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The hardest thing of all to see is what is really there.

J.A. Baker, The Peregrine



To my father, who by patiently answering all
my questions, became my first science teacher,
And to my mother, who taught me everything else



Supervisor’s Foreword

The study of radiation pressure coupling between light and motion in optical
interferometers has a long history, one that predates its study in atomic systems.
The seminal work of Braginsky in the 1960s predicted that the radiation pressure of
light in an optical interferometer causes two disturbances that limit the ability to
measure optical displacements: a classical—dynamic back-action—that causes
parametric instability of the mirror, and a quantum mechanical limit imposed by the
quantum fluctuations of the radiation pressure force. While originally formulated
within the context of interferometric gravitational wave detection, both classical
dynamical back-action and its quantum mechanical counterpart have become
observable in experiments using cavity optomechanical systems that utilize high-Q
and small mass mechanical oscillators coupled to intense optical fields stored in
cavities. While dynamical back-action physics, exemplified by laser sideband
cooling of massive mechanical oscillators, has been accessed by a wide range of
nano- and micron-scale optomechanical systems, observing the limits imposed by
the quantum nature of light has been far more challenging. The latter is com-
pounded by the fact that the quantum fluctuations of the radiation pressure force are
faint, and further, they can be easily masked by classical noises.

The present thesis from Vivishek Sudhir constitutes the first experiments carried
out in our laboratory at EPFL that observes and studies the quantum nature of the
radiation pressure interaction. This is achieved via advances in the ability to per-
form sensitive measurements and to operate novel nano-optomechanical systems at
low cryogenic temperatures. These advances enable a series of experiments that
demonstrate the origin and physical effects that result from radiation pressure
quantum noise. A newly developed optomechanical system consisting of a high-Q
small mass nanostring dispersively coupled to the evanescent field of an optical
whispering gallery mode resonator enabled to achieve vacuum cooperativities near
unity, translating into an ability to measure the motion of the nanostring with an
imprecision at the standard quantum limit (SQL) with less than a single intracavity
photon on average. In fact, by engineering the nanostring to oscillate at frequencies
untouched by other measurement noises, it was possible to measure its motion with
an imprecision 40dB below that at the SQL. With such record measurement
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sensitivity, the oscillator could be feedback cooled to an occupation of only 5
quanta (corresponding to 16% ground-state occupation). Although feedback cool-
ing had been proposed as a method to reduce the thermal motion of mechanical
oscillators since decades, its utility for reducing thermal noise to a level comparable
to the zero-point motion of the oscillator had to wait till this thesis.

This experiment sets the stage for the exploration that is carried out in the rest
of the thesis—a dissection of linear quantum measurements. The ability to cool the
mechanical oscillator to such low occupancy implies that the corresponding
quantum back-action, resulting from the radiation pressure quantum fluctuations,
has been canceled. Therefore, feedback cooling to occupancies below that due to
back-action should more accurately be viewed as an example of quantum feedback.
In a subsequent series of experiments, this thesis goes on to precisely explore the
different manifestations of this suppressed quantum back-action. Quantum
back-action is shown to give rise to two effects: pondermotive squeezing of light
and motional sideband asymmetry. A particularly interesting aspect of the work is
that both effects are observed in one and the same experiment for the first time,
depending on how one analyzes the post-measurement optical field: in case of
homodyne detection, one observes that the strong measurement causes squeezing
of the light, while for the case of heterodyne detection (combined with feedback
cooling) the experiments reveal an asymmetry in the sidebands scattered by the
mechanical oscillator. The work therefore shows that the two effects have precisely
the same origin: the generation of correlations between the amplitude and the phase
fluctuations of the measurement laser. Measuring such quantum correlations is a
daunting task, and the experimenter has to exercise extreme care to rule out clas-
sical effects. Both manifestations of quantum correlations can be mimicked by
classical noises—the difference lying only in their calibration. The present thesis
achieves this in a particularly elegant way: operation with large vacuum coopera-
tivity in the Doppler regime combined with feedback cooling eliminates a large
number of classical measurement noises; in particular, and counterintuitively, the
experiment is not sensitive to classical phase noise of the measurement lasers.
Moreover, significant sources of systematic error are eliminated by being able to
observe sideband asymmetry by only varying the electronic gain of the feedback
path, and not the laser power or detuning. These advantages together allow to
demonstrate a quantum mechanical sideband asymmetry at the level of 10% in
agreement with the occupation of the oscillator. Together, optical squeezing and
sideband asymmetry show the quantum correlations induced by an optical field by a
“macroscopic” mechanical oscillator. The culmination of the thesis is to probe,
using sideband asymmetry, the regime where feedback of detected quantum noise
leads to noise squashing. In this regime, the sideband asymmetry disappears. On the
one hand, it corroborates the trustworthiness of the calibration of classical mea-
surement noises. On the other hand, it highlights a basic limitation of quantum
feedback: although it can cancel back-action caused by quantum noise, it cannot
overcome detection quantum noise.

Overall, the present thesis represents the first experiments at the laboratory at
EPFL where long-predicted quantum effects of radiation pressure were probed
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and analyzed. This thesis provides the first glimpse into the quantum nature of
mechanical oscillators, and a step toward quantum control of macroscopic
mechanical systems, after that of atoms, ions, and superconducting circuits in recent
decades.

Lausanne, Switzerland Prof. Tobias J. Kippenberg
August 2017



Abstract

The precision measurement of position has a long-standing tradition in physics.
Cavendish’s verification of the universal law of gravitation using a torsion pen-
dulum, Perrin’s confirmation of the atomic hypothesis via the precise measurement
of the Brownian motion, and the verification of the mechanical effect of electro-
magnetic radiation all belong to this classical heritage. Quantum mechanics posits
that the measurement of position results in an uncertain momentum; an idea
developed to full maturity within the context of interferometric searches for grav-
itational waves. Over the past decade, standing at the confluence of quantum optics
and nanomechanics, cavity optomechanics has emerged as a powerful platform to
study the quantum limits of position measurements.

The subject of this thesis is the precision measurement of the position of a
nanomechanical oscillator, the fundamental limits of such measurements, and its
relevance to measurement-based feedback control. The nanomechanical oscillator is
coupled to light confined in an optical micro-cavity via radiation pressure. The
fluctuations in the position of the oscillator are transduced onto the phase of the
light, while quantum fluctuations in the amplitude of the light lead to a disturbance
in the momentum of the oscillator. We perform an interferometric position mea-
surement with a sensitivity, that is, 10> times below what is required to resolve the
zero-point motion of the oscillator, constituting the most precise measurement
of thermal motion yet. The resulting disturbance—measurement back-action—is
observed to be commensurate with the uncertainty principle, leading to a 10%
contribution to the total motion of the oscillator.

The continuous record of the measurement (performed in a 4K cryogenic
environment) furnishes the ability to resolve the zero-point motion of the oscillator
within its decoherence rate—the necessary condition for measurement-based
feedback control of the state of the oscillator. Using the measurement record as
error signal, the oscillator is cooled toward its ground state, resulting in a factor 10*
suppression of its total (thermal and back-action) motion, to a final occupation of
5 phonons on average.

Xiii



Xiv Abstract

Measurements generally proceed by establishing correlations between the
system being measured and the measuring device. For the class of quantum mea-
surements employed here—continuous linear measurements—these correlations
arise due to measurement back-action. These back-action-induced correlations
appear as correlations between the degrees of freedom of the measuring device. For
interferometric position measurements, quantum correlations are established
between the phase and amplitude of the light. In a homodyne measurement, they
lead to optical squeezing, while in a heterodyne measurement, they appear as an
asymmetry in the sidebands carrying information about the oscillator position.
Feedback is used to enhance sideband asymmetry, a first proof-of-principle
demonstration of the ability to control quantum correlations using feedback. In the
regime where amplified vacuum noise dominates the feedback signal, the disap-
pearance of sideband asymmetry visualizes a fundamental limit of linear feedback
control. Using a homodyne detector, we also characterize these quantum correla-
tions manifested as optical squeezing at the 1% level.

Keywords Quantum Measurement - Cavity Optomechanics - Quantum Feedback -
Quantum Correlations
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Chapter 1
Prologue

The history of science shows that even during the phase of her
progress in which she devotes herself to improving the accuracy
of the numerical measurement of quantities with which she has
long been familiar, she is preparing the materials for the
subjugation of the new regions, which would have remained
unknown if she had been contented with the rough methods of
her early pioneers.

James Clerk Maxwell

Electromagnetic radiation holds a unique position in man’s interaction with nature.
In the form of light, acting as a conduit between far away objects and the human eye,
it informs us through vision. In the form of electrostatic forces between atomic-scale
bodies, it forms the basis of our tactile sense. Scientific instruments that peer deeper
into space and sharper into the atom, interface our feeble senses with that world
through electromagnetic signals.

That electromagnetic radiation can be a causative agency took much longer to
be realized. The historic anecdote of Archimedes using mirrors to focus the sun’s
light onto incoming enemy ships to burn them (at the Siege of Syracuse, in 212
BC), illustrates the powerful potential of intense radiation. However, radiation of
such intensity was typically limited to astrophysical sources. Indeed, Kepler [1]
suggested that the tails of comets point away from the sun because of an outward
solar radiation pressure. Such a mechanical effect arising from light appears to have
found favour with Newton [2]—corpuscles of light, reflecting off a surface, impart
a recoil force. In the absence of a quantitative theory of light, these conjectures
remained unsubstantiated.

I'As reported by Anthemius of Tralles in his On Burning Glasses, ca. 700years after the event.

© Springer International Publishing AG 2018 1
V. Sudhir, Quantum Limits on Measurement and Control of a Mechanical
Oscillator, Springer Theses, https://doi.org/10.1007/978-3-319-69431-3_1



2 1 Prologue

The ensuing 100 years saw a host of experiments attempting to observe the tiny
recoil force due to light in a terrestrial setting [3]. Some of these experiments set
out to settle the debate between corpuscular and wave theories of light, for it was
widely conjectured that if light were a wave, then it would not impart any mechanical
force [4]. Bolstered by Cavendish’s sensitive measurements of the gravitational force
(another exceptionally weak effect) between two spherical bodies [5], the experimen-
talists converged upon the torsion pendulum as a sufficiently sensitive apparatus to
see the pressure due to light. William Crookes pioneered this experimental technique,
using a pair of vanes delicately suspended on a wire, forming a torsion pendulum
that would potentially be set in motion when light impinged on one of the vanes.
This instrument—Crookes radiometer [3, 6]—did respond to some photo-motive
force—however the direction of motion was opposite to that expected if the force
were radiation pressure. With the realization that the force at play was due to convec-
tion of the surrounding air heated by the absorbed light, a brief experimental hiatus
ensued.

In the meantime, several other causative effects of the electromagnetic field were
observed; perhaps most profound among them were Oersted’s observation that a
changing electric current causes magnetic effects, and Faraday’s complementary
observation that a moving magnet leads to an electric current. A priori, these electric
and magnetic effects bore little relation to the mechanical radiation pressure effect
that was being ardently pursued. In the same year (1873) that Crookes concluded
his unsuccessful experiments to reveal the mechanical effect of light, Maxwell [7]
produced his theoretical synthesis of Faraday’s experiments, resulting in a unified
description of electrical and magnetic phenomena.

Maxwell, in the second edition of his treatise, and independently Poynting [9]
(who incidentally had surveyed the Cavendish experiment [10]), realized that the
new electromagnetic theory applied to radiation, and that it provided a quantitative
estimate of the pressure exerted by light.

The following decade witnessed the observation of the elusive radiation pressure.
Lebedev [11], and independently, Nichols and Hull [8], performed a series of exper-
iments in 1901-1910 that managed to isolate the effect of radiation pressure due to
light from a carbon-arc source, and demonstrated that the force was indeed as pre-
dicted by Maxwell’s theory. Figure 1.1 depicts the apparatus used in the experiment.

With the triumph of Maxwell’s theory on all fronts (telegraphy, telephony and
radio communication being everyday examples), radiation pressure studies on table-
top experiments faded into history, partly owing to a lack of intense sources of
radiation to amplify its effect. However, its implications for astrophysical phenomena,
where such sources are aplenty, continued to be investigated [12—15] (including its
non-negligible effect for artificial satellites and interplanetary missions [16]).

Historically, a circuitous route had to be traversed to return to the question of how
one may realize an intense and highly-directional source of light. But this develop-
ment had its roots in two pillars of physics erected by Maxwell. Maxwell, together
with Boltzmann and others, had arrived at a microscopic description of particles
(for example, gaseous atoms in a box) in thermal equilibrium. Suffice it to say that
attempts to apply these ideas to the description of light in thermal equilibrium led
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Fig. 1.1 Nichols’ radiometer. [8] Two silvered mirrors (C and D), hang from a thin quartz wire.
An approximately 150 mW light beam impinged upon one of the mirror imparting a force of 10~° N.
A much weaker light beam, reflected off the other mirror, formed an optical lever to measure the
torque on the pendulum. The observations agreed to within 6% of the theoretical prediction. The
glass bell jar was evacuated to eliminate the influence of thermal air currents that plagued Crookes’
experiment [3]

to conceptual difficulties. Without going into the details [17], the resolution of these
issues warranted a corpuscular description of light! Thus was born the light quantum,
and with it, the theory of quantum mechanics [18]. Not only did quantum mechanics
demand that light waves have a particulate character, but it also implied the reverse,
namely, that what had been thought of as being intrinsically particulate (electrons,
atoms etc.), have a complementary wave character. Another counter-intuitive predic-
tion is the absence of a state of true rest—an incessant restless residual motion that
cannot be quenched. These vacuum fluctuations, needless to say, are tiny compared
to the typical size of objects—hence very difficult to observe. The qualitative idea of
vacuum fluctuations is captured in a basic tenet of quantum theory—Heisenberg’s
uncertainty principle—roughly stating that both the position and velocity of objects
cannot be simultaneously known. The present thesis studies an incarnation of this
prediction, and experimentally observes it.

The weird predictions of quantum mechanics aren’t confined to the realm of
pure thought. The laser, invented in the 1960s, relies crucially on the principles of
quantum theory. The invention of the laser, finally made it possible to access intense
light fields in the laboratory. Primarily intended as a diagnostic tool to study the
absorption and emission characteristics of atoms (i.e. spectroscopy [19, 20]), the
laser soon became a tool to actively manipulate and control atomic-scale matter.
The work of Ashkin and colleagues in the 1970s [21, 22] showed that the radiation
pressure from a focused laser beam could be used to trap and move small (wavelength-
scale) electrically neutral particles.” Closely related techniques to cool and eventually
stop atoms were proposed [25, 26], and demonstrated [27] in the same decade.
Ultimately, spectacular progress along this path led to the use of lasers to trap and
control individual atoms [28-31]. These experiments have managed to reveal the

20n the other hand, electrically charged particles (electrons and ions) were being manipulated using
radio-frequency electromagnetic fields, which naturally forces a charged particle [23, 24].
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vacuum fluctuations of photons [32, 33], individual atoms [34], and collections of
(~10* — 10°) atoms [35, 36]. In other words, it is now known for a fact that the
fantastic predictions of quantum theory are at least valid for atomic-scale objects.

The confluence of two parallel threads of scientific inquiry led to arenewed interest
in radiation pressure forces in the mid-1990s. On the one hand, progress in atomic
physics led to the question of whether it is possible to witness quantum mechanical
effects on larger assemblies of atoms—macroscopic objects—where the effect of
quantum mechanical fluctuations would be even smaller. On the other hand, the
question arose as to how measurements precise enough to see the already tiny effects
could be devised. In some sense, these two quests are conceptually intertwined—a
part of this thesis exposes this connection in an experiment.

1.1 Precise Position Measurements

Before the question of how a sufficiently precise measurement of the position of an
object can be made, it is pertinent to address a more important question of principle.
If the object is nominally “at rest”, would a sufficiently precise measurement of its
position reveal quantum fluctuations?

As it turns out there is a purely classical (i.e. non-quantum-mechanical) effect
that defies the notion of “at rest” for most objects. Most ubiquitously, objects have
a temperature, which means that the atoms that constitute them are in an agitated
state—temperature being a measure of this agitation. This random movement of
objects, called thermal motion, is small for large objects, however, typically much
bigger than the quantum vacuum fluctuations. To give a sense of scale, the thermal
motion of the mirror hanging off the torsion pendulum used by Nichols (Fig. 1.1),
weighing a few grams, is of the order of 10~ m, while its vacuum fluctuations are
of the order of 107! m. In comparison, the motion induced by radiation pressure
that Nichols and Hull managed to measure was of the order of 10~* m; about 5 order
of magnitude lacking in sensitivity to observe the thermal motion, and 8 orders of
magnitude away from observing vacuum fluctuations.

Thermal motion was however observed in the early 1800s, and played a key role
in the development of the atomic hypothesis. Botanist Robert Brown was famously
puzzled by the random motion of pollen grains in water which he observed using a
microscope.® The origin and nature of the apparent spontaneous motion soon became
a fountain-head of scientific speculation that continued through the century.

Einstein, in 1905 (his annus mirabilis), conjectured that the Brownian motion (the
thermal motion observed by Brown) was essentially due to the atomic constituents
of water randomly hitting the pollen grain [37]—a bold prediction that, if confirmed,
could provide proof for Dalton’s theory that all matter is made of atoms. In fact,
Maxwell and Boltzmann had used Dalton’s suggestion as a metaphor to construct

3Remarkably, the Roman poet-philosopher Titus Lucretius, in his poem De Rerum Natura (ca. 60
BC), described the spontaneous motion of dust particles suspended in a sun beam falling across a
dark room, and conjectured the presence of an invisible agency responsible for the movement.
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the kinetic theory of gases, wherein the properties of gases could be derived from
simple assumptions regarding a hypothetical atomic constitution. Einstein’s theory
was tantamount to the statement that if one placed a large object in the gas, the atoms
that made up the gas, would knock the object; in fact, the more frequent the knocks,
if the pressure or temperature of the gas were higher. Experimental verification of
these predictions was immediate—Jean Perrin not only verified the theory, but also
managed to extract the Avogadro number from his measurements [38]—putting the
atomic hypothesis on firm experimental foundation. This idea, of measuring what is
essentially noise, to discern something useful, continues to be a strong tradition in
physics, this thesis being no exception.

Two questions immediately arise: firstly, if the temperature is zero, would there be
no Brownian motion? If the object were in contact with no “gas” (i.e. if the pressure
were zero), would the motion subside? The answers to these questions bring us back
to quantum mechanics. When the temperature is zero, indeed there is no Brownian
motion—however, vacuum fluctuations remain. When the object is perfectly isolated,
and one tries to verify this fact by performing a measurement, the rules of quantum
mechanics dictate that the act of measurement disturbs the object so as to impart an
additional motion precisely equal to its vacuum fluctuation, resulting in two units
worth of vacuum fluctuations in the observation. Part of this thesis investigates the
latter phenomena.

The answers to the above questions also indicate what is necessary in order to
observe vacuum fluctuations: a near-zero-temperature environment, a supremely
well-isolated system, and a measuring device that is so exquisite that it is only
limited by the laws of quantum mechanics.

In the early 1920s, a decade after Perrin’s conclusive measurements of the
Brownian motion of microscopic particulate matter suspended in liquids, the first
observation of similar thermal motion of a macroscopic object were made. Willem
Einthoven, in his Nobel prize (in medicine, for the invention of the electrocardio-
gram) lecture mentions the curious movement of the extremely light galvanometer
needle used in his apparatus, conjecturing it to be the thermal Brownian motion of
the needle. In subsequent investigations he found qualitative agreement between the
motion and the predictions of the by-then more mature theory of thermal motion
[39]. These findings were quickly replicated in a series of experiments by Moll and
Burger [40] on a galvanometer suspended on a spring—drastically different from
the free movement allowed for the particles in Perrin’s experiments and the free
needle in Einthoven’s galvanometer. The effect of the spring is to render the needle
a harmonic oscillator, that responds to a limited range of frequencies with a large
amplitude; consequently, these experiments witness the thermal motion of the needle
with unprecedented signal-to-noise. The theory of the thermal motion of a harmonic
oscillator is quickly furnished by Ising [41] and Ornstein [42]. In fact, Ornstein’s
work suggests a cause for the thermal motion—the thermal motion of electrons
in the galvanometer circuit play the role of gas particles kicking the needle. This
pre-empts similar conclusions by Johnson and Nyquist. Throughout the mid-20th
century, incarnations of the galvanometer needle were measured with ever increas-
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Fig. 1.2 Displacement sensitivity over the last century. Plot shows the improvement over 17
orders of magnitude improvement in the sensitivity in the measurement of position fluctuations over
the past 100years. The past decade has seen spectacular progress owing to the use of low-noise
electromagnetic cavities thatlead to a build-up of intense fields, interrogating low-mass high-quality-
factor nano-mechanical oscillators. Here, the sensitivity is expressed in a natural unit, the sensitivity
at the so-called standard quantum limit (SQL), which essentially amounts to the sensitivity required
to resolve vacuum fluctuations. Work reported in this thesis is the orange diamond on the lower
right corne—the most precise measurement of the position of a mechanical oscillator relative to its
zero-point motion, at the time of writing

ing precision [43, 44], largely without paying heed to the fundamental limitations of
the measuring device(s) being employed.

These early observations (see Fig. 1.2) were limited by the large thermal noise
inherent in the measuring device itself—mainly in the form of thermal motion of elec-
trons in electronic circuits [45, 46]. All this changes in the 1960s, with the invention
of two low-noise sensing platforms—the laser, and the SQUID (superconducting
quantum interference device) [47]. In the decades leading up to the 2000s, both
these devices, essentially based on interferometric techniques, pushed the frontier of
precision displacement measurements.

The ability to fabricate low-mass (hence large vacuum fluctuations) mechani-
cal oscillators of small dimensions, i.e. nano-mechanical oscillators, featuring very
high mechanical quality, brought the dream of witnessing the vacuum fluctua-
tions of a macroscopic object ever closer. Integrating such oscillators with sensitive
radio-frequency amplifiers, like single-electron transistors [48—50], quantum-point
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contacts [51, 52], or SQUIDs [53], proved to be fruitful in terms of approaching
the sensitivity required to see vacuum fluctuations (i.e. the standard quantum limit
(SQL)). These efforts were curtailed by the lack of a strong enough coupling between
the oscillator and the sensor, or the presence of excess noise in the sensor, or both.

Ultimately, the integration of radio-frequency nano-mechanical oscillators, with
high quality optical micro-cavity based interferometer [54], or microwave cavity
with a Josephson parametric amplifier [55], proved to be successful in achieving the
long-standing goal of measurements of position with the sensitivity at the SQL. The
former was demonstrated in the group of Prof. Tobias Kippenberg, few years prior
to the commencement of this thesis in the same laboratory.

Both these approaches typify the burgeoning field of cavity optomechanics [56],
wherein the emphasis has been to tightly integrate high quality mechanical oscillators
with a high quality optical (or microwave) cavity. Figure 1.3 shows the principle of
cavity optomechanical measurement of the position of mechanical oscillators. In the
generic scheme, shown in Fig. 1.3a, light is injected into a space formed by two
mirrors facing each other. The multiple reflections from either mirror traps the light
in the enclosed space, forming an optical cavity. One of the mirrors, mounted on a
spring, forms the mechanical oscillator. Its position x(¢) is recorded as a phase shift
proportional to % where A is the wavelength of light used. The cavity amplifies
this tiny phase shift by recycling the light a large number of times, given by the
finesse F. Light leaking out of the cavity thus features a phase change given by
¢ (1) x %x (t). Therefore, a good optical cavity, having a small operating wavelength
A, and a large finesse F, can transduce the small motion x(¢) into a larger phase
shift ¢ (¢). A type of optical cavity (see Fig.1.3b) formed by continually bending
light around a curved path—a whispering-gallery mode cavity [57]—is used in this
thesis. Such cavities, operating at a wavelength of A ~ 8- 10~7 m, can have F ~ 109,
meaning that a typical vacuum fluctuation amplitude (of the string shown in Fig. 1.3c)
x ~ 1071 m, would lead to a phase shift of ¢ ~ 0.1 rad for the light emanating from
the cavity. Although small, this phase shift can be measured precisely by comparing

(a) (b) (©)

Y

- e

o) ()

Fig. 1.3 Principle of cavity optomechanics. a Generic cavity optomechanical system, consisting
of two mirrors facing each other. The mirrors form an optical cavity, trapping light between them
(i.e. a Fabry-Perot cavity); one of the mirrors, mounted on a spring, forms the mechanical oscillator.
b A cavity optomechanical system where the mechanical oscillator is a string, and the optical cavity
is formed by continually bending light around a circle (i.e. a whispering gallery mode cavity). ¢
False-coloured scanning electron micrograph of the system studied in this thesis; scale bar shows
reference for the size of the device
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the cavity transmission with a reference light beam, in a technique called homodyne
interferometry.

However, a fundamental impediment presents itself in trying to make this mea-
surement. Since light is itself a quantum mechanical entity, the ability to measure
its phase is impeded by the particle nature of photons: the random arrival times of
the photons constitute an uncertainty in the timing information in the measurement,
essentially scrambling the phase. This uncertainty can be minimized by employing
a larger flux of photons, so that (in a naive sense) the inter-arrival intervals of the
photon stream is reduced. The price paid for this choice is that the larger photon
flux exerts a larger radiation pressure force on the oscillator being measured—in
trying to make a precise measurement, the thing being measured gets disturbed—a
manifestation of Heisenberg’s uncertainty principle.

The disturbance, called measurement back-action, plays a prominent role as the
precision of the measurement approaches what is required to resolve the vacuum
fluctuation of the oscillator—the SQL. The ability to measure position with a sen-
sitivity at the SQL is sufficient to see the vacuum fluctuations of the oscillator if it
were free of thermal motion. For typical macroscopic mechanical oscillators, this
is never true, unless the environment is maintained at a temperature of 10~* K—an
enormous technical challenge. Nevertheless, the preparation and stabilization of the
vacuum state of the oscillator is crucial.

1.2 Outline of this Thesis

In the work reported in this thesis (in Chap. 6), the problem of stabilizing the vacuum
state of the oscillator is solved by turning it on its head. Firstly, a measurement of
the position fluctuations of an oscillator is made, which is sufficiently sensitive to
resolve the vacuum fluctuations of the oscillator before it is overwhelmed by the
environment. For the system employed, this corresponds to operating a factor 10*
below the SQL. The measurement back-action associated with such a measurement
is observed in our experiment. As the next step, this information is used to actively
stabilize the vacuum state of the oscillator using feedback [58]. At the time of writing,
this remains the sole example of active feedback of a mechanical oscillator to near
its ground state.

In a second experiment (in Chap. 7), the capability to feedback control the oscilla-
tor near its ground state is employed to study the subtle nature of the act of measure-
ment itself [59]. In particular, information regarding the “system” (the mechanical
oscillator) is transferred to the “meter” (light) via correlations created between either
system. These tiny correlations—whose magnitude is comparable to the vacuum fluc-
tuation of the oscillator—are measured using the feedback technique. Feedback is
used to suppress the back-action due to the measurement, so that the underlying
correlations can be revealed.

Naively, it appears that feedback control can be used to completely circumvent
measurement back-action; however, we show that this is not the case. In order to


http://dx.doi.org/10.1007/978-3-319-69431-3_6
http://dx.doi.org/10.1007/978-3-319-69431-3_7

1.2 Outline of this Thesis 9

understand why this is, one needs to realize that the state of the “meter” (light) is
not directly accessible—a final measurement step, involving a classical “detector”
(a photo-absorptive detector) is necessary. The output of such a detector invariably
contains traces of the vacuum fluctuations of the meter. In our experiment, when
this output is used to perform feedback control, the vacuum fluctuations of the meter
therefore act back on the system, leading to what we call feedback back-action.
Therefore, although feedback suppresses measurement back-action, feedback back-
action cannot be suppressed. We experimentally observe this to be the case, and
interpret the result as a fundamental limit of measurement-based feedback control.

1.2.1 Organization of Thesis

The experimental results reported in this thesis—in Chaps. 6 and 7—tely on a wide
range of theoretical and experimental techniques. Chapters2 to 5 provide a review
of these preliminaries. The excursion begins in Chap. 2 with a concise (and therefore
necessarily abstract) description of linear quantum systems, including continuous
linear measurements. The theoretical formalism and vernacular developed therein,
forms the conceptual backbone of much of the thesis. Chapter 3 delves into a descrip-
tion of the actors that take part in the experiment—phonons and photons. Follow-
ing a brief description of low-energy phonons and their quantisation in Sects. 3.1
and 3.2 gives an account of the electromagnetic field. In particular, Sect. 3.2 devel-
ops a formalism to describe the fluctuations of the electromagnetic field, and their
measurements. Chapter 4 details how photons trapped in a cavity couple to phonons
describing the effective elastic deformations of the cavity; a simplified (single-mode)
description of this phenomena gives the standard theory of cavity optomechanics
[56]. This chapter then describes the phenomenology of cavity optomechanics and
how such a coupling can be used to realize a continuous linear measurement of the
position of an oscillator. Chapter 5 details the concrete realisation in which phonons
and photons interact linearly—a near-field cavity optomechanics system deployed
in a *He cryostat. Chapters 6 and 7 present the central experimental results of this
thesis.
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Chapter 2
Quantum Fluctuations in Linear Systems

Here are some words which have no place in a formulation with
any pretension to physical precision: system, apparatus,
environment, microscopic, macroscopic, reversible, irreversible,
observable, information, measurement.

John Bell

Despite John Bell’s eloquent tirade against the arbitrary division of the universe
into a system surrounded by an environment, the experimental physicist, due to his
limited means of enquiry, is forced to subscribe to a well-defined notion of what
is considered the system under study. In the example relevant to this thesis, it is a
macroscopic mechanical oscillator. Everything beyond, is the environment. In this
sense, the measuring device—the meter—is a form of environment, the crucial dif-
ference being that the experimenter has the ability to prepare it in well-characterised
(quantum) states. In this thesis, the meter is an electromagnetic field that interacts
with the oscillator.

The purpose of this chapter is to provide a reasonably self-contained presen-
tation of a few basic results pertaining to a certain class of interactions—Iinear
interactions—between a system and its environment. When the environment in ques-
tion is a thermal bath at finite temperature, classical (thermal) fluctuations drive the
system; at zero temperature, quantum (vacuum) fluctuations remain. When the envi-
ronment is a meter, fluctuations from the meter excite the system, an effect called
measurement back-action; when the meter is prepared in a pure quantum state—
measurement back-action is due to quantum fluctuations in its degrees of freedom,
i.e. quantum back-action. Ultimately, for an ideal measurement chain—a system in
contact with a zero-temperature thermal environment measured by a meter limited
by quantum fluctuations—the output of the meter will feature an additional source of

© Springer International Publishing AG 2018 13
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quantum fluctuations, called measurement imprecision, which, together with quan-
tum back-action, constraints the precision with which the system can be measured.
The rest of the chapter systematically unravels this tale.

2.1 Kinematics of Fluctuations in Quantum Mechanics

In the following we adopt the standard mathematical formalism of quantum mechan-
ics [1, 2]: to every system (not necessarily the system) is associated a Hilbert space';
the states of the system are the positive, unit-trace operators. The relation between this
abstract construct and the outcomes of experiments is through a set of distinguished
operators called observables, defined as follows.

Definition 2.1 (Observable) The observables are the self-adjoint operators in the
Hilbert space of the system.

If the system is repeatedly prepared in a definite state, say 0, and one of the observ-
ables, say X, is measured per preparation, the outcomes will be random real numbers
drawn from the eigenspectrum of the observable (self-adjointedness guarantees that
the eigenspectrum is real [1, 2, 5]). This random variable is drawn according to a
probability distribution.” The fluctuations of the random variable can be associated
with the operator,

sX:=X —<)2> where, <)A(> :Tr[)?,é].

In a large variety of cases, the statistical dispersion in the random variable may be
quantified by the variance,

Var [x] = (5)2*55() = <55<2>. @2.1.1)

In light of the following fact, the variance is positive.

Lemma 2.1 (Operator positivity) For any operator A, not necessarily self-adjoint,

it is true that <ATA >0, ie. ATA is a positive operator.

Proof Consider that the state p over which the expectation is taken, is represented
as,

It turns out that, on technical grounds, the framework of Hilbert space is too restrictive to realize the
flexibility of Dirac’s formulation of quantum mechanics [3, 4]; here, we will however be satisfied
with using the Dirac formalism rather than justifying each step of the usage rigorously.

2 A peculiarity of quantum mechanics is that although the value taken by each observable, for a fixed
state, can be assumed to be drawn from a classical probability distribution (exhibited in Appendix
A), there is generally no joint probability distribution for the values of a set of operators [6].
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where, p; > 0, and, (;]¥;) = §;;; such a representation is always possible [2].
Evaluating the expectation value gives,

(A14) = TrIAAp) = Tr [A*A > i w,-><1/f,-|} =" piwilAT Ay = > pill ALy 1%,

which is always positive by the property of norms on Hilbert space. O

The mathematical structure of quantum mechanics dictates that the variances of
a pair of observables, say X, Y, satisfies the inequality (see Appendix A for a proof
and further discussion),

sl = 4 (oo} + (07 =

conventionally called the uncertainty principle. The first inequality (due to Robert-
son [7] and Schrodinger [8] for pure states) is saturated for pure states defined as
eigenstates of the operator « X(S)A( + ayél? , with the constants oy y chosen to maxi-
mize the correlation term ({8 X,8Y 1 [9]. In contrast, the second (looser) inequality
(due to Heisenberg [10], Kennard [11], and Weyl [12]), obtained by omitting the
correlation term, is saturated by the same eigenstates for any value of the constants

(2.1.2)

axy.

The physical content of the uncertainty principle (Eq.2.1.2) is that the measure-
ment outcomes of the pair of observables X, Y, on identical and independent prepa-
rations of the system, have a fundamental statistical dispersion. It is thus a purely
kinematic statement devoid of any a priori relevance to the notion of “simultane-
ous”, or “sequential” measurements.> It is best interpreted to mean that there exists
no state which is jointly dispersion-free for certain pairs of observables—a distinctly
quantum mechanical feature [6, 17].

Before describing an approach to treating outcomes of continuous measurements,
and in an act of foresight, we generalize the definition of the variance of an observable,
given in Eq. (2.1.1), to the case of a general operator. Following [18], the variance of
an operator A, not necessarily self-adjoint, is defined by,

Var [A] = %({M*,M}). (2.1.3)

When A is self-adjoint, this reduces to the standard definition in Eq. (2.1.1); but when
itisn’t, Lemma 2.1 still ensures that,

3 Attempts to formulate inequalities applicable to sequential measurements [13—-16] give results
very different from Eq.(2.1.2).
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Var [A] > 0.

Since any non-self-adjoint operator has a Cartesian decomposition in terms of
two self-adjoint operators, i.e. A=X+iY, for X, ¥ self-adjoint, the uncertainty
inequality in Eq.(2.1.2) satisfied by the Cartesian components implies a bound for
the variance of the corresponding non-self-adjoint operator. The following lemma
codifies the resulting inequality.

Lemma 2.2 Forany (notnecessarily self-adjoint) operator A, the following inequal-
ity holds [18],
~ 1 PO
Var[4] = 5 ‘([AT, Am. (2.1.4)

Proof Denoting the Cartesian decomposition, A=X+iY, direct computation
shows that the variance, defined by Eq. (2.1.3), takes the form,

Var [A] = Var [X] + Var [Y] .

The sum on the right-hand side can be bounded by the arithmetic-geometric mean
inequality,* and subsequently the Heisenberg form of the inequality in Eq.(2.1.2),
leading to,

o o RN e B T A i

2.1.1 Operational Description of Fluctuations in Time

In order to treat system observables varying in time, the Heisenberg picture is most
convenient: the system is in some time-independent state 0, while its observables
undergo fluctuations due to the pervasive environment that the system is in contact
with. These fluctuations are reflected in the observables as deviations from their mean
values, viz.

SX(1) = X(t) — Tr [/3 )2(;)] .

The fluctuating part, §X(1), represents a continuous random variable—stochastic
process—taking values in the set of observables.

“4For positive real numbers x, y, it is true that x + y > 2./xy; this follows from the identity, (/X —

Y =0.
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In the following, we employ an operational description of the statistical properties
of the operator-valued stochastic process.’ In order to resolve the variance of the
process over the different time scales over which the fluctuations happen, we consider
the windowed Fourier transform,®

. 1o
sXMQ] = —/ 8X(t)e' dt, (2.1.5)
VT J-1p2

which is in general non-hermitian. The definition of the variance of a non-hermitian
operator in Eq. (2.1.3) then implies,

Var [5)?”)[52]] 1<{5x<T>[sz] 5)%<T>[sz]}>

/2 4 o
_ _/ 8X(t) 5%, (r)}) 201 45 df!

772 2

T/2 4
—/ 8X(t—t) 8X(0)}> &= qr '
)2 2

/TT/; % <{5)2(r), 5)2(0)}) (1 — %) dr.

Note that here and henceforth we assume processes are weak-stationary, i.e. that
their first and second moments are time-translation invariant. In the limit 7 — oo
(i.e. the limit of infinite resolution in frequency), this variance defines the function,

Sxxl€1:= lim Var [s¥D(01] = / ”

—00

1 v v iQt
<§{8X(t),8X(O)}>e dr,  (2.1.6)

characterising the distribution of the variance of the process about each frequency.
The second equality, giving the value of the limit, is the analogue of the Wiener-
Khinchine theorem [25, 26].

SThere exists two, progressively finer, levels of description of the evolution of a quantum system
in contact with an environment. The coarse description concerns itself with the time evolution of
observables, and some of its statistics. The finer description addresses the question of how the
quantum state itself changes. The former is subsumed by the latter in a variety of equivalent ways
[19-23].

5The normalisation warrants clarification: if the integrand were a classical Brownian process, its
root-mean-square diverges as the square root of the observation window, i.e. as T'/2, which is
checked by the normalisation. For a wide class of classical stochastic processes, a theorem due to
Donsker [24] guarantees that the integral limits to a Brownian process (a “functional central limit
theorem™)—the 7~'/2 normalisation is necessary. This result from classical probability theory
suffices to justify the normalisation.
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The function is reminiscent of the classical notion of a power spectral density.
Firstly, being a variance, Sx x[€2] > 0, at all frequencies and for any operator-valued
process. Secondly, being a distribution (obtained by applying the Fourier inversion
theorem [25] to Eq.(2.1.6)),

Var [3}2(;)] = <55{(0)2> - /: Sex[9 i—f, 2.1.7)

which exhibits the complementary aspect that the integral of the power spectral
density is the variance of the process §X(1). Equations (2.1.6) and (2.1.7) are fun-
damental properties of the symmetrised spectrum’ so defined, that render it useful
(irrespective of whether it is generically measured in an experiment [26-28]).

2.1.2 Spectral Densities and Uncertainty Relations

A formal hierarchy of spectral distributions generalise the above concept of the
symmetrized spectrum of an observable. For a general (i.e. not necessarily hermitian)
operator A, define its Fourier transform,

~ +OO ~ .
AlQ] = / A()e' dr, (2.1.8)
—0Q
and its inverse,
~ +00 R . dQ
A(r) = / A[Qle ™ —. (2.1.9)
oo 2

We shall denote by, A*[Q], the Fourier transform of AT(I); and by, A[Q]T, the her-
mitian conjugate of A[Q]. With this convention, AT[Q] = A[—Q]'. For an observ-
able, say X (1), it is further true that, X[Q]" = X[—], and so X[Q] = X[Q].

The unsymmetrized (cross-)spectrum of two operators A, B (not necessarily
equal) is defined as the Fourier transform of their unsymmetrized two-time cor-
relation function, i.e.,

+oo !

oo AT D i Qt AT 5 / dQ
Sa5lQ] :=/ <8A (t)83(0)>e’ dt:/ <6A [sz]aB[sz]> 5o (2110)

oo —00

which is in general a complex number at each Fourier frequency €2; here, the sec-
ond equality follows from replacing the operators with their Fourier transforms (i.e.
Eq.(2.1.9)). When the operators involved are weak-stationary, i.e.,

<A*(z)1§(r’)> = <A*(t - t/)é(0)>,

7Short for “symmetrised power spectral density”, by abuse of terminology.
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their unsymmetrized spectrum is directly related to their two-point correlation in the
frequency domain; specifically,

S\ s[Q] 27 8[Q + Q] = <5AT[52]51§[Q’]>

ie,  SaplQ]-278[0] = <3A[—sz]1'51§[—sz]>.
The last form makes explicit the symmetry,
SaslQ1" = Spal2]. (2.1.11)

The other algebraic property that is practically useful is bilinearity, which can be
expressed as follows: consider an operator which is a linear superposition of another
pair, i.e. A[2] = o1[R2]B1[2] + a2[2] B2[€2], then,

o1 [—2]Sap, [€2] + 2 [ =] S45,[£2]

(2.1.12)
af[—2]Sp, alR2] + a5 [—2]SB,4[2].

Saalf2] = [

These two properties allow for the practical computation of the spectra of operators
defined as linear superpositions of other operators. Concretely, if a set of operators
(arranged into a column vector) A= [A 17 are related to another set, B= [B 17, a

AilQ1 =D anlQIBi<l.
k
equivalently, A[Q] = «[Q]B[S],

for some (matrix e of) coefficients «;y, then,

San[Q1 =D o} [—Q1Sp,5 Q-]
k,l

equivalently, Saa[2] = a[— Q1 See[Q2e[—2]7.

The second form expresses the first as a matrix equation, where Sya denotes the
matrix whose elements are S4, 4, i.€. it is the unsymmetrised covariance matrix of

A in the frequency domain.
The physical motivation for the definition of the unsymmetrized spectrum becomes
obvious when considering the properties of the spectrum of a single operator, viz.,

SaalQ] - 27 8[0] = <aA[—Q]T3A[—Q]> > 0; (2.1.13)

specifically, Sa4 is real, and positive. Mathematically, the positivity follows from
lemma 2.1; its physical content is that S44 can be interpreted as (being proportional
to) the transition probability of a process mediated by an interaction that couples the
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system to its environment via the operator A[—Q] [29-31]. In classic examples in
quantum optics [30, 31], the operator may be the destruction operator of a photon in
which case the spectrum is the output spectrum of a photodetector [32], or, it may be
the raising/lowering operator for an atomic level in which case the spectrum is the
absorption/emission spectrum of that level [33].

Pairs of spectra of operators, in analogy with the variances of pairs of observ-
ables, satisfy an inequality reminiscent of the (Robertson-Schrodinger) uncertainty
principle (Eq. (2.1.2)).

Proposition 2.1 (Spectral uncertainty relationI) The spectra of any pair of operator-
valued stochastic processes, A(t) B(t) that are weak-stationary, satisfies the
inequality,

SaalQ1S5512] — [Sas[R]]> > 0. (2.1.14)

Proof A slick proof follows by a direct adaptation of the one used by Roberston to
originally establish the uncertainty relation in Eq. (2.1.2) (see Appendix A), as done
for example in [20]. For a pair of observables, a simpler method is as follows: define,
A;Ix (1) = A(t) + )\l}(t), for some complex A. From Eq.(2.1.13), it must be that,
Su, i, [2] > 0 for all A. Writing this out explicitly using the bilinearity (Eq.(2.1.12))
and symmetry (Eq. (2.1.11)):

Sy v, = Saa + |A1* Sgp +2Re AS4p > 0.

This trivial inequality can be tightened by replacing Sy, », with miny Sy, p,. A
straightforward exercise shows that the minimum is achieved for,

S
A= Amin = [Sas] exp (i arg S}p),
Spp
for which the inequality reduces to the required result. ([

Returning back to physics, it may happen that in some situations, distinguishing
between an emission and an absorption event may not be possible. To model the
outcomes of such cases, we introduce the symmetrised spectrum,

_ +o00 1 . R . 1
Sa5l9 = / <5{8A'(t>,63(0>}>e’9‘dr=E(SAB[QHSBTAT[—Q]),

—00

which is a complex quantity in general. For the case of an observable, say X, with
X' = X, we have,

- 1
Sxx[$2] = E(SXX[Q] + Sxx[—=K2D), (2.1.15)

i.e. symmetrisation in ordering is equivalent to symmetrisation in frequency. Note
that this formally-motivated definition is equivalent to the physically-motivated one
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givenin Eq. (2.1.6), allowing the symmetrized spectra of observables to be interpreted
as the variance of the observable process.
The frequency symmetry,

Sxx[2] = Sxx[-Q], (2.1.16)
suggests that the single-sided spectrum defined by,
Sx[Q] := 2 Sxx[Q], for >0,

encodes the full information contained in the double-sided symmetrised spectrum
Sxx[] of an observable X. In terms of the single-sided spectrum, the variance of
the process is,
- R dQ
Var [axm] - / SylQ] ==,
0 2m
The single-sided spectrum thus defined is apparently equivalent to the conventional
definition of the spectral density of a real-valued classical stochastic process [34].
Despite similarities to classical spectral densities at the level of definition, the
lack of commutativity of time-dependent observables amongst each other, and even
amongst the same observable at different times, leads to certain basic quantum
mechanical conditions on the symmetrized spectra. Firstly, any observable will fea-
ture a fundamental level of statistical dispersion, preventing it from saturating the
naive lower bound in S‘X x[€2] > 0; secondly, two (or more) observables will never be
jointly dispersion-free at all frequencies. These constraints, expressed respectively
in Propostitions 2.2 and 2.3 that follow, may be viewed as the irreducible content of
quantum mechanics expressed at the level of spectra.

Proposition 2.2 (Spectral minimum) Any observable X of a quantum mechanical
system satisfies the inequality,

Sex[Q] > % ‘/:<[8f((t), 5)?(0)]>e"9’ dr

. 2.1.17)

Proof Using the definition of the spectral density Eq. (2.1.6), together with the uncer-
tainty relation Eq.(2.1.4) gives the crux of the inequality, viz.

SxxlQ] = Jim Var [8)2<T)[sz]] > Tlgréoé ’([5}2”)[91,32(“[9]*]”.

Expressing the windowed Fourier transform in terms of the time domain operator,
and employing the weak-stationary property results in,
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1 T/2

SXX[Q]z% lim 4/2([5)?(;—t/),5}?(0)]>ef9<’—”>dtdt’
=% lim _Z([a;?(r),a)?(O)D(l —|iT|) P dr'
:% 1w<[52(r),sﬁ(0)]>eiﬂf dr|;

the second equality is obtained from a change of variables, while the third follows
from evaluating the limit inside the integral. (]

If X () were classical, its spectrum Sy could in principle exhibit no statistical
dispersion—when X is deterministic—in which case, Syx[€2] = 0. However, as per
Propositition 2.2, such a dispersion-free situation is untenable for a quantum mechan-
ical process, unless [Bf( (1), sX (0)] = 0. This motivates the following definition of
a continuous observable.3

Definition 2.2 (Continuous observable) An observable X (1) is said to be a contin-
uous observable iff. A .
[X(), X()]=0. (2.1.18)

They are also called “quantum non-demolition” observables [37, 38], to emphasize
the fact that generic observables do not satisfy this constraint, and therefore cannot
be measured without causing disturbance.

Given a pair of continuous observables—i.e. which individually feature no sta-
tistical dispersion—they may still exhibit a joint statistical dispersion; a feature
that is classically impossible. The following proposition encodes this idea and it
may be viewed as a generalization of the Robertson-Schrodinger inequality given in
Eqg.(2.1.2) to the case of continuous observables.

Proposition 2.3 (Spectral uncertainty relation Il) A pair of continuous observables
X, Y of a quantum mechanical system satisfying the (cross-)commutation relation,

(X0, ()] =iCxre =), o [R191V121] =iCxr[Q1 - 27 812+ ]
satisfy the following inequality for their symmetrised spectra:
‘2

_ _ _ 11/A 2
Sxx[Q1Syy191 = [Swief + 5 ’<ny[52]>) (2.1.19)

8Note that the notion of a continuous observable, as introduced here, is very different from that
of a continuous variable used in the context of quantum information [35, 36]. The latter refers to
hermitian operators (i.e. observables) whose eigenspectrum is continuous. The former, as used here,
refers to time-dependent observables (with a continuous, or discrete, eigenspectrum) which can (in
principle) be continuously monitored in time.
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Proof The strategy is to specialise the uncertainty relation for unsymmetrized spec-
tra, given in Proposition 2.1, to the case of continuous observables. The uncertainty
relation gives,

Sxx[Q1Syy[Q] — ISxy[Q1* = 0.

To translate it into symmetrized spectra, note the following identity,

Sey[€] :/<5)2(r)51?(0)>e"9’ dr

=/<§ {5}2@),5?(0)} +1 [5}2(r),3?(0)]>e"9f dr

= Sxr(21+ 5 (Curig).

Inserting this expression for Sxy into the inequality and simplifying gives the
result. ]

Having developed the theoretical apparatus to deal with statistical properties of
operator-valued stochastic processes, the next two sections will apply them to the
case where a system is coupled to a thermal environment, and a meter, respectively.

2.2 Dynamics Due to a Thermal Environment

Consider a system, with a prescribed average energy, in equilibrium with an envi-
ronment. The state of the system—described by a single parameter, the temperature
T—is the one with the maximal entropy compatible with the average energy [2].
This unique state is the canonical thermal state,

e—PBHo

Z

pp = , 2.2.1)

where B = (kpT)~' is the inverse temperature, FAIO is the free hamiltonian of the
system, and Z = Tr e #H0 is the partition function that ensures the normalisation of

the state, i.e. Tr pg = 1. At zero temperature (8 — o00) the canonical thermal state
picks out the ground state of the hamiltonian, i.e., fg_.o0 = [0)(0].

