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Mauricio Peixoto

Alberto Pinto has asked me to write about Mauricio Peixoto in this book that honors
him as well as David Rand. I am happy to do so. Mauricio is among my oldest
friends in mathematics, having met him more than fifty years ago. Moreover he was
instrumental in my entry into the field of dynamical systems. So important is this
part of my life that my collected works contain four articles that bear on Mauricio
in one way or another. That is fortunate since I wrote that material when events
were fresher in my mind than they are now. Thus I will borrow freely from these
references.

A most important period in my relationship with Mauricio is the summer of 1958
to June of 1960. This is discussed in an article titled “On how I got started in dynam-
ical systems” appearing in the “Mathematics of Time”, based on a talk given at a
Berkeley seminar circa 1976. There I wrote how I met Mauricio in the summer of
1958 through a mutual friend, Elon Lima, who was a student from Brazil finishing
his PhD at Chicago in topology. Through Lefshetz, Peixoto had become interested in
structural stability and he explained to me that subject and described his own work in
that area. I became immediately enthusiastic, and started making some early conjec-
tures on how to pass from two to higher dimension. Shortly thereafter, Peixoto and
Lima invited me and Clara to Rio for a visit to IMPA, or Instituto de Matemática,
Pura e Aplicada.

It was during the next six months (January through June, 1960) that I did some
of my most well known work, firstly the introduction of the horseshoe dynamical
system and its consequences and secondly the proof of Poincare’s conjecture in
dimensions five or more. I sometimes described these works as having been done
on the beaches of Rio; this part of the story is told in two articles in the Mathematics
Intelligencer in the 1980’s.

Thus we may see here what a big influence Mauricio had on my career. Another
impact was his “sending” me a student to write a PhD thesis at Berkeley. That stu-
dent in fact finished such a thesis and went on to become a world leader in dynamical
systems. Jacob Palis’ contributions in science go well beyond that. He is a main
figure in developing third world science, and mathematics in Brazil in particular.

In the article “What is Global Analysis”, based on a talk I gave before the Math-
ematical Association of America, 1968, I gave a focus to one result as an excellent
theorem in global analysis. That result was Peixoto’s theorem that structurally stable
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viii Mauricio Peixoto

differential equations on a two dimensional manifold form an open and dense set.
Another example of the influence of Mauricio!

I will end on a final note that reinforces all that I have said here. Over the last fifty
years I have made fifteen visits to IMPA, the institute founded by Mauricio Peixoto
(and Leopoldo Nachbin).

Steve Smale



Alberto Adrego Pinto

I met Alberto a few years ago, in the office of Mauricio Peixoto at IMPA, the
Brazilian Institute of Pure and Applied Mathematics. Alberto was on a summer
visit, and he wanted to discuss results he had obtained with his former student Diogo
Pinheiro on the focal decomposition proposed years earlier by Mauricio.

By sheer accident, I had come across an application of the focal decomposition
in finite temperature quantum mechanics. In fact, semi-classical approximations to
the problem practically forced one to make use of the focal decomposition, although
it was only much later that I became aware of its existence. That was why I was part
of the meeting: my mathematician friends were curious about possible applications,
and we were eager to collaborate.

Alberto immediately impressed me by his enthusiasm, his genuine interest in
science, and by his easy-going style, much appreciated by a “carioca” like myself.
Besides, our discussions were lively, and touched upon various conceptual points
that seemed quite natural to a physicist, and eventually proved very useful from a
mathematical point of view. Our collaboration has been going on ever since, and has
already led to a couple of articles.

Alberto has also offered us all with a wonderful event back in 2008, when he
organized a conference in honor of David Rand and Mauricio Peixoto in the pre-
cious city of Braga. The conference made me appreciate, even more, the versatility
and scientific depth of Alberto, as he and his PhD students and postdocs presented
seminars that covered a wide variety of subjects.

As a final word about Alberto, it must be said that he is a marvelous host. He
showed us the finest of the region of Minho, using a well balanced combination of
science, art, good food, good wine, and above all, good humor. That is the reason I
always look forward to our next meeting: whether in Brazil or in Portugal, I am sure
we will have a pleasant and productive time.

Carlos Alberto Aragão de Carvalho
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David Rand

David Rand has had a world-leading influence in dynamical systems theory, in
transferring dynamical systems ideas into the sciences, particularly physical and
life sciences but also economics, and in developing relevant new mathematics for
these areas. Highlights are his theories of the two-frequency route to chaos, inva-
sion exponents in evolutionary dynamics, and robustness of circadian rhythms. He
is widely appreciated for his leadership and for his highly pertinent and generous
insights into research projects of others.

He was one of the first to bring ideas on dynamical systems with symmetry
into fluid mechanics, predicting modulated wave states in circular Couette flow,
subsequently confirmed experimentally by Swinney and Gorman.

A major advance was his proposal of a renormalization explanation for obser-
vations of asymptotic self-similarity in the transition from quasiperiodic to chaotic
dynamics for circle maps. He extended the theory to dissipative annulus maps, pro-
viding a complete picture of the breakup of invariant circles in this scenario. Similar
analysis of his has been important in understanding the spectrum of quasiperiodic
Schrodinger operators.

He put the theory of multifractal scaling for chaotic attractors on a firm footing,
including theory for the distribution of Lyapunov exponents.

He contributed significantly to the dynamical theory of evolutionary stability and
co-evolution, including the fundamental concept of invasion exponents. He devel-
oped pair approximations for spatial ecologies and epidemics, which are now widely
used.

With Alberto Pinto, he developed an extensive theory of the smooth conjugacy
classes of hyperbolic dynamics in one and two dimensions, surveyed in a recent
Springer Monograph in Mathematics.

He made one of the earliest analyses of nonlinear dynamics in an economics
context, showing that a duopoly game has chaotic trajectories. Game theory has
been a recurrent interest of his, particularly in the contexts of ecology and evolution.

Much of his recent work falls under “systems biology”. He has proposed a theory
of the immune system, based on large deviation theory. He has developed theory
of the robustness of circadian rhythms, which has generated much interest with
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xii David Rand

experimental collaborators. The work is part of a larger project to develop math-
ematical tools to aid in the understanding of biological regulatory and signaling
networks.

He has played a leading role in establishing Nonlinear Dynamics in the UK,
co-founding the Nonlinear Systems Laboratory in Warwick and the journal Non-
linearity. He is doing the same now for Systems Biology, creating the Warwick
Systems Biology Centre.

He exudes energy and enthusiasm. So it was a pleasure for me when he attracted
me to Warwick. We had great fun setting up and running the Nonlinear Systems
Laboratory, building up the applied side to Warwick’s Mathematics department and
its curriculum, and setting up the Mathematical Interdisciplinary Research Program,
which he rebranded as Mathematical Interdisciplinary Research at Warwick and of
which I took over directorship from David in 2000. He is a great friend and I have
greatly appreciated his insightful comments, suggestions and support for my own
work.

Robert S. MacKay



Preface

A couple of years ago Alberto Pinto informed me that he was planning to orga-
nize an international conference on dynamical systems and game theory in honor of
Mauricio Peixoto and David Rand. I told him that I wholeheartedly support the idea
and will ask the International Society of Difference Equations (ISDE) to support
the proposed conference which it did later. Through my frequent visits to Portugal,
I became aware of the significant contributions in dynamical systems and game the-
ory made by Portuguese mathematicians and have subsequently been involved in
fruitful discussions or joint research with a number of them. The growth of dynam-
ical systems and game theory research in Portugal has placed Portuguese mathe-
maticians at the forefront of these emerging fields, bringing worldwide recognition
to their contributions. Indeed, in addition to DYNA2008, Portuguese researchers
organized two of the last three International conferences on difference equations
and applications (ICDEA), which included important talks on dynamical systems
and game theory.

The work in this area has unveiled beautiful and deep mathematical theories
that capture universal characteristics observed in many apparently unrelated nat-
ural phenomena and complex social behavior. Mauricio Peixoto has made lasting
contributions in classifying and understanding a variety of behaviors of dynamical
systems. Today these problems are the main research focus in diverse yet comple-
mentary areas at distinguished research institutions like IMPA, the institute founded
by Mauricio Peixoto and Leopoldo Nachbin, and University of Warwick. Alberto
Pinto has made notable contributions through his studies on rigidity properties of
infinitely renormalizable dynamical systems. In addition, he discovered stochas-
tic universalities in complex natural and social phenomena, e.g. rivers, sunspots
and stock market indices, and is developing a theory with Peixoto in semi-classics
physics using Peixoto’s focal decomposition. David Rand, a world-leading author-
ity, has contributed deeply and broadly to this area by developing theoretical aspects
of these two fields, and identifying properties of infinitely renormalizable, universal
and chaotic phenomena throughout the sciences - especially in biology, economics
and physics. In collaboration with Alberto Pinto, he constructed a fine classifi-
cation of dynamical systems. Moreover, the research groups led by David Rand
and Alberto Pinto have, independently, developed new schools of inquiry using
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game theoretical and dynamic models applied to biology, economics, finances,
psychology and sociology.

The research and survey papers in these volumes, written by leading researchers
in their scientific areas, focus on these and many other relevant aspects of dynam-
ical systems, game theory and their applications to science and engineering. The
papers in these volumes are based on talks given at the International Conference
DYNA2008, in honor of Mauricio Peixoto and David Rand. This conference, held
at the University of Minho, was organized by Alberto Pinto and his colleagues and
brought together influential researchers from around the world. It is worthwhile to
note the warmth and hospitality of the organizers who made sure we enjoyed the
beautiful region of Minho with its rich culture and fine cuisine.

Saber Elaydi
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Vilton Pinheiro Departamento de Matemática, Universidade Federal da Bahia,
Av. Ademar de Barros s/n, 40170-110 Salvador, Brazil, viltonj@ufba.br

Alberto A. Pinto LIAAD-INESC Porto LA e Departamento de Matemática,
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Mike Todd Centro de Matemática da Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal, mtodd@fc.up.pt

Marcelo Trindade dos Santos LNCC/MCT, Av. Getlio Vargas 333, 25651-075
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Chapter 1
Network Control Analysis for Time-Dependent
Dynamical States

D.A. Rand

Abstract We present an approach to network control analysis that applies to
some important time-dependent dynamical states for both autonomous and non-
autonomous dynamical systems. In particular, the theory applies to periodic solu-
tions of autonomous and periodically forced differential equations. The key results
are summation theorems that substantially generalise previous results. These results
can be interpreted as mathematical laws stating the need for a balance between
fragility and robustness in such systems. We also present the theory behind what
has been called global sensitivity analysis where sensitivities are defined in terms of
principal components and principal control coefficients.

1.1 Introduction

In many areas of science it is necessary to consider complex dynamical systems
involving high-dimensional state and parameter spaces. The complex regulatory and
signalling systems found in systems biology provide important examples of these.
To deploy such models rationally and effectively and to understand their design
principles we have to increase our ability to analyse their behaviour. In particular,
this is necessary to attack two key tasks: firstly, to determine how such systems
address the need for robustness and trade off robustness of some aspects against
fragility of others and, secondly, to determine the key points of regulation in such
systems, aspects of the system that are crucial to its behaviour and control.

Because it identifies which parameters a given particular aspect of the system
is most sensitive to, classical sensitivity analysis [1, 10, 11, 13, 19] is a very use-
ful tool that has been used to address both of these aspects. However, apart from
some summation theorems about the control coefficients for period and amplitude
of free-running oscillators [10] that are analogous to those derived as in metabolic

D.A. Rand
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2 D.A. Rand

control analysis [5,10,13], there is currently rather little general theory about general
non-equilibrium networks. There is a great need to develop tools that give a more
integrated picture of all the sensitivities of a system and to develop more coherent
universal or widely applicable general principles underlying these sensitivities.

To this end we demonstrate a new summation theorem which substantially gen-
eralises previous results. Not only does it apply to non-stationary solutions such as
periodic orbits and transient signals but it also holds for non-autonomous systems,
for example for forced nonlinear oscillators. We also present the theory behind what
has been called global sensitivity analysis [17]. These results have been discussed
in the paper [17] but there the emphasis was on methods to compactly represent all
the sensitivities of the system whereas here we are concerned with the underlying
mathematical details.

Summation theorems are at the heart of metabolic control theory which is a
method based on linear perturbation theory for analysing how the control of fluxes
and intermediate concentrations in a metabolic pathway is distributed among the dif-
ferent enzymes that constitute the pathway. Originally designed to quantify the
concept of rate limitation in complex enzymic systems, rather than assuming the
existence of a unique rate-limiting step, it assumes that there is a definite amount
of flux control and that this is spread quantitatively among the component enzymes.
While there have been attempts to generalise the theory to non-stationary states
[2,9,12,16], up to now a comprehensive theory only exists for stationary states. We
attempt to partially rectify this situation here. In doing this we point out that the
theory is much more general and applies to general dynamical systems and not just
those arising as metabolic systems.

The theorems we prove can be interpreted as mathematical laws stating the need
for a balance between fragility and robustness in such systems. They contains within
them the other known simple summations theorems such as those for stationary
solutions and for the period and amplitude of an oscillatory solution of an unforced
oscillator. However, they are a substantial generalisation because they relate a set
of functions rather than a set of numbers and thus effectively an infinite number of
simple summation conditions. Moreover, as already mentioned, unlike the classical
summation theorems they apply to non-autonomous systems such as forced oscilla-
tors as well as to autonomous systems. It should be particularly useful in analysing
non-stationary regulatory, signalling and metabolic networks. Summation relations
for some time-dependent solutions have previously been derived in [3,12,16]. How-
ever, as is explained in Appendix 4, the summation theorems proved here are quite
different.

We also define control coefficients for some non-stationary solutions and, as will
be seen in Sect. 1.3, this definition has some subtleties.

We consider general systems of the form

dx

dt
D f .t; x/ (1.1)

where t is time and x D .x1 : : : ; xn/. In general the systems that we consider will
depend upon parameters but we only explicitly mention them in formulas when
needed.
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We assume a specific decomposition of f as follows

fi .t; x/ D
rX

jD1
Nij vj .t; x/ (1.2)

where the vj .t; x/ are C 2 functions of t and x. These functions also depend on
parameters but we do explicitly mention them at this stage.

Usually modelled as compartmental systems, metabolic, regulatory or signalling
networks often naturally have such a decomposition. They are typically described
by such systems where N D .Nij / is the network’s stoichiometric matrix and vj
is the rate of a process or reaction j which adds Nij particles to compartment i
whenever the reaction occurs. Thus the contribution of reaction j to dxi=dt is
Nij vj .t; x/. Nevertheless, this interpretation in terms of reactions, rates and stoi-
chiometric matrices is not necessary for what follows and any system as in (1.1) can
be decomposed as in (1.2).

Control analysis is about trying to quantify the extent to which the aspects of
the system described by the various terms vj affect overall system performance.
Suppose the term vj is changed by a factor � to �vj . In the cases we consider the
solution of interest g will vary smoothly with this new parameter � when � is close
to 1 (i.e. will be at leastC 2 in �) and the control coefficient of the solution of interest
will be defined in terms of the derivative of g with respect to � at � D 1.

In fact it will be convenient to introduce auxiliary parameters " D ."1; : : : ; "r/

and define what we will call the parameter-augmented system of (1.1) dx=dt D
Of .t; x; "/ where

Ofi .t; x; "/ D
rX

jD1
Nij .1C "j /vj .t; x/: (1.3)

When " D 0 then we have (1.1). The above derivative of g with respect to � at
� D 1 is just the partial derivative of g with respect to "j at " D 0 and the control
coefficients can all be defined in terms of these partial derivatives.

Suppose that (1.1) depends upon parameters k D .k1; : : : ; ks/. We say that k is
a full set of linear parameters for (1.1) if

f .t; x; �k/ D �f .t; x; k/

for all � > 0. For example, if each Nij above is a non-trivial linear sum of the
parameters k1; : : : ; ks then k is a full set of linear parameters. For the parameter-
augmented system Of the parameters �j D .1 C "j / form a full set of linear
parameters.

Briefly, the main results that we demonstrate are as follows:

1. A summation theorem for the raw perturbations of solutions with a fixed initial
condition.

2. A definition of the control coefficients of periodic orbits of autonomous differ-
ential equations and a summation theorem for them.
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3. A summation theorem for periodic orbits and other solutions of non-autonomous
differential equations.

1.2 Summation and Connectivity Equations in the Stationary
Case

We start by describing the well-known summation theorem for stationary solutions
[4, 7, 8, 10, 13, 14, 18]. In this case (1.1) must be autonomous and we assume that
the stationary solution of (1.1) is non-degenerate in that the Jacobian matrix of f
at the stationary solution x� is invertible. In this case the is a unique stationary
solution Ox� D Ox�."/ of the parameter-augmented system Of for all small " such that
Ox�.0/ D x0. Moreover, Ox� D Ox�."/ depends smoothly upon " (i.e. is C 2 in "). The
steady-state fluxes Jj ."/ D .1C "/vj . Ox�."// for Of will also depend smoothly on ".

Definition 1.1. The control coefficientsC xvj
and the flux control coefficientsC Jvj

are
defined by

C xvj
D @ Ox�
@"j

ˇ̌
ˇ̌
xDx�.0/;"D0

and C Jvj
D @J

@"j

ˇ̌
ˇ̌
xDx�.0/;"D0

:

Thus we can interpret the control coefficients as describing the change in the
stationary state x and the fluxes J that results from a relative change in the reaction
rate vk . If C xvk

is small then the state is relatively insensitive to this reaction and
changes in the reaction rate hardly affect the state. If it is large then changes in this
reaction change the state significantly. Similarly for C Jvk

.

Theorem 1.1. [4, 7, 8, 10, 13, 14, 18] If the Jacobian of f in (1.1) is non-singular

X

j

C xvj
D 0

and X

j

C Jvj
D J

These control coefficients are related by the formula

C Jvj
D Dvj

C xvj
C vj .x

�/ej : (1.4)

Here Dvj
is the Jacobian matrix with entries Dik D @vj =@xk evaluated at x�,

and ej is the vector whose entries are all zero except for the j th which is 1. A short
proof of these results is given in Appendix 1.
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1.3 Summation Theorems for Time-Dependent States

We will be interested in a solution or a class of solutions of (1.1) defined for a
specific time range t0 � t � t0 C T . For example, for circadian oscillations, the
primary object of interest is an attracting periodic orbit of (1.1) and T will be the
period of this orbit.

Suppose that (1.1) and the solution of interest x D g.t; k/ depends upon param-
eters k D .k1; : : : ; ks/. Denote the general solution of (1.1) by �.t; t0; x0; k/ i.e.
x.t/ D �.t; t0; x0; k/ is the solution of (1.1) with initial condition x.t0/ D x0.

The following function will be important in the summation theorems that we
prove:

˚.t; t0/ D .t � t0/f .t; g.t; k/; k/
�
Z t

t0

.u � t0/X.u; t/@f
@t
.u; g.u; k/; k/ du: (1.5)

The n� n matricesX.s; t/ referred to here and below are the fundamental solutions
of the variational equation

@

@t
X.s; t/ D Df .t/ �X.s; t/ (1.6)

whereDf .t/ is the Jacobian dxf evaluated at x D g.t; k/, X.s; t/ is a n�n matrix
and the initial condition is X.s; s/ D I . Then the j th column of X.t0; t/ is @�=@xj
evaluated at .t; t0; g.t/; k/ (cf. [6] Chaps. IV and XII (Part I)).

Note that in the case where the equation is autonomous the term under the integral
is zero and ˚.t; t0/ D .t � t0/f .g.t; k/; k/. Note that tf .g.t; k// D t Pg.t; k/ which
is an infinitesimal period change (i.e. the derivative at ! D 1 of ! ! g.!t/).

1.3.1 Solutions Defined by a Fixed Initial Condition

We start with the case where g.t; k/ D �.t; t0; x0; k/ and x0 is independent of
parameters.

Theorem 1.2. Suppose that k is a full set of linear parameters for (1.1) and that
the initial condition x0 does not depend upon k. Then

X

j

kj
@�

@kj
.t; t0; x0; k/ D ˚.t; t0/ (1.7)

There is an immediate corollary for what I will call the raw control coefficients
C �vj

.t; t0/. To define these, consider the parameter-augmented system Of which
depends upon the parameters " D ."1; : : : ; "r /. Then the partial derivative of the
solution with respect to "j gives the effect of increasing the term vj by a factor
1C "j to .1C "j /vj .
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Definition 1.2. The raw control coefficients are given by

C �vj
.t; t0/ D @�

@"j
.t; t0; x0; "/

ˇ̌
ˇ̌
"D0

For the parameter-augmented system, the parameters kj D 1C"j form a full set
of linear parameters and therefore, applying the above theorem to Of , we deduce the
following corollary

Corollary 1.1. X

j

C �vj
.t; t0/ D ˚.t; t0/: (1.8)

Remark 1.1. 1. This result contains the classical summation theorem. For that
result x0 is a fixed point so that �.t; x0/ � x0 and f is autonomous so
˚.t; t0/ � 0.

2. Even for the fixed-point case it gives new results because we can look at solu-
tions that relax to an equilibrium x� having started at a different initial condition
x0. The control coefficients for this transient solution satisfy (1.8) and have the
property that

P
j C

�
vj
.t; t0/! 0 as t !1.

3. Note that this theorem applies to both autonomous and non-autonomous sys-
tems.

1.3.2 Summation Law for Periodic Solutions

1.3.2.1 Control Coefficients for Periodic Orbits of Autonomous Systems

We firstly consider the autonomous case where f is independent of t . Then the
dependence of � upon t and t0 is only through t � t0 and therefore we write it as
�.t � t0; x0; k/.

In this autonomous case, a solution of (1.1) corresponding to a periodic orbit �k
depending upon parameters k is of the form

g.t; k/ D �.t; x0.k/; k/ (1.9)

where x0 is a point on �k that depends smoothly on k.
We refer to the way this is written in terms of t and the parameters k as a param-

eterisation of the periodic orbit. This parameterisation of the periodic orbit is not
unique. It has to be of the form given in (1.9) but there are infinitely many ways
of choosing x0.k/ since it just has to be a point on the periodic orbit that depends
smoothly on k. Since

@g

@kj
D @�

@x0

@x0

@kj
C @�

@kj

the choice of x0.k/ affects @g=@kj and hence the control coefficient.
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To deal with this we firstly define the control coefficients of a periodic orbit using
a transversal section˙ to the periodic orbit and then show that the way they depend
upon ˙ is easy to understand and can be factored out to give a control coefficients
for the periodic orbit.

We suppose that � is a periodic orbit of (1.1) for the reference parameter value k.
Choose a point x0 on � and let ˙ be any small transversal section to � that inter-
sects it precisely in x0. By transversal we mean that it is transversal to f .x0; k/ at
x0 i.e. its tangent vectors and f .x0; k/ span the whole of Rn.

Suppose that the period of � is � . We say that � is non-degenerate if the matrix
X.0; �/ has 1 as a simple eigenvalue. In this case, for all parameters k0 near k there
is a unique periodic orbit �k0 near �k and the dependence of this periodic orbit
on k0 is smooth (e.g. Hartman [6]). Thus for k0 near k the perturbed periodic orbit
�k0 also intersects ˙ in a unique point which we denote by x0.k0/. This defines a
parameterisation of �k0 by g.t; k0/ D �.t; x0.k0/; k0/.

Now we turn to the definition of the control coefficients. As above we con-
sider the parameter-augmented system Of which depends upon the parameters
" D ."1; : : : ; "r/. Since the periodic orbit � is non-degenerate, for small ", the
perturbed periodic orbit intersects ˙ in a unique point x0."/ and thus we have a
parameterised family g.t; "/ D �.t; x0."/; "/ of periodic orbits depending upon ".

Definition 1.3. If ˙ , g, " and x0."/ are as above, define the control coefficient
C�;˙vj

by

C�;˙vj
.t/ D @g

@"j
.t/

ˇ̌
ˇ̌
"D0

:

The flux control coefficient C J;˙vj
can be similarly defined. We can also con-

sider how the period � D �."/ and the time-scaled solution �.t; "/ D g.�."/t; "/,
0 < t < 1, vary with ". Their partial derivatives with respect to "j at " D 0 define
auxiliary control coefficients C �;˙vj

and C �;˙vj
.

Lemma 1.1. If ˙ 0 is another transversal section to the periodic orbit then

C�;˙
0

vj
.t/ D C�;˙vj

.t/C f̌ .g.t; k/; k/

where ˇ is a linear function @x0=@"j j"D0 which is independent of j and depends
only on ˙ and˙ 0.

This lemma is proved in Appendix 2. The term f̌ .g.t/; k/ represents a move-
ment along the orbit � given by the vector field f . ˇ depends upon the sections ˙
and ˙ 0 and effectively any value is possible. To remove this dependence upon the
section we define the control coefficient as follows.

We can regard the C�;˙vj
.t/ as elements of the L2 Hilbert space H of Rn-valued

functions of t , 0 � t � T . The Rn-valued function fg.t/ D f .g.t/; k/ also belongs
to this space. We therefore consider the quotient space H0 D H =Vf obtained by
factoring out the 1-dimensional linear space Vf spanned by fg .



8 D.A. Rand

Definition 1.4. The control coefficients for � are given by

C�vj
D �.C�;˙vj

/

where � WH !H0 is the canonical projection.

For those uncomfortable with such an abstract definition we can choose a easily
computable representative C�;rep

vj
.t/ for C�vj

.t/ as follows:

C�;rep
vj

.t/ D C�;˙vj
�
D
C�;˙vj

; fg

E

L2
fg :

Using the lemma, it is easy to see that this is independent of the choice of ˙ .

Theorem 1.3.

X

j

C�;˙vj
.t/ D tf .g.t/; k/;

X

j

C �;˙vj
D �1

and
X

j

C �;˙vj
D 0: (1.10)

Consequently,

X

j

C�vj
.t/ D 0 and

X

j

C�;rep
vj

.t/ D 0:

In the following theorem we consider the case where (1.1) depends upon a full
set of linear parameters. The periodic orbit � is assumed to be non-degenerate.

Theorem 1.4. Suppose that g.t; k/ D �.t; x0.k/; k/ is the parameterisation deter-
mined by ˙ as defined above. Then

X

j

kj
@�

@kj
D �1 ;

X

j

kj
@�

@kj
D 0 (1.11)

and
X

j

kj
@g

@kj
.t/ D tf .g.t; k/; k/ D ˚.t; 0/: (1.12)

Remark 1.2. Theorems 1.3 and 1.4 are effectively equivalent as will be seen from
their common proof in Appendix 2. Quite different summation relationships for the
case of periodic orbits of autonomous systems has been proved in [3, 12, 16]. Their
results are discussed in Appendix 3.
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1.3.2.2 Non-Autonomous Systems

Now we discuss the non-autonomous case where f in (1.1) does depend upon t .
We assume that f .t C �; x/ � f .t; x/ and that the periodic solution g.t; k/ is
of period � and is non-degenerate in that the matrix X.0; �/ does not have 1 as
an eigenvalue. This implies that the periodic orbit �k is isolated and therefore the
parameterisation of it as g.t; k/ D �.t; t0; x0.k/; k/ is unique because x0.k/ is
unique since x0.k/ D g.t0; k/. Thus we do not have to worry about the multiple
parameterisations found in the autonomous case. The non-degeneracy also implies
(a) that for all parameters k0 near k, for the system parameterised by k0, there is
a unique periodic orbit �k0 near �k , and (b) that, for k0 near k, the period of �k0

equals that of �k .

Definition 1.5. If � is a periodic orbit as above the control coefficients C�vj
are

defined by

C�vj
.t/ D @g

@"j
.t/

ˇ̌
ˇ̌
"D0

:

Let
	.t; t0/ D X.t0; t/.I �Xt0/�1˚.t0 C �; t0/C ˚.t; t0/ (1.13)

where Xt0 D X.t0; t0 C �/ and ˚ is as in (1.5).

Theorem 1.5. If f and g are as above and k D .k1; : : : ; ks/ is a full set of linear
parameters then

X

j

kj
@g

@kj
.t/ D 	.t; t0/ (1.14)

and we also have for the control coefficients that

X

j

C�vj
.t/ D 	.t; t0/: (1.15)

1.4 Principal Control Coefficients

We now consider a general differential equation of the form given in (1.1) and
depending upon parameters k D .k1; : : : ; ks/. Ideally we would like to associate
a single real number to each parameter kj as a measure of its global sensitivity. This
is clearly not possible because we want this to account for all ways in which the sys-
tem varies. However, we can do something which usually is nearly as good. Instead
of associating a single number measuring the sensitivity of a parameter kj we will
define a set of numbers Sij with the property that to understand the sensitivity of the
system to kj one just has to inspect the Sij for low i . For generic systems the will
be a unique set of such numbers satisfying the optimality condition described below
which is basically that if 
2i D

P
j S

2
ij then the 
i decrease as fast as possible.
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Fig. 1.1 The parameter sensitivity spectrum (pss) for the model of the mammalian circadian clock
of Leloup and Goldbeter [15]. Each group of bars corresponds to the value of log10 jSij j for a
particular parameter kj . These are only plotted for those i for which jSij j is significant (in this
case i D 1; 2 and 3). As shown in the legend they are coloured as follows: i D 1, red; i D 2, blue;
and i D 3, green. The parameters kj are ordered by jS1j j. See [17] for a discussion of how this
can be used to understand the sensitivities of a system like this

The change ıg in g caused by a change ık D .ık1; : : : ; ıks/ in k is

ıg DM ık C O.kıgk2/:
where the linear mapM is given by

M ık D
X

j

@g

@kj
ıkj :

We regard M as a map from the parameter space Rs to the L2 Hilbert space H
of Rn-valued functions U.t/ D .U1.t/; : : : ; Un.t//, U 0.t/ D .U 01.t/; : : : ; U 0n.t//,
0 � t � T , with inner product

˝
U;U 0

˛
L2 D T �1

Z T

0

nX

mD1
Um.t/U

0
m.t/ dt

and norm given by jjU jj2
L2 D hU;U iL2 .

The adjoint operatorM � to M is given by

M �U D .�1; : : : ; �s/

swhere

�j D
�
@g

@kj
; U

�

L2

:

It follows that the ij th element of M �M is given by
�
@g

@ki
;
@g

@kj

�

L2

:

Since this is self-adjoint it has real positive eigenvalues �1 � �2 � � � � � �s.
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Let H0 denote the subspace spanned by the functions @g=@�j .t/ on 0 � t � T .

Theorem 1.6. There exists a set of numbers 
I � 
2 � � � � � 
s , a set of orthonor-
mal vectors V1; : : : Vs of the parameter space Rs , and a set of orthonormal vectors
U1; : : : ; Us in H0 such that MVi D 
iUi , M �Ui D 
iVi , and the average error
given by

e2k D
Z

jjvjjD1
kM v �

kX

iD1
hM v; UiiUik2 dv

is, for all k � 1, minimised over all orthonormal bases of H0. At this minimal
value e2

k
D c
2

k
where c is an absolute constant whose value is given in the proof

of Theorem 1.6. The 
i are uniquely determined and the Vi and Ui are respectively
eigenvectors of MM � and M �M . Thus 
i D �i . If they are simple eigenvectors
then the Ui and Vi are uniquely determined.

Note that the matrix V whose columns are the vectors Vi is othogonal in that
V tV D V V t is the identity matrix and that therefore W D .Wij / is the inverse of
V andW D V t .

Now suppose that U0 D .U 0i / is another orthonormal basis of H0 and define the
s � s matrix S.U0/ D .sij / by

M ık D
X

i;j

sij ıkjU
0
i :

S.U0/ is called the sensitivity matrix associated to U0 because

kM ıkk D kS.U0/ ıkk

so that kıgk D kS.U0/ ıkk C O.kıkk2/. The entries are called global sensitivities.
The following corollary is proved in Appendix 3.

Corollary 1.2. If U is as in Theorem 1.6 and U0 D .U 0i / is another orthonormal
basis of H0 then for all k D 1; : : : ; s

X

i�k

X

j

Sij .U/2 �
X

i�k

X

j

Sij .U0/2 (1.16)

and X

i>k

X

j

Sij .U/2 �
X

i>k

X

j

Sij .U0/2 (1.17)

Definition 1.6. The principal global sensitivities of f parameterised by k at
k D k0 are the numbers Sij D Sij .U/. They satisfy the optimality condition
expressed in conditions (1.16) and (1.17) of the above corollary. Moreover,
Sij D 
iWij where W is the matrix defined above and therefore

P
j S

2
ij D


2i
P
j W

2
ij D 
2i . The elements Ui of the above basis are called principal

components and the 
i are called singular values.
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The principal global sensitivities for a model of the mammalian circadian clock
are shown in Fig. 1.1.

Remark 1.3. The use of this terminology is further justified by the following facts:

1. kıgk2 D kS � ıkk2
2.
Pk
iD1 
2i D k

Pk
jD1 S � Vj k

Proof of Remark. Since ıg DPi;j Sij ıkjUi up to first order terms,

kıgk D
0

@
X

i

X

j

jSij ıkj j2
1

A
1=2

˙O.kıgk2/

D kS � ıkk ˙O.kıgk2/

because the Ui are of unit length and orthogonal to each other.
However, S � ık D diag.
/W � ık. Thus if W � ık is the vector uk whose first

k entries are 1 and the rest are zero, then kS � ıkk2 D Pk
iD1 
2i . In this case

ık D V � uk and therefore the j th entry of ık is
Pk
iD1 Vj i . Thus

Pk
iD1 
2i D

kPk
iD1 Vj k2. ut

1.4.1 Principal Control Coefficients

We now define the principal control coefficients C .i/vj
of the system given by (1.1).

To define these we consider the parameter-augmented system dx=dt D Of .t; x; "/
introduced in (1.3) above. Let U and S.U/ D Sij be the principal components and
global sensitivities of Of parameterised by kj D .1C "j / at " D 0.

Definition 1.7. The principal control coefficients C .i/vj
are given by the principal

global sensitivities Sij .

Theorem 1.7. (Summation theorem for principal control coefficients)

X

i;j

C .i/vj
Ui .t/ D 	.t/ (1.18)

where 	.t/ is as in Table 1.1.

Table 1.1 The function ˚.t; t0/ is given in (1.5)

System Orbit g 	.t/

Autonomous Signal tf .g.t//

Autonomous Periodic orbit tf .g.t//

Forced Signal ˚.t; 0/

Forced, period � Periodic orbit X0.I �X0/�1˚.�; 0/C˚.t; 0/
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Appendix 1: Proof of Theorem 1.1

Proof of Theorem 1.1. We consider the parameter-augmented system dx=dt D
Of .x; "/ introduced in Sect. 1.1 which is autonomous in the case being considered

here since f is. Since the parameters kj D 1 C "j form a full system of linear
parameters for Of ,

P
j .1C "j /@ Of =@"j D Of . Because the JacobianDf .x�/ of f at

x� is invertible, by the implicit function theorem, there is a unique stationary solu-
tion x�."/ near the stationary solution x�.0/ D x� of f and this depends smoothly
upon " with

@x�
@"
D Df .x�/�1 @

Of
@"
:

Therefore, denoting the column vector consisting of 1’s by 1 we have

X

i

@x�
@"i

ˇ̌
ˇ̌
ˇ
"D0
D @x�

@"

ˇ̌
ˇ̌
"D0
� 1 D �Df .x�.0//�1 @

Of
@"

ˇ̌
ˇ̌
ˇ
"D0
� 1

D �Df .x�.0//�1 Of .x�.0/; 0/ D 0

Equation (1.4) follows from differentiating the equation Jj D .1C"j /vj .x�."//
with respect to ". One obtains

@Ji

@"j
D ıij vj .x

�."//C .1C "i /@vi
@x

@x�

@"j

or in matrix form

@J

@"
D v.x�."//C diag.1C "/ @v

@x

@x�

@"
:

The equation
P
j C

J
vj
D 1 follows from this and

P
j @x

�=@"j D 0. ut

Appendix 2: Proofs of Theorems 1.2–1.5

We will consider the case where (1.1) depends upon parameters k D .k1; : : : ; ks/.
Suppose that we denote the solution of the differential equation (1.1) with ini-
tial condition x.t0/ D x0 and parameters k by �.t; t0; x; k/. In Sect. 1.3 above
we explained that the derivatives @�=@xi and @�=@kj are given by the variational
equation

@

@t
X.s; t/ D Df .t/ �X.s; t/ (1.19)

where t � s,Df .t/ is the Jacobian dxf evaluated at x D g.t; k/, X.s; t/ is a n�n
matrix and the initial condition is X.s; s/ D I .
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To determine partial derivatives with respect to parameters we consider the
associated equation

Py.t/ D Df .t/ � y.t/CKj .t/ (1.20)

where Kj .t/ is the n-dimensional vector @f=@kj evaluated at .t; x/ D .t; g.t//, y
is also a n-dimensional vector and the initial condition is y.t0/ D 0. Then

y.t/ D @�

@kj
.t; t0; g.t/; k/:

If X.s; t/ is the solution of (1.19) then by variation of constants,

@�

@kj
.t; t0; g.t/; k/ D

Z t

t0

X.s; t/Kj .s/ ds: (1.21)

We firstly consider the case where (1.1) is autonomous. Then �.t; t0; x0; k/ only
depends upon t and t0 through t � t0 so we denote it by �.t � t0; x0; k/.
Lemma 1.2. If the system is autonomous

X.s; t/ � f .g.s// D f .g.t//

Proof. (cf. Hartman [6]) Let x0 D g.0/ and let˙ be the normal hyperplane to f .x0/
at x0. Let 't W U ! Rn be the flow of equation (1.1) i.e. 't .x/ D �.t; x/ and U is
some neighbourhood of x0 in Rn.

Consider the case s D 0 first. We can chooseU above so that a coordinate system
on U is given by .x0; t/ where x0 2 ˙ and jt j < � for some � > 0 and the point
with coordinates .x0; t/ is �.t; x0/. Then in these coordinates the derivative of 't ar
x0 is given by the matrix X.0; t/ above whose columns are

d�=dx0;k; k D 1; : : : ; n � 1 and ˛�1d�=dt:

Here x0;k is the kth coordinate of x0.
Consequently,

X.0; t/ � f .y0/ D X.0; t/ � .0; : : : ; 0; ˛/� D f .g.t//

for all t � 0. But X.s; t/f .g.s// D X.0; t/f .g.0// D f .g.t// because
X.s; t/X.0; s/ D X.0; t/. This is the required result. ut

We now consider nonautonomous systems of the form Px D f .t; x; k/. We can
rewrite this as an autonomous system by defining y D .s; x/ 2 R � Rn and letting
F.y/ D .!; f .s; x; k// where ! is a new parameter that we introduce. Then the
equation Py D F.y/ is equivalent to

Ps D !; Px D f .s; x; k/ (1.22)
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and therefore, .!t C t0; x.t// is a solution of (1.22) with initial condition .t0; x0/
precisely when x.t/ is a solution of Px D f .!t; x; k/ with x.t0/ D x0. For ! D 1

the latter equation is our original equation.

Lemma 1.3. For autonomous and nonautonomous systems,

X.s; t/f .s; g.s// D f .t; g.t// �
Z t

s

X.u; t/
@f

@t
.u; g.u// du

Proof. We rewrite the system in the autonomous form (1.22). The Jacobian J1 of
(1.22) at .s; x/ is given by

J1 D
�
J @f=@s

0 0

�

where J is the Jacobian of f . Therefore, for (1.22) the fundamental matrices OX.s; t/
are the solution of the equation

PXx D J.s C t/Xx C @f

@t
.g.s C t//Xs

PXs D 0:

It follows that the first n columns are the columns of the fundamental matrices
X.s; t/ for (1.19) and the last column is given by

�Z t

s

X.u; t/
@f

@t
.u; g.u// du; 1

��

where � indicates a vector transpose to produce a column vector.
By Lemma 1.2

.f .g.t//; 1/� D OX.s; t/ � .f .g.s//; 1/�

D
�
X.s; t/f .s; g.s//C

Z t

s

X.u; t/
@f

@t
.u; g.u// du; 1

��
:

which gives the result. ut

Proof of Theorem 1.2

We first consider a general system as in (1.1) with parameters k D .k1; : : : ; ks/ such
that f .t; x; �k/ D �f .t; x; k/ for all � > 0.

From Euler’s theorem on homogenious functions,

X

j

kj
@f

@kj
D f:
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Therefore, from (1.21), if Kj .s/ is @f=@kj evaluated at .s; g.s//,

X

j

kj
@�

@kj
.t; t0/ D

X

j

Z t

t0

X.s; t/ � kjKj .s/ ds

D
Z t

t0

X.s; t/ �
X

j

kjKj .s/ ds

D
Z t

t0

X.s; t/ � f .s; g.s/; k/ ds

D
Z t

t0

�
f .t; g.t/; k/ �

Z t

s

X.u; t/
@f

@t
.u; g.u/; k/ du

�
ds

D .t � t0/f .t; g.t/; k/ �
Z t

t0

uX.u; t/
@f

@t
.u; g.u/; k/ du

(1.23)

by Lemma 1.3.
Now to apply this to prove Theorem 1.2 we take f to be the parameter aug-

mented system Of defined in Sect. 1.4.1 above and let kj D .1 C "j /. Then
C �vj

.t; t0/ D .@�=@kj /.t; t0; x0; k/ evaluated at " D 0 and the theorem follows
directly from (1.23). ut

Proof of Lemma 1.1

Denote ˙ and ˙ 0 by ˙1 and ˙2 respectively. Fix the point x0 on the periodic
orbit �k . Choose coordinates .t; y0/ on a neighbourhood of x0 so that y0 2 ˙1
and .t; y0/ corresponds to the point �.t; y0; k/ and moreover, in these coordinates,
f .x0/ D .˛; 0/ where 0 2 Rn�1. Then near x0 the points in ˙2 are of the form
.t.y0/; y0/ where y0 2 ˙1. Here t W ˙1 ! R is a smooth function.

Suppose that k0 is a parameter value close to k. If gi .t; k0/ has initial condition
xi0 with xi0 2 ˙i then we denote by xi0.k

0/ the points where �k0 intersects˙i . Then

g2.t; k
0/ D �.t; x20.k

0/; k0/
D �.t C t0.k0/; x10.k0/; k0/ D g1.t C t0.k0/; k0/ (1.24)

for some smooth function t0.k0/. Differentiating (1.24) with respect to k0 at k0 D k,
we deduce that

@g2

@kj
.t; k/ D @�

@t
.t; x10 ; k/ �

@t0

@kj
.k/C @g1

@kj
.t; k/: (1.25)
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We need to calculate @t0=@kj .k/. Consider O�.k0/ D �.t0.k
0/; x10.k0/; k0/ and

note that O�.k0/ D x20.k0/. The derivative with respect to k0 at .0; x10 ; k/ is

@�

@kj
.0; x10 ; k/ D

@�

@t
.0; x10 ; k/ �

@t0

@kj
.k/

C @�

@y0
.0; x10 ; k/ �

@x10
@kj

.k/C @�

@kj
.0; x10 ; k/

D f .x0/ � @t0
@kj

.k/C @x10
@kj

.k/

since, when t D 0, @�=@t D f , @�=@y0 is the identity and @�=@kj D 0. Thus,
since f .x0/ D .˛; 0/ and @x10=@kj .k/ is tangent to ˙1, the projections on to the
first and second components respectively are ˛@t0=@kj .k/ and @x10=@kj .k/. Since
O�.k0/ 2 ˙s , @ O�=@kj .k/ is tangent to it at k0 D k and therefore

˛ � @t0
@kj

.k/ D @ O�1=@kj D dt.x0/ � @ O�2=@kj

D dt.x0/ � @x
1
0

@kj
.k/:

Combining this with (1.25) we deduce that

@g2

@kj
.t; k/ D f .g1.t; k// � ˛�1dt.x0/ � @x

1
0

@kj
.k/C @g1

@kj
.t; k/

since @�=@t.t; x10 ; k/ D f .g1.t; k//. This proves Lemma 1.1 with ˇ D ˛�1dt.x0/.
ut

Proof of Theorem 1.4

This is for periodic orbits of autonomous systems. We again consider a system with
parameters k such that f .x; �k/ D �f .x; k/ for all � > 0. For the given parameter
value k we fix an initial condition x0 on the limit cycle and let ˙ be the normal
hyperplane to f .x0; k/ at x0. Then for k0 near k we let x0.k0/ be the unique inter-
section of the limit cycle with˙ . Therefore, for k0 near k the periodic orbit is given
by g.t; k0/ D �.t; 0; x0.k0/; k0/.

It follows from f .x; �k/ � �f .x; k/ that

�.t; x0.k/; �k/ D �.�t; x0.k/; k/ (1.26)

where �.t; x0; k/ denotes �.t; 0; x0; k/ throughout this proof.
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Applying this to the case where t D �.k/, the period of the limitcycle, we deduce
that

�.�k/ D ��1�.k/
and hence, by Euler’s theorem, that

X

j

kj
@�

@kj
D ��: (1.27)

Moreover, (1.26) implies that x0.k/ D x0.�k/ because this is where both
�.t; 0; x0; k/ and �.t; 0; x0; �k/ intersect ˙ for t > 0. Therefore,

X

j

kj
@x0

@kj
D 0: (1.28)

Since g.t; k/ D �.t; x0.k/; k/,
X

j

kj
@g

@kj
D @�

@x0
�
X

j

kj
@x0

@kj
C
X

j

kj
@�

@kj
(1.29)

where all derivatives etc are evaluated at t , x0 and k. But the first term on the right-
hand side is zero by (1.27) and the second equals tf .g.t; k/; k/ by (1.23). Thus,

X

j

kj
@g

@kj
.t/ D tf .g.t; k/; k/ D ˚.t; 0/: (1.30)

Finally, let �.t; k0/ D g. N�.k0/t; k0/ where N�.k0/ D �.k0/=�.k/. Then � is
periodic in t with period �0 D �.k/ independent of k0.

To prove (1.10) we note that since

�.t; k/ D �. N� t; x0.k/; k/ D �.t; x0.k/; N�k/
it follows that

@�

@kj
D @�

@x0

@x0

@kj
C N� @�

@kj
C @ N�
@kj

X

i

ki
@�

@ki
:

Thus

X

j

kj
@�

@kj
D @�

@x0

X

j

kj
@x0

@kj
C N�

X

j

kj
@�

@kj

C
X

j

kj
@ N�
@kj

X

i

ki
@�

@ki

D 0

by (1.27) and (1.28).
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As in the proof of Theorem 1.2, to deduce Theorem 1.4 from what we have
proved here, we take f to be the parameter augmented system Of defined in
Sect. 1.4.1 above and let kj D .1C "j / so that C �vj

.t; t0/ D .@�=@kj /.t; x0; k/ ut

Proof of Theorem 1.5

Again we consider a system as in (1.1) with some parameters k satisfying
f .t; x; �k/ D �f .t; x; k/ for all � > 0. We also assume that f is of period
� > 0 in the sense that f .t C �; x; k/ � f .t; x; k/. The solutions are given by
�.t; t0; x0; k/.

We suppose that x D g.t/ D g.t; k/ D �.t; t0; x0; k/ is a periodic solution
with period � . We assume that this solution is non-degenerate in the sense that 1
is not an eigenvalue of Xt0 . Here and below Xt denotes X.t; t C �/. Note that
Xt D X.0; t/X0X.0; t/�1.

Let y.t/ DPj kj @g=@kj .t/, t0 � t � t0C � . Since the period � is independent
of k0 for k0 near k, the derivatives @g=@kj are periodic in time with period � and
therefore y.t/ also has period � . Moreover, y.t/ is a solution of the equation Py D
Df .t/y C K.t/ where Df .t/ is the Jacobian matrix @f=@x evaluated at .t; g.t//
and K.t/ DPj kj @f=@kj .g.t/; k/. The general solution of this equation is

y.t/ D X.t0; t/ c C
Z t

t0

X.s; t/K.s/ ds

for some vector c. But the last term equals
P
j kj @�=@kj evaluated at .t; t0; g.t0; k//

and by (1.7) this is ˚.t; t0/.
If y.t/ D P

j kj @g=@kj .t/, y.t0 C �/ D y.t0/ and therefore, since X.t0; t0/ is
the identity, we deduce that .I �Xt0/c D ˚.t0C�; t0/. Since 1 is not an eigenvalue
of Xt0 , .I �Xt0/ is invertible and c D .I � Xt0/�1˚.t0 C �; t0/. Therefore,

X

j

kj
@g

@kj
.t/ D Xt0.I � Xt0/�1˚.t0 C �; t0/C ˚.t; t0/: (1.31)

As in the previous proofs we get Theorem 1.5 by applying what we have proved
here to the parameter augmented system Of . ut

Appendix 3: Proof of Theorem 1.6

Let U D U1; U2; : : : be an orthogonal basis of unit vectors for H0. Given U and
v 2 Rs consider the error

ek.v/ D M v�
kX

iD1
hM v; UiiUi
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of projecting M v onto the first k basis elements. We seek a basis which min-
imizes the mean of the L2 norm of the error for all k � 1 i.e. minimises
e2
k
D R

jjvjjD1 jjek.v/jj2 dv for all k � 1. Define 
i .U/2 D
R
jjvjjD1 hM v; Uii2 dv DR

jjvjjD1 hv;M �Uii2 dv. Note that if e is any unit vector in Rs then c DR
jjvjjD1 hv; ei2 dv is independent of e since the integral is invariant under rotations.

Thus

i .U/2 D cjjM �Ui jj2:

By orthogonality,

e2k D
X

i>k

Z

jjvjjD1
hM v; Uii2 D

X

i>k


i .U/2:

Thus the optimality condition can be expressed as

minimise
X

i>k


i .U/2 for all k � 1: (1.32)

But hM v;M vi D jjPi hM v; UiiUi jj2 D P
i hM v; Uii2, and thereforeP

i�0 
i .U/2 D
R
jjvjjD1 hM v;M vi dv which is a positive constant independent

of U. Thus (1.32) is equivalent to

maximise
kX

iD1

i .U/2 D

kX

iD1
c jjM �Ui jj2 for all k � 1: (1.33)

To solve this problem consider

F.U1; : : : Uk/ D
kX

iD1

Z
jjM �Ui jj2 dv �

kX

iD1
�i .jjUi jj2 � 1/:

We seek to maximize F ; the Lagrange multiplier �i is being introduced so as to
enforce the condition that the Uis are unit vectors. The partial derivative dUF of F
with respect to U D .U1; : : : ; Uk/ is given by

dUF.U1; : : : ; Uk/ � .ıU1; : : : ; ıUk/

D 2
kX

iD1
fhM �Ui ;M �ıUii � �i hUi ; ıUiig

D 2
kX

iD1
hY � Ui ; ıUi i � �i hUi ; ıUii
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where Y D MM � W H ! H . This is a bounded and compact self-adjoint
operator.

Clearly, dUF.U1; : : : ; Uk/ D 0 if, and only if,

Y � Ui D �iUi ; 1 � i � k
and jjUi jj D 1. But since Y is bounded, compact and self-adjoint. by the spec-
tral theorem, there exists an orthonormal basis U D U1; U2; : : : of H consisting
of eigenvectors of Y with corresponding real-valued eigenvalues �i D 
2i which
decrease monotonically to zero. It follows that U is the required basis with the
optimality condition (1.32).

Consider the function i .v/ D hM v; UiiL2 defined on the unit sphere of Rs

given by kvk D 1. Let Vi be a maximum of i . Then Vi is also a critical point of the
mapping Oi W Rs ! R given by

Oi .v/ D hM � v; UiiL2 � �.kvk2 � 1/

where the Lagrange multiplier � is introduced so as to enforce the condition that the
v maximising this is a unit vector. Since the derivative of Oi at Vi is

ıv! hUi ;Mıvi � 2� hVi ; ıvi D hM �Ui � 2�Vi ; ıvi

the critical point Vi satisfies M �Ui D 2�Vi . Thus since Vi is a unit vector, 4�2 D
hM �Ui ;M �Uii D hUi ;MM �Ui i D 
2i . Therefore,M �Ui D 
iVi , and therefore,
MVi D 
�1i MM �Ui D 
iUi . Moreover,
˝
Vi ; Vj

˛D .
i
j /
�1
˝
M�Ui ;M

�Uj
˛ D .
i
j /

�1
˝
Ui ;MM

�Uj
˛D .
j =
i /

˝
Ui ; Uj

˛ D ıij :

Thus we deduce that this gives the required orthonormal basis v D V1; : : : ; Vs such
that

MVi D 
iUi :
Since the Vi are eigenvectors of M �M , if they are simple then this orthonormal
basis is unique.

Proof of Corollary to Theorem 1.7

This follows from the fact thatM �U 0iD.�1; : : : ; �s/ where �j D
˝
@g=@kj ; U

0
i

˛
L2 D

Sij . By the proof of the theorem, 
i .U0/2 D kM �U 0i k2 D cksik2 where si is the
i th row of S.U0/ and, as we have proved, for all k D 1; : : : ; s,

X

i�k

i .U/2 �

X

i�k

i .U0/2:

The corollary follows from this. ut
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Proof of Theorem 1.7

The theorem follows from the above theorems and the fact that if Of is the parameter-
augmented system and g.t; "/ is the corresponding solution of interest, then

X

i;j

C .i/vj
Ui .t/ D

X

i;j

SijUi .t/

D
X

j

@g

@"j
.t; 0; g.0/; "/ D 	.t; 0/:

Appendix 4: Previous Summation Relationships

Quite different summation relationships to that in Theorem 1.6 for the case of peri-
odic orbits has been proved by Demin and Westerhoff and Kholodenko in [3], by
Ingalls and Sauro in [12] and by Nikolaev, Atlas and Shuler in [16]. To explain
why they are different we consider the results of Nikolaev, Atlas and Shuler. The
situation for those of Demin et al. and Ingalls and Sauro is similar.

Nikolaev, Atlas and Shuler consider the case of an equation of the form

dx

dt
D NRv.t; Lx C T; p/ (1.34)

which has been obtained from a system with a stoichiometric matrix N with rank
r . NR is the matrix made up of a set of r independent rows of N and the so-called
linking matrix L satisfies N D LNR. The original state s is related to the reduced
state x by x D Ls C Nx for some constant vector Nx. As in the proof of Theorem 1.6
it is straightforward to show that if g.t; k/ is a periodic orbit depending smoothly
upon parameters k then

@g

@kj
.t/ D X.t/.I �X.T //�1

Z T

0

X.s; T / @fj .s/ ds

C
Z t

0

X.s; t/ ds (1.35)

@g

@kj
.t; t0/ D X.t; t0/.I � Xt0/�1

Z t0CT

t0

X.s; t0 C T / @fj .s/ ds

C
Z t

t0

X.s; t/ @fj .s/ ds (1.36)

where @fj .s/ is @f=@kj evaluated at .s; 0; g.0//. Define the Green’s kernels
G.s; t; t0/ by
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G.s; t; t0/ D
�
Y.s; t; t0/CX.s; t/ if t0 < s < t
Y.s; t; t0/ if t < s < t0 C T

where Y.s; t; t0/ D X.t0; t/.I � Xt0/�1X.s; t0 C T /. Then a straightforward
calculation using (1.36) gives that

@g

@kj
.t; t0/ D

Z t0CT

t0

G.s; t; t0/ @fj .s/ ds:

However, in the case of (1.34) it follows that @fj .s/ D NR � Vj .s/ where Vj .s/ is
@v=@kj evaluated at .s; 0; g.0//. Consequently, if C.s; t/ D LG.s; t; 0/NR we can
write (1.35) as

@g

@kj
.t/ D

Z T

0

C.s; t/Vj .t; s; g.0// ds:

Now if K is a matrix with independent columns such that NRK D 0 then we have

Z T

0

C.s; t/K ds D 0: (1.37)

Moreover, since dX.s; t/=ds D �X.s; t/Df .s/,
Z t

0

X.s; t/Df .s; g.s// ds D X.t/ � I

and therefore, using the above expression for G, we have that

Z T

0

C.s; t/Df .s; g.s// ds

D L

Z T

0

G.s; t/Df .s; g.s// ds D �L (1.38)

The summation relationships in [16] are of the form in (1.37) and (1.38) or follow
from them. They are therefore quite different to that in the above theorems.
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Chapter 2
Renormalization and Focal Decomposition

Carlos A.A. de Carvalho, Mauricio M. Peixoto, Diogo Pinheiro,
and Alberto A. Pinto

Abstract We introduce a renormalization scheme to study the asymptotic dynam-
ical behaviour of a family of mechanical systems with non-isochronous potentials
with an elliptic equilibrium. This renormalization scheme acts on a family of orbits
of these mechanical systems, all of which are contained on neighbourhoods of the
elliptic equilibrium, by rescaling space and shifting time in an appropriate way. We
present some new results regarding the properties of this renormalization scheme,
and examine the strong connection it has with the focal decomposition for the
Euler–Lagrange equation of this family of mechanical systems.

2.1 Introduction

Carvalho et al. [8] have introduced a renormalization scheme that acts on a one
dimensional family of orbits of mechanical systems with non-isochronous potentials
(see Bolotin and MacKay [4]) with an elliptic equilibrium. This one-dimensional
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family can be characterized through the following two properties: (a) all of its ele-
ments have the same initial position, equal to the elliptic equilibrium position; and
(b) all of its elements have small enough initial velocities, so that they all lie on
the elliptic island surrounding the equilibrium. The renormalization scheme is then
defined in such a way that it has the distinguishing feature that time is not rescaled,
but rather translated, while the initial velocities and space are appropriately scaled.
Since time is translated far away into the the future (or past) standard linearization
theory does not apply. Indeed, higher order terms of the period map associated with
the non-isochronous potentials must be considered to proceed with the analysis of
the renormalized orbits.

The main theorem in Carvalho et al. [8] states that the asymptotic limit of such
renormalization scheme is universal: it is the same for all the elements in the con-
sidered class of mechanical systems. As a consequence, a universal asymptotic
(restricted) focal decomposition for this family of mechanical systems was obtained.
This was a first step towards a broader research program, proposed by Peixoto and
Pinto, connecting renormalization techniques, focal decomposition of differential
equations and semiclassical physics. In Carvalho et al. [9] provide an overview of
this research program, describing the sequence of steps that we propose to address in
the future which include the convergence of renormalized (restricted) focal decom-
positions to the universal asymptotic (restricted) focal decomposition and a possible
application to semiclassical physics.

In this paper we introduce an extension of the renormalization scheme of
Carvalho et al. [8], so that it now acts on all orbits of the family of mechanical
systems under consideration and have the initial condition lying on the respective
elliptic island. The main motivation for producing this extension is to construct a 4-
dimensional universal asymptotic focal decomposition, i.e. one with no restrictions
on the base point of the boundary value problem. We also describe the asymptotic
limits of this renormalization scheme, their Hamiltonian character and their asymp-
totic actions. Note that these findings are the foundation for future applications of
this theory to semiclassical physics.

Peixoto [15] points out how the focal decomposition is relevant for the compu-
tation of the semiclassical quantization via the Feynman path integral method and
Carvalho et al. [6, 7] exhibit further relations with quantum statistical mechanics.
The concept of focal decomposition is also be relevant to the study of caustic for-
mation by focusing wavefronts in distinct fields of the physical sciences such as
optics (see Berry and Upstill [3]), tsunami formation (see Berry [1, 2]) or general
relativity (see Friedrich and Stewart [12], Hass et al. [13], Ellis et al. [10] and Ehlers
and Newman [11]).

We begin with a review of focal decomposition and renormalization. In Sect. 2.2
we provide definitions and specify notation used in this work. In Sect. 2.3 we intro-
duce a renormalization scheme acting on the orbits of a given family of mechanical
systems and state results concerning its asymptotic behaviour, namely, the existence
of a two-parameter family of asymptotic trajectories. In Sect. 2.4 we show how to
obtain an asymptotic universal focal decomposition from these asymptotic trajecto-
ries and how to extend the renormalization scheme to act on focal decompositions.
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Section 2.5 is devoted to the computation of the action correspondence of the asymp-
totic trajectories and a potential application to semiclassical physics. We summarize
our conclusions in Sect. 2.6.

2.1.1 Focal Decomposition

The concept of focal decomposition was introduced by Peixoto in [14] and devel-
oped by Peixoto and Thom in [16]. For the sake of conciseness, present only the
definition of focal decomposition and a notable example due to Peixoto and Thom.
Further details can be found in Carvalho et al. [8] and references therein.

Consider the 2-point boundary value problem for ordinary differential equations
of the second order

Rx D f .t; x; Px/; t; x; Px 2 R

x.t1/ D x1; x.t2/ D x2 (2.1)

and let R4 D R2.t1; x1/ � R2.t2; x2/ be the set of all pairs of points of the .t; x/-
plane. To each point .t1; x1; t2; x2/ associate the number i 2 f0; 1; 2; : : : ;1g of
solutions of the boundary value problem (2.1) and let ˙i 	 R4 be the set of points
to which the index i has been assigned. Clearly R4 is the disjoint union of all the sets
˙i , that is, f˙i gi is a partition of R4. This partition is called the focal decomposition
of R4 associated with the boundary value problem (2.1):

R4 D ˙0 [˙1 [ : : : [˙1:

If one of the endpoints in (2.1) is kept fixed, say .t1; x1/ D .0; 0/, then the sets˙i
induce a decomposition of R2.t2; x2/ by the sets 
i D ˙i \

�f.0; 0/g �R2.t2; x2/
	
.

The restricted problem with base point .0; 0/ consists of finding the corresponding
focal decomposition of R2 by the sets 
i :

R2 D 
0 [ 
1 [ : : : [ 
1:

The renormalization scheme of Carvalho et al. [8] was introduced with the goal
of studying focal decompositions of R2 defined by Euler–Lagrange equations asso-
ciated with elements of a given family of mechanical systems. In the present paper
we extend this renormalization scheme in order to deal with focal decompositions
of R4 associated with the same differential equations.

A notable example of a focal decomposition due to Peixoto and Thom [16], is
provided by the focal decomposition of the pendulum equation RxC sin.x/ D 0 with
base point .0; 0/ (see Fig. 2.1). This focal decomposition contains non-empty sets

i with all finite indices. Every set 
2k�1, k D 1; 2; : : :, consists of a 2-dimensional
open set plus the cusp-point .˙k�; 0/; they all have two connected components. All
four connected components of the even-indexed sets 
2k are open-arcs, asymptotic
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Fig. 2.1 The pendulum’s focal decomposition

to one of the lines x D ˙� and incident to the cusp-points .˙k�; 0/; the lines
x D ˙� are part of 
1, except for the points .0;˙�/ which belong to 
0.

2.1.2 Renormalization

The main idea behind renormalization is the introduction of an operator – the renor-
malization operator – on a space of systems whose action on each system is to
remove its small scale behaviour and to rescale the remaining variables to preserve
some normalization. If a system converges to some limiting behaviour under iter-
ation of the renormalization operator then we say that such behaviour is universal.
Since the renormalization operator relates different scales, such universal behaviour
is self-similar. See Carvalho et al. [8] and references therein for more details on
renormalization.

The main subject of Carvalho et al. [8] is a renormalization scheme acting on
the dynamics of a family of mechanical systems that include the pendulum. Our
motivation for the introduction of such scheme comes from the restricted focal
decomposition with base point .0; 0/ of the pendulum equation Rx C sin.x/ D 0

in Fig. 2.1. It turns out that the sequence formed by the even-indexed sets in the
pendulum’s focal decomposition is approximately self-similar. The renormalization
scheme we introduce can then be justified in the following way: for a large integer n,
we consider the even-indexed set 
2n and, contrary to previous renormalizations, we
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do not rescale time but just shift it so that its origin is at t D n� . We then restrict the
initial velocities to a small interval so that that the index corresponding to the shifted
even-indexed set is equal to one; we complete the procedure by normalizing space
in such way a that the shifted even-indexed set is asymptotic to the lines x D ˙1.
Under iteration of this renormalization scheme, we obtain asymptotic trajectories
that define an asymptotic focal decomposition. Both the asymptotic trajectories and
focal decomposition are universal and self-similar.

2.2 Setting

The purpose of this section is to fix notation and introduce basic definitions which
will be used later to state the main results.

We consider mechanical systems defined by a Lagrangian function L W R2 ! R
of the form

L

�
q;

dq

d�

�
D 1

2
m

�
dq

d�

�2
� V .q/; (2.2)

where the potential function V W R ! R is a non-isochronous potential. Further-
more, we assume that the potential V is a C � map ( � 5) with a Taylor expansion
at a point q� 2 R given by

V .q/ D V .q�/C V 00.q�/
2

.q � q�/2 C V .4/.q�/
4Š

.q � q�/4 ˙O


jq � q�j5

�
;

where V 00.q�/ > 0 and V .4/.q�/ ¤ 0. The Euler–Lagrange equation associated
with (2.2) is then

m
d2q

d�2
D �dV

dq
.q/: (2.3)

Alternatively, one can use Hamiltonian formalism, i.e. we consider a Hamiltonian
function H W R2 ! R of the form

H .q; p/ D 1

2m
p2 C V .q/

and take the symplectic form to be canonical so that the corresponding Hamilton
equations are given by

dq

d�
D p

m
dp

d�
D �dV

dq
.q/: (2.4)

The conditions on the potential function V imply that q� is an elliptic equilibrium
of (2.3) (or equivalently, .q�; 0/ is an elliptic equilibrium of (2.4)) and thus, there is
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a 1-parameter family of periodic orbits covering a neighbourhood of the equilibrium
point.

For the purpose of our study we are interested only on periodic orbits in the
elliptic island surrounding the elliptic equilibrium .q�; 0/, i.e. orbits with initial
condition .q0; p0/ on the elliptic island. It turns out to be convenient to express
the initial condition on some “modified” polar coordinates that we pass to define.

Since q� is a local minimum of the potential function V , we obtain that every
level set of the Hamiltonian function H with energy close enough to H .q�; 0/ is a
periodic orbit of the Hamiltonian dynamical system (2.4). Thus, each point .q0; p0/
in the elliptic island surrounding .q�; 0/ is uniquely determined by the level set of
the Hamiltonian function to which the point belongs and by the angle formed by the
line joining the equilibrium to the point and the positive horizontal axis, i.e. each
point .q0; p0/ in the elliptic island is uniquely determined by its energy E 2 RC0
and phase� 2 S1 given by

H .q0; p0/ DH .q�; 0/C E2

2
; arctan

�
p0

q0 � q�
�
D �:

Note that the coordinates .E;�/ have a singularity at the point.q�; 0/. Although
not necessary, this singularity could be easily removed by requiringE to be strictly
positive.

2.3 The Renormalization Operator of Trajectories

In this section we introduce a renormalization operator acting on the trajectories
of the Euler–Lagrange equation (2.3) with initial conditions on the elliptic island
around .q�; 0/. Moreover, we state some results regarding the asymptotic behaviour
of the renormalized trajectories.

2.3.1 Asymptotic Universal Behaviour for the Trajectories

Since q� is an elliptic equilibrium of (2.3) there is � > 0 such that for all initial
conditions with energy E 2 Œ0; �� and phase � 2 S1 the solutions q.E;�I �/ of
the Euler–Lagrange equation (2.3) are periodic. Thus, the trajectories q W Œ0; �� �
S1 � R ! R of (2.3) are well-defined by q.E;�I �/ for all � 2 R, E 2 Œ0; �� and
� 2 S1. Furthermore, there exist ˛ > 0 small enough andN � 1 large enough such
that, for every n � N , the n-renormalized trajectories xn W Œ0; 1��S1�Œ0; ˛n�! R
are well-defined by

xn.e; � I t/ D .�1/n � �1n;t ��1
�
q

�
�n;t � ! e; � I n� � `t

!

�
� q�


;



2 Renormalization and Focal Decomposition 31

where �n;t is the .n; t/-scaling parameter

�n;t D
�
8t

3�n

�1=2
; (2.5)

` D ˙1 depending on the sign of V .4/.q�/ and ! and � are given by

! D
�
V 00.q�/
m

�1=2
; � D

�
3ŠV 00.q�/
jV .4/.q�/j

�1=2
: (2.6)

Note that !�1 and � are the natural time and length scales for the dynamical system
defined by (2.3). Furthermore, the variables e and t are dimensionless, as well as the
.n; t/-scaling parameter �n;t . Therefore, the n-renormalized trajectories xn.e; � I t/
are dimensionless.

Definition 2.1. The asymptotic trajectories X` W Œ0; 1� � S1 � RC0 ! R are
defined by

X`.e; � I t/ D e cos
�
`t
�
1 � e2	C �	 ;

where ` D ˙1 depending on the sign of V .4/.q�/.

The result below generalizes the main result of Carvalho et al. [8] in two ways.
On the one hand, we now consider orbits starting form any point in the elliptic island
and not just orbits with small velocities starting from the position corresponding to
the equilibrium. On the other hand, the convergence below is for the C 2 topology
while in Carvalho et al. [8] we only prove it for the C 0 topology. Nevertheless,
we already point out in Carvalho et al. [9] that a similar result is true for the C 2

topology.

Theorem 2.1. Let ` be the sign of V .4/.q�/. The n-renormalized trajectories
xn.e; � I t/ converge to the asymptotic trajectories X`.e; � I t/ in the C 2 topology
as n tends to infinity.

2.3.2 The Hamiltonian Character of the Asymptotic Trajectories

The renormalization scheme of the previous section can be extended to act on the
velocities

Pq.E;�I �/ D dq

d�
.E;�I �/ (2.7)

associated with the periodic solutions q.E;�I �/ of the Euler–Lagrange equa-
tion (2.3) with initial conditions in the elliptic island surrounding the elliptic equilib-
rium .q�; 0/. Similarly to the previous section, the velocities Pq W Œ0; ���S1�R! R
of (2.3) are well-defined by (2.7) for all � 2 R,E 2 Œ0; �� and� 2 S1. Furthermore,
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there exist ˛ > 0 small enough andN � 1 large enough such that, for every n � N ,
the n-renormalized velocities yn W Œ0; 1� � S1 � Œ0; ˛n�! R are well-defined by

yn.e; � I t/ D .�1/n � �1n;t ��1!�1 Pq
�
�n;t � ! e; � I n� � `t

!

�
;

where �n;t is the .n; t/-scaling parameter defined in (2.5) and ! and � are as given
in (2.6). The n-renormalized velocities yn.e; � I t/ are also dimensionless.

Definition 2.2. The asymptotic velocities Y` W Œ0; 1��S1�RC0 ! R are defined by

Y`.e; � I t/ D e sin
�
`t
�
1 � e2	C �	 ;

where ` D ˙1 depending on the sign of V .4/.q�/.

The following result is a natural complement to Theorem 2.1.

Theorem 2.2. Let ` be the sign of V .4/.q�/. The n-renormalized velocities
yn.e; � I t/ converge to the asymptotic velocities Y`.e; � I t/ in the C 2 topology
as n tends to infinity.

There is a strong geometrical and dynamical connection between the asymptotic
trajectories X`.e; � I t/ and the asymptotic velocities Y`.e; � I t/. As stated in the
following theorem, the pair formed by the asymptotic trajectories and the asymptotic
velocities is the flow of a canonical Hamiltonian system.

Theorem 2.3. Let X`.e; � I t/ and Y`.e; � I t/ denote, respectively, the asymptotic
trajectories and the asymptotic velocities introduced above. The flow �t .x0; y0/ D
.X`.e; � I t/; Y`.e; � I t// with initial condition .x0; y0/ satisfying the conditions

x0 D e cos.�/ ; y0 D e sin.�/

is the Hamiltonian flow of the canonical Hamiltonian system with Hamiltonian
functionH` W R2 ! R given by

H`.x; y/ D `
 �

x2 C y2
2

�2
� x

2 C y2
2

!
:

Similarly, the n-renormalized trajectories xn.e; � I t/ and velocities yn.e; � I t/
define a flow on a subset of R2, which we denote by �tn.x0; y0/ and call
n-renormalized flow. For each n 2 N , there exists a time-dependent Hamilto-
nian function Hn.x; y; t/, to which we call n-renormalized Hamiltonian function,
such that �tn.x0; y0/ is the Hamiltonian flow of the one-degree of freedom canonical
Hamiltonian system determined by Hn.x; y; t/. Furthermore, as n tends to infinity,
the sequence of n-renormalized Hamiltonian functions Hn converges in the C 1

topology to the asymptotic Hamiltonian functionH` of the previous theorem.
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2.4 The Renormalization of Focal Decompositions

In this section we show how to construct the asymptotic universal focal decomposi-
tion from the asymptotic trajectories and state a result concerning the convergence of
renormalized focal decompositions to the asymptotic universal focal decomposition.

2.4.1 Asymptotic Universal Focal Decomposition

The asymptotic trajectoriesX`.e; � I t/ induce an asymptotic universal focal decom-
position of C � C 	 R4, where C denotes the half-cylinder in R2 defined
by C D RC0 � Œ�1; 1�. We briefly describe below how to construct this focal
decomposition.

We start by describing the construction of the restricted asymptotic universal
focal decomposition of C with base point .0; q/, for some q 2 Œ�1; 1�. Let cq W
I q 	! Œ0; 1� � S1 be the curve in Œ0; 1� � S1 given by cq.�/ D .eq.�/; �q.�//

where eq.�/ and �q.�/ are such that the relation

X`.e
q.�/; �q.�/I 0/ D q

holds for all � 2 I q and I q is the maximal proper subset of R in such conditions.
Let us also define the map Xq

`
W I q �RC0 ! Œ�1; 1� given by

X
q

`
.�I t/ D X`.eq.�/; �q.�/I t/:

The restricted asymptotic universal focal decomposition of C with base point .0; q/
is determined by the sets 
 .0;q/i whose elements are pairs .t; x/ 2 C such that
X
q

`
.�I t/ D x has exactly i solutions �.t; x/ 2 I q , each distinct solution cor-

responding to an asymptotic trajectory connecting the points .0; q/ 2 C and
.t; x/ 2 C . Therefore, for each i 2 f0; 1; : : : ;1g, the set 
 .0;q/i 	 C contains all
points .t; x/ 2 C such that there exist exactly i asymptotic trajectories connecting
.0; q/ 2 C and .t; x/ 2 C .

An analogous reasoning would enable us to define the sets 
 .�;q/i 	 C containing
all points .t; x/ 2 C such that there exist exactly i asymptotic trajectories connect-
ing .�; q/ 2 C and .t; x/ 2 C . Instead of repeating such construction, we note that
by Theorem 2.3 the asymptotic trajectories are solution of a system of autonomous
differential equations and, therefore, one could use the invariance of such differ-
ential equations under time translations to obtain that the number of asymptotic
trajectories connecting .�; q/ 2 C and .t; x/ 2 C is the same as the number of
asymptotic trajectories connecting .0; q/ 2 C and .t � �; x/ 2 C . Thus, we obtain
the restricted asymptotic focal decomposition of C with base point .t; q/ from one
with base point .0; q/.
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To construct the focal decomposition of C � C 	 R4 we consider the two-
dimensional family of sets 
 .�;q/i 	 C , .�; q/ 2 C , and define

C � C D ˙0 [˙1 [ : : : [˙1;

where˙i is the set of points .t1; x1; t2; x2/ 2 C �C such that there are i asymptotic
trajectories connecting .t1; x1/ 2 C and .t2; x2/ 2 C . The knowledge of the two-
dimensional family of restricted focal decompositions of C determines the focal
decomposition of C � C .

The following result is a consequence of Theorem 2.1 combined with the discus-
sion above.

Theorem 2.4. There exists an asymptotic universal focal decomposition of C�C 	
R4 for the Euler–Lagrange equation (2.3) induced by the asymptotic trajectories
X`.e; � I t/.

The restricted asymptotic universal focal decomposition of C with base point
.0; 0/ is shown in Fig. 2.2. As in the case of the restricted focal decomposition with
base point .0; 0/ of the pendulum equation Rx C sin.x/ D 0 (see Peixoto and Thom
[16, pp. 631, 197]), this focal decomposition also exhibits non-empty sets 
i with all
finite indices. For further details on this focal decomposition see Carvalho et al. [8].

If the base point for the restricted asymptotic universal focal decomposition
is replaced by a point of the form .0; q/ with q 2 .�1; 0/ [ .0; 1/, the focal

Fig. 2.2 The restricted asymptotic universal focal decomposition with base point .0; 0/



2 Renormalization and Focal Decomposition 35

Fig. 2.3 The restricted asymptotic universal focal decomposition with base point .0; 0:25/ for
` D 1

decomposition loses some of its symmetry. An example of such focal decom-
position is given in Fig. 2.3. For every k 2 N , the even-indexed sets 
2k are
2-dimensional connected open sets. The odd-indexed sets 
2k�1 are the union of
two open arcs, asymptotic to one of the lines x D ˙1 and incident to the cusp-point
pk D ..k � 1/T .q/; .�1/k�1q/, where T .q/ denotes the half-period of the asymp-
totic trajectory starting at .x; y/ D .q; 0/; The set 
0 is composed by two connected
2-dimensional open sets, the lines x D ˙1 and the line t D 0 except for the base
point .0; q/ which belongs to 
1.

2.4.2 The Renormalized Focal Decompositions

Let us consider the asymptotic universal focal decomposition of C � C

C � C D [1kD0˙k :

For each z D .t1; x1; t2; x2/ 2 ˙i we define the index i.z/ of z equal to i .
Note that each n-renormalized trajectory xn induces a focal decomposition of

C�C by the sets˙n
i whose elements are pairs of points .t1; x1; t2; x2/ 2 C�C such

that there exist a number i of n-renormalized trajectories connecting .t1; x1/ 2 C
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to .t2; x2/ 2 C . Therefore, the n-renormalized focal decomposition is given by

C � C D [1kD0˙n
k :

Similarly, for each z D .t1; x1; t2; x2/ 2 ˙n
i we define the n-renormalized index

in.z/ of z as the integer i .
The following result states that the sequence of n-renormalized focal decompo-

sitions converges to the asymptotic universal focal decomposition.

Theorem 2.5. For every z D .t1; x1; t2; x2/ 2 C � C , the n-renormalized index
in.z/ of z converges to the index i.z/.

2.5 The Action of the Asymptotic Trajectories

In this section we show how to compute the action of the asymptotic trajecto-
ries, thus defining an action correspondence. We finish the section with some brief
comments regarding a possible application of the theory reviewed in this paper to
semiclassical physics.

2.5.1 The action of the Asymptotic Trajectories

Let N be a smooth manifold, M D T �N its cotangent bundle, � an interval in R
and H W M ��! R a smooth Hamiltonian function. It is well known that a path
! W Œt1; t2� ! M , from p1 2 M to p2 2 M , starting at time t1 2 � and ending at
time t2 2 �, is a trajectory of the canonical Hamiltonian system .M;H/ if it is a
critical point of the action functional in phase space

F Œ!� D
Z

!

p dq �H dt:

An alternative approach is to write the action functional as the integral

F Œ!� D
Z

!

p Pq �H dt

and regard the integrand as a Lagrangian functionL W TM ��! R, obtaining the
action functional

F Œ!� D
Z

!

L dt D
Z t2

t1

L. P!.t/; !.t/; t/ dt:

Therefore, for any trajectory of the Euler–Lagrange equation determined by L, ! W
Œt1; t2�!M , one can compute its action F Œ!�. Moreover, noticing the dependence
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of a trajectory ! on its boundary conditions !.t1/ D p1 and !.t2/ D p2, one can
define the action correspondence of the trajectories! connecting .t1; p1/ to .t2; p2/
S W .M ��/2 ! R by

S.t1; p1I t2; p2/ D fF Œ!� W !.t1/ D p1; !.t2/ D p2g :

We remark that S is not a properly defined function, but a correspondence map-
ping each element of .M � �/2 to a subset of R. This is due to the fact that there
might be more than one trajectory of the Euler–Lagrange equation determined by L
connecting .t1; x1/ to .t2; x2/.

We denote by S`.t1; x1; t2; x2/ the action correspondence of the asymptotic
trajectories X`.e; � I t/ connecting .t1; x1/ to .t2; x2/.

Theorem 2.6. Let z D .t1; x1; t2; x2/ 2 C � C . The action correspondence of the
asymptotic trajectories X`.e; � I t/ is given by

S`.z/ D
�
e2

4

�
`e2t C sin.2.`t.1� e2/C �// � sin.2�/

	 W .e; �/ 2 OV .z/
�
;

where, for each z 2 C � C , the set OV .z/ is defined as

OV .z/ D ˚.e.z/; �.z// 2 Œ0; 1� � S1 W X`.e.z/; �.z/I t1/
D x1; X`.e.z/; �.z/I t2/ D x2

�
:

We remark that the number of elements in each set OV .z/ is given by the
index of the set ˙i in the asymptotic universal focal decomposition to which
z D .t1; x1; t2; x2/ 2 C �C belongs. Furthermore, we note that the self-similarities
of the asymptotic trajectories and the asymptotic universal focal decomposition are
naturally carried over to the action correspondence – see Fig. 2.4 for two examples.

To finish the section we remark that the n-renormalized trajectories xn.e; � I t/
and velocities yn.e; � I t/, the n-renormalized Hamiltonian function Hn and the
n-renormalized focal decomposition induce a renormalization scheme on the actions
of the n-renormalized trajectories, i.e. they define n-renormalized action corre-
spondences Sn which converge to the action correspondence of the asymptotic
trajectories S` as n tends to infinity.

2.5.2 Semiclassical Physics

Focal decomposition is in fact a first step towards semiclassical quantization.
This was already recognized in the semiclassical calculation of partition functions
for quantum mechanical systems, where the need to consider a varying number
of classical solutions in different temperature regimes became evident Carvalho
et al. [8].
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Fig. 2.4 The image on the left is the graph of the action correspondence of the asymptotic tra-
jectories for fixed t1 D x1 D 0 and t2 D 5�=2 and ` D �1. The image on the right is the
graph of the action correspondence of the asymptotic trajectories for fixed t1 D 0, x1 D 0:25 and
t2 D 5T .0:25/=2 and `D 1

Either in quantum mechanics or in quantum statistical mechanics, the semiclas-
sical approximation has to sum over all, or part of, the classical paths satisfying
fixed point boundary conditions. The number and type of classical trajectories are
the very ingredients which lead to a focal decomposition. It should, therefore, be
no surprise that the focal decomposition can be viewed as the starting point for a
semiclassical calculation.

As for the renormalization procedure, it was introduced to study the behav-
ior of classical trajectories for very short space and very long time separations of
the fixed endpoints. It maps those trajectories into n-renormalized ones, whose
time separations are shifted by n half-periods, and whose space separations are
scaled up to values of order one. As it has been shown in Carvalho et al. [8], this
procedure converges to an asymptotic universal family of trajectories that have a
well-defined and simple functional form, and which define an asymptotic universal
focal decomposition self-similar to the original one.

The natural question to pose is whether the combination of focal decomposition
and renormalization can be used to calculate semiclassical expansions for propa-
gators in the short space, long time separation of the endpoints, or analogously,
for thermal density matrices for short space separation and low temperatures (long
euclidean time ˇ„ is equivalent to low temperatures T D 1=.kBˇ/) by using the
simple asymptotic forms alluded to in the previous paragraph (see Carvalho et al.
[8] for a detailed discussion).

The conjecture to be investigated in a forthcoming article is that this can be
done in a relatively simple way, thanks to the simple form of the asymptotes. This
will bypass a much more difficult calculation involving Jacobi’s elliptic functions.
Should our expectation be realized, we would obtain semiclassical estimates for
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both propagators and thermal density matrices in the short space/long time or short
space/low temperature limits.

2.6 Conclusions

We have studied the dynamics of a family of mechanical systems that includes
the pendulum at small neighbourhoods of an elliptic equilibrium and characterized
such dynamical behaviour through a renormalization scheme. We have introduced
a renormalization scheme acting on the dynamics of this family of mechanical sys-
tems and proved that the asymptotic limit of the renormalization scheme introduced
in this paper is universal: it is the same for all the elements in the considered class
of mechanical systems. As a consequence we have obtained an universal asymptotic
focal decomposition for this family of mechanical systems. We believe that the exis-
tence of an universal asymptotic focal decomposition might be useful not only on
the theory of boundary value problems of ordinary differential equations but also on
several distinct fields of the physical sciences such as quantum statistical mechan-
ics, optics, general relativity and even tsunami formation. Our belief in the utility
of this work on such applications is based on the relevance that the concept of focal
decomposition may have on the study of caustic formation by focusing wavefronts,
of such significance to those fields.
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Chapter 3
Micro-Foundations of the Social Change

Elvio Accinelli and Leobardo Plata

Abstract The aim of this work is to show the relationship between the fundamen-
tals of the economy and social changes in a framework of the General Equilibrium
Theory. To analyze this relationship we introduce the Negishi map. This map makes
evident the social impact of the efficient reassignments of the economical resources.
The social and economic changes occur along the graph of this map. A deeper anal-
ysis of this map shows that the social crisis can be perceptible like points in this
graph corresponding to the singular economies (from a social point of view). We
analyze the possibilities to obtain, in a decentralized way, an equalitarian level of
social welfare for an economy with total resources given. This means the possibil-
ity to obtain a stable economy in the sense that every agent reach in equilibrium,
the same level of utility. Finally we discuss efficiency and equalitarianism in fair
economies.

3.1 Introduction

The main concern of this work is to make evident the relationship between economic
efficiency and social welfare. We characterize the social structure of the economy by
means of a distribution � on the agents of the economy. This distribution represents
the relative weights of the agents in a given social utility function. We show that
for each distribution there is a corresponding Pareto efficient allocation and, recip-
rocally, each efficient allocation has associated to it a distribution of social weights.
This assertion is well known. We show that this correspondence between relative
social weights and efficient allocations is given by the Negishi map. Furthermore,
the graph of this map is a path (or a manifold) of pairs where each pair consists of
social weights and its corresponding efficient allocation. The value of this map, at
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each pair, is a measure of the level of social welfare reached by the economy. In
this way, the Negishi path, joints two parallel and different points of view of the
neo-Walrasian theory. The point of view of the efficiency and the point of view of
the social welfare.

In Sect. 3.2 we introduce the model. To give an exact expression for the rela-
tionship existing between efficiency and social welfare level we introduce, in
Sect. 3.3, the Negishi path. This set is a differential manifold in the cartesian product
Sn�PO;where Sn is the n-dimensional simplex and PO the set of feasible alloca-
tion for an economy. We associate a social value to each point .�; x/ in the Negishi
path. This value is a measure of the social welfare level reached by a Walrasian
economy. A Walrasian economy E representing a set of consumption spaces, utility
functions, endowments and a finite set of agents. We consider the existence of an
efficient allocation and the corresponding distribution of social weights, such that all
people reach the same level of happiness (meaning that the utilities of every agent
evaluate at this allocation are the same).

In Sect. 3.5, we analyze the possibility to reach this allocation in a decentralized
way, i.e. without the participation of a central planner. To do this we introduce the
excess utility function. In Sect. 3.6 we analyze the stability of an economy and the
possibilities that a social crisis appear as a response to a change in the fundamentals
of the economy. We understand by a social crisis a big and unforeseeable change in
the distribution of the social weights in a framework of continuity. We introduce the
definition of singular economy and we show that, if the economy is a singular one,
then small changes in the endowments imply big changes in the social structure. In
Sect. 3.7 we characterize the social crisis. In Sect. 3.8, we give a definition of a fair
economy and its relation with efficiency and equalitarianism in the framework of
the general equilibrium theory.

3.2 The Model

We consider a pure exchange economy E (or Walrasian economy) where

E D fX; ui ;wi ; I g :

Here the set I is a finite set of index, I D f1; : : : ; n:g The utilities ui W X ! R; i D
f1; : : : ; ng are smooth and strictly concave functions. We assume that the consump-
tion space X for each agent is the positive cone of the space Rl , i.e. X D RlC;
and wi 2 RlC represent the endowments of the i th consumer. The total resources
are denoted by W D Pn

iD1 wi ;2 RlCC; i.e. W is a strictly positive vector in Rl :
An allocation is represented by x D .x1; : : : ; xn/ where x is a vector in Rln: An
allocation x is feasible if and only if

Pn
iD1 xi � W: We denote this set by



3 Micro-Foundations of the Social Change 43

F D
(
x 2 RlnC W

nX

iD1
xi � W:

)
:

We consider the social utility function U W Sn � RlC � R defined by

U.�; x/ D
nX

iD1
�iui .xi /; (3.1)

where Sn is n-dimensional the simplex

Sn D
(
� 2 Rn W

nX

iD1
�i D 1; �i � 0;8i 2 I

)
:

Each � 2 Sn represents a distribution of relative social weights of the agents of
the economy. It is a measure of the relative weight of each agent in the market
representing the social structure of the economy. For each � 2 Sn, we consider the
social utility function: U� W F ! R defined by

U�.x/ D
nX

iD1
�iui .xi /; (3.2)

where x D .x1; : : : ; xn/ is a feasible allocation.
It is well known (see [9]) that a feasible allocation x� is a Pareto optimal

allocation if and only if there exists � 2 Sn such that x� solves

maxx
Pn
iD1 �iui .xi /

Pn
iD1 xi D

Pn
iD1 wi :

(3.3)

For a fixed � the solution x� D x.�/ of this problem is a Pareto optimal allocation
(see also [7]). This suggest a deeper connection between the social structure and the
economic efficiency.

3.3 The Negishi Path

For an economy with fixed total resources W 2 RlCC; the subset of Pareto optimal
allocations will be defined by PO: As it is well known, this set does not depend
on the preference representation. For each � 2 Sn, there exists a Pareto optimal
allocation x.�/ solving (3.3), and for each optimal allocation Nx; there exists N� 2 Sn
such that Nx solve (3.3) for � D N�; (see [6]).
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Definition 3.1. Let E be an economy with total resources W: The Negishi map
x W Sn ! PO is defined by � ! x.�/, where the allocation x.�/ solves the
maximization problem (3.3).

Under the hypothesis that utilities are increasing, if all individual have positive
endowments, then �i D 0 if and only if xi .�/ D 0: In this case ui .w�/ D ui .0/
and the i -th consumer is out of the market. We consider that � is a vector SnC in
the interior of the simplex. We are interested only in the set of social weights, that
correspond to the set of individual rational Pareto optimal allocations. Here, without
loss of generality, we consider the subset of social weights � 2 Snw 	 SnC;Whose
associate allocation x.�/ verifies the inequalities ui .xi .�/ � ui .wi /, i 2 f1; : : : ; ng.
Theorem 3.1. The Negishi map is a differentiable function x W Sn !PO.

Proof. The function U� W F ! R is a continuous function defined in a compact
set. The first order condition for the maximization problem (3.3) is given by

�i@ui .xi /� � D 0 i D 1; : : : ; n;
Pn
iD1 xi �W D 0;

(3.4)

where � 2 Rl is the Lagrange multiplier, and @ui .xi / is the gradient of the utility
function of the i -agent evaluated at xi 2 RlC: Define

� W Sn �Xn �Rl ! Rnl �Rl
by

n.�; x; �/ D .�1@u1.x1/� �; : : : ; �n@un.xn/� �;
nX

iD1
xi �W /:

This is a differentiable function. Let . N�; Nx; N�/ be a solution of �.�; x; �/ D 0: It
follows that @�x;� . N�; Nx; N�/ is a nonsingular .nl C l/ � .nl C l/ matrix. Therefore,
by the implicit function Theorem, there exists a neighborhoodU N�; Nx; N� D U� �U Nx �
U N� of the solution . N�; Nx; N�/ of (3.4) such that there exists a pair of differentiable
functions x W U� ! U Nx and � W U� ! U N� with the property that x. N�/ D Nx and
�. N�/ D N� , for all � 2 U N�; and the following identities are satisfied

�i@ui .xi .�// � �.�/ D 0 i D 1; : : : ; n;
Pn
iD1 xi .�/�W D 0:

(3.5)

The strict concavity of U� show that, for each � 2 Sn, there exists one and only
one allocation x.�/ solving (3.3). This solution is given by the Negishi map (see
also [7]). ut
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The welfare program (3.3), can be interpreted as the planning model of a gov-
ernment. In this simple setting, the distribution of the social weights are the policy
objectives that the planner must change, but this change can be made only indi-
rectly through a social policy of incentives, taxes or, directly, by means of lump
sum transference. A policy reform is equivalent to a change of welfare weights. The
maximization program (3.3), shows the necessary elements to analyze the repercus-
sions of a social policy in the whole society. This program make evident the existing
relationships between distributions of social weights and efficient allocations. These
relations are represented in a geometric way by the Negishi path, i.e. the graph of the
Negishi map. Consider the set of pairs .�; x.�// 2 Sn �PO where the x.�/ is the
value of the Negishi map evaluated at �: The set of these pairs, form a differentiable
manifold called the Negishi path.

Definition 3.2. The graph of the Negishi map is the set of pairs .�; x.�//, for all
� 2 Sn and it is a differentiable manifold in Sn �Rnl : This manifold will be called
the Negishi path (or the Negishi manifold) and will be defined by CN :

This map does not depend on the distributions of the initial endowments, but only in
the total resourcesW of the economy. This means that all economies, with the same
utilities and total resources have the same Negishi map. Consider that the society is
represented by the pair .�; x.�// 2 CN corresponding to a given distribution of the
social weights and associate allocation of resources. This is a highly stylized repre-
sentation, but has all the ingredients to analyze the repercussions of the economics
reforms in the society. Suppose that the condition .�; x.�// 2 CN is satisfied.

If a reform policy in an efficient economy is followed by changes in the social
weights, then after the reforms, some consumers will gain, and others will lose. It
is not possible for all consumer to gain since the pre-reform situation corresponds
to a point in the Negishi map. Furthermore, who gains and who loses, is given by
modifications in the social weights. Pre-reformers look for efficiency and equity,
both objectives are possible to attain if and only if the initial situation is such that
.�; x.�// 62 CN . Let us consider the function U W Sn ! R defined by

U .�; x.�// D
nX

iD1
�iui .xi .�//:

The number U .�; x.�// represents the social value of the efficient allocation x.�/:
It is possible to assign to each x 2 PO a social value and a distribution � 2 Sn
of social weights. However, the Pareto criterium only checks whether a consumer
gains or losses in terms of utilities, but changes in utilities do not give a cardinal
measure of the size of welfare gains and losses for a given consumer or in terms of
the social welfare.
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3.4 The Negishi Index

Let us considerer the distribution �� 2 Sn corresponding to the solution of the
following problem

min
�2Sn

U .�; x.�//: (3.6)

Let x.��/ be the allocation solving the problem of maximization

max
x2F

nX

iD1
��i ui .xi /: (3.7)

The solution of (3.6) exists, because the objective function is a continuous and con-
vex funcion and Sn is a compact set. The existence of the solution for the problem
(3.7) is a consequence of the hypothesis on the utility functions and the compactness
of F :

Definition 3.3. The value U .��; x.��//, where �� is the solution of (3.6) is the
Negishi index.

The following Theorem summarizes this topic.

Theorem 3.2. Given an economy E , under the hypothesis considered in this work,
there exists a pair .��; x.��// 2 CN , where the Negish index is reached.

Proof. The Theorem follows from the fact that U W Sn ! R is a continuous and
convex function (see [3]). ut

The Negishi index N corresponds to a pair .��; x.��// in the Negishi path, and
is the same for all economies with the same utilities and total resources, i.e. does
no depend on the distribution of the initial resources. Unfortunately, the Negishi
index depends on the utility, but the social weight �� and the allocation X.��/
corresponding to this index, for a fair economy, do no depend on the representation
of the preferences.

Remark 3.1. The main characteristics of the allocation x.��/ D x� are the follow-
ing ones:

1. It is an efficient allocation maximizing the social utility function U�� , for all
x 2 F , where �� is the solution of the problem (3.6).

2. Every agent reach the same level of utility, i.e. ui .x�i / D uj .x�j /, for all i; j D
1; 2; : : : n; (see [4]).

3. The utility level of each agent ui .x�i / i 2 1; 2; : : : n is the same for the social
utility level given by U .��; x.��//:

4. These characteristics of the referred resource allocation are satisfied indepen-
dently of the representation of the preferences.

We will introduce the concept of democratic distribution of social weights.
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Definition 3.4. We will say that �� is a democratic distribution of social weights,
if the associate allocation x.��/ has the above mentioned four characteristics.

For each economy there exist a democratic distribution of social weights. The next
question is about if such distribution can be reached in a decentralized way, i.e.
without the participation of a central planner.

The point .��; x.��// 2 CN where the Negishi index is reached, depends
strongly on utilities representing the preferences, but the existence of such point
does not depend on this representation. We will focus our attention in the allocation
x.��/ because we understand that its equalitarian properties give to the economy
some kind of fairness and stability, in the sense that we will explain in the next
sections.

Remark 3.2. Consider � 2 Sn; then the equality �n D 1 � .Pn�1
iD1 �i / follows. If

�i > 0; for all i 2 f1; : : : ; ng, utilities are strictly concave functions, the Hessian of
U .�; x.�/ is a definite negative matrix H�U with n � 1 rows and columns. Since

@U

@�i
.�; x.�// D ui .�; xi .�// � un.�; xn.�//;

and the Hessian has positive diagonal, for all i 2 f1; : : : ; n � 1g the inequalities

@ui .�; xi .�//

@�i
� @un.�; xn.�//

@�i
> 0 (3.8)

hold. Hence,

ui .�; xi .�// � ui .�; xn.�// is increasing with �i :

This assertion follows from (3.8) and the chain of equalities

u1.�
�; x1.��// D : : : D un.�

�; xn.��//

see remark (3.1,(2)). The above statement means that the inequality

U .�; x.�// � U .��; x.��// 8 � 2 SnC;

does no necessarily imply

ui .�; xi .�// > ui .�
�; xi .��//:

To see this note that

U .�; x.�// �U .��; x.��// D
nX

iD1

˚
�i
�
ui .�; xi .�// � ui .�

�; xn.��//
�

Cun.�
�; xn.��//

�
�i � ��i

�� � 0: (3.9)
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Hence, from Remark 3.2, it follows that

ui .�; xi .�// > ui .�
�; xi .��//, �i > �

�
i : (3.10)

3.5 Social Equilibria

Reforms following from changes in social weights can be implement in a decen-
tralized way if and only if the after-reforms distribution of social weights are in a
particular set, that we will call the social equilibrium set. We introduce in this sec-
tion, the excess utility function, to characterize the set of vectors � 2 Sn and its
corresponding allocations x.�/ such that can be reached in a decentralized way for
an economy E .

For a given economy E ; the excess utility function ew W SnC ! Rn with ew.�/ D
.ew1.�/; : : : ; ewn.�// is defined by

ewi .�/ D @

@xi
ui .xi .�// Œxi .�/� wi � ; for all i D 1; : : : ; n; (3.11)

where x.�/ is the value of Negishi map evaluated at �:We introduce the subindex w
in the notation ew.�/ to remark that this function depends strongly on the distribu-
tion of the initial resources w: The main characteristics of the excess utility function
are referred in [1].

We say that a pair .�; x.�// 2 CN is a social equilibrium for an economy E if
and only if � 2 SnC and ew.�/ D 0: We denote this subset by

S E w D f.�; x.�// 2 CN W ew.�/ D 0g :

We introduce the following notation to identify the pre-image of zero by the excess
utility function ew:

E Qw D f� 2 SnC W ew.�/ D 0:g :
The following theorem shows the relationships between the set of social equilib-

rium S E w and the set of Walrasian equilibria W E in a given economy E :

Theorem 3.3. For every .�; x.�// 2 S E w there exists a vector p 2 Rl such that
.p; x.�// is a Walrasian equilibrium. Reciprocally, for each Walrasian equilibrium
.p; x/; there exists � 2 E Qw such that .�; x/ 2 S E w:

Proof. Let . N�; x. N�// be a social equilibrium. Consider Np D N�i@ui .xi . N�//. It fol-
lows that . Np; x. N�// satisfy preference maximization, under budget constraint and
attainability, so it is a Walrasian equilibrium. Reciprocally, if . Np; Nx/ is a Walrasian
equilibrium then, solving the first order equations, for the problem (3.3) to maxi-
mize U�.x/; x 2 F evaluated at x D Nx; and taking � D Np the following equalities
hold:

�i@ui . Nxi /� Np D 0; for all i D 1; : : : ; n:
We obtain the corresponding vector N� 2 E Qw satisfying . N�; Nx/ 2 E S w. ut
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In contrast with the set of Pareto optimal allocations, the subset of allocations
corresponding to the social equilibria depends strongly on the distribution of the
initial resources and not, only, on the total resources of the economy. Hence, an
economy can reach in a decentralized way the democratic distribution of social
weights, �� and its corresponding allocation x.��/; if and only if, the equalities
ew.�

�/ D 0 are satisfied. This value is reachable only if the central planer is able
to implement a policy reform whose consequence is a redistribution of resources
such that if w0 is the after reform distribution of the initial resources then, w0 6D w;Pn
iD1 w0i D

Pn
iD1 wi D W; and ew0.��/ D 0: It follows that if the consequence of

a political reform is a redistribution of initial endowments, then it follows a change
in the set of the social equilibria of the economy. Thus, the social expression of a
policy reform, implying a redistribution of the initial endowments, is a change in
the relative social weights of the agents.

Let E be a pure interchange economy. Consider a sufficient small real number
� > 0 and let Sn� be the set of all the distributions on the n agents of the economy
such that the relative weight of each agent �i is at least � and such that Snw 	 Sn�
where

Sn� D f� 2 Sn W 1 � � � �i � � > 0; 8i 2 I g :
Let PO� be the subset of the Pareto optimal allocations PO that can be reached
by the Negishi map restricted to Sn�: Hence, the image by the Negishi map of this
subset is the subset PO�, i.e.

xŒSn�� DPO� 	PO:

Let CN� be the subset of CN with � 2 Sn�: The individual rational Pareto optimal
allocations is a subset of PO� :

We do not consider agents with initial endowments equal to zero, because in this
case the agent is out of the market. The following theorem holds.

Theorem 3.4. If � is sufficiently small then the set of social equilibrium E Qw are a
subset of CN�.

Proof. The theorem follows from the fact that we assign to a given consumer a
social relative weight equal to zero. For instance, for the h-consumer. Let �h D 0.
The corresponding coordinate in the Negishi map is equal to zero, i.e. xh.�/ D 0:

Then the corresponding allocation x.�/ is not an equilibrium, because the h-agent
prefers his own endowments and we assume that wh 6D 0. ut

However, the Negishi index might not be reachable in equilibrium for a given
economy. This possibility depends on the characteristics of the endowments of the
economy. If the endowments do not entail these appropriate characteristics, then the
possibility to obtain, in a decentralized way, an efficient allocation assuring the same
level of happiness for every agent of the economy, depends on the redistributions of
the endowments. If the aim of a central planner is to obtain some kind of social
equality, he can be interested in realizing a transference of resources, but transfer-
ence imply changes in the distribution of the social weights of the individuals, i.e.
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in the social structure of the economy. The next question is how to predict these
changes.

3.6 Singular and Regular Economies from a Social
Point of View

In this section, we analyze the main characteristics of the changes in the social struc-
ture as response to redistributions of the endowments. We introduce the concepts of
singular and regular economies from a social point of view.

Definition 3.5. The economy E is singular from a social point of view, if zero is a
singular value of the excess utility function. Otherwise, the economy will be called
regular.

The following two properties are satisfied by the excess utility function (see [1]):

1. The social Walras law: �e.�/ D 0 for all � 2 Sn:
2. The Jacobian matrix of the excess utility function ŒJew� is a linear transformation

from Sn into Rn�1: For every � 2 Sn, the dimension of the image of this matrix
is, at most, n � 1 i.e. dimŒJew�.�/ � n � 1 for all � 2 Sn:
The economy E is:

� Regular if and only if the dimension of the jacobian of the excess utility function
evaluated in each � 2 E Qw, is n � 1, i.e.

dimŒJew�.�/ D n � 1 8� 2 E Qw:

� Singular if and only if there exist at least one N� 2 E Qw, such that

dimŒJew�. N�/ < n � 1:

3.7 Main Characteristics of the Social Changes

Consider the set E W of all economies with n-agents, consumption spacesX D RlC;
utilities ui and with total resources fixed W 2 RlC: The economy, E 2 E W D˚
RlC; ui ;W; I

�
if and only its endowments w D .w1; : : : ;wn/ satisfy the equalityPn

iD1 wi D W:
We will denote by Ew the elements of E W : Let˝ D ˚w 2 RlnWPn

iD1 wi D W
�
:

The generalized excess demand function E W Sn �˝ ! Rnl ; is defined by

Ei .�;wi / D �i@ui .xi .�//Œxi .�/� wi �;

where xi .�/ represents the bundle set of the i -agent in the Negishi map x.�/:
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The following Theorem follows as an application of the transversality Theorem
to the generalized excess utility function.

Theorem 3.5. There exists an open and dense subset ˝0 	 ˝ such that an
economy Ew0 is a regular economy if and only if w0 2 ˝0:
The keystone to understand the social changes is the set

S EW D f.�;w/ 2 SnC �˝ W E.�;w/ D 0g :

Proof. To prove the Theorem 3.5 we introduce the following tools: Let SnC D
f� 2 Sn W �i > 0 8ig be the set of the relative interior of the manifold Sn: Let NE D
.E1; : : : ; En�1/ be the restricted excess utility function. By the social Walras law,
.�;w/ 2 E�1.0/ if and only if .�;w/ 2 NE�1.0/: Consider NE W SnC �˝ ! Rn�1:
For each w 2 ˝ we write E.w; �/ D Ew.�/. Hence, for each � 2 Sn the identity
Ew.�/ D .e1w.�/; : : : ; enw.�// holds. It follows that for each w 2 ˝; NEw W SnC !
Rn�1 is transversal to Rn�1: From the transversal Theorem it follows that NE is
transversal for almost every w 2 ˝: Hence, 0 is a regular value for NE for each
w 2 ˝0, where ˝0 is an open and dense subset of˝: ut

The proof of the next corollary is straightforward from the transversality Theo-
rem and shows that in the residual set ˝0; locally, the set S EW behaves like the
space Rnl :

Corollary 3.1. There exists an open and dense subset ˝0 
 ˝ such that

S EW=˝0
D f.�;w/ 2 SnC �˝0 W E.�;w/ D 0g

is a manifold of dimension nl embedded in Sn�˝:Where SnC D f� 2 Sn W �i > 0
8ig is the relative interior of Sn:

Corollary 3.1 has enumerous implications. One of the most important enables one
to express the equilibrium distributions of social weights associated with a regular
economy as a function of the parameter w. Thus, there exist neighborhoods Vw0 2
Rnl 	 ˝0, T� 2 Rn�1 	 SnC and a function� W Vw0 ! T�0 such that �.w0/ D �0
and E.�.w/;w/ D 0, for all w 2 Vw0 :

If the economy Ew0 is regular, a redistribution of its endowments give a new econ-
omy Ew00 . If w00 2 Vw0 \˝ then this new economy is regular and the corresponding
new set of social equilibrium S E w00 is similar to the set S E w0 ; in the sense that
the respective cardinalities will be the same. If .�00; x.�00// 2 S E w00 then �00 2 T�0

and jx.�0/ � x.�00/j < �, for � > 0 small enough. From a social point of view, if
the endowments w0 of a regular economy are redistributed and if this redistribution
w000 2 Vw0 , then the respective relative social weights do not change to much by
continuity of � W W ! Sn at w0: The sets E Qw and E Qw00 do not change to much
after the redistribution of the endowments (see [2]).
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However, if the economy Ew0 is singular then small changes in the endowments
give rise to big changes in the social structure. This means that a small redistribu-
tion of endowments w0 giving place to a new distribution w00; with jw0 � w00j < �; is
followed by a strong social change, because the distributions of social weights corre-
sponding to the social equilibria of the modified economy can be quite different from
the distributions corresponding to the equilibria set E Qw0 of the original economy.
In this case, we say that a change in the endowments of the economy is followed
by a social crisis, i.e. an unforeseen and big change in the social participation of the
agents of the economy in the social welfare.

3.8 Fair and Unfair Economies

There is not a definition of fair economy in the framework of the General Equilib-
rium Theory. In this section, we introduce a preliminary (and intuitive) definition of
fair economy in this framework.

Definition 3.6. The economy E is a fair economy, if it is a social regular econ-
omy and if the corresponding Negishi index can be reached in equilibrium (i.e. in a
decentralized way).

In this case the democratic distribution of social weights �� and the corresponding
efficient allocation x.��/ do not depend upon the representation of the preferences.

This definition of fair economy put the emphasis in the distribution of the
resources of the economy. Given two economies with the same total resources and
same utilities, one of then can be a fair economy and the other no, and this depends
exclusively on the distribution of resources. The unfair economies are those whose
distribution of resources do not allow reaching an equilibrium, a democratic social
structure, i.e. a resource allocation that in equilibrium guarantees the same level of
utility for each agent of the economy. In a fair economy there exists the possibility to
reach in a decentralized way the pair .��; x.��//, where the level of social welfare
reached is the same for all its agents. This means that the distribution of the initial
resources w of a fair economy satisfies ew.�

�/ D 0:
For a no fair economy ew.�

�/ D 0 is not satisfied. A no fair economy can reach
its corresponding democratic distribution of social weights, only after a redistri-
bution of the initial endowments. If this economy is a singular one, then large
and unexpected social changes can occur in the process of the redistribution. The
singular economies are the doors to the social crisis.

The main characteristics of a fair economy are efficiency, in the sense of Pareto,
stability and justice in the sense of a democratic distribution of resources can be
spontaneously reached, implying the possibility to obtain an equal level of utility
for all individuals at equilibrium.

Let N be the Negishi corresponding to the set of economies E W . Given a no
fair economy Ew 	 E W , the value
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min
�2E Qw

ŒU.�; x.�// �N �

allows to define a subjective degree of unfairness of the economy. If this number is
equal to zero, then the economy is a fair one and the degree of unfairness increases
with this number.

An objective index to measure the degree of unfairness of an economy is given
by

min
�2E Qw

jj� � ��jj;

where �� corresponds to the democratic distribution of the social weights, in the set
of economies with total resourcesW: This is a measure of how far a given economy
is from the fair economy.

3.9 Conclusions

The Negishi approach allows us to unify two different points of view of the neo-
Walrasian economy, the point of view of the efficiency and the point of view of the
social welfare. The main tool for offering this unified version is the Negishi map,
this map characterizes the efficiency and its relationship with the social structure
and the possible levels of welfare that an economy can reach.

The allocation x.��/ corresponding to the solution of the program (3.6) implies
that every agent of the economy reach the same level of happiness, this is a form
of no envy. The solution �� corresponds to a distribution of social weights fair or
democratic. The social level corresponding to this distribution of social weights is
the maximum attainable for the economy. The possibility to obtain this level of
social welfare for a no fair economy depends on redistributions, but this is a prob-
lem for a central planner of a singular economy. In some cases, a redistribution of
the initial resources can lead to worse situations than those that are tried to surpass.
In particular, in the case of singular economies where redistributions imply big and
unforeseen changes in the social welfare. This does not means that the central plan-
ner does not try changes to solve problems of the economy, but he needs to know
that changes in the fundamentals of the economy can imply undesirable and non
reversible changes in the social structure of the economy. He needs to be extremely
carefully in the case of economies close to be a singular one.

As a final remark, we observe that the Negishi method can be generalized to
infinite dimensional economies. So, using this method, we can analyze, in an unified
way, both the finite and infinite dimensional economies (see [1]).
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Chapter 4
Singularities, Walrasian Economies
and Economic Crisis

Elvio Accinelli and Martı́n Puchet

Abstract We consider pure exchange economies whose consumption spaces are
Banach lattices. The utility functions are strictly concave, Gateaux differentiable,
and not necessarily separable. Following the Negishi approach and using the excess
utility function, we introduce a notion of social equilibria. We show that there exists
a bijective correspondence between this set and the set of Walrasian equilibria. By
transforming the problem of finding the Walrasian equilibria into an equivalent prob-
lem of finding social equilibria, we can use techniques of smooth functional analysis
to show that a suitable large subset of economies are regular and its equilibrium set
is a Banach manifold. Finally, we focus on the complement of this set, i.e. the set
of singular economies, and we analyze its main characteristics, among them, those
that are the causes of economic crises.

4.1 Introduction

The main contribution of this paper is to show that the economic crisis can be con-
sidered as the result of small perturbations in the fundamentals of a particularly
small set of economies, i.e. the singular economies. Analyzing the main characteris-
tics of the singular economies, we will know more on the economic crises and their
consequences. Our approach follows the point of view of René Thom who in the
1960s introduce the catastrophe theory as a tool to understand why discontinuities
in the behavior of a system can occur, even, in continuous frameworks.

Specifically from the point of the Economic Theory our paper takes as its starting
point the Negishi’s method. The framework of this work is the Negishi approach.
It is important to remark that this approach can be used to analyze the main
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characteristics of theequilibrium set of the economies with a finite set of commodi-
ties or to analize economies with infinitely many goods. The main characteristics
of this analysis is the same in both cases. Following the Negishi approach, we gen-
eralize some of the main results obtained in [1]. As it is well known, much of the
financial models are supported on the general equilibrium model, where the assets
are represented by square integrable functions in a given measure space (see [20]).
Our point of view adds new relevance to the analysis of the infinite dimensional
models under the perspective of an analysis of the crisis.

It is well known that the demand function is a tool to deal with the equilibrium
manifold in economies such that consumption spaces are subsets of a Hilbert space,
in particular, Rl (see [24]). But, if the consumption spaces are subsets of infinite
dimensional spaces (not Hilbert spaces), the demand function may not be differ-
entiable (see [7]) or it is not well defined because the price space is very large, or
the positive cone where prices are defined has empty interior. Recall that prices are
elements of the dual space of the space where the economy is defined. In many
cases, following the Negishi approach, it is possible to characterize the equilibria
set using the excess utility function. Then, it is possible to introduce differentiable
techniques that allow to generalize the results obtained by [16] for smooth infinite
dimensional economies to the case with no separable utilities. Since the Negishi
approach depends strongly on the existence of Pareto optimal allocations, we do a
brief discussion on this topic in Sect. 4.3.

Using methods of singularity theory, we show that the equilibrium set (strictly
speaking the social equilibrium set) of an open and dense (residual) subset of
economies is a Banach manifold. Our result generalizes the previous one given in
[13]. To obtain this result, we assume that the positive cone˝C of the consumption
space has non-empty interior. Typically, examples of such spaces are L1.M;Rn/
whereM is a compact manifold (see for instance [16]). Nevertheless, the set of reg-
ular economies is residual (dense), even in some cases where positive cones have
empty interior (see [25]). The set of regular economies is large and its complement is
a rare set. This claim, in the infinite dimensional framework, is not a consequence of
the Debreu theorems. Here, it follows from an alternative approach with particular
interest in infinite dimensional cases.

Despite the smallness of the singular economies set (relative to the set of regular
economies), it plays a central role to characterize the changes in economics as a
response to changes in its fundamentals. In particular, the economic crisis and its
social repercussions. In Sect. 4.7, we will focus on this set, i.e. the complement
of the set of regular economies that is a rare set. The smallness (in the set of the
economies) holds, not only from this topological point of view, but also, if there is
a measure in the set of the economies, from a measurable point of view being a set
of zero measure.

However, this small set is the origin and also explains can be responsible for the
big and unpredictable changes in economics.1 In singularity theory, one attempts

1 Note that the only way to consider the existence of the economic crisis in the General Equilibrium
Theory is to introduce singularities, because changes of a regular economy as a results of changes
in its fundamentals are predictable and smooth.
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to classify the possible singularities by producing normal forms. The knowledge of
normal forms provide mathematical models of natural or social phenomena. Our
main concern in this work is to obtain the normal forms of the singular economies
characterizing the economic crisis. We succeed in finding such normal forms only
in some cases.

All regular economies have, locally, the same behavior. This means that in a
neighborhood of a regular economy there are no big changes and all economy in this
neighborhood is also a regular economy. If the economy is regular, small changes
in the distribution of the endowments do not imply big changes in the behavior
of the economy as a system, and the new economy will be also a regular econ-
omy (this means that regular economies are structurally stable). In contrast, singular
economies, in contrast with regular ones, characterize the sudden qualitative and
unforeseen changes in the economy. In a neighborhood of a singular economy, small
changes in the distribution of the endowments imply big changes in the main char-
acteristics of the economy. Hence, the analysis of these economies is the framework
to obtain a rigorous theory of the economic crisis.

An economy is singular if zero is a singular value of its excess utility func-
tion. Given that utilities appear explicitly in the excess utility function, the strong
relationship existing between the characteristics of the agent’s preferences, and the
behavior of the economy is reflected in this function. The multiplicity of equilib-
ria is a consequence of the existence of the singular economies and this is the clue
to understand the importance of the singularities to characterize the crisis. Regu-
lar economies with a given number of equilibria are open subsets in the topological
space of the economies. The set of regular economies with only one equilibrium and
the set of economies with multiple equilibria are separate by singular economies.
Hence, singular economies are the boundaries of regular economies with different
number of equilibria.

We obtain normal forms for the excess utility functions of the singular eco-
nomies. We introduce in the set of the singular economies, a partition in equivalence
classes, according with the type of normal forms. Roughly speaking, the excess util-
ity functions of economies with the same kind of singularities have the same normal
form. The regular economies that a singular economy can adopt after a perturbation
in its fundamentals occur are the same for economies with the same normal form.
Nevertheless, we can not predict the particular regular form that the economy will
adopt after the perturbation occurs from the pre-set of regular economies determined
by the normal form.

Singular economies are very sensitive to political and social choices. These
possible reactions can be classified and can be understood using normal forms.

The importance of critical equilibria and singular economy has been realized
since 1970s with the application of differential topology to general equilibrium
models (see the seminal paper [19] and the works of Y. Balasko (see [12, 13]) and
Mas-Collel (see [24])).
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4.2 The Model

We consider an economy where each agent’s consumption set is a subset of a Banach
lattice X: The agents will be indexed by i 2 I D f1; 2; :::ng. We denote by XC the
positive cone of the Banach lattice X: We do not assume separability in the utility
functions ui W XC ! R: We denote by XC the positive cone of X . We denote by
XCC the set of the elements in XC strictly positive. We say that the vector h 2 X is
admissible for x 2 XC if and only if x C h 2 XC: Given a point x 2 XC the set of
admissible vectors is given by the set Ax D fh 2 X W x C h 2 XCg. Suppose that
x; y 2 XC and h D ˛.x�y/, the vector h is admissible because w D xC˛h 2 XC,
for every 0 � ˛ � 1. This property characterize the convex sets. We assume that
the utility functions are in C 2.XC; R/, i.e. the set of the functions with continuous
second Gateaux derivatives (G-derivatives) in each admissible direction. We assume
that they are increasing functions, i.e. each agent prefers to gain more than less.
More formally for every x 2 XC the first order G-derivative is positive, where
G-derivative is defined in the usual way, i.e.

f .x C h/ D f .x/C f 0.x/hC o.khk/;

for all x 2 XC and for all admissible h: If the G-derivative of f W X ! Y exists
for x 2 XC then f 0 W A 	 X ! L.X; Y /, where L.X; Y / is the set of linear
transformations from the Banach space X into de Banach space Y: Let X� be the
dual space of X; i.e. the set of continuous linear transformations (functionals) from
X to R. Hence, u0i .x/ 2 X�, for every x 2 XC and i 2 I . The second G-derivative
f 00.x/ exists if and only if the iterated derivative .f 0/0.x/ exists. In this case, we get

f 00.x/hk D .f 0/0.x/.h/.k/ 8h; k 2 A :

Similarly, for high order G-derivatives.
In addition, we assume that for all x 2 XC the inverse operator .u

00

i /
�1.x/ of

the hessian operator u00i .x/ W X ! X� exists, (u00i .x/ is the bi-linear form .h; k/ !
u00.x/hk). Hence, for each x 2 X we have

u00i .x/.u00i /�1.x/h D h 8 h 2 X:

The consumption set of each agent is the positive cone of the lattice X (the same
for each agent). Let ˝C D .XC/n be the cartesian product of these n consumption
sets. A bundle set for the i -agent is a point xi 2 XC and an allocation is a vector
x D .x1; x2; : : : ; xn/ 2 ˝C: The endowments of the i -agent will be denoted by wi ;
and w D .w1;w2; :::wn/ denotes the initial endowments. We assume that w 2 ˝CC,
where ˝CC is the strictly positive cone of ˝: The total amounts of available goods
is denoted by W DPn

iD1 wi :
In order to obtain a strictly positive allocation of equilibria, we will assume that

the utility functions satisfy at least one of the following two conditions (widely used
assumptions in economics [5]).
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(a) (Inada condition) lim ku0i .xi /k D 1; if xi ! @.XC/; for every i D
1; 2; : : : ; n, and for every utility function, (@.XC/ denotes the boundary of
the positive cone X ). Furthermore, we assume that the marginal utility is
infinite for consumption at zero.

(b) All strictly positive allocations are preferable to allocations in the the boundary
of ˝CC:

The economies are denoted by

E D fX; ui ;wi ; I g ;
where X is the consumption set (in our case XC), ui is the utility function of the
i -agent is, wi represents the initial endowments of the i -agent, and I the index
set of agents. We assume that I D f1; 2; : : : ; ng is a finite set. Examples of such
economies have the consumption set XC D CCC.M;Rn/ and utility functions
ui .x/ D

R
M

ui .x.t/; t/dt (see [16] and [5]).

4.3 The Negishi Approach

The Negishi approach is a powerful mathematical way to analyze the behavior of
the equilibrium set.

Let � denote the social weight set, or distribution function,

� D
(
� 2 Rn W

nX

iD1
�i D 1; 0 � �i � 1 8i

)
;

and �C D intŒ�� denotes the set of � 2 �; such that �i > 0;8i 2 I: Every
�i represents the social weight of the agent in the market, and ˝C is the positive
cone of the consumption space ˝ D Xn: The Negishi approach considers a social
welfare function U� W ˝C ! R defined by

U�.x/ D
nX

iD1
�iui .xi /; (4.1)

where ui is the utility function of the agent i; � D .�1; �2; : : : ; �n/ 2 intŒ��: As it
is well known, if x� 2 ˝C solves the maximization problem of U��.x/ for a given
��; subject to be a feasible allocation i.e.

x� 2 F D
(
x 2 ˝C W

nX

iD1
xi �

nX

iD1
wi

)

then x� is a Pareto optimal allocation. Reciprocally, if a feasible allocation x� is
Pareto optimal, then there exists �� 2 � such that x� maximizes U�� (see [4]).
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Without loss of generality, we will consider that � 2 �C: Moreover, we are inter-
ested in individual rational Pareto optimal allocations, i.e. Pareto optimal allocations
such that ui .xi / � ui .wi / for all i 2 I . If x is an individual rational Pareto opti-
mal allocation, then the corresponding � is a strictly positive vector belonging to a
compact subset of �C:

We follow the Negishi approach to analyze if there are Pareto optimal allocations
and if the First Welfare Theorem is satisfied. In our setting this theorem is valid:
every walrasian equilibrium define a Pareto optimal allocation. Nevertheless, it is
not immediate to recognize the conditions that assure the existence of Pareto optimal
allocations. So, we discuss sufficient conditions that assure the existence of these
allocations.

4.4 The Existence of Pareto Optimal Allocations in Infinte
Dimensional Economies

In [26] it is shown that, if the economy satisfy the closedness condition2 then there
exist Pareto optimal allocation. Hence, if this condition is satisfied for every Pareto
optimal allocation Nx there exists �. Nx/ 2 �C such that Nx solves the maximization
program

maxx2˝C

Pn
iD1 �i . Nx/ui .xi /;

s:t:
Pn
iD1 xi �

Pn
iD1 wi D W:

(4.2)

If the utilities are strictly concave functions, then Nx is the only solution of this
program.3 Closedness condition follows if the attainable set F is compact in a com-
patible topology. Every economy with order interval Œ0;W �weakly compact, satisfy
the closedness condition.4 However, an exchange economy can satisfy closedness
condition without order interval being weakly compact.5 The following theorem

2 Recall that the closedness condition is satisfied, if and only if the utility set,

U D f.u1.x1/; u2.x2/; : : : ; un.xn// W .x1; x2; : : : ; xn/ 2 Fg
is closed (see [26]).
3 This result follows from the fact that, if the allocation . Nx; : : : ; Nxn/ is Pareto optimal, then it
solves the maximization problem, maxxn2XC

un.xn/; s:t: W u1.x1/ D u1. Nx1/; : : : ; u1.xn�1/ D
un�1. Nxn�1/;

Pn
iD1 xi D W: The existence of the Lagrange multipliers for this problem, does not

depends on the fact that the interior of the positive cone XC is or not empty (see [9]).
4 If the order interval Œ0;W � is weakly compact, then the set of all individually rational Pareto
optimal allocations is a non-empty and it is a weakly compact subset of ˝C:
5 It is possible to find well behaved economy such that the weak compactness of the interval Œ0;W �
is no satisfied and where there is no Pareto optimal allocations. It follows that these economies do
not satisfy the closedness condition (see [8]).
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states that if topologies are compatible with a given dual pair,6 then we can use
a closed convex sets without specifying the compatible topology to which we are
referring (see [6]).

Theorem 4.1. All topologies consistent with a given dual pair have the same closed
and convex sets.

Moreover, for normed spaces, the following theorem holds.

Theorem 4.2. Let .X; n/ be a normed space, then the Mackey topology, the strong
topology and the norm topology are the same.

This theorem is a corollary of the well known Alaoglu’s Theorem (see [6]).
Recall that the Mackey topology is the strongest topology consistent with a given

dual pair. Every consistent topology with a given dual pair is stronger (finer) than
the weak topology and weaker (coarser) than the Mackey topology.7 The following
corollary characterize the quasi-concave and upper semi continuous functions in
consistent topological spaces.

Corollary 4.1. All topologies consistent with a given dual pair have the same upper
semi-continuous, quasi-concave functions.

Proof: The corollary follows from the definition of upper-semi continuity and quasi
concavity, because f W C ! R is quasi concave and upper semi continuous if and
only if fx W f .x/ � ˛g is convex and closed in a given topology. The result follows
because these properties are preserved in all consistent topologies. ut

The next theorem summarize the above considerations.

Theorem 4.3. If utilities are Mackey upper semi-continuous and quasi concave
then the closedness condition is a sufficient condition for the existence of an
individually rational Pareto optimal allocation.

Weak compactness of the interval Œ0;W � imply closedness, but the reciprocal is not
true (see [3] and [5]).

Remark 4.1. Assume, in addition to our hypothesis, the closedness condition. Then,
the rational Pareto optimal allocations is a non-empty subset contained in the
feasible set of allocations.

It is important to keep in mind two important points: First, closedness condition is
a technical device to establish a sufficient condition for the existence of the Pareto
optimal allocation (it is no necessary to alter the assumption that utilities are contin-
uous in the strong topology). Second, that this condition is strictly weaker than the
requirement that the attainable set F is a compact in some compatible topology.

6 Recall that a topology � is consistent with a given dual pair .X;X�/, if the topological dual of X
for � is X�:
7 We say that the topology � 0 is stronger (or finer) than the topology � if and only if every � -open
set is � 0-open set. Reciprocally for the concept of weaker topology.
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A solution x.�;W /, for the maximization program

max
x2˝C

nX

iD1
�iui .xi /; s:t:

nX

iD1
xi �

nX

iD1
wi D W; (4.3)

then is a Pareto optimal allocation.
Our next step to characterized the set of Pareto optimal allocations, is to choose

the elements x� in the Pareto optimal set that can be supported by a price p and
satisfy px� D pwi , for all i D 1; 2; : : : ; n, i.e. an equilibrium allocation.

We denote by W DPn
iD1 wi 2 intŒXC� the aggregate endowments of the econ-

omy, and by w 2 ˝CC the vector w D .w1;w2; : : : ;wn/ of the initial endowments
such that wi > 0 for all i 2 I . Suppose that the aggregate endowment of the
economy is fixed.

Since we are interested only in individually rational Pareto allocations, then
under our hypothesis it is enough to consider xi > 0; and �i > 0, for all
i 2 f1; : : : ; ng. Let, for every � 2 int Œ�� D f� 2 � W �i > 0 8i 2 I g ;

x.�;W / D argmax

(
nX

iD1
�iui .xi /; s:t:

nX

iD1
xi �

nX

iD1
wi D W

)
: (4.4)

4.5 The Excess Utility Function

The excess utility function has similar properties to those of an excess demand func-
tion, but its generalization to infinite dimensional economies is straightforward, even
in the cases where does not exist continuous excess demand functions. An exam-
ple of the good properties of the excess utility function to analyze the existence of
walrasian equilibria in economies with assets and goods (an infinite dimensional
economy) is presented in [22].

Consider the vectorial function e W intŒ�� �˝ ! Rn with coordinates given by

ei .�;w/ D u0i .xi .�;W //.xi .�;W //� wi /; (4.5)

The concavity of the utility functions are sufficient for the existence of the
Lagrange multiplier �� for the problem (4.3), even if the positive cone ˝C has
an empty interior (see [9]). The excess utility function is defined by:

ei .�;w/ D ��.�;W //.xi .�;W //� wi /:

Assume that the preferences can be represented by C 1.XC/ utility functions.

Definition 4.1. For every w 2 ˝CC; we define the set of the equilibria social
weights

E q.w/ D f� 2 intŒ�� W ew.�/ � 0g :
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The set of equilibria social weights, does not depend on the utilities representing
the preferences. In this sense, it is a robust concept. The social weights is a very
useful and powerful mathematical way to analyze the properties of the equilibria set
of an economy, even in an infinite dimensional setup. The critical characteristic
of a singular economy is reflected by this set (see Sect. 4.9). The response to a
perturbation in the fundamentals of a singular economy is a big change in this set.
This change implies big changes in the social weights of the economic agents. Under
this hypothesis, u0i .xi .�;W // > 0, for all xi 2 XC, we can identify the equilibria
social weights with the set

E q.w/ D f� 2 intŒ�� W ew.�/ D 0g :

Theorem 4.4. A distribution � belong to Eq.w/ if and only if .xi .�;W // � wi /
belong to the kernel of the functional ��.�;W /; being x.�;W / the individu-
ally rational Pareto optimal allocation solving (4.3) and ��.�;W /; the Lagrange
multiplier for the problem (4.3). Symbolically:

� 2 E q.w/ , .xi .�;W //� wi / 2 KerŒ��.�;W /�:

In [4] it is shown that the equilibrium social weights E q.w/ is a non-empty set. Note
that, w depends on external influences on the economy.

4.6 The Equilibrium Set as a Banach Manifold

The Equilibrium Social Set is given by

Eq D f.�;w/ 2 intŒ�� �˝CC W e.�;w/ D 0g :

The allocation x� 2 ˝CC solves (4.3) if and only if there exists �� 2 X� such
that the following identities are satisfied (see [23]):

�iu0i .x�i / � �� D 0
Pn
iD1 x�i �

Pn
iD1 wi D �:

(4.6)

Both terms in the first equation of (4.6) are linear functionals. The second member
denotes the null operator. In the second equation � represents de null element of X:
The functional �� is the Lagrange multiplier. For an arbitrary h 2 X it follows that:

�iu0i .x�i /h � ��h D 0
Pn
iD1 x�i �W D �:

(4.7)
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These equalities represent the first order conditions for the maximization prob-
lem. Under the hypothesis in this work, these are necessary and sufficient conditions
for the existence of a solution of the problem (4.3). If for a given . Q�; QW / 2
intŒ�� � XCC; there exist x� 2 XCC and a functional �� solving (4.7), then x�
is a solution for the maximization problem (4.3) with � D Q� and W D QW :

Using the implicit function theorem, the function f W UQ� �U QW ! ˝CC is well
defined by f .�;W / D x� and the function g W UQ� � U QW ! X� is well defined by

g.�;W / D ��, where UQ� 
 intŒ�� is an open neighborhood of Q� and U QW 
 XCC
is an open neighborhood of QW : We recall that intŒ�� and XCC are B-manifolds.

Furthermore, x�.�;W / and ��.�;W / C k:
We use the following notation: x�

i;�j
.�;W / D @x�i =@�j .�;W / and x�i;wj

.�;W / D @x�i =@wj .�;W /. The derivatives with respect to wj follow by the chain
rule.8 The following result summarizes some elementary properties of the excess
utility function.

Theorem 4.5. Let e W intŒ�� �˝CC ! Rn be the excess utility function, then for
all .�;w/ 2 intŒ�� �˝CC; �e.�;w/ D 0 and e.˛�;w/ D e.�;w/; for all ˛ > 0.

The rank of the jacobian matrix J�e.�;w/9 of the excess utility function e.�;w/ W
intŒ�� ! Rn is at most equal to n � 1: If ei .�;w/ D 0 8i D 1; 2; : : : ; n � 1;
then en.�;w/ D 0. We will consider the restricted function Ne W intŒ�� � ˝C !
Rn�1 obtained from the excess utility function removing one of its coordinates, for
instance en:

The following fundamental result characterizes the Equilibrium Social Set, for
some economies, with infinitely many commodities, as a Banach Manifold.

Theorem 4.6. If the positive cone of the consumption space has a non-empty
interior, then there exists an open and dense subset˝0 
 ˝CC such that

E q=˝0 D f.�;w/ 2 intŒ�� �˝0 W e.�;w/ D 0g

is a Banach manifold.

Proof: There exists a residual set˝0 
 ˝ such that, the mapping Ne W intŒ���˝0 !
Rn�1 is a submersion (see [32] vol. 1). In particular that zero is a regular value of e;
i.e. for all .�;w/ 2 intŒ���˝0; e.�;w/ D 0 is a regular point. For every parameter
w 2 ˝0; the mapping Ne.�;w/ W intŒ�� ! Rn�1 is defined in finite dimensional
space and so, is a Fredholm map with index zero. Hence, from Sect. 4.19 of [32],
the theorem follows.

We use the notation ew.�/ to denote the function e.�;w/ W �C ! Rn�1: The
cardinality of the equilibrium social weigh, for every economy with w 2 ˝0, is
established in the following corollary.

8 x�

i;wj .�;w/D @x�.�;W /

@W
@W
@wj
:

9 As intŒ�� is a B-manifold whose chart map is X� D R.n�1/ we can consider the concept of
F � derivative of this map, here we represent e0.�;w/ by means of the symbol J�e.�;w/;
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Corollary 4.2. For a fixed w 2 ˝0, the equation e.�;w/ D 0 has at most finitely
many solutions, i.e. the subset Eq.w/ D f� 2 �C W ew.�/ D 0g is, for every w 2 ˝0;
a finite subset of �C:

Proof of the corollary: From Theorem (4.6) we know that, for all w 2 ˝0; zero
is a regular value for e.�;w/: The pre-image of zero is a 0-dimensional manifold.
The convergence of Ne.�n;wn/ ! 0 as n ! 1 and convergence of fwng implies
the existence of a convergent subsequence of f�ng 2 intŒ��:10 Note that under the
assumptions in our model and since wi > 0 for all i if �n ! N� 2 @.�C/ then
there exists some i such that N�i D 0 and xi .�n/! 0 and ku0i .x..�n/k ! 1 when
�n ! N�: Hence, kei .�n/k ! 1: The pre-image of zero by New.�/ is a finite set of
points for all w 2 ˝0. ut

The oddness of this solutions is shown in [4].
The economies E D fwi ; ui ; I g, where w 2 ˝0 are called Regular Economies.
In [25], it is shown that the set of regular economies is an open and dense set in

the space of all economies. To obtain this result it is sufficient to allow that w might
not be possible. In this work, we need this assumption to characterize the equilibria
set as a Banach manifold.

4.7 Singular Economies and Some of its Properties

We describe each economy by its excess utility function e W intŒ�� � ˝C !
Rn�1: The equilibria of an economy are described by the state variables � D
.�1; �2; : : : ; �n/ 2 E q.w/. These equilibrium states change with the parameters
w 2 ˝ . These parameters are called external or control parameters. Given w, the
set of � such that e.�;w/ D ew.�/ D 0 determine the possible states of the econ-
omy, i.e. the possible set of equilibria. The parameters w describe the dependence
of the system on external forces, the action of these forces cause changes in the
states of the economy. Generically these changes are not so big, and the new state
is similar to the previous one. This is because generically economies are regular.
Nevertheless, a sudden transition can occur from a continuous parameter change.
The systematic study of these sudden changes is one of the main concerns of the
catastrophe theory. These kind of changes can take place only in a neighborhood of
a singular economy. The significance of singularity theory in economics is precisely
that the essential changes are connected with singularities. Thus the knowledge of
the canonical forms gives a deeper inside in the qualitative knowledge of the eco-
nomic behavior. We classify the economies according with their singularities. We
begin classifying economies in two classes: regular and singular. A state � 2 E q.w/
is singular or critical equilibrium if corank of the jacobian matrix J� New is positive,
where the corank of J� New. N�/ is given by

10 This condition is characterized saying that the family of maps e.�;w/ is proper with respect to �:
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corank
�
J�ew. N�/

� D .n � 1/� dim
�
J� New. N�/

�
:

Singular economies will be classified in two classes:

Definition 4.2. A singular economy is non-degenerate if for all N� 2 E q.w/ the

corankJ� New. N�/ � 1

and with strict inequality for at least one �c 2 E q.w/.The equilibria states are
called critical non-degenerate equilibria. The remain singular economies are called
degenerate. An equilibrium N� 2 E q0.w/ with corankJ� New. N�/ > 1 are called a
degenerate critical equilibrium.

The corank is a measure for the degree of the degeneration of the equilibria.

Example 4.1. Let E(W)D ˚R2C; ui ;wi I i D 1; 2
�

be the set of exchange economies
which total endowmentW D .W1;W2/. Let

Wj D w1j C w2j ; j D 1; 2

where wij is the initial endowment of agent i with respect to the commodity j: Ini-
tial endowment may be redistributed but the total endowment can not be modified.
Hence, the components of W are constants.

The equilibrium set is:

VW D
˚
.�;w/ 2 intŒ�� �˝C; W e.�;w/ D 0; w1j C w2j D Wj I j D 1; 2

�
:

(4.8)
An equilibrium is a pair .�;w/ such that e1.�;w/ D 0; e2.�;w/ D 0. Suppose

that the excess utility function of the agent 1 is given by

e1.�1;w11;w12/ D 3W1�1 � 3w11.�1/
1
3 C w12: (4.9)

In terms of catastrophe theory �1 is the state variable and w1 are the control param-
eter. The social equilibria of this economy is given by the set of pairs .�;w/ such
that its components .�1;w11;w12/ solve the equation e1.�1;w11;w12/ D 0 and by
the corresponding .�2;w21;w22/ obtained from the former. The set

CF D f.�1;w11;w12/ 2 VW W detJ�1
e1.�1;w11;w12/ D 0g;

is the catastrophe surface. The economies whose endowments are in this surface are
the singular economies. In our case this surface is given by

CF D
�
.�1;w11;w12/ 2 VW W @e

@�1
D 3W1 � w11�

� 2
3 D 0

�
:
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Explicitly,

CF D
8
<

:

0

@
�

w11
3W1

� 3
2

; w11;
2w

3
2

11

.3W1/
1
2

1

A

9
=

; :

The projection of this set in the space of parameters is called the bifurcation set. In
our case,

BF D
8
<

:

0

@w11;
2w

3
2

11

.3W1/
1
2

1

A

9
=

; :

This set is represented in the space of parameters, .w11;w12/ by a parabola. By
varying the parameters continuously and crossing this parabola, something unusual
occurs: the number of possible states of equilibria associated with the initial endow-
ments w increases or decreases. The number of equilibria is given by the sign of ı,
where

ı D 27
�

w11
W1

�2
� 4

�
w12
W1

�3
:

Therefore,

� ı < 0 associate with w; there exist three regular equilibria.
� ı > 0 there is one regular equilibrium associate with w:
� ı D 0; and w11w22 6D 0 there exists one critical (or singular) equilibrium and

one regular equilibrium.

The set of regular economies with a unique equilibrium is arc connected in the two
agents case, help us to obtain a good geometric representation of economies.

The hessian matrix of the considerate excess utility function (the matrix defined
by the second order derivatives of ew at �) is singular. Hence, the critical equilibrium
is degenerate. Thus, economies with endowments satisfying ı D 0 are degenerate
singular economies.

Example 4.2. Consider the economy E D fX; u˛;i ;wi ; i D 1; 2g ; with consump-
tion space X D C k.Œ0; 1�; RC/�C k.Œ0; 1�; RC/. The utility functions are given by

u1;˛.x1/ D
R 1
0
Œx11.t/ � 1

˛
x�˛12 .t/�dt;

u2;˛.x2/ D
R 1
0 Œ� 1˛x�˛21 .t/C x22.t/�dt;

where ˛ 2 .0; 1/ and the endowments .wi1;wi2/ are real, strictly positive functions
defined in Œ0; 1�: Assume that the equality W.t/ D w1.t/ C w2.t/ holds, for all
t 2 Œ0; 1�: Thus, W is a fixed vectorial continuous field.

Following the Negishi approach (see [28]), we begin solving the optimization
problem:

max
x2Ck Œ0;1	4

C

U�.x/ D �1u1;˛.x1; x2/C �2u2;˛.x1; x2/;
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restricted to the feasible set:

F D
(
x 2 .C.Œ0; 1�; RC//4 W

2X

iD1
xi .t/ �

2X

iD1
wi .t/ 8 t 2 Œ0; 1�

)
:

The excess utility function is given by

ew.�/ D .ew1
.�/; ew2

.�// D
�Z 1

0

ew1
.t/dt;

Z 1

0

ew2
.t/dt

�
:

Denoting �1 D � and with �2 D 1 � �, it follows that

ew1
.t/ D



1��
�

� ˛
1C˛ �



1��
�

� 1
1C˛ � w12.t/



1��
�

�
C w21.t/;

ew2
.t/ D



1��
�

� �˛
1C˛ �



1��
�

� �1
1C˛ � w21



1��
�

��1 C w12.t/:

Solving ew1
.�/ D 0 and ew2

.�/ D 0;we obtain the social equilibria for the economy
characterized by w D .w1;w2/ (this equilibria depends on w). Taking derivatives in
the excess utility functions (with respect to �/. It follows that the catastrophe surface
is given by

CF .t/ D
�
.�;w11;w12/ 2 VW W

Z 1

0

w12.t/dt D ˛

1C ˛h
1

1C˛ � 1

1C ˛h
˛

1C˛

�

where h D �=.1 � �/: The economies E whose endowments are given by

.w11;w12;w21;w22/ 2 .C Œ0; 1�; RC//4

satisfy, for every t 2 Œ0; 1�, W.t/ D w1.t/C w2.t/ and

Z 1

0

w12 D ˛

1C ˛h
1

1C˛ � 1

1C ˛h
˛

1C˛ 8 t 2 Œ0; 1�

are singular. Solving e.�;w/ D 0, there exist economies with one equilibrium and
economies with three equilibria.

4.8 Catastrophe Theory and Economic Theory

The catastrophe theory was introduced by the mathematician René Thom in the
1960’ and it highlights the importance of singularities to understand why a dis-
continuity in the behavior of a system can occurs even in a smooth or continuous
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environment. This theory give a deeper insight to understand the sudden changes in
economics, especially from a qualitative viewpoint (see [11]). This approach allows
to use differential topology in finding the laws of the crises in economy. We focus
our analysis in the concept of stable singularities, determined by Hassler Whitney
and incorporated in the theory by Rene Thom and Harold Levine in the 1960 Bonn
notes.

As Thom and Levine have shown singularity theory can be applied with wide
generality in quasi-statical models (models with equilibria states only modified by
cause of external forces) in which small changes in its parameters cause sudden
changes. When the system is at rest in a position of equilibrium the state variables
(the social weights � in our case) determine the state of the system. The parameters
(the initial endowments of the economy) describe the dependence of the system
on external forces. The action of these forces can give rise to sudden jumps from
an equilibrium position to another. These sudden transitions, when originating from
continuous modifications in the parameters are catastrophes. This kind of transitions
are observed in a neighborhood of singular economies.

Singularity theory shows that in some cases it is possible to analyze this kind of
transition using canonical forms, i.e. taylor expansion up to some order.

We say that a map f 2 C k.X; Y / is k-equivalent to a map g 2 C k.X; Y /

at the points x0 and u0, if there exists local C k diffeomorphisms � W X ! X

and  W Y ! Y such that u0 D �.x0/ and g.�.x// D  .f .x//; for all x in a
neighborhood of x0.

Remark 4.2. Let f W U.p/ 	 X ! Y be C k.X; Y /; k � 1, and X and Y Banach
manifolds.

(a) Let f be a submersion or an immersion at p and let g D j 1
k
.f /. Then f is

k-equivalent to g at 0:
(b) If X D Rn and Y D Rm and rankf 0.p/ D r D minfn;mg, then

f is k-equivalent at p to h W X ! Y given by h.x1; : : : ; xn/ D
.x1; : : : ; xr ; 0; : : : ; 0/; for all x 2 U.p/:

(c) Every analytical function f W X ! Y , with isolated critical points, is equivalent
to a Taylor polynomial of sufficiently high order see ([29]).

The following two theorems are well known in singularity theory, and they
will help us to understand some characteristics of the non-degenerate singular
economies.

Theorem 4.7. Let f W X ! R be a smooth function with a non-degenerate sin-
gular point p: Then there exists a neighborhood V of p in X such that no other
singular point of f are in V; i.e., non-degenerate singular points are isolated.

We say that a map f W X ! R has singular values if for every two singular
points p and q, p ¤ q implies f .p/ ¤ f .q/.

The set of Morse functions whose singular values are distinct form a residual set
in C1.X;R/:
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In economics terms, this question takes the following form: Where is it possible
to characterize the behavior of an economy from the Taylor expansion, up to some
order k; from its excess utility function?

Definition 4.3. We will say that the economy E D fui ;wi ; i 2 I g is k-equivalent
at �0 2 E q.w/ to the economy E 0 D ˚

ui ;w0i ; i 2 I
�

at �1 2 E 0q.w0/ if and only if
its respective excess utility functions ew and ew0 are k � equivalent functions at �0

and �1.

From Remark 4.2, every the excess utility function of every regular economy is
1-determined in every equilibrium. The regular economies are locally equivalent at
their respective equilibria.

Generically, if the economy E D fui ;wi ; I g is singular non-degenerate, then
there exists only one critical equilibrium � 2 E q.w/. An extensive analysis of the
behavior of the singular economies 2-agent is given in [2].

4.8.1 Two Agents Economies

Define by Eu;w D fXC; ui ;wi D 1; 2g the set of exchange economies with two
agents, whose utility function are denoted by ui ; endowments by wi , consumption
sets by XC, and ˝C D XC � XC: Let New W U�0


 intŒ�� ! Rn�1 be the excess
utility function of the economy Eu;w: If this function is a C k submersion at �0 then
there exists a local C k diffeomorphism �, with �.�0/ D 0 and �0.�0/ D I , the fol-
lowing normal local form holds: Ne.�.�0// D Ne0.�0/� (see [32] vol. 4). Therefore,
this excess utility function corresponds to a regular economy. The main question is:
When New is not a submersion at �0‹ For an economy with two agents, the Morse
lemma is the answer.

The main characteristics of the excess utility functions given in Theorem 4.5,
characterize a two agent economy by only one component of its excess utility func-
tion and by only one of the two social weights. Let ei W .0; 1/ � ˝ ! R be the
excess utility function of the agent indexed by i:We classify this kind of economies
by looking for the Taylor expansion of ewi D New:

Let B 	 R be open and convex subset. If g W B ! R is a smooth function such
that g. Nx/ D g0. Nx/ D ::: D g.k/. Nx/ D 0 then there is a smooth function l W B ! R

such that g.x/ D .x � Nx/l.x/; and l. Nx/ D 0: However, if g.k/. Nx/ 6D 0; then there
exists a smooth local change of coordinates under which g takes the form xk for all
k odd and˙xk , if k is odd, and˙xk if k is even (see [31]).

By Morse’s Lemma in Rn it is possible to reduce the family of the excess utility
function of the non-degenerate singular economies, with independent utilities to just
2 simple stereotypes, namely

Ne Nwi . .�// D ˙�21;

where Ne is the restricted excess utility function. Degenerate singular economies are
characterized by the fact that there exist at least one N� 2 Eq.w/ such that e00. N�/ D 0.
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4.9 The Sr Classification

We say that a function f W Ux ! Y is k-determined if and only if for every function
g W Ux ! Y with j kf .x/ D j kg.x/ there exists a local C k.X/ diffeomorphism
which satisfies g.�.u// D j kf .u/ in a neighborhood of x:

The k-jet of the excess utility function ew is given by

j kew.�/ D .�; 0; e0w.�/; : : : ; e.k/w .�//:

If the excess utility function ew of a given economy E is k-determined, for some
� 2 Eq.w/, then every economy E 0 whose excess utility function ew0 has the same
Taylor polynomial up to order k, for some �0 2 Eq.w0/, show, in some neighborhood
of �0; the same qualitative behavior that the economy E in some neighborhood of �.
Hence, if the excess utility function ew is k-determined, then the k-jet summarize
the essential behavior of every economy in a neighborhood of every of its equilibria.

Let X and Y be n and m dimensional smooth manifolds. Let f; g W X ! Y

with f .x/ D g.x/ D y, be smooth functions. We say that f and g are equivalent,
f �k g, if and only if the k-th Taylor expansion of f coincides with the k-th
expansion of g at x: The equivalence class of f at x is called the k-jet of f at
x; and will be denoted by j kx f: Let J k.X; Y /x;y denote the set of all equivalence
classes �k of maps f W X ! Y with the points that f .x/ D y. Let J k.X; Y / DS
.x;y/2X	Y J k.X; Y /x;y . Given a smooth map f W X ! Y there is a canonical

map j k.f / W X ! J k.X; Y /: Note that J 0.X; Y / D X �Y and j 0x f D .x; f .x//
is the graph of f: It follows that f �0 g at x if and only if f .x/ D g.x/: We
will represent the jacobian matrix of a mapping f by the symbol .@f /x : If 
 2
J 1.X; Y /xy then 
 defines a unique linear mapping TxX ! TyY; where x is the
source of 
 and y is the target of 
: Let f be a representative of 
 in C1.X; Y /:
Then .@f /x is the linear mapping. Define rank.
/ D rank.@f /p and corank.
/ D
� � rank.
/; where � D min.dimX; dimY /: Let

Sr D
˚

 2 J 1.X; Y / W corank.
/ D r� (4.10)

be the subset of the equivalence classes under �1 in C1.X; Y / such that the
corank.@f / D r . The subset Sr is a submanifold of J 1.X; Y / satisfying

codim Sr D .n � �C r/.m � �C r/;

(see [21]). Our interest is to study the class 
 2 J 1.intŒ��; Rn�1/ with source �;
and target Rn�1: It follows that codimSr D r2:

The set of singularities of f W X ! Y such that the rank of the jacobian
matrix drops by r is represented by Sr .f / D .j 1f /�1.Sr/: Then Sr.f / will
be, generically, a manifold with the same codimension of .Sr/ (see [21]). Since
codimSr.f / D dimX � dimSr.f / � 0, there is a relationship between the kind of
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singularities for every f 2 C1.X; Y / and the dimension of the manifold. Applying
these concepts to economics it follows that

� Sr.e/ is the set of critical points of New W intŒ��! 0 where the jacobian matrix of
New drops rank by r: This set is a manifold.

� The set of critical social equilibria is the subset .�;w/ 2 Sr.e/ with e.�;w/ D 0
and corank .@ New/� D 1:

� S1.e/ is the set of non-degenerate critical social equilibria that is the set of pairs
.�;w/ 2 intŒ�� �˝ such that e.w; �/ D 0 and corank.@ New/ � 1:

There exists a relationship between the number of agents and normal form of sin-
gularities. In others words, the excess utility function can have only some types
of singularities and determined by the number of consumers in the economy. If
codim Sr.f / > jdimX �dimY j then dimSr.f / < dimY: Applying this observation
to economics, with X D intŒ��; Y D Rn�1, and f D New; it follows that: if n is
the number of consumers of the economy then dimSr.e/ < n� 1: If n D 2, that the
singular economies have generically isolated singular equilibrium in intŒ��:

We note that the topology used in theorems about transversality of maps in
C1.X; Y / is the Withney topology.

4.10 The Fold and the Cusp in Economics

Let f W X ! Y be a map. We say that a map is one generic if J 1f is transversal to
S1: Recall that S1.f / denotes the singularities of f of type S1. By Thom Transver-
sality theorem it follow that the set of f 2 C1.X; Y / transversal to S1 is a residual
subset of C1.X; Y /: Hence, Sr.f / D .j 1f /�1Sr :
Remark 4.3. By (4.10), it follows that S1.f / has codimension 1 and S2 has codi-
mension 4:

Let p in S1.f / and q D f .p/: Only one of the following two situation can occur

8
<

:

.a/ TpS1.f /˚ Ker.@f /p D TpX I

.b/ TpS1.f / D Ker.@f /p

(4.11)

Definition 4.4. (Submersions with Folds) LetX and Y be a smooth manifolds with
dim X � dim Y: Let f W X ! Y be a smooth map, such that J 1f is transversal to
S1: Then a point p 2 S1.f / is called a fold point if

TpS1.f /˚ Ker.@f /p D TpX:

If p is a singularity satisfying (4.11) .a/ then p is a fold. The first Whitney theorem
for maps between 2-manifold give the normal form for fold points:
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Theorem 4.8. If .a/ in (4.11) occurs, then one can choose a system of coordinates
.x1; x2/ centered at p and .y1; y2/ centered at q such that f , in these coordinates
is the map .x1; x2/! .x1; x

2
2/:

Let f .x1; x2/ D .x1; x22/: Note that

Df.x1; x2/ D
�
1 0

0 2x2

�
:

Thus, S1.f / D
˚
.x1; x2/ 2 R2 W x2 D 0

�
: Let p be a singular point. It follows that

Ker.@f /p D Ker.1; 0/ D .0; 1/:

Hence, TpS1.f / ˚ Ker.@f /p D TpX: The normal form given by .x1; x2/ !
.x1; x

2
2/: This transformation has the following geometric interpretation:

� .x1; x2/ maps onto the parabolic cylinder .x1; x2; x22/:
� Then projects onto the .x1; x3/ plane.

If p is a singularity satisfying .b/, then p is a cusp.

Definition 4.5. (Cusp) Let X and Y be 2-dimensional manifolds, and let
f W X ! Y be one generic mapping. We will say that p is a simple cusp, if
this zero is a simple zero.

The second main theorem of Whitney states (see [21]).

Theorem 4.9. If p is a simple cusp then one can find coordinates .x1; x2/ centered
at p and .y1; y2/ centered at q such that:

8
<

:

f � y1 D x1

f � y2 D x1x2 C 1
3
x32 :

(4.12)

Where f � is the pull-back function of f by the homomorphism � associated with
the change of coordinates. Note that

Df.x1; x2/ D
�
1 0

x2 x1 C x22

�
:

Let S1 D
˚
.x1; x2/ 2 R2 W x1 D �x22

�
: If p D 0 then TpS1 is generated and this

subset is Ker.@f /.p/: If p D 0 then TpS1.f / D Ker.@f /p: Parameterizing the
curve S1, it follows that

f � .
.t// D .�t2;�2
3
t2/;

where 
.t/ D .�t2; t/. Thus, the image of S1 by f � is a cusp.
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4.11 An Example: 3-Agent Economies

Consider an economy with 3-agents, where the utility functions are given and
fixed initial endowment. Then the excess utility function is a mapping between
2-manifolds ew W intŒ��! R2: By our computation codimS1.ew/ D 1 in � and S2
does not occur because it would have codimension 4. Thus, the only possible sin-
gularities are of S1: Let � 2 Eq.w/ be a point in S1.ew/. Only one of the following
two situations can occur:

(a)T�S1.ew/˚ Ker.@e/� D T�� (fold).
(b)T�S1.ew/ D Ker.@ew/� (cusp).

Remark 4.4. By Whitney, generically in C1.X; Y / the only singularities are folds
and simple cusps.

Let N� D . N�1; N�2; N�3/ 2 � be a singular social equilibrium for the economy w:

(1) If (a) holds, this is a system of coordinates .�1; �2/ centered at . N�1; N�2/ 2
S1.ew/ and .e1; e2/ centered at ew. N�/ D 0 such that ew is a fold .�1; �2/ !
.�1; �

2
2/:

(2) If (b) holds, generically singularities, are simple cusps. These are coordinates
. N�1; N�2/ centered at e. N�/ such that

. N�1; N�2/! . N�1; N�1 N�2 C N�32/:

In a neighborhood of a cusp or a fold there exist only regular economies but with
different number of equilibria. Recall that in a neighborhood of a regular economy,
there are only regular economies with similar characteristics. A regular economy
can suffer a change if the perturbation in its endowments is big enough. How-
ever, if an economy is singular or it is close to singular one, a small change in
its endowments can provoke a big change in the economy.

By Whitney theorems, generically the singular economies for three-agents
economies have one of the two forms after transformation of coordinates of the
dependent and independent variables by local diffeomorphisms.

4.12 The Sr;s Singularities

Let f W X ! Y be a one generic map. We will denote by Sr;s.f / the set of points
the map f W Sr.f /! Y drops by rank s, with the property that

Sr;s 	 f
 2 J 2.X; Y / W corank.
/ D rg

i.e. x 2 Sr;s.f / if and only if x 2 Sr.f / and the kernel of .@f /x intersects the tan-
gent space to Sr.f / in a s dimensional subspace. Generically, in cases of economies
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with n D 3, the singularities are S1;0 folds, when the singularities of the excess util-
ity function are given by S1.ew/ D

˚
.x1; x2/ 2 R2 W x1 D 0

�
and the image of this

set by the excess utility function is ew.S1/ D
˚
.x1; x2/ 2 R2 W x1 D 0

�
or S1;1

cusps when these singularities are given by the set S1.ew/ D
˚
.x1; x2/ 2 R2 W

x1 D �x22 ;
�

and ew.S1/ D
�
.x1; x2/ W x1 D �32x

2
3

2

�
. Using the Transversality

Theorem (see [21]) j 2f is, generically, transversal to Sr;s and Sr;s is a submanifold
in J 2.X; Y /. We define

Sr;s.f / D .j 2.f //�1.Sr;s/:

Generically, Sr;s.f / is a submanifold in X with dimension:

dimSr;s.f / D dimX � r2 � �r � .codimSr;s.f / in Sr.f // : (4.13)

Furthermore,

codimSr;s D m

2
.k C 1/� m

2
.k � s/.k � s C 1/� s.k � s/; (4.14)

where m D dimY � dimX C k k D r Cmax.dimX � dimY; 0/ (see [21]). Hence,
the set of possible singularities in economics are strongly related with the number
of agents.

Let us consider the economy with k D r and m D r , where n is the number
of agents, l is the number of commodities an r is the codimension of .@ New/� at the
singularity. We have that

codimSr;s.e/ D �r
3

2
C r2s C r

2

�
�s

2

2
� 3
2
s


C s2;

and
dimSr;s.e/ D .n � 1/� r2 � codimSr;s:

In particular, codimS11 D 1 and dimS11 D n � 3. Generically, singularities like
S1;2.e/ only appear if the number of consumers is n > 4.

4.13 Conclusions

The excess utility function considers the weight of consumers in the markets and
shows the changes in their relative weights (in equilibrium) when the initial endow-
ments change. Near a regular economy these changes are smooth and there are not
qualitative changes. However, in a neighborhood of a singularity sudden and big
changes can occur. The economic weights of the agents change drastically, over-
throwing the existent order. The uncertainty in the behavior of the economy is a
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direct result of the existence of singular economies. In a neighborhood of a singular
economy, the central planer need to be extremely careful. If he acts according to
its experience he can do small changes in endowments, but the perturbed economy
can be to much different than the original one. Furthermore, it not possible to go
back by means of small changes. This situation is what happen in an economic cri-
sis, sudden and unexpect changes occur with unforeseen repercussion in the social
behavior of the economy, reflected in changes in the social weights of equilibrium.
This impossibility of prediction is intrinsic to the model and the characteristics of
the new economies, even in the case where this economy is very close to the orig-
inal one in the fundamentals, may be different quite from the original one in some
of their main characteristics, like the social equilibria.

Nevertheless, most part of the literature in economics has focused until now, on
regular economies whose equilibria change smoothly according to the changes in
the endowments. The study of the discontinuous behavior (economic crisis) requires
to consider singularities, this led us to study catastrophe theory. This theory refers
to drastic changes. However, in spite of being sudden, abrupt and unexpected, this
theory shows that these changes have a similar substratum that allow us to do a clas-
sification according with its geometric representation. This study requires the theory
of singularities to understand the forms (canonical forms) of the unexpected changes
in economics. The economies can be characterized by their singularities that cap-
ture the essence of their behavior. Economies with the same type of singularities
will present the same possible changes.

A final consideration: The excess utility function allows us to extend the anal-
ysis of singularities for economies with finite commodities to infinite dimensional
economies. Showing that, also in these cases, the catastrophe theory, or singularity
theory, might be gate to begin to understand the behavior of an economic system
with infinitely many goods in a neighborhood of an economic crises.
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Chapter 5
Probabilistic Methods in Dynamical Analysis:
Populations Growths Associated to Models
Beta.p; q/ with Allee Effect

Sandra M. Aleixo, J. Leonel Rocha, and Dinis D. Pestana

Abstract New populational growth models, proportional to beta densities, with
shape parameters p and 2, where p > 1, and Malthusian parameter r , are devel-
oped. For p > 2, these models exhibit natural Allee effect. However, in the case of
1 < p � 2, the proposed models do not include this effect. In order to inforce it,
we deduce alternative models and investigate their dynamical behaviour. The Ver-
hulst Model, which is a cornerstone of modern chaos theory, is a special case of
those models. The complex dynamical behaviour of these models is analysed in the
parameter space .r; p/, in terms of topological entropy, using explicit methods of
dynamical systems. We emphasize some particular disjoint regions in these param-
eter space, according to the chaotic behaviour of the models, the main result being
the characterization of those disjoint regions. We also present some important results
about these modified models.

5.1 Introduction

The logistic Verhulst Model originally introduced as a demographic model by Pierre
Franois Verhulst, [23], can be considered the basis of modern chaos theory. It incor-
porates in its parameters both the Malthusian growth rate and the retroaction due to
limitation of the natural resources. This non-linear dynamical equation is a natural
candidate to model the dynamic of non-overlapping generations, namely when the
unit of time is related to the life span of the individuals in the population. Although
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the logistic map has been used with success to model the population growth for
some species, it is inadequate for other.

In several numerical studies, the families of unimodal maps have been used,
allowing for exhaustive investigations in terms of symbolic dynamics, [2]. The
unimodal maps theory can be used in many branches of sciences. In population
dynamics, aiming to model the growth of a certain species, the use of those families
has been frequent. The Verhulst Model is proportional to the Beta.2; 2/ density, [22].

In this work, we present new models proportional to the Beta.p; 2/ densities,1

with p 2 �1;C1Œ, [3]. These new models can be interesting to model population
growth in populations for whom the Verhulst Model fails. We make the theoretical
deduction of these models and the characterization of the respective family of uni-
modal maps, fr;p W Œ0; 1� �! Œ0; 1�, defined by fr;p.x/ D rxp�1.1 � x/, where
r > 0 is the Malthusian parameter and p 2 �1;C1Œ.

We present the results of the dynamical study of the new models and characterize
the parameter space R of this maps family, according to their dynamical behaviour.
The chaotic behaviour of the maps is measured in terms of the topological entropy,
verifying that for each fixed value of the parameterp, the complexity of the inherent
models increases with the Malthusian parameter r , along the seven distinct regions
that form the parameter space, Theorem 5.1. The splitting of this parameter space
into different regions has been made observing common properties relating to the
dynamics that characterizes each region.

After the theoretical deduction of these models and the characterization of the
respective family of unimodal maps, we analyze their behaviour as a function of the
considered parameters ranges, defining a variation interval to them. Two interesting
questions deserve special mention in these models: the negativity of the Schwarz
derivative, for 1 < p < 2, and the natural Allee effect for p > 2. The negativity
of the Schwarz derivative, plays an important role in unidimensional dynamics, see
for example [12]. This condition is violated in a small interval of the maps domain
of this family Œ0; cŒ[�c; 1�, where c is the critical point of the map, when p 2 �1; 2Œ,
but indeed it does not affect the dynamical behaviour of the map.

A weak point of the logistic model and of the models proportional to the
Beta.p; 2/ densities, with p 2 �1; 2Œ, is the inexistence of Allee effect. We propose
three models with Allee effect, which therefore can model casual growths of some
species in a more realistic way in ecological terms. We investigate their dynamical
behaviour and enunciate some important results involving these corrected models.

A detailed study, with complete proofs, can be found in [1].

1 It is well known that, if X is a random variable with Beta.p; q/ distribution, denoted in what
follows by X _ Beta.p; q/, with p > 0 and q > 0, then the corresponding probability density
function is

fX .x/D 1

B.p; q/
xp�1.1� x/q�1I.0;1/.x/;

where B.p; q/ D R 1
0 t

p�1.1� t /q�1 dt;8p; q > 0, is the Euler’s beta function.
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5.2 New Populational Growth Models Proportional to Beta.p; 2/
Densities, with p 2 �1;C1Œ

An usual presentation of the Verhulst model starts with an approximation obtained
by the linearization of a series expansion, [22]. In a similiar way, we present new
models proportional to the Beta.p; 2/ densities, with p 2 Nnf1; 2g, [2] and [3].
These models can be useful to model populational growth of species whose evolu-
tion needs a greater growth rate than the one given by the Verhulst model. Assuming
that the population size N.t/ has a series representation in the form

d

dt
N.t/ D A0 C A1N.t/C : : :CAp�1N.t/p�1

CApN.t/p CApC1N.t/pC1 C � � � ;

truncating the terms of order smaller than p � 1 and the terms of order larger than
p, considering that they are irrelevant to the model, i.e., Ai D 0, for i � p � 2 and
i � p C 1, we obtain the simplified model:

d

dt
N.t/ D Ap�1N.t/p�1

�
1C Ap

Ap�1
N.t/

�
(5.1)

with Ap�1 > 0 and Ap < 0. Writing Ap�1 D r�, the coefficient proportional to

the instantaneous populational growth, and K D � Ap

Ap�1
, the carrying capacity, the

(5.1), which represents the populational growth rate, can be rewritten as follows:

d

dt
N.t/ D r�N.t/p�1

�
1 � N.t/

K

�
;

with p 2 Nnf1; 2g. The discretization of these models is made as follows:

N.tnC1/ D r�N.tn/p�1
�
1 � N.tn/

K

�
:

Considering that xn D N.tn/
K

and r D r�Kp�2, the discretized model is given by:

xnC1 D r xp�1n .1 � xn/:

So, we consider the family of unimodal maps fr;p W Œ0; 1� ! Œ0; 1�, with two
parameters p 2 Nnf1; 2g and r > 0 defined by:

fr;p.x/ D r xp�1.1� x/: (5.2)

The right-hand side of (5.2) is proportional to the beta density with shape parameters
p and 2, denoted by Beta.p; 2/ density. We can generalize the discrete models given
by (5.2), for any p > 1, as a natural extension.
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Therefore, let us consider the family of unimodal maps fr;p W Œ0; 1�! Œ0; 1�, with
two parameters p and r , whose maximum variation intervals are given respectively
by p 2 �1; pM � and r 2�0; r.pM /�, defined by (5.2), and c is the critical point of
fr;p, which satisfies the following conditions:

� fr;p 2 C 3 .Œ0; 1�/.
� f 0r;p.x/ ¤ 0;8x ¤ c.
� f 0r;p.c/ D 0 and f 00r;p.c/ < 0, meaning that fr;p is strictly increasing in Œ0; c Œ

and strictly decreasing in � c; 1 �.
� fr;p.0/ D fr;p.1/ D 0.
� f0;p.c/ D 0 and fr.pM /;p.c/ D 1.
� The Schwarz derivative of fr;p.x/ is

S
�
fr;p.x/

	 D f 000r;p.x/
f 0r;p.x/

� 3
2

 
f 00r;p.x/
f 0r;p.x/

!2
< 0

8x ¤ c, with p > 2 and x > xd , with 1 < p < 2.2

Note that, the parameter p has to be greater than one, since fr;p is unimodal. In
this study, the maximum value considered for the parameter p, denoted by pM , is
the largest value for which we consider that the model can be realistic. The value
r.pM / is the value of the parameter r corresponding to the full shift for p D pM . In
these maps fr;p, r and p are both shape parameters, which are respectively related
to the height and to the skewness of the curve. For any fixed p > 1, if r D 0 there
is no curve; as the value of r increases, we get higher curves, until the value of
r corresponds to the full shift, when the height of the curve attains its maximum
value 1, see Fig. 5.1. Considering for each p the value of the parameter r for which
we obtain the full shift, we conclude that the curve of the map fr;p can have three
different patterns of skewness, as shown in Fig. 5.2.

So, in this work, we consider that 1 < p � pM D 20 and 0 < r � 53:001.
Observing Figs. 5.1 and 5.2, we can verify that the unimodal maps fr;p , always
have the fixed point x� D 0, for any r > 0 and p > 1. However, seeing the cases
of the maps corresponding to p D 1:1 and p D 1:5 in Fig. 5.2, we can verify that
these maps have another positive fixed point besides 0. We can see that there are two
more fixed points besides 0, for p 2 Œ2; pM � and r > r1. To the variation interval
of p, r1 is the first value of the parameter r for which it exists an orbit of period 1.
For each fixed parameter value p > 1, the critical point of the map fr;p is always
given by c D p�1

p
.

2 In this case, S
�
fr;p.x/

	
is not always negative in the all interval I D Œ0; 1�. In fact, the interval

Œ0; xd �, where the Schwarz derivative is positive, has a very small range because xd is near 0, so
the positivity of the Schwarz derivative occurs for values in the beginning of the interval, that do
not disturb the dynamic behaviour of the map fr;p .
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Fig. 5.1 Populational growth rates using models proportional to the Beta.p; 2/; p D 2:5; 3; 3:5; 4
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Fig. 5.2 Three types of format to the populational growth rates using the model proportional to
the Beta.p; 2/ density, with p > 1: curve skewed to the left, symmetric and skewed to the right
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5.3 Dynamical Behaviour on the Parameter Space

In this section, the parameter space, denoted by R, is divided into distinct regions,
according to the dynamical behaviour of the unimodal maps belonging to the family
of functions fr;p proportional to Beta.p; 2/ densities, with 1 < p � pM D 20 and
0 < r � 53:001. Similar works can be seen in [18] and references therein.

