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Preface

The last 20 years were characterized by tremendous development of the fields
of quantum probability and information. The quantum information revolution has
also renewed the interest in the foundations of quantum theory (philosophical and
mathematical), to the extent that fundamental concepts are now reconsidered in
terms of a new information-theoretical perspective [1–9]. This recent revolutionary
transformation of quantum physics toward information physics also stimulated the
development of novel mathematical models and methods.

This book is composed of contributions by leading experts in quantum founda-
tions, especially from informational, probabilistic, and mathematical perspectives,
and it presents their expert viewpoints on a number of foundational problems as
well as novel mathematical models of quantum and subquantum phenomena. The
mathematical content of the book is very rich and multidisciplinary: theory of partial
differential equations of quantum field theory (derivation, modification, properties
of solutions), differential geometry (including Riemann and Weyl geometries),
oscillatory processes and vibrations, probability theory and its interpretations
(especially the subjective one), classical versus quantum Bayesian inference, update
of probabilities, Turing machines and random generators, action–reaction models,
Feynman integrals for quickly growing potential functions, theory of open quantum
systems, quantum master equation, quantum Markovian processes, mathematical
modeling of decoherence in quantum and classical frameworks, Bell’s inequality
and its probabilistic structure, mathematical models of theories of hidden variables,
theory of cellular automata, quantum versus classical entropy, measures of quantum
information, theory of complexity and optimization, quantum theory of classifi-
cation, clustering based on the Hilbert space framework, and representation of
information by density operators. Some of these chapters are quite speculative, but
the complexity (physical, mathematical, and philosophical) of the problems under
study justifies such speculative considerations. Some of them depart far from the
mainstream of quantum physical studies. This is up to the reader whether to accept
or to reject such novel but sometimes controversial arguments and mathematical
models of the authors. Other chapters are devoted to the fundamental problems of
the conventional quantum theory including its mathematical formalism. We trust
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vi Preface

that these contributions would be useful for experts in the corresponding areas of
quantum theory. In this preface a few such contributions will be discussed in more
detail.

One cluster of related chapters in this book concerns quantum and classical
field theory and oscillatory processes. These are the contributions of A. Akhmeteli,
“The Dirac Equation as One Fourth-Order Equation for One Function: A General,
Manifestly Covariant Form”; B.R. La Cour, C.I. Ostrove, M.J. Starkey, and G.E. Ott,
“Quantum Decoherence Emulated in a Classical Device”; S.A. Rashkovskiy,
“Classical-Field Theory of the Photoelectric Effect”; and H. Yau, “Temporal
Vibrations in a Quantized Field.”

Some of these studies go beyond the conventional quantum theory. For example,
Rashkovskiy claims that he can show that all properties of the photoelectric effect
can be completely described within the framework of classical field theory without
any quantization; in particular, three well-known laws of the photoelectric effect are
derived without quantization of light and atom.

The chapter of C. Lopez, “The Action Reaction Principle in Quantum Mechan-
ics,” reminds the reader that the action–reaction principle is not automatically
fulfilled in the standard formulation of quantum mechanics. An extended phase
space can be considered where the formulation is consistent. In an extended spin
phase space, there is a new quantum state, isotropic. Using this new state the com-
posite singlet becomes separable instead of entangled. The perfect anticorrelation
between both particles of the singlet appears in the subquantum states.

The chapter of C. Baladrón and A. Khrennikov, “At the Crossroads of Three
Seemingly Divergent Approaches to Quantum Mechanics,” considers quantum
mechanics from the Darwinian evolutionary perspective. Several concepts stem-
ming from three apparently divergent approaches to quantum mechanics, i.e.,
Bohmian mechanics, QBism, and time-symmetric quantum mechanics, are inter-
woven in an information-theoretic Darwinian scheme applied to fundamental
physical systems that might shed light on some long-standing quantum mechanical
conundrums. Here quantum systems are treated as endowed with individual Turing
machines and random generators. Such systems have predictive power explaining
nonlocal correlations and violation of Bell’s inequality. The problem of nonlocality,
probabilistic structure of quantum correlation functions, and violation of Bell’s
inequality is also studied in the chapters of H. Geurdes, “A Computational Proof
of Locality in Entanglement,” and G.N. Mardari, “Local Realism Without Hidden
Variables.” Closely related problems are discussed in the chapter of D.J. Ben Daniel,
“Implications of Einstein-Weyl Causality on Quantum Mechanics.”

The chapter of A. Baumeler, J. Degorre, and S. Wolf, “Bell Correlations and the
Common Future,” starts with the reminder that Reichenbach’s principle states that
in a causal structure, correlations of classical information can stem from a common
cause in the common past or a direct influence from one of the events in correlation
to the other. The difficulty of explaining Bell correlations through a mechanism in
that spirit can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version, accepting
as a common cause an entangled state, leaving the phenomenon as mysterious as
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ever on the classical level (on which, after all, it occurs). If, more radically, the
causal structure is questioned in principle, closed space–time curves may become
possible that, as is argued in the present note, can give rise to nonlocal correlations if
to-be-correlated pieces of classical information meet in the common future—which
they need to if the correlation is to be detected in the first place. The result is a view
resembling Brassard and Raymond-Robichaud’s parallel-lives variant of Hermann’s
and Everett’s relative state formalism, avoiding “multiple realities.”

The chapter of E.N. Dzhafarov, “Replacing Nothing with Something Special:
Contextuality-by-Default and Dummy Measurements,” presents quantum contex-
tuality (playing the fundamental role in modern quantum information theory) in
the rigorous probabilistic framework. This approach is also closely related to
aforementioned problems: violation of the Bell-type inequalities and theories of
hidden variables. The object of contextuality analysis is a set of random variables,
each of which is uniquely labeled by a content and a context. In the measurement
terminology, the content is that which the random variable measures, whereas the
context describes the conditions under which this content is measured (in particular,
the set of other contents being measured together with this one). Such a set of
random variables is deemed noncontextual or contextual depending on whether
the distributions of the context-sharing random variables are or are not compatible
with certain distributions imposed on the content-sharing random variables. In
the traditional approaches, contextuality is either restricted to only consistently
connected systems (those in which any two content-sharing random variables have
the same distribution) or else all inconsistently connected systems (those not having
this property) are considered contextual. In the Contextuality by Default theory, an
inconsistently connected system may or may not be contextual.

An important biological application of quantum theory is presented in the chapter
of Y. Mitome, S. Iriyama, K. Sato, and I.V. Volivich, “Efficient Energy Transfer
in Network Model of Photosynthesis.” G. Jaeger critically analyzes computer-
like models of nature in his contribution “Clockwork Rebooted: Is the Universe
a Computer?” A. Khrennikov in his chapter “External Observer Reflections on
QBism, Its Possible Modifications, and Novel Applications” critically discusses
development of QBism from its early days and the first sound presentations at
the Växjö conferences early this century to the flourishing modern theory. This
is the collection of very personal recollections of the author about his long-
term debates with the creator of the subjective probability approach to quantum
mechanics, Christopher Fuchs. The chapter of S. Kak, “Epistemic View of Quantum
Communication,” is devoted to the foundational problems of quantum information
theory and especially quantum communications.

The team of researchers (theoreticians and experimenters), J. Marton,
S. Bartalucci, A. Bassi, M. Bazzi, S. Bertolucci, C. Berucci, M. Bragadireanu,
M. Cargnelli, A. Clozza, C. Curceanu, L. De Paolis, S. Di Matteo, S. Donadi,
J.-P. Egger, C. Guaraldo, M. Iliescu, M. Laubenstein, E. Milotti, A. Pichler,
D. Pietreanu, K. Piscicchia, A. Scordo, H. Shi, D. Sirghi, F. Sirghi, L. Sperandio,
O. Vazquez-Doce, E. Widmann, and J. Zmeskal, present the recent experimental
study, “Underground Test of Quantum Mechanics: The VIP2 Experiment,” where
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they investigate possible violations of standard quantum mechanics predictions.
They tested with high precision the Pauli Exclusion Principle (PEP) and the
collapse of the wave function (collapse models). Included here is the novel method
of searching for possible small violations of PEP for electrons, through the search
for anomalous X-ray transitions in copper atoms, produced by fresh electrons
(brought inside the copper bar by circulating current) which can have the probability
to undergo Pauli-forbidden transition to the level already occupied by two electrons.
Also therein is described the VIP2 (VIolation of PEP) experiment taking data at
the Gran Sasso underground laboratories. From the mathematical side, this study is
based on advanced statistical analysis for occurrence of events having very small
probabilities.

H. Mohameden and H. Ouerdiane have written the chapter, “Feynman Integrals
for a New Class of Time-Dependent Exponentially Growing Potentials,” devoted
to the rigorous mathematical study about justification of the method of the path
integral. This is a complex mathematical problem which has been studied by
many authors, mathematicians, and physicists. And this chapter is the important
contribution to this area of research on the boundary between pure mathematics and
quantum physics.

The chapter of E. Santucci and G. Sergioli, “Classification Problem in a Quantum
Framework,” is devoted to application of the methods of quantum theory to
classification problems. One of the important outputs of this study is the design
of the novel method of presentation of information by density matrices. The main
aim of this study is to provide a quantum counterpart of the well-known minimum-
distance classifier named nearest mean classifier (NMC). In particular, this chapter
contains the review about previous works in this area.

The chapter of N. Watanabe, “On Complexity for Open System Dynamics,”
represents in detail measures of quantum entropy and information, especially the
achievements of the school of M. Ohya at Tokyo University of Science.

We hope that the reader will enjoy this book, which will be useful to experts
working in quantum physics and quantum probability and information theory,
ranging from theoreticians, experimenters, and mathematicians to philosophers.
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The Dirac Equation as One Fourth-Order
Equation for One Function: A General,
Manifestly Covariant Form

Andrey Akhmeteli

PACS Numbers 03.65.Pm; 03.65.Ta; 12.20.-m; 03.50.De

1 Introduction

The Dirac equation “remains a cornerstone of physics to this day” [12]. It is crucial
for such diverse areas as high-energy physics and quantum chemistry (e.g., it is
required to explain the properties of the ubiquitous lead-acid batteries [1]).

Dirac sought an equation of the first order in time [8]. To this end, he had to
introduce a four-component spinor function. Feynman and Gell-Mann [9] argued
that the wave function does not have to have four complex components and showed
that the Dirac equation is equivalent to a second-order equation for a two-component
function. It was shown recently ([2]; see also [5], pp. 24–25) that, surprisingly, in
a general case, three out of four complex components of the Dirac spinor can be
algebraically eliminated from the Dirac equation in an arbitrary electromagnetic
field. Therefore, the Dirac equation is generally equivalent to a fourth-order partial
differential equation for just one component, which can be made real (at least
locally) by a gauge transform. However, this result was derived for a specific (chiral)
representation of γ -matrices and for a specific component. In this article, the fourth-
order equation for one function, which is equivalent to the Dirac equation, is derived
for an arbitrary set of γ -matrices satisfying the standard hermiticity conditions
and for an arbitrary component that is also a component of the right-handed or
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2 A. Akhmeteli

the left-handed part of the Dirac spinor function. The resulting equation is also
manifestly relativistically covariant, unlike that of Ref. [2]. This nontrivial result
adds to the immense beauty of the Dirac equation and belongs in textbooks. It is
important both for foundations of quantum theory (see [3, 4]) and for numerous
applications of the Dirac equation.

2 Algebraic Elimination of Components from the Dirac
Equation in a General Form

Let us start with the Dirac equation in the following form:

(i /∂ − /A)ψ = ψ, (1)

where, e.g., /A = Aμγμ (the Feynman slash notation). For the sake of simplicity, a
system of units h̄ = c = m = 1 is used, and the electric charge e is included in Aμ
(eAμ→ Aμ). The metric tensor used to raise and lower indices is [10]

gμν = gμν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , gνμ = δνμ.

Multiplying both sides of Eq. (1) by (i /∂ − /A) from the left and using notation

σμν = i

2
[γ μ, γ ν], (2)

Fμν = Aν,μ − Aμ,ν =

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −H 3 H 2

E2 H 3 0 −H 1

E3 −H 2 H 1 0

⎞
⎟⎟⎠ , (3)

we obtain:

ψ = (iγ ν∂ν − Aνγ ν)(iγ μ∂μ − Aμγμ)ψ =
(−γ νγ μ∂ν∂μ − iAνγ νγ μ∂μ − iγ νAμγ μ∂ν − iγ νγ μAμ,ν + AνAμγ νγ μ)ψ =

(−1

2
(γ νγ μ + γ μγ ν)∂ν∂μ − iAνγ νγ μ∂μ − iγ μAνγ ν∂μ − iγ νγ μAμ,ν +

1

2
(AνAμγ

νγ μ + AμAνγ μγ ν))ψ =
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(−gμν∂ν∂μ − 2iAνg
μν∂μ − i

2
(γ νγ μAμ,ν + γ μγ νAν,μ)+ AνAμgμν)ψ =

(−∂μ∂μ − 2iAμ∂μ − i
2
(γ νγ μAμ,ν + (2gμν − γ νγ μ)Aν,μ)+ AμAμ)ψ =

(−∂μ∂μ − 2iAμ∂μ − i
2
(γ νγ μ(Aμ,ν − Aν,μ)+ 2Aμ,μ)+ AμAμ)ψ =

(−∂μ∂μ − 2iAμ∂μ − i
4
(γ νγ μ − γ μγ ν)Fνμ − iAμ,μ + AμAμ)ψ =

(−∂μ∂μ − 2iAμ∂μ − iAμ,μ + AμAμ −
1

2
Fνμσ

νμ)ψ.

(4)

(A similar equation can be found in the original article by Dirac [8]. Feynman and
Gell-Mann [9] used a similar equation to eliminate two out of four components of
the Dirac spinor function). We obtain:

(�′ + F)ψ = 0, (5)

where the modified d’Alembertian �′ is defined as follows:

�′ = ∂μ∂μ + 2iAμ∂μ + iAμ,μ − AμAμ + 1 = −(i∂μ − Aμ)(i∂μ − Aμ)+ 1, (6)

and

F = 1

2
Fνμσ

νμ. (7)

Let us note that �′ and F are manifestly relativistically covariant.
We assume that the set of γ -matrices satisfies the standard hermiticity condi-

tions [10]:

γ μ† = γ 0γ μγ 0, γ 5† = γ 5. (8)

Then a charge conjugation matrix C can be chosen in such a way [7, 11] that

CγμC−1 = −γ μT , Cγ 5C−1 = γ 5T , CσμνC−1 = −σμνT , (9)

CT = C† = −C,CC† = C†C = I, C2 = −I, (10)

where the superscript T denotes transposition, and I is the unit matrix.
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Let us choose a component of the Dirac spinor ψ in the form ξ̄ψ , where ξ
is a constant spinor (so it does not depend on the spacetime coordinates x =
(x0, x1, x2, x3), and ∂μξ ≡ 0), and multiply both sides of Eq. (5) by ξ̄ from the
left:

�′(ξ̄ψ)+ ξ̄Fψ = 0. (11)

To derive an equation for only one component ξ̄ψ , we need to express ξ̄Fψ via ξ̄ψ ,
but the author cannot do this for an arbitrary spinor ξ (or prove that this cannot be
done). Therefore, to simplify this task, we demand that ξ is an eigenvector of γ 5 (in
other words, ξ is either right-handed or left-handed). This condition is Lorentz-
invariant. Indeed, Dirac spinors χ transform under a Lorentz transformation as
follows:

χ ′ = 
χ, (12)

where matrix
 is non-singular and commutes with γ 5 if the Lorentz transformation
is proper and anticommutes otherwise [6]. Therefore, if ξ is an eigenvector of
γ 5, then ξ ′ is also an eigenvector of γ 5, although not necessarily with the same
eigenvalue.

Eigenvalues of γ 5 equal either +1 or −1, so γ 5ξ = ±ξ . The linear subspace
of eigenvectors of γ 5 with the same eigenvalue as ξ is two-dimensional, so we
can choose another constant spinor η that is an eigenvector of γ 5 with the same
eigenvalue as ξ in such a way that ξ and η are linearly independent. This choice is
Lorentz-covariant, as matrix 
 in Eq. (12) is non-singular.

Obviously, we can derive an equation similar to (11) for η:

�′(η̄ψ)+ η̄Fψ = 0. (13)

If γ 5ξ = ±ξ , then ξ̄ = ξ†γ 0 is a left eigenvector of γ 5 with an eigenvalue ∓1,
as

ξ̄ γ 5 = ξ†γ 0γ 5 = −ξ†γ 5γ 0 = −(γ 5ξ)†γ 0 = ∓ξ̄ . (14)

The same is true for spinors η̄ = η†γ 0 (the proof is identical to that in (14)), ξ̄F , and
η̄F , as γ 5 commutes with σμν [10]. As the subspace of left eigenvectors of γ 5 with
an eigenvalue ∓1 is two-dimensional and includes spinors ξ̄F , η̄F , ξ̄ , and η̄, where
the two latter spinors are linearly independent (otherwise spinors ξ and η would
not be linearly independent), there exist such a = a(x), b = b(x), a′ = a′(x),
b′ = b′(x) that

ξ̄F = aξ̄ + bη̄, (15)

η̄F = a′ξ̄ + b′η̄. (16)
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For each spinor χ , the charge conjugated spinor

χc = Cχ̄T (17)

can be defined, and it has the same transformation properties under Lorentz
transformations as χ [11]. We have

χ̄χc = χ̄Cχ̄T = (χ̄)αCαβ(χ̄)β = 0, (18)

as (χ̄)α(χ̄)β and Cαβ are, respectively, symmetric and antisymmetric (see Eq. (10))
with respect to transposition of α and β.

Let us multiply Eqs. (15) and (16) by ξc and ηc from the right:

ξ̄F ξc = a(ξ̄ξ c)+ b(η̄ξ c) = b(η̄ξ c),
ξ̄Fηc = a(ξ̄ηc)+ b(η̄ηc) = a(ξ̄ηc),
η̄F ξc = a′(ξ̄ ξ c)+ b′(η̄ξ c) = b′(η̄ξ c),
η̄Fηc = a′(ξ̄ηc)+ b′(η̄ηc) = a′(ξ̄ηc),

so

a = ξ̄Fη
c

ξ̄ηc
, b = ξ̄F ξ

c

η̄ξ c
, a′ = η̄Fη

c

ξ̄ηc
, b′ = η̄F ξ

c

η̄ξ c
. (19)

Let us note that

ξ̄ ηc = ξ̄Cη̄T = (ξ̄ )αCαβ(η̄)β = −(η̄)βCβα(ξ̄ )α = −η̄ξ c (20)

and

ξ̄Fηc = ξ̄FCη̄T = (ξ̄FCη̄T )T = η̄CT FT ξ̄T = η̄FCξ̄T = η̄F ξc, (21)

as

σμνC = −CσTμν (22)

(see Eqs. (9), (10)). Therefore,

b′ = −a. (23)

Equations (11), (13), (15), and (16) yield

�′(ξ̄ψ)+ a(ξ̄ψ)+ b(η̄ψ) = 0,

�′(η̄ψ)+ a′(ξ̄ψ)+ b′(η̄ψ) = �′(η̄ψ)+ a′(ξ̄ψ)− a(η̄ψ) = 0,
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so

η̄ψ = −b−1(�′(ξ̄ψ)+ a(ξ̄ψ)) (24)

and

(�′ − a)(−b−1)(�′ + a)(ξ̄ψ)+ a′(ξ̄ψ) = 0 (25)

or

((�′ − a)b−1(�′ + a)− a′)(ξ̄ψ) = 0. (26)

Substituting the expressions for a, b, a′ from Eq. (19) and using Eq. (20), we finally
obtain:

(((ξ̄ηc)�′ − ξ̄Fηc)(ξ̄F ξc)−1((ξ̄ηc)�′ + ξ̄Fηc)+ η̄Fηc)(ξ̄ψ) = 0. (27)

This equation looks more complex than equation (21) of Ref. [2], but it is much
more general and manifestly relativistically covariant.

3 Equivalency to the Dirac Equation

Let us first prove that a different choice of η yields an equivalent equation. As the
subspace of eigenvectors of γ 5 with the same eigenvalue as ξ is two-dimensional,
the different choice η′ can be expressed as follows:

η′ = ση + τξ, (28)

where σ and τ are constant and σ �= 0, as otherwise η′ and ξ would not be linearly
independent. We need to substitute η in the operator acting on ξ̄ψ in Eq. (27) with
the expression for η′ from Eq. (28), but let us first note that

ξ̄η′c = ξ̄ (σ ∗ηc + τ ∗ξc) = σ ∗(ξ̄ηc), (29)

ξ̄Fη′c = σ ∗(ξ̄Fηc)+ τ ∗(ξ̄F ξc), (30)

η̄′Fη′c = (σ ∗)2(η̄Fηc)+ 2σ ∗τ ∗(ξ̄Fηc)+ (τ ∗)2(ξ̄F ξc) (31)

(we used Eqs. (18), (21)). The substitution then yields

((ξ̄η′c)�′ − ξ̄Fη′c)(ξ̄F ξc)−1((ξ̄η′c)�′ + ξ̄Fη′c)+ η̄′Fη′c = (32)

(σ ∗(ξ̄ηc)�′ − σ ∗(ξ̄Fηc)− τ ∗(ξ̄F ξc))(ξ̄F ξc)−1(σ ∗(ξ̄ηc)�′ +
σ ∗(ξ̄Fηc)+ τ ∗(ξ̄F ξc))+
(σ ∗)2(η̄Fηc)+ 2σ ∗τ ∗(ξ̄Fηc)+ (τ ∗)2(ξ̄F ξc) =
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(σ ∗)2((ξ̄ηc)�′ − ξ̄Fηc)(ξ̄F ξc)−1((ξ̄ηc)�′ + ξ̄Fηc)− σ ∗τ ∗((ξ̄ηc)�′ + ξ̄Fηc)+
σ ∗τ ∗((ξ̄ηc)�′ − ξ̄Fηc)− (τ ∗)2(ξ̄F ξc)+ (σ ∗)2(η̄Fηc)+
2σ ∗τ ∗(ξ̄Fηc)+ (τ ∗)2(ξ̄F ξc) =
(σ ∗)2(((ξ̄ηc)�′ − ξ̄Fηc)(ξ̄F ξc)−1((ξ̄ηc)�′ + ξ̄Fηc)+ η̄Fηc).

Thus, the operator after the substitution coincides with the original one up to a
constant factor, so Eq. (27) does not depend on the choice of η.

This equation for one component ξ̄ψ is generally equivalent to the Dirac equation
(if ξ̄F ξc /≡0): on the one hand, it was derived from the Dirac equation, and on the
other hand, the Dirac spinor ψ can be restored if its component ξ̄ψ is known (a
more precise definition of the equivalency is provided below, after Eq. (50)). Let us
demonstrate that.

If ξ̄ψ is known, another component, η̄ψ , can be determined using Eq. (24). Then
ψ can be expressed as a sum of a right-handed and a left-handed spinors ψ+ and
ψ−, where γ 5ψ± = ±ψ±:

ψ = ψ+ + ψ−, (33)

ψ± = 1

2
(1± γ 5)ψ. (34)

Then ψ∓ can be expressed as a linear combination of ξc and ηc (one can show
that these two spinors are also eigenvectors of γ 5 with an eigenvalue ∓1 and are
linearly independent, and the subspace of eigenvectors of γ 5 with an eigenvalue ∓1
is two-dimensional):

ψ∓ = uξc + vηc, (35)

where u = u(x) and v = v(x).
Let us note that, e.g.,

ξ̄ψ = ξ̄ψ± + ξ̄ψ∓ = ξ̄ψ∓, (36)

as

ξ̄ψ± = 1

2
ξ̄ (1± γ 5)ψ = 0 (37)

(ξ̄ is a left eigenvector of γ 5 with an eigenvalue ∓1). Therefore, we can multiply
Eq. (35) by ξ̄ and η̄ from the left:

ξ̄ψ = ξ̄ψ∓ = u(ξ̄ξ c)+ v(ξ̄ηc) = v(ξ̄ηc),
η̄ψ = η̄ψ∓ = u(η̄ξ c)+ v(η̄ηc) = u(η̄ξ c) (38)

(we took into account Eq. (18)).
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Thus, ψ∓ can be expressed via components ξ̄ψ and η̄ψ as follows:

ψ∓ = (ξ̄ψ)η
c − (η̄ψ)ξc
ξ̄ηc

(39)

(note Eq. (20)). When ψ∓ is found in this way, ψ± can be found using the Dirac
equation (1):

(i /∂ − /A)ψ∓ = 1

2
(i /∂ − /A)(1∓ γ 5)ψ = 1

2
(1± γ 5)(i /∂ − /A)ψ = ψ±; (40)

thus, the Dirac spinor can be fully restored if component ξ̄ψ is known.
Let us explicitly prove that the expression for ψ∓ (Eq. (39)) and, therefore,

the expression for ψ (Eq. (33)) do not depend on the choice of η. We have from
Eqs. (19), (20), (24):

η̄ψ = (ξ̄F ξc)−1((ξ̄ηc)�′ + ξ̄Fηc)(ξ̄ψ); (41)

therefore, we obtain from Eq. (39):

ψ∓ = (ξ̄ηc)−1((ξ̄ψ)ηc − (ξ̄F ξc)−1((ξ̄ηc)�′ + ξ̄Fηc)(ξ̄ψ)ξc). (42)

Substituting η in Eq. (42) with η′ (see Eq. (28)), we obtain, using Eqs. (29), (30):

ψ∓ = (σ ∗ξ̄ηc)−1×
((ξ̄ψ)(σ ∗ηc + τ ∗ξc)− (ξ̄F ξc)−1(σ ∗(ξ̄ηc)�′ + σ ∗(ξ̄Fηc)+ τ ∗(ξ̄F ξc))(ξ̄ψ)ξc)=

(ξ̄ηc)−1((ξ̄ψ)ηc− (ξ̄F ξc)−1((ξ̄ηc)�′ + ξ̄Fηc)(ξ̄ψ)ξc).
(43)

Therefore, the expression for ψ defined by Eqs. (33), (39), (40) does not depend on
the choice of η.

Let us prove that ψ defined by Eqs. (33), (39), (40) satisfies the Dirac equa-
tion (1). This is not quite obvious as the set of solutions of Eq. (5) used to derive
Eq. (27) is broader than the set of solutions of the Dirac equation (additional
solutions appeared as a result of multiplication by (i /∂ − /A); as a result, Eq. (5)
does not require the right-handed and left-handed parts of a solution to be related—
cf. [9]). To prove that ψ satisfies the Dirac equation, it is sufficient to prove that

(i /∂ − /A)ψ± = ψ∓, (44)

as that would imply that

(i /∂ − /A)ψ = (i /∂ − /A)(ψ± + ψ∓) = ψ∓ + ψ± = ψ (45)
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(note Eq. (40)). Equation (44) is equivalent to the following equation:

(i /∂ − /A)(i /∂ − /A)ψ∓ = ψ∓ (46)

(again, note Eq. (40)) or

(�′ + F)ψ∓ = 0 (47)

(cf. Eqs. (4), (5)). As �′ + F commutes with γ 5, (�′ + F)ψ∓ is an eigenvector
of γ 5 with the same eigenvalue ∓1 as ψ∓; thus, it can be presented as a linear
combination of ηc and ξc. Therefore, to prove Eq. (47), it is sufficient to prove that
the coefficients in the linear combination vanish or, equivalently, that

ξ̄ (�′ + F)ψ∓ = η̄(�′ + F)ψ∓ = 0 (48)

(cf. Eqs. (38)). Using Eqs. (15), (16), (18)–(20), (24), (39), we obtain:

ξ̄ (�′ + F)ψ∓ = (ξ̄�′ + aξ̄ + bη̄)((ξ̄ψ)ηc − (η̄ψ)ξc)(ξ̄ηc)−1 =
(�′(ξ̄ψ)(ξ̄ηc)+ a(ξ̄ψ)(ξ̄ηc)− b(η̄ψ)(η̄ξ c))(ξ̄ηc)−1 = �′(ξ̄ψ)+

a(ξ̄ψ)+ b(η̄ψ) = 0 (49)

and

η̄(�′ + F)ψ∓ = (η̄�′ + a′ξ̄ + b′η̄)((ξ̄ψ)ηc − (η̄ψ)ξc)(ξ̄ηc)−1 =
(−�′(η̄ψ)(η̄ξ c)+ a′(ξ̄ψ)(ξ̄ηc)− b′(η̄ψ)(η̄ξ c))(ξ̄ηc)−1 =

�′(η̄ψ)+ a′(ξ̄ψ)+ b′(η̄ψ) = 0 (50)

(note Eqs. (23), (26)).
We can summarize the above as follows. Equation (27) for one component ξ̄ψ is

equivalent to the Dirac equation (provided that we know ξ and that the component
of electromagnetic field ξ̄F ξc does not vanish identically) in the following sense:
the Dirac equation implies Eq. (27), and the latter implies the Dirac equation for the
Dirac spinor restored from its component ξ̄ψ using Eqs. (19), (24), (33), (39), (40).

To give a physical interpretation to Eq. (27), we need to define the current. The
latter equals (up to a constant factor):

jμ = ψ̄γ μψ = ψ±γ μψ± + ψ∓γ μψ∓, (51)

as one can show that, e.g., ψ±γ μψ∓ = 0. Thus, the current can be expressed via
component ξ̄ψ using Eqs. (19), (24), (39), (40), (51).
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Let us note that Eq. (26) or (27) reduce to the equation derived in Ref. [2] in a
specific case. In the chiral representation of γ -matrices [10]

γ 0 =
(

0 −I
−I 0

)
, γ i =

(
0 σ i

−σ i 0

)
, γ 5 =

(
I 0
0 −I

)
, C =

(−iσ 2 0
0 iσ 2

)
, (52)

where index i runs from 1 to 3 and σ i are the Pauli matrices. One can obtain:

F =

⎛
⎜⎜⎝

iF 3 iF 1 + F 2 0 0
iF 1 − F 2 −iF 3 0 0

0 0 −iF 3∗ −iF 1∗ − F 2∗
0 0 −iF 1∗ + F 2∗ iF 3∗

⎞
⎟⎟⎠ , (53)

where F i = Ei+iH i ; electric fieldEi and magnetic fieldHi are defined by Eq. (3).
Let us choose

ξ =

⎛
⎜⎜⎝

0
0
−1
0

⎞
⎟⎟⎠ , η =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ , (54)

then, if ψ has components

ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ , (55)

one obtains ξ̄ψ = ψ1, a = iF 3, b = −iF 1 − F 2, a
′ = −iF 1 + F 2, and Eq. (26)

acquires the same form as in Ref. [2]:

((
�′ − iF 3

) (
iF 1 + F 2

)−1 (
�′ + iF 3

)
− iF 1 + F 2

)
ψ1 = 0. (56)

4 Conclusion

Building on the results of Ref. [2], we have derived the manifestly covariant fourth-
order/one-function equivalent of the Dirac equation for the general case of an
arbitrary set of γ -matrices (satisfying the standard hermiticity conditions) and an
arbitrary component of the form ξ̄ψ (whereψ is the four-component spinor function
of the Dirac equation and ξ is an arbitrary fixed right eigenvector of γ 5). This
fundamental result should be useful for numerous applications of the Dirac equation.
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At the Crossroads of Three Seemingly
Divergent Approaches to Quantum
Mechanics

Carlos Baladrón and Andrei Khrennikov

1 Introduction

One of the clearest characterizations of the origin for the discomfort and difficulties
caused to scientists by the advent of quantum mechanics was formulated by
Schrödinger in his book “Nature and the Greeks” [1], namely, that the two
incontestable columns on which the edifice of science was based since Ancient
Greece were shaken by quantum mechanics. These two basic principles were:
(1) nature is understandable and (2) it admits a description independent of the
observer. In a more explicit manner, in order to describe and explain certain quantum
mechanical experiments, the observer faces, as pointed out by Mückenheim [2],
the dilemma of having to reject one—or at least a percentage of it—out of the
following three principles1: realism, causality, and locality. Classical physics has
been consistently and commonly associated with them.

1In more precise terms, following Mückenheim [2], these three principles would respectively
read: (1) The principle of realism or the possibility of defining precisely an outside real world
independently of the observer; (2) The principle of cause and effect or the existence of a definite
direction for the arrow of time; and (3) The principle of locality (or separability) or the existence of
a limit velocity for the propagation of any interaction. See Jaeger [3, 4] for a profound discussion
on the meaning of these three concepts.
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Fig. 1 A three-axis representation of the qualitative strength of locality, causality, and realism that
is present in an interpretation of quantum mechanics. The strength of every property decreases
as the distance from the origin of coordinates increases along the axis. Six different approaches
defined in the main text are placed in their corresponding locations according to the explanations
therein. The solid curved arrows correspond to the cycle of connections established in the article
that starts in BM and finishes in DAQM

A representation in terms of the way in which the interpretations2 of quantum
mechanics tackle this dilemma might help to visualize the differences among
interpretations in order to connect them and ultimately to achieve a satisfactory
consensus for the long-lasting interpretational conundrums of quantum mechanics.

A representation of this type, in which a number of well-known examples
representing a broad range of interpretations have been included, is outlined in
Fig. 1. Every coordinate axis reflects the qualitative strength of realism, causality,
or locality that is present in an interpretation of quantum mechanics with the only
purpose of establishing relations among such interpretations. Initially, three central
interpretations3 have been located in the scheme. Every one of them is quite near an
axis of the reference system. This means that every interpretation does not mainly
comply with one of the three mentioned principles while mostly satisfying the
other two (see Fig. 1). In short, Bohmian Mechanics (BM) [6], sticking to a realist
description, is manifestly nonlocal. QBism [7], which in some sense inherits the
Copenhagen interpretation tradition, is subjective. And Time-Symmetric Quantum
Mechanics (TSQM) [8] does not satisfy the principle of causality by admitting
backward in time causation.

2See Jaeger [3] for an analysis of the role and main kinds of interpretation in quantum mechanics.
3In a deeper sense, these three so-called interpretations can be considered as three different
approaches to quantum mechanics, not merely as interpretations—e.g., see Styer et al. [5] for a
discussion on the term interpretation applied to the de Broglie-Bohm theory.
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As already mentioned, the representation in Fig. 1 is only a coarse-grained
visualization of the differences among interpretations with the ultimate goal of
establishing links and possible tracks in order to connect them.

One of the central tenets of this article is that most interpretations of quantum
mechanics have something interesting to show about the conceptual difficulties
of this discipline, therefore that the comparative analysis of quite different—
even seemingly divergent—interpretations might shed some light on the endemic
interpretational issues of this subject.

In Sect. 2, the connections among BM, QBism, and TSQM are analyzed. In
Sect. 3, a theory that explores these connections from an information-theoretic
Darwinian framework is expounded. Finally, in Sect. 4 the conclusion is drawn.

2 Analysis of the Connections Among BM, QBism,
and TSQM

There is not a general agreement on which of the three above-mentioned principles
is more fundamental to a physical description of nature. In the end, it certainly
depends on the philosophical leanings, and a justification supporting an ordering in
detriment of the others can always be constructed.

However, the ideal solution would be to stick to all three of them. In our symbolic
representation, it means to be located at the origin of coordinates. There are some
theories that can be situated at that point (see Fig. 1)—Superdeterminism4—or near
it—Many-Worlds Interpretation5 (MWI). These interesting and imaginative options
are not free of criticism and difficulties. Therefore, new perspectives still seem
necessary in order to make further progress.

The standpoint in this article declared in a telegraphic statement is that the world
would be diluted if there were no clear ontology, it would be difficult to pursue
science if there were no cause-and-effect relationship, and magic would seem to

4Superdeterminism [9, 10] is a theory that profits from revising the concept of free will—in
short, the freedom of observers to choose their particular experimental setup. This elusive concept
was implicitly taken for granted in Bell’s theorem [11] which enables the circumvention of its
implications by reconsidering free will. See Plotnitsky [12] for Bohr’s point of view about the
notion of free will. See also O’Connor [13] and Baladrón [14] for an ampler discussion on the
concept of free will and the difficulties related to the compatibility of free will and physical theories
(compatibilism).
5In short, MWI [15] rejects the projection postulate of quantum mechanics. The wave function
entirely evolves subject to the Schrödinger equation. Most conceptual difficulties of quantum
mechanics disappear, but at the price of enlarging reality from the usual three-dimensional physical
space to the configuration space in which the wave function is defined, since all the branches
of the wave function now have a real existence supposedly in different mutually unobservable
worlds—although, in principle, it can be argued that quantum interference is an indirect proof of
their existence. A prescription on the way in which observations occur in every world has to be
included.
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crawl more easily into a nonlocal scenario. Although not one of these assertions is
satisfactory for a description of nature, the difficulties are arguably less imposing as
one progresses along the statement, i.e. the absence of realism seems more difficult
to admit than the lack of causality, however crucial the latter might be from a
rational perspective. In the end, nature will probably happen to be the way it is
and not the way of the observer’s desires. In saying this, there is already implicitly
some controversy. Perhaps nature is even more difficult to understand than quantum
mechanics in its present status. Notwithstanding, it seems worth exploring all the
possibilities of finding a description of nature that preserves the innermost concepts
of classical rationality.

The aim of this article, as previously mentioned, is to contribute to the solution
of the interpretative problem of quantum mechanics by trying to build some bridges
among apparently divergent approaches that might lead to new insight on nature.

These three different approaches to quantum mechanics—BM, QBism, and
TSQM—might be connected by slightly reshaping some of their characteristics, but
keeping their essentials. The result is a new perspective on quantum mechanics that
will be summarized in Sect. 3 in which the weirdness of quantum mechanics—i.e.,
those features detaching quantum mechanics from a classical rational description of
nature that sticks to realism, causality, and locality as basic properties—is explained
under this standpoint.

Bearing this in mind, let us start by BM, which offers a clear realist ontology
including the position X(t) of a particle at any time t as a characteristic of the
particle’s state. The trajectory of a particle in physical space is continuous in time.
Usually, in BM the wave function ψ of the system is also included in the ontology
as a real object. However, some variants of BM consider ψ as non-real, just as an
information tool. We follow this variant. In addition, the wave function in BM can be
considered to contain active information [16], i.e. information for the system about
the surrounding systems. Now the speed of the particle dX/dt is determined by the
wave function ψ that acts as pilot wave of the particle through the guiding equation
[6] that for a particle without spin reads:

dX

dt
= ∇S (X)

m
(1)

where ∇ is the nabla operator, m the mass of the particle, and S the phase of the
wave function in the polar representation, ψ = ReiS/�, � being the Planck constant
divided by 2π . As analyzed by Goldstein [17], the wave function as pilot wave may
be interpreted as having a nomological character, i.e. acting as a law of motion in
strong analogy with the role played by the Hamiltonian in classical mechanics.

The concept of information is central to the three approaches, but from a different
point of view. The wave function in QBism represents the subjective beliefs of
the observer about the results that can be expected when certain operations are
performed on the system under study. And in TSQM two states of a system—one in
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the past and the other in the future—influence the result for a certain measurement
made on the system. The result of the measurement is explained in terms of forward
and backward in time causation.

The connection among the approaches may be established assuming that every
fundamental physical system—that is characterized as in BM by its position X(t) at
any time in physical space—is a microscopic agent—extension of the QBist concept
of observer—with the capacity to process information, including the property of
anticipating the configurations of its surrounding systems. The capacity to process
information in the system recalls the double part played by the wave function
in BM, first as repository of the information about the surrounding systems, and
second as nomological element—pilot wave—that determines the behavior of
the system through the guiding equation. In addition, the capacity of processing
information would hypothetically enable the system to replace the backward-in-
time causation characteristic of TSQM with anticipation, calculating the possible
future configurations of the surrounding systems, and recovering the natural causal
order, but at the same time retaining locality in the physical space. The result is
an interpretation that lies much closer to the origin of coordinates in the three-axis
representation of Fig. 1.

3 Information-Theoretic Darwinian Approach to Quantum
Mechanics (DAQM)

Information from different perspectives is the common thread from which the
connections among BM, QBism, and TSQM have been interwoven in Sect. 2.
As mentioned above, the role of the wave function in BM resembles that of an
information processor that computes the actions to be performed by the particle
from the input data (information about the surrounding systems).

The information-theoretic Darwinian approach to quantum mechanics (DAQM)
[18–21] explores the possibilities of supplementing a fundamental physical system
with a classical Turing machine [22]—in short, an information processor. This
classical Turing machine can be considered in a certain sense as a generalization
of the wave function—the pilot wave in BM. Thus, a fundamental physical system
in DAQM is characterized by its position X(t) at any time—as in BM, the system
follows a continuous trajectory—and the program stored on its classical Turing
machine that determines the behavior of the system. In DAQM there are not
universal laws, but evolving algorithms that control the behavior of every physical
system, i.e. the emission of a carrier6 of energy and momentum is determined
at every run of the program. In physical space the conservation of energy and
momentum is assumed as a general principle.

6These carriers would convey information about the position of the emitter.
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The central problem now is how to implement in real-time quantum behavior
for a system by means of a program on a classical Turing machine7. DAQM
analyzes the possibility that Darwinian evolution under natural selection acting
on these systems, characterized as microscopic agents, could generate quantum
behavior starting from a state of minimal information at time t = 0, provided that
a randomizer was incorporated to the classical Turing machine of every system—in
this way the physical systems become generalized Darwinian systems [25] with the
properties of variation, selection, and retention.8

Darwinian natural selection in the long run would plausibly tend to optimize the
flows of information between a system and its environment. It is true that Darwinism
does not necessarily bring about optimal results—see Baladrón and Khrennikov
[21] and the references therein for a discussion on this question in the framework
of DAQM, however optimization could adequately describe the final physical stage
assuming that physical evolution would have already come to an end by exhausting
the complexity of fundamental physical systems. DAQM studies the possibility
that in this scenario, from this optimization criterion, quantum behavior might be
generated as the fittest strategy for a system to survive.

Several studies support the interest of DAQM. First, quantum information
biology (QIB) [26, 27] analyzes some experiments at different scales in which
the quantum formalism adequately describes the behavior of mesoscopic and
macroscopic biological systems. Second, some experiments [28, 29] in which a
liquid drop bouncing on a liquid bath presents quantum-like behavior by interacting
with the surface waves caused by itself on the liquid. Third, some computer
simulations [30] showing the possibility that evolution might find some mechanisms
to transform exponential time problems into polynomial time ones9. Finally, some
possible astronomical and cosmological tests proposed to check Bohm-like theories
by Valentini [31] could be adapted to check DAQM.

DAQM is a realist—the system has a definite position X(t) at any time, local—
since nonlocality is restrained to the information space maintaining locality for
all the interactions and influences in the physical space, thanks to the antici-
pation block hypothetically developed in the program by Darwinian evolution,

7According to Deutsch [23], based on the present knowledge of nature it is consistent to assert that
quantum theory is compatible with the Church-Turing principle [23], i.e. that any finite physical
system can be simulated by means of a quantum Turing machine. However, the kind of problems
that a quantum Turing machine can solve are the same as those solved by a classical Turing
machine, the only difference being the efficiency [24], i.e. the time needed for the computation
to halt with a solution. DAQM aims to show that this efficiency might be supplied by Darwinian
natural selection.
8These properties that characterize a generalized Darwinian system [25] can be succinctly defined
in the following way: variation as the introduction of novelty in the system that in DAQM is
supplied by a read-and-write operation error rate during the execution of the program on the
Turing machine; selection as the increased rate of persistence or survival for certain systems in the
population due to their improved behavioral capabilities through positive variations; and retention
as the capacity of storing, preserving or passing on information about adaptations.
9Notice the quantum-like efficiency trait.
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and quasi-causal—since randomness that is intrinsic to the theory persists as an
optimization procedure after reaching the quantum equilibrium scenario—theory.
Therefore, DAQM would be placed near the origin of coordinates in Fig. 1.

The price to pay by DAQM is the introduction of a classical Turing machine—
i.e., an information processor—associated with every elementary physical system
and the presence of an intrinsic randomness in matter reflected in the attachment
of a randomizer to every elementary physical system. The Turing machine might be
considered as reflecting an intrinsic complexity in matter [32], as a generalization of
the fact already recognized by quantum mechanics when requiring a wave function
to characterize a physical system.

The constitution and characterization of a fundamental system in DAQM fits well
with the famous saying of Peres [33] about quantum mechanics: “Unperformed
experiments have no results.” In DAQM, there are no defined properties or
magnitudes in a fundamental physical system prior to an experiment, beyond the
well-defined position and basic parameters in physical space. Any result obtained
when performing an experiment on such a system has to be previously calculated as
an output by the information processor of the system and critically depends on the
context (experimental set-up) of the measurement. Any magnitude, in the end, has
to be related to positions of systems and apparatuses as in BM.

Darwinism has already been applied to analyze some fundamental problems in
several fields of physics [34, 35]. The possibility of a universe in which the laws
of physics might evolve has also previously been considered—e.g., see Smolin [36]
and the references therein, and it is the subject of a deep analysis in some promising
studies within a general physical framework [36]. There are also some works—
e.g., see Lloyd [37]—that explore the idea of a universe considered as a quantum
computer.

In the present study, the universe is described as a set of interacting fundamental
physical systems, every one of them formed by bare matter in physical space
that is supplemented with a probabilistic classical Turing machine in information
space. Darwinian natural selection acting on these systems would plausibly bring
about the emergence of quantum behavior as an optimal strategy for the stability
of systems. One of the crucial elements in this process would be the generation
of the anticipation module in the program that rules the behavior of every system
and that would allow the system to calculate the possible future configurations of
the surrounding systems as mentioned in Sect. 2. In DAQM, quantum information
could admit a description in terms of the optimization process of past, present, and
anticipated classical information flows.

The constitution assumed for a physical system in DAQM also renders natural
the emergence of complexity in the universe from a simple initial state for matter
and information. In addition, the appearance of biological systems could be implied
as a consequence of the unifying information-theoretic Darwinian scheme acting
on physical and biological systems alike [21], biological systems being the result of
certain physical compounds governed by the network of interconnected probabilistic
classical Turing machines of their constituents. In biological Darwinism the increase
of complexity as a general trend in the long term is mostly accepted, although it
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is not exempt of criticism—e.g., see Baladrón and Khrennikov [20, 21] and the
references therein. In this respect, the role of entanglement in the development of
complex biological systems might be crucial and it probably constitutes one of the
most challenging questions to be addressed by biophysics in the future.

4 Conclusion

The comparative analysis of different quantum mechanical interpretations sug-
gests new ways to face the deeply rooted interpretational problem. This kind of
analysis might contribute to a possible future consensus in the interpretation of
quantum mechanics. The comparison put forth in this article among three different
approaches to quantum mechanics has oriented the development of an information-
theoretic Darwinian approach from which quantum mechanics could emerge as a
realist, quasi-causal, and local theory that would code an optimal strategy for the
stability of physical systems. In addition DAQM presents a unifying information-
theoretic scheme for physical and biological systems that might contribute to a
deeper understanding of nature.
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Implications of Einstein-Weyl Causality
on Quantum Mechanics

D. J. BenDaniel

1 Introduction

A fundamental physical principle that has consequences for the topology of space-
time is the principle of Einstein-Weyl causality. Borchers and Sen have rigorously
investigated its mathematical consequences and have shown that a denumerable
space-time would be admitted [6]. They then proved that the notion of causality
could be effectively extended to discontinuua but were still left with an experimen-
tally unresolvable question regarding the nature of the physical line E, e.g., whether
E = R, the real line of mathematics [1]. Alternatively, their initial result opens the
possibility of a constructible mathematical foundation; this would describe a space-
time that, while it is denumerable, nevertheless allows physical functions and all
their derivatives to be continuous. This paper has three parts. We first introduce
such a constructible foundation and show it contains polynomial functions which
are homeomorphic with a dense, denumerable metric space R∗. Other uniformly
continuous functions can then be effectively obtained by computational iteration.
Secondly, postulating a Lagrangian for fields in a compactified space-time, we
obtain a general field description of which the Schrödinger equation is a special
case. Therefore, the theory predicts that E = R∗ and quantum mechanics provides
an empirical corroboration. Thirdly, from these results, we find that this space-time
is relational (in the sense that it is vanishingly small if and only if all physical fields
are vanishingly small), and we suggest other possible physical implications of these
results.
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2 Theory

We propose the axioms in Table 1. The formulae for these axioms are given in the
Appendix. The first six axioms are the set theory of Zermelo-Fraenkel (ZF) without
the power set axiom and with the axiom schema of subsets (aka separation) deleted
from the axioms of regularity and replacement. Because of the deletion of the axiom
schema of subsets, a minimal ω∗, usually denoted by ω and called the set of all finite
ordinals, cannot be shown to exist in this theory; instead this set theory is uniformly
dependent on ω∗, and then all the finite ordinals as well as infinitely many infinite
ordinals are included in ω∗. These infinite ordinals are equinumerous with ω∗; a
finite ordinal is any member of ω∗ that is not infinite. All sets of finite ordinals are
finite.

The constructibility axiom requires some explanation. By constructible sets, we
mean sets that are generated sequentially by some process, one after the other, so
that the process well-orders the sets. Gödel has shown that an axiom asserting that
all sets are constructible can be consistently adjoined to ZF [4], giving a theory
usually called ZFC+. No more than countably many constructible subsets of ω can
be shown to exist in ZFC+ [3]. This remarkable result will hold for ω∗ in a theory
ZF minus the axiom schema of subsets and the power set axiom and plus an axiom
asserting that the subsets of ω∗ are constructible. The constructibility axiom allows
creation of a set of constructible subsets of ω∗ and, in addition, provides a distance
measure, giving a metric space R∗. The members of R∗ mirror the binimals (i.e.,
binary decimals) forming a dense, denumerable space. We shall refer to this theory
as T.

We can now introduce two essential definitions. First, recall the definition of
“rational numbers” as the set of ratios, in ZF called Q, of any two members of the
set ω. In T, we can likewise, using the axiom of unions, establish for ω∗ the set of
ratios of any two of its members. This will become an “enlargement” of the rational
numbers, and we shall call this enlargement Q∗. Two members of Q∗ are called
“identical” if their ratio is 1. We employ the symbol “≡” for “is identical to.” Next,
a member y of Q∗ “equal” to 0, letting y signify the member and employing the

Table 1 Axioms

Extensionality Two sets with just the same members are equal

Pairs For every two sets, there is a set that contains just them

Union For every set of sets, there is a set with just all their members

Infinity There are infinite ordinals ω∗ (i.e., sets are transitive and well-ordered
by ∈-relation)

Replacement Replacing the members of a set one-for-one creates a set (i.e., bijective
replacement)

Regularity Every non-empty set has a minimal member (i.e., “weak” regularity)

ω∗-Constructibility The subsets of ω∗ are constructible
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symbol “=” to signify equality, is defined by y = 0 ↔ ∀k[ y < 1/k], where k is
a finite ordinal. A member of Q∗ that is not equal to 0 and not “infinite”is “finite”.
Obviously, y ≡ 0 → y = 0.

An equality-preserving bijective mapping φ(x, u) between x ∈ R∗ and u ∈ R∗
such that

∀x1, x2, u1, u2[φ(x1, u1) ∧ φ(x2, u2)→ (x1 − x2 = 0 ↔ u1 − u2 = 0)] (1)

creates pieces which are homeomorphic to R∗. Note that the range of these pieces
vanishes if and only if the domain vanishes.

If the functions u(x) of x ∈ R∗ and all their derivatives are homeomorphic to
R∗, consistent with the empirical fact that physical functions and their derivatives
are continuous in space-time, then u(x) is a power series, and furthermore, since
there is no axiom of subsets in the set-theoretical foundation, the series is finite, i.e.,
a polynomial. (Note: Differentials are definable in T, so derivatives of polynomials,
and their inverse integrals, can be obtained term by term.) We assume u(x), if
not constant, is a continuously connected sequence of equality-preserving bijective
mappings with range u(x) �= 0↔ domain u(x) �= 0.

Infinite power series, such as sin(x), do not formally exist in this theory but can
always be approximated as closely as required for physics by a sum of polynomials
of sufficiently high degree obtained by an iteration of:

∫ b

a

[
p

(
du

dx

)2

− qu2

]
dx = λ

∫ b

a

ru2dx (2)

where λ is minimized subject to:

∫ b

a

ru2dx = const (3)

where:

a �= b, u

(
du

dx

)
= 0 (4)

at a and b; p, q, and r are functions of the variable x. Letting n denote the nth
iteration, ∀k∃n[λn−1 − λn < 1/k] where k is a finite ordinal. So, a polynomial
such that, say, 1/k < 10−50 is effectively a Sturm-Liouville “eigenfunction.” These
can be decomposed, since they are polynomials, into bijective equality-preserving
pieces obeying the boundary conditions. As a bridge to physics, let x1 be space
and x2 be time. We now postulate the following integral expression for a one-
dimensional string � = u1(x1)u2(x2):

∫ [(
∂�

∂x1

)2

−
(
∂�

∂x2

)2
]
dx1dx2 ≡ 0 (5)
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The eigenvalues λ1m are determined by the spatial boundary conditions. For each
eigenstatem, we can use this integral expression constrained by the indicial relation
λ1m ≡ λ2m to obtain the eigenfunctions u1m and u2m.

A more general expression in finitely many space-like and time-like dimensions
can likewise be produced. Let u�mi(xi) and u�mj (xj ) be eigenfunctions with
nonnegative eigenvalues λ�mi and λ�mj , respectively. We define a “field” as a sum
of eigenstates:

�m =
∑
�

��mi�,��m = C
∏
i

u�mi
∏
j

u�mj (6)

with the postulate: for every eigenstate m, the Lagrangian form for the field
equations in a compactified space-time is identically 0. Let ds represent

∏
i ridxi

and dτ represent
∏
j rj dxj . Then for all m,

∫ ∑
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1

ri
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(
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−Q�mi�2
�m

]
dsdτ (7)

−
∫ ∑

�j

1

rj

[
P�mj

(
∂��m

∂xj

)2

−Q�mj�2
�m

]
dsdτ ≡ 0

In this integral expression, the P , Q, and R can be functions of any of the xi and
xj , thus of any ��m as well. As seen in the case of a one-dimensional string, these
�m can in principle be obtained by iterations constrained by an indicial relation,∑
�i λ�mi ≡

∑
�j λ�mj for each m. We see that the postulate asserts a fundamental

identity of the magnitudes of the two components of the integral.
A proof in T that the sum over all the eigenstates of each component has only

discrete values in the case of the Schrödinger equation will now be shown. Let
expressions (8) and (9) both be represented by α, since they are identical:

∑
�mi

∫
1

ri

[
P�mi

(
∂��m

∂xi

)2

−Q�mi�2
�m

]
dsdτ (8)

∑
�mj

∫
1

rj

[
P�mj

(
∂��m

∂xj

)2

−Q�mj�2
�m

]
dsdτ (9)

1. We assume thatQ�mj = 0 and P�mj is nonnegative, that domain� �= 0, and that
α(�) is nonnegative and closed to addition.

2. Since � is a function on R∗n, we recall that if ¬range� ≡ 0, then range� �= 0
↔ domain� �= 0. Accordingly, we obtain: if range� ≡ 0, then α(�) ≡ 0 and if
¬range� ≡ 0, then α(�) �= 0.

3. Therefore α(�) has only discrete values α(�) ≡ nκ , where n is any finite
ordinal and κ is some unit which must be determined empirically.



Implications of Einstein-Weyl Causality on Quantum Mechanics 27

With this result and without any additional physical postulates, we can now
obtain the time term of the Schrödinger equation.

Let � = 1, 2, rt = P1mt = P2mt = 1, Q1mt = Q2mt = 0, τ = ωmt , and we
normalize � as follows:

�m =
√
(C/2π)

∏
i

uim(xi)[u1m(τ)+ i · u2m(τ)] (10)

where i = √−1 with

∫ ∑
m

∏
i

u2
imds(u

2
1m + u2

2m) ≡ 1 (11)

We can then employ:

du1m

dτ
= −u2m and

du2m

dτ
= u1m (12)

or

du1m

dτ
= u2m and

du2m

dτ
= −u1m (13)

For the minimal nonvanishing field, α has its least finite value κ . Thus,

(C/2π)
∑
m

∮ ∫ [(
du1m

dτ

)2

+
(
du2m

dτ

)2
]

∏
i

u2
im(xi)dsdτ ≡ C ≡ κ (14)

Substituting the Planck constant h for κ , this can now be put into the familiar
Lagrangian form for the time term in the Schrödinger equation:

h

2i

∑
m

∮ ∫ [
�∗m

(
∂�m

∂t

)
−
(
∂�∗m
∂t

)
�m

]
dsdt (15)

Since the Schrödinger equation is well confirmed by experiment, this can be
considered an empirical determination of κ .

We can now show a link between quantum theory and space-time.

1. Assume ∃�¬ range� ≡ 0 and domain� is all of space-time. With this we have
all of space-time �= 0 → ∃� domain� �= 0. Since domain� �= 0 ↔ range
� �= 0 and range � �= 0 → α(�) �= 0, we obtain: all of space-time �= 0 → ∃�
α(�) �= 0
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2. Also, if all of space-time = 0, the upper and lower limits of all the integrals in the
computation of α(�) are equal so that all of space-time = 0→ ∀� α(�) = 0.

3. Therefore all of space-time �= 0 ↔ ∃� α(�) �= 0. We have thus shown that this
denumerable space-time is relational in the sense that it is vanishingly small if
and only if all fields are vanishingly small.

4. Furthermore, since we have shown for quantized fields α(�) ≡ nh, it follows
that all of space-time �= 0 ↔ ∃� α(�) ≥ h. α(�) ≥ h is the uncertainty
principle. Thus space-time can be vanishingly small only in the absence of any
quantized fields.

3 Conclusions

Returning to Einstein-Weyl causality, Borchers and Sen have rigorously investigated
its mathematical implications, regarded as a partial order, for the underlying spaces.
This partial order was axiomatized by them and proven to admit Q2 as an ordered
space. In subsequent papers, they then showed that the notion of causality could
be extended effectively to discontinuua but were left with an unresolved question
regarding the fundamental nature of the physical line E, e.g., whether E = R, the
real line of mathematics. We have viewed their results as an insight into a possible
space-time which is denumerable but will still support physical functions and their
derivatives. This suggested an investigation into a nonstandard constructible foun-
dation T. We have here shown that T indeed provides a dense, denumerable metric
space R∗ that can support polynomial functions and that eigenfunctions governing
physical fields can then be effectively obtained by an iterative computation. From
this approach, we have derived the Schrödinger equation. Thus the theory proposes
that E = R∗ and that quantum mechanics provides an empirical corroboration of
this theoretical prediction. It is difficult to see how this theory can be experimentally
falsified.

Finally, the Schrödinger equation is obtained in this constructible theory without
reference to the statistical interpretation of the wave function, which, it can be
argued, may be inferred from the equation itself and a requirement that quantum
mechanics will reduce to its classical limit [5]. Philosophically, this suggests that
the Schrödinger equation could be considered conceptually cumulative with prior
physics. If so, it would resolve a long-standing controversy.

In addition, though we do not have the opportunity here to discuss these points,
we note that:

• The proposed theory does not have impredicative sets. This possibly suggests that
this foundation allows no physical antinomies. That can be intuitively satisfying
since, were there physical antinomies, the universe would tear itself apart.

• Dyson [2] argued that the QED perturbation series cannot converge to a limit
without a catastrophically unstable vacuum state and hence the series must be
divergent. However, in this constructible theory, there is no induction theorem;
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thus, no series limit is reached and an unstable vacuum state is not created. This
is a seminal example of the avoidance of infinities in this theory.

• This theory may have some bearing on Wigner’s metaphysical question regarding
the apparent unreasonable effectiveness of mathematics in physics [7]. The
Schrödinger equation along with the denumerability of space-time and its
relational nature all arise here as a direct consequence of an axiomatic foundation
and its mathematical implications.

Appendix: ZF − Subsets − Power Set + ω∗-Constructibility

Extensionality Two sets with just the same members are equal. ∀x∀y (∀z (z ∈ x ↔
z ∈ y)→ x = y) Pairs. For every two sets, there is a set that contains just them.
∀x∀y∃z(∀ww ∈ z ↔ w = x ∨ w = y) Union. For every set of sets, there is a set
with just all their members. ∀x∃y∀z(z ∈ y ↔ ∃u(z ∈ u ∧ u ∈ x)) Infinity. There
are infinite ordinals ω∗ (i.e., sets are transitive and well-ordered by ∈-relation).
∃ω∗(O ∈ ω∗ ∧ ∀x(x ∈ ω∗ → x ∪ {x} ∈ ω∗)) Replacement. Replacing members of
a set one-for-one creates a set (i.e., “bijective” replacement). Let φ(x, y) a formula
in which x and y are free, ∀z∀x ∈ z∀y(φ(x, y) ∧ ∀u ∈ z∀v(φ(u, v) → u =
x ↔ y = v)) → ∃r∀t (t ∈ r ↔ ∃s ∈ zφ(s, t)) Regularity. Every non-empty
set has a minimal member (i.e., “weak” regularity). ∀x(∃yy ∈ x → ∃y(y ∈
x ∧ ∀z¬(z ∈ x ∧ z ∈ y)))ω∗-Constructibility. All subsets of ω∗ are constructible.
∀ω∗∃S[(ω∗,O) ∈ S ∧ ∀y �= 0∀z[(y, z) ∈ S ↔ ((y − my) ∪ my, z ∪ {z}) ∈ S]],
where the minimal element of y is my .
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The Action Reaction Principle
in Quantum Mechanics

Carlos López

1 Incompleteness of QM

The action reaction principle (ARP) is not automatically fulfilled in the standard
formulation of Quantum Mechanics (SQM) [1, 2]. Some simple academic examples
follow showing this fact.

Example 1 Two systems SI (with associated Hilbert space HI ) and SII (with
Hilbert space HII ) are in initial states |a>I and |c>II , eigenstates of magnitudes A
(of SI ) and C (of SII ), respectively. The state |c>II can be expressed as |c>II=∑
j zj |dj >II in a basis of eigenstates of a non-commuting magnitude D of SII ,

[C,D] �= 0. A Hamiltonian of interaction H(A,D) = κAD is switched on. More
precisely, H(A,D) = κA⊗D acts on the product Hilbert space HI ×HII of the
composite. The time evolution of the composite system is

|a>I ⊗
∑
j

zj e
−iκadj t/h̄|dj>II .

This academic example violates the ARP because SII evolves under the
interaction while SI remains stationary. A bigger Hilbert space for system SI
should contain additional degrees of freedom giving account of some evolution,
according to the ARP.

Example 2 Along the measurement of magnitude A on a system S with initial
eigenstate |a >, there is trivial projection of state, output state |a >, while the
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apparatus pointer’s state changes. Again, some change of state in a bigger Hilbert
space for S should happen.

As these academic examples prove, the ARP is not automatically fulfilled
in SQM. We do not expect the ARP being violated in real interactions. An
alternative formulation of QM where the ARP is automatically fulfilled (even
for academic examples) seems desirable; bigger Hilbert spaces are possible and
perfectly consistent. See in [3] a formulation of Quantum Mechanics in the phase
space, that is, with distributions of amplitude Λ(q, p). In these extended Hilbert
spaces, there are simultaneously non-commuting variables, as q and p, but as
far as the canonical commutation rules are fulfilled, the formalism is consistent.
Notice that many properties of a system with a given Hamiltonian are prescribed
by the commutation rules between operators representing physical magnitudes.
With regard to the predicted distributions of probability, the rule is to project the
distribution of amplitude (marginal amplitudes) onto a Hilbert space of SQM and to
apply there the usual Born rule.

The ARP also predicts some (yet unobserved) reaction in detectors for indirect
measurements, when some virtual path is discarded because of negative detection.

Example 3 Particles can follow two or more spatially divergent virtual paths, e.g.,
in an interferometer. An initial state |Ψ > (t0) splits, as through a Stern–Gerlach
apparatus or a beam splitter, and it evolves to the state

|Ψ> (tint ) = U(tint , t0)|Ψ> (t0) = z1|x1> +z2|x2>

where xj is the spatial position, at time tint , of the wave packet following the j th
trajectory, zj |xj> is the corresponding state’s component, and U(tint , t0) represents
the unitary evolution; other quantum numbers are omitted. An appropriate exper-
imental set up can rejoin these paths around a final position xf at tf , for a final
state |Ψ > (tf ) = U(tf , tint )|Ψ > (tint ) where both components are superposed
and interfere. If, in another run, a particle detector D(1) is placed at x1, either the
particle is detected (and blocked), or it arrives to xf following path 2. The state of the

composite is |Ψ> (tint )⊗|D(1)0 > right before the system/detector interaction, being

|D(1)0 > the ready-to-measure state of the pointer. After interaction the composite
evolves to the entangled state

z1|x1>⊗|D(1)p > +z2|x2>⊗|D(1)n > ,

|D(1)p > (|D(1)n >) state of the pointer for positive (negative) detection. In case of
negative detection and applying the projection rule, we obtain the composite state
|x2> ⊗|D(1)n >, with the particle localized around x2. Because of the interaction
(negative detection), the state of the particle has changed, |x2 > �= |Ψ > (tint ),
so that |D(1)n > �= |D(1)0 > according to the ARP. However, when using a particle
detector, its macroscopic state does not change. Appropriately designed devices
should show an observable reaction, possibly when looking for some wave like
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entity. The corpuscular entity is, with certainty, around x2, not around x1 (otherwise
it would have been detected); therefore, it is spatially separated from x1, and it
cannot interact with the detector. Another entity must follow path 1 and interact
with D(1).

Elementary particles could be composites of a corpuscular subsystem and a
distributed field, both entities interacting along the evolution. This proposal is
essentially the so-called double field solution [4–7], with a real field accompanying
the corpuscular system, different from the distribution of amplitude which is a
computational tool of the theory. Also, the quantum potential of Bohm’s formalism
[8] needs an accompanying system in order to preserve de ARP.

