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Supervisor’s Foreword

Quantum mechanics is the current theoretical framework to describe our world and
is one of the best tested theoretical concepts we have at hand. Nevertheless there are
still many aspects to be explored and understood, reaching from extending our
fundamental understanding of dynamics and structure of interacting many-body
systems to developing tools and strategies for the exploitation of the powerful
resources for applications available in quantum systems. While the precise under-
standing of nature has been the strength behind the success of quantum mechanics
from the very beginning, the aspect of usefulness for overcoming limitations of the
classical world was only identified in the 1980s. Since then it has been an exper-
imental challenge to implement the basic building blocks for demonstrating the
proposed theoretical ideas on quantum cryptography, quantum computation and
quantum metrology.

The experimental platforms of correlated photons realized with nonlinear optical
techniques have been the workhorse for implementing quantum communication
protocols going as far as quantum cryptography between earth and a satellite. The
experimental systems of ions in traps and superconducting qubits in circuit QED
have turned out to be the best choices for demonstrating many aspects in quantum
information processing. This part of quantum technology has seen a significant
boost in recent years and is now part of the portfolio of companies such as Google
and Microsoft. Compared to these enterprises, quantum metrology is still in its
infancy but real applications are emerging at an increasing pace. Here, the choice of
system is determined by the properties one wants to detect. For gravitational waves,
light interferometers are the current choice and there the realization of non-classical
light is already pushing the performance of the devices beyond the classical limit.
For detection of magnetic properties, atomic systems in the form of vacancies in
diamond or cold and ultracold gases are the most suitable systems.

For the experimental platform of ultracold gases, Daniel Linnemann has sig-
nificantly extended the possibilities for quantum limited detection by building on
novel interferometric strategies. He has shown for the first time that active atom
interferometry is possible and that the performance indeed beats the classical
detection limit. Although the basic concept has already been discussed theoretically

ix



X Supervisor’s Foreword

in the 1980s in the context of quantum optics with photons, Daniel Linnemann
realized it for the first time with atoms. He also developed a more general point of
view of the interferometer, namely the controlled time-reversed running of entan-
gling nonlinear dynamics—entangling—sensing—disentangling detection. The
experimental results reveal that this new strategy comes very close to the funda-
mental detection limit given by quantum mechanics known as Heisenberg limit.
This thesis not only summarizes these results but also puts them into a broader and
well-founded context with the many activities in the field of quantum metrology.
Furthermore, the experimental observations are directly compared to theoretical
expectations showing that direct interplay between theoretical and experimental
activities provides the ideal approach for pushing quantum metrology yet further.
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resource not only for experts in the field, who will find here important details and
explanations, but also for newcomers and non-experts, who will benefit from an
excellent introduction in the field of quantum optics with atoms.

Heidelberg, Germany Prof. Markus K. Oberthaler
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Abstract

We experimentally study a nonlinear detection scheme in which entangling
interactions are time reversed. In this way, non-classical many-particle states are
disentangled in order to enable their feasible readout. In the context of quantum-
enhanced sensing, such nonlinear readout techniques extend the class of entangled
probe states that can be leveraged for interrogation without being limited by finite
detector resolution.

As the underlying nonlinear mechanism, we employ spin exchange in a Bose—
Einstein condensate. The scattering process among spins can be controlled exper-
imentally to not only generate an entangled state, but also the corresponding
time-reversed dynamics.

We explicitly demonstrate a quantum-enhanced measurement by constructing
an atomic SU (1, 1) interferometer. Herein, spin exchange acts as an amplifier
which spontaneously populates initially empty spin states. The nascent entangled
two-mode squeezed vacuum state enables sensitive phase measurements. Checking
whether or not the initial state is recovered after time reversal reveals phase
imprints. This scheme is capable of exhausting the quantum resource by detecting
solely average atom numbers, in principle, up to the fundamental Heisenberg limit
of phase estimation.

The intrinsic amplification of this interferometry scheme provides benefits for
weak signals. We experimentally explore the regime of an extended nonlinear
readout in which noiseless amplification permits to maintain quantum-enhanced
phase sensitivity even for large magnifications. Integrating nonlinear dynamics into
the detection strategy is widely applicable. We provide additional examples by
using it as an autonomous building block which maps subtle quantum correlations
onto readily detectable quantities.
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Chapter 1 ®)
Introduction Check for

1.1 Quantum Technologies

Quantum mechanics entails effects like superpositions and entanglement that have
no classical counterpart. Harnessing these counterintuitive aspects for technological
advance is the goal of quantum technology. It is a thriving research field with some
scholars [1] even seeing a third quantum revolution approaching. Here, the so-called
first quantum revolution refers to the discovery or invention of the fundamental laws
governing quantum physics such as the Schrodinger equation; proof-of-principle
experiments on single particles have then led to the second quantum revolution [2].
Nowadays, quantum technologies harnessing many-body effects come of age and
leave the realm of blue skies research as they find applications and progressively
become a subject of engineering.

Most recently, arguing that more than half of the scientific papers on quantum
technology are written by European authors, a call on the European Commission
was started to secure this ascendancy. Following the proposal, grandiosely called
quantum manifesto [3], one billion Euro will be spent on quantum technology starting
next year [4, 5].

Meanwhile, all around the globe efforts to exploit quantum effects for technology
are undertaken. The most prominent endeavour is the quest for quantum computers
[6]. While the most innovative global players like Google, IBM, Microsoft, and Intel
already entered the stage, yet they find themselves challenged as an era of startups
and university spinoffs begins [7-9]. The basic question of what platform (or combi-
nation [10]) might be suited best is still open but first cross-platform comparisons are
undertaken [11]. Google aims at building a programmable quantum computer with
7 x 7 superconducting qubits by the end of this year. IBM, with similar long term
goals, recently realized a 17 qubit system. Knowing how to develop such devices in
principle, researchers face similar problems as in early days conventional computing,
namely the so-called Tyranny of numbers, that is the wiring-up of an ever increasing
number of (qu-)bits.

© Springer International Publishing AG, part of Springer Nature 2018 1
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In partrelying on superpositions and not necessarily entanglement, quantum cryp-
tography [12, 13] promises security based on the laws of quantum mechanics. This
is different from the usage of one-way functions in conventional asymmetric cryp-
tography, where the non-reversibility is generally believed but not mathematically
proved [14]. Furthermore, considering post-quantum cryptography, those hard prob-
lems that asymmetric cryptography relies on can efficiently be solved using quantum
algorithms [15]. While quantum computation is still in its infancy, quantum cryp-
tography has already found its way into practical applications [16].

The third major field of quantum technologies is metrology. Often, quantum
metrology is referred to as the science behind devising and performing measure-
ments which involve individual quanta [17, 18]. For instance, redefinitions of units
in terms of fundamental constants at single particle level are subsumed under this
name. A recent example is the so-called quantum metrological triangle, which aims
at probing Ohm’s law at the level of well-defined individual quanta [19].

Within this thesis we adopt the term in a stricter sense. Here, quantum metrology
refers to techniques which make use of quantum correlations such as entanglement
to improve measurements [20-22]. Usually one aims at achieving higher precision,
but other benefits, such as longer coherence times or a larger dynamic range, might
also exist [23].

Most precision experiments map the quantity in question onto frequency or phase
such that interferometric techniques can be used for readout. The prime example is
timekeeping. Nowadays, atomic clocks [24] that use transitions in the optical domain
reach accuracy levels of 10~'8 [25, 26]. Such fractional uncertainties are achieved in
two tour de force experiments: an ensemble of neutral strontium atoms that is trapped
in an optical lattice, or a single Aluminium ion held in a quadrupole Paul-trap [27-
29]. Both contenders plan to improve their accuracy by exploiting entanglement
[30]. History teaches that the importance of ever increasing precision cannot be
undervalued; often, new developments were only triggered by the unexpected result
of a precision experiment. Famous examples in the field of quantum mechanics are
the determination of the Lamb-shift, and the anomalous electron dipole moment
for which Lamb and Kusch shared the Nobel prize. Both precision experiments
can be considered the incentive of quantum electrodynamics. Today, precise clocks
could determine whether or not fundamental constants change over time in a lab
measurement [31-33]. Dirac advocated such drifts [34, 35].

The second major example of precision interferometry is gravitational wave detec-
tion [36, 37]. This year the third gravitational wave has been observed directly [38,
39]. However, all detected events were caused by rare black hole mergers. To start a
new era of (multimessenger) astronomy that builds on detecting gravitational waves
as a tool, the sensitivity has to be improved to extend the astrophysical reach. The
implications of this so-called gravitational-wave astronomy are often compared to
the advent of radio telescopes in the 1930s which opened up the complementary rf
spectrum for investigations of the universe. The strain sensitivity could be improved
using quantum mechanically entangled (squeezed) light [40-43].

One could really argue that these are interesting times to live in—if this were not
a Chinese curse.
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1.2 Quantum-Enhanced Measurements

Let us start start by considering how a generic measurement task can be improved.
We have an atom interferometry application in mind—but the arguments put forward
in this section are of general nature and do not depend on a specific measurement
apparatus [44].

Our aim is to determine a quantity precisely. This is routinely achieved by repeat-
ing measurements and averaging the individual outcomes: when performing a mea-
surement N times, the error of the quantity to be measured, i.e. the error of its
estimated mean value, averages down with the square-root of measurements. This
is the fundamental /N law of statistics which holds for independent sampling [21].
Often, the single measurements are not done sequentially in time but simultaneously.
An example would be an atom interferometer in which an entire cloud of N atoms
is used in parallel for interrogation [45]. As long as the probes are uncorrelated, the
VN law keeps valid [20]. Such a technique is shown schematically in Fig. 1.1a.

This limit, however, is by no means fundamental. It can be surpassed by not using
independent particles but by introducing nonclassical correlations among them [21].
For this, a nonlinear mechanism is needed, i.e. a nonlinear Hamiltonian H which
generates these correlations (red box in panel b). Then a quantum mechanically
entangled probe state emerges (indicated as the intertwined atom cloud). If such
a nonclassical probe state is used for interrogation, uncertainties smaller than the
square root limit can be achieved in principle. Therefore, the same overall precision
can be reached while using less atoms—or, with the same atom resource at hand
smaller errors are attainable.

As a quid pro quo, however, the entangled state and its subtle correlations need
to be measured at the final detection stage. For highly entangled states, this requires
measurements of the full particle correlations with high fidelity, i.e. at single par-
ticle level. We indicate this by (x") to emphasize the need of higher moments like
(x?) and (x?) instead of a simple average (x). For neutral particles, such single-
particle resolved detection with high dynamic range remains challenging [46, 47].
To summarise, in order to have a highly sensitive probe state, one needs to have
entanglement—but at the same time, entanglement at the readout stage is hard to
deal with because of the need for sophisticated detection techniques not yet avail-
able.

One way to circumvent this detection problem is to use a nonlinear process right
before detection. At this stage—after interrogation—it cannot improve the phase
sensitivity any further. But instead, it eases detection as it is able to disentangle the
state. To this end a similar process which generated the entangled state in the first
place is applied right before detection. Then the effect of the first nonlinear process
can be reversed and a classical state reemerges. For this the sign of the nonlinearity
needs to be inverted. Inverting the sign of the governing Hamiltonian amounts to time
reversal. We call such a scheme (depicted in panel c) therefore quantum-enhanced
sensing based on time reversal. Since the state at the detection stage is disentangled
standard averaging can be used to extract the information gained during interrogation
(indicated by (x)). In this thesis we present the experimental realization of such a
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Fig. 1.1 Overview of detection strategies for quantum metrology. In panel a an ensemble of N
independent probes is used to interrogate the black box. At the detection stage the individual
measurement outcomes are averaged as indicated by (x). The error of the quantity to be measured
averages down with the square root of probes—a direct consequence of the independent probing.
The measurement’s error can be reduced by introducing nonclassical correlations among the probes
as shown in (b). Here, interactions described by a nonlinear Hamiltonian 7{ generate an entangled
state (intertwined cloud) which is used for subsequent interrogation. By measuring subtle correlation
functions (indicated by (x”*)) a higher precision is attainable. Panel ¢ shows a nonlinear readout
scheme where an additional nonlinear process is added before detection. While the entangled state is
generated by H the time reversed process (—H) is used to disentangle the state for feasible readout.
Consequently, simple averaging at the output ((x)) suffices to exhaust the quantum resource of
the entangled state and reach high precision. Panel d depicts the amplifying nonlinear readout.
Here, entangling and subsequent disentangling are performed by nonlinear amplifiers. A posteriori
amplification can be used to magnify the output signal (gain indicated by f) while maintaining
improved precision

scheme. In particular, the entanglement generation and subsequent time reversal will
be realized by nonlinear amplifiers. This arrangement that is indicated in panel (d)
offers the unique possibility to further facilitate detection by a posteriori amplifica-
tion. This additional amplification stage does not deteriorate the achievable phase
sensitivity. We call such an arrangement amplifying nonlinear readout. It therefore
serves two purposes: first, the quantum state’s entire information is accessible by
standard averaging; and secondly, the output signal is amplified (amplification factor
denoted by B) for feasible detection. One mechanism which allows for experimental
control over the sign of the nonlinearity is spin exchange which we introduce in the
next sections. Before that, however, we detail the potential gain when using entangled
probe states for phase estimation.
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1.3 Quantum Mechanical Limits on Phase Sensitivity

We now address the question of how large the potential room for improvement is
when using nonclassical probe states. Entanglement cannot enhance sensitivity ad
infinitum. In fact there is a fundamental bound on how efficiently a phase can be
measured in principle. Relying on the notion of efficiency, this so-called Heisenberg
limit requires a common sense of a cost function. In quantum technologies, one
conventionally aims at minimising the number of interrogations' [48, 49]. In the
previous overview of quantum-enhanced atom interferometry we implicitly treated
the total number of atoms as a resource count. This applies to the most common
interferometry schemes in which all N employed atoms interrogate the phase shift
once. Under such circumstance the fundamental Heisenberg limit reads A = N~!
which—for large atom numbers—is a major improvement over Agp = N~!/2 with
the latter applying for unentangled states.

In other interferometry schemes, however, the total atom number does not agree
with the number of phase interrogations. An important example is phase estimation
with one atom traversing the interrogation stage many times. If in such a situation
the atom number rather than the number of interrogations is inaccurately taken as a
resource it seems that the Heisenberg limit could be surpassed—even without using
entanglement at all [50]. Such and similar inconsistencies are caused by a wrong
accounting of the resource [48, 49]. In this thesis we implement an interferometric
sequence that relies on amplifying nonlinear readout. Generally, the ability to amplify
requires holding back particles in a reservoir. For proper benchmarking of such
interferometry schemes, only those atoms that experience the phase shift are counted
as an expensive resource [51]. If we allow for fluctuations of this atom number ({(N)
denotes its average value) the associated Heisenberg limit is slightly adjusted and
reads Ag = [(N)((N) +2)]71/2 [52, 53].