The parameter space R is split into seven regions, each of them with a distinct
behaviour, associated to a certain dynamic of populational evolution of eventual
species. Then, for each studied value of p, going through the considered inter-
val of variation for the parameter r , we determine the points .ri .p/; p/, with i D
1; 2a; 2b; 3; 4; 5. In Fig. 5.1 we can see the maps fri .p/;p, with i D 1; 2a; 2b; 3; 4; 5,
for p D 2:5; 3; 3:5; 4.

In the exhaustive analysis below, we describe how we can define six lines, asso-
ciating with each ordinate p a corresponding abcissa r D r.p/, which delimit
seven regions, shown in Fig. 5.3, where iteration takes on different aspects. Observe
that for each fixed p�, the horizontal line .r; p�/ in the parameter space crosses
those regions, and henceforth each horizontal line in that graphic corresponds to the
summarized information of a Feigenbaum diagram for the map fr;p, for a certain
fixed p. See an example for p D 4 in Figs. 5.3 and 5.4.

5.3.1 Sudden Extinction Region R1

The first region, is defined by R1 D f.r; p/ W 0 < r < r1.p/; 2 � p � 20g.
Its right boundary curve, which lies in R1, is the set of points with ordinates p, for
p 2 Œ2; 20�, whose abscissas, denoted by r1.p/, are, for each p, the first values for
which the iterates of the map fr;p are attracted to an unique positive fixed point.

0 2 4 6 8 10 12
1

2

3

4

5

r

p

Fig. 5.3 Regions in the parameter space. R1 is the “triangle” in the upper left corner, R6 is the
“triangle” in the lower right corner, R2a;R2b;R3;R4 and R5 are in between, in the above ordering.
(f.r; p/ W 1 < p < 2; 0 < r < r�.p/g is investigated in detail [3])
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Fig. 5.4 Feigenbaum diagram for the model proportional to the Beta.4; 2/ density

This function r1.p/, for p 2 Œ2; 20�, defines a stable or attraction line. Note that,
the curve r1.p/ belong to the next region R2.

Globally, the iterates of any map fr;p, whose parameters values belong to this
region R1, are always attracted to the attractive fixed point x� D 0. So, this is a
region of extinction since a map fr;p, with .r; p/ 2 R1 can model only species
that will become extinct: as soon as they appear they are doomed to disappear. The
growth rate it is not big enough to stabilize the population size. The unimodal maps
fr;p of the region R1 do not have a chaotic behaviour, its topological entropy is null,
[17]. The symbolic sequences associated to the orbits of the critical point c D p�1

p

are of the type CL1.

5.3.2 Stability or Equilibrium Region R2 D R2a [ R2b

The stability or equilibrium region is R2 D f.r; p/ W r1.p/ � r < r2.p/; 1 <

p � 20g. In a generic way, we can say that the iterates of any map fr;p, whose
parameters values belong to the region R2, converge to the larger positive attractive
fixed point (it is unique if p 2 �1; 2�). So, this is a region of stability or equilibrium,
since one map fr;p , with .r; p/ 2 R2, can model populational evolutions of species
whose size is approximately constant in time.

In fact, for each value of the parameter p, a drastic change is observed when r 2
Œr1.p/; r2.p/Œ, resulting from the possibility of reaching the equilibrium between
the two competitive forces, reproduction on one side and resources limitation on the
other. The unimodal maps fr;p of the region R2 do not exhibit chaotic behaviour, its
topological entropy being null, [17].

Remark 5.1. This region contains a super stable or super attractive curve, denoted
by r�.p/, whose expression is given by

r�.p/ D p
�

p

p � 1
�p�2

:
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Therefore, this curve divides the region R2 in two sub-regions, denoted by R2a and
R2b, which are delimited by the curves r1.p/, r�.p/ and r2.p/, respectively.

In this region, the symbolic sequences associated to the critical point orbits are
of the type CL1 in the region R2a, and in the region R2b are of the type CR1. The
second boundary curve r2.p/ has points with ordinates p whose abscissas corre-
spond, for each p, to the first value of the parameter r for which we can observe an
orbit of period 2. Thus r2.p/ is the curve where period doubling starts. Observe that
this curve belongs to the next region R3.

5.3.3 Period Doubling Region R3

The third region, denominated period doubling region, is R3 D f.r; p/ W r2.p/ �
r < r3.p/; 1 < p � 20g. In other words, the region R3 shows population dynamics
patterns describing the generations of species oscillating in cycles of period 2n,
with n 2 N . The unimodal maps fr;p of the region R3 still do not exhibit chaotic
behaviour, its topological entropy being null, [20].

Its right boundary curve r3.p/ is the set of points whose ordinates p correspond
to abscissas r where the map fr;p has no longer orbits of period 2n, i.e., which do
not correspond to Feigenbaum points, orbits of other periods starting at those values.
Thus it is the chaos starting line, and it belongs to the next region R4.

5.3.4 Chaotic Region R4

The fourth region, denominated chaotic region and denoted by R4, is defined for
1 < p � 20 and r3.p/ � r < r4.p/. So, the iterates of the maps fr;p whose
parameter values belong to the region R4 origin orbits of the several types, which
already present chaotic patterns of behaviour; so its topological entropy is positive.
The value of the topological entropy increases with the value of the parameter r ,
until it attains its maximum value ln 2, [19].

The fourth boundary curve, r4.p/, has the points with ordinates p whose abscis-
sas correspond, for each p, to the first value of the parameter r exhibiting the natural
Allee effect, [3]. The curve r4.p/ is thus named line of the Allee effect, and belongs
to the region R5.

5.3.5 Allee Effect Caused Extinction Region R5

The fifth boundary curve r5.p/ has the points with ordinates p, with p 2 �1; 20�,
whose abscissas are the corresponding values of the parameter r where full shift
does occur. This full shift line belongs to the closed region R5 D f.r; p/ W r4.p/ �
r � r5.p/; 1 < p � 20g.
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In a generic way, we can say that the iterates of the maps fr;p, whose parame-
ters values belong to this region R5, are always attracted to the attractive fixed point
x� D 0. Therefore, the maps fr;p, with .r; p/ 2 R5, can model populational evo-
lutions of species that once developed disorderly and now go to extinction, because
few individuals remain and eventually they are spatiality far away from each other,
so that reproduction chances diminish, leading to the extinction of these species.
The unimodal maps fr;p of the region R5 exhibit chaotic behaviour, with maxim
topological entropy ln 2, [20].

5.3.6 Differed Extinction Region R6

R6 D f.r; p/ W r5.p/ < r � 53; 1 < p � 20g is a differed extinction region.
The graphic of any map fr;p, with .r; p/ 2 R6, is no longer totally included in
the invariant interval Œ0; 1� � Œ0; 1�. The dynamic completely looses its determinis-
tic component, and the size of the population in successive generations behaves as
a random numbers generator device, until ultimate extinction does occur. At this
stage, Cantor sets become observable.

The results described above, in order to characterize the topological complex-
ity of the dynamical systems in each region, are stated in the following theorem
measured in terms of topological entropy.

Theorem 5.1. The topological entropy of the family of unimodal maps fr;p.x/ D
rxp�1.1 � x/, with .r; p/ 2 R is characterized by:

1. In the regions R1, R2 and R3, the topological entropy is null.
2. In the region R4, the sets where the topological entropy is constant are connected

and indexed in a strictly monotonous and continuous way by this topological
invariant, except the null measure sets.

3. In the region R5 the topological entropy is constant and equal to its maximum
value ln 2.

Proof. These claims follow easily from the fact that fr;p W Œ0; 1� �! Œ0; 1� is a
family of unimodal maps, having in mind the results in [17, 19, 20], respectively.

Values of the parameters larger than the ones considered above (i.e., p > 20)
do not have a realistic meaning, since they are not adequate to model satisfactorily
any known population. When the values of the parameter r become very large, we
observe that:

� The range of the sudden extinction region increases considerably for large values
of r .

� The ranges of the equilibrium region, of the period doubling region and of
the chaotic region decrease to 0 (i.e., these regions tend to disappear) when r
increases.

� The range of the region where the Allee effect exists increases slowly with r ;
� The differed extinction region range decreases as a function of p.

Thus, for very large values of the parameter p, the populational growth pattern is
extinction.
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5.4 Deterministic Populational Growth Models with Allee
Effect: Heuristic Approach

The essence of the heuristic approach, on which the deterministic models used to
model populations growths of species that exhibit Allee effect are based, dates back
at least to Odum and Allee .1954/, see [21]. The per capita growth rate, dependent
on the expected or observed population size, is modeled by a suitable function. We
shall consider only one population, whose growth in a homogeneous environment
is described by the ordinary differential equation:

dN.t/

dt
D N.t/ g .N.t// (5.3)

or by the difference equation:

NtC1 �Nt D Nt g .Nt / : (5.4)

In both cases N is the population size and g.N / denote the per capita growth rate
dependent of the size N , which is negative for decreasing populations and positive
for increasing populations.

In this work, we consider the cases where the Allee effect occurs at small pop-
ulation sizes; the examples where the Allee effect occurs at large population sizes
are few, see [14]. The per capita growth rate g.N / that describes the Allee effect
is an unimodal function, with a long tail; the maximum rate is obtained for only
one positive dimension, N D C > 0. Below this “optimal” population size, posi-
tive effects of the presence of individuals of the same species prevail and g.N / is
increasing, while above this “optimal” population size, the negative dependence of
the population size dominates and so the per capita growth rate, g.N / is decreasing.
Most of the models include overcapacity and avoid the indefinite growth by assum-
ing a negative per capita growth rate, g.N / < 0, for a population size sufficiently
large. In the aim of analyzing the stability, the values of the per capita growth rate
g.N / should have small oscillations near the equilibrium point (slightly increas-
ing until the equilibrium point, and slightly decreasing soon after this value), and
should be a continuous function for other values of the population size N , as in the
two proposed models, (5.3) and (5.4), see [6]. In the difference equation, (5.4), the
per capita growth rate should satisfy the condition g.Nt / � �1 so that we always
have Nt > 0.

In these heuristic population growth models, (5.3) and (5.4), three basic settings
can occur, see [6]:

Unconditional-Extinction .UE/: If the Allee effect is too strong, the per capita
growth rate g.N / is negative for any population size N and the populations will
inevitably become extinct, whatever the value of its initial size.

Extinction-Survival .ES/: At moderate levels of the Allee effect, the per capita
growth rate g.N / is positive for intermediate values of the population size N ,
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but is negative for very low or very high values of the population size N . Two
equilibrium values exist: the smaller one, which is unstable, denoted by E i , and
the largerEs which is locally stable. The population size at the instant 0, denoted
by E0, that is locally stable, is called trivial equilibrium. The populations whose
dimension at 0 is smaller than the valueE i will become extinct, while those with
dimension at 0 greater than the value E i stabilize at the value Es.

Unconditional-Survival .US/: When the Allee effect gets weaker, the unstable
equilibriumE i vanishes, the trivial equilibriumE0 becomes unstable every time
the per capita growth rate g.N / is positive for all the population size N > 0,
and the population stabilizes in Es, even though its per capita growth rate is still
increasing with N at low populations sizes.

The setting ES is the most familiar consequence of the Allee effect, and the issue
of extinction or survival of the population, is of utmost practical relevance, see [6].

5.5 Models Based on Maps Proportional to the Beta.p; 2/
Densities, with p 2�1; 2Œ and Allee Effect

As it happens in the classical logistic model, and also for the models proportional
to Beta.p; 2/ densities, with 1 < p < 2, the inexistence of a rarefaction critical
dimension E , and consequent inexistence of the Allee effect is a drawback that can
be corrected as described below. We follow closely what is usually done for the
logistic model.

5.5.1 Logistic Map Modified with Allee Effect

Several criticisms have been made to the logistic model, which is frequently used
to model the population growth of certain species. One of these criticisms is related
to the fact that this model does not implement the Allee effect. Indeed, the logistic
equation assumes that the population always increases, even when its dimension
is low; besides, in this case (small population size), this model assumes a fast
population increase. At first sight, this could seem acceptable because the environ-
ment resources are abundant to the few individuals in the population. However, this
assumption is questionable, since for many populations there is a minimal popu-
lation size (rarefaction critical density), denoted by E , required for reproduction.
Below E , the probability that individuals of opposite sexes effectively meet for
reproduction is so small that the population can not recover its dimension in order
to substitute those who die, and finally becomes extinct. In this case, the instanta-
neous growth rate r is negative. AboveE , the probability of the individuals meeting
mates for reproduction is large enough for the population to grow until its carry-
ing capacity K . In this situation, the instantaneous growth rate r is positive. This
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minimal population size E corresponds to a null growth rate, which allows that the
population maintains exactly its dimension at a fixed value. At this density E , the
population is incapable to grow up and maintains its equilibrium value, until some
disturbance happens, leading either to extinction or to growth. Obviously the rar-
efaction critical density E is smaller than the carrying capacity K . Between E and
K there is a variety of populations dimensions for which the instantaneous growth
rate is positive.

The inexistence of a rarefaction critical density E , and consequent inexistence
of the Allee effect in the logistic model, is a drawback that can be corrected. Sev-
eral investigators discussed this issue (see for example the ones mentioned by [6]),
suggesting various models for the per capita growth rate. The basic idea is to intro-
duce a factor in the classic logistic model, T .N.t//, forcing the rate g .N.t// to be
negative as soon as the population size N.t/ is smaller than the rarefaction critical
density E:

g .N.t// D dN.t/

dt

1

N.t/
D r

�
1 � N.t/

K

�
T .N.t// :

5.5.2 Models Based on Maps Proportional to Beta.p; 2/
Densities, with p 2 �1; 2Œ and Allee Effect

Using a similar procedure to the one used in order to correct the logistic model,
we are going to deduce three new models for the per capita growth rate. So, the
basic idea is to introduce in the models proportional to Beta.p; 2/ densities, with
1 < p < 2, a new factor T .N.t//, in such a way that this rate, g� .N.t//, is
negative as soon as the population size N.t/ becomes smaller than the rarefaction
critical density E:

g� .N.t// D dN.t/

dt

1

N.t/
D r�N.t/p�2

�
1 � N.t/

K

�
T .N.t// :

Therefore, using the same three factors T .N.t// suggested by several authors
for the logistic model, see [6], we obtain the three maps to model the per capita
growth rate of a population.

1. Using the factor T .N.t// D 1 � E
N.t/

suggested in [7, 9–11, 24] to inforce the
Allee effect in the logistic model, we obtain the following function for the per
capita growth rate:

g�1 .N.t// D r�N.t/p�2
�
1 � N.t/

K

��
1 � E

N.t/

�
(5.5)
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and consequently, the corresponding population growth rate is given by:

f �1 .N.t// D N.t/ g�1 .N.t// D r�N.t/p�1
�
1 � N.t/

K

��
1 � E

N.t/

�
:

(5.6)
The model (5.6) can be discretized, in order to have the properties allowing its
study using the symbolic dynamic methods. Two important points: the sign of
the Schwarz derivative is not always negative, for 1 < p < 2, and for certain
instantaneous growth rates r the discrete maps that represent the growth rate with
Allee effect take values out of the invariant interval, suggesting the need to study
Cantor sets. The discretized model, designated by Model 1, can be obtained from
the differential equation (5.6), considering that xn D N.tn/

K
and r D r�Kp�2 >

0, in the following way:

N.tnC1/ D f �1 .N.tn// ” xnC1 D rxp�2n .1 � xn/
�
xn � E

K

�
:

Therefore, Model 1 corrected with Allee effect is a map h�1 W Œ0; 1� ! R,
defined by:

h�1.x/ D rxp�2 .1 � x/
�
x � E

K

�
:

2. If we use the factor T .N.t// D N.t/
K
� E

K
used in [4, 5, 15, 16] to correct the

inexistence of the Allee effect in the classical logistic model, we have:

g�2 .N.t// D r�N.t/p�2
�
1 � N.t/

K

��
N.t/

K
� E
K

�
(5.7)

and therefore, the corresponding population growth rate is given by:

f �2 .N.t// D N.t/ g�2 .N.t// D r�N.t/p�1
�
1 � N.t/

K

��
N.t/

K
� E
K

�
:

(5.8)
The discretized model, designated by Model 2, can be obtained from (5.8) as in
the previous model:

N.tnC1/ D f �2 .N.tn// ” xnC1 D rxp�1n .1 � xn/
�
xn � E

K

�
:

So, Model 2 corrected with Allee effect is a map h�2 W Œ0; 1�! R, defined by:

h�2.x/ D rxp�1 .1 � x/
�
x � E

K

�
:
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3. A third possibility is to use the factor T .N.t// D N.t/
E
� 1 suggested in [8, 13],

getting the following function to model the per capita growth rate:

g�3 .N.t// D r�N.t/p�2
�
1 � N.t/

K

��
N.t/

E
� 1

�
(5.9)

and so, the corresponding population growth rate is given by:

f �3 .N.t// D N.t/ g�3 .N.t// D r�N.t/p�1
�
1 � N.t/

K

��
N.t/

E
� 1

�
:

(5.10)
The discretized model, designated by Model 3, obtained from (5.10), is given by:

N.tnC1/ D f3 .N.tn// ” xnC1 D rxp�1n .1 � xn/
�
K

E
xn � 1

�
:

So, Model 3 corrected with Allee effect is a map h�3 W Œ0; 1�! R, defined by:

h�3.x/ D rxp�1 .1� x/
�
K

E
x � 1

�
:

5.6 Characterization of the New Models

We now emphasize some properties of the new models presented above. To accom-
plish it, in this section we established two propositions and state some important
notes about the characteristics of these models.

Proposition 5.1. The models based on the maps proportional to the Beta.p; 2/ den-
sities, with p 2 �1; 2Œ, modified with the Allee effect, h�i , with i D 1; 2; 3, verify the
following propositions:

1. The conditions of the setting ES (Extinction-Survival), which is the more usual
consequence of the Allee effect, are satisfied by the three models presented.

2. The conditions of the setting US (Unconditional-Survival), are satisfied by the
Models 1 and 2, but not by the Model 3.

3. None of these models satisfies the conditions of the setting UE (Unconditional-
Extinction).

Proof. 1. Having in mind the conditions of the setting ES , it follows that for
1 < p < 2 the per capita growth rates pertaining to any of these models, given
respectively by (5.5), (5.7) and (5.9), are positive if and only if r� > 0 ^ 0 <
E < N.t/ < K:

2. (a) In what concerns Model 1, the per capita growth rate g�1 .N.t//, is given
by expression (5.5); considering E D N.0/ D 0, we get
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g�1 .N.t// D r�N.t/p�2
�
1 � N.t/

K

�
:

For 1 < p < 2, as 0 � E � K and 0 � N.t/ � K , we have
N.t/p�2 � 0 and 0 � N.t/

K
� 1; so 1 � N.t/

K
� 0. As r� > 0, it follows

that g�1 .N.t// � 0.
(b) In what concerns Model 2, the per capita growth rate g�2 .N.t//, given by

expression (5.7), if E D N.0/ D 0, then we have

g�2 .N.t// D r�N.t/p�2
�
1 � N.t/

K

�
N.t/

K
:

For 1 < p < 2, as 0 � E � K and 0 � N.t/ � K , then N.t/p�2 �
0 and 0 � N.t/

K
� 1; therefore 1 � N.t/

K
� 0. Having in mind that r� > 0,

we conclude that g�2 .N.t// � 0.
(c) In what concerns Model 3, the per capita growth rate g�3 .N.t// is (5.9), and

for 1 < p < 2, considering E D N.0/ D 0, the expression of g�3 .N.t//
makes no sense because it includes the ratio N.t/

E
which has no meaning.

So, the Model 3 does not satisfy the conditions for the setting US .
3. For any of the three models, the per capita growth rate g�i .N.t//, with
i D 1; 2; 3, is not negative for all the population sizes N.t/. In fact,
g�i .N.t// < 0, for 1 < p < 2, if and only if r� > 0 ^ 0 < E <

K ^ Œ.N.t/ > K/ _ .0 < N.t/ < E/� :
The condition N.t/ > K is impossible, because K corresponds to the carrying
capacity. So, if r� > 0 then g�i .N.t// is negative only if 0 < N.t/ < E , and
therefore it is not negative to any N.t/. Therefore, none of those three models
satisfy the setting UE .

So, we can state that Models 1 and 2 for the per capita growth rate are more flexible
than Model 3, because this one only satisfies the conditions of one setting while the
other two models satisfy the conditions of two settings. The Schwarz derivatives of
these models verify the following result:

Proposition 5.2. The Schwarz derivatives of the Models h�i , with i D 1; 2; 3, do not
depend on the value of the Malthusian parameter r and satisfy Sh�

2
.x/ D Sh�

3
.x/.

Proof. Having in mind the expressions of the Schwarz derivatives for these models,
which are given by:

Sh�

1
.x/ D ��2EK.�2C p/px

�
3C 4p.�1C x/C p2.�1C x/2 C 4x � x2	

2x2 .K.1C p.�1C x//x C E.�2C p C x � px//2

�E
2.2 � 3p C p2/ �6C p2.�1C x/2 � p.5 � 6x C x2/	

2x2 .K.1C p.�1C x//x C E.�2C p C x � px//2

�K
2.�1C p/px2.2C p2.�1C x/2 C 4x C p.�3C 2x C x2//
2x2 .K.1C p.�1C x// x C E.�2C p C x � px//2
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Sh�

2
.x/ D Sh�

3
.x/ D ��2EK.�1C p

2/x
�
p2.�1C x/2 C 6x C 2p.�1C x2/	

2x2 .Kx .p.�1C x/C x/C E.�1C p � px//2

�E
2.�1C p/p �2C p2.�1C x/2 C 4x C p.�3C 2x C x2/	

2x2 .Kx .p.�1C x/C x/C E.�1C p � px//2

�K
2p.1C p/x2 �p2.�1C x/2 C 2x.2C x/C p.�1 � 2x C 3x2/	

2x2 .Kx .p.�1C x/C x/C E.�1C p � px//2

we observe that none of them depends on r , and Sh�

2
.x/ D Sh�

3
.x/.

Remark 5.2. For any of the models h�i , with i D 1; 2; 3, the negativity of the
Schwarz derivative is not verified in all the interval Œ0; 1�. This unimodal maps prop-
erty is not satisfied in a subinterval Œ0; xdi � 	 Œ0; 1�. This positivity of the Schwarz
derivative near the origin is due to the fact that the first three derivatives of each
one of the models h�i , with i D 1; 2; 3, go to 1 when x goes to 0. Moreover, the
value of the point xdi depends on the model h�i , which is associated to a parameter
p 2�1; 2Œ, and it also depends on the values of E and K .
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Chapter 6
Power Indices Applied to Portuguese Parliament

José M. Alonso-Meijide, Flávio Ferreira, Mikel Álvarez-Mozos,
and Alberto A. Pinto

Abstract In this paper, we apply the following four power indices to the Por-
tuguese Parliament: Shapley–Shubik index, Banzhaf index, Deegan–Packel index
and Public Good Index. We also present the main concepts related with simple
games and discuss the features of each power index by means of their axiomatic
characterizations.

6.1 Introduction

The problem of assessing an a priori distribution of power among the members
of decision making bodies is addressed mainly using game theoretical tools. It is
indeed a very useful application of mathematics to social sciences. Simple games
are used to model decision making bodies. A simple game is a special kind of
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cooperative game where the worth of each coalition is either 1 if the coalition can
pass a bill independently of what the remaining voters do, or 0 if they can’t pass
the bill. In this framework power indices are used as a measure of the ability of
each player to transform a losing coalition into a winning one. In the literature one
can find many different such power indices, each of them satisfying different sets of
properties, and there is little to no consensus on which choice is the most appropriate
in a particular context.

The first proposed power index can be found in Shapley and Shubik [11], where
the Shapley value [10] is reinterpreted in the context of simple games giving rise
to the Shapley–Shubik index. Another important power index is the Banzhaf index,
which was proposed by Banzhaf [3]. Both indices are based on the swings of a
player. A winning coalition is called a swing for a player if the removal of this
player from the coalition would turn the coalition into a losing one. In Banzhaf’s
model the power of an agent is proportional to his number of swings, whereas the
Shapley–Shubik index is a weighted sum of the swings of a player where the weights
are sensitive to the size of the coalition.

Other important power indices include the Deegan–Packel index [4] and the Pub-
lic Good Index [7], which are based on minimal winning coalitions. A winning
coalition is a minimal winning coalition when all its members are critical, that is to
say, when the removal of any member from the coalition would turn it into a los-
ing coalition. Indeed, the set of minimal winning coalitions is enough to describe a
simple game. The Deegan–Packel index assumes that all minimal winning coalitions
are equally likely and that all players belonging to a minimal winning coalition have
the same power. Alternatively, the Public Good Index is determined by the number
of minimal winning coalitions containing a given voter divided by the sum of such
numbers across all the voters.

In this paper we first present the above mentioned power indices and discuss the
properties that characterize them. The characterizations of power indices are espe-
cially interesting since they provide an appealing set of properties that if accepted
as reasonable, make each power index unique. Finally, we analyze the distribu-
tion of power in the Portuguese Parliament using power indices and present our
conclusions.

6.2 Preliminaries

In this section, we provide the main ideas behind simple games and power indices.
In particular, we recall the definitions of the Shapley–Shubik index, the Banzhaf
index, the Deegan–Packel index and the Public Good Index.

6.2.1 Simple Games

A characteristic function game is a pair .N; v/ ; where N D f1; : : : ; ng is the set of
players and v, the characteristic function, is a real function on 2N D fS W S 
 N g
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with v .;/ D 0: A subset S 
 N is called a coalition. Shorthand notation will be
used and S [ fig and Sn fig will be denoted by S [ i and Sni .

A null player in a game .N; v/ is a player i 2 N such that v .S [ i/ D v .S/ for
all S 
 Nni . Two players i; j 2 N are symmetric in a game .N; v/ if v .S [ i/ D
v .S [ j / for all S 
 Nn fi; j g :

An important subclass of characteristic function games is the class of simple
games. A simple game is a characteristic function game .N; v/ such that:

� v .S/ 2 f0; 1g for every S 
 N .
� v is a monotone function, that is, v .S/ � v .T / ; for every S 
 T 
 N:
� v .N / D 1.

SI .N / denotes the set of simple games with player set N: In a simple game
.N; v/; a coalition S 
 N is winning if v .S/ D 1; and S is losing if v .S/ D 0.
W .v/ denotes the set of winning coalitions of the game .N; v/ andWi .v/ the subset
of W .v/ formed by coalitions S 
 N such that i 2 S: A winning coalition S 
 N
is a minimal winning coalition if every proper subset of S is a losing coalition, that
is, S is a minimal winning coalition in .N; v/ if v .S/ D 1 and v .T / D 0 for any
T 	 S .M .v/ denotes the set of minimal winning coalitions of the game .N; v/ and
Mi .v/ the subset of M .v/ formed by coalitions S 
 N such that i 2 S:

Given a simple game .N; v/, a swing for a player i 2 N is a coalition S 
 N

such that Sni is a losing coalition and S is a winning one. �i .v/ denotes the set
of swings for player i 2 N . A winning coalition S 
 N is a minimal winning
coalition if and only if S 2 �i .v/ for every i 2 S .

Given a family of simple gamesH 
 SI .N / ; a power index onH is a function
f , which assigns to every simple game .N; v/ 2 H a vector

.f1 .N; v/ ; : : : ; fn .N; v// 2 Rn;

where the real number fi .N; v/ is the “power” of the player i in the game .N; v/
according to f: The power index of a simple game can be interpreted as a measure
of the ability of the different players to turn a losing coalition into a winning one. It
is useful to single out a list of desirable properties a power index may satisfy.

– A power index f satisfies the null player property if fi .N; v/ D 0 for every
.N; v/ 2 H and every null player i 2 N:

– A power index f is symmetric if fi .N; v/ D fj .N; v/ for every .N; v/ 2 H and
for every pair of symmetric players i; j 2 N:

– A power index f is efficient if
P
i2N fi .N; v/ D 1 for every .N; v/ 2 H:

Young [12] proposed the strong monotonicity property.

– A power index f satisfies strong monotonicity if fi .N; v/ � fi .N;w/ for every
pair of games .N; v/ ; .N;w/ 2 H and for all i 2 N such that v .S [ i/�v .S/ �
w .S [ i/� w .S/ for all S 
 Nni:
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A set of independent properties (an axiomatic system) is a convenient tool to
decide on the use of an index. The indices of Shapley–Shubik, Banzhaf, Deegan–
Packel, and Public Good Index are efficient, symmetric, and satisfy the null player
property.

6.2.2 Shapley–Shubik Index

Given a simple game .N; v/ ; the Shapley–Shubik power index assigns to each player
i 2 N the real number

'i .N; v/ D
X

S2
i .v/

.s � 1/Š .n � s/Š
nŠ

;

where s is the number of members in S . Given n players, nŠ is the number of per-
mutations, .s � 1/Š .n � s/Š counts the permutations that maintain members of S
consecutively.

In the class of simple games, the additivity property introduced by Shapley [10]
does not apply because the sum of two simple games is not a simple game.
Dubey [5] proposed the transfer property as a substitute of the additivity property
and characterized the Shapley value in this class of games.

– A power index f onH 
 SI .N / satisfies the transfer property if for all .N; v/;
.N;w/ 2 H such that .N; v_ w/, .N; v ^ w/ 2 H , f .N; v_ w/ C
f .N; v^ w/ D f .N; v/C f .N;w/ where for all S 
 N

.v _ w/ .S/ D max fv.S/;w .S/g and .v ^ w/ .S/ D min fv .S/ ;w .S/g :

The characterization is presented below.

� The unique power index on SI .N / that satisfies transfer, null player, symmetry,
and efficiency is the Shapley–Shubik index.

6.2.3 Banzhaf Index

Given a simple game .N; v/; the non-normalized Banzhaf index assigns to each
player i 2 N the real number:

ˇ0i .N; v/ D
j�i .v/j
2n�1

:

Dubey and Shapley [6] characterized the Banzhaf index in a similar way to that
introduced by Shapley and Shubik to characterize the Shapley–Shubik index. They
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use a property of total power instead of efficiency. The total power property states
that power of players adds up to the total number of swings divided by the number
of coalitions which can join to player i 2 N .

– A power index f defined on H 
 SI.N / satisfies the total power property
if
P
i2N fi .N; v/ D � .v/ =2n�1; for every simple game .N; v/ 2 H; where

� .v/ DPi2N j�i .v/j :
� The unique power index on SI .N / that satisfies transfer, null player, symmetry,

and total power is the Banzhaf index.

To achieve efficiency a normalized version of the Banzhaf index is considered.
Given a simple game .N; v/; the Banzhaf index assigns to each player i 2 N the
real number:

ˇi .N; v/ D ˇ0i .N; v/P
j2N ˇ0j .N; v/

:

6.2.4 Deegan–Packel Index

The power index introduced in Deegan and Packel [4] assumes that

(a) Only minimal winning coalitions will emerge victorious.
(b) Each minimal winning coalition has an equal probability of forming.
(c) Players in a minimal winning coalition divide the “spoils” equally.

These assumptions seem reasonable in a wide variety of situations. The assump-
tions determine the Deegan–Packel index. Given a simple game .N; v/; this index
assigns to each player i 2 N the real number:

�i .N; v/ D 1

jM .v/j
X

S2Mi .v/

1

jS j :

The Deegan–Packel index of a player i is equal to the sum of the inverse of the
cardinality of S for the coalitions S 2 Mi .v/, divided by the cardinality of M .v/
in order to achieve normalization.

The Deegan–Packel index does not satisfy the transfer property, but it satisfies the
property of DP-mergeability. Two simple games .N; v/ and .N;w/ are mergeable if
for all pair of coalitions S 2M .v/ and T 2M.w/; it holds that S ª T and T ª S:

The minimal winning coalitions in game .N; v_ w/ are precisely the union of the
minimal winning coalitions in games .N; v/ and .N;w/. If two games .N; v/ and
.N;w/ are mergeable, the mergeability condition guarantees that jM .v _ w/j D
jM .v/j C jM .w/j :
– A power index f on H 
 SI .N / satisfies the DP-mergeability property if for

any pair of mergeable simple games .N; v/; .N;w/ 2 H such that .N; v_ w/ 2
H , it holds that for every player i 2 N :
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fi .N; v _ w/ D jM .v/j fi .N; v/C jM .w/jfi .N;w/
jM .v _ w/j :

This property states that the power in a merged game is a weighted mean of the
power in the two component games, where the weights come from the number
of minimal winning coalitions in each component game, divided by the num-
ber of minimal winning coalitions in the merged game. Deegan and Packel [4]
characterized � as follows.

� The unique power index on SI .N / that satisfies DP-mergeability, null player,
symmetry, and efficiency is the Deegan–Packel power index.

Lorenzo–Freire et al. [9] characterized the Deegan–Packel index replacing the
property of DP-mergeability with the property of DP-minimal monotonicity.

– A power index f defined on H 
 SI.N / satisfies the property of DP-minimal
monotonicity if for any pair of games .N; v/, .N;w/ 2 H , it holds that for each
player i 2 N such that Mi .v/ 
Mi .w/,

fi .N;w/jM.w/j � fi .N; v/jM.v/j:

i.e., if the set of minimal winning coalitions containing a player i 2 N in game
.N; v/ is a subset of minimal winning coalitions containing this player in game
.N;w/, then the power of player i in game .N;w/ is not less than power of player
i in game .N; v/ (first, this power must be normalized by the number of minimal
winning coalitions in games .N; v/ and .N;w/).

� The unique power index on SI.N / that satisfies DP-minimal monotonicity, null
player, symmetry, and efficiency, is the Deegan–Packel power index.

6.2.5 Public Good Index

The Public Good Index, introduced in Holler [7], considers that only minimal win-
ning coalitions are relevant when it comes to measuring power. Then, given a simple
game .N; v/, the Public Good Index assigns to each player i 2 N the real number:

ıi .N; v/ D jMi .v/jP
j2N

ˇ̌
Mj .v/

ˇ̌ :

The Public Good Index of a player i is equal to the total number of minimal
winning coalitions containing player i; divided by the sum of these numbers over
all players.

An axiomatic characterization of this index can be found in Holler and Packel [8].
This characterization has qualities similar to the characterization of the Deegan–
Packel index with the property of DP-mergeability.
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– A power index f defined on H 
 SI.N / satisfies the PGI-mergeability prop-
erty if for any pair of mergeable simple games .N; v/; .N;w/ 2 H such that
.N; v_ w/ 2 H , it holds that for all player i 2 N :

fi .N; v_ w/ D fi .N; v/
P
j2N

ˇ̌
Mj .v/

ˇ̌C fi .N;w/Pj2N
ˇ̌
Mj .w/

ˇ̌
P
j2N

ˇ̌
Mj .v _ w/

ˇ̌ :

� The unique power index on SI.N / that satisfies PGI-mergeability, null player,
symmetry, and efficiency is the Public Good Index.

A new characterization of Public Good Index is provided in Alonso-Meijide
et al. [1], using a property similar to strong monotonicity [12] instead of PGI-
mergeability. This property is named PGI-minimal monotonicity. It describes the
relation between the power indices of two games, .N; v/ and .N;w/, in terms of the
sizes of the sets of minimal winning coalitions.

– A power index onH 
 SI.N / satisfies the property of PGI-minimal monotonic-
ity if for any pair of games .N; v/, .N;w/ 2 H , it holds that:

fi .N;w/
X

j2N

ˇ̌
Mj .w/

ˇ̌ � fi .N; v/
X

j2N

ˇ̌
Mj .v/

ˇ̌
;

for all player i 2 N such that Mi .v/ 
Mi .w/.

This property states that if the set of minimal winning coalitions containing a
player i in game .N; v/ is a subset of minimal winning coalitions containing this
player in game .N;w/, then the power of player i in game .N;w/ is not less than
power of player i in game .N; v/ (first, this power must be normalized by the number
of minimal winning coalitions of every player in games .N; v/ and .N;w/).

For any two simple games .N; v/ and .N;w/, and for all i 2 N such that
jMi .v/j D jMi .w/j, using the PGI-minimal monotonicity property, it holds that

fi .N;w/
X

j2N

ˇ̌
Mj .w/

ˇ̌ D fi .N; v/
X

j2N

ˇ̌
Mj .v/

ˇ̌
;

that is, a relation between the power index of the player i in the two games is
obtained.

� The unique power index on SI.N / that satisfies PGI-minimal monotonicity, null
player, symmetry, and efficiency is the Public Good Index.
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Table 6.1 Shapley–Shubik index, the Banzhaf index, the Deegan–Packel index and the Public
Good Index for the parties of the Portuguese Parliament (IX Term of office; 2002)

Parties Members S.S. Banz. D.P. P.G.I.

PPD/PSD 105 0.47 0.46 0.33 0.31
PS 96 0.18 0.18 0.17 0.15
CDS/PP 14 0.18 0.18 0.17 0.15
PCP 10 0.13 0.14 0.20 0.23
BE 3 0.02 0.02 0.07 0.08
PEV 2 0.02 0.02 0.07 0.08

6.3 Application to the Portuguese Parliament

In Table 6.1, we compute the Shapley–Shubik index, the Banzhaf index, the
Deegan–Packel index and the Public Good Index for the parties of the Portuguese
Parliament (IX Term of office; 2002).

We observe that PS has many more members than CDS/PP, but they have the
same power because they are symmetric. We also note that PCP has fewer members
than PS, but its Deegan–Packel and Public Good indices are higher. This is due to
the fact that in these indices only minimal winning coalitions are taken into account,
and PCP belongs to 3 minimal winning coalitions while PS is involved in just 2.

Finally, we claim that the realistic situation is not as simple as we considered
in this work. In this simple model we do not take into account the ideology nor
the capacity to persuade that each player has. There are several ways to include
additional information in the model in order to attain a more realistic index. One
approach would be to consider that players are divided into a priori unions and that
they cannot form coalitions in which the whole union is not involved, this would
give rise to the games with a priori unions. Another way to extend the model is to
consider that players can only communicate through a given undirected graph, with
this consideration we obtain the games with graph restricted communication.
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Chapter 7
A Methodological Contribution in the Theory
of the Firm Under Uncertainty

Alberto A. Álvarez-López and Inmaculada Rodrı́guez-Puerta

Abstract We show a simple methodology (or scheme to work) to study
comparative-static effects in some models of the theory of the firm under uncer-
tainty. We present this methodology in detail for a basic production model with only
one decision variable (SANDMO’s model). Then we sketch it for a model with two
decision variables (HOLTHAUSEN’s model with a forward market), and for a model
of optimal allocation of production (a two-ends model, of our own).

7.1 Introduction

In recent papers, some results in models of the theory of the firm under uncertainty
are frequently proved with the aid of geometrical methods, which have become a
useful tool for it.1 In this short survey we present an alternative methodology (or
scheme to work) to study properties and comparative-static effects in models of this
theory.

We illustrate the methodology in detail for one of the basic models of the theory:
the well-known SANDMO’s model, as presented in [7]. This is a model of one deci-
sion variable: the amount of output to be produced, and with only one source of
uncertainty: the price at which that output will be sold. For this model, we are able
to prove easily some important properties and also comparative-static results.

Then we show the methodology for a model which enhances directly that
of SANDMO by considering a second decision variable: HOLTHAUSEN’s model
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Área de Métodos Cuantitativos, Departamento de Economı́a, Métodos Cuantitativos e Historia
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(see [4]). The second variable is the amount of output to be hedged in a forward
market which is assumed to exist for the output. We see that a second variable is not
a difficulty to obtain results with the same scheme.

Finally, we turn to a one-variable model, this of our own (see [6]), which is of
a different kind. Unlike SANDMO’s model, the amount of output is fixed, and what
the firm decides is the allocation of this output between two possible ends. One of
these ends has a certain price, and the other has an uncertain price. The way the firm
faces uncertainty is different from that of the previous models. For this model we
also have comparative-static results in the same manner.

This methodology is based on analytical methods. We also make use of a lemma
adapted from [5], scarcely used in the literature (Lemma 7.1 in Appendix). This
lemma gives us useful bounds for products of random variables.

7.2 The Basic Model (One Decision Variable)

We consider a competitive firm which produces a single output and faces uncertainty
in the price at which this output will be sold. The firm has to decide the amount of
output to be produced before the sale date, that is, before knowing the spot price.

For the firm, the price is a non-degenerate random variable P � 0 with expec-
tation � > 0. The total cost of producing an amount q � 0 is given by C.q/ D
c.q/CB , whereB is a fixed cost and c.q/ stands for variable costs, so that c.0/ D 0.
We assume that the function C is of class C 2 on RC and such that C 0 > 0

and C 00 > 0. The firm’s attitude towards risk is modeled by a BERNOULLI util-
ity function u, regular enough (at least of class C 2 on R) and such that u0 > 0

and u00 < 0. In particular, the firm is risk averse.
For each level of output q, the firm’s profit is given by �.q/ � Pq �C.q/.2 The

firm seeks to maximize the expected utility of this profit, that is:

max
q2RC

U.q/;

where U.q/ � E
�
u
�
�.q/

	�
. The first and second derivatives of U are:

U 0.q/ D E
�
u0.�/

�
P � C 0.q/	�

and
U 00.q/ D E

�
u00.�/

�
P � C 0.q/	2� � C 00.q/ E

�
u0.�/

�
:

According to the hypotheses, we have that U 00 < 0 on RC, and thus the func-
tionU is strictly concave on RC. Henceforth, we will assume that this maximization

2 When possible, we will write simply � instead of �.q/.
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problem has a solution q�, which is not excluded to be null.3 The strict concav-
ity of U assures that this solution is also unique. Notice that q� D 0 if and only
if U 0.0/ � 0. In addition, the equality U 0.q/ D 0 is a sufficient condition for q � 0
to be the unique solution q�.

Now we consider the following function:

F.q/ D E
�
u0
�
�.q/

	
P
�

E
�
u0
�
�.q/

	� ; q � 0 ;

with derivative:

F 0.q/ D E
�
u00
�
�.q/

	 �
P � C 0.q/	 �P � F.q/	�

E
�
u0
�
�.q/

	� :

This function is closely related to the marginal utility U 0:

U 0.q/ D �F.q/� C 0.q/	 E
�
u0
�
�.q/

	� I (7.1)

in particular, the equality F.q/ D C 0.q/ is a sufficient condition for q D q�. We
also have that F.0/ D �, and that F.q/ < � for all q > 0. The latter can be
proved by applying Lemma 7.1 with the random variable X D P � �, and the
functions � 1 and �.s/ D u0

�
.sC�/q�C.q/	. Indeed, the function � is strictly

decreasing when q > 0, and we obtain:

E
�
u0.�/ .P � �/� < �.0/ � EŒP � �� D 0 ;

and hence F.q/ < �.
The function F and the equality (7.1) are useful to obtain properties of the

solution q�, and also comparative-static results. As a first example, we can give
a characterization of the case of corner solution: the optimal level of output q� is
positive if and only if � > C 0.0/. Indeed, writing (7.1) for q D 0, and recalling
that F.0/ D �, we have:

U 0.0/ D �� � C 0.0/	 u0.�B/ ;

and thus � > C 0.0/ is equivalent to U 0.0/ > 0, but this is equivalent to q� > 0.
From now on, we will assume that the unique optimal solution q� is positive,

so that the optimal solution q� is characterized by the condition F.q�/ D C 0.q�/.
According to the well-known fact that, under certainty, the firm decides to produce
that level of output for which the marginal cost equals the price, the characterization
of q� gives us a simple interpretation of the number F.q�/: if it were possible for

3 It can be proved that a sufficient condition of existence of a solution for this problem
is: lim

q!C1

C 0.q/ > � (with limit possibly infinity).
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the firm to sell its product under a certain price, F.q�/ would be the value of that
price for which the firm decides to produce exactly q� units of output.4

We can also prove easily the main result obtained by SANDMO in [7]: the optimal
production of the firm under price uncertainty is smaller than that when the price is
known to be equal to the expected price �. Indeed: we have: F.q�/ D C 0.q�/, and
thus C 0.q�/ < �; since the function C 0 is strictly increasing, q� is smaller than that
value of q for which C 0.q/ is equal to �.

Finally, we illustrate a comparative-static effect. If � denotes a parameter of
the model, we can write F.qI �/ to stand for the further dependence of F on �,
and dq�=d� to stand for the corresponding comparative-static effect. From the
characterization F.q�I �/ D C 0.q�/, we can write:

dq�

d�
D � F 0�.q�I �/

F 0.q�/� C 00.q�/ I

since F 0.q�/ D E
�
u00.�/

�
P � C 0.q�/	2�=E

�
u0.�/

�
< 0, the denominator is nega-

tive, so that the sign of dq�=d� is the same as that of the numerator F 0�.q�I �/. For
instance, if we focus our attention on the fixed cost B , we have:

F 0B.q�IB/ D �
E
�
u00.��/

�
P � C 0.q�/	�

E
�
u0.��/

� ;

where �� � �.q�/ D Pq� � C.q�/. Now, if ru denotes the ARROW–PRATT

measure of absolute risk aversion, we can write:

�E
�
u00.��/

�
P � C 0.q�/	� D E

�
ru.�

�/ u0.��/
�
P � C 0.q�/	�:

Assume that the firm exhibits DARA. Setting:

 .s/ D u0
�
.sCC 0.q�//q��C.q�/	 and �.s/ D ru

�
.sCC 0.q�//q��C.q�/	;

thus  > 0 and � is decreasing; withX D P �C 0.q�/, from Lemma 7.1 we obtain:

�E
�
u00.��/

�
P � C 0.q�/	� � �.0/ E

�
u0.��/

�
P � C 0.q�/	� D 0;

where the last factor is null due to the first order condition. Hence, if the firm exhibits
DARA, then dq�=dB � 0. And, mutatis mutandis, we could prove that dq�=dB D 0
or dq�=dB � 0 depending on whether the firm exhibits CARA or IARA, respec-
tively. Both in [7] and [5], we can find the same result, with a different proof in each
case.

4 If the firm exhibits CARA, we can easily see that F.q/ does not depend on the cost C.q/. This
fact lets us give a deeper interpretation of the number F.q/ (for any given value q > 0) in the
CARA case. See [2].
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7.3 The Basic Model With a Forward Market
(Two Decision Variables)

HOLTHAUSEN, in [4], enhances SANDMO’s model by considering a forward market
for the output produced by the firm, so that the firm has now a second decision
variable: the amount h of output hedged in the forward market, at a certain price b.
Now, the firm’s profit is given by:

�.q; h/ D Pq C bh� Ph � C.q/ D P.q � h/C bh� C.q/ ;

and the firm seeks to maximize the expected utility of this profit, that is, it seeks to
maximize U.q; h/ � E

�
u
�
�.q; h/

	�
.5

For this model, we consider the following function:

F.q; h/ D E
�
u0
�
�.q; h/

	
P
�

E
�
u0
�
�.q; h/

	� ; q 2 RC ; h 2 R :

If we assume that there is an interior, unique solution .q�; h�/ for the maximization
problem, this optimal solution is characterized by the conditions:

F.q�; h�/ D C 0.q�/ and F.q�; h�/ D b:

We see that b D C 0.q�/,6 which establishes that the optimal output to be produced
will not be affected by variations in elements of the model different from the forward
price or the marginal cost. Other comparative-static effects for this model could only
influence the optimal hedging h�. We can explore them as we did for SANDMO’s
model. With analog notations, from the characterization F.q�; h�/ D b we write:

dh�

d�
D �F

0
�.q
�; h�I �/

F 0
h
.q�; h�/

;

where F 0
h
.q�; h�/ D �E

�
u00.�/ .b � P/2�=E

�
u0.�/

�
> 0, so that the sign

of dh�=d� is the opposite of that of the numerator F 0�.q�; h�I �/. For instance,
for � D B (a variation of the fixed cost), we are able to prove this result: if the firm
exhibits DARA, then dh�=dB � 0 when b < �, and dh�=dB � 0 when b > �;
and the contrary inequalities hold if the firm exhibits IARA.7

5 This is a maximization problem over RC 	 R: the variable q is restricted to be non-negative
(as in SANDMO’s model), but the variable h has no restrictions. From the firm’s point of view, the
operation in the forward market is interpreted as a sale if h > 0, and as a purchase if h < 0. For
further explanations of the exact meaning of a sale or a purchase in this market, see [4] or [1].
6 In [4], the author obtains this result simply by adding the two first order conditions.
7 This effect was not studied by HOLTHAUSEN in [4]. For a complete proof, although with a
different method, see [1].
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7.4 A Two-Ends Model

Now we consider a different situation.8 The firm has just produced a known
amount qT of its output, and has two possible ends for it. The firm’s decision
is which amount of output is allocated for each one. We assume that the total
amount qT is fully distributed between the two ends, so that the firm chooses the
quantity q to be allocated for the first one, and the quantity for the second one will
be qT � q. The price p for the first end is certain, but the price P for the second one
is uncertain. The firm’s profit is given by �.q/ D pqCP.qT � q/�B , where B is
here the cost of producing the total amount qT , and the firm seeks to maximizeU.q/
over the interval Œ0; qT �, where U.q/ � E

�
u
�
�.q/

	�
. It follows easily that there is a

unique solution q� for this problem (possibly a corner solution).
Here, we consider a function which formally is the same as that considered in

Sect. 7.2:

F.q/ D E
�
u0
�
�.q/

	
P
�

E
�
u0
�
�.q/

	� ; 0 � q � qT :

Assuming that the optimal solution is interior, the equality F.q�/ D p is a
characterization of the optimal solution. From this equality, we can easily obtain
comparative-static effects for this model as we did for the models studied in the pre-
vious sections. The result about a variation in the costB is the following: depending
on whether the firm exhibits DARA, CARA or IARA, we have: dq�=dB � 0,
dq�=dB D 0 or dq�=dB � 0, respectively. For a proof, see [6], where there is a
more general result.

7.5 Concluding Remarks

As we can see, the methodology we present requires to consider an auxiliary func-
tion F defined in the form: EŒu0.�/ P �=EŒu0.�/�, where � can have been defined
with one or two variables. This function lets us establish a simple characterization
of the optimal solution. Next, by applying the Implicit Function Theorem to this
characterization, one can obtain easily the comparative-static effects with the aid of
Lemma 7.1.

Formally, the three models presented here are studied almost in the same manner.
This suggests a possible generalization. In [2] we indeed give a general framework
in which these three models are particular cases.
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Appendix

The following lemma, with a minor modification, is taken from [5]:

Lemma 7.1. Let  and � be two real functions defined on R such that > 0 and �
is increasing. If � D  � �, and X is a non-degenerate real random variable such
that the expectation EŒX  .X/� is finite, then:

EŒX �.X/� � �.0/EŒX  .X/� ;

and the contrary inequality holds when � is decreasing. In addition, if � is strictly
increasing or strictly decreasing, the corresponding inequality also holds strictly.

Proof. See [5], or [6]. ut
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Chapter 8
Explosion of Smoothness for Conjugacies
Between Unimodal Maps

José F. Alves, Vilton Pinheiro, and Alberto A. Pinto

Abstract Let f and g be C r unimodal maps, with r � 3, topologically conjugated
by h and without periodic attractors. If h is strongly differentiable at a point p in the
expanding setE.f /, with h0.p/ ¤ 0, then, there is an open renormalization interval
J such that h is a C r diffeomorphism in the basin B.J / of J , and h is not strongly
differentiable at any point in I n B.J /. The expanding set E.f / contains all points
with positive Lyapunov exponent, and if f has a Milnor’s interval cycle attractor A
then E.f / has full Lebesgue measure.

8.1 Introduction

Sullivan proved that if a topological conjugacy between analytic uniformly expand-
ing maps of the circle is differentiable at a point then the conjugacy is analytic.
De Faria, Jiang and Rand, among others, extended this result in many ways (see
Yunping Jiang survey [16]). For instance, Pinto and Ferreira [9] proved that if a topo-
logical conjugacy between dynamical systems in hyperbolic basic sets on surfaces
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is differentiable at a point, in the basic set, then the conjugacy has a smooth exten-
sion to an open set on the surface. The purpose of this paper is, given a topological
conjugacy h W I ! J between smooth unimodal maps f and g, to present sufficient
conditions in just one point p 2 I that imply the differentiability of the topological
conjugacy h in an open set O contained in I , such that h has non-zero derivative at
every point in O .

8.2 Unimodal Maps

Let I be a compact interval and f W I ! I a C 1C map. We say that c is a non-flat
turning point of f if there exist ˛ > 1 and a C r diffeomorphism � defined in a
small neighborhoodK of 0 such that

f .c C x/ D f .c/C �.jxj˛/ for every x 2 K . (8.1)

We say that ˛ is the order of the turning point c and denote it by ordf .c/. We say
that f is a unimodal map, if (a) f .@I / 	 @I ; (b) f has only one of turning point c;
and (c) the turning point c is non-flat.

A point p 2 I is called nearby expanding, if there is a sequence of points pn
coverging to p and a sequence of open intervals Vn 3 pn with the following prop-
erty: there is ı > 0 and a sequence kn tending to infinite such that (a) f kn jVn

is a
diffeomorphism and (b) f kn.Vn/ D Bı.f

kn.pn//. We denote the set of all nearby
expanding points of f by eE.f /.

A set A 	 J is said to be forward invariant if f .A/ 	 A. The basin B.A/ of a
positively invariant set A is the set of all points x 2 J such that its omega limit set
!.x/ is contained inA. A forward invariant compact setA 	 J is called a (minimal)
attractor, in Milnor’s sense, if the Lebesgue measure of its basin is positive and there
is noforward invariant compact set A0 strictly contained in A such that B.A0/ has
non zero measure.

A open interval J is a renormalization interval of a unimodal map f , if there
is n � 1 such that f njJ is also a unimodal map. In this case, the forward orbit
OC.J / D J [ � � � [ f n�1.J / of J is a positive invariant set. For simplicity, let us
denote B.OC.J // by B.J / and call it the basin of J . Note that B.J / is exactly the
set of points whose forward orbit intersects J . The accessible boundary @�B.J / 	
@B.J / of the renormalization interval J is the union of the boundary points of all
connected components of B.J /.

A periodic point p with period n 2 N is called weak repelling periodic point
if it is a neutral periodic point (i.e., jDf n.p/j D 1) and there is a neighborhood
V of p such that f njV is a diffeomorphism with limj!C1.f njV /�j .x/ D p for
all x 2 V .

The attractors of a C r non-flat multimodal map are one of the following three
types: (a) a periodic attractor; (b) a minimal set with zero Lebesgue measure; or (c)
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a cycle of intervals such that the omega limit set of almost every point in the cycle
is the whole cycle (see [46]).

We note that, a map h W I ! I is a C 1 map if, and only if, for every point p 2 I

lim
x;y!p

x¤y

h.x/ � h.y/
x � y D h0.p/:

Hence, we say that h is strongly differentiable at a point p 2 I if, and only if, the
above condition holds for p.

Theorem 8.1. Let f and g be C r unimodal maps, r � 3, topologically conjugated
by h, without periodic attractors and neutral periodic points. Assume that h is strong
differentiable at a point p 2 eE.f /, with h0.p/ ¤ 0.

Then, either

(a) h is a C r diffeomorphism in the full interval I .
(b) there is a renormalization interval J 
 I such that

a. h is a C r diffeomorphism in the basin B.J /.
b. h is not strongly differentiable at any point of @B.J /.

Taking f; g and h as in the above theorem, one can show that if f is not infinitely
renormalizable then eE.f / D I . In particular, if f has a absolutely continuous
invariant probability then eE.f / D I . On the other hand, if f is infinitely renor-
malizable then eE.f / is a dense set, but with zero Lebesgue measure. In any of the
above cases, if h is differentiable at the repeller fixed point x 2 @I of the unimodal
map f , then h is C r in the full interval I .

Shub and Sullivan [41] proved that if a conjugacy between expanding circle maps
is absolutely continuous then it is smooth. They also proved that if the expand-
ing circle maps have the same set of eigenvalues, then the conjugacy is smooth.
M. Martens and W. de Melo [30] extended this last result to unimodal maps with
attractors that are cycle of intervals. M. Lyubich [26] proved thatC 2 unimodal maps
with Fibonnaci combinatorics and with the same eigenvalues are C 1 conjugate. In
[4], using Theorem 8.1, we prove that if the conjugacy for smooth unimodal maps,
with attractors that are cycle of intervals, is absolutely continuous then it is smooth.

Theorem 8.2. Let f be a C 3 unimodal map without periodic attractors and neutral
periodic points and such that the critical point is not pre-periodic. If g is a C 3

unimodal map, topologically conjugated to f by h, with a different order at the
critical point, then h is not strongly differentiable at any point p 2 eE.f / with
h0.p/ ¤ 0.

For a typical stochastic parameter � 2 Œ0; 4� of the quadratic family f�.x/ D
�x.1� x/, with x 2 Œ0; 1�, the set !.c/ intersects the interior of the attractor A. Let
g be a C 3 unimodal map topologically conjugated to f�, by a homeomorphism h,
for some typical stochastic parameter �. By the above corollary, if ordg.h.c// ¤ 2

then h is not strong differentiable at any point p 2 Œ�1; 1�, with h0.p/ ¤ 0.
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In [4], we prove the above results and we extend them to multimodal maps and
to non-uniformly expanding maps with singular sets and discontinuities.
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Chapter 9
Multidimensional Rovella-Like Attractors

Vı́tor Araújo

Abstract In a joint work with A. Castro, V. Pinheiro (both from Federal Univ. of
Bahia) and M. J. Pacifico (Federal University of Rio de Janeiro), we construct a mul-
tidimensional flow exhibiting a Rovella-like attractor: a compact transitive invariant
set with an equilibrium accumulated by regular orbits and a partially hyperbolic
splitting of the tangent bundle with a multidimensional non-uniformly expanding
direction. Moreover, this attractor has a physical measure with full support which is
a u-Gibbs state. As in the 3-dimensional Rovella attractor, this example is not robust.
This introduces a class of multidimensional dynamics where Benedicks–Carleson
arguments can be applied to get persistent non-uniform expansion.

9.1 Introduction

In [3], Bonatti–Pumarino–Viana define a uniformly expanding map on a k-
dimensional torus, suspend it as a time-one map of a flow, and then singularize the
flow adding a singularity in a convenient flow-box. This procedure creates a new
dynamics on the torus presenting a multidimensional version of the one-dimensional
expanding Lorenz-like map. For the Lorenz attractor and singular-hyperbolic attrac-
tors in general see e.g. [2]. The quotient of the return map to the global cross-section
over the stable directions, see Fig. 9.1 is the one-dimensional Lorenz transformation.
The goal here is to construct a flow such that “after the identification by the stable
directions”, the first return map in a certain cross section M is a multidimensional
version of the one-dimensional Rovella-map [5].
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contracting
directions

˙

Fig. 9.1 The geometric Lorenz attractor with the contracting directions on the cross-section ˙

Fig. 9.2 The Lorenz
one-dimensional
transformation

+1/20-1/2

A Rovella-like attractor is the maximal invariant set of a geometric flow whose
construction is very similar to the one that gives the geometric Lorenz attractor,
[1, 2, 4], except for the fact that the eigenvalues relation �u C �s < 0 there is
replaced by �u C �s > 0, where �u > 0 and �s is the weakest negative eigen-
value at the equilibrium at the origin. We remark that, unlike the one-dimensional
Lorenz map obtained from the usual construction of the geometric Lorenz attrac-
tor, a one-dimensional Rovella map has a criticality at the origin, caused by the
eigenvalue relation �u C �s > 0 at the singularity. In Fig. 9.3 we present some pos-
sible “Rovella one-dimensional maps” obtained through quotienting out the stable
direction of the return map to the global cross-section of the attractor, as in Fig. 9.1.

We follow the same strategy of [3]. Nevertheless, since we aim at a multidimen-
sional Rovella-like map, we have to deal with critical regions, that is, regions where
the derivative of the return map to a global cross-section vanishes. Because of this,
proving the existence of non-trivial attractors for the flow arising from such con-
struction requires a more careful analysis. Indeed, as in the one-dimensional case,
depending on the dynamics of the critical region, every attractor for the return map
may be periodic (trivial).

Typically, when the critical region is non-recurrent (Misiurewicz maps in one-
dimensional dynamics), most of the difficulties introduced by the critical region can
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Fig. 9.3 The several cases for the one-dimensional map for the contracting Lorenz model

P0

N

s1

00

P0

P0 = –1

N

–1

–1

–1 +1

+1+1

+1 sr

P1 P1

Fig. 9.4 The quotient of the return map of the flow at the upper left, where each parallel is a torus,
and the one-dimensional map on the bottom left, obtained quotienting out the parallels. After the
introduction of the equilibrium s1 and source Os the return map can be seen in the quotient as
depicted in the upper half, and the one-dimensional quotient map on tori in the bottom right

be bypassed. That is one of the main reasons for us to construct a kind of multi-
dimensional Misiurewicz dynamics. In general, such critical regions in dimension
greater than one are sub-manifolds, and one can not rule out that they intersect each
other under the action of the dynamics. Albeit this, we are able to exhibit a class
of multidimensional Misiurewicz endomorphisms that appears naturally in a flow
dynamics.
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9.1.1 Conceptual Description of the Construction

We start with a basic dynamics presenting an expanding invariant torus Tk
1 that will

absorve the image of the critical region after the singularization of the associated
flow. By topological reasons, this map can not be seen as a time-one map of a sus-
pension flow: locally its degree is not constant. To bypass this new difficulty, we
realize this map as a first return map of a singular flow (after identification by stable
directions). Afterwards, we singularize a periodic orbit of this flow, introducing a
new singularity s1 of saddle-type, with .k C 1/-dimensional unstable manifold and
l-dimensional stable manifold. Moreover, all the eigenvalues of s1 are real and, if
�si and �uj

denote the stable and the unstable eigenvalues at s respectively, then
maxf�si g C maxf�uj

g < 0 for 0 � i � 3 and 0 � j � k C 1. We say that this
kind of singularity is a Rovella-like singularity. We need also a source Os to accom-
pany s1 for topological reasons. The resulting flow will present a multidimensional
transitive Rovella-like attractor, supporting a physical measure.

The existence of the physical/SRB measure is obtained through a multidimen-
sional extension of arguments of Benedicks–Carleson type, taking advantage of the
fact that through identification of stable leaves we can project the dynamics of the
first return map of the flow to a global cross-section obtaining a one-dimensional
transformation with a Misiurewicz critical point.

Moreover considering the perturbation of this flow along parametrized families,
we can show the existence of many parameters for which nearby flows exhibit an
attractor with a unique physical measure. In addition, we point out that the analysis
of the dynamics of most perturbations of our flow cannot be easily reduced (perhaps
not at all) to a one-dimensional model. This indicates that intrinsic multidimensional
tools should be developed to fully understand this class of flows.
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Chapter 10
Robust Heteroclinic Behaviour, Synchronization,
and Ratcheting of Coupled Oscillators

Peter Ashwin and Özkan Karabacak

Abstract This review examines some recent work on robust heteroclinic networks
that can appear as attractors for coupled dynamical systems. We focus on coupled
phase oscillators and discuss a number of nonlinear dynamical phenomena that
are atypical in systems without some coupling structure. The phenomena we dis-
cuss include heteroclinic cycles and networks between partially synchronized states.
These networks can be attracting and robust to perturbations in parameters and sys-
tem structure as long as the coupling structure is preserved. We discuss two related
effects; extreme sensitivity to detuning (strongly coupled oscillators may lose their
frequency synchrony for very small detunings) and heteroclinic ratchet where the
sensitivity may only appear for detunings of one sign.

10.1 Introduction

Coupled dynamical systems are a very important source of examples of nonlinear
systems that are of interest because of many applications. Additionally, they are of
intrinsic interest as structured examples of high dimensional dynamical systems.
The applications of coupled dynamical systems are very wide and include in par-
ticular solid state physics [2], neuroscience [21] and biological systems generally
[37], rather than discuss applications here we refer to these articles. A fundamental
concept of use for describing coupled dynamical systems (whether chaotic or not)
is that of synchronization in its various forms, and this has been the topic of many
papers over the last decade [1, 10, 30, 31].

The topic that we focus on in the review is the robust appearance of dynam-
ics that is neither chaotic nor periodic, but that is intermittent in the sense that
repeated switchings are apparent between different saddle states. These “robust het-
eroclinic cycles” appear naturally in systems ranging from Lotka–Volterra dynamics
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Fig. 10.1 The
Guckenheimer–Holmes
cycle: (10.1) has an attracting
heteroclinic cycle between
equilibria p1, p2 and p3 for
an open set of parameter
values, that is robust to all
perturbations that preserve a
finite group of symmetries of
the vector field p2

p1

p3

z

x

y

to symmetric systems [14, 16, 20, 27]. Indeed the cycles may be between chaotic
saddles in general [8, 16, 29].

The prototype of these cycles is the so-called Guckenheimer–Holmes cycle [18]
though the same cycle has been studied in a variety of contexts by dos Reis [34],
Busse and Clever [12] and others. This can be understood from studying the
dynamics of the vector field

Px D �x C .ax2 C by2 C cz2/x

Py D �y C .ay2 C bz2 C cx2/y (10.1)

Pz D �zC .az2 C bx2 C cy2/z

for the open set of parameters where � > 0, a < 0 and b < �c < 0. For this
set of parameters (see e.g. [13, p61]) one can verify that the dynamics possesses an
attracting heteroclinic cycle whose structure is illustrated in Fig. 10.1. This cycle is
robust because the system is preserved under a number of reflection symmetries
.x; y; z/ ! .x;y;z/ and the permutation symmetry .x; y; z/ ! .y; z; x/
meaning that the axis planes are invariant for the dynamics. Therefore, saddle-to-
sink type heteroclinic connections between equilibria on these planes are robust
under symmetry-preserving perturbations. Observe that (10.1) can be viewed as a
system of three coupled one-dimensional dynamical systems with a particular form
of cyclic coupling.

Other families of dynamical systems for which heteroclinic cycles may appear
robustly are coupled dynamical systems where the coupling between dynamical
units respects to a directed graph (see [14, 17] and the references therein). It is
because such families also admit dynamically invariant subspaces, this time forced
by the coupling structure rather than the symmetry of the system. The heteroclinic
cycles found in such systems are much richer in dynamics due to the lack of sym-
metry and give rise to a new phenomenon in case of coupled oscillators which we
summarize in Sect. 10.4.

Much research has been done on the behaviour of robust heteroclinic cycles in
symmetric systems; we will focus only on work that has linked this to coupled oscil-
lators. The paper is organized as follows; in Sect. 10.2 we give an introduction to
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coupled oscillator dynamics and the reduction to phase oscillators. Section 10.3 dis-
cusses examples of robust heteroclinic networks and extreme sensitivity to detuning
in such systems. Section 10.4 discusses some recent work on “heteroclinic ratch-
ets” where attractors of the nonlinear system wind in a nontrivial manner around
the torus. The final Sect. 10.5 summarizes some open questions in this area and
relevance to applications.

10.2 Synchronization Properties of Coupled Oscillators

Many physical processes that are time-periodic in nature can be modelled by nonlin-
ear oscillators, by which we mean dissipative dynamical systems with hyperbolic,
attracting limit cycles. When several of these systems are coupled, various phenom-
ena related to the synchronization of oscillators can arise. In this paper we will focus
on some synchronization properties of oscillators that are well-modelled by coupled
equations for the phases of each oscillator.

10.2.1 From Limit Cycle Oscillators to Phase Oscillators

By a limit cycle oscillator, we mean a dynamical system Px D f .x/ on a mani-
foldM that has an attracting hyperbolic periodic solution �.t/. Coupled limit cycle
oscillator systems are dynamical systems of the form

Px D F.x; / ; x 2MN (10.2)

which reduce to N uncoupled limit cycle oscillators when the coupling strength
 D 0. In the uncoupled case ( D 0), the N -torus defined as the direct product of
the limit cycles of each oscillator

�N D fxi D �i .t C �i /W .�1; : : : ; �N / 2 TN g

is obviously invariant, attracting and normally hyperbolic. Therefore, one can pre-
dict that this attracting N -torus persists in the weak coupling case  � 1. As a
result, the asymptotic dynamics of (10.2) can be reduced to the dynamics reduced
on this N -torus in the weak coupling case. Note that for a point on this torus, each
oscillator can be represented by a phase variable t C �i 2 T . Using an averaging
technique [9], one can obtain a coupled phase oscillator system of the form

P� D NF .�; / ; � 2 TN ; (10.3)

where �i 2 T represents the phase of the oscillator i and F is invariant under the
action of S1 given by � 7! � C ".1; : : : ; 1/, " 2 Œ0; 2�/ (see [9] for details). This
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y1, y2

x1, x2

θ1 θ2

θ2

θ2 θ2 θ1
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x2

x1

y2
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Fig. 10.2 Schematic diagram representing the reduction from limit cycle oscillators (upper fig-
ures) to phase oscillators (lower figures). In the uncoupled case  D 0, the direct product of limit
cycles (upper-right) is invariant and corresponds to the torus (lower-right) which is the phase space
for the reduced system of coupled phase oscillators

symmetry gives rise to a further reduction of the system on N -torus to a system on
the quotient space TN =S1, which is an .N � 1/-torus,

P� D QF .�; / ; � 2 TN�1; (10.4)

where �i ’s can be chosen as independent phase difference variables �mi
��ni

. In the
sequel, we refer to the space of phase difference TN�1 as phase difference space of
the coupled oscillator system (10.3).

The idea of reducing the coupled phase oscillator systems to limit cycle oscil-
lators was first proposed by Winfree in 1967. However, coupled phase oscillator
systems began to be studied widely after Kuramoto’s works in 1984 (See [37] and
the references therein).

Kuramoto’s model consists of N phase oscillators that are coupled globally with
a sinusoidal coupling function. That is, the governing equation for each oscillator is

P�i D !i C 

N

NX

jD1
sin.�i � �j /; (10.5)

where �i 2 T D Œ0; 2�/ is the phase and !i is the natural frequency of the
oscillator i .

Considering an arbitrary coupling structure and a more general coupling func-
tion, the coupled phase oscillator dynamics can be written, more generally, as
follows:
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P�i D !i C 

N

NX

jD1
cijg.�i � �j /: (10.6)

Here, the connection matrix fcij g represents the coupling between oscillators.
cij D 1 if the oscillator i receives an input from the oscillator j and cij D 0 other-
wise. The coupling function g is a 2�-periodic function. Therefore, it is natural to
consider a Fourier series expansion of g

g.x/ D
1X

kD1
rk sin.kx C ˛k/ (10.7)

Note that, by scaling the time, we can set  D N and r1 D 1. In this case, the
coupling is modulated by the parameters ˛1; ˛2; : : : and r2; r3; : : : .

Several truncated cases of the general case (10.7) was considered in the literature.
Considering the first Fourier term only (as in the Kuramoto model, (10.5)), fre-
quency synchronization and clustering phenomena were analyzed [28, 35]. Hansel
et al. used first two Fourier terms and observed a new phenomenon, called slow
switching, as a result of the presence of an asymptotically stable robust heteroclinic
cycle [19, 25]. Recently, using the first three harmonics an attracting heteroclinic
ratchet was found for a nonsymmetric connection structure [23], while four har-
monics seem to be necessary to observe chaotic dynamics in four all-to-all coupled
oscillators (Timme, 2009, personal communication)

In the literature, there are different definitions for the phase or frequency syn-
chronization of oscillators. Moreover, one can define other concepts related to the
synchronization, such as sensitivity to detuning [6]. For an ordered pair of oscil-
lators, we call such properties synchronization properties of the oscillator pair and
these may include: Phase locking, Phase synchronization, Frequency synchroniza-
tion, Sensitivity to detuning and Ratcheting. The former three are discussed for
example in [31] while the latter two are discussed in [6, 23] and we outline some
of the discussion and results from these papers.

10.2.1.1 Phase and Frequency Synchronization

For a solution �.t/ D .�1.t/; : : : ; �N .t// of (10.6), let �L.t/ D .�L1 .t/; : : : ; �Ln .t//
denote the lifted phase variables. We say the oscillator pair .i; j / is phase synchro-
nized on the solution �.t/ if �Li .t/ � �Lj .t/ is bounded for all t and phase locked

if limt!1.�Li .t/ � �Lj .t// exists. We say oscillators are frequency synchronized if

limt!1 �i .t/��j .t/

t
D 0. Note that phase locking implies phase synchronization and

phase synchronization implies frequency synchronization. However, the converses
are not true in general. For example, on a typical solution approaching to a hetero-
clinic network, particular pairs of oscillators are never phase locked, but they can
be phase synchronized if the heteroclinic network is contractible to the diagonal in
Tn. More interesting is the effect of heteroclinic ratchets on the synchronization
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properties of oscillators. On a solution approaching to a heteroclinic ratchet, some
oscillator pairs can be frequency synchronized but not phase synchronized as we
will see in Sect. 10.4.

10.2.1.2 Sensitivity to Detuning and Ratcheting

It is known that when the oscillators are synchronized, a mismatch in natural fre-
quencies, that is, detuning may result in loss of synchronization depending on how
large the detuning is. Let !ij D !i � !j denote the detuning and ˝ij D ˝i �˝j
the difference in observed average frequencies. Here˝i D limt!1

�L
i

t
. The typical

.!ij ;˝ij / characteristic of coupled oscillators is as in Fig. 10.3a.
For an ordered oscillator pair .i; j /, we generalize notions in [6] to define the

tolerance to positive detuning and tolerance to negative detuning as

�C

ij WD supf�W 0 � !ij < � H) (i,j) is phase synchronized on all attractors of (10.6)g

��

ij WD supf�W �� < !ij � 0 H) (i,j) is phase synchronized on all attractors of (10.6)g;

We call �ij WD min.��ij ; �
C
ij / the tolerance to detuning of .i; j /. If �ij D 0 then

the oscillator pair .i; j / is said to have extreme sensitivity to detuning. If �Cij D 0

but ��ij > 0, we say that the oscillator pair .i; j / is ratcheting (see Fig. 10.3) (for
the details see [22]). Note that ratcheting is an asymmetric relation on the set of
oscillators, that is, if .i; j / is ratcheting then .j; i/ is not ratcheting. In the following,
we will show that heteroclinic networks may result in extreme sensitivity to detuning
(Sect. 10.3) and the heteroclinic ratchets give rise to ratcheting of some oscillator
pairs (Sect. 10.4).

| | | ||Ωij Ωij Ωij

+

|

ωij ωij ωij
−Δ ij

+Δ ij, Δ ij=0 +Δ ij=0Δ ij
−− −Δ ij

−

a b c

Fig. 10.3 Different .!ij ; j˝ij j/-characteristics of coupled oscillators. (a) Usual case: Frequency
synchronization of the oscillators persist in a certain tolerance range of detuning. (b) Extreme
sensitivity to detuning: Although there is a dynamically stable frequency synchronized behaviour
at !ij D 0, synchronization is broken by arbitrarily small detuning. This can happen if there is an
attracting heteroclinic cycle in state space (see Sect. 10.3). (c) Unidirectional extreme sensitivity
to detuning (or ratcheting): Under small detuning synchronization is broken only if the detuning is
positive
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10.3 Heteroclinic Cycles and Extreme Sensitivity

An attracting heteroclinic cycle in the phase difference space of a coupled oscilla-
tor system has a strong effect on the synchronization properties of oscillators. For
instance, a solution approaching to a heteroclinic cycle implies the absence of phase
locking of certain oscillator pairs. Moreover, heteroclinic cycles are related to the
extreme sensitivity phenomenon [6].

Heteroclinic cycles induce an intermittent behaviour called slow switching where
the dynamics stays long time near one cluster and then passes to another cluster.
Slow switching behaviour of coupled oscillator systems was first studied by Hansel
et al. in [19]. They found heteroclinic cycles for four globally coupled phase oscil-
lator system with a coupling function up to second order Fourier terms (˛1 D 1:25,
r2 D 0:5). After this work, heteroclinic cycles associated with slow switching were
also studied for different oscillator types, such as delayed pulse-coupled integrate-
and-fire oscillators [11, 26], limit cycle oscillators [25]. In the following, we will
describe the heteroclinic behaviour observed in coupled phase oscillators [4–7], and
explain its effect on synchronization properties. This effect has been investigated for
fully symmetric (all-to-all coupled) systems but not in many other configurations.

10.3.1 Symmetric Heteroclinic Cycles for All-to-All Coupled
Phase Oscillators

All-to-all coupling gives rise to SN -permutation symmetry. This imposes many
dynamically invariant subspaces arising as fixed point subspaces of subgroups of
SN . Therefore, the dynamics is trapped in invariant regions bounded by these fixed
point subspaces. Let us choose the phase difference variables as �i D �1 � �i C 1,
i D 1; : : : ; N � 1. Then, the invariant regions are f� 2 TN�1W�.1/ � �.2/
� � � � � �.N�1/g where 
 is a permutation of oscillators. When 
 is identity, this
region is called canonical invariant region [9]. Since all these regions are symmetric
images of each other, it suffices to study the dynamics on the canonical invari-
ant region. Note that, since the dynamics is trapped in these invariant regions in
the phase difference space, oscillators are always phase synchronized and therefore
frequency synchronized (the subspace �i D �j being invariant implies phase syn-
chronization of oscillators i and j [15]). We will be more interested in the extreme
sensitivity properties of oscillators for which the existence of heteroclinic networks
are crucial.

For N coupled phase oscillators, heteroclinic behaviour can arise if N � 3. The
case N D 3 and N D 4 is analyzed in detail by Ashwin et al. in [5]. Considering
second order Fourier truncation of the coupling function, they show that for N D 3
a heteroclinic cycle appears as a codimension one phenomenon in phase difference
space (see Fig. 10.4). This heteroclinic cycle connects the saddles labelled by P and
Q on the invariant lines, which have S2�S1 isotropy [5]. Note that, the heteroclinic
network on TN�1 formed by these heteroclinic cycles contains winding heteroclinic
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Fig. 10.4 Schematic diagrams illustrating a bifurcation of all-to-all coupled 3-oscillator system
in the canonical invariant regions. The edges of the triangles represent the fixed point subspaces
of the form f�i D �j g. On these lines two equilibria P and R (a) join together by a saddle-node
bifurcation (b) and disappear giving birth to a periodic orbit in the interior of the canonical invariant
region (c). At the bifurcation point (b), a heteroclinic cycle appears connecting the saddles P and
Q on the invariant lines. (Adapted from [5])
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S3 S1

S3 S1

Γ2

P1

P2

Fig. 10.5 A robust heteroclinic cycle for the all-to-all coupled 4-oscillator system. The hetero-
clinic cycle consists of two saddle equilibria P1 and P2 with S2 	S2 isotropy and two connections
�1 and �2 on the two dimensional invariant subspaces. The invariant subspaces are embedded in
a cube that represents a unit cell for the torus of phase difference space- in this representation all
vertices of the cube represent in-phase solutions where all oscillators are synchronized. (Adapted
from [5])

cycles in each �i � �j direction. Therefore any detuning�ij gives rise to a periodic
orbit that breaks the synchronization of the oscillators i and j (see [6] for details).
As a result, this heteroclinic network leads to extreme sensitivity to detuning (see
[6]). However, this phenomenon is not robust forN D 3 as it occurs at a bifurcation
point.

For the case N D 4, one can observe robust heteroclinic cycles (see Fig. 10.5).
In this case the canonical invariant region is a tetrahedron whose lines have either
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S2�S2 or S3�S1 isotropy. The heteroclinic cycle shown in Fig. 10.5 exists robustly
for an open set in the parameter space (see [5] for details). This time the heteroclinic
network formed by these heteroclinic cycles in different invariant regions does not
contain any winding heteroclinic cycle, except for the critical case when the hete-
roclinic cycles first appear and lie on the invariant lines. As a result, although the
heteroclinic behaviour is robust when N D 4, the extreme sensitivity phenomenon
is again not robust.

Robust extreme sensitivity behaviour arises when one considers an all-to-all cou-
pled oscillator system withN � 5. It is numerically shown in [6] that forN D 5, the
extreme sensitivity is robust. In [4], a heteroclinic network for the 5-oscillator all-to-
all coupled system is shown to exist on the phase difference space T 4. In this case,
the heteroclinic network contains winding heteroclinic cycles in any direction break-
ing the frequency synchronization of oscillators, and this happens robustly under
small parameter changes. This robust extreme sensitivity behaviour is bidirectional
due to the presence of full permutation symmetry.

10.4 Heteroclinic Ratchets for Nonsymmetric Coupling

The heteroclinic cycles described in Sect. 10.3 are robust forN > 3 because they are
contained in invariant subspaces forced by the symmetries of the coupling structure
in such a way that connections are saddle-to-sink type in each subspace. However,
these symmetries impose some restrictions on the types of possible robust hetero-
clinic cycles. Namely, such a cycle necessarily has the symmetries that are related to
the invariant subspaces which contain parts of the heteroclinic cycle. For instance, in
the case of all-to-all coupled oscillators, the heteroclinic network found in [4] have
S5 permutation symmetry. Therefore, the dynamics near the heteroclinic network
is the same for each oscillator. This means one expects the same synchronization
properties for all pairs of oscillators.

On the other hand, as shown in Sect. 10.1, one can find nonsymmetric robust
heteroclinic cycles. These are contained in invariant subspaces not forced by the
symmetry but by the balanced equivalence relations of the underlying graph [3,17].
The balanced equivalence relations result in invariant subspace without having much
restrictions on the overall dynamics as symmetry. Therefore, it is possible to find
richer dynamics in such systems.

For coupled oscillators an example of a nonsymmetric heteroclinic network is
discussed in [23]. This robust heteroclinic network induces different effects on
different oscillators, since it includes heteroclinic cycles winding in one direction
around the torus and no other cycles winding in the opposite direction. This type
of heteroclinic network is called heteroclinic ratchet as its dynamical consequences
are similar to a mechanical ratchet, a device that allows rotary motion on applying
a torque in one direction but not in the opposite direction:

Definition 10.1. [23] For a system on TN , a heteroclinic network is a heteroclinic
ratchet if it includes a heteroclinic cycle with nontrivial winding in one direction
but no heteroclinic cycles winding in the opposite direction. More precisely, we say
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Fig. 10.6 Three different heteroclinic networks on T 2 containing (a) no winding heteroclinic
cycle (b) winding heteroclinic cycles in opposite directions Cx and �x (c) one winding het-
eroclinic cycle in Cx direction. Therefore, only the network in (c) is a heteroclinic ratchet

a heteroclinic cycle C 	 TN parametrized by x.s/ .xW Œ0; 1/ ! TN / has nontriv-
ial winding in some direction if there is a projection map P WRN ! R such that
the parametrization Nx.s/ . NxW Œ0; 1/! RN / of the lifted heteroclinic cycle NC 	 RN

satisfies lims!1 P. Nx.s// � P. Nx.0// D 2k� for some positive integer k. A hetero-
clinic cycle winding in the opposite direction would satisfy the same condition for
a negative integer k.

In Fig. 10.6, three heteroclinic networks on a 2-torus are shown. The first network
is not a heteroclinic ratchet because it does not contain a winding heteroclinic cycle.
The second network contains a heteroclinic cycle winding aroundCx direction, but
it also contains a cycle winding in the opposite direction �x. Therefore, the only
heteroclinic ratchet in the figure is the third one, which has a winding cycle in Cx
direction.

10.4.1 A Simple Example of Ratcheting

Heteroclinic ratchets have strong effects on the synchronization properties of oscil-
lators. An example of a heteroclinic ratchet in coupled oscillator systems is first
introduced and analyzed in [23].

The coupled oscillator system considered in [23] is given by

P�1 D !1 C f .�1I �2; �3/
P�2 D !2 C f .�2I �1; �4/
P�3 D !3 C f .�3I �1; �2/
P�4 D !4 C f .�4I �1; �2/;

(10.8)

which has a coupling structure as in Fig. 10.7a. Here, the coupling function f is
chosen as in (10.7). We first assume identical oscillators, that is

! D !1 D � � � D !4: (10.9)
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Fig. 10.7 The graph showing the connection structure of the system (10.8) (a) and three of its
balanced colourings (b–d). Colors are represented by different filling patterns

Since then the oscillators are identical, one can use the balanced colouring method
to find the invariant subspaces imposed by the coupling structure. A coloring of
cells, that is, a partition of the set of all cells into a number of groups or colors is
called balanced if each pair of cells with the same color receive same number of
inputs from the cells with any given color. Three balanced colorings (beside the oth-
ers) of the graph in Fig. 10.7a are shown in Fig. 10.7b–d. These give three invariant
subspaces:

V1 D f� 2 T4W �1 D �3g
V2 D f� 2 T4W �2 D �4g
NV D V1 \ V2

Using the phase-shift symmetry (f�1; : : : ; �4g ! f�1 C "; : : : ; �4 C "g mod 2� )
of (10.8), one can reduce the dynamics to a phase difference system on 3-torus.
Defining the new variables as .�1; �2; �3/ WD .�1 � �3; �2 � �4; �3 � �4/, the phase
difference dynamics can be written as

P�1 D f .�1I�2 � �3; 0/� f .0I�1; �2 � �3/
P�2 D f .�2I�1 C �3; 0/� f .0I�1 C �3; �2/ (10.10)
P�3 D f .�3I�1 C �3; �2/ � f .0I�1 C �3; �2/:

Note that the invariant subspaces V1, V2 and NV correspond to the planes �1 D 0,
�2 D 0 and the line �1 D �2 D 0, respectively. Therefore, it is possible that a
robust heteroclinic network exists on these invariant subspaces in the phase differ-
ence space. In fact, there exists a robust heteroclinic ratchet for the parameter values
.˛1; r2; r3/ D .1:4; 0:3;�0:1/ (see Fig. 10.8).

Heteroclinic ratchets have two main effects on the synchronization properties
of oscillators: ratcheting via noise and ratcheting via detuning as described in
Sect. 10.2.1.2. Both arbitrary small noise and arbitrary small detuning in a certain
direction give rise to perpetual one-directional phase slips, and therefore, loss of
frequency synchronization.
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Fig. 10.8 A heteroclinic ratchet for the system (10.10). The heteroclinic network consists of two
equilibria (p and q) and four heteroclinic trajectories (y1; y2; Ny1; Ny2). It contains three winding
heteroclinic cycles: .p; Ny1; q; y2/, .p; Ny2; q; y1/ and .p; Ny1; q; Ny2/. (Adapted from [23])

10.4.2 Ratcheting Forced by Noise

We consider as in [23] the dynamics of (10.10) near the heteroclinic ratchet shown
in Fig. 10.8. On applying small noise to the system, phase differences between
oscillators grow in certain directions such that for some pairs one oscillator always
has a larger average frequency than the other. Therefore, the effect of noise is not
homogeneous for oscillators even though the added noise is homogeneous.

Figure 10.9 depicts a solution of (10.10) under small noise with amplitude 10�6.
Although the noise is homogeneous with a zero mean, phase slips occur only in
C�1 andC�2 directions. Recall that �1 D �1��3 and �2 D �2��4. Therefore, the
oscillator pairs .1; 3/ and .2; 4/ lose frequency synchronization such that the first
oscillator has as greater average frequency then the second oscillator.

10.4.3 Ratcheting Forced by Detuning

The effect of detuning, setting �ij D !i � !j nonzero, on a heteroclinic ratchet is
similar to the effect of noise. A system with a heteroclinic ratchet winding in some
direction on the phase difference space TN�1, say C�i D �mi

� �mj
, responds to

a positive detuning �mini
> 0 by breaking frequency synchronization, whereas a

small enough negative detuning, �mini
< 0, leaves the frequency synchronization

unchanged. We call this phenomenon unidirectional extreme sensitivity to detuning.
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Fig. 10.9 The figure in (a) shows a time series solution of the system (10.10) under white noise
with amplitude 10�6. For the first half of the solution in (a) the switchings between saddle states
are shown in (b). (Adapted from [23])

Fig. 10.10 Difference in
observed average frequencies
of the oscillators 1 and 3 are
plotted for different detuning
values �13 D !1 � !3. Insets
show time series solutions of
(10.10) for small negative and
positive detuning. (Adapted
from [23])
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Fig. 10.11 Schematic diagram of coupling for a 2N -cell network that admits heteroclinic ratchets.
Upper cells are all-to-all coupled between themselves and each upper cell receives an extra input
from the cell below itself. A lower cell receives one input from each upper cell

As shown in [23] for the system (10.10), oscillators 1 and 3 (2 and 4) loose
frequency synchronization when �13 > 0 (�24 > 0) (see Fig. 10.10). It is also
noted in [23] that a 2N -cell coupled oscillator system as in Fig. 10.11 can admit
heteroclinic ratchets ratcheting in �k � �kCN , k D 1; : : : ; N directions. A solution
of such coupled systems for 2N D 6 is illustrated in Fig. 10.12.
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Fig. 10.12 A solution of coupled 6-oscillator system coupled as in Fig. 10.11 (with 2N D 6)
under small noise with amplitude 10�6. Coupling function is chosen as f .x/ D sin.x C 1:15/C
0:3 sin 2x � 0:1 sin 3x. One directional phase slips in �k � �kC3 ; k D 1; 2; 3 directions suggest
the existence of an attracting heteroclinic ratchet on T 6. (Adapted from [23])

10.5 Discussion

In summary, we have reviewed some of the basic properties of robust heteroclinic
networks that arise in coupled systems of nonlinear oscillators; these can manifest
themselves as intermittent switching between various different partially synchro-
nized states. Such dynamics have been observed in various systems including
coupled chemical reactors [24, 38] and models of neural activity [32].

These systems provide a rich set of examples of nontrivial dynamical behaviours
where the dynamics of individual systems, the topology of the network and the
nature of the coupling can give networks within phase space of surprising rich-
ness. These heteroclinic networks may wind around the torus which is the natural
phase space for coupled oscillator systems to give rise to topologically nontrivial
networks (leading to robust extreme sensitivity to detuning) and to with nontrivial
unidirectional winding in such networks (leading to heteroclinic ratcheting).

Robust extreme sensitivity is of interest in that it can only appear in globally
coupled systems of five or more coupled identical oscillators and in that sense it
is a truly high dimensional phenomenon. It remains to be seen to what extent it
can be found systems that are not globally coupled. The heteroclinic ratcheting can
be understood by a careful analysis of the nonlinear dynamics in phase space. We
conjecture they may be of interest as analogues of brownian ratcheting systems in
molecular dynamics with a significant difference that they are based on detuning
or noise perturbed dissipative systems rather than diffusing systems in a modulated
periodic potential [33]. They may also be of use as a possible “circuit elements”
or “dynamical motifs” in neural computational systems [36, 39] where we suggest
that the presence of such a network can lead to a robust clamping of one oscillator
frequency to be above another.
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Chapter 11
An Economical Model For Dumping
by Dumping in a Cournot Model

Nilanjan Banik, Fernanda A. Ferreira, J. Martins, and Alberto A. Pinto

Abstract We consider an international trade economical model where two firms
of different countries compete in quantities and can use three different strategies:
(i) repeated collusion, (ii) deviation from the foreigner firm followed by punish-
ment by the home country and then followed by repeated Cournot, or (iii) repeated
deviation followed by punishment. In some cases (ii) and (iii) can be interpreted as
dumping. We compute the profits of both firms for each strategy and we characterize
the economical parameters where each strategy is adopted by the firms.

11.1 Introduction

In an international trade where one firm from the home country is competing with
another firm from a foreign country, the phenomena of dumping happens often for
several reasons. The foreign firm profit increases in the periods of dumping while
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the home firm profit decreases. As a response, the domestic firm can try to impose
a penalty by lobbying its government to impose a tariff on the foreign firm. There
are two ways in which the domestic firm can induce its government to impose a
tariff. First, the domestic firm can strategically alter its behavior (trying to make
the foreign firm deviate) and thereby influence antidumping outcome in the second
stage of the game. Ethier and Fischer [6], Fischer [14], Staiger and Wolak [24]
and Reitzes [22] mention this ‘behavioral’ aspect of the domestic firm. Second
is by mounting political pressure. For instance, Moore [17, 18], DeVault [3], and
Hansen and Prusa [15,16] have shown that industries with production facilities in the
districts of legislators fare are better in terms of receiving antidumping protection.

In this work, we will study three different strategies taken by the home firm and
the foreign firm in an infinitely repeated game. The first strategy involves collusion,
where both firms cooperate in every period of the game, to their mutual benefit.
However, after a period of collusion the foreign firm may decide to dump, thereby
deviating from the collusion equilibrium. As a consequence, the foreign firm realizes
a higher profit compared to collusive profit and the home firm realizes a smaller one.
Hence, the home firm can lobby its government to impose a punishment tariff on
the foreign firm, in the period after the deviation. These two periods of deviation-
punishment can be repeated forever or can be followed by a Cournot competition,
where each firm plays to maximize its own profit.

11.2 The Duopoly Model

We consider an economy consisting of a duopoly in which both firms, F1 the
domestic and F2 the foreign firm, compete on quantities rather than price [23]
of production for a certain good. Let qi denote the produced quantities for firm
Fi , i D 1; 2, and pi the selling prices. We suppose that the utility function is
quadratic [25]

U.q1; q2/ D ˛1q1 C ˛2q2 � 1
2

�
ˇ1q

2
1 C 2�q1q2 C ˇ2q22

	
(11.1)

giving the linear inverse demand functions [4, 5]

p1 D ˛1 � ˇ1q1 � �q2
p2 D ˛2 � �q1 � ˇ2q2 : (11.2)

We consider that ˇi > 0 and ˇ1ˇ2 � �2. The value of � is the measure of the
substitutability of the produced goods. These can be substitutes, independent, or
complements according to whether � > 0, � D 0 or � < 0. The goods are identical
if ˛1 D ˛2 and ˇ1 D ˇ2 D � . When the goods are nonidentical, the firm with the
net absolute advantage in demand will enjoy of a higher ˛i value. We assume that
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both firms have constant and equal marginal cost ci < ˛i . Hence, the profit for the
firm Fi is given by

�i D .pi � ci /qi D .˛i � ˇiqi � �qj � ci /qi :

Without loss of generality, we can set the marginal costs equal to zero, replacing
˛i � ci by ˛i again, and therefore the profit function for the firm Fi is given by

�i D .˛i � ˇiqi � �qj /qi : (11.3)

We compute the profits of both firms in collusion, Cournot and deviation fol-
lowed by punishment strategies.

11.2.1 Collusion

In the collusion game, we consider that both firms cooperate for their mutual benefit
and therefore, each firm will produce the quantities that maximizes the joint profit

�1 C �2 D ˛1q1 C ˛2q2 � ˇ1q21 � ˇ2q22 � 2�q1q2: (11.4)

In the following Lemma, we present the equilibrium for the quantities and the profits
of both firms when they play a collusion game. We consider that both firms are
competing in every period of the game and therefore the produced quantities of the
good are strictly positive. We will assume that

Ai;j D ˛iˇj � ˛j � > 0 ;

and similar assumptions are made throughout the article.

Lemma 11.1. The equilibrium of the collusion game is attained at

qi D ˛iˇj � ˛j �
2 .ˇ1ˇ2 � �2/ (11.5)

for the firm Fi and the correspondent profit is given by

�i D ˛i

4

˛iˇj � ˛j �
ˇ1ˇ2 � �2 : (11.6)

See the proof of Lemma 11.1 in [1].
In the case of having ˛iˇj D ˛j � , the amount of the good produced by the firm

Fi is zero. Hence, the other firm Fj produces the monopoly quantity. The monopoly
quantity is the one that maximizes the profit

�j D .˛j � ˇj qj /qj ; (11.7)
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and therefore is given by

@�j

@qj
D 0, qj D ˛j

2ˇj
: (11.8)

By (11.7), the monopoly profit for firm Fj is

�j D
˛2j

4ˇj
: (11.9)

11.2.1.1 The identical goods limiting case

When the goods produced by the home firm and the foreign firm are identical, i.e.
ˇ1 D ˇ2 D � D ˇ and ˛1 D ˛2 D ˛, the collusion equilibrium is not well defined.
Indeed, the join profit is now given by

�1 C �2 D ˛q1 C ˛q2 � ˇq21 � ˇq22 � 2ˇq1q2
D ˛.q1 C q2/� ˇ.q1 C q2/2: (11.10)

Hence, taking the amount derivative of �1 C �2 for both firms, we obtain the same
equation ˛ � 2ˇ.q1 C q2/ giving

q1 C q2 D ˛

2ˇ
; (11.11)

that defines an infinite number of equilibria in the collusion strategy. We observe
that ˛=2ˇ is the monopoly quantity computed in (11.8). In this case, the joint profit
for both firms is given by

�1 C �2 D ˛ ˛
2ˇ
� ˇ

�
˛

2ˇ

�2

D ˛2

4ˇ
; (11.12)

which also corresponds to the monopoly profit, as presented in (11.9). Since the
firms cooperate, in their mutual benefit, we assume that both firms produce the same
quantities of the good and therefore each one produce

qi D ˛

4ˇ
: (11.13)

Under this symmetric hypothesis, the profit for the home and the foreign firm
follows immediately as

�i D ˛2

8ˇ
: (11.14)
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11.2.2 Cournot

In the Cournot game, firms decide simultaneously and independently of each other
the quantities of goods to be produced in order to maximize their own profit.

Lemma 11.2. In the Cournot strategy the Nash equilibrium is given by

qi D 2˛iˇj � ˛j �
4ˇ1ˇ2 � �2 (11.15)

and the corresponding profits are given by

�i D ˇi
�
2˛iˇj � ˛j �
4ˇ1ˇ2 � �2

�2
: (11.16)

See the proof of Lemma 11.2 in [1].

11.2.3 Deviation Followed by Punishment

We suppose that after a period of collusion, when both firms produce under cooper-
ation the quantity given by

qi D ˇj˛i � ˛j �
2
�
ˇiˇj � �2

	 ;

that the foreign firm deviates from this quantity to maximize its own profit. The
deviation from collusion can be understood as dumping and a period of punish-
ment can be imposed. Once the foreign firm deviates from the collusion equilibrium
expanding its production with the marginal costs unchanged, and if the home firm
does not respond in the same period, the foreign firm’s profit rises comparably to
the collusion profit. This profit increase constitutes an incentive to the foreign firm
to deviate from collusion. However, since the price being charged for the good in
the home market is lower than the price charged before, this deviation can be inter-
preted as dumping. Assuming that the foreign firm deviates optimally to maximize
its profit, the amount of the good produced is given by

@�2

@q2
D 0, qD2 D

1

2

˛2 � �q1
ˇ2

D 1

2ˇ2

�
˛2 � � ˇ2˛1 � ˛2�

2ˇ1ˇ2 � 2�2
�
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D 1

4ˇ2.ˇ1ˇ2 � �2/
�
2˛2ˇ1ˇ2 � 2˛2�2 � �ˇ2˛1 C ˛2�2

	

D 2˛2ˇ1ˇ2 � ˛2�2 � �ˇ2˛1
4ˇ2.ˇ1ˇ2 � �2/ :

Hence, in the deviation period the profit of the home firm is given by

�1 D
�
˛1 � ˇ1 ˇ2˛1 � ˛2�

2.ˇ1ˇ2 � �2/ � �
2˛2ˇ1ˇ2 � ˛2�2 � �ˇ2˛1

4ˇ2.ˇ1ˇ2 � �2/
�
ˇ2˛1 � ˛2�
2.ˇ1ˇ2 � �2/

D �
2˛1ˇ1ˇ

2
2 � 3ˇ2˛1�2 C ˛2�3

	 ˇ2˛1 � ˛2�
8ˇ2.ˇ1ˇ2 � �2/2 (11.17)

and the profit of the foreign firm given by

�2 D ˇ2
�
2˛2ˇ1ˇ2 � ˛2�2 � �ˇ2˛1

4ˇ2.ˇ1ˇ2 � �2/
�2
: (11.18)

Consequently, in the deviation period the profit realized by the home firm is smaller
than the collusion profit. To prevent the foreign firm from dumping in the short run
and to recover from the unfair practices, the home firm will try to lobby its govern-
ment to impose antidumping duties on the foreign firm. Antidumping duties can be
imposed in the next period, only if the domestic firm has not increased its output in
the period in which the foreign firm deviates. The rationale for this assumption is
that domestic firm must prove material injury, and this would be difficult to prove
under expanded production. In the punishment phase that occurs in the period after
deviation, we assume that the home firm has successfully lobbied the government
to the price L, hence

�1 D .˛1 � ˇ1q1 � �q2/ q1 � L:

As punishment, the government imposes a prohibitive tariff � , per unit, to the foreign
firm

�2 D .˛2 � ˇ2q2 � �q1 � �/ q2:

This prohibitive tariff ensures that the foreign firm earns zero profit in the home mar-
ket during the punishment phase, �2 D 0, producing nothing. Hence, the domestic
firm produces the monopoly quantity

q1 D ˛1

2ˇ1
;
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leading to the profit given by

�1 D
�
˛1 � ˇ1 ˛1

2ˇ1
� �0

�
˛1

2ˇ1
�L

D ˛21
4ˇ1
�L:

11.3 Infinitely Repeated Games

Now, we consider the situation where both firms have to choose their produced
quantities over several periods. We will consider the following possible strategies:

1. Collusion strategy (COL) when both firms cooperate in every periods maximiz-
ing the join profit of both firms.

2. Deviation-Punishment strategy (DP) when the foreign firm deviates from col-
lusion maximizing its own profit followed, in the next period, by a punishment
strategy of the home firm. The punishment comes from the home firm lobbying
its own government, resulting in a prohibitive tariff on the foreign firm during the
second period. After these two periods of the game, we consider two different
possible repeated strategies than can happen:

a. Deviation-Punishment Repeated strategy (DPR), where the strategy taken by
the firms in the previous two periods will keep being repeated.

b. Deviation-Punishment followed by a Cournot strategy (DPC), where after
taking the deviation-punishment strategy in the past two periods, the firms
do not cooperate and adopt a Cournot strategy.

11.3.1 COL Strategy

Let ı 2 .0; 1/ denote the rate of discount. Let �COL
T;1 denote the total profit of the

home firm, when both the home and the foreign firms play a collusion strategy in
every period of the game, which is given by

�COL
T;1 D .1 � ı/ ��COL

1 C ı�COL
1 C ı2�COL

1 C :::	

D .1 � ı/ 1

1 � ı �
COL
1

D �COL
1 ; (11.19)

where �COL
1 denotes the home firm profit in one period of the collusion strategy.

We consider the .1 � ı/ factor in every expression for the total profit in order to
simplify the final value. Applying for �COL

1 the corresponding expression presented
in Lemma 11.1, we obtain
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�COL
T;1 D

˛1 .˛1ˇ2 � ˛2�/
4.ˇ1ˇ2 � �2/ : (11.20)

Similarly, for the foreign firm we obtain

�COL
T;2 D

˛2 .˛2ˇ1 � ˛1�/
4.ˇ1ˇ2 � �2/ ; (11.21)

as the total value of the profit in the repeated collusion strategy.

11.3.2 DPR Strategy

For the case of the Deviation-Punishment Repeated strategy being practiced by both
firms, the home firm profit is given by

�DPR
T;1 D .1 � ı/



�D1 C ı�P1 C ı2�D1 C ı3�P1 C :::

�
; (11.22)

where �D1 denotes the home firm profit in one period in which the foreign firm
deviates from collusion and �P1 denotes the profit in the punishment phase that
corresponds to the monopoly profit minus the lobby price. Hence,

�DPR
T;1 D

�D1 C ı�P1
1C ı ;

and using the profits in (11.17) and (11.9) we obtain

�DPR
T;1 D

�
2˛1ˇ1ˇ

2
2 � 3ˇ2˛1�2 C ˛2�3

	
ˇ2˛1�˛2�

8ˇ2.ˇ1ˇ2��2/2
C ı

�
˛2

1

4ˇ1
� L

�

1C ı : (11.23)

The total profit for the foreign firm in the Deviation-Punishment Repeated strategy
is given by

�DPR
T;2 D .1 � ı/



�D2 C ı0C ı2�D2 C ı30C :::

�

D �D2
1C ı ; (11.24)

where �D2 denotes the foreign firm profit when it deviates from collusion, given
in (11.18). Hence,

�DPR
T;2 D

ˇ2

1C ı
�
2˛2ˇ1ˇ2 � ˛2�2 � �ˇ2˛1

4ˇ2.ˇ1ˇ2 � �2/
�2
: (11.25)
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11.3.3 DPC Strategy

When the strategies played in the game consist in Deviation-Punishment in the first
two periods followed by a Cournot competition in subsequent periods, the total
profit for the home firm is given by

�DPC
T;1 D .1 � ı/



�D1 C ı�P1 C ı2�CN

1 C ı3�CN
1 C :::

�

D .1 � ı/


�D1 C ı�P1

�
C ı2�CN

1 ; (11.26)

where �CN
1 denotes the home firm profit in the Cournot strategy, given by

Lemma 11.2. Hence, �DPC
T;1 is given by

�DPC
T;1 D .1 � ı/

��
2˛1ˇ1ˇ

2
2 � 3ˇ2˛1�2 C ˛2�3

	 ˇ2˛1 � ˛2�
8ˇ2.ˇ1ˇ2 � �2/2

Cı
�
˛21
4ˇ1
�L

��
C ı2ˇ1

�
2˛1ˇ2 � �˛2
4ˇ1ˇ2 � �2

�2
: (11.27)

In this same strategy, the profit for the foreign firm is given by

�DPC
T;2 D .1 � ı/



�D2 C ı0C ı2�CN

2 C ı3�CN
2 C :::

�

D .1 � ı/�D2 C ı2�CN
2

D .1 � ı/ˇ2
�
2˛2ˇ1ˇ2 � ˛2�2 � �ˇ2˛1

4ˇ2.ˇ1ˇ2 � �2/
�2
C ı2ˇ2

�
2˛2ˇ1 � �˛1
4ˇ1ˇ2 � �2

�2
:

(11.28)

11.3.4 The Optimal Strategy

We observe that the foreign firm makes the decision between choosing the collusion
strategy (COL) and the deviation-punishment strategy (DP). The home firm makes
the decision between choosing the repeated deviation-punishment strategy (DPR)
and the deviation-punishment followed by Cournot strategy (DPC). Hence, we have
the following possible optimal strategies:

Strategy 1: If
�DPC
T;2 � �COL

T;2 and �DPC
T;1 � �DPR

T;1

the best repeated strategy for the game is DPC (Deviation-Punishment followed by
Cournot).
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Strategy 2: If
�DPR
T;2 � �COL

T;2 and �DPR
T;1 � �DPC

T;1

the best repeated strategy for the game is DPR (Deviation-Punishment Repeated).

Strategy 3: If
�COL
T;2 � �DPC

T;2 and �DPC
T;1 � �DPR

T;1 ;

or
�COL
T;2 � �DPR

T;2 and �DPR
T;1 � �DPC

T;1 ;

the best repeated strategy for the game is COL (Collusion).

For the symmetric model where, ˛1 D ˛2 D ˛ and ˇ1 D ˇ2 D 1, we compare
the profits of the different repeated strategies. Let 0 � L0 � 1 be the percentage
value of the monopoly profit, paid by the home firm, for making lobby in the gov-
ernment. LetL D L0˛2=4, be the lobby price paid by the home firm. The home firm
profits in the repeated DPR and DPC strategy coincides at the curve ıDP

1 defined by

ıDP
1 D

8˛2.1 � �/.� C 1/2 � ˛2.� C 2/2.�3�2 C 2C �3/
8.1� L0/˛2

4
.� C 2/2.1� �/.� C 1/2 � 8˛2.1 � �/.� C 1/2

: (11.29)

Comparing the foreign firm profit in the COL repeated strategy with the profit in the
DPR strategy, we observe that they are equal at the curve

�COL
T;2 D �DPR

T;2 , ıCOLDPR
2 D �2

4.� C 1/ : (11.30)

Similarly, the profits under the COL and DPC strategies coincide at the curve

�COL
T;2 D �DPC

T;2 , ıCOLDPC
2 D �B �

p
B2 � 4AC
2A

; (11.31)

where

A D 1

.� C 2/2 (11.32)

B D � 1
16

�
�

� � 1 C
2

�2 � 1
�2

(11.33)

C D 1

16

�
�

� � 1 C
2

�2 � 1
�2
� 1

4.� C 1/ : (11.34)

In Fig. 11.1 left, we present the curve ıDP
1 and the curves ıCOLDPR

2 and ıCOLDPC
2 ,

considering L0 D 0. We observe that, for values of ı < ıDP
1 , the home firm prefers
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Fig. 11.1 The curves ı.�/ dividing the ı, � plane in the regions that correspond to the preferred
strategy for each firm. In the left figure, we have the curve ıDP

1 , separating the type of DP strategy
that the home firm (Firm 1) will choose, and the curves ıCOLDPR

2 and ıCOLDPC
2 for the foreign firm

(Firm 2) chooses. In the right figure, we have the curve ıCOLDPC
2 that separates the decision over

the joint strategy of both firms
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Fig. 11.2 Profits of the home firm (left) and the foreign firm (right) in the COL, DPR and DPC
strategies for different values of ı. The parameters considered were � D 0:9, ˛1 D ˛2 D 1,
ˇ1 D ˇ2 D 1 and L0 D 0

the DPC repeated strategy and, for values of ı > ıDP
1 , prefers the DPR strategy. The

foreign firm prefers the DPR strategy for values of ı < ıCOLDPR
2 . By Fig. 11.1 left,

ıCOLDPR
2 < ıDP

1 , and so the home firm never allows the DPR strategy to occur. For
values of ı < ıCOLDPC

2 , the foreign firm prefers the DPC strategy and, for values
of ı > ıCOLDPC

2 , the foreign firm prefers the COL strategy. Since ıCOLDPC
2 < ıDP

1 ,
for values of ı < ıCOLDPC

2 , both firms adopt the DPC strategy and, for values of
ı > ıCOLDPC

2 , both firms adopt the COL strategy (see Fig. 11.1 right).
Observing the profits of both firms, for a fixed value of � , under the adopted

repeated strategy, we observe a discontinuity in the profit of the home firm at
ıCOLDPC
2 and a discontinuity of the time derivative in the profit of the foreign firm at

the same point. These discontinuities are illustrated in Fig. 11.2, for � D 0:9. The
discontinuities occur at ıCOLDPC

2 D 0:132.
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Conclusions

In the symmetric case of the model we show that only two strategies can occur:
repeated collusion or deviation followed by punishment followed by repeated
Cournot. We characterise the parameter space where each one of these strategies
occurs.
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Chapter 12
Fractional Control of Dynamic Systems

Ramiro S. Barbosa and J.A. Tenreiro Machado

Abstract The concepts involved with fractional calculus (FC) theory are applied
in almost all areas of science and engineering. Its ability to yield superior model-
ing and control in many dynamical systems is well recognized. In this article, we
will introduce the fundamental aspects associated with the application of FC to the
control of dynamic systems.

12.1 Introduction

Fractional calculus (FC) is the area of mathematics that extends derivatives and
integrals to an arbitrary order (real or, even, complex order) and emerged at the
same time as the classical differential calculus. FC generalizes the classical dif-
ferential operator Dn

t � dn=dtn to a fractional operator D˛
t , where ˛ can be a

complex number [4,8]. However, its inherent complexity delayed the application of
the associated concepts.

Nowadays, the FC is applied in science and engineering, being recognized
its ability to yield a superior modeling and control in many dynamical systems.
We may cite its adoption in areas such as viscoelasticity and damping, diffusion
and wave propagation, electromagnetism, chaos and fractals, heat transfer, biol-
ogy, electronics, signal processing, robotics, system identification, traffic systems,
genetic algorithms, percolation, modeling and identification, telecommunications,
chemistry, irreversibility, physics, control, economy and finance [2, 6].
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In what concerns the area of control systems the application of the FC con-
cepts is still scarce and only in the second-half of the last century appeared the
first applications [1, 3, 6].

12.2 Fundamentals of Fractional-Order Control Systems

In general, a fractional-order control system can be described by a Linear Time
Invariant (LTI) fractional-order differential equation of the form:

anD
ˇn

t y .t/C an�1Dˇn�1
t y .t/C � � � C a0Dˇ0

t y .t/

D bmD˛m
t u .t/C bm�1D˛m�1

t u .t/C � � � C b0D˛0
t u .t/ (12.1)

or by a continuous transfer function of the form:

G .s/ D bms
˛m C bm�1s˛m�1 C � � � C b0s˛0

ansˇn C an�1sˇn�1 C � � � C a0sˇ0
(12.2)

where ˇk ; ˛k .k D 0; 1; 2; : : :/ are real numbers, ˇk > � � � > ˇ1 > ˇ0; ˛k >

� � � > ˛1 > ˛0 and ak ; bk .k D 0; 1; 2; : : :/ are arbitrary constants.
A discrete transfer function of (12.2) can be obtained by using a discrete approx-

imation of the fractional-order operators, yielding:

G .z/ D bm
�
w
�
z�1

	�˛m C bm�1
�
w
�
z�1

	�˛m�1 C � � � C b0
�
w
�
z�1

	�˛0

an Œw .z�1/�ˇn C an�1 Œw .z�1/�ˇn�1 C � � � C a0 Œw .z�1/�ˇ0
(12.3)

where w
�
z�1

	
denotes the discrete equivalent of the Laplace operator s, expressed

as a function of the complex variable z or the shift operator z�1.
The generalized operator aD˛

t , where a and t are the limits and ˛ the order of
operation, is usually given by the Riemann–Liouville definition .˛ > 0/:

aD
˛
t x .t/ D

1

� .n � ˛/
dn

dtn

Z t

a

x .�/

.t � �/˛�nC1 d�; n � 1 < ˛ < n (12.4)

where � .z/ represents the Gamma function of z. Another common definition is that
given by the Grünwald–Letnikov approach .˛ 2 </:

aD
˛
t x .t/ D lim

h!0
1

h˛

Œ t�a
h �X

kD0
.�1/k

�
˛

k

�
x .t � kh/ (12.5)

where h is the time increment and [v] means the integer part of v.
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The fractional-order derivatives can also be defined in the transform domain. It
is shown that the Laplace transform (L/ of definitions (12.4) and (12.5), under null
initial conditions, is given by:

L fD˛x .t/g D s˛X .s/ (12.6)

whereX .s/ D L fx .t/g.The Laplace transform reveals to be a valuable tool for the
analysis and design of fractional-order control systems.

12.3 Fractional-Order Controllers and its Implementation

The fractional-order controllers were introduced by Oustaloup, who developed the
so-called Commande Robuste d’Ordre Non Entier (CRONE) controller [5]. More
recently, Podlubny proposed a generalization of the PID controller, the PI�D�-
controller, involving an integrator of order � and a differentiator of order � [8].
The transfer function Gc .s/ of such a controller has the form:

Gc .s/ D U .s/

E .s/
D KP CKI s�� CKDs�; �; � > 0 (12.7)

where .KP ; KI ; KD/ are the proportional, integral, and derivative gains of the
controller, respectively. The transfer function (12.7) is represented by a fractional
integro-differential equation of type:

u .t/ D KP e .t/CKID��e .t/CKDD�e .t/ (12.8)

Taking .�; �/ � .1; 1/ gives a classical PID controller, .�; �/ � .1; 0/

gives a PI controller, .�; �/ � .0; 1/ gives a PD controller and .�; �/ � .0; 0/

gives a P controller. All these classical types of PID controllers are the particular
cases of the fractional PI�D�-controller. Thus, the PI�D�-controller is more flexi-
ble and gives the possibility of adjusting more carefully the dynamical properties of
a control system [9].

As shown by the above expressions, the fractional-order operators are charac-
terized by having irrational continuous transfer functions in the Laplace domain or
infinite dimensional discrete transfer functions in time domain. These properties
preclude their direct utilization both in time and frequency domains. Therefore,
the usual approach for analysing fractional-order systems is the development of
continuous and discrete integer-order approximations to these operators [10].

In order to implement the operator s˛ (˛ 2 </, a frequency-band limited approxi-
mation may be used by cutting out both high and low frequencies of transfer .s=!u/

˛

to a given frequency range ! 2 [!b , !h], distributed geometrically around the unit
gain frequency !u D .!b!h/

1=2 [7]. The resulting continuous transfer function of
such approximation is given by the formula:
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DN .s/ D
�
!u

!h

�˛ NY

kD�N

1C sı!0
k

1C s=!k (12.9)

where the zero and pole of rank k can be evaluated, respectively, as:

!0k D
�
!h

!b

� kCN C
1
2

�
˛
2

2N C1

!b; !k D
�
!h

!b

� kCN C
1
2

C
˛
2

2N C1

!b (12.10)

On the other hand, the usual approach for obtaining discrete equivalents of
continuous operators of type s˛ (˛ 2 </ adopts the Euler, Tustin and Al-Alaoui
generating functions.

It is well known that the continued fraction expansions (CFE) is a method of
evaluation of functions, that frequently converges much more rapidly than power
series expansions, and converges in a much larger domain in the complex plane. A
method for obtaining discrete equivalents of the fractional-order operators, which
combines the well known advantages of the trapezoidal rule (commonly designated
as the Tustin method in the control theory) and the advantages of the CFE uses as
generating function [10]:

�
w
�
z�1

		˙˛ D
�
2

T

1 � z�1

1C z�1

�˙˛
(12.11)

The application of the CFE of (12.11) results in the discrete transfer function,
approximating fractional-order operators, expressed as:

D˙˛ .z/ D Y .z/

X .z/
D
�
2

T

�˙˛
CFE

(�
1 � z�1

1C z�1

�˙˛)

m;n

D
�
2

T

�˙˛ Pm
�
z�1

	

Qn .z�1/
D
�
2

T

�˙˛
p0 C p1z�1 C � � � C pmz�m

q0 C q1z�1 C � � � C qnz�n
(12.12)

where T is the sampling period, CFEfug denotes the function from applying the
continued fraction expansion to the function u, Y.z/ is the Z transform of the output
sequence y(nT), X.z/ is the Z transform of the input sequence x(nT), m and n are
the orders of the approximation, and P and Q are polynomials of degreesm and n,
correspondingly, in the variable z�1.
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Chapter 13
A Dynamical Point of View of Quantum
Information: Discrete Wigner Measures

A.T. Baraviera, C.F. Lardizabal, A.O. Lopes, and M. Terra Cunha

Abstract We describe some well known properties of Wigner measures and then
analyze some connections with Quantum Iterated Function Systems.

13.1 Discrete Weyl Relations

This section follows parts of [3]. Consider the Hilbert space H D CN . Let
fjkigN�1

kD0 be an orthonormal basis. Fix ˛u; ˛v 2 Œ0; 1� and define the following
matrices UN , VN 2MN .C/:

UN WD e 2�
N
i˛u

N�1X

kD0
e

2�
N
ikjkihkj; VN WD e 2�

N
i˛v

N�1X

kD0
jkihk � 1j (13.1)

together with the identification jj i D jj mod N i. Such operators are unitary and
we have

UN jli D e 2�
N
i.˛uCl/jli; VN jli D e 2�

N
i˛v jl C 1i (13.2)

Defining n WD .n1; n2/ 2 Z2, we have that UN and VN satisfy the discrete Weyl
relations

U
n1

N V
n2

N D e
2�
N
in1n2V

n1

N U
n2

N (13.3)

Also, inspired in the continuous case, we define the discrete Weyl operators:

WN .n/ WD e�i �
N
n1n2U

n1

N V
n2

N (13.4)
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Such operators satisfy
W �N .n/ D W.�n/ (13.5)

and
WN .n/WN .m/ D ei �

N .n;m/WN .nCm/ (13.6)

where 
.n;m/ WD n1m2 � n2m1.
When normalized, the discrete Weyl operators form an orthonormal basis for

MN .C/. In fact, using (13.2) and (13.4), we have

t r.WN .n// D
N�1X

lD0
e�i

�
N
n1n2hl jU n1

N V
n2

N jli

D
N�1X

lD0
e�i

�
N .n1n2C2n1.˛uCl/�2n2˛v/hl jl C n2i

D ın2;0

N�1X

lD0
e�

2�in1
N .˛uCl/ D Nın;0 (13.7)

This allows us to obtain

t r.W �N .n/WN .m// D Nın;m (13.8)

and therefore for all A 2MN .C/,

A D 1

N

X

n2Z2
N

t r


W �N .n/A

�
WN .n/ (13.9)

where Z2N WD fn D .n1; n2/ W 0 � ni � N � 1g.

13.2 Introduction to the Wigner Function

This section follows parts of [10]. Given a quantum system, we are interested in
obtaining another form of representing the wave function 	.x/. Such object will be
the Wigner function, which will depend on two variables, moment and position. In
order to understand such functions, we need to study the structure of phase spaces.

The Wigner function consists of a special way of describing density operators.
In principle, we could say that density operators are a more fundamental structure
than its Wigner representation. For instance, the Wigner representation is unable
to describe the density operators associated to two-level systems. However, due to
its simplicity, we will see that an understanding of the Wigner distribution gives us
insight on certain aspects of density operators.
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Definition 13.1. Given a wave function 	.x/, the Wigner distribution function is

W.q; p/ D W� .q; p/ WD 1

2�„
Z 1

�1
eisp=„hq � s

2
j	 ih	 jq C s

2
ids (13.10)

where above we are using Dirac notation

hq � s
2
j	 i D 	.q � s

2
/ (13.11)

h	 jq C s

2
i D 	�.q C s

2
/ (13.12)

Define the change of coordinates

x D q C s

2
; x0 D q � s

2
(13.13)

and then we obtain

W.q; p/ D 1

2�„
Z 1

�1
e

i
„
p.x�x0/hx0j	 ih	 jxids (13.14)

That is, the Wigner distribution is obtained by calculating the product 	.x0/	�.x/
and then applying the Fourier transform on s D x � x0. Such distribution has the
following properties:

Z 1

�1
W.q; p/dp D hqj	 ih	 jqi D j	.q/j2 (13.15)

Z 1

�1
W.q; p/dq D hpj	 ih	 jpi D j Q	.p/j2 (13.16)

Z 1

�1

Z 1

�1
W.q; p/dpdq D 1 (13.17)

where Q	 is the moment representation of the wave function 	 .

The Wigner function is real, but can assume negative or positive values. In this
sense, it is not a density, but it is a kind of joint distribution of the position and
momentum distributions.

Now, note that (13.14) can be written as

W.q; p/ D 1

2�„
Z

1

�1

e
i
„
p.x�x0/hx0

�j	ih	 j	xids D 1

2�„
Z

1

�1

e
i
„
p.x�x0/hx0j�jxids

(13.18)

where
x D q C s

2
; x0 D q � s

2
(13.19)
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where we define the density operator associated to a pure state as

� WD j	 ih	 j (13.20)

The general definition for � includes pure and mixed states:

� D
X

i

pi j	iih	i j (13.21)

where pi � 0 and
P
i pi D 1. Such equation describes � as an incoherent super-

position of pure state density operators j	iih	i j, where 	i is a wave function, but
not necessarily an energy eigenstate. On (13.21) the pi denote the probabilities of
finding the system on the state j	ii.

Hence, besides the usual probabilistic interpretation for finding a particle
described by a certain wave function at some position, we also have a probability
distribution that such a particle can be found in different states.

13.3 Discrete Wigner Function

This section follows parts of [7] and [11]. In dimension 1, the continuous Wigner
function is in 1–1 correspondence with a density matrix � and is defined by

W�.q; p/ D W.q; p/ WD 1

2�„
Z 1

�1
ei�p=„hq � �

2
j�jq C �

2
id� (13.22)

Such function is uniquely defined by the following properties: [7, 11]:

1. W.q; p/ 2 R
2. If �1 and �2 are two density states then

t r.�1�2/ D 2�„
Z
W1.q; p/W2.q; p/dqdp (13.23)

3. (Projection property) The integral along a line on phase space, described by
a1q C a2p D a3, is the probability density that the measurement of the
observable a1 OQC a2 OP gives a3 as a result.

Remark Note that the Wigner function is always associated to a density matrix.
It would be more appropriate to use the notation W� instead of W . When there is
no possibility of confusion we will denoteW . The projection property stated above
means, in other words, that the projection of the Wigner function along any direction
of the phase space is equal to the probability distribution of a certain observable
a1qC a2p, associated to that direction. Two special cases of this property are well-
known: Z

W.q; p/dq (13.24)
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is the probability distribution for the moment, and

Z
W.q; p/dp (13.25)

is the probability distribution for position. For more details on these properties,
see [11].

We can write W as the expected value of a Fano operator, so we have

W.q; p/ D t r.� OA.q; p// (13.26)

where OA can be written as

OA.q; p/ D 1

.2�„/2
Z

exp
h
� �„ .

OP � p/C i �
0

„ .
OQ � q/

i
d�d�0 (13.27)

D 1

.2�„/2
Z
OD.�; �0/exp

h
� i

„ .�
0q � �p/

i
d�d�0 (13.28)

where

OD.�; �0/ WD exp
h
� i

„.�
OP � �0 OQ/

i
(13.29)

Also we can write OA as

OA.q; p/ D 1

�„
OD OR OD� (13.30)

where above we write OD D OD.q; p/ and OR is an operator acting on positive
eigenstates such that ORjxi D j � xi.

The proof thatW satisfies properties 1–3 stated above follows from simple phase
space properties. The fact thatW.q; p/ 2 R is a consequence of the fact that OA.q; p/
is hermitian. As for property 2, we can show that

t r

 OA.q; p/ OA.q0; p0/

�
D 1

2�„ı.q � q
0/ı.p � p0/ (13.31)

As a consequence, it is possible to invert (13.26) so we can write

� D 2�„
Z
W.q; p/ OA.q; p/dqdp (13.32)

Property 2 follows from the formula above. As for property 3, note that by integrat-
ing OA.q; p/ along a line on phase space gives us a projection operator. Therefore

Z
ı.a1q C a2p � a3/ OA.q; p/dqdp D ja3iha3j (13.33)
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where ja3i is an eigenstate of the operator a1 OQ C a2 OP with eigenvalue a3. Later
we will describe the proof of this property for the discrete case.

Now we are interested in defining the Wigner function in the discrete case. The
first step is to define a discrete phase space. Consider a Hilbert space of dimension
N and define a basis

Bx D fjni; n D 0; : : : ; N � 1g;
which will be seen as a discrete position basis. Now we define a basis of moments

Bp D fjki; k D 0; : : : ; N � 1g

A natural way of introducing the moment base from the position base is via the
discrete Fourier transform. Then we can obtain the states of Bp from the states in
Bx in the following way:

jki D 1p
N

X

n

expŒ2�ink=N �jni (13.34)

Therefore, as in the continuous case, position and moment are related by the Fourier
transform.

Remark We can relate the dimension of the Hilbert space with the Planck constant
in the following way. We are supposing that the phase space has a finite area, which
we can suppose equal to 1. In this area we can have N orthogonal states. If each
state fills an area equal to 2�„, we have N D 1=2�„. So N plays the role of the
inverse of the Planck constant and the limit as N goes to infinity can be seen as the
semiclassical limit [7].

Given position and moment bases, we can define their respective displacement
operators. For discrete systems, we can define translation operators OU and OV , in a
way which is similar to what we have in (13.1) and (13.2), Sect. 13.1:

OUmjni WD jnCmi; OUmjki WD expŒ�2�imk=N �jki (13.35)

where the vector sums are modN . In a similar way the operator OV is a shift on
moment basis, and it is diagonal on positions:

OV mjki WD jk Cmi; OV mjni WD expŒ2�imn=N �jni (13.36)

Then it is possible to show that

OV p OU q D e2 �
N ipq OU q OV p; (13.37)

the discrete Weyl relations (13.3), seen on Sect. 13.1. Let us also define a reflection
operator as ORjni WD j � ni. We have that

OU OR D OR OU�1; OV OR D OR OV �1 (13.38)
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The reflection operator is related to the Fourier transform in the following way.
Denote by UFT the discrete Fourier transform, that is the operator whose entries on
basis Bx are

hn0jUFT jni D expŒ2�inn0=N � (13.39)

Then we have
OR D U 2FT (13.40)

In order to define the discrete Wigner function, we still have to define a transla-
tion operator OT and a point operator OA, corresponding to the Fano operator defined
in the continuous case. This is what we will do next. Define

OT .q; p/ WD OU q OV p expŒi�qp=N � (13.41)

Such operators satisfy
OT .�q; �p/ D OT �.q; p/ (13.42)

Remark In R2 we define the translation operator with position q and moment p
as

OT .q; p/ D e� i
„
.q OP�p OQ/ (13.43)

Instead of definitions (13.35) and (13.36) given for OU and OV we could, in principle,
define OU and OV as the exponential of two operators OQ and OP , defined as being
diagonal in Bx and Bp. However, infinitesimal operators OQ and OP satisfying the
canonical commutation relations (CCR) cannot be defined over a discrete Hilbert
space [4, 11]. Because of that we will use the finite cyclic shifts, given by (13.35)
and (13.36).

Remark Due to technicalities, the phase-space can be taken to be a N � N or
a 2N � 2N grid [7]. Typically we will be interested in phase spaces with even
dimension and we will use the 2N � 2N grid (for instance, if N D 2 the phase
space has 16 points). Our following definitions will follow this choice as well.

Let ˛ D .q; p/ be a point of the discrete phase space, with q and p assuming
values between 0 and 2N � 1. Define

OA.˛/ WD 1

.2N /2

2N�1X

�;�0D0
OT .�; �0/ exp

h
�2�i .�

0q � �p/
2N

i
D 1

2N
OU q OR OV �pei�pq=N

(13.44)
We can express the translation operator in terms of OA.˛/ by inverting the above
definition and then we obtain the Fourier transform of OA:

QT .n; k/ D
2N�1X

q;pD0
OA.q; p/ expŒ�i 2�

2N
.np � kq/� (13.45)

Note that as we defined the point operators over a lattice of 2N � 2N points, we
get a total of 4N 2 operators. However, such set is not independent. That is, we can
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show that

OA.q C 
qN;p C 
pN/ D OA.q; p/.�1/pqCqpCqpN (13.46)

for 
q; 
p D 0; 1. So we have that N 2 operators define the remaining ones. Define

GN WD f˛ D .q; p/ W 0 � q; p � N � 1g

And the set G2N will denote the entire lattice of order 2N .

A relation between OA and OT is the following:

OA.˛/ OA.˛0/ D OT .˛ � ˛0/expŒi.�=N /.q˛p˛0 � q˛0p˛/�

4N 2
(13.47)

By taking the trace of the above equation we get

tr. OA.˛/ OA.˛0// D 1

4N
ıN .q

0 � q/ıN .p0 � p/ (13.48)

where ˛ and ˛0 are in GN and

ıN .q/ WD 1

N

N�1X

nD0
e�2� iqn=N (13.49)

is the periodic Dirac delta function, which is equal to zero unless q � 0 mod N .

Definition 13.2. The discrete Wigner function is

W.˛/ D W�.˛/ WD tr. OA.˛/�/ (13.50)

where ˛ 2 G2N .

These 4N 2 values are not independent because in a similar way to what we have for
the operator OA, we have

OW .q C 
qN;p C 
pN/ D OW .q; p/.�1/pqCqpCqpN (13.51)

for 
q; 
p D 0; 1. As the operators OA.˛/ form a complete set, we can write the
density operator as a linear combination of the OA.˛/. So we can show that

� D 4N
X

˛2GN

W.˛/ OA.˛/ D N
X

Q̨2G2N

W. Q̨ / OA. Q̨ / (13.52)

Remark It is possible to show that the discrete Wigner function defined above
satisfies properties 1 to 3 stated in the beginning of this section. Property 1 is a
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consequence of the fact that OA.q; p/ are hermitian operators. Property 2 follows
from the completeness of the set OA.˛/, which allows us to show that

tr.�1�2/ D N
X

˛2G2N

W1.˛/W2.˛/ (13.53)

The proof of the third property requires a brief analysis of the lattice GN and we
refer the reader to [7] for details.

Conclusions We have defined the Wigner function for systems over a Hilbert
space of dimension N <1. The Wigner functions is defined as the expected value
of the operator OA.˛/ defined over the phase space given by (13.44). The definition
is such that W.˛/ 2 R and is such that we can calculate the inner product between
states and gives the correct marginal distributions along any line over the phase
space, which is the lattice G2N with 4N 2 points. Also, the values of W.˛/ on the
sublattice GN are enough to determineW in the entire space.

13.4 Calculating Wigner Functions

In order to calculate the Wigner function of a quantum state, we will use (13.35),
(13.36) and (13.44) se we can write W in the following convenient form:

Lemma 13.1.

W.q; p/ D 1

2N

N�1X

nD0
hq � nj�jni exp

h2�i
N
p.n � q=2/

i
(13.54)

Proof: In the following calculations, recall that the inner product is linear on the
second variable. We have that

W.q; p/ D tr.A�/ D 1

2N
expŒi�pq=N �tr.U qRV �p�/

D 1

2N
expŒi�pq=N �

N�1X

iD0
hnjU qRV �p�jni

D 1

2N
expŒi�pq=N �

N�1X

iD0
hU�qnjRV �p�jni

D 1

2N
expŒi�pq=N �

N�1X

iD0
hn� qjRV �p�jni

D 1

2N
expŒi�pq=N �

N�1X

iD0
hq � njV �p�jni
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D 1

2N
expŒi�pq=N �

N�1X

iD0
hV p.q � n/j�jni

D 1

2N
expŒi�pq=N �

N�1X

iD0
expŒ�2�ip.q � n/=N �hq � nj�jni

Also, note that

i�pq=N�2�ip.q�n/=N D ip�

N
.q�2.q�n// D ip�

N
.2n�q/ D 2�ip

N
.n�q=2/

Hence,

W.q; p/ D 1

2N

N�1X

nD0
hq�nj�jni expŒ

2�ip

N
.n�q=2/� ut

We believe there is a misprint in [7] in the expression corresponding to the
W.q; p/ described by the claim of the above lemma.

One can ask how W� changes with �. Suppose first � is a projector from a wave
 which has norm 1 in L 2. Suppose .a�1 C b�2/ D  , where  ; �1; �2 have
norm 1, and � D j ><  j. Then,W ¤ aW�1

C bW�1
: The linearity occurs only

when � DPi ci ji >< i j, that is, when � is diagonal. This in general do not happen
for operators j ><  j induced by a wave  . However, if � D .a�1C b�2/, where
�; �1; �2 are density matrices, then W� D aW�1

C bW�2
.

Example 13.1. Let N D 2, and let j i D aj0i C bj1i be a state superposition. Let
W1.˛/ and W2.˛/ be the Wigner functions for j0i and j1i, respectively. We have
that the Wigner functionW for j i is such that

W.˛/ D jaj2W1.˛/C jbj2W2.˛/C 2Refab�h1jA.˛/j0ig (13.55)

In fact, note that

W.˛/ D t r.A.˛/�/ D t r


A.˛/.jaj2j0ih0j C jbj2j1ih1j C ab�j0ih1j C a�bj1ih0j/

�

D jaj2W1.˛/C jbj2W2.˛/C ab�t r.A.˛/j0ih1j/C a�btr.A.˛/j1ih0j/
D jaj2W1.˛/C jbj2W2.˛/C ab�t r.h1jA.˛/j0i/C a�btr.h0jA.˛/j1i/

so the result follows.

Let us remark a few properties of the Wigner function for a pure state �. In this
case by expanding � in terms of the phase space operators as in (13.52) and by
imposing the condition �2 D �, we get

W.˛/ D 4N 2
X

ˇ;�2GN

� .˛; ˇ; �/W.ˇ/W.�/ (13.56)
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where the function � .˛; ˇ; �/, which depends on 3 points (i.e., a triangle) is
given by

� .˛; ˇ; �/ WD t r. OA.˛/ OA.ˇ/ OA.�// D 1

4N 3
exp

h2�i
N
S.˛; ˇ; �/

i
; (13.57)

of 2 of the 3 point .˛; ˇ; �/ contain even q and p coordinates. Otherwise we define

� .˛; ˇ; �/ WD 0; (13.58)

and in the above expression, valid for evenN , the value S.˛; ˇ; �/ is the area of the
triangle formed by these points (measured in units of the elementary triangle formed
by 3 points which are one position apart from each other).

Now we calculate the Wigner function for a position eigenvalue

�q0
D jq0ihq0j (13.59)

We obtain the following closed expression for W :

Wq0
.q; p/ D 1

2N
hq0j OU q OR OV �pjq0iei�pq=N

D 1

2N
ıN .q � 2q0/.�1/pŒ.q�2q0/ modN	 (13.60)

We can also write the Wigner function of a state which is a linear superposition:

j i D 1p
2
.jq0i C e�i�jq1i/ (13.61)

Again, we can obtain a closed expression for W , which is

W.q; p/ D 1

2



Wq0

.q; p/CWq1
.q; p/C�Wq0;q1

.q; p/
�

(13.62)

where the interference term is

�Wq0;q1
.q; p/ WD 1

N
ıN . Qq/.�1/Qqp cos


2�
�
p C �

�
(13.63)

where

Qq D q0 C q1 � q; � D 2N

q0 � q1 (13.64)

This is an explicit expression for the calculation seen in Example 13.1.
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Now we make a few considerations on the time evolution of quantum systems on
phase space. If U is the unitary operator which determines the evolution of a state,
then the associated density matrix evolves in the following way,

�.t C 1/ D U�.t/U � (13.65)

By this fact, we can show that the Wigner function evolves in the following way:

W.˛; t C 1/ D
X

ˇ2G2N

Z˛ˇW.ˇ; t/ (13.66)

where the matrix Z˛ˇ is defined as

Z˛ˇ WD Ntr

 OA.˛/U OA.ˇ/U �

�
(13.67)

Therefore the time evolution in phase space is represented by a linear transforma-
tion, which is a consequence of Schrödinger’s equation. The unitarity imposes a few
restrictions on the matrix Z˛ˇ . In fact, since purity of states is preserved, the time
evolution has to preserve the restriction given by (13.56). Therefore, the matrix has
to leave the function � .˛; ˇ; �/ invariant, that is,

� .˛0; ˇ0; � 0/ D
X

˛;ˇ;�

Z˛0˛Zˇ 0ˇZ� 0�� .˛; ˇ; �/ (13.68)

The real matrixZ˛ˇ contains all the information on the time evolution of the system.
In general, such matrix relates a point ˛ with several other points ˇ. So the evolution
will be, in general, nonlocal, a unique property of quantum mechanics. In classical
systems, the value of the classical distribution function W.˛; t C 1/ is equal to the
valueW.ˇ; t/ for some point ˇ, which consists of a well defined function of ˛ and t .
However, we have in [7] a few examples of unitary operators which generate a local
dynamical evolution on the phase space.

To conclude this section, we calculate the Wigner function for a quantum chan-
nel �, as the ones considered for our analysis of QIFS. This is a straightforward
calculation. Let Vi be linear operators, i D 1; : : : ; k such that

P
iV
�
i Vi D I . Then

�.�/ DPiVi�V
�
i 2MN . Hence,

W�.�/.q; p/ D 1

2N

N�1X

nD0
hq � nj�.�/jni exp

h2�i
N
p.n � q=2/

i

D 1

2N

N�1X

nD0

kX

iD1
hq � njVi�V �i jni exp

h2�i
N
p.n � q=2/

i

D 1

2N

N�1X

nD0

kX

iD1
h.q � n/Vi j�jV �i .n/i exp

h2�i
N
p.n � q=2/

i

(13.69)
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Writing � DPN�1
jD0 �j jj ihj j,

P
j �j D 1, we get

W�.�/.q; p/ D 1

2N

N�1X

n;jD0

kX

iD1
�j h.q � n/Vi jj ihj jV �i .n/i exp

h2�i
N
p.n � q=2/

i

(13.70)
Therefore the Wigner function of�.�/ is obtained in a simple way from the function
for �.

13.5 Some Properties of the Discrete Wigner Function

We have seen in Sect. 13.3 that the discrete Wigner function

W.˛/ D t r. OA.˛/�/ (13.71)

satisfies properties 1 and 2. Now let us prove property 3. Let � D P
i pi jiihi j,P

i pi D 1 be a density operator. Denote by

Bx D fjni; n D 0; : : : ; N � 1g;
a position basis and

Bp D fjki; k D 0; : : : ; N � 1g
a moment basis, as before, where

jki D 1p
N

X

n

expŒ2�ink=N �jni (13.72)

To prove property 3, we must show that as we sum the operators OA.q; p/ over the
point of the phase space which lie over a line L, we obtain a projection operator.
This implies that by summing the values of the Wigner function over all the points
of a line we get a positive number, which can be interpreted as a probability.

We begin by defining a line on the phase space. A line L is a set of point of the
lattice, defined as

L D L.n1; n2; n3/ D f.q; p/ 2 G2N W n1p � n2q D n3; 0 � ni � 2N � 1g
(13.73)

Also, we say that two lines as parallel if they are parameterized by the same integers
n1 and n2.

Now, let us show that as we sum the point operators A over a line, we get
projection operators. So we are interested in the operator

OAL D
X

.q;p/2L
OA.q; p/ (13.74)
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Since ıN .q/ D 1
N

PN�1
nD0 e�2�iqn=N , we can rewrite such operator as

AL D
2N�1X

q;pD0
OA.q; p/ı2N .n1p � n2q � n3/

D 1

2N

2N�1X

�D0

2N�1X

q;pD0
OA.q; p/ expŒ�i 2�

2N
�.n1p � n2q � n3/�

D 1

2N

2N�1X

�D0
OT �.n1; n2/ expŒi

2�

2N
n3�� (13.75)

where we use the Fourier transform of OA to obtain the last equality. Since OT is
unitary, we have N eigenvectors j�j i with eigenvalues expŒ�2�i�j =N �. Besides,
such operator is cyclic and satisfies OT N D I . Therefore as its eigenvalues areN�th
roots of unity, the �j are integers. So we can rewrite (13.75) as

OAL D 1

2N

2N�1X

�D0

NX

jD0
expŒ�i 2�

2N
.2�j � n3/��j�j ih�j j

D
NX

jD0
ı2N .2�j � n3/j�j ih�j j (13.76)

Hence we have that OAL is a projection operator over a subspace generated by a
subset of eigenvectors of the translation operator OT .n1; n2/.
Example 13.2. For a line Lq defined by q D n3 (that is, n1 D 1, n2 D 0), the
Wigner function summed over all point of Lq is

X

.q;p/2Lq

W�.q; p/ D
X

p

W�.n3; p/ D hn3=2j�jn3=2i (13.77)

if n3 is even, and equal to zero otherwise.

More precisely, we have the following proposition:

Proposition 13.1. Let N be even and let � be a density operator. Then

2N�1X

pD0
W�.2q; p/ D hqj�jqi; q D 0; 2; : : : ; N � 1

and
2N�1X

pD0
W�.2q C 1; p/ D 0; q D 0; 2; : : : ; N � 1
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Proof: First, to see why the case q odd implies that the Wigner function equals
zero, consider the expression for W given by

W�.q; p/ D 1

2N

N�1X

nD0
hq � nj�jni exp

h2�i
N
p.n � q=2/

i
(13.78)

Write � DPj cj jj ihj j, cj > 0. Then

hq � nj�jni D
X

j

cj hq � njj ihj jni (13.79)

which is ¤ 0 if and only if j D q � n D n for some j . In particular, in order to
have a nonzero inner product above, we must have that q is even, because q�n D n
implies q D 2n.

Now suppose that q D 2q0. By the analysis above, we see that in the sum of the
terms forming the Wigner function (13.78), we only have to sum the indices such
that the equation

q � n D n, 2q0 � n D n (13.80)

is satisfied (recall that all calculations are made modulo N). Such equation has two
solutions, namely n D q0 and n D q0 C N=2. To see that there are no other solu-
tions for (13.80), we proceed in the following way. From 2q0 � n D n we get
2.q0 � n/ D 0. We know that n D 0 and n D q0 C N=2 are solutions. Also, note
that x D 0 and x D N=2 are solutions of 2x D 0. Now, if y is a solution of 2x D 0
then y �N=2 also is. Clearly if y is an element between 0 and N=2 then 2y will be
at most equal to 2N � 2, hence 2y ¤ 0. Finally, let y be an element between N=2
and N and by contradiction suppose that 2y D 0. Then by the remark above we
have that z D 2y�N=2 is also a solution and z is between 0 andN=2. But there are
no solutions for 2x D 0 between 0 and N=2. This shows that 2x D 0 admits only
the solutions stated above.

Now note that if n equals q0 then

exp
h2�i
N
p.n � q=2/

i
D 1 (13.81)

If n D q0CN=2, we have that the exponential above is equal to˙1, being positive
or negative if p is even or odd, respectively. Therefore, for N even and q D 2q0,
we have

W�.2q0; p/ D 1

2N
.hq0j�jq0i ˙ hq0 CN=2j�jq0 CN=2i/ (13.82)

where the sign ˙ depends on p. For fixed q and considering all possible p (i.e.,
p D 0; : : : ; 2N � 1), we have that the second inner product above will have a plus
sign in front of it in the N possibilities in which p is even and will have a negative
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sign in the N remaining possibilities. So

X

p

W�.2q0; p/ D hq0j�jq0i (13.83)

This concludes the proof. ut
Corollary 13.1. If q is odd then W�.q; p/ D 0, for any p and any � density
operator.

Proof: Follows from the first paragraph of the proof above. ut
Definition 13.3. Let  be a state. The W -transform of  is

�.p/ WD
2N�1X

qD0
W .q; 2p/ (13.84)

for p D 0; : : : ; 2N � 1.

Let � be the W -transform of  , and let F be the discrete Fourier transform
of  .

Question:

j.F /.p/j2 ‹D �.p/; p D 0; 1; : : : ; N � 1 (13.85)

Answer For N D 2 and  D j0i or j1i, the answer is yes. In fact, let j i D j0i D
.1; 0/. Then

F j0i D 1p
2

X

j

exp Œ2�ij0=2�jj i D 1p
2
.j0i C j1i/

) .F j0i/.0/ D 1p
2
) j.F j0i/.0/j2 D 1

2

And

�.0/ D
X

q

Wj0i.q; 0/ D 1

4
C 0C 1

4
C 0 D 1

2

Also

.F j0i/.1/ D 1p
2
) j.F j0i/.1/j2 D 1

2

And
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�.1/ D
X

q

Wj0i.q; 2/ D 1

4
C 0C 1

4
C 0 D 1

2

Therefore in this case

j.F /.p/j2 D �.p/; p D 0; 1 (13.86)

Now let j i D j1i D .0; 1/. Then

F j1i D 1p
2

X

j

exp Œ2�ij=2�jj i D 1p
2
.j0i C exp Œ2�i=2�j1i/ D 1p

2
.j0i � j1i/

) .F j1i/.0/ D 1p
2
) j.F j0i/.0/j2 D 1

2

And

�.0/ D
X

q

Wj1i.q; 0/ D 1

4
C 0C 1

4
C 0 D 1

2

Also

.F j1i/.1/ D � 1p
2
) j.F j0i/.0/j2 D 1

2

And

�.1/ D
X

q

Wj1i.q; 2/ D 1

4
C 0C 1

4
C 0 D 1

2

Therefore
j.F /.p/j2 D �.p/; p D 0; 1 (13.87)

Now let us write an example in which the state considered is mixed. Let  D
1=
p
2.j0i C j1i/. Then

F j i D 1p
2
.F j0i CF j1i/ D 1p

2

h 1p
2
.j0i C j1i/C 1p

2
.j0i � j1i/

i
D j0i
(13.88)

Then j.F /.0/j2 D 1 e j.F /.1/j2 D 0. Now let us calculate �.p/, p D 0; 1. By
definition, we have �.p/ DPqW .q; 2p/. We can use the expression (13.62):

W .q; 0/ D 1

2



Wj0i.q; 0/CWj1i.q; 0/C�0;1.q; 0/

�
(13.89)

W .q; 2/ D 1

2



Wj0i.q; 2/CWj1i.q; 2/C�0;1.q; 2/

�
(13.90)
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Then

W .0; 0/ D 1

2

�
1

4
C 1

4
C 0

�
D 1

4

W .1; 0/ D 1

2

�
0C 0C 1

2

�
D 1

4

W .2; 0/ D 1

2

�
1

4
C 1

4
C 0

�
D 1

4

W .3; 0/ D 1

2

�
0C 0C 1

2

�
D 1

4

which implies �.0/ D 1 D j.F /.0/j2. Similarly,

W .0; 2/ D 1

2

�
1

4
C 1

4
C 0C 0

�
D 1

4

W .1; 2/ D 1

2

�
0C 0 � 1

2

�
D �1

4

W .2; 2/ D 1

2

�
1

4
C 1

4
C 0C 0

�
D 1

4

W .3; 2/ D 1

2

�
0C 0 � 1

2

�
D �1

4

and so �.1/ D 0 D j.F /.1/j2.
Inspired in the calculation above, we prove the following lemma, valid for pure

states only. After that, we will prove the result for density operators.

Lemma 13.2. Let  D jmi 2 fj0i; : : : ; jN � 1ig, N even. Then

j.F /.p/j2 D �.p/; p D 0; 1; : : : ; N � 1 (13.91)

Proof: We have

F jmi D 1p
N

N�1X

jD0
exp Œ2�ijm=N �jj i

So

.F jmi/.p/ D 1p
N

exp Œ2�ipm=N �) j.F jmi/.p/j2 D 1

N

Let us calculate �.p/ DP2N�1
qD0 Wjmi.q; 2p/. By the Corollary 13.1, we only have

to sum the even q. Then �.p/ DPN�1
qD0 Wjmi.2q; 2p/. By Proposition 13.1 we get,
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using expression (13.82), that

W�.2q0; p/ D 1

2N
.hq0j�jq0i C hq0 CN=2j�jq0 CN=2i/ (13.92)

where the sign of the second inner product is positive because 2p is even. Now
note that only one of the inner products above can be nonzero, because � is pure,
by assumption. Moreover, � pure implies that such inner products are equal to 1.
Finally, since q varies between 0 and 2N � 1 we have exactly two nonzero terms in
the sum of �.p/ namely, the terms corresponding to the m and m C N=2 indices.
Hence,

�.p/ D 1=2N C 1=2N D 1=N D j.F jmi/.p/j2

This concludes the proof. ut
The following result, inspired in the previous one, completes Proposition 13.1,

which related the discrete Wigner function with the basis of position vectors. Now
we do the corresponding work for the basis of momentum vectors.

Proposition 13.2. LetN be even and let � be a density operator. Let jpi be a vector
of the momentum basis, that is, obtained via the discrete Fourier transform of a
position basis vector:

jpi D 1p
N

N�1X

jD0
exp Œ2�ijp=N �jj i (13.93)

Then
2N�1X

qD0
W�.q; 2p/ D hpj�jpi; p D 0; 1; : : : N � 1 (13.94)

2N�1X

qD0
W�.q; 2p C 1/ D 0; p D 0; 1; : : : N � 1 (13.95)

Proof: Let us calculate �.p/ DP2N�1
qD0 W�.q; 2p/. By Corollary 13.1, we only have

to sum the even q indices. Then �.p/ D PN�1
qD0 W�.2q; 2p/. By Proposition 13.1

we get, using expression (13.82), that

W�.2q; 2p/ D 1

2N
.hqj�jqi C hq CN=2j�jqCN=2i/ (13.96)

where the sign of the second inner product is a plus because 2p is even. Write
� DPi ci jiihi j. Take, for instance, q D 0. Then



180 A.T. Baraviera et al.

W�.0; 2p/ D 1

2N
.h0j�j0i C h0CN=2j�j0CN=2i/

D 1

2N
.
X

i

ci h0jiihi j0iC hN=2jiihi jN=2i/D 1

2N
.c0 C cN=2/

(13.97)

As we know,W�.1; 2p/ D 0. Take q D 2, then

W�.2; 2p/ D 1

2N
.c1 C cN=2C1/ (13.98)

and so on (noting that we always have zeroes when q is odd). In this way, we end
up summing all ci coefficients ci twice (because q varies between 0 and 2N � 1)
and we get that

�.p/ D
2N�1X

qD0
W�.q; 2p/ D 1

N
.c0 C c1 C � � � C c2N�1/ D 1

N
(13.99)

By the calculation above, we only have to calculate hpj�jpi and show that such
number equals 1=N . Recall that the inner product we consider is linear on the
second variable, so we write � DPm cmjmihmj and then:

hpj�jpi D
X

m

cm
1

N

N�1X

jD0
exp Œ�2�ijp=N �

N�1X

lD0
exp Œ2�ilp=N �hj jmihmjli

D
X

m

cm
1

N

N�1X

jD0
exp Œ�2�ijp=N � exp Œ2�imp=N �hj jmi D 1

N

X

m

cm D 1

N

(13.100)

ut
Conclusion By Propositions 13.1 and 13.2 we have for the discrete Wigner

transform that if N is even and � is a density operator then

2N�1X

pD0
W�.2q; p/ D hqj�jqi;

2N�1X

pD0
W�.2q C 1; p/ D 0; q D 0; 1; : : : ; N � 1

(13.101)
and if

jpi D 1p
N

N�1X

jD0
exp Œ2�ijp=N �jj i (13.102)

then
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2N�1X

qD0
W�.q; 2p/ D hpj�jpi;

2N�1X

qD0
W�.q; 2p C 1/ D 0; p D 0; 1; : : : N � 1

(13.103)
Such expressions are the discrete analog of the result we have for the continu-
ous Wigner function, namely the result that relates the marginals with the Fourier
transform F : if � D j ih j then

Z
W�.q; p/dp D j .q/j2;

Z
W�.q; p/dq D jF .p/j2 (13.104)

See [5] for more details.

Example 13.3. Denote by W� the matrix with entries W�.q; p/ for q; p D
0; : : : ; 2N � 1. For instance, if N D 2 and writing j0i D .1; 0/ and j1i D .0; 1/, we
have that W� contains the image of the Wigner function for each point of the phase
space. We immediately notice that the integral over all space equals 1:

Wj0ih0j D

0

BB@

1
4

1
4

1
4

1
4

0 0 0 0
1
4
�1
4
1
4
�1
4

0 0 0 0

1

CCA ;Wj1ih1j D

0

BB@

1
4
�1
4
1
4
�1
4

0 0 0 0
1
4

1
4

1
4

1
4

0 0 0 0

1

CCA (13.105)

Example 13.4. Denote by W� the matrix with entries W�.q; p/ for q; p D
0; : : : ; 2N � 1. Let N D 4, and writing j0i D .1; 0; 0; 0/, j1i D .0; 1; 0; 0/,
j2i D .0; 0; 1; 0/, j3i D .0; 0; 0; 1/, we have, in a similar way as seen in the
previous example, that

Wj0ih0j D

0
BBBBBBBBBBB@

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
8
�1
8
1
8
�1
8
1
8
�1
8
1
8
�1
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

Wj1ih1j D

0

BBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
8
�1
8
1
8
�1
8
1
8
�1
8
1
8
�1
8

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCA
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Wj2ih2j D

0

BBBBBBBBBBB@

1
8
�1
8
1
8
�1
8
1
8
�1
8
1
8
�1
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCA

Wj3ih3j D

0

BBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
8
�1
8
1
8
�1
8
1
8
�1
8
1
8
�1
8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
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1
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1
8

1
8

1
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1
8

1
8

1
8

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCA

Remark 1 What occurs in general for pure states: the Wigner functionWjq0ihq0j is
zero except in two lines, located in q � 2.modN/. When q D 2q0, W assumes the
value 1=2N , and when q D 2q0 ˙ N , W assumes the value 1=2N for even values
of p and�1=2N for odd values. Such oscillations are typical of interference fringes
and can be interpreted as arising from the interference between the line q D 2q0
and a mirror image formed at a distance of 2N from 2q0, induced by the periodic
boundary conditions [7].

Remark 2 The fact that the Wigner function assumes negative values in the
interference line is essential for one to be able to recover the correct marginal distri-
butions. Summing the valuesW.q; p/ along a vertical line gives us the probability of
measuring q=2, which should be equal to 1 if q D 2q0, and equal to zero, otherwise.

A natural question is to try to understand the action of the operator which defines
QIFS in the dual variables p. This is the purpose of the next results.

Lemma 13.3. Let �.�/ DP
iVi�V

�
i and define F.�/ D F�F�, where F is any

unitary map. Then there isG WMN !MN such that the above diagram commutes:

MN
F�����! MN

�

??y
??yG

MN
F�����! MN

(13.106)

Proof: First, note that F�1.�/ D F��F . Also F is unitary, therefore we have
F�1 D F�. Define G D F ı� ı F�1. Explicitly,
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G.�/ D F.
X

i

ViF
��FV �i / D F

hX

i

ViF
��FV �i

i
F�

D
X

i

FViF
��FV �i F� D

X

i

QVi� QV �i

where QVi D FViF
�. And a simple inspection shows that

F.�.�// D G.F.�// D
X

i

FVi�V
�
i F� ut

Example 13.5. Consider N D 2. Then the discrete Fourier transform is given by

F D 1p
2

�
1 1

1 �1
�

(13.107)

In this case we have F�1 D F . Let

V1 D
�p

p11 0

0 0

�
; V2 D

�
0
p
p12

0 0

�
; (13.108)

V3 D
�p

p21 0

0 0

�
; V4 D

�
0 0

0
p
p22

�
(13.109)

where the pij form a column stochastic matrix P . Then Lemma 13.3 for this
example shows that G.�/ DPi

QVi� QV �i , where

QV1 D FV1F
� D 1

2

p
p11

�
1 1

1 1

�
; QV2 D FV2F

� D 1

2

p
p12

�
1 �1
1 �1

�

QV3 D FV3F
� D 1

2

p
p21

�
1 1

�1 �1
�
; QV4 D FV4F

� D 1

2

p
p22

�
1 �1
�1 1

�

Then, from p11 C p21 D 1, p12 C p22 D 1 and writing

� D
�
�11 �12
�21 1 � �11

�

we get from Lemma 13.3 the expression

F.�.�// D G.F.�// D
X

i

FVi�V
�
i F�

D
�

1
2

p11�11 C p12.1 � �11/ � 1
2

p11�11 C p12.1 � �11/ � 1
2

1
2

�

(13.110)
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In the case that the vector � D .�11; 1 � �11/ is fixed for the stochastic matrix P ,
we can rewrite the expression above as

F.�.�// D G.F.�// D
�

1
2

�11 � 1
2

�11 � 1
2

1
2

�
(13.111)

Lemma 13.4. Define � W MN ! MN , �.�/ D P
iVi�V

�
i , with Vi linear,P

iV
�
i Vi D I and let W�.�/ be the associated discrete Wigner function. Then given

.q; p/ there are Mi D Mi .q; p/ such that

W�.�/.q; p/ D
X

i

t r.Mi�M
�
i /

Proof: First, as A.q; p/ is hermitian, we have a decomposition

A D UDU�1

where U is unitary and D is diagonal (and real). Then

A1=2 D UD1=2U�1

where .A1=2/2 D A, D1=2 is the diagonal matrix whose entries are the positive
square roots of the entries ofD. Then

W�.�/.q; p/ D t r. OA.q; p/�.�// D t r. OA
X

i

Vi�V
�
i / D

X

i

t r. OAVi�V �i /

D
X

i

t r.A1=2Vi�V
�
i A

1=2/ D
X

i

t r.UD1=2U�1Vi�V �i UD1=2U�1/

(13.112)

DefiningMi D UD1=2U�1Vi and noting that U�1 D U �, we can write

W�.�/.q; p/ D
X

i

t r.Mi�M
�
i / ut
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Chapter 14
Dynamics on Spectral Solutions of Forced
Burgers Equation

Mário Basto, Viriato Semiao, and Francisco Lage Calheiros

Abstract Burgers equation @u
@t
Cu @u

@x
D ı @2u

@x2 Cf .x/ is one of the simplest partial
nonlinear differential equation which can develop discontinuities, being the driven
equation used to explore unidimensional “turbulence”. For low values of the viscos-
ity coefficient ı, by discretization through spectral collocation methods, oscillations
in Burgers equation can occur. For the Dirichlet problem and under a dynamic
point of view, several bifurcations and stable attractors can be observed. Periodic
orbits, nonperiodic and strange attractors may arise. Bistability can also be observed.
Numerical simulations indicate that the loss of stability of the asymptotic solu-
tion of Burgers equation must occur by means of a supercritical Hopf bifurcation.
Many nonlinear phenomena are modeled by spatiotemporal systems of infinite or
very high dimension. Coupling and synchronization of spatially extended dynami-
cal systems, periodic or chaotic, have many applications, including communications
systems, chaos control, estimation of model parameters and model identifications.
For the unidirectionally linear coupling, numerical studies show the presence of
identical or generalized synchronization for different values of spacial points and
different values of the viscosity coefficient ı. Also, nonlinear coupling by a con-
vex linear combination of the drive and driven variables corresponding to the waves
velocity, can achieve identical or generalized synchronization.
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14.1 Dynamics in Spectral Solutions of Burgers Equation

Burgers equation with small values of the viscosity coefficient ı, develops waves
with sharp slopes, leading to the appearance of discontinuities for values ı ! 0. By
discretization through spectral collocation methods, oscillations in Burgers equa-
tion can occur. Under a dynamic point of view, these oscillations may be related to
bifurcations and atractors arising to the discretized equation.

Dang-Vu and Delcarte [1] and Basto et al. [2] provided numerical studies of
the following Dirichlet problem for Burgers equation with homogeneous boundary
conditions, by Chebyshev collocation method,

@u

@t
C u

@u

@x
D ı @

2u

@x2
C f .x/ �1 � x � 1 (14.1)

with f .x/ D � sin .�x/ Œcos .�x/C ı��.
The following equation with N �1 degrees of freedom is obtained by discretiza-

tion of (14.1) with N C 1 points xj , 0 � j � N , by Chebyshev collocation
method,

dui
dt
D �uiD

.1/
i uC ıD.2/

i uC fi ; 1 � i � N � 1 (14.2)

where u1 D u .x1; t/, u2 D u .x2; t/, :::, uN�1 D u .xN�1; t/, u D
Œu1; u2; :::; uN�1�T , fi D f .xi / and D.i/, 1 � i � 2 are the Chebyshev differ-
entiation matrices of order i . The problem is then reduced to a system of ordinary
differential equations of orderN � 1.

Dang-Vu and Delcarte [1] found out a critical value of the viscosity ı for (14.1),
where a Hopf bifurcation took place and a periodic orbit around the critical point
arose.

Besides the trapping region found by Dang-Vu and Delcarte [1], arising from the
loss of stability of the periodic orbits emerging from Hopf bifurcation, other phe-
nomena and bifurcation can be observed [2]. In fact, it is observed the existence of
torus type attractors or strange attractors, for lower values of ı, before the dynamics
becomes unbounded. Also, bistability is observed. In this case, both the coexis-
tence of two periodic attractors, a periodic and a nonperiodic one (torus type or
strange attractor), or even two nonperiodic attractors can be observed. In addition,
other stable equilibrium points can occur, diverse from the ones corresponding to
the asymptotic solution of Burgers equation. For few cases, positive values yielded
by the largest Lyapunov exponent for some nonperiodic motions, provide evidence
of chaotic attractors.

As an example of bistability, forN D 16 and ı D 0:0061; a nonperiodic attractor
and a periodic one is observed in Fig. 14.1.

To further investigate the dynamical behavior of the spectral solutions of Burgers
equation, more studies were made involving different functions f [3].

Burgers equation is a wave nonlinear equation where the convection u is active
since it depends on the solution of the equation. As the speed of the waves is given
by the solution itself, it increases when u increases and decreases when u decreases.
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Fig. 14.1 N D 16. Bistability for ı D 0:0061, with a periodic orbit and a quasiperiodic one

The higher points of the nonlinear wave travel at a higher speed and shocks and
discontinuities for low values of ı will tend to appear in the intervals where u
is decreasing. The instabilities observed in the forced Burgers equation will then
tend to appear first at intervals where the asymptotic solution is decreasing. These
branches of the solution are the ones that are fixed by one extremity to each fixed
boundary for the Dirichlet problem. By numerically studying several examples, one
argues that this fact, together with the nonexistence of such branches where dis-
continuities tend to appear not fixed to the boundaries, is a necessary condition to
keep the asymptotic equilibrium solution stable for lower values of ı, giving time
for the first loss of stability to be signed by the emergency of a supercritical Hopf
bifurcation [3].

14.2 Dynamics in Coupled Spectral Solutions of Burgers
Equation

Coupling and synchronization of spatially extended dynamical systems is an area of
intensive research, concerning communications systems, chaos control and estima-
tion of model parameters. Besides synchronization of periodic signals, it has been
shown that it is also possible to synchronize chaotic dynamical systems [4].
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14.2.1 Linear Coupling

Consider two unidirectionally coupled discretized Burgers equations for the Dirich-
let problem with homogeneous boundary conditions, and a linear coupling between
them:

dui
dt
D �uiD

.1/
i uC ıuD

.2/
i uC fi (14.3)

dvi
dt
D �viD

.1/
i vC ıvD

.2/
i vC fi C ˛ .ui � vi / (14.4)

Numerical experiments for synchronization with parameter mismatch between
drive and driven equations ıu ¤ ıv, by means of the auxiliar system approach and
the negativeness of the conditional Lyapunov exponents of the response equation,
confirm for this case the possibility of generalized synchronization for an adequate
coupling strength ˛ [3].

14.2.2 Nonlinear Coupling

The procedure consists of replacing the discretized response variable v by v C
˛ .u � v/, where u represents the drive and ˛ the coupling parameter. For ˛ D 1

one reaches a situation of partial replacement.
With parameter mismatch it is observed that coupling only at the position cor-

responding to the waves velocity v can lead to generalized synchronization, but
generally not allowing values of ˛ D 1. This means that the partial replacement in
certain locations may not lead to synchronization, but the convex linear combination
do [3].

The tools used to perform this study were MATLAB [5] and MATCONT [6, 7].
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Chapter 15
Area-Preserving Diffeomorphisms
from the C 1 Standpoint

Mário Bessa

Abstract More than thirty years have passed since Newhouse (Am. J. Math.
99:1061–1087, 1977) published a dichotomy on C 1 area-preserving diffeo-
morphisms. Here we revisit some central results on surface conservative C 1-
diffeomorphisms by presenting, in particular, a new proof of Newhouse’s theorem
and also by proving some, although folklore, not yet proved results on this setting.
We intend that this exposition can be used by a large audience as an introduction to
the concept of dominated splitting and its relevance to the theory of C 1-stability of
area-preserving diffeomorphisms.

15.1 Introduction

Let M be a compact, connected, boundaryless, Riemannian surface and let ! be an
area-form onM . Denote by Diff 1! .M/ the space of diffeomorphisms onM , of class
C 1, such that f�! D !, that is, any Lebesgue measurable subset M 	 M satisfy
Leb.M / D Leb.f .M //, where Leb.�/ denotes the Lebesgue measure induced by
the two-form !. We endow the set Diff 1! .M/ with the Whitney C 1 topology (see
Sect. 15.2.1). The set .Diff 1! .M/; C 1/ is a Baire space, hence every intersection of
countably many C 1-dense and C 1-open sets is C 1-dense.

These area-preserving (or conservative) diffeomorphisms in surfaces are a tradi-
tional object of study from Classical Mechanics, see e.g. [5]. Despite being outside
the scope of our text we recall the Kolmogorov, Arnold and Moser (KAM) theorem,
see e.g. [37], which gives prevalence of dynamically invariant circles supporting
irrational rotations.
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The concept of periodic points plays a central role in dynamical systems and so
we recall that a point x is said to be periodic for the diffeomorphism f WM !M if

f n.x/ D x where f n.x/ D
n-times‚ …„ ƒ

f ı f ı ::: ı f .x/, for n 2 N;

and the least of these positive integers is called the period of x. Moreover, it is well
known that the knowledge of the behavior of the derivative of f ,Df , along periodic
orbits gives us a deep understanding of the local dynamics of f .

Given a periodic point x of period n of a diffeomorphism f if the n-iterated
tangent map of f at x, denoted byDf nx , has its spectrum in S1 nR, then x is called
elliptic. On the other hand if the spectrum does not intersect S1 then the point x is
called hyperbolic. We recall that a periodic point is said to be Lyapunov stable if
the iterates of all nearby points remain bounded for all time. So, KAM’s theorem,
implies abundance of Lyapunov stable elliptic points.

In spite that KAM theory needs higher order of differentiability of the diffeo-
morphisms it is our purpose to study systems with only C 1 regularity; which means
closeness up to the first derivative.

The aim of this paper is to understand the typical dynamics for the elements
f 2 Diff 1! .M/. Some property could be considered to be typical if it holds for
an open and dense subset, or even for some dense subset. However, the notion of
typical that we are going to use here means that for a generic (or residual) set some
property holds. Let us make this idea more precise; we say that the property P
holds in a C 1-residual set of Diff 1! .M/ if P contains a Gı , that is, a countable
intersection of C 1-open and C 1-dense sets. In particular, as we already mention, by
Baire’s theorem (see e.g. [16]), any Gı is dense in Diff 1! .M/.

Let us display some capital results on C 1-generic conservative diffeomorphisms
in surfaces:

(A) Every periodic point is hyperbolic or elliptic.
(B) M is the closure of the set of periodic points.
(C) The diffeomorphism is transitive, that is, it has a dense orbit.

The property (A) is a consequence of Thom’s transversality theorem and was
proved by Robinson [32], actually, this is a C r -generic property, r � 2. Property
(C) is a corollary of an theorem by Bonatti and Crovisier [11]. Item (B) is the so-
called general density theorem proved by Pugh and Robinson (see [31]) and says
that for a C 1-generic set G 	 Diff 1! .M/, we have that the set of periodic points for
f 2 G is dense in the nonwandering set1 of f denoted by ˝.f /.

We say that x 2 M is an f -recurrent point if given any neighborhood U of x,
there exists n such that f n.x/ 2 U . Poincaré’s recurrence theorem (see e.g. [22])
states that for f 2 Diff 1! .M/ Lebesgue almost every point is recurrent. Hence,

1 Recall that x 2 ˝.f / if for every neighborhood U of x there exists n 2 N such that f n.U /\
U D ;.
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we conclude that Lebesgue almost every point is nonwandering and that, in the
conservative class, C 1-generically the closure of the set of periodic points is the
entire manifoldM .

At this point we ask, given a C 1-generic area-preserving diffeomorphism, how
often we find elliptic periodic orbits? And hyperbolic ones?