2 Extended Phase Space for QM

The most general phase space for a spinless point particle is the path integral for-
malism [9]. In the set of paths allowed by the context, there is a distribution of
amplitude

|path>→ exp

(
i

h̄
S[path]

)

The distribution of amplitude in the position representation is obtained through the
calculation of the marginal amplitudes

Ψ (q) =
∑
exp

(
i

h̄
S[pathq ]

)

where pathq are all paths with final position q and
∑

represents the path integral.
Similarly, in the momentum representation

ξ( p) =
∑
exp

(
i

h̄
S[pathp]

)

with pathp all paths with final momentum p.
We can formally consider intermediate projections, by considering subsets of

paths with final position and momentum (q, p), for a marginal distribution

Λ(q, p) =
∑
exp

(
i

h̄
S[pathq,p]

)

pathq,p all paths with final position and momentum (q, p). From Λ(q, p) we find
the SQM amplitude through an additional projection, for example, integral along
momentum p to get the position representation



34 C. López

Ψ (q) =
∫
dpΛ(q, p)

Technically there is an additional factor making this integral a Fourier projection
(see [3] for details). As far as the representations of magnitudes, position, and
momentum

Q = q + 1

2
h̄∂p P = p − 1

2
h̄∂q

fulfil the canonical commutation rules [Q,P ] = ih̄, the formalism is consistent.
In the two-slit experiment, we can group paths allowed by the context, from the

left and right slit onto the final screen, into subsets of paths with definite initial slit,
say slit L, and final position at the screen q to get

ΨL(q) =
∑
exp

(
i

h̄
S[pathL,q ]

)

where now pathL,q are all paths from L to q. States |L, q> and |R, q> project onto
the SQM state |q>, and we find the marginal amplitude Ψ (q) = ΨL(q) + ΨR(q)
where both components are superposed and interfere. If we previously measure the
slit variable, the two wave components suffer some random phase shift, and the
statistical interference disappears.

We can use the extended formalism to obtain formal distributions of amplitude
as follows: given that the final position is q, the (unobserved) probability that the
initial slit is L becomes

P(L|q) = |ΨL(q)|2
|ΨL(q)|2 + |ΨR(q)|2

Generically, an extended phase space contains coordinates of non-commuting
magnitudes, and the SQM distribution of probability is found in two steps, first a
projection onto a space with commuting magnitudes (SQM) and second application
of Born rule. Fibres of this projection allow to calculate unobservable conditional
distributions of probability.

3 Extended Spin Phase Space

We can consider a discretization of the path into elementary steps�j q, and associate

elementary phases i
h̄
L(qj ,

�j q
�t )�t to them. Then, the total phase along the path is

i

h̄
S[path] =

∑
�j q

i

h̄
L(qj ,

�j q
�t )�t



The Action Reaction Principle in Quantum Mechanics 35

An analogous formalism is presented next for spin variables.
Let us define a generic spin state [1, 10] (s1, s2, . . . , sN ) for a finite number

of directions {n1,n2, . . . ,nN }, nk unit vectors and sk ∈ {+,−}, spin up or down
in direction nk . The particle has well-defined spin values in all the considered
directions (a finite set for easy), but there are spin wave components for all spin
states allowed by the context, with a distribution of amplitude to be defined next.
This hypothesis is similar to the two-slit experiment with the corpuscular particle
following one specific slit but the associated wave following both. These spin waves
can superpose and interfere (as in the two-slit experiment). The distribution of
amplitude is a mathematical tool that encodes this property of superposition and
interference. This is why there is not as distribution of probability in the spin phase
space, we would be ignoring the wave subsystem. In the two-slit experiment, the
distribution of probability P(q) is not obtained by addition of two independent
distributions PL(q) and PR(q), one for each slit. The marginal amplitude of
probability ΨL(q)+ΨR(q) determines the diffraction pattern. As in the path integral
formalism or in the two-slit experiment, marginal amplitudes through projections
from the extended spin phase space will reproduce the usual distributions in SQM.

Let us consider the quaternion

N[n] = (n · i)I+ (n · j)J+ (n · k)K ,

with null real part, associated to a unit vector n. i, j and k are the three unit vectors
of a Cartesian system of coordinates; I, J and K are the three imaginary quaternions,
IJ = K, etc. Each spin state (s1, . . . , sN ) will have an associated amplitude Z, sum
of elementary amplitudes sjNj , Nj ≡ N[nj ],

Z(s1, . . . , sN ) ≡
∑
j

sjNj .

Notice the analogy with the phases in the path integral formalism, sjNj playing the
role of i

h̄
L(qj ,�j q/�t)�t and Z(s1, . . . , sN ) the role of i

h̄
S[path]. In the path

integral formalism, the context determines which paths must be taken into account.
For example, in the two-slit experiment, all paths with end point in the first screen
out of the slits are discarded. Only paths going through one or the other slit and
with end point at the final screen are considered when computing the distribution
of probability along the final screen. Similarly, the context determines which spin
states must be taken into account.

3.1 Standard Spin States in SQM

In the two-dimensional (spin 1/2) Hilbert space of SQM, each state (vector or ray)
has a well-defined spin in some direction, i.e., it is an eigenstate of some spin
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operator. In a preparation procedure using a Stern–Gerlach apparatus, the particle
follows one of the two output virtual paths, and the other path is discarded; therefore,
the spin wave components associated with the discarded path are suppressed. If the
spin value in direction n1 is +1 with certainty, all amplitudes Z(+1, s − 2, . . . , sN )
are considered, while all amplitudes Z(−1, s − 2, . . . , sN ) are discarded. We can
now project the state, computing the marginal amplitudes, onto two-dimensional
Hilbert spaces generated by |+k> and |−k>. For k = 1 we get

Z(+1) =
∑
s2,...,sN

Z(+1, s − 2, . . . , sN ) = 2N−1N1

and

Z(−1) = 0

because all amplitudes Z(−1, s2, . . . , sN ) have been discarded by the context. This
determines the distribution of probability P(+1) = 1, P(−1) = 0 as expected. For
k = 2 (all k �= 1 are similar), we find

Z(s2) =
∑
s3,...,sN

Z(+1, s − 2, . . . , sN ) = 2N−2 (N1 + s2N2)

with associated distribution of probability

P(s2) = |N1 + s2N2|2
|N1 + N2|2 + |N1 − N2|2

which becomes the correct SQM distribution of probability

1

2
(1+ s2n1 · n2) .

3.2 New Isotropic State

In SQM there is not an isotropic state, with probabilities P(sk) = 1
2 for all k. But

this should be the individual quantum state of each particle of the composite singlet.
This individual state can be represented in the extended formalism by including all
spin wave components. All generic spin states are allowed by the context. We find
in this case the projections

Zisotropic(sj ) = 2N−1sjNj
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for both sj ∈ {+,−}. The associated distributions of probability are now P(sj ) =
1
2 , and the corresponding state is isotropic. One lesson of the former analysis
is that new quantum states can appear in an extended formalism, states without
representation in SQM. The amplitude for this new isotropic state can now be used
to represent the composite singlet.

4 The Singlet State

The isotropic spin state allows a local, separable representation of the singlet. Each
particle α and β is in the individual isotropic state, which agrees with the even
probabilities of spin up and down in arbitrary directions. The correlation between
simultaneous measurements over α and β of a jointly generated pair is obtained by
correlating each (subquantum) states (s1, s2, . . . , sN )β = −(s1, s2, . . . , sN )α , i.e.,
imposing perfect anticorrelation for measurements in a common arbitrary direction.
In this way, we measure sα1 along n1 and sβ2 along n2. This last measurement over
particle β allows to know (without direct measurement) the hidden but deterministic
value sα2 = −sβ2 of the corpuscular component of particle α. For the joint

distribution of probability P(sα1 , s
α
2 ) = P(sα1 ,−sβ2 ), we use the general procedure,

projection, and Born rule. First, the marginal amplitude

Zisotropic(s
α
1 , s

α
2 ) = 2N−2(sα1 N1 + sα2 N2)

is obtained by addition of all other variables s3 to sN . Second

P(sα1 , s
α
2 ) =

|sα1 N1 + sα2 N2|2∑
s′1,s′2 |s

′α
1 N1 + s ′α2 N2|2

reproduces the SQM result

P(sα1 , s
β
2 ) = P(sα1 , sα2 = −sβ2 ) =

= 1

2
(1+ sα1 sα2 n1 · n2) =

= 1

2
(1− sα1 sβ2 n1 · n2)

Obviously, the superposition and interference obtained with marginal amplitudes
of probability cannot be reproduced with a global distribution of probability and
its marginal probabilities. Bell’s type theorems do not apply because there is an
explicit contextual character in the algorithm and the result depends on the spin
wave components present and their superposition and interference, as in the two-slit
experiment.
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5 Summary

An extended phase space for an alternative formulation of Quantum Mechanics is
needed in order to recover the action reaction principle. This formalism is consistent
and allows to project the generalized quantum states into standard quantum states of
SQM, where Born rule is applied to obtain the usual distributions of probability. In
the case of spin degrees of freedom, a phase space of generic spin states is defined
where the distribution of amplitude takes values in the imaginary quaternions.
Standard SQM spin states are reproduced and a new isotropic state defined. Using
the quantum isotropic spin state, the singlet state of a composite becomes disentan-
gled, each particle having its independent description. The perfect (anti)correlation
appears between the subquantum states at the generation event. Typical interference
in the calculation of marginal amplitudes determines the standard distributions of
probability. The contextual character of the algorithm cannot be reproduced with a
global distribution of probability; Bell’s theorems do not apply.
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Replacing Nothing with Something
Special: Contextuality-by-Default
and Dummy Measurements

Ehtibar N. Dzhafarov

Replacing “nothing” with “something” chosen for its special properties is one of
the main ways a mathematical theory develops. One speaks of “nothing” when
one chooses no elements from a set, adds no number to a total, or leaves a
function unchanged; but a more sophisticated way of speaking of these “nothings”
would be to take an empty subset of the set, to add a zero to the total, and
to apply an identity operator to the function. As a rule, these “somethings”
provide not only greater convenience, but also a greater insight. Mature set theory
cannot be constructed without empty sets, nor can algebra be developed without
neutral elements of operations. One faces an analogous situation in the theory of
contextuality: “nothing” here means that certain things are not measured in certain
contexts, and the “special somethings” to replace these “nothings” are deterministic
random variables.

Contextuality analysis applies to systems of random variables Rcq representing
the outcomes of measuring a content q (property, object, thing, question, sensory
stimulus) in a context c (circumstances, conditions, setup). An example is the matrix
below, with three contents and four contexts:

R1
1 R1

2 · c = 1

R2
1 R2

2 · c = 2

R3
1 · R3

3 c = 3

· R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R
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The rules such a matrix obeys are: (i) all random variables in the same column
have the same set of values (and sigma-algebras); (ii) all random variables within a
row are jointly distributed; (iii) random variables in different rows are not jointly
distributed (are stochastically unrelated to each other) [6, 7, 10]. The system is
considered noncontextual if the joint distributions of the random variables within
the rows are compatible with the joint distributions imposed on the random variable
within each column (the compatibility meaning that both the observed row-wise
distributions and the imposed column-wise ones can be viewed as marginals of a
single probability distribution imposed on the entire system). Otherwise the system
is contextual.

We will use the system R throughout to illustrate our points, but the three points
we make below hold for all systems of random variables indexed by contents and
contexts.

As we see in the matrix, not every content is measured in every context, there
are cells with “nothing” in them. It is natural to posit, however, that for a random
variable being undefined is logically equivalent to being defined as always attaining
a value labeled “undefined.” If so, we can fill in the empty cells with deterministic
random variables,

R1
1 R1

2 U1
3 ≡ u c = 1

R2
1 R2

2 U2
3 ≡ u c = 2

R3
1 U3

2 ≡ u R3
3 c = 3

U4
1 ≡ u R4

2 R4
3 c = 4

q = 1 q = 2 q = 3 R′

where u is interpreted as “undefined,” and U ≡ u means that random variable U
equals u with probability 1. In order to comply with the rule (i) above, this value u
then should be added to the set of possible values of all other random variables, as
attained by each of them with probability zero.

The first point of this note is that a well-designed contextuality theory should
allow the addition of these deterministic U ’s to any system without changing
whether the system is contextual or noncontextual. One can even implement the
addition of the deterministic U ’s empirically, e.g., by setting the procedure/device
measuring q = 3 in contexts c = 3 and c = 4 to produce a fixed outcome interpreted
as “undefined” in contexts c = 1 and c = 2.

The second point of this note is that this desideratum cannot be satisfied if one
confines contextuality analysis to consistently connected systems only, the systems
in which all measurements of the same content (e.g., R1

1, R2
1, and R3

1 in R) have
the same distribution [10]. With the exception of the Contextuality-By-Default
theory, discussed below, and of Khrennikov’s conditionalization approach [3, 12],
this constraint is common in studies of quantum contextuality [1, 2, 4, 14, 15]
(see [5, 8, 9, 13] for detailed discussions). Thus, if R1

1, R2
1, and R3

1 in R do not
have one and the same distribution (i.e., the system is inconsistently connected),
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then, from the traditional point of view, either the notion of contextuality is not
applicable to R, or the system is considered contextual “automatically.” In [6–
8, 10] we provide several arguments against the necessity and desirability of the
consistent connectedness constraint, and the present note adds one more. Namely,
if one agrees that the transition from R to R′ is a mere relabeling, one should
consider it a flaw that in the traditional understanding of contextuality this transition
has dramatic consequences: by adding the deterministic U ’s to a consistently
connected and noncontextual R, one would “automatically” render it contextual
or else unanalyzable in contextuality terms.

The third point of this note is that the desideratum in question is satisfied in the
Contextuality-By-Default (CbD) theory [6, 8–10]: adding the deterministic U’s to
R does not change the degree of contextuality computed in accordance with CbD.
Moreover, the fixed value u in R′ can be replaced with any other fixed values, and
different fixed values can be chosen in different cells:

R1
1 R1

2 Z1
3 ≡ z1

3 c = 1

R2
1 R2

2 Z2
3 ≡ z2

3 c = 2

R3
1 Z3

2 ≡ z3
2 R3

3 c = 3

Z4
1 ≡ z4

1 R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R∗

Since the choice is arbitrary, one can always avoid the necessity of adding, with
zero probabilities, the values zcq to the set of possible values of all Rc

′
q , in the same

column. One can instead choose zcq to be one of these possible values (no matter

which). Let, e.g., R3
3 (hence also R4

3) in R be a binary random variable with values
+1/− 1; then, Z1

3 can be chosen either as Z1
3 ≡ 1 or Z1

3 ≡ −1.
The rest of the note demonstrates our third point. (Non)contextuality of the

system R in the CbD theory is understood as follows.

(a) First we introduce a certain statement C that can be formulated for any pair of
jointly distributed random variables. This statement should be chosen so that,
for any column in R, say,

{
R1

1, R
2
1, R

3
1

}
for q = 1, there is one and only one

set of corresponding and jointly distributed random variables,
(
T 1

1 , T
2

1 , T
3

1

)
,

such that (1) each of the T ’s is distributed as the corresponding R and (2)
any two of the T ’s in

(
T 1

1 , T
2

1 , T
3

1

)
satisfy the statement C. This unique triple(

T 1
1 , T

2
1 , T

3
1

)
is called the C-coupling of

{
R1

1, R
2
1, R

3
1

}
, and the C-couplings

for other columns of R are defined analogously. Note that any part of the
C-coupling of a set of random variables is the unique C-coupling of the
corresponding subset of these random variables. In CbD, assuming all random
variables in R are binary, the role of C is played by the statement “the two
random variables are equal to each other with maximal possible probability.” If
the measurements are not dichotomous, then the system has to be dichotomized,
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as detailed in [11]. We need not go into these details, however, because we can
make our point on a higher level of abstraction, for any C with the just stipulated
properties.

(b) The system R is considered C-noncontextual if there is a random variable
(vector) S with jointly distributed components corresponding to the components
of R,

S1
1 S1

2 · c = 1

S2
1 S2

2 · c = 2

S3
1 · S3

3 c = 3

· S4
2 S4

3 c = 4

q = 1 q = 2 q = 3 S

such that its rows are distributed as the corresponding rows of R and its
columns are distributed as the C-couplings of the corresponding columns of R.
Otherwise, if such an S does not exist, the system is C-contextual. The intuition
behind this definition is that the system is C-contextual if the distributions of the
random variables within contexts prevent the random variables measuring one
and the same content in different contexts from being coupled in compliance
with C.

(c) If the system R is C-contextual, the degree of its contextuality is computed
in the following way. The random variable S above is characterized by the
probability masses

p
(
s1

1 , s
1
2 , s

2
1 , s

2
2 , s

3
1 , s

3
3 , s

4
2 , s

4
3

)

assigned to every value
(
S1

1 = s1
1 , S

1
2 = s1

2 , . . . , S
4
3 = s4

3

)
of S. We redefine

S into a quasi-random variable if we replace these probability masses with
arbitrary real numbers

q
(
s1

1 , s
1
2 , s

2
1 , s

2
2 , s

3
1 , s

3
3 , s

4
2 , s

4
3

)

summing to 1. We require that this quasi-probability distribution satisfies the
same properties as the distribution of S in (B), namely, that it agrees with the
distributions of the rows of R and with the distributions of the C-couplings of
its columns. Thus, the agreement with the first row distribution means that, for
any R1

1 = r1
1 , R

1
2 = r1

2 , we should have

∑
s21 ,s

2
2 ,s

3
1 ,s

3
3 ,s

4
2 ,s

4
3
q
(
r1

1 , r
1
2 , s

2
1 , s

2
2 , s

3
1 , s

3
3 , s

4
2 , s

4
3

)

= Pr
[
R1

1 = r1
1 , R

1
2 = r1

2

]
.

(1)
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The agreement with the distribution of the C-coupling
(
T 1

1 , T
2

1 , T
3

1

)
for the first

column means that, for any R1
1 = r1

1 , R
2
1 = r2

1 , R
3
1 = r3

1 , we should have

∑
s12 ,s

2
2 ,s

3
3 ,s

4
2 ,s

4
3
q
(
r1

1 , s
1
2 , r

2
1 , s

2
2 , r

3
1 , s

3
3 , s

4
2 , s

4
3

)

= Pr
[
T 1

1 = r1
1 , T

2
1 = r2

1 , T
3

1 = r3
1

]
.

(2)

Such quasi-random variables S always exist, and among them one can always
find (generally non-uniquely) ones whose total variation is minimal [7]. The
total variation is defined as

V [S] =
∑

s11 ,s
1
2 ,s

2
1 ,s

2
2 ,s

3
1 ,s

3
3 ,s

4
2 ,s

4
3

∣∣∣q
(
s1

1 , s
1
2 , s

2
1 , s

2
2 , s

3
1 , s

3
3 , s

4
2 , s

4
3

)∣∣∣ . (3)

The quantity minV [S]− 1 can be taken as a principled and universal measure
of the degree of contextuality. If this quantity equals 0, which is the smallest
possible value for V [S]−1, then all quasi-probability masses q are nonnegative,
and S∗ is a proper random variable. The system then is C-noncontextual.

It is easy now to see the truth of our claim that R∗ has the same degree of
contextuality as R. On the right-hand side of (1),

Pr
[
R1

1 = r1
1 , R

1
2 = r1

2

]

= Pr
[
R1

1 = r1
1 , R

1
2 = r1

2 , Z
1
3 = z1

3

]
,

because Z1
3 ≡ z1

3. The same reasoning applies to other rows of R∗. On the right-
hand side of (2), for any Ż4

1 ≡ z4
1,

Pr
[
T 1

1 = r1
1 , T

2
1 = r2

1 , T
3

1 = r3
1

]

= Pr
[
T 1

1 = r1
1 , T

2
1 = r2

1 , T
3

1 = r3
1 , Ż

4
1 = z4

1

]
.

Now,
(
T 1

1 , T
2

1 , T
3

1 , Ż
4
1

)
is the C-coupling of

{
R1

1, R
2
1, R

3
1, Z

4
1

}
. Indeed, the

C-coupling
(
Ṫ 1

1 , Ṫ
2

1 , Ṫ
3

1 , Ż
4
1

)
of
{
R1

1, R
2
1, R

3
1, Z

4
1

}
exists and is unique. The

part
(
Ṫ 1

1 , Ṫ
2

1 , Ṫ
3

1

)
is then the unique C-coupling of

{
R1

1, R
2
1, R

3
1

}
, whence(

Ṫ 1
1 , Ṫ

2
1 , Ṫ

3
1

) = (
T 1

1 , T
2

1 , T
3

1

)
. The same reasoning applies to other columns of

R∗. So the right-hand sides in the equations exemplified by (1) and (2) do not
change when R is replaced with R∗. Since, under this replacement, the left-hand
sides of these equations do not change either, except that each quasi-probability
value

q
(
s1

1 , s
1
2 , s

2
1 , s

2
2 , s

3
1 , s

3
3 , s

4
2 , s

4
3

)
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in them is bijectively renamed into

q
(
s1

1 , s
1
2 , z

1
3 , s

2
1 , s

2
2 , z

2
3 , s

3
1 , z

3
2, s

3
3 , z

4
1, s

4
2 , s

4
3

)
,

the set of the quasi-probability distributions solving (1) and (2) (and similar
equations) in R∗ remains the same as in R, and the minimum value of V [S] in (3)
therefore remains unchanged.
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A Computational Proof of Locality
in Entanglement

Han Geurdes

1 Introduction

1.1 Tabula Rasa

In introductory courses of quantum mechanics, the foundation of quantum theory
is a difficult topic. A general presentation of quantum mechanical interpretations
can be found in [1]. In a good but somewhat older textbook such as Merzbacher
[2], the probability interpretation is flatly introduced as a doctrine. Given the wave
function ψ(r, t), the doctrine is that the probability to find a particle in a volume
d3r around a point r in R

3, at time t , is equal to |ψ(r, t)|2d3r . Here, |ψ(r, t)|2 =
ψ∗(r, t)ψ(r, t). The approach of Hameka follows, page 20, a similar procedure [3]
as does the textbook, page 73, of Rae [4].

It remains a mystery why nature has two different types of probability. It also is
a mystery how the one type of probability transforms to the other and why addition
of relativity bars the possibility of a wave interpretation of the wave function [5].

An even bigger mystery in quantum theory is entanglement. Perhaps some
explanation is at its place here. Entanglement is the translation of the term
“Verschränkung” introduced by Schrödinger. It means that there are pure states
of a compound system which yield stronger correlations in the joint probability
distribution of measuring results on the subsystems than those which can arise from
correlations between individual states of the subsystems [6].
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1.2 Bell’s Work

In the debate of the foundation of quantum theory, Bell’s theorem [7] is considered
an important milestone. In order to study Einstein’s incompleteness criticism [8],
Bell formulated an expression for the correlation between distant spin measure-
ments. With this formulation, it was possible to answer Einstein’s question of
completeness with an experiment. It is important to note the following. The exper-
imenters using Bell’s correlation formula did not “look under the hood” for extra
parameters. They employed classical statistics in spin measurement experiments
without much physics theory about hidden variables. The key element is that Bell’s
theorem exploits the fundamental difference between measure theoretic probability
and quantum probability.

Einstein’s criticism initially did not include the spin. The reformulation of
Einstein’s criticism [8] into the entanglement between spins was provided by David
Bohm [9] and [10]. For the ease of the argument, let us say that Einstein argued
for extra hidden parameters to explain spin correlation. Einstein insisted that the A
wing of the experiment is independent of what is done in the B wing and vice versa
[11]. Funny enough, here we also can ask a naive question. Namely, how far does
Einstein think A and B should be separated for this independence to occur?

The restriction of locality was introduced because in theory the correlation is
independent of the distance between the sites of measurement. The Einsteinian
locality concept—however see also the previous naive questions—can be tested
with the use of the Clauser-Horne-Shimony-Holt (CHSH) inequality. The inequality
is derived [12] from Bell’s correlation formula [7], E(a, b). Bell’s formula reads:

E(a, b) =
∫
dλρλAλ(a)Bλ(b) (1.1)

In Eq. (1.1), the (classical) probability density of the hidden variables, λ, is ρλ ≥
0. So,

∫
dλρλ = 1. The local effect of the λ, e.g., an array (λ1, λ2), can be

accomplished if, e.g., λ1 is assigned and related to the A wing and λ2 to the B wing
of the experiment. Furthermore, the measurement functions Aλ(a) and Bλ(b) both
project in {−1, 1} to represent binary spin variables (e.g., up=1, down=−1 along an
arbitrary z-axis). The a and b represent unit parameter vectors. Given (1.1) we can
study the following four terms:

S = E(1, 1)− E(1, 2)− E(2, 1)− E(2, 2) (1.2)

The CHSH inequality S ≤ 2 can be derived from (1.2). See [12] and, e.g., [11]. So
for an E(a, b) in the form (1.1), we have by necessity S ≤ 2. However, note that
S > 2 is possible with E(a, b) = a · b for certain proper (a, b) combinations of
setting parameter vectors. To be sure, the labels 1 and 2 in (1.2) refer to a and b
vectors that can be set in the experiment. For example, 1 on the A side, operated by
Alice, is a(1) = (a(1)1 , a

(1)
2 , a

(1)
3 ), etc., with ||a(1)||2 = a(1) · a(1) = 1. The || · || is
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the Euclidean norm. Similarly, looking at A, the 2 is associated to a(2). Moreover,
for B we have b(1) and b(2). Below, a numerical example of S ≤ 2 violating setting
combinations will be given.

Before entering into more details, the author would like to note that we can
look upon a CHSH experiment as the question if measure theoretic or quantum
probability is ruling entanglement.

1.3 Correlation in Experiment

Here we answer the question how to obtain in experiment the E values to be used
in (1.2). It is technically still impossible to measure directly the E(a, b) for a single
pair. The correlation is therefore derived from counting measurement results. The
results enter the raw product moment correlation [13] to approximate the correlation
E(a, b). This is an “averaged over many pairs” correlation. Again, the naive student
could respond like: wait a minute, things in quantum theory are already not always
what they look like, so how do you know that one pair correlation can be compared
to the next and be averaged in experiment? We don’t, but we do it anyway.

Suppose we measure N spin pairs. After the last measurement in the series, the
correlation E(a, b) is in the experiment of [14] computed approximately. Using the
Kronecker delta δs,r , we count the number of times SA,n(an) = SB,n(bn) and the
number of times SA,n(an) = −SB,n(bn), i.e.:

N(= | a, b) =
N∑
n=1

δSA,n(a),SB,n(b)δan,aδbn,b, (1.3)

and

N( �= | a, b) =
N∑
n=1

δSA,n(a),−SB,n(b)δan,aδbn,b. (1.4)

Hence, we obtain the expression of the correlation

E(a, b) = N(= | a, b)−N( �= | a, b)
N(= | a, b)+N( �= | a, b) (1.5)

This type of computation of E is also employed in the algorithm and its presented
proof of concept in Appendix.

It must be noted that if the researcher employs the inequality S ≤ 2, defined
in (1.2), to see in experiment if E in (1.5) gives S ≤ 2, then implicitly, Bell’s
definition of correlation (1.1) is employed. Hence, a measure theoretic probability
is tested in experiment. It is one where E(a, b) = a · b is considered impossible by
definition. However, see [15].
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2 Preliminaries in the Computer Design

Peres [11] formulates it thus: “. . . . . . , a hidden variable theory which would predict
individual events must violate the canons of special relativity. . . .” Furthermore, the
program must mimic an important experiment in the test of locality performed by
Weihs [14]. Note that Weihs’s experiment is related to the work of Aspect [16].
In Weihs’s experiment, strict locality conditions were closely approximated, and a
violation S > 2 was observed for violating setting combinations of a and b with a
quantum correlation a · b.

In [17], however, the present author already showed that there is a nonzero
probability that a local hidden variables model may violate the CHSH. Objections to
the probability loophole claim in [17] were raised in [18] but were answered in [19].
The main point is that the employed probability density remains fixed during the
trials. The matter of a possible defective Bell formula was further developed in [15].

It must be noted that the author of [18] acts as though a random model occurs
in [17]. However, if p1 and p2 are random numbers between 0 and 1 and r =
p1 + p2, then the model to compute r is fixed, i.e., a + operation, despite the fact
that the inputs p1 and p2 are random and the outcome r is therefore also random.
The present paper completes the rejection of what has been claimed in [18] and
observes the nontheatrical requirements of [13].

2.1 Settings

On the A side, Alice has 1 ≡ 1√
2
(1, 0, 1) and 2 ≡ (−1

2 ,
1√
2
, 1

2 ) at her disposal. On

the B side, Bob has 1 ≡ (1, 0, 0) and 2 ≡ (0, 0,−1). For the ease of the argument
we inspect, E(a, b) = a · b. A simple computation then shows that for a quantum
outcome, we would seeE(1, 1) = 1/

√
2,E(1, 2) = −1/

√
2 whileE(2, 1) = −1/2

and E(2, 2) = −1/2. Hence, looking at (1.2), for a quantum value, S = 1+√2 > 2
is expected in an experiment. The setting parameters a and b are given a value when
the A- and B-wing particles leave the source. In flight, we allow B (Bob) to change
his setting.

2.2 Information Hiding

We note that information hiding between Alice and Bob is the algorithmic real-
ization of strict locality. Furthermore, in the computer simulation, A doesn’t know
anything about B and vice versa. All computations are “encapsulated,” i.e., local,
despite the fact that in the proof of concept (POC), they occur in a single loop
(viz., Appendix). In the POC, both the A section (Alice) and the B section (Bob)
make use of the produced discrete variables created in the source section. This is the
computational equivalent of S sending entangled particles to A and B.
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2.3 Notation

In the formalism of the algorithm presented below, there are no measures in the
sense of measure theoretical distributions. We are dealing with arrays of variables,
variables as entries of those arrays, and functions of those variables. Most of the
variables and functions project into {−1, 1}. The setting array variables project into
{1, 2}. Index variables, most of the time denoted with, e.g., n,m, k, are integer
positive numbers, i.e., n ∈ {0, 1, . . . .N}, with N ∈ N(N ≥ 1).

3 Design of the Algorithm Based on a Local Model

3.1 Random Sources

In the first place, let us introduce random sources to represent random selection of
setting. We look at the randomness from the point of view of creating an algorithm.
If there areN trials, i.e., particle pairs, in the experiment, then, e.g., two independent
random sources can be seen as two arrays with index running from 1 to N . If NN =
(1, 2, 3, . . . , N), then we, initially, define three random source arrays:

RAS = sample(NN)
RB = sample(NN)
RC = sample(NN)

(3.1)

Technically, the map NN �→ R· is 1-1 but randomized. As an example, suppose we
have N5 = (2, 3, 5, 1, 4) and so N5,1 = 2. Then in the first trial n = 1, the N5,1-th
element of another array, e.g., q = (0.1, 0.4,−0.9, 1.2, 1.0), is randomly selected;
hence, q(n = 1) = 0.4. In the second trial, looking at N5, we see N5,2 = 3 so
q(n = 2) = −0.9, etc. Note that this two-array procedure is similar to rolling a
five-sided dice. If, e.g., N5 is replaced by M10 and multiples are allowed, such as
in M10 = (2, 3, 5, 1, 4, 4, 5, 1, 3, 3), this q “dice” will in 10 turns show three times
the side with −0.9.

In this way, a random source R can be employed in a program and be looked
upon as a physical factor giving rise to randomness. In a certain sense, it refers
to ’tHoofts [20] deterministic law hidden inside “randomness.” The “freely tossing
of a coin” is now replaced with “freely randomizing” the RX by filling it with
sample(NN). There can be no fundamental objection to this particular two-array
form of randomizing.
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3.2 Design Time Settings

Experimentalists may claim the construction of their measuring instruments. Hence,
servers in the experiment may be tuned in design time. There is no fundamental
reason to reject design time to the designer of a computer experiment. There is also
no reason in physics theory to reject the denial of access of the observers Alice and
Bob to information put in the system by the designer during design time.

Because there is a flow of particles between the S and the A, this sharing, i.e.,
RA = RS = RAS , cannot be prevented at run time in a real experiment. The
latter is reflected in the infrastructure of servers in the numerical experiment. The
{an}Nn=1 in the experiment are based on the a array and the RA. For instance, a =
(1, 2, 1, 2, 1, 2, . . .). In design time, the designer is allowed to introduce a spin-like
variable σn ∈ {−1, 1} in the S computer. In the sequence of trials, the variable σn is
selected from σ = (−1, 1,−1, 1,−1, 1, . . .).

We may note that, in case of RA = RS , then because of RA = RS , the relation
an = 1 + 1

2 (1 + σn) occurs on the A side of the experiment. The setting an can be
either 1 or 2 and is already presented in terms of selection unit parameter vectors
in R

3.
Note that the variable σn can be sent to Bob and to Alice without any additional

information conveying its meaning. So, Bob cannot derive anything from σn even
though the designer knows the relation. This is because Bob is only active in run
time, not in design time.

Finally, the source may also send a ζn ∈ {−1, 1} to both Alice and Bob. The ζn
in the experiment is based on the RC = sample(NN) and derives from a ζ array.

The second random source, RB , is used by B exclusively, and the third random
source, RC , is used by the source exclusively. There appears to be no physical
arguments why the sketched configuration is a violation of locality or cannot be
found in nature.

3.3 Random Sources R· and Particles

The source sends a σn ∈ {−1, 1} and a ζn ∈ {−1, 1} to both A and B. In a formal
format:

[A(an)] ← (σ, ζ )n← [S] → (σ, ζ )n→ [B(bn)]

Here, e.g., [A(a)] represents the measuring instrument A where Alice has the a
setting. This setting “runs synchronous” with σ in the source because of the “shared”
random source. The particle pair source is represented by [S].

The σ and ζ going into the direction of A are equal to the σ and ζ going to B.
Each particle is, in the algorithm, a pair (σ, ζ )n.
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3.4 A Side Processing of the (σ, ζ )n

Firstly, let us for the ease of the presentation define a σA,n = 1+σn
2 . The σn at the n-th

trial from the source S is a result of the sharing of RAS . The way the information is
used remains hidden to B in order to maintain locality in the model. So, secondly, we
have the setting an = σA,n + 1. Furthermore, we define two functions ϕ−A,n = σA,n
and ϕ+A,n = 1 − σA,n. The two functions, together with ζn, produce, in turn, a
function:

fζn(an) = ζnϕ+A,n − ϕ−A,n
Note that fζn ∈ {−1, 1}. Hence, we can store the outcome of the computations on
the A side immediately in an N -size array SA,n, together with an, for trial number n
and n = 1, 2, 3, . . . .N .

3.5 B-Side Processing of the (σ, ζ )n

In the first place, let us determine with the B-associated random source, RB , the
setting bn. Then, secondly and similar to the case of A, but of course completely
hidden from A, the (σ, ζ )n information from the source is processed. We have
σB,n = 1+σn

2 , then ϕ−B,n = σB,n and ϕ+B,n = σB,n + (δ1,b − δ2,b)(1 − σB,n). This
leads to the function:

gζn(bn) = ζnϕ+B,n +
1− ζn√

2
ϕ−B,n

For gζn(bn), we may note that it projects in the real interval [−√2,
√

2]. If σB,n = 1,
then gζn(bn) = 1 for ζn = 1 and

√
2 − 1 for ζn = −1. If σB,n = 0, then ϕ−B,n = 0

and gζn(bn) = ±1.
Hence, in order to generate a response in {−1, 1}, a random λ2 from the real

interval [−√2,
√

2] is uniformly drawn and SB(bn) = SB,n = sgn(gζn(bn)− λ2) in
the n-th trial. We note that as long as Bob doesn’t know the meaning of σB,n, derived
from σn and related to the RAS , locality is warranted. Bob, like Alice, doesn’t have
access to the design time information.

3.6 Computer Infrastructure

In computer infrastructure terms, one can imagine cables running from the source
server running to the A server and running from S server to the B server. One cable,
CSA(σn), carries the σn from S to A, and the other cable, CSB(σn), carries the copy
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σn from S to B. Secondly, a cable, CSA(ζn), carries the ζn from S to A, and a cable
CSB(ζn) carries the copy ζn from S to B. In addition to these four cables, a fifth
cable, CAS(RA), is only used by A to share the (information of) RA with S. This
cable is open only once and carries only one “pulse” that informs S about the random
source at A. The exact time when RA is shared is in the program at an n = 0 trial
or particle pair. However, the n = 0 particle pair is merely used for computational
convenience and clarity.

3.6.1 Predetermined

In addition, we note the following. The sharing of RA can also be accomplished in
a way that tHooft [20] would most likely call predeterministic. In this case, server A
and S share a common array of randomly distributed integer numbers in an indefinite
large array. Think of the large array as a design feature like a shared identical random
table between computer A and computer S.

In design time, the A computer receives its N settings 1 or 2. This process starts
at time tstart and ends at tf in > tstart . In computer A, a subsection of the indefinite
large array is identified by tstart and tf in. This timing mechanism runs parallel in
S where a copy of the large array of A resides. Note that a transformation of the
numbers in the subsection can be performed to reach a similar numerical form as if
we would have performed RA =sample(NN). In this case RA and RS are different,
and the “bridging” between A and S is done via the computation of π in S. Here,
πn = 1 when σ(RA)n

= σ(RS)n
and πn = −1 when σ(RA)n

�= σ(RS)n
. In the

predetermined case, the σn is computed like

σn = πnσ(RS)n

3.6.2 Mr. X

It must also be noted that nature is neutral in the following sense. Two situations of
feeding parameter settings into measuring instruments may arise. Firstly, looking at
the A side, a proverbial Mr. X is sitting in front of A, and, before (σ, ζ )n enters the
measurement area of A, Mr. X has selected with a coin the an. Secondly, we have
the case where Mr. X delivers hisN coin tosses before the experiment starts, and A
runs on a batch input of Mr. X’s coin tosses. In both cases, Alice only makes a record
of the an and the resulting±1 output. We can imagine a Mr. Y at Bob’s side and Bob
only recording the outcome. The difference between on-the-spot hand-fed entrance
of coin toss values for an and batch processing of previous series is insignificant
to the problem and a mere illusion. This is so because we may assume that nature
has no eyes to witness the difference between the activities of Mr. X. The reason
is that the incoming particle makes contact with the instrument which has a certain
setting. The incoming particle does not make contact with Mr. X who is delivering
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the settings. Hence, the use of previously selected setting series, “from the days
of Hammurabi”, which are online, just-in-time, and hand-fed into A, can equally
well and without any violation of experimental protocol be processed in a batch and
translated into RA. The RA can subsequently be shared with S.

It must be noted also that the proverbial Mr. X may freely use one online hand-
fed set from Hammurabi’s days at the side of B. Mr. Y is then posted at Alice
and makes a setting entrance batch possible. Because Mr. X has no knowledge of
design time and the labels A and B can be arbitrarily interchanged, the selection of
Mr. X with the single online hand-fed set from the days of Hammurabi will have
a nonzero probability to violate the CHSH with the local algorithm provided in the
paper. Of course, the next step is the ad hoc requirement to have two ancient hand-
fed inputs. But before doing that, Mr. X must explain if nature at A would really
note the difference. If not, then this requirement only has theatrical value. If yes,
then the choice of having a Hammurabi set is allowed into the design too. Suppose
Simon is running the source. Then why would the data from Hammurabi’s days
be accessible to Mr. X and not to Simon? The setting at Bob remains at all times
random. Again, it is unlikely that nature in A will behave differently when Mr. X is
holding a tablet with cuneiform markings and feeding just-in-time 1’s and 2’s into
the selection area the lower small rectangle in the A rectangle of Fig. 1 contrasted
with the situation where Mr. Y helps Mr. X with the translation and writes down
the 1’s and 2’s from the tablet first and puts them afterward in the A area to derive a
random source RA, etc. The question is how far must one allow the incorporation of
theatrical requirements in the design. Depending upon the amount of omniscience a
stakeholder thinks he or she has, theatrical requirements are thought necessary.

It is another matter, whether or not Mr. X is able to determine the difference
between, e.g., a RC =sample(Nn) and ζ = (−1, 1, . . . ) random process and a coin
toss for obtaining ζn ∈ {−1, 1}, with n = 1, 2, . . . , N . Here a test resembling a
Turing test can be invoked [21]. A computer generates 1’s and −1’s with random
source and value arrays versus a human tosses a coin and generates a series of 1’s
and−1’s. Both processes are covert. Mr. X has to decide if there is a difference. The
claim is that Mr. X cannot detect the difference better than chance.

4 Conclusion and Discussion

In the paper, a simple design is given that is able to violate the CHSH inequality
with numerical values close to the expected quantum mechanics. The reader kindly
notes that no violation of locality is employed. B doesn’t know the meaning of the
A-S shared information sent to B. The information from S to Alice is inaccessible to
Bob. Both Alice and Bob are not allowed access to the design. Further, if the sharing
of information runs along the lines of ’tHooft’s predeterminism [20], then S and A
do not know they share information, i.e., the random source array, RA.

The reader also notes that the computer setup is designed to explain the outcome
of the A-S-B experiment such as in Weihs’s [14] and should not be confused with
experimental configurations unequal to A(a)← S → B(b).
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Fig. 1 Explicit key concepts of computer infrastructure in predetermined format. The RA is
shared between A and S. In S, a computation of an auxiliary array π is run at n = 0 to generate
the σn for n > 0. The small lower rectangles in the A and B are information inflow areas. The
settings a and b are handed over to data storage and to Alice and Bob. In A this handing over runs
via the small rectangle on the left. In B it is the small rectangle on the right. The connection is
shown by a small horizontal line. If, e.g., Bob selects a setting in the n-th trial (n > 0), he pushes a
button and receives from B a setting either 1 or 2. He then puts the setting in the setting area of his
computer (the little lower part of the small top rectangle in B). Then the (σ, ζ )n enters via left side
rectangle in B. The B-side algorithm starts running. After some time, a response ±1 comes out of
the B computer, and Bob makes a record of it together with the setting bn. Similar case for Alice,
the generation of the sigma and zeta for Simon are of course hidden from Alice and Bob. This is
indicated by the wiggely lines

In Appendix, the essential loops in the R program over n = 1, 2, 3 . . . N are
presented. The code is the POC of the algorithm with RA = RS = RAS . This
situation refers to “pretrial information leakage” from A to S. In the case of a
predetermined format, such as in Fig. 1, we have RA, RS , RC , and RB . This is not
an active information leakage but a wired-in sharing of information in design time.
In the latter case, π is auxiliary to the computation of the σn. The reader is referred
to Fig. 1. It is noted that nobody knows if, either via A-S leakage or via wired-
in predetermined sharing, the measuring instrument, A, and the particle source, S,
share information yes or no. The use of encapsulating information and a distinction
between design time and run time also makes sure that A and S are unaware that
they share information.

In both cases, we assumed a n = 0 initial particle pair to do the necessary initial
computations. Furthermore, there is a flow of particles between S and A. From S
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to A, the flow is “forced” by the experimenter. In this design, flow of information
fromA to S can be enforced by nature on the experimenter. It is perhaps like ’tHooft
claimed: “. . . . every no-go theorem comes with small print” [20].

To this, it must be added that the CHSH is based on Bell’s formula. In turn, Bell’s
formula is based on the (probabilistic) distribution of hidden variables λ. The POC
computer program is a typical “classical” algorithm. The setup of three computers
is a realization of a classical system that mimics the instruments in the experiment.
How would an opponent of extra local parameters interpret the numerically obtained
violation, other than the rejection of the necessity of quantum probabilities to violate
the CHSH?

As required by the author of [18], a computer simulation rejects the criticism
raised in [18]. We may claim this because our “freezing the setting of a at particle
creation” is a valid CHSH type of experiment. It would be strange to say that locality
and causality cannot occur in an experiment where “in-flight” changes in both wings
are allowed whereas one must admit that locality and causality occur when only B-
wing “in-flight” changes of setting may occur. This is all the more so because the A
and B role in the simulation can be selected randomly.

The metaphor requirements of [13] are met or are identified as solvable within
the design. Note that a violation of the CHSH criterion would, most likely, not have
been possible without a probability loophole in the CHSH [17]. Furthermore, the
freely selected settings are created at design time. It is, moreover, hard to see how
a particle pair in a distant source would behave differently when Alice and Bob or
an external agent such as Mr. X employs, to them, unknown random sequences
RA and RB for their setting selection, compared to the case where a coin to
select the respective setting is employed. We note that preformed but just-in-time
hand-fed ancient setting sequences by Mr. X would give a nonzero probability
of CHSH violation with a local algorithm. In this sense, progress is made when
looking at [17]. In the latter case, only a nonzero number of quartets of setting
values {(1, 1), (1, 2), (2, 1), (2, 2)} violate the CHSH with local means. Finally, if
the behavior of Mr. X matters at quantum level, then it must be entered into the
design and can be incorporated to solve that challenge in this way. The required
hardware of the computer experiment are three computers, four cables, a timing
mechanism for sending pulses (σ, ζ )n from S to A and S to B, and a fifth cable from
A to S that is used only once in a n = 0 preexperimental statistical trial.

Furthermore, testers must be completely unaware of the design time activities of
the designer. The reason is that, obviously, design time refers to the inner workings
of nature which are considered unknown in this case. Implementation of the
software on the A- and B-side algorithms plus detector timers is required together
with the algorithm for S. The design of the infrastructure for a predetermined format,
which also can be built with the hardware given above, is provided in Fig. 1. Of
course, contingency programming for n = 0 needs to be done such that no single
particle pair lacks from counting. In tests on an ordinary computer, a maximum of
N = 1× 107 number of particle pairs was reached.

We claim that we are allowed to say that the present result corrects Peres’
statement [11] that violations of the CHSH inequality “violate the canons of special
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relativity.” We also add here that serious doubts can be cast on the mathematical
consistency of Bell’s methodology [15]. To the present author, this mathematical
deficit of Bell’s methodology represents an additional reason to maintain the idea
of local hidden variables in the sense of additional parameters to supplement the
wave function. However, to quote Einstein [8] “We believe . . . that such a [more
complete?] theory exists.” Surely, this appears quite easily said but far more difficult
to be obtained.

Appendix

The RA = RS = RAS algorithm is shown in the POC.

N<-4e5
a<-array(0,N)
aKeep<-array(0,N)
sigma<-array(0,N)
zeta<-array(0,N)
b<-array(0,N)
bKeep<-array(0,N)
RAS<-sample(seq(1,N),N,replace=FALSE,prob=NULL)
RB<-sample(seq(1,N),N,replace=FALSE,prob=NULL)
RC<-sample(seq(1,N),N,replace=FALSE,prob=NULL)
#
for(j in 1:N){
k<-as.integer(j/2)
m<-j/2
if(m==k){
a[j]<-2
b[j]<-2
sigma[j]<-1
zeta[j]<-1

}else{
a[j]<-1
b[j]<-1
sigma[j]<-(-1)
zeta[j]<-(-1)

}
}
#
scoreA<-array(0,c(2,N))
scoreB<-array(0,c(2,N))
for (n in 1:N){
#Source section
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zetah<-zeta[RC[n]]
sygma<-sigma[RAS[n]]

#A section
aSet<-a[RAS[n]]
aKeep[n]<-aSet
phiAmin<-((sygma+1)/2)
phiAplus<-1-((sygma+1)/2)
f<-zetah*phiAplus-phiAmin
scoreA[aSet,n]<-f

#B section
phiBmin<-((sygma+1)/2)
bSet<-b[RB[n]]
bKeep[n]<-bSet
if(((sygma+1)/2)==1){
phiBplus<-1

}else{
if(bSet==1){

phiBplus<-1
}
if(bSet==2){

phiBplus<-(-1)
}

}
g<-zetah*phiBplus
g<-g+((1-zetah)*phiBmin/sqrt(2))
lambda_2<-runif(1)*sqrt(2)
lambda_2<-sign(0.5 - runif(1))*lambda_2
scoreB[bSet,n]<-sign(g-lambda_2)

}
E<-matrix(0,nrow=2,ncol=2)
Neq<-array(0,c(2,2))
Nneq<-array(0,c(2,2))
for (n in 1:N){
aSet<-aKeep[n]
bSet<-bKeep[n]
if (scoreA[aSet,n]==scoreB[bSet,n]){
Neq[aSet,bSet]<-Neq[aSet,bSet]+1

}else{
Nneq[aSet,bSet]<-Nneq[aSet,bSet]+1

}
}
for(aSet in 1:2){
for(bSet in 1:2){
E[aSet,bSet]<-(Neq[aSet,bSet]-Nneq[aSet,bSet])/
(Neq[aSet,bSet]+Nneq[aSet,bSet])
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}
}
print(N)
print(E)
CHSH<-E[1,1]-E[1,2]-E[2,1]-E[2,2]
print(paste0("CHSH=",CHSH))
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Efficient Energy Transfer in Network
Model of Photosynthesis

Yuta Mitome, Satoshi Iriyama, Keiko Sato, and Igor V. Volivich

1 Introduction

Photosynthesis changes the energy from the sun into chemical energy and splits
water to liberate oxygen and convert carbon dioxide into organic compounds,
especially sugars. Energy from sunlight is used to convert carbon dioxide and water
into organic materials to be used in cellular functions such as biosynthesis and
respiration. Photosynthesis occurs in plants, algae, and many species of bacteria.
Photosynthesis factory in cell consists of two complex of molecular which are
antenna and the reaction center. The antenna proteins absorb light and transmit the
resultant excitation energy between molecules to a reaction center. Photosynthesis
starts with the absorption of a photon of sunlight by one of the light-harvesting
pigments in antenna, followed by transfer of the energy to the reaction center,
where the primary electron transfer reactions convert the solar energy into an elec-
trochemical gradient. Reaction center chlorophyll-protein complexes are capable
of directly absorbing light and performing charge separation events without other
chlorophyll pigments, but the absorption cross section (the likelihood of absorbing
a photon under a given light intensity) is small. Thus, the remaining chlorophyll
in the photosystem and antenna pigment–protein complexes associated with the
photosystems all cooperatively absorb and funnel light energy to the reaction center.
The transfer of the excitation energy by antenna complex toward the reaction center
occurs with a near-unity quantum yield. We study the efficiency of the excitation
energy transfer by antenna complex in photosynthesis by using the master equation
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for the density matrix and discuss the influence of noise from the environment. A
relation with a new paradigm of quantum computation which uses chaotic amplifier
is mentioned.

2 Quantum Mechanics in Photosynthesis

Recently it was discovered [1] that quantum mechanics might be involved in the
process of photosynthesis in some marine algae at the room temperature. Previously
the role of quantum effects in the photosynthesis at the room temperature was ruled
out because of the quantum decoherence.

The evidence comes from a study of how energy travels across the light-
harvesting molecules involved in photosynthesis. The work by Scholes et al. [1]
demonstrated that the light-harvesting molecules involved in photosynthesis in a
marine algae may exploit quantum processes at room temperature to transfer energy
almost without loss.

The antenna proteins absorb light and transmit the resultant excitation energy
between molecules to a reaction center. The efficiency of these electronic energy
transfers was investigated in many works on antenna proteins isolated from photo-
synthetic organisms to uncover the basic mechanisms at play. Moreover, they have
documented that light-absorbing molecules in some photosynthetic proteins capture
and transfer energy according to quantum-mechanical probability laws instead of
classical laws at temperatures up to 180 K.

The Fenna–Matthews–Olson (FMO) pigment–protein complex is found in low
light-adapted green sulfur bacteria. Under physiological conditions, this complex is
situated between the so-called baseplate protein of the large peripheral chlorosome
antenna and the reaction center complex, and it is transporting sunlight energy
harvested in the chlorosome to the reaction center pigments. The complex is a
trimer made of identical subunits, each of which contains seven bacteriochlorophyll
molecules.

In [2], the spatial and temporal dynamics of excitation energy transfer through
the FMO complex at physiological temperature are investigated. The numerical
results demonstrate that quantum wavelike motion persists for several 100 fs even
at physiological temperature and suggest that the FMO complex may work as a
rectifier for unidirectional energy flow from the peripheral light-harvesting antenna
to the reaction center complex by taking advantage of quantum coherence and the
energy landscape of pigments tuned by the protein scaffold.

The observation of long-lasting and robust quantum coherence prompts the
speculation that quantum effects may play a significant role in achieving the
remarkable efficiency of photosynthetic excitation energy transfer. In [3] it is
proposed that the FMO complex performs a quantum search algorithm that is
more efficient than a classical random walk suggested by the hopping mechanism.
Quantum coherence enables the excitation to rapidly and reversibly sample multiple
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pathways to search for bacteriochlorophyll molecules that connects to the reaction
center.

This contrasts with the long-held view that long-range quantum coherence
between molecules cannot be sustained in complex biological systems, even at
low temperatures. In [1], two-dimensional photon echo spectroscopy measurements
are presented on two evolutionarily related light-harvesting proteins isolated from
marine cryptophyte algae. It reveals exceptionally longlasting excitation oscillations
with distinct correlations and anti-correlations even at ambient temperature. For the
experiments [1], the proteins were isolated from the algae and suspended at low
concentration in aqueous buffer at ambient temperature (294 K). The femtosecond
laser pulse (25-fs duration) excites a coherent superposition of the antenna protein’s
electronic vibrational eigenstates (absorption bands). The initial state of the system
is thus prepared in a nonstationary state, where electronic excitation is localized to a
greater or lesser degree compared to the eigenstates. The time-dependent solution to
quantum dynamics for electronically coupled molecules with this initial condition
predicts that excitation subsequently oscillates among the molecules under the
influence of the system Hamiltonian until the natural eigenstates are restored owing
to interactions with the environment.

2.1 Quantum Network Model

Electron transport in organic molecules, such as proteins and polymers, may be
described by quantum graphs [4–8]. Indeed it follows one-dimensional pathways
(the bonds) changing from one path to other due to scattering centers (the vertices).
Charge transport in solids is also well described by quantum graphs.

A simplified version of quantum graph is given by quantum network. Here we
describe some recent works on application quantum networks to photosynthesis.

Light-harvesting complexes are typically constituted of multiple chromophores
which transform photons into exciton and transport them to a reaction center.
Experimental studies of the exciton dynamics in such systems reveal rich transport
dynamics consisting of short-time coherent quantum dynamics which evolve, in
the presence of noise into an incoherent population transport which irreversibly
transfers excitations to the reaction center. In order to elucidate the basic phenomena
clearly without overburdening the description with detail, we consider the relevant
complexes as systems composed of several distinct sites, one of which is connected
to the chromosomes while another is connected to the reaction center. This complex
effective dynamics will then be modeled by a combination of simple Hamiltonian
dynamics which describe the coherent exchange of excitations between sites and
local Lindblad terms that take into account the dephasing and dissipation caused by
the external environment.

The pigment–protein complex will be considered as a network composed of
distinct sites, one of which receives a single initial excitation, while another is
connected to the reaction center.
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A network of N sites will be described by the Hamiltonian [9]

H =
N∑
j=1

ωjσ
+
j σ

−
j +

∑
j �=k
vjk(σ

−
j σ

+
j + σ+j σ−k )

where σ+j = | j 〉〈0| and σ−j = |0〉〈j | are raising and lowering operators for site j ,
the state | j 〉 denotes one excitation in site j , and |0〉 is the zero exciton state. The
local site energies are ωj , and vjk is the coherent tunneling amplitude between the
sites j and k.

The dynamics of the network’s density matrix ρ(t) is described by a Markovian
master equation of the form

d

dt
ρ(t) = −i[H, ρ(t)] + Ldiss(ρ(t))+ Ldeph(ρ(t))

where the local dissipative and pure dephasing terms are described, respectively, by
the GKSL super-operators[9]

Ldiss(ρ) =
N∑
j=1

�j (−{σ+j σ−j , ρ} + 2σ−j ρσ
+
j ),

Ldeph(ρ) =
N∑
j=1

γj (−{σ+j σ−j , ρ} + 2σ+j σ
−
j ρσ

+
j σ

−
j )

The total transfer of excitation is measured by the population in the “sink,”
numbered N + 1, which is populated by an irreversible decay process with rate
�N+1 from a chosen site k as described by the GKSL super-operator

Lsink(ρ) = �N+1(2σ
+
N+1σ

−
k ρσ

+
k σ

−
N+1 − {σ+k σ−N+1σ

+
N+1σ

−
k , ρ})

The initial state of the network at t = 0 is assumed to be a single excitation in
site 1 (i.e., state |1〉). The model is completed by introducing the quantity of energy
transport efficiency by the population transferred to the sink psink(t), which is given
by

psink(t) = 2�N+1

∫ t

0
ρkk(τ )dτ.

For a fully connected uniform network, when vjk = J for any j �= k and, moreover,
when ωj , �j , and γj are the same on every site, i.e. ωj = ω,�j = �, and γj = γ
[9, 10], the dynamics of the density matrix ρ is given by
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ρ̇00 = 2
N∑
j=1

�jρjj

ρ̇ij = −[2� + �N+1(σiN + σjN)+ 2γ − 2γ σ ij ]ρij + iJ
⎛
⎝∑
l �=j
ρil −

∑
l �=i
ρli

⎞
⎠

In the case that � = 0(no dissipation), an exact analytical solution is found in
[9], where one obtains different behaviors of the network for the cases γ = 0 and
γ �= 0. If γ = 0 then

lim
t→∞psink(t) = 1

N − 1
.

If γ �= 0 then

lim
t→∞psink(t) = 1.

The result psink(∞) = 1 means that there is the complete excitation transfer.
Therefore, it is shown that the dephasing noise leads to the enhancement of
the transport of exciton in this quantum network modeling the photosynthetic
complexes. It is found in [11] that the quantum and classical capacities for a
family of quantum channels in the complex network dynamics can be enhanced
by introducing dephasing noise.

Note that a constructive role of chaos in quantum computations was investigated
in [12].

3 Transfer Efficiency in a General Case

In this section, we calculate the transfer efficiency for fully connected network in a
general case, i.e., � �= 0. The dynamics of the density matrix ρ is described in [9]
by

ρ̇ii = −2�ρii + iJ (Ri − R̄i) i �= N
ρij = −2(� + γ )ρij + iJ (Ri − R̄j ) i �= N, j �= N
ρ̇iN = −(2� + 2γ + �N+1)ρiN + iJ (Ri − R̄N )
ρ̇NN = −2(�N+1 + �)ρNN + iJ (Ri − R̄N )
ρ̇00 = 2�trρ
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where

Ri =
N∑
j=1

ρij ,
 =
N∑
i=1

Ri

and R̄ is a complex conjugate of R. The time derivatives of Ri, RN , and 
 are
obtained as

Ṙi = −iJ
+ iJNRi − 2(� + γ )Ri − �N+1ρiN + 2γρii

ṘN = −iJ
+ iJNRN − (2� + 2γ + �N+1)RN + (2γ − �N+1)ρNN


̇ = −2(� + γ )
− �N+1(RN + R̄N )+ 2γ trρ

Let us put

RN = X + iY

we obtain the following differential equations[9]:


̇ = = −2(� + γ )
− 2�N+1X + 2γ (1− ρ00 − psink)
Ẋ = −(2� + 2γ + �N+1)X + (2γ − �N+1)ρNN − JNY
Ẏ = −(2� + 2γ + �N+1)Y + JNX − J


ρ̇NN = −2(� + �N+1)ρNN − 2JY

ρ̇00 = 2�(1− ρ00 − psink)
˙psink = 2�N+1ρNN

The initial conditions are 
 = 1, X = 0, Y = 0, ρNN = 0, ρ00 = 0, and psink = 0.
In order to calculate psink(t), one can reduce the problem obtaining solutions of
above equations into the following equations for the Laplace s-domain variables

 = L[
(t)]

(s + 2� + 2γ )
̃+ 2�N+1X̃ + 2γ p̃sink + 2γ ρ̃00 − 2γ /s − 1 = 0 (1)

(s + 2� + 2γ + �N+1)X̃ + (�N+1 − 2γ )ρ̃NN + JNỸ = 0 (2)

(s + 2� + 2γ + �N+1)Ỹ + J 
̃− JNX̃ = 0 (3)

(s + 2� + 2�N+1)ρ̃NN + 2J Ỹ = 0 (4)

(s + 2�)ρ̃00 + 2�p̃sink − 2�/s = 0 (5)

sp̃sink − 2�N+1ρ̃NN = 0 (6)
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We obtain the solution p̃sink as follows:

Lemma 1

p̃sink = 4J 2�N+1
(s + 2� + 2γ )(s + 2� + 2γ + �N+1)

s�(s)

where

�(s) = (s + 2�)(s + 2� + 2γ )(s + 2� + 2γ + �N+1)
2(s + 2� + 2�N+1)

+J 2N2(s + 2�)(s + 2� + 2γ )(s + 2� + 2�N+1)

+2J 2N(s + 2�) {�N+1(s + 2� + 2�N+1)−(�N+1 − 2γ )(s + 2� + 2γ )}
−4J 2(�2

N+1 − 2�N+1γ )(s + 2�)+ 8J 2�N+1γ (s + 2� + 2γ + �N+1)

Proof From (5) and (6) one has

ρ̃NN = sp̃sink

2�N+1
(7)

ρ̃00 = 2�
1− sp̃sink
s(s + 2�)

(8)

Ỹ is transformed by (4) and (6) into

Ỹ = − (s + 2� + 2�N+1)ρ̃NN

2J

= − s + 2� + 2�N+1

4J�N+1
sp̃sink (9)

From (2), (6), and (7), X̃ becomes

X̃ = − (�N+1 − 2γ )ρ̃NN + JNỸ
s + 2� + 2γ + �N+1

= −
(�N+1 − 2γ ) sp̃sink2�N+1

− JN s+2�+2�N+1
4J�N+1

sp̃sink

s + 2� + 2γ + �N+1

= N(s + 2� + 2�N+1)− 2(�N+1 − 2γ )

4�N+1(s + 2� + 2γ + �N+1)
sp̃sink (10)



66 Y. Mitome et al.

One obtains from (3), (9), and (10)


̃ = JNX̃ − (s + 2� + 2γ + �N+1)Ỹ

J

= JN N(s + 2� + 2�N+1)− 2(�N+1 − 2γ )

4J�N+1(s + 2� + 2γ + �N+1)
sp̃sink

+(s + 2� + 2γ + �N+1)
s + 2� + 2�N+1

4J 2�N+1
sp̃sink

= J
2N2(s + 2� + 2�N+1)− 2J 2N(�N+1 − 2γ )

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink

+ (s + 2� + 2γ + �N+1)
2(s + 2� + 2�N+1)

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink (11)

Substituting (8), (10), and (11) into (1), we have

(s + 2� + 2γ )
J 2N2(s + 2� + 2�N+1)− 2J 2N(�N+1 − 2γ )

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink+

(s + 2� + 2γ )
(s + 2� + 2γ + �N+1)

2(s + 2� + 2�N+1)

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink+

2�N+1
N(s + 2� + 2�N+1)− 2(�N+1 − 2γ )

4�N+1(s + 2� + 2γ + �N+1)
sp̃sink+

2γ p̃sink + 2γ
2�p̃sink − 2�/s

s + 2�
− 2γ /s − 1 = 0

Therefore, one obtains

(s + 2�)(s + 2�+2γ )
J 2N2(s + 2� + 2�N+1)− 2J 2N(�N+1−2γ )

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink+

(s + 2�)(s + 2� + 2γ )
(s + 2�+2γ + �N+1)

2(s + 2� + 2�N+1)

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink+

2J 2�N+1(s+2�)
N(s + 2�+2�N+1)− 2(�N+1 − 2γ )

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink+

8J 2γ�N+1(s+2�+2γ + �N+1)

4J 2�N+1(s + 2� + 2γ + �N+1)
sp̃sink−4�γ s−(s+2�)(s+2γ )

s
= 0

From the above equation, we obtain the lemma. �
Because the p̃sink = 0 is five-dimensional equation of s, it is known that we

generally cannot obtain its complex roots analytically. In this case, we apply the
partial fraction decomposition to p̃sink . Then we obtain
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p̃sink = F
s
+ D(s)
�(s)

(12)

where

F = F1

F2

F1 = J 2�N+1(� + γ ) (2� + 2γ + �N+1)

F2 = 4�5 + 12�4γ + 8�4�N+1 + 12�3γ 2 + 20�3γ�N+1

+5�3�2
N+1 + �3J 2N2 + 4�2γ 3 + 16�2γ 2�N+1 + 9�2γ�2

N+1

+�2γ J 2N2 + 2�2γ J 2N + �2�3
N+1 + �2�N+1J

2N2 + 4�γ 3�N+1

+4�γ 2�2
N+1 + 2�γ 2J 2N + �γ�3

N+1 + �γ�N+1J
2N2 − �γ�N+1J

2N

+4�γ�N+1J
2 + ��2

N+1J
2N − ��2

N+1J
2 + 2γ 2�N+1J

2 + γ�2
N+1J

2

and D(s) is four-dimensional function of s. Using this decomposition, we obtain
the following theorem.

Theorem 2

psink(t) = F +
5∑
i=1

Die
tsi

where Di are functions of �, γ, �N+1, J , and N .

Proof In Eq. (12), the second term is decomposed into the form

g(s)

�(s)
=

5∑
i=1

Di

(s − si) .

where si are five complex roots of equation �(s) = 0. Applying inverse Laplace
transformation to (12), we have the lemma. �
Because psink is a probability function, there are no positive roots. Therefore we
obtain

lim
t→∞psink(t) = F.

Using this analysis, we can calculate when � > 0 and γ > 0, it holds

1

N − 1
< lim
t→∞psink(t) < 1.
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Fig. 1 Change of psink with
G. The red line is for
γ = 0.1, blue γ = 0.2, and
yellow γ = 1.0

When the time is large enough, psink is close to F which is given by the function
of � and γ . Here, we introduce the following noise ratio r

G = �
γ
.

For several γ , we plot psink at time t → ∞ with changing the ratio G. In Fig. 1,
we can see that psink increases as G decreases. It means that the transfer efficiency
becomes better when the dephasing noise is stronger than the dissipative noise.
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Clockwork Rebooted: Is the Universe
a Computer?

Gregg Jaeger

1 Introduction

In recent years, there has been an effort to reduce quantum mechanics and quantum
field theory to computation by identifying information-theoretical principles on
which physics might be based. This effort can be traced to various earlier sugges-
tions by, among others, Konrad Zuse, John Wheeler, Norman Margolus, and Edward
Fredkin [6, 8, 20, 36]. The latter two investigators influenced Richard Feynman
to engage the relationship between information and matter via the simulation of
quantum mechanical behavior using quantum computers [8, 20]. The sense of
simulation used by Feynman was the traditional one, which involves calculating
the physical behavior of a mechanical system using another physical system
but stopping short of considering the physical system the behavior of which is
simulated to be a mere computational process or simulation.1 By contrast, the most
thoroughgoing attempts to reach this goal seek to remove light and matter from
the fundamental picture of the world, leaving only mathematical and informational
entities.

Wheeler proposed an information-oriented world picture early on, but one in
which humans are required to participate actively in the world’s ongoing “creation”

1Feynman considered the question of whether quantum devices could simulate the dynamics of
extended quantum systems by functioning as quantum computers [6].
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at the fundamental level by carrying out measurements which give rise to bits
of information. This was advocated by him under the enduring slogan “it from
bit”: “every it—every particle, every field of force, even the space-time continuum
itself—derives its function, its meaning, its very existence entirely—even if in some
contexts indirectly—from the apparatus-elicited answers to yes-or-no questions,
binary choices, bits. It from bit symbolizes the idea that every item of the physical
world has at bottom—a very deep bottom, in most instances—an immaterial source
and explanation” [33]. This statement has had a lasting impact on information-
centered approaches to physics, although largely at the rhetorical level. Any specific
such “sources” and “explanations” proposed for physical behavior, when offered,
have been from outside physics; indeed, the most extreme contemporary form of
this position, that of Frank Tipler, is explicitly theological [29].