This bound applies to linear phase estimation. This means that the phase imprint
is identical for each employed atom. A popular counterexample in quantum optics is
phase estimation exploiting the Kerr-effect [54]. For such nonlinear interferometers,
that is interferometers with nonlinear phase evolution, the Heisenberg limit as stated
above does not apply [55-58]. Within these two contexts the attribute nonlinear is
routinely used. In this thesis we use the term nonlinear to account for processes which
are able to generate entanglement among the probes [59]. Therefore, it is justified
to call the readout technique nonlinear. In contrast, transformations which cannot
generate particle entanglement are called linear. While this concerns the initial state
preparation and the subsequent readout, the actual phase interrogation in between is
linear as defined above.

I'This argumentation is not restricted to interferometers. Grovers algorithm, for instance, exploits
quantum effects to learn about an unknown function (the so-called oracle) by performing fewer
operations (interrogations) on that function than classically necessary [15].
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1.4 Tailorable Nonlinear Amplifier for Entanglement
Generation

We implement the nonlinear readout scheme within the well isolated atomic spin
degree of freedom. Crucially, this scheme relies on a customizable amplification
process where the sign of the governing Hamiltonian can be inverted. We use spin
exchange to experimentally realize such an amplifier [60, 61]. This very process is
used for entangled state generation, the nonlinear readout, and a posteriori amplifi-
cation.

Here, we present the conceptual idea and first show how an entangled probe
state is generated by amplification. Let us consider a spin-1 system whose three
magnetic sublevels are shown in Fig. 1.2a. In such a system, spin exchange describes
a scattering process during which two atoms of the |0) state are transferred to states
|1) and || ) each as indicated. In our experiments we start with empty modes |1)
and |} )—only the mode |0) is highly populated. Within the appropriate limits, this
elementary process is then governed by a Hamiltonian of the form

M = hk aja] +he. (1.1)

Here, the pairwise process is described by creation operators &1 and &I for modes
|1) and || ), respectively. This introduces nonclassical correlations among the atoms
of both modes [62-64]. Such scattering processes realize an amplifier: the atoms
in state |0) provide a particle reservoir which is used to reinforce the population
of the two remaining spin states. With initially empty spin states [1) and || ) the
amplification process is initially triggered by quantum fluctuations [65—67]. In this
line of thinking, the reservoir atoms define the nonlinearity or gain k—and thus the
rate at which these collisions occur.

(a) /_\ m (b) congol entangled state
Lo -~ @ ()
1) |0) ) |0) 1) 1)

Fig. 1.2 Spin exchange as highly customizable nonlinear mechanism. a Spin exchange describes
the pairwise scattering of two atoms residing in the pump mode (|0)) into spin states |1) and |])
each. This process generates a particle entangled state in modes |1) and || ). Both, the magnitude
as well as the phase of this nonlinear process can be tailored via the classically populated pump
mode |0), which therefore acts as a control mode: by modifying the number of pump atoms, the
nonlinear coupling « is varied in strength. Similarly, by changing the phase of the pump mode the
sign of the nonlinearity can be inverted. We therefore endorse the view of a classically populated
mode that exerts comprehensive control over the quantum mechanically entangled sub system as
illustrated in the cartoon of panel (b)
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The key feature of this implementation is that the nonlinear coupling strength
k can be tailored by solely controlling the reservoir atoms in state |0). Both, the
magnitude as well as the phase and thus the overall sign of « can thereby be altered.
We therefore take the point of view that the quantum mechanical subsystem formed
by |1) and || ) with its nonclassical correlations can be controlled comprehensively
by a third mode as sketched in Fig. 1.2b.

1.5 Quantum-Enhanced Interferometry with Linear
Readout

In this section we detail how quantum-enhanced phase measurements are accom-
plished with linear interferometry. The arguments presented above in abstracto will
be substantiated by considering specific cases in detail. With these examples we
cover the most widely used states employed in quantum metrology and their dis-
cussion will showcase the characteristics of using highly entangled probe states. For
reference we start our discussion with a separable (unentangled) state. Based on this
we will present the peculiarities when dealing with highly entangled probe states.

A Mach-Zehnder interferometer as depicted in Fig. 1.3a can be considered proto-
typical for linear two-mode interferometry [68]. In order to estimate the differential
phase shift ¢ the first beam splitter generates a phase sensitive probe state. It is
a superposition of modes described by bosonic creation operators ¢ and d’. The
second beam splitter downstream maps the accumulated phase onto distinct mode
populations measured at the detection stage, i.e. in modes described by é' and f f
In such a scheme the last beam splitter taken together with subsequent intensity
measurements constitutes a linear readout.

Before we investigate highly nonclassical states we consider a separable probe
state which is shown in panel (b). The four histograms denote the mode population
of the probe (top) and output state (lower three panels). The output distributions
are shown for three distinct phase imprints as indicated. The state at all stages of
the interferometric sequence can be described in the following way (each terms acts
onto vacuum)

bHY > @ +id"HY - @ +ie“d"HN - (cospé’ +sing fHY (1.2)

Here, we use mode operators as defined in Fig. 1.3. The first step describes the
action of the (balanced) beam splitter when N (identical and bosonic) particles enter
via one of its input ports. The resulting state is an equal superposition of modes
described by ¢ and dt. The population distribution of this probe state is shown in
panel b (top). The two modes inside the interferometer get populated in a binomial
fashion. Subsequent phase interrogation is described by modified mode operators,
d' — e%d*. The accumulated differential phase is finally mapped onto the output
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Fig. 1.3 Quantum-enhanced interferometry with linear readout. a A Mach-Zehnder interferome-
ter is archetypical for linear two path interferometry. The last beam splitter in combination with
subsequent intensity detection at its output can be considered a linear readout. The four panels b—e
show the respective population distributions in each mode for different quantum states at the probe
(top) and output stage (lower three histograms are for three different phase settings). b Separable
(coherent) state. Starting with N particles at one input, the first beam splitter generates a phase sen-
sitive equal superposition of the two modes. Each of the modes is populated in a binomial fashion
(top histogram). A second beam splitter translates the accumulated phase difference ¢ between the
modes into distinct output populations. The three histograms show the counting statistics of mode
described by &' for the indicated phase. Tracking the shift of the average population allows estimat-
ing the accrued phase. ¢ NOON state injected into the interferometer after the first beam splitter. The
probe state is described by a superposition of all N = 20 atoms either in mode described by ¢ or
dar (top histogram). At the output of the interferometer fringes at the single atom level emerge. The
broad envelope has the shape of a separable state but does not shift under phase imprints. To recover
a phase sensitive signal, the underlying fine structure has to be resolved. d Twin-Fock state at input.
The probe state is a comb consisting only of even atom numbers. At the output, both the envelope
as well as the finer structure on top changes. e Two-mode squeezed vacuum state at input. Similar
to case (d) the probe contains only even atom numbers. Depending on the phase accumulated, the
odd atom numbers get filled up to different levels
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mode population by the second beam splitter. The lower three histograms of panel
(b) show the mode population recovered at one of the two outputs. Clearly, as the
imprinted phase varies the centre of the output distribution shifts. Therefore, by mea-
suring the average population at the output state, (N) = N cos” ¢ the phase ¢ can be
inferred. The corresponding phase sensitivity can be determined by applying error
propagation, (Ag)?> = (AN)?/|dN /dg|> which takes into account both, the fluctu-
ations at the output, as well as the slope of the signal. As a consequence of the bino-
mial output statistics the variance of the observable is (AN)? = 4N cos” ¢ sin® ¢.
Therefore, the phase sensitivity reads (Ag)? = 1/N and is independent of the work-
ing point. We recognize the classical bound for phase estimation with independent
probes.

We now detail the implications when employing entangled states for achieving
higher phase precision [69]. Highest phase sensitivity is attained when using the so-
called NOON state at the probe stage [70]. Its name derives from the fact that its dual-
rail representation reads |N, 0) + |0, N). Therefore it is a coherent superposition of
all N particles being in either mode with the respective other empty. For atomic
states it is most often referred to as GHZ (Greenberger et al. [71]) state. For this
interferometry scheme, the state after the first beam splitter, i.e. at the probe stage,
reads (¢HN + (cf )N Its population histogram for one of the involved modes is shown
in panel (c) (top). The phase imprint and the final beam splitting is described by

EN + @ — @Y +eM@HN — (FT+ighY +eM @ —ifHY  (1.3)

This should be compared to Eq. 1.2. As a result of the final beam splitting the atom
number distribution recovered at the output (panel c) has a binomial envelope identi-
cal to the separable state. However, as the phase inside the interferometer is changed
this envelope remains unaltered. Instead the finer structure within changes [72]. This
fine structure is on single-atom level and is described by modifying the probabilities
for detecting an odd or even atom number by sin*(N¢) and cos?(N¢), respectively
[73, 74]. Therefore, rather than being phase dependent to ¢ the phase winds N times
faster, i.e. the phase dependence is with respect to N¢. This property, which is char-
acteristic for entangled states is called super-resolving. As a side effect it reduces the
dynamic range.

A different class of entangled states that allow for quantum-enhanced phase mea-
surements are twin-Fock states [75]. Here the input state is given by (a")V/2(b")N/2
(panel d). The first beam splitter transforms this into a comb-like distribution with
only even atom numbers of the probe state being populated, the so-called Holland-
Burnett state [75]. For two atoms, the absence of the odd contribution corresponds
to the famous Hong-Ou-Mandel dip. If no differential phase is accumulated (¢ = 0)
the twin-Fock state (input state) is recovered at the output. Instead, for a phase of
1 /2 the probe state is retained at the output. In between both of these phase settings
the state grows rapidly in size with a fine structure at single-atom level on top. The
fine structure is modulated with respect to 2¢. The average value vanishes for all
phase settings [76].
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Finally, building on the previous case, a superposition of twin-Fock states is
considered. Such states are highly relevant because they are routinely generated
by the process of parametric amplification. There, the emerging state (called two-
mode squeezed vacuum state) is a superposition of twin-Fock states with weights
i that decrease in a power-law fashion, Y~ \/Px (a"h")¥ [77). Here, an important
distinction to the previous examples is that this state involves arbitrary high twin-Fock
states (albeit with ever-decreasing weights). Therefore the state’s atom number is only
defined by its average population. Because of the underlying twin-Fock character the
probe state has only even atom numbers populated (panel e, top). The envelope which
resembles a thermal state is characteristic for this two-mode squeezed vacuum state.
At phase /2 this probe state is recovered at the output. Phase changes around
/2 yield to a filling up of the (initially) absent odd population numbers while the
envelope is barely changed [78].

The appearance of finer structures (at single particle level) amidst a broad pattern
is a general feature connected to entangled states and their linear readout. In any
case, the average mode population ceases to be phase dependent and one needs to
determine higher moments of the underlying mode population. While for the twin-
Fock state the second moment suffices [62, 75], the NOON and twin-Fock state need
much higher moments: the phase information can be retrieved by evaluating the
parity signal of the output atom number distribution, IT = e which assigns +1
(—1) to an even (odd) atom count n [73]. While it is prone to detection noise as it
needs single-atom resolution, it is efficient in the sense that it contains all moments
k of the probability distribution, T ~ Y, (n*) [73, 74].

1.6 Advantage of Amplifying Nonlinear Readout

Here we pick up on two examples provided in the previous section and exemplify how
nonlinear readout eases detection. The prototypical scheme realising nonlinear read-
out is shown in Fig. 1.4a. The crucial feature of the nonlinear readout is its mapping
of the accumulated phase onto first moments that are accessible via global measure-
ments. This makes single-atom resolution unnecessary even when approaching the
ultimate limit on phase sensitivity [79-86]. Additional to this mapping onto easily
accessible observables the output signal can be amplified without signal degradation
[87, 88].

Mapping onto global observables

As a probe state we specifically consider the NOON (panel b) and the two-mode
squeezed vacuum state (panel c). While the latter is the subject of this thesis, the
NOON state was treated in the seminal paper experimentally demonstrating nonlinear
readouts to approach the Heisenberg limit of phase sensitivity [81]. We summarize
the idea in panel (b). The first nonlinear process generates the entangled NOON
state for phase probing. The top histogram shows the atom number distribution in
either of the two interferometry modes. To be consistent with the previous section
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Fig. 1.4 Nonlinear readout. a Schematic representation of interferometry with nonlinear readout.
Here, a nonlinear mechanism (blue) that is attuned to the initial entangling process (red) is used
after phase interrogation. In panels b and ¢ population distributions akin to Fig.1.3 are shown.
b Population distribution of mode described by &' when the first nonlinear process generates a
NOON state of 20 atoms as probe. Depending on the phase shift ¢ the subsequent nonlinear process
generates population distributions of the mode described by é' as indicated in the three lower
histograms. ¢ Two-mode squeezed vacuum state as probe (top). Depending on the phase imprint
the second nonlinear process enhances or diminishes the average atom number (indicated by dark
coloured bin) found in mode described by ¢%. In both cases, the full phase information contained
in the entangled state is mapped onto the first moment of the output population distribution

we choose a total atom number of 20 (the pioneering experiment was performed
with three beryllium ions). After differential phase accumulation the same nonlinear
process that produced the entangled state in the first place is reapplied before readout.
It maps the phase dependence onto only two possible outcome states: all atoms
identically leave either of the two output ports. Such an output signal is maximally
robust towards detection inefficiencies. The three lower histograms show the output
statistics of mode described by ¢ for different phase settings. Compared to the linear
readout scheme, no single-atom resolved measurements are necessary. Instead, a
global measurement suffices and the super-resolving phase signal can be recovered
by determining the average mode population.

The nonlinear readout harnessing the two-mode squeezed vacuum state works in
a similar fashion. However, as emphasized above, while the NOON state has a fixed
number of particles the generation of the two-mode squeezed vacuum state involves
superpositions of twin-Fock states with different total atom numbers. Therefore,
the atom number of the two-mode squeezed vacuum state is defined only by an
average. The two-mode squeezed vacuum state is shown in panel (c). The population
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Fig. 1.5 Amplifying nonlinear readout. a The intrinsic amplification of the nonlinear readout can
be enlarged by extending the scheme with an additional period under nonlinear dynamics (green).
This extra amplification is noiseless in the sense that it does not degrade the phase sensitivity.
Regardless of the amplification factor a phase sensitivity at the Heisenberg limit can be retained.
b Counting statistics at three different stages (indicated by colour) of the interferometer similar to
Fig. 1.4. The dark coloured bins indicate the average value

distribution at both, the probe stage (top) as well as the readout stage (lower panels)
follow a distinctive thermal-like skewed distribution. Their average value (indicated
by the dark coloured bin) constitutes the phase sensitive signal. Measurements of this
average value suffice to fully exhaust the quantum resource up to the fundamental
Heisenberg limit [89].