In a thermal state, the observables of the system, {)A( i}, are weak-stationary; i.e.,
their mean values are constant, while their second moments are time-translation
invariant:

()= (%:0)

<)A(i (l)Xj(t/)> = <)2‘l (t — t/))?j (0)> (2.2.2)
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These identities follow from the observation that the hamiltonian Ho, and hence
the propagator U, = exp(——Hot) commutes with the thermal state. Such states—
stationary states—feature weak-stationarity of observables. However, the thermal
states are distinguished among the stationary states by the following property, which
is a generalisation of the principle of detailed balance.

Lemma 2.3 (Kubo-Martin-Schwinger [39, 40]) The observables, {X i}, of a system
in a thermal state at inverse temperature 3 obey the identity,

<)2[ X (0)> = <)2j(0)f(,» (t + ihﬂ)> (2.2.3)

or equivalently,
Sx.x,[Q1 = "™ Sy x,[-Q1. (2.2.4)

Proof Ignoring questions of rigour (see [41] for a remedy), the proof follows through
a straightforward algebraic manipulation viz.,

<)2i(t))2,- (0)> =Tr :/3,9 X; (t)f(j(O)]

=T [e 0. 07 R (0)0, - P e P %50)] 2!

=Tt [e PR (0) - (e‘ﬂﬁ°0,*))?i(0)(0teﬂﬁ°)] z"!

=Tr pﬂ X (0) l+lhﬁXi (O)0t+ihﬂ:|
— <Xj(0)x,~(r + ihﬂ)>-

The frequency domain form, in Eq.(2.2.4), can be proven starting by taking the
Fourier transform of both sides and using the stationarity property, viz.,

SX,X/- [Q] = /<)A(,'(t)f(j(0)>eiﬂf dr = /<)A(j(0))2i(t + ihﬂ)>emt dt
= /<)A(j(—t — ihﬂ))?i(o)>ei9t dt = /<)2j(ﬂ))?[(()))EiQ(it(iihﬂ) dr’
= [ (200X 0) e = 05y -

]

On the one hand, the KMS identity (Eq.(2.2.3)) may be seen as controlling
the commutativity of observables in a thermal state: in the high temperature limit
(B — 0), it implies that all observables commute—evocative of classical behaviour.
On the other hand, its frequency domain form (Eq. (2.2.4)) may be interpreted as a
detailed balance principle: the ratio of the forward and reverse transition probabili-
ties, represented by the ratio of the unsymmetrised spectra, is given by the thermal
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exponent. Perhaps more profoundly, it can be shown that’ for a time-translation
invariant system, if all operators satisfy the KMS identity pairwise, then the system
is in the canonical thermal state pg. Thus the properties expressed in Eqs. (2.2.3) and
(2.2.2) (almost completely) characterize the kinematics of thermal equilibrium.

Having thus described the essential structure of a thermal state, in the following,
fluctuations due to a system being in such a state will be analysed. Essentially, this
requires a model that describes the interaction between the system and its thermal
environment, and then a procedure to calculate the dynamics of the system variables.
We suppose that the interaction is mediated by a linear coupling between the system
and the environment, modelled by an interaction hamiltonian,

Hino= > XiF;, (22.5)

that couples the observable X toa generalized force F; which is a self-adjoint
environment operator. Once the interaction is fixed, multiple approaches exist to treat
the dynamics of the system [23, 30, 42]; we adopt the linear response formalism
[39, 43, 44], enshrined in the following celebrated result.

9An outline of a proof is as follows (see [41] for the setup required to justify some of the
steps). Assume then that there is some state 6 for which all operators (not just observables) of
the system satisfy Eq.(2.2.3); i.e. (A(¢)B(0)) = (B(0)A(t 4+ i hp)), for all operators A, B. Time-
trgnslagion invariapccA means that only the case + = 0 need to be considered, i.e., (A(0)B(0)) =
(B(0)A(ihB)) Y A, B. Dropping the time argument and writing this out with the unknown state p
explicitly,
Tr[pAB] = Tr[pBe P AePo] VA, B.

This can be expressed in two different ways. Flrstly, since it applies for any A, it must also apply
for A = eﬁH“ in this case, Tr[peﬂHOB] Tr[ef‘HUpB] \4 B implying that,

ﬁeﬁl:lo — eﬂl:loﬁ
Secondly, permuting within the trace gives the alternate form, Tr[BpA] = Tr[ef Ho pBe P ﬁ"A] A
A, B, implying that,
Bp = eﬂﬁoﬁée—ﬂﬁo
ie., éﬁeﬁﬁo = e’sﬁ“ﬁé v B.
Combining the results from the two forms gives,
Eeﬁﬁ“ﬁ:eﬁﬁoﬁé v B,

i.e. the operator ¢? P 0 commutes with every operator in the Hilbert space. This means that it must

be proportional to the identity operator, i.e. eﬁHOp x 1,0r poxe ~FHo The normalization of the
state fixes the proportionality constant.
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Lemma 2.4 (Kubo) Ifa system is presumed to be maintained in a thermal state by
a linear coupling to the environment, i.e. by a hamiltonian of the form,

Hp(t) = Ho+ D X; Fi (o), (2.2.6)

where F; is the generalised force corresponding to X, then fluctuations in the system
observables are given by,

8X (1) :/ > Xt =) 8F () dr,
A L 22.7)
or, 8Xj[Q]=ZXjk[Q]8Fk[Q]v

k

where, the “susceptibilities” x ji are (here ©(t) is the Heaviside step function),

X0 = =200 (1X,0). £u(0)]). (228)

Proof Standard time-dependent perturbation theory as for example in [45]. (]

Formally, the power of the Kubo formula in Eq.(2.2.8), is that it relates the
response of the system to an external influence in terms of expectation values of the
system operators taken on the equilibrium (thermal) state of the system. Practically,
the great advantage of the linear response formalism is that by relating the fluctuations
in the system’s observables to the fluctuations of a generalised force, it suggests an
avenue to probe the system: coherent response measurements—harmonically driving
Fk and observing its effect in X, j—give access to x;x[S2], which then predict the
incoherent behaviour of the system in the absence of an explicit stimulus. Within
the regime of its validity, the linear response formalism is pervasive in physics [26,
46-49].

For the set of observables that are assumed to directly couple to the environment—
those in the interaction hamiltonian in Eq. (2.2.5)—the spectral uncertainty relation
(Eq.(2.1.4)), and the Kubo formula, imply a couple of general properties.

2.2.1 Effect of Fluctuations from a Thermal Environment

Proposition 2.4 (Fundamental fluctuations) Observables of the system that directly
couple to the environment exhibit fluctuations, whose spectra Sy, x,[2] have a mini-
mum positive value,

Sx,x,[Q2] = h [Im x;[]]. (2.2.9)
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Proof Proposition 2.2 already states that spectra of operator-valued stochastic
processes have a minimum value dictated by the expectation value of its commutator
(in any state), i.e.,

Syx (2] > % ‘/_Z<[5)2i(t), 5)@(0)]}89’ dr

When the state is the thermal state, the Kubo formula Eq. (2.2.7) relates the expec-
tation value of the commutator to the susceptibility. This can be incorporated by
splitting the integral, and using the symmetries of the susceptibility, viz.,

N =

Sx,x,191 > /O ([a)?i(t),a)?i(O)DefQ’dt+/0°O<[5)?,~(t),a)2i(o)]>ei9tdr

—0o0

/Ooo <|:5)A(i(—l), 85(1‘ (0)]>e—i£2t dr + /OOO <|:8)A(i(l)’ SJA(I‘ (0)i|>€im dr

> 8X; (1), 8X(0) |) (¥ — =18 at
Ll IS )

o0
= h‘/ Xii (¢) sin(2t) dt
0

N = N =

The third equality follows from the odd property of the average of the commutator of
a weak-stationary operator, i.e. ([§X;(—1), 8X;(0)]) = —([8X; (1), 8X;(0)]), while
the fourth employs Eq. (2.2.8). Since the sine-transform is the imaginary part of the
Fourier transform, the right-hand side becomes 7 |Im ;;|. U

Proposition 2.4 signifies that once a system is coupled to a thermal environment
via a linear coupling through its observable X;, then that observable exhibits a funda-
mental fluctuation that depends on the details of the coupling (i.e. the susceptibility),
but not the temperature. Tentatively, and with foresight, the minimum value of the
spectrum may be identified as the spectrum of vacuum fluctuations of that observable.

Clearly the imaginary part of the susceptibility plays a prominent role in deter-
mining the fluctuations in system observables in a thermal state. From the expression
for the imaginary part of the susceptibility,

Im x;;[2] = —%/ (xij (1) — xij(—1)) %" dt.
is is clear that it characterises the lack of invariance to time-reversal ¢t — —¢, and
thus captures the irreversible character of the system once it is coupled to the envi-
ronment. On the other hand, the coupling to the environment leads to fluctuations
in the system’s observables, characterised by the bound Eq.(2.2.9). It is therefore
natural to enquire whether a precise equality exists between the imaginary part of
the susceptibility and the spectrum of observables that codifies the shared origin of
fluctuations and dissipation.
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Proposition 2.5 (Fluctuation-Dissipation) For a system maintained in a thermal
state through its contact with an environment, the fluctuations in the observables
that couple to the environment are characterised by the relation,

Sx,x,[Q1 = h2ng(Q) + DIm x; (2], (2.2.10)
where ng(2) is the Bose occupation at frequency Q2 and inverse temperature f,
ng(Q) = (" — 1)~ (2.2.11)

Proof First we prove a slightly general result and then specify to the case at hand.
Starting from the left-hand side of Eq. (2.2.10) in the time domain:

i I
Im x;;(¢) = ) (xi; () — xi; () = ) (xi; (1) — xji(=1)).

Using the Kubo formula (Eq.(2.2.7)), and employing time-translation invariance,
the susceptibilities can be expressed in terms of correlators (which are the inverse
Fourier transforms of the unsymmetrised spectra),

xij (1) = —%@(r) (Sx.x, (£) — Sy, x,(—1)
Xji(—1) = —%@(—r) (Sx,x,(=1) — Sx.x, (1)) ,

which gives,

Im x;;() = Sx,x,; (1) — Sx,x,(—1)) .

2h(

Now using the KMS condition (Eq. (2.2.3)), the order of observables in the second
correlator canbereversed, i.e. Sx, x, (—1) = Sx,x; (¢t — ihB). Inserting this back gives,

-1
7 (Sxox, (1) = Sx,x, (¢t — i) .

Im x;;(t) = o

Fourier transforming each side and re-arranging results in
2h
Sx.x, 2] = l—emlm xij[€2], (2.2.12)

which relates the unsymmetrised cross-spectra with the susceptibility. For the
required result, we consider the case X = X;, and the symmetrised spectral density,
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Sx,x [R2]1 = = (Sx,x,[Q] + Sx,x,[— 1)

A

S+ e PP Sy x, (2]

eﬁhﬂ _I_l
(m) Im ;i [€2];

here, the first equality is the symmetric property of the spectral density (Eq. (2.1.15)),
the second follows from the detailed balance condition (Eq.(2.2.4)), and the third
from Eq.(2.2.12). Replacing the exponentials in terms of the Bose occupation
(Eq.(2.2.11)) gives the result. ([l

The fluctuation-dissipation theorem (Eq. (2.2.10)) relates the fluctuations in the
system to the system-environment coupling, and the environment state (determined
by the single parameter, temperature). The bound in Proposition 2.4 (Eq.(2.2.9)), on
the other hand, follows from the non-commutativity of the observable and not on the
properties of the environment, and is therefore a more general statement. Notably,
the zero-temperature limit (8 — oo, for which ng[Q2] — 0) of Eq.(2.2.10) gives
Eq.(2.2.9), motivating the interpretation that the lower-bound in the latter is due to
intrinsic—vacuum—fluctuations in the system.

An important corollary of the fluctuation-dissipation theorem is that the spectrum
of fluctuations of the system observable can be referred to an effective spectrum of
the generalised force. In the case where only one observable, X, is coupled to its
generalised force F, the respective spectra are given by,

Sxx[Q]=h(2ng(Q) + 1) Im x[Q]
= Spr[Q] = [x[Q117% Sxx[Q] = h (2n5(2) + 1) Im x[Q],

where yx [€2] is the sole susceptibility involved.

2.3 Dynamics Due to a Meter

Quantum mechanically, a mefer—a measuring device—is a specific form of envi-
ronment from the perspective of the system. During an act of measurement, the
system is coupled to a meter. The meter, being a quantum mechanical system itself,
has intrinsic fluctuations in its variables. Via the measurement interaction, this leads
to additional fluctuations in the system variables. Such fluctuations are called mea-
surement back-action. Unlike a thermal environment however, the meter needs to
be ideally prepared in some non-equilibrium state,'” meaning that the fluctuations

10This is because the meter is expected to output a classical record of the system observable being
measured; this can only be arranged for if the states of the meter corresponding to the various values
taken by the system observable are macroscopically distinguishable [50].
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imparted by it are not determined by the fluctuation-dissipation theorem. However,
bounds for the imparted fluctuations can be derived under the minimal assumption
of the system-meter coupling being linear and weak.

Very generally, a continuous linear measurement of the observable X may be
described by an operator Y corresponding to the output of a detector. Linearity means
that'! ¥ (1) o« X(¢). Since we assume that ¥ (¢) is the output of a detector—i.e. the
measurement record—it must certainly be a continuous observable, i.e.,

[?(z), ?(r’)] =0 23.1)

However, in general, the system observable, X, is not a continuous observable. For
Y to commute with itself, while X does not, it is necessary that the record be con-
taminated by some additional process X,, (1), arising from the meter,'? so that the
combination, . . .

Y(t) =X@) + X, () (2.3.2)

is a continuous observable. The two equations above operationally characterise the
class of so-called continuous linear measurements [20, 26].

2.3.1 Effect of Fluctuations from a Meter

Proposition 2;6 (Standard Quantum Limit) When a meter provides a continuous
linear record Y (t), of the observable X (t) of a system, the spectrum of the output is,

Syy[] = 2 - min Sxx[Q] = 2k [Im xxx[Q]], (2.3.3)
when no correlations exist between the system and meter. In other words, the mea-

surement record contains at least twice the minimum noise in the observable being
measured.

Proof The spectrum of the output Y (in Eq.(2.3.2)) is,
Syy[2] = Sxx[Q] + Sx,x,[2] + 2Re Sxx, [Q].

Assuming no correlations between the system and meter, the last term can be
neglected, and so,

'The most general linear relationship is of the form )A’(l) = f f (t))A( (t — t')dt’, corresponding
to a filtered version of the observable. However, without loss of generality, the filtering may be
considered as happening on the classical measurement record, after the detector.

120n the other hand, if it can be arranged that the observable X already satisfies [}A( (1), X ] =0,
i.e. it is a continuous observable in the sense defined in Eq.(2.1.18), then there is in principle no
additional contamination.
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Syy[Q] = Sxx[Q] + Sx,x, [2].

The bound set by vacuum fluctuations (Eq. (2.2.9)) implies a lower bound for the spec-

trum of the system obser\_/able Sxx:ie. Sxyx = h |Im xxx|. The remaining task is

therefore to lower bound Sy, x,. The continuous observability condition (Eq. (2.3.1))

implies that the commutators of X, and X are related, viz.,

[X,(1), X, (t)] = —[X (1), X(t")].

Now applying the minimum noise bound, in Proposition 2.2, to X, gives,
_ 1 o ~ A .
Sk, = 5 ‘ [ (st 65,0} a
—00

_ % ‘/_Oo <[5f((t), 3)?(0)])&‘” dr

> h [Im xxx[€2]].

Here, the last inequality follows from arguments given in the proof of Eq.(2.2.9).
Ultimately, B B
Syy[£21 > 2k [Im xxx[2]] =2 - min Sxx[€2].

O

Conceptually, the standard quantum limit (Eq. (2.3.3)) states that quantum mechan-
ics extorts a penalty twice: once in the form of the vacuum fluctuations of the observ-
able (as in Eq.(2.2.9)), and once more, the same price, in the form of unavoidable
fluctuations in the linear measurement process. This factor of two may also be under-
stood if the action of the meter is considered to be that of an abstract linear amplifier
[18, 51] whose role is to amplify the values taken by the system observable into a
classically recordable signal. This perspective sheds light on the relationship between
the standard quantum limit derived here for a general scenario, and the specific exam-
ple of the vacuum-equivalent noise that is added when simultaneously measuring the
canonically conjugate variables of a harmonic oscillator [52-56].

The standard quantum limit rests on the validity of the assumptions basic to its
existence being fulfilled in a given situation: (1) the system-meter coupling is linear,
(2) continuous, (3) stationary, and, (4) the system and meter states are uncorre-
lated. (Presumably, the adjective “standard” refers to this standard configuration.)
A violation of one or more of these assumptions can beat the bound in Eq.(2.3.3).
In the context of interferometric position measurement [57]—a prototypical exam-
ple of a continuous linear measurement—all these loop holes have been exploited
as a means to improve measurement sensitivity beyond the standard quantum limit.
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For example, quantum non-demolition techniques to measure position rely on a time-
dependent coupling between the system and meter [37, 38], violating the continuity
and/or stationarity assumptions. Injection of squeezed light into the interferometer
[58-60], or the use of squeezing generated within the interferometer [60, 61], relies
on harnessing system-meter correlations.
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Chapter 3
Phonons and Photons

The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction.

Sidney Coleman

The objective of this chapter is to introduce the dramatis personae of the quantum
measurement problem studied in this thesis. Nominally, the system is a mechanical
oscillator formed by a well-defined mode of a solid-state elastic resonator, excited by
its thermal environment under ambient conditions. The meter is an electromagnetic
mode of an optical (micro-)cavity, excited by a laser source. In Sect.3.1, a formal
description of the quantum mechanics of an elastic resonator is given, followed
by a brief treatment of a single mode of such a resonator in thermal equilibrium.
Section 3.2 tackles the analogous development for the electromagnetic field, first
describing the travelling wave field that excites the optical cavity, and then the cou-
pling of the cavity to the travelling wave field. True to Sidney Coleman’s observation,
both the mechanical mode and the optical mode are formally harmonic oscillators.
The concrete implementation of either oscillator will be introduced later in Chap. 5.

3.1 Phonons: Quantised Linear Elastodynamics

Bulk matter, existing in a state where its constituent atoms are bound to each other,
maybe assumed to form a continuum. When this system is in mechanical equilibrium,
its state at each instant of time maybe specified by the set of positionsr € V C R?

© Springer International Publishing AG 2018 35
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of the material constituents within the domain V that forms the continuum.! This
domain is the elastic body. Changes in the state of the body are described by the
transformation,

r —r—+u(r), 3.1.1)

wherein the constituents at position r get displaced to their new position u(r). u is

the displacement field, and the above map represents the deformation of the body.

We shall be concerned with elastodynamic phenomena that can be described by a

smooth displacement field, thus excluding phenomena like dislocations and fracture.
Note that Eq.(3.1.1) is essentially a geometric transformation of the body; we

shall therefore strive to describe and analyse its consequences in suitable language.
The strain tensor, defined by?

ou;
(e)) i
u () = —
Brj
is essential to the description of how distances between points in the body change

due to the deformation r — r + u in Eq.(3.1.1). In fact, the infinitesimal length
element’ ds? := dr;dr; changes to [7],

ds> = (dr; + du;)(dr; + du;)

= ri —dar; ri —dar,
81’]' J Brk k

~ dr;dr; + (ul(;) + uii)) dr;dr;
e)) (e))
= (Bij-’_(uij +uji ))dr,-drj.

Clearly, the symmetric part of u" plays the role of a metric tensor within the body.
The tensor u"’ maybe decomposed into three components [8], each describing
a possible motion of the body: (a) volume deformation—distances between con-
stituents changing in the same sense throughout the body—characterised by the scalar
Tru® = V - u; (b) shear motion—infinitesimal parallel planes sliding along each
other—characterised by the traceless symmetric tensor, %(uf}) + u;?) — %Tr u®;
and, (c) rigid rotation characterised by the anti-symmetric tensor, %(u 1(/1) — u_(,-li)). The
case of rigid translational motion is described by a uniform-in-space displacement

IWe implicitly assume a non-relativistic setting; in the contrary setting, the specification of the
preferred state r is untenable [1, 2]. However formulations which extend to the relativistic case
exist [2-5]; see [6, Chap. 15] for a historical review of the conceptual subtleties in a relativistic
theory of elastodynamics.

2Note the difference from the standard definition, as considered for example in [7]; we follow [8].

3For the rest of Sect. 3.1, we adopt the summation convention that whenever two indices are repeated,
they are implicitly summed over. For instance, dr;dr; = >, dr;dr; etc.
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field, and therefore has a null strain tensor. Elastodynamics does not concern with
rigid motions, henceforth, we may consider u" to be symmetric.
In addition to the strain tensor u", we consider the object,

2
@ ._ 9w
Ujj =

) 3.1.2
or;ory ( )

which describes the curvature of lines and surfaces due to the elastic deformation.
For example, the (flat) coordinate plane r; = 0 at ¢t = 0, is mapped to the (curved)
surface r; = u;(r, t) at later times t > 0. The curvature of the deformed surface is
quantified by the eigenvalues of the matrix (indexed by j, k) usz,)( [9].

Fortunately, still higher derivatives of the displacement field need not be consid-
ered. For, it is a theorem [9] that all the local geometric properties of surfaces in
three-dimensions are captured by combinations of the two tensors u‘", u®. This

concludes the essential aspects of the kinematics of the displacement field.

3.1.1 Classical Description of Navier-Euler-Bernoulli
Elastic Field

In order to derive the dynamics (i.e., equations of motion) of u, we appeal to the
principle of least action [10]. In Hamilton’s form, it dictates that the continuous
sequence of deformations 7 — u(r, 1), realised at each point in time, is the one that
renders the action,

dui du; 9w
L ui] = /dtL(t,ri,ui,l " u ) (3.1.3)

o’ 8_7'1" Brjark

stationary. Here L is the Lagrangian which is in general a function of time, spatial
coordinates, displacement field, and its derivatives. Note that the action is a functional
of the deformation field u, associating areal number with a given configuration u(r, 7)
defined over the spatial domain V. Simple principles maybe invoked to fix the form
of L, and thence to derive the equations of motion.*

In order to clearly identify and delineate the physical symmetry principles
involved, and the inference of L therein, we go through them in a sequence of steps:

1. The elastic body is assumed to conform to some loose notion of locality, so
that the Lagrangian L is a sum over a Lagrangian density’ . defined for each
infinitesimal sub-domain of V; in other words,

u; du;  0%u;
S ui] Z/df/d3r$ f,ri,ui,i,i, . . (3.1.4)
% ot Or; Or;or,

4See [11, 12] for a lucid articulation of this general idea, and [13, 14] for examples.

5By abuse of terminology, .# will also be referred to as a Lagrangian.
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The assumption of the principle of Galilean relativity [15, 16]: the description
of elastic phenomena is assumed independent of translations in time (by #;) and
space (by ry), uniform motion (by velocity v), and rotation (by the infinitesimal
rotation matrix R;;), i.e. the transformations

t—=1t+1
3.1.5)
ri = ri +roi + vt + Rijrj-

Invariance under translations in time and uniform motion are Newtonian pre-
cepts, which elasticity is expected to obey. Translations in space also fall in this
category for systems which evolve freely (i.e. not under the influence of an exter-
nal force)—here we consider elasticity in this form, where the deformation field
evolves under self-consistent forces imposed by deformations in the material.
Rotational invariance, on the other hand, requires additional assumptions about
the nature of the material forming the body. The description of crystalline material
are not invariant to arbitrary rotations, but only to a discrete set which describe
its symmetry [17]. We limit ourselves to amorphous material, which is the case
relevant to this thesis. For such materials, the various elements of the Galilean
transformation Eq. (3.1.5) maybe analysed as follows:

2.1 Translation invariance in time and space necessitates that the lagrangian be
independent of ¢, r; and u;, i.e.,
. D@
L= LG u) u). (3.1.6)
2.2 Invariance under uniform motion only affects rigid translational motion,
resulting in the deformation field u; (x, t) = v;z. In this case, the only term
in .Z is the one that depends on ;. This being a vector, rotational invariance
further limits possible terms to ones that are functions of the invariant i, ;.
The simplest non-trivial function provides the first term of the lagrangian,
viz.,
. 1 2 po. .
L u) uiy) = Sttt (3.1.7)
Here p is a positive real number—dimensional analysis shows that it is in
fact the mass density of the amorphous material.
2.3 Rotational invariance further constrains additional terms that depend on the
second and third rank tensor u", u®. These could contribute terms in the
Lagrangian so that . takes the form,

1 1
o gmui _ EU(I)[[M(I)]] _ EU<2> [«@], (3.1.8)
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24

25

where U are functionals of u"). The factors of } are conventional, while
the negative sign allows for the loose interpretation that UV (U?) is the
potential energy due to elastic stress (local curvature). In order to determine
the form of U¥, we seek refuge in the theory of tensor invariants [18].
Firstly we deal with the second rank tensor u‘". Since U a scalar formed
from a second rank tensor, we choose the simplest such term,
Hoa

UD = ajuf; ujy (3.1.9)

Recognising that u) commutes under multiplication gives the basic sym-

metry o;jr; = ap;;. The assumed translation invariance in space and time
(eY] (1

implies that «;ji is a constant. Finally the choice u; ;o= Uy implies
Qijkl = ®jig = k. Thus,
Qijkl = Cjig] = Qijik = Okljj- (3.1.10)

However «;i; cannot be any tensor that satisfies this symmetry relation—
the term U must be invariant under rotations. For second rank tensors in
three dimensions, such as u!, there are three such invariants [18]: Tru(D,
Tr [uP]%, and det u‘V. Since UV is quadratic in «‘, it must be that UV
is a linear superposition of only the first two, viz.,

UD =y [Tru®] + o Tr [u®]?

; [COIN¢! D42 IS¢
ie, auuluy = uluf) P+ pouf ).

(3.1.11)
Together with the symmetry constraints in Eq. (3.1.10), this fixes the form
of Qijjkls ViZ.,

"
Qijki = M1 6;j0u + 72(51'143,‘1 + 8k8i1), (3.1.12)

in terms of two constants (], i, carrying the dimension of elastic modu-
lus; 1 and % are the conventional Lamé constants [7]. Thus, we have an
amendment to Eq. (3.1.8):

p.. 1 H o
L = St — Eaijk,ul?j)u}d) ... (3.1.13)
The case of the third rank tensor #® is much more complicated; its invari-
ants in three dimensions are known [19, 20], and in principle can be used
used to determine the form of U® (up to a few constants). However, brevity
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compels restricting attention to the two dimensional—a membrane with neg-
ligible thickness—or the one dimensional—a beam with negligible thick-
ness and width—cases. In the former case, only the single transverse field—
displacement of the membrane surface orthogonal to itself—is relevant, while
in the latter case, there are two independent transverse directions. Choosing
Cartesian coordinates where the relevant displacement is u; (i = 1 for a
membrane, i = 1,2 for a beam), the lowest order invariant composed of

the elements, “1(?1 1(3 = g)l, g)z are the invariants of the 2 x 2 matrix

(indexed by j, k for each i) uf]z,l [21]. In particular, the two invariants are

conveniently expressed as Tr[ul. i k]2 and det [”1(121)(] so that,
(2) (2) (2) 2 2) () (2)
U™ o (ujyy +uin)” + (ujjiugy, — (”112) )

for each independent transverse motion u;. Since u® carries a dimension
of inverse length (unlike «‘" which is dimensionless), the proportionality
factor depends on a length scale set by the dimensions of the body. The
conventional choice is [21],

U® = KeM; [@D? + @) =200 = o - @D .

where K; is the elastic modulus, M; is the moment of inertia about the
axis orthogonal to i, and ¢ is Poisson’s ratio. Ui(z) represents the potential
energy due to curvature; for beams and membranes, a significant proportion
of energy in higher order elastic modes is due to curvature. Indeed, the equa-
tions of motion including this term gives the conventional Euler-Bernoulli
theory of beams [21]. We shall return to this later when treating the case of
a nanobeam, in Sect.5.1.

To recap, the action Eq. (3.1.3) is given by,

S ui] =/dt/vd3r.$, (3.1.14)

where the Lagrangian is (neglecting terms due to local curvature, u®),

1 X 1
L == zazlkl(a u;)(Ogu;) = 5 i — Etl’jsl‘j. (3.1.15)

In going to the second equality, we have defined the stress tensor,

fj o= il (3.1.16)
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This definition is essentially Hooke’s law for a linear elastic medium, with the Hooke
tensor ;i given by (Eq.3.1.10),

®jkr = 1870k + p2(8ikd 1 + 8kdin), (3.1.17)

where we have re-defined 5 — u, for notational simplicity, and to conform with
the definition of the Lamé constants currently in vogue [7].

The principle of least action asserts that the motion u(r, ¢) is the one that minimises
the action (Eq. 3.1.14), consistent with the appropriate spatial and temporal boundary
conditions. Since the three displacement fields u; are independent, such optimisation
maybe performed in a fairly standard manner by setting the functional derivative
%—f = 0. This gives the equations of motion of elastodynamics [7, 10] (see Appendix
B.1.1 for details),

p i = oijr 0j0u = (1 + p2)9;0juj + o 9,0 u; (3.1.18)
or, pii=(u+2u2)V(V-u)— s Vx(Vxu), o
and a set of natural conditions to be satisfied at the boundary 0V (see Appendix
B.1.2):
free boundary:  #;; Ay =0

(3.1.19)
fixed-surface:  u;|yy = 0.

The vectorial form of the equations of motion (Eq. 3.1.18) suggests the existence
of two types of elastic excitations (see Appendix B.2): transverse waves (correspond-
ing to V-u = 0) propagating with the velocity c; = +/u2/p; and, longitudinal waves
(corresponding to V x u = 0) propagating with the velocity ¢; = +/(iu1 + 2u2)/p.
These waves are the long-wavelength excitations of the underlying microscopic
medium, described by the effective theory of elastodynamics.

3.1.2 Quantised Modes of the Elastic Field

These excitations maybe quantised on equal footing® via the canonical method [22,
23]. An alternate, less formal, route will be pursued here. Firstly, we note that the
differential operator,

7 Yijki r_ 2 2
L= "229,8, or, L=c2V(V) =2V x (Vx), (3.1.20)
P

is self-adjoint with respect to the inner product defined by (here Vol(V) = |, v d*r),

Unlike electrodynamics for example, where the transverse excitations are constrained [22].



42 3 Phonons and Photons

1
Vol(V)

(v,u) := / v (r)u;(r) d’r,
14

as long as one of the boundary conditions in Eq. (3.1.19) is satisfied, and the Hooke
tensor satisfies the symmetry constraints in Eq.(3.1.10) (see [24], and Appendix
B.3). Therefore, the eigenvectors 1, (x) defined by solutions of,
I:ﬁn = w,%ﬁna
form an orthonormal set [25], i.e.
<ﬁnv ﬁn’) = 8nn/ (ﬁna ﬁn)a
and is complete [25], i.e.

u(r,t) = Zﬁn(r)x,,(t), (3.1.21)

for any valid displacement field configuration’ u(r, t). Here, the dimensions of w,
are such that x,, carries the dimension of a length. The Lagrangian,

L=/d3r$=/ (ﬁ(ﬁ,ﬁ)—l(u,ﬁu)) &,
v v \2 2

expressed in terms of the mode expansion (in Eq.3.1.21) takes the form:
_ my .o ky, ) . .
L= Z S0 = S = ZL (3.1.22)

i.e., it describes a sum of simple harmonic oscillators, one for each elastic mode with
generalised coordinates x,(¢). The nth oscillator is characterised by a “mass” m,,
[26], and “spring constant” k,,, respectively,®

mnz/plﬁn(r)lz d*r, and, knz/ w? i, (r)* d’r, (3.1.23)
\%4 14

and it oscillates at the frequency, 2, = /k,/m,,.

7Since we limit attention to a domain V which is finite, i.e. Vol( V) < oo, the operator I has a
discrete eigenspectrum [25], and so the expansion is necessarily a sum.

8Note however that there exists a freedom in the definition of the the generalized coordinates x;, (f):
as per Eq. (3.1.21), scale transformations of the mode function, u, (r) — Au,(r), requires that the
generalized coordinate transform as, x, (1) — 271, (1), so as to ensure that the physical elastic
deformation u(r, ¢) remains invariant. Such a scale transformation changes both the mass and the
spring constant associated with the mode n, by the factor A2, as per Eq.(3.1.23); thus, neither of
these quantities as defined is physical. However, the mode frequency €2, remains invariant to the
scale transformation, and is therefore physical.
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The lagrangian L, in Eq.(3.1.22), describes a discrete set of independent har-
monic oscillators, each of which can be quantised independently. Following standard
procedure [23], the commutation relations between the position operator %, and its
conjugate momentum 1, x,, can be implemented in terms of non-hermitian operators
by, b, defined by

by = QI Moy (1) G.1.24)
n = — 1 N P
2\ VA2m, R, NEm, 2,2

satisfying the equal-time commutation relations,

[5(0), B, 0)] = S0

These quantised excitations, due to the above commutator, are bosons — phonons
corresponding to the elastic deformation of the medium.’ The dynamics of each
quantlsed mode is most conveniently described by its hamiltonian [10], H, = m,,xz—
L,, given by,
oMy 2 m, Q2 A n

1
n_ 2 T
=hQ, |b'b,+ =], 3.1.25
2 2 n ( . 2) ( )

where the % arises from the intrinsic vacuum fluctuation of the mode. Note that the
mass of the oscillator only appears through the definition of by, in Eq.(3.1.24).

3.1.3 Mechanical Oscillator in Thermal Equilibrium

Focusing on one of the harmonic modes (and dropping the mode index henceforth),
with generalised position x (¢) and frequency 2,,, we are interested in its description
when it is in equilibrium with a thermal environment'® at temperature 7. Using the
free hamiltonian H (in Eq.3.1.25),

A an 1
H = hQn (blb+§)’

the equilibrium is described by the thermal state (see Eq.2.2.1),

9These phonons are the quantised excitations of the long-distance effective theory of the bulk
medium, i.e. elastodynamics; this has to be contrasted with the conventional phonon [27] that
results from a quantisation of the short-distance theory of atoms in crystalline order. Consequently,
the former—the one of interest here—falls at low energies (typically less than GHz), while the latter
falls at much higher frequencies (typically THz).

10That this can be done, i.e. that the equipartition principle applied to each mode gives the same
result as the thermal equilibrium of the full field u(r), requires explicit proof [28, 29].
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exp (=L 5
fm = (k”TA) :( ! )( P, th ) . (3.1.26)

Tr exp (—kBLT) N+ 1) \mm + 1

In the second equality, the state is parametrised in terms of the mean phonon occu-
pation,
A 1 kgT
n ::Tr[bTbA]:— —  —.
m-h Pm eSm/ksT — 1 1yT>h0y hQn
The variance in the oscillator position, due to thermal fluctuations is given by,

Var [£] = Tr[%2pn] = Cnmn + l)xzzp, where, xzzp =S

(3.1.27)

It exhibits a contribution from vacuum fluctuations, i.e. the variance in the position
when the mean occupation is zero (ny, q, = 0), which defines the zero-point motion
Xyp-

pThe development of Chap. 2 allows for a finer understanding of the total variance
Var [)2], in particular, its distribution in time, or frequency. Specifically, the equilib-
rium thermal state in Eq. (3.1.26) may be modelled as being enforced by the coupling
of the oscillator to a generalised force, SI:"th (1), that describes the fluctuations of the
environment degrees of freedom [30-32]. A quantum Langevin equation can be used
to describe the resulting dynamics of the oscillator position, viz. [32, 33],

&% & . 8Fy,
S 4+Tns +@i="0 (3.1.28)

The damping rate, [';,,, introduced here characterises the coupling between the oscil-
lator and its thermal environment. The Fourier transform of the equation,

R[Q] = Q8 Fnl ],
where, x([Q]:= [m (—2>+ Q2 —iQly)] ",
determines the susceptiAbility, Xx,thatrelates the thermal force to the position. The role
of the thermal force & Fy,, is to maintain the oscillator in the thermal state pp,.'! The

fluctuation-dissipation theorem (Eq.2.2.10), essentially codifying this constraint,
implies that (in the case, I', < Qmn),

1t is worthwhile to point out that in fact, the equation of motion in Eq.(3.1.28), is inconsistent
with any legitimate quantum state when kg7 <« Ay, or, Al'y, 2 AQm [34-36]. Either regimes
are irrelevant to this thesis.
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o A 1
<8Fth(t)8Fth(0)> ~ thQmFm (nm,th + E) S(I)

_ 1
and, ST.[Q]~ 2iimQmn (nm,m + -) —>  2mlykpT.
2 ) kgT>hQm

The resulting (symmetrised) spectrum of the oscillator position, is given by,

Nm,th —+ E .

(3.1.29)

5u Q1 = x:[Q117 SEplQ] ~ “p (L)
XX = [ Xx FF ~ Fm (Qz_Qrzn)2+(Qrm)2

It is straightforward to verify that,
o de R
S:[Q] =— = Var %],
oo 2

confirming that the thermal force maintains the oscillator in a thermal equilibrium.
Finally note that the spectrum of the zero-point motion of the oscillator,

SP[Q) i= See[Qln, 0

achieved at zero temperature, exhibits a non-zero peak,

_ 2x22p
SP[Qm] = T (3.1.30)

m

An alternate description sheds light on the origin of the vacuum fluctuation com-
ponent exhibited in the position fluctuation spectrum S, [L2]. Applying the alternate
form of the fluctuation-dissipation theorem (given in Eq.2.2.12) for the unsym-
metrised spectrum, gives,

Sxx[2 > 0] = 2h(nmm + 1) Im x,[2]
Sxx [Q < O] = 2}‘:'/nm,lh Im XX[Q:L

where the second relation follows from using the detailed balanced condition
(Eq.2.2.4). These equations suggest an alternate, equivalent, description of the
mechanical oscillator. The behaviour of S,,[€2] is determined by the poles of the
imaginary part of the mechanical susceptibility Im yx,. The four poles,

1/2
FZ Fm FZ 1/2
Qu=4Qm |1 -2 Fi- 21—
292 T Qn 4Q2

coalesce to the two poles,
iy
Q* ~ ZtQm — T,
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one each on the left/right half planes, in the regime where I', < y,. This high-
Q approximation essentially amounts to assuming that the resonance at positive
(negative) frequency is due to processes that are independent of those at the negative
(positive) frequency. It must therefore be possible to introduce degrees of freedom
that describe these processes, and which, owing to the first-order nature of the pole at
either frequency, obeys a first order differential equation. The creation/annihilation
operators b, b" are precisely the required degrees of freedom. The equation of motion
[37],

dar

db _ (lQ +—)+f5bm(t) (3.1.31)

and its hermitian conjugate, model the two poles 2. The noise operator 8biy, satis-
fying
(851,118 (0)) = 8 0)

o (3.1.32)
(6610(1)353,(0)) = (1m0 + D).

models the thermal force due to the environment. Further, since the two processes at
positive and negative frequencies are independent, the double-sided spectrum of the
position fluctuations, x = Xp(b + b, may be expressed as,

Sex[R1 = x7, (Sprpt [Q1 + Spp[21)

_ % ( (Manss + D (T /2)° w0 (T /2)? )
" T \ @+ Q7+ (/27 (@ — 2 + (Tn/2)?

i.e. with no cross-correlations between the terms at positive and negative frequency.
The formal definition of the spectra of the (non-hermitian) creation/annihilation
operators may be used to interpret the term containing the vacuum contribution
(proportional to (1, 1 + 1)) as arising from environmental processes that excite the
oscillator, followed by a de-excitation, whereas the term devoid of vacuum fluctuation
(proportional to np, ) as arising from processes that happen in reverse. Clearly,
the oscillator, being quantized, cannot sustain a process where its vacuum state is
annihilated. However, the unsymmetrised spectrum S, [€2] is not typically measured;
the symmetrised spectrum, S, [§2], which can be measured, can no longer distinguish
between the two processes—Chap. 7 deals with this subtlety.

3.2 Photons: Description and Detection

The experiments reported in this thesis use coherent electromagnetic fields as a
measuring instrument. However, these fields themselves have to be measured in a
final step to decipher the information they carry. The realisation that the latter step
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needs to be analysed carefully arises from a certain conceptual tension: on the one
hand, light is a quantum mechanical entity, while on the other, the output of detectors
that measure it, are classical. The purpose of this section is to cut through the tension
using a formalism that adopts a quantum mechanical description of light, together
with a ideas borrowed from quantum measurement theory (outlined in Chap.2).
In addition, it will become apparent, later in Chap.4, that a quantum mechanical
description of light is central to the subject of this thesis.

The classical electromagnetic field propagating along a specific direction—
solutions of Maxwell’s equations with radiative boundary conditions [38]—in a
homogeneous isotropic linear medium is fully described by the Cartesian
components of its transverse vector potential.'> Fixing the propagation direction to
be along the z—axis, the transverse vector potential, A | (z,1) = (A,(z, 1), A,(z, 1)),
satisfies the property, A (z,t) = A1 (0, t — z/c), where c is the propagation speed.
It is thus sufficient to consider the field as a function of time alone, i.e. the quantity,
A (t) := A,(0, ). Further simplification is possible if the polarisation is fixed;
in this case, coordinates in the transverse plane can be chosen to coincide with the
direction of polarisation, allowing the propagating field to be described by the single
time-dependent function, A(r) = A (f)-e, where e is the direction of polarisation.

Quantisation of the electromagnetic field within this setting amounts to promoting
the field to Heisenberg picture operators, resulting in the expression [39],

N o he I/Z,A R 1)
A(t) :/ ( ) i (a[w]e @ —a[w]’e”") — 3.2.1)
0

,Sij_an) 21

together with the canonical commutation relations,
[a[w], a[w'T'] = 27 8[w — ], (32.2)

with all other commutators vanishing. The electric field corresponding to the vector
potential in Eq. (3.2.1) is,

. 00 . ) 12
E(t)=/ Ep(w) (&[w]e"“”+&[w17e’“”) dﬁ, where, Eo(w) :=( o ) .
0 2w | €yc

(3.2.3)

12The electric and magnetic fields are not independent degrees of freedom of the electromagnetic
field—this has to do with the two Gauss laws that constrain them. The scalar and vector poten-
tials, on the other hand, do provide the necessary degrees of freedom. The constraint imposed by
Gauss laws are identically satisfied by the vector potential, and fixes the scalar potential. Of the
remaining degrees of freedom—the components of the vector potential—choice of gauge leaves
two components free. These are the transverse components of the vector potential. See [22, 39] for
details.
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Each propagating mode, at frequency w, is thus described by the operator a[w].
Since they obey the commutation relation (Eq. 3.2.2) appropriate to a bosonic field,
the electromagnetic field at each frequency is due to a flux of bosonic excitations—
photons—in a quantum description. The operator d[w] @[w] describes the photon
flux through the transverse area .o/, ; it is thus customary to refer to a[w] as the
amplitude flux operator.

In order to describe a monochromatic field, consisting of a carrier of amplitude a
at frequency wy, it is necessary that the field a consist of additional fluctuations, viz.

alw) = a - 27 8w — ] + Salw — wel, (3.2.4)

where dalw — w,] represent fluctuations around the carrier. This is necessitated by
the basic commutation relation in Eq.(3.2.2) which precludes the possibility that
dalw] = 0. Considering field fluctuations in a frequency bandwidth 2A around w,,
ie.w € (wg — A, we+ A), the electric field operator in Eq. (3.2.3) may be expressed
as,

E(1) = Eo(wo)(@e™" +a*e'")
we+A . . dw
+/ Ey(w) (8&[0) —wele " + Salw — a)g]Te’“”) —
wy—A 27

— E()(Cl)(j)((,_leiiw” + a*eia}gt)

+A ) L dQ
+ / Eo(w; + Q) (8a[Qe™" @0 4 sa[Q] e/ ) 7
—A /g

here, Q2 = w — wy, denotes the frequency shift from the carrier. Typical optical fluc-
tuations that are detected are at frequency offsets, 2 <« wy; in this case, firstly
Eo(we + Q) = Eo(wo)/1 + Q2/w; = Ey(we), and secondly, the formal limit
A — 00 may be taken, so that,

2 +00 . . 400 ) )
E(t) ~ (L_l +/ 5&[9]3_19[@) e—la)ét + (C_l* +/ 5&[9]1‘&9[@) elwzl’
Ep(wy) —00 2 —00 2 (3.2.5)

Thus, the fluctuations about the carrier, a[€2], may be identified as the (double-sided)
Fourier transform of a time-domain operator da(¢) that varies slowly compared to
wy. The assumptions that lead up to the above expression defines the situation where
an elaborate multi-mode description of the electromagnetic field becomes equivalent
to that of a single time-varying mode,

a(r) = (a+sa@)e ", (3.2.6)
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with fluctuations at frequencies Q <« w; around the carrier. The operator a(t)
describes the amplitude of the photon flux per unit time. The commutation relations
in Eq.(3.2.2) (for the field at optical frequencies), imply that a[€2] (representing
fluctuations at much lower frequencies) satisfies,'”

[sa[Q], sa[Q]'] = 27 5[ — @],

3.2.7
or, [sa(r),sat)"] =080t —1"). ©2.7)

3.2.1 Quadrature, Number, and Phase Operators

If the expression for the amplitude operator in Eq. (3.2.6) were a classical one (i.e.
not an operator), then it could be equivalently expressed in two different ways: the
complex amplitude could be expressed as a Cartesian decomposition, or as a polar
decomposition, of two real numbers. Kinematically, the former would furnish a
description in terms of canonically conjugate variables of the single-mode, while the
latter, in terms of action-angle variables [10, 15].

In a quantum mechanical description, the first program can be succesfully carried
out via the introduction of quadrature operators,

84(t) :== —= (sa() +san)'),

Sl -

; (3.2.8)

§p(t) = ™G (sa@) —samn)’),

that satisfy,
[8G(),8p()] =i 8 — 1),

. . , (3.29)
or, [8411,8pIQ1] =i -275[Q — ],

in terms of which, the amplitude operator takes the form,

a(r) = (a IO '—Sp(t)) et

NN

The second program turns out be far less trivial in quantum mechanics. Ideally, one

(3.2.10)

would require an expression of the form, a = \/NT exp(i ®), with N, d self-adjoint,
respectively identical to the photon number flux operator and phase operator. How-
ever, this turns out to be impossible to achieve in general in an infinite dimensional
Hilbert space with a definite ground state [41, 42]. Physically of course, a phase
operator should not be sensible for a single-mode of the field, since the outcome of

2

3These commutation relations are approximate, with corrections proportional to ( o)

1+ m% [40].

Eo(Q+wp) )
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any measurement modeled by such an operator must necessarily involve comparison
with an auxiliary mode that provides a phase reference [43]. Nevertheless, a classical
correspondence can be invoked to get operators that describes small fluctuations in
the phase and number relative to the carrier [44].

Classical fluctuations in the number, denoted 67, and phase, denoted §¢, may be
modeled as fluctuations of the mean amplitude a; i.e. via the replacement,

a> Jng +6neé?,

where n, := (&T&) is the mean photon flux in the carrier. The linearised expression

for small fluctuations,
én

2./n,

is consistent with the Cartesian decomposition in Eq. (3.2.8), if the identification,

a~x . /n,+ +i/n, 8¢,

on

V2n,’

is made. This is the classical correspondence between number and phase fluctuations
on the one hand, and quadrature fluctuations on the other. Thus, operators represent-
ing number and phase fluctuations may be defined by reading the correspondence
backwards, i.e. (here, (ﬁ) = ng)

3G — 84 + 5p > 8p +/2n4 80,

<>
1

8h = \/2(n)sq, 8 (3.2.11)

These relations suggest the nomenclature, “amplitude” (for §¢) and “phase” (for & p)
quadratures. Note finally that these operators are canonically conjugate [45], i.e.,

[87(1), 8¢(1")] = [84 (1), p(t)) = i8(t — 1');

the caveat being that the definitions in Eq. (3.2.11) does not hold for all states of the
field.

3.2.2 Quantum and Classical Fluctuations in the Optical
Field

The behaviour of the electric field, in Eq. (3.2.3), is specified through the state of the
field at each mode at frequency'# w. In fact, the ansatz in Eq. (3.2.4), describing the

14Since each mode is independent, as indicated by the commutator Eq.(3.2.2), the states of the
field live in a Hilbert space that is formed by an infinite continuous tensor product space ®,,,,
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separation of the field into a monochromatic carrier with vacuum fluctuations around
it, corresponds to a state with a coherent excitation with complex amplitude a at the
carrier frequency wy,

@, we) = D (@, ) 10) == exp (@ alwe]" — a* alw]) 10), (3.2.12)

the so-called coherent state [47, 48]. Indeed, the action of the displacement operator,
D(a, wy), in the Heisenberg picture, viz.,

ilw] — D@, w)alw)D@, wy) = a- 27 8lw — we] + dlw)
——

Salw—awy]

is to induce a separation of the carrier at w, from the fluctuations at other freqencies.
The ansatz in Eq. (3.2.4) results from the identification that the transformed operator
is 8a[R2]. The central outcome of such an identification is that the coherent state of
a[w] becomes the vacuum state of §a[2]. To see this, we start from an equivalent
expression for the coherent state, viz.

alolla, we) = a - 21 §[w — w¢lla, w),

which states that |a, w,) is the eigenstate of a[w,], with eigenvalue (proportional
to) a. This equation can be manipulated using the properties of the displacement
operator, viz.

alwlD(@, w)|0) = a - 27 8[w — w] D(@, we)|0)
= D@, w)a[w]D(@, w)|0) = a - 27 8[w — we] D(@, we) " D(@, we)|0)
= (a-27 8w — w]+8a[R]) |0) = a - 27 §[w — w,]|0)
= 38a[£2]|0) =0,

showing that the operator 8a[€2] annihilates the vacuum at all sideband frequencies
Q = w—w; complementarily, §a [Q2]7, creates excitations from the vacuum.'® Thus,
when the field is in the ideal coherent state, §a[€2] represents vacuum fluctuations at
all frequencies about the carrier. This equivalence allows us to work exclusively with
the fluctuation operator 8a, and its quadratures §g, § p, when describing the noise

one for each mode. Such objects may be dealt with using the normal rules of Hilbert spaces (i.e.
by using the rules applicable to a denumerable tensor product), if there exists a state |0) such that
f dw &[w]78&[w]|0) = 0 [46]. This state, the vacuum state, will henceforth be assumed to exist.
SInstead of a coherent state, had we started from a state of the form, ﬁl@l/), then, a trivial extension
of the proof above would show that the fluctuations in the sidebands are described by the state |/).
A slightly less trivial extension shows that, if the state of the field were a mixed state of the form,
Dt ,6[3, then the fluctuations in the sidebands are described by the mixed state 5 (see [49, 50] for
examples).
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properties of the field in the coherent state. In particular, the annihilation property
above, together with the commutation relations in Eq.(3.2.9) gives the two-time
correlators of the quadratures,

(Sqq(r) Sq,,(t)) — ((6@0)6@(0)) (84(0819(0))) _ ! (1 z') 5()
Spq (1) Spp(0) (85(133(0)) (8p(1)3p(0)) —i 1 ’

2

or equivalently, the two-time correlators of the creation/annihilation operators (fol-
lowing the notational convention introduced in Eq. 2.1.10),

Sata(®) Satat ) . [ (8a()8a(0)) (sa)sa)f)) (01 s
Saa®) Saar () ) \(8a" (1)8a(0)) (sa(1)78a(0)")) — \0 0 ®.

