shoot/root proportion in sugar beet plants (Beta vulgaris) when
applied as seed inoculant in this culture. Araújo et al. (2005) detected auxin

production in two strains of B. subtilis which provided benefits in growth of

soybean, in addition to be antagonists of phytopathogenic fungi in culture. Araújo

and Hungria (1999) found that B. subtilis (AP-3) or its metabolites provided

increase in nodulation and yield of soybean in the field.

Gains in nutrition in plants inoculated with rhizobacteria have also been demon-

strated as a benefit of the presence of this group of microorganisms in the rhizo-

sphere. In relation to nitrogen for several years has been discovered the potential of

bacteria from the genus Azospirillum; fixing nitrogen when in free-living (Boddey

and Dobereiner 1995), which when associated with the rhizosphere may contribute

to nitrogen nutrition of plants. Concerning phosphate nutrition, Rodriguez and

Fraga (1999) mention that strain from the genus Pseudomonas, Bacillus and

Rhizobium are among the bacteria with the greatest potential of solubilization of

phosphorus in the soil.

The solubilization of insoluble phosphates mediated by microorganisms is

associated with the detachment of organic acids which are often combined with

other metabolites, as found in vitro, that the potential for P solubilization by

microorganisms is directly related to production of siderophores, lytic enzymes,

and phytohormones (Vassilev et al. 2006). With the increased availability of

nutrients in the soil by the action of B. subtilis, was shown higher absorption of

nutrients such as phosphorus and nitrogen in plants inoculated with rhizobacteria
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on seeds (Araújo 2008). Richardson (2000) reported that most soils are poor

in available phosphorus and phosphate fertilizer represents a high cost to the

farmer; therefore, it is interesting to take advantage of soil microorganisms used

as inoculum for the mobilization of phosphorus in poor soils. In addition to

phosphorus solubilization, other mechanisms are also related to the microbial

metabolism in soil, such as enzymes production (nitrogenase, chitinases, and

glucanases) (Cattelan et al. 1999).

Some failures derived from the use of biofertilizers containing PGPR may be

related to interspecific genetic interaction by the rhizobacteria and the host plant.

Previous studies have documented phenotypic variation within cultivars with

respect to health and nutrition of plants from microbial inoculation (Remans et al.

2008). Different cultures and species or cultivars may produce different types of

root exudates, which may support the activity of the inoculum or serve as substrate

for the formation of biologically active substances by the inoculum (Khalid et al.

2004). Dalmastri et al. (1999) reported that different maize cultivars could provide

variation in the rhizosphere colonization by Burkholderia. Phenotypic variation

among cultivars may be partly due to genetic variation and suggested that the

breeding of the host was performed in conjunction with PGPR in biofertilizers

(Remans et al. 2008). Another strategy to reduce the effects of phenotypic variation

can be the use of biofertilizers with more than two isolates in their composition.

Studies conducted for 2 years with the application of biofertilizers originating from

a mixture of isolates of Bacillus showed increase in plant growth and productivity

(Adesemoye et al. 2008).

A major problem for massive use of PGPR has been formulated for its commer-

cial use. These include production in the scale of fermentation microorganisms with

management of the quality, stability, and effectiveness of the product. B. subtilis
has been assessed as of great potential for use in agriculture and has been used in the

formulation of commercial products for agricultural use in several countries

(Lazzareti and Bettiol 1997). Several substances have been used in experimental

formulations such as lactose, peptone, gum arabic and xanthan, cellulose, and

others (Schisler et al. 2004). This formulation may require a significant value to

determine the effectiveness of the final product based on rhizobacteria such as the

B. subtilis.
Development of formulations with a potential PGP to ensure survival and

activity in the field and compatibility with chemical treatment of seeds has been

the focus of researches with application of PGPR in agriculture. The research

among other things optimizes growth conditions before the formulation, develop-

ment of vehicles, and appropriate technology for application (Date 2001). In

registration and marketing of products with PGPR, a large number of constraints

are found (Mathre et al. 1999).

The U.S. market based on the information of the committee of biological

products from the American Phytopatology Society (APS) in 2005 has registered

the following products: ten products based on the Bacillus (BioYield, Companion,
EcoGuard, HiStick N/T, Kodiak , Mepplus, Serenade, Sonata, Subtilex, Yield-
Shield), two products with Burkholderia cepacia (Deny and Intercept), and six
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products based on Pseudomonas (AtEze, Bio-save, BlightBan, Frostban, Spot-Less).
Most of these products has been disposed in powder solubleformulate. Different

genera of bacteria have been studied as PGPR; however, investments in research

and development of bioproducts have been higher in projects on Pseudomonas and
Bacillus. Works on Pseudomonas have been focused on alternatives to improve the

survival of this species of bacteria in commercial formulations. Furthermore,

bacteria from the genus Bacillus, which are tolerant to desiccation and heat, have

a longer life in commercial formulations; this explains the greater availability of

commercial products based on Bacillus.
Currently, biofertilizers with PGPR are still not a reality of extensive commer-

cialization – unlike the agricultural use of legume inoculants using rhizobia already

a reality for almost a century – except for Azospirillum inoculants that are available

for a variety of crops in Europe and Africa (Vessey 2003). There is no doubt that the

lack of consistent responses in different host cultivars (Remans et al. 2008) and

different field sites (Hilali et al. 2001) are reasons that limit expansion of the

marketing of biofertilizers with PGPR. For these, it would be necessary to carry

out more studies on ecology and colonization of microorganisms in the rhizosphere

at different situations, since the biofertilizers with PGPR are restrictive for certain

cultivars, climate, and soil conditions.

7 Concluding Remarks

PGPRs are the potential tools for sustainable agriculture and trend for the future.

For this reason, there is an urgent need for research to clear definition of what

bacterial traits are useful and necessary for different environmental conditions and

plants, so that optimal bacterial strains can either be selected and/or improved.

Combinations of beneficial bacterial strains that interact synergistically are cur-

rently being devised and numerous recent studies show a promising trend in the

field of inoculation technology.
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Phytopathol 26:177–184

Ross AF (1961) Localizated acquired resitance to plant virus infection in hypersensitive hosts.

Virology 14:340–358

Saikia R, Kumar R, Singh T, Srivastava AK, Arora DK, Gogoi DK, Lee MW (2004) Induction of

defense related enzymes and pathogenesis related proteins in Pseudomonas fluorescens-treated
chickpea in response to infection by Fusarium oxysporum F. sp. Ciceri. Mycobiology

32:47–52

Plant Growth Promoting Rhizobacteria 41



Saikia R, Kumar R, Arora DK, Gogoi DK, Azad P (2006) Pseudomonas aeruginosa inducing rice
resistance against Rhizoctonia solani: production of salicylic acid and peroxidases. Folia

Microbiol 51:375–380

Saparrat MCN, Guillen F (2005) Lignolitic ability and potential biotechnology applications of the

South American fungus Pleurotus lacioniatocrenatus. Folia Microbiol 50:155–160

Saravana-Kumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens
mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbial

102:1283–1292

Scher FM, Baker R (1982) Effect of Pseudomonas putida and synthetic iron chelator on induction
of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573

Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for

biological control of plant diseases. Phytopathology 94:1267–1271

Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic

implications. Bacteriol Rev 36:407–477

Schmid PS, Feucht W (1980) Tissues-specific oxidation browning of polyphenols by peroxiase in

cherry shoots. Gartenbauwisenschaft 45:68–73

Seldin L, Penido EGC (1986) Identification of Bacillus azotofixans using API tests. Antonie

Leeuwenhoek 52:403–409

Seldin L et al (1984) Bacillus azotofixans sp. nov. a nitrogen fixing species from Brazilian soils and

grass roots. Int J Syst Bacteriol 34:451–456

Silva HSA, Romeiro RS, Macagnan D, Halfeld-vieira BA, Pereira MCB, Mounteer A (2004)

Rhizobacterial induction of systemic resitance in tomato plants: non-specific protection and

increase in enzyme activities. Biol Control 29:288–295

Silva VN, Silva LESF, Figueiredo MVB (2006) Atuação de rizóbios com rizobactérias promotoras
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Abstract Plant growth promoting rhizobacteria (PGPR) are a group of free-living

bacteria that colonize the rhizosphere and benefit the root growth in plants. Bacteria

of diverse genera such as Azospirillium, Bacillus, Burkholderia, Klebsiella, Pseu-
domonas, etc., were identified as PGPR. These PGPR exert a direct effect on plant

growth by inducing the production of phytohormones, supplying biologically fixed

nitrogen, and increasing the phosphorous uptake by the solubilization of inorganic

phosphates. These bacteria affect plant growth by indirect mechanisms that involve

suppression of bacterial, fungal, viral, and nematode pathogens. A lot of study

showed that inoculation with PGPR resulted in significant yield increases in

different crops, rooting of hardwood and semi-hardwood cuttings, increased germi-

nation and enhanced emergence of seeds under different conditions, promoted

nutrient uptake of roots, total biomass of the plants, increased seed weight, induced

early flowering, etc. In this review, the importance of PGPR is discussed for
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agricultural innovations with special references that utilises direct and indirect

plant growth promotion.

1 Introduction

The rhizosphere, volume of soil surrounding roots influenced chemically, physi-

cally, and biologically by the plant root, is a highly favorable habitat for the

reproduction of microorganisms, which exerts a potential impact on plant health

and soil fertility (Sorensen 1997; Antoun and Prevost 2005; Podile and Kishore

2006). This environment is relatively rich in nutrients released by the plant roots,

and its microbial communities are different from those that are not influenced by the

roots (Alexander 1977; Burdman et al. 2000).

In the rhizosphere, very important and intensive interactions occur among the

plant, soil, microorganisms, and soil microfauna (Antoun and Prevost 2005). These

interactions can significantly influence plant growth and crop yields. In the

rhizosphere, bacteria are the most abundant microorganisms. Rhizobacteria are

rhizosphere-competent bacteria that aggressively colonize plant roots, could be

free-living, parasitic, or saprophytic, and their diversity remains dynamic with a

frequent shift in community structure and species abundance (Kunc and Macura

1988). These microbial communities are beneficial for plant growth, yield, and crop

quality, and they have been called “plant growth promoting rhizobacteria (PGPR)”

(Kloepper and Schroth 1978) including numerous strains of the genera

Acinetobacter, Aeromonas, Alcaligenes, Arthrobacter, Azospirillium, Azotobacter,
Azoarcus, Bacillus, Beijerinckia, Burkholderia, Clostridium, Enterobacter, Erwi-
nia, Flavobacterium, Gluconacetobacter, Klebsiella, Pseudomonas, Serratia, Rhi-
zobium, etc. (Burdman et al. 2000; Sudhakar et al. 2000; Hamaoui et al. 2001;

Bertrand et al. 2001; Mirza et al. 2001; Bonaterra et al. 2003; Esitken et al. 2003a;

Murphy et al. 2003; Raj et al. 2004; Joo et al. 2004; Esitken et al. 2006; Podile and

Kishore 2006; Saleem et al. 2007).

PGPR can be divided into two groups according to their relationship with the

plants: symbiotic bacteria and free-living rhizobacteria (Khan 2005). A lot of work

have been done to study about the mechanisms and principles of the PGPR–plant

relationship, which was widely accepted as the rhizosphere effect (Zhuang et al.

2007). Glick (1995) reported that PGPR function in three different ways: synthesiz-

ing particular compounds for the plants, facilitating the uptake of certain nutrients

from the environment (Cakmakci et al. 2006; Garcia et al. 2004a, b; Siddiqui

and Mahmood 2001), and preventing the plants from diseases (Guo et al. 2004;

Jetiyanon and Kloepper 2002; Raj et al. 2003a, b).

In other words, these mentioned bacteria can directly cause plant growth, seed

emergence, or improvement in crop yields by producing and secreting plant growth

regulators such as auxins, gibberellins (GAs), and cytokinins. They elicit the root

metabolic activities, supply biologically fixed nitrogen, and increase the phos-

phorous uptake by solubilization of inorganic phosphates (Burdman et al. 2000;
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Podile and Kishore 2006). The near direct effect of PGPR is that these bacteria

affect plant growth by indirect mechanisms that involve suppression of bacterial,

fungal, viral, and nematode pathogens (Burdman et al. 2000; Kirankumar et al. 2008).

In this review, the importance of PGPR is discussed for agriculture innovations

with special reference to their utilization in direct plant growth promotion such as

seed emergence, secretion of plant growth regulators, and indirect plant growth

promotion such as suppression of pest and disease.

2 Direct Plant Growth Promotion

PGPR influence direct growth promotion of plants by fixing atmospheric nitrogen,

solubilizing insoluble phosphates, secreting hormones such as IAA, GAs, and

Kinetins besides ACC deaminase production, which helps in regulation of ethylene.

2.1 Biological Nitrogen Fixation

Nitrogen is a well-known and essential key nutrient for plant growth and develop-

ment. However, the global nitrogen cycle pollutes groundwater and increases the

risk of chemical spills. The production of chemical fertilizers is a highly energy-

intensive process using large amounts of fossil energy. High-input farming prac-

tices achieving high yields have created environmental problems and degradation in

natural resources (Şahin et al. 2004). Thus, Figueiredo et al. (2008) reported that

during the past couple of decades, the use of PGPR for sustainable and environment

friendly agriculture has been increased tremendously in various parts of the world.

Increasing and extending the role of bio-fertilizing with PGPR would reduce the

need for chemical fertilizers and decrease their adverse environmental effects.

Microorganisms are gaining importance in agriculture to promote the circulation

of plant nutrients and reduce the need for chemical fertilizers (Şahin et al. 2004;

Orhan et al. 2006).

Rhizosphere associated N-fixing bacteria have increasingly been used in

nonlegume crop species such as sugar beet, sugar cane, rice, maize, and wheat

(Döbereiner 1997; Hecht-Buchholz 1998; Şahin et al. 2004). For example, experi-

ments with Bacillus species indicated yield increases in cereals (Belimov et al.

1995; Cakmakci et al. 2001; Özt€urk et al. 2003) and maize (Pal 1998).

N-fixation is the first mechanism suggested to promote the growth of plants by

Azospirillum. Themajority of evidence collected during the last 3 decades concerning

this mechanism has generated controversy (Bashan et al. 2004). At the same time,

Azospirillum lead the list of PGPR assessed inworldwide experiments (Burdman et al.

2000; Dobbelaere et al. 2003; Vessey 2003; Lucy et al. 2004; Ramirez and Mellado

2005). Pseudomonas and Bacillus species (Alam et al. 2001; Cakmakci et al. 2001;

Glick et al. 1994; Kokalis-Burelle et al. 2002), and the other PGPR and endophytic
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bacteria, such as Enterobacter, Klebsiella, Burkholderia, and Stenotrophomonas,
have been gaining attention in the recent years, because of their association with

important crops and potential to enhance the plant growth (Chelius and Triplett 2000;

Sturz et al. 2001; Verma et al. 2001; Dong et al. 2003; Ramirez and Mellado 2005).

Some greenhouse and field experiments have shown repeatedly that the transfer

of nitrogen fixed by Azospirillum spp. to the plant is not enough (Bashan and

Holguin 1997; Kennedy et al. 1997; Kennedy and Chellapillai 1998; Bashan et al.

2004). Yet other studies showed that the bacteria cannot fulfil all of the nitrogen

requirements of the plants; nevertheless, it can contribute only significant amounts

of nitrogen. For example, seed inoculation of chickpea with Rhizobium, N-fixing
Bacillus subtilis (OSU-142) significantly increased N percentage compared with

the control treatment and may substitute costly N fertilizers in chickpea production

even in cold highland areas (Elkoca et al. 2008).

Similarly, N-fixing bacterial strains Pseudomonas putida RC06, Paenibacillus
polymyxa RC05 and RC14, and Bacillus OSU-142 have great potential, and as

formulations, they are used as biofertilizers for better yield and the quality of wheat,

sugar beet, and spinach growth (Cakmakci et al. 2007; Cakmakci et al. 2006). The

N-fixing Bacillus strains and A. brasilense sp246 have a potential on plant growth

activity of spring wheat and barley cultivation in organic and low-N input agricul-

ture (Özt€urk et al. 2003; Canbolat et al. 2006). Inoculation with the Rhizobium
leguminosarum E11 and Azotobacter sp. S8, strain E11 increased root dry weight,

root length, and growth in cotton (Hafeez et al. 2004). Significant positive effects on

growth, nodule number, and yield of soybean were obtained after inoculation with

Bradyrhizobium spp strains S62 and S63 (Egamberdiyeva et al. 2004).

Furthermore, inoculation commonly and significantly reduced the required

doses of nitrogen fertilization in numerous greenhouse and field experiments in a

lot of plant species (Bashan and Levanony 1990; Bashan and Holguin 1997; Bashan

et al. 2004).

The strain(s), soil types, climate, and the development of appropriate formula-

tions as well as strategies of field experimentations should be considered for a

successful application of PGPR when using as fertilizers.

2.2 Solubilization of Phosphates

Phosphorous (P), next to nitrogen, is one of the major and key nutrients limiting

plant growth (Kumar and Narula 1999; Sundara et al. 2002; Podile and Kishore

2006). Even in phosphorous rich soil, most of the P is unavailable for the plants, as

large amount of soil P is found in its insoluble form. Phosphate solubilizing bacteria

(PSB) are common in the rhizosphere and can be used to overcome this problem

(Vessey 2003).

PSB secretes organic acids and phosphatases that converts the insoluble phos-

phates into soluble monobasic and dibasic ions and may also solubilize inorganic

phosphate and makes soil phosphorus, which otherwise remain fixed, available to
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the plants (Kumar and Narula 1999; Whitelaw 2000; Gyaneshwar et al. 2002). In

other words, phosphate solubilizing microorganisms convert insoluble phosphates

into soluble forms through the process of acidification, chelation, exchange reac-

tions, and production of gluconic acid (Rodriguez et al. 2004; Chung et al. 2005;

Hameeda et al. 2008).

PSB are ubiquitous (Gyaneshwar et al. 2002), and Bacillus, Enterobacter,
Erwinia, and Pseudomonas spp. are among the most potent strains (Podile and

Kishore 2006). PSB is common in rhizospheres of crop plants, and few examples of

beneficial association with phosphate solubilizing PGPR and plants include B.
megaterium (M-3) and chickpea (Elkoca et al. 2008), B. licheniformis RC08 and

B. megaterium RC07, and wheat and spinach (Cakmakci et al. 2007), Enterobacter
agglomerans and tomato (Kim et al. 1998), P. chlororaphis, P. putida, and soybean
(Cattelan et al. 1999), Avena sativa and PGPR strains isolated from the rhizosphere

of forage (WenXing et al. 2008), Serratia marcescens EB 67, Pseudomonas sp.

CDB 35, and maize (Hameeda et al. 2008).

In the controlled environment and in the field trials, single and dual N-fixing

B. subtilis (OSU-142) and P-solubilizing B. megaterium (M-3) inoculations signifi-

cantly increased all the parameters investigated in chickpea (plant height, shoot,

root and nodule dry weight, N%, chlorophyll content, pod number, seed yield, total

biomass yield, and seed protein content) compared with the control treatment, equal

to or higher than N, P, and NP treatments (Elkoca et al. 2008).

In another research, Orhan et al. (2006) reported that plant growth promoting

effects of two Bacillus strains OSU-142 (N-fixing) and M3 (N-fixing and phosphate

solubilizing) were tested alone or in combinations of organically grown primocane

fruiting raspberry (cv. Heritage) plants and a significant increase in yield (33.9 and

74.9%), cane length (13.6 and 15.0%), number of cluster per cane (25.4 and 28.7%),

and number of berries per cane (25.1 and 36.0%) were observed when compared

with that of the control.

Hameeda et al. (2008) reported that plant biomass increased with Serratia
marcescens EB 67 and Pseudomonas sp CDB 35 under both glasshouse and field

conditions. And also, seed treatment with EB 67 and CDB 35 increased the grain

yield of field-grown maize by 85 and 64% compared with the uninoculated control.

Furthermore, four strains namely, Arthrobacter aureofaciens, Phyllobacterium
myrsinacearum, Rhodococcus erythropolis, and Delftia sp. are being reported for

the first time as PSB after confirming their capacity to solubilize considerable

amount of tricalcium phosphate in the medium by secreting organic acids (Chen

et al. 2006). Peix et al. (2001) notified that Mesorhizobium mediterraneum strain

PECA21 was able to mobilize phosphorous efficiently in barley and chickpea when

tricalcium phosphate was added to the soil. Also, treating with insoluble phosphates

and inoculating with strain PECA21, the phosphorous content, dry matter, nitrogen,

potassium, calcium, and magnesium content in both plants were significantly

increased.

It was known that natural phosphate rocks have been identified as an alternative

for P fertilizers. For example, there are almost 40 million tons of phosphatic rock

deposits in India (Rodrı́guez and Fraga 1999), and this material should provide a
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cheap source of phosphate fertilizer for crop production (Halder et al. 1990);

especially, should be considered in organic production of horticulture and the

other crops.

2.3 Plant Growth Regulators

Several stages of plant growth and development such as cell elongation, cell

division, tissue differentiation, and apical dominance are controlled by the plant

hormones, especially auxins and cytokinins. The biosynthesis and the underlying

mechanism of auxins and cytokinins action are subjects of intense investigation.

Auxins and cytokinins can be synthesized by both the plants and the microorgan-

isms. Although the role of phytohormone biosynthesis by microorganisms is not

fully explained, it is stated that direct mechanisms of plant growth by PGPR include

production of plant hormones such as auxins, cytokinins, GAs, and lowering of plant

ethylene levels (Glick 1995; Costacurta and Vanderleyden 1995; Lucy et al. 2004).

A list of examples of plant growth stimulating phytohormones produced by PGPR is

given in Table 1.

Auxin, indole-3-acetic acid (IAA), is a quantitatively important phytohormone

produced by a member of PGPR, and treatment with auxin-producing rhizobacteria

increased the plant growth (Vessey 2003; Erturk et al. 2008). On the one hand, most

beneficial bacteria such as Rhizobium, Bradyrhizobium, and Azospirillum synthe-

size IAA via the Indole-3-pyruvic acid (IPyA) pathway (Manulis et al. 1991;

Costacurta and Vanderleyden 1995; Patten and Glick 1996; Burdman et al. 2000).

On the other hand, some pathogenic bacteria such as Pseudomonas syringae,
Agrobacterium tumefaciens, and Erwinia herbicola synthesize IAA predominantly

via the indole-3-acetamide (IAM) pathway (Dobbelaere et al. 2003).

The role of IAA in the observed plant growth promotion was obtained by

attempting to mimic the effect of the bacterium for the root growth by the direct

application of IAA on the roots. Inoculation with Bacillus RC23, Paenibacillus
polymyxa RC05, B. subtilis OSU142, Bacillus RC03, Comamonas acidovorans
RC41, B. megaterium RC01, and B. simplex RC19 with tea (Camellia sinensis)
cuttings enhanced rooting percentages when compared with control because of IAA

production of bacteria. Similarly, treatments of hardwood stem cuttings of kiwifruit

cv. Hayward, stem cuttings of two rose selections (ERS 14, Rosa canina, and ERS

15, Rosa dumalis), sour cherry (Prunus cerasus) softwood and semi-hardwood

cuttings and Pistacia vera cuttings with Agrobacterium rubi (A1, A16, and A18)

and Bacillus subtilis OSU142 promoted rooting ratio and increased the numbers of

lateral roots (Ercisli et al. 2000; Ercisli et al. 2003; Esitken et al. 2003b; Ercisli et al.

2004; Orhan et al. 2007).

In addition, Azospirillum is not only capable of nitrogen fixation but also codes

for plant growth hormone auxins (Elmerich 1984). Strains of Azospirillum showed

that production depended on the type of culture media and availability of trypto-

phan as a precursor. A. brasilense Cd produced the highest level of IAA among the
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Azospirillum strains tested (El-Khawas and Adachi 1999; Radwan 1998; Bashan

et al. 2004).

The isolation and quantification of cytokinins in nonpathogenic soil bacteria in

general and diazotrophic bacteria in particular has received a little attention.

Cytokinins are a diverse group of labile compounds that are usually presented in

small amounts in biological samples and are often difficult to identify and quantify

(Dobbelaere et al. 2003).

Cytokinins are produced by bacteria such as Azospirillum and Pseudomonas spp.
(Gaudin et al. 1994). Moreover, a few PGPR strains were reported to produce

cytokinins, such as Rhizobium leguminosarum, Paenibacillus polymyxa, and Pseu-
domonas fluorescens (Noel et al. 1996; Timmusk et al. 1999; de Salamone et al.

2001; Bent et al. 2001; Vessey 2003). These studies sufficiently cloud the produc-

tion of cytokinins, compared with IAA or GAs, in PGPR. Also, it appears that more

Table 1 Examples of plant growth stimulating phytohormones produced by PGPR

Phytohormones PGPR References

Gibberellin Acetobacter diazotropicus
Herbospirillum seropedicae Bastian et al. (1998)

Bacillus lichenifirmis
Bacillus pumilus Gutierrez-Manero et al. (2001)

Bacillus cereus MJ-1

Bacillus macroides CJ-29 Joo et al. (2004)

Bacillus pumilus CJ-69
IAA Agrobacterium sp.

Alcaligenes piechaudii Barazani and Friedman (1999)

Comamonas acidovorans
Azospirillum brasilense Kaushik et al. (2000)

Aeromonas veronii
Enterobacter cloacae Mehnaz et al. (2001)

Enterobacter sp. Mirza et al. (2001)

Comamonas acidovorans RC41
Paenibacillus polymyxa RC05

Bacillus RC23 Erturk et al. (2008)

Bacillus simplex RC19
Bacillus RC03
Bacillus megaterium RC01

Cytokinin Paenibacillus polymyxa Timmusk et al. (1999)

Pseudomonas fluorescens de Salamone et al. (2001)

Bent et al. (2001)

ACC deaminase Pseudomonas putida Mayak et al. (1999)

Pseudomonas cepacia Cattelan et al. (1999)

Enterobacter cloacae Saleh and Glick (2001)

Pseudomonas brassicacearum Am3 Belimov et al. (2007)

Variovorax paradoxus 5C-2 Belimov et al. (2009)

Pseudomonas putida Biovar B Rodriguez et al. (2008)

Pseudomonas putida N21

Pseudomonas aeruginosa N39 Zahir et al. (2009)

Serratia proteamaculans M35
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work is necessary before proving for the role of PGPR-produced cytokinins in plant

growth promotion.

Also in the case of GAs, the bacterial genetic determinants have not been

identified so far. Therefore, no mutants are available to demonstrate the role of this

phytohormone in plant growth promotion (Dobbelaere et al. 2003). Also the evidence

of GA production by PGPR is rare (Vessey 2003). On the other hand, PGPR such as

R. phaseoli, A. lipoferum, Azotospirillum brasilense, Acetobacter diazotropicus,
Herbospirillum seropedicae, Bacillus licheniformis, B. pumilus, Bacillus cereus
MJ-1, Bacillus macroides CJ-29 were reported to produce GAs (Atzhorn et al.

1988; Bottini et al. 1989; Janzen et al. 1992; Bastian et al. 1998; Gutierrez-Manero

et al. 2001; Joo et al. 2004 and Table 1). However, this is not a strong evidence of GA

production in a common method of growth promotion by PGPR.

Nevertheless, in recent studies, Gutierrez-Manero et al. (2001) provide an

evidence that four different forms of GAs are produced by B. pumilus and Bacillus
licheniformis. Inoculation of alder (Alnus glutinosa) with these PGPR could effec-

tively reverse a chemically induced inhibition of stem growth. In addition to this

research, Joo et al. (2004) reported that the growth of red pepper plug seedlings was

increased by Bacillus cereus MJ-1, B. macroides CJ-29, and B. pumilus CJ-69,

though the number of leaves and stem diameter were not significantly changed. The

greatest increase is in the height and the root fresh weight of the seedlings was by B.
pumilus, which could increase the height by 12% and the root fresh weight by 20%.

In the last few years, a new mechanism of plant growth promotion involving

ethylene has been proposed (Burdman et al. 2000). Showing that some soil bacteria

contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (Klee et al. 1991)

and Glick et al. (1998) put forward the theory that the mode of action of some PGPR

was the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, an

enzyme that could cleave ACC, the immediate precursor to ethylene in the biosyn-

thetic pathway for ethylene in plants. They submitted that ACC deaminase activity

would decrease ethylene production in the roots of host plants and results in root

lengthening. In some cases, the growth promotion effects of ACC deaminase-

producing PGPR is the best expressed in stress conditions including drought

(Zahir et al. 2008) and salt (Nadeem et al. 2007; Zahir et al. 2009) stress.

PGPR (containing ACC deaminase) boost plant growth particularly under

stressed conditions by the regulation of accelerated ethylene production in response

to a multitude of abiotic and biotic stresses such as salinity, drought, waterlogging,

temperature, pathogenicity, and contaminants (Saleem et al. 2007). For example,

under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of

P. putida (N21), P. aeruginosa (N39) and Serratia proteamaculans (M35) might

have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of

ethylene (Zahir et al. 2009). Similarly, inoculation with Variovorax paradoxus 5C-
2 improved growth, yield, and water-use efficiency of droughty peas (Belimov et al.

2009). It is reported that inoculation with P. fluorescens was found to be more

effective in promoting root growth than that with P. putida as it caused up to 46%

increase in root elongation and up to 94% increase in root weight of pea over the

respective uninoculated drought stressed control (Arshad et al. 2008).
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In addition to stress factors, recent studies indicated that canola plants inoculated

with the P. putida strain HS-2 produced an increase in plant biomass (Rodriguez

et al. 2008). The ACC-utilizing PGPR Pseudomonas brassicacearum strain Am3

increased in-vitro root elongation and root biomass of soil-grown tomato cv. Ailsa

Craig at low bacterial concentrations but had negative effects on in-vitro root

elongation at higher bacterial concentrations (Belimov et al. 2007).

2.4 Effects on Plant Growth

Since the last few decades, the response of agriculturally important crops to

inoculation with PGPR was investigated in numerous field and greenhouse experi-

ments carried out in various countries. On the basis of the given data, it was

concluded that inoculation with PGPR resulted in significant yield increases in

different crops, enhanced rooting of hardwood and semi-hardwood cuttings, seed

germination and emergence under different conditions. In other words, they can

affect plant growth and yield in a number of ways and enhancement of vegetative

and reproductive growth is documented in a range of crops such as cereals or

vegetables. Treatments with PGPR increase germination percentage, seedling

vigor, emergence, plant stand, root and shoot growth, total biomass of the plants,

seed weight, early flowering, grains, fodder and fruit yields, etc., (van Loon et al.

1998; Ramamoorthy et al. 2001). Applications of PGPR in relation to the plant

growth in different subjects are described later with recent studies.

2.4.1 Yield and Yield Components

In crop production, there is a continuous demand of increasing crop productivity

and quality. There are lot of agricultural practices applied for increasing the yield

and the yield components. Recently, one of them is applications of PGPR for

increasing yield and environment friendly crop production.

Floral and foliar applications of PGPR strains Pseudomonas BA-8 and Bacillus
OSU-142 on apple trees significantly increased yield per trunk cross-section area

(13.3–118.5%), fruit weight (4.2–7.5%), shoot length (20.8–30.1%), and shoot

diameter (9.0–19.8%) in “Starkrimson” and yield per trunk cross-sectional area

(TCSA; 14.9%) and fruit weight (6.5–8.7%) in “Granny Smith” compared with the

control (Pırlak et al. 2007). Karlıdağ et al. (2007) reported similar results in apple.

Thus, Bacillus M3 and/or OSU-142 and/or Microbacterium FS01 in combination

have the potential to increase the yield and growth of apple trees.

In addition, Esitken et al. (2003a, 2005, 2006) and Orhan et al. (2006) reported

that Pseudomonas BA-8, Bacillus OSU-142 and M3 increased the shoot length,

crop yield and improved fruit quality of apricot, sweet cherry, and raspberry.

In another research, Cakmakci et al. (2006) suggested that in the greenhouse,

inoculations with PGPR increased sugar beet root weight by 2.8–46.7% depending
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on the species. Leaf, root, and sugar yield were increased by the bacterial inocula-

tion by 15.5–20.8%, 12.3–16.1%, and 9.8–14.7%, respectively. Effective Bacillus
species, such as OSU-142, RC07 and M-13, Paenibacillus polymyxa RC05,

P. putida RC06, and Rhodobacter capsulatus RC04 may be used in organic and

sustainable sugar beet agriculture.

The average weight of tomato fruit per plant treated with Rhodopseudomonas sp
KL9 strain (82.7 g) was higher than those of others including the uninoculated

control. The content of lycopene in the ripe tomato fruit increased by 48.3% with

the application of Rhodopseudomonas sp. KL9, but Rhodopseudomonas sp BL6 did
not show any effect on lycopene content although the lycopene content in the cells

of Rhodopseudomonas sp BL6 were 1.12 mg/g (Lee et al. 2008a).

Dursun et al. (2008) reported that the highest rocket yield, average leaf weight,

leaf length, leaf stem diameter, leaf area and root weight were obtained from

Pseudomonas BA-7 applications when compared with P. putidae BA-8, B. subtilis
OSU-142 and MFD-5, B. megatorium M3, A. rubi A-1, A-16, and A-18. The

highest leaf number (8.23), leaf dry matter (6.70%), and root dry matter (11.85%)

were determined in A-18, OSU-142 and MFD-5 applications, respectively, and

especially Burkholderia gladii BA-7, Pseudomonas BA-8, and Bacillus OSU-142
have a great potential to increase the parameters of plant growth of rocket.

Although the examples of relations between the yield and PGPR applications

can be increased, other recent studies such as de Freitas (2000), Herman et al.

(2008), and Yıldırım et al. (2008) clearly demonstrated the potential of PGPR in

increasing the plant growth and yield.

2.4.2 Seed Germination and Emergence

Sivritepe and Dourado (1995) reported that priming (osmoconditioning) is one of

the physiological methods, which improves seed performance and provides faster

and synchronized germination in vegetables. However, bio-priming with different

genera, especially PGPR, have a great potential over other priming methods.

Nelson (2004) noted that PGPRwere able to exert a beneficial effect upon plant growth

such as increase in seed germination rate and percentage. Rodriguez et al. (2001) reported

that using Azospirillum spp. gave better germination in both tomato and pepper seeds.

Also, Vargas et al. (2001) mentioned thatHafnia alvei strain P3 increased germination by

36.5% when compared with the control in lettuce and inoculation of the soybean plants

either with Pseudomonas strain PMZ2 or with B. japonicum increased seed emergence

(Zaidi 2003). Similarly, Basavaraju et al. (2002) reported that inoculation of Azotobacter
chroococcum strain C2 significantly increased the germination percentage in radish. The

greenhouse inoculation experiment with pepper and maize pointed out that Azotobacter
sp. strains 17 and 20promoted pepper germination,while theAzospirillum strains 1 and23

promotedmaize germination (Reyes et al. 2008). Although studies werementioned about

the effect of bacterial strains on germination of different vegetable species that

were conducted out under optimum conditions, Kaymak et al. (2009) suggested that

bio-primingwithA. rubi strainA16,Burkholderia gladii strainBA7,P. putida strainBA8,
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B. subtilis strain BA142, B. megaterium strain M3 under saline stress could be useful to

obtain higher seed germination percentage in radish.

Also, PGPR can be used under pathogenic factor. Thus, different isolates of plant

growth-promoting rhizobacteria (i.e., B. pumilus (INR-7), B. subtilis (GBO-3),

B. subtilis (IN937b), B. pumilus (SE-34), Brevibacillus brevis (IPC-11), B. pumilus
(T-4), and B. amyloliquefaciens (IN937a)) were used for seed treatment to suppress

the seedling diseases caused by fungi. Among them, isolates GBO3, IPC-11, and

INR-7 increased seed germination and seedling vigour to the greatest extent (Lokesh

et al. 2007). Alike, Begum et al. (2003) reported that PGPR, B. pumilus (SE-34),
B. pasteurii (T4), B. subtilis (IN937-b), and B. subtilis (GBO3) strains reduced the

incidence of seed mycoflora, which indirectly enhanced the seed germination per-

centage and vigour index of the seedlings in okra. In another recent study, de Araujo

(2008) reported that the inoculation of seeds with B. subtilis is a promising techno-

logical alternative for seed treatment owing to the fact that inoculation with

B. subtilis, formulated with oyster meal, increased emergence in cotton and soybean.

2.4.3 Rooting of Cuttings

There are many physiological and environmental factors that influence root forma-

tion, with exogenous treatments on cuttings being particularly important (Couvillon

1998). Growers have attempted to stimulate rooting by applying growth regulators,

various chemical substances, etc. However, the use of chemicals can produce

environmental problems and increase proportion costs. Ecological problems have

raised interest in environmental friendly sustainable agricultural practices (Salantur

et al. 2005). Therefore, use of PGPR can overcome such problems associated with

environment (Kaymak et al. 2008).

Recent studies showed that bacteria in several genera (Agrobacterium, Bacillus,
Streptomyces, Pseudomonas, and Alcaligenes) induce root formation and growth in

stem cuttings (Bassil et al. 1991; Hatta et al. 1996; Rinallo et al. 1999). More recently,

PGPR such as A. rubi (A1, A16 and A18), B. subtilis (OSU142), Bacillus (BA16,
RC03, RC23), B. gladii (BA7), P. putida (BA8), B. megatorium (M3 and RC01),

Paenibacillus polymyxa (RC05), Comamonas acidovorans RC41, and B. simplex
RC19 were effectively used for both hardwood and semi-hardwood cuttings to

obtain higher rooting percentages in sour cherry (Ercisli et al. 2000; Esitken et al.

2003b), kiwifruit (Ercisli et al. 2003), grapevine (Köse et al. 2003), rose (Ercisli et al.

2004), pistachio (Orhan et al. 2006), tea (Camellia sinensis var. Sinensis) (Erturk
et al. 2008), and mint (Mentha piperita L.) (Fig. 1) (Kaymak et al. 2008).

2.4.4 Nutrient Uptake

Living plants require 16 essential elements to survive. Three of 16 elements (carbon,

hydrogen, and oxygen) are supplied primarily from air and water. The remaining

13 are normally absorbed by plant roots. Each of these essential elements has at least

one specially defined role in plant growth (Swaider et al. 1992; Decateau 2000).
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PGPR have been promised as a component in approaching for maintaining

adequate plant nutrition and reducing the negative environmental effects of fertili-

zers. PGPR might increase nutrient uptake from soils, thus reducing the need

for fertilizers and preventing the accumulation of nitrates and phosphates in agri-

cultural soils (Yang et al. 2009). It is known that phosphorous and nitrogen is the

major and key nutrients limiting plant growth and important macronutrient required

for plant growth (Kumar and Narula 1999; Sundara et al. 2002; Podile and

Kishore 2006).

Additionally, some PGPR promote root development (Mantelin and Touraine

2004) by the production of phytohormones such as indole acetic acid (Kloepper

et al. 2007). Given that root tips and root surfaces are sites of nutrient uptake, it is

likely that one mechanism by which PGPR lead to increased nutrient uptake is via

stimulation of root development (Yang et al. 2009). It has also been suggested that

PGPR increase uptake of mineral ions via stimulation of the proton pump ATPase

(Mantelin and Touraine 2004), although experimental evidence for this is lacking

(Yang et al. 2009).

Several studies can be given about the relations with PGPR and enhancement

of nutrient uptake. For example, Naveed et al. (2008) notified that PGPR applica-

tion significantly enhanced N, P, and K uptakes. The Pseudomonas fluorescens
biotype G (N-3) was found to be the best in increasing the grain yield of maize and

nutrient uptake. In addition, the inoculation process with Azospirillum and Bacillus
spp. showed positive response in enhancing higher accumulation of nitrogen,

phosphorus, and potassium in the plant tissues, enhanced root dry weight and top

growth of the oil palm seedlings under field nursery conditions (Amir et al. 2005).

Fig. 1 Effect of inoculation with PGPR (Agrobacterium rubi A16, Burkholderia gladii BA7,
Peseudomonas putida BA8, Bacillus subtilis OSU142, and Bacillus megatorium M3) on root

formation of mint cuttings
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In other recent study, Dursun et al. (2008) reported thatBurkholderia gladiiBA-7,
P putidita BA-8, B. subtilis OSU-142 and MFD-5, B. megateriumM3, A. rubi A-1,
A-16, and A-18 applications increased mineral contents particularly N, K, P, Zn, Fe,

Mn, Na, Ca, and Mg in rocket leaves when compared with the control.

In a study aimed at assessment of effects of foliar application of bacteria Bacillus
OSU-142, Burkholderia OSU-7, and Pseudomonas BA-8 on yield and growth of

apricot, it was stated that application of bacteria resulted in an increase of N, P, K,

Ca, and Mg contents of leaves (Esitken et al. 2005). In a similar study, Esitken et al.

(2003a) suggested that N, P, K, Ca, and Mg contents of leaves were higher on OSU

142-treated trees than on the untreated control and OSU 142 has the potential to

increase the yield of apricot trees.

Therefore, PGPR contributed significantly to the reducing nutrient build up in

the soil. Several studies are underway that will further define the utility of PGPR in

nutrient management strategies aimed at reducing fertilizer application rates and

nutrient runoff from agricultural sources (Yang et al. 2009; Kumar et al. 2009).

3 Indirect Plant Growth Promotion

Induced systemic resistance (ISR), antibiosis, competition for nutrients, parasitism,

production of metabolites suppressive to deleterious rhizobacteria are some of the

mechanism that indirectly benefit plant growth.

3.1 Induced Systemic Resistance

More recently, biological control has been considered as an alternative strategy to

manage soil-borne plant diseases. Available literature revealed positive effects of

specific strains of rhizobacteria on growth ofmany plant species in soils in whichmore

or less defined pathogens cause substantial losses. For this reason, several rhizobac-

teria have extensively been used as biological agents to control many soil-borne

plant pathogens (Jeun et al. 2004; Dell’Amico et al. 2005; Rajkumar et al. 2005).

A strain, P. fluorescens WCS417, active against Fusarium oxysporum f. sp.

dianthi was tested on carnation and results showed that bacteria, while remaining

confined to the plant root system, were still protective when the pathogen was

slash-inoculated into the stem (Van Peer et al. 1991). This protective effect had to

be plant-mediated because in this case the rhizobacteria and the pathogenic

fungus were never found to contact each other on the plant (Van Loon and Bakker

2006). Several strains of PGPR, which applied to roots of cucumber, and the

leaves were subsequently challenged inoculation with the anthracnose fungus

Colletotrichum orbiculare (Gang et al. 1991). The phenomenon was called ISR.

(Van Loon et al. 1998; Vallad and Goodman 2004; Van Loon and Bakker 2006;

Choudhary et al. 2007)
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It is thought that the inducing rhizobacteria in the plant roots produce signal,

which spreads systemically within the plant and increases the defensive capacity of

the distant tissues from the subsequent infection by the pathogens. ISR thus

extended the protective action of PGPR from their antagonistic activity against

soil-borne pathogens in the rhizosphere to a defense-stimulating effect above the

surface of the ground tissues against foliar pathogens (Van Loon and Bakker 2006).

ISR appears phenotypically similar to SAR, which is the phenomenon that once

a plant has been infected by a pathogen and been able to effectively resist it, it has

become more resistant to subsequent challenge inoculation by the same and other

pathogens and, in some instances, even insects (Sticher et al. 1997; Van Loon et al.

1998; Van Loon and Bakker 2006). SAR occurs in distal plant parts following

localized infection by a necrotizing pathogen. It is controlled by a signaling

pathway that depends upon the accumulation of salicylic acid and the regulatory

protein NPR1. In contrast, ISR is induced by selected strains of nonpathogenic

PGPR. ISR functions independent from SA, but requires NPR1 and is regulated by

jasmonic acid and ethylene (Walters and Heil 2007).

To reduce crop loss, pesticides are generally used. They are cost-effective and

thus have become an integral part of modern agriculture. Environmental and human

health-related concerns associated with use of hazardous chemicals have necessi-

tated the search for eco-friendly alternatives. Such approaches must enhance and

sustain agricultural productivity and at the same time be safe from environmental

and health perspectives (Raj et al. 2003a).

Therefore, for economic reasons biological crop protectants can only seldom

compete with highly effective chemicals. However, ISR is only one of the

mechanisms that may be mobilized to counteract plant pathogens in an environmen-

tally friendly and durable way. Integrating ISR-triggering PGPR into disease manage-

ment programs in conjunction with other strategies will be a worthwhile approach to

explore (Van Loon and Bakker 2006).

3.2 Suppression of Plant Diseases, Insects, and Nematodes
by PGPR

Biocontrol is the process by which a pathogenic organism is maintained at low

inoculum density or controlled or eradicated by beneficial organisms. Several

microorganisms such as PGPR and insects present in the natural environment

serve as potential biocontrol agents.

3.2.1 Bacterial Plant Diseases

The bacteria associated with plants exist as epiphytes, endophytes, and pathogens.

Phytopathogens are comparatively few in both type and number, and all bacterial

phytopathogens described to date fall within the domain Bacteria, formerly known

as the Eubacteria. Bacterial phytopathogens that possesses a cell wall can be
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subdivided into Gram-positive (Clavibacter, Curtobacterium, Rathayibacter, and
Streptomyces) and Gram-negative (Acidovorax, Agrobacterium, Burkholderia,
Enterobacter, Erwinia, Pantoea, Pseudomonas, Ralstonia, and Xanthomonas)
(Saddler 2002).

Bacterial soft rot of vegetables; blackleg of potato; fire blight of pome fruits;

angular leaf spot or black arm, of cotton; bacterial blights of bean, lack rot of crucifers,

southern bacterial wilt, bacterial wilt of cucurbits, ring rot of potato, bacterial canker

of tomato, crown gall, hairy root, and cane gall, and common scab of potato are the

more common bacterial diseases (Walker 1957; Waller et al. 2002).

Several cultural practises such as crop rotation, mixed cropping and intercrop-

ping, selection of cultivar, tillage, planting time, fertilization and irrigation, or

highly effective chemical substances affect some diseases in different ways depend-

ing on the form of their application (Termorshuizen 2002). Recently, many micro-

organisms are increasingly used as inoculants for biocontrol (Romero et al. 2003;

Chinnasamy 2005; Aliye et al. 2008; Xue et al. 2009). PGPR are nonpathogenic,

environmental-friendly, cheaper to produce and easy to handle, and may create

long-lasting effects (Chinnasamy 2005).

For instance, tomato is prone to a number of bacterial diseases, among which

bacterial canker disease caused by Clavibacter michiganensis ssp. michiganensis is
one of the most important diseases and nearly 100% crop loss can occur (Boudyach

et al. 2001; Umesha 2006). Utkhede and Koch (2004) reported that treatments with

B. subtilis (Quadra 136 and 137) and Trichoderma harzianum (R), Rhodosporidium
diobovatum (S33), applied as a spray at 0.3, 0.6, 10 g�l, have the ability to prevent

the incidence of bacterial canker of tomato plants caused by C. michiganensis
subsp. michiganensis under greenhouse conditions. Similarly, tomato seeds were

treated with PGPR strains B. subtilis GBO3, B. amyloliquefaciens IN937a and

Brevibacillus brevis IPC11 were recorded for maximum disease protection for

bacterial canker under greenhouse conditions (Girish and Umesha 2005). Recent

studies about the relations with bacterial diseases and PGPR are given in Table 2.

3.2.2 Fungal Plant Diseases

Fungal pathogens found on plants can be classified in different taxonomic groups. A

few fungal pathogens such as rusts, powdery and downy mildews are obligate

parasites. However, most of the plant pathogens are necrotrophs, killing plant

tissues for their nutrition (Waller and Cannon 2002).

Exclusion or eradication of a disease from production areas, highly effective

chemical substances or biological control of plant diseases have been suggested to

protect the plants from fungal pathogens. Recently, PGPRs are increasingly and

extensively used in biological control of fungal plant diseases (Altindag et al. 2006;

Lourenco et al. 2006; Saravanakumar et al. 2007; Akgul and Mirik 2008; Sang et al.

2008; Dutta et al. 2008).

For example, apricot is the most important fruit crop grown in Anatolia, with

approximately 600,000 tons of fruit produced annually, and Turkey dominates
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apricot production in the world (Ercisli 2009). Therewithal, brown rot caused by

Moniliana laxa Ehr. is one of the most destructive diseases of apricot in Turkey.

This pathogen is able to destroy the whole annual crop in the phase of blossom,

although it can kill shoots up to 30 cm beyond the initial blossom infection, and

management of brown rot in Turkey is in general carried out by fungicide applica-

tion (Gulcan et al. 1999). Altindag et al. (2006) suggested that Burkholdria gladii
OSU 7 has the potential to be used as biopesticide for effective management of

brown rot disease on apricot.

Similarly, pepper (Capsicum annum L.) is one of the most important market

vegetables grown worldwide, but the yield and quality of marketable peppers are

frequently limited by Phytophthora blight. The incidence of this disease has

Table 2 Examples of suppression of bacterial diseases by PGPR in different plant species

Phytopathogens Species PGPR References

Pseudomonas
syringae pv.
lachrymans

Cucumber Pseudomonas putida 89B-27 Liu et al. (1995)

Serratia marcescens 90–166

Pseudomonas
syringae pv.
glycinea

Soy bean Pseudomonas sp. May et al. (1996)

Erwinia herbicola

Xanthomonas
albilineans

Sugar cane Pentoena dispersa Zhang and Birch

(1997)

Erwinia amylovora Apple Erwinia herbicola C9-1 Pusey (1997)

Pseudomonas fluorescens A506
Single-strain treatments and three-way

mixture of Bacillus pumilus INR7,
Curtobacterium flaccumfaciens
ME1 and Bacillus subtilis GB03

Raupach and

Kloepper (1998,

2000)

Ralstonia
solanacearum

Tomato Bacillus subtilis B2G Lemessa and Zeller

(2007)

Pseudomonas sp. (APF1)
Acinetobacter sp. (Xa6) Xue et al. (2009)

Enterobacter sp. (Xy3)
Clavibacter

michiganensis
subsp.

michiganensis

Azospirillum brasilense Sp7 Romero et al.

(2003)

Xanthomonas
campestris pv.
vesicatoria

Azospirillum sp. (BNM-65)

Ralstonia
solanacearum

Eucalyptus Pseudomonas fluorescens WCS417r Ran et al. (2005)

Pseudomonas putida WCS358r

Potato Bacillus subtilis PFMRI Aliye et al. (2008)

Paenibacillus macerans BS-DFS and

PF9

Xanthomonas
axonopodis pv.
malvacearum

Cotton Bacillus cereus MT5-5, MT5-6, L2-1 Ishida et al. (2008)

Achromobacter xylosoxidans L2-2,
Brevibacterium sp. MT5-11
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continued to increase production areas since the pathogen can infect roots, crowns,

and even foliar parts of pepper plants through splashing rains or overhead irrigation

waters (Ristaino and Johnston 1999; Hausbeck and Lamour 2004). Control of this

disease has usually depended on chemical and cultural measures such as use of

phenylamide fungicides or metalaxyl as well as crop rotation, soil amendments, use

of protective mulches and water management (Matheron and Porchas 2000; Haus-

beck and Lamour 2004). In a recent study, Sang et al. (2008) reported that

Pseudomonas corrugata (CCR04 and CCR80), Chryseobacterium indologenes
(ISE14), and Flavobacterium sp. (GSE09) showed consistently good control effi-

cacy against Phytophthora capsici. Also, these strains could be applied by either

drench or root-dip treatment as alternatives to agricultural chemicals to control

Phytophthora blight of pepper. In another recent study, Akgul and Mirik (2008)

also reported that Bacillus megaterium strains could be used for biocontrol of

Phytophthora capsici.
The combination of Pseudomonas strains Pf1, TDK1, and PY15 was more

effective in reducing sheath rot (Sarocladium oryzae) disease in rice plants com-

pared with individual strains under glasshouse and field conditions (Saravanakumar

et al. 2009).

Hernandez-Rodriguez et al. (2008) obtained that Burkholderia sp. MBf21,

MBp1, MBf15, and P. fluorescens MPp4 stood out for their plant growth stimula-

tion in maize and for the biological control exerted on Fusarium verticillioidesM1.

The strains Burkholderia sp. MBf21 and MBf15 showed the best results in disease

suppression, which was achieved up to 80%.

The combined use of PGPR (Bacillus cereus strain BS 03 and a Pseudomonas
aeruginosa strain RRLJ 04) and rhizobia (strain RH 2) were recommended for

induction of systemic resistance against fusarial wilt (Fusarium udum) in pigeon

pea (Dutta et al. 2008). Recent studies and more examples about the suppression of

fungal diseases by PGPR are given in Table 3.

3.2.3 Viral Plant Diseases

Viruses are obligate parasites of submicroscopic size, with one dimension smaller

than 200 nm. Virus particles, or virions, consist of segments of double or single-

stranded RNA or DNA encased in protein structures, in some cases with lipid and

additional substances (Waller 2002). So far at least 700 plant viruses has been

discovered, many of which cause catastrophic diseases and have wide host ranges.

They have been classified into three families and 32 groups (Martelli 1992; Waller

2002).

Some chemicals are used to produce virus-free plant material because they

inhibit virus replication in agricultural crops. However, there are no therapeutic

agents or viricides that can be applied to plants to control virus diseases. Conse-

quently, control measures are based mainly on avoiding infection by using host

plant resistance or disrupting the epidemic cycle of the disease. The use of
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genetically resistant cultivars provides effective control of many viral diseases.

Mechanisms of resistance vary, some are explained to effects on vectors, whereas

others may inhibit viral replication (Waller 2002).

Kirankumar et al. (2008) reported that Pseudomonas B-25 was highly efficient in
promoting growth, fruit yield, and nutrient uptake of tomato in the presence of

tobacco mosaic virus (TMV) pathogen, and the incidence of pathogenesis was

markedly less after PGPR treatment. Similarly, biological control using PGPR

Table 3 Examples of suppression of fungal diseases by PGPR in different plant species

Phytopathogens Species PGPR References

Rhizoctonia solani
sclerotia

Cyclamen Serratia marcescens B2 Someya et al.

(2000)

Fusarium oxysporum f. sp.

cyclaminis
Fusarium oxysporium Soybean Pseudomonas PMZ2

Bradyrhizobium japonicum
Zaidi (2003)

Sclerospora graminicola Pearl millet Bacillus pumilus INR7 and SE34 Raj et al. (2003b)

Bacillus subtilis GB03
Pseudomonas fluorescens UOM

SAR 14

Raj et al. (2004)

Cronartium quercuum f.sp.
fusiforme

Loblolly

pine

Bacillus pumilus SE34 and T4 Enebak and

Carey (2004)

Puccinia psidii Eucalyptus Pseudomonas aeruginosa FL2

Pseudomonas sp. MF4

Teixeira et al.

(2005)

Didymella bryoniae Muskmelon Pseudomonas fluorescens Sudisha et al.

(2006)

Pythium ultimum, Pythium
debaryanum,
Rhizoctonia solani,
Fusarium oxysporum,
Phytophthora capsici,
Botrytis cinerea,
Botrytis allii,
Cladosporium fulvum,
Aspergillus sp.

Sesame

(in vitro)

Paenibacillus polymyxa E681 Ryu et al. (2006)

Exobasidium vexans Tea Pseudomonas fluorescens Pf1 Saravanakumar

et al. (2007)

Fusarium spp.

Didymella bryoniae
Watermelon Bacillus subtilis GBO-3 and

Brevibacillus brevis IPC-11
Lokesh et al.

(2007)

Myrothecium spp. Bacillus pumilus SE34 and T4

Fusarium oxysporum f. sp.

lycopersici
Tomato Paenibacillus lentimorbus

GBR158

Son et al. (2008)

Phytopthora capsici Red pepper Bacillus subtilis R33 and R13 Lee et al. (2008b)

Phytopthora capsici Chili pepper Paenibacillus polymyxa GBR-462 Kim et al. (2009)

Fusarium oxysporum L sp.

lycopersici
Tomato Azospirillum brasilense Abo-Elyousr and

Mohamed

(2009)

Bacillus subtilis

Rhizoctonia solani Wheat Azotobacter sp. WPR-51 Fatima et al.

(2009)
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protected tomato plants against cucumber mosaic virus (CMV) under greenhouse

and to a limited extent in the field conditions (Sikora and Murphy 2005). In another

research, P. fluorescens strains were investigated for biocontrol efficacy against

tomato spotted wilt virus (TSWV) in tomato. Virus concentration value clearly

showed a reduction in viral antigen concentration in P. fluorescens-treated tomato

plants corresponding to reduced disease ratings. All the P. fluorescens-treated
tomato plants also showed enhanced growth and yield compared with control

plants. Hence, it was suggested that PGPR could play a major role in reducing

TSWV and increasing yield in tomato plants (Kandan et al. 2005). Banana bunchy

top disease (BBTD) caused by Banana bunchy top virus (BBTV) is the most serious

virus disease of banana plantations world wide. P. fluorescens Pf1 and CHA0 were

significantly effective in reducing BBTV under field conditions, recording 33.33%

infection with 60% reduction over control (Harish et al. 2008).

In a greenhouse experiment, P. fluorescens FB11 and Rhizobium leguminosarum
FBG05 were tested alone and in combination as seed inoculants to induce systemic

resistance in faba bean against bean yellow mosaic potyvirus (BYMV). The results

demonstrated that BYMV challenged plants emerged from Pseudomonas inocu-

lated seeds not only showed a pronounced and significant reduction in percent

disease incidence but also a significant reduction in virus concentration in the

challenged plants, compared with the nonbacterized seeds. Rhizobium alone also

showed a significant reduction in both in percent disease incidence and in viral

concentration value, but the reduction was less pronounced than that resulting from

Pseudomonas inoculation (Elbadry et al. 2006).

In a recent study, the PGPR combinations (combinations included B. subtilis
GB03 and IN937b, B. pumilus SE34, INR7 and T4, B. amyloliquefaciens IN937a)
formulated with chitosan were referred to as biopreparations. The result indicated

that treatment of tomato plants with biopreparations resulted in significant enhance-

ment of plant growth and protection against infection by CMV (Murphy et al.

2003). Zehnder et al. (2000) reported that CMV symptom development was signifi-

cantly reduced on PGPR-treated (B. pumilus SE34, Kluyvera cryocrescens IN114,
B. amyloliquefaciens IN937a, and B. subtilus IN937b) plants compared with con-

trol, but the percentage of infected plants and tomato yields were not significantly

different among treatments, suggested that PGPR-mediated induced resistance

against CMV infection following mechanical inoculation into tomato can be main-

tained under field conditions.

Tomato plants treated with PGPR (B. amyloliquefaciens 937a, B. subtills 937b,
and B. pumilus SE34), applied as an industrially formulated seed treatment, a spore

preparation mixed with potting medium (referred to as powder), or a combined

seed-powder treatment, were evaluated under field conditions for induced resis-

tance to tomato mottle virus (ToMoV), resulted in reduced ToMoV incidence

and disease severity. In some cases, a corresponding increase in fruit yield was

observed. The use of PGPR could become a component of an integrated program

for management of this virus in tomato (Murphy et al. 2000)

It was known that there are no highly effective chemical substances that can be

applied to plants to control viral disease of agricultural or horticultural crops. For
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exclusion or eradication of a viral disease from production areas, highly effective

chemical substances cannot be suggested; however, biological control with PGPR

may be suggested to protect these areas or plants from viral pathogens. Neverthe-

less, it is recommended that more work must be conducted because of the com-

plexity and variability of virus diseases.

3.2.4 Nematodes

Plant–parasitic nematodes cause serious crop losses in production areas,e.g., yield

loss of tomato due to root-knot nematodes (Meloidogyne spp.) ranges from 39.7 to

46.0% in India (Reddy 1985), and are among the most important agricultural pests

(Koenning et al. 1999; Siddiqui and Akhtar 2008). The control of nematodes is

difficult because nematodes mostly inhabit the soil and generally attack and settle

around or inside the roots of the plants. During the last few decades, plant disease

control has been based largely on the use of chemicals (Siddiqui et al. 2001).

Although chemical nematicides are effective, easy to apply, and show rapid effects,

they have begun to be withdrawn from the market in some developed countries

owing to concerns about public health and environmental safety (Schneider et al.

2003; Nico et al. 2004). The search for novel, environmentally friendly alternatives

with which to manage plant–parasitic nematode populations has, therefore, become

increasingly important (Tian et al. 2007).

Biological control using microbial antagonists is one potential alternative to

chemical nematicides (Burkett-Cadena et al. 2008). PGPR can also be used for the

biological control of plant parasitic nematodes. Among the biological control agents

that have been assessed are B. spp. and Pseudomonas spp. dominant populations in

the rhizosphere that are able to antogonize nematodes (Tian et al. 2007).

Recently, rhizobacteria-mediated ISR in plants has been shown to be active

against nematode pests. Plant growth-promoting rhizobacteria can bring about ISR

by strengthening the physical and mechanical resistance of the cell wall of plants.

They also change the physiological and biochemical ability of the host to promote

the synthesis of defence chemicals against the challenge pathogen (van Loon et al.

1998; Ramamoorthy et al. 2001; Tian et al. 2007). Siddiqui and Shaukat (2004)

concluded that fluorescent Pseudomonads ISR against root-knot nematode via a

signal transduction pathway, which is independent of SA accumulation in roots.

In other words, PGPR may suppress pests and pathogens of plants and promote

plant growth. For example, P. aeruginosa and B. subtilis exhibited nematicidal

activity by killing the second stage larvae of Meloidogyne javanica to a varying

degree. Especially, B. subtilis significantly suppressed root-knot infection and

nematode population densities under greenhouse and field conditions and thereby

enhanced plant growth and yield in mungbean (Siddiqui et al. 2001).

In a different example, P. putida promoted tomato growth in nematode-infected

and nematode-free plants but growth promotion was higher in the infected ones.

P. putida was better in reducing galling and nematode multiplication than arbus-

cular mycorrhizal fungus (Siddiqui and Akhtar 2008).
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In another recent study, Li et al. (2005) reported that Brevibacillus brevis and
B. subtilis exhibited strong nematicidal activity by killing the second stage larvae

of Meloidogyne javanica to varying degrees in the greenhouse. The toxic princi-

ples of bacterium B. subtilis B7 that showed the highest juvenile mortality were

partially characterized.

The influence of P. fluorescens as the treatment on the seed germination,

migration, and penetration of Meloidogyne incognita in aubergine was evaluated

under laboratory conditions. The results revealed that P. fluorescens promoted

germination (87.5%) and was effective in reducing root penetration byM. incognita
and the number of gall formation was also controlled by 70.3% (Inam-ul-Haq et al.

2003).

Rhizobacteria reported to show antagonistic effects against nematodes include

members of different genera are given in Table 4.

3.2.5 Insects

Next to phytochemical insecticides, biocontrol agents of microbial origin play a

role in pest management (Gandhi et al. 2006). Among the biocontrol agents, the

strains of PGPR, P. fluorescens is the promising one (Commarea et al. 2002). They

activate systemic resistance (Raupach and Kloepper 1998) by inducing plants’

latent defense mechanisms and to control insect pests (Zehnder et al. 1997;

Commarea et al. 2002) in addition to exerting beneficial effect on plant growth

promotion (Gandhi et al. 2006).

Herman et al. (2008) notified that there are several examples of plants treated

with PGPR, which showed a decrease in insect herbivory. Zehnder et al. (1997)

used PGPR to reduce feeding by the spotted cucumber beetle, Diabrotica unde-
cimpunctata howardi Barber. Boughton et al. (2006) reported that plants treated

with defence elicitors caused the green peach aphid, Myzus persicae, to signifi-

cantly decrease in their population growth when compared with that of the control

plants. Similarly, Herman et al. (2008) notified that B. subtilis and B. amylolique-
faciens could be useful in Myzus persicae management program, for pepper plants

grown in locations with consistently high aphid pressure. Additionally, white clover

and Medicago plants grown in the presence of a Pseudomonas-like PGPR were

better able to resist the effects of blue-green aphids (Kempster et al. 2002).

The talc-based formulation of two P. fluorescens PF1, FP7 and its mixture were

tested against leaffolder in rice. The application of talc-formulation through seed,

root, soil, and foliar spray significantly reduced leaffolder incidence both under

greenhouse and field conditions. The mixture of two strains performed better than

the individual strains. Additionally, Pseudomonas treated leaves altered the feeding
behavior of leaffolder larvae and reduced larval and pupal weight, increased larval

mortality and incidence of malformed adults under in vitro conditions. An increased

population of natural enemies of leaffolder and predatory spider was noticed in

Pseudomonas treated plots under field conditions, which yielded 12–21% more rice

(Commarea et al. 2002). PGPR belonging to Pseudomonas spp. are being exploited
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commercially for plant protection to induce ISR against various pests and diseases.

The performance of PGPR has been successful against certain pathogens, insect,

and nematode pests under field conditions (Ramamoorthy et al. 2001). Murphy

et al. (2000) studied the effects of PGPR treatment on whitefly nymphs number in

field trials in Florida. They recorded significantly lower numbers of whitefly

nymphs on PGPR-treated plants compared with the untreated tomato.

The metabolic pathways associated with insect-active secondary plant metabo-

lites may be affected by induction of SAR or ISR, which could in turn effect

changes in plant concentrations of insect feeding stimulants. Because induction of

SAR and ISR involves different metabolic pathways, it is not unexpected that plants

Table 4 Reported PGPR show antagonistic effects against nematodes

Nematodes Species PGPR References

Meloidogyne
incognita

Lettuce and

tomato

Pseudomonas sp. W34

Bacillus cereus S18
Hoffmann-Hergarten

et al. (1998)

Globodera
pallida

Potato Agrobacterium radiobacter G12A Hackenberg et al. (1999)

Rhizobium etli G12 Reitz et al. (2000)

Meloidogyne
incognita

Tomato and

banana

Bacillus cereus, B. subtilis,
Pseudomonas fluorescens,
Pseudomonas chlororaphis
Burkholderia cepacia

Jonathan et al. (2000)

Bell pepper Burkholderia cepacia Bc-2

Burkholderia cepacia Bc-F

Meyer et al. (2001)

Meloidogyne
javanica

Tomato Pseudomonas aeruginosa IE-6S(+)

Pseudomonas fluorescens CHA0
Siddiqui and Shaukat

(2002)

Siddiqui and Shaukat

(2003)

Pseudomonas aeruginosa strain

7NSK2

Pseudomonas fluorescens CHA0

Siddiqui and Shaukat

(2004)

Globodera
rostochiensis

Potato Pseudomonas oryzihabitans Andreoglou et al. (2003)

Meloidogyne
javanica

Lentil Pseudomonas putida,
P. alcaligenes, Paenibacillus
polymyxa, Bacillus pumilus

Siddiqui et al. (2007)

Meloidogyne
incognita

Tomato and

soybean

Pseudomonas fluorescens CHA0 Siddiqui et al. (2005)

Tomato Rhizobium etli G12 Reimann et al. (2008)

Bacillus amyloliquefaciens FZB42 Burkett-Cadena et al.

(2008)

Chickpea Pseudomonas alcaligenes
Bacillus pumilus

Akhtar and Siddiqui

(2008)

Meloidogyne
javanica

Chickpea Pseudomonas putida 3604

Pseudomonas alcaligenes 493
Siddiqui and Akhtar

(2009a)

Meloidogyne
incognita

Tomato Bacillus subtilis, Paenibacillus
polymyxa

Burkholderia cepacia

Siddiqui and Akhtar

(2009b)

Chickpea Pseudomonas putida
Pseudomonas alcaligenes

Akhtar and Siddiqui

(2009)
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treated with PGPR or other elicitors will vary in their suitability as insect host plants

(Stout et al. 2002).

Consequently, it can be said that PGPR would be of great potential, especially

to conserve natural enemies and to avoid potential problems encountered when

some insecticides fail to control populations that have developed resistance (Wang

et al. 2002).

4 Conclusions and Future Prospects

Since Kloepper and Schroth (1978) reported that microbial communities that exert

benefit for plant growth have been called PGPR, there has been an increasing effort in

advancing bacterial inoculants such as Azotobacter, Azoarcus, Bacillus, Burkholderia,
Enterobacter, Erwinia, Gluconacetobacter, Klebsiella, Pseudomonas, Serratia,
Rhizobium, etc., for plant growth promotion in agriculture. Significant advances

in the explanation of the mechanisms involved in plant growth promotion have been

made, especially when using molecular biology approaches (Dobbelaere and Okon

2003). Mechanisms involved in plant growth promotion include biological nitrogen

fixation, solubilization of insoluble phosphates, production of phytohormones,

suppression of diseases, rooting of cuttings, increase germination and emergence

of seeds under different conditions, promoted nutrient uptake of roots, total biomass

of the plants, induce early flowering, increase in yield, etc.

Different PGPR have been examined under controlled and field conditions, and

generally plant growth promotion such as yield increases in different crops, reduc-

tion of fertilizer and pesticides have been clearly demonstrated. The scientific basis

of PGPR should continue to be investigated, tested, and explored for better and

effective use of strains in the future, and free exchange of PGPR strains between

researchers and countries (Podile and Kishore 2006) may help this. There is good

possibility that the commercial mix of PGPR for various aims such as improved crop

yield or suppression of pests and disease developed will be used extensively in the

production of different crops in sustainable and environment friendly agriculture.
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Janzen RA, Rood SB, Dormaar JF, McGill WB (1992) Azospirillum brasilense produces gibber-
ellin in pure culture on chemically defined medium and in co-culture on straw. Soil Biol

Biochem 24:1061–1064

Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction

of systemic resistance against multiple plant diseases. Biol Control 24:285–291

Jeun YC, Park KS, Kim CH, Fowler WD, Kloepper JW (2004) Cytological observations of

cucumber plants during induced resistance elicited by rhizobacteria. Biol Control 29:34–42.

doi:10.1016/S1049-9644(03)00082-3

72 H.C. Kaymak



Jonathan EI, Barker KR, Abdel-Alim FF, Vrain TC, Dickson DW (2000) Biological control of

Meloidogyne incognita on tomato and banana with rhizobacteria actinomycetes, and Pasteuria
penetrans. Nematropica 30:231–240

Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug

seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and

Bacillus pumilus. Biotechnol Lett 26:487–491
Kandan A, Ramiah M, Vasanthi VJ, Radjacommare R, Nandakumar R, Ramanathan A, Samiyap-

pan R (2005) Use of Pseudomonas fluorescens-based formulations for management of tomato

spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Sci Technol 15

(6):553–569. doi:10.1080/09583150500088546
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Abstract Among the diverse soil microflora, plant growth promoting rhizobacteria

(PGPR) mark an important role in enhancing plant growth through a range of

beneficial effects. This is often achieved by forming biofilms in the rhizosphere,

which has advantages over planktonic mode of bacterial existence. However, the

biofilm formation of PGPR has been overlooked in past research. This chapter
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focuses on new insights and concepts with reference to improved PGPR effects

caused by the biofilm formation by PGPR and its impact on overall plant growth

promotion, compared with the planktonic lifestyle of PGPR. Beneficial PGPR play

a key role in agricultural approaches through quorum sensing in their biofilm mode.

The in vitro production of biofilmed PGPR can be used to give increased crop yields

through a range of plant growth mechanisms. They can be used as biofertilizers

through improved N2 fixation and micro- and macronutrient uptake. Further, higher

levels of plant growth with PGPR have been observed due to their production of

plant growth regulators and their abilities to act as biocontrol agents, which are

carried out by the production of antibiotics and other antimicrobial compounds. The

microbial inoculant industry would also benefit greatly by developing biofilmed

PGPR with N2 fixing microbes. Biofilmed PGPR can be manipulated to achieve

results in novel agricultural endeavors and hence is as an area which needs a deeper

probing into its potential.

1 Introduction

The soil represents a favorable habitat for diverse populations of microbes which

have made inquisitive minds probe into their function and activities since time

immemorial. The intrinsic roles they play in terrestrial ecosystems have a direct

effect on plant growth and soil quality. This feature has led to considerable attention

being paid to improve plant growth promotion using effective microorganisms in

sustainable agriculture. By and large, this is attributed to the ability of microbes to

“turnover” nutrients and to bind particles in soil which is essential for plant growth.

Among the plant associated soil microbial communities, root colonizing benefi-

cial bacteria (rhizobacteria), known as plant growth promoting rhizobacteria

(PGPR) (Lugtenberg and Kamilova 2009), are recognized as one of the predomi-

nant groups that wield a range of beneficial effects in enhancing plant growth. This

is achieved by an array of activities including N2 fixation, increasing the availability

of phosphate and other nutrients in the soil, phytostimulation, suppression of plant

diseases, synthesis of antibiotics and the production of phytohormones (Sivan and

Chet 1992; Zehnder et al. 2001). Excellent reviews on the PGPR action on roots and

mycorrhizosphere are found in Bending et al. (2006) and Spaepen et al. (2009). The

success of PGPR in agriculture is attributed to their effective colonization of plant

roots (Raaijmakers et al. 1995; Bolwerk et al. 2003) and subsequent growth to form

microcolonies or biofilms, which is their common occurrence in a successful

plant–microbe interaction (Saleh-Lakha and Glick 2006).

Biofilms are mass colonies of single or multispecies of microbial cells adherent

to biotic or abiotic surfaces and/or in intimate contact with each other, encased in a

self produced matrix of extracellular polymeric substances (EPS). Less complex

biofilms with lower numbers of cells are variably described as microcolonies,

aggregates, or cell clusters (Morris and Monier 2003; Ramey et al. 2004). The

microcolony is the basic growth unit of a biofilm, and this mode of biofilms is
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predominant in almost all natural environments (Lappin-Scott and Costerton 1995).

The colonization of plant surfaces by plant-associated microbial populations shows

similarities to the formation of biofilms on abiotic surfaces with certain genetic

determinants common to both processes (Molina et al. 2003).

As outlined by Saleh-Lakha and Glick (2006), these bacterial assemblages have

the capability to communicate chemically with one another through quorum sens-

ing, functioning as a single unit. Thus, PGPR when they are in biofilm mode should

perform well in inhibiting competing organisms, nutrient uptake, quick responses,

and adaptation to changing environmental conditions. However, the natural exis-

tence of PGPR in the soil has not been adequately investigated, and the knowledge

of biofilmed mode of PGPR and their actions is vastly unexplored. Some reports

have highlighted that the plant-associated biofilms have a higher ability to protect

themselves from external stress and microbial competition that are characteristic of

the rhizosphere, and also to produce beneficial effects in plant growth promotion

(Ramey et al. 2004; Seneviratne et al. 2008a, b, 2009). Additionally, it has been

shown that naturally occurring or in vitro produced effective PGPR inocula

have many potential uses evidently in agricultural and biotechnological settings

(Seneviratne et al. 2008b).

Most bacteria appear to form biofilms and thismulticellular mode of growth likely

predominates in nature as a protective mechanism against hostile environmental

conditions (e.g., Pseudomonas aeruginosa, Costerton et al. 1995; Costerton and

Stewart 2000; Walker et al. 2004). Biofilms, in general, have unique developmental

characteristics that are different to freely swimming planktonic cells or nonbiofilm-

forming cells. Molecular and genetic studies have identified that biofilms differ

considerably from individual microbes in planktonic mode of growth in vital char-

acteristics such as gene expression (Davies et al. 1993; Vilain and Brözel 2006) and

physiological functions (Dow et al. 2007). Further, Stoodley et al. (2002) reported

that as a result of biofilm structure, physiological adaptation, and the adherent nature

of microbial cells in biofilms, they show an elevated antimicrobial tolerance.