Sensitivity-maintaining amplification of the output signal

Furthermore to the mapping onto global observables the two-mode squeezed vacuum
state is amplified during the nonlinear readout. This intrinsic amplification of the
output signal facilitates additionally the detection. This stands in contrast to the
NOON state whose passive scheme redistributes an ever-fixed number of atoms for
readout. Apart from the inherent amplification when using the two-mode squeezed
vacuum state in the symmetric arrangement of Fig. 1.4 the output signal can be
amplified even further. For this the nonlinear readout is extended by an additional
period of nonlinear evolution as illustrated in Fig. 1.5a. Panel (b) shows the atom
number distribution at the probe stage (red), after (symmetric) time-reversal (blue)
and after additional amplification (green). During the final amplification stage the
output signal is magnified nonlinearly once more. Remarkably, the phase sensitivity
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of the interferometer is not degraded by the additional amplification and Heisenberg
limited phase sensitivity can still be retained. This counterintuitive behaviour is the
consequence of the entanglement present during amplification [87, 88].

Therefore, the resource entanglement is harnessed twice in this scheme: first, it
enables a nonclassical phase measurement which surpasses the classical precision
bound. For this purpose, entanglement has to be present at the probe stage [21].
Secondly, during nonlinear readout the entanglement enables the amplification of
the output without signal degradation. The ability to amplify the output signal allows
for detection noise resilient phase estimation approaching the ultimate Heisenberg
limit [90]. This is because, in principle, any amount of technical noise that is added
during the detection process can be rendered negligible by choosing sufficiently large
amplification.

1.7 Organisation of this Thesis

To experimentally realize the nonlinear readout scheme we use spin exchange among
three states which altogether form an effective spin-1 system. We therefore devote
the first chapter to the theoretical description of quantum mechanical spins. We begin
with the conceptually simplest case of a spin-1/2 object before presenting the pecu-
liarities of spin-1 systems on that basis. Next, we detail the collisional interactions
that arise in ultracold spinor systems which eventually leads to the Hamiltonian
description of spin exchange. Before discussing the inherent quantum features of
this Hamiltonian we provide an intuitive picture based on classical approximations.
In Chap.4 we reexamine the Hamiltonian description in view of parametric ampli-
fication. This analogy is based on an approximation that is central to this work—a
highly populated spin mode which acts akin a undepleted reservoir. The comprehen-
sive possibilities of control promote the process of parametric amplification to the
central building block of the nonlinear readout scheme—which will be described
in depth. Chapter5 provides a more formal treatment that builds on the so-called
SU(1,1) framework. In this mathematical framework the common and distinctive
features of the nonlinear readout when comparing it to routinely employed inter-
ferometers are especially evident. With this we conclude the conceptual part of the
thesis.

Our experimental apparatus to study spinor Bose-Einstein condensates is pre-
sented in Chap. 6. In particular we detail the techniques employed to control spin
exchange reliably. The experimental results are the subject of the chapters that fol-
low: we characterize the process of spin exchange in Chap. 7. For this the essential
parameters, i.e. nonlinear coupling strength, detuning, and spin relaxation rates are
determined. Special attention is paid to the nascent spin state and its distinguishing
features—chiefly its coherent spin fluctuations. Finally, we probe the conditions that
have to be met in order to achieve prototypical parametric amplification.

In Chap. 8 we present the results of time reversal interferometry. Here, the nonlin-
ear readout is matched to the initial preparation of an entangled state. We explicitly



14 1 Introduction

show that the phase sensitivity is better than classically allowed. Subsequently—in
Chap. 9—we extend the scheme and characterize the amplifying nonlinear readout.
Here an additional amplifier stage is added before detection. We show that quantum-
enhanced phase sensitivity is not only preserved but made more robust.

We employ the nonlinear readout as an instrument in Chap. 10 and present two
applications: first, motivated by theoretical studies of phase diffusion in Bose-
Einstein condensates, the nonlinear readout is used to investigate the mechanisms
of phase damping. In the second application the nonlinear readout is employed to
characterize its input state. Specifically, it serves as a witness for Einstein-Podolsky-
Rosen entanglement.

Finally—in the outlook—we present a method to extend the nonlinear readout
such that time reversal is achieved even when going beyond the restrictive approxima-
tion of an undepleted reservoir. Recently, the study of out-of-time order correlations
has attracted considerable interest. We show that the nonlinear readout in fact realizes
such a measurement.
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readout—is published in reference (4). Furthermore, in reference (5) the ampli-
fying nonlinear readout stage is treated in the framework of the so-called SU(1,1)
interferometer. Therein we discuss the characterising features by comparing it to
routinely used passive interferometry schemes. Parts of this thesis’ Chaps.5 and 7
are published in this paper.

1.9 Overview of Related Experiments

Here, we review related work to put this thesis’ content into perspective and to provide
a broader overview. With science being rarely disruptive, advances in diverse areas
are made in parallel. The basic idea of using two nonlinear processes in sequence with
aphase accumulation stage in between has been realized using different experimental
platforms. In this section we present the most relevant experiments. We start with
those that are dealing with photons. For these experiments the nonlinear mechanism is
implemented by parametric amplification, a Hamiltonian that is formally equivalent
to the one used in this thesis (Eq. 1.1). Therefore, from a procedural point of view,
these photonic experiments bear greatest resemblance to the atomic spin exchange
experiments of this thesis.

Quantum optics

Using parametric down-conversion in a nonlinear crystal, the authors of reference
[91] retroreflected the signal and idler beam to traverse the nonlinear crystal once
more. Depending on a phase imprint, the intensity of the signal and idler beams
after passing the crystal twice is either enhanced or diminished. By systematically
changing the phase of all three involved beams individually (pump, signal, and idler)
the overall phase dependence was inferred. In our atomic spin system this phase is
called spinor phase and will be introduced in Chap. 2.

With the bulk crystal being substituted by a photonic crystal fibre (to achieve
larger nonlinearities) a similar experiment arrangement was studied in reference
[92]. Special attention is paid to the fact that the second fibre passing comprises a
detection which is sensitive only to biphotons [93]. The modulation depth of this
biphotonic signal was used to study qualitatively the transition from classical to
quantum nonlinear behaviour.

Parametric amplification can be realized by three (four) wave mixing in alkali
vapour gases. For this one exploits the strongly nonlinear response to light being
close to two-photon resonance of an atomic three level system. In references [94,
95] vapour cells filled with Rubidium-85 operated at thermal temperatures are used.
Using two such vapour cells in sequence, an interferometer was realized in [96, 97].
Using a bright seed for parametric amplification, quantum-enhanced phase sensitiv-
ity could be inferred [98]. In a similar setup the authors of reference [88] surpassed
the quantum noise limit for amplification by using an entangled state. We will elab-
orate on this aspect of noiseless amplification and interferometry in Chap. 8. Similar
to our atomic experiments which start with vacuum initially, quantum-enhanced per-
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formance was recently observed for unseeded optical parametric amplification [99].
This operation regime where amplification is not predetermined by classical seeds
is more challenging. Subsequent additional amplification is employed additionally
which we detail in Chap. 9.

Superconducting qubits

In a cryogenic environment, a Josephson mixer is used to realize the parametric
amplification Hamiltonian for microwave photons [100]. The emerging entangled
state is distributed over two transmission lines. Reversibility under a second Joseph-
son mixer was used as an entanglement witness. We will detail the procedure in
Chap. 10 and extend it such that a particular strong form of Einstein-Podolsky-Rosen
entanglement is witnessed [101].

In reference [102] entangled microwave photons are employed to interrogate an
ensemble of electronic spins via their magnetic resonance. Entangling and readout
are both implemented by Josephson mixers. Quantum-enhanced performance was
demonstrated.

Trapped ions

Beyond question cooled and trapped ions offer the highest degree of experimental
control with impressive single gate fidelities surpassing ‘six nines’ [103] and entan-
gling gates at the ‘three nines’ level [104, 105]. Additionally, their high fidelity
readout makes them ideally suited for quantum information processing tasks [106,
107]. As detailed in the previous section a nonlinear readout scheme harnessing a
NOON state for quantum-enhanced interferometry was realized with three beryllium
ions. In this pioneering work [81], the authors directly compare the outcome obtained
under linear and nonlinear readout. They stress the advantage of the latter if detec-
tion infidelities were present. While the previous photonic experiments leveraged
parametric amplification, here a different nonlinear mechanism is employed which
generates an NOON state in the spin degree of freedom [108]. Charged ions, how-
ever, suffer one drawback: the two-gate interactions (among two specific ions) are
(usually) mediated via collective vibrational modes which become narrowly spaced
as more and more ions are used. Therefore, the extension to large arrays of many ions
while maintaining the high speed of gate operations remains challenging [109-111].

Giving up the individual addressability a large two-dimensional crystal of more
than 100ions with collective interactions among them was realized recently [112,
113]. In this system a time reversal sequence was implemented to study out-of-time-
ordered correlators [114]. With the ability to accurately determine the overlap of the
final and initial state, the multiple quantum coherence spectrum could be extracted.

Cold gases in optical cavities

The authors of reference [115] use nonlinear interactions to magnify a quantum
state before readout. A similar nonlinear process is employed to, first, generate an
entangled spin-squeezed state, which is subsequently magnified to ease detection. An
ensemble containing half a million laser cooled Rubidium atoms is used. The collec-
tive nonlinear interactions are mediated by an optical cavity [116]. Comprehensive
theoretical studies are focussed on similar experimental setups [84, 117].
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Ultracold gases

The collisional interactions inherent to degenerate quantum gases provide a strong
nonlinear mechanism which promotes them to an ideal testing bed for nonlinear
quantum atom optics [118]. Early on phase-sensitive amplification of matter waves
was observed [119, 120]. In these experiments Raman scattering is used to couple
out atoms of the condensate spatially.

More recently, experiments conducted within the spin degree of freedom reach
the quantum noise limit of amplification. The authors of reference [121] studied
how spin exchange is inhibited by imprinting phase shifts stroboscopically. To this
end the sequence contains periods of nonlinear evolution with subsequent quasi-
instantaneous phase imprints. The authors investigate the results in the context of
stabilization theory.
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Theoretical Basics



Chapter 2 ®)
Quantum Mechanical Spin oo

We start our theoretical treatment with one of quantum mechanics most paradigmatic
systems, the spin-1/2. To this end we introduce a set of spin operators that exhaus-
tively describe such elementary systems and detail the Bloch sphere representation.
Characteristic features of three level systems are developed on that basis.

2.1 A Spin-1/2 System

Following a reductionism approach we first introduce the most fundamental entity,
the quantum bit (qubit). Such a qubit describes the quantum mechanical state of a two
level system. In particular a spin-1/2 particle falls into this category where two basis
states might be identified with spin-up (|1)) and spin-down (||,)). To characterize its
wave function we introduce the following set of spin operators

A aﬁal +£$I&T
J=1J]= 3 (ajff — affj)/l . 2.1
a,ay —aa,

> )b)

~

Using the second quantisation formalism even for a single particle at this point, &I
and &i denote the bosonic creation operators for mode |1) and || ), respectively. The

operator f quantifies the population imbalance (magnetization) between both basis
states while J, and J. , contain the coherences. Because of the rotational symmetry
retained by angular momenta these spin operators satisfy the defining commutation
relations of SU(2), i.e. [y, fy] = ifz and cyclic permutations thereof.

Every spin-1/2 wave function |, ¢ ) can be associated with a unit vector 2r via
the identity
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26 2 Quantum Mechanical Spin

Fig. 2.1 Bloch sphere representation of a spin-1/2 system. The state space spanned by the two
states spin-up |1) and spin-down || ) can be visualized on the surface of a sphere. In this Bloch
sphere representation, the orthogonal states |1) and || ) are identified with the north and south pole,
respectively. Any pure state describing a coherent superposition can be represented by the direction
of its mean spin (f ), often parametrized through two angles as indicated. The blue area denotes the
intrinsic indetermination imposed by the uncertainty principle

(9, 01 J v 10, 01) =1/2. (2.2)

This visualisation of wave functions in terms of points spanning the surface of a unit
ball is called Bloch sphere representation; it is shown in Fig.2.1. A pure spin-1/2
system is characterized completely by the direction into which its mean spin J
points. Often this orientation is parametrized by two angles: while the polar angle
¥ encodes the population imbalance, the azimuthal angle is given by the Larmor
phase ¢ . This Larmor phase is the dynamic phase associated to the energy differ-
ence between the two basis states |1) and || ) and is therefore respons1ble for spin
precession. Advancing the Larmor phase by ¢; = /2 rotates J, into Jy, which in
terms of individual mode operators is described by the substitution 4y — a4 expig;.
Transformation of this form will become important later on. The inner volume within
the Bloch sphere becomes accessible only for mixed states.

According to Heisenberg’s uncertainty relation there is a fundamental lower bound
on how well two non-commuting spin components can be determined. This bound
is indicated by the blue shaded area in Fig.2.1. It follows from

(AP (AT = (L)1 /4 (2.3)

which holds similarly for the other spin components. Here, (A-)? denotes variance.
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m -1 0 1

Fig. 2.2 Phases of a spin-1 system. As a three level system, a spin-1 accommodates two dis-
tinct phases, e.g. 91 = ¢ — ¢4 and g2 = @y — ¢, as indicated. The decomposition into a Larmor
phase contribution, ¢7, = ¢» — ¢1, and spinor phase, ¢ = @1 + @2, is particularly insightful. This
is because each phase is responsible for qualitatively different dynamics of the three level system.
Similar to the situation encountered in a spin-1/2 system, the Larmor phase rotates an oriented spin.
In contrast, the spinor phase drives orientation-to-alignments oscillations

2.2 A Spin-1 System

The wave function of a spin-1 object involves three states, for instance the three
Zeeman levels. In direct analogy to the spin-1/2 case we first introduce spin operators
which characterize the spin’s orientation. However, in contrast to the two-level system
more operators are needed to completely describe spin-1 states. We motivate this by
considering composite wave functions made up by two antipodal spin-1/2 particles.
The additional operators characterize the alignment of spin fluctuations.

Spin operators—orientation

We treat the spin-1 object in the Zeeman basis consisting of the three states [m = 1) =
1), |m =0) =10), and |m = —1) = || ). These three levels might have an unequal
energy spacing. The possible two independent energy differences call for two distinct
(dynamic) phases, ¢ = ¢y — ¢4 and @2 = @y — ¢, as indicated in Fig.2.2. Here ¢,
denotes the phase of state |1) with a similar notation for the other states. The Larmor
phase of this three level system is given by ¢, = @2 — ¢;. Similar to the spin-1/2 case
itis related to the energy difference between states 1) and || ) and generates rotations
of the mean spin direction. The additional phase, called spinor phase ¢ = ¢ + ¢,
is in turn related to the energy difference with respect to state |0). It is given by

©=200— ¢y — @, . 24

It is useful to introduce the shorthand notation for the symmetric and antisymmetric
combination of spin-up and spin-down annihilation operators,

S0 =@y +ay/V2 §o= (@ —a)/V2. (2.5)

These definitions allow constructing the spin operators of a three level system in a
manner mnemonic to the spin-1/2 case [1], namely
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S, absy + aost
S=18]=|@s —asi]. (2.6)
S aja, —aja,

Here, the definition of S , involves the operators of s_ rather than §, . This is because
the spin operators Syand § , need to be connected via a rotation of the Larmor phase
which transforms §, into is_. By such a construction these operators automatically
fulfil the rotational SU(2) commutator relations. However, a spin-1 object is not

exhaustively described by its mean spin direction (S). We motivate the need for
further operators by an example in the following section.

