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Preface by Arne Naess

This introduction to The General Theory of Relativity and its mathematics is
written for all those, young and old, who lack or have forgotten the necessary
mathematical knowledge to cope with already published introductions. Some of
these introductions seem, at the start to require only moderately much mathematics.
Very soon, however, there are frightful ‘jumps’ in the exposition, or suddenly new
concepts or notations appear as if nearly self evident. The present text starts at a
lower level than any other, and leads the reader slowly and faithfully all the way to
the heart of relativity: Einstein’s field equations.

Who are those who seriously desire to get acquainted with General Relativity, but
have practically no mathematical knowledge? There are tens of thousands of them,
thanks to the great general interest in relativity, quantum physics and cosmology of
every profession, including those with education only in the humanities.

Slowly many of these interested persons understand the truth of what one of
the last Century’s most brilliant physicists and populariser, Sir Arthur Eddington,
told us already in the 1920s: that strictly speaking, mathematical physics cannot
be understood through popularisations. Mathematics plays a role that is not merely
instrumental, like cobalt chemicals for the paintings of Rembrandt. Mathematical
concepts enter in an essential way, and readers of popularisations are mislead. Their
intelligence is insulted and bulled when they ask intelligent questions that their
popular text cannot answer except by absurdities. The honest readers may end up in
a quagmire of paradoxes, and may get the usually false idea that there is something
wrong with their intelligence. What they read they consider beyond their intellectual
grasp.

It is a widespread expectation that a mathematical understanding of general
relativity involves difficult calculations. Actually, coping with the few somewhat
lengthy strings of symbols in this text may be felt as a relief from abstract thinking.
What takes time is the thorough understanding of the relations between a few basic
concepts. They require close, repeated attention and patient work. This surprising
feature to some degree justifies that we have not included exercises in the text. To
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be honest, some should have been included, but they would have been of a rather
strange kind: exercises in articulating conceptual relations.

But what about the formidable calculations one may read about in popularisa-
tions? They affect applications, for instance particular solutions of Einstein’s field
equations. Examples of such calculations are found in appendices B and C. Even
if the reader should not expect to be an operator of relativistic physics, he or she
should be well acquainted with it having read this book. We venture to suggest that
the understanding acquired by the reader may be deeper than what is necessary for
completing graduate courses intended to make the student an expert in calculations
involving general relativity, but requiring only crude discussions of the all-important
conceptual framework.

The present text shows, we hope, that only patience is needed—no special talent
for mathematics. Personally I have never shown any such talent, only a persistent
wonder at strange mathematical phenomena, like the endless number 3.1415. .. with
the very short name ‘pi’. (Caution: the length of the circumference of a circle divided
by the diameter may have any value. Only in the special case of a flat space will
you get the number 3.1415.... More about that later!) Again and again I refused
to comply with the long streams of strange mathematical symbols which @yvind
Grgn, my patient Guru of mathematics and physics, rapidly wrote on our gigantic
blackboard. “Stop, stop! I don’t want that equation! How did you jump from that
one to the next?” To the astonishment of both of us it was possible to break down
the long deductions into small and easily understandable steps.

A serious weakness of those courses, in my view as a humanist, is the implicit
appeal to make the student accept what is going on without wondering. Along the
road to Einstein’s field equations, feats of artistic conceptual imagination abound.
Also postulates and assumptions of seemingly arbitrary kinds are made. Some
of them are seen to have a rational aspect when properly understood, but far
from all. Einstein did not find all this wonderful. What deeply moved him in
his wonder was that the concepts and equations he (and others, like Minkowski)
invented, could be tested in the real world and in part confirmed. Somehow there
must be, wondered Einstein, a kind of ‘pre-established harmony’ between inventive
conceptual imagination and aspects of reality itself.

The present text tries to keep wonder alive, a wonder not due to misunderstandings.

Some people, as part of their religion, creep on their knees all around the holy
mountain Kailas in Tibet. The present text would not have been produced if it
had not been clearly felt as a way of honouring Albert Einstein not only as a
persistent, fully committed truth seeker, but as a person combining this, and the
‘egocentricity’ going with it, with perfect generosity. He used his name and his time
to work for the persecuted, for emigrants, for the hungry. And, in addition, feeling
the absurdity of the political developments, he partook in depressing world affairs,
even compromising his deeply felt pacifism. And, last but not least, he retained a
sense of humour, and even as a superstar, was unaware of his outer appearance to
the extent of neglecting to keep his worn trousers properly shut when lecturing. He
would perhaps laugh if he got to know that this text is an expression of personal
devotion.
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One day, early in the Autumn 1985, the seventy three year old philosopher Arne
Neass appeared at my graduate course on general relativity. He immediatly decided
that a new type of introduction to the general theory of relativity is needed; an
introduction designed to meet the requirements of non-science educated people
wanting to get a thorough understanding of this, most remarkable, theory.

The present text is the result of our efforts to provide a useful book for these
people. It is neither a popular nor a semi-popular account of the theory. The book
requires a rather large amount of patience from the reader, but nearly no previous
knowledge of physics and mathematics. Our intention is to give an introduction that
leads right up to Einstein’s field equations and their most important consequences,
starting at a lower level than what is common. The mathematical deductions are
made with small steps so that the mathematically inexperienced reader may follow
what happens. The meaning of the concepts that appear are explained and illustrated.
And in some instances we mention points of a more philosophical character.

We devote a whole chapter to each of the topics ‘vectors’, ‘differentiation’,
‘curves’ and ‘curved coordinate systems’. Tensors are indispensable tools in a
formulation of the general theory of relativity intended to give the reader the
possibility to apply the theory, at least to some simple, but nonetheless non-trivial,
problems. The metric tensor is introduced in chapter 5, which also provides a most
important discussion of the kinematic interpretation of the spacetime line element.

Albert Einstein demanded from his theory that no coordinate system is priv-
ileged. And in general curved coordinate systems are needed to describe curved
spaces. In such coordinate systems the basis vectors vary with the position. This is
described by the Christoffel symbols. In chapter 6 we give a thorough discussion, of
a geometrical character, showing how the basis vectors of plane polar coordinates
change with position, and relate this to the Christoffel symbols. Having worked
yourself through this chapter, it is our hope that you have obtained a high degree of
familiarity with the Christoffel symbols.

‘Covariant differentiation’, ‘geodesic curves’ and ‘curvature’ are important top-
ics forming a ‘package’ of prerequisites necessary in order to be able to appreciate
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fully Einstein’s geometric conception of gravity. These topics are treated in chapters
7, 8 and 9, respectively. The expression for the Riemann curvature tensor is deduced
by utilising Green’s theorem connecting circulation and curl.

Einstein’s law of gravitation is formulated mathematically in his field equations.
They tell how matter curves spacetime. The field equations require an appropriate
tensor representation of some properties of matter, i.e. of density, stress and
motion. The usual representation of these properties is motivated and explained in
chapter 10, where the basic conservation laws of classical fluid mechanics are
expressed in tensor form. In chapter 11 the expression for Einstein’s divergence free
curvature tensor is deduced. With this chapter our preparation for a presentation of
general relativity has been fulfilled.

Einstein’s general theory of relativity is presented in chapter 12. Here we
discuss the conceptual contents of the general theory of relativity. We consider the
Newtonian limit of the theory, and we give an elementary demonstration of the
following theorem: From the general theory of relativity and the assumption that it
is impossible to measure velocity relative to vacuum, it follows that vacuum energy
acts upon itself with repulsive gravitation.

In chapters 13 and 14 we deduce some consequences of the theory. In particular
we discuss the gravitational time dilation, the deflection of light, the relativistic
contribution to Mercury’s perihelion precession, and we give a detailed explanation
of how the theory predicts the possible existence of black holes. Finally the most
important relativistic universe models, including the so-called inflationary universe
models, are discussed.

Detailed calculations of the form of the Laplacian differential operator in
spherical coordinates, needed in chapter 12, and of the components of the Ricci
curvature tensor, needed to write down Einstein’s field equations for the applications
in chapters 13 and 14, are presented in appendices A, B, and C, respectively.

Looking at the stars with Einstein’s theory in mind, you may feel it is like a
wonder that Einstein managed to reveal such deep secrets of cosmos to us. People
do in fact search for black holes now. And there are strong indications that at least a
few have been found. What mysterious connection is there that makes nature ‘obey’
Einstein’s great mental construction - the general theory of relativity?
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Chapter 1
Vectors

1.1 Introduction

Mathematically the general theory of relativity is a theory of vectors and quantities
that generalize vectors, namely tensors. If one wants to master, or at least obtain
some familiarity, with the mathematical apparatus of this theory, one should manage
to have intercourse with vectors as dear friends. It is wise from the very start to listen
to them with benevolence and patience. They have some rather strange habits which
we should be well aware of, in order to be able to understand their message without
a misinterpretation.

In what follows we shall not assume that the reader knows vectors. We shall
give an heuristic introduction that suffices for our goal. More formal and general
introductions of the calculus of vectors are found in mathematics textbooks. We
urge the interested reader to consult such books.

The primary aim of this chapter is to introduce those parts of the calculus of
vectors which will be needed in order to understand the mathematics used in general
relativity. The secondary aim is to prepare the readers for more advanced topics,
mathematical, physical and philosophical.

1.2 Vectors as arrows

Vectors can be imagined as arrows. Like an arrow a vector points in a certain
direction. Which direction? It is important to note that the answer can be given
without introducing a coordinate system.

We have arrows in a room or outdoors. The arrows can point towards the roof, a
door, one’s grandmother and so forth. The direction of the arrow is given by concrete
things.

Thinking of the theory of relativity it is wise immediately to note that the length
and direction of an arrow can be related to other arrows. They can be compared.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 1
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5_1,
© Springer Science+Business Media, LLC 2011



2 1 Vectors

Fig. 1.1 Vectors with
different directions

Fig. 1.2 Vectors with
different magnitudes

Fig. 1.3 Parallel ~
transportation of a vector ~

We may move one vector to another without changing its direction, so that the
starting points (roots) of the vectors touch each other. If the vector-arrows then lie
along the same line, the vectors are said to have the same direction. If the vectors do
not lie along the same line, we use the geometry of ‘daily life’ (see Ch. 4) to specify
the difference of direction. In Fig. 1.1 is shown two vectors with equal magnitude,
but different directions.

The difference of length between two vectors may be given by making small
arrows which we call ‘unit vectors’, and have a magnitude or length equal to one.
A line with unit vectors, and two vectors with magnitude 3 and 5, respectively, are
drawn in Fig. 1.2.

If we find an arrow at one place and want to compare its direction with that of
an arrow at another place, we must perform a difficult operation. We must ‘parallel
transport’ to the one we want to compare it to (see Fig. 1.3). In daily life this can
be done for example by means of straight threads along which we slide the ends of
the arrows. Such procedures work well on a flat surface. However, difficulties will
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appear when we try to perform such parallel transport over great distances on the
Earth, as the curvature of the Earth’s spherical surface will disturb the result (see
Fig. 9.2).

1.3 Vector fields

From now on vectors are no longer material arrows, but arrows in a purely abstract
sense. In what follows a ‘vector’ is a geometric quantity with geometrically defined
‘magnitude’ and ‘direction’. However, just as there is a correspondence between
ordinary numbers and certain physical quantities, such as for example temperature
(number of degrees) and length (number of centimetres), there is a correspondence
between vectors and a special class of physical quantities; namely, those having a
direction.

When we are outdoors in the wind, the moving air fills the region around us.
There is a measurable velocity of the air everywhere in the region. In Fig. 1.4 we
have shown, as an illustration, a weather map with the wind velocity field over
Europe on February 3, 1988. The velocity has a magnitude and a direction. It is a
vector. Thus a velocity field is linked conceptually with every point of the region.
These abstract vectors are everywhere. If one can think of God as omnipresent, then
one might also be able to think of vectors as omnipresent. In such a region there is
said to be a vector field.

In order to be able to calculate with vectors, we must have a practical means of
specifying their directions and magnitudes. Let us consider vectors on a flat surface,
say on the sheet of paper you are writing on. Then we place unit vectors along the
horizontal edge at the bottom and along the vertical left-hand edge of the sheet.
These are reference vectors.

Drawing equidistant parallels with unit distance between each, we obtain a grid
(see Fig. 1.5). Each corner is given a number containing figures; the first figure
gives the distance of the point from the left edge of the sheet, and the second figure
its distance from the downward edge. Imagine that each square is divided into four
smaller squares. Again each corner is given a two-figured number. (The figures are
not generally integer numbers.) If this division is proceeded indefinitely, we can
associate a number with every point of our sheet. Note also that each point have
different numbers. Such a set of numbers, by which we may specify the positions of
arbitrary points in a region, is called a coordinate system. There is no reference to
the grid we introduced originally, in the definition of a coordinate system. The grid
which is usually drawn on maps, or a globe, for example, is only of heuristic help,
making it easier to read off the position of a point in the coordinate system.

As is well known by users of atlases, one can map a region by means of different
sorts of coordinate systems. The particular coordinate system that we have described
above, with vertical and horizontal straight axes, is called a Cartesian coordi-
nate system, in honour of the great mathematician René Descartes (1596-1650).
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Fig. 1.4 Wind velocity field over Europe on February 3, 1988

The horizontal axis is usually called the x-axis, and the vertical axis the y-axis. The
position of a point is given by a number (x, y) relative to a chosen origin, which has
coordinates (0, 0).

By means of our coordinate-system we can specify the magnitudes of the vectors
in our vector-field. In order to be able to write a vector as the sum of ‘vector
components’ (see below) along the coordinate lines we introduce reference vectors
(see above) along these lines. They are called basis vectors. The basis vectors are
introduced at every point in the region of interest. Generally the basis vectors may
have unequal directions and magnitudes at different positions (see for example
section 4.1.1, where a system of plane polar coordinates is considered). Only in
the special case of a Cartesian coordinate system (in a flat space) do they have the
same magnitude and direction all over space.

At every point of an n-dimensional space there are n basis vectors. There are, for
example, two basis vectors at every point of a surface. Having a coordinate system
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and the associated basis vector field at our disposal, we can specify the components
of, for example, a velocity vector field at every point in a region. By this means we
shall be able to develop the calculus of vectors.

1.4 Calculus of vectors. Two dimensions

As to notation, vectors shall be denoted by placing an arrow above the letter. Thus,
‘A-vector’ is denoted by A. Basis vectors are denoted by a the letter ‘e’ with an
arrow and a subscript, which tells which basis vector we are talking about, for
example é,.

Consider a vector A. In Fig. 1.6 this vector is placed in a two-dimensional
coordinate-system. The coordinate axes are straight lines. The difference between
their directions amounts to 90°. They are said to be orthogonal to each other. (This
term will be used frequently in the present text.) We have a Cartesian coordinate
system. The basis vectors along the x-axis and y-axis, are written ¢, and e,

respectively. The magnitude of a vector Ais designated by |/¥ |. The basis vectors €,
and e, have per definition magnitude equal to 1, |e,| = |e,| = 1.
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The quantities A* and A” in Fig. 1.6 will be called the components of the
vector A. (Note that in the calculus of vectors it is usual to use the upper right
suffix to select a component rather than to indicate the exponent of a power. Even
if this may seem confusing at the beginning, this notation is indispensable when
one calculates with vector components, and after a while its use will be a matter of
routine.) The vector components are defined as follows. Let a vector A be situated
with its initial point at the origin, as shown in Fig. 1.7.

Then the components A and A” are the coordinates of the terminal point of A
They are not vectors, but ordinary numbers. Such numbers are called scalars. We
might have called them ‘scalar components’. Note that the scalar components of a
vector might be negative (for example A* <0, if the vector points in the negative x
direction). . .

The vector quantities A* and A” (as shown in Fig. 1.6) are termed the component
vectors of A. In order to define these we must first consider products of scalars and
vectors. _

If the scalar is equal to a number k, the product k A is defined as a vector with
magnitude k|/¥ |, and with the same direction as A. With, for example k = 2, the
magnitude of the vector is doubled. If the scalar is a negative number, —k, the
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product —k A is defined as a vector with magnltude k| A| and with opposite direction
to that of 4. If k = 0, we write kA = 0 and call O the null vector. The magnitude
of the null vector is zero.

If two vectors A and B are parallel, there exists a scalar k so that B = kA. Thus
A= (l/k)l_é. One might also be tempted to put é//f = k. But division by a vector
is not defined within the calculus of vectors.

We now have the necessary tools for defining the component vectors of A. The
definition may be stated as follows: the component vectors of A are the products
of the components of A and the basis vectors. In the special case considered above,
with the vector 4 placed in a two-dimensional Cartesian coordinate-system, we have

A =A%e, A =A%, (1.1)

These equations, together with figures 1.6 and 1.7, offer a clear picture of the link
between the component vectors /f"‘, A7 and the (scalar) components A, A” of a
vector A. .

We will now define addiﬁion arld subtraction of vectors. Consider two vectors fl
and B. The vector-sum of 4 and B is a new vector, which we shall designate by C.
The sum of two vectors is written in a similar way as the sum of two real numbers,

C=A+B. (1.2)

However, the meaning of ‘+’ is different. Vector-addition is defined as follows. Let
the initial point of B be positioned at the terminal point of A. Then C is the vector
with initial point at A’s initial point and terminal point at B’s terminal point. This is
illustrated in Fig. 1.8.

Subtraction of two vectors is defined as follows: A — B is that vector C which
gives A when it is added to B. This is illustrated in Fig. 1.9.
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Fig. 1.10 Decomposition -
of a vector A
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Let us now turn to Fig. 1.6 again. The component vectors of A may be parallel
transported so that we obtain the figure 1.10. (The coordinate system is not drawn,
only the vectors.)

The figure shows that

A=A+ A, (1.3)

The vector 4 is equivalent to the vector sum of A* and A’. This is expressed by

saying that A can be decomposed into the component vectors A* and A”. From
eqs. (1.1) and (1.3) follow
A=A, + A%, (1.4)

Note that the sum of the (scalar) components, A + A”, is different from the
magnitude of A |/T| # A+ A,

Applying the well-known result of Pythagoras, and of less well-known Indian
and Chinese mathematicians, to figure 1.7, we get

JA]? = |A]? + | A2 = (4%)? + (47)? (1.5)

(here the superscripts x and y denote ‘which component’, and the superscripts 2 are
exponents). Taking the square root of each side of Eq. (1.5), we get the magnitude
of A in terms of its components

4] = V(4%)? + (4)? (1.6)

The addition of two vectors, A + B, may be done by adding their components. This
is illustrated in Fig. 1.11, which looks complicated, but has a fairly simple meaning.
In mathematical form

C=A+B<C"=A4"+B", C’'=4"+ B, (1.7)

where the symbol <= means mutual implication (equivalence), and the comma
symbolizes ‘and’.

There exist several different ‘products’ of vectors. In the following we will only
need the so-called dot product or scalar product of two vectors. (A generalized
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version of the dot product is involved in the relativistic expression for distance,
which we shall consider in great detail in Ch. 5.) The dot product of A and B is
denoted by A - B and defined as the magnitude of A times the magnitude of B’s
projection onto A. This is illustrated in Fig. 1.12.

The magnitude of B’s projection onto A is denoted by |§|| |. The dot product of
Aand B may thus be written

A-B =+|A4]|- |B (1.8)

(See points 5 and 6 below as to whether + or — is to be used.) Some properties of
this product should be noted.

1. The product is a scalar quantity.
2.B-A=4A-
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Fig. 1.13 Commutation
of the dot product
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Fig. 1.14 Associative rule

3. For vectors of given magnitude, the product has a maximal value, equal to the
magnitude of A times the magnitude of B, if the vectors have the same direction.

4. The value of the dot product is zero if the vectors are orthogonal.

5. The dot product is positive if the projection of B onto A has the same direction

as A.

6. The product is negative if the projection of B onto A is oppositely directed to A
7.D-(A+B)=D-A+D-B.

Property | follows immediately from the expression (1.8). Property 2 is shown by
considering Fig. 1.13.

The triangles OP; P, and OQ;Q, have the same shape. It follows that
|Byl/IB| = |Ajl|/|A|. Hence |B| - |A)| = [A] - |Bj|or B- A= A-B.

Properties 3 and 4 follow immediatley from Eq. (1.8) and Fig. 1.12. Properties 5
and 6 are definitions. Property 7 is shown by considering Fig. 1.14. From the figure
is seen that |(/I + §)||| = |/f||| + |§|| |. Multiplying each term by the number |13|
gives |13|-|(/I+§)||| = |5|-|1‘I|||+|13|—|§|||.Hence5~(/I+§) =D-A+D-B.
Due to the property 2 it also follows that (/I + E) .D=A-D+ B-D.

Since ¢, and Ey are unit vectors and orthogonal to each other, it follows from
properties 2, 3 and 4 that

Gobe=1, & 8y=1 8,8, =0, &:8,=0 (1.9)



1.5 Three and more dimensions 11

We can now express the dot product of A and B by the components of A and B.
From equations (1.4), (1.9), the rule 7, and the product rule (@ + b)(c + d) =
ac+ad +bc+bd which is valid for vectors as well as for scalars, we get (substitute
A¥é, fora, AVe, for b, B*é, for c and B”é, for d)

A-B = (A%é, + A’¢,) - (B*é, + B’E,)
= A"B*é,-é, + A*B’ ¢, ¢,
+A"B* e, -ex+ A'B¢e, - ¢,
= (A*B*) 14+ (A*B”) 0
+(A’B*) 0+ (A7BY) 1. (1.10)

Since a number, such as A” B*, times zero is equal to zero, this leads to
A-B=A"B"+ A'B". (1.11)

The expression (1.11) is not valid in arbitrary coordinates. It is specific of Cartesian
coordinates. In general the dot products of the basis vectors must be included in the
component expression for the dot product of two vectors (see Eq. (1.26)).

1.5 Three and more dimensions

Let us consider a three-dimensional generalization of Fig. 1.6.

The vector A is now placed in a three-dimensional Cartesian coordinate system,
as shown in fig 1.15. Here B is the projection of A in the (x, y)-plane. It will be
useful, in order to see more easily the geometrical contents of the deductions below,
to draw a new figure with coordinate axes parallel to the old ones, but now through

the root of the vector A.
As in the two-dimensional case, the vector components are the coordinates of

the terminal point of A when it is situated with its initial point at the origin (see
Fig. 1.16).
The component vectors of A are

A = A%G.. A = AYE,, A*= A%.. (1.12)

From Fig. 1.15 is seen that

o1
Il
Dtl
+
:{it
RN}
Il
>oT1
+
>y

(1.13)

Thus
A=A+ A + & (1.14)
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Inserting the expression (1.12) we get the component form of the vector A
A= A%C, + A'é, + A%C.. (1.15)

Also from Fig. 1.15, and using the Pythagorean theorem as we did in the two-
dimensional case in Eq. (1.5), it is seen that

B = |A*) + |A7), AP = |B)? + |A*P, (1.16)
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so that . . . .
|A]? = [AY? 4 |AY]> + | A = (A7) + (A7) + (A9 (1.17)

Taking the square root of both sides of Eq. (1.17), we get the magnitude of Ain
terms of its components

|A] = /(A%)2 + (4¥)2 + (A%)2. (1.18)

If two vectors A and B in a three-dimensional space are added to give a third vector
C, we obtain a projection onto the (x, y) plane just like Fig. 1.8. The projection
onto the (x, z) and (y, z) planes are similar, and we obtain

o C*= A" + B*,
C=A+B+<{C'=A+8, (1.19)
C? = A + B~

This rule is valid in general: two vectors may be added by adding their components.

Applying the multiplicationrule (¢ +b+c)(d +e+ f) = ad +ae+af +bd +
be +bf + cd + ce + cf, we find the expression of the dot product of two vectors
in a three-dimensional space, in terms of their components in a Cartesian coordinate
system (compare the expression for the two-dimensional case in Eq. (1.10)

A-B = (A6, + A'é, + A%.)
-(Be, + B¢, + Be.)
= A"B¢,-eé, + A"B’é,-e, + A"B%¢, - ¢,
+ A’BYé,-é. + A'B’é, -e, + A'Be, - ¢,
+ A*BYé,-éx + A°B’e.-e, + A°B'e, - e,
= A"B* 1+ A*B’0 + A*B*0
+ AYB*0+ A”B’1 + A” B*0
+ A*B*0+ A*BY0 4+ A*B*1
= A"B" + A”BY + A*B*~. (1.20)
It is easily seen that the form of the equations characteristic of three-dimensional
vector calculus is exactly equal to those of two dimensions (see Eq. 1.10)).

The generalization from three to n dimensions is simple as far as the mathemat-
ical expressions are concerned. But convenient figures like 1.8 and 1.15 cannot be
drawn for the higher-dimensional cases. Intuitive presentation is problematic, except
as intuition of algebraic forms, where this kind of computation, leading to Eq. (1.20),
is easy also in four or five dimensions. Any error is readily seen by looking at the

formal sequences of letters and signs. Goethe said: “The value of mathematics is
nothing but that of forms” (“[...] nichts wert als die Form.”)
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Looking at Eq. (1.20), with its eight lines full of symbols, it will be reasonable
if you get a slight feeling of terror. We would like to make a digression here, telling
you about the intention of this text. We wish to lay before you a text where the
mathematical deductions are presented in such detail that you may see what has
been done mathematically in each step of the calculations. What you see depends
upon what you know. And as the text proceeds, you will often find references to
equations earlier in the book, as a reminder of the particular mathematical rule that
has been applied in a certain step.

1.6 The vector product

In chapter 9 we need the concept of the vector product.

Two arbitrary vectors A and B define a plane, that of the parallelogram between
them. Let us choose a three-dimensional coordinate system so that the vectors are
lying in the (x, y)-plane. This is drawn in perspective in Fig. 1.17. The vector
product of A and B is denoted by A x é and is defined as a vector, the ‘vector
product vector’, whose magnitude is |A||B 1|, where B, is the component of B
perpendrcular to A. The direction of A x B is normal to the plane containing A and
B, with positive sense such that A, B and A x B is oriented, as shown in Fig. 1.17.
This product is antisymmetric, meanrng that the srgn of the product changes if the
succession of the vectors changes BxA=—AxB.If Aand B are parallel, B has
no component perpendicular to A, and A x B = 0.1In particular it follows that the
vector product of a vector with itself is equal to the null vector. Also, there are no
vector products in a two-dimensional space.

In Fig. 1.18 we have drawn the parallelogram defined by the vectors A and B.
We have also drawn a dotted line from the end-point of vector B and perpendicular
to the vector A. If the triangle OQ B is moved to the other side of the parallelogram,
a rectangle QPRB is formed with the same area as the triangle. The area of the
rectangle, and thus of the parallelogram is the length of A times the height QO B. This
height is just the component of B perpendicular to A. It follows that the magnitude
of the vector product AxBis equal to the area of the parallelogram defined by these
vectors. The vector product A x B can therefore be said to represent the area as a
vector quantity.

S

-
A

Fig. 1.17 The vector product
of A and B
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Fig. 1.18 Parallelogram
extended by A and B

Fig. 1.19 Vector products €,=6,x¢,
. . . z= XX y
of basis vectors in Cartesian
coordinates
ey=ezxex
gx =€y x€,

From the definition of the vector product follows that the non-vanishing vector
products of the basis vectors in a Cartesian coordinate system, are (see Fig. 1.19)

€y X €y, = —€y X &y = €,
€y X €, = —€, X €, = ey, (1.21)
€. X €y = —€y X €, = €.

Usually when we apply the calculus of vectors to physical problems, we
concentrate on one direction at a time. We calculate with components. This will
be the case for example in chapter 9 where we shall apply the vector product in
connection with the curvature of spacetime. Therefore we shall need the component
expression of the vector product.

In our Cartesian coordinate system the component forms of the vectors Aand B
are B B

A=A +A’e, + A%e., B = B'é.+ B'e, + B'e.. (1.22)

Makmg a calculation similar to that in Eq. (1.20), but using now, Eq. (1.21) and the
ruleAx(B+C) = Ax B+ A xC, we arrive at

-

Ax B = (A¢, + A'¢, + AC.)
x (B*e, + B’é, + B%e;)
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or, after expanding the right-hand side,

Ax B =A"B %, xé +AB" &, xé,

+A"B e, xe.+ A"B e, xé,
+A’B"é, xé, + A"B e, x e,
+ A°B* e, xé,+ A°BY é; x é,
+ A*Bte, x e,

= A"B* 0+ A*B’ &.+ A*B* (=¢,)
+ A’ B (=8.) + A”BY 0+ A" B* &,
+ A*B* &, + A*B’ (—&,) + A°B* 0

= (A"B*— A*B”) é, + (A*B* — A*BY) ¢,
+ (A*B? — A’ BY) é.. (1.23)

Note that the components of the vector product are antisymmetric in the indices,
meaning that if the succession of the indices are reversed, the components change
sign (due to the minus signs in the expression). The same happens if the components
of A and B are exchanged. The geometrical meaning of this is that BxA=—AxB,
i.e. exchanging the succession of the vectors reverses the direction of the vector
product vector.

1.7 Space and metric

We shall anticipate a little, and give you a glimpse of topics that will be treated at
length later in this text. In order to be able to use the mathematical machinery that
have been developed so far, we shall in this section assume that space is flat (as
has been assumed also in the earlier sectons). However we shall now permit the use
of arbitrary coordinates. Concrete examples will be thoroughly treated in chapters
4 and 6. The generalization to a mathematical structure which may be applied to
curved space will be given in Ch. 5.

The general concept of space is such that we, with a suitable metaphor, can put
different kinds of coordinate systems info a space. However, not any coordinate
system! For example you cannot cover the spherical surface of the Earth by a
two-dimensional Cartesian coordinate system in which the coordinate curves are
everywhere straight lines orthogonal or parallel to each other. If you try to construct
straight, parallel coordinate lines on a sphere, you will find that they will cross each
other at two points, for example at the poles. The conclusion is: you need curved
coordinate systems to cover curved surfaces.
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In the general theory of relativity gravitation is described in terms of curved
four-dimensional spacetime. So in this theory curved coordinate systems are
inevitable.

It will be useful to introduce some notational conventions. Coordinates of
spacetime are written x*, i.e. with Greek indices, and spatial coordinates are
written x’, i.e. with Latin indices. Here 1 and i are not exponents, but labels
indicating the coordinate in question. The three spatial coordinates are indicated
by x',i = 1, 2, 3. In a Cartesian coordinate system this means x! = x, x> = y,
and x3 = z. The four coordinates of spacetime are indicated by x*, u =1, 2, 3, 4.
Again, in a Cartesian coordinate system this means xl = x, x2 = v, x} =z
and x* = ct, where c is the velocity of light. Note that x* is a time coordinate
representing time as measured in a unit of length.

In Sect. 1.4 we introduced the basis vectors é, and €, of a two-dimensional
Cartesian coordinate system. The basis vectors of an arbitrary coordinate system,
{(x', pw=0,1,2,..}or{x', i = 1,2, ...}, are denoted by ¢, or ¢, i.e. the
index of an arbitrary basis vector is just the number of the coordinate and not
the coordinate itself. However, when we specialize to a certain basis vector in a
specified coordinate system, the coordinate is inserted as index of the basis vector.
For example, if we consider &, with x> = 0, we insert &, for &,.

The basis vectors of an arbitrary coordinate system are neither orthogonal to each
other, nor are they unit vectors. It follows that the dot products of the basis vectors
are arbitrary functions of position. The dot products of basis vectors in spacetime
are termed g,,, and in space g;;. We may then write, for the dot products of any two
basis vectors €,, and €, in four-dimensional spacetime

guw=¢€u-6,u=12734 v=1,2 34, (1.24)

where the symbol = means ‘defined as’. From the generalization of Eq. (1.9)
to three dimensions we understand that a three-dimensional Cartesian system is
characterized by

gn=gn=g8gn=1,
812 =g13=8»n =8 =g =8gxn =0 (1.25)

Hence, for all Cartesian coordinate systems g;; = 1, which means that the basis
vectors have unit length, and g;; = 0 fori # j (where # means ‘different from’),
which says that all the dot products of two different basis vectors are zero, meaning
that the vectors are orthogonal to each other. In general g,,,, or g;; characterizes the
angles of all pairs of basis vectors and their magnitudes in a coordinate system of a
space. The quantities g,,, and g;; are said to tell us the metric of the spacetime and
space, respectively. So you hear professionals frequently ask each other: “Well, but
what is the metric of the spacetime you now are talking about?”
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The general expression of the dot product of two vectors in three-dimensional
space is

A-B=A¢ -Bé;=¢-¢;AB =g ;AB, (1.26)

where one is to summarize over the range of indices that appear in products as a
subscript in one factor and as a superscript in the other. This is Einstein’s summation
convention.

The efficiency of Einstein’s summation convention can be seen by applying it to
calculate the dot product of two vectors in a three-dimensional Cartesian coordinate
system, for instance,

A-B =g A'B' + g,A'B* 4+ g34'B?
+ g21A’B' + g0 A’B? + g5, A’B?
+ g A’B' + g A*B? + g3 A°B. (1.27)

Using Eq. (1.27) and inserting 1 = x, 2 = y, and 3 = z, for the indices, we get

A-B=1(A"B")+0(A"B”) + 0 (4" B
+0(A”BY)+1(A"BY)+ 0 (AYBY)
+ 0 (A*B*) +0 (A*BY) + 1 (A*BY)
= A"B* + A”B” + A*B* (1.28)
as in Eq. (1.20).
The distance vector between two points that are infinitesimally close to each

other is denoted by dr. (Further explanation of this notation is given in the next

chapter.) The components of dr are called coordinate differentials and are written
dx'. Ifi =1, 2, 3 then

dr = dx'é; = dx'é, + dx*é, + dx’é;. (1.29)

(Note that here dx? is not dx squared, but refers to the second component of d) r.)
The squared distance between the points is denoted by ds2. Using Egs. (1.28) and
(1.24) we get

ds*> =dr-dr = dx'é; -dijj =g -Ejdxidxj
= gij dx'dx’ . (1.30)
The corresponding expression for the squared ‘distance’ between two points in

spacetime is
ds* = guvdxtdx”. (1.31)
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This is a highly condensed and very famous formula. If i and v go from 1 to 4
the far right-hand side is the sum of 4 x 4 = 16 terms. Equations (1.30) and
(1.31) show that the general expression for distance in arbitrary coordinates involves
the components, g;; or g,,, of the metric. That is the main reason for the name
‘metrical’—it ‘measures’.

Equation (1.31) generalizes the Pythagorean theorem to a form which is valid in
an arbitrary coordinate system in a space with an arbitrary number of dimensions.
The most simple application of this equation is to calculate the distance of two
nearby points on a (two-dimensional) plane in terms of the coordinate differentials
dx and dy in a Cartesian coordinate system. In this case

g =g8n=1, g2 = gu = 0. (1.32)
From Eq. (1.30) we then get
ds* = gijdx'dx’
= g“dxldx1 + glgdxldxz
+ gndx*dx" + gndx*dx?
= (dx')* + (dx*)*. (1.33)
Using that dx' = dx and dx*> = dy we get
ds* = dx* + dy”. (1.34)

This, we see, is in fact the usual form of the Pythagorean theorem!

In what is called a ‘flat’ space one may define distance vectors 7 of finite
magnitude. This is not possible in a so-called curved space. The surface of a sphere
is a two-dimensional curved space in three-dimensional Euclidean (flat) space. Let
us jump from geometry to physics and ‘apply’ the geometry of spheres to a physical
object, for instance the Earth, with its physical surface. Consider a distance vector
from, say, the North Pole to a point on the Equator. The vector-arrow, which is
straight in the usual Euclidean meaning of this word, will go through the Earth,
beneath the surface. For two-dimensional creatures, whose universe is the surface
of the sphere, this distance vector simply does not exist. Therefore, in general there
will exist only infinitesimally short distance vectors in a curved space.

Three points may be noted. Firstly, the picture of vectors as straight arrows is
a metaphor of great heuristic help, but is not needed in the calculus of vectors.
Secondly, in connection with curved spaces vectors are defined in tangent spaces
(see Ch. 3). The tangent space of the North Pole of the Earth, for example, is an
Euclidean plane touching the North Pole. And a vector representing, say, the wind
velocity at the North Pole may be thought of as an arrow in this tangent plane.
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Thirdly, finite distances can be defined in curved spaces. They are calculated by
adding infinitely many infinitesimally small distances along a curve between the
point whose distance we are going to find. This is performed by integration, which
will be introduced in section 3.5.



Chapter 2
Differential calculus

This chapter is written for those people who have the courage to approach the
mathematics of general relativity without being familiar with differential calculus.
The use of this fabulous creation by Newton and Leibniz is essential and om-
nipresent on our way to Einstein’s field equations.

2.1 Differentiation

In Fig. 2.1 we have drawn Cartesian coordinates and a curve. Five lines lead from a
point P on the curve to points Q, Q», O3, Q4, Os5, also on the curve. If we continue
plotting lines like that, the Q’s approach P indefinitely. They are said to approach
the tangent line at P. The lines PQ, PQ,, PQ3s, POy, and P Q5 have different
slopes in relation to the x-axis. The slope of the curve at a point P is defined as the
slope of the tangent line at P. Knowing the slope of a curve at any point, and the
value of the function at one point, we can plot the curve (Fig. 2.2). If the the tangent
lines are close enough the curve ‘plots itself’. Could we find simple expressions for
the slope of those lines, that is, for the slope of the curve itself? The slope k of a
line is quantitatively expressed by what we shall call the ‘slope quotient’ defined as
‘increment in y-direction divided by increment in x-direction’ (see Fig. 2.3).

Y2 =1
X2 — X1

k = @.1)

In Fig. 2.2 the slope quotient at P is 1/5 = 0.20. The slopes of the series of lines
PQ,, PQ,, PQs, ...in Fig. 2.2 are expressed by the same sort of quotient as that
of the line pictured in Fig. 2.3. Their slope quotients approach that of the tangent
line, as Q,, approaches P.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 21
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5_2,
© Springer Science+Business Media, LLC 2011
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Fig. 2.1 A curve y
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Fig. 2.4 The parabola
y=x

» <

y=x
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The slope quotient of the curve on Fig. 2.2 increases continuously, from less than
1/5 to a fairly big number. That of Fig. 2.3 seems to start from zero and remain
there for a while, like a straight line parallel to the x-axis.

A word of caution: not all curves have a tangent at every point. If the curve has
a sharp corner at a point it does not have a tangent at that point. Also, if the curve
has a vertical step (the vertical interval is not reckoned as part of the curve), then it
is disconnected for a certain value of x, say x = x;. This is called a discontinuity.
If the curve is the graph of a function, the function is said to have a discontinuity
at x = x;. A curve does not have a tangent at a discontinuity. We shall assume
that the functions we need to consider, are such that their graphs have one definite
tangent line at every point, i.e. that the functions are continuous and their graphs are
without sharp corners or discontinuous steps. If you inspect Fig. 2.4 you will see
that a new notation has been introduced. The figure suggests that we move along a
curve, called a parabola, with equation y = x?, a short distance from P to Q.If P
is an arbitrary point on the curve, we denote the coordinates of P by x and y, and
0 has coordinates x + Ax and y + Ay, where Ax (‘delta x’) is a small increment
added to x, and Ay a corresponding (i.e. related to Ax and the steepness of the
curve, see Fig. 2.4) small increment of y.

In the new notation we may now express in a general way the slope quotient of
the curve making use of Eq. (2.1), one page 21:

(y+Ay)—y Ay

(x +Ax)—x  Ax’ 22
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However close the points P and Q on a curve may be, there is a definite quotient
Ay/Ax. When points on the fairly simple curves (graphs of continuous and
singularity free functions) we shall study are brought closer and closer, the quotient
approaches a definite limit, which represents the slope of the curve at the point P.
There is a symbol for the approach towards this ‘limit” which some of us find quite
elegant:

Ay

o Ax 2.3)

Let us now consider the curve in Fig. 2.4 as the graph of a function y = f(x).
The limit (2.3) changes when x varies except when the curve, in our wide sense of
the term, is a straight line. Therefore the limit is evidently a function of x, and is
called the derivative of f(x). Note that f(x) and the derivative of f(x) are two
different functions. The process of finding the derivative is not called derivation
but ‘differentiation’. As could be expected there are many symbols expressing this
crucial notion. The most intuitively powerful is perhaps dy/dx. Since y = f(x)
we may also write df(x)/dx and df /dx. The shortest notation is f”(x) or y’.

It was the great Gottfried Wilhelm Leibniz who first used this elegant notation:

d A Ax) —
Foy= 2 gim BY gy ST ADZ )
dx Ax—>0 Ax  Ax—0 Ax

(2.4)

Note that the limit in Eq. (2.4) is well-defined only if the curve y = f(x) is
continuous. Functions can only be differentiated where they are continuous.

The material world is not continuous. At small distances the discontinuity of
the atomic world appears. Such discontinuities are neglected when we apply the
differential calculus to the description of the world, which we do in the general
theory of relativity. Then we idealize the world as a continuum. This is, however,
an eminently adequate idealization for the purpose of describing most macroscopic
phenomena.

The derivative, as defined in Eq. (2.4), is simply an expression of the slope of a
curve. Since this is identical to the direction of the tangent at any point of a curve,
the derivative is an expression of the slope of the tangent line at any point of the
curve.

We shall now introduce a new concept called the differential.

In Fig. 2.5 we have drawn the graph of a function y = f(x) and a tangent
line of the curve in the neighbourhood of a point P with x-coordinate x,. The
tangent, which is called the linearization L(x) of f, has constant slope quotient,
k =AL/Ax.Thenk = AL/Ax = f’(xp), since the slope of the tangent is equal
to the slope of the curve at x. It follows that the increment of the linearization of f
as x increases by Ax is AL = f”/(x¢)Ax. The quantity AL is called the differential
of f and will be denoted by Df. Hence

Df = f(x0)Ax. (2.5)
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y y=f(x/
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Fig. 2.5 The tangent line at P

The increment A f of f as x increases by Ax is Af = f(xo + Ax) — f(xp).
Later (see Eq. 2.93) we shall show that if Ax is small, the difference between the
differential Df and the increment A f of f is given by a sum of terms proportional
to increasing powers of Ax, starting by (Ax)2. This means that when we calculate
to first order in Ax, this difference may be neglected.

2.2 Calculation of slopes of tangent lines

Let us as a first example consider the function
y=flx)=x" (2.6)

Writing x; for x 4+ Ax and y; for y 4+ Ay the expression for the slope quotient takes

the form
Ay _yi—y

= . 2.7
Ax X] —X 27

According to Eq. (2.6), y = x?, and y; = xlz. Hence we can do a first calculation,
using the rule > — b> = (a — b)(a + b)

yi—y  xi’—x’ _ =) +x)

X1 + X. 2.8)

X — X X1 — X X1 —X
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Fig. 2.6 The slope of the y

curve y = x?2 A

When x; approaches x, the quantity x; + x approaches 2x. In symbols (with
2
y=x7)

A —_
im = = 1im 222 — fim (v + x) = 2x. 2.9)
Ax—0 AX  x1=>x X —X  X1—>X

From Eq. (2.9) we conclude

d
if y=f(x)=x2 then d—y = 2x. (2.10)
X

The derivative of y = x? is simply 2x. Geometrically this means that at any point

(x1, y1) the slope of the curve increases proportionally to x;, as is illustrated in
Fig. 2.6. Note that the derivative of a function is itself a function. When x changes,
the derivative changes accordingly.

Our next example involves a little more calculation with fractions, but will be
needed below. We shall find the derivative of the function f(x) = 1/x.

N L1 x(—<x+A)x)
2 — lim Xt+Ax X _ lim x+Ax)x
(x) Ax—0  Ax ax0 Ax
—Ax
= lim T4 @2.11)
Ax—0  Ax

Dividing by Ax in the upper numerator and the denominator, gives

Ly li ! ! (2.12)
-] =lm —m = ——. .
x Ax—>0 (x + Ax)x x2
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As a third example let us take the derivative of the derivative of f(x) = x2. This
derivative is called a derivative of the second order with respect to x2, or the second
derivative of f(x), and is denoted by d? f/dx>. This time we get

d*f . 2[(x+Ax)—x] 2Ax
—— = lim =

=2. 2.13
dx?  Ax—0 Ax Ax ( )

The geometrical meaning of this result will be made clear in section 2.5. Note,
however, that a ‘constant function’, f(x) = k, for instance where k = 2, corre-
sponds geometrically to a horizontal straight line. There is no slope; the derivative
of a constant function is zero. In the section on series expansions we shall need the
following consequence of this: The third derivative of x? is zero, and so on for the
fourth, the fifth and sixth derivative and so on.

We shall often use a couple of elementary rules:

1. The derivative of the sum of two or more functions is equal to the sum of their
derivatives.

2. The derivative of the product of a constant and a function is equal to the constant
times the derivative of the function.

Example 2.1. Using the results that the derivative of x2 is 2x, the derivative of x
is 1, and the derivative of a constant is zero, we obtain: if y = ax? + bx + ¢, then
dy/dx = 2ax + b.

2.3 Geometry of second derivatives

Each curve we talk about in this section is assumed to be the graph of a function
f(x). The function value f(x) gives the height y above the x-axis of a point on the
curve y = f(x). The first derivative gives the change of height per unit distance in
the x-direction. Consider the function y = 2x. For x = 1 we then have y = 2, for
x =2wehave y =2 x2 =4,forx =3 wehave y =2 x 3 = 6, and so on. The
change of y is the double of the change of x. The rate of change is constant. The
derivative is a constant, namely 2. It determines the slope of the curve.

The second derivative gives the rate of change of the slope with distance in the
x-direction. The second derivative of y = 2x, that is, the first derivative of 2, is
zero, as it should be. But for y = x2, the second derivative is not zero, but is a
constant: y’ = 2x, y” = 2. The slope of the curve changes with x, and the value
‘2’ is a measure of the change.

A straight line, i.e. a line which is not curved, has a constant slope. The more a
curve curves, the faster its slope changes, and the larger is the value of the second
derivative of the corresponding function f(x). There is a close relation between the
second derivative of a function and the curvature of its graph. This will be discussed
in more detail in chapter 9.
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2.4 The product rule

We shall now find a formula showing how the slope changes along the graph of a
function which is the product of two other functions. Let

y=f(x)gx), y+ Ay = f(x+ Ax)g(x + Ax). (2.14)

We can get an expression for Ay by subtracting y from (2.14)i.e. Ay = (y+Ay)—y
Ay = f(x + Ax)g(x + Ax) — f(x)g(x). (2.15)

In order to arrive at a limit analogous to that of Eq. (2.4) we use a trick, adding

and subtracting in Eq. (2.15) the same expression, that is since — f(x)g(x + Ax) +
f(x)g(x + Ax) = 0, the right-hand side of Eq. (2.15) can be written as

Ay =f(x —il- Ax)g(x —12- Ax) — f(3x)g(x —ﬁ Ax)

5 6 7 8
+ f()gx + Ax) — f(x)g(x). (2.16)

From the terms marked 1, 2, 3, and 4 we form the expression g(x + Ax)[f(x +
Ax)— f(x)], and from the functions 5, 6, 7, and 8 we form f(x)[g(x+ Ax)—g(x)].
Dividing by Ax we get the formula

Ay fx+ Ax)— f(x)
E—g(x—i-Ax) Ax
b fn SEEED Z80), @17

From now on it is getting easier. We proceed to the limit where Ax — 0. In the first
term at the right-hand side we can then use the limiting value

A1i111>0g(x + Ax) = g(x). (2.18)

From the definition (2.4) we get

o SO A — @) _ df)
Ax—0 Ax dx

(2.19)

n (x4 Ax) — g(x) _ dg(x)
. g(x + Ax) —gx g(x

1 = . 2.20

o Ax dx ( )
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Consequently, looking at Eqgs. (2.17) and (2.18), and then at (2.17) together with
(2.19) and (2.19), we find

OON _ g LD 4 280 @21)

Perceptually clearer

[f(x) g()] = g(x) f'(x) + f(x)g'(x). (222)

Perceptually? Visually? What is the relevance in mathematics? Ideally no relevance,
in practice quite central. A professional glances half a second at a formidable
formula with 1000 signs, calmly announcing: “There is a mistake—here”. What a
formidable intellect, what a deep understanding, we are apt to think. But the expert
is likely only to have activated his perceptual apparatus, nothing more. (His ‘gestalt
vision’ I (A.N.) would say, as a philosopher.) The equation (2.21) has nearly half a
hundred separate meaningful signs, Eq. (2.22) has 28. We are now offering a version
of the product rule with only 12 signs. Let us pose

u=f(x), v=g). (2.23)
From this emerges supreme simplicity and surveyability:
) =viu' +u'. (2.24)

In words: The derivative of the product of two functions is equal to the second
function multiplied by the derivative of the first function plus the first function
multiplied by the derivative of the second.

Example 2.2. Find the derivative of y = x3.
Writing u for x? and v for x, that is uv for x>, the use of Egs. (2.24) and (2.10)
gives us

() = (* xx) = x(x?) +x*xx' =xx2x +x?x | =3x7%

2.5 The chain rule

What is the derivative of the more complicated function y = (x* + 3)3? Here,
too, we can find a simple rule which is called ‘the chain rule’. What is inside the
parenthesis is itself a function of x, and we may easily perceive what is to be done
by denoting it by a letter of its own, say, u. Accordingly, y = u® with u = x? + 3.
The function y may then be written

y(@) = ylu(x)]. (2.25)



30 2 Differential calculus

We may think of this function in two ways; either as a function y(u) of u, or as a
composite function y[u(x)] of x, i.e. a function of a function.

Let us now free ourselves of the particular example y = (x> 4 3)3 and consider
two arbitrary functions y(u) and u(x). We shall deduce a formula for the derivative
of the composite function y[u(x)]. Here y is called the outer function and u the
inner function. According to Eq. (2.5) the differential of y is

Dy = y'(u) x Au, (2.26)

where Au is the increment of u as x increases by Ax, and the differential of the
function u(x) is
Du = u/(x) x Ax. (2.27)

As noted above the difference between Au and Du is given by a sum of terms
proportional to increasing powers of A x, starting by (Ax)?. We shall take the limits
Au — 0 and Ax — 0, so it will be sufficient to calculate to first order in Au and
Ax. Hence it is sufficient to use the approximations Dy ~ Ay and Du ~ Au.
From Egs. (2.26) and (2.27) we then get

Ay ~ y'(u) x ' (x)Ax. (2.28)

The increments Ay and Ax are finite quantities. Hence we may divide by Ax,
and get
Ay

N Y (1) x u (x). (2.29)

Taking the limit Ax — 0 we get

dy Ay

— = lim — =)' =)/ '(x). 2.30
oSodx asodx 2 7Y (@) x 1) (2.30)
This is the chain rule for differentiation of a composite function. It may be phrased
as follows: The derivative of a composite function is equal to the derivative of the
outer function with respect to the inner function multiplied by the derivative of the
inner function.

Sometimes the notation with a quotient of two differentials is convenient when
we write the derivative of a function. Using this notation the chain rule takes the
form

dy dy du , ,

A AN ) 2.31

dx ~du Sdx 0w St
As a simple application of the chain rule we shall differentiate y = (x> + 3)3. Here
y = u? and u = x? + 3. Using the result of the example above with x replaced by u,
we may write

dy

- 3u? (2.32)
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or
dy = 3u*du. (2.33)

If we divide each of the differentials by dx we obtain

,_d_y_3 2@

= = = 3u’u. 2.34
I udx uu (2.34)

y

Inserting the expressions for y, u, and v’ we finally get

[+ 3)3]/ =3(x2+3) 2x = 6x (x? + 3)°. (2.35)

2.6 The derivative of a power function

We can use the product rule and the chain rule to find the derivative of the function
f(x) = x?, where p is a real number.

Equation (2.10)) and Example 2.1 suggest that (x")" = nx"~! if n is an integer
number. This can easily be proved by so-called mathematical induction. The formula
is clearly correct for n = 1, in which case (x') = x* = 1.

If we now assume that the formula is valid for x"~!, then (x"~')’ = (n —1)x" 2.
By means of the product rule we get, by setting u = x and v = x"~!

(") = (xxx"Y =x(n—Dx"? 4+ 1 x x""!

=[n—1)+1]x""! = nx""1 (2.36)

We now know

1. the rule is valid for x = 1, and
2. if the rule is valid for x"~!, then it is also valid for x", with n as an integer
number.

These are the two criteria for the proof by mathematical induction. We have now
proved the rule for the case that p is an integer number, p = n.

Note that by inserting n = 3, we get the result of the above example. Furthermore
the rule is correct for n = 0, in which case it gives (x°)’ = 0, which is
obviously correct since x* = 1 is a constant function. Its graph is a horizontal line
with vanishing slope, i.e. the derivative of a constant is zero. From Eq. (2.12), noting
that 1/x = x~! and 1/x?> = x~2, follows that the rule is also valid forn = —1,
which will be used in the next section.

Is it possible to prove that the rule is valid also if p is a fraction? Consider a
function u = x'/", where n is an integer number. This function is defined in the
following way

(x'/")" = x. (2.37)
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Hence
u" = x. (2.38)

Here u is a function of x. Differentiation by means of the rule (2.36) and the chain
rule leads to
" U xu = 1. (2.39)

W =—- (2.40)

nu—1’
Remember also that " = x and u = x'/”. Then we get

1 x/mo
U = (xl/n)/ =—= I/ln _ = Sy /m=1 (2.41)
nu nu nx n

Thus
(x?) = px?~! (2.42)

is valid also when p is a fraction of the form p = 1/n, which is sufficient for our
applications later on.
Let us differentiate the square root of x, which is defined by

Jx = x!'/2,
Using the rule (2.42), we get

/_ 1/21_1_1/2_ 1 _ 1
(Vx) = (x )_2x TR

2.7 Differentiation of fractions

In chapter 44we shall need to differentiate fractions of functions. By means of the
product rule, the chain rule and the rule for differentiating power functions, we shall
deduce the rule for differentiating such a fraction. Let u(x) and v(x) be functions
of x. We first consider the function

y] = 1/v=v7" (2.43)
The chain rule, in the form (2.29) with u replaced by v, gives

y =y () xV. (2.44)
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From the rule (2.42) with p = —1 we get

Y@ =0 =—v?=—=. (2.45)

1y 1
(;) = (2.46)

The product rule (2.22) with f = uand g = 1/v gives

(%)/ = (u%)/ = %u’ +u (%)/ (2.47)

Inserting Eq. (2.46) into the last term of Eq. (2.47) we find

These equations lead to

u\’ M/ 1 ’ M/ MV/

Multiplying the first term at the far right-hand side by v in the numerator and
the denominator, and putting the two terms on a common denominator, we finally

arrive at , ,

i i

(4) =2 (2.49)
v v

This is the rule for differentiating a fraction of two functions.

2.8 Functions of several variables

Geometrical pictures of functions of one variable, y = f(x), are conveniently
drawn as curves on an (x, y) plane. In this case the value of f is the distance (in
the y direction) from the x axis to a point on the curve. But, inevitably, we have to
proceed to functions of several variables. Functions with two variables, z = f(x, y),
can be illustrated on paper, but not so easily. They are pictured as surfaces in three-
dimensional space, not curves. In this case the value of the function f is the height
above the (x, y) plane of a point on the surface with coordinates (x, y,z) in the
three-dimensional space (see Fig. 2.8 below).

In the above sections we have seen how the change of a function of one variable
with position is described by the derivative of the function. The increase of a
function f(x, y) of two variables may be divided into two parts: The increase

Acf = fx+Ax.y)— f(x.p) (2.50)
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Fig. 2.7 A rectangular y
garden A
ay <t axay
y S
0 X > X
that f gets by a displacement Ax along the x-axis, and the increase
Ayf = fx.y+Ay) = f(x.y) (2.51)

it gets by a displacement Ay along the y-axis. Mathematically such variations are
described by what is called ‘partial derivatives’ of a function of several variables.

The partial derivatives of f(x,y) with respect to x and y, respectively, are
defined by

o _afy) _ o S+ Ax ) = ()
Ix  dx  Ax—0 Ax
. AS
= Jim — (2.52)
and

A _Afy) o Sy AY) = f(xy)
dy Ay  Ay>o Ay

_ A, f

T a0 Ay (2.53)

The partial derivative of f with respect to x is calculated by differentiating f with
respect to x while keeping y constant, and the partial derivative of f with respect
to y is calculated by differentiating f with respect to y while keeping x constant.

We shall illustrate these new concepts by referring to an increase of the area of
a rectangular garden. The Euclid-loving owner introduces a Cartesian coordinate
system, as shown in Fig. 2.7. Let the function f(x, y) represent the area of the
garden,

f(x,y) = xy. (2.54)
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Let us consider two ways by which the owner may increase the area of the garden.
Firstly he may extend it only in the x-direction; keeping y constant and increasing
x by Ax. The corresponding increase of the area is given by Eq. (2.53),

Avf=(x4+Ax)xy—xy =xy+ Ax xy —xy = yAx. (2.55)

This is just the area of the column with width Ax and height y. Secondly he may
extend the garden in the y-direction; keeping x constant and increasing y by Ay.
Then the increase of area is

Ay f =x(y+ Ay) —xy = xAy. (2.56)

The partial derivatives of f are now found by dividing Eq. (2.50) by Ax and
Eq. (2.51) by Ay, taking the limits Ax — 0, Ay — 0 and applying the definitions
(2.52) and (2.53). The result is

o =y, i =x with f(x,y)=xy. (2.57)
0x dy

The change of height of the surface by a small displacement in arbitrary direction,
with component Ax along the x-axis and component Ay along the y-axis, is

Af = f(x+Ax,y +Ay)— f(x,y). (2.58)

Generalizing the definition (2.5) of the differential of a function of a single variable,
we define the total differential of a function f(x, y) of two variables, as

Df = %Ax + %Ay. (2.59)
0x dy

To first order in Ax and Ay there is no difference between the increment A f and
the differential Df of f. The total differential may therefore be used to calculate
how the value of a function changes by small increments of the variables x and y.
These increments are usually called coordinate differentials, and are denoted by dx
and dy. With this notation the expression for a fotal differential takes the form

Df = %dx + %dy. (2.60)
ax dy

Using Einstein’s summation convention as introduced in Eq. (1.26) in Ch. 1, this
may be written

Df = a—f.dxf, (2.61)
ox!

where x! = x and x> = y in the present case. (Remember that the numbers 1 and
2 are not exponents, but indices of coordinate axes.)
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Fig. 2.8 The function f(x,y) = x3y?

Let us illustrate the concept ‘total differential’ by going back to the example with
the garden. The finite increment of the area of the garden is

Af

(x +Ax)(y + Ay) —xy
Xy + xAy + yAx + AxAy — xy

xAy + yAx + AxAy. (2.62)

Since Ax and Ay are small the product AxAy is a ‘small quantity of the second
order’. In short, it is very, very small. When Ax and Ay are one to a million, AxAy
is one to a million millions. Geometrically it is the area of the small rectangle with
sides Ax and Ay at the upper right-hand corner of the garden in Fig. 2.7. If we are
interested in changes of the area to first order in the differentials, we can neglect
products such as AxAy, which gives

Further examples:

Df = xdy + ydx. (2.63)

Example 2.3. 'We consider a hill described by the function

fx,y) = x3y2. (2.64)

The surface of the hill is illustrated in Fig. 2.8.
Let us first differentiate f while y is kept constant. Then we get

i

= 3x2y2%.
dx Y
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Then we differentiate while x is kept constant,

a
—f = x32y = 2x3y.
dy

Using Eq. (2.60) we get the total differential

i) 0
Df = —fdx + ldy = 3x?y?dx + 2x7ydy.
0x ay

Example 2.4. Let us, as a reasonably obvious generalization, consider an example
with three variables.

g(x,v.2) = x?y’z
Then

0 0 0

9 _oxydn B gy, 2823
ox ay

and

Dg = 2xy3zdx + 3x*y*zdy + x*ydz.

The above excessively complicated relations are found by easy, elegant manipu-
lations of symbols. What does it mean, geometrically, or otherwise? “One cannot
escape a feeling that these mathematical formulae have an independent existence
and intelligence of their own, wiser than we are, ...” (Heinrich Hertz).

Einstein’s field equations are ‘second order partial differential equations’ which
contain partial derivatives of partial derivatives. Such second order partial deriva-
tives are defined by

32f_8 af 32f_3 aof

W=$($) ayax=$(£)’

azf_f) af 32f_3 aof
axaﬁa(@)’ W=$($)‘ (2:69)

Just as the multiplication of 5 by 6 yields the same number as the multiplication
of 6 by 5, successive differentiation with respect to x and then with respect to y,
yields the same result as successive differentiation first with respect to y and then
with respect to x. This is expressed mathematically by

32f _ aZf
dydx  dxdy’

(2.66)

which means that different succession of differentiation does not affect the result.
(The proof is of an advanced mathematical character and is not needed in our text.)
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2.9 The MacLaurin and the Taylor series expansions

Most functions are more complicated and difficult to work with than power
functions. It was therefore a very useful mathematical result, when the Scottish
mathematician Colin MacLaurin (1698-1746) and the English mathematician
Brook Taylor (1685—1731) made clear that most functions can be approximated
by sums of power functions, called power series expansions. Such expansions will
be applied in chapter 9 in our discussion of curvature.

Most anecdotes about the mathematical genius Carl Friedrich Gauss (1777-
1855) are likely to require considerable mathematical knowledge, but one is rather
innocent. Carl was a small boy when the tired teacher, hoping to get some rest,
asked his pupils to for the sum of the first hundred numbers. To his annoyance
Gauss practically at once raised his hand. He wrote from left to right 1, 2, 3, ..., 50,
then, on the next line, 100, 99, 98, ..., 51, and on the third line he added the above,
getting 50 equal sums 101, 101, 101, ..., 101. Multiplying 101 with 50 he came up
with the correct answer: 5050.

If 100 is replaced by an arbitrary natural number 7, the formula Gauss found for
the sum of the n first natural numbers, is

1+2+3+---+n=(1+n)%. (2.67)

Such a sum is called a finite series, meaning that it is a sum of a finite number of
terms. When the number of terms increases indefinitely, the sum of this particular
series does the same. The resulting infinite series is then said to diverge. There are,
however, series with an infinitely large number of terms which have a definite sum.
Even in the case that the sum is finite, in which case the series is said to converge,
such a series is called an infinite series.

A particularly nice example of a convergent infinite series is 1 +x +x% 4+ x> 4+
with x| < 1. In this sum one gets the next term multplying the last one by x. Such a
series with infinitely many terms is called an ‘infinite geometrical series’. Note that
for |x| < 1 each term is less than the foregoing. Let S, denote the sum of the finite
series,

Sp=1l4+x+x24+x>+-+x". (2.68)

Multiplying the left-hand side, and each term on the right-hand side, by x,
XS, =x 4+ x>+ x> 4o x" 4 X" (2.69)
Subtracting each side of (2.68) from each side of (2.69) leads to
Sy —x8, =1—x"T (2.70)

or
(1-x)S, =1—x"*1, (2.71)
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Hence
1— n+1
S, = —> (2.72)
1—x
If |x|<I1, each multiplication of x by itself gives a smaller number. Then
lim, 0o x"T! = 0, and the series with infinitely many terms has a finite sum
equal to
1
S = . (2.73)
1—x

The final result may be written as follows

1
1+x+x2+x3+~~~:m, lx| < 1. (2.74)

Letting x = 1/k we have an example of a convergent infinite series

1+1+1+ - !
k= k2 T 1-1/k’

k> 1. (2.75)
Here k is a real number. The left-hand side of Eq. (2.75) is meant to represent an
infinite number of terms with values indicated by the first three ones that have been
written down. The right-hand expression is the sum of all these terms. If k = 2, for
example, the equation turns into

LI L L
2478716 32 64
1 1

= :—:2
1-1/2  1/2

(2.76)

Following MacLaurin and Taylor we now write a function f(x) as a sum of power
functions, i.e. as a power series expansion

f(x)=ao+aix +ax*+---, |x| <l (2.77)

Here ay, ay, a, . .. are numbers which depend upon the function f(x).

We shall now show how these numbers are determined by the values of the
function and its derivatives at the point x = 0. Looking at Eq. (2.77) we see that if
we insert the value x = 0 all terms on the right-hand side are equal to zero except
the first one. This leads to

ap = f(0). (2.78)
We now differentiate both sides of Eq. (2.77), using Eq. (2.42),

f(x) = la; + 2arx + 3a3x? + 4asx> + - . (2.79)



40 2 Differential calculus

Putting x = 0 we get
ar = f(0). (2.80)

The rest of the coefficients a,, a3, ... can be determined in a similar way. Let us
find the second and third derivatives of f(x)

F7(x) =1x2a, +1x2x3a3x + 1 x2x3x4asx>+---. (2.81)

7 (x) =1x2x3a3 +1x2x3x4dasx +---. (2.82)

Putting x = 0 in these equations give

_ "0 _ /"o

= , = 2.83
“ 1x2 “ I1x2x3 ( )
Inserting these results in Eq. (2.77) we obtain a nice formula
/ O " O " O
f(x):f(0)+f1()x+f()x2+ SO sy (2.84)

1x2 1x2x3

If we continue the differentiation we can get any of the coefficients a; expressed
through derivatives of f(x) at x = 0. The resultant infinite series is called the
MacLaurin series.

We shall consider, as an illustration, an example that shall be employed in
chapter 9; the MacLaurin series of the function f(x) = 1/+/1 —x2 = (1—x?)71/2,
In order to differentiate this function we write it as a composite function, f[g(x)],
where f(g) = g7 '/?, and g(x) = 1 — x2. From the rule (2.42) with p = —1/2,
and the chain rule for differentiating composite functions, we deduce

716 = 10 8/ 6) = = (5 ) 220)
=X (1 - xz)_3/2.

Differentiating once more, first using the product rule, and then the rule (2.42) with
p = —3/2, we get

fx)=(1- )cz)_3/2 +x (—%) (1- xz)_s/2 (—2x)
= (1 - xz)_3/2 + 3x? (1 — xz)_s/z.
From these expressions follow

fO) =1, f'© =0, f"0)=1.



2.9 The MacLaurin and the Taylor series expansions 41

Substituting this into Eq. (2.84) gives

1 1
— X

The third term of the series, which we have not written down, is proportional
to x*, the next one to x° and so on. For small x, say x smaller that 0.01,
x* < (0.01)* = 0.00000001, showing that these higher order terms are then so small
as to be negligible. For such small values of x we can use the approximation

1 1
— ~ 14 —x% (2.86)
V1-x2 2
This approximate expression is useful because the right-hand side is easier to handle

mathematically.

A second example is the MacLaurin series of the function f(x) = V1 —x =
(1 — x)'/2. Differentiation gives f'(x) = (1/2)(1 — x)™"/2(=x) = (=1/2)(1 —
x)~"2. Thus f(0) = 1 and f/(0) = —1/2, which gives

1
«/l—le—zx—i-m. (2.87)
For small values of x we can apply the approximation
1
Vi-x2a~1-— §x2. (2.88)

The MacLaurin series is a series expansion of a function at the point x = 0, that
converges for |x| < 1. This means that the value of the function at an arbitrary point
inside the interval —1 < x < 1, can be found by adding terms with the values of
the function and its derivatives calculated at the point x = 0. If, on the other hand,
X is near a point outside this interval, for example x = 2, the MacLaurin series is
of no use. Then one needs a generalization of the MacLaurin series. One needs an
expansion about an arbitrary point, say x = a. This is called the Taylor series, and
will be used later in our road to Einstein’s field equations.
In order to arrive at the Taylor series, we introduce a function F(x) defined by

F(x) = f(xo+ x) (2.89)
where Xy is a fixed value of x. Differentiation gives

F'(x) = f'(xo+x), F"(x) = f"(x0+ x),
F"(x) = f"(xo+x), . (2.90)
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Inserting x = 0 leads to

F(0) = f(xo), F'(0)= f'(xo), F"(0)= f"(x0),
F"(0) = f"(xo), ---. (2.91)

The MacLaurin series for the function F(x) is

/ 1 "
FO) PO 5 O
1 1x2 1x2x%x3

F(x) = F(0) +

Substituting from Eq. (2.90), we get

S (x0) " (x0) 2+ " (x0)

—_— 3 .o
S0+ x) = f(xo) + 1 Xt 1x2 1x2x3x+

Adding infinitely many terms we get the Taylor series.
Substituting a coordinate increment Ax for x, the corresponding increment
Af = f(xo 4+ Ax) — f(xo) of the function f is

Af = fO) A+ 3 ) (B0 + [ A e (292)

According to Eq. (2.5) the first term at the right-hand side is just the differential Df
of f. Hence

Af=Df = 31 GOAD + ¢ M GAD + 29)

where the terms we have not written are of higher order in Ax.