The resulting non-zero value of, S,,[2] = 1 (photons/s)/Hz, represents a flux of
quantum noise in the optical field at all sideband frequencies due to vacuum fluctu-
ations; this noise is equally distributed about the amplitude and phase quadratures,
quantified by, S,,[2] = §,,[R2] = % (photons/s)/Hz.

A description of realistic laboratory fields demands a description of fluctuations
in excess of the vacuum at sideband frequencies Q. In this case, the operator §a(t)
(or equivalently, 8¢ (), 8 p(¢)) must decribe classical noise in addition to the intrin-
sic quantum noise—clearly the field in this situation is not in a coherent state. In
principle, a detailed knowledge of the source should provide with the correct state
to describe the emitted field, including any classical fluctuations (see footnote 15).
Such detailed knowledge is however cumbersome to obtain.'® Therefore, in the fol-
lowing, an operational description is provided that circumvents the issue of specifying
the underlying state. A criterion to demarcate classical noise form quantum noise in
such a pheonomenological description is also briefly mentioned.

The approach is to construct the most general form of the covariance matrix of
the quadratures, allowed by quantum mechanics. Firstly, S,4, S,, are real since the
quadratures are self-adjoint and commute among themselves. Secondly, the mutual
commutation relation (Eq. 3.2.9) implies,

qu(t) - Spq(t) =1id8(),

which is identically satisfied by the choice,

Sup (1) = %50) Fngp(D), Spg(0) = 250 + gy (1),

16For example, even when the source is an ideal laser, the coherent state is only an approximation
of the emitted state [51, 52].
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for some function n,,; computing the symmetrised correlation shows that in fact
ngp(t) = Syp(t). The ideal field state—the coherent state (Eq. 3.2.12)—consisting
of vacuum fluctuations at all sideband frequencies has, Sy, (t) = %S(I) = §,,().
The ansatz,

1 1
Sqq (1) = 58() 4 ngq (1), Spp(t) = 58() + npp(0),

separates the component due to vacuum fluctuations, while introducing functions
Ngq(pp) that presumably represent excess classical noise. Thus, we have,

Sqq @) Sgp@) _ Lot 5(1) + Ngq(t) ngp(t)
Spq () Spp(t) 2\—i1 Rgp(t) npp(t)) "
that provides an operational framework to describe fluctuations of general field states

that is consistent with the commutation relations of the quadrature. The resulting
symmetrized spectra of the quadratures,

S‘”[Q] ‘g‘”’[Q]) — (nqq[Q] +% ngpl[€2] )
(SPQ[Q] Spp[Q] an[Q] nﬁp[Q] + % ’ (3213)

suggests the interpretation that ngg ) is the average photon flux representing classi-
cal noise in the amplitude (phase) quadrature. For example, for the field in a thermal
coherent state [49], ny[Q2] = n,,[2] = %nﬁ(Q), i.e. half the thermal photon occu-
pation per quadrature; here ng(£2) is the Bose occupation given in Eq.2.2.11.

Consistency with the commutation relations is only a necessary condition for the
ansatz chosen above to be physical. The sufficient condition is that the
two-time correlators arise as expectation values over some quantum state. The fol-
lowing proposition addresses this requirement.

Proposition 7 ([53]) The necessary and sufficient condition for the ansatz in
Eq.(3.2.13) to be physical is that the quadratures satisfy the spectral uncertainty
principle of proposition 3, i.e.

8441Q15,,[Q1 = $;,[2] = (3.2.14)

N

In terms of the number and phase operators defined in Eq. (7.2.24), and assuming
no number-phase correlations, the inequality above takes the form,

Sun[Q1S46[2] > % (3.2.15)

for a propagating electromagnetic field. A realistic field is said to be quantum(-noise)-
limited, when the bound in Eq. (3.2.14) (or, Eq.3.2.15) is saturated.
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The inequality in Eq. (3.2.14) also serves a utilitarian purpose: it allows to bound
the (hard-to-measure) classical cross-correlation n,,, in terms of the easily measured
classical excess noise n44(pp)- Specifically, inserting the expressions for the spectra
(in Eq.3.2.13) into the inequality in Eq. (3.2.14) gives,

172

Ngp = (%(nqq + 1pp) + Ngghpp) (3.2.16)

3.2.3 Detection of Optical Fluctuations

In this section, we describe the three most commonly employed strategies used to
detect fluctuations in optical fields. The basic detecting element in all three strategies
is a photoelectric detector, which ultimately emits an electric current corresponding
to the incident optical flux. By this very definition, it does not respond to the variation
of the electric field at optical frequencies (w; ~ 27 - 400 THz). In fact, we shall see
that the formalism developed above, for the description of fluctuations about a carrier,
anticipates the quantities of the optical field that are detected.

3.2.3.1 Detection of Amplitude Quadrature: Photodetection

A convenient and common way to detect a propagating optical field, described by
the amplitude flux operator a(¢) (as in Eq.3.2.6), is to couple it to a detector which
absorbs a photon and emits an electron via the photoelectric effect; the resulting
electric current is called photocurrent.

Real photodetectors rarely produce an electron for every photon that is absorbed.
The quantum efficiency of the detection process, n (n < 1), may be modelled as
transmission through a lossy channel of transmissivity 7, followed by an ideal pho-
todetector, as shown in Fig.3.1. The field that falls on the ideal detector, the trans-
mission of the beam-splitter [54],

ay (1) = Jma@) +iy1—ndao(), (3.2.17)

Fig. 3.1 Realistic
photodetection. a, the field
to be detected, experiences a
fractional loss of 1, modelled
as being mixed at a
beam-splitter of
transmissivity 7, followed by
ideal potodetection
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consists of the field to be detected a(¢) = (@ + 8a(t))e " as in Eq.(3.2.6), and the
vacuum fluctuations §dy entering through the other input port. On general grounds the
photocurrent operator, I, that models the detector output, is given by'’ the electron
flux; in terms of the incident photon flux 7, = &;Zzﬂ,

[(1) = qo (1) = Z P, (1) (3.2.18)
where g, is the electron charge, Z is the responsivity of the detector given by,

de _ ek
hawy hc

~ (0.63 A/W) (780 nm) : (3.2.19)

and, 13,, = hwyh, is the operator representing the incident optical power. Assuming
a strong incident carrier (|@|> > 1 photons/s), the photon flux can be linearised as,

iy = (0,0 ~ |l (12l +v2840) +1al V2T =) 8py.  (3.220)

were, 3G (8 po) is the signal (vacuum) amplitude (phase) quadrature fluctuation. The
mean and the fluctuations in the incident photon flux, are therefore,

(ty) = nlal?

ity (1) 1= (1) — (i) = ~/2 [al (n 84(0) + V(L= 1) 8po(0)) .

Inserting these in Eq. (3.2.18) gives the mean and fluctuations in the photocurrent,

<f> =nq.lal> = n#P

A (3.2.21)
81y = V2. [al (n840) + V(T =) 8p0(0))
where P = hwylal? is the power measured at the entrance of the realistic

photodetector—the experimentally accessible optical power. Note that the photocur-
rent is a continuous observable, in the sense of Eq.(2.3.1), i.e. [Sf(t), Si(t/)] =0,

in fact, when illuminated by a field with a large coherent component, photodetec-
tors perform a linear measurement of the amplitude quadrature fluctuations of the
incident field (and not photon-counting [57]).

17 An argument due to Glauber [55] goes as follows: the state of the optical field |v) that arrives at the
detector, undergoes the transformation |/) — a|y), corresponding to the absorption of a photon by
the detector; the probability that this happens is proportional to the norm ||a|y)|| = (v|ataly) =
(ﬁ); finally, the photocurrent operator describes the probability of this process, referred to an electron
flux. This heuristic argument can be put on rigorous foundation by analysing the state transformation
as a quantum jump process [56].
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A photodetector does not distinguish between photons that lie at symmetric fre-
quency offsets from the carrier [57, 58]; thus, it is the symmetrised photocurrent
spectrum that is relevant. The (double-sided) spectral density of the photocurrent,
computed using Eq. (3.2.21), is,

511191 = 2¢; 1al* (0 S4q[Q1 + n(1 — ) S [1) (3.222)

A further approximation may be made at this point. The typical case for photode-
tection (relevant to this thesis) is where the incident field quadrature carries a signal
atop its vacuum fluctuations, viz.

8‘?(’) = aésig(t) + (Sc}sig,o(t),

with the additional assumption that the signal and vacuum are uncorrelated.'® In this
case, Syg = Spq + S;ljlg’o, with, S;l,’,g’o = Sgp = %; inserting this in Eq. (3.2.22) gives
the (single-sided) photocurrent spectrum,

5,191 = 2nq2 1P (1+ g SE@).

The spectral content of the signal rides on a background of photocurrent shot-
noise,

SUQL = 2ng? lal* = 2q. <1> =2q. - n%P,

due to the amplified vacuum fluctuations of the incident optical field,'® with the
signal-to-noise determined by the overall detection efficiency.

Realistic photodetectors have an additional source of output noise—noise from the
detector electronics—that determines the smallest optical power fluctuation that can
be detected. This, the noise equivalent power (NEP) of the detector, S‘gE[Q], leads
to a photocurrent-equivalent spectrum,

SeQl = % - SRE[Q].

Taking this into account gives the expression for the photocurrent spectrum of a
realistic photodetector, viz.,

8This assumption fails when the incident field has amplitude squeezing—strong correlations
between the signal in the amplitude quadrature and the amplitude vacuum fluctuations, in which
case, the photocurrent spectrum would contain a term due to the correlation between the signal and
vacuum.

19The latter expression, in terms of the average photocurrent, may be derived by assuming that the
ejected photoelectrons are discrete [59]; this semi-classical interpretation dispenses with the need to
attribute any quantum-mechanical character to photodetector shot noise, at least when illuminated
by coherent states of the optical field.
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5,191 = #°SEE(Q1 420 - qe# - P +n’q. P S3¥[Q]. (3.2.23)
—_—_—
Sv?e[ S’;h"‘ S’;ig

The signal-to-noise ratio in direct photodetection converges to its maximum pos-
sible value when the detector noise is overwhelmed by shot noise. Figure 3.2 shows
a measurement of the detector noise and shot noise contributions for a photode-
tector (NewFocus 1801) widely employed in this thesis. The fits to the shot noise
and detector noise model, Eq.(3.2.23), enables extraction of the total quantum effi-
ciency, n &~ 0.78, consistent with typical quantum efficiencies of n & 0.8 for silicon
detectors [60].

3.2.3.2 Detection of an Arbitrary Quadrature: Homodyne
Direct photodetection, having no reference for the phase of the incident field, mea-

sures the fluctuations in the amplitude quadrature 8g. Other, general quadratures of
the form,

\/S1[Q]/R? [W/VHz

107 10" 10°

Mean optical power [W]

Fig. 3.2 Input-referred photocurrent noise.Measured photocurrent noise at a Fourier frequency
Q = 27 - 5 MHz from the optical carrier, referred back to optical power fluctuations. The detector
used here is a NewFocus 1801. Below input powers of (P) < 100 wW, the detector NEP is the
dominant source of noise, while above that power, optical shot noise begins to dominate. Solid line
shows fit to the model in Eq. (3.2.23); dashed lines show detector and shot noise components of the
model. Fit enables inference of n ~ 0.78
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1 , :
8§ (t) == 8g(t)cosO + 8p(t)sin® = — (8a(t)e "’ +8a' (1)e'), (3.2.24)

V2

furnish continuous observables of interest. From the commutation relation (implied
by Eq. (3.2.24) and Eq.3.2.9),

[86}9([), 56° (t’)] — i8(t — ') sin(6 — 6, (3.2.25)

it is clear that any quadrature 84°(¢) is a continuous observable (the case 6’ =
6), while pairs of quadratures 84 (¢), 6@8+% (t) are canonically conjugate (the case
0" = 6+ 7). A homodyne detector measures the former; while a heterodyne detector
attempts to measure the conjugate observables simultaneously.

Figure 3.3a shows a typical balanced homodyne detector. A local oscillator (LO)
and signal field impinge on a balanced (i.e. transmissivity 1, = 0.5 ideally) beam-
splitter such that their transverse mode profiles overlap in both output arms. The

output fields [54],
&+ — m i l_nt &sig 3.2.26
(@)= (™) ) (3220

are directed onto identical independent photodetectors. The respective photocurrents,
1L(t) = g.al(t)ax(t), are subtracted to obtain the homodyne signal,

Thom (1) = I.(t) — I (1)

= ge(1 = 2n0) (iiLo(t) = g ) +2qev/n (T = 1) i (@l 0aL0(0) = 4] o (a5 ®))
(3.2.07)

CAlsig &sig IA,
Fig. 3.3 Balanced homodyne and heterodyne detectors. a A strong local oscillator field (LO)
overlaps with a (weaker) signal beam on a balanced beam-splitter. The resulting output fields are
directed onto independent photodetectors. Their difference photocurrent is the homodyne signal. b

Compared to a homodyne detector, the LO is frequency shifted with respect to the signal by Qg

I
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where 71 osig) (1) = &Eo(sig) (t)arLosig) (1) is the LO (signal) photon flux. The expres-
sion for the homodyne photocurrent may be linearised under the assumption that both
the LO and signal are coherent. Their amplitudes are then of the form (see Eq. 3.2.6),

arosig) = (,/ (MLoeig)) + 8aLogsig) (f)) e~ (@t Fhhosin) (3.2.28)

where the mean amplitude is expressed in terms of the mean photon flux, and 6.o(sig)
are the mean phases of the LO and signal. The mean photocurrent takes the form,

(nom) % @1 = 200) (o) — {fse]) — @ev/2 (T = 1) /4 (iio) fsie) €05 Bhom
(3.2.29)
while the fluctuation part is,

8 hom (1) ~q.(1 — 2n,) (\/Z(ﬁm)&?fo - \/2<ﬁsig)8égg)
ehom _ehom
277[(1 - nt) (\/ nLO 8q51g + nqlg ) s

(3.2.30)

where,
b4
Bhom 1= 9sig — 6o + Ea
is the mean phase difference between the signal and LO fields after the combining
beam-splitter (including a phase 7 /2 due to the beam-splitter).

The fluctuating part of the photocurrent (Eq. 3.2.30) suggests that the homodyne
detector measures a combination of the LO and signal quadratures at various angles.
The signal quadrature Sqe""“‘ may be singled out by employing a configuration where:
(1) the LO is much more powerful than the signal, i.e. (ﬁLo) > (ﬁsig), and, (2) by
balancing the combining beam-splitter, i.e. n, = % The latter offers the additional

technical advantage that excess classical noise in the strong LO (first term in 8 Ihom
in Eq.3.2.30) is cancelled [61] (see also Appendix C). In fact, under these two
assumptions, the mean and the fluctuations of the photocurrent (Egs.3.2.29 and
3.2.30) simplify to,

<ih0m> ~ _2qe (ﬁLO) (ﬁsig> cos ehom

8 Inom (1) ~ qe\/@ 3Gy (1),

(3.2.31)
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so that the homodyne photocurrent is a continuous observable providing a linear
measurement of the signal quadrature fluctuations (ng“g"‘ In this sense, homodyne
detection may be identified as a realisation of a phase-sensitive linear amplifier of
the signal quadrature (with gain provided by the LO).

Following manipulations similar to the ones followed for the analysis of pho-
todetection (leading up to Eq. (3.2.23)), the spectrum of the homodyne photocurrent,

taking into account non-ideal detection efficiency n < 1, and photodetector noise, is

Shom Q] = 2 SNE[Q) 421 - ¢ - Pro +20°qeZ Pro S;im [Q]. (3.232)

Gt det chom, shot .
Slmm’ < S, S.hom.slg

1

Alluding to the analogy between homodyne detection and phase-sensitive linear
amplification, homodyne photocurrent shot noise may be interpreted as the vacuum
fluctuations of the signal field amplified by the coherent LO, it is thus the intrinsic
quantum noise of the signal quadrature, consistent with the quantum limit of a phase-
preserving linear amplifier’® [64].

Conventionally, homodyne detectors are employed to measure the phase quadra-
ture 8 p (corresponding to Oy, = 7/2). In this case, using the expression for the
signal phase operator in Eq.(3.2.11), the homodyne photocurrent spectrum may be
expressed in terms of the signal phase noise spectrum, viz., (omitting the detector
noise contribution for brevity),

S Qlr2 = 20 T - Pio + 47 % Pio PS50

= 42 %* Pro Py | S35192
n LO sg( [ ]+2H%qug

The second term in the second line gives the phase imprecision in the homodyne
signal due to photocurrent shot noise, viz.,

1 h(x)g

hom 1mp[Q] )
277 Psig

Since photocurrent shot noise arises from the strong LO amplifying the signal vacuum
fluctuations, this represents the so-called “standard noise limit” for interferometric
phase measurement, where the scaling is due to the quantum statistics of coherent
states [65, 606].

201ndeed, for microwave signals, quantum-noise-limited homodyne detection is implemented by
using a phase-preserving linear amplifier [62, 63].
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3.2.3.3 Design and Operation of a Homodyne Detector

Irrespective of the quadrature being measured, the primary experimental challenge
of operating a homodyne detector is to maintain a stable phase 6y, between the
signal and LO fields.?! The strategy employed in this thesis to attain this is detailed
below.

Figure 3.4a depicts the essential layout of the homodyne interferometer employed
in this thesis. Atits heart is an optical interferometer in Mach-Zehnder configuration.
Light from a laser source (at 780 nm, either an external cavity diode laser—NewFocus
Velocity, or a Ti:Sa—Sirah Matisse) is appropriately attenuated, and intensity sta-
bilised (IS, Thorlabs LCC3112/M). Polarisation is then cleaned and aligned, before
passing through a broadband electro-optic modulator (EOM, NewFocus 4002, band-
width DC—100 MHz). A subsequent half-wave plate divides the light at a polarising
beam-splitter to derive the LO and signal fields; the half-wave plate orientation con-
trols their respective powers. The signal field polarisation may be adjusted accord-
ingly thereafter, before being coupled into an optical fiber that is 10 m long. The
LO field is also coupled into a fiber. Both input fiber couplers rest on translation
stages, the signal coupler on a manual micrometer stage, while the LO coupler on an
electronically controlled one. Both fields subsequently exit into free space. The LO
field is reflected off of a mirror mounted on a piezoelectric stack (PZT). The LO and
signal are combined at a non-polarising beam-splitter, after their polarisations are
aligned. The outputs of the combining beam-splitter are focused onto the two ports
of a balanced photodetector (BPD, Femto HCA-S, bandwidth DC —125 MHz).

In order to enforce a stable homodyne phase Gpom, both the LO and signal are
derived from the same laser source. However, the path length difference between the
LO and signal arms of the interferometer determines the homodyne phase,

21 Lsig LLO 2
Bhom = — - = —(Lsig — Lio), (3.2.33)
A \Vsig VLo AVeff

where 1 is the wavelength of light used, Lig10) is the physical length of the signal
(LO) path, vgie(1.0) is the refractive index of the signal (LO) path, and veg A~ 1.5 is the

21 Another technical challenge is the ability to realise perfect balancing of powers at the interfering
beam-splitter (i.e. n; = %). Any deviation leads to imperfect cancellation of LO excess noise (see
Eq.(3.2.30), and discussion below it). Assuming that PLo > Psig (typically, PLo > 100 Pyjg, in
this thesis), Eq.(3.2.30) implies that the signal quadrature imprecision from imperfect LO noise
cancellation is,

Ssig.imp[g]

96nom

(1 =2m)* 40 12 5LO
=——SPQ~8(n — 5) S,CIL]

20 (1 =) (o =2)"5%
Our design enables 1, — % ~ £0.05; combined with the large Fourier frequencies we work at (a few
MHz), where the LO can be shot-noise limited up to PLo = 1 — 2 mW, this source of homodyne
imprecision is negligible [67].
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Fig. 3.4 Design and operation of homodyne interferometer. a Essential design of the homo-
dyne interferometer, in Mach-Zehnder configuration, that is used in experiment reported in this
thesis. Red lines denote free space optical beams, green lines are optical fibres and black lines
are radio-frequency electric cables (BNC or SMA). See text for further details. b Balancing the
interferometer by deterministically changing the physical path length difference Lpom. At each
stage, counting radio-frequency or optical interference fringes, allows estimation of the imbalance
Lhom/X. ¢ Magnitude response of the interferometer to an input optical phase modulation injected
using the EOM. A radio-frequency network analyser is used to monitor the resulting RF interfer-
ence. d Optical interference fringes in the final stages of balancing. Light and dark blue shows
fringe count reduced by micron-scale changes in Lyom. Red shows the error signal used to perform
active stabilisation of the interferometer. e Noise in the homodyne phase 6hom compared for the
case where the interferometer is locked (green) vs. free-running (red). Gray trace shows the limit
set by electronic noise. (See text for details)
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approximation assumed for the relevant case where the signal and LO predominantly
propagate through an optical fiber. Since we typically need 0 < Ghom < 7, the
fractional path length difference,?

Lhom o Lsig - LLO (3 ) 34)
T 5 , L.

needs to be stabilised to order unity for the Mach-Zehnder arms (see Fig. 3.4); this
is done in three steps.

The first two steps of the procedures rely on counting the interference fringes in
the photocurrent <fh0m> o sin Bpem (Eq. (3.2.29)) to estimate the length imbalance
[70]. In the first step, a radio-frequency (RF) response measurement is performed on
the optical interferometer. This is done by driving a phase modulator placed at the
interferometer input using a network analyser (Agilent, E5061B), and demodulating
the response of the interferometer. Figure 3.4c shows a series of such measurements,
for varying Lyom. The phase modulation ¢ (), effectively a frequency modulation
we(t) = %, leads to a photocurrent,

oL oL Liom d
= hom hf’mw@(;))msm (—” PO e (0) + 21 - ‘“‘),

CVeff Cverp dt

CVeff

(hom (1)) o sin (

exhibiting interference fringes with frequency, fringe = ﬁ:—;‘;%. Thus, the fringe
frequency measured (shown in Fig. 3.4c) provides the length imbalance relative to the
laser wavelength, and the RF frequency modulation amplitude. The length imbalance
so inferred, is reduced by physically cutting and re-splicing the LO optical fiber.
This technique however loses sensitivity once the fringe frequency surpasses the
photodetector cutoff; typically this happens at | Lpom| & 10 cm.

In a second step, sensitivity to input frequency changes is increased by working
at optical frequencies. The diode laser driving the interferometer is wavelength-
modulated®® A(t) = A(0)+dA(¢), and the interference fringes in the DC photocurrent

(using Eqgs. (3.2.29) and (3.2.33)),

22For the detection of signals at a few MHz from the carrier, such a stringent condition is not
necessary. However, the ability to achieve broadband cancellation of excess phase noise injected
at the input of the interferometer [68, 69], for example when using semiconductor diode lasers as
in experiments reported in Chap. 6, demands an interferometer whose arms are length-balanced to
within an optical wavelength. Indeed, the the contribution of input phase noise in the photocurrent
of an imbalanced homodyne interferometer takes the form, S’?Om[Q]  sin?(Qt /2) 5‘;)“[{2], where

7 is the time delay between the two arms (see Appendix C), and S‘;)“ is the spectrum of excess input
phase noise.

B Formally equivalent to a frequency modulation dwy = —27 ﬁ . %; however, for an ECDL,
by construction, its frequency is modulated via the diode current, providing access to dwy ~
27 - 100 GHz, whereas the wavelength is modulated by mechanically changing the laser cavity

length, leading to dA &~ 10 nm, equivalent to dw, ~ 27 - 5 THz.


http://dx.doi.org/10.1007/978-3-319-69431-3_6
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) . 2 Lhom . 2 Lhom Lhom 1 da
<Ih0m(t)> o« sin A sin +2nt — ——,
Verr A (1) Verr A (0) Ve A(0)  A(0) dt

monitored on an oscilloscope (Tektronix DPO3034). The imbalance, reflected in
the frequency of the interference fringes [70] fiinge = m . %0) ‘3—’[\, is reduced by
cutting and re-splicing the fiber as before—below | Lyom| &~ 1 cm, it becomes difficult
to precisely cut the fiber. Subsequent adjustment is made by using micro-meter stages
carrying the signal and LO input fiber couplers (see Fig.3.4). Interference fringe
count gradually reduces, as shown in Fig.3.4d (blue traces), to a point where they
become particularly sensitive to slight external disturbances—typically at Ly, ~
10A. Figure 3.4b shows the length imbalance relative to the wavelength inferred from
the fringe frequency as the physical length Ly, is reduced—the different sensitivities
of RF and optical measurements is due to the much smaller wavelength of the latter
[70, 71].

Beyond this point, the interferometer has to be actively stabilised. The error sig-

nal is the DC photocurrent <fh0m> o sin Gy, generated by modulating the length

Lhom(?). The red trace in Fig.3.4d shows a typical error signal, corresponding to a
few cycles of the phase Ghom (1) = ﬁ)”f - Lpom(2) about zero. The length is changed
by dithering a mirror placed on a a fast piezo-electric stack in the LO free space
path (PZT, in Fig. 3.4a). The error signal is sent through a PID controller with a slow
(1 Hz low-pass) and a fast (10-300 Hz bandpass) branch. (The filters are implemented
using Stanford Research Systems SR560 pre-amplifiers, running off of its internal
battery to reduce sensitivity to 50 Hz fluctuations from power lines. In practice, it is
found that appropriate filtering at the PID input is also necessary.) The fast branch
actuates the piezo-electric stack, and suppresses high frequency length fluctuations
(mostly limited by the onset of piezo-electric resonances at a few kHz). The slow
branch actuates a linear motor in the LO path, and is used to counteract slow drifts
due to temperature and seismic disturbances. With the optical table floated, the active
stabilisation keeps the homodyne interferometer locked indefinitely.

Figure 3.4e shows an in-loop measurement of the apparent fluctuations in Gy
when the interferometer is locked (green trace), compared against the case where it
is unlocked (red trace). The data is calibrated by using the fact that the peak-peak
DC photocurrent, when the piezo stack is dithered, corresponds to Gy, varying by
. At low frequencies (1 — 100 Hz) the residual apparent fluctuations in Bpop, is
limited by electronic noise (grey trace) in the detection and feedback loops, whereas
at frequencies above 1 kHz, the presence of piezo-mechanical resonances limit the
applicable gain. Despite these technical limitations, Fig. 3.4e allows an upper-bound

of, Var [62,.]"/°

hom

< 100 mrad, for the low frequency stability of the homodyne angle.

3.2.3.4 Detection of Conjugate Quadratures: Heterodyne

Contrary to a homodyne detector where the LO and signal share a common car-
rier frequency, a heterodyne detector (see Fig. 3.3b) is implemented by a frequency
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detuned LO.?* For the case where the LO frequency is larger than the signal fre-
quency by Qig, the LO and signal fields may be represented by the ansatz (analogous
to Eq. (3.2.28) for homodyne detection),

N ~ R ot e~ (w1 +6L0)
aLogig) (1) = (\/ (NLoGsig)) + 8aLoGsig) (l)) e x i,

e

For the reasons detailed above for the case of homodyne detection (formally, Qi =
0), it is technically useful to perform balanced detection, i.e. combine the LO and
signal on a balanced beam-splitter, using a length-matched interferometer, i.e. the
LO and signal arrive at the beam-splitter after acquiring equal phases.

In the case of a strong LO and balanced length, the mean and fluctuating parts of
the heterodyne photocurrent (in the strong LO, i.e. (ﬁLo) > (ﬁsig), and balanced, i.e.
n = %, case),

<ihet> ~ _2Qe (;lLO) (ﬁsig> Cos(ehet + QIFt)

Sihet(t) X q, deg}gﬁﬁlpz (t)

where Ohe; := 0Oy — 0o + /2. Importantly, the photocurrent is not proportional to
a unique signal quadrature, but in fact periodically samples all quadratures. In this
sense, heterodyne detection may be identified as a realisation of a phase-insensitive
linear amplifier of the signal.

Despite the fact that the heterodyne photocurrent operator samples all quadra-
tures, the quadrature commutation relations (Eq. (3.2.25)) conspire to ensure that the
heterodyne photocurrent commutes with itself, viz.?>

(3.2.35)

[8aet), 1] = 41 G2 o) - 8¢ = 1) sin(@ux(t — 1)) =0,

rendering & fhet a continuous observable.

The statistics of the heterodyne photocurrent is however quite unlike that of the
homodyne. In fact, the photocurrent fluctuations (Eq. (3.2.35)) expressed in terms of
the amplitude operators (using Eq. (3.2.24)),

8lha(1) = geylivo) (Bagg (e 71207 4 53], (e heinr)

has the two-time correlator (omitting the proportionality factor g2 (flLo)),

24 A conceptually cleaner way to realise simultaneously detection of two conjugate quadratures is
to split the incoming signal at a balanced beam-splitter, and subjecting either output to independent
homodyne detectors sharing a common LO, but phase-shifted by /2. This arrangement, called a
multi-port homodyne detector [72], is clumsier to implement in practice.

25 The second equality, by common abuse of notation, holds in the sense of distribution; i.e. it holds
for any arbitrarily close approximation to §(z).
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<8ihet(l)5ihet(t,)> O( <aésig([)8&;g(tr)>e—iQIF(t—f’) + <5&;g(t)sasig(t/)>e+i911—“(!—ﬂ)

_ (3&Sig(l)3&3ig(l,))e_Ziehe‘e_iQIF(t_'—t/) _ (5&:ig([)8&:ig(t/)>e+2i0he[e+iQIF(T+t’)’
which is not stationary [73, 74]. The last two terms, being a periodic modulation of
a stationary term, give rise to what is called cyclostationary noise [75, 76]. When
the signal field carries excitations in a narrow band of frequencies much below
the intermediate frequency i, these non-stationary terms may be omitted.2° The
resulting photocurrent correlator,

sig sig
= (84(1)53(0) + 8 p(1)8 p(0)) cos Qurt (3.2.36)
+(8p(1)8G(0) + 84 (1)5 p(0)) sin Quet,

<81Ahet(t)5ihe[(0)> x <5£zsig(t)5aT (t’)> it | <5&* (z)sasig(ﬂ)> o tist

is independent of the relative signal-LO phase 6. Note that due to simultaneous
detection of conjugate quadratures, any mutual correlations between the two are
reflected in the heterodyne photocurrent. Equation (3.2.36) together with the Wiener-
Khinchine theorem (Eq.2.1.6) gives the (single-sided) spectrum of the heterodyne
photocurrent:
$1192) = 2 (o) (S22 + Quel + S)2. (2 — ur)

expressed in terms of the unsymmetrised power spectral density of the (non-
hermitian) flux amplitude operators (as defined in Eq.2.1.10). The left-hand side,
being a single-sided spectrum is defined only for €2 > 0; in particular, fluctuations in
the optical field originally about the optical carrier are translated to radio-frequencies
about the intermediate frequency in the photocurrent. For a detector with bandwidth

much less than 2Qg, the second term above can be neglected, resulting in the spec-
trum (centred about Qrr),

SIIQ — Qi ~ g2 {iiLo) Saal 2. (3.2.37)
In this sense, a heterodyne detector measures the double-sided spectrum of the flux

of the optical field, which reflects any correlations between amplitude and phase
quadratures.

261 the contrary case, these terms give rise to cyclostationary shot noise [73, 77]—shot noise
modulated at Qr—in excess of the expectation from a stationary shot noise model. It is generally
true that cyclostationary noise may be represented as a sum of correlated stationary noise processes
[78]—therefore, it is possible to coherently cancel excess cyclostationary shot noise [73, 79, 80],
or use the correlations for benefit [81].
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Explicitly separating out the vacuum fluctuations, from the signal field, i.e.
8agg — 8ayac +8asig, and introducing the efficiencies for the detection, the spectrum
of the heterodyne photocurrent is,

ShQ — Q] = ZSNPIQ1 + 40 - g% - Pro + n*qe#Pio SSEQ].  (3.2.38)

Ghet,det Ghet,shot =het,sig
S S ST

Note that compared to homodyne detection Eq. (3.2.32), the shot noise contribution
is twice larger, and the signal twice smaller—the former is due to the shot noise
from both quadratures being detected, while the latter is due to the signal being
spread symmetrically about the intermediate frequency (i.e. double-sidedness). In
effect, heterodyne detection is four times less sensitive compared to a homodyne
detector. The advantage however is that by detecting both quadratures of the signal
field simultaneously, it furnishes sufficient information to determine the quantum
state of the optical field in a single shot [82].

3.2.3.5 Design and Operation of a Realistic Heterodyne Detector

As illustrated by theoretical considerations, an experimentally practical heterodyne
detector inherits all the characteristics of the homodyne detector in Fig. 3.4, except for
a frequency shifted LO. Figure 3.5a depicts the essential layout of the balanced het-
erodyne interferometer constructed and employed in this thesis. The basic difference
in the optics is the presence of an acousto-optic modulator (AOM, AA Optoelectron-
ics MT110-B50A1) in the LO arm of the interferometer. The AOM was operated so
as to maximise the diffracted optical power into the first order; at the chosen opera-
tion frequency Qi = 27 - 78 MHz, it was possible to attain a diffraction efficiency
> 0.8.

Similar to the procedure followed to balance the homodyne detector, the input
laser wavelength is modulated to induce interference fringes in the photocur-
rent. However, in the case of the heterodyne, the mean photocurrent Eq.(3.2.35),

<fhet(t)> o cos(bhe + Qpt) oscillates at the offset frequency 2jg. Therefore, to

access the fringes resulting from a modulation of the phase 6y, the photocurrent is
mixed down using a RF local oscillator at the offset frequency Q2 (see schematic
in Fig.3.5a). The lengths are balanced by nullifying the fringe frequency. Unlike the
homodyne, the phase 6y need not be stabilised, since the photocurrent spectrum
S’}‘et[Q] (Eq.(3.2.39)) is not sensitive to the mean phase.
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Fig. 3.5 Design and operation of heterodyne interferometer. a Essential design of the balanced
heterodyne interferometer used in this thesis. An AOM in the LO path produces the desired frequency
shift Qi = 27 - 78 MHz. b Heterodyne photocurrent spectrum for the interferometer unbalanced
(light red) and balanced (red). Gray shows the electronic noise of the photodetector, and black the
shot noise due to the LO. The spectrum is calibrated using the known DC optical power which

is reflected as the variance of the carrier beat signal around the intermediate frequency Qi =
2w - 78 MHz

Figure 3.5b shows the cancellation of input laser noise achieved due to length
balance. Shining a LO (P.o &~ 1 mW) alone gives rise to a shot noise contribution
(black trace) S} > 10 - S7°"%, For an unbalanced interferometer driven by a
(noisy) diode laser, the output photocurrent spectrum gives a direct measure of the
laser phase noise transduced by the imbalance of the interferometer (see Appendix
C). Indeed, the red trace in Fig.3.5b, is consistent with diode laser frequency noise
S,[Q] = QZ§¢[Q] ~ 27 (35 Hz? /Hz), at Fourier frequencies 2 ~ 27 - 4 MHz from
the carrier.
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3.2.4 From Propagating Modes to Standing Waves: Optical
Cavity Coupled to a Waveguide

The primary concern of the discussion so far has been optical fields that freely propa-
gate, ultimately terminating at some detector. A qualitatively different sort of optical
field exists—one that is “trapped” in a confined geometry. Such geometries, called
optical cavities, are commonly employed in quantum optics to prolong (and thus
enhance) the interaction between electromagnetic fields and other physical systems.

The typical optical fields we are interested in this thesis, also happen to be those
that have been released after being stored in an optical cavity. Here we present a
schematic of the optical cavity we are interested in—dielectric whispering-gallery
mode optical microcavities [83, 84]—and the coupling of propagating optical fields
in and out of such cavities via a waveguide (see [85] for a review of the theory of
optical cavities).

Whispering-gallery mode (WGM) optical cavities, like the one shown in Fig. 3.6,
support optical modes at specific frequencies w, roughly commensurate with stand-
ing waves resonating around the circumference. For example, for a spherical cav-
ity of radius R and made of a dielectric material of refractive index v, solutions
of Maxwell’s equations show that the mode wavelengths 1, confirm to this intu-
ition, i.e. A, =~ 27 vR /n [86]. In general, when the free spectral range of the cavity,
AwpsRr := w, —w,_ is much larger than the energy decay rate «,,, 1.e. Awgsr > Ky,
each mode may be treated independent of the others. Focusing on such a particu-
lar mode, at resonance frequency w,., the dynamics of its quantised standing wave
amplitude a (normalised to photon number) is described by the hamiltonian [85],

H. = hiwea™a + Heo + Heox, (3.2.39)

where I—AIC,O models coupling to external sources responsible for the intrinsic cavity
decay rate kg, and I-AIC,eX models coupling to an external waveguide used to excite the
cavity.

Light is coupled into the cavity using an optical waveguide—a tapered optical
fiber—placed in the vicinity of the cavity evanescent field [89, 90]. Care is taken
to ensure that the tapered fiber predominantly supports a single travelling mode®’
described by an amplitude flux e (z, 1), along the (longitudinal) z—direction. Note
that the travelling mode is normalised to a photon flux, and satisfies the commutation
relation (see Eq.(3.2.2)),

ldex (z, 1), a7 (2, )] =8t — ' — (z — 2)/©). (3.2.40)

2TThe tapered section, formed by adiabatically stretching a cylindrical optical fiber (780HP, 5pum
mode waist), to a waist of < 1 pm, supports degenerate TE, TM(y modes (cutoff at &~ 730 nm) [38,
91], with an evanescent part guided in free space. The optical fiber itself is excited using free space
radiation in TE, TM modes, with a coupling efficiency 2> 80%.
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Fig.3.6 Whispering-gallery mode cavities and coupling. a—c A smattering of whispering-gallery
mode optical microcavities, where the resonant optical mode circulates along the circumference of
the dielectric medium. a, b Spherical and toroidal cavities [87] made by CO, laser reflow of SiO,.
¢ Disk cavity fabricated by chemical-mechanical polishing [88]. d Schematic of waveguide (here,
tapered optical fiber) coupling to a whispering gallery mode cavity. The cavity field a(z) is excited
by the travelling wave field dex (z, #) of the waveguide through a beam-splitter type interaction at
the point z = 0. The cavity is also driven by vacuum fluctuations §a (¢)

The dynamics of this field is described by the hamiltonian,
I:Iex = hwex&:x(z, t)aex(z, 1)+ ﬁc,ex (3.2.41)

where wey is the frequency of the propagating mode. The cavity-waveguide coupling
is modeled as an energy-conserving interaction localised at the point®® z = 0 (see
Fig.3.6b) [93], i.e.,

Heox = ili/kex (a7 (0)aex(0, 1) — a(1)al (0, 1)) . (3.2.42)

Inserting this in the expression for the cavity hamiltonian in Eq. (3.2.39), and employ-
ing the commutation relation [a(¢), @' (t)] = 1, gives the equation of motion for the

cavity field,
da j A
d_(tl = —iwea + Jkex Gex (0, 1) + ;_i[&’ H.ol. (3.2.43)

Similarly, inserting Eq.(3.2.42) into the expression for the hamiltonian for the
propagating field in Eq.(3.2.41), and employing the relevant commutation relation
(Eq. (3.2.40)) gives,

281n a more realistic model where the coupling region has a finite extent, ey effectively describes
the detailed geometry of the coupling [92].
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ddex(z, t . —~
% == _ia)exaex + KEXG(Z)S(—Z/C),
dr (3.2.44)
daex(z, 1) . A N
or, — Cd— = —1Wexlex T+ +/ Kexd(1)8(—z/c),
4

where the second form is obtained by noting that for a propagating mode, satisfy-
ing dex(z,1) = dex (0,1 — z/c), time and the space derivative along the direction
of propagation are related as, 9,dex (2, 1) = —cd.aex(z, 1), With ¢ the propagation
velocity in the waveguide. Integrating the latter equation within the coupling region,
z € (07, 0"), and employing the properties of the delta function,

ex (07, 1) = Gex (07, 1) — Vfkex a(1). (3.2.45)

Defining the input (output) fields as the propagating field before (after) the coupling
region:

Z\lin,out(t) = &ex(oq:, t)7 (3246)

Eq.(3.2.45) takes the form of an input-output relation,

Gout (1) = ain(t) — /Kex(t), (3.2.47)

between the waveguide and cavity modes in a scattering description of their coupling.
The equation of motion for the cavity field can be derived by returning Eq. (3.2.43):
the discontinuity at z = 0 may be manipulated as,

A~ 1 A —_ A + A
aex (0, 1) = 5 (aex(o 1) + aex(0 7t)) = din —

here the first equality uses continuity of the field at the coupling point, and the
second follows from the input-output relation (Eq. (3.2.47)). Inserting this back in
the equation of motion for the cavity field, Eq.(3.2.43),

da ) Kex\ . . i o~
E = - (la)c + ?) a—+ \/Kexain(t) + E[Hc,Ov a]-

Thus, coupling to the external waveguide opens a decay channel for the cavity mode,
described by the external decay rate kex. The explicit form of intrinsic losses, mod-
elled by H. , follow similar lines, and result in the equation of motion [94],

I
d_‘: - (ia)c + g) & + /Ko8ao + /Rexdin (1), (3.2.48)

where kg is the intrinsic decay rate, k = k¢ + ke is the total decay rate, and 84y is
the zero-mean stochastic process driving the cavity through its intrinsic loss channel.
Together with the input-output relation Eq. (3.2.47),
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dou (1) = Gin (1) — /Kkex d(1), (3.2.49)

and the specification of the fluctuations associated with the intrinsic and external
(waveguide) decay channel (here n. ; is the average thermal occupation of the channel
J €{0,in}),

(841 (114;(0)) = nc 5

(3.2.50)
(33,082 0) = (1 + DS,

this completes the description of the optical cavity.
Typically, the optical cavity is excited using a coherent source at a definite optical

frequency wy, so that, _
ain (1) = (@i | + 8din (1))e ™" (3.2.51)

It proves convenient to adopt a description where the explicit time dependent
factor e~*®¢ is implicit. At the level of the equation of motion Eq.(3.2.48) and
the input-output relation Eq.(3.2.49), this is implemented by the transformation,?’
a — de~' Equations (3.2.48) and (3.2.49) then take the form,

P
d_‘tl — (iA — g) a + /Ko 840 + A/Kex 8ain (1)

&out(t) =a— A/ Kex &in(t)a

(3.2.52)

were A is the detuning between the input field in Eq.(3.2.51) and the cavity, viz.

A= wy — .

3.24.1 Steady-State Cavity Spectroscopy

In a typical spectroscopy experiment, as shown in Fig.3.7a, aiming to identify
and characterise the whispering-gallery modes of the cavity, the cavity is pumped
using a laser at frequency wy (see Eq.(3.2.51)), and the transmitted power, Py, =

haw, <&Zm&0ut>, is monitored as the laser frequency w, is swept over the cavity reso-

nance w,. In the experiment, we ensure that w, is swept much slower than the cavity
decay rate k so that P, is the steady-state transmission of the cavity.

In order to predict the outcome of transmission measurements, we start from
the equation determining the intracavity field (Eq. (3.2.52)), expressed for the mean

value of the field:
ala
dia) _ (ia- %) (&) + v/<ex i -

dt

2()Correspondjng to a unitary transformation by the rotation operator, R(p) = e‘i"’&m, of the
hamiltonian H, in Eq.(3.2.39); i.e. H. — R(wet)H-R (wy1).
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The resulting stead-state intracavity field,

(g,)ss - i

4= Kex |ain]
’ iN—k/2 "

gives rise to the mean steady-state intracavity photon number,

At A -2
(@'a)s = lal* =

Kex |C_lin|2 _ 4 Kex/K P
A4+ (/2% «

1+ (4A2/k2) ) haoy’

that describes the response of the cavity as a resonant build-up of the pump power
Py, = hwy <&;&m>, depending on the relative detuning % and the cavity-waveguide
coupling efficiency,

L Kex  Kex

T e T ket ko

Finally, the steady-state transmission, 7, (A) := Py / Pin, for a given pump detuning,

T.(A)=1— 4n.(1 —nc) ’
1+ (4A2/k?)

exhibits a Lorentzian suppression on approaching resonance (|A| — 0). However,
the cavity only absorbs all the power on resonance, i.e. 7. (0) = 0, when the coupling
is critical, i.e. n. = % corresponding to the case where the power coupled in by
the waveguide exactly compensates for the power lost through the intrinsic decay
channel.

These aspects are illustrated in Fig.3.7c, which in fact depicts the transmission
T.(A). A widely tunable external cavity diode laser (NewFocus Velocity) is coupled
into a fiber taper, which is brought within the evanescent field of the whispering-
gallery mode cavity. The relative position of the fiber and cavity is controlled using a
piezo-positioning stage (Attocube, ANPx101) which allows for sub-nm precision in
taper-cavity gap. As the taper is brought closer into the evanescent field, the external
coupling rate x.x increases [92], thereby allowing for control of the coupling effi-
ciency n.—a unique feature of this coupling technique. Control of input polarisation
achieves perfect phase-matching into the resonant modes of the cavity. In order to
obtain transmission signals as shown in Fig. 3.7c, the laser frequency is swept while
the cavity transmission is monitored on a photodetector. In order to calibrate the
laser frequency sweep, a part of the laser light is directed onto a fiber-loop cavity of
known FSR*° (& 250 MHz). This allows calibration of the relative detuning between
the laser and the whispering gallery mode cavity. Figure 3.7b shows the variation in
the resonant transmission as a function of the coupling efficiency 7., obtained by

30The fiber-loop cavity is made by splicing together the ends of a 50:50 fiber beam-splitter using
an approximately known length of fiber. In order to calibrate the FSR of this cavity, laser light is
phase modulated using an EOM, as shown in Fig.3.7a, imparting sidebands of known frequency
separation. Thus the loop cavity FSR is calibrated to a known RF modulation frequency.
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Fig. 3.7 Steady-state spectroscopy. a Experimental schematic of the spectroscopy scheme: laser
light is coupled into a fiber taper which is then brought in close proximity to the whispering gallery
mode cavity. b Transition from under-coupled to over-coupled regime, as the coupling efficiency 7,
is varied. Relative position of the fiber taper and the cavity controls the waveguide coupling rate xex.
¢ Examples of cavity transmission when the cavity is under-coupled (light red), critically coupled
(red), and over-coupled (dark red). See text for details regarding calibration of the detuning

varying the taper-cavity gap. The intrinsic decay rate of the cavity, ko, is obtained
in the limit of heavy under-coupling (. — 0). The data in Fig.3.7c suggests that
ko & 2m - 450 MHz, a typical value observed in measurements of the optical cavity
with a nanobeam coupled to it.’!

31For this case, where ko < w¢, the intrinsic decay rate may be understood as a combination of
several effects [95], i.e.,

KO0 = Krad + Kvol + Ksurf + Kmech = ®@¢ (Qr_dé + Q;Oll + Q:u}—f + Ql:léch) ,
here expressed as contributions to the optical Q-factor. The first term Qr_a(l1 models the losses arising
from imperfect confinement of light in the whispering-gallery mode; when the cavity is large (the
cavity radius, R, > 10 - A, for example) the losses due to radiation is expected to provide a limit
[95] Orad < 10! In contrast, the data shown in Fig.3.7 features Q ~ 8 - 10°. Losses in the cavity
volume, leading to the contribution Q;Oll, arise from optical absorption in SiO; at the operating
wavelength of 780 nm, estimates suggest Qvo < 10'0 [95, 96]. Effects such as scattering off of
surface inhomogeneities [95, 97] and/or contamination from water absorption [96], that depend
on the surface area, go into Qs_u:‘f Water absorption at 1500 nm is known to provide the limit
Osurf,H,0 < 10°, which is known to be recoverable after sustained bake-out [96]; at 780 nm, the
effect is expected to be smaller, mediated by harmonics of the absorption at 1500 nm. Unlike
micro-cavities formed by surface reflow [87], for the disk geometry employed in this thesis (see
Fig.3.6¢), surface scattering is known to play an important role in limiting the optical-Q [98]. A
simple model suggests that [99] Qurf.scar X R? (Zgurf)71 Zsﬁﬂ corr» Where R is the disk radius,
(Zgurf) is the variance in the surface roughness and £y corr the correlation length of the roughness
pattern. Compared against the value of Qgurf scat ~ 10° reported in [99], our value of Q =~ 100

would imply a roughness pattern for which (Egurf)l/ 2 Lourf corr ~ (150 nm)z. Given that this is an
unusually large number, we believe that the contribution Qmech due to optical losses in the presence

of the beam is responsible for the observed linewidth.
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The spectroscopic signature obtained by this technique provides access to the
cavity’s amplitude response. The response obtained, shown in Fig. 3.7c, can be used
to stabilise the laser-cavity detuning at any point within the cavity bandwidth, except
on resonance. The major technical disadvantage of locking a laser to the cavity using
this technique is that the error signal for the control loop—essentially the transmission
T.—is susceptible to drifts in probe power and cavity coupling, causing the detuning
to be affected by these factors.