Quadrupole operators—alignment

Let us imagine, cum grano salis, that the spin-1 is composed of two fictitious fun-
damental spin-1/2 particles. Due to bosonic exchange symmetry we can explicitly
construct the wave function out of two spin-1/2 wave functions in the following way,
v = \/LE(|191, O1)1 192, 92)2 + |02, d2)1 |91, ¢1),) [2, 3]. Here the state’s subscript
labels the individual spins. These two spin-1/2 can point into arbitrary direction, in
particular into diametrically opposite ones. Such a case is shown in Fig.2.3 where
one spin-1/2 points to the north pole and the other to the south pole. The combined
state is then given by W = (|1); [4)2 + [I)1 |T)2)/«/§. This is the state with total
spin S = 1, m = 0. It thus corresponds to the situation with only the m = 0 compo-
nent populated. Such a state is the starting point for all experiments reported on in
this thesis. As the superposition of two antipodal states its mean spin length vanishes.
However, its spin fluctuations are anisotropic as shown in the right panel where the
Bloch sphere representation of the spin S is shown. The fluctuations amount to

spin-1
spin-1/2 spin-1/2 z

Fig. 2.3 Majorana representation. A spin-1 object can be thought of as being composed of two
fundamental spin-1/2. A particular interesting case arises when two antipodal spins are combined.
Shown are the Bloch sphere representations of a spin-1/2 in state |1) and || ) with associated uncer-
tainties indicated as blue shading. The resulting spin-1 has no orientation, however its fluctuations
(blue area) have the shape of a disc and are thus anisotropic
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(AS)? = (A8 =1, (AS)*=0. 2.7)

Similarly, the resulting state of two antipodal spins lying on the equator, say along
the x and —x direction, gives anisotropic spin fluctuations with (AS,)> = (AS,)? =
1 and (AS,)? = 0 which can be understood as a rotation of the previous spin-up and
spin-down case. Therefore both states have vanishing mean spin length (S) = 0 but
describe different states as witnessed by their coherent fluctuations. Such states are
known under different names: in spinor condensates, they are predominantly called
polar states, in solid state physics spin-nematic, in nuclear physics quadrupolar, and
in atomic physics aligned. The contrastive pair of orientation versus alignment is
particularly illustrative. Here, orientation describes an object having one direction.
In contrast, alignment describes objects having an axis.

The previously introduced spin-1/2 operators can be regarded as a consequence of
transformations under Larmor phase rotations. In a similar manner we can construct
additional sets of operators that satisfy SU(2) symmetry by construction. For this we
impose a rotation with the spinor phase: starting with the operator S, and substituting
ay — dp expip we obtain:

asy + aos
= | @8y —anshy/i | - (2.8)
abag — 515,

F=

el

A similar procedure can be done by starting with S'y:

Gy ags— + aost
G=|G,|=|@s - zzof"' )il . (2.9)
G, abag — 575

With the help of these operators, a spin-1 wave function is completely characterized.
The additional operators measure the anisotropy of spin fluctuations. Expressed in
terms of spin orientation operators they take the form of anticommutators {S;, S;}.
Therefore the name quadrupole operators is justified [4]. For a spin-1/2 these prod-
ucts of spin operators vanish as a consequence of the Pauli matrices satisfying
{0i,0;} =0 for i # j, see appendix (Sect.C.1). This is in accordance with the
Wigner-Eckhart theorem stating that a wave function describing an angular momen-
tum J object has vanishing expectation values for all moments of the multipole
expansion greater than 2J. Turning the argument around shows that the spin-1 is
fully characterized by S and the alignment operators F and G respectively.

In the language of atomic physics, the operators F and G measure the alignment
of the spin. This is opposed to the orientation which is characterized by the operators
belonging to S: the spinor phase ¢ drives alignment-to-orientation oscillations while
the Larmor phase rotates an oriented spin. Because of the rotational symmetry the
alignment operators can be visualized on a Bloch sphere in exactly the same manner



30 2 Quantum Mechanical Spin

as the oriented spin. In such a representation the aforementioned state S = 1,m = 0
(as shown in Fig. 2.3) corresponds to the north pole of the Bloch sphere belonging to
F and G, respectively. We will come back to this representation in the next chapter.
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Chapter 3 ®)
Hamiltonian of a Spin-1 Bose-Einstein e
Condensate

In this section we present the Hamiltonian description of a spinor Bose-Einstein
condensate. With the motional degrees of freedom frozen out, the dynamics are within
the spin. We detail the collisional interactions that lead to spin exchange among three
modes. For developing intuition about the dynamics induced by spin exchange the
classical phase space is discussed before the quantum mechanical treatment follows.
Finally, we give an overview of the employed semi-classical simulation methods.

3.1 Spinor BEC in a Single Spatial Mode

In our experiments we employ mesoscopic Bose-Einstein condensates (BEC) con-
taining about 400 atoms that are tightly trapped in an optical lattice potential. In such
a situation the external degrees of freedom are frozen out and the ensuing dynamics is
restricted to the spin. Furthermore, the trapping potential treats all spin components
equally. Under these conditions the spatial wave function of the condensate ¢(r) is
common to all spin states. Formally, this means that the three spin components j
have wave functions given by

W (r) = (r)a; . (3.1)

The shared mode function ¢(r) can be determined by solving the Gross-Pitaevski
equation in the external potential. Depending on the atomic density two qualita-
tively different regimes arise. For very low atomic densities interactions among the
particles can be neglected and the BEC wave function is given by the correspond-
ing single-particle wave function. In the opposite case of high density and thus
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32 3 Hamiltonian of a Spin-1 Bose-Einstein Condensate

dominant interactions the kinetic energy contribution can be neglected. In this
Thomas-Fermi approximation the chemical potential takes the shape of the (inverted)
trappin potential [1, 2].

3.2 Collisional Interactions

Due to the diluteness of atomic gases it suffices to only treat two-body collisions.
To describe the interactions of any general three component BEC all pairwise scat-
tering processes need to be considered. This amounts to three inter- and three intra-
component scattering channels. However, in our case the three components are not
independent of each other but constitute a physical spin. As such it has well defined
properties upon rotation. By exploiting symmetries, in particular the conservation of
angular momentum, the treatment of interactions can be greatly simplified [3].

Within the ultracold temperature regime, only head-on collisions occur. This is
because two low energy atoms with finite orbital angular momentum / # 0 in their
centre-of-mass reference frame cannot overcome the centrifugal barrier to probe
the short range interatomic potential. Therefore, only s-wave collisions with / = 0
need to be considered. This s-wave entrance channel cannot be left (by interconver-
sion of internal angular momentum) because the scattering potential is assumed to
be spherically symmetric. Here, we explicitly exclude effects due to dipole-dipole
interaction! which is anisotropic. Under these conditions, the conservation of total
angular momentum (external and internal) stipulates the conservation of spin alone.
Two indistinguishable bosonic atoms with spin F = 1 can couple to a combined
spin of either F' = 2 or F = 0. Each of these channels is associated with a scattering
length ar. Therefore, the interaction takes the form

V =ayPy+ arP> (3.2)

where PF are projectors onto the coupled spin, i.e. Pr = ZZ:_F |F, m) (F, m|.
Analogy to solid state magnetism

To gain insight into the microscopic interaction between two spins, we express the
interaction potential (Eq.3.2) in terms of the two individual spins F; and F,. For

this we note that the operator F; - F, has eigenvalue 1 if the two spins F; and F,
are coupled to F' = 2 and eigenvalue —2 correspondingly for F = 0. Therefore, we

IWe estimate the importance of dipolar interactions by comparison to the collisional interactions.
For this purpose we assume a uniform particle density and integrate both contributions over a sphere.
The ratio of dipolar energy Eg to collisional energy E; reads Eq/Es = pou?m/12mah? [4]. Here
fo denotes the vacuum permeability, x4 is the magnetic moment, m the mass and a the s-wave
scattering length. For the background scattering length of Rubidium-87 the ratio is 2%o. Having
said that, spin exchange is driven by smaller scattering length differences such that the weak dipolar
effects can become important [5, 6]. However, in our case the relevant scattering length amounts to
6 Bohr radii such that the ratio is 2% which we neglect.
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have F; - F, = P, — 2Py. Together with the resolution of identity the interaction
potential can then be written as

\%4 =C0+C1F1 ~F2. (33)

Here the coefficient ¢y quantifies the spin-independent interactions. In terms of s-
wave scattering lengths the coefficients are given by ¢y o ag + 2a; andc; o< a, — ay.
Therefore, the spin-dependent interaction is mediated by the scattering length differ-
ence between singlet and triplet channel. The above scattering potential emphasises
that the underlying interaction is of pairwise nature and has the form of (anti-) ferro-
magnetic spin exchange. For ¢; < 0 aligned spins are favoured (ferromagnetic) while
for ¢; > 0 energy is minimized for an antiparallel spin configuration [7]. While this
resembles the interaction in solid state magnetism, one has to keep in mind that the
indistinguishability of identical particles is crucial. In a Bose-Einstein condensate the
particles, being delocalized, are described by a spatial mode. In solid state physics
one often considers the interactions among spins localized to specific lattice sites.

3.3 Hamiltonian

The projection operators onto the coupled spin (Eq. 3.2) can be expressed in terms of
the individual spin components. We call N the population of state |1) with a similar
notation for the other states. We assume a fixed number of N atoms in total. Consid-
ering only the spin-dependent terms as quantified by ¢; we obtain the Hamiltonian

Hsce = hg(&ofloﬁi&i +h.c)

H = Hsce + He
Hei = hg(No — 1/2)(Ny + Ny)

3.4)

Here, Hscc describes the spin exchange process by which a pair of atoms in the
pump mode |0) scatters coherently into the side modes, i.e. |1) and || ), such that the
magnetization (N4 — N ) remains conserved. As a coherent process the reversible
effect of two atoms scattering into the pump mode is allowed on equal footing. We
call g the microscopic nonlinear coupling strength. It quantifies the rate at which
atoms undergo these spin-changing collisions. In terms of s-wave scattering lengths
it is given by g o c;. Additionally, this nonlinear coupling strength depends on the
overlap of the external wave function g o< [ d3x|¢(x)[*, as defined above in Eq.3.1.

Generally, Hamiltonian terms of the form AE(N; + N) = —AE N, describe
energy shifts of the pump mode by A E with respect to the side modes. The previ-
ous equality holds because a constant term—in this case A EN—can be added or
subtracted from the Hamiltonian. The second part, H,j, is of this kind and describe
collisional energy shifts. Notably, the size of these shifts is given by &g, the same
quantity which characterizes the spin exchange coupling strength.
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Altogether, these two terms result directly from the scattering potential, Eq.3.2.
Additionally, energy shifts arise due to externally applied fields. Most importantly, we
have to consider magnetic bias fields and the thereby caused Zeeman shifts. For alkali
atoms these energy shifts are described by the Breit-Rabi formula. Its predominant
contribution is linear in magnetic field strength and shifts the levels proportional
to their magnetic quantum number, AE o m. It therefore treats the two m = *£1
asymmetrically: while one of the levels is raised in energy, the other is lowered
by the same amount. Level shifts of this kind play no rdle for the spin exchange
dynamics because both levels are populated in a pairwise fashion. Therefore, the
Larmor phase is inconsequential for the ensuing dynamics. However, expanding the
Breit-Rabi formula to higher orders in magnetic field strength B yields the quadratic
Zeeman shift. To capture this energy shift we supplement the Hamiltonian with
the following term Hp = hgp BZ(N¢ -+ N ) where gp quantifies the strength of the
quadratic shifts. Any additional level shifts are included in a similar manner. In
particular we use dispersive microwave dressing which predominantly shifts the
m = 0 level in energy. As such it acts in a similar fashion as the applied magnetic
bias field. We describe the total energy shift by

H, = —hq(N; + N,) (3.5)

and call ¢ the spin exchange detuning. It incorporates all external level shifts. Since
the Hamiltonian cannot build up or change magnetization, we restrict our discus-
sion to the case of vanishing magnetization throughout the unitary evolution. This
is appropriate because in our experiments the initial populations of m = %1 are
carefully emptied.

Hamiltonian in collective spin representation

The Hamiltonian H can be expressed in terms of the spin-1 operators. Although
these operators have been introduced before for a single particle they retain their
form for many particles. This is a consequence of the indistinguishability of iden-
tical Bosons (see Sect.C.1). Within this Schwinger Boson representation, the spin
operators describe a collective spin made up by N individual spin-1 particles: for
instance, the collective spin operator S, is obtained by summing up all single-particle
spin operators of each individual particle. Therefore the resulting spin has a size of
S =0...N. Similar expressions hold for the alignment operators Fand G [31].

Taking the following combinations of collective spin operators we recognize the
distinctive terms of the spin exchange Hamiltonian,

L. aia
Fl+Gl=S5I+5!= E(aoaoaja; +he. +2No(Ny + N)) + No+N) (3.6

and
F,+G,=No— (Ny +N})/2. (3.7
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The first describes the spin exchange process and the associated collisional shifts,
while the latter contains the detuning terms due to externally applied fields, e.g. a
magnetic bias field. Therefore the Hamiltonian can be cast into

H/2h =g (ﬁj n Gﬁ) + % (F n G) . (3.8)

Rearranging the terms such that the operators belonging to one common SU(2) space
stand together we arrive at

H/2h = (gﬁf n %ﬁz) n (g(’}‘§ n %’GZ) . (3.9)

This can be understood as nonlinear dynamics within the SU(2) space of { Fy, Fy, F.}
and similar dynamics in the space of {G., G, G.}. These two SU(2) spaces are con-
nected by a fixed Larmor phase rotation such that it suffices to discuss the dynamics in
one of the two spaces [8, 9]. In the following we thus treat the following Hamiltonian

H/2h=gF+ 3 F.. (3.10)
When deriving the Hamiltonian we assumed a vanishing magnetization and
neglected terms of the form (N; — N). As a side remark: when keeping these
terms, the Hamiltonian in absence of any external fields can be written in the elegant
form of H/2h = géz. Such a formulation is beneficial for discussing the quantum
mechanical ground state [10]: for ferromagnetic interactions g > 0 the ground state
has maximal spin length, S = N; all 2N 4 1 sub states are degenerate. In contrast,
for antiferromagnetic interactions g < 0 the ground state is unique and has S = 0.
Here pairs of atoms (for N even) form spin singlets [3, 11].