The specific idea that “the universe is a cellular automaton” has been called the
Fredkin–Zuse thesis: “the universe is being deterministically computed on some sort
of giant but discrete computer” [23, 36].2 Zuse and others, such as Stephen Wolfram
[34], Mauro D’Ariano [4], and Gerard ‘tHooft [27], each in a way significantly
different from the other, have provided more detail than Wheeler in laying out
their information-based theories but each focusing specifically on the automaton
as the fundamental element in the mathematical reconstruction of physics. Some
have argued that no computing system is needed but only the logical possibility of
a computational simulation [29].

There are at least three general positions in terms of which such explorations
can be considered: (i) informational ontology, (ii) digital ontology, and (iii)
pancomputationalism. The information-ontological position is that all existence is
reducible to information structures; it is compatible with the structural realistic
philosophy and, so, allows for “informational structural realism” [7]. The digital
ontological position is that the ultimate nature of reality is discrete in some
sense, with a computable, deterministic state evolution; more precisely, it is the
position that there are deterministic, discrete processes underlying all physical
phenomena. Pancomputationalism is the very specific position that the universe is
a computational system equivalent to a Turing machine of some sort. Positions (i)–
(iii) can also be combined and have been so in various ways, cf. [7]. Recently, Seth
Lloyd has taken an approach to the universe that can be identified as information-
ontological and explicitly incorporates both the digital ontology and a variant of
pancomputationalism, in which the Turing machine in question can be thought of as
a quantum cellular automaton but with the caveat that energy continues to play an
important role in the universe over in addition to information [17, 18]; he has argued
that the universe as a whole is literally a quantum computer, a notion which, as is
shown below, encounters significant difficulties that others, including Tipler, have
attempted to remedy via even more radical assumptions.

2The most detailed conceptual product of this line of attack involving automata is represented by
the work of G.M. D’Ariano and collaborators, cf., e.g., [4].
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Here, a critical assessment is given of arguments of Lloyd and Tipler, often
shared by others, in support of the thesis that the universe is a computer. Section 2
considers the notions of computer and computational capacity involved in these
arguments and their dependence on the availability of genuine universal compu-
tation as introduced by Alan Turing. An assessment of the role of simulation in
attempts to replace physical entities by information in the related information-
reductionist and idealist ontologies is also given. Section 3 considers similarities
between Lloyd’s approach and previous historical attempts to identify the universe
with a simpler automatic device, namely, the clock. Section 4 considers the specific
claim that the universe-cum-computer thesis offers a novel explanation for the
complexity of the universe, one which is supposed to be lacking, describes how
it falls short, and identifies various general difficulties with any attempt to view
the physical universe as an automaton capable of universal computation in the
precise sense. It is shown here that the ontological identification of the universe
with a quantum computer, as is the case for its historical predecessor the “clockwork
universe,” is unwarranted, whatever value it might have as heuristic or analogy.

2 The Universe as “Giant Quantum Computer”

Let us begin by considering what is meant here by the notion that the universe is
an enormous information processor. Such notions have been discussed for nearly a
century but, in the wake of the growth of quantum computing theory and advanced
information technology [12], are now considered quite literally, with the universe
being called a computer and even an immaterial one. The following comments lay
out the broad vision of such an informational universe.

The new science of information processing, of which Turing was one of the primary
inventors, spawned a technology of information processing and computation. . . . The rapid
spread of information processing technologies, in turn, has ignited an explosion of scientific
and social inquiry. The result is a paradigm shift of how we think about the world at its
most fundamental level. Energy is still an important ingredient of our understanding of the
universe, of course, but information has attained a conceptual and practical status equal
to—and frequently surpassing—that of energy. [17]

Such declarations of revolution provoke one to review fundamental concepts; in
order to properly frame the idea that the universe is fundamentally a computer
or only information being processed, it is necessary first to know what such a
“computer” is understood by its advocates to be, how it is to process information,
and what its relation to apparent matter is supposed to be.

The sort of computer in question is now most often, in the end, said to be the
cellular automaton, a machine composed of an array of “local,” digitally operating
units (cells) in a regular array that function automatically together according
to predetermined, coded instructions and that can perform simulations. To be a
computer, it is necessary for such an automaton to be capable of a range of pre-
programmed responses to different input data; it is in this way that computers
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differ most from non-computing mechanisms, such as clocks, that do not respond
to input data while operating but function in accordance with their structures and
initial states only. Because simulation is also in play here, one should note that
something’s being simulable differs from its being a simulation in that the former is
having a calculable behavior, whereas the latter is being a calculation of behavior.
Something’s having behavior that is capable of being simulated, in itself, implies
neither that the thing is merely a calculation nor that it is a computer calculating its
own behavior.

Two papers of Lloyd, “Computational capacity of the universe” and “The
Universe as quantum computer,” are considered here because they represent two
importantly different levels of strength of this thesis: the first, in which the thesis
may be understood metaphorically, and the second, in which it is clearly taken
literally. The first article is more modest in its goal: the computational capacity of
the universe is to be estimated, that is, the question of how much computation the
universe could perform if it were a computer carrying out programs is posed and
answered, as Feynman might have had it.

If one chooses to regard the Universe as performing a computation, most of the elementary
operations in that computation consist of [particles] moving from place to place and
interacting with each other according to the basic laws of physics. In other words, to the
extent that most of the Universe is performing a computation, it is “computing” its own
dynamical evolution.

(emphasis mine). The conclusion of the analysis, a product of essential factors, is
that “. . . the amount of information processing that can have been performed by the
Universe as a whole since the big bang. . . can be shown to have the capacity to
perform a maximum of (t/tP )2 ≈ 10120 elementary quantum logic operations on
(t/tP )

3/4 ≈ 1090 bits registered in quantum fields [with a potential for (t/tP )2 ≈
10120 bits if gravitational degrees of freedom are taken into account]. Here, t ≈ 1010

years is the age of the Universe and tP =
√
Gh̄/c5 = 5.391× 10−44 s is the Planck

time. . . ” [17], that is, a very large number of such operations might have taken place
that accord with the laws of physics were the universe a computer, that is, a device
engineered and programmed to perform “conventional digital computations.”

Again, the question is taken up in the first article hypothetically and more
metaphorically than literally as indicated, for example, by the use above of quotation
marks around the word computing. Lloyd points out that the numbers of operations
and bits involved here could be interpreted in several ways: (I) “As upper bounds
to the amount of computation that can have been performed by all the matter
in the Universe since the Universe began”; (II) “As lower bounds to the number
of operations and bits required to simulate the entire universe on a quantum
computer [1, 16, 35]”; (III) “If one chooses to regard the Universe as performing
a computation,” that is, as a computer, “these numbers give the numbers of ops
and bits in that computation.” Here, (1) a distinction is made between digital
computation and other computation-like processes, namely, mechanical activity not
identified as conventional digital computation because it is said that “Only a small
fraction of the Universe is performing conventional digital computations,” and,
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so, (2) the universe is not just a system “computing its own evolution.” A clear
accounting of the total amount of computation that could have been performed
within the universe is given in the form of a specific value corresponding to its
history of physical activity from an information-processing perspective.

Although the sort of “computer” under consideration is not given by reference
to a specific schema, the relationship between the elements of the process of
computation and physics are directly engaged via the consideration of specific
operations involving logic gates, memory registers, and bits of information. The
number of elementary logic operations performable by a given physical system is
taken in accordance with the Margolus–Levitin theorem [21], which dictates that
the minimum time required for the system to move from one quantum state to an
orthogonal quantum state is given as

�t = πh̄/2E , (1)

whereE is the average energy of the system above that of the ground state, providing
an upper limit to the computation rate. It is noted that this also applies for a number
of systems operating in parallel: Although with N quantum logic gates involved,
each gate operates N times more slowly than a single logic gate operating with
energy E, the maximum total number of operations per second is the same.

The number of bits capable of being held in the largest possible memory register
is found by first noting the amount of information, I , that can be registered in the
physical universe, which is derivable from the number of orthogonal quantum states
available to it, given its physical properties.

I = S/kBln2 , (2)

where S is the maximum system entropy and kB is the Boltzmann constant. The
maximum entropy of the universe is then calculated assuming it to have volume V ≈
c3t3. (The gravitational degrees of freedom are included by applying the Bekenstein
bound and the holographic principle.) The ultimate result of the derivation is that
the maximum number of bits that could be registered by the universe using matter,
energy, and gravity is found to be ≈ c2t2/l2P = t2/t2P .

Under interpretation I above, the inferred number of quantum gate operations
(≈10120) that might have been performed could be helpful to future engineers in
that, for example, it serves as an upper bound to attempts to harness ever large
portions of the universe for the purpose of computation.3 More pertinently to our
more general considerations here is that physicists, in general, would consider this

3This is not unlike the consideration of how much solar energy a Dyson sphere could collect. More
modestly, it was long ago noticed that the solar system (or the Jupiter system) can be used for the
calculation of time, when conjoined with a Stonehenge-like construction or the simple addition of
a sundial on the Earth within it; see Sect. 3.
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simply physical behavior, whether occurring in a computer or not.4 This claim
offers a version of the least problematic manner of approaching the behavior
of the universe via the notion of computation: heuristically. Interpretation II, by
contrast, effectively involves a science-fiction-like scenario in which our universe is
simulated by a computer of some super-user outside of it, who could in principle
provide it with input or reset it, much as physical behavior was considered in the
picture of the universe as a created clockwork considered by some in the times
preceding Newton, discussed in Sect. 3 below. Finally, on interpretation III, as Lloyd
himself points out, “that the numbers of bits and ops calculated here represent
the actual memory capacity and number of elementary quantum logic operations
performed by the Universe—is more controversial. . . . whether or not it makes
sense to identify an elementary quantum logic operation with the local evolution of
information-carrying degrees of freedom by an average angle of π/2 is a question
whose answer must await further developments in the relationship between physics
and computation” [17].

The latter paper of Lloyd takes up the question of whether the universe is literally
a quantum computer evolving in such a quantum mechanical way and so strong
forms of interpretations II and III. There, the nature of computation is specified in
a more precise, computer-scientific fashion by making explicit use of the theory
of automata and, as a variant of the pancomputationalist thesis, taken to accord
with the Zuse–Fredkin thesis. Its arguments therefore go beyond the conservative
question of the universe being similar to a computer to its being identified literally
as a computer: The universe is thought of as not only metaphorically “computing its
own evolution” or being simulated from some basic level of physical reality but of
“simulating itself.” There are many assumptions involved in such a move, such as
the validity of considering the quantum state of the entire universe in Hilbert space,
that are similar to those of various attempts make sense of the Everett interpretation
of quantum mechanics [13] which, although they should not be forgotten, we pass
over here in the interest of considering the architecture of Lloyd’s argument.

The relevant sense of computation and general sort of computer considered is that
of the Turing machine, in its several variants, including the universal and quantum
versions. Recall that Turing machine is an abstract machine having a reader (its
“head”) of symbols encoded on some medium (its linear “tape”, “memory”) that
computes a certain fixed partial computable function from input strings over a finite
set of symbols (its “alphabet”). Intuitively, a computable mathematical function is an
effectively calculable function. Recall also that a function is partially computable if,
again intuitively, it is one for which we have an algorithm enabling one to compute
its value for the elements of the domain on which it operates but for elements
outside of its domain it will continue to compute forever, attempting to obtain a
value without ever indicating that no value will be found [5].

4Indeed, for example, Lloyd’s colleague Neil Gershenfeld has written a book on the subject, The
Physics of Information Technology, that culminates in the consideration of quantum computation
and communication and clearly lays out its physical practice [10].
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The set of rules (instructions) specifying the stepwise operation of the Turing
machine’s “control unit”—such as specifying the move to be made by the tape,
forward or backward one step along the sequence, upon the head’s reading a given
symbol—is its “action table.” The action table can be fixed and also stored as a
string on the tape. A Turing machine is an abstraction from aspects of physical
computing devices to idealized features, most notably, those of being truly digital,
of never failing to follow the actions prescribed for it, and of having access to
indefinitely large quantities of the resources associated with an indefinitely large
memory tape, providing unlimited storage capacity. Thus, its realization inherently
goes beyond the resources of any finite universe or its contents, though a universe
of a sufficiently large number of degrees of freedom might behave approximately,
that is, imperfectly relative to this idealization.

In this later analysis, Lloyd focuses on universal computing, asking “How. . . can
one claim that the universe is a computer? The answer lies in the definition of
computation. . . According to Turing, a universal digital computer is a system that
can be programmed to perform any desired sequence of logical operations. . . ”,
that is, a machine that can reproduce the computations of any other machine of
a similar sort. Turing first suggested the universal computing machine (universal
Turing machine) in 1936. Logically, in principle

It is possible to invent a single machine which can be used to compute any computable
sequence. If this machine U is supplied with a tape on the beginning of which is written
the [“standard description” of an action table] of some computing machine M, then U will
compute the same sequence as M. [30]

Both the action table and the input can be encoded as sequences of symbols, the
input string (i.e., sequence of symbols) following this action table string on the tape.
The universal Turing machine expects its tape to have just this—a string providing
an action table, followed by a string for the input tape—and computes the tape
that such a Turing machine so encoded would itself compute. Thus, the universal
Turing machine is a Turing machine that can simulate an arbitrary Turing machine
on arbitrary input; at a given step in its operation, the state of the Turing machine
should include the expression on the tape at that point in operation, the internal
configuration of the machine’s control unit, and the symbol being “scanned.” The
question of whether the universe itself is such a universal digital computer is then
considered by Lloyd via two questions: (1) Is the universe capable of performing
universal digital computation in the sense of Turing? That is, can the universe or
some part of it realize the universal Turing machine? (2) Can a universal Turing
machine efficiently simulate the dynamics of the universe itself?

One could immediately object that computers (like clocks) by general definition
are artifacts, devices designed to be prepared and actively used by agents, that is,
tools created for technological application, not found things. Assumptions about
superphysicists or deities do not explicitly appear in this chapter nor, presumably,
would they be made by the vast majority of the scientists in the context of science
itself. In the absence of assumptions of a supernatural sort, the question at hand
is immediately rendered a scientific nonstarter if the universe is not assumed not
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to be an artifact. We briefly discuss this point in the following section—for now,
let us simply keep in mind that the sense of “programming” involved would have
to be different from the usual one, which assumes the existence of a programmer.
In this case, some looser sense of operating according to an a priori given set of
algorithmic rules, without regard to how this might have come about, must instead
be under consideration, so that the everyday sense of computer is not what must
actually be involved here, despite claims or first impressions to the contrary.

The Turing machine schema is quite abstract, incorporating very little in the
way of even quasi-physical characteristics beyond those of having components,
involving (spatiotemporal) sequentiality and discreteness (being “digital”). As
mentioned, additional structure is given by Lloyd to the notion of computation
involved via a specific model of implementation of universal computation, the
cellular automaton model, basic elements of which were first provided by John
von Neumann [32]. The idea that the universe is such a cellular automaton—first
mentioned in print by Martin Gardner [9], who cited Fredkin’s previous advocacy
of it—is part of the strong version of the thesis that the universe is a computer. “That
is, not only does the universe compute, and only compute, but also if one looks at the
guts of the universe—the structure of matter at its smallest scale—then those guts
consist of nothing more than bits undergoing local, digital operations,” that is, the
ontology is both informational and digital in the senses given in our introduction.

For Lloyd, this version of the computer-universe thesis is to be phrased in the
form of the following variant-pancomputationalist question, (3) “Is the universe a
cellular automaton?”, to which he responds, “the answer to this question is No.
In particular, basic facts about quantum mechanics prevent the local dynamics of
the universe from being reproduced by a finite, local, classical, digital dynamics”
(emphasis mine). But, for him, this is only because the physics of the universe
cannot be classically simulated: He sees the difficulty with this portrayal not in the
notion of universe as computer itself, in accordance with the digital ontology or in
the pancomputationalist thesis, but rather in considering the universe as a computer
that operates classically instead of in a “quantum” way.

The analysis accordingly continues by considering a computer that is to exhibit
computational behavior that is not “classical” but “quantum” at its fundamental
level. “If we quantize our three questions,” Lloyd argues, the strong computer-
universe thesis can be saved. He argues that the first question in “quantized”
form “(Q1) Does the universe allow quantum computation? has the provisional
answer, Yes. As before, the question of whether the universe affords a potentially
unlimited supply of quantum bits remains open. Moreover, it is not clear that
human beings currently possess the technical ability to build large scale quantum
computers capable of code breaking. However, from the perspective of determining
whether the universe supports quantum computation, it is enough that the laws
of physics allow it.” That quantum computation can be carried out using physical
systems in specialized, non-universal form is uncontroversial, of course. However,
the assumption of the presence of an “unlimited supply of quantum bits” is one
of the greatest relevance to the question of universal computation and, therefore,
to the question of whether the universe is a quantum computer in the fully precise
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sense under consideration, which demands perfect simulation capability, which is
first given short shrift by Lloyd and subsequently dropped. In fact, there is no
good reason to assume that an unlimited supply of any resource is available in
the universe, particularly given that such a thing is, by its very nature, ultimately
unverifiable.

Regarding the second “quantized” question, “(Q2) ‘Can a quantum computer
efficiently simulate the dynamics of the universe? . . . The Feynman-Lloyd results
show that, unlike classical computers, quantum computers can simulate efficiently
any quantum system that evolves by local interactions, including for example the
standard model of elementary particles. While no broadly accepted theory of
quantum gravity currently exists, as long as that theory involves local interactions
between quantized variables, then it can be efficiently simulated on a quantum
computer. So the answer to the quantized question 2 is Yes” (emphasis mine).
Although this may be significant, it does not establish the desired conclusion,
namely, that this be possible for the entire universe from within, assuming a positive
answer to Q1. Note that the programming involved is finally to be “accomplished
by inducing interactions between the variables of the simulator that imitate the
interactions between the variables of the system to be simulated,” the system and
the simulator being quantum systems in some sense, as “simulation is a process
by which one system is made to mimic another.” Moreover, the “the efficiency of a
simulation depends on how hard it is to set up the simulator-system correspondence,
to control the simulator to perform the simulation, and to extract its results” [16].
Of course, unless an entire sub-universe controlled by hidden structure is present,
for which there is currently no evidence, one should not expect that a quantum
simulator will be more efficient than the system it is simulating, given the results of
the first paper establishing the limits of the universe-cum-computer; on the contrary,
it would need to carry out further operations in order to perform the simulation due
to differences in its physical characteristics from the system simulated, rendering
it less efficient. Hence, what would be expected to be accomplished by an internal
simulation is part of the universe being simulated by the complementary, greater
portion of it.

Again, leaving out both supernatural factors and the trivial sense in which
anything behaves as itself, any portion of the universe to be simulated would require
another part to be simulating it, which means, according to the analysis of Lloyd’s
first paper, only part the universe could be simulated from within the universe,
because the remaining portion would be involved in simulating the remaining part.
The only way the entire universe could be simulating itself from within in any
nontrivial sense would be that the universe involves some perfect mirror symmetry
of behavior which is just one part simulating the other part and vice-versa, with
perfect efficiency, again something for which there is no evidence. As for being
simulated from without, there is no evidence of or explanatory superiority in
assuming the existence of anything beyond the universe which would serve as a
simulating computer.

Finally, the ultimate question, “(Q3) ‘Is the universe a quantum cellular automa-
ton?’,” is engaged. Lloyd argues that “while we cannot unequivocally answer this
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question in the affirmative, we note that the proofs [cited] that show that a quantum
computer can simulate any local quantum system efficiently immediately imply that
any homogeneous, local quantum dynamics, such as that given by the standard
model and (presumably) by quantum gravity, can be directly reproduced by a
quantum cellular automaton. Indeed, lattice gauge theories, in Hamiltonian form,
map directly onto quantum cellular automata. Accordingly, all current physical
observations are consistent with the theory that the universe is indeed a quantum
cellular automaton,” and so “the universe is observationally indistinguishable from
a giant quantum computer” [18]. There is a clear gap in the argument here: it
passes immediately over the subtle relations between observation and theory and
requires an extreme reductionist assumption—that all phenomena from those of
the entire range of physics to chemistry to biology to human cognition reduce to
those of elementary particles and fields. Even were all observations made of the
universe so far consistent with it being a giant, elaborate quantum computer/cellular
automaton, they are insufficient for its identification with one solely on the basis of
there being a mapping from the description of quantum systems (as described by
current physical theory) to the input and output of automata. At best, one has an
alternative theory of physics, similarly to the situation of Bohmian mechanics as an
alternative to standard quantum mechanics, but not a reduction of the physical to
pure information.

Recall that, by virtue of the limited physical resources available to it, any
finite computer is only an approximation of a universal Turing machine because
the universal machine contains an indefinitely extendable memory (“tape”). Lloyd
considers this a minor concern. “The question of whether or not infinite memory
space is available is not so serious, as one can formulate notions of universal
computation with limited memory. After all, we treat our existing electronic
computers as universal machines even though they have finite memory (until, of
course, we run out of disc space!). The fact that we possess computers is strong
empirical evidence that laws of physics support universal digital computation.” This
conclusion should be regarded with significant suspicion, particularly given the
limited range of situations to which our computing technology has been applied,
relative to the broad spectrum of available physical phenomena which we have
only recently begun to probe due to very recent advances in various diverse
technologies and its limited performance in more challenging situations such as
long-range and extreme weather prediction. We see that a central assumption,
the precise characterization of the computer as a universal Turing machine, is
effectively dropped in the course of the argument in favor of an approximate version.
Given that the level of precision required in the ability of the computer to provide
simulations—that is, the requirement of “perfect simulation”—this creates a critical
vulnerability.5 Lloyd ultimately acknowledges this: “. . . it is an open question
whether this simulation can be performed efficiently in the sense that a relatively
small amount of computational resources are devoted to simulating what happens in

5Especially for further arguments of Tipler, discussed directly below.
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a small volume of space and time” [17]. After all, the universe is composable and
decomposable into small, ephemeral, fundamental components [14].

Next, Lloyd looks to quantum mechanics and randomness to move from the
classical universal Turing machine model of quantum computing to the quantum
cellular automaton model. The nature of the computation achievable with the
quantum cellular automaton presumably encounters the same difficulty of failing
to achieve genuine universality, again because the existence of a finite supply
of resources is better supported than an infinite supply, to say the least. Thus,
one sees—after passing over the issue of the extent to which all current physical
observations are supportive of the standard model, lattice gauge theories and the
hypothetical quantum gravity theories (a notoriously difficult thing to construct
with adequacy) mentioned here—that Lloyd’s argument for the thesis that the
universe is a giant quantum computer, in effect, amounts instead to an argument
for the far weaker thesis that it is not manifestly inconsistent with physics or the
theory of computation applied in broad strokes, leaving aside the fact that it cannot
meaningfully be considered a genuinely universal computing machine. For even
this weaker thesis to turn out to be correct, either (i) future observations involving
future technological developments in experimental practice must continue to make
no distinction between it and that of standard physics alone or, if that turns out not to
be the case, that (ii) any observable distinction between the supposed simulation and
physics must tell in favor of the automaton. The character of the history of physical
theory as an ongoing sequence of conceptual revolutions strongly suggests that (i)
will not be the case; there is currently no reason to suppose (ii). In addition to the
claim that all physical activity can be simulated discretely, there is a supposition that
once physical behavior is reduced to the operation of this automaton, a reduction of
all phenomena involved in observing it would also be accomplished, because that is
necessary for the agreement with our having obtained empirical data involving them,
both directly and using technology. However, the reduction of all activity ranging
in scope from fundamental physics, to the biological and cognitive functioning
of physicists, to the activity of the quantum automaton would still have to be
demonstrated, which is an exceedingly tall order: there are a great number of hurdles
for demonstrating the reduction of cognitive, biological, and chemical phenomena
to physics, to say the least.

The greatest difficulty with the argument that Q3 is to be answered in the
affirmative, with the universe simulated by “pure information,” is that it involves
either a circularity or an infinite regress. In particular, it requires that either the
universe computes itself into existence, something which is a priori impossible, or
the universe is a reified simulation arising from a simulation that simulates it, which
depends on the existence of another reified simulation simulating it, etc., reaching
no ultimate ground. The mere logical consistency of the notion of the universal
quantum Turing machine schema does not in itself make the universe identically and
only such a schema. No adjustment of this world picture intended to circumvent this
problem is offered by Lloyd to strengthen the argument. Frank Tipler has attempted
independently to address this problem from an epistemological angle by considering
a series of levels of computer code implementation, where one “is only aware of
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the higher levels of implementation, which can be thought of as levels of reality.
The lowest level can be termed ultimate reality. . . we cannot know if the universe
in which we find ourselves is actually ultimate reality”[29], as portrayed in David
Cronenberg’s film Existenz. That is, he introduces the assumption that science faces
a fundamental epistemic limitation. He also asks the question “Is it possible for
the universe to be in precise one-to-one correspondence with some simulation?”,
answering “I think it is, if we generalize what we mean by simulation. . . we don’t
really need the physical computer; the initial sequence of integers and the general
rule (instructions or map) for replacing the present sequence by the next is all that
is required.”

The claim is that the “actual universe is something in the collection of all
mathematical objects,” because “the universe has a perfect simulation, and we all
agree to identify the universe with its perfect simulation, that is, with its emulation.”
But, there is no particular reason for one to agree with this and several reasons
not to. First and foremost, there is no reason why one should view the universe
as a mathematical object, because it is not actually just like one. Tipler argues
that one is compelled to make this identification by the Principle of Identity of
Indiscernibles (PII), according to which, in its simplest form, any (assumed) two
entities not differing in their properties are to be considered one and the same entity.
Tipler argues that this follows from the PII because a perfect computer simulation,
being perfect, would be indistinguishable from the physical universe. Thus, he
argues, “at the most basic ontological level, the physical universe is a concept.”
This argument fails because, in order for the PII to support this identification, one
must accept that the universe is such an object and nothing more in order to enable
the required indistinguishability at the logical level, empirical evidence aside. The
PII was introduced by Leibniz as a principle of logic, but it does have relevance to
mathematics and so to physics and thus could, in principle, be applied in the physical
context [15]. However, the PII does not justify the identification of the universe with
its own simulation unless it is a valid assumption first that the universe is a purely
mathematical object so comparable to others.

Could the universe be pure mathematics? Well, for one thing, the sources of our
knowledge of the two differ: the former can be experienced directly via the senses,
whereas the former cannot be and, in fact, is not so experienced; our experience
of the physical world is external experience in the straightforward sense. Any
attempt to explain this would require the externality of the physical world to be an
illusion. In addition, the history of such experiences in science is that the unexpected
and the scientifically inexplicable—that is, inexplicable at that specific time in the
development of physics—occurs.6 The mathematical and the physical differ in the
respect that mathematics provides the description of various aspects of the physical

6Except, perhaps, outside of an idealist metaphysics in which its appearance is understood as
conspiratorial in nature. Whether or not it is, in some sense, a concept in the mind of a supernatural
entity is, quite simply, not a scientific question. Indeed, that the world “kicks back” is one of more
straightforward arguments for realism in relation to the physical, cf., e.g., [24].
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behavior of something and only that, whereas the latter is the behavior as a property
of that something, a thing that acts independently. Were it otherwise, there would be
and will have been no need for theoretical physics as distinct from both experimental
physics and direct experience because the latter two, not differing from the first,
could be discovered entirely by reasoning alone; this has never been found to be so.

The ability to provide an algorithm for reproducing the content of a mathematical
description of the behavior of a physical system has no bearing on the existence of
the system referred to by the description, but means only that one could thereby
create a simulation of the behavior of something based on a means other than
direct data curation. Moreover, our manner of engagement with the universe is
constantly changing, and some of its objects are repeatedly found in a reproducible
fashion to be doing things beyond current comprehension and expectations; the
history of science is that of ongoing series of unpredictable conceptual revolutions
in conjunction with our constant accumulation of ultimately consistent empirical
data. One could argue that this is because the scientific community does not yet
have a complete understanding of the programming of the hypothetical nonphysical
automaton, but one is then again confronted with the question: Of what scientific
benefit is the additional hypothesis that physics is in some sense a simulation?
In the absence of novel phenomena underlying such a purported simulation, the
assumption of one over lawfully characterized physical behavior is unfounded.

The argument from simulation aside, the thesis that the universe is one giant
computer requires that both (a) our accepted scientific approach to the world be
deeply mistaken and (b) either that there be an entirely different underlying level
of existence beyond the physical, having no evident additional physical implication,
or that the world exist only as a concept. When sufficient conceptual precision is
required in the formulation of the strong version of the computer-universe thesis and
in the explication of the relationship of a simulated universe to scientific activity, the
notion is seen not only to be extremely speculative and conceptually flawed, but also
to be scientifically unwarranted.7

3 Clockwork Rebooted

There is a range of different sorts of automata with, at one end, the very simple
mechanisms which have nothing external to their “central processor” (no tape or
connection to an environment for “input” or “output”) and which proceed through a
succession of states, through the finite automata such as Turing machines for which
a memory tape is moved along in only one direction or are otherwise restricted with
regard to memory and, at the other end of the range, those without such limitations,
the universal Turing machines, and those that incorporate aspects of quantum state

7See Sect. 4 below for the discussion of an argument that attempts to justify this world picture by
its purported ability to provide a novel scientific explanation.
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transitions [2, 12]. To better understand the possibility of a relationship of physics to
automata, let us consider the similar, previously considered claim that the universe
is a specific type of automatic device, the clock. The clock itself can be thought of as
an indicator of a physical parameter, time.8 Like computers, clocks can be designed
to function independently for large numbers of cycles of operation or long periods
without intervention or repetition. The Clock of the Long Now, for example, is an
extremely large clock (hundreds of feet tall), designed to run entirely independently
and chime periodically in a way that, each time its chimes ring, the resulting melody
is one that will not repeat until 10,000 years have passed [3].

Consider the thesis that the universe—in its original proto-Newtonian conception
in which time is considered absolute—is an automaton, a very basic nonrelativistic
classical clockwork. Many natural physical processes within it can serve as such
clocks, that is, specialized time-indicating automata. Consider, for example, that (1)
the motion of a point on the Earth’s surface relative to the location of the sun in
the sky gives rise to a shifting shadow about a prominence in the desert—say the
Atacama, where some weather stations have never reported rain—reliably indicating
the hour during the daytime, and (2) Cepheid variable stars in the heavens at night
have highly regular periods of brightness alteration serving as cyclical indicators of
time having periods of up to many days. The notion of the universe serving as a
clock, in its essential aspects, is already present in Genesis, where the day and the
year are basic periods is addressed. “And God said, Let there be lights in the expanse
of the sky to separate the day from the night, and let them serve as signs to mark
seasons and days and years. . . ” [28].

The way that many parts of the universe have been thought of as constituting
components of a giant clockwork is similar to the way that the universe is currently
being considered by some to be a quantum computer. Indeed, the clock can even
be categorized as a limited, special purpose reckoner. The common feature of the
notions of clockwork universe and computer universe is functional: they are both
automata in the general sense. The first version of the universe as automaton was the
idea that the universe is a deterministic clockwork. This notion was explicitly used
by Oresme in the fourteenth century, having grown out of the notion of the machina
mundi introduced two centuries before in the work of Robert Grosseteste and of
Johannes de Sacrobosco, who used it in his astronomical text Sphaera, later used
by Galileo Galilei in his Paduan lectures [22]. The need for accurate determination
of ship longitude in the era depended on accurate, universal timekeeping, raising
the significance of this technology to European society much as the demands
of accounting, communication, and space exploration have done for computing
technology in our time. Galileo argued in 1612 that the positions in orbit of the
four brightest moons of Jupiter, the Medicean “stars,” could be used as a universal
clock set in the heavens for all to see with a simple telescope [26].

8A particularly interesting example of a calculating clockwork to keep in mind in this regard is the
Antikythera mechanism [19] and clockwork-based simulators of motion of celestial objects.
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Copernicus used the expression machina mundi and wrote in his On the
revolution of the heavenly spheres that the universe “was created for us by the
best and most systematic craftsman.” Machina mundi refers to the notion of a
“mechanical,” ordered world—the Latin coming from the Greek μαχανά, from
μηχανή referring primarily to compound technological devices. However, as the
historian of science Stephen Snobelen has emphasized, the notion “that the universe
is like a machine or clockwork mechanism” was not used by Newton himself or
accepted by him. He points out that “not a single example of Newton unambiguously
referring to the universe as a clockwork system has surfaced” and that

The myth of Newton’s clockwork universe is one of the most persistent and pervasive myths
in the history of science. . . Examples of the myth abound.. . . Michio Kaku says: ‘Newton
believed that the universe was a clock. A gigantic clock—a machine—that God wound
up at the beginning of time, and its been ticking ever since due to his laws of motion.’
. . . Regrettably, while the scholarly community has begun to outgrow this myth, it had a
hand in perpetuating it, especially during the first half of the twentieth century. The situation
changed dramatically in the second half of the twentieth century, although not all at once.
[25]

Snobelen notes that for Newton, any portion of the universe is in need, not only of
being created but also of being externally sustained; it would, at various points in
its evolution, fail to “tick” properly and be in need of tinkering and so would be
much more like a clock of ordinary experience than the ideal, perfectly ordered,
deterministic “clockwork universe” would have it be. The notion of the universe as
a perfect, deterministic, automatic device is a pre-Newtonian notion that failed not
only to convince the greatest contributor to classical physics, who took its character
as a created entity seriously, but also under the demands of later evidence. The ideal
clockwork notion applied to the universe by others required it to be a compound
system flawlessly reducible to component parts and never in need of repair or of
resetting; it is one that, in practice, actual machines fail to match. Although it
is valuable to be able to devise physical clocks because they can serve particular
practical needs, much as with computers’ providing numerical and other output, the
notion has turned out not to fit the observed universe under either close philosophical
scrutiny or later empirical evidence.

4 The Complexity Argument

The notion of the “computer universe” shares difficulties in common with that of
the “clockwork universe” and, as we have seen, has additional ones arising from the
more complicated nature of the universal computer in comparison with the clock. In
Sect. 2 above, it was noted that Lloyd’s positive answer to his Question 3 supporting
this notion was argued for by taking the universe to be entirely and only a self-
sufficient “perfect simulation” of known physics. On its own, this appears to be
either odd metaphysical speculation or playful science fiction. But, one can still
ask whether there could be something to compel one scientifically to accept the
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literal identification of the entire universe as an automaton, particularly a purely
mathematical one that could be said to be a “computer without hardware.” Is
there some naturalistic explanatory value to the thesis that the universe is literally
and primarily such an information processing automaton that has been overlooked
above?

Perhaps recognizing the highly speculative nature of the claim that the universe is
a quantum computer, Lloyd goes on rhetorically to ask “immediate question. . . ‘So
What’?” if Q1–Q3 all receive affirmative answers. Similarly to Tipler’s making the
radically reductive assumption that a perfect physical simulation of basic physics
would also automatically provide a perfect simulation of the phenomenal level
of human experience of the world, Lloyd first takes these affirmative answers to
imply that the universe would be “observationally indistinguishable from a giant
quantum computer.” Then, in an attempt to show the scientific value of the notion
of the universal computer as a simulation, he claims that the answer to this “so
what?” is that this would offer something “new and important about its behavior,”
namely, why “the universe is so complex” [18]. In particular, he argues that physics
as computation provides a distinct advantage over “the ordinary laws of physics,”
because such a large computer together with randomness (quantum fluctuations)
would yield “complex, ordered structures with high probability,” much like the
infamous singes dactylographes (typing monkeys) of Borel, which he mentions
[18], yet more efficiently.9

Let us now see whether this is the case. First, to set the stage, consider the sort
of argument involved in the simpler, “monkey” theorems regarding the provision
of ordered states via randomness.10 Suppose a symbol generator that can produce
n symbols is taken to produce a sequence of m of them independently in a way
described by a uniform probability distribution, that is, with no preference of one
symbol over any other. Then, each symbol has an equal chance of appearing in any
given position in the sequence, doing so with the probability 1

n
. The probability of

producing any given such an m-symbol sequence in one attempt is, therefore,

Pn(m) =
(

1

n

)m
(3)

and the probability of not having thus produced it is

P (not)
n (m) = 1− Pn(m) , (4)

9It is supposed that the ordinary laws of physics together with randomness cannot provide an
adequate such explanation.
10Cf. [11] for a textbook example.
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so that it will fail to be produced in l attempts with probability

P (not)
n (m, l) =

(
1− Pn(m)

)l
=
(

1−
(

1

n

)m)l
. (5)

Therefore, as the number of attempts available for producing the sequence increases,
P
(not)
n (m, l) becomes increasingly small, and approaches 0 in the limit as the number

of attempts l tends to infinity, that is, the probability of not producing the sequence
will be found to be as small as desired for an appropriately large l, so that the
probability of producing the desired sequence approaches unity, that is, becomes
nearly certain.11 To produce a given sequence with certainty, either an infinite
number of generators or an infinite amount of time is required be sure to produce any
desired sequence: Given a finite number of these generators working for an amount
of time even on the order of the age of the universe, it will not be that with any
probability as large as desired that a given complex ordered sequence, such as the
text of Hamlet, would be produced.

We see that requirements guaranteeing that any sequence will be produced in this
way are not satisfied in this situation under consideration here. However, despite
his reference to Borel’s singes dactylographes, Lloyd’s argument is not that such
random activity allows a giant quantum automaton to give rise directly to the
complexity found in the universe but rather that it can produce relatively short
sequences which in turn provide circumstances in which a complex state such as
that currently obtaining for the universe as a whole could be generated: He argues
that, instead of a number of ‘monkeys,’ that is, random symbol sequence generators
producing sequences relating directly to the state of the universe, sequences can be
randomly produced that themselves serve as programs, that is, sequences serving
as logical operations to be subsequently carried out, because “many complex,
ordered structures can be produced from short computer programs, albeit after
lengthy calculations.” Moreover, the argument goes, the sequences need not be
obviously logically related to the state: “the shortest programs to produce these
complex structures are necessarily random. If they were not, then there would be
an even shorter program that could produce the same structure. So the monkeys, by
generating random programs, are producing exactly the right conditions to generate
structures of arbitrarily great complexity” [18].

This suggests that a good explanation to an important question is to be found
here. Yet this is questionable, given that the proffered explanation is embedded in
the context of a world picture in which physics is taken to be exactly and only
a hardware-free simulation. One basic possible problem with this is that, in that
context, there are no actual, physical “monkeys” to “type.” There must be some
entity that carries out such “programs” for anything physical at all, of whatever
complexity, to result. Second, even if this potential difficulty is put aside, there

11It also does not matter whether one has one symbol-producer working serially on the l attempts
or several simultaneously operating sequence generators.
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remains an issue having nothing to do with being able in principle to generate the
complex, current state of the universe in the way suggested, namely, the significance
of any added value that having an answer to this question would bring, for it is
anyway to be expected that a system as large as the universe would be complex,
however it came about, not least of all because its many parts are not all causally
connected with each other. Indeed, if the universe were found to be exceedingly
simple and orderly, that simple order would be and is what is in greater need of
explanation, as is the case, for example, for the relative uniformity of the cosmic
microwave background. The move to programming scripts for cellular automata
raises the issue of the ability of such a process to affect all of the relevant portions of
the universe in a uniform fashion, as it would have to do. Even more significant than
this second issue is that our particular universe with its behaviors and its specific
structures is singular, like the original Hamlet manuscript. All evidence suggests
that it has evolved through one and only “run.” Related to this is that, again, the
universe is not programmable, in particular, it cannot be read, written upon, or have
its state reset.12

For one to assent to the identification of the universe as an automaton, beyond
internal coherence of the notion and its compatibility with observation, neither of
which has been established, it should offer one a superior world picture to that
of current physics. Aside from the several logic issues and the radical reductions
required for the automaton to perfectly account for physical behavior as observed,
this thesis appears to fail to be superior according to the standard aesthetic and
ontological simplicity criteria for theory choice. This is perhaps not surprising,
given that the arguments offered in support of this thesis have been ones essentially
from information theory rather than physics; the explanatorily strongest argument
offered, that from complexity, regards a measure of something informational rather
than physical, however much it can be productively applied to aspects of physical
systems. The automaton may be relatively elegant and simple as mathematical
“machines” go, but it lacks explanatory force and simplicity in its application to
the physical and cosmological realms.

5 The Universe is Not a Computer

The arguments considered here which have been presented for the identification
of the quantum universe with a computer—and, more specifically, with a universal
computing machine or with a cellular automaton—fail to establish it. There are
several reasons specific to the theory of computation for this. First, because the
universe is bounded in time and storage capacity, it is not an instance of a genuinely

12In order to be considered a true computer and not, for example, just an elaborate clock, the
universe operating according to a program would need to be capable of reacting conditionally
accordingly to something like variable external circumstances (input).
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universal computing automaton and so is not able to perform perfect simulations
of an arbitrary Turing automaton as suggested. Second, because the universe is
not a system that can be read out or, most importantly, react conditionally to
external input data or reset by a programmer, however much formal similarity its
behavior might otherwise seem to have to a computer, it is not a computer in a
sense distinct from more primitive automata, such as clocks, that cannot do so
and cannot perform repeated trials of its total program. Third, the notion of the
universe as fundamentally, rather than incidentally, operating or having portions
being viewable as digital computing devices, encounters the problem that the very
distinction between the analog and digital that underlies the notion of a digital
universe (whether classical or quantum) may be unsound [7]; Turing himself saw
the very distinction between analog and digital as ultimately artificial when applied
in the physical world: “. . . strictly speaking there are no such machines [as discrete
state machines]” [31].13 It can be argued that this distinction is one only introduced
by epistemic agents and one that can be made only relative to degree of abstraction,
cf. [7]. Indeed, Turing’s own position was only that “there are many kinds of
machine, which can profitably be thought of as being discrete state machines” as
a heuristic but not literally as being so [31].

The assertion that the universe is a quantum computer can be viewed as an
updating of the notion of the universe as an automatic mechanism so as to
accommodate the fact, unknown in previous eras, that the universe at smaller
scales, in many instances, behaves according to quantum, not classical theory, and
requires the presence of the mathematics of probability at the fundamental level,
a mathematical tool which can be used to quantify information. However more
abstract in character it might become as a result of shifting the emphasis from matter
to information, updating the notion of the universe as automatic device mainly
obscures the fact that the notions of the computer universe and the clockwork
universe are similar in that they both seek to replace, reduce, or explain the state
of the universe, its contents, and its order and complexity in terms of idealized
automata. Despite the invocation of various information-theoretical concepts and
the numerical calculations deployed by its advocates, the purported results of the
quantum cellular automaton model discussed above are beside the point in regard
to the existence of an underlying informational ontology. The notion of automatism
in itself, whether “material” or “informational,” at least in the absence of significant
additional assumptions, adds nothing of explanatory value to physics beyond what
natural laws can achieve directly. One formulates better scientific theory by avoiding
any literal or metaphorical use of the notion of the automaton when providing theory
applicable to the physical universe.

13Moreover, it is normally in the analog, rather than the digital, that is, the continuation that
one finds the infinite within bounded ranges. Note that the difference between information and
the characteristic of digitality is the basis of the difference between the digital ontological and
information-ontological stances.
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Although there may be heuristic value in considering physical systems from
the point of view of the theory of computation—much as there is some value,
for example, to considering the motion of balls moving on a flat surface within a
rectangular boundary also containing various holes as part of a game of billiards
under certain specific circumstances, namely, those in which we have chosen to
become actively involved and to use them as such—this adds nothing to the
understanding of the physical behavior underlying it.

6 Conclusion

The identification of the universe with a quantum computer, like that of its historical
predecessor, the identification of the universe with a clockwork, is unwarranted:
Although there is little question that, under appropriate conditions, portions of the
universe could in principle be used as quantum computing devices over relatively
short periods of time compared with the age of the universe and that it is logically
possible that it could be simulated given unlimited computational resources, the
universe itself as a whole is better not identified as a computer, whether of a
quantum sort or otherwise. The various arguments provided for this thesis, using
the notion of simulation or attempts to use it to explain the physical complexity of
the universe, fail either because they lead to infinite regress or because the physical
universe does not share all the characteristics of the sort of computer required,
in the case of some of the arguments or, in case of the remaining argument, fail
to provide a superior explanation for the ordered complexity of the universe to
the one that can be provided using the standard conception of the universe and
its physics. Considering physical processes as behaving similarly to computers,
including quantum computers, may be beneficial as a heuristic—in particular,
in the search for novel mathematical bases for physical theory, because it may
provide various means for breaking away from what may ultimately be found to be
unnecessary assumptions, such as that continua are necessary for the mathematical
description of the behavior of the physical universe—but this remains to be shown.

Acknowledgements I gratefully acknowledge Tom Toffoli for helpful discussions regarding
pertinent elements of the theories of automata and complexity.
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External Observer Reflections on QBism,
Its Possible Modifications, and Novel
Applications

Andrei Khrennikov

1 Introduction

As is well known, QM which manifests huge success in the mathematical
representation of the basic problems of physics of the microworld suffers heavily
of diversity of interpretations of this mathematical representation. QBism is one
of the most recent attempts to provide a consistent interpretation of QM, free of
all possible mysteries and paradoxes. In this short review, I present my personal
reflections on QBism.1 The paper starts with a historical remark on the first years of
QBism. It continues with brief representation of its essentials, mainly referring to
and citing its creators. Then the main postulates of QBism are critically analyzed.

We point out that the cornerstone of QBism is the interpretation of QM as a
machine for update of probabilities based on a modification of the classical formula
of total probability (FTP). In this paper we emphasize this dimension of QBism

1The discussion is definitely not systematic enough to serve as an introduction to QBism. If the
reader seeks a scholarly discussion, a good starting point would be the fairly recent books of
Friederich [25] and Timpson [80], for example (see also their papers [24, 79]). Readers who are
already conversant with QBism are unlikely to find anything new in our presentation. These notes
have two closely related aims: (a) to add some details to the history of foundation and evolution
of QBism and (b) to send a message to the part of physical community which still strongly rejects
QBism as a totally unphysical interpretation of QM. It is important that these notes were written by
one of the active representatives of this anti-QBist lobby which still strongly dominates in quantum
foundations. I definitely have not been completely converted into QBism, but recently I started to
find rational points in QBist views on quantum theory, and I want to present these points, but, so
to say, with a spicy sauce of doubt.
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which is typically shadowed by the emphasis on the subjective interpretation of
probability and private agent perspective to quantum measurements. The latter
emphasize often makes the impression that QBism is merely about philosophy of
quantum mechanics. (At least this is my personal experience based on hundreds of
conversations about QBism.) It is important to stress that QBism’s version of FTP
is very special, and it is derived with the aid of symmetric informationally complete
positive operator-valued measures (SIC-POVMs).2 This choice of quantum mod-
ification of FTP is critically analyzed. The main output of this analysis is that it
seems that QBists are really addicted to exploration of SIC-POVMs. And it seems
that QBism would earn a lot by proceeding without the assumption of symmetry of
IC-POVM or may be even without appealing to information completeness.

In this paper QBism is compared with two interpretations of QM which are
very close to QBism but in two totally different aspects, cf. [24]. In Sect. 5 we
compare QBism with the Växjö interpretation [45, 46, 50] of QM. The latter is a
contextual realistic interpretation based on the objective interpretation of probability
(with sympathy [42, 49] to von Mises’ frequency probability theory [81–83]).
From the first sight, there is nothing in common between these two interpretations;
see [45] and [27] for the critical debate. However, they have one very important
thing in common: in both interpretations, the Born rule is treated as a quantum
modification of classical FTP, although the modifications of FTP are mathematically
very different. In Sect. 8 QBism is compared with the information interpretation of
QM elaborated by Zeilinger [86, 87] and Brukner [7–10]. From the first sight, these
interpretations are very similar. However, we shall show that, in fact, they differ
crucially.

The rest of the paper is devoted to interpretations of probability. Here diversity is
not so huge as in QM, but the gap between two main interpretations, objective and
subjective, is no smaller than the gap between two basic trends in interpretations of
QM, realist (in the spirit of Einstein) and non-realist (in the spirit of Copenhagen).
We present the original Kolmogorov interpretation of probability [60] (which is not
so well known, even in the probability community) and compare it with the genuine
frequency interpretation of von Mises [81–83] and subjective interpretation of de
Finetti [20, 21].

Then, following de Finetti, we point out that consistent appealing to the sub-
jective interpretation of probability should lead to reconsideration of the objective
treatment of the scientific methodology. Finally we point that de Finetti was even
more revolutionary than QBists, because his subjective treatment of scientific
method was not restricted to “special quantum world.” In some way QBists made
one good turn but refrain from another, they revolutionary declared the private agent
(user) perspective to knowledge about “quantum world,” but they were not brave

2From this viewpoint, i.e., QM as a probability update machine, QBism is similar to the Växjö
interpretation of QM. The latter is a realist contextual statistical interpretation, so ideologically
it is opposite to QBism. However, the probability update basis makes it close to QBism. At the
same time, even this closeness is only formal, since the QBism version of generalized FTP differs
crucially from the Växjö version.
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enough to follow de Finetti completely, i.e., to declare the private agent perspective
for knowledge about classical world as well. The latter is an exciting project still
waiting its realization.

As was pointed out at the very beginning of the paper, it presents critical
reflections about QBism. In particular, some doubt is expressed regarding how much
the QBists’ subjectivism is actually important for the overall project. I note that
there may be some sort of rapprochement between subjectivism and objectivism.
Of course, this may significantly underplay the role of the QBists’ subjectivity
in the resolution of the old puzzles about measurement and locality in quantum
mechanics. At the same time, it may stimulate QBists to concentrate their efforts
on development of the “probability update machinery” dimension of QBism. The
same can be said about critique of another basic element of QBism—derivation of
SIC-POVM-based modification of FTP.

2 QBism Childhood in Växjö

In 2001 QBism was strongly represented at the second Växjö conference
on quantum foundations, “Quantum Theory: Reconsideration of Foundations”
(QTFT2001), June 17–21, 2001. We (organizers and participants of this conference)
strongly believed that the quantum information revolution would soon lead to great
foundational revolution. Unfortunately, dreams did not come true. Nevertheless, the
energy of the quantum information revolution was transformed in a series of stormy
debates during the series of the Växjö conferences, 2000–2015. Although these
debates did not lead to a complete resolution of the basic problems of quantum
mechanics, they clarified some of these problems, especially the problem of the
interpretation of a quantum state. QBism was definitely one of the main foundational
outputs of the quantum information revolution.3

As the organizers of QTFT-2001, I and C. Fuchs both dreamed for the creation
of a consistent and clear interpretation of QM, free of mysteries and paradoxes.
However, we went in two opposite directions. I followed Einstein and later,
as the result of better understanding of Bohr’s writings [4–6] (and especially
comments of A. Plotnitsky on them), tried to unify Einstein’s realist statistical
interpretation with Bohr’s contextual interpretation by filtering out Bohr’s non-
realist attitude; see [45, 46, 50] for so-called Växjö interpretation of QM. Both
Einstein and Bohr (as well as, e.g., von Neumann) used the statistical (ensemble)
interpretation of quantum probabilities. Therefore the Växjö interpretation is based

3Besides QBism, we can mention the Växjö interpretation of QM (statistical realist and contextual)
[45, 46] derivation of the QM-formalism from simple operational principles, D’ Ariano [17, 18] and
Chiribella et al. [15, 16] (first time this project was also announced in Växjö), and the statistical
Copenhagen interpretation (statistical non-realist) which final formulation was presented at the
Växjö-15 conference by A. Plotnitsky and based on his previous studies about the probabilistic
structure of QM [67–70].
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on this statistical interpretation. It also was important that as a student, I was strongly
influenced by A.N. Kolmogorov and B.V. Gnedenko4 who always emphasized that
probability is objective and statistical. Later, after PhD, I discovered the works
of von Mises [81–83]. I really enjoyed this reading! Von Mises’ interpretation
of probability differs from Kolmogorov’s interpretation. Nevertheless, Misesian
probability is also objective and statistical. In any event, nobody of them (Einstein,
Bohr, von Neumann, Kolmogorov, Gnedenko) and neither I would agree with de
Finetti’s slogan Probability does not exist! and with his subjective interpretation of
probability. My views on interpretation of quantum states and probabilities were
presented in [45].

C. Fuchs went in the opposite direction; he (with support of C.M. Caves, R.
Schack, and D. Mermin) openly, loudly, and proudly declared [13, 14, 26, 28, 29,
31–35] that QM is only about knowledge (and here QBists are very close to the
fathers of the Copenhagen interpretation, N. Bohr and W. Heisenberg [4–6]). But
this widely supported viewpoint was completed with very strained and revolutionary
declaration that this quantum knowledge has to be treated as personal knowledge.
Subjective interpretation of quantum probability matches perfectly such a private
agent perspective of quantum theory. QBists emphasize the Bayesian probability
update and decision-making structure of the quantum probability calculus.

From my viewpoint, the latter is one of the main contributions of QBism in
clarification of quantum foundations. Independently this viewpoint was presented
in the framework of the Växjö interpretation, sections [45, 46, 50].

At the beginning I and C. Fuchs did not recognize this similarity, namely,
interpretation of the calculus of quantum probabilities as a machinery for update of
probabilities. And it is clear why at that time I emphasized realism and objectivity
and C. Fuchs privacy and subjectivity. And the probability update dimension was
shadowed by these philosophic issues. This explains the appearance of Fuchs’ anti-
Växjö paper [27].

Nevertheless, intuitively I felt sympathy to QBism, but roots of this sympathy
were not clear for me.5 At the Växjö-15 conference, QBism was widely represented
and celebrated its worldwide recognition. Nobel Prize Laureate T. Hänsch presented
the great lecture about QBism as the only possible consistent foundational basis of
quantum information theory. This lecture ignited the stormy debate, and T. Hänsch
and C. Fuchs were attacked by the realist opposition (leaded by L. Vaidman and A.
Elitzur).

4Gnedenko was the author of one of the best textbooks on probability theory [36]. The introduction
of this book contains the manifesto of objective probability and sharp critique of subjective
probability.
5Once Christopher Fuchs asked me: “Why did you support QBism so strongly during the Växjö-
series of conferences? QBism contradicts your own Växjö interpretation!” In fact, I was not able
to explain this even for myself. I had a feeling that QBIsm can be useful. But how? and where?
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3 Quantum Theory Is About Evaluation of Expectations
for the Content of Personal Experience

In contrast to von Neumann, Fuchs proposed to interpret probability in the subjec-
tive way. To present essentials of some theory, sometimes it is practical simply to
cite works of its creators (this is definitely not the case of Bohr, or von Neumann, or
even myself). Here we cite Fuchs and Schack [34, pp. 3–4]:

The fundamental primitive of QBism is the concept of experience. According to QBism,
quantum mechanics is a theory that any agent can use to evaluate her expectations for the
content of her personal experience.
QBism adopts the personalist Bayesian probability theory pioneered by Ramsey [73] and
de Finetti [21] and put in modern form by Savage [74] and Bernardo and Smith [3] among
others. This means that QBism interprets all probabilities, in particular those that occur in
quantum mechanics, as an agent’s personal, subjective degrees of belief. This includes the
case of certainty - even probabilities 0 or 1 are degrees of belief. . . .
In QBism, a measurement is an action an agent takes to elicit an experience. The
measurement outcome is the experience so elicited. The measurement outcome is thus
personal to the agent who takes the measurement action. In this sense, quantum mechanics,
like probability theory, is a single user theory. A measurement does not reveal a pre-existing
value. Rather, the measurement outcome is created in the measurement action.
According to QBism, quantum mechanics can be applied to any physical system. QBism
treats all physical systems in the same way, including atoms, beam splitters, Stern-Gerlach
magnets, preparation devices, measurement apparatuses, all the way to living beings and
other agents. In this, QBism differs crucially from various versions of the Copenhagen
interpretation. . . .
An agent’s beliefs and experiences are necessarily local to that agent. This implies that the
question of nonlocality simply does not arise in QBism.

We shall revisit the interpretational issues of QBism after the presentation of its
basic probabilistic principle in the next session.

4 QBism as a Probability Update Machinery

The previous section might create the impression that the subjective interpretation
of quantum probabilities is the key point of QBism. It might be that even its creators
have the same picture of their theory. For me, the essence of QBism is neither
this very special interpretation of quantum probabilities nor the concrete agent
perspective of QM. For me, the main ideological invention of C. Fuchs and R.
Schack was treatment of the mathematical formalism of QM as a generalization of
the classical Bayesian machinery of the probability update. This viewpoint clarifies
the meaning of the basic rule of QM—the Born rule as a complex Hilbert space
representation of generalization of the classical formula of total probability (FTP).

This dimension of QBism is identical to the probability update dimension of the
Växjö interpretation [45, 46, 50]. There are a few differences.
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One is the difference in the interpretations of probability. However, nowadays
I do not consider it as the crucial difference (in contrast to my first debates with
C. Fuchs in 2001–2003, [45] and [27]). Really, in a long series of updates, the
subjective and statistical viewpoints coincide.6

For me, the main difference between QBism and the Växjö interpretation is in
the mathematics, not in physics or in philosophy. Both the Växjö interpretation of
QM [43, 44, 50] and QBism [29, 31–35] the Born rule is treated as generalization
of classical formula of total probability (FTP) in the language of linear operators.
However, these interpretations are based on two totally different mathematical
generalizations of FTP—both matching the Born rule.

Starting with the Born rule, QBists derived their special version of generalized
FTP which is based on a very special class of the quantum probability updates,
based on atomic instruments with SIC-POVMs; see Appendix 1.

We now briefly present the QBism scheme for the probability update, namely,
the representation of the Born rule as a generalization of FTP; here we again follow
Fuchs and Schack [29, 31–34].7

Quantum states are represented by density operators ρ in a Hilbert space assumed
to be finite dimensional. A measurement (an action taken by the agent) is described
by a POVM F = ( Fj ), where j labels the potential outcomes experienced by
the agent. The agent’s personalist probability8 p(Fj ) of experiencing outcome j
is given by the Born rule:

p(Fj ) = TrFjρ. (1)

Similar to the probabilities on the left-hand side of the Born rule, QBism regards
the operators ρ and Fj on the right-hand side as judgments made by the agent,
representing her personalist degrees of belief.

6 In the mentioned debates, I also was strongly against the anti-realist attitude of QBism. However,
now this attitude does not disturb me so much as 12 years ago. Either I started to understand
QBists’ views on the problem of realism better or QBists changed their views (or both). QBism
needs not appeal to any subquantum model providing the ontic description of quantum systems and
processes, in particular, to hidden variables. Nor is QBism concerned with struggle against such
models. It seems that the personal position of C. Fuchs is similar to the position of N. Bohr [4–6]:
for quantum physics, it plays no role whether finally one would be able to construct a realistic
subquantum model or not. For the present state of development of quantum theory, this is the
most reasonable position, cf. with Zeilinger’s strong anti-realist attitude. Moreover, just recently
(through a series of email exchanges), I understood better the position of C. Fuchs on the problem
of non-realism/realism. Surprisingly QBists (at least C. Fuchs) do not consider QBism as a non-
realist interpretation of QM.
7We remark that in coming considerations, the interpretation of probabilities does not play any
role. They can be subjective probabilities (as originally in QBism), but they also can be statistical,
e.g., Kolmogorovian or Misesian, as well.
8As was remarked, probability can be interpreted in other ways. The situation is similar to the
classical probability update. De Finetti would treat this probability as subjective but Kolmogorov,
or Gnedenko, or von Mises as statistical.



External Observer Reflections on QBism, Its Possible Modifications, and Novel. . . 99

The Born rule as written in Eq. (1) appears to connect probabilities on
the left-hand side of the equation with other kinds of mathematical objects—
operators—on the right-hand side.

QBists assume that the agent’s reference measurement is an arbitrary infor-
mationally complete POVM, E = (Ei), such that each Ei is of rank 1, i.e., is
proportional to a one-dimensional projector. Such measurements exist for any finite
Hilbert space dimension. Furthermore, we assume that, if the agent carries out the
measurement E = (Ei) for an initial state ρ, upon getting outcome Ei , he would
update to the post-measurement state

ρi = EiρEi

TrEiρEi
.

This is the assumption of atomicity of this quantum instrument. (This is a strong
constraint on the class of instruments which are used in QBism. It would be
interesting to analyze the possibility to proceed with arbitrary instruments.)

Because the reference measurement is informationally complete, any state ρ
corresponds to a unique vector of probabilities

p(Ei) = TrEiρ,

and any POVM F = ( Fj ) corresponds to a unique matrix of conditional
probabilities

p(Fj |Ei) = tr( Fjρi).

The operators ρ and Fj on the right-hand side of the Born rule are thus math-
ematically equivalent to sets of probabilities p(Ei) and conditional probabilities
p(Fj |Ei). (We remark that all these probabilities depend on the state ρ, i.e.,
p(Ei) ≡ pρ(Ei), p( Fj ) ≡ pρ( Fj ), p( Fj |Ei) = pρ( Fj |Ei).)

Then Fuchs and Schack [29, 31–34] stress that POVMs as well as quantum states
represent an agent’s personal degrees of belief. However, this is not essential for
the formal scheme of probability update. We can as well interpret the probabilities
p(Ei) and p(Fj |Ei) statistically. The main point which was rightly emphasized by
them is that the Born rule can be interpreted as one special form of transformation
of probabilities:

p(Fj ) = f ( p(Ei), p( Fj |Ei)). (2)

Comparing with the classical FTP which is in these notations written as

p(Fj ) =
∑
i

p(Ei)p( Fj |Ei), (3)
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they formulate the statement which I consider as the cornerstone of QBism:

The Born rule is one of the forms of generalization of FTP.

For me, the main problem of QBists is that they started with a SIC-POVM E =
(Ei). They say [31] “The Born rule allows the agent to calculate her outcome probabilities

p(Fj ) in terms of her probabilities p(Ei) and p(Fj |E.i) defined with respect to a counterfactual

reference measurement.” This reference to counterfactuals is really redundant. Why
should SIC-POVM measurement appear at all? As in the Växjö approach, one can
start with an arbitrary POVM measurement, say G = (Gi), to define probabilities
p(Gi) = TrρGi providing information about the state ρ.

By taking into account such a possibility of generalization of QBist considera-
tion9 I completely agree with the following statement of QBism [31]:

In QBism, the Born rule functions as a coherence requirement. Rather than setting the
probabilities p(Fj ), the Born rules relates them to those defining the state ρ and the POVM
F = ( Fj ). Just like the standard rules of probability theory, the Born rule is normative: the
agent ought to assign probabilities that satisfy the constraints imposed by the Born rule.

The functional relationship given by (2) depends on details of the reference
measurement. In the special case that the reference measurement is a symmetric
informationally complete (SIC)-POVM, (2) takes the simple form:

p(Fj ) = TrFjρi =
∑
i

(
(d + 1)p(Ei)− 1

d

)
p(Fj |Ei). (4)

This is a consequence of the complete information representation of a quantum state
and the use of SIC-POVMs; see Appendix 1.

5 QBism and the Växjö Interpretation of Quantum
Mechanics

As was pointed out, QBists have conjectured that the FTP-like form of the Born
rule (4) may be used as the basic (and may be the unique) axiom in a derivation
of quantum theory. The key question that remains is in identifying what minimal
further principles must be added to Eq. (4) for the project to be successful.

This program is identical to attempts to justify the Växjö interpretation [45,
46, 50]10 by deriving the complex Hilbert space formalism from the generalized

9However, for QBists the above generalization—to start the probability update scheme with an
arbitrary POVM measurement G = (Gj ) and not with a SIC-POVM E = (Ei)—seems to be
unacceptable. They are really addicted on SIC-POVMs and on completeness of information gained
at the first step, information about the state, even at the price of appearance of counterfactuals.
10This is a contextual realistic interpretation of QM. Contextuality is understood in the wider sense
than typically in modern discussions on Bell’s inequality in which contextuality is reduced to joint
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FTP with an interference term [42, 47, 49, 50]. This FTP arises as the additive
perturbation of classical FTP; the perturbation term represents the interference of
probabilities which is characteristic for incompatible quantum observables. We shall
briefly present the derivation of such a generalized FTP later, after the coming
foundational discussion.

Similarly to QBists, I tried to derive the complex Hilbert space structure of QM
solely from the latter generalization of FTP, i.e., without additional axioms. This
approach was successful only for dichotomous observables. Already the case of
three-valued observables is very difficult mathematically. Here only a partial success
was achieved by Nyman and Basieva [64, 65].

Maybe Fuchs and Schack are right that one has to find additional axioms leading
to the complete derivation of the quantum formalism, as, e.g., was done by D’
Ariano et al. [15–18]. However, proceeding with such additional axioms does not
match completely the basic principle that the quantum formalism is just a special
form of the probability update generalizing the classical Bayesian update. This
principle is very attractive in both QBism and the Växjö interpretation (though they
have different mathematical realizations).

Completing a generalized probability update scheme by additional operational
principles diminishes the value of this scheme as the unique fundamental principle
lying in the ground of QM. It shifts the line of research to more traditional
operational approaches starting with the pioneer contribution of Heisenberg [38],
then Mackey [62], and nowadays D’ Ariano et al. [15–18]. In this paper we do not
plan to analyze the operational axiomatics of D’Ariano et al. However, in previous
derivations of QM from “natural operational principles,” complex Hilbert space was
always encrypted, practically explicitly, in one of the axioms; see, e.g., Mackey [62]
for one of the first operational derivations of the quantum formalism.

We now derive the quantum analog of FTP, FTP with the interference term, in
the simplest (but very important for foundations) case—for the two-slit interference
experiment. Here we follow Feynman [23]. The author’s contribution is the repre-
sentation of Feynman’s argument by using conditional probabilities and in this way
interpreting interference of probabilities in the two-slit experiment as a violation of
classical FTP and generalization to arbitrary incompatible observables [43, 48–50]
and recently POVMs [54].