3.2.4.2 Modulation Spectroscopy

Another spectroscopic technique relies not on using the cavity’s response to a mean
optical field, but rather to fluctuations in the input optical field. In order to describe
it, it is therefore necessary to see how fluctuations in the input optical field manifest
as intracavity fluctuations, and how they subsequently appear in the outgoing field.
Separating out the mean steady state intracavity amplitude from its fluctuating
part, viz.
a(t) = lal +sa(r),

4 @l \"
where, |d|:= v/(@'a)ss =( ”—) ,

K 1+ (AA2/k2)

and inserting it into Eq. (3.2.52), results in the equation of motion for the fluctuating
part,

5a(t) = (iA _ g) 86(t) + /(1 = o)k 8d0(t) + /7K 8din (0).

Taking Fourier transforms of either side,

8a192] = £l (v/(T = 10K 8a0[R1 + /K 8l 21)

on -1 (3.2.53)

where, (0] = (—i@+ &) +5)
is the susceptibility of the intracavity optical field to fluctuations in the input optical
field. Note that the susceptibility encodes the cavity response as well as the laser-

cavity detuning. The fluctuations in the outgoing field, given by the input-output
relation Eq. (3.2.49),

Sdouw[82] = (1 = nekc Xa[ QD) dain[R2] — V/me(1 — ne) k xalR10a0[R], (3.2.54)

carries this information, and may be retrieved by probing the cavity using an input
of known spectral content.
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One way to perform this, originally developed by Pound, Drever, Hall (PDH)
and others [100, 101], involves frequency modulating the input field. In our exper-
iment, depicted in Fig.3.8a, the input field d;,(¢) is passed through an electro-optic
modulator (EOM), picking up a sinusoidal modulation of its phase, viz.

&m(t) — |(’_11n| efi(witfgmod $in Qmoa)

A |G| e_,‘w(; (1 + én;d e,‘Qmod, . %-r;ode_igmod,) 7 (3.2.55)

approximated as sidebands at frequencies wy £ Q04 With depth &0 < 1. The
transmitted field is given by,

. g Emod i Emod i
aou (1) = |aim| e (XZ"“[OH “; XS [Qmod e/ Hmed! — %x;"“[—gmod]e imoat ) |

where, x"[Q2] := 1 —nck x,[$2], represents the susceptibility of the output field to
the input field (see Eq.(3.2.54)). The transmitted sidebands now encode the cavity
response, which appears in the detected photocurrent,

2
r — ou 2 — %— ou 2 ou 2
< 0ut> X |ain|2 |Xu t[o]’ + |ain|2 mTOd (}Xa t[Qmod]| + |Xa t[_Qmod” )
+ 1@inl? €moa Re [ (X101 [Rmoal — x5 10T %" [~ Qmoal) € ']

~ Smod u u ;
+ |ainl® 5 Re [ [Qmoal 1 {[— Quoa €2 %met]

asaDC term, a term oscillating at the modulation frequency 2,04, and one oscillating
at twice the modulation frequency. For a cavity with a symmetric response about
resonance, the DC term does not carry unambiguous information regarding the laser-
cavity detuning. The term oscillating at 2,04 does furnish this information.

Figure 3.8a shows our implementation of this technique. A function generator
provides a sinusoidal tone (204 = 27 - 40 MHz) that drives an EOM (NewFocus
4002), which imprints a phase-modulation tone on the laser before it is coupled into
the cavity. Cavity transmission is detected on a sensitive avalanche photodetector
(Thorlabs APD120); the resulting photocurrent is band-pass-filtered to isolate the
component at 2,04, appropriately amplified (Minicircuits ZFL-500LN, or Femto
HVA-200M) and mixed-down (Minicircuits ZP-3) with an electronic local oscillator
(LO) at Qpoq. Care is taken to ensure that the double-balanced mixer is operated in its
linear regime and that its output passes through appropriate image-rejection filters.
The LO is a phase-controlled copy of the signal used to drive the phase modulator,
ie. VLo = |VLol sin(QRmoa? + 0Lo). The demodulated voltage at the output of the
mixer is,

Vigemod X |@in|* Emod - [Viol - Mppu sin(@Lo + Oppr)- (3.2.56)
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Fig. 3.8 Frequency modulation spectroscopy. a Experimental schematic of the spectroscopy
scheme: an EOM driven by a RF generator produces frequency modulation sidebands on the detuned
probe laser. The cavity transmission is detected using an avalanche photodetector, whose output
is demodulated by a phase-tuned RF local oscillator. The mixer output may additionally be used
to stabilise the probe on cavity resonance. b Schematic of the single-sideband technique: near
resonance, the frequency modulation sidebands get transduced by the cavity phase response to
amplitude modulation in transmission. Ideally, on resonance, the transmitted sidebands interfere
destructively. ¢ Demodulated output from the mixer as the laser is swept over cavity resonance.
The various traces show the voltage trace as the electronic LO phase is tuned over half a cycle.
The gray dashed line is an overlay of the cavity magnitude response plotted from the estimate of
the linewidth obtained from the PDH signal. Black trace shows an in-loop signal once the laser is
locked to cavity resonance. d Residual laser-cavity detuning noise estimated using the input into
the laser frequency actuator. Gray is electronic noise in the control loop

Here, the magnitude (Mppy) and phase (6ppy) of the PDH error signal is determined
by the identity,

d|XfJ“t[91|2}
e ’
Q=0

MppH eiePDH = X‘?Ut[o]xgm[gmod] - X:;m[o]*xt?m[_ﬂmod] ~ and |:

where the approximation is for the case where the modulation frequency is much

smaller than the cavity bandwidth, i.e. Qpoa K %, and therefore, xo"'[Qmoa] &
out

X014+ Rmod ddx—g.z. Inthis unresolved-sideband case, Oppy ~ 0, and the demodulated

voltage, maximised for the choice 8y o = 0, provides the derivative of the magnitude

response of the cavity transmission.
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Fig. 3.9 Single-sideband modulation spectroscopy. a Experimental schematic of the spec-
troscopy scheme: an EOM driven by a network analyser imprints sidebands on the detuned probe
laser. The cavity transmission is detected using a pair of balanced photodetectors, whose output is
demodulated by the network analyser. b Schematic of the single-sideband technique: by being far
detuned from the cavity resonance w,, specifically |A| >> «, as the modulation frequency Qmoqd is
swept, only one of the sidebands probes the cavity. ¢ Example of a response taken on a microtoroid
cavity, showing a linewidth of k = 27 - 5.2 MHz

Figure 3.8c shows examples of the demodulated voltage as 6y ¢ is varied over half
a cycle. At the optimal setting of the LO phase, 6o ~ 0, the demodulated voltage
provides the best error signal for stabilising the laser frequency to cavity resonance,
i.e. A = 0. This is realised by sending a copy of Vgemoa through a PI controller,
appropriate filtering stages, and into the laser frequency controller actuating on the
diode current. The black trace shows the actuator input when the laser is locked.
Figure 3.8d shows the power spectral density of the actuator input, calibrated in units
of laser-cavity detuning, providing an estimate of the residual detuning noise when
the laser is nominally locked. Note that the PDH error signal voltage (Eq. (3.2.56)),
Vdemod X £2mod, €nabling calibration of the voltage noise in units of frequency. Low
frequency broadband suppression of detuning noise < 10° Hz/+/Hz at offset fre-
quencies up to 1 kHz is easily achieved in our experiment; this is mainly limited by
background electronic noise (grey trace) from the photodetector and control electron-
ics. This level of detuning noise suppression proves crucial for experiment reported
in Chap. 7, where this data will be revisited.

A variant of frequency-modulation spectroscopy which may be profitably
employed when the cavity bandwidth is small compared to the accessible modula-
tion frequency will be briefly described now. The central advantage of this technique,
over standard PDH spectroscopy (as above), is that very little optical power actually
enters the cavity; for exceptionally high-Q cavities suffering from low threshold for
optical nonlinearities [102], this can be a technical boon.
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As shown in Fig.3.9b, the probe laser is far detuned from the cavity, i.e. A K
—75, so that only one of the phase-modulation sidebands (here, upper sideband)
probes the cavity response. In this effectively single-sideband modulation scenario,
no extraneous interference occurs with the lower sideband, giving a demodulated

voltage,
Videmod X |&in|2 Emod : ‘X;’m[Qmod]‘ sin (QLO + arg X;ut[gmod]) ’

which, unlike the PDH voltage (Eq.(3.2.56)), directly provides access to the real
(6o = %) and imaginary (6.0 = 0) parts of the cavity response.

In the experiment, as shown in Fig.3.9a, both the modulation and demodulation
are performed using a RF network analyser (Agilent, ES061B), so that the photode-
tected signal can be simultaneously demodulated over the two phases. Combining
this quadrature-demodulated signal gives the magnitude and phase response of the
cavity shown in Fig.3.9c. Being a coherent detection technique, exceptionally low
intracavity photon numbers (|@|?| < 100) may be reliably used, at the expense of
longer averaging time.

In closing, we note that an additional frequency modulation on the sidebands
allows for stabilisation of the probe laser at a variable offset detuning from cavity
resonance.
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Chapter 4
Photon-Phonon Coupling: Cavity
Optomechanics

Sections 3 and 4 brutally seize this formalism and mercilessly
beat it to death...

Carlton Caves

The purpose of this chapter is to synthesise the developments of the previous two
in a concrete setting. For example, in Sects. 3.1 and 3.2, the dynamics of an elastic
medium, and that of light stored in an optical cavity has been considered; in the
section below, we will see that elastic perturbations of the volume of an optical
cavity lead to perturbations in the cavity frequency. Such a coupling between light
and motion forms what is called a cavity optomechanical system. Perturbations in
the cavity frequency trigger a feedback mechanism—shift in the cavity resonance
frequency leads to changes in the stored optical energy, which exerts a radiation-
pressure force that further displaces the elastic medium—that captures the basic
dynamic consequence of light-motion interaction in cavity optomechanics; Sect. 4.2
describes this phenomenon. Section4.3 discusses how the same interaction can be
used to perform an ideal measurement of motion using light—one that can operate
at the quantum limit that was derived in an abstract setting in Chap. 2.

4.1 Perturbing an Optical Cavity

An optical cavity is here taken to be some finite volume' V, with an appropriate
boundary, that supports electromagnetic fields of the form,

IWe assume that this domain is simply-connected so that all the usual manipulations of vector
calculus hold.
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V. Sudhir, Quantum Limits on Measurement and Control of a Mechanical
Oscillator, Springer Theses, https://doi.org/10.1007/978-3-319-69431-3_4


http://dx.doi.org/10.1007/978-3-319-69431-3_3
http://dx.doi.org/10.1007/978-3-319-69431-3_3
http://dx.doi.org/10.1007/978-3-319-69431-3_2

84 4 Photon-Phonon Coupling: Cavity Optomechanics

Eq, Hy E., H,

Vo

Fig. 4.1 Schematic of cavity perturbation. Left shows region V forming a cavity of material
characterised by dielectric constants €y, (to; right shows the region deformed to a new domain V/,
and with possibly different dielectric constants €1, (1

E(r, 1) = E(r)e ™, H(r,1) = Hr)e ', 4.1.1)

at the resonance frequency w. The spatial variation of these fields, as well as the
resonance frequencies, are determined by the Maxwell equations [1],

VXEr) =iownr)H(r), VxH) =—-iwe()E(r); “4.1.2)

here p is the magnetic permeability (a strictly real number), and € is the electric
permittivity (a possibly complex number?). Note that the resonance frequency w is
allowed to be complex, so as to describe intrinsic losses of the cavity.

In this setting, the cavity may be perturbed only via a limited set of influences:
(1) perturbation of the dielectric constants, u, €, through the introduction/removal
of material, and/or (2) changes in the cavity domain V, for example by deformations
of the boundary dV. Both perturbations lead to a change in the cavity frequency
. When these effects are caused by an underlying elastic deformation field u (as
defined in Sect.3.1), a coupling between the cavity electromagnetic field and the
elastodynamic field results. It is this coupling that we compute in the following via
a perturbative treatment.

Following the work of Bethe and Schwinger [2] (see also [3]), consider the two
configurations shown in Fig. 4.1, depicting a cavity perturbed in shape, i.e. V) — Vi,
and dielectric constants (eo(r), o(r)) — (€1(r), w1 (r)). Each situation is defined
by equations analogous to Eq. (4.1.2), viz.

V x E() = ia)Q[LO Ho, V x H() = —iwoéoEo,

, , (4.1.3)
V x E1 =1wih] Hl, V x H1 = —lw|€] El.

2The second Maxwell equation follows fromV x H = J + ¢ % where € is the real-valued electric

permittivity. Assuming that losses in the cavity are modelled by the presence of a finite conductivity
o,i.e.thecurrentdensity J = oE, gives VxH = (c +€ %) E. Inserting the ansatz Eq. (4.1.1) gives,
VxH=—iew (1 + z&) E. The identification, € (1 + zﬁ) — €, results in a phenomenological
permittivity that is complex.
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The general strategy is to relate the frequency shifts to mechanical quantities of the
electromagnetic field, i.e. its energy and momentum. The change in these mechanical
quantities can then be related to the motion of the elastic field.

Guided by the form of the energy and momentum of the field, Eq. (4.1.3) can be
expressed as,

HT . (V X Eo) = in/LQHT . HO
Ey- (VxH) =iwel E] - Eo;

which upon subtraction gives,
V. (HT X E()) =1 (a)lei‘ ET . Eo — a)()//L()HT . Ho) s (414)

where the left-hand side is expressed using the identity V-(f xg) = g-V xf—f-V xg.
Similar manipulation of the remaining two equations in Eq. (4.1.3) gives,

A\ (H() X ET) = —i (C()()EE)k ET -Eo — WM HT -H()) . (415)

Adding Eqs. (4.1.5) and (4.1.4), integrating the resulting equation over the perturbed
domain V;, and applying Gauss’s theorem, gives the so-called Bethe-
Schwinger equation [2],

7{ (HT x Eq + Hy x ET) -ds = i/ [(a)lef —woel)ET - Eo
A%

Vi
+ (w11 — wopo)H] - Hy d’r,

where s denotes the normal to the boundary surface dV;. Expressing the above
equation in a shorthand notation,

TV = o R _ gy g
where, #V) .= — favl (H’f x Eo + Hy x ET) .ds (4.1.6)
jo(,éfﬂ) = fv, (63,1 E} -Eg + po, HY ~Ho) d3r,

the shifted frequency of the cavity is given by the formally exact recursion,

g j(e,u) _ j(e.u)
o=+ s —ol| —— |- (4.1.7)
o 1

A series of systematic approximations may now be performed. Firstly the recur-
sion (in Eq.(4.1.7)) is iterated once to obtain the approximate fractional frequency
shift,

8_a) o —wy a)()—lj(v) B jl(e,u) _ jo(e,u) “18)
wo o A A . -
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Secondly, the integrals .# may be estimated approximately, as follows. The surface
integral .# ") (see Eq.(4.1.6)) consists of two terms. Assuming that the boundaries
d V.1 are essentially lossless (i.e. both the initial domain, and the perturbed domain
have no intrinsic radiation loss), the electric field satisfies the boundary condition
E;|sv, = 0O for each scenario i = 0, 1. Under this assumption,

v ae—if H; x E - ds
aV

=i (7{ +]{ )HTxEo~ds (4.1.9)
aVi—aVp Vo

:—if H} x Eg - ds,
AVi—aVo

where by 0V; — 9V, we mean the surface enclosing the volume AV := V| — Vj,
defined as the set difference of the two domains. The final approximation consists of
assuming that the perturbation does not appreciably alter the mode structure of the
cavity, so that,

E, ~# E;, H; ~ H,. (4.1.10)

Inserting this in Eq. (4.1.9),
IV ~ —iyf H; xE-ds = —a)o/ (€0 IEol* — 1o [Hpl?) d°r, (4.1.11)
aVi—oVy AV

where the second equality is a consequence of Poynting’s theorem [1]. Under the
approximation in Eq. (4.1.10), the integrals ,ﬂo(fl’“ ) take the form,

A z/ (€5 [Eol* + wo Hol?) d’r
W (4.1.12)

A = A /V (Ae* [Eol + Ap [Hol?) d*r,
0

where Ae™ := €| — €p, and, A := u; — Wo, are the perturbations in the dielectric
constants.

The frequency shift can now be estimated by inserting the approximate integrals
in Egs. (4.1.11) and (4.1.12) into the fractional frequency shift equation (Eq. (4.1.8)).
At the level of perturbation theory carried out here, the frequency shift arises from
two independent contributions, viz.
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Sw (5a)) (Sa))
=) +(=
@0 wo /'y ®o ) ¢,
3 € |Eol* — H,1?) 43
where, (_a)) :_fAV(()| ol* — 1o [Ho|?) d&*r
wo )y

Jv, (€6 [Eol? + wo [Hol?) d3r

Sw Iy, (A€* [Eo* + Ap [Hol?) d*r
and, == 2 N i
€, ng (6() |E0| + o |H0| ) d’r

(4.1.13)

o

The first terms arises purely from volume deformation of the cavity domain, while
the second arises purely from changes in dielectric constant(s) within the cavity. Note
that for a predominantly dielectric cavity (i.e., where the electric field energy is much
larger than the magnetic energy), an increase in the cavity dielectric constants and/or
an increase in the cavity volume, both lead to a decrease in the resonance frequency.
This analogy has been previously used to model moving boundary effects as an
effective dielectric perturbation [4]. Finally we note that the conceptual ambiguities
associated with identifying the force applied by an electromagnetic field on a moving
body [5, 6] appear to be less severe in the approach outlined here, wherein the
emphasis is on a well-defined observable —cavity frequency—and not on the details
of the microscopic light-matter interaction.

4.2 Effective Description: Single-Mode Cavity
Optomechanics

The effect of volume and/or dielectric perturbation, given in Eq.(4.1.13), may be
related to the motion of a causative displacement field u. The resulting variation of
cavity volume and dielectric constant, can be related to the elastic field as,’

AV = (V-uw)Vy, Ae*~(Ve)-u, Au=(Vu)- u 4.2.1)

Inserting these in Eq.(4.1.13) provides a description of the cavity electromagnetic
field interacting with the elastic field. Note however that other forms of coupling, for

3The volume change, AV, due to an elastic displacement u is that swept out by the surface element
ds transverse to the displacement, i.e.,

Av:/u-ds:/(v-u)d3r~v-u/d3r=(V-u)vo.

For the dielectric constants, say €*, a Taylor expansion gives,

de*
Ae* ~ 5 ~dr = (Ve*) -u.
r
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example through the elasto-optic effect [7, 8], which renders volume deformation
and dielectric perturbation not independent, do not follow the above prescription.

Confining attention to the case of a dielectric cavity undergoing perturbation of its
electric permittivity due to an elastic deformation (other cases are treated identically),
the cavity frequency shift, now denoted Sw,, (from Eq. (4.1.13)) takes the form,

v, ol (u(r, 1) - Ve*) d*r
S = G 422
@t fvo (€0 1Eol* + 1o [Hol?) d3r Z X (1). ( )

The second equality follows from inserting the elastic mode expansion (Eq. (3.1.21)),

u(r, 1) = D, 0),

and defining the cavity frequency pull parameter,

Ty, TEol? (@, (r) - Ver) dr oy, |Eol” (@, (r) - Ve*) d*r

G, = -
fvo (€0 Eol* + po [Hol?) d3 2 Jy, €0 [Eol* dr

(4.2.3)

Here, the second equality is obtained by noticing that the denominator is the energy of
the electromagnetic field in the volume Vjy, which, for a stationary field configuration
in a closed volume is divided equally between the electric and magnetic fields [2].

The cavity frequency shift describes a dispersive coupling between the electro-
magnetic and elastic degrees of freedom. In a quantised hamiltonian description (see
Egs. (3.1.25 and 3.2.39)), such an interaction manifests as a displacement-dependent
modification of the cavity frequency, viz.,

. 1
H = howa'a + > hQ, (b;bn + 5)

a1
= h(a)c - ZGx) ata+ ZhQ (b,;bn + 5) 42.4)

= hw.a'a + Zm (bb + ) Zh(c,,xzpn) Ya(b, +b7).

&\,_z
ﬁ{‘

A Hingn
Hp

In terms of quantised excitations of the elastic field—phonons—and those of the
quantised electromagnetic cavity field—photons —this hamiltonian may be read as
the sum of their energies (I:IC + zn I:Im,,,), together with a nonlinear interaction term
> ﬁ,m 2. From the perspective of the photons, the interaction leads to a frequency
shift, whereas from the perspective of the phonons, it leads to an additional force
(here, p, 1= ipsy, n(b — bT) is the canonical momentum conjugate to x,, whose
zero-point amplitude, p,p , satisfies, X,p » pp.n = 1/2),
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. i R i
Frad,n = ﬁ[Hint,n’ Dnl = —hGpa'a.

Being a photon-number-dependent force, we identify it as being due to radiation

pressure exerted on the phonon field by the intracavity photon field. Note that the
unambiguously defined product,* the vacuum optomechanical coupling rate,

5 12
80,0 = anzp,n =G, (2mn9n) >

characterises the strength of the coupling between the photon and phonon degrees
of freedom.

We now focus on a single mechanical mode, described by its position X = x;, b+
b, interacting with a cavity field at the rate g = Gx,p. The equations of motion for
the intracavity optical field a and the mechanical oscillator position X, that follow
from the hamiltonian in Eq. (4.2.4), together with the cavity-waveguide coupling and
loss terms of either subsystem (see Egs. (3.1.28) and (3.2.48)), are [9],

b= (i(A —GH) — f) & 4+ /(1 = 10)x 880 -+ /7oK Gin
) . 2 A (4.2.5)
Forni+ @it =m" (shy—nGa'a).

In the rest of this section we use these equations of motion to explore the basic
consequences of the radiation pressure optomechanical interaction for the dynamics
of the photon and phonon modes.

4.2.1 Steady-State Shifts

The above equations of motion, due to their nonlinearity, sustain several steady-states.
Employing the ansatz,

a(t) =a+da@), x(t)=x+8x(t),

the steady-state amplitudes are determined by the nonlinear algebraic relations,

“4From the discussion in footnote 3.8 (in page 42), a scale transformation of the elastic displacement
function by a factor A, i.e. i1, (r) — Ait, (r), implies a corresponding transformation of the mode
mass, m, — AZm,, and therefore a transformation of the zero-point motion, xzp , — )lezpyn.
From the definition of the frequency-pull parameter in Eq. (4.2.3), the same scale transformation
induces the change, G, — AG,, meaning that it is dependent on the definition of the displacement
function (but not on the cavity electric field). However, the product, G, x,p  is invariant to any scale
transformation of the displacement field, and is thus independent of its choice.
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- —/Mek ain _ hG
a = — y X = —
i(A—GX)—«/2 m2

lal®. (4.2.6)

Schematically, this leads to a static shift in the mean laser-cavity detuning due to
the mean position of the mechanical element, x, leading to a change in the mean
intracavity photon number. The resulting delayed radiation pressure force causes the
mean position of the oscillator to change; ultimately, the steady-state is stable when
these changes are self-consistent [10].

In order to investigate the potential instability, Eq. (4.2.6) may be expressed as the
cubic equation,

=—=n

c,ress
Xzp Qm

X 2A  2g0 ¥\ * 0
—+
for the normalised steady-state displacement x /x,,. Here ¢ res = % |Gin |2, the mean
intracavity photon number on resonance, proxies the injected power in this equation.

The necessary condition for bistability is that at least two roots of this equation are
real. This happens when [11],

22 __ 5 ' 1\ «Qn
T < - 3’ anda Neres = Ne thresh += m g% .

However these are not sufficient conditions [12]. For the system employed in this
thesis, the static optomechanical bistability threshold, 7. thresh ~ 2 - 10°, while the
maximum mean intracavity photon numbers employed are ~ 50 times smaller.
Static instabilities due to an inconsistent steady-state were some of the first effects
of radiation pressure to have been observed in high-power interferometers. In the
1980s optical bistability due to very low frequency (€2, ~ 27 - 1 Hz) modes was
observed [13, 14]. The steady-state, if stable, leads to a static radiation pressure
force, hG |a |2, that causes a shift in the mechanical oscillator resonance frequency,

2
Qm,stat

d
=m~'—(hG lal*),
0x

which has alsobeen observed in early experiments with low frequency oscillators [15].

4.2.2 Dynamical Back-Action

Assuming a stable steady-state, fluctuations 8a, §X are governed by linearised equa-
tions of motion [9],
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56 = (iA — g) 56 + i gon/Me o 4+ /(1 = no)ic 8éig + /oK Sin
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Xup

Here we define the magnitude, n., and phase, 6., of the steady-state intracavity
amplitude a, viz.,

e lawl® 24
L= = a 6, ;= arctan —.

k 14+ (4A2/k2)’ K

The former quantity, n., is the mean intracavity photon number. In the case of a single
cavity mode, the phase 0, is redundant, since it may be accommodated for by using
an appropriately retarded input field (i.e. @, — ape"%). Note however that when
the cavity is embedded in an interferometer, as for example in our experiments, this
corresponds to an equivalent advancement of the LO phase. Keeping this in mind we
henceforth set 6, = 0.

Note finally that the vacuum interaction strength g, is enhanced by the presence
of a large (n. > 1) intracavity photon number, to the dressed interaction strength,

8 ‘= 8o/

It is in fact this renormalisation of the interaction strength that makes it possible
to observe dynamic optomechanical phenomena despite the fact that the cavity fre-
quency shift caused by the per-photon force, hG, is small compared to the cavity
linewidth «.

Expressed in terms of the Fourier transform, §a[2], §X[2], Eq. (4.2.7) takes the
form,

§2@IQ
5a9IQ] = 6a©[Q] + xO[Q] - ig ———— L<2]
. o (4.2.8)
5&(9[9] — 5)2(0)[9] _ X;O)[Q] s (5&(8)[9] + 8&(8)[_9]1‘) ,
zp

where the intrinsic susceptibilities,

x0[Q] = (—i(Q +A)+ %) 1 , xOQ=m (0 - Q7 - iszrm)‘1 ,
(4.2.9)
dictate the response of the cavity and the phonon modes to their respective generalised
forces in the absence of optomechanical coupling. In the above equations, §a‘®’, §3 ()
denote the cavity field and mechanical position modified by the interaction; their
intrinsic motion—in the absence of interaction (g = 0)—is given by,
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(4.2.10)

The generalised forces that drive the optomechanical system in the presence of a
finite coupling come in two forms. From the right-hand side of Eq. (4.2.8), these are:
ones due to the dynamics of either mode, and those due to stochastic fluctuations
from the environment (interpreted broadly, including the other sub-system). The
former effectively leads to a renormalisation of the susceptibilities—an effect called
dynamical back-action [9, 16, 17]; the latter leads to stochastic (measurement) back-
action [9, 18-20].> When the fluctuations due to the environment are limited to the
level allowed by quantum mechanics, stochastic back-action is called quantum back-
action.

In a classical picture, dynamical back-action may be described as a form of
autonomous feedback between the mechanical oscillator and the cavity field [10, 17,
22], which leads to a renormalisation of the response of either sub-system to their
respective external forces. Dynamical back-action of the cavity field on the mechani-
cal oscillator becomes prominent when the photon lifetime in the cavity is comparable
to the mechanical oscillator period. In this conventional regime (k 2 Q2 > '),
the modified dynamics of the mechanical oscillator,

829[Q] = x¥[Q] ((Sﬁm[Q] + (SﬁBA[Q]) ;

obtained by solving Eq. (4.2.8), features a renormalised susceptibility,
2 \>
@l = x el +in (X—) (xV191 = 1V 1-217) (4.2.11)
zp

that modifies the response of the oscillator. The renormalised mechanical suscepti-
bility [9],

+2i g’ (X V12m] — x O [-2m]")
(—Q*+ @, — Q) + 2ig” (X [Qm] — x [~ Q]
= Q% + [ +28°Qm Re i (X V[Qm] — x O [-2m]")]

xRt x 0!
m m

Q
—iQ [rm - 2g2§“‘ Imi(xV[Qm] — x5°>[—fzm]*)}

3 Although widely credited to the investigations of Braginsky’s group in Moscow in the 1970s [16,
18], it appears that dynamical back-action was observed and described in the 1930s by a group led
by Hartley at Bell Labs [21]. It is however unclear whether the effect was solely due to radiation
pressure. It is interesting to note Hartley’s recognition of the mechanism being analogous to Raman
scattering, an effect that was only described in the previous decade.
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describes a harmonic oscillator with a shifted frequency,

Qe = [22 + 28 Re i (X2 [2m] — xO1-2u1)]"
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) , (4.2.12)
and modified linewidth [9],

Q.
Cefr := Do — 2g23 Imi(x 2 [Qm] — xO[-Qnl")

o 448 ! _ : 42.13)
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Figure 4.2 shows the modification of the mechanical frequency—optical spring—
against the possible values of the linewidth modification—optical damping—as the
laser-cavity detuning is varied from negative values, into resonance, and large positive
values. The various traces show the effect of sideband resolution, 2?'“ , which dictates
the efficiency of the autonomous feedback. Dynamical back-action induced modifi-
cation of the mechanical response, leading to optical spring [23, 24], linewidth nar-
rowing (amplification) [25-27], or damping (cooling) [28—32] have been observed.

Ultimately, dynamical back-action modification of the mechanical response is

limited by the quantum back-action force,

SEpalQ] = —h-2- (6aV1214 84V [-Q1") = s V2850121, (4.2.14)

Xzp Xzp

due to vacuum fluctuations in the optical amplitude, acting on the oscillator. For
dynamical back-action amplification, this is predicted to lead to a fundamental phase
diffusion of the oscillator [33], while for cooling, quantum fluctuations lead to a
minimum accessible temperature [34, 35]. In the resolved-sideband regime, charac-
terised by k < @y, it becomes possible to cool the mechanical oscillator to a level
where its energy is comparable to the energy in its ground state [36—40].
Dynamical back-action can also be used to modify the optical susceptibility, viz.,

2
£
xzzp x

x@1 = 01" +in Q]

In the conventional regime this manifests as an optomechanically-induced absorp-
tion/transparency [41-43]. In an unconventional regime, characterised by I'y, = «
[44], modification of the optical susceptibility leads to phenomena analogous to
lasing—i.e. optical amplification with added noise limited by quantum fluctuations.

Thus, radiation pressure optomechanical coupling provides an opportunity to con-
trol the dynamics of the mechanical mode, or of the optical field, by modifying its
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Qeff - Qm
2¢%/k

0.5

Dynamical back-action frequency shift

FCH - Fm
49?2 /k

Dynamical back-action damping

Fig. 4.2 Dynamical back-action. Parametric plot of the normalised optical spring shift versus the

normalised damping, due to dynamic back-action. Each trace is plotted as the normalised detuning,

25 varies from —oc. .. 4+ oo. The different traces represent values of the sideband resolution
[3

>
factor, %—red represents Q = 1072 - 5—deep in the sideband unresolved regime, while
K

blue represents, 2, = 102 - 5—deep in the sideband resolved regime. The shaded orange region
(corresponding to I'eff — I';y < 0) represents regions of potential instability (corresponding to
Ietf < 0), whereas the blue region is unconditionally stable

susceptibility. The fundamental limit to autonomous control of this kind is set by
quantum back-action.

However, it is the alternate provision—that of being able to precisely measure
mechanical motion—that a major part of this thesis is concerned with. In particular,
in the unresolved sideband regime (i.e. k > 2,), dynamical back-action is a weak
effect, and therefore it becomes possible to measure the intrinsic mechanical motion.
The fundamental limit of how well the measurement can be performed is again set
by quantum back-action. The following section explores the measurement aspect of
optomechanics in detail.

4.3 Continuous Linear Measurement Using Cavity
Optomechanics

The cavity field—henceforth the meter—by being coupled to the mechanical
oscillator—the system—can realise the ideal linear measurement model considered
in Chap. 2. The task of any such measurement is to allow for the inference of the
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intrinsic mechanical motion (defined in Eq. (4.2.10)),
820 = yO[Q1sFyl€l.

However, the linear coupling between the cavity field and the oscillator precludes
the possibility of having access to just the intrinsic motion. From Eq. (4.2.8), the
intracavity field consists of three terms,

ig
zp
ig A

+ (x—) x OV [Q1x P [Q18 Feal2];
zp

3a'1Q] = sa"1Q)+ ( ) X 1@ 111l 801l

43.1)

the first due to the unavoidable intrinsic fluctuations of the intracavity field, the
second is the transduced motion of the oscillator (possibly modified by dynamical
back-action), and the third, the motion of the oscillator driven by the fluctuations of
the intracavity field (i.e. quantum back-action).

Since we are interested in retrieving the intrinsic motion, it is desirable that the
measurement has no dynamical back-action, i.e. x.8’[Q] = x(?[£]. From the expres-
sions for the optical spring and damping in Eqs. (4.2.12) and (4.2.13), it follows that
for resonant probing, i.e. A = 0, dynamic back-action is absent. In this case, the
cavity transmission, given by the input-output relation (Eq. (3.2.49)), carries all three
components:

o2 = (1 S )m[sz] - (—2V el "")) 5a0[2]
1-2iQ/k 1-2iQ/k 432)
. ( Ve ) (2_g) 3£ O1Q] + s2pal€ o
AV AW Yo ’

the first two terms represent the intrinsic cavity field leaking out in transmission,
while the second line shows the position fluctuations transduced by the measurement
interaction, contaminated by the back-action driven position fluctuations,

8xpalQ] := xV[Q18Fpal Q).

From Eq. (4.3.2), it is apparent that the role of the cavity is to enhance measure-
ment sensitivity. For fixed intracavity photon number, the transmitted photon flux
(per frequency band at an offset of 2, from the carrier) due to the zero-point motion
is (1+ 452%“/;(2)_1 Ne - 4%2. The frequency dependent pre-factor (1 + 4Q2 /)~
may be interpreted as an additional efficiency penalty arising from the finite band-
width of the cavity acting as a low-pass filter with respect to the mechanical motion.
In the deep unresolved-sideband regime, 2,,, < «, this efficiency factor is unity. The-
oretically, therefore, probing on resonance with a sufficiently large bandwidth cavity
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provides the ideal meter to sense the oscillator motion.® Working in the broadband
approximation, i.e. 2y, /k < 1, fluctuations of the mechanical oscillator position are
confined to the phase quadrature of the output field, viz.,

8ﬁoul[9] = (1 - 2”6)8ﬁin[9] - 2V nc(l - 770) SﬁO[Q]

o ( 28 ) (&%(‘”[sz] + &%BA[Q])
‘ N3 Xzp '

A homodyne detector tuned to the phase quadrature directly detects & poy. We define
the observable 8y, that models the position-equivalent record of the homodyne
detector,

8 Ppout[£2]
RV 2”6(2g/\/z)/xzp

Here, we have defined,

5),}hom [@]:= = afimp,hom[Q] + 5)2(0)[9] + (SjeBA[Q]-

2n.—1 . ~
Siimp,hom[g] = Xgp (g_j) ( ?/W 3pin[R2] +v2(1 — ) 5[’0[9]) , (43.3)

the position-equivalent imprecision in the measurement record. For the relevant oper-
ating conditions (A = 0, 2, < k), the motion induced by the coupling to the
meter—measurement back-action—is given by,

hxO[Q
83pAlR] = ( ﬁ) tal ](,/maqm Q1+ v2(1—10) 5610[9]) (4.3.4)

Xzp

Note that the definition of the back-action motion depends on the system-meter
coupling alone, while that of the measurement imprecision depends also on the meter-
detector coupling (i.e. the choice of detector used to measure the meter state—here,
homodyne detection).

For quantum-noise-limited optical fields, the measurement imprecision and
measurement-back action spectral densities take the form (following from Egs. (4.3.3)
and (4.3.4)),

2
Slmp hom [Q] x K
4 4g

4.3.5

Baror _ L ore1 (A7) 1, Opon|? c8A ( )

Sl = - [l (= ) = a1l S
zp

Their product—an expression of the uncertainty principle—is given by,

SEffectively, the cavity needs to be broadband, and high-finesse.A micro-cavity meets these con-
flicting requirements owing to the small round-trip time.
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2

_ _. h

the ideal bound of /% /4 is achieved when the cavity is heavily over-coupled, cor-
responding to unit coupling efficiency n. = 1. Therefore, in principle, the cavity
optomechanical interaction, together with high-efficiency homodyne detection of
the optical field, is capable of achieving the ideal performance of a linear quantum
measurement chain.

The standard quantum limit (SQL) for such a measurement strategy refers to the
absolute minimum apparent motion seen at the detector output. The total noise power
in the homodyne measurement record, described in terms of the spectral density of
the observable 8 Yyom,

Sl = SPIQ] + SErer Q) + SEA el

< olm m 2.
> S19] + 2\/ swrrriel - x| sl 43.7)

_ h
> SO+ — |x 11|,
e el

contains, in addition to the intrinsic motion S S), an excess noise at each frequency
arising from the quantum fluctuations in the optical field, commensurate with the
general considerations of Chap. 2. These excess fluctuations arise from the vacuum
fluctuations in the two degrees of freedom of the meter: phase vacuum fluctua-
tions leading to measurement imprecision in the homodyne detector, and amplitude
vacuum fluctuations leading to apparent motion due to quantum back-action. The
absolute minimum of the total apparent motion S’i?;m—the SQL—is realized when
the intrinsic fluctuations in the mechanical oscillator are also quantum-noise-limited,
i.e. when its thermal occupation is zero (n,, ¢, = 0), and when the detection efficiency
is unity (1. = 1). In this pristine case, the peak spectral density of apparent position

fluctuations given by Eq. (4.3.7),
4 2

_ _ _ X;
S3 Q] == min S [Qn] = 282[Qn] = = E, (4.3.8)

m

is twice the intrinsic zero-point motion of the oscillator (defined in Eq. (3.1.30)).

The apparent motion at the SQL provides a fundamental and natural scale to
compare the performance of any linear measurement of the position fluctuations of
a mechanical oscillator. In fact, the apparent position fluctuations, .S_‘;lfv’m, referred to
the standard quantum limit,

Sy _ (Qul'm)?
S$OQ, (@ - Q) + (@)

1
(Vlm,m + NmBA + E) , (4.3.9)
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Fig. 4.3 Anatomy of the standard quantum limit of position measurement. a Plot shows
the phonon-equivalent total signal and its noise budget. Imprecision noise (blue) decreases with
measurement strength, while back-action noise increases proportionately so as to maintain the
imprecision-back-action product (Eq.(4.3.12)). Yellow is the zero-point motion of the oscillator.
Black shows the total phonon-equivalent noise at the output of the detector. Orange dashed shows
intrinsic thermal motion when the oscillator is in a thermal state; black dashed shows the total noise
in this case. b Spectra for three different points along the thick black curve in (a). Here, black shows
the spectrum of the observable 8 ypom normalised to the SQL. Blue shows the contribution from
imprecision, which goes down as the measurement strength is increased; red is the back-action due
to the measurement, going up with measurement strength. Yellow is the zero-point motion

may be simply parametrised in terms of equivalent thermal quanta describing the
three different contributions to the measurement record. Here, ny, o + %, is due to the
intrinsic motion (thermal and zero-point) of the oscillator, while the measurement
imprecision and back-action contributions are encoded as,

n; h = lmP hOm[Qm] — !
imp,hom - SQL[Qm] 1677C0”c’ 4.3.10)
_ Sl _
Nm,BA ‘= W onc.

The dimensionless parameter defined here, the single-photon cooperativity,

4 2
Cpi= 80 43.11)
g

describes the merits of the linearised optomechanical system as a position sensor; 7
describes the total efficiency of the measurement chain, including input-output cou-
pling due to the cavity and losses in the homodyne interferometer. The imprecision-
back-action product in Eq. (4.3.6) takes the form,



4.3 Continuous Linear Measurement Using Cavity Optomechanics 99

1 1
SPB*‘?*[Q ]Slmphom[Q ]>

4.3.12
4n? ~ 16n.’ ( )

Nm,BAMimp,hom =

in terms of the phonon-equivalent quantities. Here, we employ an inequality to convey
the notion that other sources of classical noise—either in the imprecision, or in the
back-action—may preclude the lower limit prescribed by quantum mechanics.

Figure 4.3 depicts the anatomy of the standard quantum limit. Figure 4.3a shows
the peak spectral density S’yy [©2;,] normalised to its value at the SQL, as the measure-
ment strength, 4Con., varies. As the measurement strength is increased, typically by
increasing the photon number 7., the imprecision contribution (blue) goes down due
to the properties of phase shot-noise of the coherent-state meter field, while the back-
action contribution (red) increases, as the oscillator experiences an increased photon
recoil. Together with the zero-point motion (yellow), this gives the ideal characteris-
tic of the total noise power in the detector output (black). The standard quantum limit
is the point marked (B), where the detector output exhibits a minimum, achieved at
the intracavity photon number,

ps = L
¢ 4Cy

As shown in Fig. 4.3b sub-panel (B): at the SQL, the total output (black) is twice the
zero-point motion (yellow). In fact, from Eqgs. (4.3.9) and (4.3.10), it follows that at
the SQL, the total phonon-equivalent noise at the detector output,

S .= |, +n +l =—+l+—=1
m - imp,hom BA ) — 4 4 ) s

is such that imprecision and back-action contribute equally and each exactly half the
zero-point motion [45]. In the non-ideal case, where the oscillator has a finite thermal
occupation (i.e. ny ¢ > 0), the excess thermal motion (orange dashed in Fig.4.3a)
adds a constant excess to the detector output spectrum S’]y‘;m (shown as black dashed
line) precluding the possibility of realising an ideal measurement with the above
noise budget.

In the presence of thermal motion of the oscillator, i.e. ny ¢ > 0, it is convenient
to amend the ideal imprecision-back-action equality in Eq. (4.3.6), to an inequality
of the form

K2 K2
S;?;;[ ]Slmp hom[Q] 1 > Z,
e | | (4.3.13)
ival tl ) m m im m = > —,
equivalently, (it ~+ im,BA) Mimp.ho o 2 16

that takes into account the total force acting on the oscillator, St"t [2] := S'g‘F[Q] +
S BA[ ], including the non-negligible thermal force from the environment. Despite
the presence of thermal motion that precludes the possibility of achieving the absolute
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minimum, ESSL, the total-force-imprecision product characterises the ideality of the
detector subject to the constraints of quantum mechanics.
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Chapter 5
Experimental Platform: Cryogenic
Near-Field Cavity Optomechanics

Quantum phenomena do not occur in a
Hilbert space, they occur in a laboratory.

Asher Peres

Radiation-pressure coupling between a mechanical oscillator and an electromagnetic
cavity allows, in principle, for an exquisitely sensitive measurement of the oscillator’s
motion. If the oscillator is assumed to be in thermal equilibrium, such that its motion
is driven by a thermal force with spectral density S‘%F, then quantum mechanics
imposes a fundamental tradeoff between the measurement precision, expressed as a
position-equivalent spectral density Syy", and measurement back-action, expressed
as a force noise S’IEI}. This constraint is codified by the statement of the uncertainty
principle (Eq. (4.3.13)),

_ _ . hz hZ
(SPplQ] + SERIQ]) ShriQ] > e
equivalently, (nmum + m.BA) Mimp > b > i
’ ’ "= 16n. ~ 16

Here, the second line expresses the first inequality in terms of phonon-equivalent
thermal force, back-action, and imprecision (introduced in Eq. (4.3.10)). A quantum-
ideal measurement is realised when,

(@) nmBARImp — 11—6, i.e. a quantum-noise-limited electromagnetic field is used as

the meter
(b) nmmnimp —> 0, i.e. sufficiently low measurement imprecision is achieved.

The last requirement, somewhat counter-intuitively,' is equivalent to the oscillator
motion being back-action dominated, i.e.

!In this case, intuition is garnered from a different perspective on the measurement process: ideally,
the meter and the system gets tightly entangled in the course of the measurement interaction;
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nmBa  Conec
= S0 5y

nm,th nm,th

Thus, performing a quantum-ideal measurement relies on having an optomechanical
system with a large single-photon cooperativity Cy, a low thermal phonon occupa-
tion ny ¢ and the ability to sustain sufficiently large intracavity photon numbers to
dominate thermal motion with back-action while remaining a linear transducer. The
quantum cooperativity [1],

Co 4 (G 1 1

Noa  Kmalm) kT k€ mly’

characterises the requirement for fixed intracavity photon number. Clearly, the exper-
imental system must consist of a low-mass low-loss mechanical oscillator integrated
with a high-Q optical cavity imparting a large per-photon radiation pressure force
operating at sufficiently low temperature. The rest of this chapter details the optome-
chanical system developed in our group, which in tandem with cryogenic operation,
allow us to meet these requirements.

5.1 Stressed Nanostring Coupled to an Optical Microcavity

The radiation pressure of light, exerting a very feeble force, requires a specially engi-
neered mechanical object so as to induce appreciable motion. The field of contempo-
rary cavity optomechanics [1] achieves this goal by employing low-mass mechanical
objects coupled to intense optical fields in a small mode-volume cavity.

Practical requirements—the need for a highly stable and miniature frequency
reference for integrated circuits—Iled researchers towards high-Q nanomechanical
oscillators in the 1960s [2]. By the late 1990s, these initial ideas had given birth
to a host of electronic devices and sensors based on nanomechanical oscillators [3,
4]. It was hoped that by simultaneously shrinking the size of the oscillator (low
m), while maintaining the mechanical quality (low I'y,), quantum back-action on
nanomechanical objects could be witnessed and exploited [5]. Phenomenologically
however, the mechanical quality factor,

energy stored in elastic motion
On=2m =

m
energy lost per cycle Iy’

(5.1.1)

was found to obey the rough scaling with volume [6-8], O, A suggesting that
conventional nanomechanical oscillators may not simultaneously achieve low mass
and high Q,,. A welcome break from this trend was observed in nanostring oscillators

monogamy of entanglement then requires that the system has to be exclusively entangled with the
meter.
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Fig. 5.1 Unity single-photon cooperativity with near-field gradient coupling. a Survey of the
contemporary landscape of cavity optomechanics in terms of the typically achieved single-photon
cooperativity Cq (Figure adapted with permission from Ref. [13]. Copyrighted by the American
Physical Society) b In the original near-field gradient force optomechanics architecture developed
in our group [14, 15], a high-stress SizN4 nanobeam (red) is manually placed in the evanescent
field of an SiO, optical microcavity. ¢ In the approach followed in this thesis, building upon an
earlier generation of work [16], the nanobeam and micro-cavity are heterogeneously integrated
on a chip for improved technical stability, making it convenient for cryogenic deployment. d An
example finite-element simulation showing the difference between the current generation device
and the previous generation. In the previous generation, the nanobeam (white outline) was placed
far outside the maximum of the evanescent field gradient, whereas in the current generation (white
solid), the beam is at the optimal position

with intrinsic tensile stress [9, 10], exhibiting Q,, &~ 10° at an oscillation frequency
of @, = 21 -1 MHz at room temperature. The conventional understanding is that the
pre-stress of the elastic medium increases the stored elastic energy without affecting
intrinsic loss mechanisms (see Sect.5.1.2) [11, 12]. Thus, stressed nanobeams were
discovered to have unique mechanical properties that make them appropriate subjects
of quantum-limited measurements.

However, due to their small transverse dimensions (~10-100nm), the nanobeam
geometry does not have a large cross-section for electromagnetic scattering, making
them indifferent to the conventional scattering type radiation pressure force. There-
fore, nanobeams have been coupled to optical fields via gradient forces due to the
evanescent field of optical cavities [14, 15, 17-20].

The approach followed in our group [14—16] relies on coupling a high-Q nanos-
tring to the evanescent field of a high-finesse whispering gallery optical cavity. The
low mass (;m < 5 pg) of the oscillator gives a large zero-point motion (x,, 2 100 pm).
In order to realise a large frequency pull parameter G, the first generation of
devices [14, 15], shown in Fig.5.1a, were realised by manually positioning the
nanobeam in the evanescent field of a whispering-gallery micro-toroid cavity, realis-
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ing G = 27 - 1 GHz/nm. Operating at room temperature, this system could realise a
measurement imprecision at the standard quantum limit [14]. In a second generation
[16], shown in Fig.5.1, the nanobeam and microcavity were integrated on-chip, to
improve operational stability. However, in the second generation device, the place-
ment of the nanobeam relative to the cavity was not optimal—essentially having to
do with the fabrication procedure employed. The devices used in this thesis, while
nominally similar to Fig.5.1b, are based on a vastly improved fabrication procedure
[13] capable of placing the nanobeam at the optimal position in the evanescent optical
field so as to maximise the gradient force. Future theses from the group will discuss
the fabrication process in depth, see [13] for details.

Ultimately, the optomechanical system employed here features single photon

cooperativites,
27 \* (0.5GH 5H
Con 1. (827 z 2, (5.12)
25kHz K/2m /27

of order unity; Fig.5.1a shows a survey of the contemporary landscape of cavity
optomechanics in terms of Cy. Despite the fact that the quantum cooperativity,
Co/nmm < 1 at any technologically feasible cryogenic temperature, by being able
to probe the cavity with a sufficiently large intracavity photon number (1, < 10%),
and operating at 4 K, we are able to achieve (Co/ny m)ne ~ 1.