3.4 Mean-Field Description and Classical Phase Space

Before discussing the Hamiltonian and its peculiarities in a quantum mechanical
framework we first present its classical approximation. For this we consider the
mean-field limit which is valid for large particle numbers, N — oo and all of them
share an identical single-particle state. Then no quantum mechanical correlations
among them can exist. Additionally, the quantum nature of any single particle, which
might for instance show up in fluctuations, becomes unimportant due to the infinitely
large ensemble. Therefore, the mean-field limit essentially amounts to a classical
approximation. Formally we substitute the mode operators by complex numbers.
Motivated by the previous discussion we anticipate the importance of the spinor
phase and only consider states with vanishing magnetization such that the Larmor
phase is rendered unimportant:
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ay — /Ny = /(N — Ny)/2

ap — / Noexpip (3.11)
é\w — w/N¢ = \/(N—No)/z.

Conventionally, the phase space is expressed in the cylindrically symmetric space of
Ny/N and spinor phase . Then, the mean-field energy per particle reads

E NO N() N()
— =hgN—[1 — — 1 1——. 12
vt (1= oo g (1-30) . e

The shape of the energy landscape depends on the relative strength of the spin
exchange detuning g compared to the effective nonlinear coupling strength given
by gN. Phase space portraits for different choices of parameters are shown in the
right column of Fig. 3.1. For parameters 0 < g < 2gN the phase space portrait shows
running phase solutions as well as confined orbits. Both structurally different regions
are divided by a separatrix which is indicated as the bold trajectory. For a vanishing
spin exchange detuning ¢ = 0 only confined orbits occur as shown at the top. In
contrast, for a detuning exceeding ¢ > 2gN as depicted at the bottom only running
(spinor) phase trajectories exist.

The two variables Ny /N and spinor phase ¢ are given by projections of the Bloch
sphere representation of F. In the language of spins the substitutions of Eq.3.11

amount to
sin ¥ cos

F — N | sindsingp (3.13)
cos 1

where cos ) = Ny/N parametrizes the fractional population in the pump mode. The
mean-field solutions in terms of these spin variables are shown on a Bloch sphere
in the first two columns of Fig. 3.1. In this representation the angle ¥} corresponds to
the polar angle while the spinor phase ¢ defines the azimuthal position on the Bloch
sphere. Evidently, the cylindrical phase space, Eq.3.12 is a projection of this Bloch
sphere representation.

At large spin exchange detuning g > 2gN as shown exemplary at the bottom,
the north and south pole of the Bloch sphere host a (neutrally) stable fixed point.
These two fixed points are enclosed by phase running trajectories. This structure of
the phase space changes once the spin exchange detuning is reduced. At g = 2gN
the system undergoes a (supercritical) pitchfork bifurcation. Thereby, the formerly
stable fixed point located at the Bloch sphere’s north pole splits up into two stable
and one unstable fixed point. The latter remains at the north pole while the two stable
fixed points as enclosed by the separatrix move towards the equatorial plane which
they asymptotically reach at vanishing detuning ¢ — 0. The unstable fixed point
at the north pole corresponds to a saddle point (hyperbolic fixed point) at which
the stable and unstable manifold of the separatrix meet. At g = gN the separatrix’
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Fig. 3.1 Classical phase space of the spin operators F. Mean-field trajectories for different ratios
between spin exchange detuning ¢ and effective coupling strength gN (from top to bottom). The
right column shows the dynamics in the cylindrical phase space spanned by Nyp/N and the spinor
phase ¢ (see Eq.3.12). Itis a projection of the Bloch sphere representation with No = N and No = 0
corresponding to the north and south pole, respectively. For spin exchange detuning ¢ = 0 (top row)
the mean-field trajectories are confined (oscillatory) orbits. In contrast, for a spin exchange detuning
exceeding ¢ = 2¢gN, only running phase solutions exist as exemplified in the row at the bottom.
At this point, the phase space gets bifurcated for smaller detuning. Henceforth, a separatrix (thick
line) divides the running phase solutions from oscillatory trajectories. At ¢ = gN the branches of
the separatrix encloses an angle of 90° (middle row)
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(b) i

Fig. 3.2 Structural stability of the phase space. a The mean-field phase space is shown for two
different atom numbers, N = 400 (blue) and N = 350 (red), respectively with otherwise identical
parameters. Each phase space is drawn on the correspondingly sized Bloch sphere. To directly
compare both phase space portraits the Bloch spheres are rescaled to a common size in panel b
While the angle enclosed by the separatrix (bold) changes, the position of the hyperbolic fixed point
remains unaltered at the corresponding north pole

two branches enclose an angle of 90°. At this point the bifurcated phase space is
structurally particularly stable.

Let us investigate this structural stability when considering different total atom
numbers. Such considerations are important in view of particle loss which is
inevitable in experimental realizations. Figure 3.2a shows the classical phase space
for total atom numbers of N = 400 and N = 350 in blue and red, respectively. Here
the phase space of N = 400 atoms corresponds to the parameter setting ¢ = gN.
As the atom number is reduced the associated Bloch sphere shrinks. For clarifica-
tion, panel (b) shows both phase spaces on a fixed-size Bloch sphere. While the angle
enclosed by the separatrix changes, the position of the hyperbolic fixed point remains
at the north pole. Therefore, starting at parameters for which g ~ g/N mild particle
loss will not lead to structural changes of the classical phase space. Of course such
an approach to particle loss is greatly oversimplified. However, it highlights two
aspects: the topological structure is described by a single parameter, g/gN, and,
within the bifurcated phase space the position of the hyperbolic fixed point does not
change. The latter point is particularly important for the experiments reported on
in this thesis. All experiments start with only the m = 0 spin state populated which
corresponds to the Bloch sphere’s north pole. Such a state can experimentally be
generated reliably. In the associated classical system this amounts to a preparation
precisely onto an unstable fixed point.

A bifurcation occurring in the classical dynamics is often connected to a quantum
phase transition of the corresponding Hamiltonian. One should keep in mind that
while within mean-field theory the bifurcated regime extends fromg = 0...2gN a
quantum calculation (under conserved magnetization) reveals that the region extends
symmetrically, —2gN < g < 2gN with a quantum phase transition at the respective
edge [12, 13].
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Fig.3.3 Constitution of the phase space as the interplay of rotation and shearing dynamics. Express-
ing the Hamiltonian in terms of spin operators allows for an elegant interpretations of the dynamics
on the Bloch-sphere. The spin operators are the generators of rotations. Therefore the term FA“

describe rotations about the z—axis. Terms akin to F; 2 yield a shearing which can be understood
as a rotation with an angular velocity depending on the projection of F itself. The combination of
these two operators generates the dynamics shown on the right Bloch sphere

Structure of the phase space

The topological structure of the phase space is a consequence of the interplay between
the two constituent terms F and F? 2 , respectively. Such a combination of spin oper-
ators is often referred to as Lipkin- Meshkov-Glick Hamiltonian [14]. The action of
both operators can intuitively be understood: very much like the momentum opera-
tor generates translations, angular momentum operators are generators of rotation.
Therefore, when viewed on the Bloch sphere the term qﬁz describes a rotation about
the z-axis with angular velocity given by ¢. This is illustrated in Fig. 3.3. Similarly,
the action of F 2 can be understood as a rotation about the x-axis with an angular
velocity given by F, itself. Thus, the angular velocity increases when leaving the
plane x = 0. Additionally the sense of rotation is different on the two hemispheres
with x < 0 and x > 0, respectively as indicated by the arrows in Fig.3.3.

Therefore, the spin exchange detuning g drives oscillations between F, =8,
(orientation) and F ) (alignment). In contrast the quadratic spin term F 2 is responsible
for population transfer among the three involved modes.

3.5 Fluctuations

‘We can go one step further than the mean-field approximation by additionally consid-
ering quantum mechanical fluctuations. For this discussion we consider the Hamil-
tonian in terms of collective spin operators. By virtue of their angular momentum
nature these operators satisfy the SU(2) commutator relations which in turn imposes
a Heisenberg uncertainty relation for the individual spin components, e.g.

(AE) (AF)? > [(F))? (3.14)
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Therefore there is an inherent uncertainty associated to the spin as well as the align-
ment operators. Starting point of all experiments is a state in which all N atoms
are prepared in m = 0. As stated above, such a state has (ﬁz) = N (and similarly
(G ;) = N) as it s fully aligned. In the absence of quantum mechanical correlations
among the individual atoms the uncertainty imposed by Eq.3.14 is shared equally
between F, and F,. Therefore, (AF,)* = (AFy)> = N.

In a microscopic point of view these fluctuation can be traced back to the quantum
fluctuations of a single spin-1. For uncorrelated particles the variances of these indi-
vidual spins add up to give the total uncertainty of the collective spin. Since a single
spin-1 has uncertainty 1 the uncertainty of the collective spin is +/N. However, one
has to keep in mind that the associated Bloch sphere has a radius of size N. Therefore
the relative fluctuations become smaller o 1/+/N as more particles constitute the
spin. In the mean-field limit these fluctuations vanish.

Equation3.14 is often compared to the canonical uncertainty relation for one
individual spin. In this case, the right hand side reads //4. Therefore, one might argue
that the collective spin system features an effective Planck constant that depends on
the number of atoms, et = +/2/N. Then the mean-field limit formally corresponds
to fiesr = 0 which is the limiting case that is routinely used to recover the laws of
classical mechanics out of the more fundamental laws of quantum physics.

3.6 The Wigner Function as a Quasiprobability
Distribution

To simulate and visualize the quantum dynamics we make use of phase space methods
[15]. A central object is the representation of a state using the Wigner quasiprobability
function [16]. This is the generalization of classical probability distributions into the
realm of quantum mechanics. For simplicity we first consider the single mode case,
before discussing the multimode extension in the next section. The mode is described
by creation operator a'. Starting point is the definition of a characteristic function;
these functions are widely used in stochastics as they provide means to generate the
moments of a probability distribution. The moments are then obtained as derivatives
of the characteristic function. In quantum mechanics a characteristic function xw
can be defined as the expectation value of the mode’s displacement operator, i.e.

Xw (A %) = <eAf‘“A*f‘> : (3.15)

Average values are then obtained formally by taking derivatives with respect to A
and \*, respectively, which are treated independently

ko~ d\f/ d\ .
(@ @', = (ﬁ) <K> Xw (A, A%) (3.16)

A—0
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Here (-) denotes the expectation value of the symmetrized combination of destruc-
tion and creation operators. This symmetrisation occurs because the exponential of
the characteristic function contains two non commuting operators. Then their order-
ing is important. The single exponential yields the symmetric ordering of @ and a'.
Therefore the expectation values generated by xy are symmetrically ordered. For
example (a'a),, = (a'a + aa’) 2.

The Wigner quasiprobability function is defined as the Fourier transform of the
symmetrically ordered characteristic function y,

1 o
W, o) = — /dz)\ eV (O, N (3.17)
T

Symmetrically ordered operator averages are then given by the phase space averages
over the Wigner function

(@*@"h'),, = /dza KW (a, o). (3.18)

Another widely used characteristic function is the one corresponding to anti-
normal ordering. The difference between the symmetrically ordered characteris-

tic function yw and the antinormal ordered one, i.e. x, = <e’”&emr> is given by

Yo = e~ A*/2y . The Fourier transform of the antinormal ordered characteristic
function gives the often employed Husimi representation. Therefore, the Husimi

function can be obtained from the Wigner function by convolution with the Gaussian
—IA?/2
e .

3.7 Simulation Method Based on the Wigner Function

We simulate the spin exchange dynamics semi-classically using phase space meth-
ods which make use of the Wigner representation [15]. At the core of this simulation
method lies the correspondence between the action of mode operators and derivatives
of the corresponding Wigner function. While this correspondence is exact, the result-
ing set of differential equations is often only tractable when applying the so-called
truncated Wigner approximation. This restricts the method to Wigner functions that
remain positive throughout the evolution. Vigorous nonclassical effects that lead to
negativities of the associated Wigner function are therefore not captured.

From a practical point of view, the procedure is surprisingly simple and intuitive:
the initial Wigner function is stochastically sampled; each sample is then propagated
in time according to the classical mean-field trajectories and finally averaged to
give the Wigner function at a later point in time. While the time evolution proceeds
according to the deterministic classical equations of motion, quantum fluctuations
are effectively taken into account by the uncertainty of the initial state [15, 17].
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Fig. 3.4 Illustration of the simulation method within the truncated Wigner approximation. To
simulate the quantum dynamics an initial Wigner function is sampled in phase space (indicated by
the red ellipse). Each of these initial conditions is propagated in time using the classical equations of
motion as shown by the black arrows. The resulting distribution coincides with the Wigner function.
Although the time evolution of each trajectory is classical, beyond mean-field effects are included
by the initial stochastic sampling. However, decisively nonclassical effects leading to negativities
are not captured and the method is restricted to positive Wigner functions throughout the evolution

We now summarise the procedure in more detail. The von Neumann equation gov-
erns an operator’s time evolution. For a density matrix p it reads ik dp/dt = [H, p]
which can be reexpressed in terms of the Wigner function. In this framework the
commutator terms like Hp and p’H correspond to derivatives of the corresponding
Wigner function. For a single mode with annihilation operator @ we have the corre-
spondence of dp < (a + %%) W (o, ). In this manner, Hamiltonians bilinear in
a and a' lead to a differential equation with first and second derivatives. As such they
are similar to a drift and diffusion equation. If the initial Wigner function is positive,
it remains so during the entire evolution. This, however, only holds in the Gaussian
regime, i.e. for Hamiltonians bilinear in mode operators.

The spin exchange Hamiltonian is quartic in mode operators which gives rise to
a third derivative in the differential equation. The truncated Wigner approximation
consists in neglecting this third derivative. Within this approximation time evolution
is governed by the deterministic trajectories according to mean-field. Effects that go
beyond mean-field are captured by stochastically sampling the initial condition, i.e.
the initial Wigner function. This is illustrated in Fig. 3.4. The experiments reported on
in this thesis start with a single occupied spin component: all N atoms populate the |0)
component. The Wigner function of each spin state is a Gaussian with width reflecting
the quantum fluctuations—we detail the description in the space of quadrature at a
later point. Our initial condition is constructed in the following manner; to sample the
initial state, for each run and spin component, we draw phases 3 and v from a normal
distribution. The initial state for either mode |i) is then given by ; = v/N; + (8 +
iy) where N; is the population of the mode in question (Ng = N and Ny = N, = 0).
After time propagation we calculate phase space averages of the desired observable.
As detailed above, these phase space averages correspond to symmetrically ordered
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operators. The average mode population therefore reads (Ni) = (oz}*ozi> — 1/2 while
the corresponding variance is given by (AN)? = (Aafay)? — 1/4.