Consider the following pair of observables a and b. We select a as the “slit
passing observable,” i.e., a = 0, 1 (see Fig. 1) (we use indexes 0 and 1 to be close

measurement with another observable. In the Växjö interpretation, contextuality is understood in
the spirit of Bohr [4–6]: as dependence of the outcomes of observables on the whole experimental
arrangement. In particular, violation of Bell’s inequality is a consequence of complementarity
of experimental contexts corresponding to different pairs of orientations of polarization beam
splitters. In some sense the Växjö interpretation is an attempt to unify the views of Einstein
and Bohr. This interpretation matches with the statistical interpretation of probability. In works
[42, 47] the frequency (von Mises [81–83]) approach to the notion of probability was explored. We
remark that both Einstein and Bohr shared the statistical viewpoint on probability; see [71] for the
corresponding discussion.
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Fig. 1 Context with both
slits are open

photo-sensitive plate

slit1

slit0

photon

to qubit notation), and observable b as the position on the photosensitive plate (see
Fig. 1). We remark that the b-observable has the continuous range of values, the
position x on the photosensitive plate. We denote p(a = i) by p(i) (i = 0, 1)
and p(b = x) by p(x). Physically the a-observable corresponds to measurement
of position (coarse grained to “which slit?”), and the b-observable represents
measurement of momentum.

The probability that a photon is detected at position x on the photosensitive plate
is represented as

p(x) =
∣∣∣∣

1√
2
ψ0(x)+ 1√

2
ψ1(x)

∣∣∣∣
2

= 1

2
|ψ0(x)|2 + 1

2
|ψ1(x)|2 + |ψ0(x)| |ψ1(x)| cos θ, (5)

where ψ0 and ψ1 are two wave functions, whose squared absolute values |ψi(x)|2
give the distributions of photons passing through the slit i = 0, 1.

Here we explored the rule of addition of complex probability amplitudes, a
quantum analog of the rule of addition of probabilities. This rule is the direct
consequence of the linear space structure of quantum state spaces.

The term

|ψ0(x)| |ψ1(x)| cos θ

implies the interference effect of two wave functions. Let us denote |ψi(x)|2 by
p(x|i), then Eq. (5) is represented as

p(x) = p(0)p(x|0)+ p(1)p(x|1)+ 2
√
p(0)p(x|0)p(1)p(x|1) cos θ. (6)

Here the values of probabilities p(0) and p(1) are equal to 1/2 since we consider the
symmetric settings. For general experimental settings, p(0) and p(1) can be taken
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as the arbitrary nonnegative values satisfying p(0) + p(1) = 1. In the above form,
classical FTP

p(x) = p(0)p(x|0)+ p(1)p(x|1) (7)

is violated, and the term of interference 2
√
p(x|0)p(0)p(x|1)p(1) cos θ specifies

the violation.
Modification (6) of classical FTP (7) is very natural; the classical law is additively

perturbed. If the interference term is equal to zero, then quantum FTP is transferred
into classical FTP, cf. with Qbism’s FTP (4). Thus by the Växjö interpretation, the
quantum formalism is about modification of classical FTP by additional interference
terms.

We remark that classical FTP is a theorem of the commonly used the measure-
theoretic model of probability [60]. To prove it one has to operate with the fixed
probability measure or in more rigorous mathematical framework in the fixed
probability space. Thus in purely probabilistic terms, a violation of FTP implies
the impossibility to embed statistical data collected in a few experiments in a single
probability space. Since in the Kolmogorov approach the probability space is fixed,
we can say that the quantum probabilistic calculus which leads to a violation of FTP
is an example of non-Kolmogorovian probability model.

6 Agents Constrained by Born’s Rule

In 2001 the private user’s experience viewpoint on quantum physics made me really
mad, and this was the main reason for my anti-QBism attitude [45].11 However,
recently I understood that the situation may be not so bad as one can imagine by
reading the QBism manifests, such as presented in Sect. 3. Maybe this long way
to understanding is not only my fault. QBists judge too highly the private user
interpretation of QM comparing with the problem of concretization of the class
of such private users. I remember that in 2001 in Växjö, I asked C. Fuchs: “Suppose
that your user, Ivan, lives in taiga by hunting and he has never heard about QM.
Would Ivan make proper predictions about simplest quantum experiments?” I do not
remember the precise answer of C. Fuchs, but it seems it was a long story about his
version of FTP (4), which was considered by me as totally irrelevant to my question.
Then I asked C. Fuchs the same question during a few next Växjö conferences, and
I did not get a satisfactory answer (at least from my viewpoint). Recently, during
the Växjö-2015 conference, where QBism was heavily represented by the talks of

11The strong anti-Copenhagen attitude in the first declaration about the Växjö interpretation was
partially a consequence of the active advertising of QBism at Växjö-2001 conference. My reaction
(as many others) was: “See, the Copenhagen interpretation finally led to such a perverse view on
QM as the private agent’s perspective on the quantum state.”
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its founders, I got a new possibility to discuss its foundations with C. Fuchs, and
in the after-conference email correspondence, I finally got a clear answer to my old
question. Of course, this answer could be found in the works of Fuchs and Schack,
but it was dimmed by the very strong emphasis on the private agent perspective.

So, if I understood C. Fuchs correctly, the class of agents has to be constrained!
And the basic constraint is given by the Born rule which is treated as an empirical
rule reflecting some basic features of nature; see Sect. 4 for discussion. For a
moment, for us the concrete natural basis of the Born rule is not important. It
is important that QBism uses this rule as an information constraint to determine
a class of so to say “quantum agents,” i.e., those who “get tickets to the QBism
performance.” Thus private users of QM are those who know the main rule of the
game: the probability update for quantum systems has to be done with the aid of the
Born rule (or QBist version of FTP; see (4)). It seems reasonable that such agents
would produce reasonable predictions. Thus Ivan from Taiga is excluded from QBist
agents—finally!

The Born rule constraint is the basic necessary condition for entrance to the
QBism club. At the same time, it is practically sufficient conditions, because
other personal characteristics of an agent making predictions about quantum
experiments play subsidiary roles in relation to these predictions. Thus in principle
one may invent an abstract (conceptual) QBism agent who makes her probabilistic
predictions about experiment results on the basis of the Born rule. In this way
QBism comes closely to the recent version of the information interpretation of QM
of Zeilinger-Brukner proposed by Brukner [7]. However, while QBistd would, in
principle, accept an interpretation a la Brukner, i.e., referred to a conceptual agent,
they definitely would not like to diminish the role of private agent perspective in
QBism.

7 Is QBism a Version of the Copenhagen Interpretation?

By following the talks of C. Fuchs or R. Schack, I always had the feeling that
their views are very much in the spirit of Copenhagen. Bohr and Heisenberg
always pointed out that the quantum formalism is not about the “quantum physical
world” but it is a representation (mathematical) of measurements performed on
micro-systems. Thus, from their viewpoint QM is about knowledge (especially for
Heisenberg). Do Fuchs and his coauthors, Schack, Mermin, and Caves, try to say
the same thing by just using the special interpretation of probability, the subjective
probability? I still do not have my own definite opinion about this issue. Therefore
here I present a long citation of D. Mermin who knows QBism much better than me
and who claims that QBism differs crucially from all interpretations in the spirit of
Copenhagen (see [63, pp. 7–8]):

A fundamental difference between QBism and any flavor of Copenhagen, is that QBism
explicitly introduces each user of quantum mechanics into the story, together with the world
external to that user. Since every user is different, dividing the world differently into external
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and internal, every application of quantum mechanics to the world must ultimately refer, if
only implicitly, to a particular user. But every version of Copenhagen takes a view of the
world that makes no reference to the particular user who is trying to make sense of that
world.
Fuchs and Schack prefer the term “agent” to “user.” “Agent” serves to emphasize that the
user takes actions on her world and experiences the consequences of her actions. I prefer the
term user to emphasize Fuchs’ and Schack’s equally important point that science is a user’s
manual. Its purpose is to help each of us make sense of our private experience induced in
us by the world outside of us.
It is crucial to note from the beginning that “user” does not mean a generic body of users.
It means a particular individual person, who is making use of science to bring coherence to
her own private perceptions. I can be a “user.” You can be a “user.” But we are not jointly
a user, because my internal personal experience is inaccessible to you except insofar as I
attempt to represent it to you verbally, and vice-versa. Science is about the interface between
the experience of any particular person and the subset of the world that is external to that
particular user. This is unlike anything in any version of Copenhagen. It is central to the
QBist understanding of science.

Of course, the reader can find this Mermin’s viewpoint on QBism as private agent
(user) business does not match completely the conclusion from my discussion on the
class of users belonging to the “QBism club” and constrained by the knowledge
about the Born rule; see Sect. 6. This is a consequence of the private user’s
perspective to interpreting QBism—both David Mermin and I are good friends of
the founder of QBism, Christopher Fuchs, and we both got our information about
QBism directly from its founder. . . .

8 QBism and the Information Interpretation of Quantum
Mechanics of Zeilinger and Brukner

In the information interpretation of QM, information is the most fundamental, basic
entity. Every quantized system is associated with a definite discrete amount of
information (see Zeilinger [86] and also [87]). This information content remains
constant during evolution of a closed system. Here a quantum state is defined in
the spirit of Schrödinger (see [75]): the quantum state is an expectation catalog (of
probabilities for all possible outcomes).

Here we do not see the private agent perspective to information encoded
in a quantum state. Thus, in spite of some similarity—the QM formalism is
about information processing—the information interpretation differs crucially from
QBism, by the absence of the private agent perspective. These interpretations also
differ in their relation to the Copenhagen interpretation. In contrast to, e.g., Fuchs
and Mermin who distanced from this interpretation (Sect. 7), A. Zeilinger who
presented the basic principles of the information interpretation in 1999 [86] always
emphasized its close connection with the Copenhagen interpretation; in particular,
he often cited N. Bohr [4–6] to emphasize connection with Bohr’s ideas. The same
line of presentation continues in joint publications of Zeilinger and Brukner [7–
10], Kofler and Zeilinger [59] and Brukner et al. [11]. Indeed, the information
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interpretation of QM can be considered as a modern information-theoretic version
of the orthodox Copenhagen interpretation. It has some commonality with von
Neumann’s version of this interpretation. In particular, Zeilinger and Brukner
explore heavily the concept of irreducible quantum randomness which was invented
by von Neumann [84].

Another key person of the information approach to QM, C. Brukner, recently
published a paper on what I interpret as the universal (i.e., not private as in QBism)
agent perspective on the information interpretation; we cite Brukner [7]:

The quantum state is a representation of knowledge necessary for a hypothetical observer
respecting her experimental capabilities to compute probabilities of outcomes of all possible
future experiments.

Here an explicit reference to the observer’s experimental capabilities is crucial,
cf. with my analysis of QBism in Sect. 6.

It has to be noted that in this paper, Brukner emphasized the closeness to QBism.
With this I strongly disagree. From the QBism perspective, the wave function is
in the head of a concrete private agent, e.g., in Fuchs’ head, not in the head of a
hypothetical observer.

9 Classical Probability Theory

9.1 Measure-Theoretic Axiomatics (Kolmogorov [60])

Modern probability theory [60] is based on the representation of events by sets,
subsets of some set �, the so-called sample space, or space of elementary events.
The system of sets representing events, say F , allows operations of Boolean logic;
F is the so-called σ -algebra of sets.12 It is closed with respect to the (Boolean)
operations of (countable) union, intersection, and complement (or in logical terms
“and,” “or,” “no”).

The set-theoretic model of probability was presented by Andrei Nikolaevich
Kolmogorov in 1933 [60]; it is based on the following two natural (from the Boolean
viewpoint) axioms:

• (AK1) events are represented as elements of a σ -algebra, and operations on
events are described by Boolean logic;

• (AK2) probability is represented as a probabilistic measure.

We remind that a probabilistic measure p is a (countably) additive function on a
σ -algebra F : p(∪∞j=Aj) =

∑∞
j= p(Aj ) for Aj ∈ F , Ai ∩ Aj = ∅, i �= j, which

12Here the symbol σ encodes “countable.” In American terminology, such systems of subsets are
called σ -fields.
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is valued in [0, 1] and normalized by 1. We also recall the definition of a random
variable as a measurable function, a : � → R.13 In classical probability theory,
random variables represent observables.

10 Kolmogorov’s Interpretation of Probability

In applications any mathematical formalism has to be endowed with the corre-
sponding interpretation of its entities. Here we present the original Kolmogorov
interpretation of probability; see Sect. 11 for another interpretation of the same
mathematical formalism.

Kolmogorov proposed [60] to interpret probability as follows: “[. . . ] we may
assume that to an event A which may or may not occur under conditions �, [there]
is assigned a real number P(A) which has the following characteristics:

• (a) one can be practically certain that if the complex of conditions � is repeated
a large number of times, N, then if n be the number of occurrences of event A,
the ratio n/N will differ very slightly from P(A);

• (b) if P(A) is very small, one can be practically certain that when conditions �
are realized only once, the event A would not occur.”

The (a) part of this interpretation is nothing else than the frequency interpretation
of probability, cf. with von Mises theory and his principle of the statistical
stabilization of relative frequencies [81–83].14 In the measure-theoretic approach,
this viewpoint on probability is justified by the law of large numbers. However, for
Kolmogorov, approximation of probability by frequencies was not the only charac-
teristic feature of probability. The (b)-part (known in foundations of probability as
Cournot’s principle) also plays an important role [76]. This is the purely weight-
type argument: if the weight assigned to an event is very small, then one can expect
that such an event would never happen. We emphasize that Kolmogorov presented
this weight-type argument in its strongest form—“never happen.” One may proceed
with a weaker form—“practically never happen.”

13Here measurability has the following meaning. The set of real numbers R is endowed with the
Borel σ -algebra B : the minimal σ -algebra containing all open and closed intervals. Then for any
A ∈ B its inverse image a−1(A) ∈ F . This gives a possibility to define on B the probability
distribution of a random variable, pa(A) = p(a−1(A)).
14By this principle the probability of some concrete output α of measurement is defined as the
limit of the relative frequency of realizations of α in a long (in fact, infinitely long) sequence of
trials. The class of sequences of trials which can serve to determine probabilities is constrained by
another fundamental principle of von Mises’ theory—the principle of randomness. Sequences of
trials satisfying the latter are called collectives (random sequences). The principle of randomness
involves the ambiguous notion of a place selection. On one hand, the ambiguity of this notion was
the main pitfall for applications of von Mises’ frequency theory of probability. And nowadays it
is practically forgotten. On the other hand, this ambiguity (as often happens in science) played the
crucial role in establishing of modern theory of randomness and algorithms.
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11 Subjective Interpretation of Probability

11.1 Measure-Theoretic Model with Subjective Interpretation
of Probability

Each scientific theory consists of two parts, a mathematical model and an inter-
pretation of the mathematical entities. Now we make a point: in a scientific theory
the same mathematical model can have a variety of interpretations. In particular,
it happened with Kolmogorov’s measure-theoretic model of probability. Besides
the commonly used statistical interpretation, probability measures can also be
interpreted in the framework of subjective probability theory.

This interpretation was used by T. Bayes as the basis of his theory of probability
inference; see then Ramsey [73], de Finetti [21], and Savage [74], Bernardo and
Smith [3]. Here the probability P(A) represents an agent’s personal, subjective
degrees of belief in non-occurrence/occurrence of the event A. In contrast to the
statistically interpreted probability which is objective by its nature, the subjective
probability is by definition not objective, so to say, “it does not exist in nature”
independently of an agent assigning probabilities to events. This viewpoint on
probability is in the direct conflict with von Mises’ viewing of probability theory
as a theory of natural phenomena, similar to, e.g., hydrodynamics. Kolmogorov and
the majority of Soviet probabilists also took the active anti-subjectivist position.
Although Kolmogorov treated probability theory as a mathematical theory (so his
viewpoint on probability theory did not coincide with Mises’ viewpoint), he also
interpreted it as representing objective feature of repeatable phenomena, statistical
stability of them.

At the same time, since the measure-theoretic definition of Kolmogorov probabil-
ity is heuristically based on the weighting-like procedure for events, it seems that the
subjective interpretation matches well the mathematical framework of Kolmogorov
probability spaces. Instead of assigning to events objective weights (as Kolmogorov
proposed to do), subjectivists assign to events personal weights; each agent assigns
to an event A his own degree of belief.

11.2 De Finetti’s Views on the Methodology of Science

Personalization of probability contradicts not only to the views of von Mises,
Kolmogorov, and all their followers but even the basic methodology of modern
science. And, for example, de Finetti understood this well and emphasized this in
his exciting and provocative essay [20]. He started with a citation of the important
science methodological statements of Tilgher (see [20, p. 169]) (in all following
citations, the italic font was inserted by me):

Truth no longer lies in an imaginary equation of the spirit with what is outside it, and which,
being outside it, could not possibly touch it and be apprehended; truth is in the very act of
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the thinking thought. The absolute is not outside our knowledge, to be sought in a realm
of darkness and mystery; it is in our knowledge itself. Thought is not a mirror in which
a reality external to us is faithfully reflected; it is simply a biological function, a means
of orientation in life, of preserving and enriching it, of enabling and facilitating action, of
taking account of reality and dominating it.

This viewpoint, thought as just a biological function and not reflection of the
objective features of external reality, was shared by de Finetti and used by him
to question the conventional ideology of modern science; see Appendix 2 for the
corresponding citations of de Finetti and analysis of them. For him, the main point
was that subjectivity of probability leads to subjectivity of cause.

11.3 Comparison of de Finetti’s Views with Copenhagen
Interpretation

The rejection of objectivity of cause by de Finetti can be compared with rejection
of causality by von Neumann in his interpretation of QM. (Causality is rejected
in all versions of the Copenhagen interpretation of QM. However, its probabilistic
nature was discussed most clearly in von Neumann book [84].) However, in contrast
to de Finetti, by rejecting causality von Neumann did not reject objectivity of
probability. He used the statistical interpretation of probability in its genuine von
Mises’ frequency version. Von Neumann “saved” objectivity of probability in the
absence of causality by inventing the concept of irreducible quantum randomness.
Bohr and Pauli also interpreted probability statistically and, for them, it was
definitely objective. This objectivity was based on objectivity of outputs of classical
measurement devices. In contrast to von Neumann, they did not need irreducible
quantum randomness.

However, in general de Finetti’s denial of objectivity of cause had to be
sympathetic for Copenhagenists. Therefore it is surprising that in QM, nobody tried
to proceed with the subjective probability interpretation. Only recently C. Fuchs
supported by R. Schack proposed to use in QM subjective probability and personal
agent’s perspective (see Sect. 4). This interpretation of QM is known as Quantum
Bayesianism (QBism).

11.4 Classical Bayesianism: Subjective Probability in Classical
Physics?

For the fathers of QM, both Copenhagenists (as Bohr, Pauli, Dirac, von Neumann)
and anti-Copenhagenists (as Einstein, De Broglie), probability was objective and
statistical. Why? Why not subjective? One of the reasons for this was that all
physicists learned probability starting with classical statistical mechanics and the
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statistical interpretation was firmly incorporated in their mind. Some of them were
able to give up even causality, but not statistical nature of probability. However,
it seems that the main reason was that de Finetti’s views on probability and more
generally on scientific theory were too revolutionary even for “quantum folk.” The
latter still wanted to have solid objective ground—in classical world, the world of
macroscopic measurement devices. But de Finetti tried to teach us that even in
this macro-world neither probability nor cause is objective, they have to be treated
subjectively, person dependent. It seems that even Copenhagenists would not accept
such a position. By following de Finetti consistently, they should reconsider not
only physics of microworld, as was done in the process of creation of QM, but even
physics of macro-world.

What is about QBism? QBism loudly declared that quantum probabilities have to
be treated as subjective entities. For this, it was admired by some people and heavily
beaten by others. It seems to be reasonable if QBists by exploring the subjective
interpretation of probability in QM would say:

CBism Bayesianism has to be extended to classical statistical physics and thermodynamics!

Unfortunately, we do not hear such a message from them—at least loudly. Only
through the private communication with C. Fuchs it became clear for me that CBism
is not foreign for QBists. In particular, in 2003 C. Fuchs pointed out (see, e.g., [30,
p. 812]).

Since becoming immersed in the subject, I have found nothing more exciting than these
trains of thought. For they indicate the extent to which quantum foundations research may
be the tip of an iceberg—indeed, something with the potential to drastically change our
worldview, even outside the realm of physical practice.

However, I stress once again that this message was totally shadowed by active
advertising of the Bayesian subjective probability perspective solely for quantum
physics. Thus CBism still waits similar advertising and justification as QBism. And
this is the program of huge importance and complexity.

12 QBism as the Basis of General Theory of
Decision-Making

My personal viewpoint on the subjective interpretation of probability is sufficiently
complicated. As a student of the Department of Mechanics and Mathematics of
Lomonosov Moscow State University, I was lucky to have a few lectures of
Kolmogorov. Then he became too ill to continue, but lectures were given by his
former student A.N. Shiryaev; in any event for us, “subjective probability” was the
swearword. Therefore by working on quantum foundations [42, 50], I always keep
the statistical interpretation of probability.

However, recently by working in applications of quantum probability to cog-
nition, psychology, and decision-making [51] (see also recent papers [2, 52, 53]),



External Observer Reflections on QBism, Its Possible Modifications, and Novel. . . 111

I started to think that the subjective interpretation is adequate for modeling of
decision-making process by an individual agent. The recent wave of multidisci-
plinary activity on applications of the mathematical formalism of quantum theory
and especially its probabilistic part in cognitive science, psychology, social and
political sciences, economics, and finances as well as in molecular biology and
genetics and modeling of biological evolution (see, e.g., [2, 12, 19, 56–58, 72, 78]
and references herein) is very supportive for QBism as very general approach to
decision-making. It seems that QBism is the most natural candidate for foundational
justification of applications of the quantum calculus of probabilities outside of
physics.

Nowadays in theory of decision-making, agents are commonly considered as
assigning subjective probabilities to possible actions; see Savage [74] (although the
original theory of expected utility of von Neumann-Morgenstern [85] was based on
the frequency interpretation).

As is well known, the use of classical probabilistic model in decision-making
leads to numerous paradoxes, the most famous are the Ellsberg [22] and Machina
paradoxes [61]. As was pointed out in [1, 12, 37], these paradoxes can be resolved
by using the quantum calculus of probabilities.15 However, one has to justify the
applicability of the quantum probabilistic calculus for decisions made about events
in the macro-world. QBism can do this easily. The private agent perspective is
not rigidly coupled to events happening in the microworld. It can be extended to
decisions of agents predicting outcomes of events, e.g., at the financial market. This
viewpoint on QBism as the basis of general decision-making by agents processing
information in accordance with the rules formalized in the quantum probabilistic
formalism was presented in [55].

Once again (cf. with the last comment of the Introduction section) by extending
the domain of QBism applicability to general theory of decision-making, we
definitely go beyond the original ideas of QBism’s fathers (Fuchs, Schack, Mermin),
and it is not clear whether they would be happy to see such attempts of application
of QBism, e.g., to economics or finances.

Fuchs and Schack declared [34]: “According to QBism, quantum mechanics can
be applied to any physical system. QBism treats all physical systems in the same
way, including atoms, beam splitters, Stern-Gerlach magnets. . . ” If so, then why
only “to any physical system”? Why not to any system, biological, cognitive, social,
or political? From my viewpoint, QBism is an excellent interpretation to motivate
extension of the domain of applications of the quantum formalism. We also remark
that C. Fuchs actively uses works of W. James (see, e.g., [39–41]), as supporting the
QBism perspective to decision-making for outcomes of measurements. W. James
was one of the great psychologists of the nineteenth century. In particular, he

15It is a good place to point out that these paradoxes cannot be solved simply by playing with
the interpretations of probability. The essence of the problem is not an interpretation but the
structure of the probability calculus. Thus by using QBism to resolve these paradoxes we use
both its fundamental counterparts, interpretational—the subjective interpretation of probability,
and mathematical—the Born rule.
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invented the principle of complementarity (conscious and unconscious thoughts) to
psychology. Later N. Bohr borrowed this principle for QM [4–6]. Thus the interest
to works of James might stimulate QBists to think about interconnection between
QBism and psychology, cognition.

However, it seems that, for a QBist, it is difficult (if possible at all) to accept
the possibility of such wider use. The reaction of C. Fuchs to my comments in this
direction cannot be characterized as excitement. Of course, this calm reaction might
have social roots. By assuming that QBism is a theory about generalized probability
update done not only in physics but, in fact, everywhere, QBists would depart even
farther from the mainstream physics.

However, it might be that distancing from applications outside of physics has
fundamental grounds. In contrast to the Växjö interpretation, in QBism, the Born
rule is not just a consequence of a very general scheme of the probability update.
Its appearance in quantum physics is a consequence of some fundamental feature
of nature, namely, a kind of intrinsic quantum randomness. Thus by extending the
domain of applications of the quantum formalism to cover, e.g., cognition, one has
to assign to cognition a kind of intrinsic quantum(-like) randomness. In principle,
one cannot exclude that not only quantum physical systems, but even bio-systems
are intrinsically random. However, this is a very complicated problem. It seems that,
for a moment, QBists (who are busy with their own problems in physics) simply do
not like to be involved in the problem of justification of intrinsic bio-randomness.

However, as we know well, any idea lives its own life, and sometimes its
evolution may be unexpected and surprising for its creators (or even unwanted).16

Appendix 1: Symmetric Informationally Complete Quantum
Measurements

We consider one special class of atomic instruments with quantum observables
given by symmetric informationally complete POVMs, SIC-POVMs. Here informa-
tional completeness means that the probabilities of observing the various outcomes
(given by Born’s rule) entirely determine any quantum state ρ being measured. This
requires d2 linearly independent operators for the state space of the dimension d.

The simplest definition is that a SIC-POVM is determined by a system of d2

normalized vectors (φi) (they are not orthogonal) such that

〈φi |φj 〉2 = 1

d + 1
, i �= j. (8)

16According to Derrida, “what we get when we read a text is not an objective account of logos or
even what the author really meant, but our present interpretation or understanding of the text itself.
This understanding becomes so to speak, our own [text] of the text" (quoted from [66, p. 368]).
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The elements of the corresponding SIC-POVM (Ei) are subnormalized projectors
Ei = 1

d
 i,where i is the orthogonal projector on φi. The elements of SIC-POVM

Ei determine the corresponding quantum operations (atomic instruments).
The characteristic property of SIC-POVMs, symmetry, is that the inner product

in the space of operators (or d × d matrices) given by the trace is constant, i.e.,

TrEiEj = const = 1

d2(d + 1)
, i �= j.

By using this equality, it is easy to obtain the following representation of an arbitrary
density operator ρ :

ρ =
∑
i

(
(d + 1)p(i)− 1

d

)
 i (9)

where p(i) = TrEiρ is the probability to obtain the result i for a measurement
presented by the SIC-POVM (Ei).

This SIC-POVM based representation of a density operator ρ plays the crucial
role in Quantum Bayesianism (QBism), cf. with the QBist version of quantum
generalization of FTP (see Sect. 4).

Appendix 2: De Finetti’s Views

In this appendix the views of de Finetti to the methodology of science (see
Sect. 11.2) are presented in more details. We start with a long citation of de Finetti
accompanying the citation of Tilgher from Sect. 11.2. De Finetti wrote the high
degree of enthusiasm and excitement [20, p. 169]:

For those who share this point of view, which is also mine, but which I could not have
framed better than with these incisive sentences of Tilgher’s [..], what value can science
have? In what spirit can we approach it? Certainly, we cannot accept determinism; we
cannot accept the ‘existence,’ in that famous alleged realm of darkness and mystery, of
immutable and necessary ‘laws’ which rule the universe, and we cannot accept it as true
simply because, in the light of our logic, it lacks all meaning. Naturally, then, science,
understood as the discoverer of absolute truths, remains idle for lack of absolute truths.
But this doesn’t lead to the destruction of science; it only leads to a different conception
of science. Nor does it lead to a ‘devaluation of science’: there is no common unit of
measurement for such disparate conceptions. Once the cold marble idol has fallen in pieces,
the idol of perfect, eternal and universal science that we can only keep trying to know better,
we see in its place, beside us, a living creature, the science which our thought freely creates.
A living creature: flesh of our flesh, fruit of our torment, companion in our struggle and
guide to the conquest.
Nature will not appear to it as a monstrous and incorrigibly exact clockwork mechanism
where everything that happens is what must happen because it could not but happen, and
where all is foreseeable if one knows how the mechanism works. To a living science nature
will not be dead, but alive; and it will be like a friend about whom one can learn in sweet
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intimacy how to penetrate the soul and spirit, to know the tastes and inclinations, and to
understand the character, impulses and abandonments. So no science will permit us say:
this fact will come about, it will be thus and so because it follows from a certain law, and
that law is an absolute truth. Still less will it lead us to conclude skeptically: the absolute
truth does not exist, and so this fact might or might not come about, it may go like this or in
a totally different way, I know nothing about it. What we can say is this: I foresee that such
a fact will come about, and that it will happen in such a way, because past experience and
its scientific elaboration by human thought make this forecast seem reasonable to me.
Here the essential difference lies in what the ‘why’ applies to: I do not look for why THE
FACT that I foresee will come about, but why I DO foresee that the fact will come about. It
is no longer the facts that need causes; it is our thought that finds it convenient to imagine
causal relations to explain, connect and foresee the facts. Only thus can science legitimate
itself in the face of the obvious objection that our spirit can only think its thoughts, can only
conceive its conceptions, can only reason its reasoning, and cannot encompass anything
outside itself.

This statement contains such charge of energy that even one treating probability
objectively cannot reject it without deep analysis. Of course, primarily de Finetti is
right that in scientific prediction “I foresee that such a fact will come about, and that
it will happen in such a way, because past experience and its scientific elaboration
by human thought make this forecast seem reasonable to me.” We have only our
thought and even existence of objective reality is just one of its fruits.

For me the essential difference lies in the interpretations of “human thought”:
either as personalized or as collective. In the above citation from de Finetti, it
seems that “human thought” has the meaning of thought of a kind of the universal
agent doing scientific research. If we take subjective probability as the degree of
belief of such a universal agent, then the dispute about objectivity or subjectivity
of probability would be resolved peacefully. If de Finetti does not assumed the
existence of objective reality ruled by natural laws but just assumed the use of the
scientific experience of the mankind, represented as the universal thinking agent,
then von Mises or at least Kolmogorov might agree that such kind of subjective
probability has the right for existence. This my reflections about the universal
agent perspective on the subjective probability can be compared with Gnedenko’s
statement [77]: “Subjective probabilities, if necessary, can be made objective.”

However (and this the main point), de Finetti strongly supports the personal view-
point on subjective probability and, hence, “human thought” and “past experience
and its scientific elaboration.” This personal agent viewpoint is unsympathetic for
the majority of scientists, especially those exploring natural sciences. One of the
main problems is that subjectivity of probability leads to subjectivity of cause.

It has to be noticed that de Finetti’s radicalism shares much with American
pragmatism and with logical positivism/logical empiricism, and neither kind of
position has featured much as going concerns in discussions over the last 50 or
so years in general philosophy or philosophy of science, perhaps for good reason.
In this paper I do not plan and have no possibility to discuss these philosophic
connections of de Finetti’s approach to scientific methodology. This is a good topic
for a special philosophic essay.
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Epistemic View of Quantum
Communication

Subhash Kak

1 Introduction

A formal theory comes with its well-defined entities and rules of analysis. In
addition, certain other entities are usually implicit in the theory but are not formally
defined. These implicit entities and the underlying assumptions about reality,
together with the different ways abstract entities may be mapped to intuitive notions,
lead to divergent interpretations of the theory. Such divergences are particularly true
for quantum theory for which the interpretations include the Copenhagen, stochastic
evolution, consistent histories, transactional, QBism, MWI, and so on (e.g., [1–6]).
Roughly these interpretations fall into the epistemic and the ontic views, where in
the epistemic view one is speaking of the knowledge obtained from the experiment
without going into the ultimate nature of reality and in the ontic view one is
describing reality as a particular assemblage of objects. These views are so far from
each other that their synthesis is impossible.

Even though the epistemic Copenhagen Interpretation has been the dominant
view among quantum theorists [6], it has been criticized for being at variance with
the contemporary program of science of finding an ontic (ontological) basis of
reality. This basis is sought in the structure of being (in its physical embodiment)
and that of its becoming (e.g., [7].) as well as other algorithmic models of physics
and intelligence. Physicists describe a physical system mathematically and logically
in a manner that can speak to its evolution, and in such an ontological description,
there is no place for observers. This program has grown hand in hand with the
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deepening use of computers in society, and there are models where the unfolding of
the universe itself is seen in terms of the workings of a computer program.

The ontic understanding of reality becomes problematic when one brings in
information into the mix, as is done extensively in modern physics. This is because
information implies the existence of a mind, which category lies outside of the realm
of physics. The study of the mind is normally done using the tools and concepts
of psychology and neuroscience. Standard neuroscience accepts the doctrine of an
identity of the brain and mind. In this view, the mind emerges from the complexity
of the interconnections, and its behavior must be completely described by the
corresponding brain function leaving no room for agency of the individual [8]. No
specific neural correlate of consciousness has been found [9, 10]. There are also
attempts to ascribe certain counterintuitive characteristics of the mind to underlying
quantum processing [11–13]. But even if quantum mechanics were shown to play a
role in brain processes, it will remain a machine paradigm, and so it cannot be the
complete explanation of the phenomenon of consciousness.

The perspective of epistemology presents a way to highlight the differences in
the implicit assumptions. As the study of the nature of knowledge, epistemology
is of relevance in examining interpretations of theory, and the case of quantum
information in a communications setting makes its conceptual basis most clear for it
brings in more than one agent into the equation. We agree with the philosopher Fred
Dretske, who argued that [14] “A more precise account of information will yield
a more creditable theory of knowledge. Maybe . . . communication engineers can
help philosophers with questions raised by Descartes and Kant.”

Information in a communication involves two things: first, commonalities in the
vocabulary of communication between the two parties; and second, the capacity
to make choices. The commonality of vocabulary requires that the underlying
abstract signs used by the parties be shared, which stresses the social aspects of
communication. The capacity to make a choice means agency, which has no place
in a world governed by closed laws unless one considers psychophysical parallelism
that excludes causal interaction between the mind and body. In the view of such
parallelism, mental and physical phenomena are two aspects of the same reality like
two sides of a coin.

Note that psychophysical parallelism was a dominant philosophical view in
Europe in the late nineteenth and early twentieth centuries but now has been
relegated to the margins [15]. According to Moritz Schlick, who was the leader
of the Vienna Circle of Logical Positivists in the 1930s, psychophysical parallelism
is the “epistemological parallelism between a psychological conceptual system on
the one hand and a physical conceptual system on the other. The “physical world”
is just the world that is designated by means of the system of quantitative concepts
of the natural sciences” [16]. The idea is in an old one having been first enunciated
as samavāya (inherence) in the Vaiśes.ika Sūtra of Kan. āda in India [17] and later in
Europe by Leibnitz.
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Now consider how choices are made and how these choices are intelligible. With
Heidegger, one may speak of the difference between the ontical and the ontological
where the first is concerned with facts about objects and the second is concerned
with the meaning of Being, with how objects are intelligible as entities. According to
Heidegger [18], “Basically, all ontology, no matter how rich and firmly compacted
a system of categories it has at its disposal, remains blind and perverted from its
ownmost aim, if it has not first adequately clarified the meaning of Being, and
conceived this clarification as its fundamental task.”

There are usually several unstated assumptions regarding the process of obtaining
information from an experimental situation that involve the nature of the observer.
Specifically, we endow the observer with the capacity to make intelligent clas-
sifications and choices, either directly or through the agency of instruments and
computing devices, which are not a part of the formal framework that describes
the physical processes being investigated. It is interesting that some interpretations
strive to take out the observer from the framework, without explaining how the
central role of the selectivity in the observation process is to be explained.

In this essay we first review the problem of observation in epistemic and ontic
interpretations of quantum theory presenting the key insight of Bohr, von Neumann,
and Schrödinger in which the epistemic understanding emerges from the principle
of psychophysical parallelism. Next, we examine the question of information in
classical and quantum settings highlighting how its definition in the framework of
ensembles requires an epistemic basis. We argue that the Copenhagen Interpretation
provides the best resolution to the problems associated with information.

2 The Observation Process and Complementarity

We first consider the orthodox Copenhagen Interpretation, in which the physical
universe is separated into two parts: the first part is the system being observed, and
the second part is the human-observing agent, together with the instruments. The
agent is therefore an extended entity described in mental terms, and it includes
not only his apparatus but also instructions to colleagues on how to set up the
instruments and report on their observations. The Heisenberg cut (also called
the von Neumann cut) is the hypothetical interface between quantum events and
the observer’s information, knowledge, or awareness. Below the cut everything
is governed by the wave function, whereas above the cut one must use classical
description.

Although the arbitrariness of the cut has come in for criticism and spurred the
development of other interpretations, it is a device for aggregating the effects of
the mind or minds associated with the observational regime, and it is a reasonable
way to separate the inanimate from the animate especially since the brain itself may
be viewed as a machine. Bohr stressed the elusive separation between subject and
object:
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The epistemological problem under discussion may be characterized briefly as follows: For
describing our mental activity, we require, on one hand, an objectively given content to be
placed in opposition to a perceiving subject, while, on the other hand, as is already implied
in such an assertion, no sharp separation between object and subject can be maintained,
since the perceiving subject also belongs to our mental content. [19]

von Neumann describes the principle thus: “[I]t must be possible so to describe
the extra-physical process of the subjective perception as if it were in reality in
the physical world—i.e., to assign to its parts equivalent physical processes in the
objective environment, in ordinary space” [6]. He adds further:

The boundary between the two is arbitrary to a very large extent. In particular we saw
in the four different possibilities in the example above, that the observer in this sense
needs not to become identified with the body of the actual observer: In one instance in
the above example, we included even the thermometer in it, while in another instance,
even the eyes and optic nerve tract were not included. That this boundary can be pushed
arbitrarily deeply into the interior of the body of the actual observer is the content of the
principle of the psycho-physical parallelism – but this does not change the fact that in each
method of description the boundary must be put somewhere, if the method is not to proceed
vacuously, i.e., if a comparison with experiment is to be possible. Indeed experience only
makes statements of this type: an observer has made a certain (subjective) observation; and
never any like this: a physical quantity has a certain value.

Now quantum mechanics describes the events which occur in the observed portions of
the world, so long as they do not interact with the observing portion, with the aid of the
process 2, but as soon as such an interaction occurs, i.e., a measurement, it requires the
application of process 1. The dual form is therefore justified. However, the danger lies in
the fact that the principle of the psycho-physical parallelism is violated, so long as it is not
shown that the boundary between the observed system and the observer can be displaced
arbitrarily in the sense given above.

The above quotes make it clear that psychophysical parallelism is not equivalent
to brain-mind identity of neuroscience in which the mind is an emergent property
with neural structures as ground, thus admitting a causal link going from biology to
the mind.

The question of interaction between mental states and the wave function was
addressed in the Copenhagen Interpretation (CI) [2], by understanding the wave
function epistemologically, that is, it represents the experimenter’s knowledge of the
system, and upon observation there is a change in this knowledge. Operationally, it is
a dualist position, where there is a fundamental split between observers and objects.
The placement of the cut between the subject and the object is arbitrary to the extent
it depends on the nature of the interaction between the two.

In the ontic view of the wave function, as in the Many-Worlds Interpretation
(MWI), there is no collapse of the wave function, and the interaction is seen through
the lens of decoherence, which occurs when states interact with the environment
producing entanglement [20]. By the process of decoherence, the system makes
transition from a pure state to a mixture of states that observers end up measuring.
The problem of collapse of the wave function is sidestepped by speaking of
interaction between different subsystems. But since the entire universe is also a
quantum system, the question of how this whole system splits into independent
subsystems arises. It would seem that the splitting into subsystems is itself an
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observational choice, rather than fundamental. This splitting serves about the same
function as the Heisenberg cut of CI. Furthermore, such an ontic view has no place
for minds, which can at best be taken as traces of mathematical operations, thus
ruling out agency.

Finally, the principle of psychophysical parallelism is consistent with comple-
mentarity and indeed the inspiration for it [21]. Bohr argued that the consideration
of the biological counterpart to the observation of the relation between the mind
and body does not become part of an infinite regress. He added: “We have no
possibility through physical observation of finding out what in brain processes
corresponds to conscious experience. An analogy to this is the information we can
obtain concerning the structure of cells and the effects this structure has on the way
organic life displays itself. . . . What is complementary is not the idea of a mind
and a body but that part of the contents of the mind which deals with the ideas of
physics and the organisms and that situation where we bring in the thought about
the observing subject” [22].

Schrödinger implicitly invoked the principle in describing the state function of a
quantum state (psi) as representing our knowledge about the system. He said:

Reality resists imitation through a model . . . We have nothing but our reckoning scheme,
i.e., what is a best possible knowledge of the object. The psi-function . . . is now the
means for predicting probability of measurement results. In it is embodied the momentarily-
attained sum of theoretically based future expectation, somewhat as laid down in a
catalog . . . [This] the catalog of expectations is initially compiled. From then on it
changes with time, just as the state of the model of classical theory, in constrained and
unique fashion . . . For each measurement one is required to ascribe to the psi-function
(= the prediction-catalog) a characteristic, quite sudden change, which depends on the
measurement result obtained, and so cannot be foreseen; from which alone it is already
quite clear that this second kind of change of the psi-function has nothing whatever in
common with its orderly development between two measurements . . . And indeed because
one might never dare impute abrupt unforeseen changes to a physical thing or to a model,
but because in the realism point of view observation is a natural process like any other and
cannot per se bring about an interruption of the orderly flow of natural events. [23]

It is clear that Schrödinger is stressing the epistemic nature of the state function.
Elsewhere, he presents the psychophysical parallel basis of this claim in a clearer
form: “Consciousness cannot be accounted for in physical terms. For consciousness
is absolutely fundamental. It cannot be accounted for in terms of anything else” [24].

The complementarity of aspects, such as wave and particle, is a consequence of
the kind of measurement that is made which emanates from the choice made by the
observer. It is not the description of an ontologically defined entity in two equivalent
forms as in the representation of a number directly or in terms of its inverse sequence
[25]. The experimenter is not describing reality ontologically; rather, he is obtaining
knowledge about it that is related to the nature of his interaction with the system.
The particle view is the one imposed on reality by the mind governed by a classical
mode [26]. Nonlocality is an issue only if one takes the particle picture, together
with local interaction, to be an underlying reality. Therefore, the violation of Bell’s
theorem by experiments does not imply a fundamental difficulty [27].
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3 The Communications Setting

Consider the problem of exchange of information between two parties. Figure 1
describes the communications context for the accounting of information [28]. It
consists of a sender and a receiver together with an ensemble of signals (which
could be letters). The statistical characteristics of the signals are known both to the
sender and the receiver. There could be further relationship between the symbols
and physical or abstract objects in which case one can also speak of a semantic
content communicated through the transmissions.

Let the probabilities of the signals that are transmitted and then received by
the sender, S, and the receiver, R, be p(xi) and p(yj), respectively (the discrete
index refers to the specific signal being considered out of a list that ranges from
1 onwards).

The p values are the a priori probabilities associated with the sender, the receiver,
and their world. The sender now chooses a specific one out of the ensemble and
sends it to the receiver and repeats this process. The information exchanged between
S and R is:

I
(
xi, yj

) = log
p
(
xi |yj

)
p (xi)

(1)

and this information is always positive, if not zero. The informational entropy
I(X; Y), is, therefore:

I (X;Y ) =
∑
x,y

p (x, y) log
p (x, y)

p(x)p(y)
(2)

Also,

I (X;Y ) = H(X)−H (X|Y ) (3)

Fig. 1 Exchange of
information
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where H(X) = −∑
x

p(x) logp(x) and H (X|Y ) = ∑
x,y

p (x, y) log p(y)
p(x,y)

, which

are the entropy of S and the conditional entropy of S given R, respectively. We ask:
what is the connection between probabilistic information provided by the entropy
expressions above and the knowledge obtained by the receiving party? At the
most basic level, the following claims may be made regarding the communication
process:

1. There exist associations of data, which requires separating it from other data, and
abstractions (input X and output Y) which are assumed without explaining how
this is achieved.

2. There exists training with set with correct classifications (or data typical of the
ensemble) that involves different modes of behavior on the part of the two agents.

3. There are classification tasks (as in AI and neural networks) that come with
hierarchical levels of understanding.

4. There exists a duality between the process of the identification of the ensemble
(learning) and that of subsequent measurements.

Implicit in the identification of the ensemble is the mind, and it is also implicitly
acknowledged in the problem of classical information. The sharing of the ensemble
must be part of a social process.

Now consider the communications context for the quantum case. Assume the
sender and the receiver both are informed of the ensemble of states {ρ1, ρ2, ..., ρn}
with probability {p1, p2, ..., pn}. Every density operator may be viewed as a mixture
of pure states

ρ =
∑
i

λi |φi〉 〈φi | (4)

where λi are the eigenvalues and |φi〉 are the eigenvectors of ρ. The entropy may be
written as [13]

Sn (ρ) = −
∑
i

λi log λi (5)

The measurements along the reference bases may be associated with probability
values λi in analogy with the classical entropy expression of −∑

i

pi logpi , where

the ith outcome, out of a given set, has probability pi.
Operationally, classical and quantum information work differently. Given an

unknown state distributed over two systems, consider how much information needs
to be sent to transfer the full state to a system. In the classical case, partial
information must always be positive, but in the quantum case it can be negative.
If the partial information is positive, its sender needs to communicate this number
of quantum bits to the receiver; if it is negative, then sender and receiver instead
gain the corresponding potential for future quantum communication [29]. The idea
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Fig. 2 Directed information
transfer

of negative partial information makes sense only in the context of observers that are
epistemologically connected.

Now consider the case of Fig. 2 in which the sender has access to states in an
ensemble and he is sending these to the receiver. We are interested in considering
the entropy of this situation. If the sender is Nature, the receiver is the experimenter
who is determining both the ensemble as well as the information that is associated
with it.

If the ensemble consists of a single unknown letter, the Shannon entropy
associated with the ensemble is zero. The information in any single communication
is also zero. Starting with the hypothesis that there are two potential states, the
receiver will find in the nth test that the probability that it is a single letter is 1–2−n.

In contrast, in the quantum case, let the ensemble consist of a single pure state.
We assume that the reference bases of the sending and the receiving parties are
aligned without going into the question of the cost associated with that process. The
von Neumann entropy associated with this case is zero. Nevertheless, the amount
of information that the receiver can obtain is infinite [13]. This infinite information
will be in terms of the specific phase information associated with the state which,
theoretically, has infinite precision.

Parenthetically, an application of this is when two parties wish to share a random
number. The sender codes the random number into the polarization angle of the
many copies of the photons. The determination of the angle by the receiver will
eventually transfer the random sequence to the receiver [12, 30].

The ability to obtain information from the unknown state implies access to a
corresponding energy. The equivalence between energy and information is given by
kTln2 (or about 0.69 kT) which is both the minimum amount of work needed to
store one bit of binary information and the maximum that is liberated when this bit
is erased, where k is Boltzmann’s constant and T is the temperature of the storage
medium in degrees Kelvin [31].

Assuming that the unknown state is localized (contra the central idea of
nonlocality) at a physical point leads to the conclusion that energy is associated with
space. This is restating the concept of zero-point energy that is normally derived
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using Heisenberg’s uncertainty principle. The ability to obtain information from
space would depend on how the experimenter interacts with it.

The consideration of information also requires choices that go into the formation
of the ensemble that is used by the communicating parties. This is only possible
by the observer making choices. The manner in which these choices are made will
change the value of the entropy associated with the process of information exchange
[13]. The choices establish that the information is epistemic. Without consideration
of this aspect of information basis, we are confronted by difficulties such as the
information paradox of cosmology [32].

4 Discussion

The notion of psychophysical parallelism rules out the need of hidden-variable
theories. According to it, quantum mechanics is an epistemic theory and it is
impossible to introduce additional variables that will convert it into an ontic theory.
The lack of experimental support for hidden-variable theories is to be expected
within the framework of this parallelism. It is also not surprising that extensions
to quantum theory cannot give more information about the outcomes of future
measurements than quantum theory itself [33].

One must also assume that the psychological part of the psychophysical paral-
lelism notion implies that there exists no specific correlate of consciousness in the
brain (as it cannot have a physical basis). The quantum Zeno effect [34] does provide
a mechanism on how observation can influence dynamics, but it does not explain the
ontological position of the observer.
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Quantum Decoherence Emulated
in a Classical Device

Brian R. La Cour, Corey I. Ostrove, Michael J. Starkey, and Granville E. Ott

1 Introduction

Decoherence in quantum systems arises as an inevitable consequence of interactions
with the environment. Theoretically, it has been used to understand the measurement
problem and provide a gateway to the classical world [1]. From a practical
perspective, decoherence poses a challenge to developing large-scale quantum
computers, whose efficacy degrades with the loss of coherence. Quantum error
correction meets this challenge by providing a scalable means of correcting a
continuum of possible errors, representable by a finite set of operators, using only
a discrete number of components [2, 3]. In this paper, we will investigate whether
classical analog systems can exhibit similar behavior.

We shall begin in Sect. 2 with a description of a classical emulation of a gate-
based quantum computer. There, we describe how arbitrary quantum states may
be represented by classical signals conforming to the mathematical tensor-product
structure of a multi-qubit Hilbert space. We go on to describe how one- and two-
qubit gate operations can be performed on these representative states and even
how quantum measurements can be faithfully emulated. Finally, describe briefly
a hardware implementation of a device capable of emulating a two-qubit quantum
computer.

We go on, in Sect. 3, to describe how one may use such a device to perform
quantum state tomography and, therefore, infer the equivalent mixed quantum
state from an ensemble of imperfect state preparations. In Sect. 4 we extend our
investigation to modeling gate operations in our classical device in terms of quantum
operations. This provides the natural mathematical framework for studying classical

B. R. La Cour (�) · C. I. Ostrove · M. J. Starkey · G. E. Ott
Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA
e-mail: blacour@arlut.utexas.edu

© Springer International Publishing AG, part of Springer Nature 2018
A. Khrennikov, B. Toni (eds.), Quantum Foundations, Probability and Information,
STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health,
https://doi.org/10.1007/978-3-319-74971-6_11

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-74971-6_11&domain=pdf
mailto:blacour@arlut.utexas.edu
https://doi.org/10.1007/978-3-319-74971-6_11


130 B. R. La Cour et al.

performance degradation in terms of quantum decoherence. By applying a sequence
of gate operations iteratively, we are able to measure the systematic falloff in
performance of the device and model it as a parameterized quantum channel. Our
conclusions are summarized in Sect. 5.

2 Classical Emulation of a Quantum Device

In previous work, we have described the use of classical signals and analog
electronics to emulate or “mimic” the behavior of a gate-based quantum computer
[4]. The basic idea is quite simple. Given an abstract Hilbert space H used to
represent an n-qubit quantum state |ψ〉 ∈ H , we seek a classical representation
of these abstract mathematical objects. Many possibilities suggest themselves. The
one we shall choose is motivated by our desire to easily perform operations on it. To
that end, we adopt sinusoidal analog signals as a convenient physical representation
of a pure quantum state.

If we denote by |x〉, where x ∈ {0, . . . , 2n − 1}, a basis function in the so-called
computational basis of H , then its classical representation is defined as follows.
Let [xn−1 · · · x0] be the little endian binary representation of x. The corresponding
classical representation is then written as a complex signal φx defined such that

φx(t) = exp[(−1)xn−1 iωn−1t] · · · exp[(−1)x0 iω0t] , (1)

where the frequencies ωn−1 > · · · > ω0 correspond to each of the n qubits. In
particular, taking ωk = 2kω0 allows for a uniform spacing among the 2n different
combinations of sums and differences. Clearly, the required bandwidth for such a
representation grows exponentially with the number of qubits. Linear combinations
of basis signals provide a representation for an state in H . Thus, if 〈x|φ〉 = αx ,
then

ψ(t) =
2n−1∑
x=0

αx φx(t) (2)

provides a classical representation of the quantum state |ψ〉. If T = 2π/ω0 is the
period of the signal, then an inner product may be defined as

〈φx |ψ〉 = 1

T

∫ T

0
φx(t)

∗ψ(t) dt . (3)

Note that the set of computational basis signals forms an orthonormal basis.
Gate operations are performed using projection operations. Given a quantum

state |ψ〉 and a qubit i to be addressed, we can formally decompose it into
projections onto the subspaces in which the qubit is either 0 or 1. Thus, we may
write
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|ψ〉 = Π(i)0 |ψ〉 +Π(i)1 |ψ〉 =|0〉i |ψ(i)0 〉+ |1〉i |ψ(i)1 〉 , (4)

where |ψ(i)0 〉 and |ψ(i)1 〉 will be called partial projection states. As described in

[4], the corresponding signals ψ(i)0 and ψ(i)1 may be produced from the signal ψ
using classical analog signal processing devices. In this manner, the nonseparable
subspace projections may be separated and operated upon individually. Doing so
allows one to perform a single-qubit gate operation U on qubit i by noting that

Ui |ψ〉 = U |0〉i |ψ(i)0 〉 + U |1〉i |ψ(i)1 〉 . (5)

So, simple multiplication and addition of analog signals is all that is needed to effect
this transformation.

Measurements are performed in a similar manner. Given the partial projection
signals ψ(i)0 and ψ(i)1 , we may perform a measurement on qubit i by first measuring

the root-mean-square (RMS) voltages v0 = ‖ψ(i)0 ‖ and v1 = ‖ψ(i)0 ‖ of each signal
and, from these, computing the probability

p = v2
0

v2
0 + v2

1

. (6)

A random variable ui ∈ [0, 1], which serves the role of a hidden variable, is drawn
such that ui ≤ p indicates an outcome of 0 and ui > p indicates an outcome of
1. Upon measurement, the state “collapses” to form the new signal ψ ′ ∝ ψ(i)0 or

ψ ′ ∝ ψ(i)1 , depending upon the measurement outcome. Additional qubits may be
measured sequentially in this manner. This procedure, then, faithfully reproduces
the quantum statistics dictated by the Born rule.

We have implemented a small-scale quantum emulation device in hardware
using breadboards and analog electronic components interfaced to a digital desktop
computer. The device can be operated in one- or two-qubit mode at frequencies
of 1000 Hz and 2000 Hz, respectively. Arbitrary one-qubit gate operations can be
performed as well as controlled gate operations using qubit 0 as the control and qubit
1 as the target. Typical gate fidelities are found to be over 99% [5]. Measurement
gates are performed using true-RMS voltage chips and digital switching. Sequential
gate operations can be performed using a software interface. For example, a
simple implementation of Deutsch’s algorithm can be programmed for an unknown
Boolean function. In practice, we find that the device is able to correctly identify
whether the function is constant or balanced about 96% of the time. Since the
algorithm should, ideally, produce the correct answer every time, the nonzero
error rate must be due to device imperfections. In the following sections, we will
investigate whether these imperfections can be modeled as quantum decoherence.
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3 Application of Quantum State Tomography

Using the representation and measurement procedure described in Sect. 2, we are
able to use our device to prepare and measure any quantum state and observable of
up to two qubits. Of course, imperfections in the device itself can give only a limited
approximation of the ideal mathematical operations. This situation is quite similar
to that found in actual quantum devices or experiments, and we may use similar
tools to study it.

We have heretofore discussed the representation of pure quantum states using
our device, but the more general quantum description is that of a mixed state. Mixed
quantum states may be thought of as an ensemble of pure states. Equivalently, in
our classical representation, they may be thought of as noisy signals. For example,
it can be shown that additive Gaussian white noise is equivalent to a mixture of
the ideal state and a fully mixed state [6]. Noise can also be added intentionally to
reproduce certain quantum measurement effects, as was done with so-called dressed
states [5]. For the purposes of the present study, however, we are simply interested
in estimating the equivalent quantum mixed state given a set of measurement
outcomes. This may be done using the technique of quantum state tomography
(QST).

A general (mixed) n-qubit state ρ may be decomposed into a basis of 4n separable
orthonormal operators using the Hilbert-Schmidt inner product, as follows:

ρ =
4∑

jn−1=1

· · ·
4∑

j0=1

Tr

⎡
⎣ρ

σ
(n−1)
jn−1

⊗ · · · ⊗ σ (0)j0
2n/2

⎤
⎦σ

(n−1)
jn−1

⊗ · · · ⊗ σ (0)j0
2n/2

, (7)

where

σ
(k)
1 = Ik , σ

(k)
2 = Xk , σ

(k)
3 = Yk , σ

(k)
4 = Zk (8)

are the four Pauli spin operators applied to qubit k. Since the trace represents
an expectation value under the Born rule [7], we may use this decomposition to
empirically determine the quantum state by measuring each of the basis operators.

Let B̄jn−1,...,j0 ∈ R denote the mean value obtained from a finite sample of

measurements of the operator σ (n−1)
jn−1

⊗ · · · ⊗ σ (0)j0 . From these results, one may
estimate the quantum state to be

ρ̄ =
4∑

jn−1=1

· · ·
4∑

j0=1

B̄jn−1,...,j0

σ
(n−1)
jn−1

⊗ · · · ⊗ σ (0)j0
2n

. (9)

In practice, ρ̄ will not be a valid quantum state, since the numerical coefficients are
not guaranteed to yield an operator that is both positive definite and of unit trace.
A better procedure is to restrict one’s search to valid quantum states and find the
maximum likelihood estimate (MLE) of the quantum state, here denoted ρ̂, that
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both satisfies this constraint and best fits the measured mean values. To this end,
we use an MLE procedure developed by Altepeter, Jeffrey, and Kwiat under the
assumption of independent Gaussian errors [8].

Once a valid estimate ρ̂ of the quantum state is obtained, it may be compared to
the ideal quantum state |ψ〉 by computing the fidelity F of the former to the latter
using the expression [9]

F =
√
〈ψ |ρ̂|ψ〉 . (10)

Note that F is bounded between zero and one. If ρ̂ = I⊗ · · · ⊗ I/2n (a completely
mixed state), then F = 1/2n. Thus, in practice, we expect to find intermediate
values of F such that 1/2n < F < 1.

As an example, we considered the pure entangled state |ψ〉 = 1√
2
[|01〉 − |10〉].

So, in matrix form in the computational basis, the ideal quantum state is

ρ = |ψ〉 〈ψ | = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 +1 −1 0
0 −1 +1 0
0 0 0 0

⎞
⎟⎟⎠ . (11)

The estimated quantum state was found to be

ρ̂ =

⎛
⎜⎜⎜⎝

0.0001 −0.0011− 0.0082i 0.0008+ 0.0075i −0.0006+ 0.0004i
−0.0011+ 0.0082i 0.5412 −0.4968− 0.0082i 0.0019− 0.0364i
0.0008− 0.0075i −0.4968+ 0.0082i 0.4562 −0.0012+ 0.0335i
−0.0006+ 0.0004i 0.0019+ 0.0364i −0.0012− 0.0335i 0.0025

⎞
⎟⎟⎟⎠ ,

giving a fidelity of F = 0.9978. The two states are shown graphically in Fig. 1.

Fig. 1 Cityscape plot of the ideal quantum state (a) and that inferred from quantum state
tomography (b). Only the real part of the matrix elements is shown
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4 Application of Quantum Process Tomography

In quantum mechanics, the evolution of a closed system is given by a unitary
transformation generated by the system’s Hamiltonian, in accordance with the
Schrödinger equation. In practice, no system is ever truly isolated, and this can
lead to apparent non-unitary evolution. The formalism of quantum operations gives
us a framework with which to characterize the behavior of open quantum systems
and, in particular, decoherence [10, 11]. A quantum operation may be viewed as
a superoperator on quantum states such that, if ρ is the initial quantum state, then
ρ′ = E (ρ) is the state that results from some, possibly non-ideal, transformation.

We will make use of an equivalent formulation of quantum operations known as
the operator-sum representation [12]. Using this formalism, the quantum operation
E may be characterized by a discrete set of operators such that

E (ρ) =
∑
k

Ek ρ E
†
k . (12)

The matrices {Ek} are known as Kraus operators [13]. A further decomposition of
the Kraus operators may be performed in terms of, say, the Pauli operators, as was
done for QST.

For our present purposes, we will consider, for simplicity, only single-qubit
states. In this case, each Kraus operator may be written as a linear combination
of the four Pauli operators, so that

Ek =
4∑
i=1

ek,i
σi

2
. (13)

Using this representation, the quantum operation may be written as

E (ρ) =
∑
k

(
4∑
i=1

ek,i
σi

2

)
ρ

⎛
⎝

4∑
j=1

ek,j
σj

2

⎞
⎠

†

=
4∑
i=1

4∑
j=1

χi,j σi ρ σ
†
j , (14)

where

χi,j =
∑
k

ek,i e
∗
k,j (15)

are the elements of the 4 × 4 chi process matrix χ [14, 15]. Determination of the
equivalent quantum operation therefore reduces to the problem of estimating the
corresponding chi matrix. This, in turn, may be accomplished using the techniques
of quantum process tomography (QPT) [15–17].
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As an example, we performed QPT on a single-qubit identity gate using the
procedure outlined in [11] but modified to use a maximum likelihood QPT technique
[18–20]. We started by generating an ensemble of input states of the following form:

|ψ1〉 = |0〉 , |ψ2〉 = |1〉 , |ψ3〉 = 1√
2
[|0〉+|1〉] , |ψ4〉 = 1√

2
[|0〉+ i |1〉] . (16)

The process, in this case an identity gate, was applied to the ensemble of states,
which were then measured using this same basis. The chi matrix was parameterized
using a Cholesky factorization such that χ = ΔΔ†, where Δ is a lower triangular
matrix with real, positive diagonal elements. This form guarantees that the con-
straints of Hermiticity, trace preservation, and complete positivity are satisfied. We
then optimize over Δ with respect to the following likelihood function:

L(Δ) = 1

2

∑
α

∑
β

[
Nα,β − C∑i

∑
j 〈ψβ | σi |φα〉 〈φα| σj |ψβ〉 (ΔΔ†)i,j

]2

C
∑
i

∑
j 〈ψβ | σi |φα〉 〈φα| σj |ψβ〉 (ΔΔ†)i,j

,

(17)
where |φα〉 and |ψβ〉 are the input states and measurement settings, respectively, and
Nα,β are the experimentally measured counts for the corresponding pair of input
state and measurement settings. The factor C is the total number of such counts.

The resulting estimated chi matrix, χ̂ , is illustrated graphically in Fig. 2. Ideally,
the matrix should be such that χi,j = δi,j , indicating that the quantum operation
takes the simple form E (ρ) = σ1 ρ σ1 = ρ. Empirically, we do indeed find that χ̂1,1
is nearly 1 and is, therefore, the dominant component. A closer inspection reveals
that there are other nonzero components. In particular, the χ̂1,j and χ̂j,1 components
appear to have non-negligible imaginary terms.

Fig. 2 Cityscape plot of the QPT results for a single application of the identity gate. The real part
of χ̂ is shown on the left, while the imaginary part of χ̂ is shown on the right. Note that the two
figures are shown on very different scales to illustrate the nonzero contributions to the estimate
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The gate fidelity relative to an ideal unitary operator U may be determined from
the estimated quantum operation E according to the formula [21]

F = min
ρ

Tr
√√

E (ρ) UρU†
√

E (ρ) . (18)

For the present case, U is the identity, and E is estimated by the chi matrix χ̂ ,
for which we find that F = 0.9933 for a single identity gate operation. This is
comparable to what was found earlier for the quantum state fidelity using QST, and,
so, these results appear to be consistent.

Ideally, the chi matrix should give a full characterization of the quantum process
(in this case, a single application of the identity gate operation). In particular, it
should provide a means of forecasting the gate fidelity over multiple iterations.
Indeed, if the initial quantum state is determined to be ρ0, then the state after n
iterations, denoted ρn, is given iteratively by

ρn = E (ρn−1) = E (· · ·E (ρ0) · · · ) . (19)

Consider the depolarizing channel with parameter p ∈ [0, 1], for which

E (ρ) = (1− p)UρU† + pI . (20)

The fidelity of this channel is then

F =
√

1− 2p

3
. (21)

The depolarizing channel is closed under multiple iterations, with an effective
parameter pn after n iterations of

pn = 3

4

[
1−

(
1− 4p

3

)n]
, (22)

yielding a cumulative fidelity of

Fn =
√

1− 1

2

[
1−

(
1− 4p

3

)n]
. (23)

In addition to the gate fidelity defined in Eq. (18), we make use of an alternative
benchmark known as the quantum process fidelity defined as [21]

Fproc = Tr(χ̂uu†) (24)
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Fig. 3 Plot of experimentally measured process fidelity (determined via QPT) versus iteration
count (red line), along with forecasted results based on direct propagation of the initially estimated
chi matrix (black dashed line) and the depolarizing channel model (blue crosses)

where χ̂ is the measured chi matrix and uu† is the rank-one chi matrix for the
ideal unitary transformation U . The process fidelity has the benefit of being less
computationally intensive to calculate as we need not perform the optimization
step over input states. For the depolarizing channel, it may be interpreted as the
probability that the ideal operation was performed.

Using our device, we explored the behavior of the measured process fidelity upon
performing multiple iterations of the identity gate, using QPT to estimate the fidelity
for each iteration. The results are summarized in Fig. 3. Surprisingly, the process
fidelity after 90 iterations drops only to about 0.874. This is well above the 0.55
cumulative process fidelity that is predicted from a simple fit to a depolarizing
channel based on the fidelity of a single-gate operation, which has a parameter
value of p = 0.010. Using instead the actual chi matrix estimate, and iterating the
corresponding quantum operation, yields a sequence of process fidelity values with
a curious, oscillatory behavior, as shown in Fig. 3. Initially, it seems, the fidelity
drops sharply. After the 35th iteration, however, it begins to climb up again, only
to crest and fall once more after about the 70th iteration. This shows the folly of
extrapolation based on a single QPT estimate.

If one instead considers the whole sequence of iterations, a much better fit can
be achieved, as illustrated in Fig. 4. In this case, forecasting was done based on
optimizing the channel parameterization in order to minimize the least-squares error
to all of the measured data (i.e., over all 90 iterations). Doing so, we found that a
simple depolarizing channel actually did provide a good fit to data, albeit with a
model parameter value of p = 0.006. This is just slightly lower than the value
estimated from a single-gate iteration, but the impact on the forecasted fidelity is
quite significant. We note that the resulting depolarizing channel also agrees quite
well with the forecasted chi matrix, when fitted to all 90 iterations.
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Fig. 4 Plot of experimentally measured process fidelity versus iteration count along with fore-
casted results based on fitting both an estimated chi matrix and a depolarizing channel model to
the data using least squares fitting

5 Conclusions

We have considered the performance of a classical device in terms of quantum
operations. Using simple electronic hardware, we are able to emulate the behavior
of a two-qubit quantum computer by representing the quantum state as an analog
voltage signal. An arbitrary sequence of one- and two-qubit gate operations can be
performed on these signals, thereby allowing for full programmability. As with any
physical device, these operations are not performed perfectly but, instead, exhibit
some level of degradation. In order to understand this better, we have chosen to
use to the mathematical framework of quantum operations to model this classical
degradation of performance in terms of quantum decoherence. In particular, we avail
ourselves of the techniques from the field of quantum state and quantum process
tomography to extract an empirical estimate of the equivalent quantum channel
corresponding to a given gate operation.