The remainder of this section details the prevailing understanding of the various
parameters that go into the single photon cooperativity, and technical details regarding
the cryogenic experiment. Extraneous (classical) sources of imprecision and back-
action will be considered in Chap. 6.

5.1.1 Near-Field Coupling

The expression for the cavity frequency pull parameter in terms of the perturbation
caused by the presence of the dielectric nanobeam is given by Eq. (4.2.3),

o [ IE@)* @) - Ve) dr

G =
2 [elE@)|* d3r

(5.1.3)

here the integrals are taken over the entire volume of the cavity optical field including
the evanescent field. The integral in the numerator gives the cavity frequency shift
due to the presence of the nanobeam within the evanescent field of the cavity mode.
Application of straightforward vector identities (and neglecting surface terms) reveal
that this perturbation may be expressed as the sum of two contributions, i.e.,

/|E(r)|2 w(r) - Ve)d’r =/6ﬁ~ (VIEP) d3r+/e|E|2(V-ﬁ)d3r;
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the first couples the beam displacement to a generalised force due to the gradient in
the electric field intensity (i.e. a gradient force), while the second arises from volume
deformations of the beam due to the incident field intensity (i.e. a scattering-type
force). For nanobeams with dimensions comparable to the optical wavelength, the
gradient force dominates.

In order to estimate the coupling, we now make a few simplifying assumptions.
Firstly, although the frequency pulling parameter depends on the geometric overlap
between the electric field and the beam displacement profile, it is acceptable to neglect
this dependence, and later accommodate it in the definition of the single-photon
coupling go, via an effective zero-point motion. Thus we may redefine (equivalent
to the identification @t - V€ = €peqm — 1),

~ @ O Joeam (€beam (®) = D [E@) &r
T 20z Sy € IE@)> dPr

2
~ &i UgiN -1 Vbeam,opt
2 0z Vgioz Vdisk,opl '
where the approximation parametrises the coupling rate in terms of an effective
optical volume of the disk (beam), Visk(beam),opt £1ven by the optical energy in the

disk (beam) normalised to the maximum electric field intensity in the disk (beam),
ie.,

beam
Emax

disk
Emax

disk |2 2 13
Vdisk(beam),opt iEmax :/ |E| d’r.
disk(beam)

Secondly, for a beam whose transverse dimensions are much less than the vertical
evanescent decay length [21, 22],

/21 A

loy & _Aef2m ~ =< ~ 100 nm,
v2 12

SlOg

of the cavity mode, its effective optical volume may be simplified into the form,
Voeam,opt = “hcamLefi, Where Feam 18 the geometric cross-sectional area and £ is an
effective sampling length. Similarly for the disk, its optical volume may be approx-
imated by, Viiskopt = 27 Taisk @aisk, Where rgig is the geometric radius, and gk
is the effective transverse area of the whispering-gallery mode. Finally, assuming
that the vertical evanescence leads to an exponential decay in the maximum field
intensity between the disk and the beam, i.e. |Eb™ - |Edisk L aexp (—z/Le),

max max

the near-field coupling strength may be approximated by [13],

2
~ We Vgin — 1 Sheamletr et
FY R .
2Ly Vsio, 27T disk Hisk

(5.1.4)
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In practice, the evanescent length £.,, the mode cross-section s, and the geo-
metric pre-factor o need to be determined from a numerical solution of Maxwell’s
equations [13]. A simple estimate may however be made by replacing these parame-
ters using known approximations for the case of a toroidal cavity [14]: the evanescent
length €., ~ X./12, while the mode cross-section & ~ 0.15 - rgiéll(zt;iﬁ /¢ and
the geometric pre-factor, @ &~ 1.1(A./rgi)'/. Using the known refractive index,
vsiv'. = 2, and the typical geometric parameters of the disk and beam, Eq. (5.1.4)
suggests a coupling strength of G ~ 27 - 1 GHz/nm—within 10% of the prediction
from a full finite-element simulation.

In order to arrive at the vacuum optomechanical coupling rate, go, the zero-point
motion of the effective point mass equivalent of the beam must be known. In principle,
this again requires detailed knowledge of the overlaps between the extended elastic
mode profile, 1, of the beam, and the optical cavity field, E, of the disk [23]. The
simple approximation, valid for the fundamental mode with an anti-node at the
optical mode, involves assuming, xzzp ~ N/ (2p Agaleii2m) ~ (33fm)2, giving,
8o = Gx,p ~ 21 - 33kHz—within 15% of the measured value.

5.1.2 Mechanical Properties of Stressed Radio-Frequency
Beams

In the context of linear elastodynamics, in Sect. 3.1, it was mentioned that elastic
media with large aspect ratios in one or two dimensions, like a beam or membrane,
acquires additional contributions to its equations of motion due to bending of the
medium. Following the arguments outlined in Sect. 3.1, the motion of the transverse
displacement, u;(z, t), along either of the two transverse directions i = x, y, of a
one-dimensional prismatic (i.e. with a uniform transverse profile) beam, described
by a coordinate z along its length, is determined by the Euler-Bernoulli equation,?

82i s 1 82i , 1
u;i(z )—T u;(z )+
at? 072

Buizn)

o K M;
p 0zt

0, G(=x,9. (515

Here, the first term is due to the inertia of the beam, and is characterized by the total
moving mass; p is the mass density (psiv ~ 3100 kg/m3), and &/ = (¢, is the
transverse area. The second term is due to stress along the beam; 7" > 0 (T < 0)
is the tensile (compressive) force. The third term, characteristic of long aspect ratio
beams, is due to bending energy; K is the bulk modulus (Ksin &~ 100 — 300 GPa),

2We here ignore the two-dimensional extension of the beam, justified by the fact that in the cases
of interest, the characteristic extension along this dimension is much smaller than the length of the
beam. In doing so, we treat the two possible transverse displacements, along the coordinate x — and
y—directions, using independent Euler-Bernoulli equations; the small coupling between these two
mode families, arising from a finite Poisson’s ratio (gsin & 0.24), is therefore ignored. Within this
approximation, effects arising from rotation and shear in the transverse direction are also ignored
[24, 25].
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and M; is the moment of inertia about the axis perpendicular to the displacement
u; (for example, M, = Exéi/IZ, while M, = Kyﬁi/IZ). The motion of the beam is
fixed by the boundary conditions,

w;i(0,1) = u; (€., 1) =0, and, 3,u;(0,1) = du;(L,,1) =0, (5.1.6)

describing the doubly-clamped configuration adopted in the devices of interest.
For each of the two transverse mode familiesi = x, y,Eqs. (5.1.5)and (5.1.6) have
a series of oscillating solutions, characterized by the mode index n > 0, described
by the ansatz,
Ui (2, 1) = it p(2)e' b, (5.1.7)

We also introduce dimensionless variables, viz.
=7/l Vin(§) = Uin(2)/4;. (5.1.8)

Inserting Egs. (5.1.7) and (5.1.8) in Eq. (5.1.5) gives,

84~in 82~in Qin :
g L lin O i (2o ) (5.1.9)
gt ile Q '

Here we have introduced a dimensionless parameter,

KM, 1 ( K :\*
€ = = — | — s
ez~ 12\1/4 ) \ ¢,

which quantifies the ratio of bending energy to tension (here, the notation i" means
the complement of i, so x” = y, y’ = x etc.); and a characteristic frequency,

T/¢ 1/2
Qo = / < s
pA L,

which characterizes the relative contribution of tension to inertia. Indeed, for the
typical nanobeams used in this thesis [13] (£, ~ 1 um, £, ~ 100nm, £, ~ 100 wm),
the large tension (7/.</ ~ 1GPa) and slender geometry (£;;/¢. < 1072), implies
that tensile energy dominates bending throughout the bulk of the nanobeam; in fact,
€; < 107>, Similarly, a large tension, and a small mass (p.27£,) imply characteristic
radio-frequency vibrations, i.e. Qy ~ 27 - | MHz.

The frequencies of the two mode families (i = x, y) canin principle be determined
from an exact solution of Eq. (5.1.9) with clamped boundary conditions Eq. (5.1.6).
However, since € < 1, an approximate solution for small € suffices, giving (see
solution in Appendix B, and Eq. (B.47)),

Qi ~ nrQoy 1+ (n)?€;. (5.1.10)
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Fig. 5.2 Mechanical quality factor. The blue (red) solid circles show measured mechanical qual-
ity factor, Qp,, of the odd ordered out-of-plane modes of the nanobeam, as function of the mode
frequency, at 4 K (room temperature, 300 K). By design, even-order modes do not have an apprecia-
ble optomechanical coupling; while in the cryostat, measurements of higher order modes, beyond
Qm ~ 50MHz, is precluded by a lack of thermal noise signal. The solid blue/red lines show fit to the
measured quality factor using the stress-dilution model. Open blue (red) circles show the number
of oscillations executed in the decoherence time of the oscillator, i.e. Qm/Am hI'm = Om/nm,h-
When Qn/nm,m > 1, the oscillator is “quantum enabled”

The experimentally observed mode frequencies are in good (within 10%) agreement
with this prediction. Indeed, the frequency offset between the fundamental in-plane
(i = x) and out-of-plane (i = y) modes is well described by the aspect ratio of the
beam, as predicted. Henceforth, focusing on the out-of-plane mode family, we drop
the index i.

Mechanical losses, owing to a variety of factors, determine the linewidth, I',,, of
each of the modes n, and thence the respective quality factor, Q, = 2,/ T,. For
amorphous materials, such as SiN, supporting radio-frequency modes, the intrinsic
quality factor is presumed to be largely determined by losses due to the scattering
of phonons off two-level defects in the material bulk [26, 27], or scattering off
of geometric defects at the surface [28]. However, the universal characteristics of
these mechanisms predict a room-temperature quality factor that is a few orders of
magnitude smaller than what is observed in both beam [10, 14] and membrane [29,
30] geometries.

Figure 5.2 shows the measured quality factor, Q,, as a function of the mode
frequencies, 2, =~ 2wn . Briefly, thermal noise spectrum of the various nanobeam
modes is measured (see Sect. 5.2 ahead for details), from which the intrinsic linewidth
I, is extracted from Lorentzian fits. For the fundamental mode, with the smallest
linewidth, ringdown measurements confirm the values measured from thermal noise
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spectra. In both cases, care is taken to ensure that changes in I',, due to dynamical
back-action is negligible.

The increased quality factor, Q,,, of the nth mode is understood as arising from
“stress-dilution” [11, 12, 31, 32]: the intrinsic quality factor, QB, is diluted by the
tensile stress applied on the material, to give,

0, =0, (5.1.11)

1
(1 NG (nwzﬂ)'

Qualitatively, for mechanical oscillators where most of the elastic energy is stored
in the tensile stress (¢ < 1), the kinetic energy lost each cycle can be effectively
“diluted”. Quantitatively, each of the two distinct factors in the denominator, scaling
as €'/? and €, can be shown to arise from the influence of the /€ — scale deviation
of the elastic mode profile from a sinusoid at the boundary (see Eq. (B.4.8)), and
the bending at the anti-nodes of the sinusoid in the bulk of the elastic medium,
respectively [32]. The data shown in Fig.5.2 agrees well with the stress-dilution
model in Eq. (5.1.11); the the value of € used for the model in the plot is inferred from
the observed frequency dispersion of the modes in conjunction with its theoretical
prediction given in Eq. (5.1.10).

5.2 Measurement and Calibration of Thermomechanical
Motion

Since the motion of the mechanical oscillator imparts phase fluctuations commen-
surate with the motion in the intracavity field, a phase discriminator (i.e. a phase-to-
amplitude conversion) is required to infer the mechanical motion. In one approach,
the cavity may be used as a phase discriminator, for which detuned operation (i.e.
A # 0) is necessary—so-called side-of-line detection. In another approach, the cav-
ity may be embedded in one arm of an interferometer, in which case resonant probing
(i.e. A = 0) is possible.

The technical ease of side-of-line detection is considerably offset by two deficien-
cies: (a) the modification of mechanical susceptibility due to dynamic back-action
at any finite detuning A # 0 with high probe power, and, (b) the difficulty of
achieving shot-noise-limited detection when the probe is considerably reduced to
avoid dynamic back-action. Indeed, from Eq. (3.2.23), the transmitted signal power
required to be shot-noise-limited in direct photodetection for a detector with finite
NEP, is

X
2nq.

Ppor = =—S3°[Q].

For typical trans-impedance-amplified silicon (1 ~ 0.85) photodetectors (for exam-
ple, NewFocus 1801 characterised in Fig.3.2), Psorpp &~ 100 wW. Avalanche pho-
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todetectors (APD) can have much lower Pgoapp &~ 0.5 — 1 W, however, their
high-sensitivity avalanche stage tends to saturate around 2 Pgo ApD-

For these reasons, it has proven useful to employ phase discrimination using an
external interferometer, i.e. homodyning or heterodyning the cavity transmission
with a strong LO.3 In this case, the LO sets the shot noise background for detection,
so that large powers PLo &~ 1 —5mW may be employed, limited only by the dam-
age threshold of the silicon photodiodes of the balanced detector (for unbalanced
detectors, saturation of the amplifying electronics sets a lower limit on the usable
LO power).

Figure 5.3a shows the standard experimental setup to detect thermal motion of
the nanobeam coupled to the optical microdisk cavity. When the cavity is probed on
resonance, and the homodyne interferometer is locked to the phase quadrature, the
voltage spectrum of its trans-impedance-amplified (gain Hy ;) photocurrent takes the
form (see Eq. 3.2.32),

SR = [Hy,[Q117 (#°SEF + 2nq. % Pio + 4n*%° PLo P S5 [2]) .

where S‘gf‘v is the total phase noise contribution from the cavity. In the vicinity of
mechanical modes, S‘;;a"[Q] = (G/Q)*5,[], where G is the frequency pull parame-
ter of the relevant mechanical mode. Figure 5.3d shows such a voltage noise spectrum
measured using a spectrum analyser at the output of the homodyne interferometer.

In order to calibrate such a spectrum in physically relevant units (example, appar-
ent mechanical motion), it appears to be necessary to have detailed knowledge of
the transfer function of each element in the measurement chain. However this is not
necessary. For example, if it is known that the mechanical oscillator is in equilibrium
at a certain temperature 7', then the voltage noise spectrum, expressed in the form
(irrespective of the nature of the linear detection scheme),

Sy[Q] = |Hy [Q17 (S™P[Q] + 5.[RQ1) =: Sy"°[Q] + |Hy. (1 S.[Q], (5.2.1)

Sv:}wch
may be calibrated by using the equipartition identity (see Eq. (3.1.27)),

kgT
A1 2 o 2 KB
Var [x] = (2nmm + l)xZp ~ 2xzpﬁ.
In practice, implementing this also requires the assumption that |Hy,[€2]| is con-
stant in the vicinity of the thermal noise; for high-Q oscillators, this assumption is
almost always true. Essentially, calibration involves fixing the number |Hy ,[Q2n]].
The equipartition identity gives,

3 A common-path interferometer (for example using the frequency modulation spectroscopy tech-
nique described in Sect.3.2.4), is technically easier to implement. However, it is not preferred in
a cryogenic environment due to the large (mW range) LO powers that might scatter in the cold
environment.
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Fig. 5.3 Frequency noise calibration. a Schematic of the experimental setup used to perform
direct calibration of the frequency noise imparted on the transmitted optical field due to thermo-
mechanical motion. An EOM is used to impart a known phase modulation at a pre-determined fre-
quency; an AOM is used to derive a heterodyne local oscillator. b Output of the heterodyne detector,
visualising the phase modulation sidebands imparted by the EOM. Here the modulation frequency,
Qmod ~ 21 - 4.85 MHz, while the heterodyne intermediate frequency, Qi = 27 - 78 MHz. ¢ The
modulation depth &4 is verified to be linear in the voltage applied to the EOM over a decade in
both. d Voltage noise spectrum at the output of the homodyne detector, showing thermal motion of
the fundamental out-of-plane mode at 2, ~ 27 - 4.315 MHz, together with the phase modulation
calibration tone. Here the oscillator is in contact with buffer gas so that to a good degree it may be
assumed to be in thermal equilibrium; however, the mechanical Q is deteriorated by gas-damping
(see Sect.5.3)

Var [Vmech] _ 1
2~xzzpnm,th 2xzzpnm,th

R oimy dQ
| Hy o [2n]] ~ / (Svie1 - Syrie) et

where the last equality follows from the general relation between the variance of a
process and its spectral density given in Eq. (2.1.7). If the voltage noise spectrum
is further only required to be calibrated in units relative to the zero-point spectral
density S, knowledge of x,;, is rendered irrelevant.

Ultimately, the equipartition identity may be used to determine the frequency pull
parameter G, or the vacuum optomechanical coupling rate go. However, in order to
do this, a reference phase/frequency noise is required that is transduced identical to
the mechanical motion through the measurement chain. For side-of-line detection
and homodyne detection, it is known that laser frequency fluctuation imparted on
the probe laser at the cavity input, as shown in Fig.5.3a, is transduced identical to
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cavity frequency fluctuation [33]. Assuming that the detected voltage noise spectrum
is related to cavity frequency fluctuation linearly, i.e.

SvI] = Si™(Q] + [Hyo (11 S.[21,

the problem is to infer the function |Hy,[€2]|. Using an EOM to imprint a known
phase modulation of depth &4 (see Eq. (3.2.55)) at frequency Q,04, the voltage
noise spectrum consists of two terms,

Sy[Q] = SyIQ] + |Hyo[211% (57 Qumoa] + SEVR) (5.2.2)

where the frequency noise spectrum due to the injected modulation is given by,

2

S Qod] = ";dszzoda[sz Qumod]-

Assuming that the cavity frequency noise arises from the therrnal motion of a high-Q
oscillator at frequency ,,1.e. S5V [Q] = G*S.[Q] = & Sx/x,p[Q] Eq. (5.2.2) takes
the form,

&

SyIQ1 ~ Sy P[Q1+ Hy [ 2modl °d2 o 812 — Qmod] + [ Hy o[ 2m]I1* 8§ Sk /x,, [€21.

amod Smech
sm v

Again invoking the equipartition identity, Var [)2 /xzp] = 2nmm + 1, and relating the
integral of the voltage noise spectrum to its variance, gives,

2 2
4gonm,lh

Var [Vinech] ~ ’ Hy,[Qm]
Var [Vcal] HVa)[Qmod]

2 2
émod Qmod

If the modulation frequency is sufficiently close to the mechanical frequency such that
the first factor on the right-hand side can be justified to be unity, then this equation
may be used to calibrate the vacuum optomechanical coupling gy to the injected
frequency modulation. Employing this on the example spectrum shown in Fig. 5.3d,
gives gg ~ 2w - 19 kHz.

This frequency noise calibration technique crucially relies on the ability to produce
a pure known frequency modulation. Residual amplitude modulation (RAM) in the
EOM is a well known technical challenge to achieving a pure frequency modulation
[34, 35]. The effect of RAM in our experiments is two-fold: excessive RAM leads
to large uncertainties in the phase modulation power in the reference tone used for
calibration; secondly, since the same EOM is used for producing phase modulation
tones for resonantly locking the laser (as described in Fig.3.8), RAM leads to DC
offsets in the lock error signal. In the experiment, the presence of RAM is verified and
corrected in two ways. A direct photodetector placed immediately in the transmission
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Fig. 5.4 Incarnations of thermal motion. Plots show various representations of thermal fluc-
tuations of the position of the fundamental mode of the nanobeam, inferred from a calibrated
homodyne photocurrent record. a Time domain trace (bandpass filtered around the mechanical
frequency) showing the random amplitude fluctuations caused due to the thermal Langevin force.
b Quadratures X »(#) of the apparent motion x(¢), and their marginal distributions (see text for
details). ¢ Power spectral density computed from the full photocurrent record in a

of the EOM is used to nullify any RAM by adjusting the input polarisation to the
EOM; we have achieved relative RAM suppression at the level of 20 dB like this,
stable over the course of typical experiments. In addition, heterodyne detection of the
EOM transmission, for sufficiently large modulation depth 04 2 0.01, resulting in
cascaded phase modulation sidebands can be used to diagnose the presence of RAM
a posteriori. In the presence of both AM and PM, the first order sidebands exhibit
an asymmetry due to the interference of the PM and AM, whereas the higher order
sidebands are purely due to PM. Figure 5.3b shows a typical heterodyne voltage noise
spectrum showing cascaded sidebands, with the blue points showing the prediction
from a pure PM model. It has also proven useful, especially for stable operation
exceeding an hour, to actively stabilise the RAM by using the direct photodetection
signal after the EOM to feedback on the DC bias of the EOM in a slow feedback
loop [35, 36] (see experiment layout in Fig.5.9).

Figure 5.4 shows several forms of thermal motion of the fundamental out-of-plane
mode of the nanobeam. The data is taken using a resonant probe optically demodu-
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lated in a homodyne interferometer. Panel (a) shows a part of the photocurrent record,
bandpass filtered around the mechanical frequency, referred to mechanical position.
The amplitude scale is calibrated assuming thermal equilibrium at a temperature
of 4K (details of cryogenic operation follow in Sect.5.3). Panel (c) shows a peri-
odogram power spectral density estimate [37] of the full photocurrent record. Here,
the spectrum is calibrated in terms of an absolute position noise through a knowledge
of the effective mass of a doubly-clamped beam, mef ~ mypys/2 ~ 85 pg. Panel (b)
shows the apparent motion x(¢) decomposed into its quadratures, X »(t) [38]:

x(t) = X1(t) cos Quut + Xo(t) sin Qt
ie., X([Q]=x[Q+ Q]+ x[Q2 — Q]
and, X,[Q] = —i (x[Q 4+ QL] — x[Q — Qu]) .

These quadratures are obtained from the calibrated apparent position x(f) by
demodulating it at the known mechanical frequency 2, ~ 27 - 4.315MHz dig-
itally. Due to the large signal-to-noise of the measurement (seen in panel (c)),
the phase-space distribution shown in panel (b) may be assumed to be only neg-
ligibly (< 1ppm) contaminated by the shot-noise of the optical field used for
the measurement. The marginal distributions, also shown in panel (b), have vari-
ances, Var [X 1,2] = %Var [x] = (mmm + %)xzzp consistent with the known thermal
occupation.

5.3 Cryogenic Operation

The relatively low mechanical frequency (fundamental mode, 2, ~ 27 - 4 MHz)
means that the ambient phonon occupation at room temperature is, 7, ¢ ~ 10°, while
the decoherence rate, ny, ,I'm & 27 - 10 MHz, is larger than a single mechanical
period. The necessary condition to observe quantum coherent mechanical oscilla-
tions, i.e. Qm = N mlm, is thus not met at room temperature for the systems used in
this thesis. It is therefore necessary to employ passive cryogenic cooling to decrease
the thermal decoherence rate to a level where this condition is met. For example, by
operating at 10 K it would be possible to achieve Q2 2 5 - 1 ['i-

Figure 5.5 shows the schematic of the *He buffer gas cryostat (Oxford Instru-
ments, HelioxTL) employed in this thesis, allowing access to temperatures as low
as 0.3 K. The cryostat consists of successive concentric layers of thermal isolation:
a vacuum chamber whose outer wall is in contact with room temperature pumped
down to a pressure of <107> mbar; followed by a shield filled with liquid nitrogen,
maintained at a temperature of 77 K, further cryo-pumping the outer vacuum chamber
to pressures well below 107 mbar; followed by a shield of liquid “He maintained
at a temperature of 4 K. These shields isolate an inner cylindrical bore (diameter
~ 10 cm) where the sample is inserted—the sample volume.
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Fig.5.5 Cryogenic apparatus. a Drawing of the 3He buffer gas cryostat used in experiments. The
sample chip, containing multiple optomechanical devices is mounted on the sample head (yellow)
embedded in the heart of the cryostat. b Photograph of the sample head. The chip containing the
samples is mounted on a 2-axis piezo-positioner, allowing for coupling into the optical cavity using
tapered optical fiber

The sample—several (*10) optomechanical devices on a rectangular silicon chip
on which they are fabricated—is mounted on the sample head shown in Fig.5.5b.
The head is mounted on the end of a retractable probe which can be attached to
the top of the sample volume. Samples can be changed by retracting the probe—it
slides on two O-rings between a pumped load-lock volume—from the cryostat bore,
closing the gate valve to isolate the cryostat volume from the retracted probe, and
then detaching the probe from the cryostat. In this manner, samples may be changed
while keeping the cryostat cold.

The sample head (Fig. 5.5b), at the end of the probe, is suspended from hollow steel
tubes damped and thermally isolated using Teflon bluffs. The sample chip is mounted
on a removable mount and attached onto its face using four clamps. This mount is
screwed onto the top of a two-stack piezo-positioner (AttoCube ANPx51/LT). The
tapered optical fiber used to optically probe the microcavity is glued onto a custom-
made glass holder, which is secured onto the head via a clamp. Care is taken during
the assembly of the head to ensure that the desired sample(s) can be coupled using the
piezo-positioners—the devices themselves are fabricated on tall (*100 pm) mesas
on the chip so as to ensure that geometric parallelism between the taper and chip
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Fig. 5.6 Thermalisation
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surface is not as stringent. Once the head is assembled, it takes on a copper hood
that encloses it on all sides, except for a view-port and inlets for the buffer gas (see
Fig.5.5b).

The sample head, once prepared, is inserted into the cryostat. During insertion,
the sample volume is pumped using an internal sorption pump (essentially a clean
surface of activated charcoal cooled by a regulated flow of *He behind it); at the
same time, it has proven more reliable to hold all the 3He buffer gas in its external
reservoir. The probe is then inserted in a continuous motion into the sample volume;
finally, it is rotated so that the view-port on the sample head is aligned to the view-
port at the bottom of the cryostat. This view-port is used to peer into the head using
a microscope so as to align the sample and tapered fiber for optical coupling.

In order to cool the sample, 3He is introduced back into the sample volume at a
very slow rate—the 15 L of the buffer gas leaks in over &2 h. After an initial phase of
radiative cooling from 300 K to about 100 K, the sorption pump is heated up (=25 K)
to eject out the buffer gas, which then thermalises the sample holder to the internal
walls of the sample volume at 4 K, in contact with the liquid “*He shield.

To verify thermalisation of the mechanical modes of the nanobeam, we perform
calibrated thermal noise measurements on the modes of the beam. A weak laser
(P < 5nW) is far detuned on the red side of the cavity (typically A < —2«) so as
to prevent any dynamical back-action modification of the mechanical oscillator state.
The laser, passively stable at this detuning, introduces n, & 2, intracavity photons on
cavity resonance. Figure 5.6 shows the result of this investigation. With all buffer gas
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Fig. 5.7 Mechanical damping due to buffer gas. Data points show the mechanical quality factor
of the fundamental mode (2, = 27 -4.3 MHz) as a function of the buffer gas pressure in the sample
volume. The observed data is understood as arising from two contributions to the quality factor: an
internal quality factor, Qmjnt ~ 7 - 103, shown in the broken line; and a gas damping contribution
shown in chained and dotted lines (see Eq. (5.3.3)). The solid line shows the total model in Eq.
(5.3.1)). The Knudsen number in the top axis is estimated from Eq. (5.3.2), assuming Tgas = 4K,
Lgas ~ 30pm (Bohr radius of He), and using £, = 1 pm

evacuated,* all modes of the nanobeam thermalise well up to a temperature of 4 K;
Fig.5.6 filled red and blue points show the mode temperatures of the fundamental
and its 7th harmonic. In the presence of buffer gas however, modes thermalise well
up to about 2 K. We conjecture that the lack of thermalisation in the absence of buffer
gas is due to the lack of thermal conductivity along the beam into the substrate at
these very low temperatures. This is consistent with the observation of a universal
drop in thermal conductivity of amorphous materials at low temperature [26].

For the fundamental mode of the nanobeam, gas damping prevents operating with
buffer gas. In fact, the mechanical quality factor observed as a function of pressure,
shown in Fig.5.7, may be understood as a sum of two contributions,

Q;I(Pgas) = Q;—l,lim + Q;,lgas(Pgas)

™ i B (5.3.1)
= Qm,int + Qm,gas,visc(PgﬂS) + m,gas,sque(PgaS)

4By design, this cryostat is not meant for cold operation without buffer gas. In order to achieve
low temperatures without having buffer gas in the sample volume, we first condense >He: this is
done by filling the 1K pot with liquid *He and pumping on it to cool it down to <2 K; finally the
sorption pump is heated to 25 K to eject out all *He gas and pressurise it. Once condensed, droplets
of liquid *He accumulate at the bottom of the cryostat (the so-called “>He tail”); pumping on the
condensed liquid using the sorption pump evaporatively cools the liquid to as low as 0.3 K. Once
all the condensed *He is evaporated, the sample volume is in vacuum and the sample temperature
slowly rises.
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where O, i is the intrinsic quality factor (diluted by stress) when all gas is evacuated,
and QO gas (Pgas) 1s the quality factor due to losses in the presence of buffer gas [2].
The latter is mainly due to two physical processes: viscous-type retardation due to the
gas [6, 39], and, energy lost by the beam into compressing trapped gas—squeeze-film
damping [40].

The nature of viscous damping depends on the nature of the fluid flow. The

Knudsen number,
¢ 1 kpToas  Lgas
Kn:= M~ _° . % s (5.3.2)
Ly «/57'[ KgaSPgas Ly

which is the ratio between the mean-free path of the gas (¢yr) and the characteristic
length of the beam (¢), roughly dictates the damping regime. The second equality
above estimates the mean-free path based on a statistical model of an ideal gas;
here, Ty, is the temperature of the gas, while £, is the semi-classical radius of
the gas atom. Note that Kn essentially parametrises the capacity of the surrounding
gas to perform work on the beam via thermal forces, or via compressive forces.
In the kinetic regime, characterised by Kn 2 10, damping is essentially due to
recoil from independent incoherent scattering events,> while at higher pressure, in
the hydrodynamic regime, characterised by Kn 2 1, damping is due to the inertia or
viscosity of the fluid continuum.® For the small beams with relatively small thermal
velocities, the fluid flow around the beam is dominated by inertia.” Under these
conditions, the gas damping contribution is given by [2, 39, 40],

1/2
ot D (BT )2, Kn > 10
0 (o) = § " P2 A M) ~ (5.3.3)
m,gas,visc \ L gas) — oy oL (%)1/2 2Rng\> 1/2  Kn~ 1 o ¥
Paas 6r \2m Mgas ’

where pj, is the mass density of the beam, ¢, the thickness of the beam in the direction
of motion, £ is a phenomenological boundary layer thickness, Mg, the molar mass
of the surrounding gas, R is the gas constant, and ftg, is its dynamic viscosity.
Importantly, the scaling with pressure characterises the transition from the kinetic to
the hydrodynamic regimes. The models shown in Fig. 5.7 (dotted and chained lines)
are fits employing this pressure scaling.

Squeeze-film damping, in the regime where at least one transverse dimension of
the beam (¢;) is comparable to the thickness of the squeezed gas layer (£g,,), leads
to a contribution [40, 44],

5In confined spaces, even in the regime of Kn > 10, recoil events may not be independent, leading
to an excess thermal force [41] with a characteristic time-scale inversely related to the dimensions
of the constriction—this effect is not observed here.

Tt is interesting to note that in the extreme regime, Kn <« 0.1, the spectrum of gas damping
samples the inter-particle collisions of the gas atoms [42, 43] and necessitates a non-Newtonian
fluid model—however this regime is not relevant here.

TThe Reynolds number, Re := (beam velocity)(transverse length)/(kinematic viscosity of He), deter-
mines this. For the beam undergoing thermal motion, its root mean square velocity on resonance is
2Rm thXzp %"r‘ ~ 10~* m/s. For beam transverse dimension of 0.5 wm, it follows that, Re < 1074,
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—1 -1
m,gas,sque (Egasﬂ/zf) Qm,gas,visc’

which is not seen to be a relevant to the observed data.’

Ultimately, the combination of gas damping and inefficient thermalisation forces
experiments to be performed at cryogenic temperatures 7 2 4 K with all buffer gas
evacuated. In principle, this allows us to achieve, Qn, = 10 - ny ', correspond-
ing to ', & 27 - 6 Hz. The latter value is independently verified using ring-down
measurements.

5.3.1 Nature of Elastic Force: Radiation Pressure Versus
Thermoelasticity

Given that the beam does not necessarily thermalise below 4 K, it needs to be inves-
tigated whether the thermal gradients established in the beam produce additional
mechanical forces—thermoelastic forces—and how they compare against the desired
radiation pressure force.

In order to investigate the contribution of these competing forces, we measured
the response of the cavity frequency w, to modulation of the injected power P, i.e.
dw./d Py,. This is done by using a probe laser locked on the resonance of a cavity
mode at 780 nm, while a pump laser is locked on resonance to an independent cavity
mode at 850nm. Care is taken to ensure that there is no optical and/or electronic
cross-talk between the two; both lasers are attenuated to (each ~100nW) ensure
no spurious static thermal shifts of cavity resonance. The amplitude of the incident
pump is modulated by an intensity modulator driven by a network analyser, while
the frequency fluctuations in the probe laser are detected using a homodyne detector
whose output voltage is demodulated by the network analyser.

Figure 5.8a shows two examples of such a response measurement, taken at 10 K
(red) and 4 K (pink). We understand the measured cavity frequency fluctuation dw,
as arising from three different sources:

S [Q] = 80 [Q] + o™ [Q] + oM Q] (5.34)

where §w!M is the cavity frequency shift due to material and geometric thermal defor-
mation of the cavity volume, §&™™ js due to mechanical motion driven by ther-
moelastic forces [46, 47] and Swf_ad is due to mechanical motion driven by radiation
pressure force.

The cavity thermal shift can be understood as arising from change in the cavity
length via a finite thermal expansion oy, or due to material property (refractive index

8Due to the nature of the problem, it seems reasonable to imagine that for a narrow longitudinal
(along the beam) constriction with a transverse opening, squeeze-films get evacuated much more
quickly than diffusion would suggest. In fact molecules in a squeeze film execute Lévy walks [45],
lending plausibility to their absence after even a short pumping time.
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by modulating an independent pump beam and demodulating the effect on a resonant probe using
a homodyne detector. Red (pink) trace shows data taken at 10K (4 K). Black dashed is a fit to
expected radiation pressure force, which is prompt with respect to the low mechanical frequency
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models of delayed thermal conduction in the disk and/or beam. b Low frequency (2 = 27 - 2kHz)
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v) changes, i.e.

" 1 dv 1 dv Gh

b, [R2] = —w. (Olv + ;ﬁ) 0T .[R2] = —w, (Olv + ;ﬁ) l—i-l'—Q/QtChSnc’

(5.3.9)
where the cavity temperature change 67, is assumed to be driven by pump photon
number modulation én., and the temperature relaxes via diffusion, modelled as a
single-pole response with cut-off Qz_h and gain G In Fig. 5.8a, the low frequency cut-
off at 10kHz may be identified with sz;!: consistent with measurements on toroidal
microcavities [48]. Further, the low frequency response G as a function of cryostat
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temperature, shown in Fig.5.8b, is consistent with the known dv/dT = 0 point of
silica microcavities at 8 K [49].

The remaining two contributions to §w, in Eq. (5.3.4) arise from frequency shifts
due to mechanical motion, i.e.

§ wmech — 5 a)mech,the + S wmech,rad
R (Kabs/c)‘snc
(S r‘nech,the Q — G Q
., [€2] the Xx [ €2] 1+ iQ/che (5.3.6)

. (k/c)dn,
80 MMQ] = Graax:[Q] —— 27—
., [€2] ad X [€2] 1409/

Here, G4 (Gpe) is the optomechanical coupling due to radiation pressure (ther-
moelastic) motion, x, is the mechanical oscillator response, (k/c)én. ((kaps/c)dn.)
is the recoil force due to pump photon number modulation, and Qg = /2 (Qhe) 18
the characteristic response frequency of the radiation pressure (thermoelastic) force.
Note that since « > 2, the radiation pressure force is effectively instantaneous,
while the thermoelastic force has a finite delay due to the absorption and diffusion
of temperature in the nanobeam. It follows that the response measured near the
mechanical frequency (where Sw! is negligible),

Gihe Kabs 1

~ 3wr-nech,rad Qll - 1+ ,
| ¢ [ ]} Grad K 1+iQ/che

(Swznech[g]
dn[£]

provides information regarding the fractional contribution of the thermoelastic force
compared to radiation pressure (second factor on the left-hand side). From Fig. 5.8a,
and other similar measurements, we have determined that radiation pressure dom-
inates at temperatures above 6 K whereas for colder temperatures, thermoelastic
back-action is observed.

5.4 Experimental Schematic

Figure 5.9 shows the schematic of the essential optical and electronic layout of the
entire experiment. At the heart of the experiment is a *He cryostat (Oxford Instru-
ments, HelioxTL), in which is embedded a chip containing multiple optomechanical
devices. A desired device is probed by coupling to its optical cavity using a tapered
optical fiber. The tapered optical fiber can be driven by one of three laser sources: a
tunable 780 nm external cavity diode laser (NewFocus, Velocity), an 850nm ECDL,
or a Ti:Sa laser (MSquared, Solstis). Typically, the 780nm laser (ECDL or Ti:Sa) is
used for probing the cavity, while the 850 nm laser is used for actuating the cavity
and/or the mechanical oscillator.

Both lasers can be locked to cavity resonance; they are frequency modulated using
an EOM, and the modulation sideband is demodulated after the cavity transmission
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Fig. 5.9 Layout of the experiment
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is detected on avalanche photodiodes. The cavity is placed in one arm of a balanced
Mach-Zehnder interferometer and is directed onto either a balanced homodyne detec-
tor, or a balanced heterodyne detector, depending on what quadrature(s) of the light
need to be observed.

In Chap. 6, the homodyne configuration, operated using the 780 nm ECDL is used
to measure mechanical motion, while the 850 nm ECDL is used to perform feedback
control. In Chap. 7, the same configuration is employed, with the addition that a part
of the 780nm transmission is directed onto the balanced heterodyne detector. The
homodyne detector may also be locked onto the amplitude quadrature, as in Chap. 7,
to probe for optical squeezing.

During measurements reported in Chap.7, to study quantum correlations in the
transmitted optical beam, it was found convenient to synchronise the internal clocks
of all RF sources and receivers: this was done by using the 10 MHz signal derived
from an atomic clock (not shown in Fig.5.9).
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Chapter 6
Observation and Feedback-Suppression
of Measurement Back-Action

Moby Dick seeks thee not. It is thou, thou, that madly
seekest him!

Herman Melville

Realizing a quantum-noise-limited measurement of the position of a harmonic oscil-
lator has been a 30 year old white whale of experimental physics, stretching back
to the conception of interferometric gravitational wave antennae [1-3]. Meeting this
requirement is tantamount to two conditions: a quantum-noise-limited measurement
imprecision, and quantum-noise-limited measurement back-action. Together they
imply that the Heisenberg uncertainty product (Eq.4.3.13),

qtot Qimp h_Z
Srrl€218:P[82] = 1

is saturated. Here, .S_’IF‘"F is the total force acting on the oscillator, including, but not

typically limited to, quantum measurement back-action; Sy is the total measure-
ment imprecision, including, but not typically limited to, optical quantum noise. A
basic technical difficulty in performing a Heisenberg-uncertainty-limited position
measurement in large scale interferometers, despite their record low quantum-noise-
limited measurement imprecision, is that at the optical powers required to overwhelm
the thermal force with back-action, dynamical instabilities set in [4, 5]. At the other
end of the spectrum in scale, single atoms in optical traps are easily driven by back-
action [6]; however, unavailability of high-efficiency large dynamic range transduc-
ers of their motion precludes a sufficiently low measurement imprecision. About
10 years ago, mesoscopic-scale cavity opto-/electro-mechanical systems were thus
foreseen as an avenue to explore Heisenberg-limited measurements [7]. Section 6.1
details our experiment that realizes the closest approach to the Heisenberg uncer-
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tainty product to date, corresponding to an uncertainty product of 5 - /i/2. This is
achieved by simultaneously realizing a measurement imprecision that is 43 dB below
that at the standard quantum limit, and observing quantum measurement back-action
comparable to thermal motion [8].

Vis-a-vis measurement back-action, the standard quantum limit (S5 = 257),
prevents the observation of the zero-point motion of the mechanical oscillator, despite
the exquisite measurement sensitivity realized in our experiment. This is a specific
example of the fundamental impediment posed by measurement back-action in the
ability to measure physical quantities [9]. Various techniques have been proposed
to mitigate this problem. Section6.2 experimentally explores one such solution—
feedback control to suppress back-action [10, 11]. In fact, it should not be surprising
that if the record of the measurement of the oscillator position contains traces of
the back-action-induced motion, a real-time feedback controller can anticipate and
cancel the disturbance [12]. We have been able to use measurement-based feedback to
suppress more than 40 dB of the oscillator’s motion—including thermal motion and
back-action motion—and prepare the oscillator with an average phonon occupation
of 5.3 [8].

6.1 Quantum-Noise-Limited Position Measurement

We here study a specific example of the type of optomechanical system described
in detail in Chap. 5. Specifically, the system consists of a 65 pm x 400nm x 70nm
(effective mass m = 2.9 pg) nanobeam placed ~50nm from the surface of a 30 pm
diameter microdisk. The microdisk is optically probed using a low-loss (~6%) fiber-
taper and light supplied by a tunable diode laser. Mechanical motion is observed in
the phase of the transmitted cavity field using a balanced homodyne interferometer.
We interrogate two optical modes: a meter mode (used for homodyne readout) at
Ac &~ 775 nm that exhibits an intrinsic photon decay rate of kg &~ 27 -0.44 GHz and a
feedback mode (used for radiation pressure actuation) at A, ~ 843 nm that exhibits a
decay rate of kg ~ 21 -1 GHz. For the mechanical oscillator, we use the Q, ~ 27 -4.3
MHz fundamental out-of-plane mode of the nanobeam. The optomechanical coupling
strength between the oscillator and the sensor mode is gg ~ 27 - 20 kHz (see
discussion surrounding Fig. 6.3), corresponding to a frequency pulling factor of G &~
27 -0.70 GHz/nm for the estimated zero-point amplitude of x,, = //2mQy, ~ 29
fm. The experiments were conducted in a *He buffer gas cryostat at an operating
temperature of 7 ~ 4.4 K (nyn = kgT/hQ2n ~ 2.1 - 10%) and at gas pressures
below 103 mbar. Ring-down measurements here reveal a mechanical damping rate
of I'm ~ 27 -5.7Hz (Qm =~ 7.6 - 10°). Our system is thus able to operate with a
near-unity single-photon cooperativity Co = 4g3 /' & 0.64.


http://dx.doi.org/10.1007/978-3-319-69431-3_5

6.1 Quantum-Noise-Limited Position Measurement 129

(a) 10 (b)10
& e measurement
W - - - model, (y,K)=21m(360,440) MHz :
0.8- 0.8f - - - model, (y,k)=2m(0,440) MHz e
‘v‘\\ ,,‘/
o6l o6l
< = X 3
= | i © L
B«“MHII.J” |g|l\| |‘ ||||‘ ‘|||ul & o4l l. &
i M
"9 -
02l 0.2} vy e
. e
0.0 ! \ 00t S Ttaes®” ; ; I A
-4 -2 0 2 4 0.5 1 5 10
A/2r |GHz] r/2m [GHz]

Fig. 6.1 Steady state spectroscopy of a cavity mode split by internal scattering. a Red traces
show the cavity transmission, 7. (A), recorded as the laser-cavity detuning A is changed. The traces
show the cavity under-coupled, where the effect of the splitting y is obvious, and over-coupled where
the effect is masked by the loaded linewidth k = ko 4 «cx. The gray trace shows the transmission
through a calibrated fiber-loop cavity, recorded simultaneously; its free spectral range provides
frequency markers to calibrate the frequency sweep. b Transmission on resonance, 7;(0), plotted
as a function of the external coupling to the cavity

6.1.1 Measurement Imprecision and Back-Action in a
Split-Mode Cavity

Spectroscopy of the optical cavity, shown in Fig.6.1, indicates that the optical res-
onance is split. In whispering gallery optical micro-cavities, such splitting is an
indication of scattering centers that couple light circulating along the conventional
direction of the injected field (“‘clockwise”) into the mode against this direction
(“counter-clockwise”) [13, 14]. In the following we develop a theoretical model
that allows to understand the spectroscopic data in Fig.6.1, as well as predict the
modification to measurement imprecision and back-action when employing such a
split-mode cavity. The following discussion thus takes into account non-idealities
arising from mode splitting which results in deviations from the ideal considerations
given in Sect.4.3.

We adopt the following set of coupled Langevin equations to model the dynamics
of the cavity mode (characterised by the slowly varying amplitude of the intracavity
field, a) and the mechanical mode (characterised by its displacement X):

A . K\ A iy . . An A A
a; = (on - E) as + ja_ +igoZay + ek 4 4+ /(1 — o)k dag
(6.1.1a)

X . K\ ~ iy . . An Al ~l
a_ = (z Ay — E) a_ + %a+ +igoza— + /nck ay, + /(1 — o)k da,

m (x STk + szfnx) — 5Fy + Faa. (6.1.1b)
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Fig. 6.2 Schematic of optomechanics using a split-mode cavity. a Physical model of the split-
mode cavity: red shows the conventional mode (“‘clockwise”) that is coupled to by a laser injected in
the optical fiber, while blue shows the mode (“counter-clockwise”) that is established by scattering
centers in the cavity. b Schematic of the mutual coupling between the cavity modes (a+) via the
scattering interaction at rate y, and their common coupling to the mechanical mode () at rate go

Notably, in Eq.(6.1.1a) we use a two-mode model to describe the microdisk cav-
ity. Subscripts + and — refer to whispering gallery modes propagating along
(‘clockwise’) and against (‘counter-clockwise’) the conventional direction (+) of
the injected field, respectively. The two modes are coupled at a rate y by scattering
centres [14]. Since the split modes are (nearly) spatially orthogonal [13], the optome-
chanical coupling of either mode to the oscillator can be assumed to be independent,
while the geometry of evanescent coupling means that they may be assumed to share a
common vacuum optomechanical coupling rate, gy. The resulting radiation-pressure
back-action force is,

. o PN ¢

Fga = hgo (a+a+ + a,a,) T (6.1.2)

zp

Light is physically coupled to the microdisk cavity using an optical fiber as dis-
cussed in Sect.3.2.4. As depicted in Fig.6.2 and Eq.(6.1.1a), we model this cou-
pler as a two port waveguide. Fields entering(exiting) the ‘clockwise’ port, &;;(Dm),
couple directly to the clockwise cavity mode. Fields entering(exiting) the ‘counter-
clockwise’ port, @, > couple directly to the counter-clockwise mode. The cavity-
waveguide coupling rate is kex = 1.k, Where k = kex + ko is the total cavity decay
rate and « is the intrinsic cavity decay rate. In addition, each cavity mode is driven
through its intrinsic decay channel by a vacuum state with amplitude 5&0i. Input field
amplitudes are here normalised in the conventional manner, so that P;5 = fiw;"|a;:|?
is the injected power. Ag = w, — wjzt denotes the detuning of the drive field carrier
frequency, a)j_,b, from the centre frequency of the optical mode doublet, w..

For notational simplicity, in the following, we express the equation of motion of the
mechanical oscillator (Eq.6.1.1b) in terms of the normalized position, Z := X/x,p,
i'e" . . A A~

24Tz + Q22 =06fn+ fea. (6.1.3)
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Here, the forces are normalized such they have dimensions of (time)~2; the actual
forces (as used in Sect. 6.2.1), in units of Newtons, are given by F; = mx,, f;. Using
this convention, the thermal Langevin force is given by

8 fin = 2 liny/2Qrmn + 1) 8, (6.1.4)

where 8§[h is a unit variance white noise process modelling the thermal fluctuations.
The radiation pressure force, in Eq. (6.1.2), similarly normalised, becomes,

fon = Qmgo(@lay +a'a). (6.1.5)

In the following treatment, both optical modes are driven by optical fields entering
the clockwise port of the optical fiber. The field driving mode doublet a. is identified
as the meter field. The counter-clockwise port of the optical fiber is used to monitor
the transmitted sensor field, but is otherwise left open.

Steady State

When the cavity is excited by the meter field, the static component of the ensuing
radiation pressure force displaces the oscillator to a new steady-state position, z, and
leads to a renormalisation of the laser-cavity detuning to A = A( + goz. In practice
the frequency of the sensor field is stabilised so that A = 0. In this case the steady
state intracavity field amplitude (a) and oscillator position are given by

i, = Ji5, . =iyn_ and Z:é—o(n++n,),

dne P /o, yy2 10
where, n, = ——"——— and n_ = (—) ny.
K (14 y%/k?)?

denote the mean intracavity photon number of the clockwise and counter-clockwise
modes, respectively. Note that henceforth, we shall denote, n, = n, i.e. the intra-
cavity photon number established in the direction of the injected power is that of the
clockwise mode.

Splitting of the cavity resonance can be observed spectroscopically in the nor-
malised steady state transmission. Using the input-output relation aj, = é;: -
/Nck ay gives the steady-state cavity transmission,

+ -+ 2 2 2 2\ _ 2 2
1) = P | 2 B @2+ w/2?) e (A + (/2 )
in in (A2 - (K/2)2 - (7//2)2)

(6.1.7)
consisting of a Lorentzian-like dip, but with the peaks split by y.

The experimentally observed steady state transmission, shown in Fig. 6.1, is well
described by the above expression. Figure 6.1a depicts the steady-state cavity trans-
mission, 7,(A), and shows the effect of cavity mode splitting when under-coupled.
Figure 6.1b plots the resonant transmission, 7, (0), as the cavity coupling efficiency is
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varied (by varying the physical taper-cavity coupling point). By proper choice of the
taper-cavity coupling point, it is possible to achieve over-coupled operation 7, ~ 0.9
necessary for high-quantum-efficiency measurement of the mechanical motion.