Thus, the role of biofilm architecture in plant–microbe interactions cannot be

negligible and identification of plant growth improvements through developed

biofilmed inocula would have a great scope in plant growth promotion. The impact

of microbial biofilms in plant growth promotion has not received adequate attention

and studies of beneficial biofilm communities are thus of special interest. This

chapter focuses on new insights and concepts with reference to improved PGPR

effects caused by the biofilm formation by PGPR and its impact on overall plant

growth promotion, compared with the planktonic lifestyle of PGPR. In addition,

their potentials in agricultural innovations are also discussed.

2 Occurrence of PGPR Biofilms in Plant–Microbe Interaction

It is well known that most microorganisms in the rhizosphere exist as biofilms

rather than their planktonic mode (Watnick and Kolter 1999; Davey and O’Toole

2000). Biofilms associated with the plant roots have been found to be beneficial for
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plant growth, yield, and crop quality. PGPR biofilm formation and plant growth

promotion are governed by effective root colonization of the host plant (Saleh-

Lakha and Glick 2006). However, to date biofilm-mediated PGPR actions have not

been described adequately. Therefore, evidences found in literature for occurrence

of PGPR biofilms in plant–microbe interactions and their possible mechanisms are

discussed in this section.

Common plant-associated bacteria found on leaves, roots, and the soil such as

P. putida, P. fluorescens, and related pseudomonads, together with a majority of

other natural isolates, have been reported to form effective biofilms (Ude et al.

2006). Bloemberg et al. (2000) noted that the plant growth promoting P. fluor-
escens discontinuously colonized the root surface, developing as small biofilms

along epidermal tissues. In contrast, dense and confluent biofilms on root surfaces

were observed in studies analyzing pathogenic Pseudomonas spp. (Bais et al.

2004; Walker et al. 2004). Although the fundamental cause of these different

observations is uncertain, it is evident that the root biofilms of Pseudomonas
spp. can range from relatively small multicellular clusters to extensive biofilm

networks.

Microbes in root-associated biofilms depend basically on root exudates for food

and nutrition (Bais et al. 2006). Although the quantities of organic compounds

exuding from plant roots are not large, seldom exceeding 0.4% of the C photo-

synthesized, they exert a very strong influence on the soil microorganisms and may

be significant in affecting plant nutrient availability (Rovira 1969). By providing

organic compounds as a nutrient source, these root exudates take a central role in

being amajor plant-derived factor and in triggering of root colonization (Lugtenberg

et al. 1999) and biofilm associations (Walker et al. 2004). Some studies have also

suggested that the biofilm formation at root sites is triggered by a plant-derived

component similar to that seen in Rhizobium-legume and other bacterial interactions

(de Ruijter et al. 1999), which has happened to be organic compounds of root

exudates in this case. The role played by root exudates is further confirmed by

Espinosa-Urgel et al. (2002) by observing that P. putida can respond rapidly to the

presence of root exudates in soils, converging at root colonization sites and estab-

lishing stable biofilms.

Most species of bacteria use the quorum sensing to coordinate their gene

expression according to the local density of their population. This signaling mech-

anism modulates and coordinates bacterial interactions with plants, including the

control of tissue maceration, antibiotic production, toxin release, and horizontal

gene transfer (HGT) (von Bodman et al. 2003). It is one of the main regulatory

mechanisms in the formation of biofilms and it is seen that most beneficial pheno-

types of PGPR are under its control (Loh et al. 2002). Quorum sensing of PGPR is

mediated by an array of signal molecules which include (a) acylated homoserine

lactones (AHLs) among proteobacteria; (b) gamma-butyrolactones in Streptomyces

species; (c) cis-11-methyl-2-dodecanoic acid (also called DSF) in species of

Xanthomonas, Xylella, and their relatives; and (d) oligopeptides among gram-

positive microbes (Danhorn and Fuqua 2007). The AHLs-mediated cell-to-cell

communication is mostly common among rhizospheric bacteria. The AHLs act as
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population density sensors and facilitate the communication between different cells

(Pierson et al. 1998). Although the AHLs-based quorum sensing is characterized by

the proteins LuxI-type protein, AHL synthase, and LuxR-type protein, exceptions

have been reported for Vibrio harveyi and P. fluorescens F113, as they replace the

LuxI-type with LuxM AHL and HdtS AHL synthase, respectively (Case et al.

2008). The AHLs-mediated quorum sensing is widely detected in Pseudomonas
spp. than any other root colonizing bacteria (Juhas et al. 2005). The root-associated

biocontrol agent P. fluorescens 2P24 requires AHLs for biofilm formation and

therefore control of take-all disease on wheat (Wei and Zhang 2006).

It is evident from above information that biofilm formation by PGPR is common

in the rhizosphere and that quorum-sensing-based cell-to-cell communication could

play a key role in the action of PGPR in green agricultural approaches. The

importance of discovering effective forms of PGPR biofilms leads us to the next

section, where we focus on their potential applications in futuristic agricultural

systems.

3 PGPR Biofilms in Futuristic Agriculture

The current public concerns on the detrimental side effects in the use of agrochem-

icals have lead to search other avenues of gaining better crop productivity. Of these,

an increasing interest has been shown in the use of biofertilizers comprising of

beneficial microorganisms, which improves plant growth through the supply of

plant nutrients in a manner sustaining environmental health and soil productivity

(O’Connell 1992). However, an inconsistency in the field application of such

microbial inocula has limited its widespread commercial application, most proba-

bly due to the incapability of such inocula to successfully compete with indigenous

microflora in establishing themselves in the rhizosphere (Van Elsas et al. 1986;

Bent and Chanway 1998).

This failure can be overcome by the introduction of bacterial inoculants in the

form of biofilms, thus protecting the inoculants against adverse environmental

conditions such as high salinity, tannin concentrations, low pH, heavy metals,

predation by earthworms, the competition by native soil populations (Seneviratne

et al. 2008b), and the resistance to protozoan grazing (Matz et al. 2004). In this

respect, the use of well-characterized PGPR biofilms is remarkable than solitary

PGPR since the biofilm formation is an added advantage for PGPR to colonize

effectively on or in the plant root, where they can compete well with indigenous

microflora along with improved plant growth promotion. This has been made evident

by Timmusk et al. (2005) who reported that Paenibacillus polymyxa forms biofilms

around the root tip and behaves as a root-invading bacterium attributing a possible

mechanism in biocontrol and drought tolerance-enhancing activities. Apart from the

root colonization, recent observations have been made that the bacterial colonization

of biotic fungal surfaces leading to the formation of fungal–bacterial biofilms (FBB)

renders the biofilms enhanced metabolic activities in comparison to monocultures,
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leading to improved biofertilizing and biocontroling effects (Seneviratne et al.

2008a, b). Further, as speculated by Seneviratne and Jayasinghearachchi (2003),

the establishment of such biofilms of rhizobia with common soil fungi provides a

plausible strategy for the rhizobial survival.

This leads us to confirm that the in vitro production of such biofilmed inocula

with PGPR can be utilized to satisfy the future demand of augmented crop produc-

tion attributed to increased N2 fixation, nutrient uptake, plant growth promoting

agents, and biocontrol of diseases, through a range of mechanisms described below.

3.1 PGPR Biofilms as Biofertilizers

The plant growth promoting rhizobacterial species which flourish in the rhizosphere

of plants have been seen to stimulate plant growth, yield, and crop quality by a

plethora of mechanisms. This has led to a considerable number of PGPR being

tested as biofertilizers, mainly because they provide inorganic nutrients to plants by

mineralizing organic and insoluble inorganic forms of nitrogen, phosphorous, and

sulfur that plants cannot utilize directly (Mendez-Castro and Alexander 1983)

as well as providing essential micro and macro nutrients. This has been made

evident by the possession of N2-fixing properties in many PGPR species including

Bacillus spp., Azotobacter spp., Azospirillum spp., Beijerinckia spp., Pseudomonas
spp. (Dobereiner 1997; Reis et al. 1994; Vance 1997), and Rhizobium and

Bradyrhizobium spp. (Dobereiner 1997; Vance 1997).

Such PGPR have been seen to valuably carry out their N2-fixing ability in the

biofilmmode aswell, as shown bymany studies. Jayasinghearachchi and Seneviratne

(2004a) demonstrated that a fungal-rhizobial biofilm (FRB) (Bradyrhizobium elkanii
SEMIA 5019 and Penicillium spp.) biologically fixed N2 more effectively, as

revealed by nitrogenase activity and N accumulation, in comparison to the rhizobial

strain grown as a monoculture. A developed biofilmed inoculant of this FRB was

also seen to significantly increase N2 fixation (by ca. 30%) compared with a

rhizobium-only (conventional) inoculant when applied to soybean (Jayasinghearach-

chi andSeneviratne 2004b). The ability to increase N availability by ca. twofold and a

high nitrogenase activity, even under a very high soil NO3
� concentration, were

observed in the direct application of FRBs to soil, compared with the monocultures

(Seneviratne and Jayasinghearachchi 2005). Yet another PGPR Azospirillum brasi-
lense, a free-living N2 fixer, was found to interact with roots of wheat and maize,

forming dense biofilms and thereby promoting their host plant’s growth (Assmus

et al. 1995; Burdman et al. 2000).

Of the PGPR used to date, two genus most widely known are Rhizobium and

Bradyrhizobium and their symbiotic N2 fixation through inoculation to legume

crops is well known (Dobereiner 1997; Vance 1997). Recent reports have indicated

that these symbiotic bacteria may have the potential to be used as PGPR with

nonlegumes. Seneviratne et al. (2009) have recently observed the heavy coloniza-

tion of FBBs/FRBs on root hairs of rice (Oryza sativa), tea (Camellia sinensis),
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Anthurium (Anthurium andraeanum), and wheat (Triticum aestivum) (Fig. 1). It has
been suggested that such FRBs may act as “pseudonodules,” fixing N2 biologically

on the roots of nonlegumes. Further, it was found that recommended chemical

fertilizers may be reduced by about 50% by applying such in vitro produced

biofilmed biofertilizers (BBs). When BBs were applied with chemical fertilizers

to micropropagated Anthurium plantlets, leaf number and chlorophyll content

increased by ca. 60% and 100%, respectively, compared with chemical fertilizers

Fig. 1 Root hairs of rice (a), tea (b), and anthurium (c) colonized by microbial biofilms (BF),

when fungal–bacterial biofilms (FBB) or fungal–rhizobial biofilms (FRB) were inoculated under

axenic conditions. Darkness is due to cotton blue stain absorbed by the extra cellular polymeric

substances (EPS) produced by the BF. Reprinted from Seneviratne et al. (2009)
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alone application (KACN Seneviratne, unpublished). The BBs alone application

increased root length of Anthurium by ca. 65%, compared with chemical fertilizers

alone application.

Phosphorus (P) is a highly limited nutrient in some soils and hence phosphate-

solubilizing bacteria play an important role in the P nutrition in plant growth.

Seneviratne and Jayasinghearachchi (2005) have shown that the application of

FRBs directly into soil increased P availabilities by 15-fold and that the biofilmed

inocula can be effectively used in biosolubilisation of rock phosphate. This was

amply demonstrated by an increased P solubilisation (up to ca. 230%) when

biofilms developed from Penicillium spp., Pleurotus ostreatus, and Xanthoparmelia
mexicana, a lichen fungus, were used compared with the fungus-only cultures

(Jayasinghearachchi and Seneviratne 2006a; Seneviratne and Indrasena 2006).

Apart from the major nutrients required for plant growth, some studies have also

shown that coinoculation of PGPR inocula enhanced the uptake of micronutrient

such as Zn, Cu, and Fe (Bashan 1998). Coinoculation of Pseudomonas BA-

8 þ Bacillus OSU-142 increased Fe and Zn contents of leaves up to 50.5 and

35.5%, respectively, compared with the control (Esitken et al. 2005). Investigations

of the modes of action by PGPR are increasing at a rapid pace to exploit them

commercially as biofertilizers. The benefits of such combinations of mixed cultures

or biofilms can be manipulated to overcome the challenges facing for more wide-

spread utilization of PGPR as biofertilizers.

3.2 PGPR Biofilms as Plant Growth Promoting Agents

Numerous studies have demonstrated an improvement in plant growth and devel-

opment in response to seed or root inoculation with various microbial inoculants

capable of producing plant growth regulators (Zahir et al. 2004). Important plant

growth promoting substances commonly produced by rhizosphere bacteria include

auxins (indolyl-3-acetic acid), gibberellins, and cytokinins (Brown 1974).

Studies by Bandara et al. (2006) revealed that higher acidity and PGP hormone

levels were produced by FBBs of beneficial rice endophytes than their mono- or

mixed cultured forms with no biofilm formation. Their studies on a large collection

of microbes also revealed the existence of a significant negative relationship

between the production of indoleacetic-acid-like substances (IAAS) and pH in

liquid culture media of FBBs, but not in mixed cultures with no biofilm formation.

This high acidity reflects high IAAS production when biofilms are formed. Thus,

the use of biofilmed inocula, rather than the conventional practice of plant inocula-

tion with monocultures or mixed cultures of effective microbes, may help achieve

the highest microbial effect. Another recent study on early growth of rice showed

that the contribution of developed biofilmed inocula in enhanced release of organic

acids and PGP substances led to ca. 25% increase in plant dry weight compared

with conventional monocultured inocula (Seneviratne et al. 2009). In further

studies, biofilmed inocula showed lower pH, higher IAAS, and rice plant dry
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weights than the monocultured inocula (MLMAWWeerasekara, unpublished). The

biofilmed inocula showed a fourfold increase in H+ secretion to the culture medium,

compared with the monocultured inocula. Negative relationships were observed

between pH of both types of the inocula and plant dry weight (Fig. 2a) or soil NH4
+

(Fig. 2b). This implies that the inoculated biofilmed inocula colonize the rhizo-

sphere, producing high acidity and IAAS (Seneviratne et al. 2008a), and the high

acidity in microsites causes to an increase of plant available NH4
+ (Xu et al. 1997)

in the soil solution near root hairs, which helps increase the plant growth. Therefore,

in vitro production and application of more effective combinations of such benefi-

cial biofilmed inocula would play an important role in the inoculant industry.

However, this needs further research to fully understand the effects and potentials

of the biofilmed inocula in the plant growth promotion. It is clear from the above

studies that one of the most plausible mechanisms of plant growth promotion by

PGPR is the production of plant growth regulators. Further, the effectiveness of

using such PGPR in their biofilmed mode in the production of higher levels of plant

growth promoting substances is also noticeable.

3.3 PGPR Biofilms as Biocontrolling Agents

Biocontrolling has been seen as a well-suited alternative or supplement in contrast

to conventional methods of disease control of which microbial biocontrolling

Fig. 2 Relationships

between (a) microbial

inoculant pH of both

biofilmed and conventional

inocula and rice plant dry

weight, and (b) the microbial

inoculant pH and soil NH4
+,

when inoculated in a soil pot

experiment. The biofilmed

inocula represent relatively

low pHs
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agents have emerged as favored options due to their complex mode of action and

success in bringing out a reduced risk of resistance. For example, the extensive

studies of root-associated pseudomonads have revealed that many of these promote

the growth of host plants or are used as biocontrol agents (Lugtenberg et al. 2001).

P. fluorescens has been reported to coat plant roots by forming a biofilm, which may

protect roots against soil bacterial and fungal pathogens (O’Toole and Kolter 1998;

Walker et al. 2004). The promising nature of PGPR strains as means of plant

protection via disease suppression was amply demonstrated by Raupach and

Kloepper (1998) in finding the occurrence of a consistent protection against patho-

gens when mixtures of PGPR were present, possibly in the biofilm mode.

An array of studies has confirmed that bacteria when they are in the biofilm

mode perform well as biocontrol agents, mainly because the plant is made less

sensitive to infection by the formation of biofilms by bacteria on the plant root (Bais

et al. 2004; Rudrappa et al. 2008). Owing to the heterogeneous nature of biofilms, it

is likely that the biofilm formation on the plant roots protects the plants against soil

borne diseases through resistance mechanisms such as cell–cell communication via

quorum-sensing (Danhorn and Fuqua 2007) and production of antibiotics against

pathogens (Russo et al. 2006).

Biofilms bring about disease suppression through a variety of roles played by

antibiotics. Such microbial communities have a significant resistance to antibiotics

compared with planktonic bacteria of the same species (Stewart and Costerton

2001), while some biofilms have the ability to produce different antibiotics (Leifert

et al. 1995; Raaijmakers et al. 2002; Yu et al. 2002; Risøen et al. 2004; Roberts and

Stewart 2005).

In addition, biocontrolling agents of PGPR have been shown to successfully

establish in plants, when they were applied as biofilmed inocula. Jayasinghearachchi

and Seneviratne (2006b) confirmed this in vitro by using a Pleurotus ostreatus –
Pseudomonas fluorescens biofilm which was seen to increase endophytic

colonization of tomato by P. fluorescens, a biocontrolling agent, by over tenfold

compared with inoculation of P. fluorescens alone. The PGPR Paenibacillus poly-
myxa provides protection from pathogens through the synthesis of several antibiotics,

when it forms biofilms by predominantly colonizing the root tips of Arabidopsis
thaliana, as revealed by fluorescence microscopy and electron scanning microscopy

(Timmusk et al. 2005). Bacillus subtilis, another biocontrolling PGPR, protects plant
roots from pathogenic bacteria by mechanisms which include biofilm formation and

antibiotic and surfactin production (Bais et al. 2004; Cavaglieri et al. 2005). Surfactin

possesses antimicrobial activity, and pathogens those reach inside the biofilms are

killed by high surfactin concentrations (Bais et al. 2004).

Bacteria used to accomplish biocontrolling exert their action also through

producing antimicrobial secondary metabolites, which target the competing micro-

organisms (Mazzola et al. 1992; Raaijmakers et al. 2002; Haas and Keel 2003).

Some Pseudomonas strains secrete antimicrobial compounds such as exoproteases,

antibiotics, HCN, or metabolites with antifungal activity known as phenazines

(Molina et al. 2003). These compounds have the capacity to eliminate competititors

from the rhizosphere with a plethora of studies demonstrating their prospect as
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biocontrol agents (Thomashow 1996; Chin-A-Woeng et al. 2000; Kremer and

Souissi 2001). Studies outlined above highlight the potential of using biofilmed

PGPR with increased microbial action to carry out biocontrol feats in conventional

agriculture and organic farming systems.

4 Conclusions

Although developing biofilms has been the axis around which many recent studies

have evolved in diverse areas of biotechnology, the investigation of the involve-

ment of PGPR in such biofilms is yet in its infancy. The capability of PGPR to

colonize plant roots proficiently and carry out a range of benefits to the plant has

made it one of the predominant soil microbial groups. Regulatory mechanisms,

such as quorum sensing, exhibited by PGPR have made them stable partners in

biofilms, placing them on a higher pedestal compared with their existence alone.

PGPR biofilms have been shown to play a fundamental role in futuristic agricultural

approaches such as biofertilizers, plant growth promoters, and biocontrolling

agents. A heightened interest in recent times in inoculant technology has thrown

much importance on the designing and developing of PGPR biofilmed inocula. The

beneficial results they yield encourage the deeper delving into its applications and

the innovative future perspectives. The importance of biofilm formation in PGPR

action is thus an area which needs much more in depth exploration to bring out its

true potential.
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Abstract Bioformulations for plant growth promotion continue to inspire research

and development in many fields. Increase in soil fertility, plant growth promotion,

and suppression of phytopathogens are the targets of the bioformulation industry

that leads to the development of ecofriendly environment. The synthetic chemicals

used in the agriculture to increase yields, kill pathogens, pests, and weeds, have a

big harmful impact on the ecosystem. But still the chemicals rule the agroindustry.

The aim of the review is to assess the constraints associated with the effective

N.K. Arora ð*Þ and E. Khare

Department of Microbiology, Institute of Biosciences and Biotechnology, CSJM University,

Kanpur 208024, Uttar Pradesh, India

e-mail: nkarora_net@rediffmail.com

D.K. Maheshwari

Dapartment of Botany and Microbiology, Gurukula Kangri University, Haridwar 249404, Uttarak-

hand India

e-mail: maheshwaridk@gmail.com

D.K. Maheshwari (ed.), Plant Growth and Health Promoting Bacteria,
Microbiology Monographs 18, DOI 10.1007/978-3-642-13612-2_5,
# Springer-Verlag Berlin Heidelberg 2010

97



development of bioinoculant industry particularly in developing countries. Another

objective of the review is to evaluate what should be explored in the future to uplift

the stature of the bioinoculants. Bioformulations offer an environmentally sustain-

able approach to increase crop production and health, contributing substantially in

making the twenty-first century the age of biotechnology.

1 Introduction

The new challenge in the new millennium is to produce more and more food from

shrinking per capita arable land, keeping the environment safe. As agricultural

production intensified over the past few decades, producers became more and more

dependent on agrochemicals. Chemical fertilizers and pesticides are presently

accumulating in the environment harming the ecosystem, causing pollution, and

spreading disease (Gerhardson 2002). Therefore, the urgent need of biological

agents is accepted worldwide. Interest in biological control of plant pathogens

has increased considerably over the past years, partly as a response to public

concern about the use of hazardous chemical pesticides, but also because it may

provide control of diseases that cannot or only partially be managed by other

control strategies (Arora et al. 2008b, c).

Formany decades, bacteria have been introduced into soil or on seeds, roots, bulbs,

or other planting material to improve plant growth and health. The major objectives

of bacterization include enhancement of symbiotic or associative nitrogen fixation,

degradation of xenobiotic compounds, plant growth promotion, and biological control

of plant pathogenic microorganisms (van Elsas and Heijnen 1990; Whipps 2001).

To date, many bacterial genera are being used and tested in bacterization, including

Acinetobacter, Agrobacterium, Alcaligens, Arthrobacter, Azospirillum, Azotobacter,
Bacillus, Bradyrhizobium, Frankia, Pantoea, Pseudomonas, Rhizobium, Serratia,
Stenotrophomonas, Streptomyces, and Thiobacillus (Whipps 2001; Lutenberg

and Kamilova 2009). Some of the fungal taxa that have been successfully commer-

cialized and are currently marketed as Environmental Protection Agency

(EPA) registered biopesticides in United States belong to the genera, Ampelomyces,
Candida, Coniothyrium, and Trichoderma (McSpadden Gardner 2002).

Although plant growth promoting rhizobacteria (PGPR) occur in soil, usually

their number is not high enough to compete with other bacteria commonly estab-

lished in the rhizosphere. Therefore for agronomic utility, inoculation of plants with

target microorganisms at a much higher concentration than those normally found in

soil is necessary to take advantage of their beneficial properties for plant yield

enhancement (Subba Rao 1993). The erratic performances of bioinoculants under

field conditions have raised concerns about the practical potential offered by

microbial releases into soil (Arora et al. 2007b). Soil is an unpredictable environ-

ment and an intended result is sometimes difficult to obtain. The immediate

response to soil inoculation with PGP bioformulations varies considerably depend-

ing on the bacteria (PGP agent), plant species, soil type, inoculum density, and
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environment conditions. The inoculated bacteria sometimes do not survive in the

soil when competing with the better adapted indigenous microflora (Bashan 1998).

An effective PGP strain isolated from one region may not perform in the same way

in other soil and climatic conditions (Johnsson et al. 1998). The aim of this review is

to point out the status of bioformulations and constrains related with their applica-

tion and to draw the focus on future research strategies for the development of better

inoculants.

2 Plant Growth Promotory Bioformulations

Bioformulations are best defined as biologically active products containing one or

more beneficial microbial strains in an easy to use and economical carrier materials.

Usually, the term bioformulation refers to preparations of microorganism(s) that

may be partial or complete substitute for chemical fertilization/ pesticides.

Biological control of plant pests and pathogens continues to inspire research and

development of formulations targeted at plant pathogens.

The first objective when considering inoculation with beneficial strain is to find

the best bacteria available (Validov et al. 2007). Many potentially useful bacteria

reported in the scientific literature never appear on the commercial market, perhaps

because of inappropriate formulation. The carrier is the delivery vehicle of live

microorganisms from the factory to the field; however, no universal carrier or

formulation is presently available for the release of microorganisms into soil

(Smith 1992). A good carrier should have the capacity to deliver the right number

of viable cells in good physiological condition at the right time (Smith 1992; Arora

et al. 2008a). Carriers can be divided into three basic categories: (1) soils (peat,

coal, clays, and inorganic soil), (2) plant waste materials, (3) inert materials viz.

vermiculite, ground rock phosphate, polyacrylamide gels, and alginate beads

(Bashan 1998). Inoculants come in four basic dispersal forms (powders, slurries,

granules, and liquids). The use of each type of inoculant depends upon market

availability, choice of farmers, cost, and the need of a particular crop under specific

environmental conditions.

3 Production and Marketing Constraints

Since bioformulation is a living product, utmost care is needed at all the steps

beginning from the production till the end use to maintain the microbial load and

vigor. Production technology of bioformulations requires proper care and aid of

sophisticated equipments to ensure availability of quality products in the market.

Kabi (1997) gave stress on the production of quality inoculants since these are very

important not only in providing nutrient supply to the plants but also in rendering

sustainability to farming systems. In developing countries, the insufficient know-

ledge, lack of adequate machinery, and improper distribution and importation laws
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for live inoculants can lead to loss of their viability and effectiveness. The major

constraints associated with effective bioformulation development are as follows:

3.1 High Cost of Production

Because of low price structure, hi-tech instrumentation required for producing

bioformulations under completely sterile conditions is not getting acceptance.

The potential hazards associated with bacterial contaminants should not be ignored

as long as nonsterile carrier inoculants are widely used. However, one should note

that the use of nonsterile carrier inoculants has caused no reported health hazards in

decades of usage (Bashan 1998). The development of bacterial inoculants is

claimed to be cheaper than that of agrochemicals, although the large-scale screen-

ing of strains with biological activity is still required (comparable to more than

1:20,000 screened molecules for a new chemical product) (Bashan 1998).

Deficiencies in handling procedure are a major cause of under performance in

real life application. The high sensitivity to temperature and other external condi-

tions of these “living” inputs calls for enormous caution at the stage of manufacture/

culture, transportation/distribution, and application. This involves investment in

packaging, storage, and use of suitable carrier materials (Arora et al. 2001).

Spurring the development of agricultural markets is the key factor for achieving

targeted growth in bioformulation usage. In general, firms with larger production

facilities are expected to invest more on networks to understand and access the

market. A big obstacle is the registration procedure, which is often expensive and

time consuming; especially, the cost of registration is the principal obstacle in the

development of new products (Ehlers 2006).

3.2 Shelf Life

One of the main barriers faced by the producers of bioformulations and investors is

inadequate demand and the inconsistent and seasonal nature of the existing demand,

necessitating efficient storage. The storage of bioformulations requires special

facilities and skills, which most producers, shopkeepers, and farmers do not pos-

sess. Shelf life is a culmination of several factors like production technology, carrier

and packaging material used, mode and distance of transport, all these levels are

desired to sustain the shelf life.

The most common solutions to this problem of survival time have been air-dried

and lyophilized preparations (Kosanke et al. 1992). The lowered water content in

the final product is responsible for long-term survival during storage. In this way,

the bacteria in the formulation remain inactive, resistant to environmental stresses,

insensitive to contamination, and are more compatible with fertilizer application

(Bashan 1998). The dehydration phase is perhaps the most critical of the entire
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formulation process especially for nonspore-forming bacteria (Shah-Smith and

Burns 1997). Bacterial survival is affected by several variables: the culture medium

used for bacterial cultivation, the physiological state of the bacteria when harvested

from the medium, the use of protective materials, the type of drying technology

used, and the rate of dehydration (Paul et al. 1993).

3.3 Inconsistent Performance: Fate of Inoculant Introduced
in Soil

Inconsistent field performance is the major constrain associated with their market-

ing. These failures have raised concerns about the perspective of the great practical

potential offered by microbial releases into soils. A key factor involved in the lack

of success has been the rapid decline of the size of populations of active cells, to

levels ineffective to achieve the objective, following introduction into soil. As soil

is a heterogeneous system with a mixed biota under fluctuating local conditions,

temporal and spatial aspects pertaining to the introduction should be critically

evaluated for each release. This growth/survival-inhibitory effect of soil has been

called soil microbiostasis (Ho and Ko 1985). It has been attributed to the scarcity of

available nutrient sources to microbes in soil and the hostility of the soil environ-

ment to incoming microbes due to a myriad of adverse abiotic and biotic factors.

The physiological characteristics of the inoculant organism determine to a great

extent its fate and activity in soil. Hence, different species will show varying

responses, in terms of survival and activity. The physiological traits that play a

role in the capacity of inoculant bacteria to colonize soil and survive are often not

well known. Therefore, a thorough selection procedure is required when searching

for effective inoculants. Besides the intrinsic physiological characteristics of the

organisms, abiotic and biotic soil factors play an important role. Abiotic soil factors

(e.g., textural type, pH, temperature, and moisture) exert their (direct) effect on

inoculant population dynamics by imposing stresses of various natures on the cells

(Evans et al. 1993). They can also act indirectly by affecting the activity of the

indigenous soil microflora. A correlation was found between the decline in popula-

tions of individual bacterial strains and the activity and increase in the abundance of

protozoa in soil (Wright et al. 1995; Lutenberg and Kamilova 2009). Hence,

protozoa play an important role as regulators of microbial inoculant population

sizes in soil. Another biological factor, in line with the predation process, is the

competition between inoculant and indigenous populations for available substrate

and biological space.

Moreover, Elliott et al. (1980) showed that trophic interactions in soil, including

nematode–protozoan–bacterium interactions, are influenced by the soil type as

reflected in the pore space distribution. Colonization of soil particles and aggregates

is assumed to be vital to ultimate inoculant survival in soil (Hattori and Hattori

1976). Under similar prevailing climatic conditions, the inoculant revealed higher
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survival levels in fine-textured (clayey) than in coarser (sandy) soils. Vargas and

Hattori (1986) clearly showed that in the presence of a cointroduced grazing

protozoan species, the survival of inoculant bacteria localized in the interior parts

of 1–2-mm soil aggregates was far better than that of cells present at external

aggregate sites. This suggested that cells localized in the interior parts were

physically protected from grazing by protozoa, presumably due to their localization

in soil pores with small necks. The maintenance of sufficient activity of an inocu-

lants population over a prolonged period after release often represents the main

hurdle in the successful use of microbes as PGP agents. Furthermore, efficient

introduction into soil during the growing season is a major technical constraint.

4 Research Areas for Development and Optimization

of Bioformulations

Although the vast body of research on microbial inoculants deals with their ability

to promote plant growth, there has been limited success in developing commer-

cially viable products. For the development of successful bioformulation technol-

ogy, progress must be made to meet numerous scientific challenges: (1) selection of

improved strains having greater crop diversification, (2) survival during seed

coating/pelleting, soil application and during storage at ambient temperatures is

critical for the development of microbial inoculant products; therefore, it seems

logical that these traits should form an integral part of any screening process for the

development of new effective bioformulations, (3) more efficient plant growth

promotory bacteria compete poorly with the rhizobacteria already in the soil.

Ways to improve the competitive ability of inoculant should be explored, (4)

study of environmental stresses that negatively affect nodulation, nitrogen fixation,

and biocontrol ability such as soil pH, nutritional deficiencies, salinity, high tem-

perature, and presence of toxic elements, (5) efficacy of microbial inoculants varies

somewhat from site to site and year to year and this has to be considered and studied

elaborately and, (6) understanding of interactions between the plant, beneficial

rhizobacteria, and plant pathogens in the highly complex and dynamic rhizosphere

environments is the ultimate need to overcome practical problems such as the

inconsistency in field performance.

4.1 Microbial Diversity

Over the past 100 years, research has repeatedly demonstrated that phylogenetically

diverse microorganisms can act as natural antagonists of various plant patho-

gens and promote plant growth (Cook 2000). The intensive screening of plant

growth promoting microorganisms will allow the development of commercial
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bioformulation(s). The rhizosphere is known to provide ecologically favorable

niche for most of the beneficial soil organisms. The abundance of nitrogen fixing,

phosphate solubilizing, and plant disease suppressing bacteria in the rhizosphere of

crop plants assumes a natural significance from the agronomic point of view (Subba

Rao 1999). A successful PGP agent must be an aggressive colonizer with better

competence and storage conditions in its formulation and use. As plant pathogens

survive and cause diseases at dry, nutrient-poor, and high soil-temperature condi-

tions (e.g., Rhizoctonia bataticola), the biocontrol agent (BCA) must also be able to

withstand more competitively in the same adverse environment. Growth at high

temperature (45�C) and endospore-producing trait of Paenibacillus sp. (endophytic
bacteria) makes it a more suitable bioinoculant and ensures its survival in soil when

a host is not available (Senthilkumar et al. 2007). Endophytic bacteria probably

have evolved an intimate relation with their host plants through coevolutionary

process and may influence physiological process of plants. Moreover, their unique

ability to survive in plants with no or little microbial competition makes them

potential candidates for biological control (Bhowmik et al. 2002).

One important factor to be considered when screening new isolates is their

activity in the range of environments in which they would be expected to be

used; in particular different soil types (Ross et al. 2000). Saline conditions are

known to suppress the growth of plants, causing a diminished yield. Ochrobactrum
sp., the free-living a-proteobacteria, was reported to have the potential of plant

growth promotion in saline soil conditions (Prı́ncipe et al. 2007). Recent reports

have described the isolation of Ochrobactrum from plant tissue of deep water rice

(Oryza sativa) (Tripathi et al. 2006) as well as from soils and sediments.

PGPB that are effective in degradation of soil pollutants in laboratory conditions

have not done well in presence of soil pollutants is another constraint for field

application. Selection of pollutant-degrading rhizobacteria that live on, or are close

to the root so that they can use root exudate as their major nutrient source is a

promising strategy to solve this problem (Böeltner et al. 2008; Lutenberg and

Kamilova 2009). Similar approach resulted in the isolation of novel Sphingomonas
strains that are relatively efficient in the in situ removal of lindane (Böeltner et al.

2008). Pseudomonas putida PCL1444, effectively utilizes root exudate, degrades

naphthalene around the root, protects seeds from being killed by naphthalene, and

allows the plant to grow normally. Mutants unable to degrade naphthalene did not

protect the plant (Kuiper et al. 2001). Validov et al. (2007) isolated two new BCAs,

Pseudomonas rhodesiae and Delftia tsuruhatensis. P. rhodesiae was first isolated

from natural mineral water and is taxonomically affiliated to the Pseudomonas
fluorescens group (Anzai et al. 2000). The representatives of this species were

known as degraders of aromatic compounds (Kahng et al. 2002) or as isonovalol

producers (Fontanille and Larroche 2003), but had not been reported yet as control

agents for plant disease. Delftia is a newly classified genus closely related to

Comamonas. These bacteria were isolated for the first time from active sludge as

degraders of terephthalate (Shigematsu et al. 2003).Delftia terephthalate, also been
reported as a diazotrophic PGPR, is able to control blast and blight of rice caused by

Xanthomonas oryzae, Rhizoctonia solani, and Pyricularia oryzae (Han et al. 2005).
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During the past two decades research on marine bacteria has highlighted the

tremendous potential of these microorganisms as a source of new bioactive second-

ary metabolites (Ahmed et al. 2000) and there is a growing awareness of the need

for development of new antimicrobial agents for the treatment of human, animal,

and plant diseases. Marine bacteria could represent a new scope of antibiotics,

which are currently needed to combat emergent antibiotic-resistant pathogen. The

strains of species isolated from different ecological niches also generally showed

wide genetic diversity despite some strains having similarity in their biochemical

characteristic. It has become essential to understand the bacterial community

structure in relation to environmental factors and ecosystem functions to screen,

select, and utilize the microbial diversity for development of bioformulations

leading to environment safe for life.

4.2 Metagenomics

The majority of microorganisms on earth resist life in captivity, i.e., they cannot be

grown in broth or on plates in the laboratory. An often-cited estimate is that as much

as 99% or more of microbial life remains unculturable, and therefore, cannot be

studied and understood in a way that microbial ecologists have become accustomed

to over the past century. The metagenomic toolbox allows accessing, storing, and

analyzing the DNA of nonculturable life-forms and thus can provide an otherwise

hard-to-attain insight into the biology and evolution of environmental microorgan-

isms, independent of their culturable status (Fig. 1).

Due to a historical bias to study those microorganisms that can be grown in the

laboratory, there is limited knowledge on the abundance and activity of not-yet

Fig. 1 Schematic

representation of the classical

metagenomic protocol
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culturable PGPR. However, there are several examples of their existence and

contribution to plant health, e.g., Pasteuria penetrans, a not-yet-culturable bacte-

rium parasitic to plant-pathogenic nematodes (Fould et al. 2001), the nitrogen fixing

activity by viable-but-not-culturable Azoarcus grass endophytes (Hurek et al.

2002), and the obligate biotrophism of arbuscular mycorrhizal (AM) fungi (Millner

and Wright 2002). Bacteria belonging to the Acidobacteria and Verrucomicrobia
are in many rhizospheres among the most abundant, difficult-to-culture representa-

tives (Buckley and Schmidt 2003). However, it is not clear if and how their

abundance is correlated to their contribution toward plant health. Several protocols

have also been developed for the isolation of metagenomic bacterial DNA from

inside plant material. Jiao et al. (2006) described an indirect method based on

enzymatic hydrolysis of plant tissues to release associated microorganisms for

subsequent DNA isolation and cloning. While optimized for leaves and seeds,

this method seems readily adaptable for use with root material, and thus of great

use to the metagenomic exploration of microorganisms in the rhizosphere.

There is a clear potential for metagenomics to contribute to the study of

microbial communities of the rhizosphere, in particular PGPR. The other possible

contributions of metagenomics in the study of PGPR include the discovery of novel

PGP genes and gene products, and the characterization of not-yet culturable

PGPRs. The tools of metagenomics offer many openings into a broadened view

of the rhizosphere in general and of PGPR and their activities in particular. An

analysis of the rhizosphere by comparative metagenomics holds the promise to

reveal several important questions regarding the unculturable fraction of the rhizo-

sphere community. For one, it could expose what actually constitutes this fraction

from a comparison of metagenomic DNA isolated directly from rhizosphere to

DNA isolated from all the colonies forming on solid media after plating from that

same rhizosphere (i.e., the culturable fraction). The discovery of novel PGPR

activities based on DNA sequence information from unculturables will add enor-

mously to our understanding of the mechanistic variation that exists in PGPR

phenotypes. It will also benefit our ability to improve existing PGPR, by adding

to the pool of exploitable PGPR genes and utilization of this pool to develop PGPRs

with enhanced performance (Timms-Wilson et al. 2004).

4.3 Plant–Microbe–Microbe Interactions

Rhizosphere is rich in microbial activity which takes part in biological and ecologi-

cal processes important for plant health. To develop efficient and reliable biofor-

mulation, understanding of the role of microbes in the panoply of processes and

interactions which take place in the rhizosphere is essential. When analyzed within

the context of biocontrol, the translocation processes of PGPR bacteria seem to

warrant more attention. Motility on surfaces is an important mechanism for bacte-

rial colonization of new environments. Furthermore, the ability to move in a

directional manner may confer distinct advantage upon host-adapted prokaryotes.
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There are few investigations reporting that motility is essential for the initial steps

of development of microbial biofilms, which are often basic condition of beneficial

effects of PGPR (Kinsinger et al. 2003). Avoidance of antimicrobial compounds

produced either by the host or by competitors inhabiting the same niche also seems

to be important for maintaining this contact.

Once a beneficial microbial strain has been able to colonize a host plant, it might

be able to display a wide array of activities contributing to plant fitness. Expression

of bacterial traits involved in biological control of plant pathogens is tightly

regulated and N-acyl-homoserine lactones (AHL) signal molecules play an

intriguing role in this respect. These AHL molecules have recently also been

implicated in the sensing of bacteria by animals, more specifically Caenorhabditis
elegans (Beale et al. 2006). Thus, these molecules play a role in communication

within and between bacterial populations, in communication between bacteria and

plants and vice versa (Teplitski et al. 2000; Schuhegger et al. 2006), and between

bacteria and nematodes. In an environment containing all these organisms, like the

rhizosphere, studying these interactions and predicting their outcome undoubtedly

constitutes an exciting challenge.

The ever-increasing availability of plant and bacterial genome sequences and the

development of “omic” technologies permit genome-wide approaches to unveil

either microbial or plant functioning in the rhizosphere. Indeed, much has been

done to investigate the global gene expression or transcriptomes of various plants

when confronted with pathogens, symbiotic nitrogen-fixing bacteria, PGPR, or

environmental conditions. However, the gene expression of microbes in the rhizo-

sphere is much less studied largely due to the difficulty to obtain sufficient material

under controlled conditions in this otherwise highly variable and irregular niche.

The report by Matilla et al. (2007) constitutes the first on bacterial genomics in the

rhizosphere. Secondary metabolites are often synthesized by multimodular, multi-

domain proteins called nonribosomal peptide synthetases (NRPS), and polyketide

synthases (PKS). Both NRPS and PKS systems are molecular assembly lines for

successive linking of multipleamino/hydroxyl acids or acyl-CoA precursors,

respectively, into complex polymers which are often further modified into unique

structures. A novel “genomisotopic” approach uses a combination of genomic

sequence analysis and isotope-guided fractionation to identify unknown com-

pounds synthesized by NRPS gene clusters (Gross et al. 2007). A phage display

method was developed for high-throughput mining of gene clusters encoding PKS

and NRPS systems, which can be applied to genomes of unknown sequence and

metagenomes (Yin et al. 2007), providing opportunities for exploiting the poten-

tially rich source of natural products from unculturable microbes. The ever-increas-

ing pace of microbial genome sequencing is revealing a plethora of new NRPS/PKS

gene clusters, mostly of unknown function. A major challenge for the next decade is

to back this up with characterization of the chemical structures and biological

activities of these secondary metabolites, so that we can chart Nature’s unique

repertoire of natural products and exploit them for the directed synthesis of novel

molecules of agricultural utility (Arora et al. 2007a). Future developments in

functional genomics (including proteomics and metabolomics) will be useful to
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identify the genes expressed in the rhizosphere, while the use of promoters to drive

gene expression specifically at the root–soil interfaces will allow the engineering of

microorganisms for beneficial purposes.

4.4 Formulation Design

Formulation is the crucial issue for inoculants containing an effective bacterial

strain and can determine the success or failure of a biological agent. Since natural

soil commonly represents a hostile environment to inoculant cells (Ho and Ko

1985), the use of inoculant formulations involving carrier materials for the delivery

of microbial cells to soil or the rhizosphere is an attractive option. Carrier materials

are generally intended to provide a (temporarily) protective niche to microbial

inoculants in soil, either physically, via the provision of a protective surface or

pore space (creating protective microhabitats), or nutritionally, via the provision of

a specific substrate (Trevors et al. 1992). Peat and soil rich in organic matter are

generally used in the preparation of legume inoculants and constitute a suitable

carrier for the purpose. Peat and lignite, though good carriers, are not easily

available and are expensive. The low cost and easily availability of carrier material

are the major requirements for bioformulations in developing countries (Saha et al.

2001).

The microbial inoculant is not merely a suitable carrier containing the bacteria.

Other materials might be involved in the final formulations. Evidence suggests that

the addition of nutrients to seed pellets may be a useful strategy for improving

inoculant survival (Moënne-Loccoz et al. 1999). Furthermore, carbon sources and

minerals have been shown to have an important role in antifungal metabolite

production by Pseudomonas BCAs, suggesting that nutrient amendments to for-

mulations may also be a useful strategy for improving biocontrol efficacy (Duffy

and Défago 1999). Soil amendment with chitin showed increase of the chitinolytic

microbial populations and significantly reduced the incidence of fungal diseases in

celery (Bell et al. 1998). Chitin supplementation supports the survival of Bacillus
cereus and B. circulans in the groundnut phylloplane and resulted in better control

of early and late leaf spot disease (Kishore et al. 2005). These improved disease

control results are associated with an increase in the population of the introduced

BCAs in presence of chitin.

Drying is a part of many procedures for development of formulation of microbial

inoculants. The drying procedures are not very suitable for incorporation in a

formulation protocol. However, Amiet-Charpentier et al. (1998) reported that it is

possible to formulate nonsporulating bacteria using both freeze- and spray-drying.

It was demonstrated that a methacrylic copolymer carrier, an ethyl-cellulose, and a

modified starch product all increase survival of rhizosphere bacteria during spray-

drying (Palmfeldt et al. 2003). Remarkably low percentage of endospore formers

was observed that survived after drying (Validov et al. 2007). Designing of formu-

lation that allow inoculant survival during drying procedure and support high

Plant Growth Promoting Rhizobacteria: Constraints in Bioformulation, Commercialization 107



colony forming units of PGP agents on short storage in the grower’s warehouse

(which in developing countries usually lack refrigeration) was an important neces-

sity for commercialization of the technology.

One factor which can have a detrimental effect on dried microorganisms over the

long term is humidity in the environment; increasing moisture content of the dried

sample compromises viability. Storage under vacuum or in an inert atmosphere can

prevent this (Johnsson et al. 1998), but is costly and unwieldy. Manzanera et al.

(2004) have shown how osmotic preconditioning of bacteria, followed by drying in

the presence of glass-forming protectant molecules, such as trehalose or hydro-

xyectoine, results in a high level of desiccation tolerance, where viability is main-

tained throughout extended storage periods at above-ambient temperatures and its

potential application as a seed coating. This has been termed anhydrobiotic engi-

neering (Fages 1992), in reference to anhydrobiotic organisms which naturally

exhibit extreme desiccation tolerance (Validov et al. 2009). Similar observations

of Garcı́a de Castro et al. (2000) demonstrate the potential of this novel biotechno-

logy for stabilizing nonsporulating organisms. Storage of culture collections and

libraries could be simplified using a plastic encapsulation procedure, for example,

since there is no requirement for freezing or storage under vacuum or in an inert

atmosphere.

5 Integrated Management

In the era of integrated use and management of various agro-inputs for maximiza-

tion of crop yields, a comprehensive knowledge about the compatibility of various

components to each other is very much required. Recommendations on combined

use of such inputs, like treatment of seeds both with fungicides and biofertilizers,

must accompany appropriate information on their compatibility to each other.

Inhibitory effects have been observed on some nitrogen fixing microorganisms by

insecticides (Sarkar and Balasubramanayam 1978) and seed dressing chemicals

(Chitriv 1986). Knowledge of multiple microbial interactions is also of extreme

value for development of bioformulations. The majority of interactions considered

so far concern a single pathogen and a single BCA in the rhizosphere. However, one

way of improving biocontrol in the rhizosphere may be to add combinations of

BCAs, particularly those exhibit different or complementary mode of action or

abilities to colonize root microsides. Application of a combination of Paenibacillus
sp. and a Streptomyces sp. suppressed Fusarium wilt of cucumber than when either

was used alone (Singh et al. 1999). The combination of Pseudomonas aeruginosa
and Pochonia chlamydospora caused greater suppression of fungal phytopathogens
and promoted plant growth compared with their individual application (Siddiqui

and Shaukat 2002). Combinations of fungi and bacteria have also been shown to

provide enhanced biocontrol (Duffy et al. 1996).

However, it is important when considering the use of combinations of strains

that no member of the mixture is inhibitory to another or interferes excessively with
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the existing, normal, and nonpathogenic microbiota associated with the roots.

Various reports indicate that coinoculation of beneficial organisms generally

increased plant growth and/or decreased plant disease relative to single inoculation

with a sole beneficial organism (Whipps 2004; Raimam et al. 2007). Most of the

effects of the individual microorganisms in coinoculation are additive, although a

synergistic effect has been reported in some cases (Ravnskov et al. 2006; Kohler

et al. 2007). However, neutral or negative effects have been reported (Akköpr€u and
Demir 2005) indicating that the outcome of coinoculation of these microorganisms

on plant health and productivity should be determined on a case-by-case basis.

There is evidence to suggest that Pseudomonas BCAs can affect the growth and

subsequent nodule occupancy of certain Sinorhizobium meliloti strains in gnotobi-

otic systems (Neimann et al. 1997). Within commercial scale field trials, however, a

Pseudomonas BCA did not affect nodulation in the foliage of a red clover rotation

crop (Moënne-Loccoz et al. 1998), again demonstrating the necessity of conducting

impact analysis experiments within agronomically relevant parameters. Only when

the symbiosis is well understood are we likely to be able to exploit it to provide

optimum growth enhancement of the host and control of phytopathogens (Arora

et al. 2008a).

6 Conclusion

Because of current public concerns about the side effects of agrochemicals, there is

an increasing interest in improving the understanding of cooperative activities

among rhizosphere microbial populations and how these might be applied to

agriculture. Certain cooperative microbial activities can be exploited as a low-

input biotechnology and form basis for a strategy to help sustainable, environmen-

tally friendly practice fundamental to the stability and productivity of both agricul-

tural systems and natural ecosystems (Kennedy and Smith 1995). Recent survey of

both conventional and organic growers indicates an interest in using biological

products (Rzewnicki 2000), suggesting that the market potential of bioformulations

will increase in coming years. It is estimated that the total global market for

synthetic pesticides which was valued at US$ 26.7 billion in 2005 will decline to

US$ 25.3 billion in 2010. On the other hand, the global market for biopesticides will

increase from US$ 672 million in 2005 to over US$ 1 billion in 2010 (Fig. 2). While

Europe, at an average annual growth rate (AAGR) of 15%, is projected to lead the

growth in biopesticide use, Asia will be no far behind with an average AAGR of

12%. The global market is divided into 43.5% of sales in North American Free trade

Agreement countries (including Mexico), 20.7% in Europe, 12.2% in Asia, 11.2%

in Oceania (including Australia), 8.3% in Latin America (excluding Mexico), and

3.9% in Africa (Bolckmans 2008). Furthermore, a detailed report about nitrogen-

fixing bacteria as biofertilizers, for which the market is also growing, was published

by Bhattacharjee et al. (2008).
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The effects of soil on the physiology and ecology of introduced microorganisms

are still poorly understood at the microscale (pore) level. Future research in this

area should aim for a better understanding of the in situ physiology of inoculant

cells, as well as for possible ways to manipulate it. Molecular techniques are being

used in microbial ecology to understand the soil ecosystem, for the production of

microbial inoculates, and for monitoring these inoculates after field release. These

inoculants may or may not be genetically modified strains. Thus, future research in

rhizosphere biology will rely on the development of molecular and biotechnologi-

cal approaches to increase our knowledge of rhizosphere biology and to achieve an

integrated management of soil microbial populations. Future investigation in the

field of development of microbial formulation for plant growth promotion will

include: (1) advances in visualization technology; (2) analysis of the molecular

basis of root colonization; (3) signaling in the rhizosphere; (4) functional genomics;

(5) mechanisms involved in beneficial cooperative microbial activities; (6) engi-

neering of microorganisms for beneficial purposes; and (7) biotechnological devel-

opments for integrated management. A variety of research questions remain to be

fully answered about the nature of bioformulations and the means to most effec-

tively manage it under production conditions. As our understanding of the complex

environment of the rhizosphere, of the mechanisms of action of PGPR, and of the

practical aspects of inoculant formulation and delivery increases, we can expect to

see new PGPR products becoming available.

On the applied side, and given the history of failures or variabilities of previous

microbial releases, it is interesting to test the concept of application of mixtures of

Fig. 2 Change in global market of synthetic pesticides and biopesticides in 5 years
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ecologically diverse strains with similar functions instead of limited function of

single strains. Such consortia might consist either of mixtures of completely natural

strains or of different strains into which similar functions had been engineered. By

this way, beneficial functions might be expressed more continually in a soil or

rhizosphere system, even under ecologically different and/or variable conditions.

One of the major challenges for the inoculant industry is to develop an improved

formulation that provides high shelf-life, high number of viable cells, protection

against soil environment, convenience to use, and cost effective (Smith 1992).

More studies on the practical aspects of mass-production and formulation need

to be undertaken to make new bioformulations that are stable, effective, safer, and

more cost-effective. There is an urgent need to develop a definite correlation

between agriculturists, microbiologists, biotechnologists, industrialists, and farmers

(Fig. 3).

Generally, inoculants are being used for legume crops and to a certain extent for

cereal crops. Fresh alternatives should be explored for the use of bioinoculants for

other high value crops such as vegetables, fruits, and flowers. This will not only
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Fig. 3 Research and development strategies for commercialization of bioformulation technology
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increase the field of the inoculants but also create confidence among the farmers for

their use. As a recent approach, new environment friendly, genetically modified,

microbial inoculates are being produced commercially and used to protect plants

from disease and to promote plant growth. Numerous studies on technological

evolution emphasized the developmental role of a firm and the strength of its

sales network, creating market and drawing market feedback, for its success. In

addition, future marketing of bioinoculant products and release of these transgenics

into the environment as eco-friendly alternations to agrochemicals will depend on

the generation of biosafety data required for the registration of PGP agents. Clearly,

the future success of the bioformulation industry will depend on innovative busi-

ness management, product marketing, quality product, extension education, and

research.
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Abstract Plant growth promoting rhizobacteria (PGPR) are bacteria that colonize

plant roots and then promote plant growth and/or reduce disease or insect damage

via exudation of some active metabolites. Antagonistic PGPR have attracted much

attention in their role in reducing plant diseases, especially strains of the genus

Bacillus, Pseudomonas, and Burkholdeira, and there is now an increasing number

of PGPR being commercialized for crops. In this chapter, we present three major

antagonistic PGPR (Bacillus spp., Pseudomonas spp., and Burkholdeira spp.)

and their antifungal metabolites including the chemical structure first, and then

introducing the mode of action and biosynthesis pathway of these antifungals.
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1 Introduction

Plant fungal diseases reduce yield and productivity of several economical crops all

over the world. Resistant plant cultivars, cultural practices, and chemical applica-

tions are often used to control plant disease. However, resistant cultivars for every

disease are not available and cultural practices are not always economically or

technologically feasible. Moreover, available chemical fungicides are often expen-

sive and also have bad effects on human beings. Environmentally friendly control

of plant disease is a pressing need for agriculture in new century (Emmert and

Handelsman 1999). Biological control using antibiotics and antifungal rhizobac-

teria to suppress plant diseases offers a powerful alternative to the use of synthetic

chemicals.

There have been many studies regarding the use of antagonistic microbes as

an alternative to synthetic chemical pesticides in biocontrol systems, because the

latter has given rise to human and ecological risk. Many bacteria and fungi have

been reported as antagonistic microbes against phytopathogenic fungi (Bonsall

et al. 1999; Lee et al. 2001). Most of the interactions between antagonistic and

phytopathogenic microbes have been summarized as deriving from the inhibition of

the pathogen by antimicrobial materials (Raaijmakers et al. 2002), competition for

nutrients (Mondal and Hyakumachi 2000), the inaction of pathogen germinating

factors (Whipps 1997), and degradation of the pathogenicity factor (Steijl et al.

1999). The usage of antagonistic microorganisms with antifungal effects as bio-

control agents to inhibit or reduce the rate of propagation of deleterious fungi

during storage is considered a safer and more environmentally friendly alternative.

Biological control of plant pathogens is strongly based on the production of anti-

fungal factors such as antibiotics, hydrolytic enzymes, and siderophores by the

bacterial antagonists (Becker and Cook 1988; Howell and Stipanovic 1980; Keel

et al. 1990; Thomashow and Weller 1988; Vincent et al. 1991).

Plant growth promoting rhizobacteria (PGPR) are free-living soil bacteria that

can either directly or indirectly facilitate rooting and growth of plants. PGPR

indirectly enhance plant growth via suppression of phytopathogens by a variety

of mechanisms. These include the ability to produce siderophores that chelate iron,

making it unavailable to pathogens; the ability to synthesize antifungal metabolites

such as antibiotics, fungal cell wall-lysing enzymes, or production of volatiles such

as hydrogen cyanide, which suppress the growth of fungal pathogens; the ability to

successfully compete with pathogens for nutrients or specific niches on the root;

and the ability to induce systemic resistance (ISR). Taxonomically, PGPR represent

a variety of bacterial species from different genera such as Pseudomonas, Bacillus,
Burkholderia, Enterobacter, and Azospirillum (Lodewyckx et al. 2002). Among

PGPR bacteria, Bacillus, Pseudomonas, and Burkholderia have been intensively

investigated as biological control agents with regard to the production of antimi-

crobial metabolites.

The purpose of this chapter is to provide an up-to-date overview of the current

knowledge of the structural diversity and activity of antifungal compounds
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produced by plant-associated PGPR, in particular the antagonistic Pseudomonas
spp., Bacillus spp., and Burkholderia spp. A detailed description of structures,

mechanism of action mode, and genes involved in the biosynthesis of antifungals

is presented.

2 Antagonistic PGPR and Its Antifungal Metabolites

PGPR suppress various group of plant pathogens, thus protect the plants against

different diseases. This protective effect is mainly due to production of antifungal

metabolites produced by various species of Bacilli, Pseudomonads, and Burkholderia
in particular.

2.1 Bacillus and Its Antifungal Metabolites

Spore-forming bacteria, typically Bacillus species, are one of the major types of

soil bacteria. Bacillus species offer several advantages for protection against root

pathogens because of their ability to form endospores and the broad-spectrum

activity of their antibiotics. Bacillus species produce 167 biological compounds

active against bacteria, fungi, protozoa, and viruses (Bottone and Peluso 2003).

The first successful application and commercial production of PGPR is a

B. subtilis strain A13. B. subtilis A13 was isolated more than 25 years ago in

Australia based on in vitro inhibitory activity to all of nine pathogens tested and was

subsequently shown to promote plant growth. Since 1990, Bacillus spp. have been
developed as fungal disease control agents. Strains of B. megaterium, B. cereus, and
B. subtilis have been used for the biocontrol purpose (Idris et al. 2008; Kildea

et al. 2008), in the form of the commercial product namely, Serenade, EcoGuard,

Kodiak, Yield Shield, and BioYield.

Bacteria of the genus Bacillus are capable of producing antibiotics, as well as a

variety of fungal cell-wall-degrading enzymes, such as chitinase, cellulases, amy-

lases, glucanses, etc. Most of the antibiotics are peptides effective against Gram-

positive, Gram-negative bacterial species, and filamentous fungi, and also with a

high stability attributable to their structure. Several antifungal peptides synthesized

by Bacillus species are active against filamentous fungi and yeasts. According to

structural features of peptides, it can be divided into cyclic lipopeptide (CLP),

phosphono-oligopeptide, and dipeptide. Many Bacillus strains produce small circu-

lar peptides (such as Iturin, Fengycin, Bacillopeptins, and Surfactin) with a long

fatty acids moiety. They are composed of seven (surfactins and iturins) or ten

a-amino acids (fengycins) linked to one unique b-amino (iturins) or b-hydroxy
(surfactins and fengycins) fatty acid. The length of this fatty acid chain may vary

from C-13 to C-16 for surfactins, from C-14 to C-18 in the case of fengycins

(Ongena and Jacques 2007). Iturin and fengycins display a strong antifungal
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activity and are inhibitory for the growth of a wide range of phytopathogens (Hsieh

et al. 2008; Vanittanakoma and Loeffler 1986). Bacilysocin produced by B. subtilis
has a phospholipid structure, and it may be derived from phosphatidyl glycerol

through acyl ester hydrolysis. Phosphatidyl glycerol is the major component of

phospholipids in B. subtilis, which constitutes about 75% of the total phospholipids

(Tamehiro et al. 2002). Bacilysin is a nonribosomally synthesized dipeptide anti-

biotic that is active against a wide range of bacteria and some fungi (Rajavel

et al. 2009).

Production of polyketide-like compounds with antimicrobial activity by wild-

type isolates of Bacillus spp. has been described previously (Hofemeister et al.

2004). The polyene antibiotics, difficidin and oxydifficidin, are highly unsaturated

22-member macrolides with a rare phosphate group (Wilson et al. 1987). Another

antibiotic, bacillaene, is a linear molecule with two amide bonds: the first links an

a-hydroxy carboxylic acid to a b-amino carboxylic acid containing a conjugated

hexaene, and the second links the hexaene-containing carboxylic acid to an (o-1)
amino carboxylic acid containing a conjugated triene.

Numerous cell-wall-degrading enzymes, especially chitinase, have been isolated

from Bacillus species. Many strains of Bacillus can produce a high level of chiti-

nolytic enzymes (Xiao et al. 2009; Huang et al. 2005). Moreover, many researches

have shown that chitinase is involved in antifungal activity and can enhance the

insecticidal activity of Bacillius sp. (Table 1).

2.2 Pseudomonas and Its Antifungal Metabolites

Pseudomonas species are ubiquitous inhabitants of soil, water, and plant surfaces

that belong to the Gamma-subclass of Proteobacteria. Many pseudomonades live

in a commensal relationship with plants, utilizing nutrients exuded from plant

surfaces and surviving environmental stress by occupying protected sites provided

by the plant’s architecture. Bacteria of Pseudomonas genus are the most popular

PGPR and some species were also used in practice for biocontrol of Gaeumanno-
myces graminis var tritici, Rhizoctonia solani, Erwinia carotovora var. carotovora,
Pythium ultimum, and Fusarium oxysporum. The mechanism suggested for achiev-

ing such inhibition includes: production of antibiotics, iron chelating compounds,

hydrolytic enzymes, and biosurfactants; competition for favorable nutritional sites;

and ISR and even due to their action as mycorrhization-helper bacteria (MHB).

Pseudomonads have an exceptional capacity to produce a wide variety of

metabolites, including antibiotics (Pyrrolnitrin, Pyoluteorin (Plt), Phenazine com-

pounds) and chitinase that are toxic to plant pathogens. Antibiotic production by

Pseudomonas spp. enhances the fitness of the producing strain and suppresses

pathogens that would otherwise disserve plant health. Certain antibiotic-producing

Pseudomonas spp. have received great attention in the world as biological control

agents to enhance agricultural productivity.
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Pyrrolnitrin (Prn, 3-chloro-4-(29-nitro-39-chlorophenyl)-pyrrole) is a secondary

metabolite derived from tryptophan and has strong antifungal activity. Most of

Pseudomonas and Burkholderia strains produce this antibiotic. Production of Prn

has been correlated with the ability of some bacteria to control fungal plant

pathogens and diseases, including the damping-off pathogen, R. solani. Prn and

its production by Pseudomonas species was first described by Arima et al. (1964).

This highly active metabolite has been used as a clinical antifungal agent for the

treatment of skin mycoses, and a phenylpyrrole derivative of Prn has been devel-

oped as an agricultural fungicide (Tawara et al. 1989).

Pyoluteorin (Plt) is an antibiotic that inhibits P. ultimum and suppresses plant

diseases. Plt is composed of a resorcinol ring, derived through polyketide bio-

synthesis, which is linked to a bichlorinated pyrrole moiety whose biosynthesis

remains uncharacterized. The production of the antifungal metabolite 2,4-diace-

tylphloroglucinol (2,4-DAPG) by many fluorescent Pseudomonas spp. has been

seen to play a major role in the biocontrol of a range of plant pathogens, including

P. ultimum, G. graminis var. tritici, and Thielaviopsis bassicola (Keel et al. 1990;

Vincent et al. 1991; Fenton et al. 1992; Levy et al. 1992).

Kim (2003) reported that P. aeruginosa excrete two different types of side-

rophores (pyoverdine and pyochelin) at low iron concentration. When free iron

concentration in environment reached to 10�17 mol/L, binding ability of pyochelin

with iron ions is 1.5 � 10�7 mol/L, whereas binding ability of pyoverdine is higher

than 10�20 mol/L (Chen et al. 2008).

Phenazines (Phz) are N-containing heterocyclic pigments. Currently, over 50

naturally occurring Phz compounds have been described and mixtures of as many

as ten different Phz derivatives can occur simultaneously in one organism. Growth

conditions determine the number and type of Phz synthesized by an individual

bacterial strain. For example, P. fluorescens 2–79 produces mainly phenazine

1-carboxylic acid (PCA), whereas P. aureofaciens 30–38 not only produces PCA

but also lesser amounts of 2-OH-phenazines (Dwivedi and Johri 2003).

Antifungal proteins, such as chitinase, are key components of defense and

offense mechanisms of many groups of fungi and bacteria. These microbial lytic

enzymes are being exploited widely for crop disease management. These enzymes

hydrolyze the chitin present in the fungal cell wall, leading to lysis. Production of

these lytic enzymes is considered to be the major antagonistic activity of fluorescent

pseudomonads belonging to PGPR.

Plant-associated Pseudomonas spp. also produces diversified CLPs with poten-

tial antimicrobial, cytotoxic, and surfactant properties. Based on the length and

composition of the fatty acid tail as well as the number, type, and configuration of

the amino acids in the peptide moiety, CLPs of Pseudomonas spp. were classified
into four major groups (i.e., the viscosin, amphisin, tolaasin, and syringomycin

groups). In brief, CLPs of the viscosin group are composed with nine amino acids

linked at the N terminus to, in most cases, 3-hydroxy decanoic acid (3-HDA). CLPs

in the amphisin group consist of 11 amino acids in the peptide part coupled to

3-HDA. For several members of this group, including amphisin and tensin, the

crystal structure has been resolved (Henriksen et al. 2000; Sorensen et al. 2001). For
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both tensin and amphisin, the structures are mainly helical, with the cyclic peptide

wrapping around a water molecule. Compared with the viscosin and amphisin

groups, CLPs in the tolaasin group are much more diverse due to multiple variations

in both the composition and length of the peptide chain (19–25 amino acids) and the

lipid tail (3-HDA or 3-hydroxyoctanoic acid). In terms of shear numbers of amino

acids in the peptide moiety, CLPs in the syringomycin group are structurally similar

to the CLPs in the viscosin group. However, macrolides, polyenes, quinone-type

antibiotics, and hydroxyphenol have not been found so far among the secondary

metabolites produced by the Pseudomonas (Table 2).

2.3 Burkholderia and Its Antifungal Metabolites

The genus Burkholderia comprises more than 40 different species, which inhabit a

wide array of ecological niches. Among others, they occur in soil and water, in the

plant rhizosphere and endophytically in roots and shoots, but also in and on fungal

mycelia. Burkholderia species are also well known for their biological and meta-

bolic properties, which can be exploited for biological control of fungal diseases but

also for bioremediation and plant-growth promotion. Burkholderia spp. can anta-

gonize and repress many soil-borne plant pathogens. Particularly, B. cepacia
complex (Bcc) is known to be a ubiquitous inhabitant in soil, which has been

used as an effective biocontrol agent for Pythium-induced damping-off, Aphano-
myces-induced root rot of pea, and R. solani-induced root rot of poinsettia. Bcc is a

group of genetically distinct but phenotypically similar bacteria that are divided

into at least nine species. The effectiveness of Bcc isolates as biocontrol and PGP

agents is based on a wide array of beneficial properties including the production of

indole-acetic acid (IAA), the ability to fix atmospheric nitrogen, and the production

of a wide array of compounds with antimicrobial activity, including cepacin, cepa-

ciamide, cepacidines, altericidins, pyrrolnitrin, quinolones, phenazine, siderophores,

and a lipopeptide. In the early 1990s, these useful properties led to the registration of

four Bcc strains for use as biopesticides by the EPA (the U.S. Environmental

Protection Agency), three of which were later classified as B. ambifaria and one as

B. cenocepacia.
Cepaciamides A and B are fungitoxic 3-amino-2-piperidinone-containing lipids

effective against Botrytis cinerea and Penicillium expansum, which cause the

storage rot of beet roots, and are considered to be a promising biocontrol agent

(Toshima et al. 1999). A peptide antibiotic complex, altericidins (altericidin a, B,

and C), was isolated from the culture broth of P. cepacia KB-1 (Kirinuki et al.

1984). The alteridins inhibit the growth of a wide range of fungi and yeasts, but

show no effect on the growth of bacteria species.

Cepacidine A is a novel glycopeptides with a potent antifungal antibiotic

produced by P. cepacia AF 2001 (Lee et al. 1994). Cepacidine A exhibited a

broad antifungal spectrum against various animal and plant pathogenic fungi.

In particular, cepacidine A was highly active against dermatophytes, namely
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Microsporum canis, Trichophyton spp., and Epidermophyton spp., and true yeast

at concentrations lower than 0.049 mg/ml. The activities of cepacidine A were

greater than those of amphotericin B in almost all strains. However, no antibacterial

activity against B. subtilis, E. coli, Staphylococcus aureus, and P. aeruguinosa was
detected (MIC > 100 mg/ml).

Two acetylenic antibiotics, cepacins A and B, have been isolated from the

fermentation broth of P. cepacia SC 11,783. Cepacin A has good activity against

Staphylococci (MIC 0.2 mg/ml) but weak activity against Streptococci (MIC 50 mg/ml)

and the majority of Gram-negative organisms. Cepacin B has excellent activity

against Staphylococci (MIC less than 0.05 mg/ml) and some Gram-negative organ-

isms (Parker et al. 1984). Similarly, Glidobactins are acylated tripeptide derivatives

that contain a 12-membered ring structure consisting of the two unique nonprotei-

nogenic amino acids, erythro-4-hydroxy-l-lysine and 4(S)-amino-2(E)-pentenoic
acid (Schellenberg et al. 2007). The antibiotic 2-Hydroxymethyl-chroman-4-one

isolated from Burkholderia sp. MSSP exhibited good activities against phytopatho-

gens such as P. ultimum, Phytophthora capsici, and S. sclerotiorum. 2-Hydroxy-
methyl-chroman-4-one was used to mediate for synthesis of benzopyranones (Kang

et al. 2004).

Most antibiotics isolated from Burkholderia culture filtrates, namely, Prn, Phz,

Plt, and indole derivatives, belong to the class of N-containing heterocycles and

have been shown to originate from intermediates or end products of the aromatic

amino acid biosynthetic pathways. Prn is a chlorinated phenylpyrrole antibiotic that

was first isolated from B. pyrrocinia (Arima et al. 1964) and later from other micro-

organisms, including P. fluorescens, P. chlororaphis, P.aureofaciens, B.cepacia,
Enterobacter agglomerans, Myxococcus fulvus, and Serratia species. Prn has

activity against several bacteria and soil-borne fungi, in particular R. solani. Prn
is also effective against postharvest diseases caused by B. cinerea on apple, pear,

and on cut flowers and has been used to treat humans infected by opportunistic

fungi. Plt is a phenolic polyketide that was first isolated from P. aeruginosa and

later from P. aeruginosa strain S10B2 and P. fluorescens strains Pf-5 and CHA0

(Takeda 1958). Plt has bactericidal, herbicidal, and fungicidal activities, in particu-

lar against Pythium spp. Application of pure Plt to cotton seeds resulted in significant

suppression of P. ultimum-induced damping-off (Howell and Stipanovic 1980).

B. contaminans strain MS14 isolated from disease-suppressive soil produced a

cyclic glycopeptide antibiotic, Occidiofungin. This compound inhibited the growth

of a broad range of fungal pathogens, and the high-resolution mass spectrometry

data revealed the existence of two structural variants of this antifungal peptide

(Lu et al. 2009).

Many 4-quinolone compounds have antifungal activity. 4-Hydroxy-2-alkylqui-

nolines (HAQs) have been long known as a class of antimicrobials produced by

the opportunistic bacterial pathogen such as P. aeruginosa and B. cepacia. Many

HAQs also act as iron chelators and even immune modulants. HAQs especially 3,4-

dihydroxy-2-heptylquinoline (Pseudomonas quinolone signal) and its precursor,

4-hydroxy-2-heptylquinoline, have recently attracted much attention because of

their role as intercellular signaling molecules in bacteria (Vial et al. 2008).
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Members of the Bcc produce up to four different siderophores (ornibactin,

pyochelin, cepabactin, and cepaciachelin). The siderophores produced by the Bcc

contain most of the bidentate ferric iron-chelating groups commonly present in

bacterial siderophores and includes catechols (present in cepaciachelin), linear

hydroxamate and ahydroxycarboxylate groups (both present in ornibactin), a

cyclic hydroxamate (hydroxypyridonate) moiety (as in cepabactin), and 2-hydroxy-

phenyl-thiazoline/-oxazoline and thiazolidine-carboxylate moieties. Pyochelin,

2-(2-o-hydroxyphenyl-2-thiazolin-4-yl)-3-methylthiazolidine-4-carboxylic acid, is

derived from the condensation of salicylic acid with two molecules of cysteine,

each of which undergoes cyclisation to thiazoline and thiazolidine ring derivatives

following their incorporation into the molecule. Natural pyochelin is present as two

spontaneously interconvertible stereoisomers, pyochelins I and II, due to isomeris-

ation at the C-200 position of the thiazolidine ring. Ornibactin, L-Orn1(N5-OH, N5-

acyl)-D-threo-Asp(b-OH)-L-Ser-L-Orn4 (N5-OH, N5-formyl)-1,4-diaminobutane,

is a linear tetrapeptide derivative that chelates iron by providing three bidentate

metal chelation groups. These groups (two hydroxamates and an ahydroxy-

carboxylate) are generated by modification of the sidechains of three of the

amino acids in the peptide (the N- and C-terminal ornithines, and the D-aspartate),

with the serine residue serving only as a spacer. Cepabactin, 1-hydroxy-5-methoxy-

6-methyl-2(1H)-pyridinone, is a cyclic hydroxamate (i.e., a hydroxypyridonate)

and for that reason can also be considered as a heterocyclic catecholate. It was first

identified as a metal-binding antibiotic that is secreted into the culture medium

by P. alcaligenes strain NCIB 11492 and was termed G1549. Cepaciachelin, 1-N-

[2-N0,6-N00-di(2,3-dihydroxybenzoyl)-L-lysyl]-1,4-diaminobutane, is a catecholate

siderophore first isolated from the culture supernatant of B. ambifaria strain PHP7

(LMG 11351), a rhizosphere isolate, grown under iron-limiting conditions. It is

comprised of a single molecule of lysine derivatised with 2,3-dihydroxybenzoic

acid (DHBA) on the a and e amino groups, and with diaminobutane (putrescine) on

the carboxyl group (Table 3).

3 Antifungal Mechanisms

Antagonistic PGPR, including Bacillus and Pseudomonas, are often considered

microbial factories for the production of a vast array of biologically active CLPs

(Bacillus: surfactin, iturin, and fengycin families; Pseudomonas: viscosin, amphi-

sin, tollasin, and syringomycin group) potentially inhibitory for phytopathogen

growth. One of the main modes of action of CLPs produced by antagonistic

PGPR involves the formation of ion channels in the host plasma membrane leading

to cytolysis. Pore formation results in the alkalization of the intercellular fluid and

in the release of multiple cellular compounds. These antibiotics gave important

modifications in the membrane permeability which permitted nucleotides proteins,

polysaccharides, and lipids to escape from cells. At high concentrations (well above

the critical micelle concentration), CLPs can directly solubilize plasma membranes
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(Raaijmakers et al. 2006). The antifungal activity has been studied for many different

CLPs and for a wide variety of plant and human-pathogenic fungi and yeasts, including

R. solani, Phoma lingam, Podosphaera fusca, P. aphanidermatum, Alternaria brassi-
cae, S. sclerotiorum, G. candidum, B. cinerea, Ophiostoma ulmi, Aspergillus spp.,
Fusarium spp., Penicillium digitatum, Cryptococcus neoformans, C. albicans, and
C. glabrans. In vitro studies showed that CLPs adversely affected mycelia of R. solani
and P. ultimum, causing reduced growth and intracellular activity, hyphal swellings,

increased branching, and rosette formation (Hansen et al. 2000; Thrane et al. 1999,

2000). The site of action on yeast cells was demonstrated to be cytoplasmic

membrane. CLPs of iturin group can lyses spheroplasts of S. cerevisiae (Besson

et al. 1984a, b). Moreover, a rapid leakage of potassium ions found in the presence

of this antibiotics is directly associated to the killing effects. These results are

consistent with a disruption of the structural integrity of the cytoplasmic membrane

correlated to the loss of viability of the yeast cells.