Recall that, due to the Hartman–Grobman theorem (see e.g. [32]), we have
that hyperbolic periodic points are topological conjugated to its derivative, and
so its local dynamics is simple. The hyperbolicity reveals stable also for sets (see
e.g. [35, Chap. 8]). We say that a surface diffeomorphism is completely hyperbolic,
or Anosov, if there exists 0 < � < 1 such that, for all x 2 M , the tangent space
decomposes into two one-dimensional subbundles on which the derivative contracts
backward by a factor of � in one subbundle and contracts under positive iterates by
a factor of � in the other direction. These geometric and dynamical properties imply
a topological restriction in the manifold; the only surfaces that supports Anosov dif-
feomorphisms are the tori (see [15]). Another relevant property is that the Anosov
diffeomorphisms are open (see [35]), thus the set of Anosov diffeomorphisms in
Diff 1! .M/ is also open in Diff 1! .M/.

In the mid-1970s, (see [24]), Newhouse proved a result on area-preserving diffeo-
morphisms. He presented a C 1-generic set R 	 Diff 1! .M/ such that for any f 2 R
either f is Anosov or else the elliptic points are dense in M . As a corollary of this
result and of the aforementioned topological restriction, we obtain that, for example,
in any surface aside from the torus, C 1-generic area-preserving diffeomorphisms
have dense elliptic orbits.

In this paper we will give a new proof of Newhouse’s theorem based in the pertur-
bation techniques à la Mañé (see [20,21]). These perturbations were first developed,
in the conservative setting, by Bochi in [9] to prove the so-called Bochi–Mañé
Theorem (see Theorem 15.6 and the references wherein).

Let us stress that, since Diff 1! .M/ is not C 1 dense among the set of C 1 dissipa-
tive diffeomorphisms in surfaces, our perturbations are more rigid and some careful
is needed to perform them.

In order to obtain Newhouse’s dichotomy we apply some perturbation results [2,
4], jointly with the approach in [1, 7] and by making use of the above-mentioned
Bochi–Mañé theorem. Mañé’s ideas are an intrinsic part of this exposition and a
recurrent influence.

The main dynamical ingredient is to use the absent of a hyperbolic behavior to
perturb, in the C 1 topology and along a large period orbit, in order to transform
this hyperbolic periodic orbit into an elliptic one with the same period. One crucial
fact can be taken in account; we need to take small neighborhoods of the periodic
hyperbolic orbit, and that is why we are restricted to the C 1 topology. The C 1 topol-
ogy allow us to rescale the support of the perturbation with no implication to the
size of the perturbation (see Lemma 15.4). However, the attempt to replace the C 1

topology by higher order ones is very difficult because the size of the perturbations
increases if we decrease the support of the perturbation. These are the main diffi-
culties which are the base of one of the most challenging problems in the modern
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theory of dynamical systems; the C r -closing lemma (for r � 2), see [12] A.1 for
details.

We recall that Newhouse’s proof of [24, Theorem 1.1] (see Theorem 15.2) uses
the concept of homoclinic point (see Sect. 15.1.1 for the definitions). Actually,
in [24, Lemma 4.1], it is proved that a homoclinic tangency T 2 M associated
to a hyperbolic periodic point for f 2 Diff 1! .M/ has a g-elliptic periodic point
near T for g C 1-close to f . Then, Newhouse apply [31, 36] and the Birkhoff norm
form to perturb f 2 Diff 1! .M/ in order to obtain that the homoclinic points of the
perturbed diffeomorphism are dense in M . Finally, if the original diffeomorphism
f is not Anosov, then there exists g, C 1-close to f , and exhibiting an elliptic orbit
passing through any pre-fixed open set U 	M .

15.1.1 Statement of the Main Results

We start with Newhouse’s dicothomy for area-preserving diffeomorphisms.

Theorem 15.1. There exists a residual set R 	 Diff 1! .M/ such that for f 2 R

� Either f is Anosov.
� Or else the elliptic points are dense in M .

This theorem is a consequence of the following result.

Theorem 15.2. Given any non Anosov diffeomorphism f 2 Diff 1! .M/, � > 0 and
any non empty open subset U of M , then there exists g 2 Diff 1! .M/ �-C 1-close to
f and exhibiting an elliptic orbit passing through U .

Previous theorems were proved by Newhouse (see [24];Theorems 1.1 and 1.3).
Saghin and Xia (see [34, Theorem 2]), proved a general 2n symplectic pertur-
bation results which allowed them to obtain the higher dimensional version of
Theorem 15.2. Let us stress that the perturbation results used by these authors were
already explored by Bochi and Viana in [10] and also that, in [3], Arnaud obtained
the four dimensional counterpart of Theorem 15.2. We point out that these results
are restricted to the symplectic context, and not to the broader setting of the volume-
preserving diffeomorphisms, because the stability of elliptic points (which is false
for volume-preserving diffeomorphisms on dimension � 3) plays a crucial role in
the arguments.

We say that a diffeomorphism f WM ! M is transitive if there exists a dense
orbit x 2 M , that is, [n2Nf n.x/ D M where A stands for the closure of the
set A. Moreover, a diffeomorphism f WM ! M is said to be C 1-robustly tran-
sitive (in the conservative class) if it is transitive and every sufficiently C 1-close
and conservative one is also transitive. Classical examples are the area-preserving
Anosov diffeomorphisms. Actually, in dimension two these are the only examples.
In Sect. 15.7.1 we will present another proof of [2, Theorem 5.1] by making use of
a KAM-type theorem.
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Theorem 15.3. If f 2 Diff 1! .M/ is C 1-robustly transitive, then f is Anosov.

Let f 2 Diff 1! .M/ we say that f is a conservative star-diffeomorphism if there
exists a neighborhood V of f in Diff 1! .M/ such that any g 2 V , has all the periodic
orbits hyperbolic. We denote this set by F 1

!.M/. We define analogously the set
F 1.M/ in the broader set of dissipative diffeomorphisms Diff 1.M/.

Let A 2
! denote the set of conservative Anosov diffeomorphisms on the sur-

face M . Recall that the set A 2
! is open in Diff 1! .M/. Moreover, if A 2 A 2

! , then
f 2 F 1

!.M/. In the next result we obtain the converse.

Theorem 15.4. If f 2 F 1
!.M/, then f is Anosov.

We recall that the dissipative version of previous result was proved by Mañé
(see [19]), loosely speaking, any f 2 F 1.M/ has a hyperbolic-type behavior. A
diffeomorphism is said to be C 1-structurally stable if there is a C 1-neighborhood of
f on Diff 1! .M/ such that any g 2 Diff 1! .M/ in this neighborhood is topologically
conjugate to f , i.e., there exists a global homeomorphism h such that hıf D gıh.
As we already pointed out the Anosov systems are structurally stable (see [35]), and
in Theorem 15.10 we will obtain the converse.

Given a periodic hyperbolic orbit O and p 2 O letW s
p (respectivelyW u

p ) denote
the stable (respectively unstable) manifold of p that is:

W s
p WD

�
x 2 M W dist.f n.x/; f n.p// !

n!C1 0
�

and

W u
p WD

�
x 2M W dist.f �n.x/; f �n.p// !

n!C1 0
�
:

There exists a very complete theory about these invariant manifolds (see [35]).
We say that O has a homoclinic tangency at q 6D p if:

� TqW
s
p \ TqW u

p contains a nonzero vector and
� TqW

s
p ˚ TqW u

p 6D TqM .

We say that q is a transversal homoclinic point if it is not a homoclinic tangency.
The next result, that will be proved in Sect. 15.7.3, is in the spirit of Palis’

conjecture [28] and with respect to the C 1-topology (see [24, (6) on page 1075]).

Theorem 15.5. Any f 2 Diff 1!.M/ can be C 1-approximated by another one g 2
Diff 1!.M/ satisfying one of the following properties:

1. g is Anosov or else,
2. g has a homoclinic tangency associated to a hyperbolic periodic orbit.

In Sect. 15.2 we set up notation, terminology and standard facts on uniform
hyperbolic theory. Section 15.4 provides a detailed exposition of the perturbations
that we will use in order to go on with the main proofs. In Sect. 15.6 we present the
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proof of Theorem 15.2. Theorem 15.1 shall be proved in Sect. 15.3 assuming The-
orem 15.2. In Sect. 15.5 we will be concerned with the creation of elliptic periodic
orbits by C 1 small perturbations. Finally, in Sect. 15.7 we will restrict our attention
to some results about robust transitivity, stability, bifurcations on periodic points and
some questions about the coexistence of two different definitions of chaos in the C 1

sense (see Theorem 15.12).

15.2 Preliminaries and Basic Definitions

15.2.1 Charts and Neighborhoods

By compactness of M we can use Darboux’s theorem (see e.g. [5]) and obtain a
finite atlas A D f'i WUi ! R2g, for i D 1; : : : ; k and thus define local coordinates
such that the pullback of the two form ! by 'i is the canonical area in the plane, i.e.,
.'i /�! D dx^dy. Note that we can switch the metric associated to the Riemannian
structure of M at x 2 M by the metric k � k D kD.'i.x//x.�/k where i.x/ is
uniquely defined and associated to each x 2 M . For this reason we will not use the
Riemannian metric a priori fixed onM . Denote by dist.�; �/ the distance inherit from
the Riemannian structure inM and the pre-fixed charts; that is, given x; y 2M with
y 2 Ui.x/, d.x; y/ WD k'i.x/.x/ � 'i.x/.y/k.

We sometimes consider balls in M defined by

B.x; r/ WD '�1i.x/ŒB.'i.x/.x/; r/�;

where r > 0 is chosen to be sufficiently small in order to have each ball contained
in the open set Ui for i D 1; : : : ; k.

Given any 1-linear map A 2 L .R2/ we consider the norm

kAk WD sup
v 6D0

kA � vk
kvk : (15.1)

This norm will be used to estimate distances between two maps and it will be the
one fixed in the preceding paragraph. In the sequel we will also use another norm
which will reveal to be useful when dealing with estimates (see Sect. 15.2.2).

As a consequence, every time we compute distances between two maps we use
Darboux’s theorem to translate the scenario to R2. So let us define properly the
distance we are going to consider. Given f 2 Diff 1! .M/, a finite atlas f'igi2F ,
compact sets Ki 	 Ui such that f .Ki / 	 Ui for all i 2 F and � > 0, we say that
U.f; ';Ki ; �/ is an �-C 1 basic neighborhood of f in the Whitney C 1-topology if it
is formed by those maps g 2 Diff 1! .M/ such that:

� g.Ki / 	 Ui and
� (C 0-closeness) sup

x2'i .Ki /

fk'i.f .x//f '�1i.x/.x/ � 'i.g.x//g'�1i.x/.x/kg < � and
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� (C 1-closeness) sup
x2'i .Ki /

fkD.'i.f .x//f '�1i.x//.x/ �D.'i.g.x//g'�1i.x//.x/kg < �:

In this way we obtain what we shall call the �-C 1-neighborhood of f and we
denote it by N !

� .f /.

15.2.2 Some Elementary Linear Algebra

15.2.2.1 The Linear Group SL.2; R/, Angles and Eigenvalues

We say that a 2 � 2 matrix A belongs to SL.2;R/ if det.A/ D 1. Moreover, if the
eigenvalues of A 2 SL.2;R/ are real and distinct we say that the matrix is hyper-
bolic. A matrix A 2 SL.2;R/ is elliptic if the eigenvalues are different complex
conjugates. Finally, we call A 2 SL.2;R/ parabolic if it is not hyperbolic neither
elliptic. It is easy to see that stability (with respect to the norm defined in (15.1)),
within these three classes of matrices, holds both for hyperbolic and elliptic matrices
whilst the parabolic ones are unstable.

Given a hyperbolic matrix A 2 SL.2;R/, let 
 > 1 be the upper eigenvalue and
� > 0 be the angle between its eigenspaces. We define the function

�� .
/ D kA � Idk; (15.2)

where Id denotes the identity in R2. Of course that �� .�/W �1;C1Œ!�0;C1Œ
defined by 
 7! �� .
/ is a strictly increasing diffeomorphism. On the other hand,
the map �.�/.
/W �0; �=2Œ!�
;C1Œ defined by � 7! �� .
/ is a strictly decreasing
diffeomorphism.

15.2.2.2 A New Norm

Let be given x; y 2 M , a linear map AWTxM ! TyM and two invariant
1-dimensional splittings E1x ˚ E2x D TxM and E1y ˚ E2y D TyM that is
A.E ix/ D E iy for i D 1; 2. We define four linear actions as:

a11WE1x ! E1y; a12WE2x ! E1y ; a21WE1x ! E2y and a22WE2x ! E2y ;

and let v D v1 C v2 where vi 2 E ix for i D 1; 2. Let

A � v D .a11 C a21/v1 C .a12 C a22/v2: (15.3)

The linear map A can be represented by the matrix

eA D
�
a11 a12
a21 a22

�
; (15.4)
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related to these previous splittings. We define a new norm by

kAkm D maxfja11j; ja12j; ja21j; ja22jg;
and we call it the norm of the maximum.

Example 15.1. Let us consider a linear map in the plane represented by a conserva-
tive hyperbolic matrix (in the canonical base of R2),

A D
�
2 1; 000

0 1
2

�
:

This matrix has eigendirections associated to the vectors b D f.1; 0/; .�2; 000; 3/g
(associated to eigenvalues 2 and 1=2). We observe that the angle � between the
eigendirections is close to zero. If we consider the diagonalized matrix with respect
to the base of eigenvectors, then we get the matrix

eA D
�
2 0

0 1
2

�
:

When we compute the norm of A, related to the usual metric in R2 we get kAk D
1; 000, on the other hand the norm of the maximum of eA is 2. In Lemma 15.1 we
will obtain a relation between these quantities, namely that kAk � 4kAkm sin�1 � .
In fact, in this example

� D arccos

�
.1; 0/ � .�2; 000; 3/
k.1; 0/kk.�2; 000; 3/k

�
� 0:0015;

and we get an estimate since 1; 000 � 8 sin�1.0:0015/ � 5334.

Let us now show how we can relate the usual norm and the norm of the
maximum.

Lemma 15.1. Given A 2 L .R2/ as above, if †.E1 ; E2 / > � for 
 D x; y, then
A satisfies:

1. kAk � 4 sin�1 �kAkm.
2. kAkm � sin�1 �kAk.
Proof. We follow [10, Lemma 4.5]. Let v D v1 C v2 where vi 2 E ix for i D 1; 2.
Using elementary geometry it is easy to see that

kvik � kvk sin�1 �; for i D 1; 2:

Hence, using (15.3) and the preceding inequality

kA � vk � ka11v1k C ka11v2k C ka22v1k C ka22v2k
D ja11jkv1k C ja11jkv2k C ja22jkv1k C ja22jkv2k
� 4kAkmkvk sin�1 �:

Therefore, by definition (15.1) we obtain (1).
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Given v1 2 E1x using (15.3) we write A � v1 D a11v1Ca21v1 2 E1y˚E2y and so,

� ja11jkv1k D ka11v1k � kA � v1k sin�1 � � kAkkv1k sin�1 �:
� ja21jkv1k D ka21v1k � kA � v1k sin�1 � � kAkkv1k sin�1 �:

Analogously, given v2 2 E2x we write A � v2 D a12v2 C a22v2 2 E1y ˚ E2y and so,
ja12jkv2k � kAkkv2k sin�1 � and ja22jkv2k � kAkkv2k sin�1 � and therefore (2)
follows directly.

Finally, we present a simple lemma that will not be needed until Sect. 15.5.

Lemma 15.2. ([9, Lemma 3.9]) Given � > 0, there exists c > 1 such that for any
linear mapAWR2 ! R2 satisfying kA �sk:kA �uk�1 > c, where u; s are unit vectors,
we can find a nonzero vector v such that †.v; u/ < � and †.A � v; A � s/ < � .

15.2.2.3 Orthogonal Decompositions

Sometimes we need to consider orthogonal decompositions in order to proceed with
the estimates in a more treatable way. Consider the same map AWTxM ! TyM

as before and two new orthogonal decompositions E1x ˚ .E1x/? and E1y ˚ .E2y/?
of TxM and TyM respectively. Denote by �x (respectively �y) the angle between
E1x and E2x (respectively E1y and E2y). Identify, using a rotation, the directions E1x
and E1y with the direction R.1; 0/, the direction E2x with R.cos �x; sin �x/ and the
direction E2y with R.cos �y ; sin �y/. The SL.2;R/ matrix

	x WD
�

sin�1 �x cos �x
0 sin �x

�
;

mapsE1x intoE1x and .E1x/
? intoE2x , thus performs a conservative change from the

decompositionE1x ˚ .E1x/? into E1x ˚ E2x . In the same way we define the matrix

	y WD
�

sin�1 �y cos �y
0 sin �y

�
;

mappingE1y into E1y and .E1y/
? into E2y .

We now represent the linear action A in a new coordinate system by

A? WD 	�1y ı A ı 	x : (15.5)

We point out that every time we perform these change of coordinates we can keep
track of the constants of estimation using the following inequality:

kA?k � kAk
.sin �x sin �y/

: (15.6)
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In conclusion, if the angle is bounded from bellow from zero, then it is possible
to control the norm and thus to use this orthogonal splitting (see hypothesis (1) of
Lemma 15.6).

15.2.3 Hyperbolicity and Dominated Splitting

Given a diffeomorphismf , a compact f -invariant set�	M is said to be hyperbolic
if there is m 2 N such that, for every x 2 �, there is a Df -invariant continuous
splitting TxM D Eu

x ˚ Esx such that we have:

1. kDf mx jEs
x
k � 1

2
and

2. k.Df mx /�1jEu
x
k � 1

2
:

There are several ways to weaken the definition of uniform hyperbolicity. Here
we use the one introduced independently by Mañé [18,19], Liao [17] and Pliss [29]
around the 1970s when motivated by the desire to prove the stability conjecture [27].
Given m 2 N , a compact f -invariant set � 	 M is said to have an m-dominated
splitting if there is, over �, a Df -invariant continuous splitting TM D Eu ˚ Es
such that for all x 2 � we have:

kDf mx jEs
x
k:kDf mx jEu

x
k�1 � 1

2
: (15.7)

It is worth pointing out that both subbundles may expand. However, Eu expands
more than Es. If both subbundles contract, Eu is less contracting than Es. Like in
the uniform hyperbolicity, the angle between the subbundles is uniformly bounded
away from zero. This follows because the splitting is continuous and the base set is
compact. Moreover, the dominated splitting extends to the closure of �. See [12]
for the complete proofs of these properties.

Example 15.2. For � > 1 let us define

A WD
�
1 0

0 �

�
and B WD

�
1 0

0 ��1
�
:

The matricesA and B are not hyperbolic. However,A has anm-dominated splitting
Eu D R.0; 1/ and Es D R.1; 0/, and B has also an m-dominated splitting Eu D
R.1; 0/ and Es D R.0; 1/, where m � log2

log� . It is immediate that � close to 1
impliesm very large.

Given p 2 Per.f /, if p is hyperbolic and Eu
x and Esx are the Df -invariant

subbundles, then the real numbers

� �u.p/ WD lim
n!˙1

1
n

log kDf np jEu
x
k and

� �s.p/ WD lim
n!˙1

1
n

log kDf np jEs
x
k < �u.p/,
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are called the upper Lyapunov exponent and the lower Lyapunov exponent respec-
tively. By the celebrated Oseledet’s theorem [25] (see [30] for a proof on dimension
two) these numbers exist for Lebesgue almost every point in M and not necessarily
a periodic point.

A central result about the Lyapunov exponents of C 1-generic conservative sur-
face diffeomorphisms is the following result of Bochi based on a conjecture of
Mañé.

Theorem 15.6. (Bochi–Mañé [9, 20, 21]) There exists a C 1-generic subset R of
Diff 1!.M/ such that if f 2 R, then f is Anosov or else Lebesgue almost every point
in M has zero Lyapunov exponents.

As we will see, this result will play an important role in the proof of our results.
As a consequence of Oseledets’ theorem we obtain the equality,

�u.p/C �s.p/ D lim
n!˙1

1

n
log j detDf np j: (15.8)

Then, by the area-preserving property, j detDf np j D 1 for every p, and so we
obtain that �u.p/ D ��s.p/. Therefore, if �u.p/ D 0, then the spectrum of Df �p
lies in S1, where � denotes the period of p. Otherwise, the real eigenvalues 
˙1 of
the map Df �p , satisfy

e�u.p/� D j
 j > 1 > j
�1j D e��u.p/� :

Let Perhyp.f / denote the subset of all hyperbolic periodic points in Per.f /. Note
that if x 2 Perhyp.f /, then x has a dominated splitting, but in general we have that
m.x/ is unbounded. Also, the weak hyperbolic behavior relates with the splitting
angle being close to zero.

Since M is compact and the hyperbolic splitting varies continuously, given a
uniformly hyperbolic invariant set � 	 Perhyp.f /, the splitting angle between Eu

and Es, denoted by †.Eu; Es/, is bounded away from zero over�.
Given f 2 Diff 1! .M/, we define

�m.f / WD
�
x 2 Perhyp.f /W kDf mx jEs

x
k:kDf mx jEu

x
k�1 � 1

2

�
;

and

�m.f / WD
�
x 2Perhyp.f /W kDf mf n.x/jEs

x
k:kDf mf n.x/jEu

x
k�1�1

2
for all n 2 N

�
:

Since �m.f / has m-dominated splitting, and M is a surface, then, by the area-
preserving property,�m.f / is a hyperbolic set (see Lemma 15.3 below). Of course
that we have
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Perhyp.f / D �m.f / P
[�

[
n2N

f n.�m.f //

�
:

The following simple lemma, which only holds because M is a surface, with be
useful in the sequel.

Lemma 15.3. Let f be an area-preserving diffeomorphism and� 	M a compact
f -invariant set. If � has a dominated splitting, then this splitting is hyperbolic.

Proof. Since f admits a dominated splitting over� one gets that there existsm 2 N
such that

�.x;m/ WD kDf mx jEs
x
kkDf �mf m.x/jEu

f m.x/
k � 1

2
; 8x 2 �;

where Es and Eu are Df -invariant and one-dimensional.
For any i 2 N we have �.x; im/ � 1=2i . For every n 2 R we may write n D

imC r , for 0 � r < m, and since kDf rk is bounded, say by L, take C D 2
r
mL2

and 
 D 2� 1
m to get �.x; n/ � C
n, for every x 2 � and n 2 N .

Denote by ˛n the angle between Es
f n.x/

e Eu
f n.x/

. We already know, by domi-
nation, that this angle is bounded bellow from zero, say by ˇ.

Since f is area-preserving and the subbundles are both one-dimensional we have
that

sin˛0 D kDf nx jEs
x
kkDf nx jEu

x
k sin ˛n:

So

kDf nx jEs
x
k2 D sin˛0

sin ˛n
�.x; n/ � �.x; imC r/ sin�1 ˇ � 
nC sin�1 ˇ:

Analogously we get

kDf �nx jEu
x
k2 D sin ˛n

sin ˛0
�.x; n/ � �.x; imC r/ sin�1 ˇ � 
 tC sin�1 ˇ:

These two inequalities show that � is hyperbolic for Df completing the proof
of the lemma.

15.3 Two Proofs of Theorem 15.1

First proof of Theorem 15.1: Assuming Theorem 15.2 we give now the proof of
Theorem 15.1 and we postpone the proof of Theorem 15.2 to Sect. 15.6. Recall that
A 2
! 	 Diff 1! .M/ denotes the open set of Anosov area-preserving diffeomorphisms

and let A 2
! be its C 1-closure. We define the open set N WD Diff 1! .M/ n A 2

! .
Consider the C 1-topology in Diff 1! .M/, the topology inherited by the Riemannian
metric in M , dist.�; �/, and the usual euclidean distance in R. Let H be the subset
of Diff 1! .M/�M �RC of all triples .f; x; �/ such that f has a closed elliptic orbit
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going through the ball B.x; �/ 	M . Finally, we endow H with the product topol-
ogy. SinceM is two-dimensional we get that the elliptic orbits are stable concluding
that H is open.

Given any open set U 
N consider the following (also open) set

H .U ; x; �/ WD f g 2 U W .g; x; �/ 2H g:
It follows directly from Theorem 15.2 that if we take � > 0, x 2M and an open

set U 
 N , then H .U ; x; �/ is an open and dense subset of U .
Using the smooth charts 'i WUi ! R2 for i D 1; : : : ; k we take k dense

sequences in 'i .Ui / 	 R2 and so, using '�1i , we define fxngn to be a dense
sequence in M . Let f�ngn > 0 be a sequence converging to zero. Defining
recursively

U0 D N and UnC1 DH .Un; xn; �n/ for n � 1;
the residual set R D \1nD1Un is such that for all g 2 R, the elliptic closed orbits
of g are dense in M . Then R D A 2

! [ R is the residual subset of Diff 1! .M/,
announced in Theorem 15.1.
Second proof of Theorem 15.1: We could also obtain another proof of Theorem 15.1
from Theorem 15.2 by using the elegant arguments explored in [24]. Denote by
EN .f / the set of elliptic periodic points (of the diffeomorphism f ) of period less
than N . Consider now the function

PN W Diff 1! .M/ �! M

f 7�! EN .f /;

where Diff 1! .M/ is endowed with the C 1-topology and M denotes the set of all
closed subsets of M endowed with the Hausdorff metric. By the stability of the
elliptic periodic points it follows that PN is a continuous function. Hence we obtain
that P D supN2NfPN g is a lower semi-continuous function (see [16]). Actually,
we have

P W Diff 1! .M/ �! M

f 7�! E .f /;

where E .f / denotes the closure of the set of the elliptic periodic points of f .
Using [32, Proposition 26] we obtain that there exists a residual R 	 Diff 1! .M/

formed by continuity points of P .
Therefore, if f 2 R is not Anosov, it is an immediate consequence of Theo-

rem 15.2 that the elliptic points are dense in M and Theorem 15.1 is proved.

15.4 Perturbation Lemmas

In order to achieve our goal we will need to perform some perturbations of the
tangent map. One of the main perturbation tools will induce rotations in the tangent
bundle and so the next basic lemma will be very useful. We emphasize that a more
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or less general result will be stated (see Theorem 15.7 and Remark 15.3), however
the advantage of presenting the proof of Lemma 15.4 lies in the fact that it sheds
some light in the nice properties of the C 1 topology and for this reason we decide
to state and prove it nevertheless.

Lemma 15.4. If f 2 Diff 1! .M/ and � > 0, there exists ˇ0 > 0 such that for any
x 2M , r 2 .0; 1/ and ˇ < ˇ0 there exists g 2 N !

� .f / such that (in local charts):

(a) Dgx D Dfx �Rˇ .x/, where Rˇ .x/ denotes the rotation of angle ˇ centered in
x, and

(b) g D f outside the ball B.x; r/.

Proof. We first prove the result for r D 1. Using the aforementioned charts (see
Sect. 15.2.1) we assume x D 0. Let ˛W Œ0;1/! Œ0;1/ be a C1 function such that
˛.t/ D 0 for t � 1, ˛.t/ D 1 for 0 � t � 1=2 and j˛0j � 2. Take y 2 B.0; 1/
and ˇ > 0. Let hˇ .y/ D R˛.kyk/ˇ .0/. We define gˇ D f ı hˇ . Computing the
derivative of gˇ at y we obtain that .Dgˇ /y D Dfhˇ.y/ � .Dhˇ /y . Therefore:

� If y 2 B.x; 1=2/, then .Dgˇ /y D Dfhˇ.y/ �Rˇ .x/.
In particular .Dgˇ /x D Dfhˇ.x/ �Rˇ .x/ D Dfx �Rˇ .x/ which gives item (a).

� If y lies outside B.x; 1/, then gˇ D f and we get item (b).

Since det.Dgˇ /x D 1 for all x, our final goal is to to prove that gˇ is �-C 1-close
to f . The C 0-closeness is obvious. Let us prove that .Dhˇ /y is C 0-close to the
identity. In local coordinates we can write:

hˇ .y/ D .cos.�y/y1 � sin.�y//y2; sin.�y/y1 C cos.�y/y2/;

where �y D ˛.kyk/ˇ and y D .y1; y2/. Taking derivatives we obtain:

.Dhˇ /y D Ay C
�

cos.�y/ � sin �y
sin �y cos.�y/

�
;

where

Ay D
 
� @�y

@y1
sin.�y/y1 � @�y

@y1
cos.�y/y2 � @�y

@y2
sin.�y/y1 � @�y

@y2
cos.�y/y2

@�y

@y1
cos.�y/y1 � @�y

@y1
sin.�y/y2

@�y

@y2
cos.�y/y1 � @�y

@y2
sin.�y/y2

!
:

It is clear that, if ˇ is chosen to be small, then .Dhˇ /y � Ay is arbitrarily close to
the identity.

We just have to prove that, for a suitable ˇ, Ay is close to the null matrix. For
that we first compute the gradient of �y .

r�y D
�
@�y

@y1
;
@�y

@y2

�
D ˛0.kyk/ˇkyk�1.y1; y2/:
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Recall that j˛0j � 2,
ˇ̌
ˇ @�y

@yi
yi

ˇ̌
ˇ D j˛0.kyk/ˇkyk�1yi j and kyk�1yi � 1. Hence, we

obtain that
ˇ̌
ˇ @�y

@yi

ˇ̌
ˇ � 2ˇ.

Therefore, given � > 0, there exists ˇ0 > 0 and g 2 Diff 1! .M/ such that g 2
N !
� .f / and g D gˇ0

satisfies (a) and (b). Finally, for r 2 .0; 1�, we consider
the r-homothethy and h D hˇ0

associated to r D 1 established above. We define
the new hr and gr (associated to r) by rh.y=r/ and f ı hr respectively. Clearly
D.rh.y=r// D Dh.y=r/which isC 0-close to the identity and the lemma is proved.

Remark 15.1. A slight change in the proof of Lemma 15.4 allow us to obtain a
version where, in (a), we switch fromDgx D Dfx �Rˇ .x/ toDgx D Rˇ .x/ �Dfx .
The details are left to the reader.

In [2] it was proved a weak pasting lemma for diffeomorphisms which, in
rough terms, allow us to replace the area-preserving diffeomorphism f by another
area-preserving diffeomorphism g such that g is equal to the first order linear
approximation of f in a small neighborhood U of a given point, and equal to f
outside a set containing U . Let us present the formal statement.

Theorem 15.7. ([2, Theorem 3.6]) If f 2 Diff 2! .M/ and x 2 M , then for any
0 < ˛ < 1 and � > 0, there exists Q� > 0 such that any Ax 2 SL.2;R/ which is
Q�-close to Dfx satisfies the following; there exists g 2 N !

� .f / of class C 1C˛ such
that for small neighborhoodsU � V of x we have, in local charts, that:

� gjV D Ax and
� g D f outside the set U .

Actually, in [2] they proved that gjV D Dfx by constructing a perturbation
h.y/ D �.y/.f .x/ C Dfx.y � x// C .1 � �.y//f .y/ where � is a bell-function
over the annulus B.x; r/ n B.x; r=2/. Then they make use of a cleaver appli-
cation of a theorem of Dacorogna and Moser [13] to obtain a new Qh which
will be area-preserving. Theorem 15.7 is obtained in the same way by switching
Dfx by Ax .

Remark 15.2. We can take, in Theorem 15.7, Ax D Dfx � Sx , where Sx is Q�
C

-close
to the identity, where C WD maxx2M kDfxk.
Remark 15.3. A similar version of Lemma 15.4 can be obtained directly from
Theorem 15.7 if we take f of class C 2.

Finally, we recall the conservativeC 1-closing lemma of Arnaud (see [4]), which
in particular assures properties (a) and (b) bellow. This result is an upgrade of the
C 1-closing lemma [31] and Mañé’s ergodic closing lemma [19] and states that the
orbit of a f -recurrent point x (denoted by R.f /) can be approximated for a very
long time � > 0 by a periodic orbit of an area-preserving diffeomorphism g 2
N !
� .f /.
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Let f 2 Diff 1! .M/ and let ˙.f / be the set of points x 2 M such that for any
C 1-neighborhood U 	 Diff 1! .M/ of f and every � > 0, there exists g 2 U and a
periodic point of period � , p 2 M , such that:

(a) dist
�
f i .x/; gi .p/

	
< � for all i 2 f0; : : : ; �g.

(b) g D f in M n S
0�i��

B.f i .x/; �/.

Theorem 15.8. (Arnaud’s C 1-closing lemma [4]) The set ˙.f / is a countable
intersection of open subsets of the set R.f / and is dense in this set.

15.5 Creating Elliptic Points

15.5.1 Mixing the Eigendirections-Part I

We start by proving the following result.

Lemma 15.5. Given a hyperbolic matrix A 2 SL.2;R/, let � D †.Es; Eu/ be the
angle between the matrix A eigendirections. Assume that the rotation R� of angle �
takes the unstable direction onto the stable direction of A, i.e.,R� .Eu/ D Es . Then
the matrix A �R� is elliptic.

Proof. Let B WD A � R� . Consider the action of the matrices A and B on the pro-
jective line P1 D R=� Z, described by the diffeomorphisms fA W P1 ! P1 and
fB W P1 ! P1. Lift these maps to diffeomorphisms FAWR ! R and FB WR ! R
such that FA.x C �/ D FA.x/ C � and FB.x C �/ D FB .x/ C � , for all
x 2 R. As det.A/ D det.B/ D 1 we get that FA and FB are increasing func-
tions. The definition of � shows that the lifting FB can be chosen to satisfy the
relation FB .x/ D FA.x C �/, for all x 2 R. Since A is hyperbolic, fA has two
fixed points: an expanding fixed point xu, and a contracting fixed point xs . We
can choose the lifting FA so that it has two families of fixed points, xu C k � and
xs C k � , with k 2 Z, and we may assume that the fixed points xs ; xu 2 R sat-
isfy jxs � xuj D � . In order to prove that B is elliptic it is enough to show that
fB has non zero rotation number, which amounts to say that FB.x/ � x keeps a
constant sign as x runs through R. Two cases may occur: xs < xu and xu < xs .
Assume first that xs < xu. Then �� < FA.x/ � x < 0 for all x 2�xs ; xuŒ, and
FA.x/ � x > 0 for all x 2�xu; xs C �Œ. This implies that FA.x/ � x > �� , for
all x 2 R. Therefore, FB.x/ � x D FA.x C �/ � .x C �/ C � > �� C � D 0,
for every x 2 R, proving that B is elliptic. Assume now that xu < xs . In this
case 0 < FA.x/ � x < � for all x 2�xu; xs Œ, and FA.x/ � x < 0 for every
x 2�xs ; xu C �Œ. But this implies that FA.x/ � x < � , for all x 2 R. Accordingly,
FB .x/ � x D FA.x C �/ � .x C �/C � < �� C � D 0, for every x 2 R, which
proves that B is elliptic.
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We easily deduce the following result from Lemmas 15.5 and 15.4.

Proposition 15.1. Given � > 0 and f 2 Diff 1! .M/, there exists � > 0 such that
given any x 2 Perhyp.f / with period � > 1, and such that †.Eu

y; E
s
y/ < � for

some y in the f -orbit of x, then there is some perturbation g 2 N !
� .f / such that

x is an elliptic periodic point for g with period � .

As we saw in the preceding proposition mixing eigendirections by rotations
reveals to be useful to create elliptic periodic orbits for maps near the original one.
However, we are only allowed to perform a small perturbation and this can be dif-
ficult, or maybe impossible, if the angle between eigendirections is far from zero.
In the next lemma we assume some hypotheses under which it will be possible to
achieve that objective and, its proof, although easier, follows closely the one in [9,
Lemma 3.8].

Lemma 15.6. Given f 2 Diff r! .M/, r � 1 and � > 0 let �.f; �/ D � > 0 be given
by Lemma 15.4 (with � < ˇ0). There is m0 2 N such that for every m � m0, if
x 2 Perhyp.f / has period � > m and satisfies

1. †.Eu
f n.x/

; Es
f n.x/

/ > � , for all n 2 f1; : : : ; �g and
2. we have f n.x/ 2 �m.f / for some n 2 f1; : : : ; �g,
then there exist a C r conservative map g 2 N !

� .f / and y D f k.x/ (k 2
f1; : : : ; �g) such that Dgmx .E

u
y/ D Esfm.y/

.

Proof. Let C WD max
x2M
kDfxk and c > C 2 depending on the angle � and obtained

according to Lemma 15.2.
Let x 2 Perhyp.f / with period � > m > m0 and satisfying (1) and (2). The

numberm0 will be very large and will be defined below. By (2) there exists y in the
f -orbit of x such that y 2 �m.f /, i.e.,

kDf my jEs
y
k:kDf my jEu

y
k�1 � 1=2: (15.9)

Case I
Suppose that for any i; j 2 f0; 1; : : : ; mg, where i < j , we have

kDf j�i
f i .y/
jEs

y
k:kDf j�i

f i .y/
jEu

y
k�1 � c: (15.10)

Noting that E.�/y (for .�/ D u=s) are one-dimensional and using (15.9) and (15.10)
we get

kDf j�i
f i .y/
jEs

y
k

kDf j�i
f i .y/
jEu

y
k D

kDf m�j
f i .y/
jEu

y
k:kDf my jEs

y
k:kDf iy jEu

y
k

kDf m�j
f i .y/
jEs

y
k:kDf my jEu

y
k:kDf iy jEs

y
k �

1

2c2
: (15.11)
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Using (15.10) again we obtain, for H WD 2c2, that

1

H
�
kDf j�i

f i .y/
jEs

y
k

kDf j�i
f i .y/
jEu

y
k � H: (15.12)

Using (1) we can make a conservative change of coordinates as it was explained in
Sect. 15.2.2.3 keeping the control on the estimated (depending on sin2 �). Hence,
by conservativeness, for any j 2 f0; 1; : : : ; mg, we have kDf jy jEs

y
k:kDf jy jEu

y
k D

detDf jy D 1. Therefore, using (15.12) we get that kDf jy jE .�/
y
k � 2H D 4c2

for .�/ D u=s and every j . This implies that for every j 2 f0; 1; : : : ; mg we have
kDf jy k � 2H .

For some � > 0 very small, let f�j gm�1jD0 be such that 0 < �j � � (for all j ) and

†.Esy; Eu
y/ D

Pm�1
jD0 �j . We define, for every j D f0; 1; : : : ; m � 1g, linear maps

Sj WTf j .y/M ! Tf j C1.y/M by Sj WD Df jC1y �R�j
�.Df jy /�1. It is straightforward

to see that

Sm�1 � Sm�2 � ::: � S1 � S0.Eu
y/ D Df my �R†.Es

y ;E
u
y/
.Eu

y/ D Esfm.y/:

Using Theorem 15.7 we realize2 these perturbation bym conservative maps gj inm
small self-disjoint balls Bj WD B.f j .y/; ri /, ri > 0. Then we define a conservative
map g by being equal to gi in Bi and equal to f outside the union of these balls.

Observe that, since H is fixed, kSi � Idk is small as long as �i is close to zero
which is equivalent to take � very small.

We leave it to the reader to verify that, since we have a control on the norm of
Df

j
y , g can be chosen �-close to f and we just have to take m0 be any positive

integer such that m0 � 2�
�

.

Case II
We now turn to the case where (15.10) is false, i.e., there exists i; j 2

f0; 1; : : : ; mg, where i < j , such that

kDf j�i
f i .y/
jEs

y
k:kDf j�i

f i .y/
jEu

y
k�1 > c: (15.13)

It is understood that j � i > 1 because c > C 2. Take unit vectors s 2 Es
f i .y/

and
u 2 Eu

f i .y/
. By (15.13) we are in the hypotheses of Lemma 15.2 for the linear map

Df
j�i
f i .y/

, therefore we can find a nonzero vector v 2 Tf i .y/M such that†.v; u/ < �
and †.Df j�i

f i .y/
� v; Es

f j .y/
/ < � . By making two perturbations at f i .y/ (using

Lemma 15.4) and at f j�1.y/ (using Remark 15.1) we can obtain g 2 N !
� .f /,

2 In order to use Theorem 15.7 f must be of class C2 . The important point to note here is that we
can perturb slightly, using [38], and obtain a C2 conservative map having the same properties (1)
and (2) of Lemma 15.6 for the analytic continuation of the hyperbolic point x.
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such that:

Dgf i .y/ W D Dff i .y/ �R†.v;Eu
f i .y/

/ and

Dgf j �1.y/ W D R†.Df j �i

f i .y/
�v;Es

f j .y/
/
�Dff j �1.y/:

Moreover, g D f outside two small balls around f i .y/ and f j .y/. Is is easy to
verify that by concatenating the tangent maps of g along ff n.y/gjnDi we complete
the proof.

15.5.2 Mixing the Eigendirections-Part II

Our purpose now is to prove the next proposition and its proof will be divided into
two main steps; Lemma 15.6 above and Lemma 15.7 below.

Proposition 15.2. Given f 2 Diff 1! .M/, � > 0 and � > 0, there exist m 2 N
and T 2 N (T > m) such that given a periodic hyperbolic point x 2 M with
period � > T , satisfying the conditions (1) and (2) of Lemma 15.6, then there is
some perturbation g 2 N !

� .f / such that x is an elliptic periodic point for g with
period � .

The following result allows us, once in the hypotheses of Proposition 15.2, to
obtain some control on the growth of the norm of Dg� for a large � , where g 2
N !
� .f /.

Lemma 15.7. Let f 2 Diff 1! .M/, � > 0 and � > 0 be given. Letm D m.�; �/ 2 N
be given by Lemma 15.6. Then there exists K D K.�;m/ 2 R such that given any
hyperbolic periodic point x with period � > m satisfying (1) and (2) of Lemma 15.6,
then there exists g 2 N !

� .f / such that x is also a periodic orbit for g with period
� and kDg�yk < K , for some y in the g-orbit of x.

Proof. For f 2 Diff 1! .M/ and � > 0 given, there exists C > 1 such that, if
g 2 N !

� .f / then kDgk � C . We define

K.m.�// WD 4CmC2 sin�2 �: (15.14)

Take any hyperbolic periodic point x with period � > m. Let g 2 Diff 1! .M/ be
the perturbation provided by Lemma 15.6, corresponding to the same � and � of
this lemma. We assume that the point y given in Lemma 15.6 is y D x. Accord-
ing to Sect. 15.2.2 we take matrix representations diagonalizing the hyperbolic
decomposition and along the orbit.

Given k 2 f1; : : : ; � � mg let y D f �k.x/. Take a finite sequence
fF.y; i/gkiD1 	 R such that the matrixDf iy written in the diagonal3 form associated

3 In fact, we are abusing the notation since we should denote this representation by eDf i
y instead

of Df i
y .
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to the eigendirections is,

Df iy D
�
F.y; i/ 0

0 F.y; i/�1
�
;

and let 
 D F.y; �/ > 1. Observe that by Lemma 15.1 (2), for i 2 f1; : : : ; �g, we
have

maxfjF.y; i/j; jF.y; i/j�1g D kDf iy km � kDf iy k sin�1 �

�
i�1Y

jD0
kDff j .y/k sin�1 � � C i sin�1 �:

We will consider two cases:

Case I If 
 � CmC1 sin�1 � then observing that kDf �y km D 
 and applying
Lemma 15.1 (1), we obtain

kDf �y k � 4 sin�1 �kDf �y km D 4
 sin�1 � � 4CmC1 sin�2 � � K;

and the lemma is proved by just choosing g D f .

Case II On the other hand, if 
 > CmC1 sin�1 � , we will use the following
calculus lemma whose proof we postpone to the end of the proof of Lemma 15.7.

Lemma 15.8. Given �;m 2 N , � > m, C > 1 and fai g�iD1 such that jai j˙1 < C

we define 
 WD j˘ �
iD1ai j. If 
 > CmC1, then there exists k 2 f1; : : : ; � �mg such

that ˇ̌
ˇ̌
ˇ
˘ �
iDkCmai
˘k
iD1ai

ˇ̌
ˇ̌
ˇ

˙1
� C 2:

We feed Lemma 15.8 with ai D F.y; i/ and let k 2 f1; : : : ; � �mg be given by
this lemma. Take y D f �k.x/. Since

Df �y D Df ��m�kf m.x/ �Df mx �Df ky
we may write Df �y as the following diagonal matrix product representation

 
F.f m.x/; � �m�k/ 0

0 1
F .fm.x/;��m�k/

! 
F.x;m/ 0

0 1
F .x;m/

! 
F.y; k/ 0

0 1
F .y;k/

!
:

(15.15)
Recall that g, given by Lemma 15.6, is a conservative perturbation of f , supported
in a small neighborhood of ff i .x/W i 2 f0; : : : ; mgg, and such that Dgmx .E

u
x/ D

Es
fm.x/

. Taking in account the notation of Sect. 15.2.2.2 we get that �WEu
x !

Eu
fm.x/

must be the null map, where
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Dgmx WD
�
� ˛

ˇ �

�
; (15.16)

for some constants �; ˛; ˇ and � . That is, the unstable component of the image by
Dgmx of Eu

x must be zero and so � D 0.
Now, one just replaces the middle matrix in (15.15) and we obtain that

Dg�y D Df ��s�mf m.x/ �Dgmx �Df ky ;

is given by

Dg�y D
 

0 ˛F.f
m.x/;��m�k/
F .y;k/

ˇ F .y;k/
F .fm.x/;��m�k/ �

1
F .y;k/F .fm.x/;��m�k/

!
:

Notice that,

1

F.y; k/F.f m.x/; � �m� k/ D
F.x;m/



� kDf

m
x km



� kDf
m
x k


 sin �

� Cm


 sin �
<
1

C
:

Moreover, by Lemma 15.1 (2)

maxfj˛j; jˇj; j� jg D kDgmx km � sin�1 �kDgmx k � Cm sin�1 �:

Using Lemma 15.8 we get kDg�ykm � maxfj˛j; jˇj; j� jgC 2 � CmC2 sin�1 � .
Finally, using Lemma 15.1 (1) we get

kDg�yk < 4 sin�1 �kDg�ykm < 4CmC2 sin�2 � D K;

and the lemma is proved.

Proof. (of Lemma 15.8) For k D 1 since we have 
 > CmC1 we obtain

ˇ̌
ˇ̌˘

�
iDmC1ai
a1

ˇ̌
ˇ̌ D 


ja1˘m
iD1ai j

� 


CmC1
> 1:

For k D � �m we have

ˇ̌
ˇ̌ a�

˘ ��m
iD1 ai

ˇ̌
ˇ̌ D ja�˘

�
iD��mC1ai j



� CmC1



< 1:

Let

˚.k/ D
ˇ̌
ˇ̌
ˇ
˘ �
iDkCmai
˘k
iD1ai

ˇ̌
ˇ̌
ˇ :
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We chose k 2 f1; : : : ; � � m � 1g such that ˚.k/ > 1 and ˚.k C 1/ < 1. Since
˚.k/�1 < 1 < C 2 we are left to the task of proving that ˚.k/ � C 2.

˚.k/ D
ˇ̌
ˇ̌
ˇ
˘ �
iDkCmai
˘k
iD1ai

ˇ̌
ˇ̌
ˇ D ˚.k C 1/jakC1jjakCmj � C

2:

Remark 15.4. The important thing to note here is that Lemma 15.7 allows us to fix
a uniform bound K such that we can pick a periodic hyperbolic point with very
large period and, nevertheless, the tangent map (on the period) is bounded by K for
a C 1-arbitrarily close conservative map.

Proof. (of Proposition 15.2) We know that for any diffeomorphism f1 C
1-close

to f any hyperbolic periodic point x of f has an analytic continuation y for the
diffeomorphism f1 (see e.g. [35]). Moreover, by [38], Diff 2! .M/ is C 1-dense in
Diff 1! .M/. Hence, for a diffeomorphism f1 2 Diff 2! .M/ arbitrarily C 1-close to f ,
by Lemma 15.6, we take m0.f1/ (larger than m0.f / if necessary) such that, if y is
a hyperbolic periodic point of period � > m for anym � m0.f1/ satisfying

1. †.Eu
f n

1
.y/
; Es

f n
1
.y/
/ � � for all n 2 f1; : : : ; �g and

2. f n1 .y/ 2 �m.f1/ for some n 2 f1; : : : ; �g,
then there exist f2 2 Diff 2! .M/\N !

� .f / and z D f k1 .y/, for k 2 f1; : : : ; �g, such
that .Df2

m/y.E
u
z / D Esfm

1
.z/.

Fix f2 2 Diff 2! .M/ and any x 2M . By Theorem 15.7 followed by Remark 15.2,
for � > 0, there exists �0 > 0 such that any Sx 2 SL.2;R/ which is �-close to the
identity (with � < �0) satisfies the following; there exists g 2 N !

� .f2/ such that
for small neighborhoodsU � V of x we have, in local charts, that:

� gjV D .Df2/x � Sx and
� g D f2 outside the set U .

Take K WD K.m.�// according to Lemma 15.7 and depending on f1 2
Diff 2! .M/, on �, m0.f1/ and on � . Now, for �0 and � fixed above, set 
 WD
.�� /

�1.�0/, where �� .�0/ was defined in (15.2). By definition, the number 
 > 1

has the following property: Given any ' � � , we can pick hyperbolic matrices
S 2 SL.2;R/ such that:

(a) kS � Idk � �0.
(b) 
 and 
�1 are the eigenvalues of S .
(c) S has an angle ' between its eigenspaces.

Finally, we take T 2 N such that 
T � K . Now, let � D ff n1 .x/ W n 2 f1; : : : ; �gg
be any hyperbolic periodic orbit, with period � > T , satisfying (1) and (2) of
Lemma 15.6. Let g 2 N !

� .f1/ be the diffeomorphism provided by Lemma 15.7
satisfying kDg�yk < K for some point y 2 � . We take i 2 f0; : : : ; � � 1g and

we define xi WD f i1 .y/ and x0i WD f1.xi / D f iC11 .y/. Take the linear maps
Dgf i

1
.y/ WD Dgi WR2xi

! R2
x0

i

and let �i � � be the angle between the eigenspaces
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Eu
xi

andEsxi
of the mapDg�i , for each i 2 f0; : : : ; � � 1g. Take now Si 2 SL.2;R/

such that kSi � Ik � �0, and Si has eigenspace Eu
xi

with eigenvalue 
�1, and has
eigenspaceEsxi

with eigenvalue 
 . Observe that these eigenspaces do make an angle
equal to �i . The product linear map .Dgi �Si /WR2xi

! R2
x0

i

takes the decomposition

R2xi
D Eu

xi
˚ Esxi

onto the decomposition R2
x0

i

D Eu
x0

i

˚ Es
x0

i

. Moreover, we have

kDgi � Si jEu
xi
k D kDgi jEu

xi
k
�1 and kDgi � Si jEs

xi
k D kDgi jEs

xi
k 
 .

Consider a family of smooth deformations of the identity into Si , that is, let
fSi;tg��1iD0;t2Œ0;1	 be defined analogously to Si but with eigenvalues 
 t and 
�t ,
where for t D 0 we get the identity and for t D 1 we get Si .

By a direct application of Theorem 15.7 we can obtain a family of C 1 area-
preserving diffeomorphisms .hi /t such that .hi /t 2 N !

� .g/, g D .hi /t outside a
small neighborhood of the point xi , and ŒD.hi /t �xi

D Dgi � Si;t . But, since we
can produce these perturbations with self-disjoint support, we can glue them into
a single conservative C 1 perturbation ht (t 2 Œ0; 1�) of g such that ht 2 N !

� .g/

and g D ht outside a small neighborhood of � . By way of construction, the area-
preserving diffeomorphismht has the same invariant decomposition as g. Moreover,
using that kDg�yk < K and also the unidimensionality of Eu, we have

'.t/ WD kD.ht /�y jEu
y
k D kDg�y jEu

y
k 
�� t < K 
�� t ; (15.17)

while, on the other hand, kD.ht /�y/jEs
y
k > K 
� t . For t D 0 we have

'.0/ D kDg�y jEu
y
k > 1:

But, since 
� � K (recall that � > T ), for t D 1 we get '.1/ < 1. Therefore, there
is some t0 2�0; 1Œ such that '.t/ D 1. For such t0 we must have kD.ht0/�yk D 1.

Finally, applying4 Lemma 15.4 to the periodic orbit y of ht0 we get a conservative
C 1 perturbation h of ht0 such that h 2 N !

� .ht0/ and y is an elliptic periodic orbit
of h.

Going back and replacing � by �=5 along the proof enables us to conclude the
proof of the proposition.

The absence of elliptic periodic orbits for all nearby perturbations implies uni-
form bounds on hyperbolic orbits with large enough period. This is an easy con-
sequence of the two previous Propositions 15.1 and 15.2 which we state for future
reference.

Corollary 15.1. Let f 2 Diff 1! .M/ and � > 0 be given and set � D �.�; f /,
m D m.�; �/ and T D T .m/ given by Propositions 15.1 and 15.2.

Assume that all area-preserving maps g which are �-C 1-close to f do not admit
elliptic periodic orbits. Then for every such g all closed orbits with period larger

4 If the point is parabolic we can perform a small rotation in the tangent space in order to make it
elliptic.
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than T are hyperbolic,m-dominated and with angle between its stable and unstable
directions bounded from below by � .

15.6 Proof of Theorem 15.2

In this section we present the proof of Theorem 15.2. Let f 2 Diff 1! .M/ be a non
Anosov diffeomorphism � > 0 and U any open subset of M , we will prove that
there exists an area-preserving map g 2 N !

� .f / and which exhibits an elliptic
orbit passing through U .

Let P be the residual set given by the general density theorem (see [31]), that
is P is the set of all area-preserving maps f such that ˝.f / is the closure of the
set of periodic orbits, all of them hyperbolic or elliptic, and ˝.f / D M by the
Poincaré recurrence theorem.

We take any f 2 Diff 1! .M/ which is not approximated by an Anosov area-
preserving map. Then by a small C 1 perturbation we can and will assume that f
belongs to P and that f is still not approximated by an Anosov conservative map.
We fix some open set U 	M and � > 0.

If some elliptic periodic orbit of f intersects U there is nothing to prove, just
choose f D g. Otherwise we must consider three cases:

Case I All periodic orbits of f which intersect U are hyperbolic, and some
of them has a small angle, less than � D �.�; f / provided by Proposition 15.1,
between the stable and unstable eigendirections at one point of the orbit.

Case II All periodic orbits of f which intersect U are hyperbolic, with angle
between the stable and the unstable directions bounded from bellow by � , but some
of them, with period larger than T , do not admits anym-dominated splitting, where
m D m.�; �/ and T D T .m/ are given by Proposition 15.2, and � D �.�; f / was
given as before by Proposition 15.1.

Case III All periodic orbits of f which intersect U and have period larger than
T are hyperbolic, with m-dominated splitting, and with the angle between the sta-
ble and unstable directions bounded from bellow by � , where m D m.�; �/ and
T D T .m/ are given by Proposition 15.2, and � D �.�; f / was given as before by
Proposition 15.1.

Using Proposition 15.1 the Case I implies the desired conclusion for some area-
preserving diffeomorphism g 2 N !

� .f /. Analogously for Case II by the choice of
the boundsm, T and by Proposition 15.2.

Finally, we use Theorem 15.6 to show that if f is in Case III and we assume
that every C 1-nearby area-preserving map g does not admit elliptic periodic orbits
through U , then we get a contradiction. This establishes the statement of Theo-
rem 15.2.

If f is in Case III, then from Corollary 15.1 we know that every periodic orbit
intersectingU , for area-preserving diffeomorphismg 2 N !

� .f /, with period larger
than T , is hyperbolic with uniform bounds on m and � .
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From Theorem 15.6, since f is not approximated by an Anosov area-preserving
map, there exists an area-preserving map g, which is �

2
-C 1-close to f , admitting a

full Lebesgue measure subset Z where all the Lyapunov exponents for g are zero.
Moreover, we can assume that g is aperiodic, that is the set of all periodic orbits has
zero Lebesgue measure.5

Let OU 	 U be a measurable set with positive Lebesgue measure. Let R 	 OU be
the set given by Poincaré Recurrence Theorem with respect to g. Then every x 2 R
returns to OU infinitely many times under g and is not a periodic point. Denote by T
the set of positive return times to OU under g.

Given x 2 Z \ R and 0 < ı < log 2=2m, from the Oseledets’ theorem there
exists nx 2 R such that the upper Lyapunov exponent is near zero, formally, for
every n � nx we have

e�ın < kDgnxk < eın:
Let us choose � 2 T such that � > maxfnx; T g.
Now, by Arnaud’s closing lemma (Theorem 15.8), given a g-recurrent point x,

� > 0 and a neighborhood N !
�=2
.g/, there exists a periodic orbit p of h 2 N !

�=2
.g/

with period � such that

(a) dist
�
gi .x/; hi .p/

	
< � for all i 2 f0; : : : ; �g.

(b) h D g except on the �-neighborhood of the h-orbit of p.

Letting � > 0 be small enough we obtain also that

e�ı� < kDh�pk < eı� with � > T: (15.18)

Now it is easy to see that h 2 N !
� .f /, so that the orbit of p under h satisfies the

conclusion of Corollary 15.1. In particular we have that

��Dhmx j Esx
��

��Dhmx j Eu
x

�� �
1

2
for all x in the h-orbit of p;

for otherwise we would use Proposition 15.2 and produce an elliptic periodic orbit
for an area-preserving map in N !

� .f /. Since the subbundles Es and Eu are one-
dimensional we write pi WD him.p/ for i D 0; : : : ; b�=mc D ` with bzc denoting
the largest integer less or equal than z and

��Dh�p j Esp
��

��Dh�p j Eu
p

�� D
��Dh��m` j Esp`

��
��Dh��m` j Eu

p`

�� �
`�1Y

iD0

��Dhm j Espi

��
��Dhm j Eu

pi

�� � L.p; h/ �
�
1

2

�`
;

(15.19)

where

5 Actually, by the conservative version of the Kupka–Smale theorem (see [32]) we obtain a residual
where the periodic points are countable, hence of zero Lebesgue measure.
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L.p; h/ D sup
i2f0;:::;mg

 kDhi j Espk
kDhi j Eu

pk

!

depends continuously on h in the C 1 topology. Therefore, there exists a uniform
bound on L.p; h/ for all maps h 2 N !

� .f /.
We note that we can take � > T arbitrarily large by letting � > 0 be small

enough in the above arguments. Therefore (15.19) ensures that

1

�
log

��Dh� j Esp
�� � 1

�
logL.p; h/C `

�
log

1

2
C 1

�
log

��Dh� j Eu
p

��:

Moreover, since h is area-preserving and recalling (15.8), we have that the sum of
the Lyapunov exponents along the h-orbit of p is zero, that is (we recall that � is
the period of p)

1

�
log kDh� j Espk D �

1

�
log kDh� j Eu

pk:

The constants in (15.19) are independent of � so taking the period very large and
noting that kDh�pk D kDh� j Eu

pk we deduce that

1

�
log kDh�pk �

1

2m
log 2 > ı:

This contradicts (15.18) and Theorem 15.2 follows.

15.7 More Results on Area-Preserving Diffeomorphisms

15.7.1 Robust Transitivity

Here we present an alternative proof of Theorem 15.3 using the next well-known
theorem (see for example [33, Theorem 5.2]).

Theorem 15.9. (KAM) Let f 2 Diff 1! .M/, p a periodic elliptic orbit with period
� and assume that the two eigenvalues of Df �p , denoted by �1 and �2, are such

that �1 D e2�i� and �1 D e�2�i� for � 2 R n Q. Then, there exists a sequence
ffkgk2N 2 Diff 1! .M/ such that fk !

k!C1
f (in the C 1-topology) such that each

fk has an elliptic periodic orbit pk admitting a fk-invariant tori.

Proof. (of Theorem 15.3) Assume that f 2 Diff 1! .M/ is non Anosov and C 1-
robustly transitive. Hence, there exists a C 1-neighborhood of f , V 	 Diff 1! .M/,
such that every h 2 V is transitive. By Theorem 15.2 given a non Anosov diffeo-
morphism f 2 Diff 1! .M/, � > 0, x 2 M and any open subset U of M , then there
exists g 2 N !

� .f / and exhibiting an elliptic orbit passing through U . Choose, �
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such that g 2 V . Since elliptic orbits are stable, we use Zehnder’s Theorem [38]
and we take Qg 2 Diff 1! .M/\V and exhibiting an elliptic orbit passing throughU .

If the eigenvalues of this elliptic point are in Q, then by using Lemma 15.4, we
can perturb in order to get these eigenvalues in R nQ.

Therefore, we are in the conditions of Theorem 15.9. So, there exists a sequence
ffkgk2N 2 Diff 1! .M/ such that fk !

k!C1
Qg (in the C 1-topology) such that each

fk has an elliptic periodic orbit pk admitting a fk-invariant tori. Of course that, for
k � k0, we have fk 2 V and the property of having fk-invariant tori contradicts
the C 1-robust transitivity.

We say that f 2 Diff 1! .M/ is ergodic if given any measurable f -invariant set it
has full or zero Lebesgue measure. Stable ergodicity means persistence of the ergod-
icity for perturbations of f . It is easy to see that stable ergodicity implies robust
transitivity within the conservative context. However, we note that this implication
is false if the (stable) ergodicity is with respect to some atomic invariant measure
(c.f. the next example).

Example 15.3. Consider the gradient flow on S2 	 R3 generated by the height
function h.x; y; z/ D �z. The points N D .0; 0; 1/ and S D .0; 0;�1/ are a source
and a sink respectively. The Dirac measure ıN (or ıS ) is ergodic, however the flow
is non-transitive.

Corollary 15.2. If f 2 Diff 1! .M/ is C 1-stably ergodic, then f is Anosov.

As we said in the introduction the KAM phenomena contrasts with stable
ergodicity, since it prevails persistence of invariant tori with positive Lebesgue
measure.

We end this section with the following yet unknown problem.

Question: Is ergodicity C 1-generic among conservative surface diffeomorphisms?

15.7.2 Area-Preserving Star Diffeomorphisms

Let f 2 Diff 1! .M/ be a conservative star-diffeomorphism, that is, there exists a
neighborhood V of f in Diff 1! .M/ such that any g 2 V , has all the periodic orbits
hyperbolic. We denote this set by F 1

!.M/ and, as we said in Sect. 15.3, A 2
! denotes

the set of conservative Anosov diffeomorphisms on the surface M .
It is clear that F 1.M/\ Diff 1! .M/ 	 F 1

!.M/; Theorem 15.4 implies that

F 1.M/\ Diff 1! .M/ D F 1
!.M/ D A 2

! :

As a consequence of Theorem 15.4 we also obtain the following result.

Corollary 15.3. The boundary of A 2
! has no isolated points.
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A diffeomorphism f 2 Diff 1! .M/ is said to be C 1-structurally stable in the
conservative setting if there exists a C 1 neighborhood, V , of f in Diff 1! .M/ such
that every g 2 V is topological equivalent to f (see [33]).

Combining Theorem 15.4 with Theorem 15.1 we are able to obtain the next
result.

Theorem 15.10. If f is a C 1-structurally stable surface area-preserving diffeo-
morphism, then f is Anosov.

We assume Theorem 15.4 for a moment and we conclude the proof of The-
orem 15.10 but before that we present an abstract result about finite product of
SL.2;R/ matrices that will be used in the proof of Theorem 15.10.

Lemma 15.9. ([11, Lemme 6.6]) For all � > 0, there exists N � 1 such that, for
all n � N and every family fAigniD1 	 SL.2;R/, there exists f˛igniD1 (where each
˛i 2� � �; �Œ) satisfying the following property: For all i 2 f1; : : : ; ng we denote
Bi D R˛i

� Ai and we have that

Bn � Bn�1 � ::: � B1
has real eigenvalues.

Proof. (of Theorem 15.10) Let us fix a C 1-structurally stable area-preserving dif-
feomorphism in Diff 1! .M/ and choose a neighborhood V of f whose elements
are topologically equivalent to f . If f … A 2

! D F 1
!.M/, then it follows that

V \ A 2
! D ;. Using Theorem 15.1 one gets that there exists a residual subset

R 	 V such that for every f0 2 R the set of elliptic periodic orbits is dense in M .
Let us fix f0 2 R and choose a small neighborhood of f0, W 	 V .

Let x be an elliptic periodic point of large period, say � (given by Lemma 15.9)
depending on � (depending on V ) and on Ai WD Dff i .x/ for i D 1; : : : ; � . Define,
for t 2 Œ0; 1�, Bi;t WD Rt˛i

� Ai . By Lemma 15.9 we obtain that

B�1 WD B�;1 � B��1;1 � ::: � B1;1
has real eigenvalues. Since B�0 D A� D Df �x has complex eigenvalues, there must
be t0 2�0; 1Œ such that B�t0 has a parabolic behavior. Finally, we apply Lemma 15.4
several times, in order to realize an area-preserving map f1 2 V exhibiting a
parabolic periodic orbit. Since the existence of a parabolic point prevents structural
stability and f1 2 W we get a contradiction. Therefore f 2 A 2

! , which ends the
proof.

Proof. (of Theorem 15.4) We observe that F 1
!.M/ is C 1 open in Diff 1! .M/. Let

f 2 F 1
!.M/ nA 2

! .
We recall Corollary 15.1 and we consider a C 1-neighborhood V of f in F 1

!.M/

where any g 2 V do not admit elliptic closed orbits. Then, from Corollary 15.1
there exist constants � D �.�; g/, m D m.�; �/ and T D T .m/ such that, for each
periodic orbit with period greater than T , one has:

� m-dominated splitting and
� Angle between its stable and unstable directions bounded from below by � .
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Observe that, since g 2 F 1
!.M/, these periodic orbits are hyperbolic.

We will get a contradiction with the fact that there exists a positive measure set
without domination. For that we consider the following claim.

Claim. For all m 2 N , there exists an f -invariant and positive Lebesgue measure
set �m 	M withoutm-dominated splitting.

If the claim was false, then there would exist m 2 N and �m 	 M such
that Leb.M n �m/ D 0 and �m has an m-dominated splitting. Since the
m-dominated splitting extends to the closure and we are considering the Lebesgue
measure it follows that M has an m-dominated splitting. But the existence of an
m-dominated splitting implies, by Lemma 15.3, that f is Anosov which contradicts
our assumption.

Now, we recall the core of the dynamical principle involved in the proof of
Theorem 15.6; given any � > 0, there exists (a sufficiently large) m 2 N such
that for any � > 0 arbitrarily close to 0, for a.e. x 2 �m there exists g, �-C 1-close
to f , such that e�n
 < kDgnxk < en
 , for every arbitrarily large n 2 N .

Repeating the arguments in the proof of Theorem 15.2 we get a periodic point
with period � for an area-preserving map h 2 V and such that:

e�ı� < kDh�pk < eı� ; (15.20)

and in the same way we obtain a contradiction. Therefore, f has a dominated
splitting overM and, by Lemma 15.3, we conclude that f is Anosov.

Proof. (of Corollary 15.3) Take an isolated point f in the interior of the boundary
of A 2

! and a small neighborhood V of f such that any g 2 V is Anosov. The
diffeomorphism f must satisfy Claim 15.7.2 otherwise f is Anosov. We follow the
proof of Theorem 15.4 and we conclude that under a small C 1-perturbation we find
g 2 V exhibiting an elliptic periodic orbit which is a contradiction.

15.7.3 Homoclinic Tangencies

For surface area-preserving diffeomorphisms the existence of smooth invari-
ant curves is associated to the existence of elliptic points. Actually, Mora and
Romero [23] developed a mechanism to create open sets containing a dense set of
maps exhibiting homoclinic tangencies once one has a smooth invariant curve. A
key step to prove this result is [23, Proposition 7]. To state this proposition let us
define

A D f.�; r/W � 2 S1; r 2 Rg and Aı D f.�; r/W � 2 S1; r 2� � ı; ıŒg:

Theorem 15.11. Let f WAı ! A be a C1 area-preserving map of the annulus
leaving invariant some C1 curve
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� D f.�; ˚.�//; � 2 S1g;

where ˚ WS1 ! R, and such that f j� has an irrational rotation number. Then, for
s � 1 and � > 0, f can be �-C s-approximated by an area-preserving g exhibiting
homoclinic tangencies such that for some ı0 < ı we have

gjAınAı0
D f jAınAı0

:

Let f0 2 Diff 1! .M/ be such that it cannot be C 1-approximated by a diffeomor-
phism in A 2

! . Using Theorem 15.1, we approximate, in the C 1-topology, f0 by
f1 2 Diff 1! .M/ such that the elliptic points of f1 are dense on the surface. Now,
using Zehnder Theorem [38] and the stability of elliptic orbits, we approximate, in
the C 1-topology, f1 by f2 2 Diff 1! .M/ having an elliptic point p of period � .

Now we consider the linear action Df �2 WTpM ! TpM defined by the rotation
R� , in a small neighborhood of the orbit, and a direct application of Theorem 15.7
allows us to C 1-approximate f2 by f3 2 Diff 1! .M/ such that p is still an ellip-
tic point of period � and there exists an f3-invariant neighborhood T where the
first return map at p (not the tangent map) is a rotation of angle � . We can assume
that � is irrational, otherwise, we could perturb f3, by using Lemma 15.4, in order
to get f4 2 Diff 1! .M/, C 1-close to f3, with the same properties but with irra-
tional rotation angle. This area-preserving diffeomorphism is in the hypotheses of
Theorems 15.11 and 15.5 is proved.

We end this section by observing that, for dimension d � 3, the author and Rocha
proved in [8] that any volume-preserving d -dimensional diffeomorphism can be
C 1-approximated by an Anosov volume-preserving diffeomorphism or else by a
volume-preserving diffeomorphism exhibiting a heterodimensional cycle.

15.7.4 Lots of Chaos or Lack of It?

We recall one of the most common definitions of chaos due to Devaney (see [14,
Definition 8.5]): f WM !M is chaotic if:

(a) f is transitive.
(b) The periodic points are dense in M .
(c) f is sensitive to the initial conditions, i.e., there exists ı > 0 such that for all

x 2 M and all neighborhood of x, Vx , there exists y 2 Vx and an integer n
where dist.f n.y/; f n.x// > ı.

In this case we also say that f is chaotic in the topological sense.
It was proved in [6] that (a) and (b) implies (c), and so in order to be chaotic in

the sense of Devaney the system only has to satisfy the transitivity property and the
density of periodic points.

The other definition of chaotic map that we are going to use is the one that
says that there are no zero Lyapunov exponents for Lebesgue almost every point.
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When, in our conservative surface setting, we have two non-zero (thus symmetric)
Lyapunov exponents we say that f is chaotic in the measurable sense.

Theorem 15.12. LetM is any closed surface aside from the two-torus. There exists
a C 1-residual R 	 Diff 1! .M/ such that, if f 2 R, then f is chaotic in the
topological sense and nonchaotic in the measurable sense.

Proof. As an outcome of [11] we obtain that there exists a residual subset R1 of
Diff 1! .M/ such that if f 2 R1, then f is transitive. Furthermore, by the general
density theorem [31] we get there exists a residual subset R2 of Diff 1! .M/ such
that if f 2 R2, then the periodic points of f are dense in M . Therefore, defining
R3 D R1\R2 and recalling [6] we conclude that there exists a residual subset R3

of Diff 1! .M/ such that if f 2 R3, then f is chaotic in the topological sense.
By Franks’ classical result about the rigidity of Anosov diffeomorphisms (see

[15]) we know that the only surfaces that support Anosov diffeomorphisms are
the tori. Therefore, if M is any closed surface except the two-torus, then by
Theorem 15.6, there exists a C 1-residual subset R4 of Diff 1! .M/ such that, if
f 2 R4, then f has zero Lyapunov exponents for almost every points, thus is
nonchaotic in the measurable sense.

Finally, R WD R3 \ R4 is the residual set required by the statement of the
theorem.
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Chapter 16
A Theoretical, Multidisciplinary View
of Catastrophic Regime Change

Juan Gabriel Brida, Audrey L. Mayer, Christopher McCord,
and Lionello F. Punzo

Abstract Dynamic regime theory is used in a growing number of disciplines to
understand, manage, and predict system behavior. A variety of mathematical mod-
els have been developed for seemingly disparate systems, however the similarity
of these models suggests that the systems could be approached as a collection of
samples. A multidisciplinary meta-analysis of dynamic regime models could yield
several benefits. Given the difficulty of replication and experimentation in real-
world systems, a collection of dynamic systems across disciplines and scales could
serve as much-needed replicates. If endogenous variables behave similarly regard-
less of the source of exogenous pressures, and of the scale at which the system is
define, then general models, rules and coded behaviors can be developed. Further-
more, if the same basic theory regarding system behavior (including rapid regime
change) applies across disciplines at multiple spatiotemporal scales, then models
developed from these theories may help manage those systems which, at larger
scales, cross traditional disciplinary lines. This result would emphasize the need to
collaborate across disciplines to study the sustainability of dynamic systems. Here
we discuss the mathematical basis for common dynamic regime models, and then
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describe their application to sociological, ecological, and economic systems, in a
scale-explicit manner.

16.1 Introduction

The increasing visibility of publications investigating catastrophic regime change
(e.g., [1, 35, 38, 41, 46]) suggests that dynamic systems and catastrophe theories are
increasingly central to a wide variety of disciplines. To study complex dynamic
systems, researchers collect data or construct models to determine which variables
and parameters may be useful to identify regimes and their boundaries. In many
cases, knowledge about the distance to a regime boundary (and hence a regime shift)
is needed to either forestall regime change or bring about regime change (to a more
desirable regime). While specific variables may differ across disciplines, models are
based on the same fundamental principles.

The similarity in behaviors across systems would suggest that a mathematical
foundation could be used to study the systems as a unified set [44], increasing
the sample size for more quantitative approaches to dynamic systems research.
Likewise, if modeled behaviors are scale-invariant, then each system can poten-
tially serve as one of several samples as boundaries are expanded to larger spatial
and temporal scales. The scale at which the system’s boundaries are drawn has a
large impact on the regimes that can be observed, and the differentiation between
endogenous and exogenous forces. To investigate the similarity between systems
and across scales, we describe mathematical research on basin boundaries and multi-
ple time-scale dynamics, demonstrating the fundamental mechanisms and properties
of regime shifts. Then, using several examples, we identify themes across disciplines
and develop a common terminology.

16.1.1 What is a Regime?

A regime is a dynamic model with its own associated multidimensional domain, in
which state variables exhibit characteristic behaviors or structures. Those structures
can be defined either by inherent dynamic behavior (e.g., a basin of attraction) or
by the observable manifestation of them (e.g., an oligotrophic lake vs. a eutrophic
one). The state space of a system can encompass multiple regimes of a variety
of basin sizes and attraction strength, which in some disciplines is referred to as
resilience [6]. Identifying the boundaries that separate regimes is essential to under-
standing the regimes themselves. However, boundaries may be poorly defined, vary
with exogenous and endogenous parameters, and evolve in time in response to
changes in these parameters.

A regime shift occurs when a system moves across regime boundaries, which
are influenced by a variety of exogenous and endogenous mechanisms. These are
qualitatively different from phase transitions, which are driven solely by changes in
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external conditions (e.g., liquid water into ice as temperature drops), even through
the phrases are sometimes used synonymously in some disciplines. Exogenously
generated regime shifts can take several forms, including: continuous changes in
parameters or in the functional form of the dynamics; or randomly distributed
shocks which change the values of the state variables, the parameters and/or the
very rule of motion (i.e., stochastic or random motion that is layered on top of
a deterministic system). Endogenously generated shifts depend fundamentally on
mechanisms internal to the system, inbuilt in its architecture or relational wiring.
Shifts often occur when the system reaches and overshoots some frontier values in
its state space and/or in the parameter space.

The various mechanisms and their interactions can produce behavior that is a
compounding of smooth evolution within a given regime, and sudden qualitative dis-
continuities in behavior across regimes – regime shifts (also “catastrophes”, [44]).
Although the dynamics of the system may be linear or otherwise easily predictable
within a regime, cross-regime dynamics shifts can be reversible or irreversible.
However, the evidence that such a shift has occurred or is about to occur may be
subtle, complicating predictions of when a system is in or about to enter a regime
change, and complicating the decision processes for controlling regime shifts.

16.2 Mathematical Models

To analyze the basic properties of multiple regime phenomena, it is useful to capture
the basic properties in a mathematical model. Usually a dynamical model is repre-
sented by a system of difference and/or differential equations. Several tasks have to
be solved:

Identify distinct dynamic regimes and the boundaries separating their domains.
In relatively simple dynamic systems, regimes are associated with the presence (and
the properties) of the set of the system’s steady states or attractors. (This requires
the set of equilibria to be finite, i.e. embedded in a zero-dimensional space, which of
course is rare if the state space is large) When this is the case, their description pre-
liminarily requires the identification of the basins of attraction. When two or more
attractors are present in a given system, each of them has its own basin of transient
states lying on trajectories that lead asymptotically to it. Basin boundaries are thin
sets (i.e., Lebesque measure zero) separating basins and commonly have a compli-
cated fractal structure [28, 33]. With one-dimensional systems and related to gener-
ating partitions, one can identify regimes with increasing-decreasing intervals [26].

The analogous situation in greater dimension can be given by piecewise defined
systems [39]. In more general cases, attractors can have a more complicated set
structure. The simplest structures are closed loops, but any compact subset of the
state space can act as an attractor. In this case, well-defined domains are more
difficult to isolate, or may not exist at all. We have the general case of multi-
regime dynamics, whereby a domain can be associated with a given local rule or
mathematical model, without this implying any stability property in the classical
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sense. We have a dynamics segmented through state space, with regularly or irreg-
ularly distributed jumps between nearby domains (but not necessarily nearby states
belonging to adjacent domains). In this case, a partition in regimes reflects our
understanding or our hypotheses upon the various local rules; it is an exogenous
as opposed to the endogenous partition of the previous case. The result is a regular,
a mildly irregular, or a seemingly chaotic regime dynamics, which can be coupled
to any type of local point dynamics.

Describe the basic properties of the dynamic regimes. Once we have identified
the portfolio of regimes, we can study their stability and reversibility, compute
the dimension of the regime, and investigate for the presence of hysteresis and
the elasticity and amplitude of resilience [47]. A regime is highly dependent upon
the scale at which the system is observed; at smaller scales, variability within a
regime may appear as large, discontinuous shifts. Therefore, one of the properties
of a regime is the scale at which it exists. Here, scale includes both spatial and tem-
poral dimensions, and refers to the resolution of the observations (i.e., how often do
they occur) and their extent (usually dictated by the system boundaries). It is also
possible to study the dependence of regime boundaries and other characteristics on
the parameters of the system.

Identify the mechanism of regime change. If the system has only stable states,
then a shift across regimes may require an external perturbation, or an abrupt
change in model parameters. Nonlinear functions of the state can represent the effect
of cumulative causes and self-reinforcing mechanisms bringing about qualitative
changes [5]. These exogenous shifts can be modeled, for example, with Markov
chains [5]. Again, the scale at which the system is observed is important. Exoge-
nous mechanisms which can cause regime shifts at one scale may not do so at
larger scales, at which the same mechanism is now endogenous. Furthermore, forc-
ing mechanisms can interact across scales, complicating efforts to identify each
mechanism and its relationship to the system.

Describe dynamics across regimes. Multiple regime models exhibit a twofold
dynamics: within a regime and across regimes. While dynamics within regimes are
represented in the classical form of differential or difference equations, dynamics
across regimes can be represented via symbolic and coded dynamics [4, 5]. Hybrid
systems may be modified to represent multi-regime models (see [20]), describing an
interaction mechanism between discrete (representing regime shifts) and continuous
dynamics (representing dynamics within a regime). At this macroscale, the “regime”
is now the path between regimes at a smaller scale; some smaller-scale regimes may
never be visited by the system if the system starts in a particular regime or becomes
ensconced in a particular loop between a subset of all possible regimes (Fig. 16.1).

16.3 Scale Dependency

Depending upon the scale (spatial or temporal) at which a system is observed, the
boundaries of a regime and shifts between regimes may not be obvious or relevant.
The scale-dependent definition of a regime is important to note when collecting
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Boundary location and characteristics,
strength of attraction towards regime
at/near boundary.

Regime size and stability,
internal feedbacks which
maintain stability.

Shifts between regimes:
probability, indicators,
hystereses (difficulty in
reversing the shift).

Feedbacks between parameters
operating at different scales can
influence regime shifts and 
stability.

Paths taken among multiple
possible regimes creates
second-order regimes. Once
in a particular regime, a shift
to a desirable regime may be
impossible without passing
through another regime first.

Fig. 16.1 Dynamic regimes research at increasingly larger spatial and temporal scales. Arrow
represent attracting forces at small scales, and system behavior (direction of movement) at larger
scales

and using data to describe and manage a system. Here, we begin with a simple
two-regime example in sociology at the scale of a romantic couple, and scale up to
ecological and climate systems with mechanisms operating at several scales to form
multiple possible regimes.

16.3.1 Sociology

Sociologists and psychologists have used nonlinear dynamics to develop testable
hypotheses for describing and predicting patterns in human behavior and interac-
tion [13, 27, 49]. Romantic relationships, in particular, have received considerable
attention from this perspective [13]. A very simple model identifies the stability of a
couple using two differential equations (one for each partner) with three variables:
the attraction each partner feels towards the other, the degree to which a partner
reciprocates affection, and the durability of each partner’s memory of these two
variables [36]. Stable couples have one regime in which they tend to continuously
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return affection and remain interested, while unstable couples have two regimes, one
characterized by positive feelings and one by negative. The regime to which unstable
couples are attracted depends on the initial conditions at the start of the relationship.
This model was meant to describe the behavior of couples at the scale of months or
years, and therefore ignores fluctuations at shorter timescales or lifetime stability of
the relationship [36].

More complicated relationship models include both partners plus an exogenous
force, such as expectations from the community or negative life events [27, 49].
Again, the endogenous mechanism influencing whether or not a relationship will
be formed, is the preferences and attractions internal to each potential partner. How-
ever, the strength of this mechanism is now also dependent upon an exogenous force,
social pressure, which can influence just how attractive a potential mate needs to be
before a relationship is formed (Fig. 16.2). Without strong social pressure to stay in
a relationship (such as taboos against divorce), the probability of forming a partner-
ship is almost linearly related to the attractiveness of the individual as a potential
partner [43] (Fig. 16.2).

In fact, with no social pressure these two regimes are indistinct. As social
pressure increases for relationship maintenance, the probability of entering a

Fig. 16.2 With little social pressure (either positive or negative) regarding dating, the probability
that a person will enter a relationship regime is linearly related to the desirability of the potential
partner (back wall of cube, arrow on left). As social pressure increases, a hysteresis (catastrophe)
develops. The desirability of the potential partner must be very high before a relationship is started,
and once in a relationship, partner desirability must decrease dramatically to end the relationship
regime (arrows on right). fModified from [27]g
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relationship forms a hysteresis between being in and out of a relationship; rela-
tionships are entered and exited more tentatively [27]. In this way, societal pressure
(and the susceptibility of individuals to this pressure) can increase the resilience
of both relationship/no relationship regimes, and can determine the nonlinearity
of the shift between regimes. In the presence of strong social pressure, potential
mates must be very attractive to begin a relationship, and problems must be severe
(causing a partner to become very unattractive) to dissolve a relationship.

While the stability of a relationship is dependent upon the internal behavior of the
couple along with exogenous factors, the appearance of stability is highly dependent
upon the scale at which behavioral observations are made. Some variables (such as
the amount of irritability directed towards the partner) may appear to fluctuate ran-
domly during the day or over several weeks, suggesting instability. However, over
longer time periods these same variables demonstrate a more ordered, predictable
pattern, indicating a considerably stable relationship [49]. Variables which fluctuate
over much longer timescales, such as overall satisfaction with the relationship, may
seem stationary at short timescales but after crossing a threshold may precipitate a
(catastrophic) end to the relationship.

16.3.2 Ecology

In most dynamic systems, several endogenous and exogenous mechanisms inter-
act to form a variety of possible regimes, and a variety of ways to shift between
regimes. Endogenous and exogenous causes for regime shifts (and feedbacks which
stabilize regimes) have been observed in a broad range of ecosystems, from terres-
trial to freshwater to marine [38]. However, few ecosystems have well-developed
mathematical models to describe system behavior, primarily due to the difficulty
of obtaining empirical observations and finding numerous system replicates. For
ecosystems with vague boundaries (e.g., marine, [21]), low number of replicates
relative to the potential types of exogenous forces (e.g., coral reefs, [29]), or signifi-
cant spatial heterogeneity [45], models developed for systems from other disciplines
may prove especially helpful, especially for cases for which data collection is easier
and replicates can be constructed [21, 31].

Shallow, temperate freshwater lakes represent one of the most studied ecolog-
ical cases of regime shifts. The large number of relatively isolated replicates and
long history of human interactions have allowed for rigorous data collection and
modeling [6]. These lakes typically persist in one of two states: an oligotrophic one
with low algal biomass, high biomass of rooted plants, and low phosphorus recy-
cling between the sediments and the water; and a eutrophic one with high algal
biomass (and frequent blooms), few rooted plants, and high phosphorus recycling.
An increase in phosphorus inputs from outside of the lake, such as sewage from
human settlements or runoff from fertilized agricultural fields, can push a lake from
an oligotrophic to eutrophic state. As water quality becomes murkier (due to high
algal biomass), sunlight penetrates less deeply and rooted plants die. Plant loss
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reduces the removal of phosphorus from the water for plant tissues, and the loss of
their roots destabilizes lake sediments, allowing a greater exchange of phosphorus
between the water and the sediments. Shifts from oligotrophic to eutrophic condi-
tions can occur rapidly at the threshold at which lake sediments can no longer absorb
additional phosphorus, promoting algal blooms and precipitating rooted plant loss.

Mechanistic models and statistical models based on time-series data have demon-
strated pronounced hysteresis between these regimes. Even if phosphorus addition
to the lake is dramatically reduced, phosphorus concentration in the lake can remain
high for long periods of time, indicating a high resilience of the eutrophic regime,
(particularly in shallow lakes or those with low rates of hydrologic flushing). Regime
shifts in shallow lakes can be irreversible on shorter time scales, as the loss of key
animal and plant species remove a mechanism of phosphorus removal even when
phosphorus inputs are dramatically reduced [6].

16.3.3 Climatology

The largest dynamic system on Earth is the climate system, and although the sun
exogenously supplies energy to drive climate processes, variability in the energy
reaching the planet does not explain the variability in global climate [37]. Instead,
feedbacks between several endogenous mechanisms maintain climate regimes: the
concentration of several atmospheric gases; freshwater input into the ocean and
resulting circulation patterns; and the albedo of the planet surface governed by the
extent of ice and snow [9, 32]. The atmosphere may be the most unstable variable,
changing more quickly than other global climate factors [16]. Early differential
equation models of these three variables indicated the potential for catastrophic
shifts in global climate [48]. However, as more climate data and higher computing
power became available, climate models became increasingly complex to account
for the many physical and biological feedbacks between different components and
regions [16]. Despite their complexity, more recent models such as General Circula-
tion Models (GCM), still demonstrate the existence of multiple regimes in the global
climate system, as do long-term empirical data [9]. These complex models have also
identified possible regime boundaries, especially with respect to atmospheric con-
centrations of carbon dioxide [16]. Boundaries have also been from empirical data
through the structure of the noise of the system; variability in the system increases
as the system nears a regime boundary [19]. Hysteresis between multiple stable
regimes have been observed and quantified for regional climate systems (e.g., [34]).

Feedbacks between endogenous and exogenous variables can influence (and even
create) regime boundaries. Although at regional scales global climate mechanisms
are exogenous, they are influenced by ecosystem processes, such as through surface
albedo (decreased by vegetation through absorption of solar radiation) or precip-
itation patterns (increased by vegetation through evapotranspiration, [22]). While
thermohaline ocean currents exogenously determine ecosystem regimes (particu-
larly along warm currents), feedbacks between vegetation and regional climate can
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create hysteresis at regime boundaries [8, 15]. For example, in the Amazon basin in
Brazil, high temperatures combine with high humidity created by evapotranspiration
from tropical forests to stimulate cumulous cloud formation, resulting in ecosystem-
generated precipitation [40]; forest fires, more common in arid systems, decrease
cloud formation and precipitation [2] and hence forest regeneration. Savanna veg-
etation in the Sahel in Africa modifies albedo and holds soil in place, delaying a
shift to desert beyond the threshold at which a shift in ocean currents would cause
desertification (and vice versa; [12,15]). In some of these systems, human activities
can trigger regime shifts or maintain regimes [8, 9], although the strength of human
influence may not be capable of dominating non-human drivers in all systems [12].

16.3.4 Economics

Multiregime dynamics (dynamics ranging across regimes) can be seen as a general-
ization of the notion of a business cycle or any other economic oscillation comprised
of interconnected, well-defined phases. The generalization is two-fold: more and
qualitatively different phases are permitted in the conventional business cycle; and
such phases may not be interconnected through a well defined mechanism, yielding
a qualitatively regular or predictable sequence (such as ups and downs). The latter is
a consequence of the possibility of numerous regimes through which a system may
pass, the general term regime replacing phase to indicate the absence of a necessary,
ordered concatenation.

We may distinguish two approaches, though they share an evolutionary view-
point and are rooted in the economics tradition of Schumpeter, with his theory
of dynamics as implying intermittent economic change of a qualitative type. One
approach takes a long-term view on how phases may link up together in the time
evolution of societies in an evolutionary sequel, or how this may break down due
to internal or external mechanisms (e.g. migration, overpopulation, the evolution
or import of technologies, imperial expansion). In such multi-phase dynamics [10],
sudden phase shifts take place at an ideal borderline between the domains of two
adjacent local models of the system, but they in a sense come one at a time. This
is similar to the other approach, if limited to the idea of structural change. In fact,
conceived as a qualitative phenomenon affecting the overall behavior of a system,
structural change has to be thought of (and modeled) as a sudden change in the
very model of the system behavior, if model stands for the set of rules govern-
ing it, and the representation of inner mechanisms resulting from its wiring and
architecture. In stimulating episodes of structural change (in this sense, singular
regime shifts) a variety of mechanisms, not solely of a strict economic nature, may
be working together. This suggests a more comprehensive and interdisciplinary view
of economics as societal evolution.

The other approach produces a uniform account of a phenomenon emerging
from the comparative literature on growth: the variety of patterns exhibited by dif-
ferent countries, or regions, or even sectors within the same country (horizontal
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variety); and at the same time the appearance of repeated, though irregular, qualita-
tive changes in the history of any one exemplary system (vertical variety). A uniform
framework to accommodate and account for both types of phenomena has to be
based upon the acceptance of the implications of relevant empirical evidence. It has
proved difficult to discover the emergence of the same dynamic model across coun-
tries; moreover there is no evidence of a unique model dominating or being typical
in any system’s history. In other words, embedded in any actual history are repeated
episodes of structural change. These findings seem to contradict predictions of well
established growth theory, as they violate its two postulates: of convergence to a
unique type of behavior; and stability of the unique implied equilibrium.

The framework of multi-regime dynamics [5], where a regime is a model plus
its own domain in the system state space, was created to handle this sort of double
variability. Mathematically, it converts ordinary dynamics in a continuous space of
real valued states into a dynamics over a discrete space, thinly populated by regimes.
In addition to growth theory and empirics, the framework can be applied to infla-
tionary processes that at one point enter an hyperinflationary state, after a sudden
jump in the rate of price changes, and how they may be tamed with various policy
measures or simply get exhausted endogenously. It an also be applied to the behav-
ior of stock market and asset prices, where the key theorem asserts that the latter
follow a white noise process. In the former example there are two states, inflation
and hyperinflation (indexed by the values of the derivative of a price index, against
the second or acceleration derivative). In the latter the states are bull and bear mar-
kets, but these states are themselves processes with their own dynamical laws or
models. The notion of states as qualitative behaviors, with multiplicity and inherent
instability, has played an increasing role in monetary theory and analysis, in rates of
exchange, and in many other similar settings, including some game theoretic ones.
In principle, they are all amenable to a reformulation in terms of the present multi-
regime approach, and with regimes identified with specific point attractors as special
cases. In the theoretical analysis of the very complex situations involved, where var-
ious dynamical layers (of adjustment and structural change) may take place at the
same time, computational experiments with a variety of modeling settings have to
be developed and play a key role [14].

In cross country empirical analysis, a Markov-type of approach has been devel-
oped to identify convergence to different long run behaviors defined as regimes,
rather than the single attractors of the current literature [5]. As applied to a single
system’s history and time series data, it proved useful to use a coding or symbolic
dynamics technique, which transforms irregular time series data into a sequence of
symbols from a chosen finite alphabet, each symbol being assigned to a distinct
regime domain. Coding renders the dimension of the original state space irrelevant,
and does away with the need to search for dimension reducing conditions (e.g., sta-
tionarity of time series, the related co-integration technique). At the same time, in
symbolic representation we may discover (near) regularities that may not be obvious
in the original real valued and vectorial time series. At the symbolic or regime level
of dynamics, the technique produces a deterministic view of statistical irregularity,
upon which measures of embodied or inherent stochasticity can be developed [5].



16 A Theoretical, Multidisciplinary View of Catastrophic Regime Change 233

To illustrate one implication of the approach as applied to economic growth, it
is useful to pre-assume exogenously (on the basis of theory alone) the presence of
six regimes, and code them accordingly. Empirical screening of actual data shows
in many cases that six is too many, hence suggesting a more appropriate, endoge-
nous partition into regimes. In most applications, such as the inflation example
above, or to the variability of asset prices, two regimes can most often be identified
endogenously, and therefore a binary representation suffices.

16.4 Conclusions

A multidisciplinary meta-analysis of dynamic regime models yields several bene-
fits. If endogenous variables behave similarly regardless of the source of exogenous
pressures, and of the scale at which the system is define, then general models, rules
and coded behaviors can be developed. For example, do droughts exogenously cause
grasslands to shift to shrubland in the same manner that oil supply shocks cause
recessions in national economies? The identification of transdisciplinary, scale-
invariant rules for the order in which systems can pass through multiple regimes
would help advance systems research within and across many disciplines. Of course,
these comparisons must first ascertain whether the systems are in fact best described
through the regime concept; some models, such as periodic forcing, can also result
in a system shifting between two or more states [30].

Furthermore, if the same basic theory regarding system behavior (including rapid
regime change) applies across disciplines at multiple spatiotemporal scales, then
models developed from these theories may help manage those systems which, at
larger scales, cross traditional disciplinary lines. Indeed, the scale at which the
system boundaries are delineated will determine which variables are considered
exogenous [18]. For example, while the resilience of a particular forest stand as
a forest may be dependent on hydrologic and climate factors, over a longer time
period evolutionary changes or the extinction of dominant tree species may elimi-
nate the existence of particular communities as potential regimes. Over a larger area,
forests are influenced by a variety of both environmental and anthropogenic forces,
including international trade patterns [24]. The resilience of forests at the coun-
try level are exogenously influenced by exchange rates between trading partners,
economic growth (which influences demand for wood products), and technologi-
cal advancements in forestry sectors which can increase or decrease the amount of
wood needed to make those products. At this scale, hydrology and climate have
now become endogenous to the system, particularly when they are manipulated by
human activities. Similar multidisciplinary forces exist for lakes [7].

More than two regimes are possible for many dynamic systems (including those
above), although for some systems observing shifts between more than two regimes
may require too long of a time period relative to human lifetimes or historic records.
However, human systems are within the time scale of our observation, so that for
instance economies and governments provide examples of systems with well-known
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multiple regimes and shifts between them. In these examples, shifts between partic-
ular combinations or sequences of regimes may often seem to be the norm, rather
than a random exploration among all possible regimes.

Although in many articles the application of regime theory to systems is theoret-
ical and abstract, there is considerable interest in the application of regime theory to
system management. For ecosystems, this utility and implications of this approach
have been widely investigated [23, 30, 35, 42]. Ecologists have used the theory to
identify both the internal mechanisms which can increase the resilience of a par-
ticular regime (such as a clear lake [6] or a grassland suitable for grazing [3]), and
also the thresholds at which external pressures (usually anthropogenic) can over-
whelm these internal stabilizing mechanisms and cause a regime shift. Dynamic
regime concepts may help develop more successful marriage counseling methods,
as counselors can help couples develop new, more stable attractors after signifi-
cant periods of instability [13, 49]. The political stability of nations may also be
best described as stable or instable regimes, particularly with respect to the types of
external perturbations the system of government is able to withstand [17], although
this theoretical knowledge has not been applied to real systems. Dynamic regimes
theory offers many disciplines a robust and innovative framework for understanding
and managing complex systems.
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Chapter 17
General Relativistic Elasticity: Statics
and Dynamics of Spherically Symmetric Metrics

Irene Brito and E.G.L.R. Vaz

Abstract An introduction is provided to the theory of elasticity in general relativity.
Important tensors appearing in this context are presented. In particular, attention
is focussed on the elasticity difference tensor, for which an algebraic analysis is
performed. Applications are given to static and non-static spherically symmetric
configurations. For the latter, dynamical equations are obtained characterizing the
space-time in the context of general relativistic elasticity.

17.1 General Relativistic Elasticity

General relativistic elasticity was formulated in the mid-twentieth century due to
the necessity to study astrophysical problems such as deformations of neutron star
crusts. Relevant contributions to the theory of general relativistic elasticity were
given by Carter and Quintana [1], Kijowski and Magli [2], Beig and Schmidt [3],
Karlovini and Samuelsson [4] and by many other authors.

The theory is based on a configuration mapping

	 WM �! X;

a C k (k > 1) mapping from space-time M , endowed with a Lorentz metric g of
signature .�;C;C;C/ and assumed to be time-orientable, to the material space X .
The material space is a three-dimensional manifold, whose points represent the par-
ticles of the material. The material metric K defined on X measures the distances
between particles in the locally relaxed state of the material. Coordinates on M are
here denoted by f!ag, a D 0; 1; 2; 3; and coordinates on X by f�Ag, A D 1; 2; 3.
Associated with 	 are the pull-back operator 	� and the push-forward operator
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	� which give rise to a 3 � 4 matrix, the relativistic deformation gradient, whose

entries are �Aa D @�A

@!a . The velocity field of the matter, ua, satisfies the following
conditions: u0 > 0, uaua D �1 and ua�Aa D 0. The pulled-back material metric
kab D �Aa �

B
b
KAB is such that kabua D 0 and Lukab D 0. It is used to con-

struct other relativistic elastic tensors. Let n21, n22, n23 be the eigenvalues of ka
b
, then

one can write kab D n21xaxb C n22yayb C n23zazb , where x, y and z denote the
eigenvectors of k and n1, n2, n3 represent the linear particle densities (see [4]).
Considering the orthonormal tetrad fu; x; y; zg, then the space-time metric takes the
form gab D �uaub C xaxb C yayb C zazb and hab D xaxb C yayb C zazb is the
projection tensor.

The relativistic strain tensor sab D 1
2
.hab � kab/ contains information about

the local state of strain of the matter. The material is said to be locally relaxed at a
particular point of space-time if sab D 0.

The elasticity difference tensor Sa
bc

introduced by [4] can be expressed as

Sabc D
1

2
k�am.Dbkmc CDckmb �Dmkbc/; (17.1)

where k�1am is such that k�1amkmb D ha
b

and Db is the spatially projected

connection defined by Datb::: c::: D hdah
b
e:::h

f
c :::rd te::: f:::, where tb::: c::: is

an arbitrary tensor field, and it satisfies Dahbc D 0. A mathematical analysis
of the elasticity difference tensor is presented in [5]. It is decomposed along the
eigenvectors of ka

b
as follows

Sabc DMbc
1

xa CMbc
2

ya CMbc
3

zaI (17.2)

and for the three second-order symmetric tensors M
1

, M
2

and M
3

the eigenvalue-

eigenvector problem is studied. In particular, conditions are investigated for the three
eigenvectors, x, y, z, of the pulled-back material metric to be eigenvectors for M

1
,

M
2

and M
3

.

Here, the algebraic analysis of the elasticity difference tensor is carried out for a
static and a non-static spherically symmetric space-time.

17.2 Applications to Static and Dynamical Configurations

17.2.1 Static Spherically Symmetric Space-time

Consider a static spherically symmetric space-time with g given by the line-element

ds2 D �e2�.r/dt2 C e2�.r/dr2 C r2d�2 C r2 sin2 �d�2
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Table 17.1 Eigenvectors and
eigenvalues for M

1
, M
2

and M
3

Eigenvectors Eigenvalues

x �1 D e��

n1
n0

1

M
1

y �2 D e��

r
� e��

r

n22
n21
� e�� n2

n21
n0

2

z �3 D �2

x C y �4 D e��

n2
n0

2

M
2

x � y �5 D � e��

n2
n0

2

z �6 D 0

x C z �7 D �4
M
3

x � z �8 D �5

y �9 D 0

and with coordinates !aDft; r; �; �g. The space-time can be specified by

the orthonormal tetrad fu; x; y; zg using the basis vectors uaD
h

1

e�.r/ ; 0; 0; 0
i
,

xaD
h
0; 1
e�.r/ ; 0; 0

i
, yaD �

0; 0; 1
r
; 0
�

and zaD �
0; 0; 0; 1

r sin �

�
. Due to the spher-

ical symmetry, on X the coordinates are �ADfQr; Q�; Q�g where Qr D Qr.r/, Q� D �
and Q�D�. The non-zero components of the deformation gradient are d�1

d!1 D Qr 0,
d�2

d!2 D 1, d�3

d!3 D 1, where a prime represents a derivative with respect to r , and
the line-element of the pulled-back material metric is ds2D Qr 02 dr2 C Qr2 d�2 C
Qr2 sin2� d�2: Calculating the eigenvalues of ka

b
, one obtains n21D Qr 02 e�2� and

n22Dn23D Qr
2

r2 . The strain tensor has three non-zero components: srr , s�� , s�� , and

it vanishes if and only if Qr D c e
R

e�

r
dr , c > 0. Solving the eigenvalue-eigenvector

problem for M
1

, M
2

and M
3

, building up the elasticity difference tensor in (17.2),

leads to the results listed in Table 17.1.

17.2.2 Non-Static Spherically Symmetric Space-Time

Consider a non-static spherically symmetric space-time, whose metric g is given
by the line-element ds2D � e2�.t;r/dt2C e2�.t;r/dr2C r2d�2C r2 sin2 �d�2. On
M the coordinates are !aDft; r; �; �g. The space-time can be specified by defining
the orthonormal tetrad fu; x; y; zg with the following basis vectors:

uaD
h
e�� �;�e�� PQrQr0

�; 0; 0
i
, xaD

h
�e��2� PQrQr0

�; e�� �; 0; 0
i
, yaD �

0; 0; 1
r
; 0
�

and zaD �
0; 0; 0; 1

r sin �

�
, where � D

q
e2� Qr02

e2� Qr02�e2� PQr2
and a dot represents a deriva-

tive with respect to t . In this case, the coordinates on X are �ADfQr; Q�; Q�g,
where Qr D Qr.t; r/, Q� D � and Q�D�, so that the non-zero components of the

relativistic deformation gradient take the form @�1

@!0 D PQr , @�1

@!1 D Qr 0, @�2

@!2 D 1,
@�3

@!3 D 1. The line-element of the pulled-back material metric is given by
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Table 17.2 Eigenvectors and eigenvalues for M
1

, M
2

and M
3

Eigenvectors Eigenvalues

x �1 D e2� Qr0n0

1�e2� PQr Pn1

e�C�n1

q
1

e2� Qr02
�e2� PQr2

M
1

y �2 D rn2.e
2� PQr Pn2�e2� Qr0n0

2/CQr0e2� .n21�n22/

e�C� rn21

q
1

e2� Qr02
�e2� PQr2

z �3 D �2

x C y �4 D � e2� PQr Pn2�e2� Qr0n0

2

e�C�n2

q
1

e2� Qr02
�e2� PQr2

M
2

x � y �5 D e2� PQr Pn2�e2� Qr0n0

2

e�C�n2

q
1

e2� Qr02
�e2� PQr2

z �6 D 0

x C z �7 D �4
M
3

x � z �8 D �5

y �9 D 0

ds2D � PQr 02 dt2 C 2 PQr Qr 0 dtdr C Qr 02 dr2 C Qr2 d�2 C Qr2 sin2� d�2: Calculating
the eigenvalues of ka

b
, one obtains n21D Qr 02 e�2� � PQr2 e�2� and n22Dn23D Qr

2

r2 .
The strain tensor has three more components than in the static case: st t , st r , srr ,
s�� , s�� , and it vanishes if and only if the following condition involving the func-

tions and �, � and the material radius is satisfied: Qr 02e�2� � PQr2e�2� D Qr2

r2 . Solving
the eigenvalue-eigenvector problem in this case, one obtains the results listed in
Table 17.2.

17.2.3 Concluding Remarks

Comparing the results obtained for the static case and for the non-static case, the
following conclusions and remarks can be drawn.

For spherically symmetric space-times, passing from a static to a non-static con-
figuration preserves the behaviour of the eigenvectors of the pulled-back material
metric k for the tensors M

1
, M
2

and M
3

building up the elasticity difference tensor:

x, y, z are eigenvectors forM
1

; xCy, x�y, z are eigenvectors forM
2

; xCz, x�z, y

are eigenvectors forM
3

. In particular, the eigenvectors y and z of k remain the same

for both configurations, only x changes. Furthermore, in the non-static case we can
observe that the velocity field of matter u depends on the material radius; all rela-
tivistic elastic quantities (kab , n21, n22, sab , Sa

bc
) are time-dependent through �, �

and the material radius Qr ; the condition to be satisfied for the strain tensor to vanish
involve the functions � and PQr in addition to � and Qr 0.
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Chapter 18
Post-Inflationary Scalar Field Phase Dynamics

T. Charters, A. Nunes, and J.P. Mimoso

Abstract We present a brief summary of the results of Charters et al. [1] where a
simple model of a massive inflation field � coupled to another scalar filed � with
interaction term g2�2�2 for the first stage of preheating, and we give a full descrip-
tion of the dynamics of the � field modes, including the behaviour of the phase, in
terms of the iteration of a simple family of circle maps.

18.1 Scalar Field Dynamics

The reheating mechanism was proposed as a period, immediately after inflation, dur-
ing which the inflation field � oscillates and transfers its energy into ultra-relativistic
matter and radiation, here modelled by another scalar field �. Consider the poten-
tial V.�/ D 1=2m2��

2 and interaction potential [2–5] Vint.�; �/ D g2�2�2. The
evolution of the flat Friedman–Robertson–Walker (FRW) universe is given by
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3H 2 D 8�

m2
pl

�
1

2
P�2 C V.�/C 1

2
P�2 C g2�2�2

�
; (18.1)

where H D PR=R and R is the FRW scalar factor. The equations of motion in a
FRW universe for a homogeneous scalar field � coupled to the k-mode of the �
field are given by

R� C 3H P� C �m2� C g2�2k
	
� D 0; (18.2)

R�k C 3H P�k C !2k.t/�k D 0; (18.3)

where !2
k
.t/ D k2=R2 C g2�2.

In Minkowski space-time we set H D 0 and R D 1 in (18.2) and (18.3). To
approximate in the broad resonance regime the solution of (18.3) in Minkowski
space-time we set

R�k C !2k.t/�k D 0; (18.4)

where !2
k
.t/ D ak C b sin2.t/ with ak D k2=m2� and b D g2A2=m2�, A is the

constant amplitude of the field �, and the time variable is now t ! m� t . Typical
values of the parameters [2, 6] are g2 � 10�6, m D 10�6mpl , A D ˛mpl , where
0 < ˛ < 1, and thus b � ˛2 � 106. In the broad ressonance regime we have,p
b � 1, and it is possible to construct an approximate global solution

�
j

k
.t I˛j

k
; ˇ
j

k
/ D ˛

j

kp
2!k.t/

e�i
R t

0 !k.s/ds C ˇ
j

kp
2!k.t/

ei
R t

0 !k.s/ds; (18.5)

which is valid except in the neighbourhood of tj D j� , j D 0; 1; : : : (where � � 0).
The parameters .˛j

k
; ˇ
j

k
/ for consecutive j are determined by the behaviour of the

solution of (18.3) in Minkowski space-time for t close to tj . In terms of the phase
�
j

k
D argˇj

k
C �j

k
of the field �k when t D tj , one gets [2]

�
jC1
k
D �.b; /C arg

�q
1C �2�e�i'�ei�

j

k � i��e�i�
j

k

�
; (18.6)

where 2 D ak=
p
b, �.b; / D R �

0
!.s/ds, with !2� .s/ D 2 C sin2.s/,

�� D exp.��2=2/, '� D arg.� ..1 C i2/=2// C 2=2.1 C ln.2=2//,
and  D k=

p
Agm� . Since nk D jˇkj2, the growth index �

j
� , defined by

n
jC1
k
D n

j

k
exp.2��j� /, is given in [2], in terms of the phase �j

k
D argˇj

k
C �j

k
of

the field �k when t D tj ,

�j� D
1

2�
ln

�
1C 2�2� � 2��

q
1C �2� sin.�'� C 2�jk /

�
: (18.7)
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Fig. 18.1 (a) Bifurcation diagram of the family of circle maps (18.8) for
p
b 2 Œ0; ��. (b) The

asymptotic value of �0 as a function of b for
p
b 2 Œ10�; 11�� computed analytically (full line)

and numerically (dotted line). Also shown (in grey) are all the values of �j0 , j D 100; 101; : : : ; 200

The dynamics of the growth rate depends on the phase dynamics but the dynamics
of � can be studied separately.

The properties of (18.6) are best understood by looking at the behavior (see
Fig. 18.1) of the family Pb;0.�/ parametrised by

p
b [1], that corresponds to k D 0

modes

Pb;0.�/ D 2
p
b C arctan

p
2 sin � � cos �p
2 cos � � sin �

: (18.8)

The map has a two dynamical regimes, a strongly attractive fixed point, and ran-
dom oscillations around a mean value (see Fig. 18.1). It turns out that for finite
k the behaviour of the phase dynamics is similar and essentially governed by the
parameter b.

So, in static universe and in the broad resonance regime, small perturbations
are exponentially amplified or not according to the amplitude of the adimensional
parameter b. Let us now examine what happens in a FRW universe after inflation.

In the first stage of preheating, that ends when n�.t/ � m2�˚.t/=g, where ˚.t/
is the varying amplitude of the inflation field �, (18.1), (18.2) decouple from (18.3),
and the evolution of the inflation field and of the scale factor R.t/ is given by [2]
�.t/ D ˚.t/ sin t , ˚.t/ D mpl=.3.�=2C t//, R.t/ D .2t=�/2=3. With the change
of variable Xk D R3=2�k , (18.3) can be reduced to the form of an oscillator with a
time dependent frequency$2 D k2=.m2�R.t/2/Cg2�.t/2=m2�Cı=m2� and where
ı=m2� � 1.

The preheating period ends when g˚.t/=m� ' 1, and so, during preheating, the
rate of variation of those parameters and the oscillations of the inflation field are
much slower than the oscillations of the �k modes. As pointed out in [2], the basic
assumptions for the approximation developed for Minkowski space time are thus
still valid in preheating, and the changes in occupation numbers nk will occur at
t D j� with exponential growth rate given by (18.7), provided that the decreasing
amplitude of the perturbations and the redshift of the wave numbers are taken into
account, j D k=.R.tj /

p
gm�˚.tj // and

p
bj D g˚.tj /=m� (see Fig. 18.2).

Equations (18.6), (18.7), provide an alternative to numerical integrations of the
full equations do compute the occupation number of a given mode as a function
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Fig. 18.2 For b0 D 5 	 103 and 0 D 0:1, the phase (a), growth factor (b) with initial condi-
tions corresponding to n0k D 1=2 and �0k D 0. The values obtained from the iteration of equations
(18.6), (18.7) are plotted as full circles, and the values given by numerical integration of equations
of motion for the same initial conditions and parameter values are plotted as open circles. Iteration
and integration were carried out until the end of preheating when

p
b.tj / 
 1. Also shown are

the values of these same quantities averaged over the initial phase �0k (full triangles for the iterated
maps (18.6), (18.7) and open triangles for the numerical values)

of time. The phase and growth factor for a typical orbit as obtained from the itera-
tion of (18.6), (18.7) are shown in Fig. 18.2. We see “reminiscences” of the phase
dynamics of the Minkowski model. In particular, the fixed point regime interval is
clearly visible after the first few � oscillations.

18.2 Conclusion

We consider first the broad resonance regime in Minkowski space-time and use the
theory of scattering in parabolic potentials developed in [2] to obtain the map whose
iteration governs the phase dynamics of the modes �k that coupled to the inflation
field. We show that the features of this phase dynamics are given by the properties
of a simple family of circle maps. We then consider the case of an expanding uni-
verse and show that the equations for the phase dynamics and the growth number
derived for Minkowski space time still provide a good approximation of the true
solutions, once the decay of the inflation amplitude is taken into account. The qual-
itative behaviour of the phase and growth number evolution is reminiscent of the
behaviour found in the case without expansion, in the sense that it can be inter-
preted as a random phase regime followed by a slowly varying phase regime where
occupation number growth is approximately exponential. These two regimes occur
as the inflation decay slows down and the perturbation amplitude crosses more and
more slowly the intervals that give rise to fixed phase behaviour.
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Chapter 19
An Application of the SIR Model
to the Evolution of Epidemics in Portugal

António M. Correia, Filipe C. Mena, and Ana J. Soares

Abstract We apply the SIR model to study the evolution of Measles and Hepatitis
C in Portugal using data from 1996 until 2007. We use our results to forecast the
evolution of those viruses in subsequent years.

19.1 Introduction and the SIR Model

The well-known SIR model was introduced by Kermack and McKendrick in 1927
(see e.g. [1, 4]) to study the propagation of epidemics. The model describes the
dynamics of a population divided into three classes of individuals: susceptible (S),
infected (I) and recovered (R). It assumes a spatially homogeneous population in
each class (for S; I;R W IR! IR of class C 1) whose evolution is given by:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

dS

dt
D .� � �/S � ˇSI

dI

dt
D ˇSI � .�C ˛/I

dR

dt
D ˛I � �R; t � 0;

(19.1)

A.M. Correia (B)
Escola EB 2,3 de Celeirós, Av. Sr. da Paciência, Celeirós, 4705-448 Braga, Portugal
e-mail: amc7761@gmail.com

F.C. Mena
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Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
and
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where ˛; ˇ; �; � 2 IRC and � > � are, respectively, the disease death rate, the
infection coefficient, the birth rate and the natural death rate. It is easy to see that
the first two equations can be directly integrated to give:

.���/.ln I � ln I0/� ˇ.I � I0C S � S0/C .�C ˛/.ln S � lnS0/ D 0; (19.2)

where the subscript 0 denotes evaluation at t D 0. It turns out that I has extreme
values, which are often used as indicators of the epidemics strength [1], for

S D �C ˛
ˇ

:

Despite the mathematical simplicity of the SIR model, it has been used in the past to
study the evolution of epidemics in a variety of scenarios (see e.g. [1] and references
therein).

19.2 Application to Recent Data of the Portuguese
Health System

We have applied the SIR model briefly described in the previous section as a toy
model to study the evolution of the Measels (M) and Hepatitis C (HC) in Portugal
from 1996 until 2007. Part of this work is included in the master thesis of Correia [2].
The data we have studied was obtained from the webpage of the portuguese health
system [3] and refers to monthly values of the number of infected individuals in
each case. In order to find the best SIR fit to the data we have obtained numerically
the optimal values for the parameters ˛; ˇ; � and � corresponding to the minimum
average error � and maximum of the correlation coefficient r given by:

r2 D 1 �

NX

jD1

�
dj � ij

	2

NX

jD1



dj � d

�2
(19.3)

where d1; : : : ; dN denote the observed values, i1; : : : ; iN the adjusted values and
d is the average of the observed values.

We found that the optimal values for the parameters are ˛M D 0:9, ˇM D 0:02,
�M D 0:09, �M D 0:01 for the case of Measels, and ˛HC D 0:039, ˇHC D 0:001,
�HC D 0:006, �HC D 0:001 for the case of Hepatitis C, which give rM D 0:79

and rHC D 0:8, respectively. From the numerical integration of (19.1), referred to
the dynamics of both Measels and Hepatitis C, we have found the fittings shown
in Figs. 19.1 and 19.2. The left frames of these figures show the data for infected
individuals and the curves obtained from the SIR model. The right frames show the
corresponding error curves.
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Fig. 19.1 Monthly data – Hepatitis C. SIR model for ˛ D 0:039, ˇ D 0:001, � D 0:006,
� D 0:001. Curve of the model (a) and corresponding error curve (b)
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Fig. 19.2 Monthly data – Measles. SIR model for ˛ D 0:9, ˇ D 0:02, � D 0:09 and � D 0:01.
Curve of the model (a) and corresponding error curve (b)

We have also considered annual data, and by performing a similar analysis, we
have obtained ˛M D 0:9, ˇM D 0:002, �M D 0:09, �M D 0:01 and ˛HC D 0:24,
ˇHC D 0:002, �HC D 0:09, �HC D 0:01, which give rM D 0:95 and rHC D
0:91. The dynamics is obtained from the numerical integration of the corresponding
differential systems and is represented by the fittings shown in Fig. 19.3.

The annual data shows lower volatility than the monthly data and therefore, as
expected, we have found a better fitting for the former data translated into higher
correlation coefficients.

In general, the available data from the portuguese health system [3] seems too
scarce to make feasible predictions for the evolution of virus epidemics, although
the particular case of Hepatitis C seem to be the one with more complete data. Thus,
in this case, we have used our previous results to forecast the number of infected
individuals for the four subsequent years using polynomial interpolation. For the
years 2009 and 2011 we have obtained:

IHC .2009/ � 36; IHC .2011/ � 15:
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Fig. 19.3 Annual data – Infection early rates and approximation curve obtained from the SIR
model. (a) Hepatitis C: ˛ D 0:24, ˇ D 0:002, � D 0:09 and � D 0:01. (b) Measles: ˛ D 0:9,
ˇ D 0:002, � D 0:09 and � D 0:01

We conclude that although the SIR model (1) is quite simple and the 1996–2007
data from the portuguese health system is scarce, it can give us some useful insight
about the evolution of the Measles and Hepatitis C viruses. In turn, this can be used
as a forecast for the number of infected individuals in subsequent years and we have
applied this idea to forecast the evolution of Hepatitis C infections up to 2011.
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Chapter 20
Poissonian Tree Constructed from Independent
Poisson Point Processes

Iesus Carvalho Diniz and José Carlos Simon de Miranda

Abstract In this work a connected graph without cycles and with a single infinite
self-avoiding path, i.e., a tree with an end, is constructed. The vertices of the tree
are points of an infinite sequence of independent Poisson point processes defined
on Rd , such that for every k � 1, the rate of kth process Xk is �k . This graph
will be called a One-Ended Poissonian Tree. The algorithm of construction of the
Poissonian Tree is given, as well as the definition of its elements. This algorithm
will be called algorithm A. We also give a sufficient condition for the generation
of a unique tree. In the case where the sequence of rates is such that lim inf�k D
0, for processes defined on R; we prove that algorithm A generates a One-Ended
Poissonian Tree.

20.1 The Model and Related Results

A connected graph without cycles and with a single infinite self-avoiding path, i.e.,
a tree with an end, is constructed. The vertices of the tree are points of an infinite
sequence of independent Poisson point processes defined on Rd , such that for every
k � 1, the rate of kth process Xk is �k . We will call such a graph a One-Ended
Poissonian Tree.

Let ak and bk be two arbitrary points in Xk . Their respective nearest points
akC1 and bkC1 in XkC1 will be called their ancestors. Let us call algorithm A the
procedure that takes the infinite sequence of independent realizations of Poisson
point processes .Xk/k�1 to a graph whose vertices are the points of these processes
realizations and each edge links a point �k 2 Xk to its ancestor �kC1 2 XkC1.
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X1

X2

X3

Xn−1

Xn

Fig. 20.1 Succession line of a sequence of unidimensional independent poisson point processes

This procedure is illustrated in Fig. 20.1. Consider that each point also determines
its position and that Dk D jbk � ak j is the distance between the kth ancestors of a1
and b1, chosen arbitrarily in X1.

A Poissonian Tree with a unique end is constructed in [4] for the points of a
stationary Poisson process when it is defined in S 	 Rd , for d � 3. It is also shown
that that for d � 4 the graph has infinite many components, a forest. In [5] a One-
Ended Poissonian Tree is constructed in a deterministic isometry-invariant way for
any d-dimensional Poisson process.

In order to prove the almost sure existence of a unique infinite self-avoiding path,
in the graph generated by algorithm A, it is sufficient to prove that given any two
points in X1 (a1 and b1), the following condition is satisfied:

lim
k!1

P .Dk ¤ 0/ D 0

This will be called coalescense in probability and we will say that a1 and
b1k coalesce in probability. Since we could have chosen an arbitrary index in the
sequence of Poisson Point Process instead of 1, i.e., we could have chosen points of
the realization of Xj for an arbitrary j , we will denote the condition above by

a�
PDb� WD lim

k!1
P .Dk ¤ 0/ D 0 (20.1)

Clearly, this condition is equivalent to P

�
lim
k!1

Dk D 0
�
D 1:
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20.2 Poissonian Tree Formed from Unidimensional
Poisson Processes

The proofs of the following propositions and of Theorem 20.1 can be found in [2].

Proposition 20.1. Let X
akC1

kC1 be the position of the ancestor of Xak

k
in XkC1. The

distribution of X
akC1

kC1 conditioned on Xak

k
is given by

f
X

akC1
kC1

jXak
k

.x/ D �kC1 exp.�2�kC1jx � ak j/ (20.2)

From Proposition 20.1, we obtain the two following propositions, that jointly
with Proposition 20.4, are used to prove Theorem 20.1.

Proposition 20.2 (Coalescing Conditional Probability Law). For all ak; bk 2 Xk
P .DkC1 D 0jak; bk/ D e�2�kC1Dk .1C �kC1Dk/:

Proposition 20.3. For all k � 1, E.DkC1/ D E.Dk/ D D1.

Proposition 20.4. For all k � 1, P .Dk D 0/ � P .DkC1 D 0/.
Theorem 20.1. Let .Xk/k�1 be a sequence of independent Poisson point processes
defined on R and �k be the rate of Xk . Suppose lim inf�k D 0. Then, almost
surely, algorithm A constructs a One-Ended Poissonian Tree with all the points of
all processes.

20.2.1 Determination Criteria for a One-Ended Poissonian Tree
as a Function of the Rates Sequence of the Processes

Proposition 20.2 describes the coalescing probability of ak and bk as a function of
the rate of the .k C 1/th process and the distance between ak and bk . The theo-
rems that follow show that, depending on the rates of the sequence of processes,
the graph generated by algorithm A may be either connected with probability 1, see
Theorem 20.2, or disconnected with positive probability, see Theorem 20.3. More-
over, Theorem 20.4 guarantees that the probability of getting a non connected graph
may be chosen to be greater than or equal to any prescribed probability level; this
will require a sufficiently increasing sequence of rates. The proofs of these results
may be found in [2].

Let G W RC �N! Œ0; 1� be defined in the following manner.

G.�kC1; k/ WD P .akC1 D bkC1jDk ¤ 0/ D
Z 1

0C

e�2�kC1u .1C�kC1u/ fDk
.u/du
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Theorem 20.2. If G.�kC1; k/ > 1
k

, then with probability one, algorithm A gen-
erates a One-Ended Poissonian Tree consisting of all the points of the processes
.Xk/k�1.

Theorem 20.3. If G.�kC1; k/ < 1

ek , then there is a positive probability that
algorithm A generates a graph which is not connected and has no cycles.

Theorem 20.4. For any p 2 .0; 1/ it is always possible to obtain a sequence of
rates .�k/k�1 such that the probability of not having a One-Ended Poissonian Tree
is larger than p.

20.3 One-Ended Poissonian Tree Formed
from Multidimensional Poisson Processes

For processes defined on Rd , the main difficulties that appear are:

1. Differently from what happens in Proposition 20.2, we are not able to express
P .DkC1 D 0jak; bk/ in a “closed form”.

2. The distribution of Dk does not have the property described in proposition 20.3.

A lower bound for the coalescing conditional probability, which is obtained from
the distance distribution between a point and its ancestor, and a deterministic rescale,
dk WD .˛/ k

d Dk of the processDk , will be the alternative to these difficulties.
Let Ld D f .vd .1/; ˛; ˇ/ be a positive constant that depends on: the volume of

the d -dimensional unity ball (vd .1/), the ratio ˛ of decay of rates of the processes
and the value ˇ 2 .˛ 1

d ; 1/ given in (20.3) associated to the “mean drift” of the
rescaled process dk . We have,

E.dkC1jdk/ < ˇdk if dk 2 .Ld ;1/ (20.3)

From this, Theorem 20.5 will ensure that, almost surely, dk � Ld for infinite
many k0s. This fact and the condition given in Lemma 20.1, which establishes a pos-
itive lower bound for the limit of coalescing conditional probability, will be enough
to prove that algorithm A generates a One-Ended Poissonian Tree.

Lemma 20.1. The coalescing conditional probability limit is larger than a positive
constant " that depends on d , ˛ and ˇ.

lim
k!C1

P .dkC1 D 0jdk 2 Œ0;Ld �/ � exp.�˛.Ld /
d vd .1// D ".˛; ˇ; d/ > 0

The proof of this lemma is in [1].

Theorem 20.5. Let S0 > C and, for some " > 0 and for all n � 0,

If E.eSnC1jFn/ � eSn � "1 f� > ng a:s:; then E.�/ <
S0

"
<1 (20.4)
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The proof of this theorem is given in [3], p. 17.

Theorem 20.6. Let .Xk/k�1 be a sequence of independent Poisson point processes
defined on Rd , and �k , the rate of Xk; be such that �k D .˛/k . Then almost surely
algorithm A constructs a One-Ended Poissonian Tree consisting of the points of all
processes.

The proof of Theorem 20.6 may be found in [2].
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Chapter 21
Hamiltonian Systems on Polyhedra

Pedro Duarte

Abstract We describe a class of Hamiltonian systems on simple polyhedra, which
includes several models from game dynamics (e.g., conservative Lotka–Volterra
systems). A technique to detect complex dynamical behaviour along the polyhedron
edges is explained.

21.1 Flows on Polyhedra

Let � d be a simple polyhedron with dimension d . We say that a vector field X on
� d is tangent to @� d if X is tangent to every face 
 of � d , i.e., X.p/ 2 Tp
 at
each point p 2 
 . We denote by X .� d / the vector space of all analytic vector
fields X on � d which are tangent to @� d . For any given X 2 X .� d / the flow
�tX W � d ! � d of X is complete and every face of � d is invariant under �tX . In
particular, the vertices of � d are singularities of the vector field X , and many edges
will consist of single orbits flowing from one boundary vertex to the other. Our goal
is, for some rather large class of “regular” vector fieldsX 2 X .� d /, to encapsulate
the dynamics of �tX along heteroclinic cycles on @� d in a simple and “computable”
dynamical system, that we refer as the skeleton vector field on the dual cone of � d .

Before continuing we give precise definitions of the concepts of polyhedron,
dimension, face, vertex, edge and simplicity, while introducing the notation used in
the sequel. A subset � of some Euclidean space RN is called a polyhedron if it is a
compact convex set which can be represented as a finite intersection of closed half-
spaces. Denote by E.� / the smallest affine subspace of RN that contains � . The
dimension of a polyhedron � is defined to be the dimension of E.� /. From now
on � d will denote a polyhedron of dimension d , which for the sake of simplicity
we assume, unless otherwise said, to live in E.� d / D Rd . We call supporting
hyperplane of � d to any affine hyperplane H 	 Rd such that H \ � d ¤ ;,
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and � d is contained in one of the two closed half-spaces determined by H . The
intersection of � d with any of its supporting hyperplanes is another polyhedron,
called a face of � d , or an r-face when its dimension is equal to r . As usual, a
vertex is any 0-face, and an edge is any 1-face of � d . Capital letters A;B;C will
denote vertices of � d , while � will denote a generic edge of � d . By default, the
term “face” shall always refer to a .d � 1/-face, and 
 will represent a generic such
.d �1/-face. We represent by V the set of all vertices, byE the set of all edges, and
by F the set of all .d � 1/-faces of � d (Figs. 21.1, 21.2, 21.3, and 21.4).

Definition 21.1. A family of functions f f W Rd ! R g2F is called a defining
family for � d if for every face 
 2 F ,

1. f W Rd ! R is an affine function.
2. f .p/ D 0 for all p 2 
 .
3. f .p/ � 0 for all p 2 � d .
4. � d DT2F ff � 0g.
We assume a defining family ffg2F for � d is fixed once and for all.

We call d -simplex to the convex hull of any d C 1 affinely independent points.
These are the simplest polyhedra. A polyhedron � d is called simple if each vertex
is incident with exactly d faces (edges). This amounts to the supporting hyperplanes
ff D 0g intersecting each other in general position. A d -simplex is of course

Fig. 21.1 The dynamics near
the edges for a flow �tX on the
polyhedron � 3 D Œ0; 1�3

Fig. 21.2 A point in �3 is a probability vector in f1; 2; 3; 4g
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Fig. 21.3 The dual cone of a triangle polyhedron and a skeleton vector field on it

Fig. 21.4 A finite orbit of a
skeleton vector field

simple in this sense. A polyhedron � d is simple if and only if every face of its
dual polyhedron is a .d � 1/-simplex.

21.2 Game Dynamics

Systems as these include many interesting classes from Game Dynamics, for
instance the replicator equation see [5]. Within a population individuals interact
using one of n possible strategies. The time evolution of a population distribution
.x1; : : : ; xn/ 2 �n�1 is ruled by

x0i
xi
D fi .x1; : : : ; xn/�

nX

kD1
xk fk.x1; : : : ; xn/ ; (21.1)

where �n�1 stands for the usual .n � 1/-simplex f .x1; : : : ; xn/ W xi � 0;Pn
iD1 xi D 1 g. The value fi .x1; : : : ; xn/measures the absolute fitness of strategy i
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for the population distribution .x1; : : : ; xn/ 2 �n�1. Likewise, the right-hand-side
in (21.1) expresses the relative fitness of strategy i within the same population.
In the replicator equation model, strategies in the population thrive or recede
proportional to their relative fitnesses. When the functions fi .x/ are linear, say
fi .x1; : : : ; xn/ D Pn

jD1 aij xj , the system is determined by a matrix A D �
aij
	

called the payoff matrix. The payoffs aij are the eigenvalues of the singularities at
the vertices, for the associated replicator flow or vector field.

An important class of equations which reduces to the (linear) replicator equation
are the so called Lotka–Volterra equations. They govern the time evolution of a
n-species ecosystem y D .y1; : : : ; yn/ 2 RnC

y0i
yi
D ri C

nX

jD1
aij yj ; (21.2)

where yi measures the size of species i within the ecosystem, aij is an interaction
coefficient between species i and j , while ri models the interaction of species i
with environment. Every Lotka–Volterra system is equivalent to a replicator system
in the sense that the underlying vector fields are equivalent. The equivalence is given
by the algebraic map defined by

x D .x0; : : : ; xn/ 2 �n  ! y D .y1; : : : ; yn/ D
�
x1

x0
; : : : ;

xn

x0

�
2 RnC ;

which maps the interior of the simplex �n onto the the interior of RnC. In the
new coordinates x D .x0; : : : ; xn/ 2 �n the system becomes (up to a time
reparametrization)

x0i
xi
D

nX

jD0
Qaij xj �

nX

j;kD0
Qakj xk xj (21.3)

which is a linear replicator with payoff matrix eA D � Qaij
	
, where Qaij D aij when

i; j � 1, Qai0 D ri and Qa0i D 0. This reduction, due to J. Hofbauer [4], consists
roughly in letting the n species together with the environment play the roles of nC1
strategies.

Another important class which falls within the scope of this work is that of
asymmetric games, where two groups of individuals within a population, e.g. males
and females, interact using different sets of strategies, say n strategies for males
and m strategies for females. The phase space of an asymmetric game system is a
polyhedron, product of simplices �n�1 � �m�1, and the time co-evolution of two
population distributions .x; y/ 2 �n�1 ��m�1 is governed by

x0i
xi
D fi .y1; : : : ; ym/�Pn

kD1 xk fk.y1; : : : ; ym/ (21.4)

y0j
yj
D gj .x1; : : : ; xn/ �Pm

kD1 xk gk.x1; : : : ; xn/
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The value fi .y/ measures the absolute fitness of a male strategy i in a female
population y 2 �m�1, while gj .x/ measures the absolute fitness of a female strat-
egy j in a male population x 2 �n�1. The right-hand-sides in (21.4) express,
respectively, the relative fitnesses of a male strategy i , and of a female strategy
j , within the populations of opposite gender. Once more, in this asymmetric game
model strategies in the male and female populations thrive or recede proportional
to their relative fitnesses. When the functions fi .y/ and gj .x/ are both linear, say
fi .y1; : : : ; ym/ D Pm

jD1 aij yj and gj .x1; : : : ; xn/ D Pn
iD1 bj i xi , the system is

determined by a pair of matricesA D . aij / of order n�m and B D . bj i / of order
m � n, called the payoff matrices. Again, the payoffs aij and bj i are related to the
eigenvalues of the singularities at the vertices, for the associated asymmetric game
flow or vector field.

21.3 Skeletons and Dual Cones

Assume for a while � d 	 RdC1 � f0g and the cone b� dC1 D f t X W t � 0; X 2
� d g has dimension d C1. In Convex Analysis the dual cone of � d is defined to be

.� d /� D f Y 2 RdC1 W Y �X � 0; 8X 2 � d g:

Here we shall call dual cone of � d to the boundary of this set, C �.� d / D @.� d /�.
We give an alternative description of the dual cone, which is more convenient for
our purposes. Denote by˙d the dual of the polyhedron � d . We can identify V � D
V.˙d / � F and F � D F.˙d / � V . By duality each vertex A 2 V stands for a
.d � 1/-face in ˙d , each face 
 2 F represents a vertex of ˙d , and the relation
A 2 
 in � d is equivalent to 
 2 A in ˙d . We define

C .˙d / WD fx 2 RV
� W 9A 2 F � for all 
 2 V �; x � 0 and x D 0 if 
 … A g;

and for each face � of ˙d we set

˘� WD f x 2 RV
� W for all 
 2 V �; x � 0 and x D 0 if 
 … � g:

Then the following properties hold for all faces �; �0 of ˙d :

1. dim˘� D dim˙d .�/C 1.
2. ˘� 
 ˘�0 , � 
 �0 in ˙d .
3. ˘� \˘�0 D ˘�\�0 .

Because � d is simple, by duality, every r-face of˙d is a .r�1/-simplex, i.e., it has
exactly r vertices. This implies item 1. Properties 2 and 3 are obvious consequences
of definitions. Realizing the dual polyhedron˙d as a transversal section to the cone
.� d /�, we can identify .� d /� with ḃdC1 D f t X W t � 0; X 2 ˙d g. Whence,
the faces of @.� d /� satisfy the exact same properties 1–3 above. In fact, the three



262 P. Duarte

models C .˙d /, @.� d /� and @ḃdC1 are piecewise-linear isomorphic. From now on
we consider the dual cone of � d to be C �.� d / WD C .˙d /. Properties 1–3 above
can be re-interpreted in terms of � d ’s faces. Since each r-face � of � d corresponds
to a .d � 1 � r/-face of ˙d , we have for all faces �; �0 of � d :

1. dim˘� D d � dim� d .�/,
2. ˘� 
 ˘�0 , �0 
 � in � d ,
3. ˘� \˘�0 D ˘�_�0 ,

where �_�0 stands for smallest face of � d containing �[�0. In particular, the dual
cone C �.� d / has a face˘A for each vertexA of � d , and the intersection˘A\˘B
of any two meeting faces corresponds to an edge of � d connecting A to B .

A skeleton vector field is a piecewise constant vector field on the dual cone
C �.� d /, i.e., one which is constant on each face ˘A, A 2 V . Any skeleton vector
field is given by the finite data � D . �A /A2V;2F with �A D 0 whenever A … 
 .
We write �A for the vector .�A /2F in the tangent space to˘A. Orbits of a skeleton
vector field � are defined to be the polygonal curves whose intersection with each
face˘A of C �.� d / is a line segment parallel to �A on˘A. Notice that orbit contin-
uation is essentially unique, because as an orbit through˘A reaches the intersection
˘� D ˘A \˘B of two faces ˘A and ˘B of C �.� d / at some point p interior to
˘� , there is at most one possible continuation on ˘B , because ˘B is the unique
face which meets˘A at p.

Of course some orbits will end in finite time. This definition gives us an incom-
plete piecewise linear flow on C �.� d /. Vertices and edges of � d are classified
w.r.t. the skeleton vector field � as Figs. 21.5 and 21.6 indicate.

Definition 21.2. Given a vertex A 2 V , we say that A is a

1. �-attractor , ��A 2 ˘A
2. �-repellor , �A 2 ˘A
3. �-saddle , �A … ˘A and ��A … ˘A
Because we will be looking for recurrent behavior, �-saddle vertices are the inter-
esting ones, for if a vertex A is a �-repellor, respectively a �-attractor, then ˘A is
forward, respectively backward, invariant by the flow of �A.

Let � be an edge connecting two vertices A;B 2 V . Take 
; � 2 F to be the
unique faces such that � \ 
 D fAg and � \ � D fBg.

�-attractor �-repellor �-saddle

Fig. 21.5 The classification of vertices for a skeleton vector field
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�-attracting �-repelling �-neutral �-flowing

Fig. 21.6 The classification of edges for a skeleton vector field

Definition 21.3. We say that � is

1. � -attracting , �A < 0 and �B� < 0
2. � -attracting , �A > 0 and �B� > 0
3. � -flowing , �A �

B
� < 0.

All other edges are said to be �-undefined.

We shall not consider skeleton vector fields with �-undefined edges. When all
vertices are �-saddles and all edges are either �-neutral or �-flowing then some
recurrence occurs. This will be the case of the Hamiltonian systems introduced
below. Note the flowing edges are naturally oriented, from a source vertex, we
denote by s.�/, to a target vertex, denoted by t.�/. Let G�.� d / be the oriented
graph consisting of all vertices, and all oriented edges of �-flowing type of � d .
The dynamics of a skeleton vector field can be described in terms of piecewise
linear return maps. Fixing an edge � of G�.� d / we can define the return map
R
�
� W ˘� ! ˘� . These return maps satisfy:

(1) The domain ofR�� splits into a finite or countable number of open convex cones
˘� , each associated with a cycle � of G�.� d / starting and ending with � , and
not passing through � in between.

(2) The restriction of R�� to each cone˘� is a linear map.
(3) The linear branches of R�� , as well as their domains, are computable.

The return maps R�� and their domains ˘� can be expressed in terms of matri-
ces in RF	F whose coefficients are functions of the data �A . Given an edge
� 2 G�.� d /, let A D s.�/ be the source of � , and 
0 2 F be the unique face
such that 
0 \ � D fAg. We associate the following F � F matrix to the edge � ,

M� D
 
ı; 0 � �A

�A0

ı0;
0

!

.; 0/2F	F
:

A sequence � D .�0; �1; �2; : : : ; �n/ is called a chain if s.�i / D t.�i�1/, for every
i D 1; : : : ; n. We call sub-chain of � to any initial subsequence �i D .�0; : : : ; �i /

of � with 1 � i � n. For each chain � D .�0; �1; : : : ; �n/ we define the product
matrix M� D M�n

� � �M�1
. Note M�0

is excluded from this product. The matrix
M� defines a linear operator on RF , which projects RF onto the linear subspace
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spanned by the cone ˘�n
. The chain � D .�0; �1; : : : ; �n/ is called a cycle when

�n D �0, in which case we have for every X 2 ˘� , R��0
X D M� X . The open

convex cone ˘� can be characterized as the set of all X 2 ˘�
�0

such that for each
sub-chain �i D .�0; : : : ; �i / of � the vectorM�i

X is interior to ˘�i
.

21.4 Main Results

We are going to rescale the vector field X around the singularities at the vertices
using some type of logarithmic coordinates. In [1] we single out a class of vector
fields, that we call regular vector fields, for which these coordinates around the ver-
tex singularities can be glued along the edges to obtain a global rescaling mapping.
Regular vector fields include generic ones, with hyperbolic singularities at the ver-
tices, but they also comprise many others with non-hyperbolic singularities. This
generality is essential to embrace the Hamiltonian systems in which we are inter-
ested. Given A 2 V and 
 2 F such that A 2 
 we denote by � D �A; the edge
opposed to 
 at A, which is characterized by 
 \ � D fAg. We refer to the pair
.A; 
/ as an end corner of � . Notice each edge has exactly two end corners. Let
eA; 2 TA� d denote the unit vector tangent to the edge �A; at A. To each vector
field X 2 X .� d /, X ¤ 0, we associate an order function �X W F ! N

�X .
/ D maxf k 2 N W D.f /pDiXp � 0; 8 i < k; 8p 2 
 g;

with the order of the first non-zero derivative at some of the face’s vertices. Remark
each face has finite order because the vector field X is analytic. Then we define the
character of X at the corner .A; 
/ by �A D � 1

�Š
D.f /AD

�XA � eA; .�/, where
� D �X .
/. We set �A D 0 if A … 
 . The data � D . �A /A2V;2F determines a
skeleton vector field we shall call the skeleton of X .

Definition 21.4. We say that a vector field X 2 X .� d / is regular iff for every
edge � of � d , either X D 0 along � or else X ¤ 0 in the interior of � and X has
non-zero character at both end corners .A; 
/ and .A0; 
 0/ of � .

In particular, for the skeleton � of a regular vector field, every edge � of � d is either
�-neutral or �-flowing.

For each order function � W F ! N we define a one-parameter family of rescal-
ing co-ordinates 	 �" W � d � @� d ! C �.� d / (" > 0) by 	 �" .p/ D .	" .p//2F ,
where

	" .p/ WD
( �" logf .p/ if �X .
/ D 1
�" 1

��1


1 � 1

f� .p/��1

�
if �X .
/ � 2

Actually, we take the domain of 	 �" to be the union of a family of neighborhoods
NA, one for each vertex A 2 V (Fig. 21.7).

The mapping 	 �" zooms in a neighborhood of the union of all edges of � d . The
first theorem says, given X 2 X .� d /, the rescaling limit of the flow �tX is exactly
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BA

C

C

Fig. 21.7 The rescaling coordinates in the dual cone C �.� d /

the piecewise linear flow of the skeleton � of X . Given a cycle � of �, starting and
ending with � 2 G�.� d /, we denote by PX

�
the Poincaré return map along �. This

map is defined in a small cross section of �tX which is mapped by every 	 �" into the
face ˘� 	 C �.� d /.

Theorem 21.1. If X 2 X .� d / is a regular vector field with order �, skeleton �,
and � is a cycle in G�.� d / which starts and ends with � , then for every compact
subset K 	 ˘� , .	 �" / ı PX� ı .	 �" /�1 converges to R�� W ˘� ! ˘� , in the C1-

topology, uniformly over K , as "! 0C.

We consider in [1] the vector space, denoted by H .� d /, of analytic functions
h W � d �@� d ! R such that for each face 
 2 F , either h is essentially analytic on

 , or else dh has a pole of finite order along 
 . We say that h is essentially analytic
on 
 if h has an analytic extension to a neighborhood of 
 minus the union of all
other faces 
 0 2 F , 
 0 ¤ 
 . A similar definition is given for analytic 1-forms. We
say that dh has a pole of order k along 
 iff there is a 1-form � and function g, both
analytic in � d � @� d and essentially analytic on 
 , such that dh D �C g df�

.f� /k
. It

follows from this definition that g is constant on 
 . Each function h 2H .� d / can
be represented as

h D G C
X

2F
c1; logf C c2;

f
C � � � C ck� ;

.f /k��1 ; (21.5)

where G is an analytic function on � d , each ci; is a real constant, and ck� ; ¤ 0.
The function  W 
 7! k is called the order of h.

We define now the skeleton of h 2 H .� d / to be the piece-wise linear function
�h W C �.� d /! R, �h.u /2F D

P
2F ck� ; u , where ck� ; is the main coef-

ficient in (21.5). A function h 2H .� d / with order  is called regular if .
/ � 1,
and all faces of order .
/ � 2 are pairwise disjoint. The second theorem states that
the rescaling limit of a function h 2H .� d / is precisely its skeleton �h.

Theorem 21.2. Given h 2 H .� d / regular with order , and A 2 V , respectively
� 2 E , as " ! 0C the rescaled function h ı .	 �" /�1 W C �.� d / ! R tends in the
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C1-topology and uniformly on compact subsets in the interior of ˘A, respectively
˘� , to the skeleton function �h W C �.� d /! R.

The class of Hamiltonian systems on polyhedra we are about to introduce uses
Hamiltonian functions in the space H .� 2d / and the class of algebraic symplec-
tic structures we now discuss. Consider the finite dimensional space ˝2.� 2d / of
algebraic 2-forms

! D
X

.1;2/2F	F
!1;2

df1
^ df2

f1
f2

; (21.6)

where˝ D . !1;2
/.1;2/2F	F is a skew-symmetric matrix such that !1;2

D 0
whenever 
1 and 
2 are disjoint faces. Any algebraic form ! 2 ˝2.� 2d / deter-
mines the linear 2-form b! W RF � RF ! R, b!.X; Y / D XT˝Y , which by
restriction induces a piecewise linear 2-form on C �.� 2d / still denoted by b!. Con-
versely, assume we are given a continuous piecewise linear 2-formb! on C �.� 2d /.
This is a family of linear 2-formsb!A W ˘A �˘A ! R, one on each face ˘A with
A 2 V , such that b!A D b!B on ˘� , for every pair of vertices A;B 2 V connected
by some edge � . Under such conditions the piecewise linear 2-formb! is determined
by a skew-symmetric matrix ˝ D . !1;2

/.1;2/2F	F as above, and is there-
fore associated to an algebraic 2-form ! 2 ˝2.� 2d /. Given an algebraic 2-form
! 2 ˝2.� 2d /, if ! is non-degenerate at every point interior to � 2d then ! is a
symplectic structure on the interior of � 2d , that we refer as an algebraic symplectic
structure. The third theorem says the symplectic gradient of a function in H .� 2d /

w.r.t. an algebraic symplectic structure in˝2.� 2d / is, up to time reparametrization,
a regular vector field in X .� 2d /.

Theorem 21.3. Given an algebraic symplectic structure ! 2 ˝2.� 2d /, and a reg-
ular function h 2 H .� 2d / of order , the symplectic gradient Xh of h w.r.t. !
is equivalent to the regular vector field X D pXh on � 2d with the same order
�X D , where p D Q2F .f /�./�1 � 0.

Given an order function � W F ! N and ! 2 ˝2.� 2d / given by (21.6), we
define the reduced algebraic form

!� D
X

.1;2/2F	F
!�1;2

df1
^ df2

f1
f2

;

where

!�1 2
D
�
!1 2

if �.
1/ D �.
2/ D 1
0 otherwise

:

Next theorem says the rescaling limit of an algebraic form ! 2 ˝2.� 2d / is the
piecewise linear reduced form c!� .

Theorem 21.4. Given an order function � W F ! N , ! 2 ˝2.� 2d /, and A 2
V , then as " ! 0C the rescaled form "2 Œ.	 �" /

�1��! tends in the C1-topology
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and uniformly on compact subsets in the interior of ˘A to the piecewise linear
2-form c!� .

Corollary 21.1. Consider ! 2 ˝2.� 2d /, h 2 H .� 2d / and X 2 X .� 2d / as
above. The skeleton � of X is, up to some constant, the gradient of the skeleton
�h w.r.t. c!� , i.e., for every A 2 V and u 2 ˘A, �h.�A/ D 0 and c!�.�A; u/ D
p.A/ �h.u/, where p is the function referred in Theorem 21.3.

Corollary 21.2. Under the same assumptions, if all components of �h have the
same sign (positive or negative), then every A 2 V is a �-saddle and almost all
orbits of � are defined for all time.

Two important subclasses of Lotka–Volterra systems, already studied by Volterra,
are the so called dissipative and conservative systems. A Lotka–Volterra system,
with interaction matrix A, is said to be conservative if there is a positive diagonal
matrix D such that AD is skew-symmetric. On even dimensions, if conservative
system (21.2) is Hamiltonian with respect to the symplectic structure on R2dC

! D
2dX

i;jD1
a�1i;j

dxi ^ dxj
xi xj

;

where a�1i;j is the coefficient of the inverse matrix A�1. In general, a conservative

Lotka–Volterra system is Hamiltonian with respect to the Poisson structure on RdC

ff; gg D 1

2

dX

i;jD1
ai;j xi xj

�
@f

@xi

@g

@xj
� @g

@xi

@f

@xj

�
:

In any case, if q is a solution of the equation r C Aq D 0, where r and A are the
Lotka–Volterra coefficient matrices, then the Hamiltonian function h W RdC ! R is

h.x1; : : : ; xd / D
dX

iD1
.xi � qi logxi /; (21.7)

which is, of course, a first integral for (21.2).
A Lotka–Volterra is called dissipative if there is a diagonal matrix D > 0 such

that AD � 0. In this case, the system admits the global Lyapounov function (21.7).
In [2] we have proved a result which further motivates the study of conservative
Lotka–Volterra systems:

Theorem 21.5. Every stably dissipative Lotka–Volterra system, with a singularity
interior to RdC, has a global attractor where the dynamics is that of a conservative
Lotka–Volterra system.

The non-zero entries of the matrix A determine a food chain graph G.A/ with
the eating relations within the ecosystem f1; 2; : : : ; d g. A Lotka–Volterra system is
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said to be stably dissipative iff every nearby Lotka–Volterra system with the same
food chain graph is still dissipative. Next theorem states that all linear replicator sys-
tems (21.3), in the simplex �2d , which come from a conservative Lotka–Volterra
system, fall in the scope of Theorem 21.3, i.e., they are time reparametrizations of
symplectic gradients of functions in H .�2d / w.r.t. algebraic symplectic structures.

Theorem 21.6. The replicator equation on �2d corresponding to a conservative
Lotka–Volterra system on R2d given by some invertible coefficient matrix, is, up to
equivalence, the symplectic gradient of a regular function h 2H .�2d / of the form

h.x0; : : : ; x2d / D
2dX

iD1

xi

x0
� qi log

xi

x0

w.r.t. to some algebraic symplectic structure ! 2 ˝2.�2d /.

21.5 An Application

In [2] we have analyzed the following Lotka–Volterra system, a four species food
chain which couples two independent predator–prey systems

8
ˆ̂<

ˆ̂:

y01 D y1 .�1C y2/
y02 D y2 .1 � y1 C ı y3/
y03 D y3 .�1 � ı y2 C y4/
y4 D y4 .1 � y3/

(21.8)

where the coupling strength is controlled by the parameter ı. The coefficient
matrices of this system are

A D

0

BB@

0 1 0 0

�1 0 ı 0

0 �ı 0 1

0 0 �1 0

1

CCA and r D

0

BB@

�1
1

�1
1

1

CCA :

We prove in [2] system (21.8) is non-integrable for any ı ¤ 0. There we pay
special attention to a family of periodic orbits � D � .ı;E/ defined, for all ı, as the
intersection of the energy level fh D Eg with the following invariant 2-plane

˘ D f .y1; y2; y3; y4/ 2 R4C W y1 D .1C ı/ y3; y4 D .1C ı/ y2 g :

There is a 3-plane containing˘ , slicing transversally all energy levels in 2-spheres.
The orbit � splits each of these 2-spheres in two disks transversal to the flow. The
first return map, along the flow, to any of these disks is a continuous map which
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determines the dynamics in that energy level. Finally, the periodic orbit � has
rotation number which tends toC1 with the energy levelE , and its character alter-
nates between stable (elliptic) and unstable (hyperbolic), as ı varies in .0;C1/.
Furthermore, there is a sequence of small intervals of the parameter ı, where as
E !C1, the periodic orbit � becomes hyperbolic with arbitrary large trace.

In [1] we pursue the analysis of this system proving that

Theorem 21.7. For 0 < ı < 1, the Lotka–Volterra system (21.8) has, in all suffi-
ciently large energy level f h D E g, a non-trivial invariant hyperbolic basic set of
saddle type.

To prove this theorem we consider the replicator vector field X 2 X .�4/

in (21.3), associated with the Lotka–Volterra system (21.8). We denote by 
i the
face of�4 opposed to vertex i , and by �i;j the edge connecting the vertices i and j .
We have �X .
0/ D 2 and �X .
i / D 1, for i D 1; 2; 3; 4. Let � be the skeleton of X
(Fig. 21.8).

We can compute the following chains for �, where � stands for the chain
concatenation operation.

�0 D .�4;0; �0;1/ �1 D .�0;1; �1;2; �2;0; �0;1/
�2 D .�0;1; �1;2; �2;3; �3;4; �4;0/ �3 D .�0;1; �1;2; �2;0; �0;3; �3;4; �4;0/
�4 D .�4;0; �0;3; �3;4; �4;0/
�5n D �0 � .�1/n � �2 �6n D �0 � .�1/n � �3 .n � 0/

There are exactly four families of �-cycles which start and end with �40 but do not
pass through this edge in between. They are f�4g, f �5n W n � 0 g and f �6n W n � 0 g.
Whence the first return map R��4;0

to ˘40 is given by

R��4;0
.X/ D

8
<̂

:̂

M�4 X if X 2 ˘�4

M�5
n
X if X 2 ˘�5

n
; n � 0

M�6
n
X if X 2 ˘�6

n
; n � 0

;

whose domain, the union of the open convex cones˘�4 [S1nD0˘�5
n
[S1nD0˘�6

n
,

can be characterized as follows.

Fig. 21.8 The oriented graph
G�.�

4/ consists of the
7 edges
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Proposition 21.1. The open cones ˘�4 , ˘�5
n

and ˘�6
n

(n � 0) are defined by the
following inequalities:

1. ˘�4 by u0 D u4 D 0, �u1 C u3 < 0, u1 > 0 and u2 > 0.
2. ˘�5

n
by u0 D u4 D 0, u1 > 0, u2 > 0 and

�u1 C u3
.1C ı/.u1 C u2/

� ı

1C ı < n <
�u1 C u3

.1C ı/.u1 C u2/
:

3. ˘�6
n

by u0 D u4 D 0, u1 > 0, u2 > 0 and

�u1 C u3
.1C ı/.u1 C u2/

� 1 < n < �u1 C u3
.1C ı/.u1 C u2/

� ı

1C ı :

A simple computation shows that

M�4 D

0

BBBBB@

0 0 0 0 0

0 1 0 �1 0
0 0 1 1C ı ı
1 0 0 1 1

0 0 0 0 0

1

CCCCCA
;

M�5
n
D

0

BBBBB@

0 0 0 0 0

� �n � nC1
ı

�n � n
ı

1
ı
0

� .nC 1/ı nı 0 ı

� 2nC 2C nC1
ı

2nC 1C n
ı
�1
ı
1

0 0 0 0 0

1

CCCCCA
;

and

M�6
n
D

0
BBBBB@

0 0 0 0 0

� nC 2C .nC 1/ı nC 1C .nC 1/ı �1 0
� �.nC 1/� .nC 1/.ı C ı2/ �n � .nC 1/.ı C ı2/ 1C ı ı
� �.nC 1/ı �.nC 1/ı 1 1

0 0 0 0 0

1
CCCCCA

The “�” entries are not important, since we are only interested in the action of these
matrices on the 3-plane u0 D u4 D 0 spanned by the cone ˘�0;4

. Actually, the
action of these matrices on ˘�0;4

is determined by the inner 3 � 3 submatrices of
the above ones. By Theorem 21.6 this system is, up to a time reparametrization, the
symplectic gradient of the following Hamiltonian

h.x0; : : : ; x4/ D x1C x2C x3C x4
x0

C .1C ı/ log
x1

x0
C logx2

C logx3 C .1C ı/ log
x4

x0
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w.r.t. some algebraic symplectic structure. Whence by Corollary 21.1, �h W
C �.� d /! R is invariant under the flow of �. We have �h.u/ D .1Cı/ u1Cu2Cu3,
for every u 2 ˘�0;4

. Consider now the 2-simplex �2 D f u 2 ˘�0;4
W �h.u/ D 1g,

which is invariant under R��0;4
, and denote by T W �2 ! �2 the restriction of

R
�
�0;4

to this simplex. For each cycle � through �0;4 we define �� D f u 2 ˘� W
�h.u/D 1g. Each restriction T� D T j�� is an affine map, which we can compute
explicitly, as well as its domain �� and range T�.��/, for every cycle � through
�4;0. With this notation,�2 is the disjoint union (mod 0) of the polygons

��4 ; ��5
0
; ��6

0
; ��5

1
; ��6

1
; ��5

2
; ��6

2
; : : : :

Figure 21.9 shows these polygons, as well as their T -images, labeled in this order.
We can check that the affine map T� W �� ! �2 is

1. Parabolic for � D �4, for all 0 < ı < 1.
2. Elliptic for � D �6n , n � 0, for some 0 < ı < 1.
3. Hyperbolic with negative trace for � D �5n , n � 0, 0 < ı < 1.

For 0 < ı < 1 we compute the following two hyperbolic fixed points:

1. P0 D



1
2C3 ı ;

ı
2C3 ı ;

1Cı
2C3ı

�
2 ��5

0
, P0 D T�5

0
.P0/, and

2. P1 D



1�ı
3C4 ı�ı2 ;

2ı
3C4ı�ı2 ;

2C2 ı
3C4ı�ı2

�
2 ��5

1
, P1 D T�5

1
.P1/.

We define the local invariant manifolds of these hyperbolic fixed points as fol-
lows: W s

loc.Pi / is the intersection of the line through Pi parallel to the contracting
eigenspace of Pi , w.r.t. the linear part of T�5

i
, with the polygon��5

i
, whileW u

loc.Pi /

is the intersection of the line through Pi parallel to the expanding eigenspace of Pi
with the image polygon T�5

i
.��5

i
/. Using them we define the global manifolds

W s.Pi / D
[

n�0
T �nW s

loc.Pi / and W u.Pi / D
[

n�0
T nW u

loc.Pi / :

Fig. 21.9 Domain and range of the return map T W �2! �2
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Fig. 21.10 Heteroclinic
intersections of the return
map T W �2! �2

Then we can prove that

Proposition 21.2. For all ı 2 .0; 1/,

W s
loc.P0/\W u.P1/ ¤ ; and W s

loc.P1/\W u
loc.P0/ ¤ ; ;

with transversal intersections.

In Fig. 21.10, the filled lines represent unstable manifolds of P0 and P1, while the
dashed lines represent stable manifolds.

By Proposition 21.2, the map T has a transversal heteroclinic cycle formed of two
heteroclinic orbits. Because these orbits accumulate on the fixed points they stay at
positive distance of the boundaries @��5

i
(i D 0; 1). Using them we can construct

an invariant hyperbolic basic set of saddle type � 	 ��5
0
[ ��5

1
, for the map T ,

still at a positive distance of @��5
0
[@��5

1
. By Theorem 21.1, in all sufficiently large

energy level surface the system must have a conjugate invariant hyperbolic basic set
of saddle type �E 	 f h D E g, which concludes the argument for Theorem 7.

21.6 Conclusions

We finish with some related questions and possible generalizations.
The analyticity assumption was mainly aesthetic, everything works fine for

smooth systems. One can also adapt the argument to work with compact manifolds
with boundary, instead of simple polyhedra. Recall that a compact manifold with
boundary, sayM d of dimension d , is one which at every point is locally diffeomor-
phic to a model

�
Rk �Rd�kC ; 0

	
, for some 0 � k � d . The integer k is called the

index of M d at that point. The set of all points with index k, denoted by @k.M d /,
is exactly the union of all interiors of k-dimensional faces of the manifoldM d .

General algorithms can be developed to facilitate the analysis of a skeleton vec-
tor field’s dynamics. In [2] we describe how to derive the skeleton vector field
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components from the payoff matrix of a replicator system. Similar relations can
be driven for other Game Theory systems.

Vicinity relations of a cone domain ˘� should translate to symbolic kneading
relations of the corresponding chain, or cycle, �. Such a kneading theory would be
a very useful instrument of analysis.

Given a skeleton vector field, can we realize it as the edge asymptotics of some
regular vector field? This realization is important to construct examples with pre-
scribed dynamical behavior along the edges. For general regular vector fields the
answer to this problem is positive. Every regular skeleton vector field � in C �.� d /
is the skeleton of some regular vector field X 2 X .� d /. For conservative skele-
ton vector fields, the answer is yes locally, in a neighborhood of the 1-dimensional
skeleton of � 2d . If a skeleton vector field � of C �.� d / is the symplectic gradi-
ent of a skeleton function � W C �.� d / ! R w.r.t. a piecewise linear symplectic
structure b! on C �.� d / then � is the skeleton of a function h 2 H .� 2d / and b! is
associated to some algebraic form ! 2 ˝2.� 2d /. Whence, the symplectic gradient
Xh of h w.r.t. ! is, as in Theorem 21.3, equivalent to a regular vector field X whose
skeleton will be �. The problem with this approach is that it’s not clear if ! is non
degenerate everywhere, i.e., if ! is a symplectic structure on the interior of � 2d .
In this case the gradient Xh may not be defined everywhere in � 2d . This raises the
question of characterizing the subset of symplectic structures in ˝2.� 2d /. We can
avoid this problem dealing with Poisson structures instead of symplectic ones. We
believe that a concept of “algebraic Poisson structure” can be defined on the polyhe-
dron � d , as well as a class of Hamiltonian systems with Hamiltonians in H .� d /

w.r.t. such algebraic Poisson structures, which up to equivalence give rise to regular
vector fields in X .� d /. Then Theorems 21.3, 21.4 and 21.6 should generalize to
arbitrary dimensions.

Skeleton vector field’s bifurcations is another interesting subject of study. These
bifurcations are caused by changes in the geometry and combinatorics of the domain
and image partitions of the return map R�� W ˘� ! ˘� , respectively f˘� g� and
fR�� .˘�/ g� where � varies on the set of all �-cycles which start and end with
� but do not pass through � in between. Considering skeletons of regular vector
fields in X .� d /, it should be possible to relate these skeleton bifurcations with the
bifurcations of the underlying vector field.

In Theorem 21.7, for simplicity, we have assumed ı 2 .0; 1/, but we believe that
the same holds for all ı > 0. The reason we made such restriction is that for ı > 1

the dynamics is harder to analyze due to the presence of the elliptic fixed point P0
in the main branch T�5

0
W ��5

0
! �2.

Figure 21.11 shows ten different orbits, with a couple of hundred iterates each,
for a particular parameter. The shaded regions represent the polygon��5

0
, on the left,

and its image T�5
0
.��5

0
/, on the right. The invariant curves break up as they touch the

boundary of their domains. Outside these curves, the dynamics seems to be chaotic,
which indicates the presence of hyperbolicity. Concerning the parameter interval
.0; 1/, we pose some more questions. Are there elliptic periodic points for param-
eters 0 < ı < 1? Is this true for many parameters? The Newhouse phenomenon,
of persistent homoclinic tangencies associated with large thickness hyperbolic sets,
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Fig. 21.11 An elliptic fixed point P0 at ı D 3:7

is a mechanism for the appearance of many elliptic structures in the dynamics of
the underlying Hamiltonian vector field. See for instance [3]. As ı ! 0C can one
find large uniformly hyperbolic basic sets with very large thickness? Is this also a
mechanism for the creation of many elliptic periodic points of the skeleton vector
field? It would be interesting to understand, for conservative skeleton vector fields,
the mechanism for the creation of elliptic structures, and then relate it with the cor-
responding homoclinic bifurcation mechanism of the underlying dynamics of vector
fields in X .� 2d /.
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Chapter 22
Bankruptcy Boundaries Determined by Patents

M. Ferreira, B.M.P.M. Oliveira, and Alberto A. Pinto

Abstract We use a new R&D investment function in a Cournot competition model
inspired in the logistic equation. We present the full characterization of the associ-
ated game and study the short and long term economical effects derived from using
this new R&D investment function. We observe the existence of four different Nash
investment equilibria regions and fully characterize the boundaries of these regions.

22.1 Introduction

We consider a Cournot competition model where two firms invest in R&D projects
to reduce their production costs. This competition is modeled, as usual, by a two
stage game (see d’Aspremont and Jacquemin [2]). In the first subgame, two firms
choose, simultaneously, the R&D investment strategy to reduce their initial pro-
duction costs. In the second subgame, the two firms are involved in a Cournot
competition with production costs equal to the reduced cost determined by the R&D
investment program. We use an R&D cost reduction function inspired in the logis-
tic equation (see Equation (2) in [7]) that was first introduced in Ferreira et al. [7].
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The main differences to the standard R&D cost reduction function (see [2]) are
explained therein. For the first subgame, consisting of an R&D investment program,
we observe the existence of four different Nash investment equilibria regions that
we define as follows (see [7]): a competitive Nash investment region C where both
firms invest; a single Nash investment region S1 for firm F1, where just firm F1
invests; a single Nash investment region S2 for firm F2, where just firm F2 invests;
and a nil Nash investment regionN , where neither of the firms invest.

The nil Nash investment region N is the union of four disjoint sets: the set NLL
consisting of all production costs that are low for both firms; the set NLH (resp. the
set NHL) consisting of all production costs that are low for firm F1 (resp. F2) and
high for firm F2 (resp. F1); and the set NHH consisting of all production costs that
are high for both firms.

The single Nash investment region Si can be decomposed into two disjoint
regions: a single favorable Nash investment region SFi where the production costs,
after investment, are favorable to firm Fi ; and a single recovery Nash investment
region SRi where the production costs, after investment are, still, favorable to firm
Fj but firm Fi recovers, slightly, from its initial disadvantage. In the single recovery
region SRi , the production costs of firm Fj are too low for the firm Fj to be willing
further decrease its production costs and, therefore, firm Fi is able to decrease its
production costs by investing. The single favorable region SFi can also be decom-
posed into three regions: the single duopoly region SDi ; the single monopoly region
SMi , and the single monopoly boundary region SBi . The single monopoly region
SMi consists of all production costs such that, after firm Fi ’s investment, the new
production costs are in the monopoly region of firm Fi . The single monopoly bound-
ary region SBi consists of all production costs such that, after firm Fi ’s investment,
the new production costs are in the boundary between the monopoly region and the
duopoly region of firm Fi . The single duopoly region SDi consists of all production
costs such that, after the firm Fi ’s investment, the new production costs are still in
the duopoly region of firm Fi (see Fig. 22.3).

The competitive Nash investment region determines the region where the pro-
duction costs of both firms evolve over time. The single Nash investment region S1
determines the set of production costs where the production cost of firm F2 is con-
stant, over time, and just the production costs of firm F1 evolve. Similarly, the single
Nash investment region S2 determines the set of production costs where the produc-
tion cost of firm F1 is constant, over time, and just the production costs of firm F2
evolve. The nil Nash investment regionN determines the set of all production costs
that are fixed by the dynamics.

In this paper we characterize, in detail, the boundaries of each of these Nash
investment regions computed in the research papers [7] and [8].

22.2 The Model

The Cournot competition with R&D investment programs to reduce the production
costs consists of two simultaneous subgames. The first subgame is an R&D invest-
ment program, where both firms have initial production costs and simultaneously
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choose their R&D investment strategies to obtain lower new production costs. The
second subgame is a typical Cournot competition on quantities with production
costs equal to the reduced costs determined by the R&D investment program. As
it is well known, the second subgame has a unique perfect Nash equilibrium. The
analysis of the first subgame is of higher complexity and is covered with detail in
Ferreira et al. [7].

22.2.1 New Production Costs

The sets of possible new production costs for firms F1 and F2, given initial
production costs c1 and c2 are, respectively,

A1 D A1.c1; c2/ D Œb1; c1� and A2 D A2.c1; c2/ D Œb2; c2�;

where bi D ci � �.ci � cL/, for i 2 f1; 2g.
The R&D programs a1 and a2 of the firms determine a bijection between the

investment regionRC0 �RC0 of both firms and the new production costs region A1�
A2, given by the map

a D .a1; a2/ WRC0 � RC0 �! A1 � A2
.v1; v2/ 7�! .a1.v1/; a2.v2//

where
ai .vi / D ci � �ivi

�C vi
:

We denote byW D .W1;W2/ W a
�
RC0 � RC0

	! RC0 � RC0

Wi .ai / D �.ci � ai /
ai � ci � �i

the inverse map of a.
The new production costs region can be decomposed, at most, in three discon-

nected economical regions characterized by the optimal output level of the firms
(see Fig. 22.1):

M1 The monopoly regionM1 of firm F1 that is characterized by the optimal output
level of firm F1 being the monopoly output and, therefore, the optimal output
level of firm F2 is zero.

D The duopoly regionD that is characterized by the optimal output levels of both
firms being non-zero and, therefore, below their monopoly output levels.

M2 The monopoly regionM2 of firm F2 that is characterized by the optimal output
level of firm F2 being the monopoly output and, therefore, the optimal output
level of firm F1 is zero.
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Fig. 22.1 We exhibit the
duopoly region D and the
monopoly regions M1 and
M2 for firms F1 and F2,
respectively, in terms of their
new production costs
.a1; a2/; lMi with i 2 f1; 2g
are the boundaries between
Mi and D

4 5 6 7 8 9 10
4

5

6

7

8

9

10

c1
c 2

M2

D

M1 lM1

lM2

The boundary between the duopoly region D and the monopoly region Mi is lMi

with i 2 f1; 2g.
The explicit expression characterizing lMi

, the boundary between the monopoly
regionMi and the duopoly regionD, is presented in [7].

22.2.2 Best R&D Investment Response Functions

To determine the best investment response function V1.v2/ of firm F1 to a given
investment v2 of firm F2, we study, separately, the cases where the new production
costs .a1.v1; v2/; a2.v1; v2// belong to (a) the monopoly regionM1; (b) the duopoly
regionD; or (c) the monopoly regionM2.

If there is v1 2 RC0 such that .a1.v1/; a2.v2// 2M1, we select the best response
vM1

of firm F1, restricted to .a1.vM1
/; a2.v2// 2 M1, to the investment v2 of firm

F2 as follows: Let ZM1
be the set of solutions v1 of the following equation

@�1;M1

@v1
D 0;

such that .a1.v1/; a2.v2// 2 M1. Let FM1
be the set of v1 such that .a1.v1/; a2.v2//

2 lM1
. The best response vM1

of firm F1 in M1 is given by

vM1
D arg max

v12ZM1
[FM1

�1;M1
.a1.v1/; a2.v2//:

The set FM1
is given explicitly in Lemma 1 in [7]. Since the investment v2 is fixed,

let us characterize the set ZMi
.