Fluctuations

Fluctuations of the cavity field, 8a = a — a, and the mechanical position, §Z = Z — Z,
are coupled according to Eq. (6.1.1). To first order:

iy = (iA - g) 8&i+%8&¢+ig0&i 82+ /nek 84 +/(1 — o)k 86 (6.1.8a)

8% + Tind2 + Q102 = 8 fin + oS D _(@;04] + a'da)). (6.1.8b)
j=%

The ensuing radiation pressure force fluctuations

8fon = g0 Y _(@;8a] +a'da;) (6.1.9)

j=*

contain both a dynamic and stochastic component, as detailed in Sects.6.1.1.1 and
6.1.1.2, respectively.
Taking the Fourier transforms of Eq. (6.1.8) recasts the optomechanical interaction
in terms of optical(mechanical) susceptibilities, x,():
1

X 1Q1 ! 84419 =g (5i + %c& xé(”[sz]) 52192

+/d = nok (5&3;0[91 + %XQO)[Q] 5&3;491) (6.1.10a)

. i .
NI (8aﬁ§[m + 2119 aafg[m>

(LT + xBalR071) 82 = 8 fin + 8 foa. (6.1.10b)

Here xpa is the modification to the intrinsic mechanical susceptibility due to dynamic
back-action, and fpa m represents the stochastic measurement back-action force.
Before elaborating, we emphasise the following simplifications in the experimentally
relevant ‘bad-cavity’ limit, k > Q,, assuming a resonantly driven cavity (A = 0):

O = i@+ A+~
4 2 2
Oro1-! 2
xR = = ~ 2 <1+y_2> 6.1.11
Q2+ (/22 2\ K ©.11D

x[Q =02 — Q2 —iQr,
x8alQ]7! = Q2,(Q) — iQTEA(RQ) ~ 0.
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Fig. 6.3 Mechanical frequency shift due to dynamic back-action. Plot shows mechanical fre-
quency shift due to dynamic back-action at various laser-cavity detunings. Model curves are derived
from Egs. (6.1.7) and (6.1.12a)

6.1.1.1 Effect of Dynamic Back-Action

When the cavity is driven away from resonance (A # 0), classical correlations
between the radiation pressure back-action force and the mechanical position give
rise to dynamic radiation pressure back-action [15, 16] (see Sect. 4.2.2). In the high-Q
(2m > I'y), bad-cavity (k > Q) limit relevant to our experiment, dynamic back-
action manifests as a displaced mechanical frequency and passive cold-damping [16].
Accounting for cavity mode splitting, the optically-induced frequency shift (AQga)
and damping rate (I'ga) are given by:

2¢2 4n. PF N3(A + jv/2
AQpp = QBA(Qm)—Qm%ﬁ Me i /2’ (A+jy/2) .
€ whoe [+ jy /2% + (/2]
(6.1.12a)
Q 2 2 4 P»+ 5 A— i 2
Tga(Q2m) ~ — - 280 e lin K> ( Jjv/2) . (6.1.12b)

4k Kk Kkhoe Zla+ v/ + (K/2)2]3

Note that both terms vanish for resonant probing.

Figure 6.3 depicts the measured mechanical frequency shift with an input power,
P~ 1 uW, at various detunings; data is plotted against the fraction of the trans-
mitted power, T.(A) in Eq. (6.1.7). In order to make these measurements, the sample
is operated with buffer gas evacuated from the cryostat, so as to eliminate delete-
rious effects from gas damping (see Eq.5.3.3). The measured dynamic back-action
effect provides an independent check of the vacuum optomechanical coupling rate
go: Fig.6.3 shows the observed data with model curves derived from Egs. (6.1.7)
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and (6.1.12a) for the case of a split cavity resonance. The value of the coupling
rate obtained thus, go = 27 - 19kHz, is consistent with a direct calibration (giving
go = 2m - 21 kHz). In fact, the ~10% discrepancy provides error estimates for the
single-photon cooperativity Cp, and the ideal measurement imprecision, 7ipyp.

6.1.1.2 Measurement Back-Action

When the cavity is driven on resonance (A = 0), the quantum component of the
radiation pressure back-action force takes the form

5 fion = % (v + Zyam) i + (Vi + £ i) VT = nedi
— (Evir = o) Ve piy = (S = Vi) V= nedprac)
(6.1.13)

where ¢(p) denote the amplitude(phase) quadrature of each field. In Eq.(6.1.13),
we have retained the explicit dependence on ny in order to emphasise their role
in weighting the various noise components. We note that as a consequence of the
scattering process, (amplitude)phase fluctuations entering the (clockwise)counter-
clockwise mode are converted to force fluctuations by two pathways.
Assuming that the drive field is shot-noise limited in its amplitude quadrature
1

(S;‘jl = 5) and that the cavity is otherwise interacting with a zero temperature bath

(S‘qvgc = % = S‘;*I‘f), we find that the effective thermal occupation due to measurement

back-action is given by

nmsa = Co (ny +n_) = Cony, (6.1.14)

1+ y2/k?
which is exactly the same as the expression for the case where the cavity modes are
unsplit.

6.1.1.3 Modification to Measurement Imprecision

The cavity transmission, 8d g, = dd; — \/1ck 8dy., at A = 0 is given by,

2g0./n 1 — 92/
Ba = — i /T ( Vz/"2>az
JK 1+y2/k
21c % 21c .

1-—— ) sa -+ | —=—)sa 6.1.15
(1) - () o
2 nc(l—nc)<

1+ y2/k?

~ Y oanl
(Sa;;C ~|—l;5(1vac> .
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The transmitted field is amplified in a balanced homodyne receiver with a coher-
ent local oscillator (LO) aio. Following the discussion of homodyne detection in
Sect.3.2.3.2, the operator corresponding to the homodyne detector photocurrent is,

Sihom X |6_lLO| (aé(jl_u Cos ehom + 5]3;;1 sin ehom) s

where |a|; o is the amplitude of the large coherent LO field, and 6,0, the relative mean
phase between the LO and the cavity transmission. The path length of the LO arm is
electronically locked to maintain 6., =& 7/2, so that the homodyne signal picks out
the phase quadrature of the cavity transmission containing the position fluctuations
8Z. The resulting shot-noise-normalised spectrum of photocurrent fluctuations is
given by,

z 16g2n, (1 —v2/k*\" -
Shomro o 1 0 S.[21,
1 [ ] o« 1+ n P 1 ¥ )/Z/Kz z[ ]

where 7 is the total detection efficiency. Thus, the imprecision in the estimation of
87 from the homodyne photocurrent is,

. K 1+ 92/ 2
S;mp[Q] = 2 ( 7/2/ 2) :
longny \1 —y*/k

Expressed as an equivalent phonon occupation,

1 1 27,2\ 2
Mimp = AAVLS 6.1.16)
16nCon . 1 —y2/k?

Note that mode splitting causes the optical susceptibility (see Eq.(6.1.8)) to flatten
near resonance, leading to divergence of n;y, when y = «.

Thus the effect of mode-splitting is an additional efficiency penalty. Indeed, for
a given injected power, the quantum back-action arises due to photons populating
both the cavity modes, while transmission measurements only collect photons from
the clockwise mode.

6.1.2 Measurement Imprecision

In all position sensors, extraneous thermal fluctuations pose a fundamental limit to
the achievable imprecision. In cavity-optomechanical sensors, the main sources of
extraneous imprecision arise from thermomechanical [17, 18] and thermodynamic
fluctuations of the cavity substrate [19-23]. These result in excess cavity frequency
noise, Sy, Figure 6.4 shows the extraneous noise floor of our sensor over a broad
range of frequencies surrounding the oscillator resonance. We obtained this spectrum
by subtracting shot noise from a measurement made with a large intracavity photon
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Fig. 6.4 Extraneous measurement imprecision. a Red trace shows the shot-noise subtracted
homodyne photocurrent calibrated as an apparent frequency noise. The various high-Q peaks are
understood to arise from the in-plane (marked IP,) and out-of-plane (marked OP,) modes of the
nanobeam (blue), while the low-Q peaks are from the mechanical modes of the disk (marked D,,)
(green). In the vicinity of the fundamental out-of-plane mode, at 2, = 27 -4.3 MHz, measurement
imprecision is dominated by a combination of cavity thermorefractive noise (black), and a small
contribution from estimated laser frequency noise (orange). b Finite-element model simulations of
the various mechanical modes seen in the measurement; red shows maximum displacement, and
blue shows no displacement, on an arbitrary scale. The simulated displacement field frequencies
have excellent agreement with the observed frequencies and dispersion

number, n. > 10°. (To mitigate thermo-optic and optomechanical instabilities, the
measurement was in this case conducted using ~10 mbar of gas pressure at an ele-
vated temperature of 15.7 K.) The relevant noise peak, at Q2,, ~ 27 - 4.3 MHz, due
to the thermal motion of the fundamental out-of-plane mode, is measured against an

. .. Simp,ex . ..
extraneous imprecision, S, P which we understand as arising from three sources:

I {Q] = SN, ] 4 SNG4 SIS, )

noise due to extraneous thermomechanical motion of other modes of the beam and the
cavity, extraneous frequency fluctuations due to the cavity substrate, and extraneous
frequency noise from the probe laser.

High- and low-Q noise peaks correspond to thermal motion of the nanobeam
and the microdisk, respectively (see Sect.6.1.2.1 below). In the vicinity of the fun-
damental noise peak, we observe an extraneous frequency noise background of

SimpeX (27 - 30Hz/+/Hz)?, corresponding to an extraneous position impreci-
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sion of S™* ~ (4.3 - 10~1"m/+/Hz)?. We identify this noise as a combination of
of microdisk thermorefractive noise [24] (see Sect.6.1.2.2), diode laser frequency
noise [25], and off-resonant thermal motion of the neighbouring beam mode at 4.6
MHz. Owing to the large zero-point motion of the nanobeam, Si¥ = 4¢3 /Ty =
(27 -6.7 kHz/+/Hz)? (52 = (0.95-10~'*m/+/Hz)?), the equivalent bath occupancy
of this noise has an exceptionally low value of nf) = Sy /2850 ~ 1.0 - 1073,
nearly 44 dB below the value at the SQL.

In the following, we go through the various sources of extraneous classical noise
that constitutes the budget shown in Fig. 6.4. Briefly, these fall into three categories:
noise due to thermal motion of extraneous mechanical modes in the optomechanical
system, noise due to thermodynamic fluctuations in the cavity, and noise on the laser
as it is conveyed to the system.

6.1.2.1 Imprecision Due to Thermomechanical Noise

High- and low-Q noise peaks in Fig.6.4 correspond to the thermal motion of the
extraneous modes of the nanobeam and the microdisk (radial breathing, and flexu-
ral, modes that have significant optomechanical coupling), respectively. Assuming
that all these modes, with position fluctuation %;, are equilibrated at temperature T,
and have an optomechanical coupling G;, their contribution to the frequency noise
background under the fundamental mode is,

SimpexmechiQ 1= 3" G35, [Qml = Y G? |1 [Qml|” - 4miTiks T, (6.1.17)
i i

Here, we have approximated the extraneous modes as independent oscillators, each
of effective mass m; and damping rate I';, driven by a thermal force noise given
by the fluctuation-dissipation theorem (see Eq. 2.2.10) in the limit that their mean
thermal phonon occupation, n; 4, := ];BT > 1.

Structural resonances like these, typlcal of bulk resonators, are known to exhibit
damping that is not proportional to velocity [26]. The so-called structural damping
model posits a frequency dependent damping rate such that the different modes have
approximately uniform mechanical Q; i.e.,

I';  velocity dampin
riel = {m Y pme
Q

structural damping

leading to the replacement, I'; — I';[2] in the susceptibility and the force noise
in Eq.(6.1.17). Assuming that the fundamental mode frequency is smaller than the
frequencies of the extraneous modes,

Svimp,ex,mech[Q < Q] Z g, {ni,thg— velocity damping

Ni g Qi :
?hﬂ_m structural damping
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implying that if the extraneous modes are structurally damped, a very low frequency
for the fundamental mode would be susceptible to larger imprecision due to extra-
neous thermomechanical noise.

In Fig. 6.4, the pair of blue (green) traces show models of thermomechanical noise
arising from extraneous modes of the nanobeam (disk). The dashed (dotted) curves
assume a velocity (structural) damped model for the motion. Despite the low-Q (*10)
of the disk modes, it is seen that the data is incompatible with a structural damping
mechanism for these modes. For the beam modes, measurements at the frequencies
presented in the figure, do not allow discrimination between either model.

6.1.2.2 Imprecision Due to Cavity Substrate Noise

Macroscopic optical cavities, like the whispering-gallery cavities we use, equilibrated
at some temperature 7', experience fundamental thermodynamic fluctuations in its
resonance frequency w,. Within the electrodynamic description of cavity frequency
fluctuations (in Chap.4), the two possible causes are fluctuations in volume V and
fluctuations in the dielectric constants of the cavity substrate. For an optical cavity,
the latter is equivalent to fluctuations in the refractive index v. The cavity frequency,
w.(v, V), therefore undergoes fluctuations,

5 Ba)ca n 0w,
w. = —68v
av Vv

8V =: 8 *N + s N,

When refractive index fluctuations and volume fluctuations are caused by underlying
thermodynamic causes, these two contributions lead to thermorefractive (TRN) [21]
and thermoelastic (TEN) [20] frequency noise.

Note that the underlying thermodynamic fluctuations are transduced via the coef-
ficients a“l’)‘ , i“", measured in equilibrium, i.e. at constant temperature 7. Although
temperature itself does not fluctuate in equilibrium, an apparent temperature fluc-
tuation may be ascribed to the fluctuations in the total energy; the variance of this

apparent temperature fluctuation is,’

I'This is derived as follows. Assume the body is in thermal equilibrium at temperature 7', so that it
is described by the canonical thermal state p = e‘f’H /Z,with Z := Tr e“sH and B := (kgT)~ L.

Then, the average energy is given by, (H 1) = TrHp = —fdﬂZ while its second moment is,

(I-:V)2 = Tr 1:12,6 = %8;2 = —8,3(1:1) + (fl)z. Subtracting these two expressions give the
variance in the energy:

Var [H] = (A% — (0)2 = —dp(A) = kpT? 37 () = ks T*Cy.
Here, Cy := or(H ) is the specific heat at constant volume as defined conventionally. To refer the

above variance in energy to an apparent variance in temperature, we again use the definition of the
specific heat, 57 = §E/Cy, to arrive at, Var [T'] = Var [E] /C‘z, = kBTZ/CV.
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_ kgT?  kpT?

Var [T = )
7 Cy pVey

(6.1.18)

where the first equality is expressed in terms of the heat capacity at constant volume
Cy, while the second is expressed in terms of the specific heat at constant volume,
cy = Cy/(pV), an intensive material property. The implied variance in frequency
due to TRN and TEN is therefore,

dwe v \2 e v \” kpT?
Var [60T] = (2220} var[r) = (2 22) 2
av oT v aT ) pVcey

dw, 0V
ov oT

. (6.1.19)
B

pVey

c ’

2
Var [(Sa)TEN] = ( ) Var [T] = (w.ay)?

where oy := (1/V)0V /9T is the isobaric thermal expansion coefficient. For macro-
scopic ultra-stable cavities, TRN has been observed to be a limitation on frequency
stability at room temperature [23], and demonstrated to be suppressed at cryo-
genic temperatures [27]. For small mode-volume microcavities, TRN poses a much
larger problem, and has been observed to limit frequency imprecision at the level of
10°Hz? /Hz at Fourier frequencies of about 1 MHz, at room temperature [24].

For Si0,, the material constituting our cavity, the coefficient of transduction for
TRN is roughly 100 times larger than the coefficient of transduction for TEN in a
wide range of temperatures down to about 7 = 1K [28, 29]; we therefore focus
on TRN here. In order to understand the distribution of the variance, Var [Sa)CTRN ]
given in Eq.(6.1.19), in frequency, it is necessary to subscribe to a dynamic model
of temperature in the cavity [28]. Assuming diffusive thermal transport, it can be
shown that for low-order optical modes, at Fourier frequencies high compared to the
inverse thermal diffusion time, 7, .= Dy / (2nr§isk) ~ (10 — 50) kHz (here Dy
is the thermal diffusivity of silica, and rg;sx the radius of the microdisk cavity), the
power spectral density of TRN is approximated by [28],

2
LIPS G LA WL T (167) Pry . (6.1.20)
@ v aT pVey Q)21 + (Qrr)3/4)?

The thermal diffusivity, Dy = Kr/pcy, by being strongly temperature dependent
through parameters like the thermal conductivity K7 and specific heat cy [30], is only
known to within 50% uncertainty for silica at cryogenic temperatures, T < 10K,
and depends weakly on the presence of impurities [31]. Using a thermal time con-
stant, 7' &~ 5 MHz, consistent with the known material constants, and estimates of
the whispering-gallery mode cross-section, Eq. (6.1.20) gives a qualitatively correct
scaling of the measured low frequency imprecision noise in Fig. 6.4, deviating by
about 50% in absolute magnitude.
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Fig. 6.5 Extraneous phase noise from optical fiber. a Blue shows measured phase noise spectrum
of a 10m long segment of a standard 780 HP optical fiber. The observed low-Q peaks are well
described by a theoretical model (blue dashed, Q@ = 20) of unpolarised GAWBS. Red shows
the same segment of fiber, but measured after its cladding is etched using buffered hydro-flouric
acid. Removal of the surrounding cladding increases the Q of the modes, leading to localisation of
GAWBS-induced phase noise in narrow spectral intervals. Red dashed shows a theoretical model
assuming Q = 200. b Schematic of a typical optical fiber (not to scale), showing the core (blue),
which carries the optical field, the cladding surrounding the core (yellow) that provides the refractive
index contrast to constrain the propagating optical field transversally, and the coating (brown) that
provides for mechanical rigidity. ¢ Theoretical elastic displacement field of the core of a 4.5 um
radius (typical of 780 HP) glass core of the fiber. Red shows compression and blue shows elongation,
the scale is arbitrary.

6.1.2.3 Imprecision Due to Noise in Optical Fiber

In addition to the above two sources of frequency noise that arise from the optome-
chanical system, our experiment is also sensitive to frequency noise arising from
the optical path in the arm of the interferometer containing the optomechanical sys-
tem. As described in Sect. 5.3, this path, passing through the cryostat, predominantly
consists of a &~10m long (single-mode) optical fiber (780 HP). Roughly half this
length passes through the cryostat (at 4 K), while the other half is at room temper-
ature. Transverse elastic modes of the fiber core, undergoing thermal motion, can
inelastically scatter photons off of the longitudinally propagating optical field via
the strain-optical effect; this process—guided acoustic-wave Brillouin scattering
(GAWBS)—is known to cause excess frequency noise in the field exiting the fiber?
[32, 33].

GAWBS-induced excess phase noise is measured by inserting a 10 m long optical
fiber in the signal arm of our homodyne interferometer. Figure 6.5a blue trace is
the result of such a measurement, showing excess frequency noise SgAWBS[Q] =
Q2S‘$AWBS[Q] ~ (2w - 1Hz/ «/E)z at Fourier frequencies of 2 ~ 27 - 20 MHz,
and increasing quadratically with Fourier frequency.

2L ongitudinal elastic modes have a similar effect, but their frequency being larger, the resulting
phase noise isn’t relevant in our experiment.


http://dx.doi.org/10.1007/978-3-319-69431-3_5

6.1 Quantum-Noise-Limited Position Measurement 141

The observed spectrum (blue in Fig. 6.5) can be understood using a simple model
[32]. The transverse axis-symmetric elastic field of a cylinder of radius r.—general
solution of the Navier equation (Eq.3.1.18) in cylindrical coordinates with free
boundary conditions—is given by Eq. (3.1.21), viz.

u(r, 1) =Y x,(Hu,(r),

where u,, are the (orthogonal) spatial mode functions of the elastic cylinder, given
by (here J; is the Bessel function of order k and e, is the unit radial vector),

r
u,(r) =J; (Oln_) €,
I'e

and x, (¢) are standard harmonic oscillator amplitudes driven by thermal noise. The
frequency of the nth mode, 2, = o, (cr/7.), is determined by the transverse elastic
velocity cr (see Appendix B.2), and «,,, fixed by the boundary conditions, is the nth
root of the characteristic equation (here ¢, is the longitudinal velocity, see Appendix
B.2),

Jol@  (er/er)’

L)  1—(cr/cp)?

and describes the dispersion of the elastic modes. The frequencies observed in the
measured data in Fig. 6.5a, agree well with the frequencies of these transverse elastic
modes, shown as the broad resonances with a phenomenological quality factor Q ~
20 in the blue dashed curve.

The phase shift caused by the elastic mode is determined by a combination of
two factors: the amplitude of the thermally driven elastic mode x,,, and, the forward
scattering cross-section. The amplitude of the thermally driven elastic motion, x,,, is
fixed by the equipartition principle [34]:

1 L 2 re 1
—kpgT =/ dz/ d@/ rdr —pQﬁ <u,’;(r) ~u,,(r))
2 0 0 0 2

kgT ) Te )
= Var [x,] = — where, m, = - anL Jl (anr/rc) rdr,
0

m,Q2’

(6.1.21)
is the effective mass of the elastic mode. Such thermal motion of the fiber core leads
to refractive index fluctuations, §v, via the strain-optic effect [32, 35], viz.

V3 10
Sv(r,t) = ?(Pu + p12) P [ru(r, )] - e,

where p;; are the elements of the strain-optic tensor for silica, py; ~ 0.12, pjy ~
0.27. These fluctuations induce fluctuations in the phase, ¢, of the longitudinally
propagating electric field; it can be approximated as an average of the transverse field
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profile, E(r) ~ (w wf)"e"z/ wg , over the refractive index fluctuation profile, viz.,
27T L 2 00
Sopgawss (1) = 7/ dZ/ d@/ rdr5v(r, tHE(r)
0 0 0

s . - (6.1.22)
= T(Pn + Pzz)r— Zane_a”w5/4r" X, (1)

The spectrum of phase fluctuations due to GAWBS in the optical fiber is thus,

- v’ L : 2 -
Sy = (T% + m),—) Do ESQL (6123

where S » is the thermal motion consistent with the equipartition principle given in
Eq.(6.1.21), viz.,

Var [x, ] Fg

SN T G A

(6.1.24)

Here m,, is the effective mass given in Eq.(6.1.21) and 2, = «,(c7/r.) the elastic
resonance frequency. The decay rate of the modes, I', =~ ,/Q is dominated by
clamping losses due to the fiber cladding. Model curves in Fig.6.5a are plots of
Eqgs. (6.1.23) and (6.1.24).

Frequency noise imprecision, due to GAWBS, around the resonance of the
nanobeam mode at Q,, ~ 27 - 4.3 MHz is solely due to the low frequency part
of SgAWBS, given by,

2
gimpexfiber 1 . Q2 SOAWBS|Q O | & ”_‘)3(17” + p22)£ Z o ksT
o e ne A re Q myQ’

(6.1.25)
Clearly, a large mechanical quality factor for the transverse elastic modes of the
optical fiber significantly reduces classical extraneous imprecision due to GAWBS.
Figure 6.5a red trace shows engineering of the quality factor of the GAWBS modes,
and consequent reduction of frequency noise. The higher Q is achieved by etching
the 10m long fiber in buffered HF (40% solution, for an hour), which reduces the
cladding diameter from 125 pm to about 90 pm. The resulting increase in Q by a
factor of 10, results in S [Q,,] < (2 - 103 Hz/+/Hz).

n

6.1.3 Measurement Back-Action

In principle, given an extraneous imprecision of ”ieff]p ~ 1073, it must be possible to
perform a quantum-noise-limited measurement of the oscillator position by injecting
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sufficient optical power. The performance of our sensor is limited in practice by con-
straints on the usable optical power, including photon collection efficiency, photother-
mal and radiation pressure instabilities, and extraneous sources of measurement back-
action, such as heating due to optical absorption. We investigate these constraints by
recording niyp and ny, as a function of intracavity photon number, comparing their
product to the uncertainty-limited value, 4m > 1 (Fig.6.6). Two considera-
tions are crucial to this investigation. First, in order to efficiently collect photons from
the cavity, it is necessary to increase the taper-cavity coupling rate to kex = ko, thereby
increasing the total cavity decay rate to k = k¢ + kex. We operate at a near-critically
coupled (kex = ko) value of k = 21 - 0.91 GHz, thus reducing the single photon
cooperativity to Cp ~ 0.31 in exchange for a higher output coupling efficiency of
ne. = (k — ko) /k =~ 0.52. Second, in order to minimise S it is necessary to max-
imise intracavity photon number while mitigating associated dynamic instabilities.
We accomplish this by actively damping the oscillator using radiation pressure feed-
back. Feedback was performed by modulating the drive intensity, and therefore the
intracavity photon number, of the secondary feedback mode using an electronically
amplified and delayed (by T ~ 37 /2%Qy,) copy of the homodyne photocurrent as an
error signal [36]. The resulting viscous radiation pressure reduces the phonon occu-
pancy of the mechanical mode to a mean value of n), & ny,I'y/(Fm+ ), Where g,
is the optically-induced damping rate. It should be noted that added damping leads
to an apparent imprecision n{mp = Nimp(I'm + I'y) / I'm that differs from the intrinsic
value (I'p, = 0). We here restrict our attention to the latter, noting that the associated
cooling preserves the apparent imprecision-back-action product: ninngmp = NpMlimp-

Representative measurements of the oscillator’s thermal motion are shown in
Fig. 6.6b. We determine ny, and n;y, by fitting each noise peak to a Lorentzian with
a linewidth of I'egf = I'yy + 'y + ['pa (including a minor contribution from dynamic
back-action, I'gy), a peak amplitude of SplQm] ~ 2nm (T / Teir)2S2?, and an offset
of Siy" = 2nimpSar - For low intracavity photon number, n. < 1./ Co, We observe
that the effective bath occupation is dominated by the cryostat, ny, & np ¢, and that
imprecision scales as njmp = (16nCon.)~", where n & 0.23. 5y represents the ideality
of the measurement, and includes both optical losses and reduction in the cavity
transfer function due to mode splitting (see Sect.6.1.1.3). Operating with higher
input power—ultimately limited by the onset of parametric instability in higher-order
beam modes—the lowest imprecision we have observed is niyp ~ 2.7(30.2) - 1073,
corresponding to an imprecision 39.7 = 0.3 dB below that at the SQL.

For large measurement strengths, quantum measurement back-action [37, 38]
should in principle exceed the ambient thermal force. As shown in Fig.6.6, our
system deviates from this ideal behaviour due to extraneous back-action, manifesting
as an apparent excess cooperativity, C5*, and limiting the fractional contribution of
quantum back-action to Co/(Co + C§*) ~ 35%. Combining this extraneous back-
action with non-ideal measurement transduction/efficiency, we model the apparent
imprecision-back-action product of our measurement (green curve in Fig. 6.6a) as
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Fig. 6.6 Measurement imprecision and back-action versus intracavity photon number. a Red,
blue, and green points correspond to measurements of total effective bath occupation, ny, = 1y i+
nm,BA, Measurement imprecision referred to an equivalent bath occupation, 7imp, and the apparent
imprecision-back-action product, 4, /fimimp, respectively. Solid black line depicts the ideal SQL
model, for a zero temperature oscillator, consisting of quantum-limited imprecision (solid blue)
Nimp = (16Con,)~", and quantum back-action (solid red) ny, pa = Con.. Dashed black represents
the SQL curve for the case of finite thermal occupation of the oscillator, described by n, =
nm,th+Con.. Dashed red and blue lines highlight excursion from their counterparts due to extraneous
back-action, Cg" = (.56, extraneous imprecision, nﬁf1 = 0.70 - 10°, and imperfect detection
efficiency, n = 0.23, as described in the text. Green line models the apparent force-imprecision
product using the Eq.(6.1.26). b Spectra of the position fluctuations of the oscillator at various
measurement strengths. Yellow line marks the peak spectral density at the SQL

N th C* n
e _\/ |4 i C_o) (1 " n—) (6.1.26)
m,BA 0 ¢

~!is the photon number at which extraneous and shot-

where ng* = (16nCongy,
noise imprecision are equal. Operating at n, ~ 5-10* < n®*, we observe a minimum
imprecision-back-action product of 4, /fiinpii, ~ 5.0, i.e. a factor 5 away from the

ideal value predicted by the uncertainty principle.
6.1.3.1 Back-Action Due to Ohmic Heating
The origin of the excess back-action cooperativity, C5*, remains not fully understood.

However, heating due to laser noise can be fully ruled out. Preliminary measurements
of the back-action heating of multiple mechanical modes of the nanobeam are shown
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Fig. 6.7 Excess back-action due to ohmic heating. Plot shows a compilation of several measure-
ments of the back-action heating of the four lowest order modes of the nanobeam. Black-circled-red
points are data from Fig. 6.6a, for the fundamental out-of-plane mode. The square data report the
back-action heating of the fundamental out-of-plane (solid red), fundamental in-plane (red), third
harmonic out-of-plane (solid blue) and third harmonic in-plane (blue) modes. The solid lines are
predictions from a model based on quantum back-action heating alone

in Fig. 6.7. The fact that the ratio of observed back-action among the different modes
do not scale with their known cooperativites strongly suggest that laser noise heating
can be ruled out.

Ohmic heating via absorption of laser light in the beam remains a strong candi-
date. However, attempts to model this scenario using a simple heat transfer model:
assuming a point heat source at the centre of the beam taken to be in equilibrium
at its clamping points, implies a mode-dependent heating that is lower than what is
observed. Given that all modes equilibrate at sufficiently high pressure, where we do
not observe any appreciable back-action, we conjecture that the modification of ther-
mal transport (both in terms of a drop in thermal conductivity [30], and maybe even
transport mechanism [39]) along the slender beam may be responsible for deviations
from simple heat transfer.

6.2 Feedback Suppression of Back-Action

The ability to exert control over physical systems to a degree where their quantum
mechanical behaviour can be probed and manipulated has been the focus of a sec-
ond quantum revolution [40]. The past 40 years have witnessed an exquisite level
of control being achieved on atomic systems, mostly fuelled by the availability of
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the laser as a highly coherent element that synthesises forces to steer atoms towards
some desired state. This approach, termed autonomous control, essentially relies on
engineering a hamiltonian [41, 42] (or a dissipative reservoir [43—45]) such that the
associated open-loop evolution achieves some desired target. In this scenario the
essential requirement is to be able to perform control operations within the decoher-
ence time of the desired state.

The conventional paradigm of feedback control—wherein the output of an auxil-
iary system is fed-back to steer a plant towards a desired target, has two inequivalent
manifestations in quantum mechanics. This has to do with whether the auxiliary
system performs measurement [46, 47], or whether it coherently cascades its output
into the input of the plant [48]. In the former case—measurement-based feedback
control—the burden of timescale is shifted to the measurement: the measurement
must be strong enough to track the quantum fluctuations of the system under con-
trol, while simultaneously being weak enough to not impart excess back-action [12].
Spectacular applications of such measurement-based feedback, for example to sta-
bilize microwave Fock states [49, 50] and persistent Rabi oscillations of an artificial
atom [51], have been limited to well isolated quantum systems.

For mechanical oscillators, the advent of quantum-noise-limited measurements,
as described in the previous section, provides for measurement strong enough to
resolve the oscillator’s quantum state in the timescale of its decoherence. The rate at
which the oscillator’s zero-point motion is measured [52],

2
xzp '

SPIQ] My

Cineas =

equals the total decoherence rate, I'gecoh := (m.th + 7m.BA) 'm (i-€. 'meas = Tdecon)
when,

1
(nm,th + nm,BA)nimp - Z (621)

That is, a quantum-noise-limited measurement is precisely the one that resolves the
zero-point motion of the oscillator in its decoherence time. Remarkably, despite
the fact that a quantum-noise-limited measurement perturbs the thermally driven
oscillator by measurement back-action, feedback of the measurement record can
suppress this back-action [10, 53].

Practically therefore, the ability to perform measurement-based feedback control
of a mechanical oscillator necessitates that its motion be measured with an impre-
cision that is a factor ny, , below that at the standard quantum limit [53], or that its
thermal motion is resolved with a signal-to-noise ratio of n2, ;. The measurement
reported in the previous section, summarised in Fig. 6.6, features an imprecision
that meets this condition at a bath temperature below 10 K. The sufficient condition,
of being quantum-noise-limited, i.e. satisfy Eq.(6.2.1), is approached by within an
order of magnitude, specifically, ['peas & 0.2 - Tgecoh-

In the rest of this section, we describe the design of a feedback controller, and
its experimental implementation, that enables the suppression of measurement back-
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action. It turns out that the optimal controller, given phase-quadrature homodyne
measurements, is the so-called cold-damping strategy [36, 54, 55]. Finally we present
data where the oscillator is feedback cooled to a final phonon occupation of 5.3,
suppressing more than 2 - 10* quanta of measurement back-action.

6.2.1 Synthesis of a Linear Quadratic Gaussian Controller

In the following, we precisely formulate, and solve, the following control problem:
synthesise a feedback force based on the record of a continuous linear measurement
of the position of a harmonic oscillator driven by Gaussian forces, such that it prepares
the oscillator close to its ground state.

It turns out that in the quantum mechanical setting, as long as all elements that
measure and apply feedback are linear and susceptible to Gaussian noises, there
exists a formal analogy between this problem and the class of problems studied in
the classical paradigm of LQG (linear quadratic Gaussian) control; here quadratic
refers to the cost function whose optimisation is the control objective. In the classical
setting, powerful techniques have been developed by Wiener [56] (for one dimen-
sional systems) and Kalman (for multi-dimensional systems) that solves the LQG
synthesis problem [57]. These techniques have been extended to the quantum LQG
setting, with results analogous to the classical Kalman filter [58—61]. We adopt a fre-
quency domain approach where an appropriate modification of Wiener’s approach
(i.e. without adopting a multi-dimensional state-space model) gives the required con-
trol strategy. A complementary treatment, shadowing the state-space approach via
quantum trajectories, is given in [62].

6.2.1.1 Dynamics with Linear Measurement and Feedback

Concretely, we consider a harmonic oscillator with position fluctuations 65© when
it is in equilibrium with two baths: the thermal bath modelled by the force (& ﬁm)
associated with the ambient environment (as in Sect.3.1.3), and the measurement
bath due to the meter (nominally to an optical cavity as in Sect.4.3) modelled by
a back-action force (8 Fga). In this open-loop case—the oscillator is coupled to a
meter but the output of the meter is not fed-back—its dynamics is described by the
equation,

m (55%'(0) +Tpsx @ + Qiéi(O)) = 8F (1) + 8 Fpa.m(®)
A R (6.2.2)
ie., 629101 =x[Q] (SFm[Q] + 8FBA,m[Q]) .
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Here the susceptibility, xV[Q] = m™' (2 — Q? — iQI‘m)il, encapsulates the
effect of dynamical back-action from the meter, while 31313A,m models the fluctu-
ating quantum back-action force.

Control is affected by using the output of a linear detector, which gives the instan-
taneous apparent position,

8™ = 53™® 4 5%, (6.2.3)

and synthesising a feedback force linearly proportional to this position estimate,
SFp[R] := — x5 12165 ™ + 8 Frp m[ ). (6.2.4)
Here 8™ is the physical motion modified by the application of feedback, x,'[€2] is

a causal and stable® function that describes the response of the feedback controller,
and & F, 1, models noise added by the feedback loop.

3 A function f (1) 1s (asymptotically) stable if | f (t — 00)| < oo;itiscausalif f(r < 0) = 0. These
properties can be expressed in terms of the Fourier transform,

191 = f Fe® dr,

extended to the complex plane (i.e. Q — Q + iI"). Firstly the bound (an instance of the triangle
inequality),

f1Q+iT] = ' / F1)eli® D g1

< / F©Ole ™ dr,

together with stability implies that, | f[2 + i[']| < oo for T > 0; thus, all singularities of f[Q2+iT]
are in the lower-half plane (real axis included). Secondly, causality in time domain can be expressed
as the identity f(r) = O(t) f (1), where ® is the Heaviside step function; taking its Fourier transform
gives,

121
e U —Q
a constraint imposed by casuality for real frequencies (separating out the real and imaginary parts of
this equation gives the Kramers-Kronig relation). We now consider the integral of f[Q/]/(Q" — Q)
along a contour C in the complex plane that consists of the real line and an arc at infinity enclosing
the upper-half plane; by stability, the latter integral is zero; by causality, the former satisfies the
above constraint; thus, we can show that,

ae/,

fl91 ==
T

1]
Q2 -Q

d@' =0.

Therefore (by Cauchy’s theorem) f[€2] is analytic in the upper-half plane [63—-66]. (A stronger
version of this line of inference goes by the name of Titchmarsh’s theorem, which identifies causal
and stable functions as boundary values of analytic functions [67, Section 17.8].)
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The physical motion 2™ in the presence of feedback is determined by the
equation,

m (ajé“b> 4 Tsi® 4 anax(ﬂ’)) — §Fun (1) + 8 Fsam(t) + 8 F (1)

e, 88™2] = 112 ($Fule + 8 Foa ] + 8 Fnl@1) = 530121 + 11218 Pl 2.

(6.2.5)
Inserting Eqs. (6.2.3) and (6.2.4) into Eq. (6.2.5), and solving for 6™ gives,

52 O] 8 Ximpl€2]

s:MQ) = _
L x2eng e 1+ Oy en!

=t a[2165 0 [Q]~55implS2).

(6.2.6)
Here we have absorbed § Fy, ¢ into (SJ?imp as an apparent imprecision via the redef-
inition, 8Ximp — 8Ximp + XS Fiv,m; further, in passing to the second equality, we
have defined the dimensionless response function,

1
a[Q] = , (6.2.7)
1+ 211zl

and the apparent out-of-loop position,
85 1= 820 4 8%imp. (6.2.8)

The relevance of the second form of 6™ in Eq.(6.2.6) is that it expresses the
spectrum of the physical position,

STQ] = [a[Q]]” SO[Q] + SIPIQ] — 2Re o[]S, 05, [2], (6.2.9)

such that the correlation (third) term describes measurement-induced correlations
alone, and not those invariably induced by the act of feedback (o< Syx;mp)- Expressed
in this form, it is apparent that the act of feedback introduces an additional noise, vis-
a-vis the feedback of the imprecision noise; in the ideal case, when the measurement
imprecision is set by quantum fluctuations in the meter, this noise sets a fundamental
limit to the performance of the feedback protocol (as detailed in Sect. 6.2.2.1).

It can be shown from the definition Eq. (6.2.7) that « is causal and stable whenever
x\? and xg, are so. Physically, this can be seen from the expression for the in-loop
position,

83™[Q] = a[Q165[Q1.

This equation provides an operational meaning to «[€2]: it describes the difference
between an out-of-loop and in-loop probe of the oscillator position. Being therefore
a physical quantity, « must be causal and stable.
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6.2.1.2 Control Objective

The specific objective of feedback control is to prepare the oscillator in a state where
back-action is minimised. Since the oscillator begins in a (Gaussian) thermal state,
and all measurements and control are linear, the target state is at best another Gaus-
sian state. We thus consider minimising an appropriate norm of the (symmetrised)
covariance matrix of the target state, viz.,

(@)1 (Epps)
x2 2 xppy

_ 7 pPzp
L= wten ()
2 Xzp Pzp pyz,p

We assume that the target state is represented by a legitimate density operator, so
that Det ¥ > }‘, i.e. the generalized uncertainty principle in for the mechanical
oscillator. (When the equality condition is met, the Gaussian state is pure.) Under
this assumption, a suitable norm that is positive and quadratic in the position and

momentum of the oscillator is the trace of the covariance matrix,

(%2) N (P*)  (Hn)

X2, Pk hQn/4

TrX =

where,
A (p*) | mQy (%)
H = < + L’
(Hm) = —— >

is the average energy of the target state. Thus, the task of realizing a minimum-
uncertainty target state is equivalent to the task of minimising the energy of the state,
given linear measurements and feedback, and an initial Gaussian state.

We therefore define the control action by the constraint,

min (H,,) = min (H,,). (6.2.10)
Xfb o

Using the fact that,
R - dQ R 2 - dQ
() = / SIRISS, and, (5) =m0 = / 250",

where S‘fﬂc’) is the spectral density of the physical position in the presence of feedback
(i.e. 8x™), the average energy takes the form,

<F1>—’"Qﬁ*/ T P
) Q2 ) g

Thus, the constraint in Eq.(6.2.10) can be expressed purely in terms of the spec-
tral density of the oscillator position. Specifically, it involves the minimisation of a
functional ¥, defined by,
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. . Q2 . A
rr}xln%[[a}] = n}lln/ (1 + Q_2> S™IQ ]E. (6.2.11)

This form is advantageous because the measurement record only contains an estimate
of the position of the oscillator, while its momentum has to be inferred by taking
appropriate derivatives.

6.2.1.3 Solution of the Control Problem

Inserting the expression for the spectral density S, from Eq.(6.2.9) into the con-
straint in Eq. (6.2.11), we have,

min €] = min / [Q] (|l [Q11* SO [Q] + SIP[Q] — 2Re a[Q]S 0,4, [2]) c21_

where, 7[Q] := (1 + Q?/Q2). Using standard results from variational calculus [68],
the extremisation is equivalent to the first variation, D% := €[o + Da] — €[o]
being equal to zero for all valid variations Da of the response function. Here validity
refers to the requirement that the perturbed function @ + Do be a physical response.
In particular, this implies that De is itself a physical response functions; thus it has
to satisfy two constraints: (a) Da[Q2]" = Da[—£2], since the time-domain response
function is real, and, (b) D« is analytic in the upper-half plane, since the response
function is causal and stable (see footnote 3 on page 124). The variation D% computed
by incorporating the first constraint (and appropriate symmetry properties of the
spectra), takes the form,

_ _ dQ
_ (V]
D% =2 / Da[Q] [Q] («[R1SH)[2] — Sy, [2]) o
The extremisation condition, % = 0, now reads,
) dQ
7[Q] (a[Q]S Q] - ‘«nxlmp[Q]) 5T = 0, for, o causal and stable.
T

(6.2.12)
The clause of causal stability prevents the naive solution obtained by setting the
integrand equal to zero.

Aningenious argument due to Wiener and Hopf [56, 57] gracefully accommodates
the causality constraint. In fact, if the integrand in Eq. (6.2.12) is a causal function,
then it is guaranteed that « is also causal. Thus, we introduce a function f_[€2] that
is arbitrary in the lower-half plane, but zero (and analytic) in the upper-half plane,
ie.

a[Q] ([QISD[R]) — ([R]85, [2]) = f-[Q]. (6.2.13)
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Note that this equation is simply a place-holder for the fact that the left-hand side is
a causal function. In order to convert this to a concrete solution for a causal response
«, we take recourse in a mathematical fact, namely, that S f,%) can be factorised in the

form,* _ - R
Swie = {Syia), (S

where the first (second) factor is analytic in the upper(lower)-half plane. More gener-
ally, such a factorisation also exists for the product, 7). Inserting this in Eq. (6.2.13)
allows it to be expressed in the form,

‘L'S'«mxim f-
- i<0> ~t+ o
{TSyy }_ {Tsyy }_

where the second term on the right-hand side is anti-causal and anti-stable. Since
we expect the left-hand side to be causal and stable, it must be that it is equal to the
causal stable part of the right-hand side, i.e.,

a{eSy}

1 Sy“”ximp (2]

e (s} | {msian) |

(6.2.14)

Here, [- - - ]4 represents the additive decomposition of its argument into its stable
causal part, analogous to {- - - } ; representing the multiplicative decomposition. This
is the formal solution for the physical response function of the feedback network that
prepares the oscillator in a minimum-uncertainty Gaussian state.

This formal solution can now be applied to the problem at hand. We consider the
case of phase quadrature homodyne measurement, in which case,

53011, [Q] = SYP[Q] = Rimp - 257 [Qn]

(e + %)(erm)z
(% — Qu)? + (Q'm)?

SOIQ] = S™[Q] + SVIQ] = [ imp +

yy

257 [Qn].

“This is generally true of symmetrized spectra of the observables of linear Markovian systems
driven by white-noise. Firstly, the spectra of the observables of such systems is a rational function
of the frequency, i.e. a ratio of polynomials (Markovianity is essential for this to be true since arbi-
trarily long time delays preserve linearity but do not have a rational frequency response). Secondly,
considering 2 to be extended into the complex plane, it can be shown that the spectrum of an
observable, say y, satisfies the relation, S‘yy[Q] = S‘;fy[—Q*] (for real frequencies, this reduces to,
S‘yy[Q] = S‘yy[—Q], given in Eq. 2.1.16). This symmetry implies a characteristic symmetry for the
roots of the numerator and denominator polynomials: purely real roots occur in positive/negative
pairs, while purely imaginary ones in conjugate pairs, and complex roots occur in conjugate pos-
itive/negative quadruplets. Thus, both the numerator and denominator can be factorised such that
the factors have zeros symmetric about the real-axis. Collecting those factors with zeros and poles
in either half-plane gives the required factorisation.
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Since we expect the response « to only have a significant contribution around the
mechanical resonance in a bandwidth around its linewidth, we may safely assume
7[€2] is a constant and omit it. Putting the above expressions into Eq.(6.2.14), and
assuming n; > 1 > nimp, wWe can work out, after considerable algebra, the form of
the feedback filter, viz.

1920 = x O (e[2]™ — 1) ~ imQp Ty /% (6.2.15)
imp

This feedback filter, coinciding with the so-called cold damping strategy [54, 55],
has a very simple physmal interpretation: the oscillator is damped by applying a feed-
back force, § Fp, ~ — Xb 8% o 192,82 ™ ) that is proportional to the instantaneous
velocity.

6.2.2 Feedback by Cold Damping

The objective of feedback cooling is to nullify the effect of the total ambient thermal
force, § I:"th + SﬁBAJh, on the oscillator. The cold damping strategy achieves this
heuristically by coupling the oscillator to a colder environment at progressively larger
coupling rates [54, 55]. With respect to the standard feedback schematic shown in
Fig. 6.8, cold damping corresponds to the choice of the feedback controller,

X5y Q] = —imQTp[Q, (6.2.16)
ideally with the feedback damping I'y, given by,
Fpl[2] = gnlm, (6.2.17)

for some dimensionless real feedback gain gg,. Note that the feedback gain simply
parametrises the optimal strategy computed in the previous section, and given in
Eq.(6.2.15).

To see how this damping leads to cooling, we reconsider the physical motion of
the oscillator given in Eq. (6.2.6), but now expressed in the form,

sxem) = X;gm) <8ﬁlh + SﬁBA,lh + 3ﬁfb,th - Xt{,lSiimp> ) (6.2.18)

where the effective mechanical susceptibility,

xEVQI = QT + xnlQ17T = m (-7 + QL — QT (1 + gw))
(6.2.19)

features an increased damping rate due to feedback. The motion of the oscillator is
driven by forces from the three physical environments it is coupled to: (1) the thermal
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Fig. 6.8 Schematic of measurement-based feedback loop. The oscillator (system) experiences
a multitude of forces: the ambient thermal force 8 Fy, a back-actipn force & Fpa arising from its
coupling to the optical field (meter), and finally, a feedback force § Fiy, synthesised by the controller

force from the ambient thermal environment, (2) measurement back-action from the
meter, and (3) force fluctuations from the feedback network. For a high-Q oscillator,
and in the limit where these noises may be assumed to be Gaussian, each of these
environments can be assigned a thermal noise equivalent phonon occupation: nm i,
nm.pa and npy g, respectively. Thus the total effective thermal force may be expressed:

SRLIQ] == SPL1Q] + Spr Q] + SE Q]

_ (6.2.20)
= (m.ih + Mmpa + mp + 3) - XV [2m]177 - 282 [,

where we have introduced for convenience the (peak) position spectral density in the
ground state (Eq.3.1.30):

- 2x22p

52 Q] = 2.

m

We further introduce the imprecision quanta, 7y, as the apparent thermal occupation
associated with noise in the measurement:

SMPIQ] = Rimp - 252 [ ]. (6.2.21)

The apparent position—the position-equivalent output of the detector—is described
by the equation,

856%) = 4 (8 Fu + 8 Fon i+ 5 Fnon + X783y (6222)

Using the expression for the total force noise spectrum (Eq.(6.2.20)), we get the
spectrum of the physical position and the apparent position, viz.
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S;irb)[g] _ (nm,th + Nm BA + N, fb + %)QanFTZn + Mimp gfzbﬂzri

25519 (Q2 — 22 + (QTn (1 + g1))?
SEVIQL Ot s+ i + DQRTE — nimpgin(gn + 22T
28581Qnl (Q% — Q)2 + (QTm(1 + gn))?
(6.2.23)
The mean phonon occupancy of the cooled oscillator is then given by,
nm—i-l _ l/m S [9] dQ _ (Mma +Mmpa + Ny + 5+ nimpgfzb. (6.2.24)
2 2) .o x3 2n 1+ g
In the relevant case, ny ¢ > %, a minimum of
1
Nm,min ~ 2\/(nm,th + nmBA + nm,fb)nimp - Ev (6.2.25)
is attained at an optimal gain of
8ibopt N \/nm,th + ":lnAl,ba + Am, o ’ (6.2.26)
imp

consistent with the optimal case given in Eq.(6.2.15). In particular, for the experi-
mentally relevant case of ny, 1 3> nm . the conventional condition for ground state
cooling, n,, < 1, translates to

9
Nimp < R(nm,th + nm,BA + nm.fb)_l‘ (6227)

6.2.2.1 Limits Due to Measurement Back-Action

Expressing Eq. (6.2.25) in the form,

1 1 < oimy
in + 5 = 3/ S 121520, (6.2.28)

it is apparent that the minimum phonon occupation attained by cold damping—and
indeed, linear feedback of the phase quadrature homodyne measurement record—
is limited by the ability to perform a quantum-noise-limited in-loop measure-
ment. In fact, using the imprecision-back-action constraint for an ideal measure-
ment, Nimp/im Ba = 1—16, the condition for ground state cooling (Eq.(6.2.27)) can be
expressed in the form,

Rimp < Qhmn) (6.2.29)

equivalently, the measurement imprecision has to satisfy,
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ozp 2 2
gimp _ S _ 2xzp _ 4)(ZlD
XX -

- 9
N, th nm,thrm I"decon

(6.2.30)

where gecon := I'm7m.m is the thermal decoherence rate. Notably Eq. (6.2.30) cor-
responds to an imprecision ny, /2 times below that at the standard quantum limit, or
equivalently, a measurement rate [52, 69]

xzzp _ Iﬂm > Fdecoh
SOP[Qm]  Amimp 2

, (6.2.31)

Cineas =

comparable to the thermal decoherence rate.