What we find is that the estimate of the quantum channel obtained from
performing QPT on a single-gate operation provides a poor prediction of its
performance upon repeated iterations. If, however, the channel is estimated over
a number of iterations, then a good fit can indeed be achieved. This is particularly
true when, as is the case for our device, the gate fidelity on any single iteration is
quite high. In such cases, the error is quite low, and the estimation process will be
very sensitive to the behavior over the first few iterations. When these considerations
are taken into account, we find that we are able to achieve a good fit to the measured
results by assuming a simple depolarizing channel as a model for the effective
quantum operation.
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Given that decoherence may be viewed as a classical process that can be modeled
quantum mechanically, the possibility arises for the use of quantum error correction
techniques to improve performance. In particular, we have shown that errors in
a classical analog device can be modeled solely in terms of discrete bit-flip and
phase error quantum operations, which are sufficient for modeling all forms of
decoherence. This presents the exciting new prospect of using the methods of
fault-tolerant quantum computing to improve the fault tolerance of classical analog
devices. Whether the inclusion of additional, albeit faulty, classical resources can
improve overall performance will be a subject for future investigations.
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N00014-14-1-0323.

References

1. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.O.: Decoherence and
the Appearance of a Classical World in Quantum Theory. Springer Science & Business Media,
New York (2013)

2. Shor, P.W.: Phys. Rev. A 52(4), R2493 (1995)
3. Gottesman, D.: Quantum information science and its contributions to mathematics. In:

Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2009)
4. La Cour, B.R., Ott, G.E.: New J. Phys. 17, 053017 (2015)
5. La Cour, B.R., Ostrove, C.I., Ott, G.E., Starkey, M.J., Wilson, G.R.: Int. J. Quantum Inf. 14,

1640004 (2016)
6. La Cour, B.R., Ostrove, C.I.: Quantum Inf. Process. 16, 7 (2017)
7. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University

Press, Princeton (1955)
8. Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography. In: Advances in Atomic,

Molecular and Optical Physics, vol. 52. Elsevier, Amsterdam (2006)
9. Jozsa, R.: J. Mod. Opt. 41, 2315 (1994)

10. Sudarshan, E.C.G., Mathews, P.M., Rau, J.: Phys. Rev. 121, 920 (1961)
11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge

University Press, Cambridge (2000)
12. Stinespring, W.F.: Proc. Am. Math. Soc. 6, 211 (1955)
13. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer,

Berlin (1983)
14. Choi, M.D.: Linear Algebra Appl. 10, 285 (1975)
15. Chuang, I.L., Nielsen, M.A.: J. Mod. Opt. 44, 2455 (1997)
16. Poyatos, J., Cirac, J., Zoller, P.: Phys. Rev. Lett. 78, 390 (1997)
17. Bhandari, R., Peters, N.A.: Sci. Rep. 6, 26004 (2016)
18. O’Brien, J.L., Pryde, G., Gilchrist, A., James, D., Langford, N.K., Ralph, T., White, A.: Phys.

Rev. Lett. 93(8), 080502 (2004)
19. Anis, A., Lvovsky, A.I.: New J. Phys. 14, 105021 (2012)
20. Yuen-Zhou, J., Krich, J.J., Kassal, I., Johnson, A.S., Aspuru-Guzik, A.: Ultrafast Spectroscopy,

pp. 2053–2563. IOP Publishing, Bristol (2014)
21. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Phys. Rev. A 71(6), 062310 (2005)



Local Realism Without Hidden Variables

Ghenadie N. Mardari

1 Hidden Variables Exclude Superposition in Quantum
Mechanics

Local hidden variables cannot violate Bell’s inequality. Yet, quantum variables can.
This is conclusively proven theoretically, as well as experimentally. For example,
last year, three major experiments closed the loopholes of quantum observation and
still revealed significant violations of Bell’s inequality [1–3]. So, we know that
hidden variables do not work very well in quantum mechanics. Nonetheless, we
have to ask: is this a good reason to dismiss local realism? In other words, is it true
that we cannot have one without the other? The main goal of this presentation is to
show you that there are two kinds of local realism. The difference between them is
determined by the role of quantum superposition. Single quanta often behave as if
they are in many states at the same time. If we do not accept this appearance, we
can assume that single quanta occupy only one state at a time and that superposition
is a measurement artifact. This approach requires hidden variables. Yet, we can
also assume that quantum superposition is a real phenomenon, in which case we
can formulate a local theory without hidden variables. Such an approach would be
immune to the implications of Bell’s theorem.

Here is an intuitive explanation of hidden variables. Suppose that we have
two coherent classical beams in superposition. The output is a projection with
interference fringes. If we isolate a single dark fringe, we notice that it does not
contain any energy. Yet, the textbook interpretation is that we still have two beams
that go through each other unperturbed. It just so happens that the two components
are out of phase and cancel out at this point. In other words, the superposed dark
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state is an illusion. What we really have is two unobservable components, acting
against each other. Keep in mind that we are dealing with a classical state, so we
expect to have many elementary entities acting at the same time. However, when we
move into the quantum regime, we only get one detection at a time. It is no longer
possible to say that we have many “particles,” but we still get fringes. Quantum
mechanics tells us that one single system is in both states at the same time and
expresses the effect of interference. In contrast, hidden variable theories deny this
explanation. They insist that superposition is not real. What is real is that a single
quantum occupies only one of the two possible states. Of course, this creates a
problem, because fringes cannot be explained anymore. And so, a hidden variable
or process needs to be postulated, in order to explain why quanta conspire to behave
as if interference is taking place.

Let us now look at this equation, which was used by John Bell to derive his
famous inequality [4]:

E(a,b) =
∫
dλρ(λ)A(a, λ)B(b, λ)

It tells us that the joint probability of two observations is only dependent on the
measurement settings a and b, as well as the all-inclusive parameter λ. Many people
believe that λ is allowed to contain any classical quality or process, but this cannot
possibly be true. This might be hard to grasp just by looking at the quoted equation,
but it becomes less subtle when we see its implied place in the final inequality:

1+ E (b, c) ≥| E (a,b) –E (a, c) | .

Suddenly, we have three terms: E(a,b), E(a,c), and E(b,c), and each of them
could—in theory—have a range between−1 and+1. This means that the inequality
cannot hold, unless the three terms share a special relationship. Specifically, they
must describe a common population, sharing a common reality. More importantly,
individual objects have to be prohibited from changing states in between measure-
ments. If a particle is in the state “up” for A when determining E(a,b), it must also
have the same value when determining E(a,c). Consequently, unstable distributions
violate the criteria for deriving Bell’s inequality, even if they emerge for local
reasons. One might, of course, wonder: why should the population profile change
for repeated identical measurements? The answer is straightforward: this is a natural
side effect of linear superposition, when the net state is consequential. Contrary to
the EPR criterion or reality, it is possible for classical entities to have properties with
wide spectra and undefined measurement outcomes. Sometimes, these net states
evolve to have sharp spectra, with well-defined states in special circumstances. Yet,
these transient properties of quanta should not be mistaken for permanent sharp
properties of measured entities. As a corollary, Bell’s inequality only follows from
the shown equation if λ is not allowed to depend on superposition effects, even if
the process is classical.
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To be fair, superposition is widely believed to defy classical rules at the level of
single entities. The problem is that classical interference is perceived as a collective
effect of multiple inputs, acting together. For a single entity to express the same
behavior, it would have to be in many states at the same time. So, how can we
have superposition and local realism at the same time? The trick is to keep in mind
that many state vectors in superposition always add up to one net-state vector. For
example, when two players kick a football at the same time, we can assign a different
vector to each individual contribution. On paper, we have two state vectors. Yet, in
real life, we know that the ball can only travel in the net direction. In the same way,
we can say that quanta express many states at the same time on paper, but only
one net state in real life. This would be particularly natural in a pilot-wave model.
The thing to keep in mind is that quantum properties are not directly observable.
It is purely a matter of personal preference how to describe undetected behavior.
If we assume that all the component states are real at the same time, then we get
nonclassical behavior with paradoxes. If we assume that the net state is real, then
we get classical behavior without paradoxes [5].

The bottom line is that every wave property can be interpreted in two ways,
whether we deal with polarization, momentum, or frequency spectra. We can
either assume that the complex net state is real or that the simple component
states are real. Yes, there are many independent components if a wave is broken
down, but the question is: what happens when these components are superposed?
Do they interfere with each other or not? These two approaches entail the same
macroscopic predictions, because they emphasize different sides of the same
equation (A + B = C). Still, their microscopic implications are different. Keep
in mind that matter does not propagate in the case of classical waves. The only real
thing is that something oscillates. So, we need to decide: can a classical medium
oscillate in many directions at the same time? This is the same problem that we get
if we assume that single quanta express many states at the same time.

Here is a simple way to visualize the difference between the two approaches to
superposition. When two narrow beams intersect, they have an interference volume
with fringes, followed by another double-beam projection (Fig. 1). If we assume
that interference is not real, then we describe the quanta as if they propagate along
straight rays through the volume of interference. This is why we believe that quanta
can reveal path knowledge. On the other hand, if we assume that interference is
real, then we have to assume that quanta always reflect the local net state of the
wave function. In the interference volume, they bunch into fringes, and afterward
they redistribute again. Yet, they are no longer able to carry any information from
the source to the detector. Their properties change at every step, in order to reflect
the net state of the wave function, as it passes through many different profiles. As
suggested above, it is this difference that can be detected with the help of Bell’s
theorem.

So, let us briefly summarize the main starting points of this presentation. Firstly,
it is possible to develop a local realist model of quantum behavior, if we assume
that the net state of linear superposition is real. Secondly, this approach is immune
to Bell’s inequality, because it does not make predictions on the basis of hidden
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Fig. 1 Two-beam
superposition. Quantum
distribution in each
consecutive plane
corresponds to the
macroscopic profile of the
wave front. This appearance
can be taken at face value
(net-state realism) or
dismissed as an artifact of
measurement
(component-state realism)

variables. In quantum mechanics, the concept of hidden variables is defined with
a very narrow meaning. It is only intended to provide an alternative to quantum
superposition. Finally, quanta can be assumed to express the net state of the wave
function at every step of propagation. If so, then they can only have transient
properties and no longer carry information from the source to the detector at the
individual level. The main implication of this approach is that quantum mechanics
cannot be improved by an alternative model with hidden variables. Instead, the goal
is to reclaim quantum mechanics as a classical theory, by changing the interpretation
of superposition. Let us see if this is possible.

2 Non-locality Is Hypothetically Implied but Not Required
by Quantum Mechanics

The concept of entanglement is currently interpreted as a property of inseparable
quantum systems. Though, it is important to keep in mind that it began as
an argument about the nature of quantum superposition [6]. The Copenhagen
interpretation insisted that single quanta can be in many states at the same time.
This property was seen as unavoidable in the case of non-commuting variables,
because they had to obey Heisenberg’s principle. If one of these properties was
sharp, the other had to have a maximally wide spectrum. Ergo, every quantum
had to be in many states at the same time for at least one property. In contrast,
Einstein, Podolsky, and Rosen developed an argument that seemed to contradict
this expectation [7]. When two quanta separate from a joint state, they have to
obey the principle of energy conservation. Therefore, it is enough to measure one,
in order to determine the state of both quanta, because the sum of their states is
known. This holds for all the variables that belong to the initial system, including
the ones that do not commute. Suppose that we measure the position of quantum
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Q1. We immediately infer the position of quantum Q2, without disturbing it in
any way. Therefore, we must assume that quantum Q2 has a pre-existing value
for that variable. Yet, one could just as easily measure the momentum of quantum
Q1, instead of measuring its position. This means that quantum Q2 has a pre-
existing momentum value as well. In short, EPR suggested that quanta do not really
commute, even when quantum experiments provide evidence of noncommutativity.
From their point of view, complementarity might be an artifact of the process of
measurement. Therefore, they did not see it likely that single quanta were actually
in many states at the same time. At the level of observables, it appeared that quanta
did not commute. Yet, at some deeper level of reality, they had to commute.

Let us now jump ahead to the modern times, where we have a rich experimental
record, as well as a mature quantum formalism. Among other things, we now
have a very advanced understanding of the behavior of correlated physical systems
[8–14]. Hence, we know that there are three kinds of coefficients of correlation: sub-
quantum, quantum, and super-quantum. When two variables have exact detectable
values in any context, they have to commute. Therefore, they obey Bell’s inequality.
In contrast, when they display unavoidable superposition, they violate Bell’s
inequality with necessity. At the same time, quantum variables cannot display
arbitrarily high levels of superposition, because they have to obey Heisenberg’s
principle. If one of them has a wide spectrum, the other has to be sharp. As a result,
quantum coefficients are also bounded, in the same way in which sub-quantum
coefficients are bounded by Bell’s inequality. They have to obey a limit that is
known as Tsirelson’s inequality [8, 12]. Accordingly, all the coefficients that exceed
this line are described as super-quantum. For the purpose of our discussion, the
main thing is that Bell’s inequality is the hard boundary between properties that are
always “in one state at a time” and the properties that can be “in many states at a
time.” Therefore, Bell’s inequality is the ideal tool for testing the implications of
the EPR argument. Einstein’s group suggested that quantum superposition is not
real [7], and now we have the theoretical and the experimental means to test this
hypothesis.

Before we move on, I wish to address a common misconception about correla-
tions. It is often claimed, especially in popular science presentations, that quantum
correlations directly imply non-locality, because they expose relationships between
remote particles. In actuality, it is the other way around. We prepare or select two
systems that are known to be similar in some way, so that we can investigate
incompatible properties. What we want to determine is the rule of coincidence
between specific values of two variables at the level of single quanta. When we
work with variables that commute, this can be done directly with single objects.
Yet, when selected variables do not commute, we are forced to use multiple copies
of the same system. In the case of classical objects, it works like this. Suppose that
we have a large warehouse full of socks and we want to measure the correlation
between two properties (e.g., color and fabric) of this population. For example, we
may want to know: if a sock is white, what is the probability that it is also made of
cotton? Of course, it is possible to answer this question by looking at many different
socks, but let us suppose that we need to obtain a large data set very quickly.
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So, for reasons of efficiency, we use a machine to split all the pairs and measure
each sock for a different property. Then we analyze the coincidences and calculate
the coefficient of correlation. The exact coefficient will vary from population to
population, but it cannot be completely arbitrary, because it has to work within the
boundaries of known distribution for each property. Of course, it is not reasonable to
invoke a physical connection between these coincidences, even if they obey a strict
quantitative relationship. The two variables are reducible to a single object, and they
obey the inequality (in combination with other tests) simply because they commute.

Next, we repeat the same experiment with pairs of quanta. As you know, it is
possible to produce identical photons by means of type I SPDC. So, again, we are
interested in the coincidence between the states of two variables of a single system,
but we use two systems to solve the problem of incompatible measurements. We
do the same thing that we did with the socks, but in this case our variables do
not commute. Therefore, we cannot expect an objective correlation between the
measured states, because they emerge into existence independently, in different
environments. Notice, again, that we do not have a reason to suspect non-locality
yet. Logically, all that we know is the mathematical relationship. The reason we
end up with a violation of Bell’s inequality is noncommutativity. In other words,
these variables are presumed to obey Heisenberg’s principle objectively and locally
(at the level of single quanta). We measure two copies of the same system, because
the two observables are incompatible. Yet, we still obtain information about the
coincidence of two properties at the level of single entities. To sum up, the formalism
of quantum mechanics, by itself, does not explicitly require non-locality even if
Bell’s inequality is violated. Quantum superposition is a sufficient condition for that
effect. Similarly, the structure of a correlation test is also not problematic from the
point of view of locality. And so, we have to ask: Where does non-locality come
from in quantum mechanics? Why does it seem impossible to explain quantum
correlations without it?

3 The Copenhagen Interpretation Is Incompatible
with Quantum Mechanics

The answer is very simple: we have to blame the Copenhagen interpretation. This
approach is based on the presumed reality of three basic principles [15, 16]. First
of all, unmeasured quanta are always supposed to be governed by informational
uncertainty. This works as if our lack of knowledge forces them to lose any
physically real properties, in the classical sense. Furthermore, quantum variables are
expected to collapse to “well-defined” values at the moment of detection. So, they
abruptly become in one state at a time. Finally, this sudden transition is supposed
to happen because of the act of observation and only because of observation. No
other physical mechanism is known or required for this effect. If we take these
assumptions for granted, then non-locality becomes unavoidable.

Let us go back to the basic example of Einstein, Podolsky, and Rosen [7]. If
we measure the momentum of quantum Q1, then we immediately know that the
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momentum of quantum Q2 is also sharp. However, we could instead measure the
position of quantum Q1. In this case, the position of quantum Q2 becomes sharp,
and—by implication—its momentum spectrum becomes immediately wide. Hence,
the real state of the quantum Q2 has to change on the spot, based on how we measure
quantum Q1. How does this second photon know when to have a sharp spectrum,
and when to have a wide spectrum for the same variable? Given that quanta violate
Bell’s inequality, and given the three cited assumptions, we have no choice but to
suspect the reality of non-locality. That is why a Bell test can be described as a
test of local realism. Yet, we have to ask if these assumptions are necessary. Do
they remain valid in every interpretation of quantum mechanics? More importantly,
are they justified by the details of quantum experiments? In other words, is this a
fundamental problem of quantum mechanics, or is it just an internal problem of the
Copenhagen interpretation?

Let us consider a simple example. The double-slit experiment produces distribu-
tions with fringes. If we focus on a point in the middle of a dark fringe, we can expect
to detect zero photons. Why is this happening? The explanation is that we have
quantum superposition. Even though we detect the photons one at a time, every one
of them is under the influence of the wave function as a whole. Yet, Copenhagen-
style interpretations do not stop here. They suggest that we have uncertainty as to
which path was taken by the photon, and this is why we get the final effect. But
what does it mean to say that something is uncertain? It means that we have several
alternative possibilities, but we do not know which one of them is actually true.
Yet, here we do not have alternative arrivals of photons in different states. We get
zero photons, no matter how many events are detected at other locations. If we want
to explain this correctly, we have to postulate that we have multiple components
acting all at the same time. Therefore, we cannot say that we have “uncertainty” as
to which mode of propagation applies to the quantum in question. What we have is
certainty that all the components act at the same time, in order to produce the net
state. Indeed, quanta are always detected in the net state of the wave function [15].
This does not mean that we have uncertainty. It means that we are dealing with a
wide spectrum.

Therefore, our first conclusion is that quantum uncertainty is not an objective
physical property. When we have superposition, quanta cannot express individual
components one at a time. Even if the wave function has a wide spectrum, they
have to reflect the joint effect of all the components at the level of single events.
Consequently, we can dispense with the first listed assumption of the Copenhagen
interpretation.

The next step is to consider the mechanism behind the so-called quantum
collapse. In a geometric approach to wave propagation, we describe the rays as if
they stand for real modes of propagation. Intuitively, this means that we have wave
packets that follow these rays as if they were trajectories. For instance, we could say
that the path of each wave packet bends inside the lens and converges on the focal
point. This is the basis for the idea that measurements resolve individual histories.
We get information about one property or another, as if it came unperturbed from
the source. Usually, this is not a problem in classical mechanics, because all the rays
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Fig. 2 Wave dynamics:
wavelets vs rays. Wave-front
propagation is predicted
correctly by Huygens-Fresnel
wavelets. They are assumed
to propagate in all directions
and interfere with each other.
When a stable pattern of
constructive interference
emerges, its structure can be
captured by a group of rays

are assumed to be populated by many wave packets at the same time. In contrast,
quantum mechanics operates with single quanta. We still need all the modes to
predict the future state of a wave function, but the measurements are supposed to
collapse the system to just one component. By the way, this problem is rooted in
the classical tradition of assuming that wave components go through each other
unperturbed [5]. The main reason for the notion of collapse is the assumption
that detected sharp states are input components, as suggested by the widespread
illustrations with rays.

As a matter of fact, the method of ray tracing cannot predict the details of
classical wave-front evolution. The only known way to do this correctly is by using
the Huygens-Fresnel method (Fig. 2). In this approach, the waves are not described
by rays. Instead, the dynamics is governed by a process of wavelet interference. It
works like this: every point of a wave front is assumed to be a source of wavelets.
All of these wavelets interfere and produce a net state, in which wave energy is
redistributed. For instance, wavelets are assumed to start in all directions, but the
net effect is a light cone all the way to the focal point. This is because the energy
of the wave is channeled into the volume with constructive interference, away from
the areas with destructive interference. Only at this stage, when we have a well-
defined net state, we can use rays to describe the structure of the final beam as
a whole. Consequently, geometrical rays do not have individual significance and
cannot be described as wave-packet trajectories. Therefore, it is no longer possible
to interpret sharp states as “resolved” input components. Instead, we have to keep
in mind that wavelet interference produces net states that sometimes have transient
sharp states. In the same manner, we do not have to assume that quantum wave
functions collapse to reveal one input component. Instead, we can realize that wave
functions evolve to acquire transiently sharp net states. These emergent properties
correspond to quantum mechanical eigenvalues.

For this reason, we do not need to treat quantum collapse as an objective
property of Nature. Instead, we can acknowledge that quantum wave functions
evolve smoothly from one type of net state to another, with occasional profiles that
contain sharp spectra. In other words, measurements do not automatically transform
the wave function. They can simply focus on isolated moments from its history. This
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conclusion contradicts the Copenhagen interpretation but not the details of quantum
phenomena.

Many textbooks insist that measurements change physical reality. For example,
in the double-slit experiment, we can choose to detect a fringe pattern or a split
projection. It sounds as if quanta know what we are going to do and change their
physical properties in response. Yet, this interpretation only works if we assume
that quanta can change their properties at the same location. According to the story,
quanta become different because we intend to use a different type of detector. This
is not what we see in actual experiments. For example, we do not have dedicated
interference detectors in this case. If we want to see fringes, we take the same screen
that shows a split projection and simply move it forward. Hence, the method of
detection does not change. The same device is used to track the properties of quanta,
as they change from location to location. Moreover, the coordinates of each property
are predictable in advance, because it reflects the net state of the wave function.

The same thing can be seen in more sophisticated quantum experiments. For
example, if we want to detect sharp states of momentum for single photons, we have
to place a detector in the focal plane of a lens (and only in such a plane). In contrast,
if we want to detect single photons with sharp position spectra, we have to place a
detector in the image plane (Fig. 3). As you can see, we do not have a momentum
detector that is different from a position detector. We use the same event counter
and move it from one plane of measurement to the other. It is not possible to detect
photon properties in violation of the laws of optics [17]. Therefore, we do not have
any empirical reason to insist that the choice of measurement hardware changes
measurement outcomes. In other words, quanta do not know how they are going to
be measured. It is the people that know where to place their detectors, in order to
record expected properties.

And so, we see that all the three quantum assumptions, which were instrumental
for the conclusion of non-locality, can be avoided. We do not have quantum
uncertainty. We have certainty that all the spectral components are active at the same
time. We do not have quantum collapse. We have wave-function evolution. Instead

Fig. 3 Complementary wave
properties. The wave front
evolves to acquire a sharp
momentum spectrum in the
focal plane of a lens and a
sharp position spectrum in the
image plane. A quantum
event counter can be moved
from one plane to the other, in
order to detect each property
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of component states that are resolved by measurement, we have evolving net states
that become sharp at predictable locations. Finally, we can also dismiss the notion
of quantum knowledge. Measurements do not create sudden realities. They track
the smooth evolution of the wave function and select discrete regions with sharp
properties. Therefore, we do not have to deal with the measurement problem. As a
result, we have no reason to believe in non-locality either.

4 No Measurement Problem: No EPR Paradox in Quantum
Mechanics

By now, I suspect that many of you are wondering: what about the EPR paradox?
Didn’t Einstein prove that non-locality is unavoidable? In order to find the answer,
I want to draw your attention to the disclaimer in the penultimate paragraph of this
famous paper [7]. As you can see in that passage, Einstein, Podolsky, and Rosen had
shown a simple way to solve the paradox. They clearly stated that “spooky action at
a distance” only follows if we assume that the two non-commuting variables have
pre-existing values at the same time. Yet, there is no reason to assume that today. In
fact, there are good reasons to assume the opposite. In actual quantum experiments,
sharp states for incompatible variables are observed by changing the context of
observation. In some cases, the detector is moved to a different location [17]. In
other cases, the wave-function profile is physically prepared to have a different net
state. It is never the case that incompatible properties are observed or even predicted
in the same exact context.

Here is a schematic illustration of this conclusion (Fig. 4). Suppose that we
want to use two entangled photons, prepared to be identical. The photons start
with identical properties and suffer identical perturbations at every step, because
the microscopic details of their propagation are identical. Assume that the red lines
express a possible trajectory that they followed. In the focal plane of the lens, both
photons arrive at the same position. The fact of their presence at such a location is
sufficient to determine the outcome, because they always express the net state of the
wave function. So, the blue lines represent the virtual structure of the net state of the
wave function at the point of detection. By the way, the photons have trajectories, but
this is totally theory-independent. We cannot measure that motion, and we cannot
increase our predictive power with that knowledge. As stated above, observable
quantum properties are determined by the wave function, and that is why this is not
a hidden variable model. As a reminder, hidden variable models are not universal in
quantum mechanics. They only serve to explain the appearance of superposition.
Yet, here, the process of superposition is not an appearance. Hence, when we
measure quantum A for momentum, we immediately determine the momentum of
quantum B but only for the shown plane of detection. We cannot say anything about
the properties of photon B when it is before or after the focal plane. The reason for
this is that we can only infer the state of the second photon for the plane that is used
to measure the first one. In any other plane, the net state of the wave function is
different, and the location of the quantum is unknown.
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Fig. 4 Correlated quantum
measurements. The
wave-function profile changes
from plane to plane. Quantum
A acquires a transiently sharp
momentum spectrum in the
focal plane (FP), and the
same is true about its twin.
Similarly, both quanta acquire
sharp position spectra in the
image plane. When the quanta
are subjected to nonidentical
measurements, incompatible
properties are determined at
different physical locations,
with corresponding
probability distributions

Similarly, when we measure the photon A for position, we determine the position
of the photon B as well but only for the image plane. Again, we do not have constant
information carried from the source, in the case of net-state realism. The quantum
corresponds to a macroscopic profile that is associated with a point of emission
(as shown by the blue rays), but this does not tell us anything about the actual
point of emission of the detected particle. The only thing that we can determine
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is the transient property that is expressed at the point of detection. Finally, when we
measure the two photons for different variables, we detect one property in one plane
and the other property in a different plane. Each context of observation has its own
distribution of properties. In the focal plane, both photons have sharp momentum
spectra and wide position spectra. In the image plane, both photons have sharp
position spectra. So, we use the photon A to determine the properties of the photon
B in the focal plane, and then we also measure photon B in the image plane. We
use two photons to make two measurements, but we are really determining the
properties of the same photon in two different planes of observation. At no stage
can we infer that our photons have sharp momentum and position at the same time.
Therefore, we never have to worry about the EPR paradox.

5 Bell’s Inequality Is a Test of Net-State Realism in Quantum
Mechanics

The only problem left to explain is Bell’s theorem. Suppose we accept the view that
quantum properties are sharp in different contexts. It still follows that we obtain
a record of two sharp states for the same quantum. So, why is Bell’s inequality
violated? Why should it matter that we do not detect the two properties at the same
location? This is a very important question, and it is rooted in the same classical
approach to ray tracing. For example, if we chose one of the optical rays and treat it
as a trajectory (Fig. 3), we could say: look, the wave-packet momentum is resolved
in the focal plane and hidden in the image, but it is still the same property that
comes directly from the source. Conversely, the position information is hidden in the
former plane and resolved in the latter, but we can easily see that the two properties
apply to the same mode of propagation at the same time. Therefore, Bell’s inequality
should be obeyed. In response, we need to remember that the rays have no individual
significance, if the net state of superposition is assumed to be real. All the rays need
to be considered together, as components of a single process, in order to see that
the wave function has one net state with sharp momentum spectrum in the focal
plane and a different net state with sharp position spectrum in the image plane. Even
if we could measure the same quantum in both planes, we would detect a different
distribution of properties in each case. In other words, the two properties correspond
to output effects of interference and belong to mutually exclusive contexts, but each
state is extremely sensitive to microscopic differences in its process of evolution. For
this reason, there is no stable relationship between subsequent states, and repeated
observations produce contradictory outcomes for the same quantity. Any time a
variable is measured more than once, in order to perform a complete Bell test,
physical incompatibility translates into statistical incompatibility.

The theory behind this conclusion was recently clarified in an article about
the so-called Boole inequality [18]. When two different variables are sampled
independently, there is a risk of statistical error. If the two properties belong to
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incompatible distributions, researchers could obtain spurious correlations. To check
for this sort of error, Boole developed an analytical tool, which can be used to
derive a Bell-type inequality. Remarkably, this inequality can only be violated by
coefficients of correlation between variables with incompatible distributions [9–11,
13]. This is exactly what we expect to see in the case of multimode beams with non-
commuting properties. In a rapidly changing wave function, individual quantum
properties have to fluctuate at every step. They need to conform to the profile of the
net state. Accordingly, a photon must acquire a sharp momentum spectrum and a
wide position spectrum in the focal plane. The same photon then acquires a sharp
position spectrum and a wide momentum spectrum in the image plane. As a result,
the two sharp states belong to the same quantum, but they are incompatible with
each other. They can only arise in different contexts. Moreover, these two contexts
belong to conjugated optical planes, which mean that the two net states are Fourier
transforms of each other. This relationship is known to lead to a violation of Bell’s
inequality that also obeys Tsirelson’s inequality [12, 13]. In other words, the two
sharp properties of the same photon are incompatible in just the right way to explain
quantum behavior. The two points of detection can be connected by one ray, but
this is irrelevant, because the rays are not trajectories. They are meant to capture the
geometrical structure of the net state.

Here is another way to look at this problem. When we determine two sharp
states for a single quantum, we can ask: how are these properties connected? Do
they belong to the quantum at the same time, or are they incompatible? Bell’s
theorem gives us the answer, by falsifying the first alternative. Therefore, we have to
conclude that the net state of linear superposition is always real—not the component
states. In other words, Bell’s inequality is the perfect instrument for determining
which type of local realism is appropriate for the description of our universe.

6 Conclusion

Quantum behavior is predicted by wave equations, and this can be interpreted in
two alternative ways. In every case of linear superposition, we can assume that
unobservable component states are real, but we can also assume that observable net
states are real. Bell’s theorem was able to falsify the hidden variable approach, and
therefore we know that wave superposition requires a net-state ontology. The hidden
variable approach and the Copenhagen interpretation share a common problem—
they treat virtual component states of superposition as real. For this reason, they lead
to strange conclusions about measurements, reality, and locality. If we acknowledge
the validity of net-state realism, then we can reinterpret the quantum wave function
as a local and real pilot wave. Quantum mechanics does not violate Bell’s inequality
because of non-locality. It only does so because of the local effects of linear
superposition.
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1 Introduction

The Pauli exclusion principle (PEP) is a fundamental principle in physics, valid
for identical-fermion systems. It forms the basis of the periodic table of elements,
electric conductivity in metals, and the degeneracy pressure which makes white
dwarf stars and neutron stars stable. Furthermore it is a consequence of the spin-
statistics connection [1] and is embedded into the quantum field theory [2].
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Despite the fact that the PEP is connected to so many fundamental phenomena,
an intuitive explanation is still missing [3]. Moreover, in the framework of theories
beyond the Standard Model, a violation of the PEP might occur (e.g., [4]). Recent
work on spin-statistics has been carried out in [5, 6]. Thus, it is important to test
the PEP for each fermionic particle type. In the last two decades, many experiments
have been carried out, which set upper limits for the probability of its violation [7–
13]. These results were primarily obtained as by-products of experiments with a
different main scientific objective (like BOREXINO [8] and DAMA [7]). As some
of these experiments are investigating the validity of the PEP for composite particles
like nucleons and nuclei, it is important to note that the VIP2 experiment investigates
atomic transitions of electrons, which are elementary particles.

The different approaches to investigate the PEP need to be distinguished
concerning their possible fulfillment of the Messiah-Greenberg (MG) superselection
rule [14, 15]. This rule states that the symmetry of the wave function of a steady
state is constant in time. As a consequence, the symmetry of a quantum state can
only change if a particle, which is new to the system, interacts with the state. All of
the aforementioned experiments are looking for changes in the symmetry of steady
states that would be violating the MG superselection rule.

2 Tests of the Pauli Exclusion Principle

One of the first experiments looking for a small violation of the PEP was conducted
by Goldhaber and Scharff-Goldhaber in 1948 [16]. It was originally designed to
check if the particles that made up beta rays were the same as the electrons in atoms,
but it was later used to put an upper bound to the probability of the violation of the
Pauli exclusion principle. In this experiment, beta rays were absorbed by a block
of lead. The idea of the authors was that if the two kinds of particles were not
identical, the beta ray particle could be captured by the atom and cascade down to
the ground state without being subjected to the PEP. The X-rays emitted during this
cascation process were recorded and used to set upper bounds for a violation of
the PEP.

To the best of our knowledge, the best way to fulfill the MG superselection
rule and test the PEP with high precision is to introduce “new” electrons in a
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Fig. 1 Normal atomic 2p to 1s transition with an energy of 8.05 keV in copper (left) and the
corresponding non-Paulian transition with an energy of around 7.7 keV in copper (right)

conductor via a current. The electrons form new quantum states with the atoms in the
conductor. The goal is to search for new quantum states, which have a symmetric
component in an otherwise antisymmetric state. These non-Paulian states can be
identified by the characteristic radiation they emit during atomic transitions to the
ground state.

The first to employ this scheme in a pioneering experiment in 1988 were
Ramberg and Snow [17]. The experiment searched for X-rays originating from
Pauli-forbidden atomic transitions, in this case from the 2p to the fully occupied
1s ground state. These transitions are depicted in Fig. 1. The “new” electrons
introduced by the current can be seen as test particles, as they can be used to study
interactions between a fermionic system and a fermion which has not previously
interacted with the studied system. The experiment of Ramberg and Snow set an

upper limit for the probability that the PEP is violated for electrons of β
2

2 < 1.7 ×
10−26. The parameter β

2

2 is quasi standard in the literature for the probability that
the PEP is violated.

A much improved version of the experiment of Ramberg and Snow was set up by
the VIP collaboration [18]. It employed charge-coupled devices (CCDs) as soft X-
ray detectors, and through careful selection of the involved materials and shielding,
a reduction of background was achieved. The VIP experiment, conducted at the
underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy, took
data for∼3 years until 2010. The sensitivity of the experiment greatly increased due
to the reduction of background induced by cosmic rays. This background is reduced
by six orders of magnitude at LNGS compared to experiments above ground. The
experiment set a preliminary upper limit for the probability that the PEP is violated

for electrons of β
2

2 < 4.7 × 10−29 [19, 20]. A picture of the experiment can be seen
in Fig. 2.

A similar experiment of this type conducted in recent years by colleagues in
the USA, with a prototype for the MAJORANA demonstrator, is described in
[15]. It covers the same topic as the VIP experiment but uses a complementary
apparatus. This common interest with the VIP collaboration in testing fundamental
physics shows the interest of the scientific community in foundations of quantum
mechanics and theories beyond the Standard Model of particle physics. The most
recent experiment in this field is VIP2, which is the subject of this article. It was
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Fig. 2 The VIP experiment with passive shielding mounted taking data at LNGS

in detail described in recent publications, for example [21–24]. It is the follow-up
experiment of VIP. For VIP2, several crucial components were upgraded, like the
target, X-ray detectors, and shielding.

3 VIP 2 at LNGS Underground Laboratory

The VIP2 experiment is taking data at LNGS in Italy. Conducting the experiment
at this facility is advantageous, because of its low-background environment. The
Gran Sasso laboratory is the facility of this kind which is easiest to reach for the
experimenters from Stefan Meyer Institute, as there is no laboratory of this kind in
Austria. In 2016, we took data for 4 months at LNGS.

The core parts of the setup are the SDDs which are used as soft X-ray detectors
[25] (Lechner and Soltau, unpublished). The experiment utilizes six SDD cells with
an active area of 1 cm2 each. The cells are located on each side of the ultrapure
copper target, where the high current runs through. The target consists of two copper
strips with a gap of 6 mm between the strip and the respective SDD array. Each of
these strips has a length of 91 mm and a width of 20 mm. With this configuration,
the SDDs cover a solid angle of ∼7% of the target. The probability for detecting
an X-ray originating from the target is then further reduced from this value by X-
ray attenuation in the copper strip. The heating of the target due to the high current
is counteracted by water cooling. The water line runs between the two strips and
keeps the copper strip below room temperature, even with a current of 100 A. The
SDDs are cooled by liquid argon to a temperature of 100 K. The whole experimental
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Fig. 3 Silicon drift detectors with cooling and readout electronics

Table 1 The gain factors for
increasing the signal strength
in the VIP2 experiment
compared to the preceding
VIP experiment are given in
the table

VIP VIP2 Gain factor

Geometry 0.021 [26] 0.03 3/2

Detector efficiency 0.48 0.99 2

Current 40 A 100 A 5/2

Total 7–8

They are in agreement with the original proposal for
VIP2 (Marton, unpublished)

setup is evacuated to approximately 10−5 mbar, in order to enable the SDD cooling
at 100 K. A picture of the SDDs with the liquid argon cooling line and readout
electronics is shown in Fig. 3. The increase in signal strength (i.e., the amount of
detected X-rays from non-Paulian transitions per time) gained by upgrading the
VIP experiment to the setup described above is summarized in Table 1. The factor
in the first line describes the probability that a Pauli-forbidden X-ray produced in
the target passes through a SDD. It includes effects of target and SDD geometry as
well as X-ray absorption in the target. This factor was increased by mounting the
SDDs closer to the target than the CCDs of VIP, which increases the solid angle
covered by the detectors. These figures are verified by GEANT4 [27] based Monte
Carlo simulations (M. Cargnelli, private communication, 2016). For this purpose
and all other mentioned GEANT4 simulations, the complete setup was modeled in
this framework. A picture of the simulated setup is shown in Fig. 4.

The second gain factor represents the higher X-ray detection efficiency of SDDs
compared to CCDs. It comes from the fact that the depth of the depletion layer of
CCDs is 30 μm [28], whereas the depletion layer of SDDs is 450 μm thick. The
difference in depths results in a difference in quantum efficiency of a factor of 2.
The measurements for VIP2 can be undertaken with a higher current of 100 A due
to the new copper target geometry and the implemented water cooling.
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Fig. 4 The setup modeled in GEANT4, with the scintillators (green), the copper conductor
(brown), and the SDDs (purple). The aluminum enclosure is also shown (gray)

Overall, these factors increase the signal by around one order of magnitude. This
enhancement factor is in agreement with the VIP2 proposal (Marton, unpublished).
All the mentioned parts have been tested successfully in the laboratory at the Stefan
Meyer Institute in Vienna and at LNGS.

The energy and the time resolution of the SDDs are core properties of the experi-
ment. The detector performance which was anticipated in (Marton, unpublished) has
been verified experimentally. The energy resolution was determined to be around
150 eV (FWHM), tested with an Fe-55 source at 6 keV, for all six SDDs. The time
resolution was measured to be around 400 ns (FWHM) relative to a scintillator
trigger, which exceeds the original target (Marton, unpublished).

As an active shielding system, we use an assembly of 32 plastic scintillators
read out by Silicon Photomultipliers (SiPMs). They are arranged around the copper
target and the SDDs. The purpose of the active shielding system is to reject all
SDD events which coincide with events in the scintillators, as these are caused by
radiation originating from outside of the setup. Making this time coincidence is only
possible due to the good time resolution of the SDDs. A render of the copper target
with the active shielding system is shown in Fig. 5. The detection efficiency of the
active shielding system was determined to be around 97% for 500 MeV electrons
at the beam test facility at the DA#NE collider at the Laboratori Nazionali di
Frascati (LNF) in Italy. Tests in the laboratory at the Stefan Meyer Institute (SMI)
in Vienna showed that the detection efficiency is around 95% for the given cosmic
ray background.
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Fig. 5 A render of the VIP2 setup including the silicon drift detectors and the active shielding
system

The cosmic ray background at LNGS is lower than at SMI by about six orders
of magnitude. The main sources of background at LNGS are high-energy photons
in the range of around 40–500 keV, for which the detection efficiency of the
active shielding system is around 5%. This was predicted by recent Monte Carlo
simulations which were based on a scintillator detection threshold of 100 keV
deposited energy. This is the energy equivalent of the voltage threshold used in
the experiment. Further reducing the threshold is not possible due to unavoidable
noise in the detection system. The result from simulations was confirmed by data
taken at LNGS in 2016. The simulations lead to a quantitative understanding of
the background induced by the gamma radiation reported in [29]. A comparison
between the simulated and the measured spectra is shown in Fig. 6.

4 VIP2 Results and Future Plans

In 2016, we were able to take a total of 40 days of data with a current of 100 A and
70 days of data without current. Using an analysis technique analogous to the one
used by Ramberg and Snow [17] on this data set, we are able to set a preliminary

upper limit for the probability that the PEP is violated in the electron sector of β
2

2
≤ 3.4 × 10−29. This result represents the most stringent test of the PEP in a system
circumventing the MG superselection rule.
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Fig. 6 Comparison between 30 days of Monte Carlo simulation data (left) and 30 days of data
measured at LNGS (right). The background in the region of interest (marked in red) differs only
by around 30%

4.1 The Planned Upgrade

We are planning to further enhance the signal and reduce the background in the
energy region of the forbidden transition. Together, these effects will improve the
upper limit on the violation of the PEP we will be able to set after the running time
of the experiment, by more than one order of magnitude.

To reduce the background, it is important to shield the detector from high-energy
photon radiation. This will be done by a passive shielding consisting of two parts: an
outer part, 5 cm in thickness, made of low radioactivity lead, and an inner part which
is 5 cm in thickness, made of low radioactivity copper. Both parts will completely
enclose the setup. The inner copper part rests on a frame constructed from Bosch
profiles. The frame and the brick layouts are already planned. The geometry of the
enclosure was optimized to reach maximum background suppression. The copper
and lead blocks are available at LNGS and only need to be assembled. Due to our
understanding of the origin of the background, and GEANT4 simulation results,
we are confident that the installation of shielding will reduce the background in
the energy region of interest by at least a factor 20. To further increase the passive
shielding from the outside photon radiation in the energy region of the non-Paulian
X-ray transition at 8 keV, a plan to include a Teflon shielding of approximately 5 mm
thickness inside of the experimental setup around the copper target and the silicon
detectors has been developed.

Another fundamental part of the optimized experiment (planned in Autumn
2017) will be the implementation of new SDDs [30]. The new detectors were
developed in a cooperation between SMI, Politecnico di Milano, and the Fondazione
Bruno Kessler (FBK). They consist of units of nine single cells of 8 × 8 mm2,
assembled in a 3× 3 matrix with a fraction of active area as high as 85%. A picture
of the SDD unit is shown in Fig. 7. Four of the SDD units will be used, with two
on each side of the target. With one cell having a surface area of 64 mm2, the total
active area will be around 23 cm2, i.e., about four times the current active area of
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Fig. 7 New type of SDD with ceramic board for contacting and readout and a copper block for
cooling

Fig. 8 Render of the upgraded setup: The Peltier element is attached to a copper block, which is
attached to the backside of the ceramic board, with a copper strap. The Fe-55 source for energy
calibration is shown. Some parts of the setup are not displayed to enhance the visibility

6 cm2. According to GEANT4 simulations, this leads to a higher detection rate of
X-rays from non-Paulian transitions by a factor of 3. This is due to the increase in
the solid angle coverage of the target. Another advantage is that this type of detector
can be operated at higher temperatures of around 230 K. The currently used SDDs
are operated at 100 K and require argon cooling. The higher operating temperature
can be provided by Peltier cooling. Peltier cooling is better suited for long-term data
taking, because of its stable and failure-free operation. The setup for Peltier cooling
and signal readout of the SDDs is displayed in Figs. 7 and 8.

A ceramic board for the SDD voltage supply and the readout is mounted on
the side of the SDDs opposite to the radiation entrance windows. The first stage
of preamplification is provided by a new preamplifier (CUBE), which was recently
developed by Politecnico di Milano. These preamplifiers allow high-performance
X-ray spectroscopy with standard SDD technology. The ceramic board is connected
to a readout board for further amplification and data acquisition.
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Table 2 Factors contributing to the improvement of the sensitivity of the VIP2 experiment
(see text)

Upgrade Signal enhancement Background reduction Gain

New SDDs 3 ∼0.45 ∼4/3

Passive shielding – ≥√20 ≥4.5

RRS –
√

3
√

3

Total gain ≥10

On the backside of the ceramic board, a copper block is mounted which is
attached to the cold side of a Peltier element. This attachment will be realized in
the upgraded setup by a thermally conductive copper strap (see Fig. 8). It is via this
copper strap that the SDD is cooled by the Peltier element. The warm side of the
Peltier element is cooled by a closed water cycle with a cooling pump. A similar
water cooling system is currently in use to cool the copper target. This system can
be adapted to cool the Peltier elements in addition to the copper target. This system
of SDD combined with Peltier cooling has already been tested at the laboratory of
the Stefan Meyer Insitute in Vienna. A typical energy resolution was found to be
200 eV (FWHM) at 6 keV.

In order to reduce the background coming from radioactive radon, the whole
setup, including the passive shielding, will be enclosed in an existing plastic box
where nitrogen is flushed. This radon reduction system (RRS) reduces the radon
concentration in the atmosphere surrounding the experiment. Radon is an important
source of background at LNGS, as it is part of the decay chains of uranium and
thorium, which in turn are abundant in the rocks of the Gran Sasso mountains.

4.2 Gain for the VIP2 Experiment

The mentioned upgrade will improve the final achievable value for β
2

2 by at least one
order of magnitude compared to the final value achievable with the current setup.
The upgrades are summed up in Table 2.

In the first line, the effects of the new SDDs are listed. They will enhance the
signal (i.e., the number of possible detected X-rays from non-Paulian transitions
per time) by a factor of at least 3, due to their larger solid angle coverage. Due
to their larger area, they will also increase the background counts by a factor of
23
6 . Additionally, the anticipated energy resolution of around 200 eV (FWHM) will

enlarge the background in the region of interest by around a factor of 4
3 . Since

the background enters as a square root into the calculations of β
2

2 , this brings the
total gain for the upper limit for a PEP violation to approximately 4

3 . An additional
advantage of the new detectors which cannot be put in this table is the easier
handling, as mentioned earlier. The Peltier cooling replaces all the parts needed
for cooling with closed cycle liquid argon cooling, e.g., a helium compressor with
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Fig. 9 The preliminary upper limit for the violation of the Pauli exclusion principle obtained by
data taken with VIP2 (2) compared to the preliminary result of the former VIP experiment (1) and
different scenarios (3) and (4) (see text)

cold head and condenser which are used to liquefy the argon, an electronic argon
temperature controller, and the argon cooling line inside the setup. The Peltier
cooling is advantageous due to its easier handling and long-term stability.

The lead and copper shielding outside of the setup, and Teflon around the
detectors inside of the setup, will reduce the background by at least a factor of

20. This corresponds to a gain for β
2

2 of around 4.5, which has been verified with
GEANT4 simulations.

The nitrogen flushed around the setup to decrease the radon concentration (RRS)
will reduce the background by a factor of around 3. As a result, the gain in sensitivity
will be about

√
3. Together this adds up to an improvement of at least one order of

magnitude, shown in Fig. 9. In the figure, the points represent the following from
left to right: (1) the preliminary value obtained with the complete data set of the
predecessor experiment VIP; (2) the preliminary value from the data taken until end
of 2016 with VIP2; and (3) the expected VIP2 value after around 3 more years of
data taking with the current setup. Finally (4) corresponds to the expected value
which can be achieved after 3 years running time with the planned upgrades.

5 Conclusion and Outlook

We will be able to install the upgrade by spring 2018 after thorough tests of the
detectors at SMI. Thereby the VIP2 experiment will be able to set a new upper
limit for the probability that the PEP is violated in the order of 10−31 by the end of
the running time of the experiment. Compared to the preliminary result of the VIP
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experiment of β
2

2 ≤ 4.7×10−29, this is an improvement by more than two orders of
magnitude. The new value will also improve the current value set by VIP2 by more
than one order of magnitude and will represent a test of the PEP with unprecedented
sensitivity.
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1 Introduction

As an alternative approach to quantum mechanics, Feynman introduced the concept
of path integrals [9, 10] which developed into an extremely useful tool in many
branches of theoretical physics. There have been many approaches for giving a
mathematically rigorous meaning to the Feynman path integral by using, e.g.,
analytic continuation, see [16, 19, 20] or Fresnel integrals [1, 2, 15]. For more details
we refer the reader to [1] and the references therein. Here we choose a white noise
approach to Feynman integrals. White noise analysis is a mathematical framework
which offers generalizations of concepts from finite-dimensional analysis, like
differential operators and Fourier transform to an infinite-dimensional setting. The
idea of realizing Feynman integrals within the white noise framework goes back
to [14]. In [24], Lascheck et al. constructed the Feynman integrand FV for a large
class of time-dependent exponentially growing potentials V : � × R → R, where
� = [0, T ] is a bounded interval of length T > 0. In order to include singular
potentials, they supposed that V is not a function but a finite Borel signed measure
ν on �× R. They considered the marginal measures:

νspace(A) ≡ ν(�× A), A ∈ B(R),
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and

νtime(B) ≡ ν(B × R), B ∈ B(�).

They assumed that νspace and νtime satisfy:

1. There is some β,R > 0 such that |νspace| (]r,+∞[) < e−βr2
for all r > R.

2. |νtime| has a L∞ density.

They constructed the white noise Feynman integrand FV and proved under condi-
tions (1) and (2) that FV is a Hida distribution [23, 26]. Moreover, they showed
that the generalized expectation IV := 〈〈FV , 1〉〉 is a Green function for the full
Schrödinger equation, i.e.,

ih̄
∂IV

∂t
= − h̄

2

2m

∂2
IV

∂x2 + V IV , on�× R (1.1)

with the initial condition:

lim
t→0+

IV (t, .) = δ. (1.2)

Here m > 0 is the mass, h̄ is the Planck constant, and δ is the Dirac distribution at
zero.

Our purpose in this work is to prove by inspiration of their method that the white
noise Feynman integrand can be rigorously constructed for a new class of time-
dependent exponentially growing potentials. More precisely, let θ : R+ → R+ be a
Young function, i.e.,

1. θ is a continuous, convex, increasing function.

2. θ(0) = 0 and lim
s→+∞

θ(s)

s
= +∞.

In addition, we suppose that θ satisfies the condition:

lim sup
s→+∞

θ(s)

s2
< +∞. (1.3)

Let [W]θ be the corresponding space of white noise test functions and [W]∗θ its
dual space (for the full definition of the space [W]θ , see [28] or the next section for
a brief introduction). Note that if θ(s) = s2, then [W]∗θ coincides with the space of
Hida distributions (see [23, 26] or the examples in the next section).

Now let V : R+ × R → C be a given potential. In order to include singular
potentials, we suppose that V is not a function but a family (νt )t∈R+ of Borel
complex measure on R. Moreover, we suppose that the following conditions are
fulfilled:
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(C1) The function t → νt ([a, b]) is measurable for any a, b ∈ R.
(C2) There is some β > 0 and a function ρ : R+ → R+ such that

(a) ρ is bounded on every bounded interval I ⊂ R+.
(b) For for all r > 0 and almost all t ∈ R+, it holds that

∫
R

er| y| |νt | (dy) ≤ |ρ(t)| eθ$(βr), (1.4)

where θ$ : R+ → R+ is the conjugate of θ , i.e.,

θ$(r) = sup
s∈R+

(sr − θ(s)), r ∈ R+.

Note that condition (1.4) implies directly that νt is a finite Borel complex measure
on R for almost all t ∈ R+ (see Remark 4.3).

The main results of this paper (see Theorems 4.2 and 4.7) are to prove that
under the conditions (C1) and (C2), the white noise Feynman integrand FV exists
as a generalized function in the space [W]∗θ . Moreover, its generalized expectation
IV := 〈〈FV , 1〉〉 is a Green function for the full Schrödinger equation (1.1). A direct
comparison between the class of admissible potentials introduced by the authors in
[24] and our class of admissible potentials is given in Remark 4.8. Finally, we give
several examples to illustrate the functions ρ, θ and θ$.

2 White Noise Analysis

Let S(R) be the Schwartz space of real-valued rapidly decreasing functions. More
precisely, a function ξ : R → R is an element of S(R) if and only if ξ ∈ C∞(Rn)
and,

∀n,m ∈ N, lim
t→+∞ |t

nξ (m)(t)| = 0.

We define a family of inner product norms on S(R) by

∀p ∈ N, ∀f ∈ S(R), | f |p = |Apf |0 =
(∫

R

|Apf (t)|2dt
) 1

2

, (2.1)

where |.|0 is the inner product norm on the Hilbert space L2(R) of (equivalence
classes of) the R-valued square integrable functions with respect to the Lebesgue
measure on R and the operator A is defined densely on S(R) by

∀t ∈ R, ∀ξ ∈ S(R), Aξ(t) = −ξ ′′(t)+ (t2 + 1)ξ(t).
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Thus we define

∀p ∈ N, Sp(R) =
{
f ∈ L2(R); | f |p < +∞

}
.

We recall the definition of a nuclear space.

Definition 2.1
Let V be a topological space with the topology given by a family {‖.‖n}n∈N of
inner product norms. Let Vn be the completion of V with respect to the norm ‖.‖n.
The space V is called a nuclear space if for any n, there exists m ≥ n such that
the inclusion map from Vm into Vn is a Hilbert-Schmidt operator, i.e., there is an

orthonormal basis {vk}k≥1 for Vm such that
+∞∑
k=1

‖vk‖n <∞.

Then S(R) equipped with the topology given by the family
{|.|p

}
p≥0 is a nuclear

space. Moreover, the operator A is invertible, and A−1 is a bounded operator on
L2(R). For each p ≥ 0, we put

∀f ∈ L2(R), | f |−p =
(∫

R

|A−pf (t)|2dt
) 1

2

.

Let S−p(R) be the completion of L2(R) with respect to the norm |.|−p. The dual
space S ′(R) is given by

S ′(R) =
⋃
p∈N

S−p(R).

The space S ′(R) is equipped with the corresponding inductive limit topology, and
so it is naturally equipped with the corresponding Borel σ -algebra B

(
S ′(R)

)
(for

all details on the Schwartz space and general theory of nuclear spaces, see [23] and
[26]). The standard Gaussian measure on

(
S ′(R),B

(
S ′(R)

))
is defined through its

characteristic function, i.e.,

∫
S ′(R)

exp (i〈x, ξ 〉) μ(dx) = exp

(
−|ξ |

2
0

2

)
, ξ ∈ S(R).

The existence and the uniqueness of the measure μ are a consequence of Bochner-
Minlos theorem [12, 25]. The probability space

(
S ′(R),B(S ′(R)), μ

)
is called the

white noise space, and we have the Gel’fand triple

S(R) ⊂ L2(R) ⊂ S ′(R).

By construction of the Gaussian measure μ, the random variable 〈., ξ 〉 is Gaussian
with mean 0 and variance |ξ |20 for any ξ ∈ S(R). Then by using the fact that S(R)
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is dense in L2(R), we define 〈., ξ 〉 and extend the same property for any ξ ∈ L2(R).
Thus a version of the Brownian motion is given by

B(t) = 〈., χ]0,t]〉, t ∈ R+.

Now let (L2) be the space of (equivalence classes of) the C-valued square integrable
functions with respect to the standard Gaussian measure on S ′(R).
Definition 2.2
A nuclear subspace W ⊂ (L2) is called a space of white noise test functions if W
is dense in (L2) and the canonical injection W ↪→ (L2) is continuous. In that case,
the elements in W are called white noise test functions or simply test functions, and
the elements in the dual space W∗ are called white noise generalized functions or
simply generalized functions, and we have the Gel’fand triple

[W] ⊂ (L2) ⊂ [W]∗ .

Here we introduce a family [W]θ of white noise test functions associated with a
Young function θ : R+ → R+, i.e.,

1. θ is a continuous, convex, increasing function.

2. θ(0) = 0 and lim
s→+∞

θ(s)

s
= +∞.

In addition, we suppose that θ satisfies the condition:

lim sup
s→+∞

θ(s)

s2 < +∞. (2.2)

So let θ : R+ → R+ be a given Young function satisfying (2.2). Let H = (L2) :=
L2(R)+ iL2(R) be the complexified space of L2(R) and define

�(H) :=
{
φ = ( fn); fn ∈ H$n, ‖φ‖2

0 :=
+∞∑
n=0

n!| fn|20 < +∞
}
,

where H$n is the n-symmetric tensor product of H (see [26]). The C-canonical
bilinear form is given by

〈〈φ,ψ〉〉 =
+∞∑
n=0

n!〈fn, gn〉, φ = ( fn), ψ = (gn).

First, we construct a Gel’fand triple

[W ]θ ⊂ �(H) ⊂ [W ]∗θ .
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For each p ∈ Z and m > 0 let Np = Sp(R)+ iSp(R), N = S(R)+ iS(R) be the
complexified space of Sp(R) (respectively, S(R)), and put

Fθ(N) =
⋂

p∈N,m>0

Fθ,m(Np),

where

Fθ,m(Np) :=
{
φ = ( fn); fn ∈ N$np ,

+∞∑
n=0

θ−2
n m

−n| fn|2p < +∞
}
,

θn := inf
r>0

θ(r)

rn
, n ∈ N

$,

and N$np is the n-symmetric tensor product of Np (see [26]). Then Fθ(N) equipped
with the projective limit topology is a nuclear space. The dual space of Fθ(N) is
given by

Gθ(N
′) =

⋃
p∈N,m>0

Gθ,m(N−p),

where

Gθ,m(N−p) :=
{
# = ( Fn);Fn ∈ N$n−p,

+∞∑
n=0

(n!θn)2mn| fn|2−p < +∞
}
.

The canonical C-bilinear form on Gθ(N ′)× Fθ(N) is given by

〈〈#,φ〉〉 :=
+∞∑
n=0

n!〈#n, φn〉, # = ( Fn), φ = ( fn).

It is known that under the condition (2.2), we obtain a Gel’fand triple

[W ]θ = Fθ(N) ⊂ �(H) ⊂ [W ]∗θ = Gθ(N ′). (2.3)

For every φ = ( fn) ∈ �(H), we define a L2-random variable in such a way that

[Gφ](x) =
+∞∑
n=0

〈: x⊗n :, fn〉, φ = ( fn), x ∈ N ′,

where : x⊗n : is the Wick tensor power (see [23, 26]). Then the map φ → Gφ

yields a unitary isomorphism �(H) ∼= (L2), which is the famous Wiener-Itô-Segal
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isomorphism (see [23, 26]). Let [W]θ := G([W ]θ ). A white noise triple (2.3) gives
rise to a Gel’fand triple through the Gaussian realization:

[W]θ ⊂ (L2) ⊂ [W]′θ .

Definition 2.3
The space [W]θ is called the space of entire functions with exponential growth of
order θ and of minimal type.

The canonical C-bilinear form on [W]′θ × [W]θ will be denoted by 〈〈., 〉〉.
Example 2.4
Let β ∈ [0, 1[ and let θβ : R+ → R+ be the Young function defined by

θβ(r) = 1+ β
2
r

2
1+β , r ∈ R+.

Obviously, θβ satisfies the condition (2.2).

1. The case β = 0: The associated space [W]θ is called the space of Hida-Kubo-
Takenaka, and it is denoted by (S). The corresponding white noise generalized
functions are called Hida distributions. For more details see [23, 26, 31].

2. The case 0 < β < 1: The associated spaces [W]θ are called the spaces of
Kondratiev-Streit, and they are denoted by (S)β . The corresponding white noise
generalized functions are called Kondratiev-Streit distributions. For more details,
see [23].

Now, we put SC(R) := N = S(R)+ iS(R) and define

∀ξ ∈ SC(R), φξ := exp

(
〈., ξ 〉 − 〈ξ, ξ 〉

2

)
=
+∞∑
n=0

〈
: .⊗n :, ξ

⊗n

n!
〉
.

Definition 2.5

Let # =
+∞∑
n=0

〈: .⊗n,#n〉 ∈ [W]∗θ be a generalized function. The C-valued functions

defined on SC(R) by

S#(ξ) = 〈〈#,φξ
〉〉 =

+∞∑
n=0

〈#n, ξ⊗n〉, ξ ∈ SC(R),

and

T#(ξ) = 〈〈#, exp (i〈., ξ 〉)〉〉 = exp

( 〈ξ, ξ 〉
2

)
S#(iξ), ξ ∈ SC(R)

are called the S-transform (respectively, the Fourier transform or T -transform)
of #.
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Remark 2.6

(1) Since φξ ∈ [W]θ for all ξ ∈ S(R), the S- and T -transform of a white noise
generalized function are well-defined.

(2) For ξ = 0 the above expression yields 〈〈#, 1〉〉; therefore T#(0) = S#(0) is
called the generalized expectation of # ∈ [W]∗θ .

Let θ$ : R+ → R+ be the Young conjugate of θ , i.e.,

θ$(r) := sup
λ∈R+

(λr − θ(λ)) , r ∈ R+.

Then θ$ is also a Young function, (θ$)$ = θ , and the condition (2.2) is equivalent
to the following:

lim inf
r→+∞

θ$(r)

r2 > 0. (2.4)

For more details on Young function and their properties, see [21, 27]. The next
theorem is due to Gannoun et al. [11].

Theorem 2.7 [11]
Let F : SC(R) → C be a function. Then F = T# for some generalized function
# ∈ [W]∗θ if and only if F satisfies the following conditions:

(1) for any fixed ξ, η ∈ SC(R), the C-valued function z→ F(zξ +η) is entire with
respect to the complex variable z ∈ C.

(2) there is some p ∈ N and m,K > 0 such that

|F(ξ)| ≤ K exp
(
θ$
(
m |ξ |p

))
, ∀ξ ∈ SC(R).

The next convergence theorem was proven in [30]. For all details on the strong
convergence, i.e., the convergence in the sense of the strong topology on the dual of
a nuclear space, see [23].

Corollary 2.8
Let (#n) ⊂ [W]∗θ be a sequence of generalized functions, and let Fn = T#n. Then
#n converges strongly to some generalized function # ∈ [W]∗θ if and only if:

(1) The sequence ( Fn(ξ))n∈N is a Cauchy sequence for any ξ ∈ SC(R).
(2) There is some p ∈ N, and m,K > 0 such that

|Fn(ξ)| ≤ K exp
(
θ$(m |ξ |p)

)
, ∀ξ ∈ SC(R).

The next corollary can be easily proven by the same method used in the proof of
Theorem 13.4 in [23].
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Corollary 2.9
Let (�,F) be a measurable space, and let ν be a complex measure on (�,F). Thus
let (#(u))u∈� ⊂ [W]∗θ be a family of generalized functions. Assume that:

(1) T (#(.)) (ξ) is measurable for any ξ ∈ SC(R).
(2) There is some p ∈ N, and m,K > 0 such that

∫
�

|T (#(u)) (ξ)| |ν| (du) ≤ K exp
(
θ$(m |ξ |p)

)
, ∀ξ ∈ SC(R).

Then
∫
�

#(u)ν(du) exists in the Pettis sense (see [23]) and defines a generalized

function in the space [W]∗θ . Its T -transform is given by the formula

T

(∫
�

#(u)ν(du)

)
(ξ) =

∫
�

T (#(u)) (ξ)ν(du), ∀ξ ∈ SC(R).

The same results in Theorem 2.7 and Corollaries 2.8 and 2.9 hold for the S-
transform.

Example 2.10 [Interesting Hida Distributions]

(1) Hida derivative of Brownian motion: Let t ∈ R+ and let Ft : SC(R) → C

be defined by

∀ξ ∈ SC(R), Ft (ξ) = ξ(t).

Obviously, Ft satisfies the conditions of Theorem 2.7. In particular, there is a
unique Hida distribution Ḃ(t) such that

∀ξ ∈ SC(R), S
(
Ḃ(t)

)
(ξ) = ξ(t). (2.5)

The function t → Ḃ(t), t ∈ R+, is called the Hida derivative of Brownian
motion or white noise. In fact, we have

∀t ∈ R+, Ḃ(t) = lim
h→0+

B(t + h)− B(t)
h

,

where the limit is taken in the sense of Corollary 2.8.
(2) Normalized kinetic energy factor: To define the kinetic energy factor in the

path integrals, one would like to give a meaning to the formal expression

exp

(
c

∫
R

Ḃ(τ )2dτ

)
,
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where c is a complex constant. When c �= 1

2
, the normalized exponential

N exp

(
c

∫
R

Ḃ(τ )2dτ

)

is defined to be the unique Hida distribution with the following T -transform

T

(
N exp

(
c

∫
R

Ḃ(τ )2dτ

))
(ξ) = exp

(
1

4c − 2

∫
R

ξ2(τ )dτ

)
, ξ ∈ SC(R).

For more details see [4, 22].
(3) Donsker’s delta function: In order to pin Brownian motion at a point x ∈ R,

we want to consider the formal composition of the Dirac delta distribution with
Brownian motion: δ(x − B(t)). This can be given a precise meaning as a Hida
distribution. Its T -transform at ξ ∈ SC(R) is given by

T (δ(x − B(t))) (ξ)= 1√
2πt

exp

(
−1

2

∫
R

ξ2(τ )dτ+ 1

2t

(
ix +

∫ t

0
ξ(τ )dτ

)2
)
.

Moreover, we have the integral expression formula

δ(x − B(t)) = 1

2π

∫
R

eiλ(x−B(t))dλ. (2.6)

For more details see [23].

For all details on the spaces [W]θ , we refer the reader to [5, 11, 28] and the
references therein.