Let Li D 6ˇ�2 � ��2i � �i�.˛ � ci / and Ni D 2ˇ�3 � �i�2.˛ � ci /.
Theorem 22.1. Let vi be such that .ai .vi /; cj / 2 Mi . The set ZMi

is the set of
zeros of the following polynomial:
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2ˇv3i C 6ˇ�v2i C Livi CNi D 0:

The order of the polynomial is three, and so the setZM1
can be explicitly computed.

The proof is in [7].
If there is v1 2 RC0 such that .a1.v1/; a2.v2// 2 D, we select the best response

vD of firm F1, restricted to .a1.vD/; a2.v2// 2 D, to the new production cost a2 of
firm F2 as follows: Let ZD be the set of zeros v1 of the following polynomial

@�1;D

@v1
D 0;

such that .a1.v1/; a2.v2// 2 D. The best response vD of firm F1 in D is given by

vD D arg max
v12ZD[FM1

�1;D.a1.v1/; a2.v2//:

Let us characterize the set ZD . Let us define the following parameters

� Ai D �4ˇ2�i�Fi ; Bi D �4ˇ2��i .
� C D �4ˇ2 � �2	2; Ei D ˛ � ci C �i .
� Fi D 2ˇEi � �Ej ; Gi D �2ˇ�i�i and Hi D ��j�.

Theorem 22.2. Let .v1; v2/ be such that .a1.v1/; a2.v2// 2 D. The set ZD is the
set of zeros of the following polynomials:

CW 3
i Wj CAiWiWj C BiWj � .Bi=�/HiWi D 0 (22.1)

where Wi D �C vi andWj D �C vj .

Proof. (See [7]). ut
If there is v1 2 RC0 such that .a1.v1/; a2.v2// 2 M2, the best response vM2

of
firm F1, restricted to .a1.vM1

/; a2.v2// 2 M2, is given by firm F1 to invest zero,
i.e. not investing. Hence, V1.v2/ is given by

V1.v2/ D arg max
v12F

�1.a1.v1/; a2.v2//;

where V1 2 F D ZM1
[ FM1

[ZD [ f0g.
Theorem 22.3. The best investment response function Vi W RC0 ! RC0 of firm Fi is
explicitly computed.

We note that, the best investment response function Vi W RC0 ! RC0 can be multi-
valued.

Proof. (See [7]). ut
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22.3 Nash Investment Equilibria

Let cL be the minimum attainable production cost and ˛ the market saturation.
Given production costs .c1; c2/ 2 ŒcL; ˛� � ŒcL; ˛�, the Nash investment equilibria
.v1; v2/ 2 RC0 �RC0 are the solutions of the system

�
v1 D V1.v2/
v2 D V2.v1/

where V1 and V2 are the best investment response functions computed in the
previous sections (See [7]).

All the results presented are consistent with [7] and hold in an open region of
parameters .cL; �; ˛; �; ˇ; �/ containing the point .4; 0:2; 10; 10; 0:013; 0:013/.

The Nash investment equilibria consists of one, two or three points depending
upon the pair of initial production costs. The set of all Nash investment equilibria
form the Nash investment equilibrium set (see Fig. 22.2):

C The competitive Nash investment region C that is characterized by both firms
investing.

Si The single Nash investment region Si that is characterized by only one of the
firms investing.

N The nil Nash investment region N that is characterized by neither of the firms
investing.

In Fig. 22.2, the Nil Nash investment region is the union of NLL, NLH , NHL

and NHH and the Single Nash investment region is the union of SFi and SRi . The
economical meaning of the subregions ofN and Si is explained in the next sections.

Denote by R D ŒcL; ˛� � ŒcL; ˛� the region of all possible pairs of production
costs .c1; c2/. Let Ac D R � A be the complementary of A in R and let RA\B
be the intersection between the Nash investment region A and the Nash investment
region B .

22.4 Single Nash Investment Region

The single Nash investment region Si consists of the set of production costs .c1; c2/
with the property that the Nash investment equilibrium set contains a pair .v1; v2/
with the Nash investment vi D Vi .0/ > 0 and the Nash investment vj DVj .vi /D 0,
for j ¤ i .

The single Nash investment region Si can be decomposed into two disjoint
regions: a single favorable Nash investment region SFi where the production costs,
after investment, are favorable to firm Fi , and in a single recovery Nash investment
region SRi where the production costs, after investment are, still, favorable to firm
Fj but firm Fi recovers a little from its disadvantageous (see Fig. 22.3).
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Fig. 22.2 Full characterization of the Nash investment regions in terms of the firms’ initial pro-
duction costs .c1; c2/. The monopoly lines lMi are colored black. The nil Nash investment region
N is colored grey. The single Nash investment regions S1 and S2 are colored blue and red, respec-
tively. The competitive Nash investment region C is colored green. The region where S1 and S2
intersect is colored pink, the region where S1 and C intersect is colored lighter blue and the region
where S2 and C intersect is colored yellow. The area where the regions S1, S2 and C intersect is
colored lighter grey

4 5 6 7 8 9 10
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5

6

7

8

9

10

c1

c 2

NLH
S1

M

S1
D

S1
B

NHH

NHLS1
R

NLL

Fig. 22.3 Full characterization of the single Nash investment region S1 and of the nil Nash invest-
ment region N in terms of the firms’ initial production costs .c1; c2/. The subregions NLL, NLH ,
NHL and NHH of the nil Nash investment region N are colored yellow. The subregion SR1 of the
single Nash investment region S1 is colored lighter blue. The subregion SF1 of the single Nash
investment region S1 is decomposed in three subregions: the single Duopoly region SDi colored
blue, the single Monopoly region SMi colored green and the single Monopoly boundary region SBi
colored red

The single favorable Nash investment region SFi can be decomposed into three
regions: the single Duopoly region SDi , the single Monopoly region SMi and the
single Monopoly boundary region SBi (see Fig. 22.3). For every cost .c1; c2/ 2 SFi ,
let .a1.v1/; a2.v2// be the Nash new investment costs obtained by the firms F1 and
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F2 choosing the Nash investment equilibrium .v1; v2/ with v2 D 0. The single
duopoly region SDi consists of all production costs .c1; c2/ such that for the Nash
new investment costs .a1.v1/; a2.v2// the firms are in the duopoly region D (see
Fig. 22.3). The single monopoly region SMi consists of all production costs .c1; c2/
such that for the Nash new costs .a1.v1/; a2.v2// the Firm Fi is in the interior of
the Monopoly regionMi . The single monopoly boundary region SBi consists of all
production costs .c1; c2/ such that the Nash new investment costs .a1.v1/; a2.v2//
are in the boundary of the Monopoly region lMi

.

Theorem 22.4. If the initial production cost .c1; c2/ belongs to the single monopoly
region SM1 then vi D Vi .0I c1; c2/ does not depend upon the value cj , with i ¤ j .

Proof. The maximum profit for firm F1 is attained at a point in the interior of the
domain of �1;M1

. Since �1;M1
does not depend upon c2, we get that v1 does not

depend upon c2 either. ut
We are going to characterize the boundary of the single monopoly region SM1

(which, due to of the symmetry holds, a similar characterization for SM2 ). We study
the boundaries of SM1 by separating it in four distinct boundaries: the upper bound-
ary UMS1

, that is the union of a vertical segment line U lS1
with a curve U cS1

, the

intermediate boundary IMS1
, the lower boundary LMS1

and the left boundary LeMS1

(see Fig. 22.4). The left boundary of the single monopoly region LeMS1
is the right

boundary d1 of the nil Nash investment region NLH that will be characterized in
Sect. 22.5.

The boundary of the single monopoly boundary region SB1 is the union of an
upper boundary UBS1

and a lower boundary LBS1
(see Fig. 22.8).

The boundary of the single duopoly region SD1 is the union of an upper bound-
ary UDS1

, a lower boundary LDS1
and a left boundary LeDS1

(see Fig. 22.9). The left

boundary of the single duopoly regionLeDS1
is the right boundary d3 of the nil Nash

investment regionNLH that will be characterized in Sect. 22.5.
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Fig. 22.4 (a) Full characterization of the boundaries of the single monopoly region SM1 : the upper
boundary UC

S1
is the union of a vertical segment line U l

S1
with a curve U c

S1
; the lower boundary

LMS1 ; and the left boundary LeMS1 ; (b) close up of the upper part of figure (a) where the boundaries
UC
S1

and U l
S1

can be seen in more detail
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The single recovery Nash investment region SR1 has three boundaries: the upper
boundaryURS1

, the left boundaryLeRS1
, and the right boundaryRRS1

(see Fig. 22.11).

22.4.1 Boundary of the Single Monopoly Region S M
1

In the following Lemmas we characterize, the boundaries of the single monopoly
region SM1 . Let us characterize the boundary U lS1

between the single monopoly

region SM1 and the nil Nash investment region NHH with initial production
costs .c1; c2/ in the Monopoly region M1. The boundary U lS1

is a vertical line
segment corresponding to initial production costs .c1; c2/ such that the profit
�1;M1

.0; 0I c1; c2/ D �1;M1
.v1; 0I c1; c2/ where v1 D V1.0/ is the best investment

response of firm F1 to a zero investment of firm F2 (see Fig. 22.5). In Lemma 22.1,
we give the algebraic characterization of U lS1

D fcM1 g� ŒlMS1
.cM1 /; 10� by determin-

ing the value cM1 . The value lMS1
.cM1 / such that .cM1 ; l

M
S1
.cM1 // 2 lM1

is computed
using Lemma 1 in [7]. Let

� K1 D �.8ˇ� � �2.c1 � cL/2 � 2�.˛ � c1/.c1 � cL//=.8ˇ/.
� K2 D .4ˇ�2 � 2��.˛ � c1/.c1 � cL//=.64ˇ/.
� K3 D �.4ˇ�2 � 2��.˛ � c1/.c1 � cL//=.4ˇ/.
Lemma 22.1. The initial production costs c1 D cM1 of firm F1, such that
.cM1 ; c2/ 2 U lS1

and the best investment response v1 D V1.0/ of firm F1 to a
zero investment of firm F2 are implicitly determined as solutions of the following
polynomial equations:

Fig. 22.5 Each of the plots corresponds to the profit �1 of Firm F1 when Firm F2 decides not to
invest, i.e. �1.v1; 0I c1; c2/. The plot in red (II) corresponds to a pair of production costs .c1; c2/ 2
U l
S1

, the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the single
monopoly region SM1 and the plot in green (III) corresponds to a pair of production costs .c1; c2/
that are in the nil region NHH
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2ˇv31 C 6ˇ�v21 C L1v1 CN1 D 0 (22.2)

K2
2 �K2

1 CK3 C 2V1K1 � V 21 D 0 (22.3)

Proof. By Theorem 22.1, @�1;M1
.v1; 0I c1; c2/=@v1 D 0 can be written as equality

(22.2). From �1;M1
.0; 0I c1; c2/ D �1;M1

.v1; 0I c1; c2/, we get

.˛ � c1/2 D
�
˛ � c1 C �.c1 � cL/v1

�C v1

�2
� 4ˇv1

that leads to

4ˇv21 C .8ˇ�� �2.c1 � cL/2 � 2�.˛ � c1/.c1 � cL//v1
C .4ˇ�2 � 2��.˛ � c1/.c1 � cL// D 0:

Choosing the positive solution of the above equality, we get

v1 D K1 C
q
K2
2 CK3

that is equivalent to equality (22.3). By Theorem 22.1, @�1;M1
.v1; 0I cM1 .c2/; c2/=

@v1 D 0 can be written as equality (22.2). ut
Let us characterize the boundary U cS1

between the single monopoly region SM1
and the nil Nash investment region NHH with initial production costs .c1; c2/ in
the Monopoly regionM1. The boundaryU cS1

is a curve corresponding to initial pro-
duction costs .c1; c2/ such that the profit �1;M1

.0; 0I c1; c2/ D �1;M1
.v1; 0I c1; c2/

where v1 D V1.0/ is the best investment response of firm F1 to a zero investment
of firm F2 (see Fig. 22.6). In Lemma 22.4 we give the algebraic characterization
of the curve U cS1

D fc1.c2/ W c2 2 ŒB.UCS1
I IMS1

/; lMS1
.cM1 /�g. The value lMS1

.cM1 /

is such that .cM1 ; l
M
S1
.cM1 // 2 lM1

is computed, as before, using Lemma 1 in [7].

Let B.UCS1
I IMS1

/ be the common boundary UCS1
\ IMS1

between the boundaries of

the single monopoly region UCS1
and IMS1

. The point B.UCS1
I IMS1

/ is determined as a
solution of the polynomial equations presented in Lemmas 22.1 and 22.2. Let

� K4 D .ˇ.2ˇ.˛ � c1/ � �.˛ � c2//2/=.4.ˇ2 � �2//.
� K5 D 4ˇK � .˛ � c1/2 C 8ˇK � �2.c1 � cL/2 � 2�.˛ � c1/.c1 � cL/.
� K6 D 8ˇ�K � 2�.˛ � c1/2 C 8ˇ�2 � 2��.˛ � c1/.c1 � cL/.
Lemma 22.2. The initial production costs c1 D cM1 .c2/ of firm F1 such that
.cM1 .c2/; c2/ 2 U cS1

, and the best investment response v1 D V1.0/ of firm F1 to
a zero investment of firm F2 are implicitly determined as solutions of the following
polynomial equations:

2ˇv31 C 6ˇ�v21 C L1v1 CN1 D 0 (22.4)
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Fig. 22.6 Each of the plots corresponds to the profit �1 of Firm F1 when Firm F2 decides not to
invest, i.e. �1.v1; 0I c1; c2/. The plot in red (II) corresponds to a pair of production costs .c1; c2/ 2
U c
S1

, the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the single
monopoly region SM1 and the plot in green (III) corresponds to a pair of production costs .c1; c2/
that are in the nil region NHH

and

4ˇv31 CK5v21 CK6v1 C 4ˇK � .˛ � c1/2 D 0 (22.5)

Proof. From �1;D.0; 0I c1; c2/ D �1;M1
.v1; 0I c1; c2/ we get

ˇ2.2ˇ.˛ � c1/� �.˛ � c2//2
.ˇ2 � �2/ D

�
˛ � c1 C �.c1 � cL/v1

�C v1

�2
� 4ˇv1

that leads to (22.5). By Theorem 22.1, @�1;M1
.v1; 0I cM1 .c2/; c2/=@v1 D 0 can be

written as equality (22.4) ut
Let us characterize the boundary IMS1

between the single monopoly region SM1
and the single Nash investment region SM2 with initial production costs .c1; c2/ in
the Monopoly regionM1 (see Fig. 22.7). The intermediate boundary IMS1

of the sin-

gle monopoly regionSM1 is characterized by the best investment responseV2.V1.0//
of firm F2 to the best investment response V1.0/ of firm F1 to zero, to be a set with
two elements. One of the elements V �2 of V2.V1.0// is zero and the other element
V C2 is greater than zero. In Lemma 22.3 we give the algebraic characterization of the
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Fig. 22.7 Each of the plots corresponds to the Profit �2 of Firm F2 when Firm F1 decides
to invest v1 and Firm F2 has two possible best responses V2.v1/ D fv2I 0g with v2 > 0, i.e.
�2.V1.0/; v2I c1; c2/. The plot in red (II) corresponds to a pair of production costs .c1; c2/ 2 IMS1 ,
the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the single monopoly
region SM1 and the plot in green (III) corresponds to a pair of production costs .c1; c2/ that are in
the single monopoly region SM2

curve IMS1
D fc1.c2/ W c2 2 ŒB.IMS1

ILMS1
/; B.U cS1

I IMS1
/�g. The point B.IMS1

ILMS1
/

is implicitly determined as a solution of the polynomial equations presented in
Lemmas 22.3 and 22.2. The point B.UCS1

I IMS1
/ is determined, as before, as a

solution of the polynomial equations presented in Lemmas 22.1 and 22.2.
Let L1 and N1 be as in Theorem 22.1. Let C and A2, B2 and H2 be as in
Theorem 22.2. Let

� K7 D �4ˇ�.c1 � �.c1 � cL//.c2 � �.c2 � cL//.
� K8 D �4ˇ���.c2 � cL/.c1 � �.c1 � cL//.
� K9 D �4ˇ���.c1 � cL/.c2 � �.c2 � cL//.
� K10 D �4ˇ��2�2.c1 � cL/.c2 � cL/.
� K11 D 4ˇ2c21 C �2.c1 � cL/� 2�c1.c1� cL/C �c22 C �2.c2 � cL/� 2�c2.c2 �
cL/C c1.8ˇ2˛C 4ˇ˛�/� �.c1 � cL/.8ˇ2˛C 4ˇ˛�/C c2.�2˛�2C 4ˇ�˛/�
�.c2 � cL/.�2˛�2 C 4ˇ�˛/C 4ˇ2˛2 C �2˛2 � 4ˇ�˛2 C .�.4ˇ2 � �2/2/=ˇ.

� K12 D �2��2.c1 � cL/C 2��c1.c1 � cL/C ��.c1 � cL/.
� W1 D v1 C �; W2 D v2 C �.

Lemma 22.3. The initial production costs c1 D cM1 .c2/ of firm F1 such that
.cM1 .c2/; c2/ 2 IMS1

, the best investment v1 D V1.0/ of firm F1 to a zero investment
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of firm F2 and the best investment of firm F2 V
C
2 2 V2.V1.0// are implicitly

determined as solutions of the following polynomial equations:

K7W
4
1 W

4
2 C K8W 4

1 W
3
2 CK9W 3

1 W
4
2 CK10W 3

1 W
3
2 �..4ˇ2��2/2=ˇ/W 3

2 W
2
1 C

C K11W 2
1 W

2
2 CK12W1W 2

2 CK13W2W 2
1 C (22.6)

C �2�2.c2 � cL/W 2
1 C �2�2.c1 � cL/W 2

2 D 0

and

CW 3
2 W1 CA2W2W1 C B2W1 � .B2=�/H2W2 D 0 (22.7)

and

2ˇ.W1 � �/3 C 6ˇ�.W1 � �/2 C L1.W1 � �/CN1 D 0: (22.8)

Proof. From �2;D.v1; v2I c1; c2/ D 0, we get

ˇ.2ˇ.˛ � a1/ � �.˛ � a2//2
.4ˇ2 � �2/2 � v2 D 0:

The equality above can be written as

4ˇ2a21 C �a22 C .�8ˇ2˛ C 4ˇ˛�/a1 C .�2˛�2 C 4ˇ�˛/a2 � 4ˇ�a1a2 C
C .4ˇ2˛2 C �2˛2 � 4ˇ�˛2/� ..4ˇ2 � �2/2=ˇ/v2 D 0:

Substituting ai D ci � .�ivi /=.� C vi / and manipulating algebraically, we get
equality (22.6). By Theorem 22.2, we have that @�2;D.v1; v2I cM1 .c2/; c2/=@v2 D 0
can be written as equality (22.7). By Theorem 22.1 @�1;M1

.v1; 0I cM1 .c2/; c2/=@v1
D 0 can be written as equality (22.8). ut

Let us characterize the boundary LMS1
between the single monopoly region SM1

and the single monopoly boundary region SB1 with initial production costs .c1; c2/
in the Monopoly region M1. In Lemma 22.4 we give the algebraic characteriza-
tion of the curve LMS1

D fc1.c2/ W c2 2 ŒB.LMS1
ILeMS1

/; B.I cS1
ILMS1

/�g. The point

B.LMS1
ILeMS1

/ is implicitly determined as a solution of the polynomial equations

presented in Lemma 22.4 and Theorem 22.6. The point B.IMS1
ILMS1

/ is determined,
as before, as a solution of the polynomial equations presented in Lemmas 22.3
and 22.4. Let L1 and N1 be as in Theorem 22.1.

Lemma 22.4. The initial production costs c1 D cM1 .c2/ of firm F1 such that
.cM1 .c2/; c2/ 2 LMS1

, and the best investment v1 D V1.0/ of firm F1 to a zero invest-
ment of firm F2 are implicitly determined as solutions of the following polynomial
equations:

2ˇv31 C 6ˇ�v21 C L1v1 CN1 D 0; (22.9)
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Fig. 22.8 Full
characterization of the
boundaries of the single
monopoly boundary region
SB1 : the upper boundary UB

S1

and the lower boundary LBS1

4 5 6 7 8 9 10
6.5

7

7.5

8

8.5

9

9.5

10

c1

c 2

LS1

B

S1
B

US1

B

where

v1 D ��.c2 � ˛/ � 2ˇ�.c1 � ˛/
2�ˇ.cL � c1/C 2ˇ.c1 � ˛/ � �.c2 � ˛/ (22.10)

Proof. By Theorem 22.1, @�1;M1
.v1; 0I c1; c2/=@v1 D 0 can be written as (22.9).

Take a1 D c1 � .�.c1 � cL/v1/=.�C v1/ and a2 D c2, by Lemma 1 in [7], we get

�
�

2ˇ
.c2˛/ � .c1 � ˛/

�
.�C v1/ D �.cL � c1/v1 (22.11)

Thus (22.10) follows from (22.11). ut

22.4.2 Boundary of the Single Monopoly Boundary Region S B
1

The upper boundary of the single monopoly boundary region UBS1
is the lower

boundary of the single monopoly region LMS1
and has already been characterized

in Sect. 22.4.1. Let us characterize the boundary LBS1
between the single monopoly

boundary region SB1 and the single duopoly region SD1 for initial production costs
.c1; c2/ in the monopoly regionM1. In Lemma 22.5 we give the algebraic character-
ization of the curve LBS1

D fc1.c2/ W c2 2 ŒB.LDS1
ILBS1

/; B.LBS1
I d3/�g. The point

B.LDS1
ILBS1

/ is implicitly determined as a solution of the polynomial equations pre-

sented in Lemmas 22.5 and 22.6. The point B.LBS1
I d3/ is implicitly determined as

a solution of the polynomial equations presented Lemma 22.5 and Theorem 22.5.
Let A1, E1, F1, G1 andH1 be as in Theorem 22.5.

Lemma 22.5. The initial production costs c1 D cM1 .c2/ of firm F1 such that
.cM1 .c2/; c2/ 2 LBS1

and the best investment v1 D V1.0/ of firm F1 to a zero invest-
ment of firm F2 are implicitly determined as solutions of the following polynomial
equations:
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Fig. 22.9 (a) Full characterization of the boundaries of the single duopoly region SD1 : the upper
boundary UD

S1
; the lower boundary LDS1 ; and the left boundary LeDS1 ; (b) close up of the lower part

of LeDS1

A1c
2
1 C E1c1c2 C F1c1 CG1c2 CH1 D 0 (22.12)

where

v1 D ��.c2 � ˛/ � 2ˇ�.c1 � ˛/
2�ˇ.cL � c1/C 2ˇ.c1 � ˛/ � �.c2 � ˛/ (22.13)

Proof. By Theorem 22.5, @�1;D.v1; 0I c1; c2/=@v2 D 0 can be written as (22.12).
We get (22.13) as in Lemma 22.4. ut

22.4.3 Boundary of the Single Duopoly Region S D
1

The upper boundary of the single duopoly region UDS1
is the lower boundary of

the single monopoly boundary region LBS1
and has already been characterized in

Sect. 22.4.2. The left boundary of the single duopoly region LeDS1
is the right

boundary d3 of the nil Nash investment region NLH that will be characterized in
Sect. 22.5.

Let us characterize the boundaryLDS1
between the single duopoly region SD1 and

the competitive regionC for initial production costs .c1; c2/ in the monopoly region
M1 (see Fig. 22.10). In Lemma 22.6 we give the algebraic characterization of the
curveLDS1

D fc1.c2/ W c2 2 ŒB.LBS1
ILDS1

/; B.LDS1
I d3/�g. The pointB.LBS1

ILDS1
/ is

implicitly determined as a solution of the polynomial equations presented in Lem-
mas 22.5 and 22.6. The point B.LBS1

I d3/ is implicitly determined as a solution of
the polynomial equations presented in Lemma 22.6 and Theorem 22.5.

Lemma 22.6. The initial production costs c1 D cM1 .c2/ of firm F1 such that
.cM1 .c2/; c2/ 2 LDS1

, the best investment v1 D V1.0/ of firm F1 to a zero investment
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Fig. 22.10 Each of the plots corresponds to the Profit �2 of Firm F2 when Firm F1 decides not to
invest. The plot in red (II) corresponds to a pair of production costs .c1; c2/ 2 LDS1 , the plot in blue
(I) corresponds to a pair of production costs .c1; c2/ that are in the competitive region C and the
plot in green (III) corresponds to a pair of production costs .c1; c2/ that are in the single duopoly
region SD2

of firm F2 and the best investment of firm F2 V
C
2 2 V2.V1.0// are implicitly

determined as solutions of the following polynomial equations:

K7W
4
1 W

4
2 C K8W 4

1 W
3
2 CK9W 3

1 W
4
2 CK10W 3

1 W
3
2 �..4ˇ2��2/2=ˇ/W 3

2 W
2
1 C

C K11W 2
1 W

2
2 CK12W1W 2

2 CK13W2W 2
1 C (22.14)

C �2�2.c2 � cL/W 2
1 C �2�2.c1 � cL/W 2

2 D 0

and

CW 3
2 W1 CA2W2W1 C B2W1 � .B2=�/H2W2 D 0 (22.15)

and

CW 3
1 W2 CA1W1W2 C B1W2 � .B1=�/H1W1 D 0 (22.16)

Proof. We get (22.14) as in Lemma 22.3.
By Theorem 22.2, @�2;D.v1; v2I c1; c2/=@v2 D 0 can be written as (22.15).
By Theorem 22.2, @�1;D.v1; v2I c1; c2/=@v1 D 0 can be written as equality
(22.16). ut

22.4.4 Boundary of the Single Recovery Region S R
1

The single recovery region SR1 (which, due to the symmetry, holds a similar charac-
terization for SR2 ) has three boundaries: the upper boundary URS1

, the left boundary
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Fig. 22.11 Full characterization of the boundaries of the single recovery region SR1 : the upper
boundary UR

S1
; the right boundary RRS1 ; and the left boundary LeRS1 . In green the competitive Nash

investment region C , in grey the nil Nash investment region N , in red the single Nash investment
region S2 for firm F2 and in blue the single recovery region SR1 for firm F1

LRS1
, and the right boundary RRS1

. We are now going to characterize the upper

boundary URS1
of the single recovery region SR1 and will leave the left and right

boundaries of the single recovery region, that are also boundaries of the Nil Nash
investment region, to be characterized in Sect. 22.5 (see Fig. 22.12). In Lemma 22.7
we give the algebraic characterization of the curve URS1

D fc1.c2/ W c2 2 ŒQIP3/�g
where the pointQ is characterized by being in the intersection between the compet-
itive region C and the nil region NLL and the point P3 is characterized by being in
the intersection between the competitive region C and the nil regionNHL.

Lemma 22.7. The initial production costs c1 D cR1 .c2/ of firm F1 such that
.cR1 .c2/; c2/ 2 URS1

are implicitly determined as solutions of the following poly-
nomial equations:

A2c
2
2 C E2c1c2 C F2c2 CG2c1 CH2 D 0 (22.17)

and

A1c
2
1 C E1c1c2 C F1c1 CG1c2 CH1 D 0 (22.18)

Proof. By Theorem 22.5, we get (22.17) and (22.18). ut

22.5 Nil Nash Investment Region

The nil Nash investment regionN is the set of production costs .c1; c2/ 2 N with the
property that .0; 0/ is a Nash investment equilibrium. Hence, the nil Nash investment
region N consists of all production costs .c1; c2/ with the property that the new
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Fig. 22.12 Each of the plots corresponds to the profit �2 of Firm F2 when Firm F1 decides not
to invest, i.e. �2;D.V1.0/; v2I c1; c2/. The plot in red (II) corresponds to a pair of production costs
.c1; c2/ 2 UR

S1
, the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the

nil region NHL and the plot in green (III) corresponds to a pair of production costs .c1; c2/ that are
in the single recovery region SR1

production costs .a1.v1/; a2.v2//, with respect to the Nash investment equilibrium
.0; 0/, are equal to the production costs .c1; c2/.

The nil Nash investment region N is the union of four disjoint sets: the set NLL
consisting of all production costs that are low for both firms (see Fig. 22.13a); the
set NLH (respectively NHL) consisting of all production costs that are low for firm
F1 (respectively F2) and high for firm F2 (respectively F1) (see Fig. 22.13b); and
the set NHH consisting of all production costs that are high for both firms (see
Fig. 22.13c).

The set NLH (respectivelyNHL) is the union of the sets NM
LH (respectivelyNM

HL )

and ND
LH (respectively ND

HL). The set NM
LH (respectively NM

HL ) consists of all pro-
duction costs in the region NLH (respectively NHL) such that firm F1 (respectively
firm F2) is in monopoly or equivalently, firm F2 is out of the market. The set ND

LH

(respectively ND
HL) consists of all production costs in the region NLH (respectively

NHL) such that both firms have positive outputs, i.e. both firms are in the duopoly
regionD (see Fig. 22.1).

In this section, we characterize the boundaries of these Nil Nash investment
regions. The boundaries of the Nash investment region NHH have been character-
ized in the previous section. The left boundary LeNHH

of the nil Nash investment
regionNHH coincides with the upper boundary of the single monopoly region UMS1

(see Lemmas 22.1 and 22.2) and the lower boundary LNHH
of the nil Nash invest-

ment regionNHH coincides with the upper boundary of the single monopoly region
UMS2

. To characterize all the other boundaries of the nil regions, we will use the
following theorems:
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Fig. 22.13 Full characterization of the nil Nash investment region N in terms of the firms’ initial
production costs .c1; c2/: (a) The subregion NLL of the nil Nash investment region N is colored
grey corresponding to initial production cost such that the firms do not invest and do not produce;
(b) The subregionNLH of the nil Nash investment regionN is colored grey corresponding to initial
production cost such that the firms do not invest and do not produce and dark blue corresponding to
cases where the firms do not invest but firm F1 produces a certain amount q1 greater than zero; (c)
The subregion NHH of the nil Nash investment region N is colored grey corresponding to initial
production cost such that the firms do not invest and do not produce; dark blue corresponding to
cases where the firms do not invest but firm F1 produces a certain amount q1 greater than zero
and dark red corresponding to cases where the firms do not invest but firm F2 produces a certain
amount q2 greater than zero

Let us define the following parameters

� Ii D 4ˇ2=�; Ai D �2Ii�ˇ; Ei D Ii�� .
� Gi D �Ii��cL; Fi D 2Ii�ˇ˛ C 2Ii�cLˇ � Ii��˛.
� K D .4ˇ2 � �2/2; Hi D �2Ii�cLˇ˛ C Ii�cL�˛ �K .

Theorem 22.5. The solutions of @�i;D.0; 0I c1; c2/=@vi D 0 are contained in

Aic
2
i C Eicicj C Fici CGicj CHi D 0:

Proof. Let us compute

d�i;D

dvi
D @�i;D

@ai

@ai

@vi
C @�i;D

@aj

@aj

@vi
C @�i;D

@vi
: (22.19)

We have that

@�i;D

@ai
D �4ˇ

2.2ˇ.˛ � ai /C �.aj � ˛//
.4ˇ2 � �2/2

@ai

@vi
D �i�

.�C vi /2

@�i;D

@aj
D � 2ˇi�.2ˇj .˛i � ai /C �.aj � ˛j //

.4ˇiˇj � �2/2
@�i;D

@vi
D �1:
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Hence, d�i;D=dvi D 0 if, and only if,

4ˇ2�i�.2ˇ.˛ � ai /C �.aj � ˛//
�2

D K (22.20)

Taking ai D ci and aj D cj , we get that d�i;D=dvi D 0 if, and only if,

Ii�i .2ˇ.˛ � ci /C �.cj � ˛// �K D 0

After algebric manipulations, we get

2Ii�iˇ˛ � 2Ii�iˇci C Ii�i�cj � Ii�i�˛ �K D 0

which leads to
Aic

2
i C Eicicj C Fici CGicj CHi D 0:

ut
Let Q D �.˛ C cL/ and R D ��˛cL � 2ˇ�.

Theorem 22.6. The solution of @�i;Mi
.0; 0I c1; c2/=@vi D 0; is contained in

ci D .�QC
p
Q2 � 4PR/=.�2�/: (22.21)

Proof. Let us compute

d�i;Mi

dvi
D @�i;Mi

@ai

@ai

@vi
C @�i;Mi

@vi
:

Since

@�i;Mi
.vi ; 0I c1; c2/=@vi D .��.˛ � ai /.ci � cL// =

�
2ˇ.�C vi /

2
	� 1;

d�i;Mi
.vi ; 0I c1; c2/=dvi D 0 if, and only if,

��.˛ � ai /.ci � cL/ D 2ˇ.�C vi /
2:

Letting vi D 0 (ai D ci ), we get

��.˛ � ci /.ci � cL/ D 2ˇ�2

that can be written as

���c2i C ��.˛ C cL/ci � ��˛cL � 2ˇ�2 D 0:

We choose
ci D .�QC

p
Q2 � 4PR/=.�2�/:

ut
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Fig. 22.14 Each of the plots corresponds to the profit �1 of Firm F1 when Firm F2 decides not
to invest, i.e. �1;D.V1.0/; 0I c1; c2/. The plot in red (II) corresponds to a pair of production costs
.c1; c2/ 2 RNLL , the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the
nil region NLL and the plot in green (III) corresponds to a pair of production costs .c1; c2/ that are
in the single recovery region SR1

We begin by characterizing the boundary of the Nil Nash investment regionNLL
that is composed by a right boundaryRNLL

and a upper boundaryUNLL
. The right

boundary of the Nil Nash investment region NLL (see Fig. 22.13a) is given by the
curve (see Theorem 22.5 and Fig. 22.14)

@�1;D

@v1
.0; 0I c1; c2/ D 0:

Furthermore, the upper boundary of the region NLL is given by the curve (see
Theorem 22.5 and Fig. 22.15)

@�2;D

@v2
.0; 0I c1; c2/ D 0:

We will refer to the boundaries of the region NM
LH as d1 and d4 (see Fig. 22.13b).

The arc d1 is given by the curve (see Theorem 22.6 and Fig. 22.16)

@�1;M1

@v1
.0; 0I c1; c2/ D 0:

The arc d2 is a line segment lM1
characterized in Appendix 1. The boundaries of the

region ND
LH are d2, d3 and d4. The arc d2 is described above. The arc d3 is given

by the curve (see Theorem 22.5 and Fig. 22.17)

@�1;D

@v1
.0; 0I c1; c2/ D 0;

and the arc d4 is given by the curve (see Theorem 22.5 and Fig. 22.18)
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Fig. 22.15 Each of the plots corresponds to the profit �2 of Firm F2 when Firm F1 decides not
to invest, i.e. �2;M2.0; V2.0/I c1; c2/. The plot in red (II) corresponds to a pair of production costs
.c1; c2/ 2 UNLL , the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the
nil region NLL and the plot in green (III) corresponds to a pair of production costs .c1; c2/ that are
in the single recovery region SR2

Fig. 22.16 Each of the plots corresponds to the profit �1 of Firm F1 when Firm F2 decides not
to invest, i.e. �1.V1.0/; 0I c1; c2/. The plot in red (II) corresponds to a pair of production costs
.c1; c2/ 2 d1, the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the
nil region NLH and the plot in green (III) corresponds to a pair of production costs .c1; c2/ that are
in the single favorable region SF1

@�2;D

@v2
.0; 0I c1; c2/ D 0:

22.6 Competitive Nash Investment Region

The competitive Nash investment region C consists of all production costs .c1; c2/
with the property that there is a Nash investment equilibrium .v1; v2/ with the prop-
erty that v1 > 0 and v2 > 0. Hence, the new production costs a1.v1; v2/ and
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Fig. 22.17 Each of the plots corresponds to the profit �1 of Firm F1 when Firm F2 decides not
to invest, i.e. �1;D.V1.0/; 0I c1; c2/. The plot in red (II) corresponds to a pair of production costs
.c1; c2/ 2 d3, the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the
nil region NLH and the plot in green (III) corresponds to a pair of production costs .c1; c2/ that are
in the single favorable region SF1

Typesetting:-mverbatim ("I#v2G6"")

Fig. 22.18 Each of the plots corresponds to the profit �2 of Firm F2 when Firm F1 decides not
to invest, i.e. �2;D.0; V2.0/I c1; c2/. The plot in red (II) corresponds to a pair of production costs
.c1; c2/ 2 d4, the plot in blue (I) corresponds to a pair of production costs .c1; c2/ that are in the
single recovery region SR2 and the plot in green (III) corresponds to a pair of production costs
.c1; c2/ that are in the nil region NLH

a2.v1; v2/ of firms F1 and F2 are smaller than the actual production costs c1 and c2
of the firms F1 and F2, respectively.

In Fig. 22.2, the boundary of region C consists of four piecewise smooth curves:
The curve C1 is characterized by a1.v1/ D c1 i.e. v1 D 0; the curve C2 is
characterized by a2.v2/ D c2 i.e. v2 D 0; the curve C3 corresponds to points
.c1; c2/ such that the Nash investment equilibrium .a1.v1/; a2.v2// has the property
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Fig. 22.19 Firms’ investments in the competitive Nash investment region. The competitive Nash
investment region is colored green, the single Nash investment region S1 (respectively S2) is
colored blue (respectively red) and the nil Nash investment region N is colored grey

that �1.a1; a2/ D �1.a1; c2/; and the curve C4 corresponds to points .c1; c2/
such that the Nash investment equilibrium .a1.v1/; a2.v2// has the property that
�1.a1; a2/ D �1.c1; a2/.

The curve C2 (respectively C1) is the common boundary between the competi-
tive region C and the single recovery region SR2 (respectively SR1 ). The boundary
C3 can be decomposed in three parts CD3 , CB3 and CM3 . The boundaryCD3 consists
of all points in C3 between the points P3 and E3 (see Fig. 22.19). The boundary
CD3 � fP3g has the property of being contained in the lower boundary of the sin-
gle duopoly region SD2 of firm F2. The boundary CB3 consists of all points in C3
between the points E3 and F3 (see Fig. 22.19). The boundary CB3 has the property
of being contained in the lower boundary of the single monopoly boundary region
SB2 of firm F2. The boundary CM3 consists of all points in C3 between the points
F3 and V (see Fig. 22.19). The boundary CM3 has the property of being contained
in the lower boundary of the single monopoly boundary region SB2 of firm F2. Due
to the symmetry, a similar characterization holds for the boundary C4. The points
P3, P4, Q and V are the corners of the competitive region C (see Fig. 22.19). The
pointQ is characterized by being in the intersection between the competitive region
C and the nil Nash region NLL. The point P3 (respectively P4) is characterized
by being in the intersection between the competitive region C and the nil region
ND

HL (respectively ND
LH ). The point E3 in the boundary of the competitive region

C is characterized by belonging to the boundaries of the single duopoly region SD2
and the single monopoly boundary region SB2 (see Fig. 22.19). The point F3 in the
boundary of the competitive region C is characterized by belonging to the bound-
aries of the single monopoly boundary region SB2 and the single monopoly region
SM2 (see Fig. 22.19).
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22.7 Conclusions

The following conclusions are valid in some parameter region of our model. We
described four main economic regions for the R&D deterministic dynamics corre-
sponding to distinct perfect Nash equilibria: a competitive Nash investment region
C where both firms invest, a single Nash investment region for firm F1, S1, where
just firm F1 invests, a single Nash investment region for firm F2, S2, where just firm
F2 invests, and a nil Nash investment region N where neither of the firms invest.

The nil Nash investment region has four subregions:NLL, NLH , NHL andNHH .
The single Nash investment region can be divided into four subregions: the single
favorable region for firm F1, SF1 , the single recovery region for firm F1, SR1 , the
single favorable region for firm F2, SF2 , the single recovery region for firm F2,
SR2 . The single favorable region SF1 (due to the symmetry the same characteriza-
tion holds for SF2 ) is the union of three disjoint regions: the single duopoly region
SD1 where the production costs, after the investments, belong to the duopoly region
D; the single monopoly boundary region SB1 where the production costs, after the
investments, belong to the boundary of the monopoly region lM1

; and the single
monopoly region SM1 where the production costs, after the investments, belong to
the monopoly regionM1.

We exhibited regions where the Nash investment equilibrium are not unique: the
intersection RS1\S2

between the single Nash investment region S1 and the single
Nash investment regionS2 is non-empty; the intersectionRSi\C , between the single
Nash investment region Si and the competitive Nash investment region C is non-
empty; the intersection RS1\C\S2

between the single Nash investment region S1,
the single Nash investment region S2 and the competitive Nash investment region
C is non-empty.
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1838. English edition: Researches into the Mathematical Principles of the Theory of Wealth.
In: Bacon, N. (ed.). Macmillan, New York (1897)

6. DeBondt, R.: Spillovers and innovative activities. Int. J. Indust. Organ. 15, 1–28 (1997)
7. Ferreira, M., Oliveira, B., Pinto, A.A.: Patents in new technologies. J. Differ. Equ. Appl. 15,

1135–1149 (2009)
8. Ferreira, M., Oliveira, B., Pinto, A.A.: Piecewise R&D Dynamics on costs. Fasciculi Mathe-

matici (2009)
9. Ferreira, F.A, Ferreira, F., Ferreira, M., Pinto, A.A.: Quantity competition in a differen-

tiated duopoly. Intelligent Engineering Systems and Computational Cybernetics. Springer,
Netherlands (2008)

10. Kamien, M., Muller, E., Zang, I.: Research joint ventures and R&D cartels. Am. Econ. Rev.
82, 1293–1306 (1992)

11. Kamien, M., Zang, I.: Competing research joint ventures. J. Econ. Manag. Strategy 2, 23–40
(1993)

12. Katz, M.: An analysis of cooperative research and development. RAND J. Econ. 17, 527–543
(1986)

13. Mudur, G.S.: Maths for movies, medicine & markets. The Telegraph Calcutta, India,
20/09/2010

14. Pinto, A.A.: Game Theory and Duopoly Models. Interdisciplinary Applied Mathematics.
Springer (2011)

15. Pinto, A.A., Oliveira, B., Ferreira, F.A., Ferreira, M.: Investing to survive in a duopoly model.
Intelligent Engineering Systems and Computational Cybernetics. In: Tenreiro Machado, J.A.,
Patkai, B., Rudas, I.J. (eds.) Springer, Netherlands, Chapter 23, 407–414 (2008)

16. Qiu, D.L.: On the dynamic efficiency of Bertrand and Cournot equilibria. J. Econ. Theory 75,
213–229 (1997)

17. Ruff, L.: Research and technological progress in a Cournot economy. J. Econ. Theory 1,
397–415 (1997)

18. Singh, N., Vives, X.: Price and quantity competition in a differentiated duopoly. RAND J.
Econ. 15, 546–554 (1984)



Chapter 23
Computation of Genus and Braid Index
for Renormalizable Lorenz Links

Nuno Franco and Luı́s Silva

Abstract We present some recent results concerning the structure of renormal-
izable Lorenz links. Then we use these results to derive formulae for the com-
putation of knot and link invariants. Finally we analyze the complexity of the
algorithms obtained and compare it with the complexity of the algorithms derived
from the definitions, obtaining a reduction from exponential complexity, in the
classic algorithms, to linear in our algorithms.

23.1 Introduction

Let �t be a flow on S3 with countably many periodic orbits .�n/1nD1. We can look to
each closed orbit as a knot in S3. It was R.F. Williams, in 1976, who first conjectured
that non trivial knotting occur in the Lorenz system [12]. In 1983, Birmann and
Williams introduced the notion of template, in order to study the knots and links (i.e.
finite collections of knots, taking into account the knotting between them) contained
in the geometric Lorenz attractor [2].

To study these families of knots and links we consider related families of invari-
ants. In this paper we will be concerned with the genus and the braid index. These
invariants are easy to compute using symbolic dynamics. Unfortunately the com-
plexity of these computations increases very fast (sometimes exponentially) with
the length of the symbolic sequence considered. Since the length of the sequences
related with n-renormalizable maps increases exponentially with n, this makes it
impossible to compute these invariants for n-renormalizable maps, even for small
values of n, using the classic algorithms (constructed directly from the definitions).
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59, 7000-671 Évora, Portugal
e-mail: nmf@uevora.pt

L. Silva
CIMA-UE and Scientific Area of Mathematics, Instituto Superior de Engenharia de Lisboa,
Rua Conselheiro Emı́dio Navarro, 1, 1959-007 Lisbon, Portugal
e-mail: lfs@dec.isel.ipl.pt

M.M. Peixoto et al. (eds.), Dynamics, Games and Science II, Springer Proceedings
in Mathematics 2, DOI 10.1007/978-3-642-14788-3 23,
c� Springer-Verlag Berlin Heidelberg 2011

301

nmf@uevora.pt
lfs@dec.isel.ipl.pt


302 N. Franco and L. Silva

In this paper we present two algorithms based on the formulae presented in [10],
that allow us to compute the braid index and the genus for n-renormalizable maps
with very large n. These algorithms give us an exceptional tool to compute those
invariants, as dramatically reduce the complexity and computing time.

We define a Lorenz flow as a semi-flow that has a singularity of saddle type
with a one-dimensional unstable manifold and an infinite set of hyperbolic peri-
odic orbits, whose closure contains the saddle point (see [8]). A Lorenz flow,
together with an extra geometric assumption (see [13]) is called a geometric Lorenz
flow. The dynamics of this type of flows can be described by the iteration of
one-dimensional first-return maps f W Œa; b� n fcg ! Œa; b� with one discontinuity
at c 2�a; bŒ, increasing in the continuity intervals Œa; cŒ and �c; b� and boundary
anchored (i.e. f .a/ D a and f .b/ D b), see [8]. These maps are called Lorenz maps
and sometimes we denote them by f D .f�; fC/, where f� and fC correspond,
respectively, to the left and right branches.

23.2 Symbolic Dynamics of Lorenz Maps

Symbolic dynamics is a very useful combinatoric tool to study the dynamics of
one-dimensional maps.

Let f j D f ı f j�1, f 0 D id, be the j th iterate of the map f . We define the
itinerary of a point x under a Lorenz map f as if .x/ D .if .x//j ; j D 0; 1; : : : ;

where

.if .x//j D
8
<

:

L if f j .x/ < 0
0 if f j .x/ D 0
R if f j .x/ > 0

:

It is obvious that the itinerary of a point x will be a finite sequence in the symbols
L and R with 0 as its last symbol, if and only if x is a pre-image of 0 and otherwise
it is one infinite sequence in the symbols L and R. So we consider the symbolic
space ˙ of sequences X0 � � �Xn on the symbols fL; 0;Rg, such that Xi ¤ 0 for all
i < n and: n D 1 or Xn D 0, with the lexicographic order relation induced by
L < 0 < R.

It is straightforward to verify that, for all x; y 2 Œ�1; 1�, we have the following:

1. If x < y then if .x/ � if .y/.
2. If if .x/ < if .y/ then x < y.

We define the kneading invariant associated to a Lorenz map f D .f�; fC/, as

Kf D .K�f ; KCf / D .Lif .f�.0//; Rif .fC.0///:

We say that a pair .X; Y / 2 ˙ � ˙ is admissible if .X; Y / D Kf for some
Lorenz map f . Denote by ˙C, the set of all admissible pairs.

Consider the shift map s W ˙ n f0g ! ˙ , s.X0 � � �Xn/ D X1 � � �Xn. The set of
admissible pairs is characterized, combinatorially, in the following way (see [7]).



23 Computation of Genus and Braid Index for Renormalizable Lorenz Links 303

Proposition 23.1. Let .X; Y / 2 ˙ �˙ , then .X; Y / 2 ˙C if and only if X0 D L,
Y0 D R and, for Z 2 fX; Y g we have:

(1) If Zi D L then si .Z/ � X ;
(2) If Zi D R then si .Z/ � Y ;

with inequality (1) (respectively (2)) strict if X (respectively Y ) is finite.

23.2.1 Renormalization and �-Product

In the context of Lorenz maps, we define renormalizability on the following way,
see for example [13]:

Definition 23.1. Let f be a Lorenz map, then we say that f is renormalizable if
there exist n;m 2 N with nCm � 3 and points P < yL < 0 < yR < Q such that

g.x/ D
�
f n.x/ if W yL � x < 0
f m.x/ if W 0 < x � yR

is a Lorenz map.
The mapR.n;m/.f / D g D .f n; f m/ is called the .n;m/-renormalization of f .

Let jX j be the length of a finite sequenceX D X0 � � �XjX j�10, it is reasonable to
identify each finite sequenceX0 � � �XjX j�10with the corresponding infinite periodic
sequence .X0 � � �XjX j�1/1, this is the case, for example, when we talk about the
knot associated to a finite sequence.

It is easy to prove that a pair of finite sequences

.X0 : : : XjX j�10; Y0 : : : YjY j�10/

is admissible if and only if the pair of infinite periodic sequences

..X0 � � �XjX j�1/1; .Y0 � � �YjY j�1/1/

is admissible.
We define the �-product between a pair of finite sequences .X; Y / 2 ˙ �˙ , and

a sequence U 2 ˙ as

.X; Y / � U D U 0U 1 � � �U jU j�10;

where

U i D
�
X0 : : : XjX j�1 if Ui D L
Y0 : : : YjY j�1 if Ui D R :

Now we define the �-product between two pairs of sequences, .X; Y /; .U; T / 2
˙ �˙ , X and Y finite, as

.X; Y / � .U; T / D ..X; Y / � U; .X; Y / � T /:
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The next theorem states that the reducibility relative to the �-product is equivalent
to the renormalizability of the map. The proof can be found, for example, in [7].

Theorem 23.1. Let f be a Lorenz map, then f is renormalizable with renormal-
ization R.n;m/.f / iff there exist two admissible pairs .X; Y / and .U; T / such that
jX j D n, jY j D m, Kf D .X; Y / � .U; T / andKR.n;m/.f / D .U; T /.

We know from [7] that .X; Y / � .U; T / 2 ˙C if and only if both .X; Y / 2 ˙C
and .U; T / 2 ˙C, so for each finite admissible pair .X; Y /, the subspace .X; Y / �
˙C is isomorphic to the all space ˙C, this provides a self-similar structure in the
symbolic space of kneading invariants. It is straightforward to verify that the �-
product of kneading invariants is associative, consequently this self-similar structure
is nested. The following proposition states that the order structure is reproduced at
each level of renormalization.

Proposition 23.2. Let .X; Y / be one admissible pair of finite sequences, and Z <

Z0, then .X; Y / �Z < .X; Y / �Z0.
The proof is straightforward.

23.3 Lorenz Knots and Links

Let n > 0 be an integer. We denote by Bn the braid group on n strings given by the
following presentation:

Bn D
�

1; 
2; : : : ; 
n�1

ˇ̌
ˇ̌
i
j D 
j 
i .ji � j j � 2/

i
iC1
i D 
iC1
i
iC1 .i D 1; : : : ; n � 2/

�
:

Where 
i denotes a crossing between the strings occupying positions i and i C 1,
such that the string in position i crosses (in the up to down direction) over the other,
analogously 
�1i , the algebraic inverse of 
i , denotes the crossing between the same
strings, but in the negative sense, i.e., the string in position i crosses under the other.
A positive braid is a braid with only positive crossings. A simple braid is a positive
braid such that each two strings cross each other at most once. So there is a canonical
bijection between the permutation group˙n and the set Sn, of simple braids with n
strings, which associates to each permutation � , the braid b� , where each point i is
connected by a straight line to �.i/, keeping all the crossings positive.

Let X be a periodic sequence with least period k and let ' 2 ˙k be the permu-
tation that associates to each i , the position occupied by si .X/ in the lexicographic
ordering of the k-tuple .s.X/; : : : ; sk.X// (sk.X/ D X ). Define � 2 ˙k to be the
permutation given by �.'.i// D '.i mod k C 1/, i.e., �.i/ D '.'�1.i/C 1/. We
associate to � the corresponding simple braid b� 2 Bk and call it the Lorenz braid
associated to X . Since X is periodic, this braid represents a knot, and we call it the
Lorenz knot associated to X .
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Example. Let XD.LRRLR/1. Hence we have s5.X/DX , s.X/D.RRLRL/1,
s2.X/ D .RLRLR/1, s3.X/ D .LRLRR/1 and s4.X/ D .RLRRL/1. Now,
ordering the si .X/ we obtain s3.X/ < s5.X/ < s2.X/ < s4.X/ < s.X/ and
' D .1; 5; 2; 3/ written as a disjoint cycle. Finally we obtain � D .1; 4; 2; 5; 3/ and
b� D 
2
1
3
2
4
3.

We can also generalize the previous algorithm to be used in the case of a p-tuple
of symbolic periodic sequences .X1; : : : ; Xp/ with periods .k1; : : : ; kp/. In this
case the permutation ' 2 ˙k1C���Ckp

is the permutation that describes the lexico-
graphic ordering of the .k1 C � � � C kp/-tuple .s.X1/; : : : ; sk1.X1/; : : : ; s.Xp/ : : :,
skp .Xp// and � 2 ˙k1C���Ckp

is defined by �.'.i// D '.i C 1/ if there is no q
such that i D k1C� � �Ckq and �.'.i// D '.k1C� � �Ckq�1C1/ if i D k1C� � � kq ,
assuming k0 D 0 (Fig. 23.1).

Remark 23.1. What we are doing here is simply to mark in two parallel lines, k1 C
� � � C kp points, corresponding in a ordered way, to the sequences sij .Xj /, j D
1; : : : ; p, ij D 1; : : : ; kj and connect by straight lines the points corresponding to
sij .Xj /with the points corresponding to sijC1.Xj /, keeping the crossings positive.

A template is a compact branched two-manifold with boundary and a smooth
expansive semiflow built locally from two types of charts: joining charts and split-
ting charts. Each chart carries a semiflow, endowing the template with an expanding
semiflow, and the gluing maps between charts must reflect the semiflow and act
linearly on the edges.

Following [4], we can take a semigroup structure on braided templates. The
generators of the braided template semigroup are (see Fig. 23.2):

1. 
i̇ , a positive (respectively negative) crossing between the strips occupying the
i th and .i C 1/th positions.

2. �i̇ , a half twist in the strip occupying the i th position, in the positive (respec-
tively negative) sense.

3. ˇi̇ , a branch line chart with the i th and .i C 1/th strips incoming , 2 outgoing
strips and either a positive (ˇi ) or negative (ˇ�i ) crossing at the branch line.

Fig. 23.1 The Lorenz knot associated to X D .LRRLR/1
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Fig. 23.2 Generators of the braided template semigroup

Given any pair of finite admissible sequences .X; Y /, we define the tail’s length
m.X; Y / as

m.X; Y / D minfi � 0 W XjX j�1�i ¤ YjY j�1�i g
For a finite sequence S , let nL.S/ D #fSi W 0 � i < jS j and Si D Lg, nR.S/ D

#fSi W 0 � i < jS j and Si D Rg.
Let .X; Y / be a finite admissible pair and j D �.jX j � m.X; Y // be the

relative position of XjX j�m.X;Y /, then we associate to .X; Y / a subtemplate
R.X; Y /, the renormalization subtemplate associated to .X; Y /, substituting each
string of the braid associated to .X; Y / by a strip and adding ˇj̇ according if
XjX j�m.X;Y /�1 D L or XjX j�m.X;Y /�1 D R, respectively.

The next theorem describes the structure of renormalizable Lorenz links and it
was demonstrated in [10].

Theorem 23.2. Let .X; Y / be one admissible pair of finite sequences and
.Z1; : : : ; Zn/ be a n-tuple of sequences whose associated Lorenz link haves braid
word 
p1

� � �
pk
, then the Lorenz link associated to ..X; Y /�Z1; : : : ; .X; Y /�Zn/

is the Lorenz link contained in R.X; Y / with:

1. jZ1j C � � � C jZnj strings in each strip if si .X1/ D Y1 for some i < jX j.
2. nL.Z1/C� � �CnL.Zn/ strings in each strip associated toX and nR.Z1/C� � �C
nR.Z

n/ strings in each strip associated to Y if si .X1/ ¤ Y1 for all i < jX j.
In both cases, the braid word of the restriction to the branch line chart ˇj (respec-
tively ˇ�j ) is 
qCp1

� � �
qCpk
(respectively 
�1qCp1

� � �
�1qCpk
), where q C 1 is the

index of the left-most string getting in ˇj .
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23.4 The Formulas

The previous theorem allow us to deduce formulas to compute the trip number and
genus of renormalizable Lorenz knots and links. These formulas where all obtained
in [10].

We start introducing some terminology, following [2].
Let ˇ be a Lorenz braid, then:

1. The string index is the number n of strings in ˇ. It is the sum of the word lengths.
2. The braid index of a knot is the minimum string index among all closed braid

representatives of that knot.
3. The crossing number c is the number of double points in the projected image of

the Lorenz braid ˇ.
4. The linking number l.X; Y / is the number of crossings between one string from

the knot associated to X and one string from the knot associated to Y .
5. The genus g of a link L is the genus of M , where M is an orientable surface of

minimal genus spanned by L.
6. The trip number, t , of a finite sequence X , is the number of syllables in X , a

syllable being a maximal subword of X , of the form LaRb.

Remark 23.2. Birmann and Williams conjectured in [2] that, for the case of a Lorenz
knot � , b.�/ D t.�/, where t.�/ is the trip number of the finite sequence associated
to � . In [11], following a result obtained by Franks and Williams in [6], Waddington
observed that this conjecture is true. So our computations will be done about the trip
number t .

From now on we freely identify the Lorenz knots (respectively links) with the
corresponding periodic sequences (respectively n-tuples of periodic sequences).
Denote nL.S/ D #fSi W 0 � i < jS j and Si D Lg, nR.S/ D #fSi W 0 � i <

jS j and Si D Rg.
Let .X; Y / and .S;W / be two Lorenz links, defined by the corresponding sym-

bolic sequences, and .A.n/; B.n// D .X; Y / � .S;W /n D .X; Y / � .S;W /n�1 �
.S;W /. We must consider four distinct cases:

� Case 1: XjX j�m.X;Y /�1 D SjS j�m.S;W /�1 D L. In this case we have that
A.n/jA.n/j�m.A.n/;B.n//�1 D L for all n.

� Case 2: XjX j�m.X;Y /�1 D L and SjS j�m.S;W /�1 D R. In this case we have that

A.n/jA.n/j�m.A.n/;B.n//�1 D
�
L if n is even
R if n is odd

:

� Case 3: XjX j�m.X;Y /�1 D R and SjS j�m.S;W /�1 D L. In this case we have that
A.n/jA.n/j�m.A.n/;B.n//�1 D R for all n.

� Case 4: XjX j�m.X;Y /�1 D SjS j�m.S;W /�1 D R. In this case we have that

A.n/jA.n/j�m.A.n/;B.n//�1 D
�
L if n is odd
R if n is even

:
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23.4.1 Trip Number

If XjX j�1 D YjY j�1, then

t..X; Y / � S/ D nL.S/t.X/C nR.S/t.Y /:

If XjX j�1 ¤ YjY j�1, then

t..X; Y / � S/ D nL.S/t.X/C nR.S/t.Y /˙ t.S/;

where we take the signalC in t.S/ if XjX j�1 D L and signal � otherwise.
Now for each n 2 N we have:

1. If XjX j�1 D YjY j�1, then

�
t..X; Y / � .S;W /n�1 � S/
t..X; Y / � .S;W /n�1 �W /


D
�
nL.S/ nR.S/

nL.W / nR.W /

n �
t.X/

t.Y /


:

2. If XjX j�1 ¤ YjY j�1 and SjS j�1 ¤ WjW j�1, then

�
t..X; Y / � .S;W /n�1 � S/
t..X; Y / � .S;W /n�1 �W /


D
�
nL.S/ nR.S/

nL.W / nR.W /

n �
t.X/

t.Y /



CPn�1
iD0 ai

�
nL.S/ nR.S/

nL.W / nR.W /

i �
t.S/

t.W /



In Case 1 ai D 1 for all i ; in Case 2 ai D .�1/iCnC1; in Case 3 ai D �1 for all
i ; in Case 4 ai D .�1/iCn.

3. If XjX j�1 ¤ YjY j�1 and SjS j�1 D WjW j�1, then

�
t..X; Y / � .S;W /n�1 � S/
t..X; Y / � .S;W /n�1 �W /



D
�
nL.S/ nR.S/

nL.W / nR.W /

n�1 �
t..X; Y / � S/
t..X; Y / �W /



D
�
nL.S/ nR.S/

nL.W / nR.W /

n�1 ��
nL.S/ nR.S/

nL.W / nR.W /

 �
t.X/

t.X/


˙
�
t.S/

t.W /

�

where we take the signalC in the last summand if XjX j�1 D L and the signal �
otherwise.
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23.4.2 Genus

We start again by presenting the formula for n D 1:

g..X; Y / � S/
D c.X/nL.S/

2Cc.Y /nR.S/
2Cl.X;Y /nL.S/nR.S/�nL.S/jX j�nR.S/jY jC1˙c.S/

2
;

where we take the signalC in c.S/ if XjX j�m D L and the signal � otherwise.
Now, considering the matrices

A33 D

2
64

nL.S/
2 nL.W /

2 2nL.S/nL.W /

nR.S/
2 nR.W /

2 2nR.S/nR.W /

nL.S/nR.S/ nL.W /nR.W / nL.W /nR.S/C nL.S/nR.W /

3
75

and

B13 D
2

4
.nL.S/C nL.W //2
.nR.S/C nR.W //2

.nL.S/C nL.W //.nR.S/C nR.W //

3

5 ;

for each n 2 N we have:

g..X; Y / � .S;W /n/

D 1

2

0

B@



Œc.X/c.Y /l.X; Y /� An�133 C Œc.S/c.W /l.S;W /�

Pn�2
iD0 aiAi33

�
B13

C˛c.S;W / � ŒjX jjY j�
�
nL.S/ nL.W /

nR.S/ nR.W /

n �
1

1



1

CA :

In Case 1 ai D 1 D ˛ for all i ; in Case 2 ai D .�1/iCn and ˛ D .�1/nC1; in
Case 3 ai D �1 D ˛ for all i ; in Case 4 ai D .�1/iCnC1 and ˛ D .�1/n.

23.5 The Algorithms

We start presenting two formulas that will be used through this section.

Theorem 23.3 (Birman and Williams [3]). Let L be a non-separable link of �
components, presented as a positive braid on N strands with c crossings. Then
g.L/, the genus of L, is given as

g.L/ D c �N � �
2

C 1:

Remark 23.3. In [3] it is presented a formula to compute a braid representative of
the lorenz link with a minimal number of strings. We could be tempted, in a first
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attempt, to use this simpler way to obtain a braid and hence to compute the genus of
the Lorenz link. The problem with this approach is that the complexity of computing
the Lorenz permutation of a Lorenz link .X; Y /� .S;W /n grows exponentially with
n. The major advantage of our formulae is to skip this expensive step.

Lemma 23.1. LetZ be a Lorenz link with Lorenz permutation�Z and Lorenz braid
bZ , then

c.bZ/ D
nL.Z/X

iD1
�Z.i/� i:

Proof. Each string that goes from i to �Z.i/ will cross exactly �Z.i/ strings arriv-
ing from the right side minus the number of strings that previously arrived to
position j < �Z.i/ and departed from position k � i: This gives the formula
since 1 � k � i . ut

We will now present the algorithms to be tested.

The Trip Number Definition Algorithm (TD)

INPUT: A pair of Lorenz links .X; Y /; .S;W / and an integer n.

1. Compute the star product .X; Y / � .S;W /n.
2. Compute the vector T ..X; Y / � .S;W /n/ D .t..X; Y / � .S;W /n�1 �
S; t..X; Y / � .S;W /n�1 �W /// using the definition.

OUTPUT: T ..X; Y / � .S;W /n/.

The Genus Definition Algorithm (GD)

INPUT: A pair of Lorenz links .X; Y /; .S;W / and an integer n.

1. Compute the star product .X; Y / � .S;W /n.
2. Compute c..X; Y / � .S;W /n/.
3. Compute j.X; Y / � .S;W /nj.
4. Compute the genus G D g..X; Y / � .S;W /n/ using the formula from

Theorem 23.3.

OUTPUT: The integer G, the genus of .X; Y / � .S;W /n.

The Trip Number Formulae Algorithm (TF)

INPUT: A pair of Lorenz links L1 D .X1; X2/; L2 D .X3; X4/ and an integer n.

1. Compute nL.Xi /; nR.Xi /; c.Xi /; c.Lj / for i D 1; : : : ; 4 and j D 1; 2.
2. Compute the vector T D t.L1 �Ln2/ using the formulas in the previous section.

OUTPUT: T D t.L1 � Ln2/.
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The Genus Formulae Algorithm (GF)

INPUT: A pair of Lorenz links L1 D .X1; X2/; L2 D .X3; X4/ and an integer n.

1. Compute nL.Xi /; nR.Xi /; c.Xi /; c.Lj / for i D 1; : : : ; 4 and j D 1; 2.
2. Compute the genusG D g.L1 �Ln2/ using the formulas in the previous section.

OUTPUT: The integer G, the genus of L1 � Ln2 .
Now we will evaluate the (worst case) complexity of the previous algorithms in

order to obtain upper bounds for them.

Proposition 23.3. Given a pair of Lorenz links, .X; Y /, .S;W /, then the algorithms
TD and GD exhibit exponential complexity with n and the algorithms TF and GF
exhibit linear complexity.

Proof. We start by analyzing the complexity of the �-product. Given two links
L1 D .X; Y / and L2 D .S;W /, in order to compute L D L1 � L2 we just replace
each appearance of L (respectively R) in L2 by X (respectively Y ). This is done
with complexity O.jS j C jW j/, so to compute L D L1 � Ln2 we have complex-
ity O..jS j C jW j/n/. The length of L is bounded by .jX j C jY j/.jS j C jW j/n.
The complexity of computing the crossings of the Lorenz link Z D .Z1; : : : ; Zk/

(using the Lorenz permutation) depends, by Lemma 23.1, linearly on the complexity
of computing the Lorenz permutation �Z . To obtain �Z we must order the ele-
ments si .Zj / with i D 1; : : : ; jZj j and j D 1; : : : ; k. This ordering can be done,

classically, with complexity O..
Pk
iD1 jZi j/ log.

Pk
iD1 jZi j//. Hence the complex-

ity for computing C.Z/ is O.nL.Z/.
Pk
iD1 jZi j/ log.

Pk
iD1 jZi j//. Notice that we

can compute both nL.X/ and nR.X/ at the same time in O.jX j/ time. Counting
the number of syllables of type LjRi takes also linear time in the length of the
sequence. The complexity for computing An, where A is a fixed square matrix is
O.n/. So we have the following complexities:

� Algorithm TD: O..1C jX j C jY j/.jS j C jW j/n/:
� Algorithm TF: O.jX j2 log.jX j//CO.jY j2 log.jY j//
CO.jS j2 log.jS j//CO.jW j2 log.jW j//C O..jX j C jY j/2 log.jX j C jY j//C
O..jS jC jW j/2 log.jS jC jW j//CO.nTX;Y;S;W / D O..jX jC jY j/2 log.jX jC
jY j//CO..jS j C jW j/2 log.jS j C jW j//CO.nTX;Y;S;W /.

� Algorithm GD: O..jS j C jW j/n/ C O..jX j C jY j/.jS j C jW j/2n log..jX j C
jY j/.jS j C jW j/n// D O..log.jX j C jY j//.jX j C jY j/.jS j C jW j/2n
C n.jX j C jY j/.jS j C jW j/2nC1/:

� Algorithm GF: O.jX j2 log.jX j//CO.jY j2 log.jY j//CO.jS j2 log.jS j//
CO.jW j2 log.jW j//CO..jX jCjY j/2 log.jX jCjY j//CO..jS jCjW j/2 log.jS jC
jW j// C O.nGX;Y;S;W / D O..jX j C jY j/2 log.jX j C jY j// C O..jS j C
jW j/2 log.jS j C jW j//CO.nGX;Y;S;W /.
Where TX;Y;S;W (respectivelyGX;Y;S;W ) represents the cost of the matrix multi-

plications in the Trip Number (respectively Genus) formula.
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To illustrate the effectiveness of our algorithms we selected randomly 1,000 pairs
of Lorenz links L1; L2 and computedL1 �Ln2 with n D 1; : : : ; 6. The Lorenz links
are built from irreducible sequences up to level 10 in the Farey tree (see [9]). We
computed the average of the running times for the trip number and the genus (only
using the formula), sorted by trip number (see Tables 23.1, 23.2 and 23.3). It was not
possible to use the classical algorithm to compute the genus, under renormalization,
because the lack of computer power and memory. In fact for a random pair of Lorenz
links we get systematically “out of memory” message. This is due to the fact that
computing the �-product and reordering all the shifts, for computing the Lorenz
permutation, takes too much resources.

Table 23.1 Results of the computations using algorithm TF (time in seconds)

Trip n D 1 n D 2 n D 3 n D 4 n D 5 n D 6

2 0:002325 0:003600 0:003500 0:003100 0:005150 0:005450

3 0:003237 0:002895 0:002447 0:002868 0:002895 0:005737

4 0:002678 0:003023 0:004172 0:003943 0:007149 0:007483

5 0:002918 0:004071 0:003988 0:003694 0:005424 0:004765

6 0:002833 0:004402 0:003576 0:004750 0:005295 0:006598

7 0:003020 0:003444 0:004131 0:005687 0:006303 0:006505

8 0:002367 0:002677 0:004567 0:004642 0:007687 0:005963

9 0:003543 0:002391 0:004880 0:004935 0:004076 0:006076

10 0:002785 0:003514 0:003776 0:005075 0:004075 0:006224

11 0:002350 0:003133 0:004050 0:004133 0:005417 0:009683

12 0:002818 0:004515 0:003530 0:005455 0:005652 0:010879

13 0:001778 0:000889 0:004444 0:005278 0:005278 0:007722

14 0:004813 0:004875 0:005813 0:006875 0:005813 0:011688

15 0:001632 0:004158 0:004105 0:006579 0:005000 0:011474

16 0:005643 0:004429 0:006714 0:004429 0:004429 0:013429

Table 23.2 Results of the computations using algorithm TD (time in seconds)

Trip n D 1 n D 2 n D 3 n D 4 n D 5 n D 6

2 0:000400 0:006250 0:029250 0:151325 0:992575 5:908250

3 0:001605 0:011947 0:091579 0:484079 3:848842 18:043000

4 0:000724 0:014333 0:132850 1:201874 10:989299 25:686759

5 0:001259 0:030682 0:202459 1:778259 16:486611 30:499059

6 0:001280 0:023228 0:257932 3:012310 24:085773 35:740773

7 0:000949 0:047424 0:331495 3:689444 27:710505 32:048919

8 0:001978 0:042709 0:414291 5:384129 36:054769 ?

9 0:000859 0:046098 0:516076 6:699478 36:390554 ?

10 0:001607 0:040150 0:598673 9:000421 34:995813 ?

11 0:001300 0:047383 0:807850 12:755267 31:692850 ?

12 0:002091 0:058348 1:031470 15:913545 30:815955 ?

13 0:004222 0:057944 0:944556 17:046333 32:592167 ?

14 0:003813 0:063375 1:205063 20:203875 ? ?

15 0:003316 0:069842 1:255579 26:708316 ? ?

16 0:006714 0:078143 1:531143 35:499286 ? ?
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Table 23.3 Results of the computations using algorithm GF (time in seconds)

Trip n D 1 n D 2 nD 3 n D 4 n D 5 nD 6 n D 7 n D 8 nD 9 n D 10

2 0:01400 0:01480 0:01688 0:02068 0:02933 0:02410 0:03310 0:03193 0:03430 0:03795

3 0:01120 0:01478 0:01595 0:02103 0:02140 0:02505 0:02883 0:03090 0:03548 0:03743

4 0:01783 0:01520 0:01709 0:02406 0:02382 0:02642 0:03540 0:03293 0:03859 0:04227

5 0:01995 0:01901 0:02389 0:02151 0:02392 0:02766 0:03273 0:03257 0:04154 0:03829

6 0:01491 0:01665 0:01959 0:02238 0:02523 0:03159 0:03311 0:03444 0:03707 0:04741

7 0:01489 0:01751 0:01915 0:02342 0:02523 0:03040 0:03123 0:04570 0:03969 0:04063

8 0:01916 0:02055 0:02265 0:02329 0:02505 0:02941 0:03207 0:03953 0:03774 0:04464

9 0:01841 0:01853 0:02097 0:02270 0:02689 0:02974 0:03592 0:03904 0:03892 0:04395

10 0:01705 0:01986 0:02203 0:02730 0:03022 0:03053 0:03412 0:03623 0:04204 0:04484

11 0:02037 0:02096 0:02294 0:02482 0:02780 0:03094 0:03594 0:04392 0:03945 0:04810

12 0:01867 0:02053 0:02323 0:02656 0:02846 0:03725 0:04021 0:03775 0:04512 0:04463

13 0:01915 0:02042 0:02281 0:02819 0:03173 0:03181 0:03473 0:04188 0:05165 0:04681

14 0:03313 0:02404 0:02546 0:02854 0:03067 0:03383 0:04675 0:04208 0:04088 0:04621

15 0:02655 0:03510 0:02655 0:02965 0:03200 0:03430 0:03595 0:04130 0:04520 0:05835

16 0:02350 0:03150 0:03100 0:03150 0:03100 0:03900 0:03100 0:04650 0:04700 0:04650

Fig. 23.3 Computations of the Genus

In order to test the real possibilities of the formulas we selected a random pair
of links and computed genus (see Fig. 23.3) using the formula for n D 1; : : : ; 5;000
(time is in seconds). The values of the genus reach as high as 0:51167� 1010;659.

We also computed the trip number (see Fig. 23.4) using the formula for
n D 1; : : : ; 300;000 (time is in seconds). The values of the trip number reach
as high as 0:17187� 10288;839

There are two main conclusions to take out of these computations. The first
one is that the algorithms arising from the formulae are much more effective in
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Fig. 23.4 Computations of the Trip Number

the computations of these invariants than the ones arising from the definitions.
The second conclusion is that this formulae allow us to, effectively, compute these
invariants in much deeper regions of renormalization.

These are powerful tools to compute these combinatorial invariants and, in some
future work, they may help us to understand better how these invariants, and it’s
associated Lorenz links, behave assymptotically as we dive in to deeper regions of
renormalization.
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Chapter 24
Statistical Stability for Equilibrium States

Jorge Milhazes Freitas and Mike Todd

Abstract We consider multimodal interval maps with at least polynomial growth
of the derivative along the critical orbit. For these maps Bruin and Todd showed
the existence and uniqueness of equilibrium states for the potential �t W x !
�t logjDf.x/j, for t close to 1. We show that for certain families of this type of
maps the equilibrium states vary continuously in the weak* topology, when we per-
turb the map within the respective family. Moreover, in the case t D 1, when the
equilibrium states are absolutely continuous with respect to Lebesgue, we show that
the densities also vary continuously in the L1 � norm.

24.1 Introduction

One of the main goals in the study of Dynamical Systems is to understand how
the behaviour changes when we perturb the underlying dynamics. We examine the
persistence of statistical properties of a multimodal interval map .I; f /. In particular
we are interested in the behaviour of the Cesaro means 1

n

Pn�1
kD0 � ı f k.x/ for a

potential � W I ! R for “some” points x, as n ! 1. If the system possesses an
invariant physical measure �, then part of this statistical information is described
by � since, by definition of physical measure, there is a positive Lebesgue measure
set of points x 2 I such that

�.x/ WD lim
n!1

1

n

n�1X

kD0
� ı f k.x/ D

Z
� d�:

If for nearby dynamics these measures are proven to be close, then the Cesàro means
do not change much under small deterministic perturbations. This motivated Alves
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and Viana [1] to propose the notion of statistical stability, which expresses the
persistence of statistical properties in terms of the continuity, as a function of the
map f , of the corresponding physical measures.

However, the study of Cesàro means is not confined to the analysis of these
measures. The study of other classes can be motivated through the encoding of
these statistical properties by “multifractal decomposition”, see [14] for a general
introduction. Given ˛ 2 R, we define the sets

B�.˛/ WD fx 2 I W �.x/ D ˛g; B 0� WD fx 2 I W �.x/ does not existg:

Then the multifractal decomposition in this case is

I D B 0� [
 
[

˛

B�.˛/

!
:

Understanding the nature of this decomposition gives us information about the sta-
tistical properties of the system. This can be studied via “equilibrium states”. See
[16] for a fuller account of these ideas, where the theory is applied to subshifts of
finite type. To define equilibrium states, given a potential � W I ! R, we define the
pressure of � to be

P.�/ WD sup

�
h� C

Z
� d�

�
;

where this supremum is taken over all invariant ergodic probability measures. Here
h� denotes the metric entropy of the system .I; f; �/. Any such measure � which
“achieves the pressure”, i.e. h�C

R
� d� D P.�/, is called an equilibrium state for

.I; f; �/.
For a given map f , we are interested in the equilibrium state �t of the “natural”

potential �t W x 7! �t log jDf.x/j for different values of t . For a multimodal map f
and an f -invariant probability measure � we denote the Lyapunov exponent of �
by �.�/ WD R

log jDf j d�. For any f in the class of multimodal maps F which
we define below, Ledrappier [12] showed that for t D 1, there is an equilibrium
state �1 with �.�1/ > 0 if and only if �1 is absolutely continuous with respect to
Lebesgue. We then refer to �1 as an acip. In this setting any acip is also a physical
measure.

Using tools developed by Keller and Nowicki in [11], Bruin and Keller [6] fur-
ther developed this theory, showing that for unimodal Collet–Eckmann maps there
is an equilibrium state �t for �t for all t close to 1. This range of parameters
was extended to all t in a neighbourhood of Œ0; 1� for a special class of Collet–
Eckmann maps by Pesin and Senti [15]. Bruin and Todd showed similar results for
the non-Collet Eckmann multimodal case in [8].

The Lyapunov exponent of a point x 2 I is defined as �1.x/, if this limit exists.
So the set of points with the same Lyapunov exponent is B�1

.˛/. If f is transitive
and there exists an acip then by the ergodic theorem �1.B�1

.�.�1/// D 1. As
shown in [20], under certain growth conditions on f , for a given value of ˛, close to
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�.�1/, there is an equilibrium state �t supported on B�1
.˛/ for some t close to 1.

Therefore, to understand the statistics of the system with potential �1, it is useful to
study the properties of the equilibrium states �t . We mention the pioneer work of
Bohr and Rand [5] that considered the multifractal spectrum for Lyapunov exponent
of non-uniformly expanding interval maps.

24.2 Statement of Results

Let Crit D Crit.f / denote the set of critical points of f . We say that c 2 Crit
is a non-flat critical point of f if there exists a diffeomorphism gc W R ! R with
gc.0/ D 0 and 1 < `c <1 such that for x close to c, f .x/ D f .c/˙jgc .x�c/j`c .
The value of `c is known as the critical order of c. We define `max.f / WD maxf`c W
c 2 Crit.f /g. Throughout H will be the collection of C 2 interval maps which have
negative Schwarzian (that is, 1=

pjDf j is convex away from critical points) and all
critical points non-flat.

For ease of exposition, we will assume that maps in H are non-renormalisable
with only one transitive component˝ of the non-wandering set, a cycle of intervals.
We also assume that for any f 2H , f j .Crit/\ f k.Crit/ ¤ ; implies j D k. For
maps failing this assumption, either f k.Crit/\ Crit ¤ ; for some k 2 N, in which
case we could consider these relevant critical points in a block; or some critical point
maps onto a repelling periodic cycle, which we exclude here for ease of exposition
since our method is particularly tailored to case of more interesting maps where the
critical orbits are infinite. It is also convenient to suppose that there are no points of
inflection.

Let Hr;` 	 H denote the set of maps f 2 H with r critical points with
`max.f / � `. We will consider families of maps in H which satisfy the following
conditions. The first one is the Collet–Eckmann condition: For any r 2 N, ` 2
.1;1/ and C; ˛ > 0, the class Fe.r; `; C; ˛/ is the set

f 2Hr;` such that jDf n.f .c//j � Ce˛n for all c 2 Crit and n 2 N:
(24.1)

Secondly we consider maps satisfying a polynomial growth condition: For any
r 2 N, ` 2 .1;1/, C > 0, and any ˇ > 2`, the class Fp.r; `; C; ˇ/ is the set

f 2Hr;` such that jDf n.f .c//j � Cnˇ for all c 2 Crit and n 2 N:
(24.2)

We will take a map f0 2 F where we suppose that either F D Fe.r; `; C; ˛/ or
F D Fp.r; `; C; ˇ/, and consider the continuity properties of equilibrium states
for maps in F at f0.

We will consider equilibrium states for maps in these families. Suppose first that
F D Fe.r; `; C; ˛/. Then by [8, Theorem 2], there exists an open intervalUF 	 R
containing 1 and depending on ˛ and r so that for f 2 F and t 2 UF the potential
�f;t W x 7! �t log jDf.x/j has a unique equilibrium state � D �f . We note that
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by [13], the fact that there are r critical points gives a uniform upper bound log.rC1/
on the topological entropy, which plays an important role in the computations which
determine UF in [8]. If instead we assume that F D Fp.r; `; C; ˇ/ then by [8,
Theorem 1] we have the same result but instead UF is of the form .tF ; 1� where tF
depends on ˇ; ` and r .

We choose our family F , fix t 2 UF and denote �f;t by �f . For every sequence
.fn/n of maps in F we let �n;t D �fn;t denote the corresponding equilibrium
state for each n with respect to the potential �fn

. We fix f0 2 F and say that �0;t
is statistically stable within the family F if for any sequence .fn/n of maps in F
such that kfn � f0kC2 ! 0 as n ! 1, we have that �0;t is the weak� limit of
.�n;t /n.

Theorem 24.1 ([10]). Let F 	 H be a family satisfying (24.1) or (24.2) with
potentials �f;t as above. Then, for every fixed t 2 UF and f 2 F , the equilibrium
state �f;t as above is statistically stable within the family F .

Although the definition of statistical stability involves convergence of measures
in the weak� topology, when we are dealing with acips, it makes sense to consider
a stronger type of stability due to Alves and Viana [1]: for a fixed f0 2 F , we say
that the acip �f0

is strongly statistically stable in the family F if for any sequence
.fn/n of maps in F such that kfn � f0kC2 ! 0 as n!1 we have

Z ˇ̌
ˇ̌d�fn

dm
� d�f0

dm

ˇ̌
ˇ̌ dm! 0; (24.3)

as n ! 1 where m denotes Lebesgue measure and �fn
and �f0

denote the acips
for fn and f0 respectively. As a byproduct of the proof of Theorem 24.1 we also
obtain:

Theorem 24.2 ([10]). Let F 	 H be a family satisfying (24.1) or (24.2). Then,
for every f 2 F , the acip �f is strongly statistically stable.

For uniformly hyperbolic maps, it is known that the measures do not merely vary
continuously with the map, but actually vary differentiably in the sense of Whitney.
For example, if f0 W M ! M is a C 3 Axiom A diffeomorphism of a manifold M
with an unique physical measure �0, and the family t 7! ft is C 3, then the map
t 7! R

 d�t is differentiable at t D 0 for any real analytic observable WM ! R,
see [17]. We would like to emphasise that the situation for non-uniformly hyperbolic
maps is quite different. For example if F is the class of quadratic maps for which
acips exist then it was shown in [19] that these measures are not even continuous
everywhere in this family, although as proved in [21] they are continuous on a pos-
itive Lebesgue measure set of parameters. It has been conjectured in [3] that if F
is the set of quadratic maps with some growth along the critical orbit then the acips
should be at most Hölder continuous in this class, see also [4]. For a positive result
in that direction [18] proved the Hölder continuity of the densities of the acips as
in (24.3) for Misiurewicz parameters. Later, in [9], strong statistical stability was
proved for Benedicks–Carleson quadratic maps, which are unimodal and satisfy
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condition (24.1). Hence, Theorem 24.2 provides a generalisation of this last result.
We would like to point out that for continuous potentials � W I ! R the theory of
statistical stability has been studied in [2].
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Chapter 25
Dynamic Games of Network Effects

Filomena Garcia and Joana Resende

Abstract Network effects occur when the benefit that agents derive from a good
or service depends on how many other agents adopt the same good or service.
This strategic complementarity between consumers’ actions has several implica-
tions on the behavior of firms: For instance, firms need to gain advantage from early
marketing stages. Network effects are intrinsically a dynamic phenomenon: past
consumption of the good influences the utility of present consumers. This effect can
be either direct, when consumers value interaction with their peers, and/or indirect,
through an increase in the quality of the good. This chapter surveys the literature on
dynamic network effects. First we provide general formulations for the modelization
of network effects in a dynamic setting. Second, we analyse recent developments in
the literature on firms’ strategies in the context of dynamic network effects. We sur-
vey the literature both on monopoly and oligopoly markets. In the case of oligopoly
markets, we distinguish between situations in which firms produce horizontally and
vertically differentiated goods. Main results on pricing and evolution of market
shares are exposed.

25.1 Introduction

Network effects exist when agents are better off by choosing a certain action when
their peers also do so. Several are the examples of these effects: joining a certain
club, purchasing an operating system, buying a specific brand of clothes, using a
telephone or a fax machine. Economists and sociologists have long recognized this
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pattern of consumption in which agents derive utility from the good depending
on the size of the demand for the good. Among economic sociologists, this phe-
nomenon has been made famous by Veblen [63], who argued that a considerable
part of households’ consumption is what he designated by “conspicuous consump-
tion” i.e., consumption that has the sole purpose of indicating the level of wealth of
consumers.1 A first economic analysis of this interdependence of demands is due
to Pigou [56]. However his analysis is rather succinct and concentrates solely on
discussing the existence of equilibrium, leaving out many of the details that later on
have been found to be relevant in this literature.2,3 Once the foundations have been
laid, many have explored the effects of conspicuous consumption or interdependent
demand. Considering the former, and on a more sociological aspect, authors have
concentrated on the emergence of trends and fads, and on explaining the phenom-
ena of fashion and snobbism.4 Regarding the latter, the concept of interdependent
demand has been in the background for the development of network economics. The
first to analyse the effect of demand interdependence in the communications market
was Rohlfs [62] who developed the exact same concept put forth by Pigou [56],
stressing how prices are affected by these effects.5 Followers of this work are Katz
and Shapiro, Farrell and Saloner, Arthur, Liebowitz and Margolis and more recently,
Colla and Garcia, Gabszewicz and Garcia, Markovich, Driskill, Cabral and Laussel
and Resende. Within these papers several issues have been treated. Among these we
find: pricing, standardization and compatibility, adoption of technology, innovation,
antitrust, path dependence and lock in to name a few.

Seminal literature includes mainly a static treatment of network effects, i.e.,
consumers’ utility depends positively on the number of other consumers who con-
temporaneously choose the same good or service. As research evolved, it became
clear that a dynamic analysis of network effects is fundamental to capture the
essence of the issue at hand. Network effects are intrinsically dynamic: agents’ util-
ity is increasing in the overall number of other agents, both contemporaneous and
past, who acquire the good. Moreover agents consider the evolution of the networks
while choosing in the present, in the sense that they forecast what network will have
more users in the future. All these considerations are better captured in a dynamic
framework. Surprisingly, only recently did the dynamic aspects of networks start

1 John Rae was the first sociologist to identify the “conspicuous consumption” phenomenon, in
writings dated back to 1834. It was the treatment of Veblen, however, that made the notion so
popular. See Leibenstein [49] for a discussion.
2 The interdependence of consumption has also been analysed from the point of view of welfare
by Meade [55], Pigou [57].
3 See Leibenstein [49] for a formal analysis of the different aspects of consumption, namely: func-
tional consumption and non-functional consumption which includes the Veblen effect, the snob
effect and the bandwagon effect.
4 See, for example, Bikhchandani et al. [8], Bernheim [9], Corneo and Jeanne [15], and Corneo
and Jeanne [16].
5 Surprisingly, Rohlfs was unaware that some economics literature had already focused on the
interdependence of demands, hence he does not cite the work of Pigou [56].
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to be in the research agenda of scholars.6 Some of these papers are Bensaid and
Lesne [7], Colla and Garcia [14], Gabszewicz and Garcia [32, 33], etc.

While in a static setup, consumers must form expectations concerning the size
of competing networks in the present, in the dynamic model expectations might
become irrelevant, depending on the type of network effects considered. If we
assume that it takes some periods of time for users to fully enjoy the benefits of
the network, then past consumption is the only information that users must have
prior to their choice. Obviously, depending on whether we consider a static or a
dynamic context, different equilibrium concepts for the game must be used.

The notion of equilibrium used in the static framework is rational, or fulfilled
expectations equilibrium. The problem associated to this notion is that multiple ful-
filled expectations equilibria may exist and hence a selection procedure becomes
crucial. In the dynamic setup, without forward looking behavior, both Subgame
Perfect Equilibrium and Markov Perfect Equilibrium have been used. With forward
looking behavior a unique equilibrium may be selected using the tools of global
games and considering equilibria with switching strategies.7 In fact, network effect
models belong to the class of games of strategic complementarities (as also, with
minor additions, to the class of global games). When an individual chooses to join
a network, the utility for others to join the same network also increases. Hence, the
actions of joining a network are strategic complements among agents. Games of
strategic complementarities, also known as supermodular games, have a structure
that allows to derive some interesting results, namely, regarding existence of pure
strategy Nash Equilibria and monotonicity of extremal equilibria. (see Amir [2] for
a survey on supermodular games and Amir and Lazzati [3] for a static model of
network effects, in which the game is supermodular).

Another important topic in network economics is the difference between direct
and indirect network effects. Direct network effects arise from interacting with
agents who consume the same goods. Indirect network effects arise when the con-
sumption of non-interacting agents affects the quality or availability of the good.
Indirect network effects also take place when the consumption of related goods has
a positive effect on the utility of consumers. For instance, direct network effects
occur when an agent uses a telephone and is able to reach a wider network of
users. Indirect network effects occur when the phone device or the interconnection
improved due to past usage and experience. Another type of network effects that
have become of increasing interest for scholars occurs in the so-called two-sided
markets. We refer to these effects as cross network effects. In markets where cross
network effects are present, the utility of consumers on one side of the market is
positively affected by the consumption on the other side of the market. This is the
case of customers going to a shopping mall and having higher utility if more shops
are available in this shopping mall or the case of dating sites, which become more

6 Even if, it had long been recognized that only a dynamic setup could encompass all the features of
network effects. See, for instance, Leibenstein [49], Arthur and Rusczcynski [5] and Hanson [41].
7 See Colla and Garcia [14].
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valuable for men when more women join the platform.8 Literature in this field has
flourished in the last years (see Armstrong [6] and Rochet and Tirole [60]), however,
as in regular network effects, little attention has been given to the dynamics of two
sided markets. Hence, we will not develop further this aspect in the present chapter.

In what follows we will survey the different types of dynamic models used
to study network effects and summarize the main results regarding pricing under
monopoly and competition. First we introduce precise definitions of network effects
which are appropriate to study the phenomenon in a dynamic setting. These defini-
tions can be applied to different types of network goods. Then we concentrate on
the problem of dynamic pricing of network industries under different market struc-
tures and different models of product differentiation, namely monopoly, oligopoly
and horizontal versus vertical product differentiation.

25.2 The Dynamic Nature of Network Effects

In this section, we distinguish between the different dynamic characterizations of
network effects that have been considered in the literature. We will use the follow-
ing notation: U represents the utility of a representative agent, xti;j represents the
consumption of agent i for good j at time t , Dt

j D
P
i x

t
i;j represents the demand

for good j at time t andmi represents other factors which might influence consumer
i ’s choice at time t . The functionU , for agent i , has the following arguments at time
t : U ti .fxgti;j ; mi /, where x represents the vector of agent’s consumptions.9;10

25.2.1 Non Durable and Backwards Network Effects

The utility of each agent is affected by choices of agents who precede him (or her).
There is no contemporaneous interaction effect, meaning that agents always regard
past choices. Also, non durability implies that after one period, past choices become
irrelevant for the utility of present agents. The lag in the network effect has been
studied in different contexts, and it corresponds to goods for which there is some

8 See Caillaud and Jullien [12] for a treatment of competing matchmakers; Rochet and Tirole [59]
for a study of competition on the credit card market and Gabszewicz et al. [36] and Ferrando et al.
[30] for the analysis of media markets.
9 In this section, we focus on network effects which result from the consumption of incompatible
goods, and we will disregard potential cross network effects. These definitions are easily extend-
able to encompass these situations. For an example see Garcia and Vergari [39] and Laussel and
Resende [48].
10 For simplicity, we assume throughout that the utility function is differentiable. The same effects
could be expressed without resorting to differentiability.



25 Dynamic Games of Network Effects 327

learning period or word of mouth phenomenon.11 We say that there are non durable
and backward network effects in consumption of good j if

@U ti
�fxgti;j ; mi

	

@Dt�1
j

> 0:

Papers that have considered this formulation are Bensaid and Lesne [7],
Doganoglu [20], and Garcia and Resende [38]. These papers typically focus on
the study of goods such as fashion and reputation goods. The utility derived from
these goods is increasing in the number of users. Since consumers may not know
the number of consumers who at the present acquire the good, they regard the
immediate predecessors’ choice, in order to make their consumption decisions. In
fact we can interpret past consumption as a signal of the reputation of the good
that consumers take into account when deciding what to acquire. This effect is
non-cumulative since the number of consumers who was using the good far-off in
the past can hardly influence or be informative of the current value of a fashion
good or reputation good. Some examples of goods in which this type of effects
arises quite often include clothes, shoes, restaurants, and touristic destinations.

25.2.2 Durable Backward Network Effects

These effects correspond to the situation in which the utility function of the agents
depends on all past choices of the peers. Once again, it takes at least one period
of time for the network to be constituted or for agents to enjoy the network effect
and as such, there is no contemporaneous effect on the utility function. The cumu-
lative effect can be interpreted in terms of goods whose quality increases with the
total number of past users, such as in software industries or any industry where
improvements can arise from the experience of past consumers.12 These network
effects have been studied by Arthur [4], Cabral et al. [11] and Gabszewicz and
Garcia [32].13 The utility function for cumulative network effects should have the
following formulation.

@U ti .fxgti;j ; mi /
@
Pt�1
kD1Dk

j

> 0:

11 See, for instance, Bensaid and Lesne [7], Gabszewicz and Garcia [33] and Garcia [38].
12 We can include here the situation in which agents discount past users as it is less likely to interact
with them or to benefit from their consumption.
13 Also Markovich [53], Markovich and Moenius [52] analyse a model with backward cumula-
tive network effects in the context of aftermarkets. The primary market in their case is hardware,
whereas the secondary market is software. The utility that consumers derive from hardware
depends on the availability of software. Dhebar and Oren [18], in their seminal article, analyse
a cumulative network within continuous time model.



328 F. Garcia and J. Resende

25.2.3 Contemporaneous Network Effects

When a certain good or service has contemporaneous network effects, this implies
that consumers benefit from the present consumption of their peers, hence, the utility
function has the following property:

@U ti .fxgti;j ; mi /
@Dt

j

> 0:

As mentioned earlier, it is usual to consider that agents base their choices on the
expected network effect that they will obtain from consumption. As such it is
common to identify contemporaneous network effects with:

@U ti .fxgti;j ; mi /
@eDt

j

> 0;

where eDt
j is the expected demand of good j in period t . Seminal papers on networks

focused mostly on this type of effects. To name a few papers that consider this type
of static network we have: Katz and Shapiro [42], Economides [23], Grilo, Shy and
Thisse [40].14

Up to this point, we considered the situation in which each agent obtains the
network benefits upon joining the network and there are no additional payoffs in
later periods. However, many network industries concern durable goods or services
and agents enjoy benefits for longer periods. In those cases, the consumption choice
depends also on the number of other agents which are expected to adopt the network.
Here we distinguish between the situation in which agents only consider the future
network effects and the situation in which both future, present and past consumption
is taken into account in the choice of adoption. The former we designate by forward
durable network effects, whereas the latter we designate by generalized network
effect.

25.2.4 Forward Durable Network Effects

Once we move from the world where agents receive their payoffs upon joining the
network and start considering that agents benefit from remaining in the network in
the future (as for instance, when joining a club), we need to incorporate forward
looking behavior in consumption choice. We now define U ti to be the intertemporal
utility of consumer i , in the moment of choice t . In other words, U ti can be seen

14 Mitchell and Skrzypacz [54] consider a setup where consumers regard contemporaneous and
past adoption of the network.
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as the stream of discounted benefits that the agent who decides to adopt in period t
obtains throughout his permanence in the network. Algebraically, we say that there
are forward network effects when

@U ti .fxgti;j ; mi /
@ QDk

i;j

> 0; k D t; :::1:

This network effect is used in the modelling of the so-called aftermarkets. In after-
markets the utility of buying in the primary market (e.g. the utility of buying a
printer) depends on the number of users of the secondary market (e.g. cartridges),
because these affect availability, quality and price. Some papers that have assumed
this network effect are Cabral [10], Laussel and Resende [48].

25.2.5 Generalized Network Effect

The generalized network effect refers to the situation in which the peers’ choices, in
all moments affect the utility of adopting the good. Algebraically we assume that:

@U ti .fxgti;j ; mi /
@D�

i

D ��i > 0

This modelization has been used by Colla and Garcia [14] who were among the
first to consider the importance of forward looking behavior in network choices.
The different aspects of network effects here explained imply that firms undertake
different strategies to maximize their profit. In fact, investment on network forma-
tion has been shown to occur through pricing and compatibility decisions. In what
follows, we will explore the main results in dynamic pricing for the different types
of network effects.

25.3 Strategic Behavior with Dynamic Network Effects

In the previous sections, we have underlined that in network industries, firms’
market shares may endogenously change over time as a consequence of strategic
complementarities among consumers. Even when firms do not behave strategically,
network effects per se might be sufficient to engender a mechanical (non-strategic)
effect that generates a reinforcement of firms’ position in the market. Obviously, the
nature and the magnitude of this non-strategic snowball effect can be affected by
firms’ strategies aiming to accelerate or dampen demands’ interdependence entailed
by network effects. For example, at the beginning of the product’s life cycle, firms
offering goods which generate network effects may be interested in over-investing
in advertising or quality in order to make their products more attractive to future
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consumers. Similarly, firms may adjust their pricing strategies, trading off profits
across periods, in order to make the maximum possible profit along the products’
life cycle.

This section concentrates on the strand of literature dealing with pricing dynam-
ics in network industries. Following the seminal works of Rohlfs [62]; Katz and
Shapiro [42]; Farrell and Saloner [24], the early theoretical literature on pricing in
network industries has mostly focused on firms’ pricing strategies in a static context.
More recently, the theoretical literature on dynamic pricing on network industries
has flourished and a number of works have concentrated on the investigation of
dynamic pricing strategies in network industries. This boost has been caused by
the general acceptance of the idea that network effects constitute an intrinsically
dynamic phenomenon together with some technical developments related to the
widespread use of dynamic equilibrium concepts, such as Markov Perfect Equilib-
rium (see, for example, Maskin and Tirole [51]) and the extensive use of dynamic
optimization tools (such as dynamic programming or optimal control).

So far, the main research questions addressed in this flourishing literature incl-
ude: (a) the description of firms’ optimal pricing strategies and the corresponding
market shares’ trajectories; (b) the analysis of the responsiveness of firms’ prices
to firms’ installed base of customers in order to test in a dynamic setting whether
larger firms are able to charge higher prices, obtaining a “network premium”;
(c) the study of the persistence of firms’ dominance in network industries; (d)
the dynamic analysis of the welfare impact of firms’ optimal pricing strategies in
network industries.

In the following sections, we present the main results of the literature in relation
to these four questions. First, we concentrate on the literature on dynamic pricing
policies in monopoly industries, addressing how the monopolist’s pricing strategies
are affected by its incentives to trade-off profits across periods along the product’s
lifecycle. Afterwards, we deal with the recent literature on dynamic price competi-
tion in oligopoly markets, which studies how strategic competition affects optimal
pricing paths of network goods.

25.3.1 Dynamic Pricing in Monopoly Markets
with Network Effects

When a monopolist firm sells a good that generates network effects, there is an
interdependence of the demands faced by the monopolist at each point of time.
For example, in the case of backwards network effects (either durable or not), the
future attractiveness of the network good depends on the size of the network at
the present moment since early consumers allow the monopolist firm to boost the
network benefit generated by its good in later periods. Accordingly, in markets with
such characteristics, by lowering its current price, the monopolist is able to enhance
both its present and future sales.
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This type of dynamic channels of demand interdependence is based on the so-
called introductory pricing strategies. In the context of the literature on network
effects, the term introductory pricing strategies is used to designate pricing paths in
which firms charge low prices at earlier periods, increasing their prices as time goes
by. Introductory pricing strategies are very frequent on monopoly network industries
but they also tend to emerge in many other contexts. This is for example the case of
the so called reputation goods (see Rogerson [61]), or goods which require a learn-
ing period. Clarke et al. [13] also conclude that the optimal pricing path adopted by a
monopolist participating in a market with experience effects in demand is increasing
through time, corresponding to an introductory pricing strategy.

In the literature on dynamic pricing in monopoly industries with network effects,
the optimal pricing strategies often correspond to introductory pricing strategies
(see, for example, Dhebar and Oren [18, 19], Ackere and Reyniers [1], or, more
recently, Gabszewicz and Garcia [32, 33]). Empirical evidence suggests that intro-
ductory pricing strategies are very frequent in network industries: Banks usually
offer low rates for new clients, new software is usually offered at very low price
(or, even, given for free), whereas updates are expensive; similarly, phone compa-
nies or network providers have low price deals for new customers (see Ackere and
Reyniers [1]).

Dhebar and Oren [18, 19] build upon Rolhfs [62] to develop a continuous time
model with infinite time horizon. In the context of such model, the authors investi-
gate the optimal linear and non-linear path of prices adopted by a monopolist firm
offering a network good. Their analysis reveals that the monopolist’s equilibrium
price-cost margins are increasing through time, confirming the idea that the dynamic
channels of demand interaction in monopoly network industries may lead to intro-
ductory pricing strategies. Dhebar and Oren [18,19] have also studied the possibility
of uncertainty regarding the size of the monopolist’s network. In this case consumers
are uncertain about the choices of their peers and they need to formulate expecta-
tions regarding the future network growth. The authors perform some comparative
statics regarding the impact of the degree of optimism of consumers on the growth
of the network. As expected they conclude that if consumers are more optimistic in
relation to the network growth, the monopolist is able to charge higher prices.

Gabszewicz and Garcia [32,33] develop a discrete time model of monopoly pro-
vision of a good generating durable backward network effects. The authors are able
to derive the closed form solution for the optimal path of prices for a monopolist
operating during a finite number of periods. The results of Gabszewicz and Gar-
cia [32,33] also reveal that introductory pricing strategies tend to arise in monopoly
network industries. The authors show that pricing levels are increasing through time:
as time evolves, the network of the monopolist becomes wider, which enables the
monopolist firm to charge a higher price for the network good. This result is con-
sistent with the idea of a network premium: as the monopolist’s network expands,
consumers’ willingness to pay for the network good increases and the monopolist
is able to charge a higher price. The authors also perform some comparative statics
regarding the role played by the intensity of network effects or the length of the
monopolist’s time horizon. Namely, in the case of very low intensity of network
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effects and/or very wide time horizon length, Gabszewicz and Garcia [32, 33] show
that the monopolist will offer the good at zero price in the first period, as an attempt
to boost its network.

Cabral et al. [11] also studied introductory pricing strategies in monopoly net-
work industries. They conclude that when consumers are “large”, there are multiple
equilibria and it is possible to construct examples in which discounted prices rise
over time, by selecting among these multiple equilibria. When consumers are
“small”, Cabral et al. [11] showed that introductory pricing only arises in cases
of incomplete information about demand or asymmetric information about costs.15

Fudenberg and Tirole [31] studied dynamic pricing strategies adopted by the
monopolist supplier of a network good, when there is the threat of entry. They show
that in the case of network industries, the installed base of users can constitute an
effective mechanism to deter the entry of new rivals. Accordingly, the threat of entry
may create incentives for the incumbent monopolist to charge lower prices in order
to expand its network and prevent the entry of new competitors.

More recently, Driskill [21] has investigated the properties of the Markov Per-
fect Equilibrium arising in industries with dynamic network effects. Comparing
the outcomes under monopoly and perfectly competitive supply of the network
good, Driskill [21] argued that the level of monopoly output may be greater than
the steady-state level of output with perfect competition. For that to be the case, it
is necessary to have increasing marginal production costs and sufficiently intense
network effects.16

25.3.2 Dynamic Pricing in Oligopoly Markets
with Network Effects

The literature on dynamic pricing in oligopoly markets with network effects is a
relatively recent literature and a number of exciting contributions are still under
development. The dynamic analysis of strategic price competition in markets with
network industries constitutes a complex economic problem since firms must take
into consideration the dynamic interdependence of their demands across periods as
well as the existence of multiple channels of strategic interaction among competing
firms, who must account for both strategic competition within periods and strate-
gic competition across periods.17 The results on the nature of strategic competition
in network industries are very scarce. Garcia and Resende [38] propose a simple

15 According to Cabral et al. [11] a consumer is “large” if her purchase decision has a non-
negligible effect on other buyers’ payoffs and decisions; and she is “small” if her purchase decision
has no effect on the payoff to other buyers or on the monopolist’s pricing strategy.
16 This result is in line with the result obtained by Driskill and McCafferty [22] considering the
case of addictive goods.
17 This aspect is also present in monopoly settings (see the previous section), often leading to
introductory pricing strategies.
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three-period model, in the context of which they conclude that both price strategic
complementarity and strategic substitutability arise along the equilibrium path.

To the best of our knowledge, there are no results on the nature of strategic
competition in network industries in more general settings than the one proposed
by Garcia and Resende [38]. In a more general setting there would be even more
dynamic channels of strategic interaction and probably the nature of strategic
competition in network industries is expected to become more and more intricate.

In the light of the degree of complexity of the economic problem faced by firms
operating in oligopoly markets with network effects, the computation of equilib-
rium price paths when firms strategically interact in markets with network effects
also constitutes a difficult technical problem. Dynamic models of oligopoly inter-
action tend to be considerably complex and very often it is not even possible to
explicitly obtain the optimal path of prices. In the literature, such issues have been
overcame either by imposing additional structure on the theoretical model (see for
example, Doganoglu [20], Laussel et al. [47], Mitchell and Skrzypacz [54], Laussel
and Resende [48]) or by relying on numerical methods to unveil some predictions
of the model (see for example Chen et al. [17], Markovich and Moenius [53] and
Markovich [52]); or even a combination of both (as in Cabral [10]).

In the remainder of the section, we put forward the main results of the recent
literature on the dynamics of price competition in oligopoly markets with network
effects. To facilitate the exposition, we start with the literature on dynamic pricing
competition in network industries with horizontal differentiation. Afterwards, we
address the literature on dynamic strategic interaction in network industries with
vertically differentiated goods.

25.3.2.1 Dynamic Price Competition in Network Industries:
Horizontal Differentiation

This section deals with the literature on dynamic price competition in network
industries with horizontal differentiation. In these industries, when all available
goods generate similar network benefits and firms quote equal prices, we observe
that consumers are not unanimous in relation to the good whose intrinsic character-
istics match more closely their own tastes.

The strand of economics literature addressing this type of problems is relatively
recent. Two significant exceptions are the works of Arthur and Rusczcynski [5] and
Hanson [41]. These works studying dynamic pricing in industries with increasing
returns on market shares generated by network effects. They study the impact of
network effects on markets’ equilibrium configuration, concluding that if discount
rates are large enough, the initially dominant firm adopts a less aggressive pricing
policy, losing its dominance. In contrast if discount rates are low enough, the large
firm prefers to quote lower prices, reinforcing its dominance in the forthcoming
periods.

At present, the study of the dynamics of price competition in network indus-
tries with horizontal differentiation has been attracting the increasing interest of
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economic scholars. In fact, a number of recent papers have developed dynamic
games of price competition in network industries with horizontal differentiation.
Most of these papers aim to characterize the optimal path of prices in network mar-
kets with horizontally differentiated products. To this end, these works concentrate
on pricing paths corresponding to the Markov Perfect Equilibrium of the dynamic
game under consideration.

In general, the dynamic models of network effects with horizontal differentiation
correspond to discrete choice models, in which the utility obtained by consumer i
when buying good j at moment t is given by:

U tij D ntij C utij � ptj ; (25.1)

where ntij denotes the network benefit entailed by good j at period t (which may
differ from consumer to consumer);ptj denotes the price of good j at moment t ; and
utij denotes the stand alone value of good j for consumer type i at moment t . When
network goods are horizontally differentiated, even if ntij D nt

ik
and ptj D pt

k
, we

observe that different consumers rank good k and good j differently.
Although the majority of papers dealing with dynamic competition in net-

work industries with horizontal differentiation is based on the utility specification
in (25.1), it is still not possible to talk of a unified body of literature. In fact, existing
papers dealing with this issue differ along a number of aspects, such as methodolog-
ical issues, the nature of network effects, or the timing of consumers’ entry and exit
in the market.

In relation to methodological differences we observe that some papers rely on
analytical methods, imposing additional structure on the model in order to obtain
closed form solutions for equilibrium pricing paths. For example, Doganoglu [20],
Laussel et al. [47], Laussel and Resende [48] or Driskill [21] focus on Linear
Markov Perfect Equilibrium pricing strategies. Under these assumptions, the authors
obtain a linear quadratic differential game in which the equilibrium prices are
assumed to be an affine function of the state variable (market share), enabling the
authors to obtain the explicit expression of firms’ optimal path of prices. Mitchell
and Skrzypacz [54] are able to derive some general results without imposing linear-
ity of pricing strategies. To illustrate these results, the authors present an example,
in the context of which they also assume that equilibrium prices are affine func-
tions of the state variable. The analytical models dealing with forward-looking
agents, like Laussel et al. [47], Laussel and Resende [48] or Driskill [21] tend to
impose even more structure to the model. Often, in these models it is assumed
that agents’ expectations about future market shares are also linear in the state
variable.

A different strand of literature relies on numerical methods to characterize equi-
librium price paths (see for example Cabral [10] that provides a combination of
analytical results and numerical analysis). Although these papers often do not derive
the closed-form solution for optimal pricing trajectories, they have the advantage of
being less restrictive in relation to the structure of the model.
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From a methodological point of view, it is also possible to distinguish
between continuous time dynamic models (such as Laussel et al. [47], Laussel
and Resende [48] or Driskill [21]) and discrete time dynamic models (such as
Doganoglu [20]; Mitchell and Skrzypacz [54] or Cabral [10]). The former rely on
the dynamic optimization toolset of optimal control theory, while the latter rely on
dynamic programming techniques to derive equilibrium pricing strategies. In both
cases, existing models of dynamic competition in network industries with hori-
zontal differentiation consider an infinite horizon time setting. The simpler model
proposed by Garcia and Resende [38] constitutes an exception to this trend.

Another aspect that distinguishes recent models of dynamic price competition
in network industries with horizontal differentiation refers to the type of network
effects considered in each paper. In other words, recent works have important
differences in relation to the term ntij in the utility specification presented in (25.1).

For example, Doganoglu [20] studies the dynamics of price competition when
goods are horizontally differentiated à la Hotelling and network effects take the
form of non-durable backward network effects. Mitchell and Skrzypacz [54] con-
sider a model of horizontal differentiation à la Hotelling in which the network
effect depends on the number of contemporaneous consumers buying a certain
good as well as on the number of consumers who bought the good in the preced-
ing period (in other words, Mitchell and Skrzypacz [54] consider a combination
of non-durable backward network effects with contemporaneous network effects).
Laussel et al. [47], Driskill [21] and Cabral [10] consider dynamic pricing com-
petition in network industries with forward-looking agents. Cabral [10] proposes a
model of dynamic competition in which consumers have a privately known prefer-
ence for each network and durable forward network effects take place as consumers
are forward-looking agents who care about firms’ future market shares. Driskill [21]
considers an overlapping generations model in which consumers have heteroge-
neous views on how their lifetime earnings are affected by the purchase of the
good. Laussel et al. [47] propose a duopoly model with Hotelling differentiation
and negative network effects arising in the form of durable forward network effects.
Laussel and Resende [48] build upon Laussel et al. [47] to develop a model in which
forward-looking consumers choose between two horizontally differentiated equip-
ment whose value depends on the future availability of complementary goods and
services (which in turn depends on firms’ future equipment sales).

Finally, the papers under analysis also differ in relation to the consumers’ entry
and exit process. Doganoglu [20], Laussel et al. [47], Driskill [21] and Laussel and
Resende [48] consider infinitely lived agents that face a constant (exogenous) prob-
ability of death. At each instant of time, entry rates and exit rates coincide so that
the size of the market is stationary. Mitchell and Skrzypacz [54] consider the case
of consumers that live for one period and then leave the market. The total size of
the market is stationary as in each period the mass of consumers is exogenous and
fixed at one. Cabral [10] considers that at each period of time a new consumer enters
the market. Consumers live for infinitely many periods but they die with a constant
hazard rate. The birth and death processes are stochastic.
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In the light of the distinct modeling options considered in the papers under
scrutiny in this section, it is not surprising that these papers put forward different
predictions regarding the characteristics of optimal pricing strategies in oligopoly
markets with horizontally differentiated network goods. This diversity of results
reflects the early stage of this literature, which started to flourish very recently.

Doganoglu [20] concludes that firms with a larger installed user base tend to
charge higher prices, benefiting from a network premium. In contrast, firms with
a smaller installed user base tend to price more aggressively to compensate con-
sumers for the lower network benefit generated by their product. In the light of
such pricing strategies, the model predicts a symmetric steady state in which firms
share the market evenly. Regarding the convergence to the symmetric steady state,
Doganoglu [20] concludes that the convergence process may be significantly slow,
especially when the oligopoly market exhibits strong network effects.

Laussel et al. [47] focus on dynamic price competition in a market with nega-
tive network effects. They obtain that the higher is firms’ current market share the
lower is their current price (i.e. larger firms offer a “congestion discount”). In line
with Doganoglu [20], in the steady state equilibrium firms have symmetric market
shares. However, the existence of negative consumption network effects is shown
to soften price competition. Laussel et al. [47] also consider the possibility of entry,
showing that the price of an entrant decreases gradually after entry, while the price of
the incumbent firm increases. These results are substantially different from the ones
obtained by Laussel and Resende [48]. The reduced form of the model suggested by
Laussel and Resende [48] can be seen as a problem of dynamic price competition in
markets with increasing returns on the size of firm’s networks.18 Due to this increas-
ing returns effect, the results of Laussel and Resende [48] considerably depart from
those in Doganoglu [20] or Laussel et al. [47]. In fact, the authors obtain that firms
with a larger installed user base charge lower prices than the ones quoted by smaller
firms, whose goods entail smaller network benefits. Even though larger firms tend
to adopt more aggressive pricing policies in the context of the model by Laussel and
Resende [48], they also face higher exit rates. Accordingly, when the conditions for
the existence of a unique Linear Markov Perfect Equilibrium are met, the steady
state properties are similar to the ones obtained by Doganoglu [20]: firms share the
market evenly and network effects lead to lower steady state prices.

Driskill [21] also obtains that in imperfectly competitive industries with net-
work effects, steady state prices tend to be lower. In particular, in the presence of
strong positive dynamic network effects, the steady state price may be less than the
marginal cost (a result that is also obtained by Laussel and Resende [48]).

As already mentioned, Driskill [21] also compares market outcomes under
monopoly and oligopoly provision of a network good, concluding that the steady
state industry profits may be lower with fewer firms in the industry.

18 To be more precise, the utility specification of Laussel and Resende [48] departs from the stan-
dard linear separable version of the utility specification in (25.1), considering increasing returns
with respect to the term nti;j .
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Mitchell and Skrzypacz [54] extend the previous literature by introducing the
possibility of divergence in steady state market shares. When the discount factor is
sufficiently low they conclude that market over-tightness keeps market shares from
becoming too skewed. When network effects are very strong, there is always an
equilibrium in which firms’ market shares diverge. Mitchell and Skrzypacz [54]
also allow their model to accommodate the possibility of quality differences in the
available network goods. In line with the previous literature on quality improvement
in network industries, they conclude that an inferior product may take the entire
market due to network effects.

Cabral [10] relies on a combination of analytical and numerical methods to study
dynamic pricing strategies in network industries with horizontal differentiation. In
the case of a symmetric equilibrium, Cabral [10] shows that firms’ network sizes are
generally asymmetric since both the birth and death processes are stochastic. In gen-
eral, a larger network is more likely to attract new consumers. Moreover, if network
effects are sufficiently strong, the larger network reinforces its dominant position as
time evolves (strong market dominance). An exception to this result occurs if the
market share of the dominant firm is already close to 100%. As the model does not
allow for tipping and eviction, when the market share of the dominant firm reaches
100%, the dominant firm tends to decrease its size.

25.3.2.2 Dynamic Price Competition in Network Industries:
Vertical Differentiation

Vertical differentiation corresponds to the situation in which goods have differ-
ent intrinsic qualities. Contrary to horizontal differentiation, other things alike, all
consumers prefer the higher quality. Vertical differentiation, first introduced by Gab-
szewicz and Thisse [37], is widely used to model the choice between competing
networks of different quality or different degrees of innovation. In particular they
have been used to analyse predatory pricing, entry deterrence, standardization and
lock in. In what follows, we survey the models of price competition with vertically
differentiated firms, highlighting the features of the network modelization which
drive the main results.

The problem of dynamic competition with quality differences has been stud-
ied extensively by several authors. Farrell and Saloner [25] study a dynamic model
where consumers opt between a lower quality network good and a higher qual-
ity one. Consumers do not differ in their preference for the quality, only on the
arrival time to the economy. The network effect is modelled as a forward durable
network effect, following our specification above. Their main conclusions are that
network effects may inhibit innovation if the new, high quality standard is incom-
patible with the old one. They point out the important strategic implications of this
result. Namely, installed firms have interest in increasing their market shares in ini-
tial periods, and hence practice introductory pricing. As retaliation, innovating firms
may engage in strategic preannouncement of their goods, so that consumers wait to
buy the innovation rather than the old product. In their model, these features are not
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fully explored, because firms operate in a competitive industry. In an opposite side of
the analysis, Katz and Shapiro [45] argue that there might exist rushing towards new
network goods, rather than excess inertia. In their model, where forward durable
network effects are assumed, the timing of introduction of the innovation and the
pricing becomes endogenous and drives the aforementioned results. These papers
are all concerned with the problem of quality differentiation and the introduction
of new qualities in the presence of network effects. However, a common feature
is that consumers are assumed to be homogeneous in the preference for quality.
This implies that as soon as the new quality becomes available all consumers (or
none) adopt it, depending on the magnitude of the network effect at the time of
innovation. By contrast, a series of more recent papers assume that consumers are
heterogeneous in their valuations of the quality of the good. Specifically, this het-
erogeneity allows that, at identical prices, some consumers prefer the low quality
network good with an installed base, while others prefer the new technology with-
out installed base. This series of papers includes Gabszewicz and Garcia [33], Chen
et al. [17] and Driskill [21]. Gabszewicz and Garcia [33] conclude about the exis-
tence of predatory pricing when the quality differentiation between an incumbent
and an entrant is high, compared to the network effect. In a two period model, they
consider that the network effects are backward and that the high quality good is
introduced only in the second period, lacking installed base. In their model, the high
quality network good is incompatible with the good produced by the incumbent.
Chen et al. [17] consider a model where firms avoid market dominance by their
rivals through pricing and the choice of compatibility. They conclude that, when
firms have similar installed bases, they choose to make their products compatible in
order to expand the market. When firms have asymmetric installed bases, the larger
firm has interest in rendering its product incompatible.19 The authors obtain the
result that strategic pricing precludes installed base differential from expanding to
the point of incompatibility. Their results are obtained numerically and a sensitivity
analysis is undertaken. Driskill [21] presents a section on dynamic price competition
in a continuous time model with overlapping generations. This papers investigates
the properties of Markov Perfect Equilibria that is the suitable equilibrium concept
to study the model with network effects. Main results point to the existence of steady
state prices less than marginal cost and disadvantageous market power, in the sense
that industry profits may not be maximized under monopoly.

Finally, recent developments in the area of oligopoly competition with net-
work effects have focused on indirect network effects as the ones provided for
hardware users by software development. Markovich [52] and Markovich and Moe-
nius [53] focus on this type of network effects. It is necessary to distinguish between
direct and indirect network effects. As mentioned earlier, direct effects are related
to the increase in the quality of the product due to an increment in the number
of directly relatable users. Indirect effects entail broader benefits stemming from

19 Garcia and Vergari [39] show that under some specific circumstances, it might be the case
that firms with higher intrinsic quality may be interested in rendering their product compatible
if network effects are very intense.
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remote adoptions or from adoptions of related products. Even though direct inter-
action with remote consumers is not possible, the fact that a technology has had
many previous users increases its value for the consumer: there is higher likeli-
hood that the technology has less flaws, technical assistance might be prompter and
more and better components might be available (see Liebowitz and Margolis [50]
for a complete characterization of indirect network effects). In a setup where firms
repeatedly invest in quality upgrades, compete in the product market and make exit
and entry decisions, Markovich [52] studies the emergence of standardization and
its persistence through time. The main conclusion is that, in general, excess inertia
does not occur and innovation speed may drive standardization. In a related arti-
cle, Markovich and Moenius [53] study the determinants of competition dynamics
in markets with indirect network effects. They conclude that market structure is
the main determinant of competition dynamics: a successful software developer
raises the value of all firms who operate under the same platform, i.e. the system
in which the software runs. In this paper, there is evidence for increasing competi-
tion across platforms, for different market structures. This contrasts to the tipping
result in the literature, under which the market tips over for one platform, which
becomes dominant.

25.4 Conclusion

The literature on network effects has grown extensively over the two last decades.
The objective of this chapter is to survey recent contributions to the study of net-
work effects in a dynamic setup. The main contribution is to formalize the different
possible forms of network effects that correspond to different market situations.
The theoretical literature on network effects has demonstrated that, in the pres-
ence of network effects, the standard economic theory might provide an inaccurate
description/prediction of economic behaviour. In this context, the theoretical liter-
ature on network effects has been providing notable contributions, improving our
understanding of a wide range of economic problems such as:

(a) The specifics of optimal price strategies in the presence of (simple) network
effects (Rohlfs [62], Katz and Shapiro [42, 46]).

(b) The phenomenon of proprietary networks and the impact of compatibility
between rival networks (Garcia and Vergari [39]), Farrell and Saloner [25]).

(c) The latent trade-off between quality provision and the intensity of network
effects (Gabszewicz and Garcia [32]).

(d) The problem of standard wars and the trade-off between competition for the
market and competition in the market.

(e) The impact of network effects on competition policy.

Despite the outstanding contributions already made available by the theoretical
literature on network effects, this field is far from being exhausted and very chal-
lenging questions are still under investigation. Namely, issues related to the dynamic
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strategic interaction of multiple firms in network industries and in multiple sided
markets.

Acknowledgements Filomena Garcia gratefully acknowledges financial support for this research
from Fundação para a Ciência e a Tecnologia under project n. PTDC/ECO/65856/2006 and from
UECE. Joana Resende acknowledges financial support from Cef.up, University of Porto and
Fundação para a Ciência e Tecnologia.

References

1. Ackere, A., Reyniers, D.J.: Trade-ins and introductory offers in a monopoly. RAND J. Econ.
26(1), 58–74 (1995)

2. Amir, R.: Supermodularity and complementarity in economics: An elementary survey. South.
Econ. J. 71, 636–660 (2005)

3. Amir, R., Lazzati, N.: Network effects, market structure and industry performance, mimeo
(2009)

4. Arthur, B.: Competing technologies, increasing returns, and lock-in by historical events. Econ.
J. 99, 116–131 (1989)

5. Arthur, B., Rusczcynski, A.: Strategic pricing in markets with increasing returns, in Increasing
returns and path dependence in the economy, The University of Michigan Press (1992)

6. Armstrong, M.: Competition in two-sided markets. RAND J. Econ. 37(3), 668–691 (2006)
7. Bensaid, B., Lesne, J.-P.: Dynamic monopoly pricing with network externalities. Int. J. Ind.

Organ. 14(6), 837–855 (1996)
8. Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom, and cultural

change as informational cascades. J. Polit. Econ. 100(5), 992–1026 (1992)
9. Bernheim, D.: A theory of conformity. J. Polit. Econ. 102(5), 841–877 (1994)

10. Cabral, L.: Dynamic Price Competition with Network Effects, mimeo (2010)
11. Cabral, L, Salant, D., Woroch, G.: Monopoly pricing with network externalities. Int. J. Ind.

Organ. 17(2), 199–214 (1999)
12. Caillaud, B., Jullien, B.: Chicken and egg: competition among intermediation service

providers. RAND J. Econ. 34, 309–328 (2003)
13. Clarke, F., Darrough, M., Heineke, J.: Optimal pricing policy in the presence of experience

effects. J. Bus. 55(4), 517–530 (1982)
14. Colla, P., Garcia, F.: Technology Adoption With Forward Looking Agents”, mimeo CORE

Discussion Paper 2004/41 (2004)
15. Corneo, G., Jeanne, O.: Snobs, bandwagons, and the origin of social customs in consumer

behavior. J. Econ. Behav. Organ. 32, 333–347 (1997)
16. Corneo, G., Jeanne, O.: Conspicuous consumption, snobbism and conformism. J. Public Econ.

66, 55–71 (1998)
17. Chen, J., Harrington, J., Doraszelski, U.: Avoiding market dominance: product compatibility

in markets with network effects. RAND J. Econ. 49(3), 455–485 (2009)
18. Dhebar, A., Oren, S.: Optimal dynamic pricing for expanding networks. Marketing Sci. 4(4),

336–351 (1985)
19. Dhebar, A., Oren, S.: Dynamic nonlinear pricing in networks with interdependent demand.

Oper. Res. 34(3), 384–94 (1985a)
20. Doganoglu, T.: Dynamic price competition with consumption externalities. Netnomics 5(1),

43–69 (2003)
21. Driskill, R.: Monopoly and Oligopoly Supply of a Good with Dynamic Network Externalities,

mimeo (2007)
22. Driskill, R., McCafferty, S.: Monopoly and oligopoly provision of addictive goods. Int. Econ.

Rev. 42(1), 43–72 (2001)



25 Dynamic Games of Network Effects 341

23. Economides, N.: Network externalities, complementarities, and invitations to enter. Eur. J.
Polit. Econ. 12, 211–233 (1996)

24. Farrell, J., Saloner, G.: Standardization, compatibility, and innovation. RAND J. Econ. 16,
70–83 (1985)

25. Farrell, J., Saloner, G.: Installed base and compatibility: innovation, product preannouncement,
and predation. Am. Econ. Rev. 76, 940–955 (1986)

26. Farrell, J., Saloner, G.: Standardization and variety. Econ. Lett. 20, 71–74 (1986)
27. Farrell, J., Saloner, G.: Economic issues in standardization. In: Miller, J. (ed.) Telecommuni-

cations and Equity. North Holland, Amsterdam (1986)
28. Farrell, J., Saloner, G.: Competition, Compatibility and Standards: The Economics of Horses,

Penguins, and Lemmings. In: Landis Gabel (ed.) Product Standardization and Competitive
Strategy. North Holland (1987)

29. Farrell, J., Saloner, G.: Converters, compatibility, and the interfaces. J. Ind. Econ. 40(1), 9–36
(1992)

30. Ferrando, J., Gabszewicz, J.J., Laussel, D., Sonnac, N.: Intermarket network effects and
competition: An application to the media industry. Int. J. Econ. Theory 4(3), 357–379 (2008)

31. Fudenberg, D., Tirole, J.: Pricing a network good to deter entry. J. Ind. Econ. 48, 373–390
(2000)

32. Gabszewicz, J.J., Garcia, F.: A note on expanding networks and monopoly pricing. Econ. Lett.
98(1), 9–15 (2008)

33. Gabszewicz, J.J., Garcia, F.: Optimal monopoly price paths with expanding networks. Rev.
Network Econ. 6(1), 42–49 (2007)

34. Gabszewicz, J.J., Garcia, F.: Intrinsic quality improvements and network externalities. Int. J.
Econ. Theory 3(4), 261–278 (2007a)

35. Gabszewicz, J.J., Garcia, F.: Quality improvements optimal monopoly price paths with
expanding networks. Rev. Network Econ. 6(1), 42–49 (2007b)

36. Gabszewicz, J.J., Laussel, D., Sonnac, N.: Press advertising and the ascent of the ‘Pensée
Unique’. Eur. Econ. Rev. 45, 641–651 (2001)

37. Gabszewicz, J.J., Thisse, J.-F.: Price competition, quality, and income disparities. J. Econ.
Theory 20, 340–359 (1979)

38. Garcia, F., Resende, J.: Conformity based behavior and the dynamics of price competition: a
new rational for fashion shifts, mimeo (2010)

39. Garcia, F., Vergari, C.: Compatibility Choice in Vertically Differentiated Technologies, CORE
Discussion Papers (2008)

40. Grilo, I., Shy, O., Thisse, J.: Price competition when consumer behavior is characterized by
conformity or vanity. J. Public Econ. 80, 385–408 (2001)

41. Hanson, W.A.: Bandwagons and orphans: Dynamic pricing of competing technological
systems subject to decreasing costs, mimeo Stanford University (1983)

42. Katz, M., Shapiro, C.: Network externalities, competition and compatibility. Am. Econ. Rev.
75(3), 424–440 (1985)

43. Katz, M., Shapiro, C.: Technology adoption in the presence of network externalities. J. Polit.
Econ. 94, 822–841 (1986a)

44. Katz, M., Shapiro, C.: Product compatibility choice in a market with technological progress.
Oxf. Econ. Pap. 38, 146–165 (1986b)

45. Katz, M., Shapiro, C.: Product introduction with network externalities. J. Ind. Econ. 40(1),
55–84 (1992)

46. Katz, M., Shapiro, C.: Systems competition and network externalities. J. Econ. Perspect. 8(2),
93–115 (1994)

47. Laussel, D., Montmarin, M., Van Long, N.: Dynamic duopoly with congestion effects. Int. J.
Ind. Organ. 22(5), 655–677 (2004)

48. Laussel, D., Resende, J.: Does the absence of competition in the market foster competition for
the market? A dynamic approach to aftermarkets, mimeo (2009)

49. Leibenstein, H.: Bandwagon, snob, and veblen effects in the theory of consumers’ demand.
Q. J. Econ. 64(2), 183–207 (1950)



342 F. Garcia and J. Resende

50. Liebowitz, S.J., Margolis, S.E.: Network externality: an uncommon tragedy. J. Econ. Perspect.
8, 133–50 (1994)

51. Maskin, E., Tirole, J.: A theory of dynamic oligopoly, I: overview and quantity competition
with large fixed costs. Econometrica 56(3), 549–69 (1988)

52. Markovich, S.: Snowball: a dynamic oligopoly model with indirect network effects. J. Econ.
Dyn. Control 32, 909–938 (2008)

53. Markovich, S., Moenius, J.: Winning while losing: competition dynamics in the presence of
indirect network effects. Int. J. Ind. Organ. (2007) (forthcoming)

54. Mitchell, M., Skrzypacz, A.: Network externalities and long-run market shares. Econ. Theory
29(3), 621–648 (2006)

55. Meade, J.E.: Mr. Lerner on the economics of control. Econ. J. 55(217), 51–56 (1945)
56. Pigou, A.C.: The interdependence of different sources of demand and supply in a market. Econ.

J. 23(89), 19–24 (1913)
57. Pigou, A.C.: The Economics of Welfare. Macmillan, New york (1929)
58. Rae, J.: Some New Principles on the Subject of Political Economy Exposing the Fallacies of

Free Trade and Some Other Doctrines Maintained in the “Wealth of Nations”. Hilliard, Gray
and Co, Boston (1834)

59. Rochet, J.-C., Tirole, J.: Platform competition in two-sided markets. J. Eur. Econ. Assoc. 1,
990–1029 (2003)

60. Rochet, J.-C., Tirole, J.: Two-sided markets: a progress report. RAND J. Econ. 37, 645–667
(2006)

61. Rogerson, W.: Reputation and product quality. Bell J. Econ. 14(2), 508–516 (1983)
62. Rohlfs, J.: A theory of interdependent demand for a communication service. Bell J. Econ. 5,

16–37 (1974)
63. Veblen, T.: The Theory of the Leisure Class. Macmillan, New York (1899)



Chapter 26
Exit Times and Persistence of Solitons
for a Stochastic Korteweg–de Vries Equation

Eric Gautier

Abstract The Korteweg–de Vries equation is a model of nonlinear shallow water
long waves of small amplitude that admit soliton solutions. Solitons are a family of
solutions which are progressive localized waves that propagate with constant speed
and shape. These waves are stable in many ways against perturbations or interac-
tions. We consider random perturbations by an additive noise of small amplitude.
It is common in Physics to approximate the solution in the presence of noise, cor-
responding to an initial datum generating a soliton in the deterministic system, by
a randomly modulated soliton (the parameters of the soliton fluctuate randomly).
The validity of such an approximation has been proved by A. de Bouard and A.
Debussche. We present results obtained in a joint work with A. de Bouard where we
study in more details the exit time from a neighborhood of the soliton and randomly
modulated soliton and obtain the scaling in terms of the amplitude of the noise for
each approximation. This allows to quantify the gain of an approximation of the
form of a randomly modulated soliton in describing the persistence of solitons.

26.1 Introduction

The Kordeweg–de Vries (KdV) equation

@tuC @3xuC @x.u2/ D 0; x 2 R; t 2 RC (26.1)

is a model for nonlinear, shallow water (and many other systems), unidirectional
long waves of small amplitude. u is proportional to the relative vertical displacement
of the fluid and x and t are dimensionless distance and time, where distance is
measured in a moving frame x D x0 � t if x0 is the original coordinate. Due to two
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opposite effects: dispersion and nonlinearity, it has soliton solutions of the form

'c.x � ct C x0/ (26.2)

where c is the velocity, x0 is the initial position and

'c.x/ D 3c

2 cosh
�p
cx=2

	 : (26.3)

Equation (26.1) has an infinite number of invariant quantities. Two are important for
the study of the stability of solitons, they are:

1. The mass

M.uu0.t// D 1

2

Z

R
.uu0/2.t; x/dx D M.u0/; 8t � 0;

2. The Hamiltonian

H.uu0.t// D 1

2

Z

R
.@x.u

u0//2.t; x/dx � 1
3

Z

R
.uu0/3.t; x/dx D H.u0/; 8t � 0

where uu0 is the solution of (26.1) with initial datum u0. Indeed 'c is a critical point
of Qc D HC cM. Global well-posedness in the space H1 where the two quantities
are defined is proved in [7]. Solitons are considered as highly stable states of motions
and several aspects of stability have been studied. For example these waves are
stable with respect to perturbation of the initial datum when it is a soliton profile
(of the form (26.2) for t D 0). However note that an initial very small change in c
implies propagation at different speed and thus for large times a notable difference
in position. A first notion introduced in [1] is that of orbital stability where for � > 0
there exists ı > 0 such that

ku0 � 'ckH1 � ı) 8t � 0; d.uu0.t; �/; 'c.� � ct// � �

with d.u; v/ D inffku.�/ � v.� � s/kH1 ; s 2 Rg: A stronger notion of asymptotic
stability has been obtained in [8, 9]. However the convergence to a function of the
form (26.2) is only obtained in a weak topology and it is not expected to have strong
convergence.

When random pressure acts at the surface of the fluid a random perturbation of
(26.1) could be considered

duC �@3xuC @x.u2/
	
dt D �dW.t/ (26.4)

where W.t/ is a Wiener process in H1 (i.e. of the form W.t/ D P
i2N ˇi .t/˚ei

where .ei /i2N is a complete othonormal system of L2 and ˚ is Hilbert-Schmidt
from L2 to H1, we write later ˚ 2 L 0;1

2 ). Mild solutions to (26.4) are solutions of
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the following integral equation

u�;u0.t/ D S.t/u0 �
Z t

0

S.t � s/@x..u�;u0/2/ds C �
Z t

0

S.t � s/dW.s/ (26.5)

where .S.t//t2R is the Airy group on H1 associated to the unbounded operator
.�@3x ;H3/. The following theorem is proved in [2].

Theorem 26.1. There exists a mild solution to (26.4), a.s. continuous in time with
values in H1 defined for all t � 0. For any T > 0, the solution is unique among
those having paths in some space XT 	 C.Œ0; T �IH1/.
Note that the above result is obtained for a noise which is colored in space. However,
though we cannot give a mathematical justification to it since S.t/ has only local
smoothing properties, the space-time white noise is often considered in physics. In
the following we consider a sequence of equations corresponding to a sequence of
noises such that

˚n D
�
I ��C 1

n
.x2I ��/k

��1=2

They are Hilbert–Schmidt for k large enough and uniformly bounded as operators
from L2 to H1 (we write later their norm as k˚nkL 0;1

2

, they are less than 1 for

every n). This allows to consider noises such that the larger is n the more the noise
mimics the space-time white noise and is a central assumption to allow to obtain
lower bounds on the probabilities involving exit times. We denote the solutions of
mild solutions of (26.4) by un;�;'c0 . The aim of the two next sections is to study
the stability of the shape of the soliton in the presence of noise and when the initial
datum is a soliton profile.

26.2 Exit from the Vicinity of the Soliton

In this section we study the exit from a neighborhood of the soliton (the solution of
the deterministic equation).

Definition 26.1. We define the exit time off a neighborhood of the soliton by

Q�n;�˛ D inf
˚
t 2 Œ0;1/ W ��un;�;'c0 .t; � C c0t/ � 'c0

.�/��H1 � ˛
�
:

We expect this approach to yield a poor description of the persistence of the soli-
ton in the presence of noise for the same argument that motivated the introduction
of the notion of orbital stability. Also the following heuristic is given in [3]. The
operator arising from the linearization of u! �@3xu � @x.u2/ around 'c0

is @xLc0

where Lc0
D Q00c0

.'c0
/ D �@2x C c0 � 2'c0

. It has no unstable eigenvalue but
a null space: span

˚
@c'cjcDc0

; @x'c0

�
. Thus if we formally replace the infinite
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dimensional system by a linear system of SDEs such that 0 is a degenerate simple
eigenvalue corresponding to a Jordan block:

�
dX1 D X2dt C �dW1.t/
dX2 D �dW2.t/

where W1 and W2 are independent Brownian motions, then X1.T / D �
R T
0
W2.s/

dsC �W1.T / thus var.X1.T // _ �2T 3 for large T . Such an analogy suggests that
the solution stays in the neighborhood of the soliton for times of the order of ��2=3.
Using a large deviations result as well as studying the associated variational problem
we are able to justify this heuristic in [4].

Proposition 26.1. Take T; c0 > 0, then for ˛0 > 0, 80 < ˛ < ˛0, 9C.˛; c0/ such
that

limn!1lim�!0�2T 3 log P
� Q�n;�˛ � T 	 � �C.˛; c0/:

It means that such an approximation by the soliton is valid up to times at most of
the order of ��2=3. Note that this order is the same as the one obtained in [5] for
the tails of the position of the soliton in the stochastic nonlinear Schrödinger (NLS)
equation. We do not supplement this lower bound by an upper bound as we are after
a better description of the persistence of solitons. We expect that by allowing the
position (or more parameters) of the soliton to fluctuate we might obtain stability of
the shape of the soliton on a diffusive time scale (see, e.g. [5, 6, 10]).

26.3 Exit from the Vicinity of the Modulated Soliton

The following result from [3] justifies the collective coordinate approach often used
in physics to approximate the solution of the stochastic KdV (or NLS) equation
starting from a soliton profile.

Theorem 26.2. 9˛0 > 0 W 8˛ 2 .0; ˛0�; 9��˛ > 0 a.s. stopping time, 9c�.t/; x�.t/
semi-martingales defined a.s. for t � ��˛ with values in .0;1/ and R such that a.s.
8t � ��˛,

u�;u0 .t; � C x�.t// � 'c�.t/ D ���.t/;
Z

R
��.t; x/'c0

.x/dx D
Z

R
��.t; x/@x'c0

.x/dx D 0; (26.6)

k���.t/kH1 � ˛; jc�.t/ � c0j � ˛:

Moreover, 9C > 0 W 8T > 0; 8˛ � ˛0, 9�0 > 0 W 8� < �0,

P
�
��˛ � T

	 �
C�2T k˚k

L 0;1
2

˛4
: (26.7)
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Equations for c� , x� and the first order of �� are also derived therein.
In [4] we are able to improve on the upper bound (26.7) and to obtain an expo-

nential upper bound in the case where ˚ is fixed and a uniform such upper bound
for the sequence of noises defined in terms of the sequence of operators ˚n.

Proposition 26.2. For T > 0 and 0 < ˛ < ˛0 and n fixed, 9C.˛; c0/ and �0 > 0

such that �20T is small enough (depending on k˚nkL 0;1
2

and ˛), such that 8� < �0,

P
�
�n;�˛ � T 	 � exp

�
�C.˛; c0/

�2T

�
: (26.8)

We also provide an exponential lower bound, with a similar technique as for the
proof of Proposition 26.1, with the same scaling in � and T

Proposition 26.3. For T; ˛ > 0, 9C.˛; c0/ W

limn!1lim�!0�2T log P
�
�n;�˛ � T 	 � �C.˛; c0/:
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Chapter 27
Optimization Approach to a Simulation
Algorithm of a Mixer-Settler System
in the Transient State

E.F. Gomes and G.A. Pinto

Abstract In this paper we describe a parameter optimization approach to a simu-
lation algorithm of a mixer-settler system in the transient state. The model we are
using for the shallow-layer settler, in a mixer-settler system, is able to describe the
hydrodynamic phenomena of the transient state of a liquid–liquid system. Its math-
ematical model includes parameters of the drop transport process as well as of the
drop–drop and drop-interface coalescence with the active interface. The most ade-
quate values of these parameters are unknown. In order to tune the model parameters
we have linked the mixer-settler simulation algorithm to an optimization procedure.
We have used the Hooke–Jeeves optimization algorithm to fit these parameters to
given experimental results.

27.1 Introduction

Mixer-settler equipments are extremely useful for developing liquid-liquid extrac-
tion processes. Liquid–liquid extraction, also called solvent extraction, is a process
that allows the separation of two or more components due to their unequal solubili-
ties in two immiscible liquid phases. The liquid–liquid dispersion is created during
the mixing step (in the mixer unit) and is separated by gravity (in the settler unit) in
a second step. The mixing and separation steps constitute one stage of extraction.
The importance of separation of immiscible liquid–liquid systems is well known
in many industrial fields, such as wastewater treatment and the crude oil industry
[9]. Due to the high complexity and cost of the direct experimentation using such
equipments, computer simulation becomes very attractive.

In previous work [6] we have proposed a model for the shallow-layer settler unit,
in a mixer-settler system, which is able to describe the hydrodynamic phenomena of
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the transient state of a liquid–liquid system. The mathematical model used includes
parameters of the drop transport process as well as of the drop–drop and drop-
interface coalescence with the active interface. In order to find the most appropriate
values for the model parameters, we have coupled the mixer-settler simulation algo-
rithm with an optimization algorithm. A direct numerical resolution technique had
already been proposed by the authors [4] for the simulation of liquid–liquid sys-
tems. The underlying mathematical model is also described in this work. Previous
computational results indicate that the model provides qualitative predictions of
the settler’s dynamic behavior. In particular, the length of the band changes plau-
sibly when input parameters are affected by step changes. Moreover, the system
converges to steady state.

In order to tune these parameter values of the mixer-settler model we have used
the Hooke–Jeeves algorithm [8]. This algorithm uses a deterministic pattern search
method which is widely used for non-smooth objective functions due to its sim-
plicity and robustness. The objective function (to be minimized) is defined as the
sum of squares of the differences between the computed and given target values
for the thickness of the dispersion band. Such target values are being determined in
experiments conducted in our liquid–liquid systems laboratory.

27.2 The Mathematical Model

In previous work [4, 6], we have already proposed a mathematical model of the
transient state for the dispersion band in the settler. This mathematical approach
models the phenomena that occur in each volume element .H �w��x/, or vertical
slice, of the dispersion band, in the settler, where x is its longitudinal position in
the dispersion band, H is the thickness of the dispersion band and w is the width
of the settler (Fig. 27.1). The modeling of the longitudinal drop transport is set-up
by taking into account the gravitational instability caused in the dispersion band by
the non-uniform thickness of the band. The viscous character of the draining of the
continuous phase is also taken into account in this model.

This model for the shallow layer gravity settler assumes there is a large enough
horizontal area, such that, given the inflow at one end and the outflows at the other, a
dispersion wedge is formed by settling effect. This wedge does not cover the entire
phase boundary between the two liquids. In this wedge, we assume:

� Binary drop-drop coalescence.
� Negligible drop breakage due to low turbulence within the dispersion band.
� Drops-interface coalescence.
� Gravitational drainage of the continuous phase to the passive interface.
� Drop movement away from the entrance essentially in plug flow movement.
� Negligible mass transfer between phases due to the low interaction between

drops, the low specific surface and the short residence time of both phases in
the dispersion band.
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Fig. 27.1 Schematics of the dispersion band

� Good representation of drop size distribution at any position at the slice by a
continuous distribution of drop volumes.

� Uniform longitudinal drop velocity in each slice (there are no wall effects).
� Negligible changes of the physical properties of the dispersion band in the

vertical direction.

The calculation of the drop volume variation in time is performed for each vol-
ume element. For each time step, the events that occur in each volume element of
the dispersion band are computed. They are (see (27.1)):

� The dispersion fed from the mixer unit into the settler.
� The coalescence between drops of the dispersed phase.
� The coalescence of drops with the active interface.
� The draining of the continuous phase to the passive interface.
� The transport of the dispersion between consecutive volume elements in the

dispersion band.

The dispersion flows between consecutive slices from the thicker to the thinner
slice. The following differential equation describes these phenomena in terms of the
volume variation of the dispersion for each slice at the position x over time

ıV .x; t/

ıt
D F.x; t/w�x � ıC.x; t/

ıt
� ıD.x; t/

ıt

C˛w�x

�
H.x ��x; t/ �H.x; t/

�x
� H.x; t/ �H.x C�x; t/

�x



(27.1)

where w is the width of the settler, ˛ is an unknown parameter describing the effects
of inner friction on the longitudinal movement of the dispersion, F is the velocity
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of the dispersion entering the settler from the mixer, H is the thickness of the dis-
persion band at position x and time t and ıC.x; t/=ıt represents the volume rate of
the drops coalescing to the active interface, which, in her pioneer work, Ruiz [12]
expresses as Equation (27.2). In that work, Ruiz defined n.v; x/dv as the number of
drops of size from v to v C dv (volume class v) per unit volume of the dispersion
band at position x, as the fraction of dispersion phase projected onto the surface
and assumed close to 1, as the average projected area of drops and N.x/ as the total
number of drops per unit volume at position x. ��.v/ is the drop-interface coales-
cence frequency which another unknown parameter. We use this expression yet in
our work:

ıC.x; t/

ıt
D w��.x/��.v/n.v; x/dv

Ap.x/N.x/
�xdv

D w�x��.x/��.v/n.v; x/dv

�
4

�
6
�

	 2
3
R1
0 v

2
3 n.v; x/ dv

(27.2)

Where ıD.x; t/=ıt represents the volume variation of the dispersion due to the
draining to the passive interface. To describe this variation, we use

ıD.x; t/

ıt
D kV.x; t/ Œ.1 � �.x; t// � .1 � �M /� (27.3)

In (27.3) we have another unknown constant, k, which describes the effects of
the friction between the continuous and the dispersed phases. V is the volume of
the dispersion in the slice at time t , � is the present local hold up and �M is the
maximum hold up (corresponds to the maximal compactation of the drops of the
dispersion). Using the expression in (27.4), we can calculate the volume of the slice
at position x and we can obtain the thickness of the dispersion band, H , along the
dispersion band.

V.x; t/ D H.x; t/w�x (27.4)

The hold-up, �, is calculated directly as the ratio of the volume of dispersed phase
to the total volume of the dispersion. Further, besides the volume of the dispersed
phase, we need to know the volume of the continuous phase. We decompose the
expression of the volume variation into two terms, one describing the volume varia-
tion of dispersed phase, Vd .x; t/, as can be seen in (27.5), and the other describing
the variation of the continuous phase volume, Vc.x; t/, as can be seen in (27.6).

ıVd .x; t/

ıt
D Fd .x; t/w�x

C˛w�x�.x; t/

�
H.x ��x; t/ �H.x; t/

�x
� H.x; t/ �H.x C�x; t/

�x



�ıC.x; t/
ıt

(27.5)
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ıVc.x; t/

ıt
D Fc.x; t/w�x

C˛w�x.1 � �.x; t//
�
H.x ��x; t/ �H.x; t/

�x
� H.x; t/ �H.x C�x; t/

�x



�ıD.x; t/
ıt

(27.6)

As we have already referred, we assume that breakage, given the low turbulence, is
negligible. However, we consider two types of coalescence, drop–drop coalescence
and drop-interface coalescence. To represent the volume of drops coalescing to the
active interface per unit time we use (27.2). To represent the volume rate of the
drops disappearing and appearing by drop–drop coalescence within the element of
dispersion volume, we use (27.7) and (27.8) respectively.

wH.x/�x

N.x/

�Z 1

0

�.v; v0/n.v; x/n.v0; x/ dv0

dv

D wH.x/�xR1
0
n.v; x/ dv

�Z 1

0

�.v; v0/n.v; x/n.v0; x/ dv0

dv (27.7)

wH.x/�x

2N.x/

�Z v

0

�.v � v0; v0/n.v � v0; x/n.v0; x/ dv0

dv

D wH.x/�x

2
R1
0
n.v; x/ dv

�Z v

0

�.v � v0; v0/n.v � v0; x/n.v0; x/ dv0

dv (27.8)

According to Ruiz [12], �.v; v0/ in (27.7) and (27.8) represents the drop–drop
coalescence frequency (27.9). �0 is a constant of the equation, and it is another
unknown parameter.

�.v; v0/ D �0.v�1=3 C v0�1=3/2 (27.9)

27.3 The Numerical Approach

In previous works [4–6] the authors have used a direct numerical approach by means
of an adequate space-time discretization. In that approach, the discretized form of
the population balance equation is solved by a first-order finite difference method
with careful control of variable, time and space integration steps. The phase space
coordinates are the position of the slice in the dispersion band and the size (vol-
ume) of the drops. For each time step we compute the dispersion changes in each
volume element (slice) of the dispersion band, taking into account the variations of
the volume of the continuous phase and of the properties of the dispersed phase due
to the acting discrete phenomena. In this algorithm, the variation of the volume of
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the dispersed phase and the volume of the continuous phase are calculated sepa-
rately. The continuous phase in each slice of the dispersion band is analyzed from
the point of view of volume variation alone and is calculated from the balance of
the volume of the continuous phase. The dispersed phase in each slice, at each time
step, is analyzed from both the volume variation and drop size composition points
of view. For greater precision of drop size representation, we adopted a logarithmic
grid of volumes (of drops), vk , in order to simultaneously obtain enough informa-
tion about the smaller drop sizes and to achieve a reasonable calculation time. Like
Ribeiro [11] we used the maximum drop volume, vmax, and minimum drop volume,
vmin, observed in the dispersion (depending on physical–chemical characteristics of
the liquid–liquid system) and the number of drop classes allowed must be selected.
Equation (27.10) gives the drop volume grid.

vk D vmin

�
vmax

vmin

�
 j �1
nclasses�1

�

j D 1; 2; : : : ; nclasses (27.10)

Knowing the variation of the volume of the dispersed and continuous phases, we
can obtain the total volume by using a numerical method of ordinary differential
equations such as a careful implementation of the Euler method. The calculation of
the hold up, �, and of the thickness of the dispersion band, H , along the settler can
be obtained from the definitions. From the volume variation of the two phases, we
know the total variation of the volume of the slice at the position x of the dispersion
band, and we may calculate the hold up and the thickness of the dispersion band
at position x. Since a direct numerical method of resolution of ordinary differential
equations is used, the choice of the space (length) and time integration step, as well
as of the convergence criterion, is very important for the successful implementation
of the algorithm [5]. At each time integration step, a convergence criterion is used
for the space discretization of the ordinary differential equation to evaluate each
solution.

27.4 Strategies for Parameter Optimization

Given the complexity of the model, the values for the newly introduced parameters
of the drop transport process and coalescence need careful study. In order to identify
the most adequate parameter values for the model we use our simulation algorithm
for the mixer-settler unit as a sub-routine in the Hooke and Jeeves direct search non-
linear optimization algorithm. It is a simple method that does not require derivatives
of the objective function. Therefore, the method has the advantage that the objective
function is not required to be continuous nor differentiable. In our case, the objective
function is defined as the sum of squares of the differences between the computed
and given target results for the thickness of the dispersion band,H , each centimeter
(100 data points), along the dispersion band. The program, written in C, needs a
starting guess for the parameter values. With this set of parameters, the simulation
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program runs the transient state until a steady state is reached. At this point, the
optimization program evaluates the objective function. Next, it tries to minimize the
objective function by finding a new set of parameters and running the simulation
again. The optimization algorithm stops when the value of the objective function is
below a given threshold or a maximum number of iteration is reached.

27.5 Results

We have run the optimization program for estimating the best values for the four
unknown parameters ˛, k, ��, �0. In order to simulate the mixer-settler for the sta-
tionary and transient state it is very important to know the hydrodynamic phenomena
in the mixer and settler units. In order to obtain such knowledge, sophisticated exper-
iments are required to define the parameters and validate the simulation algorithms
developed. We have a purpose-built acrylic mixer-settler system at our liquid–liquid
systems laboratory at ISEP (Instituto Superior de Engenharia do Porto) where exper-
iments have been conducted during the last few years. Another important tool in the
modeling and validation of the simulation of the hydrodynamics and mass trans-
fer in liquid–liquid systems is the calculation of the variation of the diameter of the
drops along the settler. We have been working in image processing for the automatic
counting of the drops in the image frames obtained at our lab, minimizing the errors
for major reliability of the experimental results [1, 2]. Since the aim of the work
presented in this paper is mainly to show that the optimization program can fit the
unknown parameters to given target data, in this section we show the results obtained
with the optimization program for a given set of data. The simulated liquid–liquid
system was composed by an organic phase (kerosene) and aqueous phase (water)
with an organic flow rate of 2.96 l/min of both phases and a hold up of 0.5. The
stirring speed in the mixer is constant at 200 rpm.

Figure 27.2 shows the evolution of the shape of the dispersion band, as the opti-
mization algorithm searches for better values of the parameters. The starting value
for each one of the parameters is 0.01, 0.03, 0.1 and 0.0001, respectively. At this
point the objective function has approximately the value of 5.93.

We can see, in Fig. 27.2, some shapes of the dispersion band in the settler, starting
with the lower curve, and changing the parameters the fit to the target results (the
highest curve).

In Table 27.1 we can see the evolution of the parameter value during the opti-
mization process. In the first line, iteration 0, we have the start guess given to the
optimization program. In the lines corresponding to the iterations 1 and 2, we can
see the first choices from the program for the ˛ parameter and the respective values
for the objective function f (almost the same). In iteration 3 the optimization pro-
gram starts to change the �� parameter to better fit the target results. In iteration 5 it
starts to fit the k parameter and in iteration 7 the �0 parameter is changed.

The value of 1.57 for the objective function is reached in a few time steps, only
164. The choice of the starting point is very important in this kind of methods.
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Fig. 27.2 Band thickness for different parameters values obtained from the optimization program

Table 27.1 Variation of the parameters values and objective function over time

Iteration ˛ �� k �0 f

0 10�2 3	 10�2 10�1 10�4 5.93153
1 1:05	 10�2 3	 10�2 10�1 10�4 5.95738
2 9:5	 10�3 3	 10�2 10�1 10�4 5.90571
3 9:5	 10�3 3:05 	 10�2 10�1 10�4 6.02712
4 9:5	 10�3 2:95 	 10�2 10�1 10�4 5.79112
5 9:5	 10�3 2:95 	 10�2 1:005 	 10�1 10�4 6.22646
6 9:5	 10�3 2:95 	 10�2 9:95	 10�1 10�4 5.37141
7 9:5	 10�3 2:95 	 10�2 9:95	 10�1 1:05 	 10�4 7.05557
8 9:5	 10�3 2:95 	 10�2 9:95	 10�1 9:5 	 10�5 3.87476
9 8:5	 10�3 2:90 	 10�2 9:90	 10�1 9:0 	 10�5 2.34631
10 8:5	 10�3 2:85 	 10�2 9:90	 10�1 9:0 	 10�5 2.29587
50 8:493 	 10�3 2:8493 	 10�2 9:8493 	 10�1 8:493 	 10�5 1.60812
100 8:493 	 10�3 2:8493 	 10�2 9:8453 	 10�1 8:453 	 10�5 1.58935
164 8:36	 10�3 2:8361 	 10�2 9:8361 	 10�1 8:361 	 10�5 1.57313

27.6 Other Parameters to Optimize

Our algorithm for the simulation of the transient state of the mixer-settler system is,
in fact, composed by two connected algorithms, the mixer and the settler. The dis-
persion entering the settler is the dispersion leaving the mixer as Fig. 27.3 illustrates
(the equipment conception must obey this principle). One change in the operating
variables of the mixer (hold-up, flow rate or stirring speed), has an impact on the dis-
persion band of the settler over time. Therefore, it is very important to find the best
values for the parameters of the hydrodynamic models for the breakage and drop–
drop coalescence of the dispersion in the mixer unit. The tuning of these parameters
through the present optimization procedure will be done in the future.

In the mixer, we adopted [5, 11] a simplified Coulaloglou and Tavlarides [3]
model for the coalescence and breakage of the drops. The model of the mixer
unit is prepared for the mass transfer phenomena but we do not consider this phe-
nomenon at present. To model the breakage of the drops, this model takes into
account the breakage frequency, g.v/, the size distribution of the daughters drops
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Fig. 27.3 Scheme of the mixer-settler system

and the number of the resulting drops of one drop.

g.v/ D C1 "
1=3v�2=9

1C ˚ exp

�
�C2
.1C˚/

2

�d "2=3v5=9

�
(27.11)

The symbols C1 and C2 are dimensionless constants whose value must be deter-
mined experimentally. The ", 
 , �d and ˚ parameters represent, respectively, the
agitation power of the mixer, the interfacial tension, the density of the dispersed
phase, the hold up (in the mixer), and v is the drop volume. The distribution of the
daughter drops, ˇ.vjv0/, is defined in (27.12) ones:

ˇ.vjv0/ D 2:402

v
exp

�
�4:5.2v0 � v/2

v2

�
(27.12)

To model the coalescence of the drops we have (27.13) and (27.14) describing the
collision frequency, h.v; v0/, and the coalescence efficiency, �.v; v0/, respectively.

h.v; v0/ D C3"1=3.v2=3 C v02=3/.v2=9 C v02=9/1=2 (27.13)

�.v; v0/ D exp

2

4�C4�c�c"

2

 
v1=3v01=3

v1=3 C v01=3

!43

5 (27.14)

C3 and C4 are two parameters of the model whose value must be provided and
�c and �c represents respectively, the density and viscosity of the continuous phase.

27.7 Conclusions

In this paper we have presented an optimization approach for tuning a set of
four parameters in a shallow-layer settler simulation algorithm. We have used
the Hooke–Jeeves direct search optimization algorithm to minimize an objective
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function that evaluates the fit of the simulation results to given target values. Our
results show that the optimization approach is able to significantly reduce the value
of the objective function, even if we start from a relatively good initial guess. In pre-
vious studies of our simulation program we have seen that the computational results
were found to be meaningful and indicate that the model and the simulation provide
adequate qualitative predictions of the settler’s dynamic behavior and we knew the
possible range for these four parameters. In the future, given more and better sets of
target values, we will be able to work on finer details of the simulation algorithms.
We have now a workable optimization program to fit these model parameters to
experimental work.

27.8 Future Work

As pointed out before, this work has a number of lines that are worth pursuing.
We intend to increase the number of parameters to be tuned with the optimiza-
tion procedure. Namely we will extend the parameter optimization to models of the
hydrodynamic phenomenon in the mixer unit. We hope to obtain the presently lack-
ing experimental data necessary for a more accurate validation of the mathematical
models after solving the current crud problem in the band dispersion. Since we are
simulating a transient state, validation should be done taking time into account as
well. In the present work, however, due to the problems with experimental data,
we only validate the final state of the simulated process. To improve our simulation
model we also need more information about the distribution of the drops entering
the settler from the mixer. This will also be studied both experimentally and theoret-
ically. It is also important to know the variation of the diameter of the drops along
the settler. As we mentioned already, this can be improved using image acquisition
and processing [1, 2].
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Chapter 28
Duality Theory, Representation Formulas
and Uniqueness Results for Viscosity Solutions
of Hamilton–Jacobi Equations

Diogo A. Gomes and Enrico Valdinoci

Abstract In this paper we review some representation formulas for viscosity
solutions in terms of certain variational problems, following an approach due to
(Fleming and Vermes, SIAM J Control Optim 27(5):1136–1155, 1989).We con-
sider both the discounted cost infinite horizon problem and the terminal value
problem. These formulas are obtained using a relaxed control formulation and then
applying duality theory.

28.1 Introduction

The objective of this paper is to review some representation formulas for viscos-
ity solutions of Hamilton Jacobi equations using generalized Mather measures and
infinite dimensional linear programming. Formulas of this type were first obtained
in [6] in case no boundary was present.

We will consider both the discounted cost infinite horizon problem and the termi-
nal value optimal control problem and we will recall some representation formulas
for viscosity solutions in terms of certain variational problems, see Theorems 28.1
and 28.2.

As a by-product of these representation formulas, the uniqueness of viscosity
solutions easily follows.

In further detail, we deal with two basic models. The first one is the discounted
cost infinite horizon problem, driven by the Hamilton–Jacobi equation

˛uCH.D2u;Du; x/ D 0 in ˝;

u D  on @˝:
(28.1)
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In this case, ˛ > 0, ˝ is an open subset of Rn, not necessarily bounded, @˝ is
its boundary, possibly empty, and  2 C.@˝/ is a bounded function. The function
H 2 C.Symn �Rn � Rn;R/ is the Hamiltonian, where Symn is the space of the
.n � n/-symmetric matrices, and u W ˝ ! R is a viscosity solution of (28.1) (see,
e.g., [2] or [3, 5]).

We work with the stochastic control setting in which the dynamics is given by a
diffusion coefficient 
 and a drift coefficient f . We take 
 , f 2 C.˝ � Rn;Rn/
and we suppose that

lim
j.x;v/j!C1

.x;v/2˝�Rn

�jf j C j
 j2 C L	

1C jxjq C jvjq D 0; (28.2)

for some q > 1. We also assume that there exists a bounded progressively measur-
able control # (in many cases it suffices to take # D 0), such that the stochastic
differential equation

dx D f .x; #/dt C 
.x; #/dWt ;

has a solution defined for all times up to the hitting time T@˝ of @˝ (which can be
C1). We assume further that

E

Z T@˝

0

L.x; #/dt <1: (28.3)

In this control theory setting (see [2] for deterministic control problems or [5] for
stochastic control) the Hamiltonian H is the generalized Legendre transform of a
Lagrangian, namely there exists a lower semicontinuous functionL W ˝�Rn ! R,
bounded from below, for which

H.x; �;M/ D sup
v2Rn

�
�f .x; v/ � � � 



T

2
.x; v/ WM � L.x; v/


; (28.4)

for any x 2 ˝ , � 2 Rn and M 2 Symn. We suppose further that H has the fol-
lowing uniform continuity property: for any sequences .Mn; pn/; . QMn; Qpn/ 2
Symn �Rn and any sequence xn 2 ˝ (not necessarily convergent) such that
.Mn � QMn; pn � Qpn/! 0 we have

jH.Mn; pn; xn/ �H. QMn; Qpn; xn/j ! 0: (28.5)

We assume that any viscosity solution u 2 C.˝/ can be approximated by smooth
subsolutions, namely that for any � > 0 there exists u� 2 C 2.˝/ \ W 2;1.˝/
such that
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˛u� CH.D2u�.x/;Du�.x/; x/ � � for any x 2 ˝;
u�.x/ D  �.x/ for any x 2 @˝

and lim
�!0C

u�.x/ D u.x/ for any x 2 ˝ :

(28.6)

We further assume that  � !  uniformly in @˝ .
We should point out that these approximation hypotheses are quite general. For

instance, in the first order case one has a-priori Lipschitz bounds for the viscosity
solution, and since the Hamiltonian is convex, by convolving the solution with a
standard mollifier one obtains a solution with the required properties. For second
order equations one can use the inf/sup convolution to obtain semiconcave subso-
lutions which can then be convolved with standard mollifiers to produce v� , see [5]
for details.

We also suppose that the growth of u is, at most, logarithmic, in the sense that

lim
jxj!C1

x2˝

u.x/

ln.1C jxj2/ D 0: (28.7)

Under the above hypothesis, the following representation result holds:

Theorem 28.1. The function u in (28.1) may be represented as

u.x/ D inf
�;�

Z

˝	Rn

Ld�C
Z

@˝

 d�; (28.8)

where the infimum is taken over all measures � on ˝ �Rn and � on @˝ satisfying
the constraint

Z

˝	Rn

f �D� C 

T

2
W D2� � ˛� d� D

Z

@˝

� d� � �.x/ (28.9)

for any � 2 C 2.˝/\W 2;1.˝/.
Also, u admits also the following dual representation:

u.x/ D sup
�2C2.˝/\W 2;1.˝/

inf
T�0 inf

y2˝
e�˛T � 1

˛



˛�.y/CH.D2�.y/;D�.y/; y/

�

C e�˛T inf
z2@˝



 .z/ � �.z/

�
C �.x/ :

(28.10)

The second problem we consider is the parabolic problem

� vt CH.D2v;Dv; v; x/ D 0 in Rn � .0; T /;
v.x; T / D  .x/ for x 2 Rn :

(28.11)
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As before,H W Symn �Rn �Rn �Rn ! R and v W Rn � Œ0; T �! R, is a viscosity
solution of (28.11).

As usual, vt D @tv.x; t/ denotes the time-derivative, while Dv D .@x1
v; : : : ;

@xn
v/ is the spatial gradient. We suppose that v 2 C.Rn � Œ0; T �/, and that v may be

approximated by smooth subsolutions v� 2 C 2.Rn � Œ0; T �/ \W 2;1.Rn � Œ0; T �/
for any � > 0, that is

� v�t CH.D2v�.x; t/;Dv�.x; t/; x/ � � for any .x; t/ 2 Rn � .0; T /;
v�.x; T / D  �.x/ for any x 2 Rn

and lim
�!0C

v�.x; t/ D v.x; t/ for any .x; t/ 2 Rn � Œ0; T � :
(28.12)

We also suppose that the growth of v at infinity is less than logarithmic, that is

lim
jxj!C1

x2Rn

sups2Œ0;T 	 jv.x; s/j
ln.1C jxj2/ D 0: (28.13)

In this framework, the following result holds true:

Theorem 28.2. The function v in (28.11) may be represented as

v.x; t/ D inf
Z

Rn	Œt;T 	
Ld�C

Z

Rn	fT g
 d� (28.14)

where the infimum is taken over all the measures � on Rn � Œt; T � � Rn and � on
Rn � fT g satisfying the constraint

Z

Rn	Œt;T 		Rn

f �D� C 

T

2
W D2� C �t d� D

Z

Rn	fT g
�.y; T / d� � �.x; t/

(28.15)
for any � 2 C 2.Rn � Œt; T �/ \W 2;1.Rn � Œt; T �/.

Moreover, we can also represent v as

v.x; t/ D sup
�2C2.Rn	Œt;T 	/\W 2;1.Rn	Œt;T 	/

inf
y2Rn

s2Œt;T 	

.T � t/

�


�t .y; s/ �H.D2�.y; s/;D�.y; s/; y/

�

C inf
�2Rn



 .�/ � �.�; T /

�
C �.x; t/ :

(28.16)

We point out that Theorems 28.1 and 28.2 imply that the viscosity solutions
of (28.1) and (28.11) are unique, under our assumptions, since they have to agree
with (28.8) and (28.14), respectively. In this sense, the representation formulas of
Theorems 28.1 and 28.2 give a different proof of the standard uniqueness results for
viscosity solutions (see, for instance, [3, 5]).
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Linear programming methods for deterministic and stochastic control have been
used by several authors, see for instance [4, 7, 8] and references therein. The repre-
sentation formulas in (28.10) and (28.16), which were first obtained in [6] in case no
boundary was present, will be derived via a general duality formulation, developed
in Sect. 28.3, which we believe is interesting in itself and which may lead to further
developments.

The paper is organized in the following way: Sect. 28.2 heuristically motivates
the duality formulas we present; Sect. 28.3 develops an abstract duality theory for
a generalized Mather problem, which is then applied in Sects. 28.4 and 28.5 to the
proofs of Theorems 28.1 and 28.2.

28.2 Heuristic Motivations

We make some comments to motivate the representation formulas (28.10) and
(28.16) of Theorems 28.1 and 28.2. To simplify the presentation we consider the
first-order calculus of variations setting, that is 
 D 0, and f D v. Furthermore,
since the argument is analogous for the terminal value problem, we only describe
the discounted cost infinite horizon problem.

It is well known that the viscosity solution u in (28.1) can be expressed as the
solution to the optimal control problem

u.x/ D inf
x.0/Dx;T�0

Z T

0

e�˛tL.x; Px/ds C e�˛T .x.T // : (28.17)

The quantity T in (28.17) is the “terminal time” T@˝.x/ 2 Œ0;C1� for which the
trajectory x exits ˝ (this is the case discussed, for instance, in [2] or [5]).

In this sense, (28.8) and (28.9) is a relaxed form of the optimal control problem
(28.17). Indeed, if we define

Z

˝	Rn

�.y; v/�.y; v/ D
Z T

0

�.x.s/; v.s// e�˛s ds

and Z

@˝

�.y// d�.y/ D �.x.T // e�˛T ;

we have

Z

˝	Rn

v �D�.y/� ˛�.y/ d�.y; v/ D
Z T

0

d

ds



�.x.s// e�˛s

�
ds

D �.x.T // e�˛T � �.x/
D
Z

@˝

�.y/ d�.y/� �.x/;
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thence the optimal control trajectories are compatible with the constraint in (28.9)
and (28.8) may thus be seen as a relaxation of (28.17).