Bacisubin secreted from B. subtilis strain B-916 is an antifungal protein and

is strongly inhibited mycelial growth in R. solani, M. grisease, S. sclerotiorum,
A. oleracea, A. brassicae, and B. cinerea, especially some species of Alternaria and
Botrytis. The IC50 values of antifungal activity of bacisubin toward A. brassicae,
A. oleracea, R. solani, and B. cinerea were as low as 0.055, 0.087, 4.01, and

2.74 mM, respectively. Bacisubin inhibited the growth of R. solani and induced

increase in mycelial apex offshoot, distortion, tumescence, and rupture (Liu et al.

2007).

Apart from peptides, polyketides are the other dominant family of secondary

metabolites having antimicrobial, immunosuppressive, antitumor, or other physio-

logically relevant bioactivities. Although polyketides are widespread secondary

metabolites from bacteria, only a few (difficidin/oxydifficidin, bacillaene, and

macrolactin) have been isolated and characterized from Bacillus. Difficidin has

been shown to inhibit protein biosynthesis (Zweerink and Edison 1987), but the

exact molecular target remains unknown. Patel et al. (1995) described that Bacil-

laene is a highly unstable inhibitor of prokaryotic protein synthesis with a partially

characterized open-chain polyenic structure with the empirical formula C35H48O7.

However, this formula was suspected to be incorrect, because the NRPS modules

indicated the presence of two nitrogen atoms. Macrolactin is the third polyketide

with macrolide-like structure; it is originally detected in an unclassified deep-sea

marine bacterium and has been previously reported from several other Bacillus
strains. The macrolactin carbon skeleton contains three separate diene structure

elements in a 24-membered lactone ring. Until now, at least 17 macrolactins have

been described and one of them, 7-O-malonyl-macrolactin A, has been recently

reported as efficient against Gram-positive bacterial pathogens. A broad-spectrum

antibiotic, 2,4-di-acetylphloroglucinol (2,4-DAPG), is a polyketide compound pro-

duced by many fluorescent pseudomonads, exhibits antifungal, antibacterial, anti-

helmenthic, and phytotoxic activities. Previous study has demonstrated that root-

associated fluorescent Pseudomonas spp. with the capacity to produce 2,4-DAPG

are the key components in biological control. It is synthesized by condensation of

three molecules of acetyl CoA with one molecule of malonyl CoA to produce the
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precursor monoacetylphloroglucinol (MAPG), which is subsequently transacety-

lated to generate DAPG. The exact mechanism of DAPG action is still unclear,

although it is known that disease suppression by this antifungal molecule is a result

of interaction of specific root-associated microorganisms and the pathogen. This

antibiotic also appears to cause ISR in plants. Plt is an aromatic polyketide antibiotic

consisting of a resorcinol ring, which is derived through polyketide biosynthesis.

This in turn is linked to a bichlorinated pyrrole moiety, whose biosynthesis remains

unknown. Plt is produced by several Pseudomonas sp., including strains that

suppress plant diseases caused by phytopathogenic fungi. Plt mainly inhibits the

oomycetous fungi, such as P. ultimum.
Phzs are N-containing heterocyclic pigments synthesized by Brevibacterium,

Burkholderia, Pseudomonas, and Streptomyces, and these compounds have been

identified as virulence factors in a number of in vivo model systems. The Phz

secreted by Pseudomonas are PCA, pyocyanin, 1-hydroxyphenazine (1-HP), and

phenazine-1-carboxamide. Almost all Phz exhibits broad spectrum activity against

bacteria and fungi. In addition to inhibiting fungal pathogenesis, Phz play an impor-

tant role in microbial competition in rhizosphere, including survival and compe-

tence. The broad-spectrum activity exhibited by Phz compounds against fungi and

other bacteria is not well understood. However, it is considered that Phz can accept

electrons, yielding a relatively stable anion radical that readily undergoes redox

cycle. It includes biosynthesis of Mn-containing superoxide dismutase (MnSOD)

which causes enhanced production of O2
� (superoxide radical). There is a distinct

possibility that the antibiotic action of pyocyanin is actually a result of toxicity of

O2
� and H2O2 produced in increased amounts in its presence.

Prn was thought to inhibit bacterial growth by complexing with phospholipids of

cell membranes. Although Prn inhibited the respiration of intact cells, the oxidative

phosphorylation of mitochondria isolated from C. utilis was not inhibited. Tripathi
and Gottlieb (1970) concluded that inhibition of electron transfer in yeast was the

site of action of Prn. Previous study clearly shows that Prn inhibits respiration of

fungal mitochondria and mammalian respiratory system (Wong and Airallb 1970).

Complete inhibition of electron transport requires its higher concentration.

Most organisms require iron as an essential element in a variety of metabolic and

informational cellular pathways. More than 100 enzymes acting in primary and

secondary metabolism possess iron-containing cofactors such as iron-sulfur clusters

or heme groups. The reversible Fe(II)/Fe(III) redox pair is best suited to catalyze a

broad spectrum of redox reactions and to mediate electron chain transfer. Further-

more, several transcriptional and posttranscriptional regulators interact with iron to

sense its intracellular level or the current status of oxidative stress to efficiently

control the expression of a broad array of genes involved mainly in iron acquisition

or reactive oxygen species protection. However, in most microbial habitats, Fe(II)

is oxidized to Fe(III) either spontaneously by reacting with molecular oxygen or

enzymatically during assimilation and circulation in host organism. In the environ-

ment, Fe(III) forms ferric oxide hydrate complexes (Fe2O3�nH2O) in the presence

of oxygen and water at neutral to basic pH. These complexes are very stable,

leading to a free Fe(III) concentration of 10�9–10�18 M. Many microorganisms
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produce siderophores that bind iron and enhance microbial growth by solubilizing

ferric iron and by accelerating iron transport.

Siderophores are themselves growth inhibitors of various phytopathogenic fungi,

such as P. parasitica, P. ultimum, F. oxysporum veri dianthi, and S. sclerotiorum.
Siderophores, whose chemical structures depend upon their producer microorganism,

may provide iron (III) to some vegetable cells. These metabolites, due to their

antagonistic capability against pathogenic microorganisms, could act as growth

factors in plants.

4 Understanding Biosynthesis of Antifungal Metabolites

at the Molecular Level

CLPs from Pseudomonas species are produced by nonribosormal peptide synthesis

(NRPSs) via a thiotemplate process. NRPSs possess a modular structure and each

module is a building block resulting in the stepwise incorporation and modification

of one amino acid unit. Their substrates are not restricted to the usual proteinogenic

amino acids but also can incorporate multiple nonproteinogenic D-amino acids,

carboxy acids, or fatty acids. For CLP-producing Pseudomonas spp., a number of

partial and complete sequences of NRPSs have been obtained over the past decade.

Two of the best-characterized biosynthetic templates are the synthetase clusters for

arthrofactin and syringomycin.

Bacteria of the Bacillus genus produce a wide variety of antibacterial and anti-

fungal antibiotics. Some of these compounds, like subtilin, subtilosin A, TasA,

and sublancin, are of ribosomal origin, but others, such as bacilysin, chlorotetain,

mycobacillin, rhizocticins, bacillaene, difficidin, and lipopeptides belonging to the

surfactin, iturin, and fengycin families, are formed by nonribosomal peptide synthe-

tases and/or polyketide synthases (PKS )(Leclére et al. 2005). The model organism

B. subtilis 168 and the plant root-colonizing B. amyloliquefaciens FZB42 produce a
wide variety of antibacterial and antifungal antibiotics, and their gene clusters

involved in antibiotics biosynthesis have been identified. In B. amyloliquefaciens
FZB42 (Chen et al. 2007), the nine gene clusters (srf, bmy, fen, nrs, dhb, bac, mln,
bae, dfn) direct the synthesis of bioactive peptides and polyketides by modularly

organized megaenzymes defined as nonribosomal peptide synthetases (NRPSs) and

PKS. Four gene clusters (bmyD, pks2, pks3, and nrs) are not found in B. subtilis
168. Except for the gene cluster encoding bacilysin synthesis, the functional

activities of the remaining gene clusters depend on Sfp, an enzyme that transfers

40-phosphopantetheine from coenzyme A to the carrier proteins of nascent peptide

or polyketide chains.

Prn and Plt are broad-spectrum antibiotics produced by several strains of Pseu-
domonas and Burkholderia species. The prn operon has been completely

sequenced; prnABCD spans 5.8 kb DNA which encodes Prn biosynthetic pathway

in which four ORFs (Hammer et al. 1997), prnA, prnB, prnC, and prnD, are
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involved. All four ORFs are located on a single transcriptional unit. The four genes

encode proteins which are identical in size. Among these, prnA gene

product catalyses the chlorination of L-trp to 7 chloro-L-trp. The prnC gene product

chlorinates it at the 3-position to form an amino pyrrolnitrin. The prnD
gene product catalyses the oxidation of aminopyrrolnitrin to a nitro group to form

pyrrolnitrin. The organization of prn genes in the operon is identical to the order in
which the reactions are catalyzed in the biosynthetic pathway. Phz nucleus

is formed by the symmetrical condensation of two molecules of chorismic acid,

and the amide nitrogen of glutamine serves as the immediate source of N in the

heterocyclic nucleus. PCA is the first phenazine formed, which gets converted

to PCA and acts as the key intermediate in the synthesis of other phenazine in

Pseudomonas and Burkholderia species. Phz compounds reported previously

are pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxamide. Seven genes,

phzABCDEFG, are involved in the synthesis of PCA (Mavrodl et al. 2001). These

are localized within a 6.8 kb fragment in P. fluorescens 2-79. The phenazine

biosynthetic loci in P. fluorescens 2-79, P. aeruginosa PAO1, and P. chlororaphis
PCL 1394 are highly conserved. Each phz locus contains a set of seven gene

core operons, regulated in a cell density-dependent manner by homologues of

LuxI and LuxR.

The pathways of biosynthesis of siderophores from members of Pseudomonas
and Burkholderia have been investigated clearly, and genes involved in these

siderophores have been identified as shown in Table 4.

5 Concluding Remarks and Further Perspectives

PGPR can promote plant growth directly or indirectly. Some PGPR can directly

cause plant growth promotion by producing and secreting plant growth regulators

such as auxins, gibberellins, and cytokinins. Other PGPR affect plant growth by

indirect mechanisms that involve suppression of bacterial, fungal, and nematode

pathogens. To date, PGPR represent a variety of bacterial species from more than

20 genera, but the mechanism is yet unclear. At present, most research focus on the

PGPR as biocontrol agent; however, in fact biological control bacteria can not only

produce inhibitory metabolites but also produce some metabolites with growth

promoting activity. Although the chemical structure and biosynthesis genes of

many antifungal compounds are known, its regulatory mechanisms and the relation-

ship between growth-promoting activity and antifungal activity do not understand.

Furthermore, particular bacteria can produce a variety of antibiotics simultaneously,

and some of them are considered as signal molecules that can regulate plant growth

or pathogenicity of pathogenic fungal (bacteria). The solution of these problems will

contribute to the extensive application of PGPR in agriculture and development of

agricultural biotechnology.
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Abstract The management of plant diseases in the sustainable agriculture has

become a challenge for plant pathologist. Increasing knowledge and growing

concern of pesticide applications on environment have aroused interest in alterna-

tive methods of plant protection. Plant growth promoting rhizobacteria (PGPR) are

the important group of microorganisms, which play a major role in the biocontrol of

plant pathogens. PGPR can profoundly improve seed germination, root develop-

ment, and water uptake by plants. These rhizobacteria stimulate plant growth

directly by producing growth hormones and improving nutrient uptake or indirectly
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by changing microbial balance in favor of beneficial microorganisms in the rhizo-

sphere and can suppress a broad spectrum of bacterial, fungal, nematode, and even

some viral diseases. Although significant control of plant pathogens has been

demonstrated by PGPR in laboratory and greenhouse studies, results in the field

trials have been inconsistent. Recent progress in our understanding of their diver-

sity, colonizing ability, and mechanisms of action, formulation, and their applica-

tion may facilitate their development as reliable biocontrol agents against plant

pathogens. Use of PGPR has become a common practice in many regions of the

world, and greater application of PGPR is possible for sustainable agriculture in

near future.

1 Introduction

Management of plant diseases has become a challenge for the plant pathologist for

sustainable agriculture. Increasing knowledge and health hazards associated with

the applications of pesticides have aroused interest in alternative methods of plant

protection. One of the best methods that may be used by plant pathologists is

Biocontrol. Out of different organisms used for biocontrol, rhizosphere microor-

ganisms may provide a front line defense against pathogen attack and are ideal for

use as biocontrol agents (Weller 1988; Siddiqui 2006). Biocontrol involves harnes-

sing of disease-suppressive microorganisms to improve plant health (Handelsman

and Stabb 1996). Disease suppression by biocontrol agents is the manifestation of

interactions among the plant, the pathogen, the biocontrol agent, the microbial

community on and around the plant, and the physical environment. Among the

wide range of beneficial microorganisms, plant growth promoting rhizobacteria

(PGPR) play a vital role in the management of plant diseases (Kloepper and Schroth

1978; Glick 1995; Siddiqui 2006). PGPR are free-living bacteria that may impart

beneficial effects on plants. PGPR inhabit the rhizosphere, the volume of soil under

the immediate influence of the plant root system, and favors the establishment of a

large amount of active microbial population. Plants release metabolically active

cells from their roots and deposit as much as 20% of the carbon allocated to roots in

the rhizosphere, suggesting a highly evolved relationship between the plant and

rhizosphere microorganisms (Handelsman and Stabb 1996), and the dynamic

nature of the rhizosphere creates interactions that lead to biocontrol of diseases

(Rovira 1965, 1969, 1991; Hawes 1991; Waisel et al. 1991).

Biocontrol of plant diseases is particularly complex because diseases mostly

occur in the dynamic environment at the interface of the plant root as well as in the

aerial parts of plants. PGPR enhance seedling emergence, colonize roots, and

stimulate overall plant growth. PGPR also improve seed germination, root devel-

opment, mineral nutrition and water uptake/utilization. They can also suppress

diseases of plants. Numerous recent reviews present comprehensively the variety

of microbial biocontrol agents (Weller 1988; Handelsman and Stabb 1996; Siddiqui

and Mahmood 1995a, 1996, 1999; Whipps 2001; Weller et al. 2002; Bakker et al.
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2003; Compant et al. 2005; Siddiqui 2006). This chapter focuses on the potentiality

of PGPR, mechanisms involved in the biocontrol of plant diseases to understand the

behavior and interaction of mycorhizospheric organisms with PGPR. This under-

standing will facilitate the application of PGPR for the biocontrol of plant diseases

under field conditions.

2 Mechanisms of Disease Suppression

There are different ways by which PGPR can affect the plant growth directly: by

fixing atmospheric nitrogen, synthesizing several plant hormones and enzymes, and

solubilizing minerals that can modulate plant hormone levels.

A particular plant growth promoting bacterium may possess one or more of these

mechanisms (Compant et al. 2005; Siddiqui 2006). The indirect promotion of plant

growth occurs when PGPR lessen or prevent the deleterious effects of one more

phytopathogenic organism by producing siderophores that limit the available iron

to the pathogen, producing antibiotics that kill the pathogen, antibiosis, and induc-

ing systemic resistance in plant (Fig. 1). PGPR also cause cell wall structural

modifications and biochemical/physiological changes leading to the synthesis of

proteins and chemicals involved in plant defense mechanisms. PGPR has been

successfully used for the biocontrol of nematode, fungal, bacterial, and viral

diseases of plants in different parts of the world (Tables 1–4). Some of the

biocontrol mechanisms that have been dealt and will be discussed as follows:

l Interactions of PGPR with pathogens
l Interactions of PGPR with plants
l Interactions of PGPR in the rhizosphere

Fig. 1 Some direct or indirect effects of plant growth promoting rhizobacteria on the plant growth
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3 Interactions of PGPR with Pathogens

During interaction process of PGPR with phytopathogens, the former produce

certain antibiotics, cell wall degrading enzymes, siderophore, etc., and release of

such metabolites decides the fate of the pathogen.

3.1 Antibiotic Production

One of the most effective mechanisms to prevent proliferation of phytopathogens is

the synthesis of antibiotics by PGPR. There are numerous reports of the production

of antifungal metabolites by bacteria in vitro that may also have activity in vivo. A

variety of metabolites such as amphisin, butyrolactones, 2,4-diacetylphloroglucinol

(DAPG), cyclic lipopeptide, HCN, kanosamine, oligomycin A, oomycin A, phena-

zine-1-carboxylic acid (PCA), pyoluterin (Plt), pyrrolnitrin (Pln), tensin, tropolone,

viscosinamide, xanthobaccin, and zwittermycin A are produced by PGPR (Defago

1993; Milner et al. 1996; Keel and Defago 1997; Whipps 1997; Kang et al. 1998;

Kim et al. 1999; Nakayama et al. 1999; Thrane et al. 1999; Nielsen et al. 2002;

Raaijmakers et al. 2002; de Souza et al. 2003; Compant et al. 2005). To demonstrate

a role for antibiotics in biocontrol, mutants lacking production of antibiotics or

antibiotics over-producing mutants have been used (Bonsall et al. 1997; Chin-A-

Woeng et al. 1998; Nowak-Thompson et al. 1999). Alternatively, the use of reporter

genes or probes to demonstrate the production of antibiotics in the rhizosphere is

becoming more common (Kraus and Loper 1995; Raaijmakers et al. 1997; Chin-A-

Woeng et al. 1998). Indeed, isolation and characterization of genes or gene clusters

responsible for antibiotic production have now been achieved (Kraus and Loper

1995; Bangera and Thomashow 1996; Hammer et al. 1997; Kang et al. 1998;

Nowak-Thompson et al. 1999). Significantly, both Phl and PCA have been isolated

from the rhizosphere of wheat following introduction of biocontrol strains of

Pseudomonas (Thomashow et al. 1990; Bonsall et al. 1997; Raaijmakers et al.

1999), confirming that such antibiotics are produced in vivo. Further, Ph1 produc-

tion in the rhizosphere of wheat was strongly related to the density of the bacterial

population present and the ability to colonize roots (Raaijmakers et al. 1999). PCA

from Pseudomonas aureofaciens has even been used as a direct field treatment for

the control of Sclerotinia homeocarpa on creeping bent grass (Powell et al. 2000).

The first antibiotics clearly implicated in biocontrol by fluorescent pseudomo-

nads were the phenazine derivatives (Handelsman and Stabb 1996). P. fluorescens
strain 2-79 and P. aureofaciens strain 30-84 contribute to disease suppression

of take-all of wheat (Weller and Cook 1983; Brisbane and Rovira 1988).

P. fluorescens strain CHA0 produces hydrogen cyanide, 2,4-diacetylphloroglucinol,

and pyoluteorin, which directly interferes with the growth of various pathogens

and contributes to the disease suppression (Voisard et al. 1989; Keel et al. 1992;
Maurhofer et al. 1994b; Duffy and Defago 1999). Furthermore, a quantitative

relationship between antibiotic production and disease suppression is suggested
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by the enhanced production of 2, 4-diacetylphloroglucinol and pyoluteorin accom-

plished by adding extra copies of a 22-kb fragment of DNA that improves suppres-

sion of Pythium on cucumber (Maurhofer et al. 1992). Antibiotic DAPG has been

shown to act as the inducing agent in CHA0-mediated induced systemic resistance

(ISR) in tomato against root-knot nematode M. javanica (Siddiqui and Shaukat

2003) and suggest that more antibiotics may be capable of eliciting ISR in plants.

The role of individual antibiotic compound in suppression of root pathogens has

been clearly established using mutation analysis and molecular genetic tools, and

purified antibiotics compounds viz. DAPG overproducing mutant of P. fluorescens
offered a better protection against the take all of wheat and bacterial wilt of tomato

(Hongyou et al. 2005).

3.2 Enzyme Production

Biocontrol of Phytophthora cinnamomi causing root rot of Banksia grandis was

obtained using a cellulase-producing isolate of Micromonospora carbonacea
(El-Tarabily et al. 1996) and Phytophthora fragariae var. rubi causing raspberry

root rot that was suppressed by the application of actinomycete isolates selected

for the production of b-1,3-, b -1,4-, and b -1,6-glucanases (Valois et al. 1996).

Chitinolytic enzymes produced by both Bacillus cereus and Pantoea (Enterobacter)
agglomerans also appear to be involved in the biocontrol of Rhizoctonia solani
(Chernin et al. 1995, 1997; Pleban et al. 1997). Tn5 mutants of E. agglomerans
deficient in chitinolytic activity were unable to protect cotton, and the expression of

the chiA gene for endochitinase in E. coli allowed the transformed strain to inhibit

R. solani on cotton seedlings. Similar techniques involving Tn5 insertion mutants

and subsequent complementation demonstrated that biocontrol of Pythium ultimum
in the rhizosphere of sugar beet by Stenotrophomonas maltophila was due to the

production of extracellular protease (Dunne et al. 1997). The incidence of plant

disease caused by the phytopathogenic fungi R. solani, Sclerotium rolfsii, and
P. ultimum was reduced by using a b-1, 3-glucanse producing strain of Pseudomonas
cepacia, which was able to degrade the fungal mycelia. Many of the bacterial

enzymes that can lyse fungal cells, including chitinases and b-1, 3-glucanse, are
encoded by a single gene.

3.3 Siderophores Production

Iron is an important micronutrient used by bacteria and it is essential for their

metabolism. In the soil, it is unavailable for direct assimilation by microorganisms

because ferric iron (FeIII), which predominates in nature, is only sparingly soluble

and too low in concentration to support microbial growth (Rachid and Ahmed

2005). To survive, soil microorganisms synthesize and secrete low-molecular-
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weight iron-binding compounds (400–1,000 daltons) known as siderophores. Side-

rophores bind FeIII with a very high affinity (Whipps 2001). The bacterium that

originally synthesized the siderophores takes up the iron siderophore complex by

using a receptor that is specific to the complex and is located in the outer cell

membrane of the bacterium. Once inside the cell, the iron is released and is then

available to support the microbial growth. PGPR can prevent the proliferation

of fungal and other pathogens by producing siderophores that bind most of the

FeIII in the area around the plant root. The resulting lack of iron prevents

pathogens from proliferating in this immediate vicinity (Loper and Henkels

1999; Siddiqui 2006). The siderophores synthesis in bacteria is generally regu-

lated by iron sensitive fur proteins, global regulators (GasS and GasA), the sigma

factors (RpoS, PvdS, and Fpv1), quorum sensitive autoinducers (N-acyl homo-

serine lactone), and many site-specific recombinase (Cornelis and Matthijis 2002;

Ravel and Cornelis 2003; Compant et al. 2005). A myriad of environmental factors

can also modulate the siderophore synthesis, pH, iron level and forms of iron ions,

presence of trace elements, and an adequate supply of C, N, and P (Duffy and

Defago 1999). Microbial siderophores vary widely in overall structure but most

contain hydroxamate and catechol groups, which are involved in chelating the

ferric ion (Neilands 1995).

Suppression of soil borne plant pathogens by siderophore producing pseudomo-

nads was observed (Bakker et al. 1987; Becker and Cook 1988; Loper 1988), and the

wild type siderophore producing strain was more effective in suppressing disease

compared with non-siderophore-producing mutants. Siderophore production is an

Table 4 Effects of PGPR on viral diseases of plants

PGPR Viruses Effects References

Tobacco mosaic

virus

B. uniflagellatus Cultures and extracts from cultures

reduced numbers of lesions from

TMV.

Mann

(1969)

Tobacco necrosis

virus

P. fluorescens CHA0 Reduction in TNV leaf necrosis in

P. fluorescens treated tobacco

plants.

Maurhofer

et al.

(1994a)

Cucumber

mosaic virus

P. fluorescens, Serratia
marcescens

Treatment of cucumber or tomato

plants with PGPR induced

systemic resistance against CMV.

Raupach

et al.

(1996)

Tomato mottle

virus

B. amyloliquefaciens,
B. subtilis,
B. pumilus

Disease severity ratings were

significantly less in all PGPR

powder based treatments.

Murphy

and

Zehnder

(2000)

Cucumber

mosaic

cucumo virus

(CCMV)

B. amyloliquefaciens,
B. subtilis,
B. pumilus

PGPR mediated ISR occurred against

CCMV following mechanical

inoculation on tomato.

Zehnder

et al.

(2000)

Pepper mild

mottle virus

(PMMoV)

Bacillus
amyloliquefaciens

Bacillus induced systemic resistance

against PMMoV in tobacco via

salicyclic acid and jasmonic acid

dependent pathways.

Ahn et al.

(2002)
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important feature for the suppression of plant pathogens and promotion of plant

growth. In another study, siderophore producing mutant P. putida was most effec-

tive than the wild type in suppression of Fusarium wilt of tomato (Vandenburgh and

Gonzalez 1984), while a siderophore-deficient mutant of P. aeruginosa lost its

biocontrol activity (Buysens et al. 1994). Fluorescent siderophores production was

observed as a mechanism of biocontrol of bacterial wilt disease in the fluorescent

pseudomonads RBL 101 and RSI 125 (Jagadeesh et al. 2001), while Akhtar and

Siddiqui (2009) reported that siderophore producing Pseudomonads strains signifi-

cantly reduced the root-rot disease in chickpea. Press et al. (2001) reported the

catechol siderophore biosynthesis gene in Serratia marcescens 90–166 associated

with induced resistance in cucumber against anthracnose, while P. fluorescens
inhibited the growth of Fusarium culmorum in vitro (Kurek and Jaroszuk-Scisel

2003).

The capacity to utilize siderophores is important for the growth of bacteria in the

rhizosphere (Jurkevitch et al. 1992) and on the plant surface (Loper and Buyer

1991). Specific siderophore producing Pseudomonas strains rapidly colonized roots
of several crops and resulted in increased yield (Schroth and Hancock 1982).

Enhanced plant growth caused by pseudomonad strains was often accompanied

by the reduction in pathogen populations on the roots. There is convincing evidence

to support a direct role of siderophore mediated iron competition in the biocontrol

activity exhibited by such isolates (Leong 1986; Loper and Buyer 1991). The

antagonism depends on the amount of iron available in the medium; siderophores

produced by a biocontrol agent and sensitivity of target pathogens (Kloepper et al.

1980; Weger et al. 1988). Production of ALS 84 and siderophores contributed to the

biocontrol of crown gall by Agrobacterium rhizogenes K84 especially under con-

ditions of iron limitation (Penyalver et al. 2001).

Iron nutrition of the plant influences the rhizosphere microbial community

structure (Yang and Crowley 2000), and the role of the pyoverdine siderophores

produced by many Pseudomonas species has been clearly demonstrated in the

control of Pythium and Fusarium species (Loper and Buyer 1991; Duijff et al.

1993). Pseudomonads also produce two other siderophores, pyochelin and its

precursor salicylic acid. Pyochelin is thought to contribute to the protection of

tomato plants from Pythium by P. aeruginosa 7NSK2 (Buysens et al. 1996).

Different environmental factors can also influence the quantity of siderophores

produced (Duffy and Defago 1999).

4 Interactions of PGPR with Plants

Inoculation with PGPR imparts resistance in various plant species against a variety

of pathogens including bacteria, viruses, and fungi. And apart from inducing certain

morphological changes in the plant itself, it also generates accumulation of phe-

nolics and increases the levels of certain enzymes.
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4.1 Induced Resistance

Use of selected PGPR strains was shown to trigger a plant-mediated resistance in

above ground plant parts (Van Peer et al. 1991; Wei et al. 1991). This type of

resistance is often referred as ISR and has been demonstrated in many plant species

including bean, carnation, cucumber, radish, tobacco, tomato, and Arabidopsis
thaliana (van Loon et al. 1998). Rhizobacteria-mediated ISR resembles phenotypi-

cally with classic pathogen induced resistance, in which noninfected parts of a

previously pathogen infected plant become more resistant to further infection. This

form of resistance is referred as systemic acquired resistance (SAR) (Ross 1961).

The difference between ISR and SAR is that ISR is induced by nonpathogenic

rhizobacteria, while SAR is induced systemically after inoculation with necrotizing

pathogens. Moreover, ISR is independent of salicyclic acid but involves jasmonic

acid and ethylene signaling, while SAR requires salicyclic acid as a signaling

molecule in plants. ISR is accompanied by the expression of sets of genes distinct

from the PR genes whereas SAR is accompanied by the induction of pathogenesis

related proteins. Both ISR and SAR are effective against a broad spectrum of plant

pathogens (Kuc 1982; van Loon et al. 1998).

The effectiveness of ISR and SAR to a range of viral, bacterial, fungal, and

oomycete pathogens was tested on Arabidopsis. Arabidopsis thaliana L. has many

features favoring its use as a model in studies of PGPR (O-Callaghan et al. 2000). In

this model system, the nonpathogenic rhizobacterial strain P. fluorescensWCS417r

was used as the inducing agent (Pieterse et al. 1996) to trigger ISR in several plant

species (Van Peer et al. 1991; Leeman et al. 1995; Duijff et al. 1998; Bigirimana

and Hofte 2002). Colonization of Arabidopsis roots by P. fluorescens WCS417r

protected the plants against different plant pathogens (Pieterse et al. 1996; Van
Wees et al. 1997; Ton et al. 2002). Protection against different pathogens was

expressed both in reduction in disease symptoms and inhibition of pathogen

growth. Since rhizobacteria were spatially separated from pathogens, the mode of

disease suppression in the plants is through ISR. The ability to develop ISR appears

to depend on the host/rhizobacterium combination (Pieterse et al. 2002) and

suggests that specific recognition between the plant and the ISR-inducing rhizo-

bacterium is required for the induction of ISR. Several bacterial components as

potential inducers of ISR are involved including outer membrane lipopolysacchar-

ides and iron regulated siderophores (Leeman et al. 1995; van Loon et al. 1998).

Changes that have been observed in plant roots exhibiting ISR include the

following: (1) strengthening of epidermal and cortical cell walls and deposition

of newly formed barriers beyond infection sites including callose, lignin, and

phenolics (Benhamou et al. 1996a, b, c, 2000; Duijff et al. 1997; Jetiyanan et al.

1997; M’Piga et al. 1997); (2) increased levels of enzymes such as chitinase,

peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase (M’Piga et al.

1997; Chen et al. 2000); (3) enhanced phytoalexin production (Van Peer et al. 1991;

Ongena et al. 1999); and (4) enhanced expression of stress-related genes (Timmusk

and Wagner 1999). However, not all of these biochemical changes are found in all
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bacterial–plant combinations (Steijl et al. 1999). Protection from diseases by

biocontrol and its consistency in the field are generally not sufficient to compete

with conventional methods of disease control. Combined use of antagonistic micro-

organisms with different mechanisms of action may improve efficacy and consis-

tency of biocontrol agents (De Boer et al. 1999). Moreover, combination of ISR and

SAR that results in an enhanced level of protection against specific bacterial

pathogens (Van Wees et al. 2000) offers great potential to integrate both forms of

induced resistance in agricultural practices. Induced resistance appears to be more

useful for the management of viral diseases of plants where other management

strategies are not generally successful (Fig. 2).

4.2 Root Colonization

Rhizosphere colonization is important not only as the first step in pathogenesis of

soil borne microorganisms but also is crucial in the application of microorganisms

for beneficial purposes (Lugtenberg et al. 2001). PGPR generally improves plant

growth by colonizing the root system and pre-empting the establishment of, or

suppressing deleterious rhizosphere microorganisms (Schroth and Hancock 1982).

PGPR must be able to compete with the indigenous microorganisms and efficiently

colonize the rhizosphere of the plants to be protected. Colonization is widely

believed to be essential for biocontrol (Weller 1983; Parke 1991), and a biocontrol

agent should grow and colonize the root surface. The ineffectiveness of PGPR in

Fig. 2 Signaling pathway in plants responsible for the disease resistance in plants
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the field has often been attributed to their inability to colonize plant roots (Benizri

et al. 2001; Bloemberg and Lugtenberg 2001). Colonization or even initial popula-

tion size of the biocontrol agent has been significantly correlated with disease

suppression (Parke 1990; Bull et al. 1991).

Cell surface characteristics influence the attachment of bacteria to roots, which

may be necessary for colonization (Vesper 1987; Anderson et al. 1988). Certain

mutants that affect accumulation of secondary metabolites also influence coloniza-

tion of roots in the field (Mazzola et al. 1992; Carroll et al. 1995). Analysis of

mutants indicates that prototrophy for amino acids and vitamin B1, rapid growth

rate, utilization of organic acids and lipopolysaccharide properties contribute to

colonization (Lugtenberg et al. 1996). A variety of bacterial traits and specific

genes contribute to colonization but only few have been identified (Benizri et al.

2001; Lugtenberg et al. 2001). These include motility, chemotaxis to seed and use

specific components of root exudates, production of pili or fimbriae, production of

specific cell surface components, ability of protein secretion, and quorum sensing

(Lugtenberg et al. 2001). Competition of introduced bacteria with indigenous

microorganisms already present in the soil and rhizosphere of the developing

plant is another important aspect for root colonization.

4.3 Genetic Variations in the Host

Plants vary in their ability to support and respond to beneficial microorganisms

(Handelsman and Stabb 1996). The ability to support certain biocontrol agents

varies among plant species and among cultivars. Some plants appear to attract and

support biocontrol agents, which are antagonistic to pathogens (Neal et al. 1973;

Azad et al. 1985). Legumes vary in their response to P. polymyxa (Chanway et al.

1988), and Bacillus isolates from wheat roots enhanced growth of wheat in a

cultivar-specific manner (Chanway et al. 1988). Plant species vary in their ability

to induce genes for pyoluteorin biosynthesis in P. fluorescencs (Kraus and Loper

1995) probably because of variation in composition of root exudates among species.

Moreover, different cultivars vary in terms of survival or disease incidence in the

presence of a pathogen and biocontrol agent (Liu et al. 1995; King and Parke 1996).

Strains ofP. fluorescens that overproduce pyoluteorin and 2,4-diacetyl-phloroglucinol
provide superior disease suppression compared with the parent strain in some

host–pathogen combinations and not others, and effect correlate with host, and not

pathogen, besides sensitivity to antibiotics (Maurhofer et al. 1995).

5 Interactions of PGPR in the Rhizosphere

Soil being a sink of microorganisms, therefore, influences the ability of introduced

PGPR strain to interact with microbial community comprising beneficial and

deleterious rhizospheric microorganisms.
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5.1 Interactions with the Microbial Community

Many biocontrol agents suppress disease effectively in the laboratory but fail to do

so in the field. These biocontrol agents may be affected by indigenous soil microbial

communities and may also influence the community into which they are introduced.

Certain fluorescent pseudomonads displace resident microflora in some cases

reducing populations of deleterious microorganisms (Yuen and Schroth 1986).

Manipulation of introduced PGPR populations may lead to enhanced suppression

of other soil borne plant pathogens. Limited induced soil suppressiveness can also

be achieved through stimulation in microbial community structure and function by

several cultural practices (Kloepper et al. 1999). This may include the application

of organic manures and plant straw (Siddiqui and Mahmood 2003; Siddiqui 2004;

Siddiqui and Akhtar 2008c), inclusion of antagonistic plants in cropping systems

and other integrated pest management approaches.

5.2 Interactions of PGPR Strains

In general, a single biocontrol agent is used for biocontrol of plant disease against a

single pathogen (Wilson and Backman 1999). On the one hand, this may sometimes

account for the inconsistent performance by the biocontrol agent, because a single

agent is not active in all soil environments or against all pathogens that attack the

host plant. On the other hand, mixtures of biocontrol agents with different plant

colonization patterns may be useful for the biocontrol of different plant pathogens

via different mechanisms of disease suppression. Moreover, mixtures of biocontrol

agents with taxonomically different organisms that require different optimum

temperature, pH, and moisture conditions may colonize roots more aggressively,

improve plant growth and efficacy of biocontrol. Naturally occurring biocontrol

results from mixtures of biocontrol agents rather than from high populations of a

single organism. The greater suppression and enhanced consistency against multi-

ple cucumber pathogens was observed using strain mixtures of PGPR (Raupach and

Kloepper 1998).

Incompatibility of the coinoculants may sometimes arise and thus inhibit each

other as well as the target pathogens (Leeman et al. 1996). Thus, an important

prerequisite for successful development of strain mixtures appears to be the

compatibility of the coinoculated microorganisms (Baker 1990; De Boer et al.

1997). A biocontrol product composed of a mixture of strains is more costly than a

product composed of single strain due to increased costs of production and

registration of such product. However, greater emphasis on the development of

mixtures of biocontrol agents is needed, because they may better adapt to the

environmental changes that occur throughout the growing season and protect

against a broader range of pathogens. Mixtures of microorganisms may increase

the genetic diversity of biocontrol systems that persist longer in the rhizosphere
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and utilize a wider array of biocontrol mechanisms (Pierson and Weller 1994).

Multiple organisms may enhance the level and consistency of biocontrol by a more

stable rhizosphere community and effectiveness over a wide range of environmen-

tal conditions. In particular, combination of fungi and bacteria may provide

protection at different times, under different conditions, and occupy different or

complementary niches.

6 A Practical Control System Using PGPR

Selection of effective strains of bacteria is of prime importance for the biocontrol of

plant pathogens. Isolation of bacteria from pathogen suppressive soils may increase

the chances of finding effective strains (Cook and Baker 1983). The suppressive soil

becomes apparent where the severity or incidence of disease is lower than the

expected when compared with that in the surrounding soil (Cook and Baker 1983).

To obtain effective strains, the isolation of bacteria should be conducted from the

same environment in which they will be used (Weller et al. 1985). The ability to

colonize roots and resistance against antibiotics are other parameters necessary to

screen the effective strains (Siddiqui et al. 2005). Screening of biocontrol agents by

a seedling bioassay chamber is required to determine the compatibility of an

antagonist with the microflora of a field soil (Randhawa and Schaad 1985). Selec-

tion of field-effective strains can also be facilitated by a greenhouse assay. The

important considerations in the development of the assays in the greenhouse are the

inoculum potential of the pathogen (Weller et al. 1985), environmental conditions,

and dose of the bacterium (Xu and Gross 1986). Many factors such as temperature,

soil moisture, and soil texture influence the survival and establishment of bacteria.

Formulation and application methods are often of paramount importance in effect-

ing biocontrol (Papavizas and Lumsden 1980).

PGPR have great potential in the biocontrol of plant pathogens but the use of

these rhizobacteria by farmers in the field is still lacking. The most obvious reasons

for the limited use are the limited numbers of PGPR formulations available and

inconsistent performance of these formulations. Mixtures of different strains are

required to overcome inconsistency in the biocontrol performance. These mixtures

of rhizobacteria may be used as seed treatment, which may be useful in reducing the

quantity of bacterial inoculum required. This will facilitate systemic spread of the

bacterial inoculum along the surface of the developing root system, and their

antagonistic activity on the root surface during the early root infection by the

pathogens. Rhizobacteria suspensions or formulations can also be mixed with

organic manures in large vessels. They can be stored at 30–35�C for 5–10 days,

mixing each day with water to keep them moist (Siddiqui and Mahmood 1999).

Within 10 days, bacteria will attain high populations and this organic manure can be

used at planting or after planting for the biocontrol of plant pathogens and better

plant growth in the field.
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7 Conclusion

Revelations about the mechanisms of PGPR action open new door to design

strategies for improving the efficacy of biocontrol agents (Wang et al. 2000;

Morrissey et al. 2004). Numerous studies have indicated that PGPR have great

potential in the biocontrol of plant pathogens but most of the studies have been

conducted in sterilized soil and in pots. There is an urgent need to conduct studies

under field conditions. Colonization of root by PGPR is also important to increase

their potential as biocontrol agents. Studies on the physical and chemical factors of

soil, which affect root colonization, are needed. Moreover, use of mixture of

effective strains of PGPR is advisable compared with use of single strain. The

application of organic amendments with effective strains of PGPR is recommended

because organic materials encourage the growth of organisms that compete with or

destroy pathogens (Siddiqui and Mahmood 1999; Siddiqui and Akhtar 2008a, c).

PGPR may also be used with fungal biocontrol agents and with arbuscular mycor-

rhizal fungi for greater beneficial effects. The absence of commercial interest in the

biocontrol of plant pathogens by PGPR is also a major obstacle to progress. It is

hoped that the future will see greater use of PGPR for the biocontrol of plant

pathogens.
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Valois D, Fayad K, Barbasubiye T, Garon M, Déry C, Brzezinski R, Beaulieu C (1996) Glucano-

lytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of

raspberry root rot. Appl Environ Microbiol 62:1630–1635

van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere

bacteria. Annu Rev Phytopathol 36:453–483

Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in

biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phyto-

pathology 81:728–733

VanWees SCM, De Swart EAM, VanPelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of

induced disease resistance by simultaneous activation of salicylate and jasmonate dependent

defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

Van Wees SCM, Pieterse CMJ, Trijssenaar A, Westende YAM, Hartog F, van Loon LC (1997)

Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-

Microbe Interac 10:716–724

Vandenburgh PA, Gonzalez CF (1984) Methods for protecting the growth of plants by employing

mutants siderophore producing strains of Pseudomonas putida. U.S. Patent No. 4479936
Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with

attachment to corn roots. Appl Environ Microbiol 53:1397–1405

Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001)

Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae
pv. oryzae in rice leaves. Phytoparasitica 29:155–166

Viswanathan R, Samiyappan R (2002) Induced systemic resistance by fluorescent pseudomonads

against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot 21:1–10

Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by

Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthrac-

nose pathogen in mango. World J Microbiol Biotechol 20:235–244

Voisard C, Keel C, Haas D, Defago G (1989) Cyanide pmduction by Pseudomonas fluorescens
helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

Waisel Y, Eshel A, Katkafl U (1991) Plant roots: the hidden half. Marcel Dekker, New York, NY

Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-

carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its

gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J

Microbiol 46:898–907

Weger LA, Arendonk JJCM, Recourt K, Hofstad GAJM, Weisbeek PJ, Lugtenberg B (1988)

Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida
strain WCS358 and by other rhizosphere microorganisms. J Bacteriol 170:4693–4698

Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colleto-
trichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology

81:1508–1512

Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and

increased plant growth by plant growth promoting rhizobacteria under field conditions. Phyto-

pathology 86:221–224

Weidenborner M, Kunz B (1993) Infuence of fermentation conditions on nematicidal activity of

Pseudomonas fluorescens. Zeitschrift fur Pfleanzenkrankheiten und pflanzenschuts 100:90–94

Weller DM (1983) Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-

all. Phytopathology 73:1548–1553

Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with

bacteria. Annu Rev Phytopathol 26:379–407

Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent

pseudomonads. Phytopathology 73:463–469

194 M.S. Akhtar and Z.A. Siddiqui



Weller DM, Cook RJ (1986) Increased growth of wheat by seed treatment with fluorescent

pseudomonads, and implications of Pythium control. Can J Plant Pathol 8:328–334

Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial

populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phyto-

pathol 40:309–348

Weller DM, Zhang BX, Cook RJ (1985) Application of a rapid screening test for selection of

bacteria suppressive to take-all of wheat. Plant Dis 68:710–713

Westcott SW, Kluepfel DA (1992) Inhibition of Criconemella xenoplax egg hatch by a strain of

Pseudomonas aureofaciens. J Nematol 24:626

Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot

Res 26:1–134

Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas
fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83:117–123

Wilson M, Backman PA (1999) Biological control of plant pathogens. In: Ruberson JR (ed)

Handbook of pest management. Marcel Dekker, New York, NY, pp 309–335

Xu GW, Gross DC (1986) Field evaluation of the interactions among fluorescent pseudomonads,

Erwinia carotovora and potato yields. Phytopathology 76:423–430

Yan Z, Reddy MS, Ryu CM, McInroy JA, Wilson MA, Kloepper JW (2002) Induced systemic

protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phyto-

pathology 92:1329–1333

Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root

location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

Yigit F, Dikilitas M (2007) Control of Fusarium wilt of tomato by combination of fluorescent

Pseudomonas, non pathogenic Fusarium and Trichoderma harzianum T-22 in green house

condition. Plant Pathol J 6:159–163

Yuen GY, Schroth MN (1986) Interactions of Pseudomonas fluorescens strain E6 with ornamental

plants and its effect on the composition of root-colonizing microflora. Phytopathology

76:176–180

Zavaleta-Mejia E (1985) The effect of soil bacteria on Meloidogyne incognita (Kofoid & White)

Chitwood infection. Dissertation abstract Int Sci Eng 46:108

Zavaleta-Mejia E, VanGundy SD (1982) Effects of rhizobacteria on Meloidogyne infection.

J Nematol 14:475–476

Zehnder GW, Yao C, Murphy JF, Sikora ER, Kloepper JW (2000) Induction of resistance to

tomato against cucumber mosaic cucumo virus by plant growth promoting rhizobacteria.

Biocontrol 45:127–137

Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root

colonization and their correlation with the suppression of rhizoctonia root-rot of soybean.

Biocontrol 45:223–243

Zuckerman BM, Dicklow MB, Acosta N (1993) A strain of Bacillus thuringiensis for the control
of plant parasitic nematodes. Biocon Sci Technol 3:41–46

Role of Plant Growth Promoting Rhizobacteria in Biocontrol of Plant Diseases 195



Potential of Bacilli for Biocontrol and Its

Exploitation in Sustainable Agriculture

Olga Susana Correa and Marcelo Abel Soria

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

2 Mechanism Involved in Microbial Biological Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

3 Sustainability of Plant Disease Control Using Bacilli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4 Causes That Restrict the Adoption of Biological Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5 Conclusions and Future Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Abstract Plant diseases are caused mainly by fungi, bacteria, viruses, and nema-

todes, and their control is necessary to feed an increasing population. Control of

plant diseases often rely on chemical pesticides, which have contributed to

improvements in crop productivity and quality over the past years. However, the

intensive use of agrochemical pesticides results in soil and groundwater pollution.

Consequently, there are worldwide efforts to develop other alternatives to chemical

pesticides for controlling plant diseases. Among them, the use of microorganisms

and their products, referred as biological control, are regarded as promissory

alternatives to reduce the use of chemical products. Different Bacillus species

excrete peptides and lipopeptides to the culture medium, such as fungicine, iturin,

bacillomicine and others, that have antifungal antibacterial and surfactant activity.

In addition, these species produce spores that are resistant to heat and desiccation,

which allows the preparation of more stable and durable formulations. A variety of

biological control products based on Bacillus species are available for agronomical

use; but in order to translate these developments into a broader and more effective

use, a greater understanding of the complex interactions among plants, microorgan-

isms, and the environment is required. This chapter describes some mechanisms of
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biocontrol exhibited by species of Bacillus, the current status of research and

application of biological control using Bacillus species, constraints to microbial

biocontrol implementation, and briefly outlines the future directions that might lead

to the development of more diverse and effective biological controls for plant

diseases.

1 Introduction

Agricultural production in the twenty-first century faces the challenge of increasing

food production without negatively affecting the environment. The effective con-

trol of diseases is an essential component in every crop production system. To this

end, resistant plant cultivars, cultural practices, and chemical applications are

routinely used to provide disease control. Among these, the use of resistant cultivars

and the careful management of cultural practices have the least aggressive effect on

the environment. However, not every disease has a corresponding resistant or

tolerant plant cultivar and through natural selection, the pathogens frequently

overcome the resistance present in current cultivars in a few years (Cook 1993;

Howarth 1991; Rusell 1995). Besides, cultural practices are not always economi-

cally or technologically feasible. Since World War II, numerous synthetic pesti-

cides have been developed and successfully used for the control of crop pests and

diseases. On the other hand, chemical pesticides also lose their effectiveness

because of the development of genetic resistance in pathogen populations or they

are banned or its use restricted by new regulations. In addition, available chemical

pesticides are often expensive and also have adverse effects on human beings and

the environment (Gupta 2004; Bortoli et al. 2009). So, in order to keep the pace of

increase food demands, we need to search new solutions to control plant disease

problems by alternative methods that result in effective control with minimum

impact on humans, animals, and the environment.

Despite the synthetic pesticides dominating the phytosanitary market world-

wide, their irrational selection and misuse have determined a decline in their use

since 2000, thus increasing the need for new strategies of phytopathogen control.

Therefore, biological control appears to constitute an appropriate alternative for

controlling diseases in an environmentally friendly manner. Biological control can

be defined as the use of one organism to reduce the population density of another

organism and thus can include the control of animals, weeds, and diseases (Bale

et al. 2008). The use of beneficial microorganisms for controlling plant diseases

represents an environmentally friendly alternative to chemical pesticides, and can

be used where conventional pesticides should be avoided because of residue

concerns or in organic farming. Moreover, biological control can be applied

together with chemicals in order to reduce the doses of chemicals and pathogen

resistance, and as part of an integrated pest management (IPM) schema. The final

goal is to minimize the use of synthetic pesticides.
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Another undesirable effect of an excessive use of agrochemicals for manage-

ment of plant diseases is their detrimental impact on the microbial biodiversity of

the agroecosystems. Many of the chemical pesticides kill not only the target species

of pathogen but also other non-harmful or beneficial organisms (Hanazato 2001).

Two examples of beneficial microorganisms affected by chemical product meant to

control pathogens are the nitrogen-fixing symbiotic bacteria and the fungi that form

mycorrhizal associations with plants. In addition, during the past few years, there is

a growing and widespread concern about the use of non-sustainable technologies

for food production (Allen et al. 2008; Saifi and Drake 2008).

The use of bacteria as biocontrol agents has been extensively studied (Expert and

Digat 1995; Asaka and Shoda 1996; Podile and Prakash 1996; Kim et al. 1997;

Mao et al. 1997; Singh et al. 1998; de Vrije et al. 2001). Most of the bacterial

biopesticides belong to the genera Agrobacterium, Bacillus, and Pseudomonas
(Adesemoye et al. 2008). Currently, the contribution of biocontrol to plant health

management is small but it is expected that it will increase in the next years (Ongera

and Jacques 2008).

The process of developing biological control begins with in vitro and in vivo

screenings that continues with the study of mechanisms of control such as compe-

tition, antibiosis, and induced systemic resistance. The next stage, the production of

large amounts of efficient biomass at a low cost, requires studies of microbial

physiology and the use of biotechnological processes. Adequate formulations and

application methods have to be designed to ensure that the microbial biomass will

attain a high level of biocontrol activity (Schisler et al. 2004). The legal registration

procedures is usually the hardest part, it is a time-consuming and expensive process

that must prove the effectiveness of the product and also that it does not entail any

significant adverse effect on human health and the environment.

2 Mechanism Involved in Microbial Biological Control

The main mechanisms by which microbial biocontrol agents (MBCAs) can control

other microorganisms are direct competition for space and nutrients, antibiosis or

toxin production, predation or parasitism, and induced host resistance (Compant

et al. 2005). Most MBCAs exhibit only one of these mechanisms, whereas some can

use more than one. The molecular bases of biological control activity are diverse.

Several biochemical pathways and gene regulatory networks are involved in the

different processes that lead to pathogen control.

There are variations in the range of antibiotics between species and even within

species, at the level of strains (Nagórska et al. 2007). This variability enhances the

effectiveness of the use of Bacillus as a biocontrol tool, since the greater the

spectrum of antifungals released the more difficult it becomes to the pathogen to

adapt by natural selection. It also has another practical implication, because the life

span of a product in the market can be expected to extend for several years before

the target organism can develop genetic resistance. The same reasoning applies to
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biosurfactant production: there are differences across strains in types and relative

amounts of compounds produced, all of which can have differential activities

against a diverse set of targets. Some strains have good surfactant and poor

antibiotic biosynthetic activities and vice versa; since it has been postulated that

both types of compounds act synergistically, it makes sense to combine both types

of strains in the same product.

The genus Bacillus has several bacterial species that produce lipopeptides with
biological actives for inhibiting plant pathogens (Ongera and Jacques 2008). These

molecules have antagonistic activity against bacteria, fungi, and oomycetes. In

Fig. 1 a clear antagonisms effect in a dual Petri dish culture is showed. Bacillus
amyloliquefaciens strain BNM122 has showed high antagonistic activity both

in vitro and in vivo against several fungi that cause plant diseases (Souto et al.

2004). The antagonistic fungal activity exhibited by strain BNM122 was related to

the coproduction of iturin, which has antifungal activity and surfactin, which has

surfactant properties (Souto et al. 2004).

Most of the biological activity of these compounds is related to their effect on the

lipids of the cell membrane, where they can promote, depending on concentration,

irreversible pore formation in the double layer of phospholipids (Fig. 2).

These antifungal peptides inhibit the growth of a large number of fungi, includ-

ing Aspergillus, Penicillium, and Fusarium species (Munimbazi and Bullerman

Fig. 1 In vitro antagonism of Bacillus amyloliquefaciens strain BNM122 against Fusarium
oxysporum in dual culture on Petri dishes with potato dextrose agar medium. An inoculum of

F. oxysporum was placed in the middle of the plates. (a) Growth of F. oxysporum with no bacterial

inhibition; (b) Fungal growth inhibition by strain BNM122 streaked on one edge of the plate; (c)

Fungal growth inhibition by strain BNM122 streaked (at the top) and spotted (at the bottom) on
plate edges. Clear zones of fungal growth inhibition are observed toward the growth of BNM122
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1998), as well as some yeasts (Thimon et al. 1995). In addition to their antagonistic

activity against pathogens, Bacillus lipopeptides also have others more specific and

important functions. Several of these compounds are involved in plant tissue

colonization and in inducing plant resistance to phytopathogens (Ongera and

Jacques 2008), whereas others like surfactin and mycosubtilin are important

for bacterial surface motility and as wetting agents, reducing surface tension

(Leclère 2006).

In the past few years, Bacillus species have also been proposed as biological

control of plant parasitic nematodes belonging to the genera Meloidogyne, Hetero-
dea, and Rotylenchulus (Tian et al. 2007). Nematodes cause great crop losses and

are one of the most important agricultural pests. They are difficult to control

because they inhabit the soil and attack the underground parts of the plants. Despite

there are several chemical nematicides that are effective and easy to apply, they are

being withdrawn from the market because of concerns regarding public and envi-

ronmental safety. Hydrolytic enzymes such as proteases that degrade nematode

cuticle are the main mechanisms involved in nematode biocontrol by Bacillus
species (Lian et al. 2007). In Table 1, some of these useful substances and the

Bacillus species that produce them are consigned.

3 Sustainability of Plant Disease Control Using Bacilli

Biological control products based onBacillus species have huge potential in systems

of IPM in order to reduce environmental contamination and to obtain safe and

healthy foods. Cultural control, crop rotation, chemical pesticides, resistant host,

and biocontrol agents are all part of IMP. Probably, one of the best known examples

of integrated management is the application of fungicides and biocontrol agents for

seed treatments. In the USA, almost all cotton planted is protected with Kodiak, a B.
subtilis GB03 product, and fungicides. Biocontrol agents and fungicides in
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combination provide effective control of plant pathogens, which in many cases are

not controlled by the available fungicides alone (Brannen and Kenney 1997).

However, the potential use of lower fungicide doses when combined with a Bacil-
lus-based biocontrol product has not been well explored yet, although some studies

did report increases in disease control and reduction in chemical pesticide doses

when bacilli-based products and chemicals are combined. In this sense, Cook et al.

(2002) reported significant increases in winter wheat yield when Bacillus sp. strain
L-324-92 was used in association with difeconazole plus mefoxam.

The integration of biological controlBacillus-based products with disease-resistant
host plants should also be considered as part of IPM (Jacobsen et al. 2004). Published

studies have demonstrated that the protective effect of B. mycoides Bm J against

Cercospora leaf spot and that the control of Fusariumwilt with B. subtilisGB03 were
more effective when the more resistant plant cultivar was used (Jacobsen et al. 2002;

Hervas et al. 1998). These results highlight the importance of integrating several tools

to gain stability in disease management programs. Also, mixtures of organisms with

different modes of action may enhance the spectrum of activity, but unfortunately,

there is limited knowledge and understanding of the interactions of such mixtures

(Fravel 2005).

One of the main topics of discussion about the practical applications of biocon-

trol agents is how effective they are in real field applications. Since biological

products can be very sensitive to environmental conditions, such as temperature,

humidity, and sunlight exposure among other factors, they tend to be less stable

than their traditional chemical counterparts. Ojiambo and Scherm (2006) conducted

a statistical meta-analysis of 53 reports published between 2000 and 2005 that

accounted for 149 combinations of target organism, biocontrol agent, plant host,

and cultural treatments. These authors found that after normalization the range of

observed results was quite wide, going from cases in which the biocontrol agent

potentiated the pathogen to highly effective biocontrol. However, overall, the effect

of biocontrol agents was positive and statistically significant. At a finer level of

aggregation, they discovered that there were no differences in the effects observed

between field or greenhouse conditions; soilborne or aerial diseases or when

Table 1 Bacterial species, the lipopeptide synthesized and main mechanism of action

Bacteria Lipopeptide Action as References

B. subtilis Bacillomycin Antifungal Peypoux et al. (1981)

B. subtilis and
B. amyloliquefaciens

Fengycin Antifungal/surfactant Koumoutsi et al.

(2004)

B. subtilis and
B. amyloliquefaciens

Iturin Antifungal Delcambe (1965)

B. subtilis Mycosubtilin Antifungal/surfactant Peypoux and Michel

(1976)

B. cereus Kanosamine,

Zwittermycin A

Antifungal Emmert and

Handelsman

(1999)

B. licheniformis,
B. coagulans,
B. pumilis

Lichenysin Antifungal/surfactant Huszcza and Burczyk

(2006)
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considering the disease intensity. Interestingly, they did find a significant difference

regarding host lifestyle: biocontrol agents were more effective controlling patho-

gens attacking annual plants compared to perennials. Some examples of bacilli

reported as biological control agents of different plant diseases are shown in

Table 2. Also, Bacillus-based products seemed less effective to other biocontrol

species. However, a more detailed analysis showed that many experiments used

commercial products that included strains of Bacillus species, probably due to its

wide availability, even for conditions when they would not be recommended, such

as treatment of aerial pathogens. A further test removing entries with potential

misuse was performed, and it showed that Bacillus-based products were as effective
as other biocontrol organisms. Another interesting conclusion from this meta-

analysis study was that there were no differences between bacterial or fungal

biocontrol agents, and that they could effectively control both bacterial and fungal

targets. However, there was a significant difference between r- and K-strategists

agents. Irrespective of whether they were fungal or bacterial, r-type organisms

achieved greater controlling effects. Microorganisms with an r-strategy can divide

very fast under favorable conditions and reach a high population size, a requisite for

disease suppression.

Although Bacillus-based products are more effective controlling soil-borne

pathogens compared to aerial targets, there is an interest among researchers in

finding and overcoming the factors hindering the development of foliar formula-

tions. The discoveries in this field can mutually benefit with those related to the use

of microorganisms as biopesticides. The work of Ojiambo and Scherm (2006)

found that one or two spray applications can be enough for controlling an aerial

Table 2 Bacillus species and strains; pathogens and diseases controlled, and host plants

Antagonistic species Pathogen disease Host plant References

B. subtilis ZJY-116 Fusarium head blight Wheat and

barley

Zhang et al. (2005)

B. subtilis 6051 Pseudomonas syringae pv.
tomato

Arabidopsis Bais et al. (2004)

B. subtilis M4 Damping-off Tomato, bean Ongera et al. (2005)

B. subtilis RC8 Fusarium verticillioides Maize Cavaglieri et al.

(2004)

B. subtilis AF1 Wilt in pigeon pea Pigeon pea Manjura and Podile

(2001)

B. amyloliquefaciens
MET0908

Anthracnose Watermelon Kim and Chung

(2004)

B. amyloliquefaciens
RC-2

Mulberry anthracnose Mulberry Hiradate et al. (2002)

B. amyloliquefaciens B94 Rhizoctonia
solani–Damping-off

Soybean Yu et al. (2002)

B. amyloliquefaciens
BNM122

Rhizoctonia
solani–Damping-off

Soybean Souto et al. (2004)

B. cereus UW85 Phytophthora megasperma Alfalfa Handelsman et al.

(1990)

B. mycoides BacJ Cercospora leaf spot Sugar beet Bargabus et al. (2002)
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microbial target, a convenient rate of application from an economical and manage-

ment point of view. However, Gan-Mor and Matthews (2003) pointed out that the

configuration and handling of field equipment requires special attention in the case

of biopesticide, because the optimal settings and adequate procedures are different

from those recommended for chemical products. These observations suggest that

some failures in controlling aerial pathogens could be caused by improper handling

and not only by strictly biological factors. Clearly, the successful deployment of

biological control agents in the field needs specialized training of farm personnel.

4 Causes That Restrict the Adoption of Biological Control

Despite the advantages of biological control for a sustainable agriculture, few

products are commercially available. There are many reasons for this; one is the

difficulty to obtain a formulation with a good shelf live, others are the lack of

knowledge about their modes of action, and the differences among regulatory

policies in different countries that complicate the inscription process. Sporulating

Gram positive bacteria, like those belonging to the genus Bacillus, offer a solution
to the formulation problem. Their spores have high resistance to dryness which

constitutes and advantage for the production of certain classes of commercial

products. The spores can be formulated as dry powders and can be stored for a

long period of time without loss of concentration and effectiveness (Emmert and

Handelsman 1999).

Another limitation to the extensive use of biocontrol agents is that most of the

research reports focus only on the control of the target pathogen without further

investigations on their impact on the agroecosystem and the environment in gen-

eral. Some exceptions are the studies made with B. cereus UW85, a biocontrol

agent of Phytophthora damping-off and root rot of soybean in the USA (Osburn

et al. 1995). For this organism, researchers have studied the basis for disease

biocontrol, the interaction with the plant, with the pathogen, and also the impact

of strain UW85 on soil microbial communities (Handelsman et al. 1990; Silo-Suh

et al. 1994; He et al. 1994; Gilbert et al. 1993; Halverson et al. 1993; Milner et al.

1995). In the same research line, Souto et al. (2004) and Correa et al. (2009) have

studied the mechanisms of action of B. amyloliquefaciens strain BNM122 and their

impact on the microbial community of soybean rhizosphere. Using culture-depen-

dent and -independent methods, the authors demonstrate that this bacterium have a

lower impact on soil microbial communities and non-target microorganisms than

that exhibited when a chemical fungicide was applied (Fig. 3).

Soybean plants, whose seeds had been inoculated with B. amyloliquefaciens
strain BNM 122 or treated with fungicides did not show differences in plant growth

(mg pl�1) and nodulation (nodules per plant) but a significant reduction was

observed in the mycorrhizal symbiosis (Fig. 3). The important reduction observed

in this beneficial non-target fungal symbiosis can be attributed to the wide spectrum
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of action displayed by both treatments. However, it is worth pointing out the lesser

negative effect on root mycorrhization exhibited by the Bacillus biocontrol agent.

5 Conclusions and Future Considerations

Although scientists have been working for more than 50 years on biological control

and IPM systems, the commercial importance of the business grows slowly and

biological control products represent less than 2% of the plant protection market

worldwide (Kiewnick 2007). If our objective is to deploy environmentally sounder

alternatives to plant disease control, research in biological control should be well

supported and funded. We have antecedents of how well some bacterial biocontrol

agents have performed in the past. The success of B. thuringiensis and B. sphaer-
icus, two larvicides, that have been successfully used to replace DDT and mala-

thion. Both have proved to be extremely effective and to pose lower human health

and environmental risk and to be useful for resistance management (Grisolia

et al. 2009). All in all, it is important to bear in mind that these products do not

have the efficacy of chemical counterparts; although in many occasions biological

control is a valuable complement of chemical protection. For these reasons, the

use of biological control pesticides is expected to increase in the coming years,
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grown in pots, in greenhouse, under natural condition of light and temperature. Before sowing, all

seeds were inoculated with the nodulating nitrogen-fixation bacteria Bradyrhizobium japonicum
Treatments were non-inoculated seeds (control), inoculated with the biocontrol strain BNM122,

and seeds treated with a mixture of chemical fungicides (carbendazim and thiram). Different

letters indicate significant differences (p < 0.05) among treatments. Adapted from Correa et al.

(2009)
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especially in developing countries, together with the application of integrated

disease management schemas. Despite the great interest in the exploitation of

MBCAs, there are still barriers that impede their adoption in agriculture. Among

them, the main obstacles are the long time for product registration and the slow

adoption of new developments in a market more accustomed to chemical alter-

natives (Marrone 2007).

In the near future, the greater sustainability and lesser environmental risks

associated with MBCAs will be factors balancing their lower performance and

will become drivers in the search of better and diversified products, to enhance

competitiveness and greater market penetration (Bailey et al. 2010). This will require

government support such as tax benefits and incentives. Also of great importance is

to increase the level of biocontrol-related education, to ensure the availability of

detailed extension information and the training of distributors and farmers.

References

Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudo-
monas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

Allen VG, Brown CP, Segarra E, Green CJ, Wheeler TA, Acosta-Martinez V, Zobeck TM (2008)

In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High

Plains. Agric Eco Environ 124:3–12

Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus
subtilis RB14. Appl Environ Microbiol 62:4081–4085

Bailey KL, Boyetchko SM, L€angle T (2010) Social and economic drivers shaping the future of

biological control: a Canadian perspective on the factors affecting the development and use of

microbial biopesticides. Biol Control 52:221–229

Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabi-

dopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin

production. Plant Physiol 134:307–319

Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production.

Philos Trans R Soc B 363:761–776

Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2002) Characterization of systemic

resistance in sugar beet elicited by a non-pathogenic, phyllosphere colonizing Bacillus

mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

Bortoli GM, Azevedo MB, Silva LB (2009) Cytogenetic biomonitoring of Brazilian workers

exposed to pesticides: micronucleus analysis in buccal epithelial cells of soybean growers.

Mutat Res 675:1–4

Brannen PM, Kenney DS (1997) Kodiak-A successful biological-control product for suppression

of soil-borne plant pathogens of cotton. J Ind Microbiol Biotechnol 19:165–171

Cavaglieri L, Passone A, Etcheverry M (2004) Screening procedures for selecting rhizobacteria

with biocontrol effects upon Fusarium verticillioides growht and fumonisin B1 production.

Res Microbiol 155:747–754

Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting

bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future pro-

spects. Appl Environ Microbiol 71:49–51

Cook RJ (1993) Making greater use of introduced microorganisms for biocontrol of plant patho-

gens. Annu Rev Phytopathol 31:53–80

206 O. Susana Correa and M. Abel Soria



Cook RJ, Weller DM, El-Banna AY, Vakoch D, Zhang J (2002) Yield responses of direct-seeded

wheat to rhizobacteria and fungicide seed treatment. Plant Dis 86:780–784

Correa OS, Montecchia MS, Berti MF, Fernández Ferrari MC, Pucheu NL, Kerber NL, Garcı́a AF

(2009) Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on

soybean seeds, causes a minor impact on soil microorganisms. Appl Soil Ecol 41:185–194

de Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelet M, Durand A, Gerlagh M, Jones EE

(2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state

fermentation, application and marketing. Appl Microbiol Biotechnol 56:58–68

Delcambe L (1965) Iturine. I. Preparation, purification et poids moléculaire. Bull Soc Chim Belg
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Abstract Soil-borne diseases are responsible for major crop losses worldwide.
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pounds on the environment. In this chapter, biological control of soil-borne plant

diseases by means of plant growth promoting rhizobacteria (PGPR) is reviewed
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as biocontrol agents are mentioned. Biocontrol of soil-borne diseases of crops is

discussed and illustrated by means of specific examples of effective application of

growth promoting rhizobacteria for control of soil-borne pathogens on cereals such

as wheat and sorghum. The modes of action of PGPR with biocontrol activity is

discussed with reference to the production of antibiotics, siderophores, and cell wall

degrading enzymes as well as induction of systemic resistance, root colonization

efficacy, and rhizosphere competence.

1 Introduction

Research in the area of plant growth-promoting rhizobacteria (PGPR) has opened

up a fascinating world of remarkable diversity not only in terms of the rhizo-

bacteria but also in terms of the multifaceted beneficial plant–microbe inter-

actions and effects involved. These interactions and effects encompass both

enhancement of plant growth directly and indirectly through biological control

of plant pathogens.

From the volume of scientific publications appearing on the topic of biocontrol

by means of PGPR, it is evident that this is an active and growing field of science.

Some of the reasons for the sustained interest in PGPR and also biocontrol by

means of PGPR include the following:

(a) Huge crop losses sustained due to diseases including soilborne diseases

(b) The increase in production costs, especially fertilizer costs

(c) The global trend toward the use of more environmentally friendly production

methods

Huge amounts of money are being spent on application of synthetic pesticides to

control soilborne diseases worldwide. The application of rhizobacteria that colonize

the roots of crop plants and suppress soilborne diseases is becoming an alternative

choice to the use of chemical fungicides because of increased environmental and

health concerns as mentioned earlier (Raupach and Kloepper 1998; Walsh et al.

2001; Kobayashi et al. 2002). The use of PGPR as soil inoculants for control of

soilborne diseases, therefore, constitutes a viable biological alternative.

Rhizobacteria with biocontrol efficacy often provide long-term protection from

soilborne pathogens at the root surface because they are often rhizosphere compe-

tent, that is, they have the capacity to rapidly colonize the rhizosphere and spread

down the root from a single seed treatment or drench application into the soil

(Rangarajan et al. 2003; Whipps 2007).

The literature on PGPR is voluminous and in the last 10 years there have been

more than 26 reviews, including some chapters in books, on the topic of biocontrol

by means of rhizobacteria. However, many of these reviews did not only deal with

PGPR as biocontrol agents but also discussed micro-organisms other than PGPR

(Avis et al. 2008; Compant et al. 2005; Fravel 2005; Lucy et al. 2004; Pielach et al.
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2008; Preston 2004; Raaijmakers et al. 2008; Whipps 2001; Zahir et al. 2004). The

review by Lucy et al. (2004) gives an extensive summary of examples of free-living

PGPR tested on various crop types.

The current chapter is focused on biological control of soilborne diseases and

mechanism of biocontrol agents (PGPR) with special emphasis on soilborne dis-

eases of cereals.

1.1 Concepts and Definitions

At the outset, it is necessary to clarify some key concepts and definitions. In the

literature on PGPR and biocontrol agents (BCA), different definitions and classifi-

cations are being used. PGPR as a group of free-living bacteria occupying the

rhizophere and rhizoplane of plants finds itself in between a number of different

groupings. Some authors consider PGPR and BCAs to be separate groups while

others consider BCAs to be a subgroup of PGPR. Bashan and Holguin (1998), for

example, proposed the division of PGPR into two classifications namely “biocon-

trol-plant growth promoting bacteria” and “plant growth promoting bacteria.”

Clearly there is overlap between these groupings. For example, a PGPR can have

plant growth enhancing activity as its primary effect and as its secondary effect, it

reduces the disease by enabling the plant to outgrow and thereby “escape” the

disease. However, there are many specific examples of PGPR with direct biocontrol

activity as will be discussed later in this chapter.

In addition to PGPR and BCAs, there are also the classifications of “bioferti-

lizers,” “biopesticides,” “biofungicides,” and “soil inoculants.” Depending on the

definition one ascribes to, some PGPR can be classified as biofertilizers (purely

enhancing plant growth), biocontrol agents (suppressing or controlling plant

disease), and biopesticides (controlling plant pests). “Soil inoculants” are mostly

used as a general term for biological products (microbials), which are applied to

the soil.

We define PGPR as a group of free-living rhizosphere occupying bacteria that

enhances plant growth and can also be classified as biocontrol agents, biofertilizers,

or biopesticides, depending on their activities/abilities. We concur with the defini-

tion of Menn and Hall (1999) for biopesticides as microbials or products derived

from microbes, plants, and other biological entities, applied for control of plant

pests. Furthermore, we concur with the definition for biofertilizers proposed by

Vessey (2003) as a substance that contains living microorganisms, which, when

applied to seed, plant surfaces, or soil, colonizes the rhizosphere or the interior of

the plant and promotes growth by increasing the supply and availability of primary

nutrients to the host plant. In the current review, we define biocontrol agents more

specifically as microbials capable of suppressing or controlling plant diseases. The

relationships and overlap between some of these groupings are illustrated in the

proposed model in Fig.1.
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1.2 Advantages and Disadvantages

PGPR as biocontrol agents have certain advantages over conventional chemical

control compounds. Firstly, PGPR are beneficial, naturally occurring micro-organ-

isms, which are environmentally friendly and nontoxic. Secondly, from an ecologi-

cal perspective, their application is sustainable (long term). Another advantage of

PGPR is the fact that they possess a diverse range of modes of action including

antibiosis, production of siderophores, cell wall degrading enzymes, bio-surfactants

and volatiles, and also induces systemic resistance in plants. The fact that some PGPR

by definition directly enhances the growth of plants is an additional advantage.

There are also, however, certain disadvantages to the use of PGPR based BCAs

compared with conventional chemical control compounds. Firstly, being live

micro-organisms, they are more sensitive to environmental conditions such as

temperatures, soil conditions desiccation, etc. Shelf life of commercial PGPR or

BCAs in general is shorter than that of the chemical pesticides or fungicides.

Secondly, and probably the most important disadvantage, is the fact that up to

now, efficacy of PGPR and BCA in general has been inconsistent under field

conditions. Many scientific publications report effective biocontrol under environ-

mentally controlled conditions in vitro or in greenhouses, but much fewer data exist

regarding efficacy under field conditions. However, this does not detract from the

fact that PGPR as BCAs is constantly becoming more effective as researchers are

gaining more knowledge on the factors and mechanisms involved in biological

control of plant diseases by means of PGPR and the factors that play a role in

biocontrol of plant diseases.

Another area for application of PGPR as BCAs is that of formulation and

application of the commercial product. Formulating a live micro-organism into a

commercial product in such a way that it remains viable and that it can be applied

by growers on a large scale is evidently more difficult than formulating a chemical

pesticide.

We concur with the view of various other authors that biological products, be

they BCAs or biopesticides, should not be seen as replacements for chemical

Fig. 1 Proposed model

illustrating the relationships/

overlaps between PGPR,

BCAs, biopesticides, and

biofertilizers

214 N. Labuschagne et al.



pesticides on agricultural crops, but rather as important components of an integrated

disease control program.

2 Biocontrol of Soilborne Diseases by Means

of PGPR with Emphasis on Cereal Crops

The importance of soilborne diseases is indirectly illustrated by the fact that soil

fumigation often results in increases in production of between 7 and 100%, for

example, in wheat (Cook 1992), although other factors apart from disease control

are also involved in this phenomenon. Soilborne diseases affect all crops and

encompass the whole spectrum of plant pathogens including fungi, bacteria, and

nematodes. Several groups of soilborne fungi attack most of the economically

important crops causing infection resulting in huge yield losses (Gohel et al. 2006).

Cereals are as much affected by soilborne diseases as any other crop. Crown rot

of wheat and barley in the Pacific Northwest in the US, for example, caused by a

complex consisting of mainly Fusarium spp, can cause yield losses of up to 35% in

commercial fields (Smiley et al. 2005). The economic as well as socioeconomic

importance of cereals, such as wheat (Triticum aestivum L), rice (Oryza sativa), and
maize (Zea mays L), which the most important crops worldwide, makes control of

cereal root diseases a priority.