Chapter 3
Tangent vectors

Curves of particular interest in physics are those representing paths of moving
particles. Such curves may be described by giving the coordinates of the particle
as functions of time. In the following we shall consider the path of a particle thrown
horizontally, as an illustrating example (see Fig. 3.1).

3.1 Parametric description of curves

In chapter 2 (see Fig. 2.4) we became familiar with the parabola, given by
y = x> (3.1

Consider a similar parabola, curving downwards instead of upwards, see Fig. 3.1.
The equation of this parabola is

y = —x°. (3.2)

The path of a free-falling particle moving from the origin of the coordinate system
with a horizontal initial velocity, has the shape of such a parabola.

In order to describe, and understand, the motion of particles, it is useful to
describe the components of the motion in the x direction and the y direction
separately. The curve followed by the particle is then described by giving, not y
as a function of x, but by giving both x and y as functions of a variable 7,

x=x(@), y=y@). (3.3)

The variable ¢ is termed a parameter. Describing a curve in this way, we give a
‘parametric representation’ of the curve.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 43
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5_3,
© Springer Science+Business Media, LLC 2011
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Fig. 3.1 Parabola y

-
>
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In the case of our particle moving horizontally away from the origin, the x and y
coordinates can be given as functions of the parameter ¢ as

xX=t, y= —? 3.4

which represents the parabola given in Eq. (3.2).

The coordinates x and y tell the position, in the (x, y) plane, of points on the
curve, and thus determine its shape. The parameter # may be thought of as a kind
of coordinate along the curve. The value of ¢ indicates where on the curve a certain
point is. To every point on the curve there corresponds a certain value of ¢, and all
points on the curve have different values of 7.

A few more examples will make you a little more familiar with the ‘parametric
representation of curves’.

Consider a certain curve, given by the parametric form

x=t y=~1-12 (3.5)

In order to find the shape of the curve we can substitute different values of f,
calculate the corresponding values of x and y, and then draw the curve through the
points that have been found. Alternatively we may eliminate ¢ from the parametric
equations and thereby find an equation between x and y, from which one can
identify the curve (if it is reasonably simple). Since

2=t y =1-1 (3.6)

the curve represented by Eq. (3.5) has the equation
x4y =1. (3.7)
This equation describes a circle with centre at the origin and radius 1 (see Fig. 3.2).
From the figure is seen that Eq. (3.7) is just an expression of the Pythagorean

theorem. For an arbitrary curve the distance from the origin to a point on the curve,
r = /x2 + y2, depends upon the position of the point. However, in the case of a
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Fig. 3.2 Circle with unit
radius centered at the origin

circle this distance is the same for all points on the curve, equal to the radius of the
circle. In Fig. 3.2 we have drawn a circle with radius r = 1.
Subtracting x? from both sides of Eq. (3.7) gives

y2=1-—x> (3.8)
Taking the positive square root we find y as a function of x
y=v1-22. (3.9)

The graph of this function is only the upper half of the circle.

A whole circle cannot be represented as the graph of a single function. This is due
to the fact that to every value of the variable x there corresponds only one value of
the function y. So a graph of a single function cannot have two points with the same
value of x and different values of y. However, by giving x and y as functions of a
parameter, as in Eq. (3.6), one obtains a representation of the whole of an arbitrary
curve, whether it is open or closed or even when it intersects itself.

Another example: A curve is given by the parametric representation

x=Tt—3, y=—49>4+42t—09. (3.10)
Identify the curve! There is something suspicious about the expression for y: 49 =
72,9 = 32,42 = 2.7 - 3. The expression for y is quadratic; y = —(7t — 3)2.
(Remember the rule (@ + b)?> = a> +2-a-b + b*>. Herea = 7t and b = —3.)
Eq. (3.10) implies that x> = (7t — 3)%. Thus

y =—Xx,

which is again the parabola of Eq. (3.2). Evidently one and the same curve can be
represented in infinitely many ways.
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3.2 Parametrization of a straight line

A straight line L can be identified by giving its direction and a point Py that it passes
through. Let the point Py have Cartesian coordinates (xo, yo, 20), and let a certain
vector, v, specify the direction of the line (compare Eq. (1.15))

V=1, +1ve, + .. (3.11)
This is illustrated in Fig. 3.3. A vector from the origin to a point is called the position
vector of the point. The position vector of Py, and an arbitrary point P on the line
L with coordinates (x, y, z) are, respectively
Fo = Xo€x + Y0€y + 20€;. T = X&y + ye, + ze.. (3.12)
The vector from Pyto P is V. Here ¢ is a scalar quantity which determines how far
the point P is removed from Py. The quantity ¢ is the curve parameter. From Fig. 3.3
and the rule for vector addition (see Fig. 1.8) we get
F =T+ 1. (3.13)
Substitution from Eqgs. (3.11) and (3.12) gives
F=xeé;+ ye, + ze;

= Xo€x + Yo€, + 20€; + 1v'e, + 1V, + 1vie,

= (xo + tv)ex + (yo + tv')e, + (z0 + 1V)e,. (3.14)
z
A P(X1Y7Z) L
Po(X0,Y020)
tv
— 1% s
>y

X

Fig. 3.3 Parametrisation of a line
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This is the component form of Eq. (3.13) in three dimensions. If two vectors are
equal, then all their components must be equal. Thus, in a three-dimensional space
the vector equation (3.13) leads to the three scalar equations

x=xo+tv, y=yo+tv, z=1z0+0" (3.15)

These are the equations of a straight line in parametric form. The usefulness of this
form is easy to see. Think of the line L in Fig. 3.3 as the path of a particle moving
without being acted upon by any forces. Then 7 is the time, and the particle passes
Py at the time ¢t = 0 and P at time ¢.

Let us for a moment go back to Eq. (3.13). It is a marvelously simple equation,
especially when you realize that it is valid for lines in spaces of any dimension;
it holds for vectors in 5 or 55 dimensions (see Ch. 9) as elegantly as on a plane.
However, the component form of the vector equation for 55 dimensions is, if
not complicated, at least rather long. On the right-hand side of the equivalent of
Eq. (3.15) you find a sum of 55 terms.

3.3 Tangent vector fields

In section 1.3 we introduced the term ‘vector field’ representing the wind in a
region, the air above Western Europe. Roughly a vector field is a continuum of
vectors filling a region. The vectors representing the wind velocity was implicitly
assumed to exist in a flat three-dimensional region. However, the spacetime of
general relativity is curved. We need to become acquainted with vectors in curved
spaces. A problem immediately appears. Vectors are drawn as arrows. And these
arrows are straight in the usual Euclidean sense. They are usually drawn in a flat
(x, y) plane.

Imagine instead that the vectors are drawn on a spherical surface. The expression
‘two-dimensional curved space’ means just such curved surfaces. If a vector-arrow
could exist in such a curved two-dimensional space, it would have to curve in order
not to point out of the space, at least if the vector arrow has a finite length. However,
curved vector arrows are not allowed! The conclusion is that vectors of finite length
do not exist in curved spaces. (Infinitely short vectors, however, are allowed as far
as their departure from the curved space can be neglected.)

The simplest example of a curved space is a space of only one dimension: a
curve. We cannot define finite vectors on a curve. But look at Fig. 2.2. There a curve
is generated by a succession of tangent lines. Each of the tangent lines are straight.
Such a line is called the tangent space of the curve at a point. The tangent space is
flat. Even if we cannot define vectors in the one-dimensional space defined by the
curve, we can do something which will turn out to be very useful: we can define a
succession of tangent vectors along the curve. They can be drawn as straight arrows
along the tangent lines. If we define a tangent vector at every point of the curve, we
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have what is a called a tangent vector field in a one-dimensional curved space. The
vectors of the tangent vector field exist in a succession of different tangent spaces
along the curve.

These concepts are readily generalized to spaces of higher dimensions. For
example the tangent space of the surface of the Earth at the North Pole is a plane
touching the North Pole. Now, think of a vector representing the velocity of the
drifting ice at the North Pole. Imagine that no vertical extension exists. The world
is just the two-dimensional surface of the Earth. And the ice exists on this surface.
The velocity vector of the ice, however, exists in the tangent plane, i.e. in the flat
two-dimensional tangent space to the surface of the Earth at the North Pole.

In curved four-dimensional spacetime one can define vectors of finite length at
each point. They exist in the flat four-dimensional tangent spacetime at each point.
We shall need these concepts in Chapter 9 where curvature is discussed. Now we go
back to our simple one-dimensional space: the curve.

Let a curve be given parametrically by x = x(¢), y = y(¢). The tangent-vector
u of the curve at a point P is an arrow with inital point at P and directed along the
curve in the direction of increasing values of the parameter ?.

In any dimension and in any coordinate system the components of # are
defined by

dx'

= 3.16
u o (3.16)

Here i refers to the i’th component. Thus

L. dx
u=ue = ——=~e.
dt

(3.17)
In the case that a curve lies in a plane the tangent vector # may be decomposed in
a two-dimensional Cartesian coordinate system. Then Eq. (3.16) represents the two
component equations

d d
=2 ad =2 (3.18)
dt dt
and Eq. (3.17) reduces to
P e+ w0, = o+ s (3.19)
u=ue.+ue, = —e,+ —ey. .
' Y dt
Consider again the parabola given by equation (3.2). In this case
dx dy
x:—:l d y=—=—21‘, 320
dt e dt (5-20)

showing that the tangent vector field of the parabola is

=&, —218,. (3.21)
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Fig. 3.4 The tangent vectors
at two different points on the
parabola

Since ¢ = x according to equation (3.2), we get
U= ey —2xe,. (3.22)

Thus the x-component of this vector field is constant, and the y-component is
proportional to the distance from the origin along the x-axis. This is illustrated in
Fig. 3.4. The tangent vector field is the infinite manifold of vectors with initial points
along the curve. The initial points trace completely the curve.

Hereuw* =1, 0’ = —latx =1landu* =1, u’ = —2atx = 2.

As a second example consider a straight line,

x=at+b and y=ct+d. (3.23)
The line has a constant tangent vector field
U=aey+ce,. (3.24)

The components of a tangent vector are defined, as said above, as u* = dx/dt and
u’ = dy/dt (when the curve is in a two-dimensional space). You can therefore
use your old knowledge of differentiation when you are going to calculate the
components of a tangent vector.

Tangents that we learned about in school had no definite length. We drew them
suitably long on our paper, and were told that mathematically they would go on
indefinitely. A decisive character of a tangent vector is its finite length, u. In Fig. 3.4
we see that the length or magnitude is that of a hypothenus of a right angled triangle.



50 3 Tangent vectors

This makes the calculation of its length an easy undertaking: u> = (u*)> + (u”)?.
Using Eq. (3.20) we get u? = 12 + (=21)> = 1 + 4t oru = +/1 + 412, Fort = 0
we get u = 1. That is, having chosen 1 as the magnitude of €., the tangent vector
with root at point (0, 0), goes along the x axis from 0 to 1. At the point witht = 5
the tangent-vector is already fairly long, /12 + 4 - 52 = V101 = 10 units, and like
the curve itself approximating the vertical slope.

3.4 Differential equations and Newton’s 2. law

Curves representing paths of moving particles are of particular interest in physics.
According to classical dynamics these curves are fixed if you know the positions
and velocities of the particles at any moment and the forces acting upon them.

Isaac Newton (1642-1727) postulated that the acceleration of a particle is
proportional to the force acting upon it. (The relativistic generalization of this will be
considered in chapter 11.) This is Newton’s second law. It is the most fundamental
equation of Newtonian dynamics, and provides us with the Newtonian equations of
motion of the particles.

Let us consider motion in one dimension, say along the x-axis, in order to
simplify the mathematics. Velocity is defined as rate of change of position with time.
In section 2.1 we noted that the derivative of a function y with respect to a variable
x represents the rate of change of y with x. Now, the position x of the particle is a
function of the time, 7. Thus, the velocity is the derivative of x with respect to ¢

- & (3.25)
V= I .
Acceleration is defined as the rate of change of velocity with time,
dv
= —. 3.26
a=— (3.26)

It follows that the acceleration is the second derivative of the position with respect
to time

_ d?x
dr’
Newton’s second law says that the force F' acting upon a particle with mass m is
equal to its mass times its acceleration,

(3.27)

Fem®X (3.28)
=m . .
dar?

The corresponding vector equation is

F =ma. (3.29)
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The forces acting upon a particle may depend both on the position of the particle
and upon time. We shall here consider forces that depend upon the position, but
that do not change with time. Then the position of the particle will appear in the
expression of the force on the left-hand side of Eq. (3.28), and derivatives of the
position on the right-hand side. Equations containing both a function and derivatives
of the function, are called differential equations. If the equation contains only the
first derivative, it is called a first order differential equation. If it contains second
derivatives, it is called a second order differential equation, and so forth.

If the expression of a certain force, acting upon a particle, is inserted in Newton’s
second law the resulting equation is a second order differential equation, which may
be said to ‘determine’ the motion of the particle.

3.5 Integration

Having found the equation of motion of a particle, one wants to solve it in order
to find the position of the particle as a function of time. Solving a differential
equation one needs to perform a mathematical operation which is the ‘opposite’
of differentiation. One might say that one needs to ‘antidifferentiate’ an expression.
This operation, which is called integration, will now be briefly approached in a
highly simplified manner.

The antiderivative, F(x), of a function y = f(x) is defined as that function
whose derivative is equal to f(x),

dF
Ix = f(x). (3.30)
X

The antiderivative is expressed by a special sign

F(x) = /ydx = /f(x)dx (3.31)

and is called the indefinite integral of the function f(x).
Let us consider an example. We know from Eq. (2.42) that the derivative of x”
is equal to px”~!, or increasing the exponent by 1,

(") = (p + Dx”. (3.32)

Dividing by p + 1 we get

1 !
(p+ 1xp+1) =x" with p # —1. (3.33)
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Fig. 3.5 Geometrical
interpretation of integration

Hence, x?*! /(p + 1) is that function whose derivative is x”. Because the derivative
of a constant is zero, we can add a constant C to the function. Hence, we have
calculated the whole class of integrals!

1
/xpdx = x4 C. (3.34)
p+1
Putting for example p = 2, we get
2 L
x“dx = gx +C, (3.35)

where C is called a ‘constant of integration’.

We shall now give a geometrical interpretation of the integral. Consider the graph
of a function y = f(x) as shown in Fig. 3.5. Let us try to calculate the area of the
region bounded by the graph, the x-axis, and the vertical lines x = a@ and x = b. In
general the shape of the graph is curved, so this is indeed not a trivial task.

The first known solution to this problem is due to Pierre de Fermat (1601-1665).
Newton and Leibniz managed to construct a general method, independently of each
other, about three hundred years ago. Their ingenious construction made clear that
there is an intimate connection between the mathematical representation of an area
and the concept of an integral perceived as an antiderivative.

We start by defining an area function A(x), which represents the hached area
in Fig. 3.5 bounded by the y and the x axis, the graph, and a vertical line with an
arbitrary x-coordinate. Clearly, A(x) grows when x increases. Increasing x by a
small value Ax, A will increase by a small value A A. Consider the small column
drawn from the x-axis to the graph. The left side of the column has position x and
the right side has position x + Ax. Its width is Ax. The height of the left side
of the column is y = f(x), and of the right side y + Ay. If we cut the top of
the column by a horizontal line where its left side meets the parabola, it will be
shaped like a rectangle with width Ax and height f(x). The area of this rectangle
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is AA = f(x)Ax, neglecting a small triangular area on the top of the column.
Dividing by Ax on both sides and taking the limit Ax — 0, we get

. AA
Al;IBOH = f(x). (3.36)

Comparing with the definition (2.4) we see that the area function A(x) has f(x) as
its derivative. This means that the area function is the antiderivative, or the integral,
of f (x), which was the great result of Newton and Leibniz. Looking at the figure
it it also clear that the area function vanishes at x = 0, i.e. A(0) = 0. Thus we can
define the area function formally by

A(x) = F(x) — F(0), (3.37)

where F(x) is the antiderivative of f(x) as given in Eq. (3.31).
The area, A,p, between a and b is equal to the area from the y-axis to b minus
the area from the y-axis to a. Hence,

Aup = A(b) — A(a). (3.38)
Inserting the right-hand side of the definition (3.37) leads to
Auy = F(b) — F(0) — [F(a) — F(0)]
= F(b)— F()— F(a) + F(0) = F(b) — F(a). (3.39)

The area between a and b is written

b
Aap :/ f(x)dx (3.40)

and is said to be the integral of f(x) from a to b. It is called a definite integral. We
now have the following formula for calculating a definite integral

/b f(x)dx = F(b) — F(a) (3.41)

which is a fundamental equation in the calculus of integration. The right-hand side
is calculated by first inserting the number at the top of the integral sign, called the
upper integration limit, in the antiderivative, and then subtracting the value obtained
when the lower integration limit is inserted into the antiderivative.

Let us consider an example, the area of the region enclosed by the parable
y = x2, the x-axis and the vertical lines x = 1 and x = 3, as shown in Fig. 3.6.
According to Eq. (3.40) this area is given by the definite integral

3
A13:/ x2dx. (3.42)
1
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Fig. 3.6 The integral of the y
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First we find the indefinite integral
2 L

F(x)= [ x°dx = gx + C. (3.43)
We may omit the constant C because it will be cancelled in the subtraction. Hence,

1 1 26

A3 =F@)—F(1)=33"—-1"=".

n=F@)—F()= 33— 21" =2

We have developed the concept of a definite integral as an area. That is, however,
not necessary. Integrals, definite as well as indefinite, are of great use in practically
all fields where mathematics is applied. It may be used, for instance, to calculate the
distance a planet moves along its elliptical path and with varying velocity. In such
applications the integral is not something given. One has to deduce it. Then one first
calculates a very small change of the quantity one is to calculate. This corresponds
to calculating the area of the small column of Fig. 3.6, dA = ydx = x*dx. Having
obtained this the calculation proceeds by applying Eq. (3.41).

We now have a powerful mathematical tool which we can use to find the path of a
particle from a knowledge of the forces acting upon it, and the position and velocity
at a certain moment.

3.6 The exponential and logarithmic functions

The power function y = x” of a positive real variable x, where r is a real number,
is a function satisfying the following three rules
. x? .
x? . x" = xP*" and — = xP", (3.44)
X

(x-2)" =x"-7, (3.45)
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Fig. 3.7 A function and its inverse

and

P

(x?)" = xP" and (xP)7 = x7. (3.46)

The last equation in (3.46) is the rule for taking the r’th root of x”. Note that the
second of Egs. (3.44) with p = r gives x* = 1, and that the same equation with
p =0gives 1/x" = x7".

The power function has the variable x as the base and a constant exponent. The
exponential function on the other hand, is defined as a function with a constant base
and the variable x as exponent, y = a*.

The inverse of a function y = f(x) is defined as the function obtained by
exchanging x and y in the expression for f(x), and then solving the resulting
equation with respect to y. The graph of a function and the graph of its inverse
are symmetrical about the line y = x, as shown in Fig. 3.7.

A new function, the so-called natural logarithm, was introduced by the Swiss
mathematician Leonard Euler (1707-1783). It was a great and useful mathematical
invention, based on Euler’s discovery of a particular number, e, defined by

1 n
e= lim (1+—) . (3.47)
n

n—o00

Inserting large values of n this number can be calculated as accurately as one wants.
To fifteen decimal places, for example, the value is

e = 2.718281828459045.



56 3 Tangent vectors

The natural logarithm is denoted by In x and is defined as the inverse function of the
exponential function e¥, i.e.

y=lhx & x=¢. (3.48)

Since ¢’ = 1, it follows that In1 = 0. Also, since x = e for y = 1, we have
Ine = 1.

We shall now deduce the most important rules for calculating with the natural
logarithm. Let x = Ina and z = Inb. Then a = e* and b = ¢°. Using the rule
(3.44) we get ab = e“e? = e*T%. According to Eq. (3.48) this is equivalent to
In(ab) = x + z. Inserting the expressions for x and z we have the rule

In(ab) = Ina + Inb. (3.49)
Similarly, since a/b = e* /e* = "%,
a
In(3) =Ina—nb. (3.50)

Let now @ = Inx". This is equivalent to e = x". Taking the r’th root of each
side, using the second rule in (3.46), we obtain x = e?/"  which is equivalent to
Inx = a/r. Multiplying each side of this equation by r we have a = r In x. From
the two expressions for a we obtain the rule

Inx" =rinx. (3.51)

We shall now calculate the derivative of the natural logarithm. Let y = Inx. An
increment Ax in x produces an increment Ay in y, given by

A A
Ay =In(x + Ax) —Inx = In > x=ln(1+—x), (3.52)
X X

where we have used the rule (3.50). The derivative is given by the limiting value
of this expression as Ax — 0. In order to simplify the calculation, we introduce a
number n by Ax/x = 1/n, so that Ax — 0 corresponds to n — co. By means of
Eq. (3.52) we then get for the derivative of the natural logarithm

Y T T aBoAx T Ao Ax X

1 1 1"
= lim Zn (1 n —) — ~ lim In (1 n —) . (353
n—>oo x n X n—>0o0 n
where we have used the rule (3.51) in the last step. Using Eq. (3.47) we get

1
y' = —Ine.
x
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Hence, since Ine = 1, the derivative of the natural logarithm is
, 1
(Inx) = —. (3.54)
X

Let u(x) be a function of x. Using Eq. (3.54) and the chain rule for differentiation,
we get
1 u
(Inu) = —u' = —. (3.55)
u u

Since ‘integration is the opposite of differentiation’, we have the integral
1
—dx =Inx + C. (3.56)
X
This completes Eq. (3.33) for p = —1. Note also, from Eq. (3.55) that
u/
/—dx =Inu+ C, (3.57)
u

for an arbitrary function u of x. In words: the integral of a fraction in which the
numerator is the derivative of the denominator, is equal to the natural logarithm of
the denominator.

Let us consider an example. We shall find the integral of the function 2x /(x> +1).
Then we write u = x> + 1 and get ' = 2x. Thus, we have

2 /
/ 2x dx=/u—dx=lnu+C=1n(x2+1)+C.
x*+1 u

We shall now find the derivative of the exponential function y = a*. This is
most easily done by first taking the (natural) logarithm of each side, and then
differentiating. Applying at first the rule (3.51) we get In y = x Ina. Differentiation
by means of the rule (3.55) gives y’/y = Ina. Multiplying each side by y leads to
y" = y Ina. We have thereby obtained the formula

(@) = a*Ina. (3.58)

Since Ine = 1 we also have
(") =e". (3.59)

It follows immediately that

/e"‘dx =e" 4+ C. (3.60)
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3.7 Integrating equations of motion

A particle moving in three-dimensional space will in general have three independent
components of the motion. The position, velocity and acceleration of the particle are
all vectors, and so are the forces acting upon the particle. According to Newtonian
dynamics the equation of motion of a particle is found by finding the forces acting
upon the particle adding them vectorially and applying Newton’s second law (see
Eq. (3.29)) to the particle. In three-dimensional space Newton’s second law is
represented by three component equations,

Cx o @Y oy g m%E e (3.61)
m— =F" m——=FY, and m— = F~. .
dr* dr* dr?

We shall first consider the simple case that no force is acting upon the particle.
Then the equations of motion are

d?x d?y d*z
— =0, — =0, and — =0. 3.62
dr* dr dr (3.62)

. 2 2 . . .
(Note that if m% = 0 and m # 0, then % = 0.) The antiderivative of the second
derivative is the first derivative. And the antiderivatice of zero is a constant (since
the derivative of a constant is zero). Integrating Eq. (3.62) therefore gives

d
Yoo, Y0, amd E-oc. (3.63)

The left-hand expressions are just the velocity components of the particle. Denoting
these by v*, v¥, and v* we obtain

vi==C, vV =GC,, and V= C;. (3.64)

This equation shows that the velocity components of the particle are constant. Since
the antiderivative of dx/dt is x, and so forth, and the antiderivative of C; is Cyt, and
so forth, a new integration gives

x=x9+Vvt, y=yo+v't, and z=z+ "V, (3.65)

where the integration constants have been denoted by Xy, yo, and z. Inserting t = 0
we find
x(0) =xp, »(0)=yo, and 2z(0) =z (3.66)

Thus, the constants xg, Yo, and zo are the coordinates of a point that the particle
passes at time ¢ = 0. Comparing with the parameter representation of a straight
line, Eq. (3.15), we see that the path followed by a particle that is not acted upon by
any forces is a straight line.
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As our second example we shall calculate the path of a particle thrown out
horizontally with an initial velocity vy in a field of weight with acceleration of
gravity equal to g. During the free fall of the particle (neglecting air resistance)
the only force acting upon the particle is gravity, which acts vertically. There is no
horizontal force. Then it follows from our first example that the particle has constant
horizontal velocity.

We choose a coordinate system with horizontal x-axis and vertical y-axis. The
particle is thrown out from the origin, in the positive x-direction, at a point of time
t = 0. In this case the equations of motion of the particle are

d*x d?

Y
— =0 and — =-—g. 3.67
dr* dr* g 36D
Integration with v¥(0) = 0 gives
dx dy
— = d — =—gt. 3.68
a0y & (3.68)

Integrating once more with x(0) = y(0) = 0 leads to
L,
X =vt and y = —Egt . (3.69)
Inserting t = x /vy into the expression for y, we find

__ (&) .2
y = (2v3)x. (3.70)

This is the equation of a parabola of a similar shape as that of Fig. 3.1. With a
suitable initial velocity the path of the particle will be just that parabola.



Chapter 4
Approaching general relativity: introducing
curvilinear coordinate systems

Cartesian coordinate systems have straight coordinate lines orthogonal to each other.
The coordinate basis vector fields are constant, and all the vectors of each field
are unit vectors with the same direction. This is the simplest coordinate system
that one can imagine. It seems strange that it can be advantageous to introduce
coordinate systems with coordinate curves which are not straight lines, so-called
curvilinear coordinate systems. But in fact some objects of investigation have
certain symmetries, for example cylindrical or spherical symmetry that makes it
advantageous to introduce curvilinear coordinates. In a flat space, however, every
coordinate system can be transformed into a Cartesian system, so that in principle
one could solve every problem with reference to Cartesian coordinates.

In general relativity it is necessary to introduce curvilinear coordinate systems.
According to this theory spacetime' is curved and four-dimensional with three space
dimensions and one time dimension. This curved four-dimensional spacetime seems
to be the easiest way of taking into account the results from careful experimental
investigations of electromagnetism and gravitation.

In fact, already about 1920, the general theory of relativity was generalized to
describe spacetime with more than three spatial dimensions. More than one time di-
mension is problematic, however, because it leads to certain strange possibilities of
backward time travel, which belongs to science fiction. These generalized versions
of general relativity are called Kaluza—Klein theories, and have been thoroughly
investigated recently. They lead to the possibility of giving a unified geometrical
description of classical (i.e. non-quantum) electromagnetism and gravity. The
problem of creating a coherent single theory for gravitation and quantum theory is
still unsolved. The most recent effort is called superstring theory and involves ten-
dimensional spacetime. In this book we shall be concerned with four-dimensional
spacetime.

ISee Sect. 1.7 and Ch. 5.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 61
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5_4,
© Springer Science+Business Media, LLC 2011
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Consider hypothetical two-dimensional creatures living in a two-dimensional
space made up of the surface of a sphere. They would have to describe their
world with reference to the curved surface. No three-dimensional space exists for
these creatures. And the spherical surface cannot be covered by a two-dimensional
Cartesian coordinate system. (Look at a globus!). The situation is similar in the
case of curved spaces of higher dimensions, such as our spacetime. It cannot be
covered by a Cartesian coordinate system. As long as we insist that the spacetime
may be curved and four-dimensional, and that the description of our universe shall
be referred to a coordinate system with four dimensions only, there is no other way
than introducing curvilinear coordinate systems.

The simplest curvilinear coordinate system is a system of concentric circles and
straight radial lines out from the common centre of the circles. The coordinates of
this system are called plane polar coordinates. In this chapter we shall consider
the main properties of such a coordinate system. Some knowledge of trigonometric
functions is then indispensable.

4.1 Trigonometric functions

We shall now introduce three so-called trigonometric functions, named sinus, cos-
inus, and tangens. They are widely used in physics, meteorology and astronomy—
everywhere.

Consider a circle with radius r and centre at the origin of a Cartesian coordinate
system, as shown in Fig. 4.1. The radial line OP makes an angle 6 with the positive
x-axis. The point P has coordinates (x, y).

Before we define the functions sinus, cosinus and tangens, we shall have to know
how we measure angles. There are two common angular measures. In daily life we
measure angles in degrees. For example the latitude and longitude of the position of
a mountain are given in degrees. One degree may be defined in the following way:
divide a circle in 360 parts by marking 360 equidistant points. Draw radial lines
from the centre of the circle to all of the dividing points. One degree is the angle
between two neighbouring radial lines. Thus the angle around the full circle is 360
degrees. Since there are four right angles around a circle, a right angle is equal to 90
degrees, and a half circle is 180 degrees.

The other angular measure, which is used in connection with the trigonometric
functions, is called a radian. With reference to Fig. 4.1 we formulate the following
definition: the angle, 6, i.e. the number of radians, is defined as the length of
the circular arc between 0 and P divided by the radius. Note that this ratio is
independent of the radius of the circle. The sign 7 is the symbol for the number of
radians of a 180 degree angle. Its value is 3.141592 . . .. It follows that the length of a
circle with radius r is 2w r. The angle around a circle, as measured in radians, is 27,
and a right angle is equal to 27r/4 = /2. Increasing an angle by 27 corresponds
to going one time around a circle.
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Fig. 4.1 Circle of radius r y
centered at the origin A
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The functions sinus(#) and cosinus(8) are denoted by sin 6 and cos 6. They are
defined with reference to Fig. 4.1 by the equations

and cosf = —, (4.1a)

S| =

where 7 = (x> 4+ y?)'/? according to the Pythagorean theorem. Note that if r = 1
then sin @ = y and cos @ = x. For 6 outside the range [0, 277) the definition implies

sin(0 + 27) =sinf and cos(f + 2xw) = cos 6. (4.1b)

Equation (4.1b) shows that sin # and cos 6 are periodic functions with period 2.
This corresponds to the fact that if P on Fig. 4.1 is moved around the circle, so that
6 passes 27, then x and y, and thus sin 6 and cos 6 obtain just the same values as
one round earlier.

The function tangens(8) is denoted by tan 6, and is defined by

in 0
tang = 207 (4.2)
cosf
Substituting for sin 6 and cos 6 from the definitions in Egs. (4.1) leads to
tanf = 2. (4.3)

X
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Fig. 4.2 A right-angled
triangle

a=hsin®

b=hcose

The function tan 0 is in principle superfluous. We can always use sin 6 and cos 6.
However, the function tan # simplifies some calculations, as will be seen in our
description of plane curves in Sect. 9.1.

It will be useful to formulate the expressions for the trigonometric functions
without reference to a Cartesian coordinate system; only referring to a right angled
triangle, such as OAP in Fig. 4.1. Note that in relation to the angle 6 the base x is
the side adjacent to 6, and the height y is the side opposite to 6. Using these terms
the expressions for sin 6 and cos 0 can be formulated in the following way.

the length of the side opposite to 6

sinf =
the length of the hypotenuse
0 the length of the side adjacent to 0
cosf =
the length of the hypotenuse
and
and — the length of the side opposite to 6

~ the length of the side adjacent to 6

These formulations permit us to find expressions for the trigonometric functions by
reference to a right angled triangle with arbitrary orientation, not referring to any
coordinate system, see Fig. 4.2.

From Fig. 4.2 and the expressions (4.1) we get sinf = a/h and cos@ = b/ h.
Multiplying by & we can express the magnitude of the side opposite to 6 and the
side adjacent to 6, by 6 and the hypotenuse /& of the right angled triangle,

a=nhsinf and b = hcos6. 4.4)
Consider Fig. 4.3. The part CQD of the figure is obtained by turning the part

APB an angle 90 degrees to the left. Thus the angles CO D and APB are equal. We
obtain the following sentence: two angles with pairwise normal legs, are equal.
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Fig. 4.3 Angles with
pairwise normal legs

Fig. 4.4 Angle o between A B
and B
|
|
|
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In Eq. (1. 8) we have written the dot product of two vectors A and B as ‘the
magnitude of A times the magnitude of B’s pI‘O]eCthIl BH, along A’. This may now

be expressed in terms of the angle o between A and B.

From Fig. 4.4 is seen that |B||| = cosa. In general
|1§|cosa for —% <a< %
[By| = ) . 3 (4.5)
—|B|cosa for — <o < —.
2 2
Inserting this into Eq. (1.8) gives
A-B = |/I||l§|c0soe (4.6)

where the sign ambiguity in Eq. (1.8) is taken care of automatically. Since the angle
that a vector makes with itself is zero, and cosO0 = 1, it follows that the square of
the magnitude of a vector is

|A? = A4- A. (4.7)
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Fig. 4.5 The extended
Pythagorean theorem

We shall now deduce a geometrical identity that will be used in Ch. 5. The square
of |A — B|is

A—BP=(A-B)-(A-B)=A-A-24A-B+B-B
= |A]? + |B|> 24 - B. (4.8)
Substituting the expression (4.6) for the dot product A - B leads to
|A— B|* = |A? + | B|> — 2| A|| B| cos . (4.9)

Look at Fig. 1.9. Let the angle between the vectors A and B be o, the length of

Abe Ly, the length of B be L, and the length of A — B be L. Then Eq. (4.9) may
be written

L* =12+ L}—2L,L;ycosa. (4.10)

This is an extension of the Pythagorean theorem to the case when the triangle has no
90 degree angle. It might have been named ‘The extended Pythagorean theorem’,
but is usually called ‘the law of cosines’. In Fig. 4.5 we have redrawn Fig. 1.9, but
this time with the quantities L, L;, L,, and o which appear in Eq. (4.10).

The magnitudes of sin 8 and cos & when 6 increases from 0 to 27 are seen from
Fig. 4.1 by letting P start at the positive x-axis and then move around the circle.
At the x-axis, x = r and y = 0, giving and cos0 = 1. Moving on to the y-axis,
x decreases towards zero and y increases towards r. When P is at the y-axis the
angle 0 is equal to 7r/2. Thus sin(r/2) = 1 and cos(r/2) = 0. As P comes to the
negative x-axis, x = —r and y = 0, while § = 7, sosinw = 0 and cosm = —1.
Letting P move further to the negative y-axis, the angle 6 reaches 37/2, while
x = 0and y = —r, giving sin(37/2) = —1 and cos(37/2) = 0. We may now
draw the diagrams representing y = sin 6 and y = cos 0 (in Fig. 4.6), with y along
a vertical axis and 6 along a horizontal axis.

An important relation between sin 6 and cos 6 should be noted. Using Egs. (4.1)
we get

2092 2492 42

. X
31n29+00329=r—2+r—2= . =r—2=1. 4.11)

This equation is valid for every value of the angle 6.
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sin®
A

Fig. 4.6 The function sin 6 and cos 0

We shall need to calculate cosinus to the sum (or difference) of two angles. The
formulae both for sinus and cosinus to a sum of two angles are found from Fig. 4.7.
You will find a lot of information written on the figure. These are results that we
shall now deduce. Consider first the angle DPC. PC is normal to OC and PD
is normal to OA. According to Fig. 4.3 two angles with pairwise normal legs are
equal. Hence, we conclude that the angle DP C is equal to the angle POC, i.e. itis
equal to u.

Next we shall utilize Eq. (4.4) which is related to Fig. 4.2. Consider the triangle
OCP which is similar to the triangle of Fig. 4.2. Using Eq. (4.4) we find

OC =cosu and PC =sinu. (4.12)
Looking at the triangle DCP we find

DC = PC siny = sinusinv,

PD = PC cosv = sinucosv. (4.13)
From the triangle OBC we get

OB = OC cosv = cosucosv,

BC = OC sinv = cosusinv, (4.14)
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Fig. 4.7 Sum of angles
and from the triangle OA P we have
OA =cos(u+v) and AP =sin(u+v). (4.15)
Looking at Fig. 4.7 we now find
sin(u+v) = PD + AD = PD + BC. (4.16)

Inserting the expressions for PD and BC from Egs. (4.13) and (4.14), respectively,
we get
sin(u + v) = sinu cosv + cosu sinv 4.17)

and
cos(u+v)=0B —AB = OB — DC. (4.18)
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Inserting the expressions for OB and DC from Eqgs. (4.14) and (4.13), respectively,
leads to

cos(u + v) = cosu cosv — sinu sin v. (4.19)

We shall now deduce a formula which will be needed in chapter 14. Using Eq. (4.17)
we get

sin260 = sin(6 + )
=sinf cos 6 + cosf sinf = 2sinf cosb. (4.20)

From Eq. (4.19) we have
c0s 26 = cos(f + 6) = cos> § — sin’ 6.
Using Eq. (4.11) this may be written alternatively as

cos20 =2cos?f —1=1—2sin 8.

4.1.1 Differentiation of trigonometric functions

In our analysis of curved coordinate systems we shall have to differentiate the
functions sin@ and cosf. A geometrical deduction of the expressions for the
derivatives of these functions shall now be given.

Consider Fig. 4.8. A circle with radius 1 is drawn about the origin O of a
Cartesian coordinate system. The radii OP and OQ make angles 8 and 6 + A6,
respectively, with the positive x axis. The point P has coordinates (x, y) and the
point O (x — Ax,y + Ay). For a small angle A8, the direction of the line PQ is
very close to that of the tangent at P. Then PQ is normal to the radial line OP.
Thus the legs PQ and OR of the angle PQOR are pairwise normal to the legs OP
and OA. Since the angle POA is equal to 6, the angle P Q R must also be equal to 6.
From the triangle P QR we then have

Ay

. AXx
sinf = A and cosf = Nk 4.21)

Note that the line PQ equals A6 because the radius is equal to 1. Also from the
triangles OAP and OBQ we get

sinf =y and cosf = x, (4.22)
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Fig. 4.8 Changes in position on the unitunit!circle circle when incrementing 6 by A8

and
sin( + A8) =y + Ay and cos(f + Af) = x — Ax. (4.23)

The expressions for the derivatives of sin # and cos 6 can now be deduced directly
from the general definition of the derivative of a function, Eq. (2.4).

sin(f + Af) —sin 6 . Yy+Ay—y
= lim ———

(sinf) = lim

A§—0 A6 T A6>0 AO
Ay
= Aérgo i cos 0 (4.24)
and
;L cos(f + Af) —cosf . x—Ax—x

(cos )" = Alégo A6 N Alégo A6
= i A _ ing 4.25
T aemo\ " Ag) T T 25)

where we have used Eqs. (4.21)—(4.23).
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In order to calculate, in chapter 9, the curvature of a curve, we shall need the
derivative of tan 6. This is most simply deduced by applying the formula (2.46) for
differentiating a fraction of functions. Inserting # = sin € and v = cos 6 and using
Egs. (4.2),(4.24), and (4.25) we find

sin@\’  cosfcosf —sinf (—sinh)
t 9 ! = =
(tan6) (cos 9) cos? 6
_ cos? 6 + sin’ 6 1 4.26)
cos? 6 "~ cos2f’ '
Alternatively, from the next last expression in Eq. (4.26), we get
-2
0
(and) =1+ 27 — 1 4 an6, (4.27)
cos? 6

where we have used the definition of tan 6 in Eq. (4.2).

In Sect. 9.2 we shall need to know the MacLaurin series for sin 6. In order to
collect the necessary theory of trigonometry at one place, we shall immediately
deduce the form of this series.

The MacLaurin series of a function f(6) is given in Eq. (2.84) as

f(0) = f(0)+ f'(0) 6 +

S'O) o S ”;(0) PEI (4.28)

2
In the case that f(6) = sin 6 we get

f(0) =sind = f(0)=0
f'(0) =cos® = f'(0)=1
£7(0) = —sinf = f"(0) =0
f"(0) = —cost = f"(0) =—1.

Substitution into Eq. (4.28) gives
. 1,
sm9=9—89 +-ee (4.29)

These are the first terms of the MacLaurin series for sin .

4.2 Plane polar coordinates

A coordinate system with plane polar coordinates, r and 6, is shown in Fig. 4.9.
Instead of vertical and horizontal coordinate lines, such as in a Cartesian
coordinate system, the coordinate curves in a system with plane polar coordinates
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Fig. 4.9 Plane polar
coordinates, r and 6

Fig. 4.10 Radial and
tangential basis vectors

are concentric circles and radial lines. The Cartesian coordinates x and y are the
horizontal and vertical distances from the origin. The plane polar coordinate r of an
arbitrary point P, is the distance from the origin to P. The plane polar coordinate 8
is the angle of the radial line from the origin to P with respect to a horizontal line.

Just as there are horizontal and a vertical basis vectors, ¢, and € 3, at every point
in a Cartesian coordinate system, there are radial, and a tangential basis vectors,
é, and &y, at every point in a polar coordinate system. These basis vectors at an
arbitrary point P are shown in Fig. 4.10. The point O is the origin of the coordinate
system. The point P has coordinates r and 6. The basis vectors at P have been
denoted by (¢,) p and (é4) p to indicate that their directions and magnitudes depend
upon the point at which they are drawn. The Cartesian basis vectors, €, and €,, on
the other hand, are the same everywhere.
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Fig. 4.11 Relation between y
Cartesian and polar
. 4
coordinates
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The simple relation between a Cartesian coordinate system and a polar coordinate
system with the same origin, and with the direction = 0 corresponding to the x-
axis, is shown in Fig. 4.11.

From the figure is seen that

cosf = d and sinf = 4 (4.30)
r r
which gives

x=rcosf and y =rsiné. 4.31)

This is our first example of a coordinate transformation equation.

Some curves have a simpler equation in polar coordinates than in Cartesian
coordinates. The equation of a circle with centre at the origin and radius R is in
Cartesian coordinates

x2 4+ y? = R (4.32)

The equation of the same circle in polar coordinates is
r =R. (4.33)
The position vector of an arbitrary point P with Cartesian coordinates (x, y) is
F = xé, + vé,. (4.34)

The Cartesian components of 7 are r* = x and r” = y, and may be expressed by
the coordinates r and 6 by means of Eq. (4.31), giving

F=rcosfeé,+rsinbe,. (4.35)
We now calculate the magnitude of the basis vectors &, and ég. Using a concept

introduced in section 3.3 we may say that the basis vector field &, is a tangent vector
field to the radial lines. The coordinate 6 is constant along a radial line, while r
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increases along it. Thus r can be used as a parameter for such a line. The parametric
equation for a radial line is then

x =rcosf and y =rsinb

where 6 is a constant, specific for each line. Equation (3.19) withu = é,,t = r,
and replacing dx/dt with dx/dr, and dy/dt with dy/dr, gives

e, = —eyx + —rey, (4.36)

which shows that

9
Gy =" aa @y=2. (4.37)
ar or

Differentiating Eq. (4.31) with respect to r, (remember that 6 is constant when we
differentiate partially with respect to r), we get

0 0
Ll cosf and 9 _ sin 6. (4.38)
or or
Thus
()" =cosf and (&) =sinf (4.39)
showing that
é, = cosf ey +sinbe,. (4.40)

The magnitude of e,, as calculated by means of Egs. (1.5) and (4.39) is
|é,| = cos® 0 +sin? 0 = 1, (4.41)

which shows that €, is an unit vector independent of its position. But &, changes
with 6. Since the magnitude of &, is constant and equal to unity, the change of
¢, with 6 is only a change of direction.

The basis vector fields é, are tangent vector fields to the circles about the origin.
The coordinate r is constant along a circle, while 6 increases along it. So 6 can be
used as a parameter for such a circle. The parametric equation for a circle about the
origin is again Eq. (4.31), but this time with » = constant for each circle, and with
0 as variable.

Equation (3.17) with & = ég, t = 0, and firsti = x, soi = y, then gives

- ox . - dy
x = " = — y = —_—— =
(ep) 59 rsinf and (ep) 59 rcos6, (4.42)

which leads to
€9 = —rsinfé; +rcosbé,. (4.43)
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The magnitude of &g is found from Egs. (1.5) and (4.43 ) as

[(—r sin0)? + (r cos 9)2]1/2

eg]

r(sin® @ + cos? )% = r. (4.44)

This equation shows that the magnitude of €y increases proportionally to the
distance from the origin. This is not a unit vector field. However, one could define a
corresponding unit vector field €; by

- €g I,
eé = S = —€y. (4.45)
leg| 1

Here the hat above the index denotes that the vector has unit length.

Note that the calculation above has provided us with a method for transforming
basis vectors. Using Eq. (3.19) we find the transformation of the basis vectors from
a knowledge of the corresponding coordinate transformation.

We have seen that in general the coordinate basis vectors are not unit vectors.
And the corresponding unit vectors, such as €;, will in general not be coordinate
basis vectors. Still they are basis vectors, in the sense that an arbitrary vector can be
decomposed along the basis vectors.



Chapter 5
The metric tensor

The metric tensor is perhaps the most important mathematical quantity in the theory
of relativity. From a knowledge of the metric tensor one may compute the geometry
of spacetime and for example the motion of the planets in the solar system. In this
chapter we shall give a thorough introduction to the metric tensor and its physical
significance in the theory of relativity.

5.1 Basis vectors and the dimension of a space

In Chapter 1 basis vectors were introduced as reference vectors for directions (in flat
space), and it was mentioned that at every point of an n-dimensional space there
are n basis vectors. One could say that there are n independent directions in an
n-dimensional space. Let us say what these terms express in a precise way. We then
need to make a few definitions.

The vectors €, &, ...,é, are said to be linearly independent if no set of real
numbers ay, ds, ..., a, different from zero exists, such that

a151+a252+~~~+a,,5n =0. 6.1

The geometrical meaning of this definition is: The vectors €1, €, . . . , €, are linearly

independent if it is not possible to make a closed polygon of the vectors, even if
we try our best by adjusting their lengths, that is, we cannot make a vector sum of
all the vectors equal to zero, even if we scale them. Vectors that are not linearly
independent are said to be linearly dependent. A set of three linearly dependent
vectors is shown in Fig. 5.1.

In this figure we consider three vectors V| = 8éy, v, = —4é, + 3¢,, V3 =
—4é, — 3Ey. Thus v; + v, + v3 = 0, which means that they are linearly dependent,
and that when they are drawn as in Fig. 5.1, they make up a closed polygon.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 77
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5_5,
© Springer Science+Business Media, LLC 2011
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Fig. 5.1 Three linearly y
dependent vectors A -
V2
—
V3
> » X
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In general two vectors that have different directions are linearly independent.
Three vectors in a plane with different directions are, however, linearly dependent,
since one can make a closed polygon in a plane by means of three such vectors.

A set of maximally linearly independent vectors in a space consists of the
maximum number of linearly independent vectors in the space. If €j,¢é,,...,¢,
are maximally linearly independent, there exists a vector # so that the vectors
€1,@,...,¢éy,u are linearly dependent, which means that there exist numbers
a, ds, ..., a, so that

ajey+arer +---+aye, +u=0
or

it':—alé'l—agéz—~~~—ané',,. (52)

By means of three vectors with different directions in a plane one can always
make a closed polygon. To see this, draw the first vector from a chosen point,
then add the second by drawing it from the terminal point of the first vector as
in Fig. 1.8, and choose u as minus the sum of the first two vectors. Clearly there are
only two vectors in any set of maximally linearly independent vectors in a plane.
Correspondingly, there are three vectors in a maximally linearly independent set of
vectors in any ordinary three-dimensional space, in a room for example.

The maximally linearly independent set of vectors in a space adequately
represents the independent directions in the space. This motivates the following
definition. A vector basis, or, more precisely, a set of basis vectors {éy, ..., e,} of a
space is a set of maximally linearly independent vectors in the space. Furthermore
we introduce new symbols for the numbers a;, i = 1,...,n, namely u = —a.
Equation (5.2) then takes the form

n=ue;, =u'e, +u’e,+...+u"e, (5.3)

which is recognized as the component form of a vector (see Eq. (3.17)). Note that
we have superscripts on the vector components and subscripts on the basis vectors
(or vice versa, see Sect. 5.6). The reason for this is connected with the coordinate
invariance of vectors, which will be treated later in this chapter.
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Later in this chapter we shall need to use the expression ‘linear combination’.
We define: a linear combination of some quantities ¢, ¢z, . .., q, 1S an expression
of the form a\q, + a»q>» + -+ + a,q,, where a,as,...,a, are numbers. The
component form (5.3) of a vector thus implies that any vector can be written as
a linear combination of the basis vectors.

The decomposition of a vector in a given space is not unique. In a two-
dimensional space, for example, {é,, & 1} is the coordinate vector basis of a Cartesian
coordinate system, and {é,, &g} is the coordinate vector basis of a coordinate system
with plane polar coordinates. This illustrates that we can have many different sets
of basis vectors in a space.

The dimension of a space is defined as the number of vectors of a vector basis
in the space. Note that this definition does not refer in any way to ‘orthogonality’.
We are used to thinking of different dimensions as orthogonal to each other, or
independent of each other, in the sense that motion in one dimension does not
involve motion in any other dimension. For example motion along the x-axis does
not involve any displacement along the y-axis. However, this needs not always be
so, as we shall later see in connection with rotating reference frames. The different
basis vectors of a vector basis need not be orthogonal to each other, and time is not
necessarily orthogonal to space.

5.2 Space and spacetime

What is space? When you say “N.N. has much space available in his home”, you
can usually substitute ‘room’ for ‘space’. However, this is not the way that we shall
think of ‘space’ in the general theory of relativity. We shall have to be familiar with
very different uses. In order to avoid prejudices, let us invent a word ‘wace’, rather
than always use the word ‘space’. We start by saying: A wace is, among other things,
something within which there are directions and in which things can be moved, or
more technically, displaced. Forget about finite distances between points and retain
rather a notion of (tiny) neighborhoods. In waces we can feel our way, locally.

There exist indefinitely many kinds of waces. How do we know? Because the
existence is in general a purely mathematical one. The multitude of waces is not
more mysterious than the fact that there exist infinitely many numbers. As used
within physics, however, a wace has a physical aspect.

In a very special four-dimensional wace called ‘spacetime’, there are three
dimensions called space dimensions and one called the time dimension. A tiny
displacement normally affects all four dimensions.

It is useful to imagine displacement in a two-dimensional wace as a displacement
‘on’ a surface. We use inverted commas because the proposition ‘on’ suggests
‘upon’, that is, a third dimension, which is foreign to a two-dimensional wace. The
displacements in our case are parts of the surface. In the general case a bulging
surface, like a crust on a slightly boiling soup-like fluid, bubbles are appearing and
disappearing, but do not burst. We must admit that we normally imagine a boiling



80 5 The metric tensor

surface within a three-dimensional room, whereas in such a wace we should try to
imagine ourselves as two-dimensional beings, parts of an indefinitely thin crust.

According to the pre-relativistic conceptions, or rather, ‘models’, of our universe,
we live in a three-dimensional Euclidean (flat) physical space. The properties of
space, as a kind of empty container without walls, were not thought to be influenced
by its contents of matter. And time was something which did not interfere with space
itself.

In the special theory of relativity space and time are united in a four-dimensional
wace, called “spacetime”. Space and time can no longer be separated in any absolute
sense, as is the case in Newtonian physics. The relativity of simultaneity has the
following strange consequence (see Sect. 5.10). What one observer perceives as a
purely spatial distance between two simultaneous events, is a combination of a time
interval and a spatial distance for another observer, moving relative to the first one.
But the geometry of spacetime is not influenced by matter present. It is flat always
and everywhere.

The situation is different in the general theory of relativity. Here spacetime is a
part of physics. The geometrical properties of spacetime depend upon the matter and
energy present in it, and spacetime in turn determines the motion of free particles.
A remarkable aspect of this is that spacetime is just as dynamic as matter.

Spacetime is a four-dimensional wace with Riemannian geometry, and the
equations of general relativity imply that free particles move along geodesic curves
(that is, straightest possible curves) in this wace (see Ch. 12).

Since spacetime is conceived of as curved, we must develop a description that can
be used with reference to curved coordinate systems. This is obtained by introducing
a kind of generalized vectors called tensors. In order to appreciate those properties
of tensors that make them so useful for the mathematical formulation of the general
theory of relativity, we need some knowledge about how vector components change
under a change of coordinate system without any change of the vector itself. In
short: how the vector components transform. The next paragraph is devoted to this
topic. Tensor components also transform without any change of the tensor itself.
According to Einstein’s ideas, natural laws must be formulated in such a way that
they retain their identity whatever reference systems, we humans, with our finite
intelligence, choose to employ in our study of those laws. Tensors suit this purpose.

5.3 Transformation of vector components

What happens to the components of a vector when the vector remains identical
with itself, while the coordinate systems we place it in changes? It turns out that
the equation expressing the effect of all these changes are superbly short. Only 14
symbols are needed in Eq. (5.13) below, even less than in the case of the simple rule
(a + b)* = a® + 2ab + b
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It was important for Einstein to find something like vectors which could take
care of seemingly immensely complicated relations. To the essential simplicity of
natural laws, there could perhaps correspond simple vector equations eliminating
human fuss with coordinates.

Let x* be the old coordinates in an n-dimensional wace, and x* be the new ones.
The only thing we know about the latter is that they are functions of the old ones:

x = fixt, X2, 1)
x¥ = fr(x!, X2, x")

(5.4)
X" = fu(xl,x2 . x")

In an extreme case every new coordinate is a complicated function of all the old
ones. Using the notation x''(...) for fi/(...), x¥(...) for f(...), and so on, the
whole system of equations (5.4) may be written simply as

= x"/(xl, oo x") for W/ =1.,2,....n. (5.5)

Note that x*" should be thought of as one symbol, denoting the first coordinate in
the new system, the second, and so forth.

Let us consider a simple example, where the ‘old’ coordinates are the plane polar
coordinates, r and 6, of section 4.2, and the new ones are the Cartesian coordinates
xand y. Thenx' =r, x> =0, x' = x,andx? = y. The transformation equation
(4.31) from the plane polar coordinates to the Cartesian coordinates, is a set of
equations of the type (5.5). The first one of the equations (5.5), X! = xl/(x1 ,x2),
is x = r cos 6, and the second one, x2 = x?’ (x',x?),is y = rsin#.

We shall find the transformation formula for vector components by thinking of an
arbitrary vector as the tangent vector of a curve, x*(t). Then the components of the
vector are u* = dx"/dt, where t is the curve parameter. The curve is defined by
specifying the coordinates as functions of the curve parameter 7. The transformation
formula for the tangent vector components is found by differentiating the trans-
formed coordinates with respect to the parameter . Then we need a generalization
of the chain rule for differentiation, Eq. (2.31), to functions of several variables. In
a similar way that Eq. (2.31) is deduced from Eq. (2.26), it follows from Eq. (2.61)
that the chain rule for a function of several variables takes the form

dx” _ axH dxt
dt ~ Oxt dt

(5.6)

Writing out the sum in the case of two dimensions Eq. (5.6) looks like this

dx” _ ax* dx! N ax* dx? 5.7)
dt ~ ox! dt ax2 dr '’ '
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Let us consider the example with plane polar coordinates and Cartesian coordi-
nates, again. Then Eq. (5.7) represents the two equations

dx_axdr+3xd9_ 6’dr . 9d9 (5.8
dr  orde " 00dr Var T -8)
and

dy dydr dydo . dr do

= ardr T —smédt—i—rcos@dt. (5.9
Using Eq. (3.16) we can write Eq. (5.6) as

;axi
W = ;—Mu". (5.10)
X

A transformation of some quantities is said to be linear and homogeneous if
all new (i.e. transformed) quantities (vector components in the present case) are
linear combinations of the old quantities. Equation (5.10) represents a linear and
homogeneous transformation of the vector components u.

Transforming, for example, the components of a vector in the plane polar
coordinate system to its components in the Cartesian system, we get, from Eqgs.
(5.8)—(5.10)

w* = cosOu" — rsin Ou?,

u’ = sinOu" + r cos Ou®. (5.11)

Written out for a vector in an n-dimensional space, the innocent-looking Eq. (5.10)
represents the following set of equations

y axV Ly axV 2y ax! .,
u = —u'+ —u+-.- u
ox! 0x2 ox"
. ax? ax? Y
2 1 2 n
W= ——u Pt S
1 2
dx ox ax" (5.12)
W ax"’ | ax"’ N ax" Y
N A T

The linear and homogeneous character of the transformation ‘law’ of vector
components implies that all the terms on the right-hand side of the system of
equations (5.12) are proportional to an ‘old’ vector component, u*. This has a
most important consequence. One can always orient a coordinate system (which we
choose as the ‘old’ system), so that a vector in the old coordinate system has just one
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component, for example u', different from zero, or, as it is often expressed, one non-
vanishing component. Since all the coordinates of both the old and the new system
are included in every coordinate transformation, at least one of the new coordinates
is a function of x'. So, at least one of the coefficients dx* /dx' of u' is different
from zero (i.e. non-vanishing). Looking at the system of equations, we then see that
at least one of the new vector components are non-vanishing. The conclusion of this
verbal mathematical deduction is: No vector can be transformed away. And neither
can a new vector appear due to a coordinate transformation. The existence of any
vector is coordinate invariant.

In the rest of this book, when we mention systems of equations written in a
condensed form, like Eq. (5.10), we shall permit ourselves to write only ‘equation’
even where ‘set of equations’ would be more correct.

Equation (5.10) is the transformation equation of the components of a tangent
vector under an arbitrary change of coordinate system. It was deduced for tangent
vectors, but all vectors can in fact be regarded as tangent vectors. Therefore
Eq. (5.10) holds generally for all vectors. This equation furnishes the completely
general rule for transforming the components of an arbitrary vector.

By exchanging the indices we obtain the transformation equation for vector
components from the new coordinate system back to the old one

axh
R (5.13)

Ho—
T
The vector components, u", with superscripts, transform according to Eq. (5.10)
from the old coordinate system to the new one. The coefficients dxt /dx* have two
indices, and can be arranged as a matrix, which is called the transformation matrix
from the old to the new system. The coefficients dx*' /dx* are called the elements of
the transformation matrix. The vector components transform according to Eq. (5.13)
back to the old system. The coefficients dx* / dx"" of this backwards transformation
are the elements of the inverse transformation matrix. Performing a to and fro
transformation, i.e. a transformation followed by the inverse transformation, leads
to the original vector components. Replacing u in eq (5.13) by the right-hand side
of Eq. (5.10), we find the result of the to and fro transformation,

dxt dxt
= o ax
Note that we changed the summation index p in Eq. (5.10) to v, since the letter u
was already used as a free (i.e. non-summation) superscript in the equation. Such
changes of summation indices are always permitted. Which letter we use for a
summation index, also called a dummy index, does not matter.

The great German mathematician Leopold Kronecker (1823-91) is known for
his disrespect of other numbers than the whole ones: He coined the maxim “God
created the whole numbers, the rest is human doing”. A curious little symbol §#,, is
called ‘the Kronecker symbol’. It may be defined as follows:

ut (5.14)

1 if u=v

0 if pw#v (5.15)
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We now utilize the Kronecker symbol to write
ut = 5t u”. (5.16)

The only non-vanishing term in this sum is obtained for v = w. Equation (5.14) can
thus be written

axk dxH

Vo ep v
——u’ =" u",
axH 9xv Y

which shows that the elements of a transformation matrix and of the inverse
transformation matrix fulfils the relationship

axk gxH

o a0 A7

5.4 The Galilean coordinate transformation

The Galilean coordinate transformation is a transformation between a system at
rest and a moving system. Before we proceed to write down the mathematical
form of the transformation, we need to make some conceptual preparations. The
expression ‘the motion of a coordinate system’, has not yet been given a clear
meaning. A coordinate system mapping a space is essentially a continuum of sets
of numbers, where each number represents the value of a coordinate. In spacetime
one such set at a point contains four numbers, the values of, say, (x, y, z,t) at the
point. The coordinates are mathematical objects. In order to give a meaning to
the above expression, we must give a physical interpretation of the coordinates.
An intermediate step is to introduce a reference for motion. This is called a
reference frame, and may be defined as a continuum of particles with given motion.
A comoving coordinate system in a reference frame is a coordinate system in
which the reference particles of the frame are at rest, i.e. they have constant spatial
coordinates.

Let us choose the platform of a railway station as one reference frame, and a train
moving past the platform with constant velocity v as another reference frame. The
‘old’ coordinate system, {x, ¢}, is comoving with the platform, i.e. it may be thought
of as a system of measuring rods and clocks at rest on the platform, and the ‘new’
one, {x’, ¢’} is comoving with the train. The Galilean coordinate transformation from
the platform system to the train system is

/

x'=x—vt and t =1, (5.18)

where we have omitted the y and z-coordinates. From this transformation we find,
for example, that the position, in the train system, of the origin x = 0 of the
platform system, is x = —vz, which shows that the platform moves with velocity v
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in the negative x’-direction relative to the train. The corresponding transformation
matrix is

ax’ ox’

o s 1 —v

dx ot

o ar’ = (5.19)
or ot 01

dx ot

The inverse transformation represents a transformation from the train system to the
platform system,
x=x"4+vt and t=t. (5.20)

The inverse transformation matrix is

dx Ox

37 A5 1v

ox o' | _ . (5.21)
or 9t 01

dax’ ot’

Let us apply the Galilean transformation to the components of a velocity vector.
The way this is done in elementary mechanics, is to define the velocity of a particle
in the platform system by

i=us, = % (5.22)
U=ue, = —e, .
’ dt
and the velocity in the train system by
=i, =Yg (5.23)
U = Uy = —€y. .
) dr

Differentiating the transformation equation (5.18) and using the definitions (5.22)
and (5.23), we obtain the Galilean velocity transformation

W =u-—v. (5.24)

We should obtain the same result by applying Eq. (5.12). The only nonvanishing
velocity component in the platform system is #' = u. Then Eq. (5.12) is reduced to

W=—-—u=u, (5.25)

which is clearly not correct. What has gone wrong?

The reason for the failure is deeper than just a calculation error. It has to do with
what we mean by a vector. It is not sufficient to think of a vector just as a quantity
with magnitude and direction. From our definition of the dimension of a space
follows that a vector has always the same number of components (not necessarily
nonvanishing) as the number of dimensions in the space it exists in. A Galilean
transformation concerns space and time. Four dimensions are involved, even if
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time and space are not woven together as in the theory of relativity. Therefore,
in order to obtain a proper application of the Galilean transformation, Eq. (5.19),
to the components of a vector, the vector must be defined not only with spatial
components, but also with a time component. Still omitting the y and z dimensions,
we then have

u=u"e, +u'é (5.26)
with
d dt
= ad =4 (5.27)
dt dt

The transformation of the components of the velocity vector, is now found by
inserting the elements of the transformation matrix (5.19), and ¥’ = 1, into the
transformation formula (5.10),

;o ox ox'
o= —ut = ut —v (5.28)

which is the correct result.
If we consider motion in an arbitrary direction, not only along the x-axis, the
Galilean transformation takes the form

=/

W =17 (5.29)

The fundamental dynamical law in Newtonian mechanics is Newton’s second
law, which we considered in section 3.4. This has a most interesting property which
we shall now show. .

Let us assume that a particle with mass m is acted upon by a force f. In the
rest frame of the platform the particle then has an acceleration @ given by Newton’s
second law ]7 = ma. Acceleration is the derivative of the velocity. Differentiating
Eq. (5.29), and noting that dv/dr = 0 since V is the constant velocity of, say, the
train, we get

a =a. (5.30)
Hence, as measured in the rest frame of the train, the acceleration of the particle is
the same as measured on the platform.

In Newtonian mechanics forces and masses are absolute quantities, i.e.

f'=f and m' =m. (5.31)

1 follows that ]7 " = m'a’, showing that Newton’s second law is valid in the same
form in two reference frames connected by a Galilean transformation. One usually
expresses this by saying that the fundamental equations of Newtonian mechanics
are invariant under Galilean transformations. This is what is meant when one says
that Newtonian mechanics obeys the principle of relativity.
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5.5 Transformation of basis vectors

We shall deduce the transformation formula for basis vectors, and start by using that
the vector sum of the component vectors is equal to the vector itself. If we transform
from the old to the new coordinate system, the vector itself is not affected, but the
components of the vector are in general different in the two coordinate systems,

’

u=u"e,y =u'e, (5.32)

where ¢,/ are the basis vectors of the new coordinate system.

From their dishonorable slavery under the tyranny of coordinate axes, we see that
basis vectors are in a sense fake vectors. They are not sovereign, immutable beings,
but chained to a coordinate system. Equations (5.13) and (5.32) give

’ ’

’
w2 W= m m
u e, =u" ey = —uey =u ——ey. 5.33
" i 9 " w CH ( )

Since this equation is valid for an arbitrary vector &, which may have only one
component u* different from zero, it follows that

_ 5.34
ey = ax—ueyj. ( . )

This is the formula for transforming the basis vectors of the new system to the old
one.

Unlike other vectors, a set of basis vectors is not invariant against a change of
coordinate system. Like the component vectors that we talked about in Sect. 1.4,
they have magnitudes and directions, but the ‘identity’ of the basis vectors, their
magnitudes and directions, depend upon the coordinate system.

Applying Eq. (5.34) to the example after Eq. (5.5) we find the transformation
from the basis vectors of the Cartesian coordinate system to those of the system
with plane polar coordinates,

- ox ay .

e, = a—ex + Eey = COS ng + sin ng, (535)
’

R ox _ ay . . -

eg = %ex + %ey = —rsinflé, 4 rcosfe,, (5.36)

in accordance with Eqgs. (4.40) and (4.43).
By exchanging the indices ' and & we obtain an equation for transforming the
basis vectors of the old coordinate system to those of the new system.

axH

ey = WEM. (537)
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The basis vectors transform by means of the elements of the inverse transformation
matrix, i.e. they transform inversely, i.e. in the opposite ‘direction’, relative to the
transformation (5.13) of the vector components.