By heuristically using the minimax principle the dual representation of u claimed
in Theorem 28.1 then follows. More precisely, we can write

u.x/ D inf
�;�

sup
�

Z

˝	Rn

LC vDx� � ˛�d�C
Z

@˝

. � �/d� C �.x/;

where the infimum is taken over all measures � and � as in Theorem 28.1, and sim-
ilarly for the supremum. By (formally) exchanging the supremum with the infimum
we obtain, claiming that the minimax principle holds,

u.x/ D sup
�

inf
�;�

Z

˝	Rn

LC vDx� � ˛�d�C
Z

@˝

. � �/d� C �.x/

D sup
�

inf
0���1

�

˛
inf
y2˝
�H.D�.y/; y/C � inf

z2@˝
 .z/ � �.x/C �.x/;

where we took into account that pair .�; �/ satisfying (28.9) will also satisfy

˛

Z
d�C

Z
d� D 1;

by choosing in (28.9) � D 1.

28.3 A General Duality Theory

A main tool to establish the results in this paper is the Legendre–Fenchel–
Rockafellar duality theory (see, for instance, [9]). In this section we give a general
dual formulation that will simplify the proofs in our examples.

28.3.1 The Generalized Mather Problem

Let ˝i be closed (possibly unbounded) subsets of Rn, for i D 0; : : : ; N .
Let Li be lower semicontinuous functions on ˝i such that

inf
1�i�N inf

zi2˝i

Li .zi / > �1: (28.18)

Suppose that there exists �i 2 C
�
˝i ; Œ1;C1/

	
such that
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lim
jzi j!C1

zi 2˝i

Li .zi /

�i .z/
D C1; (28.19)

for i D 0; : : : ; N .
We denote by C �i

0 .˝i / the set of continuous functions �i that satisfy

k�ik�i
D sup

˝i

ˇ̌
ˇ̌�i
�i

ˇ̌
ˇ̌ <1; lim

jzi j!C1

zi 2˝i

�i .z/

�i .z/
D 0:

For any 1 � i � N , let

Ri D
�
�i signed measures on ˝i with

Z

˝i

�id j�i j <1
�
: (28.20)

The set Ri is the dual of the set C �i

0 .˝i /. Let M D Qi Ri . Let X be a vector space
and let Ai W X ! Yi 
 C �i

0 .˝i /, for i D 0; : : : ; N be linear operators.
Let P be a (non-empty) convex subset of M of non-negative measures such that

sup
.�1;:::;�N /2P

Z

˝i

d�i < C1; (28.21)

and the following separation property holds: for any nonnegative .�1; : : : ; �N / 2
M n P , there exist co > 0 and  o;1 2 C �1

0 .˝1/, : : : ,  o;N 2 C �N

0 .˝N / in such a
way that

NX

iD1

Z

˝i

 o;i d�i � sup
. O�1;:::; O�N /2P

NX

iD1

Z

˝i

 o;i d O�i � co : (28.22)

We remark that

if .�1; : : : ; �N / 2 P then �1 � 0, : : : , and �N � 0, (28.23)

Also, we observe that both (28.21) and (28.22) are automatically satisfied if P is
defined by either

NX

iD1
�i

Z

˝i

d�i D 1 (or � 1) (28.24)

or
Z

˝i

d�i D �i (or � �i ) (28.25)

for suitable �i > 0.
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To check this claim, it suffices to take  0;i D ˙�i , in case (28.24). In case
(28.25), assume that the identity j fails. Then we take  0;i D 0, for i ¤ j , and
 o;j D ˙1.

Fix a measure �0 2 R0. The generalized Mather problem consists in

inf
NX

iD1

Z

˝i

Li d�i (28.26)

where the infimum is taken over all measures �i on˝i satisfying the following two
constraints:

.�1; : : : ; �N / 2 P

and

NX

iD1

Z

˝i

Ai' d�i D
Z

˝0

A0'0 d�0;

for any ' 2 X .
From now on, we will suppose that the constraints are non-void, meaning that

there exists .�
1
; : : : ; �

N
/ 2 P such that

NX

iD1

Z

˝i

Ai' d�
i
D
Z

˝0

A0' d�0 (28.27)

for any ' 2 X .
We will also suppose that the problem in (28.26) makes sense, that is that there

exists .�?1; : : : ; �
?
N / 2 P for which

NX

iD1

Z

˝i

Li d�
?
i < C1: (28.28)

These last two hypothesis in our problems will be guaranteed by the use of (28.3).

28.3.2 Duality

We start by recalling the Legendre–Fechel–Rockafellar Theorem (see, for instance,
[9]). For that, let E be a Banach space with dual E 0. The pairing between E and E 0
is denoted by .�; �/. Suppose that h W E ! .�1;C1� is a lower semicontinuous
convex function.
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The Legendre–Fenchel transform h� W E 0 ! Œ�1;C1� of h is defined by

h�.y/ D sup
x2E

.�.x; y/ � h.x// ; (28.29)

for all y 2 E 0. In a similar way, if g W E ! Œ�1;C1/ is concave and upper
semicontinuous, we define

g�.y/ D inf
x2E .�.x; y/ � g.x// : (28.30)

Theorem 28.3 (Legendre–Fenchel–Rockafellar). Let E be a locally convex,
Hausdorff topological vector space over R with dual E 0. Let h W E ! .�1;C1�
be a convex lower semicontinuous function, and g W E ! Œ�1;C1/ a concave
upper semicontinuous function. Then

sup
x2E

Œg.x/ � h.x/� D min
y2E 0

�
h�.y/ � g�.y/� ; (28.31)

provided that there exists a point x0 where g and h are finite, and that at this point
at least one of them is continuous.

Note that it is part of the theorem that the right-hand side of (28.31) is in fact a
minimum.

28.3.2.1 Identification of Dual Problems

We make use of the Legendre–Fenchel–Rockafellar’s Theorem to compute the dual
of the generalized Mather problem.

Let

M? D
n
.�1; : : : ; �N / W �i 2 Ri ; (28.32)

NX

iD1

Z

˝i

Ai' d�i D
Z

˝0

A0' d�0 8' 2 X
o
:

We also use a vector-like notation, by setting

� D .�1; : : : ; �N /;
˝ D ˝1 � � � � �˝N ;

and
C
�
0 .˝/ D C �1

0 .˝1/ � � � � � C �N

0 .˝N /:
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For � D .�1; : : : ; �N / 2 C �0 .˝/ we denote

k�k� D
NX

iD1
k�ik�i

and

h.�/ D sup
.�1;:::;�N /2P

NX

iD1

Z

˝i

� � �i � Li
	
d�i : (28.33)

Since h is the supremum of convex, and in fact linear, functions of �, we have that

h is convex. (28.34)

Lemma 28.1. Let �o 2 C �0 .˝/ and �o 2 P . Suppose that there exists  > 0 such
that

h.�o/ �  C
NX

iD1

Z

˝i

� � �o;i � Li
	
d�o;i : (28.35)

Then there exists C.k�ok� ; / such that

NX

iD1

Z

˝i

�i d�o;i � C.k�ok� ; /:

Proof. By (28.33) and (28.28),

�h.�o/ �
NX

iD1

Z

˝i

�
�o;i C Li

	
d�?i

�
NX

iD1

Z

˝i

�k�o;ik�i
�i C Li

	
d�?i

� k�ok�
NX

iD1

Z

˝i

�i d�
?
i C

NX

iD1

Z

˝i

Li d�
?
i

� Co.k�ok� /;

for a suitable Co.k�ok� / > 0.
Thus, from (28.35),

NX

iD1

Z

˝i

�
�o;i C Li

	
d�o;i �  C Co.k�ok� /: (28.36)
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Also, by (28.19), there exists R.k�ok� / such that

Li .zi / � .1C k�ok� /�i .zi /; (28.37)

for any zi 2 ˝i such that jzi j � R.k�ok� /.
Let

c.k�ok� / D .1C k�ok� /
NX

iD1

0

B@ sup
jzi j�R.k
ok� /

zi 2˝i

�i .zi /C j inf
˝i

Li j

1

CA :

Note that c.k�ok� / is finite, due to (28.18), and that

Li .zi / � .1C k�ok� /�i .zi /� c.k�ok� /;

for any zi 2 ˝i , because of (28.37).
Accordingly,

NX

iD1

Z

˝i

�
�o;i C Li

	
d�o;i �

NX

iD1

Z

˝i

� � k�o;ik�i
�i CLi

	
d�o;i

�
NX

iD1

Z

˝i

�
�i � c.k�ok� /

	
d�o;i

�
NX

iD1

Z

˝i

�i d�o;i � Qc.k�ok� /;

for a suitable Qc.k�ok� / > 0, which is finite thanks to (28.21).
This estimate and (28.36) give the desired result. ut
Consider the sets

Co D
n
� D .�1; : : : ; �N / W �i D Ai' ; ' 2 X ; i D 0; : : : ; N

o
;

C D cl Co
(28.38)

where cl denotes the closure in C �0 .˝/. Note that, since Ai is linear,

C is a convex set. (28.39)

Let

g.�/ D
(
�PN

iD1
R
˝i
�i d�

i
if � 2 C

�1 otherwise;
(28.40)

where �
1
; : : : ; �

N
are given by (28.27).
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It follows from (28.39) that

g is concave and upper semicontinuous. (28.41)

Furthermore, by (28.30), (28.20) and (28.40),

g�.�/ D inf
�2C�

0
.˝/

 
�

NX

iD1

Z

˝i

�i d�i � g.�/
!

D inf
�2C

 
�

NX

iD1

Z

˝i

�i d�i C
NX

iD1

Z

˝i

�i d�
i

!
:

(28.42)

Such formula may be more conveniently written as follows:

Lemma 28.2. We have

g�.�/ D inf
'2X

 Z

˝0

A0' d�0 �
NX

iD1

Z

˝i

Ai' d�i

!
:

Proof. Of course, by (28.42), (28.38) and (28.27),

g�.�/ � inf
�2Co

 
�

NX

iD1

Z

˝i

�i d�i C
NX

iD1

Z

˝i

�i d�
i

!

D inf
'2X

 
�

NX

iD1

Z

˝i

Ai' d�i C
NX

iD1

Z

˝i

Ai' d�i

!

D inf
'2X

 
�

NX

iD1

Z

˝i

Ai' d�i C
Z

˝0

A0' d�0

!
:

We now prove the reverse inequality. Fix � > 0 and use (28.42) to obtain �� 2 C
for which

ˇ̌
ˇ̌
ˇg
�.�/C

NX

iD1

Z

˝i

��;i d�i �
NX

iD1

Z

˝i

��;i d�
i

ˇ̌
ˇ̌
ˇ �

�

2
: (28.43)

By (28.38), there exists a sequence of functions

�.j /� 2 Co (28.44)

converging to �� in the topology of C �0 .˝/, as j ! C1.
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Accordingly,

lim
j!C1

Z

˝i

�
.j /
�;i d�i D

Z

˝i

��;i d�i

and lim
j!C1

Z

˝i

�
.j /
�;i d�i

D
Z

˝i

��;i d�
i

and therefore, recalling (28.43), we have that there exists j� > 0 such that, if j � j� ,
we have ˇ̌

ˇ̌
ˇg
�.�/C

NX

iD1

Z

˝i

�
.j /
�;i d�i �

NX

iD1

Z

˝i

�
.j /
�;i d�i

ˇ̌
ˇ̌
ˇ � � :

That is, by (28.44) and (28.38),

ˇ̌
ˇ̌
ˇg
�.�/C

NX

iD1

Z

˝i

Ai'
.j /
� d�i �

NX

iD1

Z

˝i

Ai'
.j /
� d�

i

ˇ̌
ˇ̌
ˇ � �

for a suitable '.j /� 2 X .
Therefore, by (28.27),

ˇ̌
ˇ̌
ˇg
�.�/C

NX

iD1

Z

˝i

Ai'
.j /
� d�i �

Z

˝0

A0'
.j /
� d�0

ˇ̌
ˇ̌
ˇ � �

as long as j � j� .
In particular,

� C g�.�/ �
Z

˝0

A0'
.j�/
� d�0 �

NX

iD1

Z

˝i

Ai'
.j�/
� d�i

� inf
'2X

Z

˝0

A0' d�0 �
NX

iD1

Z

˝i

Ai' d�i :

By sending �! 0C, we end the proof of Lemma 28.2. ut
We plan to show that the dual of

sup
�2C�

0
.˝/

g.�/ � h.�/ (28.45)

agrees with the generalized Mather problem (this will be achieved in Proposition
28.2 and Theorem 28.4).
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We start by computing the Legendre transforms of h and g. For � 2 M , we
write � � 0 as a short-hand notation for �i � 0 for all i D 1; : : : ; N . We recall that
P 
 f� � 0g by (28.23).

Proposition 28.1. For any � D .�1; : : : ; �N / 2M , we have

h�.�/ D
(PN

iD1
R
˝i
Li d�i if � 2 P

C1 otherwise,
(28.46)

and

g�.�/ D
(
0 if � 2M?

�1 otherwise.
(28.47)

The proof of Proposition 28.1 requires some preliminary work.
By (28.29),

h�.�/ D sup
�2C�

0
.˝/

 
�

NX

iD1

Z

˝i

�i d�i � h.�/
!
: (28.48)

First we prove that if � 6� 0, then h�.�/ D 1.

Lemma 28.3. If there exists i , 1 � i � N for which �i 6� 0, then h�.�/ D C1.

Proof. We fix M > 0. If, say, �1 6� 0 then we can choose a non-negative function
�� 2 C �1

0 .˝1/ such that

�
Z

˝1

�� d�1 �M: (28.49)

Also, since
��� �Lj � 0 � inf

1�j�N inf
˝j

Lj � C

for some universal C > 0, thanks to (28.18), we deduce from (28.21) and (28.33)
that h.��; 0; : : : ; 0/ � C 0 for some universal C 0 > 0.

Thus, by plugging .��; 0; : : : ; 0/ as a test in the left hand side of (28.48) and
recalling (28.49),

h�.�/ � �
Z

˝1

�� d�1 � C 0 �M � C 0:

Since M can be taken arbitrarily large, we get that h�.�/ D C1. ut
Lemma 28.4. If � � 0 then

h�.�/ �
NX

iD1

Z

˝i

Li d�i C sup
 2C�

0
.˝/

 
NX

iD1

Z

˝i

 i d�i � sup
O�2P

NX

iD1

Z

˝i

 i d O�i
!
:

(28.50)
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Proof. Since Li is lower semicontinuous, using the Yosida regularization (see, e.g.,
Theorem 2.64 in [1]), we have that Li may be approximated monotonically from
below by continuous functions QLi;j , as j ! C1.

Let �j 2 C10 .BjC1/, 0 � �j � 1, �j .z/ D 1 for any z 2 Bj . Let Li;j .zi / D
�j .zi / QLi;j .zi /, for each i D 1; : : : ; N and j 2 N . Then, Li;j is also increasing
pointwise towards Li as j ! C1.

Accordingly, any � in C �0 .˝/ can be written as �i D �Li;j �  i , for some
 D . 1; : : : ;  N / also in C �0 .˝/. Thus, by (28.33),

sup
�2C�

0
.˝/

 
�

NX

iD1

Z
�id�i � h.�/

!

D sup
 2C�

0
.˝/

 
NX

iD1

Z
Li;j d�i C

NX

iD1

Z
 id�i

� sup
O�2P

NX

iD1

Z
.Lij C  i �Li /d O�i

!

� sup
 2C�

0
.˝/

 
NX

iD1

Z
Li;j d�i C

NX

iD1

Z
 id�i � sup

O�2P

NX

iD1

Z
 id O�i

!
:

By the monotone convergence theorem

lim
j!C1

Z
Li;j d�i D

Z
Li d�i

and so

sup
�2C�

0
.˝/

 
�

NX

iD1

Z
�id�i � h.�/

!

� sup
 2C�

0
.˝/

 
NX

iD1

Z
Li d�i C

NX

iD1

Z
 id�i � sup

O�2P

NX

iD1

Z
 id O�i

!
;

giving the desired result via (28.48). ut
Lemma 28.5. If � 2 P , then

h�.�/ �
NX

iD1

Z

˝i

Li d�i :
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Proof. Fix � 2 P . Then, by (28.33),

h.�/ �
NX

iD1

Z
.��i � Li / d�i

for any � 2 C �0 .˝/.
This and (28.48) yield the claim. ut

Lemma 28.6. Let � � 0, � 2M nP . Then, there exists a sequence .j / 2 C �0 .˝/
in such a way that

lim
j!C1

 
NX

iD1

Z

˝i

 
.j /
i d�i � sup

O�2P

NX

iD1

Z

˝i

 
.j /
i d O�i

!
D C1:

Proof. We take  .j /i D j o;i in (28.22) and the desired claim follows at once. ut
Proof (End of the proof of Proposition 28.1). We start by checking (28.46). If� 6� 0,
then (28.46) follows from Lemma 28.3, thus we may focus on the case in which
� � 0.

Accordingly, by choosing  D 0 in (28.50) we get that

h�.�/ �
NX

iD1

Z

˝i

Li d�i : (28.51)

Since the reverse inequality holds if � 2 P , due to Lemma 28.5, it follows that
(28.46) holds true if � 2 P .

Therefore, we focus on the proof of (28.46) for any � � 0, � 2 M n P . For
such �, we exploit Lemmata 28.4 and 28.6, together with (28.18) and (28.21), to
obtain

h�.�/ �
NX

iD1

Z

˝i

Li d�i

C lim
j!C1

 
NX

iD1

Z

˝i

 
.j /
i d�i � sup

O�2P

NX

iD1

Z

˝i

 
.j /
i d O�i

!

D C1 :

This shows that (28.46) holds also when 0 � � 2M n P . The proof of (28.46) is
thus completed.

We now prove (28.47).
By (28.32), if � 62M? then there exists O' 2 X such that

Z

˝0

A0 O' d�0 �
NX

iD1

Z

˝i

Ai O' d�i ¤ 0 : (28.52)
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Let us denote by Oc ¤ 0 the quantity in (28.52). Then, fixed any M > 0, we define
O'M D �. Oc=j Ocj/M O'. Then O'M 2 X and so, by Lemma 28.2,

g�.�/ �
Z

˝0

A0 O'M d�0 �
NX

iD1

Z

˝i

Ai O'M d�i

D �jcjM:

By taking M arbitrary large, we conclude that g�.�/ D �1. This proves (28.47)
when � 62M?.

If, on the other hand, then � 2 M?, (28.47) plainly follows from Lemma 28.2
and (28.32).

This completes the proof of Proposition 28.1. ut
Proposition 28.2. We have that

sup
�2C�

0
.˝/

.g.�/ � h.�// D inf
�2M.h�.�/� g�.�//; (28.53)

Proof. We will prove that

h is a continuous function. (28.54)

From this, the result follows from Legendre–Fenchel–Rockafellar’s theorem, recall-
ing (28.41) and (28.34).

To check (28.54), let �k ! � in C �0 , as k ! C1.
Fix � > 0 and use (28.33) to obtain �� 2 P in such a way that

h.�/ � � �
NX

iD1

Z

˝i

� � �i � Li
	
d��;i :

Then,

h.�k/ �
NX

iD1

Z

˝i

� � �k;i �Li
	
d��;i

and therefore

lim sup
k!C1

h.�/ � h.�k/ � � C lim sup
k!C1

NX

iD1

Z

˝i

j�k;i � �i j d��;i
D �:

By taking � as small as we wish, we obtain

lim sup
k!C1

h.�/ � h.�k/ � 0 : (28.55)
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Conversely, fixed � 2 .0; 1/, we can use (28.33) to obtain ��;k 2 P in such a
way that

h.�k/� � �
NX

iD1

Z

˝i

� � �k;i � Li
	
d��;k;i : (28.56)

We can also assume that

k�kk� � k�k � �k� C k�k� � k�k� C 1: (28.57)

Due to (28.56) and (28.57), we can now use Lemma 28.1 and we thus obtain that

NX

iD1

Z

˝i

�i d��;k;i � C.k�k� /:

As a consequence,

h.�/ � h.�k/C � �
NX

iD1

Z

˝i

.��i � Li / d��;k;i �
NX

iD1

Z

˝i

.��k;i �Li / d��;k;i :

D
NX

iD1

Z

˝i

� � �i C �k;i / d��;k;i

� �k� � �kk�
NX

iD1

Z

˝i

�i d��;k;i

� �C.k�k� /k� � �kk� :

Therefore,
lim inf
k!C1

h.�/ � h.�k/C � � 0;
and so, since � is arbitrary,

lim inf
k!C1

h.�/ � h.�k/ � 0:

This and (28.55) yield (28.54), as desired. ut
We are now in the position to obtain the duality result for the generalized Mather

problem:

Theorem 28.4. The quantity in (28.26) equals

sup
'2X

0
B@ inf

m1;:::;mN �0

mi D

R
˝i

d�i ; �2P

NX

iD1

�
mi inf

˝i

.Li C Ai'/
	 �

Z

˝0

A0' d�0

1
CA:
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Proof. The result will follow from (28.53).
By Proposition 28.1, the right hand side of (28.53) is equal to

inf
�2P\M?

NX

iD1

Z

˝i

Li d�i ;

which is exactly (28.26).
We now compute the left hand side of (28.53). Using (28.40) and (28.33), the left

hand side of (28.53) is

sup
�2C

 
�

NX

iD1

Z

˝i

�i d�
i
� sup
�2P

NX

iD1

Z

˝i

.��i �Li / d�i
!
:

By arguing as in Lemma 28.2, we see that the above quantity equals

sup
�2Co

 
�

NX

iD1

Z

˝i

�i d�
i
� sup
�2P

NX

iD1

Z

˝i

.��i �Li / d�i
!
:

In the light of (28.38) this is equal to

sup
'2X

 
�

NX

iD1

Z

˝i

Ai' d�i
� sup
�2P

NX

iD1

Z

˝i

.�Ai' � Li / d�i
!

which, by (28.27), is the same as

sup
'2X

 
�
Z

˝0

A0' d�0 � sup
�2P

NX

iD1

Z

˝i

.�Ai' �Li / d�i
!
; (28.58)

By taking �i supported at a single point (i.e. convenient multiples of Dirac deltas)
we see that

sup
�i

�2P

Z

˝i

.�Ai' � Li / d�i D
Z

˝i

d�i sup
˝i

.�Ai' �Li /;

therefore (28.58) becomes

sup
'2X

0

B@�
Z

˝0

A0' d�0 � sup
m1;:::;mN �0

mi D

R
˝i

d�i ; �2P

NX

iD1

�
mi sup

˝i

.�Ai' �Li /
	
1

CA;

as desired. ut
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28.4 Proof of Theorem 28.1

For any fixed x 2 ˝ , define Qu.x/ to be the infimum on the right hand side of (28.8).
We now apply Theorem 28.4 with A0 WD � Id, �0 WD ıfxg, ˝0 WD fxg, A1 WD

f �DC .

T /=2 W D2�˛, L1 WD L, �1 WD �,˝1 WD ˝�Rn, �1 WD 1Cjxjq=2C
jvjq=2, A2 WD � Id, L2 WD  , ˝2 WD @˝ , �2 WD jxjq . Here, q is the exponent in
(28.2).

Also, we take P as the set of all pairs .�; �/ of non-negative measures satisfying

˛

Z

˝	Rn

d�C
Z

@˝

d� D 1: (28.59)

Notice that the set P here is of the form requested in (28.24). We observe that (28.9)
implies (28.59), by taking � WD 1 and that if .�; �/ satisfies (28.59) then

Z

@˝

d� � 1 and
Z

˝

d� � 1

˛
:

Finally, let X WD C 2.˝/ \ W 2;1.˝/. Thus, we are in the position of applying
Theorem 28.4, from which we conclude that

Qu.x/ D sup
�2X

inf
m22Œ0;1	

˛m1Cm2D1

m1 inf
˝	Rn



LC f � � C 

T

2
W D2� � ˛�

�

Cm2 inf
@˝



 � �

�
C �.x/ :

Hence, from (28.4),

Qu.x/ D sup
�2X

inf
m22Œ0;1	

˛m1Cm2D1

inf
˝

m1



�H � ˛�

�
Cm2 inf

@˝



 � �

�
C �.x/ : (28.60)

It is suggestive rewrite (28.60) using the new variable T WD .1=˛/ ln.1=m2/: if we
do this, we obtain from (28.60) and (28.59) that

Qu.x/ D sup
�2X

inf
T�0 inf

y2˝
e�˛T � 1

˛



˛�.y/CH.D2�.y/;D�.y/; y/

�

C e�˛T inf
z2@˝



 .z/ � �.z/

�
C �.x/ :

(28.61)

Then, the proof of Theorem 28.1 will be accomplished once we show that Qu D u.
To this end, given � > 0, we take u� as in (28.6) and we conclude that



28 Viscosity Solutions of Hamilton–Jacobi Equations 381

Qu.x/ � inf
T�0 inf

y2˝
e�˛T � 1

˛



˛u�.y/CH.D2u�.y/;Du�.y/; y/

�

Ce�˛T inf
z2@˝



 .z/ � u�.z/

�
C u�.x/

� inf
T�0�

�.1 � e�˛T /
˛

� C�e�˛T C u�.x/

D �C�C u�.x/ :

By sending � to zero, we obtain

Qu.x/ � u.x/ : (28.62)

We now prove the reverse inequality. For this, let us observe that the left hand
side of (28.61) is not changed if we replace � with � � c, for any c 2 R. Therefore,
(28.61) may be written as

Qu.x/ D sup

2X


.x/Du.x/

inf
T�0 inf

y2˝
e�˛T � 1

˛



˛�.y/CH.D2�.y/;D�.y/; y/

�

Ce�˛T inf
z2@˝



 .z/ � �.z/

�
C �.x/

D sup

2X


.x/Du.x/

inf
T�0 inf

y2˝
e�˛T � 1

˛



˛�.y/CH.D2�.y/;D�.y/; y/

�

Ce�˛T inf
z2@˝



 .z/ � �.z/

�
C u.x/ :

Fix � > 0. Let �� 2 X with ��.x/ D u.x/, and such that

Qu.x/ � � � inf
T�0 inf

y2˝
e�˛T � 1

˛



˛��.y/CH.D2��.y/;D��.y/; y/

�

C e�˛T inf
z2@˝



 .z/ � ��.z/

�
C u.x/ :

(28.63)

Let ı > 0 be a small parameter (possibly smaller than �) and let

˚�;ı .y/ D ��.y/� ı ln.1C jy � xj2/;

for any y 2 ˝.
From (28.7), we have that u � ˚�;ı attains its minimum at a point x�;ı 2 ˝ . We

distinguish two cases: either x�;ı 2 ˝ or x�;ı 2 @˝ .
If x�;ı 2 ˝ , the fact that u is a viscosity solution implies that

˛u.x�;ı /CH.D2˚�;ı .x�;ı /;D˚�;ı .x�;ı /; x�;ı / � 0 : (28.64)
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Since
.u �˚�;ı /.x�;ı / � .u � ˚�;ı/.x/ D 0

we thus see that
��.x�;ı / � ˚�;ı .x�;ı / � u.x�;ı / :

The latter estimate and (28.64) imply that

˛��.x�;ı /CH.D2˚�;ı .x�;ı /;D˚�;ı .x�;ı /; x�;ı / � 0 : (28.65)

Since X

iD1;2
jDi˚�;ı .x�;ı /�Di��.x�;ı /j1 � C ı

for some C > 0, we thus get, using (28.5), that

jH.D2˚�;ı.x�;ı /;D˚�;ı .x�;ı /; x�;ı /�H.D2��.x�;ı /;D��.x�;ı /; x�;ı /j � �

as long as ı is conveniently small, possibly depending on �. Therefore

��.x�;ı /CH.D2��.x�;ı /;D��.x�;ı /; x�;ı / � �� ;

for small ı, due to (28.65).
Thus, by taking y D x�;ı in (28.63), we conclude that

˛ Qu.x/ � � � �.1 � e�˛T /
˛

C e�˛T inf
z2@˝



 .z/ � ��.z/

�
C u.x/ :

for any T > 0.
By sending T ! C1 and then � ! 0C, we conclude that Qu.x/ � u.x/. This

information and (28.62) complete the proof of Theorem 28.1 when x�;ı 2 ˝ .
If, on the other hand, x�;ı 2 @˝ , we proceed as follows. First, we observe that

 .x�;ı / � ��.x�;ı / D u.x�;ı/ �˚�;ı .x�;ı / � ı ln.1C jx�;ı � xj2/
� u.x/� ˚�;ı .x/
D u.x/� ��.x/ D 0:

As a consequence,

inf
z2@˝



 .z/ � ��.z/

�
� 0:

Thence, by taking T D 0 as candidate,

inf
T�0 inf

y2˝
e�˛T � 1

˛



˛��.y/CH.D2��.y/;D��.y/; y/

�

Ce�˛T inf
z2@˝



 .z/ � ��.z/

�
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� 0C inf
z2@˝



 .z/ � ��.z/

�

� 0 :

Consequently, from (28.63),
Qu.x/ � � � u.x/

and so, by taking � ! 0, we conclude that Qu.x/ � u.x/. Recalling (28.62), this
completes the proof of Theorem 28.1 also when x�;ı 2 @˝ .

28.5 Proof of Theorem 28.2

Given x 2 Rn, t 2 .0; T /, we define Qv.x; t/ to be the infimum on the right hand
side of (28.14).

We now apply Theorem 28.4 with A0 WD � Id, �0 WD ıf.x;t/g, ˝0 WD f.x; t/g,
A1 WD f �D C .

T /=2 W D2 C @t , L1 WD L, �1 WD �, ˝1 WD Rn � Œt; T � �Rn,
�1 WD 1 C jxjq=2 C jvjq=2, A2 D �Id , L2 WD  , ˝2 WD Rn � fT g, �2 WD jxjq .
Here, q is the exponent in (28.2).

We also take

X WD C 2.Rn � Œt; T �/ \W 2;1.Rn � Œt; T �/:

Consider the set P to be the set of pairs of measures .�; �/ on Rn � Œt; T � �Rn

and on Rn � fT g, respectively, satisfying

Z

Rn	Œt;T 		Rn

d� D T � t and
Z

Rn	fT g
d� D 1: (28.66)

Note that here P is of the form prescribed by (28.25). We remark that (28.15)
implies (28.66), by taking �.x; s/ WD 1 and �.x; s/ WD s.

Thus, from Theorem 28.4, we obtain

Qv.x; t/ D sup
�2X

.T � t/ inf
Rn	Œt;T 		Rn



LC f �D� C 

T

2
W D2� C �t

�

C inf
�2Rn



 .�/ � �.�; T /

�
C �.x; t/ :

Whereupon, from (28.4), we conclude

Qv.x; t/ D sup
�2X

inf
y2Rn

s2Œt;T 	

.T � t/


�t .y; s/ �H.D2�.y; s/;D�.y; s/; y/

�

C inf
�2Rn



 .�/ � �.�; T /

�
C �.x; t/ :

(28.67)

Thus, the proof of Theorem 28.2 will be completed once we show that Qv D v.
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To this end, given � > 0, we consider v� as in (28.12) to be a candidate in (28.67)
and we conclude, by sending � to zero, that

Qv.x; t/ � v.x; t/; (28.68)

and so, we now need to prove the reverse inequality.
Fix any � > 0, and let Q�� 2 X be such that

Qv.x; t/ � � � inf
y2Rn

s2Œt;T 	

.T � t/

 Q��t .y; s/ �H.D2 Q��.y; s/;D Q��.y; s/; y/

�

C inf
�2Rn



 .�/ � Q��.�; T /

�
C Q��.x; t/ :

(28.69)

Note that, due to the property in (28.66) of the measures in P , the left hand side of
(28.69) is not changed if, in the right hand side of (28.69), we would have replaced
Q��.y; s/ with Q��.y; s/C aC bs, for any a, b 2 R.

Thence, suppose a� is fixed and set

b� D v.x; t/ � Q��.x; t/ � a�
T � t ;

and
��.y; s/ D Q��.y; s/C a� C b�.T � s/:

Then, we have that
��.x; t/ D v.x; t/ ; (28.70)

and if we choose a� suitably,

inf
�2Rn

 .�/ � ��.�; T / D �: (28.71)

Then, (28.70) and (28.71) imply that

Qv.x; t/ � � � inf
.y;s/2Rn	Œt;T 	



��t .y; s/ �H.D2��.y; s/;D��.y; s/; y/

�

C � C v.x; t/ :
(28.72)

We now take ı > 0 to be a small parameter (possibly smaller than �) and let

˚�;ı .y; s/ D ��.y; s/ � ı ln.1C jy � xj2/

for any y 2 Rn and s 2 Œt; T �.
By (28.13), we have that v � ˚�;ı takes its minimum at a point .x�;ı ; t�;ı / 2

Rn � Œt; T �.
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In fact, t�;ı ¤ T , because, from (28.11), (28.71) and (28.70), for any y 2 RN ,

v.y; T /� ˚�;ı .y; T / D  .y/ � ��.y; T /C ı ln.1C jy � xj2/
� � C 0 > 0 D v.x; t/ � ˚�;ı .x; t/:

This shows that .x�;ı ; t�;ı / 2 Rn � Œt; T /.
Now we take two additional small positive parameters � and � and we define

˚�;ı;
.y; s/ D ˚�;ı .y; s/ � � ln.1C jy � x�;ı j2 C js � t�;ı j2/

and

˚�;ı;
;� .y; s/ D ˚�;ı;
.y; s/ � �

s � t :

Then, v � ˚�;ı;
 has a strict minimum at .x�;ı ; t�;ı / and so v � ˚�;ı;
;� has a local
minimum at a point .x�;ı;
;� ; t�;ı;
;� / close to .x�;ı ; t�;ı / for small � . In particular,
by construction, t�;ı;
;� 2 .t; T /.

Hence, since v is a viscosity solution,

�˚�;ı;
;�t .�/� �

.s � t/2 CH.D
2˚�;ı;
;� .�/;D˚�;ı;
;�.�/; �/ � 0

at the point .x�;ı;
;� ; t�;ı;
;� / 2 Rn � .t; T /. In particular,

�˚�;ı;
;�t .�/CH.D2˚�;ı;
;� .�/;D˚�;ı;
;�.�/; �/ � 0

at the point .x�;ı;
;� ; t�;ı;
;� / 2 Rn � .t; T /.
Consequently, taking into account (28.72),

Qv.x; t/ � 2� � v.x; t/

as long as the parameters � � �� ı are suitably small with respect to �.
By sending �! 0C and recalling (28.71), we conclude that Qv.x; t/ � v.x; t/ and

so, by (28.68), this completes the proof of Theorem 28.2.
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Chapter 29
Microscopic Dynamics for the Porous
Medium Equation

Patrı́cia Gonçalves

Abstract In this work, I present an interacting particle system whose dynamics
conserves the total number of particles but with gradient transition rates that van-
ish for some configurations. As a consequence, the invariant pieces of the system,
namely, the hyperplanes with a fixed number of particles can be decomposed into
an irreducible set of configurations plus isolated configurations that do not evolve
under the dynamics. By taking initial profiles smooth enough and bounded away
from zero and one and for parabolic time scales, the macroscopic density profile
evolves according to the porous medium equation. Perturbing slightly the micro-
scopic dynamics in order to remove the degeneracy of the rates the same result can
be obtained for more general initial profiles.

29.1 Introduction

The purpose of this work is to present the hydrodynamic limit for an non-ergodic
interacting particle system. The non ergodicity translates by saying that each hyper-
plane with a fixed number of particles (which is a conserved quantity of the system)
can be decomposed into a irreducible set of configurations plus isolated configura-
tions that do not evolve under the dynamics. In contrast with erdogic systems it is
not possible to pick randomly one configuration � from a certain hyperplane and
get to any other configuration in the same hyperplane with jumps that are allowed
by the dynamics. This is the main difficulty when establishing the hydrodynamic
limit for this class of processes. The process considered here belongs to the class of
kinetically constrained lattice gases (KCLG) which are used in physical literature to
model liquid/glass and more general jamming transitions. In this context, the con-
straints are devised to mimic the fact that the motion of a particle in a dense medium
can be inhibited by the geometrical constraints induced by the neighboring particles.
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Here I present the hydrodynamic limit for a particle system associated to the porous
medium equation. The process is of gradient type and is one of the simplest models
in the KCLG class. The porous medium equation is given by @t�.t; u/ D @2u�2.t; u/
and it can be written in divergence form as @t�.t; u/ D r.D.�.t; u//r.�.t; u///
with diffusion coefficient given by D.�.t; u// D 2�.t; u/ and thus the equation
looses the parabolic character as � ! 0. One of the properties of the solutions is
that they can be compactly supported at each fixed time. A second observation is that
the solutions of the equation can be continuous on the domain of definition, without
being smooth at the boundary, see [4]. In the next section I will present a Markov
process whose macroscopic density behavior � W Œ0; T ��T ! Œ0; 1� evolves accord-
ing to the partial differential equation above, the so called hydrodynamic equation.
Here T denotes the one-dimensional torus.

29.2 Markov Process

Let �t be a continuous time Markov process with space state f0; 1gTN , where TN
denotes the one-dimensional discrete torus. For a site x on the microscopic space,
�.x/ denotes the number of particles at that site and �.x/ D 1 will have the physical
meaning as the site x being occupied by a particle, while �.x/ D 0 will denote
a vacancy at that site. For a configuration �, c.x; y; �/ denotes the rate at which a
particle jumps from x to y. We restrict to the case of nearest-neighbor jumps, so that
c.x; y; �/ D 0 if jx�yj > 1 and the exclusion rule, a particle at site x jumps to y if
the site y is empty otherwise the jump is suppressed. The jump rates are degenerate
and of gradient type, in fact we consider c.x; x C 1; �/ D �.x � 1/C �.xC 2/ and
c.x; x C 1; �/ D c.x C 1; x; �/. This Markov process has generator given on local
functions f W f0; 1gTN ! R by

.LPf /.�/ D
X

x;y2TNjx�yjD1

c.x; y; �/�.x/.1 � �.y//.f .�x;y/ � f .�//: (29.1)

In order to have a non-trivial temporal evolution of the density profile the process
is evolving on the parabolic time scale tN 2. Since the jump rates are symmet-
ric, the Bernoulli product measures .�˛/˛ in f0; 1gTN are invariant and in fact
reversible. This chosen rates define a gradient system since the instantaneous cur-

rent W0;1.�/ D c.0; 1; �/
h
�.0/.1 � �.1// � �.1/.1 � �.0//

i
can be rewritten as

the gradient of a local function, namely W0;1.�/ D h.�/ � �1h.�/, with h.�/ D
�.0/�.1/C �.0/�.�1/� �.�1/�.1/. The relation between h and the hydrodynamic
equation is that @t�.t; u/ D @2u Qh.�.t; u// where Qh.�/ D E�

.h.�// D �2.
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29.3 Decomposition of the Space State

By the definition of the dynamics, the number of particles is obviously a preserved
quantity, and as a consequence the state space can be decomposed into hyperplanes
with a fixed number of particles, namely˙N;k Df� 2 f0; 1gTN WPx2TN

�.x/D kg.
It is said that O is an irreducible component of ˙N;k if for every �, � 2 O it is
possible to go from � to � by jumps that are allowed by the dynamics. Since the
dynamics is defined by the presence of particles in the neighboring positions to the
site where the particle jumps, it is natural to have a critical density for which in
a regime under that critical density some configurations, that do not evolve under
the dynamics, arise. For this process if k > N=3, each hyperplane with k particles
is not decomposable into smaller ergodic subsets; however, for k � N=3, each
hyperplane is decomposable into an irreducible component (the set of configurations
that contain at least one couple of particles at distance at most two) plus many
irreducible sets: configurations that do not evolve under the dynamics – to which
we call frozen.

29.4 Hydrodynamic Limit

To investigate the hydrodynamic limit, define the empirical measure by:

�Nt .du/ D �N .�t ; du/ D 1

N

X

x2TN

�t .x/ı x
N
.du/: (29.2)

Fix an initial profile �0 W T ! Œ0; 1� and denote by .�N /N a sequence of probability
measures on f0; 1gTN .

Definition 29.1. A sequence .�N /N is associated to an initial profile �0, if for every
continuous functionH W T ! R and for every ı > 0

lim
N!C1�

N
hˇ̌
ˇ
1

N

X

x2TN

H

 x
N

�
�.x/ �

Z

T
H.u/�0.u/du

ˇ̌
ˇ > ı

i
D 0: (29.3)

We can translate the definition above by saying that a sequence of measures
.�N /N is associated to a profile �0 if a Law of Large Number (in the weak sense)
holds for the empirical measure at time t D 0 under the probability �N . We can
rewrite (29.3) as

lim
N!C1�

N
hˇ̌
ˇ
Z

T
H.u/�N0 .du/�

Z

T
H.u/�0.u/du

ˇ̌
ˇ > ı

i
D 0: (29.4)

The goal in hydrodynamic limit consists in showing that if at time t D 0 the
empirical measures are associated to some initial profile �0, then at time t they are
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associated to a profile �t , where �t is the solution of the hydrodynamic equation,
then if a Law of Large Numbers holds for the empirical measure at time t D 0

then it holds at any time t . The hydrodynamic limit can be derived in two different
ways. One is known as the Relative Entropy Method and it was first introduced by
Yau [5], when proving the hydrodynamic limit for Ginzburg–Landau models. This
method requires the existence of smooth solutions of the hydrodynamic equation.
The second one is known as the Entropy Method and it is due to Guo et al. [2].
In contrast with the first method, this requires the uniqueness of weak solutions of
the hydrodynamic equation. Before proceeding we recall the definition of a weak
solution of the porous medium equation.

Definition 29.2. Fix a bounded profile �0 W T!R. A bounded function � W Œ0; T ��
T ! R is a weak solution of the hydrodynamic equation, if for every function
H W Œ0; T � � T ! R of class C 1;2.Œ0; T � � T /

Z T

0

dt

Z

T
du
n
�.t; u/@tH.t; u/C .�.t; u//2@2uH.t; u/

o

C
Z

T
�0.u/H.0; u/du D

Z

T
�.T; u/H.T; u/du:

(29.5)

29.4.1 The Relative Entropy Method

Fix � > 0 and let �0 W T ! Œ0; 1� be a profile of class C 2C�.T /. By a well known
result, the porous medium equation admits a solution denoted by �.t; u/ of class
C 1C�;2C�.RC � T /. In order to apply the method, there is a technical condition
that has to be assumed: the existence of a constant ı0 > 0 such that the profile is
bounded away from 0 and 1: 8u 2 T it holds that ı0 � �0.u/ � 1 � ı0: Let �N

�0.:/

be the product measure in f0; 1gTN such that �N
�0.:/
f�; �.x/ D 1g D �0.x=N /: This

means that for a fixed site x 2 TN , �.x/ has Bernoulli distribution of parameter
�.0; x=N / and .�.x//x are independent. For two measures � and � in f0; 1gTN

define the relative entropy of � with respect to � as:

H.�=�/ D sup
f

n Z
fd�� log

Z
ef d�

o
:

The supremum is taken over all continuous functions.

Theorem 29.1. (G.L.T. [1]) Let �0 W T ! Œ0; 1� be a initial profile of class
C 2C�.T / that satisfies:

9ı0 > 0 W 8u 2 T ; ı0 � �0.u/ � 1 � ı0: (29.6)
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Let .�N /N be a sequence of probability measures on f0; 1gTN such that:

lim
N!C1

H.�N =�N
�0.:/

/

N
D 0: (29.7)

Then, for each t � 0
�N
tN2.du/ �����!

N!C1 �.t; u/du (29.8)

in probability, where �.t; u/ is a smooth solution of the porous medium equation.

We remark that in the last result, there was made two assumptions on the initial
profile in order to obtain the result (1) the bound condition

9ı0 > 0 W 8u 2 T ; ı0 � �0.u/ � 1 � ı0 (29.9)

and (2) the smoothness of class C 2C�.T /. This is too restrictive, since one could
want to analyze profiles that are (for example) indicator functions over a certain
set. On the other hand, the Entropy Method relies on the full irreducibility of the
Markov process when restricted to a hyperplane. We have seen that the process
defined above when restricted to a hyperplane with a low density of particles it is
not fully irreducible – the frozen states arise. To overcome this problem, the idea is
to perturb slightly the dynamics in such a way that the frozen states disappear but the
macroscopic density profile still evolves according to the porous medium equation.

29.4.2 The Entropy Method

In this section we present the hydrodynamic limit for a slightly different dynamics,
in which each hyperplane is a unique ergodic piece and whose macroscopic density
profile still evolves according to the porous medium equation. Here we follow the
strategy described in [3]. Due to the non-ergodicity, the main difficulty to overcome
using this approach is the Replacement Lemma. The interested reader can find more
details in [1]. For � > 0, consider a Markov process with generator given by

L� D LP CN ��2LS

where LP was defined above and LS is the generator of the Symmetric Simple
Exclusion process:

.LSf /.�/ D
X

x;y2TNjx�yjD1

1

2
�.x/.1 � �.y//.f .�x;y/� f .�//;

The Bernoulli product measures .�˛/˛ are invariant for L� since they are invari-
ant measures for LP and LS . Its also easy to show that the Markov processes
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with generators LP and L� , have the same hydrodynamic equation as long as
� < 2. This restriction on � comes from the fact that we want to perturb sightly
the dynamics microscopically in order to destroy the frozen configurations, but we
do not want to see the effect of this perturbation macroscopically, and for that the
Symmetric Simple Exclusion Process has to be speeded up on a time scale less than
the parabolic one. Nevertheless, while the former process has each hyperplane (on
the low density regime) decomposed in many ergodic or irreducible pieces, which is
a consequence of the existence of the frozen states, the latter has each hyperplanes
f˙N;k W k D 0; : : : ; N g as a unique ergodic piece. Then the Entropy Method can be
applied to the process with generator L� .

For that, denote by P� the probability measure on D.Œ0; T �; f0; 1gTN /, induced
by the Markov process with generator L� , speeded up by N 2 and with initial
measure �.

Theorem 29.2. (G.L.T. [1])
Let �0 W T ! Œ0; 1� and .�N /N be a sequence of probability measures on

f0; 1gTN associated to the profile �0. Then, for every 0 � t � T , for every
continuous functionH W T ! R and for every ı > 0,

lim
N!C1P�N

hˇ̌
ˇ
1

N

X

x2TN

H

 x
N

�
�t .x/ �

Z

T
H.u/�.t; u/du

ˇ̌
ˇ > ı

i
D 0; (29.10)

where �.t; u/ is the unique weak solution of the porous medium equation.
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Chapter 30
A Stochastic Model for Wolf’s Sunspot Number

Rui Gonçalves and Alberto A. Pinto

Abstract We present a simplified cycle model, using the available data, for the
monthly sunspot number random variables fXtg133tD1, where 133 is taken as the mean
duration of the Schwabe’s cycle. We present a fit for the mean and standard deviation
ofXt . In the descending and ascending phases, we analyse the probability histogram
of the monthly sunspot number fluctuations.

30.1 Introduction

A sunspot is a region on the Sun’s surface (photosphere) that is marked by a lower
temperature than its surroundings and has intense magnetic activity. The sunspots
are an indicator of solar activity especially of ultraviolet emission that heats up
the Earth’s atmosphere expanding it and consequently increasing the drag force on
satellites. In 1848, the Swiss astronomer Johann Rudolph Wolf introduced a daily
measurement of sunspot number. His method, which is still used today, counts the
total number of spots visible on the face of the sun and the number of groups into
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which they cluster. The observed number of sunspot cycles, up to now, is 23.1 The
solar maximum and solar minimum refer, respectively, to epochs of maximum and
minimum sunspot counts. The rule for the maximum and minimum (end of the
cycle) is the maximum and minimum, respectively, of the smoothed sunspot num-
bers. Each cycle is divided in an ascending phase (rise) ranging from the start of
the cycle to solar maximum with an average duration of 4.7 years and a descending
phase (fall) from solar maximum to minimum with an average duration of 6.3 years.
It was Schwabe [19] who first suggested a probable period of 10 years (i.e. at every
10th year the number of spots reached a maximum). The average duration of the
sunspot cycle is 133 months (11.08 years). The physical basis of the solar cycle
was studied by George Ellery Hale and co-workers. Babcock [1] proposed a qual-
itative model for the dynamics of the solar outer layers giving an explanation for
the appearance of sunspots. Lu et al. [2, 15] observed some universal properties of
the solar magnetic activity. In [12], the average duration of the sunspots cycle is
used to present a simplified heuristic model for what we call the monthly sunspot
number random variables fXtg133tD1 characterizing the sunspot number at month t .
Our starting point is the beginning of the monthly sunspot number count, i.e. Jan-
uary of 1749. Curiously, we observed, for this simplified model, that the mean of
the monthly sunspot number random variables Xt , along the cycle, consists of two
almost equally sized descending and ascending phases. These phases can be well
fitted to two lines that are close to orthogonal. This can be an indication that there
is a well defined periodic, or quasi-periodic, cycle with period close to 133 in the
physical phenomenon that creates the sunspot numbers and the apparent different
durations from cycle to cycle are indeed oscillations (see also [16, 18]). The stan-
dard deviation of the monthly sunspot number random variables Xt is well fitted
by the first subharmonic of the Fourier series. In the descending phase, the his-
tograms of the monthly sunspot numbers fluctuations is close to the BHP pdf (see
Bramwell et al. [3–5] and, for other applications of the BHP pdf, see [6–12] and
[14]). In the ascending phase, two periods will be considered. The first ascending
period occurs for the cycle months between 62 and 100, where the standard devi-
ation period is higher than the mean cycle. The second ascending period occurs
for the cycle months between 101 and 133, where the standard deviation is smaller
than the mean period. In the first ascending period, the histogram of the monthly
sunspot number fluctuations is close to the BHP pdf, but deviating for values close
to the center of the universal BHP distribution. In the second ascending period, the
histogram is close to the BHP. Since the ascending and descending phases have dif-
ferent characteristics, we analyze separately the two phases. After synchronizing the
beginning of the ascending phases and the beginning of the descending phases, for
all cycles, we show the data collapse of the fluctuations to the BHP pdf (see [14]).
In this chapter, we survey the results presented in [12] and [14].

1 The data and related information on the sunspot numbers is available at the Solar Data Ser-
vices site, http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html. of the National Geophysical Data
Center

http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html
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Fig. 30.1 Sunspot numbers
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30.2 Universality in Sunspot Number Fluctuations

We start by estimating the mean of the monthly sunspot number random variable
Xt , using the monthly sunspot number mean w�.t/ given by

w�.t/ D 1

T

T�1X

jD0
w.t C j � 133/; (30.1)

where T D 23 is the number of observed cycles.
In Fig. 30.1, we show the sunspot number mean period w�.t/ with the mean

square lines for the descending and ascending phase, respectively. The fits to
the ascending and descending phase of the mean period curve h.t/ are two,
approximately, orthogonal lines. The equation for the descending phase fit is
y D �1:0136t C 86:131 with R2 D 0:98 (percentage of variance explained by
the line), and the equation for the ascending phase fit is y D 1:0767t � 54:046
with R2 D 0:96. The small region in the neighborhood of the minimum values,
approximately between the cycle months 65 and 73, was not used in the fitting
process. We estimate the standard deviation of the monthly sunspot number random
variable Xt , using the monthly sunspot number standard deviation w .t/ given by

w .t/ D
sPT�1

jD0 w.t C j � 133/2
T

� w�.t/
2; (30.2)

where T is the number of observed cycles. In Fig. 30.2, we fit the sunspot number
standard deviation period curve with the first sub-harmonic of the Fourier series
y.t/ D 38:3 � 1:0670 � sin.0:0472t/ C 16:77 � cos.0:0472t/ with R2 D 0:988.
The standard deviation curve attains its minimum at approximately the cycle month
40, and its maximum at, approximately, the cycle month 108. We define the monthly
sunspot number fluctuations wf .t/ by



396 R. Gonçalves and A.A. Pinto

Fig. 30.2 Sunspot number
standard deviations w
 .t /
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Fig. 30.3 Histogram of the
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for the mean period
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wf .t/ D w.t/ � w�.t/

w .t/
: (30.3)

We use the histogram of the monthly sunspot number fluctuations wf .t/ as an
approximation of the normalized monthly sunspot number random variable Xt pdf.
In Fig. 30.3, we observe that the histogram of the monthly sunspot number fluc-
tuations show some differences to the BHP pdf. When compared to the BHP pdf,
small negative fluctuations are more common and small positive fluctuations are less
common.

In Fig. 30.4, we show the data collapse of the sunspot number fluctuations his-
togram to the BHP pdf, in the descending phase occurring for the cycle months
between 1 and 61.

In the ascending phase, two periods will be considered. The first ascending period
occurs for the cycle months between 62 and 100, where the standard deviation
period is higher than the mean cycle, and the second ascending period occurs for
the cycle months between 101 and 133, where the standard deviation is smaller
than the mean period (see Fig. 30.2). In the first ascending period, we observe
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Fig. 30.4 Histogram of the
sunspots number fluctuations
for months in the range 1–61
of the cycle with the BHP pdf
on top, in a semi-log plot
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Fig. 30.5 Histogram of the
sunspots number fluctuations
for months in the range
62–100 of the cycle with the
BHP pdf on top, in a semi-log
plot
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Fig. 30.6 Histogram of the
sunspot number fluctuations
for months in the range
101–133 of the cycle with the
BHP pdf on top, in a semi-log
plot
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that the histogram of the sunspot number fluctuations deviates from the BHP pdf
for small positive fluctuations (see Fig. 30.5). In the second ascending period, we
observe that the histogram of the sunspot number fluctuations is close to the BHP
pdf (see Fig. 30.6). Since the histogram of the sunspot number fluctuations for the
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ascending and descending phases have different characters, we next analyze sepa-
rately the two phases, by synchronizing the beginning of the ascending phases and
the beginning of the descending phases, for all cycles. Let Mk be the month corre-
sponding to the maximum value XMk

of the monthly sunspot number kth cycle for
k 2 f1; : : : ; 23g. Let mk be the month corresponding to the minimum value Xmk

of
the monthly sunspot number kth cycle. The duration ak of the ascending phase of
the kth sunspot cycle is given by ak D mk�Mk . The kth ascending phase variable
Akt is defined by

Akt D XtCmk
;

where t 2 f0; : : : ; akg. Let A .t/ denote the set of all k’s such that the ascending
phase Akt has durations ak higher than t , i.e.

A .t/ D fk W t � akg:

Let T a be the minimum t subjected to #A .t/ > 1, i.e.

T a D maxft W #A .t/ > 1g:

Hence, there are at least two ascending phases t months long, for every t � T a.
We define the ascending mean �at by

�at D
1

#A .t/

X

k2A .t/

Akt ;

where t 2 f0; : : : ;T ag (see Fig. 30.7). We define the ascending standard deviation

at by


at D
vuut 1

#A .t/

X

k2A .t/

.Akt � �at /2;

Fig. 30.7 Ascending phases
Akt of the sunspot cycles and
respective mean (full line)
and standard deviation
(dotted line)
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Fig. 30.8 Histogram of the
aggregated ascending
fluctuations Aft;k of the
sunspot cycles
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where t 2 f0; : : : ;T ag. For each t 2 T a, we define the ascending fluctuation
variables Af

t;k
by

A
f

t;k
D Akt � �at


at
;

where k 2 f1; : : : ; 23g and t 2 f0; : : : ;T ag. The ascending fluctuation variables
A
f

t;k
measure the deviations of the sunspot’s ascending phases Akt to the ascend-

ing mean �t in standard deviation 
at units. Surprisingly, the histogram of the
aggregated ascending observed fluctuations shows a data collapse to the universal
nonparametric BHP pdf (see Fig. 30.8).2 In particular, the histogram of the ascend-
ing fluctuation variablesAf

t;k
do not follow a gaussian distribution, exhibiting heavy

tails and a universal non-zero skewness. The highest observed positive fluctuation
A
f

t;k
is equal to 3.604 and the lowest observed negative fluctuation Af

t;k
is �1.894

showing the asymmetries of the histogram. We get an estimator for the sunspot
number

Akt D 
at Aft;k C �at ; (30.4)

using the ascending mean �at and the ascending standard deviation 
at (see

Fig. 30.7) and noting that Af
t;k

follows the universal nonparametric BHP pdf (see
Fig. 30.8). We observe that the highest ascending means �at occur together with the
highest standard deviations 
at , for values of t close to 44. Hence, by (30.4), the
highest sunspot numbers Akt occur for values of t close to 44.

30.3 Conclusions

We gave a simplified heuristic model for the monthly sunspot number random vari-
ables fXtg133tD1. We observed that the mean of Xt , along the cycle, consists of two
approximately equally sized descending and ascending phases. These phases are

2 The results are similar for the descending case (see [14]).
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well fitted by two almost orthogonal lines. The standard deviation of the random
variablesXt is well fitted by the first Fourier subharmonic. In the descending phase,
we discovered that the histogram of the monthly sunspot number fluctuations is
close to the BHP pdf. In the ascending phase, two periods were considered. The his-
togram of the monthly sunspot number fluctuations is closer to the BHP pdf in the
second period than the first period. Since the ascending and descending phases have
different characters, we analyzed separately, the two phases. After synchronizing
the beginning of the ascending phases and the beginning of the descending phases,
for all cycles, we observed the data collapse of the fluctuations to the BHP pdf (see
[14]).
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9. Gonçalves, R., Ferreira, H., Pinto, A.A.: Universality in energy sources. (submitted)
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Chapter 31
On Topological Classification of Morse–Smale
Diffeomorphisms

Viacheslav Grines and Olga Pochinka

Abstract Well-known results on topological classification of Morse–Smale flows
were obtained by Leontovich and Maier (Dokl Akad Nauk 103(4):557–560, 1955)
for flows on the two dimensional sphere, and by Mauricio Peixoto (Ann Math
69:199–222, 1959; On a classification of flows on 2-manifolds. Proc. Symp. Dyn.
Syst. Salvador 389–492, 1973) for flows on any closed surfaces. Since 1980s rather
great progress was achieved in classification of Morse–Smale diffeomorphisms on
surfaces. For such diffeomorphisms with finite number heteroclinic orbits there is
complete invariant in the form of a graph (similar to that introduced by Peixoto for
flows). This graph is defined by taking into account the heteroclinic intersections and
it is equipped with a graph automorphism induced by the given diffeomorphism (see
for example the surveys (Bonatti et al. Comput Appl Math 20(1–2):11–50, 2001;
Grines J Dyn Control Syst 6(1):97–126, 2000) for references and details). Describ-
ing of Morse–Smale diffeomorphisms with infinite set of heterolinic orbits uses
Markov chains endowed by additional information (see Bonatti et al. Comput Appl
Math 20(1–2):11–50, 2001). A progress in dimension 3 is based on rather recent
results on finding new topological knot and link invariants which describe (possibly,
wild) embedding of invariant manifolds of saddle periodic points into the ambient
manifold. These invariants allowed to discover a principal distinctive phenomenon
of Morse–Smale diffeomorphisms in dimension 3: the existence of a countable set
of non-conjugate Morse–Smale diffeomorphisms with isomorphic Peixoto graphs.
The main goal of the present survey is to give an exposition of recent results on
classification of Morse–Smale diffeomorphis on 3-manifolds.
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31.1 Morse–Smale Systems

31.1.1 Introduction

Following to A.A. Andronov and L.S. Pontryagin [1], S. Smale [53] introduced in
1960 a class of dynamical systems, later called Morse–Smale systems. This class
was introduced as a candidate for all structurally stable flows in dimension n � 2
and moreover forming open dense set in the space of vector fields equipped by C 1-
topology. S. Smale understood himself very soon that his hypotheses are not true for
flows on manifolds with dimension n > 2 but however the class of Morse–Smale
systems are intensively investigated as a class of structurally stable systems with a
simplest behavior of trajectories. The concept of structural stability is a generaliza-
tion of the concept of roughness which was introduced by A.A. Andronov and L.S.
Pontryagin in [1] where necessary and sufficient conditions for roughness for flows
on bounded part of the plane was obtained and was shown that the set of rough flows
is dense in the space of C 1 flows. M.C. and M.M. Peixoto introduced in [45] the
concept of structural stability and in 1958–1962 M. Peixoto gives necessary and suf-
ficient conditions for the structural stability of flows on two-dimensional manifolds
[46, 47] and proved that such flows form open and dense set in the space of C 1-
flows. According to the Andronov–Pontryagin–Peixoto results, the non-wandering
set of a structurally stable vector field on a compact 2-manifold consists of a finitely
many hyperbolic fixed points and hyperbolic periodic orbits. Moreover, there are no
separatrix connections (including loops). It is well known that characterization of
structurally stable flows in higher dimensions is more complicated and was finished
much later thanks to results by Anosov, Smale, Palis, Robbin, Robinson, Mañe,
Hayashi.

Let us recall some definitions and concepts which we will use in our survey (see
[2, 42, 51, 54] for more detail information). Let f W M ! M be a diffeomorphism
of a closed n-manifold M . An invariant set of f is a subset � 	 M n such that
f .�/ D �.

A point x 2 M n is non-wandering if for any neighborhood U of x, f k.U / \
U ¤ ; for infinitely many integers k. Then ˝.f /, the non-wandering set of
f , defined as the set of all non-wandering points, is an f -invariant closed set.
Obviously, the set Per .f / of periodic points belongs to ˝.f /.

Suppose now that M is smooth orientable Riemann manifold endowed with a
metric �. An invariant set� is called hyperbolic is there is a continuous df -invariant
splitting of the tangent bundle TM� into stable and unstable bundles Es� ˚ Eu

�,
dimEsx C dimEu

x D n D dimM (x 2 �), with

kdf i .v/k � Cs�ikvk; v 2 Es�; kdf �i .w/k � Cu�
ikwk; w 2 Eu

�; i 2 N

for some fixed Cs > 0, Cu > 0, 0 < � < 1. The hyperbolic structure implies
the existence of stable and unstable manifolds W s.x/, W u.x/ respectively passing
through any point x 2 �:
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W s.x/ D fy 2M W lim
j!1 �.f

j .x/; f j .y//! 0g;

W u.x/ D fy 2M W lim
j!1 �.f

�j .x/; f �j .y//! 0g

which are smooth, injective immersions of the Esx and Eu
x into M . Moreover,

W s.x/, W u.x/ are homeomorphic to Euclidean spaces RdimW s.x/, RdimW u.x/ and
tangent to Esx andEu

x at x respectively. Invariant manifolds depend continuously on
initial conditions on compact sets. We set W s

A D
S
a2A

W s.a/ and W u
A D

S
a2A

W u.a/

for any subset A of the hyperbolic set �.
A diffeomorphism f W M ! M satisfies axiom A (f is A-diffeomorphism) if

its non-wandering set ˝.f / is hyperbolic, and the set Per.f / is dense in ˝.f /.
Moreover f is said to satisfy the strong transversality condition if, for all points

x; y 2 ˝.f /, the stable manifoldW s.x/ is transverse (at all the intersection points)
to the unstable manifoldW u.y/.

Let Diff r .M/ be the space of C r diffeomorphisms endowed with the uniform
C r topology. Two diffeomorphisms f WM !M , g WM !M are called topolog-
ically conjugate if there is a homeomorphism h WM !M such that h ı f D g ı h.
A diffeomorphism f is said to be structurally stable if there exists a neighborhood
U of f in Diff .M/ such that every g 2 U is conjugate to f .

As well-known now axiom A and strong transversality condition are necessary
and sufficient conditions for structural stability of diffeomorphism.

Among structurally stable diffeomorphisms Morse–Smale diffeomorphisms have
the most simple type of structure of trajectories. Namely, a diffeomorphism f is
called Morse–Smale, if ˝.f / is hyperbolic and finite (hence, ˝.f / D Per .f /)
and W s.x/ is transverse to W u.y/ for every x, y 2 ˝.f /.

A hyperbolic periodic point p is called source (repellent), sink (attractive) if
dim W u.p/ D n, dim W u.p/ D 0, accordingly. In opposite case, p is called
saddle point. A connected component ofW u.p/ n p (W s.p/ np) is called unstable
(stable) separatrix of saddle point p.

Classification of structurally stable cascades on circles was obtained by A. Mayer
in [36]. Results of that paper were are independently repeated by V. Arnold [5] and
V. Pliss [49]. The basic achievement was the proof of that non-wandering set struc-
turally stable diffeomorphism of circle consists of finite number of repellent and
attractive periodic points. Thus, topological classification of such diffeomorphism
is rather trivial from the modern point of view.

Let n � 2 and f be a Morse–Smale diffeomorphism. Let p; q be saddle peri-
odic points of f for which W u.p/ \W s.q/ ¤ ;, then according to [54] we write
q � p and call a diffeomorphism f gradient-like, if the condition q � p implies
dim W s.p/ < dim W s.q/.

IfW u.p/\W s.q/ ¤ ; and dim W s.p/ D dim W s.q/, then from the transver-
sality of the intersection of W u.p/ with W s.q/ it follows that W u.p/ \ W s.q/

is a countable set. Each point of this set is called a heteroclinic point of the
diffeomorphism f (see Fig. 31.1).
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Fig. 31.1 Heteroclinic points

Fig. 31.2 Heteroclinic curves

From the transversality of the intersection of W u.p/ with W s.q/ it fol-
lows that dim W s.p/ � dim W s.q/, hence any Morse–Smale diffeomorphism
which does not contain heteroclinic points is a gradient-like diffeomorphism. If
W u.p/ \W s.q/ ¤ ; and dim W s.p/ < dim W s.q/, then a connected component
of the intersection W u.p/ \ W s.q/ is called a heteroclinic submanifold and for
n D 3 is called heteroclinic curve (see Fig. 31.2).

The topological classification of preserving orientation gradient-like diffeomor-
phisms given on closed orientable surfaces (obtained by A. Bezdenezhnyh and V.
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Grines in [8]–[9]) is closely connected with the topological classification of Morse–
Smale flows on surfaces (in Peixoto’s style) and with Nilsen’s classification of
periodic maps of surfaces [41].

Following to S. Smale [54] and J. Palis [43], we say that sequence of
different periodic points q D p0; : : : ; p D pk; k � 1 forms chain if
W u.pi /\W s.piC1/ ¤ ; for all i 2 f0; : : : ; k � 1g and there is no a periodic
point p� such, thatW u.pi /\W s.p�/ ¤ ;,W u.p�/\W s.piC1/ ¤ ;. The number
k is called length of chain q D p0; : : : ; p D pk and it is denoted by beh .qjp/.
If p; q are saddle point then chain is called heteroclinic chain. The length of the
maximum heteroclinic chain is denoted by beh .f /. By definition, beh .f / D 0

means that any separatrices of saddle periodic points are disjoint.
If beh .f / D 1 then the number of heteroclinic trajectories is finite. For sur-

faces it is possible to describe the pattern of the intersection of stable and unstable
separatrices in a rather simple way. For diffeomorphisms given on closed orientable
surfaces A. Bezdenezhyh and V. Grines considered at first a special case where the
intersection of separatrices is orientable for any saddle periodic points p; q. They
proved (in [7], see also the surveys [3, 4, 28]) that the condition beh.f / D 1 is
a corollary of the orientability of the intersection and obtained a complete set of
invariants for such diffeomorphisms. Then V. Grines and R. Langevin introduced
independently (in [27, 35] see also [3, 4, 28]) invariants describing the pattern of the
intersection of separatrices of saddle periodic points p; q of Morse–Smale diffeo-
morphisms for which beh.qjp/ D 1 and obtained a complete set of invariants for
such diffeomorphisms.

If beh.pjq/ > 1 then the description of the intersection of the separatrices is more
complicated. In fact the classification of Morse–Smale diffeomorphisms in this case
is no easier than the classification of the general structurally stable diffeomorphisms.
These two cases have been solved by Ch. Bonatti and R. Langevin using Markov
chains endowed by additional information (see [20]).

In dimension 3, except heteroclinic intersection, Morse–Smale diffeomorphisms
can have wildly embedded separatrices (see Sect. 31.1.3). Such effect very com-
plicates their topological classification and requires new topological invariants,
because Peixoto’s graph is not complete invariant. The first example of such a
nontrivial embedding was constructed by D. Pixton [48]. Then Ch. Bonatti and
V. Grines [10] gave a complete topological classification of Pixton’s class of
diffeomorphisms. As consequence they get that there exist infinitely many diffeo-
morphisms from Pixton’s class which are not topologically conjugate. Ch. Bonatti,
V. Grines, V. Medvedev and O. Pochinka [19] investigated bifurcations connected
with changes of embedding of separatrices for class above. The results which they
have obtained are based on the fact that the space of “North pole – South pole” dif-
feomorphisms equipped by C 1-topology is connected. They shown also in [17] that
this fact does not take place, for example, in dimension 6 (see Sect. 31.1.4).

Different interrelations between Morse–Smale diffeomorphism and topology of
ambient manifold are contained in Sect. 31.1.5.

In Sect. 31.1.6 we give topological classification of gradient-like difeomorphisms
on 3-manifolds, which was obtained by Ch. Bonatti, V. Grines, V. Medvedev and
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E. Pecou, firstly in [11] without heteroclinic curve and then for all gradient-like
difeomorphisms in [13].

By first step in study of Morse–Smale diffeomorphisms with heteroclinic orbits
on 3-manifolds was done in the papers [14, 50] in which were obtained necessary
and sufficient conditions of topological conjugacy of diffeomorphisms given on
3-manifolds, whose nonwandering set consists of exactly six points and wandering
set does not contain heteroclinic curves. Ambient manifolds for such diffeomor-
phisms are only one of the following manifolds: S3, S2 � S1, S2 � S1#S2 � S1.
By development of ideas of these papers have become the papers [15, 16] in which
Ch. Bonatti, V. Grines, and O. Pochinka obtained complete topological classification
of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits and without
heteroclinic curves on 3-manifolds. Moreover they got the classification of Morse–
Smale diffeomorphisms with the chain of saddles of arbitrary length on 3-manifolds
in [18] (see Sect. 31.1.7).

Finally we show in Sect. 31.1.8 that Pexoto’s graph is again complete topolog-
ical invariant for some class of Morse–Smale diffeomorphisms on manifolds of
dimension n > 3. It is a result from the recent paper [30].

We start our survey from Sect. 31.1.2 which is devoted to description of gen-
eral dynamic properties of Morse–Smale diffeomorphisms. Everywhere we suppose
that M is closed smooth orientable manifold of dimension n � 2, a Morse–Smale
diffeomorphism is preserving orientation as and a conjugating homeomorphism.

31.1.2 Global Dynamic of Morse–Smale Diffeomorphisms

The simplest Morse–Smale diffeomorphism is “source-sink” diffeomorphism f W
M ! M , whose non-wandering set consists of exactly two points: sink and
source. Such diffeomorphisms have trivial dynamics: all points which are distinct
from fixed points, are wandering and go by f from the source to the sink (see
Fig. 31.3a). Ambient manifold for “source-sink” diffeomorphism is homeomorphic
to n-dimensional sphere Sn, and space of wandering orbits (the orbit space of action
of group F D ff k; k 2 Zg on Sn n ˝.f /) is homeomorphic to Sn�1 � S1.
Thanks to such clear dynamics, it is easy to show, that any such diffeomorphisms
are topological conjugated.

Studying more complicated Morse–Smale diffeomorphisms it is natural to try
to present their dynamics like to “source-sink” diffeomorphism where roles of
“source” and “sink” already play invariant sets (simple as possible from the topo-
logical point of view), one of them A C

f
is attractor and other A �

f
is repeller

(see Fig. 31.3b) in the next sense.
An invariant set � 	 M is an attractor if it has attracting neighborhood , that

is a compact neighborhood N ¤ M of � such that f .N / 	 int N; and � DT
k�0

f k.N /: By definition, repeller for f is attractor for f �1.
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a b

Fig. 31.3 “Source-sink” diffeomorphism (a) and it’s generalization (b)

To form attractor A C
f

and repeller A �
f

we recall basic properties of Morse–
Smale diffeomorphism in proposition below, which follows from Theorem 2.3
in [54].

Proposition 31.1. Let f WM !M be Morse–Smale diffeomorphism. Then

(1) M D S
p2NW.f /

W u.p/ D S
p2NW.f /

W s.p/

(2) W s.p/ .W u.p// is smooth submanifold ofM which is diffeomorphic to RdimEs
p

.RdimEu
p/ for each periodic point p 2 NW.f /

(3) f has at least one source and at least one sink
(4) if f has at least one saddle point then for any sink ! there is a saddle 
 such

that ! 2 clos.W u.
//

(5) clos.`u
q/ n .`u

q [ q/ D
S

p2NW.f /W`u
q\W s.p/¤;

W u.p/ for connected component

`u
q of W u.q/ n q; q 2 NW.f /

(6) if `u
q has no heteroclinic intersection then clos.`u

q/n.`u
q[q/ D f!g, where ! is

a sink, if dimW u.q/ D 1 then fqg[ `u
q [f!g is an arc inM , if dimW u.q/ � 2

then fqg [ `u
q [ f!g is topologically embedded in M sphere SdimW u.q/ 	M .

Let f W M ! M be Morse–Smale diffeomorphism on closed orientable
n-manifold M (n � 2). Denote by �C

f
, ��

f
, ˙f the set of sinks, source, sad-

dle, accordingly. Set �f D �C
f
[ ��

f
. Let us represent the set Per.f / as union

Per.f / D PerC
f
[ Per�

f
of disjoint subsets, where PerC

f
.Per�

f
/ consists of all

periodic points p 2 Per.f / such that dimW u.p/ � 1 .dimW u.p/ > 1/. Set
A C
f
D W u

PerC

f

and A �
f
D W s

Per�

f
.

It is possible to show that for f the set A C
f

is connected attractor of dimension

� 1 and the set A �
f

is repeller, connected for n � 3. We called the sets A C
f

and
A �
f

global attractor and repeller of Morse–Smale diffeomorphism of f .

Set Mf D M n n .A C
f
[A �

f
/. Denote Vf D Mf =f the orbit space of action

of the group F D ff k ; k 2 Zg on Mf and p
f
WMf ! Vf the natural projection.



410 V. Grines and O. Pochinka

Next lemma follows from Proposition 3.5.7 in [56].

Lemma 31.1. The orbit space Vf is closed n-manifold (connected for n � 3) and
p

f
WMf ! Vf is open cover.

Information on topology of the space Vf and embedding (possibly knotted)
images under projection p

f
invariant manifolds (of dimension more than 1) of sad-

dle periodic points creates prerequisite for introducing new topological invariants
which can be used for topological classification of Morse–Smale diffeomorphisms
on 3-manifolds with different assumptions (see results of the papers [11–16] and
[18], exposition of which we give below).

31.1.3 Wild Objects in Three-Dimensional Dynamic

The principle difference in topological classification of Morse–Smale diffeomor-
phisms on 3-manifolds in comparison with one on 2-manifolds is possibility of wild
embedding of separatrices. In more details.

An embedding of one topological space in another space Y is a homeomorphism
of X onto a subspace of Y . Two embeddings �; �0 W X ! Y are equivalent if
there exists a homeomorphism � W Y ! Y such that �� D �0. Moreover we will
suppose that X and Y are triangulated manifolds or equivalently PL (piecewise
linear) manifolds.

If there are embeddings of X in the Y that are homotopic but not equivalent,
then X is said to knot in Y . It is often possible to identify a distinguished class of
PL embeddings of X in Y that are considered to be unknotted; any PL embedding
that is not equivalent to an unknotted embedding is then said to be knotted.

An embedding � W X ! Y is said to be a tame embedding if it is equivalent to a
PL embedding; the others are called wild. IfX 	 Y thenX is said to be tame (wild)
if the inclusion i W X ! Y is tame (wild) embedding. In other words, a manifold
X 	 Y is tame if there exists a homeomorphism � W Y ! Y such that �.X/ is a
subpolyhedron; is wild in the opposite case.

A topological embedding � W N ! M of an n-dimensional manifold N into an
m-dimensional manifoldM is locally flat at x 2 N if there exists a neighborhoodU
of �.x/ inM such that .U; U \ �.N // � .Rm;Rn/ or .U; U \ �.N // � .Rm;RnC/.
An embedding is said to be locally flat if it is locally flat at each point x of its
domain.

A classic theorem in piecewise linear topology assures that N tamely embedded
inM is locally flat ifm�n ¤ 2 (see [24]). Since tameness implies local flatness for
embeddings of manifolds in all codimensions (m � n) except two, we will say that
an embedding � W N ! M for m � n ¤ 2, is wild at �.x/ when �.N / fails to be
locally flat at �.x/. Concerning codimension two it is known that similar fact takes
place for n D 3 and m D 1. Namely any arc tamely embedded in a 3-manifold is
locally flat (see [34]). If n D 2 any arc and, hence, one-dimensional separatrix is
always tame (see corollary 5, Sect. 4, Chap. 2 in [34]). According to [21], there are
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no arcs with one point of wildness on the manifold of dimension greater than 3. An
example (not connected with dynamic) of wild arc in S3 with one point of wildness
firstly was constructed by E. Artin and R. Fox in [6]. We explain this construction
below.

For representation of a set of smooth arcs it is convenient to use their orthogonal
projection on a plane. So projection plane needs to be chosen such that following
conditions were satisfied:

(1) Projection of a tangent line to any arc in any point is a straight line (i.e.
projection of a tangent line not degenerates in a point)

(2) More than two different points of arcs are not projected to the same point of a
plane

(3) Set of crossroads (points in plane which are projections of two points of arc)
is finite and projections of tangent lines at corresponding points of arcs do not
coincide.

Let’s consider in R3 a three-dimensional ring V , defined in spherical coor-
dinates as 1

2
� � � 1 and homothety � W R3 ! R3 given by the formula

�.�; '; �/ D .1
2
�; '; �/. Set V 1

2
D f.�; '; �/ 2 R3 W � D 1

2
g and

V1 D f.�; '; �/ 2 R3 W � D 1g. Then @V D V 1
2
[ V1. Let ˛IˇI � 2 V be simple

pairwise closed arcs with end points ˛1; ˛2Iˇ1; ˇ2I �1; �2, accordingly, satisfying
to following conditions:

(1) ˛1; ˛2; �1 	 V1 and ˇ1; ˇ2; �2 	 V 1
2

(2) �.˛1/ D �2, �.˛2/ D ˇ1, �.�1/ D ˇ2
(3) the plane Ox1x2 is a plane of a projection for arcs ˛; ˇ; � and their projection

looks like to Fig. 31.4a.

If we identify V 1
2

and V1 by the diffeomorphism � then V=� is diffeomorphic to

S2 � S1. Denote p� W V ! S2 � S1 the natural projection. Set Ò D p�.˛ [ ˇ [ �/.

a b c

Fig. 31.4 Construction of wild arcs in S3
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It has been proved B. Mazur [38], that Ò is knotted circle, that is Ò has the same
homotopic class 1 as circle fxg � S1 for x 2 S2 but is not equivalent to it.

Set Q̀ D S
k2Z

�k.˛[ˇ[ �/ and ` D #�1C . Q̀/[N [S (see Fig. 31.4b), where #C

is the stereographic projection and N;S are northern and south poles of sphere S3.
It has been proved in [6], that ` is wildly embedded in S3 and has exactly two

points of wildnessN and S . Arc `N (`S ) which is represented on Fig. 31.4c is a part
of arc ` from point #�1C .˛1/ to pointN (from point #�1C .˛1/ to point S ). According
to [34] (Chap. 4, Sect. 2, Example 2.4), the arc `N (`S ) is wildly embedded in S3

and has exactly one point of wildness N (S ).
If we thicken arcs in Fig. 31.4b or c, we will get 2-sphere S2 which is wildly

embedded in S3 and has exactly one point of wildness at pole (see [34], Chap. 4,
Sect. 2, Examples 2.1(b), 2.4). Moreover, set S3 n S2 consists of two connected
components A1 and A2, each of them is homeomorphic to int D3, clos.A1/ is
homeomorphic to D3 and clos.A2/ is not homeomorphic to D3.

Now let f W M ! M be a gradient-like diffeomorphism of 3-manifold M .
According to Prop. 31.1, the closure clos.`/ of any one-dimensional unstable sep-
aratrix ` of saddle point 
 is homeomorphic to a segment which consists of ` and
two points: 
 and a sink !. Moreover, ` [ 
 is smooth submanifold of M . Thus
clos.`/ may be wild only at !. We say that the separatrix ` is wild or wild embed-
ded in M if arc clos.`/ is wild at !. In opposite case we say that the separatrix ` is
tame or tame embedded in M . Similarly the concept of wild embedding is general-
ized on stable one-dimensional and two-dimensional separatrices of a gradient-like
diffeomorphism. Due to Prop. 31.1, W s.!/ is homomorphic to R3. Then, accord-
ing to [34], the tameness of ` is equivalent to the existence of a homeomorphism
 W W s.!/! R3 such that  .!/ D O , whereO is the origin and  . Ǹ n 
/ is a ray
starting fromO .

Fig. 31.5 Pixton’s example
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First example of Morse–Smale diffeomorphism with wildly embedded separatri-
ces was constructed by D. Pixton in [48] (see Fig. 31.5). In the Pixton’s example,
the non-wandering set of f W S3 ! S3 consists of exactly four fixed points: one
source ˛, two sinks !1, !2, one saddle 
 whose one unstable separatrix `1 is tamely
embedded and the other `2 is wildly embedded (see Fig. 31.5). This example dis-
proved hypothesis of M. Shub [52] and F. Takens [55] on existence of an energy
function for any Morse–Smale diffeomorphism in following sense. An energy func-
tion for a dynamic system on M is a smooth function ' W M ! R which strictly
decreases along orbits outside of the chain recurrent set, is constant on the chain
components of the system and set of critical points of ' coincides with the chain
recurrent set of the system. As noticed J. Franks in [26], application of W. Wilson’s
results [57] to Conley’s [23] construction gives an existence of an energy function
for any smooth flow with hyperbolic chain recurrent set. But question on exis-
tence of an energy function for a diffeomorphism is an open even for Morse–Smale
systems. Namely, Pixton proved the following results.

� For any Morse–Smale diffeomorphism given on a surface there is an energy
Morse function (function with non degenerate critical point).

� The diffeomorphism on Fig. 31.5 has no energy Morse function.

Recently V. Grines, F. Laudenbach and O. Pochinka [31, 32] obtained necessary
and sufficient conditions to the existence of energy Morse function for Morse–Smale
diffeomorphisms on 3-manifolds.

We denote G4 the Pixton’s class that is class of diffeomorphisms on S3 whose
nonwandering set is fixed and hyperbolic and consists of exactly one source, two
sinks and one saddle.

31.1.4 Classification and Bifurcation in Pixton’s Class

The Pixton’s class G4 was considered in [10]. It was also shown that the topo-
logical classification of diffeomorphisms from G4 is reduced to the embedding
classification of the one-dimensional separatrix. Hence there exist infinitely many
diffeomorphisms from G4 which are not topologically conjugate. Notice that all
diffeomorphisms from G4 have isomorphic Peixoto’s graph. Now we represent the
main results of paper [10].

Let f 2 G4. Denote by ˛ the fixed source, by 
 the fixed saddle point and by
!1, !2 the fixed sinks belonging to the nonwandering set of f . Denote by L the
stable separatrix and by `1, `2 the unstable separatrices of the point 
 . Then we
have that the closure clos .L/ of two dimensional (stable) separatrix of the point 

is homeomorphic to the sphere S2 and consists of this separatrix and source ˛. The
closure clos .`i / (i D 1; 2) of one-dimensional (unstable) separatrix of the point

 is homeomorphic to a closed simple arc and consists of this separatrix and two
points: the point 
 and a sink. Moreover, the separatrices `1 and `2 contain different
sinks in the closure. Let us assume for definiteness that the point !i belongs to
clos .`i /. We introduce in the set W s.!i / n !i the equivalence relation, assuming
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a b

f is a diffeomorphism with
tame embedded separatrices

f’ is a diffeomorphism with
wild embedded separatrices

Fig. 31.6 Phase portraits of diffeomorphisms from Pixton’s class

a b

Fig. 31.7 Topological invariants of diffeomorphisms from Pixton’s class

that two points are equivalent if they belong to the same orbit of the diffeomorphism
f . Denote by N!i

the factor space obtained by this equivalence relation and by
�!i
W W s.!i / n !i ! N!i

the natural projection.
We call smooth submanifold � 	 S2 � S1 by a knot if it is homeomorphic to

S1 and has homotopic class 1. We say that two knots � and � 0 in the manifold
S2 � S1 are equivalent, if there exists diffeomorphism Ow 2 Diff .S2 � S1/ such that
� 0 D Ow.�/. Put �0 D f.s; �/ 2 S2 � S1 W s D .0; 0;�1/g. We call the knot �
unknotted if it is equivalent to �0 and knotted in the opposite case. On the Fig. 31.7
there is three-dimensional rings and arcs. After identifying of boundaries of the rings
we get an unknotted knot � and knotted knot � 0 (Fig. 31.6).



31 On Topological Classification of Morse–Smale Diffeomorphisms 415

Lemma 31.2. ([10], Lemma 1.1) There is a preserving orientation diffeomorphism
�!i
W N!i

! S2 � S1 such that the set �i D �!i
.�!i

.Li // is a knot in S2 � S1.

Remark 31.1. If L�!i
W N!i

! S2 � S1 is a diffeomorphism such that the set L�i D
L�!i
.�!i

.Li // is a knot in S2�S1 which is different from �i then the diffeomorphism
Ow D L�!i

ı��1!i
2 Diff .S2�S1/ realizes the equivalence of the knots �i and L�i , that

is Ow.�i / D L�i .
Theorem 31.1. ([10], Theorem 1) At least one of two knots �1, �2 is unknotted.

Let us assume for definiteness that the knot �1 is unknotted.

Theorem 31.2. ([10], Theorem 3) Two diffeomorphism f; f 0 2 G4 are topologi-
cally conjugated if and only if the knots �2 and � 02 are equivalent.

Theorem 31.3. ([10], Theorem 2) For any knot � in S2 � S1 there exists a diffeo-
morphism f� from the class G4 given on the sphere S3 and such that �2 for f� is
equivalent to � .

Remark 31.2. It follows from Propositions 31.2 and 31.3 that the ambient manifold
for diffeomorphisms from the class G4 is homeomorphic to the sphere S3.

In connection with detection of new topological invariants there is a natural
problem on finding of elementary bifurcations allowing to pass from one class of
topological conjugacy of diffeomorphisms to another. It was shown in [19] that any
two diffeomorphisms from the class G4 can be joined by a smooth arc contain-
ing two bifurcations of the saddle-node type. Let us notice that this result concerns
of decision of the problem posed by J. Palis and C. Pugh in [44] about finding
of a smooth arc with some good properties (for example, with the finite num-
ber bifurcations) joining two structurally stable dynamic systems (two flows or
two diffeomorphisms). S. Newhouse and M. Peixoto have proved in [40] that any
Morse–Smale flows on closed manifold can be joined by arc with the finite number
bifurcations. From another hand, as have proved S. Matsumoto in [37], any oriented
closed surface admits two isotopic Morse–Smale diffeomorphisms which can not be
joined by similar arc. Beginning from dimension 3 this problem is not trivial even
for simplest diffeomorphisms of the type “North pole – South pole”. It is rather
easy follows from Milnor’s result [39] that there are two “North pole – South pole”
diffeomorphisms on S6 which can not be joined a smooth arc. From another hand,
due to J. Cerf [22], for any two preserving orientation diffomorphisms (and conse-
quently for any two “North pole – South pole” diffeomorphisms) of S3 there is a
smooth arc their joining. We will show that this arc may be chosen consisting of
“North pole – South pole” diffeomorphisms.

Now we represent the main results of paper [19].
Let N;M be orientable smooth manifolds. A map f W N ! M is smooth

embedding of N to M if f is a diffeomorphism from N to f .N /, where f .N / is a
smooth submanifold ofM . Two embeddings f; f 0 W N !M are smoothly isotopic
if there is a smooth map F W N � Œ0; 1� ! M (smooth isotopy) such that ft given
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by the formula ft .x/ D F.x; t/ is an embedding for each t 2 Œ0; 1� and f0 D f ,
f1 D f 0. We say that the family fftg is a smooth arc joining the embeddings f ,
f 0. Let C.N;M/ be the space of all embeddings N ! M with C 1-topology. We
say that a subset A 	 C.N;M/ is connected if for any embeddings f; f 0 2 A there
is a smooth arc fft 2 Ag connecting their.

Denote by Diff .M/ the space of all C r -diffeomorphisms on M (r � 2), by
DiffC.M/ 	 Diff .M/ the space of all orientation preserving diffeomorphisms
and by Diff 0.M/ 	 DiffC.M/ the space of diffeomorphisms which are smoothly
isotopic to the identical map. Let

Sn D f.x1; : : : ; xnC1/ 2 RnC1 W
nC1X

iD1
x2i D 1g:

Denote by J.Sn/ 	 DiffC.Sn/ the class of diffeomorphisms whose nonwander-
ing set consists of exactly two hyperbolic fixed points: the source, the sink and by
NS.Sn/ 	 J.Sn/ the class of “North pole – South pole” diffeomorphisms that is
diffeomorphisms which have the source in the point N.0; : : : ; 0„ ƒ‚ …

n

; 1/ and the sink in

the point S.0; : : : ; 0„ ƒ‚ …
n

;�1/.

Theorem 31.4. ([19], Theorem 1) For any diffeomorphisms f; f 0 2 J.S3/ there is
a smooth arc fft 2 J.S3/g joining these diffeomorphisms.

Theorem 31.5. ([19], Theorem 2) In the class NS.S6/ there are diffeomorphisms
which are can not be joined a smooth arc.

Theorem 31.6. ([19], Theorem 3) For any diffeomorphisms f; f 0 2 G4 there is a
smooth arc fft 2 DiffC.S3/g and numbers t1, t2 such that:

(1) f0 D f , f1 D f 0
(2) ft 2 G4 for all t 2 Œ0; t1/ [ .t2; 1�
(3) ft 2 J.S3/ for all t 2 .t1; t2/
(4) The nonwandering set of the diffeomorphism fti , i D 1; 2 consists of two hyper-

bolic fixed points: source and sink and one non hyperbolic fixed point of the type
saddle-node.

31.1.5 Interrelation Between Morse–Smale Diffeomorphism
and Topology of Ambient Manifold

In this section, firstly, we attempt to characterize those manifolds which admit
Morse–Smale diffeomorphisms without heteroclinic curves.
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Theorem 31.7. ([12], Theorem) Let M be a three-dimensional closed, connected,
orientable manifold. There exists a Morse–Smale diffeomorphism without hetero-
clinic curve onM admitting k saddle periodic points and l sinks and sources if and
only if M is the sphere if k D l � 2, or M is the connected sum of .k � l C 2/=2
copies of S2 � S1.

Recall that the connected sum M1#M2 of two oriented connected manifoldsM1

and M2, is the manifold obtained by choosing disks Di 	 Mi and by gluing the
manifoldsMi nDi (i D 1; 2), by a diffeomorphism between the boundaries which
reverses the natural orientation on the boundaries.

The result of the Theorem 31.7 is well known for Morse–Smale vectorfields
without heteroclinic curves and without periodic orbits on 3-manifolds, and so
our result can be interpreted as follows: the 3-manifolds admitting Morse–Smale
diffeomorphisms without heteroclinic curves are the same which admit Morse–
Smale vectorfields without heteroclinic curves and periodic orbits. This is in some
way surprising because Morse–Smale diffeomorphisms present a very different
behavior:

� The invariant manifolds of the saddles, without any heteroclinic points or curves,
may induce wild arcs and wild spheres (see Sect. 31.1.4).

� Here we allow infinitely many orbits of heteroclinic points, and we avoid only
heteroclinic curves.

The key of the proof of the Theorem will 31.7 is the following result which
describes the topological nature of the neighborhoods of the wild spheres which
appear in our context.

Proposition 31.2. ([12], Proposition 0.1) Let �WS2 ! M be a topological embed-
ding of the two-sphere which is a smooth immersion everywhere, except at one point
and let ˙ D �.S2/. Then any neighborhood of ˙ contains an open neighborhood
K such that ˙ 	 K and clos .K/ is diffeomorphic to S2 � Œ0; 1�.

The theorem above is sufficient condition of existence of a heteroclinic curve for
given Morse–Smale diffeomorphism.

� For example, if non-wandering set ˝.f / of Morse–Smale diffeomorphism f W
S3 ! S3 consists of two saddles, one sink and one source then wandering set of
such diffeomorphism contains a heteroclinic curve. Moreover, in this case there
is at least one noncompact heteroclinic curve.

� If ambient manifold of Morse–Smale diffeomorphism f is not homeomorphic to
the connected some of copies of S2 � S1 (for example if ambient manifold is the
torus T 3) then ˝.f / contains at least one heteroclinic curve.

Secondly, we study topology of ambient 3-manifold admitting gradient-like
difeomorphisms. Let f W M ! M be a gradient-like diffeomorphism and L.!/
be the union of all unstable one-dimensional separatrices of saddles which contain
! in their closure. The collection L.!/ is called tame if there is a homeomorphism
 W W s.!/ ! R3 such that  .!/ D O , where O is the origin and '.clos .`/ n 
/
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Fig. 31.8 Phase portrait of the diffeomorphism on S3 with mildly wild frame of separatrices

is a ray starting from O for any separatrix ` 2 L.!/. In the opposite case the set
L.!/ is wild.

Notice that the tameness of each separatrix ` 2 L.!/ does not imply the tame
property ofL.!/. In [25] there is an example of a wild collection of arcs in R3 where
each arc is tame. Using this example and methods of realization of Morse–Smale
diffeomorphisms suggested in [10] and [16], it is possible to construct a gradient-
like diffeomorphisms on S3 having a wild bundle L.!/ (see Fig. 31.8).

Theorem 31.8. ([33], Theorem 4.1) Let M be a three-dimensional closed, con-
nected, orientable manifold and f WM !M be gradient-like diffeomorphism with
k saddle periodic points and l sinks and sources such that for any sink ! (source ˛)
the set L.!/ ( L.˛/) are tame. Then the manifoldM 3 admits the Heegaard splitting
of genus g D k�lC2

2
.

Let us form the global attractor A C
f

and repeller A �
f

for diffeomorphism f as in

Sect. 31.1.2. Recall that�C
f

(��
f

) is the set of all sinks (sources),�f D �Cf [��f ,

˙C
f

(˙�
f

) is the set of saddle points with one-dimensional unstable (stable) invariant

manifolds, ˙f D ˙C
f
[ ˙�

f
, LC

f
(L�
f

) is a union of one-dimensional separatrices

of saddle points from˙C
f

(˙�
f

), A C
f
D �C

f
[LC

f
[˙C

f
, A �

f
D ��

f
[L�

f
[˙�

f
,

Lf D LCf [ L�f , Mf D M 3 n .A C
f
[A �

f
/.
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According to Sect. 31.1.2, the set A C
f

(A �
f

) is connected attractor (repeller) of
dimension � 1. Due to Lemma 31.1, the space of orbits Vf D Mf =f is closed
3-manifold. If A C

f
and A �

f
are tame then it is possible to recognize the topological

structure of Mf and Vf next way.

Corollary 31.1. The space Mf is diffeomorphic to Sg
f
� R and the manifold

Vf is diffeomorphic to Sg � S1, where Sg is orientable surface of genus g from
Theorem 31.8.

31.1.6 Topological Classification of Gradient-Like
Diffeomorphisms on 3-Manifolds

DenoteG30 class of gradient-like diffeomorphisms on 3-manifoldM . In this section
we give complete topological classification of diffeomorphisms from this class by
means of topological invariant named global scheme.

For a diffeomorphism f 2 G30 we keep denotation of Sects. 31.1.2 and 31.1.5,
where we formed the global connected attractor A C

f
and repeller A �

f
, the wander-

ing space Mf D M 3 n .A C
f
[ A �

f
/ and the space of orbits Vf D Mf =f . It

follows from corollary 31.1 that in the case of tame embedding of A C
f

and A �
f

the

manifold Vf is diffeomorphic to Sg � S1, where Sg is orientable surface of genus

g D j˙f j��f jC2
2

. In general case the manifold Vf is obtained from 3-dimensional
cobordism .K;P 1Qg ; P

2
Qg /, where P iQg is the boundary of handlebody of genus Qg � g,

by identifying of P 1Qg and P 2Qg by means f .

Denote p
f
W Mf ! Vf the natural projection and ˛

f
W �1.Vf / ! Z the

epimorphism corresponding to cover p
f

. ˛
f

has following property: any curve in
Mf joining some point x with the point f k.x/ is projected to the closed loop c on
Vf such that ˛

f
.Œc�/ D k.

Set O�s D pf
.W s.
/n
/ ( O�u

 D pf .W u.
/n
/) for any 
 2 ˙C
f

(
 2 ˙�
f

) and
O�s
f
D S

2˙C

f

O�s ( O�u
f
D S

2˙�

f

O�u
 ). As f per./jW s

�
(f per./jW u

�
) is conjugated with

contraction (expansion) on R2 then O�s ( O�u
 ) is two-dimensional torus, if f per./jW s

�

(f per./jW u
�

) preserves orientation and Klein bottle in the opposite case. Moreover,
˛

f
.�1. O�ı // D per.
/Z, connected components of the set O�ı

f
are pairwise dis-

joint for ı 2 fu; sg, but for all that O�u
f

and O�s
f

can have transversal intersection at
projection of heteroclinic curves.

Definition 31.1. A collection Sf D .Vf ; ˛f
; O�u

f
; O�s

f
/ is called global scheme of

diffeomorphism f 2 G30 .

On Fig. 31.9 is represented a phase portrait of gradient-like diffeomorphism f W
S3 ! S3. For its global scheme Sf , Vf is diffeomorphic to three-dimensional torus
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Fig. 31.9 A global scheme of a diffeomorphism f 2 G3
0

and O�u
f
; O�s

f
are two-dimensional tore. To get Sf we have to identify lateral faces

and bases of cylinder on Fig. 31.9 on the right.

Definition 31.2. Global schemes Sf D .Vf ; ˛f
; O�u

f
; O�s

f
/ and Sf 0 D .Vf 0 ; ˛

f 0
;

O�u
f 0
; O�s

f 0
/ of diffeomorphisms f; f 0 2 G30 are called equivalent if there is a pre-

serving orientation homeomorphism O' W Vf ! Vf 0 such that ˛
f
D ˛

f 0
O'� and

O'. O�u
f
/ D O�u

f 0
, O'. O�s

f
/ D O�s

f 0
.

Theorem 31.9. ([13], Theorem 2) Diffeomorphisms f; f 0 2 G30 are topological
conjugated if and only if their global schemes Sf ; Sf 0 are equivalent.

For the solution of the problem of realisation we introduce a concept of perfect
scheme. Let V be a smooth closed orientable 3-manifold, whose fundamental group
admit an epimorphism ˛ W �1.V / ! Z. Let O�u; O�s 	 V be sets of smoothly
embedded tore and Klein bottles such that elements from O�ı are pairwise disjoint,
˛.�1. O�ı // ¤ 0 for any element O�ı 2 O�ı and sets O�u; O�s can have transversal
intersection.

For each component O�ı 2 O�ı the fundamental group �1. O�ı/ admit a system of
generatrices .a; b/ such, that ˛.Œa�/ > 0 and ˛.Œb�/ D 0. Let N. O�ı/ be a tubular
neighborhood of O�ı , NV D V nintN. O�ı/ and N̨ W �1. NV /! Z be epimorphism which
is induced by ˛. By the construction NV is a compact manifold whose boundary
consists of two tore if O�ı is tores or of one torus if O�ı is Klein bottle. Besides, the
system of generatrices .a; b/ of element O�ı induces on each connected component of
@ NV system of generatrices .a; b/ or .a2; b/, accordingly, and N̨ .Œa�/ > 0, N̨ .Œb�/ D 0.
Denote .V; O�ı/ the closed 3-manifold which is obtained from NV by gluing of solid
tore to each connected component of @ NV such that meridian of solid tore sticks
together with b (we will notice, that this construction does not depend on a choice
of gluing diffeomorphism). We say that .V; O�ı/ is a manifold which is obtained from
V by cutting and pasting along O�ı (see Fig. 31.10).
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Fig. 31.10 Cutting and pasting along a torus

Notice that the result of cutting and pasting V along O�ı does not depend on
an order of operations. Denote .V; O�ı/ the manifold which is obtained from V by
cutting and pasting along O�ı .
Definition 31.3. A collection S D .V; ˛; O�s ; O�u/ is called perfect scheme if each
connected component of .V; O�s/ and .V; O�u/ is diffeomorphic to S2 � S1.

Theorem 31.10. ([13], Proposition 2.2) For any perfect scheme S there is a diffeo-
morphism f 2 G30 , whose global scheme is equivalent to S .

31.1.7 Topological Classification of Non Gradient-Like
Diffeomorphisms on 3-Manifolds

In this section firstly we give a complete classification of a class H 3
1 of Morse–

Smale diffeomorphisms f with the finite number of heteroclinic orbits and without
heteroclinic curves on 3-manifoldM .

Similar to gradient-like diffeomorphism we form the global connected attractor
A C
f

and repeller A �
f

, the wandering space Mf D M 3 n .A C
f
[ A �

f
/, the space

of orbits Vf D Mf =f , the natural projection p
f
W Mf ! Vf and epimorphism

˛
f
W �1.Vf /! Z corresponding to cover p

f
.

Set O�s D pf
.W s.
/n
/ ( O�u

 D pf
.W u.
/n
/) for any 
 2 ˙C

f
(
 2 ˙�

f
) and

O�s
f
D S

2˙C

f

O�s ( O�u
f
D S

2˙�

f

O�u
 ). The set O�s

f
. O�u

f
/ consists of two-dimensional

laminations, which are called heteroclinic lamination.
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Fig. 31.11 A global scheme
of a diffeomorphism f 2 H3

1

Definition 31.4. A collection Sf D .Vf ; ˛f
; O�u

f
; O�s

f
/ is called global scheme of

diffeomorphism f 2 H 3
1 .

On Fig. 31.11 is represented a phase portrait of diffeomorphism f W S3 ! S3

and its global scheme Sf .

Definition 31.5. Global schemes Sf D .Vf ; ˛f
; O�u

f
; O�s

f
/ and Sf 0 D .Vf 0 ; ˛

f 0
;

O�u
f 0
; O�s

f 0
/ of diffeomorphisms f; f 0 2 H 3

1 are called equivalent if there is a pre-
serving orientation homeomorphism O' W Vf ! Vf 0 such that ˛

f
D ˛

f 0
O'� and

O'. O�u
f
/ D O�u

f 0
, O'. O�s

f
/ D O�s

f 0
.

Theorem 31.11. ([16] Theorem 2.1) Diffeomorphisms f; f 0 2 H 3
1 are topological

conjugated if and only if their global schemes Sf ; Sf 0 are equivalent.

Similar to gradient-like diffeomorphisms it is defined perfect schemes and is
proved realization theorem.

Secondly, we give a complete topological classification of Morse–Smale diffeo-
morphismsf on 3-manifoldM belonging to a classQ3

n (n � 0) of diffeomorphisms
satisfying to the next conditions:

(1) Nonwandering set ˝.f / consists of fixed points
(2) The number of saddle points is equal to nC 1
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(3) All saddle points 
0; : : : ; 
n 2 ˝.f / have the same Morse index1 and form
n-chain (connecting 
0 and 
n). For definiteness we will suppose that Morse
index of saddles is equal to 2 (the case when all saddles of a diffeomorphism f

have Morse index 1 reduces to our case by consideration of the diffeomorphism
f �1).

Complete topological classification of diffeomorphisms from the class Q3
0 is

contained in Sect. 31.1.4. To each diffeomorphism of this class corresponds a knot
embedded in the manifold S2�S1 and classification such diffeomorphisms is equiv-
alent to classification of corresponding knots. Diffeomorphisms of the class Q3

1 are
contained in the classH 3

1 . To each diffeomorphism of this class corresponds a hete-
roclinic lamination in the manifold S2�S1 and classification such diffeomorphisms
is equivalent to classification of corresponding heteroclinic laminations.

In this paper we consider class Q3
n for n � 2.

Theorem 31.12. ([18], Theorem 1) Nonwandering set of any diffeomorphism f 2
Q3
n consists of 2nC 4 fixed points: one sink !0, nC 2 sources ˛0; : : : ; ˛nC2, nC 1

saddles 
0; : : : ; 
n and ambient manifoldM is homeomorphic to the manifold S3.

For a diffeomorphism f 2 H 3
n the global attractor A C

f
consists of exactly

one point !0 and, hence, the orbits space Vf is diffeomorphic to S2 � S1. To
each diffeomorphism f 2 H 3

n we assign the orbit space �n.f / of the diffeo-

morphism f action on the set
nS
iD0

W u.
i / n
nS
iD0

W s.
i /. The set �n.f / is a torus

heteroclinic lamination of order n (see Fig. 31.12). In Fig. 31.12 in the center a three-
dimensional annulus is represented. After gluing its boundary spheres, the needed
manifold S2 � S1 and lamination �2 D T0 [ T1 [ T2 are obtained. Below the
union T0 [T1 [T2 is represented after gluing.

Theorem 31.13. ([18], Theorem 3) Diffeomorphisms f; f 0 2 Q3
n are topological

conjugate if and only if �n.f / and�n.f 0/ are equivalent.

Theorem 31.14. ([18], Theorem 3) For any torus heteroclinic lamination �n of
order n there is a diffeomorphism f 2 Q3

n such that�n.f / and�n are equivalent.

31.1.8 Peixoto’ Graph is Complete Invariant Again

LetHn
0 is the class of Morse–Smale diffeomorphisms on manifoldM of dimension

n � 4 such that for any f 2 Hn
0 the set of unstable separatrixes has dimension 1

and does not contain the heteroclinic orbits. We will associated with any f 2 Hn
0

the oriented graph �f which is similar to graph introduced by Peixoto for structural

1 Morse index of a periodic point is dimension of its unstable manifold.
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Fig. 31.12 A torus
heteroclinic lamination of
order 2 for a diffeomorphism
f 2 Q3

2

stable flow and, hence, for gradient-like diffeomorphisms on two-dimensional man-
ifolds. The set of vertices of �f is isomorphic to the non-wandering set ˝.f /, the
set of edges of �f is isomorphic to the set of separatrixes of saddle periodic points.

Theorem 31.15. ([29], Theorem 1) Diffeomorphisms f; f 0 2 Hn
0 are topologically

conjugated iff graphs �f ; �f 0 are isomorphic.

In case n D 2 this result follows from results of the papers [8]–[9] and [27].
In case n D 3 it contrasts with results of Sect. 31.1.4 where, in particular, it
is shown, that there are countable set topologically non-conjugated Morse–Smale
diffeomorphisms with isomorphic graphs.

We give a representation of each topological conjugacy subclass of Hn
0 .

We say that connected orientable graph � is admissible if the set of vertixes of
� may be represented as a union of three non-empty disjoint subsets � 01 D fa11g,
� 02 D fa12; : : : ; ak2 g, � 03 D fa13; : : : ; akC13 g such that:

(1) For any i 2 f1; : : : ; kg the vertix ai2 is incident for exactly three edges: one edge
joins ai2 with a11 and two edges join ai2 with two different vertixes from set � 03

(2) There are no edges joining any two vertixes from � 03 and there are no edges
joining a11 with a vertix from � 03

(3) For any j 2 f1; : : : ; kg the edge .a11; a
j
2 / is oriented from a11 to aj2
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(4) For any couple i 2 f1; : : : ; kg, j 2 f1; : : : ; k C 1g such that vertixes ai2; a
j
3 are

incident the edge .ai2; a
j
3 / is oriented from ai2 to aj3

(5) Graph � n a11 is connected.

Lemma 31.3. ([29], Theorem 2) Graph � .f / of diffeomorphism f 2 Hn
0 is

admissible.

Theorem 31.16. ([30], Theorem 3) Let P is any orientation preserving automor-
phism of admissible graph � . Then there is diffeomorphism f 2 Hn

0 such that
� .f / D � and automorphism P.f / of � .f / induced by f coincides with P .
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Chapter 32
Isentropic Dynamics and Control
in an Economic Model for Capital
Accumulation

Cristina Januário, Clara Grácio, Diana A. Mendes, and Jorge Duarte

Abstract The study of economic models has generated deep interest in explor-
ing the complexity of our society. The primary purpose of this article is to study
the chaotic dynamical behavior of an economic growth model describing capital
accumulation presented by Böhm and Kaas in (J Econ Dyn Control 24:965–980,
2000). To start with, we use the techniques of symbolic dynamics to explore sev-
eral properties, with the explicit computation of two topological invariants, which
are associated with the discrete dynamical system in consideration. The analysis of
these results allows us to understand the dynamics of the economical model and
to distinguish different scenarios of complexity, namely in situations of isentropic
dynamics. Finally, we show that the chaotic behavior arising from the discrete model
can be controlled without changing its original properties and the dynamics can be
turned into a desired attracting time periodic motion (a stable steady state or a regu-
lar cycle). The orbit stabilization is illustrated by a analytical control technique. This
study tends to integrate and interrelate different methods in order to illustrate how
our understanding of economic models can be enhanced by the theory of nonlinear
dynamical systems.
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32.1 Introduction

Nonlinear dynamics in economical models leads to potential complexity and unpre-
dictability which are significant obstacles in understanding the qualitative behavior
of such dynamical systems. In the last years, the application of tools from nonlinear
analysis, in particular chaos theory to the study of complex economical systems,
seems to be relevant and has generated extensive research programmes (for instance:
[8, 10, 14]). However, from the point of view of economists, chaos is not clearly
understood.

Dynamic economic growth models have often considered the standard one-sector
neoclassical model by Ramsey (1924) or the Solow–Swan model (1956). In both
cases the economic models are characterized by a monotonically convergence to the
steady state so no periodic fluctuations or complex dynamics can be observed. Nev-
ertheless, at the same time, other one-sector growth models were developed with
the capacity of generating multiple and unstable steady states, particularly those
introduced by Kaldor and Pasinetti. In 2000, in a very interesting paper, Bohm and
Kaas [2], analyze the role of differential savings behavior as proposed by Kaldor
(1956) and its consequences regarding the stability of stationary equilibria in a
discrete-time Solow growth model. These authors encountered a very rich dynami-
cal behavior, characterized by stable/unstable equilibrium points, fluctuations and
even topological chaos, when the income distribution varies sufficiently and if
shareholders save more than workers. More recently, in 2007, Brianzoni et al. [3]
studied the Bohm and Kaas model considering a different production function and
a non-constant labor force growth.

Due to important developments in nonlinear dynamics, there has been a consid-
erable research effort into the analysis of chaotic systems. For instance, control,
targeting, synchronization and forecasting of chaotic motion have proved well
established results in the fields of applied mathematics, economy, physics and engi-
neering. In particular, since the publication of the seminal paper of Ott, Grebogi
and Yorke in 1990 [19], several methods have been proposed to control chaotic
dynamics, with applications, for example, to economy, biochemistry, cardiology,
communications, physics laboratories and turbulence. This pioneering work showed
that very small changes of a parameter, when performed in a convenient way, can
effectively control a chaotic dynamic. Other controlling methods have been pub-
lished since that time using proportional feedback, small periodic perturbations of
a parameter or regulator pulses on a variable in order to achieve the desired regular
motion (see [5] and references therein).

In the context of economy, practical methods of this new and exciting field can
be applied to show that the presence of chaotic motion in economic processes does
not necessarily need to be interpreted as a curse for economic theory and economic
policy (for instance: [6,7,20,21]). Particularly, in order to control economic chaotic
motion, we do not need to change the fundamental characteristics of the system. We
can eliminate large business cycles, leaving the main features unchanged.

The aim of this paper is to provide a contribution for the detailed analysis of
the chaotic behavior of the neoclassical one-sector growth model with differential
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savings in the sense of Kaldor–Pasinetti, as presented in the paper of Bohm and
Kass (see [2]). Using results of symbolic dynamics theory, we compute a quantifier
for the complex orbit structure – an attribute used to define chaos – the topologi-
cal entropy. This topological invariant is related to the exponential orbital growth
and gives us a finer distinction between different chaotic states. For certain type of
maps, the study of this measure of the amount of chaos leads to situations of isen-
tropic dynamics. The characterization of the isentropic maps becomes possible with
the introduction of another topological invariant that allows us to distinguish differ-
ent scenarios of complexity. We exhibit numerical results about the relation of this
particular topological invariant and each of the control parameters. It is interesting
to notice that, although the concept of entropy was originally developed in a thermo-
dynamic context, it has been adapted in other different fields of research, including
thermoeconomics, information theory, evolution and string theory. For instance in
[9], a number of interconnected issues involving superstring theory, entropy and the
particle content of the standard model of high energy physics, have been analysed.
The identification of chaotic states can be efficiently used to apply chaos control
strategies. In this context, we examine the effects of periodic proportional pulses on
the stabilization of chaotic trajectories performed by the economic model. This con-
trol method was presented by Chau in [4] based on the work carried out by Matias
and Güémez in [11].

32.2 Description of the Model

We consider a one-sector growth model in the sense of Kaldor and Pasinetti, where
there are two types of agents: workers and shareholders. They may have possibly
different but constant savings propensities. A single investment/consumption com-
modity is produced from labor and capital input with constant returns to scale. The
production function, f W RC ! RC, with the property that transforms capital per
worker k into output per worker y; satisfies the weak Inada condition, that is, f is
C 2; strictly monotonically increasing, strictly concave, and such that

lim
k!1

f .k/

k
D 0 and lim

k!0
f .k/

k
D 1: (32.1)

The labor force growth at rate n � 0 (as usually assumed in standard economic
growth theory) and capital depreciates at rate 0 < ı � 1: The wage rate is
characterized by the following relation

w.k/ D f .k/ � kf 0.k/; (32.2)

where f 0.k/ is the marginal product of capital received by the shareholders and
kf 0.k/ represents the total capital income per worker. The constant saving rates for
workers, sw; and shareholders, sr ; are both limited between 0 and 1.
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It follows that the one dimensional map, which describes the capital accumula-
tion, is given by

ktC1 D G.kt / D 1

nC 1
�
.1 � ı/kt C sww.kt /C srktf 0.kt /

	
; (32.3)

and is continuously depending on f and on the parameters sw; sr ; n; ı: If the two
savings propensities are equal, then the standard growth model of Solow is obtained.
In this case, there exists a unique globally stable equilibrium point, which is not
optimal, that is, it does not maximize long-run consumption per capita. Dynamic
behavior different from stable steady state can be obtained by considering several
production function in (32.3) and varying the model parameters.

Among the production functions pointed out in [2], we consider the concave
production function which is taken as an approximation of the Leontief technology,
that is,

f .k/ D a
 
k C ˛ ln

 
1C e�b�.˛a/

1C e.ak�b/�.˛a/

!!
C c; (32.4)

and study the dynamics of the one-dimensional map presented in (32.3) for this
specified f . The real parameters a, b, c and ˛ are all positive. For more details the
reader is referred to the paper [2] and references therein. In our numerical investiga-
tion, we will use throughout the following standard parameter calibration: n D 0:0,
sw D 0:4, a D 0:2, b D 1, c D 0:01 and ˛ D 0:01 and consider ı and sr as control
parameters. A typical map of G is shown in Fig. 32.1, which is a bimodal map with
turning points c1 (corresponding to the relative maximum) and c2 (corresponding to
the relative minimum).

4.7 4.9 5.1

4.7

4.9

5.1

Kt

Kt+ 1

Fig. 32.1 Graphical representation of G. In this case ı D 0:148 and sr D 0:87
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32.3 Coping with Complex Behavior and Isentropic Dynamics

It is well known that topological and metric invariants like entropy, Lyapunov expo-
nents, information and correlation dimensions, are fundamental in the local and
global characterization of the behavior of a nonlinear dynamical system. For exam-
ple, the entropy, which is considered one of the most powerful invariant [13], was
already successfully applied to quantify information and uncertainty in financial
data, or in the prediction of chemical processes, among others. Moreover, there
are some conjectures that affirm that the direction of economic change may have
as much to do with the entropies of neighboring macrostates as with any of the
other dynamical factors now recognized [12]. In another paper, Montrucchio and
Sorger [18], derived a simple relationship between the topological entropy of the
optimal policy function of a concave dynamic program and the underlying discount
factor. They obtained a relationship reflecting that solutions with very complicated
dynamics can only occur in models with small discount factors. Motivated by all
these results, we will give some importance to the computation and interpretation of
topological entropy in our economical model.

In this section we will use techniques of symbolic dynamics, in particular some
results concerning Markov partitions associated with bimodal maps in order to com-
pute the topological entropy of the capital accumulation model. We describe briefly
this powerful symbolic tool (for more details see [15] and [16]).

Let us consider that the bimodal map G is defined on the interval I D Œc0; c3�.
G is a piecewise monotone map, where I is subdivided into three subintervals:

IL D Œc0; c1Œ, IA D fc1g, IM D�c1; c2Œ, IB D fc2g, IR D�c2; c3�,
(32.5)

in such way that the restriction of G to each interval IL or IR is strictly increasing
and in the other interval IM is strictly decreasing (see for instance Fig. 32.1). Each
such maximal intervals on which the function G is monotone is called a lap of G,
and the number ` D `.G/ of distinct laps is called the lap number of G.

Denoting by c1 and c2 the two turning points of G, we obtain the orbits

O.c1/ D
˚
xi W xi D Gi .c1/; i 2 N

�
and O.c2/ D

˚
yi W yi D Gi .c2/; i 2 N

�
:

(32.6)
With the aim of studying the topological properties of these orbits we associate with
each orbit O.ci / a sequence of symbols S D S1S2:::Sj ::: where

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

Sj D L if Gj .ci / < c1;
Sj D A if Gj .ci / D c1;
Sj DM if c1 < Gj .ci / < c2;
Sj D B if Gj .ci / D c2;
Sj D R if Gj .ci / > c2:

(32.7)
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The critical points c1 and c2 play an important role since the dynamics of the
bimodal map on the interval is fully characterized by the symbolic sequences
associated with the orbits of these points.

We denote by nM .S/ the frequency of the symbol M in S and we define the
M -parity of this sequence,

�.S/ D .�1/nM .S/; (32.8)

according to whether nM .S/ is even or odd. Thus, in the first case we have �.S/ D
C1 and in the second �.S/ D �1. In our study we use an order relation defined in
˙ D fL;A;M;B;RgN that depends onM -parity. Thus, for two of such sequences,
P andQ in˙ , let i be such that Pi ¤ Qi and Pj D Qj for j < i . If theM -parity
of the block P1:::Pi�1 D Q1:::Qi�1 is even (that is, �.P1:::Pi�1/ D C1), we say
that P < Q if Pi < Qi in the order L < A < M < B < R. If the M -parity of the
same block is odd (that is, �.P1:::Pi�1/ D �1), we say that P < Q if Pi < Qi in
the order R < B < M < A < L. If no such index i exists, then P D Q.

If a finite symbolic sequence S has n symbols, it is common to write jS j D n.
When O.ci / is a k-periodic orbit we obtain a sequence of symbols that can be
characterized by a block of length k, that is

S .k/ D S1:::Sk�1Ci ; with i D 1; 2: (32.9)

In what follows, we restrict our study to the case where the two critical points
are periodic (respectively, eventually periodic), O.c1/ is p-periodic and O.c2/ is
q-periodic (respectively, Gp.c1/ D c2 or Gq.c2/ D c1). Note that O.c1/ is real-
izable if the block P D P1:::Pp�1A is maximal, that is, 
 i .P / � P , where
1 � i � p and


.PiPiC1PiC2:::/ D PiC1PiC2::: (32.10)

is the usual shift operator. On the other hand, O.c2/ is realizable if the block Q D
Q1:::Qq�1B is minimal, that is, 
j .Q/ � Q, where 1 � j � q. Finally, note that
the pair of sequences that are realizable satisfies the following conditions


 i .P / � Q; 1 � i � p and 
j .Q/ � P; 1 � j � q: (32.11)

The set of such pair of sequences is denoted by˙.A;B/.
We designate by kneading data the pairs .P .p/;Q.q// 2 ˙.A;B/, where

P .p/ D P1:::Pp�1A and Q.q/ D Q1:::Qq�1B: (32.12)

The bistable sequence is denoted by P1:::Pp�1BQ1:::Qq�1A, and the eventually
periodic sequences are given by

P1:::Pp�1BQ1:::Qq�1B or Q1:::Qq�1AP1:::Pp�1A: (32.13)
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To each value of the control parameters, the dynamics is characterized using the
kneading data. This kneading data determines a Markov partition of the interval,
considering the orbits O.c1/ D fxi giD1;2;:::;p and O.c2/ D fyigiD1;2;:::;q, and
ordering the elements xi , yi of these orbits. With this procedure we obtain the par-
tition fIk D Œzk ; zkC1�gkD1;2;:::;pCq of the interval I D Œy1; x1�. The transitions
between the subintervals are represented by a matrix M .G/. According to the above
description, the topological entropy of G, denoted by htop.G/, can be given by

htop.G/ D log�max.M .G// D log s.G/; (32.14)

where �max.M .G// is the spectral radius of the transition matrix M .G/ and s.G/
is the growth rate of the number of intervals on which Gk is monotone.

To illustrate the previous considerations, we discuss the following example.

Example 32.1. Let us consider the map of Fig. 32.1. The orbits of the turning points
define the pair of sequences .RLLMA;LLA/1. Putting the points of the orbits in
order we obtain:

y1 < x2 < y2 < x3 < c1 D x0 < x4 < c2 D y0 < x1: (32.15)

The correspondent transition matrix is

M .G/ D

2

6666666664

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 1 1 1

1 1 1 1 0 0 0

1 0 0 0 0 0 0

3

7777777775

which has the characteristic polynomialp.�/ D �t3.�1�t�t2�t3Ct4/. Therefore
the value of the topological entropy is htop.G/ D 0:656256:::.

To see the long term behavior for different values of the parameters, we plot, in
Figs. 32.2 and 32.3 typical bifurcation diagrams. It is interesting to observe from the
bifurcation diagrams, and by other hand obvious to confirm, that when the capital
depreciation rate, ı, is growing then the capital accumulation is decreasing in a quite
abrupt way and when the saving rate for holders, sr , is increasing then the capital
accumulation is increasing too.

With these diagrams it is easier to understand Figs. 32.4 and 32.5 that present
some numerical results of the Lyapunov exponents with each of the parameters
ı and sr , in some regions of the parameter space. Notice that the depicted values of
the Lyapunov exponents above the zero line correspond to chaotic behavior which
is associated with positive topological entropy. More precisely, the variation of the
topological entropy follows the behavior of the Lyapunov exponents. These vari-
ations are non-monotone and are characterized by several fluctuations (successive



436 C. Januário et al.

0.08 0.12 0.16

4.8

5.

5.2
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d

Fig. 32.2 Bifurcation diagram for kt as a function of ı, with sr D 0:8 and 0:08 � ı � 0:16

0.5 0.75 1.

5.

5.1

5.2

sr

kt

Fig. 32.3 Bifurcation diagram for kt as a function of sr , with ı D 0:09 and 0:45 � sr � 1:0

increasing and decreasing) in the topological entropy when the capital deprecia-
tion rate and the saving rate for holders are increased. These numerical results are
perfectly connected with the intuitive idea generated by the bifurcation diagrams.
Moreover, we can observe situations of isentropic dynamics (that is, dynamics with
the same entropy) that can raise interesting questions.

In order to illustrate the idea of isentropic dynamics, we are going to search
for some capital accumulation maps with the same topological entropy, that is,
log.1:927561:::/ D 0:656256:::, when the parameters ı and sr are varied. In our
study we consider the bimodal map G restricted to its invariant region˝ 2 R2 (see
Fig. 32.6), given by
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–1.5

– 1.

– 0.5

0

0.5

Lyap

d

Fig. 32.4 Lyapunov exponents of the map G as a function of ı, with sr D 0:8 and 0:08� ı� 0:16

(b)

0.5 0.6 0.7 0.8 0.9 1

–1.5
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 – 0.5

0

0.5

sr

Lyap

Fig. 32.5 Lyapunov exponents of the mapG as a function of sr , with ıD 0:09 and 0:45� sr � 1:0

˝ D f.ı; sr / 2 R2 W G.G.c1// < G.c2/ and G.G.c2// > G.c1/
and G.c2/ > c2 and G.c1/ < c1g. (32.16)

With the procedure presented above, we can compute the topological entropy for
these maps. The following tables show the kneading data and the characteristic
polynomial associated with each map. It is important to notice that the common
factor .�1 � t � t2 � t3 C t4/ is fundamental since determines the same spec-
tral radius 1:92756:::: and, therefore, the same topological entropy htop.G/ D
log.1:92756:::/ D 0:656256:::for each considered map.
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Ω

0.08 0.1 0.12 0.14 0.16

0.6

0.8

1.

sr

d

Fig. 32.6 Representation of points .ı; sr / in the ˝ region. To each point corresponds a map with
topological entropy htop.G/ D 0:656256:::

.ı; sr / Kneading data of G

.0:148; 0:87/ .RLLMA;LLA/

.0:13156; 0:83565/ .RLB;LA/

.0:13459; 0:78086/ .RL2MLM2LMA; L2M 2LA/

.0:136238; 0:915037/ .RLRLRLM3A;LMRLM5B/

.0:14242417; 0:982589/ .RLRLRLMLB;LMRLM4LMA/

(32.17)

.ı; sr/ Characteristic polynomial of M.G/

.0:148; 0:87/ �t3.�1 � t � t2 � t3 C t4/

.0:13156; 0:83565/ �1 � t � t2 � t3 C t4

.0:13459; 0:78086/ �t6.�1C 2t C t5/.�1 � t � t2 � t3 C t4/

.0:136238; 0:915037/

.1 � t/.1 � t C t2 � t3 C t4/.1C t C t2 C t3 C t4/
.�1C t C t5 C t6/.�1 � t � t2 � t3 C t4/

.0:14242417; 0:982589/
.1 � t/.�1C t C t5 C t6/.�1C t2 C t4 C t6 C t8/

.�1 � t � t2 � t3 C t4/
(32.18)



32 Isentropic Dynamics and Control in an Economic Model for Capital Accumulation 439

At this point of our study, we emphasize that in all the considered cases we have
chaotic behavior and the topological entropy has exactly the same positive value.
One question appears naturally: how can we distinguish these isentropic maps? In
the following lines we contribute with an answer to this question.

First at all, it is interesting to exhibit a numerical result about the isentropic
maps studied here. We can observe from Fig. 32.6 that to each pair of points .ı; sr /
(represented by black spots in Fig. 32.6) it is corresponding a map with the same
topological entropy, namely htop.G/ D 0:656256:::. This means that the topological
entropy by itself is no longer sufficient to classify these maps and will be necessary
to consider another topological invariant in order to distinguish them.

The study of topological classification for bimodal mapsG leads to the introduc-
tion of two topological invariants: one of them is the well known growth number
s.G/ D ehtop.G/ and the other numerical quantity, denoted by r , is associated with
the relative positions of the turning points of the map. The topological invariant r
is introduced using the hypothesis s.G/ > 1 and the Milnor–Thurston results about
the topologically semi-conjugate by � of G to a piecewise linear map Fe;s having
slope˙s.G/ everywhere (see [1,16,17]). The map Fe;s is unique and it is defined by

Fe;s W Œ0; 1� �! Œ0; 1� so that Fe;s .� .x// D � .G .x// (32.19)

for every x 2 Œ0; 1� such that

Fe;s .y/ D
8
<

:

s y if 0 � y < � .c1/
�s y C e if � .c1/ � y < � .c2/
s y C 1 � s if y � � .c2/

(32.20)

where � .c1/ D e=.2s/, � .c2/ D e=.2s/C .s � 1/=.2s/ (see Fig. 32.7).
Now, the new invariant, r.G/; is given by

r.G/ D 4s�.c1/� 1� s
2

D 4s�.c2/C 1 � 3s
2

(32.21)

with � .c1/ D
nLC1X

iD1
vi and � .c2/ D

nLCnMC2X

iD1
vi (32.22)

where nL (respective nM ) denote the number of symbols L (respective sym-
bols M ). The vector v is the Perron eigenvector associated with the eigenvalue
�max D s, M v D �maxv; where M is the transition matrix with the extreme inter-
vals I0 D Œ0; z1� and IpCq D ŒzpCq ; 1� included. It is important to note that r.G/
is in fact a topological invariant because all the variables �.c1/, �.c2/ and s.G/
that lead to r.G/ are topological invariants (see [1]). In the piecewise linear case,
Fe;s , the parameter r.G/ is the invariant that distinguish isentropic dynamics and
r 2 �

s�3
2
; 3�s
2

�
. Regarding the previous considerations, we derive the following

result,
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0 0.5 1.
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1.

y

Fe,s(y)

Fig. 32.7 Piecewise linear map for s D 1:9275619::: and r D �0:385686:::

Proposition 32.1. The maps G can be topologically classified by the pair of topo-
logical invariants .s; r/, where s is the lap growth number, s.G/ D ehtop.G/, and r
is the invariant given by

r.G/ D 4s�.c1/� 1 � s
2

D 4s�.c2/C 1 � 3s
2

; (32.23)

and where � is the map defined by the semi-conjugacy to the piecewise linear map
Fe;s .

We discuss the following example which illustrates very well the situation
presented above.

Example 32.2. For the kneading data .RLLMA;LLA/1 (as in Example 32.1) we can
apply the previous algorithm to compute the topological invariants associated with
this sequence. The transition matrix is given by

M .G/ D

2

66666666666664

1 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1 0

0 1 1 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1

3

77777777777775
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and satisfies the equation of Perron eigenvector, M v D �maxv. Then we have

�.c1/ D
5X

iD1
vi D 0:279653::: and �.c2/ D

7X

iD1
vi D 0:520257::: (32.24)

(with v normalized to the unit interval). We obtain s D 1:92756::: and r D
�0:385686:::. The semi-conjugate piecewise linear map associated with this knead-
ing data is given in the Fig. 32.7.

To each kneading data .P .p/;Q.q// corresponds one and only one value of r . For
the set of points studied, we present in Figs. 32.8 and 32.9 some numerical results of
the variation of the topological invariant r with each of the parameters ı and sr . We
can see that for the same topological entropy, if we increase the capital depreciation
rate the invariant r is oscillating in a different and not correlated way than when
we vary the saving rate for holders. It is quite interesting, since the several capital
accumulation bimodal maps, considered for different parameter settings, and show-
ing the same topological entropy can still be differentiate by another topological
invariant.

32.4 Control of the Capital Accumulation

There are several methods available to control chaos in one-dimensional dynamical
systems as can be seen in [4, 5] and [19] . In this section, we restrict our analysis
and show that periodic proportional pulses, applied to the chaotic dynamics of the
capital accumulation model given by the map (32.3), that is,

(a)

0.13 0.135 0.14 0.145

–0.4

– 0.3

– 0.2

r

d

Fig. 32.8 Variation of the topological invariant r with ı
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(b)
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r

Fig. 32.9 Variation of the topological invariant r with sr

ktC1 D G.kt / D 1

nC 1
�
.1 � ı/ kt C sww .kt /C srktf 0 .kt /

	
(32.25)

can stabilize the dynamics at a desired periodic orbit. For more details on the method
and its application to the Hénon map the reader is directed to [4].

In order to control the chaos in this discrete dynamical system, instantaneous
pulses will be applied to the map variable, kt , at every p iterations such that

ki �! q ki (i is a multiple of p) (32.26)

where q is a constant to be determined and p denotes the period of the orbit in the
dynamics. A fixed point of period one, ks , of ktC1 D G.kt / is such that ks D G.ks/;
and it is called stable if and only if the modulus of the first order derivative is lower
than 1; that is, ˇ̌

ˇ̌dG.ks/
dk

ˇ̌
ˇ̌ < 1: (32.27)

Now, we kick the dynamics by multiplying its values with a factor q, at every p
iterations, by considering

G�.k/ D qGp.k/; (32.28)

where Gp is the composition of the map G with itself p times. A fixed point of G�
satisfies the equation

qGp.ks/ D ks ; (32.29)

where the fixed point ks is locally stable if

ˇ̌
ˇ̌q dG

p.ks/

dk

ˇ̌
ˇ̌ < 1: (32.30)
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A stable fixed point of G� is viewed as a stable periodic point of period p of the
original dynamics, kicked by the control method. Considering parameter values such
that the map (32.3) is chaotic and willing to control it into a stable periodic orbit of
period p, we must find a point ks and a factor q satisfying (32.29) and (32.30).

Defining the function C p.k/ by

C p.k/ D q dG
p.ks/

dk
; (32.31)

and taking q from (32.29), that is,

q D ks

Gp.ks/
; (32.32)

we obtain

C p.k/ D ks

Gp.ks/

dGp.ks/

dk
(32.33)

and (32.30) becomes

jC p.ks/j < 1”
ˇ̌
ˇ̌ ks

Gp.ks/

dGp.ks/

dk

ˇ̌
ˇ̌ < 1: (32.34)

We emphasize the importance of the previous inequality: if the fixed point ks
satisfies (32.34), then with the kicking factor q defined by (32.32), the control is
switched on and will stabilize the dynamics at a periodic orbit of period p, pass-
ing through the given point. For particular details and remarks about this control
procedure see [4].

In the context of economy, it has been accepted that chaos control methods con-
stitute interesting applications when they can lead to stable periodic orbits of low
periods, namely, p D 1 and p D 2, which represent short-time predictable behav-
ior. For illustrative purposes, we fix the parameter values ı D 0:148 and sr D 0:87,
where the system exhibits positive topological entropy (see Example 32.1). The
functions C 1.k/ and C 2.k/; when their values are between �1 and 1; are shown in
Figs. 32.10 and 32.11.

Concerning the function C 1.k/, fixed points of period 1 can be stabilized for
every ks in two ranges. When p D 2; the orbit of period 2 can be stabilized in
six ranges. In fact, the control ranges become smaller as the periodicity increases.
Figures 32.12 and 32.13 show two examples of stabilizing the economic map at
period 1 and at period 2: The values ks have been selected by examining Figs. 32.10
and 32.11 and the values of q were calculated using (32.32).

In both examples, the convergence was very fast (see Figs. 32.12 and 32.13). It
is interesting to observe that for values of ks such that jC p.ks/j is near the unity the
convergence is slower. As far as an economic system is concerned, it is convenient
to obtain a fast convergence in order to reach the desired behavior. As an example
of a slower convergence see Figs. 32.14 and 32.15.



444 C. Januário et al.
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Fig. 32.10 The control curves Cp , p D 1, for the economic map when ı D 0:148 and sr D 0:87:

In each case, the range is restricted to �1 < Cp.k/ < 1
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Fig. 32.11 The control curves Cp , p D 2, for the economic map when ı D 0:148 and sr D 0:87:

In each case, the range is restricted to �1 < Cp.k/ < 1

Note that the system can be stabilized to many different points on or even out of
the basin of attraction of the attractor (see the work of Chau [4]).

32.5 Concluding Remarks

In this article we have analyzed in detail some aspects of the dynamics of a
one-sector growth model with differential savings and with a Leontief production
function as introduced by Böhm and Kaas. The rich and complex behavior of this
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Fig. 32.12 An example of the effect of controlling the economic map to periodic orbits (of periods
1 and 2). For period 1: ks D 4:96 and q D 0:975502::: (the control was switched on at t D 45)
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Fig. 32.13 An example of the effect of controlling the economic map to periodic orbits (of periods
1 and 2). For period 2: ks D 4:83 and q D 0:949952::: (the control was switched on at t D 60)

model allowed us to apply different theoretical and numerical approaches. More
specifically, we analyzed the model in terms of symbolic dynamics theory and in
terms of applicability of chaos control theory.

In the theory of business cycles the use of powerful tools for the study of dynamic
models, such as the symbolic dynamics stands out to be very effective for the explicit
computation of important numerical invariants that characterize the chaotic behav-
ior. In fact, each one of the chaotic windows identified by the Lyapunov exponents,
that occurs with the variation of the capital depreciation rate, ı, and the savings
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Fig. 32.14 An example of a slow convergence to the desired periods. For period 1: ks D 5:1 and
q D 1:07386::: (the control was switched on at t D 45)
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Fig. 32.15 An example of a slow convergence to the desired periods. For period 2: ks D 4:95 and
q D 1:04608::: (the control was switched on at t D 60)

rate for holders, sr , is associated with positive values of the topological entropy.
This important numerical invariant is related to the exponential orbit growth and
its analysis revealed situations of isentropic dynamics. The complete topological
classification of the bimodal maps became possible with the introduction of the
numerical invariant r . In the context of economic models what is the meaning of
this measure of complexity? This is an open and challenging question for which
there is no answer yet.
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Motivated by the chaotic structure of the map and the central role of regular
cycles in economy, we have applied the periodic proportional pulses control method
in order to obtain predictable behavior – the stabilized period-one orbit and the sta-
bilized period-two orbit. Indeed, if there is some form of relevant nonlinearity in an
economic structure, then the control of such structures may benefit a lot from the
understanding of what chaos control is all about. We showed, that the complicated
motion which emerges from the dynamics of the capital accumulation model can be
controlled by applying instantaneous pulses to the system’s dynamical variable k,
at every periodic iteration. The analytical representation of the control functions
C p.k/, allowed us to exhibit the control ranges of the capital accumulation in each
case of periodicity. We emphasize that, with the application of the chaos control
technique, the model performs different times of efficiency in the convergence pro-
cess. The chaotic dynamics could be converted, by using just periodic proportional
pulses, to motion on the desired period orbits.
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Chapter 33
Hydrodynamic Limit of the Exclusion Process
in Inhomogeneous Media

Milton Jara

Abstract We obtain the hydrodynamic limit of a simple exclusion process in an
inhomogeneous environment of divergence form. Our main assumption is a suitable
version of � -convergence for the environment. In this way we obtain an unified
approach to recent works on the field.

33.1 Introduction

Since the seminal paper [9], the theory of hydrodynamic limit of interacting particle
systems has evolved into a powerful tool in the study of non-equilibrium properties
of statistical systems of many components (see the book [13] for a comprehensive
exposition). Recently, and due to the influence of physical and mathematical works
about random walks in random environment, an increasing attention has been posed
into particle systems evolving in random environments. Despite the early works
[6, 14, 17], we mention [1–5, 7, 8, 10, 15, 17]. In [7, 10] the corrected empirical den-
sity was introduced, which is nothing but a microscopic version of the compensated
compactness lemma of Tartar [18]. Roughly speaking, when the inhomogeneous
environment (random or not) has a divergence form and has a � -limit, space homog-
enization of the environment and time homogenization of the interaction decouples,
and the standard tools from the theory of hydrodynamic limit can be used to obtain
the asymptotic behavior of the density of particles in a family of models, including
the exclusion process and the zero-range process.

In this review, we give an unified approach to this problem, recovering previ-
ous results in [1–3, 10, 15]. In order to concentrate our efforts in the influence of
the inhomogeneous environment on the asymptotics of the density of particles, we
consider the simplest model of interacting particle systems, which is the symmetric
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exclusion process �nt in an unoriented graph. In this process, particles perform sym-
metric random walks on a graph fXngn with some rates !n D f!nx;y I x; y 2 Xng,
conditioned to have at most one particle per site. We think of fXngn as a sequence
of graphs embedding in some metric spaceX , and we are interested in the evolution
of the measure �nt .dx/ in X , obtained by giving a mass a�1n to each particle.

This article is organized as follows. In Sect. 33.2 we give precise definitions of the
exclusion process, the inhomogeneous environment and we state our main result. We
also define what we mean by an approximation fXngn ofX and by � -convegence of
the environment. In Sect. 33.3 we introduce the corrected empirical density and we
prove our main theorem. In Sect. 33.4 we introduce the concept of energy solutions
of the hydrodynamic equation, we prove uniqueness of such solutions and we obtain
a substantial improvement of the main theorem. The material of this section is new
and it gives a better understanding of the relation between � -convergence of the
environment and hydrodynamic limit of the particle system. In Sect. 33.5 we discuss
how to reobtain previous results in the literature relying in our main theorem.

33.2 Definitions and Results

In this section we define the exclusion process in inhomogeneous environment and
we recall some notions of � -convergence that will be necessary in order to obtain
the hydrodynamic limit of this process.

33.2.1 Partitions of the Unity and Approximating Sequences

In this section we fix some notation and we define some objects which will be useful
in the sequel. Let .X;B/ be a Polish space. We assume that X is 
-compact. We
say that a sequence of functions fUi I i 2 I g is a partition of the unity if:

(1) For any i 2 I , Ui W X ! Œ0; 1� is a continuous function.
(2) For any x 2 X ,

P
i2I Ui .x/ D 1.

(3) For any x 2 X , the set fi 2 I IUi .x/ > 0g is finite.

We say that the partition of the unity fUi I i 2 I g is regular if supp Ui is compact
for any i 2 I , and additionally Ui .X/ D Œ0; 1�. We denote by MC.X/ the set
of Radon, positive measures in X . The symbol fxngn will denote a sequence of
elements xn in some space, indexed by the set N of positive integers.

Let fUi gi be a regular partition of the unity. We say that a sequence fxi I i 2 I g
in X is a representative of fUigi if Ui .xi / D 1 for any i 2 I . Notice that we have
xi ¤ xj for i ¤ j .

Let fU n
i I i 2 Ingn be a sequence of regular partitions of the unity. We say that

a measure � 2 MC.X/ is the scaling limit of the sequence fU n
i gn if there exists

a sequence fangn of positive numbers such that for any sequence fxni I i 2 Ing of
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representatives of fU n
i gn we have

lim
n!1

1

an

X

i2In

ıxn
i
D �

with respect to the vague topology, where ıx is the Dirac mass at x 2 X . We call
fangn the scaling sequence.

From now on, we fix a sequence fU n
i gn of regular partitions of the unity with

scaling limit �, scaling sequence fangn and we assume that �.A/ > 0 for any non-
empty, open set A 
 X . Fix a sequence fxni I i 2 Ing of representatives of fU n

i gn.
Define Xn D fxni I i 2 Ing. Since fU n

i g is a partition of the unity, the induced
topology in Xn coincides with the discrete topology. For x D xni , we will denote
U n
x D U n

i . Define

�n.dx/ D 1

an

X

x2Xn

ıx.dx/:

By definition,�n ! � in the vague topology. We denote by L 2.�n/ the Hilbert
space of functions f W Xn ! R such that

P
x2Xn

f .x/2 < C1, equipped with the
inner product

hf; gin D 1

an

X

x2Xn

f .x/g.x/:

We define L 2.�/, L 1.Xn/ and L 1.�/ in the analogous way and we denote
hf; gi D R fgd�. We denote by Cc.X/ the set of continuous functions f W X ! R
with compact support. In the same spirit, we denote by Cc.Xn/ the set of functions
f W Xn ! R with finite support. We define the projection Sn W Cc.X/ ! Cc.Xn/
by taking

�
SnG

	
.x/ D an

Z
GU n

x d�:

This operator, under suitable conditions, can be extended to a bounded opera-
tor from L 2.X/ to L 2.Xn/. Notice that

R
SnGd�n D

R
Gd�. Therefore Sn is

continuous from L 1.�/ to L 1.Xn/.

33.2.2 � -Convergence

Define NR D Œ�1;C1�. Let .Y;F / be a topological space, and letFn; F W Y ! NR.
We say that Fn is � -convergent to F if:

(1) For any sequence fyngn in Y converging to y 2 Y ,

F.y/ � lim inf
n!1 Fn.yn/:

(2) For any y 2 Y there exists a sequence fyngn converging to y such that
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lim sup
n!1

Fn.yn/ � F.y/:

An important property of � -convergence is that it implies convergence of mini-
mizers in the following sense:

Proposition 33.1. Let Fn; F W Y ! NR be such that Fn is � -convergent to F .
Assume that there exists a relatively compact set K 
 Y such that for any n,

inf
y2Y Fn.y/ D inf

y2K Fn.y/:

Then,
lim
n!1 inf

y2K Fn.y/ D min
y2Y F.y/:

Moreover, if fyngn is a sequence in K such that limn.Fn.yn/ � infK Fn/ D 0, then
any limit point y of fyngn satisfies F.y/ D minY F .

A useful property that follows easily from the definition is the stability of � -
convergence under continuous perturbations:

Proposition 33.2. Let Fn; F W Y ! NR be such that Fn is � -convergent to F . Let
Gn W Y ! R be such that Gn converges uniformly to a continuous limit G. Then,
Fn CGn is � -convergent to F CG.

33.2.3 The Exclusion Process in Inhomogeneous Environment

In this section we define the exclusion process in inhomogeneous environment as
a system of particles evolving in the set Xn. Let !n D f!nx;y I x; y 2 Xng be a
sequence of non-negative numbers such that !nx;x D 0 and !nx;y D !ny;x for any
x; y 2 Xn. We call !n the environment. We define the exclusion process �nt with
environment !n as a continuous-time Markov chain of state space ˝n D f0; 1gXn

and generated by the operator

Lnf .�/ D
X

x;y2Xn

!nx;y
�
f .�x;y/� f .�/�;

where � is a generic element of ˝n, f W ˝n ! R is a function which depends
on �.x/ for a finite number of elements x 2 Xn (that is, f is a local function) and
�x;y 2 ˝n is defined by

�x;y.z/ D

8
ˆ̂<

ˆ̂:

�.y/; if z D x
�.x/; if z D y
�.z/; if z ¤ x; y:
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In order to have a well-defined Markovian evolution for any initial distribution
�n0 , we assume that supx

P
y2Xn

!nx;y < C1. We interpret Xn as a set of sites and
�nt .x/ as the number of particles at site x 2 Xn at time t . Since �nt .x/ 2 f0; 1g, there
is at most one particle per site at any given time: this is the so-called exclusion rule.
Notice that the dynamics is conservative in the sense that no particles are annihilated
or destroyed.

Our interest is to study the collective behavior of particles for the sequence of
processes f�n� gn. In order to do this, we introduce the empirical density of particles
as the measure-valued process �nt defined by

�nt .G/ D
1

an

X

x2Xn

�nt .x/SnG.x/

for any G 2 Cc.X/. Using Riesz’s theorem, it is not difficult to check that �nt
is effectively a positive Radon measure in X . Observe that when �n0.x/ D 1 for
any x 2 Xn, then �nt .x/ D 1 for any x 2 Xn and any t � 0. In this situa-
tion, the empirical process �nt is identically equal to the measure �. Notice that
the random variable �nt defined in this way corresponds to a process defined in the
space D.Œ0;1/;MC.X// of càdlàg paths with values in MC.X/. For functions
G W Xn ! R, we define �nt .G/ D a�1n

P
x �

n
t .x/G.x/.

33.2.4 � -Convergence of the Environment

In this section we will make a set of assumptions on the environment f!ngn which
will allows us to obtain an asymptotic result for the sequence f�n� gn. We start with
two assumptions about the sequence of partitions of the unity fU n

x gn. Our first
assumption corresponds to a sort of ellipticity condition on the partitions of the
unity fU n

x gn:

(H1) There exists � < C1 such that

sup
x2Xn

an

Z
U n
x d� � � for any n > 0.

Under this condition, the projection Sn satisfies jjSnGjj1 � � jjGjj1, and by
interpolation Sn can be extended to a continuous operator from L 2.�/ to L 2.Xn/.
Our second condition states that Sn is close to an isometry when n!1:

(H2) For any F 2 L 2.�/, we have

lim
n!1hSnF; SnF in D hF;F i:

Now we are ready to discuss on which sense we will say that the environment!n

converges. For a given function F W Xn ! R of finite support, we define LnF by
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LnF.x/ D
X

y2Xn

!nx;y
�
F.y/ � F.x/	:

It turns out that Ln can be extended to a non-positive operator in L 2.Xn/. In
fact, for any function F of finite support, the Dirichlet form

hF;�LnF in D 1

2an

X

x;y2Xn

!nx;y
�
F.y/ � F.x/	2

is clearly non-negative. For a functionG2L 2.�/, define En.G/DhSnG;�LnSnGi.
Notice that En W L 2.�/ ! NR is a quadratic form. Now we are ready to state our
first hypothesis about the environment:

(H3) There exists a non-negative, symmetric operator L W D.L / 
 L 2.�/ !
L 2.�/ such that En is � -convergent to E , where E .G/ D � R GLGd�.

Our second hypothesis about the environment !n concerns to its � -limit L :

(H4) There exists a dense set K 
 Cc.X/ such that K is a kernel for the operator
L , and for any G 2 K , LG is continuous and

R jLGjd� < C1.

33.2.5 Hydrodynamic Limit of �nt

In this section we explain what we understand as the hydrodynamic limit of �nt .
We say that a sequence f�ngn of distributions in ˝n is associated to a function
u W X ! R if for any function G 2 Cc.X/ and any � > 0 we have

lim
n!1 �n

nˇ̌
ˇ
1

an

X

x2Xn

�.x/G.x/ �
Z
G.x/u.x/�.dx/

ˇ̌
ˇ > �

o
D 0:

Notice that we necessarily have 0 � u.x/ � 1 for any x 2 X , since �.x/ 2
f0; 1g. Fix an initial profile u0 W X ! Œ0; 1� and take a sequence of distributions
f�ng associated to u0. Let �nt be the exclusion process with initial distribution �n.
We denote by Pn the law of �nt in D.Œ0;1/;˝n/ and by En the expectation with
respect to Pn. The fact that f�ngn is associated to u0 can be interpreted as a law of
large numbers for the empirical measure �n0 : �n0 .dx/ converges in probability to
the deterministic measure u0.x/�.dx/. We say that the hydrodynamic limit of �nt is
given by the equation @tu D L u if for any t > 0, the empirical measure �nt .dx/
converges in probability to the measure u.t; x/�.dx/, where u.t; x/ is the solution
of the equation @tu D L u with initial condition u0. Before stating our main result
in a more precise way, we need some definitions.

For F;G 2 D.L /, define the bilinear form E .F;G/ D � R FLGd�. Notice
that E .F;G/ is still well defined if only G 2 D.L /. We say that a function
u W Œ0; T � � X ! Œ0; 1� is a weak solution of (33.1) with initial condition u0 if
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R T
0

R
u2t d�dt < C1 and for any differentiable path G W Œ0; T � ! K such that

GT � 0 we have

hu0; G0i C
Z T

0

n
h@tGt ; uti � E .Gt ; ut /

o
dt D 0:

Theorem 33.1. Let f�ngn be associated to u0 and consider the exclusion process
�nt with initial distribution �n. Assume that

R
�n0 .dx/ is uniformly finite:

(H5)

lim
M!1 sup

n
�n

n 1
an

X

x2Xn

�.x/ > M
o
D 0:

Then, the sequence of processes f�n� .dx/gn is tight and the limit points are con-
centrated on measures of the form u.t; x/�.dx/, where u.t; x/ is a weak solution of
the hydrodynamic equation �

@tu D L u;
u.0; �/ D u0.�/: (33.1)

If such solution is unique, the process �n� .dx/ converges in probability with
respect to the Skorohod topology of D.Œ0;1/;MC.X// to the deterministic tra-
jectory u.t; x/�.dx/.

Usually in the literature, hydrodynamic limits are obtained in finite volume, since
the pass from finite to infinite volume is non-trivial. Assumption (H5) is in this
spirit: it is automatically satisfied when the cardinality of Xn is of the order of an
(on which case �.X/ < C1), and it is very restrictive when Xn is infinite. For
simplicity, we restrict ourselves to the case on which (H5) is satisfied.

33.3 Hydrodynamic Limit of �nt : Proofs

In this section we obtain the hydrodynamic limit of the process �nt . The strategy of
proof of this result is the usual one for convergence of stochastic processes. First we
prove tightness of the sequence of processes f�n� gn. Then we prove that any limit
point of this sequence is concentrated on solutions of the hydrodynamic equation.
Finally, a uniqueness result for such solutions allows us to conclude the proof. How-
ever, the strategy outlined above will not be carried out for f�n� gn directly, but for
another process O�n� , which we call the corrected empirical process.

33.3.1 The Corrected Empirical Measure

In this section we define the so-called corrected empirical measure, relying on the
� -convergence of the environment. First we need to extract some information about
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convergence of the operators Ln to L from the � -convergence of the associated
Dirichlet forms.

Take a general Hilbert space H and let A be a non-negative, symmetric operator
defined in H . By Lax–Milgram theorem, we know that for any � > 0 and any
g 2 H , the equation .� C A /f D g has a unique solution in H . Moreover, the
solution f is the minimizer of the functional f 7! hf;A f i C �jjf jj2 � 2hf; gi.
Fix � > 0. For a given functionG 2 L 2.�/, define the functionals

E Gn .F / D En.F /C �hSnF; SnF in � 2hSnF; SnGin;

E G.F / D E .F /C �hF;F i � 2hF;Gi:
By Proposition 33.2, E Gn is � -convergent to E G . In particular, a sequence of

minimizers Fn of E Gn converge to the minimizer F of E G . Notice that Fn is
not uniquely defined in general, although SnFn it is. By the discussion above,
.��Ln/SnFn D SnG and .� � L /F D G. Since the operator norm of Sn is
bounded by �, we conclude that the L 2.Xn/-norm of SnFn � SnF converges to 0
as n!1. By (H2), we conclude that En.Fn/ converges to E .F /.

Now we are ready to define the corrected empirical measure O�nt . Take a function
G 2 K and define H D .� �L /G. Define Gn as a minimizer of EHn . Notice that
in this way SnGn is uniquely defined. Then we define

O�nt .G/ D
1

an

X

x2Xn

�nt .x/SnGn.x/:

In order to prove that O�nt .G/ is well defined, we need to prove that
P
x SnGn.x/

is finite. Remember that .��Ln/SnGn D SnH . Consider the continuous-time ran-
dom walk with jump rates!nx;y . Remember that the condition supx

P
y !

n
x;y ensures

that this random walk is well defined. Let pnt .x; y/ be its transition probability
function. An explicit formula for SnGn in terms of pnt .x; y/ is

SnGn.x/ D
Z 1

0

e��t
X

y2Xn

pnt .x; y/SnH.y/dt:

Since
P
x pt .x; y/ D 1 for any y 2 Xt , we conclude that

1

an

X

x2Xn

SnGn.x/ D 1

�

Z
Hd�

and in particular SnGn is summable. We conclude that O�nt .G/ is well defined.
Notice that it is not clear at all if O�nt is well defined as a measure in X .
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33.3.2 Tightness of f�n
� gn and Proof of Theorem 33.1

In this section we prove tightness of f�n� gn and we prove Theorem 33.1. As we
will see, we rely on the corrected empirical measure, which turns out to be the right
object to be studied. By (H5), we have

lim
n!1Pn



sup

0�t<C1
ˇ̌
�nt .G/� O�nt .G/

ˇ̌
> �

�
D 0:

Notice that (H5) can be substituted by the following condition, which can be
sometimes proved directly.

(H5’) For any G 2 K ,

lim
n!1

1

an

X

x2Xn

ˇ̌
SnGn.x/ � SnG.x/

ˇ̌ D 0:

In particular, f�n� .G/gn is tight if and only if f O�n� .G/gn is tight. The usual way
of proving tightness of f O�n� .G/gn is to use a proper martingale decomposition. A
simple computation based on Dynkin’s formula shows that

M n
t .G/ D O�nt .G/ � O�n0 .G/�

Z t

0

�ns .LnSnGn/ds (33.2)

is a martingale. The quadratic variation ofM n
t .G/ is given by

hM n
t .G/i D

Z t

0

1

a2n

X

x;y2Xn

�
�ns .y/ � �ns .x/

	2
!nx;y

�
SnGn.y/ � SnGn.x/

	2
ds:

In particular, hM n
t .G/i � ta�1n En.Gn/. At this point, the convenience of introduc-

ing the corrected empirical process becomes evident. By definition, LnSnGn D
SnLGC�.SnGn�SnG/. SinceH D .��L /G, the functionG is the minimizer
of EH . Therefore, Gn converges to G in L 2.X/. By (H2), the L 2.Xn/-norm of
SnGn � SnG goes to 0 and En.Gn/ converges to E .G/.

We conclude that M n
t .G/ converges to 0 as n ! 1, and in particular the

sequence fM n� .G/gn is tight. In the other hand, the integral term in (33.2) is equal
to
R t
0
�ns .LG/ds.

Notice that �ns .LG/ � R jLGjd� for any t � 0, from where we conclude
that the integral term is of bounded variation, uniformly in n. Tightness follows
at once. Since f O�n0 .G/gn is tight by comparison with f�n0 .G/gn, we conclude that
f O�n� .G/gn is tight, which proves the first part of Theorem 33.1. As a by-product, we
have obtained tightness for f�n� gn as well, and the convergence result

lim
n!1

n
�nt .G/� �n0 .G/�

Z t

0

�ns .LG/ds
o
D 0
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for any G 2 K . Notice that we have exchanged O�nt .G/ by �nt .G/. Let �� be a limit
point of f�n� gn. Then, �� satisfies the identity

�t .G/� �0.G/ �
Z t

0

�s.LG/ds D 0

for any function G 2 K . By hypothesis, �0.dx/ D u0.x/�.dx/. Repeating the
arguments for a function Gt .x/ D G0.x/ C tG1.x/ with G0; G1 2 K , we can
prove that

�t .Gt /� �0.G0/�
Z t

0

�s..@t CL /Gs/ds D 0

for any piecewise-linear trajectory G� W Œ0; T � ! K . The same identity holds by
approximation for any smooth path G� W Œ0; T � ! Cc.X/, which proves that the
process �� is concentrated on weak solutions of the hydrodynamic equation. When
such solutions are unique, the process � is just a ı-distribution concentrated on
the path u.t; x/�.dx/. Since compactness plus uniqueness of limit points imply
convergence, Theorem 33.1 is proved.

33.4 Energy Solutions and Energy Estimate

In this section we define what we mean by energy solutions of (33.1), we prove that
any limit point of the empirical measure f�n� g is concentrated on energy solutions
of (33.1) and we give a simple criterion for uniqueness of such solutions.

33.4.1 Energy Solutions

Let E W H ! NR be a quadratic form defined over a Hilbert space H of inner
product h�; �i. We say that E is closable if for any sequence ffngn converging in H
to some limit f such that E .fn � fm/ goes to 0 as n;m ! 1, we have f D 0.
Let E W H ! NR be closable. We define H1 D H1.E / as the closure of the set
ff 2 H IE .f / < C1g under the norm jjf jj1 D .E .f /C hf; f i/1=2.

We say that a dense set K 
 H is a kernel of E if H1 is equal to the closure of
K under the norm jj � jj1. We say that a symmetric operator L W D.L / 
 H ! H

generates E if E .f / D hf;�L f i for f 2 D.L / and D.L / is a kernel of E .
Fix T > 0. For a function u W Œ0; T �! H we define the norm

jjujj1;T D

 Z T

0

jjut jj21dt
�1=2

and we define H1;T as the Hilbert space generated by this norm. Given a closable
form E generated by the operator L , we say that a trajectory u W Œ0; T � ! H
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is an energy solution of (33.1) if u 2 H1;T and for any differentiable trajectory
G W Œ0; T �!H1 with G.T / D 0 we have

hG0; u0i C
Z T

0

n
h@tGt ; uti � E .Gt ; ut /

o
dt D 0:

In other words, an energy solution of (33.1) is basically a weak solution belong-
ing to H1;T . In fact, by taking suitable approximations of G, it is enough to prove
this identity for trajectories G such that Gt 2 K for any t 2 Œ0; T �, where K is any
kernel of E contained in D.L /. Notice that the norm in H1;T is stronger than the

norm
R T
0

u2t dt , and therefore a weak solution is effectively weaker than an energy
solution of (33.1).

33.4.2 The Energy Estimate

In this section we prove that the limit points of the empirical measure are concen-
trated on energy solutions of (33.1). For simplicity, we work on finite volume. From
now on we assume that X is compact. Therefore, there exists a constant  such that
the cardinality of Xn is bounded by an. We have the following estimate.

Theorem 33.2. Fix T > 0. Let fH i W Xn � Xn � Œ0; T � ! RI i D 1; : : : ; lg be a
finite sequence of functions. There exists a constant C D C.T / such that

En
h

sup
iD1;:::;l

Z T

0

n 2
an

X

x;y2Xn

!nx;yH
i
x;y.t/

�
�nt .y/ � �nt .x/

	

� 1

an

X

x;y2Xn

!nx;y.H
i
x;y/

2�nt .x/
o

dt
i
� C C log l

an
: (33.3)

Proof. Before starting the proof of this theorem, we need some definitions. Fix � >
0. Denote by �� the product measure in ˝n defined by

��
�
�.x1/ D 1; : : : ; �.xk/ D 1

	 D �k:

It is not difficult to check that the measure �� is left invariant under the evolution
of �t . For two given probability measures P1, P2, we define the entropyH.P1jP2/
of P1 with respect to P2 as

H.P1jP2/ D
(
C1; ifP1 is not absolutely continuous with respect to P2R

log dP1

dP2
dP1 otherwise.
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For � 2 ˝n, denote by ı
 the Dirac measure at �. It is not difficult to see that
H.ı
j��/ � C.�/an for any � 2 ˝n, where C.�/ is a constant that can be chosen
independently from n. Let us denote by P� the distribution in D.Œ0; T �;˝n/ of the
process �nt with initial distribution ��. By the convexity of the entropy,H.PnjP�/ �
C.�; T /an for a constant C.�; T / not depending on n. The following arguments
are standard and can be found in full rigor in [13]. Let us denote by F i .s/ the
function (depending on H i .s/ and �ns ) under the time integral in (33.3). By the
entropy estimate,

En
h

sup
iD1;:::;l

Z T

0

F i .t/dt
i
� H.PnjP�/

an
C 1

an
log E�

h
exp

˚
sup

iD1;:::;l
an

Z T

0

F i .t/dt
�i
:

In order to take the supremum out of the expectation, we use the inequalities
expfsupi big �

P
i expfbig and logfPi bi g � log l C supi log bi , valid for any real

numbers fbi ; i D 1; : : : ; lg. In this way we obtain the bound

En
h

sup
iD1;:::;l

Z T

0

F i .t/dt
i
� C.�; T /C log l

an

C sup
iD1;:::;l

1

an
log E�

h
exp

˚
an

Z T

0

F i .t/dt
�i
:

(33.4)

Therefore, it is left to prove that the last supremum is not positive. It is enough
to prove that the expectation E�

�
exp

˚ R T
0 F

i .t/dt
��

is less or equal than 1 for any
function F i . From now on we drop the index i . By Feynman–Kac’s formula plus
the variational formula for the largest eigenvalue of the operatorF.t/CLn, we have

1

an
log E�

h
exp

˚
an

Z T

0

F.t/dt
�i �

Z T

0

sup
f

˚hF.t/; f 2i� � hf;�Lnf i�g;

where we have denoted by h�; �i� the inner product in L 2.��/ and the supremum
is over functions f 2 L 2.��/. A simple computation using the invariance of ��
shows that

hf;�Lnf i� D
X

x;y2Xn

!nx;y

Z �
f .�x;y/� f .�/�2��.d�/:

Recall the expression for F.t/ in terms of H . We will estimate each term of the
form 2a�1n hHx;y.�.y/ � �.x//; f 2i� separatedly:

2

an
hHx;y.�.y/ � �.x//; f 2i� D 2

an
Hx;yh�.x/; f .�x;y/2 � f .�/2i�
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� 2

an

n .Hx;y/2ˇnx;y
2

h�.x/; .f .�x;y/C f .�//2i�

C 1

2ˇnx;y
h�.x/; .f .�x;y/� f .�//2i�

o
:

Choosing ˇnx;y D 1=!nx;y and putting this estimate back into (33.4), we obtain
the desired estimate. ut

Take Gi 2 K and take H i
x;y D SnG

i
n.y/ � SnGin.x/, with Gin defined as

in Sect. 33.3.1. Recall the identity LnSnG
i
n D SnLGi C �.SnGin � SnGi /. The

energy estimate (33.3) gives

En
h

sup
iD1;:::;l

Z T

0

�
2 O�nt .LGi /� En.G

i
n/
	
dt
i
� C.�; T /C C1.l; n/;

where C1.l; n/ is a constant that goes to 0 when l is fixed and n ! 1. Take a
limit point of the sequence f�n� gn. We have already seen that O�nt .LGi / converges
to �t .LG/. Therefore, the process �� satisfies

E
h

sup
iD1;:::;l

Z T

0

�
2�s.LGi /� E .Gi /

	
dt
i
� C.�; T /:

Similar arguments prove that for piecewise linear trajectories fGit I i D 1; : : : ; lg
in K , we have

E
h

sup
iD1;:::;l

Z T

0

�
2�s.LGi .t// � E .Gi .t//

	
dt
i
� C.�; T /:

Since l is arbitrary and piecewise linear trajectories with values in K are dense in
H1;T , we conclude that EŒjj��jj21;T � < C1, from where we conclude that jj��jj1;T
is finite a:s: We establish this result as a theorem.

Theorem 33.3. Let �nt an exclusion process as in Theorem 33.1. If one of the
following conditions is satisfied,

(i) X is compact
(ii) Assumption (H5’) holds and the entropy density is finite:

sup
n

H.PnjP�/
an

< C1;

then any limit point of the sequence f�n� .dx/gn is concentrated on energy solutions
of the hydrodynamic equation (33.1). In particular, since such energy solutions are
unique, the sequence f�n� .dx/gn is convergent.
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33.4.3 Uniqueness of Energy Solutions

In this section we prove uniqueness of energy solutions for (33.1). Since the equa-
tion is linear, it is enough to prove uniqueness for the case u0 � 0. Let ut be a
solution of (33.1) with u0 � 0. Then,

Z T

0

˚h@tGt ; ut i � E .Gt ; ut /
�
dt D 0

for any differentiable trajectory in H1;T withGT D 0. TakeGt D �
R T
t usds. Then

@tGt D ut and the first term above is equal to
R T
0
hut ; utidt . An approximation

procedure and Fubini’s theorem shows that the second term above is equal to

1

2
E

 Z T

0

utdt
�
:

Both terms are non-negative, so we conclude that
R T
0 hut ; utidt D 0 and ut � 0.

33.5 Applications

In this section we give some examples of systems on which Theorems 33.1 and 33.3
apply. In the literature, the sequence !n is often referred as the set of conductances
of the model. Unless stated explicitely, in these examples, X will be equal to Rd or
the torus Td D Rd=Zd . The set Xn will be equal to n�1Zd and we construct the
partitions fU n

x g in the canonical way, taking U n
x as a continuous, piecewise linear

function with U n
x .x/ D 1 and U n

x .y/ D 0 for y 2 Xn, y ¤ x.

33.5.1 Homogenization of Ergodic, Elliptic Environments

Let .˝;F ; P / be a probability space. Let f�xI x 2 Zd g be a family of
F -measurable maps �x W ˝ ! ˝ such that

(1) P.��1x A/ D P.A/ for any A 2 F , x 2 Zd .
(2) �x�x0 D �xCx0 for any x; x0 2 Zd .
(3) If �xA D A for any x 2 Zd , then P.A/ D 0 or 1.

In this case, we say that the family f�xgx2Zd is ergodic and invariant under P:
Let a D .a1; : : : ; ad / W ˝ ! Rd be an F -measurable function. Assume that there
exists �0 > 0 such that

�0 � ai .!/ � ��10 for all ! 2 ˝ and i D 1; : : : ; d:
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We say in this situation that the environment satisfies the ellipticity condition.
Fix ! 2 ˝ . Define !n by !n

x;xCei=n
D !n

xCei =n;x
D n2ai .�nx!/, !nx;y D 0 if

jy � xj ¤ 1=n. Here feigi is the canonical basis of Zd . In this case, an D nd

and � is the Lebesgue measure in Rd . In [16], it is proved that there is a positive
definite matrix A such that the quadratic form En associated to !n is � -convergent
to E .f / D R rf � Arfdx, P � a:s: In particular, Theorem 33.1 applies with
L f D div.Arf /. This result was first obtained in [7].

33.5.2 The Percolation Cluster

Let e D feixI x 2 Zd ; i D 1; � � � ; d g be a sequence of i.i.d. random variables, with
P.eix D 1/ D 1 � P.eix D 0/ D p for some p D .0; 1/. Define for x; y 2 Xn,
!n
x;xCei=n

D !n
xCei =n;x

D n2einx, !nx;y D 0 if jy � xj ¤ 1=n. Fix a realization
of e. We say that two points x; y 2 Xn are connected if there is a finite sequence
fx0 D x; : : : ; xl D yg 
 Xn such that jxi�1 � xi j D 1=n and !nxi�1;i

D 1 for any
i . Denote by C0 the set of points connected to the origin. It is well known that there
exists pc 2 .0; 1/ such that �.p/ D P.C0 is infinite / is 0 for p < pc and positive
for p > pc . Fix p > pc . Define an D nd and �0.dx/ D �.p/dx. In [3], it is
proved that there exists a constantD such that,P�a:s in the set fC0 is infinite g, the
quadratic form En associated to the environment!n restricted to C0 is � -convergent
to E .f / D �.p/D

R
.rf /2dx. Theorem 33.1 applies with L D D�, assuming

that the initial measures �n put mass zero in configurations with particles outside
C0. This result was first obtained in [3], relying on a duality representation of the
simple exclusion process.

33.5.3 One-Dimensional, Inhomogeneous Environments

In dimension d D 1, the � -convergence of En can be studied explicitely. For
nearest-neighbors environments (!nx;y D 0 if jx � yj D 1), � -convergence of
En is equivalent to convergence in distribution of the measures

Wn.dx/ D 1

n

X

x2Z

.!nx;xC1/�1ıx=n.dx/:

Let W.dx/ be the limit. We assume that W.dx/ gives positive mass to any open
set. For simplicity, suppose that W.f0g/ D 0. Otherwise, we simply change the
origin to another point with mass zero. For two functions f; g W R! R we say that
g D df=dW if

f .x/ D f .0/C
Z x

0

g.y/W.dy/:
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Then En is � -convergent to the quadratic form defined by E .f / D R .df=dW /2dW .
In this case, L D d=dxd=dW . A technical difficulty appears if W.dx/ has atoms.
In that case, there is no kernel K for L contained in Cc.R/. To overcome this
point, we define for x � y, dW .x; y/ D dW .y; x/ D W..x; y�/. The function dW
is a metric in R, and in general R is not complete under this metric: an increas-
ing sequence xn converging to x is always a Cauchy sequence with respect to
dW , but dW .xn; x/ � W.fxg/, which is non-zero if x is an atom of W . Define
RW D R [ fx�IW.fxg/ > 0g. It is easy to see that RW is a complete, separable
space under the natural extension of dW , and that continuous functions in RW are
in bijection with càdlàg functions in R with discontinuity points contained on the
set of atoms of W.dx/. It is not difficult to see that the set of W -differentiable
functions in Cc.RW / is a kernel for L and that Theorems 33.1 and 33.3 apply to
this setting. In [2], the remarkable case on which W.dx/ is a random, self-similar
measure (an ˛-stable subordinator) was studied in great detail.