There are many examples of effective control of soilborne diseases by means of

PGPR (Whipps 2001; Lucy et al. 2004), and many bacterial strains have been

shown to have potential for development as biocontrol agents on cereals (Table 1).

The biocontrol potential of Bacillus spp. as important agents to combat root and

soilborne pathogens has been reported in many crops including chickpea (Landa

et al. 1997). Several Bacillus spp. isolated from the rhizosphere of chickpea had

shown antagonistic activity against fusarium wilt caused by Fusarium oxysporum.
Similarly, several strains of Bacillus spp. isolated from the rhizosphere of sorghum

in Ethiopia and wild grass spp. in South Africa have shown effective biocontrol of

the root and crown rot pathogens F. oxysporum and Pythium ultimum, respectively,
in sorghum under greenhouse conditions (Figs. 2 and 3) (Idris et al. 2007, 2008).

Effective control of crown and root rot of wheat, caused by F. oxysporum, has been
achieved with a strain of Paenibacillus alvei in South Africa (Labuschagne and

Idris, unpublished data) (Fig. 4). Apart from disease control, this strain has also

been demonstrated to induce about 40% increase in wheat shoot mass in the

absence of pathogens. On the basis of this and other data, P. alvei strain has been

included together with another PGPR strain in a commercial product, which is

being marketed as a soil inoculant in South Africa under the trade name BacUp®.

Several commercial biocontrol products are currently available on cereals and a

variety of other crops (Coping 2001; McSpadden and Fravel 2002) and new

products are constantly entering in the market. Although there are several PGPR

products available as soil inoculants on cereals, most of these are marketed as

biofertilizers and not as biocontrol agents (Ryder et al. 1999).
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However, most putative biocontrol agents fail in the field. Factors that can affect

biocontrol efficacy in the field include effects of the environment, ecological

factors, and difficulties in production, formulation, and delivery of BCAs. Sug-

gested solutions to overcome these constraints include combination of BCAs with

Fig. 2 Greenhouse experiment illustrating the efficacy of three Bacillus strains for biocontrol of
root and crown rot of sorghum caused by F. oxysporum. All plants treated with F. oxysporum alone

died (Control a, far right) whereas 100% of the plants inoculated with both the pathogen and

Bacillus isolates KBE5-7, NAE5-7, and KBE9-1 survived, showing no symptoms of infection.

(Adopted from Idris et al. 2007)

Fig. 3 Example of suppression of P. ultimum root rot in 4-week-old sorghum seedlings by

bacterial strains isolated from the rhizosphere of wild grasses in South Africa. (a) Plants inoculated

with P. ultimum and treated with rhizobacterial isolates. (b) Control plants that were treated only

with P. ultimum developed visible root rot and necrotic leaves. (Adopted from Idris et al. 2007)
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chemical pesticides/fungicides, modification of agronomic practices, application of

BCAmixtures, and genetic manipulation. The efficacy of biocontrol is also affected

by the screening and sourcing protocol used in the development of BCAs (Spadaro

and Gullino 2005; Fravel 2005). It has been shown that root colonization is an

important aspect, which has a determinative impact on biocontrol efficacy (Van

Bruggen et al. 2008).

The outcome (i.e., success) of a biocontrol agent treatment depends on the

following:

1. The method of inoculation/application

2. The physiological state of the BCA

3. The concentration and dosage of the BCA

4. The presence or absence of nutrients

5. The presence or absence of adjuvants such as adhering or protective agents

(Knudsen et al. 1997)

6. The media used for BCA production

7. The volume of treatment (Levenfors et al. 2008)

8. The plant type and cultivar. Both plant and cultivar specificity has been observed

for some BCAs (Khan et al. 2006)

Other indirect factors include the effect of fungi on BCA colonization as

reported for wheat roots (Mazzola and Cook 1991) and host plant–BCA interaction

(Lugtenberg et al. 2002). Consideration should also be given to the effect of the

Fig. 4 Effective control of

F. oxysporum crown and root

rot of wheat with a strain of

Paenibacillus alvei in the

greenhouse (Labuschagne N

and Idris A H, unpublished

data). Plants on the left:
inoculated with F. oxysporum
and treated with

Paenibacillus alvei. Plants in
the middle: pathogen free

(uninoculated) and untreated.

Plants on the right: inoculated
with F. oxysporum only
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BCA application on the microbial ecology and occurrence of phenomena such as

disease replacement where a particular root disease is controlled but another takes

its’ place (Kim et al. 1997).

3 Modes of Action of PGPR as Biocontrol Agents

For successful and sustainable biocontrol under field conditions, it is imperative

that the mode of action of the BCA strains being used is known. The mode of action

involved will be a determining factor in the type of disease control strategy to be

implemented.

3.1 Production of Antifungal Metabolites

PGPR including those associated with cereal crops produce various types of

antifungal metabolites capable of reducing or suppressing infection by pathogenic

fungi in several crops (Ongena et al. 1999; Bloemberg and Lugtenberg 2001;

Raaijmakers et al. 2002).

3.1.1 Antibiotics

Antibiosis is an attractive and a highly effective mode of action of rhizobacteria in

the suppression of soilborne infections in a number of crops (Handelsman and Stab

1996). Most biocontrol strains of PGPR produce one or several groups of anti-

biotics, which inhibit fungal pathogens (Haas and Defago 2005). Antibiotics pro-

duced by these biocontrol PGPR reduce or suppress soilborne infections of cereal

crops including wheat, rice, maize, chickpea, and barley (Raaijmakers et al. 2002).

Some of these antibiotics cause membrane damage to pathogens such as Pythium
spp. and inhibit zoospores formation (de Souza et al. 2003). Others such as the

phenazines inhibit electron transport in disease causing organisms and also act by

damaging lipids and other macromolecules (Haas and Defago 2005).

Genetic analysis of many biocontrol strains of Pseudomonas indicated that there
is a positive correlation between disease suppression and antibiotic production

(Vincent et al. 1991). It was demonstrated that with increasing populations of

Pseudomonas spp., which produce the antibiotic 2,4-diacetylphloroglucinol (2,4-

DAPG), there was a rapid decline in take-all disease in wheat caused by the fungus

Gaeumanomyces graminis var. tritici (Raaijmakers and Weller 1998; de Souza

et al. 2003). The production of phenazine-1-carboxylic acid (PCA), another group

of antibiotics by Pseudomonas fluorescens and Pseudomonas aureofaciens strains,
has also been described elsewhere. Bacterization of wheat seeds with P. fluorescens
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strains 2–79 producing the antibiotic PCA resulted in significant suppression of

take-all in about 60% of field trials (Weller 2007).

There is a growing list of reports of Bacillus spp. as biocontrol agents in various
crops. Kim et al. (1997), for instance, isolated and discovered a potential biocontrol

strain, Bacillus sp. L324-92, with a broad spectrum inhibitory activity against take-

all, root rot caused by Rhizoctonia. solani, Pythium irregulare, and Pythium
ultimum. In other experiment (El-Meleigi et al. 2007), treatment of spring wheat

seeds with antibiotic producing strains of Bacillus spp. has been reported as a

powerful tool to control root rot causing fungal pathogens in dry land fields.

According to this work, application of Paenibacillus polymyxa to wheat seeds

suppressed infection by root rot pathogens Fusarium graminearum and Cochliobo-
lus sativum.

The potential uses of antibiotic producing PGPR as biocontrol agents have been

reported in many other cereals including maize, sorghum, rice, and chickpea. In

maize for instance, Fusarium verticilloides, causing root rot and yield loss, has been
significantly suppressed by the application of Bacillus amyloliquifaciens as seed

treatment (Pereira et al. 2009). Von der Weid et al. (2005) recently described

Paenibacillus brasilensis PB177, a new strain isolated from the rhizosphere of

maize in Brazil that produces antimicrobial substances suggesting that it could be a

potential biocontrol agent in the rhizosphere of maize.

In another biocontrol experiments, Idris et al. (2007, 2008) demonstrated the

bio-control of F. oxysporum and Pythium ultimum on sorghum with Bacillus spp.
(mentioned under point 2 earlier in this chapter). It was demonstrated that the

bacterial strains produce antimicrobial metabolites, possibly antibiotics, which

suppressed the growth of the fungal pathogens in vitro (Fig. 5).

3.1.2 Siderophores

Biocontrol PGPRs also exert their antagonistic activity against plant pathogens by

means of secretion of siderophores. These low molecular weight compounds

KBE7-6 NAE5-8KBE9-1

a b c

Fig. 5 Dual culture assay for screening of biocontrol agents based on the production of antifungal

metabolites in agar plates. Bacillus strains KBE9-1, KBE7-6, and NAE5-8 were inoculated in

three equidistant positions at the margin of Potato Dextrose Agar (PDA) plates with F. oxysporum
agar block placed in the centre. The growth of the fungal mycelium was significantly inhibited by

strains KBE9-1 (a) and KBE7-6 (b) showing prominent inhibition zones on the plates. Strain

NAE5-8 does not produce any inhibition zones, indicating the absence of antifungal metabolites

(c). (Adopted from Hassen 2007, PhD thesis)
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(400–1, 500 Da) preferentially chelate iron (Fe+++) and transport it into the cell

across the cell membrane (Neilands 1995; Wandersman and Delepelaire 2004). The

siderophores bind most of the Fe+3 in the rhizosphere and effectively prevent the

proliferation of fungal pathogens by depriving them of available iron (Kloepper

et al. 1980; O’ Sulivan and O’ Gara 1992). Suppression of the pathogens arises

because iron deficiency causes growth inhibition, decrease in nucleic acid synthesis,

inhibition of sporulation, and causes changes in cell morphology (Mathiyazhagan

et al. 2004).

Among the biocontrol rhizobacteria, the fluorescent Pseudomonas spp. are

efficient competitors for iron (Fe+3) in the rhizosphere of various crops producing

two major types of siderophores: the fluorescent pigmented pyoverdins (pseudo-

bactins) (Lemanceau et al. 1993) and the nonfluorescent siderophore called pyo-

chelins (Leeman et al. 1996). Siderophores produced by certain strains of the

P. fluorescens-putida group are responsible for enhanced plant growth and biocon-

trol and are most often associated with fungal suppression in the rhizosphere of

several crops (Battu and Reddy 2009). According to these workers, siderophore

mediated the suppression of rice fungal pathogens R. solani and Pyricularia oryze
in an in-vitro assay on Kings-B medium. Earlier, Becker and Cook (1988)

reported the role of siderophores produced by Pseudomonas strain B324 in the

suppression of Pythium root rot of wheat. Mutants deficient in pyoverdins

production are less effective than parental strains in suppression of fungal

pathogens (Loper and Henkels 1999). It is thus believed that siderophore produc-

tion is another important mechanism by which some strains of bacteria protect

plants against root pathogens.

3.1.3 Cell Wall Degrading Enzymes

One of the major mechanisms used by biocontrol agents to control soilborne

pathogens involves the production of cell wall degrading enzymes (Chet et al.

1990; Kobayashi et al. 2002). Cell wall degrading enzymes such as b-1, 3-gluca-
nase, chitinase, cellulase, and protease secreted by biocontrol strains of PGPR exert

a direct inhibitory effect on the hyphal growth of fungal pathogens. Chitinase and

b-1,3-glucanase degrade chitin, an insoluble linear polymer of b-1,4-N-acetylglu-
coseamine, which is the major component of the fungal cell wall.

The b-1, 3-glucanase synthesized by strains of Paenibacillus and Streptomyces
spp. lyse fungal cell walls of pathogenic F. oxysporum. In a similar manner,

Bacillus cepacia synthesizes b-1,3-glucanase, which destroys the cell walls of the

soilborne pathogens R. solani, P. ultimum, and S. rolfsi (Compant et al. 2005).

Potential biocontrol agents with chitinolytic activities include B. licheniformis,
B. cereus, B. circulans, and B. thuringiensis (Sadfi et al. 2001). Among the

Gram-negative bacteria, Serratia marcescens, Enterobacter agglomerans, Pseudo-
monas aeruginosa, and P. fluorescens have been found to have chitinolytic activ-

ities (Nelson and Sorenson 1999).
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Cell wall degrading enzymes of rhizobacteria affect the structural integrity of the

walls of the target pathogen (Budi et al. 2000). Someya et al. (2000) studied the

chitinolytic and antifungal activities of a potent biocontrol strain of S. marcescens
B2 against the soilborne pathogens R. solani and F. oxysporum. The mycelia of the

fungal pathogens coinoculated with this strain showed various abnormalities such

as partial swelling in the hyphae and at the tip, hyphal curling or bursting of the

hyphal tip. Examples of protection from phytopathogenic infection as a result of the

activity of cell wall degrading enzymes include control of Sclerotium rolfsii and
F. oxysporum on beans (Felse and Panda 1999).

3.2 Induction of Systemic Resistance

Induced systemic resistance (ISR) is the state of defensive capacity developed by

the plant when stimulated by diverse agents including rhizobacteria (van Loon et al.

1998). Once resistance is induced in plants, it will result in nonspecific protection

against pathogenic fungi, bacteria, and viruses (Silva et al. 2004). The mode of

action of disease suppression by nonpathogenic rhizosphere bacteria should be

distinguished from pathogen induced systemic acquired resistance (SAR) (Bakker

et al. 2003). Colonization of the plant root system by rhizobacteria can indirectly

lead to reduced pathogen attack through induction of systemic resistance (Kloepper

and Beauchamp 1992). PGPR elicit ISR in plants by increasing the physical and

mechanical strength of the cell wall as well as changing the physiological and

biochemical reactions of the host. This results in the synthesis of defense chemicals

such as chitinase, peroxidase, and pathogenesis-related proteins (Ramamoorthy

et al. 2001; Nandakumar et al. 2001; Silva et al. 2004).

In rice, P. fluorescens strains showed inhibitory effect on the mycelial growth of

R. solani by inducing resistance in the plant (Radjacommare et al. 2004). The

bacteria induced resistance against the sheath blight fungus by activating chitinase

genes in rice (Nandakumar et al. 2001). Another biocontrol PGPR, S. marcescens
strain B2, which inhibits several soil borne pathogens including F. oxysporum
under greenhouse conditions, could not inhibit the same pathogens in a dual culture

assay indicating that this is due to the induction of systemic resistance (Someya

et al. 2002).

In beans, P. aeroginosa ISR against infection by Collehotricum lindemuthianum
(Bigirimana and Hofte 2002). Benhamou et al. (1996) investigated ISR in Pisum
sativum and found that pea roots inoculated with P. fluorescens strain 63–28

produced more chitinase at the site of penetration by F. oxysporum f. sp. pisi.
Several strains of Bacillus spp. also have the capacity to induce systemic resistance

in various crops against a wide range of pathogens. Bacillus subtilis AF1 isolated

from soils suppressive to pigeon pea (Cajanus cajan) wilt caused by Fusarium sp.

caused lysis of Aspergillus niger by stimulating the production of phenylalanine

ammonia lyase and peroxidase by the plant thereby eliciting induction of systemic

resistance (Kloepper et al. 2004).
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Similar to other modes of action, rhizobacterial-mediated ISR can be an impor-

tant additional means of environmentally friendly plant disease control (van Loon

et al. 1998).

3.3 Root Colonization and Rhizosphere Competence

Root colonization is an important prerequisite for bacteria to be considered as true

PGPRs, and it is commonly believed that a biocontrol agent should colonize the

rhizosphere and the surface of the plant it protects (Silva et al. 2003; Handelsman

and Stab 1996; Benizri et al. 2001). Therefore, any given PGPR is often ineffective

as a biocontrol agent against root disease if it does not colonize the roots efficiently

(Montealegre et al. 2003).

Pseudomonas and Bacillus spp. are the most important root colonizing PGPR in

various crops. Several members of this group have widespread distribution in the

soil, are efficient colonizers of the rhizosphere, and produce various types of

metabolites inhibitory to a wide range of pathogens in plants (Rangarajan et al.

2003). Many other root colonizing strains of PGPR have also been found to have

antifungal properties toward a number of pathogens in soil.

However, for many of the potential biocontrol strains including Pseudomonas
and Bacillus spp., biological control of soilborne diseases is often inconsistent. One
of the major factors associated with this inconsistency is insufficient root coloniza-

tion by introduced bacteria (Bloemberg and Lugtenberg 2001). Correlation of poor

biocontrol performance of a biocontrol agent with inefficient root colonization has

been confirmed by means of mutants of Pseudomonas strains, which had lost their

biocontrol activity. In this regard, it is essential to understand the bacterial traits that

contribute to root colonization.

It is now possible to detect and enumerate microorganisms in situ on plant

surfaces using molecular techniques. In the study of root colonization of bacteria

in situ, one of the approaches was the use of marker genes such as the gfp gene

encoding the green fluorescent protein (GFP). GFP transformed bacteria can be

monitored and visualized using confocal laser scanning microscopy (CLSM)

(Bloemberg and Lugtenberg 2001). Apart from visualizing root colonization, the

GFP technique can also be used to study the colonization patterns of different

biocontrol agents.

4 Latest Advances and Future Prospects of PGPR as Biocontrol

Agents in Plants

With the advancement and innovations of current biotechnological research over

the past ten years, there is now vastly improved knowledge on the beneficial effects

of both biocontrol and growth enhancing PGPR. Several strategies have so far been
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exploited to increase the efficacy of biocontrol strains to develop them for wide-

spread use in agriculture. Because of their metabolic versatility, excellent root

colonization capability, and their capacity to produce a wide range of antifungal

metabolites, intense biotechnological research is being done on the soil borne

fluorescent Pseudomonads (Walsh et al. 2001). For example, the antifungal metab-

olite 2,4-diacetylphloroglucinol (2,4 DAPG) is an important metabolite produced

by these biocontrol strains. In this regard, the development of sensitive in situ

detection methods of 2,4-DAPG helped to understand the relationship between

effective BCA pseudomonads and suppressive soils in the suppression of take-all

disease caused by Gaeumanomyces graminis var. tritici (Raaijmakers et al. 1999;

Walsh et al. 2001).

Improving the biocontrol efficacy of potential rhizobacteria by means of genetic

modifications involves, for instance, the construction of strains that produce

increased levels of antimicrobial and growth enhancing metabolites (Walsh et al.

2001). By transforming P. fluorescens CHAO with the gene coding for 1-amino-

cyclopropane-1-carboxylic acid deaminase, for instance, the plant growth promo-

tion and biocontrol capacity of this strain have been increased (Wang et al. 2000).

Novel perspectives are emerging regarding biocontrol and optimizing the applica-

tion of biocontrol strains for future use.

The identification of P. fluorescens genes associated with root colonization and

that are specifically expressed in the rhizosphere (rhi genes) by means of in-vivo

expression technology (IVET) is another important innovation (Bloemberg and

Lugtenberg 2001). Many such root colonizing genes and traits from P. fluorescens
have been identified and used to improve root colonization patterns of wild type

Pseudomonas strains (Lugtenberg and Dekkers 1999) In some biocontrol PGPR,

efficient root colonization is linked to a site-specific recombinase gene, and transfer

of this gene from a rhizosphere competent P. fluorescens strain to a noncompetent

strain improved its root colonization ability (Compant et al. 2005).

5 Conclusion

Two important principles pointed out by Baker and Cook (1974) should be borne in

mind. First, there is no one system by which biological control works, each

relationship is unique. Second, analysis of the microorganisms involved, as well

as their relationships and interactions on biochemical/molecular level, becomes a

means of perfecting the result obtained and is not a necessary precursor to attempt-

ing biological control.

In conclusion, as there are numerous examples of effective biocontrol candi-

dates, the future challenge is not to prove that biocontrol is possible, but to improve

efficacy and durability of biocontrol in the field. This will only be achieved through

a better understanding of the biocontrol mechanisms, plant–microbe interactions

and processes as well as microbial ecology in the soil and rhizosphere. The

necessary molecular tools for studying these processes and interactions are already
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available. If this is achieved, the efficacy of biocontrol could conceivably be

improved through application of this knowledge to develop improved screening

protocols, formulation, and application procedures as well as new innovative

integrated disease management practices.
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Abstract Cajanus cajan (Pigeon pea) is an important crop of Indian subcontinent

and African countries, cultivated in the tropics and subtropics. Fusarium wilt is one

of the major yield and growth-limiting factors of pigeon pea. Along with nematodes

such as Meloidogyne incognita and Heterodera cajani, F. udum result in highly

destructive wilt disease complex, which is a major constraint for the successful

cultivation of pigeon pea. F. udum from the same or different geographical origin

have shown that the fungus is highly variable in cultural characteristics and

pathogenicity. Although development and use of resistant cultivars is effec tive,

economical, and environmentally sound strategy for disease control, still variable
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responses with cultivation conditions had been a matter of concern. For an

eco-friendly and sustainable management of fusarium wilt, biological control

with the application of PGPR offers a potential nonchemical means for disease

management. Several strains of Pseudomonas and Bacillus have been widely

reported as effective biocontrol agents for pigeon pea wilt, though combination of

several organisms have been proved more effective in field conditions.

1 Introduction

C. cajan L. Millspaugh, a multipurpose species, is extensively used as food grain

and green manure crop for soil fertility amelioration in cropping systems (Tobita

et al. 1994; Adu-Gyamfi et al. 1996). It is an important pulse crop in India and is

a major source of protein for most of the vegetarian population worldwide (Nene

et al. 1996). In India, cultivation area of pigeon pea increased from 2.2 million

hectare (1.7 metric tons) in 1950–1951 to 3.8 M ha (2.9 M tons) in 1996–1997,

while the productivity dropped from 780 to 753 kg/ha in the same period. In Asia,

between 1972 and 2003, pigeon pea recorded 57% increase in area (2.44–3.81 m

ha) and 61% increase in production (1.72–2.77 m tons). Globally, pigeon pea area

has been recorded an increase of 43% since 1970. It is currently grown on 4.3 m

ha (Anonymous 2007). In India, it had a low growth rate of 0.8% in production

between 1949–1950 and 2004 because of various biotic and abiotic stresses

(Singh et al. 2005). Kenya stands next to India in annual pigeon pea production.

Kenya dedicates 200,000 ha of cultivated land annually to pigeon pea cultivation

(Odeny et al. 2009). With more than 150,000 ha under cultivation, mostly located

in the dry regions of the Eastern part of the country, Kenya is the main producer of

pigeon pea in East-Africa and the second highest producer in the world, after

India (Johansen et al. 1993).

The wilt disease complex is a major constraint for the successful cultivation of

pigeon pea in India, and therefore there is an urgent need to workout a suitable

biocontrol of wilt disease complex of pigeon pea (Hasan 1984; Siddiqui and

Mahmood 1996, 1999). However, it suffers major economic loss, associated with

poor yield mainly due to wilt caused by fusarial infection. Fusarium wilt of pigeon

pea causes a loss of several million US$ (Reddy et al. 1990), an estimated yield loss

of US$36 million in India and $5 million in eastern Africa (Kannaiyan et al. 1984).

Previous studies (Songa et al. 1991; Khonga and Hillocks 1996) highlighted

Fusarium wilt as one of the most important and wide spread diseases in Kenya

with wilt incidence estimated at 60% (Kannaiyan et al. 1984). Fusarium udum
(Singh 1983) along with Heterodera cajani (Husain et al. 1989) were reported to

induce wilting and cause destruction to the pigeon pea crop in certain states of

northern India (Perveen et al. 1999). Since then, the two decades have witnessed

some very effective work for its control, though a definite practical measure is yet to

be adapted.

232 P. Pandey et al.



2 The Universal Pathogen: Fusarium spp.

Hundreds of species of Fusarium are known, which play multiplicity of role in the

environment. Fusarium species are important pathogens invading seeds, seedlings,

and older plants of almost all kinds of vegetables, flowers, and cereals, as well as

many fruit and forest tree. Most of the interest in this fungus arises because of its

ability to cause diseases of economically important plant hosts, but it is near

ubiquity in soils worldwide and its ecological activities indicate a much more

diverse role in nature (Alves-Santos et al. 1999).

Fusarium sp. come in contact with host surface and recognizes the host. Some-

times, macroconidia release an extra cellular material from their tip, which is involved

in adhesion (Schuerger and Mitchell 1993). Plant recognizes pathogen when physical

contact occurs between them. Some of the cell wall components act as elicitors in their

recognition by host (Ren andWest 1992).Fusarium spp. penetrate the cell wall of host

by producing several hydrolytic enzymes. Production of cutinase is supposed to be

of major importance (Lin and Kolattukudy 1980). Fusaria are known to produce

extracellular polygalacturonase and/or pectate lyase, the pectin enzymes, to breach

pectinaceous barrier (Peres-Artes and Tena 1989). These deadly pathogens are

known to cause wilting in host plant by affecting xylem tissues.

2.1 Fusarium Wilt of Pigeon Pea

Wilt disease of pigeon pea was first reported in 1906 by E.J. Butler from the state

of Bihar, India. He was unable to distinguish the pigeon pea wilt pathogen from

F. vasinfectum that attack cotton and sesamum (Butler 1906). He reported that wilt

disease of pigeon pea is responsible for 15.25% mortality of plants, and the wilting

may rise to more than 50% in epidemic year. In 1940, Padwick studied cultural

characteristics of F. udum and found that it differed from F. vasinfectum because it

produced abundant spores in sporodochia, and these spores are strongly hooked at

the apex and so he proposed the name F. udum Butler var. cajani for the wilt

pathogen of pigeon pea. On the basis of the specific shape and prominent hook at

the apex of macroconidia, Booth (1977) proposed the name F. udum Butler, which

is now widely accepted.

The F. udum grows systematically in taproot, lateral root, collar, stem branches,

leaflets, petioles, rachis, pedicel, and pod hull. It is mainly soil borne but in the

tolerant cultivars also carried in seeds. The fungus can survive for 2–3 years in soil

(Kannaiyan et al. 1984). The pioneering studies on ecology of F. udum revealed that

the fungi in root regions of healthy and diseased C. cajan differed qualitatively and
quantitatively, as F. udum was always recorded on the rhizoplane of wilted plants

and about 90% of the total fungal population of the rhizosphere of wilted plants was

F. udum (Upadhyay and Rai 1982). In an early report, Sarojini (1951) isolated

several F. udum strains from Coimbatore (India) sick soil and compared the

virulence with respect to micro nutrient requirements.
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Limited studies on variability in the wilt fungus F. udum have indicated that the

fungus exhibits physiologic specialization (Shit and Sen Gupta 1978; Reddy and

Raju 1993). F. udum shows great deal of variation in cultural and morphological

characteristics (Booth 1977; Rai and Upadhyay 1982; Kiprop 2002). The high

variation in cultural and morphological characteristics of these pathogens is sup-

posed to be because of environmental conditions, age of isolates, subculturing,

method of storage, and culturing conditions. Wide variation in virulence to different

genotypes of pigeon pea among F. udum isolates has been suggested, mainly

because of environmental conditions and inoculation techniques (Shit and Sen

Gupta 1978; Kiprop 2002).

Kiprop et al. (2002) isolated 79 single-spore isolates of F. udum, the causal agent
of wilt disease of pigeonpea, from Kenya, India, and Malawi and characterized

according to their cultural characteristics, pathogenicity, and vegetative compati-

bility group (VCG). They observed that isolates exhibited high variation in patho-

genicity on a wilt-susceptible pigeonpea variety, and in mycelial growth and

sporulation on potato dextrose agar medium. Further, the 79 isolates were categor-

ized into two virulence groups, two groups of radial mycelial growth, and four

groups of sporulation. Further, 38 F. udum isolates from pigeon pea were tested for

variability in VCG and amplified fragment length polymorphism (AFLP). All the

isolates were placed in single VCG with two subgroups, and one AFLP with more

than ten AFLP groups (Kiprop et al. 2005). The disease symptoms of fusarium

infestation of pigeon pea are given in Fig.1.

2.2 Resistant Varieties of Pigeon Pea: An Effective
Strategy for Wilt Control (?)

A lot of research has been conducted on Fusarium wilt since the 1930s, especially

in India, yet the genetics of resistance to this disease remains to be understood

Fig. 1 (a) Wilted infected plant of pigeon pea against a green, healthy plant; (b) Fusarium
infested field of pigeon pea with infected plants; (c, d) Pigeon pea plant infected with F. udum,
with brown streak of on stem
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(Saxena 2008). Some of the reports available (Shaw 1936; Joshi 1957; Jain and

Reddy 1995; Pandey et al. 1996; Singh et al. 1998) are conflicting and inconclusive

regarding the genetics of this destructive disease (Odeny et al. 2009). Pal (1934)

reported that resistance to wilt in pigeon pea was controlled by multiple factors

while Shaw (1936) observed two complementary genes. Later studies by Pathak

(1970) confirmed the presence of two complementary genes while Pawar andMayee

(1986) reported the control of this trait by a single dominant gene. Ten pigeon pea

lines were developed for use in African countries, which were resistant or tolerant to

F. udum early maturing, short in height, and high yielding (Kimani et al. 1994).

It was found that germplasm from Asia and Africa possess different genetic

mechanisms for resistance to Fusarium wilt (Odeny et al. 2009), rendering it

difficult to raise a resistant variety with consistent performance in field conditions.

Singh et al. (2004) checked the combined effect of root knot nematode, Meloido-
gyne javanica, and wilt pathogen, F. udum, in ten wilt resistant/tolerant accessions

of pigeon pea. They found that presence of M. javanica with F. udum increased

wilting from 8 to 33% in KPL 44, 15 to 60% in AWR 74/15, 25 to 50% in ICP 8859

and ICPL 89049, and 15 to 50% in ICP 12745, and hence proposed serious concerns

over these cultivars. However, in other five accessions, wilting was not increased

much in presence of nematodes. The lowest root knot index was observed in KPL

43 (1.50) and GPS 33 (1.75). Further, reaction to fusarium wilt as well as agronomic

performance of elite pigeon pea germplasm was evaluated in three different

countries during the 2001/2002 cropping season using wilt-sick plots (Gwata

et al. 2006). The genotype ICEAP 00040 consistently showed a high (<20.0%)

level of resistance to the disease in all three countries. ICEAP 00068, a short

duration but susceptible to fusarium wilt (Gwata et al. 2007) cultivar was used to

develop elite germplasm by breeding with three long-duration genotypes that were

either resistant (ICEAP 00040; ICEAP 00020) or moderately resistant (ICP 13076)

to fusarium wilt.

RAPD has been used to tag wilt resistance in pigeon pea (Kotresh et al. 2006;

Dhanasekar et al. 2010). ICP 8863 (ICRISAT 1993) and ICP 9145 (ICRISAT 1994)

are popular wilt resistant varieties. During 1978–1983, 61 pigeon pea lines and

cultivars were screened for F. udum wilt at 15 wilt-endemic locations in India, and

lines ICP 4769, 8863, 9168, 10958, 11299, and cultivars C 11 (ICP 7118) and BDN 1

(ICP 7182) were found to be resistant in all the years of testing at most of the

locations, suggesting stability and broad-based resistance (Nene et al. 1985). Iso-

zymes variability among different pigeon pea cultivars for resistance against wilt

caused by F. udum and to assess the genetic variability among the resistant and

susceptible cultivars was reported (Prasad et al. 2003).

Marley and Hillocks (2007) suggested that mechanisms of resistance to fusarium

wilt (F. udum) were mainly because of phytoalexin synthesis. Wilt-susceptible

(Malawi local) and wilt-resistant (ICP 9145) plants were stem-inoculated with a

spore suspension containing 2 � 106 conidia/ml of the pathogen. Four fungitoxic

isoflavonoid phytoalexins – hydroxygenistein, genistein, cajanin, and cajanol –

were isolated from plants, 15 days after inoculation. Cajanol was identified as the
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main antifungal compound. Still it is evident that environmental and cultivation

practices affect the wilt susceptibility. Therefore, it may be advised to use biocon-

trol agents and other PGPR (described below) to enhance yield and minimize loss

with wilt resistant varieties.

3 Plant Growth Promoting Rhizobacteria

The term “plant growth promoting rhizobacteria” (PGPR) was first defined by

Kloepper and Schroth (1978), to include soil bacteria that colonize the roots of

plants following inoculation onto seed and enhance plant growth. The definition

was revised as beneficial free-living soil bacteria that enhance plant growth,

referred to as PGPR (Kloepper et al. 1989) or yield increasing bacteria (YIB)

(Tang 1994). The bacteria useful to plants were proposed to be characterized into

two general types: bacteria forming a symbiotic relationship with the plant, and

another the free-living ones found in the soil but are often found near, on, or even

within the plant tissues (Kloepper et al. 1988; Frommel et al. 1991). The premier

examples of plant growth enhancing agents occur in many genera including

Actinoplanes, Agrobacterium, Alcaligens, Amorphosporangium, Arthrobacter,
Azotobacter, Bacillus, Burkholderia, Cellulomonas, Enterobacter, Erwinia, Flavo-
bacterium, Gluconacetobacter, Micromonospora, Pseudomonas, Rhizobia, Serra-
tia, Streptomyces, Xanthomonas as stated by large number of microbiologists

(Kloepper et al. 1989; Tang 1994; Weller and Thomashao 1994; Glick 1995;

Glick et al. 1995, 1998, 1999; Lucy et al. 2004). Recently, a new PGPR Delftia
tsuruhatensis HR4, having both nitrogen fixing and biocontrol activity, was

reported (Han et al. 2005). Further, Burelle et al. (2006) reported beneficial effect

of PGPR and their application methods on bacterial survival, rhizosphere coloniza-

tion, growth, yield, and selected indigenous rhizosphere microorganisms, without

adversely affecting the beneficial indigenous microbial population.

PGPR had also been classified according to their beneficial effects (1) bioferti-

lizers that fix nitrogen, subsequently used by the plant, thereby improving plant

growth when the amount of nitrogen in the soil is limiting as observed by number of

workers (Bartsev et al. 2004); (2) phytostimulators that can directly promote the

growth of plants, usually by the production of hormones; and (3) biocontrol agents

that are able to protect plants from infection by deleterious microorganisms

(Bloemberg and Lugtenberg 2001). PGPR provide an effective and eco-friendly

alternative to the agrochemicals, as they have been established to improve the yield

and growth of crop plants (Vyas 2003; Vessey 2003).

Microbial inoculants as a source of biofertilizers have become a hope for most

of the countries in relation with economical and environmental points of view

(Ramamoorthy et al. 1994; Burelle et al. 2002; Singhal et al. 2003; Compant

et al. 2005; Tilak et al. 2006a, b; Gahukar 2006).
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3.1 Biocontrol Agents: A Sustainable Eco-Friendly
Strategy for Pathogen Control

Interest in biocontrol has increased recently fuelled by public concerns over the use

of chemicals in the environment in general, and the need to find alternatives to use

of chemicals for disease control in particular (Whipps and Davies 2000; Whipps

and Lumsden 2001). Seed treatment with fungicides does not protect the crop for

long periods. Soil drenching with fungicides are not economical and they may

establish imbalances in the microbial community unfavorable for activities of bene-

ficial organisms (Jeyarajan et al. 1991). In addition, continuous use of the same

fungicides for the same pathogen results in the development of resistant strains of

the pathogen, besides polluting the environment (Pandey and Maheshwari 2007a).

It is now widely recognized that biological control of plant pathogens using

antagonistic fungi and bacteria is a distinct possibility for the future and can be

successfully utilized especially within the framework of integrated disease man-

agement system (Muthamilan and Jeyarajan 1996).

The use of microorganisms for biological control instead of chemicals is a boon

as it does not cause any harm to plant and free it from plant pathogens (Cook et al.

1995) and also exhibit their effect in stable form for long duration (Waage and

Greathead 1988).

Studies on biological control of fusarium wilts have a long history (Alabouvette

et al. 1998) as various disease suppressive mechanisms of biocontrol agents has been

suggested, including siderophore-mediated competition for iron (Bakker et al. 1988;

Raaijmakers et al. 1995), competition for substrate (Couteaudier and Alabouvette

1990), induction of systemic resistance (Van Peer et al. 1991; Van Loon 1997), and

production of antibiotics (Chin-A-Woeng et al. 1998). Role of rhizobia in biocontrol

of Fusarium has been suitably compiled (Deshwal et al. 2003).

There had been several mechanisms suggested for biocontrol mechanism includ-

ing siderophore. The bacterial siderophores are known to sequester the limited

supply of iron available in the rhizosphere making it unavailable to pathogenic

fungi, thereby restricting their growth (O’Sullivan and O’Gara 1992). Recently,

Bae et al. (2007) reported siderophore production from Burkholderia gladioli but
based on their findings, they discarded its role in biocontrol activity.

Certain volatiles of bacterial origin including hydrogen cyanide (HCN), which is

produced by many fluorescent pseudomonads in the exponential growth phase in

media containing FeCl3 or inorganic phosphate may also influence plant root

pathogen (Voisard et al. 1989) and suppresses the diseases (Glick 1995). In one

historical experiment, the effect of added cyanide was tested directly in the field,

where “sick” soil was treated with Ca(CN)2, which is a cheap water-soluble cyanide

that is used by the mining industry and is known as “cyanogas.” This treatment

killed fungi en masse, significantly reduced “grey speck” disease of oats, and

induced oat grain yield with no side effects on the fauna (Timonin 1947). Chanway

et al. (1988) suggested that HCN produced by rhizobacteria form stable complexes

with several divalent metal ions, and also cytochrome oxidase of many organisms is
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strongly inhibited by cyanide. Pandey et al. (2006) isolated a Bacillus sp., which
produced HCN in vitro and reduced the radial growth of F. udum. Similarly,

Siddiqui et al. (2008) isolated a Pseudomonas strain Pa324, a strong antagonist of

F. udum, which had ability to produce HCN and siderophore in excessive amount.

Rhizobia are major biocontrol agents in natural and agricultural ecosystems.

Tu (1979) suggested that rhizobia achieve this bioprotection by parasitizing the

hyphal tips of the fungal pathogens and decreasing contact with the host plant

cells. Different rhizobial strains were reported to successfully protect field-

grown leguminous (soybean, mungbean) and nonleguminous (sunflower, okra)

plants from infection by the root-borne pathogens including Fusarium species,

irrespective to the mode of application including – seed dressing or soil drench

(Ehteshamul-Haque and Ghaffar 1993). There had been substantial reports where

rhizobia had been used for control of fusarium infections. Antoun et al. (1978) found

49 strains of Sinorhizobium meliloti that inhibited growth of F. oxysporum by up to

50%. Chakrabarty and Chakrabarty (1988) reported that presence of R. meliloti
increased the production of phytoalexin 4-hydroxy-2, 3, 9-trimethoxypterocarpan,

which inhibited F. solani f. sp. pisi affecting pea. Nautiyal (1997) screened the

biological control activity of 256 rhizobial strains and noticed that Rhizobium
NBRI9513 completely inhibited growth of F. oxysporum, R. bactaticola, and

Pythium sp. in vitro condition. However, reports on rhizobial control of F. udum
are still limited (Pandey and Maheshwari 2007a; Siddiqui and Shakeel 2009).

3.2 Biological Control of Fusarium Wilt

Biological control of fusarial wilt has attracted attention throughout the world.

Currently, the idea of controlling soil-borne plant pathogens, including Fusaria,
with chemical pesticides or fungicides is being challenged by the approach that

biological control can have an important role in sustainable agriculture.

3.2.1 Use of Bacillus or Pseudomonas

Production of chitinases is an important attribute of biocontrol bacteria. Most of the

fungi contain chitin (a homopolymer of b-1, 4 linked N-acetylglucosamine) in the

cell wall, which ranges from 22 to 40% (Muzzarelli 1977). Therefore, formulations

based on chitinases producing organisms offer potential biocontrol agents (Boller

1985). In a very early report, Mitchell and Alexander (1961) demonstrated

biological control of Fusarium sp. and Pythium sp. by bacteria that degrades the

cell wall of these plant pathogens. Biological control of Fusarium wilt of pigeon

pea had been reported with chitinolytic activity of Alcaligenes xylosoxydans
(Vaidya et al. 2001, 2003a). Further, they employed random mutagenesis through

physical (UV, gamma radiation) and chemical agents (ethyl methane sulphonate
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[EMS]) to obtain improved mutants for chitinase producing biocontrol strain of

A. xylosoxydans (Vaidya et al. 2003b).
Bacillus is one of the most commonly found soil bacteria, which has been

reported as excellent biocontrol agent by a number of workers (Dal-Soo et al.
1997; Bacon et al. 2001; Basha and Ulaganathan 2002; Chaurasia et al. 2005).

Bacillus species as a group has been suggested to offer several advantages over

other bacteria on protection against root pathogens because of their ability to form

endospores and the broad spectrum activity of their antibiotics (Cavaglieri et al.

2005). Bacillus brevis inhibited the growth of pigeon pea pathogen – F. oxysporum
f. sp. udum because of production of unknown antibiotic substance (Bapat and Shah

2000). Similarly, in vitro interaction of F. udum and a biocontrol strain of Bacillus
subtilis AF 1 showed that the fungus forms chlamydospore-like structures and

increases vacuolation, when both cultures are simultaneously inoculated into potato

dextrose broth. Though, in their experiments, extracellular proteins of B. subtilis
AF 1 reduced the growth of F. udum in proportion to the concentration of the

protein precipitate, still formation of chlamydospore-like structures and vacuolated

portions in mycelium of F. udum in the presence of AF 1 led the authors to conclude

that F. udum has a mechanism to tolerate mycolytic activity (Harish et al. 1998).

Recently, Siddiqui and Shakeel (2007) reported that two Bacillus strains (B615 and
B603) had biocontrol potential against F. udum, in addition to inhibitory effect on

the hatching and penetration of H. cajani and Meloidogyne incognita along with

colonization of pigeon pea roots. In fact, the latter two nematodes cause serious

damage in wilt disease complex of pigeon pea. Although restricted to pot trials, this

work provides substantial evidence for PGPR to be used as broad spectrum control

strategy of wilt disease in pigeon pea.

Anjaiah et al. (2003) found that Pseudomonas aeruginosa PNA1, an isolate from
chickpea rhizosphere in India, protected pigeonpea from fusarium wilt disease.

They also measured root colonization of pigeon pea using a lacZ-marked strain of

PNA1, and observed tenfold lower root colonization of susceptible genotypes than

that of moderately tolerant genotypes, indicating that this plant–bacteria interaction

could be important for disease suppression in this plant. Further, strain PNA1

produced two phenazine antibiotics, phenazine-1-carboxylic acid and oxychloror-

aphin, in vitro, and its Tn5 mutants (FM29 and FM13), which were deficient in

phenazine production, caused a reduction or loss of wilt disease suppression

in vivo, which suggest that phenazine production by PNA1 contributes to the

biocontrol of fusarium wilt diseases in pigeon pea. The root nodulating

bacterial isolate Burkholderia sp. MSSP (Pandey et al. 2007a) produces antibiotic

2-hydroxymethyl-chroman-4-one, because of which it shows antifungal properties

against F. udum and many other phytopathogens (Kang et al. 2004).

In a similar kind of work, several pseudomonads were checked for biocontrol

potential and strain Pf736 was found to cause greater increase in plant growth and

higher reduction in nematode multiplication and wilting index followed by other

Pa737, Pf718, and Pf719 pseudomonad strains (Siddiqui and Shakeel 2009). The

use of these isolates along with Rhizobium (pigeon pea strain) further increased

plant growth and reduced nematode multiplication and wilting index.
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3.2.2 Use of Combination of Microorganisms

Combination of several organisms has been checked by many workers. Bacillus
subtilis, Bradyrhizobium japonicum, and Glomus fasciculatum were used alone and

in combination for the management of a wilt disease complex of pigeon pea caused

by H. cajani and F. udum (Siddiqui and Mahmood 1995). Application of all the

three management agents alone or in combination to plants inoculated with the

pathogens increased shoot dry weight, number of nodules, phosphorus content, and

reduced nematode multiplication and wilting index. Interestingly, in their experi-

ments, another phenomenon in pigeon pea rhizosphere biology was identified as

combined application of G. fasciculatum and B. japonicum increased root infection

by G. fasciculatum whereas combined use with B. subtilis reduced mycorrhizal

colonization.

In a related study, Siddiqui et al. (2008) experimented with six potential isolates

of Bacillus and Pseudomonas under pot and field conditions for the biocontrol of

wilt disease complex of pigeon pea. Under field condition, isolate Pa324 was best in

reducing wilt disease complex followed by B18. Combined use of Pa324 with B18

provided better biocontrol of wilt disease complex than the use of either of them.

Application of these isolates (Pa324 and B18) with Rhizobium sp. caused about

30% increase in yield under field condition and provided substantial protection

against wilt disease complex of pigeon pea.

Jayalakshmi et al. (2003) also observed that the seed treatment with Tricho-
derma viride followed by T. harzianum was found to be effective in reducing the

wilt disease incidence in pigeon pea by controlling F. udum effectively, when

compared with individual treatments. Singh et al. (2002) checked Aspergillus
flavus, Aspergillus niger, Bacillus licheniformis (strain-2042), Gliocladium virens,
Penicillium citrinum, and Trichoderma harzianum for biological control of

F. udum. They claimed that these were the most potent organisms in inhibiting

the radial colony growth of the test pathogen. They observed maximum reduction

of the wilt disease was with application of G. virens (50%) both in pots and in the

fields, followed by A. niger (38%), P. citrinum (33%), and T. harzianum (28%),

although the mechanism of biocontrol was not described.

Prasad et al. (2002) studied the efficacy of T. harzianum on various levels of

F. udum. They applied T. harzianum as seed treatment (10 and 20 g/kg seed) and as

a soil amendment (10 and 20 g/9 m2) in field plots infested with the pathogen at

three inocula levels (log 3.04, log 4.98, and log 5.34 colony-forming units (cfu)/g of

soil). They observed that Trichoderma population increased to more than 108 cfu/g

soil by 60 days in treated plots, whereas for seed treatments, fungal population

reached a maximum of 104.62 cfu/g soil within 45 days, and thereafter started to

decline. However, even at the highest pathogen density (log 5.34), soil amendment

with T. harzianum at 10 g gave about 30% disease reduction.

A novel mycolytic strain Pantoea dispersa was evaluated against F. udum, as a
biocontrol agent in comparison with chemical fungicide Bavistin and antifungal

biocontrol agent Trichoderma Monitor WP in both pot and field experiments

(Maisuria et al. 2008). In the pot experiment, P. dispersa the treated pigeon pea
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(T-15-15) seeds showed higher percentage of seed germination and decreased wilt

incidence when compared with chemical fungicide; Bavistin and antifungal bio-

control agent Trichoderma Monitor WP treatments. Moreover, the root, shoot

lengths, and growth were also found to be higher. The results of field study during

three cropping seasons (2004/2007) suggested that the seed dressing by P. dispersa
reduced wilt incidence (47%) during field trials, which was greater than Bavistin

(41%) and Trichoderma Monitor WP (36%) treatments. Similarly, T. harzianum
and A. niger were evaluated as biocontrol agents against F. udum in combination to

two fungicides, Foltaf 80W (Captafol 80%) and Blue Copper-50, for the treatment

of pigeon-pea wilt (Bhatnagar 1995). It was observed that the disease was more

effectively controlled when biocontrol agents were applied with chemical fungi-

cides, in comparison to the fungicides that were used alone.

More recently, Kumar et al. (2010) reported wilt disease management of

C. cajan (L.) var. Manak by root nodulating Sinorhizobium fredii KCC5 and

rhizospheric Pseudomonas fluorescens LPK2 amended with chemical fertilizers.

Combinations of S. frediiKCC5 and P. fuorescens LPK2 with low dose of chemical

fertilizers provided better disease management of wilt in C. cajan. The microbial

combinations involving S. fredii KCC5 and P. fuorescens LPK2 reduced wilt

disease, proved the most effective in reducing disease incidence due to F. udum.

3.2.3 Use of Bioformulations

Pandey and Maheshwari (2007a) formulated an effective bioformulation utilizing

Burkholderia sp. MSSP, a known PGPR using green fluorescent protein (gfp) to
monitor its population in carriers, including sugarcane – bagasse, sawdust, cocoa

peat, rice husk, wheat bran, charcoal, rock phosphate; and paneer – whey. They

concluded that whey and wheat bran proved to be efficient carrier materials for the

bioformulation. Interestingly, viability of MSSP was also assessed in wheat bran

and whey-based consortium, having three other bacterial strains, namely Sinorhi-
zobium meliloti PP3, Rhizobium leguminosarum Pcc, and Bacillus sp. B1. Presence
of other plant growth promoting bacteria did not have any detrimental effect on

viability of MSSP. In fact, MSSP and PP3 strains were known to enhance seedling

growth in mixed-species, coinoculated consortium (Pandey and Maheshwari

2007b), while Bacillus sp. B1 had biocontrol activity against F. udum (Pandey

et al. 2006). Efficiency of wheat bran based multispecies consortium was studied on

growth of pigeonpea in field conditions. Considerable increase in plant biomass,

nodule number and weight, and number of pods was recorded when compared with

individual trials, as well as control.

Similarly, seed treatment of groundnut and pigeonpea with peat based formula-

tion of B. subtilis supplemented with 0.5% chitin or with 0.5% of sterilized

Aspergillus mycelium controlled wilt of pigeon pea. It also increased growth

promotion even in the presence of inoculum pressure (Manjula and Podile 2001).

For formulation details, Nakkeeran et al. (2005) may be referred.
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Treatment of pigeon pea seeds with talc based formulation of P. fluorescens
(Pf1) effectively controlled fusarial wilt of pigeon pea under greenhouse and field

conditions (Vidhyasekaran et al. 1997). More specifically, Seed treatment of pigeon

pea with talc-based formulation of fluorescent pseudomonads at the rate of 4 g/kg of

seed followed by soil application at the rate of 2.5 kg/ha at 0, 30, and 60 days after

sowing controlled pigeonpea wilt incidence under field conditions.

Biocontrol agents T. harzianum and P. fluorescens, isolated from rhizosphere

soil samples collected from various pigeon pea-growing fields, were immobilized in

wheat bran, rice bran, paddy straw, and neem cake (Niranjana et al. 2009). It was

found that boiled rice bran increased the growth of both biocontrol agents. Talc and

sodium alginate formulations of mass-multiplied biocontrol agents were prepared

and evaluated for their effects against fusarium wilt under greenhouse conditions.

The fresh cultures of both biocontrol agents were found to increase seedling

emergence and reduce fusarium wilt disease incidence when compared with the

control and the formulations.

3.2.4 Others

A Bacillus cereus strain BS 03 and a P. aeruginosa strain RRLJ 04 were studied for
their effect on induction of systemic resistance against F. udum wilt in pigeon pea,

both individually and in combination with a rhizobial strain RH 2 (Dutta et al.

2008). They observed increased level of defense-related enzymes, viz., l-phenylal-

anine ammonia lyase (PAL), peroxidase (POX), and polyphenol oxidase (PPO), in

coinoculated plants. Production of b-1, 3-glucanase and polymethyl galacturonase

by the pathogen in culture medium was also sharply reduced in the presence of both

the PGPR strains.

On the basis of results of an interesting set of experiments, Prasad et al. (2002)

reported that “preinoculation” or “simultaneous inoculation” of pigeon pea seed-

lings with soilborne fungi nonpathogenic to pigeon pea, viz., Fusarium oxysporum
f. sp.niveum; F. oxysporum f. sp.ciceris; F. solani f. sp. pisi; and Cephalosporium
sacchari, before challenge inoculation with the pathogen F. udum, was effective in
controlling wilt of pigeon pea to a great extent. Inoculation with the nonpathogens

before the challenge inoculation was more effective than simultaneous inoculation

and gave up to 81.6% protection.

In an unrelated work, fungitoxic effects of different plant extracts onF. udumwas

examined (Singh and Rai 2000). At 10% concentration of leaf extract from Adeno-
callyma alliaceum, the radial growth of F. udum was completely arrested. A leaf

extract of Citrus medica, a root extract of Asparagus adscendens, rhizome extracts

of Curcuma longa and Zingiber officinale, and a bulb extract of Allium sativum
inhibited up to 100% growth at higher concentrations. The population of F. udum
was found to be markedly reduced following treatments with plant powders. On the

basis of these results, it may be proposed to evaluate that these plant materials as

carrier for the formulation of PGPR amended bioinoculant for pigeon pea.
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4 Conclusion

Pertaining to the economic importance of crop and extent of loss, the Fusarium wilt

of pigeon pea has received considerable attention from scientists working in diverse

field. Raising elite disease-resistant varieties or study of variability in virulence of

F. udum, every attempt is toward understanding the disease complex for its

management. Biological control had been proved very effective in lab as well as

field conditions. Along with Bacillus, Pseudomonas, or Trichoderma, several other
biocontrol agents (either monoculture or in combination) had been reported to be

very effective by workers. Definite measure is required to popularize these tech-

nologies to completely replace the traditional use of fungicides.
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Abstract The importance of the interactions between plants and bacteria is well

known for plant development and success of agriculture. A number of succeeded

examples are reported in the literature for the improvement of plant yields and

protection against pathogens and pests. However, some specific niches where these

interactions are essential are still unexplored, like the environments where

the agriculture is not practiced due to the harsh conditions found; mangroves and
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the Brazilian semiarid caatinga. Digging into the bacterial diversity associates to

plant growth promotion in such spots can help on the description of new species and

features related to the plant growth-promoting rhizobacteria character under harsh

tropical conditions. This chapter gives an overview of examples of such niches,

where the bacterial community must be adapted to survive and support the plant

development. Possible bacterial characteristics related to this ability will be dis-

cussed, as the production of biofilms and exopolysaccharides. Furthermore, the

application of these biotechnological products will be evaluated and discussed

allowing the reader to have a snapshot on this yet nonexplored biodiversity.

1 Introduction

Plant growth-promoting rhizobacteria, known as PGPR, are those with the ability

in stimulating the plant development, acting in the nutritional and water supplemen-

tation, hormonal production, and plant protection against pathogens and pests.

A number of studies have focused on the role of PGPR in a variety of crops

cultivated all over the world. Although the plant species and cultivation techniques

are variable in these studies, and regardless its importance, new approaches and new

plant niches should be explored to enhance our knowledge about such interaction

between plants and bacteria. Hence, to access the diversity of bacteria which are able

to promote the plant growth in new environments can contribute in many fields; (1)

the discovery of new microbial species and genotypes, which are capable of surviv-

ing in stressful environmental conditions; (2) the development of new technologies

for the improvement of agricultural practices in soils where the availability of water

and nutrients are low, the salinity is high and extreme temperatures are usual.

In this chapter, we explore some important features found in bacteria inhabiting

harsh tropical conditions, where the practice of agriculture is not usual. The

explored environments are the mangroves, where the salinity and the exposition

to the sea effects are intense and the endogenous Brazilian caatinga, where the high

temperatures and low water availability compose a harsh soil where plants have to

develop. The bioprospection of PGPR in these niches might contribute in a better

description of interactions going on under these conditions. It can also name new

microbial species as the first coming candidates for the usage in program of plant

protection by bacterial inoculation, leading to the safety and viable agricultural

practices in lands now considered out of order for this activity.

2 Soil Structure and Microbial Community

Soils can be defined as the mineral layer used by plants to play their roles in the

ecosystems (Paul and Clark 1996), subdivided into layers called horizons (Brock

et al. 1994). However, if we consider the symbiotic relations, the soil can be defined
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as the superficial portion of the Earth which present the essential conditions for

animal, plant, and microbial life. Although very heterogeneous and variable accord-

ing to the depth, physical–chemical properties and location in distinct geographic

regions, an average soil is formed by approximately 25% of air, 25% of water, and

50% of solids, divided in 45% minerals divided into sand, silt, and clay, and 5% of

organic matter (4.5% inert organic matter and 0.5% of live organisms) (Stotzky

1972; Siqueira et al. 1994).

The microbial fraction in the soil (5%) is constituted by a diversity determined by

the combination of the environmental conditions, which interact with the pheno-

types of the microbes, resulting in higher populations to adapted genotypes and low

populations to less adapted microbes. It also results in the way of life, as active

microbial communities, or dormant cells, which can last for a period of inactivity of

low dense populations. Concerning the niche occupied by microbes in soils, these

species can live in association to clay particles, organic matter, in spaces between

soil particles as well as in association to plants, colonizing the roots surfaces. But it is

hard to assume that the life in soil is always easy and abundant in water and nutrients.

The soil is a very stressful environment, where the competitiveness is constant or the

niche occupation and nutrients uptaking. Such a balance and the importance

of distinct features make the soil very densely inhabited and constituted by a wide

diversity of microbial species (Dommergues et al. 1978; Siqueira et al. 1994).

Moreover, soils located in specific environments present even harsher conditions

for the development of life, but do not limit its occupation by adapted species of

microbes and plants. Such soils are deficient in nutrients and organic matter, present

high acidity and salinity, extreme low or high capacity of cationic exchange, limiting

its recovering and further usage as common soils. Some examples of these soils are

those found in the caatinga and mangroves, which have extreme conditions of

humidity – that is, low in caatinga and high in mangroves and limited amount of

nutrients, due to the low content of organic matter in caatinga and the anoxic

conditions in mangroves, limiting the organic matter processing (Stotzky 1972).

Considering the name of microbes that lives in soils, a number of studies are

available; however, none of them have final conclusions about the main species

inhabiting this niche. Consistent results have named bacterial groups found in soil,

like Proteobacteria, Actinobacteria, and Acidobacteria as major soil inhabitants.

Controversially, it is well known that the number of organisms in soil is immensu-

rable, with amounts of 108 to 1010 microbial cells per gram of soil. Hence, a remark

should be made for the density and diversity of bacteria in soils, possibly related to

its essentiality to the maintenance of the functionality of this ecosystem, cycling

nutrients, and harnessing the compounds degradation.

The quantity of bacterial cells in soils is dependent on environmental variables,

like soil depth, pH, humidity, and temperature. Kuske et al. (2002) studying an arid

soil, observed that the superficial layer from 0 to 10 cm, the bacterial counting

was significantly higher than 20–30 cm. The amount of DNA extracted has also

decreased with increase in depth. The culturability also decreases with depth

increment (Sait et al. 2002).
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3 The Plant-Associated Bacteria

In addition to microorganisms inhabiting soils, there is a group of microorganisms

associated to plants that are extremely important to plant metabolism. They are

found in synergism with plant roots and are called rhizosphere microorganisms.

A wide diversity of bacteria can interact with plants, composing bacterial commu-

nities with important roles in plant development and health status (Hallmann et al.

1997). For a review of the bacterial communities associated with plants and how to

assess them, please read Andreote et al. (2009). These interactions can vary

according to the host plant in a process similar to those widely known for patho-

genic microorganisms (Liu et al. 1995). Bacterial populations are distributed in the

rhizosphere, epiphytic, and endophytic communities.

The rhizosphere (Fig. 1) was first defined by Hiltner in the beginning of

the twentieth century as the volume of soil influenced by root plants (Hiltner

1904; Melo 2002), its extent varies with soil type and plant species (Campbell

and Greaves 1990).

In rhizosphere, the quantities and types of substrate are different from those in

the bulk soil and lead to colonization by different populations of bacteria, fungi,

protozoa, and nematodes. Other physiochemical factors, which can be different

in this region, are acidity, moisture and nutrients status, electrical conductivity, and

Fig. 1 Scheme of the rhizosphere system in detail and its role on the supplying of endophytes for

plant colonization. Adapted and authorized

Source: Hardoim et al. (2008)
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redox potential. The total rhizosphere environment is determined by an interacting

trinity of the soil, the plant and the organisms associated with the roots (Campbell

and Greaves 1990). A more recent definition state the rhizosphere as the soil

compartment influenced by the root, including the root itself (Hartmann et al.

2008). In this way, roots associated bacteria became into the context.

Epiphytic and endophytic bacteria are characterized by the colonization of

surface and inner tissues of plants, respectively. There is an ongoing discussion

toward a better definition of these microorganisms; a commonly used definition of

endophytes is those whose isolates form on surface-disinfected plant tissues (Hallmann

et al. 1997). In addition to these definitions is the separation of endophytes accord-

ing to their essentiality in niche occupations. In that case, the endophytic commu-

nity is divided into “passenger” endophytes, i.e., bacteria that eventually invade

internal plant tissues by stochastic events and “true” endophytes, those with adap-

tive traits enabling them to strictly live in association with the plant (Hardoim et al.

2008). Due to the novelty of this separation, and the problems involved in the

methodological separation of these endophytic groups, we will consider in this

review that the endophytic community is those bacteria that colonize inner tissues

of healthy plants.

The cells in the rhizosphere, plant-surface or endophyte communities are vari-

able. A superficial analysis of these communities could lead to the conclusion that

there is a strict specificity for niche colonization. However, a more realistic scene is

represented by the gradient of population distribution along plants. If a didactic

approach is applied to explain bacterial communities associated with plants, it

would divide these bacteria into distinct communities, with separation between

epiphytic and endophytic communities in accordance with plant organs, such as

roots, stems, and leaves. However, in nature the gradient of distribution will prevail

over separation. It is important to note that bacteria in the rhizosphere are often

similar to those in the endophytic community and on leaf surfaces. Concerning the

role in plant growth promotion, both, the rhizosphere or endophytic bacteria can act

supplying plants with their need and stimulating the plant development. It is

remarkable that similar bacteria can be present in the rhizosphere and also coloniz-

ing inner tissues of the host plant (Hardoim et al. 2008) (Fig. 1). Chi et al. (2005)

demonstrated that similar bacteria were distributed over the rice plant, from roots to

leaves. However, the abundance of bacterial types along the different niches can

differ, mainly due to differences in these niches in nutrient supply, atmospheric

conditions, and competitiveness with other components of these communities (Rao

et al. 2006). The behavior of these populations and how they colonize plants

is determined by environmental conditions, like formation of biofilms that help

bacteria fix to cell walls, avoiding the migration driven by sieve transportation.

Similarly, in the parenchymatic region, being single-celled can enable better con-

tact with cells and so better nutritional supply for the bacterium.

Among these bacteria, an important group is named rhizobacteria, which occupy

diverse niches in the roots-plants system. Such bacteria have the ability to promote

the plant growth by a diversity of mechanisms like the production of antibiotics, the

nutritional supplying of the plants and by the induction of systemic resistance.
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Major groups for the induction of systemic resistance are the genera Bacillus and
Pseudomonas, while other bacteria like Agrobacterium, Serratia, Enterobacter, and
Rhizobium can interfere in the recognition process between nematode and plants

(Seldin et al. 1984; Melo 2002; Von der Weid et al. 2005; Tian et al. 2007).

In summary, the close-to-plant environment is the main niche for bacteria

occupation, leading to the importance of these interactions for plant healthy. One

can also consider that if these interactions are important ion common conditions of

plants cultivation, it might be even more important or essential, when plants are

developing under harsh environmental conditions.

4 Plant Growth-Promoting Rhizobacteria

The objective of this section is to give an overview about the PGPR, leaving the

major responsibility of this task for other chapter, where experts are writing about

it. PGPR were first defined by Kloepper and Schroth (1978) as being bacteria that

colonize the roots of plants and help them in their growth and development (Zahir

et al. 2003). This is achieved by several mechanisms such as nitrogen fixation,

plant-growth hormone production, protection against diseases, and pathogens

(Table 1). In this way, PGPR can be used as inoculants in assays of biofertilization,

phytostimulation, and biocontrol (Bloemberg and Lugtenberg 2001) with applica-

tion in agriculture, forests and environmental restoration (Lucy et al. 2004). Again,

the strict division of tasks is merely didactic, considering that more than one

mechanism can be present in one bacterial species.

The isolates from a sample can be examined for a wide array of traits associated

with growth promotion. Cattelan et al. (1999) studied this by analyzing the

siderophore, indoleacetic acid, chitinase, b-1,3-glucanase, 1-aminocyclopropane-1-

carboxylate (ACC) deaminase, and cyanide production as well as phosphate solubili-

zation of soil and rhizosphere isolates from soybean – Glycine max. After this

screening, they have chosen 23 isolates positive for these traits and also tested their

ability associated with biocontrol, bradyrhizobial inhibition, and rhizosphere compe-

tence. Ahmad et al. (2008) also screened some bacteria in vitro for the production of

indoleacetic acid, ammonia, hydrogen cyanide, siderophore, phosphate solubilization,

and antifungal activity.

The use of PGPR to inoculate plants can be convenient for reforestation purposes

as shown by Requena et al. (1997). They have tested the ability of two arbuscular

mycorrhizal fungi (AMF), one native and one exotic; two native Rhizobium bacteria

and two PGPR, one exotic and one native in the combination of microbial inocu-

lants. The native microorganisms were isolated from the rhizosphere of Anthyllis
cytisoides and the other ones were obtained from existing collections. The native

microorganisms were more effective inoculants than the exotic ones when bio-

mass accumulation, nutrient uptake, and nitrogen fixation were evaluated. This

report highlights the importance of previously knowledge of the microorganisms

256 S.N. Santos et al.



inhabiting the environments, as well as their physiological and genetic adaptation,

so they can be useful for further applied researches.

The indigenous rhizosphere bacteria are able to break a great variety of con-

taminants, but not all of them are necessarily known as plant growth-promoting

rhizobacteria (PGPR) (Lucy et al. 2004). However, some PGPR can help in the

productivity of some culture in soils with low nutrient content or even in contami-

nated soils. It occurs mainly when the microbial communities are involved in the

control and absorption of metals and nutrients by surrounding plants (Stout and

N€usslein 2005). This role can be extended to the use of the term biofertilizer to

PGPR, once this term is related to increase in nitrogen fixation, nutrient availability,

Table 1 Examples of plant growth promotion features found in distinct bacterial species

Application Plant growth-promoting rhizobacteria References

Undescribed plant

growth –

promotion feature

Not-identified rhizobacteria:

PGB4, PGG2, Pseudomonas sp.,
Variovorax sp., Agrobacterium sp.,
Phyllobacterium sp., Bacillus
firmus, B. mycoides,
B. stearothermophilus, B. subtilis,
B. subtilis/amyloliquefaciens,
B. circulans, Brevibacillus brevis,
Paenibacillus lautus and
Stenotrophomona maltophilia,
Pseudomonas alcaligenes PsA15,
P. denitrificans PsD6, Bacillus
polymyxa BcP26 and
Mycobacterium phlei MbP1,
Unindentified PGPR strains,
Bacillus edaphicus, Pseudomonas
putida

Asghar et al. (2002),

Ashrafuzzaman et al. (2009),

Bertrand et al. (2001), Dı́az

et al. (2009), Egamberdiyeva

(2009), Höflich (2004),

Khalid et al. (2004), Sheng

(2005), Trivedi and Pandey

(2007)

Protection against

drought stress

Pseudomonas corrugata, Bacillus
thuringiensis

Kumar et al. (2007), Marulanda

et al. (2006)

Indole acetic acid

production

PGB4, PGG2, unindentified PGPR Ashrafuzzaman et al. (2009),

Khalid et al. (2004)

Phosphate

solubilization

PGB4, PGG2, Pseudomonas putida Ashrafuzzaman et al. (2009),

Trivedi and Pandey (2007)

Nodulation Bacillus endophyticus, B. pumilus,
B. subtilis, Paenibacillus lautus,
P. macerans, P. polymyxa,
Bacillus sp.

Figueiredo et al. (2008),

Camacho et al. (2001)

Nutrient uptake Strain YAS34, Azospirillum sp., and

Azotobacter sp.,Bacillus
endophyticus, B. pumilus,
B. subtilis, Paenibacillus lautus,
P. macerans, P. polymyxa, two
PGPR (A2 and E)

Alami et al. (2000), Biari et al.

(2008), Figueiredo et al.

(2008), Requena et al. (1997)

Revegetation Two PGPR (A2 and E) Requena et al. (1997)

Promotion of soil

aggregation

Strain YAS34, Pseudomonas
mendocina

Alami et al. (2000), Kohler et al.

(2006)
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and root growth (Vessey 2003). The nitrogen fixation can be increased as showed

by Zhang et al. (1996). They have coinoculated nine growth-promoting rhizobac-

teria with Bradyrhizobium to test their ability to reduce the negative effects at

suboptimal root zone temperatures in G. max in the nodulation and nitrogen

fixation. They have observed that in certain temperatures some strains increased

the number of nodules as well as the amount of fixed nitrogen when coinoculated

with Bradyrhizobium japonicum. The most stimulating ones were Serratia protea-
maculans in 15�C and 17.5�C; Aeromonas hydrophila in 17.5�C; and Serratia
liquefaciens in 25�C.

5 Bacterial Community in Harsh Tropical Ecosystems

Microorganisms in general and bacterial community in particular adapt to grow

under abiotic stresses. Such bacteria have been isolated from extreme environments

of low and high temperature, sodic, and acidic habitats. These bacteria have the

ability to recognize physio-chemical environment based on genetic features.

5.1 The Adaptation of Microbes to Harsh Environments

The microorganisms are able to grow using different carbon and nitrogen sources

and inhabit a wide variety of ecological niches, such as extreme semiarid environ-

ments, mangroves, and desert areas. The key for the microbial adaptability may be

related to their capacity of expressing only the genes of enzymes and biochemical

traits which are required to a maximum growth rate in the particular environment,

like the soils where they are found. This is possible due to their ability to recognize

chemical and physical composition of the environment. This ability is codified by a

cluster of genes that are only expressed when it is necessary. Therefore, the well-

succeeded growth of a microbial population reflects its adaptation grade to the

physical and chemical composition of a particular environment (Dick 1992).

The biodiversity of microorganisms allows their survival in several habitats

(Parkinson and Coleman 1991). Among microorganisms, the bacteria represent

the group with the greatest physiological diversity, which provides major adapt-

ability. That is why, among certain limits, it is possible to select organisms that

tolerate several stressful factors such as high temperature and soil acidity like in

semiarid and mangrove regions, extremely low temperatures, minimum levels of

carbon source, and high solar incidence like in polar region (Parkinson and Coleman

1991). The existence of a microorganism in determined time and place results from

its evolution, from the existence of favorable abiotic factors and from its diverse

biological relationships with competitors, antagonists, and predators. With the soil

environment modification, the adaptation capacity of a community varies in func-

tion of its genetic constitution and it is known as “biological buffer of the soil.”
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However, little is known about the impacts that the environmental changes may

have over the soil microorganisms.

The microorganisms in environments with special characteristics, such as high

salinity as present in mangroves and low water and organic nutrients rate as in

semiarid climate, may present physiological and genetic mechanisms responsible

for the survival capacity, even in environments considered extremes. These char-

acteristics allow the discovery of compounds with bioprospection potential and

industrial applicability. In the presence of this scenery, the rhizosphere of plants

from extreme environments can be considered as a promissory source for biopros-

pection of new microorganisms and products that result from microbial metabo-

lism, aiming a biotechnological application (Melo 2002). According to Idris et al.

(2007b) and Kishore and Pande (2007), several members of the Bacillus genera,
such as B. cereus, B. subtilis, and B. licheniformis as well as Pseudomonas spp.,
isolated from rhizospheric soil of semiarid regions, synthesize natural metabolites

that act as biological control agents and growth promoters. The biofilm formation is

a mechanism that can also accomplish its role in the protection of microbes to harsh

environments, as will be discussed in the next section.

5.1.1 Biofilm Formation: The Role of Exopolysaccharides

Biofilm is defined by the community of microorganisms when attached to a surface

(O’Toole et al. 2000) or associated with interfaces (Davey and O’Toole 2000).

According to O’Toole et al. (2000), biofilms can comprise one single microbial

species or several and can also be formed on a wide variety of biotic and abiotic

surfaces, depending on a response to a specific environmental condition. The matrix

where those microorganisms attach is made of a chain of polysaccharides that can

be produced in the interior of the microorganism and then be eliminated to the

exterior as exopolysaccharides. They are produced by a large variety of micro-

organisms (Sutherland 1998) and are accumulated in the surface of cells (Coronado

et al. 1996) (Fig. 2).

The use of exopolysaccharides is being associated to a mechanism of adaptation

of microorganisms to a wide variety of environmental conditions such as salinity,

shifts in temperature, and water stress. They make possible the degradation of some

substances, help the colonization, virulence, and survival of some phytopathogens

in the host (Roper et al. 2007) and can also protect against stressful environmental

conditions (Coronado et al. 1996). Iwabuchi et al. (2000) discovered that Rhodo-
coccus rodochrouswas able to produce an exopolysaccharide containing D-glucose,

D-galactose, D-mannose, D-glucuronic acid, and lipids that contributed to the bacte-

rial tolerance to the aromatic faction of crude oil. They have added some exopoly-

saccharide in sea water with high nutrient content and some aromatic fraction of

crude oil, resulting in a growth promotion ability of indigenous bacteria and

increase in the degradation of crude oil by bacteria (Iwabuchi et al. 2002).

Chang et al. (2007) suggested that a strain of Pseudomonas putida must produce

an exopolysaccharide called alginate that influences the development and the
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physical–chemical properties of exopolysaccharide in response to a limited water

supply. These responses should facilitate the maintenance of a hydrated environ-

ment, protecting the microorganisms against desiccation. Mutant bacteria without

the gene responsible for alginate production displayed sensitivity to heat, paraquat,

and hydrogen peroxide (Keith and Bender 1999). In the case of the terrestrial

cyanobacterium Nostoc commune, exopolysaccharide production showed to be

crucial to the stress tolerance during desiccation, freezing, and thawing (Tamaru

et al. 2005).

Alami et al. (2000) studied the effects of a rhizobacterium capable of producing

exopolysaccharide in the growth promotion of sunflower (Helianthus annus) under
water stress. The inoculation of the strain modified the soil structure in the root

system, acting against the negative effect of the lack of water in the growth. There is

a factor called AlgU (AlgT) that controls the production of exopolysaccharide that

is important for the adaptation of Pseudomonas fluorescens in dry environmental

conditions (Schnider-Keel et al. 2001).

With this in mind, bacteria inoculated in the root system of plants can help in

their survival in environments where water is a limiting factor. Marulanda et al.

(2006) innoculated Glomus intraradices and Bacillus thuringiensis in Retama
sphaerocarpa, observing an increase in the root growth of 201%, as well as higher

water absorption.Medicago sativa plants were submitted to drought and an analysis

of the involvement of the carbon metabolism and oxidative stress in the reduction of

nitrogenase activity was performed. In a very severe drought, the activity of the

enzyme was inhibited in 82% (Naya et al. 2007).

Fig. 2 Scanning electron microscopy showing some bacteria capable of producing exopoly-

saccharides. Note that cells are embedded in a net formed by a polymeric matrix

Source: EMBRAPA – Meio Ambiente 2009
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5.2 The Brazilian Caatinga

In Brazil, the semiarid region encompasses several minor-environments with sin-

gular conditions of climate, soil, and vegetation heterogeneity. This zone is located

almost exclusively in the Northeast of the country, and is one of the five Brazilian

geopolitical regions with nine states (Fig. 3). This large dry lands, stretching

between 3 and 17�S and 35–45�W, covers approximately 8% of the Brazilian

territory and occupies an area of about 900,000 km2 (Giulietti 2006). The climate

of this region is one of the most complex systems in the world (Giulietti et al. 2002),

not only due to the size of this huge land and its diverse physiography, but also due

to the conjunction of two major weather system, provided by the northeast and

southeast trade winds, which create an enormous diversity and instability in rainfall

patterns. These physical and climatic conditions provide the great diversity of

vegetation types that characterize the semiarid region. The precipitation within

the region varies from being extremely wet, with an annual rainfall of up to around

2,000 mm along the coast, to only 300–500 mm in the semiarid zone, where the

rainfall is usually restricted to a few months during the year. It is indeed this factor

of water availability, which is the controlling influence over the vegetation (Fig. 4)

and fauna, as well as, to a great extent, human exploitation of natural resources,

throughout the region.