5.6 Covariant and contravariant vector components

Vectors continue to be the same when described in different coordinate systems, that
is vectors are invariant. This means that the product sums of vector components
and basis vectors, v“E,L = v'é; + v?é, + ---, must be invariant (see Eq. (5.32)).
This invariance may be expressed in two different ways. Either by using vector
components, u*, that transform by means of the elements of the transformation
matrix, and basis vectors, E,L, that transform by means of the elements of the inverse
matrix. Or one could introduce vector components, u,,, that transform by means of
the inverse matrix, and basis vectors, ¢*, that transform by means of the ordinary
transformation matrix. The first way is called a contravariant decomposition of
a vector, ‘contra’ because the basis vectors transform by means of the inverse
transformation matrix in this case. This is the usual decomposition which we have
used all the time, with superscripts for the contravariant vector components and
subscripts for the ordinary basis vectors, i = u*e,. The second way of expressing
the invariance of a vector, is called the covariant decomposition of a vector, with
subscripts for the covariant vector components and superscripts for the basis vectors,
u = uye". The basis vectors e* are called covectors.
The covectors, e/, are defined implicitely by

e .8, = 8", (5.38)

where ¢, are the usual basis vectors, and §#, is the Kronecker symbol. The trans-
formation formula for the covectors may be deduced as follows. From Egs. (5.37)
and (5.38) we get

daxV N o daxV N N ’
et e, =el - ——e, =¢" e, =6 . (5.39)
oxV oxV

Multiplying by the elements dx*’ /dx® of the transformation matrix, leads to

ax” ax _ , ax¥
X oy o W
Py ax"/e e, P SH . (5.40)

Applying Egs. (5.38) and (5.15) we obtain

7 ’
It Ok
v oou o sy - ox
8Vqet ce, =et ey = — =

o = g te (5.41)
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Using the definition (5.38) we get

’

- ox* _, .
et e, = ——et-e,.
dxH
Hence
7
N dx# N
et = —et. (5.42)
dxH

Comparing with Eq. (5.13) we see that the covectors transform in the same way
as the contravariant vector components. The transformation from the marked to the
unmarked system is

_ dxH
T axW

A vector may be decomposed along the covectors as follows

et

e (5.43)

u=u,et. (5.44)

The transformation formula for the covariant vector components are found by using
Eq. (5.43)

8x" ’ 8x ’ ’
> ~i —i - m
u=uye = Mu—axu/e —a % uges =uye- ,
giVil’lg
U, = —u 4
" dxm H

which shows that the covariant vector components transform in the same way as the
ordinary basis vectors.

The relationship between the ordinary basis vectors and the covectors, and
between the contravariant and covariant components of a vector /f, is illustrated
in Fig. 5.2.

5.7 Tensors

Until now we have considered scalar functions and vectors. The value of a scalar
function at a point is specified by one number. Such functions are adequate
to describe simple fields, such as the temperature in a region. However, in order
to represent mathematically the wind at the surface of the Earth, it does not suffice
to specify one number at each point. One needs to specify two numbers, for example
the velocity of the wind in the East-West direction and in the North-South direction.
A still more complicated problem is to represent mathematically the stresses in a
body. Then one has to specify both the direction of a force and the direction of the
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Fig. 5.2 Basis vectors and covectors

surface that the force acts upon. One needs a quantity consisting of two vectors.
Such quantities of a certain type shall be defined below. They are called tensors of
rank two. Vectors are called tensors of rank one, and scalars are called tensors of
rank zero. Tensors have components, and the rank is just the number of indices
of their components.

When we talk of ‘vector fields’ we think of vectors that are functions of the
coordinates. However, a vector can also be thought of as a linear function acting
on other vectors and giving out a real number. When one vector acts upon another
in this way, the real number it gives out is the scalar product between the other
vector and itself. There is an additional convention here. A vector, thought of as a
tensor of rank one, is only allowed to act upon a vector of opposite type than itself.
A basis vector is called a contravariant tensor of rank one, and a covector is called
a covariant tensor of rank one. A contravariant tensor of rank one can only act upon
a covariant basis vector of rank one, and vice versa,

8, =¢,-8 and @, =" 3.

The scalar product is defined to be symmetrical. Using Eq. (5.38) we find that the
real numbers obtained when the basis vectors act upon each other, are the values of
the Kronecker symbols,

eu(e”) = e'(e,) = 8",. (5.46)
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In order to be able to write a tensor of rank two or higher in component form we
must introduce the tensor product, which is denoted by ® and defined by

¢, ®E, (%, e =¢,"e, ). (5.47)

There are three types of basis tensors of rank two or greater:

1. A contravariant basis tensor acts only upon covectors.
2. A covariant basis tensor acts only upon ordinary vectors.
3. A mixed basis tensor acts upon both ordinary vectors and covectors.

Tensors of rank two can be written in component form as linear combinations of
basis tensors of the formé, ® ¢, ¢# ® ¢”, e @ e,,ore, ® é” :

E=E"e, ®e,, F=F,e'®e",

G=G,e* ®e,, H=H"e,®¢". (5.48)
Tensors are a sort of generalized vectors. Like a vector, a tensor has a coordinate
independent existence. Under a coordinate transformation the tensor components
change, but not the tensor itself. The transformation formulae for the contravariant

components of a tensor of rank two can be deduced by using the transformation
formula Eq. (5.34) for the basis vectors,

v > - - -
S=85"e, ®e, =85"e,Qeé,

axt axY axH dx”’ - -
= S ® g = g S w B (5.49)
Hence , ,
'y 3)(“ 3xv v
Su — P WS/’“ . (550)

In the same way one finds the transformation formulae for the covariant and the
mixed components

dx* oxV
Syivr = g oy Sy (5.51a)
, axt 9xV
sH o, = é;;—uwiv S, (5.51b)

and

;o xk 9xY
Syt = 2 g, (5.51¢)
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5.8 The metric tensor

As we have mentioned above, the geometrical properties of coordinate systems
reflect the geometrical properties, such as symmetries and curvature, of the space
they cover. This information about the geometry of a space is imprinted in the
way that the coordinate basis vector fields (see Sect. 1.3 on vector fields) vary with
position. This, again, is encoded in the position and time dependence of the scalar
products, & e é,, of all the basis vectors in a coordinate system.

In systems of curved coordinates both the angle between basis vectors and their
length may change from neighbourhood to neighbourhood. The situation is so
complicated that we need an exceedingly clever ‘notation’, that is, mathematical
terminology, in order to be able to easily survey the wilderness of changes. When
we deal with n dimensions, we get n? scalar products between the basis vectors, all
of which may change from neighbourhood to neighbourhood,

ep-ey, p=12....n, v=12,...,n. (5.52)

Spelled out this is a short-hand for a collection of scalar products

é1-€ €,-€ - €1-é,
6,8 €38y -+ €16y

(5.53)
_gn.gl €y -6y - gn.gn_

The é’s are basis vectors along coordinate curves that are, in the general case, not
straight. In what follows we shall explain why and how the n? quantities in (5.53) tell
us everything we need about the geometrical properties of our coordinate system.

Figure 5.3 shows two basis vectors €, and €, with an angle o between them.
Equation (4.5) applied to the present case shows that the projection of é, onto €,
written €,, has a magnitude |é,| = |é, | cos a. From Eq. (1.8) for the scalar product
of two vectors then follows

€y e =|e,llé,| cosa. (5.54)
i v
|
|
|
|
I
o | —_
L >
Fig. 5.3 Basis vectors A B H
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Note from Eq. (5.54) that the order of the vectors means nothing for the
magnitude or the sign of the scalar product. This is expressed by saying that the
scalar product is symmetrical under exchange of the vectors:

Gy =28, 2y (5.55)

The mathematicians’ response to the demand for a clever terminology, making it
possible to treat all the scalar products in a systematic way, was to invent a new
concept: the metric tensor. In Ch. 1 we introduced, just as an anticipation of things
to come, the famous expression of the components of the metric tensor

8w = gu : gv (556)

where each é . 18 a basis vector field, like the vector field in Fig. 1.4, i.e. the
magnitudes and directions of the vectors depend upon the position. This implies that
the components, g,,,,, of the metric tensor are in general functions of the coordinates.
The three lines indicate that (5.56) is not an equation. It is a regulative definition
announcing that in what follows the expression g, will be used as a short-hand for
G-
According to the definition (5.56) and Eq. (5.55) the metric tensor is symmetrical,

8o = Zuv- (5.57)

The number of independent components, g,,, of the metric tensor is thereby
reduced from n? to n(n + 1)/2 in an n-dimensional space. In spaces of one, two,
three and four dimensions, for example, the metric tensor has respectively one, three,
six and ten independent components. These are usually written in matrix form. For
the mentioned number of dimensions they are, respectively

g;w=[g11],
_ |81
B [gzl gzz}’
g1
8w = | 821 822 ,
831 832 £33
and
&1
_ | 821 822
g;w— ’
831 &32 833

841 842 843 844
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where we have written only the independent components. The unwritten
components on the upper right half of the matrices are equal to those on the
lower left part.

In a coordinate system where the basis vectors are orthogonal to each other, the
scalar products of different basis vectors are zero, according to Eq. (5.54) since
a = m/2 for orthogonal vectors, and cos(rr/2) = 0. Only the scalar products of
each vector by itself are different from zero. This means that in a coordinate system
with orthogonal basis vectors, only the components of the metric tensor with equal
indices are different from zero. Since they are found along the diagonal when the
components are written as a matrix, such a metric tensor is called diagonal. Thus,
in the case of a right angled coordinate system in four-dimensional spacetime, the
metric tensor has the form

g1
go=| 52 . (5.58)
833
844
To save space this is usually written as
guv = diag[gi1, g22, 33, g44]- (5.59)

Example 5.1. The simplest two-dimensional case is the metric of a Cartesian
coordinate system in a plane. Then the only scalar products of basis vectors different
from zero are €, - €, = l and €, - €, = 1, and the only non-vanishing components
of the metric tensor are,

gu=gn=1 (5.60)

Example 5.2. Let us now, as an illustration, calculate the components of the metric
tensor in the coordinate system with plane polar coordinates. The basis vectors are
given in Egs. (5.35) and (5.36). The scalar products are

-

ér-é = (cosfé, +sinfé,) (cosb e, +sinfé,)
=cos>0¢é,-éx + cosb sinféy - e,
+sinf cos0é, - é, +sin’ 0 ¢é, - é,
= (cos2 9) 1 4 (cos@ sinf)0
+ (sinf cos0) 0 + (sin2 9) 1

=cos’ 0 +sin’6 = 1, (5.61)
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ég-ég = (—rsinfé, +rcosféy)
(=rsinfé; +rcosfé,)
=r*sin? 6 + r’cos’ 0
= r? (sin® 6 + cos® ) = r?, (5.62)
and
e -eq = (cos@?x + SinGEy)
(—rsin@é, +rcosfé,)

= —rcosf sinf + rsinf cosf = 0. (5.63)

Equation (5.63) shows that the basis vectors of the coordinate system with plane
polar coordinates are orthogonal, as shown in Fig. 4.10. Thus the metric tensor is
diagonal, and—concluding this example—the only nonvanishing components are

gn=1 and gy =r>. (5.64)

The transformation of the scalar products of the basis vectors under a change of
coordinate system follows from Eq. (5.37)

dx* _  oxV . dx* ox¥ .
e,- é, = €, ey
Axt T axy T axm gx MY

5// Cey = (5.65)
From the definition (5.56) and Eq. (5.65) follows that the components of the metric
tensor transform in the same way as the scalar products of the basis vectors

_ox! ox? 5.66
guwv = ng;w‘ (5.66)

Comparing with the first of Eqs. (5.49) we see that g, transform as covariant
components of a tensor of rank 2. The new components are linear combinations
of the old ones.

Note that expressions such as ;’%, ;’::, are products of two factors, and not a
double differentiation. In the case of a two-dimensional space, with one coordinate

. . 7
system having coordinates x! = x and x> = y and another one x'" = x’ and
2

x¥ =y, Eq. (5.66) represents the following system of equations
_ox! ox! N ax! 0x?
gy = ol 3x1/gll axl axl/glz
ax? ox! ax? dx2

Bt o 8 T 87
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_ dx! ox! ox! ox?
gy = mmgn mmglz
dx? ox! ax? 9x?
o 0T T g A
dx! 9x! ox! ax?
S N T N
dx2 Ox! ax? 9x2
ax? xS T G g 6
dx! 9x! ax! ax?
82y = Wﬁg“ mmglz
dx? ox! ax? 9x?

0 x2S 1 gy g 82 (5.67)
Example 5.3. Let us, as an illustrating application of this equation, transform the
components of the metric tensor in a plane from a Cartesian coordinate system to a
system with plane polar coordinates. Here we choose x' = x, x2 = y, x!" = r, and
x¥ =0. Equations (5.67), (4.25) and (5.60) give the non-vanishing components

dx 0x n dy dy
ar or gn ar or &2

= (cos ) (cosB) 1 + (sinh) (sinH) 1
=cos’ 0 +sin’6 = 1 (5.68)

g =

and

_ Ox dx n dy dy
8y = 50 aeg“ 50 89g22
= (—rsinf) (—rsinf) 1

+ (rcos ) (rcosf) 1

=r2sin®0 + r?cos’

=r? (sin2 6 + cos’ 9) =r2, (5.69)

in accordance with Eq. (5.64). Note that we need to mark the indices only in a
transformation equation, where we relate the components in two different coordinate
systems, not in an equation such as Eq. (5.64) where only the components in one
coordinate system appear.

The components, in a certain coordinate system, of the metric tensor of a space
is often called just the metric. From the definition (5.56) is seen that the metric is
directly related to a coordinate system, it is a ‘personal signature’, its ‘fingerprint’.



5.9 Tensor components 97

However, the general theory of relativity is not a theory of coordinate systems,
but of the space we supposedly live in: physics, not mathematics. The metric is a
fundamental element of this theory. And it does indeed contain information not only
of coordinate systems. In fact, from the metric we can extract everything we want
to know about the geometry of the mathematically defined space that the coordinate
system fills. Mathematically defined spaces are used as ‘models’ of the physical
space. How all this comes about you are invited to learn in the following chapters.
It requires particular attention to the contents of Ch. 6—the famous Christoffel
symbol—and Ch. 9 which introduces the Riemann curvature tensor.

5.9 Covariant and contravariant tensor components

In Sects. 5.6 and 5.7 we met covariant, contravariant and mixed tensor components.
Even if one can perform all calculations in general relativity in terms of one sort
of components only, some expressions are simplified when different types of tensor
components are allowed. Therefore it has become common practice to use both
covariant, contravariant and mixed tensor components in relativistic calculations.

We shall here introduce the contravariant and mixed components of the metric
tensor, and we shall show how the different sorts of tensor components can be
calculated from each other by means of the covariant and contravariant components
of the metric tensor.

The contravariant components of the metric tensor are defined by

g =et-e". (5.70)
From Egs. (5.70), (5.15) and (5.39) we have
et.e’ =gh" = g"t, = g%t e, = et - g"%e,. (5.71)
Hence
e’ = g"%e,. (5.72)
From this, together with Eq. (5.56), we get
g"gva = g'"é, &y = " - é,. (5.73)

Applying Eq. (5.38) we have
g gve = 8Hy. (5.74)

Using this equation one can calculate the contravariant components of the metric
tensor from the covariant components. If the metric tensor is diagonal, so that g,,, 7#
0 only for « = v, Eq. (5.74) implies g#*g,, = 1 for v = u, which gives

g =1/gupu- (5.75)



98 5 The metric tensor

We shall now find how the covariant vector components can be calculated from
the contravariant components and the metric tensor. Multiplying the equation

uge® = u’e,

by €, we get
Us€® - €, = uey - €.
Using Eq. (5.38) on the left-hand-side and Eqgs. (5.56) and (5.57) on the right-hand
side give
ua(sau = Magozu = g/mua

or

Uy = gualt”. (5.76)

Calculating u,, from Eq. (5.76) is called lowering a tensor index.
A corresponding formula for raising a tensor index is found by using, succes-
sively, Egs. (5.15), (5.74) and (5.76),

ut = §Fu® = g g, qu® = gM'u,. (5.77)

Hence, by means of the metric tensor the contravariant components are mapped
upon the covariant ones, and vice versa.
The general expression (1.26) for the scalar product of two vectors is

U-v =g’ (5.78)

In three dimensions, for example, this is a short hand notation for the nine terms in
Eq. (1.27). Inserting first u, = g,,u"* = g, u" from Eq. (5.76), and then v, =
guwv”, Eq. (5.78) may be written in two alternative ways

The mixed components of the metric tensor, g#,, are defined by
guv =ek. gv‘

From Eq. (5.38) then follows
gh, =8",. (5.79)

Equation (5.79) shows that the mixed components of the metric tensor are the values
of the Kronecker symbol.

As mentioned above, if the components of a tensor have one index, the tensor is
said to be of rank 1. Thus, vectors are, in fact, tensors of rank 1. The components of
the metric tensor are a set of quantities with two indices. It is said to be of rank 2.
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This holds whatever the dimensions of the space. The transformation formulae for
tensors of rank 2 are given in Eqgs. (5.50) and (5.51). There are sets of quantities
which also transform similarly, but have more than two indices, let us say three, u,
v, and «. If three, the tensor is said to be of rank 3. They may be of any rank. The
transformation formulae of the tensor components are deduced in the same way as
in Eq. (5.50). The contravariant components, for example, transform according to
the following rules

’ 3x“/
T = 2 Tn
axH
’r 3x"/ 8x"/
TV — 25 7w
axH 9xV
Tp/v’a’ — dx 9x” 9x“ uvo . (5.80)

dxH OxV dx“

/

dxM dxhs dxHn

OxHr gxiz  9xk

TH Wyl — T HIK2-ln

For all these quantities it is sufficient that they transform similarly to vectors.
This secures the decisive coordinate independence, which is used in mathematical
formulations of the basic natural laws whatever the complicated circumstances, say
the steadiness and invariance of laws of oceanic waves in hurricanes. The variation
of wind direction results in infinitely complicated forms of interfering wave-ridges,
but presumably not in new basic ‘laws’.

The tensor-notation is superbly economical: it makes sets of equations surveyable
and understandable, which otherwise would be completely impossible to grasp.
A formula in Eddington’s elegant The Mathematical Theory of Relativity (p. 108) is
worth looking at

(4NJ%g" = eupys€icno8u8pe8yn8ia

/
3x; axg a-x,; 8xé
€uApn€viow ax
'

0x, 0xy 0x

o 0% 0 0%y O,
poTvEPXYe 0x, 0x5 0x; 0xy

His comment is laconic: “There are about 280 billion =280 x 10'? terms on the
right, and we proceed to rearrange those which do not vanish.” He ends up
with a very short formula—thanks to the ingenious tensor-notation. Without that
instrument it might have been several million kilometres long.
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5.10 The Lorentz transformation

In the general theory of relativity gravitation is described geometrically in terms of
curved four-dimensional spacetime. This spacetime has a strange property which
is apparent even in the flat spacetime of the special theory of relativity. Although
flat, its geometry is not Euclidean. The distance between two points in spacetime
is not given by the usual form of the Pythagorean theorem. The new form of
the Pythagorean theorem, valid for four-dimensional spacetime, will be deduced
in the next section, from the postulates of the special theory of relativity; that
the velocity of light does not depend upon the motion of the light source and is
equal in all directions, and that it is impossible, by performing experiments inside
a laboratory, to measure any velocity of the laboratory. Thus the laws of nature
should be formulated so that they are valid, unchanged, whatever the movement of
the laboratory. This means that if we write down an equation representing a physical
law, with reference to a certain laboratory frame, and then translate to another frame
moving relatively to the first, the equation should not change. Thus, each term
of the equation must change in the same way under the transformation between
the two frames. In the special theory of relativity such a change of frame is done
mathematically by applying the so-called Lorentz transformation that we shall now
introduce.

Imagine a gardener sitting on a bench, getting more and more excited as he
is observing what looks like an odd hummingbird. The hummingbird flies with
constant velocity along a straight line. She has a watch, a yardstick and an organ
that emits an extremely short flash of light just as she passes the gardener. The
gardener, who is a hobby mathematician, decides to imagine a Cartesian coordinate
system {x, y, z} with x-axis along the travelling line of the hummingbird and with
himself sitting at the origin, x = 0. Also he adjusts his clocks to show zero when
the hummingbird passes him. In the gardener’s coordinate system the position of
the hummingbird at a point of time 7 is

x=vt, and y=2z=0. (5.81)

When the hummingbird flies straight away with velocity v along the gardener’s x-
axis, she considers herself as being at rest at point zero of her x’-axis. Both the
gardener and the odd hummingbird knows the Galilean transformation equations

X'=x—-vt, y=y, 7=z and ¢ =t (5.82)

Equations (5.81) and (5.82) imply that the position of the hummingbird on her own
axis is

xX'=x—-vt=0 and y =7=0, (5.83)
showing that the hummingbird is indeed at rest at the origin of the marked coordinate
system.



5.10 The Lorentz transformation 101

Neither mechanical nor optical experiments, nor any other sorts of experiments
can decide whether the gardener or the hummingbird is at rest. They may both
consider themselves at as rest and the other one as moving. This is the gist of
Einstein’s special principle of relativity expressed in layman terms.

Observing the flash of light emitted by the hummingbird they both find (surpris-
ingly) that light travels isotropically with the speed ¢ and expands into a spherical
surface with radius cz. This is essentially what Einstein’s second postulate says.

Because the hummingbird inevitably flies along a radius of the sphere away from
the centre x = 0, the gardener says he occupies a privileged position and remains
at the centre, whereas she, at x’ = 0, gets further and further away from the centre.
“Not s0”, says the hummingbird, “I am at the centre all the time”. The gardener
replies: “As you like it, honey, but see to it that I need to change my way of thinking
as little as possible.”

What is the least possible change of the Galilean transformation equations (5.18)
such that the gardener and the hummingbird both can maintain that they are perman-
ently at rest at the centre of the light wave, although they move relative to each other?
The hummingbird promises to find a way out. But there are a few preliminary steps,
she says. We must acknowledge that the equations of the two spherical surfaces are

xr 4y + 2= (er)? (5.84)

x/Z 4 y/Z 4 Z/2 — (Ct/)z. (585)

The radii ¢t and ct’ expand proportionally to time. By subtracting the first equation
from the second:

(¥ =) + (2 =) + (P =) = (2= 17). (5.86)

We postulate that motion along the x axis does not influence the results of measuring
distances in the (transverse) y and z directions. (Remember the promise of least
possible change.) Thus

Y=y and 7=z

are still valid in our new transformation. Equation (5.86) then is reduced to
Y22 = 2 (t’2 _ l2)

or
x? —c*t"? = x? = (5.87)

These were the preliminary steps. To proceed further we demand that the new
transformation shall deviate as little as possible from the Galilean transformation.
So we assume that the new transformation has the form x” = y(x — vt) and ¢’ = ¢,
where y is a positive constant to be determined by inserting the expressions for x’
and ¢’ in Eq. (5.87). However, inserting ¢’ = ¢ into Eq. (5.87) gives x’ = x. This is
only an ‘identity transformation’, so the proposed form of the transformation does
not work.



102 5 The metric tensor

A more radical solution is necessary in order to obtain a consistent kinematics, so
that both the gardener and the hummingbird can regard themselves as permanently
at the centre of the spherical light wave emitted by the hummingbird as it passed the
gardner. We try a time transformation of the form

t =ax + bt, (5.88)

where a and b are constants. Here ¢’ is time measured with clocks at rest relative to
the hummingbird, and ¢ time measured with clocks at rest relative to the gardener.
The physical consequence of a time transformation of the form (5.88) is unexpected.
It implies that simultaneous events in the gardner’s system are not simultaneous in
the hummingbird’s system, and vice versa. This can be seen as follows.

The proposed coordinate transformation has the form

xX'=y(x—vt) and t =at+ bx. (5.89)

Consider two events with coordinates x; and x, that the gardner says are simulta-
neous. They happen for example at 1; = 7, = 0. The hummingbird then says that
the events happen at the points of time #{ = bx; and t, = bx,. Events that are
simultaneous according to the gardener, happens with a time difference 75 — t] =
b(x, — x1) according to the hummingbird.

This so-called ‘relativity of simultaneity’ is what makes the seemingly con-
tradictory observations of the gardener and the hummingbird possible. What the
hummingbird says is the light wave at a certain instant, the gardner will say is a
succession of pictures of different parts of the wave at different points of time. The
hummingbird will say the same about the gardener’s wave.

We shall now go on and calculate the constants y, a, and b in terms of the relative
velocity v between the gardener and the hummingbird and the velocity of light, c.
Inserting the expressions for x’ and ¢’ into Eq. (5.87) results in

[y (x —v)]* — % (at + bx)* = x* — 2.

Multplying out the left-hand side we get

yixr = 2ytvxt + yH2? — c2a*t? — 2c¢tabxt — ¢*h?x? = x* — ¢t
Collecting terms with the same powers of x and ¢ gives

(y> = *b?) x> =2 (y*v + Pab) xt + (y*v* — ?a®) 1> = x> = *1°,
In order that the left-hand and right-hand side of this equation shall be equal for
arbitrary values of x and ¢, the coefficients in front of x2, of xt and of 2, must be
the same at each side of the equality sign. This leads to

yi—c’h’ =1, (5.90)

y*v + c%ab =0, (5.91)
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and
yh? —cta? = =2 (5.92)
Equation (5.91) gives
2
h=-L1. (5.93)
c’a

Inserting this into Eq. (5.90), we get

4.2
2_ 2V VT
Ve =
which may be written
ﬁ =12_1
c2a2 Y
Thus
4,2
a? = yz Y 2 (5.94)
Inserting this into Eq. (5.92) gives
20 ¥H _ 2
J/ V= 2 -
y2—1
Multiplying each term by y? — 1 leads to
phEph2 Cyh2 = 22 2,

The first and third term on the left-hand-side cancel each other. Collecting the terms
with 2 on the left-hand-side gives

(2 =)y =2

from which we get

2
5 ¢ 1

VEaoe T 1—1v2/c?

Taking the positive square root leads to

1

s iovje

(5.95)

It follows that

y2—1=——1= =
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We insert this into Eq. (5.94),

4.2
22_ VYV _ 2.2
T ey T
from which follows
a=y. (5.96)

Subsituting this into Eq. (5.93), we obtain

2
__rv_v
b= = (5.97)

Inserting the expressions for y, a, and b from Eqgs. (5.95), (5.96) and (5.97) into
Eq. (5.89) finally gives us the simplest transformation that is in accordance with
Eq. (5.86)

X' =yx—-wv), y =y, Z=z and

=y (t - C%x) , where y=-——. (5.98)

These famous transformation equations are called the “Lorentz transformation”.
Lorentz was the contemporary phycisist Einstein admired most. “Everything that
emanated from his surpremely great mind was as clear and beautiful as a good work
of art.”

Suppose we are in a strange civilization where we are invited to travel just behind
a beam of the light of a distant star. (When he was 16 Einstein dreamed about
such a travel.) If we follow the light, it would be nearly at rest relative to us, we
might think. It would not! Experience suggests to us that light travels ahead of
every observer with the same velocity c. It forces us to concede that the universe
may be radically different from what we might expect. Our conceptions about the
properties of the universe on the whole are based upon experiences involving very
small velocities compared to that of light. We have had no good reason to expect
anything as dramatic as such a property of light. It is therefore justifiable to call it
a near miracle that our simple changes of the Galilei transformation take wonderful
care of this strange kind of observation. How could one expect such a strange
miracle? It is understandable that Einstein and others played with the idea of God
as a mathematician fond of simple, beautiful and ‘deep’ formulae.

It is sometimes said: After all, the special theory of relativity, in which the
Lorentz transformation plays a significant role, means only a slight correction of
the Galilean and Newtonian kinematics. Perhaps it may be looked upon only as a
generalization or widening of the old theory. Nothing could be more misleading!

Newton’s theory includes Newton’s conceptual framework and his general
understanding of what he considered the physical world to be like. To this theory
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belongs Universal Time, Absolute Space and a wealth of more or less abstract
general theorems. The Newtonian theory is not ‘approximately relativistic’, even
if its predictions are nearly the same as those of the theory of relativity for moderate
velocities, because the theoretical structure is deeply different. Newton asserts
something completely incompatible with the special theory of relativity. From
observational reports alone you can never deduce any theory. A set of reported
mesurements can be ‘explained’ through indefinitely many theorems. These may
even be inconsistent with each other.

Through observation we discover things. Abstract theories are inventions. The
fabulous success of some of these inventions surprises us. There is, perhaps, some
kind of hidden harmony between structures of thought and structures of physical
reality? Something established through hundred of millions of years of evolution?

The clash with habitual thinking is formidable compared to the small change
in mathematical formulae. Suppose the hummingbird emits a flash while flying
9/10 the speed of light. The gardener thinks: she flies just behind the surface of
the expanding sphere of light created by the flash, observing a velocity equal to
30,000 km/sec for the light. But she knows otherwise: a measurement would reveal
that the light she emitted travels not with a velocity 30,000 km/sec, but with the
velocity 300,000 km/sec, away from her, as if she had been sitting quietly with the
gardener. Whether you fly toward it or away from it, you measure the same speed of
light.

Such measurements were actually performed by Michelson and Morley in 1887.
They knew that the Earth moves in an elliptical orbit around the Sun with a velocity
of about 30 km/s, and wanted to measure this velocity from its effect upon the
propagation of light. The velocity of light relative to the Earth should be 60 km/s
less in the forward direction than in the backwards direction. Michelson and Morley
found a method by which they could measure such a difference in the velocity of
light, even if it were only a tenth of the magnitude they sought for due to the motion
of the Earth. The shocking result of the experiment was that they measured no
difference at all for the velocity of light in the forward and the backward directions.

Whatever the intensity of democratic feelings, the notion that we all remain at
the centre, whatever our speed relative to the light source was, and still is, felt
as an affront to common sense. Einstein, when he learned about the result of the
Michelson—Morley experiment, was not shocked. He had thought for many years
about space and time, and gained an openness for what would be a deepening of
common sense. He saw that measurements involving speed, for instance by the
gardener and the hummingbird, rests on postulates about what simultaneity is and
how it is measured by means of light beams. He arrived at new notions of time and
space which satisfied reason. These notions made it possible not to consider the
Michelson—Morley results as a brute, strange fact, but to place them in an orderly
understandable whole.

One can make a correspondence between (mathematical) space and physical
objects by associating the points of a space with the position of particles (without
spatial extension). This is the space of our daily life, and also that of the pre-
relativistic physics. Understood in this way, space is part of our material world.
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There is a similar correspondence between points in spacetime and events (i.e.
idealized physical events without extension in space and time).

We shall briefly return to the relativity of simultaneity. Let a train, moving past a
station with velocity v, be our reference frame %’ with comoving coordinates x” and
t'. The station is a frame ¥ with coordinates x and ¢. A passenger in X’ observes
that the front and back doors of his wagon suddenly open (by a deplorable technical
accident), at a point of time ¢/ = 0. The co-moving coordinates of the doors are
x" = 0and x" = Lo, where Ly is the length of the wagon.

The position and point of time of the events that the doors were opened, as
observed from the station, are given by the Lorentz transformation, Eq. (5.98). The
inverse transformation, from X’ to X, is obtained from Eq. (5.98) just by replacing
v by —v, giving

x=y(x'+vt') and t=y (t’ + %x’) )
c

Inserting x” = ¢/ = 0 for the opening of the back door, gives x = ¢ = 0. Inserting
x" = Lo and ¢/ = 0 for the opening of the front door, gives x = yLo and 1 =
y(v/c?)Lo. We see that even if the doors open simultaneously as observed from the
wagon, the front door opens later than the back door as observed from the station.

In the theory of relativity the Newtonian absolute simultaneity does not exist, i.e.
two events that are simultaneous to one observer, are not simultaneous to another
one, moving relative to the first. Hence, space and time cannot be regarded as
independent. This motivated Minkowski to open his famous address to the Congress
of Scientists, Cologne, September 21, 1908 with the words, “Henceforth space by
itself, and time by itself, are doomed to fade away in mere shadows, and only a kind
of union of the two will preserve an independent reality.”

5.11 The relativistic time dilation

The invariance of the velocity of light has an interesting consequence which
concerns the rate of time as measured with a moving so-called ‘standard clock’. By
definition the effect we shall deduce does not depend upon the nature of the clock,
so we can choose to analyze a particularly simple clock, consisting essentially of a
light signal being reflected between a floor and a ceiling. Such a clock is sometimes
called a ‘photon clock’.

Imagine that our clock is at rest in the ‘train frame’ X’. The height between the
floor and the ceiling is L. Each reflection is a ‘tick’. The light signals are assumed
to move vertically as observed in the train system. Then the time interval between
two ticks is

=—.

At (5.99)

This is how fast the clock ticks in the frame where it is at rest.
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Fig. 5.4 Light signal path in two reference frames

The train with the clock moves past a station with velocity v. Within the theory
of relativity the letter v always represents a relative velocity, here the velocity of the
train relative to the station. In the ‘station frame’ X the path of the light signal is zig
zag shaped as shown in Fig. 5.4.

Since the velocity of light is ¢ in every direction as observed on the station as
well as in the train, the time intervals between two ticks is gives by the Pythagorean
theorem as follows

A = VAL + Ly?
or
(62 — V2) At = L02
which gives
Lo>  Lo*/c?

A = = :
c2—v? 1—v?/c?

Thus
L()/C

JV1I=2/c?

Inserting from Eq. (5.99) in the numerator we finally arrive at

At =

At
At = —— (5.100)

Here At is the time interval between the ticks of the train clock as observed in
the station frame. In this frame the clock moves with velocity v. Equation (5.100)
implies that At > At’, which means that the time intervals between the ticks of
the train clock are greater as observed from the station than observed from the train.
Thus the clock is observed to go slower in the frame in which it moves than as
observed in the frame in which it is at rest. In short: a moving clock goes slower
than a clock at rest. This is the special relativistic velocity dependent time dilation.

At the limit that the velocity of the clock approaches the velocity of light, the
time intervals between the ticks of the clock become indefinitely large. A clock that
moves with the velocity of light goes infinitely slowly.
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5.12 The line element

As mentioned above, Einstein decided to describe gravity geometrically in terms of
curved spacetime. In order to understand how the metric tensor enters the theoretical
structure invented to describe a curved space, we should note that it is not possible
to “fill’ such a space with a Cartesian coordinate system, where all coordinate curves
are orthogonal and straight. This is easily realized if you think of mapping the
Earth. In order that a geometer who is feeling his way in an arbitrary wace shall
be able to extract information concerning the geometry of the wace from his local
measurements, he must be able to describe the measuring results in a coordinate
independent way.

Remember that any wace has geometrical properties of a local character. Think of
the surface of the Earth, for example. You would, perhaps, like to define a distance-
vector between your home and the North Pole. But such a vector does not exist
on the surface of the Earth. Vectors may be imagined as arrows, straight in the
usual, Euclidean sense. A distance vector would have to pass through a tunnel inside
the Earth, and this is not part of our wace, which is only the surface of the Earth.
However, indefinitely short distance vectors between points very near each other
remain arbitrarily close to the surface of the Earth. They are reckoned as part of the
wace.

You may compare a distance vector with the tangent vector introduced in
Chapter 3. There we considered a one-dimensional wace, namely the parabola of
Fig. 3.4. It is clearly seen from the figure that any finite tangent vector i departs
from the parabola. It does not exist in the curved wace represented by the parabola.

However, it is possible to measure finite distances on the surface of the Earth.
This is done by ‘adding indefinitely small distances’ (integrating) along a curve on
the surface of the Earth. The small ‘distance differentials’ are defined in the same
way for curved waces in general, as for a flat wace.

We need not introduce any coordinate system in order to define the distance
between two (indefinitely close) points in a wace. Mathematically the distance can
be expressed as a coordinate independent quantity, namely the indefinitely small
distance vector between the points, i.e. the differential of the distance vector 7,
which we denote by dF.

If we introduce a coordinate system, the components of dr along the coordinate
curves are called coordinate differentials and are written dx*, i.e.

dF = dx"é,. (5.101)

We now introduce a coordinate independent expression for the square of the
distance, d¢?, between the points, by taking the dot product of the indefinitely small
distance vector by itself,

de? = dr - dr. (5.102)
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In order to obtain some feeling for what we talk about, let us consider a simple
example. A geometer is going to map a flat, two-dimensional plane. He may
introduce a Cartesian coordinate system with coordinates x and y. He is at a point
P with coordinates (x, y), moves a distance dx along the x axis, and then a distance
dy along the y axis, and arrives at a point Q with coordinates (x + dx,y + dy).
Then the distance vector from P to Q is

dr = dxé, + dyé,.
From the definition (5.102) and Eq. (1.9) follows
de* = dx* + dy>. (5.103)

This corresponds to calculating the distance by means of the Pythagorean theorem.
If we introduce plane polar coordinates r and 6 (see Fig. 4.9) the infinitesimal
distance vector, Eq. (5.101), takes the form

dr = dré, + d6é,.
Taking the dot product of this vector by itself we get

d0* = (dré, +d0éy) - (dré, + do é)
=dr?é,-é, +drdfé, -és
+dOdreég-e, +db* ey - ey. (5.104)

Since the basis vectors ¢, and €y are normal to each other, é, - ey = ey - e, = 0.
According to Egs. (4.41) and (4.44) é, -é, = 1 and éy- &y = r?. Using these results,
Eq. (5.104) is reduced to

de* = dr* + r*de>. (5.105)

Even if the expressions (5.103) and (5.105) are different, they lead to the same
number of metres for the distance between the points P and Q. The definition
(1.31) of ‘distance’ is such that it doesn’t matter what sort of coordinate system one
uses; the calculated distance is the same whatever system one uses. This is more
technically expressed by saying that the distance between two points is a coordinate
invariant quantity.

Let us show this explicitly, for our example. According to Eq. (4.31) the trans-
formation between the Cartesian coordinates (x, y) and the plane polar coordinates
(r,0)is

x=rcosf and y =rsinb.

By differentiation, using Eq. (5.4) with x'" = x, x¥ = y, x! = r, and x2 = 6, we

get
dx =cosfdr—rsinfdf and dy =sinfdr+ rcos6db.
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Fig. 5.5 The length d¢ expressed in terms of Cartesian and polar coordinates

Inserting this into Eq. (5.103) yields
de* = (cos @ dr —rsin df)* + (sin@ dr + r cos 0 db)*.
Squaring leads to

dt* = cos® 0 dr* —2r cos 0 sin 6 drd6 + r?sin’ 6 d6?
+ sin? @ dr? + 2r sin 6 cos 0 drd@ + r’ cos® 6 d6>
= (cos2 0 + sin® 0) dr* +r? (sin2 0 + cos? 9) do>.

Using the identity sin®  + cos®> § = 1 we obtain
dt* = dr* +r’d6’.

This is the same equation as Eq. (5.105). It is the Pythagorean theorem for a (two-
dimensional) Euclidean plane as expressed in polar coordinates. The equality of the
expressions (5.103) and (5.105), i.e.

de = dx* + dy* = dr? + r* d6’

may be seen most directly geometrically, as shown in Fig. 5.5.

Let us now direct the attention towards four-dimensional spacetime. Again we
shall consider the simplest case, flat spacetime, as in special relativity. Imagine
there are two laboratories, with observers and measuring apparatus, one moving
in the x direction with velocity v relative to the other. Their description of physical
phenomena and geometrical relationships are related by the Lorentz transformation,
Eq. (5.98). Since y’ = y and 7 = z, we may discard the y and z dimensions without
losing anything of interest. We therefore consider flat two-dimensional spacetime
with one space dimension, that one along the x axis, and one time dimension.

What is the mathematical expression for the distance between two points O and
P near each other in this two-dimensional spacetime? Let us choose two coordinate
systems, {x,¢} and {x’,¢'} with O as common origin. The other point P have
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coordinates (dx,dt) and (dx’,dt’), respectively in the two coordinate systems.
It would perhaps seem natural to introduce a quantity ‘remoteness’ in spacetime
analogous to distance in space, namely

dt = (dx* + czdtz)l/z.

(5.106)
(The reason that we have multiplied dt?> with ¢? is that mathematically it is only
possible to add commensurable quantities, i.e. quantities that may be counted by the
same types of units. You cannot add a number of metres and a number of seconds.
However, a fraction of a ‘light second’, ¢ dt, where dt is a fraction of a second, is
a certain number of metres, and can be added to a distance dx. And the square of a
number of light seconds can be added to the square of a distance, which is what we
have done above.)

The above expression implies that an event which is not remote from us must be
close to us both in space and time. An event can be remote because it happens far
away or because it happens at a time very different from our now, or both.

In order that remoteness shall be a useful quantity for the description of physical
phenomena, the remoteness between two events should be the same number of me-
tres whether it is measured by an observer in a moving laboratory with coordinates
{x’,t'}, or in a stationary laboratory with coordinates {x, ¢}, i.e. the remoteness
should be Lorentz invariant. From the Lorentz transformation, Eq. (5.98), we have

dx — vdt dt — %dx

dy' = 29 and af = —— 2 (5.107)
1=2 1=2
c? c?

Inserting this into the expression (5.106) for remoteness, squaring and simplifying,
leads to

4y

dxdt.

2 2

2 2

This shows that remoteness is not a Lorentz invariant quantity. If, for example the
remoteness between two events, as measured in the unprimed system, is d¢ = 3,
then the remoteness between the same two events, as measured in the primed system
is d¢' # 3. Because of this dependence upon the velocity of the observer, the
quantity remoteness has not been introduced in the standard version of the theory of
relativity.

However, the experiences of the hummingbird and the gardener suggest the
existence of a Lorentz invariant sort of ‘spacetime interval’. The velocity of light
is equal to ¢ both as measured by the hummingbird and the gardener. Hence

dx’ dx
— =c¢ and — =g,
dt dt



112 5 The metric tensor

which gives

dx"* = c?d’* and dx* = c*dr?
or

dx"* — 2di’* = 0 = dx?® — *dr>. (5.108)
This equation shows that the quantity dx?> — ¢2dt? is Lorentz invariant and it is
equal to zero for coordinate differentials associated with the propagation of a light
signal. The value zero is specific for light signals, but the Lorentz invariance of the

expression may be valid in general. Let us investigate if this is really the case.

We start by inserting the coordinate differentials (5.107) into ds?> = dx’* —c2di”?
where we have introduced ds® as a short-hand notation for the new spacetime
interval. This gives

dx —vdt dt — %dx \
ds? = dx* —c2ar? = [ ) e et )
V1—=v2/c? V1—=v2/c?
Then we calculate the squares and simplify step by step

ds? = ax'* — ctdt’*

_dx? —2vdx dt +vdr?
N 1—v2/c?

¢ (dr = 2% di dx + dx?)

1—v2/c?

_dx? —2vdxdt +vdi?
1 —v2/c?
2dr® —2vdt dx + % dx?
1—v2/c?

_(1=v?/e?)dx® + (VP /c? — 1) c2de?

1—v2/c?
_(1=?/P)dx? — (1 =v?/c?) 2dr?

1 —v2/c?
= dx* — c*dit’. (5.109)

Note that the Lorentz invariance of dx?> — ¢?dt? should be expected, since the
expression is essentially the same as Eq. (5.87), and the differentials dx and dt
transform as x and ¢.

The first and last short expression of the series of expressions in (5.109) is
the so-called line element of our two-dimensional flat spacetime, as expressed
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in Cartesian coordinate systems. Equation (5.109) shows that the line element is
Lorentz invariant. In general, the line element is denoted by ds?. It is the square of
an infinitesimal ‘distance’ in spacetime. If we add the y and z dimensions, the line
element of four-dimensional flat spacetime, as expressed in a Cartesian coordinate
system, takes the form

ds? = dx?® + dy* + d7* — c2dr>. (5.110)

This expression may be thought of as an extension of the Pythagorean theorem from
ordinary space with a Cartesian coordinate system, to a corresponding coordinate
system in four-dimensional flat spacetime.

Before we proceed to express the line element, ds?, in arbitrary coordinate-
systems, we shall interpret it physically. The physical interpretation of the line
element of spacetime does not depend upon the geometrical properties of spacetime,
or what sort of coordinates we use. So we can discuss the interpretation with
reference to the special form of the line element in Eq. (5.110) with confidence
that the interpretation we arrive at will be valid in general.

5.13 Minkowski diagrams and light cones

In order to exhibit the causal structure of spacetime we shall in this section
consider flat spacetime. This structure does not depend upon the number of spatial
dimensions, so we may, for the present purpose, consider a flat two-dimensional
spacetime. We introduce a two-dimensional Cartesian coordinate system {x, ct}.
A spacetime diagram with a vertical ¢t axis and a horizontal x axis is called a
Minkowski-diagram.

Let x* = ct. The path of a particle of light, i.e. a photon, passing through the
origin at the point of time + = 0, and moving in the positive x direction, is given
by x = ¢t = x*. This is called the worldline of the photon. It is a straight line
through the origin of the Minkowski-diagram, making an angle at 45 degrees with
the axes, which means that the component of the spacetime velocity of light in the
time direction is equal to its component in the space direction. Thus, the velocity of
light is isotropic in spacetime as well as in ordinary three-dimensional space.

Photons are said to have vanishing rest mass. Particles with non-vanishing rest
mass move slower than light. They cover a smaller distance in the x direction per
second than light. Accordingly the worldline of a massive particle passing x = 0 at
t = Ois aline closer to the ct axis in the Minkowski-diagram than the worldline of a
photon (see Fig. 5.6). The worldline of a photon moving in the negative x direction
is also shown on the figure.

Imagine that there is a person at x = 0 emitting a flash of light a the point of time
t = 0. Using material particles, or reflecting electromagnetic signals in a suitable
way, he may influence events taking place in the region of spacetime between the
worldlines of the two photons. This region may be causally connected to an event at
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the origin. It represents the absolute future of this event, in the sense that no event
exists in this region that is contemporary or past relative to the event at the origin.

Imagine two photons approaching a person at the origin. In Fig. 5.7 we have
included their worldlines below the x axis. Events at the region of spacetime below
the x axis and between the photon worldlines, may influence the origin-event.
This region is the absolute past of this event. What happens at the origin may be
influenced by events happening in the absolute past of this point in spacetime. The
region of spacetime to the left and right of the absolute future and absolute past is
the elsewhere of the origin-event.

Let us then include one more space dimension, say the y direction. If the light
signal moves a distance r in an arbitrary direction with x component x and y
component y, then, from the Pythagorean theorem (see Fig. 5.8),

ct =1 =+/x2+y%

This is the equation of a cone in the three-dimensional Minkowski diagram. It is
called the light cone. It may be obtained graphically by rotating the worldlines of
the photons in Fig. 5.6 about the ¢ axis. From what was said above it is clear that
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Fig. 5.8 A light cone ct particle

it is not possible for any particle (of the type that has been observed so far) to move
so that its worldline passes through the vertex of the cone and then proceeds outside
it. The worldlines are inside the light cone (see Fig. 5.8).

5.14 The spacetime interval

In order to understand the physical interpretation of the line element we shall
proceed step by step starting with the most simple case. We shall first deal with
two (physically idealized) events (without extension in space and time) that are
simultaneous in our reference frame. Then dr = 0, and the line element (5.110)
reduces to

ds? = dx* + dy* + d7*.

As we know from the Pythagorean theorem, this is the square of the distance
between the events. In this case +/ds? is just the distance in space between the
simultaneous events.

As our next case we shall consider two events happening, in our reference frame
at the same place, but not at the same time. Then dx = dy = dz = 0. Consequently
Eq. (5.110) is reduced to

ds? = —c*dr>. (5.111)

This equation looks like a contradiction, since our symbols represent quantities
for which we insert numbers when the equations are applied to physical phenomena.
According to high-school mathematics, dealing with so-called ‘real numbers’, the
square of a number can never be negative. However, mathematicians have invented a
new sort of numbers, so-called imaginary numbers, with the property that the square
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of an imaginary number is negative. The imaginary number whose square is equal
to —1 is denoted by i. Thus

i2=-1 or i=+—-1.

An arbitrary imaginary number is a real number times i .

The value of any measured quantity is a real number. In the situation with two
events happening at the same place, the quantity ds is imaginary. In this situation
ds does not represent a measurable quantity. However, dt in Eq. (5.111) represents
a measurable time interval. Its value is a real number. This number is the time
difference between two events, as measured on clocks at rest in our reference frame.
Equation (5.111) shows that —ds?> = ¢? dt?. Taking the square root,

vV —ds? = cdt, (5.112)

which is the distance that light can travel during the time dt. This distance is termed
the spacetime interval between the events, but is usually simply called the interval
between the events.

We have now interpreted physically the quantity +/ —ds? for the case that the
events happen at the same place, and the quantity Vds? for the case that the events
happen simultaneously. In both cases +/|ds?| is a distance, in the first case the
distance that light can travel in a time-interval dt, and in the second case a distance in
space. It has become customary in the theory of relativity to use the word ‘interval’
as a common name covering both cases. This suggests the following definition:
The interval in spacetime between two events is /|ds?|, i.e. the square root of the
absolute value of the line element.

Traditionally we distinguish between three types of intervals with the fancy
names space-like, light-like, and time-like. In the case that the line element is
positive, ds? > 0, the interval is said to be space-like. In the case that the line
element is zero, ds? = 0, it is called light-like. And in the case that the line element
is negative, ds? < 0, we call it time-like (see Fig. 5.9).

Let us look at the physical meaning of this classification. Imagine two events
P, and P, very close to each other. The square of the spatial distance between the
positions of the events is

di* = dx* +dy* + d7*.
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The line element (5.110) can now be written
ds? = d¢* — c*dr®. (5.113)

In general the line element is expressed in terms of coordinates in a given reference
frame, and the time interval df is assumed to be measured by clocks at rest in the
frame.

Consider first the case that the interval between the events is light-like. Then,
according to the definition above, ds> = 0, which in tern implies

dl
—_— =
dt

A consequence of this equation is that a signal which is emitted at P; and absorbed
at P, moves with the velocity of light. For example, the spacetime interval between
a supernova explosion and our observation of it, is light-like.

If the interval between P; P, is a positive number, i.e. ds? > 0, which implies
that d€/dt > c, then the interval according to our definition is space-like. In this
case one must move faster than light in order to be present both at P; and P,, which
is impossible for ordinary matter moving slower than light.

As stated above two events are said to happen simultaneously if dr = 0. Then,
according to Eq. (5.113), ds?> = d¢* and d¢*> > 0, showing that the interval between
two simultaneous events is space-like. In order to be present at these two events we
have to move infinitely fast—squarely impossible!

The interpretation when the line element is negative, and the interval is time-like,
is quite different. The line element (5.110) can be written

dey?
ds? = dt? — Pdi®* = (E) — | d?

= (P — ) dr, (5.114)

where v = d{/dt is the velocity of a person, moving (or staying at rest in the space
dimensions if P; and P, happen at the same place in space) in such a way that she
is present both at P; and P;. For a time-like interval ds?> < 0 which gives v < c. In
this case it is possible to have been present at both P; and P, travelling in ordinary
three-dimensional space with a velocity v less than the velocity of light c. This case
includes ordinary physical travelling. Note that the person will necessarily move in
the time direction on her way through spacetime from the event P; to P,. While it
is possible to stay at rest in ordinary three-dimensional space, it seems impossible
to prevent moving in the time direction, as we incessantly travel from event to event
in spacetime.

We want a Lorentz invariant measure of time telling ‘truly’ how fast an object
(or subject) gets older. From Eq. (5.111) we see that /—ds?/c represents the time
measured on a clock at rest in a reference frame. Remember that the line element
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is Lorentz invariant. From these two points it follows that if you make a Lorentz
transformation from a reference frame where a clock is at rest to a frame where it
moves, then the value of ds? between two events at which the clock is present, is the
same in both reference frames. It is the time interval between the events as shown
by the clock.

Imagine that the clock is comoving with a certain body. In order to make clear
that we talk about time as measured on a clock carried by a given body, it is called
the proper time of the body. A proper time interval dt is defined mathematically by

dt = v —ds?/c (5.115)

for time-like intervals, which shows that the proper time interval is Lorentz
invariant. It is often useful to write Eq. (5.115) in the form

ds®> = —c%d+>. (5.116)

Equation (5.115) looks very similar to Eq. (5.112). They have, however, different
contents. Equation (5.115) is a definition telling what we mean by the proper time
interval of a clock between two events. These events need not happen at the same
place. The proper time interval between two events is the time interval between the
events as shown by a clock moving so that it is present at both events. Equation
(5.112), on the other hand, represents the special case that df is the time interval
between two events happening at the same place.

Let us denote a proper time interval as measured by a clock at rest by dty. From
Eq. (5.114) with v = 0 and Eq. (5.116) then follows

—c*di} = —c*dr?

or
dty = dt.

As was shown in Sect. 5.10 by considering a photon clock, a moving clock goes
slower. This can also be deduced directly from Eq. (5.114) and the definition of
proper time, in the form of Eq. (5.116), i.e.
—c*de? = (v —c?)dr?

or

V2

c*de® = (¢* —v?)dr* = (1 - —2) cdr’.
c

Dividing by ¢? and taking the square root,

dr = /1 —12/c2 dt. (5.117)
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The strange minus-sign in the expression (5.110) for the line element has
interesting consequences, and shows that spacetime is something very different from
the usual 3-space. In Euclidean space the shortest distance between two points is
measured along the straight line between them.

Consider two points P; and P, in spacetime connected by a time-like interval.
We can choose the coordinate system so that the events happen at the same place,
d{ = 0. Then the the proper time interval between them, measured on a clock at
rest in the coordinate-system, is

Aty = At. (5.118)

The path, I, of this clock is a straight line (see Fig. 5.10). On the other hand, the
interval between the same two events, as measured on a clock that moves away
and then comes back again, so that it can be present at both events, is found
by summarizing (by integration) proper time intervals dt = +/1 —v2/c2dt. This
is clearly less than summarizing just the dt’s, as was done in Eq. (5.118). The
worldline, /I, of this clock cannot be straight. Thus the proper time interval between
P and P, along any curved path is less than the proper time interval between the
same two events measured along a straight curve,

AT < A1.

We have arrived at the following strange (but generally true) result: The greatest
time-like interval in spacetime between two points, is the interval, Ay, measured
along the straightest possible curve between them. There is, however, no paradox
here. It is all a consequence of our definitions. A time-like interval is in general not
equal to ‘distance’, but to proper time. The slower we travel in space the faster we
travel in time. If our worldline between two events (two points in spacetime) is a
straight line, then the spatial distance we travel between the events is as short as it
can be, and we travel as slowly as possible in space from the first event to the second
one. The proper time between the events, measured along this route, is accordingly
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maximal. This is what is meant by saying that a time-like interval between two
points in spacetime is maximal along the straightest possible curve between the
points. (The quantity ‘remoteness’, which we introduced above, reminds more of
distance, and is minimal along the straightest possible curves in spacetime.)

5.15 The general formula for the line element

Knowing the meaning of the spacetime line element we may now proceed mathe-
matically to the general (coordinate independent) expression for the line element.
This is of vital importance because the special form (5.110) of the line element is
valid only in Cartesian systems, and the general theory of relativity is concerned
with describing the properties of curved spacetime from arbitrary coordinate-
systems.

As was proved above the form (5.110) of the line element is invariant against
a Lorentz transformation. Now we seek a generalization of this expression that is
invariant against arbitrary coordinate transformations. This will secure for example
that we can calculate the proper-time of a clock with arbitrary motion (accelerated
or not) by means of the expression (v/—ds?/c, not only of a clock with constant
velocity. In order to find an invariant expression for ds? we first note that the dot
product between two vectors is an invariant quantity. So if ds? can be expressed as
the dot product of two vectors we shall have obtained our goal.

The general component-expression for the scalar product of two vectors, 1 =
u'é, and v =ve,, is

u-v=ute, v'e, =e,-eu"v = g, u", (5.119)

where we have used the definition (5.56) of the components of the metric tensor.
The dot product of a vector by itself is the square of the length, or magnitude, of the
vector.

In Sect. 5.12 the line element was introduced as “the square of an infinitesimal
‘distance’ in spacetime”. Such a ‘distance’ is an interval between two events in
spacetime. Let

dr = dx"e,

be the distance vector between the events. The line element, ds?, is given by the dot
product of dF by itself,
ds* = dr - dr.

Using Eq. (5.119) with u = v = dF we get
ds* = g,,dxtdx". (5.120)

This formula is the starting point for most investigations of the consequences of the
general theory of relativity. In the rest of this book it will be studied extensively.
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Let us for a moment go back and consider the four-dimensional flat space with
the strange time-dimension, the Minkowski spacetime. What is its metric? Writing
Eq. (5.120) for the case of a so-called diagonal metric, i.e. a metric where g, is
different from zero only if © = v, we get

ds® = godx® + gydy’ + g..d7" + gudt”.

Comparing with Eq. (5.110) for the line element of Minkowski spacetime as
described in a Cartesian coordinate system, we find

gau=1 gy=1 g,=1 and g,=—c" (5.121)

From the definition (5.56) of the components of the metric tensor follows that the
scalar products of the basis vectors are
é-ér=1 ¢é,-é,=1, é-é =1 and ¢ ¢é =—c

The fact that the dot product of the time-like basis vectors is negative shows the
strange non-Euclidean character of Minkowski spacetime. In fact the magnitude of
¢, must be an imaginary number; a number whose square is negative. This tells us
that this vector is only part of the mathematical machinery. It does not represent a
physical quantity, such as for example proper time. The result of measuring physical
observables is reported in terms of real numbers.

We should distinguish between the terms ‘Minkowski metric’ and ‘Minkowski
spacetime’. Minkowski spacetime is flat four-dimensional spacetime. We need not
introduce any coordinate system in order to be able to talk about the Minkowski
spacetime. However, the term ‘Minkowski metric’ refers necessarily to the basis
vectors of a coordinate system, since the ‘metric’ is defined as the scalar products
of the basis vectors. We could have other metrics than the Minkowski metric in the
Minkowski spacetime. Only the (unit) basis vectors of a Cartesian coordinate system
with spatial basis vectors orthogonal to the time-direction gives the Minkowski
metric.

One more point concerning the meaning of our symbols: the coordinate differen-
tials, dx*, of an arbitrary coordinate system do not in general correspond to distances
measured with measuring rods. Consider, for example, the plane polar coordinate
system of a two-dimensional Euclidean plane. The coordinate differential d6 is not
a distance. It is an angular interval. The corresponding distance along a circle with
radius r is dfy = rd6, according to the definition of radians (see Sect. 4.1). A
displacement along the circle is a displacement in the €y direction, and according
to Eq. (4.44) the basis vector & has a magnitude r. We may therefore write
dly = |ég|d6. In general the distance corresponding to a particular coordinate
differential dx* is

dl, = |é,|dx" (nosummation).
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dl,=|&,ldx?

d|1=|-é1ldx1

Fig. 5.11 Skew-angled coordinates

(By convention we write ‘no summation” when we refer to a particular value of u,
rather that performing an Einstein summation.)

From Eq. (5.54) with é, = €, and « = 0, giving cosa = 1, and Eq. (5.56), we
get for the square of the length of a coordinate basis vector

‘éu|2 = ‘éu 'Eu‘ = ‘guu|
and

|Eu‘ = ‘guu|'

The distance corresponding to the coordinate differential dx* can therefore be
written

dly, = \/|guu|dx" (no summation).

Sometimes the line element contains terms with products of different coordinate
differentials. The significance of such terms may be clearly understood by consid-
ering a skew-angled coordinate system, as shown in Fig. 5.11. The figure shows a
small coordinate parallelogram with sides

d@l = ‘51‘ dxl = «/g“dxl

and
d@z = |Ez‘ de = 4/gzzalxz,

respectively. Here €| and &, are the corresponding coordinate basis vectors, with an
angle o between them. From the law of cosines, Eq. (4.10), follows

dl? = dt,* + db,? — 2dl,dl, cosb.

From Fig. 5.11 is seen that & = 7 — «. Using Eq. (4.19), and the numerical values
cost = —1 and sinw = 0, we obtain

cos B = cos(m — ) = cosm cos(—a) —sin 7 sin(—a)

= —cos(—ua) = —cosa.
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Hence
de> = dt,> + dty* + 2de,dl, cosa.

Inserting the expressions for d ¢, and d {, we get

de* = gn(dx')’ + gn(dx’)’
+ 2|¢)| |é2| cosa dx' dx?. (5.122)

Using Eqgs. (5.54) and (5.56) together with the symmetry of the metric tensor, the
last term can be written

2|é| - |éx|cosadx' dx® =2(2) - &) dx' dx* =2 gpdx" dx®
= glzdxl dx? + gzlalx2 dx'.
Inserting this into Eq. (5.122) leads to
d0? = gy (dx")? + g dx' dx® + gy dx* dx' + gr(dx?)>.
Using Einstein’s summation convention this may be written
de* = gijdxidxj, where i =1,2 and j =1,2.

This is Eq. (5.120) applied to the present two-dimensional case.

From this calculation is seen that the non-diagonal components of the metric
tensor, i.e. g;; # O fori # j, will be present in skew-angled coordinate systems.
This corresponds to terms with products between different coordinate differentials
in the line element. There are no such components or terms in coordinate systems
where the basis vectors are orthogonal.

5.16 Epistemological comment

The fundamental kinematical concepts are position, direction and motion. Note, by
the way, that motion (kinesis in Greek) implies position and direction. To each of
these physical concepts, there corresponds an independent type of mathematical
entities by means of definitions of correspondence. If you are going to arrange a
meeting with a person (an event) you have to tell where and when you shall meet.
In order to tell where, you can in principle specify three numbers: the longitude, the
latitude and the height above the sea level. (The fact that only longitude and latitude
is necessary in actual life has only to do with practical circumstances—that we
usually arrange to meet persons on the surface of the Earth.) You must also specify
a fourth number; the point of time for the meeting. Thus, to each event corresponds
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a set of four numbers telling the position of the event in spacetime. A continuum
of such sets of numbers make up a mathematically defined set of coordinates
(a coordinate system). The direction of a ‘rod’ is related to a (mathematical)
basis vector field. The motion of a particle is relative to a set of particles with
given motion, called a (physical) reference frame. The mathematical relevance of
a reference frame is, maybe, more vividly grasped if one represents the reference
points by their worldlines. Then one can define a reference frame as a continuum of
worldlines in spacetime.

In this way a large set of physical phenomena are related by definitions of
correspondence to mathematical entities. It is therefore natural to use the name
‘mathematical physics’, but one must keep in mind that physics is not supposed to
be mathematics, and mathematics not supposed to be physics. It is worth a desperate
fight of theoretical physics to keep in touch with the world of experience.

The above-mentioned types of references can be introduced in a physical
description independently of each other. And there are several sorts of each type.
What type, and which sort of reference one introduces, is a matter of convenience.
The choice is determined by the properties of the system as a whole that is to be
described.

Everyone knows that the Earth is round, and most people have a clear mental
picture of what this means, thinking for example of a globe. Also we think that the
universe expands. This is a consequence of the general relativistic interpretation of
Hubble’s remarkable observations in the 1920s. What could be the proper mental
picture of that? Psychologically it is possible, and even natural, to think of the
expansion of the universe as an expansion of the galaxies through space to more
remote regions. However this conception cannot be consistently carried through
in the context of relativistic cosmology (see Ch. 14). According to the relativistic
models of the universe it is space itself that expands. But what is meant by ‘space
itself” here? We have to be careful not to stick narrowly to terms as used in our daily
life. It is a more abstract meaning we have to depend upon in our text.

In physics the meaning of a word, such as ‘space’, is theory dependent. Its most
important meaning is found by making clear what function the word has in what
is considered the best physical theory available. We do not want to describe, here,
the mathematician’s abstract space, but the physical spacetime that Einstein’s theory
pretends that we live in.

Live in spacetime? A brief discussion of such use of words is in order. Note first
that the Newtonian universe is free of certain paradoxical features deducable from
Einstein’s theory. One example: when we sit quietly and read this page, we move
with the velocity of light in the time direction (see Sect. 10.8). The crucial, very
special invariance of the speed of light makes some of us feel it is natural to stress
the function of the general theory of relativity as an abstract model. The physical
world is something very different from the concepts of the models, even if there is
some sort of correspondence between the two. A theoretical model does not describe
qualitatively what it models, and we do not live in models. The two authors of this
book do enjoy slightly disagreeing about the ‘realism’ of certain concepts used in
General Relativity.
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Space is a concept used in models of something physical. So we have to
establish correspondences, co-relations, or parallels between physical relations and
mathematical relations.

It is a decisive character of the abstract mathematical ‘models’ and ‘formalism’
that they somehow are connected with observations. But the lifeline between theory
and observation is thin and debateable.

5.17 Kant or Einstein: are space and time human inventions?

Hundreds of articles and many books written by philosophers and physicists have
been devoted to questions of how, why and with what right Einstein seems somehow
to bring time and space together, invading their fundamental difference.

What Immanuel Kant wrote in his Kritik der reinen Vernuft in 1781 about space
and time as, completely different, fundamentally different Anschauungsformen, has
been looked upon as presenting one of the peaks of ingenuity in Western philosophy.
Views heavily inspired and in important ways similar to that of Kant—Kantian
views, Kantianism, have been, and are, and will presumably and unavoidably be
compared to what general relativity has to say.

One of the smallest problems is linguistic: For the German term Anschauung
there is no single English term available. It is bound up with German culture. But
one can adequately render what is meant through explanations.

What are space and time—are they real beings, asks Kant. If real, in what
sense are they real? Perhaps the terms express real relations between things,
relations which are there independent of our ways of perceiving them? Or are
they only basic forms, ways, through which we preceive things and events: human
Anschauungsformen. Are they forms which reflect the nature of our minds, that is,
something subjective without which it would be perfectly impossible to experience
anything in here and out there. Kant looks into his own mind, and out of the window,
and votes for the latter. We always perceive things in space, and we always conceive
our selves in time. We do not learn through experience the existence of space and
time. We need not generalize what we learn. Out of inner necessity we perceive in
certain ways.

As a consequence any sentence expressing a property of space that must be there
in order to be a space, is a valid or true sentence, and its certainty is apodictic. It is
inconceivable that it could be otherwise. If it follows from the very concept of space,
the insight need not, and cannot, be confirmed by experience: Experience can never
supply us with absolute certainty. Because of the ways of perceiving, we can find
apodictic truths in geometry as long as it deals with space.

In the same way, our inner life is such that we cannot avoid perceiving in terms
of before and after, and there is an irreversibility: it makes no sense to reverse the
order, time has an arrow. But the difference between the outer perception and the
inner perception is such that space and time do not mix in any way.
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As may easily be understood there seems to be a polarity between Kantian and
Einsteinian way of thought. And it is tempting to draw the conclusion that a Kantian
way of thinking is obsolete. Does it not absolutize Euclid? Or prohibit a spacetime?
It is a thinking that was well adapted to that of Newton, not of Einstein. This is
the conclusion of Hans Reichenbach, an outstanding researcher both in physics and
philosophy. He is one of the contributors to the great work edited by Arthur Schilpp,
Albert Einstein: Philosopher—Scientists, published in 1949. In all 25 philosophers
and scientists discuss Einstein’s theories in this volume. Kant is mentioned in more
than 30 pages and by authors representing different philosophical currents.

The “relativity” of simultaneity elicited strong negative, in part angry, reactions
among both philosophers and laymen. But what Einstein says is that physical
measurements and theoretical requirements, that is the results of the Michelson—
Morley experiment combined with the requirement of the validity of the relativity
principle for electromagnetic as well as mechanical phenomena, forces upon us
a definition of simultaneity with a relational character. But a philosopher and a
layman are completely free to stick to a ‘intuitive’ notion. There is nothing wrong
with that from a scientific point of view as long as its supporters accept a physical
concept indispensible to the science of physics. Generalizing from immediate
perception we may at this very movement imagine events at other planets—
extremely far away—happening at the very same moment. The notion—Iet me not
call it concept—we have is in a certain sense untouched by Einstein’s relationism.
It is only when we bring in a requirement of an encompassing theoretical structure
modelling physical reality, that the formidable relatedness to velocity occurs. Kant
believed Newton had said the last word: there is an ‘absolute’ space and time
independent of us, but a Kantian may say: not absolutely. A deep change of the
human mind may result in different Anschauungsformen. A post-human being may
not have an inner sense such that it necessarily perceive things in a series, involving
before, after and at-the-same-time. With a modified mind there may also be no
necessity of an outer sense which perceives these things spatially. But—here Kant
may be completely wrong—not much can be derived if absoluteness is accepted.
Kant believed very much could be derived from his hypothesis about absoluteness
of time.