33.5.4 Finitely Ramified Fractals

Let us consider the following sequence of graphs in R2. Define a0 D .0; 0/, a1 D
.1=2;

p
3=2/; and a2D.1; 0/ and define 'i W R2!R2 by taking 'i .x/ D .xCai /=2.

DefineX0 D fa0; a;a2g andXnC1 D [i'i .Xn/ for n � 0. For x; y 2 X0 we define
!0x;y D 1, we put !0x;y D 0 if fx; yg ¨ X and inductively we define

!nC1x;y D 5
X

i

!n
'�1

i
.x/;'�1.y/

:

The set Xn is a discrete approximation of the Sierpinski gasket X defined as the
unique compact, non-empty set X such that X D [i'i .X/. Here we are just saying
that !nx;y D 5n if x; y are neighbors in the canonical sense. In this case an D 3n

and � is the Hausdorff measure in X . It has been proved [12] that the quadratic
forms En converge to a certain Dirichlet form E which is used to define an abstract
Laplacian in X . In particular, Theorems 33.1 and 33.3 apply to this model. This
result was obtained in [11] in the context of a zero-range process. The same result
can be proved for general finitely ramified fractals, in the framework of [12].
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Schwartz (1978/1979), pages Exp. No. 9, 9. École Polytech., Palaiseau (1979)



Chapter 34
Application of Fractional Order Concepts
in the Study of Electrical Potential

Isabel S. Jesus and J.A. Tenreiro Machado

Abstract The Maxwell equations, expressing the fundamental laws of electricity
and magnetism, only involve the integer-order calculus. However, several effects
present in electromagnetism, motivated recently an analysis under the fractional
calculus (FC) perspective. In fact, this mathematical concept allows a deeper insight
into many phenomena that classical models overlook. On the other hand, genetic
algorithms (GA) are an important tool to solve optimization problems that occur in
engineering. In this work we use FC and GA to implement the electrical potential
of fractional order. The performance of the GA scheme and the convergence of the
resulting approximations are analyzed.

34.1 Introduction

A fresh look into several phenomena present in electrical systems [1] induced an
approach supported by the fractional calculus (FC). Some authors [2–4] verified that
well-known expressions for the electrical potential are related through integer-order
integrals and derivatives and have proposed its generalization, leading to the concept
of fractional-order poles. Nevertheless, the mathematical generalization towards FC
lacks a comprehensive method for a practical implementation.

This article addresses the synthesis of fractional-order multipoles and is orga-
nized as follows. In Sect. 34.2 we recall the classical expressions for the static
electrical potential and we analyze them in the perspective of FC. Based on this
re-evaluation we develop a GA scheme for implementing fractional-order electrical
potential approximations. Finally, in Sect. 34.3 we outline the main conclusions.
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34.2 Integer and Fractional Electrical Potential

For homogeneous, linear and isotropic media, the electric potential ' at a point P
produced by a single charge, a dipole, a quadrupole, an infinite straight filament,
two opposite charged filaments, and a planar surface, is given by ' D q

4�"0

1
r
C C ,

' D ql cos �
4�"0

1
r2 CC; r>>l , ' D ql2.3 cos2 ��1/

4�"0

1
r3 CC; r>>l , ' D � �

2�"0
ln rCC ,

' D �l cos �
2�"0

1
r
C C; r>>l , ' D � 

2"0
r C C , respectively, where C 2 <, "0

represents the permittivity, q the electric charge, � the density of charges per length,

 the density of charges per surface, l the length, r the radial distance and � the
corresponding angle [5].

Analyzing these expressions we verify the relationship ' � r�3; r�2, r�1,
ln r , r corresponding to the successive application of integer-order derivatives and
integrals.

The integer-order differential nature of the expressions motivated several authors
[4, 6] to propose its generalization in a FC perspective. Therefore, a fractional mul-
tipole produces at point P a potential ' � r˛; ˛ 2 <. Nevertheless, besides
the abstract manipulation of mathematical expressions, the truth is that there is no
practical method for establishing the fractional potential [3, 4, 6].

Inspired by the integer-order approximations of fractional transfer functions
[7, 8], with recursive poles and zeros, we adopt a genetic algorithm (GA) [9, 10]
for implementing the fractional potential using the multipole integer counterpart.
In fact, similarly to what occur with transfer function, the electrical integer-order
potential has a global nature and fractional potentials can have only a local nature.
By other words, fractional potentials are possible to capture only in a restricted
region of the space. This observation leads to an implementation approach concep-
tually similar to the one described in [6–8, 11] that is, to an approximation scheme
based on a recursive superposition of integer potentials.

In this line of thought, we develop a one-dimensional GA that determines n
charges qi at the positions xi . Our goal is to compare the approximate potential
'app D Pn�1

iD0
qi

4�"0jx�xi j , where n is the total number of charges, that mimics the
desired reference potential 'ref D kx˛ in a given interval xmim < x < xmax.

The experiments consist on executing the GA, in order to generate a combination
of charges and positions that lead to an electrical potential with fractional slope
similar to the desire reference potential. In the first case of study, the values of GA
parameters are: population number P D 40, crossover C.%/ D 85:0%, mutation
M.%/ D 1:0% and an elitist strategy ES.%/ D 10:0%. The chromosome has 2n
genes: the first n genes correspond to the charges qi and the last n genes indicate
their positions xi .i D 0; : : : ; n � 1/. The gene codifications adopts a Gray code
with a string length of 16 bits. The optimization fitness function corresponds to the

minimization of the index J D
mP
kD1

�
ln
ˇ̌
'app

'ref

ˇ̌	2
; min

i
.J /, i D 0; 1; : : : ; n � 1,

wherem is the number of sampling points along the interval xmim < x < xmax. We
establish a maximum number of iterations IMax D 100 and a stoping scheme when
J < 10�10 for the best individual (i.e., solution) of the GA population.
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In the following experiments the results have a scale factor of �.4�"0/�1.
Figure 34.1a shows the electrical potential ' when 'ref D 1:0 x�1:5, n D 5 and

0:2 < x < 0:8, leading to fq1; q2; q3; q4; q5g D f0:737; 0:846;�0:777; 0:382;
�0:225g (C), located at fx1; x2; x3; x4; x5g D f�0:06; 0:092; 0:147;�0:106;
0:117g (m). In this case, the GA needs I D 51 iterations to satisfy the fitness
function stoping threshold. The results show a good fit between 'ref and 'app.
Repeating the GA execution, due to its stochastic nature, we verify that it is possible
to find more than one ‘good’ solution (Fig. 34.1b).

With the proposed method it is also possible to have a reference potential with
other slope values ˛ [6, 11]. Therefore, we apply the GA with identical parameters,
for 0:2 < x < 0:8 (m) while varying ˛, namely from ˛ � �2:0 up to ˛ � �0:5.

Figure 34.2a shows a 'ref D 1:0 x�1:3, n D 5 and 0:2 < x < 0:8, lead-
ing to fq1; q2; q3; q4; q5g D f0:471; 0:464; 0:578;�0:371;�0:173g (C), located
at fx1; x2; x3; x4; x5g D f�0:125; 0:029; 0:037; 0:132; 0:152g (m). Figure 34.2b
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shows the case of 'ref D 1:0 x�1:7, n D 5 and 0:2 < x < 0:8, leading
to fq1; q2, q3; q4; q5g D f0:753; 0:535; 0:429;�0:218;�0:681g(C), located at
fx1; x2; x3; x4; x5g D f�0:157;�0:070; 0:171; 0:188; 0:200g (m).

34.3 Conclusions

This paper addressed the problem of implementing a fractional-order electrical
potential through a GA. The GA establisher a good compromise between the
approximation accuracy and the computational time. Furthermore, the proposed
technique leads to good results for different values of the fractional order.
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Chapter 35
Economics of Bioenergy Crops for Electricity
Generation: Implications for Land Use
and Greenhouse Gases

Madhu Khanna, Hayri Onal, Basanta Dhungana, and Michelle Wander

Abstract This chapter develops a dynamic linear optimization framework to exam-
ine the optimal land allocation for two perennial crops, switchgrass and miscanthus,
that can be co-fired with coal for electricity generation. Detailed spatial data at
county level is used to determine the heterogeneous costs of producing and deliver-
ing biomass to power plants in Illinois over a 15-year period. A transportation mod-
ule is incorporated in the model to link power plants to perennial crop growing areas
such that power plants obtain their biomass input from the cheapest sources. A sup-
ply curve for bioenergy is thereby generated and the implications of various levels
of production for farm income, subsidy payments and for the environment are ana-
lyzed. The environmental benefit in the form of reduced carbon-dioxide emissions
from co-firing biomass with coal is determined by conducting a lifecycle analysis
of carbon-dioxide emissions from electricity generated by co-firing bioenergy crops
as compared to that generated from coal only. The lifecycle analysis includes the
soil carbon sequestered by perennial grasses and the carbon emissions displaced by
these grasses due to both conversion of land from row crops and co-firing the grasses
with coal. Spatial variability in land use and in soil carbon sequestration potential
of land use choices, and their policy implications are discussed.

35.1 Introduction

The U.S. greenhouse gas emissions have increased by approximately 1% each year
in the last decade. More than a quarter of the emissions are generated by coal-based
electricity production (see [64]). Concerns about climate change have led to growing
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interest in renewable fuels for electricity generation and many states in the U.S. have
established Renewable Portfolio Standards (RPS)1 to encourage utilities to gener-
ate a minimum percentage of their electricity from renewable sources. Moreover,
consumer willingness to pay for ’green electricity’ is leading to an expansion in
programs offered by utilities that allow consumers to purchase some portion of their
power supply from renewable sources. One such renewable fuel source is biomass
from bioenergy crops such as willow, short rotation woody crops and herbaceous
perennials. As compared to coal, these fuel sources reduce carbon dioxide emis-
sions, produce virtually no sulfur dioxide emissions and contain low amounts of ash
and mercury (see Tillman [54]). Moreover, compared to the traditional row crops
they displace, the production of bioenergy crops requires considerably less fossil
fuel energy and can result in much higher soil carbon sequestration (see McLaughlin
and Walsh [41], Turhollow and Perlack [6]).2

Despite extensive efforts by the U.S. Department of Energy (USDOE) in the last
15 years to sponsor demonstration projects to determine the feasibility of co-firing
biomass by utilities, the share of total electricity generated from biomass remains
small. The Energy Information Administration projects that biomass will generate
only 0.3% of the electricity generated in 2020 in the absence of any Renewable Port-
folio Standard and climate policy (see [63]). The findings of studies evaluating the
economic viability of co-firing willow (see Tharakan et al. [53]), wood and waste
fuels (see McGowin and Wiltsee [36]), corn stover (see Hitzhusen and Abdallah
[24]), woody biomass (see Nienow et al. [42]) and switchgrass (see Qin et al. [47])
with coal in a power plant suggest that substantial incentives in the form of tax cred-
its, subsidies and emission reduction credits would be needed to make bioenergy
crops competitive with coal. These studies analyze scenarios with a representative
biomass production cost and a representative power plant.

The focus of this chapter is to examine the extent to which it would be prof-
itable to allocate cropland to two bioenergy crops, switchgrass and miscanthus, for
co-firing in coal-based power plants in Illinois and the spatial variability in the allo-
cation of that land at various bioenergy prices. Our analysis recognizes that the
costs of growing these bioenergy crops and their yields vary both spatially (depend-
ing on soil and weather conditions) and temporally (depending on the age of the
perennial crop). The opportunity costs of using land for energy crops also vary spa-
tially depending on the foregone profitability of alternative uses such as row crops.
Furthermore, transportation costs, which constitute a significant component of the

1 By mid 2006, 22 states and the District of Columbia had adopted RPS, that impose mandatory or
voluntary goals that electricity suppliers generate a minimum percentage of their electricity from
renewable sources The RPS in Illinois sets a goal of producing 10% of Illinois’ electricity using
renewable energy sources by 2015. (http://www.commerce.state.il.us/dceo/News/pr08222006.htm).
2 Perennial cropping eliminates soil carbon losses caused by annual physical disturbance associ-
ated with annual crops (planting, cultivation, fertilizer addition) and soil erosion by keeping soils
covered with vegetation throughout the year and by developing prolific root systems that stabilize
soil structure (see Lewandowski et al. [31], McLaughlin et al. [40] and Paustian et al. [43]).
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delivered cost of bioenergy crops, vary spatially depending on the location of fields
producing the crops and the power plants to which they are delivered.

The two bioenergy crops considered here, switchgrass and miscanthus, are peren-
nial grasses that can be grown on cropland and are being promoted by the USDOE
[62]. Switchgrass was identified by the USDOE as a “model” crop due to its
relatively high yields, adaptability to a wide range of growing conditions, and
environmental benefits (see McLaughlin and Kszos [37]). Miscanthus (miscant-
hus giganteus) has been studied and grown extensively in Europe for bioenergy
generation and is being grown experimentally in the US since 2002 following
establishment of field trials at the University of Illinois Agricultural Research and
Education Centers in 2002 (see Heaton et al. [22]). We also quantify the eco-
nomically viable potential for bioenergy crops while recognizing their potential to
reduce greenhouse gas emissions through sequestration of carbon in the soil and
by displacement of coal. Our analysis incorporates both the spatial and temporal
variability in the soil carbon accumulation process.

To incorporate the features described above, we develop a dynamic optimization
model using detailed spatial data on costs of producing and delivering bioenergy
crops for co-firing in existing coal-based power plants in Illinois. These costs are
determined using a biophysical crop productivity model which simulates bioen-
ergy crop yields depending on soil conditions and climate. This framework is used
to examine potential changes in land allocation between bioenergy crops and row
crops over a 15-year horizon from 2003 to 2017.3 The model includes a transporta-
tion module that links power plants to bioenergy crop growing areas such that power
plants obtain their biomass from the cheapest sources. We obtain a supply curve for
biomass for Illinois and analyze the implications of growing bioenergy crops for
farm income, subsidy payments and the environment. The second important objec-
tive of the analysis here is to determine the soil carbon sequestration levels resulting
from switching some crop land to biomass production. For this we use estimates of
county-level stocks of soil carbon and develop soil carbon accumulation functions
under alternative land uses that incorporate saturation limits to soil carbon accu-
mulation. We also conduct a lifecycle analysis of CO2 emissions from electricity
generated by co-firing bioenergy crops as compared to that from coal to examine
the emission reduction benefits of bioenergy crops.

The chapter is organized as follows. The next section discusses the existing lit-
erature and the main contributions of this chapter to that literature. In Sect. 35.3 we
present the theoretical model followed by a description of the data set in Sect. 35.4.
The empirical results of the model are presented in Sect. 35.5. Finally, we discuss
the conclusions and policy implications of the study in Sect. 35.6.

3 Biomass co-firing involves combining biomass material with coal in existing coal-fired boilers.
Coal-fired boilers can handle a pre-mixed combination of coal and biomass in which the biomass is
combined with the coal in the feed lot and fed through an existing coal feed system. Alternatively,
boilers can be retrofitted with a separate feed system for the biomass such that the biomass and coal
actually mix inside the boiler (http://www.eia.doe.gov/oiaf/analysispaper/biomass/index.html).
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35.2 Literature Review

Several studies have estimated the costs of producing switchgrass in the U.S. (see
Duffy and Nanhou [10], Epplin [12]) and for miscanthus in Europe under repre-
sentative conditions (see review in Khanna et al. [30]). These studies find that the
production cost of switchgrass is lower than the costs of other herbaceous crops (see
Hallam et al. [20], Turhollow [56] and Walsh et al. [66]) and woody crops such as
willow and poplar (see Downing and Graham [8]). Cropland allocation at regional
level in the U.S. for large scale production of switchgrass, willow and poplar at var-
ious farmgate prices for these crops is examined by Walsh et al. [66]. That study,
however, does not consider specific end-uses of these crops, the cost of transporta-
tion to processing facilities, and the environmental implications. Graham et al. [19],
develop a GIS-based model to examine the cost of delivering feedstock to ethanol
facilities but do not analyze its implications for land use allocation.

This chapter makes several contributions to this emerging literature on the
economics of bioenergy production. First, we develop a spatially disaggregated
micro-economic framework using detailed geospatial data on crop yields, input
applications and transportation costs to analyze the extent to which cropland in
Illinois can be allocated to bioenergy crops. This will be done under various assump-
tions about the technical potential to co-fire biomass with coal and levels of subsidy
for the use of bioenergy by power plants. Second we use lifecycle analysis to esti-
mate the greenhouse gas reduction benefits from allocating land to bioenergy crops.
We incorporate not only the energy consumed during production and transportation
of bioenergy crops but also the energy saved by replacing row crops and the addi-
tional soil carbon sequestration achieved thereby. Since each of these components is
location specific, the greenhouse gas mitigation benefits depend on where the bioen-
ergy crops are grown. Third, our estimation of the soil carbon sequestration potential
of bioenergy crops recognizes that it varies spatially (depending on the land use his-
tory and soil and climatic conditions) and temporally (depending on the amount of
carbon already present in the soil) (see West et al. [69]). Moreover, there is an upper
limit on the amount of carbon that can be stored in soil and the annual sequestration
rate diminishes over time as the soil carbon level approaches the equilibrium level
established by the land use practice applied (see Six et al. [52]). Our analysis shows
the bioenergy prices needed to provide incentives to landowners to switch land from
annual row crops to perennial bioenergy crops and the extent to which renewable
energy subsidies would be needed to make bioenergy competitive with coal given
the current coal prices.

35.3 The Model

The model developed here assumes a social planner that aims to maximize the total
returns from all row crops and perennial crops while achieving specified targets
for biomass production and soil carbon sequestration. The study area is divided into
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sub-regions where each sub-region is assumed to be represented by a single decision
maker (an aggregate producer) who is endowed with the productive resources avail-
able in that region. It can be shown mathematically that the optimal choices for the
social planner would coincide with the voluntary land allocation decisions made by
independent representative producers under the assumptions of perfect competition
and rational behavior (profit maximization) if appropriate incentives are provided
to the individual producers. Such incentives can be derived from the shadow price
information obtained from the model solutions as will be discussed later.

The sub-regions differ in terms of crop productivity and the profitability of alter-
native land uses. They also differ in their proximity and therefore the costs of
transporting biomass to existing power plants. We examine the optimal allocation of
land among various annual row crops with alternative management practices (rota-
tions and tillage choices) and perennial grasses that can be used for either forage or
co-fired with coal in power plants such that the discounted present value of aggregate
profits over a specified time horizon is maximized. The price of bioenergy paid by all
power plants is assumed to be the same and dependent on the energy content of the
biomass relative to coal. Thus, the farmgate price received by bioenergy crop pro-
ducers in each sub-region differs depending on the proximity to the power plant to
which the crop is delivered. All input and crop output prices are assumed to be con-
stant over time, but they may differ across sub-regions depending on their distances
to major markets. Various constraints on crop rotations, land availability and ease
of conversion from one use to another are included as described below. We use this
framework to develop a supply curve for bioenergy crop production and to examine
the spatial allocation of land for bioenergy crops. We then examine the implica-
tions of optimal land allocation for soil carbon sequestration and life-cycle carbon
emissions from power plants. The soil carbon sequestration of alternative land uses
depends on the existing stock of soil carbon in each sub-region, the capacity for
additional carbon sequestration with each land use alternative in each sub-region,
and the length of time a particular land use/practice is maintained continuously.
Moreover, the costs and yields of perennials in any sub-region also vary with the
age of the perennial. The model developed here explicitly accounts for all these
aspects.

The indices, parameters and variables used in the algebraic model are defined,
respectively, in Tables 35.1, 35.2 and 35.3 (see the Appendix). We use lower case
letters and Greek letters to denote exogeneously given parameters and upper case
letters to represent endogeneous variables.

The mathematical model representing the social planner’s problem is as follows
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The objective function (35.1) represents the discounted aggregate profits over a
finite planning horizon of T years, which is to be maximized by allocating land
across various crops, rotations and management practices. The first term in paren-
thesis in (35.1) represents the discounted net returns from production of both row
crops and perennials over T years. The second and third terms capture the terminal
value of a unit of land at the end of the planning horizon which is represented by
the return to that land if it were to remain permanently in that land use in year T .
The second term is the discounted returns from row crop production in perpetuity
while the third term is the terminal value for the land under perennials in year T .
The latter reflects the value of remaining economic life of the standing crop in year
T followed by a return in perpetuity for growing that perennial on that land (see
McCarl et al. [35]).

Equation (35.2) constrains the supply of biomass from all sub-regions to power
plant l not to exceed the power plant’s technical capacity to co-fire biomass with
coal.4 Power plants have the flexibility to acquire biomass from any sub-region.
Incorporation of the biomass transportation costs in the objective function ensures
that each power plant acquires its biomass input from the most economical sub-
region subject to the availability of biomass in that sub-region. Equation (35.3)
constrains the total supply of biomass from a sub-region to all power plants not
to exceed the total production of biomass in that sub-region.

Equations (35.4) and (35.5) govern dynamic changes in the acreage of row crops
resulting from conversion of land across different tillage options, row crops and
perennial crops. Constraint (35.4) limits the land available for row crop j in period
t based on the land planted in period t � 1 for crops that can precede j given the
allowable crop rotation possibilities, plus the land converted from perennials, minus
the acreage that switches to perennials. Equation (35.5) is an accounting equation
that relates the total acres of each row crop (by sub-region and period) to the rotation
activities producing that crop in that year.

Equation (35.6) reflects the dynamics of total acreage under conservation till
practice. It states that in each sub-region the current year’s allocation of land for
conservation till for each age category is equal to the previous year’s land under

4 In each period the maximum amount of biomass that power plant l can utilize is ql D �:zl :f:�
where � is the limit on the percentage of the heat energy required by power plant that can be met
by biomass; zl is the capacity of the power plant to generate electricity in kwh, f is the amount of
coal required per kwh of electricity and � is the relative heat content of a unit of biomass compared
to that of coal.
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conservation till (that was one year younger) plus the land converted from con-
ventional till to conservation till minus the amount of land that switches from
conservation till to conventional till. Equation (35.7) is an accounting equation that
relates the total land under conservation till to the rotation activities that can use this
tillage option.

Equation (35.8) limits the total acreage under conservation till (in each sub-
region and period) to a specified maximum (here specified as 80%) of the total
acreage under row crops. Analogous to equation (35.6), constraints (35.9) and
(35.10) govern the dynamics of land conversion between perennials and row crops.
These two equations jointly state that the current year allocation of land to each
perennial crop of a given age group is equal to the previous year’s land alloca-
tion to the same perennial crop (of one year younger age group) plus the acreage
that switches from row crops to perennials minus the acreage that switches from
perennial crops to row crops.

To prevent large scale and abrupt changes in land use, we incorporate lower and
upper bounds for land allocation to each row crop and perennial crop in order to
reflect farmers’ inflexibility towards changing crop patterns (based on historically
observed behavior). Equation (35.11) states that the allocation of land to a particular
crop in a sub-region should not exceed the initial allocation of land to that crop by
more than 10% or fall below 90% of it.

Equation (35.12) ensures that the total allocation of land among different land
use choices should not exceed the total availability of land in the initial period. This
implicitly assumes that the land availability is constant throughout the planning hori-
zon. Finally, equation (35.13) states non-negativity conditions for the endogenous
variables.

The simulation is run in annual time steps for the 15-year period, 2003–2017.
By solving the model repeatedly at different prices of biomass, a supply function
of biomass and land allocation to bioenergy crops and alternative crops is obtained
under different assumptions about the co-firing limits on power plants.

35.4 Data

The model described above is solved using the county level data for the state of
Illinois. The crop choices included four row crops (corn, soybeans, wheat, and
sorghum), grown using either conventional or conservation tillage practices, and
three perennial crops including pasture for forage and switchgrass and miscanthus
for biomass that can be co-fired with coal. The biomass can be delivered to 24
existing coal based electricity-generating plants in Illinois.5 Thirty-four different

5 There are 48 primarily coal-fired power plants in Illinois. We combined power plants that are
located at the same ZIP code which resulted in 24 unique power plant locations for the purpose of
modeling. The corresponding ratio of switchgrass yields to miscanthus yields when the two were
grown side by side at three locations in Illinois ranges from 8% to 37% (see Heaton et al. [21]).
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rotation possibilities among the row crops are considered. Pasture involves a five-
year rotation consisting of four years of continuous alfalfa for hay and a year of
corn for silage. Switchgrass and miscanthus have low input requirements, particu-
larly energy and fertilizers, and a tolerance for the cool temperatures in the Midwest.
They can be grown on a broad range of land types using conventional farming prac-
tices. Switchgrass is assumed to have a productive life of 10 years while miscanthus
has a life of 20 years, both of which are assumed to be replanted or converted to
row crops beyond those times. Crop productivity models as well as field trials in
Illinois indicate that miscanthus has relatively high yields, more than twice the yield
of switchgrass and higher than miscanthus yields observed in Europe (see Heaton,
et al. [21, 22]).

Four types of data are compiled for these crop choices for each of the 102 coun-
ties that comprise approximately 9.4 million hectares of cropland in Illinois (see
USDA/NASS [61]). These include data on crop yields, rotation- and tillage-specific
costs of production for row crops, age-specific costs of production for perennials,
and data on location and capacity of coal-fired power plants. Each county is assumed
to be a land use decision making unit with relatively homogenous production
characteristics.

35.4.1 Crop Yields

The perennial grasses considered here, switchgrass and miscanthus, are suitable
for growing on the Midwest farmland using conventional farming practices and
have relatively low need for water and fertilizer inputs. Because of the absence of
long term observed yield data, we simulate the miscanthus yield in Illinois using
a process-based crop productivity simulation model, MISCANMOD, that runs on
a daily time step at a 2� 2 km scale (see Clifton-Brown et al. [6]). The model is
applied to Illinois using long term historical data on climate, weather and soil mois-
ture as described in Khanna et al. [30]. Simulated yields are lowest in northern
Illinois and increase as one moves south. Both the pattern of yield distribution and
the average simulated yield closely agree with those obtained in field experiments
(see Heaton et al. [22]). For switchgrass, we use the results of field experiments
in Iowa and Illinois. The average yield of switchgrass is about 25% of the average
yield for miscanthus predicted by MISCANMOD.6 We assume that this ratio holds
in each county and use it to obtain the county level yields for switchgrass. Yields
for corn, soybean, wheat, sorghum, and pasture for each county are set at their five
year (1998–2002) historical averages obtained from NASS/USDA.

6 The corresponding ratio of switchgrass yelds to miscanthus yelds when the two were grown side
by side at three locations in Illinois ranges from 8% to 37% (see Heaton et al. [22]).
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35.4.2 Crop Production Costs and Revenues

Crop budgets that itemize costs of production for each of the perennial crops
and row crops for each county that vary by tillage and rotation choice are devel-
oped. Production costs include: costs of chemicals, fertilizers and seeds; costs of
equipment for land preparation and harvest operations; costs of drying and crop
insurance for row crops; costs of storage and transportation of biomass; and interest
payments on all variable input costs. Application levels for nitrogen, phosphorus,
potassium and seed under conventional till for each row crop and for alfalfa are
based on application rates recommended by the University of Illinois Extension (see
Schnitkey [50]). Costs of machinery include: repair and maintenance costs; fuel and
lube costs; wages for hired labor; and depreciation and interest on investment (see
Schnitkey [50]). Costs of fertilizers and machinery under conservation tillage differ
from those under conventional tillage and were obtained from the USDA data (see
Wu et al. [70]) as weighted averages of the costs of different types of conservation
tillage practices.7

Perennial grasses typically take a year to establish, with no harvestable yield in
the first year. The second year yield is about two thirds of the maximum yield for
switchgrass and half of the maximum yield for miscanthus (see Ugarte et al. [58]).
Beyond that, yields are assumed to remain constant at their second-year levels
throughout the life of the plant. Costs and revenues of perennials are therefore age-
specific. A detailed description of the assumptions underlying the determination of
these costs and revenues for this study can be found in Khanna et al. [30]. We also
include the cost of switching land from perennials to row crops due to the use of
herbicides to control weeds (see Duffy and Nanhou [9]).8 The costs of land, over-
head (such as farm insurance and utilities), building repair and depreciation, and the
farmer’s own labor are not included in the costs of perennials or row crops since
they are assumed to be the same for all crops and do not affect the crop choice.
Transportation costs from each county to each coal-fired power plants in Illinois are
calculated using the ”great circle” distance method based on geo-referenced data on
location of county centers and power plants (see Sinnott [51]).9

7 The CPS data shows that machinery costs under conservation tillage are approximately 23%–35%
lower than those under conventional tillage for most crop-rotation choices. However, fertilizer costs
are lower for some crops/rotations and higher for others. For example, these costs are 39% lower for
a hay-corn rotation but 80% higher for a corn-soybean rotation with conservation till as compared
to conventional till. Pesticide cost assumptions are based on personal communication with Gary
Schnitkey (2004). They are also supported by Uri [60] who reports 16%–21% higher average
chemical costs for corn with conservation till compared to conventional till based on the 1987 Farm
Costs and Return Survey of corn farms conducted by the NASS/USDA. His econometric analysis
also shows that there exists a statistically significant positive relationship between chemical costs
and adoption of conservation till for corn.
8 This requires 2 qt of RoundupTM/acre at $9.39/qt. and a machine to spray it at $4.30/acre (in 2000
prices).
9 Since our purpose was to obtain a proxy for transportation costs from a hypothetical field located
in the county center to the power plants rather than exact distance, we did not use actual road
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For expected crop prices10 we use the county level loan rates for corn, soybean,
wheat and sorghum.11 The price of alfalfa is the average price reported for Illinois
by NASS/USDA12 and assumed to be the same across all sub-regions. For peren-
nial grasses used for bioenergy production, we assumed that the price that a power
plant would be willing to pay for biomass would depend on the cost of coal and
the energy content of the biomass. The relevant data were obtained from different
sources, particularly from McLaughlin [39] and USDOE/EIA [65]. We examine
the effects of alternative subsidy levels for bioenergy on the production of bioen-
ergy crops assuming that the use of biomass by power plants is constrained by the
capacity of the power plant to co-fire biomass with coal without adversely affecting
the thermal efficiency of the plant. We consider alternative specifications for the co-
firing capacity in sensitivity runs. Experience from co-firing in Europe and the U.S.
shows that 5–15% biomass (on energy basis) can be co-fired in coal plants without
loss of thermal efficiency and problems of corrosion, fuel handling and fuel feed-
ing.13 In the sensitivity analysis we consider 5%, 15% and 25% rates but the results

distance. The great circle distance between two locations with .�1; �1/ and .�2; �2/ as their latitude
and longitudes is r�
 , where r is the great-circle radius of the earth’s sphere which is 3,963 statute
miles and �
 is as defined below with�� representing the difference in the longitudes of the two
locations:
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D2 arctan
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10 Studies differ in their approach to the estimation of the expected price of a crop. Just and
Rausser [28] and Gardner [17] argue in favor of futures price based on rational expectations
assumption. Chavas and Holt [4] assume adaptive expectations and use lagged market prices
to obtain expected future prices. Chavas, Pope and Kao [5] investigated the role of future prices,
lagged market prices and support prices in their econometric analysis of acreage supply response
of corn and soybeans in the US. They found that government’s corn support program plays a
major role in corn and soybean production decision and that future prices are not good proxies
for expected prices in the presence of government program. Wu and Segerson [71] use the higher
of the current target price and a linear function of previous year’s market price as a measure of
expected price for program crops.
11 When market prices are low, farmers can receive the difference between the price designated as
the loan rate and the market price per ton sold as a direct payment from the government; these
prices, therefore, serve as a price floor These loan rates are obtained from FSA/USDA for 2003
(http://www.fsa.usda.gov/dafp/psd/LoanRate.htm). These support prices play a major role in corn
and soybean acreage decisions (see Young and Westcott [72]) and have been found to be better
proxies for expected future cash prices than futures prices in the presence of government programs
(see Chavas et al. [5]).
12 See http://nas.usda.gov/statistics by state/Illinois?Publications/Farm Reports/2005/ifr0504.pdf.
Since corn silage is typically not marketed, we determine its implicit price by estimating
the foregone revenue per acre by growing corn silage instead of corn and the additional
cost of fertilizer replacement that is needed for corn silage, using the method in FBFM
(http://www.farmdoc.uiuc.edu).
13 In practice, this price could be lower if the power plant has to make investments in processing
the biomass, such as converting it to pellets, before co-firing, or retrofitting equipment to co-fire
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are not reported for brevity. The model assumes that the land under bioenergy crops
at the end of the planning horizon will remain in that land use permanently. All costs
and revenues are discounted to the beginning of the simulation horizon.

35.4.3 Soil Carbon Sequestration

Soil carbon sequestration rates are calculated by assuming a negative exponen-
tial time path for sequestration with saturation limits depending on the land use.
The two land uses considered here are conservation tillage and planting perennial
grasses. The annual rate of sequestration with a given land use depends on the exist-
ing stock of carbon in the soil and on the sequestration potential for that land use.
We use the following non-linear functions (see INRA [25]) to determine the carbon
sequestration rates achieved by switching to conservation tillage from row crops and
perennial grasses:

rsi;a D .sei � s0i /.1 � e�ka/ for every i; a

psi;jp;a D .sei;jp � s0i /.1 � e�ka/ for every i; jp; a

where the terms rsi;a and psi;jp;a represent the cumulative amount of carbon stored
by switching to conservation tillage from row crops and perennial crops of age a,
respectively, s0i is the initial amount of carbon stock in the in sub-region i , and sei
and sei;jp are the long-run equilibrium levels of carbon that can be stored in the soil
in sub-region i by perennial crop j and conservation tillage, respectively. Carbon
accumulation depends on each region’s site specific characteristics, specifically the
existing level of soil carbon, the long-run equilibrium level of soil carbon and the
natural growth rate of carbon accumulation (denoted by k) (as in INRA [25]). Car-
bon accumulation rates obtained in this study and methods used to obtain them are
described in Table 35.4 (see the Appendix). The annual sequestration rates differ
across land uses and counties due to the variability in existing levels of accumulated
carbon and in sequestration potential with alternative land uses.

35.4.4 Carbon-Dioxide Emission Mitigation Through Co-Firing

We estimate the CO2 emissions per kilowatt hour (kwh) mitigated by displacing
a portion of the coal used for electricity generation by biomass by including the
emissions generated in the process of production and transportation of biomass,

grasses and/or if there is a loss in boiler efficiency with co-firing of grasses. Alternatively this
price could be higher if the government needs to subsidize power plants for switching to renewable
energy or if power plants include a value for savings due to avoided costs of SO2 permits, NO2

permits and CO2 permits, since the substitution of these grasses for coal reduces these emissions.
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the carbon sequestered in the soil during bioenergy crop production and the carbon
emissions resulting from land use changes (such as when bioenergy crops replace
row crops, or vice versa). These emissions are computed using life cycle analysis
which involves estimating carbon emissions based on energy used by machinery
in the production of each crop, the energy used to produce other inputs such as
fertilizers and herbicides, and the energy used directly in the form of gasoline,
diesel, liquefied propane gas and electricity. The estimates for a representative field
in Illinois are presented in Table 35.5 (see the Appendix). The input application
rates for each crop (given in the footnotes to the table) are multiplied by the CO2
equivalent greenhouse emissions (CO2e) generated in the production of that input
(obtained from Farrell et al. [15]).

Each hectare of land converted from a corn-soybean rotation to switchgrass or
miscanthus is estimated to reduce corresponding emissions from corn and soybean
by 1,962 Kg CO2e per hectare. This includes emissions of 2,867 kg CO2 per hectare
from corn and 1,056 kg CO2 per hectare from soybeans. Farrell et al. [15] estimate
emissions from corn in the ’ethanol today scenario’ to be 2,703 kg CO2e per hectare.
They assume a lower fertilizer application rate but much higher use of gasoline and
diesel per hectare for corn production as compared to our study. However, their esti-
mate of energy consumed per hectare in producing corn is 18,297 million joules
(MJ) while the corresponding estimate in this study is 15,641 (MJ) because of the
high energy content of these fuels. The corresponding estimate obtained by Hill
et al. [23] is 18,920 MJ and is also higher than that in our study for the same rea-
son. The fuel use per hectare for corn production assumed in our study is based on
the rate provided for Illinois by Shapouri et al. [49] and is lower than the national
average.

We use the input application rates for switchgrass and miscanthus to estimate the
energy requirements (see Khanna et al. [30]). Fossil fuel energy requirements for
harvesting and post-harvesting operations for switchgrass and miscanthus are based
on Elsayed et al. [11] which are based on an extensive review of European stud-
ies. The production of switchgrass and miscanthus is estimated to generate carbon
emissions equivalent to 1,662 Kg CO2e per hectare and 1,575 Kg CO2e per hectare,
respectively. Farrell et al. [15] estimate the carbon emissions from switchgrass pro-
duction as 971 Kg CO2e per hectare while Tilman et al. [55] estimate the carbon
emissions from low-input high-diversity grassland biomass as 324 Kg CO2e per
hectare. Our estimate is higher than those because of two reasons. First, we assume
a 15-year economic life of machinery (as in Hill et al. [23]) instead of 30 years of
economic life assumed by Tilman et al. [55].14 Second, we assume a much higher
fertilizer application rate (based on (McLaughlin and Kszos [38])) and a higher yield
per hectare than Tilman et al. [55].

14 The machinery inputs used to estimate embodied energy in machinery inputs may not necessarily
match the machinery inputs used for calculating crop budget because the two are based on different
sources. However, we believe any discrepancy as a result of this would be minimal since embodied
energy and CO2e emissions from farm machinery use has a small share in over all energy and
CO2e budget.
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Over a 20-year period, switchgrass and miscanthus are assumed to sequester
3,117 KgCO2e per hectare per year and 3,777 KgCO2e per hectare per year, respec-
tively on average. Tilman et al. [55] assume that grassland biomass can sequester
4,033 KgCO2e per hectare per year. Our overall estimate for the carbon emissions
mitigated by switchgrass is 12,899 KgCO2e per hectare. This is higher than the esti-
mate by Tilman et al. [55] of 10,088 KgCO2e per hectare, because we also include
the emissions reduced by displacing corn and soybeans from cropland converted to
switchgrass. Miscanthus is estimated to mitigate 34,998 KgCO2e/ha if used for elec-
tricity generation instead of coal. Thus, electricity generated using switchgrass and
miscanthus reduces emissions by 1,300 KgCO2e/Mwh and 1,080 KgCO2e/Mwh,
respectively, and results in a negative net emission in comparison to coal-based
electricity which releases 964 KgCO2e/Mwh.

35.5 Results

We first determined the profit maximizing land allocation in 2003 (including the
land under conservation tillage and pasture) without any bioenergy subsidy, which
we call the ’business as usual’ (BAU) scenario. In this scenario we find that about
45% of the total cropland (9.4 million hectares) would be under conservation tillage,
about 3% under pasture, and the rest under conventional tillage by the 15th year
(2017). This represents 6% and 10% greater allocation to conservation tillage and
pasture, respectively, than the observed allocation in 2002 in Illinois. The results are
presented in the first column of Table 35.6 (see the Appendix).

Next we examined the land that would be allocated to biomass production at var-
ious bioenergy prices and with various assumptions about the technical maximum
capacity of a power plant to co-fire biomass with coal. Results obtained under the
assumption that the latter is 15% are reported in Table 35.7 (see the Appendix).
Results with a co-firing capacity of 5% or 25% are not reported for brevity. We
find that the minimum price of bioenergy needed to induce landowners to produce
miscanthus is $2.4/GJ. At this price miscanthus would be planted on 660 hectares
of cropland irrespective of the potential for co-firing. If power plants pay a coal
energy-equivalent price for bioenergy (which would be $20.22 per ton of biomass
or $1.12 per GJ at the current coal price in Illinois) the minimum subsidy that would
be needed to make miscanthus profitable is found to be $1.23 / GJ. This subsidy
rate, however, would result in an insignificant amount of miscanthus production
(generating less than 0.01% of the electricity supply from coal).15

As the subsidy rate is increased biomass production increases but very inelasti-
cally. At a bioenergy price of $2.8 per GJ, the acreage under miscanthus increases to
1.7% of the cropland and the biomass produced thereby is sufficient to generate 5%

15 We assume that existing power plants in Illinois would supply 75% of the total name plate capac-
ity each year. However, the actual production may vary depending on the demand for electricity
each year.
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Fig. 35.1 Acreage response to bioenergy price

of the electricity produced in Illinois. As shown in Table 35.6 (see the Appendix),
a 30% increase in the bioenergy price (from $2.8 / GJ to $3.6 / GJ) would expand
the acreage under miscanthus by 2.5%. However, this more than doubles the share
of coal-based electricity generated from biomass. Figure 35.1 shows the miscanthus
acreage in response to bioenergy prices and co-firing capacity.

As the price of bioenergy is increased, we observe a reduction in the acreage
of row crops with both types of tillage practices and under pasture. The land under
conservation tillage decreases more than the land under conventional tillage because
the former is less profitable than conventional till in many counties. Similarly, as the
co-firing capacity is increased, the amount of cropland under miscanthus increases
and that under conservation tillage falls.

Not all power plants find it profitable to co-fire biomass with coal to the techni-
cally maximum capacity because of the limitation on the availability of biomass at
the coal energy equivalent price. A power plant can be expected to first exhaust the
supply potential for biomass from the lowest cost source which may not necessarily
be the closest to the power plant. Supply potential is determined by the distribution
of cropland under various rotation and tillage practices and constrained by the ease
with which land use can be changed across rotations and tillage practices in a given
year. We find that typically power plants would obtain their biomass from multiple
counties. Of all power plants, about one-third co-fire miscanthus at a level close to
the maximum 15% level. These power plants are located in the southwest region
where costs of production of miscanthus are relatively low. Allocation of land to
miscanthus in these counties is constrained by the power plant’s technical potential
to co-fire. At the bioenergy price of $2.8/GJ, five power plants would not be able to
co-fire any biomass with coal because of inadequate biomass supply. These power
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Fig. 35.2 Area of
Miscanthus at $2.8/GJ and
15% co-firing limit

plants are located in the north-eastern, central and eastern regions. As the price of
bioenergy increases to $3.6 / GJ, all plants are able to obtain biomass for co-firing.
However, the co-firing percentage in power plants located in the north-eastern region
remains less than 1%.

The spatial distribution of miscanthus production favors counties where there
is a power plant in close proximity. As shown in Fig. 35.2, miscanthus production
would be heavily concentrated in the southern counties located near power plants
at the bioenergy price of $2.8/ GJ. Only 41 of the 102 counties in Illinois would
find it profitable to produce miscanthus with the minimum share of county cropland
dedicated to miscanthus being 0.2%. About one-third of the miscanthus producing
counties would supply more than 70% of the total miscanthus produced in the state.
This is mainly due to the low opportunity cost of producing miscanthus in these
counties; primarily due to the relatively low yields per acre of corn and soybean
and the high yield of miscanthus in these counties. However, even among these,
only four counties find it profitable to allocate 10% of their cropland to miscanthus.
Three of those counties do not have a power plant located within the county, but
they would supply biomass to a power plant in the fourth county which is in close
proximity. The cost advantage of even the southern counties gets rapidly eroded
as the transportation cost increases. With a bioenergy price of $2.8/GJ, the max-
imum distance that miscanthus could be profitably transported is 35 miles while
the average distance is 15 miles. The presence of power plants in central and north-
eastern counties, thus lower transportation costs, makes it profitable to produce some
miscanthus in those counties as well, despite the relatively low miscanthus yield
and high opportunity cost of land. The delivered cost of biomass to power plants in
these counties is lower for nearby counties than it is for counties in southern Illi-
nois. As Fig. 35.3 shows, increases in the price of bioenergy increase the area under
miscanthus in counties near power plants. Moreover, biomass could now be deliv-
ered to power plants located further away; with a bioenergy price of $3.6/GJ the
maximum distance to which bioenergy is delivered increases to 73 miles.



35 Economics of Bioenergy Crops for Electricity Generation 487

Fig. 35.3 Area of
Miscanthus at $3.6/GJ and
15% Co-firing Limit

An increase in the co-firing capacity to 25% would have a modest impact on the
maximum distance biomass is transported and the number of counties that produce
miscanthus. Only three power plants would co-fire biomass at their 25% capacity if
the bioenergy price is $2.8 per GJ. At the price of $3.6 per GJ, 6% of the cropland
would be allocated to miscanthus and the share of bioenergy based electricity would
be 18% of the total electricity generated.

The present value of the subsidy payment needed over 15 years to induce 1.7%
of the cropland to switch to miscanthus production a bioenergy price of $2.4 / GJ
and a 15% co-firing limit is $1074 Million. The subsidy amount increases more than
three-folds as the bioenergy price increases to $3.6 per GJ and biomass production
increases by 2.4 times. The provision of a subsidy for bioenergy, with all other
crop prices fixed, reduces the profitability of row crops and increases the profits
from miscanthus production. Since this shift in production only occurs because it is
profitable to do so, the discounted present value of farm profits increase. A subsidy
of $1.2 per GJ which raises the bioenergy price to $2.8/GJ increases the discounted
value of farm profits by $218 Million but costs $1074 Million to the taxpayers and
generates a deadweight loss of $855 Million. This deadweight loss increases to $1.7
Billion if the subsidy-driven bioenergy price increases to $3.6/GJ.

35.5.1 Greenhouse Gas Mitigation

We quantify the greenhouse gas mitigation achieved by producing and co-firing
bioenergy crops through soil carbon sequestration, displacement of coal and dis-
placement of row crops on cropland converted to miscanthus. Carbon accumulated
on land previously under conservation tillage and pasture is assumed to be released
back to the atmosphere if this land switches to miscanthus.
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Fig. 35.4 Soil carbon level
in 2003 under BAU scenario
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Under the BAU scenario, the aggregate carbon stock is estimated to be 16 Million
metric tons (Mt) in 2003 and to increase to 33 Mt by 2017. There is wide variation
in existing carbon stock across counties, ranging from 24.5 tons to 78.6 tons per
hectare. Carbon stocks are typically higher in the northeastern and central regions
of Illinois (see Fig. 35.4).16 This spatial distribution of carbon stocks is similar to the
pattern estimated by Alexander and Darmody [1] for Illinois for 1991 (see Fig. 35.4).
Carbon stock increases by 17 Mt through sequestration; 93% of this is achieved by
land acres under conservation tillage and the rest by land under pasture. This would
mitigate 4.3% of the expected carbon emissions by coal-fired power plants in Illinois
over the period 2003-2017 (see Table 35.6 in the Appendix).

As the bioenergy price increases to $2.8/GJ and land is converted to miscanthus,
carbon accumulation increases to 18 Mt over the 15 year period. However, 82% of
this is achieved by acres under conservation tillage and 12% by acres under miscant-
hus. As shown in Fig. 35.5 large percentages of central Illinois continue to choose
conservation tillage even with a subsidy to miscanthus. As bioenergy price increases
further to $3.6/GJ, the share of sequestration by conservation tillage and miscant-
hus is 62% and 33%, respectively, of the total 21 Mt sequestered over the 15-year
period (see Fig. 35.6). There are two reasons for this decline in share of the soil car-
bon sequestered by conservation tillage and pasture as the bioenergy price increases.
First, it increases the land area that switches from conservation tillage and pasture
to miscanthus which results in a net loss of soil carbon relative to the BAU level on
these acres. The second reason is that the land that is converted from conservation
tillage to miscanthus acres sequesters more soil carbon per hectare. This increased

16 In Fig. 35.4, we computed the area weighted average of gain in soil carbon level under conser-
vation till and pasture land at the end of the first year of the simulation run, 2003, under the BAU
scenario. We normalize the conservation till and pasture acreage in each county by their sum (i.e.
conservation till C pasture). The net weighted gain in soil carbon is then added to the adjusted
1991 Carbon level reported in Alexander and Darmody [1].
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Fig. 35.5 Share of
conservation till acreage
relative to county cropland
with 15% co-firing limit and
at $2.8/GJ
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Fig. 35.6 Contribution to
alternative approaches to
carbon mitigation with 15%
co-firing limit

rate of sequestration on acres under miscanthus more than compensates for the ini-
tial loss of soil carbon that occurs due to switching of land from conservation tillage
and pasture to miscanthus.

Miscanthus not only accumulates carbon in soil, it also displaces carbon (above
the ground) by replacing coal in the power plant and by replacing carbon inten-
sive corn production on land. After accounting for these displacement effects, we
find that miscanthus mitigates above ground carbon by 21 MT over the 15 year
period. The total amount of greenhouse gas mitigation due to sequestration and
displacement is 39 MT; this is equivalent to an 11% reduction in the total greenhouse
gas emissions by power plants over 2003-2017 period. Thus, 54% of the mitiga-
tion is due to displacement of coal and conversion of land use from row crops to
miscanthus and 46% is due to soil sequestration at the bioenergy price of $2.8 per
GJ. As the bioenergy price increases to 3.6/GJ, the total carbon reduction achieved
is 72 Mt (a 20% reduction in carbon emissions by power plants), 71% of this is
the result of replacing coal with miscanthus and 28% is due to sequestration, the
bulk of which is due to conservation tillage. Thus soil carbon sequestration by
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miscanthus is a relatively small fraction of the total mitigation benefits it provides.
Figure 35.6 shows that as the bioenergy price increases, the share of mitigation
benefits provided by soil carbon sequestration through conservation tillage declines
steeply and the share of mitigation benefits through displacement of coal increases
commensurately. Soil carbon sequestration by miscanthus and pasture provide only
a small share of the overall mitigation benefits and these decline over time as the
soil gets saturated with carbon.

35.5.2 Sensitivity Analysis

We examine the sensitivity of our results to various assumptions underlying our
numerical model. In particular, we consider the impact of increasing (i) row crop
yields, (ii) row crop prices (iii) the discount rate, (iv) the ease of conversion of
land to biomass production, (v) biomass crop yield, (vi) production cost of biomass
crops. In each case, we keep all other assumptions the same as in the case of 15%
co-firing capacity with bioenergy price at $2.8/GJ (see Table 35.6 in the Appendix).
We find that acreage planted under miscanthus is sensitive to assumptions about row
crop yields, row crop prices, discount rate and costs of producing biomass crops.
A 10% increase in row crop yields or a 50% increase in row crop prices, a 25%
increase in biomass crop production costs and a doubling of the discount rate would
reduce the cropland share of miscanthus from 1.65% to less than 1% and in some
cases make it close to zero. The reduction in land under miscanthus in these alter-
native scenarios leads to a corresponding increase in land under conventional tillage
while the share of cropland under conservation tillage does not change much. The
maximum distance that miscanthus is transported remains in the 20–35 miles range
across various scenarios, although the number of power plants that co-fire biomass
changes considerably across these scenarios.

Increasing the ease of conversion of land to biomass crops or increasing biomass
crop yields by 10% does not have a large impact on share of cropland under miscant-
hus. It does, however, increase the number of power plants that co-fire biomass and
the share of electricity generated from biomass in Illinois. We find that our results
are not very sensitive to changes in the following factors: a 10% increase in mis-
canthus yield, a 25% decrease in transportation cost of biomass, and a 2% reduction
in thermal efficiency of power plant boilers. Miscanthus acreage response to each
of these factors is in the range of 0.6% to 8%.

35.6 Conclusions

This chapter analyzes the cost of supplying bioenergy for co-firing with coal in exist-
ing coal-fired power plants in Illinois using a dynamic, linear programming frame-
work. It takes into account the location specific returns from growing traditional row
crops and perennial grasses, and the cost of transporting and storing biomass and
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identifies the optimal mix of land use with 5%, 15% and 25% co-firing capacity of
power plants. The framework developed here accounts for the inter-temporal feed-
back effects of crop and tillage choices and keeps track of their age structure to com-
pute the site- and age- specific sequestration contribution of each of the alternative
land use choices. We assess the spatially and temporally varying life cycle carbon
emission reduction benefit resulting from the process of soil sequestration, pro-
duction, transportation and co-firing of perennial grasses at the county level while
estimating overall carbon reduction benefits from land use choices. When the per
ton cost of producing biomass is much higher than the power plants’ willingness to
pay coal-equivalent price to farmers, the magnitude of biomass production depends
on the amount of bioenergy subsidy provided either to power plants or to farmers.

Our main findings are as follows: At the current coal-equivalent energy price, a
relatively large bioenergy subsidy would be needed to make it profitable for farmers
to grow miscanthus. Decisions about allocation of land to miscanthus are strongly
influenced by: the location of production sources relative to power plants (due to
transportation costs), the capacity of power plants to co-fire biomass and the price
of bioenergy. At a price of $2.8/GJ, it is profitable to grow miscanthus on only
1.65% of 9.4 million hectares of cropland (with 15% co-firing limit). Miscanthus
production occurs in one-third of counties with more than 70% of production con-
centrated in southern counties and counties located within a 35 miles radius from
the existing power plants. These counties differ in their cropland allocation, which
ranges between 0.19% and 10%, and in their share of miscanthus, which ranges
between less than 1% to almost 8% of the total biomass supply. About four-fifth of
power plants would utilize biomass in the ranges between 0.07% and 15% of their
production capacity, replacing 5.5% of the total electricity supply by co-fired power
plants in Illinois.

A subsidy payment of $1,074 million is needed to replace this 5.5% of the
coal-based electricity by bioenergy. This payment can be designed either to pay
farmers in the form of a miscanthus supply subsidy or to pay power plants in
the form of a bioenergy subsidy, or some combination of both. This subsidy, if
transferred to farmers, would increase annual farm profits by $57/ ha on crop-
land allocated to miscanthus production. The carbon mitigation benefits of the land
use changes considered here are substantial. Conservation tillage and perennials
together could mitigate 10.6% of the cumulative carbon emissions by power plants
over the 15 years period, 2003–2017 in response to the bioenergy price of $2.8/GJ.
Of the total carbon mitigated, 55% is due to the displacement of coal and the rest is
due to soil carbon sequestration.

Our results have several policy implications. They show that with low coal prices
the market incentive to divert land from conventional row crops to biomass crops
in Illinois is virtually non-existent. Large bioenergy subsidies per unit of energy
either to power plants or to farmers would be needed to encourage them to switch
even as little as less than 2% of cropland to bioenergy crops which could produce
less than 6% of the electricity generated by coal-fired units in Illinois. Both the
amount of land allocated to bioenergy crops and the subsidy needed are sensitive to
the assumption about the constraint on power plants’ technical capacity to co-fire.
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The bioenergy subsidy paid to replace 5.5% of coal-based electricity by bioenergy
implies a discounted carbon payment of $45 per ton of carbon which is equivalent
to a $12.3 per ton CO2e price. This is comparable to the historically observed CO2
price traded in the European Climate Exchange. Thus, valuation not only of the
energy content of biomass crops but also of their greenhouse gas mitigation benefits
is critical to make bioenergy competitive with coal.

Appendix: Tables

Note on Tables 35.1, 35.2 and 35.3. We use lower case letters and Greek let-
ters to denote exogeneously given parameters and upper case letters to represent
endogeneous variables.

Table 35.1 Indices used in the mathematical model of Sect. 35.3
Indices Definition

Jr D fjrg set of row crops
Jp D fjpg set of perennials
JD fj g D Jr [ Jp set of all crops
TD ftg set of time periods
I D fig set of sub-regions
mD f1; 2g set of tillage practices, 1 D conservation till, 2 D conventional till
AD fag set of ages of perennials and conservation tillage
LD flg set of power plants

Table 35.2 Parameters used in the mathematical model of Sect. 35.3
Parameters Definition

yi;jr Yield of row crop jr in sub-region i in metric tons
yi;jp;a Yield of perennial crop jp of age a in sub-region i in metric tons
el Economic life of a perennial crop
�ri;j;jr;m;t Profit per unit acreage from rowcrop jr followed after crop j

in sub-region i with practice m in year t
�Pi;jp;a Profit per unit acreage from perennial crop jp of age a in sub-regions i
di;l Distance between region i and power plant l in kilometers
tc Transportation cost per unit quantity and per unit distance
sc Per hectar cost of switching from perennials to row crops
ˇ D 1

.1C�/
Discount factor where � is the discount rate

ıj;jr Binary parameter, 1 if crop j is followed by row crop jr, 0 otherwise
r Nai;jr Initial acreage under rowcrop jr in sub-region i
nNti;a Initial acreage under conservation till of age a in sub-region i
pNai;jp;a Initial acreage under perennial crop jp of age a in sub-region i
ql Demand for biomass by power plant l
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Table 35.3 Variables used in the mathematical model of Sect. 35.3
Variables Definition

ROi;j;jr;m;t Acreage under row crop jr following crop j in sub-region i
with practice m in year t

RAi;jr;t Total acreage rowcrop jr in sub-region i in year t
NTi;a;t Acreage under conservation till of age a in sub-region i in period t
�NTi;a;t Acreage under conservation till of age a switching back to conventional

till in sub-region i in period t
�CTi;t Acreage converted from conservation till to conventional till

in sub-region i in period t (for row crops)
PAi;jp;a;t Acreage under perennial crop jp of age a in sub-region i in period t
�PAi;jp;a;t Acreage under perennial crop jp of age a switching to row crops

in sub-region i in period t
�RAi;jr;t Acreage converted from rowcrop jr to perennials in sub-region i in period t
SBi;l;t Amount of biomass shipped from sub-region i to plant l in period t

Table 35.4 Carbon sequestration rates

Land Use This Study1 Previous studies References
(t C /ha in (t C/ ha in
20 years) 20 years)

Conservation till 3.46–10.43 5.93–9.88 Wander, Bidart-Bouzat and Aref [67];
Dick et al. [7]; Robertson, Paul and
Harwood [48]

Pasture 5.19–15.64 7.91–24.71 Robertson et al. [48]; Eve et al. [13],
Puget et al. [46]

Switchgrass 7.93–23.99 13.84–22.24 Gebhart et al. [18]; McLaughlin
et al. [38]

Miscanthus 9.69–29.21 18.78–27.68 Beuch et al. [2]; Kahle et al. [29];
Matthews and Grogan [34]

1 This is the range of estimates obtained across the different counties in Illinois.

We obtained estimates for the percentage of soil organic matter (SOM) for major
soil series and the percentage of total county land in that soil series in each county
in Illinois from Alexander and Darmody [1]. Data on total cropland acres in each
county were obtained from USDA’s and multiplied by the percentage of SOM in
each soil series to obtain the acres of land in each soil series in each county. We
assigned soil organic matter (SOM) and acreage in each soil series in descending
order to the cropland acres in each county, assuming that land with the highest SOM
were more likely to be in agricultural use. We then computed a weighted average of
the percentage of SOM in the cropland obtained from USDA’s NASS database for
each county with the weights being the share of county cropland in each soil series
and obtained the average soil organic carbon (in metric tons per hectare) in each
county, using the method in Bowman and Peterson [3]. This method assumes that
there is 0.52% of soil carbon in each 1% of SOM and that there is 2.24 million kg of
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surface soil (to a depth of 30 cm) per hectare. We update the county-specific carbon
stock from the level in 1991 estimated by Alexander and Darmody [1] to the level
at the end of 2002 by assuming that carbon accumulation only occurred on land
that was under conservation tillage and pasture between 1991-2002. We obtained
data on acreage under pasture and under conservation till from Conservation Tillage
Information Center (http://ctic.purdue.edu). We assumed that the smallest acreage
under conservation till and pasture in each county in each year between 1992 and
2002 has been in that land use/practice for the entire period 1992–2002. Thus, it is
only on this land that carbon stocks will be likely to have changed since 1992. The
remaining land area in conservation tillage in 2002 is allocated equi-proportionately
to each of the ages 1 through 9. A similar exercise is conducted to assign duration
of time to land under pasture over this period.

The theoretical maximum capacity of the soil to accumulate carbon is determined
by assuming that the stock of adjusted soil carbon at the start of 2003 is 60% of
the theoretical maximum capacity. Several studies suggest that 40% of soil carbon
might have been lost on currently farmed agricultural land during the last century
(Flach et al. [16]; Mann [33]; Paustian et al. [44]; Unger [59]). Following (Paustian
et al. [44]; Six et al. [52]), we assume that conservation-till and pasture can achieve
70% and 75% of the maximum capacity, respectively, and that switchgrass and mis-
canthus achieve 83% and 88% of the maximum capacity, respectively. We determine
annual sequestration rates for each land use by assuming that carbon accumulation
occurs in a non-linear manner with rapid increase in soil carbon in the first 10 years
and then a gradual leveling off (Ismail et al. [27]; Liu et al. [32]; Prueger et al. [45];
West et al. [68]). Finally, we assume that discontinuation of a particular land use
results in a loss of all the carbon accumulated by that land use over time.

Table 35.5 Balance sheet of representative CO2e emissions by co-fired electricity generation

Sources of emissions and sinks Unit Switchgrass Miscanthus

Carbon emissions during production of KgCO2e /ha/yr 1662 1575
energy crops (a)1

Carbon sequestration by KgCO2e /ha/yr 3117 3777
energy crops (b)2

Carbon emissions displaced by energy KgCO2e /ha/yr 1962 1962
crops replacing corn-soybeans (c)3

Carbon emissions displaced by energy KgCO2e /ha/yr 9482 30834
crops replacing coal (d)4

Net mitigation (sink) by energy KgCO2e /ha/yr 12899 34998
crop production (e D b � aC c C d )

Net reduction of carbon per KgCO2e/ t DM 2164 1806
ton of energy crop (f D e/yield)5

Net reduction of carbon KgCO2e/ Mwh 1300 1080
per kilowatt hour
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Coments to Table 35.5.
1 We assume zero nitrogen, 34 kg P2O5/ha and 45 kg K2O/ha application rates in
the first year of switchgrass establishment. In subsequent years, 112 kg N/ha, 0.17 kg
P2O5 /t DM and 0.72 kg K2O/t DM are applied. Additionally, 3.5 L/ha of Atrazine
and 1.75 L/ha of 2,4-D herbicides are required to control weeds in the first two years
of switchgrass establishment and probability of reseeding switchgrass in the second
year is expected to be 25% (see Duffy and Nanhou [10]). Lime application rate is
based on Turhollow [56]. For miscanthus we assume 60 Kg N/ha for rhizome devel-
opment and 50 kg N/ha in subsequent years to maintain soil fertility; 0.3 and 0.8 kg/t
DM, respectively of P2O5 and K2O (Lewandowski et al. [31]). Same amount of
herbicides and lime per hectare are applied for miscanthus as for switchgrass in
the first year and no herbicides are used in subsequent years. Fossil fuel energy
required per hectare of biomass production is 118 MJ for land preparation, 109 MJ
for planting, 125 MJ each for fertilizer and herbicide applications, 52.8 MJ / t DM
for cutting, swathing, baling, loading, carting and transferring and 42.9 MJ / t DM
for handling of biomass (see Elsayed, Mathews and Mortimer [11] ). For nitrogen
fertilizer, emissions rates account for not only CO2 emissions from energy used to
produce fertilizers but also N2O emissions from nitrification and denitrification pro-
cess in soil. Similarly, emissions from lime use include those due to energy required
for the production of lime and the carbon released due to the soil reaction with
lime. CO2e emissions associated with these inputs are estimated by aggregating the
major greenhouse gases emitted namely carbon dioxide (CO2), methane (CH4), and
nitrous oxide (N2O) using their 100-year global warming potential factors. These
are 1 for CO2, 23 for CH4, and 296 for N2O (see IPCC [26]). Rate of energy per
unit of input and CO2e emissions are obtained from Farrell et al. [15]. However, we
did not account for carbon emission from seed input and packaging across all crops
for lack of reliable, comparable data.

Assumptions about the farm machinery and equipment needed for corn and soy-
bean are based on Hill et al. [23] and for switchgrass and miscanthus production are
based on Tilman et al. [55]. We assume that the tractor size used for bioenergy crops
(reported in Tilman et al. [55]) can also be used for row crops. Weight of potato
planter for miscanthus is obtained from http://www.jjbroch.com/patata/i pinza.htm.
Each piece of machinery and equipment is assumed to entirely consist of steel for
the purpose of calculating its embodied energy. It is assumed that 25 MJ energy is
needed to produce each kilogram of steel with an additional 50% energy for assem-
bly (see Hill et al. [23], Tilman et al. [55] and citations there in). All machinery
items are assumed to have a 15 year life (see Hill et al. [23]). Average size of farm
is assumed to 151.36 ha (D374 acres) for purposes of calculating the per hectare
energy use for machinery and equipment.

2 This is based on the assumption of 0.85 t C / ha / yr for switchgrass and 1.03
metric ton C / ha / yr for miscanthus. These rates represent the 20 year average
estimated across counties in Illinois.

3 We assume 159.13 kg N, 70.60 kg P, 44.83 kg K and 1120.63 kg lime/ha appli-
cation rates for corn and 47.07 kg P, 72.84 kg K and 1120.63 kg lime / ha application
rate for soybeans for representative farm in Illinois for 2003 (Schnitkey [50]). Since
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these rates are yield dependent, they vary by county. We assume 855.48 MJ and
87.21 MJ / ha energy equivalent herbicides and insecticides, respectively, for corn.
The herbicide rate is based on a weighted average of active ingredients Atrazin,
Cyanazani, Metolachlor and Acetochlor based on their share of use in Illinois
as reported in Wang et al. [49]. For soybeans, we used U.S. average applica-
tion rate of 1.12 liter/ha estimated by West and Marland [68]. Rates of gasoline,
diesel, LPG, and electricity required per hectare of corn are as in Shapouri et al.
[49]. For soybean production, diesel requirement of 34.61 liter/ha is obtained from
FBFM (2005) and other fuel requirements were unavailable for Illinois, thus the
national average application rates reported in Hill et al. [23] were used as proxy
values.

4 96 t DM/ha for switchgrass, 19.38 t DM / ha for miscanthus. We account
for harvesting loss of 20% for switchgrass and 33% for miscanthus for Decem-
ber harvest. We also assume 7% loss of biomass during storage. Both switchgrass
and miscanthus feedstock are assumed to contain 15% moisture at the time of
transportation and storage (see Khanna et al. [30] and reference there in).

5 The CO2 emissions displaced by each metric ton of biomass are calculated
based on the net emissions per unit of coal-based electricity in Illinois. The average
emissions rate for the 48 coal fired power plants in Illinois is 964.48 kg CO2 / MWh
and each metric ton of biomass is assumed to generate 1.65 MWh (18 GJ heat input
with 33% thermal conversion efficiency). Biomass therefore results in a reduction
of 1,591 kg CO2e per ton of DM. 5It is assumed that representative annualized yield
is 358 bu/ha for corn, 124 bu/ha for soybean.

Table 35.6 Response of change in biomass prices to land uses and environment

Biomass co-firing capacity (%) BAU 15% co-firing capacity
Bioenergy price ($/ GJ) <$2.4 $2.8 $3.2 $3.6
Land under conservation till (%) 45.07 44.09 43.17 42.03
Land under miscanthus (%) 0.00 1.65 2.78 4.15
Biomass supply (Mt with 15% moisture) 0.00 4.24 7.02 10.18
Electricity generated with biomass (%) 0.00 5.53 9.16 13.27
Average distance to power plants from 0.00 15.11 20.81 28.16

counties producing miscanthus (miles)
Total amount of carbon mitigated in 15 Years (Mt) 15.85 38.86 54.12 71.64

-coal displacement by biomass 0.00 21.29 35.27 51.05
-sequestration by miscanthus 0.00 2.05 3.97 6.65
-sequestration by conservation till 14.72 14.37 13.82 12.98
-sequestration by pasture 1.13 1.15 1.06 0.96

% of carbon emission mitigated in 15 years 4.32 10.59 14.75 19.53
Discounted present value of bioenergy subsidy ($M) 0.00 1074.22 2173.00 3721.10
Discounted NPV of farm profit ($M) 48100.47 48319.13 49038.64 50171.91

Note: Baseline annual carbon (not CO2) emissions from coal-fired power plants are 24.46 million
metric tons. We denote Mt for million metric tons and GJ for Giga Joule and $B for billion dollars.
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Chapter 36
An H-Theorem for Chemically Reacting Gases

Gilberto M. Kremer, Filipe Oliveira, and Ana Jacinta Soares

Abstract The trend to equilibrium of a quaternary mixture undergoing a reversible
reaction of bimolecular type is studied in a quite rigorous mathematical picture
within the framework of Boltzmann equation extended to chemically reacting gases.
A characterization of the reactive summational collision invariants, equilibrium
Maxwellian distributions and entropy inequality allow to prove two main results
under the assumption of uniformly boundedness and equicontinuity of the distribu-
tion functions. The first establishes the tendency of the reacting mixture to evolve
to an equilibrium state as time becomes large. The other states that the solution of
the Boltzmann equation for the chemically reacting mixture of gases converges in
strong L1-sense to its equilibrium solution.

36.1 The Model Equations

In this section, we describe a model for a mixture of four species undergoing elastic
and reactive (binary) collisions of type

A1CA2• A3CA4.

For ˛ 2 f1; 2; 3; 4g, we set m˛, c˛ and f˛.x; c˛ ; t/ the mass, velocity, and
distribution function of the ˛ species respectively.
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To describe this system, we consider the Boltzmann-like equation

@f˛

@t
C
X

i

c˛i
@f˛

@xi
D

4X

ˇD1
QE
˛ˇ CQR

˛ ; (36.1)

where QE
˛ˇ

and QR
˛ are the production terms with respect to Elastic and Reactive

collisions. These terms are given by:
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f 0̨f 0ˇ � f˛fˇ

�
gˇ˛
ˇ˛d˝ˇ˛dcˇ ; (36.2)

where gˇ˛ D jcˇ � c˛j, d˝ˇ˛ is an element of solid angle and 
˛ˇ a differential
elastic cross section. The models of hard sphere and Maxwell molecules [1] are
commonly adopted in literature for 
˛ˇ . Moreover,
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and
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?34g43d˝
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Here, m˛ˇ D m˛mˇ

m˛Cmˇ
and the quantities 
?12 and 
?34 are differential reactive cross

sections for forward and backward reactions, respectively.
In the expressions (36.3) and (36.4) it was considered the micro-reversibility

principle which gives a relationship between 
?12 and 
?34, namely,
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?12: (36.5)

36.2 Collisional Invariants

For a reactive collision the conservation laws of mass, linear momentum and total
energy read

8
<

:

m1 Cm2 D m3 Cm4;
m1c1 Cm2c2 D m3c3 Cm4c4;
�1 C 1

2
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2
1 C �2 C 1

2
m2c

2
2 D �3 C 1
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2
3 C �4 C 1

2
m4c

2
4 :

(36.6)

Above, m˛ denotes the mass of molecule ˛ D 1; : : : ; 4 whereas .c1; c2/ are the
velocities of the reactants, .c3; c4/ the velocities of the products of the forward reac-
tion and �˛ is the formation energy of a molecule of constituent ˛. In a certain sense,
these are the only invariants for system (36.1). Indeed, if we define a summational
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collisional invariant as a function  which obeys to the constraints

 ˛ C  ˇ D  0̨ C  0ˇ ;  1 C  2 D  3 C  4; (36.7)

where the first constraint refers to elastic collisions whereas the second one to
reactive interactions, then we have the following result:

Theorem 36.1. Let  ˛ be a smooth function of c˛i , of class C 2. This function is a
summational collision invariant if and only if

 ˛ D A˛ C Bim˛c˛i C C
�
1

2
m˛c

2
˛ C �˛

�
; ˛ D 1; : : : ; 4; (36.8)

whereA˛ andC are arbitrary scalars withA1CA2 D A3CA4, andBi an arbitrary
vector that do not depend on c˛i .

36.3 Trend to Equilibrium

36.3.1 The Equilibrium Solution

The equilibrium solution for the present reacting mixture is characterized, at the
molecular level, by the vanishing of the collision terms (36.3–36.4) on the r.h.s.
of the reactive Boltzmann equation (36.1). Hence, the equilibrium distribution
functions f .0/˛ are obtained when the equalities

8
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(36.9)

hold almost everywhere in the velocity space.
By noticing that ln.f˛.0// is a summational collisional invariant, one can use

Theorem 36.1 to derive an explicit expression for the equilibrium functions (see [2]).
We obtain the well-known Maxwellian

f .0/˛ D n˛
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with number densities n˛ subjected to the mass action law
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36.3.2 An H -Function for System (36.1)

We now define an H -function for our system.

Definition 36.1. We put

H D
4X

˛D1

Z
f˛ ln

�
f˛

m3˛

�
dc˛ ; (36.12)

The following results were proven in [2]:

Theorem 36.2. For all t 2 Œ0IC1Œ, dH
dt
.t/ � 0: Furthermore, let HE denote the

H -function referred to equilibrium Maxwellian distributions f .0/˛ . Then

8t 2 Œ0;C1Œ; H �HE � 0; (36.13)

36.3.3 Convergence Results

Finally, we state the following result concerning the convergence of the distribution
functions to equilibrium:

Theorem 36.3. Assuming that H is a continuously differentiable function, H 2
C 1.Œ0IC1Œ/, and that every f˛ is uniformly bounded and equicontinuous in t , then

lim
t!C1H .t/ DHE :

Under these conditions, f˛ converges in strong L1-sense to f .0/˛ .
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Chapter 37
Dynamics, Systems, Dynamical Systems
and Interaction Graphs

Maurı́cio Vieira Kritz and Marcelo Trindade dos Santos

Abstract Graphs and Dynamical Systems are well established and mature math-
ematical disciplines. For a long while, their employ went along rather parallel
paths. Recently, problems in the life sciences are challenging an encounter between
them, particularly in what concerns understanding the interplay between the inher-
ent organisation of living entities and their ever present dynamical character.

We review part of these recent accomplishments from a perspective broad enough
to contemplate the joint statement of problems involving interaction graphs and
dynamical systems. This perspective allows for a sounder understanding of mathe-
matical descriptions of the dynamics of natural systems. It is shown that graph prop-
erties may retract characteristics of the dynamical behaviour of systems. Moreover,
dynamical characteristics associated to graphs properties apply to any dynamical
systems sharing the same interaction graph. This stand highlights perspectives that
enrich both the study of dynamical systems and their possible applications in the
life and socio-economic sciences.

37.1 Introduction

There is a remarkable interaction between theoretical constructions in Science and concep-
tual notions in Mathematics: the same idea—or the same idea, disguised, may arise both in
science and Mathematics. S. Mac Lane, 1985 [38, Chap. IX].

Differential equations (dynamical systems) and graphs have been used for inves-
tigating natural phenomena since long. Notwithstanding, their employ to enlighten
other scientific disciplines remained restricted to physics and chemistry until the
beginnings of last century, with humble incursions in the life and engineering
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sciences. Resourcing to Warren Weaver’s classification of scientific problems [75],
it was restricted to problems of simplicity and of disorganised complexity.

In problems of simplicity, few objects interact under simple rules casted by com-
mon directives. In problems of disordered complexity an unmanageable number of
objects interact under simple rules bearing the same directives for all interactions.
Problems in both these classes can be handled by mathematical methods requiring a
relatively small amount of computation by resourcing to limits, infinities, infinites-
imals, perturbations and stochastic approximations. Furthermore, the distinction of
boundaries, that is, of what pertains or not to the phenomenon under appreciation, is
relatively straightforward for these phenomena [31]. However, Weaver also pointed
to a third class of problems, where a large but not-as-huge number of unities interact
under variegated rules but in an organised manner. These are problems of organised
complexity. Although always loosely stated, organisation is often exemplified by
living entities and phenomena [43, 55]. For phenomena in the latter class, the dis-
tinction of boundaries is often not as straightforward as in the former two; their
cohesion arising mostly from the interactions among their components.

During revolutionising decades in middle of the last century, the usefulness of
graphs and dynamical systems was enormously widened by the need to apply sci-
entific methodology to problems arising from alternative disciplines, like those in
economic and environmental sciences. Of no less importance was the development
of computers and new computational methods that appeared in this period, which
paved the road allowing mankind to face ever larger problems. Moreover, these
larger problems contained components of ever greater complexity, a major source
of complexity in them being biological components whenever present.

These achievements boosted the appearance and fast spreading of new concepts
and approaches that greatly enlarged our vision of dynamics, systems, interactions
and mathematical descriptions [59]. They levered the employ of scientific method-
ology and of formal reasoning to a new standard. Among these concepts one may
count: control, observation, independence, state, regulation, feedback, feedforward,
cybernetics, signal, noise, information and a “new” concept of system often named
general systems [26,27,32,73,76]. Roughly speaking, the concept of system sprung
from physics and chemistry is associated to delimitations of a phenomenon in
space-time, while the idea of general systems neglect these distinctions in favour
of distinguishing connections among objects enduring a phenomenon.

In the life and socio-economic sciences, observations about relations abound
while about variations are meagre, due to restrictions imposed by present day
observation methodologies. Observations about how interrelations and dynamical
changes affect each other are even rarer, possible as a result of the long standing
dissociation of dynamical and relational descriptions in the life sciences. Hence,
problems of network complexity have been taken for problems of organised com-
plexity, even if there is no consensual definition of organisation [33,34]. The present
need to understand organisation in living systems requires new forms of analysis
and reasoning, of which those leading to a deeper understanding about causa-
tions between component interactions and the dynamics of a system come in the
forefront.
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Mathematics has always profited from inter-playing with other scientific disci-
plines, ‘feeding’ and ‘being fed’ with problems, ideas and approaches (see [44,
Editor’s Foreword], for an account in the context of graphs and molecular genetics).
From an internal stand, the interplay between mathematical disciplines themselves
has also been fruitful since long [2, 38], presenting unexpected outbursts.

The purpose of this work is to address the interplay between Dynamical Sys-
tems and the Theory of Graphs, pointing to possible repercussions of their common
development in the Life Sciences. It provides evidence that graph characteristics
do reflect dynamical constrains and that using relational and dynamical approaches
conjointly shall greatly enhance our understanding of life phenomena. Furthermore,
it is argued that concepts centred around the terms systems and general systems
are intrinsically related by the essence of the underlying natural phenomena they
delimit, being two sides of the same coin.

In the next section we review certain characteristics of scientific descriptions of
nature, particularly when expressed mathematically, discussing the two concepts of
system and pointing to their tight entanglement. In the third section, we describe a
generic procedure, grounded on interaction graphs, to connect the dynamical and
relational descriptions of natural phenomena. In the fourth section, we review liter-
ature about results and methods that associate properties of dynamical systems to
properties of their interaction graphs. In the fifth section, we argue that graph the-
ory methods may provide information about behaviour of dynamical systems, by
means of a working example. In the sixth, we discuss how mathematical knowledge
about associations between properties of dynamical systems and their interaction
graphs could greatly improve the advancement of life sciences, particularly with
respect to the daring problems of finding the right equations in ecology and systems
biology. Finally, concluding remarks and future prospects are presented in the last
section.

Bibliography is meant to be only illustrative. The review of the literature about
conjoint studies of interaction graphs and dynamical systems, in section fourth, is
far from being complete due to the sources being multi-disciplinary.

37.2 Science and Systems

The term system, often used in a loose manner, may be taken from a scientific stand
as a specification as precise and formal as possible of whatever is involved in the
phenomenon under study [5, 36].

Natural phenomena of scientific interest are grounded on reproducible events or
on recurring enchainments of events [22, 46, 50, 77]. Events are distinguished by
clearly identifiable changes in our perceptions regarding the world. Such changes
result from interactions among entities of various types: molecules, billiard balls,
bodies, chemical substances, magnetic and electrical fields, processes, organ-
isms, organisations, as well as, more complex things. Entities causing events are
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distinguished through features, aspects1, or patterns in changes that unequivocally
single out these entities or their environment.

Thus, phenomena of scientific interest always relate to things (objects and enti-
ties), changes, and regularities in behaviour. Where behaviour is any pattern in
changes that occur in a phenomenon. Dynamic behaviour is either described by list-
ing individual events that compose a phenomenon or by summarising them through
principles and rules that unequivocally differentiate their entailment. Therefore,
scientific inquiries jiggle around the study of variations (Var).

Six time-proven questions guide scientific enquiries [41,46]. “Where, when” and
“how” things happen? “What” is happening? “Who” makes things happen? And,
“why” do things happen in the way they do?

The questions “where, when,” and “who” concern mostly things in a phe-
nomenon. Variations in their observations typically occur in time (Vart ), along
space (Varx) or form (Var}.x/), and on “who” intervenes and plays a role in the
investigated phenomenon (Varwho). Variation with respect to “whos” fall into two
categories: the “whos” themselves may transform into “whos” of another nature,
or just their aspects may change. Variations in the first category are exemplified
by chemical reactions, where substances while moving combine giving rise to
other chemical substances, or by interactions among elementary particles, which
transform the interacting particles into particles of a different kind. Those in the
second category are typified by a dying planet or the solidification of a liquid
metal.

The questions “what, how,” and “why” refer to changes that occur rather than
things. They aim to gain knowledge about which changes are occurring, how these
changes are performed and why at all is the phenomena occurring in the way it
is, in the given situation. They, thus, centre on interactions. Curiously, interactions
proper are usually relegated to a low priority during the observation phase. Interac-
tions are instead indirectly described and investigated by analysing and comparing
observations about the state of a phenomenon just before and after interactions take
place. This is grounded on an implicit assumption: interactions must remain alike,
or indistinguishable, and unchanged throughout the observation of a phenomenon.

As a consequence, scientific phenomena are represented by a collection of
observable aspects, variables, and parameters2 that may be arranged in two domains:
an event- or entity-space and an aspect-space; the usual phase- or state-spaces
being special cases of the latter. Since material things are univocally associated
to positions, the event-space records answers to the questions “when, where”
and “who.” Thus, variables and parameters in the event-space reflect time, space

1 Aspects stand for anything that may be ‘perceived’ about the elements of a phenomenon, partic-
ularly perceptions characterising them. Features characterise the “whos” more intrinsically, along
structure and organisation, and may not be observable.
2 Variables record changes in aspects that do not remain still. Parameters register aspects that may
be changed according to necessity of inferences or experiments [32, Chap. 8].
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and environmental conditions. It also localises the “whos” of a phenomenon3,
registering how close or apart from the boundary or from one another they are.

The aspect-space registers observations about other perceptions and describes
dynamical characteristics of “what” is happening and “how.” It is not so easily
or simply described, due to the large number of possible interacting entities, their
constitutional variety, and their manyfold ways of interacting; all of which possess
aspects to be recorded. The nature of the aspect-space is affected by the number
and type of features and aspects of interest. Its structure is often difficult to dis-
tinguish, since possible interactions affect the notion of proximity in this space.
Notwithstanding, arising from the same phenomenon, both spaces are definitely
entangled by the phenomenon elements and any adequate scientific description must
contemplate both.

Variations in the event-space relate basically to the appearance, disappearance
and displacement of entities. Historically, displacements where the first changes
to fascinate mankind and to receive a pertinent symbolic vestiture. The dynamics
of displacements is often ruled by conservation of mass, energy or the number of
existing entities. As a result, they are expressed in terms of balance equalities. The
mathematical representation of such changes is based on differences or differentials
(see Sect. 37.3), and leads to dynamical systems — expressed as differential equa-
tions, if time and space are continuous, or as iterative and recurrent equations, if
time and space are considered discrete.

Variations in the aspect-space relate to the nature and character of intervening
“whos” and their interactions, describe “what” is going on and “how” changes in
the aspects of “whos” take place. The “whys” remain a matter of interpretation of
representations and their properties and are not contained in either space. In the life
and social sciences, the “whys” are attached to evolutionary, purpose or teleologi-
cal matters [41, 58, 60]. Correctly constructed, the aspect-space contains a plethora
of information about possibilities (and impossibilities) of interactions among the
entities (“whos”) intervening in a phenomenon. For instance, while describing
chemical interactions, properties of the aspect space should reflect the impossibility
of reaction between certain substances and the easiness degree of reaction among
others.

By and large, natural and artificial phenomena rely on material things and
are mathematically described by dynamical systems, whenever the perception of
observables being conserved allow for their description as equations. Therefore,
dynamical systems are of general applicability, appearing in a form or another as
models for the behaviour inherent in natural and artificial phenomena throughout
scientific disciplines.

Nevertheless, the descriptive role of events and the event-space is often neglected
in disciplines where the number of interacting entities is great and interactions dif-
ficult to grasp and observe; while in disciplines where the number of interacting
entities is small and interactions recurrent and simple is the other way around — it is

3 Thereby, it may contain portions of what is called configuration-space in mechanics.
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the richness of information registered in the aspect-space that is neglected. As a
consequence, different viewpoints have developed around each of these concerns,
resulting in different and often dissociated methods of analysis as well as in two
different, allegedly unrelated, concepts of system.

One, the system concept of physics and chemistry, centres in distinguishing a
region where things happen and what are the exchanges between the system, taken
as a single unity, and its environment. The region is determined by establishing a
boundary that neatly separates what pertains to the system and what does not —
defining the environment by exclusion. Examples of this type of systems are: a set
of interacting billiard balls over a table, particles moving around a point, penduli
on a wall, particles bouncing and colliding in closed regions, chemical substances
interacting in containers, chemostats etc.

The term system in physics is used somewhat loosely, referring either to physical
objects, coordinates or mathematical equations. Nevertheless, it always refers to a
collection of units interacting or interdependent in a way or another [16]. In chem-
istry as well, a system refers to a collection of substances confined somewhere and
interacting. In this sense, the term also conforms to the definition of system given
by Klir [32] for general systems.

The second concept, widely known as general systems and intrinsic to the
systemic perspective [32, 73, 76], centres in distinguishing relations and possi-
ble interactions among the system’s components. This approach barely considers
alterations in interactions caused by changes in vicinity, focusing in qualitative char-
acteristics of interactions. A system is then depicted as a collection of elements with
specific behaviours that react to stimuli received from other components in the sys-
tem. The interchanged stimuli are treated as signals instantaneously reaching other
components (see Fig. 37.1), even when delays are taken into consideration. That is,
no signal propagation is represented. Their boundary and exchange with the envi-
ronment are frequently difficult to establish and depicted either as special elements
of the interaction network, not strictly composing the system, or as lost signals.

Environment

System

exchanges

a

S1s

b

S2 S3

S4 S5 S6 S7

S8 S9 S10 S11 r

Fig. 37.1 Two kind of systems—a distinction in emphasis: (a) entity-based, (b) aspect-based
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The latter concept is mostly used in the life, economic and social sciences. In
all these domains and for all possible phenomenological scales we may find motor
systems, distribution systems, production systems, decomposition systems, filter-
ing systems, information processing systems, transducer systems, sensorial systems,
memory systems and so on [43], that may interact and form components of other,
more aggregated and complex, systems.

Matter undergo change in essentially three manners: change in position (dis-
placement), change in form and change in substance or organisation (as in chemical
transformations). Change in form fall in two categories: geometric-topological
(deformations), or changes in structural organisation (as in phase transitions). For
phenomena involving a collection of distinct entities, changes in interactions are
mostly relevant. Interactions and their changes are ruled by two types of closeness:
proximity and affinity. Ergo, any encompassing description of material phenomena
requires both system concepts to be depicted in a convenient manner.

Since all natural and artificial phenomena are ultimately grounded on material
things, changes are likely to happen as described in any conceivable phenomenon.
Hence, these two concepts are essentially one and only one intellectual tool.
Together, they allow for the description of all sort of variations in a phenomenon.

Developing a common view and a methodology for analysing systems that
embrace both perspectives would reinforce and enrich this tool, as well as deepen
our understanding of systems as delimitations of natural units we consider for study.
The boundary of a system in the event-space, easily described, may help determin-
ing interaction boundaries in the aspect-space; while the more conspicuous stand of
interactions in the aspect-space may help distinguishing events and changes due to
complex interactions. The next sections indicate some ways of achieving this.

37.3 Bridging Dynamical Systems and Interaction Graphs

Although having no strict sub-sections, this section organises around three divisions
or moments: dynamical systems, interaction graphs and their connection. Let us
start by examining what will be understood by dynamical systems.

As detailed above, physics and chemistry focus on describing and explaining
changes in matter involving simple situations, where the number of intervening
objects and substances is small. Furthermore, by hypothesis, all possible transfor-
mations among these substances are known in advance. That is, no matter how the
dynamics alters the elements in a phenomenon, the transformation of substances
into another remains confined to a finite collection of possibilities that are known
a priori. In general, tracking displacements of all points in a volume will tell us
everything about changes in its form. Hence, from a mathematical standpoint, we
need to find relations between Vart , Varx and Varwho in such a way that (we feel)
they explain the phenomenon.

Since the whos of physics and chemistry are substances, or (material) objects
made out of them, let fS1; : : : ;Spg denote the substances composing all objects
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intervening in a phenomenon and A D fa1; : : : ; an; n � pg a collection of observ-
able aspects. A central concept in our understanding of dynamical behaviour is the
state. A state is essentially given by a collection of aspects and information which
observation fully distinguish the dynamical behaviour of something. It is, in a cer-
tain sense, a snapshot of objects and change tendencies in a phenomenon at a given
instant of time or in a time-interval.

Remark 37.1. As long as an aspect is not associated to more than one substance, the
transformation of a substance (Sk) into another (Sk0 ) is a change in state. It will
change aspects associated to Sk into aspects associated to Sk0 in an indisputable
manner, as long as, two collection of aspects associated to substances do not possess
aspects in common. ut
Therefore, for properly chosen aspects, to know what happens with aj ; j D
1; : : : ; n amounts to know what happens and how in the phenomenon; as well as
where and when changes occur. Being so, we may disregard the description of sub-
stances fS1; : : : ;Spg and of objects formed with them in favour of describing and
studying aspects associated to objects.

Note 37.1. It is a fundamental ontological assumption in science that the collection
A of observable aspects identifies uniquely the state of a phenomenon. That is [56],
if s1 and s2 stand for states of a phenomenon, then

s1 ¤ s2 H) .9a? 2 A / such that Œa?.s1/ ¤ a?.s2/�: (37.1)

It is implicitly required that different states associated to the same aspects
fa1; : : : ; ang must be considered indistinguishable and so treated in theories. ut

The choice of aspects to be observed must conform to the available observa-
tion capabilities. This establishes a window of perception and distinguishability,
delimiting what can be scientifically observed, represented and studied in a phe-
nomenon. Hence, different observation possibilities often require that specially
tailored symbolic descriptions be employed. Even if disassociated at a first sight,
these descriptions can often be attached to each other at a higher level of abstraction,
as this section shall illustrate.

In physical systems, the aspects aj stand mostly for displacements, changes and
rates of change in points and forms, and energy related aspects. The final mathemati-
cal expression in each case studied can nevertheless be qualitatively and structurally
quite different, depending whether their components are particles or continua (bod-
ies, fluids and fields). For instance, aspects may be the mass, position, momenta and
kinetic energy of each ball on a table; or of gas molecules in a container; or yet
current, inductance and voltage in an electrical circuit. Whatever varies coherently.
The same aspects occur in continuous objects but their mathematical expression
may become rather sophisticated, due to the tracking of what is happening at each
point in the continuum and to mutual influences and exchanges between aspects
at nearby points. In physical interactions, analogous aspects are exchanged between
objects of a phenomenon or between their points, essentially transferring intensities.
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For instance, in particle interactions, energy and momenta are exchanged among
intervening particles.

Physical inquiries do not consider changes in substance, while chemical ones
do. Chemical systems are mostly continua since transformations of just a few
molecules are never considered in this domain. In chemical systems, some aspects
aj stand also for concentrations, which vary along space. Homogeneity assump-
tions, however, simplify their description leading to lumped expressions. Whatever
is represented in the event-space, substances may be seen as compartments, or sorts
in mathematical terms, and changes in substance can be depicted as a migration of
aspects from one compartment (or sort) into another.

Without loss of generality, we shall consider in the sequel that some aspects are
associated to exactly one compartment in an unique manner, so that objects and sub-
stances are identified by a collection of aspects (see Remark (37.1) and Note (37.1)).
We shall then not distinguish among aspects, objects and substances. Any entity,
though, may have more than one aspect associated to it.

Summing up, the dynamic behaviour of phenomena may be described by a
relation:

R.Vart .A /;Varx.A /;Var}.fxg/.A /;Iwho.A // (37.2)

where A is a list of aspects and Iwho denotes exchanges between them. For aspects
grounded on material things, when mass and other conservation laws apply, this
relation results from reckoning the change in aspects due to changes in position,
form and exchange of aspects, at each point in the event-space occupied by material
objects.

What are then dynamical systems? In this writing, dynamical systems are sym-
bolic descriptions of the dynamical behaviour of natural systems by means of
their aspects; that is, of physical, chemical, biological, ecological, social or artifi-
cial systems. Whenever the aspects in A are expressed numerically, whenever the
aspects are measurable4, dynamical systems can be expressed mathematically or
computationally.

In this case, the elements of A become vectors q of quantities that conform
to (37.1). Furthermore, if time and space are not entangled, that is, their dimensions
being independent, relation (37.2) becomes additive5 at each point p of the event-
space:

Vart .A /jp D .Varx.A /C Var}.fxg/.A /CIwho.A //jp; (37.3)

where p is a point in dom.R/. Usually p D .t; xI�/, embracing localization in
space-time and environmental conditions. Observe that relation (37.3) does not
apply for aspects like information, that may not be conserved or unambiguously

4 Aspects may be made numerical by reckoning the number of objects presenting a certain aspect.
Measuring, however, requires a comparison with a standard. In general, the first method results in
discrete values for variables, while the second in continuum ones.
5 Additiveness, at this point, has nothing to do with reduction or linearity. It stems from properties
of the quantities used in counting, independence among observables and the balance of aspects
implied by conservation.
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attached to material things. Moreover, vectors q of quantified aspects do encompass
environmental (inputs and output) as well as internal (state) variables and need to
conform to observability and consistency requirements [42].

Dynamical systems are sound mathematical objects from many perspectives.
From the systems theory perspective, its definition makes explicit the possible inter-
actions with other systems and the environment, the form they are observed, and
the possible changes in state, binding to the more general relation (37.2) and do not
requiring additiveness (37.3). From this perspective, dynamical systems have the
following mathematical structure [26, 27, 42]:

Definition 37.1 (Dynamical System). An octuple ˙ D fT;U;U ; X; Y;Y ; �; �g
is a dynamical state-space system, with time-domain T , inputs u 2 U , outputs
y 2 Y and (internal) states x 2 X , where U D fuI W T ! U g is a set of admissible
input functions, Y D fyO W T ! Y g a set of output functions,� W T�T �X�U !
X a state-transition function and � W T �X ! Y the observation function, if:

1. T 	 IR is an ordered set,
2. U ¤ ; and is closed under concatenation,
3. x.t/ D �.t I �; x; uI /, the state of˙ at time t resulting from the initial-state x.�/

at initial time � 2 T under the action of input uI 2 U , satisfies:

(a) (Direction of Time) � is defined for all t > � ,
(b) (Consistency) �.t I t; x; uI / D x;8t 2 T;8x 2 X and 8uI 2 U ,
(c) (Composition) .8t1 < t2 < t3/ �.t3I t2; �.t2I t1; x; uI /; uI /,

for all x 2 X and uI 2 U ,
(d) (Causality) For any t > � , if u; u0 2 U and u.�; t � D u0.�; t �, then

�.t I �; x; u/ D �.t I �; x; u0/

4. y.t/ D �.t; x.t// is the observed output.

A careful choice of elements and properties in ˙ reduces the systems of
Definition (37.1) to several well known classes of systems: time invariant, finite
dimensional, finite state, input–output etc, where time may be continuous, discrete,
or both. Considerations about observable inputs and outputs will be recalled in
Sect. 37.6. The arguments in the sequel are centred solely in the dynamics of state
transitions �. Descriptions of inputs and outputs will be then disregarded by con-
sidering time-invariant, autonomous, perfectly observable systems (that is, systems
such that � D I or y.t/ D x.t/;8t).

Observe that the conception of system as a device for distinguishing what per-
tains to a phenomenon and what does not naturally divides the set A into three
groups: aspects describing observations that strictly pertain to the phenomenon
(AS ), aspects depicting what is transferred from the environment to the system
(AI ), and aspects depicting what is transferred from the system to the environment
(AO ). If the number of aspects in AS is greater than 1, the state-set X (of system S )
is multi-dimensional and Iwho.AS / D Ifxg is a relation which domain is X .
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Note that Definition (37.1) is a step towards the common view proposed at the
end of Sect. 37.2. In this definition, AI is made explicit by U and AO by Y and �.
The domain suggested by Fig. 37.1a is part of the specification of the state-set X
and the aspects and their interaction exemplified in Fig. 37.1b appear as x and �.
However, Definition (37.1) leaves the specification of dynamics open; that is, the
specification of � and of how variations should be tracked (computed).

For systems with only a few quantifiable aspects, A D f1; : : : ; ng, the state
becomes a vector of values x D fx1; : : : ; xng, the interactions of aspects (Iwho)
become simply a finite set of relations in x. Under these constrains, and when time
is continuous and aspects are conserved and smooth enough, the transition function
� frequently find expression as the flow of a system of differential equations:

dx
dt
.t/

defD Px.t/ D I.x.t//; (37.4)

where x.0/ D x0 2 M is a given vector, I W M �! T.M/ is a continuous regular
enough function, M is the aspect space (variety) and T.M/ its tangent bundle. Or,
if time is discrete, as the iterated application of a mapping from the aspect space M
into a copy of it:

x.k C 1/ D I0.x.k//; k D 1; 2; : : : (37.5)

where x.0/ D x0 2 M is given.
The latter system may result from a discretisation of equations (37.4) or be the

direct result of modelling a phenomenon when observations are only feasible at dis-
crete time intervals � [20]. For both kinds of dynamics though, degeneracies apart,
we have that dim.M/ D dim.T.M//; even if the system’s flow remains confined to
sub-varieties of M.

Such systems are studied within the mathematical field of Dynamical Systems; a
well established discipline counting with more than one century of active develop-
ments. Their study focus on global properties of solutions of equations of type (37.4)
or (37.5) employing geometrical and topological arguments, having stemmed from
work by Henri Poincare [20]. Dynamical systems may also be directly expressed in
computational form. There is, though, a close relationship between their mathemat-
ical and computational expressions [27] up to the algorithmic form, that ingenious
speciations of Definition (37.1) reveal to be dynamical systems as well.

The second movement relates to discrete and relational mathematics, particu-
larly Graph Theory. Graphs are mathematical objects as old as dynamical systems
and have been used since long as models or realisations of polyhedra, algebraic
structures, molecular bindings, reaction chains, flux networks, and object-to-object
relations at large. Graph theory is a rich subject. It embraces and requires both
theoretical and algorithmic-computational investigations; being unable to prescind
from either [47]. Despite a first result by Euler, Graph Theory blossomed in
the second half of the nineteenth century, after seminal work done by Kura-
towsky and Cayley. Mathematical relations and graphs are close concepts [61]
and are at the root of the (general) system concept when dynamics is not being
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considered [32, 42]. They reflect the connections established among entities by
interactions or exchange-channels [3] (see Fig. 37.1b).

Disguised under different names, like “circuit language, block diagrams, bond
graphs, causal networks, dominance maps, flowcharts, Forrester diagrams tendency
matrices, transition diagrams, trophic webs, wiring diagrams,” to name a few, graphs
have been used as a tool to inspect and organise observations and knowledge
about systems, as well as, to straightforwardly build models for the underlying
phenomenon [21, 39, 40, 48, 54, 62].

From cooperative-competitive relations in socio-economic systems [54], to mass
and energy flows in ecosystems [72], to the intricate connectivity of possible reac-
tions in metabolic networks [48], to biological systems at large [21, 39, 40, 54] and
beyond into cognitive maps, they support the identification of mutual influences,
the tracking of paths and cycles of matter and energy fluxes and the identification
of dynamic dependencies and relationships at large6. Not just this, graphs forged
a large class of models of variable success in many disciplines [21, 36, 39, 44, 54],
conveniently representing different sorts of relationships in a variety of phenomena.

Graphs model relations and are therefore universal and ubiquitously applica-
ble [19,28,47,54]. Graphs are just a pair of sets. Notwithstanding being mathemat-
ical objects simpler than the dynamical systems of Definition (37.1), they are often
defined in slightly different forms resulting in not completely equivalent classes of
objects. However, variants and generalisations of graphs are obtainable by properly
choosing how to define these two sets. Those relevant to the following discussion
are described in the definitions below.

Definition 37.2 (Undirected Graphs). A graph G is a pair of sets fV;Eg, which
elements are respectively the vertices and edges (unordered pairs) of G, where E is
a family of subsets of V of cardinality two. That is, e 2 E ) e D fv1; v2g; vi 2 V .

Proposition 37.1. This definition precludes multi-edges and loops.

Proof. Immediate. The elements of a set are, by definition, distinct and unique. ut
Definition 37.3. The variants of interest are:

1. A directed or oriented graph has arcs (ordered pairs) instead of edges. That is,
G D fN;A 	 N �N g. In this case the vertices are usually called nodes7.

2. An edge-labeled graph (respectively, arc-labeled oriented graph) is a triple
fV;E; � W E ! �g (fN;A; � W A ! �g), where � is the set of labels and
dom.�/ D E (dom.�/ D A).

6 Cognitive maps appear everywhere: in the early stages of modelling [21] or explanations about
mathematical properties [42, Fig. 4.1]. Strictly speaking, all these versions of interaction graphs
are cognitive maps, since interactions are indeed a form of relationship.
7 Although the distinction between edges and arcs will be maintained in the text to distinguish when
talking about undirected or directed graphs, vertices V and nodes N will be used interchangeably.
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3. A bipartite graph (respectively, a bipartite oriented graph) has a partitioned node
set N D N1 [ N2; N1 \ N2 D ;, and edges (respectively, arcs) from one set
to the other. That is, e 2 E ) Œe \ N1 ¤ ; ^ e \ N2 ¤ ;� (respectively,
A 	 N1 �N2 [N2 �N1).

4. A hyper-graph is a pair of sets fN;E 	 }.N/g, where E D fe1; : : : ; epg is a
family of non-empty subsets of N such that [iei D N [6].

Note 37.2. The following facts about graphs will not be proven. Their proof may be
found in textbooks or the references cited.

1. Loops are allowed by Definition 37.3.1.
2. Vertex-labeled graphs may be defined analogously to edge-labeled ones. Of

course, a graph may have both its edges and vertices (or its arcs and nodes)
labeled.

3. A bipartite graph may have isolated nodes and nodes occurring in just one edge
(arc) but no loops.

4. A hyper-graph may be made directed by a collection of procedures and can have,
as well, edges and vertices labeled. Hyper-graphs have no isolated nodes [6].

5. Hyper-graphs may be re-written as bipartite graphs [35, 61], but not all bipartite
graphs represent hyper-graphs. ut
It is a marvel how rich the theory of these simple objects is. Moreover, it is at the

same time theoretical (mostly, combinatorial) and algorithmic; constructive proofs
providing immediate algorithms and algorithms being needed in proofs [47]. The
structure of individual graphs provide a plethora of properties and classes of them
are studied from topological and other stands [6, 7, 19, 44, 54]. Within mathematics
itself, graphs are models or representations of relations and algebras [61]. Their
connection to dynamical systems will be addressed below.

The third movement is about the inherent association between graphs and dynam-
ical systems. Given a dynamical system, in the form of equations (37.4) or (37.5),
we define its interaction graph in the sequel. There exists many ways to associate
graphs and dynamical systems but the procedure provided is general, based on the
interactions among aspects of a phenomenon. This association further partitions the
class of dynamical systems, as characterised by vector the fields I or I0.

Remind that, observable aspects of a system may be associated with inputs,
states, responses, environmental factors etc. The sequel refers, though, essentially
to state variables. Let Jn D f1; 2; : : : ; n� 1; ng be labels (names) that denote either
the state variables fx1; : : : ; xng of a system or their rates of change f Px1; : : : ; Pxng.
Any dynamical system is associated with a graph. Under form (37.4), a dynami-
cal system is identified by its vector field I. Therefore, the following definition of
interaction graphs also give a procedure to associate dynamical systems to them:

Definition 37.4. An Interaction Graph of a dynamical system I is a directed graph
fN;Ag such that:
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1. N D Jn;
2. Its arcs represent dependencies of components of I on components of x, that is:

8.1 � i; j � n/; Œ.i; j / 2 A� if and only if

ŒIi .x1; : : : ; xj ; : : : ; xn/� Ii .x1; : : : ; x0j ; : : : ; xn/ 6� 0�; 8 x; x0.j / 2 dom.I/;
(37.6)

where x0
.j /
D .x1; : : : ; xj�1; x0j ; xjC1; : : : ; xn/.

This same definition is valid in the case of discrete systems (I0) as well.
Interaction graphs are symbolic devices that help registering dependencies

among the various observables. Besides dependencies they also register tendencies
imposed in the variation of an observable by another. Interaction Graphs have been
used to help establishing and improving models in the life and social sciences
(where gathering observations about changes along time, particularly quantita-
tive data, is often problematic [1, 40, 48, 62]) either as graph diagrams in strict
sense [21, 36, 39, 54] or by means of their adjacency matrices [48].

It is nevertheless important to note that labels Jn of Definition 37.4 stand for
both states and their rates of variation, and that interaction graphs are indeed bipar-
tite graphs where N D PJn [ Jn and the arcs of (37.6) belong to PJn �Jn and
Jn � PJn, those in Jn � PJn remaining implicit. The dotted arcs in Fig. 37.2 mean
that xi .t C dt/ D Pxidt and that xti  xtC1i (xtC1i replaces xti ), at each advance of
time. Moreover, nodes representing Pxi and xtC1i are connected to exactly one node
of the other partition. Consequently, it is common to identify respective nodes in the
two partitions reducing the graph to a non-bipartite digraph while using interaction
graphs in analyses and modelling.

Remark 37.2. While depicting interaction graphs as digraphs, it is important to note
that objects represented by the nodes at the source and sink of arcs belong to differ-
ent mathematical spaces. ut

The bridge between dynamical systems and interaction graphs may be sum-
marised by the following mapping. Let Gn denote the class of all graphs G which
node set N.G/ has n elements, and let C r .IRnIT.IRn// D C r .IRn/ be the class of
all vector-fields F W IRn�!T.IRn/ D IRn that are r 2 ZZ; r � 0 times differentiable.
Each dynamical system is attached to a graph by the mapping:

G W C r .IRn/ �! Gn

F 7! G;
(37.7)

where G D G .F/ is given by Definiton 37.4. The mapping G is a well defined
function and dom.G / D C r .IRn/. Notwithstanding, img.G / ¤ Gn, if C r .IRn/
stands for irreducible n-dimensional dynamical systems (see Sect. 37.6).

Interaction graphs are often labeled with information related to dynamics, par-
ticularly rates and fluxes. When r � 1 and F and G .F/ are known, even partially,
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a

b

Fig. 37.2 Interaction Graphs: (a) continuous time; (b) discrete time

there is a simple and frequently used way for labeling arcs, where labels depend
on position and parameters of the vector field dom.F/. This labeling attributes to
arcs values related to transfers or fluxes among the aspects of a system. That is, the
(numerical) label of an arc ai;j D .i; j / is given by:

�.ai;j / D @

@xj
.
dxi

dt
/ D @

@xj
. Pxi / D @

@xj
Fi ; (37.8)

where @
@xj

Fi is the Jij entry of the Jacobian matrix of F and depends on parameters
and the state variables x.

Labels like these reflect tendencies in variation rates of the aspects that describe a
system. Both topics will be addressed further on. They may be made independent of
states and parameters by many procedures: taking averages, considering minimum
or maximum values, or using other statistics. They may also be made less variable at
each point by considering only discrete values, like the signal of the Jacobian matrix
entries:

�.ai;j / D sign

�
@

@xj
Fi

�
: (37.9)



522 M.V. Kritz and M. Trindade dos Santos

Labels as defined in (37.9) contain information about how an aspect inhibits or
enhances the rate of change of another. This sort of relationship is known as
activation-inhibition switching in biology [57] and socio-economic disciplines [54,
Chap. 9].

37.4 Interplay Between Dynamical Systems and Interaction
Graphs

Lately, the most conspicuous and apparently widespread use of graphs to inves-
tigate natural or artificial ([63]) phenomena wander around network topology.
These results centre on a dynamics over sets of graphs characterised by the addi-
tion/deletion of vertices and edges [24, 25, 67]. Despite of this, other often more
straightforward forms of using graphs to model and investigate natural phenomena
have existed since long [40,44,54,62]. Even if not as prominently as Network The-
ory, the interplay between graphs and dynamical systems suggested by associated
interaction graphs (37.7) have been investigated for quite a while now, perhaps not
as systematically as networks and dynamical systems per se. A partial overview of
these investigations is presented in this section.

Explorations of interaction graphs originate mostly on applications and proceed
along two main avenues. One is concerned with the development or improvement of
algorithms for computing solutions of dynamical systems, particularly with respect
to their control and observability. The other strive to deepen our understanding about
relationships between the system’s structure brought afloat by interaction graphs and
its dynamical behaviour.

Along this reasoning, theoretical and algorithmic properties of graphs — which
reflect the interacting possibilities between the aspects represented in a system —
are used to unveil facts and properties about the system’s dynamics. Due to time
constrains and the disperse situation of these accomplishments over several fields,
the account provided below is far from complete and only illustrative of possibilities
relevant to arguments in the sequel; it fails to do justice to many interesting lines
of enquiry. Alongside dynamics, interaction graphs were used to also investigate
structural solvability, controllability and observability of systems (see [27] for more
information on these concepts).

Since the seventies, stimulated by applications concerning systems science,
graph properties have been used to understand dynamics8 and to develop or sim-
plify algorithms for computing solutions of dynamical systems expressed in terms
of differential equations, as exemplified by [28,45]. The very first applications refer
largely to linear systems, represented in either form (37.4) or (37.5), requiring I
to be a linear mapping. Interaction graphs were highly successful in both unveil-
ing dynamic properties and reducing the computational complexity of algorithms

8 See [54, Chap. 10], [39, Part II] and [45], for information on early achievements.
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in these applications. From our present knowledge about deep connections exis-
tent between matrices and graphs this success should not be surprising. These early
achievements are nevertheless impressive [39, 45], [54, Chap. 10 and 11].

Interaction graphs were further used to support investigations about global
dynamical properties of non-linear systems and about relations between dynam-
ical behaviour of systems and their solvability, observability and controllability.
In particular, interaction graphs, also called representation graphs, are useful for
investigating the decomposition or decoupling of dynamical systems into simpler
ones [28, 45] by identifying strongly connected components and interactions of
lesser strength, leading often to systems of lower dimension. This approach greatly
improved algorithms for computing orbits and flows of dynamical systems.

At least since the beginning of the eighties, graph properties and interaction
graphs are being more systematically used to infer and study properties of asso-
ciated dynamical systems. These investigations, as well as earlier ones on linear
systems, rely on the same concepts — signed labels and signed circuits — although
grounded on different ontologies; circuits being another name for cycles in a graph.

The sign of a circuit is defined as follows. Given an interaction graph G� with
label defined as in (37.9) and a circuit c D <ni1 ; ni2 ; : : : ; nik�1

> in G� (see
definitions further on in Sect. 37.5), the sign of c is given by:

sign.c/ D
k�1Y

mD1
�.fnim ; nimC1

g/: (37.10)

To strength the discrete nature of its labels, graphs with signed labels will be
henceforth denoted by G˙.

Of notice here is the work originated by conjectures rosen by R. Thomas since
early eighties [70]. His conjectures all stem from biological considerations and the
first one reads as follows:

Conjecture 37.1 (R. Thomas, 1981). The presence of a positive circuit (anywhere in
the phase space) is a necessary condition for multi-stationarity.

As stated in [29], this conjecture was proved by C. Soulé [65], after several par-
tial results [8, 17, 64]. Other conjectures under the same lines of inquiry exist but
their statement require the introduction of other concepts originated from interaction
graphs [29], which is outside the scope of this review. Partitioning the phase-space
(aspect-space) based on properties of interaction graphs’ circuits (or cycles) is
possible too [29], leading to decompositions similar to basins of attraction. Parti-
tions grounded on graph-decompositions are also feasible as will be indicated in
Sect. 37.5.

Notwithstanding the close relationship between discrete and continuous versions
of a system revealed by discretisation procedures and their analysis, connections
between results about graphs and dynamical systems seem to be tighter or easier to
prove among discrete systems. Recently, several results on these connections were
obtained with respect to discrete dynamical systems. Some carved by conjectures
along lines similar to those of Thomas [51–53]; other under different approaches and
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concepts for system and dynamics [13, 30]. Yet, another line of enquiry look after
revealing dynamical properties directly from observed interaction graphs [9, 10],
focusing on properties observed at the biochemical scale and without considering
properties of living systems valid more generally.

The interplay between graph and dynamical system theories have been prof-
itable since long. Still, the employ of graph algorithms to investigate characteristics
of dynamical systems and their phase-spaces have not been, to the best of our
knowledge, as widely used. The next section addresses this point.

37.5 Graph Decomposition and Lorenz System: An Example

Surveying literature about rapports between graphs and dynamical systems is a
lengthy task due multiple nuances concerning their objectives and the distinct mean-
ing of several concepts. Instead, we shall work out an example, which shall illustrate
the relations between the characteristics of flows and the structure of interaction
graphs and their possible uses. The example hereafter applies a graph decomposi-
tion algorithm, first developed for ecological systems, to the well known Lorenz
dynamical system.

In the eighties, Ulanowicz [71,72] developed an algorithm to investigate the cycle
structure of food-webs and their function as components of ecological systems. The
algorithm decomposes a numerically labeled graph of measured fluxes into a collec-
tion of cycles, associating a flux-value to each cycle, and leaving a residual acyclic
graph with remaining eventually null fluxes as labels. In this way, each cycle can
be associated to an ecosystem’s ‘function,’ the cycle flux-value indicating in what
proportion the population represented by each node is engaged in that function. The
residual acyclic graph depicts whatever aspects flow through the food-web without
remaining longer in the ecosystem.

We have recently generalised this algorithm to operate on bipartite graphs and
employed it on graphs of biochemical reactions labeled with steady-state fluxes, that
arise from chemical considerations and observations in metabolic networks [35].
The interpretation is not as straightforward as in the original application, but this
investigation leads to interesting results about metabolism that provide information
towards the organisation of metabolic networks. Although there is little reference to
the dynamical aspects of metabolism due to missing data, this application conforms
to and illustrates the actual stage of biological modelling.

Before introducing the algorithm, a few more elements related to graphs need
to be defined. The definitions and the decomposition algorithm are valid for either
directed or undirected graphs and shall be presented below without any explicit note
but using their notation consistently. Let G D fV;Eg (G D fN;Ag) be a graph.
Two nodes n1; n2 2 N.G/ are adjacent if fn1; n2g 2 E.G/ (.n1; n2/ 2 A.G/).
A sequence p D .ni1 ; ni2 ; : : : ; nik / of adjacent nodes in G such that nij ¤ nil ;

whenever j ¤ l; 81 � j; l < k; is called an elementary path. The edges of p are
then the sets el.p/ D fnil ; nilC1

g; 81 � l < k. An elementary cycle in G is an



37 Dynamics, Systems, Dynamical Systems and Interaction Graphs 525

elementary path in G such that ni1 D nik . Elementary cycles will be denoted by
<ni1 ; ni2 ; : : : ; nik�1

>, not including the recurring node nik . The cardinality of a set
S will be denoted by jS j. Note that paths and cycles are sub-graphs ofG. Two other
definitions are yet needed for the decomposition algorithm: critical arc and nexus.

Definition 37.5. Given a set of cycles C D fc1; : : : ; cpg of a numerically labeled
graph G� D fN;A; � W A! L 	 IRg, we define:

1. A critical arc of a cycle c is an arc aı.c/ (or edge eı.c/) such that

�.aı.c// D mina2c �.a/: (37.11)

2. A critical arc of a set C of cycles is an arc aı.C/ (or edge eı.C/) such that

�.aı.C// D minc2C �.a
ı.c//: (37.12)

3. The nexus, N.a/, of an arc a (or edge e) with respect to a set of cycles C, is the
set of all cycles in C sharing the arc a (or edge e). That is,

N.a/ D fc 2 C j a 2 A.c/g: (37.13)

It is important to remark that the critical arc may be defined differently, depending
on ontological considerations and on what is being investigated [71].

The decomposition algorithm presupposes that all elementary cycles are known.
Their identification can be accomplished by several algorithms, Tarjan’s [68] being
one of the most efficient. Strictly speaking, Tarjan’s algorithm presupposes a
directed graph, but this is not a restriction since most applications present directed
graphs. Furthermore, any undirected graph may be associated to a directed graph
with the same nodes. The algorithm that enumerates all cycles of a graph will be
denoted by CyclesOf . The nexus of an arc, N.a/, is usually found by and exhaustive
search. The algorithm that constructs a nexus given an arc a and a set of cycles C
will be denoted by NexusOf .a;C/.

Being given a labeled network G� D fN;A; � W A ! IRg, such that � > 0,
the decomposition algorithm builds a flux-label � on a copy C� of the set of cycles
C and produces a residual graph Gres. A sketch of this algorithm is in the table
Algorithm 1.
In Algorithm 1,  denotes assignment and Œb � expression� ) statement
denotes Dijkstra’s guarded commands [18]: statement is only executed if the
boolean expression Œb � expression� is true. Furthermore, boolean expressions are
surrounded by brackets, ŒB�, AnsatzGeneration.N.aı// means that the weights wj
are generated from ontological considerations, or ontologically grounded hypothe-
ses, that take into account the structure of N.aı/ and �.cj / D  means that
�.a/ D ; 8a 2 A.cj /. The following facts about Algorithm 1 hold.

Remark 37.3. Algorithm 1 is a pretty rich object. The following observations reveal
some of its broadness and possibilities of application.
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Algorithm 1 Cycle Decomposition Algorithm (Ulanowicz)
Require: A numerically labeled (direct) graph G� .
1: Input: G�

Require: An algorithm for finding a complete cycles enumeration of G�.
2: Initialisation::

C� ;C CyclesOf .G�/
img.�/ ;, Gres  G�

Ensure: ŒC� ;C¤ ;�
Require: Algorithms for finding critical arc (equations (37.11) and (37.12)) and

assembling the nexus N.a/ of an arc a in a set of cycles C (equation (37.13)).
3: while C is non empty do
4: aı  criticalArc.C/
5: N.aı/ NexusOf .aı;C/
6: Heuristics::

fwj ; 1 � j � jN.aı/j D nıg  AnsatzGeneration.N.aı//

Ensure: 8.1 � j � nı/Œ0 � wj � 1� ^ ŒPnı

jD1 wj D 1�

7: �–Update:: 8.cj 2 N.aı//

img.�/ img.�/[ fwj �.aı/g;
�.cj / wj �.aı/

8: �–Update:: 8.c0 2 N.aı//

�.a/ �.a/� �.c0/ 8.a 2 A.c0//

Ensure: Œ�.aı/ D 0�

9: Gres–Update:: 8.c0 2 N.aı//

Œ�.a0/ D 0� ) A.Gres/ A.Gres/nfa0g 8.a0 2 A.c0//

10: C–Update::
C CnN.aı/

11: end while
12: Output: Gres and � WC� �! IR

Loops Cycle enumeration algorithms usually require loopless graphs. Loops,
cn D ffng; an D .n; n/g; n 2 N.G�/, if added to C, would be singled out by
Algorithm 1 as degenerate cases (aı D an, N.aı/ D fang and �.aı/ D �.an/)
and directly “transferred” to C� with �.cn/ D �.an/.

Heuristics The heuristics supporting the AnsatzGeneration.�/ procedure steams
from ontological considerations and may have distinct interpretations and justi-
fications. Ulanowicz [71, 72] computes probabilities that give the chance of an
element of a population being involved in the ecological processes represented
by each cycle in N.aı/. Here and in [35] the same computations are employed
but interpreted as proportions of mass or energy flowing among processes present
in the cycles. Different heuristics may be used for the same system to investigate
distinct aspects of its behaviour.

Non-determinism Algorithm 1 is non-deterministic in principle. When different
arcs of G� have the same label, it may occur that jfcriticalArc.C/gj > 1. In this
case, criticalArc.�/ returns more that one value, or must chose arc one from the
set fcriticalArc.C/g. ut
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The following theorem asserts the correctness of Algorithm 1, clarifying its
execution.

Theorem 37.1. Algorithm 1 stops independently of the chosen heuristics as long as
0 � wj � 1 and

Pnı

jD1 wj D 1. Furthermore, Gres has no cycles and � attributes
one value to each c 2 C.

Proof. Assuming that CyclesOf and any other undocumented pre-processing are
correct, C contains all cycles of G� possibly excluding loops (see Remark 37.3:
Loops). Let us examine the two possibilities: C D ; and C ¤ ;.

If C D ;, commands between lines 3 and 11 are never executed and nothing
changes in the algorithm inputs, but the algorithm stops. Notwithstanding, Gres D
G� and the theorem’s assertions are true, since dom.�/ D ;.

If C ¤ ;, the critical arc aı of each cycle c 2 C exists due to the finiteness of
jA.c/j and so does aı of C due to the finiteness of C. Moreover, there is at least one
cycle c 2 C such that Œ.aı 2 c/^ .aı D criticalArc.C//�. Hence, N.aı/ 	 C exists
and jN.aı/j > 1. Both, aı and N.aı/ are found by exhaustive search on C or an
equivalent substitute. Since Œ0 � wj � 1� and Œ

Pnı

jD1 wj D 1�, after completion of
line 7 we have that:

fw1�.aı/; : : : ;wnı�.aı/g 	 img.�/ (37.14)

and that
nıX

jD1
�.cj / D �.aı/: (37.15)

Therefore, the execution of line 8 at the arc aı for all c0 2 N.aı/ will result in:

�.aı/ �.aı/ �
nıX

jD1
�.cj / D 0; (37.16)

due to (37.15). Furthermore, aı will be removed fromGres in line 9. This disrupts all
cycles of Gres recorded in N.aı/. These cycles are also removed from C in line 10,
and thus

jCj  jCj � jN.aı/j: (37.17)

Finally, observe that at any point in the algorithm, except possibly between lines
9 and 10, C is a collection of sub-graphs of Gres, hence finite. Consequently, since
jN.aı/j � 1, jCj will diminish at each execution of line 10, becoming 0 (C D ;)
after a finite number of loop executions. The while-loop (lines 3–11) thus stops.
Moreover, as C is a snapshot of the cycles yet in Gres at any time, there will be no
more cycles left in Gres when the algorithm stops. ut
Note that the points highlighted in the algorithm under the Ensure tag are fun-
damental in proving its correctness. Thus, special care while programming the
algorithm must be taken at these points, for instance, for handling approximations.
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Theorem 37.2. Algorithm 1 works for any label � W A.G�/! IR (not just if � > 0),
as long as the critical arc is defined by (37.11) and (37.12).

Proof. Let � be a non-positive label for G. Since jA.G�/j < 1 for any G�, there
exists

��.G�/ D mina2A.G�/�.a/:

Consider an invertible transformation �0 W A.G�/ �! IR of �, such that

�0.a/ D �.a/C abs.��.G�//C �;

where � is ‘just big enough’ to prevent rounding errors, and the same graph G with
label �0 instead of �, that is, G�0 . The following assertions hold:

1. Since the cycles of a graph do not depend on labels, A.G�0/ D A.G�/, we have
that C.G�0/ D C.G�/.

2. �0.a/ > 0; 8a 2 A.G/, by construction.
3. �0.a1/ � �0.a2/) �.a1/ � �.a2/; 8a1; a2 2 A.G�/.
The above inequalities imply that aı

�0
D aı

�
, for any set of cycles C in both G� and

G�0 , where aı
�0
D criticalArc�0.C/ and aı

�
D criticalArc�.C/. Moreover, N.aı

�0
/ D

N.aı
�
/, for any critical arc aı

�0
D aı

�
. Therefore, since the algorithm stops for �0, it

will also stop for �. Besides this, label � W C �! IR is well defined because its
construction does not assumes that � > 0. ut

To illustrate the possibility of using mathematical and algorithmic graph theory
to forth a better understanding of dynamical behaviour, we now apply this cycle
decomposition algorithm to a well known dynamical system with low dimension,
namely the one given by Lorenz equations. The decomposition is performed at each
fixed point and around them and the results compared among themselves and with
known facts about its dynamical behaviour.

Lorenz equations were derived in 1963 as a model of a forced-dissipative hydro-
dynamic system, heated from below and cooled from above [66]. Lorenz was mainly
interested in convective motion in the atmosphere, and in applying conclusions
drawn from the model to weather forecasting. The importance of this seminal work
relies on results obtained for bounded non-periodic orbits, which are extremely
unstable with respect to small perturbations of initial conditions. Lorenz equations
represent the dynamics of three modes of the Oberbeck–Boussinesq equations for
fluid convection and accurately represent properties of these modes for r � 1

(see [20]). They are:

Px D I1.x; y/ D 
.y � x/
Py D I2.x; y; z/ D �xzC rx � y
Pz D I3.x; y; z/ D xy � bz

9
=

; ; (37.18)

where x D .x; y; z/ are state variables, belonging to the aspect (phase) space, and

; r; b > 0 are parameters characterising the fluid and flow, that is, the object causing
the phenomenon (see Sects. 37.2 and 37.3).
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The state variables are associated to quantities describing convective flow, rele-
vant to atmospheric phenomena [66]:

� x is proportional to the intensity of convective motion;
� y is proportional to the temperature difference between ascending and descend-

ing convective currents; and
� z is proportional to the distortion of vertical temperature profile from linearity.

Note that none of the state variables is directly observable. The Lorenz system
parameters satisfy 
; r; b > 0, due to physical constrains, and depend on the accel-
eration of gravity g; on the coefficient of thermal expansion ˛; on the kinematic
viscosity �; and on the thermal conductivity .

The equilibrium solutions (Px D 0) of system (37.18) are, straightforwardly:

xe
0 D .0; 0; 0/;

xe
1 D .�

p
b.r � 1/;�pb.r � 1/; r � 1/; and

xe
2 D .

p
b.r � 1/;pb.r � 1/; r � 1/;

9
=

; (37.19)

where xe
1 and xe

2 exist and are nontrivial only when r > 1. The Jacobian matrix rI
of the interaction term in (37.18) (see (37.8) and the end of Sect. 37.3) reads:

J D
2

4
�
 
 0

.r � z/ �1 �x
y x �b

3

5 : (37.20)

The interaction graph GL (Definition 37.4) of the Lorenz system is easily con-
structed either from (37.18) or using its Jacobian matrix. The condition established
by equation (37.6) is satisfied whenever Jij 6� 0. Hence, there are three arcs leading
to y and z, from the three state variables, and only two leading to x, one from x

itself and another from y, as shown in Fig. 37.3. The arcs of GL are labeled by the
Jacobian of I, as in (37.8).

Remark 37.4. The following observations are not restricted to the Lorenz system
and apply to other systems as well.

Fig. 37.3 Interaction Graph
GL of the Lorenz system.
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a b c

Fig. 37.4 The three cycles of Lorenz’s system interaction graph GL

a b

Fig. 37.5 GL evaluated at each fixed point: (a) xe
0, (b) xe

1

1. Labels �.aij / do depend on the state variables .x; y; z/, but not necessarily for
all indices i and j , and parameter values.

2. The graph GL is the same, no matter how labels are defined over A.GL/.
3. When labels depend on states or parameters, arcs disappear in the regions where

the associated label vanishes, if �.aij / D 0 implies that Pxi is independent of xj .
ut

In the case of Lorenz system, a complete enumeration of the cycles inGL may be
found by direct inspection. The only three cycles of GL, c1; c2; c3, are displayed in
Fig. 37.4, together with the labels induced by (37.8). They correspond respectively
to Fig. 37.4a, b, c.

At any point of subspace IRz D f.0; 0; z/; z 2 IRg the graph GL splits, becom-
ing disconnected whatever values the parameters 
; r; b > 0 assume, as shown
in Fig. 37.5a. Node z remains isolated under these conditions and only the cycle
between x and y remains (Fig. 37.4c). There is no exchange of energy between
aspects z and x; y and only the trivial solution is admissible for the xy-cycle. There-
fore, should an orbit cross the z-axis, it would abruptly become trapped there. From
a physics stand, this means that the interaction of distortion from linearity in the
temperature profile with the other variables is a key issue for the behaviour cap-
tured by Lorenz system. The loop in node z is a feedback relation with a negative
coefficient, reverting the sign of the influence of z on itself.



37 Dynamics, Systems, Dynamical Systems and Interaction Graphs 531

Otherwise,GL does not change or become disconnected by changing the param-
eters 
; b; r , as long as they remain positive. This is true for all x 2 IR3 except
in its sub-space given by r D z, where the xy-cycle is disrupted for any feasible
value of 
; b; r . It is important to note that graph-cycles allow for the existence of
periodic and quasi-periodic orbits restricted to the variables in its nodes but do not
enforce their existence. Otherwise, the absence of arcs and graph-cycles in GL pro-
vide information about orbits that cannot exist and regions of aspect-spaces that
cannot be visited by any orbit of a system, being thus of great relevance.

Algorithm 1 cannot be used forGL with its functional labels. But, in consequence
of Theorem 37.2, it can be applied to instances of GL where � is evaluated at par-
ticular states x? of system (37.18). Evaluating, for instance, the labels ofGL at each
equilibrium point (37.19) results in graphs with constant coefficients, as depicted
in Fig. 37.5, where ˛ D p

b.r � 1/. The interaction graph evaluated at xe
2 is not

shown. It is the same as the one in Fig. 37.5b with labels ˛ exchanged for �˛, and
vice-versa.

Note that, in the parameter sub-space given by r D 1, the interaction graphs
at both equilibrium points xe

1 and xe
2 become equal to the disconnected interaction

graph at equilibrium point xe
0 for any state x, since .r D 1/ ) .˛ D 0/, which is

consistent with the existence of just one equilibrium point, xe
0. This corresponds to

the onset of convective motion [20, 37].
The results of applying Algorithm 1 to the interaction graph with labels evaluated

at distinct points do depend on relations between parameters 
; b; r and state values.
The following conditions hold for the results presented below:

� r < 
 , for � evaluated at xe
0.

� 1 < 
 C ˛, for � evaluated at xe
1.

� r < 
 C w1˛, for � evaluated at xe
2.

At each equilibrium point, Algorithm 1 outputs fluxes (�.c/) for cycles c1; c2; c3
and one acyclic graph. The fluxes are:

1. for xe
0: �.c3/ D r ,

2. for xe
1, �.c1/ D �.c2/ D �˛, �.c3/ D 1,

3. for xe
2, �.c2/ D �˛, �.c3/ D 1.

The acyclic sub-graphs resulting from applying the decomposition algorithm at
each fixed point are shown in Fig. 37.6. At xe

0 the acyclic sub-graph of Fig. 37.6a
remains. For GL evaluated at xe

1 the residual acyclic graph is depicted in Fig. 37.6b
and in Fig. 37.6c when evaluated at xe

2. In Fig. 37.6, ˛ is the same as before, w1 D


C˛C1 and w2 D 1C˛
C˛C1 .

If the above conditions are violated, the cycle fluxes become:

1. for xe
0: �.c3/ D 
 ,

2. for xe
1, �.c1/ D �.c2/ D �˛, �.c3/ D 
 C ˛,

3. for xe
2, �.c2/ D �˛, �.c3/ D 
 C w1˛,



532 M.V. Kritz and M. Trindade dos Santos

a b c

Fig. 37.6 Acyclic graphs resulting from Algorithm 1 at each equilibria: (a) xe
0, (b) xe

1 and (c) xe
2

a b c

Fig. 37.7 Acyclic graphs resulting from Algorithm 1 at each equilibria: (a) xe
0, (b) xe

1 and (c) xe
2,

when the conditions are violated

while the resulting acyclic graphs become, for each equilibrium point, those dis-
played in Fig. 37.7. Although the residual graph at xe

0 may seem uninteresting, since
a fortiori x D y D 0, it may give information about tendencies in nearby orbits
when compared to decompositions in its neighbourhood.

Let us now investigate what happens to GL and its decomposition in a neigh-
bourhood of each equilibrium point. With this purpose, consider an arbitrary small
displacement h D .hx; hy ; hz/ and perform the cycle decomposition at an arbitrarily
small vicinity of the equilibrium points xi C h.

Since h ¤ 0 no label vanishes and the interaction graph at xe
i C h;8.1 � i � 3/

is the same asGL in Fig. 37.3 with particular labels, shown in Fig. 37.8. Clearly, the
cycles remain the same, while the fluxes assigned to each cycle change according
to h.

We first inspect the residual acyclic graphs around equilibria xe
1 and xe

2. It is easy
to see that in both cases the residual acyclic sub-graphs remain the same as before,
whenever khk � min.
; b; r/. However, there are important changes at xe

0.
At xe

0, any small displacement h completely changes the interaction graph, that
remains connected. The graph in Fig. 37.8 is the same as that of Fig. 37.3. All three
variables interact and convective motion is possible. Notwithstanding, h affects the
decomposition as much as parameters 
; r and b. Therefore, it is possible to get
different decompositions depending on the sign of h components, as exempli-
fied above in Figs. 37.6 and 37.7. Moreover, inspecting h points to regions of
the state-space where the decomposition changes or where cycles are disrupted
(r D ze

i C hz), implying changes in the flow regime.
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Fig. 37.8 Lorenz system
interaction graph around its
equilibrium points

37.6 Inverse Problems in Systems Biology and Ecosystems

In classical physics and chemistry we can observe aspects at several points in time
and even on whole time intervals obtaining gorgeous series of observations. In con-
trast, with present-day observation methods used in the life sciences at large, more
often than not only snapshots about the constitution of a phenomenon components
and about interactions among them can be observed; observation of interactions
providing but meagre information in the majority of cases. Particularly in biology
and ecology, observations convey information mainly about the nodes of interac-
tion graphs (aspects of entities) and partially about the strength of interactions and
exchanges at certain points in time. Hence, although it is quite straightforward to
construct representative models for the dynamics and flows of aspects in physics
and chemistry directly from observations, even if spatially dependent, it is rather
the contrary when dealing with biological and ecological systems.

In life sciences, from the biochemistry of intracellular systems up to organisms,
populations and ecological systems, we need to content ourselves with observa-
tions about what constitutes the various components of a phenomenon and about
the interactions between them; sometimes appended with observations concerning
interdependencies among these interactions. In special cases, it is possible to further
gather information about the intensity and type of interactions (what is exchanged,
their structure and organisation). Except for intensities, that emanate from dynamics,
observations about aspects of the living, particularly those relative to interactions
and relations, tend to vary slightly and slowly. They issue from previous knowledge
about organisations and interrelationships in a phenomenon.

They are grounded on chemical affinities in the case of cellular networks and on
direct observation concerning affinities and exchanges between components in the
case of larger organic entities, way up to macroscopic ecosystems; although these
observations may require the registration and handling of events at various time and
space scales. Nevertheless, with just a handful of exceptions, observation of life
science subjects can only be performed at certain points in time often destroying the
organisation of the living; at least part of it.

Furthermore, at any life scale, the identification of components and their interac-
tions is difficult due to several reasons. Crucial data for understanding their structure
and functioning are routinely missing, not to say the data needed to understand
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the most distinguishing characteristic of life phenomena — the organisation of
intervening entities and processes [3, 33, 41, 43, 55, 63, 75].

Therefore, while modelling life phenomena we customarily face the following
inverse problem. The statement below assumes that the most relevant observation is
arranged and represented as an interaction graph G� [1, 11, 48, 52], except possibly
for information about qualitative changes in dynamical behaviour.

Problem 37.1. Given a labeled interaction graphG�, where � assumes real numer-
ical values, or a tendency interaction graph G˙, where � assumes C or � values,
find or, more properly, guess:

A. what are key characteristics of the phenomenon and what is the underlying
dynamics subjacent to observations about it, and

B. what relations and interactions are being observed and what should be a dynam-
ical system to represent a possible dynamics, given by a vector field I whenever
feasible. ut

This is a general scheme for the problem which assumes a plethora of distinct forms
and is stated in the literature in widely diverse terms [1,10–12,14,21,39,48,54,71].
Steps A. and B. distinguish two important modelling moods: the organisation of
observations and concept formation, and the expression of them in symbolic or
mathematical terms. Both go hand in hand, subject to the scientific questions (see
Sect. 37.2), step A. being more intuitive and synthetic whereas step B. more ana-
lytical and deductive. They cannot be separated, though, and are recurrent: step A.
re-intensifying after step B. increases knowledge about the phenomenon.

To better appreciate this problem, yet without considering hierarchies and organ-
isation, let us rewrite it with the aid of function G , given by (37.7). More precisely,
if a labeled graph with n nodes G� 2 Gn is built out of observations, we need to
find a dynamical system I such that G� D G .I/ and � is associated to I on sen-
sible grounds. Moreover, it is expected that I qualitatively reproduces conspicuous
dynamical features of the phenomenon or at least the more relevant in a global man-
ner. As examples of such features we list: saturation, diffusion, switching, explosion,
degradation etc. Stated as this, inventing adequate morphismsG� �! I is a general
description of modelling in the life sciences .

Notwithstanding, the set

G �1.G�/ D fI 2 C r.IRnIT.IRn// j G� D G .I/g; (37.21)

that is, the set of dynamical systems having the same interaction graph, is a pretty
large set to choose from as it is non-denumerable.

Letting Gı 2 Gn without restriction while considering inverse images of G ,
where Gı denotes a graph irrespective of its labels, will bring several uninterest-
ing or duplicated systems into account. For instance, if the adjacency matriz of
Gı is the identity, A.Gı/ D f.i; i/; i D 1; : : : ; ng. That is, Gı is a set of looped
nodes otherwise unconnected. This means that I is a set of n one-dimensional flows
and we will be dealing with n instances of systems in C r .IR1IT.IR1//. Similarly
if the adjacency matrix can be rearranged into a non-overlapping block-diagonal
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matrix. To prevent be dealing with less dimensional systems, better handled in
C r .IRl IT.IRl //; 1 � l < n, we consider only strongly connected interaction graphs
Gı 2 Gsc

n 	 Gn. Strongly connected graphs, are graphs where there is a path p.i; j /
from i to j and another p.j; i/ from j to i , for any two nodes i; j 2 N.G/. Hence,
changes in a variable are (indirectly) influenced by all other variables. Dynamical
systems I associated to this type of interaction graphs are non-decomposable [45,54]
into lower dimension ones.

Having such a large set from which to draw models shouldn’t be an issue, if
we could guarantee that any two dynamical systems drawn from G �1.G�/ have
the right dynamical characteristics for the modelled phenomenon. For instance, that
they have the right number of equilibrium points with proper types and that they
transit from one basin of attraction to another in similar ways. To have this confi-
dence, a classification of G �1.G�/ along the lines of dynamical systems theory, so
well represented [20] by Peixoto’s theorem [49], would be mostly welcome. With
this in mind, note that G �1 partitions C r.IRnIT.IRn// into classes which contain
dynamical systems sharing the same interaction graph. Moreover, other partitions
of C r.IRnIT.IRn//may be found by joining the classes G �1.Gı/ forGı possessing
particular graph properties.

The first thing to note is that the number of inverse images in (37.21) is finite, as
both jGnj and jGsc

n j are finite. Moreover, even Gsc
n can be further subdivided sole

in terms of connection topology, completely disregarding any label � defined on
G 2 Gsc

n . One way of performing this is to inspect the cycles of G. For instance, if
A.G/ D f.1; 2/; .2; 3/; : : : ; .n � 1; n/; .n; 1/g, G 2 Gsc

n and it has only one cycle.
Whichever the graphG is, the number of cycles in G depend only on the set of arcs
A.G/ and not on �. Hence, we can define classes of graphs Gc

q 	 Gsc
n such that

G 2 Gc
q , jC.G/j D q, where C.G/ is the set of all cycles of G. We have that:

Proposition 37.2. G 2 Gsc
n ) C.G/ ¤ ;

Proof. p.i; j / concatenated with p.j; i/ is a cycle, 8i; j 2 N.G/. ut
Therefore, the collection of all Gc

q form a partition of Gsc
n since

S
q Gc

q D Gsc
n and,

consequently, the collection fG�1.Gc
q/g is a partition of C r .IRnIT.IRn//.

The conjectures and results discussed in [51–53] for discrete systems and in
[1, 9, 10, 13, 29, 30] for other systems, indicate that each Gc

q can be further parti-
tioned according to dynamical properties, by resorting to label characteristics related
to dynamics. The suggested classification is thus feasible.

Biological dynamics, nevertheless, is plenty of swift changes from one steady-
state to another — which may be homeostatic, cyclic, circa-cyclic, etc — that are
associated with states moving from the influence region of one point of equilibrium
to another [1, 11, 69]. To cope with that, models should admit large (but controlled)
changes or moves in orbits to be caused by small changes in values of parameters,
state-variables or labels. Biological dynamics thus intensifies and reinforces chal-
lenges about the relevance of structural stability [14,21], already arising from other
fields [20] and reflected on applications of chaotic dynamics and catastrophe theory
within biological disciplines.
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In the present setting several approaches suggest themselves as instruments to
closer inspect the tessiture of each partition member of G �1.Gsc

n / and relations of
its elements to properties of graphs, that do not require the well developed analyt-
ical and geometric tools of dynamical systems theory. These instruments can thus
be employed in a manner complementary to the traditional ones. Labels may be
refined and enriched (they may be vectors or more complex structures), while the
decomposition resulting from Algorithm 1 may change suddenly with respect to
changes in parameters or state-variables, as shown in Sect. 37.5, providing informa-
tion. From another stand, there is great flexibility in Algorithm 1, particularly with
respect to the heuristics employed to distribute fluxes among cycles (line 6) and
even in the definition of a critical arc (equations (37.11) and (37.12)). This concerns
mathematics.

The arguments of Sects. 37.2 and 37.3 show that whatever we do while study-
ing life phenomena, we will end up with a relational description and a dynamics
to build. Disregarding dynamics in favour of purely relational descriptions or vice-
versa, does not seem the wisest thing to do. Dealing with both approaches together
may, on the contrary, open new horizons. From the biological point of view, not only
properties of cycle-labeling procedures or those relative to dynamics have ontologi-
cal interpretations and meaning [1,11]. The cycle decomposition too has a meaning
in ecological systems [71, 72] and is related to the behaviour and organisation of
biochemical networks [11, 35, 69], and other biological systems as well.

The possibility of using operations on graphs associated with graph proper-
ties to reveal the dynamics of biological phenomena rises the following possi-
bly overlapping questions, some of which are already addressed in the existing
literature.

� Is the number of cycles associated to the number of equilibrium points? Or is
label information needed to illuminate this?

� How tight is the relation between cycles and equilibria?
� What dynamical properties come solely from graph properties and which require

more information?
� Do the missing arcs of an interaction graph reflect regions of the aspect-space

forbidden to orbits?
� How are changes in graph structure, caused by variations in parameters and

variables, reflected in dynamics?
� How far do the cycle-decomposition provide clues about dynamics?
� How are variations in cycle-decomposition along the state and parameter spaces

related to changes in dynamical behaviour?
� Do these changes furnish biologically relevant information?
� Does the presence of residual graphs, for any conceivable decomposition of

fluxes among the cycles of an interaction graph, relate to chaotic behaviour?

These questions are far from being an exhaustive. Many other questions on this
subject arise from biological puzzles. The last question above seems to be purely
mathematical. Notwithstanding, since acyclic residual graphs have fluxes associ-
ated to them, they reveal transfers of energy that must accumulate in internal aspects
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when the system is closed. This accumulation may be a source of disorganisation,
as suggested by the Lorenz system (Sect. 37.5). Answering this sort of questions
will be a direct enhancement of biological knowledge. This becomes specially
conspicuous when the number of nodes (i.e., aspects and equations) is large.

37.7 Conclusions and Prospects

I think there are two acts in mathematics. There is the ability to prove and the ability to
understand. Marc Kac, 1982 [15]

Cross-fertilisation among mathematical disciplines have always enriched and
enlarged the mathematical adventure [2,38]. Cross-fertilisation among mathematics
and other sciences has always been of great value to both partners. The work and the
problems above described illuminate a bridge between methods of dynamical and
relational approaches in mathematics. In elaborating this text we opted to sacrifice
the completeness of the overview in favour of binding to the spirit of Mac Lane’s
quotation at the beginning.

This paper conveys the idea that properties of interaction graphs are useful in
prospecting the nature of dynamical systems associated to them. It argues also that a
more systematic investigation about the behaviour of dynamical systems associated
to particular sub-graphs of the interaction graph would enrich their knowledge from
a mathematical perspective and be of great value to the life sciences.

Properties of dynamical systems linked to properties of graphs are shared by
all dynamical systems having the same interaction graph and equivalent labels. A
deeper knowledge concerning the dynamics of systems that share the same inter-
action graph, about which properties they have in common or not, will reduce
difficulties in modelling and understanding life processes brought in by the scarcity
of data about them. Furthermore, this knowledge can suggest new observation
methods.

A clearer panorama concerning the possibilities of dynamical behaviour for a
given observation, will enhance our understanding with respect to what is feasible
and what is not feasible in the design and organisation of living systems. This is a
case where bringing together two mathematical areas would greatly enrich another
science. The standpoint advanced is a partial answer to a question posed by Michael
Grinfeld during the workshop Emerging Modelling Methodologies in Medicine and
Biology—EM3B9; namely, what is the usefulness of mathematics in building the-
ories for the life sciences. Why is it so, and possibilities for strengthening this
fundamental role, is addressed in the sequel.

Abduction [21, 22], and the consistent modelling and hypothesis construction
from partial data emanating from it, is a mandatory procedure while prospecting the
unknown in the empirical sciences. A point that is often overlooked, though, is the

9 IMCS, July 20-24, 2009, http://www.icms.org.uk/workshops/modellingmethodologies
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effect of the available knowledge in this process. Knowledge provides the spectacles
for observing and the tools for treating data. Therefore, it partially shapes what can
be observed, how it can be observed as well as the means of recording observations.
Mathematics, being the science of reasoning and a pillar of our cognitive abilities,
provides a mostly needed skeleton for structuring our inquiring and thinking about
life. Thus, enlarging mathematics in directions suggested by empirical investiga-
tions in the life-sciences, even in the absence of experimental data, will be always
of enormous value.

Two of the most conspicuous characteristics of life phenomena are their organ-
isation and their dynamical character [4, 14, 55]. Thus, there is a call for the joint
treatment of organisations and dynamical behaviour to viabilise theories in the life
sciences [3, 56, 74]. Although there is yet no consensus about models and mean-
ing of organisation, a model for organisation was proposed in [33] that includes
some conspicuous characteristics of organisation, such as whole-part hierarchy and
associativeness. According to it, graphs are the simplest instances of organisation,
immediately followed by hyper-graphs. Moreover, the properties and behaviour of
organisations at a higher level (a less detailed level) in the whole-part hierarchy of
organisations depend only partially on the properties of their parts [34]. That is,
parts which properties remain within appropriate bounds are equally adequate for
building organisations at a higher organisational level.

What is currently called reductionistic approach or, less controversially, bottom-
up approach requires the full description of parts or components to study a system.
Among life phenomena, this results on a pile of information difficult to handle [23].
Reverting this requires the ability to confidently describe phenomena without going
to the very bottom level of organisations. Seeing living entities as lively organisa-
tions [33, 34], and confidently relinquishing the necessity of thoroughly enrolling
every detail, requires understanding what sort of components could give rise to the
same organisation at a higher level. The suggested relationship between proper-
ties of graphs (organisations) and their dynamic behaviour is of utmost relevance
to further investigate organisations, and to find good observables to unveil them in
life phenomena [55, 58]. Knowledge about graph related partitions of dynamical
spaces and their properties shall bring understanding concerning which dynamics
is feasible for an observed organisation. Furthermore, this knowledge will support
many ongoing efforts to organise biological observations of relational-dynamical
character at all scales, see [35] and references therein.

Besides, the matching of dynamics to the next complex instance of organisa-
tions, hyper-graphs, leads directly into games, delayed and distributed signals, and
differential games as modes of interaction.
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Chapter 38
The Dynamics of Scalar Fields in Cosmology

José Pedro Mimoso

Abstract Scalar field models have been a focal point in cosmology during the last
two decades or so. They play a central role in inflationary models, they arise in modi-
fied gravity theories that extend Einstein’s General Relativity (GR) which are, often,
quantum motivated, and, recently, they have been put forward as a dark component
of the universe. Here we analyse their dynamics in the framework of isotropic cos-
mologies presenting an unified approach that encompasses models both in Einstein’s
GR and more general metric gravity theories. We perform a qualitative analysis of
the major dynamical features of these models, discussing the existence of asymp-
totic regimes and their connection to a classification of the scalar fields potentials
and couplings. A special interest is devoted to the interplay between scalar fields
and matter which gives rise to scaling behaviour.

38.1 Scalar Field Models

Scalar field cosmological models have been a focal point in cosmology during the
last two decades or so. They play a central role in inflationary models, they arise
in modified gravity theories [1] that extend Einstein’s General Relativity (GR), and,
recently, they have been put forward as a dark component of the universe [2].

We consider scalar field cosmologies in a unified representation which includes
both General Relativity and non-minimal coupling theories. In this framework the
basic action takes the form

S D
Z

d4x
p�g

h
.R � 2V.'// � gab';a';b C 16�G�Lm. m; m.'/gab/

i
;

(38.1)
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where gab represents the space-time metric, R the corresponding Ricci curvature
scalar,G� is the gravitational constant, andLm is the lagrangean describing the mat-
ter fields  m. The dependence of Lm on the metric multiplied by the factor m.'/
implies an effective coupling between the matter fields and the ' scalar field. In the
so-called minimal coupling case this factor takes a constant value, and we recover
GR. In generalized metric theories of gravity, wherem is a function of ', the interac-
tion between the usual matter fields and ' implies that test particles do not satisfy the
equivalence principle. However the consistency of Einstein’s equations is preserved
as it is the combination of the scalar and matter fields that should obey the princi-
ple. We have rb.T ab.'/ C T ab.m// D 0, where T ab

.'/
and T ab

.m/
are the energy-momentum

tensors associated with the scalar field and the matter fields, respectively.
Here we briefly perform a unified qualitative analysis of the major dynami-

cal features of these scalar field cosmological models [3–7]. In what follows we
shall restrict to the homogeneous and isotropic universes given by the Friedmann–
Robertson–Walker (FRW) metric

ds2 D �dt2 C a2.t/
�

dr2

1� k r2 C r
2.d�2 C sin2 � d�2/


; (38.2)

where k D 0;˙1 distinguishes the curvature of the spatial hypersurfaces. We
assume that the matter sources are a perfect fluid characterized by the equation
of state p D .� � 1/ �, where 0 � � � 2 is a constant, and a self-interacting
scalar field ', with the potential V.'/, which is coupled to the perfect fluid if
m.'/ ¤ const (NB: In what follows we shall adopt units that set 8�G� D 1).

Introducing the new time variable N D ln a and the dimensionless density

parameters x2 D P'2
6H 2

and 0 y2 D V.'/

3H 2
, as well as the expansion normalized

curvature term K D k=.aH/2, the Einstein field equations become a fourth order,
autonomous dynamical system

x0 D Kx � 3x �
r
3

2

�
@'V

V

�
y2 C 3

2
x
�
2x2 C � .1 � x2 � y2 CK/�

�
r
3

2

�
@'m

m

�
.1 � x2 � y2 CK/ (38.3)

y0 D
r
3

2

�
@'V

V

�
xy C 3

2
y
�
2x2 C � .1 � x2 � y2 CK/�� yK ; (38.4)

K 0 D �2K
�
1 � 3

2

�
2x2 C � .1 � x2 � y2 CK/�

�
�K2 (38.5)

' 0 D p6 x ; (38.6)

where we have used �=3H 2 D ˝m D 1 � x2 � y2 CK2.
GR models correspond to the case where @' lnm.'/ D 0, and Brans–Dicke

models are characterised by an exponential coupling m, i.e., by @' lnm.'/ D ˛0
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(as well as by V.'/ D 0 in BD original version, but we do not require it here).
Notice also that the dynamical system is akin to that of a decaying scalar field [7].
The crucial point regarding the qualitative study of general models with scalar fields
lies in the ' 0-equation, since it allows the consideration of arbitrary choices of V.'/
and of m.'/ [3]. We compactify the phase space of (38.3)–(38.5) by considering
' 2 < [ f1g, and distinguish the fixed points arising at finite values of ', which
require x D 0, from those at ' D1 (which we shall denote '1) that require either
x D 0 or  D '�1 D 0. The K D 0 and the y D 0 subspaces are invariant
manifolds.

For K D 0 the system reduces to the (38.3), (38.4), (38.6) and we find the
following fixed points. At finite '

� x D 0, y D 1, '0 where @'V.'0/ D 0. This case corresponds to de Sit-
ter solutions, dominated by the scalar field, and arise at maxima or minima of
the potential V . Notice that @'m may be different from 0. These solutions are
attractors at minima of V and repellors at maxima of V .

� x D y D 0, '0 where @'m D 0. The second case corresponds to matter dom-
inated solutions with V D 0 at maxima or minima of m. Note however that the
system (38.3)–(38.6) is singular when V D 0, translating the fact that the vari-
ables in use are not regular. In the original variables, this second class of solutions
exists provided that V has also an extremum, or is identically zero.

At '1, the finite ' solutions may exist also at ' D 1 provided that V or m
are asymptotically flat. However, other solutions may show up at ' D 1, if both
V and m are asymptotically exponential. In fact in this case the equilibrium in

 D 1=' is trivially satisfied at  D 0 [3]. Defining W D
q
3
2

lim'!1 @'V

V
and

Z D
q
3
2

lim'!1 @'m

m
. The exponential asymptotic behaviour ofm.'/ amounts to

having a late-time Brans–Dicke behaviour. One finds the following fixed points (see
Fig. 38.1) [8–10]

V+

S

NV-

BM

-2 -1 1 2

-4

-2

2

4
V-NS

SNV+

BM

BM

Fig. 38.1 In the left part of this figure we represent the fixed points at '1 phase-plane for V andm
asymptotically exponential. In the right part of the figure, we exhibit the regions in parameter space
that correspond to the asymptotic Brans–Dicke behaviour. The horizontal axis is theZ-axis and the
vertical axis is theW -axis. The regions S and BM are separated by the line 9�=2�W 2CWZ D 0,
and the separations between the S and N regions is given by the line 2Z2�2WZC9�.2��/=2 D 0
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� xV
˙

1 D ˙1, yV
˙ D 0, that lie on the intersection of the invariant lines x2Cy2 D

1 and y D 0. These points correspond to the vacuum solutions of Brans–Dicke
theory found by [11, 12].

� xBM1 D �W=3, which lies on the invariant line x2Cy2 D 1, provided jW j < 3.
These solutions (BM) correspond to those found in [13].

� xN1 D �2Z=.3.2��//, which lies on the invariant line y D 0 and exists if jZj <
3.2 � �/=2. These solutions (N) correspond to the matter dominated solutions
found by [12, 14].

� xS1 D 3�=2
Z�W ; .x

S1/2 C .yS1/2 D 3xS
1
CZ

Z�W , that lies in the interior of the phase
space domain, provided that

0 < .xS1/2 C .yS1/2 D
9�=2CZ.Z �W /

.Z �W /2 < 1:

These are scaling solutions (S) (see [5, 8–10] and references therein).

For the K ¤ 0 case, as K 0 D 0 for K D 0, we see from the linearization of the
system that

@K 0

@K
D �2C 2QKD0 ; QKD0 � 3

2

�
2x2 C � .1 � x2 � y2/�; (38.7)

which shows that the K D 0 subspace is stable wheneverQ < 1 which is precisely
the condition for inflationary behaviour. Thus inflation is required to guarantee both
the stability of the K D 0 asymptotic solutions and the attraction to GR, whenever
the latter applies.

Summing up the qualitative analysis of the dynamical system (38.3)–(38.5) asso-
ciates exact solutions to a classification of the fixed points, and also allows the
consideration of how extended gravity theories dynamically relate to GR [5].
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Chapter 39
The Dynamics of the Nash Map
for 2 By 2 Games

R.A. Becker, S.K. Chakrabarti, W. Geller, B. Kitchens, and M. Misiurewicz

Abstract We describe the dynamics of a better response map from the space of
mixed strategy profiles to itself, used by Nash to prove the existence of equilibrium
points for finite games. We do it for the case of 2 players and 2 pure strategies.
The maps are classified, according to the dynamics, as dominant strategy, elliptic or
hyperbolic.

39.1 Introduction

In one of J. Nash’s proofs of the existence of equilibrium points for finite games [5]
he defined a better response map from the space of mixed strategy profiles to itself.
The better response map changes each player’s strategy in a way that improves the
player’s payoff with respect to the other players’ strategies at the present time. We
will call it the Nash map. He observed that a point is an equilibrium point for the
game if and only if it is a fixed point for the better response map. He then applied
the Brouwer Fixed Point Theorem to show a Nash equilibrium exists for any finite
game.

While Nash did not introduce his map in order to investigate its dynamics, the
idea of studying its dynamics appears for example in [6].
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The iterates of the better response map produce a dynamical system on the space
of strategy profiles. We investigate this dynamical system in the case of 2 by 2 games
(i.e., 2 players and 2 pure strategies). In papers [1, 2], and [4] we studied particular
cases of these maps. Here we summarize those results, present an overview and
classify all 2 by 2 games with respect to the Nash map.

We divide the nondegenerate 2 by 2 games into three classes. In the first and
simplest class the game has a unique globally attracting fixed point and at least one
player has a dominant strategy. This class contains the game of Prisoner’s Dilemma.
The second class consists of the games having elliptic dynamics, where there is a
unique repelling fixed point and the trajectories of all other points move around
the fixed point. This class contains the game of Matching Pennies [1, 4]. The third
class consists of the games where the dynamics is hyperbolic, in this case meaning
that there are three fixed points, two of which are attracting and the third is either
repelling or a saddle point. In these games there may be regions consisting of points
that are attracted to other periodic orbits. This class contains the Coordination game
and the game of Chicken [2].

39.2 2 By 2 Games

Let a matrix

�
.a; a0/ .b; b0/
.c; c0/ .d; d 0/



with ordered pairs of real numbers as entries define a two person, two strategy (2
by 2) game with X the row player and Y the column player. The two players have
strategies given by the probability vectors x D .x; 1 � x/ and y D .y; 1 � y/,
respectively. The payoff matrices for X and Y are

Rx D
�
a b

c d


and Ry D

�
a0 b0
c0 d 0


:

The expected payoff for X is xRxyT and the expected payoff for Y is xRyyT .
The idea of a better response map is that each player adds weight to a pure strategy
if it will improve his payoff against the opposing players’ present strategy.

Thus, we define

tx D x C maxf0; .e1 � x/RxyT g;
t1�x D .1� x/ C maxf0; .e2 � x/RxyT g;
ty D y C maxf0;xRy.e1 � y/T g;

t1�y D .1 � y/ C maxf0;xRy.e2 � y/T g;
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with e1, e2 the standard basis vectors. The vectors .tx; t1�x/ and .ty ; t1�y/ must be
normalized to produce the new strategies. Therefore, we define the Nash map by the
formula

.x;y/ 7!
��

tx

tx C t1�x ;
t1�x

tx C t1�x
�
;

�
ty

ty C t1�y ;
t1�y

ty C t1�y
��

:

All information is contained in the essential Nash map on the unit square

n D .n1; n2/ W Œ0; 1�2 ! Œ0; 1�2;

defined by

n1.x; y/ D tx

tx C t1�x D
x Cmaxf0; .e1 � x/RxyT g

1Cmaxf0; .e1 � x/RxyT g Cmaxf0; .e2 � x/RxyT g ;

n2.x; y/ D ty

ty C t1�y D
y Cmaxf0;xRy.e1 � y/T g

1Cmaxf0;xRx.e1 � y/T g Cmaxf0;xRy.e2 � y/T g
with x and y as before. It is clear from the definition that in this setting the essential
Nash map is a continuous map of the unit square into itself.

If we let Œr�C D maxf0; rg, Œr�� D maxf0;�rg and ˛ D a � c, ˇ D b � d ,
� D a0 � b0, ı D c0 � d 0, the essential Nash map reduces to

n1.x; y/ D x C .1 � x/Œ˛y C ˇ.1� y/�C
1C .1 � x/Œ˛y C ˇ.1� y/�C C xŒ˛y C ˇ.1 � y/�� ;

n2.x; y/ D y C .1 � y/Œ�x C ı.1 � x/�C
1C .1� y/Œ�x C ı.1� x/�C C yŒ�x C ı.1� x/�� :

Consequently, essential Nash maps arising from 2 by 2 games form a four param-
eter family of piecewise rational, continuous functions of the unit square to itself. In
what follows we assume a nondegeneracy condition which is that ˛; ˇ; �; ı ¤ 0.

We prove that the games fall into three classes determined by the type of dynam-
ics that occur for the essential Nash map. In the first class, a player has a dominant
strategy and there is a single pure strategy equilibrium. A dominant strategy occurs
for a player when one strategy has a higher expected payoff than the other with-
out regard to the other player’s strategy. Player X has a dominant strategy if ˛ and
ˇ have the same sign and player Y has a dominant strategy if � and ı have the
same sign. This is the case for the Prisoner’s Dilemma game which is defined by the
matrix �

.�3;�3/ .�1;�4/

.�4;�1/ .�2;�2/

:

In this case ˛ D ˇ D � D ı D 1 and both X and Y have a dominant strategy
which is the first strategy and corresponds to “talking”.
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In the second class, which contains the game of Matching Pennies, there is a
single repelling mixed strategy Nash equilibrium.

For the third class, which includes the games of Coordination and Chicken, there
are two attracting pure strategy Nash equilibria and one mixed strategy equilibrium
which may have several different types of behavior but is never attracting.

Theorem 39.2.1. There are three classes of nondegenerate 2 by 2 games. They are:

1. Dominant strategy. When either ˛ and ˇ or � and ı have the same sign, there
is a single pure strategy Nash equilibrium which is a globally attracting fixed
point for the essential Nash map. When ˛ and ˇ have the same sign, player X
has a dominant strategy and when � and ı have the same sign, player Y has a
dominant strategy.

2. Elliptic dynamics. When ˛ and ı share one sign while ˇ and � have the other
sign, the essential Nash map is one-to-one, and there is one mixed strategy Nash
equilibrium which is a repelling fixed point for the essential Nash map.

3. Hyperbolic dynamics. When ˛ and � share the same sign while ˇ and ı have the
other sign, there are two attracting pure strategy and one mixed strategy Nash
equilibrium points. The mixed strategy equilibrium is never attracting.

In Example 39.5.1 we define a one parameter family of maps whose members fall
into the third case. In Theorem 39.5.1 we show that the set of nonwandering points
of each map in this family consists of a finite number of periodic points. Except for
three special values of the parameter and except for the points .0; 0/ and .1; 1/, all
nonwandering points are hyperbolic periodic points. For this reason we refer to the
dynamics as hyperbolic.

If we interchange the order of X ’s strategies, the values of ˛; ˇ; � and ı in the
essential Nash map are changed. The signs of ˛ and ˇ are switched and the roles of
� and ı are interchanged. Thus, we can always assume ˛ > 0.

We prove the statements made in Theorem 39.2.1 in the next sections.

39.3 Dominant Strategy

This class contains the game of Prisoner’s Dilemma.

Proof (of Theorem 39.2.1 (1)). Here one or both players have a dominant strategy.
Assume that ˛, ˇ and � are positive. Then ˛yC ˇ.1� y/ is positive and the map n
strictly increases the x-coordinate of a point .x; y/ unless x D 1, in which case the
x coordinate is unchanged. When x is sufficiently close to 1, the term �xCı.1�x/
is positive and the map n strictly increases the y-coordinate of a point .x; y/ unless
y D 1, in which case the y coordinate is unchanged. The point .1; 1/ is a fixed point
which attracts every point in the unit square. The same reasoning applies to the other
possibilities. ut
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In the next two classes of maps ˛ and ˇ have opposite signs and � and ı have
opposite signs.

An examination of the essential Nash map when x; y 2 .0; 1/ shows the
following.

n1.x; y/ > x if ˛y C ˇ.1 � y/ > 0,
n1.x; y/ D x if y D ˇ

ˇ�˛ ,

n1.x; y/ < x if ˛y C ˇ.1 � y/ < 0,

n2.x; y/ > y if �x C ı.1� x/ > 0,
n2.x; y/ D y if x D ı

ı�� ,

n2.x; y/ < y if �x C ı.1� x/ < 0.

Observe that 0 < ˇ
ˇ�˛ ;

ı
ı�� < 1. The two lines x D ı

ı�� and y D ˇ
ˇ�˛ divide

the square into four quadrants. We refer to the quadrants by compass points, NE,
SE, SW and NW. We will refer to the lines separating the quadrants as borders. The
intersection of the two lines is the point . ı

ı�� ;
ˇ
ˇ�˛ /, which is the unique fixed point

of the map in the interior of the square.
By the preceding observation the formula for n1 depends on whether the term

˛y C ˇ.1 � y/ is positive or negative and the formula for n2 depends on whether
�x C ı.1� x/ is positive or negative.

When ˛y C ˇ.1� y/ � 0 the formula for n1 becomes

nC1 .x; y/ D
x C .1 � x/Œ˛y C ˇ.1 � y/�
1C .1� x/Œ˛y C ˇ.1 � y/�

and when ˛y C ˇ.1 � y/ � 0 the formula for n1 becomes

n�1 .x; y/ D
x

1 � xŒ˛y C ˇ.1� y/� :

Similarly, when �x C ı.1 � x/ � 0 the formula for n2 becomes

nC2 .x; y/ D
y C .1 � y/Œ�x C ı.1� x/�
1C .1 � y/Œ�x C ı.1� x/�

and when �x C ı.1� x/ � 0 the formula for n2 becomes

n�2 .x; y/ D
y

1 � yŒ�x C ı.1 � x/� :

We need all eight partial derivatives of these four functions.

@nC1
@x
D 1

.1C .1 � x/Œ˛y C ˇ.1� y/�/2 ;
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@nC1
@y
D .˛ � ˇ/.1 � x/2
.1C .1 � x/Œ˛y C ˇ.1� y/�/2 ;

@n�1
@x
D 1

.1 � xŒ˛y C ˇ.1 � y/�/2 ;
@n�1
@y
D .˛ � ˇ/x2
.1 � xŒ˛y C ˇ.1 � y/�/2 ;

@nC2
@x
D .� � ı/.1 � y/2
.1C .1 � y/Œ�x C ı.1� x/�/2 ;

@nC2
@y
D 1

.1C .1 � y/Œ�x C ı.1� x/�/2 ;
@n�2
@x
D .� � ı/y2
.1 � yŒ�x C ı.1� x/�/2 ;

@n�2
@y
D 1

.1 � yŒ�x C ı.1� x/�/2 :

From this point we assume ˛ > 0, ˇ < 0, while � and ı have opposite signs.

39.4 Elliptic Dynamics

This class contains the game of Matching Pennies.
This is the case where ˛; ı > 0 and ˇ; � < 0. The essential Nash map is a rational

map in each quadrant. The four maps are defined as follows: NEn D .nC1 ; n�2 /,
SEn D .n�1 ; n�2 /, SWn D .n�1 ; nC2 / and NWn D .nC1 ; nC2 /.

The eight partial derivatives have the following signs.

@nC1
@x

;
@n�1
@x

;
@nC2
@y

;
@n�2
@y

> 0;

@nC1
@y

> 0; except when x D 1;
@n�1
@y

> 0; except when x D 0;
@nC2
@x

< 0; except when y D 1;
@n�2
@x

< 0; except when x D 0:

Lemmas 39.4.1 and 39.4.4 constitute Theorem 39.2.1 (2).

Lemma 39.4.1. In the class of elliptic dynamics the essential Nash map is a
homeomorphism from the unit square to its image.
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Before proving Lemma 39.4.1, we state two useful lemmas.

Lemma 39.4.2. Suppose that C is a Jordan curve in the plane andD is the closure
of the region bounded by C . Let f be a map from D into R2, which is a local
homeomorphism on the interior ofD and a homeomorphism from C onto its image.
Then:

1. f .C / is a Jordan curve and the image of the interior of D is the region bounded
by f .C /.

2. f is a homeomorphism of D onto its image.

Proof. The first statement is an elementary exercise in point set topology. The sec-
ond statement was proved in [3]. ut
Lemma 39.4.3. Let �1 and �2 be two smooth curves in R2, intersecting transver-
sally at p. Let D be a disk centered at p, such that �1 [ �2 divides it into the
four connected sets A1; A2; A3; A4, counting in the counterclockwise direction. Let
F1; F2; F3; F4 be smooth maps from D to R2 with positive Jacobians. Assume that
for each pair i; j 2 f1; 2; 3; 4g the maps Fi and Fj agree on the intersection of the
closures ofAi andAj , and define a map F as Fi on the closure ofAi , i D 1; 2; 3; 4.
Then there is a neighborhood of p on which F is a homeomorphism onto its image.

Proof. Choose a disk E , centered at p, contained in D, and so small that the sets
Ai \ E are connected and each Fi restricted to E is a homeomorphism onto its
image. Let B be a disk centered at F.p/ and contained in the intersection of those
four images. Fix " > 0.

Take a small piece of �1 or �2 with one endpoint p which is mapped by F to a
curve � 	 B joining F.p/ with the boundary of B . If B is sufficiently small, then
by smoothness of �i and Fj , the curve � is contained in a cone with vertex at F.p/
and angular width less than ". Inside this cone there is a half-line tangent to � at
F.p/.