The set of contrasting physical and climatic factors has combined to provide the

diversity of vegetation types that characterize the semiarid region as a mosaic,

reflecting the microlocal conditions particular to each region. Such change of

rainfall regime can be modulated by the altitude, where the presence of hills or

mountains provides a gradual range of condition of raining and temperature,

modulating the landscapes compositions. From the coast to about 100–200 km

inland, the vegetation is dominated by Atlantic Forest, with its lush, evergreen

canopy leaves. Further inland, as rain is scarcer, the rain forest gives space to a

forest in which the canopies semideciduous or leaves-free in dry season species are

more abundant. More into the continent, the extreme dry conditions make the

deciduous forest dominant, free of leaves and bleached due to the intensity of

the sun. From these forests, the last two delimit the caatinga, excluding only the

rain forest, which is more related to the coastline area. The structure of these forests

can vary considerably from forest composed of often spiny trees, 6–10 m tall,

deciduous or semideciduos, and often with a ground-layer of small deciduous

shrubs and annual herbs, with predominance of Leguminosae, cacti, bromeliads,

and Euphorbiaceae (Giulietti et al. 2006).

The caatinga biome covers about 735,000 km2, and it is one of the most

degraded vegetation in the semiarid region, with less than 1% of its area protected

in permanent reservoirs. Recently, the Brazilian government put efforts on initia-

tives to better preserve its biodiversity. Areas of extreme biological interest were

selected overlapping information of different groups of organisms and endogenous

regions were proposed for the biome preservation (Giulietti et al. 2006). In addition,

the scientific community has raised the question about the biotechnological
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Fig. 3 Location of the semiarid climate in Brazil. Map of the Brazilian Northeast showing the

ecoregions of the Caatinga Biome and the 57 priority areas for conservation (modified from

Giulietti et al. 2006); with a remark to six (red) areas of Extreme Biological Importance
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potential found in species endogenous to the caatinga biome, where a remark is

made for the microbial community, believed to be highly important in the biome

functioning and maintenance.

A great example of such potential is represented by the bacteria associated to

caatinga-plants. It is reasonable to consider that the plant life is not easy in such

environmental conditions, and microbes associated to plants might have important

roles in plant development. The first coming hypothesis for biotechnological possi-

bilities is that, microbes associated to plants at caatinga might help the plant

cultivation in dry agricultural lands, where water regime is not similar every year.

Also, such bacteria can help the initial plant development and during the fruiting

process, when the missing of water result in expressive decreasing of production.

Other possibilities are still open to explored by enthusiastic scientists on the field of

plant growth promotion rhizobacteria.

5.3 The Mangrove: Ecosystem and the Interaction of
Plant–Bacteria in this Niche

Mangrove is a typical tropical ecosystem comprised of a coastal biome, located at

the transition between the land and the sea (Sjõling et al. 2005; Zhou et al. 2006).

This biome covers around 60–75% of the world’s tropical and subtropical coast-

lines (Holguin et al. 2001) (Figs. 5 and 6), and it is characterized by the periodic

tidal flooding which makes environmental factors such as salinity and nutrient

availability highly variable (Crump et al. 2004; Holguin et al. 2006; Alongi 1989).

This constant change in environmental conditions makes the microbial diversity

highly responsive, in order to adapt to these shifts, controlling and maintaining the

Fig. 4 Pictures from the Caatinga area in Northeast of Brazil. Typical vegetation and sight scene

are shown, with a remark for plants from the Cactaceae family
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functioning of the mangrove (Holguin et al. 2006). However, a phylogenetic and

functional description of microbial diversity in the mangrove ecosystem has

not been addressed to the same extent as that of other environments (Zhou et al.

2006). A more thorough description of the bacterial diversity and distribution in a

Fig. 6 The abundance and occurrence of mangrove coastline areas in the world represented by

lines drawn in the color black

Fig. 5 The mangrove ecosystem shown in different distances. The remark should be made to the

soil under the water film, responsible for the harsh conditions of anaerobiosis combined with the

high salinity
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mangrove would improve our understanding of bacterial functionality and micro-

bial interactions found in that ecosystem (Kathiresan et al. 2006 and Selvam 2006).

In the mangrove ecosystem, rhizobacteria are present and very important in the

plant protection against the salinity. These bacteria are also able to fix nitrogen,

supplying the plants with this essential nutrient (Holguin et al. 2001). The main

bacterial groups and their role found as rhizobacteria in mangrove plants are

affiliated to the genus Vibrio, Listonella, Phyllobacterium, the free-living nitrogen

fixers; Bacillus, Paenibacillus, Xanthobacter, and Vibrio responsible for phosphate
solubilization; and Desulfovibrio, Desulfotomaculum, Desulfosarcina, and Desul-
fococcus known as sulfate reducers.

The importance in the knowledge of plant-associated bacteria in mangroves

resides on its biotechnological potential. The microbes in such conditions might

help plants to survive in the mangrove, where the salinity and the depletion of

oxygen exert a particular environment. A possible application to such microbes is

the protection of plants against the salinity of soils, commonly found in newly

available areas for agricultural practice.

5.4 Plant Growth-Promoting Rhizobacteria in Harsh
Environments

Some PGPR are able to protect plants against abiotic stress such as drought and

salinity. It was demonstrated the protection of soybean plants in saline soil by the

inoculation with two PGPR Bacillus subtilis and Bacillus megaterium (Han and Lee

2005).

In semiarid ecosystems like those presented in Northeast of Brazil and in some

Mediterranean regions, where the temperature is very high in the summer, the

rainfalls are regularly scarce and the evaporation rate is considerably high.

In cases where plants are submitted constantly to drought, it is interesting to

apply rhizobacteria that could improve plant fitness reducing the growth inhibition

ameliorating the drought. This was showed by Jaleel et al. (2007) who inoculated

P. fluorescens in Catharanthus roseus and submitted to drought. There was an

increase in fresh and dry weights in inoculated plants. Then, plants and micro-

organisms in such niches must be very well adapted to these conditions. The

mechanisms by which PGPR tolerate some abiotic stress remain unknown. How-

ever, Yang et al. (2009) have proposed that PGPR are able to elicit the induced

systemic tolerance (IST) of plants by physical and chemical changes that result in

increased tolerance to abiotic stress. In soils with high salinity, the application of

PGPR can alleviate salt stress on plant growth by the production of phytohormones

and growth regulators (Egamberdiyeva 2009). The growth promotion can be

attributed to the production of indole-3-acetic acid (IAA) in the case of Azospir-
illum brasiliense, which is triggered by some nutrient stresses as well as environ-

mental fluctuations (Malhotra and Srivastava 2009). It has been demonstrated that
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the synthesis of auxins depend on tryptophan and it is also related to plant growth

promotion, as showed by Idris et al. (2007a) for Bacillus amyloliquefaciens.
Ethylene, a plant growth regulator, has also been established as a stress hormone.

Under stress conditions the production of ethylene increases, affecting the root

growth and the growth of the plant as a whole. The enzyme ACC deaminase is

responsible for the regulation of ethylene biosynthesis. So, several studies have

been focusing on the introduction of ACC deaminase genes into plants to regulate

ethylene level in plants for optimum growth under stressed conditions (Saleem et al.

2007). In the case of mangrove ecosystems, although rich in organic matter, this

niche is defective in nutrients, especially nitrogen and phosphorus (Vazquez et al.

2000). The supply of nutrients can be raised by the action of PGPR. This was shown

by Biari et al. (2008) when they inoculated some PGPR in maize – Zea mays –
seeds. They observed that the uptake of nutrients such as N, P, K, Fe, Zn, Mn, and

Cu was significantly influenced by this inocula as well as the increment in plant

height and shoot and seed dry weight.

6 Agricultural Improvements: The Role of Plant

Growth-Promoting Rhizobacteria

The soil vegetation protects it against erosion and helps in the maintenance of the

equilibrium between the factors related to its formation and degradation. The

disruption of this relation provokes physical, chemical, and biological alterations

that can cause a decay in the productivity and a degradation in the ecosystem.

Tropical regions are considered to have the greater agricultural potential due to the

abundance in light, water, and heat, essential to plant development. However, these

areas are being more subjected to soil degradation, because of the high precipitation

rates, weak soil structure, low organic matter content, and inadequate handling. The

relation between the components of agriculture production and their environmental

consequences depends on the production system and the type of exploration

(Knoepp et al. 2000).

Due to the special features of PGPR presented in this chapter, Ashrafuzzaman

et al. (2009) state that the use of these microorganisms is a very attractive option to

replace the use of chemical fertilizers, pesticides, and other substances in agricul-

ture. In this way, several researches have been conducted to improve growth and

yield of many agricultural products by increasing nitrogen, phosphorus, and potas-

sium availability, stimulating root nodulation and phytohormone production. PGPR

has already been used as inoculum for rice, maize, wheat, soybean, and others.

Phosphate is important for plant growth and in soils where this nutrient in unavail-

able, PGPR can be used for phosphate solubilization. In this way, Trivedi and

Pandey (2007) immobilized cells of P. putida on sodium alginate beads to test the

efficiency of wheat growth promotion by the solubilization of insoluble phosphate.

The use of genetic manipulation by recombinant DNA methodology can also
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be useful for some agricultural purposes. Rodrı́guez et al. (2000) first reported the

achievement of improved phosphate solubilizing ability from rhizobacterial strains

by genetic construction using a gene involved in mineral phosphate solubilization.

Potassium is also an important nutrient required for plant growth and development

(Ashley et al. 2006). Sheng (2005) studied the ability of a potassium-releasing

bacterial strain Bacillus edaphicus to promote cotton and rape growth in K-deficient

soil. The strain was able to mobilize potassium as well as promote root and shoot

growth. It is known that nitrogen is one of the most limiting nutrient for growth of

plants (Stacey et al. 1992). The associative interaction of rhizobia to leguminous

plants has evolved to help the nitrogen fixation, thus providing nitrogen to plant to

develop its function. However, this association depends on the nodulation of the

leguminous plants, allowing the rhizobia to penetrate plant tissues. In this way,

PGPR can also help in this process. Inoculation of the common bean – Phaseolus
vulgaris – with PGPR stimulated nodulation resulting in higher levels of nitrogen

accumulation (Figueiredo et al. 2008).

When there is a concern about crop productivity, PGPR can be used for this

purpose, by increasing growth rate and production of biomass. Ashrafuzzaman

et al. (2009) tested the efficiency of ten isolates for rice growth enhancement,

resulting in a significant increase in plant height, root length, production of root

and shoot dry matter, and seed germination. One strain was also able to produce

indoleacetic acid and solubilize phosphorus. The potential of growth promotion by

rhizobacteria may be due to the expression of more than one trait, as it was observed

by Dey et al. (2004). Inoculation of Pseudomonas spp. in Arachis hypogea dis-

played a suppression of phytopathogens, solubilization of tri-calcium phosphate,

production of siderophore, and nodulation promotion, and all of these character-

istics might have contributed to the enhancement of growth, yield, and nutrient

uptake of peanut. Khalid et al. (2004) screened some PGPR for the potential of

in vitro auxin production, applying four isolates in wheat seedlings, which resulted

in increase in root and shoot elongation, root and shoot dry weight. Pseudomonas
corrugata showed to be an appropriate inoculum for maize under rainfed conditions

(Kumar et al. 2007).

When looking for an optimal crop production it is interesting to make a coin-

oculation of more than one PGPR as well as in combination with other rhizobia and

fungi, i.e., Arbuscular Mycorrhizal Fungi (AMF), so they can act synergistically in

the increase of plant growth (Gamalero et al. 2004). To examine this, Camacho

et al. (2001) coinoculated a strain of Bacillus sp. with Rhizobium tropici, observing
an increased bean nodulation.

7 Conclusion

This chapter gives an overview of typical harsh conditions found in specific

environments exclusively found in tropical areas of the world. Exploiting these

niches for PGPR functions may help on the development of biotechnological
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processes to save plants cultivated in common land against environmental harsh

conditions. Also, an elusion could be made for the use of new land areas and for the

maintenance of the agricultural yield under the climate changing process.
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the cellular and molecular levels. Multiple cell membrane modifications ensure that

solute transport is not impaired at low temperatures. Other mechanisms include the

synthesis of cold-shock proteins (Csps), cold acclimation proteins (Caps), cryopro-

tectants, ice nucleation factors, cold-adapted enzymes, and RNA degradosomes.

The agricultural importance of such microbes stems from the fact that the world

over temperate agro-ecosystems are characterized by low temperatures and short

growing seasons that subject both plant and microbial life to cold temperature

induced stress. Hence, there is a need to identify potential microbes that retain

their functional traits under low temperature conditions. Such microbes can be

profitably used as inoculants in agricultural production systems in the temperate

regions of the world. This chapter deals with the cold tolerance/resistance mech-

anisms operating in microorganisms and the utility of cold-tolerant microbes in

improving soil quality and productivity of agricultural crops.

1 Introduction

Among the various environmental stresses that microbes encounter due to their

ubiquitous distribution on earth, cold temperature induced stress assumes para-

mount importance. This is due to the fact that most life processes are temperature-

dependent and life almost comes to a standstill under suboptimal temperatures.

Cold temperatures affect the cell interiors and a myriad of cellular processes,

rendering microbial cells inactive or often irreversibly damaged. Since more than

80% of the earth’s biosphere is exposed to temperatures below 5�C, throughout the
year (Herbraud and Potier 1999), microorganisms capable of coping with low

temperature stress have naturally evolved in several environments. Considering

their ubiquity and dominance, cold-adapted microorganisms are widely regarded as

the most successful colonizers of our planet (Russell 1990). During the past two

decades, considerable research attention has been devoted to cold-adapted micro-

organisms driven by the realization that such microbes and their enzymes have a

great potential for exploitation in biotechnology (Kottmier and Sullivan 1990). The

agricultural importance of cold-tolerant microorganisms arises due to the fact that

the cropping cycle in several parts of the world is subject to transient cold periods,

which are deleterious to microbial processes such as symbiotic and asymbiotic

nitrogen fixation, plant growth promotion, and disease suppression.

Life under low temperatures was identified by Forster (1887), who reported that

microorganisms isolated from fish could grow at 0�C. Since then, a number of

organisms particularly bacteria, yeasts, unicellular algae, and fungi have been

reported to successfully colonize low temperature environments and contribute to

nutrient cycling processes and primary biomass production. Following nearly two

decades of debate over the term psychrophiles (named from the Greek word for

“cold-loving”), the definition given by Morita in 1975 became widely accepted. He

based his definitions of cold-adapted bacteria on their cardinal growth tempera-

tures, viz. lower limit, optimum, and upper limit. Psychrophiles grow at or below
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zero (0�C) and have an optimum growth temperature at 15�C and an upper limit of

20�C. In contrast, psychrotolerant microbes (also called psychrotrophs) can also

grow close to 0�C, and also grow at mesophilic temperatures with a growth optima

usually above 30�C, hence they could be considered as cold-tolerant mesophiles

(Morita 1975). Such organisms are much more widely distributed than psychro-

philes and can be isolated from soils and waters in temperate regions, as well as

from refrigerated food products. Though psychrotolerant organisms do grow at

0�C, they have highly extended lag periods, before the appearance of visible

colonies on growth media under in vitro conditions.

2 Ecological Diversity of Cold-Tolerant Microorganisms

Generally, it is widely perceived that more extreme the environmental conditions of

a niche, the lower the diversity of organisms. But most cold inhospitable environ-

ments are dominated by a variety of microorganisms, thereby making them the most

versatile of all life forms. The lowest temperature limit for life seems to be around

�20�C, which is the value reported for bacteria living in permafrost soil and in sea

ice. Microbial activity at such temperatures is restricted to small amounts of

unfrozen water inside the permafrost soil or the ice and brine channels. These

contain high concentrations of salts, exopolymeric substances, and/or particulate

matter, and fluid flow is maintained by concentration and temperature gradients

(D’Amico et al. 2006). Cold-tolerant microorganisms are also widely encountered in

refrigerated environments and have become a major cause of concern in the food

processing and storage industry. In nature, the alpine soil environments are char-

acterized by dramatic seasonal shift in physical and biochemical properties, due to

intermittent snow cover and fluctuating sub freezing temperatures in winter and

intense desiccating sunshine punctuated by infrequent rains during summer (Greenland

and Losleben 2001). It is not uncommon to come across a wide variety of cold-

tolerant microorganisms in the alpine and subalpine landscapes. Bacteria, archaea,

and eukaryotes like yeast occur in cold environments. While bacteria dominate and

are present in greater diversity than archaea in polar environments, archaea are wide

spread in cold, deep ocean waters (Karner et al. 2001; Deming 2002).Morphological

types encountered in cold environments include spore-formers, nonspore formers,

and filamentous bacteria. Together they cover a wide range of metabolic types

ranging from aerobes to anaerobes and include both heterotrophs and autotrophs.

3 Cold Temperature Effects on Microbial Cells

Temperature can influence the response of a microorganism either directly

or indirectly. Direct effects include decreased growth rate, enzyme activities,

alteration of cell composition, and differential nutritional requirements. Indirect
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effects are usually observed on the solubility of solute molecules, diffusion of

nutrients, osmotic effects on membranes, and cell density (Herbert 1986). As tem-

perature falls, the lag phase that precedes growth extends, leading to a decrease in the

growth rate and the final cell number. During the lag phase that precedes growth in

mesophiles, many physiological changes occur, including a decrease in the satura-

tion of fatty acids and inhibition of DNA, RNA, and protein synthesis (Panoff et al.

1998).The effect of cold temperatures is largely felt on the solute transport system.

The lipid bilayer which is the basic structure of the microbial membranes must have

proper fluidity to maintain the cell permeability and movement of essential solutes.

The functional state of this bilayer is a liquid–crystalline phase, but a decline in

temperature induces a gel phase transition and a drastic loss of the membrane

properties. A major difference between mesophiles and psychrotrophs is the ability

to transport sugars into the cell at temperatures near 0�C (Wilkins 1973). The effect

of the rapid cold shock on the membrane correlated with high rates of cell inactiva-

tion (90 and 70%) in Escherichia coli and Bacillus subtilis, respectively. Thus,
membrane alternation seems to be the principal cause of cold-shock injury in

E. coli and B. subtilis (Hoang et al. 2007).

In some bacteria, production of pigments and other enzymatic activities are

enhanced at low temperatures, e.g., lipase and proteinase production by Pseudo-
monas and certain other genera occurs preferentially at low temperatures (Witter

et al. 1966; Olson and Nottingham 1980).The prior temperature history of the cell

has been found to be an important factor for the survival and growth of organisms

because of its effects on the extent of lag phase before onset of growth (Dufrenne

et al. 1997). A decrease in the poly-b-hydroxybutyrate (PHB) content of non-cold
acclimated Rhizobium DDSS69 cultures was observed by Sardesai and Babu

(2001a). Cold stress induces a shift in the carbon source utilization and enhances

the susceptibility of bacteria to antibiotics (Ponder et al. 2005). Vibrio cholerae
is known to enter the viable but nonculturable state in response to cold shock

(Escalana et al. 2006). Since the agro-ecosystem is characterized by transient

cold stress followed by warmer temperature regimes, we will focus mainly on

the cold tolerance mechanisms of psychrotolerant microbes and their role in

agriculture.

4 Cold Tolerance Mechanisms in Microorganisms

Unsaturation of fatty acids, reduction in the average fatty acid chain length,

maintenance of membrane fluidity, synthesis of several cryoprotectant compounds,

cold acclimation proteins (Caps), cold-shock proteins (Csps), ice nucleators and

antifreeze proteins, cold-adapted enzymes, and RNA degradosomes are some of

the cold tolerance mechanisms known to be active in microorganisms and are

discussed herein.
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4.1 Cell Membrane-Associated Changes

Since low temperatures primarily affect the lipid bi-layer of the bacterial cell

rendering it impermeable to diffusion of solutes, the fluidity of the lipid bi-layer

has to be maintained for the cell to function properly. It has been well established

that microorganisms adjust their cell membrane constituents in accordance to their

growth temperatures to ensure membrane functions such as solute transport

(Russell et al. 1995; Mastronicolis et al. 1998). The most common changes in the

cell membrane at cold temperature are the unsaturation of fatty acids, by desa-

turases situated in the membrane itself. In the anaerobic bacterium Clostridium
botulinum, a decrease in temperature from 37 to 8�C leads to an increased level of

unsaturation from 27 to 40% (Russell et al. 1995). This is achieved by an increase

in the amount of branched fatty acid and reduction in the concentration of cy-

clic fatty acids and increases the monounsaturated straight chain fatty acids. The

outcome of increasing fluidity may be attributed to the shortening of average fatty

acid chain length owing to fewer carbon–carbon interactions between neighboring

chains (Evans et al. 1998).

Other mechanisms include reduction in the average fatty acid chain length which

is observed in the psychrophilic organism bacterium Micrococcus cryophilus
(McGibbon and Russel 1983). A similar mechanism is also encountered in the yeast

Zygosaccharomyces bailii at low temperature (Baleiras-Couto and Huis-In’t-Veld

1995). An increase in the amount of branched fatty acids and reduction of the

amount of cyclic fatty acids are observed in Salmonella spp. (Russell 1984) and

C. botulinum (Evans et al. 1998). In Listeria monocytogenes, the major change that

takes place as the temperature falls below optimum (e.g., 7�C) is the enhancement

in amounts of C15:0 at the expense of C17:0. Such a reduction in fatty acid chain

length reduces the melting temperature and aids in maintenance of the membrane

fluidity at low temperatures. Moreover, there is also a small increase in C18:1 which

adds to fluidization of membrane at cold temperatures (Puettman et al. 1993;

Annous et al. 1997). B. subtilis alters its membrane composition by enhancing the

level of anteiso-branched fatty acid contents and decreasing the isobranched ones

(Klein et al. 1999).

Maintenance of membrane fluidity is a major mode of survival of cold-adapted

rhizobia since the symbiotic proteins (p Sym Nod), which are major determinants

of nodule competitiveness, are membrane associated (Denarie et al. 1992). The

induction of nod FE gene in cold-adapted R. leguminosarum bv. viciae was found

to result in the de novo synthesis of phospholipids with specific polyunsaturated

fatty acids (Geiger et al. 1993). Theberge et al. (1996) observed that the propor-

tion of cis-vaccenic acid, the major unsaturated fatty acid increased by 30% as

growth temperature of two cold-adapted R. leguminosarum bv. viciae strains

were lowered. Drouin et al. (2000) observed that low temperature conditions

affected fatty acid composition of all rhizobial strains, regardless of their cold

adaptation level. The proportion of unsaturated fatty acids also increased signifi-

cantly with the decrease in the growth temperature from 25 to 5�C. A specific

Cold-Tolerant Agriculturally Important Microorganisms 277



fatty acid (cis-12 octadecanoic acid) was detected in artic rhizobial strains during

growth at 5�C.

4.2 Role of Cryoprotectants in Cold Tolerance

Cold-tolerant microorganisms are endowed with the ability to synthesize several

cryoprotectants compounds, such as glycine betaine (a bacterial cryoprotectant),

glycerol, trehalose, sorbitol, manintol, glucose, and fructose, to overcome the ill

effects of cold temperature induced stress. Such cryoprotectants are thought to act

as chemical chaperones at cold temperatures (Margesin and Schinner 1999; Russell

1998). Glycine betaine a cryoprotectant of bacterial origin was detected in the food

borne pathogen L. monocytogenes, which survives at low temperatures and high

osmolarity (Angelidis and Smith 2003). The exact mechanism of action of glycine

betaine is not yet clear. However, it is thought to function as a chemical chaperone,

which prevents the aggregation of cellular proteins during stress conditions.

Chatopadhyay (2002) proposed that the possible function of glycine betaine is to

regulate the fluidity of membrane at lower temperatures.

Trehalose is a nonreducing disaccharide (a-D-glucopyranosil-1, 1-a-D-gluco-
pyranoside) found in many prokaryotic and eukaryotic organisms, known to be an

important protectant against heat-shock and osmotic stress in microorganisms

(Kandror et al. 2002). The main function of trehalose is the stabilization of the

cell membrane and proteins by replacing water and preservation of intracellular

water structure (Sano et al. 1999). Exogenous trehalose helps to protect a variety

of organisms against freezing and the maximum protection happens when treha-

lose is present on both sides of the cell membrane (Herbraud and Potier 1999).

The increased viability of E. coli under cold-shock conditions is attributed to the

enhanced accumulation of trehalose (Kaasen et al. 1992; Mitta et al. 1997). Trehalose

synthesis is regulated by the genes otsA and otsB that encode the enzymes, trehalose-

6-phosphate synthases and trehalose-6-phosphatase, respectively (Kaasen et al.

1992).

4.3 Cold Acclimation Proteins

Cold-tolerant bacteria produce a set of �20 permanent proteins called the cold

acclimation proteins (Caps) during continuous growth at low temperatures. The

Caps are fundamental to life in the cold and ensure improved protein synthesis at

low temperature (Margesin et al. 2007). Some of the Caps identified in cold-adapted

bacteria function as Csps in mesophiles, a typical example being the RNA chaper-

one CspA. It has been proposed that cold acclimatization proteins are essential for

the maintenance of both growth and cell cycle at low temperatures, but their

function is still poorly understood. A cold acclimation protein (Hsc 25) produced
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in the ice-nucleating bacterium, Pantoea ananas KUIN-3, was found to be capable

of refolding enzymes, which were denatured by heat, cold, and guanidine hydro-

chloride, but it had high affinity for cold denatured enzymes than for heat-denatured

enzymes (Kawahara et al. 2000).

4.4 Cold-Shock Proteins

A sudden decrease in temperature from the mesophilic range to cold temperatures

(10–15�C) creates a stress situation. Microbial cells respond to such a situation by a

specific adaptative mechanism, which allows their survival and subsequent growth

at lower temperatures. Although such rapid down shifts are unlikely to occur in

natural environments, it provides interesting laboratory conditions that have largely

contributed to the elucidation of the molecular mechanisms by which cells responds

to cold (Herbraud and Potier 1999). A sudden decrease in temperature initiates the

cold-shock response (Jones et al. 1987; Graumann et al. 1996; Jones and Inouye

1996), which is evidently not confined to psychrophilic (cold loving) and psychro-

trophic (cold-tolerant) microorganisms but constitutes the beginning of cold adap-

tation in all microbes. It involves the induction and synthesis of Csps for the

regulation of protein synthesis and mRNA folding. Bacterial Csps consist of a

single nucleic acid-binding domain, called the cold-shock domain (CSD). The CSD

is considered to be an ancient molecule present even prior to the advent of single

cell life and is the most evolutionarily conserved nucleic acid-binding domain

within prokaryotes and eukaryotes (Graumann and Marahiel 1998). Owing to the

design of prokaryotic transcriptional machinery, the cold-induced RNA secondary

structure may impose premature transcription termination. The functional sig-

nificance of bacterial Csps is therefore directly related to the formation of stable

secondary RNA structures in response to low temperature stress (Polissi et al.

2003). The cold-shock proteins Csp A, Csp C, and Csp E were confirmed to possess

in vivo and in vivo transcription antitermination activity (Bae et al. 2000). CspA has

been proposed to function as an RNA chaperone at low temperature and has been

implicated in transcriptional regulation of two cold-shock genes hrs and gyr A. The
50 end of the Csp A mRNA contains a regulatory sequence (cold box), which may

be responsible for the cold-shock induction (Jiang et al. 1997).

The number of Csps seems to increase with the severity of the cold shock. The

major Csps accounts for more than 10% of total protein synthesized during the

acclimation phase of E. coli (Goldstein et al. 1990). Radiolabelling of total

cellular proteins of Pseudomonas spp. 30-3 revealed the elevated expression of

an 8 kDa protein at 4�C, which suggests that the protein Cap B plays a pivotal role

in survival and tolerance at cold and subzero temperatures (Panicker et al. 2002).

Among the bacterial species, the Csps of E. coli are the most studied and a

fair degree of homology has been observed with the Csps from other microorgani-

sms such as B. subtilis and Streptomyces clavuligerus. Similarly, a 248 bp DNA
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fragment in Pseudomonas spp. 30-3 that was amplified using Cap B gene specific

primers showed a 98% amino acid sequence homology with Cap B of Pseudomo-
nas fragi and 62% homology with Csp A of E. coli (Michel et al. 1997; Panicker

et al. 2002).

Drouin et al. (2000) isolated cold-adapted strains of R. leguminosarum bv.

viciae from the legumes Lathyrus japonicus and Lathyrus pratensis in northern

Quebec (Canada). When these strains were compared with a poorly adapted strain

and a cold sensitive strain for freezing survival, protein induction, and fatty acid

composition following a cold shock from 25�C to 10, 5, and 0�C, a common

6.1 kDa Csp was induced in all the strains, but the total number of Csps synthe-

sized at 0�C was higher in the cold-adapted strains than in the cold sensitive

strains. Csps have also been detected in several other agriculturally important

bacterial species (Table 1).

The regulation of the expression of Csps and their homologues is complex

involving autoregulation and is controlled at the level of transcription and transla-

tion as well as by the stability of mRNA and proteins. Response to cold shock might

be controlled at the transcriptional or translational level, though the two possibi-

lities are mutually exclusive (Horn et al. 2007).

Table 1 Major cold-shock proteins identified in some agriculturally important psychrotrophic

bacterial species

Organism Cold-shock protein Biochemical features References

Bacillus megaterium
ATCC 14581

Unnamed Responsible for the hyper

induction of

desaturase

Fujii and Fulco (1977)

Bacillus cereus
WSBC 10201

Csp A M.W. 7.5 kDa Mayr et al. (1996)

Bacillus subtilis Csp B

Csp C

Csp D

Csp 7.4

M.W. 7.365 kDa

M.W. 8.0 kDa

M.W. 13.0 kDa

Schindelin et al.

(1993)

Fujii and Fulco (1977)

Schnuchel et al.

(1993)

Rhizobium sp.

(Temperate strains)

Unnamed M.W. 56.1,37.1,34.4,

17.3,11.1 kDa

Cloutier et al. (1992)

Rhizobium sp.

(Artic strains)

Unnamed M.W. 52.0,38.0,23.4,22.7

and 11.1 kDa

Cloutier et al. (1992)

Pseudomonas fragi C 7.0

C 8.0

M.W. 7.0 kDa

M.W. 8.0 kDa

Hebraud et al. (1994)

Listeria
monocytogenes

Unnamed M.W. 48 kDa

M.W. 21.1 kDa

M.W. 19.7 kDa

M.W. 18.8 kDa

Bayles et al. (1996)

Streptococcus
thermophilus

Unnamed M.W. 7.5 kDa

M.W. 21.5 kDa

Perin et al. (1999)

Lactococcus lactis Unnamed M.W. 7 kDa Wouters et al. (1999)

Streptoccocus
thermophilus

Clp L M.W. 75 kDa Varcamonti et al.

(2006)
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4.5 Role of Ice Nucleators and Antifreeze Proteins in Cold
Tolerance

Ice nucleators are proteins which either limit super cooling or induce freezing at

temperatures below 0�C by mimicking the structure of an ice crystal surface. They

impose an ice crystal like arrangement on the water molecule with their surface and

reduce the energy necessary for the initiation of ice formation. Ice-nucleating

agents either facilitate cold-protection due to the released heat of fusion or establish

protective extracellular freezing in place of lethal intracellular freezing (Zachariassen

and Kristiansen 2000). The “ice plus” bacteria posses Ina protein (Ice nucleation-

active protein) on the outer bacterial wall which acts as the nucleating center for ice

crystals (Lee et al. 1995). This facilitates ice formation at high subzero tempera-

tures, while “ice minus” bacteria do not posses Ina proteins and therefore lower the

ice nucleation temperature. Very potent ice nucleators, active at high subfreezing

temperature, are produced by bacteria such as Erwinia herbicola (Kozloff et al.

1983). Other bacterial genera viz., Pseudomonas, Pantoea (Erwinia), and Xantho-
monas can nucleate the crystallization of ice from supercooled water (Lindow et al.

1978; Maki et al. 1974; Obata et al. 1990).

Another possible strategy used by microorganisms to survive freezing tempera-

ture is the production of antifreeze proteins (AFPs), a structurally diverse group of

proteins that have the ability to modify ice crystal structure (Raymond and DeVries

1977) and inhibit recrystallization of ice (Knight et al. 1988). AFPs inhibit further

binding of water molecules and affect the shape of ice crystal, even at very low

concentrations. The Arctic plant growth promoting rhizobacteria Pseudomonas
putida GR 12-2 secretes an AFP that enhances its survival at subzero temperature.

Expression of afp A gene of P. putida in E. coli yielded an intracellular 72 kDa

protein that exhibited lower levels of antifreeze and ice nucleation activities. The

AfpA sequence was most similar to cell wall associated proteins and less similar to

ice nucleation proteins (INPs). Hydropathy plots revealed that the amino acid

sequence of AfpA was more hydrophobic than those of the INPs in the domain

that forms the ice template, thereby suggesting that AFPs and INPs interact dif-

ferently with ice (Muryoi et al. 2004).

4.6 Cold-Adapted Enzymes

The most important selective pressure of low temperatures is exerted toward

chemical reaction rates, most of which exponentially drop with decreasing temper-

ature. Despite this, psychrophiles produce cold-adapted enzymes that have high

specific activities at low temperatures. The commonly accepted hypothesis for this

cold adaptation is the activity–stability–flexibility relationship, which suggests that

psychrophilic enzymes increase the flexibility of their structure to compensate for

the “freezing effect” of cold habitats (Johns and Somero 2004). This increased
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flexibility might concern the entire protein or might be restricted to parts of

the structure; especially those implicated in catalysis and are probably also respon-

sible for the generally observed low stability of cold-adapted proteins (D’Amico

et al. 2003).

4.7 Role of RNA Degradosomes

The degradosome, a protein-complex of several ribonucleases, is the major deter-

minant factor for stability of cellular RNA. The degradosome of an antarctic

bacterium Pseudomonas syringae has been found to contain an endoribonuclease

RNAse E and a RNA helicase. But instead of polynucleotide phosphorylase,

the exoribonuclease found in E. coli, the degradosome of the antarctic bacterium

contains another exoribonuclease, called RNAse R. In E. coli, this enzyme is known

to play an important role in ensuring the quality control of rRNA. The significance

of the association of this enzyme with RNAse E in the Antarctic bacterium is not

definitely known. But it is believed that RNAse R can degrade RNAmolecules with

extensive secondary structures. This eliminates the necessity of ATP, required by

helicase, thereby helping the cell conserve energy at low temperatures (Purusharth

et al. 2005).

4.8 Other Mechanisms of Cold Tolerance in Rhizobia

In Rhizobium strain DDSS69, it was observed by Sardesai and Babu (2001b) that

the specific activities of key enzymes of the pentose phosphate pathway, viz.,

glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, were

enhanced under cold stress to rapidly generate energy to overcome the stress. They

also reported diversity in the switching mechanisms of carbon metabolism among

cold-acclimated and noncold-acclimated Rhizobium isolates. In another study, they

detected a rapid induction of two high molecular weight membrane polypeptides

of 135 and 119 kDa within 15 min of exposure to 5�C in the Rhizobium strain

DDSS69. PAGE membrane protein profiles of stressed and nonstressed cells

revealed differential regulation of genes (Sardesai and Babu 2001b).

5 Agricultural Importance of Cold-Tolerant Microorganisms

Microorganisms play a major role in sustaining the production and productivity

of any agro-ecosystem through a myriad of roles that extend form nitrogen fixation,

nutrient solubilization, nutrient mobilization, plant growth promotion, and the

suppression of harmful pathogens and insects. A unique feature of temperate
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agro-ecosystems around the world is the short growing periods, which are inter-

spersed by suboptimal temperatures. Under such a scenario most microbial pro-

cesses are bound to slow down or worse even come to a standstill, thereby have an

adverse effect on the productivity. This effect is most pronounced in the case of

nutrient transformations, where microbes play an enormous role. In such a scenario

where time and temperatures are crucial determinants of both crop growth and

microbial growth, cold-tolerant microbes which retain their activity in suboptimal

temperature conditions are indispensable. But unfortunately not many efforts have

been undertaken in understanding the nature and properties of these microbes and

the quantum of information on the tolerance mechanisms of other agriculturally

important microorganisms is very scarce.

5.1 Plant Growth Promotion by Cold-Tolerant Microbes

The volume of soils surrounding roots is influenced chemically, physically, and

biologically by the plant root and is commonly referred to as the rhizosphere. This

is a highly favorable habitat for the proliferation of microorganisms which exert a

potential impact on plant health and soil fertility. The plant growth promoting

rhizobacteria (PGPR), which are an important component of the rhizosphere micro-

bial community, were first defined by Kloepper and Schroth (1978). In recent years,

the term has been modified as Plant Growth Promoting Bacteria (PGPB) to accom-

modate other strains that are nonrhizospheric in origin (Andrews and Harris 2003).

In temperate climates, the growth and activity of such rhizospheric communities are

highly dependent on the root zone temperature since most physiological processes

that influence plant growth virtually come to a standstill at suboptimal tempera-

tures. In such a scenario, it’s important that the root colonizing bacteria retain their

metabolic versatility at low temperatures, since plant growth promotion is achieved

by the action of several metabolic intermediates and end products. One of the major

mechanisms of plant growth promotion is the production of the stimulatory phyto-

hormones, by PGPR/PGPB within the root zone; these hormones stimulate the

density and length of root hairs resulting in the enhanced uptake of water and

mineral nutrients from soil (Volkmar and Bremer 1998). Apart from phytohormone

production, plant growth promotion is known to be mediated by a variety of

mechanisms including siderophore production (Katiyar and Goel 2004), antago-

nism toward deleterious root microorganisms (Misaghi et al. 1982), deamination of

the precursor molecule of the phytohormone ethylene whose accumulation in root

tissue is known to be detrimental to root growth and development (Glick et al.

1998), and induction of systemic resistance to plant pathogenic microorganisms

(Lavania et al. 2006).

The auxin, indole-3-acetic acid (IAA), is an important phytohormone produced

by PGPR, and treatment with auxin-producing rhizobacteria has been shown to

increase the plant growth (Patten and Glick 2002). The IAA producing capability of

microorganisms is useful in their identification and provides a valuable marker
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when examining the physiological roles or ecological significance of IAA in the

establishment and persistence of the organisms (Bric et al. 1991). Auxin production

in bacteria is regulated though the proline-linked pentose phosphate pathway

(McCue et al. 2000). Selvakumar et al. (2008a, b) reported the occurrence of

cold-tolerant plant growth promoting bacterial strains Pantoea dispersa strain 1A

and Serratia marcescens strain SRM from the North-Western Indian Himalayas.

These strains retained their IAA producing ability at 4 and 15�C. Seed bacterization
with these bacterial strains significantly enhanced plant biomass and nutrient uptake

of wheat seedling grown at cold temperatures. The genus Pseudomonas is an

important component of the rhizospheric microbial community and often plays an

important role in plant growth promotion. Mishra et al. (2008, 2009a) described the

cold tolerance and IAA production byPseudomonas sp. strain PGERs17 and NARs9
at cold temperature. Seed inoculation with these strains enhanced the seed germina-

tion, root and shoot lengths of wheat seedlings grown at low temperatures. Consid-

ering the metabolic versatility of Pseudomonads, it is possible to unearth a whole

of cold-tolerant plant growth promoting bacterial species in the future.

Another bacterial mechanism that positively influences plant growth is the

production of the enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase.

This enzyme plays a significant role in the regulation of the plant hormone, ethylene

and thus, influences the growth and development of plants. Bacterial strains con-

taining ACC deaminase can, in part, at least alleviate the stress-induced ethylene-

mediated negative impact on plants. Like many other abiotic and biotic factors,

accelerated ethylene production under high and chilling temperatures has widely

been reported by researchers both in plant tissues and microbial species in the

rhizosphere. Plants with ACC deaminase expression may cope with this unfavor-

able situation by lowering ethylene level like that under other environmental

stresses (Saleem et al. 2007). A psychrotolerant ACC deaminase producing bacte-

rium P. putida UW4 was found to promote canola plant growth at low temperature

under salt stress (Cheng et al. 2007). Considering the role of ethylene in stress

physiology, it can be rightly said that much more efforts are needed to decipher the

role of ACC deaminase producing bacterial strains in plant growth promotion under

cold temperature conditions.

Iron the fourth most abundant element in the earth’s crust is required for growth

of nearly all forms of life (Howard 1999). However, its availability to the organism

is very limited due to the rapid oxidation of ferrous (Fe++) to ferric (Fe+++) state.

Ferric ion is highly insoluble under physiological conditions and makes its acquisi-

tion by microorganisms a considerable challenge (Neilands 1995). Microorganisms

have evolved specialized mechanisms for the assimilation of iron, including the

production of low molecular weight iron chelating compounds, known as side-

rophores, which transport this element into their cells. Siderophores have been

implicated for both direct and indirect enhancement of plant growth by rhizospheric

microorganisms (Neilands 1981). Siderophores provide an advantage in survival of

both plants and bacteria of because they mediate competition that results in exclu-

sions of fungal pathogens and other microbial competitors in the rhizosphere by a

reduction in the availability of iron for their survival (Masalha et al. 2000,
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Wang et al. 2000). The role of siderophores in biocontrol of plant pathogens was

first demonstrated with pseudobactin, the siderophore produced by plant growth

promoting Pseudomonas strain B10 (Kloepper et al. 1980). A cold-tolerant mutant

of Pseudomonas fluorescens with a 17-fold increase in siderophore production and

increased rhizosphere colonization was developed by Katiyar and Goel (2004). This

mutant strain promoted growth of Vigna radiata plants at 25 and 10�C. Studies on
siderophore-mediated growth promotion by psychrotolerant bacteria still remain in

its infancy and need to be probed further.

An important facet of the competitiveness of a biocontrol agent is its ability to

persist and proliferate. However, it is often difficult to predict the behavior of a

particular microbe in the soil since the soil persistence of a bacterium may be

influenced by a number of different factors including soil temperature. Many

fungal phytopathogens are most destructive when the soil temperature is low,

hence it is reasonable to expect that the biocontrol agents are also cold-tolerant.

McBeath (1995) reported the isolation of several strains of Trichoderma sp. that
acted as biocontrol agents at low temperatures (i.e., 4–10�C) against a range of

different pathogenic fungi. Negi et al. (2005) have characterized a group of cold-

tolerant Pseudomonads from the Garhwal region of the Indian Himalaya. These

strains produced siderophores and exhibited plant growth promotion activity at

temperatures ranging from 4 to 25�C. Seed inoculation with these isolates resulted
in the suppression of major root borne diseases of garden pea. A novel bacterium

Exiguobacterium acetylicum strain 1P isolated from a high altitude soil in the

N.W. Indian Himalaya, which has ability to produce siderophores at 4�C and

inhibited the growth and development of Rhizoctonia solani, Sclerotium rolfsii,
Phythium, and Fusarium oxysporium under in vitro and pot culture conditions was

described by Selvakumar et al. (2009c). Recently, Malviya et al. (2009) have

isolated antagonistic, chitinolytic, psychrotolerant strains of Streptomyces
from glacial sites of the Indian Himalayas. These stains were found to inhibit

the growth of several plant pathogenic fungi. In the present scenario where the

demand for pesticide free food products is on the rise, much more research efforts

are required for identifying cold-tolerant strains of biocontrol agents for use in the

temperate growing regions.

Freezing injury in plants is particularly complex because of the nonuniform

behavior of different plant parts, e.g., stem, leaf, bud, flowers, etc. Ice nucleation in

plants is frequently not endogenous, but is induced by catalytic sites present in

microbial parasites, which can be found on leaves, fruits, or stems (Lindow 1983).

Ice nucleating strains of P. syringae increase the frost susceptibility of tomato and

soybean when sprayed on leaves prior to low temperature stress in addition to being

a pathogen of these plants (Anderson et al. 1982). Recognition of the gene asso-

ciated with ice nucleation in P. syringae first led to the synthesis of an “ice-minus”

mutant, which was found to be inactive in promoting ice nucleation in plants leaves

(Xu et al. 1998). Reducing the numbers of ice nucleating bacteria by different

approaches is an effective and environmentally safe method of controlling freezing

injury in plants and is considered a classic example of displacement of a bacterial

pathogen by a biocontrol agent.
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5.2 Diazotrophy Under Cold Temperature Conditions

Nitrogen fixation by symbiotic and asymbiotic bacterial genera is one of the major

means by which life is sustained in this planet. But this process is hugely affected by

cold temperature stress. The effects of low temperature on the activities of rhizobia

include depression of nodule competitiveness and nodule functioning. The produc-

tion of Nod metabolites by Rhizobium leguminosarum bv. trifolii is reduced by

lowering the temperature, which in turn may affect the nodulation and yield of host

legumes (McKay and Djordjevic 1993). Many studies have shown that suboptimal

temperatures affect the competitiveness of rhizobia for nodulation, delay root

infection, and inhibit nodule function (Lynch and Smith 1994). It has been esti-

mated that under temperate conditions, the establishment of an effective symbiosis

a week earlier in the crop-growing season could double the amount of nitrogen

fixed and thus increase legume crop productivity (Sprent 1979). Therefore, it is

imperative to select cold-adapted strains of rhizobia to overcome the cold induced

stress. In a major step in this direction, Prevost et al. (1999) selected cold-adapted

rhizobia from Canadian soils with the aim of improving the productivity of legumes

that are subjected to low temperatures during the growing season. For this purpose,

they used rhizobia associated with legume species indigenous to arctic and subarc-

tic regions. The candidate rhizobia wereMesorhizobium sp. isolated from Astraga-
lus/Oxytropis spp. and Rhizobium leguminosarum from Lathryrus spp. These

rhizobia are considered psychrotrophs due to their ability to grow at 0�C. The
advantages of cold-adapted arctic Mesorhizobium in improving legume symbiosis

were demonstrated with the temperate forage legume sainfoin (Onobrychis viciifo-
lia). In laboratory and field studies, arctic rhizobia were found to be more efficient

than temperate (commercial) rhizobia in improving growth of sainfoin and were

more competitive in forming nodules. Biochemical studies on cold adaptation

revealed higher synthesis of Csps in the cold-adapted rhizobia, than their meso-

philic counterparts. Since the arctic Mesorhizobium could not nodulate agronomi-

cally important legumes, the nodulation genes and the bacterial signals (Nod

factors) were characterized as a first step to modifying the host specificity of

nodulation.

Another approach was to screen for cold-adapted rhizobia naturally associated

with agronomic legumes cultivated in temperate areas. It has been shown that the

environment from which rhizobia are isolated, relates to their ability to enter into

symbiosis with legumes under specific environmental conditions. Rhizobia origi-

nating from the cooler climes of North America were able to positively influence

the nodulation and nitrogen fixation of soybean, compared with their counterparts

originating from the warmer southern climes (Zhang et al. 2003). A superior strain

of Sinorhizobium meliloti adapted for nodulation of alfalfa at low temperatures was

selected and was found efficient in improving growth of alfalfa in laboratory and

field studies. This strain also performed well in improving growth of alfalfa after

over wintering under cold and anaerobic (ice encasement) stresses, indicating a

possible cross-adaptation of selected rhizobia for various abiotic stresses inherent to
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temperate climates (Prevost et al. 2003). Ideal candidate rhizobia for temperate

legumes would, therefore, require a high degree of nodule competitiveness and

nitrogen fixing abilities combined with cold-tolerant traits. Such rhizobia would

retain their membrane fluidity at low temperatures, thereby enabling the synthesis

and activity of membrane-associated Nod factors that play a major role in the

nodulation and host specificity.

Azospirillum is an associative symbiotic plant growth promoting bacterium

that is predominantly associated with the grasses and cereal crops of the tropics.

Tripathi and Klingmuller (1992) proposed that growth, survival, and activity of

the bacterium are highly dependent on temperature. Kaushik et al. (2001) postu-

lated that a low or nonsignificant effect of Azospirillum inoculation in winter

crops has discouraged the large-scale use of this bacterium. Kaushik et al. (2000)

selected Tn5::lacZ mutants isogenic to wild type Azospirillum brasilense that

were capable of growing at cold temperatures. In field studies, they observed that

two strains of A. brasilense were able to influence wheat growth at suboptimal

temperatures (Kaushik et al. 2002). Though the temperature regime at which the

isolates were evaluated for their plant response was not strictly temperate, this is

one of the few studies on field performance of Azospirillum under suboptimal

temperatures. Considering its agronomic significance Azospirillum is a candidate

bacterium for the potential for exploration and development of cold-tolerant

isolates.

5.3 Phosphate Solubilization by Cold-Tolerant Bacteria

Phosphate solubilization by rhizospheric microflora is one of the most important

means of achieving plant growth promotion. Bacterial mineral phosphate solu-

bilization has been mainly attributed to the activity of glucose dehydrogenase; a

membrane-bound enzyme that is involved in the direct oxidation of glucose to

gluconic acid (Goldstein 1995). Subsequently, gluconic acid is enzymatically

converted to 2-ketogluconic acid and 2,5-diketogluconic acid. The 2-ketogluconic

acid is more effective than gluconic acid in solubilizing phosphate (Kim et al.

2002). Earlier studies on this phenomenon were restricted to mesophilic tempera-

tures (Chung et al. 2005; Chen et al. 2006). The first report of P solubilization at low

temperatures was made by Das et al. (2003) who studied cold-tolerant Pseudomonas
mutants for their phosphate solubilization activity at low temperature (10�C). They
found that all the cold-tolerant mutants were more efficient than their respective

wild type counterparts for phosphate solubilization activity at 10�C as compared

with 25�C. P solubilization by Pseudomonas mutant’s at the psychrotolerant range

has also been reported (Katiyar and Goel 2003; Trivedi and Sa 2008). But consid-

ering the environmental stability of mutant strains, for commercial inoculant

production it would be prudent to scout pristine environments for naturally occur-

ring psychrotolerant strains. Most progress has been made in this direction, mainly

from the Indian Himalayan Region.
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Pandey et al. (2006) isolated a cold-tolerant phosphate solubilizing and antago-

nistic strain of P. putida, from a subalpine location of Indian central Himalaya. This

strain solubilized phosphate in the temperature range of 4–28�C. Phosphate solubi-
lization by a cold-tolerant strain of P. fragi was reported by Selvakumar et al.

(2009a). This is a novel discovery since P. fragi is generally associated with

spoilage of dairy foods under refrigerated conditions. This strain solubilized phos-

phate at temperatures ranging from 4 to 30�C, besides significantly increasing the

percent germination, rate of germination, plant biomass, and nutrient uptake of

wheat seedlings under cold temperature conditions. A rhizosphere competent

phosphate solubilizing strain of Acinetobacter rhizosphaerae was isolated from

the cold deserts of the Indian Himalayan region by Gulati et al. (2009).Though

phosphate solubilization at cold temperatures by this bacterium was not described,

this is an early report on the occurrence of this bacterium in cold environments.

Vyas et al. (2009) screened 19 efficient phosphate-solubilizing fluorescent Pseudo-
monas isolates from the cold deserts of the trans-Himalayas, for tolerance against

temperature, alkalinity, salinity, calcium salts, and desiccation-induced stresses.

Phylogenetic analysis based on 16S rRNA gene sequencing placed these bacteria

under three groups with 14 strains in Group I including Pseudomonas trivialis
and P. poae, two strains in Group II together with Pseudomonas kilonensis and

P. corrugata, and three strains in Group III along with Pseudomonas jessenii and
P. moraviensis. In a recent study, Selvakumar et al. (2009b) reported that the

genetic clustering of cold-tolerant phosphate solubilizing Pseudomonads was

affected by their geographical origin. Repetitive element PCR profiles revealed

that isolates originating from the warmer southern slopes formed a distinct cluster,

while their counterparts from the cooler north facing slopes formed the second

cluster. The studies that have been mentioned above are mostly of exploratory

nature, while the real need of the hour is the development of a commercially viable

cold-tolerant PSB inoculant that can be profitably used in temperate agriculture.

5.4 Induction of Resistance to Cold Stress by PGPB

Cold temperature stress affects the metabolic activity of plants in multiple ways and

causes significant yield reduction. To overcome this, several exploratory studies

using microbial strains have been carried out. In vitro inoculation of Vitis vinifera
cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkhol-
deria phytofirmans strain PsJN, increased grapevine growth and physiological

activity at a low temperature. There was a relationship between endophytic bacte-

rial colonization of the grapevine plantlets and their growth at both ambient (26�C)
and low (4�C) temperatures and their sensitivities to chilling. The major benefits of

bacterization were observed on root growth (11.8 and 10.7-fold increases at 26�C
and 4�C, respectively) and plantlet biomass (6 and 2.2-fold increases at 26�C and

4�C, respectively). The inoculation with PsJN also significantly improved plantlet

cold tolerance compared with that of the nonbacterized control. Moreover, relative
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to the noninoculated controls, bacterized plantlets had significantly increased levels

of starch, proline, and phenolics. These increases correlated with the enhancement

of cold tolerance of the grapevine plantlets (Barka et al. 2006).

Mishra et al. (2009b) examined the effect of seed inoculation with 12 cold-

tolerant plant growth promoting Pseudomonas strains on wheat growth and physi-

ological changes under green house conditions at 10 � 2�C. It was observed that

bacterization with Pseudomonads significantly improved root length (27.9–70.5%),

shoot length (4.7–26.1%), dry root biomass (1.69–3.19-fold increases), dry shoot

biomass (1.27–1.66-fold increase) compared with nonbacterized control. Bacteri-

zed wheat plants showed enhanced levels of total chlorophyll, anthocyanin, free

proline, total phenolics, and starch contents, while a decrease was observed in the

Naþ/Kþ ratio and electrolyte leakage vaues. These parameters are critical to the

plant’s ability to tolerate cold stress conditions. In another study, they observed that

inoculation with cold-tolerant bacterium Pseudomonas spp. strain PPERs23 signif-

icantly improved root length (41%), shoot length (11.9%), dry root biomass

(44.4%), dry shoot biomass (53.8%), total chlorophyll (3.1%), total phenolics

(37.3%), and amino acid (39.4%) content of wheat seedlings. In this study also,

increased levels of physiologically available iron, protein, anthocyanin, proline and

relative water contents coupled with a decrease in Na+/K+ ratio and electrolyte

leakage values were observed in bacterized wheat plants. These parameters

indicate the ability of bacterium to alleviate cold induced stress in wheat seedlings

(Mishra et al. 2009c).

6 Industrial Potential of Psychrotolerant Microorganisms

The unique properties of cold-tolerant microorganism make them potential can-

didates for exploitation in industry. Microbial cryoprotectants like trehalose have

immense biotechnological potential and can be used in a wide range of applica-

tions (Lillford and Holt 2002). Similarly, the Antifreeze Proteins (Afps) from

bacteria can be used in a wide variety of ways (Tange et al. 2003). Cold active

proteases are used for the industrial peeling of leather by proteases at tap water

temperatures instead of heating to 37�C. During cold storage b-galactosidases are
used to remove lactose in milk, while cold active pectinases are used for the

clarification of fruit juices. Another interesting application is the use of a heat

labile alkaline phosphatase, which does not interfere with end labeling of polynu-

cleotide kinase after heat treatment. Cold-tolerant microbes and enzymes can be

used for the bioremediation of polluted soils and waste waters during winter in

temperate regions, when the degradative capacities of the endogenous microflora

is impaired by low temperatures (Feller and Gerday 2003).The development of

transgenic plants with increased frost tolerance is another exciting application.

The introduction of genes from microorganisms or even whole biosynthetic

pathways in plants has already been shown to improve freeze tolerance.
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Arabidopsis thaliana plants transformed with the codA gene encoding choline

oxidase and accumulating glycine betaine in the chloroplast showed a significant

improvement in freeze tolerance (Sakamoto et al. 2000).

7 Conclusion

Cold-tolerant microorganisms are widely distributed in the agro-ecosystem and

play a variety of roles extending from nitrogen fixation, plant growth promotion,

and alleviation of cold stress in plants. Though most research work conducted so far

has largely focused on rhizobia, it is a welcome sign that many agriculturally

important resourceful microbes are being described from various parts of the

earth. But serious attempts are needed to study the activity of enzymes such as

nitrogenases in cold-adapted microorganisms. Another interesting area where

research needs to be focused is the identification of cold active decomposing

microorganisms, since temperature is a major determinant of decomposition, and

most decomposition processes come to a standstill at suboptimal temperatures.

If research efforts succeed in identifying consortia of potential decomposers that

retain their enzymatic potential at lower temperatures, it would be of immense use

in agriculture the world over.
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Abstract Plant growth stimulating rhizobacteria that improve the yield of grami-

naceous crops have been studied since the 1930s. Increases in crop yield have often

been inconsistent, reflecting a lack of understanding by which PGPR exert their

effects. Many PGPR are able to fix N2, which was initially assumed to boost crops

by supplementing soil N. Subsequently, it became clear that for most free-living

PGPR other mechanisms affecting root development and nutrient uptake can

explain the increased crop yields. Endophytic bacteria have demonstrated some

potential to contribute to the N budget of certain graminaceous crops but require

more robust assessment of their potential. Here, we review the current state of our

understanding of PGPR in graminaceous crop cultivation, identifying their potential
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contribution to more sustainable agricultural practices but also highlighting issues

that need to be addressed before this technology can be appropriately assessed as a

replacement for inorganic N addition.

1 Introduction

The latter part of the twentieth century saw a remarkable rise in the productivity of

agricultural systems; today, the global production of food is 145% greater than that

of 1960 (Pretty 2008). In parallel with increases in agricultural output, the world

population has doubled from three to six billion over the same period; nevertheless,

on a per capita basis there is 25% more food for each individual compared to

50 years ago. China has demonstrated the most significant developments, increas-

ing overall food production fivefold and per capita production threefold since 1960.

In contrast, Africa has observed a 10% decline in per capita food production over

the same period (Pretty 2008), Currently, the global population could be fed by the

present level of agricultural output; however, the regional inequalities reflect

continuing political, economic, and social challenges preventing agriculture to feed

the current population, 1.2 billion of whom live in crippling poverty (Hazell and

Wood 2008).

The gravest issue for sustainable food security is the predicted increase in global

population, which is projected to rise from the current 6.8 billion and surpass

9 billion people by 2050. The burden of feeding these additional people will be

felt most keenly by developing countries, whose populations are projected to rise

from 5.6 billion in 2009 to 7.9 billion in 2050 (https://www.unfpa.org/public/).

Most developing countries have environmental constraints that will impede the

development of agricultural systems able to meet this challenge. These include lack

of water, desertification and insufficient cultivable land. Moreover, the increase in

urbanisation of the global population poses additional challenges. That will require

a 500% increase in economic activity driven by a 300% increase in both energy

consumption and manufacturing activity (Miller 2008). For many people in rapidly

developing economies, an increased disposable income coincides with the adoption

of a diet with a greater consumption of meat and processed cereal products. To meet

this demand, livestock will need to be raised intensively on a diet of cereals and oils

(Pretty 2008). This, in turn, will place an increased pressure on the available

agricultural land and how it is farmed. As a result, it has been argued that current

models of low-input agriculture relying on biological nitrogen fixation (BNF) and

requiring large areas of land will be unlikely to provide the annual requirement of

an extra 15 million tonnes of protein by 2050 to stave off widespread hunger

(Jenkinson 2001; Smil 2001).

The technological advances that have enabled agriculture to intensify its pro-

duction practices in order to keep pace with the increasing demand have relied on

the application of huge amounts of inorganic N fertiliser that effectively meets the

demand of crops throughout the growing season and removes the requirement for a
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fertility enhancing cycle in crop rotations. The exploitation of inorganic N fertiliser

has contributed to a 4% increase in aggregate global cereal grain production in the

40 years since 1960, during which period fertiliser consumption increased from

10.8 to 85.6 Mt N year�1 (Crews and Peoples 2004). The significance of inorganic

N fertiliser and the Haber–Bosch process that generates has been contextualised

by Smil (2001) who asserts that by 2050 over half of the human population will owe

its existence to synthetic N fertilisers.

While the application of inorganic N has had significant benefits for agricultural

food productivity and global food security in the short term, there are increasing

concerns around the sustainability of this technology to provide a long-term

solution to ensure that food production keeps pace with the burgeoning population.

The management of agricultural soil is fundamental to ensuring a sustainable

agricultural system; however, it is becoming clear that intensive agricultural systems

leads to the degradation of agricultural soils as a result of, among other factors, the

loss of organic matter, compaction and increased salinity, and leaching of inorganic

nitrate, along with associated costs such as fuel requirements and the loss of water

resources (Kibblewhite et al. 2008; Peoples et al. 1995; Smil 2001).

Consequently, there is increasing interest in developing agricultural management

systems that embrace the principles of sustainability. While such concepts are not

novel, there is an increasing urgency in developing and implementing them because

of increasing alarm that current conventional agricultural management systems

cannot continue linearly increasing their reliance on fertilizer consumption, pesticide

application, the expansion of agricultural land and machine usage indefinitely,

without detriment to the environment (Kitzes et al. 2008).

Pretty (2008) articulated three factors that defined sustainable agricultural practices

and technologies:

1. They have no adverse effects on the environment.

2. They are accessible and effective for farmers.

3. They lead to improvements in food productivity and have positive effects on

environmental goods and services.

The aim of this chapter is to map the contribution of plant growth promoting

rhizobacteria (PGPR) that are indigenous or inoculated into soils to the sustainable

cultivation of graminaceous crops. We examine how this technology have and may

continue to contribute to more sustainable approaches to the production of these key

crops in the context of increasing population growth and other environmental

pressures.

2 The Role of PGPR in Low-Input and Sustainable Agriculture

PGPR have been extensively studied and used as inoculants on graminaceous crops,

to increase yield and simultaneously reduce the requirement for inorganic fertiliser

application. There are numerous studies, utilising a range of bacterial taxa, which

explore the effects of PGPR inoculation on such crops. In Table 1, a summary of the
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effects of PGPR inoculation on a range of graminaceous crops including rice, wheat

and maize are presented, derived from studies that have been conducted at both

a laboratory and field scale. What is striking is the number of PGPR that have

N2-fixing ability but also the additional array of mechanisms of action, proposed to

account for the enhanced plant growth observed. Many of the studies report a

response of the crop under study and link it, often without robust data sets, to a

particular bacterial activity such as N2 fixation or production of phytohormones. It

is clear that the issues around the lack of reproducibility of response to PGPR

inoculation require a far more systematic approach before the technology can be

effectively deployed in the field. Such studies need, among other things, to be

designed to robustly test the mechanism(s) by which the plant responds to PGPR

inoculation and its reproducibility from one growing season to the next, a consistent

measure of the plants response (Vessey 2003) and an appraisal of the persistence of

the inoculated PGPR in the soil (Strigul and Kravchenko 2006).

3 Mechanisms of Action of PGPR

In much of the earliest work on the exploitation of PGPR in graminaceous crop

production, the mechanism of action of the bacteria was presumed to be a result of

the increased input of fixed nitrogen into the soil. Many of the taxa identified as

being effective PGPR are capable of fixing atmospheric nitrogen (Table 1).

Subsequent work has revealed that there are a variety of mechanisms through

which plant growth can be facilitated, including hormone production, enhanced

nutrient acquisition, pathogen suppression and N2-fixation, often working in parallel

to produce the observed response. These effects have been extensively studied and

reviewed. Here, we summarise the key findings suggesting that PGPR frequently

exert their effect through multiple mechanisms working simultaneously.

3.1 Biological Nitrogen fixation

Biological Nitrogen fixation (BNF) can occur in bulk or rhizospheric soil. Fixed

nitrogen can then be acquired through root uptake and contribute to the nitrogen

budget of the crop. The earliest large-scale experiments, exploiting PGPR potential

to enhance crop productivity used N2-fixing bacteria, with the implicit assumption

that it was this activity that was producing the enhanced crop yields. For example,

large-scale field trials in the 1950s used N2-fixing bacteria, principally Azotobacter
chroococcum as an inoculum on several million hectares of graminaceous crops

including wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Cooper
1959); however, owing to inconsistent results the trials were abandoned in the

1960s (Andrews et al. 2003). Other bacterial taxa, including Azospirillum spp. and

Agrobacterium radiobacter, were also extensively studied and trialled as potential
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substitutes for N fertiliser (Zavalin et al. 2001). One study in Russia to test the

potential of a strain of A. radiobacter, isolated from the rhizosphere of rice (Oryza
sativa L.), on winter wheat and spring barely appeared to give significant increases

(5–30%) in yield in 2 out of 3 years. At the same time, it was estimated that the

contribution of N2 fixation to total N assimilation was between 23 and 32%

(Bairamov et al. 2001). However, the lack of consistency in the results from

one year to the next reflected that of the earlier studies (Andrews et al. 2003).

More significantly, in this example, A. radiobacter, now reclassified as Rhizobium
radiobacter (Young et al. 2001), was a taxa that had never demonstrated the ability

to fix N2. Subsequent studies on this strain demonstrated unequivocally that, as with

all members of this taxon, R. radiobacter was not capable of fixing atmospheric N2,

nor did it form a physical association with the roots of barley. The plant growth

promoting substances it produced were most probably responsible for the increase

in yields of graminaceous crops (Humphry et al. 2007).

N2-fixing activity has been confirmed in PGPR in many other cases. Azospirillum
species have, for example, been implicated in the enhancement of rice (Pedraza

et al. 2009), maize (Montanez et al. 2009) and wheat (Sala et al. 2007) through BNF

mechanisms. As many of the PGPR exhibit N2-fixing abilities, it will always remain

a temptation to invoke this activity to explain some of the perceived enhancement

of yields observed when such bacteria are used as inoculants on graminaceous crops

(Andrews et al. 2003). However, it is apparent by careful analyses of the literature

that their mechanisms of action in enhancing crop yields are often due to a range of

other activities which ironically, can reduce soil N rather than supplement it. What

is clear is that none of the PGPR effects, studied to date, can match N fertiliser

application as a consistent replacement for soil N deficiency (Andrews et al. 2003).

In contrast to free-living PGPR diazotrophs in soil, there is evidence that

endophytic bacteria, particularly Azoarcus spp. in Kallar grass (Leptochloa fusca
(L.) kunth.) and Gluconacetobacter diazotrophicus and Herbaspirillum spp. in

sugar cane (Saccharum spp.) may play a major role in N2 fixation (Hurek et al.

2002; Baldani et al. 1997). Endophytic bacteria colonise plants without causing

damage to the host and fix nitrogen in situ. In graminaceous crops, most interest has

focussed on the potential of endophytic BNF to replace or reduce the requirement

for inorganic N fertiliser largely as a result of intensive studies on the effects of

acetic acid bacteria, particularly G. diazotrophicus. This bacterium has been shown

to make a substantive contribution to the nitrogen requirement of sugar cane in

several regions where this crop is cultivated, most notably in Brazil (Boddey et al.

1991). The contribution of this bacterium to the nitrogen balance of sugar cane

has been convincingly demonstrated with 15N isotope dilution and 15N natural

abundance studies (James 2000). It has also been isolated from other tropical

grasses, including kallar grass (Malik et al. 1997), rice (Muthukumarasamy et al.

2005) and Cameroon grass (Reis et al. 1994). Moreover, the closely related taxa

G. azotocaptans was isolated from maize, and Swaminathania salitolerans
and Acetobacter peroxydans from wild and wetland rice, respectively (Loganathan

and Nair 2004; Muthukumarasamy et al. 2005). The ecology and contribution

of G. diazotrophicus and other taxa to BNF in graminaceous crops has been
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extensively reviewed (Pedraza 2008; Saravanan et al. 2008); however, it is worth

summarising some of the key findings identified from such literature surveys. The

mechanisms, by which colonisation of the host by G. diazotrophicus is achieved,
remains to be thoroughly characterised; the bacterium evades the host defences and

the plant may control the initial colonization event through specific signalling

events (Nogueira et al. 2001; Vargas et al. 2003).

The interaction between G. diazotrophicus and sugar cane does not always

result in demonstrable BNF activity; data from Australia, South Africa and Japan

indicated no significant BNF from sugar cane colonised with G. diazotrophicus
(Saravanan et al. 2008). It is also clear that as well as BNF other plant growth

stimulating activities, including hormone synthesis, nutrient mobilisation and

pathogen suppression, (Saravanan et al. 2007, 2008 and references therein) play a

role in the enhancement of plant growth. The potential of endophytes on the

cultivation of more economically significant graminaceous crops has yet to be

thoroughly investigated. However, endophytic Azoarcus species have been shown

to colonise the interior roots of rice and express nitrogen-fixing systems (Hurek and

Reinhold-Hurek 2003).

3.2 Production of Phytohormones

The early large scale studies of PGPR using Azotobacter (in the 1930s–1950s) and

Azospirillum spp. (between 1976 and late 1980s) demonstrated that, in field trials,

it was possible to observe significant increases in yields with a number of grami-

naceous crops (Andrews et al. 2003 and references therein). However, results were

inconsistent and as a result the technology was never adopted. The original hypoth-

esis, that the increased crop yields were due to BNF by the PGPR increasing the soil

N budget, could not be substantiated. However, subsequent work has demonstrated

that there are a range of mechanisms at play, the most significant of which is the

production of phytohormones that increase root weight, length and surface area

(Vessey 2003).

There are a number of studies in which the inoculation of PGPR, along with the

addition of inorganic N fertiliser, results in an increase in crop yields comparable or

greater than that observed when conventional quantities of inorganic N are applied.

A study on wheat demonstrated maximum increases in yields of grain and straw

were observed in treatments where PGPR were used in combination with recom-

mended dosages of inorganic fertiliser (Akhtar et al. 2009). A further study

indicated that PGPR, which demonstrated ACC-deaminase activity, such as Pseu-
domonas fluorescens and Pseudomonas putida, could both improve wheat and

maize yield and reduce the dependence on inorganic N by 25%, while giving an

increase in wheat grain yield to 96% (Naveed et al. 2008a, b). Other workers have

demonstrated positive responses on wheat yields with reductions in the requirement

for inorganic fertiliser with strains of P. fluorescens and Azospirillum brasilense
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(Shaharoona et al. 2008; Sala et al. 2007). Such work needs to be rigorously

followed up for several seasons.

The mechanism of crop yield enhancement and the reduction on the requirement

for inorganic N may reflect short-term enhancement of N uptake from the pool

already present in the soil complementing that provided by the fertiliser. Over

time, as the residual N in the soil is depleted such applications of PGPR, with

reduced levels of inorganic N addition, may result in deficits for crop growth.

A consequence could be a reduction or inconsistent response of yield to this

protocol, typical of those that bedevilled earlier attempts to develop PGPR as a

tool for enhancing sustainability in agriculture.

3.3 Enhanced Nutrient Availability

A number of studies have proposed that the addition of PGPR to crops can enhance

yields by increasing uptake of nutrients, including nitrogen, phosphorus, potassium

and iron. The uptake of nutrients by plants represents an interaction between the

plant root, the physical and chemical environment of the soil and the rhizospheric

microbial community. PGPR may increase the surface area or roots through the

production of phytohormones, enabling greater uptake of key nutrients (Cakmakci

et al. 2007). G. diazotrophicus has been shown to solubilise Zn, an essential

micronutrient, a deficiency of which is common in sugar cane plants in which

this bacterium is an endophyte (Saravanan et al. 2008) or may mobilise key

nutrients by the production of siderophores (Fischer et al. 2007). Frequently, the

mechanisms underlying the observed crop growth enhancement are not understood

and, as a result, are attributed to a specific activity of the organism involved. In the

case of free-living diazotrophs, the additional provision of N to the plant is assumed

to be significant in observed increases in yields; however, such organisms do not

seem able to directly release fixed N to the plant and this occurs only through the

turnover of the microbial biomass (Richardson et al. 2009). In tandem with the N2

fixation, many PGPR also produce phytohormones that have a significant effect on

the crop root biomass and surface area, as seen in studies on rice (Mirza et al. 2006)

and maize (Kumar et al. 2007). As a consequence, the increases in grain yield may

reflect the indirect enhancement of plant nutrition through the increased root

surface area, as opposed to a direct effect of increased fixed N being available to

the plant form the diazotrophic bacteria. The effect of phytohormones on crop root

growth probably explains the increased N use efficiency in rice (Van et al. 2000)

and wheat (Akhtar et al. 2009) inoculated with PGPR.

Similarly, studies on rice, wheat and maize have all demonstrated that bacteria

with P-solubilising activity can have a positive effect on plant growth (Bashan et al.

2006; Adesemoye et al. 2008). However, the mechanisms remain ambiguous and

whether these organisms mobilise sufficient P to make a substantive contribution to

plant nutrition has not been resolved and phytohormones may once again play a

role in the positive increase in crop yields. Certainly, field studies have failed to
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consistently demonstrate such a response and few studies attempt to address the

significance of P solubilisation by demonstrating a negation of the response when

higher concentrations are applied (Richardson et al. 2009).

3.4 Enhanced Stress Tolerance

Large areas of agricultural land have been degraded by poor irrigation practice,

resulting in damage such as salinization which affects 20% of total irrigated areas.

Moreover, climate change appears to be a contributing factor to increased varia-

bility in rainfall (Hazell and Wood 2008). As a result, the impact of environmental

stresses, such as drought and salinity, on crop yields is significant (Kibblewhite

et al. 2008).

There is some evidence that the inoculation of crops with PGPR enhances the

tolerance of crops to such environmental stress. Pseudomonas spp. inoculated on

legumes were shown to ameliorate the effects of drought stress on the growth and

yield of the crop (Arshad et al. 2008). However, effective inoculation of crops

cultivated in soils subject to environmental stress requires that the bacteria

deployed can tolerate these conditions and remain effective in promoting plant

growth. Paul and Nair (2008) demonstrated that P. fluorescens MSP-393, used as

biocontrol agent of soil pathogens, remained capable of effectively colonising plant

roots even in high salinity soils. However, development of PGPR inocula for soils

subjected to one or several environmental stresses need to validate that they remain

effective under such conditions.

3.5 Indirect Effects

The application of PGPR to graminaceous crops may result in improved yields

because of other indirect effects. The most widely studied is the ability of many

such bacteria to suppress plant pathogens present in the rhizosphere. These effects

have been extensively reviewed (Francis et al. 2010; Richardson et al. 2009; Vessey

2003). Here, we report some examples indicating that such effects are as applicable

to graminaceous cultivation as they are to legume and vegetable crops. Azotobacter
and Azospirillum strains have been shown to inhibit Rhizoctonia solani in the wheat
rhizophere (Fatima et al. 2009) and Pseudomonas spp. have demonstrated similar

activity in rice and maize against a range of fungal pathogens (Lawongsa et al.

2008). This response can be due to the production of antimicrobial compounds or

competitive exclusion of the pathogen, as well as by inducing systemic resistance in

plants, but typically due to multiple mechanisms (Francis et al. 2009).

PGPR have also been shown to promote the interaction of beneficial fungi with

the plant host, for example, A. brasilense stimulated the root colonisation of maize

by arbuscular mycorrhizae that enhance the uptake of various soil nutrients.
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4 Application of PGPR to Soil

The use of bacterial inoculants to enhance crop production has been widely

practised in the cultivation of legumes for many years. As a result, there are well-

established technologies to add bacterial inoculants either as a liquid to coat the

seeds or directly to the soil, typically using a carrier, such as peat or other materials

like perlite, composted cork or bagasse (Albareda et al. 2008). In agricultural

applications, peat carriers have been the most widely used on a commercial scale;

they have a number of advantages, including, a long shelf life and better survival of

the bacteria compared to liquid inoculants added directly to the seed. However, they

have frequently resulted in inconsistent effects on crop yield, because of either the

quality of the inoculant being low (Brockwell and Bottomley 1995) or the bacteria

being unable to survive in the soils to which they are added as a result of either

adverse environmental conditions, competition from native bacterial flora (Catroux

et al. 2001) or a combination of these two factors.