This procedure is often summarised in the following simplified terms: to take
into account quantum effects, initially half a quantum of noise is added to each
mode which—after classical time evolution—is again subtracted from the final result.
One has to keep in mind though that single trajectories do not necessarily resemble
experimental realizations [18].

This method’s region of validity cannot easily be assessed in general. In the case
of spin exchange, the authors of reference [19] compared the results obtained via
the truncated Wigner approximation to solving the exact quantum dynamics. For
sufficiently short durations, the predominant process is scattering from the highly
populated pump mode into the sparsely populated side modes. Only for later times
the pump mode might be emptied and repopulated by backscattering from the then
increasingly populated side modes. Up to this point in time the truncated Wigner
approximation seems to remains valid. All experiments reported on in this thesis are
restricted to such short durations and we routinely use numerical simulations that
are based on the truncated Wigner approximation.

3.8 Visualisation of the Quantum Dynamics

In this section we use the Wigner representation to illustrate the quantum dynamics
on the Bloch sphere of spin F. For this, the above single mode treatment of the
Wigner function is extended to three levels by using vectors o = (avy, a, o)’ and
similarly for A = (A4, Ao, A})". Finally, we transform the phase space variables o
into spin variables, e.g. Fy = ag(ay + o) +c.c..

Figure3.5 shows the corresponding Wigner functions for four different dura-
tions under spin exchange. For this purpose we simulate the dynamics with the
experimentally extracted parameters. While the experimental characterisation of spin
exchange is the subject of a later chapter, here we merely state that the parameters
amount to a coupling strength of gN = 27 x 22 Hz and a spin exchange detun-
ing of ¢ = 27 x 24 Hz which corresponds to ¢ = 1.1gN. The initial state contains
N = 400 atoms that are prepared in state |0). The associated Wigner function is
an isotropic Gaussian centred at the Bloch sphere’s north pole. Subsequent nonlin-
ear evolution deforms the state in a fashion which can intuitively be understood by
following the mean-field solutions. These classical trajectories are drawn as grey
lines. As the north pole corresponds to a hyperbolic fixed point, the state’s centre
of gravity remains unchanged during the ensuing nonlinear evolution. However, as
the state’s quantum uncertainty extends into the surrounding space, it is dynamically
redistributed. For short durations this yields a squeezed state which is shown in the
respective panels for 5 and 10 ms of spin exchange [8]. Clearly, the width along the
squeezed direction is narrower than the extension of the original isotropic state. In
a semiclassical description this redistribution is a consequence of the compression



44 3 Hamiltonian of a Spin-1 Bose-Einstein Condensate
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Y Y
Fig. 3.5 Simulated Wigner functions for spin exchange. The initial state in which all N = 400
atoms are prepared in the |0) state has an isotropically extending Wigner function centred at the
Bloch sphere’s north pole (panel top left). The grey lines indicate the mean-field trajectories. Tracing
these classical solution allows for an intuitive explanation of the ensuing dynamics: as the north pole
corresponds to a hyperbolic fixed point the state’s centre of gravity remains unchanged. However,
the fluctuations extend into the surrounding area and are thus compressed or enlarged as described
by the converging or diverging manifold of the separatrix. Consequently, after allowing for 5 ms
of spin exchange a squeezed state emerges. For longer evolution times (+ = 10 ms) this process
is even more pronounced before the state eventually experiences the curvature of the underlying
Bloch sphere. At evolution times exceeding # > 15 ms the state starts to bend around the sphere

along the converging manifold of the separatrix while at the same time the state is
elongated along its diverging branch. For longer durations the state progressively
wraps around the Bloch sphere as expected from the infinity-sign shaped mean-field
trajectories [20]. The experiments reported in this thesis involve such extended states
up to evolution times of ~15 ms as exemplified in the last panel.

3.9 Mexican Hat Analogy of Increased Spin Fluctuations

Complementary, to the above Bloch sphere description based on the orientation and
alignment operators belonging to F, the spin exchange dynamics can be visualized
in the space of spin S alone. In this space there is no oriented spin since the mean
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Fig. 3.6 Mexican hat potential analogy to spin exchange. a The forces arising due to the shearing
interaction (purple) and rotation (green) are shown along the axis of S, . Subtraction of both con-
tributions results in the solid black line. b This interplay between shearing and rotation leads to a
double-well potential. The uncorrelated initial state can be imagined as a narrow wave packet that
dynamically expands in the potential of spin exchange. ¢ As a consequence of the inconsequen-
tial Larmor phase the potential is rotationally symmetric in the space of Sy and Sy. The resulting
potential therefore resembles a Mexican hat. d Within a Bloch sphere representation the initial state
corresponds to the blue disc with diameter +/N. Under spin exchange this diameter gets enlarged.
Since the magnetization vanishes throughout the evolution, the disc has no corresponding extension
in z-direction

A

spin length vanishes (S) = 0. This corresponds to a state lying at the centre of the
associated Bloch sphere. The spin exchange dynamics becomes manifest in the size
of fluctuations. As shown for the oriented state these fluctuations take the form of a
disc as depicted in Fig. 2.3.

During spin exchange, the radius of this disc increases which is detailed in Fig. 3.6.
Here panel (a) shows an accounting of the forces that are exerted by, both, the
nonlinear term F' xz = §f (purple), and the rotation F . (green) when plotted against S,.
The resulting force is cubic (black line). This corresponds to a double-well potential
that is drawn in panel (b). When preparing a wave packet (blue) in this double-
well potential its width increases (red) as a result of dispersion while its average
positions stays ideally fixed at (S'x) = 0. Because of the symmetry with respect to
Larmor phase rotations this simple picture has to be generalized to the rotationally
symmetric case (panel c). Dynamics under nonlinear spin exchange is then similar
to preparing a narrow wave packet on the unstable fixed point of a Mexican hat-like
potential. In a Bloch sphere representation the spin fluctuations take the shape of a
disc whose diameter grows as nonlinear dynamics proceeds (panel d). The Mexican
hat-like potential is prototypical for spontaneous symmetry breaking [21], it supports
two excitations [22] which has been studied experimentally in reference [23].
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3.10 Comparison to Spin Squeezing of a Two-Level System

The squeezing of spin-1 objects as described above occurs in the space spanned
by both, orientation (spin) and alignment (quadrupole) operators [24]. As such it is
markedly different from the corresponding squeezing exhibited in two-level systems.
In this section we first review such two-level spin squeezing, before we compare its
characteristics to the present spin-1 situation.

Atomic spin squeezing was first proposed for two-level systems [25, 26] and later
generalized to larger spins [24]. For two-level systems, one studies the fluctuations
of a collective spin which has total size N /2 as it is formed by N indistinguishable
spin-1/2 objects. The constituent spin-1/2 can be made up by any two levels—
often called a pseudo spin-system. The necessary nonlinear interactions have been
engineered in a variety of experimental platforms. For ultracold atoms, two methods
have proven successful: nonlinearities mediated via light matter interaction [27], or
via collisional interactions of the atoms themselves [28]. The first uses the dispersive
energy shift exerted on a two-level atom by the dipole force of off-resonant light. In
spin language such energy shifts can be captured by a term akin to f By engineering
an appropriate feedback mechanism the strength of this rotation term can be made to
depend on J; itself [29, 30]. For this a high finesse cavity is used and the nonlinear spin
term of the form ijz arises where y describes the nonlinear coupling strength. The
method building on collisional interactions relies on controlling the intra- or inter-
component scattering rates to tune y. These collisional rates can be manipulated
by employing magnetic Feshbach resonances or by tuning the spatial overlap of
both atomic spin states [31-33]. Either method has been used for spin squeezing in
mesoscopic Rubidium Bose-Einstein condensates.

Additional to these spin-squeezing techniques that deterministically produce a
squeezed state at an a priori known position in phase space, methods exist for so-called
conditional spin squeezing. Such conditional spin squeezing arises in measurement
based protocols, i.e. when performing quantum nondemolition measurements. This
procedure is called conditional because it depends on the individual measurement
outcome. Only by using feedback on the measurement outcome deterministic spin
squeezing can be generated [34]. The nondemolition measurements can be performed
by using the dispersive phase shift of off-resonant light when travelling through an
atom cloud [35]. To enhance the effect a high finesse optical cavity can be used
[36-38]. Similarly the polarization rotation of light via the Faraday effect can be
employed [39]. In fact the strongest atomic spin squeezing which amounts to 20 dB
was achieved using a combination of both, conditional and unconditional squeezing
techniques that use a shearing interaction [40].

All these techniques lead to an effective Hamiltonian that contains a single squared
spin operator. Therefore, the squeezing is generated under shearing dynamics. By
adding linear coupling to these systems—characterized through its strength 2 and
detuning —a Hamiltonian similar to the spin-1 system can be engineered: the inter-
play between the shearing interaction and the rotation yields a Hamiltonian of the
form ijz —QJ +6 .f, [41, 42]. If the linear coupling is resonant (§ = 0) this system
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structurally resembles the spin exchange Hamiltonian (Eq. 3.9) and thus leads to sim-
ilar dynamics, in particular to squeezing. This method was realized in Bose-Einstein
condensates where it was coined twist-and-turn spin squeezing [43]. Alternatively, a
discretized way of repeated squeezing with subsequent rotation has been suggested
[44]. For squeezing within optical cavities similar mechanisms are proposed [45].
Finally, in nuclear magnetic resonance, the interaction of the spin-quadrupole with
intrinsic electric field gradients generate a similar Hamiltonian combining shearing
interaction and linear coupling [46, 47].

For (pseudo) spin-1/2 systems spin squeezing occurs within the space of the
collective spin J. As defined in Eq. 2.1 these are single-particle operators. Therefore
each point of the associated Bloch sphere representing the spin J can be reached
by routinely employed single-particle operations, e.g. linear coupling of the two
constituent levels. For the above mentioned experiments this is typically achieved
by rf-pulses which perform single-particle spin rotations.

In contrast, the squeezing of a spm 1 system occurs in the SU(2) space spanned
by operators F (or equivalently G) Here, only the Fo =S, component is a single-
particle operator. The operator F describes particle pairs. Therefore, the state space

corresponding to the Bloch sphere of operators F cannot be accessed via linear
coupling. To experimentally explore this state space different control mechanism
which involve particle-interactions are needed as demonstrated in reference [48].
Albeit, this state space which exhibits squeezing lacks the well-established control
techniques, the pair character leads to an additional symmetry. The structural stability
of the classical phase can be traced back to this symmetry; compared to the spin-1/2
Hamiltonian shown above, this symmetry enforces § = 0.
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Chapter 4 ®)
Spin Exchange as an Amplifier e

In this chapter we describe how spin exchange can be employed as an amplifier. The
nonlinear readout scheme is based upon such elementary amplification processes. In
principle, one heavily populated spin component acts as a reservoir which enables
the amplification of the two remaining. We detail which conditions have to be met
in order to maintain and control the amplification process. Comprehensive control
of both, the gain of the amplifier as well as the sign of the associated nonlinearity
are crucial for realising the quantum-enhanced interferometry protocol.

First, we focus on the central approximation under which spin exchange trans-
forms into the well-known Hamiltonian of parametric amplification. Being exten-
sively studied especially in quantum optics we will draw on photonic analogues.
Special attention is paid to the characteristic spin populations that arise during spin
exchange. This description of spin exchange in terms of individual mode popula-
tions is connected to the complementary view of collective spins as developed in the
previous section.

4.1 Undepleted Pump Approximation

The description of spin exchange in terms of collective spins is particularly enlight-
ening as it uncovers the underlying rotational SU(2) symmetry. We will come back
to this elegant representation at a later point. Now, we consider the spin exchange
process in terms of the individual mode populations (Eq. 3.4): the Hamiltonian con-
sists of three parts: the first, Hgcc is responsible for the population transfer during
the actual scattering process. This scattering is intrinsically connected to collisional
shifts as embedded in H,. Finally, exogenous energy shifts are described by H,,.
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If operated within the appropriate limits—which will be the subject of this
section—the latter two contributions can be made to compensate each other. The
ensuing dynamics is then fully governed by

Hscc = hg &0&0&1&1 +h.c. 4.1)

As initial state we consider a large population residing in mode |0) and empty side
modes. For sufficiently short evolution times only few atoms are scattered out of the
largely populated pump mode. Then the undepleted pump approximation applies by
which the operator ay is approximated by a complex number, dy — /Ny effectively
treating the pump mode classically. The Hamiltonian Hgcc, from initially being
quartic in mode operators then simplifies to the quadratic one describing parametric
amplification,

Hpa = h Gja] + h.c. 4.2)

Here k = g Ny quantifies the effective nonlinear coupling strength. It builds on the
microscopic nonlinearity g and is enlarged by the number of pump atoms. Note,
that a similar parameter proved already decisive in the mean-field treatment. In
the undepleted pump approximation the pump mode merely provides an unlimited
particle reservoir for parametric amplification of the side modes. In contrast to the
mean-field approximation, the two side modes are treated quantum mechanically.

The action of any Hamiltonian that is at most quadratic in mode operators can
be captured by linear mode transformations [1, 2]. For the parametric amplification
Hamiltonian (Eq.4.2) they read

(%) N <095hxt sinhxt) (%) 4.3)
a sinhkt coshkr) \a;
where ¢ denotes the evolution time under spin exchange.

Parametric amplification in the quantum regime was first realized with photons
and evolved quickly into an indispensable tool of quantum optics. First we give a
short accounting of this process in the realm of quantum optics and detail how the
emerging entangled state is characterized experimentally. The analogy between the
atomic and photonic experiments will then be tightened by giving the appropriate
formal limiting cases.

4.2 Parametric Amplification in Quantum Optics

Parametric amplification is the textbook example of a nonlinear process that generates
an entangled state. Most prominently, it is realized in quantum optics by the process of
parametric down conversion. Here, mediated by a nonlinear crystal a strong coherent
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Fig. 4.1 Parametric amplification (PA) in quantum optics. By means of a nonlinear crystal photons
of a strong pump beam are converted into signal and idler, respectively. Both of these modes are
initially in the vacuum state (indicated by dashed circles), as shown by the quadrature diagrams
(left). After parametric amplification (PA) both modes show excess fluctuations (right). The quantum
mechanical correlations generated in the pairwise process show up in the two-mode quadratures as
indicated in purple: a (vacuum) squeezed state emerges

pump beam is converted into signal and idler beam. The resulting state, called two-
mode squeezed vacuum, is the archetype of continuous variable entanglement.