Let us perform this operation with all four germs of �1[�2 at p. As we take two
consecutive germs (in the counterclockwise direction), the oriented angle between
them is less than � , so the oriented angle between their images under F (which are
their images under one of the maps Fj ) is less than � . As we go around, the sum
of the image angles is less than 4� , and therefore, since we have to end up where
we started, it has to be 2� . Since those angles are positive, if " is sufficiently small,
the four cones from the preceding paragraph are pairwise disjoint (except for their
common vertex). Thus, the sets F.Aj \E/\B D Fj .Aj \E/\B are four disjoint
sector-like regions. Therefore, since additionally we know that each Fj .Aj \E/ is
a homeomorphism onto its image, we see that F restricted to E \ F �1.B/ is a
homeomorphism onto its image. ut
Proof (of Lemma 39.4.1). First we show the image of the boundary of the square is
a Jordan curve. There are eight “break” points on the boundary. Starting at the top
and going clockwise around the boundary of square we examine their images. They
are n. ı

ı�� ; 1/ D . ı�˛�
ı�.1C˛/� ; 1/, n.1; 1/ D .1; 1

1�� /, n.1;
ˇ
ˇ�˛ / D .1; �ˇ

˛�.1��/ˇ /,
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n.1; 0/ D . 1
1�ˇ ; 0/, n.

ı
ı�� ; 0/ D . ı

��C.1�ˇ/ı ; 0/, n.0; 0/ D .0; ı
1Cı /, n.0;

ˇ
ˇ�˛ / D

.0; ˇ
ˇ�.1Cı/˛ / and n.0; 1/ D . ˛

1C˛ ; 1/.
First examine the image of the boundary segment f.x; 1/ W ı

ı�� � x � 1g. It

is a curve connecting the points . ı�˛�
ı�.1C˛/� ; 1/ and .1; 1

1�� /. Since
@n

C

1

@x
> 0 and

@n�

2

@x
< 0, except when x D 0, the curve minus the endpoints is contained in the

rectangle where ı�˛�
ı�.1C˛/� < x < 1 and 1

1�� < y < 1. The essential Nash map
is a homeomorphism of the curve onto its image because the partial derivatives are
not 0.

Next consider the image of the boundary segment f.1; y/ W ˇ
ˇ�˛ � y � 1g. The

image is the boundary segment f.1; y/ W �ˇ
˛�.1��/ˇ � y � 1

1�� g. Since
@n�

2

@y
> 0 the

essential Nash map restricted to the boundary segment is a homeomorphism onto its
image.

Continuing in this way we examine the image of each boundary segment and
observe that the essential Nash map is a homeomorphism of each onto its image and
that the images do not intersect except at the endpoints. Consequently, the essential
Nash map restricted to the boundary of the square is a homeomorphism onto its
image which is a Jordan curve.

The essential Nash map n is a local homeomorphism on the interior of each
quadrant since the Jacobian is always positive. At the point . ı

ı�� ;
ˇ
ˇ�˛ / apply

Lemma 39.4.3 to see that n is a local homeomorphism. If p is a point on a bor-
der between two quadrants we can still apply Lemma 39.4.3 to see that n map is a
local homeomorphism; just introduce a spurious curve � 0 and use F1 and F2 again
in the new regions.

Now apply Lemma 39.4.2 to prove that n is a homeomorphism from the square
onto its image. ut
Lemma 39.4.4. In the class of elliptic dynamics the point . ı

ı�� ;
ˇ
ˇ�˛ / is the unique

fixed point for the essential Nash map and it is exponentially repelling.

Proof. Consider the northern boundary of the northeast quadrant. There n. ı
ı�� ; 1/ D

. ı�˛�
ı�.1C˛/� ; 1/ and n�2 .x; 1/ < 1 when x > ı

ı�� . There are no fixed points for n on
the northern boundary.

On the eastern boundary n.1; y/ D .1; y
1��y / but y

1��y < y. Hence, there are
no fixed points for n on the eastern boundary of the northeast quadrant. The same
reasoning applies to the other quadrants, so there are no fixed points for the essential
Nash map on the boundary of the square. The interior fixed point is the only fixed
point for the map.

The derivative of NEn at the fixed point is

D2NE D
"

1 .˛�ˇ/�2

.��ı/2
.��ı/ˇ2

.˛�ˇ/2 1

#
D
�
1 G

�B 1


;
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where

G D .˛ � ˇ/�2
.� � ı/2 and B D � .� � ı/ˇ

2

.˛ � ˇ/2 D
.ı � �/ˇ2
.˛ � ˇ/2 :

In this case G;B > 0.
The determinant is 1 C BG > 1, the characteristic polynomial is c.�/ D

�2 � 2� C .1 C BG/ and the eigenvalues are � D 1 ˙ p�BG. The eigen-
values are complex so the matrix is conjugate to a rotation through �� , where
� D tan�1

p
BG, followed by an expansion of " D p1CBG.

The derivative maps the ellipse Bx2 C Gy2 D c2 to the ellipse Bx2 C Gy2 D
.1 C BG/c2 D ."c/2. These form a family of ellipses that is invariant under the
derivative map. If the matrix is divided by " the new map is just a rotation on each
ellipse.

Let

D D .˛ � ˇ/ı2
.� � ı/2 > 0 and A D .ı � �/˛2

.˛ � ˇ/2 > 0:

Then the derivative of NWn at the fixed point is

D2NW D
"

1 .˛�ˇ/�2

.��ı/2
.��ı/˛2

.˛�ˇ/2 1

#
D
�
1 G

�A 1



with ellipses Ax2 CGy2 D c2.
The derivative of SWn at the fixed point is

D2SW D
"

1 .˛�ˇ/ı2

.��ı/2
.��ı/˛2

.˛�ˇ/2 1

#
D
�
1 D

�A 1



with ellipses Ax2 CDy2 D c2.
Finally, the derivative of SEn at the fixed point is

D2SE D
"

1 .˛�ˇ/ı2

.��ı/2
.��ı/ˇ2

.˛�ˇ/2 1

#
D
�
1 D

�B 1



with ellipses Bx2 CDy2 D c2.
For c � 0 let Ec be the piecewise ellipse in R2 defined as follows. In the NE

quadrant it is Bx2 C Gy2 D c2 which goes from .c=
p
B; 0/ to .0; c=

p
G/. In the

NW quadrant it is Ax2 C Gy2 D c2 which goes from .0; c=
p
G/ to .�c=pA; 0/.

In the SW quadrant it is Ax2 C Dy2 D c2 which goes from .�c=pA; 0/ to
.0;�c=pD/. Then in the SE quadrant it is Bx2 C Dy2 D c2 which goes from
.0;�c=pD/ back to .c=

p
B; 0/. In the NW quadrant the graph of Ec has as its

derivative dy
dx
D �Ax

Gy
and in the NE quadrant dy

dx
D �Bx

Gy
. At the point .0; c=

p
G/
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both derivatives are 0. The derivatives also agree at the other three points on Ec that
are on the borders of the quadrants. The piecewise ellipse Ec is a compact, strictly
convex, differentiable, closed curve.

Define a continuous, piecewise linear map J from R2 to itself by letting D2NE

act on the first quadrant, D2NW act on the second quadrant, D2SW on the third and
D2SE on the fourth.

Consider J on the first quadrant. For a point .x; y/ on Ec the vector .J �
I /.x; y/ D .Gy;�Bx/ at .x; y/ is orthogonal to the gradient of the function
Bx2 C Gy2. This means it is a tangent vector to Ec pointing in the clockwise
direction. Consequently, J maps the point outside of Ec . The same is true for every
point on Ec . So J.Ec/ is a compact, closed curve that lies strictly outside of Ec .
There is a positive distance from Ec to J.Ec/.

The family of piecewise ellipses fEc W c � 0g fills out R2 so that for .x; y/ 2 R2

there is a unique c 2 Œ0;C1/ with Ec containing .x; y/. Use this family to define a
size function s on R2 by s..x; y// D c where Ec contains .x; y/. This is a measure
of distance from .x; y/ to the origin. It may not be a norm because for t < 0

it may be that s..tx; ty// and jt js..x; y// are not equal. However, when t � 0

we do have s..tx; ty// D ts..x; y//. This size function is uniformly equivalent
to the Euclidean norm in the sense that there are constants c1; c2 > 0 such that
c1s.x; y/ � jj.x; y/jj � c2s.x; y/. Let � D minfs..x; y// W .x; y/ 2 J.E1/g. Then
� > 1 and for all .x; y/ 2 R2, s.J..x; y/// � �s..x; y//. This means the origin is
an exponentially repelling fixed point for J .

The map J is the piecewise linear approximation to the essential Nash map at
the fixed point . ı

ı�� ;
ˇ
ˇ�˛ /. It follows that the fixed point is exponentially repelling

for the essential Nash map. ut
Example 39.4.1. We consider a one parameter family of maps where ı D ˛ and
ˇ D � D �˛. The game of Matching Pennies is defined by the matrix

�
.1;�1/ .�1; 1/
.�1; 1/ .1;�1/


:

The essential Nash map for Matching Pennies occurs in this family when ˛ D 2. It
is investigated in detail in [1].

For this family the four terms in the essential Nash map simplify to

nC1 .x; y/ D
x C ˛.1 � x/.2y � 1/
1C ˛.1 � x/.2y � 1/ ;

n�1 .x; y/ D
x

1 � ˛x.2y � 1/ ;

nC2 .x; y/ D
y C ˛.1 � y/.1 � 2x/
1C ˛.1 � y/.1 � 2x/ ;

n�2 .x; y/ D
y

1 � ˛y.1 � 2x/� :
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The essential Nash map commutes with rotation by �=2, meaning that if R� is
rotation in R2 by the angle � then n D R��=2 ı n ıR�=2. The fixed point is always
.1=2; 1=2/ and it is repelling. All four derivatives at the fixed point are

�
1 ˛

2

�˛
2
1


:

The characteristic polynomial is c.�/ D �2�2�C .1C˛2=4/. The eigenvalues are
1 ˙ .˛=2/i so all four derivatives are conjugate to rotation by � D � tan�1.˛=2/
followed with multiplication by

p
1C ˛2=4.

There is another interpretation of this family as using an index of caution for the
Nash map in the game of Matching Pennies. By putting a parameter in the definition
of the Nash map it is possible to adjust the caution with which each player responds.
In fact, any game gives rise to a family of Nash maps using an index of caution. This
is equivalent to varying the payoff matrices and applying the original Nash map.
Define

tx;� D x C �maxf0; .e1 � x/RxyT g;
t1�x;� D .1 � x/ C �maxf0; .e2 � x/RxyT g;
ty;� D y C �maxf0;xRy.e1 � y/T g;

t1�y;� D .1 � y/ C �maxf0;xRy.e2 � y/T g;

The parameterized Nash map becomes

.x;y/ 7!
��

tx;�

tx;� C t1�x;� ;
t1�x;�

tx;� C t1�x;�
�
;

�
ty;�

ty.�/C t1�y;� ;
t1�y;�

ty;� C t1�y;�
��

:

This is the usual Nash map for the game with ˛ D 2�.
The essential Nash map for the game of Matching Pennies has an invariant topo-

logical circle. On this circle there is an orbit of period 8 which attracts all points
in the square except the fixed point [1]. This is illustrated in Fig. 39.1. In the figure

Fig. 39.1 The essential Nash
map for the game of
Matching Pennies
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the shaded region is the intersection of all images of the square. The boundary of
the shaded region is the invariant circle and the marked points make up the orbit of
period 8.

This leads to the following two conjectures. In what follows, “circle” means a
topological circle, that is, a Jordan curve.

Conjecture 39.4.1. In the elliptic case the essential Nash map has an invariant circle
that attracts every point in the square except the unique fixed point. If the rotation
number of the map restricted to its invariant circle is irrational, then this map is
conjugate to an irrational rotation. If the rotation number is rational, there is one
attracting periodic orbit.

Figures 39.2 and 39.3 are computer simulations of the Matching Pennies family
and show what appear to be invariant attracting circles (if the rotation number is
rational, we see only an attracting periodic orbit). In [4] we proved that in this family
the conjecture is true when� is sufficiently small. Moreover, the size of the invariant
circle is of order �, after rescaling the circles by 1=� the circles converge to a
geometric circle of radius 3�=32, and the rotation number of the map restricted to
the circle is of order �.

The second weaker conjecture would follow from the first.

Fig. 39.2 Attractors for
various values of � for the
Matching Pennies family; the
phase space

Fig. 39.3 Dependence of the attractor on � for the Matching Pennies family. The horizontal axis
is � and the vertical axis x
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Conjecture 39.4.2. In the elliptic case there is no chaotic behavior in the essential
Nash map. In particular, the topological entropy of the map is zero.

39.5 Hyperbolic Dynamics

This class contains the games of Coordination and Chicken.
This is the case where ˛; � > 0 and ˇ; ı < 0. The essential Nash map is a rational

map in each quadrant. The four maps are defined as follows: NEn D .nC1 ; n
C
2 /,

SEn D .n�1 ; nC2 /, SWn D .n�1 ; n�2 / and NWn D .nC1 ; n�2 /.
Lemmas 39.5.1 and 39.5.2 constitute Theorem 39.2.1 (3).

Lemma 39.5.1. In the class of hyperbolic dynamics the points .0; 0/ and .1; 1/ are
attracting fixed points for the essential Nash map and they are the only fixed points
on the boundary of the square. Except for the point . ı

ı�� ;
ˇ
ˇ�˛ / every point in the

southwest quadrant is attracted to .0; 0/ and except for the point . ı
ı�� ;

ˇ
ˇ�˛ / every

point in the northeast quadrant is attracted to .1; 1/.

Proof. Consider the northeast quadrant and observe that nC1 .1; y/ D 1 and
nC2 .x; 1/ D 1. When x ¤ 1 and y > ˇ

ˇ�ı , nC1 increases the x-coordinate of

the image point and when y ¤ 1 and x > ı
ı�� , nC2 increases the y-coordinate of

the image point. Consequently, .1; 1/ is the only fixed point of NEn and every point
except . ı

ı�� ;
ˇ
ˇ�˛ / in the northeast quadrant is attracted to it. The same statement

holds for .0; 0/ and the southwest quadrant.
Now consider the boundary of the southeast quadrant. On the southern bound-

ary n�1 decreases the x coordinate of the image point. On the eastern boundary
nC2 increases the y-coordinate of the image point. There are no fixed points on the
boundary of the southeast quadrant and the same reasoning applies to the northwest
quadrant. ut

We compute the derivatives at the mixed strategy fixed point as we did in the
class of elliptic dynamics. The derivative of NEn at the fixed point . ı

ı�� ;
ˇ
ˇ�˛ / is

D3NE D
"

1 .˛�ˇ/�2

.��ı/2
.��ı/˛2

.˛�ˇ/2 1

#
D
�
1 G

A0 1


;

where

G D .˛ � ˇ/�2
.� � ı/2 > 0 and A0 D .� � ı/˛2

.˛ � ˇ/2 > 0:

Let

D D .˛ � ˇ/ı2
.� � ı/2 > 0 and B 0 D .� � ı/ˇ2

.˛ � ˇ/2 > 0:
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Then the derivative of NWn at the fixed point is

D3NW D
"

1 .˛�ˇ/�2

.��ı/2
.��ı/ˇ2

.˛�ˇ/2 1

#
D
�
1 G

B 0 1


:

The derivative of SWn at the fixed point is

D3SW D
"

1 .˛�ˇ/ı2

.��ı/2
.��ı/ˇ2

.˛�ˇ/2 1

#
D
�
1 D

B 0 1


:

Finally, the derivative of SEn at the fixed point is

D3SE D
"

1 .˛�ˇ/ı2

.��ı/2
.��ı/˛2

.˛�ˇ/2 1

#
D
�
1 D

A0 1


:

Note that all four matrices are strictly positive so that the Perron–Frobenius The-
orem applies to each. In two dimensions the Perron–Frobenius Theorem says that a
strictly positive matrix has two real eigenvalues, with one, the Perron eigenvalue,
strictly larger in absolute value than the other and positive. The eigendirection
for the Perron eigenvalue lies in the interior of the first and third quadrants. The
eigendirection for the other eigenvalue lies in the interior of the second and fourth
quadrants. The theorem also states that the Perron eigenvalue is at least as large as
the smallest row sum. In our case each row sum is greater than one so the Perron
eigenvalue is greater than 1. Of course, this also can be directly computed.

Lemma 39.5.2. In the class of hyperbolic dynamics the point . ı
ı�� ;

ˇ
ˇ�˛ / is the

unique mixed strategy fixed point for the essential Nash map and it is never
attracting.

Proof. Lemma 39.5.1 shows that there are no mixed strategy fixed points on the
boundary of the square and we previously observed that the point . ı

ı�� ;
ˇ
ˇ�˛ / is the

unique mixed strategy fixed point in the interior of the square. The derivatives of
NEn and SWn at the fixed point obey the Perron–Frobenius Theorem as noted. This
implies that the fixed point has an expanding direction in the northeast quadrant and
an expanding direction in the southwest quadrant. ut

The smaller eigenvalue for the derivative of SEn is 1 � pA0D and the smaller
eigenvalue for the derivative of NWn is 1 �pB 0G. These eigenvalues are less than
1 but can be positive, zero or negative in any combination.

Example 39.5.1. We consider a one parameter family of maps where � D ˛ and
ˇ D ı D �˛. The game of Coordination is defined by the matrix

�
.1; 1/ .�1;�1/

.�1;�1/ .1; 1/


:
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The essential Nash map for Coordination occurs in this family when ˛ D 2. The
game of Chicken is defined by the matrix

�
.�10;�10/ .5;�5/
.�5; 5/ .0; 0/


:

Interchanging the ordering forX ’s choices one observes that the essential Nash map
for Chicken occurs in this family when ˛ D 5.

The four terms that occur in the essential Nash map simplify to the following:

nC1 .x; y/ D
x C ˛.1 � x/.2y � 1/
1C ˛.1 � x/.2y � 1/ ;

n�1 .x; y/ D
x

1 � ˛x.2y � 1/ ;

nC2 .x; y/ D
y C ˛.1 � y/.2x � 1/
1C ˛.1 � y/.2x � 1/ ;

n�2 .x; y/ D
y

1 � ˛y.2x � 1/� :

The three fixed points for the essential Nash map are .0; 0/, .1; 1/ and .1=2; 1=2/.
The essential Nash map is symmetric about the main diagonal and the anti-diagonal,
meaning that if rd .x; y/ D .y; x/ and ra.x; y/ D .1�y; 1�x/ then n D rd ınırd
and n D ra ı n ı ra. All four derivatives at .1=2; 1=2/ are

�
1 ˛
2

˛
2
1


:

The derivative has two eigenvalues. The larger in modulus is 1C ˛
2

with eigen-
vector .1; 1/T and the smaller in modulus is 1� ˛

2
with eigenvector .1;�1/T . In [2]

we prove the following theorem.

Theorem 39.5.1. Let n be the essential Nash map described above.

1. For all ˛, .0; 0/ and .1; 1/ are orientation preserving, topologically attracting
fixed points and .1=2; 1=2/ is a fixed point. There are no other fixed points.

2. When 0 < ˛ � 1=2, n is a homeomorphism onto its image. When 1=2 < ˛, n is
not one-to-one.

3. For 0 < ˛ < 2, .1=2; 1=2/ is an orientation preserving fixed saddle point
whose stable manifold is the anti-diagonal and unstable manifold is the diagonal
(without .0; 0/ and .1; 1/).

4. For 2 < ˛ < 4, .1=2; 1=2/ is an orientation reversing fixed saddle point
whose stable manifold is the anti-diagonal and unstable manifold is the diagonal
(without .0; 0/ and .1; 1/).

5. For ˛ � 4, all points below the anti-diagonal are attracted to .0; 0/ and all
points above the anti-diagonal are attracted to .1; 1/.
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Fig. 39.4 Periodic points for
˛ D 6 for the family from
Theorem 39.5.1
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6. For 4 < ˛ < 2.1Cp2/, .1=2; 1=2/ is an orientation reversing repelling fixed
point. There is a saddle period two orbit on the anti-diagonal. One point of this
orbit lies below .1=2; 1=2/ and its stable manifold is the part of the anti-diagonal
with x < 1=2. The other point lies above .1=2; 1=2/ and its stable manifold is
the part of the anti-diagonal with x > 1=2. All points below the anti-diagonal
are attracted to .0; 0/ and all points above the anti-diagonal are attracted to
.1; 1/.

7. For ˛ > 2.1Cp2/, .1=2; 1=2/ is an orientation reversing repelling fixed point.
There is an attracting orbit of period two on the anti-diagonal. There are two
saddle period two orbits that follow the orbit of period two on the anti-diagonal.
One saddle orbit lies below the anti-diagonal and one above. There are no
other periodic points. Every other point is attracted to one of the periodic orbits
mentioned (including .0; 0/ and .1; 1/). For illustration, see Fig. 39.4.

Conjecture 39.5.1. In the hyperbolic case any periodic behavior that may occur
already occurs in the family described in Example 39.5.1. This periodic behavior
is explained by Theorem 39.5.1.

Conjecture 39.5.2. In the hyperbolic case there is no chaotic behavior in the essen-
tial Nash map. In particular, the topological entropy of the map is zero.
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Chapter 40
Resort Pricing and Bankruptcy

Alberto A. Pinto, Marta Faias, and Abdelrahim S. Mousa

Abstract We introduce a resort pricing model, where different types of tourists
choose between different resorts. We study the influence of the resort prices on the
choices of the different types of tourists. We characterize the coherent strategies of
the tourists that are Nash equilibria. We find the prices that lead to the bankruptcy of
the resorts and, in particular, their dependence on the characteristics of the tourists.

40.1 Introduction

The distribution of different types of tourists reaching a destination affects both the
demand and supply side of the tourism industry. From the demand perspective, the
choice of a particular destination will depend greatly on the beliefs of the agent
about which kind of tourists will share the resort with him/her (see [4, 5]). On the
supply side, resorts try to sell their destination based on reputation, and a large factor
that determines the character and reputation of a resort is the type of tourists who
frequent that resort (see [6]). Brida et al. [1] presented a tourism model where the
choice of a resort by a tourist depends not only on the product offered by the resort,
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but also depends on the characteristics of the other tourists present in the resort. In
order to explore the effect the type of resident tourist has on other potential tourists
selecting the same resort, they introduced a game theoretical model and described
some relevant Nash equilibria. We add to the previous models the influence of resort
prices on the tourist’s choice of a resort (see [7]). We characterize the prices that
lead to the bankruptcy of the resorts and, in particular, their dependence on the
characteristics of the tourists.

40.2 Resort Pricing Model

The resort pricing model has two types T D ft1; t2g of tourists i 2 I that have
to choose between two goods or services. For instance, the tourists have to choose
between spending their holidays in a beach resort B or in a mountain resort M , i.e.
r 2 R D fB;M g. Let nq � 1 be the number of tourists with type tq . Let P be the
price vector whose coordinates pr indicates the standard price of the resort r for
each tourist, independently of its type,

P D .pB ; pM /:

Let L be the preference location matrix whose coordinates !rq indicate how much
the tourist, with type tq , likes, or dislikes, to choose resort r

L D
 
!B1 !M1

!B2 !M2

!
:

The preference location matrix indicates, for each type, the resort that the tourists
prefer, i.e. the tourists taste type (see [1, 8]).

Let Nr be the preference neighbors matrix whose coordinates ˛rqq0 indicate how
much the tourist, with type tq , likes, or dislikes, that tourist, with type tq0 , chooses
resort r

Nr D
 
˛r11 ˛r12

˛r21 ˛r22

!
:

The preference neighbors matrix indicates, for each type of tourists, whom they
prefer to be with or to not be with at each resort, i.e. the tourists crowding type (see
[1, 8]).

We describe the tourists’ location by a strategy map S W I ! R that associates
to each tourist i 2 I its location S.i/ 2 R. Let S be the space of all strategies S .
Given a strategy S , let OS be the strategic occupation matrix, whose coordinates
lrq D lrq .S/ indicate the number of tourists, with type tq , that choose resort r

OS D
�
lB1 lM1
lB2 lM2

�
:
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The strategic occupation vector VS , associated to a strategy S , is the vector
.l1; l2/ D .lB1 .S/; l

B
2 .S//. Hence, l1 (resp. n1 � l1) is the number of tourists, with

type t1, who choose the resort B (resp.M ). Similarly, l2 (resp. n2 � l2) is the num-
ber of tourists, with type t2, who choose the resort B (resp. M ). The set O of all
possible occupation vectors is

O D f.l1; l2/ W 0 � l1 � n1 and 0 � l2 � n2g:

Let U1 W R �O! R the utility function, of the tourist with type t1, be given by

U1.BI l1; l2/ D �pB C !B1 C ˛B11.l1 � 1/C ˛B12l2
U1.M I l1; l2/ D �pM C !M1 C ˛M11 .n1 � l1 � 1/C ˛M12 .n2 � l2/:

Let U2 W R �O! R the utility function, of the tourists with type t2, be given by

U2.BI l1; l2/ D �pB C !B2 C ˛B22.l2 � 1/C ˛B21l1
U2.M I l1; l2/ D �pM C !M2 C ˛M22 .n2 � l2 � 1/C ˛M21 .n1 � l1/:

Given a strategy S 2 S, the utility Ui .S/, of the tourist i with type tp.i/, is given by
Up.i/.S.i/I lB1 .S/; lB2 .S//.

We note that, if the price can depend on the tourist type, then the prices can be
encoded in the preference decision matrix and, therefore, the model can be studied
as the yes–no decision model presented in [7].

Definition 40.1. A strategy S� W I ! R is a Nash equilibrium if, for every tourist
i 2 I and for every strategy S , with the property that S�.j / D S.j / for every
tourist j 2 I n fig, we have

Ui .S
�/ � Ui .S/:

A coherent strategy1 is a strategy in which all tourists, with the same type, prefer
to choose the same resort. A coherent strategy is described by a map C W T ! R
where for every tourist i , with type tq.i/, C.q.i// indicates its location. Hence, a
coherent strategy C W T ! R determines an unique strategy S W I ! R given by
S.i/ D C.q.i//.

Let x D !B1 � !M1 be the horizontal relative location preference of the tourists
with type t1 and let y D !B2 �!M2 be the vertical relative location preference of the
tourists with type t2. Let p D pB � pM be the relative price. Given a pair .x; y/
of relative location preferences, the Nash equilibrium prices interval P.R1; R2/ D
P.x; yIR1; R2/ of a coherent strategy .R1; R2/ is the set of all relative prices p
for which the strategy .R1; R2/ is a Nash equilibrium. Our aim is to determine and
characterize all Nash equilibrium prices intervals.

1 or equivalently, no-split strategy or heard strategy.
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40.3 Nash Equilibrium Prices

We observe that there are four distinct coherent strategies:

� .B;B/ strategy – all tourists choose the resort B
� .B;M/ strategy – all tourists, with type t1, choose the resort B , and all tourists,

with type t2, choose the resort M
� .M;B/ strategy – all tourists, with type t1, choose the resort M and all tourists,

with type t2, choose the resort B
� .M;M/ strategy – all tourists choose the resort M

The horizontal H.B;B/ and vertical V.B;B/ strategic thresholds of the .B;B/
strategy are given by

H.B;B/ D �˛B11.n1 � 1/� ˛B12n2 and V.B;B/ D �˛B22.n2 � 1/� ˛B21n1:

The (B,B) Nash equilibrium prices interval P.B;B/ is the semi-line

P.B;B/ D fp 2 R W p � x �H.B;B/ and p � y � V.B;B/g:

In the red half-plane of the upper left section of Fig. 40.1, for a given relative pref-
erences pair .x; y/, the first coordinate of the blue vector, i.e. the yellow horizontal
projection, represents the maximum price in P.B;B/; in the green half-plane, for a
given relative preferences pair .x; y/, the second coordinate of the blue vector, i.e.
the orange vertical projection, represents the maximum price in P.B;B/.

The horizontal H.B;M/ and vertical V.B;M/ strategic thresholds of the
.B;M/ strategy are given by

H.B;M/ D �˛B11.n1 � 1/C ˛M12n2 and V.B;M/ D ˛M22 .n2 � 1/� ˛B21n1:

The (B,M) Nash equilibrium prices interval P.B;M/ is the segment line (that can
be empty)

P.B;M/ D fp 2 R W p � x �H.B;M/ and p � y � V.B;M/g:

In the blue half-plane of the upper right section of Fig. 40.1, for a given relative pref-
erences pair .x; y/, the second coordinate of the blue vector, i.e. the orange vertical
projection, represents the minimum price in P.B;M/ and the first coordinate of the
blue vector, i.e. the yellow horizontal projection, represents the maximum price in
P.B;M/; in the purple half-plane, there are no Nash equilibrium prices.

The horizontal H.M;B/ and vertical V.M;B/ strategic thresholds of the
.M;B/ strategy are given by

H.M;B/ D ˛M11 .n1 � 1/� ˛B12n2 and V.M;B/ D �˛B22.n2 � 1/C ˛M21n1:
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Fig. 40.1 Nash equilibrium prices

The (M,B) Nash equilibrium prices interval P.M;B/ is the segment line (that can
be empty)

P.M;B/ D fp 2 R W p � x �H.M;B/ and p � y � V.M;B/g:

In the blue half-plane of the lower left section of Fig. 40.1, for a given relative pref-
erences pair .x; y/, the first coordinate of the blue vector, i.e. the yellow horizontal
projection, represents the minimum price in P.M;B/ and the second coordinate of
the blue vector, i.e. the orange vertical projection, represents the maximum price in
P.M;B/; in the purple half-plane, there are no Nash equilibrium prices.

The horizontal H.M;M/ and vertical V.M;M/ strategic thresholds of the
.M;M/ strategy are given by

H.M;M/ D ˛M11 .n1 � 1/C ˛M12n2 and V.M;M/ D ˛M22 .n2 � 1/C ˛M21n1:

The (M,M) Nash equilibrium prices interval P.M;M/ is the semi-line

P.M;M/ D fp 2 R W p � x �H.M;M/ and p � y � V.M;M/g:

In the red half-plane of the lower right section of Fig. 40.1, for a given relative pref-
erences pair .x; y/, the first coordinate of the blue vector, i.e. the yellow horizontal
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m(B,B) x-H(B,M) M(M,M)

P(M,M)P(B,M) P(M,B)P(B,B)

P

y-V(B,M) x-H(M,B) y-V(M,B) m(B,B)x-H(B,M)

P(M,M)

P(B,B)

P

y-V(B,M) x-H(M,B)y-V(M,B)M(M,M)

Fig. 40.2 Bankruptcy and competitive business Nash equilibria prices, where M.M;M/ D
maxfx �H.M;M/; y � V .M;M/g and m.B;B/ D minfx �H.B;B/; y � V .B; B/g

projection, represents the minimum price in P.M;M/; in the green half-plane of
the lower right section of Fig. 40.1, for a given relative preferences pair .x; y/ the
second coordinate of the blue vector, i.e. the orange vertical projection, represents
the minimum price in P.M;M/.

40.4 Bankruptcy Nash Equilibrium Prices

Let the coherent uniqueness Nash equilibria prices be the regions U.B;B/ 	
P.B;B/, U.B;M/ 	 P.B;M/, U.M;B/ 	 P.M;B/ and U.M;M/ 	
P.M;M/, where for every point in these regions, there is a unique coherent
Nash equilibrium. We call the prices in U.B;B/ the bankruptcy Nash equilibrium
prices of the mountain resort M , because, for every price in U.B;B/, there are no
tourists choosing the mountain resort M . Similarly, we call the prices in U.M;M/

the bankruptcy Nash equilibrium prices of the beach resort B , because, for every
price in U.M;M/ there are no tourists choosing the beach resort B . We call the
prices in U.B;M/ and U.M;B/ the competitive business Nash equilibrium prices,
because, for every price in U.B;M/ and in U.M;B/, one type of tourist chooses
the beach resort B and the other type of tourist chooses the mountain resort M .
We note that, the bankruptcy Nash equilibria prices U.B;B/ and U.M;M/ are
non-empty, but the competitive business Nash equilibrium price can be empty (see
Fig. 40.2).

40.5 Conclusions

Small changes in the coordinates of the preference location matrix, which indicates
the resort that the tourists prefer, and of the preference neighbors matrix, which
indicates who the tourists prefer to be with in each resort, can create and annihi-
late competitive business Nash equilibrium prices and change the bankruptcy Nash
equilibria prices.
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Chapter 41
On the Hannay–Ozorio De Almeida
Sum Formula

M. Pollicott and R. Sharp

Abstract In this note we consider the well known Hannay–Ozorio de Almeida
sum formula from a mathematically rigorous viewpoint. In particular, we discuss
situations where we can obtain the Sinai–Ruelle–Bowen measure as a limit taken
over periodic orbits with periods in an interval which shrinks as it moves to infinity.

41.1 Introduction

The Hannay–Ozorio de Almeida sum formula is a useful principle in the study of
the distribution of closed orbits for Hamiltonian flows [7]. Roughly speaking, it
asserts that an appropriately weighted sum of measures supported on periodic orbits
converges to the physical measure as the periods become large. This formula was
originally introduced and used in the study of Quantum Chaos. In particular, Berry
used the so-called diagonal approximation and the Hannay–Ozorio de Almeida sum
rule to determine the asymptotics of the spectral form factor, which is the Fourier
transform of the two-point correlation function for the eigenvalues of the Laplacian
[1,6,8]. The traditional setting is in the context of Hamiltonian flows, which include
the canonical example of geodesic flows on negatively curved manifolds.

Let us now give a brief description of the formula in the context of a C 2 attracting
hyperbolic flows �t W � ! �, where the attractor � is contained in a Riemannian
manifold M . Let � denote a (prime) periodic orbit and let �.�/ denote its least
period. Let f W �! R be a continuous function, then we can introduce a weighted
period �f .�/ D

R �.�/
0 f .�tx� /dt , where x� 2 � . In particular, if we define the
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expansion coefficient E W �! R by

E.x/ WD lim
t!0

1

t
log jJac.D�t jEu.x//j

then we shall write �u.�/ D �E .�/. In this setting, one version of the Hannay–
Ozorio de Almeida sum formula takes the following form:

lim
T!C1

1

ı

X

T� ı
2
��.�/�TC ı

2

�f .�/e
��u.�/ D

Z
f d�; (41.1)

where � is the SRB (Sinai–Ruelle–Bowen) measure, i.e., the unique �t -invariant
probability measure which is absolutely continuous with respect to the volume
on M . William Parry was one of the first people to make a mathematically rig-
orous study of such results. In particular, he gave a completely rigorous proof of
(41.1) in the very general setting of weak mixing Axiom A flows and a general class
of Hölder weights [11, 12].

In this note we want to address the question of whether ı D ı.T / can be allowed
to shrink to zero as T increases and, if so, at what rate. This seems a natural question
from both a mathematical and physical perspective, given that there is no natural
choice of scale for ı.

Our main results are the following theorems which strengthen (41.1), in the
appropriate settings. The first theorem is in the special case of geodesic flows.

Theorem 41.1. Let �t W M ! M be the geodesic flow on the unit-tangent bundle
over a compact negatively curved surface. There exists � > 0 such that if ı.T /�1 D
O.e�T / then, for Hölder continuous functions f WM ! R,

There exists � > 0 such that if ı.T /�1 D 0.e�T /

lim
T!C1

1

ı.T /

X

T� ı.T /
2 ��.�/�TC ı.T /

2

�f .�/e
��u.�/ D

Z
f d� (41.2)

The proof of Theorem 41.1 is based on estimates of Dolgopyat originally used
in the proof of exponential mixing of geodesic flows [4]. In fact, the conclusion
actually holds for any contact Anosov flows for which the stable and unstable foli-
ations which are non-jointly integrable. In particular, it holds for the geodesic flow
on the unit tangent bundle of a compact manifold with negative sectional curvatures,
provided these curvatures are pinched between �1 and �1

4
.

Definition 41.1. We say that ˇ is Diophantine if there exist ˛ > 2 and C > 0 for
which there are no rationals p=q satisfying jˇ � p=qj � C=q˛.

Our second theorem is the following.

Theorem 41.2. Let �t W � ! � be a weak mixing C 2 hyperbolic attracting
flow. Assume that we can chose two distinct closed orbits �1 and �2 such that
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ˇ D �.�1/=�.�2/ is Diophantine. There exists � > 0 such that if ı.T /�1 D O.T � /
then, for Hölder continuous functions f W �! R,

There exists � > 0 such that if ı.T /�1 D 0.T � /

lim
T!C1

1

ı.T /

X

T� ı.T /
2 ��.�/�TC ı.T /

2

�f .�/e
��u.�/ D

Z
f d� (41.3)

The proof of Theorem 41.2 is based on estimates of Dolgopyat used to establish
polynomial rates of mixing in a wider setting [5]. In particular, the conclusion holds
for any weak mixing C 2 Anosov flow.

Remark 41.1. Complementary results to Theorems 41.1 and 41.2 are obtained by
fixing ı > 0 and asking about the rate of convergence in (41.1). However, this
follows easily using the ideas in [14, 15]. The results are the following.

1. Let �t be the geodesic flow on the unit-tangent bundle of a compact negatively
curved surface and let f WM ! R be a Hölder continuous function. Then there
exists � > 0 such that we have that

1

ı

X

T� ı
2��.�/�TC ı

2

�f .�/e
��u.�/ D

Z
f d�CO.e��T /; as T !C1:

2. Let �t be a weak mixing hyperbolic attracting flow and let f W M ! R be a
Hölder continuous function. Assume that we can find two distinct closed orbits
�1 and �2 such that ˇ D �.�1/=�.�2/ is Diophantine. Then there exists � > 0

such that we have that

1

ı

X

T� ı.T /
2 ��.�/�TC ı.T /

2

�f .�/e
��u.�/ D

Z
f d�CO.T �
/; as T ! C1

Throughout the paper, we use the standard Landau big O and little o notation, i.e,
we write A.T / D O.B.T // if there exists D > 0 such that jA.T /j � DB.T / and
A.T / D o.B.T // if jA.T /j=B.T /! 0, as T !C1.

41.2 Hyperbolic Flows and Symbolic Dynamics

Let �t W M ! M be a C1 flow on a compact manifold. Let � be a closed
�-invariant subset. We call the set � hyperbolic if:

1. There exists a D�-invariant splitting T�M D E0 ˚ Es ˚ Eu and constants
C > 0 and � > 0 such that

(a) E0 is tangent to the direction of the flow
(b) kD�t jEuk � Ce��t , for t � 0
(c) kD��t jEsk � Ce��t , for t � 0
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2. The periodic orbits in � are dense
3. The flow restricted to � has a dense orbit
4. There exists an open set U � � such that � D \t2R�tU

We call the restriction of the flow �t W � ! � a hyperbolic flow. If � D
\t>0�tU then we say that �t is an attracting hyperbolic flow or, more succinctly, a
hyperbolic attractor. For any x 2 � we denote the associated unstable manifold by

W u.x/ D fy 2 M : lim
t!1d.�tx; �ty/ D 0g;

and if � is an attractor thenW u.x/ 	 �.
If a hyperbolic attractor is C 2 then it supports a unique probability measure

which is both invariant and absolutely continuous with respect to the natural vol-
ume induced on each unstable manifold by the ambient Riemannian volume m.
This measure, which we denote by �, is called the Sinai–Ruelle–Bowen measure
and describes the behaviour of m-almost every point in a neighbourhood of the
attractor [3].

Example 41.1 (Geodesic flow). Let M be the unit tangent bundle of a compact
C1 surface V , i.e., the tangent vectors to V of unit length. The geodesic flow
�t WM !M is defined as follows. Given a unit tangent vector v we consider
the unit speed geodesic �v W M ! M such that P�v.0/ D v. We then define
�t .v/ D P�v.t/. If V has negative curvature then the associated geodesic flow is a
hyperbolic attractor with � D M . Here � is the Liouville measure.

Example 41.2 (Suspension flow). Let T W ˝ ! ˝ be a solenoid. Let r W ˝ ! RC
be a strictly positive Hölder continuous function. We define the flow space by

� D f.x; u/ 2 ˝ � R : 0 � u � r.x/g

where we identify .x; r.x// and .T .x/; 0/. We define a flow by �t .x; u/ D .x; uCt/,
subject to the identifications.

We shall prove our results via the symbolic description of a hyperbolic flow as
a suspended flow over a subshift of finite type. We begin by recalling a few basic
definitions and results. Let A be a k�k aperiodic matrix. We shall then let X be the
space

X D fx D .xn/1nD�1 2 f1; : : : ; kgZ : A.xn; xnC1/ D 1 for all n 2 Zg

and define a metric on X by

d.x; y/ D
1X

nD�1

1 � ı.xn; yn/
2jnj

;

where ı.i; j / D 0 if i ¤ j and ı.i; i/ D 1. The subshift of finite type 
 W X ! X ,
defined by .
x/n D xnC1, n 2 Z, is a homeomorphism. Given a strictly positive
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v

v tvφγ
(x,u)

(x,r(x))

(Tx,0)

Λ

Ω

Fig. 41.1 (a) The geodesic flow moves the unit tangent vector v along the geodesic �v to �tv;
(b) The suspension flow is defined on the area under the graph of r W ˝ ! R

Hölder continuous function r W X ! RC, let us denote

X r D f.x; u/ 2 X � R : 0 � u � r.x/g;

where .x; r.x// and .
x; 0/ are identified. We can define the suspended flow 
rt W
X r ! X r by 
rt .x; u/ D .x; uC t/, subject to the identifications (Fig. 41.1).

To proceed, we state the following, now classical, result.

Lemma 41.1. Given a hyperbolic flow �t W �! �, there exists a subshift of finite
type 
 W X ! X , a strictly positive Hölder continuous function r W X ! RC and a
Hölder continuous semi-conjugacy � W X ! � such that:

1. � is one-to-one on a residual set.
2. A closed 
-orbit fx; 
x; : : : ; 
n�1xg projects to a closed orbit � of period
�.�/ D rn.x/ WD r.x/ C r.
x/ C ::: C r.
n�1x/. Moreover, if we define
g W X ! R by

g.x/ D �
Z r.x/

0

E.�.x; u//du

then g is Hölder continuous and ��u.�/ D gn.x/.
Proof. This follows from the work of Bowen [2] and Bowen–Ruelle [3]. ut

41.3 Dirichlet Series

In order to understand the limits in Theorems 41.1 and 41.2, we shall need to study
the analytic properties of certain complex functions. We start with the following
definition.

Definition 41.2. Given a non-negative Hölder continuous function f W �! R, we
formally define an �-function for �t to be the Dirichlet series
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�.s/ D
X

�

1X

mD1
�f .�/e

m.��u.�/�.s�1/�.�//; s 2 C;

where the sum is taken over all prime periodic orbits of �t .

It is not difficult to show that �.s/ converges to an analytic function on the half-
plane Re.s/ > 1, and thus the definition makes sense on this domain. (We refer
the reader to [13] for the general theory.) The proofs of Theorems 41.1 and 41.2
require showing that �.s/ has an analytic extension to a larger domain. To achieve
this we need to relate �.s/ to a complex function defined in terms ofX and functions
thereon.

Given f W �! R we define f0 W X ! R by f0.x/ D
R r.x/
0 f .�.x; u//du.

Definition 41.3. We define a symbolic �-function by

�0.s/ D
1X

nD1

1

n

X

nxDx
f n0 .x/e

gn.x/�.s�1/rn.x/:

For a continuous function w W X ! R, we define its pressure P.w/ by

P.w/ D sup

�
h�.
/C

Z
w d� : � is a 
-invariant probability measure

�
;

where h�.
/ denotes the entropy of 
 with respect to �. If w is Hölder continuous
then there is a unique measure, called the equilibrium state for w, for which the
supremum is attained.

It is a standard result that �0.s/ converges to an analytic function for P.g �
Re.s � 1/r/ < 0 [13]. Since P.g/ D 0, this holds for Re.s/ > 1.

The following lemma relates �.s/ and �0.s/.

Lemma 41.1. There exists � > 0 such that �0.s/��.s/ is analytic for Re.s/ > 1��.
Proof. The functions �.s/ and �0.s/ agree up to a small discrepancy (due to over-
counting caused by orbits passing through the boundaries of the cross sections used
to construct the symbolic dynamics in Lemma 41.1). This can be easily accounted
for using the a construction of Bowen [2] (following [10]): the difference of the two
functions can be written in terms of functions associated to a finite number of aux-
iliary subshifts of finite type. There are Hölder continuous maps from each of these
to � but, crucially, they are not surjective. This forces a strict inequality of pressure
functions which implies that the difference �0.s/��.s/ is analytic in a strictly larger
half-plane than Re.s/ > 1. ut

One of the interesting features of the present problem is the need to extend the
region for which certain functions of two variable are bi-analytic. To address this
problem, it is convenient to use some classical results in the theory of several com-
plex variables [9]. We recall that a complex function of two variables is bi-analytic
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at a point .z; s/ 2 C2 if it has a uniformly convergent power series expansion (in
two variables) in a neighourhood of the point. Let

D.r1; r2/ D f.z;w/ 2 C2 : jzj < r1; jwj < r2g

denote a polydisc in C2, where r1; r2 > 0.

Lemma 41.2 (Hartog’s Theorem). Let F W D.r1; r2/ ! C be a function such
that

(i) F.z;w/ is bi-analytic on the smaller polydisc D.r; r2/ (0 < r < r1).
(ii) For each jwj < r2 the functions f .�;w/ W fz 2 C W jzj < r1g ! C are analytic.

Then F W D.r1; r2/! C is bi-analytic.

To prove Theorem 41.1 we shall require the following result on �0.s/.

Lemma 41.3. Let �t be a geodesic flow on a surface of negative curvature. We can
write

�0.s/ D
R
f d�

s � 1 C A.s/;
where A.s/ is analytic for Re.s/ > 1 � �, for some � > 0. Furthermore,

j�.s/j D O.maxfjIm.s/j�; 1g/

for some 0 < � < 1.

Proof. Let us define

L.s; z/ D exp

 1X

nD1

1

n

X

nxDx
eg

n.x/�.s�1/rn.x/Czf n
0
.x/

!

with s; z 2 C where g W X ! R and f0 W X ! R are as defined above. It is
easy to see that function L.s; z/ converges to a non-zero and bi-analytic function
in .s; z/ provided Re.s/ > 0 and jzj sufficiently small [9]. Moreover, it follows
from the approach in Dolgopyat’s paper [4] (explicitly in the case z D 0, or by
a simple modification for any fixed z) that we have analyticity of L.s; z/ in s for
Re.s/ > 1� � , where � > 0 can be chosen independently of z. The key ingredients
in this approach are estimates on the transfer operator Lg�zf0�.s�1/r W C ˛.XC/!
C ˛.XC/ defined by

Lg�zf0�.s�1/rw.x/ D
X

yDx
e.g�zf0�.s�1/r/.y/w.y/

on a suitable family C ˛.XC/ of Hölder continuous functions on the corresponding
one-sided shift 
 W XC ! XC, where

XC D
n
x D .xn/1nD0 2 f1; : : : ; kgZ

C

: A.xn; xnC1/ D 1 for all n 2 ZC
o
:
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(Here we assume that g; f0 and r have been replaced by functions in C ˛.XC/,
chosen so that their sums around periodic orbits remain unchanged. We refer the
reader to [13] for more details. To avoid complicating the exposition, we do not
change the notation.)

The domain of analyticity corresponds to those .z; s/ for which 1 is not in the
spectrum of Lg�zf0�.s�1/r . Moreover, one can also show that L.s; z/ is analytic in
a neighbourhood of s D 1, provided s ¤ s.z/, where s.z/ is an analytic function
with s.0/ D 1 satisfying P.g � zf0 � .s.z/ � 1/r/ D 0, for jzj sufficiently small,
where P.�/ is the analytic extension of the pressure function (i.e., the logarithm
of the maximal eigenvalue of the associated transfer operator) [13]. We claim that
L.s; z/�1 can be differentiated in the second variable at z D 0. This is the point in
the proof where it is convenient to use the Hartog’s Theorem (Lemma 41.2). We
have already observed that L.s; z/�1 is bi-analytic in the pair of variables .s; z/ for
Re.s/ > 0 and jzj then chosen sufficiently small. We can apply Hartog’s Theorem to
extend the domain of analyticity to Re.s/ > 1 � �=2, say, and jzj sufficiently small
(independent of s). It is now routine to show that s D 0 in a simple pole for �0.s/
with the claimed residue. Briefly, for s in a sufficiently small neighbourhood of 0
we can write

�0.s/ D @ logL.s; z/

@z
jzD0

D �@ log.1� eP.g�zf0�.s�1/r//
@z

jzD0 C A0.s/

D 1

s � 1
Z
fd�C A1.s/;

whereA0.s/,A1.s/ are analytic functions in a neighbourhood of s D 1 and
R
fd� DR

f0dm=
R
rdm, wherem is the equilibrium state on XC for g [13].

To complete the proof, we need bounds on �0.s/. There exists �0 > 0 such
that in the same region we have a bound L.s; z/ D O.jIm.s/j�0/ for jIm.s/j � 1.
Moreover, the implied constants are uniform in z (in a small neighbourhood of 0).
This is implicit in the details of the proof of the result cf. [4, 14]. Thus, we can use
Cauchy’s Theorem to obtain

�0.s/ D @

@z
L.s; z/jzD0 D 1

2�iı

Z

j�jDı
L.s; �/

�2
d� D O.jIm.s/j�/;

where ı > 0 is chosen sufficiently small.
Finally, as in [14], we may use an argument based on the Phragmén–Lindelöf

Theorem, to show that, decreasing � if necessary, � may be chosen to be less than 1.
ut

To prove Theorem 41.2 we shall require the following, somewhat weaker, result
on �.s/.
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Lemma 41.4. Let � be a hyperbolic flow satisfying the hypotheses of Theorem 41.2.
We can write

�.s/ D
R
fd�

s � 1 C A.s/;
where A.s/ is analytic for Re.s/ > 1 � �minfjIm.s/j�˛; 1g, for some �; ˛ > 0.
Furthermore,

jA.s/j D O.maxfjIm.s/j�; 1g/;
for some � > 0.

Proof. The proof is similar to that of Lemma 41.3. Again the function L.s; z/ is
bi-analytic in .s; z/ for Re.s/ > 1 and jzj sufficiently small (cf. [13]). This time
we apply the approach in Dolgopyat’s paper [5] and for fixed z (with jzj suf-
ficiently small) we have analyticity in s for Re.s/ > 1 � �minfjIm.s/j�˛; 1g,
for some uniform (in z) choice of � > 0. The uniformity of the implied con-
stants for small jzj is implicit in the proofs. We can again apply Hartog’s theorem
for functions of two variables to deduce that L.s; z/ is bi-analytic in .s; z/ for
Re.s/ > 1� �

2
minfjIm.s/j�˛; 1g, say, and jzj sufficiently small. The pole free region

for �.s/, the bounds on modulus j�.s/j and the form of the pole and residue at s D 1
follow by arguments analogous to those in the previous case. ut

41.4 Proof of Theorem 41.1

Given Lemma 41.3, the proof of Theorem 41.1 now follows fairly traditional lines.
We recall the following standard identity [16].

Lemma 41.1. Let c > 0 and k � 1. Then

1

2�i

Z cCi1

cCi1
T sCk

s.s C 1/ � � � .s C k/ds D
1

kŠ

�
1 � 1

T

�k
ıŒ1;C1/.T /

For T > 0, we shall write

 0.T / D
X

em�.�/�T
�f .�/e

m.�.�/��u.�//;

where the summation is taken over all prime periodic orbits � and all m � 1

satisfying em�.�/ � T .

Lemma 41.2. Under the hypotheses of Theorem 41.1, there exists �0 > 0 such that

 0.T / D
�Z
f d�

�
T CO.T 1��0

/:
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Proof. We introduce an auxiliary function  1.T / D
R T
1
 0.u/du. Using

Lemma 3.1, with k D 1, we can write

 1.T / D 1

2�i

Z cCi1

c�i1
�.s/

T sC1

s.s C 1/ds;

for any c > 1. We want to move the curve of integration to d D 1 � �0 , say, where
0 < �0 < �, with � as in Lemma 41.3. Since �.s/ has a simple pole at s D 1, we
may use the Residue Theorem and the bound j�.s/j D O.jIm.s/j�/, for � < 1, to
obtain

1

2�i

Z cCi1

c�i1
�.s/

T sC1

s.s C 1/ds D
�Z
fd�

�
T 2

2
C 1

2�i

Z dCi1

d�i1
�.s/

T sC1

s.s C 1/ds:
(41.4)

Again using the bound on j�.s/j, the second term on the Right Hand Side of
(41.4) can be estimated by

ˇ̌
ˇ̌
ˇ
1

2�i

Z dCi1

d�i1
�.s/

T sC1

s.s C 1/ds
ˇ̌
ˇ̌
ˇ D O

�
T dC1

Z 1

1

t�

t.t C 1/dt
�
D O.T 2��0

/;

To finish the proof, we need to replace the estimate on 1.T /with one on 0.T /.
Since  0.T / and  1.T / are both monotone increasing, we may write

 0.T / �  1.T / �  1.T ��/
�

D
�Z
f d�

��
T 2 � .T ��/2

2�

�
CO

 
T 2��0

�

!

D
�Z
f d�

�
T CO

 
T 2��0

�
;�

!
:

If we choose� D T 1��0=2 then we have that

 0.T / �
�Z
f d�

�
T CO.T 1��0=2/

Similarly, we can show that

 0.T / �
�Z
f d�

�
T CO.T 1��0=2/

and the result follows. ut
Lemma 41.3. For some �0 > 0, we have

X

�.�/�T
�f .�/e

�.�/��u.�/ D
�Z
f d�

�
eT CO.e.1��0/T /:
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Proof. By Lemma 3.2, we have

X

m�.�/�T
�f .�/e

m.�.�/��u.�// D
�Z
f d�

�
eT CO.e.1��0/T /;

where m runs over all m � 1. We need to show that the terms with m � 2 make a
contribution of smaller order. By simple estimates

lim sup
T!C1

1

T
log

0

@
X

m�2 : m�.�/�T
�f .�/e

m.�.�/��u.�//

1

A � 1C sup
m�2

P.�mE/
m

;

where E is the function defined in the introduction and P denotes pressure. It
follows from standard properties of pressure that

(a) P.�mE/ < 0, for all m � 2
(b)

lim
m!C1

P.�mE/
m

D e� WD inf
�

Z
�E d� < 0;

where the infimum is taken over all �t -invariant probability measures.

In particular, there exists N � 1 such that

P.�mE/
m

� e�
2

for m > N and so

1C sup
m�2

P.�mE/
m

� 1Cmax

�
P.�2E/

2
; : : : ;

P.�NE/
N

;
e�
2

�
< 1:

Decreasing �0 if necessary, this gives the required result. ut
Proof (Proof of Theorem 41.1). Lemma 41.3 shows that

�f .T / WD
X

�.�/�T
�f .�/e

�.�/��u.�/ D
�Z

f d�

�
eT CO�e.1��0/T

	
; as T !C1:

Thus, for ı D ı.T /, we can write that

X

T�ı=2��.�/�TCı=2
�f .�/e

�.�/��u.�/ D �f

�
T C ı

2

�
� �f

�
T � ı

2

�

D
�Z
f d�

�

e.TCı=2/ � e.T�ı=2/

�

CO


e.1��0/T

�
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D
�Z
f d�

�
eT ı CO



e.1��0/T ; ı2eT

�
:

We then have the asymptotic upper bound

X

T�ı=2��.�/�TCı=2
�f .�/e

��u.�/ � exp

�
�T C ı

2

�

X

T�ı=2��.�/�TCı=2
�f .�/e

�.�/��u.�/

D
�Z
f d�

�
ı exp

�
ı

2

�
CO



e��0T ; ı2

�

D
�Z
f d�

��
ı C ı2

2

�
CO



e��0T ; ı2

�

D
�Z
f d�

�
ı CO



e��0T ; ı2

�
:

Similarly, we have an asymptotic lower bound

X

T�ı=2��.�/�TCı=2
�f .�/e

��u.�/ � exp

�
�T � ı

2

�

X

T�ı=2��.�/�TCı=2
�f .�/e

�.�/��u.�/

D
�Z
f d�

�
ı exp

�
� ı
2

�
CO



e��0T ; ı2

�

D
�Z
f d�

��
ı � ı

2

2

�
CO



e��0T ; ı2

�

D
�Z
f d�

�
ı CO



e��0T ; ı2

�
:

Comparing these estimates, we see that

1

ı

X

T�ı=2��.�/�TCı=2
�f .�/e

��u.�/ D
Z
f d�CO

 
e��0T

ı
; ı

!
:

In particular, providing ı.T / ! 0 as T ! C1 with ı.T /�1 D o.e�
0T / then the

estimate (0.2) holds, provided f is non-negative. The result for general f follows
from considering positive and negative parts. ut



41 On the Hannay–Ozorio De Almeida Sum Formula 587

41.5 Proof of Theorem 41.2

We again write  0.T / D P
em�.�/�T �f .�/em.�.�/��

u.�// and  1.T / D
R T
1
 0

.u/du (Fig. 41.2).

Lemma 41.1. There exists a > 0 such that

 0.T / D
�Z
f d�

�
T CO

�
T

.logT /a

�
:

Proof. First, let us suppose the exponent � > 0 in Lemma 41.4 satisfies 0 < � < 1.
For c > 1 we can again write

 1.T / D 1

2�i

Z cCi1

c�i1
�.s/

T sC1

s.s C 1/ds: (41.5)

As before we want to move the line of integration to left, however, this time to a
curve � D � .T / depending on T . More precisely, � is the union of the arcs:

1. �0 D Œ1C iR; 1C i1�
2. �1 D Œd C iR; 1C iR�
3. �2 D Œd � iR; d C iR�
4. �3 D Œ1 � iR; d � iR�
5. �4 D Œ1 � i1; 1 � iR�

Fig. 41.2 The curve of
integration

d+iR

d–iR
1–iR

1+iR

Γ1

Γ2

Γ5

Γ3

Γ4
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where R D R.T / D .logT /� , with 0 < � < minf˛
2
; 1
�
g and d D d.T / D 1 �

.logT /�1=2.
By the Residue Theorem, we can write

1

2�i

Z cCi1

c�i1
�.s/

T sC1

s.s C 1/ds D
�Z
f d�

�
T 2

2
C 1

2�i

Z

�

�.s/
T sC1

s.s C 1/ds:
(41.6)

Moreover, we can bound

ˇ̌
ˇ̌ 1
2�i

Z

�1[�3

T sC1

s.s C 1/ds
ˇ̌
ˇ̌ D O.R��2T 2/ D O

�
T 2

.logT /�.2��/

�
; (41.7)

ˇ̌
ˇ̌ 1
2�i

Z

�0[�4

T sC1

s.s C 1/ds
ˇ̌
ˇ̌ D O

�
T 2

R1��

�
D O

�
T 2

.logT /�.1��/

�
; (41.8)

ˇ̌
ˇ̌ 1
2�i

Z

�2

T sC1

s.s C 1/ds
ˇ̌
ˇ̌ D O

 
T 2�.logT /�1=2

R1��

!
D O

0

@ T
2e�.logT /

3
2

.logT /�.1��/

1

A :

(41.9)

We can then estimate

 1.T / D
�Z
f d�

�
T 2

2
CO

�
T 2

.logT /�a

�
;

for a > 0 chosen sufficiently small.
Using the same method as in the proof of Lemma 3.2 we can write

 0.T ��/ �  1.T / �  1.T ��/
�

D
Z
fd�

�
T 2 � .T ��/2

2�

�
CO

�
T 2

�.logT /a

�

D T

Z
fd�CO

�
T 2

�.logT /a
; �

�
:

If we choose� D T .logT /�a=2 then we have that

 0.T ��/ �
�Z
f d�

�
T CO

�
T

.logT /a=2

�

and thus

 0.T / �
�Z
f d�

�
T CO

�
T

.logT /a=2

�
:
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Modifying the proof of Lemma 3.2, we can also show that

 0.T / �
�Z
f d�

�
T CO

�
T

.logT /a=2

�

and the result follows.
More generally, if k � 1 � � < k then we can inductively define a sequence of

functions

 2.T / D
Z T

1

 1.u/ du; : : : ;  k.T / D
Z T

1

 k�1.u/ du:

By repeatedly using the above arguments we reach the same conclusion. ut
Proof (Proof of Theorem 41.2). Lemma 4.1 and the arguments in Lemma 41.3 show
that

�f .x/ WD
X

�.�/�T
�f .�/e

�.�/��u.�/ D
�Z
f d�

�
eT CO

�
eT

T a

�
; as T !C1;

for some choice of a > 0, and thus we can write that

X

T�ı=2��.�/�TCı=2
�f .�/e

�.�/��u.�/ D �f

�
T C ı

2

�
� �f

�
T � ı

2

�

D
�Z
f d�

�

e.TCı=2/ � e.T�ı=2/

�

CO
�
eT

T a

�

D
�Z
f d�

�
eT ı CO

�
eT

T a
; ı2eT

�
:

We can then write that

X

T�ı=2��.�/�TCı=2
�f .�/e

��u.�/ � exp

�
�T C ı

2

�

X

T�ı=2��.�/�TCı=2
�f .�/e

�.�/��u.�/

D
�Z
f d�

�
ı exp

�
ı

2

�
CO

�
1

T a
; ı2
�

D
�Z
f d�

��
ı C ı2

2

�
CO

�
1

T a
; ı2
�

D
�Z
f d�

�
ı CO

�
1

T a
; ı2
�
;

with a similar lower bound.
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Comparing these estimates, we see that

1

ı

X

T�ı=2��.�/�TCı=2
�f .�/e

��u.�/ D
Z
f d�CCO

�
1

ıT a
; ı

�
:

In particular, providing ı.T / ! 0 as T ! C1 with ı.T /�1 D o.T �a/, then the
estimate (0.3) holds, provided f is non-negative. The result for general f follows
from considering positive and negative parts. ut
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Chapter 42
A Fourier Transform Method for Relaxation
of Kinetic Equations

Manuel Portilheiro

Abstract A Fourier transform method is used to analyze the relaxation limit of the
linear Boltzman–Poisson system for electron density. Two scalings of interest are
analyzed, the low field scaling and the drif-colision balance scaling, correspond-
ing two different regimes of the equation. The limits are obtained in the sense of
‘dissipative’ solutions.

42.1 Introduction

The relaxation of general kinetic equations can be seen as natural way to under-
stand macroscopic phenomena of large systems of interacting particles. In analogy
with the hydrodynamic and diffusive limits for the Boltzmann equation, where one
obtains the Euler system and the Navier–Stokes equations, respectively, similar
limits can be carried out for other kinetic equations.

The notion of dissipative solution introduced in [2] is particularly suitable to
carry out such relaxation limits. Some discrete velocity models were analized in [3],
in particular the two-velocity Carleman model. In [4] mixed and continuous velocity
L1 models were studied, and an abstract framework for kinetic equations with L1

collision terms was proposed.
In this work we look at the semiconductor equation, with the extra electric field

term, coupled with its respective Poisson equation. Without analizing compactness,
the limits corresponding to hydrodynamic and diffusive scalings yield the expect
equations. Related work, for the Vlasov–Poisson–Fokker–Planck system, was done
by Poupaud, Soler, Nieto, and Goudon (see [1] and references therein). We start by
introducing the Boltzmann–Poisson system, the two scalings we are interested and
their respective limits. We also mention the “dissipative solutions” we will work
with.
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42.1.1 Boltzmann–Poisson System

We consider the semi classical Boltzmann–Poisson system in the form

@tf C v � rxf � e

m
E.x; t/rvf D 1

�
.M�0

�.f /� f /; (42.1)

where f D f .t; x; v/ denotes the density function of an electron at time t > 0 and
position x 2 D and with velocity v 2 R3 while e and m denote the unit charge and
effective electron mass. The charge density is given by

�.f /.t; x/ D
Z

R3

f .t; x; v/ dv:

The electric field E.x; t/ is determined by the Poisson equation for the potential

"0�˚.x; t/ D e.�.f /.x; t/ � C.x//
E.x; t/ D �rx˚: (42.2)

Here C.x/ is the doping profile. The relaxation time � is such that the mobility
� D .e=m/�E is linear for small values of jEj, with slope �0, and has a horizontal
asymptote as jEj increases. Finally the absolute Maxwellian is given by

M�0
D .2��0/�3=2 exp

�
� jvj

2

2�0

�
;

where �0 is the lattice temperature, �0 D .kB=m/T0, kB the Boltzmann. We will
write simply M for M1.

We consider two different scalings of (42.1), the low field scaling (LFS) and the
drift-collision balance scaling (DCBS). After writing the equation in dimensionless
form these correspond respectively to

(
"@tf C v � rxf � E.t; x/ � rvf D 1

"
1
�
.M�.f / � f /

�x˚ D �.�.f / � C.x//;
(LFS)

and

(
�@tf C v � rxf � 


"
E.t; x/ � rvf D 1

"
1
�
.M�.f /� f /;

�x˚ D �.��1�.f /� C.x//;
(DCBS)

where � , � and � are dimensionless parameters.
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The limits of these systems are

(
@tu � divx ŒrxuC uE� D 0;
�x˚ D � .u � C.x// ;

(42.3)

for the (LFS) system, and

8
<

:
ut � divx .uE/ D 0;
�x˚ D �



1



u � C
�
;

(42.4)

for the (DCBS) system.
Related systems have been studied in [4] using the same “perturbed test function”

method. These systems have the extra transport term E � rvf coupled with the
Poisson equation, which is the term that requires the use of the Fourier transform
to find the steady state and carry the relaxation limit with the same technique as in
[4]. We will not deal here with compactness issues and rather assume that f " ! f

pointwise and u" D Rf " dv converges inL1 (see [4] for the compactness arguments
of simpler systems).

42.1.2 Dissipative Solutions

The notion of weak solution that we will make use of is the notion of “dissipative
solution” introduced in [2] and [3]. We refer to this papers for a motivation.

For a nonlinear accretive (differential) operator A in L1.�/ we say that u is a
dissipative solution of Au D f if

Z
sgn.u � �/ .f � A�/ d� � 0

for every � 2 C10 C k, k 2 R.
For the equations we consider we get the following. .f "; ˚"/ is a dissipative

solution of (LFS) if

0 �
•

sgn.f " � �"/
h
�@t�" � 1

"
.v � rx�" Crx�" � rv�

"/

C 1

�"2
.M.v/�.�"/� �"/

i
dt dx dv

C
“

sgn.˚" � �"/ Œ��x�" C �.�.�"/ � C.x//� dt dx;

(42.5)
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for arbitrary �" and �", and u solves the limit (42.3) if

0 �
“

sgn.u �  / Œ�@t C � divx .rx �  rx�/ � dt dx

C
“

sgn.˚ � �/ Œ��x� C � . � C.x// � dt dx:
(42.6)

for arbitrary  . Similarly, .f "; ˚"/ is dissipative solution of (DCBS) if

0 �
•

sgn.f " � �"/
h
��@t�" � v � rx�" � 1

"

�
�rx� � rv�

"

� 1
�
.M�.�"/� �"/	

i
dx dt dv

C
“

sgn.˚" � �"/
�
��� C �

�
1

�
�.�"/� C

�
dx dt;

(42.7)

for every par .�"; �"/, and u solves (42.4) when

0 �
“

sgn.u �  /��@t � � divx. rx�/
�
dx dt

C
“

sgn.˚ � �/
�
�1
�
�� C �

�

�
1

�
 � C

�
dx dt;

(42.8)

42.2 Low Field Scaling

We make the following choice for the test functions �" in (42.5), �" D �0 C "�1,
where

�0.x; t; v/ DM.v/ .x; t/;
�1.x; t; v/ D ��M.v/v � Œrx .x; t/ �  .x; t/rx�.x; t/�;

 .x; t/ is an arbitrary test function in .x; t/ and we take �" D �.x; t/ independent
of ", to be chosen later. Notice that �.�1/ D 0, therefore �.�"/ D  and

1

�"2
.M.v/�.�"/� �"/ D 1

"
M.v/v � .rx �  rx�/:

Furthermore

1

"
.v � rx�" Crx� � rv�

"/ D 1

"
.M.v/v � rx Crx� � rvM /

� � Œv � rxACrx� � rvA� ;

where AWDM.v/ v � .rx �  rx�/, hence
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1

"
.v � rx�" Crx� � rv�

"/

D 1

�"2
.M.v/�.�"/� �"/� � Œv � rxACrx� � rvA� :

(42.9)

Using this in (42.5), we find

0 �
•

sgn.f " � �"/
h
�M.v/@t C � .v � rxACrx� � rvA/

i
dt dx dv

C
“

sgn.˚" � �/ Œ��x� C � . � C.x// � dt dx:

Notice that

v � rxA D M.v/
3X

i;jD1
vivj

�
 xj
�  �xj

	
xi
:

Therefore, letting "! 0, and since f " ! u.x; t/M.v/, ˚" ! ˚ , we get

0 �
•

sgn.u �  /
h
�M.v/@t C �M.v/

3X

i;jD1
vivj

�
 xj
�  �xj

	
xi

C �rx� � rvA
i
dt dx dv

C
“

sgn.˚ � �/ Œ��x� C � . � C.x// � dt dx

or

0 �
“

sgn.u �  / Œ�@t C � divx .rx �  rx�/ � dt dx

C
“

sgn.˚ � �/ Œ��x� C � . � C.x// � dt dx;

that is, .u; ˚/ is a dissipative solution of (42.6).

42.3 Drift-Colision Balance Scaling

In this case we choose �" D � so that

�rx� � rv� � 1
�
.M�.�/ � �/ D 0: (42.10)

We denote by  the first moment of �,

 WD�.�/ D
Z
� dv;
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and let
˛WD��rx�:

We want to take Fourier transforms above, in the variable v. Recall that

cM.�/ D exp

�
�j�j

2

2

�
;

where we are using the Fourier transform in the form

bf .�/ D 1

.2�/3=2

Z

R3

f .v/ exp .�iv � �/ dv:

We then have
b�.�/C i˛ � �b�.�/ �  cM.�/ D 0;

hence

b�.�/ D  1

1C i˛ � �
cM.�/ D  cM.�/ �  i˛ � � � .i˛ � �/

2

1C j˛ � �j2
cM.�/

and
�.v/ D  M.v/�  .˛ � rv/.1 � ˛ � rv/.h˛.v/ �M.v//; (42.11)

where h˛ is such that

bh˛ D 1

1C j˛ � �j2 2 L
1.R3� /;

(thus h˛ 2 M ) and � D  .M � h˛ � .˛ � v � .˛ � v/2/M/ 2 Sv, the Schwartz
space (the case ˛ D 0 is also clear). Therefore, for any given  ; � 2 C1c .R3 �
Œ0;1//, with � given by (42.11), it is easy to check that indeed � satisfies (42.10)
and �.�/D .

Now we can let "! 0 and we obtain (42.4). Since the derivatives of � in v are in
the direction ˛, it is convenient to perform the change of variables w D O˛v, where
O˛ is the pure rotation which takes ˛=j˛j to, say, j˛je1 D .j˛j; 0; 0/,

O˛ � ˛ D j˛je1:

Then with

�.w/WD 1
 
�.x; t; v/ D 1

 
�.x; t; OT

˛w/;

we have
b�.�/ D 1

1C i˛ �OT
˛�
cM.OT

˛�/ D 1

1C i j˛j�1
cM.�/

DbM 2.�2; �3/
1

1C i j˛j�1
bM 1.�1/
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(whereM d is the gaussian in Rd ). Going back to the variables w,

�.w/ D M 2.w2;w3/
1p
2�

Z

R
eiw1�1

1 � i j˛j�1
1C j˛j2�21

bM 1.�1/ d�1

D M 2.w2;w3/.1 � j˛j@w1
/.h1˛ �M 1/.w1/;

where
ch1˛.�1/WD

1

1C j˛j2�21
;

that is,

h1˛.w1/ D
1

2j˛je
�jw1j=j˛j:

Since

.1 � j˛j@w1
/h1˛.w1/ D

(
0; w1 < 0
1
j˛je
�jw1j=j˛j; w1 > 0;

we get

�.w/ DM 2.w2;w3/
1p
2�

1

j˛j
Z C1

0

e
� y

j˛j e�
.w1�y/2

2 dy

DM 2.w2;w3/
1p
2�
e�

w2
1

2
1

j˛je
1
2
.w1� 1

j˛j
/2
Z C1

�.w1� 1
j˛j
/

e�
y2

2 dy

DM.w/ 1j˛j
F.w1 � 1

j˛j /
M 1.w1 � 1

j˛j /
:

where F is the antiderivative of M 1 with F.�1/ D 0 (the Error Function of the
Gaussian). We have

�.x; t; v/ D  .x; t/�.w/ DM.w/ 1j˛j
F

M 1
.w1 � 1

j˛j /

D  .x; t/M.v/ 1j˛j
F..˛ � v � 1/=j˛j/
M 1..˛ � v � 1/=j˛j/ :

Since we have a similar formula for f with u in place of  , it is clear that sgn.f �
�/ D sgn.u �  / and so, using (42.11), we obtain

I1 D
“

sgn.u �  /
h
��@t � divx

Z
 vM.v/ dvC divx

Z
 vK dv

i
dx dt;

with
KWD.˛ � rv/.1� ˛ � rv/.h˛ �M/:
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Integrating by parts twice, we find that

Z
vK dv D �˛

Z
.1 � ˛ � rv/.h˛ �M/dv

D �˛

Z
h˛ �M dv D �˛ch˛.0/cM.0/ D �˛;

Noting also that
R

vM.v/ dv D 0, we get

I1 D
“

sgn.u �  /���@t � div. ˛/
�
dx dt

D �
“

sgn.u �  /��@t � � divx. rx�/
�
dx dt:

From this (42.8) follows.
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Chapter 43
Bethe Ansatz Solution of the Finite Bernoulli
Matching Model of Sequence Alignment

V.B. Priezzhev and G.M. Schütz

Abstract We map the Bernoulli matching model of sequence alignment to the
discrete-time totally asymmetric exclusion process with backward sequential update
and step function initial condition. The Bethe ansatz allows for deriving the exact
distribution of the length of the longest common subsequence of two sequences of
finite lengthsX; Y in the Bernoulli mean field approximation.

43.1 Bernoulli Matching Model of Sequence Alignment

Sequence alignment refers to a special kind of pattern recognition problem in which
one wishes to quantify the degree of similarity between two sequences of letters
taken from some (usually) finite alphabet. Applications range from molecular biol-
ogy where one wishes to compare DNA or RNA strands or proteins [1]. To computer
science where e.g. one wishes to compare to versions of a data file [2]. One impor-
tant measure for the similarity of two sequences is the length of the longest common
subsequence (LCS for short). This problem has a long history of study. There are
explicit results from combinatorics where one is interested in the LCS between two
random sequences of letters [3].

Given a pair of fixed sequences of c letters of lengths X and Y , the length of
their LCS is defined by the recursion [2, 4]

LX;Y D maxŒLX�1;Y ; LX;Y�1; LX�1;Y�1 C �X;Y � (43.1)

with the boundary conditions Li;0 D L0;j D L0;0 D 0 for all i; j � 0. The
variable �X;Y is 1 if the letters at the positions X and Y match each other, and 0 if
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they do not. The set of variables �X;Y form the scoring matrix. One should note that
even if the underlying sequences are random, the elements of the scoring matrix are
correlated. If one ignores these correlations and takes them as i.i.d. random variables
from the bimodal distribution F.�/ D pı
;1 C .1 � p/ı
;0, one gets the Bernoulli
matching (BM) model of sequence alignment [5]. Here is p is the empirical mean
of the scores of the scoring matrix and the quantity of interest is the distribution of
the LCS as a function of p.

The hope that gives rise to making such a fairly crude mean field approximation
is twofold. Very long sequences may exhibit universal properties that could then
be captured in the simplified BM model. Moreover, for finite sequences an exact
result for the distribution of the LCS allows for benchmarking, i.e., a quantitative
statement about the strength of correlations in the scoring matrix of a real sequence.

In the thermodynamic limit of infinitely long sequences this problem has been
studied in some detail. With X D xN , Y D yN , Seppäläinen derived rigorously
the law of large numbers limit. Asymptotically the quantity LX;Y =N is a random
variable converging a.s. to a function of p; x; y which he computed explicitly [6].
Using an exact mapping to a directed polymer problem, complemented with scaling
arguments, it was shown more recently [7] that asymptotically the quantity LX;Y is
a random variable of the form

LX;Y
N!1�! �p.x; y/N C ıp.x; y/N 1=3� (43.2)

where �p.x; y/; ıp.x; y/ are known scale factors and � is a random variable drawn
from the Tracy–Widom distribution of the largest eigenvalue of GUE random matri-
ces [8]. A mapping of the sequence alignment problem onto the asymmetric simple
exclusion process with sublattice-parallel update has been proposed in [9]. This
admits a transfer-matrix formulation and direct hence allows for diagonalization
of the transfer matrix to obtain numerically the distribution of the LCS or finite
X and Y .

Since our interest lies in an analytical solution for fixed, but arbitrary X and Y ,
we choose a mapping onto a discrete-time fragmentation process which is equivalent
to a totally asymmetric simple exclusion process with backward sequential update
[10,11]. The initial distribution of this TASEP that is obtained by the mapping turns
out to be a step configuration with a given number N of particles on sites �N C 1,
�N C 2; : : : ; 0. This allows us to use earlier results obtained directly from Bethe
ansatz [12] for this stochastic lattice gas model. For this model we defineP.M;N; t/
to be the probability that the N th particle hops at least M times up to time t .

Specifically, we then express the probability that the length of the LCS is at most
Q by the probability that the number of jumps of a selected particle in the exclusion
process up to time Y is at least X �Q. We define the cumulative distribution

�
Q
X;Y WD ProbŒLX;Y � Q� D

QX

MD0
�MX;Y (43.3)
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Our main result is the following theorem [13].

Theorem 43.1.
�
Q
X;Y D P.Y �Q;X �Q;Y / (43.4)

with the natural convention that P.Y; 0; Y / D 1.

The result (43.4) provides a simple relation between the cumulative distribution
of the length of the LCS in the BM model and the distribution of the time-integrated
current in the backward-sequential TASEP for the step function initial condition.
The probability that the length of the LCS is at most Q is given by the probability
that the number of jumps across bond Y � X up to time Y is at least X �Q. The
proof of the theorem consists of the steps described in the following sections. An
explicit expression for P.Y �Q;X �Q;Y / is given below in Theorem 2.

43.2 Mapping to a Fragmentation Process

The mapping of the LCS problem to a one-dimensional discrete-time fragmentation
process is described in detail [13]. Here we only summarize the main steps. The
scoring matrix generates a rectangular grid on which the recursion (43.2) induces
a terrace structure where the value of the LCS for a given pair of sequences is
the height of the terrace. It is useful to view the grid that defines the matching
matrix as a square lattice with X � Y bulk sites, embedded in the rectangle of size
.X C 1/ � .Y C 1/. Each square (defining the dual square lattice) is labelled .i; j /
with 0 � i � X and 0 � j � Y . Numbers at left corners of terraces appear when
�X;Y D 1 and have weight p. All the rest of numbers at edges of terraces do not
depend on �X;Y and have therefore weight 1. All remaining numbers appear when
�X;Y D 0 having weight .1 � p/. Due to the terraces, each site can take one of five
different states. It may be (a) traversed horizontally or vertically by a terrace line (b)
represent a left or right corner of a terrace, or (c) be empty. By construction, in the
BM model each empty site has weight q D 1 � p, each left corner of each line has
weight p, and all remaining sites have weight 1. This property allows for a mapping
to a five-vertex model. The resulting pattern of intersecting lines then becomes iso-
morphic to the pattern of in- and outging arrows in the five-vertex model with vertex
weights given by the weights of the BM model. One simply identifies black (red)
horizontal lines with right-pointing (left-pointing) arrows and black (red) vertical
lines with up-pointing (down-pointing) arrows, see Fig. 43.1.

To obtain the fragmentation process, we first turn the vertex lines with arrows
pointing left or down into non-intersecting particle world lines by replacing a right-
left turn with a diagonal “shortcut”. After a space reflection i ! i 0 D 1 � i this
yields a non-intersecting line ensemble. A final mapping is aimed to obtain the
line ensemble of particle world lines of the discrete-time totally asymmetric exclu-
sion process (TASEP) with the backward sequential update, introduced in [10] and
solved in [11]. This moel is identical tothe fragmentation process studied and solved
in [12].
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To this end, we consider each trajectory and replace each move upward by a
diagonal move right and each diagonal move left by a move upward. In a more
formal way, we consider a new square lattice .i 0 C j C 1=2; j / and draw new
trajectories using the correspondence .i 0 C 1=2; j /! .i 0 C j C 1=2; j /. The sites
of the new lattice are denoted by coordinates .k; t/ numbered by integers k D i 0Cj
and t D j . By construction the red lines move upward or diagonally and define the
world lines of exclusion particles which jump only to the right. The vertex weights
assign the appropriate probability to each path ensemble.

The backward sequential dynamics encoded in the vertex weights may be
described as follows. In each time particle position are updated sequentially from
right to left, starting from the rightmost particle. Each step of a particle by one
lattice unit in positive direction has probability 1 � p, provided the neighbouring
target site is empty. If the target site is occupied, the jump attempt is rejected
with probability 1. No backward moves are allowed, making the exclusion process
totally asymmetric. The horizontal boundary condition of the original sequence
matching problem maps into an initial condition where at time t D 0 particles
occupy consecutive dual lattice points �X C 1 � k � 0. Since the motion of a
particle is not influenced by any particles to its left, we may extend the lattice to
minus infinity. The vertical boundary condition is equivalent to extending the lattice
to plus infinity, such that at time t D 0 all sites k > 0 are vacant. Thus one has
a TASEP on an initially half-filled infinite lattice with step initial state. However,
only the first X particles contribute to the statistical properties of the BM model.

In the exclusion picture the terrace height has a simple probabilistic interpreta-
tion. It counts the number of world lines that intersects with a diagonal in the square
lattice starting from the point .k; t/ D .�x; 0/ (the left dotted line in Fig. 43.1.

p1–p0 1

a

b

11

Fig. 43.1 (a) Mapping of line intersection to vertices of the six-vertex model which is effectively
a five-vertex model since one of the vertex weights is zero. (b) A way to avoid line intersections in
the five vertex model: if a horizontal line has a left adjacent vertical line below and a right vertical
line above, it is replaced by the diagonal shortcut. The figure is taken from [13]
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Hence, at any given time step, the terrace increases at each site from right to left
by one unit, unless a world line has been crossed when going from right to left.
Therefore the number n of trajectories ending at time t D Y and the length LXY
of the LCS of the BM model on the rectangle .X C 1/ � .Y C 1/ are related by
LX;Y D X � n.

43.3 Current Distribution in the Fragmentation Process

In what seems to be a departure of the topic of this paper we recall the following
theorems for the fragmentation process, proved in [12]. Consider the fragmentation
process defind above with an initial state with a particle on a site kmax such that for
all k > kmax the lattice is empty. Here kmax <1 is arbitrary and will without loss
of generality taken to be 0. The particle on site kmax is called the rightmost particle.
Define furthermore the polynomials

Definition 43.1.

Dq.n; t/ D 1

2�

Z 2�

0

dk


1 � p C pe�ik

�t 

1 � ei.kCi0/

��p
eikn

D 1

2�i

I

jzjD1�0
d z

�
1 � p C p

z

�t
.1 � z/�qzn�1 (43.5)

One has [12]:

Theorem 43.1. Let AN be the set of sites on which the N rightmost particles are
located at time t D 0 and BN be another set of sites. Let Q.AN ; BN I t/ be the
conditional probability to find the N rightmost particles on BN at time step t , given
that they started on AN at time step 0. Then

Q.AN ; BN I t/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D0.k1 � l1I t/ D�1.k1 � l2I t/ � � � D�NC1.k1 � lN I t/
D1.k2 � l1I t/ D0.k2 � l2I t/ � � � D�NC2.k2 � lN I t/

:::
:::

:::

DN�1.kN � l1I t/ DN�2.kN � l2I t/ � � � D0.kN � lN I t/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

:

(43.6)

Proof. The proof uses the evolution equation of the conditional probability
Q.AN ; BN I t/ together with fact that for the totally asymmetric dynamics the
motion of the first N particles is unaffected by all particles to their left. One proves
by induction in N that Q.AN ; BN I t/ follows the evolution equation with the pre-
scribed initial condition, using a series of elementarr determinant manipulations
and recursion relations for the functions Dq.n; t/, see [12] for details. The proof
follows along the lines of a similar result for the continuous-time totally asymmetric
simple exclusion process [14]. ut
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We remark that this proof is simple, but non-constructive. In actual fact, the deter-
minant was determined without paying attention to mathematical rigour by Bethe
ansatz. In this sense this is a solution of the fragmentation process by Bethe ansatz.

This theorem is the decisive ingredient in the proof of the following theorem [12]
for the step function initial condition where all sites with k � 0 are occupied.

Theorem 43.2. Let AN D 0;�1;�2; : : : ;�N C 1 and let P.M;N; t/ be the prob-
ability that the N th particle (which was on the .1 �N/th site of the infinite cluster
at t D 0) hops at least M times up to time t . Then

P.M;N; t/ D Z.M;N/�1
t�1�MCNX

t1;t2;��� ;tND0

NY

jD1

�
tj CM �NM

�N.1� p/tj 	
Y

i<j

.ti � tj /2: (43.7)

Proof. The proof for this theorem is much more involved than the proof of Theo-
rem 2. It involves a summation over the determinantal transition probabilities (43.6).
Somewhat miraculously this sum over determinants is again a determinant. A series
further determinant manipulations then proves the result. For details see [12]. ut

Remark: A very interesting extension to other initial conditions was obtained by
Nagao and Sasamoto [15].

43.4 Proof of the Distribution of the LCS in the BM Model

With the results of the preceding sections we arrive at the main conclusion of
this work. Our aim is the evaluation of the probability distribution �

Q
XY D

ProbŒLX;Y D Q� of the Bernoulli model. Having the TASEP interpretation of
the original model, we need to evaluate an appropriate sum over end points of
trajectories of particles. To do this, we select the first trajectory (counted from the
right) which does not end at time Y in the target range of the dual lattice given by the
top row .i; Y with 1 � i � X (the green line in Fig. 43.1). An important observa-
tion is that the sum of weights of all trajectories ending at times T1; T2; : : : Tk < Y
(all lines to the left of the green line) is 1 for the conservation of probabilities in
the TASEP. Then, the distribution �QXY is the sum over the probabilities of all
trajectories with end points right of the green line and over end points of the green
line itself. Hence of all X particles only the rightmost nC 1 D X �QC 1 particles
are relevant for the computation of �QXY . The initial positions of these particles are
k1 D �X CQ;k2 D k1 C 1; k3 D k2 C 1; : : : ; knC1 D 0.

Following the relation between terrace height Q and particle trajectories as dis-
cussed above, we may consider the final positions x1; x2; : : : ; xnC1 at the moment
of time Y . By the construction, we have Y � X C 1 � x2 < x3 < � � � < xnC1 � Y
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and x1 � Y � X . We first consider Q D X . In this case no particle has reached
site Y � X C 1. In particular, this implies that the first particle (initially at site 0)
has not reached site Y �X C 1. The complementary probability for this event is the
probability P.Y �X C 1; 1; Y / that the first particle has jumped at least Y �X C 1
times up to time Y . Hence

�XX;Y D 1 � P.Y � X C 1; 1; Y /: (43.8)

Now considerQ < X . Then �QXY is the joint probability that after Y time steps
all rightmost X � Q particles (located initially on .�X C Q C 1; : : : ; 0/) have
reached sites � Y � X C 1 and the next particle (located initially on �X C Q)
has not reached site Y � X C 1. This is equivalent to the joint probability that the
particle originally at �X CQC 1 has jumped at least Y �Q times and the particle
originally at �X CQ has jumped not more than Y �Q times. By construction of
the process this joint probability may be expressed as the statistical weight of all
paths where the particle initially at �X CQC 1 jumps at least Y �Q times minus
the statistical weight of all paths where the particle initially at �X C Q jumps at
least Y �QC 1 times.

We have come to a known problem of the TASEP statistics [12, 16]. Consider
an infinite chain, the left half of which is initially occupied by particles while the
right half is empty. The problem is to find the probability P.M;N; t/ that the N th
particle (counted from the right) of the infinite cluster hops at least M times up to
time t . With this quantity, we obtain for the partition function the expression

�
Q
X;Y D P.Y �Q;X �Q;Y / � P.Y �QC 1;X �QC 1; Y / (43.9)

for everyQ < X . ForQ D X , (43.9) reduces to (43.8). We remark that (43.8) may
be viewed as incorporated in (43.9) in agreement with the notion that the transition
probability in an exclusion process with no particles (second argument of P for
XCQ) is equal to 1 (this is the trivial transition from the empty lattice to the empty
lattice).

To derive (43.9) more formally, one sums over transitions probabilities of the
form (43.6) for the step initial condition to obtain the distribution of the LCS in
terms of the hopping distribution P.M;N; t/. With (43.9) the main theorem is
proved.

We remark that in [12] it was shown explicitly that P.Y � Q;X � Q;Y / D
P.X � Q;Y � Q;X/ which for the BM model is expected by symmetry. In [12]
the hopping distribution of the fragmentation process was also expressed in terms
of the analogous quantity for the TASEP with parallel update which computed was
computed earlier by by Johansson [16] with combinatorial methods of the theory
of symmetric groups. Applying methods from random matrix theory he was able
to extract the asymptotic behaviour for large t . From this one recovers after some
computation the asymptotics (43.2), see [13].
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Chapter 44
Fitness Function Evaluation Through Fractional
Algorithms

Cecı́lia Reis and J.A. Tenreiro Machado

Abstract This paper proposes a Genetic Algorithm (GA) for the design of com-
binational logic circuits. The fitness function evaluation is calculated using Frac-
tional Calculus. This approach extends the classical fitness function by including a
fractional-order dynamical evaluation. The experiments reveal superior results when
comparing with the classical method.

44.1 Introduction

In the last decade GAs have been applied in the design of electronic circuits, lead-
ing to an area of research called Evolutionary Electronics (EE) [6]. EE considers
the concept for automatic design of electronic systems. Instead of using human
conceived models, abstractions and techniques, EE employs search algorithms to
develop good designs. GAs are adaptive heuristic search algorithms based on the
evolutionary ideas of natural selection and genetics [1]. GAs employ a population
of individuals that undergo selection in the presence of operators such as mutation
and crossover. A fitness function is used to evaluate the individuals. In this study,
the evaluation is performed through a fractional-order dynamic fitness function.

The area of Fractional Calculus (FC) deals with the operators of integration and
differentiation to an arbitrary order and is as old as the theory of classical differential
calculus [3, 4]. FC is a tool well-adapted tool for the modelling of many physi-
cal phenomena, taking into account some peculiarities that classical integer-order
models neglect.

Bearing these ideas in mind the article is organized as follows. Section 43.2
describes the adopted GA as well as the fractional-order dynamic fitness functions.
Section 43.3 presents the experiments and the simulation results. Finally, Sect. 43.4
outlines the main results.

C. Reis (B) and J.A.T. Machado
Department of Electrotechnical Engineering, Institute of Engineering of Porto, Rua Dr. António
Bernardino de Almeida, 431, 4200-072 Porto, Portugal
e-mail: cmr@isep.ipp.pt, jtm@isep.ipp.pt

M.M. Peixoto et al. (eds.), Dynamics, Games and Science II, Springer Proceedings
in Mathematics 2, DOI 10.1007/978-3-642-14788-3 44,
c� Springer-Verlag Berlin Heidelberg 2011

607

cmr@isep.ipp.pt
jtm@isep.ipp.pt


608 C. Reis and J.A.T. Machado

44.2 The Genetic Algorithm

The circuits are specified by a truth table and the goal is to implement a functional
circuit with the least possible complexity. Two gate sets were defined: Gset a D
fAND,XOR,WIREg and Gset b D fAND,OR,XOR,NOT,WIREg. The logic gate
denoted WIRE means a logical no-operation. In the presented scheme the circuits
are encoded as a rectangular matrix of logic cells and each cell as three genes:
<input1><input2><gate type> [5]. The gate type is one of the elements adopted
in the gate set. The chromosome is formed with as many triplets as the matrix size
demands. The initial population of circuits is generated at random. The search is
then carried out among this population. The three different operators used in the
GA are reproduction, crossover and mutation. Single point crossover is performed.
The crossover point is only allowed between cells to maintain the chromosome
integrity. The mutation operator changes the characteristics of a given cell in the
matrix, meaning that a completely new cell can appear in the chromosome. More-
over, an elitist algorithm is applied and, consequently, the best solutions are always
kept for the next generation.

To run the GA we have to define the number of individuals to create the initial
population P . This population is always the same size across the generations, until
the solution is reached. The crossover rate CR represents the percentage of the pop-
ulation P that reproduces in each generation. Likewise, the mutation rate MR is the
percentage of the population P that can mutate in each generation.

The goal is to find new ways of evaluating the individuals of the population in
order to achieve better performance GAs. We propose two concepts for the fitness
functions, namely the static fitness function Fs and the dynamic fitness function Fd .
The calculation of Fs is divided in two parts, f1 and f2 such that f1 D f11 � ı

if errori ¤ errori�1 and f2 D f2 C 1, if gate type D wire, where f1 measures
the functionality and the error discontinuity and f2 measures the simplicity. In a
first phase, we compare the output Y produced by the GA-generated circuit with the
required values YR, according with the truth table, on a bit-per-bit basis, namely
f11 D f11 C 1; if fbit i of Yg D fbit i of YRg, i D 1; : : : ; f10. Therefore,
f11 is incremented by one for each correct bit of the output until f11 reaches the
maximum value f10 D 2ni � no, that occurs, when we have a functional circuit.
After this, f11 is decremented by ı for each YR – Y error discontinuity, where
discontinuity means passing from YR � Y D 0 to YR � Y D 1 or vice-versa when
comparing two consecutive levels of the truth table. Once the circuit is functional, in
a second phase, the GA tries to generate circuits with the least number of gates. This
means that the resulting circuit must have as much genes<gate type>�<wire> as
possible. Therefore, the index f2, that measures the simplicity (the number of null
operations), is increased by one (zero) for each wire (gate) of the generated circuit.
The static fitness function yields:

Fs D
�

f1; Fs < f10
f1 C f2; Fs � f10 (44.1)
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where i D 1; : : : ; f10, and ni and no represent the number of inputs and outputs
of the circuit. The concept of dynamic fitness function Fd results from an analogy
with control systems, where we have a variable to be controlled, similarly with the
GA case, where we master the population through the fitness function. The simplest
control system is the proportional algorithm; nevertheless, there can be other control
algorithms, such as, for example, the proportional and the differential actions. In this
line of thought, applying the static fitness function corresponds to using a kind of
proportional algorithm. Therefore, to implement a proportional-integral-differential
evolution the fitness function needs a scheme of the type: Fd D Fs CKI I� ŒFs �C
KDD

� ŒFs �, where 0 � �;� � 1 is the integral-differential fractional-order and K
is the ‘gain’ of the dynamical term.

The Grünwald–Letnikov formulation [2] inspired a discrete-time calculation
algorithm, based on the approximation of the time increment h through the sampling
period T and a r-term truncated series yielding the equation:

D� Œx .t/� � 1

T ˛

rX

kD0

.�1/k � .�C 1/
kŠ � .�� k C 1/x .t � kT / (44.2)

where � is the gamma function.

44.3 Experiments and Simulation Results

A reliable execution and analysis of a GA requires a large number of simula-
tions to provide a reasonable assurance that stochastic effects have been properly
considered. Therefore, we developed n D 1;000 simulations for each case. The
experiments consist on running the GA to generate a 2-to-1 multiplexer (M2 � 1/,
using the fitness scheme described previously. The circuits are generated with the
two gate sets presented for CR D 95%, MR D 20%. P D 100 and the implemen-
tation of the differential/integral fractional order operator adopts (8.2) with a series
truncation of r D 50 terms. A superior GA performance means achieving solu-
tions with a smaller number N of generations. Due to the huge number of possible
combinations of the GA parameters, in the sequel we evaluate only a limited set of
cases. Therefore, a priori, other values can lead to different results. Nevertheless,
the authors developed an extensive number of experiments and concluded that the
following cases are representative.

Figure 44.1 shows the results obtained for the M2 � 1 circuit, in terms of the
average number of generations to achieve the solution AV(N/, for PI1=4D1=4 versus
K D KD D KI and ı D f0:0; 0:25; 0:5; 0:75; 1:0g with Gsets a and b. We verify
the superior results for ı D 0:25;K D 0:01 and � D � D 0:25.
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Fig. 44.1 Results obtained for the 2-to-1 multiplexer circuit with Gsets a and b

44.4 Conclusions

This paper presented two techniques for improving the GA performance. Firstly, we
concluded that we get superior results by measuring the error discontinuity. Sec-
ondly, we verified that, the new concept of fractional-order dynamic fitness function
constitutes an important method to outperform the classical static fitness function
approach.

References

1. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley, Reading, MA (1989)

2. Machado, J.: Analysis and Design of Fractional-Order Digital Control Systems. Systems
Analysis-Modelling-Simulation, vol. 27, Issue 2–3, pp. 107–122. Gordon & Breach Science
Publishers, Newark, NJ (1997)

3. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential
Equations. Wiley, New York (1993)

4. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and
Integration to Arbitrary Order. Academic, New York (1974)

5. Reis, C., Machado, J., Cunha, J.: Evolutionary Design of Combinational Logic Circuits. J. Adv.
Comput. Intell. Intell. Informat. 507–513 (2004)

6. Zebulum, R., Pacheco, M., Vellasco, M.: Evolutionary Electronics: Automatic Design of
Electronic Circuits and Systems by Genetic Algorithms. CRC, Boca, Raton (2001)



Chapter 45
An Exponential Observer for Systems on SE.3/
with Implicit Outputs

Sérgio S. Rodrigues, Naveena Crasta, António Pedro Aguiar,
and Fátima Silva Leite

Abstract This paper considers the state estimation problem of a class of sys-
tems described by implicit outputs and whose state lives in the special Euclidean
group SE.3/. This type of systems are motivated by applications in dynamic vision
such as the estimation of the motion of a camera from a sequence of images. We
propose an observer in the group of motion SE.3/ and discuss conditions under
which the linearized state estimation error converges exponentially fast. We also
analyze the problem when the system is subject to disturbances and noises. We
show that the estimate converges to a neighborhood of the real solution. The size of
the neighborhood increases/decreases gracefully with the bound of the disturbance
and noise.

45.1 Introduction

During the last few decades there has been an extensive study on the design of
observers for nonlinear systems. In simple terms, an observer or estimator can be
defined as a process that provides in real time the estimate of the state (or some
function of it) of the plant from partial and possibly noisy measurements of the
inputs and outputs, and inexact knowledge of the initial condition.
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For linear systems evolving on n-dimensional vector spaces, state observer and
filter designs employ the traditional Kalman filter [1] and Luenberger type observer
[2]. In fact, it is well-known that the Kalman filter [1] is the optimal state estimation
algorithm in a well defined sense [27].

For nonlinear systems, the extended Kalman filter is a widely used method for
estimating the state. It is obtained by linearizing the nonlinear dynamics and the
observation along the trajectory of the estimate. However, if there are substantial
nonlinearities or the state lives in some special manifold, there are no guarantees
that the state estimate will evolve in the same manifold and even that the estimate
will converge to a neighborhood of the true one.

These problems are particularly relevant because they arise in many modern day
applications such as the motion control of unmanned aerial vehicles, underwater
vehicles, and autonomous robots. See e.g. [9,17–19] and [4,6] for other engineering
applications such as an exothermic chemical reactor, and a velocity-aided iner-
tial navigation. Typically, these applications require the design of robust nonlinear
observers for systems evolving on Lie groups.

Motivated by the above considerations in [3, 13–16, 25] a geometrical frame-
work for the design of symmetric preserving observers on finite-dimensional Lie
groups is described. In [5], it is shown that when the output map associated with a
left-invariant dynamics on an arbitrary Lie group is right-left equivariant, then it is
possible to build non-linear observers such that the error equation is autonomous.

In this paper, we consider left-invariant dynamical systems with implicit outputs,
for which the results mentioned above do not apply. Systems of this kind typically
arise in mobile robotic applications using dynamic vision such as the estimation of
a motion of a camera from a sequence of images. In particular, in [7] and [8], the
problem of estimating the position and orientation of a controlled rigid body using
measurements from a monocular charged-coupled-device (CCD) camera attached to
the vehicle is addressed. The reader is referred to [10–12] for several other examples
of implicit output systems in the context of motion and shape estimation.

We propose an observer in the group of motion SE.3/ and discuss conditions
under which the linearized state estimation error converges exponentially fast. We
also analyze the problem when the system is subject to disturbances and noises. We
show that the estimate converges to a neighborhood of the real solution. The size of
the neighborhood increases/decreases gracefully with the bound of the disturbance
and noise.

The outline of the paper is as follows. Section 45.2 introduces the mathematical
preliminaries and Sect. 45.3 formulates the state estimation problem. In Sect. 45.4
we propose a left-invariant dynamic observer for estimating the state of systems on
SE.3/ with implicit outputs, and determine under what conditions the state estimate
converges exponentially to the true state. In Sect. 45.5 we analyze the robustness of
the proposed observer in the presence of disturbance and noise. Concluding remarks
are given in Sect. 45.6.
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45.2 Mathematical Preliminaries

In this section we introduce notations and definitions used through out this paper.
We denote the Euclidean norm in Rn by k�k, and the identity matrix of size n by In.
Given A 2 Rn	n, we let det.A/ and Tr.A/ denote the determinant and the trace of
the matrix A, respectively. We consider the scalar product of A;B 2 Rn	n as being

defined by hA;Bi defD Tr.ATB/. The corresponding norm kAk D phA;Ai is the
so-called Frobenius norm. Further, if the entries of A 2 Rn	n depend on t , andA.t/
is invertible for all t , from the identity A�1.t/A.t/ D In, one may deduce

d

dt
.A�1.t//A.t/CA�1.t/ d

dt
.A.t// D 0: (45.1)

The cross product of vectors u; v 2 R3 is denoted by u � v. For every u 2 R3,

.u�/ D
2

4
0 �u3 u2
u3 0 �u1
�u2 u1 0

3

5

denotes the matrix representation of the linear map v 7! u � v, v 2 R3. It can
be easily shown that, for every u; v 2 R3, Tr..u�/T.v�// D 2uTv. Given a vector

u 2 R3, we denote by Nu 2 R4 its homogeneous coordinates, that is, Nu D
�

u
1


[26].

The special orthogonal group in three-dimensions is denoted by SO.3/
defD fR 2

R3	3WRTR D I3 and det.R/ D C1g and its Lie algebra, that is, the space of all

skew-symmetric matrices by so.3/
defD f.u�/ 2 R3	3W u 2 R3g.

The special Euclidean group is denoted by

SE.3/
defD
��
gR gT
0 1


2 R4	4WgR 2 SO.3/ and gT 2 R3

�

and its Lie algebra is defined by se.3/
defD
��
.!�/ v
0 0


2 R4	4W!; v 2 R3

�
.

For every g D
�
gR gT
0 1


2 SE.3/, we have g�1 D

�
g�1R �g�1R gT
0 1


. Since

g�1g D I4, we have Pg defD dg

dt
D g

�
� d

dt
g�1

�
g. Thus, we can rewrite Pg D g˝

where

˝
defD �

�
d

dt
g�1

�
g 2 se.3/:

We notice that in order to verify that˝ 2 se.3/ it is sufficient to show the following:
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(i) �
�

d

dt
g�1

�
g D g�1 Pg D

�
g�1R �g�1R gT
0 1

 � PgR PgT
0 0


D
�
g�1R PgR �g�1R PgT
0 0


;

(ii) .g�1R PgR/T D . PgR/TgR D
�

d

dt
gT
R

�
gR D

�
d

dt
g�1R

�
gR D �g�1R PgR:

We next present a result that will be useful later in the paper.

Lemma 45.1. Consider � D
�
�R �T
0 0


2 se.3/, where �R D .��/ and �; �T 2 R3.

Then k�k2 D 2k�k2 C k�T k2.

Proof. A simple computation yields �T� D
�
�T
R�R �

T
R�T

�T
T �R �

T
T �T


. Then by the definition

k�k2 D Tr
�
�T�

	 D Tr.�T
R�R/C k�T k2. Now the result follows from Tr.�T

R�R/ D
Tr..��/T.��// D 2k�k2. ut
The Lie bracket of two matrices A;B 2 Rn	n is denoted by ŒA;B� or, equivalently,
adAB , and is defined as the commutator ŒA;B� D AB � BA. Given A;B 2 Rn	n,
we denote ad1AB D adAB and adkC1A B D adAadkAB for every k 2 N .

45.3 Problem Statement

Consider a left-invariant dynamical system evolving on SE.3/, described by

Pg.t/ D g.t/˝.t/; g.0/ D g0; (45.2)

where ˝ takes values in se.3/ and is assumed to be known for all t � 0.
Consider a set of given points p1; : : : ; pN 2 R3, and let yj D Œyj1

yj2
1�T 2

R3, j 2J be the outputs of the dynamical system (45.2) given implicitly by

˛j .t/yj .t/ D F.t/˘0g.t/ Npj ; (45.3)

where J 
 f1; 2; : : : ; N g is an index set that may depend on time, Npj 2 R4 is the
homogeneous representation ofpj , the ˛j ’s are unknown scalar continuous function
of time satisfying ˛j .t/ > 0 for every t � 0, F 2 R3	3 is a known nonsingular
matrix, and ˘0 D

�
I3 0

� 2 R3	4 is often referred to as the standard (or canonical)
projection matrix [26]. We assume that the right-hand-side of (45.3) and ˘0g.t/ Npj
are both bounded below and above, that is, for all t � 0,

m � kF˘0g Npj k; k˘0g Npj k �M with 0 < m �M: (45.4)

The problem addressed in this paper can be stated as follows. Consider the
continuous-time left-invariant dynamical system described by (45.2)–(45.3). Let
Og 2 SE.3/ be the estimate of the state g with a given initial estimate Og.0/ D Og0.
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Design a state observer for (45.2)–(45.3) that accepts as inputs the measured input
˝.�/ and the output of the process yj .�/ for every � 2 Œ0; t/, j 2 J , and
returns Og.t/ at time t , for every t � 0. The observer should satisfy some desired
performance and robustness properties that will be mentioned later in the paper.

Remark 45.1. System (45.2)–(45.3) arises for example when one needs to estimate
the position and orientation of a robotic vehicle using measurements from an on-
board monocular charged-coupled-device (CCD) camera. In that case, adopting the
frontal pinhole camera model [26], the scalar ˛j captures the unknown depth of
a point pj , and F is a matrix transformation that depends on the parameters of
the camera such as the focal length, the scaling factors, and the center offsets. The
assumption in (45.4) is very reasonable and only means that the image points are
well defined in the sense that they live in some compact set. Notice that if for some
point that assumption does not hold, then this only implies to take it out from the
index set J .

45.4 Observer Design and Convergence Analysis

Consider the continuous-time left-invariant dynamical system (45.2)–(45.3). We
propose the nonlinear observer

POg.t/ D Og.t/˝.t/C � �. Og.t/; y.t// Og.t/; Og.0/ D Og0; (45.5)

where Og 2 SE.3/ is the estimate of the state g, and �. Og; y/ 2 se.3/ is given by

�. Og; y/ defD
�
�R. Og; y/ �T . Og; y/

0 0


; (45.6)

with

�R. Og; y/ D
X

j2J

1

D. Og Npj / .... Qyj �˘0 Og Npj / �˘0 Og Npj / �˘0 Og Npj /�/; (45.7)

�T . Og; y/ D
X

j2J

1

D. Og Npj / ..�2 Qyj �˘0 Og Npj / �˘0 Og Npj /; (45.8)

Qyj D F�1 yj

kyj k ; (45.9)

where

D. Og Npj / defD .#J /k˘0 Og Npj k2.1C k˘0 Og Npj k/; (45.10)
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#J being the number of elements of J , and � > 0 is a tuning constant. Since
˛j > 0, the expressions (45.3) and (45.9) imply that

Qyj D ˘0g Npj
kF˘0g Npj k : (45.11)

Remark 45.2. Notice that by defining O� defD Og�1� Og, system (45.5) can be rewritten
as

POg D Og.˝ C � O�/;
and, by a direct computation we can show that O� 2 se.3/. Thus, like the dynamics
of g in (45.2), also the dynamics of Og is left-invariant. Moreover, if Og.0/ D g.0/,
then O� D 0 for every t � 0, which means that the observer dynamics in that case is
exactly the same as the original system.

Using the Lagrange identity for the cross product of vectors together with
(45.11), the expression in (45.7) and (45.8) can be simplified respectively as

�R. Og; y/ D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2
kF˘0g Npj k ..˘0 Og Npj �˘0g Npj /�/; (45.12)

�T . Og; y/ D
X

j2J

1

D. Og Npj /
�2

kF˘0g Npj k ..˘0g Npj �˘0 Og Npj / �˘0 Og Npj /: (45.13)

Remark 45.3. Note that from (45.4), a lower bound forD. Og Npj /kF˘0g Npj k is given
by m2.mC 1/m, which implies that the observer is well defined.

45.4.1 The Error Dynamics

As in [3], we define the error �.t/
defD Og.t/g�1.t/. Therefore, using (45.1), we may

write
P� D POgg�1 C Og Pg�1 D � �. Og; y/�; �.0/ D Og0g�10 ; (45.14)

where, taking into account that g D ��1 Og, �. Og; y/ can be rewritten as

�. Og; y/ D �.�/ D
�
�R.�/ �T .�/

0 0


;

with
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�R.�/ D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2
kF˘0g Npj k ..˘0 Og Npj �˘0�

�1 Og Npj /�/; (45.15)

�T .�/ D
X

j2J

1

D. Og Npj /
�2

kF˘0g Npj k ..˘0�
�1 Og Npj �˘0 Og Npj /�˘0 Og Npj /: (45.16)

Since a Lie group is a complex geometric object, it is a standard procedure to
estimate results on a matrix Lie group G from results in the vector space which is
its Lie algebra, here denoted by L . We will adopt this procedure to analyze the
error � and, later, prove convergence results. The Lie algebra L is the best linear
approximation of G in the neighborhood of the identity I , and the exponential map
exp, which sends elements in L to elements in G plays a crucial role in transferring
data and results from one structure to the other. The exponential mapping is known
to be bijective from a small neighborhood of 0 2 L to a small neighborhood of the
identity in G, and its inverse is denoted by log.

If � is sufficiently close to the identity, there is a representation � D exp.��/,
where � > 0 and � 2 se.3/ satisfies k�k D 1. Since, exp.��/ D I C �� C O.�2/,
where O.�2/ represents the terms containing �k , for k � 2, for small �, I C �� is
a good approximation for �. In the rest of the paper, and for the sake of simplicity,
we may use the alternative notation eA instead of exp.A/. We henceforth make the
following assumption.

Assumption 1 We assume that the error � is close enough to I4, that is, � 2 N�
defD

fv D exp.��/W � 2 se.3/ and k�k D 1g, where 0 � � < 1.

Remark 45.4. We may, without loss of generality assume that � is close to the iden-
tity. This is due to the fact that xL � L , for x 2 G, is the best linear approximation
of G in the neighborhood of x. So, if � is in the neighborhood of x 2 G, then �x�1
is close to the identity.

Using Lemma 1.7.3 of [20], which can be deduced from Lemma 3.4 in [21], we
have

d

dt
.��/ D u

eu � 1
ˇ̌
ˇ
u D ad��

. P���1/;

where
u

eu � 1 D
C1X

mD0

.�1/m
mC 1 .e

u � 1/m: Using (45.14), we have P���1 D ��. Og; y/
and hence

d

dt
.��/ D u

eu � 1
ˇ̌
ˇ
u D ad��

.��/

or, equivalently,
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d

dt
.��/ D �� � 1

2
ad���� � 1

2

1X

kD2

1

kŠ
adk����

C
C1X

mD2

.�1/m
mC 1 .e

u � 1/m
ˇ̌
ˇ̌
ˇ
u D ad��

.��/: (45.17)

On the other hand

exp.��/ D I4 C �� CO.�2/; exp.���/ D I4 � �� CO.�2/

and, using the fact that �.g; y/ D �.I4/ D 0 and noticing that � is defined in the
linear space of 4 � 4 real matrices, containing both SE.3/ and se.3/, we have

�R.�/ D
X

j2J
� 1

D. Og Npj /
k˘0 Og Npj k2..˘0 Og Npj �˘0�� Og Npj /�/

kF˘0g Npj k CO.�2/;

(45.18)

�T .�/ D
X

j2J

1

D. Og Npj /
2..˘0�� Og Npj �˘0 Og Npj / �˘0 Og Npj /

kF˘0g Npj k CO.�2/: (45.19)

From (45.15) to (45.17) with �.I4/ D 0, we conclude that

d

dt
.��/ D � N�.��/ D �

� N�R.��/ N�T .��/
0 0


CO.�2/;

where

N�R.��/ D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2
kF˘0g Npj k ..˘0�� Og Npj �˘0 Og Npj /�/; (45.20)

N�T .��/ D
X

j2J

1

D. Og Npj /
�2

kF˘0g Npj k ..˘0 Og Npj �˘0�� Og Npj / �˘0 Og Npj /: (45.21)

Up to an approximation of the order �2, we obtain that �� satisfies

d

dt
.��/ D �

� N�R.��/ N�T .��/
0 0


:

We have the following result.

Proposition 45.1. Up to an approximation of the order �2, the following result
holds.
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d

dt
k��k2 D �4�

X

j2J

1

D. Og Npj /
1

kF˘0g Npj kk˘0�� Og Npj �˘0 Og Npj k
2: (45.22)

Proof. From the fact that

d

dt
k��k2 D

�
d

dt
.��/; .��/

�
C
�
.��/;

d

dt
.��/

�
D 2

�
d

dt
.��/; .��/

�
;

and �
d

dt
.��/; .��/

�
D �Tr


� N�.��/	T
.��/

�
;

it follows that
d

dt
k��k2 D 2�Tr


� N�.��/	T
.��/

�
. Using the fact that

Tr
�
.u1�/T.u2�/

	 D 2uT
1u2

for every u1; u2 2 R3; up to an approximation of order �3, we have

Tr

� N�.��/	T

.��/
�

D 2
X

j2J

1

D. Og Npj /
1

kF˘0g Npj k
�
k˘0 Og Npj k2.˘0�� Og Npj �˘0 Og Npj /T� N�

�..˘0 Og Npj �˘0�� Og Npj / �˘0 Og Npj /T��T
�
: (45.23)

From the relation .a � b/Tc D detŒa b c�, where Œa b c� stays for the matrix whose
first, second, and third columns are respectively the vectors a; b; c 2 R3 and using
the skew-symmetry of the determinant function, we obtain

k˘0 Og Npj k2.˘0�� Og Npj �˘0 Og Npj /T� N�
D �...˘0�� Og Npj �˘0 Og Npj / �˘0g Npj / �˘0g Npj /T� N�
D �..˘0�� Og Npj �˘0 Og Npj / �˘0g Npj /T.˘0g Npj � � N�/
D �.˘0�� Og Npj �˘0 Og Npj /T.˘0g Npj � .˘0g Npj � � N�//
D �.˘0�� Og Npj �˘0 Og Npj /T..� N� �˘0g Npj / �˘0g Npj /

and

�..˘0 Og Npj �˘0�� Og Npj / �˘0 Og Npj /T��T
D �.˘0 Og Npj �˘0�� Og Npj /T.˘0 Og Npj � ��T /
D �.˘0�� Og Npj �˘0 Og Npj /T.��T �˘0 Og Npj /:
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Therefore,

k˘0 Og Npj k2.˘0�� Og Npj �˘0 Og Npj /T� N� � ..˘0 Og Npj �˘0�� Og Npj / �˘0 Og Npj /T��T
D �.˘0�� Og Npj �˘0 Og Npj /T..� N� �˘0g Npj / �˘0g Npj /
� .˘0�� Og Npj �˘0 Og Npj /T.��T �˘0 Og Npj /:

Note that the right-hand-side is

� .˘0�� Og Npj �˘0 Og Npj /T
�
.� N� �˘0g Npj C ��T / �˘0 Og Npj

	

D �k˘0�� Og Npj �˘0 Og Npj k2

by noting that, � N� �˘0 Og Npj C ��T D ˘0�� Og Npj :
Hence (45.23) reduces to

Tr

� N�.��/	T

.��/
�
D �2

X

j2J

1

D. Og Npj /
1

kF˘0g Npj kk˘0�� Og Npj �˘0 Og Npj k
2;

and, consequently

d

dt
k��k2 D �4�

X

j2J

1

D. Og Npj /
1

kF˘0g Npj kk˘0�� Og Npj �˘0 Og Npj k
2:

ut

45.4.2 Exponential Convergence

In this section we show under suitable assumptions that the estimation error con-
verges exponentially to zero as t ! 1. Let M denote the upper bound for
kF˘0g Npj k for all j .

We will recall Gronwall’s Lemma [22, Ch. III, 1.1.3] that is required to prove our
next result.

Lemma 45.1 (Gronwall inequality). Let g; h; y;
dy

dt
be locally integrable func-

tions satisfying
dy

dt
� gy C h for t � t0: (45.24)

Then, for all t � t0,

y.t/ � y.t0/ exp

�Z t

t0

g.�/ d�

�
C
Z t

t0

h.s/ exp

�
�
Z s

t

g.�/ d�

�
ds:

Our next result is as follows.
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Theorem 45.1. Let NT 2 Œ0; C1� and � > 0 be such that

X

j2J

k˘0�� Og Npj �˘0 Og Npj k2
.#J /k˘0 Og Npj k2.1C k˘0 Og Npj k/ � �k��k

2

on the time interval Œ0; NT Œ . Then, for every t 2 Œ0; NT Œ,

k��.t/k2 � k��.0/k2e�4��M�1t ;

where M is an upper bound for kF˘0g Npj k for all j . In particular, if NT D C1,
then k��.t/k2 converges exponentially fast to zero as t !1.

Proof. Under the hypothesis, (45.22) implies that

d

dt
k��k2 � �4��M�1k��k2; (45.25)

for all t 2 Œ0; NT �. The result follows from Gronwall’s inequality (Lemma 45.1). ut
Note that the rate of convergence can be improved by tuning � > 0, that is, the rate
of convergence increases with �. Next we prove the following result.

Theorem 45.2. Let NT 2 Œ0; C1�. Suppose there exists T > 0 such that, for every
t � 0; with t C T � NT ,

1

T

Z tCT

t

X

j2J

k˘0�� Og Npj �˘0 Og Npj k2
.#J /k˘0 Og Npj k2.1C k˘0 Og Npj k/

1

k��k2 d� � �:

Then, for n 2 N with t � 0; t C nT � NT ,

k��.t C nT /k2 � k��.t/k2e�4��M�1nT :

In particular, if NT D C1, then k��.t/k2 exponentially fast to zero as t !1.

Proof. Multiplying both the sides of (45.22) by .T k��k2/�1, we have

1

T

1

k��k2
d

dt
k��k2 D 1

T

1

k��k2
X

j2J

�4�
D. Og Npj /

1

kF˘0g Npj kk˘0�� Og Npj �˘0 Og Npj k
2;

or,

1

T

d

dt
log.k��k2/ � 1

T

1

k��k2
X

j2J

�4�M�1
D. Og Npj / k˘0�� Og Npj �˘0 Og Npj k

2:

Since the statement is trivial for n D 0, we consider the case n � 1. Integrating on
the interval Œt C .n � 1/T; t C nT �, we obtain



622 S.S. Rodrigues et al.

Z tCnT

tC.n�1/T
1

T

d

dt
log.k��k2/d�

�
Z tCnT

tC.n�1/T
1

T

1

k��k2
X

j2J

�4�M�1
D. Og Npj / k˘0�� Og Npj �˘0 Og Npj k

2d�:

Note that

Z tCnT

tC.n�1/T
d

dt
log.k��.�/k2/d�

D log.k��.t C nT /k2/� log.k��.t C .n � 1/T /k2/;

and the properties of logarithm imply that

Z tCnT

tC.n�1/T
d

dt
log.k��.�/k2/d� D log

� k��.t C nT /k2
k��.t C .n � 1/T /k2

�
:

Hence using the assumption, we have
1

T
log


 k��.t C nT /k2
k��.t C .n � 1/T /k2

�
� �4�M�1�

or, equivalently,

k��.t C nT /k2
k��.t C .n � 1/T /k2 � e

�4�M�1�T ;

from which we derive
k��.t C nT /k2
k��.t/k2 � e�4�M�1�nT :

Finally, if NT D C1, we have k��.t/k2 � max
s2Œ0; T 	

k��.s/k2 e�4�M�1�Œt=T 	;

where Œt=T � denotes the largest natural number contained in the quotient t=T , that
is, Œt=T � � t=T < Œt=T �C 1. Œt=T � � 0 is a non-negative integer number. ut
Remark 45.5. Theorem 45.1 may be seen as the “limit” of Theorem 45.2 when T
goes to 0.

45.5 Robustness Analysis of the Observer

In this section we investigate the effect of disturbance and noise on the estimation
error. We now consider the process model (45.2)–(45.3) subjected to disturbances
and noise as follows:

Pg.t/ D g.t/ .˝.t/C w.t// ; g.0/ D g0; (45.26)

yj .t/ D Qyj .t/C vj .t/; (45.27)
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where w 2 se.3/ is the disturbance, Qyj D Œ Qyj1 Qyj2 1�T 2 R3 is the real output
defined implicitly by ˛j Qyj D FHg Npj with 0 <  � ˛j , yj D Œyj1 yj2 1�T 2 R3

is the measured output with noise vj D Œvj1 vj2 0�T 2 R3. Further, the
disturbance and noise signals are assumed to be deterministic but unknown.
Note that (45.27) is equivalent to yj D ˛�1j

�
F˘0g Npj C ˛j vj

	
. Define

Mp
defD sup

t2Œ0; t1	
j2J

kF˘0g Npj C ˛j vj k.

Let jF�1j denotes a bound for the functional norm of F�1.t/ defined by

jF �1.t/j defD supfF�1.t/uW u 2 R3and kuk D 1g;

that is, we assume F �1.t/ is bounded in the time interval Œ0; t1� we are considering

the estimator in. DefineMv
defD sup

t2Œ0; t1	
j2J

kvj .t/k andMw
defD sup

t2Œ0; t1	
kw.t/k, that is,Mv

and Mw respectively denote the upper bounds for the noise kvj k and disturbance
kwk, we suppose to exist, in the same time interval Œ0; t1�.

We consider the same observer claimed in (45.5), which can be rewritten as

POg.t/ D Og.t/˝.t/C �� . Og.t/; y.t// Og.t/; Og.0/ D Og0; (45.28)

where �. Og; y/ is given by

�. Og; y/ D N�. Og; y/C Q�. Og; y/;

with

N�. Og; y/ D
� N�R. Og; y/ N�T . Og; y/

0 0


and Q�. Og; y/ D

� Q�R. Og; y/ Q�T . Og; y/
0 0


;

where

N�R. Og; y/ D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2..˘0 Og Npj �˘0g Npj /�/

kF˘0g Npj C ˛j vj k ;

N�T . Og; y/ D
X

j2J

�2
D. Og Npj /

..˘0g Npj �˘0 Og Npj / �˘0 Og Npj /
kF˘0g Npj C ˛j vj k ;

Q�R. Og; y/ D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2..˘0 Og Npj � F�1˛j vj /�/

kF˘0g Npj C ˛j vj k ;

Q�T . Og; y/ D
X

j2J

�2
D. Og Npj /

..F �1˛j vj �˘0 Og Npj / �˘0 Og Npj /
kF˘0g Npj C ˛j vj k :



624 S.S. Rodrigues et al.

Note that both N� and Q� depend on noise vj . Again, we define the error �.t/
defD

Og.t/g�1.t/. Therefore, using (45.1) yields

P� D POgg�1 C Og Pg�1 D ��.�/� � Ogw Og�1�; �.0/ D Og0g�10 ; (45.29)

where, by using g D ��1 Og we can rewrite �.�/ as

�.�/ D N�.�/C Q� D
� N�R.�/ N�T .�/

0 0


C
� Q�R Q�T
0 0


;

with

N�R.�/ D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2..˘0 Og Npj �˘0��1 Og Npj /�/

kF˘0g Npj C ˛j vj k ; (45.30)

N�T .�/ D
X

j2J

�2
D. Og Npj /

..˘0�
�1 Og Npj �˘0 Og Npj / �˘0 Og Npj /
kF˘0g Npj C ˛j vj k ; (45.31)

Q�R D
X

j2J

1

D. Og Npj /
k˘0 Og Npj k2..˘0 Og Npj � F �1˛j vj /�/

kF˘0g Npj C ˛j vj k ; (45.32)

Q�T D
X

j2J

�2
D. Og Npj /

..F�1˛j vj �˘0 Og Npj / �˘0 Og Npj /
kF˘0g Npj C ˛j vj k : (45.33)

Remark 45.6. Note that kF˘0g Npj C ˛j vj k is equal to ˛j k˛�1j F˘0g Npj C vj k D
˛j kyj k � ˛j �  and from (45.4), it follows that m2.m C 1/ is a lower bound
for D. Og Npj /kF˘0g Npj C ˛j vj k. From this we conclude that the observer is well
defined.

Note that � D exp.��/ D I4 C �� C O.�2/. Using Lemma 1.7.3 of [20], we
obtain

d

dt
.��/ DP���1 � 1

2
Œ��; P���1�CO.�2/:

From (45.29), we have P���1 D �. N�.�/C Q�/� Ogw Og�1 and hence the above equation
becomes

d

dt
.��/ D� N�.��/C � Q� � Ogw Og�1 � 1

2
Œ��; � Q� � Ogw Og�1�CO.�2/:

Up to an approximation of the order �2, we have that �� satisfies

d

dt
.��/ D � N�.��/C � Q� � Ogw Og�1 � 1

2
Œ��; � Q� � Ogw Og�1�; (45.34)
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and, multiplying by �� yields,

d

dt
k��k2 D 2h� N�.��/; ��i C 2h� Q�; ��i � 2h Ogw Og�1; ��i

� hŒ��; � Q� � Ogw Og�1�; ��i: (45.35)

To estimate a bound for the variation
d

dt
k��k2, we may start by estimate a bound

for the individual terms on the right-hand-side of (45.35), which are given by the
following result.

Proposition 45.2. The following statements hold.

(i) h N�.��/; ��i D �
X

j2J

2

D. Og Npj /
k˘0�� Og Npj �˘0 Og Npj k2
kF˘0g Npj C ˛j vj k :

(ii)
˝ Q�; ��˛ �

X

j2J

2jF�1jMv

.#J /
k��k:

(iii) h Ogw Og�1; ��i � kwkk��k.

(iv) hŒ��; � Q� � Ogw Og�1�; ��i �
0

@2�
X

j2J

jF�1jMv

.#J /.1C k˘0 Og Npj k/ CMw

1

A k��k2:

Proof. In the following

�
�R �T
0 0


defD � with . N��/ defD �R.

(i) The result follows from the noise free case, proceeding as in the proof of
Proposition 45.1.

(ii) First, note that

. Q�/T�� D
� Q�R Q�T
0 0

T �
��R ��T
0 0


D
"� Q�R

	T
��R

� Q�R
	T
��T� Q�T

	T
��R

� Q�T
	T
��T

#
:

Then
˝ Q�; ��˛ D Tr

� Q�T��
	 D Tr


� Q�R
	T
��R

�
C � Q�T

	T
��T . Now, we have

Tr

� Q�R

	T
��R

�
D
X

j2J

2

D. Og Npj /
k˘0 Og Npj k2.˘0 Og Npj � F�1˛j vj /T��

kF˘0g Npj C ˛j vj k ; and

. Q�T /T��T D
X

j2J

�2˛j
D. Og Npj /

..F�1vj �˘0 Og Npj / �˘0 Og Npj /T��T
kF˘0g Npj C ˛j vj k :

Proceeding as in the proof of Proposition 45.1, we can arrive to
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˝ Q�; ��˛ D
X

j2J

2˛j

D. Og Npj /
.F�1vj �˘0 Og Npj /T.˘0�� Og Npj �˘0 Og Npj /

kF˘0g Npj C ˛j vj k ;

˝ Q�; ��˛ �
X

j2J

2˛j

D. Og Npj /
kF �1vj �˘0 Og Npj kk˘0�� Og Npj �˘0 Og Npj k

kF˘0g Npj C ˛j vj k :

Since ku1 � u2k � ku1kku2k for every u1; u2 2 R3, we have

˝ Q�; ��˛ �
X

j2J

2

.#J /.1C k˘0 Og Npj k/
�

˛j

kF˘0g Npj C ˛j vjk
�
kF�1vj kk˘0�� Og Npj k:

Further, note that kyj k�1 D ˛j

kF˘0g Npj C ˛j vj k � 1 and kF �1vj k � jF�1jMv.

Hence

˝ Q�; ��˛ �
X

j2J

2jF�1jMv

.#J /.1C k˘0 Og Npj k/k˘0�� Og Npj k:

Recall that˘0�� Og Npj D � N��˘0 Og NpjC��T and by triangle inequality it follows that
k˘0�� Og Npj k � k� N� �˘0 Og Npj k C k��T k. In other words, k˘0�� Og Npj k � k��k.1C
k˘0 Og Npj k/ by noting that

k� N� �˘0 Og Npj k � k� N�kk˘0 Og Npj k; k� N�k � k��k;

and
k��T k � k��k:

Hence

˝ Q�; ��˛ �
X

j2J

2jF�1jMv

.#J /
k��k:

(iii) First note that, h Ogw Og�1; ��i � k Ogw Og�1kk��k: By the definition, we have

k Ogw Og�1k D
p

Tr. OgwT Og�1 Ogw Og�1/:

Since Og�1 Og D I4, we have k Ogw Og�1k D pTr. OgwTw Og�1/. Recall that, the trace of a
matrix is invariant under similarity transformation, that is, Tr.BAB�1/ D Tr.A/ for
every A 2 Rn	n [24, Ch. V, 7]. Thus, we conclude that k Og�1w Ogk D p

Tr.wTw/ D
kwk. Hence h Ogw Og�1; ��i � kwkk��k:

(iv) For simplicity, we define Z
defD
�
ZR ZT
0 0


defD � Q� � Ogw Og�1.

We find hŒ��; Z�; ��i D Tr.��T.Z�� � ��Z//: Note that, for every A; B; C 2
se.3/, we have
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ATBC D
�
AT
R 0

AT
T 0

 �
BRCR BRCT
0 0


D
�
AT
RBRCR A

T
RBRCT

AT
TBRCR A

T
TBRCT



and Tr.ATBC/ D �Tr.ARBRCR/C AT
TBRCT . Hence

hŒ��; Z�; ��i D ��Tr.��RZR��R/C .��T /TZR��T
	

� ��Tr.��R��RZR/C .��T /T��RZT
	
:

It is easy to check that .��RZR��R/T D �.��RZR��R/, and hence ��RZR��R is
skew-symmetric, which implies that its trace is zero. On the other hand, the term

.��T /
TZR��T D .��T /

T.Nz � ��T / vanishes as well, where .Nz�/ defD ZR . The term
Tr.��R��RZR/ vanishes because for positive semi-definite matrices A and B , we
have 0 � Tr.AB/ � Tr.A/Tr.B/ [23, pg. 329], so that

0 � Tr.���R��RZR/ � Tr.���R��R/Tr.ZR/ D 0:

Notice that, for a given vector

u 2 R3; uT.���R/��Ru D .��Ru/T.��Ru/ D k��Ruk2 � 0 and uTZRu D 0:

Therefore
hŒ��; Z�; ��i D �.��T /T��RZT D ZT

T .�� � ��T /:
Note the following facts:

(a) kyj k�1 D ˛j

kF˘0g Npj C ˛j vj k � 1.

(b) Using (45.33) together with a), we have

� Q�T
T .�� � ��T / � 2�

X

j2J

ˇ̌
ˇ̌
ˇ
..F �1vj �˘0 Og Npj / �˘0 Og Npj /T.�� � ��T /

D. Og Npj /

ˇ̌
ˇ̌
ˇ :

From j..F�1vj �˘0 Og Npj /�˘0 Og Npj /T.�����T /j � jF�1jMv k˘0 Og Npj k2 k���
��T k we obtain

� Q�T
T .�� � ��T / � 2�

X

j2J

jF�1jMv k��k2
.#J / .1C k˘0 Og Npj k/ :

(c) It can be easily shown that . Ogw Og�1/TT .�� � ��T / � kwkk��k2 or, equivalently,
. Ogw Og�1/TT .�� � ��T / �Mwk��k2 .

Using (b) and (c) above, we conclude that
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hŒ��; � Q� � Ogw Og�1�; ��i �
0

@2�
X

j2J

jF�1jMv

.#J /.1C k˘0 Og Npj k/ CMw

1

A k��k2:

ut
The following result follows immediately from Proposition 45.2.

Proposition 45.3. The following statement holds.

d

dt
k��k2 ��

X

j2J

4�

D. Og Npj /
k˘0�� Og Npj �˘0 Og Npj k2
kF˘0g Npj C ˛j vj k CMw.2C k��k/k��k

C 2�
X

j2J

jF�1jMvk
.#J /

�
2C k��k

1C k˘0 Og Npj k
�
k��k:

Proof. The result follows by using the bounds given by Proposition 45.2 in the
expression (45.35). ut
The following result follows immediately, by recalling that � < 1 from Assump-
tion 1.

Proposition 45.4. We have the estimate

d

dt
k��k2 � �

X

j2J

4�

D. Og Npj /
k˘0�� Og Npj �˘0 Og Npj k2
kF˘0g Npj C ˛j vj k C 6�jF�1jMv C 3Mw:

(45.36)

By (45.4), kF˘0g Npj k is bounded above by M and, by the definition ˛j �
kF˘0g Npj k. Then each kF˘0g NpjC˛j vj k is bounded above byMp D M.1CMv/.

Next, we derive the noisy version of Theorem 45.1.

Theorem 45.1. Let NT 2 Œ0; C1� and � > 0 be such that

(i) k��.0/k < 1.

(ii)
X

j2J

k˘0�� Og Npj �˘0 Og Npj k2
.#J /k˘0 Og Npj k2.1C k˘0 Og Npj k/ � �k��k

2.

(iii)
6�jF�1jMv C 3Mw

4��M�1p
< 1.

are satisfied on the time interval Œ0; NT /. Then, for every t 2 Œ0; NT Œ,

k��.t/k2 � k��.0/k2e�4��M�1
p t C 6�jF�1jMv C 3Mw

4��M�1p



1 � e�4��M�1

p t
�
:
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In particular, if NT D C1, then for every constant � > 0 there exists t� � 0 such
that

k��.t/k2 < 6�jF�1jMv C 3Mw

4��M�1p
C �

for all t � t� .

Proof. Define Mv;w
defD 6�jF�1jMv C 3Mw and Q� defD 4��M�1p . Since k��.0/k < 1

there exists small enough t0 2 .0; NT � such that k��.t/k < 1 for all t 2 Œ0; t0/. From
Proposition 45.4, we obtain

d

dt
k��k2 � �Q�k��k2 CMv;w;

for all t 2 Œ0; t0�. From Gronwall’s inequality (45.24) we have

k��.t/k2 �k��.0/k2e�Q�t C
Z t

0

Mv;w exp

�
�
Z s

t

�Q� d�

�
ds: (45.37)

Note that exp

�
�
Z s

t

�Q� d�

�
D e Q�.s�t/. Hence

k��.t/k2 �k��.0/k2e�Q�t C
Z t

0

Mv;we
Q�.s�t/ ds

�k��.0/k2e�Q�t CMv;w
Q��1.1 � e�Q�t / (45.38)

for all t 2 Œ0; t0/. Therefore we see that k��k is non-increasing in Œ0; t0/ if we have
that

k��.0/k2e�Q�t CMv;w
Q��1.1 � e�Q�t / � k��.0/k2;

that is, if k��.0/k2 � Mv;w
Q��1. Since at time t0, we have k��.t0/k2 < 1 we

may repeat the argument for a suitable interval Œt0; t0 C t1� for some t1 > 0

with t0 C t1 � NT . Therefore, if k��.t0/k2 � Mv;w
Q��1, then k��.t/k2 decreases in

Œt0; t0 C t1�. Repeating again successively the argument, we see that the sequence

of instants of time sm
defD

mX

iD0
ti must “reach” the instant NT , otherwise by the defini-

tion we must have k��.s/k D 1 at s D lim
m!C1 sm � NT that is impossible because

k��.sm/k2 � k��.0/k2 < 1 for all m 2 N . So, in particular k��k2 � k��.0/k2 < 1
in Œ0; NT Œ. Coming back to the beginning of this proof we may then suppose that
t0 D NT and so, estimate (45.37) holds for all t 2 Œ0; NT Œ. In the case NT D C1, from
(45.37), we conclude that for any given constant � > 0, we may find t� � 0 such
that k��.t/k2 < Mv;w

Q��1 C � for all t � t�. ut
We also have the noisy version of Theorem 45.2.
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Theorem 45.2. Let NT 2�0; C1�. Suppose there exist positive constants T; � such
that,

(i) k��.0/k2 � .6� jF�1jMv C 3Mw/T

1 � e�4��M�1
p T

(ii)
1

T

Z T

t

X

j2J

k˘0�� Og Npj �˘0 Og Npj k2
.#J /k˘0 Og Npj k2.1C k˘0 Og Npj k/ d� � � for every 0 � t; t C

T < NT
(iii)

.6� jF�1jMv C 3Mw/T .2� e�4��M�1
p T /

1 � e�4��M�1
p T

< 1

are satisfied. Then for all s 2 Œ0; NT /,

k��.s/k2 � .6� jF�1jMv C 3Mw/T .2 � e�4��M�1
p T /

1 � e�4��M�1
p T

:

Proof. Define Mv;w
defD 6�jF�1jMv C 3Mw and Q� defD 4��M�1p . Suppose that

k��.t/k2 �Mp.t � s/ > 0 for all t 2 Œs; s C T �. From estimate (45.36), we may
derive

1

T

1

k��.t/k2 �Mv;w.t � s/
d

dt

�k��.t/k2 �Mv;w.t � s/
	

�� 1

T

X

j2J

4

D. Og Npj /
k˘0�� Og Npj �˘0 Og Npj k2

kF˘0g Npj C vj k.k��.t/k2 �Mp.t � s// :

Integrating on Œs; s C T �, we arrive to

log

�k��.s C T /k2 �Mv;wT /

k��.s/k2
�
� �Q�T;

that is, k��.sC T /k2 � e�Q�T k��.s/k2CMv;wT; and so k��.sC T /k2 � k��.s/k2
if

k��.s/k2 � Mv;wT

e�Q�T
: (45.39)

On the other hand notice that from estimate (45.36), we have
d

dt
k��k2 �Mv;w.

Since k��.0/k2 � Mv;wT

1 � e�Q�T
, we have that

k��.t/k2 � Mv;wT

1 � e�Q�T
CMv;wt D Mv;wT C .1 � e�Q�T /Mv;wt

1 � e�Q�T
(45.40)
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for all t 2 Œ0; T �. Now we notice that to have, for some time � � T ,

k��.�/k2 D Mv;wT .2 � e�Q�T /
1 � e�Q�T

(45.41)

at some time � > 0 we need to have k��.t/k2 � Mv;wT

1 � e�Q�T
in the interval Œ� �T; ��,

because if for some t 2 Œ� � T; �� we have k��.t/k2 < Mv;wT

1 � e�Q�T
then necessarily

k��.�/k2 < Mv;wT

1 � e�Q�T
CMv;w.� � t/

� Mv;wT

1 � e�Q�T
D Mv;wT .2 � e�Q�T /

1� e�Q�T

which contradicts (45.41). On the other side, if k��.t/k2 � Mv;wT

1 � e�Q�T
in the interval

Œ� �T; ��, then since
Mv;wT

1 � e�Q�T
�Mv;wT and, using estimate (45.39), we have that

k��.�/k2 � k��.� � T /k2 so, for every � > T , k��.�/k2 D Mv;wT .2 � e�Q�T /
1 � e�Q�T

only if

k��.� � T /k2 D Mv;wT .2 � e�Q�T /
1 � e�Q�T

: (45.42)

Now from estimate (45.40) we have

k��.t/k2 �Mv;wT C .1 � e�Q�T /Mv;wt

1 � e�Q�T

<
Mv;wT .2� e�Q�T /

1 � e�Q�T

for all t 2 Œ0; T Œ. Therefore, from (45.42), we have k��.t/k2 < Mv;wT .2 � e�Q�T /
1 � e�Q�T

for all t > 0. ut
Remark 45.7. Theorem 45.1 may be “almost” seen as the limit of Theorem 45.2
as T goes to 0. We say almost because we need to impose that the square of the

norm of the initial error is smaller than
Mv;wT

1 � e�Q�T
<
Mv;wT .2� e�Q�T /

1 � e�Q�T
, that is,
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k��.0/k2 � Mv;wT

1 � e�Q�T
< 1, while in Theorem 45.1 it was enough to impose that

k��.0/k2 < 1. Notice that
Mv;wT .2 � e�Q�T /

1 � e�Q�T
goes to

Mv;w

Q� as T goes to 0.

45.6 Conclusions

This paper provides a nonlinear observer design structure for a left-invariant dynam-
ical system evolving on the three-dimensional special Euclidean group with mea-
surements given by implicit functions. Under suitable assumptions, we show that
the linearized state estimation error converges exponentially fast to the true state.
Furthermore, we show that if the dynamical system is subject to disturbance and
noise, the estimator converges to an open neighborhood of the true value of the
state. The size of the neighborhood increases/decreases gracefully with the bound
of the disturbance and noise.

Acknowledgements This work was supported in part by projects DENO/FCT-PT (PTDC/EEA-
ACR/ 67020/2006), Co3-AUVs (EU FP7 under grant agreement No. 231378), FCT (ISR/ IST
plurianual funding) through the PIDDAC Program funds and the CMU-Portugal program.

References

1. Kalman, R.: A new approach in linear filtering and prediction problems. Transactions of the
American Society of Mechanical Engineers. Journal of Basic Engineering. 82D. (1960) pp.
35–45

2. Luenberger, D.: Observing the state of a linear system with observers of low dynamic order.
IEEE Trans. Mil. Electron. 74–80 (1964)

3. Bonnabel, S., Martin, P., Rouchon, P.: Nonlinear symmetry-preserving observers on Lie
groups. IEEE Trans. Autom. Control. 5, 1709–1713 (2009)

4. Bonnabel, S., Martin, P., Rouchon, P.: Symmetry-preserving observers. IEEE Trans. Autom.
Control. 53, 2514–2526 (2008)

5. Bonnabel, S., Martin, P., Rouchon, P.: Non-linear observer on Lie groups for left-invariant
dynamics with right-left equivalent output. 17th World Congress The International Federation
of Automatic Control, pp. 8594–8598. (2008)

6. Bonnabel, S., Martin, P., Rouchon, P.: A non-linear symmetry-preserving observer for velocity-
aided inertial navigation. Proceedings of the 2006 American Control Conference, pp. 2910–
2914 (2006)

7. Aguiar, A.P., Hespanha, J.P.: Minimum-energy state estimation for systems with perspective
outputs. IEEE Trans. Autom. Control. 51(2), 226–241 (2006)

8. Aguiar, A.P., Hespanha, J.P.: Robust filtering for deterministic systems with implicit outputs.
Syst. Control Lett. 58(4), 263–270 (2009)

9. Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated
autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control.
52(8), 1362–1379 (2007)

10. Ghosh, B.K., Jankovic, M., Wu, Y.T.: Perspective problems in system theory and its application
in machine vision. J. Math. Syst. Estimation Control 4(1), 3–38 (1994)



45 An Exponential Observer for Systems on SE.3/ with Implicit Outputs 633

11. Ghosh, B.K., Loucks, E.P.: A perspective theory for motion and shape estimation in machine
vision. SIAM J. Control Optim. 33(5), 1530–1559 (1995)

12. Takahashi, S., Ghosh, B.K.: Motion and shape parameters identification with vision and range.
2001 American Control Conference, vol. 6, 4626–4631 (2001)

13. Lageman, C., Trumpf, J., Mahony, R.: Gradient-like observers for invariant dynamics on a Lie
group. IEEE Trans. Autom. Control (2009)

14. Lageman, C., Trumpf, J., Mahony, R.: State observers for invariant dynamics on a Lie group.
18th International Symposium on Mathematical Theory of Networks and Systems. (2008)

15. Lageman, C., Trumpf, J., Mahony, R.: Observers for systems with invariant outputs. European
Control Conference 2009, pp. 4587–4592. Budapest, Hungary (2009)

16. Lageman, C., Trumpf, J., Mahony, R.: Observer design for invariant systems with homoge-
neous observations. IEEE Trans. Autom. Control (2008)
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Chapter 46
Stability of Polydeuces Orbit

Dulce C. Pinto and Filipe C. Mena

Abstract The stability of the recently discovered Saturn satellite Polydeuces has
not been fully studied yet. We use data from the Cassini probe group (NASA and
Queen Mary, London) in order to numerically study the stability of the orbit of Poly-
deuces. We treat the system Saturn-Dione-Polydeuces as a planar, circular, restricted
three body problem where Polydeuces is librating around the L5 Lagrangian point
in a tadpole motion. We analyze the eccentricity evolution of Polydeuces trajectory,
the Poincaré section and the indicator of its maximum Lyapounov characteristic
exponent. Our results suggest that the Polydeuces orbit is stable for at least 105

Dione-years.

46.1 Polydeuces and the 3-Body Problem

Polydeuces is a Saturnian moon that was discovered by the Cassini spacecraft [3]
on October 2004 (Fig. 46.1a). This moon is about 377,400 km distant from Saturn,
has an equatorial diameter of 13 km and is close to Dione, a well known saturn
moon. The orbit of Dione has an eccentricity e ' 0:0192, so its motion is approxi-
mately circular. Polydeuces has negligle mass comparatively to Dione and because
the inclination i ' 0:1774 of its orbit is not significant, one treat the system Saturn-
Dione-Polydeuces as a planar, circular, restricted three body problem (PCRTBP).
More details about Polydeuces can be found in [3, 5].

The equations of motion for the PCRTBP in the synodic frame are well known
and can be written as

Px D F .x; y; Px; Py/ ; (46.1)

D.C. Pinto (B)
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where

F .x/ D
�
x; y; 2y C @U

@x
; 2x C @U

@y

�
:

and U is given by

U D U.x; y/ D 1

2
.x2 C y2/C 1 � �

d1
C �

d2
;

where d1 D
p
.x C �/2 C y2, d2 D

p
.x � 1C �/2 C y2, .x; y/ is the position

and . Px; Py/ the velocity of the small body, � D Gm2 andm1 >> m2 are the masses
of the two most massive bodies. This system has an integration constant, the so
called Jacobi constant, given by

1

2
CJ D 1

2
. Px2 C Py2/� U :

It is also well known that the PCRTBP has five equilibrium points in the synodic
frame. The Euler Points (L1, L2 and L3) are collinear with two massive bodies and
the Lagrangian points (L4 and L5) form with those two bodies a double equilateral
triangle. The non-linear stability study of the equilibrium points is a problem with a
known solution (see e.g. [1, 2] or [4] for a review).

46.2 Numerical Stability: Lyapounov Exponents,
Poincaré Sections and Eccentricity

In the case of Saturn-Dione-Polydeuces system � D 1:85�10�6, Polydeuces is
librating around the L5 equilibrium point in a tadpole motion and has a period of
about 792 days [5]. General known analytical results allow to conclude the stability
of the L5 point. However, as Polydeuces is not exactly at this point, so we have used
numerical analysis to follow its orbit and our results are shown in Fig. 46.1b. This
graphic representation was obtained for an integration period of 1; 035Dione-years.

At each instant of time, we consider an elliptical orbit and calculate its eccentric-
ity e, and our results in Fig. 46.2 presents a pattern characteristic of a regular orbit
with T referring to the orbital period of Dione and a to its semi-major axis.

In order to obtain Poincaré sections for Polydeuces orbit we take the fix Jacobi
constant CJ .x; y; Px; Py/ D c0 and express Py as a function of x, y and Px:

Py D
s

.x2 C y2/C 2
�
1� �
d1
C �

d2

�
� Px2 � c0

where the dot denotes differentiation with respect to time.
From Cassini’s data for the Polydeuces orbit, we have considered the energy level

c0 D 2:99957, the position .x; y/ D .0:7831;�0:6519/ and, the corresponding
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Fig. 46.1 (a) Polydeuces image, taken from the site of NASA: http://saturn.jpl.nasa.gov/science/
moons/moonDetails.cfm?pageID=19. (b) Polydeuces trajectory for an integration period of 1; 035
years of Dione

Fig. 46.2 Semi-major axis (a) and Eccentricity (b) in function of time for the Polydeuces
trajectory. The T variable refers to orbital periods of Dione

velocity . Px; Py/ D .�0:0181;�0:0341/. The equations of motion were then inte-
grated for a period of 1:6� 105 Dione-years. Our results for the Poincaré section of
Polydeuces orbit, represented in Fig. 46.3a, suggest quasi-periodicity.

The maximum Lyapounov exponent � was then computed. In order to do that,
we have considered two orbits in the phase space separated by an initial distance
�.t0/, we found, at each time t , the new distance between both orbits �.t/. We have
then used numerical methods to obtain an indicator of the maximum Lyapounov
exponent, represented by ��.

In Fig. 46.3b, the points of the ensemble f.log t; log ��.t//; 0 < t < 2:6�106g
are plotted, using the equation

��.t/ D 1

t
log

�
�.t/

�.t0/

�
;

where �.t/ is, in this case, the norm of the solution of the ODE system

P� D @ PF
@x
.x.t//� ^ �.0/ D �0

http://saturn.jpl.nasa.gov/science/moons/moonDetails.cfm?pageID=19
http://saturn.jpl.nasa.gov/science/moons/moonDetails.cfm?pageID=19
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Fig. 46.3 Poincaré section (a) and maximum Lyapounov characteristic exponent (b) of Poly-
deuces orbit

and F is the vectorial function of the (46.1). The time value 2:6 � 106 corre-
sponds to approximately 4 � 105 Dione-years. For regular orbits, the initial and
final distances should be close and the graphic representation, using a log � log
scale, should be approaching a linear function with negative slope. Therefore, our
graphic representation above exhibits patterns typical of a regular orbit.

46.3 Conclusion

The results of the eccentricity evolution of Polydeuces trajectory, the Poincaré
section and the indicator of its maximum Lyapounov characteristic exponent are
compatible and suggest that the Polydeuces orbit is stable for at least 105 Dione-
years.
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Chapter 47
Peixoto Classification of 2-Dim Flows Revisited

Antonio R. da Silva

Abstract According to A. Connes attached to a foliation groupoid there is a nat-
ural C �-algebra. Here we present a very brief survey on how this construction
together with a glueing method developed by Oshemkov and Sharko allows us to
present an alternative formulation of Peixoto classification of Morse–Smale flows
on 2-dimensional manifolds. Though all tools involved here are well-known their
links seem to be still in progress.

47.1 Connes Foliation Algebra

It is well-known that given a locally compact groupG with a left Haar measure dx,
the space of the integrable functionsL1.G; dx/ can be made into a �-Banach algebra
by taking as multiplication

.f � g/.x/ D
Z
f .y/ g.y�1x/ dy

and as involution
f �.x/ D �.x/�1 f .x�1/;

where � is the modular function of G.
A standard procedure allows us to define the groupC �-algebraC �.G/ by taking

the completion of L1.G/ with respect to the norm

jjf jjC� D supfjj�.f /jj W � is a �-representation of Gg;

where �.f / D
Z

G

f .x/�.x/ dx and jj � jj is the operator norm for operators acting

on the representation space.
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By the end of the Seventies Connes showed how to build up a C �-algebra out
of a regular foliation, see e.g. [2–4]. Connes construction is based on the concept
of graph of a foliation, introduced by Thom in [15], and treated in more detail by
Winkelnkemper in [17]. In order to present Connes’construction we first recall some
definitions.

By a groupoid G with basis B we understand a set G endowed with mappings
r WG ! B , sWG ! B and a partially defined binary operation .x; y/ 7! xy such
that:

(a) x y is defined whenever r.y/ D s.x/
(b) Associativity holds
(c) For each x 2 G there is a left neutral element rx and a right neutral element sx

such that
rx � x D x D x � sx

Thus instead of the unity of the group we have the unit space

Go WD fx x�1 W x 2 Gg:

Groups are groupoids with Go D feg. The mappings r; sWG ! Go, with r.x/ D
x x�1 and s.x/ D x�1 x are naturally associated to G and allow us to identify B
with Go.

A groupoid G endowed with a topology such that the multiplication and inverse
mappings, whenever defined, are continuous is called a topological groupoid.

Let us assume that the topology on G is second countable, G is locally compact
and Hausdorff and that r WG ! Go is an open mapping.

A transverse function on a locally compact groupoid is a family of measures
f�x W x 2 Gog such that:

(a) The support of �x is contained in Gx WD r�1.x/
(b) For each f 2 Cc.G/ the mapping

�.f /Wx !
Z
f d�x

is continuous
(c) For each � 2 Gyx WD r�1.y/ \ s�1.x/ and each f 2 Cc.G/ holds

Z
f .� � 0/d�x.� 0/ D

Z
f .� 0/d�y.� 0/:

The support of the mapping �WCc.G/ ! Cc.G
o/ is a subset of G of the form

GF , where F is a closed subset of Go. The closed subset is the support of the
transverse function. The transverse function is called a Haar system when its support
is Go.

A Haar system for a locally compact groupoid need not exist and if it does, it is
usually not unique.
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Given a regular foliation F on a smooth manifold M under the graph of F or
the holonomy groupoid of F we understand the groupoid with M as the sets of
objects and the set G of morphisms defined by the properties:

(a) there is no morphism x ! y unless x and y lie on the same leaf L of F ;
(b) the portion r�1.L/ D s�1.L/ of G over a leaf L is a quotient of the fundamen-

tal groupoid of L, and
(c) two homotopy classes Œ�1�, Œ�2� of paths from x to y in a leaf L are identified

in G if and only if they have the same holonomy.

One can give G a natural structure of a manifold (not necessarily Hausdorff).
Further, if the leaves of F are simply connected, or more generally, without holon-
omy then G reduces to the groupoid of an equivalence relation R on M , R being
the relation of “lying on the same leaf”. Now let us recall the notion of groupoid
equivalence.

Let G be a groupoid. Consider a fiber bundle with base space Go, total space Z
and projection� . Given a pair of points x, y inGo, each � 2 Gyx D r�1.y/\s�1.x/
induces a bijection:

L� W��1.x/! ��1.y/

which satisfies: L�� 0 D L� ı L� 0 .
A pair .�; z/ is said compatible if �.z/ D s.�/ and the product of � by z is

defined by:
� � z D L� .z/:

The set of compatible pairs is denoted by G � Z.
If � is open and continuous, and the product map G � Z 	 G � Z ! Z is

continuous then Z is called a left G-space.
Similarly one defines right G-spaces.
Given two groupoidsG and G0 we define a .G;G0/-space as a topological space

Z that satisfies:

(a) Z is a left G-space
(b) Z is a rightG0-space
(c) the actions of G and G0 an Z commute

We say that two groupoidsG and G0 are equivalent whenever there is a .G;G0/-
space such that:

(a) if �.z0/ D �.z/ then there is a unique � 2 G such that z0 D �z
(a) if � 0.z0/ D � 0.z/ then there is a unique � 0 2 G0 such that z0 D z� 0

Finally, the construction of a C �-algebra out of a groupoid runs as follows:
Let .G; �/ be a locally compact groupoid with a Haar system. We can define a

�-algebra structure on Cc.G/ by taking:

.f � g/.�/ D
Z
f .� 0/g.� 0�1 �/ d�s.�/.� 0/I

f �.�/ D f .��1/:



642 A.R. da Silva

The enveloping C �-algebra of this �-algebra is the C �-algebra of the groupoid
G. So given a regular foliation F on a manifold M on considers its holonomy
groupoidG.F / the correspondingC �-algebra is called the C �-foliation algebra of
F denoted here by C �.F /.

47.2 Vector Fields

LetX be a vector field on a manifoldM , i.e.X WM ! TM, where TM is the tangent
bundle overM . The integral curves of the system:

(
Px.t/ D X.x.t//; t 2 R

x.0/ D p
define a flow

FpW I 
 R!M

t 7! Fp.t/ D F .t; p/

Given p 2M the orbit through p is defined by O.p/ D fFt .p/ 2 M W t 2 I g.
If F is the flow associated to Px D X.x/ then flow .M;F / is identified with the

vector field X on M . Further, we recall that
stable manifold W s.v/ WD fp 2 M W Ft .P /! v; t ! C1g;
unstable manifold W u.v/ WD fp 2M W Ft .p/! v; t ! �1g.

Given two vector fieldsX and Y onM with corresponding flows F and G resp.
we say X and Y are topologically equivalent whenever there is an homeomorfism
hWM ! M that maps orbits of X into orbits of Y preserving their orientations.
That is, for p 2M and ı > 0 there exists " > 0 such that:

0 < t < ı) h.Ft .p// D GNt .h.p// for some 0 < Nt < ":

Now let M be a n-dimensional connected compact manifold and let Xr.M/ be
the set of all C r -vector fields onM , r � 1. Considering

X WM ! TM D
[

p2M
TpM � f.p; v/ W p 2 M; v 2 TpM g

we have that X is a section of the fiber bundle .TM; �;M/.
We consider a topology on Xr .M/, where the open sets are induced by the norm

jjX jjr D max
iDo;r sup

u2B.1/
fjjf i .u/jj; jjdf i .u/jj; : : : ; jjd r f i .u/jjg:
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Here we take a finite open cover V1; : : : ; Vk such that each Vi is contained in
the domain of a local chart .xi ; Vi / with xi .Vi / D B.1/ � open unit ball, f i �
X ı x�1i Wxi .Vi /! Rn is of classe C r .

Definition 47.1. We say that X 2 Xr.M/ is structurally stable whenever there is a
neighborhood V ofX in Xr.M/ such that every vector field Y 2 V is topologically
equivalent to X . In other words, the topological behaviour of the orbits of X does
not change under small perturbations.

Suppose now that M is a 2-dimensional closed manifold (that is, compact
without boundary).

Definition 47.2. X 2 Xr .M/ is called Morse–Smale if:

(a) The vector field X has a finite number of hyperbolic singular points and a finite
number of hyperbolic periodic trajectories.

(b) There is no saddle connection, that is, no separatrix joining one saddle to
another or to itself.

(c) Any orbit has a unique ˛-limit as well as a unique !-limit.
We have that the ˛- and !-limit sets of every trajectory is either a singularity or
a closed orbit.

Theorem 47.1 (Peixoto). Let M be a closed orientable 2-manifold. Then

(i) A vector field X 2 Xr is structurally stable iff it is Morse–Smale
(ii) The set

P
of all Morse–Smale vector fields is open and dense in the space Xr

(approximation theorem!)

As a matter of fact Peixoto proved that the set of Morse–Smale vector fields on a
compact two-dimensional manifold is open in Xr .M/, r � 1, and it is also dense if
M is orientable. It follows from Pugh’s closing lemma that this set is also dense in
X1.M/ for any two-dimensional compact manifold M . A topological equivalence
class may have infinitely many connected components.

In [5] Gutiérrez and de Melo gave a classification of the set of connected
components of Morse–Smale vector fields onM .

In what concerns the closing lemma we recall the deep contribution of Gutiérrez
[6–8], who in particular showed that is not possible to prove the C 2 closing lemma
through a local perturbation.

The Morse–Smale vector fields without periodic orbits are called Morse vector
fields. It is well-known that these vector fields are equivalent to gradient vector fields
which are vector fieldsX WM ! TM such thatX D rf , for some f 2 C rC1.M/.

Peixoto in [14] gave a classification of the 2-dim Morse flows through the so-
called distinguished graphs, see also [1, 11–13].

The distinguished graphs are defined through the polar flow and the distin-
guished sets that correspond to the canonical regions, that are the open connected
components that one gets once the singularities, stable and unstable manifolds are
taken out, for details see [14].
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47.3 Oshemkov and Sharko Results and the Alternative
Version of Peixoto Classification

In [13] Oshemkov and Sharko presented a complete classification of Morse–Smale
flows on two-dimensional manifolds. As pointed out in that paper, several previous
classifications were either incomplete, by leaving out flows with limit cycles, or hold
only in case of oriented manifolds. Among them is a result due to Wang [16] (see
also [12, 13]) that holds only for Morse flows on orientable two-manifolds.

We claim that adapting the results of Oshemkov and Sharko to Wang’s approach
we get the following version of Peixoto classification:

Theorem 47.1. Let be given two Morse–Smale flows X and X 0 on closed two-
dimensional manifolds M and M 0 respectively. Then X and X 0 are topologically
equivalent if and only if the C �-algebras attached to X and X 0 respectively are
isomorphic.

The C �-algebras referred to in the above theorem are the ones obtained through
Connes’ construction and Oshemkov & Sharko glueing method. We now give a brief
sketch of the proof. Let us first consider the case where X and X 0 are Morse flows.
In this case one has the following result, see [13].

Lemma A. Two Morse flows X and X 0 on closed two-dimensional manifolds M
andM 0 are topologically equivalent if and only if there are, uniquely defined, three-
colour graphs attached to them T .X/ and T .X 0/ respectively, that are isomorphic.

For this case (Morse flows) one needs to consider just the so-called atom tech-
nique. Now as in Wang’s paper one can attach to each of these coloured graphs a
single C �-algebra, the main point is to establish a correspondence between each
vertex of graph and the C �-algebra obtained from the foliation of the canonical
region described by the flows. Note that the restriction to the orientable case, present
in Wang’s paper, does not show up here, since the glueing method developed by
Oshemkov and Sharko holds in the general case. Further, foliation groupoids cor-
responding to topologically equivalent foliations are equivalent, see [9] and [10].
The case of Morse–Smale flows is more involved and one needs to use the so-called
molecule technique, for details see Oshemkov and Sharko’s paper. There they prove

Lemma B. Two Morse–Smale flowsX andX 0 on closed two-dimensional manifolds
M and M 0 are topologically equivalent if and only if the corresponding molecules
W.X/ and W.X 0/ are isomorphic.

To these molecules, that again are three-colour graphs, this time obtained through
a more complex glueing procedure, can be associated a C �-algebra as in previous
of Morse flows leading to Peixoto’s theorem in the C �-algebra context.
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Chapter 48
Fractional Control of Legged Robots

Manuel F. Silva and J.A. Tenreiro Machado

Abstract Fractional calculus (FC) is being used in several distinct areas of science
and engineering, being recognized its ability to yield a superior modelling and con-
trol in many dynamical systems. This article illustrates the application of FC in the
area of robot control. A Fractional Order PD� controller is proposed for the control
of an hexapod robot with 3 dof legs. It is demonstrated the superior performance of
the system by using the FC concepts.

48.1 Introduction

Walking machines allow locomotion in terrain inaccessible to other type of vehi-
cles, since they do not need a continuous support surface, but require systems for
leg coordination and control [1]. For multi-legged robots, the control at the joint
level is usually implemented through a PID scheme with position/velocity feed-
back. Recently, the application of the theory of FC to robotics revealed promising
aspects for future developments [2].

Bearing these ideas in mind, the article presents the application of a FO PD�

(0 < � � 1) controller in the control of an hexapod robot with 3 dof legs. Section 2
introduces the hexapod robot kinematic and dynamic models and the adopted con-
troller architecture. Section 3 presents some simulation results showing the superior
performance of the system under the action of a fractional-order controller. Finally,
Sect. 4 addresses the main conclusions.
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Fig. 48.1 Model of the robot body and foot-ground interaction

48.2 Hexapod Robot Model and Control Architecture

The present study compares the tuning of Fractional Order (FO) algorithms, applied
to the joint control of a walking robot with n D 6 legs, equally distributed along
both sides of the robot body, each with three rotational joints j D f1, 2, 3g � fhip,
knee, ankleg (Fig. 48.1) [3]. Leg joint j D 3 can be either mechanical actuated, or
motor actuated. For the mechanical actuated case we suppose that there is a rota-
tional pre-tensioned spring-dashpot system connecting leg links Li2 and Li3. This
mechanical impedance maintains the angle between the two links while imposing a
joint torque [3].

Figure 48.1 presents the dynamic model for the hexapod body and the foot-
ground interaction. It is considered the existence of robot intra-body compliance
because most walking animals have a spine that allows supporting the locomotion
with improved stability. The robot body is divided in n identical segments (each
with mass Mbn

�1/ and a linear spring-damper system (with parameters defined so
that the body behaviour is similar to the one expected to occur on an animal) is
adopted to implement the intra-body compliance [3]. The contact of the i th robot
feet with the ground is modelled through a non-linear system, being the values for
the parameters based on the studies of soil mechanics [4].

The general control architecture of the hexapod robot is presented in Fig. 48.2.
We evaluate the effect of different PD� controller implementations forGc1.s/, while
Gc2 is a P controller. The PD� 0 < �j � 1 (j D 1; 2; 3) algorithm is implemented
through a discrete-time 4th-order Padé approximation.

The performance analysis is based on the formulation of two indices measuring
the mean absolute density of energy per travelled distance (Eav) and the hip tra-
jectory errors ("xyH ) during walking [5]. It is analyzed the system performance of
the different PD� controller tuning, when adopting a periodic wave gait at a con-
stant forward velocity VF , for two distinct cases: the hip and knee joints are motor
actuated while the ankle joint is mechanically (passively) actuated, and the three leg
joints are fully motor actuated [3].
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Fig. 48.2 Hexapod robot control architecture
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Fig. 48.3 Plots of �1jm vs. t , with joints 1 and 2 motor actuated and joint 3 mechanical actuated
and all joints motor actuated, for �j = 0.5

48.3 Simulation Results

To tune the different controller implementations we adopt a systematic method, test-
ing and evaluating several possible combinations of parameters, for all controller
implementations. We adopt the Gc1.s/ parameters that establish a compromise in
what concerns the simultaneous minimization of Eav and "xyH , and a proportional
controller Gc2 with gain Kpj D 0:9 (j D 1; 2; 3). It is assumed high perfor-
mance joint actuators, having a maximum actuator torque of � ijMax D 400Nm.
The desired angle between the foot and the ground (assumed horizontal) is estab-
lished as � i3hd D �15ı. We start by considering that leg joints 1 and 2 are motor
actuated and joint 3 has a passive spring-dashpot system. For this case we tune the
PD� controllers for values of the fractional order in the interval 0<�j < 0.9, estab-
lishing �1 D �2 D �3. Afterwards, we consider that joint 3 is also motor actuated,
and we repeat the controller tuning procedure seeking for the best parameters.

When joint 3 is mechanically actuated, the value of �j D 0:6 leads to the best
compromise situation in what concerns the simultaneous minimization of "xyH and
Eav. When all joints are motor actuated, �j D 0:5 leads to the best compromise
between "xyH and Eav. Furthermore, the best case corresponds to all leg joints
being motor actuated.

In conclusion, the experiments reveal the superior performance of the PD�

controller for �j � 0.5 and a robot with all joints motor actuated. The good per-
formance can be verified in the joint actuation torques �1jm (Fig. 48.3) and the hip
trajectory tracking errors�1xH and�1yH (Fig. 48.4).
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Fig. 48.4 Plots of�1xH and�1yH vs. t , with joints 1 and 2 motor actuated and joint 3 mechanical
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48.4 Conclusions

This article presented the application of the FC concepts in the area of control sys-
tems. A PD� controller was used in the control of an hexapod robot with 3 dof legs.
It was shown the superior performance of the overall system when adopting a FO
PD� controller with �j � 0.5, and a robot having all joints motor actuated.
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Chapter 49
Evolutionary Dynamics of the Spatial Prisoner’s
Dilemma with Single and Multi-Behaviors:
A Multi-Agent Application

Carla Silva, Welma Pereira, Jan Knotek, and Pedro Campos

Abstract This work explores an application of the spatial prisoner’s dilemma in
two situations: when all agents use the same type of behavior and when they use a
mix of behaviors. Our aim is to explore the evolutionary dynamics of this game to
analyze the dominance of one strategy over the other. We also investigate, in some
possible scenarios, which behavior has better performance when they all coexist in
the same environment.

49.1 Introduction

Game theory is an important way of understanding the dynamics of certain behav-
iors and to analyze the evolution of the components involved. The prisoners’
dilemma is a game that raises the problem of cooperation in a stark form: two
strategies are available (cooperate or defect). The payoff to mutual cooperation
exceeds the payoff to mutual defection (P). Much of the literature on the evolution
of cooperation following Axelrod’s seminal contribution [2] has sought to iden-
tify the factors that influence the possibility of cooperative behavior emerging in
populations of boundedly-rational agents playing the repeated prisoners’ dilemma
(RPD). Hoffmann and Waring [7] have studied the problem of the localization of
the agents in the RPD. One important contribution to this area is due to Nowak and
May [17]. The authors study a population of RPD playing cellular automata dis-
tributed on squares displayed on a torus which are capable only of the Always Defect
(ALL-D) and Always Cooperate (ALL-C) strategies. Individual agents interact with
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all neighbors on their eight diagonally and orthogonally adjacent squares and are
able to imitate the strategy of any better-performing one among them. Nowak and
May have found that the distribution of strategies on the torus depends on the relative
size of the RPD-payoffs.

Both the static and dynamic perspectives of evolutionary game theory provide a
basis for equilibrium variety as we notice in our multiple simulations. According
to Szabó and Fáth [20] there is a static and a dynamic perspective of evolutionary
game theory, in the next sections we deeply explore this game dynamics perception.
In Zimmermann and Eguluz [25] research the concluding equilibrium solution is
composed mostly by cooperative agents, in a prisoner’s dilemma with adaptive local
interactions, which focus cooperative behavior among a group of agents assuming
adaptive interactions. In our case we do not deeply focus on the agent leadership’s
issue acquire after perhaps existing adaptive interactions or rules. We could analyze
this question with specific measures in the link analysis method, but our main goal
was to focus on the strategy leadership’s issue, view the dominance of one strategy in
a spatial environment, focusing assorted issues. In our simulations we had a diversity
of situations, as in the more significant payoffs changes occurs when one strategy
was trying to be the leader innovation strategy.