The use of PGPR on graminaceous crops is a different issue to their use on

legumes, the mechanisms of action may occur in the rhizosphere (phytohormone

production, pathogen suppression, enhanced nutrient uptake) or be associated with

the colonization of the plant roots (phytohormones, BNF). In the first case, the aim

of the inoculation process is to engineer the rhizosphere to accommodate the

bacteria. The competitiveness of the introduced bacteria will reflect how well it

adapts to soil conditions and competes with the indigenous flora. Studies utilizing

genetically engineered P. putida strains in the wheat rhizosphere, inoculated by

broth culture application to the seed coat, have shown a rapid decrease in the

numbers of introduced bacteria by five orders of magnitude between sowing and

harvesting (Viebahn et al. 2003). The experiment was conducted over two growing

seasons, in the first some perturbation of the indigenous microbial flora was

observed but not in the second. Moreover, the effect of the genetically modified

PGPR on increased plant growth was no greater than that observed after a conven-

tional crop rotation event.

A recent study on the impact of inoculation of rice seeds with A. brasilense on
the diversity of bacteria in the phyllosphere showed no significant impact (Pedraza

et al. 2009). In another study, Azospirillum lipoferum was shown to significantly

shift the rhizosphere population of field grown maize up to 35 days after sowing

(Baudoin et al. 2009).

The influence of the plant genotype on the microbial community of the rhizo-

sphere has been understood for almost 40 years, following studies using several

wheat lines (Neal et al. 1970). This reflects the differential rhizodeposition

of different plant species and varieties. Ryan et al. (2008) have recently reviewed

data from a number of studies indicating the differential population of P. fluorescens
found in the rhizospheres of both different wheat varieties (Mazzola et al. 2004) and

plant hosts (Bergsma-Vlami et al. 2005).

The application and fate of inoculants on field-grown crops needs to be carefully

validated to ensure that they can produce some demonstrable benefit to yields.
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Recently, attempts have been made to mathematically model PGPR inoculation

into the rhizosphere (Strigul and Kravchenko 2006). Such approaches are welcome

as they enable the impacts of the different abiotic and biotic factors on PGPR

survival to be considered. Strigul and Kravchenko (2006) demonstrated, through

mathematical simulations, that the most significant factor affecting PGPR survival

was the competition for limiting resources with indigenous flora, followed by the

compatibility between the rhizodeposition of compounds by the plant host and the

ability of the inoculated bacteria to utilise them. Such work is useful in framing

ongoing studies in the use of PGPR, enabling a prediction of the success of a PGPR

inoculation in a particular soil with a specific variety of crop to be made.

5 Future Work

Most of the PGPR inhibit the deleterious phytopathogens by involving proteins,

peptides, etc. Their gene manipulation may help in engineering proteins, etc., which

ultimately diffuse out in the rhizosphere. PGPR or bacterial inoculums adapted to

a specific soil and crop varieties are in the form of ‘bespoke inocula’ proved

beneficial in increasing yield.

5.1 Engineering the Rhizosphere

Engineering the rhizosphere of crops to improve productivity and plant health has

been studied through a number of mechanisms, including manipulating the plants to

modify their rhizosphere to promote nutrient availability, suppress pathogens or

encourage PGPR bacterial growth (Ryan et al. 2008). Similarly, the inoculation of

soil with a PGPR leading to enhancement of crop yields implies that the bacteria

have become established in the rhizosphere of the plant and are exerting a stimula-

tory effect via one or several mechanisms described above. As a result, there is an

implicit assumption that the rhizosphere has been manipulated or engineered by the

inoculation process. Such a response can be demonstrated in the field; for example,

A. lipoferum inoculated onto the seed of field grown maize produced a statistically

significant shift in the composition of the indigenous rhizobial community

(Baudoin et al. 2009). However, several studies including a field-based study on

wheat have indicated that such inoculation effects are transient as a result of a rapid

decline in inoculant numbers after the bacteria are added (Viebahn et al. 2003).

Advances in our understanding of the ecological effects of inoculation will also be

significant in enabling more effective modelling of the inoculation. Recent studies

indicate invading bacteria might release anti-competitor toxins or parasitic phage to

overcome the barrier presented by the resident flora in the rhizosphere (Brown et al.

2006). More explicit manipulation has been demonstrated by engineering PGPR

strains to enhance their ability to suppress pathogens or inhibit the production of
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stress hormones by the plant (Ryan et al. (2008)). It is unlikely that genetically

engineered strains offer a realistic mechanism to exploit PGPR effectively in the

short and medium term, as they would have to satisfy stringent regulatory criteria,

demonstrate a reproducible positive impact on crop yield and in some areas

significant public antipathy to such technology.

5.2 Bespoke Inocula

The effective utilisation of PGPR in the future will demand that there is a much

more rational approach to the choice and delivery of the particular bacterium into

the field. This will depend on a range of variables that require consideration

(Trivedi et al. 2005). The development of ‘bespoke inocula’ that are adapted to

specific soil and crop varieties is essential if the full benefit of PGPR increase in

crop yields is to be realised (Cummings and Andrews 2003). However, a conse-

quence of such parochial inoculants is that the cost of development and production

may outweigh the benefits in terms of increased yields and reduce the size of the

potential market for such products such that they are not economically viable.

6 Conclusions

At the outset of this discussion, we aimed to map the potential contribution of

PGPR to the sustainable cultivation of graminaceous crops. We described the

three factors that defined sustainable agricultural practices and technologies

(Pretty 2008):

1. They have no adverse effects on the environment.

PGPR represent a less significant threat to the environment than the use of

inorganic N or pesticide application. However, in the longer term, the conse-

quence of inoculation of soils with PGPR on microbial soil diversity is

unknown. Most studies indicate that such bacteria rapidly reduce in competition

with the indigenous flora. Genetically engineered strains are possible but remain

an expensive and potentially more controversial approach to the technology.

However, until it has been demonstrated to be a robust and reproducible method

of crop yield enhancement this approach does not appear to be viable.

2. They are accessible and effective for farmers.

The technology has had a long and chequered history, while the production of

inoculants is relatively cheap, until they can be proven to produce a return for the

additional cost it is unlikely to be widely taken up by farmers. Inoculant

technology has developed significantly in recent years, in terms of scale and

quality, particularly for legumes. The mechanisms by which PGPR seem to exert

their most significant effect on crop growth is by enhanced nutrient uptake.
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However, they do not offer significant reproducible gains in graminaceous crop

yield year on year. More systematic approaches to research questions should be

adopted to determine how PGPR can be most effectively deployed to improve

agricultural productivity

3. They lead to improvements in food productivity and have positive effects on

environmental goods and services.

Questions remain whether PGPR inoculation of graminaceous crops could offer

a long-term increase in productivity – the evidence does suggest that the key

response of graminaceous crops to PGPR inoculation is an improvement in

nutrient uptake from the soil and a number of studies have shown (Table 1)

that as a result more efficient utilisation of inorganic fertiliser can be observed

resulting in the requirement for the application of lower amounts to the soil

without compromising yield – and whether this is sufficient to offset the

additional cost of the inoculation itself requires systematic study, but this

would give a positive effect on sustainability.
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Abstract The extension of nitrogen-fixing symbioses to cultivated rice has been a

long-standing goal in the field of biological nitrogen fixation. Endophytic bacteria

have been found in virtually every plant studied, where they colonize the internal

tissues of their host plant and do not cause any harmful effect to their host plant.

Therefore, there is a need to use endophytic diazotrophic bacteria that can make

biologically fixed nitrogen available for the growth of rice plants. However, prior to

introducing any selected endophytic diazotrophic strain into rice plant, the port of

entry of the endophytic bacteria, the interaction via this bacteria and their host plant

should be clarified. Furthermore, the complexity of bacterial community such as the

behavior of native species inside the rice tissue and their interaction with inoculated

endophytic strain should be clearly demonstrated. Moreover, the mechanism of

plant response to those of bacteria should also be revealed. Consequently, the

diversity of endophytic diazotrophic bacteria, the colonization sites and infection

pathways, the effect of diazotrophic bacteria on rice growth, as well as the com-

plexity of endophytic diazotrophic bacteria community structure will be reviewed

and discussed in this chapter.
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1 Introduction

Rice (Oryza sativa) is the most important staple crop in the developing world. In the

next three decades, the world will need to produce about 60% more rice than

today’s global production to feed the extra billion people (Ladha and Reddy

2003). Nitrogen is the most important input required for rice production. In order

to make rice cultivation sustainable and less dependent on chemical nitrogen

fertilizer, it has been shown that the proportion of plant growth promoting bacteria,

which is bacterial endophytes, is higher than the case of bacteria found on the

rhizoplane or in the rhizosphere (Hallmann et al. 1997). Therefore, an endophytic

diazotrophic bacterium is the high potential group of biofertilizers that can be used

for rice cultivation.

The term “endophyte” is defined as an organism, inhabiting plant organs that at

some time in its life can colonize internal plant tissue without causing apparent

harm to the host (Petrini 1991). Endophytes have been discovered in high numbers

within different tissues of various plants. Various endophytic nitrogen fixing

bacteria, named “endophytic diazotrophs” have been detected most frequently in

the nonsymbiotic roots and vascular tissues of several nonleguminous plants (Hall-

mann et al. 1997). Endophytic diazotrophs have been proposed to be responsible for

the supply of biologically fixed nitrogen to their host plant such as Pantoea sp. and

Ochrobactrum sp. to deep-water rice (Verma et al. 2004), Herbaspirillum sp. B501

to wild rice (You et al. 2005), Pantoea agglomerans YS19 (Feng et al. 2006) and

Azoarcus sp. strain BH72 (Reinhold-Hurek et al. 2006) to rice. These endophytes

do not cause damage to the host organism but they promote plant growth by

the production and secretion of plant growth regulators (Verma et al. 2001), the

antagonistic activity against phytopathogens (Downing and Thomson 2000) and

the supply of biologically nitrogen fixation (Ladha et al. 1997). Therefore, culti-

vated rice fields are considered to be ideal niches for biological nitrogen fixation

(BNF), especially for endophytic diazotroph bacteria.

It is well known that a remarkable diversity of N2-fixing bacteria is naturally

associated with field-grown rice (Balandreau 1986). However, in the case of

wetland rice, even when specific varieties have been shown to fix N2 (Ladha

et al. 1997), it will be extremely difficult to isolate the organisms responsible,

because approximately 90% of the bacteria isolated from surface-sterilized rice

plants (several species and varieties, plus some related genera) using N-deficient

media are nondiazotrophs (Barraquio et al. 1997). In addition, the culturable

diazotrophic population is extremely varied, and so far virtually uncharacterized

(Stoltzfus et al. 1997). Also, the behavior of native species inside rice tissues, and

the natural association and endophytic interaction of diazotrophs with rice are

considered very promising. The microbial community in rice is inherently complex,

and assessments performed with such a complex population do not always reveal its

specific components. Moreover, the community structure of the bacterial popula-

tion, both culturable and unculturable strains, inside the rice should be considered

especially in relation to the actual rice field soil.
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It is widely recognized that endophytic diazotroph inoculum is capable of fixing

N more efficiently than diazotrophs that remain in the rhizosphere or on the

rhizoplane. This may be due to the fact that the plants directly provide the endo-

phytic diazotroph bacteria with their nutrient requirement. Therefore, they do not

need to compete with other soil microbes for scarce resources. In return for

providing this niche, the bacteria provide fixed N and/or plant growth-promoting

compounds to the host plant.

In the present chapter, we focus on the diversity of endophytic diazotrophic

bacteria, and the colonization sites and infection pathways will be discussed.

2 The Diversity of Endophytic Diazotrophic Bacteria

Diverse endophytic diazotrophic bacteria have been isolated from rice plants. The

endophytic niche offers protection from the environment for those bacteria that can

colonize and establish in planta. These bacteria generally colonize the intercellular

spaces, and they have been isolated from all plant compartments including seeds

(Kaga et al. 2009).

Bacteria belonging to the genera Azospirillum, Herbaspirillum and Azoarcus are
found as endophytes of rice mostly from the tropical regions. Azospirillum has been

found in the elongation and root hair zones of roots, and some strains of both

A. lipoferum and A. brasilense are either facultatively or obligately endophytic

(Baldani et al. 1997). Strains of A. brasilense can colonize plant tissues differently;
some strains live only on root surfaces, whereas others colonize cortical intercellu-

lar spaces or even the vascular tissue (James and Olivares 1998). Besides, the

ability of fixing nitrogen, both A. brasilense and A. lipoferum can produce plant

growth hormone auxin (Costacurta and Vanderleyden 1995). Nitrogen-fixing bac-

teria belonging to the genus Azoarcus has been found mainly in roots of Kallar grass

(Leptochloa fusca) and rice in the intercellular spaces, xylem vessels, and dead root

cells. Azoarcus has been demonstrated to spread systemically within the plant via

the xylem vessels (Hurek et al. 1994). In addition to the plant roots, this bacterium

has been discovered in close interaction with a rhizosphere fungus (Hurek et al.

1997). The genus Herbaspirillum contains an unusual group of endophytes in the

respect that these bacteria may become pathogenic to their host under certain

conditions. H. seropedicae strain Z67 colonized mainly subepidermal regions of

rice roots (Roncato-Maccari et al. 2003). There are several bacterial species, in

addition to the most well studied root endophytes, which have been isolated from

gramineous plants, whereas certain species are less studied, but connected by their

ability to fix nitrogen (James and Olivares 1998). Genera Burkholderia and Klebsi-
ella are preferably regarded as endophytes (Baldani et al. 2000; Palus et al. 1996).

The isolation of presumptive endophytic diazotroph bacteria from rice has also

been reported. For example, K. oxytoca and Enterobacter cloacae have been iso-

lated from the rhizosphere of wetland rice (Fujii et al. 1987). Serratia marcescens
IRBG500 have been observed within rice root, stem, and leaves and could also
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increase the root length and root dry weight of the inoculated plants (Gyaneshwar

et al. 2001). Teaumroong et al. (2001) found that five endophytic bacteria isolates

from Thai rice showed a high N2-fixation potential and three strains were able to

produce the plant growth promoting substance IAA. P. agglomerans (Remus et al.

2000), Alcaligenes faecalis (You and Zhou 1989), and a few other bacteria belong-

ing to the genera Pseudomonas, Enterobacter and Bacillus (Lindberg et al. 1985;

Persello-Cartieaux et al. 2003; Watanabe and Lin 1984) have also been considered

as endophytic bacteria.

A recent study published by Minamisawa et al. (2004) reported the existence of

anaerobic N2-fixing consortia (ANFICOs) in many gramineous plants consisting of

N2-fixing clostridia and diverse nondiazotrophic accompanying bacteria which

were phylogenetically dispersed in the b- and g-Proteobacteria and the high

CþG content and low GþC content Gram-positive lineages (Fig. 1a). The phylo-

genetic analyses of 40 anaerobic N2-fixing isolates from various origins categorized

them exclusively into clusters I and XIVa among the 17 clusters of Clostridium spp.

on the basis of their 16S rRNA gene sequences (Fig. 1b). The clostridial isolates

were further subdivided into groups I and II in cluster XIVa and groups III, IV, and

V in cluster I. These clusters and groups were not clearly correlated with the plant

species, plant tissue, or location of isolation. Their work indicated that clostridia

should be candidates for diazotrophic endophytes in grasses, and also demonstrated

a new principle in environmental microbiology, i.e., consortium of bacteria, rather

than monocultures, may be responsible for a particular activity within a very

complex environment. Recently, Prakamhang et al. (2009) reported the population

of viable endophytic bacterial communities within each plant part and growth stage

of rice under different soil conditions in cultivated rice (O. sativa L. cultivar

KDML-105), single isolates from each diazotrophic consortium were shown to be

capable of both the inhibition and promotion of N-fixation and found closely related

to E. dissolvens, Brevundimonas aurantiaca, P. agglomerans, Pseudomonas spp.,
Rheinheimera sp. and Enterobacteriaceae. This is the first report of diazotrophic

nature of Rheinheimera strain, although it has been reported that this bacteria is

associated with spores of the arbuscular mycorrhizal fungi (Roesti et al. 2005) and

have association to the root of the tomato plant (Kim et al. 2006).

3 Colonization Sites and Infection Pathways

According to Dobereiner’s report (1997), endophytic diazotrophs, by inhabiting the

interior of the plants, can avoid the competition with rhizospheric bacteria and

derive nutrients directly from the host plants. In return, as the plant interior may

provide an environment conducive to N-fixation by being low in O2 and relatively

high in carbon, the bacteria can fix N more efficiently to the host (James and

Olivares 1998). The stele of plants has been considered to be colonized by patho-

gens only (Campbell and Greaves 1990) or by saprophytes (Gagné et al. 1987).

Vessels of nondiseased plants were thought to be sterile. This is not true for
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Fig. 1 Phylogenetic tree of anaerobic nitrogen-fixing bacteria and accompanying bacteria from

various origins and representative close relatives by 16S rRNA gene sequences (Minamisawa et al.

2004). (a) Representative members of ANFICOs; grey area indicated nitrogen-fixing bacteria,
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endophytic diazotrophs, as first found in Azoarcus sp. BH72 in Kallar grass and

rice. The bacteria were present in vessels of roots in gnotobiotic cultures demon-

strated by immunogold-labeling using genus-specific antibodies (Hurek et al. 1991,

1994). Microscopical studies using immunological approaches and reporter genes

have clearly shown similar colonization patterns for several nitrogen-fixing grass

endophytes, such as Azoarcus sp. BH72 (Hurek et al. 1994), H. seropedicae (James

and Olivares 1998),Gluconacetobacter diazotrophicus (Cavalcante and Dobereiner
1988) and certain strains of Azospirillum spp. (Schloter and Hartmann 1998).

In plants showing no symptoms of disease, Azoarcus sp. BH72 colonizes the

original host Kallar grass and also rice seedlings in a similar way. Outer cell

layers, epidermis and the root cortex are colonized inter- and intracellularly within

2–3 weeks, the aerenchyma which occurs in waterlogged plants being the main site

for large microcolonies (Egener et al. 1999; Hurek et al. 1994). The main inter-

cellular colonization pattern raises questions on the delivery of nutrients, especially

carbon sources for the bacteria (Hurek et al. 1994). Rarely, the bacteria penetrate

deeply into plant roots into the stele where they may present in the parenchyma

and in xylem vessels. The detection of Azoarcus sp. in stelar parenchymatic cells of

the culm and in vessels of Kallar grass and rice (Hurek et al. 1991, 1994) suggested

that systemic spreading into shoots may be mediated through the transport in

vessels. However, shoot colonization of Gramineae appears to be more obvious

in G. diazotrophicus (James and Olivares 1998) and H. seropedicae (Gyaneshwar
et al. 2002). Kaga et al. (2009) hypothesized that endophytic bacteria are considered

to originate from the external environment. To examine this hypothesis, endophytic

bacteria were isolated from the rice (O. sativa, cultivar Kinuhikari) seeds, the

shoots, remains of the seeds, and roots of rice seedlings that were aseptically

cultivated in vitro from surface-disinfected seeds. Of the various bacterial strains

isolated, the closest relatives, identified by 16S rRNA gene sequencing, were;

Bacillus firmus, B. fusiformis, B. pumilus, Caulobacter crescentus, Kocuria palus-
tris, Micrococcus luteus, Methylobacterium fujisawaense, Me. radiotolerans, and
P. ananatis. The latter three species have been detected frequently inside both rice

seedlings and mature rice plants. These results indicate that rice seeds are an

important source of endophytic bacteria. The bacteria that colonize the seed interior

appear to infect the subsequent generation via seeds and become the dominant

endophytic species in the mature plant. The presence of diazotrophic bacteria was

also detected in roots, stems and leaves (Prakamhang et al. 2009). The location of

Fig. 1 (continued) accompanying bacteria. (b) Tree of 40 isolates of anaerobic nitrogen-fixing
bacteria from various pioneer plants and wild rice species, including M. sinensis, S. spontaneum
(wild sugarcane), Polygonum sachalinense, Saccharum hybrid sp. (sugarcane), Oryza sativa
(cultivated rice), and O. rufipogon, O. nivara, O. officinalis, and O. redleyi (wild rice species).

Grey box indicated the nitrogen-fixing bacteria. The trees are based on>1.2 kb of DNA sequences

and were constructed by the neighbor-joining method. Bootstrap values (percentages from 1,000

replications) are indicated. Bold letter indicated the reference strain, regular letter represent

isolated strain. The utilization of carbon sources was tested for 30 isolates, which are indicated

with asterisks (Adapted from Minamisawa et al. 2004)
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the Rheinheimera sp. J3-AN42 in root of rice on the fifth day after inoculation

(DAI) was observed with the most intense color development on the lateral roots

(Fig. 2a) and root junctions (Fig. 2b).

Endophytic microorganisms differ remarkably from highly developed root nod-

ule symbioses, in which rhizobia enter the plants through root hairs via infection

threads. The infection of grasses by endophytes is similar to the crack entry. One

site of primary colonization is the points of emergence of lateral roots, where

bacterial microcolonies can readily be detected, and bacterial cells have been

found between the cell layers of the lateral root and the cortex of the main root.

Another route of entry is the root tip at the zone of elongation and differentiation.

The bacteria can invade intercellular and intracellular and may penetrate into the

central tissues (Hurek et al. 1991, 1994), with the exception of Azospirillum spp.

which is mainly regarded as a rhizoplane colonizer (Steenhoudt and Vanderleyden

2000). The entry of bacteria into the root is most likely an active process, which

might be mediated by enzymes degrading plant cell wall polymers. Two types of

cellulolytic enzymes, cellobiohydrolase and b-glucosidase have been detected in

Azoarcus sp. BH72 (Reinhold-Hurek and Hurek 1998), pectinase and cellulase

production were also detected (Prakamhang et al. 2009). Further insights into the

cellular machinery for plant invasion, and a comparison with pathogens and

symbionts, will be fostered by the genome analysis.

4 Complexity of Endophytic Diazotrophic Bacteria

Community Structure

While the search for a natural association and endophytic interaction of diazotrophs

with rice is considered very promising, the microbial community in rice is also

inherently complex, and assessments performed with such a complex population do

not always reveal its specific components. The PCR–DGGE analysis conducted

Fig. 2 Light micrographs of GUS-stained roots, stems, and leaves of rice at 5 days after

inoculation with strain VFR5-3 marked with GUS. Arrows indicate the most intense GUS activity

on the lateral roots (a), root junction (b)
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directly on rice tissue samples obtained in Thailand using 16S rDNA primers was

used to elucidate the structure of the endophytic bacterial communities (Fig. 3).

Almost all of the samples contained two major bands of DGGE–PCR products

except that from reproductive stage of rice. Each sequence retrieved from the bands

a–d showed similarity to different strains. While band a has a high similarity to

E. dissolvens, band b showed similarity to B. aurantiaca, band c to P. agglomerans,
and band d to Pseudomonas sp. (Prakamhang et al. 2009).

Recently, the endophytic–endophytic consortium interaction within rice plant

has been reported. Since the N-fixing activities of other single culture occurred

more than those of the original combinations (Prakamhang et al. 2009), this

suggests the presence of the accompanying bacteria that produced specific meta-

bolites of consortium that induced/reduced the N-fixation as well as association of

nondiazotrophic endophytes in culture. The surface-sterilized rice plant materials

were mechanically macerated and then cultured in N-free semisolid medium for

determinations of the N-fixing bacteria as a consortia or original mixed culture.

Each single isolate was tested for inhibition/promotion to the other isolate in the

same consortium. This suggested that one single isolate affected other single

isolates in the same consortium by producing agents that can kill the bacteria

(bactericidal effect) as shown by the clear zone in the bacterial layer (Fig. 4).

However, some consortia do not show any clear zone around the spotted culture

filtrate of each single isolate. Perhaps one single isolate of this consortium

produced agents that can inhibit only N-fixing activity (bacteriostatic effect).

Similarly, a major feature of ANFICOs is that N- fixation by the anaerobic

clostridia is supported by the consumption of oxygen by the accompanying

bacteria in the culture and the presence of unknown metabolites (Minamisawa

et al. 2004).

Fig. 3 PCR–DGGE analysis of 16S rRNA gene banding patterns from rice endophytic bacteria in

samples from plants grown in different types of soil (fertilized paddy soil, unfertilized paddy soil

and uncultivated forest soil). Arrows show excised and sequenced bands (a–d). Azt., Azotobacter
sp.; Asp., Azospirillum sp.; R, root; S, stem; L, leaf. (Adapted from Prakamhang et al. 2009)
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5 Rice Growth and Endophytic Bacteria

Microbial promotion of plant growth may be the outcome of several additional

factors besides the nitrogen fixation. For example, an indirect plant growth promo-

tion is the production of phytohormones, which has been considered to be the main

function in the symbioses. Almost all root endophytes also fix nitrogen (Baldani

et al. 1997). However, the benefit of their nitrogen fixing ability for the plant has not

been demonstrated indisputably (James 2000). P. agglomerans can infect and

colonize in the rice roots and produce IAA and have been shown to be a potent

biological control agent against fungal disease (Verma et al. 2001). Production of

auxins and gibberellins is also typical for many root associated endophytic bacteria

such as Azospirillum sp., G. diazotrophicus, and H. seropedicae (Bastián et al.

1998). The flavonoids, quercetin and diadzein, significantly increased the endo-

phytic colonization ability of Serratia sp. than growth hormones. The induced

colonization of Serratia sp. due to quercetin proportionally increased the in planta
nitrogenase activity which is reflected in the increased plant height, protein and

chlorophyll contents of rice seedlings (Sandhiya et al. 2005). However, apart from

the roots, the importance of the microbial production of phytohormones has been

evaluated to be low, and the significance of these products for the plant has

remained ambiguous (Zinniel et al. 2002). Therefore, endophytic function which

is considered distinctively beneficial for the plant appears to be the protection of the

host against pathogens. As, not all endophytes are responsible for producing

antagonistic substances, their role is yet to be discovered. Nevertheless, it appears

that the function of an endophyte may be composed of several diverse factors that

may together have a positive influence on the plant.

Nitrogen fixation is catalyzed by the enzyme nitrogenase complex. More than,

20 genes have been identified as controlling the structure and function of the nitro-

genase system, and much functional detail has been defined. A substantial mole-

cular diversity of N fixing bacteria has been detected in field grown rice based on

retrieval of nifH gene fragments from root DNA (Ueda et al. 1995). The diazotrophic

Fig. 4 Antimicrobial

activities of culture filtrate of

strain VFR3-1 corresponding

to bacterial growth as show

by the inhibition zones in the

bacterial layer. The N-free

plate was cultured with

VFR3-1-1 inoculated with

1 ml (a), 2 ml (b), 3 ml (c),
and 4 ml (d) of single culture
VFR3-1-2
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endophyte of rice, Serratia sp., was marked with enhanced green fluorescence

protein (egfp)-Km marker gene by biparental mating, and was used for colonization

studies in rice. The conjugants established themselves endophytically in rice root,

stem and leaves, with the stem being most colonized (Sandhiya et al. 2005). The

expression of nif genes of H. seropedicae LR15 strain occurred in roots, stems and

leaves as detected by the GUS reporter system, and the colonization of plant tissue

by H. seropedicae did not depend on the nitrogen-fixing ability (Roncato-Maccari

et al. 2003). To detect N-fixing bacteria in a plant without using culture methods,

nifH gene segments were amplified with degenerate primers from DNA extracted

from stems and leaves of rice plant. Furthermore, the study of Ueda et al. (1995)

demonstrated the extent of phylogenetic diversity of diazotrophic bacteria asso-

ciated with rice roots by characterizing 23 nifH gene sequences derived directly

from rice roots without culturing the organisms. This study also showed a variety of

significant components of the diazotrophic community dominated mainly by pro-

teobacteria. Similar results were obtained by Prakamhang et al. (2009), in which

nested PCR–DGGE analysis with nifH primer demonstrated less diazotrophic

bacterial diversity in the roots of rice cultivated in paddy soil amended with

nitrogen fertilizer than in unfertilized and previously uncultivated soil, and plant

tissue type was found to dictate the endophytic diazotrophic community structure

rather than the type of soil or fertilizer amendment (Fig. 5). Furthermore, most

isolates were detected both by culturable approach and by DGGE, suggesting that

the molecular approach directly reported culturable endophyte bacteria. However,

some isolates such as those from leaves with no-fertilizer soil of all stages of

growing were not detected by ARA procedure, suggesting that these endophytic

bacteria are nonculturable (or not yet cultured) endophytic bacteria from rice plants.

The dendrogram constructed from the PCR–DGGE of nifH gene band pattern of

endophytic diazotrophic bacteria within each parts (root, stem, and leaf) of rice

Fig. 5 Nested PCR–DGGE of nifH banding patterns from rice endophytic bacteria. R, root;

S, stem; L, leaf; types of soil as in Fig. 3
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plant represented high complexity of community in the rice root (Fig. 6a). On the

other hand, in stem and leaf, stages of growth seem to dictate endophytic diazo-

trophic bacteria community. For example, in stem and leaf, bacteria of each stages

Fig. 6 Dendrogram obtained from UPGMA cluster analysis of PCR–DGGE of nifH gene band

pattern of rice endophytic diazotrophic bacteriawithin stage of growth and part of rice plant; seedling

stage (a), vegetative stage (b), and reproductive stage (c). Abbreviations, First letter is growth stage
of rice (S; seedling stage, V; vegetative stage, R; reproductive stage), second letter is type of soil (F;

fertilized, N; unfertilized, U; uncultivated soil), and third letter is rice part (R; root, S; stem, L; leaf)
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of growth were grouped together (Fig. 6b, c). This result suggested that plant tissue

types may dictate the endophytic diazotrophic community structure rather than the

type of soil or fertilizer amendment.

However, only the presence of nitrogenase gene does not indicate that bacteria

are actively fixing nitrogen (James 2000). Culturing techniques have been used to

determine the type of individual species present, but these techniques yield biased

results and a misrepresentation of the types of bacterial species that are active in the

environment. The reverse transcriptase PCR (RT-PCR) makes it possible to assay

for cells that are actively expressing specific gene at the time of sampling and it has

been used recently to detect nifH expression of Azoarcus sp BH72 in Kallar grass

and rice (Hurek et al. 2002), and Herbaspirillum sp. B501 associated in the shoot

(leaf and stem) of wild rice (You et al. 2005). Recent study of Prakamhang et al.

(2009) showed that the nifH gene expression could be differently detected in each

part and growth stage of rice plants as well as could be influenced by soil nitrogen

status (Fig. 7). The expression level of the nifH gene in all roots from plants grown

in N-fertilized soil was the lowest among the treatments studied. The results

confirm the complexity of the endophytic diazotrophic bacterial community, and

indicate that the type of plant tissue seems to influence the community structure.

In addition to fertilization with nitrogen, variations in the growth stage and part

of rice plant and the environmental conditions caused large differences in the

population structure of endophytic diazotrophs, as demonstrated in a culturable

approach. Nitrogen fertilization has been reported as a leading repression factor of

nitrogenase genes and inactivation of nitrogenase activity in most diazotrophic

bacteria (Egener et al. 1999; Fuentes-Ramirez et al. 1999; Martin and Reinhold-

Hurek 2002). Nevertheless, the diazotrophs abundant in rice plants may be either

rapidly decaying or overgrown by others after fertilizer application. Colonization

of maize plants by diazotrophic bacteria was inhibited by high N-fertilization

(18.5 mg kg�1) during the early stages of growth but not during subsequent stages

(Roesch et al. 2006), whereas the inhibitory effect of high N fertilization (148 mg

kg�1) on diazotrophic bacterial numbers could be reduced by the application of

Fig. 7 Gel electrophoresis analysis of RT-PCR for nifH gene expression. Reverse transcription

and nested PCR amplification was performed using nifH primers (a). The 16S rRNA gene was

used as a standard to calibrate the amount of RNA (b). R, root; S, stem; L, leaf; types of soil as in

Fig.3 Azt., Azotobacter sp.; þ1, rice inoculated with Azotobacter sp. as positive control; þ2,

Positive Control; �, negative control (no-template)
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compost (Muthukumarasamy et al. 2007). In the case of cultivated rice in Thailand,

the nifH pattern indicated lower diversity in plants grown in soil fertilized accord-

ing to local custom (35.9 mg kg�1) and in uncultivated soil than that in plants from

unfertilized soil (Prakamhang et al. 2009). Since the N-fertilization did not affect

the diazotrophic bacterial population in all stages of growth, the observed effect

does not seem to be a direct negative effect of the fertilizer on the bacteria.

Herbaspirillum spp. was also found to occur both in N-fertilized and unfertilized

samples (Muthukumarasamy et al. 1999). Nitrogen alters the physiological state of

the plant, and this subsequently affects its association with the diazotrophic bacte-

rial population (Muthukumarasamy et al. 1999; Reis et al. 2000). This suggests that

the original diazotrophic community consists mainly of autochthonic bacteria on

which N-depletion conferred a selective advantage. These results also demonstrate

that rice represents a highly dynamic microenvironment for bacteria.

6 Conclusion

In the present chapter, we have shown that there is a high diversity in endophytic

diazotrophic bacteria community. The presence of diazotrophic bacteria was

detected in roots, stems, and leaves in the colonization sites. The complexity of

the endophytic diazotrophic bacterial community revealed that the type of plant

tissue seems to influence the community structure. The understanding about how

and when endophytic communities form in rice plants and about their interaction is

essential for an investigation of the ability of endophytic diazotrophic bacteria,

especially the culturable strains, to compete with other endophyte strains, and to

contribute nitrogen to the host plants prior to applying endophytic diazotroph

bacteria as rice biofertilizer for rice farming. Thus, it is strongly proposed that

endophytic diazotrophic bacteria provide an agricultural benefit which is of definite

ecological and economic significance.
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Abstract The Gram-positive aerobic endospore-forming bacteria (AEFB) belonging

to the genus Bacillus and Paenibacillus are essentially ubiquitous and occur

abundantly in most rhizospheric soils. In the rhizosphere, species of these two

genera are involved in atmospheric nitrogen fixation, solubilization of soil phos-

phorus and uptake of micronutrients, and production of phytohormones and antimi-

crobial metabolites. Multiple species of Bacillus and Paenibacillus affect the crop
growth and its health by three different ecological mechanisms viz, promotion of

host plant nutrition and growth, antagonism against fungal, bacterial, nematode

pathogens and insect pests, and stimulation of host defence mechanisms. Specific

strains of both Bacillus and Paenibacillus spp. are known to elicit induced systemic
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resistance (ISR) similar to that of Pseudomonas spp. which leads to the stimulation

of host defence mechanisms against multiple pathogens on diverse crop plants.

Several species of Bacillus and Paenibacillus are the major source of broad

spectrum peptide antibiotics that are active against various microbial and nematode

pathogens. Endophytic colonization and biofilm formation by these two genera are

also reported. These plant growth promoting abilities of Bacillus and Paenibacillus
can make them suitable plant growth promoting rhizobacteria for their application

in sustainable agriculture.

1 Introduction

The microbial world is the largest unexplored reservoir of biodiversity and act as a

major resource for agricultural, industrial, and medicinal applications (Handelsman

et al. 1998; Daniel 2005; Lorenz and Eck 2005). Bacteria are the most dominant

group of this diversity which exists in diverse ecological niches, including extreme

environments present in both lithosphere and hydrosphere, where their metabolic

abilities play a critical role in geochemical nutrient cycling (Daniel 2005).

Rhizosphere, as coined by Hiltner (1904), is one such well-characterized ecological

niche consisting of layer of soil with highest bacterial population and their activities

are much influenced by the surrounding plant roots. The bacterial populations in the

rhizosphere is 100–1,000 times higher than in bulk soil, and up to 15% of root

surface is covered by microcolonies of a variety of bacterial species (Gray and

Smith 2005). The rhizosphere effect is due to the fact that a substantial amount of

carbon fixed by the plant as photosynthates (5–21%) is secreted in to rhizosphere

mainly as root exudates that can be utilized as nutrients by bacterial populations. In

return, the metabolic activities of these bacteria in the rhizosphere stimulate mineral

nutrient delivery and uptake by plant roots (Glick 1995). These beneficial bacterial

populations of rhizosphere are commonly called as plant growth promoting rhizo-

bacteria or PGPR (Kloepper and Schroth 1978; Glick 1995). They promise plant

growth promotion by secreting a variety of metabolites and employing various

mechanisms (Glick et al. 1999).

A number of different bacterial groups being considered as plant growth promoting

rhizobacteria include Acinetobacter, Agrobacterium, Arthobacter, Azotobacter,
Azospirillum, Burkholderia, Bradyrhizobium, Rhizobium, Frankia, Serratia, Thio-
bacillus, Pseudomonads, and Bacilli (Glick 1995; Vessey 2003). Among them,

Bacillus and Paenibacillus of aerobic endospore-forming bacteria (AEFB) are

essentially ubiquitous in agricultural systems. The native populations of these two

genera occur abundantly in most rhizosphere soils and plant tissues are differently

colonized by distinct subpopulations (Mahaffee and Kloepper 1997; Seldin et al.

1998). Multiple species of Bacillus and Paenibacillus can promote plant growth

and health in a variety of ways. Some species can promote plant growth directly

by synthesizing plant hormones or increasing mineral nutrient uptake by fixing

atmospheric nitrogen, solubilization of soil phosphorus, and other methods.

Some populations suppresses plant pathogens and insect pests by producing
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antibiotic metabolites, while others stimulate plant host defenses prior to pathogen

infection (Glick et al. 1999; Van loon 2007; Govindasamy et al. 2008), which

indirectly contributes to increased crop productivity. Published reports on endo-

phytic colonization and biofilm formation by Bacillus and Paenibacillus spp. have
suggested that the endophytic colonization and biofilm formation improves the

bacterium ability to act as a biocontrol agent against plant pathogens (Hallman et al.

1997; Davey and O’Toole 2000; Timmusk et al. 2005). In recent years, Bacillus and
Paenibacillus spp. attracted considerable attention because of their advantages over
other PGPR strains in inoculant formulations, stable maintenance in rhizosphere

soil, and greater potentials in sustainable agriculture.

2 Taxonomy and Phylogeny of Genus Bacillus
and Paenibacillus

Taxonomically, the genus Bacillus and Paenibacillus is coming under gram-

positive, aerobic, or facultative endospore-forming bacteria. The genus Bacillus
has undergone considerable taxonomic changes. Early attempts at classification of

Bacillus species were based on two characteristics: aerobic growth and endospore

formation. Starting off with two prominent and truly endospore-forming species,

Bacillus anthracis and B. subtilis, the number of species allocated to this genus

increased to an incredible 146 in the fifth edition of Bergey’s Manual of Determi-
native Bacteriology (Bergey et al. 1939). Meticulous comparative studies on 1,114

strains of AEFB helped to reduce this number to 22 well-defined species in the

eighth edition of Bergey’s Manual of Determinative Bacteriology (Buchanan and

Gibbons 1974). In 1980, with the publication of the Approved Lists of Bacterial
Names 38 species of AEFB were listed, of which 31 were allocated to the genus

Bacillus and 7 to other aerobic endospore-forming genera (Skerman et al. 1980).

In Bergey’s Manual of Systematic Bacteriology (1st edn., 1986), the G+C content

of known species of Bacillus ranges from 32 to 69%. This observation, as well as

DNA hybridization tests, revealed the genetic heterogeneity of the genus. Not only

was there variation from species to species, but there were sometimes profound

differences in G+C content within strains of a species. For example, the GþC

content of the Bacillus megaterium group ranged from 36 to 45% (Claus and

Berkeley 1986).

In Bergey’s Manual of Systematic Bacteriology (2nd edn., 2004), phylogenetic

classification schemes landed the two most prominent types of endospore-forming

bacteria, clostridia, and bacilli, in two different Classes of Firmicutes, Clostridia,

and Bacilli. Clostridia includes the Order Clostridiales and Family Clostridiaceae
with 11 genera including, Clostridium. Bacilli included in the Order Bacillales
and the Family Bacillaceae. In this family, there are 37 new genera on the level

with Bacillus. This explains the heterogeneity in G+C content observed in the 1986

genus Bacillus. Their taxonomic hierarchy (Table 1) is Kingdom: Bacteria;
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Phylum: Firmicutes; Class: Bacilli; Order: Bacillales; Family: Acyclobacillaceae

(genus: Acyclobacillus); Family: Bacillaceae (genus: Bacillus, Geobacillus); Family:

Paenibacillaceae (genus: Paenibacillus, Brevibacillus); Family: Planococcaceae

(genus: Sporosarcina). The phylogenetic approach to Bacillus taxonomy has been

accomplished largely by the analysis of 16S rRNA molecules by oligonucleotide

sequencing. This technique, of course, also reveals phylogenetic relationships.

Surprisingly, Bacillus species showed a kinship with certain non-spore-forming

species, including Enterococcus, Lactobacillus, and Streptococcus at the Order

level, and Listeria and Staphylococcus at the Family level. Otherwise, some former

members of the genus Bacillus were gathered into new families, including Acyclo-
bacillaceae, Paenibacillaceae, and Planococcaceae, now on the level with Bacilla-
ceae. All in all, today (2004) over 200 species of AEFB allocated to about 25 genera

have been validly published. Notable former members of the genus Bacillus that have
been moved to new families and/or genera are given in Table 2.

Taxonomy of the genus Bacillus consists of two groups of organisms vernacularly

called the B. subtilis group and the B. cereus group. Species of the B. subtilis group
are closely related and thus not easily distinguishable which included the two

subspecies of B. subtilis (B. subtilis subsp. subtilis and B. subtilis subsp. spizizenii),
B. pumilus, B. licheniformis, B. amyloliquefaciens, B. mojavensis, B. sorensis and

Table 1 Systematic position of the gram-positive aerobic endospore-forming bacteria (AEFB)

based on 16S rRNA/DNA sequences as per Bergey’s Manual of Systematic Bacteriology

(2nd edn., 2004)

Systematic position/taxonomic hierarchy No. of genus No. of species/subsp.

Domain: Bacteria

PhylumBXII: Firmicutes phy nov

Class III: Bacilli

OrderI: Bacillales

Family I: Bacillaceae 17

Key genus: Bacillus 88/2

Family II: Alicyclobacillaceae 3

Key genus: Alicyclobacillus 8/2

Family III: Caryophanaceae 1

Key genus: Caryophanaon 1

Family IV: Listeraceae 2

Key genus: Listera 1

Family V: Paenibacillaceae 7

Key genus: Paenibacillus 45/2

Family VI: Planococcaceae 5

Key genus: Planococcus 1

Family VII: Sporolactobacillaceae 2

Key genus: Sporolactobacillus 3

Family VIII: Staphylococcaceae 5

Key genus: Staphylococcus 2

Family IX: Thermoactinomycetaceae 1

Key genus: Thermoactinomyces 6

Family X: Turicibacteraceae 1

Key genus: Turicibacter 1
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B. vallismortis. Even more loosely attached to this group are the species B. firmus,
B. lentus, and B. sporothermodurans, which are clearly distinguishable from the other

species of this group (Claus and Berkeley 1986). The species of B. cereus group

includes closely related species such as B. cereus, B. thuringiensis (both motile),

B. mycoides, and B. pseudomycoides. The species B. weihenstephanensis seems to

consist of strains of B. mycoides and B. cereus (Jackson et al. 1999).

The genus Paenibacillus was created by Ash et al. (1993) to accommodate the

former “group 3” of the genus Bacillus. It comprises over 30 species of facultative

anaerobes and endospore-forming, neutrophilic, periflagellated heterotrophic,

low G+C gram-positive bacilli. The name reflects this fact, in Latin paene means

almost, and therefore the Paenibacillus is almost a Bacillus. Comparative 16S

rRNA sequence analyses revealed that rRNA “group 3” bacilli represents a phylo-

genetically distinct group and exhibit high intragroup sequence relatedness and

is only remotely related to B. subtilis, the type species of the genus Bacillus. The
taxon contains various species such as B. alvei, B. amylolyticus, B. azotofixans,
B. gordonae, B. larvae, B. macerans, B. macquariensis, B. pabuli, B. polymyxa,
B. pulvifaciens, and B. validus (Ash et al. 1993). Phenotypically, species of this group
react weakly with gram’s stain and even young cultures appear gram-negative. They

differentiate into ellipsoidal spores which distinctly swell the mother cell. The

combination of morphology and physiology is sufficient to distinguish rRNA

“group 3” bacilli from all other mesophilic species of Bacillus with the exception

of B. circulans, B. lautus, B. lentimorbus, and B. popilliae. The latter four species
are, however, phylogenetically only remotely related to B. polymyxa and its

relatives and the described rRNA “group 3” specific gene probe provides an

Table 2 Important species reassignments in the Genus Bacillus as per the recent approved lists of
bacterial names (1986–2004)

Sl.

no.

Bergey’s manual of systematic

bacteriology (1st edn., 1986)

Bergey’s manual of systematic

bacteriology (2nd edn., 2004)

1 Bacillus acidocalderius Acyclobacillus acidocalderius
2 Bacillus agri Brevibacillus agri
3 Bacillus alginolyticus Paenibacillus alginolyticus
4 Bacillus amylolyticus Paenibacillus amylolyticus
5 Bacillus alvei Paenibacillus alvei
6 Bacillus azotofixans Paenibacillus azotofixans
7 Bacillus brevis Brevibacillus brevis
8 Bacillus globisporus Sporosarcina globisporus
9 Bacillus larvae Paenibacillus larvae

10 Bacillus laterosporus Brevibacillus laterosporus
11 Bacillus lentimorbus Paenibacillus lentimorbus
12 Bacillus macerans Paenibacillus macerans
13 Bacillus pasteurii Sporosarcina pasteurii
14 Bacillus polymyxa Paenibacillus polymyxa
15 Bacillus popilliae Paenibacillus popilliae
16 Bacillus psychrophilus Sporosarcina psychrophilia
17 Bacillus stearothermophilus Geobacillus stearothermophilus
18 Bacillus thermodenitrificans Geobacillus thermodenitrificans
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unequivocal method for distinguishing these taxa (Ash et al. 1991). The genus

Bacillus of which, B. subtilis is the type is and an established model organism for

research on gram positive bacteria. Recently, the genome of B. subtilis was

sequenced completely and it represents the first published genome for a soil-living

bacterium (Kunst et al. 1997; Wipat and Harwood 1999). Among the 51,713

Firmicutes sequences listed in Ribosomal Database Project (RDP) II, Paenibacil-
laceae comprises 1,057 16S rRNA sequences with 74 as P. polymyxa (as on January
2008). Complete sequencing of the genome of the plant growth promoting strain

P. polymyxa E681, isolated from winter barley roots, is in progress.

3 Ecology and Distribution of Bacillus and Paenibacillus spp.

The species of Bacillus and Paenibacillus are metabolically diverse; the primery

habitat of genus Bacillus is the soil and associated plants, rivers, and estuarine

waters, although some species are pathogenic for mammals (e.g., B. anthracis) and
insects (e.g., B. sphaericus, B. thuringiensis). The species of Paenibacillus inhabits
different niches such as soils, roots, and rhizosphere of various crop plants includ-

ing wheat, maize, sorghum, sugarcane and barley, and forest trees such as lodgepole

pine, douglas fir, and marine sediments etc (Holl and Chanway 1992; von Der Weid

et al. 2000). Multiple Bacillus and Paenibacillus spp. can be readily cultured from

both bulk and rhizosphere soils. Culturable counts of these bacteria generally range

from log 3 to log 6 cells per gram fresh weight, with soil counts typically exceeding

those obtained from the rhizosphere (Mahaffee and Kloepper 1997; Seldin et al.

1998). Standard isolations on complex media typically yield multiple isolates of

phylogenetically and phenotypically similar species related to B. subtilis and B.
cereus. Most distinctive among these morphologically is B. mycoides, which often

confound attempts to accurately enumerate cultured populations by virtue of their

rapid mycelial-like growth patterns on agar media. B. megaterium has been

reported to be one of the most abundant in some soils (Liu and Sinclair 1992),

but it seems unlikely that a single species will dominate numerically in most soils.

While multiple species of Paenibacillus can be detected in the soils and rhizosphere
(Seldin et al. 1998), less work has been done to indicate which might be the most

commonly isolated species.

Some species were initially defined based on the extreme physical or chemical

conditions under which they were first isolated (e.g., B. psychrophilus), but few
examples of obligate extremophiles exist (e.g., B. stearothermophilus, which
are typically isolated from thermophilic composts) (Priest 1993). Instead, niche

specificity and important ecological activities in Bacillus and Paenibacillus spp.
appear to span phylogenetic boundaries. Most species can survive as saprophytes

in soils, which are considered the primary reservoirs of these bacteria; however,

most viable cells probably occur as inactive spores at any given time (Nicholson

2002). Culture-independent analyses of soil DNA have confirmed the presence of
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the easily cultured species and revealed additional, uncultured diversity in both

the Bacillus and Paenibacillus rRNA lineages (Felske et al. 1999; Smalla et al.

2001; Garbeva et al. 2003). However, contradictory evidence exists on the

relative abundance of cultured and uncultured representatives of these genera in

different soils. Some reports indicated that the large majority of Bacillus-like
sequences cloned from soils were highly similar to known species. But, others

report that the dominant Bacillus sequences present in a different soil are not the

same as those present in easily cultured isolates (Smalla et al. 2001; Garbeva et al.

2003). Interestingly, the substantial effort leading to the isolation of this previ-

ously uncultured lineage (referred to as DA001) also led to the isolation of even

more microdiversity that had not been previously directly detected in DNA clone

banks of sequences obtained from the same soil (Felske et al. 1999).

At the species level, most Bacillus and Paenibacillus are globally distributed and
such widespread occurrence of more defined subspecies of B. subtilis and B. cereus
with the capacity to suppress plant pathogens has also been reported (Priest 1993;

Stabb et al. 1994; Pinchuk et al. 2002). Other studies have reported only a limited

degree of geographic endemicity in B. thuringiensis (Chak et al. 1994; Bravo et al.

1998) and Paenibacillus azotofixans (Seldin et al. 1998) over spatial scales.

Recently, ribosomal sequences amplified from environmental samples have been

used to characterize the relative distribution of Bacillus and Paenibacillus spp.

between soils and plant tissues. Overall, the structure of soil bacterial communities

is known to vary with soil type more than with management regime (Garbeva et al.

2003); however, the magnitude of such variation may be relatively small for

Bacillus and Paenibacillus spp.

4 PGPR Potentials of Bacillus and Paenibacillus spp.

Bacillus and Paenibacillus spp. are known to have wide PGPR potentials; in the

rhizosphere, they are involved in nitrogen fixation, soil phosphorus solubilisation,

the production of antibiotics, chitinase, hydrolytic enzymes, and exopolysaccharides

and in the enhancement of soil porosity. Numerous Bacillus and Paenibacillus strains
express these activities which promote plant growth and suppress soilborne plant

pathogens. A number of these strains already have been developed commercially as

plant growth promoters and biocontrol agents (Table 3) and their use in agriculture

has recently been reviewed (Lacey et al. 2001; Paulitz and Belanger 2001). Similarly,

many strains of Paenibacillus were isolated and characterized functionally (Table 4)
for their potential use in agriculture as plant growth promoters (Timmusk andWagner

1999; Timmusk et al. 2003; Senthilkumar et al. 2007a). Improvements in plant

growth and productivity by the applications of Bacillus and Paenibacillus spp. are
mediated by three different ecological mechanisms: promotion of host plant nutrition

and growth, antagonism against plant pathogens and insect pests, and stimulation of

plant host defense mechanisms.
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4.1 Promotion of Host Plant Nutrition and Growth

Bacillus and Paenibacillus spp. promote plant growth directly by providing nitro-

gen to the host plant. They also solubilize insoluble phosphates in soil by various

mechanisms and secrete phytohormones. Such activities lead to induced plant

growth and development.

4.1.1 Biological N2 Fixation

Biological nitrogen fixation by soil prokaryotic microorganisms is considered one

of the major mechanisms by which plant benefit from the association of microbial

partners. One of the benefits that diazotrophic bacteria provide to plants is fixed

nitrogen in exchange of fixed carbon released as root exudates. Isolates of nitrogen-

fixing bacilli from plant rhizospheres were determined by an acetylene reduction

assay (ARA) for nitrogenase activity and by amplifying and sequencing part of nifH
gene. Xie et al. (1998) reported that the following species were nitrogen-fixing

bacteria based on nitrogenase activity: Bacillus megaterium, Bacillus cereus,
Bacillus pumilus, Bacillus circulans, Bacillus licheniformis, B. subtilis, Bacillus
brevis, and Bacillus firmus. The three former Bacillus species, Paenibacillus
azotofixans, Paenibacillus macerans, and P. polymyxa, were nitrogen fixers,

based on nitrogenase activity (Seldin et al. 1984). Recently, Paenibacillus odorifer,
Paenibacillus graminis, Paenibacillus peoriae, and Paenibacillus brasilensis have
been described as nitrogen fixers (Berge et al. 2002; von der Weid et al. 2002).

However, nifH gene was only detected in the following Paenibacillus species:
P. azotofixans, P. macerans, P. polymyxa, P. graminis, and P. odorifer (Berge et al.
2002). Ding et al. (2005) isolated and identified nitrogen-fixing bacilli from plant

Table 3 Commercially available Bacillus spp. based plant growth promoters and biocontrol

products

Bacillus species/strains Activity/function Product name

Bacillus polymyxa and other

species

Atmospheric nitrogen fixation Wide variety of products

Bacillus megaterium and

B. coagluans
Mineral phosphate solubilization Phosphobacter

B. subtilis QST 713 Fungi and bacteria on vegetables

and fruit

Serenade

B. licheniformis Fungi on turf Ecoguard

B subtilis GB03 Fungi on cotton and soybeans Kodiak

B. pumilis GB34 Fungi on soybeans Yield Shield

B. amyloliquefasciens and
B. subtilis GB122

Fungi on bedding plants BioYield

B. subtilis MBI600 Fungi on cotton and soybeans Subtilex

B. subtilis MBI600 and

Rhizobium
Fungi on soybeans HiStick
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rhizospheres in Beijing region and reported that nifH gene exists in both genera

Bacillus and Paenibacillus. Nitrogen-fixing ability by P. polymyxa was demon-

strated by Guemori-Athmani et al. (2000). These authors measured nitrogenase

activity of some representative isolates of P. polymyxa recovered from Algerian soil

by ARA. Results showed that only 14 of the 23 strains tested were able to reduce

acetylene. Some of them were very active: strain SGH1 reduced C2H2 at a similar

rate to P. azotofixans ATCC 35681T, which is a very efficient nitrogen-fixing

bacterium (Seldin and Penido 1986). In India, numerous reports are available on

the application of free-living diazotrophs, including Bacillus spp., for increased

yield of various crops.

4.1.2 Solubilization of Phosphorus and Uptake of Minor Nutrients

Phosphorus (P) is a major growth-limiting nutrient, and unlike the case for nitrogen,

there is no large atmospheric source that can be made biologically available (Ezawa

et al. 2002). Microorganisms enhance the P availability to plants by mineralizing

organic P in soil and by solubilizing precipitated phosphates (Fig. 1) (Kucey et al.

1989; Pradhan and Sukla 2005; Chen et al. 2006). Inorganic forms of P are

solubilized by a group of heterotrophic bacteria excreting organic acids that

dissolve phosphatic minerals and/or chelate cationic partners of the P ions, i.e.,

PO4
3� directly, releasing P into solution. Bacterial biomass assimilates soluble

P, and prevents it from adsorption or fixation. These bacteria in the presence of

labile carbon serve as a sink for P by rapidly immobilizing it even in low P soils

(B€unemann et al. 2004; Khan and Joergensen 2009). Subsequently, phosphate-

solubilizing bacteria (PSB) become a source of P to plants upon its release from

their cells. PSB are being used as biofertilizer since 1950s and release of P by

PSB from insoluble and fixed/adsorbed forms is an important aspect regarding

P availability in soils (Igual et al. 2001).

Fig. 1 Schematic diagram of soil phosphorus mineralization, solubilization and immobilization

by rhizobacteria
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Phosphate solubilization takes place through various microbial processes/

mechanisms including organic acid production and proton extrusion. Inorganic

P is solubilized by the action of organic and inorganic acids secreted by PSB in

which hydroxyl and carboxyl groups of acids chelate cations (Al, Fe, and Ca) and

decrease the pH in basic soils. The PSB dissolve the soil P through the production of

low molecular weight organic acids, mainly gluconic and keto gluconic acids

(Goldstein 1995; Deubel et al. 2000), in addition to lowering the pH of rhizosphere.

Among the soil bacterial communities, ectorhizospheric strains from Pseudomonas
and Bacilli, and endosymbiotic rhizobia have been described as effective phosphate

solubilizers. Bacillus megaterium, B. circulans, B. coagulans, B. subtilis, B. polymyxa,
B. sircalmous, and Pseudomonas striata could be referred as the most important

strains (Subbarao 1988; Kucey et al. 1989). Gluconic acid and 2-ketogluconic acid

seems to be the most frequent agent of mineral phosphate solubilization. Other

organic acids, such as glycolic, oxalic, malonic, and succinic acid, have also been

identified among phosphate solubilizers. Strains of Bacillus were found to produce

mixtures of lactic, isovaleric, isobutyric, and acetic acids in addition to the major

organic acids. Phophorus-solubilizing activity of B. megaterium enhanced the

number of nodules, dry weight of nodules, yield components, grain yield, nutrient

availability, and uptake in soybean crop and enhanced the seedling length of Cicer
arietinum (Son et al. 2006; Sharma et al. 2007), while coinoculation of Bacillus spp.
along with other PGPR strains reduced P application by 50% without affecting corn

yield (Yazdani et al. 2009). Inoculation with phosphate-solubilizing B. megaterium
increased sugarcane yield by 12.6% (Sundara et al. 2002). Phosphate-solubilizing

B. subtilis strains have been reported to synergistically increase plant nitrogen and

phosphate-accumulation when coinoculated with Glomus intraradices. Toro et al.

(1997) evaluated the interactive effect of Phosphate-solubilizing bacteria (Bacillus
subtilis) and arbuscular mycrorrhizal (AM) fungi (Glomus intraradices) on onion

with a soil of low P content. Coinoculation of these both significantly increased the

vegetative biomass and N, P accumulation in onion tissues. Combined inoculation

of arbuscular mycorrhiza and Phosphate-solubilizing Bacillus and Paenibacillus
spp. give better uptake of both native P from the soil and P coming from the

phosphatic rock (Goenadi et al. 2000; Cabello et al. 2005).

Almost half of the microorganisms in soil and plant roots possess P mineralization

potential under the action of phosphatases. The largest portion of extracellular soil

phosphatases is derived from the microbial population (Dodor and Tabatabai 2003).

Alkaline and acid phosphatases use organic phosphate as a substrate to convert it

into inorganic form. Principal mechanism for mineralization of soil organic P is the

production of acid phosphatases by rhizobacteria (Hilda and Fraga 2000). Three

out of the four strains investigated were identified as B. amyloliquefaciens and

were able to degrade extracellular phytate (myo-inositol hexakisphosphate). The
highest extracellular phytase activity was detected in strain FZB45, and diluted

culture filtrates of this strain stimulated growth of maize seedlings under phosphate

limitation in the presence of phytate (Idriss et al. 2002). Mixed cultures of phos-

phate-solubilizing rhizobacteria including Bacillus and Paenibacillus spp. are most

effective in mineralizing organic phosphate.
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Most studies are indicating that PGPR isolates may increase the mobility and

availability of micronutrients including iron (Fe) by the formation of high-affinity

siderophores. Chemically, siderophores are low molecular weight compounds

of either catecholate or hydroxamate types that complex with Fe2+ and render it

available to crop plants (Leong 1986). The widespread production of siderophores

by diverse rhizobacterial genera included as Bacillus, Rhizobium, Pseudomonas,
and Agrobacterium at low iron levels are reported by Neilands (1986). Numerous

plants are capable of using rhizobacterial Fe siderophore complexes as a means of

obtaining Fe from soil (Wang et al. 1993). This view is supported by the findings

of Hughes et al. (1992) who reported enhanced Fe uptake in oats because of

siderophore production. Bacillus and Paenibacillus spp. produces both types of

siderophores; the bacterium B. megaterium ATCC 19213 is known to produce

two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-

limited conditions. In addition to their high affinity for ferric ions, these side-

rophores also chelate aluminum (Hu and Boyer 1996). Wilson Melissa et al.

(2006) reported that three B. anthracis strains (USAMRIID, 7702, and 34F2)

and B. cereus ATCC 14579 excrete two catecholate siderophores, petrobactin

(which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains

2,3-dihydroxybenzoyl moieties). However, the insecticidal organism B. thuringiensis
ATCC 33679 makes only bacillibactin. More details on the production of side-

rophores by Bacillus and Paenibacillus spp. and their role in enhancing Fe uptake

have been reported by different researchers in variety of crop plants.

4.1.3 Production of Phytohormones and Growth Stimulants

Plant hosts may also be affected by hormones known to be produced by various

microbial species, including Bacillus and Paenibacillus. There are five classes of

well-known phytohormones, namely, auxins, gibberellins, cytokinins, ethylene,

and abcisic acid and soil microorganisms, particularly the rhizosphere bacteria,

are potential sources of these hormones (Patten and Glick 1996; Arshad and

Frankenberger 1998). These phytohormones are known to mediate processes such

as plant cell enlargement, division, and extension in symbiotic as well as nonsym-

biotic roots. Among these hormones, most attention has focused on auxins in which

the most common and well characterized is indole-3-acetic acid (IAA), which is

known to stimulate both rapid (e.g., increase in cell elongation) and long-term (e.g.,

cell division and differentiation) responses in crop plants. Gutierrez-Manero et al.

(2001) isolated B. pumilus and B. licheniformis from the rhizosphere of Alnus
glutinosa shown to produce physiologically active gibberellins which had strong

growth promoting activity on alder. The hormone ethylene production and its effect

on plant growth by Bacillus licheniformis, Bacillus subtilis, and Bacillus mycoides
also had been reported (Fukuda et al. 1989).

The production of plant growth promoting compounds by P. polymyxa, similar

in activity to indole-3-acetic acid (IAA), has been suggested to stimulate growth in

crested wheatgrass (Holl et al. 1988). It also releases iso-pentenyladenine and
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one unknown cytokinin-like compound during its stationary phase of growth which

promotes seed germination, de novo bud formation, release of buds from apical

dominance, stimulation of leaf expansion and reproductive development

and retardation of senescence in wheat (Mok 1994). Some strains of B. subtilis,
and B. amyloliquefaciens, promote plant growth by releasing volatiles such as

2,3-butanediol and acetoin. The highest level of growth promotion was observed

with mutants of B. amyloliquefaciens IN937a and B. subtilis GB03, blocked in

the biosynthesis of these compounds, were inactive in plant growth promotion

(Ryu et al. 2003). More recently, Zhang et al. (2008) found that B. subtilis GB03
increases the photosynthetic efficiency and chlorophyll content of A. thaliana
through the modulation of endogenous signalling of glucose and abscisic acid

sensing. Enzyme cellulase (CMCase) activities were also shown in Bacillus pumilus,
Bacillus sphaericus, and Bacillus circulans, which showed that most plant-associated

microorganisms might have cellulase activity for adoption or establishment of a plant

microbe interaction (Emitizi et al. 2007). The effect of inoculation with P. polymyxa
on growth parameters of wheat and spinach plants and the activities of enzymes

present in the leaves of these plants such as glucose-6-phosphate dehydrogenase,

6-phosphogluconate dehydrogenase, glutathione reductase, and glutathione S-trans-

ferase were also observed (Cakmakci et al. 2007).

4.2 Antagonism Against Plant Fungal and Bacterial Pathogens

Bacillus and Paenibacillus spp. suppress phytopathogens by producing various

antifungal metabolites and impart induced systemic resistance (ISR) against insects

and nematodes.

4.2.1 Control of Fungal Pathogens

Direct antagonism against plant fungal pathogens by Bacillus spp. has been well

exploited in agriculture as biocontrol agents. The most thoroughly studied of these

include B. subtilis (Leifert et al. 1995; Asaka and Shoda 1996; Pinchuk et al. 2002).
Additionally, a number of studies have reported direct antagonism by other

species including B. amyloliquefaciens, B. cereus, B. licheniformis, B. megaterium,
B. mycoides, and B. pumilus as well as isolates of unidentified species from the

genus (Handelsman et al. 1990; Leifert et al. 1995; Liu and Sinclair 1992).

Although less frequently reported in the literature, some isolates of P. macerans
and P. polymyxa may also be antagonistic to plant pathogens (Timmusk and

Wagner 1999). Most of these studies focused on control of fungal and oomycete

pathogens. The culture filtrate of B. amyloliquefaciens RC-2 showed activity

against Colletotrichum demantium, Rosellina necatrix, Pyricualria oryzae,
Agrobacterium tumefaciens, and Xanthomonas campestris pv. campestris (Yoshida

et al. 2001). A soil bacterium Bacillus sp. strain BC121 isolated from the
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rhizosphere of sorghum showed high antagonistic activity against Curvularia
lunata. The strain produces chitinase protein which showed clear hyphal lysis in

in vitro observations (Basha and Ulaganathan 2002). Bacillus subtilis strain PRBS-
1 and AP-3 inhibited five soybean seed pathogenic fungi viz., Rhizoctonia solani,
Colletotrichum truncatum, Sclerotinia sclerotium, Macrophomina phaseolina, and
Phomopsis spp. under in vitro conditions (Araujo et al. 2005). B. amyloliquefaciens
strains conferred protection of oil seed rape (Brassica napus) toward all fungal

pathogens such as Alternaria brassicae, Botrytis cinerea, Leptosphaeria maculans,
and Verticillum longisporum (Danielsson et al. 2006).

The in vitro antagonistic activity of P. polymyxa against the fungus Gaeuman-
nomyces graminis var. tritici that causes take-all of wheat and the plant pathogenic

fungus Fusarium oxysporum that causes Fusarium wilt disease has been reported

by Heulin et al. (1994). Ryu et al. (2006) demonstrated that P. polymyxa strain E681
effectively controlled preemergence and postemergence damping-off diseases on

sesame plants. Paenibacillus polymyxa HKA-15 was active against R. bataticola
causing charcoal rot in soybean (Senthilkumar et al. 2007a). Many workers have

carried out light microscopic studies on the effect of biocontrol isolates on fungal

hyphal morphology. The necrotrophic effect and sequential lysis of R. bataticola
fungal hyphae by Paenibacillus polymyxa HKA-15 cells under light and scanning

electron microscope was demonstrated (Fig. 2) (Senthilkumar et al. 2007a). Micro-

scopic analysis on the effect of antagonist on Magnoporthe grisea revealed the

inhibition of spore germination under light microscope (Tendulkar et al. 2007).

Recently, Zhou et al. (2008) isolated Paenibacillus strain HT16 from locusts, which

showed strong inhibition to Penicillium expansum and produced antifungal protein

with the molecular weight of 4,517 Da.

Fig. 2 Scanning electron microphotographs (SEM) showing the antagonistic interaction of

Paenibacillus polymyxaHKA-15 against charcoal rot pathogen Rhizoctonia bataticola (Senthilkumar

et al. 2007b)
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4.2.2 Control of Bacterial Pathogens

The role of lipopeptides produced by Bacillus sp. against Xanthomonas campestris,
has been widely studied (Monteiro et al. 2005; Salerno and Sagardoy 2003).

However, the effect of metabolites on bacterial cell morphology has also been

reported (Hashizume et al. 1996; Nakao et al. 1981). Antagonistic activities of

epiphytic bacteria from soybean leaves against Pseudomonas syringae pv. glyci-

neae in vitro and in planta was tested. In in planta assay, Pseudomonas syringae
pv. glycineae and each isolate were simultaneously inoculated in to wounds of

pin-pricked leaves of greenhouse-grown plants. Out of 82 isolates, 19 isolates were

able to suppress the pathogen. The mixtures of isolate and pathogen were inocu-

lated at ratios >1 (May et al. 1996). Under green-house conditions, inoculation of

the isolate Bacillus subtilis 210, 72 h before the inoculation of the pathogenic

bacteria, significantly reduced the number of lesions caused by X. campestris
(Salerno and Sagardoy 2003). The species of Bacillus and Paenibacillus also

showed effective antagonism against other bacterial plant pathogens of economi-

cally important crops.

4.3 Antagonism Against Insect Pests and Nematode

Antagonism of insect pests and pathogen populations by Bacillus sp. and closely

related AEFB takes many forms. Some species are pathogens of insects or nema-

todes (Siddiqui and Mahmood 1999; Lacey et al. 2001). Perhaps, the most studied

of the insect pathogens are those classified as B. thuringiensis. This species is

distinguished from the common saprophytic species B. cereus by the occurrence

of plasmids that encode pathogenicity factors that make the strains pathogenic to

various invertebrates. The production of the crystalline inclusion bodies (Cry

proteins) within their spores allow for opportunistic growth when consumed by

soil invertebrates. While the crystalline proteins are widely known to be disruptive

to the digestive tracts of numerous Lepidopertera and Diptera larvae, evidence also

exists for their toxicity to nematodes (Wei et al. 2003). The wide variation in cry
gene structure and the known occurrence of tolerance to the protein toxins produced

by various isolates indicates that a range of virulence exists in nature. B. sphaericus
are pathogenic to various Diptera species, but the species appears to be more

effective at controlling insects that bite animals and humans rather than those that

damage crops. B. sphearicus also produce protein toxins, but these are deposited

outside the spore coat by the mother cell. P. popilliae and P. lentimorbus cause
milky disease in the larvae of some beetles (Order: Coleoptera) including those

that can damage crops. Antagonistic activity of P. polymyxa was also demonstrated

against the root-knot nematode, Meloidogyne javanica. The inoculation of

P. polymyxa alone or together with Rhizobium increased lentil plant growth both

in M. javanica-inoculated and uninoculated plants (Siddiqui et al. 2007).
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4.4 Stimulation of Plant Host Defense Mechanisms Through
Induced Systemic Resistance

Recently, “induced resistance” to diseases, or plant “immunization,” has received

increasing attention (Uknes et al. 1992). This refers to a process in which plants

exhibit an increased level of resistance to infection by a pathogen after appropriate

stimulation. Induced resistance can be triggered by, e.g., infection with a necrotizing

pathogen, or by treatment with certain chemicals, e.g., salicylic acid (SA). This

response is referred to as systemic acquired resistance (SAR). Induced resistance can

also be a result of root colonization by PGPR (Alström 1991; Wei et al. 1991). The
latter response is called induced systemic resistance (ISR), and has been shown to

protect against disease in several plant species (Thomashow and Weller 1995; van

Wees et al. 1997). Elicitation of ISR by plant-associated bacteria was initially

demonstrated using Pseudomonas spp. and other gram-negative bacteria. Fewer

published accounts of ISR by Bacillus spp. are also available. The specific strains

of the species B. amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus,
B. mycoides, and B. sphaericus elicit significant reductions in the incidence or

severity of various diseases on a diversity of hosts (Kloepper et al. 2004). Elicitation

of ISR by these strains has been demonstrated in greenhouse or field trials on tomato,

bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucum-

ber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang

futsoi) (Van Loon 2007). Protection resulting from ISR elicited by Bacillus spp. has
been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a

crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal patho-

gen as well as damping-off, bluemold, and late blight diseases (Van Loon et al. 1998).

Reductions in populations of three insect vectors have also been noted in the field:

striped and spotted cucumber beetles that transmit cucurbit wilt disease and the

silverleaf whitefly that transmits Tomato mottle virus. In most cases, Bacillus spp.
that elicits ISR also promotes plant growth (Zehnder et al. 1997, 2000).

Many individual bacterial components induce ISR, such as LPS, flagella, salicylic

acid, and siderophores (Van Loon 2007). More recently, cyclic lipopeptides, the

antifungal factor Phl, the signal molecule acyl homoseine lactone (AHL), and

volatile blends produced by B. subtilis GB03 and, to a lesser extent, the individual

volatiles acetoin and 2,3-butanediol have been added to the list (Ryu et al. 2004).

Studies on mechanisms indicate that elicitation of ISR by Bacillus spp. is associated
with ultrastructural changes in plants during pathogen attack and with cytochemical

alterations. Investigations into the signal transduction pathways of elicited plants

suggest that Bacillus spp. activate some of the same pathways as Pseudomonas spp.
and some additional pathways (Fig. 3). For example, ISR elicited by several strains

of Bacillus spp. is independent of salicylic acid but dependent on jasmonic acid,

ethylene, and the regulatory gene NPR1 – results that are in agreement with the

model for ISR elicited by Pseudomonas spp. (Van Loon 2007). However, in other

cases, ISR elicited by Bacillus spp. is dependent on salicylic acid and independent

of jasmonic acid and NPR1. In addition, while ISR by Pseudomonas spp.
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does not lead to accumulation of the defense gene PR1 in plants, in some cases,

ISR by Bacillus spp. does. For example, elicitation of ISR in sugar beet by

B. mycoides strain Bac J and B. pumilus strains 203-6 and 203-7 was associated

with enhanced peroxidase activity and increased production of one chitinase

isozyme and two isozymes of b-1,3-glucanase (Bargabus et al. 2002, 2004).

In the tobacco blue mold system, Zhang et al. (2002) reported that plants treated

with B. pumilus strain SE34 had greatly increased levels of salicylic acid,

compared with that of nontreated plants or plants treated with two gram-negative

bacteria, 1 day after challenge-inoculation with the pathogen. In a recent study,

Timmusk and Wagner (1999) reported that natural isolates of P. polymyxa B2

induces changes in Arabidopsis thaliana gene expression and confers significant

resistance to plant pathogen Erwinia caratovora upon challenge inoculation. This

isolate also induces drought tolerance and these effects were observed in both

gnotobiotic and soil systems. Similarly, P. polymyxa isolates B2, B3, and B4

induces ISR toward Oomycete plant pathogens Phytophthora palmivora and

Nonpathogenic
Rhizobacteria

Avirulent
Pathogen

JA jar1, coi1

Ethylene etr1, einz etc. NahG

NPR1 npr1

Priming of defense-
related genes

Pathogenesis -
related proteins

ISR SAR

Enhanced defensive capacity

Fig. 3 Current model of signal-transduction pathways leading to pathogen-induced systemic

acquired resistance (SAR) and rhizobacteria-induced systemic resistance (ISR). Some species of

Bacillus spp. may trigger a SA-dependent signaling pathway that leads to a state of induced

resistance resembling SAR (Van Loon 2007)
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Pythium aphanidermatum causing damping-off in Arabidopsis thaliana (Timmusk

et al. 2003).