Similarly as regards spatial relations. We do not need the arrogance to think at our
more or less spontaneous experience of spatial relations, such as the one expressed
by ‘A is between B and C’ furnishes us with a concept guaranteeing testability which
is required by the science of physics. We may agree with Kant that the present
human mind is constituted in such a way that what is not perceived to be in ourselves
necessarily is perceived to be outside—in space, or better in a spatial arrangement.
Of course, we would have to explain what we mean by the “inner” and “outer”
sense, and what we mean by the supposedly very different outer and inner world,
but that goes beyond our discussion of relations to Einstein.

When it is said that the relational character of s imultaneity goes straight, not
only against Kant, but against common sense, it may be objected that “common
sense” scarcely has thought about what might happen when bodies move with
enormous speed in relation to each other, and we try to find out what is happening
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simultaneously. To say “what reason did I have to think that something strange
would be observed in such cases?”” The depth or definiteness of intention is always
limited and largely determined by requirements of action, not reflection.

But how did the many very competent philosophers and physicists conclude
about ‘Kant versus Einstein’? So far, I have only mentioned Hans Reichenbach’s
thoroughly negative conclusions. The philosopher F. S. C. Northrop is fairly
negative but very specific: “[...] in the epistemology of Albert Einstein, the
structure of spacetime is the structure of the scientific object of knowledge”; its
real basis is not “solely in the character of the scientist as knower.” This “follows
from the tensor equation of gravitation [...] Thus spacetime has all the contingent
character that the field strengthens, determined by the contingent distribution of
matter throughout nature, possess.”

Einstein is aware of many “pure deductions” used to arrive at his equation. He
even declares that Henri Poincaré is right: one may suppose that there are at #; “any
number of possible systems of theoretical physics all with an equal amount to be
said for them; and this opinion [of Poincaré] is no doubt correct, theoretically. But
evolution has shown that at any given moment, out of all conceivable constructions,
a single one has always proved itself absolute superior to all the rest.” [4, p 22]
The important point for us when discussing Kant is that nothing seems to be a
priori and certain in physics. Einstein seems, however, to have an uncritical belief
that all possibilities can be compared, and one found to be superior—physically,
mathematically, or in Einstein’s special terminology, simpler (!).

After all this criticism of Kantian conceptions, let us look at more positive
evaluations. There are many but highly overlapping: Theories are constructions,
free creations of the intellect, in Einstein’s own terminology. In this they are of
course part of the human mind. They are made prior to certain experiences in the
sense of observations, and even prior to generalizations from observations. But they
have no certainty, and cannot possibly have “apodictic certainty”. And they should,
according to Einstein, at least at some points, be experimentally testable. Never
verifiable, never falsifiable in any strict sense.

Ernst Cassirer is one of the great names in the philosophy of this century. He
has developed a Kantian sort of philosophy, a “critical theory” which he thinks is
completely compatible with Kant’s [1]. The fundamental traits of this theory is
completely compatible with general relativity. They are not dependent upon the
invariances assumed by Euclid’s formalism. The Kantian views about geometry
must be modified taking into account the appearance of non-Euclidian kinds. A
book by the Dutch philosopher Alfred Elsbach ends essentially with the same
positive conclusions. General relativity does not imply that time and space are
similar in some ways. Centimetres and seconds are related in some formulas, but
through the multiplication by the imaginary number +/—1. If it is reported from
another planet that an athlete there has jumped 9 metres multiplied by v/—1, we
cannot accept it, not even understand what was going on on the planet. Elsbach
says that in the equation of general relativity a centimetre plays “the same role” as
v—1/c seconds—and why not? It does not affect the updated theory of the two
Anschauungsformen. Between 1/c and ~/—1/c there is a fundamental difference.
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After Bergson’s brilliant analysis of the abyss between the intuitively given
dureé and the measureable femps, any theory that seems to deflate the difference,
or any theory which seems to equate time intervals with spatial distances, must
expect strong, firmly based protests. The “t” in Newtonian physics is measureable
and the same of course, holds in general relativity. But the latter does not in any
way support a concept of time that reduces the difference between time and space
as we experience it in our daily life. The loss of absolute simultaneity is due to
a new kind of relation between certain measurementss of distance of time and
measurements of velocity of motion. It does not in any way bring what we feel
to be a time interval nearer to what we perceive as a difference in velocity. The
“common sense” is not negated or undermined in this matter. There is still room for
Kantian and other philosophies which assume a “categorical” difference between
velocity intervals and time intervals. But if intersubjective, intercultural testability
is required, questions are relevant which are completely new and unrelated to those
pertinent to our common practical problems. The conclusion is simple: We are all
predisposed to understand in terms of spatial and time relations. (But of course not
only in terms of space and time, we, for instance, are predisposed to ask for causes
of events.) It is difficult to imagine a decisive change in this, for example, that
concepts of information could take over. Kant undermines conceptions of science
and of physics which underestimate the influence of the working of the mind—
and of society and culture—upon what we accept as scientific knowledge. Einstein
contributes heavily to our appreciation of the role of intuition, imagination and also
logical deductions—not only in physics, but in science in general. We learn from
experience mainly because of the role of what we have not learned from experience.



Chapter 6
The Christoffel symbols

Choreography is the art of composing dances and the recording of movements on
paper by means of convenient signs and symbols. Consider for a moment a most
disturbing and uncanny experience suffered by a well established choreographer.
He was supposed to record on paper the movements of certain fairly simple dances,
but in a faraway, strange place.

He found himself in a big beautiful room where he could easily observe the
movements of the dancers. But what horror! He felt to his abysmal dismay that the
floor itself, and the walls, even the ceiling were changing shape all the time, like
reflections on the surface of waves. Also elongations and contractions occurred in
an utterly confusing, erratic way. To his consternation, looking at himself he saw
that he himself and his paper took part in all this. How could he possibly describe
the dance when deprived of a Cartesian coordinate system? Deprived of a familiar
straight unmoving flat floor, stable walls and ceiling! To his surprise he managed,
listening to a German named Elwin B. Christoffel (1829-1900) and to others who
dropped down from the ceiling at the right moment.

In what follows we are not ambitious enough to describe a dance of a particle,
or some other thing of point-like simplicity, inside weird rooms. We are postponing
that. We shall limit ourselves to find a way that will be used to describe the dance
of the floor in such a room. Our efforts include the introduction of the famous
Christoffel symbols I'”,,, symbols that Einstein initially had found difficult to
understand, but soon mastered magnificently; he simply had to.

We shall now start on a level surpassed long ago, the chapter 2 level. The
curvature of a curve y = f(x) is described by the second derivative y” =
d? f/dx?. The first derivative y' = df/dx furnishes information of the steepness
of a curve at a given point. Fortunately, we shall lose nothing on our way to the
Christoffel symbol by considering only the first derivatives. But instead of talking
directly about curves, we talk about basis vectors and their changes. When these are
thought of as being placed tightly together along a curve, their initial points trace
that curve.

Enough introductory talk! We start in earnest.
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6.1 Geometrical calculation of the Christoffel symbols
of plane polar coordinates

In Fig. 6.1 a plane polar coordinate system (see fig.4.7) is illustrated with particular
vectors of the basis vector fields €, and é; drawn at four different points P, Q, R,
and S. The &, vector field fills the total two-dimensional plane pointing outwards
from the origin O in every direction. The magnitude is constant. In Fig. 6.1 we have
only drawn four radial basis vectors, those with roots at the points P, O, R, and S.
Similarly, the ég vector field fills the two-dimensional plane, each being a tangential
vector to every circle with centre at O. Their directions are perpendicular to the
radial basis vectors, pointing in the direction of increasing angle 6. The magnitudes
of these vectors are proportional to their distance from the origin.

We shall be concerned with changes of the vectors of the basis vector fields
with position. In order to prepare for a general formula representing such changes,
we shall first consider a particular case: the change of the vector €y by a small
displacement in the 6 direction.

In Fig. 6.2 we have drawn two vectors (¢g) p and (ég)s of the basis vector field
@y at the points P and S, respectively. The points P and S are separated by a finite
angle Af. The vector (€) p is the vector (€g) p parallel transported from P to S.

The vector Ag €y is the change of the vector field ég from P to S, that is, a change
by a displacement in the &g direction. A ‘change’ is generally defined to mean ‘final
value minus initial value’. Finite changes are denoted by A and indefinitely small
ones by d.

We shall now examine the vector triangle defined by the vectors (€)p, (€9)s.
and Ag ép. This is shown in greater detail in Fig. 6.3.

From Fig. 6.3 and the definition of an angle as measured in radians we see that

L = |3o|A0. 6.1)

Fig. 6.1 Basis vectors of a
plane polar coordinate system
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Fig. 6.2 Change of €5 due
to an angular displacement

Fig. 6.3 Difference between
the parallel transported vector
(e9))p and (eg)s

Since |ég| has magnitude r (see Eq. (4.44)),
L =rAf.
The difference between L and |Ag ey| approaches zero as A — 0, so we obtain
|do €g| = rdb. (6.2)

From Fig. 6.2 we see that dy ey points in the opposite direction of &,. Equation (6.2)
then gives
d@ 59 = —rdb 5;

where ¢; (pronounced ‘e vector r hat’) is a radial unit vector. Since the coordinate
basis vector ¢, is itself a unit vector field, we may drop the ‘hat’ in ¢€;, and write

dg E@ = —rdb Er. (6.3)
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We shall now consider differentiation of vectors. Sometimes the vectors € of a
vector field are functions of only one coordinate, say x. Then the derivative of the
vector field € is defined by

dx ~— Ax—0 Ax

de . e(x+Ax)—ex)
lim .

It may also happen that the vectors are functions of several coordinates, say é(x, y).
The partial derivative of the vector function with respect to a coordinate x is defined
by (compare with Eq. (2.52) for the partial derivative of a scalar function).

e . é(x + Ax,y)—é(x,y) . Aé  de
lim = lim — =

dx  Ax—0 Ax Ax—0 Ax dx’

Applying this definition to the case considered in Fig. 6.3 we obtain

- - - )
dgeg ae(g ae(g 4 N ae(g 5
—=—=—] e, +|— ] es. (6.4)

do a0 a0 a0

The vector (€g) s is connected to the vector (€y) p by means of the ‘difference vector’

or ‘connection vector’ dypég = (ég9)s — (€g)p. Therefore the components of this

vector per unit coordinate distance are called connection coefficients, and are in the
present case denoted by I'"gp and %, ie.
dgég
do
If the basis vectors represent coordinate basis vector fields, which will be the case

in the whole of our text, the connection coefficients are called Christoffel symbols.
From Egs. (6.4) and (6.5) follow

389 \" , 389\"
R d T =(2Z2) .
00 (ae) an 00 (ae)

Using Eq. (6.3) we find

=T"ggé + T (6.5)

Frgg = —r and F099 =0.

We have thus calculated our first Christoffel symbols. And they have been calculated
in an elementary and purely geometrical way.

It is natural, now, to define an arbitrary Christoffel symbol in the following way:
The Christoffel symbol I'V ,, is the v component of the change of the coordinate
basis vector €, by an infinitesimal coordinate displacement dx* per unit coordinate

distance. Hence
9, \"
I = ( M) .
dx®
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Fig. 6.4 Change of €5 due
to a radial displacement

In order to see more clearly the geometrical significance of the Christoffel
symbols, we shall proceed to calculate the remaining Christoffel symbols of the
polar coordinate system in similar geometrical ways as above.

We now consider the change of the basis vector field ég due to a radial
displacement. This is illustrated in Fig. 6.4. The vector A,éy is the change of the
vector field ég from P to Q. From the triangles A and B is seen that

|Areq] el

Ar r

Hence
|Areq] = |ég|(1/r)Ar.

In the limit that Ar — 0 we get
|dreg| = |éq|(1/r)dr.

Since d, € is directed along & this leads to

dreg = (1/r)drey

3\ 1 90\
M =(22) == and Iy = (22) =0,
ar r ar

Next we consider the basis vector field é,. From Fig. 6.1 is seen that this vector
field does not change by radial displacements. Thus

and therefore

d.e, = 0.
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Fig. 6.5 Change of é, due
to an angular displacement

Fig. 6.6 Difference between
the parallel transported vector

(€é)yp and (é,)s

If a vector is zero, then each of its components must be zero. This implies that
1-‘rrr = 1-‘orr =0.

We shall now calculate the change of the vector field €, by an angular displace-
ment df. Then we need to consider Figs. 6.5 and 6.6. Let us examine the vector
triangle defined by the vectors (€,)|p, (€,)s, and Agé,. The triangle is shown in
greater detail in Fig. 6.6. The arc-length between point A and B in Fig. 6.6 has been
denoted by L. The drawn radius of the circle about S is |é,|. Again (see Eq. (6.1)),
from the definition of an angle as measured in radians, we get

L = |&,|A6. (6.6)

Since €, has constant magnitude equal to one, see Eq. (4.41), Eq. (6.6) is simpli-
fied to
L = A6.

If AG — 0, the difference between L and |Agé, | approaches zero. Thus we obtain

|deé,| = db. 6.7)



6.1 Geometrical calculation 135

From Fig. 6.5 is seen that dyé, has the same direction as é9. By means of Eq. (6.7)
we get
doé, = db Eé,

where €; = (1/r) €y is the unit vector introduced in Eq. (4.45). Hence
doé, = (1/r)d6 &. (6.8)

This equation gives the change of the basis vector €, by an infinitesimal displace-
ment (of the point of observation) in the €4 -direction. As seen from Fig. 6.5 and as
stated in Eq. (6.8) this change of €, has only a 6 component. From this we obtain
the two last Christoffel symbols of the plane polar coordinate system

3\’ 1 3.\
My=(—) =- and T"y=(—) =0.
f (ae) ; o f (ae)

This completes our geometrical calculation of the Christoffel symbols of the
coordinate system with plane polar coordinates. We have seen in detail how the
Christoffel symbols describe the change of basis vector field with position. This is
the essential significance of the Christoffel symbols. We would like to emphasize
that they describe coordinate systems (or more generally basis vector fields) and not
space itself. In particular we note that the Christoffel symbols themselves do not give
any information about the curvature of space, although they give full information
about the geometrical properties of the coordinate system that we have chosen as
reference of our description of that space.

The above shows that the geometrical meaning of the Christoffel symbols can
be understood more or less intuitively. As a young man (before 1912) Einstein
would probably disapprove of the complicated-looking Christoffel symbols with
three indices, because he then had the suspicion, according to his friend Philipp
Frank, that the sophisticated ‘higher’ mathematics used by some physicists was not
intended to clarify, but rather to dumbfound the reader. He radically but reluctantly
changed his opinion.

The many zeros are due to our choice of coordinate system: only one of the
coordinate-curves are curved. If both were curved we would in the general case have
no zeros. If the two curved coordinates are called x' and x? we get eight Christoffel
symbols

1 1 2 2
'y, T, T'n, I,

1 1 2 2
Iy, Ta, TPy, and T

In the case of n dimensions the three indices can all have the values 1, 2, . . ., n. Thus,
in an n-dimensional coordinate system there will be n3 Christoffel symbols with
different indices. In Sect. 6.4 we shall see that some of them are always equal, so the
number of different Christoffel symbols is not as great as this, due to a symmetry that
the Christoffel symbols fulfil. In the case of two, three, and four dimensions there
are 8, 27 and 64 Christoffel symbols, respectively, with different sets of indices.
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6.2 Algebraic calculation of Christoffel symbols

We shall now show how the Christoffel symbols can most efficiently be calculated
by means of differentiation, instead of by geometric considerations.

Consider the basis vector field é, = &,(r,0) and é5 = é4(r, 6). According to
Eq. (6.4) the change of &, due to a displacement d is

dnéo = (2) apz, + (2 Wr.
8¢ =\ 39 r 90 0
and from Eq. (6.5) this can be written
dgég =T"99d0 &, + T%94 db &. (6.9)
Similarly the change of € under a displacement in the r direction, has the form
d.ég=T"g,dré, +T%, dré,. (6.10)

The total change of € due to a displacement in an arbitrary direction, i.e. with both
a component dr and d is . . o
p deg = d, eg + dyey.

Inserting the right-hand sides of Egs. (6.9) and (6.10) leads to
dég =T"g,dré, + T%9,drég + T"9gd0 é, + T4 db &. (6.11)
In the same way the total change of €, is
dé, =T",, dré. +T%,,.dréyg +T"9d0é, + T?%.9d0 . (6.12)

In the present case Einstein’s summation convention results in a considerable
simplification. Equations (6.11) and (6.12) can be written in the remarkably elegant
form

de, =T",,dx"e,, (6.13)

where u, v, and « can all take the ‘values’ r and 6.

The algebraic method works according to the following procedure. First the basis
vectors are decomposed in a (locally) Cartesian coordinate system with constant
basis vectors. Then one performs the differentiation, and the resulting expressions
are decomposed in the original coordinate system. Finally the Christoffel symbols
are identified as the coefficients in front of dx%é,.

This method will now be applied to the basis vectors €, and &g as given in
Egs. (4.40) and (4.43),

é- =cosfé, +sinfe, and €y = —rsinfé, +r cosfé,.



6.2 Algebraic calculation 137

The total differentials of these vectors are calculated from

aé = (%) are, 1+ (%) are
“=\or ) TeT\G ) e

9.\ _ 9.\ .
+(89)de_+(89)dey (6.14)

. 3\, - e\’ .
deg = (W) drex+(w) dre,

9o\ . 289\ .
+(3_9) d@ex—‘r(a—e) d@ey.

Performing the differentiations,

and

dé, =0dr+ (—sinf &, + cosf é,) db (6.15)
déy = (—sinf e, + cos 6 é,) dr
—r (cosfé, +sin6é,) df. (6.16)

In order to compare with Eqgs. (6.11) and (6.12) we must decompose the vectors
dé, and déy in the polar coordinate system. In Eq. (6.15) and in the first term
of Eq. (6.16) we recognize by means of Eq. (6.14), that —sinf e, + cosf e, =
(1/r) €p, and in the second term of Eq. (6.16) that cos 0 €, + sinf ¢, = e,. We see
from this

4, = (1/r)d0é,.
dég = (1/r)drég + (—r)db é,. (6.17)

Comparing with Egs. (6.11) and (6.12) we find the following non-vanishing
Christoffel symbols

1 1
M.g=- T% =—-, and T4y =—r (6.18)
r r

This is in accordance with the geometrical calculations above.

The generalization of these results to the simplest 3-dimensional curvilinear
coordinate system, called cylindrical coordinates, is rather trivial. This coordinate
system will therefore only be briefly mentioned, and we will then go on to calculate
the Christoffel symbols in spherical coordinates, which is of great importance in
several applications of the general theory of relativity.

The extension of plane polar coordinates to cylindrical coordinates is made by
introducing a third coordinate z with straight coordinate axis normal to the plane
of the polar coordinates. The basis vector field &, is a constant vector field. All the
vectors ¢, of this field are unit vectors and have the same direction. This is illustrated
in Fig. 6.7.
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(oL

y4

Fig. 6.7 The basis vectors of cylindrical coordinates

None of the basis vectors are changed by a displacement in the z direction. The
changes of the basis vectors ¢, and &g have no components along é,. And the vector
é, does not change by any displacement in the (r, 8) plane. These properties of
the basis vectors imply that all the Christoffel symbols with at least one z index are
zero. Thus the extension of the plane polar coordinate system to a three-dimensional
cylindrical coordinate system introduces no new Christoffel symbols.

6.3 Spherical coordinates

Figure 6.8 invites the reader to imagine a sphere. What is supposed to be seen is
marked with full lines. Lines in the interior of the sphere are dotted except some
angles. At an arbitrary point P we have drawn three basis vectors; €, along the radial
direction from the centre of the sphere and outwards, €, is pointing in a direction
corresponding to the variation of longitude on the surface of the Earth, and &y in
a direction corresponding to the variation of latitude. The hatched two small right-
angled triangles converging on the centre of the sphere have sides marked x, y, z,
and r and angles ¢ and 6. Note that the spherical coordinates used in mathematical
physics are different from those used on a globus. On the Earth the poles are at 90
degree latitude. The coordinate 8, however, is so that the poles are at § = 0, and the
Equator at 6 = 90 degrees.
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Fig. 6.8 Spherical
coordinates

Using Eq. (4.1a) for sinus and cosinus, and inspecting the mentioned triangles
we see that

X

cosp =

z
ing = and cosf = —.
r

rsinf’ r sin@’

Thus, the coordinate transformation between the spherial coordinates r, 6, and ¢
and the Cartesian coordinates x, y, and z is

x =rsinf cosg, y=rsinf sing, and

z=r cosb. (6.19)

We now use the transformation formula (5.37) and find that the basis vectors of
the spherical coordinate system are given by

e = P e, + 3 ey + 3 & (6.20a)
8y = gz At % Z g—; Z, (6.20D)
€y g—; ex + % éy + g—; é. (6.20¢)
In short, using the Einstein summation convention
Sox™ x"e{x,y.z}.

e, = 8x_/‘em where X e {r.0. 0} (6.21)
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From Egs. (6.20) it is clear that the spherical coordinate system is more complex
than the Cartesian, the plane polar, and the cylindrical systems. However, systems
with spherical symmetry are the most important ones for us, since we seem to live
on a spherical Earth in an isotropic universe. So it is worth the effort to work out the
Christoffel symbols in this coordinate system.

We start by calculating the basis vectors €,, €y, and é,, from Eq. (6.20), using the
expressions for x, y, and z in Eq. (6.19). Performing the partial differentiations and
substituting the results into Egs. (6.20) we get

é, =sinf cospé, +sinb sing €, + cos fe; (6.22a)
ég =r (cosf cosgé, + cosf singé, —sinbe.) (6.22b)
éo=r (—sinf sinp &, + sinf cospé,) (6.22¢)

Differentiating once more, using the product rule (2.24), leads to

dé, = (cost cos@é, + cosf singé, —sinf é.)db

+ (—sinf sing é, +sind cosp é,) de (6.23a)
dég = (cos 0 cosgéy + cosf sing é, —sin6 &.) dr

+ (—r sin® cosgé; —r sinf singpé, —r cosf é;)df

+ (—r cosf sing é, + r cos cos qoéy) do (6.23b)
dé, = (—sinf sing éx + sin6 cos¢ é,) dr

+ (—r cos@ singé, +r cosf cosquy) do

— (r sinf cosgé, +r sinf singé,) dy (6.23¢)

In order to calculate the Christoffel symbols from Eq. (6.13) we must express the
right-hand side of Egs. (6.23) as linear combinations of the vectors €, ég, and é,,
not of €, é,, and €,. Comparing the terms inside the parenthesis in the expression
for d é, with the vector &g as given in Eq. (6.22), we see that these terms are equal
to (1/r) €g. Similarly, the terms in the expression for d €, in front of d¢ is equal to
(1/r)é,. Thus

de, = (1/r)yd0ey+ (1/r)dyé,. (6.24)

Comparing now the three terms in front of dr, d6, and dg in the expression for d &g
with the vectors é,, ég, €, in Eq. (6.22) leads to

cos 6
sin 6

dég = (1/r)drég + (—r) dO &, + dgé,. (6.25)
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Fig. 6.9 The shaded plane Yy
in Fig. 6.8 seen from above g
ey 4 |eH|sm_(p_<iy____ -
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seen from above
° s
p=- > X
€x
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This procedure also works for the two first lines in the expression for d é,. They are,
respectively, (1/r) dre, and ‘;?r:g dbé,. But the term —r sin 6 (cosg e, + sing é,)
in front of d¢ in the expression for de, is not simply proportional to one of the
vectors é,, g, or €.

We shall now find an expression for cos ¢ €, + sin ¢ €, in terms of é, and €y, by
simple geometrical reasoning. Consider the shaded plane in Fig. 6.8. Imagine that
you look down on this plane from a position far up at the z axis. Then the plane will
look like a line to you, as shown in Fig. 6.9.

Let €y be a horizontal unit vector in the shaded plane. From Fig. 6.9 and the
usual formula for vector addition follows

ey = |én|cospe, + |en|sing e, =cosge, +singé,.

Imagine now that you are positioned in front of the shaded plane and are looking
horizontally towards the plane. In Fig. 6.10 we have drawn the plane as seen
from this position together with appropriate unit vectors &;, € 4 and the horizontal
vector ey.
From Fig. 6.10 is seen that
ey = |ey|sinfe; 4 |ey|cosfe; =sinbeé; + cosfey.

Calculating the magnitudes of €, and €y from

&1 = (@ -&)"" and [&] = (@-&)"”
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by means of Eq. (6.22), we find
le.| =1 and |ég| =r.

Thus the corresponding unit vectors are

ez =¢, and é; = (1/r)eés.
Inserting this in the expression for €5 we have

ey =sinfeé, + (1/r)cosb éy.
Equalizing our two expressions for €y gives

cosgéy +singe, =sinf e, + (1/r) cosb ég.

Inserting this for the expression inside the parenthesis in the last term of dé, in

Eq. (6.23), we obtain
cos
de, = (1 dre, ——dbe,
e, = (1/r)dre, + “nd €y

+ (—r sin*0) dpé, + (—sin 6 cos0) dy é. (6.26)

According to Eq. (6.13) the expressions for dé,, déy, and d e, are (including only
non-vanishing terms)

dé, =T7,4d0é) + T, dgé, (6.27a)
dég =T, drég + Tggd0é, + T%p,dpé, (6.27b)
dé, =T, dré, + T%,0d0é, +T",,dpe,

+1%,,de (6.27¢)

Comparing, term by term, with the expressions in Egs. (6.24), (6.25), and (6.26) we
find the following non-vanishing Christoffel symbols

1 1 1
) )
I, 9=-, er(p:_, 'y, = -,
r r r
cos 8 1
[Mog=—r [,=—7>-, TI%,=-
’ 7 sing’ Ty
cos B .
Iyo=—=, IMyp=-r sin® @,
sin 6

Few = —sinf cosB. (6.28)
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Of the 27 Christoffel symbols with different indices that exist in 3-dimensional
coordinate systems, these nine are the only ones that are different from zero in the
spherical coordinate system.

6.4 Symmetry of the Christoffel symbols

The total differential of a basis vector field is given in terms of the partial derivatives,
in the same way as in Eq. (2.61) for a scalar field,

de
dé, = —=dx“.
ey Py X
Comparing with Eq. (6.13) we get
de -
axl; =, 1" . (6.29)

We now decompose the basis vectors in a local Cartesian coordinate system. Then
the basis vectors are given by Eq. (6.21). Differentiating this equation gives

e, _ 2xm 6.30
axe  axeoxn ™ (6.30)

From Egs. (6.29) and (6.30) follow

. 92 x™
T e = 5 g
Since [see Eq. (2.66)]
92x™ 92 x™

Ixe  oxeoxh’
it follows that
T = Ty 6.31)

The Christoffel symbols are symmetric in their subscripts.



Chapter 7
Covariant differentiation

In this chapter a new sort of differentiation, called covariant differentiation, will be
introduced. The new concept will prove to be of fundamental importance, making it
possible to formulate coordinate invariant mathematical expressions for the laws of
nature.

Why coordinate invariance? Because the laws of nature operated before humans
constructed coordinate systems! We have to use language expressing the laws,
and the formulation of the laws should not depend upon the choice of coordinate
systems. As long as we distinguish between (a) the motion of a body that is left to
itself subject to no forces (a body showing inertial motion), and (b) the motion
of a body under the influence of gravity, we are slaves of coordinate systems.
Why? Because (a) is said to be rectilinear and uniform, whereas (b) is said to
be curvilinear and nonuniform. And that is said to be so on false grounds: By
means of suitably choosing curvilinear and nonuniformly moving (i.e. accelerated)
systems of reference and coordinate systems, any motion can be described as
rectilinear and uniform or curvilinear and nonuniform. The wildest movements can
be described as locally straight. Einstein says that these different descriptions are
equally valid, In short: give up the distinction between (a) and (b) as absolute, use
it as relative, or better, relational. If it suits you, you may announce that the Sun
travels around the Earth. Unfortunately the transformation mathematics is not easy,
but in 1912 Einstein learned it from his friend Marcel Grossmann, and it formed an
indispensable tool which he eventually used in a masterly way when he formulated
the general theory of relativity.

7.1 Variation of vector components

Suppose we measure the wind at different points along our path in the landscape.
The strength and direction of the wind varies from point to point. Let us describe the
velocity of the wind by a vector field A(4), where A is an invariant, i.e. coordinate
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Fig. 7.1 The vector field A and its decomposition at two points P and Q on a curve S

independent, parameter along our path, which we treat as a curve. The parameter
A could for example be the path length along the curve, or the time measured with
a clock we carry with us, i.e. our proper time. Mathematically the curve is given
in parametric form (see Sect. 3.1) by specifying the coordinates as functions of the
parameter, x* = x*(A).

Imagine that each point of the path is equipped with a wind measuring apparatus,
so that the strength and direction of the wind may be measured at every point. Then
we go along the path S from a point P to a neighbouring point Q, with parameters
Ap and A¢. As decomposed in a Cartesian coordinate system we have

/i'p = Ap*e, + Ap” 5}7 and /i'Q = AQxéx +AQy§y.

The vectors and their components are illustrated in Fig. 7.1.

The Cartesian basis vectors are without subscripts P and Q, since they are
constant. The change of the vector field from P to Q is denoted by (AA)pp, and is
given by

(AA)pp = Ag — Ap.

In the case that Q is indefinitely close to P the change of the vector field is found
by differentiation with respect to the curve parameter

dA . AA d(A'E) +d(A«VEy)

= lim —— =
dr aASo0 A da dr

The quantity dA /dA is the covariant directional derivative of A along the curve.
Using the formula for differentiation of a product, (uv)’ = u'v + uv/, we get

dA _ dA*

de,  dA dé,
da _dA" 5 | x4 dey
ax ~ dr "

—e, + A .
+ ey + 7

dA dA @.1)
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However, since the Cartesian basis vectors are constant, this equation is reduced to

dA _ dA* . dAY

o et 72

This may be written in condensed form by means of the Einstein summation
convention,

dg—dAmE m € {x1,xp} with =
dr— dx " 2 X2 = y.

(7.3)
Usually the vector components are given as functions of the coordinates in a
region. And along the curve where the directional derivative of the vector field is
to be calculated, the coordinates are given as functions of the parameter A. The
derivative dA™ /dA is then calculated by using the chain rule of differentiation.
First we calculate the partial derivative of A” with respect to a coordinate, then
we multiply by the derivative of the coordinate with respect to A. This is done for
all the coordinates. And finally the products are added. In the present case (compare
with Eq. (2.61) with f = A™),

dA™  9A™ dx N dA™ dy
dr ~ dx dA  dy dA’

Using Einstein’s summation convention this is written

dA™  9A™ dx" (7.4)
dA 9xn dA ‘
Equation (7.3) then takes the form
dA  9A™ dx"
= (7.5)

dr  dxn d_)Lem'

We have now come to a salient point. Equation (7.5) is not valid for vectors
decomposed in curved coordinate systems. In that case the step from Eq. (7.1) to
(7.2) is not valid. This is due to the fact that in general the basis vectors are not
constant vectors, but vary from point to point. Taking account of the variability of
the basis vectors, and using the formula (2.22) for differentiation of the product
between a scalar function and a vector function (in this case a basis vector field), we
obtain

dA  d(Are,)  dA* . dé,

- = = A —L. 7.6

- o T m (7.0
total change change of change of

components basis vectors
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This equation gives the covariant directional derivative of a vector along a curve, as
decomposed in an arbitrary coordinate system. Writing the equation as

d A" dA dé
=, = — — A+ L,
ar T .

we see that in general the change of the components of a vector field with position
has two independent contributions; one from the variation of the vector field itself,
and one from the change of basis vector field in an arbitrary coordinate system.

How then do we calculate dé,/dA? In Eq. (6.13) Elwin Christoffel comes to
our rescue. From this equation follows that the derivative of the basis vectors with
respect to the curve parameter A is

> o
de, _, dx*_

dA = o d_A, ey. (77)

We are now able to answer those generalists who thought, while reading the last
chapter: this is for specialists, not for us. Our answer is that if, in the first place, we
take the drastic step of introducing curvilinear coordinates, then we have at least to
be able to understand the changes of vectors and their components as referred to
such coordinate systems. And the description of all such changes necessarily makes
use of the Christoffel symbols.

7.2 The covariant derivative

Equation (7.6) offers us an expression of the derivative of a vector along a curve. We
shall now find a more powerful expression, which is essential in the mathematical
development of the theory of relativity. The mathematics may look difficult in the
sections that follow, and one may wonder if it is necessary to go through all of
this. Yes, we must, if we are to say honestly that we have gone through all of the
mathematics needed to arrive at Einstein’s field equations.

Replacing A by A" and n by v in Eq. (7.4), we obtain

dA®  0AF dx’
dr 9xv dr

Equation (3.16), which defines the components of a tangent vector # may be
written
dx"’

W= (7.8)

Therefore

dArAr | aAr 79
o T e ‘
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Hence, the directional derivative of a scalar function f along a vector # = u"¢, can
be expressed by the components of the vector and the partial derivatives as follows

ar _ pof
d\ axv’
Einstein introduced a convenient shorthand for the partial derivative of a function

f, for instance the function A*. The first part of the right-hand side of Eq. (7.9) he
liked to write using a comma

dAN
T = Ak (7.10)

Consequently Eq. (7.9) can be written

dA*
dT = AM’V u. (711)

From Eqgs. (7.7) and (7.8) we obtain

de,

= e 8. (7.12)

Substituting Eqs. (7.11) and (7.12) into (7.6) we obtain

-

dA - -
o =A" u'e, + AT wu®e,. (7.13)
Our manipulations have disturbed the distribution of summation indices. It is
convenient to stick to our old indices, so that the common factors u and € have equal
indices in both terms. We therefore let £ — o, v — u, and @ — v in the last term.
This has the desired effect: We can use a parenthesis which units the two terms
into one,

— =A" ,u"e, + A“TH, u" e,
= (A", + AYTy) u’E,. (7.14)

Einstein has a useful shorthand notation of the whole of what is inside the
parenthesis:

APy, =AM, 4 A% Ty, (7.15)

We end up with a new, very potent formula for the derivative of a vector along a
curve, as expressed through its components in an arbitrary coordinate system,

-

dA .
=AY (7.16)
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As mentioned above dA /dA is the covariant directional derivative of A along
the curve. The quantity A*., in Eq. (7.16) is called the covariant derivative of
the vector component A*, and A*., u” is the covariant directional derivative of the
vector component A in the direction of the tangent vector & = u"¢, of the curve.

We started Ch. 6 with a small narrative: the choreographer who despairs entering
a room where everything is bulging. The dance he observes is not like the dance
he has ever choreographed. The dance itself corresponds to the vector /I, and what
the choreographer observes when he enters the bulging room, is a component of
the dance (the vector) as referred to the strange room. The bulging of the room
corresponds to the variability of the basis vectors. Having received help from
Christoffel for some hours, the choreographer is able to choreograph the dance in a
room-independent way—*“replacing commas by semicolons”, and thereby obtaining
a covariant description of the movements of the dancers, i.e. component expressions
valid in every coordinate system. He can now anticipate how the dance will appear
in an arbitrarily bulging room.

The force of a mathematical formalism depends very much upon an economical
notation. Equation (7.16) looks simple just because of Einstein’s clever notational
inventions. If written out it is rather complicated. Even in the simplest, two-
dimensional case the expansion of the equation, as written in the first line of
Eq. (7.14), contains twelve terms

oS e,
+A1F112i[—f51 +A2F122i[—f51
g%fi—):é +A1F211i—):52

dx' . 0A4% dx?

22 94X
+ A F21d1e2+32d1

dx? dx?
+Al F212d7€2+A2 F222d7€2. (7.17)

In three-dimensional space there would be 36 terms, and in four-dimensional
spacetime 80 terms, and in 2 dimensions 7%(n + 1) terms. In comparison the general
form in Eq. (7.16) for the derivative of a vector is economical and elegant—or, we
are tempted to say: beautiful.

The geometrical interpretation of Eq. (7.17) may be stated as follows. The
expression A*., u” is the u component of the derivative of the vector A , giving the p

component of the change of the vector field A by an infinitesimal displacement in the
direction of the curve. On the other hand, A* ,u" describes the change of A* by such
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Fig. 7.2 A vector field with +—
vanishing radial component
T
v(r) l °
—
—_—

a displacement. Hence, while A" , is a derivative acting on the vector component
A", this is not so in the case of A*.,. In this respect the usual expression: A*,,
is the covariant derivative of the vector-component A, is somewhat misleading.
The covariant derivative essentially represents a differentiation of the whole vector
/I, not only of its components. In fact A*,, may be different from zero even if
the component A* vanishes at all positions. This conceptually not trivial point is
illustrated by Example 7.1 below.

Example 7.1. Consider a vector field /I, in which the vectors are directed along
concentric circles (see Fig. 7.2), and have a magnitude equal to the distance from
the centre of the circles, i.e. in polar coordinates

A=réy. (7.18)

None of the arrows have a radial component. Therefore A” = 0 everywhere, so that
A" g = 0, but from Eq. (7.15) we get in the present case

A = A? T g9.
Inserting I g9 = —r from Eq. (6.18) and A% = r from Eq. (7.18), we get
A"g = —r A = —p2,

Thus the covariant derivative of A" with respect to 6 is different from zero in spite
of the fact that A” is zero everywhere. This means that there is a change of the vector
field itself (not of the component A”) under a dispacement in the ég-direction.

Example 7.2. In this example we shall show how the component expression of
the acceleration of a particle in a curved coordinate system, say in plane polar
coordinates, is contained in the expression for the covariant derivative. We shall
consider the ordinary Newtonian case and use Newtonian time ¢ as parameter along
the path of the particle. Differentiation with respect to time will be denoted by an
overdot.
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In plane polar coordinates the component expression of the velocity is

. dr_ do R,
V:EEr—FE 9:r€r+9€9.
The acceleration is R
i (7.19)
a=—. .
dt

Equation (7.13) shall now be applied to calculate the expression for the acceleration
in plane polar coordinates. Inserting the left-hand of Eq. (7.11) in the first term of
Eq. (7.13), and using Latin indices since only spatial components are involved, this
equation takes the form

dA  dAF o
=t % Alul &y (7.20)

Replacing the parameter A by the time ¢, and the vectors Aand i by the velocity v,
we get from Egs. (7.19) and (7.20),

a= (V" +T5vv) é. (7.21)

There are only three non-vanishing Christoffel symbols, given in Eq. (6.18), in a
plane polar coordinate system. Hence, in the present case Eq. (7.21) reduces to

a= ('r' + F"eeéz) é + (9 + 21 47 9) éo.

where we have used the symmetry of the Christoffel symbols. Inserting the values
of the Christoffel symbols from Eq. (6.18), we get

i=(i-r6) é,+(é+§fé) é.

The unit vectors correspnding to the basis vectors ¢, and &y are é; = &, and
¢; = (1/r)ég. They represent an orthonormal basis field in the plane polar
coordinate system. The “physical components” of the acceleration vector appear
when the acceleration is decomposed in the orthonormal basis field,

i= (i"—réz) 5,:+<r§+2ié) é. (7.22)

In most books on mechanics this expression for the acceleration in plane polar
coordinates, is deduced by geometrical reasoning specially adapted to the particular
problem. As shown in Example 7.2, it is neatly contained in the covariant formalism,
which may be applied to all sorts of coordinate systems.
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7.3 Transformation of covariant derivatives

In the old days, when space was believed to be flat, one could always introduce
Cartesian coordinates, which meant that a formulation of the laws of physics valid
in arbitrary coordinates could be dispensed with. When Einstein understood that
gravitation should be described in terms of curved spacetime, he also saw that he
had to formulate the laws of nature in a form valid in arbitrary curved coordinate
systems. He knew that vectors do not change under a coordinate transformation,
only their components. Maybe a description in terms of vectors might do?

In such a formulation of the theory the calculations are performed in terms
of the components of the vectors. Since the laws, for example Newton’s 2nd
law, are expressed by differential equations, one needs to differentiate the vector
components. If the derivative of a vector component is not itself a vector component,
we are in trouble with our vector formulation of the theory.

Vector components have one index. However, the partial derivative of a vector
component, say A* ,, has two indices. Hence it is not a vector component. So, a
vector formulation of the theory does not fulfil Einstein’s requirements. Einstein
needed a theory of tensors of rank higher than one (vectors are tensors of rank one).

The components of tensors of rank 2 have 2 indices, just like the partial
derivatives of vector components. Maybe the partial derivatives of the components
of a vector make up a tensor of rank 2? Let us investigate this. Imagine that we have
two coordinate systems {x"} and {x"/}, where the marked coordinates are given
as functions of the unmarked ones, and vice versa, in a coordinate transformation
= xH (x*) and inversely x* = x* (x"/). These expressions can be differen-
tiated, and dx*/ ax* and dx* /0x" are the elements of the transformation matrix
and its inverse. From the chain rule for differentiation follows that partial derivatives
transform as follows

0 ox” a

ox”  ox oxv

Using this together with Eq. (5.10) for transforming vector components, we get

, 94" xv 9AW

At v = 7 = 7
’ daxV dxv" dxV
axv 9 [ oxH
_ 1
= o I (8x# A ) (7.23)

The product rule (2.24) gives

0 (axu’ AM) oxr pAr  Pxr

= _— A,
dxV \ dxk dxH 0xV axVoxH
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Inserting this into Eq. (7.23) we arrive at

v / v 2.1
A, = O O I (7.24)
’ oxv' oxk xV" OxV dxH
This shows that the partial derivatives of vector components do not transform as
tensor components, but in a much more complicated way due to the presence of the
last term. In other words, they do not form a tensor. Even if all A* , are zero, the
A“/, »» will in general not be zero because of the second term.

In order to be able to formulate the laws of nature in a coordinate independent
way, we need a new sort of differentiation, such that the derivative of a vector
component is the component of a tensor of rank 2. The most obvious candidate
is the covariant derivative.

The transformation formula for the covariant derivative of a vector component
follows most easily from Eq. (7.16). Using the transformation formulae (5.10) and
(5.37) for vector components and basis vectors, respectively, we get

- ) Y
% = A“/;V/ u” e =A" u"e, = A“;v% u”/% e
Since the succession of the factors does not matter when we calculate by means of
Einstein’s summation convention, we obtain

dxt BxV
AV = AR
’ axt axv ’
This is just the transformation formula for the mixed components of a tensor of
rank 2. Hence, the covariant derivative is the answer to our search for a suitable
derivative in a tensor formulation of a physical theory.

7.4 Covariant differentiation of covariant tensor components

Equation (7.15) gives the covariant derivative of the contravariant vector compo-
nents. We shall also need to know the formula for the covariant derivative of the
covariant components of a vector. In order to deduce this formula it is useful to start
with the the simplest possible quantity: a scalar. Such a quantity has no direction. If
one differentiates a scalar quantity, for instance a temperature field, the variation of
the basis vectors of the coordinate system does not matter. Therefore the covariant
derivative of a scalar function is defined as the ordinary partial derivative. For the
temperature field 7'(x', x2, x®) the covariant derivative of T with respect to x!, is

Tt =T =5
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The dot product of a vector by itself is the square of the magnitude of the vector.
This is a scalar function. According to Eq. (5.78) this function is given by

A-A=A, A"

Since the rule (2.24) for differentiating a product is valid both for partial and
covariant derivatives, we get

(AI‘AM) = AM;V At + Au AM;V

Y
and

(A AF) = Ay, AF 4+ A, AF .

Y
Using that the covariant derivative of a scalar function, like A, A", is equal to the
partial derivative, we obtain

Ay AM + Ay A* = Ay AV + A, A .
Substituting for A*., from Eq. (7.14) we get
Ay AM + A, (A", + ATV ) = Ay AM + A, A7 .
Subtracting A, A* , + A, A* T'*y, on each side leads to
Ay A" = A, A — A AT H,,.

Finally, exchanging the names of the summation indices ¢ and « in the last term
gives
Ay A* = Ay A — Ay AP T = (Ap v — Aa T%) A%

In order that this shall be valid for arbitrary vectors A=Aré 1, the factor in front
of A* must be equal for every A*. Therefore

Apsp =Ap v — A T 0. (7.25)

This is the equation for the covariant derivative of covariant vector components.

In the theory of relativity the properties of matter are represented by a so-called
energy-momentum tensor of rank two. Energy and momentum conservation is
described by putting the covariant divergence of this tensor equal to zero. Therefore
we shall need to be able to calculate the covariant derivatives of the components of
a tensor of rank two. They are given by the following formulae for the contravariant,
mixed and covariant components, respectively:

Tﬂv;ﬂ — T“V’ﬂ 4+ T Fuaﬂ 4 The Fva/& (7.26&)
TH,.p=T", g+ T% Tleg =T, T%, (7.26b)
Tuvip = Tuv.p— Tow T up — Tpua T 0p. (7.26c¢)



156 7 Covariant differentiation
7.5 Christoffel symbols expressed by the metric tensor

In chapter 6 we calculated the Christoffel symbols from the changes of the
coordinate basis vectors with position. In chapter 5 the metric tensor was introduced,
and it was mentioned that it is of fundamental importance in the theory of relativity,
and contains the information needed to calculate the curvature of spacetime. In this
section we shall go one step further towards the calculation of curvature from the
components of the metric tensor, by deducing how the Christoffel symbols can be
calculated from the metric. Note, however, that there are non vanishing Christoffel
symbols even in flat spacetime as described in terms of curved coordinate systems.
The Christoffel symbols characterize the geometrical properties of the coordinate
system, not of spacetime itself. It will be shown in chapter 9 how the curvature of
spacetime can be calculated from the Christoffel symbols and their derivatives.

Consider the unit tensor of rank 2, whose mixed components are equal to the
Kronecker symbols, defined in Eq. (5.15). Let us calculate the covariant derivative
of the components. Using Eq. (7.26b) we get

5“1};[3 = 8“\),[3 + (Sav Fﬂaﬁ - 8“01 Favﬁ
= 8“\),[3 + FMVﬁ - FMVﬁ = 8“\),5 =0,

where the last equality follows since the partial derivatives of the numbers 1 and 0
vanish. Thus the unit tensor of rank 2 is a constant tensor.

As we saw in Eq. (5.79) the mixed components of the metric tensor are equal to
the Kronecker symbols. Hence the metric tensor may be written (see Sect. 5.5)

g = 8“1)5# ®é'v’

i.e. it is just the unit tensor of rank 2. This is a constant tensor, meaning that the
derivative of the tensor along an arbitrary curve with paramete A vanishes,

dg
7
The covariant derivative of the tensor components of a tensor of arbitrary rank
are defined in the same way as Eq. (7.16) for vector components. The covariant
derivatives of the mixed and covariant components of the metric tensor, for example,
are given by

0. (7.27)

d .. ey
dxP
b= 7.28
u 7 (7.28)

From Egs. (7.27) and (7.28) follows

8uv;p =0.
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Using Eq. (7.26¢) this equation takes the form

Euvip = uv.p — av Fauﬂ — 8ua Favﬁs

which gives

8uv.p = 8av Iup + gua T%0p. (7.29a)
Relabelling we have

gup.v = 8ap T + &ua Tp0 (7.29b)
and

gup.u = &ap T%vp + Gva T pp- (7.29¢)

Taking Eq. (7.29a) 4+ Eq. (7.29b) — Eq. (7.29c) we get

guv.B + &up — 8upp = 8w pp + uaT¥vp + ap T v
+ 8ua gy — 8T — gva T -

Due to the symmetry of the Christoffel symbols and the metric tensor, the first
and the last terms at the right-hand side cancel, the third and the fifth terms cancel,
and the second and fourth terms are equal. Exchanging the left and right hand sides
we thus get

2g/m Favﬁ =8uw. B+ &uB.v — & .-

Multiplying by g*#, as defined in Eq. (5.70), dividing by 2, and using the equation
gr/i gua Favﬂ — Sra Favﬂ — Frvﬂy
provides us with

1
TP = = 8™ (8uv.p + &up.v — &up.1)- (7.30)

2
which is the desired expression. It is the expression you will find most often for
calculating the Christoffel symbols, if you go to a library and look rapidly through
books on general relativity.
There are in fact two kinds of Christoffel symbols. The ones given by Eq. (7.30)
are called Christoffel symbols of the second kind. The Christoffel symbols of the
first kind, Iy, are defined by

Fa/w = garFT/w-
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Inserting the expression (7.30) and using Eq. (5.74) we get

1
Foz;w = E gargrﬂ (gﬁu,v + 8oy — guv,ﬂ)

1
= 3 8" (gﬂu,v + &pvu — gwsﬁ)‘

In the summation over § only terms with § = « are different from zero, since
8.2 =0 for B # «. Thus we get

1
Foz/w = E (gozu,v + gav.u — g/w,oz)- (731)

These are the Christoffel symbols of the first kind. They will be used in Sect. 11.2.



Chapter 8
Geodesics

‘Geodesy’ comes from Greek yn, Earth, and Saiw, divide, i.e. ‘Earth division’.
‘Geodesic’ will be used in a rather special geometric sense in the following, but
it will be related to the old problem of measuring the shortest path on the curved
surface of the Earth. From the Euclidean geometry of a plane surface, we know
that the shortest path between two points is the straigth line between the points on
the surface. However, on the spherical surface of the Earth you cannot find straight
paths, so the shortest path between two points is the straightest possible path on the
surface between the points. Such paths are called geodesic curves.

In this chapter we shall give a generally valid and precise mathematical definition
of the concept ‘geodesic curve’. Such curves can be defined in two conceptually dif-
ferent, but mathematically equivalent ways; either as the shortest (or the longest—in
spacetime) curve between two points, or as the straightest possible curve. We choose
to define a geodesic curve as the straigthest possible curve.

In order to approach a mathematical precision of the concept ‘straightest
possible’ we note that the tangent vectors of a straight line on a plane, have the
same direction. This means that the tangent vector field of a straight line consists
of vectors that are connected by parallel transport. In flat space, or on a plane, this
has an intuitively obvious meaning: if you move a tangent vector along the curve,
without changing the direction of the vector, it will arrive at a new place on the curve
and cover (coincide with) a tangent vector at this place.

8.1 Generalizing ‘flat space concepts’ to ‘curved and flat
space concepts’

As a prerequisite for a precise definition of ‘straightest possible’ we shall in the
next section define the concept ‘parallel transport’ of a vector in a covariant way.
The definition will be generally valid in curved as well as flat spaces. In this
section we shall introduce a powerful and simple method for making such general
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definitions. The way we proceed here, is typical for the way that one can generalize
a mathematical concept, with a known equation valid in Cartesian coordinates in
flat space, to a more general concept, useful also in curved spaces: We start with the
known equation valid in flat space. This is generally not a tensor equation. Then we
construct a tensor equation reducing to our first equation in a Cartesian coordinate
system.

If we are to accept the resulting equation as a proper generalization of the original
equation, we must know that there is only one tensor equation which reduces to the
original one in Cartesian coordinates. We need the following theorem: If a tensor
vanishes in one particular coordinate system, then it vanishes in every coordinate
system.

This is expressed mathematically by the transformation law Eq. (5.13) for the
vector components, u”’ = (dx* /dx™) ut. If every u* vanish, then every u*" vanish
also.

That this theorem is valid for the special case that the tensor is a vector, is
intuitively clear. We are used to think of a vector as a coordinate-independent arrow
with fixed length and direction. If a vector vanishes in one particular coordinate
system, then there is no arrow, and a transformation to a new coordinate system
does not create a vector. For a tensor of arbitrary rank the intuitive basis is no
longer there. But the component concept is essentially the same as for vectors.
If a tensor vanishes in one coordinate system, then all the components of the
tensor in this coordinate system vanish, and the transformation laws for tensor
components, Eq. (5.80), then secures that al/l the components of the tensor vanish in
an arbitrary coordinate system. This proves our theorem: tensors of arbitrary rank
are coordinate independent quantities, just like vectors.

This means that there is only one tensor generalization of a non-tensorial
equation valid in a Cartesian coordinate system.

8.2 Parallel transport: unexpected difficulties

Imagine that we pick a piece of paper formed like an arrow, and put it so that it
covers the vector A on Fig. 8.1. We will let the arrow slide along the boundary of
the triangle in such a way that its direction is not changed. If we succeed in parallel

Fig. 8.1 Parallel transport —>
on a flat surface
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Fig. 8.2 Parallel transport
on a sphere

transporting the arrow around the triangle, it will return to the original position with
just the same orientation as it had when it left this position.

Let us now imagine that we are two-dimensional creatures (‘flatlanders’) on
a great spherical surface. Unavoidably it sounds like a paradox to ask for this,
since it seems to require that we may perceive ourselves simultaneously as two-
dimensional creatures on a surface, and as three-dimensional creatures looking at
ourselves on that surface. Imagine, furthermore, that the spherical surface is covered
with a coordinate system like that on a globe, such that we may define latitude and
longitude on the sphere. Assume that we are somewhere on the Equator, with a
straight arrow. Letting the arrow point along the Equator we then proceed to walk
eastwards to a certain longitude. Then we turn northwards all the way to the North
Pole. After a long rest we turn southwards along a latitude further west, so that
we reach Equator at just the point we started from. All the time we have kept the
direction of the arrow fixed. But, as suggested in Fig. 8.2, the result of this transport
is not what we expect from our parallel transport of an arrow on a plane.

We see, in Fig. 8.2, that when the arrow arrives at the point of departure, after the
round trip, it is pointing in a direction which deviates from its direction at the start
of the trip.

It may be objected that the drawing is misleading. The drawing of a curved
surface is possible only if we imagine that the surface is embedded in a flat
(Euclidean) 3-dimensional space. One might suspect that our conclusion that the
direction of an arrow is changed during a round trip on a spherical surface is,
somehow, an illusory result of our reasoning from a three-dimensional point of view.
That the result is real enough, however, also for two-dimensional creatures on the
surface, will be proved mathematically in the next chapter.

Before proceeding to a mathematical definition of parallel transport, we owe it to
the reader to comment a little on the above thought experiment. How can we keep
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the direction of the arrow constant? On the Earth there is a magnetic field determin-
ing the direction of a compass needle. This leads outside the core of the theory of
relativity, which concerns space, time and gravitation, not electromagnetism. What
we therefore need, is a compass of inertia. It was noted by the great mathematician
Kurt Godel that such a compass exists, and it is remarkably simple. A pendulum is a
‘compass of inertia’. Its swinging plane remains unchanged relative to the direction
of the stars. The swinging plane of the pendulum determines a fixed direction of
reference.

8.3 Definition of parallel transport

We shall first describe parallel transport of vectors in a Cartesian coordinate
system in flat space. Let a curve pass through the space. The curve is described
mathematically by means of a parameter (curve-coordinate) A. Assume that there is
a vector field A in the space. If the vectors of the field are connected by parallel
transport, they all have the same direction. We shall also demand that vectors
connected by parallel transport have the same length. Said in an intuitive way: If
two vectors in flat space are connected by parallel transport, they are identical except
for their position. In other words: If the vectors of a vector field are connected by
parallel transport, then the vector field is constant. And the derivative of a constant
vector field vanishes. Thus

dA

T 0 8.1)
The left-hand side is the directional derivative of the vector field along the curve.
When we give a parametric description of the curve we specify the coordinates as
functions of the curve parameter A (see chapter 3). So we may use the chain rule
for differentiation, Eq. (2.31), and write (using Latin indices for components in a
Cartesian coordinate system)

dA A" dx’
dr ~ 9xi dA

m i
= ."u'

In the last step we have introduced Einstein’s comma notation (7.10) for partial
derivatives, and the Eq. (3.16) for the components of tangent vectors. Equation (8.1)
can now be written

A" u' = 0. (8.2)

This is the equation for parallel-transport of vectors, a s expressed in a Cartesian
coordinate system.

As we know from the transformation equation (7.24) for partial derivatives of
vector components, Eq. (8.2) is not a tensor equation. It is not valid, as anequation
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for parallel transport, in arbitrary coordinate systems. But from the results of
chapter 7 we know how to generalize this equation to one that is generally valid. We
just have to replace ordinary partial derivatives by covariant derivatives. Due to the
ingenious notation introduced by Einstein, this can be performed just by replacing
the comma in Eq. (8.2) by a semicolon. In this way we obtain the covariant equation
for parallel transport of vectors,

Al u = 0. (8.3)

Substituting the expression (7.15) for the covariant derivative, the equation takes the
form

A* u’ 4+ AT u” = 0.
Using Eq. (7.11) and placing A* between I'*,,, and ©”, we get

d A"
e AT =0, (8.4)

In this general form the equation for parallel transport is suitable for two most
important applications. In the next section we shall see that the equation for geodesic
curves is closely related to it, and in the next chapter the equation will be taken as a
point of departure for the definition of the Riemann curvature tensor.

8.4 The general geodesic equation

The definition of a ‘straightest possible curve’ may be stated as follows: A curve
is said to be straightest possible if and only if the tangent vectors of the curve are
connected by parallel transport. Such curves shall be called geodesic curves.

According to this definition the equation of a geodesic curve is obtained from
Eq. (8.3) just by replacing the arbitrary vector A by the tangent vector u of the
curve. This gives the equation of a geodesic curve on covariant form

ut.yu’ =0, (8.5)

which may be stated with words as follows: the covariant directional derivative of
the tangent vector field of a geodesic curve, in the direction of the curve, is equal to
Zero.

Using Eq. (8.4) this equation can be written as

dut PR
W-’-F ay U U =0 (86)
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or
d*xt dx® dx’

+ Mav -
dr? d) di

= 0. (8.7)

An equation expressed in terms of tensors, (and not their components), is said to
have an invariant form. The invariant form of the geodesic equation is

di 0 8.8
=0 (8.8)
Note that each of the component Egs. (8.5)—(8.7), represents a set of n equations in
an n-dimensional space; one for each value of the index p. This is understood to be
the case also for Eq. (8.8), although this fact is not visible in this equation. A vector
equation in four-dimensional spacetime represents four component equations.
We shall give two illustrations; geodesics on an Euclidean plane, and geodesics
on a spherical surface.

Example 8.1. Let x and y be Cartesian coordinates on the plane. Then all the
Christoffel symbols are equal to zero, and Eq. (8.6) is reduced to

du® du’
dax nt

These equations are integrated in just the same way as the corresponding equations
of motion of a free particle in section 3.7. Since the derivative of a constant is zero,
we get

ut = kl and u’ = kz,

where k| and k; are constants. Hence

dx dy

— =k and — =k

! a7’

Integrating once more, using Eq. (3.33) with the substitutions x — A, p = 1, and
C = xyp in the first equation and C = yj in the second, we find

x=x9+kiA and y = yo+ kA.
This is the parametric equation of a straight line (see Eq. (3.15) witht = A,v* = ky,
and v’ = ky).

Example 8.2. Next we shall answer the question: what kind of curves on a spherical
surface are geodesic? We consider a surface with radius R, and introduce spherical
angular coordinates x! = 6 and x> = ¢ on the surface. In this case Eq. (8.7)
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represents the following two equations (note that the symmetry of the Christoffel
symbols has been used)

d*0 Lo, (49 2+zr9 do d¢
A2 "\ 9 dx dx
d 2
+ T4 (d—¢) =0 (8.9)
ﬁ + re ﬁ ? 42 ré ﬁ d_d)
dA2 9\ 4 9 an dx
de\?
s (—) =o. 8.10
+ 1% (dl) ( )

To some readers the transition from Eq. (8.7) to Eqgs. (8.9) and (8.10) may for
a moment seem slightly magical. But note that & and v in the Christoffel symbol
of Eq. (8.7) are dummy indexes. We have to expand and summarize with the
substitutions 66, 6¢, and ¢¢ for wv. With x* = 6 we get Eq. (8.9), including
four Christoffel symbols, but the symmetry 8¢ = ¢6 reduces this to 3. That is the
reason for the factor 2 in the third term of each equation. We are sorry to admit that
the magic vanishes. Note, also, that in the present case the invariant parameter A is
the arclength along the geodesic curve.

From Eq. (6.28) we find that the only non-vanishing of these Christoffel symbols
are

cosf

gy = — 7 and T, = —sinf cos 6.
sin

Consequently Egs. (8.9) and (8.10) reduce to

d*e . de\*
W—sm@ cos 6 (d_A) =0 (8.11)

and
d’¢ N cost) db dp
dA> sinf dA dA

(8.12)

In order to find the curves represented by these equations, we note that a geodesic
curve must be the intersection between a plane and the spherical surface, since it is
the straightest possible curve. Obviously such a curve must have circular shape.
Since there is no preferred direction on the surface we may choose our coordinate
system such that the intersecting circle has a constant value of the angle 6, i.e. so that
it is parallel to the ‘equatorial circle’ of the coordinate system. Thus d260/dA* = 0.
Then the second term of Eq. (8.11) must be equal to zero, in order that this equation
shall be fulfilled. Since d¢p/dA # 0, this demands sin 6 cos 8 to equal zero, which
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is possible only if the angle & = 7/2 (in the interval from 6 = 0 (the North Pole)
to 6 = m/2 (the Equator)). Hence the geodesic curve is a great circle along the
Equator. It remains to show that this solution also satisfies Eq. (8.12). With 6 = /2
the second term in Eq. (8.12) vanishes and the equation is reduced to d%¢ /dA* = 0,
giving d¢/dA = K, where K is a constant. Measuring the angle ¢ in radians, we
get K = 1/R, and ¢ = A/R, which is the longitude measured along the equatorial
circle.

We have now found that the equatorial great circle is the only curve with 6 =
constant that solves the geodesic equations. Since the orientation of our coordinate
system is arbitrary, we conclude that on a spherical surface the geodesic curves are
great circles.

The rather obvious result of Example 8.2 may lead the reader to think that after
all we have shot only a crow with our cannon. However, the main point we have
illustrated with this example is that equations (8.5)—(8.8) describe geodesic curves,
not only on flat space relative to arbitrary coordinate systems, but in curved space
as well.

The equation will be of vital importance in the theory of relativity. According to
this theory spacetime is curved, and free particles move along geodesic curves in
spacetime (see Ch. 12).

8.5 Local Cartesian and geodesic coordinate systems

A useful result is the following. At an arbitrary point P in curved spacetime one can
construct a coordinate system in a small region around P such that the metric has
the Minkowski form given by Eq. (5.121) at P, and the Christoffel symbols vanish
at P.

The Minkowski form of the metric is obtained simply by choosing a coordinate
system with orthogonal unit basis vectors at P. Coordinates with vanishing
Christoffel symbols at P may be constructed as follows. Consider a geodesic curve
F(A) through P. Letip = (u*)p(€,)p be the unit tangent vector of the curve at
P, as decomposed in an arbitrary coordinate system. The parameter A is the path
length, or distance, along the curve with A = 0 at P. We now introduce a special
coordinate system {x*} such that at a point Q at a distance A from P has coordinates

xt = w)pA. (8.13)
In the new coordinate system, all geodesics through P have equations of the form

(8.13). Differentiating twice with respect to A, and remembering that (u*) p are the
components of a fixed vector, leads to

d?x*
( e ) —0. (8.14)
P
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Comparing with the general geodesic equation (8.7), we see that the Christoffel
symbols vanish at P.

We have thus succeeded in constructing a coordinate system around P with
Minkowski metric and vanishing Christoffel symbols at P. In the following this type
of coordinates shall simply be called local Cartesian coordinates. From chapter 1
we know that the second derivative of a function describing a curve tells how fast
its direction changes, which means that it describes its curvature. Equation (8.14)
tells that, as referred to a local Cartesian coordinate system, a geodesic curve in an
arbitrary space is straight. In this sense a geodesic curve is the ‘straightest possible’
curve. From our knowledge of curves and distances on flat surfaces it is tempting to
conclude that the geodesic curve is also the shortest path between the given points
P, and P,. However, when it comes to geodesic curves in spacetime, you shall be
presented with a great surprise. The geodesic curves of spacetime have the longest
path lengths between two events (see Sect. 5.14).



Chapter 9
Curvature

9.1 The curvature of plane curves

‘Spacetime is curved’. It is, of course, not easy to understand adequately what is
meant by that sentence as it occurs in the general theory of relativity. There are
two principal axes of ‘precisation’, one leads into pure mathematics, the other into
physics and cosmology. We shall start with the mathematical.'

One of the simplest properties of a space is its dimension, which was defined
in Sect. 5.1. If you wonder how you can find out the number of dimensions of a
space, you may just count how many positions in different ‘orthogonal’ directions
you need in order to specify a point in the space. The number you arrive at is the
dimension of the space. For example, if you want to make an appointment, you have
to specify three positions, the latitude, the longitude and the height in order to fix
a point in space, and one number in order to fix the point of time. Thus spacetime
is four-dimensional. If you want to specify a point on a curve one position suffices.
Thus a curve may be considered as a one-dimensional space.

The simplest case of a one-dimensional space is a straight line. It has no
curvature. A straight line may be called an Euclidean one-dimensional space. The
next simplest case is a curve in a plane, i.e. a plane curve. Let us consider curves
in the xy-plane, and assume that the curves are graphs of differentiable functions,
¥ = y(x). In Sect. 2.3 it was mentioned that there is a connection between the
second derivative of a function and the curvature of its graph. We shall now find that
connection.

A definition of the curvature of a plane curve is needed. Qualitatively the
curvature is an expression of how fast the slope of a curve changes as we move

'A formulation U is more precise than a formulation T if and only if the set of different
interpretations of U is a genuine subset of the interpretations of 7'. In other words, if U is more
precise than 7', there is a higher definiteness of meaning and less ambiguity in U than in 7. The
more precise formulations, Uj, U, ..., are called precisations.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 169
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5_9,
© Springer Science+Business Media, LLC 2011
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Fig. 9.1 A curve and its y
tangent A
/)
dx
7 > X

along the curve. In Fig. 9.1 we have drawn a part of a curve in a region around a
point P on the curve. Let ¢ be the angle that the tangent to the curve at P makes
with the x-axis.
From Eq. (4.3) and the figure is seen that
dy

t = .
an ¢ I

According to the definition (2.4) of the derivative it then follows that
y' = tan ¢. 9.1

Let ds be a displacement along the curve corresponding to a displacement dx
along the x-axis and a displacement dy along the y-axis. The curvature K of a
plane curve is defined as the change of the slope angle ¢ per unit displacement
along the curve

d¢
K=—. 9.2
s 9.2)
The relationship between the displacements ds, dx, and dy is given by the
Pythagorean theorem.
(ds)? = (dx)* + (dy)*.

Putting (dx)? outside a parenthesis we get

(dy)?
(dx)?

(ds)?* = [1 + } (dx)*.

Using a rule from the calculus of fractions, a>/b* = (a/b)?, we obtain

(ds)? = [1 n (j—i)z} (dx)? = (1 + y’z) (dx)>.
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Taking the positive square root on both sides of the equality sign we have

ds = /14 y?dx.

Inserting this in the definition (9.2) leads to

L_do_ ¢ 9.3)

T Tryrdx Jity2

Here ¢’ may be expressed in terms of y” by differentiating Eq. (9.1). Using
Eq. (4.27) and the chain rule, Eq. (2.31), since ¢ is a function of x , we find

K

y" = (tang)’ = (1 + tan” ¢) ¢'.

Substituting for tan ¢ from Eq. (9.1) leads to
Y = (1 + y/Z) g

Dividing by 1 4+ y’* on both sides gives

4

Y

r_

Py y'?