In quantum optics a mode is usually characterized by its quadratures, e.g. X4 =
(@1 +a})/~2 and Yy = (@] — @;)i/+/2 and similarly for mode |{). They fulfil the
commutator relation [ X4, Y3 ] = i and therefore have to satisfy a mutual uncertainty
bound. This so-called vacuum noise limit is shown as a dashed circle in Fig.4.1
which illustrates the characteristics of parametric amplification in the space of these
quadratures drawn in blue and red, respectively. Measurements of the quadratures are
aroutine task which involve a technique dubbed balanced homodyne detection: here
the mode in question is overlapped with a strong coherent light field at a beam splitter.
Measuring the light intensity at both exit ports before subtracting them gives I o
ea, + e’i‘b&i. By scanning the phase ¢ of the coherent light field both quadratures
X4 and Y; can successively be measured. The two-mode squeezed vacuum state is
characterized by (X;) = (Y4) = 0 from which the vacuum part in its name derives.
However, although the mean quadratures vanish for both modes they exhibit excess
fluctuations, which is shown in Fig.4.1. The quadrature’s variance is connected to
the number of photons in that particular mode (AX)? = (NT) +1/2.

Due to the pairwise generation process, the large fluctuations of each mode are
strongly correlated. This is witnessed by the so-called two-mode quadratures which
are the sum and difference of the single mode quadratures, v/2X = X; + X, and
V2Y =Y. + — Y. These two-mode quadratures satisfy a similar uncertainty relation,
[X, Y] =1 (dashed circle). The squeezed and enlarged fluctuations become visible
only in the space of these two-mode quadratures as indicated in purple. The fact thata
heavily fluctuating mode becomes quiet by adding another heavily fluctuating mode
is the hallmark of entanglement. That is: entropy is reduced by taking into account
an additional system.
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In this context, the substitution of Eq. 2.5 introduced merely as a shorthand is
well known in quantum optics and provides an alternative practical path to achiev-
ing two-mode squeezing. To see this, we rewrite the time evolution for parametric
amplification in terms of these operators. One can show that the following identity
holds [3],

12

e—iHPAt/h _ ei%(s_,, —si)e—ig(siz_si) ) (44)

The two separate exponentials on the right hand side describe single-mode squeezing
of the modes §_ and § , respectively. The operation of obtaining these modes in terms
of the fundamental modes (44 and a,) can be achieved by a beam splitter. Therefore,
the two-mode squeezed vacuum state can also be generated by superimposing two
single-mode squeezed states at a beam splitter. Indeed, this technique is used to
generate the highest reported amount of optical squeezing (15 dB [4]).

Besides the generation of entangled states within the continuous-variable limit
[5], the pairwise nature is routinely exploited for heralded single photon sources [6].
Similarly, using a cascade of down-conversion stages, heralded photon-pair sources
can be realized. This technique is also employed to generate entangled photon pairs
in one of the maximally entangled Bell states, which are the resource of digital
quantum computation [7, 8]. For these applications the parametric down-conversion
is operated in a regime for which the probability of creating twin-Fock states with
populations exceeding a single pair of photons can be neglected.

4.3 Optical Phase Matching and Atomic Resonance
Condition

For parametric down-conversion in optics care has to be taken to ensure the spatial
overlap of the pump mode with the signal and idler beam, respectively. Above all, a
fixed phase relation between these three beams has to be maintained, the so-called
phase matching condition [9]. However, the emerging signal and idler beams typi-
cally have different frequency or polarizations. Due to dispersion and birefringence,
respectively, the locked phase relation of these two beams with respect to the pump
beam will eventually be lost.

An analogous situation is encountered in the atomic case where energy detunings
of the three levels yield phase mismatches: the atomic Hamiltonian contains addi-
tional terms besides the sought-after parametric amplification part. Most importantly,
these other parts include collisional energy shifts which depend on the exact partition
of atoms among the three levels, as described by

Hei = hg(No — 1/2)(Ny + Ny). 4.5)
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As atoms are dynamically scattered from the pump into the side modes, these energy
shifts become time dependent. In optical terms, such collisional shifts would cor-
responds to Kerr nonlinearities. For sufficiently short evolution times these energy
shifts can approximately be compensated [10]. For this the collisional shifts have to
match the external detuning

H, = —hq(N; + N). (4.6)

Such acancellationrequires g = g(Ny — 1/2) & g N, since the pump mode is largely
occupied. When collisional shifts and external detuning exactly cancel each other,
the energy difference driving spinor phase rotations vanishes. Therefore the spinor
phase remains stable which corresponds to the phase matching condition in quantum
optics. Referring to the classical phase space in terms of collective spins this situation
corresponds to the separatrix having perpendicular branches.

4.4 Correspondence Between Atomic Spin Squeezing
and Optical Two-Mode Squeezing

Within the undepleted pump approximation, the spin squeezing experienced in the
space of Fy, I:" v, and F . (and, identically, also in the other alignment operators belong-
ing to f}) is equivalent to the two-mode squeezing encountered in quantum optics
[11]. Indeed the curvature of the Bloch sphere describing the spin Fis inversely pro-
portional to the number of atoms which compose this collective spin in the first place.
Thus for a sufficiently large total atom number the phase space can be approximated
to be locally flat, which is shown in Fig.4.2. Furthermore, since only few atoms are
scattered out of the pump mode only a small area of the surrounding phase space is
explored.

Within this locally flat phase space the spin operators transform to Fy —
/' No(s + s7) and 1:" .+ — /No(s — s7), respectively. Formally, this substitution of
by a complex number can also be understood by truncating the Holstein-Primakoff
transformation to first order. Then the spin operators Fox X=X ++ X, and
F, Y = ¥y — Y, directly transform into the two-mode quadrature operators from
quantum optics. This analogy is shown in Fig.4.2 panels (a) and (b). Within the
undepleted pump approximation the squeezing observed in the spin corresponds to
the mode populations shown in the histograms of panel (c). These distinctive mode
populations are the subject of the next section.
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Fig. 4.2 Undepleted pump approximation. a For a largely populated pump mode which is only
weakly depleted, the sphere can locally be approximated to be flat. Under this assumption spin
exchange generates the two-mode squeezed vacuum state shown in b The space spanned by F, and
Fy corresponds to the two-mode quadratures in quantum optics. The uncorrelated initial state is
isotropic (gold) which corresponds to a pure m = 0 population without any excitations of the side
modes m = +1. The side mode population is shown in the histograms of panel ¢ As correlations
build up the state is squeezed which is accompanied by a rising population of the side modes.
This side mode population follows a thermal distribution with a distinctive slowly decaying power-
law tail. The average side mode population is indicated by the dark coloured bin in the respective
histogram

4.5 Population Statistics Generated by Parametric
Amplification

In this section we discuss the process of parametric amplification in terms of mode
populations. The squeezing observed in the space of spins is directly related to these
populations of the two side modes. On the Bloch sphere, the mode populations of
the two-mode squeezed vacuum correspond to the state’s projection along the z-axis.

However, we note that this direct relationship holds only if the coherences < a,a l)

vanish, which is fulfilled by the two-mode squeezed vacuum state. Then, the squeezed
fluctuations exhibited in the space of F, and F translate in orthogonal direction into
atom number populations and their correspondmg variances — these quantities are
the main observable for the experiments described in this thesis.

Generally, spin squeezing requires excitations of particle pairs. Within the para-
metric amplification approximation, the average side mode population grows non-

linearly according to
(Ny) = (N,) = sinh* (k1) (4.7)

when the states |1) and || ) are both empty initially. This nonlinear growth of the side
mode population is accompanied by large fluctuations. The underlying atom number
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distributions are shown in Fig.4.2c. In these histograms, the corresponding average
value is indicated by the dark coloured bin. Evidently, the distribution is not centred
symmetrically at this average value and extends far into large atom numbers.

Due to the pairwise scattering into the side modes their emerging state can be
expressed by Zzio /DPn |n)4 |0}, i.e. a coherent sum of twin-Fock states. Within
the undepleted pump approximation, the weights take the form of a thermal-like
distribution p, = (1 — e #)e" in which B! stands for an effective temperature
given by e # = tanh?(kt). Expressed in terms of average mode populations these
weights read p, = (N¢)n /(1 + (NH)”“. These distributions are drawn in Fig.4.2c:
as characteristic for a thermal state, the vacuum state has the highest weight while a
characteristically skewed distribution with a slowly decaying wing towards high atom
number populations arises. Often the two-mode squeezed vacuum state is written as

Ztanh” (kt) |n)y 1), (4.8)

cosh (kt) (xt)

for which the thermal weights are reexpressed as ,/p, = tanh” (xt)/ cosh («t).

Quantum optics Yy

| PA
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Fig. 4.3 Parametric amplification in quantum and atom optics. In quantum optics the process of
parametric amplification is usually analysed in the space of quadratures. The individual modes |1)
(blue) and ||,) (red) exhibit excess thermal-like fluctuations (vacuum noise indicated as dashed line).
The fluctuations are squeezed in the space of the two-mode quadratures (purple). Spin exchange
furnishes an atom optics analogue. In this thesis we investigate this nonlinear process and the
resulting state by measuring the spin populations. These individual spin populations show thermal-
like fluctuations as witnessed by the broad and characteristically skewed histograms (red, blue).
The strong correlations become apparent when considering the sum and difference spin populations
shown in purple, respectively
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As a result of the thermal-like distribution, the variance of each mode exhibits
super-Poissonian fluctuations given by (AN¢)2 = (N3)({Ny4) + 1). This follows
directly from noticing that Eq.4.8 has the form of a Schmidt decomposition. Trac-
ing out one mode leaves the other in the mixed state describing a thermal state, i.e.
>, Pn |n) (n]. Thermal states have the largest possible entropy for a given mean
population, yielding the characteristic variance stated above [3, 12]. In this sense,
the two-mode squeezed vacuum state can be considered the purification of a thermal
state. This thermal-like population of each side mode is a distinguishing feature of the
two-mode squeezed vacuum state, as shown in Fig. 4.2c. Figure 4.3 shows the juxta-
position of parametric amplification investigated either in the space of quadratures
(top) or via mode populations (bottom). The analogy between parametric down-
conversion and spin exchange is shown additionally.

4.6 Amplification of Vacuum Fluctuations

Performing parametric amplification with initially empty side modes can be under-
stood as amplifying vacuum fluctuations [13, 14]. When constructing the Heisenberg
equations of motion for the side modes, e.g. a4, one arrives at the differential equation
(%‘A’T o ay . Therefore when starting with empty modes this process cannot grow in a
purely classical framework. Instead, quantum mechanical fluctuations are necessary
to trigger the amplification process initially [15]. In the Mexican-hat potential of
Fig. 3.6, this situation corresponds to the classically unstable fixed point at S=o.
This analogy also elucidates that the quantum mechanical fluctuations which are the
incentive for amplification are due to atomic projection noise of all atoms. As the
name suggests, the fluctuations are due to the inherent quantum mechanical fluctu-
ations that trace back to commutators being equal to & # 0. In the atomic case, the
size of these fluctuations corresponds to the effective Planck constant feg = +/2/N.

Rather than being triggered by the quantum fluctuations, spin exchange can also
be initiated by any initial population of the side modes [10]. This can most easily be
seen by resorting to the input-output mode transformations, Eq. 4.3. The atom number
in the side modes is given by (N?“‘) = cosh2(/<t)(Ni“) + sinh2(/ct)((N%“) + 1) and
similarly for the other mode. Here, (N IT") corresponds to the average atom number
in state |1) before parametric amplification took place with a similar definition for
|1). The terms proportional to cosh?(k ) describe processes due to Bose stimulated
emission while the sinh?(xt) part is the spontaneous contribution. In a symmetric
situation, where both side modes are initially populated by (N %") = <N i“) = (Njf) /2
the ensuing population growth during parametric amplification is described by

(NS™) = (N™) + 2(1 + (N'™™) sinh®(ct). (4.9)

If the spin dynamics are triggered by such a classical seed ((Nf) # 0) rather than
the spontaneous quantum mechanical fluctuations the spin exchange process is sped

up.
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4.7 Tailorable Hamiltonian

The mechanism of parametric amplification allows for substantial experimental con-
trol. Manipulations over the nonlinear dynamics can be achieved by solely affecting
the pump mode. Since this mode is classically populated its control in terms of tech-
nical feasibility is routine. This exploits the fact that the pump mode defines the
effective nonlinear coupling strength.

Magnitude of the Nonlinear Coupling

The magnitude of the effective nonlinear coupling strength « = g N can be adjusted
by changing the number of pump atoms. In particular, the pump atoms can rapidly be
transferred to an ancilla state which does not participate in the nonlinear process. This
shelving technique allows quickly interrupting the nonlinear dynamics. A subsequent
transfer back reinitiates the nonlinear dynamics.

Additionally, controlled phase imprints onto the pump mode allow to change
the relative phase between the two constituent Hamiltonian terms &;&I and a;a, .
This phase regulates whether the side mode population is magnified or degraded in
an ensuing period of parametric amplification. This phase imprint therefore gives
experimental access to time reversal.

Time Reversal

As time and energy are intimately connected, time reversal is equivalent to evolution
under an inverted Hamiltonian. This notion of time reversal is particularly evident
when examining the quantum mechanical time evolution operator, e 7"//" Therefore
to experimentally realize a time reversal sequence, a system’s energy spectrum has to
be inverted. Inversion of the parametric amplification’s nonlinear coupling strength
has this effect. To maintain spin exchange the resonance condition has to be met
such that the spinor phase remains locked [16]. Non-adiabatically changing this
phase inverts the nonlinear coupling strength such that a subsequent period of spin
exchange reverses the effect of the first. For this a controlled phase of ¢ = 7 has to
be imprinted such that k — ek = —«. This method inverts the sign of Hpa. In fact,
this can most easily be seen from the complete spin exchange Hamiltonian which
reads

Hsce = hg dododla] + h.c. (4.10)

Phase changes can be captured by modifying the individual mode operators in the fol-
lowing manner, @y — d;e'" and similarly for the remaining two modes. Evidently,
to invert the entire Hamiltonian the decisive phase is 2¢g — ¢4 — ¢, which amounts
to the spinor phase. If the phase of the side modes remains unchanged, the phase of
the pump mode gives control over the sign of «. This mechanism can be extended
to cover an interferometer which measures a phase imprint onto the side modes: by
determining the pump phase ¢ for which time reversal is achieved the phase ¢4 + ¢,
can be inferred. We detail this interferometer scheme in the next section.

It might seem that the undepleted pump approximation merely guarantees the
generation of the two-mode squeezed vacuum state but is not imperative for achieving
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time reversal. This, however, is not the case. The reason being that the collisional
shifts are unaffected by such phase imprints. Therefore, the method is limited to the
undepleted pump regime in which cancellation of the collisional shifts is achieved.

The work presented in this thesis builds on this approximate time reversal. In the
outlook we present a different approach of achieving time reversal by inverting the
microscopic nonlinear coupling strength g. In contrast to the aforementioned method
of changing the effective coupling via phase imprints, this extended time reversal
does not rely on the undepleted pump approximation.