5 Production of Peptide Antibiotics by Bacillus
and Paenibacillus spp.

Several species of Bacillus and Paenibacillus are known to produce toxins that are

inhibitory to the growth and/or activities of fungal, bacterial, and nematode patho-

gens of plants. Catabolic enzymes (e.g., proteases, chitinases, and glucanases),

peptide antibiotics, and small molecules can be secreted by various species (Priest

1993) and may all contribute to pathogen suppression. Bacillus spp. and its related

genera have been identified as potential biocontrol agent as they produce wide

range of peptide antibiotics (Fig. 4) active against various microorganisms

Fig. 4 Chemical structures of important peptide antibiotics produced by Bacillus and Paeniba-
cillus spp. (Selim et al. 2005)
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(Kim et al. 2003). On the basis of the chemical nature, these peptides may be

classified into two broad groups viz., cyclic and linear peptides. The identification

and characterization of these peptides from different strains showed that they are

Bacillopeptins (Kajimura et al. 1995), fusaridicin group of peptides (Beatty and

Jensen 2002), matacin (Polymyxin M) (Martin et al. 2003), Gavaserin and Salt-

avalin (Pichard et al. 1995), and Polymyxin B (Selim et al. 2005).

Iturin A2, a cyclic peptide was identified by NMR and FAB-MS analysis from

the culture filtrate of B. amyloliquefaciens RC-2 (Yoshida et al. 2001). Crude

antibiotic extracts of B. cereus were purified and the active fraction X16sI was

stable at a wide range of temperature, pH, and polar organic solvents (Safdi et al.

2002). Bacillomycin F, a new family of iturin group antibiotics was isolated from

Bacillus subtilis (Mhammedai et al. 1982). Acid hydrolysis of the antibiotic gave a

peptide moiety which contains 7 mol of amino acids and a lipid moiety which is a

mixture of two main long-chain b-aminoacids. Tendulkar et al. (2007) reported

biologically active fractions isolated from the culture filtrate of B. licheniformis BC
98. These were further fractionated by RP-HPLC and characterized by 500 MHz 1H

NMR analysis and identified as surfactin with the molecular mass of 1,035 Da. Two

active methanol fractions viz., KB-8A and KB-8B were extracted from the culture

filtrate of Bacillus polymyxa. The purified fraction KB 8A had minimum inhibitory

concentration (MICs) of 12.8 mg/ml for Fusarium oxysporum and Alternaria mali
(Hyun et al. 1999).

Two new antibacterial substances viz., Gavaserin and Saltavalin were isolated

from Bacillus polymyxa with the molecular mass of 911 and 903 Da, respectively

(Pichard et al. 1995). Bacillopeptins, a new iturin group antifungal antibiotic was

isolated from B. subtilis FR-2 from the rhizosphere of garlic suffering from basal rot

caused by F. oxysporum. Their structures were elucidated to be cyclic lipopeptides

similar to bacillomycin L (Kajimura et al. 1995). Bacillomycin F produced by

Bacillus subtilis, isolated from honey, showed antagonism against Byssochlamys
fulva H25 and its structure had varying lengths of the fatty acid chain moiety from

C14 to C16. Tamehiro et al. (2002) reported a novel phospholipid antibiotic

(bacilysocin) produced by Bacillus subtilis 168 and the structure of Bacilysocin

elucidated was 1-(12-methyltetradecanoyl)-3-phosphoglyceroglycerol using NMR

and Mass Spectrometry analysis. The antimicrobial peptide cerein 8A was isolated

from B. cereus and its purified substance corresponded to 26 KDa peptide band

(Bizani et al. 2005). The importance of antibiotic production to plant disease

suppression by Bacillus spp. has been demonstrated. B. subtilis strains that produce
the lipopeptide antibiotics iturin A and surfactin could suppress damping-off in

tomato while mutants could not (Asaka and Shoda 1996). And, in B. cereus,
production and resistance to zwittermicin A have been correlated to suppression

of damping-off in alfalfa (Raffel et al. 1996). Pueyo et al. (2009) showed a

large group of lipopeptides produced by soil bacterium B. megaterium and their

antagonistic activity similar to surfactins, lichenysins, itrurin A, and fengycins.

Physicochemical characterization of antimicrobial metabolite produced by

Paenibacillus peoriae strain NRRL BD-62 showed that the compound retained

the activity after autoclaving at 121�C for 10 min. The compound was stable after
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treatment with organic solvents and hydrolytic enzymes, and its activity was

preserved at a wide range of pH (Weid et al. 2003). Paenibacillus sp. strain B2,

isolated from the mycorrhizosphere of sorghum colonized by Glomus mosseae,
produced three active antagonistic compounds. The first peptide compound had the

same retention time as polymyxin B1 with the molecular mass of 1,184.7 and

contains a 2,3-didehydrobutyrine residue with a molecular mass of 101 Da replacing

a threonine at the A2 position of polymyxin side chain and this could explain the

broader range of antagonistic activity of this peptide compared to that of polymyxin

B (Selim et al. 2005). Most studies on the biocontrol activity of P. polymyxa have

been concentrated on the production of different antibiotic substances. Fusaricidin,

a peptide antibiotic consisting of six amino acids, has been identified as a potential

antifungal agent from P. polymyxa E681 (Choi et al. 2007). Various analogs

of fusaricidins were isolated and characterized from P. polymyxa; these included

LI-F03, LIF04, LI-F05, LI-F06, LI-F07, and LI-F08 as well as fusaricidins A–D

(Kajimura and Kaneda 1996, 1997).

Fusaricidins have an excellent antifungal activity against plant pathogenic fungi

such as Fusarium oxysporum, Aspergillus niger, Aspergillus oryzae, Penicillium
thomii, and fusaricidin B has particularly antagonistic activity against Candida
albicans and Saccharomyces cerevisiae. Fusaricidins also have an excellent germi-

cidal activity to gram-positive bacteria such as Staphylococcus aureus (Kajimura

and Kaneda 1996, 1997). Paenibacillus polymyxa PKB1 produces fusaridicin

peptides with molecular masses of 883, 897, 948, and 960 Da. The characterization

of 897 Da component was determined to be cyclic depsipeptide and has antifungal

activity against Leptosphaeria maculans, which causes black root rot of canola

(Beatty and Jensen 2002). The antifungal metabolite produced by Paenibacillus
polymyxa strain HKA-15 showed strong antagonism against Rhizoctonia bataticola
causing charcoal rot disease in soybean. Two bioactive fractions collected from the

culture filtrate of Paenibacillus polymyxa strain HKA-15 by preparative HPLC

were characterized as cyclic peptide and depsipeptide (Senthilkumar et al. 2007b).

Paenibacillus lentimorbus strain WJ5, a soil isolate, produced antifungal meta-

bolite which was extracted with n-butanol. The FT-IR spectrum of the antifungal

metabolite confirmed the presence of the peptide and glycosidic bonds. (Lee et al.

2008).

6 Endophytic Colonization and Biofilm Formation

by Bacillus and Paenibacillus spp.

Some bacteria and fungi present in the rhizosphere are capable of entering the plant

as endophytes that do not cause harm and could establish a mutualistic association.

Plants constitute vast and diverse niches for endophytic organisms. Endophytic

bacteria have been isolated from a large diversity of plants and most likely, there is

not a single plant species devoid of endophytes (Hallman et al. 1997). In general,
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endophytic bacteria occur at lower population densities than rhizospheric bacteria

or bacterial pathogens. Endophytic populations, like rhizospheric populations, are

conditioned by biotic and abiotic factors but endophytic bacteria could be better

protected from biotic and abiotic stresses than rhizospheric bacteria (Hallman et al.

1997). The population density of endophytes is highly variable, depending mainly

on the bacterial species and host genotypes but also on the host developmental

stage, inoculum density, and environmental conditions. Endophytic bacteria in a

single plant host are not restricted to a single species but comprise several genera

and species (Araujo et al. 2002). The presence of different endophytic species in

soybean depended on the plant genotype, the plant age, the tissue sampled, and also

on the season of isolation. It seems that the bacteria best adapted for living inside

plants are naturally selected. Mavingui et al. (1992) found that there are different

populations of Bacillus polymyxa in rhizosphere soil and rhizoplane, and that

wheat roots select specific populations. The analysis by genomic fingerprinting of

the diversity of B. pumilus isolated from surface-disinfected leaves showed that

populations inside citrus do not seem to be clones derived from a single genotype

(Araujo et al. 2002).

Similar to rhizosphere bacteria plant growth stimulation mechanisms by endo-

phytic bacteria is also a consequence of nitrogen fixation or by enhancing availability

of minerals or the production of phytohormones, biocontrol of phytopathogens in the

root zone through production of antifungal or antibacterial agents, siderophore

production, nutrient competition, and induction of systematic acquired host resistance

(Sessitsch et al. 2004; Rosenblueth and Martı́nez-Romero 2006). Endophytic

N2-fixing bacteria seem to constitute only a small proportion of total endophytic

bacteria and increasing N2-fixing populations in plants has been considered as a

possibility to increase nitrogen fixation. Nitrogen-fixing bacteria were identified in

sweet potato in N-poor soils with an analysis that consisted of amplifying nitrogenase

(nifH) genes by polymerase chain reaction and the resulting sequences, presumably

derived from endophytic Paenibacillus odorifer (Reiter et al. 2003). The endophytic
B. megaterium isolated from maize, sweet corn, carrot, and citrus plants is known to

solubilize insoluble phosphates (McInroy and Kloepper 1995; Surette et al. 2003).

Bacterial endophytes were also isolated from root, nodule, and stem tissues of wild

(Glycine soja) and cultivated (Glycine max) soybean varieties. Many were phytohor-

mone indole acetic acid (IAA) producers and 33% of them secreted extra cellular

enzymes cellulase and pectinase (Hung et al. 2007). Bacterial endophytes are capable

of suppressing the proliferation of fungal and nematode pathogens, and this may

benefit other crops in rotation with the host plants. Nine of the soybean bacterial

endophytes belong to Bacillus spp., reported to have antifungal activity against major

soilborne plant pathogens like Rhizoctonia bataticola, Macrophomina phaseolina,
Fusarium udam, and Sclerotium rolfsii. These endophytes suppressed the pathogens

under in vitro plate assay shown to possess biocontrol traits such as production of

hydrogen cyanide (HCN), siderophores, hydrolytic enzymes, and antibiotics. The

endophytic Bacillus sp. HKA-121 was reported as effective suppressor of charcoal

rot disease as well as plant growth promotion in soybean (Senthilkumar et al. 2009).
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The elucidation of these mechanisms promoting plant growth by bacterial endophytes

will help favor species and conditions that lead to greater plant benefits.

It is now commonly known that bacteria persist in their natural environments by

forming biofilms. Biofilms are highly structured, surface-attached communities of

cells encased in a self-produced extracellular matrix. Bacteria seems to initiate

biofilm formation in response to specific environmental cues, such as nutrient and

oxygen availability, biofilms undergo dynamic changes during their transition from

free-living to sessile biofilm cells, including the specific production of secondary

metabolites and a significant increase in the resistivity to biological, chemical, and

physical assaults (Davey and O’Toole 2000). Recent studies have suggested that the

biofilm formation is important for the bacteriums’ ability to act as a biocontrol

agent against plant pathogens (Fig. 5). Bacterial biofilms established on plant roots

could protect the colonization sites and act as a sink for the nutrients in the

rhizosphere, hence reducing the availability of root exudate nutritional elements

for pathogen stimulation or subsequent colonization on the root (Weller and

Thomashow 1994). In addition, these biofilm-forming bacterial species can produce

a variety of antimicrobial metabolites which include broad spectrum lipopeptides of

Bacillus and Paenibacillus, such as surfactins that are potent biosurfactants and

important for maintaining the aerial structure of biofilms (Bais et al. 2004). The

presence of surfactin-producing B. subtilis 6051 biofilms is expected to prevent the

planktonic cells of other microbes colonizing biological surfaces including plant

roots. Bais et al. (2004) have reported that the biocontrol of Pseudomonas syringae
by biofilm-forming B. subtilis 6051 is related to surfactin production on the surface
of the root. Upon root colonization, B. subtilis 6051 forms a stable, extensive

biofilm and secretes surfactin, which acts together to protect plants against infection

by other pathogenic bacteria.

The biofilm-forming strains of B. thuringiensis suppress the quorum-sensing-

dependent virulence of the plant pathogen Erwinia carotovora through a new form

Fig. 5 Schematic diagram showing protection of plant roots against pathogen infection by

bacterial biofilm formation on roots
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of microbial antagonism called signal interference (Dong and Zhang 2004).

E. carotovora produces and responds to AHL quorum sensing signals to regulate

antibiotic production and the expression of virulence genes, whereas B. thuringiensis
strains posses AHL-lactonase, which is a potent AHL-degrading enzyme.

B. thuringiensis does not seem to interfere with the normal growth of E. carotovora;
however, it abolishes the accumulation of the AHL-signal when they are cocultured

(Zhang and Dong 2004). In plants, B. thuringiensis significantly decreases the

incidence of E. carotovora infection and symptom development of potato soft rot

caused by the pathogen (Dong and Zhang 2004). In the recent studies, Timmusk

et al. (2005) reported that the natural isolates of plant growth promoting rhizobac-

terium P. polymyxa B1 and B2 forms biofilms in Arabidopsis thaliana. They studied
intracellular colonization of these isolates by tagging with plasmid-borne green

fluorescent protein (GFP). Fluorescence microscopy and scanning electron micros-

copy indicated that the bacteria colonized predominantly the root tip, intercellular

spaces outside the vascular cylinder where they formed biofilms (Fig. 6). Similarly,

the intracellular colonization and biofilm formation in root tips and nodules of

soybean by a biocontrol bacterium P. polymyxa HKA-15 tagged with GFP was also

Fig. 6 Scanning electron microphotographs (top row) and fluorescence micrographs (bottom row)
showing the biofilm formation by Gfp tagged isolates of Paenibacillus polymyxa B1 on roots

(Timmusk et al. 2005)
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observed under fluorescence microscopy (data not published). The biofilm-forming

P. polymyxa on plant roots protected the plant from pathogen infection. Two

P. polymyxa isolates B1 and B2 characterized to form biofilms prevented

root colonization and infection by Aspergillus niger causing crown rot disease in

peanuts (Haggag and Timmusk 2008).

7 Conclusion

The various plant growth promoting properties, together with endospore-forming

ability of Bacillus and Paenibacillus, enable the strain formulations to resist a wide

range of environmental stresses. Strains of Bacillus subtilis and Paenibacillus
polymyxa are well-established model organisms for research on molecular

plant–microbe interactions. The complete genome of Bacillus subtilis has been

published and genome sequencing of root colonizing bacterium Paenibacillus
polymyxa is underway. This genomic information will be available to investigate

molecular responses of Bacillus and Paenibacillus in soil and the crop rhizosphere

in particular. Further, biotechnology can be applied to create transgenic strains with

multiple mechanisms of action and strains with specific formulation qualities

(stability of inoculants and better root colonization). Continued research with

endophytic colonization and biofilm formation by these bacterial genera also

holds potential for developing biofertilizer and biocontrol agents that may be

self-perpetuating within the colonizing host plants. Focusing research in these

areas will make Bacillus and Paenibacillus spp. as promising/potential PGPR.

Their applications will significantly reduce the use chemical fertilizers and pesti-

cides which will be essential for achieving sustainable crop yield in agriculture.
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promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-

1-carboxylic acid (ACC) deaminase (EC 4.1.99.4), which regulates ethylene

production by metabolizing ACC (an intermediate precursor of ethylene biosyn-

thesis in higher plants) into a-ketobutyrate and ammonia. The microbial enzyme

1-aminocyclopropane-1-carboxylate deaminase cleaves ACC irreversibly, this

being the immediate precursor of ethylene in plants. ACC deaminase-expressing

PGPR protect plants against the growth inhibition that might otherwise result

following flooding, extremes of temperature, the presence of organic and inor-

ganic toxicants, phytopathogens, drought or high salt concentrations. Organisms

containing ACC deaminase genes have been reported to be useful in promotion of

early root development from either seeds or cuttings, increasing the life of

horticultural flowers, protecting plants against a wide range of environmental

stresses, facilitating the production of volatile organic compounds responsible

for aroma formation and phytoremediation of contaminated soils.

1 Introduction

Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme,

1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (EC 4.1.99.4), which

regulates ethylene production by metabolizing ACC (an intermediate precursor

of ethylene biosynthesis in higher plants) into a-ketobutyrate and ammonia. This

pyridoxal phosphate (PLP) enzyme was first isolated in 1978 from Pseudomonas sp.
strain ACP and from the yeast Hansenula satrunus (Honma and Shimomura 1978)

since then, it has been detected in fungi and in a number of other bacteria. When

ACC deaminase-containing plant growth-promoting bacteria (PGPB) are bound to a

plant, they act as a sink for ACC ensuring that plant ethylene levels do not become

elevated to the point.

Conceptually, PGPR can have an impact on plant growth and development in two

different ways: indirectly or directly. The indirect promotion of plant growth occurs

when bacteria decrease or prevent some of the deleterious effects of a phytopatho-

genic organism by one or more mechanisms. On the other hand, the direct promotion

of plant growth by PGPR generally entails providing the plant with a compound that

is synthesized by the bacterium or facilitating the uptake of nutrients from the

environment (Glick 1995; Glick et al. 1999). Rhizosphere bacteria multiply to

high densities on plant root surfaces where root exudates and root cell lysates

provide ample nutrients. Sometimes, they exceed 100 times to those densities

found in the bulk soil (Campbell and Greaves 1990). Certain strains of these plant-

associated bacteria stimulate plant growth in multiple ways: (1) they may fix

atmospheric nitrogen, (2) reduce toxic compounds, (3) synthesize phytohormones

and Siderophores, or (4) suppress pathogenic organisms (Bloemberg and Lugtenberg

2001). Research on the “biocontrol” activity of rhizobacteria has seen considerable

progress in recent years. Disease suppression of soilborne pathogens includes

competition for nutrients and production of antimicrobial compounds or lytic
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enzymes for fungal cell walls or nematode structures (Persello-Cartieaux 2003).

By contrast, systemic resistance can also be induced by rhizosphere-colonizing

Pseudomonas and Bacillus species where the inducing bacteria and the challenging
pathogen remained spatially separated excluding direct interactions (Van Loon et al.

1998; Ryu et al. 2004).

Etiolated pea seedlings are very sensitive to ethylene. The most widely

renowned example of the effect of ethylene on plant growth is the classical “triple”

response in etiolated dicot seedlings in the presence of ethylene. This effect consists

of three distinct morphological changes in the shape of seedlings, inhibition of stem

elongation, increase in stem diameter and horizontal growth (Akhtar et al. 2005;

Khalid et al. 2006). This “triple” response reaction of etiolated seedlings has been a

reliable bioassay for ethylene action (Guzman and Ecker 1990). Shaharoona et al.

(2007) observed the effect of inoculation with ACC utilizing and ethylene-producing

rhizobacteria and compared through highly ethylene specific classical “triple”

response bioassay. In this study, the effect of inoculation with rhizobacteria having

different ACC-deaminase activities on extenuating the classical “triple” response in

etiolated pea seedlings was investigated.

ACC deaminase-containing PGPB up-regulate genes involved with plant growth

and protein production while down-regulating plant genes involved with ethylene

stress and defence signaling pathways (Hontzeas et al. 2004a). The ACC deami-

nase-containing PGPB, in part, alleviate the need for the plant to actively defend

itself against various environmental stresses (Hontzeas et al. 2004b; Van Loon and

Glick 2004). The crystal structure has been determined for the yeast (Minami et al.

1998), and recently for the bacteria (Karthikeyan et al. 2004) ACC deaminase

enzymes; the biochemical and thermodynamic properties of the ACC deaminase

from Pseudomonas putida UW4 have been measured (Hontzeas et al. 2004b).

ACC deaminase from Pseudomonas sp. ACP, P. putida, P. fluorescens (Glick
1995), Enterobacter cloacae CAL2 and UW4 (Shah et al. 1998), Kluyvera ascor-
bata SUD165 (Burd et al. 1998), Hansenula saturnus (Honma and Shimomura

1978), and Penicillium citrinum (Jia et al. 2006) have been reported.

This enzyme facilitates plant growth as a consequence of the fact that it seques-

ters and cleaves plant produced ACC, thereby lowering the level of ethylene in the

plant. In turn, decreased ethylene levels allow the plant to be more resistant to a wide

variety of environmental stresses, all of which induce the plant to increase

its endogenous level of ethylene; stress ethylene exacerbates the effects of various

environmental stresses. The ACC deaminase-containing soil bacteria decrease a

significant portion of the physiological damage to plants following environmental

stresses including phytopathogen infection, exposure to extremes of temperature,

high salt, flooding, drought, exposure tometals and organic contaminants, and insect

predation. For many plants a burst of ethylene is required to break seed dormancy

but, following germination, a sustained high level of ethylene can be inhibitory to

root elongation. PGPB that contain the enzyme ACC deaminase, when bound to a

plant root or to the seed coat of a developing seedling, may act as a mechanism for

insuring that the ethylene level within the plant’s tissues does not become elevated to

the point where root (or shoot) growth is impaired. By facilitating the formation of
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longer roots and shoots, these bacteria may enhance the survival of some seedlings,

especially during the first few days after the seeds are planted.

2 Ethylene Biosynthesis in Higher Plants

Ethylene, which is produced in almost all plants, mediates a range of plant

responses and developmental step. Ethylene is involved in seed germination, tissue

differentiation, formation of root and shoots primordial, root elongation, lateral bud

formation, flowering initiation, anthocyanin synthesis, flower opening and senes-

cence, fruit ripening and degreening, production of aroma, leaf and fruit abscission

and response of plant to biotic and abiotic stresses. (Saraf and Tank 2005). Ethylene

is a potent plant growth regulator that affects diverse developmental processes,

including fruit ripening, senescence, and stress responses (McKeon and Yang 1987;

Reid 1987). Chemical inhibitors of ethylene synthesis or action completely block

ripening in fruits and senescence in flowers of many plant species.

At a molecular level, ethylene is known to induce expression of a number of

genes involved in ripening (Lincoln and Fischer 1988) and pathogen response

(Ecker and Davis 1987). In some instances, ethylene is stimulatory while in others

it is inhibitory.

When plants are exposed to conditions that threaten their ability to survive, the

same mechanism that produces ethylene for normal development instead produces

“stress ethylene” which may be defined as an acceleration of ethylene biosynthesis

associated with biological and environmental stresses, and pathogen attack (Abeles

et al. 1992; Hyodo 1991; VanLoon 1984). Ethylene is synthesized from S-adenosyl

L-methionine (AdoMet) by way of the intermediate ACC (McKeon and Yang 1987).

While working on the ethylene biosynthesis pathway, Adams and Yang (1979)

found that when ACC was applied to various plant organs, an increase in ethylene

production was obtained. From their observations, ACC, as a key intermediate that

linked the methionine cycle and ethylene biosynthesis, was deemed to be the direct

precursor of ethylene production with its level directly controlling ethylene synthe-

sis in plants (Fig. 1).

Ethylene biosynthesis consists of three steps (1) L-methionine is converted to

AdoMet, a reaction catalyzed by methionine S-adenosyl transferase. AdoMet is

also utilized in other cellular reactions such as ethylation and polyamine synthesis,

(2) The conversion of AdoMet to ACC which is catalyzed by ACC synthase. The

ACC synthase step is considered to be the rate-limiting step in the pathway (3) ACC

is further metabolized to ethylene, carbon dioxide and cyanide by ACC oxidase.

Since all plants respond differently to stress, it has been difficult to detail the

functioning of stress ethylene. Increased ethylene levels in plants exposed to various

types of stress including chilling, heat, wounding, pathogen infection, salt, metals

and nutritional stress, with increased damage as the result has been documented.

Stress ethylene, though its role is unclear, is deleterious to plants in many instances

(Saravanakumar and Samiyappan 2007).
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3 Characteristics of ACC Deaminase Enzyme

Enzymatic activity of ACC deaminase is assayed by monitoring the production of

either ammonia or a-ketobutyrate, the products of ACC hydrolysis. ACC deami-

nase has been found only in microorganisms, and there are no microorganisms that

synthesize ethylene via ACC (Fukuda et al. 1993). ACC Deaminase is a multimeric

enzyme (homodimeric or homotrimeric) with a subunit molecular mass of approxi-

mately 35-42 kDa. It is a sulfhydral enzyme in which one molecule of the essential

cofactor PLP is tightly bound to each subunit. Interestingly, this enzyme is cyto-

plasmically localized so that the substrate ACC must be exuded by plant tissues and

subsequently taken up by an ACC deaminase-containing microorganism before it is

cleaved (Glick et al. 1998).

The enzyme–substrate relationship demonstrates Km values of ACC deaminase

for ACC estimated at pH 8.5, in all instances examined, to be approximately

1.5–17.4 mM indicating that the enzyme does not have a particularly high affinity

for ACC (Honma and Shimomura 1978). Moreover ACC levels in plants are

Fig. 1 Pathway of ethylene biosynthesis from the methionine cycle in higher plants. Modified

figure adapted from the source reference Li (1999)
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typically in mM range, therefore in most plant tissues the ACC concentration will be

dramatically below the Km of ACC deaminase for this substrate so that based on the

Michaelis–Menton rate equation for enzyme catalyzed reaction a small increase in

the ACC concentration will result in a parallel increase in the rate of ACC cleavage.

4 Crystal Structure of 1-Aminocyclopropane-1-Carboxylate

Deaminase

PLP-dependent enzymes catalyze many important reactions that act upon amino

acids, including transamination, decarboxylation, b,g-replacement/elimination, and

racemization. In all of these reactions (except in the case of the glycogen

phosphorylase family), the two basic chemical properties of the PLP are conserved;

it forms an external aldimine between its aldehyde group and the a-amino group of

the substrates and withdraws electrons from the substrate by serving as an electron

sink. As a PLP-dependent enzyme, the ACCD’s ring opening reaction starts with a

transformation reaction from an internal aldimine between the PLP and the enzyme

to an external aldimine. These enzymes have been classified based on their three

dimensional structure, into four folding types: (1) tryptophan synthase, (2) aspartate

aminotransferase, (3) D-amino acid aminotransferase and (4) alanine racemase.

In most of the PLP-dependent enzymes, the next step is the nucleophilic abstraction

of the a-substituent, either an a-proton or a carboxylate group, to form an a-
carbanionic intermediate. This reaction mechanism cannot be applied to ACCD

because the substrate (ACC) does not contain a-hydrogen and the carboxyl group is
retained in the product. Therefore, the ring-opening reaction of ACC must be

initiated without obvious accessibility to an a-carbanionic intermediate, which is,

for PLP-dependent enzymes, the common entry for catalysis. One proposed reaction

mechanism is the nucleophilic addition to Cg followed by the cleavage of the Ca–Cg
bond and b-proton abstraction. As PLP, acts as an electron sink, external aldimine is

fairly electrophilic, and the nucleophilic addition to Cg to rupture the cyclopropane
ring of ACC is mechanistically feasible (Yao et al. 2000) (Fig. 2).

5 Mechanism of ACC Deaminase Action

A model is proposed to explain how ACC deaminase-containing PGPB can lower

plant ethylene levels and in turn stimulate plant growth (Glick et al. 1998), especially

under stress conditions. PGPB bind to the surface of either the seed or root of a

developing plant in response to tryptophan and other small molecules in the seed or

root exudates the PGPB synthesize and secrete the auxin, Indoleacetic acid (IAA),

some of which is taken up by the plant. This IAA together with endogenous plant

IAA can stimulate plant cell proliferation and elongation, or it can induce the activity
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of ACC synthase to produce ACC (Penrose and Glick 2001). Some of the plant’s

ACC will be exuded along with other small molecules such as sugars, organic acids

and amino acids. The exudates may be taken up by the bacteria and utilized as a food

source of the rhizosphere bacteria. ACC may be exuded together with the other

components of the root or seed exudates. ACCmay be cleaved byACC deaminase to

form ammonia and a-ketobutyrate, compounds that are readily further metabolized

by the bacteria (Holguin and Glick 2001). The presence of the bacteria induces the

plant to synthesize more ACC than it would otherwise need and also, stimulates the

exudation of ACC from the plant (some of which may occur as a consequence of

plant cell wall loosening caused by bacterial IAA). Thus, PGPB are supplied with a

unique source of nitrogen in the form of ACC that enables them to proliferate/

survive under conditions in which other soil bacteria may not readily flourish

(Hontzeas et al. 2006). As a result of acting as a sink for ACC and lowering its

level within the plant, the amount of ethylene that is produced by the plant is also
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Fig. 2 The enzymatic reaction catalyzed by ACCD. Modified figure adapted from the source

reference Ose et al. (2003)
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reduced. Thus, the inhibition of plant growth by ethylene (especially during periods

of stress) is decreased and these plants generally have longer roots and shoots and

greater biomass (Fig. 3).

6 Role of Bacterial ACC Deaminase Under Stress

Agricultural Conditions

PGPR containing ACC Deaminase activity eliminates heavy metal toxicity, imparts

resistant to drought, other abiotic stresses such as salinity, extremes of temperature

and pH in soil apart from antagonism against phytopathogens. Ethylene regulation

in plants due to PGPR is now well established (Table 1).

6.1 Pathogenicity Stress

Pathogenic microorganisms are a major and serious threat to food production and

ecosystem stability worldwide. PGPR mediated biocontrol in terms of competition

for an ecological niche or a substrate and producing allelo-chemicals and inducing

systemic resistance (ISR) in host plants to a broad spectrum of pathogens (Compant

et al. 2005).

ACC deaminase bacteria, apart from directly antagonizing pathogens, support

the plant resistance against pathogen attack. Beneficial rhizobacteria do not obvi-

ously damage their host/cause localized necrosis, therefore, the eliciting factors

Fig. 3 The ACC deaminase in PGPR degrades the ethylene precursor ACC. The ACC deaminase

in PGPR lowers ethylene level in plants by degrading ACC to ammonia and a-Ketobutyrate.
Lowering ethylene in plants can alleviate stress and thereby improve plant growth. Some PGPR

can also produce plant regulator IAA and further stimulate plant growth. Modified figure adapted

from the source reference Glick and Pasternak (2003)
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produced by ISR-triggering rhizobacteria must be different from elicitors of patho-

gens. Expression of ISR is similar to systemic acquired resistance (SAR) upon

challenge inoculation with pathogen wherein disease severity is reduced; the num-

ber of diseased plants also diminishes. This reduction is associated with decreased

growth of the pathogen and reduced colonization of induced tissues which reflects

upon the ability of plant to resist the pathogen (Dobbelaere et al. 2003). Salicylic

acid is an important signaling molecule in both locally and systemically induced

resistance responses; however, research on rhizobacteria mediated ISR signaling

has demonstrated that jasmonic acid and ethylene play the key roles. Thus, expres-

sion of ISR is phenotypically quite similar to SAR, and relies not only on a different

type of biological induction but occurs also through different defense-related

Table 1 List of ACC deaminase producing bacteria

Strain ACC deaminase activity

(nM aKB mg�1h�1)

Reference(s) or Sources

Achromobacter xylosoxidans
A551

400 � 4 Belimov et al. (2001, 2005)

A. xylosoxidans Bm1 90 � 4 Belimov et al. (2001, 2005)

Achromobacter sp. strain CM1 130 � 3 Belimov et al. (2001, 2005)

Acidovorax facilis 4p-6 3,080 � 120 Belimov et al. (2001, 2005)

Azospirillium brasilense
Cd1843

– Holguin and Glick (2003)

Enterobacter aerogenes CAL3 16 � 12 Shah et al. (1998)

Pseudomonas putida UW4 3,030 � 60 Hontzeas et al. (2006)

P. syringae GR12-2 3,470 � 30 Belimov et al. (2001, 2005)

P. brassicacearum Am3 5,660 � 12 Belimov et al. (2001, 2005)

P. putida BM3 3,780 � 32 Belimov et al. (2001, 2005)

P. marginalis DP3 4,054 � 27 Belimov et al. (2001, 2005)

Rhizobium
leguminosarum128C53K

5 � 1 Belimov et al. (2001, 2005)

R. hedysari ATCC 43676 20 � 0.1 Ma et al. (2003)

R. leguminosarum 99A1 8 � 3 Ma et al. (2003)

Rhodococcus sp. strain Fp2 7,320 � 400 Belimov et al. (2001, 2005)

Rhodococcus sp. strain 4N-4 12,970 � 440 Belimov et al. (2001, 2005)

Serratia quinivirans SUD165 12 � 15 Belimov et al. (2001, 2005)

Variovorax paradoxus 3P-3 3,700 � 90 Belimov et al. (2001, 2005)

V. paradoxus 5C-2 4,322 � 100 Belimov et al. (2001, 2005)

V. paradoxus 2C-1 3,588 � 26 Belimov et al. (2001, 2005)

P. putida ATCC17399 – Shah et al. (1998)

Schizosaccharomyces pombe – Wood et al. (2002)

Hansenula saturnus – Honma and Shimomura (1978),

Minami et al. (1998)

Penicillium citrinum – Jia et al. (2006)

Yersinia pestis – Parkhill et al. (2001)

Caulobacter crescentus – Nierman et al. (2001)

Bacillus anthracis – Read et al. (2002)

Mesorhizobium loti – Sullivan et al. (2002)

Burkholderia fungorum – NCBI microbial genome

annotation project
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activities (Domenech et al. 2006). It is emphasized that ISR-inducing PGPR is a

useful tool to reduce diseases caused by pathogens that are sensitive to jasmonic

acid and ethylene-dependent defenses. Rasche et al. 2006 reported that ACC

deaminase bacteria were capable of antagonizing at least one of the two potato

pathogens Ralstonia solanacearum and Rhizoctonia solani.

6.2 Remediation of High/Heavy Metal Concentration

High metal concentrations in soil have also been shown to cause increased ethylene

production and inhibition of root development, to reduce CO2 fixation and limit

sugar translocation. ACC deaminase and siderophore producing PGPB can help

plants to overcome many of the effects of high levels of metal (Burd et al. 1998,

2000). Phytoremediation of metals poses a significant challenge because most

metal contaminants are tightly bound by soil particles and are not readily bioavail-

able to plants. Moreover, although many plants can tolerate the presence of excess

metals in the soil, most will experience a decrease in plant growth and viability due

to either the synthesis of stress ethylene and/or iron depletion. PGPR can alleviate

some of the effects of metal toxicity in plants via several different mechanisms. For

example bacterial siderophore bind iron with extremely high affinity and plants are

able to take up and utilize the iron from these complexes. Thus PGPR are able

to protect plants against the inhibitory effects of high concentration of metals

by providing the plants with sufficient iron. Belimov et al. (2005) reported 11

cadmium-tolerant strain of PGPR isolated from the rhizosphere of Brassica juncea
grown in cadmium-containing soils. Variovorax paradoxus, Rhodococcus sp. and
flavobacterium sp. all stimulated root elongation in untreated and Cd-treated soils.

6.3 Drought Stress

Drought is one of the major environmental stresses that limit the growth of plants

and the production of crops. The inhibitory effects of ethylene induced by drought

stress might have been eliminated through the ACC deaminase activity of the

PGPR. Inoculation of plants with PGPR containing ACC deaminase partially or

completely eliminated the “drought stress imposed effects” on root and shoot

growth, fresh and dry weights, and number of leaves per plant of peas. This

might be due to suppression of the stress-induced accelerated synthesis of ethylene

by the ACC deaminase activity of these PGPR in the inoculated roots. Sharp

increases in ACC levels and, consequently, ethylene synthesis in plants under drought

stress conditions has been frequently reported. (Apelbaum and Yang 1981). The

rhizobacteria having ACC deaminase activity are effective in promoting plant

growth and water use efficiency under drought conditions, by lowering the ethylene

or ACC accumulation whose higher levels have inhibitory effects on root and shoot
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growth. It is highly likely that rhizobacteria containing ACC deaminase might have

decreased the drought-stress induced ethylene in inoculated plants, which resulted

in better growth of plants even at low moisture levels. Therefore, inoculation

with rhizobacteria containing ACC deaminase could be helpful in eliminating the

inhibitory effects of drought stress on the growth of plants. Dodd et al. (2005)

investigated the physiological responses of pea (pisum sativum L.) to inoculation

with ACC deaminase bacteria V. paradoxus 5C-2 under moisture stress and water-

ing condition. The bacterial effects were more pronounced and more consistent

under controlled soil drying (moisture stress conditions).

6.4 Organic Contaminants Stress

Many organic contaminants are recalcitrant and highly persistent in the environ-

ment, making them particularly difficult to remediate. Many of these compounds

are hydrophobic and are bound tightly to soil particles. A few studies have revealed

an accelerated production of ethylene in soil and plants treated with organic

contaminants (Coupland and Jackson 1991). Reed and Glick (2005) have studied

the growth of canola (Brassica napus) seeds treated with PGPR in copper-

contaminated and creosote-contaminated soil. In creosote-contaminated soils, the

native bacterium was the least effective, and the transformed encapsulated ACC

deaminase bacterium was the most effective in growth promotion.

6.5 Waterlogging Stress

Waterlogging enhances the biosynthesis of ethylene in roots and stem of plants.

In flooding, ACC, which is synthesized in roots, is transported to plant shoots where

it is converted to ethylene by ACC oxidase (Bradford and Yang 1980). The

molecular basis for the increase in ethylene production observed in shoots of

flooded tomato plants is due to an increase in the activity of both ACC synthase

in the submerged roots and ACC oxidase in the shoots (Chao et al. 1997). The

accelerated production of ethylene in the shoots of flooded tomato plants is respon-

sible for the phenotype to demonstrate abnormal growth under flooding conditions

(Jackson 1997).

6.6 Temperature Stress

The heat stress in terms of so-called global warming is a serious threat to world

agriculture (Mendelsohn and Rosenberg 1994). A fluctuation in temperature leads

to hormonal imbalances in plants and thus their growth is significantly affected
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(Cheikh and Jones 1994). It has been reported that PGPR containing ACC deami-

nase activity performs better when subjected to diurnal temperature regime.

Bacillus globiosporus was inoculated to analyze the effect of diurnal temperature

regime (i.e., 25�C days and 5�C night) on root and shoot length, fresh and dry

weight were significantly increased in comparison to B. subtilis and magnesium

sulphate controls (Ghosh et al. 2003).

6.7 Flower Senescence

Ethylene is a key signal in the initiation of willing in most plants. Typically flowers

produce minute amount of ethylene until an endogenous rise of the phytohormone,

which is responsible for flower senescence to occur (Mol et al. 1995). However, the

senescence symptoms that are covered by ethylene differ from plant to plant. The

use of ACC deaminase containing PGPR to lower ACC levels in cut flowers might

be an environmentally friendly alternative to the available use of silver thiosul-

phate. An important characteristic of PGPR containing ACC deaminase activity has

been shown to be the enhancement of shelf life of flowers incubated in suspension

form (Nayani et al. 1998). On a commercial scale, shelf life of flowers could

be increased to manifold by treating them with suspensions of PGPR containing

ACC deaminase activity, which portends great prospects for the application of this

biotechnological approach to commercial floriculture.

6.8 Salinity Stress

Salinity is one of the most severe environmental stresses on plants (White and

Broadley 2001; Tester and Davenport 2003; Munns and Tester 2008). Salt primar-

ily limits plant growth in three ways: (1) osmotic effects that lower the ability of

plants to take up water from the soil, (2) ion-specific damage of excess Na+ and Cl�,
and (3) nutrient deficiencies because elevated levels of Na+ compete with the

uptake of other nutrients by interfering with ion transporters (Tester and Davenport

2003). Symptoms of damage to plants include: growth inhibition, leaf discoloration,

anatomical and morphological changes such as changes in cell wall structure

(Tester and Davenport 2003). Highly saline soil (ECe > 16 dS/m) can severely

interfere with seed germination and growth of plants. As water and nutrients move

from areas of low salt concentration to areas of high salt concentration, soil salinity

prevents plant roots from taking up water and other nutrients, resulting in osmotic

and nutrient imbalances that impair proper plant growth. A sudden increase in soil

salinity will cause plant cells to shrink due to water loss and immediate changes in

expansion rates resulted from the osmotic effects of salt around the roots (Cramer

and Bowman 1991; Munns 2002; Neumann 1993). After several hours, plant cells

can restore their original shape; however, a decrease in cell elongation rates is
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observed in both leaves and roots (Hsiao and Xu 2000; Munns 2002). Continued

exposure for a few days results in a decrease in plant growth (i.e., slower cell

division and impaired cell elongation). In this case, leaves are often more sensitive

to salinity than roots (Hsiao and Xu 2000; Munns 2002). Changes in plant cell

dimension are observed more for an area than depth, therefore, leaves appear to be

smaller and thicker (Munns and Tester 2008). The effects of salinity become more

apparent after a few weeks of exposure (Munns and Tester 2008). Yellowing or

death of older leaves may be visible in salt-sensitive plants, where salt levels are

high, due to increase uptake or inability to store salt in vacuoles (Karley et al. 2000;

Munns and Tester 2008; Tester and Davenport 2003). Only the salt-tolerant plants

are able to grow for several months under moderate salinity; but showed early

flowering or decreased production of florets (Munns 2002).

Salinity stress boosts endogenous ethylene production in plants, which in most

cases serves as a stress hormone (Blumwald 2000). It is very likely that reducing

salinity-induced ethylene by any mechanism could decrease the negative impact of

salinity on to plant growth. Recent studies have revealed that plants inoculated with

PGPR containing ACC deaminase were able to thrive better through the salinity

stress while demonstrating a normal growth pattern. Tank and Saraf (2010) have

reported that increase in the salinity is directly proportional to the ACC deaminase

activity which increases survival rate in saline soils. As the uptake and hydrolysis of

ACC by the PGPR decreases the ACC level in plants, the biosynthesis of the “stress

ethylene” is impeded, facilitating plant growth under stress conditions (Glick et al.

1998). It has been shown that PGPR promotes plant growth under saline conditions.

The presence of PGPR with ACC deaminase may lower the levels of ethylene in

developing or stressed plants, enhance the survival of some seedlings and facilitate

the formation of longer roots.

6.9 Ethylene–IAA Cross-talk

It is well known that IAA can activate the transcription of ACC synthase (Kende

1993; Kim et al. 1992) but it is less well known that ethylene may inhibit IAA

transport and signal transduction (Pratiyon et al. 2006). This feedback loop of

ethylene inhibition of IAA synthesis and/or functioning limits the amount of

ACC synthase, ACC and ultimately, ethylene following every stressful event in

the life of the plant. When an ACC deaminase containing PGPB lowers the ethylene

concentration in plant roots, these relieve the ethylene repression of auxin response

factor synthesis, and indirectly increase plant growth. Thus ACC deaminase con-

taining PGPR facilitate plant growth by decreasing ethylene inhibition and permit-

ting IAA stimulation without the negative effects of increasing ACC synthase and

plant ethylene levels.
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6.10 Air Pollutants Stress

It is very likely that PGPR can be utilized as a gene source for genetic modification

of plants expressing the enzyme ACC deaminase against plant damage by air

pollutants. Air pollution, in addition to damaging plants, inhibits many enzyme

systems and metabolic processes of plants (McCune 1975). Increased ethylene

evolution by plants exposed to various environmental stresses i.e., air contaminants

has been well documented (Wang et al. 2002) and this hormone is now considered a

major regulator of plant defense reactions, including cell death, in response to

pathogen attack and air contaminant stresses, i.e., O3 exposure. Many researchers

reported that the inhibition of ethylene biosynthesis resulted in a significant reduc-

tion of O3-induced leaf lesion formation (Moeder et al. 2002). In this direction, the

role of ACC deaminase in alleviation of air contaminants stresses has not been

studied.

6.11 Rhizobial Infection

Considerable evidence suggests that the ethylene that is produced following infec-

tion of legumes with rhizobia is inhibitory to the process of nodulation. The latest

evidence has demonstrated that PGPR containing ACC deaminase activity pro-

motes nodulation in legumes through inhibition of ethylene biosynthesis and

consequently, they enhance symbiosis and nitrogen fixation in plants (Okazaki

et al. 2004). Uchiumi et al. (2004) reported that an up regulated gene in bacteroids,

mlr5932, and encoding ACC deaminase activity was involved in enhanced nodula-

tion in Lotus japonicus. Pandey et al. (2005) isolated an endophytic ACC deami-

nase bacterium capable of modulating nodulation inMimosa pudica. Coinoculation
with Bradyrhizobium plus ACC deaminase rhizobacteria increased nodulation in

mung bean compared to inoculation with Bradyrhizobium spp. alone (Shaharoona

et al. 2006).

7 Microbe–Microbe Interactions Benefiting Sustainable

Agro-Ecosystem Development

Direct interactions occurring between members of different microbial types often

result in the promotion of key processes benefiting plant growth and health. It is

obvious that all interactions taking place in the rhizosphere are, at least indirectly,

plant-mediated (Azcon-Aguilar and Barea 1992). However, this section will deal

with direct microbe–microbe interactions themselves, with the plant as a
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“supporting actor” in the rhizosphere. Three types of interactions have a major role

to play in bacteria–plant health development because of their relevance to the

development of sustainable agro-ecosystems. These are (1) the cooperation between

ACC deaminase producing PGPR and Rhizobium for improving N-fixation,

(2) microbial antagonism for the biocontrol of plant pathogens, and (3) interactions

between rhizosphere microbes and AM fungi to establish a functional mycorrhizo-

sphere (Barea et al. 2005).

8 ACC Deaminase Gene-Containing Transgenic Plants

Transgenic plants express a bacterial ACC deaminase under the control of either

the 35S (constitutive) or rolD (root-specific) promoter as a treatment with ACC

deaminase containing bacteria, although ethylene levels have been reported to

be decreased by more than 95% in some ripen transgenic tomato fruit. Trans-

genic plants that express ACC deaminase are also significantly protected against

the potentially deleterious effects of a variety of stresses including drought,

flooding (Grichko and Glick 2001), high salt (Sergeeva et al. 2006), phytopatho-

gens (Robison et al. 2001), arsenic (Nie et al. 2002), and several different metals

(Grichko et al 2001). In all instances, transgenic plants, in which ACC deami-

nase was under the control of the rolD promoter, performed significantly better

than the nontransformed plants (regardless of whether the plant was tomato,

canola or tobacco) and the transgenic lines in which the ACC deaminase gene

was under the control of the rolD promoter, yielded significantly more root and

shoot biomass than either the nontransformed plants or transgenic plants

in which the ACC deaminase gene was under the control of the 35S or prb-1b
(stress-specific) promoter. Transgenic plants in which ACC deaminase is under

the control of the rolD promoter appear to mimic the behavior of nontransgenic

plants treated with ACC deaminase-containing PGPB. However, the perfor-

mance of plants treated with ACC deaminase-containing PGPB is almost always

superior to the performance of transgenic plants expressing ACC deaminase

under the control of the rolD promoter. This likely reflects the fact that the

bacteria do more than merely lower plant ethylene levels. They also provide the

plants with other “benefits” such as plant hormones and siderophores.

9 Conclusions and Future Trends

There is considerable experimental evidence that certain microorganisms are able

to colonize the root–soil environments where they carry out a variety of interactive

activities known to benefit plant growth and health, and also soil quality. Given

the current reluctance of many consumers worldwide to embrace the use as foods

of genetically modified plants, it may be advantageous to use PGPB as a means to
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promote growth by lowering plant ethylene levels or reduce disease through induc-

tion of resistance, rather than genetically modifying the plant itself to the same end.

Rhizobacteria having ACC deaminase activity are effective in promoting plant

growth and water use efficiency under drought conditions, by lowering the ethylene

or ACC accumulation whose higher levels have inhibitory effects on root and shoot

growth. From the previous demonstrations, it is established that the microorganisms

that possess ACC deaminase activity have the selective advantage over other

bacteria during biotic and abiotic stress conditions. Besides the activity of ACC

deaminase in alleviating ethylene-mediated abiotic and biotic stresses, the ecology

of bacterium and physiology of the plant may also interact with plant system to

increase resistance to stress. However, the defined mechanisms involved in the use

of plant growth-promoting rhizobacteria which decrease the damage to plants that

occurs under stress conditions is a potentially important adjuvant to agricultural

practice in locales where stress is a major constraint.

From the agricultural and ecological viewpoints, the aims will be to increase food

quality, and to improve sustainable plant productivity, while maintaining environ-

mental quality. However, to achieve this, basic and strategic studies must be under-

taken to improve our understanding of microbial interactions in the rhizosphere.

Only then can the corresponding agro-biotechnology be applied successfully.

Hence, future investigation in the field of microbial cooperation in the rhizosphere

will include: (1) advances in visualization technology; (2) analysis of the molecular

basis of root colonization; (3) signaling in the rhizosphere; (4) functional genomics;

(5) mechanisms involved in beneficial cooperative microbial activities; (6) engi-

neering of microorganisms for beneficial purposes; and (7) biotechnological develop-

ments for integrated management.
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Abstract Synergistic or additive interactions among the partners of the legume

tripartite symbiotic association (Rhizobium–Arbuscular mycorrhizal fungi–legume)

have been shown in most instances to increase legume productivity. Arbuscular

mycorrhizal fungi (AMF) promote increased legume biomass production and

photosynthetic rates by increasing the ratio of P to N accumulation. An increase

in the P content in legume tissue due to the AMF symbiotic association has been

consistently associated with an increase in N accumulation and N productivity in

legumes with or without a Rhizobium association. Photosynthetic N use efficiency,

irrespective of the inorganic source of N is usually enhanced by increased P supply

because of the AMF association. Both light-saturated photosynthetic rates and
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quantum yields increase in legumes in response to increasing N supply due to the

Rhizobium symbiotic association. However, the maximum levels achieved for both

light-saturated photosynthesis and quantum yield as a function of N supply concen-

tration depend on both P and CO2 supply rates. The N:P supply ratio controls the

legume’s growth and photosynthetic response to elevated atmospheric CO2 con-

centrations. These findings indicate that the N:P:C supply ratio as influenced by the

tripartite symbiotic associations plays a fundamental role in controlling the

legume’s photosynthetic rate and biomass productivity.

1 Introduction

Resource acquisition and allocation in legumes are dependent on a complex set

of exchanges between the three members of the legume–Rhizobium–mycorrhizal

tripartite symbiotic association (Fig. 1). The biological basis for the superiority

Fig. 1 Model of the three-way resource exchange system between the three symbiotic partners of

the legume tripartite association. The arrows represent the fluxes or exchanges of C, N and P

between partners of the tripartite symbiotic association. M, AM fungi; R, rhizobial nodule system;

S, substrate carbon (C) storage pool; L, leaves which function as source of the carbon substrate; B,

plants metabolic pool in which the processes of catabolism and anabolism take place; ST,

represents the plant stems and RT represents the plant root system. The broken arrows with plus
sign represent stimulation of photosynthesis by (a) C fluxes from the carbon storage pool to the

AM fungi (2) and to the rhizobial nodules (3) both promote photosynthetic CO2 assimilation; (b)

fluxes of P (4) and N (5) into the metabolic pool promote the flux of substrate carbon (C) from the

carbon storage pool into the metabolic pool which in turn promotes photosynthetic CO2 assimila-

tion. Build up of C in the carbon storage pool represses (broken arrow 1 with minus sign)

photosynthetic CO2 assimilation. The cross in the circle symbol indicates that the flux of C into

the metabolic pool is controlled by the supply of N and P. Biosynthesis of the biomass polymers

from C takes place in the metabolic pool
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of legume crops derives from the three-way resource exchanges among mem-

bers of the tripartite symbiotic association (Bethlenfalvay and Newton 1991;

Barea et al. 1992). AMF and Rhizobium play an important role as microbial

endosymbionts in the supply of P and N, respectively, to legumes growing in

nutrient deficient soils (Azcón et al. 1979). In exchange for P or N, the two

microbial symbionts receive C from the legume host. Thus, the formation of the

tripartite symbiotic association (legume–AMF–Rhizobium) is codependent on a

complex three-way source–sink relation involving C exchanges for P and C

exchanges for N (Brown and Bethlenfalvay 1988). In most reported instances,

these exchanges have had a positive influence on legume growth (Azcón et al.

1979; Paul and Kucey 1981; Harris et al. 1985; Brown and Bethlenfalvay 1988;

Jia et al. 2004).

In general, the legume has been shown to have the capacity to fully compensate

for any internal carbon deficit resulting from photosynthate transfers to the

microbial endosymbionts (Jia et al. 2004; Kaschuk et al. 2009). Furthermore, in

general, the evidence indicates that the C:P and C:N exchanges between the host

and the two microbial symbionts under P and N limiting conditions do not

diminish legume productivity relative to the productivity of plants that are not

nutrient limited (Azcón et al. 1979; Paul and Kucey 1981; Harris et al. 1985;

Brown and Bethlenfalvay 1988; Gray 1996). Plant growth is usually co-limited by

both N and P supply (Jia and Gray 2004a, b). This observation is consistent with

recent studies that have investigated the relationship between N:P stoichiometries

and yield maximization in various crops (Ågren 2004; Sadras 2006). In previous

studies, we have shown that the ratio of P to N was a major factor in determining

the level of productivity in Vicia faba L (Jia et al. 2004 Jia and Gray 2004a, b).

Recent studies have shown that legumes that were partners in the tripartite

symbiotic association (V. faba–AMF–Rhizobium) had significantly higher ele-

mental P to N ratio compared to plants with no symbiotic association (Jia et al.

2004). These results also confirmed the original observations of Brown and

Bethlenfalvay (1988) that plants colonized by both AMF and Rhizobium had

significantly higher photosynthetic nitrogen-use efficiencies and photosynthetic

phosphorus-use efficiencies. Both P and N use efficiency has been shown to be

strongly dependent on the P to N supply ratio (Jia and Gray 2004a, b, 2007). In

N and P supply studies involving V. faba L for plants without any microbial

symbiotic associations, it was found that the optimal values for the different

photosynthetic parameters such as photon saturated net photosynthetic rates

(Pmax), quantum efficiency (a), intercellular CO2 concentrations (Ci) and carbox-

ylation efficiency (CE) were dependent on both N supply rate and leaf nitrogen

content (Jia and Gray 2004a). It was also found that the level of N accumulation

and the optimal values for the above photosynthetic parameters were positively

influenced by the level of P supply (Jia and Gray 2004b; Jia and Gray 2007).

These results indicate that the P or N exchanges from the microbial symbiont for

host C also have a stimulatory effect on leaf photosynthetic capacity (Jia et al.

2004).
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2 The Legume Tripartite Symbiotic Association

Growth of legumes under limiting nitrogen and phosphorus regimes is facilitated

by the resource acquisitions efficiencies and capacities of the two microsym-

bionts, Rhizobium and AMF. AMF symbiotic associations with plant roots gener-

ally improve plant growth by enhancing the uptake of inorganic phosphorus

(Jayachandran et al. 1992). Each of the symbiotic partners in the legume tripartite

system has a specific source and sink function with regard to C, N and P

exchanges. In response to C, N and P demand or supply, each of the tripartite

symbiotic partners plays a specific role in this three-way source–sink exchange

system (Fig. 1). It has been proposed that this three-way resource exchange may

be subject to intersymbiont competition (Bayne et al. 1984; Bethlenfalvay 1992).

The two microsymbionts may be regarded as the primary sources of P and N for

legumes growing in soils deficient in plant-available forms of these two nutrients

(Azcón et al. 1979, 1988; Barea and Azcón-Aguilar 1983; Piccini et al. 1988;

Cihacek 1993). From the legume side of the symbiotic association, the exchange

of resources involves the allocation of carbon to nodules in exchange for reduced

N and to the AM fungi in exchange for P (Fig. 1). Phosphorus, the major plant

growth limiting factor apart from N, is required for photosynthesis in the leaves of

the legume and also for nitrogen fixation in the root nodules (Israel 1987; Haaker

1988; Bethlenfalvay and Newton 1991). The contribution of AM fungi to the

tripartite symbiotic association is particularly significant for nodulated legumes

growing under a soil regime where available inorganic nitrogen in the form

of ammonium or nitrate is limiting, the reason being the high P requirement for

nodulation (Daft 1978; Betlenfalvay and Yoder 1981) and N2 fixation (Bergersen

1971).

With respect to the above ground and below ground source–sink interac-

tions in legume systems, the roots, nitrogen-fixing nodules and mycorrhizal

fungi all compete for a share of the below ground carbon allocation. An

appreciation of this potential three-way below ground competition for carbon

in legumes brings a new perspective to the conceptualization of source–sink

dynamics in legumes. It has been reported that 42% or more of daily net

photosynthate can be allocated to the belowground legume–Rhizobium–mycor-

rhizal association (Paul and Clark 1989). Paul and Kucey (1981) reported that

60% of the photosynthetic carbon flux was partitioned into the below ground

root-nodule–mycorrhizal association. This below ground fraction of daily car-

bon allocation is nearly evenly distributed (12, 13 and 17%) to nodules, the

root, and the mycorrhizal fungi (Paul and Clark 1989). In one report regarding

the photosynthate allocation schedule in growing alfalfa plants, the partitioning

of the carbon in the following proportions to the major organ systems was

observed: 26.2% to the main stem; 12.7% to shoot apex unexpanded leaves on

the main stem; 0.8% to the fully expanded leaves on the main stem; 27.1% to

the auxiliary bud shoots on the main stem; 6.5% to the crown shoots; 3.8% to

the crown; 19.1% the roots and 3.5% to the nodules (Cralle et al. 1987). If the
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crown is included as part of the taproot, then 73.3% of photosynthate is

allocated to the shoot, and the remaining 26.7% of fixed carbon is allocated

to the roots and nodules (Cralle et al. 1987). The carbon allocation to mycor-

rhizal fungi, which is an obligate symbiont, can constitute between 4 and 20%

of host photosynthate as indicated in single host–fungus combinations (Azcón

and Ocampo 1984; Douds et al. 1988; Pearson and Jakobsen 1993). Observa-

tions on the supply of photosynthate in legume systems confirm that photo-

synthate production is in excess of carbon demand by the nodules (Gordon

et al. 1985; Kouchi et al. 1985; Hostak et al. 1987; Vance and Heichel 1991;

Kaschuk et al. 2009).

While there is excess photosynthate supply capacity in legumes such as

alfalfa as evidenced in the accumulation of starch in the taproots in these

legumes (Vance and Heichel 1991), the above examples do demonstrate that

legume root microsymbionts represent substantial carbon sinks. Taken together,

a series of observations (Hostak et al. 1987; Walsh et al. 1987) indicate that the

growth of legumes such as alfalfa or soybean was not limited by source photo-

synthetic capacity but rather by microsymbiont sink strength for carbon. This

becomes especially significant if the flux of carbon to the microsymbionts is

regulated by the plant in exchange for P or N. This idea of microsymbiont

carbon sink strength defined in terms of carbon demand being coupled to the

microsymbionts capacity to supply N or P to the legume needs to be more fully

developed. Which of the possible two resource exchanges (C:P or C:N) is most

limiting or constraining with respect to legume growth? Is it possible that the

carbon demand by the microsymbiont sinks could limit or constrain legume

growth? Is it possible that AMF microsymbiont’s capacity to accumulate, trans-

port and mobilize P in exchange for C could limit legume growth? Or alter-

natively is it possible that the rhizobial microsymbiont’ capacity to fix and

mobilize N in exchange for C and P could limit legume growth? Given that the

supply of P or N or both are factors that in general limit plant growth, then all

factors influence that effect and the C, N, and P exchange dynamics among

symbionts of the tripartite association will have an impact on legume produc-

tivity. These questions will be explored in this chapter. There is evidence that

the relative amounts of carbon allocated for storage or growth depend on the

supply of N and P to the legume (Greenwood et al. 1991).

In Fig. 1, photosynthetic CO2 assimilation is controlled by the flux of sub-

strate carbon out of the carbon storage pool (Gray 2000). This flux is promoted

by the C:P and C:N exchanges between the legume host and the two micro-

symbionts, AMF and Rhizobium respectively. Various consequences of the

relationships and dynamics depicted in Fig. 1 will be investigated in this chapter.

The focus of this investigation is the status of the hypothesis that the photosyn-

thetic capacity of the legume host and its growth rate are constrained by the

supply of N and P. In addition, it will be argued that the sink demand for C or the

flux of C to the two microsymbionts does not limit legume growth as its

photosynthetic capacity can be increased to compensate for C losses to the two

microsymbionts.
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3 AMF Carbon Economy

In an analysis of the carbon economy of the tripartite soybean–Glomus–Rhizobium
symbiotic association, Harris et al. (1985) found that carbon was allocated in the

following proportions: 30.49% to leaves, 20.52% to stems and petioles, 6.3% to

shoot respiration, 7.8% to roots, 2.0% to nodules, 2.7% to AMF, 5.2% to root and

soil respiration, 13.7% to AMF respiration and 9.4% to nodule respiration. In that

study, it was reported that approximately 42.6% of photosynthate was allocated to

below ground sinks. This below ground carbon allocation was distributed between

the various sinks as follows: 38.6% to the AMF, 26.6% to nodules and 30.6% to

roots. When compared to the case of nonsymbiotic plants with nonlimiting supplies

of P and N, it appears that the complex C, N and P three-way source–sink relations

between the members of the tripartite symbiotic association do not limit plant

productivity (Brown and Bethlenfalvay 1988). This supports the hypothesis that

the carbon demand by the microbial symbionts does not limit plant growth.

In the case of AMF, the sink demand created by fungal colonization could

account for an extra 4–26% drain of photosynthate from the AM-infected host

plant (Kucey and Paul 1982a, b; Snellgrove et al. 1982; Koch and Johnson 1984;

Harris et al. 1985; Douds et al. 1988; Wang et al. 1989; Jakobsen and Rosendahl

1990; Black et al. 2000). The maximum hypothetical photosynthetic allocation to

the AMF association may well be as high as 40–50% of the total photosynthate

production (Stribley et al. 1980). Hence, it has been suggested that the carbon

demand by the AMF symbiont has the potential to limit plant growth, and thereby

bring about a decline in the plant growth efficiency (Buwalda and Goh 1982, Jia

et al. 2004; Jia and Gray 2008; Kaschuk et al. 2009). It has been proposed that

increases in the photosynthetic rate of the AM-infected host plant fully compen-

sates for carbon losses from the plant because of increases in AM carbon demand

(Brown and Bethlenfalvay 1988; Fitter 1991; Wright et al. 1998a, b; Kaschuk et al.

2009). If N and P status of AM-infected plant and nonmycorrhizal plants were

similar, it would be found that mycorrhizal plants had higher photosynthetic rates

but similar biomass to the nonmycorrhizal, indicating that the additional photo-

synthate had been allocated to the fungal symbiont (Wright et al. 1998a, b) as

supported by the fact that increases in the photosynthetic rate of AM-infected plants

growing under low P conditions may be mainly due to mycorrhizal-dependent

increases in the plant P status (Allen et al. 1981; Fredeen and Terry 1988; Azcón

et al. 1992; Black et al. 2000). Further increase in photosynthetic rates in AM-

infected plants may be due to the combined effects of enhanced P status and the

AM-dependent carbon sink (Black et al. 2000). An increase in the photosynthetic

rate in the leaves of AM-infected cucumber was found to be due to an increase in

the leaf P status and not because of compensatory increases in photosynthesis in

response to increase in the mycorrhizal sink demand for assimilates (Black et al.

2000). In barley where there was no difference in P status between AM-infected

plants and nonmycorrhizal plants, the AM-infected plants had enhanced photo-

synthetic rates, indicating a compensatory response to mycorrhizal colonization
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(Fay et al. 1996). Also, at equivalent P:N ratios, AM-infected Andropogon gerardii
had higher overall photosynthetic rates compared to the nonmycorrhizal plants

(Miller et al. 2002). Enhancement of photosynthetic rates in mycorrhizal plants

was found not to be indirectly related to the plant P or N status but directly related to

compensatory responses to fungal colonization (Miller et al. 2002) as also evi-

denced by Wright et al. (1998a, b).

A number of attempts have been made to quantify the stoichiometric exchange

of mycorrhizal acquired phosphorus for photosynthate (Douds et al. 1988; Eissenstat

et al. 1993; Pearson and Jakobsen 1993). Schwab et al. (1991) have proposed a

model involving the exchange of one triose-phosphate for one inorganic phosphate

molecule. This gives a carbon/phosphorus exchange ratio of 3. A positive correla-

tion has been observed to exist between the capacity of AMF to stimulate the

growth of the host plant and the radiant flux density incident on the plant (Same

et al. 1983; Son and Smith 1988). Thus, it could be argued that any enhancement

of additional photosynthetic capacity above the levels of P unlimited nonmycor-

rhizal plants would be strongly dependent on the P supply from AMF.

4 Rhizobial Carbon Economy

In the case of the rhizobial endosymbiont, dinitrogen (N2) fixation and nodule

growth also like AMF create a sink demand for photosynthate (Bethlenfalvay and

Brown 1985; Brown and Bethlenfalvay 1986). A number of estimates evaluating

the carbon energetic cost of N2-fixation have been attempted (Salsac et al. 1984;

Twary and Heichel 1991; Vance and Heichel 1991). Total energy costs including

energy utilized for the growth of nodulated roots, maintenance respiration of

nodules, N2-fixation and ammonia assimilation range from 0.4 to 19.4 g C g�1 N

(Salsac et al. 1984). If the energetic costs associated with the growth and mainte-

nance of nodules are omitted, then the estimates of the energy costs for N2-fixation

range from 2.5 to 8.0 g C g�1 N (Atkins 1984; Salsac et al. 1984, Minchin and

Witty 2005). Gross and net carbon requirements for N2-fixation in alfalfa range

from 3.5 to 11.9 g C g�1 N and 2.5 to 8.8 g C g�1 N, respectively (Twary and

Heichel 1991). The average value from over 35 estimates for the carbon cost of

N2-fixation was approximately 6.0 g C g�1 N (Vance and Heichel 1991).

5 N and P Control of Legume Photosynthesis

It is likely that the microbial symbionts exert a positive influence on the legumes

photosynthetic capacity via control of the N and P supply to the host (Fig. 1).

For example, inorganic nitrogen supply rates exert a direct influence on photon

saturated net photosynthetic rates, quantum efficiency, intercellular CO2 concen-

trations and carboxylation efficiency (Jia and Gray 2004a, b). In addition, the
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optimal values attained for the above photosynthetic parameters in response to

N supply are in turn strongly modulated by P supply (Jia and Gray 2004a, b, 2007).

As leaf nitrogen concentration increased, the a converged onto a maximum asymp-

totic value of 0.0664 � 0.0049 mmol (CO2) mmol (quantum)�1. Also, as leaf

nitrogen concentration increased, the Ci value fell to an asymptotic minimum of

115.80 � 1.59 mmol mol�1, and CE converged onto a maximum asymptotic value

of 1.645 � 0.054 mmol (CO2) m
�2 s�1 Pa�1 and declined to zero at a leaf nitrogen

content equal to 0.596 � 0.096 g(N) m�2. Quantum efficiency fell to zero for a leaf

nitrogen content of 0.660 � 0.052 g(N) m�2. In V. faba L as leaf nitrogen content

increases, the value of photon saturated photosynthesis converged onto a maximum

asymptotic value of 33.400 � 2.563 mmol (CO2) m
�2 s�1. Photon saturated photo-

synthesis fell to zero for a leaf nitrogen content equal to 0.710 � 0.035 g(N) m�2.

Increased P supply increased the photosynthetic N use efficiency in terms of Pmax

and a. Increased P supply was also associated with an increase in CE and a decrease

in Ci..

It has been observed that the responses of plant communities to global warming

and elevated CO2 were influenced by leaf N:P ratios (Hedin 2004), which are in turn

dependent on soil N and P supply. This proposal has received support from

experiments which exhibited increases in biomass production in plants acclima-

tized to elevated CO2 (440 and 600 CO2 mL L�1) relative to that in control plants

(280 CO2 mL L�1) depending on the level of NPK supply (Gr€unweig and Korner

2003). These results are consistent with the observations that photosynthesis is co-

limited by both N and P supply (Jia and Gray 2004a, b, 2007; Jia et al. 2004). In

Pinus pinaster the magnitude of growth, photosynthetic rates and N partitioning

into ribulose-1, 5-bisphosphate carboxylase oxygenase (RubisCO) in response to

increasing N supply were also positively modulated by P supply (Warren and

Adams 2001). This modulation of the photosynthetic response to N supply by P

may take place either directly or indirectly. Direct modulation of photosynthetic

activity by P may be facilitated through the influence of P on RubisCO activation

(Marcus and Gurevitz 2000). Alternatively, indirect control of photosynthetic rates

by P supply could be exerted through the chloroplast phosphate shuttle. Phosphate

recycling between the chloroplast and cytoplasm has been observed to modulate the

photosynthetic rate by influencing the rate of export of photosynthate from the

chloroplast (Cockburn et al. 1967a, b; Usuda and Edwards 1982; M€achler et al.
1984; Rao and Terry 1989; Rao et al. 1989a, b; Usuda and Shimogawara 1991; Rao

and Terry 1995). P supply may also indirectly modulate photosynthetic rate by

influencing sink demand for photosynthate (Pieters et al. 2001). In general, the

proposal that photosynthesis is usually co-limited by both N and P supply is

consistent with the observations of recent studies that yield maximization in various

crops was influenced by N:P supply stoichiometries (Ågren 2004; Sadras 2006).

Photosynthesis and plant growth are co-limited by N and P supply (Sterner and

Elser 2002; Ågren 2004).Maintenance of high photosynthetic rates and plant growth

depends on the capacity to mobilize accumulated substrate carbon (C) from the

storage pools into anabolic and catabolic metabolic pathways. Mobilization of C

from the substrate storage pools into the catabolic and anabolic metabolic pathways
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is tightly coupled to N and P supply (Fig. 1).When N and P supply becomes limiting,

photosynthetic generated substrate carbon accumulates. Accumulation of storage

carbon results in the repression of photosynthesis. Under these conditions, plant

growth is not limited by carbon supply. However, the growth of the two heterotro-

phic microbial symbionts is always limited by C supply. In an idealized legume

tripartite symbiotic system, the N and P supply rates from themicrobial symbionts to

the legume will be dependent on C:N and C:P exchange stoichiometries between the

legume and the twomicrosymbionts.What would be the optimal N:P supply ratio for

the achievement of maximum photosynthetic and plant growth rates? Also would

the supply of CO2 become limiting when N and P supply is nonlimiting with respect

photosynthesis and growth? While an extensive literature now exists on the optimal

N:P stoichiometries for crop growth (Sadras 2006), not much is known about the

optimum C:N:P ratios for photosynthesis or plant growth. For the legume, the C in

the C:N:P ratio would represent CO2, the inorganic C substrate for plant growth. In

the case of the microsymbionts, C represents organic carbon from the plant’s

substrate storage pool. The study of Gr€unweig and Korner (2003) does suggest

that with long-term exposure to elevated CO2, plant growth becomes co-limited

by both N and P supply. Plants exposed to elevated CO2 when adapted to ambient

CO2 levels show responses consistent with photosynthesis being co-limited by CO2,

N and P supply (Jia and Gray 2007). In addition, if the photosynthetic catalytic

machinery in terms of leaf N concentration determines the source capacity of the

plant canopy and P concentration influences the energetic efficiency of CO2 assimi-

lation into plant biomass, then the stoichiometric ratio of N:P (as a percentage of dry

biomass) will determine plant productivity levels in response to CO2 supply. There-

fore, in general, it could also be argued that with increasing CO2 supply, the sink

demand of actively growing tissues for additional reduced carbon and source

capacity for assimilating additional CO2 would also be controlled by the N:P supply

ratio. In addition, it can be further argued that with increasing CO2 supply, sink

demand of the legume’s microbial symbiotic associations may be controlled by the

N:P supply ratio from the microsymbionts.

In general, the evidence indicates that the C:P and C:N exchanges between the

host and the two microbial symbionts under P and N limiting conditions do not

diminish legume productivity relative to that of plants that are not nutrient limited

(Azcón et al. 1979; Paul and Kucey 1981; Harris et al. 1985; Brown and

Bethlenfalvay 1988; Gray 1996). In fact, plant growth is usually co-limited by

both N and P supply (Jia and Gray 2004b). This observation is consistent with

recent studies that have investigated the relationship between N:P stoichiometries

and yield maximization in various crops (Ågren 2004; Sadras 2006). Earlier, it was

observed that the ratio of P to N was a major factor in determining the level of

productivity in V. faba L (Jia et al. 2004). Plants that were partners in a tripartite

symbiotic association (V. faba–AMF–Rhizobium) had a significantly higher ele-

mental P to N ratio compared to plants with no symbiotic association. These results

also confirmed the original observations of Brown and Bethlenfalvay (1988) that

plants colonized by both AMF and Rhizobium had significantly higher photosyn-

thetic nitrogen and phosphorus-use efficiencies. Both photosynthetic P and N use
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efficiencies have been shown to be strongly dependent on the P to N supply ratio

(Jia and Gray 2004b).

6 Microbial Symbiont Effect on Legumes

In the case of legumes, there have been several studies on maintenance respiration

and growth yield (McCree and Silsbury 1978; Irving and Silsbury 1987); however,

these studies did not include the effects of microbial symbiotic partners. Also, while

many other studies have focused on the apparent carbon costs induced by the

microsymbiotic partners in the tripartite symbiotic association, they did not directly

investigate the impact of these costs on the growth yield (Azcón et al. 1979; Paul

and Kucey 1981; Harris et al. 1985; Douds et al. 1988). What possible effects do

microbial symbiotic associations have on the host growth yield (Yg) and mainte-

nance respiration under P and N limiting conditions? Increases in legume produc-

tivity correspond to increases in the growth yield. For various legumes the average

values reported for Yg are 0.75 for Trifolium. subterraneum L (McCree and Silsbury

1978), 0.7 for field bean, 0.72 for Lucerne and 0.68 for chick pea (Irving and

Silsbury 1987). In the study undertaken with V. faba L, plants with both rhizobial

and AMF associations under both low N and P supply conditions achieved values

for Yg > 0.7 (Jia and Gray 2008). Hence, the legume partner in the tripartite

symbiotic complex can overcome the constraints on growth efficiency that arise

as a consequence of low N and P concentrations in the soil, even with the

concomitant C losses to the microsymbiotic partners. In broad bean, depending

on the presence of microbial symbiotic associations, the Yg values ranged from 0.44

to 0.78 (Jia and Gray 2008). Growth yield were found to be significantly higher in

plants that had one or more microbial symbiotic association (Jia and Gray 2008). It

was observed that all the legumes with one microbial symbiotic had similar Yg
values irrespective of the N supply level. Plants with two microbial associations had

significantly higher Yg values than plants with all N and P treatments but without

any microbial association.

7 Microbial Effects on Legume Maintenance Respiration

Maintenance respiration (m) estimates obtained for field bean, lucerne, chick pea,

pea and kidney bean have been as follows: 21.35, 24.11, 28.65, 26.53 and 16.51 mg

CO2 (gDM)�1 day�1, respectively (Irving and Silsbury 1987). For Trifolium sub-
terraneum, maintenance respiration rates ranged from 14 mg CO2 (gDM)�1 day�1

grown at 10�C to 64 mg CO2 (gDM)�1 day�1 at 35�C (McCree and Silsbury 1978).

No significant differences were found in the maintenance respiration rates

between legumes without any microbial association and those with one or two
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microbial associations (AMF or rhizobial) (Jia and Gray 2008). Depending on

nitrogen supply, the m values fell between 12 and 36 CO2(gDM)�1 day�1. Mainte-

nance respiration rates were highest in plants with rhizobial and AMF associations

grown under low N supply conditions. As with Yg, the m rates also remained

constant over the two harvest intervals for individual treatments. The above growth

yield and maintenance respiration results are consistent with the hypothesis that in

the legumes potential photosynthetic capacity exceeds the carbon demand of the

Rhizobium–AMF symbiotic complex.