Inserting this into Eq. (9.3) and using that /1 4+ y'2 (1 + y'*) = (1 + y’*)3/2, we
finally arrive at the expression for the curvature of a plane curve

4

y
32"

K=—>2"
(1+7)

94

The second derivative of y is not quite the same as the curvature of the graph
y = y(x). While y” is the rate of change of slope (i.e. tangens to the slope angle)
per unit distance in the x-direction, the curvature K is the rate of change of slope
angle per unit distance along the curve.

Let us again consider the parabola y = x? of Fig. 2.4. This function has y’ = 2x
and y” = 2. Thus, its curvature is K = 2/(1 + 4x?)*?2. This expression shows that
the curvature of the parabola is largest, equal to 2, at x = 0, and decreases towards
zero for large values of x. Far away from the y-axis the parabola approaches a
straight line. Looking at Fig. 2.4 you see that this is in accordance with the shape
of the curve. Note also that if we had tried to define the curvature as the rate of
change of slope per unit distance along the x-axis, i.e. as y”, we would have found
a constant curvature, equal to 2 for the parabola. A constant curvature corresponds
to a circular arc, which clearly does not correspond to the shape of the parabola.



172 9 Curvature
9.2 The curvature of surfaces

Let us inspect a simple surface; the surface of a cylinder. Suppose the cylinder
you look at is of paper and that you roll it out like you would do with a rolled-
up newspaper fetched by your dog. If there were drawings of triangles and other
figures on the cylinder they would all retain their shapes and lengths. There would
be no trace of distortions or deformations. The geometry of a cylindrical surface is
the same as that of a flat paper. The right triangle drawn on a paper with lengths
3, 4, and 5 cm, retain these quantities when we roll the paper into a cylinder. The
theorem of Pythagoras holds good also on the curved cylindrical surface. The sum
of the angles remains 180 degrees. Two-dimensional creatures on a cylinder develop
the plane Euclidean geometry. They have no concept of a cylinder as we see it. But
of course a sufficiently long straight journey on the surface may lead back to where
they started. This is an astonishing fact for the cylindrians, showing that the topology
of their world is different from that of an Euclidean plane.

As three-dimensional creatures we may curl the paper cylinder more and more.
The diameter of the cylinder gets smaller and smaller, the paper curves ‘more and
more’ per cm. The 5 cm straight line of our drawn triangle is eventually changed
into a spiral. But the cylindrians, as mathematicians, may not notice anything
whatsoever. The geometrical measurements of the cylindrians show no difference.
Technically we say that the intrinsic curvature of the cylindrical surface is zero.
Embedded in a three-dimensional space, it has curvature which is greater or smaller.
The curvature of a two-dimensional surface as measured when embedded in a three-
dimensional space is called the extrinsic curvature.

In general relativity we are concerned with curved four-dimensional spacetime,
without reference to any higher-dimensional flat space in which spacetime could
be imagined to be embedded. Thus by ‘curvature of spacetime’ is always meant
‘intrinsic curvature’. We might speak of the extrinsic curvature of spacetime,
embedded in for example a ten-dimensional Euclidean space, but there is no need
for such an exploit.

We shall deduce an expression showing how the intrinsic curvature of a two-
dimensional surface can be found by measurements on the surface itself. The
circumference and radius of a circle can be measured by means of a ruler. The
quotient between these quantities is equal to 27 on a plane. We shall find how the
intrinsic curvature of a surface is given by the deviation of this quotient from 2.

Consider a small part of any surface, for instance a part of the surface of a dome
which surrounds a point P. By making the neighborhood around P small enough,
the form of the considered mathematical surface will depart as little as one pleases
from a spherical form. This is illustrated in Fig. 9.2.

From this figure and the definition of an angle as measured in radians (see
Sect. 4.1) we see that

o =

r
R
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Fig. 9.2 Surface of a dome

|/
g
la/ R
7/
1/
I//
Fig. 9.3 The dome seen from
above
S
0
P
The flatter the dome, the larger is R, and the smaller is the angle «. Furthermore
N o
sina = —.
R
Thus
p = R sina = R sin(r/R).
Also, as shown more clearly in Fig. 9.3
s
0=-—,
0
where s is the distance along the circle C extended by the angle 6. We get
s = 6p =0 R sin(r/R). 9.5)

This expression shall be used to find the curvature at a point P of the surface
depicted on Fig. 9.2. In general the curvature of a surface is a function of the position
on the surface. The curvature at P is a local quantity, generally different from the
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curvature at other points on the surface. Therefore, we shall need to develop an
expression for s, valid for very small values of r. This is performed by means of a
series expansion of the expression (9.5).

The first two terms of the MacLaurin series for sin x is (see Sect. 4.1.1)

. 1,
smx:x—gx + .- 9.6)

Here x = r/R, and we get from Eq. (9.5)

r 173 11,
s=0R (————+---)=9 (r—gﬁr +) 9.7)

We have obtained our desired expression for s. This will be used to find the curvature
of our surface, Fig. 9.2, at P.

Here R is the radius of the sphere that the surface around P is part of. The
extrinsic curvature—the curvature measured from the outside of the surface—is
called ‘Kg’, and is defined as

It is called extrinsic because it refers to the radius of curvature R of the two-
dimensional surface as embedded in the three-dimensional space external to the
surface. Equation (9.7) may now be written as

1
s=10 (r——KEzr3 +)
6
The length £ of the circle C around P with radius r on the surface, is
1
({=2n (r—gKEzr3+~~~), 9.8)

since the angle 6 around the circumference is 27. Dividing each side of Eq. (9.8)
by 2 we get

/ 1
R T
21 d 6 BT
Thus
1K52r3%r— L =27rr—€
6 27 21

Multiplying by 6 and dividing by r3 we get

3 2nr — 4
KEZN— 3 .
b4 r
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Taking the limit r — 0 we get

3 . 2nr—4
Kg* = = lim ———. (9.9)
7w r—0 r
We have now succeeded in expressing the extrinsic curvature of the considered
surface in terms of quantities that can be measured by a two-dimensional creature
on the surface.
The intrinsic curvature K of a surface at a point P is given by the expression at
the right-hand side of Eq. (9.9). Thus
3 . 2wr — 4

K; = — lim
7 r—0 r

(9.10)

The intrinsic curvature K; is called the Gaussian curvature. From Egs. (9.9) and
(9.10) it follows that for the considered surface K;=Kz>. This extremely simple
relation is not easily seen intuitively, and is not valid in general. It is due to the
special property of the considered surface; that this surface was assumed to be
indistinguishable from a spherical cap at a sufficiently small region around a
point P. This is not a general property of surfaces. The cylindrical surface we
mentioned above, for example, is locally similar to a plane. It has Kz#0 and
K;=0.

In general the extrinsic curvature of a surface may be characterized as follows. At
every point on the surface we consider the straightest possible curves with different
directions. We then find the curvature of these curves. They curve in the direction
normal to the surface. Generally the curvature varies with the direction of the curve
(except in the isotropic case that we considered above). The maximal and minimal
curvatures are called the ‘principal curvatures’ of the surface, and are denoted by
k1 and k5. The extrinsic curvature is defined by

1
Kg = E(Kl + K2). (9.11)
The intrinsic (Gaussian) curvature is given by
K; =k k2. (9.12)

For a spherical surface k1 = k», which gives K; = Kg* = 1/R2. In the case of a
cylindrical surface x1 # 0 and k, = 0, which gives Kg = x1/2 # 0 and K; = 0.

If K; # 0, K; may be either positive or negative. The case we have considered
in Fig. 9.2 has £ < 2z, giving K; > 0.

The geometry of such surfaces is called parabolic. In the case that [ > 27 r, the
spherical surface is replaced by a surface similar to a saddle. In this case K; < 0.
The geometry of such surfaces is called hyperbolic.

In elementary school the famous m is a symbol for the ratio between the
circumference and diameter of a circle, and the value of = is given as 3.14159---.
True or false? On a flat surface: true. But what about circles drawn on curved
surfaces? Think of a circle on a spherical surface. Let the centre of the circle be
at the North Pole. From the point of view of a Euclidean three-dimensional space
in which the spherical surface is embedded, the radius of the circle is a curved path
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Fig. 9.4 A circleona
spherical surface

on the surface, from the North Pole to the circle. Assume that the radius of the
circle is made larger, so that the circle approaches the Equator, and even passes the
Equator. Then the circumference of the circle decreases while the radius increases.
Obviously, the ratio of the length of the circumference and the length of the radius
of the circle is not constant when the radius of the circle increases. It is due to the
curvature of the surface.

What we have seen is that if one maintains the school-definition of 7, then the
magnitude of m will depend upon the diameter of the circle that it refers to. This
may be maintained, but not the implicit assumption that the circle must be drawn on
a flat surface. But both mathematical and physical flatness is an extremely special
condition.

Defining the concept of 7 as quotient between circumference and diameter, its
value may vary from zero to infinity, dependent upon the curvature of a surface! We
shall in what follows mercifully retain the value of 7 you always find, by modifying
the school definition of m, since it is admittedly not very practical that = might
sometimes be equal to 2.15 and sometimes for example equal to 8.50. In order not
to violate the near-sacredness of 3.14159--- we need only to add four words to the
definition of 7: “on a flat surface”. This more precise definition has a consequence
with respect to the number of radians we get for the angle around a circle (see
Sect. 4.1.1). In order that a radian shall be a geometry-independent measure of
an angle, we shall demand that the number of radians around a circle is the same
whether it refers to circles on flat or curved surfaces. Then the definition of a radian
must also refer to a flat surface. We shall illustrate all this by example 9.1.

Example 9.1. Consider a circle on a spherical surface, as shown in Fig. 9.4.

Here ¢ is the circumference of a circle with radius r on the spherical surface. Let
us for a moment retain the ‘school-definition” of = mentioned above and apply it to
curved space

w

¢ (9.13)
2r '
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The symbol @ also denotes the Greek letter r, but we reserve the 7w symbol for the
flat space value

= 3.14159---.

The radius of the circle on the shaded plane in Fig. 9.4 is denoted by p. Since the
geometry is Euclidean on this plane,

¢ =2mp. 9.14)

Inserting Eq. (9.14) into Eq. (9.13) gives

Now we want to express @ as a function of «, the angle at the centre of a globe (see
Fig. 9.4). It is seen that

p =R sinx
so that
R sin«
w = . (9.15)
rmw
Since « is measured in radians
r (9.16)
o= —. .
R

Inserting Eq. (9.16) into Eq. (9.15) gives

sin o

w (@) =

Let us consider some particular values, remembering that we refer to measure-
ments performed at the North Pole.

For a small circle around the North Pole ¢ ~ 0 and the measured value of @
according to the ‘school-definition’, is

. . sino .o
lim w(w) = 7 lim = lim — = 7,
a—0 a—>0 o a—o o

where we have used the fact that in the limit &« — 0 it is sufficient to retain the first
term in the MacLaurin series, Eq. (9.6), for sina.

For the equatorial circle the angle « is defined with reference to our Euclidean
paperplane. Thus the equator corresponds to the angle o« = /2, giving

w(n)2) = nl/z - 2?” —2.
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Fig. 9.5 A surface with negative curvature

If our observer at the North Pole measures 7 using a circle with centre at the
North Pole, and with the largest as possible radius, r (see Fig. 9.4), namely a small
circle at the South Pole of the surface, he gets

0
w(w) = ;n =0.

Generally when the curvature of a surface is positive, @ < .

The simplest surface with negative curvature is a saddle shaped surface, as shown
in Fig. 9.5.

A circle drawn on such a surface is shaped like a wave going up and down. The
length of such a curve with a given radius is clearly longer than the length of a plane
circle with the same radius. This means that the value of w = £/(2r) is greater than
7 on a surface with negative curvature.

When we come to the geometry of three-dimensional spaces—or even four-
dimensional spacetimes—the possibility of obtaining a visual image of the curvature
of the space has been lost. We must resort to less intuitive ways of describing
the geometry of such spaces. However, it was discovered by ‘the prince of
mathematics’, Carl Friedrich Gauss—in what he called ‘theorema egregium’ (‘the
extraordinary theorem’), that an inhabitant of, say, a three-dimensional space, may
perform measurements, within the three-dimensional space, which reveals to him
the curvature of the space he lives in. This may be achieved by performing analogous
measurements to the one we treated in the last paragraph, where the curvature of a
surface was found by measuring how the quotient between the circumference of a
circle and its diameter deviates from the ‘Euclidean’ value 3.14. ... In the following
paragraphs we shall consider one such ‘intrinsic’ way of measuring the curvature in
a space with an arbitrary number of dimensions, namely by measuring the change
suffered by a vector when it is parallel transported around a closed path in a curved
space.
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9.3 Curl

The main topic of this chapter is to introduce a definition of the Riemann curvature
tensor. This will be done by calculating the change of a vector by parallel transport
around a small closed curve in a curved space. The idea of using such a procedure
comes from the considerations in Sect. 8.2, where we found that a vector parallel
transported around a triangle on the Earth suffers a change, while on a plane there
is no such change.

Before we can proceed with the calculation, we need to make a few definitions.
Consider a vector field é, and aclosed curve 7. Let d7 = dx‘iév be an infinitesimal
displacement vector along the curve. The circulation C of B around the curve is
defined as

C = 555 - dF, 9.17)

where the symbol ¢ means the integral around the curve. The scalar product
B - dF is the magnitude of the vector B times the projection along the vector of
an infinitesimal displacement d7 along the curve. We can say the circulation of a
vector field represents the ‘flow’ of the vector field around a closed curve. If, for
example the curve is a stream line in a fluid, and B = pv, where p is the density of
the fluid and v its velocity field, the circulation represents the rate of flow of fluid
mass around the curve.

We shall now define the curl of a vector field. Let 7 be the unit vector normal to
a small surface with area AS enclosed by the curve 7. The component of the curl
of a vector B in the 7i direction is defined by

S~ L 1 RN
curl B=n AlégoA_S ¢B'dr. (9.18)

The curl of a vector field B is the circulation density, i.e. the circulation of B around
small curve T per unit area of the surface enclosed by 7. If B is the velocity field,
B = v, the curl is a local measure of the rate of rotation of a fluid. A fluid with curl
free velocity field is said to be irrotational.

Writing limas—o AS = dS, and multiplying each side of Eq. (9.18) by dS, we
have

%E-d? = (curl B), dS,

where (curl é),, is the component of curl B normal to the surface dS. This equation
says that the circulation of a vector field B around an indefinitely small curve T
is equal to the curl of the vector times the area of the surface enclosed by 7.
Introducing coordinates {x®, x#}, the component of curl B normal to the surface
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Fig. 9.6 Infinitesimal curve (x,y + Ay) Ax (x + Ax,y + Ay)
AyY A Ay
A
*x.) Ax (x + Ax, )

are written (curl B )ep and the area of the surface dS®. Then the circulation of B
around 7 can be expressed in the following way

95 B -dF = (curl B)os dS°F. (9.19)

We shall now calculate the curl of a vector field B in the most simple case of
a vector field in a plane covered with a Cartesian coordinate system, i.e. an (x, y)
plane. In the following it will be advantageous to express a vector by its covariant
components (subscripts), and not by its contravariant components (superscripts).
The covariant components of the vector field are B, (x, y) and B, (x, y).

Consider a small curve 7', enclosing a rectangular surface with area AS* =
Ax Ay, as shown in fig. 9.6.

The counterclockwise circulation of B around the curve 7 is the sum of the flow
rates along the sides, i.e. of the component of B times the length of the side. The
flow rates are:

Fhowom = Bx(x, y) Ax,
Fiigne = By(x + Ax, y) Ay,
Fip = —B:(x, y + Ay) Ax,
Fien = —By(x, y)Ay.

We add opposite pairs to get, for the top and bottom edges:

ABy
—[Bi(x, y + Ay) = Be(x, y)] Ax = — Ay‘ Ay Ax

and for the right and left sides

AB
[By(x + Ax, y)— B,(x, )] Ay = Axy Ax Ay.
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Adding these expressions gives the circulation around the rectangular curve 7'

o (ABy _AB,

Ax Ay.
Ax Ay)xy

Taking the limit of an indefinitely small rectangle, we get from the definition (9.18)

of the curl
~ JoB 0B\ -
curl B = —=2 — —)e..
ax dy

Using Einstein’s comma notation for partial derivatives, and denoting the z compo-
nent of the cur! by (curl B),,, we have

(curl é)xy = By — By ,.

This expression is valid in a Cartesian coordinate system only. The covariant
generalization is obtained by replacing the ordinary partial derivatives by covariant
derivatives,

(curl B)yg = Bpyy — Busp- (9.20)

However, due to the symmetry (6.31) of the Christoffel symbols one can, in
fact, replace the covariant derivatives by ordinary partial derivatives in arbitrary
coordinate systems. This can be seen as follows. Inserting the expression (7.25)
for the covariant derivative of covariant vector components into Eq. (9.20) we get

(curl B)yp = Bgo — BT o — (Bup — BT ap)
= B — Bup — B (T7p — Tap) -

Since the last term vanishes the expression
(curl B)ys = Bgo — Bug. (9.21)

is valid in an arbitrary coordinate system.

9.4 The Riemann curvature tensor

We made appeal to our intuition in chapter eight, to see what would happen to a
vector if it was parallel transported around a closed curve on a spherical surface,
such as, for example, on the surface of a globe. We reached the thought provoking
result that when we transport the vector firstly along the equator, then along a certain
longitude to the North Pole, and then along another longitude back to the equator
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Fig. 9.7 An area on a plane
surface

aS

so that it reaches the point of departure, then the vector will not point along the
same direction as when it started! If a similar trip is performed on a plane surface,
or even on the surface of a cylinder, no change of direction will take place. The
change seems to depend in some way upon the curvature of the spherical surface, as
distinct from a plane or cylindrical surface. In this connection it may be noted that
a cylindrical surface may be ‘rolled out’ on a plane surface.

In the following we shall search for a consistent geometrical interpretation of the
change of direction of a vector due to parallel transport around a closed curve. This
will turn out to be rather involved since we are seeking a mathematical expression
valid for curved surfaces generally, that is, for an overwhelmingly rich variety of
surfaces. You are invited to take part in what might be called ‘index gymnastics’.
The equations in this section are relatively short and simple, but looking closely you
will notice a bewildering change of indices. There is reason to suspect that Einstein,
who felt he was a pure physicist, and never a mathematician, disliked this sort of
gymnastics. But he saw no way to avoid it in his search for a relativistic theory of
gravitation. So he not only learned it and mastered it. He also contributed to this
part of the mathematics by inventing useful notation—as for example the Einstein
summation convention.

Let us start by inspection of a small area AS on a plane surface. This area is
enclosed by a pair of coordinate curves of an arbitrary curvilinear coordinate system
(see Fig. 9.7). Parallel transport on a plane surface does not change a vector. If we
denote the change of a vector A due to parallel transport around a closed curve by
A/f, then, in the case of a plane surface, we may safely write

AA = 0.

In this chapter we intend to deduce an expression for AA in the case of parallel
transport around an infinitely small, closed curve on a curved surface of any kind.
We shall then use the notation d A instead of AA.
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In our deduction of the general expression for dA we will need to know how the
components of A change during parallel transport. As made clear in Sect. 8.2, if the
vectors of a vector field A are connected by parallel transport along a curve, then

the vector field is constant along the curve. This is expressed by the vector equation
(see Eq. (8.1))

dA =0,

which holds in curved space as well as in flat space.

There is something strange here. Parallel transporting a vector around a triangle
on a spherical surface we found a change AA # 0. However, by adding vanishing
changes dA around a curve one cannot get a non-vanishing change. The solution
of this apparent paradox is that the change of a vector dff, when the vector is
parallel transported an infinitesimal distance dx*, vanishes only to first order in
dx*. Another way of expressing this is to say that the change of a vector field by
parallel transport is not visible when we are concerned only with first derivatives of
the vector field. But if we calculate to second order in the differentials there is such
a change.

If the vector changes by parallel transport around a curve, then the components
of the vector will change by such a transport, too, since the vector is transported
back to the same point it started from, with the same basis vectors. We shall,
as announced, calculate the change of the vector components when the vector is
parallel transported around an indefinitely small curve. It turns out to be most
convenient to calculate the changes dA, of the covariant vector components.

Parallel transporting a vector A a coordinate distance dx” we have
Apdx” = 0.
Inserting the expression (7.25) for the covariant derivatives of the covariant vector
components, we get
Apvdx” = A T7dx".

Thus

Apy = AT 0. (9.22)
Furthermore, the change of A, by parallel transport along dx" is

dA, = A, T7,dx". (9.23)

According to what was said above one might be surprised that we need not include a
second derivative term in the expression for dA,,. However, according to Eq. (9.21),
the sum of the first derivatives (the Christoffel symbols) around a curve may be
expressed by the second derivatives (the derivatives of the Christoffel symbols) on
the surface enclosed by the curve. Therefore the expression (9.23) is sufficiently
accurate.



184 9 Curvature

We shall now calculate the total change, AA,,, of A, by parallel transport around
aclosed curve. In other words, we shall integrate d A, as given by Eq. (9.23), around
the curve,

AA, = fﬁdA“'
The right-hand side of Eq. (9.23) can be written

dA, = By, dx", (9.24)
where the quantities By, are given by

B, = A7, (9.25)

We now introduce vectors éu with covariant components By, in order to write the
right-hand side of Eq. (9.24) as a scalar product. Usually vector components have
only one index. Here we need two, one index p to specify which vector we consider,
and one index v to specify the component of the vector (the x component or the y
component and so forth). According to Eq. (5.119) the scalar product of two vectors,
N and dF, can be expressed in terms of their components in an arbitrary coordinate
system as follows

N -di = N, dx"

where d7 = dx"é, have been used. In the present case the components N, are
replaced by the components B, of the vectors B,,, and we have

dA, = B,,dx" = B, -dF.

Thus the total change of the vector components A, around an indefinitely small
curve T of arbitrary shape, is equal to

AA, = 55(1/1“ = sﬁ B, -dF. (9.26)
Comparing with Eq. (9.17) we see that Eq. (9.20) is just the circulation of E,L around
the curve. According to Eq. (9.19) this is equal to a sum of the components of the
curl of By, times the components of the area dS* of the surface enclosed by the
curve. The components of the curl are given by Eq. (9.21). Thus
AA, = (curl By)ys ASY = (Bupa — Buag) AS.

Inserting the expression (9.25) for the components of B 1 We get

Ay =[(AT"p) , = (AT ") 5| AS.
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Differentiating the products A.I'*,, and A.I'*,s and renaming the summation
indices so that 7 is replaced by v in the second and fourth terms, gives

AAy = (Arvartuﬁ + AT upa — Acpl o
— AT 4 p) AS®. (9.27)
According to Eq. (9.22) (replacing i by t, v by Band t by v) A;, = A,V and
(replacing by 7, v by @ and 7 by v) A, g = A,I"";4. Inserting these expressions
into Eq. (9.27), we get
AAM = (Avl—wm thg — Avl—wtﬂ Ffua + Avl—wuﬂ,a
— AT 4 p) AS®.
Putting the common factor A, outside the parenthesis, and exchanging the factors
in the products of the Christoffel symbols (only for aestetic reasons, to get the same
succession of the indices & and B in the two first terms and the two last terms),
we get
AAy = (Fruﬁ Mo =T ua TV + T upa
— T ap) Ay ASY. (9.28)

The Riemann curvature tensor is the fourth rank tensor with components R” ;4
defined by

Rv/wﬁ = FTMg ' — FT/m erﬁ + Fvuﬁyu — Fv/w’/g. (9.29)

The change of the covariant components a vector A by parallel transport around
an indefinitely small closed curve enclosing a surface with area S may now be
written

1
Ady = SR uap Av ASP. (9.30)

The change of the vector itself is given by the change of its components, (raising the
index w at both sides of the last equality sign)

» 1
AA = AN'E, = 2 R"op 4, AS G, (9.31)

since the vector has been parallel transported around a closed curve and thus has
come back to the point where its transport started, with the same basis vectors.

Equation (9.31) shows that the change of a vector by parallel transport around a
closed path in a curved space, is proportional to the product of the curvature of the
space and the area of the surface enclosed by the path.
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The result expressed in Eq. (9.31) is purely mathematical. It concerns the
curvature of curved surfaces and curved spaces. The ‘theorema egregium’ of
Gauss is contained in Eq. (9.28), since the values of the Christoffel symbols and
their derivatives are defined ‘intrinsically’, i.e. without reference to any higher-
dimensional space which the one with curvature R4 could be embedded in. Due
to its mathematical character this theorem needs no empirical support, it tells noth-
ing about the physical world. The geometrical theory can be developed abstractly
as a non-geometrical, logical system. The terms ‘vector’, ‘point’, ‘coordinate’, and
‘path’ are then introduced without any reference to a physical space that we might
be said to live in. Drawings on a paper are of no significance for the deductions.
Drawings are only of heuristic value.

However, some equations of the abstract system can be made to correspond to
certain empirically studied physical relationships. If we construct a theory which,
for example, through certain equations, successfully predicts how light moves in flat
spacetime, and also in curved spacetime, we would talk of a physical spacetime,
whose geometrical properties we then can investigate empirically. The general
theory of relativity is just such a theory. This makes it meaningful to talk about
the geometry of physical spacetime.

We shall further on be talking about a four-dimensional model of the universe
where we are born and presumably are going to die. But the level of abstraction
will be astonishing. Abhorrent and frightening to some, awesome to others. The
so-called Einstein equations, superceeding Newton’s, require skyhigh levels of
abstraction.

The question is unavoidable: will humanity never get back to a fairly easily
understandable, but grand theory of the universe of the Newtonian kind? For those
who hope to see a trend in that direction, the development of this century has been
discouraging.



Chapter 10
Conservation laws of classical mechanics

10.1 Introduction

In order to be able to understand Einstein’s field equations we should first consider
some important concepts of Newtonian physics.
Three fundamental principles of Newtonian physics are:

1. conservation of momentum (mass times velocity)
2. conservation of mass
3. conservation of energy

The general theory of relativity is a theory which is conceptually very different
from Newtonian mechanics and gravitational theory. It is often said that Einstein’s
theory generalizes Newton’s theory. This must, however, be understood in a
restricted sense; the general theory of relativity contains the predictions of Newton’s
theory of gravitation, as a limiting case with small velocities (compared to the
velocity of light) and weak gravitational fields. Physicists are confident that the
general theory of relativity can describe, with great accuracy, also phenomena
involving strong gravitational fields, such as very compact stars, and systems with
great velocities, like the expanding universe. But to do this a new conceptual
framework had to be invented.

Of particular significance is the concept ‘spacetime’ which was introduced into
physics by Hermann Minkowski in a famous speech on September 21, 1908, starting
by the words:

The views of space and time which I wish to lay before you have sprung from the soil of
experimental physics, and therein lies their strength. They are radical. Henceforth space by
itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.

If one wants to apply a theory of gravity to the interior of a star, or to the universe as
a whole, one must be able to combine a law of gravitation with a hydrodynamical
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formulation of the basic principles stated above. This is because both the interior of
stars and the contents of the universe as a whole can today most simply be modelled
as a kind of fluid or a gas.

For example, the simplest model of the cosmic mass is a fluid or gas without
viscosity, called ‘perfect fluid’. It has by definition only three properties: mass
(energy), pressure (or tension) and motion. These properties are represented by the
mass density (mass per unit volume), p, the pressure, p, and a velocity field, .

In this chapter we shall study slowly moving systems in regions free of gravita-
tional fields. Such systems can be adequately investigated by means of conventional
Newtonian dynamics, as formulated in the nineteenth century. However, in order
to prepare for the covariant formulation of the fundamental laws of nature in the
way they appear in the general theory of relativity, we shall here describe fluids
moving in the four-dimensional flat spacetime of special relativity, using a tensor
formalism that may also be applied in curved spacetime. So, even if the numerical
results obtained when the equations of this chapter are applied to hydrodynamical
problems, for example to the task of predicting tomorrow’s weather, are equal
to those of Newton’s theory—the spirit of our treatment is due to Einstein and
Minkowski.

10.2 Divergence

In order to be able to give a condensed, general mathematical formulation of the
fundamental conservation laws, we shall need to become familiar with what is called
the divergence. Even if this concept is of a geometrical nature, it will be useful to
introduce it by means of a physical example.

Imagine that something is flowing out from a region and something flows into it.
In some regions, called ‘sources’, more is flowing out of it than into it. For ‘sinks’
the situation is the opposite one.

In the story which unfortunately has contributed in the forming of a negative
picture of wolves, namely Little Red Riding Hood, more is moving into the cavern
than out of it. The cavern is a sink. On the other hand, the sun or a birth clinic, is a
source. More heat or people are flowing out of it than into it.

The flux of a quantity through a surface is defined as the product of that quantity
and the area of the surface. We define the divergence of a quantity at a point P as
the net flux per unit volume of that quantity moving out or in from an indefinitely
small region surrounding P.

Already at this point one may guess that a conservation law can be expressed
mathematically in terms of a vanishing divergence. Our task now is to express the
concept ‘divergence’ mathematically.

Let an indefinitely small region around a point P be equipped with a Cartesian
coordinate system, as shown in Fig. 10.1. The point P is located in a vector field
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FZ (x,y,2+Az) &

k
F (x,y,z+Az)

» Y

Fig. 10.1 A small volume

F (x,y,z). The physical meaning of F is of no significance. But if one wants
to think of something which is streaming, then one might let F represent, for
example, the velocity field of a fluid. Our region is now chosen as a parallel-epiped
(generalization of the cube, with different lengths of the sides) with side-lengths
Ax, Ay, Az along the coordinate axes.

Consider the z direction. At the point P the z component of the vector field is
F*(x,y,z). A small distance Az from P along the z axis the z component has
changed to F*(x, y,z+ Az). InFig. 10.1 this component is represented by a longer
arrow than the one at P. From our definition then follows that the region is a source
of F as far as the z direction concerns. .

The z component of the net flux of F out of the parallel-epiped is

Fi(x,y,z4+ A7)Ax Ay — F*(x,y,2)Ax Ay.
The volume of the parallel-epiped is

AV = Ax Ay Az
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The z component of the net flux per unit volume is

[Fi(x,y.24+ Az) = Fi(x.y.2)]Ax Ay Fi(x,y,z+ Az) — F¥(x,y.2)
Ax Ay Az B Az ’

Adding the x, y, and z components and taking the limit of an indefinitely small
region, we find the divergence of F(x, y,z) at P

Fi(x + Ax,y,2) — F¥(x,y,2)

divF = lim
A

x—>0 Ax
. FP(x,y+Ay,2)—F'(x,y,2)
+ lim
Ay—0 Ay
. F¥(x,y,z4+ Az) — Fi(x,y,2)
+ lim .
Az—0 AZ

Comparing this with the definition of partial derivatives of functions of several
variables (see Sect. 2.8), we find

oF~ n oFY n dF*
dx dy 0z
If we use Einstein’s summation convention, and the comma notation for partial
derivatives, this can be written as

div F =

(10.1)

divF = — = F';. (10.2)

The definition of divergence, as formulated above, does not refer to any particular
coordinate system. The particular expressions (10.1) and (10.2), however, are
only valid in locally Cartesian coordinate systems. We sorely need a coordinate
independent generalization of these expressions.

The mathematical apparatus that we have developed makes it nearly miraculously
simple to find this generalization. It is simply the tensor-expression which is reduced
to Eq. (10.1) in a locally Cartesian coordinate system. The tensor-generalization of
partial derivatives of tensor components is found just by replacing the partial deriva-
tives with covariant derivatives. Thus, the tensor expression replacing Eq. (10.2) is
found by replacing the comma by a semicolon

divF = F*,,. (10.3)

We have also replaced Latin indices referring to Cartesian coordinates in three-
dimensional space by Greek indices referring to arbitrary coordinates in spacetime.
Note that in spacetime the summation extends over the time coordinate and the three
space coordinates.
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The generalization of Eq. (10.3) to the divergence of a tensor-field 7#" of rank 2
is a vector with components

divT)* = T, (10.4)

In general, taking the divergence of a tensor-field reduces its rank with one. For
example the divergence of a tensor of rank 2 is a vector, and the divergence of a
vector-field is a scalar (i.e. the field of a tensor of rank 0).

If the divergence of a vector field vanishes, one gets a single (scalar) equation

FM;M == O.

We started this section with an application of mathematics to physics, in the sense
of an illustration. We end this section with a purely mathematical concept. However,
the next section starts and ends within physics.

10.3 The equation of continuity

In sections 10.3—10.5 we shall derive the two basic equations governing the motion
of fluids moving slowly compared to the velocity of light. This is needed to
formulate a relativistic hydrodynamics, which will be used when we are going to
apply the general theory of relativity to the task of modelling the large scale structure
of our universe.

In Newtonian physics we postulate that mass is conserved. Consider a fluid in
a region with volume V' enclosed by a surface with area S. Conservation of mass,
meaning that no mass is created or destroyed, can then be expressed by the equation

increase of mass within [ [ net flux of mass across
a volume V' per unit time surface S per unit time |

We shall now express this equation in terms of our mathematical language.
Mass density, p, is defined as mass per unit volume,

p:V7

where m is the mass inside a volume V. Hence
m=pV. (10.5)

We have here assumed that V' is sufficiently small that the density is constant inside
the volume.

The current density of a fluid is defined as the mass density of the fluid times its
velocity.

Consider the surface of a cube, at rest in a reference frame with a Cartesian
coordinate system. The fluid is here flowing in the negative y direction of coordinate
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Fig. 10.2 The infinitesimal v 4
volume dV

»
>

system. The cube is oriented as in Fig. 10.1. During a time interval dt a fluid-
element moves a distance dy = vdt normal to the surface facing the positive y
axis. The fluid having passed this surface during a time interval dt fills a volume
dV = Adx = Avdt inside the cube (see Fig. 10.2). The mass entering the cube
through this surface during the time dt, is

dym=—pdV =—pAdy
=—pAvdt =—pv Adt. (10.6)

The minus sign has been included since a positive velocity v is directed out of
the sweep-net, causing a decrease of mass inside it. A negative velocity causes an
increase of mass inside the cube.

Equation (10.6) shows that the mass which has passed through the surface
element during the time dt, is minus the flux of the current density, p v times dr.
The amount of mass, dm, which has passed through all the walls of the cube during
a time interval dt is therefore minus the net flux of the fluid’s current density through
all the walls of the cube times dt.

The divergence of a quantity is defined as the net flux of the quantity per unit
volume. Thus, the net increase of fluid-mass in a time interval d¢, inside the cube
with volume V, is

dm = —div(pv) V dt. (10.7)

On the other hand, if the cube has constant volume, the change of mass inside it
results in a change of density,
dp
d, p = — dt.
tP 9
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In general the density is a function both of time and position. In the present case we
consider the change of density at a fixed place in the fluid. It is the local change of
density when it varies with the time. This has been marked by a subscript ¢ on the
differential, and has made it necessary to use partial derivatives. From Eq. (10.5)
follows that the corresponding change of mass inside the cube may be expressed by

9
dm=Vd,p= a—’;th. (10.8)

Setting the two expressions (10.7) and (10.8) for dm equal to each other, leads to

9
a—‘; Vdt = —div(pv) V dr
or
9
a—‘; — — div(pv). (10.9)

This is called the equation of continuity of classical hydrodynamics, which might
better be called ‘the equation of mass conservation’. It is the mathematical expres-
sion of the assumption that mass is conserved, i.e. that mass is neither created nor
destroyed.

Note that mass is not always conserved. For example in nuclear reactions there
may be a loss of mass which is transformed into energy. Relativistically one would
say that mass-energy is conserved also in such a situation, but in Newton’s theory
mass conservation and energy conservation are two different assumptions.

10.4 The stress tensor

A so-called ‘perfect fluid’ is defined as a fluid which (according to Newton’s theory)
has only four ‘dynamical’ properties: mass, energy, stresses, and motion. We shall
at first discuss how the stresses are represented mathematically in classical fluid
dynamics.

A small cube inside a fluid is drawn in Fig. 10.3. A vector pointing orthogonally
to a surface is called a normal vector of the surface. We now introduce a
Cartesian coordinate system so that the sides of the cube are lying along the
coordinate-axes. Then the unit normal vectors of the cube’s surfaces are e, Ey,
and ¢,. A stress-component—force per unit area—acting on a surface with normal
vector ¢; and pointing in the direction of €;, is termed ' /. The first superscript
indicates the normal vector of the surface on which the stress acts, and the second
superscript shows the direction of the force-component. Thus, t**, #*”, and ¢ are,
respectively, the x, y, and z components of the stress acting on the surface with
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Fig. 10.3 A cube inside
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normal vector &,. The stress-component ** points in the direction orthogonal to
the yz plane (having normal-vector €,) on which it acts. It is therefore called a
normal stress. The stress-components #*” and #** point along this plane. They are
called shear stresses. The existence of shear stresses depends upon some sort of
friction in the fluid. A perfect fluid is friction-free. So, there are no shear stresses
in a perfect fluid. A normal-stress pointing towards the surface it acts upon, is
called a pressure, while a normal-stress pointing away from the surface is called
a tension.

The nine stress-components acting in an arbitrary fluid make up a stress tensor
of rank 2. The components are often written in matrix form as follows.

PPy e
th=px pyope
1%ty =

The shear stress ¢*” is the force per unit area acting upon the front side of the
cube (see Fig. 10.3), and pointing in the y direction. It tends to give the cube a
rotating motion in the counter-clockwise direction about the z axis. In order that
this rotational motion shall not increase beyond any limit, it must be counteracted
by a force, #”* per unit area, on the right-hand side of the cube, acting in the
x direction. If these stress-components shall keep the cube in equilibrium, the
condition *Y = ¢»* must be fulfilled. If *7 # >~ these stress components would
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cause the fluid elements to rotate faster and faster, which is not observed. In a similar
way, considering rotations about the x and y axes, leads to the conclusion that the
stress tensor must be symmetric.

The pressures are usually denoted by p*, p”,and p® and correspond to the three
first diagonal components of the stress tensor ™ = p*, t¥” = p” and t¥ = p®. In
a perfect fluid the pressure is isotropic, p* = p” = p® = p. The stress tensor of a
perfect fluid with isotropic (same in all directions) pressure is reduced to

t = pé§i, (10.10)

where the Kronecker symbol may here be thought of as the metric tensor of flat
three-space in a Cartesian coordinate system.

10.5 The net surface force acting on a fluid element

In order to find an expression for the resultant surface force acting on our fluid
element, we start by considering the force-components in the x-direction. We denote
the stress acting on the surface of the cube in Fig. 10.3 with normal vector &, by 7*.
Stress is force per unit area. In other words, force is stress times area. Since the area
of the surface is Ax Ay, the force acting on this surface is

F¥ =71" Ay Az

This force can be expressed in component form

ﬁx(x + Ax,y,z) = [t”(x + Ax,y,2)e, +17(x + Ax,y,2) ey
+ % (x + Ax,y.2) e | Ay Az (10.11a)

The first term represents the force in the x direction acting on the right-hand surface
normal to the x axis, with corresponding interpretations of the other terms.

The reason for the arguments x + Ax inside the parentheses is that the surface
with normal vector €, is located at the position x + Ax. The surface with normal
vector —é,, on the other hand, is at the position x (we shall keep an arbitrary x in
our expressions, even if x = 0 in the drawing), and since this force points in the
negative x direction, it is given by

F¥(x,y,2)= [—t%(x,y.2) 8 — 1Y (x,y.2) & — 1¥(x, y.2) &, | Ay Az,
(10.11b)
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In the same way, we find the forces on the remaining four surfaces of our cube
FY(x,y + Ay, 2) = [£706,y + Ay, 9 & + 17 (x,y + Ay, 2) &,
+ 1% (x,y + Ay, 7)€ | Ax Ag, (10.11¢)

F(x,y,2)= [—(x,y.2) e — 17V (x,y,2) €, —1%(x.y.2) ] Ay Az,
(10.11d)

Fi(x,y,z4 Az) = [1%(x,y, 24+ A7) éx + 17 (x,y.2+ A2) €,

+1%(x, y,z24+ Az)e. | Ax Ay, (10.11e)

Fi(x,p.2) = [ = 15(x, y,2) & — 17 (x, 9, 2) & — 1%(x, y,2) & ] Ax Ay.
(10.11)

We now compute the x component (the six terms of Egs. (10.11a)—(10.11f) in
front of the basis vector €, ) of the resultant surface force S acting on all the surfaces

of the cube. It is due to the normal stresses acting on the +¢, surfaces and the shear
stresses acting on the +¢, and +é_ surfaces,
SY=[t"(x+ Ax,y,27) —t*™(x,y,2)] Ay Az
+ [,y + Ay 2) = (x, y.2) ] Ax Az
4+ [t%(x,y, 2+ Az) —t¥(x,y,2)] Ax Ay.

Putting Ax outside the first bracket, Ay outside the second, and Az outside the
third, this equation may be rewritten as

o (x + Ax,y,2) — *(x, y,2)
- Ax

(x,y + Ay, z) —¥(x,y,2)
+
Ay

1#(x,y,2+ Az) — 1%(x, y,2)
+
Az

:| Ax Ay Az.

Considering the limit of an indefinitely small cube, and using the definition of partial
derivatives (see Sect. 2.8), this equation takes the form

¥y 9 0t
Y= — V. 10.12
S (ax+ay+az)’ (10.12)
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where V' = Ax Ay Az is the volume of the cube. Using Einstein’s summation
convention this may be written

orx

St = —
axJ

Similar equations are valid for the y and z components of the force S. Denoting an
arbitrary force component by S’, we obtain
L
S "= a— V.
ax/
Using the symmetry of the stress tensor, /! = 1"/, we get
L
S'=—1V
axJ
Comparing with the expression (10.4) for the divergence of a tensor of rank 2, we
find that .
S =VdivT,

where T is the stress tensor. This equation shows that the net surface force per unit
volume on a fluid element is equal to the divergence of the stress tensor.

In the case of a perfect fluid the only stress is the pressure, and the stress tensor
reduces to the form in Eq. (10.10). Inserting this in Eq. (10.12) leads to

S | T )

0x dy 0z
0
__[AexD  dpx0)  apx0], _
0x dy 0z ax

Thus, the x component of the net pressure force per unit volume on the (infinitely
small) fluid element is

ST dp
7

sx

The y and z components of this force are given by similar expressions, but with
partial derivatives with respect to y and z, respectively. The resulting equation for
the net pressure force per unit volume on a fluid element is

8pg 3pg E)pg
ox 9y T 9z ¢

F=—

(10.13)

The gradient of a function f(x,y,z) is denoted by grad f and is defined as a
vector which has the following component form in a Cartesian coordinate system,

d d af _
gradeVflEx+lEy+leZ. (10.14)
ax ay 0z
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where we have introduced the so-called gradient operator (for a general definition,
see appendix A), which in a Cartesian coordinate system takes the form':

velat+lals (10.15)
T ox éx dy € 0z Ca '

The pressure gradient is a vector pointing in the direction in which the pressure
increases fastest, and with a magnitude equal to the rate of change of the pressure in
this direction. Equation (10.13) says that the net pressure force per unit volume on
a fluid element has a magnitude equal to that of the pressure gradient, and points in
the opposite direction of the pressure gradient,

§=-Vp.

Hence the net pressure force on a fluid element points in the direction of maximally
decreasing pressure. In index notation the equation for the i component of this force
takes the form 3
si=-2L (10.16)
ox!

This expression will appear below in the equation of motion of a fluid.

10.6 The material derivative

The velocity of a fluid element may change for two different reasons. Think of a
fluid element in a river. Firstly, the velocity of the water in the river may increase
with time due to for example heavy rain, and, secondly, the fluid element may move
into a narrow region of the river with a greater flow velocity.

This is a typical situation for all sorts of fields, not only velocity fields. Imagine
you are measuring the temperature of a gas, while you are moving through it with a
thermometer. The temperature you measure may change because it is evening and
the air cools towards the night, and it may change because you move northwards
toward cooler regions. In other words the temperature measured by a moving
thermometer may change both because the temperature field changes with time,
and because it is inhomogeneous, i.e. the temperature is different at different places.

These changes are represented mathematically by two sorts of derivatives,
called the local derivative and the convective derivative, respectively. Their sum
is called the fotal derivative. Their definition will appear in a natural way when we
consider the total differential of a field f(x, y, z, t) (scalar field or vector field—that

IFor a general definition of the gradient operator, see Appendix A
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does not matter) which is a function of the time coordinate and the three spatial
coordinates (see chapter 2)
of of af of
Z

df = =—dt+ —dx+ =—dy+ —d
/ ot H_ax x+8y y+ 0z

af af af af
=dtf — +dx — — +dz—=—.
dt8t+ x8x+dy8y+ Zaz

The rate of change of the field is

ﬁ_%+dx3f+dy%+dzy

= — — = 10.17
dt ot dt ox dt dy dt 0z ¢ )

Here dd—’t‘, %, and % are the x, y, and z components of the velocity of the measuring

apparatus through the fluid. The rate of change of f with time which this apparatus
measures, is %. This quantity is the fofal derivative of f. The term % represents
the rate of change of f that would be measured by an apparatus at rest. It is the
local derivative of f. The three remaining terms in Eq. (10.17) represent the rate
of change of f that would have been measured by the moving apparatus due to the
position dependence of f in a stationary fluid, i.e. in a fluid where this property
does not change with time. It is the convective derivative of f.
If the measuring apparatus moves with the fluid, so that
dx dy

d
=v, 2=, ad ==
dt dt dt

Ve,

where v*, VY, and v* are the components of the fluid velocity, then the total derivative
is denoted by g—{ and is called the material derivative. Thus

Df —of  of | ,of | Of
pr o Ty T e

Using Einstein’s summation convention this may be written
Df _of | ;9f
=z 2 i
Dr o TV an
The material derivative of the velocity field of a fluid is obtained by substituting
for f the i component of the velocity field, f = v'. This gives
Dv' _ ' ; '

o . 10.1
Dr o Y aw (10.18)
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10.7 The equation of motion

Newton’s second law says that the vector sum of the forces acting on a fluid element
is equal to the mass of the fluid element times its acceleration, a@. The forces acting
on an element of a fluid may be separated into two parts in a natural way. On the
one hand there are the so-called ‘body forces’, é, acting on the whole of the fluid
element. A prominent example is the force of gravity or weight of a fluid element.
On the other hand there are forces S acting upon the surface enclosing the fluid
element, for example pressure forces. Newton’s second law as applied to a fluid
element with mass m thus may be written

G+S=ma.

In hydrodynamics it is most useful to consider the force per unit volume on a
fluid element. Also one prefers to exchange the two sides of the equation, in order
to emphasize that the acceleration of a fluid element is resulting from the forces
acting on it. So, we write the equation of motion as

where § is the pressure per unit volume introduced in Eq. (10.13), and g is the
acceleration of gravity. The i component of this equation is
— 1 Sl .
P Dr pg +
Substituting for D v/ /D t from Eq. (10.18) and for s* from Eq. (10.16) leads to the
standard form of the equation of motion for a perfect fluid, called Euler’s equations
of motion,

M SO . Op
had Y R B
0 ( o +v axf) o - (10.19)

This completes our Newtonian deduction of the hydrodynamical equation of mass
conservation (10.9) and the corresponding equation of motion.

10.8 Four-velocity

According to Newton’s conceptions a body moves through three-dimensional space.
There exists a universal time #, and the velocity of the body is the rate of change of
position with time in this space. As decomposed in a Cartesian coordinate system
the velocity is

dx , dy_. dz,

- X o y > .
v=ve,+ve, +ve,=—e +—¢e,+—¢
* Y Cdr Y A Y dr ¢t
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or ‘
S . dx'
v=yv e = ——¢e
dt
Since the metric in an ordinary Cartesian coordinate system is (see Eq. (5.15)
for the definition of the Kronecker symbol, and Eq. (5.60) for the metric in a two-
dimensional Cartesian coordinate system)

.. (10.20)

8ij = 5:';,
the square of the magnitude of a usual three-velocity is

PP =v-v =y =gV = §;v

2 o a2 dx\? cZy2 dz\*

The magnitude |v| of the velocity in three-space is called speed, and has no direction.

We shall now go on to define the velocity of a body in spacetime. Since spacetime
is four-dimensional, vectors in spacetime must have four components. They are
therefore called four-vectors.

Furthermore time is not universal according to the special theory of relativity.
The Lorentz transformation, Eq. (5.98), imply that people moving relative to each
other will not agree as to which events are measured as simultaneous. And their
clocks do not go equally fast (see Ch. 5).

The velocity of a body in spacetime is called the four-velocity. The components
of the four-velocity should be given by expressions similar to those of an ordinary
velocity in three-space (see Eq. (10.20)); rate of change of coordinates with time.
In order that these expressions shall indeed transform as vector-components, the
coordinates must be differentiated with respect to an invariant time appropriate for
the particular body which is to be studied. In chapter 5 we defined such an invariant
time; the proper time of the body, dt. It is the time shown by a clock that moves
together with the body. So, we define the four-velocity of a body by

dx* _

U=

Let us consider a particle moving in flat spacetime with Cartesian coordinates
(x,y,z,t). An infinitesimal distance vector in spacetime, d7 = dx“éu, then has
components dx, dy, dz, and dt. The first three components are measured in metres
and the last one in seconds. Thus, the components of the distance vector in a space
direction and the time direction seem to be measured in different units. This cannot
be correct. The components of a vector are just the projections of the vector onto
chosen directions. It must be possible to measure all the components of a vector in
the same unit. Thus, in connection with four-vectors the time coordinate ¢ is not
a suitable coordinate. We must introduce a time coordinate x* that is measured in
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metres! In order to obtain a change from seconds to metres we must multiply by
metres per second, i.e.

second.

metre
metre =
second

Thus we must multiply the time coordinate by a velocity. In order that the new
coordinate x* shall represent time, and nothing else, this velocity must be a universal
constant. There is only one such velocity, the velocity of light, c. The unique choice
of time coordinate in connection with four-vectors is therefore

x4=ct.

The square of the magnitude of a four-velocity is

|a> = [i- | = |uut|
dx* dx”

— . 10.22
& dt dt ( )

= |gwuuuv| =

Combining this with the general expression for the line element, Eq. (5.120), we get

| ds?

=12
u = | —
ul> = |-

According to the definition (5.115) of the proper time interval, the line element may

be written
ds® = —c*d<>.

Inserting this in Eq. (10.22) gives

2|:CZ'

=12
lul” =|—c
The magnitude of the four-velocity of an arbitrary body, its ‘speed’ in spacetime, is

therefore, surprisingly
lu] = c. (10.23)

This equation shows that all bodies move with the same constant speed in spacetime.
Nothing is at rest. A body at a fixed position in space moves in the time direction,
meaning that the body’s distance in spacetime from the Big Bang event representing
the creation of our universe, increases steadily.

Looking at Eq. (10.21) we find that u* = dx*/dt = c(dt/dt). Hence, the
four-velocity has a time component, which is equal to ¢ times the rate of change
of coordinate time with proper time. However, the direction of the velocity of a
material body in spacetime differs from that of light. Light has a greater velocity
component in the spatial direction than any particle.

Consider a particle moving through a coordinate system with an ordinary (three-
dimensional) speed v. Then the relation between the coordinate-time and the
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proper-time of the particle is given in Eq. (5.117). Inserting this into the expression
for the spatial components of the four-velocity we obtain
. dx! 1 dx' _ Vi

YT T M—2je2 di — JT—2jc

These four-velocity components can clearly be greater than c. It seems that bodies
can move faster than light, after all. However, these four-velocity components are the
rate of change of (spatial) position with proper time. And the proper-time measured
on a clock moving with the velocity of light does not change at all. So the spatial
four-velocity components of light are infinitely great.

The time component of the four-velocity is

; dt c
U =¢— =

dt  JT=v2/c?

where we have used Eq. (5.117) for the relativistic time dilation. Consequently the
component-form of the four-velocity is

=y (Ve +1 e, +ve.+cé)

where
y =1/3/1—-v2/c2.

In the case of a slowly moving body, v/ < ¢, so y — 1, and the components of the
four-velocity is, with good approximation, given by

u = (v, v 0 e). (10.24)

10.9 Newtonian energy-momentum tensor of a perfect fluid

In order to obtain a unified representation of all the properties of a perfect fluid
(see Sect. 10.4), the remaining properties—mass, energy and motion—must also
be represented by a symmetric tensor of rank 2. The quantity combining these
properties in Newton’s theory is simply a scalar function; the kinetic energy of a
fluid element. The kinetic energy per unit volume is

1
Exineiic = 5 oV, (10.25)

where p is the mass density of the fluid, and v is the speed of the fluid element.
Since we are going to describe fluids in four-dimensional spacetime, not in
Newton’s three-dimensional space, we must form a sort of generalization of
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Eq. (10.25) in terms of the four-velocity u = u*é, of the fluid-element. Because this
generalization shall be a tensor of rank 2, it cannot involve just the magnitude of the
four-velocity. However, the products u* u” transform as components of a tensor of
rank 2. Since the succession of the vector components does not change the values
of the products, this tensor is symmetric.

The density of the fluid is defined as the mass of the fluid per unit volume. As
applied to our fluid-element, it is the mass of the fluid-element divided by its volume.
In Newton’s theory the density of the fluid is invariant against a transformation from
one reference frame to another. This is not the case in the special theory of relativity,
due to the Lorentz contraction of a fluid element, making its volume less, and the
relativistic mass increase, making the mass greater, the faster the fluid element
moves through three-space. However, the density of the fluid as measured by an
observer following its motion, is just the same as if the fluid were at rest. It is called
the proper density of the fluid, and is equal to the Newtonian density, p. The proper
density of the fluid is an invariant quantity.

Using the theory of relativity, Einstein deduced in 1905 a relationship between
the energy E of a system and its mass m, namely E = m c¢?. Just as x* = ¢t and
t is essentially the same quantity, a time coordinate, the equation £ = m c> means
that according to the theory of relativity energy and mass are essentially the same
physical quantity. The only difference is that they are measured in different units.
We need not then introduce both mass and energy to represent this quantity in the
theory of relativity.

We now introduce a symmetric tensor of rank 2, with components 6*”, repre-
senting the mass/energy and motion of a fluid. These components are defined by

0" = putu’.

This expression represents the components of the so-called kinetic energy-
momentum tensor. The four-velocity components of a slowly moving fluid is
given in Eq. (10.24). For such a fluid the kinetic energy-momentum tensor takes the
form
ovivy pv vy oY pe vt
vt Y v pv v pe vy
grv = | PV VPV PV per (10.26)
pvevy  pv vy oVt pe vt
pcvs  pcv’  pevt pc?

Before we can define a total energy-momentum density tensor, we must gen-
eralize the three-space stress tensor 7/ to a corresponding spacetime tensor S*.
This tensor is defined by demanding that its only non-vanishing components in
a local rest frame of the fluid are equal to the components of the ‘Newtonian’
stress tensor ¢/, The components of the tensor S*” in an arbitrary inertial reference
frame are then calculated by Lorentz transforming the tensor components from the
rest-frame to the arbitrary frame. However, we shall not need to write down these
expressions.
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The total-energy momentum density tensor (later called ‘the energy-momentum
tensor’) is defined by
T = grY 4+ SHY,

Inserting the components of S*¥ from the ‘rest frame values’ in Eq. (10.10),
and the components of 6*” from Eq. (10.26), we get the components for the
energy-momentum tensor for the case of a perfect fluid moving slowly in a (four-
dimensional) Cartesian coordinate system (with xt=ct),

T = pvivi + psi, (10.27a)
T4 =pc', (10.27b)
and
T = pct. (10.27¢)

This may be called the Newtonian energy-momentum tensor for a perfect fluid.

10.10 Mathematical formulation of the basic conservation laws

We shall now study the divergence, interpreted physically, of the ‘Newtonian’
energy-momentum tensor of a perfect fluid given in Eq. (10.27). Then we shall be
able to understand the physical meaning of stating that this divergence vanishes.

In the present application we let T#" be decomposed in a locally Cartesian
coordinate system comoving with an inertial reference frame. Then the covariant
derivatives are reduced to ordinary partial derivatives, and the time component of
TH., is

T4v;v = T44,4 + T“,i.

Substituting for 74 4 and T ; from Eq. (10.27), while noting that

T44 3T44

AT o

and dividing each term by ¢, we get

dp  d(pv)
3t+ ox?

4v __
T,v -

In the Newtonian approximation the equation
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takes the form

W, )
ot oxi ’
or
3
a—’; +div(p¥) = 0. (10.28)

This is just the equation of mass conservation in hydrodynamics, Eq. (10.9). In view
of the ‘equivalence’ of the measurable quantities mass and energy, represented by
Einstein’s famous equation £ = m ¢?, this can also be interpreted as an expression
of the law of energy-conservation.

The significance of E = m c? as representing a unifying concept of fundamental
importance in physics should be emphasized. In classical Newtonian mechanics
there are four basic conservation laws; conservation of mass, energy, momentum
and angular momentum. The mass of a body is the quantity m that appears both
in Newton’s second law and in Newton’s law of gravitation. Energy appears in
different forms, for example kinetic energy related to the motion of a body, and
potential energy related to the position of a body in a force field. Momentum is
mass times velocity, and angular momentum is a rotational analogue of momentum,
in which mass far from the axis of rotation contributes mostly. Its conservation is
made visible when a figure skater draws her arms towards her body and thereby
increases her angular velocity in a pirouette.

In 1918 Emmy Noether proved the remarkable fact that conservation of energy,
momentum and angular momentum are consequences of a more basic requirement.
The laws of physics should be completely independent of the location of an exper-
iment in space and time, and of the orientation of the experimental arrangement.
Expressed more technically: three of the four basic conservation of Newtonian
mechanics are consequences of the requirement that the laws of nature should
be invariant against translations in space, and in time, and under rotations in
space. Such invariance properties are often called symmetries in physics. In other
words, three of the four basic conservation laws of Newtonian physics follows
from symmetries of space and time. Conservation of mass is usually postulated
separately (although it can also be considered as implicit in the law of conservation
of momentum).

We now proceed to investigate the spatial components of 7#".,. Let us consider
the i component 77V.,,. It takes the form

Tiv;v — Ti4’4 4 T:;]
Substituting from Eq. (10.27), and noting that
T’ AT d(pcy')
axt  cot cot

_cd(pV) _av) _a
T ocor o ot

i4
Ti4, =

(pv'),
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we get
= %(p )+ %(pvivj + psv).
The equation '
T, =0
results in
% (pv') + T (pv'v/ + ps¥) =0. (10.29)

Making use of the properties of the Kronecker symbol, the last term is simplified to

0 . ap
- Uy —
PP (p8Y) PR (10.30)

Subtracting Eq. (10.30) from Eq. (10.29) leads to

. . d
%(pv’)+%(pv’ W) =—a—§, (10.31)
which expresses the Newtonian law of conservation of momentum. The right hand
side is the pressure force per unit volume acting on a fluid element, as given in
Eq. (10.16).

We shall now show more explicitly the relation of this equation to Newton’s
second law, which says that mass times acceleration is equal to the sum of the
forces. Thus, we must rewrite Eq. (10.31) so that the left-hand side is replaced by
‘mass times acceleration’. In order to do this, we differentiate the second term of
Eq. (10.31). Using the rule for differentiating a product we get

0 i ;0 . v
W (,OV V]) =V E (,OV]) + ,OVJE.
Applying the equation of mass conservation in the form (10.28) to the first term at
the right-hand side we find

9 o p v
—_ W) = —f == b, 10.32
T (,ovv) vat+,ov 9% (10.32)
Inserting Eq. (10.32) into Eq. (10.31) leads to
. 0p v L dp ;o dp
TR P PR N R
or
o S ap
b ) = 22
P (8t +v Bxf) P (10.33)

This is Euler’s equation of motion of a fluid.
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It is not like Eq. (10.19), however. There is no term with the acceleration of
gravity here. Fortunately, the reason for this discrepancy is simple to find, and simple
to ‘repair’. The effect of gravity has not been included in the present section because
we decided to simplify the equations by decomposing the tensors and vectors in a
Cartesian coordinate system comoving with an inertial reference frame. This made
it possible to replace covariant differentiation by ordinary partial differentiation.
This was sufficient for the present purposes; namely to formulate the Newtonian
laws of hydrodynamics in a way that may be generalized, to include the effects of
arbitrarily strong gravitational fields and relativistic velocities. Such generalization
may be obtained by the receipt: replace ordinary partial derivatives by covariant
derivatives!

Later we shall see that certain Christoffel symbols that automatically appear
when we use covariant derivatives represent, in a unified way, inertial forces
experienced in an accelerated reference frame, and gravitational forces due to mass
concentrations.

We have now seen: In spacetime T+"., = 0 represents four equations. The time
component is the equation of continuity, representing the law of conservation of
mass, or energy. The three spatial components represent the law of conservation
of momentum. Together with the equation of mass conservation this leads to
the equation of motion of a fluid element. Thus, the basic conservation laws of
hydrodynamics, and the equation of motion of fluids, are all contained in the
physical interpretation of the covariant equations 7+"., = 0.

10.11 Relativistic energy-momentum of a perfect fluid

The expression (10.27) for the components of the energy-momentum tensor of a
perfect fluid moving slowly in a Cartesian coordinate system shall now be gener-
alized to a relativistically valid expression. We must then replace the components
vl of the ordinary velocity by the components u* of the four velocity of the fluid
elements. Note also that §/ are the components of the metric tensor in the Cartesian
coordinate system. This must be replaced by the components g/¥ of the metric in
an arbitrary coordinate system in spacetime. The relativistic generalization of the
expression for 79 in Eq. (10.27) therefore seems to be

T = putu’ + pgh’. (10.34)
In a local inertial rest frame of the fluid at an arbitrary point in spacetime the
values of the components of the energy-momentum tensor are found by inserting

vl = 0in Eq. (10.27). Denoting the rest frame values by marked indices, we get

T = p8i/j/, 7' =0, and T** = pc?.
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However, calculating the rest frame values from Eq. (10.34) by inserting ut =
(¢,0,0,0), g/ =68"7" g"" =0,and g¥¥ = —1, we get

T = p8i/j/, T'Y =0, and T¥Y = pct — p.

Due to the wrong value of T Eq. (10.34) cannot be the correct expression for
the energy-momentum tensor. We must add a term that contributes with p to 7Y,
but does not contribute to the components 77" and T7'#" . The simplest such term
is (p/c?) u*u’. Adding this term to Eq. (10.34) we obtain an expression which we
can use to define the components of the relativistic energy-momentum tensor of a
perfect fluid,

T = (p+ p/c?) u'u’ + p g"". (10.35)

We see from this expression that the energy-momentum tensor is symmetric,
TV = TH.



Chapter 11
Einstein’s field equations

11.1 A new conception of gravitation

According to Einstein’s theory of gravitation there is no gravitational field of forces.
The notion of a gravitational field of force is replaced by that of curved spacetime.

Because no force is needed, the theory is often said to be purely geometric.
Einstein is said to have ‘geometrized’ gravitation. This is somewhat misleading
because his theory is one of physics making use of empirically vulnerable terms.
In geometry, understood as a mathematical, not a physical science, there is no
empirical vulnerability. We would like, instead, to say that Einstein’s theory of
gravitation is purely ‘kinematical’, i.e. purely movement oriented, emphasizing the
absence of any gravitational force in this theory. Matter moves according to the
curvature of space and space is curved by matter.

The great relativist J. A. Wheeler formulated the aphorism: “matter tells space
how to curve, and space tells matter how to move”.

The mathematical expressions of this are Einstein’s field equations and the
geodesic equation. They replace Newton’s gravitational law that ‘tells’ how matter
creates a gravitational field of force, and Newton’s second law, that ‘tells’ how a
particle responds to this field. The famous slogan of Wheeler is, as most slogans,
likely to be misunderstood; the ‘telling’ demands no force. To certain physical
properties in a region there correspond certain geometrical properties of spacetime.
A logical relation of correspondence!

In order to avoid thinking in terms of force and influence, we may propose the
following alternative to Wheeler’s slogan: with mass space is curved, and so are the
paths of the mass.

It is difficult to avoid the concept of ‘force’ when we talk about gravitational
phenomena. For example, people often say that mass causes spacetime curvature,
and that this curvature causes the path of a free particle to deviate from a straight line
in ordinary three-dimensional space. According to Newtonian gravitational theory
there are causal relationships involving forces. General relativity is nevertheless,
a causal theory of gravitation and spacetime. But it is free of forces. The causal
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character of the theory is related to the mathematical expression of the theory. In the
weak field approximation general relativity is similar to Maxwell’s electromagnetic
theory. If the Sun changes its shape, for example, it emits gravitational waves
moving with the velocity of light. Still, as far as gravitation is concerned, Einstein’s
God does no pushing; everything flows freely. Gravitation is of a kinematical
character, it is not an interacting force.

Einstein’s field equations relate spacetime curvature to matter and radiation,
which is characterized by an energy-momentum tensor. As noted in section 10.11,
it is a symmetric tensor of rank 2. The field equations of Einstein say that a certain
curvature tensor of spacetime is proportional to the energy-momentum tensor of the
matter and energy that is present. Like the energy-momentum tensor this curvature
tensor must be a symmetric tensor of rank 2, since two tensors that are proportional
to each other must be of the same rank and have the same symmetries.

Since the Riemann curvature tensor is of rank 4, Einstein had to find a different
curvature tensor for the left-hand side of his field equations.

One may perhaps wonder: Why not construct an energy-momentum tensor of
rank 4? Then the field equations could have the form: ‘The Riemann curvature
tensor is proportional to the energy-momentum tensor’. The reason that Einstein did
not follow this route is that it would not make physical sense. A simple illustration
may be useful. Temperature is a quantity that may be specified by means of just one
number (and an expression of a unit, for example ‘degree Celsius’). So it does not
make much sense to introduce for example two numbers, say a temperature vector
with two components. In a similar way there are enough components in a symmetric
tensor of rank 2 to specify all the kinematical and dynamical properties of matter.
Introducing an energy-momentum tensor of rank 4 would only make sense if all
geometrical properties of a curved space corresponded to the physical properties of
matter. So far our observations make us believe that this is not the case.

11.2 The Ricci curvature tensor

There is a way to construct a tensor of rank 2 from one of rank 4, or more generally,
a tensor of rank n — 2 from one of rank n. The procedure is called contraction.
Consider, as an example a tensor S of rank 2. The contravariant components are
SV, Contraction is defined by the following operations. One index is lowered and
then made equal to an upper index. The two equal indices are then regarded as
summation indices, by an extension of Einstein’s summation convention, and the
indicated summation is performed. Therefore, the contraction tensor of the energy-
momentum tensor, which is of rank 2 and has components 7", is the scalar quantity
(that is tensor of rank 0)

T=Tr, =T+ T+ T5+T". (11.1)
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Another example, which will be used below, is the contraction of the metric
tensor. We start with the components g/”. Lowering the last index (see Eq. (5.74))
gives g"'*g,o = 6", where 8", is the Kronecker symbol. We put p equal to v and
thereby reduce information. Then we summarize and get:

8y =8 + 68 +85+8=1+14+1+1=4. (11.2)

Thus the contraction of the metrical tensor is just the number 4. The only infor-
mation left is the number of dimensions. If other tensors of rank 2 are contracted,
we do not in general obtain merely a definite number, but a scalar function, such as
the scalar 7" in Eq. (11.1).

We are searching for a curvature tensor of rank 2 by contracting our wellknown
Riemann curvature tensor of rank 4. We start with the mixed components R, ..
This tensor has three lower indices. Does this mean that we can obtain three different
contracted curvature tensors, depending upon which lower index we put equal
to u?

On the next two pages we shall show that the Riemann tensor possesses certain
symmetries that make the contraction of the Riemann tensor a curvature tensor of
rank 2 unique, and reduce the number of independent components of the Riemann
tensor in four-dimensional spacetime from 256 to 20. This is of great significance
as to the possibility of obtaining a useful geometrical theory of space, time and
gravitation. Therefore we find it justifiable to make the reader completely competent
to understand the mathematical basis of these symmetries.