3 White Noise Formulation for Feynman Integrals

Consider a nonrelativistic particle of mass m > 0 moving in R under influence of a
given potential V : R+ × R → R. In quantum mechanics, the state of this particle
at time t is described by a function ψ(t, x) satisfying the Schrödinger equation:

ih̄
∂ψ

∂t
(t, x) = − h̄

2

2m

∂2ψ

∂x2 (t, x)+V (t, x)ψ, ψ(0, x) = f (x), (t, x) ∈ R+×R,

(3.1)

where h̄ is the Planck constant and f : R→ R is such that
∫
R

| f (x)|2dx = 1. The

Feynman integrand in the white noise framework is an informal expression of the
form
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FV (t, x) = N exp

(
− i
h̄

∫ t

0
Ḃ(τ )2dτ

)
×

exp

(
i

h̄

∫ t

0
V (τ, x + B(τ)− B(t)) dτ

)
× δ(x − B(t)), x ∈ R, t > 0,

where δ(x − B(t)) is the Donsker’s delta function and N exp

(
− i
h̄

∫ t

0
Ḃ(τ )2dτ

)

is a normalized kinetic energy factor (see Example 2.10). The Feynman integral is
defined by

IV (t, x) = 〈〈FV (t, x), 1〉〉 , x ∈ R, t > 0.

The idea of realizing Feynman integrals within the white noise framework goes back
to [14]. For all details, we refer the reader to [3, 4, 7, 8, 13, 17, 22, 24, 33] and the
reference therein.

Example 3.1 [The Free Feynman Integral]
The white noise Feynman integrand associated to the potential V = 0 is called the
white noise free Feynman integrand, and it is denoted by F0. It has been checked in
[14] that F0 is a Hida distribution with the following T -transform

T (F0(t, x)) (ξ) =
√

m

2πih̄t
exp

(
im

2h̄t

(
x + h̄

m

∫ t

0
ξ(u)du

)2
)

(3.2)

exp

(
−1

2

∫
�1(t)

c

ξ2(u)du− ih̄

2m

∫ t

0
ξ2(u)du

)
, ξ∈SC(R), x∈R, t>0, (3.3)

where �1(t)
c is the complement of �1(t) := [0, t]. Let ξ = 0, we get

IV (t, x) =
√

m

2πih̄t
exp

(
im

2h̄t
x2
)
, x ∈ R, t > 0,

which is the exact Feynman free propagator.

4 Feynman Integrals for a New Class of Time-Dependent
Exponentially Growing Potentials

Consider a real potential V : R+ × R → R and let FV be the corresponding
Feynman integrand. By definition we have

FV (t, x) = F0(t, x) ·exp

(
− i
h̄

∫ t

0
V (τ, x + B(τ)− B(t))dτ

)
, x ∈ R, t > 0,

(4.1)
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where F0 is the free Feynman integrand. Let x ∈ R and t > 0 be fixed. We start by
writing

V (t, x) =
∫
R

V (t, y)δ(x − y)dy, x ∈ R, t > 0.

By expanding the exponential in the expression (4.1), we find that

FV (t, x)=
+∞∑
n=0

(−i)n
h̄n

∫
�n(t)×Rn

⎛
⎝

n∏
j=1

V (tj , yj )

⎞
⎠F

(t,x)
n

(−→
t ,
−→
y
)
dn
−→
y dn

−→
t , (4.2)

where �n(t) is the set of all (t1, · · · , tn) ∈]0, t[n with t1 < · · · < tn and

F
(t,x)
n

(−→
t ,
−→
y
)
= F0(t, x) ·

n∏
j=1

δ
(
x − yj + B(tj )− B(t)

)
, (4.3)

where −→t = (t1, · · · , tn) ∈ �n(t) and −→y = (y1, · · · , yn) ∈ R
n. Thus, the integrals

in the expression (4.2) disappear for n = 0, and the corresponding term is equal to
F0(t, x).

Lemma 4.1 [22, 24, 33]
Let

−→
t = (t1, · · · , tn) ∈ �n(t) and −→

y = (y1, · · · , yn) ∈ R
n be given.

Then F
(t,x)
n

(−→
t ,
−→
y
)

defined by the expression (4.3) is a Hida distribution. Its T -

transform is given by the formula

T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ) = T

⎛
⎝F0(t, x) ·

n∏
j=1

δ
(
x − yj + B(tj )− B(t)

)
⎞
⎠ (ξ) =

⎛
⎝
n+1∏
j=1

√
m

2πih̄
(
tj − tj−1

)
⎞
⎠ exp

(
−1

2

∫
�c1(t)

ξ2(s)ds − ih̄

2m

∫
�1(t)

ξ2(s)ds

)
×

exp

⎛
⎝
n+1∑
j=1

im

2h̄
(
tj − tj−1

)
(
yj − yj−1 + h̄

m

∫ tj

tj−1

ξ(s)ds

)2
⎞
⎠ , ξ ∈ SC(R). (4.4)

Here we have used the notations t0 = 0, tn+1 = t , y0 = 0, yn+1 = x, and �c1(t) is
the complement of �1(t) =]0, t[.
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In order to include singular potentials, we suppose from now on that V is not a
function but a family (νt )t∈R+ of Borel complex measure on R. The expression (4.2)
now is taking the form

FV (t, x) =
+∞∑
n=0

(−i)n
h̄n

∫
�n(t)

⎛
⎝
∫
Rn

F
(t,x)
n

(−→
t ,
−→
y
) n∏
j=1

νt (dyj )

⎞
⎠

n∏
j=1

dtj . (4.5)

Theorem 4.2
Let FV be the Feynman integrand defined by the series (4.5), and let θ : R+ → R+
be a Young function satisfying the condition (2.6). We suppose that the following
conditions are fulfilled :

(C1) The function t → νt ([a, b]) is measurable for any a, b ∈ R.
(C2) There is some β > 0 and a function ρ : R+ → R+ such that

(a) ρ is bounded on every bounded interval I ⊂ R+.
(b) For for all r > 0 and almost all t ∈ R+, it holds that

∫
R

er| y| |νt | (dy) ≤ |ρ(t)| eθ$(βr), (4.6)

where θ$ : R+ → R+ is the conjugate of θ .

Then FV exists as a generalized function in the space [W]∗θ . The integrals exist in
the Pettis sense, and the series (4.5) converges strongly in the space [W]∗θ . Therefore
we may express the T -transform of FV (t, x) by

T (FV (t, x)) (ξ) =
+∞∑
n=0

(−i)n
h̄n

∫
�n(t)

⎛
⎝
∫
Rn

T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

n∏
j=1

νtj (dyj )

⎞
⎠

×
n∏
j=1

dtj . (4.7)

Here ξ ∈ SC(R) and T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ) is given as in Lemma 4.1 by the

formula (4.4). Thus in the above expression, the integrals disappear for n = 0,
and the corresponding term is equal to T (F0(t, x)) (ξ).

Proof For simplicity, we suppose that the inequality (4.6) holds for all r > 0 and
all τ ∈ R+. Let x ∈ R and t > 0 be fixed.

First setup: Let us start by proving that the integral

∫
Rn

F
(t,x)
n

(−→
t ,
−→
y
) n∏
j=1

νtj (dyj )
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exists in the Pettis sense for any n ≥ 1 and any −→t ∈ �n(t). So let n ≥ 1 and−→
t = (t1, · · · , tn) ∈ �n(t) be fixed. We note that the C-valued function

−→
y → T

(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ),

−→
y ∈ R

n

is measurable for any ξ ∈ SC(R). On the other hand, by using the formula (4.4), we
prove easily that for any ξ ∈ SC(R),

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

∣∣∣ ≤
⎛
⎝
n+1∏
j=1

√
m

2πh̄
(
tj − tj−1

)
⎞
⎠ exp

((
1

2
+ h̄

m

)
|ξ |20

)
×

∣∣∣∣∣∣
exp

⎛
⎝
n+1∑
j=1

i( yj − yj−1)

tj − tj−1

∫ tj

tj−1

ξ(s)ds

⎞
⎠
∣∣∣∣∣∣
.

The last term can be rewritten as

exp

⎛
⎝
n+1∑
j=1

i( yj−1 − yj )
tj − tj−1

∫ tj

tj−1

ξ(s)ds

⎞
⎠ = exp

(
ix

t − tn
∫ t

tn

ξ(s)ds

)
×

exp

⎛
⎝i

n∑
j=1

yj

(
1

tj − tj−1

∫ tj

tj−1

ξ(s)ds − 1

tj+1 − tj
∫ tj+1

tj

ξ(s)ds

)⎞
⎠ .

By the mean value theorem, this equals

exp

(
ix

t − tn
∫ t

tn

ξ(s)ds

)
× exp

⎛
⎝i

n∑
j=1

yj
(
ξ(τj )− ξ(τj+1)

)
⎞
⎠ ,

where τj ∈ [tj , tj+1]. Then it follows that

∣∣∣∣∣∣
exp

⎛
⎝
n+1∑
j=1

i( yj − yj−1)

tj − tj−1

∫ tj

tj−1

ξ(s)ds

⎞
⎠
∣∣∣∣∣∣
≤ exp

(
|x| ‖ξ‖∞ + t

∥∥ξ ′∥∥∞ max
1≤j≤n

∣∣ yj
∣∣
)
≤

exp (|x| ‖ξ‖∞) max
1≤j≤n exp

(
t
∥∥ξ ′∥∥∞

∣∣ yj
∣∣) ≤ exp (|x| ‖ξ‖∞)

n∑
j=1

exp
(
t
∥∥ξ ′∥∥∞

∣∣ yj
∣∣) ,
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where ξ ′ is the derivative of ξ and

‖ξ‖∞ := sup
s∈R

|ξ(s)|, ξ ∈ SC(R).

This implies that

∫
Rn

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

∣∣∣ dn−→y ≤
⎛
⎝
n+1∏
j=1

√
m

2πh̄
(
tj − tj−1

)
⎞
⎠×

exp

((
1

2
+ h̄

m

)
|ξ |20

)
exp (|x| ‖ξ‖∞)

n∑
j=1

∫
Rn

exp
(
t
∥∥ξ ′∥∥∞ | yj |

) n∏
j=1

∣∣νtj
∣∣ (dyj ).

By using (4.6), we find that

∫
Rn

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

∣∣∣ dn−→y ≤
⎛
⎝
n+1∏
j=1

√
m

2πh̄
(
tj − tj−1

)
⎞
⎠×

n

⎛
⎝

n∏
j=1

|ρ(tj )|
⎞
⎠ exp

((
1

2
+ h̄

m

)
|ξ |20 + ‖ξ‖∞ |x| + θ$

(
tβ
∥∥ξ ′∥∥∞

))
.

Since θ$ satisfies the condition (2.4), there is some constants a > 0 and R > 0 such
that

θ$(r) ≥ ar2, ∀r > R.

Then it can be easily proven that

exp

((
1

2
+ h̄

m

)
|ξ |20 + ‖ξ‖∞ |x|

)
≤ α exp

(
θ$
(
λ
(|ξ |0 + ‖ξ‖∞

)))
, (4.8)

where α = α(x, a, h̄,m,R) > 0 and λ = λ(a, h̄,m) > 0 are constants. This
implies that

∫
Rn

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

∣∣∣ dn−→y ≤
⎛
⎝
n+1∏
j=1

√
m

2πh̄
(
tj − tj−1

)
⎞
⎠

×
⎛
⎝n

n∏
j=1

|ρ(tj )|
⎞
⎠×

α exp
(
θ$ ((tβ + λ) ‖|ξ‖|)) , ‖|ξ‖| := |ξ |0 + ‖ξ‖∞ +

∥∥ξ ′∥∥∞ . (4.9)
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Note that the norm ‖|.‖| is continuous on SC(R) (see [32]). So, there is some p ∈ N

and K > 0 such that

∀ξ ∈ SC(R), ‖|ξ‖| ≤ K|ξ |p. (4.10)

To conclude the proof of this item, it suffices to apply Corollary 2.9.
Second step: Let us show that the integrals

∫
�n(t)

⎛
⎝
∫
Rn

F
(t,x)
n

(−→
t ,
−→
y
) n∏
j=1

νtj (dyj )

⎞
⎠

n∏
j=1

dtj

exist in the Pettis sense for any n ≥ 1. So let n ≥ 1. First of all, we note that by the
first condition, the C-valued function

−→
t →

∫
Rn

T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

n∏
j=1

νtj (dyj ),
−→
t ∈ �n(t)

is measurable for any ξ ∈ SC(R). On the other hand, by (4.9) we have

∫
�n(t)

⎛
⎝
∫
Rn

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

∣∣∣
n∏
j=1

∣∣νtj
∣∣ (d−→y j )

⎞
⎠

n∏
j=1

dtj ≤

αn (n!)− 1
p Mn(t)

(‖ρ‖∞,t
)n exp

(
θ$ ((tβ + λ) ‖|ξ‖|)) ,

where ‖ρ‖∞,t := sup
s∈[0,t]

|ρ(s)| and (see [24])

Mn(t) :=
∫
�n(t)

⎛
⎝
n+1∏
j=1

√
m

2πh̄ (tk − tk−1)

⎞
⎠

n∏
j=1

dtj

=
(
m�( 1

2 )

2πh̄

) (n+1)
2

t
n−1

2 �

(
n+ 1

2

)
.

Here � :]0,+∞[→ R+ is the Gamma function, i.e.,

�(z) =
∫ +∞

0
λz−1e−λdλ, z > 0.

By Stirling’s formula, we have

�(z) ∼ zz− 1
2 e−z, i.e., lim

z→+∞
�(z)

zz− 1
2 e−z

= 1.



Feynman Integrals for a New Class of Time-Dependent Exponentially Growing. . . 185

Then it follows that

�

(
n+ 1

2

)
∼
(
n+ 1

2π

) 1
4

(n!)− 1
2 .

So there is a constant C = C(m, h̄, t) > 0 such that

Mn(t) ≤ C
⎛
⎝mt �

(
1
2

)

πh̄

⎞
⎠
n
2

(n!)− 1
2 ,

which implies that

∫
�n(t)

⎛
⎝
∫
Rn

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))
(ξ)

∣∣∣
n∏
j=1

∣∣νtj
∣∣ (dyj )

⎞
⎠

n∏
j=1

dtj ≤

Cα

⎛
⎝mt �

(
1
2

)

πh̄

⎞
⎠
n
2

(n!)− 1
2
(‖ρ‖∞,t

)n exp
(
θ$ ((tβ + λ) ‖|ξ‖|)) . (4.11)

To complete the proof of this item, it suffices to use (4.10) and apply Corollary 2.9.
Third step: We will prove in this step that the series (4.5) converges in the strong
sense. By using formula (3.2) and the inequalities (4.8) and (4.11), we show easily
that

+∞∑
n=0

h̄−n
∫
�n(t)

⎛
⎝
∫
Rn

∣∣∣T
(
F
(t,x)
n

(−→
t ,
−→
y
))∣∣∣ (ξ)

n∏
j=1

∣∣νtj
∣∣ (dyj )

⎞
⎠

n∏
j=1

dtj ≤

α

(√
m

2πh̄t
+ C

)



⎛
⎜⎜⎝
‖ρ‖∞,t
h̄

⎛
⎝mt �

(
1
2

)

πh̄

⎞
⎠

1
2

⎞
⎟⎟⎠ eθ

$((tβ+λ)‖|ξ‖|),

where 
 : R+ → R+ is defined by


(r) =
+∞∑
n=0

(n!)− 1
2 rn, r ∈ R+. (4.12)

It is very easy to show that the series (4.12) is convergent for any r ∈ R+, and so
 is
well-defined. To conclude the proof, it suffices to use (4.10) and apply Corollary 2.8.
Hence the result.
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Remark 4.3
Note that the condition (C2) implies directly that νt is a finite Borel complex
measure on R for almost all t ∈ R+. In fact, since

∫
R

exp (| y|) |νt |(dy) < +∞,

then by convergence dominate theorem, we have

∫
R

|νt |(dy) = lim
n→+∞

∫
R

exp

(
1

n
| y|
)
|νt |(dy) ≤

lim
n→+∞ |ρ(t)| exp

(
θ$
(
β

n

))
= |ρ(t) < +∞,

which holds for almost all t ∈ R+. Hence the result.

Corollary 4.4
Let ν be a Borel complex measure on R satisfying the condition:

∀r > 0,
∫
R

exp (r| y|) |ν|(dy) < +∞. (4.13)

Then the corresponding Feynman integrand Fν is a generalized function in the space
[W]∗θ associated to the Young function θ : R+ → R+, which its Young conjugate
function θ$ : R+ → R+ is given by

θ$(r) =
∫
R

(
er| y| − 1

)
|ν|(dy), r ∈ R+.

Proof This is an immediate consequence of Theorem 4.2. In fact, for any r > 0
we have

∫
R

exp (r| y|) |ν| (dy) ≤ e|ν|(R) exp
(
θ$(r)

)
.

Hence the result.

Corollary 4.5
Let FV be the Feynman integrand defined by the series (4.5), and let θ : R+ → R+
be a Young function satisfying the condition (2.6). We suppose that the following
conditions are fulfilled:

(1) The function t → νt ([a, b]) is measurable for any a, b ∈ R.

(2) There is some β > 0 such that
∫
R

eθ(β| y|) |νt | (dy) < +∞ for all t ∈ R+.

(3) The real function t →
∫
R

eθ(β| y|) |νt | (dy), t ∈ R+, is continuous.
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Then FV exists as a generalized function in the space [W]∗θ . The integrals exist in the
Pettis sense, and the convergence of the series (4.5) is in the strong sense. Therefore,
we may express the T -transform of FV (t, x) by the same formula (4.7).

Proof This is an immediate consequence of Theorem 4.2. In fact, for any r > 0
and any t ∈ R+, we have

∫
R

exp (r| y|) |νt | (dy) ≤ eθ
$( r
β
)

∫
R

exp (θ(β| y|) |νt | (dy).

Hence the result.

In order to conclude that FV defines a Feynman integrand, it remains to show
that the expectation IV := 〈〈FV , 1〉〉 = T FV (0) solves the Schrödinger equation:

ih̄
∂IV

∂t
(t, x) = − h̄

2

2m

∂2
IV

∂x2 (t, x)+ V (t, x)IV (t, x), x ∈ R, t > 0,

with the initial condition lim
t→0+

IV (t, .) = δ. To prove this fact, we proceed as in

[24]. So let ξ ∈ S(R) be fixed and define K
ξ : R2 → C by

K
ξ (t, x) := &(t)T (FV (t, x)) (ξ) exp

(
1

2

∫
�1(t)

c

ξ2(s)ds − ixξ(t)
)
, t, x ∈ R,

(4.14)
where & = χR+ is the Heaviside function. By construction we have

K
ξ =

+∞∑
n=0

K
ξ
n,

where K
ξ
0 : R2 → C is defined by

K
ξ
0(t, x) := &(t)T (F0(t, x)) (ξ) exp

(
1

2

∫
�c1(t)

ξ2(s)ds − ixξ(t)
)
, t, x ∈ R.

And for all n ∈ N \ {0},

K
ξ
n(t, x) =

(−i)n&(t)
h̄n

∫
�n(t)

⎛
⎝
∫
Rn

n+1∏
j=1

K
ξ
0(tj , yj |tj−1, yj−1)

n∏
j=1

νtj (dyj )

⎞
⎠

n∏
j=1

dtj .

(4.15)



188 H. Mohameden and H. Ouerdiane

Here −→t = (t1, · · · , tn) ∈ �n(t) and −→y = (y1, · · · , yn) ∈ R
n and

∀j ∈ {0, · · · , n+ 1}, K
ξ
0(tj , yj |tj−1, yj−1) := &(t)

√
m

2πih̄
(
tj − tj−1

) ×

exp

(
− ih̄

2m

∫
�1(t)

ξ2(s)ds + iyj−1ξ(tj−1)− iyj ξ(tj )
)
×

exp

⎛
⎝ im

2h̄
(
tj − tj−1

)
(
yj − yj−1 + h̄

m

∫ tj

tj−1

ξ(s)ds

)2
⎞
⎠ .

Thus we have used the notations t0 = 0, tn+1 = t , y0 = 0 and yn+1 = x. We expect
K
ξ to be the propagator corresponding to the potentialW(t, x) = V (t, x)+ ξ ′(t)x.

Lemma 4.6
K
ξ , as defined in (4.14), obeys the following integral equation

K
ξ (t, x) = K

ξ
0(t, x)−

i

h̄

∫ t

0

(∫
R

K
ξ
0(t, x|τ, y)Kξ (τ, y)ντ (dy)

)
dτ, t, x ∈ R.

(4.16)

In particular, the Feynman integral IV ≡ K obeys the well-known propagator
equation:

K(t, x) = K0(t, x)− i
h̄

∫ t

0

(∫
R

K0(t, x|τ, y)K(τ, y)ντ (dy)
)
dτ, t, x ∈ R.

(4.17)

Proof Let x ∈ R and t > 0 be fixed. Since ξ ∈ S(R), we have

∣∣∣Kξ0(t, x)
∣∣∣ ≤

√
m

2πh̄t
, (4.18)

and for all n ∈ N \ {0},
∣∣Kξn(t, x)

∣∣ ≤ Mn(t)
(

2 ‖ρ‖∞,t
h̄

)n
.

Then we can apply Fubini’s theorem to change the order of integration in (4.15)
to obtain the following recursion relation for Kξn

K
ξ
n(t, x) = −

i

h̄

∫ t

0

(∫
R

K
ξ
0(t, x|τ, y)Kξn−1(τ, y)ντ (dy)

)
dτ, n ∈ N \ {0}.

(4.19)
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On the other hand, we have

∣∣∣Kξ0(t, x|τ, y)
∣∣∣ ≤

√
m

2πh̄ (t − τ) , y ∈ R, τ ∈]0, t[,

and,

+∞∑
n=2

∣∣∣Kξn−1(τ, y)

∣∣∣ ≤ M(t), y ∈ R, τ ∈]0, t[, (4.20)

where

M(t) :=
+∞∑
n=2

Mn(t)

(
2 ‖ρ‖∞,t
h̄

)n
< +∞.

This implies that

∫ t

0

(∫
R

∣∣∣Kξ0(t, x|τ, y)
∣∣∣
+∞∑
n=1

∣∣∣Kξn−1(τ, y)

∣∣∣ |ντ | (dy)
)
dτ ≤

√
m

2πh̄
×

‖ρ‖∞,t
(∫ t

0

√
m

2πh̄τ (t − τ)dτ +M(t)
∫ t

0

1√
t − τ

)
< +∞.

Then we may interchange summation and integration in (4.19) to get Eq. (4.16). By
taking ξ = 0 in (4.16), we get Eq. (4.17). Hence the result.

Now let � =]0,+∞[×R, and let D(�) be the space of smooth functions ϕ :
� → C with bounded support on �. More precisely, a function ϕ : � → C is
an element of D(�) if and only if ϕ ∈ C∞(�) and there is some bounded interval
I ⊂ � such that

∀x /∈ I, ϕ(x) = 0.

The elements in the dual space D′(�) are called distributions. Since the function

t → 1√
t

is locally integrable on �, the estimations (4.18) and (4.20) show that Kξ

is locally integrable on �, i.e.,

∫
I

∣∣Kξ (t, x)∣∣ dtdx < +∞
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for any bounded interval I ⊂ �. Thus we can regard K
ξ as a distribution on D(�)

〈
K
ξ , ϕ

〉 =
∫
�

K
ξ (t, x)ϕ(t, x)dxdt, ϕ ∈ D(�).

And we can also define a distribution VKξ by setting

〈
VKξ , ϕ

〉 =
∫
R+

(∫
R

K
ξ (t, x)ϕ(t, x)νt (dx)

)
dt, ϕ ∈ D(�).

Now let T ξ : D(�)→ D(�) be the linear operator defined by

T ξϕ(t, x) = − h̄
2

2m

∂2

∂x2 ϕ(t, x)+ xξ ′(t)ϕ(t, x), ϕ ∈ D(�), x ∈ R, t ∈ R+.

Theorem 4.7
K
ξ is a Green function for the full Schrödinger equation, i.e., K

ξ solves as a
distribution the following equation:

ih̄
∂Kξ

∂t
= T ξKξ + VKξ + ih̄δ(0, 0).

In particular, the Feynman integral IV solves as a distribution, the Schrödinger
equation:

ih̄
∂IV

∂t
= T IV + V IV + ih̄δ(0, 0), T := T 0.

Proof Let ϕ ∈ D(�) be fixed. By Lemma 4.6 we have

ih̄

〈
∂

∂t
K
ξ , ϕ

〉
= −ih̄

〈
K
ξ ,
∂

∂t
ϕ

〉
= −ih̄

∫
R+×R

K
ξ (t, x)

∂ϕ

∂t
(t, x)dtdx +

+ i
h̄

∫
R+×R

(∫ t

0

(∫
R

ih̄K
ξ
0(t, x|τ, y)Kξ (τ, y)ντ (dy)

)
dτ

)
∂ϕ

∂t
(t, x)dtdx.

As Kξ0 is a Green function for the free Schrödinger equation, the first term equals

ih̄ϕ(0, 0)+
∫
R+×R

T ξK
ξ
0(t, x)ϕ(t, x)dtdx =

ih̄ϕ(0, 0)+
∫
R+×R

K
ξ
0(t, x)T

ξϕ(t, x)dtdx.
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Thus by Fubini’s theorem, the last term equals

i

h̄

∫
R+

(∫
R

(∫
[τ,+∞[×R

ih̄K
ξ
0(t, x|τ, y)

∂

∂t
ϕ(t, x)dtdx

)
K
ξ (τ, y)ντ (dy)

)
dτ.

And by integration by parts, this equals

∫
R+

(∫
R

ϕ(τ, y)Kξ (τ, y)ντ (dy)

)
dτ −

i

h̄

∫
R+

(∫
R

(∫
[τ,+∞[×R

K
ξ
0(t, x|τ, y)T ξϕ(t, x)dtdx

)
K
ξ (τ, y)ντ (dy)

)
dτ.

Apply again Fubini’s theorem, the last expression equals

i

h̄

∫
R+×R

(∫ t

0

(∫
R

K
ξ
0(t, x|τ, y)Kξ (τ, y)ντ (dy)

)
dτ

)
T ξϕ(t, x)dtdx.

Then it follows that

ih̄

〈
∂

∂t
K
ξ , ϕ

〉
= ih̄ϕ(0, 0)+

∫
R+

(∫
R

ϕ(τ, y)Kξ (τ, y)ντ (dy)

)
dτ +

∫
R+×R

(
K
ξ
0(t, x)−

i

h̄

∫ t

0

(∫
R

K
ξ
0(t, x|τ, y)Kξ (τ, y)ντ (dy)

)
dτ

)
T ξϕ(u, v)dudv.

To conclude it suffices to apply Lemma 4.6 and use again integration by parts. Hence
the result.

Remark 4.8

(1) A direct comparison shows that

(a) if νt = ν for all t ∈ R+, where ν is a finite signed Borel measure on R,
then our corresponding class of admissible potentials contains strictly the
corresponding class of admissible potentials introduced by the authors in
[24]. In fact, let E1 be the corresponding class of the admissible potentials
introduced by the authors in [24], and let E2 be our corresponding class
of admissible potentials. If ν ∈ E1, then ν satisfies the following condition
(see [24]):

∃γ > 0;
∫
R

eγ x
2 |ν(x)|dx < +∞, (4.21)

which implies that

∀r > 0,
∫
R

er|x||ν(x)|dx ≤
(∫

R

eγ x
2 |ν(x)|dx

)
exp

(
r2

4γ

)
.
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By applying Corollary 4.4, we see that ν ∈ E2. This implies that E1 ⊂ E2. To
see that this inclusion is strict, let ν be a Poisson measure with parameter
u > 0, i.e.,

ν = e−u
+∞∑
n=0

un

n! δn. (4.22)

Obviously, ν ∈ E1 does not satisfy the condition (4.21). So ν /∈ E2. Hence
the result.

(b) if νt = V (t, .) for all t ∈ I , where I ⊂ R+ is an interval and V : I ×R→
R is an ordinary function. Then, the corresponding admissible potentials
V introduced by the authors in [24] are defined only on bounded intervals
I = [0, T ], T > 0. However, our class of admissible potentials can be
defined on bounded and unbounded intervals, e.g., I = R+.

(2) Any finite signed Borel measure ν satisfying (4.13) on R. This can be as singular
as desired, e.g., a sum of Deltas such as

∑
n∈N e−n

2
δn or a devil s staircase [24].

(3) Every finite measure with compact support is in our class. More examples in the
case of time-dependent are given in the next section.

(4) This research can be useful for quantum foundations [6, 18, 29].

5 Examples of Admissible Potentials

In this section, we give several examples of our admissible potentials and illustrate
the functions ρ and θ used in the conditions of Theorem 4.2 and its corollaries.

Example 5.1
Let u : R+ → R be a continuous function. Define a family of measure (νt )t∈R+ by

νt := δu(t), t ∈ R+,

where δa denotes the Dirac measure at a ∈ R. Then for any t ∈ R+, we have

∫
R

exp
(
y2
)
|νt |(dy) := exp

(
u2(t)

)
< +∞.

By applying Corollary 4.5, we see that the corresponding Feynman integrand FV is
a Hida distribution.

Example 5.2
Let V : R+ × R → R be a given potential, and let θ : R+ → R+ be a Young
function satisfying the condition (2.6). Suppose that there is a > 0 and a continuous
function b : R+ → R+ such that

|V (t, x)| ≤ b(t) exp (−aθ(|x|)) , x ∈ R, t > 0.
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Then for any β < inf{a, 1}, we have

∫
R

exp (θ (β| y|)) |V (t, y)| dy ≤ b(t)
∫
R

exp ((β − a) θ (| y|)) dy.

By applying Corollary 4.5, we see that the corresponding Feynman integrand FV is
a generalized function in the space [W]∗θ .

Example 5.3
Let a : R+ → R+ and b : R+ → R+ be two continuous functions with a(t) < b(t)
for all t ∈ R+. Define V : R+ × R→ R by

V (t, x) = 1

b(t)− a(t)χ]a(t),b(t)[(x), x ∈ R, t ∈ R+.

For any t, r > 0, we have

∫
R

exp (r| y|) |V (t, y)| dy = 1

b(t)− a(t)
∫
a(t)−b(t)

exp (r| y|) dy ≤

exp (r (b(t)− a(t))) ≤ exp

(
(b(t)− a(t))2

2

)
exp

(
r2

2

)
.

By applying Theorem 4.2, we see that the corresponding Feynman integrand FV is
a Hida distribution. In that case, we have

θ(s) = θ$(s) = s
2

2
, ρ(s) = exp

(
(b(s)− a(s))2

2

)
, s ∈ R+.

Example 5.4
Let m : R+ → R and σ : R+ → R \ {0} be two continuous functions. Define
V : R+ × R→ R by

V (t, x) = 1√
2π |σ(t)| exp

(
− (x −m(t))

2

2 |σ(t)|

)
, t ∈ R+, x ∈ R.

For any r, t > 0, we have

∫
R

exp (r | y|) |V (t, y)|dy ≤ 2 exp

( |σ(t)| r2

2
+ r |m(t)|

)
≤

2 exp

(
m2(t)+ (1+ |σ(t)|)2

2

)
exp

(
r4

4

)
.
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Then V satisfies the conditions of Theorem 4.2 with

θ(t) = 3

4
t

4
3 , θ$(t) = t

4

4
, ρ(t) = 2 exp

(
m2(t)+ (1+ |σ(t)|)2

2

)
, t ∈ R+.

In the particular case where σ is bounded, it is very easy to prove that the Feynman
integrand FV is a well-defined Hida distribution. For all details see Remark 4.8.

Example 5.5
Let u : R+ → R be a continuous function. Define a family of measure (νt )t∈R+ by

νt := e−|u(t)|
+∞∑
n=0

|u(t)|n
n! δn, t ∈ R+.

In other words, νt is the Poisson measure with parameter |u(t)|. By definition, for
any r, t > 0 we have

∫
R

exp (r | y|) νt (dy) = exp (−|u(t)|)
+∞∑
n=0

|u(t)|n
n! enr =

exp
(|u(t)|(er − 1)

) ≤ exp

(
1+ |u(t)|2

2

)
exp

(
e2r − 1

)
,

which satisfies the conditions of Theorem 4.2 with

θ$(t) = e2t − 1, ρ(t) = exp

(
1+ |u(t)|2

2

)
, t ∈ R+.

By direct computation, we obtain

θ(t) =
{

1+ t
2

(
log( t2 )− 1

)
ift > 2

0 if 0 ≤ t ≤ 2.
.
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Classical Field Theory
of the Photoelectric Effect

Sergey A. Rashkovskiy

1 Introduction

Our current understanding of quantum mechanics is based on certain basic physical
effects that, it is believed, cannot be explained within the framework of classical
ideas and, therefore, require quantization.

The photoelectric effect has a special place in quantum theory because it became
the first physical effect, for explanation of which the quantization of light was
introduced.

By the early twentieth century, the three basic laws of the photoelectric effect
were experimentally established: (1) the photoelectric current is proportional to the
intensity of incident light; (2) the maximum kinetic energy of the emitted photo-
electrons varies linearly with the frequency of incident electromagnetic radiation
and does not depend on the flux; and (3) for each substance, there is a threshold
frequency (the so-called red edge of the photoelectric effect), below which the
photoelectric current is not observed.

The second and third laws of the photoelectric effect would appear to contradict
classical electrodynamics, which requires dependence of the kinetic energy of the
emitted photoelectrons on the intensity of the incident light. Such a conclusion
necessarily follows from the analysis of the motion of charged particles—electrons
in the field of a classical electromagnetic wave. Thus, the attempts to explain
the photoelectric effect within the framework of classical mechanics and classical
electrodynamics were unsuccessful.
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This contradiction was overcome due to the quantization of radiation, which
postulates that the absorption of light occurs in the form of discrete quanta �ω

(Einstein 1905). At present, in connection with this finding, it is considered to be
generally accepted that the photoelectric effect provides “evidence” for the quantum
nature of light.

However, in the early years of quantum mechanics, it was shown that the pho-
toelectric effect is fully described within the framework of so-called semiclassical
theory, in which light is considered to be a classical electromagnetic wave, while the
atom is quantized and described by the wave equation, e.g. the Schrödinger equation
or the Dirac equation [1–4].

In this case, the wave equation is solved as a typical classical field equation,
whereby a continuous wave field is calculated. A “quantization” of this wave field
occurs only at the stage of interpreting the solution, from which the “probability of
photoelectron emission” from an atom is determined.

There were also attempts to build the semiclassical theories of other quantum
phenomena, namely, Lamb shift [5, 6], spontaneous emission [5–7], semiclassical
radiation theory [8], radiative effects [9], Compton effect [10–15], Hanbury Brown
and Twiss effect [16, 17], semiclassical theory of laser [18, 19], etc. Because
the electron in such theories is considered to be a quantum particle and light is
considered to be a classical electromagnetic field, such theories are considered to be
“semiclassical”.

Despite the success of this approach, there are many intra-atomic and optical
phenomena that did not find an explanation within the framework of semiclassical
theory. Because of this, it is generally accepted that a complete description of
the intra-atomic phenomena and light-atom interaction is possible only within the
framework of quantum electrodynamics (QED), when both the states of an atom
and the radiation itself are quantized.

However, as shown in [20–26], there is no need to introduce the quantization of
electromagnetic and electron fields because this interpretation is external to the wave
equation, and it does not follow from these equations. Moreover, this approach is
superfluous in explaining the many physical phenomena that before were interpreted
as a result of the quantization of matter.

In previous papers of this series [22–26], an attempt was made to construct a
completely classical theory, which is similar to classical field theory [27], in which
any quanta are absent. Here, as in [20–26], classical theory is understood as a theory
in which all objects are either particles or fields, and no object can simultaneously
possess both wave and corpuscular properties. In other words, in classical theory,
there is no such concept as corpuscular-wave dualism. Thus, in papers [20–22], it
was shown that the discrete events (e.g. clicks of a detector, emergence of the spots
on a photographic plate) that are observed in some of the “quantum” experiments
with light (especially in the double-slit experiments), which are considered to be
direct evidence of the existence of photons, can in fact be explained within classical
electrodynamics without quantization of the radiation. Similarly, if the electrons
are considered to not be a particle but instead a classical continuous wave field,
similar to the classical electromagnetic field, one can consistently explain the “wave-
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particle duality of electrons” in the double-slit experiments [23]. In this case, the
Dirac equation and its specific cases (Klein-Gordon, Pauli and Schrödinger) should
be considered to be the usual field equations of a classical electron wave field,
similar to Maxwell’s equations for classical electromagnetic fields. As was shown
in [23], considering the electron wave as a classical field, we must assign to it,
besides the energy and momentum which are distributed in space, also an electric
charge, an internal angular momentum and an internal magnetic moment, which are
also continuously distributed in space. In this case, the internal angular momentum
and internal magnetic moment of the electron wave are its intrinsic properties and
cannot be reduced to any movement of charged particles. This viewpoint allows for
a description in natural way, in the framework of classical field theory with respect
to the many observed phenomena that involve “electrons”, and it explains their
properties which are considered to be paradoxical from the standpoint of classical
mechanics. Thus, the Compton effect, which is considered to be “direct evidence of
the existence of photons”, has a natural explanation if both light and electron waves
are considered to be classical continuous fields [23]. The same approach can be
applied to the Born rule for light and “electrons” and to the Heisenberg’s uncertainty
principle, which have a simple and clear explanation within classical field theory
[20–23]. Using such a point of view on the nature of the “electron”, a new model of
the hydrogen atom that differs from the conventional planetary model was proposed
and justified in [24]. According to this model, the atom represents a classical open
volume resonator in which an electrically charged continuous electron wave is held
in a restricted region of space by the electrostatic field of the nucleus. As shown
in [24], the electrostatic field of the nucleus plays for the electron wave, the role
of a “dielectric medium”, and thus, one can say that the electron wave is held
in the hydrogen atom due to the total internal reflection on the inhomogeneities
of this “medium”. In the hydrogen atom, as in any volume resonator, there are
eigenmodes that correspond to a discrete spectrum of eigenfrequencies, which are
the eigenvalues of the field equation (e.g. Schrödinger, Dirac). As usual, the standing
waves (in this case, the standing electron waves) correspond to the eigenmodes.
If only one of the eigenmodes is excited in the atom as in the volume resonator,
then such a state of the atom is called a pure state. If simultaneously several (two
or more) eigenmodes are excited in the atom, then such a state is called a mixed
state [24].

Using this viewpoint, it was shown in [24] that all of the basic optical properties
of the hydrogen atom have a simple and clear explanation in the framework of
classical electrodynamics without any quantization. In particular, it was shown
that the atom can be in a pure state indefinitely. This arrangement means that
the atom has a discrete set of stationary states, which correspond to all possible
pure states, but only the pure state that corresponds to the lowest eigenfrequency
is stable. Precisely this state is the ground state of the atom. The remaining pure
states are unstable, although they are the stationary states. Any mixed state of an
atom in which several eigenmodes are excited simultaneously is nonstationary, and
according to classical electrodynamics, the atom that is in that state continuously
emits electromagnetic waves of the discrete spectrum, which is interpreted as a
spontaneous emission.
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In reference [24], a fully classical description of spontaneous emission was given,
and all of its basic properties that are traditionally described within the framework of
quantum electrodynamics were obtained. It is shown that the “jump-like quantum
transitions between the discrete energy levels of the atom” do not exist, and the
spontaneous emission of an atom occurs not in the form of discrete quanta but
continuously.

As is well known, the linear wave equation, e.g. the Schrödinger equation,
cannot explain the spontaneous emission and the changes that occur in the atom
in the process of spontaneous emission (so-called quantum transitions). To explain
spontaneous transitions, quantum mechanics, it is believed, must be extended to
quantum electrodynamics, which introduces such an object as a QED vacuum, the
fluctuations of which are considered to be the cause of the “quantum transitions”.

In reference [24], it was shown that the Schrödinger equation, which describes
the electron wave as a classical field, is sufficient for a description of the spontaneous
emission of a hydrogen atom. However, it should be complemented by a term that
accounts for the inverse action of self-electromagnetic radiation on the electron
wave. In the framework of classical electrodynamics, it was shown that the electron
wave as a classical field is described in the hydrogen atom by a nonlinear Eq. [24]

i�
∂ψ

∂t
= − �

2

2me
�ψ − e

2

r
ψ − 2e2

3c3
ψr
∂3

∂t3

∫
r|ψ |2dr (1)

where the last term on the right-hand side describes the inverse action of the
self-electromagnetic radiation on the electron wave and is responsible for the degen-
eration of any mixed state of the hydrogen atom. Precisely, this term “provides”
a degeneration of the mixed state of the hydrogen atom to a pure state, which
corresponds to the lower excited eigenmodes of an atom. As shown in [24], this
term has a fully classical meaning and fits into the concept developed in [20–
26] in that the photons and electrons as particles do not exist, and there are only
electromagnetic and electron waves, which are classical (continuous) fields.

The nonlinearity of the Eq. (1) plays an essential role in light-atom interaction
and should be taken into account in all calculations. Thus, as shown in [25, 26],
based on the nonlinear Eq. (1), the light-atom interaction can be fully described
within the framework of classical field theory without the use of quantum electro-
dynamics. In particular, in reference [25], the optical Bloch equations with damping
due to spontaneous emission and with correct damping rate has been directly derived
from the nonlinear Schrödinger equation (1) without quantization of radiation [25].

In reference [26] it was shown that the thermal radiation can also be described
without quantization of energy in the framework of classical field theory using
the nonlinear Schrödinger equation (1) which is considered as a classical field
equation. As shown in [26] the Planck’s law for the spectral energy density of
thermal radiation and the Einstein A-coefficient for spontaneous emission are
derived without using the concept of the energy quanta.

As will be shown below, the failures of classical electrodynamics in explaining
the photoelectric effect are connected with the incorrect postulate that electrons
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are particles. I will show that for a consistent explanation of the photoelectric
effect within the framework of classical field theory, it is sufficient to abandon this
postulate and consider continuous classical electron waves instead of the particles-
electrons [23, 24]. The considered theory is fully classical because it does not
contain not only the quantization of the radiation but also the quantization of the
electron wave.

2 Photoelectric Effect

In reference [25], it was assumed that under the influence of an incident elec-
tromagnetic wave, the electron wave in an atom is only redistributed between its
eigenmodes but not emitted outward by the atom. In this case, internal electric
currents arise inside the atom that, however, cannot be detected by macroscopic
devices. Such a situation occurs at a relatively low frequency of the incident
electromagnetic wave. If this frequency is sufficiently large, then an emission of
the electron wave by the atom occurs. Because the electron wave has an electric
charge that is continuously distributed in space [23, 24], in this case, an external
electric current (photoelectric current) appears that can be detected by macroscopic
devices. As a result, the photoelectric effect will be observed.

From the considered point of view [20–26], the photoelectric effect represents
an emission of the continuous charged electron wave by an atom that was excited
by the incident classical electromagnetic wave. Formally, the photoelectric effect
is no different from the stimulated emission of electromagnetic waves by an atom
[24], with the only difference being that the electron wave emitted by an atom is
electrically charged, while the electromagnetic wave does not carry the electric
charge. Assuming that the electric charge is continuously distributed in the electron
wave [23, 24], one concludes that in the process of the emission of the electron
wave, the atom is positively charged continuously. However, accounting for the fact
that the electron wave for an as yet inexplicable reason does not “feel” its own
electrostatic field [24], this process will not affect the emission of the following
“portions” of the continuous electron wave because they must overcome the same
electrostatic potential of the nucleus.

Let us consider the photoelectric effect for the hydrogen atom being in the classic
monochromatic electromagnetic wave.

In this section, we neglect the inverse action on the electron wave of its
own nonstationary electromagnetic field. For this reason, the last term in the
Schrödinger equation (1), which is associated with a spontaneous emission of the
electromagnetic waves, will not be considered, and we will use the conventional
linear Schrödinger equation

i�
∂ψ

∂t
= − �

2

2me
�ψ − e

2

r
ψ + ψerE0 cosω0t (2)
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where ω0 is the frequency of the incident light. We will consider here the approxi-
mation, when the wavelength of the incident electromagnetic wave is substantially
larger than the characteristic spatial size of the electron field in the hydrogen atom,
which is of the order of the Bohr radius aB.

The wave function of an electron wave can be represented as in [28]

ψ =
∑
k

ck(t)uk (r) exp (−iωkt)+
∑
n

∞∫

0

Cn (ω, t) fn (r, ω) exp (−iωt) dω (3)

where the first sum describes that part of the electron wave that is contained in
the eigenmodes of the atom (i.e. corresponding to a “finite motion” of the electron
wave), and for this term, all ωk < 0, while the integrals describe the electron waves
that are emitted by an atom (i.e. which corresponds to the “infinite motion” of the
electron wave), to which it is known that ω > 0 corresponds. The indices n and k
run through the appropriate integer values. The functions uk(r) and fn(r,ω) are the
eigenfunctions of the stationary Schrödinger equation, while the frequencies ωk are
the eigenvalues that correspond to the eigenfunctions uk(r).

The eigenfunctions uk(r) and fn(r,ω) satisfy the orthogonality conditions:

∫
uk (r) u∗n (r) dV = δnk (4)

∫
fk
(
r, ω′

)
f ∗n
(
r, ω′′

)
dV = δnkδ

(
ω′ − ω′′) (5)

∫
uk (r) f ∗n

(
r, ω′′

)
dV = 0 (6)

Substituting expression (3) into Eq. (2) and using the orthogonality conditions
(4)–(6), we obtain

i�ċk(t) exp (−iωkt) = eE0 cosω0t
∑
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∫
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∫
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and
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f ∗n (r, ω) dV exp

(−iω′t) dω′ (8)
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Within the framework of perturbation theory and assuming that all of the modes
of the electron wave (both discrete and continuous), except for the ground mode u1,
are weakly excited, we obtain

i�ċ1(t) exp (−iω1t) = −c1(t) (E0d11) cosω0t exp (−iω1t)

+ eE0 cosω0t
∑
n
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0
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f ∗n (r, ω) dV exp
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(10)

where

dnk = −e
∫

run (r) u∗kdV (11)

For a weak electromagnetic wave, which causes weak excitation of an atom,
c1 ≈ 1. For this reason, we can discard terms in Eq. (10) that contain E0Ck(ω

′
, t), as

small of the second order. In Eq. (9), these terms cannot be discarded because the
change in c1 will have a second order in E0. Then, we obtain

i�ċ1(t)=− (E0d11) cosω0t+1

2
eE0

∑
n
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0

Cn (ω, t)U1n (ω) exp [−i (ω−ω1−ω0) t]

dω + 1
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eE0
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0

Cn (ω, t)U1n (ω) exp [−i (ω − ω1 + ω0) t] dω (12)

i�Ċn (ω, t) = 1

2
eE0 · U∗1n (ω) exp [−i (ω1 − ω − ω0) t]

+ 1

2
eE0 · U∗1n (ω) exp [−i (ω1 − ω + ω0) t] (13)

where

U1n (ω) =
∫

ru∗1 (r) fn (r, ω) dV (14)
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Neglecting the purely oscillatory term −(E0d11) cos ω0t in Eq. (12) (which can
be accomplished, for example, by averaging Eq. (12) over rapid oscillations with a
frequency ω0), we obtain

i�ċ1(t) = 1

2
eE0

∑
n

∞∫

0

Cn (ω, t)U1n (ω) exp [−i (ω − ω1 − ω0) t] dω

+ 1

2
eE0

∑
n
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0

Cn (ω, t)U1n (ω) exp [−i (ω − ω1 + ω0) t] dω (15)

Integrating Eq. (13) with respect to the time from zero to t, we obtain

Cn (ω, t) = e

2�

exp [−i (ω1 − ω − ω0) t]− 1

(ω1 − ω − ω0)
E0 · U∗1n (ω)

+ e

2�

exp [−i (ω1 − ω + ω0) t]− 1

(ω1 − ω + ω0)
E0 · U∗1n (ω) (16)

Because the frequencies have ω0 > 0, ω > 0 and ω1 < 0, the value ω1 − ω − ω0
is not equal to zero for any ω, and thus, the first term will always be limited
and will describe the oscillations that are of small amplitude. At the same time,
ω1 − ω + ω0 = 0 at the resonance frequency of ω0 = |ω1| + ω, and near the
resonant frequency, the second term in (16) will increase indefinitely. Therefore,
the second term in (16) makes the main contribution to the effect that is under
consideration. Neglecting the first term in expression (16), we obtain

Cn (ω, t) = e

2�

exp [−i (ω1 − ω + ω0) t]− 1

(ω1 − ω + ω0)
E0 · U∗1n (ω) (17)

Let us calculate the photoelectric current that arises upon excitation of the atom
by the incident electromagnetic wave.

This goal can be accomplished by calculating the electric current density
according to the formula

j = i ec
2

2ωe

(
ψ∗∇ψ − ψ∇ψ∗)− e2c

�ωe
Aψψ∗ (18)

and integrating it over the surface of an infinite sphere whose centre is in the nucleus
of the atom. However, it is more convenient to accomplish this step while using the
law of conservation of charge and accounting for the fact that qk = − e|ck|2 is the
electric charge that is contained in mode k of the electron wave [24]. Then, q̇k is the
internal electric current in the atom, by which mode k is exchanged with all of the
other modes of the electron wave (including continuous modes, if they exist), i.e.
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the amount of electric charge of the electron wave, which goes into mode k from
other modes or goes out of mode k into other modes, per unit time. Because in this
case, it is considered that only one (ground) eigenmode u1 of the hydrogen atom is
excited, then the photoelectric current

Iph = −q̇1 (19)

or

Iph = −ed|c1|
2

dt
(20)

Using Eq. (15), we obtain the same approximation

Iph = − e
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Substituting Cn(ω, t) from (17) into expression (21), we obtain
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The second and third terms on the right-hand side of expression (22) are rapidly
oscillating at a frequency of ω0, and they can be discarded by averaging over the
fast oscillations. Then, we obtain

Iph = e3

2�2

∞∫

0

sin [(ω − ω1 − ω0) t]

(ω − ω1 − ω0)

∑
n

(
E0 · U∗1n

)
(E0 · U1n) dω (23)

Assuming that all of the orientations of the atom in space are equally probable
and therefore the vector U1n is statistically isotropic, one averages the current (23)
overall possible orientations of the atom.

Then,

(E0U1n)
(
E0U∗1n

) = E0iE0jU1n,iU
∗
1n,j (24)

where the bar denotes averaging over all possible orientations and the indices i and
j are the vector indexes.

For the isotropic vector U1n,

U1n,iU
∗
1n,j =

1

3
|U1n|2δij (25)

Then,

(E0U1n)
(
E0U∗1n

) = 1

3
|E0|2|U1n|2 (26)

Accordingly, for the mean photoelectric current (23), we obtain

Iph = β|E0|2 (27)

where the parameter

β = e3

6�2

∞∫

0

sin [(ω − ω1 − ω0) t]

(ω − ω1 − ω0)

∑
n

|U1n (ω)|2dω (28)

does not depend on the incident light intensity |E0|2 and instead, the parameter β
depends on the frequency ω0 of the incident light.

Thus, we have obtained the first law of the photoelectric effect without using
the photon hypothesis within the framework of only classical field theory while
considering the electromagnetic and electron waves as classical fields.

Let us consider the dependence of the parameter β on the frequency of the
incident light ω0.
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Let us denote

F (ω) =
∑
n

|U1n (ω)|2 (29)

x = ω − ω1 − ω0 (30)

Then, we obtain

β = e3

6�2

∞∫

|ω1|−ω0

sin(xt)

x
F (x − |ω1| + ω0) dx (31)

Here, we account for the fact that ω1 < 0.
The function sin(xt)

x
has a sharp peak in the vicinity of x = 0 and has a width of

�x∼π /t, and at t →∞, it behaves similar to a delta-function:
∫∞
−∞

sin(xt)
x
dx = π .

The function F(ω) in the vicinity of x = 0 is smooth and varies weakly on the
interval �x∼π /t.

Therefore, with reasonable accuracy at ω0 < |ω1| − π
2t , we can write

β ≈ e3

6�2F(0)

∞∫

|ω1|−ω0

sin(xt)

x
dx (32)

At the same time, at ω0 − |ω1| & π
2t , it is necessary to account for the fact that

a small neighbourhood of the point x = 0 will make the main contribution to the
integral in (31) (due to the delta-like behaviour of the integrand). As a result, for
ω0 − |ω1| & π

2t , we obtain

β ≈ πe
3

6�2
F (ω0 − |ω1|) (33)

In this case, the parameter β will vary with the frequency of the incident light ω0.
Figure 1 shows, in a nondimensional form, the dependence of the parameter β

on the frequency difference ω0 − |ω1| in the vicinity of the frequency ω0 = |ω1|.
We can see that the parameter β is virtually zero at ω0 < |ω1| − π

2t , and it almost

linearly varies from zero to πe3

6�2F(0) when ω0 changes in the range from |ω1| − π
2t

to |ω1| + π
2t , and it virtually equals the value in (33) at ω0 > |ω1| + π

2t . The width
of the frequency range in which there is a noticeable change in the parameter β is
�ω0∼π /t.

Assuming |ω1| ∼1014 rad/s (which corresponds to visible light) for the observa-
tion time t> 10−9 s, we obtain �ω0< 3·109 rad/s, which is significantly less than
|ω1|:
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Fig. 1 The dependence of the parameter β on the frequency difference ω0 − |ω1| in the vicinity
of the frequency ω0 = |ω1|

�ω0 ' |ω1| (34)

From this analysis, it follows that for the actual duration of the observation,
the parameter β will have almost a threshold dependence on the frequency of the
incident light ω0: for ω0 < |ω1|, we obtain β ≈ 0, and the photoelectric current is
almost absent, while at ω0 > |ω1|, the parameter β will take the value in (33), and
the photoelectric current (27) will be proportional to the intensity of the incident
light.

Thus, we have obtained the third law of the photoelectric effect also without
using the photon hypothesis, within only the framework of classical field theory.

Let us now consider the second law of the photoelectric effect. In its conventional
form, it establishes the dependence of the kinetic energy of the emitted photo-
electrons on the frequency and intensity of the incident radiation. However, in the
experiments on the photoelectric effect, the kinetic energy of the photoelectron is
not measured directly; it is determined indirectly through the measured stopping
potential. Therefore, such wording of the second law of the photoelectric effect
already contains some interpretation of the experimental facts; in particular, it
assumes that the electrons are indivisible particles that, at the time of escape
from the atom, have a definite kinetic energy. In this case, the kinetic energy of
the photoelectrons can be determined through the stopping potential at which the
photoelectric current is terminated.
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Because in the papers of this series we doubt that electrons are particles, it does
not make sense to talk about the kinetic energy of the electrons, and we will need a
different formulation of the second law of the photoelectric effect.

To rule out any interpretation of the experimental data, the wording of the
second law of the photoelectric effect (and in general, of any laws) should use
only measured parameters. From this perspective, an objective formulation of the
second law of the photoelectric effect will be as follows: the stopping potential varies
linearly with the frequency of the incident electromagnetic radiation and does not
depend on the flux.

Let us consider the function in (17). The square of its modulus |Cn(ω, t)|2
determines the density of the photoelectric current (18). This function reaches its
maximum when

ω1 − ω + ω0 = 0 (35)

and for large t, the largest part of the photoelectric current falls on the narrow range
of the frequencies of the electron wave that have the width

�ω ∼ π/t (36)

near the frequency

ω = ω0 − |ω1| (37)

When accounting for the smallness of the frequency range (36), it can be assumed
that the electron wave that is emitted by an atom is almost monochromatic and has
the frequency in (37), which linearly depends on the frequency of the incident light
ω0 and does not depend on its intensity.

Let us place on the path of the electron wave a decelerating potential. In this
case, we come to the problem of propagation of the electron wave in the field
of the decelerating potential, which is quite accurately described by the linear
Schrödinger equation. At large distances from the atom, the electron wave can
be considered to be approximately flat. To simplify the analysis, instead of the
decelerating potential, having a linear dependence on the coordinates along which
the electron wave propagates, let us consider the potential step (barrier) of the
same “height” U0 and the same width L to be the actual decelerating potential.
The solution of the Schrödinger equation for the potential step is well known [28]:
at �ω > U0, the electron wave passes through a potential step and is partially
reflected from it, while when �ω < U0, the electron wave is mainly reflected from
the potential step, although a small part goes through the potential step due to
tunnelling. The transmission coefficient of the electron wave for the potential step
(in our interpretation, this coefficient is the ratio of the electric current of the electron
wave behind the potential step to the electric current of the electron wave arriving
to the potential steps from an atom) in the limiting case �ω = U0 is defined by the
expression [28]
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D =
(

1+ 2meωL2

4�

)−1

(38)

Here, instead of the energy of a non-relativistic quantum particle, we use a
Schrödinger frequency ω (which is equal to the difference between the true
frequency of the electron wave that is entered into the solution of the Dirac equation
and its “rest frequency” ωe = mc2/� [23]). With the increase in the width of the
potential step L, the transmission coefficient (38) decreases rapidly, and for an actual
decelerating potential that has macroscopic sizes that substantially exceed the de

Broglie wavelength λdB = 2π
√

�

2meω
, it is almost equal to zero because, in this

case, we can neglect the tunnelling.
Thus, for the macroscopic decelerating potentials that are used in the exper-

iments, there is a threshold effect: when �ω > U0, the electron wave passes
through the decelerating potential, while when �ω ≤ U0, the electron wave is
fully “reflected” by the decelerating potential and the photoelectric current is not
observed behind it. This arrangement means that there is a limit to the value of the
decelerating potential, which is the stopping potential

Us = �ω (39)

above which the photoelectric current is absent.
When accounting for expression (37), we obtain

Us = �ω0 − � |ω1| (40)

This result completely coincides with the above given formulation of the second
law of the photoelectric effect, and it was obtained within the framework of classical
field theory without the use of such concepts as photons and electrons.

Note that expression (40) can be formally written in the form

�ω0 = E + A (41)

where the notations A = �|ω1| and E = Us were introduced. The expression in (41)
can be considered to be Einstein’s equation for the photoelectric effect, and one can
interpret it within the framework of the photon-electron representations in which
the parameter E is interpreted as the kinetic energy of the photoelectrons, while the
parameter A is interpreted as a work function of the atom. However, this approach
is no more than an interpretation that is based on the formal similarity of the pure
wave expression (40) and the mechanical law of energy conservation.

The above analysis has shown that such a corpuscular interpretation of the
photoelectric effect is superfluous.

The well-known experiments by Meyer and Gerlach on the photoelectric effect
on the particles of metal dust, irradiated with ultraviolet light, are considered to
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be one of the pieces of “irrefutable evidence” that light energy is propagated in
the form of identical indivisible quanta (photons). Assuming that the electrons are
particles while light is composed of continuous classical electromagnetic waves,
we can calculate the time during which the metal particle will absorb a sufficient
amount of energy for the ejection of an electron. In the experiments by E. Meyer
and W. Gerlach, this duration was of the order of a few seconds, which means that
the photoelectron cannot leave a speck of dust earlier than in a few seconds after
the start of irradiation. In contrast to this conclusion, the photoelectric current in
these experiments began immediately after the beginning of the irradiation. Hence,
it is usually concluded that this finding is only possible if the light is a flux of
photons each of which can be absorbed by the atom only entirely and, therefore,
can “knock out” the electron from the atoms at the moment of its collision with the
metal particle.

However, this conclusion follows only in the case in which the electrons are
considered to be indivisible particles. If instead of considering the electrons to be
particles we consider a continuous electron wave [23, 24], then as was shown above,
the photoelectric current appears almost without delay after the start of irradiation
of an atom by the classical electromagnetic wave and occurs even at very low light
intensities, when the light frequency exceeds the threshold frequency for the given
atom. This finding is because to start the photoelectric current, the atom does not
need to accumulate the energy that is equal to the ionization potential because
the electron wave is emitted by the atom continuously and not in the form of
discrete portions—“electrons”. Note that precisely the need to explain the ejection
of discrete electrons from an atom under the action of light led A. Einstein to the
idea of light quanta, which when absorbed, gave to the atom sufficient energy for
the liberation of a whole electron.

The above analysis shows that all three laws of the photoelectric effect only
approximately reflect its actual regularities. In particular, the photoelectric cur-
rent appears and disappears non-abruptly when “passing” through the threshold
frequency |ω1|, and it gradually increases or decreases in the frequency range
that has the width �ω0∼π /t near the threshold frequency |ω1|. However, this
effect can be detected only for ultrashort observation times of t∼ 10−15 s, which
is difficult to achieve in the experiments on the photoelectric effect. Moreover,
consideration of the nonlinear effects in the interaction of the light wave with an
atom shows [29] that the photoelectric current appears even in the case when the
frequency of the incident light is significantly less than the threshold frequency
|ω1|, which is predicted by the linear theory. Such effects can be observed only
in a very intense laser field [30]. Strictly speaking, the theory [29], which describes
the ionization of an atom in an intense laser field, is fully classical in the sense under
consideration because an atom is described by the Schrödinger equation, while the
light wave is considered to be a classical electromagnetic field. The true result of
this finding is the photoelectric current that is created by the continuous electron
wave emitted by an atom because precisely the photoelectric current is calculated in
the theory [29]. However, traditionally, the results of the theory [29] are interpreted
from the standpoint of photon-electron representations, which make it necessary
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to interpret the main result of the theory [29] as the probability of the ionization
of an atom (i.e. the probability of the liberation of an “electron” from the atom)
per unit time. The representations with respect to the multiphoton ionization of an
atom, when the atom “absorbs simultaneously several photons”, the total energy of
which exceeds the ionization potential of the atom, were a consequence of such
an interpretation. When there is a requirement for too many “photons” for the
liberation of the “electron”, talking about the simultaneous absorption of such a
large number of particles becomes meaningless (because of the low probability
of this process); then, the results of the theory [29] are interpreted as a tunnel
ionization in which the intense laser field changes the potential field in which the
“electron” is positioned, which gives it the “opportunity” to leave the atom due to
tunnelling. From the point of view of the ideas that are developed in this series of
papers, both “multiphoton” and “tunnel” ionization of an atom are the result of the
same process—the interaction of a classical electromagnetic wave with a classical
electron wave.

Finally, note that there is no difficulty in calculating the angular distribution of
the photoelectric current in the framework of the theory under consideration, if
we account for the fact that the continuous electric current created by the electron
wave emitted by an atom under the action of light is calculated by expression (18)
using the wave function in (3) and (17). Once again, note that this current is not
the distribution over the directions of the particles-electrons that are emitted by an
atom but the distribution over the directions of the current of a continuous charged
electron wave that is emitted by the atom. All of the known expressions that are
obtained earlier for the photoelectric effect (see, e.g. [4, 31]) remain valid, but they
should now be interpreted from the standpoint of classical field theory.

3 Concluding Remarks

Thus, we see that the light-atom interaction including the photoelectric effect is
fully described within the framework of classical field theory without the use of
quantum electrodynamics and, in general, without any quantization. The results of
this theory utilize the simple classical sense and do not require the postulation of
such paradoxical properties of matter as the wave-particle duality. The paradoxes in
the theory appear when a continuous light beam or a continuous charged electron
wave emitted by the atoms under the influence of incident light is attempted to
be interpreted as the flux of indivisible particles—photons or electrons. In this
case, the probabilistic interpretation of the results of the theory arises from a need.
However, as was shown in this paper and in the previous papers of this series [23–
26], the processes that are under consideration are fully deterministic, while the
postulate about the probabilistic nature of all quantum phenomena is the result of
misinterpretation.
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Classification Problem in a Quantum
Framework

Enrica Santucci and Giuseppe Sergioli

1 Introduction

In recent years there has been an increasing interest toward the use of the quantum
mechanical formalism in non-microscopic contexts. The idea is that the powerful
predictive properties of quantum mechanics, used for describing the behavior
of microscopic phenomena, turn out to be particularly beneficial also in non-
microscopic domains. At this purpose, several nonstandard applications involving
the formalism of quantum theory have been proposed in research fields, such as
game theory [7, 16], economics [10], cognitive sciences [1, 2], signal processing [8],
and so on. Further, particular applications, interesting for the specific topics of the
present paper, concern the areas of machine learning and pattern recognition. About
this, some attempts which connect quantum information to pattern recognition can
be found in [18], while an exhaustive survey and bibliography of the developments
concerning the use of quantum computing techniques in artificial intelligence are
provided in [14, 26].

In pattern recognition area, one of the main aspects is focused on the application
of quantum information processing methods to solve classification and clustering
problems [4, 23].

The use of quantum states for representing patterns has a twofold motivation:
firstly, it gives the possibility of exploiting quantum algorithms to boost the
computational efficiency of the classification process [25]. Secondly, it is possible to
use quantum-inspired models in order to reach some benefit with respect to classical
problems [22].
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Even if the state-of-art approaches suggest possible computational advantages
of this sort [3, 12, 13], the main problem to find a more convenient encoding from
classical to quantum object is nowadays an open and interesting matter of debate
[14, 18]. In this context, our contribution consists in constructing a quantum-inspired
version of a classical classifier in order to reach some convenience, in terms of the
error in pattern classification, with respect to the corresponding classical model. We
have already proposed this kind of approach in two previous works [19, 20], where a
“quantum counterpart” of a well-known minimum-distance classifier, called Nearest
Mean Classifier (NMC), has been introduced.

In both cases, the model is based on the introduction of two main ingredients:
first, an appropriate encoding of arbitrary patterns into density operators, and,
second, a distance measure between density operators, representing the quantum
counterpart of the Euclidean distance in the “classical” NMC. The main differences
between the two previous works are as follows: (1) in the first case [20], we
tested our quantum classifier on two-dimensional datasets, and we proposed a
generalization to arbitrary dimension from a theoretical point of view only; (2) in the
second case [19], a new encoding for arbitrary n-dimensional patterns into quantum
states has been proposed, and it was tested on different real-world and artificial
datasets. Anyway, in both cases, we have observed a significant improvement of
the accuracy in the classification process. In addition, we found that, by using the
encoding proposed in [19] and for two-dimensional problems only, the classification
accuracy of our quantum classifier can be further improved, by performing a
uniform rescaling of the original dataset.

In this work we propose a new encoding of arbitrary n-dimensional patterns
into quantum objects, which preserves information about the norm of the original
pattern. This idea has been inspired by recent debates on quantum machine learning
[18], according to which it is crucial to avoid loss of information when a particular
encoding of real vectors into quantum states is considered. Such an approach turns
out to be very promising in terms of classification performances with respect to
the classical version of the NMC. Further, differently from the NMC, our quantum
classifier is invariant under uniform rescaling. More precisely, the accuracy of the
quantum classifier changes by rescaling (of an arbitrary real number) the coordinates
of the dataset. Consequently, we have observed that, for several datasets, the new
encoding exhibits a further advantage that can be gained by exploiting the non-
invariance under rescaling, also for n-dimensional problems (conversely to the
previous works). At this purpose, some experimental results have been presented.