8 Mycorrhizal C:P Exchange Dynamics

In order to evaluate the impacts of mycorrhizal C demand and P supply on legume

growth, two major considerations are (1) the C requirements of the mycorrhizal

fungi and (2), the P acquisition efficiency of the extra radicle mycorrhiza hyphal

system. Both the carbon requirement of the mycorrhizal symbiont and its efficiency

in phosphate acquisition have an impact on the nitrogen and carbon economy of the

tripartite legume symbiont system. Mycotrophic growth of plants is most frequently

attributed to enhanced P uptake; however, there appears to be an optimal level of

mycorrhizal colonization above which the plant receives no additional enhance-

ment in P uptake or growth, yet the plant continues to support mycorrhizal metabo-

lism (Koch and Johnson 1984; Douds et al. 1988). The conditions necessary for the

maintenance of mycotrophic growth under steady-state levels of available soil

phosphorus can be summed up in the following proposition: The maximum bal-

anced-exponential growth rate under the conditions corresponding to a given

steady-state soil phosphorus regime is only achievable for certain values of the

following ratios – (a) the plant biomass:mycorrhizal biomass ratio; (b) the mycor-

rhizal C utilization rate:mycorrhizal P supply rate and (c) the plant specific photo-

synthetic rate (mg CO2 g
�1 dry leave mass s�1):leaf phosphate concentration (% P

of dry mass). The values of these specific ratios would represent the optimal values

for a given soil phosphorus regime. To get some idea of the order of magnitude with

respect to the above ratios, the following values have been reported (they are not

necessarily the optimal values): A ratio of 140C/1P (g atom/g atom) corresponding

to mycorrhizal C utilization and mycorrhizal P supply for soybean during myco-

trophic growth has been reported (Harris et al. 1985). The standard critical leaf

concentration for P-deficiency is 0.35% P on a dry mass basis (Scaife et al. 1983);

0.250–0.7 mg P g�1 leaf is the leaf P concentration range showing P-deficiency

symptoms; 1.0–8.0 mg P g�1 leaf is P-sufficiency range for tissue phosphate

concentrations (Bould et al. 1983). Leaf phosphate status affects the level of light

saturated photosynthesis and plant growth rate (Rao and Terry 1995; Jia and Gray

2004b; Jia et al. 2004).

The Role of the C:N:P Stoichiometry in the Carbon Balance Dynamics 397



The regulatory control of carbon allocation to the various below ground sinks

which includes the storage, and resource acquisition structural–functional compo-

nents of the root require some elaboration. The extent of the fungal carbon require-

ments has not been well investigated; however, it appears that the carbohydrate flux

is regulated by the host plant species, and is also dependent on the mycorrhizal

fungal species (Sieverding 1991). It is estimated that AM fungi remove for their

development and functional activity 1–17% of the carbohydrates allocated by the

plant to root biomass production (Sieverding 1991). The maximum hypothetical

photosynthate requirement and corresponding potential loss of plant dry matter

production to the AM fungal association may well be as high as 40–50% (Stribley

et al. 1980). This means that carbon demand by the fungus seems to have the

potential to limit plant growth (Buwalda and Goh 1982).

Intraradical hyphae of VA mycorrhiza exhibit four categories of hyphae: (1)

intracellular hyphae which exist as coils, often found in the outerlayers of the root

cortex; (2) intercellular hyphae; (3) intracellular hyphae with highly ramified and

invaginating membrane structures, known as arbuscules and (4), intercellular or

intracellular hypertrophic hyphae, called vesicles (Scannnerini and Bonfante-Fas-

olo 1983). The arbuscules which are the sites of nutrient exchanges are essential for

the functioning of VA mycorrhizal associations. The other three intraradical struc-

tures are involved in growth and storage functions. Arbuscules are found in the

inner root cortex and are formed from a penetrating hypha that invaginates the host

plasmalemma and repeatedly bifurcates to form a bushlike structure with progres-

sively thinner branches (Wilcox 1991).

Potential carbon fluxes to mycorrhizal fungi via the arbuscules have been

estimated to approach values up to 100 mg C g�1 root day�1 (Schwab et al.

1983). If the rate of C transfer per unit interfacial area in arbuscules is similar

to that in mildew haustoria and C uptake by mycorrhizae occurs only in the

arbuscules, then transfer of 5 mg C g�1 root day�1 to the fungus would require

an interfacial surface area of 7 � 103 mm2 g�1 root day�1 (Harris and Paul 1987).

The magnitude of carbon or phosphate fluxes across the host–fungus interface will

be influenced by the area of the arbuscule membrane surface within root cells. It has

been calculated that the membrane surface area presented by arbuscules to colo-

nized root cells ranges from 40 to 300 mm2 of plasma membrane cm�1 length of

root of onion and maize respectively (Toth and Miller 1984; Toth et al. 1990).

Using the data of Cox et al. (1975), Harris and Paul (1987) estimate that 1.6 � 105

arbuscules g�1 root dry mass with an arbuscule membrane surface area in the region

of 4 � 104 mm2 cell�1 would be necessary to facilitate the uptake of 5 mg C g�1

root day�1. If there are approximately 1.4 � 108 cells g�1 root (Brown and Broad-

bent 1950), about 0.1% of cells must contain active arbuscules to facilitate the

above daily transfer of C to the mycorrhizae.

Mycorrhizal carbon demand will depend on the carbon requirements necessary

to support (1) fungal growth; (2) growth respiration and (3) maintenance respira-

tion. Carbon demand by the fungus will depend on the specific growth rate of the

mycorrhizal system. With respect to Glomus fasciculatum, Harris et al. (1985) have
reported mycorrhizal fungal growth rates of 3.7 mg C day�1 when associated with
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the soybean–Rhizobium–Glomus tripartite symbiotic system. Bethlenfalvay et al.

(1982) gave a specific growth rate of 0.064 h�1 with a doubling time of 11 days for

mycorrhizal fungi associated with soybean. Instantaneous specific growth rates

ranging from 0.03 to 0.04 day�1 have been reported for G. fasciculatum in Glycine
max–Rhizobium–G. fasciculatum associations (Harris et al. 1985). Growth analysis

studies of mycorrhizae have demonstrated that fungal biomass production has an

exponential phase (Bethlenfalvay et al. 1982). During exponential growth of the

mycorrhizal symbiont, substrate C is partitioned into growth of new fungal bio-

mass; growth respiration and maintenance respiration. A maximum growth yield

(Ymax) of 0.6 has been found for many aerobic heterotrophs growing on a variety of

substrates (Payne 1970). The maintenance respiration coefficient, m, has been

defined in terms of Ymax and the specific maintenance rate, (time�1), by m ¼ b/
Ymax. Accurate estimations of mycorrhizal specific maintenance rate (b) have been
difficult to obtain; however, the following respiration rates have been reported:

11.0 mg CO2 g
�1 h�1 for Glomus mossease in leeks (Snellgrove et al. 1982) and

11.7 mg CO2 g
�1 h�1 for G. fasciculatum in soybeans (Harris et al. 1985).

Carbon fluxes into the mycorrhizal association and the growth of AMF, or

phosphate fluxes from the mycorrhizal symbiont into the legume root, can be

meaningfully analysed as a function of three parameters: (1) the area of the

intracellular arbuscule membranal exchange interface; (2) percentage of root cells

with active arbuscules and (3) the stoichiometric exchange of mycorrhizal acquired

phosphate for photosynthate. A number of attempts have been made to quantify the

exchange of mycorrhizal acquired phosphorus for photosynthate (Douds et al.

1988; Eissenstat et al. 1993; Pearson and Jakobsen 1993). Schwab et al. (1991)

have proposed a model involving the exchange of one triose-phosphate (TP) for one

inorganic orthophosphate (Pi) molecule. The root plasma membrane contains a

triose-phosphate:inorganic phosphate translocator similar to the triose-phosphate:

inorganic phosphate shuttle system corresponding to the phosphate-translocator of

chloroplast membranes. In the case of host–mycorrhizal carbon–phosphate

exchange, the TPs would be dephosphorylated in the interfacial matrix with the

Pi returned to the host via a proton motive force driven Pi pump. The unchanged

trioses in turn will be taken up by the fungus down a gradient of chemical potential.

The source of exchangeable Pi in the interfacial matrix would probably be derived

from the hydrolysis of polyphosphate granules located in the arbuscular hyphae.

Phosphate will be transferred down a concentration gradient from the arbuscular

hyphae into the interfacial matrix and then be taken up the root cells in exchange

for TPs.

Within a given plant species the level of AM fungal infection is positively

correlated with (1) the root content of soluble carbohydrates (Same et al. 1983)

and (2) the level of sugar exudation (Azcón and Ocampo 1981, 1984). As the host

plant supplies photosynthates for AM fungal growth in exchange for phosphate,

there should exist a positive correlation between the efficiency of AM fungi as a

supplier of phosphate and the photosynthetic rate of the host. Phosphate supply

efficiency depends on radiant flux density incident on the plant (Diedrichs 1983a;

Tester et al. 1986; Son and Smith 1988) and the day length to which the plant
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is exposed (Diedrichs 1983b). Shading or defoliation depresses mycorrhizal growth

(Same et al. 1983). Phosphorus deficiency is often associated with increased

exudation of sugars and enhanced VA mycorrhizal infection of roots (Graham

et al. 1981).

9 Rhizobial C:N Exchange Dynamics

It remains unresolved whether assimilation of nitrogen via NO3
� or N2 reduction is

more favourable to growth and dry matter production in legumes (Atkins 1984).

Carbon costs of N2 fixation vary with host species, rhizobial strain, stage of plant

development and method of measuring (Rainbird et al. 1984; Salsac et al. 1984;

Skot et al. 1986). Reported values range from 1.3 to 22.8 mol C mol�1 N (Twary

and Heichel 1991). Under steady-state growth conditions, it can be reasonably

assumed that the rate of N acquisition by the rhizobium microsymbionts equals

the rate of N supply to the legume host, which in turn is a function of host demand

for N. With a dynamic functional equilibrium between plant and N2 fixing symbi-

ont, biomass production in alfalfa was found to be correlated with nodule mass per

plant (Cralle et al. 1987). However, an increase in nodulation was associated with

an overall increase in biomass, but the actual proportion of photosynthate partition-

ing to individual components of the plant (stem, leaves, crown, roots, nodules)

remains unaltered. Reduction of N2 by nitrogenase is an energy-intensive process

that results in the consumption of 60–80% of nodule ATP (Heytler and Hardy

1984). Dinitrogen (N2) fixation by legume–rhizobial symbioses is driven by shoot

photosynthesis and therefore can theoretically decrease the amount of photosyn-

thate partitioned to economic yield. If there is no compensatory increase in the

photosynthetic rate in response to C demand associated with N2 fixation, then the

photosynthate consumed by the processes of N2 fixation will be unavailable for

plant dry matter production. Twary and Heichel (1991) found that dry matter

accumulation in alfalfa was unrelated to the C cost of N2 fixation.

The C consumed in nodule N2 fixation is partitioned among the component

processes of nodule growth and maintenance, reduction of N2 by nitrogenase and

assimilation plus transport from the nodules (Mahon 1983). Net CO2 evolution by

nodule respiration is usually measured to calculate the C costs of N2 fixation

(Schubert and Wolk 1982). A certain proportion of this CO2 is refixed by phospho-

enolpyruvate carboxylase in the nodule (Twary and Heichel 1991). It therefore

follows that gross and net C costs of N2 fixation need to be distinguished when

evaluating the C energetic costs of N2 fixation. Because of refixation of respiratory

CO2 in the nodules, the C costs of N2 fixation can be decreased by 10–14% (Ryle

et al. 1984).

A number of estimates evaluating the energetic cost of nitrogen fixation have

been attempted (Phillips 1980; Rawsthorne et al. 1980; Schubert and Ryle 1980;

Minchin et al. 1981; Schubert and Wolk 1982; Skot et al. 1986) in terms of the

amount of carbon utilized for nitrogen fixation. In general, these estimates sum up
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the total costs involved in nitrogen acquisition from N2 as the nitrogen source.

Therefore, the total energetic cost includes the energy utilized in nodulated root

growth, maintenance respiration, N2 fixation and ammonia assimilation. The values

range from 0.4 to 19.4 g C g�1 N (Salsac et al. 1984). If the energetic costs

associated with the growth and maintenance of nodulated roots are omitted, then

estimates of the energetic requirements for N2 fixation range from 2.5 to 8.0 g C g�1

N (Atkins 1984; Salsac et al. 1984). Twary and Heichel (1991) observed that the

specific N2 fixation rates in alfalfa depended on the strain of Rhizobium meliloti.
They reported specific N2 fixation rates ranging from 3.39 to 16.49 nmol N

min�1 g�1dry wt nodule. The rhizobium microsymbionts rate of N acquisition

would be dependent on the total nodule mass. Selection of alfalfa for greater nodule

mass resulted in a proportional increase in the mass of all plant organs (Cralle and

Heichel 1986; Cralle et al. 1987). Nodule N2 fixation occurs unabated throughout

both day and night (Vance and Heichel 1991). The carbon energy input that drives

N2 fixation in the nodules appears to be derived entirely from the shoot (Vance and

Heichel 1991). During the day, translocation of photosynthate into the nodules

drives N2 fixation and at night mobilization and translocation of shoot carbon

storage reserves support N2 fixation. It would thus appear that the tap root storage

reserves are not available for driving N2 fixation in the nodules (Vance and Heichel

1991). Leaf nitrogen status determines growth potential and if the N input for plant

growth is dependent on nodule N2 fixation then the rate of N2 fixation becomes the

process that limits growth. Under these conditions, the legume growth depends on

the plant’s nitrogen utilization efficiency and the rate at which fixed nitrogen is

supplied to the host. Achievement of maximum growth rates of the nodule system

and the plant may be constrained by the exchange rates associated with C export

from the plant to the rhizobial nodules and N export from the rhizobial nodules to

the plant system.

Under conditions of balance exponential growth, a functional equilibrium rela-

tionship with respect to the C:N exchange ratio should exist between the legume

and the rhizobium microsymbiont. Under these conditions a system of regulatory

control would maintain a dynamic functional equilibrium between the activity of

the N2 fixing nodule system and the photosynthesizing shoot such that the legume’s

tissue C:N ratio would be kept poised at a constant value during steady-state

exponential growth. Given this state of affairs, the legume’s specific growth rate

would be a function of the nodule:legume mass ratio. Thus, if the nodule’s specific

N2 fixation rate and the plant’s nitrogen concentration are known, then theoretically

the legume’s specific growth rate can be determined as a function the legume’s

nodule:plant mass ratio. Measured mean relative growth rates range from

0.120 g g�1 day�1 for soybean (Sa and Israel 1995) to 0.237 g g�1 day�1 for alfalfa

shoots (Philippot et al. 1991). On the basis of these relationships, it should be

possible to compare predictions for legume specific growth rates, on the basis of

nodule N2 fixation rates, plant nitrogen concentrations and nodule:plant dry mass

ratios, with measured mean relative growth rates (RGRs).

Values for nodule:plant mass ratios range from 0.01 to 0.03 for alfalfa (Cralle

et al. 1987) and 0.017 to 0.08 for soybean (Ribet and Drevon 1995; Sa and Israel
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1995). Assuming the carbon content of alfalfa to be 45%, the C:N ratios vary from

14.5 to 19 (Twary and Heichel 1991). With a plant carbon content of 40%, the C:N

values will vary from 8 to 13.4. The critical nutrient range (CNR) for tissue

nitrogen concentration in alfalfa is about 3% of dry mass and the plant sufficiency

levels for tissue nitrogen in alfalfa range from 3.76 to 5.5% of dry mass (Miller and

Donahue 1990). Assuming a plant carbon content of approximately 40%, the

average C:N ratio for a typical legume such as alfalfa growing on arable soils is

13 (Miller and Donahue 1990, pp 188–189), which is equivalent to 31 mg N g�1

dry mass. Nodulated P-sufficient soybeans grown on N-free nutrient media attained

the following plant nitrogen concentrations: 40–60 mg N g�1 dry mass for leaves;

<20 mg N g�1 dry mass for stems; �15 mg N g�1 for roots and 60–80 mg N g�1

dry mass for nodules (Sa and Israel 1995); averaged over the total plant biomass

the mean tissue nitrogen concentration is in the region of 30 mg N g�1 dry mass.

Reported values for nodule acetylene reduction activity in soybean range from

100 to 300 mmol C2H4 g
�1 nodule dry mass h�1 (Parsons et al. 1992; Ribet and

Drevon 1995; Sa and Israel 1995). Predictions of N2 fixation rates based on

acetylene reduction assays need to be treated with caution. A major problem in

the use of the acetylene reduction based nitrogenase assay to estimate absolute rates

of N2 is the reliability of the C2H2 to N2 calibration. The C2H2/N2 ratio can range

from 2.66 to 4.33 (Minchin et al. 1983). For an average C/N ratio value of 13

which corresponds to a tissue nitrogen concentration of approximately 30mg N g�1

dry mass for a plant with a C content of 40%, a specific growth rate of 0.115 g g�1

day�1 can be calculated for soybean plants having a specific nitrogenase activity

of 300 mmol C2H4 g
�1 dry mass h�1 and an average nodule:plant mass ratio of

0.06 (given a theoretical average C2H2/N2 ratio of 3.5). The calculated specific

growth rate gives a fairly accurate estimation of the actual measured mean RGR,

0.120 g g�1 day�1 (data for this comparison were derived from Sa and Israel

1991; 1995).

10 Rhizobium Nodule Phosphorus Requirements

Phosphorus deficiency is a major limiting factor for N2 fixation. Specific nitroge-

nase activity decreases with the onset of P-deficiency (Sa and Israel 1991). Several

physiological and metabolic properties were associated with lower specific nitroge-

nase activity in nodules of P-deficient plants: Bacteroid mass per unit nodule mass,

bacteroid N concentrations, plant cell ATP concentrations and energy charge were

significantly lower in nodules of P-deficient plants (Sa and Israel 1991). Because

nitrogenase is localized in the bacteroids, lower bacteroid mass per unit nodule

mass and N concentration could account for decreased specific nitrogenase activity

under P-deficiency (Sa and Israel 1991). Legumes dependent on symbiotic N2

fixation have a higher internal P requirement for optimum nitrogen assimilation

compared to plants dependent on combined inorganic nitrogen in the form of nitrate

and ammonium (Israel 1987). Soybean grown with limiting P supply showed a
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reduction in nodule numbers; nodule mass; individual nodule mass and plant mass

(Israel 1993). The growing nodule is a major sink for P in legumes and in soybean

the total nodule P concentration is threefold higher than in the rest of the plant (Sa

and Israel 1991). Phosphorus deficiency resulted in decreases of Rhizobium bacte-

roid dry mass per unit nodule dry mass by an average of 20% relative to that of

P-sufficient controls in soybean; P and N concentrations in bacteroids from

P-deficient plants averaged 9 and 95 mg g�1 dry mass bacteroid respectively (Sa

and Israel 1991). These P and N concentrations were 25 and 17% lower, respec-

tively, than the P and N concentrations in bacteroids from P-sufficient plants.

Nodule nitrogenase activity is decreased by plant P deficiency independently of

the effectiveness of the rhizobium strain with nonlimiting P supply (Singleton et al.

1985). The concentration of ATP remained constant in whole nodules of P-suffi-

cient and P-deficient plants with the ATP concentration being three to fourfold

greater in P-sufficient plant nodules (Sa and Israel 1991). The magnitude of the

specific nitrogenase activity is well correlated with legume tissue phosphorus

concentration (Sa and Israel 1995). This empirical correlation provides phenome-

nological grounds for deriving a functional relationship between specific nitroge-

nase activity and legume P content.

11 Interrelations Between the C:P and C:N Exchange Dynamics

Exchanges of photosynthate, N and P between the symbiotic systems and the

legume have important consequences for the overall plant carbon economy. The

source capacity of leaves measured as daily gross photosynthetic output will be

dependent on the nitrogen and phosphorus concentrations in the leaf tissues.

Leaf nitrogen and phosphorus concentrations in legumes are influenced by the

degree of nodulation and intensity of VA mycorrhiza fungal infection and the

extent to which the external mycorrhizal mycelium explores the soil volume

surrounding the root. The ratio of mycorrhizal P-supply and nodule N-supply

to the respective carbon demand can give a quantitative index of host carbon

expenditure necessary for the acquisition of nitrogen and phosphorus via these

two symbiotic associations (Paul and Clark 1989; Twary and Heichel 1991;

Bethlenfalvay 1992).

Photosynthetic rates in the host plant of the Glycine–Glomus–Rhizobium symbi-

ont system increased linearly with increasing leaf P or N concentration (Brown and

Bethlenfalvay 1988). Brown and Bethlenfalvay (1988) showed that the rate of

photosynthetic CO2 assimilation per unit leaf N or P was significantly greater in

symbiotic than in nonsymbiotic plants. The experimental results of Brown and

Bethlenfalvay (1988) provide sufficient evidence to counter the argument that the

enhancement of photosynthetic nutrient-use efficiencies (N and P) in plants with

microsymbionts can be explained as being exclusively due to increased stomatal

conductance resulting from VA mycorrhizal colonization of the roots as suggested

by Koide (1985). They found that soybean plants which had an association with one
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(Glomus or Rhizobium) or both microsymbionts always had greater photosynthetic

rates per unit leaf N or P than nonsymbiotic plants with similar leaf N or P

concentrations. Also efficient nutrient utilization by theN- and P-deficient symbiotic

plants relative to the N- and P-sufficient nonsymbiotic plants is shown by higher CO2

assimilation rates in the former. The thresholds of N- and P-deficiency for youngest

mature soybean leaves have been defined as < 40mg N and<1.5 mg P per gram of

leaf dry mass (De Mooy et al. 1973). Brown and Bethlenfalvay (1988) reported that

most of the leaves of their symbiotic plants were below these values. Themechanism

responsible for the greater photosynthetic N- and P-utilization efficiencies that have

been observed in N-and P-deficient symbiotic plants remains obscure.

The magnitude or degree of benefits for the host measured in terms of enhanced

growth potential or elevated photosynthetic rates resulting from the exchange of C

for N supplied by the N2-fixing nodules, and P supplied by the mycorrhizal system

depends on two sets of efficiencies: (1) host nutrient utilization efficiencies which

include the plant’s nitrogen utilization efficiency and phosphate utilization effi-

ciency and (2) microsymbiont nutrient acquisition efficiencies which include the

nodules’ N2-fixation efficiency, to be called in this context the nitrogen acquisition

efficiency and the mycorrhiza’s phosphate acquisition efficiency. The nitrogen use

efficiency of the legume is given by the derivative, dWplt/dWN, which defines the

increment of biomass production per unit of N supply, and the legume’s phosphorus

utilization efficiency can be similarly expressed as dWplt/dWP, where Wplt is plant

host’s structural dry mass, WN is mass of N in plant tissue and WP is mass of P in

plant tissue.

A formal-analytical approach may help elucidate the fundamental conceptual

issues underlying plant nutrient-utilization efficiencies. One approach for achieving

this involves the decoupling of photosynthesis and growth; photosynthesis involves
nonstructural carbon or photosynthate (starch and sucrose) production from growth

as structural biomass production. Nutrient use efficiencies, for N and P, can be

construed as follows: N-utilization efficiency (NUE) is the differential of substrate

carbon production (WC) per unit nitrogen (dWN)

NUE ¼ dWC=dWN (1)

and P-utilization efficiency (PUE) which is the differential of substrate carbon

utilization for biomass production per unit phosphate (dWP)

PUE ¼ dWC=dWP (2)

Using the above equations the following two differential equations for photo-

synthate production and growth can be derived:

dWC=dt ¼ (dWC=dWNÞ (dWN=dtÞ � dWplt=dt (3)
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or

dWplt=dt ¼ (dWC=dWP)(dWP=dtÞ (4)

In the above equations, the rate of WC production is given as the product of the

photosynthetic NUE and the rate of N acquisition uptake. In second equation, the

rate of structural biomass (Wplt) is given as product of PUE and the rate of P

acquisition.

12 Nitrogen Utilization in Legume Biomass Production

Under any given ambient CO2 partial pressure, the upper limit of light-saturated

photosynthetic rates is fixed by a relatively small set of physical and biochemical

factors, for example, stomatal conductance, concentration of activated rubisco

catalytical sites, steady-state concentrations of sugar–phosphate intermediates of

the Calvin cycle and chlorophastic orthophosphate concentration. Ågren (1985a, b)

provides a useful summary of the potential rates of biomass production theoreti-

cally achievable when the rate of CO2 assimilation is calculated as a function of

irradiance, water supply, ambient CO2 or nitrogen. He concluded that nitrogen

tissue concentration sets the upper limit to plant productivity. In order to develop a

meaningful analysis of how nitrogen contributes to plant productivity, it is useful to

begin with a quantitative analysis of the physical characteristics of the leaf photo-

synthetic system.

The results of a number of quantitative analyses have been used to construct the

physical features characterizing the photosynthetic system of an “average” C3 leaf.

For an idealized leaf the following physical estimates or vital statistics have been

derived (Lawlor 1987): 5.5 � 1011 chloroplasts m�2 leaf; total chloroplast volume

per m2 of leaf is 1.8 � 10�5 m3; total volume of thylakoid lumen m�2 leaf is

1.2 � 10�6 m3; 16.8 cm3 stromal volume per m2 of leaf; concentration of rubisco

catalytic sites is 4 mM; inorganic phosphate concentration is 100 mM and ribulose

1,5-bisphosphate concentration is 0.1–2 mM; these values are from the data for

spinach, tobacco and wheat given by different workers (Esua 1958; Heath 1969;

Nobel 1974; M€uhlethaler 1977). Rubisco accounts for up to 50% of the soluble

leaf protein in C3 plants (Schmitt and Edwards 1981).The molecular weight of

rubisco is 557,000 Da with each molecule of rubisco containing eight potential

catalytic sites. In one mole of rubisco, there is 83,550 g of N (assuming that the

average fraction of N in the 20 different amino acids is approximately 0.15) and if

each mole of rubisco contains 8� Avogadro’s number (6.022 � 1023) catalytic

sites, then the ratio of catalytic sites per gram N of rubisco is 5.77 � 1019 rubisco

catalytic sites per gram N of rubisco or 9.6 � 10�2mmoles rubisco catalytic sites

per gram N of rubisco.

The general response of light saturated rates of photosynthesis to increasing leaf

nitrogen (g N m�2) is generally curvilinear with two critical response regions: (1) a
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lower limit for photosynthetic rates corresponding to a certain threshold of leaf

nitrogen concentration below which photosynthetic rates approach zero and (2) an

upper limit for photosynthetic rates which corresponds to threshold leaf nitrogen

concentrations above which no increase in photosynthetic rate occurs (Sinclair and

Horie 1989). In soybeans the rate of photosynthesis is zero at 1.0 g N m�2 and

increases linearly for leaf nitrogen concentration between 1.0 and 2.4 g N m�2;

above 2.4 g N m�2 the response is curvilinear reaching a maximum of 1.6 mg

CO2 m
�2 s�1 (Sinclair and Horie 1989). Using the above data, an average hypo-

thetical soybean or C3 plant with a leaf nitrogen content of 2.4 g N m�2 (rubisco

accounting for 50% of the leaf N) should have approximately 6.92 � 1019 or

0.115 mmol of rubisco catalytic sites per m2 leaf. In order to compare the calculated

Amax with the measured light saturated values, let the Vcmax of the rubisco carboxy-

lation reaction be equal to the product kcat[Rsites]
a, where kcat is the catalytic

turnover time for rubisco (2 s�1) and [Rsites]
a is the concentration of activated

catalytic sites (catalytic sites g�1 rubisco N) while a stands for activated sites. The

rate of RuBP carboxylation under light saturated conditions when rubisco catalytic

sites are saturated with RuBP depends on the concentrations of CO2 and O2 in the

stroma and Amax can be taken as being equal to Farguhar and von Caemmerer’s

(1982) expression:

Amax ¼ ðkcat½Rsites�aÞðCa � �Þ=ðCa þ Kcð1þ O=KoÞÞ � Rd (5)

where, Ca is the ambient CO2 concentration; 3 is the CO2-light compensation value

(4–5 Pa CO2 in 21 kPa O2) and is equal to (0.5VomaxKcO/VcmaxKc), and Vomax is the

maximum velociy of the RuBP oxygenase reaction; Kc and Ko are Michaelis–Menten

constants for CO2 (12–20 mM for C3 plants) and O2 (250 mM), respectively; Rd is

“dark” respiration in the light.

At standard atmospheric pressure (101,325 Pa) and with a leaf temperature of

25�C, the ambient CO2 and O2 concentrations are 13.9 mmol m�3 and 8.6 mol m�3

respectively. An average light saturated CO2 compensation 3 value for C3 plants is

approximately 1.6 mmol CO2 m
�3. On the basis of assumptions concerning the

proportion of rubisco N with respect to total leaf N values, Amax can be calculated

for C3 leaves using the above equation. An average hypothetical C3 leaf consists of

16.8 cm3 chloroplast stromal volume per m2 of leaf tissue. A leaf with an N

concentration of 2.4 g N m�2 will have a rubisco catalytic site concentration in

the region of 6.85 mM if 50% of leaf N is partitioned into rubisco. All the data

necessary to generate Amax with (5) are summarized in Table 1. Substitution of

Table 1 data into (5) gives a net Amax value of 55.8 mmol CO2 m
�2 s�1 or 2.46 mg

CO2 m
�2 s�1 for a hypothetical soybean leaf with a leaf N concentration of 2.4 g

N m�2.

The above calculation assumes that ribulose 1,5 bisphosphate is at substrate

saturating levels in light saturated leaves and that rubisco is 100% activated. The

calculated Amax value for the theoretical soybean leaf gives an over estimation of

1.54 times the measured value. If only 65% of rubisco is in the activated state under

light saturating conditions, then the calculated and the measured rates are the same.
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Therefore, it is reasonable to assume that the factor that contributes greatest to the

calculated overestimation of Amax is the estimated percentage activation state of

rubisco in leaves. The percentage of activated sites is dependent on the size of the

carbon substrate storage pool, N supply and P supply (Fig. 1).

13 Phosphorus Utilization in Legume Biomass Production

Plant nutrient sufficiency levels for phosphorus in alfalfa on a percent dry mass

basis ranges from 0.26 to 0.7% (Miller and Donahue 1990 pp 370–371). Higher P

tissue concentrations result in toxic effects. An interesting consideration is the

relationship or correlation between the legume’s RGR and the capacity of the

external hyphal system of the AM fungi to acquire and transfer phosphorus from

the surrounding soil volume into the plant root system. It has been proposed that

only 20% of the total root mass is involved in nutrient acquisition (Robinson 1986),

and it is most probable that the AM fungal–root association is restricted to this

fraction of the total root mass. The fraction of root dry mass attributable to mycor-

rhizal fungi ranges from 12 to 14% for AMF colonized legume roots (Sieverding

1991). The specific activity of the AMF can be expressed as mg P cm�1 hypha

day�1. Functional relationships should exist between a legume’s specific growth

rates and the corresponding uptake rate per unit root mass of any mineral nutrient

(Garnier et al. 1989). When plants are grown at steady-state nutritional supply rate,

it has been shown for P (Eissenstat et al. 1993) and for N (Cromer and Jarvis 1990;

Ingestad and Ågren 1991) that the slope of the RGR vs plant nutrient concentration

is linear until a maximum RGR is reached. With steady-state conditions of phos-

phate supply during exponential growth, tissue phosphorus concentration remains

constant, i.e., dPc/dt ¼ 0, where Pc ¼ Wp/Wplt is the tissue phosphorus concentra-

tion, Wp equals plant phosphorus mass and Wplt is the plant dry mass.

For sustained steady-state exponential growth, a dynamic functional equilibrium

must exist between the size and the specific activities of the microbial symbiotic

Table 1 Gas and kinetic data

for calculation of Amax using (5)
Variable or parameter Units

Kcat 2 s�1

[Rsites]
a 0.115 mmol m�2

Ca 13.9 � 10�3 mM

3 1.6 � 10�3 mM

O 8.6 mM

Kc 1.0 � 10�3 mM

Ko 0.250 mM

Specific leaf mass 22 g m�2

Maintenance respiratory

coefficienta
3.18 � 10�6 g

CO2 g
�1DM s�1

aAmthor (1986)
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associations and the plant. Maintenance of this dynamic functional equilibrium

involves the regulatory control by the plant of the proportion of carbon lost in

exchange for the quantity of phosphate necessary for sustaining exponential

growth. Therefore, with regard to phosphate-limited growth, the maintenance of a

constant tissue phosphorus concentration above a P-deficiency threshold is a nec-

essary condition for sustained steady-state exponential growth. The constraint that

plant tissue P-concentration imposes on plant growth is mediated via the effects that

P has on key growth driving metabolic and physiological processes such as the

Calvin cycle and phloem loading. Low-P treatment (plants grown on 0.05 mM

phosphate) has a greater impact on plant biomass production (60% reduction

compared to P-sufficient plants) than on the rate of photosynthesis; low-P treatment

effected photosynthesis much less at low irradiances than at high radiances relative

to P-sufficient plants (plants grown on 1.0 mM phosphate), light saturated rates

in leaves of P-deficient plants were decreased by 35% (Rao and Terry 1989).

P-deficiency may decrease light saturated rates of photosynthesis by decreasing

RuBP regeneration capacity and/or decreasing the concentration of activated

rubisco (Brooks 1986; Brooks et al. 1988). Under low-P conditions, RuBP con-

centrations declined to half the rubisco binding site concentration (Rao et al. 1989a,

b). The activities of the phosphatases, FBPase and SBPase increased with P-

deficiency in leaves, possibly to promote more rapid recycling of phosphate, and

the activities of the enzymes associated with RuBP regeneration, i.e., PGA kinase,

NADP-G3P dehydrogenase and Ru5P kinase, declined with P-deficiency in leaves

(Rao and Terry 1989). The concentrations of Calvin cycle intermediates declined in

P-limited leaves while starch increased to levels higher than in control leaves (Rao

et al. 1990). Starch, sucrose and glucose concentrations increased in P-deficient

leaves, resulting in a higher accumulation of leaf photosynthate compared to

P-sufficient plants (Rao et al. 1990; Rao and Terry 1995). Low-P treatment

decreases leaf ATP concentrations considerably (Rao et al. 1989a, b) and it is

well known that the loading of sugars into the phloem has a large requirement for

ATP (Giaguinta 1983), and therefore, there may be insufficient ATP in P-deficient

leaves to maintain the rates of photosynthate export necessary to support high

growth rates (Rao et al. 1990).

Maintenance of optimal rates of photosynthetic carbon assimilation, photosyn-

thate translocation and nitrogen fixation during exponential growth of legumes

requires the maintenance of an optimal constant concentration of phosphate in the

leaf tissue and root nodules. Put differently, in the legume symbiotic system,

phosphorus uptake rates must satisfy the metabolic phosphate demands of the

Calvin cycle, phloem phosphate-loading system and the N2-fixing nodule system,

which are the necessary P-demands for sustaining optimal RGRs. Consistent with

the premises of the model depicted in Fig. 1, tight coupling between the RGR and

nitrogen supply rates has been shown to exist (Hirose 1986, 1988; Hirose et al.

1988; MacDuff et al. 1993); also the same tight coupling applies between growth

rates and phosphate supply rates.

A definition for phosphate demand and utilization efficiency as a function of

optimal inherent growth capacity can be developed as follows: Under steady-state
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exponential growth, given mass flow and mass conservation, the following equal-

ities hold: rate of phloem loading ¼ rate of phloem unloading ¼ rate of biomass

production in sink organ. In this case, the sink organ can be conceptualized as a

biomass growth sink such as growing leaves, elongating nodes and growing root

systems. Given this scenario of events, it is proposed that phloem loading is the rate

limiting step for biomass production. Phloem loading is an energetically uphill

process requiring the consumption of ATP and if ATP is treated as a P equivalent,

then phloem loading can expressed as a function of tissue phosphate concentration.

Phloem loading can be treated as a two substrate enzyme reaction involving sucrose

and ATP. Sucrose is usually present at the phloem loading site at substrate saturat-

ing levels and ATP can be treated as the rate limiting substrate for the phloem

loading process. Metabolic demand for phosphate is linked to its role in ATP

synthesis for phloem loading. The maximum rate of phloem loading is proportional

to product of the concentration of phloem loading sites, (sites g�1 dry mass) and the

turnover time of the loading site, (sites per second). In the model depicted in Fig. 1,

the close coupling between P supply and C mobilization into the metabolic pool

for biomass synthesis could be linked to its role as the “high energy phosphate

ester” in ATP driven phloem loading. In addition, the close coupling between P

supply and C utilization in the metabolic pool for biomass synthesis could also be

linked to its role, either direct or indirect, as the “high energy phosphate ester” in

ATP driven polymerization reactions (protein synthesis and polysaccharide syn-

thesis).

14 Conclusion

In this chapter, an analysis of how legume growth is influenced by C:N:P

stoichiometries has been put forward. The supply of N and P by the two micro-

symbionts plays a major role in the control of photosynthetic CO2 assimilation

and in the control of conversion of photosynthate into plant biomass (Fig. 1).

Resource (C, N and P) allocation dynamics have been investigated in terms of (1)

C:P exchange dynamics with respect to the AMF symbiotic partner, (2) C:N

exchange dynamics with respect to the Rhizobium symbiotic partner and (3)

how the C:N:P supply ratio controls photosynthetic rates and the rate of conver-

sion of photosynthate into plant biomass. The existence and maintenance of

balanced exponential growth or steady-state exponential growth of all plant

components and microbial symbiotic associations in the tripartite complex have

been an underlying functional assumption in this investigation. Furthermore it has

been assumed that resource allocation strategies within the tripartite complex

ensure the maintenance of functional equilibrium between plant components and

microbial symbiotic associations. The intensities of metabolic activities of differ-

ent plant components and microbial associations represent the resource acquisi-

tion or resource utilization capacities of the plant components and the microbial

associations. If during balanced exponential growth of the tripartite complex a
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functional equilibrium has been maintained between the steady-state rates of

resource acquisitions (C, N, P), then it logically follows that the concentrations

of various substrates (C, N, P) within the plant tissues will remain constant and the

RGRs of the various components and associations can be expressed as a function of

one or more of these substrate concentrations. This will greatly help in simplifying

any effort to model the resource allocation and growth dynamics of the tripartite

complex. The internal concentration values of the different resources (C, N and P)

within the tripartite complex will at any given time be determined by the rate of

resource acquisition from the external environment. Rate of acquisition will depend

on the available supplies of the resources. Given the realities of global climate

change arising as a consequence of increasing levels of atmospheric CO2, it has

become relevant to formulate plant–microbe resource allocation optimization pro-

blems in terms of C:N:P stoichiometries. For example with respect to the legume

tripartite association, what would be the optimal microbial symbiotic to plant mass

ratio that ensures maximum specific legume growth rates for a given supply of soil

nitrogen and phosphate at elevated levels of ambient CO2 concentration? How does

N and P availability affect plant productivity at elevated levels of ambient CO2

concentration?
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Abstract Formation and function of N2-fixing systems between bacteria from

Rhizobiaceae family and legume plants from Fabaceae family are especially

sensitive to molybdenum (Mo) deficiency. The hypothesis of the present work

was that nitrogen fixation and assimilation in Mo deficient pea and alfalfa plants

are enhanced when the nutrients were supplied through the foliage. It was estab-

lished that foliar fertilization resulted in the increase of nitrogen fixation and

biomass accumulation in the absence of Mo. The positive effect of foliar fertiliza-

tion at insufficient Mo supply on the nitrogen uptake is better expressed in garden

pea than in alfalfa. Otherwise, alfalfa was more sensitive to Mo starvation than

the pea plants. Insufficient Mo supply leads to significant reduction in plant Mo

content and nitrogen fixing activity, while stress induced free amino acids increased

repeatedly. The negative effect of Mo exclusion from the nutrient media on

nitrogen assimilation and biomass accumulation diminished through the foliar

absorbed nutrients.
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1 Introduction

Molybdenum (Mo) is among the micronutrients that are very essential for the

plant growth and is required in small amounts. The symptoms associated with Mo

deficiency are closely related to nitrogen metabolism (Gupta and Lipsett 1981),

and nitrogen assimilatory processes in plants tissues strongly depend on the plant

Mo levels (Kaiser et al. 2005). Mo is an important constituent of several enzymes

catalyzing different chains of nitrogen metabolism: nitrate reductase (EC 1.6.6.1),

nitrogenase (EC 1.18.6.1), xanthine dehydrogenase (EC 1.1.1.204), etc. (Mendel

and Haensch 2002). Loss of Mo-dependent activity (directly or indirectly

through low internal Mo levels) impacts nitrogen metabolism and eventually

plant development.

Amino acids in plant tissues are determined by complex interplay of factors,

which may be influenced by nutrition, developmental stage, and environmental

conditions (Foyer and Noctor 2002). In legumes, ammonia can be formed by direct

fixation of atmospheric dinitrogen atoms within root nodules (Lam et al. 1996).

It is established that the major pathway for ammonia incorporation into nontoxic

organic compounds occurs through glutamine synthetase-glutamate synthase

(GS-GOGAT) cycle (Ireland and Lea 1999). The GS-GOGAT cycle converts

ammonia by the combined activity of the two enzymes to produce two molecules

of glutamate. Amino groups are then transferred out of the GS-GOGAT cycle,

predominantly via glutamate to other amino acids, such as aspartate and alanine and

a range of transamination products are formed. Leaf amino acid content increased

with enhanced supply of nitrogen during growth. In legumes, fluctuations in the

amino acid proportion might reflect changes in the source of nitrogen for growth

(Peoples et al. 1987) or in the effectiveness of symbiosis (Rosendahl and Jakobsen

1987).

According to Streeter (1981), mineral nitrogen availability in the legumes

rhizosphere is a limiting factor for nodule formation and nitrogen fixation. Foliar

application of nutrients, including N, allows avoiding the harmful direct action of

inorganic nitrogen on symbiotic processes (Marschner 1995). Foliar uptake of N

is not only supplementary but can influence the N assimilation of the whole plant.

The significance of foliar fertilizer application may lie in the localization and

regulation of the enzyme systems involved in nitrogen assimilation. Although

the effect of foliar application of several nitrogenous fertilizers has already been

investigated, information on the effect of foliar application on the content of amino

acids has been limited.

There are not enough data about the localization and regulation of nitrogen

assimilatory enzymes and amino acid accumulation in case of changing the site of

primary N assimilation through the foliar feeding especially when plants are

inoculated with the respective nitrogen fixing bacteria strain under conditions of

insufficient Mo supply.

Experiments on the effects of additional foliar feeding on the nitrogen fixation

and free amino acid accumulation in pea and alfalfa plants (temperate legumes with
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amide compounds transport), inoculated with Rhizobium leguminosarum bv. Vicae
and Sinorhizobium meliloti, respectively, were carried out under the influence

of Mo deficiency.

2 Foliar Application of Nutrient Elements: Connection with

Function of Symbiotic Systems and Nitrogen Assimilation

Symbiotic systems Medicago sativa L. – S. meliloti and Pisum sativum L. – R.
leguminosarum bv. viciae, form indeterminated nodules with apical permanently

functioning meristem. In these plants from temperate latitudes, the fixed and

reduced nitrogen is transported toward the xylem as amide compounds – asparagine

and glutamine (Atkins 1991). It was known that nitrates present in the nutrient

media depressed the root nodule formation and symbiotic nitrogen fixation

(Schulze et al. 1998). One of the ways to diminish such negative influence is to

change the place of uptake and assimilation of exogenous supplied mineral nitrogen

through the foliar application (Boote et al. 1978; Poole et al. 1983). Foliar fertili-

zation (or foliar feeding) entails the application via spraying of nutrients (minor and

major nutrients, plant hormones, stimulants and other beneficial substances).

Observed effects of foliar fertilization have included yield increases, resistance to

diseases and insect pests, improved drought tolerance, and enhanced crop quality

(Kuepper 2003).

Foliar fertilization caused the plant to pump more sugars and other exudates

from its roots into the rhizosphere. Beneficial microbial populations in the root zone

are stimulated by the increased availability of these exudates. On the other hand,

absorption of water and nutrients by the roots toward xylem increased (Alexander

1986). The uptake of nutrients through the foliage is affected by a number of

interacting factors (Kuepper 2003; Wójcik 2004) of which a few have been

known recently (Table 1).

Table 1 Influences determining the efficacy of foliar nutrient sprays (Clarkson 1985)

Plant Environment Spray solution

l Epicuticular wax
l Cuticular wax
l Age of the leaf
l Stomata and guard cells
l Leaf hairs
l Adaxial and abaxial leaf sides
l Leaf turgor
l Surface moisture
l Cation exchange capacity
l Root osmotic potential
l Nutritional status
l Species and cultivar

l Temperature (max. 30�С)
l Light
l Photo period
l Air movement
l Humidity
l Time of day
l Nutrient ratio

l Concentration
l Application rate
l Application technique
l pH (5.5–8.5)
l Polarity
l Hygroscopicity
l Sticking ability
l Carriers, penetrates
l Chelates
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Two related plant processes are associated with the effectiveness of foliar

application of fertilizers (Doring and Gericke 1986). The first relates to the rates

of absorption for each of the nutrients. The second is concerned with the mobility

or the extent to which each foliar absorbed nutrient is translocated out of the leaves

to the other parts of the plant including the stem, roots, flowers, and seeds. The

structure of epicuticular wax helps limit penetration of water molecules and ions

across the membrane (Marschner 1995).

The flow of cations through the cuticular membrane is much easier than that of

anions. It is estimated that cation ability to penetrate the cuticular membrane is

1,000 times higher than for the anions (Mengel 2002). Generally, the movement of

low-molecular-weight solutes (e.g., ions, organic acids, amino acids) from the leaf

surface to the epidermal cell wall is a nonmetabolic process driven by diffusion and

electrochemical potential formed by a negative charge increase across the cuticular

membrane (Kannan 1980; Tyree et al. 1992). Selective transport of nutrients across

the plasma membrane requires energy, specific carriers, permeases and channels

and may also be a passive process driven by diffusion.

Much interest in foliar feeding has centered on the use of nitrogen. Plants

respond to foliar sprays of nitrates, ammonium compounds and urea (Wójcik

2004). Generally, it seems that the ability of leaves to absorb different N forms

depends considerably on plant species. The leafy absorbed nitrogen has to be

metabolized rapidly before it is involved into high molecular compounds. Andrews

(1986) reported that the parts of the plants above the ground are the main place

of nitrogen assimilation. It was established (Peuke et al. 1998) that under nitrate

nutrition the highest incorporation of N was found in the roots of Ricinus communis
L., but when ammonium was sprayed, it was in the growing leaves. It was not

surprising that N uptake was significantly higher in ammonium-sprayed leaves

than in nitrate-sprayed leaves (Garten and Hanson 1990). It seems that the posi-

tively charged ammonium was more easily transported across the cuticle than was

the negatively charged nitrate.

Many authors showed a beneficial effect of foliar fertilization on the nitrogen

fixing plants on the different developmental stages (Wojcieska and Kocon 1997;

Palta et al. 2005). Hanway (1979) reported about a significant increase of soybean

seed yields that received nitrogen through the leaves as urea. Application of urea

resulted in avoiding early fall of leaves and senescence. Similar research with

soybean showed that foliar fertilization with macronutrients at early vegetative

stages enhanced nutrient uptake through the roots, photosynthetic rates and seed

yields (Haq and Mallarino 2000). The authors suggested that low input of N, P, and

K could stimulate growth without inhibiting nodulation.

Da Silva et al. (1993) have concluded that bean plants (Phaseoulus vulgaris L.)
are capable for nitrogen fixation in the case of the exogenous nitrogen supplied

through the leaves which resulted in the increase of seed yields with high content

of nitrogen.

It is likely that foliar fertilization alleviated problems with early nutrient uptake,

which sometimes occur even in high-testing soils. Positive effect of foliar fertiliza-

tion on the legume plants growth increased in the case of application of combined
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foliar fertilizers containing macro- and micronutrients. Complex foliar fertilizers

are absorbed easily with high efficiency (Garcia and Hanway 1976; Schon and

Blevins 1990; Fenn et al. 1995; Haq and Mallarino 2000).

Despite many studies carried out on mineral nutrient absorption by leaf tissues

many aspects of foliar fertilization are still unknown. At present, it is believed that

such fertilization of plants is a valuable complement to the application of nutrients

to the soil. It is proposed that this treatment should be recommended in the

integrated plant production because it is environment friendly and increases

productivity and yield quality (Wójcik 2004).

3 Molybdenum Importance for Plant Nitrogen Metabolism

Among the micronutrients that are essential for plant growth, Mo is required in

the smallest amounts. Plant species significantly differ in their requirements for Mo.

Grasses from nonlegume plants contained less Mo (0.2–1.0 ppm) than legume

plants (0.5–20 ppm) per gram dry weight (Gupta and Lipsett 1981). Its mobility

is proved by the translocation of foliar supplied molybdenum. The form in which

Mo is translocated is unknown, but its chemical properties indicated that is most

likely transported as MoO4
2�, rather than a complex ion (Marschner 1995).

Arnon and Stout (1939) first reported about Mo deficiency symptoms in tomato

plants. The visual Mo deficiency symptoms were shown in cauliflower (Davies

1945; Mitchell 1945) alfalfa (Anderson 1942), clover (Anderson 1946), and grape

(Williams et al. 2004). The symptoms associated with the deficiency of Mo are

closely related to metabolism of nitrogen. In plants only a few enzymes have been

found to contain molybdenum as cofactor. These include enzymes that catalyzed

different chains of nitrogen metabolism. The molybdenum requirements of higher

plants, therefore, depend on the mode of nitrogen supply. Under Mo deficiency

conditions, plant molybdoenzymes can be broken down to those involved in nitro-

gen reduction and assimilation (Kaiser et al. 2005). Harper and Paulsen (1969)

observed significant accumulation of nitrates in wheat seedlings starved for Mo and

a negative correlation between nitrate content and nitrate reductase activity.

On the other hand, it could be expected that under molybdenum-deficiency con-

ditions, application of nitrogen in a form different from nitrate-N, for example

NH4
+-N do not influence so strongly, nitrogen assimilation and plant development

(Notton 1983).

The other notable influence of Mo on plant nitrogen metabolism is in nitrogen-

fixing legumes. The symbiotic bacterial enzyme nitrogenase is comprised of two

subunits one of which is the MoFe protein directly involved in the reduction of N2

to NH3. What is known, with respect to molybdenum and legume nitrogen fixation,

is that Mo availability is closely correlated with nodule development and Mo

requirement of nitrate reductase is lower than for nitrogenase (Anderson 1956;

Kaiser et al. 2005). Depending on the plant species, the critical deficiency levels of

molybdenum vary between 0.1 and 1.0 ppm leaf dry weight (Gupta and Lipsett
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1981). Frame et al. (1998) showed that critical Mo levels for alfalfa are 0.5–0.9 ppm

in plant dry weight.

Anderson (1956) clarified the association of deficiency symptoms with seed

reserves and pointed it out as a probable reason for the relative absence in early

experience of deficiency of large-seeded legumes. Jongruaysup et al. (1997) sug-

gested that in case of high Mo seed reserves deficiency symptoms were unlikely

even on low Mo soils. Hagstrom and Berger (1965) observed that large-seeded

crops, such as peas (P. sativum L.,) responded to soil application of Mo when the

seeds contained less than 0.2 ppm Mo, but not when they contained enough Mo

(0.5–0.7 ppm) to supply the Mo needs of the crop. Most frequently occurred Mo

deficiency symptoms are chlorosis, golden-yellow coloration of older leaves along

the apex and the apical leaf margins as well as necrotic areas extending back

along the apex and the apical leaf margins (Agarwala et al. 1979; Gupta 1997).

Plants had short internodes and reduced foliage (Gupta and Lipsett 1981). It would

appear that nodules accumulate significantly more Mo than what is required in

order to support bacterial nitrogenase activity and symbiotic nitrogen fixation

(Kaiser et al. 2005).

Mo distribution among the plant organs strongly depended on the Mo soil

reserves. In case of poor Mo supply, Mo transport is directed to the roots and

nodules while in the case of Mo excess Mo is accumulated mainly in the leaves

(Becking 1961; Franco and Munns 1981).

Mo content in plant samples was determined with inductively coupled plasma

spectrometry. The seeds, roots and shoots of nitrogen fixing pea and alfalfa plants

were analyzed (Table 2) (Hristozkova et al. 2009). As the alfalfa plants are more

sensitive than pea to Mo contents in the nutrient media, Mo reserves in alfalfa seeds

were ten times higher than those in pea seeds. The content of Mo in Mo deficient

organs was obviously lower than the content in normally supplied plants and this

trend appeared more clearly in alfalfa. Thus, Mo contents in plants grown in the

absence of Mo significantly decreased – with 99% in the shoots and 98% in the

roots in comparison with relevant Mo adequate plants. In this connection, typical

Mo deficiency visual symptoms expressed as chlorosis of the young mature leaves

as in alfalfa plants only (Fig. 1). Higher amounts of Mo were accumulated into the

shoots in case of pea and in roots of Alfalfa. This trend was observed both in

deficient plants and those supplied with Mo. Higher levels of Mo in the pea shoots

coincided with higher nitrogen content in shoots (data not shown).

Total Mo content (Table 2) (Hristozkova et al. 2009) in the alfalfa Mo deficient

plants (roots and shoots) is relevant to the initial Mo level in the seeds and is much

Table 2 Molybdenum

content in plant organs (ppm)

(Hristozkova et al. 2009)

Plant organs Pea Alfalfa

Seeds 0.17 1.73

Shoots (+Мо) 4.94 23.8

Roots (+Мо) 0.72 64.5

Shoots (�Мо) 0.69 0.31

Roots (�Мо) 0.17 1.20
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higher in roots. Jongruaysup et al. (1997) showed that in Mo deficient nitrogen

fixing plants roots are the main storage organ for Mo accumulation, necessary for

the forming seeds. According to Brodrick and Giller (1991) when plants suffer from

Mo shortage, Mo become more mobile and its transport is orientated from the

shoots toward roots and nodules in order to support nitrogen fixing activity.

4 Plant Biomass Accumulation, Number of Nodules

and Nitrogen Fixing Activity

Significant changes in plant metabolism related to nitrogen assimilation and bio-

mass accumulation of pea and alfalfa, grown under conditions of Mo deficiency

were observed. Under conditions of optimal Mo supply, the favorable effect of

foliar fertilization on root and shoot dry biomass accumulation was expressed and

more distinct in pea plants. Foliar fertilization resulted to increase of shoot dry

biomass with 67% and root dry biomass with 10% in comparison with the control.

In alfalfa plants, only shoot biomass increased with 33% (Table 3).

Under Mo deficiency conditions, additional foliar nutrition also enhanced shoot

and root dry biomass of both plant species as compared with the root nutrition.

According to the obtained results excluding Mo from the nutrient media resulted to

a less reduction of plant biomass in case of additional nutrient supply though the

foliage. Therefore, plant dry biomass accumulation of Mo deficient foliar fed plants

were close to plant biomass with root nutrition and sufficient Mo supply.

Fig. 1 Alfalfa plants grown at reduced Mo supply
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The number of nodules in the pea plants (Hristozkova et al. 2007a) grown

without Mo declined and this reduction is expressed to a less extent in foliar fed

(F2�Mo) plants (Fig. 2). The exclusion of Mo from the nutrient media resulted in

the reduction of nodule numbers with 63% for the plants with root nutrition and

15% for those with root and foliar nutrition. A depression of nitrogenase activity

Fig. 2 Nitrogenase activity and nodule number in pea (Hristozkova et al. 2007a) and alfalfa

(Hristozkova et al. 2009) plants grown at different Mo supply: (F1+Mo)-control Mo supplied

plants with root nutrition; (F2+Mo)-Mo supplied plants with root and foliar nutrition; (F1�Mo)-

Mo deficient plants with root nutrition; (F2�Mo)-Mo deficient plants with root and foliar nutrition.

Different letters indicate significant differences assessed by Fisher LSD test (P � 0.05) after

performing ANOVA multifactor analysis

Table 3 Effect of foliar feeding on the dry biomass accumulation of nitrogen fixing 35-days old

pea and alfalfa plants grown at different Mo supply

Variants Dry biomass (g plant�1) Dry biomass (g plant�1)

Shoots Roots Shoots Roots

Pea Alfalfa

F1+Mo-control 0.600 � 0.019fb* 0.480 � 0.021c 0.03 � 0.002b 0.022 � 0.0015c

F2+Mo 1.000 � 0.044d 0.530 � 0.016e 0.04 � 0.002c 0.019 � 0.0014b

F1�Mo 0.501 � 0.015f 0.420 � 0.017b 0.02 � 0.0011f 0.013 � 0.0011f

F2�Mo 0.559 � 0.022a 0.494 � 0.015c 0.029 � 0.0012a 0.015 � 0.0013a

F1 – root nutrition; F2 – combined root and foliar nutrition

*Different letters indicate significant differences assessed by Fisher LSD test (P � 0.05) after

performing ANOVA multifactor analysis
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(NG) with 98% was observed in Mo deficient pea plants with root nutrition in

comparison with the relevant Mo supplied plants (Fig 2) (Hristozkova et al. 2007a).

Nitrogenase activity in Mo deficient pea plants with root and foliar nutrition

decreased to a less extent (with about 68%) in comparison with relevant Mo

adequate plants.

However, the number of nodules in alfalfa plants with additional foliar feeding

declined in comparison with the plants with root nutrition both in the presence and

absence of Mo (Fig. 2). Nitrogenase activity in foliar fed plants – treatments F2+Mo

and F2�Mo was higher than the activity in root fed plants – treatments F1+Mo

and F1�Mo (Hristozkova et al. 2009). Therefore, the number of nodules was not

relevant to their NG activity (Fig. 2). The lack of correspondence between the

nodule number and nitrogen fixing activity was also suggested by Puppo et al.

(2005).

5 Free Amino Acid Composition

Connection between Mo deficiency and nitrogen metabolism strongly affected

protein synthesis. Low molecular nitrogen compounds accumulated (amino acids,

amides) as a result of high rubo nuclease and low aminotransferase activities

(Marschner 1995). In temperate legumes with amide compounds transport, both

fixed and supplied inorganic nitrogen are assimilated into amino acids glutamine

(Gln), glutamate (Glu), asparagine (Asn) and aspartate (Asp), which serve as

important nitrogen carriers in plants (Ta et al. 1984). When the pea plants were

supplied with normal Mo concentration the highest content of Asp/Asn was found

in the roots, especially in the plants with foliar fertilization (F2+Mo) – 35% of total

amino acid content (Fig. 3). Relatively high content of proline (Pro) in root fed

plants (F1+Mo) and in foliar fed plants (F2+Mo) was observed both in the shoots

and roots followed by the content of alanine (Ala). The content of Asp/Asn and

Glu/Gln in the shoots of Mo supplied plants (F1+Mo, F2+Mo) was lower than in the

roots (Fig. 3). Ta et al. (1984) suggested that in legumes with amide compounds

transport, Asn is a major nitrogen transport compound. Rosendahl and Jakobsen

(1987) have studied the concentration of major amino acids and amides in the root

xylem sap of P. sativum in relation to the efficiency of various strains of Rhizobium.
The authors concluded that Asn contents were clearly higher than the Gln in the

most efficient symbiosis. According to Fougére et al. (1991) in alfalfa roots, Glu

and g-aminobutyrate (GABA) are predominantly higher and represented 25% and

18% of the total amino acid fraction, respectively. We observed high levels of

GABA in the shoots (Fig. 3) of Mo supplied pea plants (F1+Mo, F2+Mo). GABA

amino acid is found in plants as a significant component of the free amino acid pool.

In higher plants GABA is synthesized primarily from L-glutamate (Bown and

Shelp 1997). This is in correspondence with lower Glu/Gln levels in the shoots

(Fig. 3). Some authors suggested that GABA might play a role in signaling

(Kathiresan et al. 1997).
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In the variants without Mo (F1�Mo, F2�Mo) the highest Pro content in the free

amino acid pool was measured both in pea shoots and roots, and varied from 22 to

32% of the total amino acid fraction (Fig. 3). The addition of foliar nutrients

resulted in lower proline content in the pea shoots. The proline content in the

roots of Mo deficient plants was higher than the Mo adequate pea plants, while in

the shoots significant changes were not observed. Marked increase in free proline

occurs in many plants during moderate or severe water and salt stress; this accumu-

lation, mainly as a result of increased proline biosynthesis, is usually the most

outstanding change among the free amino acids (Fougére et al. 1991). Hence, Mo

exclusion from the nutrient media could be considered as stress factor for the pea

plants. The content of Asp/Asn in Mo deficient plants is low with the exception of

the value in the shoots of foliar supplied F2�Mo pea plants (Fig. 3). The Asp/Asn

concentration in F2�Mo treatment is close to the value in the shoots of Mo supplied

plants with root nutrition (F1+Mo). Therefore, the transport of major nitrogen

compound Asp/Asn toward the leaves is not suppressed in Mo deficient plants in

case of foliar nutrient application. High content of alanine (Ala) of Mo deficient pea

shoots and roots were accounted for and reached values between 12 and 20% of the

total amino acid pool (Fig. 3). Ta and Joy (1986) pointed out that Ala has a major

involvement in photorespiration and those other amino acids and amides such as

Asn are also involved although to a lesser extent. The synthesis of alanine may

occur at the expense of the acidic amino acids, glutamate and aspartate (Stewart and

Larher 1980), and occurs concomitantly with the accumulation of GABA (Wallace

Fig. 3 Shoot and root amino acids content in pea plants (Hristozkova et al. 2007b). Treatments:

F1+Mo; F1�Mo; F2+Mo; F2�Mo are described in detail at Fig. 2. Bars represent the standard

error of the mean. Reported values were averaged from three independent extractions (n ¼ 3)
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et al. 1984; Ratcliffe 1995). We observed similar correlation regarding the shoots of

Mo supplied pea plants (F1+Mo, F2+Mo). In plants grown in Mo restrictive media

such correlation was not found.

The content of total free amino acids (Hristozkova et al. 2009) in alfalfa roots

was significantly higher in the plants grown in Mo absence compared with the

relevant treatments when Mo was supplied (Fig. 4). The lowest free amino acids

content was established in F2+Mo treatment. High content of alanine (Ala) was

found in the all treatments. In the roots of F1�Mo plants, the main nitrogen

carriers’ aspartate/asparagine (Asp/Asn) and glutamate/glutamine (Glu/Gln) con-

tent decreased in comparison with F1+Mo treatments.

The levels of Asp/Asn and Glu/Gln in the roots of F2�Mo alfalfa plants were

higher than in F2+Mo. The highest content in the roots of Ala, g-aminobutyrate

(GABA), proline (Pro), threonine (Thr) and serine (Ser) was observed in F1�Mo

treatment. In the shoots of Mo deficient plants, the total content of free amino acids

exceeded three times than that of Mo supplied – F1+Mo and F2+Mo plants (Fig. 4).

Additional foliar nutrition did not significantly change the total amount of free

amino acids independently on Mo supply. In the shoots of F1�Mo and F2�Mo

treatments, the level of stress induced amino acids Ala, GABA, Pro, Thr, and Ser

mainly increased in comparison with the controls (F1+Mo). Enhanced Asp/Asn

and Glu/Gln levels were observed in Mo deficient plants with root and foliar

nutrition in comparison with Mo supplied treatments.

Fig. 4 Shoot and root amino acids content in alfalfa plants (Hristozkova et al. 2009). Treatments:

F1+Mo; F1�Mo; F2+Mo; F2�Mo are described in detail at Fig. 2. Bars represent the standard

error of the mean. Reported values were averaged from three independent extractions (n ¼ 3)
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Molybdenum starvation resulted in an increase of total content of free amino

acids especially in the alfalfa roots in comparison with the Mo supplied plants.

Influence of foliar feeding was appeared in free amino acids accumulation mainly

in the roots especially in Mo deficient plants. The increase of free amino acids is a

result of enhanced flow of assimilates toward the roots in foliar supplied plants.

Increased levels of stress induced amino acids such as Ala, GABA, Trh, Pro, and

Ser in the roots and shoots of Mo deficient plants indicated that alfalfa plants are

very sensitive to insufficient Mo supply (Fig. 4). The main nitrogen transport

compounds Asp/Asn increased at insufficient Mo supply especially in the shoots.

In the all treatments, Asp/Asn content in the shoots and roots was higher than the

Glu/Gln content, and its values varied in dependence on Mo presence in the nutrient

media as well as additional foliar nutrition. On the other hand, Lea et al. (2007)

observed accumulation of Asn in plant tissues during the periods of suppressed

protein synthesis. Foliar fertilization resulted in lowering of total free amino

acid content predominantly in the roots both in the Mo supplied and Mo deficient

plants compared to the plants with root nutrition. It was also observed that the

foliar fertilization reduced the inhibitory effect of Mo shortage on the aspartate/

asparagine content in the pea shoots.

6 Conclusion

Biological nitrogen fixation provides a large proportion of plant nitrogen require-

ments and contributes to agricultural sustainability. Symbiotic nitrogen fixation by

the legume–Rhizobium symbiosis is a finely regulated process. Mechanisms for

the regulation of symbiotic N2 fixation under conditions of nutrient deficiency may

be very different in the different symbiotic types. Molybdenum is now known to

be essential in the fixation of nitrogen by the symbiotic bacteria associated

with leguminous plants. It was established that Mo shortage in the nutrient media

resulted in nodule number and biomass reduction, lowered nitrogenase activity and

suppressed plant biomass accumulation of pea and alfalfa plants. The composition

of free amino acids and amides changed under Mo deficiency conditions – the main

nitrogen transport compounds aspartate/asparagines and glutamate/glutamine

decreased, while stress induced amino acids as alanine, GABA, threonine, pro-

line, and serine accumulated. It was shown that alfalfa was more sensitive to Mo

starvation than the pea plants.

The results connected with nitrogen assimilation and biomass accumulation of

pea and alfalfa showed that efficiency of nitrogen fixation and assimilation could be

improved through the application of Agroleaf® in 0.3% concentration. The posi-

tive effect of foliar nutrition on nitrogen assimilation was better expressed in pea

plants under Mo deficiency conditions. In addition it was observed that the nega-

tive effect of Mo deficiency on the nitrogen fixation and assimilation in pea and

alfalfa plants (both temperate legumes with amides nitrogen transport) was lowered

through the foliar absorbed nutrients.
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Cardinal growth temperatures, 274–275
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Catechol, 175–176

Catharanthus roseus, 265
Caulobacter crescentus, 322
Cellulase (CMCase), 119, 128, 222, 345, 353

Cellulolytic enzymes, 323

Cellulomonas, 236
Cell wall degrading enzymes, 214, 222–223

Cephalosporium sacchari, 242
Cercospora leaf spot, 202, 203

Cereals, 213, 215–221

Channels, 420

Chaperones, 278, 279

Charcoal, 241
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Chemical pesticides, 214, 219

Chickpea, 48–49, 66
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Clostridiaceae, 335
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Clostridium, 46, 335
Clostridium botulinum, 277
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CNR. See Critical nutrient range
Cochliobolus sativum, 221
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Co-inoculation, 88, 267

Cold acclimation proteins (Caps), 276,
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Cold-adapted enzymes, 276, 281–282

Cold-adapted microorganisms, 274, 290
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Cold shock proteins (Csps), 276, 278–280, 286
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Crown rot, 215, 218, 219
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CSD. See Cold shock domain

Csps. See Cold shock proteins
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Cyclic lipopeptide, 160

Cytochrome oxidase, 237–238

Cytokinins, 46, 50–52, 88
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D-amino acid aminotransferase, 370

Damping-off, 203, 204

DAPG. See 2, 4-Diacetylphloroglucinol
DDT, 205

Deciduous, 261

Degradation, 299, 307

Delftia sp., 49

D. terephthalate, 103
D. tsuruhatensis, 103

D. tsuruhatensis HR4, 236
Desulfococcus, 265
Desulfosarcina, 265
Desulfotomaculum, 265
Desulfovibrio, 265
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143, 160–161, 179, 220, 225
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Diazotrophs, 286–287, 317–329

Difeconazole, 202

Difenoconazole, 31

Difficidin, 120, 126, 143, 145, 149

Diffusion, 420

Dinitrogen (N2) fixation, 393, 400

Disease management, 202, 206

Disease suppression, 203

DNA hybridization, 24, 27–28

DNA microarray, 27
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Ecological diversity, 275

Ecological niches, 258

Ecological significance, 329

Economic significance, 329

Ecosystems, 252, 253, 258–266

Ectomycorrhizal fungi, 3

Endophytic, 254, 255, 304, 305, 306

bacteria, 29, 30, 103
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Endosymbionts, 343, 388–389, 393
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E. agglomerans, 49, 161, 167, 222
E. cloacae, 319
E. cloacae CAL2 and UW4, 367

E. dissolvens, 320, 324
Enterobacteriaceae, 320

Enterococcus, 336
Environmental microbiology, 320

Environmental stresses, 274, 284

Epidermis, 322

Epiphytic, 254, 255

EPS. See Extracellular polymeric substances

Erwinia, 46, 49, 59, 67, 236
E. caratovora, 349
E. carotovora var. carotovora, 120
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Exopolysaccharides, 259–260

Exoproteases, 90
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Extracellular polymeric substances (EPS),
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Facultative endophyte, 319

Fatty acid methyl ester (FAME), 25, 26

Fatty acids, 276–278, 280
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Fungicides, 108
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Fusarial wilt (Fusarium udum), 61
Fusaricidin, 341, 352
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Fusarium wilt of cucumber, 108
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g-Aminobutyrate acid (GABA), 425–428
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Geobacillus, 336
GFP. See Green fluorescent protein

Gibberellins, 34, 46, 51, 88

Gliocladium virens, 240
Gln. See Glutamine

Global warming, 9

Glomerella cingulata, 29
Glomus fasciculatum, 9, 240, 398–399
Glomus intraradices, 260, 343
Glomus mosseae, 9, 351–352
Glu. See Glutamate

b–1,3-Glucanase, 161, 222, 242, 256, 349
Glucanases, 33, 35, 119, 350

b–1,3-, b–1,4-and b–1,6-glucanases, 161
Gluconacetobacter, 3, 46, 67, 236
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Glycine betaine, 278, 290
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Glycine soja, 353
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Green fluorescent protein (GFP), 224, 241
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glutamate synthase
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HCN. See Hydrogen cyanide
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Heterotrophs, 275

HGT. See Horizontal gene transfer
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Horizontal gene transfer (HGT), 84

Hydrogen cyanide (HCN), 160, 237–238

Hydrolytic enzymes, 118, 120, 201
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Hydroxygenistein, 235–236

2-Hydroxymethyl-chroman-4-one, 239
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IAM. See Indole-3-acetamide pathway
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Ice nucleation proteins (INP), 281

Ice nucleators, 276, 281
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Indigenous indole acetic acid, 256, 257, 267

Indole-3-acetamide (IAM) pathway, 50
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Indole-3-pyruvic acid (IPyA) pathway, 50
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Induction of systemic resistance, 283
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INP. See Ice nucleation proteins

Insecticides, 108

Integrated disease management, 201, 206

Integrated management, 108–110
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Intersymbiont, 390

IPM. See Integrated Pest Management

IPyA. See Indole-3-pyruvic acid pathway

Isoflavonoids, 5
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Iso-pentenyladenine, 344–345

ISR. See Induced systemic resistance

IST. see Induced systemic tolerance

Iturin, 7, 119, 123, 138, 143, 145, 149, 202, 351
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Jasmonic acid, 32, 175, 177, 373–374
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Kallar grass (Leptochloa fusca (L.) kunth), 304,
319, 322, 328

Kanosamine, 160

a-Ketobutyrate, 24, 366, 369–372
2-Ketogluconic acid, 287, 343
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Klebsiella, 3, 46, 48, 67, 319
Kluyvera ascorbata SUD165, 367

Kluyvera cryocrescens IN114, 63
Kocuria oxytoca, 319
Kocuria palustris, 322
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Lactobacillus, 336
Lathryrus, 286
Lathyrus japonicus, 280
Lathyrus pratensis, 280
LCO. See Lipochitooligosaccharides
Leghemoglobin, 12

Legume, 84, 86, 87, 387–410

Leguminosae, 261

Leptochloa fusca, 319
Leptosphaeria maculans, 346, 352
Lichenysins, 351

Lignin, 177

Lindane, 103

Lipochitooligosaccharides (LCOs), 8

Lipopolysaccharide, 177, 179

Listeria, 336
Listeria monocytogenes, 277, 278, 280
Listonella, 265
Lotus japonicas, 378
LuxI-type protein, 85

LuxR-type protein, 85

Lytic enzymes, 6, 34

M

Macroconidia, 233

Macrophomina phaseolina, 346, 353
Magnoporthe grisea, 346
Maize (Zea mays), 215, 301, 303–309
Malathion, 205

MALDI-TOF. See Matrix-assisted laser

desorption/ionization time-of-flight

Malonic, 343

Mangroves, 252, 253, 258, 259, 263–266

Manintol, 278

Matacin (Polymyxin M), 351
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MBCAs. See Microbial biocontrol agents

Medicago, 65
Medicago sativa L., 419
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Meloidogyne spp., 201
M. incognita, 65–66, 239
M. javanica, 64–66, 161, 164, 165, 347

Mesophilic temperatures, 275, 279, 286, 287
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Mesorhizobium mediterraneum strain
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Metagenomics, 104–106, 111
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Methylobacterium radiotolerans, 322
MHB. See Mycorrhization-helper bacteria

Michaelis–Menton rate equation, 369–370

Microbacterium FS01, 53

Microbial adaptability, 258, 260

Microbial biocontrol agents (MBCAs),
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Microbial biomass, 199
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Microbial metabolism, 259

Microbial population, 258
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Microbiostasis, 101
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Molybdoenzymes, 421
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Nitrate reductase, 418, 421–422
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424–425, 428
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Nodule occupancy, 109
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Non-spore formers, 275

Nutrient, 301–303, 305–311

mobilization, 282–283

solubilization, 282–283

O

Obligate endophyte, 319

Ochrobactrum sp., 103, 318

Oil seed rape (Brassica napus), 346
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Oligopeptides, 84

Onobrychis viciifolia, 286
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Organic acids, 48–49, 179

Oryza sativa, 86, 318, 320, 322
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Oxychlororaphin, 239

Oxydifficidin, 120, 126, 143
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Paenibacillus sp., 3, 8, 14, 24, 26, 28, 103,
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P. agglomerans, 318, 320, 324, 325
P. alvei, 215, 219
P. ananatis, 322
P. azotofixans, 26, 337, 339, 340, 342
P. brasilensis, 31, 340
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Pathogenesis related proteins, 217, 223
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Plant-microbe interactions, 82–85, 212, 225

Plant pathogens, 212, 215, 216, 217, 221, 224

Pleurotus ostreatus, 88, 90

Index 441



Pln. See Pyrrolnitrin
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Quercetin, 8, 325

Quorum sensing, 83–85, 90, 91

442 Index



R

Radiolabelling, 279

Ralstonia, 59, 60, 68
R. solanacearum, 373–374

Raman spectroscopy, 26–27
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Rhizoctonia bactaticola, 238
Rhizoctonia bataticola, 103, 341, 346,

352, 353

Rhizoctonia solani, 14, 103, 120, 121, 161,
167–170, 216, 221, 222, 223, 285, 307,

346, 373–374

Rhizodeposition, 4, 14

Rhizoplane, 3, 213, 233
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