We now write the components of the curvature tensor with reference to a local
Cartesian coordinate system (Sect. 8.5). In such a coordinate system the Christoffel
symbols vanish. Then the terms with products of Christoffel symbols in Eq. (9.29)
vanish, and the expression for the components of Riemann’s curvature tensor is
reduced to (where we have exchanged the indices p and v in Eq. (9.29))

Rfyep =T 0pa — T oap. (11.3)
From this equation we get
Ruvﬂa = Fuvu,ﬁ - Fuvﬁ,a
=— (F"Vﬂ,a — F“m.ﬂ) = —R" 8. (11.4)

The Riemann curvature tensor is antisymmetric in its last two indices. Since the
symmetries of a tensor are independent of the coordinate system, this result is valid
in general.

Lowering the index p in each term of Eq. (11.3) we get

Ruvep = Tivpa — Tpva - (11.5)
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From this equation we can deduce a symmetry relation fulfilled by the Riemann
tensor, as follows

Ryvep + Rupve + Ruapy = Dyvpa = Lpvap + Uppow = Tppva + Duavp — Dpapo-

We now apply the symmetry of the Christoffel symbols, I' ;s =1I";5«, and exchange
the succession of the terms

Rywvap + Ryupva + Ryuapy = Tvpe — pvpa + Dupow — Lppan + Tivap — Tivacp-
All the terms cancel each other. Consequently
R/wa/g + Ruﬁva + R;mﬂu =0. (11.6)

This is the second symmetry relation fulfilled by the Riemann tensor.
According to Eq. (7.31) the Christoffel symbols of the first kind are given by

F/woz = % (guv,oz + guay — gva,u) . (11.7)
We are now going to insert this expression into Eq. (11.5). Since the derivatives
of the Christoffel symbols, containing first derivatives of the metric, are present
in Eq. (11.5), we shall get second derivatives of the metric in the expression of
the curvature. This may not be too surprising, if we recall from section 2.3 that
the curvature of a graph of a function, y = f(x), is proportional to the second
derivative of the function.
The following notation shall be used for the second derivatives of the tensor
components g,

uv.pa = (guv,ﬂ),a-
Consider the first term at the right-hand side of Eq. (11.5), I';,p.«. Here we shall
differentiate the Christoffel symbol given by Eq. (11.7), but with « replaced by S.
Then we get

1

Tuvpa = 5 (8uv.p + 8upov — 8upu) 4

2
1
E (g/w,ﬁoz + gupva — gvﬂ,/wz) . (118)

In the same way, only exchanging « and S,

1

F/woz,ﬁ = E (g/w,ozﬂ + guavp — gva,uﬂ)- (119)

Subtracting Eq. (11.9) from Eq. (11.8) and using Eq. (11.5), we find

1

R/wozﬂ = E (g/w,ﬁoz + gupva — vB.ua — uv.ap — ua,vp + gva,uﬁ) . (1110)
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Since the succession of differentiation of two consecutive partial differentiations
does not influence the result, g,1.48 = &uv go. Therefore the first and the fourth
terms at the right-hand side of Eq. (11.10) cancel each other, and we are left with
the expression (valid in a local Cartesian coordinate system)

1
Rp,vaﬁ = E (guﬁ,va — &vB.pua — gpa,vp + gva,uﬁ) . (111 D
Exchanging the indices p and v in the expression inside the parenthesis leads to a

change of sign, i.e.

gupva — 8vpyua = — (8vp.ua — Zupva)

and
—8uanp T gvapp = — (_gva,uﬂ + gw,Vﬁ) .

Thus, we get
Ryjuop = —Ruvap (11.12)

which shows that the Riemann curvature tensor is antisymmetric in its first two
indices, too.

The fourth and last symmetry of the Riemann curvature tensor is also found from
the expression (11.11). We start by writing this expression, exchanging the index
pairs v and a8

(gav,ﬂu — §Bv.au — ap.py + gﬁﬂ,av) .

N =

Roppy =

Exchanging the first and the last term in the parenthesis, and using the symmetry of
the metric tensor and that the successsion of the partial derivatives doesn’t matter,
so that, for example, g8,.av = gup.vas WE geL

1
Roppo = 5 (guupve — &vua — Euawp + &vayip)

which is just the expression (11.11). This shows that the Riemann curvature tensor
has the symmetry
R;waﬂ = Raﬂ;w- (11.13)

The four symmetries of the Riemann curvature tensor, Egs. (11.4), (11.6), (11.12)
and (11.13), reduce the number of independent components of the Riemann tensor in
a four-dimensional spacetime from 4* = 256 to 20, which is of decisive importance
for the construction of a curvature tensor which can be used in Einstein’s field
equations, because it reduces drastically the number of equations needed.

As noted above we need to find a symmetric curvature tensor of rank 2. In order
to construct such a tensor, we calculate the contraction of the Riemann curvature
tensor. Since the components of this tensor can be written with one superscript and
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three subscripts, there exist three possible contractions of the Riemann curvature
tensor. Let us consider all three possibilities.
We first put v =, in R* 46 and get

RYyap = 8" Ropap = —8"" Ruvap = —8"" Ryvap
= —8" Rujap = —R"uap. (11.14)

Here we first used the rule (5.77) for raising an index, then we used Eq. (11.13),
then the symmetry of the metric tensor, and then the freedom to change the name of
summation indices. In the present case we have let # — v and v — . Equation
(11.14) implies that R*,, = 0, since if something positive is equal to something
negative this ‘something’ must be zero.

Next we contract o with p. Using Eq. (11.3) we get

RMVﬁM = _Ruvuﬁ

which shows that the tensor obtained by contraction of 8 with p is the negative of
the tensor obtained by contracting o with p.

We had three possibilities. Contraction with the first subscript gave zero, and
contraction with the third subscript gave the same quantity, but with opposite sign,
as contraction with the second subscript. Therefore we get essentially only one
tensor of rank 2 by contraction of the Riemann curvature tensor. The contracted
tensor is called the Ricci curvature tensor. Its components R/, are defined by

Ruv = R 4o, (11.15)

where we have chosen to rename the indices, with @ and v as free indices, and «
as summation index. From the symmetry (11.13) follows that the Ricci tensor is
symmetric,

Ruy = Ry (11.16)

Perhaps the Ricci curvature tensor is the one we ultimately are looking for? Does
it make sense to postulate that it is proportional to the energy-momentum tensor
T,,? It is natural to try it out since it is a symmetric tensor of rank 2. And Einstein
actually proposed it, writing down field equations that seemingly appeared unique
and extremely simple, namely

Ry =k Ty,

where k is a constant. But for reasons that will be apparent below, he gave it up and
ended with a somewhat different tensor.
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11.3 The Bianchi identity, conservation of energy,
and Einstein’s tensor

According to the fundamental laws of dynamics, thermodynamics and electromag-
netism the amount of energy and momentum (mass times velocity) do not change
for an isolated system. This is often expressed by saying that energy and momentum
are conserved quantities.

Einstein demanded from his general theory of relativity that energy and mo-
mentum conservation should follow from the field equations. As we have seen
in Sect. 10.10, energy and momentum conservation is expressed by vanishing
divergence of the energy-momentum tensor. In order that this shall be a consequence
of the field equations the curvature tensor must have vanishing divergence, which
should be a purely geometric property of the curvature tensor, not the result of
anything physical.

We shall now calculate the divergence of the Ricci curvature tensor, and see if it
vanishes. This is most easily done by means of a geometric relation, unknown to the
young Einstein, called the Bianchi identity.

The deduction of the Bianchi identity is greatly simplified by use of locally
Cartesian coordinates. Then the components of the Riemann tensor are given by
Eq. (11.3). By partial differentiation of each term of Eq. (11.3) with respect to a
coordinate x7, we get

R¥ ey = TH gay — THoa py. (11.17)
Replacing « by y, B by «, and y by B leads to

RYyyap =T 6y =Ty ap. (11.18)
Similarly, replacing y by B, o by y, and B by « results in

R¥gyo = TH,) g — T i ya- (11.19)

Let us inspect the sum of Eqs. (11.17)—(11.19). In the first term of Eq. (11.17)
and the last term of Eq. (11.19) the succession of differentiation is different, but this
does not influence the result. Accordingly, these two terms cancel each other when
Egs. (11.17)—(11.19) are added. The same applies to term number two of Eq. (11.17)
and term number one of Eq. (11.18), and to term two of Eq. (11.18) and term one of
Eq. (11.19). Hence

Rﬂva}g,y + Rﬂvya’lg + Rﬂvﬁ%u =0. (11.20)
Due to the presence of the partial derivatives this is not a tensor equation.

It is valid only in a locally Cartesian coordinate system. However, the corre-
sponding generally covariant tensor equation is obtained simply by replacing the
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Fig. 11.1 A cube
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partial derivatives with covariant derivatives. That this is a valid generalization
of Eq. (11.20) follows from the fact that if a tensor expression vanishes in one
particular coordinate system, then it vanishes in all other coordinate systems. The
final relation is accordingly

Ruyaﬂ;y + Ruvya;ﬂ + Ruyﬂy;a =0. (1121)

This is the famous Bianchi identity.

It is possible to give a geometrical interpretation of the Bianchi identity. In order
to arrive at such an interpretation we shall need a two-pages deduction. The
geometrical contents of the Bianchi identity will thereby become apparent.

Let us introduce a local Cartesian coordinate system. Consider a coordinate cube
as shown in Fig. 11.1.

Imagine that a vector Ais parallel transported around the front side with normal
vector €,. This side is at x + Ax. Since the basis vectors of the locally Cartesian
coordinates are constant in the indefinitely small region of the cube (because of
vanishing Christoffel symbols, see Sect. 8.5), the change of the vector A due to this
parallel transport is given by the change of the vector components (see Eq. (9.30)),

(A A)pax = R*p(x + Ax,y.2) A" Ay Az

Parallel transport of A around the opposite surface gives a similar contribution,
except that now the sign is reversed and the evaluation takes place at x rather than
atx + A x,

(A A", = —R")(x,y,2) A" Ay Ax.
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Fig. 11.2 A surface S with
boundary L

The sum of the contributions from parallel transport of A around these two surfaces
gives, in the case of a vanishingly small cube Ax — 0,

Jim [(AA") pac+ (A A, ]

= lim [RMyo(x + Ax, y,2) = RMuye(x. 7. 2)] A" Ay Az

— lim Ruvyz(-x + A)C, Vs Z) B Ruvyz(-xv y,Z)
T Ax—0 Ax
ORM,,. OR",y,

= ——A"Ax Ay Az = ——— A" AV,
ox ox

A" Ax Ay Az

where AV = Ax Ay Az is the volume of the coordinate cube. The change of

the vector A when it is parallel transported around all six boundary surfaces of the
cube is

A ar = (R e + ORYox + IRy ) o AV,
0x dy 0z
or, making use of Einstein’s comma notation for partial derivatives,
A A" = (R"Vy” + RY Yy + R"my,z) AV AV. (11.22)

In order to find the value of this change of the vector A we shall use a geometrical
argument. Consider the shaded part S of the spherical surface in Fig. 11.2.

The circle L is the boundary of the surface S. Let L move towards the ‘south
pole’ of the sphere. Then S approaches the whole spherical surface, and the length
of the boundary L approaches zero. In the limit that the surface S is closed, it bounds
the volume of a sphere. Let us recapitulate: The boundary of a closed surface is
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zero, and a closed surface is the boundary of a volume. Thus, in Wheeler’s words
“the boundary of a boundary is zero”.

Consider now our cubical coordinate volume. The edges along which the vector
Ais parallel transported, are parts of the boundary of the surfaces bounding the cube.
When 4 is parallel transported around all the six surfaces of the cube all the edges
are traversed twice, once in each direction, as indicated on three of the surfaces in
Fig. 11.1. These displacements have signs depending upon the direction in which an
edge is traversed, so all the dispacements add up to zero. The boundary (the edges
with signs bounding all the surfaces) of a boundary (the surfaces bounding the cube)
is zero. This implies that there will be no change at all of the vector A when it is
parallel transported though the boundaries of all six surfaces, traversing each edge
twice, once in each direction. Accordingly

AA* = 0.

The vector A4 is presupposed to be different from zero. Therefore at least one of
the components A" in Eq. (11.22) are different from zero. Also the volume AV is
different from zero. Therefore, the quantity inside the parenthesis must be equal to
zero, which is just Eq. (11.20). Transforming to a covariant equation valid in an
arbitrary coordinate system by replacing partial derivatives (commas) by covariant
derivatives (semicolons), we arrive at the Bianchi identity, Eq. (11.21). We have
thereby arrived at a geometrical interpretation of the Bianchi identity: It expresses
that the boundary of a boundary is zero, as we saw above in the case of a sphere and
a cube.

As mentioned above the conservation laws of energy and momentum are
represented mathematically by putting the divergence of the (symmetrical) energy-
momentum tensor (of rank 2) equal to zero. For this reason Einstein searched for a
symmetrical curvature tensor of rank 2 with vanishing divergence. The Ricci tensor
is a symmetrical curvature tensor of rank 2. But has it a vanishing divergence?

Applying the Bianchi identity we shall find an unambiguous answer to this
question. Inserting « = w in the first term of the Bianchi identity, we get

Ruvuﬁ;y = Rup;y.

This is the covariant derivative of the Ricci tensor. Contracting v with y we get
RY g.,. This is the covariant divergence of the Ricci tensor.

From this it is seen that the value of the divergence of the Ricci tensor can be
calculated by first contracting @ with p in the Bianchi identity, and then v with y in
the resulting equation. Let us go to the task.

As we saw above, if we put @ = p in the Bianchi identity, the first term is a
covariant derivative of the Ricci tensor. In the second term we apply the relations

RMVVM = _Ruvw = —Ryy.
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The second term in the Bianchi identity is thereby changed to R,,;5. We then get
what is called the contracted Bianchi identity,

Rupsy = Ruysp + RMupyi = 0.

Contracting § with v, i.e. raising the index § and putting 8 = u, gives
Ry — R",, + RM = 0, (11.23)

here we have defined
R=R',. (11.24)

The quantity R is a curvature scalar, i.e. a tensor of rank 0. Since it is a contraction
of the Ricci curvature tensor, it is called the Ricci curvature scalar.

The second term of Eq. (11.23) is the divergence of the Ricci tensor. As regards
the third term we note that the Riemann tensor is antisymmetric in its first two
indices. Consequently we have

v v v
R* vyin = —R “w;u = _Ruy;u =—R",

where we have replaced the summation index @ by v in order that the second and
the third terms in Eq. (11.23) shall look similar. Substituting —R",, for R*",,., in
the third term of Eq. (11.23) results in

Ry = Ry = RV = 0.

Therefore
Ry =2 Rﬂy;u

or

1
Rfyu =2 Ry, (11.25)

We have now calculated the divergence of the Ricci tensor. It is equal to
the covariant derivative of the Ricci curvature scalar. This vanishes only if the
curvature scalar is constant. And even if this sometimes is the case (we shall later
see that the Ricci curvature scalar is equal to zero everywhere in a region with
vanishing energy-momentum tensor), this curvature scalar is not always constant,
which means that the right-hand side of Eq. (11.25) is not equal to zero.

Thus, the Ricci tensor is not divergence free. So the Ricci tensor was not
the answer to Einstein’s search for a divergence-free curvature tensor of rank 2.
However, Eq. (11.25) is of decisive importance as a starting point for the very last
steps towards Einstein’s field equations.

In order to write R;, as the divergence of a tensor of rank 2, we use a trick. We
multiply R with a constant tensor of rank 2, namely the Kronecker symbol, and take
the divergence of the resulting tensor,

(8", R);M = (8"),);“ R+6",R,=0-R+ R, =R,.

s
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Inserting this into Eq. (11.25) gives

(8"y R),, =2 R"y = (8", R=2R")), = 0.

SH

>

Multiplying by —1/2 we get

1
(R"y — -8, R) = 0.
2 g7

At last we have found a symmetric curvature tensor of rank 2,
o= R 1 §H
E),=R),—§ y R, (11.26)

which is divergence free,
E*,., =0. (11.27)

The vanishing divergence of this tensor is a geometric unchangeable property which
comes from the theorem that ‘the boundary of a boundary is zero’. The tensor with
mixed components E#, is named Einstein’s curvature tensor. In four-dimensional
spacetime Eq. (11.27) represents four identities, one for each value of the index y,
which the Einstein tensor fulfils.

The mathematical deductions have now been completed. The Einstein tensor is
the adequate answer to the mathematical problem Einstein wrestled with for more
than three years: which curvature tensor, if any, might be proportional to the energy-
momentum tensor?

Having reached this solution late in the Autumn of 1915, Einstein promptly
put his divergence free curvature tensor proportional to the energy momentum
tensor, and thereby obtained the gravitational field equations of the general theory
of relativity. Einstein’s field equations are

EF, =k T, (11.28)

where the proportionality constant « is related to Newton’s constant of gravitation
(see Ch. 12).

The Einstein tensor is a symmetrical tensor of rank 2. In four-dimensional
spacetime a tensor of rank 2 has sixteen components, which is often written as a
4 x 4 matrix. Due to the symmetry of the tensor, the components on each side
of the diagonal are equal, leaving ten components that are not necessarily equal
(just like the metric tensor). One might think, therefore, that Eq. (11.28) represents
ten independent field equations. This is, however, not the case due to the four
identities (11.27) that the Einstein tensor fulfils. Thus, there are only six independent
field equations. These six second order partial differential equations are used to
determine the components of the metrical tensor. However, they can determine only
six of the ten independent components, leaving four of them free. This freedom,
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Einstein noted, is of decisive importance. As we saw in Ch. 5, the components of
the metric tensor depends upon the choice of coordinate system. In flat spacetime,
for example, the metric is different in a Cartesian coordinate system and a spherical
coordinate system. The freedom to choose a suitable coordinate system requires
that four of the components of the metric tensor are not determined by the field
equations. And this was just what Einstein found: only four of the ten field equations
are independent due to the four identities (11.27) fulfilled by all Einstein tensors,
independent of the geometrical properties of the spacetime they represent.

Inserting the expression (11.26) for the mixed components of the Einstein tensor,
the field equations take the form

1
Riy =28 R =k T",. (11.29)

Lowering the index p in Eq. (11.29), and using that the Kronecker symbols with
one superscript and one subscript, are the mixed components of the metric tensor
(see Eq. (5.79)), we get a much used form of Einstein’s field equations

1
Ryuv =5 8o R =k T (11.30)

Einstein’s field equations may also be expressed in terms of the contravariant tensor
components

R’”—%g’“’R:KT’“’. (11.31)
This form of the field equations will be used in Ch. 12.

The field equations, together with the geodesic equation, Eq. (8.7), are the
fundamental equations of the theory of relativity. In Eq. (11.30) the left-hand side
represents curvature, and the right-hand side kinematical and dynamical properties
of matter. The field equations are the mathematical expression of “mass is and
space curves”, and the geodesic equation expresses “space curves and mass moves
with it”.

In the next chapter we need to write Eq. (11.30) in a different way. Contraction
of this equation and use of Egs. (11.30) and (11.24) gives

1
R—§4R=KT, (11.32)
where
T=T",=T"+T*+T+T.
Equation (11.32) can be written as

R=—«T. (11.33)
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Inserting Eq. (11.33) into Eq. (11.30) we find

1
Ruv+§guvKT:KTw
or

1
Ry =k (T,” ~ 5 8w T) : (11.34)

One interesting property of so-called ‘empty spacetime’ may be noted imme-
diately. Since empty space has vanishing energy-momentum tensor, the right-hand
side of Eq. (11.34) is zero in such a region. This means that the Ricci tensor vanishes
in empty spacetime. In other words the field equations of empty spacetime are

Ry, = 0. (11.35)

It follows immediately that also the Ricci curvature scalar vanishes in empty
spacetime. This does not mean, however, that space is flat in empty spacetime.
The curvature of spacetime is represented by the Riemann tensor of spacetime, not
the Ricci tensor.



Chapter 12
Einstein’s theory of spacetime and gravitation

We have now completed our intended introduction to the mathematics used in the
general theory of relativity. It remains to explain the central physical contents of the
theory. Let us first offer a brief summary of the fundamental concept of Newton’s
theory of gravitation.

12.1 Newtonian kinematics

Particles move in a three-dimensional Euclidean space. Position vectors with finite
length can be placed anywhere in this space. The position of a particle can be
measured with respect to an arbitrarily chosen point of reference. Also time is
universal and absolute. In particular it is possible for all observers to agree as to
which events are simultaneous.

The velocity of a particle is the derivative of its position vector with respect to
time
dr
dr’

?}:

The velocity describes how fast and in which direction a particle moves, relative to
a given reference point, which may be the position of an observer.
Acceleration is the derivative of the velocity with respect to time

_ dv
a=—.
dt

The acceleration describes how fast the velocity changes, not only in magnitude
(speed), but also in direction.
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Fig. 12.1 Worldline of an - t+at -\7
accelerating body V, AV 1

Va2

Consider a body that moves along a circular path, for example the Moon as it
moves around the Earth. Since the direction of the velocity changes all the time, the
motion is accelerated all the time, even if the speed is constant.

In Fig. 12.1 AV is the change of velocity from P; to P,. The acceleration of the
body is
dv . AV . V=

d=—= lim — = lim
dt Ar—0 At Ar—0 At

From this expression and Fig. 12.1 it is seen that when At — 0, the acceleration is
directed towards the centre of the circular path.

12.2 Forces

Isaac Newton (1642—1726) proposed that no force is necessary in order to keep a
body moving. If a body stops moving when it is left to itself, it is because it meets
friction. One is usually not able to remove completely the force of friction. A body
is perhaps never quite ‘left to itself’!

One speaks of a force when a body acts on another so that it is either deformed
or its velocity changes. Today we recognize four fundamental forces in this sense.

1. The electromagnetic force
This is a force that acts between electrically charged bodies. Also if two elec-
trically neutral objects, with inhomogeneous charge distributions, for example
two atoms, are near each other, they can act on each other by means of
electromagnetic forces. Molecular bonds, for example, are due to such forces.
Friction forces are also of electromagnetic nature.

2. The gravitational force
This force acts between all masses. The gravitational force is always attractive
(see Fig. 12.2). The reason that the Moon does not move along a straight path,
but along a circle with an acceleration directed towards the centre of the circle
(the Earth), is that the Earth acts upon the Moon with a gravitational force (see
Fig. 12.2).

3. The weak nuclear force
This is a force which is responsible for a certain radioactive emission from atomic
nuclei. Its range is extremely small, shorter than the radius of a neutron.
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Fig. 12.2 Earth and
trajectories of falling objects

4. The so-called ‘colour force’

The name ‘colour force’ is fanciful. The word ‘colour’ has here nothing to do
with human perceptions. It is used as designation for a new kind of charge, called
‘colour-charge’. Particles with colour-charge act on each other with a very strong
force called ‘colour force’. Each proton and neutron consist of three ‘quarks’
(named so by the american physicist Murray Gellmann, after a line, ‘three quarks
for Muster Mark’ in James Joyce’s Finnegan’s Wake). The quarks have colour
charge. It is the colour force that binds them together in the protons and the
neutrons.

The range of this force is very small, about the radius of an atomic nucleus.
The protons and neutrons are colour-neutral. Yet, the strong nuclear force, which
binds protons and neutrons together in atomic nuclei, are due to the colour force,
in a similar manner that forces between electrically neutral atoms, which make
up molecules, are due to the electric force.

For systems as small as atomic nuclei, ordinary Newtonian theory of force does
not apply. One has to use quantum mechanics. All forces of ordinary experience
such as friction, pressure, the forces in a rope, the force that makes things fall etc.
are due to either the electromagnetic or the gravitational force. They are the only
long-range forces.

12.2.1 Newton’s three laws

The fundamental laws of classical mechanics, his doctrine about forces, was
formulated by Newton as follows.
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Newton’s first law: A body which is not acted upon by any forces (or by forces
with a sum which is equal to zero) is either at rest, or it moves along a straight path
with constant speed.

Some comments are in order. Firstly, this law is valid only if the velocity of the
body is measured relative to an inertial reference frame, i.e. a non-accelerated and
non-rotating frame not influenced by forces. Such a frame is traditionally called
‘freely moving’.

Secondly, one may wonder if ‘not influenced by forces’ implies ‘non-rotating’.
In order to remove any doubt, think of a rotating neutron star (a pulsar). If it is
not acted upon by any forces it will rotate forever. Just as a particle will proceed
moving with constant velocity when no force acts upon it, an extended system will
proceed to rotate with constant angular velocity when no force acts upon it, like a
friction-free spinning top.

Thirdly, what is the logical status of Newton’s first law? Is it a physical law, or a
definition of the concept ‘inertial reference frame’?

Are there laws of nature? Something behind what goes on and steers everything?
Johann Wolfgang Goethe seems to deny it: “Die Natur hat weder kern noch
Schale, alles is auf einem Male” (Nature has neither core nor shell, everything is
there at once). One requirement of a physical law is that it is conceivable (non-
contradictory?) that it could be broken by the actual behaviour of a physical object.
Analyzing Newton’s first law it is advisable to introduce the concept of implicit
definition. Newton’s first law can be said to have double contents, separated as
follows:

1. There exist reference frames in which free particles move with constant speed
along straight lines.
2. These reference frames are called inertial frames.

Newton’s second law: The acceleration of a body is proportional to the force
acting on it, and inversely proportional to its mass.

The proportionality constant can be chosen equal to one, so that the law can be
written

) F = -
E F = 12.1
a= or ma ( )

where Y F is the vector sum of the forces acting on the body.

Newton’s second law involves three terms: ‘acceleration’, ‘mass’, and ‘force’,
and we have not yet given precise definitions of the two latter ones. A thorough
discussion of these terms is outside the main topic of this text. Note, however,
that the term ‘mass’ appears in two fundamentally different contexts in Newtonian
dynamics. In connection with Newton’s law of gravitation the ‘mass’ of a body
expresses a quantity, namely the strength of the gravitational force towards it. But in
connection with Newton’s second law ‘mass’ expresses the resistance of the body
to change is motion. In order to make clear that these quantities are different, we
should talk about gravitational mass, and inertial mass, respectively.
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Force is sometimes defined as mass times acceleration. Then ‘Newton’s second
law’ is a definition, (force = mass X acceleration) and it should not be possible
to confront it with experimental results. However such ‘confrontation” may be said
to be a most useful part of Newtonian dynamics. One way out of this dilemma, is
again to accept that what is called a ‘law’ has in reality a double meaning. In the
present case it has an empirical content: that the acceleration of an arbitrary body is
proportional to a certain quantity. And it defines a term by means of this empirical
relation. The mentioned quantity is called the force that acts upon the body.

Newton’s third law: If a body A acts on another body B with a force F B, then B
acts back on A with a force F4 in the opposite direction and of the same magnitude,

According to Newton’s third law forces will always appear in pairs. It is suitable,
then, to think of forces as interactions between pairs of bodies.

One may wonder if it is possible to understand this law as a convention. Does
it have empirical content? Could the world be such that this ‘law’ is not obeyed?
Suppose we find that A acts upon B. Can we possibly find that nevertheless B
does not react upon A? If every force is an interaction between two bodies, and if
this term implies a sort of ‘democracy’ in the sense that it is only a matter of the
physicists’ choice whether one says that A acts upon B, or B acts upon A, then
Newton’s third law would always be obeyed. In this case the question above would
be answered by ‘no’. However, in a rotating reference frame Newton’s third law is
not obeyed. In such a system a centrifugal force acts upon a body. But this body
does not act back on another body with an equal and oppositely directed force. So
the question above should be answered by ‘yes’. Conclusion: Newton’s third law
has ‘an empirical content. It is not a terminological convention.

12.3 Newton’s theory of gravitation

Newton realized that gravitation governs the motion of the planets (as illustrated in
Fig. 12.2). He also formulated the law giving the gravitational force between two
spherical bodies in general.

Consider two bodies with masses m; and m,. Let ¥ = reé, be a vector
representing the position of m, relative to m; (see Fig. 12.3).

Newton made the hypothesis that the gravitational force acting from m; upon
my is

F=-¢™225, (12.2)
r

where €, is a unit vector directed away from m; along the connecting line through
my and m,, and G = 6.6 X 10_33m3kg_ls_2 is Newton’s gravitational constant.
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Fig. 12.3 Two bodies with my -
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Equation (12.2) expresses Newton’s law of gravitation. Incidentally the body m;,
acts upon m with an oppositely directed gravitational force of the same magnitude,
according to Newton’s third law. This vector-equation tells that the force is directed
along the line connecting the centres of the bodies, and acts in the negative é,
direction towards the mass m; that generates the force. It is an attractive force.
If one is interested in the magnitude of the force only, Eq. (12.2) is reduced to the
more familiar form

mymy

F=G

72

Essentially, Newton’s theory of gravitation has the following ingredients. Univer-

sal time, Euclidean space, the three dynamical laws, and the gravitational law. The

force of gravitation is implicitly assumed to act instantaneously (actio in distantia).

If God suddenly removed some of the Sun’s mass, so that it instantly disappeared,
the gravitational force from the Sun upon the Earth would change instantly.

12.4 Consequences of special relativity for a theory
of gravitation

Einstein constructed the special theory of relativity in 1905. It is said to be based on
two ‘postulates’ or rather ‘principles’. They have the status of physical hypotheses
of a rather basic kind.

The special principle of relativity. Let F; and F, be two inertial reference frames
in a region free of gravitational fields. To every physical process Q| there exists a
physical process O, such that O, as observed in F; is identical to QO as observed
in F). The reason for the word ‘special’ is that the identity refers only to a special
case: identity between inertial reference frames. According to this principle no
experiment gives information about the velocity of one’s own laboratory. One is
always permitted to consider an inertial laboratory, i.e. a non-rotating laboratory not
acted upon by any forces, as at rest. This means that velocity is always velocity in
relation to something. There exists no absolute velocity. Since the expressions of the
laws of nature are formalized descriptions of physical processes, it follows that these
laws must be formulated without reference to the velocity of any reference frame.
Only velocities of objects relative to a chosen reference is of physical significance:
‘velocity is relative’. In the theory of relativity the statement that ‘particle P; has
velocity ¥;” has no sense unless a reference frame is introduced in relation to which
the velocity is said to be V.
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The constancy of the velocity of light. The velocity of light is the same in every
direction independently of the velocity of the observer or emitter. This implies that
it is exactly the same relative to any freely moving reference frame whatsoever.

These two principles, contradictory according to Newton, furnish the basis of
the special theory of relativity. We shall here be particularly concerned with one
consequence of that theory, namely the increase of mass with (relative) velocity.
This is expressed by the formula

V2 —1/2
m = my (1 — —) . (12.3)

Here m is the mass of a body moving with a velocity v relative to an observer, and
my is its mass when it is at rest. From Eq. (12.3) it is seen that lim,_,. m = oo. The
mass of a body increases towards infinity when its velocity approaches c. Due to the
relation between energy, E, and mass, m, expressed by E = mc?, this means that
one has to supply an infinite amount of energy in order to propel a particle all the
way to the velocity of light. This has often been interpreted to imply that particles
with a velocity greater than ¢ cannot exist.

The Indian physicist C. G. S. Sudarshan has pointed out that the reasoning behind
this conclusion is similar to the reasoning of people in India of old days, who
concluded that there could not exist people North of Himalaya, for it was impossible
to pass through these mountains. In fact, the theory of relativity permits the existence
of particles travelling faster than light. They are called tachyons, and their physical
existence is doubtful. From the formula (12.3) it can only be deduced that such travel
cannot be realized by increasing the velocity from below that of light. Tachyons
must be created on the ‘upper side of the light barrier’! They remain there. They
cannot be slowed down to ¢ without being supplied with an infinite amount of
energy.

However, due to the relativity of simultaneity, certain causality paradoxes would
appear if tachyons were able to carry information. Think of an ‘Einstein train’
moving past a station. In Ch. 5 we showed that if two events, one at the front end
of the train and one at the hindmost end, happened simultaneously as observed on
the train, then the hindmost event would happen first as observed on the station.
Imagine that we construct a ‘tachyon telephone’ with tachyons moving infinitely
fast. We send a message from the station that arrives at the front end of the train
immediately. The message is reflected to the emitter via a tachyon line attached to
the train, so that it arrives at the hindmost end of the train just as it passes the emitter
at the station. The signal arrives at that point practically simultaneously with the
reflection event as observed on the train. Thus, as observed on the station the signal
arrives before it was reflected. Since it was reflected at practically the same moment
it was emitted, the signal arrives back at the emitter before it was emitted. The
message could be: destroy the telephone as soon as this message is received!

Since all sorts of waves can transfer information, gravitational waves are able to
carry information. The velocity of gravitational waves is the ‘spreading velocity’ of
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the gravitational force. This, together with the possibility of a ‘causality paradox’
implies that the gravitational force cannot act instantaneously according to the spe-
cial theory of relativity. This means that Newton’s theory of gravitation contradicts
the special theory of relativity. There is a relation of logical incompatibility between
the two.

The anti-relativistic character of Newton’s theory of gravity could not be
discovered empirically in the case of matter moving very much slower than light,
since the relativistic deviations from the Newtonian results depend upon the factor
v2/c?, where v is the velocity of the, say, a planet. This is the reason why Newton’s
theory of gravitation has functioned so well for several centuries and still does so.
In fact the calculations of the rocket adjustments needed in order for example to hit
Saturn with a spacecraft, are performed by means of Newton’s theory of gravitation.
The rocket don’t move fast enough to make it necessary to warrant the introduction
of the theory of relativity.

Einstein found it compelling, as a matter of principle, to construct a gravitational
theory in accordance with the special theory of relativity. He knew that the theory
of electromagnetic forces and fields formulated by Maxwell in about 1860 was
consistent with special relativity. And the law of the electrical force between two
charges, known as Coulomb’s law, has just the same form as Newton’s gravitational
law. He also knew that it was Faraday’s introduction of the field concept that paved
the way for Maxwell’s ‘relativistic theory of electromagnetism’.

A first step towards a satisfactory theory, is to formulate Newton’s theory of
gravitation as a field theory, in which the force on a particle is due to a gravitational
field acting on a particle, locally, at the position of the particle. In this way one can
get rid of the non-relativisic notion of ‘action at a distance’ (which corresponds to
the unphysical limit ¢ — oo in the relativistic theory of gravitation, because the
force of gravity is spreading with the velocity of light in this theory, just like the
electromagnetic force).

In a field theory the changes of the field are described locally by means of
differential equations. For this purpose it will be convenient to introduce something
called the gravitational potential ¢. This is a function defining the potential energy
of a particle with unit mass in a gravitational field. The potential energy of a body
at a position P is equal to the work needed to move the body from a position where
it has no potential energy, to P. The position where the potential energy is equal to
zero, can be chosen freely. In the gravitational field at the surface of the Earth, for
example, it is often chosen at sea level. The value of the potential increases in the
upward direction in a gravitational field.

A simple illustration of the concept gravitational potential is provided by a
uniform gravitational field in a room, say. Let us choose the zero energy level at
the floor. The acceleration of gravity g is assumed to be constant. The weight of a
particle with mass m is mg. The particle is lifted with constant velocity upwards
from the floor to a height & above the floor. The force needed to lift the particle
is mg, and the distance is h. The work, W, is the force times the distance, i.e.
W = mgh. The potential is the work per unit mass, thus, the potential, ¢, at a
height i above the zero energy level in a uniform gravitational field is ¢ = gh.
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The potential at every point with this height has the value gh. This means that in a
uniform gravitational field a horizontal surface is an equipotential surface.

Outside a spherical mass distribution the equipotential surfaces are spherical
surfaces. The potential increases with increasing distance from the centre. In this
case one often defines the zero energy level on a spherical surface with infinitely
large radius. Then the potential is increasingly negative the closer one is to the
centre.

In a field (i.e. not ‘action at a distance’) theory of gravitation space is imagined
to be filled with a gravitational field. The field vector is the acceleration of gravity,
a, which is defined to equal ‘minus the gradient of the gravitational potential’, ¢.
According to Eq. (10.14) the gradient of a scalar field ¢ is given as

Ip_. . 0.
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V¢ =
in a Cartesian coordinate system. In terms of the gradient operator V (see Eq. (10.15)
or Appendix A) the acceleration of gravity g is

§=-Vg. (12.4)

The gravitational potential is determined locally by the mass distribution. The
differential equation that tells how the mass distribution determines the potential
is called Poisson’s equation. It is a second order differential equation involving the
so-called Laplacian (see Appendix A).

In Newton’s theory of gravitation, mass is the source—or rather the sink
(due to the attractive character of gravity)—of the gravitational field. In the field
formulation of the theory, this means mathematically that the divergence of the
gravitational field is proportional to the mass density. Thus

divg = —4nGp.
Inserting the right-hand side of Eq. (12.4) leads to
div grad ¢ = 47 Gp.
Introducing the Laplacian defined in Eq. (A.1) this equation can be written
V3¢ = 4nGp. (12.5)

This is Poisson’s equation. It is the analogy of Einstein’s field equations in the
field theory formulation of Newton’s theory of gravity. Equations (12.4) and (12.5)
constitute what may be called ‘Newton’s theory of gravitation formulated as a field
theory’. In the ‘action at a distance version of Newton’s theory of gravity, one had to
assume the form of the force law. In the field theory formulation this assumption is
replaced by the more general assumption that mass is the source of the gravitational
field, and the force law can be deduced as a solution of this equation.
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At a point where the mass density vanishes, the equation is reduced to
V2 =0, (12.6)

which is called Laplace’s equation.
We shall now show—for the special case of spherical symmetry—that this
equation implies Newton’s law of gravitation

. GM
g=——75¢€r 12.7)

2
where M is the mass inside a sphere with centre at the origin and radius r, and g
is the acceleration of gravity outside the spherical mass distribution. Thus we shall
solve Eq. (12.6) at an arbitrary point with vanishing mass density in a spherically
symmetric region.

In the present case the Laplace operator shall act upon a gravitational potential
¢ that is a function of r only. Then the last two terms of Eq. (A.15) vanish because
/060 = d¢p/dp = 0. In the remaining term we can replace the partial derivatives
with ordinary derivatives. Laplace’s equation then takes the form

1 d (,d¢
-~ (=) =o0.
r2 dr (r dr)

Since 1/ r? is different from zero, this equation reduces to

d (,d¢\
a (r 5) —o0. (12.8)

From this equation, we shall find the acceleration of gravity, which is given in
Eq. (12.4). In the present case the acceleration points in the radial direction, and
the only non-vanishing component is

r_ 49
& ="ur

Since integration is the same as antiderivation, integration of the left-hand side of
Eq. (12.8) gives just the expression inside the parenthesis. And since the derivative
of a constant is zero, integration of the right-hand side gives a constant. Thus, we
get

d¢
2
re-— =K,
dr
where K is an arbitrary constant. Dividing both sides of this equation by r? leads to
dp K
dr — r?

Choosing K = GM we get Newton’s law of gravitation, Eq. (12.7).
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So far Newton’s theory formulated as a field theory reminds very much of the
theory of an electrostatic field. There is, however, a fundamental difference between
the theory of the electric field and gravitation. The electric field is uncharged. It does
not contribute to the charge of the source. The electric field does not act by electric
forces upon itself. This has the mathematical consequence that the field equations
of the electric field are linear differential equations.

The quantity that replaces electrical charge in the case of gravitation, is mass.
In other words, the ‘gravitational charge’ is mass. A gravitational field has energy.
According to the relativistic equivalence between energy and mass (E = mc?),
a gravitational field has mass. Consequently a gravitational field is itself a source
of gravitational attraction. A gravitational field acts upon itself. The differential
equation (12.5) is not able to describe the action of a gravitational field upon itself.
According to Newtonian theory the gravitational field has no mass and does not
act upon itself. In this theory Poisson’s equation is a correct field equation for
gravitation. But it cannot be a relativistically correct equation.

We should mention that even if the concept of a gravitational force is absent
in general relativity, the non-linear character of gravitation must be present in a
relativistic theory of gravitation. But in general relativity it is interpreted in terms of
geometry, not in terms of forces.

12.5 The general theory of relativity

The following three principles make up the fundamental physical assumptions of
the general theory of relativity.

1. The special principle of relativity.
2. The principle of the constancy of the velocity of light.
3. The weak principle of equivalence (see below).

The first two principles are the building blocks of the special theory of relativity,
which may be considered as a decisive step in the conceptual development leading
to the general theory of relativity. Of special importance in this connection is that
special relativity demands of us that we give up the old idea of absolute (non-
relative) time and space, and think instead of our existence in a four-dimensional
spacetime.

The principle of relativity is concerned with physical phenomena. It motivates the
introduction of a formal requirement called the covariance principle. This principle
may be formulated in the following way: The general laws of nature are to be
expressed by equations which hold good for all systems of coordinates, that is, they
are co-variant with respect to any change of coordinate system. This requirement is
not directly concerned with physical phenomena, but with the way of talking about
them. As we know from the preceding chapters, tensor equations have a coordinate
independent form: they are said to be form-invariant, also called ‘covariant’.
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One should note, however, that a covariant equation, when given physical
interpretation, does not necessarily obey the principle of relativity. This is due to the
following circumstance. Because it is a physical principle, the principle of relativity
is concerned with relations that can be observed. If you are going to investigate the
physical consequences of a tensor equation, you have to establish certain relations
between tensor components and observable physical quantities. The relations have
to be separately defined. From the tensor equations that are covariant, and the
defined relations between the tensor components and the observable physical
quantities, one can deduce equations between observable physical quantities. The
special principle of relativity demands that the laws which are expressed by these
equations, can be stated in the same way in every inertial reference frame, and
that the laws do not refer to any universally privileged reference frame, PRF. If we
term the velocity of an arbitrary frame relative to PRF the absolute velocity of the
frame, the principle of relativity requires that the laws of nature do not refer to any
absolute velocity, i.e. the equations relating physical quantities should not contain
any absolute velocity.

If a physical theory is expressed by means of tensor equations, the theory is said
to be written in a manifestly covariant form. As written in this way, the theory will
automatically fulfil the covariance principle, but it need not fulfil the principle of
relativity.

We shall now go on and introduce the famous principle of equivalence. In the
literature one finds two versions of this principle: the weak and the strong principle
of equivalence.

In order to be able to understand the significance of the weak principle of
equivalence, one should remember the fact that the term mass appears in two kinds
of contexts in Newton’s theory of gravitation. On the one hand it appears as the
gravitational mass, mg, of a body. On the other hand, mass appears in Newton’s
second law as a measure of how strongly a body resists acceleration. This is the
inertial mass, mj, of a body.

If Newton’s second law, Eq. (12.1), is combined with Newton’s law of gravita-
tion, Eq. (12.2), we may write

me M, -
£ ger=mia,

-G =

for a particle with gravitational mass m, and inertial mass m; at a distance 7 = re,

from the centre of a spherical body with gravitational mass M,. The acceleration of
the particle is

R GMy my _

a=—-——=—e. (12.9)

r m;i

Note that the acceleration depends upon the quotient between the gravitational and
the inertial mass of the particle.

Experiments have without exception confirmed the hypothesis that bodies made

of different materials fall with equal acceleration under the same carefully described
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circumstances. From this hypothesis and Eq. (12.2) we derive the well attested
hypothesis: my/m; has the same numerical value for all bodies whatsoever. This
sameness of numerical value is the contents of the so called weak principle of
equivalence.

In such important cases of empirical confirmations (so far) without exception,
what a physical equation expresses is usually endowed with a honorific title
‘physical law’ or ‘law of nature’. We have used the term ‘hypothesis’ because future
instances of observational disconfirmation are possible. According to the philosophy
of possibilism, we have no guarantee whatsoever that the future in the relevant area
will resemble the past. There might be changes so deep and universal that nobody
could meaningfully declare ‘this time the conditions are such that a crucial test
is possible, and we shall find out whether our previous series of confirmations
will continue indefinitely or not’. Also if there were too many abrubt changes,
we may not be able to observe them. The process of observation seems only to
be possible if we can rely, for instance, on at least a moderate steadiness of the
constitution of the material world and how it behaves. Fundamentally chaotic and
erratic behaviour encompassing the observing subject seems to be incompatible with
the act of obtaining knowledge about observable properties of the material world.

It was tempting for Einstein (and only Einstein?), not to rest with a law stating
that two different entities, mg and m;, always are quantitatively the same. Einstein
asked: why not think of m, and m; as one and the same physical entity, like the
‘Morning Star’ and ‘Evening Star’ being names for the same planet Venus? The
validity of the weak principle of equivalence could then be proved because measures
of my and m; would then be measures of one and the same entity. An entity that was
simply called ‘mass’. It would have to be a very special kind of entity showing
an extreme generality, characterising every physical kind of system, including, for
example electromagnetic fields, and the particles of microphysics. Also the naming
could be changed. By the weak principle of equivalence one might mean what is
expressed by the six words gravitational and inertial mass are identical. This in turn
makes the principle not something proved. It is, however, a physical hypothesis of
immense generality. A stroke of Einstein’s genius was to recognize this hypothesis
and make it a part of the foundations of his remarkable general theory of relativity.

According to this principle Eq. (12.9) is reduced to Eq. (12.7). Note that no
property whatsoever of the accelerated particle is referred to in the equation. Neither
the mass of the particle nor what it consists of means anything for its acceleration,
only its position in the gravitational field.

This made Einstein realize that the acceleration of a particle at a certain position
in a gravitational field might be a property of space itself at this position. This
has nothing to do with any property of the particle. But even if it is a property
of space itself, we do not necessarily leave physics and enter mathematics. We enter
the area of geometrical properties of something physical. So Einstein conceived
the revolutionary project of a geometrical conception of gravity: the essence of the
general theory of relativity.

But how is this possible some may ask. Is not geometry a part of mathematics
and gravity a part of physics? The question is serious. Let us look at an example.
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We may offer a purely geometrical description of a perfect sugar cube. All angles
are ninety degrees, all sides flat and equal. We leave out chemical properties, taste
and everything else, confining ourselves to purely geometrical properties. By calling
the description of gravity geometrical, we refer to geometrical properties of physical
spacetime. But in contrast to the description of the sugar cube we may add: there
are' no other properties, chemical, electrical or otherwise.

Even if Newton declared that he made no hypotheses as to the physical cause of
the gravitational force, the conceptual structure of his theory invites to search for
such a cause. In the second half of the eighteenth century, one tried for example to
explain the gravitational force as a result of hydrodynamic phenomena in the so-
called ‘ether’. Einstein’s theory of gravitation is different. According to this theory
there is no gravitational force.

An important consequence of the weak principle of equivalence is that the
‘influence’ (see below) of a field of weight upon all ‘local’ (the meaning of this
word in the present context is explained below) mechanical experiments can be
simulated by an accelerated frame of reference, say an Einstein lift, in a region free
of gravitating masses. Consequently, every ‘influence’ of a field of weight upon
a local mechanical experiment can be ‘transformed away’, by going into a freely
falling frame of reference. The so-called strong principle of equivalence generalizes
these statements to encompass experiments involving physical processes of arbitrary
nature, not just mechanical ones.

The strong principle of equivalence makes the conception of a causal influence
of a field of weight upon for example light superfluous and misleading. We should
stick to just kinematics (science of movement), as far as gravitation is concerned,
totally leaving out dynamics (science of force).

Consider a ray of light directed horizontally at the surface of the Earth. According
to the Newtonian (dynamical) conception of gravitation, a gravitational field acts
upon light if it has mass, and forces the light ray to bend downwards. If light is
mass-less there is no gravitational force, and the light ray is perfectly straight. The
understanding of gravitation obtained in the general theory of relativity is free of any
dynamical relationships, and leads in fact to a prediction which is different from
the Newtonian one in the present example. The situation is described as follows.
If the observer moves non-inertially, in other words, if he is not in free fall, but
is acted upon by some kind of force (non-gravitational, since in general relativity
no gravitational force exists), then he shall find that a ray of light is bended. This
bending is understood not to be an observer-independent feature of the motion of
light. Nothing acts upon the light and makes it bend. If the observer moves inertially,
then he shall observe that, locally, the ray of light is straight. General relativity thus
predicts that if light moves with a finite velocity, then a non-inertial observer shall
register a bending of a light ray, whether light has mass or not.

"We should here warn the reader: spacetime may not be as simple as that. Quantum field theory
indicates that what we call vacuum is tremendously complicated and badly understood. But that is
another story.
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Fig. 12.4 Inhomogeneous
gravitational field

As mentioned above, what is, in Newton’s theory of gravitation, understood as
the influence of a field of weight upon the results of a local experiment, can be
transformed away, by going into a freely falling frame of reference.

The word ‘local’ means local both in space and time. The reason for this
restriction is the existence of what in Newton’s theory of gravitation is called tidal
forces. These are the forces that cause the ebb and flood of tides on the Earth.

Figure 12.4 depicts the Earth in the gravitational field of the Sun. The Sun is in
the ‘downward’ direction in the plane of the paper. The field lines approach each
other in the direction of the Sun, indicating that the field is stronger closer to the
Sun. The lengths of the arrows indicate that acceleration of gravity, in the field of
the Sun, is larger at the side of the Earth which turns towards the Sun, than at the
opposite side. Compared to the centre of the Earth, i.e. to the Earth as a whole,
the water at the sunny side is drawn more strongly towards the Sun, and the water
at the opposite side more weakly. This, together with the similar properties of the
Moon’s gravitational field at the surface of the Earth, causes the tides. The difference
of gravitational pull is fortunately small. Otherwise we might have horrible tidal
waves hundreds of metres high.

A gravitational field in which the acceleration of gravity is the same everywhere
is called homogeneous. Then the gravitational field lines are parallel. A gravitational
field in which the acceleration of gravity is position dependent, has field lines
that are not parallel, as those of Fig. 12.4. Such a gravitational field is said to be
inhomogeneous. An inhomogeneous gravitational field cannot be transformed away
by going into a freely falling reference frame. But measurements of tidal forces
demand a certain duration and spatial extension. ‘Local’ has here the following
meaning: The measurements are to be restricted in duration and spatial extension,
so that tidal forces cannot be measured within the accuracy of measurement that can



240 12 Einstein’s theory of spacetime and gravitation

be obtained with the equipment of the observer. The extension of the area that can
be considered ‘local’, depends upon the character and accuracy of this equipment.

In this connection it is important to note the difference between inertial reference
frames F; in special relativity and inertial reference frames Fy, in general relativity.
The special relativistic inertial frames are wunaccelerated reference frames of
arbitrary extension in a space free of gravitational fields, i.e. flat spacetime. The
general relativistic inertial reference frames are local systems falling freely in
curved spacetime.

The strong principle of equivalence may now be stated as follows. Given a certain
measuring accuracy, to every physical process Q; in Fy there exists a physical
process Q- in an inertial frame F;; in Minkowski spacetime, so that Q5 is found by
observation in Fj; to be identical to Q observed in Fg,.

The strings of a music instrument, for example, vibrate in the same manner
whether you play in a flat region far from any masses, or in a satellite just above
the Earth. You can play with it equally successfully at either place.

The strong principle of equivalence announces the physical equivalence of all
inertial reference frames.

Since the process of transforming away a field of weight by going into a freely
falling reference frame may be reversed, there is also a corresponding equivalence
between non-inertial reference frames. The acceleration field in such a frame has the
same physical effects, whether it is caused by acceleration of the reference frame,
or it is due to a nearby mass.

However, if we compare observations in a non-inertial and an inertial reference
frame, differences will appear. Light, for example, is deflected in a non-inertial
reference frame, and moves along a straight path in an inertial reference frame.
One may in several ways, both by optical and by mechanical means, find out by
local experiments, whether one is in a non-inertial or an inertial reference frame.

In spite of this, Einstein generalized the special principle of relativity to
a general principle of relativity, encompassing accelerated motion. Due to the
locally observable difference between inertial and non-inertial reference frames, the
generalization of the special principle of relativity cannot be just to replace ‘inertial
reference frames’ with ‘arbitrary reference frames’ in its formulation.

Even if one restricts oneself to using inertial reference frames, a physical process
is determined not only by the laws of nature, but also by the initial conditions. If one
refers to an arbitrary coordinate system, the process will in addition depend upon
the metric of the coordinate system. However, if one formulates the natural laws so
that they are valid without any changes for every metric g,,, one may formulate a
general principle of relativity as follows: Natural laws are independent of coordinate
systems and even reference frames, and so are their expressions. In other words: It
should not be necessary to change the verbal formulation of any natural law when
changing the reference frame.

In the special case of the propagation of light, the law is: light follows null
geodesic curves, that is geodesic curves in spacetime such that the spacetime in-
tervals are zero along the curve (see Sect. 5.14). This sentence is perfectly adequate
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whether the reference frame is accelerated or not. The shape of a geodesic curve
depends upon the first derivative of the metric due to the presence of the Christoffel
symbols in the geodesic equation, and it follows from this law that light is deflected
in a non-inertial reference frame, but not in an inertial frame. The fact that light
is deflected in a non-inertial reference frame, implies that the velocity of light is
constant only in local inertial reference frames.

As mentioned above, an important consequence of the principles of equivalence
is that gravitation may be described geometrically. In the general theory of relativity
the gravitational attraction between two bodies is not perceived as the result of an
interaction between the bodies. Instead it is described as the curvature of spacetime
near the bodies. There is no longer any gravitational dynamics (of particles in a
gravitational field), only gravitational kinematics—theory of movement.

Newton’s law of gravitation is in general relativity replaced by equations that
tell how the presence of mass or energy corresponds to curved spacetime and vice
versa. These equations—the field equations of Einstein—do not follow logically
from the principles we have talked about above. In order to arrive at these equations
Einstein demanded that conservation of energy and momentum shall follow from the
field equations. He also wanted to make the equations as simple as possible. Noting
that higher order derivatives would make the equations inordinately complicated, he
limited himself to a curvature tensor involving only first and second derivatives of
the metric tensor.

Einstein was well aware of the fact that natural phenomena of a certain class, for
example those having to do with gravitation, can be represented conceptually and
mathematically by a manifold of theories. For Einstein a most important criterium
for selecting one theory above the others is that of simplicity. In Einstein’s Herbert
Spencer lecture, delivered at Oxford, June 10, 1933, he said:

Our experience hitherto justifies us in believing that nature is the realization of the simplest
conceivable mathematical ideas.

And in Forum Phil. 1, 173 (1930) he wrote:

I do not consider the main significance of the general theory of relativity to be the
prediction of some tiny observable effects, but rather the simplicity of its foundations and
its consistency.

Note that ‘simple’ here does not mean ‘easy’. A simple theory is above all con-
ceptually and mathematically economic. It introduces a smallest possible number of
principles and concepts representing a largest possible set of physical phenomena
in a mathematically consistent way. In order to realize such a theory one may
need to introduce advanced mathematics, but a guiding principle is: Construct the
theory with maximum breath of field of valid application, with maximal conceptual
economy, and represent its conceptual structure in as few and simple mathematical
terms as possible, expressed with an appropriate and suggestive notation.
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12.6 The Newtonian limit of general relativity

We shall describe a static and very weak gravitational field, like the gravitational
field in the Solar system. We start by giving a relativistic representation of the
acceleration of gravity.

The motion of a free particle is expressed by the geodesic equation, Eq. (8.7).
Making use of the proper time t of the particle as parameter, this equation takes the
form

d?xH dx® dxP
+ Maﬁ -
dt? dt drt

=0, (12.10)

where x#* = (xl,xz,x3,x4) and x* = ct.

Consider a free particle instantaneously at rest. Then the spatial components,
w = dx’//dt, of the particle’s four-velocity vanish, dx//dt = 0. The time
component is u* = dx*/dt = d(ct)/dt = cdt/dt. In the summation over o
and B in Eq. (12.10) only the term with « = B = 4 is non-vanishing. Equation
(12.10) represents a set of four equations, one for each value of . Putting u = j
one then finds the equation of motion in the j direction

d?xi o odx* dx* - d(ct) d(ct)
— =Ty —— =Ty
dt? dt drt dt drt
o dt dt A dt\?
= J Rt N
I 44Cd Cdt Tr 44 C (dt) . (1211)

The coordinate clocks of an observer at the position of the particle at the instant it is
at rest, are chosen to be synchronized with the standard clock of the particle. Since
we want to calculate the acceleration & = a’/é; of the particle at this particular
instant, we have dt = dt, and a/ = d>x/ /dt* = d*x/ /d >,

The acceleration of gravity is defined as the acceleration of a freely falling
particle instantaneously at rest. Because d 7/dt = 1 we get from Eq. (12.11)

al = —c*TV . (12.12)

We have thereby obtained a physical, not merely geometrical, interpretation of the
Christoffel symbols '/ 44. They represent the components of the acceleration of
gravity.

We now assume that the gravitational field is very weak at the position of the
particle. Relativistically this implies that the curvature of spacetime is small. The
metric tensor deviates very little from the Minkowski metric 7.

The line element of flat spacetime as expressed by Cartesian coordinates and the
usual time coordinate, has the form

ds* = dx*> + dy* + d > — 2 di*. (12.13)
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The components of the metric tensor are
Nxx = Nyy = Nzz = I and n,= —c. (12.14)

It is practical to introduce a fourth coordinate x* = ¢ ¢, which may be called ‘light
distance’ since it represents the distance that light passes during a time ¢. Inserting
this coordinate into the last term of Eq. (12.13), the line element takes the form

ds? = dx* + dy* + d? — (dx*)>. (12.15)
We read from this that the components of the metric tensor are

Nex =Ny =Nz =1 and nu = —1. (12.16)

Both Eqgs. (12.14) and ( 12.16) are called the Minkowski metric. We shall use the
form (12.16).

We now introduce a tensor with components /,,, which represents the deviation
from the Minkowski metric. We may write

v = Mo + My (12.17)

Since the gravitational field is assumed to be very weak, the deviation from the
Minkowski metric is very small. Thus, the components %, have magnitudes much
less than 1, i.e. |h,,| < 1. We also assume that the tensor /,,, is diagonal. Then the
contravariant components of the metric tensor are given by Eq. (5.75), that is

g =1/guu. (12.18)

We need to calculate the Christoffel symbol I'/ 44 which is present in Eq. (12.12).
Inserting 7 = j, v = 4,and A = 4 in Eq. (7.30), we get

; 1 o, (08us  0gus 08
MVy=-gh =L £ . 12.19
“=38 (8x4 + dx*  Oxn ¢ )

Since we describe a static gravitational field, the metric tensor is time-
independent. Then the first two terms on the right-hand side of Eq. (12.19) vanish,
and the equation is reduced to

. 1 . 9
Dy =—3g" %. (12.20)

Since the metric is diagonal, meaning that g/* = 0 for u # j, only u = j
contributes in the summation over . Equation (12.20) then further reduces to

L 334?‘

F‘{“: 2g dx/
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Using Eq. (12.18) we get
; 19
rf, = —— 8%
2gj 0x/

Substituting for g;; and g44 from Eq. (12.17) follows

1 1 0(N4s + hag)

[V =—= .
2 (77]']' + I’ij) 0x/

44 =

Since 744 is constant (equal to -1) the derivative of 744 vanishes, so that

1 1 0hay

Fj44 = -\
2(njj + hjj) 9xJ

Now n;; = 1forall j and h;; < 1, so we can neglect /1 ;; and obtain

10h
T/ 44 = —— i
2 dx/
Inserting this into Eq. (12.12) we have
2
c 8h44
S == 12.21
“ 2 dxJ ( )
Since g44 = —1+ hyy, this equation indicates how, in the Newtonian limit, the time—
time (i.e. four—four) component of the metric tensor determines the acceleration of

gravity.
According to Eq. (12.4) the j component of the acceleration of gravity is
expressed in terms of the gravitational potential ¢, by

g ¢
axJ -’

Comparing with Eq. (12.21) we get

¢ _ c? Ohay
axi 2 OxJ
From which follows
2
c
= —— hy.
¢ 5 N4

Multiplying each side by —2 and dividing by ¢2, we find the following expression
for hy44 in terms of the (Newtonian) gravitational potential
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The above equations contain concepts completely foreign to Newtonian thinking.
This means that it is misleading to think of them as a generalization of Newtonian
thinking. Nevertheless Newton’s equations are logically derivable from Einstein’s
theory in the case of very weak gravitational fields and as applied to objects moving
with velocities very much smaller than that of light.

Since, according to Eq. (12.21), only the component A4 of the tensor /,,
contributes to the acceleration of gravity in the Newtonian limit, we are free to
choose a coordinate system so that all the other components of /,,, vanish. Then the
line element of spacetime can be written

ds® = dx* + dy* +d? — (1 — hyy) 2 di*,
or
2 2 2 2 20\ 2 0
ds =dx” +dy +dz — 1+ — | c7dr. (12.22)
c
There is only one function ¢ to be determined by the field equations. In this

special case there is only one independent field equation, which can be taken as the
44 component of Eq. (11.34)

1
R44 =K (T44 — E 844 T) . (1223)

Because ¢ and its first derivatives are much less than 1, we may use the expression
(11.11) of the Riemann curvature tensor, valid in a local Cartesian coordinate system

(gﬂﬂ,va — ua.vp — 8vB.ua + gva,uﬂ) .

N =

Ryvep =
In particular, putting v = 4 and 8 = 4,

Rusas = = (Suata — Suoss — Saapa + Gaaps) -

=

Considering a static field, all terms with time-derivatives (terms with a number 4
somewhere after a comma) are equal to zero. In this case we get

1 1 0gu
Rys04 = T3 8 = T S (12.24)
Since g4 = —1 — 2¢p/c?, the derivatives of g4 are —2/c? times the derivatives of
¢. Equation (12.24) then becomes
1 3%
RM4O{4 = " o a

c2 Ixrgxe’
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Contracting p with « leads to

1 %9

Ryy = R%pn = — .
c? 9x,0x¢

(12.25)

We now make use of
92 92 92
0xq 0xY - 0x40x4 + dx; dx/
92 92
= + -
Nasdx*dx* ~ 0x;0x/
32 32
= + .
(=1)d(ct)d(ct) ~ 0dx;0x/
92 92

=——t—. 12.26
2oz T 0x;j0x/ ¢ )

Substituting the last expression in (12.26) for 82¢/dx,0x%, Eq. (12.25) takes the
form
0%¢ 1 0%

Ry =—— -
c*0t?  ¢? ox;ox/

Since, according to our assumptions, derivatives with respect to time are equal to
zero, we have
1 0%

Ry = — -
RVEIF Iy

Using Eq. (A.13) in Appendix A, this equation can be written
[
Ry =—=Vg. (12.27)
c

Considering the components of the energy-momentum tensor of a perfect fluid,
as given in Eq. (10.27), we see that in the Newtonian limit the term Ty = pc? is
dominating. All the other terms can be neglected compared to 744. From the rule
that indices can be lowered (see Eq. (5.76)) by means of the Minkowski metric in
the Newtonian limit, we find, making use of n* = —1

T =T%%=n"Ty = Ty = —Tu. (12.28)

Neglecting /44 in the first step and using 1744 = —1 and Eq. (12.28) in the second
step below leads to
1 1

1 1
Tas — = T~ Ty — =naaT = Tyy — = Tyy = = Ty4.
44 5 844 44 5 N44 44 ) 44 2 44
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The 44 component of Einstein’s field equations, Eq. (12.23), can in the present
approximation be written

1 1
Ru = 3 Tus = 3 kpct. (12.29)

From Egs. (12.27) and (12.29) we derive
2 1 4
V¢>:§Kpc . (12.30)

This represents the Newtonian limit of Einstein’s gravitational field equations. The
equation is approximately valid only for very weak gravitational fields.
According to the definition (A.1) of the Laplacian Eq. (12.30) can be written as

1
div grad ¢ = 5/{,064.
From Eq. (12.4) the acceleration of gravity is given by
a = —grad ¢.

From the last two equations it is seen that Eq. (12.30) can be given the form
diva Ly
iva = —=kc'p.
Skep

According to the interpretation of the divergence, as discussed in Sect. 10.2, this
equation expresses that the acceleration of gravity is a field that converges (due to
the minus sign) towards regions with a non-vanishing mass-density. This negative
sign is the mathematical expression of the fact that gravitation is an attractive force.

Comparing Eqgs. (12.30) and (12.5) we see that the relativistic equations are
compatible with the ‘Newtonian’ gravitational field equation if (1/2)kpc* = 47 Gp.
Solving this equation with respect to k we get

kK =8m G/c*. (12.31)
This quantity has been termed °‘Einstein’s gravitational constant’, because k is

the proportionality constant between Einstein’s curvature tensor and the energy-
momentum tensor in Einstein’s field equations.

12.7 Repulsive gravitation

In this section we shall still consider very weak gravitational fields, i.e. nearly
flat spacetimes, that are described by the line element (12.22), but we shall now
investigate the gravitational properties of perfect fluids with non-negligible stresses.
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Raising one index in the field equation (12.29) we get
4 4 1oy
R 4 =K T 4 — E 1) 4 T].
Inserting % =1land T =T*, + T, +T% + T4, leads to
1 :
R44 =K |:T44 — E (Txx + T’ y + TZZ + T44)i|

(T4 =T =T, —T%). (12.32)

[NSHIEN

Raising one index in Eq. (12.27) by means of the Minkowski metric, only changes
the sign, so we have

R*y = —(1/c) V?*.
Substituting the expression (12.31) for « and Eq. (12.32) for R4, it follows that

Vi = - (T4 =T —T7, —T%,). (12.33)

c2

Consider a perfect fluid at rest. In the weak field approximation the non-vanishing
contravariant components of the energy-momentum tensor of the fluid are then given
by Eq. (10.27),

TV = p8Y and T* = pc.

The mixed components are
T'; =p8§; and T* =—pc’
Inserting these components into Eq. (12.33) gives

V2¢ = 4G (p + 3p/c?). (12.34)

Comparing this equation with the corresponding Newtonian equation (12.5), we
define a relativistic gravitational mass density p, by

V3¢ = 4nGp,. (12.35)
Equations (12.34) and (12.35) imply
pg = p+3p/c’. (12.36)

This is the relativistic mass density that generates the gravitational field which gives
free particles an acceleration of gravity. Here p > 0 represents pressure, and p < 0
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represents tension. Thus the pressure in a star, for example, increases the attractive
gravitational field. This is the reason that according to general relativity, sufficiently
massive stars will collapse to black holes (see chapter 13). According to Newton’s
theory of gravitation a large pressure can prevent such a collapse, but relativistically
the pressure is itself a source of increased gravitational attraction. If there exists a
medium for which the tension is so large that p < —(1/3)pc?, then such a medium
will be a source of repulsive gravitation. In chapter 14 on cosmology we shall see
that vacuum energy may be such a medium. However, proceeding towards the limit
¢ — oo, representing Newton’s theory with instantaneous action at a distance, the
possibility of repulsive gravitation vanishes.

12.8 The ‘geodesic postulate’ derived from the field equations

The principle that free particles follow geodesic curves is often called ‘the geodesic
postulate’. Early in the history of general relativity this was considered an inde-
pendent assumption, which could not be logically derived from the other principles
of the theory. It is an empirical proposition, part of physics, not of geometry, and
in principle open to testing and revision by observations. In order to exhibit the
extremely important conceptual economy of Einstein’s theory of spacetime and
gravitation, we feel we have an obligation to show, to those readers who are still
willing to do some mathematics, that ‘the geodesic postulate’ clearly follows as a
logical consequence of the field equations. The derivation necessitates many steps,
but each is rather elementary.

Consider a system of free particles in curved spacetime. This system can be
regarded as a pressure-free gas. Such a gas is called dust. From Eq. (10.35) follows
that it is described by an energy-momentum tensor

T" = putu",

where p is the rest density of the dust as measured by an observer at rest in the dust,
and u" the components of the four-velocity of the dust-particles. All particles of the
dust have the same velocity, so that the dust moves like a rigid system.