The paper is organized as follows: in Sect. 2 we briefly describe the classification
process and, in particular, the formal structure of the NMC. Section 3 is devoted to
the definition of a new encoding of real patterns into quantum states. In Sect. 4
we introduce the quantum version of the NMC, called Quantum Nearest Mean
Classifier (QNMC) based on the new encoding previously described. In Sect. 5 we
compare the NMC and the QNMC on different datasets showing that, in general,
the QNMC exhibits better performances (in terms of accuracy and other significant
statistical quantities) with respect to the NMC. Further, starting from the fact that,
differently from the NMC, the QNMC is not invariant under rescaling, we also show
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that, for some dataset, it is possible to provide a benefit from this non-invariance
property. Some conclusions and possible further developments are proposed at the
end of the paper.

2 On the Classification Process

Here, we address the classification problem, which is an instance of supervised
learning, i.e., learning from a training set of correctly labeled objects. More
precisely, each object can be characterized by its features; hence, a d-feature
object can be naturally represented by a d-dimensional real vector, i.e., x =
[x(1), . . . , x(d)] ∈ X , where X ⊆ R

d is generally a subset of the d-dimensional
real space representing the feature space. Hence, any arbitrary object is represented
by a vector x associated to a given class of objects (but, in principle, we do not know
which one). Let Y = {1, . . . , L} be the class label set. A pattern is represented by
a pair (x, y), where x is the feature vector representing an object and y ∈ Y is the
label of the class which x is associated to. The aim of the classification process is
to design a function (classifier) that attributes (in the most accurate way) to any
unlabeled object the corresponding label (where the label attached to an object
represents the class which the object belongs to), by learning about the set of objects
whose class is known. The training set is given by Str = {(xn, yn)}Nn=1, where
xn ∈ X , yn ∈ Y (for n = 1, . . . , N ) and N is the number of patterns belonging to
Str. Finally, let Nl be the cardinality of the training set associated to the l-th class
(for l = 1, 2, . . . , L) such that

∑L
l=1Nl = N .

We now introduce the well-known Nearest Mean Classifier (NMC) [6], which is
a particular kind of minimum-distance classifier widely used in pattern recognition.
The strategy consists in computing the distances between an object x (to classify)
and patterns chosen as prototypes of each class (called centroids). Finally, the
classifier associates to x the label of the closest centroid. So, we can resume the
NMC algorithm as follows:

1. the computation of the centroid (i.e., the sample mean [11]) associated to each
class, whose corresponding feature vector is given by

μl = 1

Nl

Nl∑
n=1

xn, l = 1, 2, . . . , L, (1)

where l is the label of the class;
2. the classification of the object x, provided by

argmin
l=1,...L

dE(x,μl ), with dE(x,μl ) = ‖x− μl‖ (2)
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where dE is the standard Euclidean distance.1

Depending on the particular distribution of the dataset patterns, it is possible that
a pattern belonging to a given class is closest to the centroid of another class. In
this case, if the algorithm would be applied to this pattern, it would fail. Hence,
for an arbitrary object x, whose class is a priori unknown, the output of the above
classification process has the following four possibilities [9]: (1) true positive (TP),
pattern belonging to the l-th class and correctly classified as l; (2) true negative
(TN), pattern belonging to a class different than l and correctly classified as not l;
(3) false positive (FP), pattern belonging to a class different than l and incorrectly
classified as l; and (4) false negative (FN), pattern belonging to the l-th class and
incorrectly classified as not l.

In order to evaluate the performance of a certain classification algorithm, the
standard procedure consists in dividing the original labeled dataset S of N ′
patterns, into a training set Str of N patterns and a set Sts of (N ′ − N) patterns
(i.e., S = Str ∪Sts). This set Sts of patterns is called test set [6], and it is defined
as Sts = {(xn, yn)}N ′n=N+1.

Then, by applying the NMC to the test set, it is possible to evaluate the clas-
sification algorithm performance by considering the following statistical measures
associated to each class l depending on the quantities listed above:

• True Positive Rate (TPR): TPR = TP
TP+FN ;

• True Negative Rate (TNR): TNR = TN
TN+FP ;

• False Positive Rate (FPR): FPR = FP
FP+TN = 1− TPN;

• False Negative Rate (FNR): FNR = FN
FN+TP = 1− TPR.

Further, other standard statistical coefficients [9] used to establish the reliability of
a classification algorithm are:

• Classification error (E): E = 1− TP
N′−N ;

• Precision (P): P = TP
TP+FP ;

• Cohen’s Kappa (K): K = Pr(a)−Pr(e)
1−Pr(e) , where

Pr(a) = TP+TN
N′−N , Pr(e) = (TP+FP)(TP+FN)+(FP+TN)(TN+FN)

(N′−N)2
.

In particular, the classification error represents the percentage of misclassified
patterns, the precision is a measure of the statistical variability of the considered
model, and the Cohen’s kappa represents the degree of reliability and accuracy
of a statistical classification, and it can assume values ranging from −1 to +1
(K = +1 corresponds to a perfect classification procedure, while K = −1
corresponds to a completely wrong classification). Let us note that these statistical

1We remind that, given a function f : X → Y , the argmin (i.e., the argument of the minimum)
over some subset S of X is defined as: argminx∈S⊆X f (x) = {x|x ∈ S ∧ ∀y ∈ S : f (y) ≥ f (x)}.
In this framework, the argmin plays the role of the classifier, i.e., a function that associates to any
unlabeled object the correspondent label.
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coefficients have to be computed for each class. Then, the final value of each
statistical coefficient related to the classification algorithm is the weighted sum of
the statistical coefficients of each class.

3 Correspondence Between Pattern and Density Operator

In order to introduce a quantum version of the NMC, the first step is to find an
appropriate quantum encoding for a real pattern.

Generally, given a d-dimensional feature vector, there exist different ways to
encode it into a density operator [18]. In [20], the proposed encoding was based on
the use of the stereographic projection [5]. In particular, it allows to unequivocally
map any point r = (r1, r2, r3) on the surface of a radius-one sphere S

2 (except for
the north pole) onto an arbitrary point x = [x(1), x(2)] in R

2, i.e.,

SP : (r1, r2, r3) �→
( r1

1− r3 ,
r2

1− r3
)
. (3)

The inverse of the stereographic projection is given by

SP−1 : [x(1), x(2)] �→
[ 2x(1)

||x||2 + 1
,

2x(2)

||x||2 + 1
,
||x||2 − 1

||x||2 + 1

]
, (4)

where ||x||2 = [x(1)]2 + [x(2)]2. Then, by imposing that r1 = 2x(1)

||x||2+1
, r2 =

2x(2)

||x||2+1
, r3 = ||x||2−1

||x||2+1
, if we consider r1, r2, r3 as Pauli components2 of a density

operator ρx ∈ C
2, the density operator associated to the pattern x = [x(1), x(2)] can

be written as

1

2

(
1+ r3 r1 − ir2
r1 + ir2 1− r3

)
= 1

||x||2 + 1

( ||x||2 x(1) − ix(2)
x(1) + ix(2) 1

)
. (5)

The advantage in using this encoding consists in the fact that it provides an easy
visualization of an arbitrary two-feature vector on the Bloch sphere [20]. However,
the main problem concerns the generalization of this encoding to d-feature vectors
with d > 2. Although in [20] a generalization to the d-feature case was introduced,
it exhibits some difficulties to be implemented for general cases.

2We consider the representation of an arbitrary density operator as linear combination of Pauli
matrices.
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An alternative encoding of a d-feature vector x = [x(1), . . . , x(d)] into a density
operator was proposed in [19]. It is obtained (1) by mapping x ∈ R

d into a (d + 1)-
dimensional vector x′ ∈ R

d+1 according to the generalized version of Eq. (4), i.e.,

x′ = SP−1(x) = 1

||x||2 + 1

[
2x(1), . . . , 2x(d), ||x||2 − 1

]
(6)

where ||x||2 =∑d
i=1[x(i)]2 and then (2) by considering the projector ρx = x′ ·(x′)T .

In this work we propose a different version of the QNMC based on a new
encoding again, and we show that this exhibits interesting improvements mostly
by exploiting the non-invariance under rescaling of the features.

Accordingly with [12, 17, 18], when a real vector is encoded into a quantum state,
in order to avoid a loss of information, it is important that the quantum state keeps
some information about the norm of the original real vector. In light of this fact, we
introduce the following alternative encoding.

Let x = [x(1), . . . , x(d)] ∈ R
d be an arbitrary d-feature vector.

1. We map the vector x ∈ R
d into a vector x′ ∈ R

d+1, whose first d features are the
components of the vector x and the (d+ 1)-th feature is the norm of x. Formally:

x = [x(1), . . . , x(d)] �→ x′ = [x(1), . . . , x(d), ||x||]. (7)

2. Finally, we obtain the vector x′ by dividing the first d components of the vector
x′ for ||x||:

x′ �→ x′′ =
[ x(1)
||x|| , . . . ,

x(d)

||x|| , ||x||
]
. (8)

3. We consider the norm of the vector x′′, i.e., ||x′′|| = √||x||2 + 1 and we map the
vector x′′ into the normalized vector x′′′ as follows:

x′′ �→ x′′′ = x′′

||x′′|| =
[ x(1)

||x||√||x||2 + 1
, . . . ,

x(d)

||x||√||x||2 + 1
,

||x||√||x||2 + 1

]
.

(9)

Now, we provide the following definition.

Definition 1 (Density Pattern)
Let x = [x(1), . . . , x(d)] be an arbitrary d-feature vector and (x, y) the correspond-
ing pattern. Then, the density pattern associated to (x, y) is represented by the pair
(ρx, y), where the matrix ρx, corresponding to the feature vector x, is defined as

ρx
.= x′′′ · (x′′′)†, (10)

where the vector x′′′ is defined according to Eq. (9) and y is the label of the original
pattern.
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Hence, this encoding maps real d-dimensional vectors x into (d + 1)-dimensional
pure states ρx. In this way, we obtain an encoding that takes into account the
information about the initial real vector norm and, at the same time, allows to easily
encode also arbitrary real d-dimensional vectors.

4 Quantum Classification

In this section we introduce a quantum-inspired version of the NMC, named
Quantum Nearest Mean Classifier (QNMC). It can be seen as a particular kind of
minimum-distance classifier between quantum objects (i.e., density patterns). The
use of this new formalism could lead not only to achieve the well-known advantages
related to the quantum computation with respect to the classical one (mostly related
to the speedup of the computational process) but also to make a full comparison
between NMC and QNMC performance by using a classical computer only.

In order to provide a quantum counterpart of the NMC, we need (1) an encoding
from real patterns to quantum objects (already defined in the previous section),
(2) a quantum counterpart of the classical centroid (i.e., a sort of class quantum
prototype) that will be named quantum centroid, and (3) a suitable definition of
quantum distance between density patterns that plays the same role as the Euclidean
distance for the NMC. In this quantum framework, the quantum version S q of the
dataset S is given by

S q = S
q

tr ∪S
q

ts , S
q

tr = {(ρxn , yn)}Nn=1, S
q

ts = {(ρxn , yn)}N
′

n=N+1,

where (ρxn , yn) is the density pattern associated to the pattern (xn, yn). Conse-
quently, S

q
tr and S

q
ts represent the quantum versions of training and test set,

respectively, i.e., the sets of all the density patterns obtained by encoding all the
elements of Str and Sts. Now, we naturally introduce the quantum version of the
classical centroid μl , given in Eq. (1), as follows.

Definition 2 (Quantum Centroid) Let S q be a labeled dataset of N ′ density
patterns such that S

q
tr ⊆ S q is a training set composed of N density patterns.

Further, let Y = {1, 2, . . . , L} be the class label set. The quantum centroid of the
l-th class is given by

ρl = 1

Nl

Nl∑
n=1

ρxn , l = 1, . . . , L (11)

where Nl is the number of density patterns of the l-th class belonging to S
q

tr , such
that

∑L
l=1Nl = N .

Notice that the quantum centroids are generally mixed states, and they are not
obtained by encoding the classical centroids μl , i.e.,
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ρl �= ρμl , ∀l ∈ {1, . . . , L}. (12)

Accordingly, the definition of the quantum centroid leads to a new object that is no
longer a pure state and does not have any classical counterpart. This is the main
reason that establishes, even in a fundamental level, the difference between NMC
and QNMC. In particular, it is easy to verify [20] that, unlike the classical case, the
expression of the quantum centroid is sensitive to the dataset dispersion.

In order to consider a suitable definition of distance between density patterns,
we recall the well-known definition of trace distance between quantum states (see,
e.g., [15]).

Definition 3 (Trace Distance) Let ρ and ρ′ be two quantum density operators
belonging to the same dimensional Hilbert space. The trace distance between them
is given by

dT (ρ, ρ
′) = 1

2
Tr |ρ − ρ′|, (13)

where |A| = √A†A.

Notice that the trace distance is a true metric for density operators, that is, it satisfies
(1) dT (ρ, ρ′) ≥ 0 with equality iff ρ = ρ′ (positivity), (2) dT (ρ, ρ′) = dT (ρ′, ρ)
(symmetry), and (3) dT (ρ, ρ′)+ dT (ρ′, ρ′′) ≥ dT (ρ, ρ′′) (triangle inequality).

We have introduced all the ingredients we need to describe the QNMC process
that, similarly to the classical case, consists in the following steps:

• constructing the quantum training and test sets S
q

tr , S q
ts by applying the encoding

introduced in Definition 1 to each pattern of the classical training and test sets
Str, Sts;

• calculating the quantum centroids ρl (∀l ∈ {1, . . . L}), by using the quantum
training set S

q
tr , according to Definition 2;

• classifying an arbitrary density pattern ρx ∈ Sqts accordingly with the following
minimization problem

argmin
l=1,...,L

dT (ρx, ρl), (14)

where dT is the Trace distance introduced in Definition 3.

5 Experimental Results

This section is devoted to show a comparison between the NMC and the QNMC
performances in terms of the statistical coefficients introduced in Sect. 2. We use
both classifiers to analyze 14 datasets. In particular, two different kinds of datasets
have been studied: five of them (Gaussian (I), Gaussian (II), Gaussian (III), Moon,



Classification Problem in a Quantum Framework 223

Banana) are artificial datasets, while the others (Balance, Bands, Breast Cancer (I),
Breast Cancer (II), Ilpd, Ionosphere, Liver, Pima, Tic Tac) are real-world datasets,
extracted from the UCI repository,3 which follow unknown distributions. Let us note
that, in real situations, we usually deal with data whose distribution is unknown, then
the most interesting case is the one in which we use real-world datasets. However,
the use of artificial datasets following known distribution, and in particular Gaussian
distributions with specific parameters, can help to catch precious information, as we
will see in the next section.

5.1 Comparison Between QNMC and NMC

In Table 1 we summarize the characteristics of the datasets involved in our
experiments. In particular, for each dataset, we list the total number of patterns,
the number of patterns belonging to each class, and the number of features. Let us
note that, although we mostly confine our investigation to two-class datasets, our
model can be easily extended to multiclass problems (as we show for the three-class
datasets Balance and Gaussian (III)).

In order to make our results statistically significant, we apply the standard pro-
cedure which consists in randomly splitting each dataset into two parts, the training
set (representing the 80% of the original dataset) and the test set (representing the
20% of the original dataset). Finally, we perform ten experiments for each dataset,
where the splitting is every time randomly taken.

In Table 2, we report QNMC and NMC performance for each dataset, evaluated
in terms of mean value and standard deviation (computed on ten runs) of the
statistical coefficients, discussed in the previous section. For the sake of simplicity,
we omit the values of FPR and FNR because they can be easily obtained by TPR
and TNR values (i.e., FPR = 1 − TNR, FNR = 1 − TPR).

We observe, by comparing QNMC and NMC performances (see Table 2), that the
first provides a significant improvement with respect to the standard NMC in terms
of all the statistical parameters we have considered. Further, the new encoding, for
two-feature datasets, provides better performance than the one considered in [20]
(where the QNMC error with related standard deviation was 0.174±0.047 for Moon
and 0.419± 0.015 for Banana), and it generally exhibits quite similar performance
with respect to the one in [19] for multidimensional datasets, except in the case of
Breast Cancer (II) and Gaussian (I) datasets, for which the new encoding provides
a classification improvement of about 3% and 5%, respectively.

The artificial Gaussian datasets may deserve a brief comment. Let us discuss
the way in which the three Gaussian datasets have been created. Gaussian (I)
[21] is a perfectly balanced dataset (i.e., both classes have the same number of
patterns); patterns have the same dispersion in both classes, and only some features

3http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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Table 1 Characteristics of
the datasets used in our
experiments

Data set Instances Features (d)

Balance 625 (49 + 288 + 288) 4

Banana 5300 (2376 + 2924) 2

Bands 365 (135 + 230) 19

Breast Cancer (I) 683 (444 + 239) 10

Breast Cancer (II) 699 (458 + 241) 9

Ilpd 583 (416 + 167) 9

Ionosphere 351 (225 + 126) 34

Liver 578 (413 + 165) 10

Moon 200 (100 + 100) 2

Pima 768 (500 + 268) 8

TicTac 958 (626 + 332) 9

Gaussian (I) 400 (200 + 200) 30

Gaussian (II) 1000 (100 + 900) 8

Gaussian (III) 2050 (50 + 500 + 1500) 8

The number of instances in each class is shown between
brackets

are correlated [24]. Gaussian (II) is an unbalanced dataset (i.e., classes have a very
different number of patterns), patterns do not exhibit the same dispersion in both
classes, and features are not correlated. Gaussian (III) is composed of three classes,
and it is an unbalanced dataset with different pattern dispersion in all the classes,
where all the features are correlated.

For these Gaussian datasets, the NMC is not the best classifier [6] because of the
particular characteristics of the class dispersion. Indeed, the NMC does not take into
account data dispersion. Conversely, by looking at Table 2, the improvements of the
QNMC seem to exhibit some kind of sensitivity of the classifier with respect to the
data dispersion. A detailed description of this problem will be addressed in a future
work.

As a remark, it is important to remind that, even if it is possible to establish
whether a classifier is “good” or “bad” for a given dataset by the evaluation of
some a priori data characteristics, generally it is not possible to establish an absolute
superiority of a given classifier for any dataset, according to the well-known No Free
Lunch Theorem [6]. Anyway, the QNMC seems to be particularly convenient when
the data distribution is difficult to treat with the standard NMC.

5.2 Non-invariance Under Rescaling

The final experimental results that we present in this paper regard a significant
difference between NMC and QNMC. Let us suppose that all the components of
the feature vectors xn (∀n = 1, . . . , N ′) belonging to the original dataset S are
multiplied by the same parameter t ∈ R, i.e., xn �→ txn. Then, the whole dataset
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Table 2 Comparison between QNMC and NMC performance

Dataset E TPR TNR P K

QNMC

Balance 0.148 ± 0.018 0.852 ± 0.018 0.915 ± 0.014 0.862 ± 0.022 0.767 ± 0.029

Banana 0.316 ± 0.017 0.684 ± 0.017 0.660 ± 0.017 0.684 ± 0.018 0.350 ± 0.034

Bands 0.394 ± 0.053 0.606 ± 0.053 0.528 ± 0.071 0.606 ± 0.058 0.133 ± 0.112

Breast Cancer (I) 0.386 ± 0.038 0.614 ± 0.038 0.444 ± 0.045 0.583 ± 0.044 0.062 ± 0.069

Breast Cancer (II) 0.040 ± 0.015 0.946 ± 0.023 0.986 ± 0.016 0.993 ± 0.009 0.912 ± 0.033

Ilpd 0.351 ± 0.037 0.649 ± 0.037 0.705 ± 0.056 0.734 ± 0.041 0.292 ± 0.073

Ionosphere 0.165 ± 0.049 0.835 ± 0.049 0.764 ± 0.059 0.842 ± 0.051 0.624 ± 0.105

Liver 0.342 ± 0.037 0.607 ± 0.057 0.783 ± 0.059 0.870 ± 0.039 0.318 ± 0.061

Moon 0.156 ± 0.042 0.857 ± 0.063 0.831 ± 0.066 0.841 ± 0.066 0.683 ± 0.085

Pima 0.304 ± 0.030 0.696 ± 0.030 0.690 ± 0.044 0.720 ± 0.030 0.365 ± 0.066

Tic Tac 0.410 ± 0.032 0.590 ± 0.032 0.597 ± 0.039 0.629 ± 0.036 0.172 ± 0.061

Gaussian (I) 0.274 ± 0.051 0.726 ± 0.051 0.728 ± 0.049 0.745 ± 0.048 0.452 ± 0.099

Gaussian (II) 0.210 ± 0.025 0.790 ± 0.025 0.744 ± 0.061 0.900 ± 0.019 0.308 ± 0.058

Gaussian (III) 0.401 ± 0.036 0.599 ± 0.036 0.558 ± 0.026 0.654 ± 0.041 0152 ± 0.043

NMC

Balance 0.267 ± 0.038 0.733 ± 0.038 0.969 ± 0.014 0.925 ± 0.025 0.686 ± 0.034

Banana 0.453 ± 0.019 0.548 ± 0.019 0.552 ± 0.020 0.556 ± 0.020 0.098 ± 0.038

Bands 0.435 ± 0.048 0.565 ± 0.048 0.582 ± 0.055 0.605 ± 0.054 0.135 ± 0.092

Breast Cancer (I) 0.442 ± 0.037 0.558 ± 0.037 0.464 ± 0.046 0.551 ± 0.039 0.022 ± 0.076

Breast Cancer (II) 0.042 ± 0.015 0.973 ± 0.015 0.931 ± 0.032 0.963 ± 0.017 0.908 ± 0.033

Ilpd 0.470 ± 0.037 0.530 ± 0.037 0.757 ± 0.041 0.761 ± 0.037 0.193 ± 0.051

Ionosphere 0.323 ± 0.051 0.677 ± 0.051 0.676 ± 0.051 0.680 ± 0.051 0.351 ± 0.102

Liver 0.472 ± 0.048 0.388 ± 0.057 0.891 ± 0.055 0.905 ± 0.045 0.193 ± 0.060

Moon 0.234 ± 0.065 0.772 ± 0.089 0.762 ± 0.085 0.771 ± 0.091 0.528 ± 0.130

Pima 0.375 ± 0.033 0.625 ± 0.033 0.546 ± 0.045 0.622 ± 0.037 0.173 ± 0.075

Tic Tac 0.439 ± 0.031 0.561 ± 0.031 0.571 ± 0.042 0.606 ± 0.036 0.119 ± 0.063

Gaussian (I) 0.322 ± 0.042 0.679 ± 0.042 0.680 ± 0.043 0.685 ± 0.042 0.355 ± 0.085

Gaussian (II) 0.320 ± 0.032 0.680 ± 0.032 0.588 ± 0.102 0.860 ± 0.032 0.129 ± 0.055

Gaussian (III) 0.530 ± 0.029 0.470 ± 0.029 0.625 ± 0.030 0.620 ± 0.036 0.066 ± 0.044

is subjected to an increasing dispersion (for |t | > 1) or a decreasing dispersion (for
|t | < 1), and the classical centroids change according to μl �→ tμl (∀l = 1, . . . , L).
Consequently, the classification problem for each pattern of the rescaled test set can
be written as

argmin
l=1,...,L

dE(txn, tμl ) = t argmin
l=1,...,L

dE(xn,μl ), ∀n = N + 1, . . . , N ′.

For any value of the parameter t it can be proved [19] that, while the NMC is
invariant under rescaling, for the QNMC this invariance fails. Interestingly enough,
it is possible to consider the failure of the invariance under rescaling as a resource
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Fig. 1 Comparison between NMC and QNMC performance in terms of the classification error
for the datasets (a) Ionosphere and (b) Bands. In both cases, the simple dashed line represents
the QNMC classification error without rescaling, the dashed line with points represents the NMC
classification error (which does not depend on the rescaling parameter), and points with related
error bars (red in (a) and blue in (b)) represent the QNMC classification error for increasing values
of the parameter t . In (a) t ∈ [0.1, 1.9] and it increases with step 10−1. In (b), t ∈ [0.001, 0.019]
and it increases with step 10−3

for the classification problem. In other words, a suitable choice of the rescaling
factor is possible, in principle, to get a decreasing of the classification error. At this
purpose, we have studied the variation of the QNMC performance (in particular of
the classification error) in terms of the free parameter t , and in Fig. 1 the results for
the datasets Ionosphere and Bands are shown. In the figure, each point represents the
mean value (with corresponding standard deviation represented by the vertical bar)
over ten runs of the experiments. We can observe that, for the considered datasets,
the QNMC performance for most of t values is better than the NMC, but for some
particular value of t the error gets a further significant reduction (with respect the
unrescaled case).

Let us note that the range of the rescaling parameter t , for which the QNMC
performance improves, is generally not unique and depends on the dataset. For
instance, in Fig. 1, we observe that the classification error provided by the QNMC
decreases for t ranging from 0.1 to 1.9 in the Ionosphere case and from 0.001
to 0.019 in the Bands case. As a consequence, we do not generally get an
improvement in the classification process for any t ranges. On the contrary, there
exist some intervals of the parameter t where the QNMC classification performance
is worse than the case without rescaling. Then, each dataset has specific and unique
characteristics (in accord to the No Free Lunch Theorem), and the incidence of the
non-invariance under rescaling in the decreasing of the error, in general, should be
determined by empirical evidences.
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6 Conclusions and Future Work

In this work a quantum counterpart of the well-known Nearest Mean Classifier was
proposed. We introduced a quantum minimum-distance classifier, called Quantum
Nearest Mean Classifier, obtained by defining a suitable encoding of real patterns,
i.e., density patterns, and by recovering the trace distance between density operators.

We proposed a new encoding of a real pattern into a quantum object that was
suggested by recent debates on quantum machine learning according to which, in
order to avoid a loss of information caused by encoding a real vector into a quantum
state, we need to normalize the real vector maintaining some information about
its norm. Secondly, we defined the quantum centroid, i.e., the pattern chosen as
the prototype of each class, which is not invariant under uniform rescaling of the
original dataset (unlike the NMC) and seems to exhibit a kind of sensitivity to the
data dispersion.

The experiments were organized as follows: both classifiers were compared
in terms of significant statistical coefficients. In particular, we considered 14
different datasets having different nature (real-world and artificial). Further, the
non-invariance under rescaling of the QNMC suggested to study the variation of
the classification error in terms of a free parameter t , whose variation produces a
modification of the data dispersion and, consequently, of the classifier performance.
In particular we showed as, in the most of cases, the QNMC exhibits a significant
decreasing of the classification error (and of the other statistical coefficients) with
respect to the NMC and, for some case, the non-invariance under rescaling can
provide a significant positive incidence in the classification process.

Let us remark that, even if there is not an absolute superiority of QNMC
with respect to the NMC, the method we introduced allows to get some relevant
improvements of the classification when we have an a priori knowledge about the
distribution of the dataset we have to deal with.

In light of such considerations, further developments of the present work will be
focused on (1) finding out the encoding (from real vectors to density operators) that
guarantees the optimal improvement (at least for a finite class of datasets) in terms
of the classification process accuracy, (2) obtaining a general method to find the
suitable rescaling parameter range to apply to a given dataset in order to get further
improvement of the accuracy, and (3) understanding for which kind of distribution
the QNMC performs better than the NMC. At this purpose, it will be useful to
compare the optimal QNMC also with other standard classical classifiers.

Acknowledgements This work is supported by the Sardinia Region Project “Time-logical
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On Complexity for Open System
Dynamics

Noboru Watanabe

1 Introduction

The quantum entropy for a density operator was defined by von Neumann [51] in
1932. The quantum entropy for C*-system, which is called a C*-mixing entropy,
was introduced in [33], and its property was studied in [23, 29]. The quantum
relative entropy for density operators was introduced by Umegaki [48], and it
was extended for general state space by Araki [8, 9] in von Neumann algebra
and by Uhlmann [47] in *-algebra. The study of the channel for the quantum
communication processes was discussed in [31]. The characterization of quantum
processes based on the transition expectation introduced by Accardi [3], in which
quantum Markov process [1] was studied, is discussed in [4], and the beam splitting
was rigorously studied by Fichtner et al. [18]. By using the quantum communication
processes, the noisy optical channel was introduced in [40].

In the quantum information theory, one of the important subjects is to study
how much information correctly transmitted through a quantum channel, so that
it is necessary to extend the mutual entropy of the classical system to the quan-
tum system. The classical mutual entropy was defined by the joint probability
distribution between input and output systems. However, the joint probability
does not exist generally (see [49]) in quantum systems. The semiclassical mutual
entropy was introduced by Holevo, Levitin, and Ingarden [19, 22, 27] for classical
input and quantum output passing through a semiclassical channel. By introducing
a compound state, Ohya defined the quantum mutual entropy (information) in
complete quantum systems in 1983 [31]. By using this mutual entropy, one can
study the efficiency of the information transmission in quantum communication
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processes, which allows the detailed analysis of optical communication [40–42, 53].
The channel capacities are studied in [20, 36, 38, 43, 44]. The mutual entropy in
C*-system was defined by Ohya [35]. These quantum entropies are expounded in
[37]. Recently these methods started to be explored in applications to biology and
cognition [10, 11, 24].

Kolmogorov–Sinai entropy S(T) [25] for a measure preserving transformation T
was defined on a message space through finite partitions of the measurable space.
Based on the mean dynamical entropy and the mean dynamical mutual entropy,
the classical coding theorems of Shannon are formulated to analyze the capacity
for communication processes. The quantum dynamical entropy (QDE) was first
studied by Connes–Størmer [14] and Emch [17] such as a complexity (entropy of
automorphism) of quantum dynamical processes. In 1985, Ohya introduced the S-
mixing entropy [33–35, 37, 39] in general quantum systems, which contains the
von Neumann entropy [51] as a special case. By using the S-mixing entropy, Ohya
defined a mean entropy and a mean mutual entropy in [29, 33] for the quantum
dynamical systems, and several discussions of the mean entropies are done in
[28, 53]. The mean dynamical entropy denotes the amount of information per one
letter of a signal sequence transmitted from the input source, and the mean dynami-
cal mutual entropy expresses the amount of information per one letter of the signal
obtained in the output system. In 1987, Conne–Narnhoffer–Thirring introduced a
dynamical entropy [15] (CNT entropy), and several researchers discussed the CNT
entropy [12, 13, 21, 28, 45]. Alicki–Fannes [7] defined a dynamical entropy (AF
entropy) with respect to a finite operational partitions of unity. In 1995, Voiculescu
[50] proposed a dynamical entropy (dynamical approximation entropy) for C* and
W* algebras. In 1997, Accardi–Ohya and I [6] defined a dynamical entropy (AOW
entropy) through the quantum Markov process, and the relation between these
dynamical entropies is discussed in [5, 28]. In 1999, Kossakowski–Ohya and I
[26] introduced a dynamical entropy (KOW entropy) with respect to completely
positive maps based on transition expectations and liftings in the sense of Accardi
and Ohya [2].

In this chapter, we will discuss about complexity of open system dynamics to
calculate (1) the mean mutual entropy with respect to the input states and the
quantum channel for the open system dynamics [54] and (2) the generalized AOW
entropy through the quantum channel for the open system dynamics [55].

2 Quantum Channels

Let (A1, S(A1)) and (A2, S(A2)) be the input and output quantum systems,
respectively, where A1 (resp.A2) is a C∗-algebra or the set of all bounded operators
B(H1) (resp. B(H1)) on a separable complex Hilbert space H1 (resp.H2) and
S(A1) (resp.S(A2)) is the set of all states on A1 (resp.A2) or the set of all density
operators on H1 (resp.H2). A quantum channel is defined by a mapping Λ∗ from
the input quantum state space S(A1) to the output quantum state space S(A2). A
quantum channel Λ∗ satisfying an affine property such as
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Λ∗(
∑
k

λkϕk) =
∑
k

λkΛ
∗ (ϕk)

for any ϕk ∈ S(A1) and any
∑
k λk = 1 with λk ≥ 0 (∀k) is said to be a linear.

Λ∗ is a completely positive (CP) channel [23, 30, 37, 39, 42] if its dual mapΛ from
A2 to A1 satisfies

n∑
i,j=1

A∗i Λ(B∗i Bj )Aj ≥ 0

for any n ∈ N, any Bj ∈ A , and any Aj ∈ A , where the dual mapΛ ofΛ∗ is given
by Λ∗(ϕ) (B) = ϕ (Λ(B)) for any ϕ ∈ S(A1) and any B ∈ A2. We briefly review
some examples of quantum channels.

2.1 Quantum Communication Processes

Take A1 = B (H1) (resp. A2 = B (H2)) and S(A1) = S (H1) (resp. S(A2) =
S (H2)), where S (H1) is the set of all density operators on a separable complex
Hilbert space H1 (resp. H2). Let K1 and K2 be two Hilbert spaces describing
noise and loss systems, respectively. Put B2 = B (K1) (resp. B2 = B (K2)) and
S(B1) = S (K1) (resp. S(B2) = S (K2)), where S (K1) is the set of all density
operators on a separable complex Hilbert space K1 (resp. K2). A mathematical
scheme of quantum communication process including the influence of noise and
loss is discussed in [31] as follows: Let ϕ and ψ be input and noise states in S(A1)

and S (B1).

S (A1) Λ∗−−−−→ S (A2)

γ ∗ ↓ ↑ a∗
S (A1 ⊗B1)

−−→
π∗ S (A2 ⊗B2)

γ ∗, a∗ are CP channels defined by

γ ∗ (ϕ) = ϕ ⊗ ψ, ϕ ∈ S (A1) ,

a∗ (�) (A) = � (A⊗ I2) , � ∈ S (A2 ⊗B2) (A ∈ A2) ,

where I2 is the identity operator in B1. The map π∗ is a CP channel from
S (A1 ⊗B1) to S (A2 ⊗B2) determined by the physical property of the commu-
nication device. The quantum channel for the communication process is given by

Λ∗ (ϕ) (A) ≡ π∗ ( ϕ ⊗ ψ) (A⊗ I2)
= (a∗ ◦ π∗ ◦ γ ∗) (ϕ) (A) (A ∈ A2)
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for any ϕ ∈ S(A1). Some examples of the quantum communication channels are
the noisy optical channel, the attenuation channel, and the connected channel that
are constructed as follows:

2.2 Noisy Optical Channel

Noisy optical channelΛ∗ with a normal noise stateψ was introduced in [40] such as

Λ∗(ϕ) (A) ≡ π∗(ϕ ⊗ ψ) (A⊗ I2)
= (ϕ ⊗ ψ) ◦ π (A⊗ I2)
= trV (ϕ̃ ⊗ ψ̃)V ∗ (A⊗ I2) , (A ∈ A2)

where ψ (B) = trψ̃B = 〈m1, Bm1〉 (B ∈ B1), ψ̃ = |m1〉 〈m1| is the m1 photon
number state in S(K1) and V is a linear mapping from H1 ⊗ K1 to H2 ⊗ K2
defined by

V (|n1〉 ⊗ |m1〉) =
n1+m1∑
j=0

C
n1,m1
j | j 〉 ⊗ |n1 +m1 − j 〉 ,

C
n1,m1
j =

K∑
r=L
(−1)n1+j−r

√
n1!m1!j !(n1 +m1 − j)!

r!(n1 − j)!( j − r)!(m1 − j + r)!

×αm1−j+2r (−β̄)n1+j−2r
,

and |n1〉 is the n1 photon number state vector in H1, and α, β are complex numbers
holding |α|2+ |β|2 = 1, K = min{n1, j} and L = max{m1− j, 0}. The following
theorem is proved.

Theorem 1 The noisy optical channel Λ∗ with noise state

ψ (B) = tr [|m〉 〈m|B] (B ∈ B)

is described by

Λ∗ (ϕ) (A) = tr
[ ∞∑
i=0

OiVQ
(m)ϕ̃Q(m)∗V ∗O∗i A

]
,
(
A ∈ A

)
(1)

where Q(m) ≡ ∑∞
l=0 (| yl〉 ⊗ |m〉) 〈 yl | , Oi ≡

∑∞
k=0 |zk〉 (〈zk| ⊗ 〈i|), {|yl〉} is a

CONS in H1, {|zk〉} is a CONS in H2, and {|i〉} is the set of number states in K2.
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For the coherent input state,

Φξ⊗κ
(
Ã
) = tr [(|ξ 〉 〈ξ | ⊗ |κ〉 〈κ|) Ã] , (|ξ 〉 〈ξ | ⊗ |κ〉 〈κ| ∈ S (H1 ⊗K1))

the output state of π∗ is given by

π∗
(
Φξ⊗κ

) (
Ã
)

= Φαξ+βκ⊗−β̄ξ+ᾱκ
(
Ã
)

= tr [|αξ + βκ〉 〈αξ + βκ| ⊗ ∣∣−β̄ξ + ᾱκ 〉 〈−β̄ξ + ᾱκ∣∣ Ã]
(|αξ + βκ〉 〈αξ + βκ| ⊗ ∣∣−β̄ξ + ᾱκ 〉 〈−β̄ξ + ᾱκ∣∣ ∈ S (H2 ⊗K2)

)

for Ã ∈ A1⊗A 2. π∗ defined in [40] is called a generalized beam splitting. The
noisy optical channel with a vacuum noise is called an attenuation channel defined
in [31].

2.3 Attenuation Channel

The noisy optical channel Λ∗ with a vacuum noise state ψ0 is called the attenuation
channel defined in [31] by

Λ∗0(ϕ) (A) ≡ π∗0 (ϕ ⊗ ψ0) (A⊗ I2)
= (ϕ ⊗ ψ0) ◦ π0 (A⊗ I2)
= trV0

(
ϕ̃ ⊗ ψ̃0

)
V ∗0 (A⊗ I2) , (A ∈ A2)

where ψ0 (B) = trψ̃0B = 〈0, B0〉 (B ∈ B1), ψ̃0 = |0〉 〈0| is the vacuum noise
state in S(K1) and V is a linear mapping from H1 ⊗K1 to H2 ⊗K2 defined by

V0 (|n1〉 ⊗ |0〉) =
n1∑
j

C
n1
j | j 〉⊗ |n1 − j 〉 ,

C
n1
j =

√
n1!

j !(n1 − j)!α
j
(−β̄)n1−j

and |n1〉 is the n1 photon number state vector in H1, and α, β are complex
numbers satisfying |α|2 + |β|2 = 1. On generalized Fock spaces, the mathematical
representation of beam splitting [18] is given by

E ∗0 (|ξ 〉〈ξ |) = |αξ 〉〈αξ | ⊗ |βξ 〉〈βξ |

where E ∗0 is a lifting from S (H ) to S (H ⊗K ) in the sense of Accardi and
Ohya [2].
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2.4 Connected Channel

Here we explain a connected channel. For n ∈ N, a n-connected channel Λ∗(n) with
a fixed noise state ζ was defined by

Λ∗(n)(ρ) ≡ trK2 
∗n(ρ ⊗ ζ ) = trK2V

n (ρ ⊗ ζ ) V ∗n,

for any ρ ∈ S (H1), where  ∗n is n-folds composition of the CP channels  ∗
and V n and V ∗n are also n-folds compositions of V and V ∗, respectively. Then
n-connected channel Λ∗(n) can be denoted as the following representation [53].

Theorem 2 The n-connected channel Λ∗(n) with noise state |m〉 〈m| is denoted by

Λ∗(n) (ρ) =
∞∑
i=0

OiV
nQ(m)ρQ(m)∗V ∗nO∗i ,

where Q(m) ≡ ∑∞
l=0 (| yl〉 ⊗ |m〉) 〈 yl | , Oi ≡

∑∞
k=0 |zk〉 (〈zk| ⊗ 〈i|) , {| yl〉} and

{|zk〉} are CONS in H1 and H2, respectively. {|i〉} is the set of number states in K2.

For a n-connected channel Λ∗(n) with a fixed noise state ζ, we have

Theorem 3 For the n-connected channel Λ∗(n) with α =
√

3
2 , if n is given by

12� (� ∈ N), then Π∗n is the identity channel id, that is,

Λ∗(n) (ρ) = ρ.

We obtain the following theorem in [53].

Theorem 4 For the n-connected channel Λ∗(n) with α = 1
2 , if n is given by 6� +

3
2 (� ∈ N), then Π∗n is the exchanged channel, that is,

Λ∗(n) (ρ) = ζ

is held for any ρ ∈ S(H1). If n is given by 6� + 3
4 (� ∈ N), one can obtain the

output and loss states of n-folds composition of the CP channels Π∗ such as the
maximal entangled state

Π∗n (ρ ⊗ ζ ) = 1

2
(|1〉 ⊗ |0〉 + |0〉 ⊗ |1〉) (〈1| ⊗ 〈0| + 〈0| ⊗ 〈1|)

for the input state ρ = |1〉 〈1| and the noise state ζ = |0〉 〈0|. It means that Π∗n(
n = 6�+ 3

4 (� ∈ N)
)

generates the maximal entangled state.
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2.5 Open System Dynamics

Let S1 be a system described by a Hilbert space H and S2 be an external system
described by another Hilbert space K , interacting with S1. Let H be the total
Hamiltonian of S1 and S2. We denote the initial states of S1 and S2 by ρ and σ ,
respectively. The time evolution of the interacted state ρ ⊗ σ at time t according to
the unitary operator Ut = exp(−itH) is given by the combined state θt

θt ≡ Ut(ρ ⊗ σ)U∗t .

A CP channel of the open system dynamics [23, 37, 39] is obtained by taking the
partial trace of θt with respect to K such as

Λ∗t (ρ) ≡ trK θt ,

where trK θt is defined by

〈
x, trK θt x

′〉 =
∑
n

〈
x ⊗ yn, σ x′ ⊗ yn

〉 (∀x, x′ ∈ H
)

with a complete orthogonal system { yn} ⊂ K .

2.6 Quantum Channel for Open System Dynamics

Based on [4], let H1 be the Hamiltonian of a system S1 described by a Hilbert
space H1. If a system S1 interacts with an external system (heat bath) S2 with the
Hamiltonian H2 described by another Hilbert space H2 and the initial states of S1
and S2 are ρ and ξ , respectively, then the compound state σt of S1 and S2 at time t
after the interaction between two systems is given by

σt ≡ Ut(ρ ⊗ ξ)U∗t ,

where Ut = exp(−itH) with the total Hamiltonian H of S1 and S2. A channel is
obtained by taking the partial trace w.r.t. H2 such as

ρ → Λ∗ρ ≡ trH2σt .

The total Hamiltonian H is described by

H = H1 ⊗ I + I ⊗H2 +Hin,
H1 = a∗a,
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H2 =
∑
j

b∗j bj ,

Hin =
∑
j

(
εj bj a

∗ + εj b∗j a
)

To simplify, we assume that the system �2 is given by a single mode

H2 = b∗b,
Hin = ε

(
ba∗ + b∗a)

For a given state ξ ∈ S (H2), the quantum channelΛ∗t at time t for the open system
is denoted by Stinespring–Sudarshan–Kraus representation such as

Λ∗t (ρ) =
∞∑
i=0

Oi (t) (ρ ⊗ ξ)O∗i (t) , (∀ρ ∈ S (H1))

where Oi is a partial isometric operator given by

Oi (t) =
∞∑
k=i
|k − i〉

〈
Φ
(k)
k−i (t)

∣∣∣ ,

∣∣∣Φ(k)k−i (t)
〉
=

k∑
j=0

τ
(k)
k−i,j (t) | j 〉 ⊗ |k − j 〉 ∈ [H1 ⊗H2](k) ⊂ H1 ⊗H2,

τ
(k)
k−i,j (t) =

k∑
�=0

exp
(
−itελ(k)�

)
C
k,�
k−iC

k,�
j ,

where λ(k)� is given in (2) and

C
k,�
k−i =

k−i∑
r=L
(−1)2k−i−r

√
k!�! (k − i)!(�+ i)!

r!i!(k − i − r)!(�+ i − k + r)!

×α�−(k−i)+2r (−β̄)2k−i−2r
,
(
|α|2 + |β|2 = 1

)
,

L ≡ max {�+ i − k, 0} .

For any k, [H1 ⊗H2](k) is a subspace spanned by a subset {| j 〉 ⊗ |k − j 〉 ;
j = 0, 1, 2, · · · , k} . Then

Hin [H1 ⊗H2](k) ⊆ [H1 ⊗H2](k)
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is hold. Let H(k)in be a restriction of Hin into [H1 ⊗H2](k). H(k)in is a finite-
dimensional self-adjoint operator on C

k+1 satisfying

H
(k)
in �

(k)
� = λ(k)� �(k)� , (� = 0, 1, 2, · · · , k) , (2)

�
(k)
� =

k∑
m=0

Ck,�m |m〉 ⊗ |k −m〉 ∈ [H1 ⊗H2](k) .

3 Entropy and Mutual Entropy for Quantum Systems

For a density operator ρ ∈ S (H1), von Neumann [51] defined the quantum
entropy by

S (ρ) = −trρ log ρ.

The properties of entropy are explained in [37, 39, 42].
The mutual entropy for purely quantum systems denoted by I (ρ;Λ∗) depends

on an input quantum state ρ, and a quantum channel Λ∗ should hold the following
three conditions:

1. The quantum mutual entropy with the identity channel Λ∗ = id is equal to the
von Neumann entropy: I (ρ; id) = S (ρ).

2. The quantum mutual entropy w.r.t. the classical systems reduces to classical one.
3. Shannon’s type fundamental inequalities 0 ≤ I (ρ;Λ∗) ≤ S (ρ) are satisfied.

Instead of the joint state in classical systems, Ohya defined the compound state
σE of the input state ρ and the output state Λ∗ρ by

σE =
∑
k

μkEk ⊗Λ∗Ek,

where E represents a one-dimensional orthogonal base {Ek} of the Schatten
decomposition [46] ρ = ∑

k μkEk of ρ, which is not always unique unless every
eigenvalue of ρ is not degenerated. The compound state depends on how we
distinguish the state ρ into basic states. By using two compound states σE and
σ0 = ρ⊗Λ∗ρ, Ohya introduced [31, 32] the quantum mutual entropy (information)
as

I
(
ρ;Λ∗) = sup {S (σE, σ0) ;E = {Ek}} ,

where the supremum is taken over all Schatten decompositions of ρ, and S (σE, σ0)

is the Umegaki’s relative entropy [48] defined by

S(σE, σ0) =
{
trσE (log σE − log σ0) (s (σE)' s (σ0)) ,

∞ (else) ,
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s (σE) ' s (σ0) means the support projection s (σ0) of σ0 is greater than the
support projection s (σE) of σE . The above conditions (1) ∼ (2) are held for the
quantum mutual entropy. Moreover the condition (3) follows from the monotonicity
of relative entropy [31]:

Theorem 5

0 ≤ I (ρ;Λ∗) ≤ min{S(ρ), S(Λ∗ρ)}.

For a linear channel, one has the following form [31]:

Theorem 6 The quantum mutual entropy is denoted as

I
(
ρ;Λ∗) = sup

{∑
k

μkS
(
Λ∗Ek,Λ∗ρ

) ;E = {Ek}
}
.

When the input system is classical, an input state ρ is given by a probability
distribution or a probability measure. In either case, the Schatten decomposition of
ρ is unique, namely, for the case of probability distribution ; ρ = {μk} ,

ρ =
∑
k

μkδk,

where δk is the delta measure, that is,

δk ( j) = δk,j =
{

1(k = j)
0(k �= j) ,∀j.

Therefore for any channel Λ∗, the mutual entropy becomes

I
(
ρ;Λ∗) =

∑
k

μkS
(
Λ∗δk,Λ∗ρ

)
,

which equals to the following usual expression when one of the two terms is finite
for an infinite-dimensional Hilbert space:

I
(
ρ;Λ∗) = S (Λ∗ρ)−

∑
k

μkS
(
Λ∗δk

)
.

The above equality has been taken by Levitin [27] and Holevo [19] associated with
classical-quantum channels. The quantum mutual entropy by Ohya contains their
semiclassical mutual entropies as a special one.
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4 Entropy and Mutual Entropy for General Quantum
Systems

In this section, I briefly explain entropies of general quantum systems [32, 34, 35,
37, 39].

Let A be a C* algebra, S(A ) be the set of all normal states on A , and S be
a weak* compact and convex subset of S(A ). Every state ϕ ∈ S has a maximal
measure μ pseudosupported on exS such that

ϕ =
∫
S
ωdμ, (3)

where exS is the set of all extreme points of S . The measure μ satisfying the
above decomposition is not unique unless S is a Choquet simplex. We describe
the set of all such measures by Mϕ(S ). We define a subset of Mϕ(S ) by Dϕ(S )
such as

Dϕ(S ) =
{
Mϕ(S ); ∃μk ⊂ R

+and {ϕk} ⊂ exS

s.t.
∑
k

μk = 1, μ =
∑
k

μkδ (ϕk)

}
, (4)

where δ(ϕ) is the Dirac measure concentrated on an initial state ϕ. We put a
functional H by

H(μ) = −
∑
k

μk logμk (5)

for a measure μ ∈ Dϕ(S ). The S -mixing entropy of a state ϕ ∈ S with respect
to S is defined by

SS (ϕ) =
{

inf
{
H (μ) ; μ ∈ Dϕ(S )

}
+∞ ifDϕ(S ) = ∅.

(6)

It describes the amount of information of the state ϕ measured from the subsys-
tem S . For example, S is given by S(A ) which is the set of all states on A , I (α)
which is the set of all invariant states for α, and K(α) which is the set of all KMS
states. If S is given by S(A ), we denote SS(A )(ϕ) by S(ϕ). It is an extension of
von Neumann’s entropy [51]

S(ρ) = −trρ log ρ, ∀ρ ∈ S(H ). (7)

For an initial state ϕ ∈ S and a quantum channel Λ∗ : S (A )→ S (B), two
compound states are defined by Ohya such as
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Φ0 = ϕ ⊗Λ∗ϕ (trivial compound state)
ΦS
μ = ∫S ω ⊗Λ∗ω dμ (Ohya compound state)

The compound state ΦS
μ expresses the correlation between the input state ϕ and

the output state Λ∗ϕ. They are separable compound states. Φ0 does not depend on
any correlation between two marginal systems. ΦS

μ represents a certain correlation
between two compound systems.

In [35], the mutual entropy with respect to S and μ is given by

ISμ
(
ϕ;Λ∗) = S

(
ΦS
μ ,Φ0

)
, (8)

where S
(
ΦS
μ ,Φ0

)
is the quantum relative entropy by Araki [8] and Uhlmann [47].

The quantum relative entropy of two states was introduced by Umegaki in [48]
and Lindblad for σ -finite and semifinite von Neumann algebras. For two density
operators ρ and σ , it is defined by

S(ρ, σ ) = trρ (log ρ − log σ) . (9)

It was extended to more general quantum systems [37] by Araki [8, 9], Uhlmann
[47] and Donald [16]. Based on the relative entropy, the mutual entropy was
introduced by Ohya [35] for fully general quantum systems. The mutual entropy
with respect to S for general quantum systems is defined by Ohya as

IS
(
ϕ;Λ∗) = sup

{
ISμ

(
ϕ;Λ∗) ; μ ∈ Mϕ (S )

}
. (10)

When S =S (A ) and a state ϕ is given by a fixed form ϕ =∑k λkωk , the mutual
entropy (relative entropy) is described by

IS
(
ϕ;Λ∗) = S

(
ΦS
μ ,Φ0

)
=
∑
k

λkS(Λ
∗ωk,Λ∗ϕ) ≤ S (ϕ) . (11)

The fundamental inequalities among the S -mixing entropy and the mutual entropy
for general quantum systems are satisfied as follows [35]:

0 ≤ IS (
ϕ;Λ∗) ≤ min

{
SS (ϕ), SS (Λ∗ϕ)

}
.

5 Mean Entropy and Mean Mutual Entropy

We briefly explain the quantum mean entropy and quantum mean mutual entropy
defined by Ohya [28, 35].
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Let A be a unital C∗-algebra, S(A ) be the set of all states over A , and θA be an
automorphism of A . AC∗-triple (A ,S(A ), θA )with a stationary state ϕ ∈ S(A )
with respect to θA , that is, ϕ ◦ θA = ϕ is held, represents a stationary information
source in quantum information theory.

We denote an output C∗-dynamical system by the C∗-triple (B,S(B), θB). Let
Λ∗ : S(A )→ S(B) be a covariant channel, that is, it’s predual map Λ : B → A
is a completely positive unital map satisfying Λ ◦ θB = θA ◦ Λ. Let Am and
Bn (m = 1,· · · ,M , n = 1,· · · ,N ) be finite-dimensional unital C∗-algebras and
αm : Am → A and βn : Bn → B be completely positive unital maps. We
express a pair of finite sequences of {αm} , {βn} by αM = (α1, α2, · · · , αM), βN =
(β1, β2, · · · , βN).

We briefly explain functionals SS
μ (ϕ;αM), SS (ϕ;αM), ISμ (ϕ;αM, βN), and

IS (ϕ;αM, βN) introduced in [28, 35].
For a given αm : Am → A and a given extremal decomposition measure μ ∈

Mϕ(S ) of ϕ, the compound state of α∗1ϕ, α∗2ϕ, · · · , α∗Mϕ on the tensor product
algebra Mm=1Am is defined by [28, 35]

ΦS
μ (α

M) =
∫
S(A )

M
m=1α

∗
mωdμ(ω),

and ΦS
μ (α

M ∪ βN) is a compound state of ΦS
μ (α

M) and ΦS
μ (β

N) with respect to
αM ∪ βN ≡ (α1, α2, · · · , αM, β1, β2, · · · ,βN) given by

ΦS
μ

(
αM ∪ βN

)
=
∫
S(A)

(
M
m=1α

∗
mω
)
⊗
(
N
n=1β

∗
nω
)
dμ

For a given pair of αM = (α1, · · · , αM), βN = (β1, · · · , βN), the functionals
SS (ϕ;αM) and IS (ϕ;αM, βN) are defined in [28, 35] by taking the supremum
for all possible extremal decomposition measure μ of ϕ inMϕ(S ) such as

SS (ϕ;αM) = sup
{
SS
μ (ϕ;αM); μ ∈ Mϕ(S )

}
,

IS (ϕ;αM, βN) = sup
{
ISμ (ϕ;αM, βN); μ ∈ Mϕ(S )

}
,

where SS
μ (ϕ;αM) and ISμ (ϕ;αM, βN) are given by

SS
μ (ϕ;αM) =

∫
S(A)

S
(
M
m=1α

∗
mω,Φ

S
μ (α

M)
)
dμ (ω) ,

ISμ (ϕ;αM, βN) = S
(
ΦSμ

(
αM ∪ βN

)
, ΦS
μ (α

M)⊗ΦS
μ (β

N)
)
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for any pair (αM, βN) of finite sequences αM = (α1, · · · , αM) and βN =
(β1, · · · , βN) of completely positive unital maps αm, βn and any extremal decom-
position measure μ of ϕ, and S(·, ·) is the relative entropy.

Let A (resp. B) be a unital C∗-algebra with a fixed automorphism θA (resp.
θB), α (resp. β) be completely positive unital maps from a finite-dimensional unital
C∗-algebra A0 (resp. B0) to A (resp. B), Λ be a covariant completely positive
unital map from B to A , and ϕ be an invariant state over A , i.e., ϕ ◦ θA = ϕ. Let

αN and βNΛ be finite sequences of
{
θnA α

}
,
{
Λ ◦ θn−1

B ◦ β
}

given by

αN ≡
(
α, θA ◦ α, · · · , θN−1

A ◦ α
)
,

βNΛ ≡
(
Λ ◦ β,Λ ◦ θB ◦ β, · · · ,Λ ◦ θN−1

B ◦ β
)
.

For each completely positive unital map α and β, the functionals S̃S (ϕ; θA ),
S̃S (Λ∗ϕ; θB), and ĨS (ϕ;Λ∗, θA , θB) are defined by taking the supremum for
all possible A0’s, α’s, B0’s, and β’s:

S̃S (ϕ; θA ) = sup
α
S̃S (ϕ; θA , α),

S̃S (Λ∗ϕ; θB) = sup
β

S̃S (Λ∗ϕ; θB, β),

ĨS (ϕ;Λ∗, θA , θB) = sup
α,β

ĨS (ϕ;Λ∗, θA , θB, α, β),

where S̃S (ϕ; θA , α), S̃S (Λ∗ϕ; θB, β), and ĨS (ϕ;Λ∗, θA , θB, α, β) are given in
[28, 35] by

S̃S (ϕ; θA , α) = lim inf
N→∞

1

N
SS (ϕ;αN),

S̃S (Λ∗ϕ; θB, β) = lim inf
N→∞

1

N
SS (Λ∗ϕ;βNΛ ),

ĨS (ϕ;Λ∗, θA , θB, α, β) = lim inf
N→∞

1

N
IS (ϕ;αN, βN).

The fundamental inequalities with respect to S̃S (ϕ; θA ), S̃S (Λ∗ϕ; θB), and
ĨS (ϕ; Λ∗, θA , θB) are held in [35].

Proposition 1

0 ≤ ĨS (ϕ;Λ∗, θA , θB) ≤ min{S̃S (ϕ; θA ), S̃S (Λ∗ϕ; θB)}.

Since these functionals are given by using a channel transformation, they contain
the dynamical entropy (e.g., usual K-S entropies) as a special case [28, 35].
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Proposition 2 If Ak,A are abelian C∗-algebras and each αk is an embedding,
then our functionals coincide with classical K-S entropies:

S
S(A )
μ (ϕ; αM) = Sclassical

μ

(
M
m=1Ãm

)
,

I
S(A )
μ (ϕ; αM, βNid) = I classical

μ

(
M
m=1Ãm,

N
n=1 B̃n

)

for any finite partitions Ãm, B̃n of a probability space (Ω,F, ϕ) .

In general quantum systems, the following theorems are proved in [28, 35].

Theorem 7 Let αm be a sequence of completely positive maps αm : Am→ A such
that there exist completely positive maps α

′
m : A → Am satisfying αm ◦α′m→ idA

in the pointwise topology. Then

S̃S (ϕ; θA ) = lim
m→∞ S̃

S (ϕ; θA , αm).

Theorem 8 Let αm and βm be sequences of completely positive maps αm : Am →
A and βm : Bm → B such that there exist completely positive maps α

′
m : A →

Am and β
′
m : B → Bm satisfying αm ◦ α′m → idA and βm ◦ β ′m → idB in the

pointwise topology. Then one has

ĨS (ϕ;Λ∗, θA , θB) = lim
m→∞ Ĩ

S (ϕ;Λ∗, θA , θB, αm, βm).

The above theorems show Kolmogorov–Sinai-type convergence theorems for
the entropy and the mutual entropy [28, 29, 34, 35]. Based on these settings, one
can study Shannon’s coding theorems in quantum compound systems by using the
quantum capacity [36–39, 41–44].

6 Computation of Mean Entropy and Mean Mutual Entropy
for Open System Dynamics

We here calculate the mean entropy and the mean mutual entropy for open system
dynamics based on [54].

For a stationary initial states ρ =∑m ηm
∞⊗

i=−∞
ρ
(m)
i ∈ S

(
∞⊗

i=−∞
H1

)
and ξ =

∑
m′ ωm′

∞⊗
j=−∞

ξ
(m′)
j ∈ S

(
∞⊗

j=−∞
H2

)
, let ρ(m)i = ∑M

ni=1 λ
(m)
ni Eni ∈ S (H1) and

ξ
(m′)
j =∑M

ni=1 μ
(m′)
ni Fni ∈ S (H2). Then we have two compound states
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ΦE(α
N) =

M∑
n0=1

· · ·
M∑

nN−1=1

(∑
m

ηm

N−1∏
k=0

λ(m)nk

)(
N−1⊗
i=0

Eni

)
,

ΦE(β
N
Λt
) =

M∑
n0=1

· · ·
M∑

nN−1=1

(∑
m

ηm

N−1∏
k=0

λ(m)nk

)(
N−1⊗
i=0

Λ∗t Eni

)
.

When Λ∗t is the quantum channel given by the above open system dynamics in
Sect. 2.6, we get

Λ∗t Eni =
ni∑
ji=0

ji∑
�i=Li

μ
(m)
�i−ni+ji |τ

(�i+ji )
ji ,ni

(t) |2Fji ,

where Fji = | ji >< ji | is the ji-photon number state in S (H2). Two compound
states through the channel Λ∗t of open system dynamics are obtained by

ΦE(α
N ∪ βNΛt )

=
M∑
n0=1

· · ·
M∑

nN−1=1

(∑
m

ηm

N−1∏
k=0

λ(m)nk

)

×
n0∑
j0=0

· · ·
nN−1∑
jN−1=0

⎛
⎝
N−1∏
k′=0

⎛
⎝

jk′∑
�k′=Lk′

μ
(m)
�k′−nk′+jk′ |τ

(�k′+jk′)
jk′ ,nk′ (t) |2

⎞
⎠
⎞
⎠

×
(
N−1⊗
i=0

Eni

)(
N−1⊗
i′=0

Fji′

)
(12)

ΦE(α
N)⊗ΦE(βNΛt )

=
M∑
n0=1

· · ·
M∑

nN−1=1

(∑
m

ηm

N−1∏
k=0

λ(m)nk

)

×
M∑
n′0=1

· · ·
M∑

n′N−1=1

(∑
m′
ηm′

N−1∏
k′=0

λ
(m′)
n′k′

)

×
n′0∑
j ′0=0

· · ·
n′N−1∑
j ′N−1=0

⎛
⎝
N−1∏
k"=0

⎛
⎝

j ′k"∑
�k"=Lk"

μ
(m′)
�k"−n′k"+j ′k" |τ

(�k"+j ′k")
j ′k",n′k"

(t) |2
⎞
⎠
⎞
⎠

×
(
N−1⊗
i=0

Eni

)(
N−1⊗
i′=0

Fj ′i′

)
(13)
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Lemma 1 For a stationary initial state ρ = ∑m ηm
∞⊗

i=−∞
ρ
(m)
i ∈ S

(
∞⊗

i=−∞
H1

)
,

we have

IE(ρ;Λ∗t , αN , βN) =
M∑
j0=0

· · ·
M∑

jN−1=0

M∑
n0=J0

· · ·
M∑

nN−1=JN−1

(∑
m

ηm

N−1∏
k=0

λnk

)

×
⎛
⎝
N−1∏
k′=0

⎛
⎝

jk′∑
�k′=Lk′

μ
(m)
�k′−nk′+jk′ |τ

(�k′+jk′)
jk′ ,nk′ (t) |2

⎞
⎠
⎞
⎠

× log

⎛
⎜⎝
(∏N−1

k′=0

(∑jk′
�k′=Lk′ μ

(m)
�k′−nk′+jk′ |τ

(�k′+jk′)
jk′ ,nk′ (t) |2

))

∑M
n′0=J0

· · ·∑M
n′N−1=JN−1

(∑
m′ ηm′

∏N−1
k′=0 λ

(m′)
n′k′

)

1(∏N−1
k"=0

(∑j ′k"
�k"=Lk" μ

(m′)
�k"−n′k"+j ′k" |τ

(�k"+j ′k")
j ′k",n′k"

(t) |2
))

⎞
⎟⎟⎠ .

By using the above lemma, we have the following theorem.

Theorem 9

(1) For a stationary initial state ρ =∑m ηm
∞⊗

i=−∞
ρ
(m)
i ∈ S

(
∞⊗

i=−∞
H1

)
, we have

the lower bound of S̃(ρ; θA , αN) such as

S̃(ρ; θA , αN) ≥
∑
m

ηmS
(
ρ
(m)
0

)
.

(2) If η0 = 1, ηk = 0 (∀k ≥ 1), and λ(0)ni = λni of ρ =∑m ηm
∞⊗

i=−∞
ρ
(m)
i , then

S̃(ρ; θA , αN) = lim
N→∞

1

N
S(ρ;αN) = −

M∑
n=1

λn log λn

and

Ĩ (ρ;Λ∗t , θA , θB, αN , βN) =
M∑
j=1

M∑
n=J

λn

⎛
⎝

j∑
�=L
μ
(0)
�−n+j |τ (�+j)j,n (t) |2

⎞
⎠

× log

(∑j
�=L μ

(0)
�−n+j |τ (�+j)j,n (t) |2

)

∑M
n′=J λn′

(∑j

�′=L μ
(0)
�′−n′+j |τ (�

′+j)
j,n′ (t) |2

) .
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7 Quantum Dynamical Entropy for CP Maps

According to [26, 52], we explain the formulation of the KOW entropy.
Let A and B be the full algebras B(H ) and B (K ), respectively. Let ω be a

normal state on B and � be a normal, unital CP linear map from B⊗A to B⊗A .
For any normal states ϕ on A , a transition expectation E�,ω from B ⊗A to A is
defined by

ϕ
(
E�,ω

(
Ã
)) ≡ (ω ⊗ ϕ) (� (Ã)) = trK ⊗H

[
(ω̃ ⊗ ϕ̃) � (Ã)]

for any Ã ∈ B ⊗A in the sense of [2, 26], where ω̃ ∈ S (K ) and ϕ̃ ∈ S (H ) are
density operators associated with ω and ϕ. The dual map E∗�,ω of E�,ω

E∗�,ω (ϕ)
(
Ã
) = ϕ (E�,ω (Ã)) , Ã ∈ B ⊗A

is a lifting from S (A ) to S (B ⊗A ) in the sense of Accardi and Ohya [2]. Then
it represents

E∗�,ω (ϕ̃) = �∗ (ω̃ ⊗ ϕ̃) , ϕ̃ ∈ S (H )

Let Λ be a normal, unital CP map from A to A and id be the identity map on B.

ϕ
(
E
�,ω
Λ

(
Ã
))

is described by

ϕ
(
E
�,ω
Λ

(
Ã
)) = (ω ⊗ ϕ) ((id ⊗Λ)� (Ã))

= trK ⊗H
[(
ω̃ ⊗Λ∗ (ϕ̃))� (Ã)]

for any normal states ϕ and any Ã ∈ B ⊗A , where id ⊗Λ is a normal, unital CP
map from B ⊗ A to B ⊗ A and Λ∗ is a quantum channel [2, 23, 30, 37, 39, 42]
from S (H ) to S (H ) with respect to an input signal state ϕ̃ and a noise state ω̃.
The dual map E∗�,ωΛ of E�,ωΛ is a lifting from S (A ) to S (B ⊗A ) given by

E
∗�,ω
Λ (ϕ)

(
Ã
) = ϕ

(
E
�,ω
Λ

(
Ã
))
, Ã ∈ B ⊗A .