6.2.3 Implementation of Feedback

Implementing the ideal cold damping strategy in practise means implementing the
ideal filter given in Eq. (6.2.16) — a differentiator (o< —i€2) with a variable gain
(o< gm)- Several practical challenges need to be reckoned with when realising a
feedback filter: the ability to realise a filter with very low input noise, the ability to
accommodate a large dynamic range of about 7y, 1 /nimp ~ 80 dB, ease to fine-tune
its response in the relevant frequency band, and, ease to set its overall gain. After
a few iterations, we have found that the simple implementation shown in Fig.6.9a,
meets these criteria.

Figure 6.9a shows the sub-part of the entire experiment (detailed in Fig.5.9),
that realises the feedback controller. Light transmitted from the meter cavity mode
(at A = 780 nm) is measured in a balanced homodyne detector tuned to the phase
quadrature, whose output voltage is (see Sect.4.3),

8Vhom[Q] - Hdet[Q]\/ nio 6ﬁ0ut

SX[2] + 8Ximp[2]
= Hoet[Q1V/ 200 Cnitto T = g

Xzp

(6.2.32)

where, Hge is the gain of the detector in units of volts/(photons/s), n o is the homo-
dyne LO photon flux, & poy is the phase quadrature of the meter output (red beam
in Fig.6.8a), ny, is the detection efficiency of the meter mode, C,, is its multipho-
ton cooperativity, and 8Ximp is the measurement imprecision given in Eq. (6.1.15). A
major part of this signal is coupled using a directional coupler (MiniCircuits ZFDC-
20-5+) into a single-pole low pass filter® at 5 MHz, amplified (Miteq AU-1525), and
attenuated using a voltage-controlled attenuator (MiniCircuits ZX73); the resulting
voltage,

5A theorem due to Bode [63] asserts that for a causal stable filter, a magnitude response that falls
off as some polynomial power, Q", has to impart at least a phase change of nm/2; thus this filter
adds a phase of 7 /2.
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Fig. 6.9 Implementation of cold damping. a Schematic of the experimental implementation of
the feedback controller consisting of the homodyne detector output band-passed, amplified, and
delayed, before being imprinted onto the amplitude of the feedback laser. b In-loop mechanical
spectra measured for the case where the feedback filter y g "[Qlhasa frequency dependence that is
(non-)ideal, in (red) blue. The red traces show measured in-loop spectra as the feedback gain gy, is
increased over three orders of magnitude; the green traces show the measured filter response. The
black traces show predictions for the in-loop spectra given in Eq. (6.2.23) using the measured filter
response as the only free variable

8Vamp[Q] = Gamp[Q](SVhom[Q] + SVamp,in[Q])v (6233)

features a variable (dimensionless) gain G, that effectively sets the feedback gain
g, and the input noise of the amplifier 8 Vymp in that sets the dominant classical
contribution to the thermal force noise added by the feedback 5FA‘fb’th. This signal
is delayed using a tunable passive delay line (Stanford Research Systems DB 64),
whose output in time domain is Vam(f) = Vamp(f — 7); in the frequency domain,

VamlQ] = € Vo [Q] & (1 + i Q1) Vamp 2] (6234
ie, SVam[Q] = iQr §Viyp[R2]. -
Finally, this voltage is imprinted on the feedback laser (at A = 850 nm) as an
amplitude modulation using an in-fiber modulator (Photline NIR-MX800-LN10);
the field fluctuations of the feedback laser exiting the modulator, acting as the input
to the feedback cavity mode, is given by,

. . i
dag in[R2] = Saam,in[R2] + /Nfb.in V—SVAM[Q], (6.2.35)
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where 8aam.in is the fluctuation at the input of the modulator (i.e. the fluctuations of
the feedback laser), ng, i, is the mean photon flux of the feedback laser, and V; ~ 4V
is the w —voltage of the modulator. The feedback laser is coupled to an independent
mode of the optical cavity, so that the radiation pressure force from it is the actuator
in the feedback loop. This radiation pressure force fluctuation is given by,

8 Fin[Q2] = hGo/nndgn = —\/ N1Crolm 8G1v,in[2]. (6.2.36)

Here, in the first equation, Gy, is the frequency pull parameter of the feedback
mode, ng is the mean intracavity photon number in that mode, and, 84g, is the
intracavity amplitude quadrature; while in the second equation, 7y, is the cavity
coupling efficiency, Cy, is the multiphoton cooperativity, and 8Gp iy is the amplitude
quadrature of the propagating field entering the cavity.

We can now arrive at expressions for the dimensionless feedback gain gy, and the
phonon occupation due to the feedback network np, s, in terms of the measurable
properties of the various elements in the feedback loop. Using Egs. (6.2.32)—(6.2.35),
the expression for the feedback force in Eq. (6.2.36) takes the form,

S Fpl 2] = im QT - Ganp[ 2] - @t - — el CnCr 85121
P Ve / J/NLON M, in

=8
. 8 Vamp.in[€2]
oV mColn ( Gamin[ 2]+ 1w Q - Gamp[ 2] vn/x/_nﬂa,m>
=8ﬁl'b.(h

(6.2.37)
Here, we have omitted the term corresponding to feedback of the imprecision
noise (o< 8Ximp) since it is explicitly taken into account in our treatment of feedback.
Importantly, the feedback gain, g, o< Gamp, S0 that by changing only the electronic
gain G, of the amplifier, while keeping everything else (cavity coupling, optical
power, homodyne detector setting etc) fixed, the oscillator can be cold damped.
Further, the force noise due to the feedback path, (Sﬁﬂ)ﬁth, leads to an excess phonon
occupation,

amp m[Q ]
N = Cpp [ 1+ (TQm7)? |Gamp[9m]| Vz/—nfb

(6.2.38)
n1mp amp in [Q ]

= Cp+2 L Svy Liml
w265 fb |Hdet[Qm| nLo
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that is due to two sources: quantum back-action from radiation pressure vacuum
fluctuations of the feedback beam (first term) which is independent of the feedback
gain, and thermal occupation due to classical voltage noise (second term) in the
feedback electronics that is proportional to the feedback gain. However, under our
typical experimental conditions, the second contribution is ~ (gg,/10%)2. Thus, at
feedback gains required to reach the ground state (gm, A 10°), the contribution of
excess back-action due to classical voltage noise is negligible compared to quantum
back-action from the feedback laser. In fact, the latter is also orders of magnitude
smaller than quantum back-action from the meter.

6.2.3.1 Effect of Non-ideal Feedback Phase

In the experimentally implemented feedback filter, essentially consisting of a passive
delay, the phase has to satisfy

arg [xn[21™'] = —(2k + 1)%, keN,

at all relevant Fourier frequencies, for efficient cold damping. Note that to sat-
isfy the condition for Markovian feedback [46, 47, 54], the total time delay,
T = arg [xw[Q2m] ']/, has to satisfy, T < 27/ Tgecon, thus constraining the
largest phase wrap tolerable. As detailed above, a single-pole low pass filter adds a
phase of /2, so that we tune the delay in order to get an addition & phase shift.

Here we consider the effect of any residual dispersion and/or non-ideal phase,
which we model by,

ol Q1™ = exp| —i (2K + 1)% + 800[921) | mR gl QAT

' (6.2.39)
= —imQgp[QITy, e 99wl
The corresponding effective susceptibility,
xEQIT = m (Q¥M[Q) — Q2 —iQr*v[Q]), (6.2.40)
features feedback-induced damping, and an additional frequency shift,
TE[Q] = I [1 4 gr Q] cos 3w Q1]
Q' 172 (6.2.41)
QEM[Q] = Qp [1 — 8m[€2] E R sin 8¢fb[9]j|

Thus, deviations from an ideal phase profile can be observed in the feedback-
induced frequency shift, while a non-flat gain profile results in a susceptibility that
is no longer Lorentzian. Figure 6.9b shows the effect of non-ideal feedback phase in
the in-loop signal. As the feedback gain is increased (red traces), the in-loop signal
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features a distinct red-shift of the oscillator frequency; at the highest feedback gain,
an apparent deviation from a Lorentzian spectrum is visible, an effect due to “noise
squashing”, i.e. classical correlations established in the in-loop signal via feedback of
noise and not due to the slight deviation from flatness of the measured feedback gain
(green). The black traces show the expected spectrum calculated using the measured
feedback gain profiles. By trimming the feedback delay, purely dissipative feedback
(corresponding to 6¢s, =~ 0) can be realised (blue trace).

6.2.4 Feedback Cooling to Near the Ground State

We now consider what temperature can be reached by increasing the strength of the
feedback used to damp the oscillator. The effective phonon occupancy of the cooled
mechanical mode depends on the balance between coupling to thermal, measurement,
and feedback reservoirs at rates I'gecoh, I'm#im,Ba» and I'pnimp respectively, and is
given by (Eq. (6.2.24)),

1 8k
Am,th + m,BA) T
(. + ) + T2

1
Nm + =

) = % Nimp >2 nimp(nm,th + nm.BA)-

(6.2.42)
The minimum value on the RHS of corresponds to suppressing the apparent position
noise to the imprecision noise floor (cf. yellow curve in Fig. 6.10, inset). Notably, in
the absence of extraneous back-action, ny, < 1 requires niyp < 1/(2nm m).

Figure 6.10 shows the result of feedback cooling using a measurement with an
imprecision far below that at the SQL. For this demonstration, imprecision was
deliberately limited to 7y, = 2.9 - 10~* in order to reduce contribution from the off-
resonant tail of the noise peak at 4.6 MHz (which limits applicability of Eq. (6.2.42)
to damping rates less than 200kHz) which is due to thermal motion of the in-plane
mode of the nanobeam. The effective damping rate was controlled by changing the
magnitude of the electronic gain, leaving all other parameters (e.g. laser power)
unaffected. Fitting the closed loop noise spectrum (see Fig. 6.10, inset) to a standard
Lorentzian noise squashing model (Eq. (6.2.23)), we estimate the phonon occupancy
of the mechanical mode from the formula 7, + 0.5 & Tefr - (S, [Q2m] + Se 7)) /287,
where S, " denotes the off-resonant background. Accounting for extraneous back-
action, we infer a minimum occupation of n,, & 5.3£0.6 at an optimal damping rate
of 52 kHz, corresponding to a fractional ground state population of 1/(1 + ny) ~
16%.
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Fig. 6.10 Radiation pressure feedback cooling to near the ground state. Blue and red points
correspond to measurements of the phonon occupancy of the mechanical mode, 1, (plus a phonon-
equivalent zero-point energy of 1/2) and its component due to feedback of measurement noise
Am,fb = nimpgfzb/(l +gm), respectively, as a function of measured damping rate, lefr = (14-gf)'m.
Red, blue, and black dashed lines correspond to models of components in Eq. (6.2.42): ny, /(14 gfb),
Nm,fv, and ny 4 1/2, respectively, using experimental parameters I'y, /27 = 5.7Hz, nyy = 2.4+ 10°,
and nimp = 2.8 - 1074, respectively. Inset: in-loop mechanical noise spectra for various feedback
gain settings; fits to these spectra were used to infer blue and red points

6.3 Conclusion

Collectively, the results reported in this chapter establish new benchmarks for linear
measurement and control of a mechanical oscillator. The enabling advance is a dis-
placement imprecision 39.7+0.3 dB below that at the SQL, a 100-fold improvement
over results reported to date, combined with imprecision-back-action product within
a factor of 5.0 of the uncertainty limit, on par with state-of-the-art optomechanical
systems. At a moderate cryogenic temperature of 4.4 K, this amounts to the ability
to resolve the zero-point motion of our 4.3 MHz oscillator at a measurement rate
within an order comparable to its intrinsic thermal decoherence rate. To illustrate
the utility of this advance, we have actively cooled the nanomechanical beam to a
mean phonon occupancy of 5.3 £ 0.6 using radiation-pressure cold-damping; this
represents a 50-fold improvement over previous active feedback cooling applied to
mechanical oscillators [70]. Most importantly, and in contrast to all prior work on
the feedback control of a mechanical oscillator [36, 70-83], since 1y << npm pa i
our experiment, feedback has suppressed 2 - 10° quanta of measurement back-action
[10, 11], satisfying the basic premise of quantum feedback.
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Chapter 7
Observation of Quantum Correlations Using
Feedback

Correlations have physical reality; that which they correlate
does not. And that’s all there is to it, the rest is commentary.

David Mermin

Measurements proceed by establishing correlations between a system and a meter.
In a quantum description of this process [1, 2], the effect of measurement persists
in the system in the form of measurement back-action. For continuous linear mea-
surements, where the meter couples linearly and weakly to the system, correlations
between the system and meter manifest as imprecision-back-action correlations in
the measurement record. Following the abstract discussion in Chap. 2, any continuous
observable y, of a system variable X, must satisfy [y(¢), (¢')] = 0. However, since
X need not generally commute with itself, it must be that y must be contaminated
by noises arising from the measurement chain. In interferometric position measure-
ment, where X is the position of a mechanical oscillator, and the measurement chain
is composed of an optical meter, and a phase-sensitive (typically, homodyne) detec-
tor, the contamination arises due to vacuum fluctuations of the meter. In this case, as
illustrated in Sect.4.3, = (X + Xa) + Ximp, Where, Xga is the physical back-action
driven motion, and Xinp is the apparent motion. The symmetrised spectrum of the
output of the measurement chain, i.e. of the continuous observable y,

S,y [Q] = S™PIQ] + (5., [Q] + SPAIQ]) + 2Re S,y 1, [L2], (7.0.1)

BAXimp
generically features correlations between back-action and imprecision in the mea-
surement record.

These correlations may be assigned physical reality independent of the final detec-
tion process that the meter—the optical field—is subjected to. The meter possesses
two degrees of freedom (quadratures): amplitude and phase. Back-action arises from
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vacuum fluctuations of the amplitude quadrature, which are imprinted onto the phase
of the outgoing field. Thus the phase and amplitude quantum noises, by being causally
connected via the mechanical response, get correlated. These quadrature correlations
manifest as ponderomotive squeezing in homodyne detection of an appropriately
chosen field quadrature [3—6], or as motional sideband asymmetry [6—10] in hetero-
dyne detection. Differences between these effects arise from the details of how meter
fluctuations are converted to a classical signal by the detection process [6-8, 11].

7.1 Quantum Correlations Due to Light-Motion Interaction

In the (ideal) case where an optomechanical system in the bad-cavity regime k > Qy,,
is probed in the over-coupled regime (. = 1) on resonance with an optical field
ain (1), the cavity transmission (see Eq. (4.3.2)),

A(O) ~
Sliou[Q] = —84[Q] — i/CTy (Sx €21+ SXBA[Q]) , (7.1.1)

Xzp

carries information regarding the mechanical motion in its phase quadrature. Here,
we have introduced the multi-photon cooperativity,

4 2
c.= 22 _comn,
klm

that describes the transduction of mechanical motion onto the phase quadrature.

Equation (7.1.1) might be naively misunderstood to imply that fluctuations in
da;, sets the measurement imprecision on top of which the total mechanical motion
82O 4 8xp, is resolved. This perspective is true if the field is detected in homodyne
detector tuned to the phase quadrature, where the tradefoff between back-action and
imprecision sets the standard quantum limit (Sect.4.3). However, the back-action
motion 8xga, given by (see Eq. (4.3.4)),

0)
Siua[Q] = V2CT, 18] 5G] (7.1.2)

Xzp

caused by quantum fluctuations in the input amplitude quadrature, creates correla-
tions between the transmitted phase and amplitude, so that the naive expectation is
false in general. To see this, note that the transmitted phase quadrature, according to
Eq.(7.1.1), is given by,

. . e [ 82021 xRl .
‘Spout[gz] = —517111[52] - 2Cl—‘m (— - 2CFmX—28‘I0ut[Q] )

Xzp xzp
(7.1.3)
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where we have used the expression for §xga in Eq.(7.1.2) and the fact that g, =
—8out- The output phase and amplitude quadratures, by being related to each other,
are correlated; in terms of the (unsymmetrised) cross-correlation spectrum,

hx V191
xZZp

SOQ] = Ly 200 (7.1.4)
@ Q-2 QT

ut _ i
SOUQ] = S [Q] +2CT,

Since the intrinsic mechanical motion 82 is uncorrelated with the optical beam,
these optical quadrature correlations arise from two sources: correlations between
the input amplitude and phase necessitated by the field commutation relations (see
Sect.3.2.2), and those due to interaction of the field with the mechanical oscillator.
Correlations observed using linear measurements (linear optomechanical interaction
followed by linear detection of the optical field) do not involve any contribution from
the vacuum fluctuations of the mechanical oscillator [8, 12].

The two canonical types of linear detection schemes available for optical fields:
optical homodyning and heterodyning, reveal phase-amplitude correlations differ-
ently. In the following two sub-section we briefly treat either case.

7.1.1 Manifestation as Ponderomotive Squeezing

An obvious way to probe correlations between the amplitude and phase of the output
field is to detect a quadrature that is a linear superposition of the two, and hope to
see the correlations via an interference. This strategy is realised by submitting the
cavity transmission, §dqy in Eq. (7.1.1), to a homodyne detector [13, 14].

The observable relevant to homodyne detection is the general quadrature,

qgut[sz] ‘= 8Gout[2] oSO + 8 pout[R2] sin 6,
whose spectrum,
<f,out __ gout 2 cout s 2 cout :
Sqq Q] = Sqq [Q]cos” 6 + Spp [R2] sin“ 6 + Re Spq [R2] sin 20,

is directly proportional to the homodyne photocurrent spectrum, S'f‘hom[Q]. When
6 = m/2, corresponding to conventional phase-quadrature homodyne detection,
the correlation term (o sin 26) is absent, lending credence to the interpretation of
the homodyne signal as being composed of a signal proportional to the oscillator
position, contaminated by measurement imprecision due to vacuum fluctuations of
the phase quadrature. However, when 0 < 6 < /2, the correlation term cannot be

neglected, and such an interpretation is not tenable.
For resonant probing, using the expression for & poy in Eq. (7.1.3) and noting that
8Gout = —3Gin, the homodyne spectrum is (normalised to shot noise),
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Fig.7.1 Anatomy of ponderomotive squeezing and sideband asymmetry. a The observed homo-
dyne spectrum (red) can be partitioned into three contributions as written in Eq. (7.1.5): a shot-noise
contribution (black dashed), the contribution from the total motion of the oscillator (blue dashed),
and that due to the real part of the correlations between amplitude and phase (green dashed). The
anti-symmetric correlation term leads to a suppression of the photocurrent spectrum below shot-
noise at a range of frequencies. The oscillator is here assumed to have ny, g, = 1, and measured with
a an effective cooperativity nC = 1; the spectrum depicted here is at a homodyne angle 6 = 7/8.
b The observed heterodyne spectrum (red) can be partitioned into three contributions as written
in Eq. (7.1.6): a strong beat note and associated shot-noise from the heterodyne local oscillator
(black dashed), the symmetrised double-sided spectrum of the total motion (blue dashed), and the
imaginary part of the amplitude phase correlation (green dashed). The effect of correlations is to
lead to a one-phonon asymmetry between the two sidebands. The oscillator is here assumed to have
Nm,th = 2

_ 4nCTm { - h
Sohomio) =1+ il — (Sxx[Q] sin? 0 + ~Re x 0[] sin 29)
x2, 2
1 2 2 2
(nm + j) (mIm) .2 (QmI'm) (27— Q) .
=1+ 16nC 6 +4nC 260
O T @aryy T @ —a r rar.?
1
41 2Q — Qm)/T
~ 1+ 16nC (i + ) sin® 0 + 45 C ™ W/ Tw)  sin2e

1+ (2(2 = Qm)/Tm)? '
(7.1.5)

1+ 2(2 = Qm)/Tm)?

The first term, representing the vacuum fluctuations of the measured quadrature,
sets the scale for photocurrent shot-noise, and is interpreted as the measurement
imprecision in phase-quadrature homodyne detection (i.e. 6 = m/2). The second
term, representing the total motion of the oscillator, is positive and symmetric about
the mechanical resonance frequency, while the third term is anti-symmetric, and
therefore negative on one side of the mechanical frequency (depending on the sign
of 0); see Fig.7.1a.

When the photocurrent variance in any frequency interval falls below the variance
due to shot-noise, i.e. when S‘f'hom[Q] < 1, the photocurrent is said to be squeezed.
Since the homodyne photocurrent is directly proportional to the quadrature, g, of the
optical field exiting the signal arm of the interferometer, the spectrum of photocurrent
fluctuations may be refereed back to the spectrum of the optical quadrature fluctu-
ations; thus, photocurrent squeezing may be interpreted as squeezing of the optical
quadrature fluctuations [15, 16]. From Eq. (7.1.5), squeezing occurs at frequencies
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€2, and detection angles 6, that satisfy,

Qn — R
O<m—cot6<nm+%.

Physically, this condition corresponds to tuning to a quadrature sufficiently close to
amplitude quadrature (6 = 0) such that the transduction of the (typically large) ther-
mal motion is suppressed, and to frequencies sufficiently far away from mechanical
resonance such that the magnitude of the correlation term is comparable to shot-
noise. The maximum squeezing of the photocurrent spectrum is quantified by the
bound,

S'?’hom[Q] ,2 1 - nm,BA :
NmBA + Mm,th

the largest possible squeezing is limited by the ratio of back-action to thermal motion,
and the detection efficiency.

7.1.2 Manifestation as Sideband Asymmetry

In lieu of homodyning the output field, with the intent of measuring interference
between its quadratures, it is possible to simultaneously measure both quadratures
in a heterodyne detector. In this case, with a local oscillator field that is frequency-
shifted by Qi (see discussion of heterodyne detection in Sect. 3.2.3.4), the spectrum
of the photocurrent centred around Q2 is,

pp

_ 1 - — i
SIIQ — Quel o 5 (S92 + SPIQ1) + 3 (S5191 = Sp12)

1 qin qin ZCFm R out out
=3 (551914 Sy [2]) + = Sex[Q14Im (Sp[2] — S5i[€2])
zp

2CT'y

2
zp

=1+

(5.:[9Q1 + S2[Q] — S2[-Q]) . (7.1.6)

Here S,, = S + SBA is the total mechanical motion. The additional contribution
on either sideband, numerically equal to half of a zero-point motion, arises from
the second term in the amplitude-phase correlation in Eq. (7.1.4). Ultimately, these
correlations conspire to add (subtract) the equivalent of half a phonon of noise power
on the upper (lower) sideband in heterodyne detection, leading to a one-phonon
asymmetry between the two sidebands, as shown in Fig.7.1b.

Unlike squeezing, the asymmetry between the two sidebands is one phonon, irre-
spective of detection efficiency, and the fractional contribution due to back-action.
The reason is that the sideband asymmetry is a measure of correlations with respect to
the thermal motion of the oscillator, and not to the detected shot-noise as in squeezing.
The experimental challenge in observing the asymmetry is thus the absolute magni-
tude of thermal noise atop which the single phonon asymmetry must be resolved.
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7.2 Observation of Quantum Correlations

In a laboratory setting, quantum correlations in interferometric position measure-
ments, such as those studied in cavity optomechanics, are usually obscured by clas-
sical noise. An important example is thermal motion of the mechanical element.

In the case of ponderomotive squeezing, the contribution of thermo-mechanical
noise is qualitatively different from the contribution due to imprecision-back-action
correlations: the latter is anti-symmetric in frequency, and extends away from
mechanical resonance, as shown by the green trace in Fig.7.1a. Thus, by work-
ing away from mechanical resonance, and at homodyne detection angles close to
amplitude quadrature, thermo-mechanical noise can be arbitrarily well-evaded.

In the case of sideband asymmetry, both the correlations, and the thermo-
mechanical noise are qualitatively similar; quantitatively, the latter is 1/n,, smaller
than the former, i.e., thermal noise obscures quantum correlations. Two complemen-
tary approaches may be employed to increase the visibility of the correlations, and
“distill” it from thermal noise. Coupling of the mechanical oscillators to an optical
cavity mode serving as a cold bath, effectively realizing an autonomous feedback
loop, has enabled thermal noise reduction to the level of the zero-point motion,
thus increasing the visibility of the sideband asymmetry [8—10, 17]. In this case,
back-action imposes a fundamental limit, which must be mitigated by operating in
an appropriate parameter regime (the resolved-sideband regime [18, 19]). A sec-
ond approach, described in Sect.7.2.2, relies on feedback of an efficient auxiliary
measurement to suppress thermal motion. As discussed in the previous chapter,
measurement back-action can be suppressed by active feedback. The tradeoff in this
case is between the efficiency of the measurement and the strength of an additional
feedback back-action associated with the conversion of meter fluctuations into a
classical signal. In this chapter, we show how cold damping can be used to increase
the visibility of quantum-correlation-induced motional sideband asymmetry in an
out-of-loop heterodyne measurement. Further we study how these quantum correla-
tions are obscured in the regime where quantum noise in the in-loop detector causes
the dominant force noise on the oscillator (termed feedback back-action); a regime
giving rise to “squashing” of the in-loop photocurrent [20]. This demonstrates the
complementary scenario where feedback is detrimental to the observation of quantum
correlations. Conceptually, this feedback back-action dominated regime is analogous
to the quantum back-action limit of sideband cooling [21].

7.2.1 Observation of Ponderomotive Squeezing

In our experiment we monitor the light transmitted after it has interacted with an
optomechanical device operated in a cryogenic environment (7 & 6 K). The device
is nominally identical to the one used in the experiments reported in the previous
chapter, and consists of a nanomechanical string coupled dispersively to an optical
microcavity [22]. The fundamental mode of the string forms the oscillator (frequency
Qn = 27 -4.3 MHz, damping rate 'y, = 27 -7 Hz). The meter is a laser field passing
resonantly through the cavity (wavelength, A ~ 774 nm).



7.2 Observation of Quantum Correlations 171

[
Meter WL |
Laser / |
|
|
|
I
|

7
Feedback
Laser

Aux. homodyne
(In-loop)

€
55
€
&
+
=
|

General-dyne
(Out-of-loop)

i

Fig.7.2 Scheme to detect quantum correlations in the meter field. At the heart of the experiment
is an optomechanical system consisting of a nanobeam (red) near-field-coupled to a whispering
gallery mode optical micro-cavity (blue), placed in a cryostat (dashed black). The meter field is
taper-coupled into the cavity, and is locked on resonance. The transmitted meter field can be directed
to one of two detectors as shown. To detect ponderomotive squeezing, described in Sect.7.2.1,
the entirety of the meter laser is directed onto the (“out-of-loop”) homodyne detector. The local
oscillator in this case is degenerate in frequency with the meter (i.e., Qir = 0). To detect sideband
asymmetry, described in Sect.7.2.2, a portion of the transmitted meter field is directed onto the
out-of-loop detector, now configured to operate in heterodyne mode (with Qi = 27 - 78 MHz). A
remaining part of the meter is directed onto an (auxiliary) in-loop homodyne detector, whose signal
is used to feedback cool the oscillator

The basic scheme of the experiment is depicted in Fig.7.2 (see Fig.5.9 for the
detailed layout). In order to detect both manifestations of quantum correlations in the
transmitted meter field, it is directed onto a (length- and power-) balanced general-
dyne detector, which can be configured into a homodyne or a heterodyne configura-
tion by simply changing the local oscillator frequency. In this sub-section we focus
on the homodyne configuration.

As described above, in Sect. 7.2.1, phase-amplitude correlations in the meter field
manifest as photocurrent squeezing when the homodyne detector is tuned to the
amplitude quadrature. In contrast to the conventional operation of homodyne detector
tuned to the phase quadrature (as detailed in Sect. 3.2.3.3), operation in the amplitude
quadrature requires an error signal that is 77 /2 phase-shifted from the one used in the
conventional case. We obtain this by demodulating a phase modulation tone injected
using an EOM at the entrance of the homodyne interferometer (see Fig.5.9). (In
reality, we use exactly the same tone used to generate the Pound-Drever-Hall error
signal for the lock of the meter laser.) By tuning the DC offset of this error signal, we
can deterministically move to any quadrature, except precisely the phase quadrature.
Figure 7.3c shows the suppression in the transduction of the thermo-mechanical
signal (o sin? @ in Eq.(7.1.5)) as the homodyne detector is tuned away from phase
quadrature and towards the amplitude quadrature. The loss of transduction may be
equivalently viewed as an increased measurement imprecision, quoted as an effective
quanta (read off from Eq.(7.1.5)),


http://dx.doi.org/10.1007/978-3-319-69431-3_5
http://dx.doi.org/10.1007/978-3-319-69431-3_3
http://dx.doi.org/10.1007/978-3-319-69431-3_5
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Fig. 7.3 Homodyne detection of quantum correlations. a Signal-to-noise ratio of the homodyne
detected thermomechanical signal, quoted as an inverse imprecision quanta. Near the phase quadra-
ture (0 = =m/2), sensitivity to thermal motion is best; near the amplitude quadrature (6 ~ 0),
where squeezing is expected, thermal motion is suppressed by about 30 dB. b Squeezing spec-
trum probed using a homodyne detector. Red shows the homodyne photocurrent spectrum of the
transmitted meter field, normalised to shot noise (orange), recorded at 6 ~ 0.15 rad. Black dashed
shows prediction from theory using system parameters inferred from independent measurements.
Gray bands show the model in Eq. (7.1.5), incorporating uncertainties in detection efficiency, and
cooperativity. Inset shows zoom-out of the frequency landscape around the mechanical mode. The
peak at 4.6 MHz is the in-plane mechanical mode, whose thermal noise contributes negligibly to
the imprecision at = 2 - 4.3 MHz. ¢ A sequence of the homodyne spectra zoomed-in to near the
mechanical frequency, as the homodyne angle is varied. Ponderomotive squeezing is not observed
in these frequency interval because of being overwhelmed by thermomechanical noise. However,
the effect of quantum correlations that are responsible for squeezing is nevertheless visible as a
characteristic asymmetry in the spectra taken at two detection angles symmetric about 6 = 0 (red,

and, blue). (Figure adapted with permission from Ref. [6]. Copyrighted by the American Physical
Society)

/2
imp,hom

16nC sin® @ - sin® @

0 - 1 n
nimp,hom T

(7.2.1)

Figure7.3a shows the change in the (inverse of the) imprecision quanta as a
function of the homodyne angle, in agreement with the expected sin® 6 dependence.
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The homodyne spectra corresponding to various quadratures are shown in
Fig.7.3c, overlaid on top of each other. Note that pairs of spectra corresponding
to homodyne angles symmetric and opposite about amplitude quadrature exhibit an
asymmetry at Fourier frequency detunings which are much less than the decoher-
ence rate. This asymmetry confirms with the theoretical prediction of the spectra in
Eq.(7.1.5), and is a clear signature of the presence of quantum correlations in the
meter field. The suppression, or enhancement, of noise that leads to the asymme-
try in the spectra are due to cancellation of quantum noise, both imprecision and
back-action, vis-a-vis correlations between them.

At Fourier frequency offsets comparable to the oscillator decoherence rate, the
magnitude of the imprecision-back-action correlations is sufficiently large so as to
result in significant cancellation of the imprecision noise. As shown in Fig.7.3b,
this leads to a suppression of the photocurrent noise below its vacuum level, i.e.
squeezing. The observation of ponderomotive squeezing provides bona-fide proof of
the presence of quantum correlations in the meter field.

7.2.1.1 Effects Due to Decoherence in Homodyne Detection

Two sources of noise typically obscure (or reduce) the level of observed photocurrent
squeezing, for a given amount of optical squeezing. The first is detection inefficiency:
the addition of excess vacuum noise via various (primarily, optical) loss channels
leads to optical fluctuations uncorrelated with the squeezed field. The second is
noise in homodyne angle: the detection of quadratures other than the specific one
containing correlations leads to excess vaccum noise contaminating the photocurrent
signal [23]. The former has already been implicitly accounted for in the discussion
given in Sect.7.1.1; here we briefly outline the effect of the latter.

The homodyne photocurrent operator is nominally proportional to the quadrature
to be measured, i.e.,

8y (1) ox 84 (1) = 8G(1) cos6 + 8 p(t) sin 6.
Noise in homodyne angle—due to various technical sources, such as uncompensated
interferometer path-length fluctuations, or uncompensated low-frequency phase
fluctuations—can be modelled as a fluctuation in the quadrature angle, i.e.

0> 0 +80(1).

Assuming that 36 is zero-mean normally distributed, and that, (§6%) < 1, the pho-
tocurrent operator takes the form,

8Ty (t) ~ 844 () + 8y, 7 (130(1). (7.2.2)
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Thus, the quadrature to be measured, 8y, is contaminated by its conjugate quadrature.
Evaluating the spectrum of the photocurrent,'

. . 94T - de’
§rmO Q] o 37, 1921 + / Sga * 12 = Q1800 [T

(7.2.3)

it is apparent that an additional imprecision (second term) has been transduced into
the photocurrent via angle fluctuations.

The spectrum of homodyne angle fluctuations, Sy, can in principle be directly
inferred (see for example Fig.3.4). In our experiment, these fluctuations are limited
to low frequencies, so that the approximation,

Soe[2] & Var [0] - 27 §[2],

is valid; this is essentially equivalent to assuming that the homodyne angle is a white
Gaussian random variable with mean 6 and variance Var [6] (which can be estimated
from the low-frequency integral of the fluctuations). In this case, the homodyne
photocurrent spectrum in Eq. (7.2.3) takes the form,

T
$1omO Q] o 87, (2] + Var [0] Spq 2 [22] (7.2.4)
For amplitude quadrature measurements, corresponding to # = 0, this equation sug-
gests two effects that contaminate the observed squeezing spectrum: firstly, impre-
cision noise from the vacuum fluctuations in the phase quadrature get transduced by
a factor Var [0] that contaminates squeezing away from mechanical resonance, sec-
ondly, thermo-mechanical noise in the phase quadrature is transduced by the same
factor near mechanical resonance. Thus, the suppression of thermo-mechanical noise
on amplitude quadrature, shown in Fig. 7.3a, allows an upper-bound? to be placed on
Var [0]. Averaging over the homodyne angle fluctuations, the inverse of the impre-
cision in Eq. (7.2.1),

— T — . T _ 1 —
<(n19mp,hom) 1> = (ninﬁ,hom) ! <Sln2 9) = (nin{qihom) 15 (1 —¢ 2arld] cos 29) ’
takes a non-zero value even at § = 0, due to angle fluctuations. When the mean angle

is set to amplitude quadrature (6 = 0), and fluctuations are small (Var [0] < 1),

<(ni6mp.hom)_]>
”/2—_1 ~ Var [6] .

(n imp,hom

'We have omitted a term proportional to the correlation between the two conjugate quadratures; such
a term is strictly zero when the angle fluctuations are uncorrelated with the quadrature fluctuations,
which is indeed the typical case.

2This is only an upper-bound because in practice, thermo-mechanical motion could be transduced
into the amplitude quadrature by dissipative optomechanical coupling [24].
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From Fig.7.3a, this ratio is ~40dB, implying a conservative upper-bound,
VVar[0] < 0.01rad, for the homodyne angle fluctuations. This in turn implies
that the excess imprecision due to vacuum noise in the phase quadrature transduced
by homodyne angle noise is at the level of 1% of amplitude quadrature vacuum noise.

7.2.2 Observation of Sideband Asymmetry Using Feedback

When the meter field is incident on a heterodyne detector, both its quadratures are
measured simultaneously (see Sect. 3.2.3.4 for details), giving access to S;T;’,‘[Q > 0],

where S?;‘[QIF =+ Q] is the position-equivalent heterodyne photocurrent spectrum
corresponding to the upper (+) and lower (—) motional sidebands (displaced by the
heterodyne intermediate frequency, Qpr). Quantum correlations between the phase
and amplitude of the meter field are converted to imprecision-back-action correlations
at the detector, that manifest as an asymmetry in the motional sidebands.

Motional sideband asymmetry can be understood from the three terms in the
expression for the position-equivalent heterodyne spectrum (Eq.7.0.1),

SIQ] = SIPQ] + (S, [Q] 4 SPARQD) + 2Re S, (€]

BAXimp, het
illustrated in Fig. 7.4a. Detector imprecision (gray)—arising from the vacuum fluc-
tuations in the phase and amplitude quadrature of the meter—contributes a phonon-
equivalent noise of,

hetlmp
Q£ Q
R, o= 18 = 2n], (12.5)
b 53 Qm]

Physical motion—arising from a combination of thermal force and meter back-
action—contributes n,, + % phonons to each sideband. Imprecision-back-action
correlations—arising from amplitude-phase correlations in the meter—contribute
i% phonons to the lower/upper sideband (green dashed). The resulting asymmetry
of the sidebands (red traces),

I L R (W I

St ] - SyUTPI,] it

(7.2.6)

is commensurate with one phonon and arises purely from quantum correlations in
the meter (here leltet = Qi £ Q). This asymmetry corresponds directly to the
visibility of imprecision-back-action correlations with respect to the total resonant
noise power, i.e.,

2Re SXBAximp he![Qhel] ~ 1-R = !

gim = , (7.2.7)
P[Qhe[] + Stot[Q;et] 1+R 2nm + 1
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Fig. 7.4 Using homodyne feedback to increase the visibility of quantum-correlation-induced
motional sideband asymmetry. Panels show the various components that constitute the in-loop
homodyne (left) and out-of-loop heterodyne (right) spectrum, as the feedback gain is increased. a
With no feedback, the homodyne signal (red left) is proportional to the total thermal occupation,
while the heterodyne signal (red right) is asymmetric due to :t% phonon equivalent contributions
(green dashed) from quantum correlations. b At optimal feedback, the homodyne signal coincides
with the measurement imprecision (grey) due to classical correlations (orange dashed) from feed-
back back-action exactly cancelling the physical motion (blue dashed). In this case, visibility of
heterodyne sideband asymmetry is maximum. ¢ Further increase in the feedback gain leads to
squashing of the homodyne signal, and a decrease in the visibility of sideband asymmetry in the
heterodyne detector due to feedback back-action that is large compared to the thermal occupation.
(Figure adapted with permission from Ref. [6]. Copyrighted by the American Physical Society)

where, S'i‘}‘ = S’M + S‘fﬁ, is the total motion. Clearly, the visibility of correlations,
and therefore, the fractional magnitude of sideband asymmetry, is obscured by the
thermal and back-action occupation of the oscillator.

Active feedback cooling can suppress both the thermal and the back-action occu-
pation of the oscillator, thus increasing the visibility of quantum correlations. We
use the measurement record of an auxiliary homodyne measurement, as shown in
Fig.7.2, as an error signal for feedback. Briefly, the homodyne signal is imprinted

onto the amplitude quadrature of an independent feedback laser resonant with an
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auxiliary cavity mode (A = 840 nm). The loop delay is tuned in order to produce a
purely viscous radiation pressure feedback force, effectively coupling the oscillator
atarate I'g, &~ g 'y to acold bath with an occupation equal to the phonon-equivalent
homodyne imprecision nf‘rgg‘ = S}?P’hom[ﬁm] / 28522 ]; here g 1s the dimension-
less feedback gain. The occupation of the oscillator is thereby reduced to,

1 Mot hom /
~ h
N, + I~ + gfbni p >12 ntotnmong], (728)
with the minimum achieved at an Optlmal gain of g;)g)t = ntol/l’lﬁgp . Here, Niot =

nm th + 7m Ba 1S the effective bath occupation of the mechanical oscillator, including
measurement back-action. Two regimes may be identified:

1. An efficient feedback regime, characterised by gp, < g?[f ', in which the motion
of the oscillator is efficiently suppressed.

2. Aninefficient feedback regime, in which the total motion is overwhelmed by feed-

back back-action ng, = gﬁ)n?rﬁr; , arising from feedback of homodyne imprecision

noise, resulting in an increase of ny, for feedback gains larger than the optimal

value, i.€e. gm > gfb,opt-

An experimental demonstration of efficient feedback cooling, where feedback
back-action is weak (ng, < 1), is shown in Fig.7.5. Here ny ~ 7- 10%, correspond-
ing to an effective bath temperature of 13 K (arising partly due to photo-absorption,
npa ~ 4 - 10%). From the perspective of the heterodyne measurement, the objective
is to “distill” a motional sideband asymmetry of one phonon out of 7. This is made
possible by a low shot-noise-limited homodyne imprecision of nﬂ?ﬁ; ~ 121074,
To trace out the cooling curve in Fig.7.5, the feedback gain is tuned electronically
while keeping all other experimental parameters (such as mean optical power and
laser-cavity detuning) fixed. Sideband ratio R is extracted from fitting a Lorentzian
to each heterodyne sideband and taking the ratio of the fitted areas. The phonon
occupation ny, is inferred from R as well as the area beneath the lower sideband.
In-loop (homodyne) and out-of-loop (heterodyne) noise spectra are shown in Fig. 7.5.
As a characteristic of the efficient feedback regime, the area under the left sideband
decreases linearly with gg,, corresponding to n,, gt{)l (red circles in Fig.7.5). As
the optimal gain is approached, the in-loop spectrum is reduced to the imprecision
noise floor (black trace in Fig.7.5). This transition coincides with the appearance of
a sideband asymmetry of 1 — R ~ 12%, corresponding to n, ~ 7.3.

To confirm the faithfulness of these measurements, two major sources of error
were investigated:

1. Drift over the course of measurement can introduce small changes in the relative
magnitude of S’{}it[Qﬁ:et]. In our experiment, this effect is mitigated by recording
both heterodyne sidebands simultaneously. Augmented by operating in the bad
cavity regime (Q,,/k ~ 1073), and the exceptionally low imprecision of the
heterodyne measurement, n:"rffp = (AnpeCone)™ ' ~ 31073 (see Fig.7.6a),
statistical fluctuations of R over the course of a typical measurement set can
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Fig. 7.5 Motional sideband asymmetry in the regime of efficient feedback. a Heterodyne side-
band asymmetry (R, blue) and inferred mechanical mode occupation (7, red) versus closed-loop
mechanical damping rate (I'y, ) for various feedback gains. A maximum asymmetry of | — R ~ 12%
(nm =~ 7.3) appears as the feedback gain approaches its optlmal value. Dashed lines correspond to
models R = n:ﬁ (Eq.7.2.6, blue line) and ny, + 2 N e+ F“’ nhom (Eq. (7.2. 8) red line).

1mp
Solid blue band is a confidence interval based on uncertainties in estlmates of n, n and ['p,.
Open red circles are independent estimates of n, based on the area beneath the left ﬁeterodyne
sideband. b, ¢ Homodyne (b) and heterodyne (¢) spectra used to obtain (a). Black traces correspond
to lowest occupation; asymmetry is highlighted in the inset. Only a subset of heterodyne spectra
are shown, for low ny,, with colours matching the corresponding homodyne spectra. An important

feature of these spectra are their low imprecision, n?rfl‘;‘ = (167]110mC0nc)*l =12-10"* and
hct

1mp
n ~ 0.2, single photon cooperativity Cop = 4g0 /kT'm = 0.3, and power handling capacity of the
microcavity-based sensor (allowing for intracavity photon numbers of n. ~ 10%). (Figure adapted
with permission from Ref. [6]. Copyrighted by the American Physical Society)

= (4nhetCone) ™' = 2.9- 1073, This is made possible by the high photon collection efficiency
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Fig. 7.6 Experimental sensitivity and precision. a Deep sub-SQL measurement sensitivity in
both the in-loop (homodyne) detector and the out-of-loop (heterodyne) detector. The dashed lines
show expected behaviour for quantum-limited detection. b Plot shows sensitivity tradeoff between
the in-loop and out-of-loop detector; the relative sensitivity is changed by using a waveplate and
a polarizing beam-splitter to distribute the signal between the two detectors. The solid line shows
expected model for unit detection efficiency; dashed line corresponds to realistic efficiencies of
Nhom ~ 20% and nper &~ 15%. ¢ Statistical fluctuations of R for low feedback gain, indicating
the ability to discriminate a 0.5% asymmetry, corresponding to ny, ~ 100. (Figure adapted with
permission from Ref. [6]. Copyrighted by the American Physical Society)

be as small as 0.5% (see Fig.7.5c). Error bars for R in Fig.7.5a are derived
from the standard deviation of similar data sets (shown in Fig.7.6c), in addition
to a small contribution from the fit covariance matrix. At the largest damping
rates, the reduced heterodyne signal-to-noise results in insufficient convergence
of the periodogram estimate of the spectra (keeping acquisition time and analysis
bandwidth fixed), leading to larger error bars, SR = +2%.

2. Excess laser noise affects R by producing additional imprecision-back-action
correlations as discussed in Sect. 7.2.2.1. Assuming a mean thermal photon occu-
pation of C(,p) for the amplitude (phase) quadrature of the injected meter field,
the correlator in Eq. (7.0.1) becomes (see Eq.7.2.6),

2Re ST [] 1 4AQ,,
=~ o = Fhet Crp)>

- —+Cyy £ ——
S Q] 2 T

> (7.2.9)
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where 7y, is the heterodyne detection efficiency, and A is the mean laser-cavity
detuning. In our experiment, independent measurements reveal that C,, < 0.01
and Cp, < 30 (owing partly to excess cavity frequency noise) for typical meter
powers of P, < 5uW. Operating on resonance (A ~ 0) and in the bad-
cavity regime substantially reduces sensitivity to C,,. Using a typical value

of A =0.01 -k, we estimate that *222.C, ' < 0.005 negligibly to Eq. (7.2.9).

K

Having established that our measurements of motional sideband asymmetry are
not contaminated by classical artefacts, the results shown in Fig.7.5 may be inter-
preted as a ‘distillation” of quantum correlations using efficient feedback. We now
explore the complementary regime of inefficient feedback, where feedback back-
action is stronger than the thermal force and measurement back-action (ng, > ny).
We access this regime by changing the homodyne/heterodyne splitting ratio, thereby
increasing the homodyne imprecision to n{lnﬂg‘ ~ 1073. As shown in Fig.7.7, increas-
ing the gain beyond its optimum value (corresponding ton,, ~ 13.4and 1 —R =~ 7%),
results in a reduction of the homodyne signal below the shot-noise level (Fig.7.7b
left panel). Simultaneously, the areas of the heterodyne sidebands increase, while
their asymmetry (1 — R) decreases. The discrepancy between “squashing” [20, 25]
of the in-loop signal and the disappearance of sideband asymmetry relates to a basic
difference between feedback back-action and meter back-action, namely, feedback
back-action is correlated with the in-loop imprecision and not with the out-of-loop
imprecision [20].

Squashing of the in-loop signal is caused by correlations between the feedback
back-action driven motion xg, and the in-loop measurement imprecision,

2ReShom (@]

XfbXim hom
= = —n, . 7.2.10
252 (2] imp 810 7210
represented by the negative-valued green trace in Fig.7.4c (right panel). Interest-
ingly, these classical correlations, in conjunction with the generalised Heisenberg
uncertainty principle [1, 26] can be used to predict the transition from efficient to
inefficient feedback; viz.

_ _. h2 _
Spp - Simphom > 5 + (2Re SFrumpnon) s (7.2.11)

is saturated for gg)pt = /ntm/n'i}?f; (using Fp, o gfbxi"n‘;;" and Eq.(7.2.10)). The
limits of feedback cooling, and the prospects for feedback-based enhancement of
quantum correlations, is related to the detection of meter fluctuations and the choice
of feedback strategy—optimisation of either seems pertinent (see Chap. 8 for some
ideas).
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Fig. 7.7 Appearance and disappearance of sideband asymmetry. a Repeat of the experiment
shown in Fig. 7.5 with lower homodyne detection efficiency. Feedback with the same range of gain
results in lower asymmetry (R ~ 6%) and access to the ‘strong feedback’ regime in which feedback
back-action (n,) dominates physical motion, resulting in reduced R. Black points are an estimate
of the mechanical occupation due to feedback back-action, ny = F—En h = glbn}’n‘;’];‘, based on the
noise floor of the homodyne spectra. b In-loop homodyne spectra. In the strong feedback regime,
noise is ‘squashed’ (reduced below the open-loop imprecision), corresponding to in-loop squeezing.
¢ Out-of-loop heterodyne spectra. Inefficient feedback manifests as an increase in the off-resonant
noise power and reduced asymmetry. (Figure adapted with permission from Ref. [6]. Copyrighted
by the American Physical Society)

7.2.2.1 Classical and Quantum Contribution to Sideband Asymmetry

The cross-correlation spectrum, S;‘;‘, by being directly related to S;;‘ (seeEq.(7.1.4)),
can get contaminated by classical contribution to S;’;‘. These contributions may arise
from classical contributions to S;; (input amplitude noise), or from classical con-
tributions to )7, (input phase noise) that get transduced by the cavity into Sf]’;t.
In the following, a formal treatment of these two contributions is provided for the

experimentally relevant case of simultaneous measurement of the sidebands in the
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bad-cavity regime.? In Sect. 7.2.2.2, we present measurements confirming the negli-
gible contribution of laser noise to the results reported above. We also treat the optical
cavity and the mechanical oscillator on equal footing so as to identify the contribution
to sideband asymmetry from the vacuum fluctuations of either—we show that only
the vacuum fluctuations from the optical cavity, vis-a-vis back-action, gives rise to
sideband asymmetry.