Einstein’s field equations, Eq. (11.31), as applied to spacetime filled with dust,
take the form

1
RMY — ng R =k putu".

Because the divergence of the left-hand side is zero (see Eq. (11.27)), the divergence
of the right-hand side must be zero, too

(puu’), = 0
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or
(pu'ut);, = 0.

The quantity in the parenthesis we now regard as a product of pu” and u*. By the
rule for differentiating a product we get

(ou')os 4 pu‘ut'y, = 0. (12.37)

Since the four-velocity of any object in spacetime has a magnitude equal to the
velocity of light (see Eq. (10.23)), we have

uy ut = —c?. (12.38)
Differentiation gives
(uy ut),, =0.

Using, again, the rule for differentiating a product, we get
Uy u" +uy uty, = 0. (12.39)

Applying the rule (5.77) for raising an index (second and fourth equality below),
and the freedom of changing a summation index from « to u, say, (last equality)
we get

B i — ol _ e
Uppp W = U Upsy = & Ug Upsy = Ua 8 Upy

_ o
=ug u®;,, = u, u,.

>

Thus the second term of Eq. (12.39) is equal to the first one. Accordingly Eq. (12.39)
says that the sum of two equal terms are equal to zero. It follows that each of them
are equal to zero. So we have

u,uty, =0. (12.40)

We now multiply each term of Eq. (12.37) by u,,. From this follows
(pu") uy u” + pu’ u, ut, =0.

Using Eq. (12.38) in the first term, and Eq. (12.40) in the last term, which then
vanishes, we get

(ou") (=€) = 0.
Dividing by —c?,
(pu"); =0.
Putting this into Eq. (12.37) we find that the first term vanishes,

pu’u", =0.
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Since p # 0 we must have
u’ut,, =0. (12.41)

This is just the geodesic equation (8.5). Conclusion: It follows from Einstein’s field
equations that free particles move along geodesic curves of space time.

12.9 Constants of motion

When we are going to find the motion of particles moving in gravitational fields by
solving the geodesic equation, it is very useful to find quantities that have conserved
values during the motion of the particle. Such quantities are called constants of
motion. They can be found from the geodesic equation. In this connection it is
practical to lower the index w in Eq. (12.41). Hence we write the geodesic equation
in the form

v —
u’ uy;, = 0.

The covariant derivatives of the covariant components are given by Eq. (7.25)
u’ (u,w — Uy F”‘w) =0.

Consequently
uyyu' =T% ugu.
Making use of Eq. (7.8) on the left-hand side we get

duy

o v
I =T uqu”.

Substituting the expression (7.30) for the Christoffel symbols gives

duy 1

dr Egaﬂ (8Buv + &pvp — &uv.p) Uatt”
1
= 5 (gﬂu,v + 8pvpu — g;w,ﬁ) g“ﬂuau". (12.42)

According to Eq. (5.77), g*Pu, = uP, so Eq. (12.42) takes the form

duy

1 .
e =3 (81w + 8pvp — Guup) ulu’. (12.43)

Note that gg,., — guu.p is antisymmetric in B and v, meaning that this quantity
changes sign if B and v are exchanged, gguv — Suup = —(Svup — &Buw)-
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Furthermore, ufu" is symmetric under exchange of B and v, i.e. uPu’ = u'uP.
Multiplying the first and the third term inside the parenthesis in Eq. (12.43) by the
factor uPu® outside the parenthesis, we find

(gﬂu,v - gvu,ﬁ) Wu' = gﬂu,vuﬂ”v - gwﬁ“ﬂ”v-

Exchanging the summation indices 8 and v in the first term, i.e. letting 8 — v and
v — B, we get

(gﬂ;w - gvu,ﬁ) Wu' = gvu,ﬂ”v“ﬂ - gvu,ﬂ”ﬁ“v

= guup (u”uﬂ - uﬂu”) .

Due to the symmetry of 4" in B and v the terms in the parenthesis cancel each
other, and we obtain

(puv — Goup) wPu’ = 0.

The only property we have used in deducing this result is symmetry properties of
the factors gg,,., — gvu,p and uPu’. Thus we have proved the following useful result:
Summation over the indices of the factors in a product between an antisymmetric
and a symmetric quantity always gives zero.

This result implies that only the second term in the parenthesis of Eq. (12.43)
contributes to the summation over 8 and v, ultimately providing

%" = %gﬂw wPu’. (12.44)
This is the form of the geodesic equation we have sought for. It shows that if gg, ;, =
0, then du, /dt = 0, which implies that u, is then a constant of motion. Thus
we have proved the following result: If all the components of the metric tensor are
independent of a coordinate x*, then the covariant component u,, of the four velocity
is a constant along the trajectory of any freely moving particle.

12.10 The conceptual structure of the general theory
of relativity

We are now, finally, able to draw conceptual lines leading to the general theory of
relativity. The diagram, shown in Fig. 12.5, does not show logical derivations. It may
be said to suggest decisive lines of motivation and development.
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Fig. 12.5 Conceptual structure

12.11 General relativity versus Newton’s theory of gravitation

You may have heard sentences such as ‘Einstein has proved that Newton was
wrong’, implying that Newton’s theory of gravity was proved to be false when the
general theory of relativity was accepted as correct. One also sometimes hears that
‘the general theory of relativity generalized Newton’s theory of gravity’.

None of these sentences can withstand criticism based on fundamental insights
reached at in contemporary philosophy of science.

Consider the conceptual structure of Newton’s theory of gravity on the one hand,
and the general theory of relativity on the other hand. The essential concept of
Newton’s theory is that of force. And this concept does not even exist in Einstein’s
theory understood as a theory of space, time and gravitation. The general theory of
relativity is, right from its fundamental principles to its mathematical formulation,
a totally new conception and invention. It does not generalize Newton’s theory. It
replaces it!

But clearly there is a connection between Newtons’s theory of gravitation and
Einstein’s theory of relativity. They are both physical theories, and the region
of applicability of Einstein’s theory encompasses the region of applicability of
Newton’s theory. Furthermore, the fundamental principles of general relativity
is formulated in terms of concepts existing in Newton’s theory, such as space,
time, mass, motion and soforth. However, the new concept of curved spacetime
was introduced in the general theory. This made it possible to construct a theory
in which concepts and priciples that are independent of each other in Newton’s
theory, are intimately related in Einstein’s theory. For example space and time
are united into a four-dimensional spacetime, energy and mass are equivalent,
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the equation of continuity (energy conservation) and the equation of motion of
neutral matter (momentum conservation) follows as a consequence of the field
equations in Einstein’s theory. This means that Einstein’s theory is conceptually
more economical than Newton’s theory.

When we say that Einstein’s theory has a larger region of applicability than
Newton’s theory, we mean that some phenomena that are correctly described by
Einstein’s theory, are either not described at all by Newton’s theory, or Newton’s
theory predicts wrong results for them. One example is that time goes slower further
down in a gravitational field.

Conceptual simplicity and generality are obtained at the cost of introducing a
more complicated mathematical formalism. The distance, as regards the amount of
calculations, from the formulation of the general principles, to the predictions of
physical phenomena, is greater in Einstein’s theory than in Newton’s.

Also the level of abstraction is greater in Einstein’s theory than in Newton’s.
Einstein’s theory is expressed in terms of a formalism—the tensor formulation of
differential geometry—that was developed for geometrical, rather than physical
purposes. The physical meaning of the formalism within Einstein’s theory is
established through our physical interpretation of the theory. For example, four-
dimensional wace, which is a basic geometrical concept in general relativity, is
interpreted as the spacetime of the universe we live in. Time-like geodesic curves are
interpreted as paths of free particles. Interpreting the formalism physically, we can
extract observational predictions from the equations. The predictions of the theories
can then be compared.

Comparing Galilean kinematics and Newton’s theory of gravity with Einstein’s
general theory of relativity, one finds:

1. Einstein’s theory is richer (more general) than Newton’s, i.e. it has a wider range
of applicability than Newton’s theory.

2. In the limit of very weak fields and low velocities, the predictions of Newton’s
and Einstein’s theories are practically identical.

In those cases where the measurable predictions of the two theories are different,
observations have agreed with general relativity. This does not mean that Newton’s
theory is wrong. It sets, however, a limit for the range of applicability of Newton’s
theory.

Today the general theory of relativity is established as a theory of great beauty,
and a wide field of applications. During the latest twenty years, thousands of
research articles have been published, exploring the properties and consequences
of general relativity. Yet, at the very frontier of today’s physics research is the effort
to construct a new unified theory, encompassing both gravitational phenomena,
quantum phenomena, and the fundamental forces. We must expect that a new
conceptual framework has to be constructed. And there will probably continue to
be an increasingly long way, mathematically, from the basic principles of the theory
to its physical predictions. The bonus will be great. We shall reach new depths in
our comprehension of our universe. Still, the insights Einstein gave us will never
fade.
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12.12 Epistemological comment

Is general relativity verified? Is it falsified? Neither. Is it verifiable? Is it falsifiable?
Logically (not pragmatically) speaking: Neither.

From a terminological point of view it must immediately be added that ‘verified’
is taken to be synonymous with ‘shown or proven to be true’, and if a precisely
formulated proposition p is true, then, according to our concept of truth, it cannot
possibly be false, and further research is therefore pointless. A corresponding
terminology is presupposed in relation to the term ‘falsified’. If something is false,
not only unanimously considered to be false, no possibility of truth is present.

It is often held that theories in mathematical physics, for instance general
relativity as a set of propositions, p, are falsifiable, but not verifiable. If p in
these cases were falsifiable through research, ‘p is false’ would have to be a
conclusion, formally correctly derived from true premises. If one or more premises
are conjectural, ‘p is false’ is only hypothetical.

Theories in mathematical physics are very different from generalizations from
observations such as ‘all ravens are black’. Experimental setups are in modern
mathematical physics immensely complex. The relevance of a concrete, dateable
experiment depends upon the adequacy of the experimental design. The assertion
that a particular setup is adequate may be spelled out in a series of propositions;
q,r,s, ..., connected with ‘and’. The conclusion that p is false depends upon the
truth of a series of general propositions, many of them called ‘laws of nature’, for
instance mechanical and optical laws presupposed valid when using a certain set of
machinery and apparatus in general. There is in short no definite end of the series
q,r,s, ..., required as true premises, and even if there were, many members of the
series clearly are propositions which are unverifiable. They are not all shown or
proven to be true. A whole paradigm of practice is involved.

The conclusion ‘p is false’ is therefore in the case of p being a theory of
mathematical physics, unfalsifiable. Or, we do not see any surplus of good reasons
or good consequences from a decision to declare p to have been falsified.

There is nothing regrettable in this lack of falsification. Research involves cases
of confimation and disconfirmation, all more or less open to revision. Sometimes the
series of kinds of disconfirmations are of such a considerable weight that it is absurd
to continue experimenting. The theory is with good reason abandoned, unfalsified.

Einstein admits of wonder. The theories of modern mathematical physics are full
of wonder. Nothing is verified, nothing is falsified. Everything is in a process of
change and improvisation. Lucky are those who are in the middle of the turmoil!



Chapter 13
Some applications of the general theory
of relativity

The first eleven chapters of our text were devoted to the development of the
mathematical structure of Einstein’s theory of relativity. In chapter 12 we discussed
the physical principles of the theory. But there is a third region of inquiry which
the reader may want to enter: the multitude of applications of the general theory.
Applied to the world of stars and galaxies, to our universe at large, new insights
are obtained, and new possibilities of phenomena and objects that we may possibly
discover observationally, are revealed. It is, for instance, a consequence of the theory
that there may exist black holes somewhere.

Unfortunately, the mathematical derivations of the many astonishing and ex-
tremely interesting consequences of the theory, are no less difficult and complex
than what the reader has been through so far. However, by means of a sufficient
number of small steps we can reach what we want. To give you a choice in how to
read this chapter (and the next), we have chosen to place the detailed calculations
of the components of the Ricci curvature tensor for the present applications, in
Appendices B and C.

Einstein devised, however, a method to extract some essential consequences of
the general theory without having to solve the field equations. One can start by
analyzing physical phenomena in the ficticious gravitational fields that appear in
accelerated and rotating reference frames, and then by an application of the principle
of equivalence, deduce that the same effects that one found would also take place
in permanent gravitational fields associated with massive bodies. The calculations
are simpler in such applications of the theory than in those that involve the field
equations. In the next two sections we shall demonstrate the power of this method,
by deducing an expression for a relativistic effect called the gravitational time
dilation.

Of course this effect can also be deduced more rigorously for permanent
gravitational fields. In Sect. (13.4) the expression for the gravitational time dilation
shall be deduced directly from the solution of Einstein’s field equations outside a
massive, spherical body.
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13.1 Rotating reference frame

Mathematically, the simplest and most interesting application of Einstein’s
‘equivalence principle method’ is based upon an analysis of clocks in a rotating
reference frame. In the present section we shall become familiar with such a frame,
which may be thought of as a merry-go-round equipped with measuring rods and
clocks.

We start by introducing an inertial reference frame / in flat spacetime, and
consider clocks on a plane, circular disk. We introduce plane polar coordinates r’
and @’ in I, and a time coordinate ¢’. The time ¢’ is measured on clocks at rest in /.
With these coordinates the infinitesimal radial distance is simply equal to the radial
coordinate differential dr’, and the distance along a circle with radius r’ about the
axis is r’d 6’ (from the definition of 6’ as measured in radians, see Sect. 4.1). Thus
the line element takes the form

ds® = ar'* + r'do’* — c*ar*, (13.1)

Then we introduce a second reference frame, R, which rotates steadily. It may be
thought of as a merry-go-round with the axis of rotation at rest in /. A useful mental
exercise is to imagine that you are an observer at rest in R. Then you can think of
the experience of being positioned on a rotating merry-go-round of glass just above
the inertial disc 7, so that you can compare the readings made with the measuring
equipment in R and that in /. The measuring equipment in R is represented by a
comoving system of plane polar coordinates r and 0 in R, and time coordinate ¢.
We choose a coordinate time ¢ that is per definition measured by coordinate clocks
that are adjusted and synchronized so that they show the same time as the non-
rotating (inertial) clocks, i.e. t = ¢'.

We shall now deduce a coordinate transformation between comoving coordinates
in / and R. Imagine a radial line representing 6 = 6, engraved on the merry-go-
round, and a similar line representing 8’ = 6’ engraved on the non-rotating plane
disc in /. Let P be a point on the line engraved on the rotating disc R of glass.
In R this point has a constant angular coordinate 6 = 6. In [ the radial line on the
glass rotates so that its angular coordinate increases as measured in /. The line in /
coinsides with that in R at a point of time ¢ = 0.

We need to know a quantity called angular velocity. Ordinary velocity is a
measure of how fast a particle moves along a curve. Angular velocity, on the other
hand, is a measure of how fast a body rotates. The angular velocity of R relative to
I, w, is defined as the rate of change of angle of the radial reference line in R as
measured in /,

ae’
dr

w =

) (13.2)

Making use of ¢ = 7 and multiplying each side of the equation by dr we get

do' = wdt.
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Steady rotation means that the angular velocity w is constant. Integration results in
9 = 9/0 +wt,

where 6’ is a constant of integration. The angular coordinate of the radial reference
line in R is constant,
0 = 6.

Since 0’y = 6y we get
0 =0+owt.

This is the coordinate transformation of the angular coordinate between R and /.
Using the same radial coordinate in R and I, we can write the coordinate
transformation between R and I as follows

!

r=r, 0 =0+wt, and ¢

=1.
Differentiation gives

dr =dr, d0'=df +wdt, and df =dt.
Inserting this into Eq. (13.1), we find

ds* = dr* + r? (d6 + wdi)* — c* di?
=dr* + r*d0* + r*w*dr — c*adr
+2r*wdbdt
=dr’ +r*d6o* — (1 — r’e?*/c?) c*df*
+2r*wdbadt. (13.3)

In the following section we shall apply this line element to show that the theory of
relativity implies the existence of, and provides a formula for, a sort of time dilation
that is different from the velocity dependent time dilation of special relativity.

13.2 The gravitational time dilation

In order to discuss a possible position dependence of the rate of time in the rotating
reference frame, we need a position independent reference for the rate of time, i.e. a
set of clocks going equally fast irrespective of their position. This is here represented
by the rate of time as measured on the coordinate clocks, because they go at the same
rate as the non-rotating clocks, and we know that their rate is position independent.
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The rate of time in any reference frame is represented by the proper time t.
According to the definition (5.115) a proper time interval dt is given in terms of the
line element by

dv* = —(1/c%) ds>. (13.4)

Clocks that measure dt are called standard clocks. They are ‘natural clocks’ that are
not adjusted in any way as they are moved to different positions. A standard clock
at a distance r from the axis, has at first been adjusted to go at a correct rate and to
show the correct time (that of the non-rotating clocks) while at the axis. Then it has
been moved slowly (so as not to be slowed down by the special relativistic, velocity
dependent time dilation) to its position. When the clock is at rest in the rotating
reference frame, its path through spacetime has dr = df = 0. In this special case
Egs. (13.3) and (13.4) result in

dv = (1-r0?/c?)" ar, (13.5)

This formula shows that for a given value of dr the value of dt gets less with
increasing value of r. Since the coordinate clocks have a position independent rate,
that of the clock at the axis, this means that the standard clocks are slower the further
they are from the axis. The position dependence of the rate of the standard clocks at
restin R can be measured both by an observer at rest in / and one at rest in R.

As observed from the inertial frame /, a clock at rest in R moves along a circular
path. According to the definition (13.2) of angular velocity it passes over an angle
d®’ = wdt during a time d . The angle is measured in radians (see Sect. 4.1), i.e.
arclength divided by radius. Thus, the distance covered by the clock during a time
df' is d?' = r d9' = rw df'. The velocity of the clock is

v=d{l'/dl =ro. (13.6)

This equation says that the velocity of a particle moving along a circular path is
equal to the radius of the circle times the angular velocity of the particle.

Using Eq. (13.6) we see that the special relativistic formula for the velocity
dependent time dilation, Eq. (5.100) gives just Eq. (13.5). However, as observed
from the rotating frame R the clock is at rest. So the explanations of the fact that the
clocks further away from the axis are slower, are different in the inertial frame and
in the rotating frame.

Einstein’s explanation is as follows. An observer in the rotating reference frame
experiences an acceleration of gravity directed away from the axis. In this field ‘up’
is towards the axis, and ‘down’ away from the axis, since a stone which we drop
in the merry-go-round falls away from the axis. And, said Einstein, a gravitational
field due to the acceleration or rotation of the reference frame is equivalent, in its
action on both material systems, and on the rate of time, to a gravitational field due
to masses. This is a consequence of the principle of equivalence. Thus, the position
dependent rate of standard clocks in a rotating reference frame is interpreted as a
gravitational effect. The conclusion is that the rate of time is slower farther down in
a gravitational field. But as seen from below time goes fast up there.
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Note that in the theory of relativity the concepts ‘up’ and ‘below’ are defined
with respect to the field of acceleration of gravity, experienced locally. This
implies, for example, that ‘upwards’ is oppositely directed in Norway and Australia.
A free particle falls downwards, by definition. In the case of the merry-go-round
‘downwards’ means farther away from the axis, r = 0.

The movements of the orchestra-conductor will appear faster than normal to the
musicians of an orchestra in an abnormally deep grave. And this, in fact, has the
remarkable effect that the orchestra plays at just the correct tempo as seen by the
conductor. But the musicians do not age as fast as the conductor.

In accordance with Einstein’s interpretation the gravitational time dilation can
be expressed in terms of the potential difference between two positions in a
gravitational field. In order to calculate the potential of the gravitational field
experienced in R, we have to find an expression for the acceleration of gravity in this
field. To do this we have to find the acceleration of an observer at rest in R. Such an
observer moves along a circular path with constant velocity, given by Eq. (13.6), i.e.

v=rweg,
where éé, is a tangential unit vector. According to Eq. (4.45) the coordinate basis
vector in this directionis egr = r e 4» Which gives
?) = w 59/.

The acceleration is the rate of change of velocity, @ = dv/dt. Therefore

déy

a=w .
dr

(13.7)
The rate of change of the basis vector €/ along a circular path is given by Eq. (6.17)
with dr = 0. Hence

déy do’ .

=—7r—2¢ = —Frwe,.

ar ar
Inserting this into Eq. (13.7) we get

a=—rw’e,. (13.8)
This equation shows that the acceleration of observers at rest in R is directed radially
towards the centre of the disc. Therefore it is called centripetal acceleration.

The acceleration of gravity, g, felt by an observer in R is equal to his own
acceleration, but oppositely directed, i.e.

g = —& = ra)2 ér_ (13.9)

In Newtonian theory it is called centrifugal acceleration, and one introduces a force
mg which is called the centrifugal force and is reckoned as a fictive force, not a
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real force. In general relativity one does not introduce any fictive force, and the
acceleration field g is reckoned as a genuine gravitational field on line with the
gravitational field at the Earth.

We shall now calculate the potential in the gravitational field given by Eq. (13.9).
This concept was introduced in Sect. (12.4). The position with zero potential can
be chosen freely, and we choose to put the potential equal to zero at the axis of the
merry-go-round. Since the gravitational field points radially outwards from the axis,
all points at the same distance from the axis has the same value of the potential,
equal, by definition, to the work which must be performed to move a unit mass from
the axis to a distance r from the axis.

Work is defined as force times distance. Usually the force depends upon the
position, so it is not possible to calculate the work just by multiplying a certain
value of the force by the distance. The correct method is first to set up an expression
for the work needed to move the body an infinitesimal distance, and then integrate
over the whole distance.

Imagine that a body is moved with constant velocity from the axis to a point at
a distance r from the axis. The force that prevents the body from falling freely
outwards with increasing velocity, must act inwards. This force, per unit mass,
is —g. Thus the change of the potential during a displacement dr is

d¢ = —gdr. (13.10)
Inserting g = r w? from Eq. (13.9) into Eq. (13.10) gives
dp = —w’ rdr.

This is the expression for the change of the potential during an infinitesimal radial
displacement. Integrating from O to r, noting that w is constant and using the rule
(3.33), we find

" 1
¢ = -0’ / rdr=——r’w’.
0 2

This is the gravitational potential in R at a distance r from the axis of rotation.

Substituting 2¢ for —r?w? in Eq. (13.5), and noting that the coordinate clocks in
R have a position independent rate equal to that of standard clocks at the axis, i.e.
dt = d 19, we get

dr = (1+2¢/c%)" dw, (13.11)

where d 1y refers to time as measured on a standard clock at the position with zero
potensial. Equation (13.11) is the equation of the gravitational time dilation.

There are two conceptions of physical relationships concerning gravitational
phenomena, according to the general theory of relativity; the causal and the acausal.
According to the causal conception the position dependent rate of time in a
gravitational field is an effect due to gravity, i.e. gravity causes the gravitational time
dilation. The acausal conception is different. Time measures in spacetime depend
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upon the position of the clock in a gravitational field. At each position there is a
definite rate of time; slower or more rapid. This has to do purely with interrelations
of time itself with no causality involved. Whether one prefers the causal or the
acausal point of view is a matter of taste. The theory does not force any of these
conceptions upon us.

13.3 The Schwarzschild solution

Having arrived at Einstein’s field equations, we may ask: “Which are the solutions
to this set of equations? What are the properties of the spacetimes implied by
these equations?” The field equations in the form (11.34) are very general. They
can describe all sorts of spacetimes: flat (Minkowski) spacetime, curved spacetime
outside massive particles, spacetime inside stars, cosmic spacetimes in which space
expands and so forth.

The solutions of the field equations are the ten functions that make up the
components of the metric tensor. The field equations are a set of six second order
partial differential equations, and generally the ten metric components are functions
of all four spacetime coordinates. Six equations can only determine six of the metric
functions—fortunately. This leaves us the freedom of choosing a coordinate system
appropriate for the spacetime which is to be investigated. Still, the mathematical
problem of solving the field equations is often extremely difficult, and only for
spacetimes with a high degree of symmetry are we able to solve the equations in
terms of elementary functions.

The symmetry of a space means that the properties of the space do not change
under a certain motion. Think of spacetime outside a particle, for example. Imagine
a spherical surface with centre on the particle. No properties of space change if
you move from one point to another arbitrary point on the surface. The metric is
independent of the position on the spherical surface. Then we say that this space is
spherically symmetric. This is the type of spaces we shall consider in this chapter
and the next.

A symmetry has important mathematical consequences. It may simplify enor-
mously the task of solving the field equations. In the first place the symmetry
suggests the type of coordinate system that one should introduce and reduces the
number of unknown metric functions from six, to possibly only one or two, and
secondly it implies that the components of the metric tensor are functions not of all
four spacetime coordinates, but possibly only of one or two of the coordinates.

In this chapter we shall consider spacetime outside a static (i.e. time indepen-
dent), spherically symmetric mass distribution. In the case of flat space one would
then introduce spherical coordinates, as given in Sect. 6.3. From Eq. (6.22) we get
g =286 = 1,800 =€-¢ =r? and g,, = &,-¢, = r’ sin” 6. Hence, the line
element of Euclidean 3-dimensional space, as expressed in spherical coordinates, is

d0? = dr* +r*de? + r? sin’> 0 dy°. (13.12)
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The line element of flat spacetime, with these coordinates, is
ds* = d0* —c?dr,

or
ds* = dr* + r*d60* + r? sin® 0 dp* — c*dr’. (13.13)

We know that there is a gravitational field outside a mass distribution. Spacetime
is curved in such a region. Allowing for this, we make a generalization of the form
(13.3) of the line element, writing

ds* = Vdr® + r2d6* + r?sin® 0 do* — " cdr, (13.14)

where A(r) and v(r) are functions of r only. The letter e = 2.71828... in
Eq. (13.14) has nothing to do with basis vectors (no arrows!), but denotes the basis
of the exponential function (see Ch. 3). Instead of introducing just functions A(r)
and B(r) we use the exponential form, because this simplifies the field equations.
This is just a trick which turns out to be very convenient.

The form (13.14) of the line element preserves the spherical symmetry, and the
time independence. The corresponding components of the metric tensor are

&rr = e/l(r)7

goo =17,
8oy = r2 sin% 0,

gy = —c2e"". (13.15)

In the following we shall leave out the functional dependence on r when we write
the exponential functions e” and e”, but it is of course still understood that these
expressions denote functions of r.

Since we are going to find the geometry of the region outside the mass
distribution, we must solve the field equations (11.35) for vacuum, R, = 0.

Using Eqgs. (B.17), (B.18) and (B.22) in Appendix B, the vacuum field equations
for the static, spherically symmetric space may be written

" 1 1

Ryfe"™ = %—Zu’x’+ Zv’2+ oo, (13.16a)
r
v 1, N
Ry=——t -0 A =242 —0, 13.16b
2 T Ty ( )
and

r r

Rog = 1— (1 3V - EA’) et =0. (13.16¢)
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These differential equations shall now be solved. Inspecting the equations we see
that a simple equation is obtained if the first two of Eqs. (13.16) are added, namely

v+ .
=

0.

Consequently

vV4+AV=@w4+1) =0
Since the derivative of v + A vanishes, this quantity must be equal to a constant,
v + A = b, which is determined from the condition that spacetime is flat infinitely
far from the mass distribution. Then the line element (13.14) is reduced to the form

(13.13) as r — oo. Since e” = 1, this means that v and A must vanish as r — oo.
Consequently » = 0 and

A=—v. (13.17)
Inserting this in Eq. (13.16c), we get
I—(1+rv)e" =0,
or
(I+rv)e' =1, (13.18)
According to the product rule for differentiation, and the chain rule,
(re") =e"+r (") =e" +re’v =(1+rv)e"
Hence Eq. (13.18) can be written as
(re”) =1. (13.19)

Since integration is ‘antiderivation’, the integral of the left-hand side is equal to
r e'. Integrating the right-hand side by means of Eq. (3.33) with p = 0 (because
x? = 1), we get the answer r + C, where C is a constant. Integration of Eq. (13.19)
thus gives

re' =r+0C,
or
Cc
e =1+ (13.20)

The constant C will be determined by considering the Newtonian limit of general
relativity (see Sect. 12.6). In this limit the time-time component of the metric tensor
is written as

g =—c> (1 —hy). (13.21)

The acceleration of gravity is given in terms of the derivative of the metric tensor by
Eq. (12.21). In the present case this equation is reduced to

c2
a= 1. (13.22)
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According to Eq. (12.7) (i.e. Newton’s law of gravitation) the acceleration of gravity
at a distance r outside a spherical body with mass M, is

GM
r2

a=— (13.23)
The minus sign means that the acceleration points in the direction of decreasing r.
Putting the right-hand sides of Eqs. (13.22) and (13.23) equal to each other, and

solving with respect to /1, gives

2GM 1
2 2

hw = —

We see that 4/, is equal to a constant factor times 1/72. Integrating 1/r% by means of
Eq. (3.33), this time with p = —2, (note that 1/r?> = r=2 and r~' = 1/r) leads to

htt =

— + K. (13.24)
cr

The integration constant K is determined by the condition that spacetime is flat
infinitely far from the mass M. This implies that h, — 0 as r — oo, which is
possible only if K = 0. Inserting Eq. (13.24) with K = 0 into Eq. (13.21) results in

_ 2 _2GM
8n = —C 1

c?r

which shows that the constant C in Eq. (13.20) is C = —2GM//c?. According to
Eqgs. (13.15), (13.17) and (13.20)

VRN S (13.25)
grr e, P 1— Z(sz,‘jl . :

Equation (13.25) provides the solution to Einstein’s vacuum field equations
outside a spherical body at rest. Inserting these expressions in the line element
(13.14) we get

dr?
2GM
-2

2W6GMY , .,
—(1- 2 dr*, (13.26)

ds* = +7r2d0? + r* sin® 0 do?

cr

This is the famous Schwarzschild solution of Einstein’s field equations.

The Schwarzschild solution constitutes an expression of the metric of spacetime,
namely a relativistically valid metric of a static, spherically symmetric spacetime,
and thereby also of the gravitational field of the Sun. Since the masses of the planets
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are much less than the mass of the Sun, the Schwarzschild metric represents a
good approximation of the spacetime near the Sun, and is adequate to describe the
gravitational effects in the Solar system.

The quantity

2GM
rs =

> (13.27)
c
is a length which characterizes the mass of a body. It is called the Schwarzschild
radius of the body. Inserting values for Newton’s gravitational constant, the velocity
of light and the mass of the Sun, we get rs=3 km for the Sun. Thus the
Schwarzschild radius of a body with mass M is rs=(M/M)3 km, where Mg, is the
mass of the Sun. The Earth, for example has a Schwarzschild radius equal to 1 cm.
A man with mass 100 kg has a Schwarzschild radius equal to 1.5x 1072 m, which is
very much less that the radius of an atomic nucleus. The physical significance of the
Schwarzschild radius will become clear below, in connection with our discussion of
black holes.

Inserting the expression (13.27) for the Schwarzschild radius into Eq. (13.26),
the Schwarzschild line element takes the form

ar?

1-1s
;

ds* = +7r2d0? +r? sin’> 0 do* — (1 — r—S) ctdr. (13.28)
r

At a large distance from a body compared to its Schwarzschild radius, r > rs, the
line element is approximately equal to Eq. (13.13) which represents flat spacetime as
expressed in spherical coordinates. At the surface of the Earth, for example, rs/r ~
1078, and at the surface of the Sun rg /r = 107>, This means that the gravitational
field is weak in the whole of the Solar system. This is the reason for the success of
Newton’s theory of gravitation as applied to bodies in the Solar system.

The components of the metric tensor are

rs -1
8 = (1 - 7) s (1329&)
go0 =172, (13.29b)
Gpp = 12 sin’ (13.29¢)
and
gy = — (1 _ r—S) 2. (13.29d)
r

This is the Schwarzschild metric.
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13.4 The Pound-Rebka experiment

It is a demonstration of the eminent ability of experimental physicists that they
have managed to measure the gravitational time dilation on the surface of the
Earth in an experiment with maximal extension 22.5 metres. It is remarkable that
this phenomenon was predicted by Einstein 45 years before anybody was able to
measure it. Let us follow Einstein’s simple explanation.

Einstein argued that light waves (moving freely) can neither vanish nor be created
between the emitter and the receiver. So, in a spacetime where nothing changes with
time, the same number of waves per second must arrive at the receiver as are sent
out from the emitter. But, said Einstein, this conclusion is correct only if a tacit
assumption is accepted, namely that the clocks at the emitter and the receiver go
equally fast.

Consider standard clocks spatially at rest in the Schwarzschild spacetime. For
these clocks dr = d6 = d¢ = 0, and Eq. (13.28) is reduced to

ds® = — (1 _ rr—s) 2 dr. (13.30)

According to Eq. (5.115) the proper time interval measured on the standard clocks
is given by
v —ds?

dt = .
c

Combining with Eq. (13.30) leads to

de= J1-"ar. (13.31)
r

Since the Schwarzschild metric is static, the coordinate clocks, showing the time 7,
must be synchronized and adjusted so that they go equally fast independently of
their position. From Eq. (13.31) we can therefore conclude that the less r is, the
slower the standard clocks go. In other words time goes slower farther down in a
gravitational field.

Let us now return to Einstein’s argument. Assume that light is emitted from a
height > 0 to the floor, at 1 = 0. Since the standard clocks at the floor are slower
than those at the height &, one measures that more light waves arrive at the receiver
per second than are emittet at the height 4. Einstein therefore concluded that one
would measure a frequency increase at the receiver; a blue shift of the light.

Pound and Rebka performed the experiment in 1960 with 7 = 22.5 metres.

If rs and R are the Schwarzschild radius and radius of the Earth, respectively, the
proper time interval d ty at the receiver and d tx at the emitter, are given by

r
dtp = 1—E§dt
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and

s
R+h

dtp = 1-— dt.

Since rs = 1 cm and R = 6300 km we have x = rs/R = 1.5 x 107°. We
can therefore, with sufficient accuracy, use the approximation v1 —x ~ 1 — x/2,
obtained by retaining the first two terms of the MacLaurin series, Eq. (2.84), of the
function f(x) = +/1 — x. Accordingly

1 rs
dtg ~ (1 — EE) dt, (13.32a)
1 rs
dig~|1—= dt, 13.32b
e ( 2R+ h) ( )

where dt is the period of the light as measured with the coordinate clocks, and dtg
and dtg are the periods as measured with standard clocks at the receiver and the
emitter, respecively.

The ‘blue shift’ of the light is denoted by z and defined by

d’L’E —d’L’R

<
d‘L’R

Inserting the expressions (13.32), and approximating the denominator by dt (which
is permissible since the numerator is very small, and the denominator is very close

to dt), we get,
Nrs 1 1 _rs R+h—R
CO\RTR+KH) T2\ R®Rw )

Ignoring & in the denominator in the last expression, we finally arrive at

Inserting the numerical quantities we get the following prediction z = 2.5 x 1071,
The measurements showed agreement with this prediction.

13.5 The Hafele-Keating experiment

The special relativistic velocity dependent time dilation and the general relativistic
(gravitational) position dependent time dilation are physically different. But some-
times they occur together, for example when one travels in an airplane.
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In the Hafele—Keating experiment both types of time dilations were demonstrated
by travelling around the Earth with caesium clocks in Jumbo-jets, comparing the
travelling time as measured with these clocks, with that measured on a similar clock
positioned at the airport. We shall calculate what general relativity predicts for this
experiment.

According to Eq. (5.115) the proper time, i.e. the time shown by an ordinary
clock, is given in terms of the line element by

V—ds?

Cc

dt =

Inserting the general expression for the line element from Eq. (5.120) leads to

1
dt = —\/—guwdxtdx".
¢

Specializing to the diagonal metric of orthogonal coordinate systems, we get

1
dr = -V (—gpup)(dxr)2.

The summation over u goes over the four values 1, 2, 3, and 4. In this sum with
four terms we write first the term with © = 4, and then use Einstein’s summation
convention with ¢ = i for the remaining three terms. The fourth coordinate is
x* = ct (see Sect. 12.6). Thus

1 .
dt = — \/—g44c2dt2 — gii(dx)?*/c
¢

1 dxi\?
= Z\/_g44 Czdl‘2 — gii (Ti) dl‘z.

The components of the velocity of a clock are

dx’
dr’

Vi=

SO

1 }
dt = —\/—g44 c? dt2 — gii (V’)2 dtz.
C

Putting the common factor dr* outside the square root, it comes out as dr, and
similarly, putting the factor of 1/c inside the square root, it becomes 1/c2. We then
have

i\ 2
dt = \|—gu — gi (V ) dt. (13.33)



13.5 The Hafele—Keating experiment 271

According to Eq. (4.7) the square of the velocity is the scalar product of the
velocity vector by itself
V=99
From Eq. (1.26) we get o
V=g A

In the case of a diagonal metric this is reduced to
VZ — gii(V")z‘

Inserting this into Eq. (13.33) leads to

V2
dv = \|—gu — — dr. (13.34)
C

We now assume that spacetime outside the Earth is adequately modelled by the
Schwarzschild solution of Einstein’s field equations, Eq. (13.28). Thus [compare
Eqgs. (12.14) and (12.16)]

rs
gu =g/ == (1- ). (13.35)
where rg is the Schwarzschild radius of the Earth, defined in Eq. (13.27) with M
representing the mass of the Earth in the present case. Substituting Eq. (13.35) into

Eq. (13.34) gives
rs V2
dt =4/1—-———du. (13.36)
roc

This is an expression of the time dilation that includes both the velocity dependent
time dilation of special relativity and the position dependent (gravitational) time
dilation of general relativity. In the case of a vanishing gravitational field, rs = 0,
and Eq. (5.117) is recovered, and in the case of a clock at rest, v = 0, Eq. (13.31) is
recovered.

In the Hafele—Keating experiment one clock was at rest at the airport and one
was travelling around the Earth, once westwards and once eastwards. Let 2 be the
angular velocity of the Earth due to its daily rotation, and R the radius of the Earth.
A point on the Equator moves with angular velocity 2 along a circle with radius R.
According to Eq. (13.2) a satellite at rest relative to the surface of the Earth at a
height & above the surface, has a velocity (R + /&) Q. Using the Galilean law of
velocity addition, valid for velocities small compared to the velocity of light, an
airplane flying with velocity u relative to the surface of the Earth at a height /, has
a velocity

v=(R+h)Q+ u.
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Inserting this, and the expression (13.27), with M equal to the mass of the Earth and
r = R + h, into Eq. (13.36), we get

GM [(R+h)Q +u)?
dr =4/1— - :
! \/ (R+h)c 2 a

The clock at the airport has 7 = u = 0, which gives

GM R*Q?

In order to simplify the calculation we' now assume that the airplanes travel

with constant velocity and height just above the Equator. Choosing positive « in the
same direction that the Earth rotates in, # > 0 for a clock travelling eastwards and
u < 0 for a clock travelling westwards. The difference between the travelling times
as measured by the air-borne clocks, and as measured by the clock at the airport is

A
At — Aty = (—T—l) A1y
A‘L’()

(R+h) c2 ¢
= -1 Al’o.
|_ GM _ R2Q?
Rc? c?

\/ | _GM__ [(Reh et
2

The travelling time is about 24 hours, i.e. Aty = 1.2 x 10° seconds. The predicted
time differences are,

(AT - A‘L'O)eastwarcls =-12x 10_7 S
and

(AT — ATp)westwards = 2.5 x 1077 s,

for travelling eastwards and westwards, respectively. These predictions were con-
firmed by the measurements with about 20% accuracy.

! Actually, Hafele and Keating integrated the equations numerically along the travelling routes, but
the result we obtain by our analytical calculation is sufficiently accurate to agree with the results
of the numerical calculations within the measuring uncertainty.
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13.6 Mercury’s perihelion precession

The planets move along elliptic orbits around the Sun. However the ellipses are
not exactly closed. The point closest to the Sun gets a small displacement for
each round. The closest point to the Sun is called perihelion, and the mentioned
displacement is called the precession of the perihelion.

We shall consider the motion of the innermost planet Mercury. For this planet the
precession is 532”per cen-tury = 532 seconds of arc per century. Of this 489" per
century could be accounted for by Newton’s theory of gravitation. It is an effect of
the other planets upon Mercury. However 43" per century could not be accounted
for by Newton’s theory.

Mercury moves along a geodesic curve in the Schwarzschild spacetime outside
the Sun. We choose the orientation of the coordinate system so that Mercury moves
in the equatorial plane, = /2. The spacetime is static and spherically symmetric.
Thus, the metric is independent of the coordinates # and ¢. It follows from the
geodesic equation in the form (12.44) that u, and u, are constants of motion of
Mercury.

The most efficient way of solving the geodesic equation, is to insert the constants
of motion into the four velocity identity (12.38), which in the present case takes the
form

Wy + uluy + u'u, = —c2. (13.37)

Here u” = dr/dt. Since the metric is diagonal, we get from Egs. (5.75) and (5.76),

ur = gt (13.38a)

u’ = g%u, = uy/gyp. (13.38b)
and

u' = u/gn. (13.38¢)

Inserting this into Eq. (13.37) leads to
dr\? u? u?
grr (_) + _(p + -~ = _CZ.
dt 8o 8

Substituting the components of the Schwarzschild metric (13.29), we get

(@rjde) uy W,
l—rs/r 12 1—rg/r ’

or

1—rs/r _1—rs/r_ r2

@r/dv? _ (Cz . _é)
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Multiplying by 1 — rg/r leads to

dr\? r u?
(E) = - (1 _ 73) (c2 + r—‘z") . (13.39)

In this equation the radial coordinate of Mercury is to be thought of as a function
of time. The rather complicated differential equation is somewhat simplified if we
express it in terms of the function y = 1/r instead of r. Writing r = 1/y = y~!
and differentiating, we find

d_dy™) _ ,dy _ 1dy
dt ~ dr 7 d¢ " y2dt’
Inserting this into Eq. (13.39) we get
1 (dy 2
= (E) = —(1—rsy) (c2 +ul yz) . (13.40)

This equation of motion can be solved to find y and thereby r as a function of time.
However, what interests us here is the shape of the trajectory followed by Mercury.
We would like to know r as a function of the angle ¢ rather than as a function of
time. Therefore we introduce ¢ as a variable instead of t. The connection between
¢ and 7 is given by Eq. (13.38b). Noting that u¥ = d¢/dt and g,, = r’ in the
equatorial plane, we get

do u
L = %% = — = — = .
dt g Uy Zov ) up y

Thus, differentiation with respect to ¢ and differentiation with respect to 7 is
connected by

d , d

=" g
or

dy_,

dt do

Inserting this into the left-hand side of Eq. (13.40), and multiplying out the right
hand side, we obtain

dv\2
ui (ﬁ) =utz—cz+c2rsy—u;y2+u;rsy3.
This equation can be simplified by differentiating each term,

dy dzy ay ay dy
2 2 2 2 2
u(p__z Crs__zbt(py_+3u¢rsy —.
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Dividing by 2 ué (dy/dg) leads to

d? ctr 3r
ay s _y_,__SyZ.

do? =2 ul
Adding y to each side we obtain the usual form of the equation of the trajectory of
Mercury

d?y ) ctrg 3
d—(pz+y=a+by, a=%, and b=§7‘s. (13.41)

From observations we know that the trajectory of Mercury is a nearly circular
ellipse. Thus we are not interested in finding the general solution of Eq. (13.41).
We want to find a nearly circular solution. Putting d?y/d¢? = 0in Eq. (13.41), we
find that it has a solution representing a circle with inverse radius y( given by

yo=a+byj. (13.42)

With a small deviation from circular motion, the value of y is changed from y, by
a small amount, which we denote by y, i.e. y; < yg. Inserting y = y¢ + y; into
Eq. (13.41) we get
d*yi
de?

+yot+yi=a+bo+y)=a+byl+2byoyi+byi.

Subtracting Eq. (13.42) gives

d2y1
do?

+y1=2byoy1 +byi.

Since y; < Yo, we ignore the last term, and arrive at the equation

d’yi
—_— ~2b .
g +n Yo V1

Subtracting 2 b y, y; on each side of the equation we get

d2y1
do?

+(1—=2byy)y =0.

Defining

f=+v1=2byy. (13.43)
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and reintroducing the equality sign, this equation takes the form

d2y1

0 + f2y; =0. (13.44)

‘We shall show that the function

Y1 = € yo cos(fo), (13.45)

where € is a constant, is a solution of Eq. (13.44). Differentiation by means of
Eq. (4.25) and the chain rule (2.31) we get
dy

do = —€yo [ sin(f ).

One more differentiation gives

dz)?l 2
g2 =—eb f~ cos(f ¢).

Inserting y; from Eq. (13.45) leads to

d 2)7 1 2 ~
d_(pz =—f"y.
which for y; = y, is equivalent to Eq. (13.44).
We have then found the solution for the trajectory of Mercury

Yy =Yoo+ y1=Yyo [l +¢€cos(f o)
or

l:l [1 4+ € cos(f @)].
r ro

For f = 1, i.e. b = 0, this expression describes an elliptic orbit which is fixed
in space, since the minimum value of r would then always take place at the
same position, when the angle has increased by ¢ = 2. This corresponds to the
Newtonian case. However, taking the relativistic effect into account, Mercury has to
move an angle ¢ so that f ¢ =2, before it returns to the point closest to the Sun,
i.e. it must move an angle ¢ =25/ f. Thus, Mercury moves not 27 between each
time it passes the point where it is closest to the Sun, but 27 plus an extra angle

Ap =2 (1/f —1). (13.46)
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This is the precession angle per orbit. Replacing f in Eq. (13.46) by the expression
(13.43) gives

Ap =21 ( (13.47)

1
— 1.
RV 1-2b Yo
Here b yop <« 1. We can then use the two first terms of the MacLaurin series

(Eq. (2.84) with x2=2b yo) for this expression,

1
\/1—2by()

Substituting this into Eq. (13.47) we arrive at

~ 14 b yo.

A =21 b yy.
Replacing b by (3/2)rs (see Eq. (13.41)) finally gives
A = 3mrs yo = 37(rs/ro)

per revolution. Here rg is the Schwarzschild radius of the Sun, and ry is the radius
of the nearly circular orbit of Mercury. Inserting numerical values gives Agp =
5.03 x 1077 radians per revolution. This corresponds to a precession of 43" per
century!

13.7 Gravitational deflection of light

One of the first predictions Einstein made from his general theory of relativity was
that light grazing the Sun should be deflected by 1.75”. In this section we shall see
how this prediction can be calculated.

In Sect. 5.12 we saw that a light-like interval has ds*> = 0. This means that in the
case of light, Eq. (13.37) is replaced by

w'uy + ufuy + u'u, = 0.

Consequently the equation of the trajectory of photons in the Schwarzschild
spacetime is obtained by putting a = 0 in Eq. (13.41),

d2
d_(p); Ty =byx (13.48)
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Fig. 13.1 Light ray deflected by the Sun

We are not interested in the general solution of this equation. Light grazing the Sun
is deflected by a very small amount. The trajectory of this light is nearly a straight
line. From Fig. 13.1 is seen that

cosp = R/r,
or, denoting the y function representing this line by yo,

1
_ 8¢ (13.49)

NO=T TR

This function has the same form as y; of Eq. (13.45). Accordingly it fulfills an
equation of the same form as Eq. (13.44),
d’yo
de?

+ y0 = 0. (13.50)

Since we seek a solution close to the straight line, we can write

y=yo+yi, ¥ <)o (13.51)
Inserting this into Eq. (13.48) leads to

d?yo n d?y,

do? T dg +yo+yi=>b o+ ).

Subtracting Eq. (13.50) we get

d2y1

d—(/)z+)’1=b(J’0+Y1)2‘

At the right-hand side we can neglect y; compared to yo,
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Substituting the expression (13.49) we have the final form of the equation of the
photon trajectory’s deviation from a straight line

dz)’l

b
qor + ¥y = — cos’ . (13.52)

=R2

Due to the appearance of the function cos? ¢ at the right-hand side of this equation,
we guess that a particular solution may be written

y1 = A+ B cos’ g, (13.53)

where A and B are constants, which we shall try to determine so that the expression
(13.53) do satisfy Eq. (13.52). Differentiating the expression (13.53) by means of
the chain rule (2.31) with y = u?, u = cosg and x = ¢, using Eq. (2.36) with
n = 2 and Eq. (4.25), we obtain

—— = —2B cos ¢ sing. (13.54)

From the product rule (2.24) together with the rules (4.24) and (4.25) we get

dz
d—yzl =-2B (— sin? ¢ + cos’ (p) =2B (sin2 @ — cos? (p) . (13.55)
2

According to Eq. (4.11) sin> ¢ = 1 — cos? ¢. Inserting this into Eq. (13.55) leads to

dz
d_y21 =2B (1 -2 cos’¢) = 2B — 4B cos’ ¢. (13.56)
%

Substituting the expressions (13.53) and (13.56) into Eq. (13.52) we find

b
2B —4Bcos’p + A+ Bcos’p = = cos’ ¢

or
b
2B + A—3Bcos’ ¢ = ® cos’ .
In order that the left-hand and right-hand sides of this equation shall indeed be

identical for all values of ¢, the constants A and B must obey the following
equations

b
ZB+A:0 and _3B:ﬁ
Thus
2b d b
= n .
3R2 3R?2
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Inserting these values of A and B into Eq. (13.53) gives

i (2 —cos’ ). (13.57)

T 3R

Inserting the expressions (13.49) and (13.57) into Eq. (13.51), we get the equation
of the trajectory of the light grazing the Sun

cos ¢ b
y=Yyo+y1 = T+W (2—005290)
or
1 cosg b )
PR AR Gee)

Denoting the value of ¢ in the limit # — oo for g, We get

cos b
0= R‘p"" + 57 (2—cos’ occ) (13.58)

Since the deflection is very small for light grazing the Sun, we know that 9o & 7/2.
Therefore we write poo = /2 + Ag@, where Ap < 1. Using Eq. (4.19) we find

COS Poo = cos(/2 + Agp)
= cos(7r/2) cos Ap — sin(;r/2) sin Ag. (13.59)

Since cos(r/2) = 0 and sin(7r/2) = 1, Eq. (13.59) reduces to
COS Poo = —Ag.
Equation (13.58) then takes the form

_ B0 b o A
0= R +3R2[2 (Ag)?].

Because A¢ < 1, we can neglect the term (Ag)? inside the parenthesis. This
leads to
2b

Ap = =2,
Y= 3R

From Fig. 13.1 is seen that the deflection of the light is twice this angle

4b
Ay = 2A¢p = IR
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Inserting the value b = (3/2)rs from Eq. (13.41) we finally arrive at

27‘5
Aoy = ?
Here rg is the Schwarzschild radius of the Sun, and R is the actual radius of the Sun.
Inserting numerical values gives Agy = 8.48 x 107° radians = 1.75".

13.8 Black holes

We shall now investigate the spacetime outside a massive spherical body with mass
M by considering light cones in the Schwarzschild spacetime. It will be sufficient
for our purposes to find the intersections of the light cones by the (r,?)-plane. In
other words we shall investigate radially moving photons, such that d0 = dgp = 0
along the photon worldlines. Furthermore, since photons follow null geodesics, their
equations of motion are obtained by putting ds> = 0 in the Schwarzschild line
element, Eq. (13.26). This gives

l—di/r - (1_%) ¢ dr

Taking the square root of each side, and solving with respect to the coordinate
velocity dr/dt of the (outgoing, +, and ingoing, —) photons we get

dr rs
= (1 r) c. (13.60)
This is the coordinate velocity of light. The velocities of ingoing and outgoing
photons are the same. As r increases the velocity approaches the special-relativistic
value, c. But for r = rg we getdr/dt = 0. As shown by Eq. (13.60) both the ingoing
and outgoing coordinate velocity of light vanish at r = rg, and the light cone of a
source at this position degenerates to a line. This astonishing conclusion is due to
the choice of coordinates, and indicates that the chosen coordinates are not suitable
for describing the propagation of light in the vicinity of the Schwarzschild radius.

We want to use coordinates such that the light cone is open for ingoing light
passing the Schwarzschild radius. A suitable time coordinate for this purpose
is called ‘the ingoing Eddington—Finkelstein coordinate’. It can be found by
integrating the equation of motion of a radially ingoing light signal, Eq. (13.60),
with the minus sign. This equation may be written as

1

———dr=—cdt.
1—rs/r " ¢
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Multiplying the numerator and the denominator by r we get

r

dr = —c dt. (13.61)
r —rs

In order to facilitate integration of this equation we write
r rs

=1+ .
r —rs r—rs

Both these terms can be integrated by means of the rules in chapter 3. Putting rg in
front of the integral, since it is constant, we get

1
/(l—i- s )dr:/dr—i-rs/
r —rs r—rs

Thus, Eq. (13.61) can be integrated term by term as follows

1
/ dr + s / ——dr=— / . (13.62)
— 7S

In the first term on the left-hand side we note that the integral of dr is r, in the second
term we use the rule (3.55) with u = r —rg (note that u’ = (r —rs)’ = r’ = 1 since
the derivative of the constant rg is zero), and at the right-hand side of Eq. (13.62)
we note that the integral of dt is 7. Including a constant of integration K, we find

dr.

r+rshnjr—rg| = —ct + K. (13.63)

We now introduce a new time coordinate 7 such that the equation of motion of a
radially moving ingoing photon takes the very simple form

r=-—ct. (13.64)

In the (r,7) coordinate system the coordinate velocity of an ingoing photon is
constant and equal to c. Putting K = 0, Eq. (13.63) can be written

r=—ct—rsln|r—rg|.

Comparing with Eq. (13.64) we see that the new time coordinate is related to the
old one by

F=1+4 S —rl. (13.65)
C

This is the announced ‘ingoing Eddington—Finkelstein time coordinate’. Note that
the clocks that measure the new time coordinate 7 are not synchronized with the
clocks that measure the Schwarzschild time coordinate, since 7 depends upon the
position even if # = constant. The physical significance of this new time coordinate
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is that the velocity of radially ingoing light in the Schwarzschild spacetime is
constant and equal to ¢ as measured with these clocks (see Eq. (13.64)).

In order to find how an outgoing photon moves in the (r, 7) system we first have
to express the line element of the Schwarzschild solution, Eq. (13.26), by these
coordinates. This means that we must calculate df expressed by df. We therefore
solve Eq. (13.65) with respect to ¢ (and multiply, for later convenience, each term
by ¢),

ct=ct—rsIn|r—rsl.

Differentiation gives

dr=cdft — rs/r

cdt=cdt — —dr.
r—rs 1—rs/r

Inserting this into the Schwarzschild line element in the form (13.26), using the rule

(@a+b)?=a’>+2ab+b*>witha =dfand b = _lr_sfsc/rr dr, results in
ds* = d_rz + r? (d6? + sin® 0 dp?) — (1 — r_s) c?dr
1—rs/r r
ar’ 2
= — do? in? 0 dy?
l—rs/r+r( 4+ sin (p)
2
rs _ rs/l‘
_(1-= di — S0
( r)(c t 1—rs/rdr)
dr? 2 2 2 2 I's
_m—i-r (d6” + sin ngo)—(l—T)
) ) 2
X czdt_z——rs/r cdtdr+—(rs/r) 2dr2
L—rs/r (I—rs/r)
:d—;'z+r2 (d92+sin29d<p2)—(l—r—s) c2dr?
1—rs/r r
rs - (rs/r)°
2—cdtd —= g
T

We now collect the terms with dr* and get (applying 1 — x> = (1 —x) (1 + x), with
X =rs/r)

1 dr? — (rS/r)2 dr2=1_(rS/r)2d}’2
1—]‘5/7‘ l—l‘s/r l—rs/l‘

(A =rs/r)(A+r1s/r) 5 IS\ ;2

_ S dr _(l—i-r)dr.
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With the new time coordinate 7, the line element of the Schwarschild spacetime now
takes the form of

ds* = (1+22) d? + 12 (d6 + sin® 0. dg?) + 2 c di dr

- (1 — rr—s) 2 di. (13.66)

Like Eq. (13.26) this line element represents the Schwarzschild spacetime, but now
as expressed in terms of the new time coordinate 7. The line element reduces to
Eq. (13.13) representing flat spacetime, in the limit r — oo, i.e. infinitely far from
the mass M, or if rg = 0, i.e. if the mass M is removed.

We shall now consider photons moving along a radial coordinate axis. Photons
follow null geodesic curves (see Ch. 5). Therefore the path of a photon is found by
putting ds*> = 0. Since we are considering photons moving radially, df = dg = 0
in the line element (13.66). This results in

(1+rr—s) dr2+2rr—scdt_dr—(1—rr—s) 2di? = 0.

Dividing by ¢? d1?

2
(1+7) (j_;t_) p2B (1) 2

This is a quadratic equation for dr/(c df), i.e. it has the form

O=ax>+bx+d, (13.67a)
dr
=, 13.67b
. cdt ( )
rs
a=1+2=, (13.67¢)
r
2
p=""5 (13.67d)
r
rs
d= (1 - 7). (13.67¢)

In order to solve this equation with respect to x we shall first show how one can
construct a quadratic term from the two terms containing x. Multiplying (13.67a)
by 4a, we get

4a’>x*4abx +4ad =0.
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We now use a trick that sometimes leads to a simplification, that of adding and
subtracting a suitably chosen term. In the present case the term b is chosen in order
to write the resulting first three terms as one quadratic term. Adding and subtracting
b? leads to

4a* x> +4abx+b*+4ad—-b*>=0

or
Qax+b)Y’+4ad —b*=0

where we have used the rule u?> 4+ 2uv + v> = (u + v)%. Then
Qax+b)?=b*>—4ab.

Taking the square root

2ax +b=+vb2—4ad

or

2ax =—-b+Vb2—4ad.

Dividing each side by 2 a, we get the solution of Eq. (13.67a)

dar b+ b~ 4ad

— = =X
cdt 2a

(13.68)

Now look at the term under the square root of Eq. (13.68). Inserting the expressions
fora, b, and d we get

b2—4ad=4r—r252+4<1+rr—s) (1—2—5). (13.69)

Using the rule (« + v)(u —v) = u?> —v?* withu = 1 and v = rg/r gives
2

(1+2) (1-2)=1-3

Equation (13.69) then takes the form of
4 2 r2
P —dad = —5 +4 (1——52) — 4.
r r

Inserting this and the expressions for a and b into Eq. (13.68) and multiplying with
¢ leads to

dr —2rs/r 2 +1+rs/r

d_t_=2(1+rs/r)c_ 14+rs/r ¢
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Trajectory of transmitter

e

horizon

b e e e

Rg

Fig. 13.2 Light cones of a transmitter crossing the horizon of a black hole

Thus, the coordinate velocities of ingoing and outgoing photons, respectively, are

dr .
ai). = ¢

dr 1—rs/r
— =——c. 13.70
(dt)om 1+rs/rc ( )

Note that rs = 0 gives (j—f_)om = ¢, showing that in this case the velocity of ingoing
and outgoing light is the same. This is quite natural since spacetime is flat in this
case, making the special theory of relativity govern the scene. Equation (13.70)
shows that the velocity of an ingoing photon is constant and equal to ¢, in accordance
with the defining equation (13.64). On the other hand, the velocity of an outgoing
photon varies with the radial position. This is different from in the special theory.
The light cones corresponding to Eq. (13.70) are drawn in Fig. 13.2.

The properties of the drawing follow from the expressions for the photon
velocities in Eq. (13.70). The inward cut of the light cone with the plane of the
paper, which represents an ingoing photon, makes an angle equal to 45 degrees with
the time axis, independently of the position of the emitter, since the inward velocity
of light is equal to ¢ at all distances in these coordinates. However, the outward
velocity, given by the second expression in Eq. (13.70) is less that ¢. So the outward
cut of the cone with the plane of the paper, makes an angle with the time axis which
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is less than 45 degrees. But in the limit of large r, i.e. far away from the mass
distribution, the velocity of outgoing photons approach ¢, and the cut makes nearly
45 degrees with the time axis. At the Schwarzschild radius rg the numerator in the
second expression in Eq. (13.70) is equal to zero. This means that even a photon that
is emitted radially outwards from this position, will not be able to move outwards.
Thus the outward cut of the light cone is parallel to the time axis for an emitter
at this position. In the case of an emitter inside the Schwarzschil radius, r < rsg,
the velocity of the outgoing photon is negative. This means that a photon emitted
outwards from such a position will nevertheless move inwards. This is shown in the
figure where the whole light cone leans inwards for r < rs.

From the discussion in Sect. 5.13 we know that all particles of the observed
universe move so that their worldlines are inside the light cones. This means that
whatever superb rockets you may possess, if your rocket ship comes inside the
Schwarzschild radius there is no way out. And worse still, you cannot even send a
message for help out of the region inside the Schwarzschild radius. No information
can reach from this region to the outside world. Therefore the spherical surface with
radius r = rg is called the Schwarzschild horizon. Since, as seen from the outside,
no light comes from the inside, this region is called a black hole.

Black holes, that may exist according to the general theory of relativity, have
probably been located in double star systems, with one invisible star seemingly
disturbing the appearance of the visible star. The most prominent candidate is
Cygnus X-1.

If the existence of black holes is confirmed beyond any reasonable doubt, there
is ample reason to enjoy a feeling of excitement. One would then experience one of
those seldom events that make vivid what Einstein meant when he said: “The most
incomprehensible thing about the world is that it is comprehensible”. For the man
who invented the theory it would be astonishing. Nothing like black holes was
thought of when the theory was constructed. It was a question of making a theory of
space, time and gravitation in accordance with the most natural (for Einstein) and
general principles: the principle of relativity, the principle of the local constancy
of the velocity of light and the principle of equivalence. Eighty years of work by
hundreds of physicists has proved that the theory has a vast manifold of interesting
physical consequences. And it may be felt like a wonder: nature seems to obey the
theory!

Still Einstein felt like Newton: to be playing along the shore of an ocean of
ignorance. He did not rest, but went on along the shore, venturing further out into
the ocean than most others. His goal was no less than a unified theory of the known
fundamental forces, from which all the observable properties of the material world
could be deduced. During the last thirty years of his life he searched for such a
theory. Physicists are still searching for it.



Chapter 14
Relativistic universe models

Cosmology may be said to be that part of physical science that aims at giving
a description of the universe at large. Such descriptions are called universe
models, and are mathematical models interpreted physically. They are based upon
observations and physical laws. These laws represent our deepest insights as to the
behaviour of the material world. They are the main contents of the physical theories.

By giving the laws mathematical formulations, one may calculate from the laws
how the matter behaves under given circumstances, and thus predict the behaviour of
different types of models. Comparing such predictions with observations, one may
obtain an idea of the validity and scope of our conceptions concerning the universe.

14.1 Observations

During the last 60 years or so one has observed processes in parts of the universe
by means of large optical telescopes, radio telescopes and spaceborn observation
equipment, in particular the Hubble telescope. These observations have suggested
several simple properties of the universe as a whole.

Distances. The velocity of light in vacuum is approximately ¢ = 300, 000 km/s,
which corresponds to travelling 7 times around the Earth per second. The light uses
8 minutes from the Sun to the Earth. The distance that light travels during one year
is called a light year, and is equal to 9.46 x 10'> m. Our nearest star, Alpha Centauri,
is about 4 light years away from us. This is much farther away than it sounds when
we use light year as distance unit. Imagine a spacecraft travelling with a velocity
100 km/s. The spacecraft would pass the Sun after 20 days and nights, but it would
take 12,000 years before the spacecraft arrives at the nearest star.

Our planetary system is positioned in an arm of a spiral galaxy, the Milky Way,
about 100.000 light years from its centre. There are about 10!! stars in our galaxy,
and there are presumably a similar number of galaxies in the universe. Our nearest
galaxy is the Andromeda galaxy. It is about 2.5 x 10° light years from the Milky
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Fig. 14.1 Frequency distribution of cosmic background radiation

Way to the Andromeda galaxy. The galaxies are collected in clusters of galaxies.
The mean distance between the galaxy clusters is about 108 light years. The farthest
objects observed have a distance about 10'° light years from us.

Large scale homogeneity. Observations seem to indicate that over distances larger
than about 10° light years the material of the universe is uniformly distributed. On
such a scale the universe is usually assumed to be homogeneous. The validity of
this assumption has, however, been discussed recently on the basis on new three-
dimensional surveys of the distribution of matter in the universe.

Isotropy. The distribution of galaxies seems to be equal in all directions on a large
scale, i.e. the distribution is isotropic. The isotropy of the universe on a large scale
has been confirmed by observations of the cosmic background radiation. Its spectral
distribution corresponds to black body radiation with a temperature 2.726 K (see
Fig. 14.1).

Expansion. From 1925 to 1930 Edwin Hubble observed the spectral lines in the
light from galaxies far away. He also estimated the distances to the galaxies by
astrophysical methods. The result of these investigations is that the spectral lines
corresponding to known atomic transitions are displaced towards red, i.e. towards
longer wavelengths, and that this red shift is proportional to the distances of the
galaxies. This is called Hubble’s law.

The simplest explanation of this ‘law’ is that it is due to the Doppler effect,
indicating that the galaxies are moving away from us, and faster the farther away
they are (see Fig. 14.2). Thus, the universe expands.

According to Newtonian kinematics such an expansion of at least a universe of
finite extension implies the existence of a centre from which everything expands.
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Fig. 14.2 Doppler effect

This is not so according to the conceptions of the general theory of relativity. As we
have seen, space is curved according to this theory. The two-dimensional analogue
of a finite isotropic universe is an expanding spherical surface. The galaxies may be
imagined as dots painted on the surface. The distances between the dots increase
due to the expansion. But the dots do not move on the surface. Neither is there any
centre on the surface. Similarly there is no centre in the homogeneous relativistic
universe models.

14.2 Homogeneous and isotropic universe models

In 1922 the Russian meteorologist A. Friedmann found a set of solutions
to Einstein’s field equations, describing expanding universes. The models of
Friedmann are similar in all directions and at all points, i.e. they are isotropic
and homogeneous. This seems to be in agreement with the observed properties of
our universe on a large scale. It should be noted, however, that there is an ongoing
discussion concerning a possible hierarchical structure of the distribution of matter
on a large scale.

The homogeneous and isotropic universe models of Friedmann are the the
simplest relativistic models. They have dominated the large scale modelling of the
universe for the last seventy years. In order to become familiar with the research
region termed relativistic cosmology, one should at first make oneself familiar with
the Friedmann models. And we shall restrict ourselves to these models in the present
text.

However, the models have important limitations as to their ability to explain ob-
served properties of the universe, such as homogeneity and isotropy, because of the
following circumstance: If one wants to explain a certain observed property of the
universe, one has to investigate sufficiently general theoretical models, which permit
the universe not to have this property. More general models have been constructed,
but they are mathematically more complicated than the ones we shall consider.
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Fig. 14.3 Spherical surface

The curvature of space at a certain moment in a Friedmann model, is constant.
In order to gradually develop some visual notions about spaces with constant
curvature, we shall start by considering a two-dimensional space with constant
positive curvature, a spherical surface (see Fig. 14.3).