Then it represents

E
∗�,ω
Λ (ϕ̃) = �∗ (ω̃ ⊗Λ∗ (ϕ̃)) , ϕ̃ ∈ S (H ) ,

Based on the following relation

ϕ
(
E
�,ω
Λ

(
A1 ⊗ E�,ωΛ

(
A2 ⊗ · · · ⊗ E�,ωΛ

(
An−1 ⊗ E�,ωΛ (An ⊗ B)

)
· · ·
)))

= Φ∗�,ωΛ,n (ϕ) (A1 ⊗ · · · ⊗ An ⊗ B)
= tr(⊗n1K )⊗H Φ̃

∗�,ω
Λ,n (ϕ̃) (A1 ⊗ · · · ⊗ An ⊗ B)
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for all A1, A2, · · · , An ∈ B, B ∈ A , and any ϕ ∈ S (A ), a lifting Φ∗�,ωΛ,n from
S (A ) to S

((⊗n1B
)⊗A

)
and marginal states are given by

ψ
�,ω
Λ,n (A1 ⊗ · · · ⊗ An) = Φ∗�,ωΛ,n (ϕ) (A1 ⊗ · · · ⊗ An ⊗ I ) (A1, · · · , An ∈ B)

ϕ
�,ω
Λ,n (B) = Φ∗�,ωΛ,n (ϕ) (I ⊗ · · · ⊗ I ⊗ B) (B ∈ A )

For any ϕ̃ ∈ S (H ), a lifting Φ̃∗�,ωΛ,n from S (H ) to S
((⊗n1K

)⊗H
)

and
marginal states

σ
�,ω
Λ,n = trH Φ̃

∗�,ω
Λ,n (ϕ̃) ∈ S

(⊗n1K
)

and ρ�,ωΛ,n = tr⊗n1K Φ
∗�,ω
Λ,n (ϕ̃) ∈ S (H )

are obtained, whereΦ∗�,ωΛ,n (ϕ) (resp.Φ∗�,ωΛ,n (ϕ̃)) is a compound state with respect to

ψ
�,ω
Λ,n (resp. σ�,ωΛ,n ) and ϕ�,ωΛ,n (resp. ρ�,ωΛ,n) in the sense of [26, 52].

Definition 1 The quantum dynamical entropy with respect to Λ, ϕ, �, and ω is
defined by

S̃ (Λ;ϕ, �, ω) ≡ lim sup
n→∞

1

n
S
(
ϕ
�,ω
Λ,n

)
,

where S
(
ϕ
�,ω
Λ,n

)
is the S -mixing entropy of ϕ�,ωΛ,n ∈ S

(⊗n1B
)

given by S
(
ϕ
�,ω
Λ,n

)
=

−trϕ̃�,ωΛ,n log ϕ̃�,ωΛ,n. The dynamical entropy with respect to Λ and ϕ is defined as

S̃ (Λ;ϕ) ≡ sup {S (Λ;ϕ, �, ω) ;�,ω} .

7.1 Generalized AF and Generalized AOW Dynamical
Entropies

Here we briefly review the formulation of the generalized AF entropy and the
generalized AOW entropy given by the KOW entropy [26]. Transition expectations
E
γ
Λ fromMd ⊗A to A and Eγ(0)Λ fromM0

d ⊗A to A are defined by

E
γ
Λ

⎛
⎝

d∑
i,j=1

Eij ⊗ Aij
⎞
⎠ =

d∑
i,j=1

Λ
(
γ ∗i Aij γj

)
,

E
γ (0)
Λ

⎛
⎝

d∑
i,j=1

Eij ⊗ Aij
⎞
⎠ =

d∑
i=1

Λ
(
γ ∗i Aiiγi

)
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for a finite operational partition of unity γ1, · · · , γd ∈ A (=B (H )), i.e.,
d∑
i=1
γ ∗i γi = I , and a normal unital CP map Λ from A to A , where Eij = |ei〉

〈
ej
∣∣

with normalized vectors ei ∈ H , i = 1, 2, · · · , d ≤ dim H , Md in A is the
d × d matrix algebra andM0

d is a subalgebra ofMd consisting of diagonal elements

of Md . The liftings Eγ ∗Λ from S (A) to S (Md ⊗A ) and Eγ(0)∗Λ from S (A) to
S
(
M0
d ⊗A

)
are described by

E
γ ∗
Λ (ϕ̃) =

d∑
i,j=1

Ei,j ⊗ γiΛ∗ (ϕ̃) γ ∗j ,

E
γ (0)∗
Λ (ϕ̃) =

d∑
i=1

Eii ⊗ γiΛ∗ (ϕ̃) γ ∗i .

Then the quantum Markov states ϕ̃γΛ,n and ϕ̃γ (0)Λ,n are obtained by

ϕ̃
γ
Λ,n =

d∑
i1,··· ,in=1

d∑
j1,··· ,jn=1

trH ϕ̃Λ
(
Wj1i1

(
Λ
(
Wj2i2

(· · ·Λ (Wjnin (IH )
)))))

×Ei1j1 ⊗ · · · ⊗ Einjn
and

ϕ̃
γ (0)
Λ,n =

d∑
i1,··· ,in=1

trH ϕ̃Λ
(
Wi1i1

(
Λ
(
Wi2i2

(· · ·Λ (Winin (IH )
)))))

× Ei1i1 ⊗ · · · ⊗ Einin

=
d∑

i1,··· ,in=1

pi1,··· ,inEi1i1 ⊗ · · · ⊗ Einin ,

where

Wij (A) = γ ∗i Aγj , A ∈ B (H ) ,

W ∗
ij (ϕ̃) = γj ϕ̃γ ∗i , ϕ̃ ∈ S (H ) ,

pi1,··· ,in = trH ϕ̃Λ
(
Wi1i1

(
Λ
(
Wi2i2

(· · ·Λ (Winin (IH )
)))))

= trH W
∗
inin

(
Λ∗ · · ·Λ∗ (W ∗

i2i2

(
Λ∗
(
W ∗
i1i1

(
Λ∗ (ϕ̃)

)))))
.

Based on [26], there exist CP maps -∗n : ϕ̃γΛ,n → ϕ̃
γ (0)
Λ,n and &∗n : ϕ̃γ (0)Λ,n → ϕ̃

γ
Λ,n.

Therefore the generalized AF entropy S̃B (Λ;ϕ) and the generalized AOW entropy
S̃
(0)
B (Λ;ϕ) ofΛ and ϕ with respect to a finite-dimensional subalgebra B ⊂ B (H )

are defined by
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S̃B (Λ;ϕ) = sup
{γi }⊂B

S̃ (Λ;ϕ, {γi}) ,

S̃
(0)
B (Λ;ϕ) = sup

{γi } ⊂B
S̃(0) (Λ;ϕ, {γi}) ,

where the dynamical entropies S̃ (Λ;ϕ, {γi}) and S̃(0) (Λ;ϕ, {γi}) are obtained by

S̃ (Λ;ϕ, {γi}) = lim sup
n→∞

1

n
S
(
ϕ
γ
Λ,n

)
,

S̃(0) (Λ;ϕ, {γi}) = lim sup
n→∞

1

n
S
(
ϕ
γ (0)
Λ,n

)
.

Then the following theorem [26] is held:

Theorem 10

S̃B (Λ;ϕ) ≤ S̃(0)B (Λ;ϕ) .

S̃
(0)
B (Λ;ϕ) is equal to the AOW entropy if {γi} is PVM (projection-valued

measure) and Λ is given by an automorphism θ . S̃B (Λ;ϕ) is equal to the AF
entropy if

{
γ ∗i γi

}
is POV (positive-operator-valued measure) and Λ is given by

an automorphism θ .

8 Calculation of Generalized AOW Dynamical Entropy for
Open System Dynamics

We here compute the generalized AOW entropy for open system dynamics accord-
ing to [55].

Let ρ and ξ be

ρ = ϕ̃ =
M∑
n=1

λnEn ∈ S (H1) and ξ = ω̃ =
M∑
k=1

μkFk ∈ S (H2) .

For γj =
∣∣xj
〉 〈
xj
∣∣ (
{∣∣xj

〉}
is a CONS in H2), the output state of Λ∗t is obtained by

Λ∗t (ϕ̃) =
M∑
n=1

λnΛ
∗
t En =

M∑
n=1

λn

n∑
m=0

m∑
�=L
μ�−n+m|τ (�+m)m,n (t) |2Fm,

=
M∑
m=0

(
M∑
n=m

λn

m∑
�=L
μ�−n+m|τ (�+m)m,n (t) |2

)
Fm
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W ∗
jj

(
Λ∗t (ϕ̃)

) = γ ∗j Λ∗t (ϕ̃) γj

=
M∑
k=0

(
M∑
n=m

λn

m∑
�=L
μ�−n+m|τ (�+m)m,n (t) |2

) ∣∣〈m, xj
〉∣∣2 ∣∣xj

〉 〈
xj
∣∣ .

Λ∗t
(
W ∗
j1j1

(
Λ∗t (ϕ̃)

))

=
M∑
m1=0

⎡
⎣

M∑
n1=k1

λn1

m1∑
�1=L1

μ�1−n1+m1 |τ (�1+m1)
m1,n1

(t) |2
⎤
⎦ ∣∣〈m1, xj1

〉∣∣2

×
⎡
⎣

j1∑
m2=0

m2∑
�2=L2

μ�2−j1+m2 |τ (�2+m2)
m2,j1

(t) |2
⎤
⎦Fm2,

W ∗
j2 j2

(
Λ∗t
(
W ∗
j1 j1

(
Λ∗t (ϕ̃)

)))

= γ ∗j2Λ∗t
(
W ∗
j1j1

(
Λ∗t (ϕ̃)

))
γj2

=
M∑
n1=1

λn1

⎡
⎣

n1∑
m1=0

m1∑
�1=L1

μ�1−n1+m1 |τ (�1+m1)
m1,n1

(t) |2 ∣∣〈m1, xj1
〉∣∣2
⎤
⎦

×
⎡
⎣
j1∑
j2=0

j2∑
�2=L2

μ�2−j1+m2 |τ (�2+m2)
m2,j1

(t) |2 ∣∣〈m2, xj2
〉∣∣2
⎤
⎦ ∣∣xj2

〉 〈
xj2

∣∣

are satisfied for n � 3. Then the above compound state ϕ̃γ (0)Λt ,n
is written by

ϕ̃
γ (0)
Λt ,n

=
M∑

j1,··· ,jn=1

qj1,··· ,jn (t)
n⊗
k=1

∣∣xjk
〉 〈
xjk

∣∣ ,

where

qj1,··· ,jn (t)

= trH W ∗
jn jn

(
Λ∗t
(
· · ·Λ∗t

(
W ∗
j2 j2

(
Λ∗t
(
W ∗
j1 j1

(
Λ∗t (ϕ̃)

)))) · · ·
))
.

Based on [26, 52], one can obtain

Λ∗t
(∣∣xj

〉 〈
xj
∣∣) =

j∑
m=0

m∑
�=L
μ�−j+m|τ (�+m)k,j (t) |2Fk,
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qj1,··· ,jn (t) =
n∏
k=2

⎛
⎝
jk−1∑
mk=0

mk∑
�k=Lk

μ�k−jk−1+mk |τ (�k+mk)mk,jk−1
(t) |2 ∣∣〈mk, xjk

〉∣∣2
⎞
⎠

×
⎛
⎝

M∑
n1=1

λn1

n1∑
m1=0

m1∑
�1=L1

μ�1−n1+m1 |τ (�1+m1)
m1,n1

(t) |2 ∣∣〈m1, xj1
〉∣∣2
⎞
⎠

=
n∏
k=2

qjk,jk−1 (t) qj1 (t) .

Thus we have the following theorem.

Theorem 11 When ϕ and ω are normal states given by

ϕ (A) = tr [ϕ̃A] = tr
[(

M∑
n=1

λnEn

)
A

]
(∀A ∈ A ) ,

ω (B) = tr [ω̃B] = tr
[(

M∑
m=1

μmFm

)
B

]
(∀B ∈ B)

and Λ∗t is the quantum channel of open system dynamics satisfying the condition∑
j qk,j (t) qj (t) = qk (t), the quantum dynamical entropy with respect to Λt, ϕ,

and
{
γj
}

is obtained by

S̃(0)
(
Λt ;ϕ,

{
γj
}) = −

∑
j,k

qk,j (t)qj (t) log qk,j (t),

where

qj (t) =
M∑
n1=1

λn1

n1∑
m1=0

m1∑
�1=L1

μ�1−n1+m1 |τ (�1+m1)
k1,n1

(t)|2 ∣∣〈m1, xj
〉∣∣2

and

qk,j (t) =
j∑

mk=0

mk∑
�k=Lk

μ�k−j+mk |τ (�k+mk)mk,j
(t)|2 |〈mk, xk〉|2 .

9 Conclusion

We explained the quantum channels associated with the open system dynamics and
the quantum communication processes. Some examples of quantum communication
channels are discussed. The quantum mutual entropy by Ohya is treated for purely



252 N. Watanabe

quantum systems, and semiclassical mutual entropy is a special case of the quantum
mutual entropy. We briefly reviewed the mean entropy and the mean mutual
entropy for general quantum systems. The lower bound of the mean entropy for
the open system dynamics is obtained. For a given assumption, the mean entropy
and the mean mutual entropy for the open system dynamics are calculated. We
briefly review the definition of the KOW dynamical entropy and the formulation
of the generalized AF and AOW entropies, and we calculate the generalized AOW
dynamical entropy for a simple model of open system dynamics.
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Bell Correlations and the Common
Future

Ämin Baumeler, Julien Degorre, and Stefan Wolf

1 Introduction

Reichenbach’s principle [46] states that, in a fixed causal structure, correlations
either stem from a common cause or from one part directly influencing the other. The
principle looks natural since it imagines a mechanism that leads to the correlations.
Bell’s theorems [9, 10] limit the explanatory power of a common cause in the form
of classical information, while quantum theory predicts correlations beyond that—
so-called Bell non-local correlations (see also [14]). But then, strangely enough, not
all correlations compatible with no-signaling are attainable in nature: An example
of an idealization beyond what quantum physics predicts are PR correlations [43],
i.e., binary inputs X, Y and outputs A,B satisfying A⊕ B = XY .

The absence of a mechanism behind Bell non-local correlations is disturbing, and
several patches have been proposed: One can loosen Reichenbach’s principle and
simply regard the quantum state as a common cause (then, no further mechanism
is to be expected) [2, 16]; one can resort to one measurement event influencing
another (that would have to be an instantaneous fine-tuned influence in a preferred
frame [4, 5, 15, 19, 48, 52]); one can assume signals to travel to the past [20, 44] or
suppose the existence of multiple realities [13]—but even at that price, no striking
story has been told yet.

If the data in question are never brought together, no correlation can be seen
(Fitzi, M., 2008, personal communication). At the occasion of that necessary
rendezvous in the future, the (physically represented) pieces of information locally
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interact—and this detection procedure of the correlation may be considered its
origin: Such violations of causality can become possible, e.g., through closed time-
like curves (CTCs). CTCs are world-lines closed in time: A system traveling along it
can meet its “younger self.” CTCs are consistent with general relativity [32, 38]. We
consider the case where all information is classical and all interactions local: The
established correlations are sent to the past via a CTC as described by Deutsch [25],
ending up in a classical story behind Bell non-local correlations.

This text is organized as follows. Sections 2 and 3 review specific modifications
of causality, namely, Hermann’s relative causality and Costa de Beauregard’s
retro-causality. Section 3.2 presents a new formulation of this “zigzag” model
through relaxing measurement independence. Section 4 describes a simple classical
mechanism simulating Bell non-local correlations. Section 5 discusses relations to
previous stories (parallel lives, retro-causality, and Viennese “process matrices”).

2 Relative Causality

The works of Grete Hermann, physicist and philosopher, have been strangely
overlooked. Not only did she spot a mistake (later called “silly” by Bell) in
von Neumann’s [50] “proof” that quantum theory cannot be extended to yield
deterministic predictions, she also provided her own arguments against such an
extension—besides contributing to a better understanding of causality. In this
context, she described the measurement process in the spirit of the relative-state
interpretation [29, 30] of quantum theory—10 years before Hugh Everett III did.

Hermann’s 1948 article [34] looks into the process of measuring an electron’s
position as described quantum-physically: If that electron interacts with a photon
(described quantum-physically as well), the result is

a new wave-function which is uniquely determined by the given wave-functions: It does,
therefore, not contain the uncertainty that we would have to attribute to that mystic process.1

At this stage, one would have to measure this new wave-function to determine the
position of the electron.

Without any such new observations, the quantum-mechanical formalism leads to a progress-
ing not visualizable braiding of the fundamental particles.2

According to Hermann, this means that

the electron, after colliding with the photon, is described by a wave-function with a sharp
position only relatively to the new measurement,3

1“eine neue Wellenfunktion, die eindeutig durch die beiden gegebenen Wellenfunktionen [. . . ]
bestimmt ist. [. . . ] [S]ie enthält also nicht die Unbestimmtheit, die wir jenem mystischen [. . . ]
[P]rozess zuschreiben müßten.”
2“Ohne solche neuen Beobachtungen führt der quantenmechanische Formalismus zu einer immer
weitergehenden, aber ganz unanschaulichen Verflechtung der Elementarteilchen.”
3“Erst relativ zu der neuen Messung wird der Zustand des Elektrons nach seinem Zusammenstoß
mit dem Lichtquant durch eine Wellenfunktion mit scharfer Ortsangabe [. . . ] beschrieben [,]”
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and in that perspective (the key of the argument)

it, therefore, constitutes an autonomous physical system characterized by its own wave-
function immediately after the collision with the photon.4

In other words, after the interaction, the measured system’s wave-function relates
to the measurement outcome—which is in what she sees the cause for the electron
to be at that position. Such a cause, however, cannot be brought in to give better
predictions as it is only accessible to the experimenter after the measurement.
In [35], she writes:

These causes could not have been used for predictions; they determine the system in a
relative way, relatively to the observation which was obtained only at the moment of the
measurement. They, therefore, could be accessed after this observation only and do, hence,
not allow to predict the outcome.5

Through these thoughts, Hermann anticipates Everett’s formalism [29, 30] and, at
the same time, disentangles causality and predictability. More specifically, Her-
mann [36] describes an ontology in which a measurement entangles the observed
object to the apparatus, and only relative statements are possible. Everett goes
beyond Hermann’s view by invoking the wave-function of the whole universe. His
formalism has often been called “many worlds”: Whenever a system gets entangled
with the apparatus, all possible results are realized in parallel universes—a view
brought forward, for example, by DeWitt and Deutsch [26, 28]. This is a leftover of
classical concepts: “The coëxisting branches [. . . ] can only be related to ‘worlds’
described by classical physics. [. . . ] [T]he [. . . ] meaning of Everett’s ideas is not the
coëxistence of many [classical] worlds, but on the contrary, the existence of a single
quantum one” [39].

A variation of the Hermann/Everett theme are “parallel lives” [13]: Instead of
globally, the individual experimenters split locally into “bubbles” that are later only
visible to each other if the quantum predictions result—the model is local and
realistic.

If one incorporates time into the description, then a timeless wave-function of
the universe as a whole can be imagined [41, 53]: The state of one part of the
universe is determined relatively to another, called “clock.” By that, all dynamics
(the Schrödinger equation) can be cast in static form: Relatively to the clock, the
systems undergo the quantum dynamics.

4“bildet es also unmittelbar nach dem Zusammenstoß mit dem Lichtquant durchaus ein für sich
bestehendes, durch seine eigene Wellenfunktion charakterisiertes physikalisches System.”
5“Zu einer Voraussage [. . . ] wären jene Gründe [. . . ] nicht zu gebrauchen; denn auch sie
bestimmen [. . . ] das System nur relativ, und zwar relativ zu der Beobachtung, die bei der Messung
selber erst gemacht wurde. Sie konnten also dem Physiker erst nach dieser Beobachtung zur
Verfügung stehen und ihm somit keine Vorausberechnung von deren Ergebnis gestatten.”
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3 From Measurement-Dependence to Retro-Causality

One way of relaxing the causal structure is by a retro-causal effect: The “Parisian
zigzag” was introduced by Costa de Beauregard 70 years ago [20] and recently
revived by Price [44]; we relate it to measurement-dependence.

3.1 “Parisian Zigzag”

In 1947,6 Olivier Costa de Beauregard questioned the no-signaling assumption
(no instantaneous causality) made by Einstein, Podolsky, and Rosen (“EPR” for
short) in 1935 and considered actions to and from the common past: “[A]ll the
weight of Einstein’s argument is moved from instantaneous causality to retroactive
causality”7[20]. This represents a reply to EPR—circumventing the claim to
augment quantum theory by hidden variables—that can even be seen as a reply
to Bell’s later reply to EPR.

The “Parisian zigzag” [21, 22, 44] gives a description of Bell non-local cor-
relations via retro-causation, i.e., causation from the future to the past.8 Assume
an experiment in which Alice and Bob each get a photon to be measured. In that
model, the photons “do not possess polarizations of their own,” but rather “borrow
one later” [22]: When Alice performs the measurement on her photon, it gets
a random polarization that is then sent to the photon’s source in the past, from
where the “borrowed” polarization travels on to Bob in the future (this is why the
speculation is called “zigzag”). In that model, “Einstein’s prohibition to ‘telegraph
to the past’ does not hold at the level” of the photons but at the one of macroscopic
(in other words, classical) objects only [22]. A crucial point is that no photon travels
directly from one party to the other (a path that is “physically empty”). Instead, it
goes “along the Feynman-style zigzag [. . . ] made of two time-like vectors (which
is physically occupied).” The view is related to models [31] with measurement-
dependence through a retro-causal effect, perfectly simulating a singlet. Section 3.2
links retro-causal approaches to measurement-dependence.

6In 1947, Olivier Costa de Beauregard shared this idea with Louis de Broglie who disapproved. It
was published in 1953 [23].
7“[T]out le poids de l’argument d’Einstein est ainsi transporté du paradoxe de la causalité
immédiate à la causalité rétroactive”.
8In quantum information, Schumacher [11] suggested such a “zigzag” for interpreting superdense
coding: “[O]ne of the two bits is sent forward in time through the treated particle, while the other
bit is sent backward in time to the EPR source, then forward in time through the untreated particle,
until finally it is combined with the bit in the treated particle to reconstitute the two-bit message.
Because the bit ‘sent backward in time’ cannot be used to transmit a meaningful message without
the help of the other particle, no opportunity for time travel or superluminal communication is
created, just as none is created in the classic EPR experiment in which simultaneous measurements
are used to establish non-message-bearing correlations over a spacelike interval.”
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Shared randomness

X Y

A B

Time

ALICE BOB

Λ ∼ Puniform

Fig. 1 Bell’s locality: Time flows from top to bottom. Alice (Bob) inputs X (Y ) and obtains A
(B). Alice and Bob share an infinite amount of randomness 
 distributed independently of Alice’s
and Bob’s inputs

3.2 Retro-Causal Models

The retro-causality of the “Parisian zigzag” is related to the relaxation of measure-
ment independence in the Bell model: We denote byX (Y ) Alice’s (Bob’s) input, the
outputs beingA andB. The behavior of interest is a conditional distribution PAB|XY .
Bell-locality allows Alice and Bob to share an infinite amount of randomness
 (see
Fig. 1): A distribution PAB|XY is called Bell-local if it can be written as

PAB|XY =
∑
λ

P
(λ)PA|X,
=λPB|Y,
=λ .

It is remarkable that quantum theory is consistent with correlations which are not
Bell-local [9]. The definition of Bell-locality decomposes into three conditions.

1. No-signaling: Alice’s output is independent of Bob’s input, and vice versa.
2. Locality: The correlations between Alice and Bob stem from a shared random

variable 
.
3. Measurement independence: The shared randomness is independent of Alice’s

and Bob’s inputs.

The third assumption is usually implicit as 
 is understood to root in the common
past of Alice and Bob. If we allow the shared randomness to depend on Alice’s
and Bob’s inputs, it is possible to reproduce the joint distribution of a Bell non-
local quantum state [12]. Relaxing this assumption can mean, e.g., that the shared
randomness influences the measurement settings of Alice and Bob. This does not
change the causal structure: The common cause is in the past, and there is no retro-
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Fig. 2 A Bell-like model with measurement-dependence and retro-causal influence: The distribu-
tion of the shared random variables depends on Alice’s and Bob’s inputs

causal effect (this is a flavor of determinism or the fully causal hidden variable
approach of Brans [12, 33]). Alternatively, it can mean that the inputs influence the
shared randomness. This points to the distributed-sampling problem [24] and retro-
causal models as discussed above.

Here, we are interested in a model with relaxed causal structure and focus on
the second option: A Bell-local model with measurement-dependence through a
retro-causal influence (Fig. 2). This model can reproduce no-signaling correlations:
A first idea is to send Alice’s input retroactively to the common past and to share it
with Bob. Alternatively, Alice’s input can be retro-causally used to bias the uniform
distribution of the shared randomness (
 ∼ Puniform). This is the retro-causal model
of Feldman [31], solving a distributed-sampling problem, and it has been shown to
allow Alice and Bob for simulating a singlet [24]: The Toner-Bacon protocol with
one bit of communication translates to a “zigzag” with a retro-causal bit (from Alice
to the common past). Note that in these models, the mutual information between the
shared randomness 
 and Alice’s input is nonzero.9 It means that there is a hidden
influence going from Alice to Bob via a fine-tuned “zigzag” [52]. Alternatively,
we can build a mechanism without signaling between Alice and Bob. We use the
fact [24] that the protocol reproducing a maximally entangled state with the help
of one PR-box [17] leads to a “zigzag-style protocol” with two “retro-causal bits:”
One bit each travels from Alice and Bob, respectively, to their common past, the
PR correlation is established there, and the singlet can be simulated.

9There are numerous results on calculating and minimizing its amount [6, 33, 37, 47, 49].
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4 From Relative and Retro-Causality to Closed Time-Like
Curves

Both models of Sect. 3.2 have in common that the future affects the past. In “parallel
lives,” this manifests itself in the parties meeting up for the correlation to be
established/detected. In the “zigzag” models, the inputs of Alice and Bob are sent
to the common past, and the correlation is established there. A combination of
these pictures sees the respective data meet in the future, and the local computation
necessary for the verification of the correlation is at the same time its origin—if the
data can travel back in time via a closed time-like curve (CTC).10

4.1 Closed Time-Like Curves with Classical Information

The idea of Deutsch’s model for CTC dynamics is that two systems undergo a joint
evolution after which one of them travels back to the past and reenters. Whereas
Deutsch described his model for quantum states, we use classical information [1].
The causality-respecting system is denoted by R, the causality-violating one by V ,
and the joint evolution is ε = PR′V ′|RV . For an initial state P init

R of R and given ε,
Deutsch’s consistency condition is

P cons
V =

∑
r ′,r,v

PR′=r ′,V ′|R=r,V=vP init
R=rP cons

V=v , (1)

i.e., the states of V before and after the evolution are identical (see Fig. 3). Generally,
several consistent states can exist: In that case, Deutsch suggests to choose the one
maximizing the entropy, avoiding the information antinomy. The final state P fin

R of
the causality-respecting system is then

P fin
R =

∑
v′,r,v′

PR′,V ′=v′|R=r,V=vP init
R=rP cons

V=v . (2)

Fig. 3 A causality-respecting
system jointly evolves with a
causality-violating one: The
latter system’s state is the
fixed point with maximal
entropy ε

Pinit
R

Pfin
R

Pcons
V

10The latter have already been widely discussed in quantum information [1, 3, 25, 54].
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Fig. 4 A PR box with binary
inputs (X, Y ) and outputs
(A,B)
satisfying A⊕ B = XY A⊕B = XY

YX

A B

Fig. 5 A PR box is simulated locally in the common future of Alice and Bob. The outputs of the
PR box travel back in time through a Deutsch closed time-like curve. The dashed lines represent
the light cones. Time flows bottom-up

4.2 No-Signaling Correlations from Closed Time-Like Curves

We present the setup with Deutsch CTCs based on random variables to repro-
duce any no-signaling correlation. We show the representative example of the
Popescu/Rohrlich (PR) box [43] defined as (see Fig. 4):

P PR
AB|XY (a, b, x, z) =

δxy,a⊕b
2

. (3)

If Alice and Bob want to simulate the PR box with shared classical randomness,
they can reach a success probability of 3/4. When, instead, Alice and Bob share a
quantum state, then (at most [18]) roughly 85% is possible. If, on the other hand,
Alice and Bob have access to a classical CTC, they can perfectly simulate a PR box
by local interactions. The idea is that Alice and Bob send their inputs X, Y to the
common future to have them interact locally, resulting in outputs according to the
PR condition, and let them travel back along the CTC (see Fig. 5).

The setup uses an “open” time-like curve [42, 54]: The systems traveling to the
past do not self-interact. When the local operations are swaps, then a single fixed
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point of the evolution exists (the PR box); this avoids the information antinomy.
Note that the setup does not become signaling even if Alice or Bob choose to apply
a different operation locally. First, the joint distribution P PR

AB|XY (a, b, x, z) of the PR
box is no-signaling, and second, the state of all systems just before the parties apply
their local operations is PXPYρ, where Alice’s part of ρ contains no information on
Y , and vice versa: Deutsch CTCs are no-signaling preserving. (They are, however,
still an “overkill” because they allow for reproducing any no-signaling distribution.
A question worth exploring is to find a consistent mechanism, weaker than classical
Deutsch CTCs, restricting the resulting correlations—ideally to exactly the quantum
correlations.)

5 Relation to the Other Models

We discuss the relation of our speculation to previously considered “stories” behind
the emergence of Bell correlations.

5.1 Hermann/Everett and “Parallel Lives”

The parallel-lives model [13] (see also [27]) assumes that every party, when
performing a measurement, splits into “bubbles” in different realities, labeled by
the measurement outcome. When Alice and Bob meet in the common future to
compare their results, only those “bubbles” are visible to each other for which the
labels reproduce the desired correlation. CTCs are an alternative to such a matching
rule.

5.2 Retro-Causality and Distributed Sampling

In the retro-causal “Parisian zigzag” [20–22, 44, 45], the input of Alice is sent to the
past where it influences the shared random variable of Bob. According to Sect. 3.2,
this model is fine-tuned [52] and harmonizes with our own speculation in the sense
that a CTC can be seen as a mechanism for achieving retro-causality operationally
and in a consistent way, i.e., without time-travel antinomies.

5.3 The “Process-Matrix” Framework

In [40], no causal structure is assumed a priori, but only local assumptions are
made: The parties receive a system from the environment, interact with it, and
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output it back to the environment. The latter is noncausal: The inputs to the parties
can depend on their outputs. The framework allows for correlations incompatible
with definite orders of the parties. Since such correlations can be obtained even
for the classical case [8], one might wonder whether also Bell-like correlations
can. This is, however, not so. More specifically, the question is whether Bell
non-local correlations can be seen as arising from some classical (as opposed to
quantum) mechanism which is noncausal. The answer to this question is: “If yes,
then only at the expense of signaling.” Thus, the classical variant of the process-
matrix framework does not allow for a non-signaling explanation of Bell non-local
correlations. The reasoning is straightforward: No-signaling correlations are causal
(they can be simulated in a causal way); and the contrapositive thereof is that
noncausal correlations are signaling. In other words, any classical process matrix
that allows for noncausal correlations—this is the surplus of the process-matrix
framework—allows for signaling as well.

6 A Look Back and a Look Forward

In Sects. 2 and 3, we revisit two routes—proposed more than 20 years before
Bell’s argument—to relaxing the causal structure for reconciling Reichenbach’s
principle and quantum correlations: Hermann’s relative causality and Costa de
Beauregard’s retro-causality. In Sect. 3.2, we show a new formulation of the
“zigzag” model rooted in measurement-dependence and shedding light on the
hidden signaling involved. In Sect. 4, we realize the retro-causal effect with closed
time-like curves, hereby speculating about a classical mechanism establishing Bell
non-local correlations.

When the parts of a system in an entangled quantum state are measured,
then shared classical information can be insufficient for explaining the observed
correlations: John Stewart Bell’s “exploit” in 1964 questioned fundamentally the
validity of an attack to quantum theory by Einstein, Podolsky, and Rosen in
1935—but the puzzle is, after Bell, as unsolved as ever: What could be a classical
mechanism leading to correlations of classical information? Reichenbach’s principle
states that in a given causal structure, this can root either in a common cause in
the common past or in a direct influence from one of the correlated events to the
other. Various results question its applicability in the light of Bell correlations—
not only but in particular in the multipartite scenario [4, 5, 19, 48, 52]. There
are at least three escapes from the dilemma: First, Reichenbach’s principle is
declared wrong, Bell correlations being a counterexample. It could then, second, be
replaced by a modified—quantum—principle accepting as a reason for correlations
of classical pieces of information also an entangled state. Third, we can drop the
assumption of a fundamental causal structure (Reichenbach’s principle’s basis).
With the first two “emergency exits,” the story ends here; we consider the third
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option: Drop fundamental causality.11 This text is concerned with how loopholes
of rigid causality, such as closed time-like curves, can be used to obtain Bell
violations. Let us finish with a wilder speculation: What if, in the spirit of Wheeler’s
“It from Bit” [51], space-time causality emerges from “laws of large numbers”
at the macroscopic level of the thermodynamic limit hand in hand with—and not
prior to—the classical12 information so strangely correlated? (Can we come up
with a coherent combinatorial canvas comprehending the creation of classicality,
correlations, and causality—combined?)
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Temporal Vibrations in a Quantized Field

Hou Yau

1 Introduction

Nature, in general, prefers symmetries [1, 2]. Our experiences tell us that by
restoring symmetry among equations in a scientific theory, dramatic discoveries can
sometimes be revealed. One of these achievements is the Maxwell equations. In
developing his formulation for the electrodynamic theory, Maxwell saw the need to
add an extra term to bring symmetry in his equations. The extra term (“displacement
current”) was added to his fourth equation to describe how the electric and magnetic
fields vary in time relating to the distributions of electric charges and currents. It is
Maxwell’s insight that ultimately led to the full unification of electrodynamics and
optics. The extra term in Maxwell’s fourth equation generalizes the laws of electro-
dynamics that include radiation solutions for all known optical phenomena [3].

Despite nature’s preference for symmetries, the treatment of time and space in
quantum theory is not symmetrical. As in Newtonian mechanics, time is assumed
the same for all reference frames in quantum theory [4, 5]. It is postulated as a
parameter and not treated as an operator. However, this is in contrast with how
relativity is formulated which requires space and time to be treated on the same
footing. This contradiction, as a result, has created constellation of problems when
we try to unify the two fundamental theories [6, 7]. In order to make quantum theory
more symmetrical, can time have a more dynamical role in its formulation?

The reason not to consider time as an operator can be traced back to Pauli’s
era. According to Pauli’s reasonings [8] and subsequent work by Srinivas and
Vijayalakshmi [9], a time operator t should satisfy a commutation relation with the
Hamiltonian operator H , i.e., [H, t] = −i. Letting t as the universal time operator
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valid for all systems, its spectrum should span continuously over the entire real line.
This would also imply the same for the eigenvalues ofH . However, as we know, the
HamiltonianH of a physical system should be bounded from below.1 Some systems
also have discrete energy eigenvalues. Therefore, the assumption of a continuous
unbounded energy spectrum will contradict the properties of a real physical system.
A self-adjoint time operator cannot exist that is canonically conjugate to a semi-
bounded or discrete Hamiltonian. This is widely known as Pauli’s theorem.

Although Pauli’s theorem is generally accepted, there are many cases that suggest
time can have a more dynamical role in quantum theory, for example, tunneling time
[11, 12], decay time of an unstable particle [13], arrival time of a particle [14, 15],
time as a fundamentally discrete dynamical variable suggested by T. D. Lee [16],
and more as shown in [17–20, 22–25], [21, and references therein]. In many of
these examples, the “intrinsic time” [26] of the investigated systems can be taken
as an operator. Their results show that time and space can have a more equal status
in a quantum field. The treatment of time in quantum theory remains one of the
challenging open questions in the foundations of physics.

In quantum theory and Newtonian mechanics, matter can have vibration in the
spatial directions but not in the temporal direction. In fact, if time and space are
to be treated on the same footing, it is possible to allow matter to vibrate in time
[27, 28]. These temporal vibrations are additional degrees of freedom that can be
introduced in a matter field. As discussed earlier, Maxwell introduced an extra
term in his formulation for electrodynamic theory. Here, we will introduce extra
temporal vibrations to restore symmetry between time and space in the formulation
of a matter field.

This paper is organized in the following manner. In Sect. 2, we construct a plane
wave with 4-vector amplitude (T ,X) that has vibrations of matter in space and time.
By studying the Hamiltonian density equation of this plane wave in Sect. 3, we find
that a particle observed in this system has oscillation in proper time. This temporal
oscillation can only have one unique amplitude. In Sects. 4 and 5, we investigate
the quantum properties of the system (e.g., Schrödinger equation, Klein-Gordon
equation, bosonic field, probability density, etc.). The system with vibrations of
matter in space and time has the familiar structures of a real quantum field. In
Sect. 6, we consider the “internal time” of the system as a self-adjoint operator. The
spectrum of this operator spans the entire real line even though the Hamiltonian of
the system is bounded from below. In our formulation, the “external time” (taking
the role of a universal time for measuring the temporal vibrations) is a parameter. It
is not an operator as called for by Pauli’s theorem.

1There are possible exception in special systems such as an electrically charged particle in an
infinite uniform electric field where the continuous energy spectrum is not bounded [10].
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2 Temporal Vibrations

Consider the background coordinates (t, x) for the flat spacetime as observed in an
inertial frame. Time in this background is the “external time” as measured by clocks
stationary at spatial infinity that are not coupled to the system under investigation
[26, 29, 30]. Taking time as a dynamical variable, we will construct a plane wave
with matter that has vibrations in both the temporal and spatial directions. The
external time t is used as reference for measuring the temporal vibrations of matter
inside the wave.

Let us first study a plane wave in an inertial frame O ′ with matter that has
vibrations in time only. We will define the wave’s temporal vibration amplitude,
T0 (analogous to the amplitude of vibration in space, X, of a classical plane wave),
as the maximum difference between the time of matter inside the wave, t ′f , and the
external time t ′. Therefore, if matter inside the plane wave has an internal clock, its
time t ′f will be different from time t ′ measured at spatial infinity. Time measured
by the matter’s internal clock is running at a varying rate relative to the inertial
observer’s clock. In addition, matter in the plane wave has vibrations in the temporal
direction but with no vibration in the spatial direction. The “internal time” t ′f is an
intrinsic property of matter. We may then write,

t ′f = t ′ − T0 sin(ω0t
′) = t ′ + t ′d = t ′ + Re(ζ ′t ), (1)

x′f = x′, (2)

where

t ′d = Re(ζ ′t ) = −T0 sin(ω0t
′), (3)

ζ ′t = −iT0e
−iω0t

′
. (4)

The internal time of matter in the plane wave, therefore, passes at the rate,

∂t ′f
∂t ′

= 1− ω0T0 cos(ω0t
′), (5)

with respect to the external time and has an average value of 1. Matter will appear
to travel along a timelike geodesic when averaged over many cycles.

By an appropriate Lorentz transformation, the background coordinates (t ′, x′)
of inertial frame O ′ can be related to the background coordinates (t, x) for the
flat spacetime observed in another frame of reference O. We assume that frame
O ′ travels with velocity v relative to frame O. Similarly, the temporal and spatial
vibrations of matter (t ′f , x′f ) can be Lorentz transformed to the temporal and spatial
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vibrations of matter (tf , xf ) as observed in frame O. We can thus relate the matter
vibrations (tf , xf ) to the background coordinates (t, x):

tf = t + T sin(k · x− ωt) = t + td = t + Re(ζt ), (6)

xf = x+ X sin(k · x− ωt) = x+ xd = x+ Re(ζ x), (7)

where

td = Re(ζt ) = T sin(k · x− ωt), (8)

xd = Re(ζ x) = X sin(k · x− ωt), (9)

ζt = −iT ei(k·x−ωt), (10)

ζ x = −iXei(k·x−ωt), (11)

T = (ω/ω0)T0, (12)

X = (k/ω0)T0. (13)

Amplitude X is the maximum displacement of matter from its equilibrium coor-
dinate x, and amplitude T is its maximum displacement from the external time t .
The proper time displacement T0 can be seen as a Lorentz transformation of a 4-
displacement vector: (T0, 0, 0, 0)→ (T ,X) where T 2 = T 2

0 + |X|2. The amplitude
of the plane wave is a 4-vector.

Inside the plane wave in frameO, matter has vibrations in both the temporal and
spatial directions. We can further summarize these vibrations with a single function:

ζ = T0

ω0
ei(k·x−ωt). (14)

The vibrations ζt and ζ x from Eqs. (10) and (11) can be written as

ζt = ∂0ζ, (15)

ζ x = −∇ζ. (16)
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3 Mass-Energy of a Proper Time Oscillator

Consider the function ζ and its complex conjugate ζ ∗. The functions satisfy the
wave equations:

∂u∂
uζ + ω2

0ζ = 0, (17)

∂u∂
uζ ∗ + ω2

0ζ
∗ = 0. (18)

Equations (17) and (18) are similar to the Klein-Gordon equation, except we still
have to understand how ζ can be related to the zero spin bosonic field in quantum
theory. The corresponding Lagrangian density for the equations of motion is

L = K[(∂uζ ∗)(∂uζ )− ω2
0ζ
∗ζ ], (19)

and the Hamiltonian density is

H = K[(∂0ζ
∗)(∂0ζ )+ (∇ζ ∗) · (∇ζ )+ ω2

0ζ
∗ζ ], (20)

where K is a constant of the system under investigation. For a system that can have
multiple number of particles with mass m in a cube with volume V , we make the
ansatz:

K = mω
2
0

2V
. (21)

Periodic boundary conditions are to be imposed at the box walls, and the natural
units (c = h̄ = 1) are adopted.

Let us examine the Hamiltonian density of a plane wave. Substitute ζ from
Eq. (14) into Eq. (20), the Hamiltonian density is

H = H1 +H2 +H3, (22)

where

H1 = (mω
2
0

2V
)T ∗T , (23)

H2 = (mω
2
0

2V
)X∗ · X, (24)

H3 = (mω
2
0

2V
)T ∗0 T0, (25)
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such that T0, X, and T are taken as complex amplitudes. The first term, H1, on
the right-hand side of Eq. (22) is a Hamiltonian density with oscillations in time.
The second term, H2, is related to oscillations of matter in the spatial directions. In
the nonrelativistic limit, our choice of K is not arbitrary. The term H2 gives us the
Hamiltonian density of a classical harmonic system with oscillations in the spatial
direction. The third term, H3, is related to the oscillations in proper time. After
combining H1, H2, and H3, we have

H = (mω
2
0

V
)T ∗T . (26)

For a system with vibrations in proper time only, matter is stationary in space. In
this case, ω = ω0, |k| = 0, T = T0, and |X| = 0. From Eq. (26), the Hamiltonian
density of a plane wave with vibrations in proper time only is

H0 = (mω
2
0

V
)T ∗0 T0. (27)

This result is similar to the Hamiltonian density of a harmonic oscillating system in
classical mechanics, except the vibrations are in time and not in space. Since there is
no vibration in the spatial directions, the Hamiltonian density H0 shall correspond
to certain internal energy of matter at rest. In addition, the vibrations in proper time
do not involve any force field. Therefore, H0 does not necessarily have energy from
charges. On the other hand, we have only consider matter with massm in this simple
harmonic oscillating system. No other energy is present in this system except the
energy of mass m. Here, we will consider H0 as an internal mass-energy density
which arises from the proper time vibrations of matter.

Let us assume there is only one particle in the system. From Eq. (27), the energy
inside volume V isE = mω2

0T
∗
0 T0 of a harmonic oscillator in proper time with mass

m. If the energy of this harmonic oscillator is the internal mass-energy of matter, it
can only be observed as the energy of mass m which is on shell, i.e.,

E = m = mω2
0T

∗
0 T0, (28)

or

ω2
0T

∗
0 T0 = 1. (29)

Therefore, a particle with mass m has oscillation in proper time with amplitude
|T̊0| = 1/ω0. However, we shall note that the amplitude of this oscillation is unique.
A proper time oscillator with mass m has no other observable amplitude. Only an
oscillator with the unique amplitude can be observed under the constraint that mass
is on shell. In addition to the classical concepts of mass [31, 32], we suggest a
possibility that matter can also have vibration in time with an unique amplitude.
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Next, we will consider the temporal oscillation of the particle as observed in
a reference frame O ′. The internal time t̊ ′f with amplitude T̊0 = 1/ω0 of the
particle is

t̊ ′f (t ′) = t ′ − sin(ω0t
′)

ω0
. (30)

We will assume the particle observed is located at the origin of coordinate x′0,

x̊′f (t ′) = x′0. (31)

This particle is stationary in space with an internal clock that has a frequency
as conjectured by de Broglie [33]. However, instead of traveling along a smooth
timelike geodesic, the particle has a temporal vibration relative to the external time.
The internal time rate relative to the external time for the oscillator is

∂t̊ ′f
∂t ′

= 1− cos(ω0t
′). (32)

The average of this time rate is 1. Its value is bounded between 0 and 2 which is
positive. Therefore, the internal time of the oscillator moves only forward. It cannot
go backward to its past. In addition, as the frequency of the oscillation increases,
the amplitude decreases, i.e., |T̊0| → 0 when ω0 → ∞. As the accuracy of the
measuring clock is restricted by the energy-time uncertainty relation [34, 35], a
particle will appear to travel along a timelike geodesic if our measurement is not
sensitive enough to detect the oscillation. On the other hand, if the measurement is
sensitive enough, different decay rate will be observed for an unstable particle at
different phase of the oscillation.

In another frame of reference O with background coordinates (t, x), the particle
will have oscillations in time and space. Here, we will assume frame O ′ is traveling
with velocity v = k/ω relative to frame O, and the particle begins at origin of the x
coordinates at t = 0. By Lorentz transforming Eqs. (30) and (31) from frame O ′ to
frame O, the oscillations are

t̊f (t) = t − T̊p sin(ωpt), (33)

x̊f (t) = vt − X̊p sin(ωpt), (34)

where

T̊p = ω

ω2
0

, (35)
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X̊p = k

ω2
0

, (36)

ωp = ω
2
0

ω
. (37)

The magnitude of the amplitudes |T̊p| and |X̊p| are unique for the particle traveling
at a velocity v. We shall note that as |v| → 1, the magnitude of the spatial and
temporal amplitudes approaches infinity, |X̊p| → ∞ and |T̊p| → ∞. On the
other hand, ωp is the angular frequency of a moving particle. It is not the angular
frequency ω of the plane wave. As |v| → 1, the angular frequency ωp slows down
and approaches zero, ωp → 0.

4 Probability Density and Wave Function

Let us consider a plane wave ζ̄0 that has vibrations in proper time and an amplitude
|T0| = 1/ω0. From Eq. (27), its Hamiltonian density is H̄0 = m/V . This system
contains the energyE = m of one particle in a cube with volume V . When we probe
the system as a whole, one particle can be observed. On the other hand, the situation
is different when we probe only part of the system. Since the Hamiltonian density of
the plane wave is uniform throughout, the energy observable in a volume V1 (< V )
is E1 = mV1/V . It is only a fraction of a particle’s mass-energy. However, as we
shall recall, a particle’s energy is supposed to be on shell, and a fraction of its energy
cannot be observed. If this is the case, can we still observe any mass-energy as call
out by the Hamiltonian density when we probe only a part of the system?

The presence of a Hamiltonian density can be explained if we consider the plane
wave as a probability wave. The situation is the same as in quantum theory. A
probability density ρ̄ can be assigned for the observation of a particle at a particular
location. Since a particle carries an energy E = m, we can average the results from
many measurements and obtain a Hamiltonian density from the probability density,
i.e., H̄0 = ρ̄m. In other words, the probability density of finding a particle in the
plane wave ζ̄0 can be written in terms of its Hamiltonian density, i.e., ρ̄ = H̄0/m.
This approach can be extended to a generalized system with superposition of plane
waves.

A plane wave ζ from Eq. (14) has vibrations of matter in space and time. In this
section, we will only consider the case when its amplitude is in the range 0 ≤ |T0| ≤
1. Taking ∂0ζ = −iωζ and ∇ζ = ikζ , the Hamiltonian density of the plane wave
ζ from Eq. (20) becomes

H = ω
3
0ω

2

V
ζ ∗ζ. (38)

Here, the point mass is taken as a particle with de Broglie’s mass-energy (m = ω0).
Since a particle in plane wave ζ has a velocity |v|, its energy is Ek = γω0 =
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ω, where γ = (1 − |v|2)−1/2. Based on our earlier discussions, we can define a
probability density of observing a particle in plane wave ζ , i.e.,

ρ = H

ω
= ω

3
0ω

V
ζ ∗ζ. (39)

Taking the approximation γ = ω/ω0 ≈ 1 in the nonrelativistic limit, the probability
density can be approximated as

ρ ≈ ω
4
0

V
ζ ∗ζ. (40)

We can relate the plane wave ζ and the quantum wave function ψ for a system
in a cube with volume V :

ψ = a√
V
ei(k·x−ω̃t+χ) ≈

[
ω2

0√
V
ei(ω0t+χ)

]
ζ, (41)

where

a = ω0T0, (42)

ω̃ = k · k/(2ω0) ≈ ω − ω0. (43)

As we shall note, eiχ is an arbitrary factor introduced to show that wave function
ψ and plane wave ζ can have an arbitrary phase difference. Amplitude a is a
probability amplitude which can be expressed in terms of the proper time vibration
amplitude. Equation (40) can then be written as

ρ ≈ ψ∗ψ, (44)

which is the probability density we find in quantum mechanics.
Applying the superposition principle, we can write

ψ(x, t) = eiχ
∑

k

ω0T0k√
V
ei(k·x−ω̃t), (45)

where periodic boundary conditions for a cube are imposed on the wave vector k.
For a normalized system, one particle with the unique proper time vibration ampli-
tude can be observed. The probability density can again be obtained from Eq. (44).
Furthermore, if we examine ψ(x, t), it is a solution of the linear and homogeneous
Schrödinger equation for a free particle, i.e., iψ̇(x, t) = −(2m)−1∇2ψ(x, t). The
system with vibrations of matter in space and time therefore has basic properties of
a quantum wave. Although the formulations presented here is straightforward, we
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shall recall that these results are obtained from the temporal vibrations introduced
which is not part of the quantum theory.

It is commonly believed that a matter wave can only have a probabilistic
interpretation because the overall phase for the wave function ψ is unobservable
[36]. However, as we shall note, the phase factor eiχ in Eqs. (41) and (45) does
not change the probability density. In fact, as demonstrated in quantum mechanics,
the theory developed with wave functions ψ is invariant under global phase
transformation, but the relative phase factors are physical. Here, the wave function
ψ serves as a mathematical tool for describing an underlying wave with vibrations
of matter in time and space. A system with wave function ψ from the superposed
plane waves can have a global phase shift χ without changing the results in quantum
mechanics. The overall phase of ψ is unobservable. However, function ψ is not
required to have the same phase as ζ that describes the physical vibrations in space
and time.

5 Bosonic Field

The above analysis is based on a single particle system in the nonrelativistic limit
where approximations are taken to obtain the probability density. As it is well known
in quantum theory, when the Klein-Gordon equation is treated as a single particle
equation in a relativistic theory, one will encounter the difficulties of negative energy
solutions. Since ζ satisfies an equation similar to the Klein-Gordon equation, we
expect the system with vibrations in space and time can have the same properties of
a zero spin matter field in quantum theory.

For a plane wave ζ0 that has vibrations in proper time, multiple number of
particles with mass m can be observed if the system has the energy allowed. The
internal mass-energy observable in this plane wave ζ0 is quantized. Each particle
shall have oscillation with the same proper time amplitude. The plane wave ζ0 is a
quantized system.

For a many-particle system, it can have n integer number of oscillators. We can
generalize condition (29) as

ω2
0T

∗
0 T0 = n, (46)

which is a Lorentz invariant. The number of particles observed in the system shall
remain the same under Lorentz transformations. The Hamiltonian density from
Eq. (27) for a plane wave ζ0 can be written as

H0 = nω0

V
. (47)

The energy in this plane wave with vibrations in proper time only is quantized with
n = 0, 1, 2, ...
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Under a Lorentz transformation, plane wave ζ0 transforms to another plane wave
ζ that has vibrations in space and time. Instead, let us consider a plane wave ζn
which is normalized in volume V when n = 1:

ζn = γ−1/2ζ. (48)

Replace ζ with ζn in Eq. (20), the Hamiltonian density for plane wave ζn is

Hn = γH0 = nω
V
. (49)

The energy in this plane wave ζn is quantized with n particles of angular frequency
ω in a volume V .

The vibrations in space and time are real physical quantities. In Eqs. (6) and (7),
only the real component of ζ is relevant for obtaining these physical quantities.
We retained the complex component of ζ in the previous analysis to simplify the
derivation of the complex wave function. Here, ζ (or ζn) can be combined with
its complex conjugate. Instead of using ζ , we can obtain a real scalar field by
superposition of plane waves ζn, i.e.,

ζ(
−→
x ) = 1√

2

∑
k

[ζnk(
−→
x )+ ζ ∗nk(

−→
x )] =

∑
k

(2ωω0)
−1/2[T0ke

−i−→k ·−→x +T ∗0ke
i
−→
k ·−→x ],

(50)

which satisfies the Klein-Gordon equation. Again, periodic boundary conditions for
a cube are imposed on the wave vector k.

To adopt the same convention in quantum field theory, we will switch to the use
of field ϕ for describing the vibrations, i.e.,

ϕ(
−→
x ) = ζ(−→x )

√
ω3

0

V
=
∑

k

(2ωV )−1/2[ω0T0ke
−i−→k ·−→x + ω0T

∗
0ke

i
−→
k ·−→x ]. (51)

From Eq. (20), the Hamiltonian density equation for ϕ(−→x ) is

H = 1

2
[(∂0ϕ)

2 + (∇ϕ)2 + ω2
0ϕ

2]. (52)

As shown in quantum field theory, the transition of a classical field to a quantum
field can be done via canonical quantization. Similarly, we can treat ϕ(−→x ) and H
as operators. Since the quantization of a real scalar field is a familiar process, we
will only highlight the key results involving the temporal vibrations that are not
included in the quantum theory. For example, condition (46) can be extended to the
quantized field with

Nk = ω2
0T

†
0kT0k, (53)
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as the particle number operator. Normal ordering shall be taken into account
between T0k and T †

0k. Furthermore, an annihilation operator ak and a creation

operator a†
k can be defined,

ak = ω0T0k, (54)

a
†
k = ω0T

†
0k, (55)

such that Nk = a†
kak. The operators ak, a†

k, T0k, and T †
0k satisfy the commutation

relations,

[ak, a
†
k′ ] = δkk′ , (56)

[ak, ak′ ] = [a†
k, a

†
k′ ] = 0, (57)

[T0k, T
†

0k′ ] =
δkk′

ω2
0

, (58)

[T0k, T0k′ ] = [T †
0k, T

†
0k′ ] = 0. (59)

Based on the creation and annihilation operators, we can write down some other
operators in the quantum theory and express them in terms of the proper time
vibration operator T0. One of them is the Hamiltonian H of the system. From
Eq. (52),

H =
∑

k

ω(a
†
kak + 1

2
) =

∑
k

ω(ω2
0T

†
0kT0k + 1

2
), (60)

after integration over the whole volume V . As we can see, these results have the
familiar properties of a bosonic field except temporal vibrations are introduced in
the system. The real scalar field with vibrations in space and time has the physical
structures of a zero-spin bosonic field.

6 Temporal Vibration and Internal Time Operators

From Eqs. (12), (54), and (55), the temporal vibration amplitude Tk and its

Hermitian conjugate T †
k for oscillators with ω =

√
ω2

0 + |k|2 are

Tk = ω

ω0
T0k = ω

ω2
0

ak, (61)

T
†
k =

ω

ω0
T

†
0k =

ω

ω2
0

a
†
k, (62)
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satisfying commutation relations,

[Tk, T
†

k′ ] =
ω2

ω4
0

δkk′ , (63)

[Tk, Tk′ ] = [T †
k , T

†
k′ ] = 0. (64)

In the Heisenberg picture, Tk(t) and T †
k (t) evolve over time as

d

dt
Tk(t) = i[Hk(t), Tk(t)] = i[ω(a†

k(t)ak(t)+ 1

2
), Tk(t)]

= −iωTk(t)→ Tk(t) = Tk(0)e
−iωt , (65)

d

dt
T

†
k (t) = i[Hk(t), T

†
k (t)] = i[ω(a†

k(t)ak(t)+ 1

2
), T

†
k (t)]

= iωT †
k (t)→ T

†
k (t) = T †

k (0)e
iωt , (66)

where Hamiltonian Hk(t) = Hk = ω(a
†
kak + 1

2 ) is obtained from Eq. (60). In

addition, Tk(0) = Tk and T †
k (0) = T †

k are the operators in Schrödinger picture. By

combining Tk(t) and T †
k (t), we can obtain a temporal vibration operator:

tdk(t) = −i√
2
(Tke

−iωt − T †
k e
iωt ) = −iω√

2ω2
0

(ake
−iωt − a†

ke
iωt ). (67)

Analogous to a quantum harmonic oscillator that has vibration in the spatial
direction, the temporal vibration operator tdk(t) can also be expressed in terms of
the creation and annihilation operators.

We can further construct a field with temporal vibrations by superposition, i.e.,∑
tdk(

−→
x ). In fact, this is partly done in Sect. 5. As discussed, ζ(−→x ) from Eq. (50)

is a real scalar field that can be applied to obtain the temporal and spatial vibrations
of matter in a bosonic field. It can be rewritten in terms of Tk and T †

k as

ζ(
−→
x ) =

∑
k

√
ω0

2ω3
[Tke

−i−→k ·−→x + T †
k e
i
−→
k ·−→x ]. (68)

The temporal vibration field operator is the time derivative of ζ(−→x ) by applying
Eq. (15),

td (
−→
x ) = ζt (−→x ) = ∂0ζ(

−→
x ) =

∑
k

−i
√
ω0

2ω
[Tke

−i−→k ·−→x − T †
k e
i
−→
k ·−→x ], (69)

where
√
ω0ω−1 is a normalization factor introduced. ζt (

−→
x ) is a temporal vibration

real scalar field.
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Next, let us consider the conjugate momenta of ζ(−→x ). Based on Eq. (19), the
Lagrangian density for the real scalar field is

L = ρ̄mω
2
0

2
[(∂0ζ )

2 − (∇ζ )2 − ω2
0ζ

2], (70)

where

ρ̄m = ω0

V
, (71)

is a mass density constant of the system. Hence, the conjugate momenta of ζ(−→x ) is

η(
−→
x ) = ∂L

∂[∂0ζ(
−→
x )] = −iρ̄mω

2
0

∑
k

√
ω0

2ω
[Tke

−i−→k ·−→x −T †
k e
i
−→
k ·−→x ] = ρ̄mω2

0ζt (
−→
x ).

(72)

The conjugate pair ζ(−→x ) and η(−→x ) satisfy the equal-time commutation relations:

[ζ(t, x), η(t, x′)] = iδ(x− x′), (73)

[ζ(t, x), ζ(t, x′)] = [η(t, x), η(t, x′)] = 0. (74)

Similarly,

[ζ(t, x), ζt (t, x′)] = (ρ̄mω2
0)
−1δ(x− x′), (75)

[ζt (t, x), ζt (t, x′)] = 0. (76)

The real scalar field η(−→x ), being the conjugate momenta of ζ(−→x ), describes the
temporal vibrations in a bosonic field as it is related to ζt (

−→
x ) as shown in Eq. (72).

A classical oscillator with spatial vibration can have displacement either in the
positive or negative direction relative to its spatial equilibrium coordinate. Similarly,
a temporal oscillator has displacement in either the positive or negative temporal
direction relative to the external time t . From Eq. (6), internal time tf (

−→
x ) is the sum

of the temporal vibration ζt (
−→
x ) and the external time t , i.e., tf (

−→
x ) = t + ζt (−→x ).

Since the temporal vibration ζt (
−→
x ) can be treated as an operator and the external

time t is just a parameter, the internal time tf (
−→
x ) can also be treated as an operator.

tf (
−→
x ) and ζ(−→x ) satisfy the equal-time commutation relations:

[ζ(t, x), tf (t, x′)] = (ρ̄mω2
0)
−1δ(x− x′), (77)

[tf (t, x), tf (t, x′)] = 0. (78)



Temporal Vibrations in a Quantized Field 283

If we recall Pauli’s theorem discussed in Sect. 1, the semi-bounded Hamiltonian
forbids the introduction of an universal time operator. As discussed above, the
external time (taking the role of a universal time) is not an operator as called for
by Pauli’s theorem. On the other hand, the spectra of tf (

−→
x ), ζ(−→x ), ζt (−→x ), and

η(
−→
x ) span the whole real line. They are self-adjoint operators. From Eq. (77), the

internal time tf (
−→
x ) does not form a conjugate pair with the Hamiltonian. It is this

unique feature that allows us to write the internal time as a self-adjoint operator.
There is no commutation relation with the semi-bounded Hamiltonian that restricts
the spectrum of the internal time operator to be bounded. The internal time acquires
its dynamical nature from the temporal vibration which is also a self-adjoint operator
and does not form a conjugate pair with the Hamiltonian.

7 Conclusions and Discussions

In this paper, we demonstrate a possibility that time can have a more dynamical role
in quantum theory. By restoring the symmetry between time and space in a matter
field, we obtain the results that resemble a zero-spin bosonic field. The temporal
vibrations are additional degrees of freedom introduced. A particle has an internal
clock with a frequency as conjugated by de Broglie. The internal time registered by
this clock is oscillating relative to the external time. The energy that arises from the
oscillation is the internal mass-energy of the particle which must be on shell. As
a result, the particle’s proper time vibration amplitude has only one unique value.
The energy in the field with space and time vibrations can only correspond to those
for integer numbers of particles. Each particle has the same proper time vibration
amplitude. The condition that mass is on shell forces the system to be quantized.
This situation is very different from the classical theory where the amplitude of an
oscillator can take any real positive number. There is no analogy like the mass on
shell that quantizes a classical system with oscillation in the spatial directions.

In [37, 38], Busch clarifies the different role of “external time” and “intrinsic
time” to prevent confusions when they are used to discuss time in quantum physics.
The external time is a parameter used for references as adopted in our formulation.
There is nothing dynamical about the external time. On the other hand, as defined
by Busch, the intrinsic time shall be a dynamical variable of the studied system
that functions to measure the time (e.g., position of a clock’s dial or position of a
classical free particle [26]). Here, we extend the concept of intrinsic time and use
the term “internal time” to define the dynamical time registered by the internal clock
of a particle that has physical vibration in time. In our proposed system, the internal
time is the sum of external time and temporal vibration. This internal time acquires
its dynamical nature from the temporal vibration since the external time is only a
parameter. The mass energy of a particle is generated from the oscillation in proper
time as shown in Eq. (28). Without the temporal vibration, the particle will have no
energy, and there will be nothing dynamical about the particle’s internal time.
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The spatial vibration of a particle may remind us of zitterbewegung. As we
shall recall, Schrödinger shows that in addition to the uniform rectilinear motion
consistent with the classical electrodynamics, an extra oscillatory term (zitterbewe-
gung) also appears in the Dirac equation [39]. This oscillation can be interpreted as
fluctuation in the position of the electron with radius λ = (2m)−1 and a circular
frequency ω = 2m. Its effect is believed to have originated from the interference
between positive and negative energy waves. However, there are also suggestions
that zitterbewegung can have possible link with spin [40, 41]. Interference between
positive and negative frequencies may not be the only reason that can give rise
to zitterbewegung. Although zitterbewegung bears some semblance to the spatial
vibration discussed in this paper, there are fundamental differences.

The spatial vibration of a particle with proper time vibration has nothing to do
with spin. As shown in Sect. 3, even a moving zero-spin particle can have spatial
vibration. The spatial vibration discussed in this paper originates from the proper
time oscillation of a particle and not from spin. In addition, a plane wave with only
one particle from Eq. (14) can have vibration in space. There is no interference
between positive and negative energy waves. Lastly, from Eq. (34), the spatial
vibration is along the particle’s trajectory with an amplitude X̊p = kω−2

0 . It is not
the fluctuation as calculated for zitterbewegung. As we can see, zitterbewegung and
the spatial vibration discussed in this paper have fundamental differences. Since the
scope of this paper is limited to a bosonic field, we will defer any detail discussions
about spin particles and zitterbewegung to a later time.

The mass-energy of a particle is generated from its vibration in proper time as
shown in Eq. (28). It is reasonable to believe that all massive particles shall have
this vibration in proper time, with or without spin. Under a Lorentz transformation,
this proper time vibration translates to vibrations in both the temporal and spatial
directions. Neglecting the effects of spin and zitterbewegung, we can estimate the
spatial and temporal oscillation amplitudes of a moving electron from its proper time
oscillation (i.e., ω0 = 7.6× 1020 s−1 and |T̃0| = 1.32× 10−21 s). We are interested
in the electrons because they are the most common massive particles investigated in
the laboratories. From Eqs. (33) and (34), the oscillation amplitudes of an electron
traveling with velocity |v| are

|v| = 0.001 ⇒ |T̊p| = 1.3× 10−21 s, |X̊p| = 3.9× 10−14 cm,

ωp = 7.6× 1020 s−1, (79)

|v| = 0.99999 ⇒ |T̊p| = 2.9× 10−19 s, |X̊p| = 8.8× 10−9 cm,

ωp = 3.4× 1018 s−1. (80)

In the nonrelativistic example, the amplitude of the spatial vibration is approxi-
mately equal to the diameter of a nucleus. However, this vibration is very rapid. If
the measurement is not sensitive enough to detect the small vibration, the particle
will appear to travel along a smooth trajectory. On the other hand, the amplitudes of



Temporal Vibrations in a Quantized Field 285

the oscillation are increasing, but the frequency is decreasing when the velocity of
the particle increases. If the particle is traveling fast enough with lower frequency
and larger amplitude, it may make the oscillation easier for detection. However, we
shall bear in mind that the effects of spin and zitterbewegung are not included in this
discussion.

The frequency of de Broglie’s internal clock is very rapid, and the amplitude of
the temporal proper time oscillation is very small. In order to detect this oscillation,
a clock sensitive enough to detect the rapid oscillation is required. We can achieve
this by using the internal clock of a heavy particle. As we can see, as ω0 → ∞,
the amplitude |T0| → 0. A heavy particle will appear to travel along a near timelike
geodesic which is sensitive enough to detect the varying internal time rate of another
particle with lower frequency. However, to obtain infinite accuracy in measuring a
clock’s time will mean infinite uncertainty in the clock’s mass, and thus the clock’s
mass needs to reach infinity (m = ω0 →∞) [42].
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