In our experiment, we probe the optomechanical system using a resonant laser at
frequency w,. The photon flux amplitude operator of the laser, a;, (), is assumed to
have the form (as in Eq.(3.2.51)),

ain (1) = " (@i + 8ain (1)),

where a;, = «/Pi,/hwy is the mean photon flux and the fluctuations 8a;, () satisfy,
[8ain (1), 86 ()] = &, 8(t — 1.

Note that we explicitly “tag” the commutator so as to follow its contribution to the

measured quantities [8]; in reality ¢, = 1. The canonically conjugate quadratures
corresponding to the fluctuations are defined by,

8ain (1) + 8a;, (1)
\/E ’

8ain () — 84 (1)

Séln(t) = l\/i ’

Sﬁin(t) =

so that,
[8Gin (1), 8 Pin(t)] = ie, 8(t — 1'). (7.2.12)

Following the ansatz of optical fluctuations adopted in Sect.3.2.2, excess noise in
the laser is modelled as Gaussian fluctuations, for which (see Eq.3.2.13),

((5@“0)8%0’)) <6ém(r)8ﬁm(t’)>) 1 ( €a+2nqq it +2nqp) 5t — 1)
: :

<8ﬁin(t)8éin (t/)) (813in (t)(sﬁin (t/)) 2 _iga + 2nqp &q + 2”1717
(7.2.13)
The terms n;; (i = g, p) represent the noise in excess of the fundamental vacuum
fluctuations in the field quadratures, distributed uniformly (i.e. “white”) in frequency.
We henceforth omit the cross-correlation 7,4, and attempt to bound its effect via an
appropriate inequality* (see Eq.3.2.14). Thus,

3The effect of laser noise on sideband asymmetry measurements is well-studied for cavity opto-
mechanical systems in the resolved sideband regime [27, 28]. In this case sidebands have been
observed separately by scattering them into the cavity with a probe laser red/blue detuned.

4 In addition, it is known that for semiconductor lasers, phase-amplitude correlations are limited to
frequencies close to their relaxation oscillation frequency [29, 30]; the latter is typically at a few
GHz from the carrier [31, 32]—irrelevant for our experiment.
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((5ain(r)5&m(ﬂ)> <5aip(t)3&;;(ﬂ)>) 1 (nqq — Ny 284+ gy + n,,,,)
5 :

(Baly (18ain (1)) (8a,(1)8ay, (1) Rgq +Npp Mg = Npp
(7.2.14)
We now consider an optomechanical system where the optical cavity is driven
by a noisy input field described by Eq. (7.2.14). Fluctuations of the intracavity field
amplitude (§a) and the mechanical oscillator amplitude (§0) around their stable

steady states satisfy (Eq.4.2.7)
54 = +iASG — gaa +ig(8h+ 8bY) + V/x éin
N n Fm N . . N
8b=—iQ,,8b — 7(% +i(g*da+ gda’) + /T, 8by,. (7.2.15)

Here A = wy — w, is the laser detuning, g = goa is the dressed optomechanical

coupling rate, and a = % is the mean intracavity field amplitude. We have also
2

assumed here that the cavity decay rate is dominated by its external coupling, i.e.,
K = Ko + Kex = Kex. The mechanical Langevin noise correlators are

(8bin (3D}, (1) = (im,n + €5)3(t — 1)

(8B4, (D)8bin (1)) = nn.n 81 = 1),
where ny, is the ambient mean thermal phonon occupation of the oscillator. Note that
we also “tag” the contribution due to the zero-point fluctuation of the thermal bath

to determine its role in the observables; in reality ¢, = 1.
Equation (7.2.15) can be solved in the Fourier domain,

8191 = x,[21 [ V& 8l 2] +ig(hI2] + 852D ]
sa'[Q] = sa[-]' = x*[-9] [ﬁsa;;[g] —ig*(8h[Q] + 513%52])]

and

(55[9])_@(@‘%-9]-@[9] —i¥Y[Q] )(513m[sz])
sb'[Q1) ~ NIQ] +i%[Q] x, [ [Q1+i2[Q]) \sb] [2]

(7.2.16)

ik (g*x;”[—sz]xa[m gx,fl[—sz]x:[—sz]) (S&m[m) _

T e Q] g 11 -1 ) \sal 2l

Here x;, and y, are the bare mechanical and cavity response functions, respectively,
given by,

Q2] = [Tw/2 —i(Q— Q)] XxalQ = [k/2—i(Q2+ A)]

> [€2] is the mechanical “self-energy”,
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2[Q] = —ilglP (X[ Q] = x; - = T [-Q], (7.2.17)

which describes the modification to the mechanical response due to radiation pres-

sure, and
NIQI = %, ' [1Q1x 7 =21 + 220 2[Q] = N*[-Q].

The input-output relation [33], Saoy = dai, — +/k da, gives the fluctuations of the
output fields in terms of the fluctuations of the input fields:

Sow =A[Q18ain + BIQ18a], + C[Q18bi, + D[RS,
845, =A*[—Q18a), + B*[—Q18ai, + C*[—Q18b], + D*[—Q18b;,

out —

where,
2812k Qm xa Q1 A 2iQmlm
282k Quxal QXS [-Q1 B 2iQ2mTm

Pl == N IR VToY
e N

clg) = — 5 a1l 21~ —i/Cone (1 +2i;) T[]
ig/k'm _ . A .

DIQ) = P xel @l 191~ ~iv/Cone (1 + 21;) ]

Here approximate expressions are given for the case of interest, namely, resonant
probing (|A| < k), small sideband resolution (2;, < k), and weak coupling (|g| <
k). We have also introduced the single-photon cooperativity, Cy = 4g§ /(kTh), and
the mean intracavity photon number, n. = |a 12,

Balanced heterodyne detection of the cavity output is used to measure motional
sideband asymmetry. We assume, as in the experiment, that the local oscillator and
signal paths are balanced in length; together with a balance of power beyond the
combining beam-splitter, this ensures suppression of common-mode excess noise
[11]. Following standard arguments for heterodyne detection with a LO frequency
shifted by Qir (see Sect. 3.2.3.4), the photocurrent spectrum normalised to the local
oscillator shot noise is given by,

_ r2 € e 4AQ
SIUQ — QuF] & e + 4Cone [f Lxp[—Q11% (nm + ?b - (?“ n nqq) n Tm"””)

r2 ) & (€a 4AQm
+Tmlxb[9]| (I’lm-f—?—l-(? +nqq)+7npp) .
(7.2.18)

This represents the heterodyne spectrum measured in the experiment and depicted
later in Figs.7.5 and 7.7. Here the total bath occupation, arising from the ambient
thermal bath and the measurement back-action due to the meter beam, is given by,
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4AQ\?
Nm =N + Conc| &4 +2ngq + —a 2npp ).

Nm,BA

The sideband ratio extracted from such the heterodyne spectrum is,

g o I (IR~ Q1 = SIIR = OG22 — gy + Ben,
(s S = - . VXN
Joo (SI71€2 = Q] = S92 = Q) 021_;? M + 275+ ngq + 25700,

inserting the values of the optical and mechanical commutators (¢, = 1),

M + (“AK#”W - ”qq)

B nm+1+ (4AQm”pp + ”qq)

K2

(7.2.19)

Firstly, characteristic of linear detection, deviation of R from unity in the ideal
case (nygg = 0 = n,,) is due to vacuum fluctuations in the optical field, leading to
a :I:%sa contribution to the lower/upper sideband; physically, this is due to corre-
lations developed between the quantum-back-action driven mechanical motion and
the measurement imprecision of the detection process [8, 28]. When n,, and n,, are
finite, classical correlations are established that affect R. The response of the cavity
(for A /k =~ 0) ensures that excess classical correlations due to input amplitude noise
lead to an enhanced asymmetry, whereas those arising from input phase noise lead
to a common increase in the sideband noise power.

7.2.2.2 Measurement of Excess Laser Noise
Excess amplitude noise

In order to measure the noise in the amplitude quadrature, we employ direct pho-
todetection of the probe laser. The measurement is made at the output of the tapered
fiber, with the fiber retracted from the cavity. Analysis of the resulting photocurrent
reveals the single-sided spectrum of the incident optical intensity (referred here for
convenience to the incident optical power P = fiwyit, where 7 is the photon flux),

SpIQ] = (ha)” - 25,,[Q] = (hwe)® - 2(A) (1 + 2n4y).

A convenient characterisation of the intensity noise is via the relative intensity noise
(RIN) spectrum,
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Fig. 7.8 Measurement of laser amplitude noise. Integrated (in a 100 kHz band) relative intensity
noise, Srin, versus mean optical power. Using Eq. (7.2.20), the integral gives the relative variance in
power, Var/(ﬁ)z, which should scale as (I‘A’)_1 for shot noise. Deviation from shot-noise scaling is
evident for (}3) 2 1 mW, attributed to classical amplitude noise; using Eq. (7.2.21), this deviation
can be used to infer ny,, the average thermal phonon occupation in the amplitude quadrature.

(Figure adapted with permission from Ref. [6]. Copyrighted by the American Physical Society)

- Sp[Q
Srin[€2] = PA[ ], (7.2.20)
(P)?

for which, excess amplitude noise manifests as a deviation from the shot-noise scaling
1. :
O 7575 more precisely,

1 () ¢
ngg =5 (7 Srin[€2] — 1) , (7.2.21)
at given incident photon flux. Figure 7.8 shows an inference of n,4, using Eq. (7.2.21)
and a measurement of Sgyn[£2] versus mean optical power. For typical experimental
conditions ((f’) = 1-5uW), nyy < 0.01, so that its contribution to sideband
asymmetry is negligible.

Excess phase noise

Noise in the phase quadrature of the field leaking from the cavity is measured using
balanced homodyne detection. This signal reveals phase noise originating from the
input laser as well as apparent phase noise from the cavity. Referred to cavity fre-
quency noise, the homodyne photocurrent spectral density is given by,
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Fig. 7.9 Estimate of laser-cavity detuning noise. a Residual detuning offset at DC estimated
from transmission signal when the laser is locked to cavity. b Spectrum analysis of the lock error
signal, generated via frequency-modulation spectroscopy (see Sect.3.2.4), reveals low frequency
detuning jitter; when locked (red), apparent detuning noise is limited by electronic noise (gray)
in the feedback loop, predominantly from the photodetector. ¢ Excess frequency noise around the
mechanical frequency inferred from a balanced homodyne measurement of the cavity output on
resonance. The shot-noise-subtracted signal (red) is composed of the thermomechanical motion of
the mechanical mode (blue dashed) and a contribution from excess frequency noise in the laser and
cavity substrate (black dashed). (Figure adapted with permission from Ref. [6]. Copyrighted by
the American Physical Society)

va[Q] — Q2S~¢[Q] — Qz (Sv;n,shol[Q] + Sw;sn,ex[g] + Sv;av,ex [Q] + S;av,mech[g])
(7.2.22)
S,, contains contributions from laser phase noise (shot and excess), cavity substrate
noise, including thermorefractive [34] and thermomechanical noise [35]. The total
excess noise in the phase quadrature is modeled by n,,, which allows us to infer the
latter using,

'Zn%’)’ = S + S Q] (7.2.23)

Figure7.9c shows a homodyne measurement made with 3mW of local oscil-
lator power, whose shot-noise has been subtracted. The spectrum is calibrated by
referencing it against a known phase modulation tone injected at the input of the
homodyne interferometer. The total excess frequency noise (red) is dominated by
thermal motion of the in-plane and out-of-plane modes, both of which are gas damped
for this measurement. A joint fit to (a) a model of a velocity-damped oscillator (blue,
dashed) and, (b) a model combining thermorefractive [34, 36] and white frequency
noise (black, dashed), gives an estimate of S‘S)"(Q). Near the mechanical frequency,
S%(Qm) ~ 27 - (35Hz/+/Hz)?, implying (via Eq. (7.2.23)), n,,, ~ 30.

From this estimate of n,, we are able to bound two quantities. First, in conjunction
with n,, <« 0.01, the excess noise cross-correlation is bounded as n,, < 1 (using
the inequality in Eq. (3.2.14)). Secondly, referring to Eq. (7.2.18), we are able to
estimate the contribution of phase noise to the heterodyne sideband. This contribu-
tion, characterised as an equivalent phonon occupation (since it adds positive noise
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power to either sideband),
A4Q,

K K

ng =

Mps (7.2.24)

has a mean value determined by the mean offset in the detuning A. Figure 7.9a allows

an estimate, A ~ 0.01 - «, giving,

_ A4Q, AJx Qun/27 \ (1GHz\ (np,
flg = ——"p = 0.0052 4 (—) . (7.2.25)
P 0.01) "\a3muz) /27 ) (30

Low frequency detuning noise §A (Fig.7.9b) causes deviations from this mean,
which are significant if their effect is comparable to 14. We bound the probability
for such “large” statistical excursions using Chebyshev’s inequality [37],

~107%.  (7.2.26)

V. 48 % Var[A
Pr(|ny — iig| > ig) < arﬁ[z”“’] - ( m”ﬂ) Var[A]

s K ng K
We thus estimate that mean residual detuning is the leading contribution to phase
noise contamination; the contamination, characterised as a phonon-equivalent noise
power iy = 0.005 is however an insignificant contribution to the sideband ratio
Eq. (7.2.19).
Together with the bounds, n,, < 0.01 and n,, < 1, this implies that sources of
classical noise may be excluded in the interpretation of the experimental data.

7.3 Conclusion

The experiments reported in this chapter probe several distinct and unique features
of quantum measurements and feedback. Firstly, quantum correlations between the
phase and amplitude of the meter field is shown to manifest in one of two different
fashions—optical squeezing, or sideband asymmetry—depending on the nature of
the detection process. Both these manifestations are observed using a quantum-
noise-limited interferometer operating with an imprecision deeply below the standard
quantum limit. Secondly, building on the capability of quantum feedback reported
in Chap. 6, feedback is used to distil quantum correlations without destroying them.
Feedback control of a mechanical oscillator thus joins the exclusive collective of a
handful of platforms where manipulation of non-classical resources using feedback
has been demonstrated [38—41]. Finally, the fundamental limit of linear feedback
control is elucidated: feedback, though capable of suppressing in-loop measurement
back-action, is limited by quantum fluctuations amplified by the in-loop detector.
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Chapter 8
Epilogue

It’s a magical world Hobbes ol’ buddy... ...let’s go exploring!

Bill Watterson, Calvin and Hobbes

The work reported in this thesis broaches a qualitatively new regime of cavity opto-
mechanics, one where the measurement of the motion of a mechanical oscillator con-
forms to the predictions of the Heisenberg uncertainty principle. We have accessed
this regime by making a measurement of the mechanical oscillator’s position fluctu-
ations with an imprecision 40 dB below that at the standard quantum limit, so that
the concomitant back-action is in excess of the intrinsic motion [1]. We have demon-
strated that being in this regime offers the possibility of performing measurement-
based feedback control of the oscillator’s quantum state. This may be interpreted as
a heuristic principle of information economy—if the state of the oscillator, includ-
ing random back-action, can be measured with high fidelity, then that measurement
record is informationally complete with respect to the state of the oscillator [2].
Once this is true, the record may be used to perform feedback on the oscillator state.
We have demonstrated this capability by cooling the oscillator over four orders of
magnitude in temperature, resulting in a final average phonon occupation of 5.

A salient feature of being in the measurement back-action dominated regime is
that it allows the study of the subtle nature of quantum measurements. In this thesis,
we investigate correlations that arise due to the measurement and its relation to
measurement-base feedback [3]. In particular, correlations between the amplitude
and phase quadratures of the meter beam can be distilled using measurement-based
feedback to suppress classical contamination. We also demonstrate the fundamental
limitation of this technique, which arises from quantum noise in the detection of the
meter state.

© Springer International Publishing AG 2018 191
V. Sudhir, Quantum Limits on Measurement and Control of a Mechanical
Oscillator, Springer Theses, https://doi.org/10.1007/978-3-319-69431-3_8



192 8 Epilogue

8.1 Quantum Correlations for Metrology and Control

These studies open doors to newer and richer possibilities for the immediate future.
The primary resource that enables a host of such experiments is the quantum correla-
tion generated in the optical field after it has interacted strongly with the mechanical
oscillator.

A generic feature of linear measurements is that they produce quantum correla-
tions in the meter. For interferometric position measurements (described in Chap. 7),
quantum correlations are generated between the amplitude and phase of the opti-
cal field used for the measurement. Homodyne detection of this field produces the
(shot-noise normalised) photocurrent spectrum (Eq. 7.15),

4nCTy,

2
zp

) _ i
ShemIQ) =1+ (SXX[Q] sin? 0 + JRe x O[] sin 29) . (811

consisting of the motion of the mechanical oscillator—optimally measured at phase
quadrature (¢ = m/2)—and a contribution due to quantum correlations—absent in
the phase quadrature.

The presence of correlations at other quadratures motivates the question of
whether they can be employed for a better estimation of the intrinsic motion of
the oscillator. The discussion in Sect. 4.3 provides the answer in the specific case of
phase quadrature detection—the SQL that arises therein is due to a trade-off between
detector imprecision and measurement back-action. In the general setting to be treated
here, we will show that quantum correlations can be used to cancel back-action in
the measurement, allowing better estimation precision than that dictated by the SQL
for phase quadrature detection.

To analyse this idea, we start from the observed photocurrent spectrum in (Eq.
8.1.1),

4nCTy,
2

_ ) _ h
SotomQ) = 1 + ((Si?[m + SEMQI) sin” 0 + ZRe 1V [Q] sin 29) :

X
where the total motion has been split into the intrinsic motion S, which is to be
estimated, and the back-action motion (see Eq. 4.3.5),
=BA K2 I'n ) 2
Ser [82] = C_z |Xx [Q]‘ :
x
p

Denoting by 8%eg ¢ the unbiased estimator for the position based on the photocurrent
record 81y, its spectrum is given by,
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Se,hom[Q]

Sest,9 [Q] = 1 — 5'(0) Q]+ S’BA[Q] n L§,imp,(9 (2] + hcot 6 Re ©) .
- @nCTofidysing xS (@1 S y
(8.1.2)
where the phase-dependent detection imprecision is given by,
—imp. /2
SmO1Q] = Xop _ St el
N 4nCTy, sin® 6 sin? 6

In Eq. (8.1.2), the objective of the estimation—the intrinsic motion §©—is con-
taminated by three sources of noise: measurement back-action, imprecision, and
measurement-induced correlations between the two. Both back-action and impre-
cision, by being positive, increase the uncertainty in the estimate of the intrinsic
position; however, there are frequency intervals where the correlation term can be
negative, and thus can be used to reduce the uncertainty. At these frequency intervals,
the negative correlations can be thought of as leading to a coherent cancellation of
imprecision and back-action.
To make this precise, consider the uncertainty in the estimate:

oimp, /2
£ (C,0) := S5 [Q] — SOQ] = 8P4 + =X 4 hicotORe x©
XX XX XX Sln2 9 X

here, we make explicit that the uncertainty depends on the choice of measurement
strength (i.e. cooperativity C) and detection angle (6). For a fixed measurement
strength, this uncertainty is minimised for a frequency-dependent detection angle,

erm(92 - Qrzn)
(2 — Q)2 + (QTy)?

Oopt[$2] = 4nC

which coincides with the optimal angle for the measurement of ponderomotive
squeezing. At this optimal detection quadrature,

< 2 Qimy
(. Oop) = SEMQI [1 = 1 (Re /1) | + S o2(92] < e(C. 3,

i.e. at every measurement strength (limited by the detection efficiency, and the tech-
nical challenge of realising a stable frequency-dependent detection angle), the ability
to estimate the intrinsic motion is enhanced by the cancellation of back-action in the
measurement record.

Further optimisation of measurement strength achieves the ultimate bound on
the achievable estimation uncertainty. However, broadband enhancement across all
Fourier frequencies is not possible [4, 5]; at desired frequency intervals, the minimum
uncertainty, minc &, (C, 6opy), satisfies,

2 h

: x : _ o /1, 0n21"
mcmsx(C, 7)== mclnex(C, Oopt) = [l —n (Re x"/1x) ] 7

%"
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i.e. an uncertainty lower than what is predicted by the SQL for phase quadrature
detection.

The ideas described above can be directly transposed to the problem of force
estimation. In that context, proper choice of detection angle cancels the back-action
force in the measurement record—a technique termed variational measurement [4,
6, 7]. Defining an uncertainty for the estimation of the thermal force,

er(C,0) = [xO| 7 ec(C.0),

it can be shown that [8], an enhancement due to quantum correlations is achieved for
(frequency-independent) detection angles away from phase quadrature. Figure 8.1
show the enhancement achieved in a recent experiment where the system described
in this thesis was deployed at room-temperature [8]. (This experiment was also
the first to demonstrate quantum correlations developed due to a room-temperature
mechanical oscillator.)

Ultimately, these ideas illustrate a general perspective on quantum metrology. To
date, the multitude of experiments that report quantum metrology, do so by following
one of two strategies [9]:

(a) the state of the meter is prepared in some non-classical state [10]; for exam-
ple, squeezed states of light for interferometric position measurements [11, 12],
“NOON?” states for super-resolved optical phase measurements [13—15], entan-
gled states of atoms/ions for spectroscopy [16, 17],

(b) the system-meter coupling is engineered to achieve reduced back-action [18]; for
example, by performing a non-demolition measurement [19-21], or measuring
only a single quadrature of an oscillator [22].

— 6, [ —8=30°

— 6=-80° — 0=80°
6=-30° 06=90°

1.00

0.95

er(C,m/2)/er(C,0)

-10* 0 10*
(Q—Qn)/Th

Fig. 8.1 Quantum-enhanced force metrology. Plot shows the reduction in uncertainty in the esti-
mation of thermal force, quoted as the enhancement over conventional phase quadrature detection.
An enhancement of 7% would be realised with current device parameters at room-temperature,
practically limited by an overall detection efficiency of 25%



8.1 Quantum Correlations for Metrology and Control 195

A third strategy, that neither requires a priori non-classical states of the meter,
or a precisely tuned system-meter interaction, is what has been described above.
Such schemes rely on a cunning choice of meter-detector coupling so as to harness
non-classical correlations that are developed in-situ during the act of measurement.

In fact, these optimal measurements, in addition to shedding light on the inner
workings of quantum measurements, may be envisioned to provide quantum-
enhanced record of a state’s trajectory for better feedback control. For example,
in feedback cooling of a mechanical oscillator using a phase-quadrature measure-
ment of the oscillator position (described in Chap. 6), the final phonon occupation is
lower-bounded by the Heisenberg uncertainty product (see Eq. 6.2.28),

1 /2 —
n A VSR - Sy, (8.1.3)
By choosing to estimate the motion using a variational measurement, this limit can
be naturally evaded as described above. It can be shown that the lowest achievable
phonon occupation is bounded by [23],

1 /3 Simpf o 2
Mo~ 1585 S0 = Spg P20/ T=m B14)

here, the last bound is for the optimal measurement quadrature O Similar to the
quantum enhancement for position and force metrology, quantum correlations can
be used to cancel back-action in the measurement record to enhance the performance
of feedback cooling.

References

1. D.J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, T.J. Kippenberg, Nature 524, 325
(2015)
2. M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. Sliwa, B.
Abdo, L. Frunzio, S. Girvin et al., Science 339, 178 (2013)
3. V. Sudhir, D.J. Wilson, R. Schilling, H. Schiitz, A. Ghadimi, A. Nunnenkamp, T.J. Kippenberg,
Phys. Rev. X 7, 011001 (2017)
A. Buonanno, Y. Chen, Phys. Rev. D 64, 042006 (2001)
H. Miao, H. Yang, R.X. Adhikari, Y. Chen, Class. Quant. Grav. 31, 165010 (2014)
. S.P. Vyatchanin, E.A. Zubova, Phys. Lett. A 201, 269 (1995)
. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Phys. Rev. D 65, 022002
(2001)
8. V. Sudhir, R. Schilling, S. Fedorov, H. Schiitz, D.J. Wilson, T.J. Kippenberg, (2016)
9. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. Lett. 96, 010401 (2006)
10. G.M. D’ Ariano, P. Lo Presti, M.G.A. Paris, Phys. Rev. Lett. 87, 270404 (2001)
11. J. Aasi et al., Nature Phot. 7, 613 (2013)
12. 1.B.Clark, F. Lecocq, R.W. Simmonds, J. Aumentado, J.D. Teufel, Nature Phys. 12, 683 (2016)
13. M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Nature 429, 161 (2004)
14. T. Nagata, R. Okamoto, J.L. O’Brien, K. Sasaki, S. Takeuchi, Science 316, 726 (2007)
15. 1. Afek, O. Ambar, Y. Silberberg, Science 328, 879 (2010)

Noue


http://dx.doi.org/10.1007/978-3-319-69431-3_6
http://dx.doi.org/10.1007/978-3-319-69431-3_6

196 8 Epilogue

16. D.Leibfried, M.D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W.M. Itano, J.D. Jost, C. Langer,
D.J. Wineland, Science 304, 1476 (2004)

17. C.E. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature 443, 316 (2006)

18. V.B. Braginsky, Y.I. Vorontsov, K.S. Thorne, Science 209, 547 (1980)

19. W. Nagourney, J. Sandberg, H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986)

20. C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond,
S. Haroche, Nature 448, 889 (2007)

21. B.R.Johnson, M.D.Reed, A.A. Houck, D.I. Schuster, L.S. Bishop, E. Ginossar, J.M. Gambetta,
L. DiCarlo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Nature Phys. 6, 663 (2010)

22. J. Suh, A.J. Weinstein, C.U. Lei, E.E. Wollman, S.K. Steinke, P. Meystre, A.A. Clerk, K.C.
Schwab, Science 344, 1262 (2014)

23. H. Habibi, E. Zeuthen, M. Ghanaatshoar, K. Hammerer, J. Opt. 18, 084004 (2016)



Appendix A
Uncertainty Inequalities

AAAAA

their expectation values are determined by an underlying quantum state, determine
a set of fundamental bounds to be satisfied by their outcome statistics.

The experiment where an identical quantum state of the system, p, is indepen-
dently prepared and any of the observables is measured once per preparation, deter-
mines a distribution of outcomes for each of the observables. Denoting by x; € R
the continuous eigenvalues of the observable X; corresponding to the eigenstate |x;),
the probability distribution of the outcomes of X is given by [1-3],

Prx;] = Tr[|x:) (x| A]. (A.0.1)

Broadly, uncertainty relations are general statements that describe the constraints
satisfied by the set of these probability distributions.

In the case of a large number of experimental trials, each of these distributions
tend to a gaussian distribution, in which case, a convenient measure of measurement
uncertainty is the deviation from the mean outcome, represented by the operators,

5%, = X — <X> . (A.0.2)

The uncertainty in each observable may be characterized as the variance of the
distribution,

Var [X] = <5)2,»2> , (A.0.3)

while the mutual correlations between the observables described by the covariance,
A A 1 ~ ~

Cov [ %i, &) ] = <5 {ax,-,axj}>, (A.0.4)

where the possible non-commutativity of observables necessitates the symmetriza-

tion. Note that, Var [)A( i] = Cov [)A( i X i]. In a general setting, the observables may
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commute amongst themselves according to,
(%5 %] = i€ (A0.5)

where € jk are some operators encodmg the commutation structure. Note that C ik
are necessarily hermitian, and satisfy, Cj; = —Cy e

Theorem 1 (Uncertainty principle) In the setting described herein, the covariance
matrix satisfies the matrix inequality,

Cov [ R, &) + %(é,-k> > 0. (A.0.6)
Proof Note that a general operator, defined by,

M = ZC(J' 8)21',
J

for some arbitrary complex numbers «;, satisfies the identity, Tr [M M /3] > 0, for
any state o (see Lemma 2.1). Working out the trace explicitly,

Tr [MTM/S] = > atay Tr[6X 6%, 4]
ik

_Za o7 (Cov[f( X, ] ;<é,k>)
=OtHMOt,

where, o = [aj,...,ay]7, is the vector of the arbitrary complex numbers o;,
aff = (¢*)7 is its hermitian conjugate, and M is a complex matrix whose elements
are given by,

A A I /A
My = Cov|[ %, X, + 5<Cj,<>.

A

The identity Tr [ M ] > 0 implies that the quadratic form,

aMa >0, for any o;.

This implies that the matrix M must itself be positive, giving the desired result. O

Corollary 1 (Robertson-Schrodinger [4, 5]) For the case of two observables, X1, X,
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A A 1 A N 21 N ~ T\ |2
Varl £, Var{£2] = 5 ([s%1.0%]) + Z ([o%1.6%2])|". (A0.7)
Proof The N = 2 case of Eq.(A.0.6) gives,

Var[Xl] Cov[f(l,f(z]—}-%([f(l,f(zp

Cov [}21’}22] - %<[}21,f(2]> Var [)A(z] 2 0.

The sufficient condition for this to be true is that its lowest eigenvalue be positive,
ie.

(Var [ ] var [ £2]) = (Ve [ 0] = Var [ 2] - acov [ 1, 2]+ ([ 2] = 0

simplifying this gives the required result. O
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Appendix B
Miscellanea on Elastodynamics

B.1 Principle of Least Action

Following from Sect. 3.1, the action for the elastodynamic field is,
S ui] :/dt/ &r L, iy, 0ju;), (B.1.1)
D

for the set of independent displacement fields u;(r, ). Note that for the sake of
generality, we here retain a possible functional dependence of the Lagrangian on u;,
even though the actual Lagrangian of interest (Eq.(3.1.15)),

1
¥ = gulu, - 5 ,'J'M;jl«), (B]Z)

depends only on the derivatives of u;. Note the constitute relation for the stress in
terms of the strain (Eq. (3.1.16))

ljj = Otijkzulg), (B.1.3)
with the Hooke tensor given by (Eq. (3.1.17)),
®ijki = 1 88k + 2 (8ikdj1 + 8itd k). (B.1.4)

The principle of least action dictates that the field configuration u; (r, ¢) that is
realized is the one that renders the action minimum. Note that the action Eq. (B.1.1)
is an example of a functional, i.e., a map that associates to a set of functions (here
u;), a real number (here, the value of the definite integral in Eq. (B.1.1)). Thus, it
is reasonable to compare values of the action for different field configurations and
determine one for which the action attains a minimum. In order to determine such
a point, we are led to consider a space of test functions, so as to be able to explore
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the neighbourhood of each element of this functional space in a systematic fashion.
Variational calculus [1-3] provides the machinery to accomplish this task.'
‘We consider the variation of the functions u;,

Mi(r, t) - l/li(r, t) +Dui(rv t),

where the symbol D denotes a functional variation, signifying the fact that these
changes are simply a device to enable exploration of the functional neighbourhood
of u;. Since the fields u; are independent, they maybe varied independently, and so
the corresponding variations Du; are also independent. The resulting variation in the
action 1s,

0.7 9.7 9.7
D.¥ = [ drd® | == Du; + — Du; D@;u;) | .
/ " |:8u,- PR L T (0ju )]

The second and third terms of the integrand can be re-expressed as,

A 0% 0.7 A
— Dit; = — 0,(Du;) = 0, | — Du; ) — 9, | —— ) Du;
Bui 311,‘ au,- 3u,~

0.Z 0.7 0.7 0.7
D(Z)ju,):— aj(Du,):Z?j( Dl/t,)—aj( )DM,
3(8,14,) 3(3,1/{,) 8(8,u,) 8(3]M,)
(B.1.5)

and re-inserted back. Thus we arrive at,

3 1920 (P2 o (22 )|y,
b7 = /dt/d [aui 8’(au,~) a’(a<a-u~>)}m’
+/d3r [3— Du,i| /dt% dA; ——— Du;.
D dut 8(8u)

Here, the second and third integrals arise from integrating the total derivatives in

Eq.(B.1.5). In the third integral, this is performed through an application of the

divergence theorem, resulting in an integral over the boundary d D of the domain D.
For the principle of least action to be implemented in the form,

(B.1.6)

D.¥

— =0,
Dui

it is therefore required that each of the integrals in Eq. (B.1.6) vanish separately.
Since the variations Du; are arbitrary, this is tantamount to each of the integrands
vanishing independently. This results in three conditions:

1. the Euler-Lagrange equations,

!Incidentally, note that the principle of least action is really a principle of stationary action [1].
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0.% 0.Z 0.7
— =0 |=—=—)-90i{l=—=)=0 B.1.7)
814,' 8141' 8(3]141)
2. fulfilment of initial and/or final conditions,
0.7 =
|:—_ Dui:| =0 (B.1.8)
8ui =0

3. fulfilment of boundary conditions,

0.%
7{ dA; —= Du; = 0. (B.1.9)
aD 9(0ju;)

Note that the principle of least action not only furnishes the dynamical equation
Eq. (B.1.7) to be satisfied by the true field configuration, but also provides a consistent
set of natural boundary conditions Egs. (B.1.8) and (B.1.9).

B.1.1 Equations of Motion

To implement the Euler-Lagrange equation Eq. (B.1.7), we compute the various
terms in it, for the Lagrangian Eq. (B.1.2):

0.7
R— )
314,'
0L a (p. . o . ]
02 0 Aabed
- _ bl ) Paine)) = —tijea(Datte).
a(aju,) a(ajul) ( 2 ( bud)( duc)) aljcd( U )

Inserting these in Eq. (B.1.7) gives,

pu; — a,-_,-kza_,-aluk =0. (Blll)

Finally using the explicit form of the Hooke tensor (Eq.(B.1.3)) gives the Navier
equations,

Py = (1 + 12)0;0u; + 2 0,0 u;
or, pii = (1 + u2)V(V-u)+uVau (B.1.12)
= (11 +2u2)V(V -u) — 1oV x (V x ),

where the last two forms are expressed using vector operators appropriate for 3D
domains. The third form is obtained by using the generally valid vector identity,
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V x (Vxu)=V(V-u) — Vu. (B.1.13)

B.1.2 Boundary Conditions

The natural boundary condition Eq. (B.1.9), applied to the Lagrangian Eq.(B.1.2)
results in,
% dAJ tij Du; =0,
aD

where, #;; 1= a;jr0juy, is the stress tensor according to Hooke’s law. Using the fact
that the force F; (along the i direction) is given in terms of the stress #;; acting on the
area element dA ; (normal to the direction j), t;; dA; = dF;, the boundary condition

reads,
aD

Since the variation Du; are independent of the force on the boundary, this is equivalent
to two conditions, viz.

dF;lsp = t;jdAjlsp =0

lop = 1304 la0 (B.1.14)

Du;|3p = 0.
Physically, the first is appropriate for a free boundary, on which no force impinges,
whereas the second is appropriate for a fixed boundary, whose displacement is pre-
scribed.

B.2 Transverse and Longitudinal Elastic Waves

The Navier equations Eq. (B.1.12) expressed as a single vector equation,

i — (%2“2) V(Vu) — (%) V x (V x u), (B.2.1)

makes explicit the two kinds of excitations referred to in Sect. 3.1. In order to exhibit
this claim, we make use of the fact that any vector field, here u, in a simply connected
domain D, maybe expressed uniquely in terms of potentials, ¢ (r, t) and ®(r, 1):

u=Vep+V x . (B.2.2)

Identifying these two terms as u; and uy respectively, standard vector identities imply
V.-ur =0and V x uy = 0; ur (u) is the transverse (longitudinal) component of
u. Substituting this decomposition into Eq. (B.2.1), and realizing that the transverse
and longitudinal components are independent, results in two wave equations,
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(B.2.3)

The phase velocities of the two elastic waves can be immediately identified, viz.,

[y +2
o= (HALTH2 . (B2 (B.2.4)
P P

B.3 Hermiticity of the Elastic Operator

The elasticity operator L, defined in Eq. (3.1.20) viz.

L (B3.1)
0

acts on vector functions u defined on some finite domain D. Corresponding to some
such function v, we define a linear functional (v, -) that acts as,

- 1 * X 3
(v,u) := Vol(D) /Dvi @u;(r)d’r. (B.3.2)

‘We now restrict attention to functions u for which (u, u) < oo, and satisfies one
of the boundary conditions in Eq. (B.1.14) viz.

Type 1: dF;|3p = t;;dAlsp = ijr(9u;) (Qui)lap =0
(B.3.3)
Type 2: u;lsp =0,

where we have assumed (without loss of generality) that in the case of a fixed bound-
ary condition, the boundary displacement is zero.

Each set of such functions—bounded and satisfying boundary condition of Type
s (s = 1,2)—forms a Hilbert space’ .7 under the inner product (-, -). For every
u € J, there is a functional (u, -) € Dual(J%) in the dual of .77, [4].

Having identified the two distinct Hilbert spaces at play, the proof of the hermiticity
of L is straightforward. Using the definition of L (Eq.(B.3.1)),

A

(v, Lu) =

-1
Y * 3

! ikl 070, d’r.
Vol(D)/Dv’ (r) ajjgg 0 0pug (r) d’r

ZPhysically the two spaces A 2 describe the displacement fields for the physically incompatible
boundary conditions of each type; mathematically, this incompatibility manifests as the fact that a
function satisfying one type of boundary condition does not form a superposition with that satisfying
adifferent boundary condition, such that the superposed function satisfies any well-defined boundary
condition. Closure under superposition is necessary for a Hilbert space.
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Manipulating the integral, and freely using the symmetries of the Hooke tensor
(Eq.(3.1.10)) tjut = @ikt = Qijixk = i

* 3 * 3
/ v aijp 0 0uy dr =/ v; k0 0k dr
D D

= / 3 (vf o uy) dr — / (@;v]) aijur (Bpuy) dr
D D

=/ v ok Ouy dA; —/(3jvfk)ai,jkz(3kul)d3r;
D ——— D

tij

the second equality follows by partial integration, while the third follows from Gauss’
Theorem. Finally, either type of boundary condition ensures that the first term in the
last line is zero. Treating the remaining integral similarly,

/vf‘aijklaja;uk d*r = —/(ajv;‘)aijkl(akul)d3r
D D
= —/ (vt jug dAk-i-/(akajUf)aijkluz d’r
oD D

= _/ 1 i v} dAk+/(a,-jk18j81v,’:)ui &
oD N e’ D

i
* 3
=/(Olijk13j31vk)uid r,
D

i.e., the differential operator 0;0; can be freely commuted within the integral as long
as the functions satisfy one of the boundary conditions (Eq. (B.3.3)), and the Hooke
tensor is symmetric. In particular, this means that the inner product satisfies,

(v,Lu) = (Lv, u), (B3.4)

i.e. L is hermitian in either Hilbert space ./ 2-
B.4 Eigensolution of the Doubly-Clamped Stressed Elastic
Beam

The normalized mode functions v, (¢), of a 1D stressed elastic beam are given by
the Euler-Bernoulli equations with stress Eq. (5.1.9), viz.

4 2 Qn 2
0vn  07un _ (—) U, (BA4.1)

“oct a2 T\
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where, ¢ = KM/ TZ% is the (dimensionless) ratio of bending to tensile energy,
Qy = (T/pst Zf)l/ 2 is the frequency determined by the ratio of tensile energy to
inertia. The equation is well-posed for the case where the beam is clamped on both
ends, described by the boundary conditions,

v(0) =v(1) =0, 8,v(0) =dv(1)=0. (B.4.2)
The fourth order differential operator forming the right-hand side of Eq. (B.4.1)
has four eigenfunctions, viz. e ¢, =% ¢ where,

12
k= (i) (j:1+\/1+4e(S2,,/Qo)2)l/2, (B.4.3)

2¢

are the normalized wave vectors of the vibration at frequency €2,,. Note that this
relation indicates a nonlinear dispersion for waves excited on the stressed beam.
Indeed, the small—e approximation,

2
Qe @90 (B.4.4)
- N _ n 0 2
k, ~ % |:1 — €+ O(e ):|

seems to suggest that the k,” branch describes excitations with linear dispersion—
familiar from the case of the purely tensile string (¢ = 0), while the k; branch arises
from corrections due to the bending term—Ieading to deviations from a sinusoidal
mode that occupy a spatial scale approximated by £,/ k; ~ €. /€.

In the following, exact shapes of the mode functions, and their small—e
approximation—describing the afore-mentioned deviations—will be presented. The
general mode v, (¢) is that superposition of the four exponential eigenfunctions that
satisfies the double-clamped boundary conditions in Eq. (B.4.2), viz. (see also [5])

kfsink; ¢ —k, sinhk[¢ cosk; ¢ —coshkf¢

B.4.5
kT sink,” — k; sinhk,, cosk, —coshk,; ( )

V() &

Here, the proportionality indicates that an overall constant— fixed by the normal-
ization of the mode function—is omitted. In order for the boundary conditions to be
satisfied consistently, it is required that,

(k5)? — (k,)*  coshk} cosk, —1
2k ki sinhk) sink,

(B.4.6)

an algebraic equation that, expressed in terms of €2,, (via Eq. (B.4.3)), determines the
eigenfrequencies of the beam.
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Convenient approximations, relevant for the case ¢ <« 1, can be derived from
noting that in this regime, kI >> 1, and, k" > k. Applied to the characteristic
Eq. (B.4.6),

kf/k, ~2cothkS cotk, ~2cotk,,

where the second approximation follows from, coth ;" — 1, for k;” ~ Q, /S 2 1
(and improving for higher order modes). Thus the approximate characteristic equa-
tion,

k, cotk, ~ 2k,

holds. Since k; > 1, the solutions of this equation are well approximated by those
values of k, that make, cotk, , singular; i.e., kK, ~ nm, for n € Z. Finally using
Eq.(B.4.3), the approximate eigenfrequencies are given by,

Q, &~ nr Qo1+ (nm)2e. B.4.7)

For the mode functions, a similar approach may be followed, noting thatfore < 1,
sinh kF ~ cosh k" >> 1. Applying these crude estimates in Eq. (B.4.5), for the case
¢ < 1, gives the approximate mode function, f,,(¢) := v,(0 <¢ < %)|6<<1, viz.

kfsink, ¢ —k,; sinhk¢  coshkl¢ —cosk, ¢
—k,, sinh k;& cosh k;F

JaQ) >

k k
o sink, ¢ — k—" sinhkF¢ + li“ tanhk, (coshk,F¢ — cosk, ¢)

n n

+
. — k; + . + —
~ sink, ¢ + e (coshkn ¢ —sinhk, ¢ — cosk, {)

= sink, ¢ + % (e_k'“ - cosk;;) .
This approximate form indicates that the mode functions deviate slightly from the
sinusoidal modes of a tensile string, by a factor proportional to /€, and the form of
the deviation is an exponential correction at the boundary. Indeed the mode function,
v, (), over the full domain can be approximated by the piecewise smooth function
(used, for example in [6]),

2(0), 0<¢
<t

1
2 B.4.8
(=D =0, % 1 ( )

v, (8) %[

References

1. LM. Gelfand, S.V. Fomin, Calculus of Variations (Prentice-Hall, 1963)
2. C. Lanczos, The Variational Principles of Mechanics (Dover, 1970)



Appendix B: Miscellanea on Elastodynamics 209

3. W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Clarendon Press, 1954)

4. N. Akhiezer, 1. Glazman, Theory of Linear Operators in Hilbert Space (Dover,
1993)

5. A. Bokaian, J. Sound Vib. 142, 481 (1990)
6. P-L. Yu, T.P. Purdy, C.A. Regal, Phys. Rev. Lett. 108, 083603 (2012).



Appendix C
Response of an Imbalanced Interferometer

Following the discussion in Sect.3.2.2, assume that the amplitude flux a(z) of a
coherent source of mean amplitude a undergoes classical amplitude and phase fluc-
tuations, so that in the rotating frame (the ansatz in Eq. (3.2.6)),

ain(1) = (@ + Sac(1))e’**®, (C.1)

where S () and 8¢ () are real-valued stochastic processes. Note that since we are
interested in classical noise in the amplitude S« (¢) and in phase §¢ (¢), all vacuum
contributions will be ignored here.

Figure C.1 shows such a field passing through an interferometer. When the input
field is split at a beam splitter of transmissivity n; at the input of the interferometer,
each arm is fed with the fields a; i, (¢) and az in(¢), given by,

ain(®) = Vniain(®),  ain@) =iy 1 —niain(). (C2)

The first field propagates through a path containing a frequency-shifting element (for
example, AOM) implementing a radio frequency shift Qi <« Qqger K @¢ (Where
Qqet 1S the final detection span), while the other field propagates through a relative
delay (for example using a long path length) of duration t. The two fields emerging
at the end of these paths are,

1ou(t) = aLin@e a0 (1) = azin(t — 7). (C3)
Finally, the beams are combined at a beam-splitter of transmissivity 7, and one of
the outputs,

Ao (1) = \/%al,out(t) + iy 1—m a2 out (1)
= /M ain(He 7 — /(1 —n)(1 — 1) ain(t — ),
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Fig. C.1 Schematic of an imbalanced interferometer. An interferometer in Mach-Zehnder con-
figuration with a noisy input field that is possibly frequency-shifted in one of the arms, and phase
delayed in the other

is photodetected. The resulting photocurrent 7 (1) o |dou (£)|? is given by,

1(t) = mna law@)> + (1= 7)1 = n2) |an(@ — )]
+ 2 mma(1 — )1 — m) Rea) (t — )ap (£)e .

The last (interference) term describes fluctuations in the photocurrent,

81(l) = Reai’;(t _ -L-)ain(t)e—iQIFt
= 6_12 (1 =+ aa(ta T)) ( (S(Xaﬁ) COoS [8¢)(t) — S(b(t — -L-) _ QIFI] ,

that carry traces of the amplitude and phase fluctuations of the field at the input of
the interferometer. Introducing the cumulative relative amplitude fluctuations,

SA() == (ba(t) +da(t — 1)) /a, (C4)
and the differential phase fluctuations,
3O(t) ;= $p(t) — Sp(t — 1), (C.5)
the photocurrent fluctuations can be approximated as,
81(t) ~ (1 +8A(r)) cos [6D (1) — Qupt]. (C.6)

Henceforth, we assume that the amplitude (6« (7)) and phase (6¢ (7)) fluctuations are
stationary gaussian processes with zero mean; a property that is inherited by §A(z),
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and, §® (). However, due to the nonlinear transformation relating the phase to the
photocurrent, the latter is not gaussian.

Despite this fact, useful information about the amplitude and phase fluctuations
can be garnered from the lowest order correlation function of the fluctuating pho-
tocurrent. Indeed, assuming that the amplitude and phase fluctuations are uncor-
related (see in Chap.7 footnote 4, on page 183), the two-time correlation of the
photocurrent fluctuations take the form,

(81(1)81(0)) = 52<(1 + 8A(t)) (1 + 5A(0)) cos[8® (1) — Qupt C0$[5<I>(0)]>
= a1+ (BAMSA) ) ([cos[5P (1)] cos[3® (0)1) cos et

+(sin[8D(r)] cos[8 P (0)]) sin QIFz).
(C.7
Using standard techniques,® the expectation values of the product of the
cosine/sine phase terms can be shown to be equal, and given by,

(cos[6D(t)] cos[8P(0)]) = (sin[6D(¢)] cos[6P(0)])

C.8
=1 4 Lexp[ — (30 (1)8D(0)) — (50(0)*]). “

Finally using the Fourier representation of §®, and then using its definition given in
Eq.(C.5),

Bomse0) = [ T5Te @ ormisels)
@)y

dQdQ _. . N
= (27_[)2 e*le <5¢[Q](1 _ elQT) 84)[9/](1 _ etQ r)>

dQd . i 194 /
B / Weﬂﬂf (1= (1 — " ¥7) - 27 Sy [ Q18] — Q]

aQ _, Q
_ _4/ Ee_lﬂ(t_r) Sin2 (7‘[) S¢¢[Q];
(C.9)

thus, the two-time correlators in the exponent of Eq. (C.8) can be expressed in terms of
the spectrum of phase fluctuations. Similarly, the two-time correlator, (§A(2)SA(0))
in Eq.(C.7), can be expressed in terms of the spectrum of amplitude fluctuations,
viz.

3 Re-writing the trigonometric functions as exponentials, multiplying them out, and then using the
identity <exp[i §X (t)]> = exp [—% (X ()6X (O))], on each exponential term; here § X denotes the
relevant random process.
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(BA(1)8A(0)) = dgd)f e ' (SA[QISA[Q'])
dQdQ’ g

= iQr iQt
= | G e <5A[91(1+e JSAIQI(1 +¢90)) (C.10)

4/d9 -9 2 (27T Saal €]
o 27 2 a

Inserting Eq.(C.9) in Eq.(C.8) and subsequently in Eq.(C.7), and inserting
Eq. (C.10) in Eq.(C.7), taking the limit where S44 < 1, and dropping irrelevant
constant factors, the photocurrent correlation takes the approximate form,

aQ Qr\ Sl
(81(1)81(0)) o sin (Qm+ %) [1 +4/Ee—lﬂ<f—” cos (71) (18]

a2

dQ2 Q
~|—4/ 2” e 1= g (TT) S¢¢[Q]:|.

(C.11)

The (symmetrised) spectrum of photocurrent fluctuations recorded by a spectrum

analyser is the cosine transform of this quantity. Shifted by the heterodyne beat
frequency, the photocurrent spectrum is,

- 2 5 (QT SeelR] ., (9T -
Spl2 — Qp] o< 8[Q2 — Qp] + — (cos” | — ) —=— +sin” | — ) Spol2] ),
7T 2 a? 2

(C.12)
a result consistent with earlier treatments of phase fluctuations alone [1, 2].

Thus, an imbalanced interferometer transduces input phase and relative amplitude
fluctuations, onto the output photocurrent, depending on the time delay T between
the two arms. Typically, by operating a laser far above threshold with a large photon
flux a, the input relative intensity noise can be made arbitrarily small, so that an
imbalanced Mach-Zehnder interferometer can be used to measure input phase noise.
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