The line element of flat three-dimensional space, as expressed in a spherical
coordinate system, is given in Eq. (13.12). Let us consider a spherical surface with
radius R. On this surface the line element is reduced to

do? = R*d6* + R? sin® 6 dy>. (14.1)

Here 6 represents the latitude with 6 = 0 at the North Pole, and ¢ represents the
longitude. The position of a point on the spherical surface is given by specifying 0
and ¢. We now replace the coordinate 6 by a radial coordinate r representing the
distance from the axis passing through the poles to a point on the spherical surface.
From Fig. 14.3 and the formula (4.1a) for the sinus of an angle, follows

sinf =r/R (14.2)

or
r = R sinf. (14.3)

Note that r is a function of 6 alone since R is constant. Differentiation by means of
Eq. (4.24), then gives

j—g = R cos 0
or
I _ Rap,

cos 6
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Squaring, and exchanging the left-hand and right-hand sides, we have

dr?
R*d0* = : 14.4
cos2f (149
From Eq. (4.11) follows
cos’f = 1 — sin® . (14.5)
Substituting the expression (14.2) for sin 8 in Eq. (14.5) leads to
cos’f =1—r?/R%.
Inserting this into Eq. (14.4) we get
ar?
R*d0? = ————. 14.6
1—-r2/R? (14.6)

Inserting the right-hand side of Eq. (14.6) and the left-hand side of Eq. (14.3) into
Eq. (14.1) leads to

ar?
STooR
In chapter 9, after Eq. (9.12), we found that the internal curvature of a spherical

surface with radius R is k = 1/R?. Thus the line element on the spherical surface
may be written as

do? +r2dg?.

do? +r2dy?. (14.7)

1—kr?
This form of the line element is obviously valid also for a plane, which has k = 0,
since Eq. (14.7) then reduces to the line element (5.105) of an Euclidean plane, as
expressed in plane polar coordinates. It is also valid for surfaces of constant negative
curvature, k < 0.

The line element (13.12) is a generalization of flat three-dimensional space of
the line element (5.105) for a (two-dimensional) plane. Similarly, the generalization
of (14.7) to a line element, which we call d b2, for three-dimensional space with
constant curvature, is

ar’

d* = ———
1—kr?

+r2d6* + r* sin® 0 dg?. (14.8)
We shall consider an expanding universe. Our coordinate system is chosen such that
the galaxies have fixed spatial coordinates. The quantity db, which appears squared
in Eq. (14.8), is the coordinate distance between the origin of the coordinate system
and a point with coordinates (dr, d6, dp). The physical distance is

dl = a(t)db,
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where the function a(t) is a so-called scale factor, which tells us how the distance
to a galaxy changes with time. No direction is preferred. Assuming that the function
a(t) increases with time, there is an isotropic expansion.

In order to write the full line element for spacetime, we must specify what sort
of coordinate clocks is to be used. Choosing a coordinate time that is equal to the
time as measured by standard clocks carried by the galaxies, the line element of
spacetime takes the form

2
ds® = a*(1) (1 d; S+ r7do* 417 sin29d<p2)
—kr

—c2dr>. (14.9)

This line element describes the geometric and kinematical properties of isotropic
and (spatially) homogeneous universe models. It is called the Robertson—Walker
line element. The components of the metric tensor are

a*(t)
& =T (14.10a)
goo = a’(t)r’, (14.10b)
8y = a*(t) r* sin® 0, (14.10c)
gn = —c*. (14.10d)

14.3 Einstein’s gravitational field equations for homogeneous
and isotropic world models

The non-vanishing Christoffel symbols for the Robertson—Walker line element have
been calculated in Appendix C. In particular I'";, = 0, and this will prove to be of
physical significance. In Sect. 12.8 we showed that free particles follow geodesic
curves in spacetime. Consider a free particle instantaneously at rest. From the
isotropy of the models follows that the particle has no acceleration in the 6 and
¢ directions. The r component of the geodesic equation (8.7) is

d?r dx® dxP
—+TI7, — =0, 14.11
dr? + P dr dr ( )

where t is the proper time of the particle. Since the particle is instantaneously at
rest, the only non vanishing component of the four velocity (see Eq. (10.21)) is the
time component df/dz. Thus Eq. (14.11) is reduced to

d2r+Fr dt 2_0
dt? "\ar) —
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Since I'";; = 0 it follows that

d*r

dr?
Thus the particle has no acceleration. Therefore it will remain at rest in the
coordinate system. This implies that particles with constant spatial coordinates are
freely moving. We can therefore identify such ‘particles’ with the galaxies. This
means that our coordinate system is comoving with the galaxies. Thus the scale
factor a(t) tells how the galaxies move. According to our conceptions the movement
is not imagined as a movement through space, but signifies the expansion of space
itself.

We now come to the field equations. Inserting the expression (12.31) for

Einstein’s gravitational constant into Eq. (11.34), the field equations take the form

8 G 1
R/w = C_4 (T/Lv — Eg/w T) .

The left-hand side, i.e. the needed components of the Ricci tensor have been
calculated in Appendix C. The right-hand side of the field equations involves
the energy-momentum tensor of the matter. We assume that the cosmic matter
is homogeneous, and may be represented as a perfect fluid. This means that the
only physical properties of the matter that we take account of, is its motion, the
density and the pressure or tension. Viscosity, for example, is neglected. The energy-
momentum tensor of a perfect fluid is given in Eq. (10.35). Lowering the indices we
obtain

Tu = (0 + p/c?) uptt, + p guo-

According to the definition (10.21) the contravariant components of the four velocity
are

_dxt

=

Since the galaxies are at rest in the coordinate system, only the time component is
non-vanishing

ut

p_dt
dt
According to our choice of coordinate time, d¢ = dt, which leads to

u

Lowering the index, we get
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We need the following components of the energy-momentum tensor
T = (/0+ p/CZ) (“t)2 +p8&n = (,0+ p/CZ) ct —pC2
=pct+pct—pct=pct
Tog = p gos = pa’r’.

The sum of the mixed components with equal indices of the energy-momentum
tensor is

T=T' = (p+p/?)uu, + p8",.

where we have used Eq. (5.79) in the last term. From Eqs. (10.21) and (10.22) follow
that the square of the four velocity is

ulu, = —c2.
According to Eq. (11.2) §#,, = 4. Therefore
T=(p+p/c?) (—?)+dp=—p—p+dp=—pc?+3p.

We can now calculate the quantities at the right-hand side of the field equations

1 1
Ty — ETgtt = pc4— E (_Pcz+3p) (_62)

=pct—=pct+=pc =1,oc4+—pc2
2 2 2 ’
giving
1 1 5 5
Ttt__Tgtt—_(pC +3P)c
2 2
1
=3 (p+3p/c?) c. (14.12)
Furthermore

1 1
ng— Engg = pazrz—i(—pcz-i-?:p) a2r2
1 3
=pa’r’+ Epczazrz— Epazrz,

which leads to
Too— =T goo = = (pc* — p) a’r?

(p—p/c?) a*r*c’. (14.13)

N = N =
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From Egs. (C.15) and (14.12) we deduce the (z,¢) component of the field
equations

i 8nG 1
32 3 ,
- 5 o+ p/c?) ¢t
or
47G
ai = —”T (p+3p/c?) @ (14.14)

and from Eqs. (C.20) and (14.13) we find the (6, 8) component of the field equations

2 8rG 1
2—2 ch 2(,0 p/c?) a*r? c?,

(ad+24a*+2kc?)

or
ai +2a*+2kc®>=4nG (,o—p/cz) a’. (14.15)

Equations (14.14) and (14.15) are the famous Friedmann equations for isotropic and
homogeneous universe models with perfect fluids.

14.4 Physical properties of the Friedmann models

Let us first find which type of expansion these models have. For this purpose we
consider models with Euclidean spatial geometry, k = 0. From the line element
(14.9) follows that for such models the physical distance from the origin to a galaxy
with radial coordinate r is

L=a(t)r.

The expansion velocity of the galaxy is

v=i=ar=2ar=20
a a
From this follows that the velocity of the galaxy is proportional to the distance. As
mentioned above, this is called Hubble’s law. His many observations of the spectral
lines in the light from the galaxies suggested the hypothesis that there exists such a
law. More recent observations support this.
Defining the so-called Hubble factor,

H=-, (14.16)

[If
Q|

the Hubble law can be written as

v=HU{.

Note that for most universe models the Hubble factor is a function of the time.
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The present value H of the Hubble factor, as determined from observations, is

30 km/s
106 Ly.’

Hy = (14.17)
where £ is a factor with a value limited by observations to the interval 0.5 < 7 < 1.
The magnitude of the allowed values for & represents the uncertainty in the value
of the Hubble factor. The most recent measurements (1997) point at &z = 0,6 as
the most probable value of /. The expression (14.17) means that if the distance
is increased by one million light years, then the expansion velocity increases by A
times 30 km/s.

Our neighbouring galaxy, the Andromeda galaxy, is about 2.5 x 10°Ly. away
from us. At this distance the expansion velocity (with # = 1) is about 75km/s.
This does not mean that the Andromeda galaxy moves with this velocity away from
us. The galaxies are like the particles of a gigantic gas. The velocity due to the
expansion is superposed upon a velocity due to a motion of the galaxies in arbitrary
directions. The average velocity of this motion is about 500 km/s. Thus, only for
galaxies at distances greater than about 17 million light years, will the expansion
dominate over the arbitrary motions.

We shall now consider some consequences of the field equations. Equation
(14.14) confirms the results (12.34) and (12.36) that we found earlier in the weak
field approximation, namely that the relativistic gravitational mass density is p, =
o + 3 p/c?, implying that pressure or tension contributes to the gravitational field.
For ordinary matter p/c> < p, which gives d < 0. This means that the expansion
is slowed down, due to attractive gravity. The expansion was faster at earlier times.

The observed fact that the universe expands means that the particles in the cosmic
matter were closer before than they are now. Going far enough back in time we
come to a point of time where the cosmic matter was very closely packed. The
density was extremely large. This is a state that cannot be properly described by
means of the general theory of relativity. At a sufficiently early time we reach the
limit of applicability of the general theory of relativity, and we need a quantum
theory of gravity to describe the first moment. If we call the point of time with
infinite density, as predicted by general relativity, for ¢ = 0, then the region of
applicability of general relativity is later than the so-called Planck time, fpjanck =
VG#h/c3 = 107% s, where # is Planck’s constant. This initial moment in the history
of the universe is called the Big Bang.

The time from the Big Bang to now is called the age of the universe. Due mainly
to the uncertainty in the value of the Hubble factor, it is uncertain by about a factor
of two. If the expansion velocity was constant, the present age of the universe would
be equal to the inverse of the present value of the Hubble factor. This age is called
the Hubble age, and is denoted by 7y,. Due to attractive gravity the expansion is
slowed down. The universe expanded faster before. Thus the age of the universe is
less that the Hubble age, which has a value

th, = 1/Ho = (10/ h) 10° years. (14.18)

Inserting 4 = 0.6 we find the most probable value ¢g, = 16.7 x 10° years.
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Subtracting Eq. (14.14) from Eq. (14.15) we get

47G 3 3
22 4 2%k = 22 3p+p——p+—p a’,
3 c? c?

which leads to

87G
"7 oal, (14.19)

a4+ ke =

Introducing the Hubble factor from Eq. (14.16), and dividing each side of
Eq. (14.19) by a?, the latter equation takes the form of

H> + =3 (14.20)

A universe with Euclidean spatial geometry, k = 0, is said to have critical mass
density p.it. Hence

87 G
=" p,
3 Pt
or
L (14.21)
Peit = 872G ‘

Inserting the present value, Hj, of the Hubble factor, we get the present value of the
critical mass density, (pcrit)o = 2h? 10726 kg/m3. Inserting & = 0.6 gives (ociit)o =
7,2 x 107%" kg/m®, which corresponds to about 4 hydrogen atoms per cubic metre.
One often introduces a dimensionless parameter representing the cosmic mass
density, namely the ratio of the actual cosmic mass density and the critical mass

density,
2 = p/ perit. (14.22)

Dividing Eq. (14.20) by H? and using Eq. (14.22) and that ¢ = Ha, we find

or
Q—1=-——. (14.23)
a

When we know a as a function of the time, this equation will tell whether the mass
density approaches the critical density or not.

An equation for the rate of change of the cosmic mass density can be deduced
from the field equations as follows. Differentiating Eq. (14.19) we get

2ai = g (pa*+2paa).
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From this equation and Eq. (14.14) follows
3p ..o .
—(p+ F)aa =pa”+2paa.

Subtracting 2pad, dividing by a* and then exchanging the left and right-hand sides
we get

p=-3 (p n %) g (14.24)

This is the equation for the rate of change of density of the cosmic fluid.

There are different sorts of perfect fluid characterized by different relationships
between pressure and density. Such a relationship is usually called the equation
of state of the cosmic fluid. In all the fluids we shall consider the pressure is
proportional to the density, i.e.

p=@B-1np, (14.25)

where f is a constant characterizing the fluid. Inserting Eq. (14.25) into Eq. (14.24)
we get

p=—ﬂp+w—wnﬂ§=—sw+ﬂp—mg

a
=-3Bp—.

a

Dividing each side of this equation by p we have
P_ 354
P a
Integrating each side of this equation by means of the rule (3.55) we find
Inp=-381Ina+ K,

where K is a constant. Using the rule (3.51) and adding 3 8 Ina = In(a*#) on each
side, we can write

Inp+ In(@*?) = K.
Using the rule (3.49) we get

In(pa*’) = K =In Kg
where Kg is a new constant. Hence
pa*t = K. (14.26)

This equation shows how the density of different sorts of cosmic fluids depends
upon the scale factor.
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We can now calculate how the the scale factor of a universe with critical
mass density depends upon the time. Inserting Eq. (14.21), with H = a/a, into
Eq. (14.26) we find

Multiplying each side by 877 G/3, taking the square root of each side of the resulting
equation, and making use of

we get

Inserting @ = da/dt and multiplying by dt

a?fVda = ,lgdt.

Integrating, with the initial condition a(0) = 0, we have

a 3/3_1 87TG !
a:? da = | —— d
0 3 Jo

Using the rule (3.34) we get

1 87 G

Y .
afl = — .
(3/2) 3
Multiplying by (3/2) B leads to

83 ,3 87rG Kyt

Squaring, and using that (a*/?#)?> = ¢*#, we find
= —,82 Kﬂz =618’ G Kgt’. (14.27)
Dividing the exponent by 38 we finally conclude

a = (6nB2GKp) ¥ 1. (14.28)

This equation shows how the scale factor varies with time for a universe with critical
mass density.
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The expression (14.28) can be used to calculate the actual age of the universe in
terms of its Hubble age. Differentiation of Eq. (14.28) gives

L2 2 2a
1 = 2ap’GKp) ¥ — 1% = .
@ = QnpGKp)" 35 3p1
Therefore
H—d— 2
T a 3Bt

Multiplying by ¢ and dividing by H gives

. 21
T 38 H

Inserting values for the present time

o 2 1

"7 38 H,
or

2
t() = % tHo-

This is the sought expression. For a dust dominated universe, 8 = 1, and

2
th = g th,.- (14.29)

Inserting the value of the Hubble age from Eq. (14.18) into Eq. (14.29) gives the
age of a dust dominated universe—more commonly known as ‘matter dominated’—
with critical mass density

to = (6.7/ h) x 10° years.
For i = 0.6 we find the most probable age for this universe model

to = 11.2 x 10 years. (14.30)

14.5 The matter and radiation dominated periods

Observations reveal that the visible matter in the universe consists mainly of very
cold and thin hydrogen and helium gas for which the pressure divided by c? is
negligibly small compared to the density. Thus we can, as a good approximation,
put p = 0, or B = 1 in the equation of state of the cosmic matter during such
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a matter dominated period. Matter with vanishing pressure is called dust. Putting
B = 1in Eq. (14.26) we get

pdusta3 = (pdust)o 613, (14.31)

where the index O denotes ‘value at the present age of the universe’. The mass
density estimated from visible matter in the universe is between 0.5% and 5% of
the critical density. However, the dynamics of the galaxies and clusters of galaxies
indicates that there may be large amounts of dark matter in the universe. We
therefore assume that the density of the cosmic matter is equal to the critical density.

In 1965 it was discovered that the universe is filled by black body radiation.
Recent measurements with the COBE satellite has shown that the radiation has a
temperature of 7 = 2.726K. According to the Stefan-Boltzmann radiation law,
black body radiation with this temperature has a mass density (prnd)o = 4,5 X
1073 kg/m®.

The equation of state of black body radiation is

_ l Prad
3 2

)

p

which corresponds to 8 = 4 /3. Inserting this in Eq. (14.26) we get
4 _ 4
Pradd = (,Orad)O a()- (1432)

Thinking of earlier periods in the history of the universe, the value of the scale
factor was less, and the densities of the dust and the radiation were greater. Since
Prad a* = constant for radiation, and pdusla3 = constant for dust, the density of
the radiation increases faster when we go backwards in time than the density of the
dust. Thus at a certain point of time, 7.4 the mass density of the radiation was equal
to that of the dust. Before this point of time the mass density of the radiation was
greater than that of the dust, i.e. the universe was radiation dominated. In order to
find the point of time for the transition from the radiation dominated era to the dust
dominated era, we divide Eq. (14.32) by (14.31), which leads to

Prad (prad)O
a = ap.
Pdust (deSt) 0

At the point of time f.q the densities prq and pquse were equal, from which follows

(Prad)o @
(pdusl) 0 ’

a(teq) =

Inserting the values for (pra)o and (pgust)o we find

alteg) ~ 10~ aq. (14.33)



304 14 Relativistic universe models

In order to proceed in the calculation of the point of time 7,y we must find the scale
factor as function of time in a dust dominated universe with critical mass density.
This is given in Eq. (14.28) with 8 = 1,

a = (6xGK,)"? 1?3, (14.34)
The value of the scale factor at the present point of time is
ao = (6x1GK)' 12", (14.35)

Dividing Eq. (14.34) by Eq. (14.35) gives

at) = ao (;—0)2/3.

The value of the scale factor at the transition from the radiation dominated to the
dust dominated era, is

P 2/3
alteg) = ao (t—(j) . (14.36)

From Eqgs. (14.33 and (14.36) follow

Multiplying the exponent by 3/2 on each side of this equation we get
o _ (107432 = 107
Iy
or
teg = 107 1.

Inserting the value (14.30) gives fq = 1.12 x 10* years.
Before this time the universe was radiation dominated. Inserting 8 = 4/3 in
Eq. (14.28) results in

a = /(67(4/3)2G K43Vt = /(32/3)7G Kys3 V1. (14.37)

At the end of the radiation dominated era the scale factor was

deq = /(32/3) TG K43 \/teq- (14.38)

Dividing Eq. (14.37) by Eq. (14.38) we get

a = Qg /1] teq-
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Differentiating we find the expansion velocity during the radiation dominated era
. I aeq 1
a== —.
2 g Nt

Thus the expansion velocity was extremely large at early times.
The model we have considered up to now is called the standard model of the
universe. This model is not without problems!

(14.39)

14.6 Problems faced by the standard model of the universe

There are problems of two different types. The first type concerns properties of
the models that are in accordance with observations, but which are not explained
as a consequence of the dynamics of the model. They are put into the model in
an ad hoc way as initial conditions. Among such properties are the isotropy, the
homogeneity, the amount of matter in the universe and the expansion of the model.
The second type of problems are those where the properties of the model are in
conflict with observations. The most prominent problem of this type concerns the
age of the universe.

As an illustration we shall consider the problem concerned with the amount of
matter in the universe. Let us introduce a parameter

1

€=Q ) (14.40)
as a measure of the quantity of matter in the universe, where 2 is defined in
Eq. (14.22). ¢ < 0if p < pgit, € = 0if p = peir and € > 0 if p > pgie. If
the actual density is very much less than the critical density, € has a large negative
value, and if the density is very much larger than the critical density, € has a large
positive value. If the absolute value of € is not very large, the density of the cosmic
matter is close to the critical density. Measurements indicate that € ~ —100, which
is a small number in this connection.

We shall calculate an initial value for e, i.e. the value of € at the Planck time,
fpranck = 107%'s, according to the standard model. The time variation of 2 — 1 is
given in Eq. (14.23). The scale factor during the matter dominated period is given
by Eq. (14.34). Differentiation gives

aoct™3,

where o< denotes ‘proportional to’. Inserting this into Eq. (14.23) we find the time
variation of € — 1 during the matter dominated period,

Q—1 1?3,
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The time variation of 2 — 1 during the radiation dominated period follows by
inserting Eq. (14.39) into Eq. (14.23), which results in

Q—1ot. (14.41)

These expressions show that the value of €2 is departing from 1 with increasing time.
Thus, the value of 2 was closer to 1 at earlier times. In our calculation of the value
of € at the Planck time we can therefore put 2 ~ 1. Hence

1 Q-1
e=Q-—— =" ~Q*—1
Q Q
=@Q+D)Q@-1)~2(Q-1). (14.42)

Since €2 — 1 is proportional to ¢ during the radiation dominated period, then € is so
too, according to Eqs. (14.41) and (14.42). We can then write

€Planck ~ 6eq(l‘Planck/l‘eq)y (1443)

where the index “Planck” denotes ‘value at the Planck time’ and “eq” ’value at
the transition time from radiation dominated to matter dominated’. Similarly, since
Q — 1 is proportional to #>/? during the matter dominated period, we can write

€eq N €0 (teq/[0)2/3-

Inserting this expression into Eq. (14.43) leads to

2/3

~ Iplanck teq _ TPlanck _ Iplanck
€Planck & — 2/3 0= 1573 273 €0 = T3 23 €0
a1 leg " Iy leq Iy

Being here only interested in an order of magnitude estimate, we insert fpjanck =
10795, 1q = 10*years &~ 10''s, 70 = 10" years a~ 10'7s, ¢ = —100 and get
€planck = —107°¢. Thus, at the Planck time the mass density of the universe was
extremely close to the critical density. Such an extremely accurate adjustment of an
initial condition of the universe cannot be explained within the frame of the standard
model of the universe.

In Sect. 14.7 of this book we shall see how new ideas that appeared at about 1980
offer a solution to this problem, and also offer an explanation of why the universe
expands.

14.7 Inflationary cosmology

According to quantum field theory, it is impossible to remove all the energy from a

region. Vacuum is not a space without energy, but with the least possible energy.
Some of the great advances in our understanding of the behaviour of the material

universe are associated with advents of new unified theories of different phenomena.
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For example, at the beginning of the eighteenth century, electrical, magnetic and
optical phenomena were not related to each other. However, between 1850 and
1860 J. C. Maxwell managed to develop a unified theory of these phenomena,
and an understanding that light is electromagnetic waves. This type of theoretical
advance has proceeded. More than a hundred years later a Nobel prize was given
for the detection of particles that were predicted by a unified theory for the weak
nuclear force and the electromagnetic force. One has also constructed so-called
Grand Unified Theories (GUTs) for the ‘electroweak’ force and the strong nuclear
force. Even if these theories lack experimental confirmation, we shall explore one
consequence of them, that is of great significance for the evolution of the universe.

Let us first calculate the time dependence of the critical cosmic energy density.
Inserting (14.27) into (14.26) gives

Perit 6”G:82Kﬂ ZZ = Kﬁ

or
67rG,32 ,ocmt2 =1.

This means that
Prit < 1/12, (14.44)

which shows that the critical density was large at earlier times. Since the actual
density was then very close to the critical density the actual density of the cosmic
energy was very large in the beginning.

According to the Stefan—Boltzmann radiation law

Praa o< T4 (14.45)
Equations (14.44) and (14.45) imply that
T* o 1/12

or

T o« 1/+/1.

This equation shows that the cosmic background radiation had a very high temper-
ature in the beginning. Also it shows that the temperature of the cosmic background
radiation can be used as a cosmic clock.

The GUTSs combined with the model of a universe that was extremely hot in the
beginning, has as a consequence that the evolution of the universe may have been
dominated by vacuum energy at its first moment, before the universe was 10733 s
old.

Several experiments have been performed to measure the velocity of the Earth
through the vacuum, the most wellknown one being the Michelson—Morley experi-
ment of 1887. None of these experiments managed to measure such a velocity. It is
consistent with the results of these experiments to assume that the vacuum energy
is of such a nature that it is impossible to measure velocity relative to the vacuum.



308 14 Relativistic universe models

We shall now deduce some very interesting consequences of this assumption
within the context of homogeneous and isotropic universe models. The only physical
properties attributed to the vacuum energy are density and pressure or tension. This
means that we can describe the vacuum as a perfect fluid. Since the vacuum has no
velocity, the components of its energy-momentum tensor in an arbitrarily moving
local inertial frame are those given in Eq. (10.27),

TV =ps% and T"=np. (14.46)

Because it is impossible to measure velocity relative to the vacuum fluid, all
components of the energy-momentum tensor must be invariant, i.e. unchanged,
under arbitrary Lorentz transformations. We shall apply this requirement to the
components 7 and T" under a Lorentz transformation in the x direction. Denoting
the transformed components by 7% and 7*" we then have

T =T7% and T'" =T" (14.47)
Using the second of Egs. (5.80) the transformed components are

' ox’ dox’

” ot’ ot
T = T and T'" =
oxH dxY

T 9xH 9xV

T, (14.48)

The elements of the transformation matrix is obtained by differentiating the
coordinates x” and ¢’ in Eq. (5.98),

ox’ ox’ ot’ yv ot’

— =y, —=—-yy, —=-—-"= d —=y. 14.49

o " T A R P ( )
Performing the summations over u and v in Eq. (14.48), and keeping only non-
vanishing terms, we get

vy oxoxh o oxT ox’
T = — _
ax 0x ar ot
b 0t' o ot’ o’
Tt v _ T o Tﬂ.
dx ox Jat dt

Inserting the expressions (14.49) leads to
T YETX 4 p2 2 T
T = (P22 ) T 4+ 2 T, (14.50)
From Egs. (14.47) and (14.50), we have
T = Y275 4 22 T,
T" = (P22 /e T + y2 T
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or

(= DTY ==y T,

2= T" = —(y*v*/chH T™. (14.51)
Dividing these equations by each other, we get

T = Txx ¢

Hence
(Txx)2 — (Ttt)Z C4.

From Eq. (14.51) follows that 7** and T" have opposite signs. Thus, we take the
negative root, which results in

T = _T1 6’2.
Inserting 7" = p and T" = p from Eq. (14.46) we obtain
p=—pc’. (14.52)

This equation shows that the ‘vacuum fluid’ is in a state of tension. Inserting
Eq. (14.52) in Eq. (12.36) for the gravitational mass density, we get

Py = —2p.

We are lead to the conclusion that the gravitational mass density of vacuum is
negative, which means that the gravity of vacuum is repulsive.

We here see the remarkable strength of the general theory of relativity. From the
assumption that we cannot measure velocity relative to vacuum, the theory implies
that vacuum acts upon itself with repulsive gravitation. A vacuum dominated region
will have a tendency to explode!

The equation of state (14.52) is just Eq. (14.25) with 8 = 0. Inserting § = 0
into Eq. (14.26), and putting a° = 1, we get p = K, showing that the vacuum
energy has constant energy density during the expansion of the universe. There will
be more and more vacuum energy during the expansion.

From Eq. (14.23) follows that since the expansion velocity & increases during the
accelerated expansion in a vacuum dominated period, the value of €2 approaches 1,
i.e. the density of the cosmic vacuum fluid approaches the critical density. The time
dependence of the scale factor during the early vacuum dominated period, which is
called the inflationary era, may thus be found by integrating Eq. (14.19) with k = 0
and p = py,c = constant,

., 8nG 2

a” = Tpvaca .
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Taking the square root and dividing by a we get

/ 87 G

g T e (14.53)

a 3
Note that the left-hand side is the Hubble factor of this universe model. Since the
right-hand side is constant, it follows that the Hubble factor of a vacuum dominated
universe model with critical density, is constant. We denote this constant by Hy,c,
that is

8nG

Hvac = T Pvac- (1454)

The transition into a vacuum dominated period happened at a point of time when
the energy density of the radiation became less than a certain energy density pgut
determined by the GUTs. Thus, according to Eq. (14.54) the Hubble factor during
the inflationary era is

8nG

3

The point of time #; when the universe entered the inflationary era, is taken to be the
Hubble age associated with the GUT-energy density, i.e.

Hvac =

PGUT-

= 1/Hvac‘

The GUTs give t; = 107,
Equation (14.53) can now be written

Using that @ = da/dt, and multiplying by d¢ we thus get

d 1
“9_ "
a hn

Integrating this equation by means of the rule (3.54) with the initial condition
a(ty) = ay, we find

1 t
Ina—Ina=—(t—1H)=—-—1.
=7 (t—1) [l
Applying the rule (3.50) this equation can be written as

In—=——1. (14.55)
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Using that y = Inx & x = e”, where e is the base of the natural logarithm, ans
substituting a@ for x and Hy,t for y, we see that Eq. (14.55) is equivalent to the
equation

aja; = elt/m—1
or

a=a;e!/M
Thus the universe has exponential expansion during the inflationary era.

Differentiation gives
a=(ar/n)e"/M,

Inserting this into Eq. (14.23) leads to
Q—1=k(ct/ay)?e A/m=1,

This equation shows that 2 approaches 1 exponentially fast during the inflationary
era.

At the beginning of the inflationary era the d ensity of the cosmic matter may
have differed very much from the critical density. If, for example, a; < c 11, then

Q) =1+k(cti/a)? ~k(cti/a)* > 1,

which means that the cosmic mass density was much larger than the critical density
at the initial moment of the inflationary era. The value of the parameter € introduced
in Eq. (14.40), was then, with good accuracy

e(t) ~ Q) ~k(cti/a))* (14.56)

However, as noted above, the density approached the critical density very fast during
the inflationary era, and at the end of this era we can use the approximation (14.42).
According to the GUTSs the inflationary era lasted until 7, = 10733 s, and the value
of € at the end of the inflationary era was

€(t)) ~ 2 [Qt)—1]=2k(c tl/al)e‘z[(fz/ﬂ)—l],
Using Eq. (14.56) and inserting the values of #; and 7, we get
€(tz) =2€(t)) e (/MW =2 5 e e(r)) ~ 107%(1)).

This shows that during the inflationary era the density became extremely close to
the critical density. Hence one of the predictions of the inflationary universe models,
is that the universe should still have a cosmic mass density close to the critical
density. Thus the inflationary cosmology solves the problem, which was unsolved
in standard model, of explaining the observed fact that the mass density is close
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to the critical density. In fact it seems to solve it too well. Observations indicate
a cosmic mass density which is close to, but less than the critical mass density,
0.2 < @ < 0.4. This is less than the mass density predicted by the inflationary
models.

One final triumph of the inflationary models should be mentioned, though. We
now seem to know the answer to the question: Why does the universe expand?
The inflationary cosmological models offer the following answer: Once upon a time
vacuum energy filled the universe, it had negative mass, and repulsive gravitation
forced the universe to expand.



Appendix A
The Laplacian in a spherical coordinate system

In order to be able to deduce the most important physical consequences from the
Poisson equation (12.5), which represents the Newtonian limit of Einstein’s field
equations, we must know the form of the Laplacian in a spherical coordinate system.
This is because most important applications of any theory of gravitation involve
physical systems, for example planets, stars, black holes and the whole universe,
that are spherically symmetric. Of course it is possible to find the wanted form of
the Laplacian in collections of mathematical formulae. However, in the spirit of the
rest of this book, we here offer a detailed deduction.

The Laplace operator, or more commonly called the Laplacian, is defined as the
divergence of the gradient, i.e.

V2 = div grad. (A.1)

We shall find an expression of the Laplacian valid in an arbitrary orthogonal
coordinate system, and then specialize to a spherical coordinate system. In order
to calculate the Laplacian in an orthogonal coordinate system, we must first find
expressions for the gradient and the divergence in such coordinate systems. We start
with the gradient.

An operator is something which acts upon a function and changes it in a
prescribed way. The gradient operator acts upon a scalar function by differentiating
it, and gives out a vector called the gradient of the function. In an arbitrary
coordinate system the gradient operator is defined as a vector with covariant
components

0

P = . A2
o (A2)

According to the rule (5.77) for raising an index, the contravariant components are

. , .0
Vi=giv, =g/ —. (A3)
8§ Vji=2§8 O
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We shall need to know the expression for the gradient in the class of coor-
dinate systems with orthogonal coordinate axes. Such coordinate systems have
diagonal metric tensors, i.e. g; =0 for i # j. In this case the only non-vanishing
contravariant components of the metric tensor are given in terms of the covariant
components by Eq. (5.75).

g =1/g.
Inserting this into Eq. (A.3) gives
. 1 9
Vi= ——.
g,‘,‘ 3)('

Next we shall find an expression for the divergence in terms of ordinary partial
derivatives and the components of the metric tensor in an orthogonal coordinate
system. The divergence is given as a covariant derivative in Eq. (10.3). Inserting the
expression (7.15) for the covariant derivative into Eq. (10.3), leads to

- JF! ki
divF = o + F Ty, (A.4)
xl

Hence, we must find an expression for the Christoffel symbols Iy in an
orthogonal coordinate system with a diagonal metric tensor. For this purpose we

use Eq. (7.30) with t = i, v = k, A = i, which for a diagonal metric tensor
reduces to
' 1 (0gi | 0gik  0gik
'y, = — — - — —— .
ki 2 gii (axk + ox! ox!

The last two terms cancel each other, so we are left with

; 1 0gi
ri,, = — 8% A.5
ki 2 gii axk ( )
Inserting this into Eq. (A.4) we get
— 8Fl 1 8g,~,~
divF = — + FF— =2, A6
v ax! + 2 gii ox! (A-6)
We now define
g = g11 8283 (A7)

Differentiation g by means of the product rule (2.22) we first put u = g1 g2 and
v = g33 and get

3_8 _ 9(g11 8&2)

a
e T R (A8)

xk
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Using the product rule once more, we have

0(g11 82) _ 9gn n 92
oxk | gxk SR TN G

Inserting this into Eq. (A.8) gives

dg g

o8 + 982 I 0g33
Ik ok 822833 T 811 5 833 T 811822 o

Multiplying the numerators and the denominators of the terms at the right-hand side
by g11, 22, and g33, respectively, reordering, and using Eq. (A.7), we get

g g 0gi g 0g»n g 0gx

axk gy axk gy axk T gy dxk

Using Einstein’s summation convention this may be written as

g _ & g
axk gy dxk

Dividing by g and exhanging the left-hand and right-hand sides, we get

1 dgi 1 dg

gi 0xk g axk’
Inserting this into Eq. (A.6) we get

- QF! 1 dg
divF = — + FF — =, A9

1v dxk + 2g Oxk (A-9)
In order to simplify this expression, we differentiate ,/g. Using the rule (2.36) with
n = 1/2 and the chain rule (2.31), we obtain

oy/g 9 1 _,9 _ 1 g

axk  oxk 2% axk 2. /g axk’
Dividing by /g gives
1 d/g 1 0g
Jg oxk T 2g axk’
Thus, Eq. (A.9) can be written as
OF' N

divF = — + F

—. A.10
ax! J& 0x! ( )
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Using, once more, the product rule for differentiation, we get

LW?F’)_L( 3ii+pf3£)

Jg oo g oxi oxi
OF! .19
ox! f 8x’
Comparing with Eq. (A.10) we see that this equation can be written as
3 i

Inserting F' = V' from Eq. (A.3) and the expression (A.11) for the divergence into
Eq. (A.1), we ultimately arrive at the expression for the Laplacian in an arbitrary
orthogonal coordinate system

o L 9 (V8 3
v \/_axz (gu ax’! ) A1

In the case of a Cartesian coordinate system, the only non-vanishing components of
the metric tensor are gxx = g,y = & = 1. Then /g = 1, and performing the
summation over j in Eq. (A.12), we get

S S
ax2  9y? 092

Using Einstein’s summation convention this may be written as

2 _ 9
0x; 0x!

(A.13)

valid in Cartesian coordinates.

The expression (A.12) shall now be used to calculate the Laplace operator in a
spherical coordinate system. Then we need the line element of Euclidean 3-dimen-
sional space as expressed in a spherical coordinate system. The basis vectors of this
coordinate system are given in terms of the basis vectors of a Cartesian coordinate
system in Eq. (6.22). The components of the metric tensor in this coordinate system
are given by the scalar products of the basis vectors in Eq. (6.22). Since the vectors
are orthogonal to each other only the products of each vector with itself are different
from zero. Using Eq. (4.11) we find

g =&, -& = sin?> @ cos® ¢ + sin® O sin® ¢ + cos> @
= sin’ 6 (cos2 ¢ + sin® (p) +cos? 6

= sin’ 6 + cos? 0 = 1,
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go9 =g -9 =12 (COS2 6 cos® ¢ + cos? 6 sin® ¢ + sin® 9)
=72 [0052 0 (cos2 ¢ + sin® (p) + sin? 9]
=2 (cos2 0 + sin? 9) = r2,

Spp = &, - €, = r” (sin® 6 sin” ¢ + sin®  cos’ ¢)

2

= r? sin® 6 (sin® ¢ + cos’ ) = r? sin” 6.

Thus the line element of flat space in spherical coordinates has the form
de* = dr* + r*d6* + r? sin’ 0 dg?.
The components of the metric tensor in a spherical coordinate system are therefore
gr=1, goo=r% and g,, =r’sin’0. (A.14)

Performing the summation over i in Eq. (A.12), with x! = r, x> = 0, and x> = ¢,
we have

veo ! air(J_?i)Jr ! i(x/_gi)

Vg ar\ g, ar) " /g 30 \ ges 00
L L8 (ﬁ i)
V& 39 \8gpp 39 )

Inserting the expressions (A.14) and using that g = r*sin’ 6, we get
1 ad 0
Vie ——  ~ (r2sinf —
r2 sin@ or (r o ar)
n 1 d (r’sinf 9
r2 sin6 96 rz 06

1 d (r?sinf 9
+ r2 sin@ dgp (r2 sin® @ 3(,0)‘
In the first term sin @ is constant during the differentiation with respect to r, and
can be moved to the numerator in front of d/dr. The sin 6 in the numerator and
the denominator cancel each other. In the second term 72 in the numerator and the
denominator inside the parenthesis cancel each other. Finally, in the last term the

sin 6 in the numerator cancels one of the sin 8 factors in the denominator inside the
parenthesis. The remaining sin € can be put in front of d/d¢, since sin 6 is constant
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during differentiation with respect to ¢. This finally gives the expression for the
Laplacian in a spherical coordinate system

1,0 10 3
Vie — — |2 = — (sing —
72 or (r ar) t 20 90 (Sm@ ae)

1 0?
r2 sin% 6 0¢?’

(A.15)



Appendix B
The Ricci tensor of a static and spherically
symmetric spacetime

The most interesting applications of Einstein’s theory are concerned with systems
having spherical symmetry. In Ch. 13 we consider spacetime outside static systems.
Then we have to solve Einstein’s vacuum field equations in a static, spherically
symmetric spacetime. Since the vacuum field equations amount to putting the Ricci
tensor equal to zero, we need to calculate the components of the Ricci tensor for this
case.

We first have to calculate the Christoffel symbols for the metric (13.15). Then
we use Eq. (7.30). We need the contravariant components g/*” of the metric tensor.
Since the metric is diagonal, they are given by Eq. (5.75), i.e. g** = 1/g,,.. Then
Eq. (7.30) simplifies to

I = (guvi + guiw — Guip) - (B.1)

28un
In this equation and the next ones, there is no summation over the values of the
index v.
In order to calculate the Christoffel symbols, we divide the Christoffel symbols
into three groups. First we consider the case with 1 = v. Inserting this into Eq. (B.1)
gives

1
Fvvk = (gvv,A + gviy — gv)k,v) .
28w

The last two terms cancel each other, so we are left with

1

Fvvk =
28wy

v, - (B2)

Next we find an expression for the Christoffel symbols with A = v and p different
from both. Inserting A = v in Eq. (B.1) gives

1
r“,, = 2gML (g;w,v + gy — gvv,u) .
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Since p # v in this case, and the metric of the line element (13.14) has g,,, = 0 for
i # v, the first two terms inside the parenthesis are equal to zero, which implies

1
28un

r#,, = v (B.3)

At last we consider the Christoffel symbols which have all three indices different,
A # p, A # v, and u # v. Then the indices of the metric components in all three
terms of Eq. (B.1) are different. Thus, all the terms are equal to zero, which leads to

r“,, =0, if A#p, A#v, and v # W

Inserting 4 = v and u = r in Eq. (B.2), we get

r, = !
= 2grr &rrr-
Inserting g, = e*") from Eq. (13.15),
rr, = L ety (B.4)
rr 26/1 . .

We now use the chain rule, [f(1)]" = f/(A) A/, where f/(A) is f differentiated
with respect to A, and (in the present case) A" is A differentiated with respect to .
Inserting f(1) = e*, and using Eq. (3.59) gives

(eA)/ — e)t l/.
Inserting this into Eq. (B.4),
rr L A ¥ (B.5)
y=—8 = —. .
2et 2
Next we calculate
1
r, = Z_g"gtt,r-
Due to the symmetry of the Christoffel symbols in their lower indices, we have
I, = I',,. Inserting g, = —c?e” from Eq. (13.15), we can replace A by v in
Eq. (B.5),
U/
Fttr = Ftrt = - (B6)
2
Furthermore
1
Iy =T%, = 800.r-

2 goo
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Inserting ggp = r2,

1 / 1 1
ry=r%, =— (r*) = —2r = -. B.7
0 T ) 2r? r 80
Next
r r !
re — r = 8oop.r
® ¢ 280, P
(B.16)
Inserting g,, = r? sin” 6,
re,, =TI%, = _ (r* sin®0) . (B.8)
¢ ¢ 2r2 sin* 0 o’
Since 6 is constant under a partial differentiation with respect to r,
(r* sin*6) = (r?), sin® 0 = 2r sin’ 6.
Inserting this into Eq. (B.8),
re,, =I¢ Z;m sinzezl. (B.9)
e T 22 sin? 0 r
Then we calculate
XS =1"<P0=_1 g 9=—1 (r? sin? 0)
¢ ® 2200 ?9. 2,2 sin2 6 rE

We apply the rule that r is constant during partial differentiation with respect to 6,
then the chain rule for differentiation, and obtain

(r* sinz)ﬂ = r? (sin® 0),= r?2sinf (sinf), .

According to Eq. (4.24), (sin0) ¢ = cos 8. This gives

1
[%,=I%p=———7r225sin6 cosh
b v 2r2 sin’ 6
cos 6
=— (B.10)

We now use Eq. (B.3) to calculate the remaining non-vanishing Christoffel
symbols. Inserting 4 = r and v = 6,

1 _
22, gee,rz—ﬁh =-re . (B.11)
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Inserting u = r andv = ¢,

IMyp = —%grr 8oor = —ﬁ 27 sin® 6
= —re* sin? 6. (B.12)
Inserting u = randv =1,
I, =— ! Sitr = (—c’¢)
28 2 g
= —% —ce"V = %e”_k v, (B.13)

Finally we insert £ = 6 and v = ¢, which results in

1 1
0 .
Do = 2400 Bovd = 7502 (r* sin® 9.
I 5, . .
=———r"2sinf cosf = —sinf cosH. (B.14)
2r2

The calculation of all the non-vanishing Christoffel symbols of the spacetime
described by the line element (13.14) has now been completed.

From Eqgs. (9.29) and (11.15) we get the following expression for the components
of the Ricci tensor in terms of the Christoffel symbols and their derivatives

Ry =TF T — TP T, + T — T% . (B.15)

Since there are only two unknown metric functions, A(r) and v(r), it is sufficient to
find two of the field equations (11.35), say R, = 0 and R,, = 0. However, it will
turn out to be convenient also to calculate Rgg.

Inserting u© = v = ¢ in Eq. (B.15),

Ry=TF, T, = TP T 4+ T — T
Performing the summation over « and B (note, for example, that I'g, = I'"g, +
rf g6 + I'?g, + T'"g,), and including only the non-vanishing Christoffel symbols,
we deduce

R, = 1—‘rtt (Frrr + FGI‘O + erw + Fttr)

- Fttrrrtt - Frttrtrt + Frl‘l‘,r'
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Inserting the expressions calculated above for the Christoffel symbols, we get

v A1 1
R, = — v—=A [ - _ _
n=c (2+r+r+2)

l)/ v/ v/ /
—2——e"F [ —e" M) . B.16
2 2e + (2e ) ( )

Differentiation of the last term, using the product rule and the chain rule,

l)/ / v// l)/
(_ ev—l) — Tev—l + 5 ev—l (U/ —l/) )

2
Inserting this in Eq. (B.16), and putting the common factor e’~* outside a
parenthesis,
1 l)/ 1 2 1 2 1
R, =| = //V _ B WA T Y o/
. |:4v T et (4 ey
1 1
+ 5 (v/)2 _ Ev/k/i| ev—k’
or
v > v 1
Ry=|—+- (V) +—=—-2v]e™ B.17
” [2+4(”)+r 4”]3 (B.17)

Inserting © = v = r in Eq. (B.15) gives
Rrr = Fﬂrrraﬁu - Fﬁra Faﬁr + 1—‘Olrr,oz - 1—‘Olroz,r-

Performing the summation over « and f, and including only non-vanishing terms,
gives

Rrr = l—‘rrr (Frrr + F01'0 + erw + 1—‘l‘rt)
- 1—‘rrrl—‘rrr + 1—‘trtl—‘l‘tr - FGI‘OFGOr - erwrwgﬂr
+ 1—‘rrr,r - 1—‘rrr,r - F01'0,9 - F(prga,r - 1—‘trl‘,r-

The first term coming from the first line and the first on the second line cancel each
other, and the two first terms on the third line. Also, using the symmetry of the
Christoffel symbols in the lower indices, we find

R, = l—‘rrr (Ferﬁ + er(p + 1—‘trz‘) - (Ftrt)2 - (Fer@)2

- (erw)z - 1—‘erﬁ,r - F(prga,r - 1—‘trt,r‘
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Inserting the expressions for the Christoffel symbols leads to

R N 2+v’ v 2+2 v”
T2 \r 2 4 22 27

which gives
R, =—v"+ 02—V + — (B.18)
Next we insert © = v = 6 in Eq. (B.15),
Rpo = TPl — T, %0 + T%g4 — T%gap-
Performing the summation over « and §, and including only non-vanishing terms,
Rog =T"99 (I s + T%0 + T +T7) =TT g9
—T7gaT% 0 =T, 1% + T g, + T¥0,6.

Inserting the expressions for the Christoffel symbols leads to

Al 1y 1
Rog = —re ——+—U— ——ret4ret-
2r r2 r
cos’f  [cosB .
- - —(re ™) . B.19
sinZ @ ( sin 6 ),0 (r € )‘r ( )

The two first terms are cancelled against the second and third terms in the
parenthesis. The the second last term is differentiated by using the rule (2.49)
for differentiation of fractions of functions, and the rules (4.24) and (4.25) for
differentiating sin € and cos 6, respectively. Thus

sin®

cosf\  (cos®) sin6 —cosf (sin )’
sinf / 4 B

—sin? 6 — cos?

sin® 6
__s%nj@_c?szzé _ —0?3229- (B.20)
sin“f  sin” 0 sin” 0

Using the product rule (2.24) and the chain rule (2.31), we differentiate the last term

(r e_*)’r =et4re ). (B.21)
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Inserting the Egs. (B.20) and (B.21) into Eq. (B.19) gives

r r cos? 6 cos? 6
Rog = —=e A ——e™M/ — —e M 4re TV + 1+ ,
o 2 2 sin® @ sin® @
which finally leads to
Rog = 1— (1 + % W — %A’) = (B.22)

Equations (B.17), (B.18) and (B.22) provide the expressions for the components
of the Ricci curvature tensor of a static, spherically symmetric spacetime that are
needed in Ch. 13 in order to investigate the consequences of the general theory of
relativity for this type of spacetime.



Appendix C
The Ricci tensor of the Robertson—Walker
metric

The expanding universe models that are still the most prominent relativistic models
of the universe, were deduced as solutions of Einstein’s field equations by A.
Friedmann in 1922. These models are isotropic and homogeneous, and the most
suitable line element for such models were found by H. P. Robertson and A. G.
Walker about 1930.

Before we can solve the field equations for these models, we must find the form
of the field equations for them, that is for the Robertson—Walker line element. Then
we need to know the components of the Ricci tensor for this line element. In order to
find these components of the Ricci tensor, we shall first calculate the non-vanishing
Christoffel symbols for the line element (14.9).

Some of the Christoffel symbols come from the part > d6? + r? sin> 8 dp> of
the line element (14.9), which is also a part of the line element (13.14). They are
given in Egs. (B.7), (B.9), (B.10), and (B.14). We list them here for easier reference

1
I, =T%y = -, (C.1)
r
¢ ¢ 1
r re — r or — ;’ (C2)
cos 6
%, =T%9 = , C3
by vl sin 6 €3
r’,, = —sinf cosé. (C4)
Using Eq. (B.2) with v = 0 and A = ¢, and then Eq. (14.10), we get
0 866.1 (azrz),t r? (az),t
F 0 = = =
2800 2a?r? 2a%r?
(@); 2aa a
= . = = -, C-5
2a? 2a> a (€5)
@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 327

for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5,
© Springer Science+Business Media, LLC 2011



328 C Ricci tensor of the Robertson—Walker metric

where @ means the derivative of the function a with respect to 7. Due to the isotropy
of the spacetimes described by the line element (14.9), and the symmetry of the
Christoffel symbols in their lower indices, we get

a
1—‘rtr = 1—‘rrt = - (C.6)
a
[, =T%, = Z (C.7)
a
M =T, = 2. (C.8)
a
Putting v = A = r in Eq. (B.2) we get
Fr :grr,rzl_kr2 a2
T 28, 2a? 1—kr?),
11—k rr a’2kr
o 2a2 (1—kr2)?
_kr (C.9)
o l—kr? ’

The rest of the Christoffel symbols are calculated using Eq. (B.3), which gives

I :_@:L a—2
" 280 2c2\1—-kr?/,

2aa ad

= = , C.10
2¢2(1—kr?)  c2(1—kr?) ( )
r o 8660 1 2 2\ 1 .2
Fgg——zgﬁ —ﬁ(a r)’t—ﬁ2aar
aar?
=2 (C.11)
_ 8pps _ 1 2.2 2
'y, = __Zg,, = ﬁ( r* sin Q)J
= grz sin’ @, (C.12)
c
860,r 1—kr? 2 2
Fr — T
96 s v (a®r ),
5 at2r 5
=—(1—kr)—=—r (l—kr), (C.13)
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, Zoo. 1—kr? .
IMpp =— 2(/);,: = (a2 r? sin® Q)J
= —r (1 —kr?) sin®6. (C.14)

There are no more non-vanishing Christoffel symbols. Note in particular that I'?,, =
0, which is of physical significance, as shown in Ch. 14.

We now proceed by calculating the components of the Ricci tensor which we
need in order to find the form of the field equations for the present application.
Inserting 4 = v =t in Eq. (B.15), and including only the non-vanishing Christoffel
symbols in the summation over & and 8, we get

R, = Fﬂtt Faﬁa - Fﬁta Faﬁt + Fatt,a - Fata,t
= - (Frtr Frrt + F0t0 Feet + le‘gﬂ F(p(pt
+Frtr,t + Fat@,t + F(ptga,t) .

Substituting the expressions (C.6)—(C.8) for the Christoffel symbols leads to
a? a a? ia—a®
Rtt=_ 3;"'3 EJ = — 3;4‘37
a? a a?
=—|35+3--3+5].
a a a
which gives
R, =—3%. (C.15)
a

Inserting © = v = 6 in Eq. (B.15), we get
Rog = TPpa T, — TPy T + T4 — Mg
Performing the summation over « and 8 we find
Rog =T"99 (I + %9 +T%) + g (I + T%6 + ')
—T%, Tl9 —T'99T% 9 —T 9 T — T, g
—T%, T+ 90, + 799, —T¥gg0.

Substituting the expressions (C.9)-(C.14) for the Christoffel symbols leads to

k 2
Rog = —r (l—krz) (1_—1:7_24';)

aar* _a aaar
3——-2-— 5
a a ¢

2

c2
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1 20 172
+2r(1_kr2)__cos +(aar)
t

r o sin’@ c?
cos? 6
—[r(1=kr¥)] - ) C.16
[ ( )]r (Sil’lze)’g ( )
From Eq. (B.20) we have
cos 6 cos? 6
=—1—-—. C.17
(sin9 )’9 sin” 0 (17
Furthermore
(adrz)t =(aa), rP=a’r* vair’ (C.18)
and
[r(1—kr?)], =(—kr’), =1-3kr (C.19)

Multiplying out the first terms in (C.16) and using the expressions (C.17)—(C.19) in
the last three terms, we get

3'22 2'22
R@@Z—krz—z(l—krz)—i- ar ar

c? c?
cos’ adr* a*r?
+2(1—kr?)—
( ) sin” 0 c? c?
20
—1+3kr2+1+cf)s2 .
sin” 6
Collecting terms we get
ir?  2a%r?
R%:aaz + 2r +2kr?.
c c
Putting 72 /c? outside a parenthesis we finally have
Rog = (ad +2a*>+2kc?) r?/c’. (C.20)

Due to the isotropy of the models, we only need the two components of the Ricci
tensor that we have now calculated. Inserting the expressions (C.15) and (C.20) for
R, and Ryy, respectively, into Einstein’s field equations, we arrive at a set of two
differential equations. The solutions of these equations show how the expanding
motion of the universe models varies with time, and how the mass density evolves
in the models.



References

1. Ernst Cassirer. Zur Einsteinschen Relativitdtstheorie: erkenntnistheoretische Betrachtungen.
Bruno Cassirer, Berlin, 1921.

2. F. de Felice and C. J. S. Clarke. Relativity on Curved Manifolds. Cambridge University Press,
Cambridge, 1992.

3. R. D’Inverno. Introducing Einstein’s Relativity. Clarendon Press, London, 1992.

4. Albert Einstein. The World as I see it. Covici Friede, New York, 1934.

5. J. Foster and J. D. Nightingale. A short course in General Relativity. Longman, London and
New York, 1979.

6. I. R. Kenyon. General Relativity. Oxford University Press, 1990.

7. M. Ludvigsen. General Relativity, A Geometric Approach. Cambridge University Press,
Cambridge, 1999.

8. C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. Freeman and Company, San
Francisco, 1973.

9. B. E. Schutz. A First Course in General Relativity. Cambridge University Press, Cambridge,
1985.

@. Grgn and A. Ness, Einstein’s Theory: A Rigorous Introduction 331
for the Mathematically Untrained, DOI 10.1007/978-1-4614-0706-5,
© Springer Science+Business Media, LLC 2011



Index

A
absolute

certainty, 125

future, 114

past, 114

space, 80, 105, 126

time, 80, 126, 225
acausal, 262, 263
acceleration, 50, 58, 225

of gravity, 233, 234,239, 242,244, 247,

248

action at a distance, 230, 232
addition, of vectors, 7
age of the universe, 298
Alpha Centauri, 289
Andromeda galaxy, 289
angle, 17, 62-69
angular

momentum, 206

velocity, 258
Anschauungsformen, 125-128
antiderivative, 51, 53
antisymmetric, 14

product, 14
apodictic, 125, 127
area, 14, 34-36, 52-54
arrow of time, 125
arrow, vectors as, 1-5
atlas, 3
atomic nucleus, 226
axis, 4

B

basis vector, 4-11, 17, 77-79
bending of light, 277-281
Bergson, H., 128

Bianchi identity, 217-222
Big Bang, 298

black body radiation, 290
black hole, 249, 281-287
blue shift, xvii, 268, 269, 291
body force, 200

C
caesium clock, 270
calculus of vectors, 1, 5-11
Cartesian
basis vectors, 72
components, 73
coordinate system, 3
Cassirer, E., 127
causal, 113, 238,262, 263
relationship, 211
theory, 211
causality paradox, 231, 232
centrifugal
acceleration, 261
force, 229, 261
centripetal acceleration, 261
chain rule, 29-31
charged body, 226
Christoffel symbols, 129-143, 156158,
319-322, 327-329
of the first kind, 157
of the second kind, 157
symmetry of, 143
Christoffel, E. B., 129, 148
circle, 44, 62-75, 172
circular arc, 62, 171
circulation, 179-186
density, 179
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classical

dynamics, 50

fluid dynamics, 193

mechanics, 187-209
clock, 84, 106-107, 116-120, 146

caesium, 270

natural, 260

photon clock, 106

standard, 106, 242, 260, 268, 294
COBE satellite, 303
colour force, 227
comma notation for partial derivatives, 149,

162

comoving coordinate system, 84, 106, 258
compass of intertia, 162
component

equation, 48, 164

metric tensor, 93

of motion, 43

of vector, 6

tensor, 89-91

vector, 8

covariant and contravariant, 88—89
transformation, 80-84

composite function, 30
connection coefficient, 132
conservation

law, 187-209, 217-222

of angular momentum, 206

of energy, 187,206

of energy-momentum, 217, 241

of mass, 187, 191, 206

of momentum, 187, 206
conserved quantity, 217
constant

of integration, 52

of motion, 251-252
continuous, 23, 24
continuum, 24
contraction

Lorentz, 204

of a tensor, 212

of energy-momentum tensor, 212

of the metric tensor, 213

of the Ricci tensor, 221

of the Riemann tensor, 215
contravariant, 88-91
convective derivative, 198
convergent series, 38
coordinate

basis vector, 5, 61, 72-75, 79

clock, 242,258

curve, 61

differential, 18, 19, 35, 108

independent, 108
invariance, 78, 83
invariant, 145
system, 3

orthogonal, 94

skew-angled, 122
time, 294
transformation, 80-97
velocity, 281

cosines

law of, 66

cosinus, 62-71
cosmic

background radiation, xvii, 290, 307
temperature, 303

clock, 307

energy density, 299

fluid, 188, 300

gas, 188

matter, 295, 298, 302, 305

vacuum fluid, 309

cosmology, 169, 289-312
Coulomb’s law, 232
covariant, 88-91

derivative, 148—-156
directional, 146
differentiation, 145-158

equation, 163, 235

critical mass density, 299
curl, 179-181

current density, 191
curvature, 169—-186

Einstein tensor, 222
extrinsic, 172
intrinsic, 172
of sphere, 293
principal, 175
Ricci tensor, 212
symmetry of, 216
Riemann tensor, 185
scalar, 221

curve parameter, 46
Cygnus X-1, 287
cylindrical

D

coordinates, 137
surface, 175
symmetry, 61

dark matter, 303

de Fermat, P, 52
definite integral, 53
degree, 62
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derivative, 24
Descartes, R., 3
diagonal metric tensor, 94
differential

calculus, 21-42

equation, 51
differentiation, 21-37
direction, 123
directional derivative, 146
discontinuity, 23
displacement vector, 179
distance, 108-123
divergence, 188-191, 205-209
divergent series, 38
Doppler effect, 290
dot product, 8, 98
dummy index, 83
dust, 249

dominated universe, 302-305
dynamics, 238

E
Earth, 145, 230, 239
radius of, 268
velocity, 105
ebb, 239
Eddingston—Finkelstein coordinates, 281
Eddington, A. S., v, 99
Einstein train, 84
Einstein’s
field equations, 211-224
gravitational constant, 247
summation convention, 18
Einstein, A., 104, 105, 108, 145, 182, 211, 230,
237,260, 268,277,287
electromagnetic
force, 226
signal, 113
theory, 212
wave, 307
electroweak force, 307
Elsbach, A., 127
elsewhere (neither past nor future), 114
empty spacetime, 224
energy, 80, 155, 187,203
and mass, 204
density, 295
kinetic, 203, 206
potential, 206, 232
energy-momentum tensor, 155, 203-209, 212,
222-224,246-249, 295, 307-309
symmetry of, 209
equation of continuity, 191-193, 254
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equation of motion, 50, 58,200
equation of state, 300
Equator, 19, 138, 161, 176,271
equipotential surface, 233
ether, 238
Euclid, 126
Euclidean space, 19, 80, 100, 169, 177
Euclidean spatial geometry, 297
Euler’s equation of motion, 200, 207
Euler’s number, 55
Euler, L., 55
event, 106, 115-116
expansion of the Universe, 124,290, 295, 309
exponential, 311
models of, 327
exponential function, 54-57

F
falsifiable, 127, 255
Faraday, M., 232
ficticious gravitational field, 257
fictive force, 261
field
concept, 232
gravitational, 233
line, 239
of weight, 238
theory, 232-235
finite series, 38
flood, 239
flow, 179
fluid, 179, 188, 193
flux, 188-192
force, 47, 50, 200, 211, 226-230, 239
field, 206
gravitational, 226
law, 233
forceless motion, 58
form-invariant, see covarient
four-dimensional spacetime, 17
four-velocity, 200-203
fraction, 26, 32
Frank, P, 135
frequency, 268
friction, 194, 226
Friedmann equations, 297
Friedmann universe models, 297
Friedmann, A., 291, 327
fundamental force, 226

G
Godel, K., 162
galaxy, 124, 289
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Galilean
invariance, 86
kinematics, 104
transformation, 84-86, 100, 104
velocity addition, 271
gas, 188,249
Gauss, C. F, 38,178
Gaussian curvature, 175
Gellmann, M., 227
general principle of relativity, 240
geodesic
equation, 163-166, 211, 242, 251, 273
postulate, 249
geodesics, 80, 159-167
God, 3, 83, 104,212,230
Goethe, J. W., 13,228
gradient, 197, 198,233,313
Grand Unified Theory, 307, 310
graph, 23-27, 169, 171, 214
gravitation, 17, 61, 100, 211-212, 225-255
gravitational
attraction, 235, 241, 247
great circle, 166
Greek indices, 17, 190
grid, 3
Grossmann, M., 145

H
Hafele, J. C., 269
Hafele—Keating experiment, 269-272
homogeneity of the universe, 290
homogeneous
and isotropic universe models, 291-305
gravitational field, 239
transformation, 82
horizon, xvii, 286, 287
Hubble
age, 298-310
factor, 297
telescope, 289
Hubble’s law, 290, 297
Hubble, E. P., 124, 290
hydrodynamics, 187-209
hyperbolic geometry, 175
hypothenus, 49

1

imaginary number, 115
implicit definition, 228
indefinite integral, 51
induction, proof by, 31

Index

inertial
force, 208
motion, 145
reference frame, 204, 228, 240
rest frame, 208
infinite series, 38
inflationary cosmology, 306-312
inhomogeneous
gravitational field, xvii, 239
integration, 51-54
interaction, 229
interval, 41
spacetime, 115-123
time, 80
invariant, 83, 120, 164, 204
time, 201
inverse
function, 55
transformation, 83
irreversibility of time, 125
irrotational velocity, 179
isolated system, 217
isotropic
and homogeneous universe models,
291-305, 327-330
pressure, 195
isotropy of the universe, 290

J
Joyce, J., 227

K
Kaluza—Klein theory, 61
Kant, I, 125-128
Keating, R. C., 269
kinematical, 211
kinematical concepts, 123
kinematics, 238
kinetic
energy, 203, 206
energy-momentum tensor, 204
Kronecker symbol, 83
Kronecker, L., 83

L

Laplace operator, 233, 313-318
Laplace’s equation, 234
latitude, 138

Leibniz, G. W., 21, 24, 52,53



Index

light
cone, 113-115
coordinate velocity, 281
second, 111
speed, 17, 101
as conversion factor, 202
invariance, 100, 124
year, 289
light-like, 116
line element, 108—123
linear combination, 79
linear dependence, 77
linear transformation, 82
local
derivative, 198
frame, 239
locally Cartesian coordinates, 166—167
logarithm, 54-57
long-range force, 227
longitude, 138
Lorentz
contraction, 204
invariant, 111-118
transformation, 100-106
Lorentz, H. A., 104
lowering indices, 98

M
MacLaurin series, 38—42
MacLaurin, C., 38
magnetic field of the Earth, 162
magnitude
of vector, 2, 16-20, 120
manifestly covariant, 236
map, 3
mass, 187-193, 228-237
and energy, 204
conservation, 187, 193, 206
density, 188
gravitational, 248
gravitational, 228, 236-237
inertial, 228, 236-237
negative, 309
relativistic, 204
mass-energy, 193
material derivative, 198—199
mathematical
existence, 79
model, 97, 125
physics, 124
matrix, 83, 194
matter, 212
distribution of the universe, 290

337

Maxwell’s theory, 212
Maxwell, J. C., 232, 307
measuring
accuracy, 239
rod, 84
mechanical experiment, 238
Mercury
perihelion precession of, 273-277
metric, 16-19
components, 93
contravariant, 97
covariant, 97
mixed, 98
Minkowski, 121
non-diagonal, 123
Robertson—Walker, 294
Schwarzschild, 267
symmetry, 93
tensor, 77-128
Michelson, A. A., 105
Michelson—Morley experiment, 105, 307
Milky Way, 289
Minkowski
diagram, 113-115
metric, 121
spacetime, 121
Minkowski, H., 106, 187
molecular bound, 226
momentum, 155, 187,217
Moon, 226, 239
Morley, E. W., 105
motion, 123, 188, 193

N
natural
law, 80, 145, 188, 228
logarithm, 55
negative mass density, 309
neutron, 226, 227
star, 228
Newton’s
first law, 227
gravitational constant, 229
law of gravitation, 206, 228, 230, 234, 241,
266
second law, 50-51, 58, 200, 206, 211, 228
theory of gravitation, 225, 229-230,
253-254
third law, 229, 230
Newton, 1., 21, 50, 52, 53, 105, 126, 226, 253,
287
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Newtonian
absolute simultaneity, 106
approximation, 205
dynamics, 50, 58, 86, 188
energy-momentum tensor, 203-208
gravitation, 187, 253-254
hydrodynamics, 208
kinematics, 104, 105
mechanics, 84-86, 187, 206
physics, 80, 187, 191, 206
time, 151
universe, 124, 186
Noether, E., 206
non-Euclidean, 121
non-inertial, 238, 240, 241
normal
direction, 14
stress, 194
vector, 193
Northrop, F. S. C., 127
null
geodesics, 240, 281, 284
vector, 7

(0}
orbit

elliptic, 273
orthogonal, 5

P
parabola, 23,43, 171
parabolic geometry, 175
parallel transport, 2, 159-163, 181-185
parallelogram, 14
parameter, 43—47, 74, 146, 162
parametric equation, 44, 74
partial derivative, 34-37, 132

comma notation, 149
particle, 58

massive, 113

of light, 113
path, 43
path length, 146, 166
pendulum as ‘compass of intertia’, 162
perfect fluid, 188, 193,203-205
perihelion, 273

precession, 273-277
periodic function, 63
philosopher, vii, 29
philosophy, 125-128

of science, 253

possibilism, 237

photon, 113, 114, 281
clock, 106
mass, 113
worldline, 113
physical
concept, 123, 126
description, 124
observable, 121, 236, 287
phenomenon, 110, 124, 235
process, 230, 238
reality, 105, 126
science, 289
space, 80
spacetime, 124, 186
system, 313
physicist, v, 125, 182, 187
pi, 62, 175-178
Planck time, 298, 305, 306
Planck’s constant, 298
plane
curve, 169-171
surface, xvii, 159, 182
planet, 229, 273
Poincaré, H., 127
Poisson’s equation, 233, 235
polar coordinates, 71-75, 109, 130-135
polygon, 77,78
position, 3, 123
vector, 46
possibilism, 237
postulate, 100
potential
energy, 206
gravitational, 232-235, 244, 261
Pound, R. V., 268
Pound-Rebka experiment, 268-269
power
function, 31
derivative of, 31-32
series, 38
pre-relativistic conceptions, 80
precisation, 169
pressure, 188, 194, 248, 295
force, 198
gradient, 198
principle of
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constancy of the velocity of light, 230, 235
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skew-angled, 122, 123
slope, 21-27
Solar system, 242, 267
source, 188, 189, 233, 235, 249, 281
space, 16-20, 77-80, 123-128
space-like, 116
spacecraft, 232, 289
spacetime, 15, 17, 79-80, 115-120, 225-255
spectral distribution, 290
spectral lines, 290, 297



340 Index

speed, 201 theorema egregium, 178, 186
spherical theory of gravitation, 225-255
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