In this work, we use Agent-based simulation to analyze the prisoner’s dilemma
with three types of behavior. We will use three types of behaviors: copy best player
(greedy), copy best strategy (conformist) and Pavlovian. After presenting them indi-
vidually, we join all the three in the same playground. We will explore the game
dynamics when the parameters or the initial conditions change. The evaluation is
made using statistics and link analysis. Our model is based in physical properties
of the automata. Spatial interaction of autonomous actors selects actions from their
own logical set based on its own state and on its neighbor’s states. We apply this
social interaction to 100 agents, each one having one of the three ways of action
(behaviors), so that the outcome depends on the choices of all the players based
on the Moore Neighborhood, played with eight neighbors (as in [7]). The game
dynamics is determined locally since the neighborhood is defined in a finite region.
These geographic effects are represented by placing agents in territorial structures
and restricting them to interact and learn within certain geographic regions. We con-
sider that in real-world, these agents can be seen as companies. Each agent has an
initial strategy which can be either cooperate or defect. Once the dynamics of this
game gives rise to clusters of collaborators and/or defectors. We also decided to use
social network analysis in order to capture the link relation in the networks of firms
that emerged in the different scenarios.

We concluded that Pavlovian behavior scores better than Greedy and Conformist
when b (the payoff that corresponds to the defection of a player and the cooperation
of the other) is higher. Additionally we can see that when we have more companies
with collaborative strategy (small b) we get higher average payoffs in all behaviors.
The maximum individual payoff is also higher for small values of b when companies
use behavior Greedy or Conformist.
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The work is structured as follows: in Sect. 49.2 we define the prisoners’ dilemma
and give a short overview of game theory. We also define the gain matrix and
the strategies involved in the model. Section 49.3 contains the implementation of
the model. Section 49.4 describes the experiments. Data analysis is in Sect. 49.5,
in Sect. 49.6 we describe possible dynamics GIS application and in Sect. 49.7, we
discuss the corresponding results. Finally, in Sect. 49.8, we introduce some future
work.

49.2 The Prisoner’s Dilemma: A Short Overview of Game
Theory and Definition of the Strategies

The prisoner’s dilemma is the name given by Albert W. Tucker [6] to the following
problem in game theory: Suppose the situation in which there are two suspects (let’s
say P1 and P2) of a crime that are arrested in separated cells by the police. A prose-
cutor meets with the prisoners separately and offers the same deal to both of them.
They can either testify against the other or to remain silent. If prisoner P1 decides to
testify and prisoner P2 remains silent, P1 goes free and P2 receives a 10-years full
sentence. Likewise, if prisoner P2 testifies while P1 remains silent, P2 will be the
one to be set free while P1 stays in prison for the same 10-years time. If they both
testify they both stay in prison for a shorter sentence of 7-years. If in the last case,
they both remain in silent, P1 and P2 are sentenced to only 1 year in prison. The
problem of the prisoners is to decide weather to remain silent or to testify against
the other. Since the prisoners are both isolated, neither of them would know the
other’s decision. This story is usually generalized to analyze similar situations.

Analyzing the options individually if the other remains in silent, the best is to
testify against him (defect) so that you can be set free. But if the other decides
to defect the best is also to defect, otherwise you will stay in jail while the other
leaves free. In the other hand the best solution for both of them is to remain in silent
because in this situation, even though neither of them is set free, they still get a
much shorter sentence. The dilemma is that they do not know what the other will
do. A common view is that this puzzle illustrates a conflict between individual and
group rationality. If each player has chosen a strategy and no player can benefit by
changing his or her strategy while the other players keep theirs unchanged, then
the current set of strategy choices and the corresponding payoffs constitute a Nash
equilibrium (Table 49.1).

Table 49.1 Original payoff
matrix [6]

Cooperate (C) Defect (D)

Cooperate (C) 7,7 10,0
Defect (D) 0,10 1,1
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49.2.1 Companies and Strategies

We decided to apply our model to the situation where there is a bunch of compa-
nies in the same market business competing with each other. The companies are
randomly disposed in a matrix and they interact with their closest eight neighbors
surrounding it. For example, the companies can be restaurants in the city of Porto
and their business is to sell “francesinhas”, the typical dish of this Portuguese city.
The neighbors can be seen as the nearest restaurants that competes in the same
physical area or district. Another possible application is to see the proximity in the
matrix as the companies with most similar activities that competes with each other
not necessarily in the same region but in the same kind of business.

Each company can choose to cooperate with their neighbor or not. If they coop-
erate they form a cartel, i.e. to sell the “francesinha” for the same price and therefore
their profit will be quite similar. If they decide not to cooperate they can sell it for
cheaper price. In this case they can attract more customers and earn more. This can
be seen as the situation of defect in the prisoner’s dilemma problem.

The options of collaboration or defect can be seen as two strategies that can be
used by the companies. This business market can then be divided into this two types
of strategies followed by companies, the ones that follow the strategy of collabora-
tion, let’s call it strategy A, the companies that follow the strategy of defection, that
will be called strategy B. In this situation the companies can change the strategies
at any time. Our aim is to explore the evolution of this game in different scenarios
and analyze if one of the strategies dominates the other.

To make this situation more real and more competitive we also decided to intro-
duce a reward policy that gives to the cooperators some advantage. Each time a
company decides to cooperate, it wins a reward based on its own status and on the
number of collaborators in its neighborhood.

49.2.2 Spatial-Temporal Definitions

We start by defining our game geometry. Each point of our spatial lattice has a state.
The possible states are: Cooperate (C) or Defect (D). The states of the cells are
updated after each round according to agents current state, the states of its eight near-
est neighbors and the agents behavior. Implemented behaviors are described later.
All cells in the lattice are updated synchronously. We can define the neighborhoods
depending on the system we pretend to model. Concerning the two dimensional
lattice the following definitions are common (Fig. 49.1):

The Von Neumann neighborhood can be called also as 4-neighborhood as it con-
tains four cells: the cell above, below, to the right and to the left. The radius of this
definition is one. The Moore neighborhood is an enlargement of the Von Neumann
neighborhood containing the diagonal cells too, the radius is also one. The Moore
neighborhood is also called 8-neighborhood. The extended Moore neighborhood
is equivalent to the description of Moore neighborhood, but it reaches over the



49 Evolutionary Dynamics of the Spatial Prisoner’s Dilemma 655

Fig. 49.1 Von Neumann neighborhood, Moore neighborhood and Extended Moore neighborhood

Fig. 49.2 The gray cells are
the neighbors of the central
one. As previous discussed
the states of these cells are
used to calculate the
subsequently state of the
center cell according to the
rule defined

distance of the next adjacent cells, in this case the radius is two. Extended Moore
Neighborhood can be also called as 25-neighborhood.

In our simulations, we decided to use the technique of Moore neighborhood.
Comprising eight cells surrounding a central cell in a square lattice. We could also
have used (among others) the technique of Von Neumman neighborhood. The spatial
games can vary in many ways its geometry (Fig. 49.2).

Initially random positions are generated. Each cell of the network is occupied
by an agent (player, company). To avoid edge effects, the edges of the network (or
endpoints of the line) are glued together (Fig. 49.3).

Nowak and May [17] studied a population of agents distributed on cells of a
2-dimensional torus which are capable only of Always – Cooperate (C) or Always –
Defect (D) strategies. In our paper we are using the same type of strategies but we
rename them as (A) or (B). Nowak and May [17] in their study found out that the
distribution of strategies on the torus depends on the relative size of the payoffs.
They refer that the future state of each cell depends on the current state of the cell
and the states of the cells in the neighborhood, the development of each cell is
defined by rules. As we had referred before. In our case rules fall into three basic
strategy behaviors. In our game 100 agents play during n time units, which means
one or three kind of behaviors in a playground being able to change in each round.
The evolution of these rules leaded us to observe dynamical patterns. The survival
cooperative and/or defect behavior.
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Fig. 49.3 By connecting square lattice from left to right side and from up to bottom side we obtain
a torus topology, where all cells are equal (all have the same count of neighbors). Here we have an
example image made in Matlab, using surf command, which draws 3-D shaded surface plot

As Jun and Sethi refer in [9], the survival of cooperative behavior in popula-
tions in which each person interacts only with a small set of social neighbors, the
individuals adjust their behavior over time by shortsightedly imitating more suc-
cessful strategies within their own neighborhood. All this process leaded us to a
called Demographic Game, as Epstein [5] refer seems an appropriate name for this
class of models because they involve spatial, evolutionary, and population dynam-
ics. In Epstein’s research [5], each agent is an object whose one main attributes is his
vision. He considers vision like the distance an agent can see, looking north, south,
east, or west. In our case we assume that all of our agents have a peripheral vision,
looking 360ı around, so we also include north–west, south–west, north–east and
south–east. Our agents move around this space, interacting with Moore Neighbors
(all with peripheral vision).

49.2.3 Gains Matrix

In what follows, a player must choose between two strategies. Isaac [8] refers that by
altering a single entry of the payoff matrix could demonstrate that payoff cardinality
is crucial to prisoner’s dilemma outcomes on an evolutionary grid. And also refers
that the evolutionary processes are fundamental to cooperation in social situations
and have been an enduring theoretical problem in diverse areas, like biological,
sociological, and geographical. Using Nowak [16] calculating gains according to
his definition, we build for each round a gain matrix, which gives us payoffs values,
the ones that determine if the agent will stay with the same strategy or will change
according to his neighbors payoffs (Table 49.2).
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Table 49.2 Nowak [16]
defines the payoffs values
according to the above rules

Cooperate (C) Defect (D)

Cooperate (C) 1 0
Defect (D) b �

Calculation of Gain:

1. If C find D, then D obtains b>1 and C gets 0
2. If D satisfies D, D gets �
3. Cooperate if both C and C, then each gets 1

Where 1<b<2 and � ! 0.
Nowak and May [17] presented the seminal work that showed how the spatial

effects of the interactions between simple agents in a cellular automaton model of
the iterated prisoner’s dilemma was sufficient enough for the evolution of coop-
eration. A similar cellular automaton model was built that simulated cooperation
through the behavioral adaptation of Pavlovian agents as they adjusted their coop-
eration by mimicking the most successful player in a neighborhood. In this present
paper we observe this cooperation or non-cooperation behaviors varying the b value
between 1 and 2 and establishing � as 0:01.

49.2.4 Game Dynamics

Cooperation is frequently observed in real-life psycho-economic experiments. This
result either suggests that the abstract Prisoner’s Dilemma game is not the right
model for the situation or that the players do not fulfill all the premises. Indeed,
there is good reason to believe that many realistic problems, in which the effect of
an agent’s action depends on what other agents do are far more complex that perfect
rationality of the players could be postulated, Szabó and Fáth [20]. Nevertheless,
the standard deductive reasoning loses its appeal when agents have non-negligible
cognitive limitations, there is a cost of gathering information about possible out-
comes and payoffs. Like Xianyu [23] refer this in his recent paper. We also agree
that agents have incomplete information on other agents’ strategies, so the agents
need to learn and develop their own strategies in this unknown environment. Mind
necessarily becomes an endogenous dynamic variable of the model. This kind of
bounded rationality may explain that in many situations people respond instinc-
tively, play according to heuristic rules and social norms rather than adopting the
strategies indicated by rational game theory. In our simulation we compute three
rational behaviors.

49.2.5 Three Behaviors Strategies

According to the payoff and to the strategy agent chooses if he wants to change strat-
egy or not. This means changing from A to B (Cooperate to Defect) or vice-versa,
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Fig. 49.4 Each cell of the
network is occupied by a
player, and each one has one
associated payoff value
calculated using the gain
matrix

or else no change at all. In the following example the player won’t change strategy
because his payoff is bigger than the payoff of its neighbors (Fig. 49.4).

We chose to implement in R following three behaviors: Copy Best Player
(greedy), Copy Best Strategy (conformist) and Pavlovian. Three kinds of social
preference theories have been tested. As Oliver Kirchkamp [11] we apply the idea
of evolution to a spatial model, were prisoners’ dilemmas or coordination games
are played repeatedly within neighborhoods where players instead of optimizing in
each round, prefer to copy successful strategies. Discriminative behavior of players
is introduced representing strategies as small automaton, which can be in different
states against different neighbors. These personality types represent certain simple
aspects of actual human behavior. Pavlovian agents are the most realistic automa-
ton for the investigation of the evolution of cooperation, because they are simple
enough to know nothing about their rational choices but intelligent enough to follow
an action that produces a satisfactory state of affairs tends to reinforce the repetition
of that particular action.

According to Power [18], greedy is an agent who imitates the neighbor with the
highest reward. Then conformist is an agent who imitates the action of the majority
in the social unit. And Pavlovian is an agent with a coefficient of learning whose
probability of cooperation changes by an amount proportional to the reward/penalty
it receives from the environment.

49.2.5.1 Copy Best Player (Oliver Kirchkamp [10])

Greedy, a learning player can simply look around in the neighborhood which he
observes and determine the player with the highest payoff. A learning player that
uses the rule “copy best player” will pick the strategy of the most successful player.
Of course, it could well be that there is more than a single player who has the
maximal payoff. Then let players use the following tie breaking rule. Define the set
of most successful players in neighborhoodN i

L of player i as

M i;t  argmaxj2N i
L

 
�
j;t
�

n
i;t
�

!
(49.1)
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where �j;t� is player’s j payoff in time t and ni;t� is a count of players in the
neighborhood.

The probability that player i choose strategy s in period t C 1 is determined as

P.xi;tC1 D s/ 

8
ˆ̂<

ˆ̂:

1 if xi;t 2 ˚xj;t jj 2M i;t
�

and s D xi;t
0 if xi;t 2 ˚xj;t jj 2M i;t

�
and s ¤ xi;t

P
j 2Mi;t

^xj;t
Ds
n

j;t
�

P
j 2Mi;t n

j;t
�

otherwise

(49.2)

where M i;t is a set of best players in neighborhood of player i in time t and nj;t� is
a count of neighbors of player j in time t .

Thus the player that is to be copied is chosen randomly with probabilities that
are proportional to the number of interactions the respective best players had. In the
special case where the player’s own strategy is among the best strategies, we assume
that the player prefers to keep his own strategy.

In our experiments our greedy agent just changes his strategy based in the highest
payoff neighbor.

49.2.5.2 Copy Best Strategy (Oliver Kirchkamp [10])

A learning player is a Conformist when it look at the average payoffs of strategy s
at time t in the neighborhood of player i which we designate by f i;ts :

f i;ts  

8
<̂

:̂

P
j 2[

i;t
s
�

j;t
�

P
j 2[

i;t
s
n

j;t
�

if
P
j2[i;t

s
n
j;t
� > 0

�1 otherwise

(49.3)

where [i;ts is a set of players in neighborhood of player i with strategy s in time t ,
�
j;t
� is payoff of player j in time t and nj;t� is a count of players in neighborhood of

player j in time t .
If a strategy is not used in a neighborhood, we define its fitness to be �1 to

make sure that it will be never selected by an evolutionary process. A learning player
that uses the rule “copy best strategy” switches to the strategy with the highest aver-
age payoff. Again there could be more than one strategy with maximal payoff. Then
we use the following tie breaking rule: define the set of most successful strategies
as:

N i;t  argmaxs
�
f i;ts

	
(49.4)

As for the “copy best player”, two strategies could achieve exactly the same
average payoff. The probability that player i uses strategy s in the next period is
then
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P.xi;tC1 D s/ 

8
ˆ̂̂
<

ˆ̂̂
:

1 if xi;t 2 N i;t and s D xi;t
0 if xi;t 2 N i;t and s ¤ xi;t

P
j 2[

i;t
s
n

j;t
�

P
�2N i;t

P
j 2[

i;t
�
n

j;t
�

otherwise
(49.5)

where [i;ts is a set of players in neighborhood of player i with strategy s in time t ,
N i;t is a set of strategies with highest mean payoff and nj;t� is a number of players
in neighborhood of player j in time t .

If a player already uses one of the best strategies, he adopts one of the best strate-
gies randomly with probabilities proportional to the number of interactions the users
had with the respective strategies.

In our experiments the conformist agent just changes his strategy to the one,
which has higher average payoff in players neighborhood.

49.2.5.3 Pavlovian [18]

Like Power [18] we also define the agents as stochastic learning automata with
Pavlovian personalities and attitudes.

By definition Pavlov works according to the following algorithm: Szabó and Fáth
[20] “repeat your latest action if that produced one of the two highest possible pay-
offs, and switch to the other possible action, if your last round payoff was one of
the two lowest possible payoffs”. As such Pavlov belongs to the more general class
of Win-Stay-Lose-Shift strategies, which define a direct payoff aspiration level for
strategy change. An alternative definition frequently appearing in the literature is
“cooperate if and only if you and your opponent used the same move in the previous
round”, and this translates into the same rule of the Prisoner’s Dilemma.

Pavlovian strategies are formulated as a weighted payoff, an average produc-
tion function, and a three-step memory coefficient of learning. Given an agent, the
weighted payoff is defined as:

RPwt D
3X

iD1
Mci � wi (49.6)

RPwt  weighted payoff of agent in last three rounds.
Wi is a weighting parameter such that all weights sum to one, and Mci is the

history payoff. Assuming that the effects of memory decrease with time, w1 � w2 �
w3 and w1 C w2 C w3 D 1. Let S.t/ be the strategy of the player in time t . Then
parameter ˛–learning rate is after each round for each Pavlovian player set in a
following manner:

˛i .t C 1/ 
8
<

:

˛i .t/C 0:15 , if .S.t/ D S.t � 1// ^ .S.t � 1/ D S.t � 2//
˛i .t/C 0:10 , if .S.t/ D S.t � 1// ^ .S.t � 1/ ¤ S.t � 2//
˛i .t/ � 0:10 , if .S.t/ ¤ S.t � 1//

(49.7)
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The probability of cooperation for agent i at time t C 1 is:

p.t C 1/ 
�
p.t/C .1 � p.t// � ˛i , for S.t/ D C and RPwt > pfavg

.1� ˛i / � p.t/ , for S.t/ D C and RPwt � pfavg

(49.8)

For every t there is q.t/ D 1 � p.t/. If previous action is D:

q.t C 1/ 
�
q.t/C .1 � q.t// � ˛i , for S.t/ D D and RPwt > pfavg

.1 � ˛i / � q.t/ , for S.t/ D D and RPwt � pfavg

(49.9)

The state of agent i is updated contingent on its previous state, the average
neighborhood production function, and the probabilities for both C and D. The
neighborhood production function for time t is the cooperation payoff for the group
following:

pf .t/ D
P
Cj

N
(49.10)

Cj is the payoff value for agent j and N is the total number of agents in the
neighborhood. The average neighborhood function for three memory events is
given by:

pfavg D
P3
i pfi

3
(49.11)

pfavg – average payoff in neighborhood in last three rounds.
Thus, the state of agent i at time t C 1 with S.t/, where Ru 2 Œ0; 1� is a uniform

random value:
For S.t/ D C :

S.t C 1/ 
8
<

:

D if RPwt for agent i < pfavg and p.t C 1/ < q.t C 1/
and q.t C 1/ > Ru

C if conditions for D are not satisfied
(49.12)

For S.t/ D D:

S.t C 1/ 
8
<

:

C if RPwt for agent i < pfavg and q.t C 1/ < p.t C 1/
and p.t C 1/ > Ru

D if conditions for C are not satisfied
(49.13)

Pavlovian strategies according to Kraines and Kraines [12], are quite stable even
in a noisy environment. Although this strategy cooperates and retaliates, as does Tit-
For-Tat [2], it is not tolerant. The Pavlovian behavior will exploit altruistic strategies
until he is punished by mutual defection. Pavlovian strategies are natural models for
many real life conflict-of-interest.
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49.3 Implementation

The experiment was implemented in R [19]. Its main advantage is that there is a
large library of packages to compute many statistics, draw graphs etc. R is an open
source software and its distributed for free.

49.3.1 Definition of the Game

In our experiments, we used two dimensional arrays of agents as it is done in [17].
Our implementation involves the iterated n-person prisoner’s dilemma.

For most of the statistics and simulations, a ten by ten square lattice is used.
Boundary conditions are solved periodically – square lattice is bended by two sides
into a torus. Periodic conditions simplifies the problem, because each cell (agent)
has exactly the same conditions – eight neighbors. Behaviors and rewards are then
influenced only by the configuration of strategies around the agent.

In each round, each agent is playing with all agents in a Moore eight-neighbor-
hood and also with himself. Rewards are driven by a simplified evaluation system:

Table 49.3 shows the rewards for each combination of strategies, that can be
played by two agents. When Cooperator meets Defector, Defector receives a pay-
off equal to constant b from interval .1; 2i and Cooperator receives 0. Cooperators
meeting each other receive reward 1 and finally two Defectors playing together
receive � ! 0.

In our experiments, � is set to 0:01 and b is the variable which we are modify-
ing to see the changes in process. These rules of the game are implemented in the
function play:

play<-function(a, b,payoffB, payoffEps){
if(a== 0 && b== 0) {return (1)}
if(a== 0 && b== 1) {return (0)}
if(a== 1 && b== 0) {return (payoffB)}
if(a== 1 && b== 1) {return (payoffEps)}

}

49.3.2 Initialization

The whole simulation process is started by function PlayDilemma, which takes as
parameters initial strategy matrix, behavior matrix, Payoff B, Payoff �, number of
rounds and size of playground.

Table 49.3 Payoff matrix of
the two agents game Nowak
[16]

Cooperate (C) Defect (D)

Cooperate(C) 1 0
Defect (D) b �
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Initial strategy matrix contains the first strategy, which agents will play. “Zeros”
mean Cooperate, “ones” are interpreted as Defect.

Behavior matrix contains 1 for Greedy behavior, Conformist behavior and Pav-
lovian agent.

49.3.3 One Round

A typical round works as follows:

1. Calculate payoffs for all agents according to their current strategies (Cooper-
ate/Defect)

2. Evaluate last rounds payoffs, compute learning rate ˛ and probability of cooper-
ation (Pavlovian agent)

3. Change strategies by last rounds payoffs and strategies in agents neighborhood
using agent’s predefined behavior

As the calculation of payoffs for each behavior is the same, the only aspect which
one implemented differently for each behavior is the function changeStrategies,
which is called after each round. For Pavlovian agents, there are also two matrices
to be evaluated – Learning rate ˛ matrix and probability matrix. This is described in
detail in Pavlovian behavior Sect. 49.3.4.3.

49.3.4 Implemented Behaviors

After each round, agents are evaluating the payoffs and if they need, they change
strategy – cooperate or defect, for the next round. Evaluations for changing the strat-
egy are implemented as three types of behavior. In this paper, we are also evaluating
how these behaviors are influencing the distribution of complete payoffs among the
agents after 50 or more rounds.

49.3.4.1 Copy Best Player

Copy Best Player is the simplest behavior we have used. Agent compares its pay-
off with payoffs of players in neighborhood and adopts the strategy of the most
successful player in previous round.

49.3.4.2 Copy Best Strategy

The second behavior we used is Copy Best Strategy. To compare the strategies
in neighborhood, agent uses mean of payoffs gained by players using strategy
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Cooperate and mean of payoffs gained by players using strategy Defect. Player com-
pares these means and picks the strategy with higher mean. If the player himself has
higher payoff than these means, he keeps its last strategy.

49.3.4.3 Pavlovian

Pavlovian behavior is described in [24] and also in [18]. This behavior is much more
complex than previous two, and its results are not always the best.

Pavlovian agent is defined as an agent with a coefficient of learning whose prob-
ability of cooperation changes by an amount proportional to the reward/penalty it
receives from the environment.

We had to make some adaptation for the Pavlovian agent defined in previous
papers, because our environment is not giving any penalties. Our Pavlovian agent is
comparing his reward to the mean of rewards of the neighborhood.

Each agent has learning rate ˛ and probability of cooperation p. These two vari-
ables are adjusted in each round looking three rounds back on a payoff response
from the environment.

49.3.4.4 Three Rounds Payoff

The agent uses weights w1 � w2 � w3 and w1 C w2 C w3 D 1. Weight w1 is the
largest in order to make last round more important than previous rounds.

The three rounds payoff is weighted for each agent and computed using this
equation:

RPwt D
3X

iD1
Mci � wi (49.14)

whereMci is a payoff in one round and wi is the corresponding weight.

49.3.4.5 Neighborhood Three Rounds Payoff

pfavg is the mean of payoffs in agents neighborhood for last three rounds. It is
computed as follows:

pf .t/ D
P
Mcj

n
(49.15)

pfavg D
P2
iD0 pf .t � i/

3
(49.16)

Mcj are the payoffs of neighborhood agents and n is the complete count of
agents in neighborhood. In our case it is always set to eight because we used
Moore neighborhood. From the first equation we get the average production in the
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neighborhood in one round. To get the three rounds mean, we compute the mean of
pf .t � 2/; pf .t � 1/; pf .t/ using the second equation.

49.3.4.6 Learning Rate ˛

To know if the player was changing the strategy a lot or he wasn’t changing at all,
we are introducing parameter ˛. This parameter allows the Pavlovian agent to start
changing the strategy more often, if the constant behavior has low payoff compared
to mean payoff of the neighbors or in other situation, agent can remain in similar
changing rate as he had in last rounds. Learning rate ˛ is a bounded variable always
set to a value from the interval Œ0; 1�. If ˛ is close to zero, it means, that agent was
changing strategies often in the past rounds. If ˛ is close to one, the agent was stable
in last rounds. In each round ˛ is adjusted according to the following (49.17):

˛i .t C 1/ 
8
<

:

˛i .t/C 0:15 , if .S.t/ D S.t � 1// ^ .S.t � 1/ D S.t � 2//
˛i .t/C 0:10 , if .S.t/ D S.t � 1// ^ .S.t � 1/ ¤ S.t � 2//
˛i .t/ � 0:10 , if .S.t/ ¤ S.t � 1//

(49.17)
Where t means the time of the round, and S.t/ is the agent’s strategy in round t .

49.3.4.7 Probability of Cooperation

p is the probability of using a cooperate strategy in a given round. Notation p.t/
means probability of cooperation in round t . Probability is adjusted in each round
by the payoff response of the environment. If previous strategy is C, then probability
of Cooperation is computed as:

p.t C 1/ 
�
p.t/C .1 � p.t// � ˛i , for S.t/ D C and RPwt > pfavg

.1� ˛i / � p.t/ , for S.t/ D C and RPwt � pfavg

(49.18)

Note that for every t there must be q.t/ D 1 � p.t/. This is used in the imple-
mentation to have only one matrix for probabilities.

The same set of equations is used for updating the action probabilities when the
previous action is D. Probability q of defect is computed as:

q.t C 1/ 
�
q.t/C .1 � q.t// � ˛i , for S.t/ D D and RPwt > pfavg

.1 � ˛i / � q.t/ , for S.t/ D D and RPwt � pfavg

(49.19)

Final strategy is chosen by probability of cooperation and defection and also by
the last round’s payoff. Conditions we used are slightly modified from conditions
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of previous paper [18]. To make the Pavlovian agent a non-random agent, in our
(49.18) and (49.19) we removed the condition containing random number Ru, which
was compared with cooperation/defection probability in equations in Sect. 49.2.5.3
from [18]. This was needed to have the chance to repeat each play in the same way.

For S.t/ D C :

S.t C 1/ 
�
D if RPwt for agent i < pfavg and p.t C 1/ < q.t C 1/
C if conditions forD are not satisfied

(49.20)

For S.t/ D D:

S.t C 1/ 
�
C if RPwt for agent i < pfavg and q.t C 1/ < p.t C 1/
D if conditions for C are not satisfied

(49.21)

Pavlovian agent is the most sophisticated agent we used, because it takes longer
to compute each round. This higher demand for time should have been rewarded by
better results in experiments, which were not so good as we expected.

49.3.5 Cooperation Reward Policy

We decided to use some reward policy to give some advantage to the cooperators.
We only use it though in our multi-behaviors situation. Here is how it works: every
time a player decides to cooperate it will receive a reward that will be added to his
payoff. The reward is defined as follows:

0:1 � Size:Group (49.22)

where the Size.Group represents the number of cooperators among its eight neigh-
bors. The idea behind is that group of cooperators will get benefited proportionally
to its group size.

49.4 Experiments

This section analyzes the dynamics of the spatial prisoner’s dilemma that we have
implemented. The game is played repeatedly for twenty rounds for each behavior
described before. The evolution of the strategies and their respective payoffs are
displayed through graphics.
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Fig. 49.5 The initial matrices (M1, M2 and M3)

We investigate our application in the situation where the companies have all the
same behavior (Single behavior situation) and when all three behaviors coexist in
the same playground (Multi-behaviors situation).

The initial matrix was M3 (Fig. 49.5). M3 was generated randomly with 50–
50% of the companies using strategies A and B. In the single behavior situation,
we always used the same initial matrix so that allows us to compare our results. In
the multi-behaviors situation, the experiments were performed in different scenarios
with the 3 types of initial matrices.

49.4.1 Single Behavior Situation

The experiments performed in this section analyze the dynamics of a situation where
all the companies have the same type of behavior.

Table 49.4 Mean Payoffs of the three behaviors

Payoffs (bs) 1:1 1:5 1:9

Greedy Behavior 169:3 130:5 8:7

Conformist Behavior 162:9 84:8 50:5

Pavlovian Behavior 99:9 87:9 90:2

Figure 49.6 shows the evolution of strategies A and B when all the companies use
the behavior greedy the b is equal to 1.1. After stage 4 it doesn’t change anymore.
We represent the companies with strategy A by black squares and the companies
with strategy B by white squares. We can see that the number of blacks increases
until only one white company survives in the end.
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For b D 1:5, Fig. 49.7 shows that even though more blacks can be seen in stage
10, the dynamics of the game for this value of b is more intense and therefore the
companies change the strategies more often. If we increase the value of b to 1.9
(very close to the limit of 2), all the companies choose strategy B just after the
second interaction.

With the conformist behavior, a similar situation happens. We can see in Fig. 49.9
that after five interactions two companies with strategy B survives in the world of
A’s with a low b. For bD 1.5 the instability occurs once again and for a high b, the
“whites” are the majority. But there are a few “blacks” that survive, more than in the
greedy behavior situation.

As for the Pavlovian behavior Figs. 49.12–49.14 show that there are even more
changing for all values of b. Figure 49.15 shows how the frequencies of A’s (solid
line) and B’s (dashed line) change. The frequencies start at the same point (0.5) as
we start with an initial matrix with a 50–50% of A’s and B’s. As time passes, the
solid line goes up and the dashed line goes down, showing that there are more A’s
and B’s for a b of 1.1. As the value of the b increases, the dashed line exceeds the
solid line for all behaviors. We notice though that the competitions between A’s and
B’s are harder for the smarter companies. This can seen as looking on how close
(and how much they move up and down) the solid and dashed lines are for the
situation where companies use the Pavlovian or the conformist behavior in relation
to the situation where they use the greedy behavior (our less intelligent behavior).

Concerning the payoffs we notice from the Table 49.4 that in general the average
payoff of all companies decreases as we increase the value of b. We can also notice
that our smarter behavior (Pavlovian) scores better in situations with higher values
of b. For bD 1.9, Pavlovians have an average payoff of 90.2 while the conformists
have 50.5 and the greedy agents have only 8.7. Additionally we can see that when
we have more companies with strategy A (small b), ie. selling a product for the
same price, we get higher average payoff for all behaviors. The maximum individual
payoff is also higher for small values of b when the companies use behavior greedy
or conformist but when they use the Pavlovian the maximum is reached when b is
high (1.9).
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Fig. 49.6 The evolution of strategies A (black) and B (white) using the Greedy behavior and
b D 1:1
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b D 1:5
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Fig. 49.8 The evolution of strategies A (black) and B (white) using the Greedy behavior and
b D 1:9
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b D 1:1



670 C. Silva et al.

2 4 6 8 10

10
8

6
4

2

2 4 6 8 10

10
8

6
4

2

2 4 6 8 10

10
8

6
4

2

2 4 6 8 10

10
8

6
4

2

2 4 6 8 10

10
8

6
4

2

2 4 6 8 1010
8

6
4

2

2 4 6 8 1010
8

6
4

2

2 4 6 8 1010
8

6
4

2

2 4 6 8 1010
8

6
4

2

2 4 6 8 1010
8

6
4

2

Fig. 49.10 The evolution of strategies A (black) and B (white) using the Conformist behavior and
b D 1:5
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Fig. 49.11 The evolution of strategies A (black) and B (white) using the Conformist behavior and
b D 1:9
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Fig. 49.12 The evolution of strategies A (black) and B (white) using the Pavlovian behavior and
b D 1:1
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Fig. 49.13 The evolution of strategies A (black) and B (white) using the Pavlovian behavior and
b D 1:5
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Fig. 49.14 The evolution of strategies A (black) and B (white) using the Pavlovian behavior and
b D 1:9
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Fig. 49.16 The frequencies of strategies A and B for the Greedy behavior (b D 1:5)
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Fig. 49.17 The frequencies of strategies A and B for the Greedy behavior (b D 1:9)
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Fig. 49.18 The frequencies of strategies A and B for the Conformist behavior (b D 1:1)
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Fig. 49.19 The frequencies of strategies A and B for the Conformist behavior (b D 1:5)
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Fig. 49.20 The frequencies of strategies A and B for the Conformist behavior (b D 1:9)
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Fig. 49.21 The frequencies of strategies A and B for the Pavlovian behavior (b D 1:1)
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Fig. 49.22 The frequencies of strategies A and B for the Pavlovian behavior (b D 1:5)
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Fig. 49.23 The frequencies of strategies A and B for the Pavlovian behavior (b D 1:9)

49.4.2 Multi-Behaviors

In this section we investigate the situation where there are groups of companies with
different behaviors and we check which group of behavior gets the highest payoff
(wins the game). Our motivation comes from the fact that not all companies have
the same behaviors, in reality. Even though, this is still a simplification of the reality
that can give some insight into the competition between firms.

We created and tested the following scenarios:

� Scenario 1: The initial matrix is M1: there are 90% of companies using strategy
B and 10% using strategy A

� Scenario 2: The initial matrix is M2: there are 90% of companies using strategy
A and 10% using strategy B

� Scenario 3: The initial matrix is M3: there are 50/50% of companies using
strategies A/B

For each scenario we change the value of b (1.2, 1.5 and 1.9) and create a game
with three possible percentages of behaviors (Fig. 49.5):
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� Balanced: similar percentage of behaviors (33% of greedy, 33% of conformist
and 34% of Pavlovian)

� More greedy (90% of greedy, 5% of conformist and 5% of Pavlovian)
� More conformist (90% of conformist, 5% of greedy and 5% of Pavlovian)
� More Pavlovian (90% of Pavlovian, 5% of conformist and 5% of greedy)

The results can be seen in Table 49.5. This table shows the average payoffs of the
sets of companies with one of the three behaviors. In scenario 1 and more greedy

Table 49.5 Average payoffs of the multi-behaviors situation

Balanced More Greedy More Conformist More Pavlovian

Scenario 1 (b D 1:2)
Pavlovian 127.259 13:054 135:182 91:978

Conformist 132.244 7:714 148:697 89:706

Greedy 126.233 7:979 157:482 91:162

(b D 1:5)
Pavlovian 73.747 12:486 92:894 79:452

Conformist 77.639 8:558 90:121 90:752

Greedy 79.195 9:003 96:132 88:482

(b D 1:9)
Pavlovian 50.476 12:806 12:630 81:573

Conformist 50.706 10:318 10:875 93:422

Greedy 60.863 10:896 10:872 92:566

Scenario 2 (b D 1:2)

Pavlovian 164.789 194:738 182:158 120:832

Conformist 171.726 192:414 183:389 121:764

Greedy 170.108 192:699 184:828 124:860

(b D 1:5)
Pavlovian 79.289 139:104 112:756 111:431

Conformist 81.822 154:916 110:912 120:320

Greedy 82.152 150:755 110:558 115:842

(b D 1:9)
Pavlovian 65.849 89:724 61:702 99:994

Conformist 71.692 127:056 69:413 122:212

Greedy 79.091 112:997 70:626 123:532

Scenario 3 (b D 1:2)

Pavlovian 125.418 175:840 159:234 113:844

Conformist 137.533 185:380 171:578 115:448

Greedy 130.555 173:732 169:214 118:768

(b D 1:5)
Pavlovian 81.914 133:956 104:500 88:550

Conformist 86.944 143:686 104:207 100:012

Greedy 87.807 129:863 98:998 105:756

(b D 1:9)
Pavlovian 57.749 17:238 51:898 88:642

Conformist 58.934 17:038 58:291 86:646

Greedy 68.102 16:101 60:890 116:872
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environment we can see the advantage of the group of Pavlovians as their mean pay-
offs are always higher than for the other behaviors for all values of b. For the other
possible combinations it is harder to make conclusions because the mean values
fluctuates fairly often.

49.5 Data Analysis

According to Epstein [4], simulation is a particularly tool, when the aim is to
establish that some set of micro assumptions is sufficient to generate a macro phe-
nomenon of awareness. The behavior emerged from the complexity generated by the
moving agents in our spatial geometry, is analyzed by implementing experiments
and link analysis methods. Masuda and Aihara [15] found that for intermediate val-
ues of b, small-world architecture realizes a quasi-optimal behavior in the sense
of rapid convergence to a good equilibrium. Here it is implicitly measured by a
hierarchy of states.

49.5.1 Link Analysis

As Luo, Chakraborty, Sycara [14] in their research about the Prisoner’s Dilemma
game in a graph, we also use multiple types of agents. As them, we assume there are
different types of agents forming the nodes of the graph. Prisoner’s Dilemmas game
in graphs with synchronized strategy update, is a game where the graph topology
is assumed to be essential to analyze. So we decide to construct the network and
observe the results using a special library present in R a package called “sna” –
Social Network Analysis tool. We use an undirected graphG D .V;E/ to represent
the agents of groups and their connections, where V D vi ji D 1; :::; n is a set of
n nodes representing the set of n agents, and E D .vi ; vj /ji ¤ j; i; j 2 1; :::; n
represents a set of edges so that .vi ; vj / 2 E if vi and vj are connected to each
other (Fig. 49.21).

Szabó and Fáth [20] in evolutionary games on graphs define its evolutionary
form when the interacting agents are linked in a specific social network, the core
solution concepts and methods are very similar to those applied in non-equilibrium
statistical physics. To also evaluate this situation, we produced simulations to com-
pare the three b values (payoffs). In this section we build an adjacency matrix.
Our aim is being able to according the strategy matrix, for each round, connect
cooperating strategy agents. These connected agents form graph components. For
this link analysis, we play 20 rounds, with 100 agents using the innovations strate-
gies A and B. It is worth mentioning that in the evolution of spatial games, social
preference has received negligible attention, according to Xianyu [23] although it
has been accepted that the structure of agent interaction indeed plays an important
role in a significant number of spatial games. In our study we are reverting this
situation giving absolutely attention to social behaviors (Fig. 49.22).
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49.5.2 The Graphs Payoff-Based Link Analysis

Jun and Sethi [9] visualize an interesting implication where there is a sense in which
dense networks are more conducive to the evolution of cooperation than sparse net-
works. In our study we explore the graph density and according to the results for
b D 1.1 (density D 0.06909091), for b D 1.5 (density D 0.01151515) and finally
for bD 1.9 (densityD 0.001616162). We also verify that the graph for bD 1.1 has
higher density as cooperation strategy is used much more (Fig. 49.23).

We observe that for b D 1.9 we almost did not pick significant information
because link analysis is stronger when cooperators are winning, which means lowest
payoffs. We observe centrality positions in lowest b values. The stronger behavior
from each strategy was furthermore reviewed finding strong components, seek-
ing who is in what component, what are the component sizes, and which is the
largest component. We observe that for higher b values (highest payoffs), most of
all agents are in diverse components. When the payoffs are smaller (lower b val-
ues), the agents are in less components. We finally verify that the number of agents
getting into the largest component increases with the decreasing of b value. That’s
because number of defecting agents is negatively affected by lowering the b value.
(Figs. 49.24–49.30).

Fig. 49.24 Data example:
Cluster Dendrogram and
Graph for corresponding
cooperator cluster, following
Innovation Strategy A

82 72

74

74
72 82

83

83

Fig. 49.25 Graph plot for b D 1:1 – network composed by 92 Cooperate Agents (Strategy A) and
8 Defect Agents (Strategy B)
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Fig. 49.26 Cluster Dendrogram for b D 1:1 – network composed by 92 Cooperate Agents
(Strategy A) and 8 Defect Agents (Strategy B)

Fig. 49.27 Graph plot for b D 1:5 – network composed by 35 Cooperate Agents (Strategy A) and
65 Defect Agents (Strategy B)

Through link analysis we observe, like we did with statistics analysis, that the
innovation Strategy A (cooperate) is dominant for lowest payoffs, and Strategy B
(defect) dominant for high payoffs.

In Figs. 49.31–49.33 we see three different scenarios, each one having three dif-
ferent payoffs, where we observe (by link analysis) graphs representing different
strategy matrices. We change the initial strategy A and strategy B portion.

Then in Fig. 49.34 we use the same initial strategy matrix, but agents use differ-
ent behaviors all of them coexisting in the same playground. We change Greedy
(G), Conformist (C) and Pavlovian (P) behaviors portion this time. The down-
right plot shows the more balanced situation. The up-right filled with almost all
cooperators, shows the more Conformist, the up-left more Greedy and the down-left
more Pavlovian situations.
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Fig. 49.28 Cluster Dendrogram for b D 1:5 – network composed by 35 Cooperate Agents
(Strategy A) and 65 Defect Agents (Strategy B)

Fig. 49.29 Graph plot for
b D 1:9 – network composed
by 12 Cooperate Agents
(Strategy A) and 88 Defect
Agents (Strategy B)

Fig. 49.30 Cluster Dendrogram for b D 1:9 – network composed by 12 Cooperate Agents
(Strategy A) and 88 Defect Agents (Strategy B)
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Fig. 49.31 Same behaviors, 20 rounds, payoffD 1.2. Different initial strategy matrices (90% - A,
10% - B); (10% - A, 90% - B); (50% - A, 50% - B)

Fig. 49.32 Same behaviors, 20 rounds, payoffD 1.5. Different initial strategy matrices (90% - A,
10% - B); (10% - A, 90% - B); (50% - A, 50% - B)

Fig. 49.33 Same behaviors, 20 rounds, payoffD 1.9. Different initial strategy matrices (90% - A,
10% - B); (10% - A, 90% - B); (50% - A, 50% - B)

In this paper our main concern is to analyze how the graph structure of inter-
actions can modify and enrich the representation of behavioral patterns emerging
in evolutionary games. One of our innovation strategies leading this research was
based on using social network analysis, to evaluate b values, not just statistically, as
it usually appears in most of the Prisoner’s Dilemma studies.
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Fig. 49.34 Same initial strategy matrix, 20 rounds, payoffD 1.5. Different behaviors: (90% - G,
5% - C, 5% - P); (5% - G, 90% - C, 5% - P); (5% - G, 5% - C, 90% - P);(33% - G, 33% - C,
34% -P)

49.6 Dynamics GIS

Following the new Essays on Geography and GIS on GIS Best Practices, ESRI arti-
cle [1], we felt the need to develop a GIS tool which allows us to acquire information
from a base map of real-world locations. Bringing us the possibility to combine
different data sets performed dynamically, we thought about a space-time combina-
tion which could provide a spatiotemporal understand and the possibility to predict
reality. Dynamics GIS described by May Yuan [1] seemed the perfect tool to achieve
our aim once we need to perform knowledgeable decisions, and analyze adaptation
strategies for this dynamic world multi-agent-based.

Using especially agent-based modeling, with spatiotemporal analysis we became
able to extract spatiotemporal information, survey clusters and change detection.
Knowing that the complexity of reality can be understood by analyzing spatial and
social organizations, by representing an dynamics GIS we can understand the struc-
ture connecting subsystems and supersystems, according to May Yuan [1] and also
detecting existent hierarchies, like we did in Sect. 49.5.1 with link analysis methods,
and now with a spatiotemporal representation.
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We build a system, so we can be able to obtain georeferenced information about
innovation strategies A and B. To do so, we developed a methodology using a
cartographic projection designed to create a coordinate system, since we need to rep-
resent objects in space. We start modeling our data because we want to link different
datasets together by the fact they relate to specific and also different geographic
locations. We set one of the flat representation system used in Portuguese mapping,
Hayford-Gauss System. We use the datum for the planimetric geodetic network
based on the International Hayford ellipsoid parameters: a D 6378388 (semi-major
axis), f D 1=297 (flattening), e2 D 0:00672267002233 (squared eccentricity). The
ellipsoid is positioned at the Central Meridian, � D 9ı07054:86200W (geodetic lon-
gitude). We use a file containing the geodetic latitude and longitude of the geodetic
border points in Portugal. The longitude of the points was adjusted to the Central
Meridian. We use Transverse Mercator Projection (also named as Gauss Projection),
is a conformal projection, where the lengths remains along a meridian called the
Central Meridian of projection, the origin of the ordinate is at the equator, the origin
of abscises is at Central Meridian. It can be defined by the following equations:

In the Central Meridian,

8
<

:

x D 0
y D S' D

'R

0

�d'
(49.23)

� D a.1 � e2/p
.1 � e2sin2'/3

(49.24)

Formulas for direct transformation of Transverse Mercator projection,

S' D aŒA0' � A2 sin 2' CA4 sin 4' C :::� (49.25)

Obtaining the differentA values by the following equation,

A0 D 1 � 1
4
e2 � 3

64
e4 C :::

A2 D 3

8
.e2 C 1

4
e4 C :::/

A4 D 15

256
.e4 C ::: (49.26)

�
x D N cos' � �
y D S' C 1

2
N cos' � sin ' � �2 (49.27)

Where ' is the Geodetic Latitude, � Geodetic Longitude, a semi-major axis of
the ellipsoid, e eccentricity of the ellipsoid, N 1st Vertical Curvature Radius, �
Meridian Curvature Radius and finally x and y our agents position according to all
this parameters previously defined.
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49.6.1 Dynamics Business Parks

Using the equations defined in the Sect. 49.6 we build the algorithm in Matlab to
perform our dynamics GIS. Modeling geographic dynamics, we obtain each agent
or company georeferenced information in dynamic reality, we now know, who is
playing, which strategy behavior, where and when.

We set three different Business Parks: North Park, Centre Park and South Park.
They are fictitious (not existent business parks) but referred to existent (real-world)
positions. Three Business Parks, with 100 agents each, each agent with a calcu-
lated (referenced-based) position, based on the parameters establish on the previous
section (Fig. 49.35).

In our research the agent or company is located always in the same position,
as we established on Sect. 49.2.2 but each agent changes his states according to
game dynamics related to psychological geography (and geometry, in the context of
the discrete model cellular automata), deeply well-marked in this single and multi-
behavior spatial prisoner’s dilemma dynamics (Fig. 49.36).

This technique allows us to survey in a long run which is the most used innovation
strategy per company, per business park and per country. Scanning in any direction,
performing zoom in and out, agents or companies positions can be observed looking
into the axis, or by numbers in output coordinates (Fig. 49.37).

With this dynamics GIS tool and sample analysis we are suggesting a spa-
tiotemporal Business Park classification, this temporal classification plus temporal
agents or companies gains, would provide significant information to the construc-
tion of some kind of Business Park Dynamics Rating System. If globally applied
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4.2

4.1
-2 -1 0 1

X (m)

Y
 (

m
)

2 3 4
x 105

x 105

Fig. 49.35 Portugal Transverse Mercator Projection. Three Dynamics Business Parks playing
spatial prisoner’s dilemma innovation strategies A and B, with single and multi-behaviors. North
Business Park, Centre Business Park, South Business Park
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Fig. 49.36 North Business Park, playing spatial prisoner’s dilemma innovation strategies A (x)
and B (o), with more Pavlovian behavior

Fig. 49.37 North Business Park playing innovation strategies A (x) and B (o) with more Pavlovian
behavior. At time units, left: t D 1, (strategy A wins), middle: t D 2 (strategy B wins), right:
t D 3 (no winning strategy, it’s balanced). During this three time units analysis we can classify
North Business Park as following innovation strategy A and B, a balanced strategy behavior

innovation strategy A or B analyzing who is obtaining bigger gains, not just a
payoff-based analysis but also a social analysis we can rate the country follow-
ing the winning strategy with higher global results, basing our full-model analysis
in human growth contribution, welfare and development. Obviously much more
parameters enter in this kind of rating; we are just contributing with a small step.
Since change and movement are two essential elements in temporal GIS, in this
research we didn’t define the time topology, as Giacomo Bonanno [3] did, when
describing perfect information games time, agents predictions in branching time
(also referred by May Yuan [1] on GIS Best Practices), perhaps when we build the
future work, in Sect. 49.8, we can explore temporal definitions, associating to each
agent or company prediction strategies linked to their spatiotemporal definitions
(Fig. 49.38).
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Fig. 49.38 At time unit t D 1, each business park is using one kind of behavior when playing
innovation strategies A (x) and B (o). left: North Business Park (more Pavlovian behavior – strategy
A wins), middle: Centre Business Park (more greedy behavior – strategy A wins), right: South
Business Park (more conformist behavior – strategy A wins). During this one time unit analysis
we can classify Portuguese Business Parks as following innovation strategy A.

Fig. 49.39 Illustrative fictitious Business Park playing Innovation Strategies A and B. Image font:
Google Earth, Espinho, Portugal.

49.6.2 Another Real: World Application

Robert Axelrod and John Holland, mentioned by Hoffmann and Waring [7] as
responsible for important discoveries such as the Tit-For-Tat strategy in Prisoners’
dilemma (Axelrod) or the genetic algorithms (Holland), consider social tagging as
a means of influencing game outcome. In the context of the social sciences, the
interactions and learning simulations take place within a neighborhood of players.
Neighborhoods can be formed geographically, or in a more abstract sense, such as
in the range of partners available for trading.

So we thought in a Real – World Application for our study, based in many few
companies clustered in parks, business parks. These parks for many reasons need to
be rated and we thought that some kind of rating system should exist. Each com-
pany belonging to a park, plays Spatial Prisoner’s Dilemma, which means: we could
classify the parks with the classification following innovation Strategy A or Strategy
B, like we did to each company or agent in the paper.

There are a lot of parameters entering in parks classification based in some the-
ories; we believe our research may well contribute in some way to a Real-World
Business Park Dynamics Rating System.
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49.7 Discussion

In this work, the experiments are presented in two different ways depending on the
type of behavior: single behavior and multi-behavior. In the single behavior situa-
tion, we noticed that in general, the average payoff of all companies decreases as we
increase the value of b. It is also possible to conclude that Pavlovian behavior scores
better then Greedy and Conformist when b is higher. Additionally we can see that
when we have more companies with strategy A (small b) we get higher average pay-
offs in all behaviors. The maximum individual payoff is also higher for small values
of b when companies use behavior Greedy or Conformist. In the multi-behavior sit-
uation (different percentages of Pavlovian, Greedy and Conformists are defined),
and in the scenario 1 (90% of companies use strategy B and 10% use strategy A)
in the more greedy environment, we state the Pavlovian behavior dominates for all
values of b.

Results of link analysis show that for greater values of b, the density of the net-
work decreases. In addition, it is possible to see that Strategy A is dominant for
lower payoffs (defined by the b values) and strategy is dominant for higher payoffs.

In some researches, players in prisoner’s dilemma are modeled as learning
automaton; such models can be viewed as complicated variants of reinforcement
learners. However, following Wakano and Yamamura [21], in our research we were
also interested in the behavior of the simplest form of reinforcement learner. Dur-
ing the study we start asking ourselves if Pavlovian would be more efficient than
the Conformist, or the simplest one, the Greedy. Our result shows that agents with
a simple and instinctively familiar learning rule put up a very efficient and tough
cooperation in some situations. At the same time, Kraines and Kraines [13] prove
that a society of fast adapting agents may experience conflict and disagreement
while another society with slower learning agents will benefit in cooperation. As
Alexander Pope was mentioned in Kraines and Kraines [13] leaving the follow-
ing thought “a little learning is a valuable thing and it is too much learning that is
dangerous”–we feel like being in a great adventure, so we will just keep walking
into knowledge flow.

49.8 Future Work

Collect geo-spatial data in Prisoner’s Dilemma theory game and build real models
based on geo-referenced images representing real world situations, using Geo-
graphic Information Systems tools. Once the dynamics is implemented, the major
concern is the long run behavior of the system: fixed points, cycles, and their
stability, chaos, other parameters, and the connection between static concept as
Nash equilibrium or evolutionary stability, and dynamic predictions. According to
Wolfram [22] even when the general problem is undecidable, the emergence of par-
ticular finite sequences in the limit set for a cellular automaton may be decidable.
We need revolutionary new concepts and methods for the categorization of the rising
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complex and self-organizing patterns. One could be the development of dynamics
GIS using Multi-Agent Systems with dynamics predictions.
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Chapter 50
Euclidean Jordan Algebras and Strongly
Regular Graphs

Luı́s Vieira

Abstract We analyze the spectra of strongly regular graphs in the environment
of Euclidean Jordan algebras. In particular we obtain the spectra of the strongly
regular graphs constructed in the Euclidean Jordan algebra studied in Cardoso and
Vieira (J Math Sci 120:881–894, 2004) recurring to homogeneous linear difference
equations of second order with constant coefficients. Next, we associate a three
dimensional Euclidean Jordan algebra V to the adjacency matrix of a strongly reg-
ular graph � with three distinct eigenvalues and we define the generalized Krein
parameters of �: Finally, we establish necessary conditions for the existence of a
strongly regular graph.

50.1 Euclidean Jordan Algebras

Euclidean Jordan algebras are more and more used in the various branches of Math-
ematics. For instance, we may cite the application of this theory to interior point
methods [3, 4], to statistics [7] and to combinatorics [1].

A deep study on Euclidean Jordan algebras can be found in Koecher’s lecture
notes [6] and in the monograph by Faraut and Korányi [2]. Herein, we only present
the results of Euclidean Jordan algebras more often used in this work.

Consider a finite dimensional real algebra V with the bilinear mapping .x; y/ 7!
x �y: V is a real power associative algebra if for all x in V ; .x �x/ �x D x �.x �x/: Let
V be a n�dimensional real power associative algebra with unit e: For x in V the
rank of x is the least natural number k such that fe; x; : : : ; xkg is linearly dependent
and we write rank.x/ D k: Since rank.x/ � n we define the rank of V as being the
natural number rank.V / D maxfrank.x/ W x 2 V g: An element x in V is regular
if rank.x/ D rank.V /: The set of regular elements of V is open and dense in V :
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Let x be a regular element of V and r D rank.x/: Then, there exist real numbers
a1.x/; a2.x/; : : : ; ar�1.x/ and ar .x/ such that

xr � a1.x/xr�1 C � � � C .�1/rar .x/e D 0; (50.1)

where 0 is the null vector of V : Taking in account (50.1) the polynomial (50.2)

p.x; �/ D �r � a1.x/�r�1 C � � � C .�1/rar .x/ (50.2)

is called the characteristic polynomial of x: Each coefficient ai of the characteristic
polynomial of x is a homogeneous polynomial of degree i in the coordinates of x
in a fixed basis of V : Since the set of regular elements of V is dense in V and since
each polynomial ai is a homogeneous polynomial of degree i then the definition
of characteristic polynomial is extensible to every element in V : We call the roots
of the characteristic polynomial of x the eigenvalues of x: Consider x in V : The
coefficients a1.x/ and ar .x/ of the polynomial (50.2) are called the trace of x and
the determinant of x respectively. The notation for the determinant and for the trace
of x is tr.x/ and det.x/ respectively.

Example 50.1. E D Rn endowed with the binary application

.x1; x2; : : : ; xn/ � .y1; y2; : : : ; yn/ D .x1y1; x2y2; : : : ; xnyn/

is a n-dimensional real power associative algebra with the unit element
e D .1; 1; : : : ; 1/: Let x D .x1; x2; : : : ; xn/ be an element of E: Then, xk D
.xk1 ; x

k
2 ; : : : ; x

k
n /: Since

4n.x/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 x1 � � � xn�11

1 x2 � � � xn�12
:::
::: � � � :::

1 xn � � � xn�1n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D ˘i>j .xi � xj /

then the set fe; x; : : : ; xn�1g is linear independent if and only if the xi ’s for i D
1; : : : ; n are distinct. So x is a regular element of E if and only if the xi ’s are
all distinct and therefore we can conclude that rank.E/ D n: Consider a regular
element x D .x1; x2; : : : ; xn/ of E and p the characteristic polynomial of x:

p.x; �/ D �n � a1.x/�n�1 C � � � C .�1/nan.x/

Since p.x; x/ D 0 then xn � a1.x/xn�1 C � � � C .�1/nan.x/e D 0; where
0 D .0; 0; : : : ; 0/: Therefore, p.x; xi / D 0 for i D 1; � � � ; n: Because x is a regular
element of E then4n.x/ 6D 0 and so p.x; �/ D Qn

iD1.� � xi /: That is,
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p.x; �/ D �n �
nX

iD1
xi�

n�1 C � � � C .�1/n
nY

iD1
xi : (50.3)

So taking in account (50.3) we conclude that tr.x/ D Pn
iD1 xi and det.x/ DQn

iD1 xi :

Example 50.2. The real vector space of real symmetric matrices of order n; E D
Sym.n;R/; equipped with the bilinear map x ı y D .xy C yx/=2 is a .n2 C n/=

2-dimensional real power associative algebra whose unit is e D In D

0
BBB@

1 0 � � � 0
0 1 � � � 0
:::
:::
: : :
:::

0 0 � � � 1

1
CCCA :

An element x ofE is regular if and only if x has n distinct eigenvalues�1; : : : ; �n�1
and �n and the characteristic polynomial of x is p.x; �/ DQn

iD1.� � �i /: That is

p.x; �/ D �n �
nX

iD1
�i�

n�1 C � � � C .�1/n
nY

iD1
�i : (50.4)

Then, analyzing the expression of the characteristic polynomial (50.4), it follows
that tr.x/ DPn

iD1 �i and det.x/ DQn
iD1 �i :

Let V be a finite dimensional real power associative algebra with a unit ele-
ment e; x a regular element of V and r D rank.V /: RŒx� denotes the subalgebra
of V spanned by e and x: L .x/ is the linear endomorphism on V defined by
L .x/y D x � y for every y in V : We call L0.x/ to the restriction of L .x/

on RŒx�: We now show that p.x; �/ D j�I � L0.x/j: Consider the basis B D
fe; x; : : : ; xr�1g of RŒx�: Since

L0.x/e D 1x
L0.x/x D x2

:::

L0.x/x
r�2 D xr�1

L0.x/x
r�1 D a1.x/xr�1 C � � � � .�1/rar .x/e
D a1.x/xr�1 C � � � C .�1/r�1ar .x/e

then

M.�I � L0.x/IB/ D

0

BBBBB@

� 0 � � � 0 .�1/rar .x/
�1 � � � � 0 .�1/r�1ar�1.x/
0 �1 � � � 0 .�1/r�2ar�2.x/
:::

:::
: : :

:::
:::

0 0 � � � �1 � � a1.x/

1

CCCCCA
: (50.5)
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So

j�I �L0.x/j D �r � a1.x/�r�1 C � � � C .�1/rar .x/:

Therefore, it is natural to call the polynomial (50.2) the characteristic polynomial
of x:

Let V be a real vector space with the bilinear map .x; y/ 7! x � y: Then V is a
Jordan algebra if for all x and y in V

(a)x � y D y � x
(b) x � .x2 � y/ D x2 � .x � y/
where x2 D x � x:

We call e the unit of the Jordan algebra V if for all x in V ; x � e D e � x D x:
Remark 50.1. Let E be a finite dimensional real associative algebra. We introduce
onE a structure of Jordan algebra by considering a new product ı defined by xıy D
.x � y C y � x/=2 for all x and y in E:

Example 50.3. The real vector space Sym.n;R/ is a Jordan algebra when endowed
with the bilinear map ı given by x ı y D .xy C yx/=2 for all x and y in E; where
xy is the usual matrix multiplication of x and y:

From now on, a Jordan algebra V is always a finite dimensional real algebra. A
Jordan algebra V with unit is always power associative.

A Euclidean Jordan algebra V is a Jordan algebra with unit and with an inner
product< �; � > such that

< x � y; z > D < y; x � z > (50.6)

for all x; y and z in V :

Example 50.4. Let E D Rn: Then E is a Euclidean Jordan algebra when we
consider on E the bilinear map ı given by .x1; x2; : : : ; xn/ ı .y1; y2; : : : ; yn/ D
.x1y1; x2y2; : : : ; xnyn/ and the inner product< �; � > defined by<.x1; x2; : : : ; xn/;
.y1; y2; : : : ; yn/ >DPn

iD1 xiyi :

Example 50.5. The real vector space Sym.n;R/ is a Euclidean Jordan algebra when
endowed with the bilinear map ı defined by x ı y D .xy C yx/=2 and with the
inner product < x; y >D Tr.xy/; where Tr denotes the usual trace of matrices.

Let V be a Euclidean Jordan algebra with a unit element e: An element c in V is
an idempotent if c2 D c: Two idempotents c and d are orthogonal if c � d D 0: The
set fc1; c2; : : : ; clg is a complete system of orthogonal idempotents if

c2i D ci for i D 1; : : : ; l;
ci � cj D 0 if i 6D j;
lX

iD1
ci D e:
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An idempotent c is primitive if it is a non-zero idempotent of V and if it can’t be
written as a sum of two non-zero idempotents.

We say that fc1; c2; : : : ; ckg is a Jordan frame if fc1; c2; : : : ; ckg is a complete
system of orthogonal idempotents such that each idempotent is primitive.

Example 50.6. Let E D Rn: The set f.1; 0; : : : ; 0/; .0; 1; : : : ; 0/; : : : ; .0; 0; : : : ; 1/g
is a Jordan frame of E:

Example 50.7. Let E D Sym.n;R/ and let Fi i for i 2 f1; : : : ; ng be the matrices
defined by .Fi i /pq D ıipıiq for all p and q 2 f1; : : : ; ng: fF11; F22; : : : ; Fnng is a
Jordan frame of E:

Theorem 50.1. ([2], p. 43). Let V be a Euclidean Jordan algebra. Then for x in V
there exist unique real numbers �1; �2; : : : ; �k; all distinct, and a unique complete
system of orthogonal idempotents fc1; c2; : : : ; ckg such that

x D �1c1 C �2c2 C � � � C �kck : (50.7)

Additionally, cj 2 RŒx� for j D 1; : : : ; k:
The numbers �j ’s of (50.7) are the eigenvalues of x and the decomposition (50.7)

is the first spectral decomposition of x:

Theorem 50.2. ([2], p. 44). Let V be a Euclidean Jordan algebra with rank.V /D r .
Then, for each x in V there exist a Jordan frame fc1; c2; : : : ; crg and real numbers
�1; : : : ; �r�1 and �r such that

x D �1c1 C �2c2 C � � � C �rcr : (50.8)

The numbers �j ’s (with their multiplicities) are uniquely determined by x:

The decomposition (50.8) is called the second spectral decomposition of x: We
must say that the second spectral decomposition of x is not unique.

We may introduce on a Euclidean Jordan algebra V a new inner product< �; � >
defined by < x; y >D tr.x � y/ for all x and y in V : We will also use the notation
< x; y >D trV .x � y/; where trV .x � y/ D tr.x � y/:

Let V be a m-dimensional Euclidean Jordan algebra. From property (50.6) we
conclude that for all x and y in V ; x � y D 0 )< x; y >D 0: Therefore,
if B is a complete system of orthogonal idempotents of V then B is a linearly
independent set of V : So, every complete system of orthogonal idempotents of
V with cardinality m is a basis of V : Let x be an element of V : If L0.x/ has
m distinct eigenvalues �1; �2; : : : ; �m�1 and �m then B D fc1; : : : ; cmg where
ci D Q

i 6Dj .L0.x/e � �j e/=.�i � �j / for i D 1; : : : ; m is a Jordan frame that is a
basis of V :

We intend, until Sect. 50.6, to complement the work done in [1]. We will obtain
the character table of the Euclidean Jordan algebra constructed in [1] relatively to
two of its basis, where one of the basis is a complete system of orthogonal primitive
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idempotents, recurring to homogeneous linear difference equations of second order
with constant coefficients of the form Q̌jC1;i � ai Q̌j;i C Q̌j�1;i D 0 where ai is a
real constant.

50.2 A Euclidean Jordan Algebra Spanned by a Family
of Matrices

Following [1], let n be a natural number and m D bn=2c C 1: For all i; j 2
f1; : : : ; ng consider the matrices Eij 2 Rn	n; defined by .Eij /pq D ıipıjq : Let
F D fAigi2f1;:::;mg be the family of matrices such that A1 D In,

Ar D
nX

lDr
El; l�rC1 C

nX

lDr
El�rC1; l C

r�1X

lD1
En�rC1Cl; l C

r�1X

lD1
El; n�rC1Cl ;

for r D 2; : : : ; m � 1, and

Am D
nX

lDm
El; l�mC1 C

nX

lDm
El�mC1; l C

m�1X

lD1
En�mC1Cl; l C

m�1X

lD1
El; n�mC1Cl

if n is odd, and

Am D
m�1X

lD1
En�mC1Cl; l C

m�1X

lD1
El; n�mC1Cl

if n is even.
Let < Vn;C; :; < :; : >> be the Euclidean space spanned by fA1; A2; : : : ; Amg

over R, where C and � are the usual sum and product of matrices, respectively, and
< :; : > is the inner product defined by < X; Y >D Tr.XY /:

The Theorem 50.1 presents several useful algebraic properties of the family F :

Theorem 50.1. ([1], p. 884). The matrices of the family F verify

AiAj D AiCj�1 C Aj�iC1 if

�
2 � i < j < m
i C j � m ;

AiAj D An�.iCj�1/C1 C Aj�iC1 if

�
2 � i < j < m
i C j � mC 2 ;

A2i D A2i�1 C 2In if 2 � i �
�
mC 1
2

�
;

A2i D An�2.i�1/C1 C 2In if i �
lm
2

m
C 1:
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If n is odd then

AiAj D AiCj�1 C Aj�iC1 if

�
2 � i < j < m
i C j D mC 1 ;

AiAm D An�.iCm�1/C1 C Am�iC1 if 2 � i � m � 1;
A2m D A3 C 2In:

If n is even then

AiAj D 2Am CAj�iC1 if

�
2 � i < j < m
i C j D mC 1 ;

AiAm D Am�iC1 if i < m;

A2m D In:

From the properties of the family F we conclude that the minimal polynomial of

A2 is the polynomial pm 2 RŒt � given by pm.�/ D ˘m�1
iD0



� � 2 cos

�
.2�i/=n

	�
:

Let Vn be the algebra spanned by F over R: Then Vn is a Euclidean Jordan
algebra and dim.Vn/ D m:

Consider �i;2 D 2 cos
�
.2�.i � 1//=n	 for i D 1; : : : ; m and

Pi D
Y

i 6Dj

A2 � �j;2In
�i;2 � �j;2

for i D 1; : : : ; m:
Then B0 D fP1; : : : ; Pmg is a basis of Vn: In Sect. 50.3 we obtain a character

table relatively to the basis B D fA1; : : : ; Amg and B0 of Vn:

50.3 A Character Table Determined by Homogeneous
Difference Equations

Let n be a natural even number and i 2 f1; : : : ; mg: Then there exist scalars ˇ0
k;i
s

for k D 1; : : : ; m such that Pi DPm
kD1 ˇk;iAk: After some algebraic manipulation

we conclude that:

� If j 2 f2; : : : ; m � 1g then Aj DPm
iD1 �i;jPi D

Pm
iD1 2

ˇj;i

ˇ1;i
Pi

� Am DPm
iD1 �i;mPi D

Pm
iD1

ˇm;i

ˇ1;i
Pi

� A1 D In DPm
iD1 Pi

Consider i 2 f1; : : : ; mg and Q̌k;i D ˇk;i=ˇ1;i for k D 1; : : : ; m: From Theorem
50.1, see p. 887 of [1], we deduce that the Q̌j;i ’s for j D 2; : : : ; m are determined
solving recursively the system (50.9).
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8
<

:

2 Q̌2;i D �i;2;Q̌
j�1;i C Q̌jC1;i D �i;2 Q̌j;i ; for j D 2; : : : ; m � 1;

2 Q̌m�1;i D �i;2 Q̌m;i :
(50.9)

Since �i;2 D 2 cos
�
.2�.i � 1//=n	 then we conclude that the Q̌j;i ’s for j D

1; : : : ; m are the first m values of the solution of the homogeneous linear difference
equation of second order (50.10)

Q̌
j�1;i C Q̌jC1;i D 2 cos

�
2�.i � 1/

n

�
Q̌
j;i (50.10)

with initial conditions Q̌1;i D 1 and Q̌2;i D cos
��
2�.i � 1/	=n	: Then

Q̌
j;i D cos

�
2�.j � 1/.i � 1/

n

�
;8j D 1; : : : ; m:

And so, the character table of Vn is represented by Table 50.1.
Suppose now that n is odd. For i 2 f1; : : : ; mg consider the notation Pi D

mX

kD1
ˇk;iAk :

Let i 2 f1; : : : ; mg and Q̌k;i D ˇk;i=ˇ1;i for k D 1; : : : ; m: The Q̌j;is for j D
2; : : : ; m , see p. 889 of [1], verify the system (50.11).

8
<

:

2 Q̌2;i D �i;2;Q̌
j�1;i C Q̌jC1;i D �i;2 Q̌j;i ; for j D 2; : : : ; m � 1;
Q̌
m�1;i C Q̌m;i D �i;2 Q̌m;i :

(50.11)

We conclude that the Q̌j;i ’s for j D 1; : : : ; m are the first m values of the solu-
tion of the homogeneous linear difference equation of second order with constant
coefficients (50.12)

Q̌
j�1;i C Q̌jC1;i D �i;2 Q̌j;i ; (50.12)

with initial conditions Q̌1;i D 1 and Q̌2;i D �i;2=2:

Table 50.1 Character table of Vn when n is even
A1 � � � Aj � � � Am

P1 1 � � � 2 � � � 1
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Pi 1 � � � 2 cos
�
2�.j�1/.i�1/

n

	 � � � cos
�
2�.m�1/.i�1/

n

	

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Pm 1 � � � 2.�1/j�1 � � � .�1/m�1
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Table 50.2 Character table of Vn when n is odd
A1 � � � Aj � � � Am

P1 1 � � � 2 � � � 2
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Pi 1 � � � 2 cos
�
2�.j�1/.i�1/

n

	 � � � 2 cos
�
2�.m�1/.i�1/

n

	

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

Pm 1 � � � 2 cos
�
�.j�1/.n�1/

n

	 � � � 2 cos
�
�.n�1/2

2n

	
.

Since �i;2 D 2 cos
��
2�.i � 1/	=n	 then Q̌j;i D cos

��
2�.j � 1/.i � 1/	=n	 for

i D 1; : : : ; m and for j D 1; : : : ; m: Finally, we present the character table of Vn in
Table 50.2.

In the next section, we present a brief introduction to strongly regular graphs.

50.4 Strongly Regular Graphs

A graph G consists of a nonempty set V.G/ of vertices and a set E.G/ of edges.
The number of vertices of a graph G is called its order and the number of edges of
G its size. An edge whose endpoints are the vertices u and v is denoted by uv: We
say that the vertex u is adjacent to the vertex v if uv in E.G/: Adjacent vertices are
also called neighbors. A simple graph is a graph with neither loops (edges with both
ends in the same vertex) nor multiple edges (more than one edge between the same
pair of vertices). In what follows, we only deal with simple graphs. A graph of order
n in which all pairs of vertices are adjacent is called a complete graph. When there
is no pair of adjacent vertices the graph is called an empty graph. Let G be a graph
of order n: The adjacency matrix of G is the matrix AG D .auv/n such that

auv D
�
1; if uv 2 E.G/
0; otherwise

:

The characteristic polynomial pG of the adjacency matrix AG of G is called the
characteristic polynomial of G: The eigenvalues of AG and the spectrum of AG are
also called the eigenvalues and the spectrum ofG; respectively. Consider v in V.G/:
The number of neighbors of v in V.G/ is called the degree of v and is denoted by
dG.v/: If H is a graph such that for all v in V.H/; dH .v/ D p then we say that H
is p-regular. A graph is regular if it is p-regular for some p:

A graphH is called strongly regular if it is regular, non-complete, nonempty and
if given any two distinct vertices u and v in V.H/, the number of vertices which are
neighbors of both u and v depends on whether u and v are adjacent or not. H is a
.n; pI a; c/-strongly regular graph if H is a strongly regular graph of order n which
is p-regular and if any pair of adjacent vertices have a common neighbors and any
two distinct non-adjacent vertices have c common neighbors. graph. In Fig. 50.1
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Fig. 50.1 Graphs �1 and �2

we represent the .6; 4I 2; 4/-strongly regular graph �1 and the .6; 2I 1; 0/-strongly

regular graph �2 defined by the adjacency matrices A�1
D

0
BBBBBBB@

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

1
CCCCCCCA

and

A�2
D

0
BBBBBBB@

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

1
CCCCCCCA

:

A graph H; see [5], which is non-complete and nonempty is a .n; pI a; c/-
strongly regular graph if and only if A2H D pIn C aAH C c.Jn � AH � In/;
where Jn denotes the square matrix of order n with only one’s. The complement of
a graph H; denoted by NH , is such that V. NH/ D V.H/ and E. NH/ D fuv W u; v 2
V.H/ ^ uv 62 E.H/g: Therefore, since A NH D Jn � AH � In we conclude that
a graph is a .n; pI a; c/�strongly regular graph if and only if its complement is a
.n; n � p � 1In � 2p C c � 2; n � 2p C a/�strongly regular graph.

50.5 Strongly Regular Graphs in Vn

Let n be an even natural number and let Vn be the Euclidean Jordan algebra
spanned by the family F : The graph �1 such that A�1 D

Pm�1
jD2 Aj is a .n; n � 2I

n � 4; n � 2/�strongly regular graph, see Theorem 4.1 at p. 891 of [1]. The spec-
tra of �1 is obtained by summing the columns of Table 50.1 corresponding to
A2; : : : ; Am�2 and Am�1: Let i 2 f2; : : : ; m � 1g: Since

pX

jD1
cos.px/ D cos

�
px
2

	
sin
�
.pC1/x
2

	

sin
�
x
2

	 � 1 (50.13)
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Table 50.3 The spectra of the strongly regular graphs �1 and �1
A�1 A�1

P1 2.m � 2/ 1
:
:
:

:
:
:

:
:
:

Pi .�1/i � 1 cos
�
2�.m�1/.i�1/

n

	

:
:
:

:
:
:

:
:
:

Pm .�1/m � 1 .�1/m�1

Table 50.4 The spectra of the strongly regular graphs �2 and �2
A�2 A�2

P1 2 2.m� 3/C 1
:
:
:

:
:
:

:
:
:

Pi 2 cos
�
2�.i�1/

3

	 �1� 2 cos. 2�.i�1/

3
/

:
:
:

:
:
:

:
:
:

Pm 2 �3

for p 2 N and for x 2 R n f2k� W k 2 Zg and considering x D .2�.i � 1//=n
and p D m� 2 on (50.13) we conclude that

Pm�1
jD2

�
2 cos.2�.i � 1/.j � 1/=n/	 D

.�1/i � 1: We present in Table 50.3 the spectra of the strongly regular graphs �1
and �1:

Now we obtain the spectra of another strongly regular graph when n D 6k,
k 2 N. Sincem D bn=2cC 1 thenm D 3kC 1:We deduce, by Theorem 50.1, that

A22kC1 D A2kC1 C 2In
and therefore A2

2kC1 is a linear combination of In; A2kC1 and Jn � A2kC1 � In:
We conclude that A2kC1 is the adjacency matrix of a .n; 2I 1; 0/-strongly regular
graph �2. Proceeding like in the deduction of the spectra of the strongly regular
graph �1 we obtain the spectra of the strongly regular graph �2: In Table 50.4 we
present the spectra of the strongly regular graphs �2 and �2:

50.6 Generalized Krein Parameters of a Strongly
Regular Graph

Now we will introduce the generalized Krein parameters of a strongly regular graph
like in [8]. Let � be a .n; pI a; c/-strongly regular graph such that 0 < c < p < n�1
and let A be the adjacency matrix of �: In what follows, we suppose that A has
three distinct eigenvalues. Now, we consider the Euclidean Jordan subalgebra V of
the Euclidean Jordan algebra Sym.n;R/ spanned by In and A: Since A has three
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distinct eigenvalues then V is a three dimensional Euclidean Jordan algebra and
rank.V / D 3:

Let r and s, see [5], be the eigenvalues of A different from p:

The linear operator L.A/ is a symmetric linear endomorphism on V with only
three distinct eigenvalues, namely p; r and s: LetE1 D

�
.A�rIn/.A�sIn/

	
=
�
.p�

r/.p � s/	 D Jn=n;E2 D
�
.A � sIn/.A � pIn/

	
=
�
.r � s/.r � p/	 and E3 D�

.A� rIn/.A�pIn/
	
=
�
.s � r/.s �p/	:We conclude that S D fE1; E2; E3g is the

unique complete system of orthogonal idempotents of V associated to A:
Let x be a real number. We define jAjx by the equality

jAjx D pxE1 C rxE2 C jsjxE3: (50.14)

Considering the basis B D fIn; A; E1g of V and recurring to the scalar product
trV we deduce that

jAjx D .p � c/r
x�1 C jsjx�1
r � s In � jsj

x � rx
r � s A

C
�
px � rx C .p � r/ jsj

x � rx
r � s

�
E1: (50.15)

Using the basis of V ; B0 D fIn; A; Jn � A � Ing and recurring to equalities
(50.14) and (50.15) we conclude that

E1 D 1

n
In C 1

n
AC 1

n
.Jn �A � In/;

E2 D jsjnC s � p
n.r � s/ In C nC s � p

n.r � s/ AC
s � p
n.r � s/ .Jn �A � In/;

E3 D rnC p � r
n.r � s/ In C �nC p � r

n.r � s/ AC p � r
n.r � s/ .Jn � A� In/:

Now, we introduce a compact notation for the Hadamard and for the Kronecker
powers of the elements of S: Let j; k; l; m; u and v be natural numbers such that 1 �
j; u; v � 3; k � 2 and u < v: ForB in Mn.R/; Bık andB˝k denotes the Hadamard
power of order k of B and the Kronecker power of order k of B; respectively and,
Bı1 D B and B˝1 D B: Consider the following notation: Eı jjk D .Ej /

ık ;
Eıuvlm D .Eu/

ıl ı .Ev/
ım; E˝ jjk D .Ej /

˝k and E˝uvlm D .Eu/
˝l ˝ .Ev/

˝m:
Since V is a Euclidean Jordan algebra closed for the Hadamard product and S is a
basis of V then there exist real numbers qi

jjk
; qiuvlm for 1 � i � 3 such that

Eı jjk D
3X

iD1
qijjkEi ;

Eı uvlm D
3X

iD1
qiuvlmEi : (50.16)
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We call the parameters qi
jjk

and qiuvlm involved in (50.16) the generalized Krein

parameters of the strongly regular graph �; since qijj2 and qiuv11 are the Krein
parameters of �:

Lets consider the natural numbers i; j; k; l; m; u and v such that u < v; 1 �
i; j; u; v � 3; and k � 2: The matricesE˝jjk andE˝uvlm are idempotents matrices
of Mnk .R/ and of MnlCm.R/; respectively. Since the matrices Eıjjk and Eıuvlm

are principal submatrices of the matrices E˝jjk and of E˝uvlm respectively, we
conclude that 0 � qi

jjk
; qiuvlm � 1:

We assume now that k; l andm are natural numbers such that k and lCm are odd.
From the analysis of the generalized Krein parameters q1

33k
and q1

32lm
, we establish

necessary conditions for the existence of a strongly regular graph in Theorem 50.1.

Theorem 50.1. Let � be a .n; pI a; c/�strongly regular graph such that 0 < c <

p < n � 1; whose adjacency matrix A has the eigenvalues p; r and s: Then

.rnC p � r/k C .�nC p � r/kp C .p � r/k.n � p � 1/ � 0; 8k 2 2N C 1

.rnC p � r/l .jsjnC s � p/m C .�nC p � r/l .nC s � p/mpC
C.p � r/l.s � p/m.n � p � 1/ � 0;8l; m 2 N W l Cm 2 2N C 1:
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Chapter 51
Parameter Estimation in Stochastic
Differential Equations

G.-W. Weber, P. Taylan, Z.-K. Görgülü, H. Abd. Rahman, and A. Bahar

Abstract Financial processes as processes in nature, are subject to stochastic
fluctuations. Stochastic differential equations turn out to be an advantageous repre-
sentation of such noisy, real-world problems, and together with their identification,
they play an important role in the sectors of finance, but also in physics and biotech-
nology. These equations, however, are often hard to represent and to resolve. Thus
we express them in a simplified manner of approximation by discretization and
additive models based on splines. This defines a trilevel problem consisting of an
optimization and a representation problem (portfolio optimization), and a parameter
estimation (Weber et al. Financial Regression and Organization. In: Special Issue on
Optimization in Finance, DCDIS-B, 2010). Two types of parameters dependency,
linear and nonlinear, are considered by constructing a penalized residual sum of
squares and investigating the related Tikhonov regularization problem for the first
one. In the nonlinear case Gauss–Newton’s method and Levenberg–Marquardt’s
method are employed in determining the iteration steps. Both cases are treated using
continuous optimization techniques by the elegant framework of conic quadratic
programming. These convex problems are well-structured, hence, allowing the use
of the efficient interior point methods. Furthermore, we present nonparametric and
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related methods, and introduce into research done at the moment in our research
groups which ends with a conclusion.

51.1 Introduction

The majority of problems in finance involve either maximization of wealth or mini-
mization of costs. Thus, the modeling of financial processes consists of optimization
and optimal control in the organisation of a portfolio apart from security requests or
pricing and hedging. The present study focusses on the parameter estimation that is
a special step in modeling which serves as a link to the overall context of modeling
and decision making.

Real-world data from the financial sector and science are often characterized by
their huge quantity and variation, while serving as the basis of future prediction at
the same time. Both the real situation and practical requests are difficult to put in
equilibrium [23, 41]. In fact, the related mathematical modeling faces a high sen-
sitivity of the model with respect to slightest perturbations of the data and, in the
limit, with non-smoothness.

To better understand this sensitivity, we will analyze the corresponding parameter
estimation problems by means of Tikhonov regularization, conic quadratic program-
ming and nonlinear regression methods. Herewith, we offer an a priori approach to
stochastic differential equations (SDEs) inspired by the martingale method in port-
folio optimization. The entire problem is described by three phases, ordered in some
sequel: an optimization problem, a representation problem (portfolio optimization)
and a parameter estimation which can be done at the first or at the last level.

As a preparation, a brief introduction into our regression method is given from
statistical learning called additive models, which we will then be evaluated by
continuous optimization. Then, using modern methods of regularization and opti-
mization, we will apply them to SDEs addressing both the linear and nonlinear case
of parameter estimation. Various examples are given for the nonlinear case, espe-
cially referring to interest rate models. By all of this, our more theoretical paper
recalls and improves the scientific results in the pioneering articles [40, 43], and
addresses them to a wider community.

This contribution is organized as follows: In Sect. 51.2 we introduce additive
models with a classical tool, which we then apply on stochastic differential equa-
tions, presented, treated and optimized in Sect. 51.3. Then, in Sect. 51.4, we apply
Tikhonov regularization and conic quadratic programming on our equations. The
following Sect. 51.5 is devoted nonlinear parameter estimation. Section 51.6 deals
with cases of continuous time one-factor interest rate models. Then, further, non-
parametric methods are the subject of Sect. 51.7, before Sect. 51.8 offers other recent
investigations in our research groups. In Sect. 51.9 we conclude.
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51.2 Classical Additive Models

An additive model [10] is a special regression model to estimate an additive
approximation of the multivariate regression function.

For N observations on a response (or dependent) variable Y , denoted by y D
.y1; y2; : : : ; yN /

T measured at N design vectors xi D .xi1; xi2; : : : ; xim/
T , the

additive model is defined by

Y D ˇ0 C
mX

jD1
fj .Xj /C ";

with an error (or noise) " being independent of the factors Xj , E."/ D 0 and
Var."/ D 
2 [19]. The functions fj are arbitrary unknown, univariate functions
which are, mostly, considered to be splines. We denote the estimates by Ofj . The
standard convention consists in assuming at Xj that E

�
fj .Xj /

	 D 0, since other-
wise there will be a free constant in each of the functions [19]; the intercept (bias)
ˇ0 summarizes all those constants.

51.2.1 Estimation Equations for Additive Model

Additive models are mainly used as data analytic tool. Each function is estimated by
an algorithm proposed by Friedman and Stuetzle [16], called backfitting (or Gauss–
Seidel) algorithm. We estimate ˇ0 by the mean of the response variable Y , i.e.,
Ǒ
0 D E.Y /. This procedure depends on the partial residual againstXj ,

rj D Y � Ǒ0 �
X

k¤j
Ofk.Xk/;

and it consists of estimating each smooth function by holding all the other ones
fixed [19, 23]. This yields E.rj

ˇ̌
Xj / D Ofj .Xj /, which minimizes E

�
Y � Ǒ0�Pm

jD1 Ofj .Xj /
	2

[16, 18].

51.2.2 On the Theoretical and Practical Background

This study is motivated by the financial mathematics of stochastic differential equa-
tions. It is a very hard challenge to find such models of reality as an approximation
based on data from the sector of finance. These equations can be, e.g., about pro-
cesses of prices, interest rates and volatility, about underlyings and derivatives of
different kinds as well. The financial data used are usually characterized by noise
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and a high variation of their values; this fact is a great obstacle for any modelling
(data fitting) which should be stable against small perturbations, such as noise, in
the data, i.e., it should reveal a very modest complexity [42].

We aim at these goals in a balanced way, by using theories of inverse problems
and continuous, actually, convex optimization with a very characteristic global
structure which is generated and represented by quadratic cones. This treatment
demonstrates and proposes for our problem the use and benefit of a closed mathe-
matical approach which is called model based, in contrast to model free approaches
from statistics which are of a more adaptive and heuristic nature [19]. For example,
the backfitting (Gauss–Seidel) algorithm and the MARS algorithm from statistical
learning in additive, generalized and multiplicative models reveal that nature
[19, 51].

Our new mathematical approach in the areas of these models proved to be
successful and really competitive with traditional statistical methods, as demon-
strated for the prediction of credit default and for quality analysis and control in
manufacturing [20, 51].

51.2.3 Closer Explanations on the Optimization
and Computational Methods

Least-squares estimation, i.e., the minimization of the residual sum of squares
between the left- and right-hand sides of a time-discretized stochastic differential
equation (SDE) is needed to model such an SDE.

In fact, we embed this SDE into a common context together with portfolio opti-
mization. This context turns out to be a multi-stage problem. Our least-squares
estimation takes two formes discussed by us, on one hand, a linear regression, after
having introduced linear combinations of spline functions to represent model func-
tions in the SDE, and, on the other hand, a nonlinear regression, in the presence
of nonlinear parametric dependencies and subtle compositions. Here linear regres-
sion techniques will be used in each iteration of the nonlinear method to find the
appropriate step (see Sect. 51.5).

Actually, besides of that parameter estimation which aims at accuracy, we also
have another target, which consists in a smallest possible complexity of the model
or, equivalently, in stability. Both goals are firstly combined in the tradeoff that is
given in the form of a penalized problem, i.e., of minimizing the residual sum of
squares. Numerical methods which can be applied here are usually called exterior
point methods [26]. In fact, since then we unify some discretized complexity (or
energy) terms and include them into an inequality constraint, where we impose a
bound on it, we obtain a conic quadratic programming problem on which we can
apply interior point methods [28]. Our main approach to exterior point methods is
given by Tikhonov regularization from the theory of inverse problems. For this kind
of stabilization the program package of MATLAB Regularization Toolbox is pro-
vided; it strongly uses the techniques of singular value decomposition, including
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“truncation” and “filtering” [2]. These two approaches both the interior and the
exterior one, are equivalent under a suitable constellation of the corresponding two
parameters, namely, the penalty (or smoothing) parameter and the upper bound in
the constraint [2]. In our study, we prefer to employ interior points methods (IPMs)
which we apply on our conic quadratic programming problem, e.g., via the program
package MOSEK (for various applications see [51]). Herewith, we exploit the fact
that conic programs are well-structured convex problems, which are a very powerful
model-based approach that enables us to benefit from the efficiency of IPMs [28].

51.3 Equations and their Optimization

51.3.1 A Short Introduction

The concept of stochastic differential equation (SDE) extends the concept of ordi-
nary differential equation to stochastic processes. Stochastic differential equations
come into operation to simulate ordinary, predictable, processes those are addition-
ally affected by outer perturbation (noise).

As in the deterministic case, in the case of stochastic processes we aim at a rela-
tionship between value and future trend (derivative) of a function. For, Îto processes
are nowhere differentiable, initially, a derivative of a process causes problems.

However, an ordinary differential equation

dxt
dt
D a .t; xt /

is equivalent to an integral equation

xt D x0 C
Z t

0

a.�; x�/ d�:

The latter formulation does not need the derivative’s term. Thus, in the case of
stochastic differential equations

Xt D a .t; Xt /C b.t; Xt/dWt
dt

;

where a.t; Xt / denotes the deterministic, b.t; Xt / � dWt=dt the stochastic influence
(noise) and .Wt /t�0 a continuous martingale, it makes more sense to define the SDE
by reference to the corresponding integral equation

Xt D X0 C
Z t

0

a
�
�;X�

	
d� C

Z t

0

b
�
�;X�

	
dW� ;

where the latter expression is an Îto integral.



708 G.-W. Weber et al.

51.3.2 A Special Approach to Financial Processes

Many phenomena in nature, technology and economy are modelled by means of a
deterministic differential equation with initial value x0 2 IR:

(
Px WD dx=dt D a.x; t/;

x.0/ D x0:

However, this modeling omits stochastic fluctuations and is not appropriate for, e.g.,
stock prices, population dynamics and biometry to name a few. To consider stochas-
tic movements, stochastic differential equations (SDEs) are used since they arise in
modeling many phenomena, such as random dynamics in the physical, biological
and social sciences, in engineering and economy. Solutions of these equations are
often diffusion processes and, hence, they are connected to the subject of partial
differential equations. We try to find a solution for these equations by an additive
approximation (cf. Sect. 51.3.3), which is very famous in the statistical area, using
spline functions.

Typically, a stochastic differential equation, equipped with an initial value, is
given by ( PX.t/ D a.X; t/C b.X; t/ıt t 2 Œ0;1/;

X.0/ D x0;
(51.1)

here, a is the deterministic part, bıt is the stochastic part, and ıt denotes a general-
ized stochastic process [22,32]. An example of a generalized stochastic processes is
white noise. For a generalized stochastic processes, derivatives of any order can be
defined. Suppose thatWt is a generalized version of a Wiener process which is used
to model the motion of stock prices, which instantly responds to the numerous aris-
ing and, actually, emerging information. A one-dimensional Wiener process (or a
Brownian motion) is a time continuous process satisfying the following properties:

(a) W0 D 0, with probability one.
(b) Wt �Ws � N.0; t � s/ for all s; t with 0 � s < t � T . Here, we speak about

stationary increments.
(c) All increments�Wt WD WtC�t �Wt on nonoverlapping time intervals are inde-

pendent. That is, the displacements Wt2 � Wt1 and Wt4 � Wt3 are independent
for all 0 � t1 < t2 � t3 < t4.

From a. we learn that, especially, Wt � N.0; t/ for all 0 � t � T ; i.e., for
each t the random variable Wt is normally distributed with mean E .Wt / D 0 and
variance Var .Wt / D E

�
W 2
t

	 D t . A multi-dimensional Wiener process can be sim-
ilarly defined. Usually a Wiener process is differentiable almost nowhere. To obtain
our approximate and, then, smoothened model, we treat Wt as if it was differen-
tiable (a first approach widespread in literature). Then, white noise ıt is defined as
ıt D PWt D dWt=dt and a Wiener process can be got by smoothing the white noise.
As a Wiener process is nowhere differentiable, to obtain an approximation of the
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SDE model we replace in (51.1) ıt with dWt=dt by treating the time interval as
continuous, i.e., �t ! 0, and thus Wt as differentiable, the following SDE can be
rewritten as

dXt D a.Xt ; t/dt C b.Xt ; t/dWt ; (51.2)

here, a .Xt ; t/ and b .Xt ; t/ are drift and diffusion term, respectively, and Xt is a
solution. We approximate the solution through discretization of SDE.

Some popular SDE models are listed in Table 51.1. The parameter estimation
of the diffusion processes of discrete-time observations should ideally be based on
a likelihood function. If the transition densities of X are known, one can use a
likelihood function. The transition densities of X are usually unknown and, thus,
it has to be approximated, but this is proven to be quite computer intensive. As
alternative one can approximate the log-likelihood function based on the continuous
observation of X . The maximizer of the approximate log-likelihood function will
provide the approximate maximum likelihood estimator (AMLE) [6]. However, the
previous works [17, 33] employed methods for maximum likelihood estimation.

In [33] it is explained the oscillations of glycemia in response to hyperinsulin-
ization by extending a system of ordinary differential equation (ODE) to a system
of stochastic differential equations (SDE). The parameters estimated for the ODE
were based on Iteratively Weighted Least Squares (IRWLS) method. The stochastic
model of Euglycemic Hyperinsulinemic Clamp (EHC) was fitted to the data and
the system noise was estimated by a simulated maximum likelihood procedure. The
system noise estimates were found non-negligible and robust to changes in mea-
surement error values. They concluded that the explicit expression of system noise
was physiologically relevant since the glucose uptake rate is affected by a host of
additive influences.

In [17] it is examined the main probabilistic characteristics and described an
explicit expression of the trends and the stationary distribution of the model based
on the homogeneous Rayleigh diffusion process. They estimated the maximum like-
lihood parameters and simulated the stochastic sample path of the model on the
corresponding Îto stochastic differential equation. The model was applied to study
the evolution of thermal electricity in Maghribi.

Other methods are methods of moments [30], filtering, e.g., extended Kalman
filter [29] and non-linear least squares [24]. One of the drawbacks of the classical
least squares and maximum likelihood method is its inadequacy for simultaneous
estimation of the drift and diffusion parameters while in methods of moments the
sample is not used efficiently.

Many of the analytical solutions of SDE are unknown, we have to approximate
the true solution through discretization of SDE.

51.3.3 Discretization of SDE

A number of discretization schemes available for the SDE (51.2) among others are
Euler–Maruyama, Milstein and Runge–Kutta [22]. We choose the Milstein scheme
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because it has a strong order of convergence compared with Euler–Maruyama and
it is easier compared with Runge–Kutta. Then, we represent an approximation OXtj ,

in short: OXj .j 2 IN/, of the process Xt by

OXjC1 D OXj C a

 OXj ; tj

� �
tjC1 � tj

	C b

 OXj ; tj

� �
WjC1 �Wj

	

C 1

2
.b0b/


 OXj ; tj
� 
�

WjC1 �Wj
	2 � �tjC1 � tj

	�
; (51.3)

where the prime “ 0 ” denotes the derivative with respect to t . Particularly referring
to the finitely many sample (data) points .Xj ; tj / .j D 1; 2; : : : ; N /, we obtain

PXj D a
�
Xj ; tj

	C b �Xj ; t j
	 �Wj
hj
C 1

2
.b0b/

�
Xj ; t j

	
 
.�Wj /

2

hj
� 1

!
; (51.4)

where the value PXj represents difference quotients raised on the j�th data value
Xj and on step lengths �tj D hj WD tjC1 � t j between neighboring sampling
times:

PXj WD

8
<̂

:̂

Xj C1�Xj

hj

; if j D 1; 2; : : : ; N � 1;
XN�XN �1

hN

; if j D N:
The relations (51.4) cannot be expected to hold in an exact sense, since they include
real data, but we satisfy them best in the approximate sense of residual sums of
squares (RSS), also called least squares of errors. For the ease of exposition, we
write “D” instead of the approximation symbol “�”. We will study the minimization
of RSS in Sect. 51.3.4, where we combine it with the need for regularization and
speak about PRSS (“P ” abbreviating penalized).

As Wt � N.0; t/, the increments �Wj are independent on non-overlapping
intervals and moreover, Var.�W j / D �t j , hence, the increments having normal
distribution can be simulated with the help of standard normal distributed random
numbersZj . Herewith, we obtain a discrete model for a Wiener process:

�W j D Zj
q
�t j ; Zj � N.0; 1/: (51.5)

Inserting this value in our discretized equation, we receive

PXj D a
�
Xj ; t j

	C b �Xj ; tj
	 Zjq

hj

C 1

2
.b0b/

�
Xj ; t j

	 

Z
2

j � 1
�
; (51.6)

what we abbreviate by

PXj D Gj CH j cj C


Hj
0
H j

�
dj (51.7)
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with cj WD Zj =

q
hj , dj WD 1=2



Z
2

j � 1
�

, Gj WD a
�
Xj ; tj

	
and H j WD

b
�
Xj ; t j

	
. To determine the unknown values of Gj and H j , we consider the

following optimization problem:

min
�

NX

jD1

��� PXj �


Gj CH j cj C



Hj
0
H j

�
dj

����
2

2
; (51.8)

where the vector � comprises all the parameters in the Milstein model. We point out
that also vector-valued processes could be studied, referring to sums of terms in the
Euclidean norm k � k22. We note that data from the stock markets, but also from other
sources of information or communication, have a high variation; we shall take this
carefully into account, subsequently, in terms of regularization.

Now, we have to employ a parameter estimation method which will at the same
time control that high variation and give a smoother approximation to the data.
Splines are more flexible and they allow us to avoid large oscillation which may
be permitted by high-degree polynomial approximation and based on strongly vary-
ing data or outliers existing. Here, one sometimes speaks also of overfitting; we
want to prevent from that.

Let us call that splines from finite dimensional spline spaces can be described

as linear combinations of basis splines and that they approximate the data . PXj ; t j /
smoothly. For this reason we approximate each function underlying the numbers
Gj D a.Xj ; tj /, H j D b.Xj ; tj / and F j D Hj

0
H j in an additive way estab-

lished on basis splines and then introduce a regularization. This treatment is very
useful for the stability of the model in the presence of the many and highly varying
data. Let us use basis splines for each function establishing an additive separation
of variables (coordinates); e.g., in equation (7):

Gj D a
�
Xj ; t j

	 D ˛0 C
2X

pD1
fp
�
U j;p

	 D ˛0 C
2X

pD1

d
g
pX

lD1
˛lpB

l
p

�
U j;p

	
;

H j cj D b
�
Xj ; t j

	
cj D ˇ0 C

2X

rD1
gr
�
U j;r

	 D ˇ0 C
2X

rD1

dh
rX

mD1
ˇmr C

m
r

�
U j;r

	
;

F jdj D
�
b0b
	 �
Xj ; t j

	
dj D '0 C

2X

sD1
hs
�
U j;s

	 D '0 C
2X

sD1

d
f
sX

nD1
'nsD

n
s

�
U j;s

	
;

(51.9)

where we used the unifying notation U j D
�
U j;1; U j;2

	 WD �
Xj ; t j

	
. Let us give

an example on how one can gain bases of splines. If we denote the kth order base
spline byB
;k , a polynomial of degree k�1, with knots, say x
 , then a great benefit
of using the base splines is provided by the following recursive algorithm [15]:
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B
;1.x/ D
�
1; if x
 � x < x
C1;
0; otherwise;

B
;k.x/ D x � x

x
Ck�1 � x
B
;k�1.x/C

x
Ck � x
x
Ck � x
C1B
C1;k�1.x/: (51.10)

Before we actually introduce how this regularized parameter estimation becomes
modeled and solved, we explain how it is connected with portfolio optimization and
introduce into that.

51.3.4 Portfolio Optimization Related

An important scope of application for SDEs in financial mathematics is provided by
portfolio optimization and the stochastic control. A thorough investigation of this
field is done in [23]. To understand the genesis of a trilevel problem it is indispens-
able to refresh some elements of portfolio optimization. In portfolio optimization
there are basically two approaches in use: the martingale method, and the stochastic
control. Let us give a short introduction into both.

51.3.4.1 The Martingale Method

The martingale method describes a bi-level method considering an optimization
problem at the lower level and a representation problem at the upper level. This
method is mainly based on a separation of the dynamical problem

max
.�;c/2A0.x/

J.xI�; c/

into a static optimization problem (“determination of the optimal payoff profile”)
at the lower level and a representation problem (“compute the portfolio process
corresponding to the optimal payoff profile”) at the upper level. The definition of the
feasible set includes that the expected overall utility, or wealth, should be bounded
away from �1 (therefore, the negative part .�/� is used):

A0.x/ WD
(
.�; c/ 2 A.x/

ˇ̌
ˇ̌
ˇ E

 Z T

0

.U1 .t; c.t///
� dt C .U2 .x.T ///�

!
<1

)
;

where we denote a self-financing pair .�; c/ consisting of a portfolio process � and
a consumption process c that is admissible with initial wealth x > 0, by .�; c/ 2
A.x/. We note that the functions U1 and U2 are utility functions [23].
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51.3.4.2 The Stochastic Control

A SDE of the form

dX.t/ D � .t; X.t/; u.t// dt C 
 .t; X.t/; u.t// dW.t/;

where W.t/ is a m-dimensional Brownian motion, X.t/ is a n-dimensional Itô pro-
cess and where u.t/ is an arbitrary d -dimensional stochastic process – the stochastic
control – is called a controlled stochastic differential equation. The main task in
stochastic control consists of determining an optimal control, i.e., a control process
u.t/ which is optimal with respect to a certain cost functional.

The martingale method bases on the identification and treatment of a bi-level
problem, but our entire study here refers to a tri-level problem. There are two ways
of how to realize this, recalling that the martingale method consists of two levels.
Indeed, an additional parameter estimation can take place (a) at the end (as the
third – most lower problem) or, (b) at the beginning (first problem – most upper
problem). In case of (a), a parameter estimation is, under some criterion of least
squares or maximum likelihood, applied to the solution of the portfolio optimiza-
tion task which is parametric and can therefore be called a parametric portfolio
optimization. However, the case of (b) is the classical one on nonparametric portfo-
lio optimization; here, parameter estimation is taking place in an a priori sense. In
the sequel, we shall address the case (b) and investigate it emphasizing the parameter
estimation.

Further information about bi- and multi-level problems in optimization and
related topics from optimal control we refer to [47, 49].

51.3.5 The Penalized Residual Sum of Squares Problem for SDE

We construct the penalized residual sum of squares (PRSS) for our SDE in the
following form:

PRSS.�; f; g; h/ WD
NX

jD1


 PXj�
�
GjCH j cjCF jdj

	�2C
2X

pD1
�p

Z �
f 00p .Up/

	2
dUp

C
2X

rD1
�r

Z �
g00r .Ur/

	2
dUr C

2X

sD1
�s

Z �
h00s .Us/

	2
dUs :

(51.11)

Here the integral symbol
Z

stands for
Z

Œa� ;b� 	

, i.e., as a dummy variable. Be

Œa� ; b� � . D p; r; s/ sufficiently large intervals of integration and be Up; Ur ; Us
the unifying notation of .Xt ; t/, where .U1 D Xt ; U2 D t/, respectively.
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For the ease of exposition, we may always think that they are the same: a� D a

and b� D b . D p; r; s/.
Furthermore, �p; �r ; �s � 0 are penalty (or smoothing) parameters, standing

for the tradeoff between the first term of “lack-of-fit” and the second terms of
complexity (or “energy”).

Remark 51.1. Large values of �p ; �r and �s enforce “smoother” curves, smaller
values can result in more fluctuation.

If we use an additive form based on the basis splines for each function, then PRSS
becomes

NX

jD1


 PXj�
�
GjCH j cjCF jdj

	�2 D
NX

jD1

0

@ PXj �
0

@˛0 C
2X

pD1

d
g
pX

lD1
˛lpB

l
p

�
U j;p

	

C ˇ0 C
2X

rD1

dh
rX

mD1
ˇmr C

m
r

�
U j;r

	

C'0 C
2X

sD1

d
f
sX

nD1
'nsD

n
s

�
U j;s

	
1

A

1

A
2

:

(51.12)

The above part

GjCH j cjCF jdj D ˛0C
2X

pD1

d
g
pX

lD1
˛lpB

l
p

�
U j;p

	C ˇ0 C
2X

rD1

dh
rX

mD1
ˇmr C

m
r

�
U j;r

	

C'0 C
2X

sD1

d
f
sX

nD1
'nsD

n
s

�
U j;s

	 D Aj � (51.13)

can easily be interpreted as scalar product of two vectors Aj and � , where
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:

Considering the matrix

A WD

0

BBBBB@

A
T

1

A
T

2
:::

A
T

N

1

CCCCCA

T

and the vector of difference quotients PX WD

0

BBBBB@

PX1
PX2
:::
PXN

1

CCCCCA
;

that represents the change rates of the given data, we obtain PRSS as the squared

length of the difference vector between PX and A� :

NX

jD1


 PXj � Aj �
�2 D

��� PX �A�
���
2

2
: (51.14)
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Furthermore, by taking functional values from the left-hand boundaries of the
subintervals, we can approximate each integration term using its Riemann sum:

bZ

a

�
f 00p

�
Up
		2

dUp �
N�1X

jD1

�
f 00p

�
Uj;p

		2 �
UjC1;p � Uj;p

	

D
N�1X

jD1

0

@
d

g
pX

lD1
˛lpB

l 00

p

�
Uj;p

	
uj

1

A
2

: (51.15)

On the other hand, each integration term can be represented by the squared length
of a appropriate vector, i.e.,

bZ

a

�
f 00p .Up/

	2
dUp �

N�1X

jD1



B
p
j

00
uj˛p

�2 D
���ABp˛p

���
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���
2

2
.r D 1; 2/;

bZ

a

�
h00s .Us/

	2
dUs �

N�1X

jD1

�
Ds
j
00wj's

	2 D
���ADs 's

���
2

2
.s D 1; 2/; (51.16)

where
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and, for j D 1; 2; : : : ; N � 1,

uj WD
p
UjC1;p � Uj;p; �j WD

p
UjC1;r � Uj;r ; wj WD

p
UjC1;s � Uj;s :
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Inserting the vector-matrix and approximative forms in (11), PRSS turns out to look
as follows:

PRSS.�; f; g; h/ D
��� PX �A�

���
2

2
C

2X

pD1
�p

���ABp˛p
���
2

2

C
2X

rD1
�r

���ACr ˇr
���
2

2
C

2X

sD1
�s

���ADs 's
���
2

2
: (51.17)

However, we obtain a 6-tuple of penalty parameters: � D .�1; �2; �1; �2; �1; �2/T .
Therefore, the minimization of PRSS is not yet already a Tikhonov regular-
ization problem with its single such parameter. Thus, let us look at the case
which is given by a uniform penalization by taking the same penalty factor
�p D �r D �s D � DW ı2 for each term. Then, our approximation of PRSS can
be rearranged as

PRSS.�; f; g; h/ D
��� PX � A�

���
2

2
C ı2 ��L���2

2
; (51.18)

with the .6.N � 1/ �m/-matrix

L WD

0

BBBBBBBBBB@

0 A
B

1 0 0 0 0 0 0 0

0 0 A
B

2 0 0 0 0 0 0

0 0 0 0 A
C

1 0 0 0 0

0 0 0 0 0 A
C

2 0 0 0

0 0 0 0 0 0 0 A
D

1 0

0 0 0 0 0 0 0 0 A
D

2

1

CCCCCCCCCCA

:

Herewith, based on the basis splines, we have identified the minimization of PRSS
for some stochastic differential equation as a Tikhonov regularization problem [2]:

min
m
kGm � dk22 C ı2 kLmk22 (51.19)

with penalty parameter� D ı2. We note that this regularization task is a special kind
of multi-objective optimization, and that in statistical learning this method is also
known as ridge regression [19]. It is very helpful for problems whose exact solution
does not exist or is not unique or not stable under perturbations (noise) of the data.
MATLAB Regularization Toolbox can be used for the numerical solution [2].
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51.4 Alternative Solution for Tikhonov Regularization
Problem with Conic Quadratic Programming

51.4.1 Construction of the Conic Quadratic Programming
Problem

As we just mentioned we can solve our Tikhonov regularization problem with
MATLAB Regularization Toolbox. In addition, we shall explain how to treat
our problem by using continuous optimization techniques which we suppose
to become a complementary key technology and alternative to the concept of
Tikhonov regularization. In particular, we apply the elegant framework of conic
quadratic programming (CQP). Indeed, based on an appropriate, learning based
choice of a boundM , we reformulate our Tikhonov regularization as the following
optimization problem:

min
�

���A� � PX
���
2

2
; (51.20)

subject to
��L�

��2
2
�M:

Here, the objective function in (20) is not linear but quadratic. However, the original
objective function can be moved to the list of constraints, and we can write an equiv-
alent problem consisting of minimizing a new “height” variable t over the epigraph
in the extended .t; �/�space as follows:

min
t;�

t; (51.21)

subject to
���A� � PX

���
2

2
� t2; t � 0;

��L�
��2
2
�M;

or

min
t;�

t; (51.22)

subject to
���A� � PX

���
2
� t;

��L�
��
2
� pM:

Indeed, considering the form of a conic quadratic optimization problem [27]

min
x
cT x; subject to

��Dix�di
��
2
� pTi x� qi .i D 1; 2; : : : ; k/; (51.23)

we can identify our optimization problem for parameter estimation in a SDE as a
conic quadratic program with
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c D �1 0Tm
	T
; x D �t �T 	T ; D1 D

�
0N ; A

	
; d1 D PX; p1 D .1; 0; : : : ; 0/T ;

q1 D 0; D2 D
�
06.N�1/; L

	
; d2 D 0; p1 D 0TmC1; q1 D �

p
M;

m D
2X

pD1
dgp C

2X

rD1
dhr C

2X

sD1
dfs C 3:

In order to state the optimality conditions, we firstly reformulate our problem as

min
t;�

t; (51.24)

such that � WD
�
0N A

1 0Tm

��
t

�

�
C
 
� PX
0

!
;

� WD
�
06.N�1/ L
0 0Tm

��
t

�

�
C
�
06.N�1/p

M

�
:

Here, � 2 LNC1 and � 2 L6.N�1/C1, whereLNC1 andL6.N�1/C1 are the .NC1/-
and .6.N � 1/ C 1/- dimensional ice-cream (or second-order or Lorentz) cones,
given by

L� WD
�
x D .x1; x2; : : : ; x�/T 2 IR�

ˇ̌
ˇx� �

q
x21 C x22 C : : :C x2��1

�
.� � 2/:

Then, we can also write the dual problem to the latter problem as
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1 C
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2 (51.25)
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;

1 2 LNC1; 2 2 L6.N�1/C1:
Moreover, .t; �; �; �; 1; 2/ is the primal-dual optimal solution if the following
constraints are provided in the corresponding ice-cream cones:
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; (51.26)
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;

T1 � D 0; T2 � D 0;
1 2 LNC1; 2 2 L6.N�1/C1;
� 2 LNC1; � 2 L6.N�1/C1:



51 Parameter Estimation in Stochastic Differential Equations 721

Let us note that in the modeling of gene-environment and eco-finance networks, we
received versions of CQP which are not formulated in our discrete (Gaussian) sums
of squares but in the sum of squared uniform (maximal or Chebychev) errors. Such
a kind of problems can be represented as semi-infinite programming (SIP) problems
and, if the sets of inequalities even depend on the state variable, as generalized SIP
problems [48, 49].

51.4.2 On Solution Methods for Conic Quadratic Programming

For solving “well-structured” convex problems like conic quadratic problems but
also linear programs, semidefinite programs and others, there are interior point
methods (IPMs) which were firstly introduced by [21]. IPMs are barrier methods.
Classically, they base on the interior points of the feasible set of the optimization
problem; this set is assumed to be closed and convex. Then, an interior penalty
(barrier) function F.x/ is chosen, well defined (and smooth and strongly convex) in
the interior of the feasible set. This function is “blowing up” as a sequence from the
interior approaches a boundary point of the feasible set [28]. Of great importance
are primal-dual IPMs which refer to the pair of primal and dual variables.

The canonical barrier function for second-order conesL� D
n
x D .x1; x2; : : : ;

x�/
T 2 IR�

ˇ̌
ˇ x� �

q
x21 C x22 C : : :C x2��1

o
.� � 2/ are defined by L�.x/ WD

� ln
�
x2� � x21 � � � � � x2��1

	 D � ln
�
xT J�x

	
, with J� D

��I��1 0
0 1

�
. The

parameter of this barrier is ˛.L�/ D 2. IPMs have the advantage of employing
the global structure of the problem, of allowing better complexity bounds and
exhibiting a much better practical performance. For closer details we refer to
[27, 28].

51.4.3 On the Selection of Penalty Parameters
and Upper Bounds

The choice of the penalty parameters in the penalized sum of squares (PRSS) and
of the parametrical upper bound in a contraint of the conic quadratic problem is not
a deterministic issue. The easiest case of minimizing PRSS is given by Tikhonov
regularization, where we just have one penalty parameter and the integral terms
discretized already; let us refer to that case in the sequel. As indicated above, the
two parameters, related with our two approaches, can be chosen in some dependence
and compatibility (equivalence) [2].

However, we prefer to draw and look at the so-called efficiency frontier
(or efficiency curve) which is given by plotting the optimal solutions according
to a larger (finite) number or parameter values, as points in the coordinate scheme
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with two axes where at one axis the complexity is denoted, whereas the other axis
represents the length of the residual vector. We emphasize that each of these points
is efficient. In case of Tikhonov regularization, logarithmical scales are employed
such that some “kink” kind of a point on the efficiency boundary, called L-curve
according to its more pronounced shape now, is caused; this point is considered to
be closest to the origin and, together with the corresponding penalty parameter, it is
often chosen [2].

For our approach with conic quadratic programming, in [20, 51], a lot of numer-
ical experience is presented, related with varying upper bounds. In fact, numerous
computations and efficiency frontiers are presented there, and many comparisons
are made among alternative solutions gained by our approach, and with other meth-
ods from statistics and statistical learning. Until now, we employed the program
packages of MOSEK, Salford MARS and special codes written in MATLAB. With
our colleagues we are working on further improvements, e.g., in the selection of
the knots of the splines via a preprocessing by clustering and in the selection (and
reduction) of input features.

Those studies on credit default and quality management show that our math-
ematical approach is quite competitive and that it looks promising for the future
use indeed, e.g., when becoming applied to real-world financial data from stock
markets, but also from insurance companies. In fact, while for the stock exchange,
SDEs and portfolio optimization are an important tool since about 30 years and in
a process of continuous scientific advance, also in the actuarial sector, SDEs and
portfolios are becoming more and more important in these years. Let us not forget
about the emerging markets on, e.g., carbon trade, and the fast growing wide field
of risk management. We further underline that our studies on quality analysis and
control can also be applied to the products of the financial and related sectors, as
actually rediscovered and recommended in these days of the financial crises of the
years 2008–2009.

These possible applications will benefit from that we also consider nonlinear-
ities in our parametrical dependencies. We approach the problem in a stepwise
orientation to overcome nonlinearity which will be the subject of the next section.

51.5 On Nonlinear Dependence on Parameters
and their Estimation

Let us return to (51.2) again, with two ways of generalization. (a) The model
functions a.�/ and b.�/ may not only depend on the parameters which appear as
coefficients in the linear combination with base splines, but also on really prob-
abilistic (stochastic) parameters. (b) Differently from the earlier linear dependence
on the parameters, the dependence on the newly considered parameters may be non-
linear. In that case, we should use any nonlinear parameter estimation methods like,
e.g., Gauss–Newton’s method or Levenberg–Marquardt’s method [26].
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Let us look at (a), for example, we consider following the SDE, Black–Scholes
model with initial value:

(
dXt D �Xt dt C 
Xt dWt ;

X.0/ D x0;

where Xt D X.t/ denotes the (random) price of a stock at time t � 0, and � > 0

and 
 are parameters called the drift and volatility of the stock and x0 is the starting
price, respectively. Then, referring to the finitely many sample (data) points

�
X� ; t�

	

. D 1; 2; : : : ; N / we obtain the Milstein scheme as

PX� D �X� C 
X��W�
h�
C 1

2

2
�
P 0P

	 �
t�
	
 
.�W�/

2

h�
� 1

!
D g �X� ; �; 


	
:

To determine the unknown values .�; 
/, we consider following optimization
problem:

min
ˇ
f .ˇ/ WD

NX

�D1


 PX� � g
�
X� ; �; 


	�2 D
NX

�D1
f 2� .ˇ/

 
or
1

2

NX

�D1
f 2� .ˇ/

!
:

(51.27)

Here, � D .�; 
/T , P.X/ WD X , hence P 0
�
t�
	 WD 0 (since P does not depend

on t), and the objective function f .�/ of parameter estimation is defined linearly
in auxiliary functions fj squared .j D 1; 2; : : : ; N /. This problem representation

holds true also if the quadratic term 1=2
2.P 0P/
�
t�
	 �
.�W�/

2 =h� � 1
	2

would
not vanish and in many further examples where (b) the parametric dependence may
be nonlinear indeed.

Nonlinear parametric dependence can occur by the composition of stochastic
processes. For example, in financial modelling of the dynamics of wealth from time
t to t C dt or maturity time T , Vt , may be given by

(
dVt D

��
$T
t .� � re/C r

	
Vt
	

dt � ct dt C$T
t 
Vt dWt ;

V0 D �0;

where $t is the fraction of wealth invested in the risky asset at time t and ct is
the consumption at time t . We can easily identify both a .t; Vt ; ct ;$t I r; �/ WD�
$T
t .� � re/C r

	
Vt � ct and b .t; Vt ;$t I 
/ WD $T

t 
Vt . Here, r is the short-
term interest rate, � denotes the vector of expected rates of return, e is the vector
consisting of ones, 
 stands for the volatility matrix of the risky assets. The entire
parameter � WD .r; �; 
/T (arranged as a column vector) is assumed to be con-
stant through time [1]. Finally,W is a Wiener process with the property that dWt is
N.0; dt/ distributed. While the dependence of the right-hand side of the stochastic
differential equation on � is linear, nonlinear parametric dependencies can occur via
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the insertion of the processes ct and$t in a and b, but also if r becomes a stochastic
process rt , e.g., in the following way. Namely, as a direct example of nonlinearity,
the stochastic interest rate rt for each � 2 IR may be given by

drt D ˛ � .R � rt / dt C 
t � r�t dWt ;

where 
t and Wt are volatility and a Brownian motion, respectively Here, ˛ is a
positive constant, and the drift term ˛ � .R � rt / is positive for R > rt and negative
for R < rt [38]. We denote a .t; rt IR/ WD ˛ � .R � rt / and b .t; rt ; 
t I �/ WD 
t r

�
t .

This process on the interest rate can be attached to a price or wealth process. By this
interest rate processes and the composition of stochastic processes, further parame-
ters such as .R; �/, can implicitly and in a partially nonlinear way enter the interest
rate dynamics rt and processes beyond of that dynamics. After these first examples,
we shall return to further examples and explanations in Sect. 51.6.

In fact, the financial sector with the modeling and prediction of stock prices and
interest rate are the most prominent application areas here. Moreover, mixed linear-
nonlinear dependencies on the parameters may be possible due to the linearly and
the nonlinearly involved parameters of various kinds. This optimization problem
(51.27) means a nonlinear least-squares estimation (or nonlinear regression). In the
context of data fitting, each of the functions fj corresponds to a residual in our
discrete approximation problem which may arise in a mathematical modelling or in
an inverse problem. Let us represent basic ideas of nonlinear regression theory with
the help of [26].

Now, (51.27) can be represented in vector notation:

min
�
f .�/ WD 1

2
F T .�/F.�/; (51.28)

where F is the vector-valued function F.�/ WD .f1.�/; : : : ; fN .�//
T .� 2 IRp/

and where the factor 1=2 serves for a convenient normalization of the derivatives. In
fact, by the chain rule we obtain

rf .�/ WD rF.�/F.�/; (51.29)

where rf .�/ is an .p �N/-matrix-valued function. By row-wise differentiation of
rf .�/ and using this gradient representation, we obtain the Hessian matrix of f :

r2f .�/ WD rF.�/rF T .�/C
NX

jD1
fj .�/r2fj .�/: (51.30)

Let �� be a solution of (51.27) and suppose f .��/ D 0. Then, fj .��/ D 0

.i D 1; 2; : : : ; N /, i.e., all the residuals rj vanish and the model fits the data
without error. As a result, F .��/ D 0 and, by (51.29), rf .��/ D 0, which
just confirms our first-order necessary optimality condition. Furthermore, we can
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obtain the Hessian of f being r2f .��/ D rF .��/rF T .��/, which is a
positive semi-definite matrix, just as we expected by our second-order neces-
sary optimality condition. In case where rF T .��/ is a matrix of full rank, i.e.,
rank

�rF T .��/	 D p, then rf 2 .��/ is positive definite, i.e., second-order neces-
sary optimality condition is provided such that �� is also a strict local minimizer.

From this basic idea, a number of specialized nonlinear least-squares methods
come from. The simplest of this methods, called Gauss–Newton uses this approxi-
mative description in an indirect way. It makes a replacement of the Hessian in the
formula

r2f .�/ q D �rf .�/; (51.31)

such that we have relation

rF.�/rF T .�/ q D �rF.�/F.�/; (51.32)

where q is Gauss–Newton increment q D �1 � �0. If F .��/ � 0 and rank
.rF .��// D p.� N/, then, near to a solution ��, Gauss–Newton behaves like
Newton’s method. However, we need not pay the computational cost of calculat-
ing second derivatives. Gauss–Newton’s method sometimes behaves poor if there
is one or a number of outliers, i.e., if the model does not fit the data well, or if
rank .rF .��// is not of full rank p. In these cases, there is a poor approximation
of the Hessian.

Many other nonlinear least-squares methods can be interpreted as using an
approximation of the second additive form in the formula for the Hessian i.e., of

NX

jD1
fj .�/r2fj .�/: (51.33)

Levenberg–Marquardt’s method uses the simplest of these approximation:

NX

jD1
fj .�/r2fj .�/ � �Ip ; (51.34)

with some scalar � � 0. This approximation yields the following linear system:



rF.�/rTF.�/C �Ip

�
q D �rF.�/F.�/: (51.35)

Often, ones can find Levenberg–Marquardt method implemented in the context of
a trustregion algorithm. There, q is obtained, e.g., by minimizing a quadratic model
of the objective function with Gauss–Newton approximation of the Hessian:

(
min
q
Q.q/ WD f .�/C qTrF.�/F.�/C 1=2qTrF.�/rTF.�/q

subject to kqk2 � �:
(51.36)
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Here, � is indirectly determined by picking a value of�. The scalar� can be chosen
based on the effectiveness of the Gauss–Newton method.

Levenberg–Marquardt method can be interpreted as a mixture between Gauss–
Newton method (if � � 0) and steepest-descent method (if � is very large) [2, 26].
An adaptive and sequential way of choosing � and, by this, of the adjustment of
mixture between the methods of Gauss–Newton and steepest-descent, is presented
in [26]. We note that the term “Ip” can also be regarded as a regularization term that
shifts the eigenvalues of rF.�/rTF.�/ away from 0.

Another way to solve the system (51.35) for given � D �k , i.e., to find the
.k C 1/-st iterate q D qk , consists in an application of least-squares estimation.
If we denote (51.35) by Gq D d , where G D rF.�/rTF.�/ C �Ip and
d D �rF.�/F.�/, then we can study the regularized problem by adding to the
squared residual norm kGq � dk22 a penalty or regularization term of the form
ı2 kLqk22, i.e.,

min
q

���


rF.�/rTF.�/C �IN

�
q � .�rF.�/F.�//

���
2

2
C ı2 kLqk22 ; (51.37)

where L may be the unit matrix, but it can also represent a discrete differentiation
of first or second order. This regularization serves to diminish the complexity of
the model. We recall [2] for closer explanation about this Tikhonov regularization.
But instead of the penalization approach, we can again bound the regularization
term kLqk22 by an inequality constraint. What is more, we can turn the optimization
problem to a CQP problem in order to find the step qk and, herewith, the next iterate
�kC1 WD �k C qk . By this conic quadratic modelling and solution technique we
are back in the methodology that we presented in Sect. 51.4. Indeed, with a suitable
and maybe adaptive choice of an upper bound M1 [19, 39, 41] we can write our
problem as

min
q

���


rF.�/rTF.�/C �IN

�
q � .�rF.�/F.�//

���
2

2
; (51.38)

subject to kLqk22 �M1;

or we can write an equivalent problem as follows:

min
t;q

t;

subject to
���


rF.�/rTF.�/C �Ip

�
q � .�rF.�/F.�//

���
2

2
� t2;

t � 0; kLqk22 �M1:

If we consider the general problem form [27]

min
x
cT x; subject to kDix � dik2 � pTi x � qi .i D 1; 2; : : : ; k/;
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we can identify our optimization problem for determining step length q as a conic
quadratic program again, namely, with

c D


1 0Tp

�T
; x D



t; qT

�T
;D1 D

�
0A; A

	T
; d1 D �rF.ˇ/F.ˇ/;

p1 D .1; 0; : : : ; 0/T ; q1 D 0;D2 D
�
0p; Lp	p

	T
; d2 D 0p; p2 D 0pC1 and

q2 D �
p
M1:

As announced earlier, we are now giving further examples of SDE by different
classes of interest rate models.

51.6 Continuous Time One-Factor Interest Rate Models

Various stochastic differential equations used to model a short term interest rate can
be depicted in the following general form:

drt D .˛ C ˇrt / dt C 
r�t dWt ; (51.39)

where rt .D r.t// is a real continuous time process for an interest rate, and ˛; ˇ; 

and � are the unknown parameters to be estimated. Some of the models of this form
can be summarized as in Table 51.2.

Nowman assumes as an approximation to the true underlying model given
by (51.39) that over the interval Œ0; T �, r.t/ satisfies the stochastic differential
equation [50]

drt D .˛ C ˇr.t// dt C 
 �r �t 0 � 1		� dWt ; (51.40)

where t 0 � 1 is the largest integer less than t (i.e., t 0 is the smallest integer greater
than or equal to t). He also assumes that, in (51.40), the volatility of the interest rate
changes at the beginning of the unit observation period and then remains constant.

Table 51.2 Nonlinear one-factor interest rate models [31]
Merton (1973) [25] drt D ˛ dt C 
 dWt

Vasicek (1977) [46] drt D .˛C ˇrt / dt C 
 dWt

Cox, Ingersoll and Ross (1985) [13] drt D .˛C ˇrt / dt C 
r1=2t dWt

Dothan (1978) [14] drt D 
rt dWt

Black–Scholes model drt D ˇrt dt C 
rt dWt

Brennan and Schwartz (1980) [8] drt D .˛C ˇrt / dt C 
rt dWt

Cox, Ingersoll and Ross (1980) [12] drt D 
r
3=2
t dWt

Constant Elasticity of Variance drt D ˇrt dt C 
r�t dWt
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This is an improvement of Bergstrom’s results [3–5], where he assumes that the
conditional second moment is constant over time.

Then, (51.40) has the following stochastic integral representation [50]:

r.t/� t �t 0 � 1	 D
Z t

t 0�1
.˛ C ˇr.s// ds (51.41)

C 
 �r �t 0 � 1		�
Z t

t 0�1
dW.s/

for all t 2 �t 0 � 1; t 0� ;

where
R t
t 0�1 dW.s/ D W Œt 0 � 1; t 0� WD W.t/�W .t 0 � 1/. Following [4], Nowman

[31] is able to write the discrete version of (51.41) as

r.t/ D eˇ r.t � 1/C ˛

ˇ



eˇ � 1

�
C �t ; (51.42)

where the noise term �t .t D 1; 2; : : : ; T / satisfies the following moment conditions

E Œ�s ; �t � D 0 for s ¤ t;

E
�
�2t
� D

Z t

t�1
e2.s��/ˇ
2 .r.s � 1//2� ds

D 
2

2ˇ



e2ˇ � 1

�
.r.t � 1//2� D m2t t :

We conclude the excursion of this section by noting that maximum-likelihood
(ML) kind of optimization problem on parameter estimation is to maximize the
log-likelihood function, which looks as follows:

min
˛;ˇ;;�

L.˛; ˇ; 
; �/ WD
TX

tD1

�
2 log .mt t /C



r.t/ � eˇ r.t � 1/

� ˛
ˇ



eˇ � 1

� �2
=m2t t

�

and by recommending the methods presented in our paper for possible application
on the great variety of SDEs, independently of any such a special form of ML func-
tion – to those mentioned in this section, and much beyond. The study on prediction
of credit-default risk [20] already showed the value of our additive model approach.
Indeed, further combined applications on real-world data from areas of finance,
science and technology may be expected, where our contribution can be utilized.
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51.7 Further Nonparametric Methods

The latest work implementing nonparametric approach in estimating the structural
parameter of SDE was done in [45]. In [45], an Approximate Maximum Likelihood
Estimation (AMLE) is developed for estimating the states and parameters of models
described by stochastic differential equations (SDE). Using the initial estimate of
Q –the process disturbance intensity and assuming that the 
2-measurement-noise

variance is known– the estimate of

 O�; Ǒ

�
D arg min

.�;ˇ/
T in the first step, where

T D .ym � xBm/T .ym � xBm/
2
2m

C 1

2Q

Z tq

t0

. PxB .t/ � f .x.t/; u.t/; �//2 dt

(51.43)
is the negative natural logarithm of the probability density function.

Here, ym is the vector of outputs at observation times, xBm is B-spline expan-
sion of the input variable, PxB is the differentiation of the B-spline expansion,
f .x.t/; u.t/; �/ is the nonlinear function of the state variable, O� is the estimated
model parameter and Ǒ are the spline coefficients. Later, evaluate O
2m using xBm in
the second step and obtain a new estimate of Q in the final step.

The two step method in estimating the structural parameter of the ordinary differ-
ential equation (ODE) is initiated in [44]. It fits the observed data with cubic spline
functions in the first step and estimates the parameters in a second step by finding
the least squares solution of the differential equation sampled at a set of points.

In [37] it is considered a two-step approach in a functional data analysis (FDA)
framework. It is based on the transformation of data into functions with smooth-
ing cubic splines. The paper [35] proposes principal differential analysis (PDA) and
using the basis function such as B-splines to estimate the parameters of ODE. The
extension of PDA is done by applying it to nonlinear ODE and the iterated PDA
(iPDA), thus repeating the two-steps method in [34]. The iPDA has been extended
with the introduction of generalized smoothing approach [36] where the smoothing
and estimation of ODE parameters are done simultaneously. The paper [36] pro-
poses a generalized profiling procedure which is a variant of the collocation method
based on basis function expansion in the form of a penalized log-likelihood criterion

J.c j �; 
; �/ D �
X

i2I
ln .g .ei ; �; �//C PEN . Ox j �/ (51.44)

or the least squares criterion

J.c j �; 
; �/ D �
X

i2I
wi kyi � Oxi .t/k2 C PEN . Ox j �/ : (51.45)

Here, the first term at the RHS of (51.45) is the data fitting criteria and the
second term is the equation fidelity criteria with PEN . Ox j �/ D R Li;� . Oxi .t//2 dt ,
Li;� .xi / D Oxi � fi . Ox; �; t j �/, Oxi is the spline function, fi is the model function



730 G.-W. Weber et al.

of the corresponding ODE. The method is applied using noisy measurements on a
subset of variables to estimate the parameters defining a system of nonlinear dif-
ferential equations. For simulated data from models in chemical engineering, the
authors derive the point estimates and the confidence interval and show that these
have low bias and good coverage properties. The method has also been applied to
real data from chemistry and from the progress of the autoimmune disease lupus.
Referring to [9,36] proposes a general method of estimating the parameters of ODE
from time series data. Brunel [9] uses the nonparametric estimator of the regression
function as a first step to construct the M-estimator minimizing

R2w.�/ D
��� POx � F .t; Oxn; �/

���
2;w
; (51.46)

where POx is the derivative of the nonparametric estimator of the solution of ODE and
F .t; Oxn; �/ is the ODE. The method is able to alleviate computational difficulties
encountered by the classical parametric method. The authors also show the consis-
tency of the derived estimator O�. In the case of spline estimators the authors prove
the asymptotic normality and the rate of convergence of the parametric estimators.

51.8 Summary on Studies in Research Groups

In the first part of the research we estimated the drift and diffusion parameters of
the stochastic logistic models. The parameters of the drift equation were estimated
via fourth-order Runge–Kutta method for deterministic models. The values of the
parameter with the least MSE is then utilized to estimate the diffusion parameters
in stochastic models employing Milstein discretization. The objective function is
then minimized by Levenberg–Marquardt’s method. This is considered as paramet-
ric method which the result, i.e., the model obtained will be compared with those
obtained via nonparametric methods.

In the second part of the research we want to develop a new criterion based
on the nonparametric approach of a two step method in estimating the drift and
diffusion parameters� and 
 of stochastic models. We have three alternatives, i.e.,
by proposing a totally new criterion for simultaneous estimation of both parameters
[36], partially estimate of the parameters [9] or, lastly, Varziri’s estimation [45] with
some modifications.

Another research in this group is by Norhayati Rosli. Part of her research
involving the comparison of the performance of numerical methods in SDE is
the approximation of the strong solution of SDE. Based on [11] which presented
and analyzed Stochastic Runge–Kutta models (SRK), i.e., 2-stage SRK and 4-stage
SRK, Norhayati compared the performance of 2-stage SRK and Euler–Maruyama
in approximating the strong solutions of the stochastic power law logistic model
in describing the growth of C.Acetobutylicum. The performance of both methods
were compared, based on their global error. Then, she compared the discretization
scheme for delay stochastic differential equations.
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Lastly, we mention the work by Mohd. Khairul Bazli using the stochastic power
law logistic model to describe the growth of C.Acetobutylicum. The model parame-
ters were estimated by using simulated maximum likelihood and the solution to the
power law logistic model was approximated by using Euler–Maruyama.

51.9 Concluding Remarks

Discretization and additive models based on splines which defining a trilevel prob-
lem consisting of an optimization and a representation problem (portfolio optimiza-
tion), and a parameter estimation, are a key approach to approximate stochastic
differential equations. Furthermore, continuous optimization techniques make it
possible to use highly efficient IPMs.

This paper gave a new contribution to problems related with SDEs using regres-
sion under an additive or a nonlinear model, as a preparatory step on the way of
organizing assets in terms of portfolios. Indeed, we explained the relations to port-
folio optimization, especially, to the martingale method. We made modern methods
of inverse problems and continuous optimization, especially, CQP and methods
from nonlinear regression, accessible and usable. By this, a bridge has been offered
between statistical learning and data mining on the one hand, and the powerful tools
prepared for well-structured convex optimization problems [7,27], and Newton- and
steepest-descent type regression methods [2, 26] on the other hand.

We hope that future research, theoretical and applied achievements on this
fruitful interface will be stimulated by our paper.

Acknowledgements The authors express their gratitude to Professor Alberto Pinto for his invita-
tion to prepare this chapter in a book in honour of Prof. Dr. Mauricio Peixoto and Prof. Dr. David
Rand.
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Chapter 52
Stochastic Saddle Paths and Economic Theory

A.N. Yannacopoulos

Abstract Stochastic saddle paths appear in a number of important applications
in economic theory, the most prominent of which are economic control theory
and rational expectations theory. We provide a formulation of stochastic saddle
paths in terms of forward backward stochastic differential equations and through
this establish the existence and persistence of saddle paths under the influence of
noise, provide qualitative results on the form and structure of the stable saddle
path, approximation schemes as well as controllability related results. The gen-
eral framework is illustrated by examples from economic theory and economic
policy.

52.1 Introduction

Saddle points and saddle paths are extremely important concepts for the modern the-
ory of dynamical systems as has been shown in the pioneering works of M. Peixoto
[15] and their existence and properties provide interesting qualitative information
such as for instance structural stability, occurence of erratic quasi-random behaviour
(called chaos) [5] etc. Apart from their importance in theoretical studies they play an
important role in applications either in the physical sciences or in economics. From
the late 1970s it has been made clear by applied mathematicians such as D. Rand
[17] that even simple economic dynamical systems like simple oligopoly models
may exhibit highly nontrivial dynamic behaviour. Observations of this type triggered
the study of economic systems using the tools of modern dynamical systems theory,
in which saddles have a prominent role, and has led to interesting developments in
the field (see e.g. [4]).
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The aim of the present work is to show a connection of saddle paths with a
general class of models in economic theory which incorporate the effect of future
expectations on the actions of economic agents today. Such models are very popular
in economic theory; as an example one may take rational expectations models which
form the basis of modern macroeconomic theory. The effect of expectations con-
cerning future states in economics has been recognised early in its history and their
prominent role in the determination of the current state makes economics distinct
from the natural sciences. Most of the models currently used in the macroeconomic
literature have a general form that consists of two sets of variables, a set of vari-
ables what is called fundamentals of the economy and a set of variables that is
called assets; denoted in this paper by x and y respectively. The current value of the
assets depends on the expectations of the future values of the fundamentals and then
through a feedback mechanism consistent with the adopted framework of economic
theory, this also has an effect on the current value of the fundamentals themselves.
It is desirable, that the structure of the model is such that this feedback mechanism
in the long run drives the system to a desired state, the equilibrium state. This is
usually the state where the economy functions in the “optimal” way according to
the criteria set by the policy makers.

The general mathematical structure of such models, at least in the absence of
uncertainty (total forthsight models) usually have a saddle point structure in the
appropriate phase space, and the stable saddle path usually corresponds to the path
the will lead the economy in the long run to the desired equilibrium state. The deter-
mination of this stable saddle path in very important as far as economic policy
making is concerned and in many models a passive control rule which is usually
expressed as a relationship between different variables of the model is needed to
guarantee the existence of such a stable saddlepath. For instance, the Taylor rule
used by central banks for the determination of the interest rate in nothing else but
such an attempt to endow the commonly accepted dynamic model for the evolution
of the state of the system with such a stable saddle path [18].

While, many of the economic models incorporate the effects of uncertainty, the
situation becomes less clear from the dynamical systems point of view when this
is done, as the concept of phase space and many of the geometric and topological
arguments used to understand the dynamics in deterministic systems, are no longer
readily applicable. To provide a link with the theory of dynamics as understood
by the dynamical systems community with the problem at hand we thus propose
an alternative formulation of stochastic economies with expectations feedback, in
terms of the concept of forward backward stochastic differential equations (FBS-
DEs). We show that this alternative formulation allows us to redefine within the
stochastic framework many of the desired features of such a model, thus provid-
ing us with existence results for the stochastic analogue of the stable saddle paths,
information concerning their qualitative properties, uniqueness as well as approxi-
mation schemes and control procedures for design of policy to drive the system to
a desired state. The general framework is illustrated using examples from economic
theory.
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52.2 Stochastic Saddle Paths in Continuous Time
and Their Connection with FBSDEs

Miller and Weller [11] introduced a linear model that incorporates the effects of
expectations of future states in the process of equilibration of a stochastic economy.
The model has the basic structure of a rational expectations model, in which future
expectations are costantly updated using a common information set available to all
agents, in such a way as to direct the economy in the long run to a desired state. The
deterministic analogue of the model has the familiar saddle point structure common
to many “near equilibrium” models in economic theory.

The nonlinear generalization of the Miller and Weller model can be formulated
as follows

dx.t/ D b.t; x.t/; y.t//dt C 
.t; x.t/; y.t//dW.t/ (52.1)

y.t/ D E
�Z 1

t

g.s; x.s/; y.s//e�
R s

t ı.r;x.r/;y.r// dr ds j Ft



where x 2 Rn, y 2 Rm, W.t/ is an s�dimensional Wiener process assumed as a
model of the stochastic factors driving the economy, and Ft D 
.Ws ; s � t/.

We assume without loss of generality that the desired equilibrium state of the
economy is x� D y� D 0. The functions b.t; x; y/ W RC �Rn �Rm ! Rn, g.x/ W
Rn ! Rm are nonlinear functions. In the special case n D m D 1, b.t; x; y/ D
˛x C ˇy, g.x/ D ��x we retrieve the linear model of Miller and Weller [11]. The
introduction of the nonlinear function g.x/ in the conditional expectation describing
the asset dynamics models some saturation effects. The value of the asset is some
rational expectation of the deviation of the fundamental from equilibrium but its
value may not keep on growing unboundedly as the deviation of the fundamental
from equilibrium grows. The above arguments can be formalized by imposing the
following standing assumptions on the functions b.t; x; y/, g.t; x; y/, ı.t; x; y/:

1. b.t; x; y/ is globally Lipschitz continuous in .t; x; y/ and bounded
2. g.x/ is Lipschitz continuous and bounded
3. ı � C > 0

One of the major problems when introducing stochastic effects in the model is to
define properly the concept of the saddle path. This can be achieved by adopting the
proper functional setup for the problem. We define the Banach space

MX WD fr.�/ j stochastic processes with values inX

s.t.E

�Z 1

0

jj r.s/ jj2X ds


<1

�
:

In our case X is a finite dimensional space (either Rn, Rm or Rm	s). We will
therefore define a saddle path as follows
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Definition 52.1. A stable saddle path for system (52.1) is a stochastic process
.x.�/; y.�// 2MX �MY , for X D Rn, Y D Rm, that satisfies (52.1).

This choice of functional setup guarantees that the state of the system approaches
the desired equilibrium state x� D 0, y� D 0 asymptotically in time.

We now present a convenient reformulation of the problem in terms of infinite
horizon FBSDEs.

Proposition 52.1. The Miller and Weller model (52.1) is equivalent to the infinite
horizon FBSDE

dx.t/ D b.t; x.t/; y.t//dt C 
.t; x.t/; y.t//dW.t/
dy.t/ D .�g.t; x.t/; y.t// C ı.t; x.t/; y.t// y.t//dt � .z.t/; dW.t// (52.2)

x0 D x; .x.�/; y.�/; z.�// 2MX �MY �MZ

with X D Rn, Y D Rm, Z D Rm	s , where z.�/ is an Ft -adapted stochastic
process which is to be determined.

Proof. The proof uses technical tools from stochastic analysis and in particular
the martingale representation theorem. We refrain from providing a complete proof
which essentially follows the lines of [20]. ut

Note that there is only an initial condition for xt but a condition at infinity for yt .
This turns (52.2) into a stochastic boundary value problems where the fundamentals
play the role of the forward variable and the assets play the role of the backward vari-
able. The reformulation of the stochastic saddlepath problem as an infinite horizon
FBSDE provides us with a great arsenal of technical tools from stochastic analysis
by which we may study the several well-posedeness problems as well as qualitative
problems that arise in economic modelling.

52.3 FBSDEs: A Brief Survey

The theory of FBSDEs is a relatively new and exciting field in the theory of stochas-
tic differential equations. An FBSDE is essentially a stochastic boundary value
problem for the evolution of a stochastic process .x.t/; y.t//, the x component
of which is defined by its initial condition, whereas the y component of which is
defined through a final condition. In other words a general FBSDE is a system of
the form

dx.t/ D b.t; x.t/; y.t/; z.t// dt C 
.t; x.t/; y.t/; z.t// dW.t/
dy.t/ D h.t; x.t/; y.t/; z.t// dt � z.t/ dW.t/

x.0/ D x; y.T / D g.x.T //

for some prescribed function g.x/. Eventhough there are only two sets of evolution
equations (one for the forward variable x and one for the backward variable y) there
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are three unknown processes .x.�/; y.�/; z.�// where z.�/ is an auxilliary unknown
process whose role is absolutely essential in guaranteeing that the solution of the
system is adapted i.e. x.t/; y.t/ are measurable with respect to the filtration gen-
erated by the Wiener process. This condition essentially guarantees that one may
completely determine the possible values of the random variables x.t/; y.t/ by hav-
ing access only to the history of the economy up to time t . That this condition is not
trivially satisfied for stochastic boundary value problems can be seen quite easily
by taking the simple form of backward equation dy.t/ D 0, with final condition
y.T / D � where � is a FT measurable random variable. Our immediate candidate
for a solution y.t/ D � for all t , while satisfying the equation and the boundary con-
dition fails to satisfy the adaptability property, and this leads to the need for proper
reinterpretation of the equation as a BSDE (see e.g. [21]).

FBSDEs find many applications in a number of fields. They arise quite natu-
rally in stochastic control theory, where the forward part is considered as the state
equation, while the backward part is considered as the adjoint equation in the gen-
eralization of the Pontryagin maximum principle [21]. In this setting the optimal
control is constructed in terms of .y.�/; z.�//, therefore the third process z.�/ has a
natural interpretation. Equations of this form arise also in a number of problems in
mathematical finance as well as in mathematical economics [3]. For instance the
hedging problem for contingent claims [3,21], the problem of market completeness
[21], the famous Black consol rate conjecture [9], portfolio optimization problems
(see e.g. [21] and references therein), rational expectations models [20] and many
others can be written in terms of an equivalent FBSDE.

The solvability of stochastic boundary value problems of this type has been
studied by a number of authors, starting with the pioneering works of Bensous-
san and Pardoux and Peng (see e.g. [13]). The basic strands in the literature either
employ constructive methods using auxiliary deterministic quasilinear parabolic
PDEs within the four step scheme (see e.g. [9]) to decouple the forward equation
from the backward by the construction of a mapping f such that y.t/ D f .t; x.t//,
or purely probabilistic arguments that are based on fixed point schemes whose limit
is the desired triple of processes .x.�/; y.�/; z.�// (see e.g. [14,16]). The convergence
of such schemes is guaranteed by monotonicity properties of the functions b; 
; ı; g
some of which may be quite general.

52.4 Results Concerning the Infinite Horizon Model

52.4.1 Existence of Saddle Path Solutions

An important first question concerning the equivalent infinite horizon FBSDE form
for the rational expectations model (52.1) is its well posedness. By answering
the question of solvability in the affirmative, we guarantee the existence of paths
that may lead the economy to the desired equilibrium state asymptotically in time
(t !1). This information is extremely important for an economic model which
may be used for policy making.
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The following existence result settles this problem.

Proposition 52.2. Under the stated assumptions on the functions b; 
; ı; g, linear
growth conditions on b and g and for large enough values of the lower bound C of
the discount factor ı there exists a stable saddle path for model (52.1).

Proof. We only sketch the proof here which follows [6] with the necessary modifi-
cations. The proof utilizes the fixed point scheme u.1/.t; x/ D 0, u.n/.t; x/ D y

.n/
t

where

dx.n/.s/ D b.s; x.n/.s/; u.n/.s; x.n/.s// ds C 
.s; x.n/.s/; u.n/.s; x.n/.s/// dW.s/
dy.nC1/.s/ D .ı.s; x.n/.s/; u.n/.s; x.n/.s//y.nC1/.s/ � g.s; x.n/.s/; un.s; x.n/.s/// ds

�z.nC1/.s/ dW.s/

with initial condition x.n/.t/ D x and s 2 Œt;1/. This scheme essentially decou-
ples the forward with the backward equation in each step, and expresses ys at step
n C 1 with a function u.n/.t; x/ calculated at x D x.n/.t/. Furthermore, the back-
ward equation at each step is a linear equation, and the condition the ı is bounded
below by a positive number, guarantees that its solution is well behaved for all t .
Using Gronwall type inequalities and estimates for the forward equation one may
prove the uniform continuity in x of the sequence u.n/.t; x/ and then the uniform
convergence of this sequence on RC �Rn, which in turn implies that the sequences
of stochastic processes x.n/.�/, y.nC1/.�/ D u.nC1/.�; x.n/.�//; z.n/.�/ converge in
MX �MY �MZ and the limit is the solution of the infinite horizon FBSDE. ut
An alternative proof was given in [20], for the case where ı.t; x; y/ D ı,
g.t; x; y/ D g.x/, b.t; x; y/ D b.x; y/, 
.t; x; y/ D 
.x; y/ where the four
step scheme [9] was used to obtain a particular class of solutions to this prob-
lem, called nodal or Markovian solutions. The solutions of this type as such that
y.t/ D f .x.t// for some deterministic function f , which is C 2. This function
f can be considered as a parametrization of the stable manifold of the stochastic
saddle path. Applying Itô’s rule on the function f and matching resulting form for
the evolution equation for y.t/ with the FBSDE we see that the function f must
satisfy a system of quasilinear elliptic PDEs of the general form

Li .x; f /fi D �gi .x/C ıfi .x/; i D 1; � � � ; m; x 2 Rn (52.3)

where we consider g D .g1; � � � ; gm/ 2 Rm and and Li .x; f / is the quasilinear
elliptic operator

Li .x; f / D
nX

jD1
bj .x; f .x//

@fi

@xj
C 1

2

nX

jD1

nX

kD1
.
.x; f .x//
.x; f .x//T /jk

@2fi

@xj @xk

Therefore, the existence of the solution to (52.1) may be reduced to the existence of
solutions for a quasilinear deterministic equation and the to the solvability for the
forward SDE
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dx.t/ D b.x.t/; f .x.t/// dt C 
.x.t/; f .x.t/// dW.t/

where of course suitable conditions on b; 
 must be imposed so that the solution to
the forward problem is in MX . For details on this approach see [20]. One may con-
sider the quasilinear deterministic (52.3) as the stochastic analogue of the functional
equation which is used in deterministic dynamical systems for the construction of
the stable manifold.

For the case of linear problems, a more direct approach can be adopted that
uses the construction of the stable manifold through the use of the Ricatti equa-
tion. According to this approach one may look for solutions using the special ansatz
y.t/ D �.t/ x.t/ C  .t/, where �.t/ and  .t/ are functions to be determined.
Applying Itô’s lemma on this ansatz and substituting into the equations one obtains
that �.t/ satisfies a Ricatti type equation. Using the resulting Ricatti equation as
well as stability results for linear forward SDEs existence results for the stable sad-
dle paths for linear models can be obtained. Here we state for simplicity the results
for the case n D m D 1.

Proposition 52.3. Consider the linear two dimensional infinite horizon FBSDE

dxt D .˛xt C ˇyt /dt C .
1xt C 
2yt /dWt
dyt D .�xt C ıyt /dt C ztdWt

Let the following two assumptions hold

1. The deterministic system has a saddle point structure with two real eigenvalues,
ordered as follows �2 < 0 < �1.

2. The noise coefficients satisfy

�

1 � 
2

�2

�2
<j �2 j; �2 D .ı � ˛/Cp.˛ � ı/2 C 4ˇ�

2�

Then the stochastic system has a unique stable saddle path.

52.4.2 Qualitative Properties of Saddle Path Solutions

Another important class of questions is the related to the qualitative properties of
the saddle path solutions. Such properties may help in the construction of economic
policy etc. We state such a result for the particular case where n D 1.

Proposition 52.4. Assume that g.x/ is strictly increasing (decreasing). Then the
representing function f is strictly increasing (decreasing).

The monotonicity result proved in Proposition 52.4 may be used for obtaining
information for the location of the stochastic analogue of the stable manifold in the
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nonlinear case. In the case of g.x/ strictly increasing we see by the above propo-
sition that we expect the stable manifold to lie in the first and third quarterplanes
where as in the case of g.x/ strictly decreasing we expect the stable manifold to
lie in the second and fourth quarterplanes. Similar results, however without such
explicit geometric interpretations, may be obtained for the case of higher dimensions
using natural monotonicity results.

Such qualitative results can be of interest when one wants to gain some insight
concerning the basic properties of the stable saddle path, such as the general region
in phase space where this is likely to be situated etc.

52.5 Approximation and Construction of Saddle Paths

In many cases one is not interested in the infinite horizon stochastic saddle path
model (52.1) but rather in its solutions in finite horizon Œ0; T � with boundary
conditions .X.T /; Y.T // such that

j X.T / j< �; j Y.T / j< �;

for T arbitrary and possibly large. Such solutions can be considered as approxi-
mate saddle paths, which get close to equilibrium at T . While the problem of the
asymptotic behaviour of the system which is equivalent to the existence of the stable
saddlepath is very important from the dynamical systems point of view, in a number
of applications the finite time behaviour of the system is more important than its
asymptotic behaviour. One may not have the patience to wait an infinite time until
the economy reaches the desired equilibrium state; as John Maynard Keynes has
witfully stated we do not always have the luxury of being interested in the long run
in the real world.

One way towards the construction of such solutions may be obtained through
a stochastic generalization of a shooting method (stochastic control problem).
Consider the forward stochastic control problem

dx.t/ D b.t; x.t/; y.t//dt C 
.t; x.t/; y.t//dW.t/
dy.t/ D .�g.t; x.t/; y.t//C ıy.t//dt � .z.t/; dW.t// (52.4)

x.0/ D x; y.0/ D y

where z.t/ is now considered as a control process, chosen so as to drive the system
to the desired final state. Define the cost functional

J.s; x; yI z.t// WD EŒ�.X.T /; Y.T //�

where �.x; y/ is a uniformly Lipschitz continuous function such that �.x; y/ � 0
for all .x; y/ 2 Rn � Rm and �.x; y/ D 0 if and only if x D y D 0. One
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may consider the function � as an alternative to using the norm of the difference.
Note that this problem is stated as a controllability problem rather than as a control
problem, in the sense that the cost functional only involves x.T /; y.T / and not z.�/.
In this sense, we are not imposing any restrictions on the process z.�/ which can
be arbitrary as long as it leads the system to the desired state. This is allowed here
as z.�/ is considered as an auxiliary process, introduced so as to give a differential
equation format to the integral equation (52.1). We will return to the problem of
control (as opposed to controllability) in Sect. 52.8.

Using techniques for the theory of controlled forward stochastic differential
equations we may thus consider the problem of approximate solvability of an
FBSDE (see [10]) and reinterpret these approximate solutions properly as paths that
approach the equilibrium point close enough for finite time horizon T .

Proposition 52.5. Let b.t; x; y/, 
.t; x; y/, ı.t; x; y/ and g.t; x; y/ be continuous,
C 2 with bounded first and second order derivatives and assume that they satisfy the
condition

j b.t; x; 0/ j C j 
.t; x; 0/ j C j g.t; x; 0/ j< L; 8.t; x/ 2 Œ0; T � � Rn

Then there exists a path approaching the equilibrium state arbitrarily close in finite
time T .

Proof. The proof follows by a straightforward application of Theorem 5.1 in [10].
ut

The approximate solvability is by no means a property which can be guaranteed
for any FBSDE. For instance, one may find explicit examples of equations which
are not approximately solvable for given horizons T . This is closely linked with the
solvability of related deterministic boundary value problems.

An alternative to the above approach could be to use monotonicity conditions of
the general form

. b.t; x1; y/ � b.t; x2; y/; x1 � x2 / � �1 j x1 � x2 j2
. ı.t; x; y1/ y1 � g.t; x; y1/ � .ı.t; x; y2/ y2 � g.t; x; y2// ; y1 � y2 / � �2 j y1 � y2 j2

and then adapt the general arguments of Pardoux and Tang [14] to prove existence
of finite horizon solutions that approach equilibrium within a stated accuracy using
a fixed point scheme argument. The general type of condition we need in this case is
that �1C �2 is bounded above by a suitable bound (not necessarily positive). In the
particular case where ı is uniformly bounded below the condition on �1C�2 essen-
tially reduces to a condition on a ı being large enough compared to the terms b; g
describing the feedback effects in the model. This is a very reasonable result as the
strength of the discount factor is expected to play a very important role in the evo-
lution of the model towards to equilibrium state. This approach allows us to obtain
connections between the growth conditions and the strength of the monotonicity of
the b; 
; ı; g with the rate by which the system approaches the equilibrium state,
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thus providing explicit estimates of the critical time T � which is needed before the
system reaches the desired neighbourghood of the equilibrium.

The approximation of the stable saddle path can be obtained through the approx-
imate solution of the forward controlled problem, using techniques from com-
putational stochastic control theory such as construction of appropriate Markov
chains, viscocity solutions etc. (see e.g. [8]. Alternatively, it may be obtained using
approximate solutions of the quasilinear system

@fi

@t
C Li .x; f /fi D �gi .x/C ıfi .x/; i D 1; � � � ; m; x 2 Rn (52.5)

with a final condition fi .T; x/ D h.x/ where h is any function that satisfies the con-
dition j h.x/ j� C j x j for x in a neighbourghood of 0. As has been shown in [20]
the particular choice of h is irrelevant as long as certain monotonicity conditions
hold.

52.6 Stochastic Saddle Paths in Discrete Time and Backward
Stochastic Difference Equations

A large class of models in economic theory are stated in discrete time, either because
the actual dynamics happen in discrete time or because of their immediate con-
nection with econometric models. Consider a general class of rational expectation
models in the form

x.t C 1/� x.t/ D b.t; x.t/; y.t//C 
.t; x.t/; y.t// �.t/ (52.6)

y.t/ D EŒ
1X

iDt
.1C ı/�i g.i; x.i/; y.i// j Ft �

where �.t/ D M.t C 1/�M.t/ where M.t/ is a martingale process.
The stochastic saddle path for the discrete time model can be expressed as the

solution of (52.6) .x.�/; y.�// which belong to the sequence spacesmX �mY where

mX D f fx.i/g1iD1 s:t:; EŒ
1X

iD1
jj x.i/ jj2X � <1g:

For the problem in question a possible choice for X D Rn and Y D Rm.
Using technical tools from stochastic analysis for discrete time martingales

we may show that this general model can be rewritten as a backward stochastic
difference equation.

Proposition 52.6. System (52.6) is equivalent to the backward stochastic difference
equation



52 Stochastic Saddle Paths and Economic Theory 745

x.t C 1/� x.t/ D b.t; x.t/; y.t//C 
.t; x.t/; y.t// �.t/;
y.t C 1/� y.t/ D ı y.t/ � .1C ı/ g.t; x.t/; y.t// � z.t/ �.t/

Furthermore, one may generalize the existence results for the continuous time case,
to provide results concerning the existence of stable saddle paths for discrete time
models. Also, most of the qualitative results will hold for the discrete time case
as well.

52.7 Examples from Economic Theory

52.7.1 The Krugman Model for Target Zones

In the Krugman model for target zones [7], the exchange rate s.t/ at any time t is
assumed equal to

s.t/ D m.t/C v.t/C � EŒds.t/�
dt

where s.t/ is the log of the spot price of foreign exchange, m.t/ is the domestic
money supply, v.t/ is a shift term representing velocity shocks and the last term is
the expected rate of depreciation. The term m.t/ is considered as a policy variable
which is shifted in such a way as to keep s.t/within a specified band, the target zone.
The term v.t/ is considered as the only source of external noise into the system. The
evolution of v is given by the solution of the (forward) SDE

dv.t/ D a.t; v.t//dt C 
.t; v.t// dW.t/

According to Krugman [7] the basic exchange rate equation can be viewed as arising
from a more underlying equation of the form

s.t/ D 1

�
E

�Z 1

t

.m.r/C v.t//e�
1
� .r�t/dr j Ft



From the results of Sect. 52.2 it is evident that the Krugman model can be recast in
the form of an infinite horizon FBSDE as

dx.t/ D a.x.t//dt C 
.x.t//dW.t/
dy.t/ D � 1

�
.m.t/C x.t//C 1

�
y.t/ � z.t/dW.t/

where we substituted x.t/ D v.t/,y.t/ D s.t/ to be in line with the notation used
here. We see that this is a decoupled system of FBSDEs since the forward equation
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does not depend on the backward equation. As such, this model, can be treated
with methods more simple than the ones used here which are taylor made for fully
coupled FBSDEs. For instance as long as a.x/ and 
 satisfy certain monotonicity
conditions of the form used often for forward SDEs we may find that x.�/ 2 MX .
Such a monotonicity condition may be for instance .a.x/; x/ � �� j x j2 and

.�/ 2 MX . We may now turn to the backward SDE for y.�/. Using methods
similar to those used for the proof of Theorem 4 in [16] we may see that as
long as m.�/ 2 MY the backward SDE has a unique solution in MY . Therefore,
under simple monotonicity conditions for the evolution of the fundamentals and the
assumption that m 2 MY we conclude that the Krugman model has a unique stable
saddle path.

52.7.2 The Dornbusch Model

In the Dornbusch overshooting model for exchange rates (see e.g. [2] or [12]) the
constituting equations are the following:

m.t/ � p.t/ D k y.t/ � � i.t/
y.t/ D ��

�
i.t/� EŒdp.t/�

dt

�
C � .s.t/ � p.t//

EŒds.t/�

dt
D i.t/� i�

dp.t/ D � .y.t/ � Ny/dt C 
dW.t/

The first equation is the condition for equilibrium of the domestic money market. In
this equation, m.t/ is the domestic money supply, p.t/ is the domestic price level,
y.t/ is the level of output in the economy and i.t/ is the nominal domestic inter-
est rate. The second equation is a goods market equilibrium condition where s.t/
is the domestic price of foreign currency (s.t/ � p.t/ is the real exchange rate).
The third equation is an uncovered interest parity condition (the expected rate of
depreciation of the domestic currency is set equal to the nominal interest differ-
ential) and the fourth equation is a representation of less than instantaneous price
adjustment. External shocks in the economy are modeled by the introduction of the
Wiener process perturbationW.t/.

Using the results of Sect. 52.2 this model may be redressed in the form of an
infinite horizon FBSDE as

dx.t/ D 1

D
.��.� C ��/x.t/C ���y.t//dt C 
dW.t/

dy.t/ D 1

D
..1� k� � ��/x.t/C k�y.t//dt � z.t/dW.t/

D D k� C � � ���

where we denoted x.t/ D p.t/ and y.t/ D s.t/ the forward and backward variables
respectively so as to be in accordance with the notation of this paper, and without
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loss of generality we set i� D Ny D 0. Then the results on the existence of stable
saddle paths for linear systems may be used to provide the range of parameters
for this model, for which there exists a stable saddle path leading the system to
equilibrium [20].

52.7.3 The Woodford Model

In the Neo-Wicksellian framework the determinants of the equilibrium price level
are not monetary factors, but the real factors that determine the equilibrium rate of
interest (the natural rate of interest) on the one hand, and the systematic relation
between interest rates and prices established by the central banks policy rule on
the other Woodford [18] uses this framework to discuss monetary policy and price
determination first in an cashless endowment economy without monetary frictions,
and therefore without money demand for transaction purposes. the Neo-Wicksellian
model for the analysis of monetary policy with nominal rigidities. This model con-
sists of three equations: an IS equation, an AS (the new-keynesian Phillips curve),
and an equation expressing the monetary policy rule (MR).

The IS equation is expressed as

x.t/ D EŒx.t C 1/ jFt � � 
 Œi.t/ �EŒ�.t C 1/ j Ft � � r.t/� (52.7)

where x denotes the output gap , i.e. the difference between the current output,
and the equilibrium output, which is defined as the output which is consistent with
perfect price flexibility. Thus at equilibrium x D 0. The case of positive output gap
may be identified as an excess demand for the current output, while the case of a
negative output gap may be identified as an excess supply. The market interest rate
is denoted by i , the natural interest rate by r , � the inflation rate and EŒ� j Ft � the
expectations conditioned on the state of the economy by time t . Thus the expression
i.t/ � EŒ�.t C 1/ j Ft � denotes the real interest rate, and 
 the inter-temporal
substitution in consumption.

The next step is to provide a link between the output gap, and the inflation rate.
This link is provided by the AS equation (New Keynesian Phillips curve) , which
is derived from the Calvo staggered price setting model (see e.g. [18]), and has the
form:

�.t/ D k x.t/C ˇ EŒ�.t C 1/ j Ft �C u.t/ (52.8)

This equation says that inflation depends positively on both the output gap and on
the expected rate of inflation. In the AS equation ˇ is an intertermporal discounting
factor, u.t/ is a cost push factor and k is related to the price stickiness. It gives the
relative change in the rate of inflation when the output gap changes. Therefore in the
case in which firms never revise their prices (absolute price rigidity) the value of k
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approaches zero. Thus k is decreasing in � ( in Calvo’s model) which measures the
degree of price rigidity.

The model is closed by an equation describing the monetary rule (MR) which
replaces the traditional LM equation. The nominal interest rate is taken as an instru-
ment of the monetary policy. The monetary aggregate is bypassed. According to
this rule (originally suggested by Wicksell) nominal interest rate has to rise when
inflation is rising, and vice versa when inflation is declining. We will assume that
the nominal interest rate responds to inflation according to the rule:

i.t/ D ��.t/C g.t/ (52.9)

where � > 1. This rule is known as the Taylors principle. It says that in order to
increase the real interest rate, the nominal interest rate must respond more than one
for one to changes in inflation. Thus � > 1 expresses the rate of growth on the real
interest rate.

Equations (52.7) and (52.8) are supposed to describe the dynamics of the system.
Using Proposition 52.6 we may see that this system is equivalent to a backward
stochastic difference equation. The using the existence results for the stable saddle
path one obtains the parameter ranges for which the system may be driven to equilib-
rium. This gives us a relationship between � and the other parameters of the system
so that the stable saddlepath exists therefore can be interpreted as a dynamical sys-
tems justification of the Taylor’s rule. Using this approach, one may further study
the effects of a single monetary policy rule in the long term behaviour of monetary
unions [1].

52.8 Control of FBSDEs and Applications in Economic Policy

In many problems in economic theory, there may be the posibility that the authorities
may actively influence some quantities so as to affect the system’s evolution. Such
quantities may be considered as control variables. As an example of that one may
consider the framework of the Krugman model (see Sect. 52.7.1) where m can now
be considered as a quantity properly adjusted by the central bank so as to fulfil
some selected targets. Similar interpretations may hold for the interest rate policy
in the Woodford model. Therefore, one may rewrite the problem of selection of
economic policy in models where future expectations are important, through the
use of Proposition 52.1 to a problem of control of a FBSDE with properly selected
cost functional.

The general state equation can be written in the form

dxu.t/ D b.t; xu.t/; yu.t/I u.t//dt C 
.t; xu.t/; yu.t/I u.t//dW.t/
dyu.t/ D .�g.t; xu.t/; yu.t/I u.t//C ı.t; xu.t/; yu.t/I u.t// yu.t//dt

� .zu.t/; dW.t//

xu.0/ D x; yu.T / D h.xu.T //; (52.10)
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where u.t/ denotes a control process and the superscript u is used to denote the
dependence of the processes x.�/; y.�/; z.�/ on the choice of the control process. We
may also define the cost functional of the general form

J.u/ D EŒ
Z T

0

�.xu.s/; yu.s/; u.s// ds�

where � is given function. The particular choice of this function allows us to
describe our targets. For instance if

�.xu.s/; yu.s/; u.s// D C1 .x
u.s/ � f1.s//2 C C2 .xu.s/ � f1.s//2

CC3 .u.s/� f3.s//2

then this functional penalizes the deviation of the economy at all times from the
prescribed path .f1.s/; f2.s//. By choosing the control in such a way so as to min-
imize J.u/, we obtain the path which is as close as possible to the prescribed path,
with the minimum possible intervention cost. Other forms for the cost functional are
possible, quantifying different targets for the policy maker.

The Pontryagin maximum principle can be generalized so as to provide solutions
to this optimal control problem and specify both the optimal path of the economy
as well as the optimal policy u�.t/ needed to drive the economy to the optimal path.
Both the optimal path and the optimal policy are obtained through the solution of an
augmented system of FBSDEs where now the original system is complemented by
a system containing the adjoint variables.

We refrain from giving a full account of this problem here but provide the solu-
tion for a simplified case where the state equation consists only of the backward
part and the cost functional is a quadratic functional [19]. The relevant economic
set up here is the problem of optimal exchange rate control of the Krugman model
presented in Sect. 52.7.1 so as to minimize a the deviation of the economy from
a desired path with the minimal possible inteventions. This may be stated as the
control problem of findingm�.t/ such that

J.m�.t/; �/ D min
m.t/

E

(
1

2
Hs2.0/C

Z T

0

ŒQ.t/.s.t/ � c.t//2 CR.t/m2.t/�dt
)

subject to the backward dynamics

ds.t/ D � 1
�
.m.t/C F.t//C 1

�
s.t/ � z.t/dW.t/ (52.11)

s.T / D �

Proposition 52.7. The optimal control will be of the form

m�.t/ D 1

�R.t/
y.t/
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where .s.t/; y.t/; z.t// are the solutions of the following system of FBSDEs

ds.t/� D � 1
�
.m�.t/C F.t//C 1

�
s�.t/ � z�.t/dW.t/

dy.t/ D �
�
Q.t/.s�.t/ � c.t//C 1

�
y.t/


dt C Oz.t/ dW.t/ (52.12)

s.T / D �

y.0/ D �H.s�.0/� c.0//

Without loss of generality we may take Oz WD 0.

To obtain the optimal policy we have to find a solution of the FBSDE (52.12).
This is a linear FBSDE and it is natural to look for solutions which connect the for-
ward and the backward variables in a linear manner. We will thus look for solutions
of the form

s�.t/ D P.t/y.t/C h.t/

where P.t/ is a deterministic function of time and h.t/ is a stochastic process.
The following Proposition gives the solution of this FBSDE.

Proposition 52.8. The FBSDE (52.12) admits a solution in the form

s�.t/ D P.t/y.t/C h.t/

where P.t/ solves the deterministic Riccati equation

PP .t/� 2
�
P.t/ �Q.t/P.t/2 C 1

�2R.t/
D 0

P.T / D 0

.h.t/; z�.t// solve the BSDE

dh.t/ D
��

1

�
C P.t/Q.t/

�
h.t/ �

�
1

�
F.t/C P.t/Q.t/c.t/

��
dt � z�.t/dW.t/

h.T / D �

and y.t/ solves the forward random ODE

dy.t/ D
�
�
�
Q.t/P.t/C 1

�

�
y.t/CQ.t/.c.t/ � h.t//

�
dt

y.0/ D �H.h.0/ � c.0//
1CHP.0/
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We will conclude this section with the following lemma that provides solutions
for the BSDE and the forward random ODE

Lemma 52.1. (a) The BSDE for h.t/ has the solution .h.t/; z�.t//

h.t/ D ˚.t/

�
�
Z t

0

˚.s/�1
�
1

�
F.s/C P.s/Q.s/c.s/

�
ds C

Z t

0

�.s/dWs CEŒ��
�

z�.t/ D ˚.t/�.t/

where

˚.t/ D exp

�Z t

0

�
1

�
C P.s/Q.s/

�
ds

�

� D ˚.T /�1� C
Z T

0

˚.s/�1
�
1

�
F.s/C P.s/Q.s/c.s/

�
ds

and the stochastic process � is defined by the representation

EŒ� j Ft � D EŒ��C
Z t

0

�.s/dW.s/

(b) The forward random ODE has the solution

y.t/ D 	.t/y.0/C 	.t/
Z t

0

	.s/�1Q.s/.c.s/ � h.s//ds

	.t/ D exp

�
�
Z t

0

�
Q.s/P.s/C 1

�

�
ds

�
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