4.8 Interferometry Based on Time Reversal

The time reversal sequence achieved for a spinor phase imprint of 7 can be extended
to cover a full interferometer. For this we consider the case of intermediate phase
imprints between ¢ = 0 (which corresponds to forward time propagation) and
(backward time propagation). This is the essence of the so-called SU(1,1) interfer-
ometer. It was first proposed in the field of quantum optics [17]. Figure 4.4 shows the
optical setup of such an interferometer. The atom optics analogy using spin exchange
for parametric amplification is shown underneath [18]. At the interrogation stage,
the energy mismatch A E is measured by its effect onto the spinor phase. Before we
treat this interferometry concept in a more formal manner in Chap. 5, we visualize
the working principle in the classical phase space.

TR

Pump === --< ------

ol

Ny

Entangling Interrogation = (Dis-) Entangling
Y Pump |1) —_— — ) Pump 1)

Fig. 4.4 Interferometry based on (dis-) entangling nonlinear dynamics. The interferometry scheme
involves two cascaded periods of parametric amplification (PA), matched in length, with phase
interrogation in between. The above cartoon shows an implementation in quantum optics. The
analogue realization using spin exchange is shown underneath. Here, a first period under spin
exchange generates the entangled state which is subsequently used to interrogate an energy mismatch
AE. This energy mismatch corresponds to a spinor phase imprint which controls the action of the
subsequent spin exchange. For an accumulated spinor phase of 7 the final period of spin exchange is
time reversed and disentangles the probe state. Instead, for phases close to 27 the state gets further
amplified. The readout is given by N
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Fig.4.5 Disentangling time reversal sequence in phase space. During a first period of spin exchange
(not shown) an entangled two-mode squeezed vacuum state arises (top). The z-projection of the
Bloch sphere reflects the side mode population. The state’s projection onto this axis is shown
together with the classical phase space (top right). Starting from this state, the ensuing spin exchange
dynamics is shown in the triptychon-like lower panels for three different spinor phase imprints,
¢ = 60°, ¢ =90°, and ¢ = 180°. This phase imprint is implemented by varying the holding time
at a large spin exchange detuning ¢ > «. The phase space during this phase imprinting period is
that of a pure rotation about the z-axis (Bloch sphere and classical phase space shown). Depending
on the state’s rotation, a second period of spin exchange squeezes further or unsqueezes the state.
This process can be understood intuitively by following the trajectories of the underlying phase
space, in particular the converging and diverging manifold of the separatrix shown in bold. The
squeezing is reflected in the side mode population which is shown in the lower cylindrical phase
space. For details see main text
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Phase Space Illustration of the Interferometry Concept

Here, we provide an intuitive illustration of the interferometry scheme by resorting
to the classical phase space [19]. The key steps are depicted in Fig.4.5. At the
top the initial two-mode squeezed vacuum state is shown on the Bloch sphere of F.
Measurements of the side mode population correspond to the state’s projection along
the z-axis. Therefore, a zoom-in into the cylindrical classical phase space that shows
this projection is depicted additionally. Below, the three panels show the ensuing
dynamics for three different spinor phase imprints.

On the left, a rotation of 60° is applied. For this the dynamical phase building
up under a dominating spin exchange detuning ¢ > gN can be harnessed. At this
stage, the classical phase space is that of a pure rotation about the z-axis. After this
phase imprint (purple), spin exchange is performed that squeezes the state further
and realigns it slightly towards the diverging manifold of the separatrix. The resulting
state is shown in blue. Its side mode population is increased compared to the initial
state as shown in the lowest phase space portrait. A phase imprint of 180° is shown
in the outermost right panel. Here, the state after rotation (purple) is oriented almost
perfectly with the converging manifold of the separatrix. Therefore, during the second
period of spin exchange the state is unsqueezed (orange). Although a precise phase
imprint of 180° has been applied this reversal back to an isotropic uncorrelated state
is nonideal. This comes about because the classical phase space is shown for the
experimentally extracted parameters which are ¢ & 1.1gN. Thus, the angle enclosed
by the separatrix is slightly smaller than 90° as exemplified in the classical phase space
portraits of Fig. 3.1. In this setting, ideal time reversal is indeed reached at a slightly
smaller phase imprint. Nonetheless, the side mode population of the resulting state
is strongly reduced. The panel in the middle shows an intermediate phase imprint of
90°. Here, the state after rotation (purple) is aligned almost symmetrically between
the diverging and converging manifold of the separatrix. Still, the subsequent spin
exchange dynamics squeezes the state further (green) and the side mode population
is enlarged. This exemplifies the intrinsic amplification of the nonlinear readout. In
the next section we complement this illustrative description with a quantitative and
more formal treatment. It is based on the so-called SU(1,1) framework.
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Chapter 5 ®)
Interferometry Concept Within the oo
SU(1,1) Framework

In this section we analyse the nonlinear time reversal sequence quantitatively. To this
end we introduce operators belonging to the SU(1,1) group which are used to describe
spin exchange. This somewhat more formal treatment allows us to compare the non-
linear interferometry sequence to routinely employed schemes like Ramsey’s atom
interferometry. While the latter constitutes a passive device, the nonlinear readout is
active since spin exchange is employed for parametric amplification. The content of
this chapter is published in reference [1].

5.1 SU(,1) Operators

To describe the interferometric sequence we assume that the pump mode remains
undepleted and introduce the following three operators [2] which act onto the side
modes

A ) BT o
K, = z(a;ai +aray)

At At

A 1 A
K, = Z(aTaL_aTal) (5.1)

N 1 1 - A
b AT A .

The operators K, and K y include terms for the coherent and pairwise creation and
destruction of particle pairs. Therefore, they describe the coherences (anomalous

moments) (c%& i) and <&¥&I>. The number of atoms shared in both modes is entailed

in the operator I% Note that while this latter component resembles ﬁ the other
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operators are fundamentally different. In fact, the operators satisfy the defining com-
mutation relations of the SU(1,1) group:

(K., K,0=—iK,, [K,,K]1=iK,, [K., K,]=iK,. (5.2)

Here, the minus sign in the first equation distinguishes them from the cyclic com-
mutators of the SU(2) group. The SU(1,1) group has a conserved quantity which
is given by 1%3,1 =K 2 - 1%3 -K % This quantity, known as Casimir invariant, is
given by the atom number imbalance Ny — N, . For vanishing magnetization, we
have K, 2. =1/2. In a geometrical interpretation, this equation defines a hyperbolic
surface that is spanned by the three operators K.

Therefore, we can visualize the states that satisfy the SU(1,1) algebra on the
surface of a cone. Such a visualisation—which corresponds to the Bloch sphere
representation of the spin operators—is shown in Fig.5.1. Similar to Fig. 3.5 where
simulated Wigner functions are shown on the associated Bloch spheres, here we plot
similar Wigner functions onto the hyperbolic surfaces of SU(1,1). Panel (a) shows
the vacuum state which is represented at the bottom of the cone, (I% )= %, and has
isotropic uncertainty in the x and y-direction (see projection underneath the cone).
Starting from this state, the operators K, and K y generate boosts along the x and
y-direction, respectively. Here, we use the term boost in analogy to special relativity,
whose description in terms of rapidity and Minkowski space resembles the SU(1,1)
description of parametric amplification [3—5]. This boost moves the initial vacuum
state upwards on the surface of the cone as shown in panel (b). A highly anisotropic
and elongated Wigner distribution arises. Its average value is indicated in red. The
projection underneath shows that the initial state is spread out in x-direction. For the
SU(1,1) description to be valid we assumed that the pump mode remains undepleted
and furnishes an unlimited particle reservoir. Within this idealisation, the cone is not

(a) (b)
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Fig.5.1 Representation of parametric amplification on the SU(1,1) hyperbolic surface. a Simulated
Wigner function of the initial state with empty side modes. The summed side mode population N
corresponds to the state’s projection onto the z-axis. Consequently, the vacuum state is represented
at the bottom of the cone. Its Wigner function extends isotropically in the projected space of K,
and K y which is shown underneath the cone. Starting from this state parametric amplification is
described by boosting the state along the x-direction. Panel b Shows the Wigner function of the
resulting two-mode squeezed vacuum state. Its average value is indicated in red. The large extension
in z-directions corresponds to the excess number fluctuations in N4
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terminated at some highest side mode population but remains open to the top. In this
representation, the operator K, generates rotations about the z-axis.

Interferometric Sequence

Within this framework the interferometric sequence is build up by two SU(1,1) boosts
with a phase rotation in between. Such a scheme is shown in Fig.5.2a. Additional
to a sketch of an optical SU(1,1) interferometer the action of each of the elements
is shown on a corresponding hyperbolic surface. From top to bottom, we start with
empty side modes and only the pump mode (dashed) populated. During a first period
of parametric amplification (PA) the side modes |1) and ||) get populated. On the
hyperbolic surface this process is described by a state moving upwards on the cone.
The atom number shared in both modes is given by K .. The trajectory’s projection
beneath the cone showcases that this is a boost along the x-direction. Subsequently,
the side modes pass through an area of phase imprinting (grey dashed box). Here,

Active SU(1,1) interferometer Passive SU(2) interferometer — |
@ (c) d .
40 Atom number N, || Atom number N g4 :
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Fig. 5.2 Comparison of an active SU(1,1) interferometer to a passive one. a Schematic representa-
tion of an active interferometer in optics. The action of each component is described on an associated
hyperbolic surface. From top to bottom, a first period of parametric amplification (PA) populates
the initially empty side modes |1) and || ) (red). On the hyperbolic surface, this corresponds to
a boost along the x-direction during which the initial vacuum state (small red pointer) located at
the cone’s bottom is displaced towards the top (large red pointer). Subsequently, both side modes
pass an area of phase interrogation (grey dashed box). On the cone, such phase accumulation by
@4+ = @y + ¢, is represented by a rotation about the z-axis. A final period of parametric ampli-
fication implements another boost along the x-direction. Hereby, the phase is mapped onto the
average side mode population (N;) which corresponds to the state’s projection along the z-axis.
The resulting fringe is shown in panel (b). The horizontal red line denotes the probe state’s average
population. The atom number imbalance vanishes throughout all phase settings. d Schematic of a
Mach-Zehnder interferometer representative of a passive SU(2) interferometer. From top to bottom
the first beam splitter creates a phase sensitive superposition of both modes. On the Bloch sphere the
beam splitter’s action is described by a rotation about the y-axis. Subsequent phase interrogation
of ¢ = ¢4 — ¢, is described by a rotation about the z-axis. The final beam splitter maps this
differential phase onto the z-axis which corresponds to the atom number imbalance. The fringe is
shown in panel (¢). As a passive device the atom number N, remains constant
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each side mode accumulates a phase ¢4 and ¢, respectively. On the hyperbolic
surface, this corresponds to a rotation about the z-axis by an angle of ¢, = @3 + ¢, .
After phase accumulation the two side modes are parametrically amplified once
more. This last pulse maps the accumulated phase onto a detectable atom number
sum, i.e. different projections onto the z-axis. An interferometry fringe is obtained by
measuring (K ), i.e. the summed atom number of both side modes. The interferometry
fringe is thus given by <NT + N i) o 1 4 cos(g;) which is shown in panel (c). For
an accumulated phase of ¢ = 7 the two boosts act along diametrically opposite
directions such that the second boost reverses the effect of the first. This corresponds
to time reversal. Then the initial vacuum state is recovered at the output. In contrast
for phase settings close to ¢ & 0 the nonlinear character of two successive boosts
along the same direction becomes visible: the state gets much further displaced than
during the first nonlinear process. Therefore, the atom number detected at the fringe
maximum is nonlinearly enhanced. This nonlinear amplification becomes striking
when comparing the fringe height in panel c to the average side mode population after
the first boost, that is within the interferometer which is shown as the red horizontal
line. The atom number imbalance vanishes for all phase settings.

5.2 Comparison to Passive SU(2) Interferometers

Unquestionably, the most important technique for atom interferometry is Ramsey’s
method of separate oscillatory fields [6]. This can be considered the atomic analogue
of an optical Mach-Zehnder interferometer. Archetypical for a passive two path inter-
ferometer it is best described in a SU(2) framework. We describe the interferometric
sequence and put it into contrast to the SU(1,1) description of spin exchange inter-
ferometry.

Pseudospin Description

A passive two path interferometer can be described in terms of spin-1/2 operators.
This is because every number conserving two state system can be mapped onto a
(fictitious) spin-1/2 system as detailed in Chap. 2. We will resort to the operators
of Eq. 2.1 to describe the interferometric sequence. In this pseudo-spin description,
the atom number imbalance is given by J... The coherences between both modes, i.e.

<a;a ¢> and <a¢ai>, are described by Jy and fy, respectively. As a pseudo spin-1/2
the system can be illustrated on a Bloch sphere. For N indistinguishable Bosons the
collective spin picture is adequate [7].

Interferometric Sequence

InFig.5.2d aMach-Zehnder interferometer is depicted. Here the two paths [1) and | |,)
of the interferometer are identified with the north and south pole of the Bloch sphere,
respectively. From top to bottom; starting in state ||,) (south pole of Bloch sphere) a
beam splitter populates both modes and creates a phase sensitive superposition. To
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achieve highest phase sensitivity an equal superposition of |1) and || ) is desirable.
On the Bloch sphere such a state is represented on the equator. The action of the beam
splitter is akin to J. ,, and thus represented by a rotation of 90 ° about the y-axis on
the Bloch sphere. In spin language such a rotation is called 7 /2 pulse. The following
phase accumulation of both modes, ¢4 and ¢, respectively is described by a rotation
of the state about the z-axis. The angle of rotation is given by ¢_ = ¢4 — ¢, . Finally
the phase difference between both modes is mapped onto the z-axis by the final
beam splitter. By measuring the imbalance Z(fz)/N = (N¢ - NL)/N = cos(p-)
the accumulated phase difference ¢_ can be inferred. As a passive device, the atom
number sum remains constant (panel c). This ever-fixed atom number corresponds
to the radius of the Bloch sphere.

5.3 Phase of the Coupling Mechanism

Interferometers compare the phase that is accumulated during the interrogation stage
to a phase reference that is associated to the coupling mechanism. We explain this
first for the passive interferometer: for the Ramsey interferometer beam splitting is
often performed by microwave /2 pulses. The prime example is the caesium-133
fountain clock whose hyperfine energy spacing of 2w x 9.2 GHz acts as an interna-
tional time standard. By changing the relative phase of the two Raman pulses with
respect to each other Bloch sphere rotations about different axes are implemented.
This allows for control of the interferometer’s working point which can be adjusted
independently of the interrogated phase. Then the first pulse defines the axis of rota-
tion as no other phase reference is available. Let us choose the y-axis, that is the first
rotation is performed by the action of JA‘ A subsequent non-adiabatic switching of
the rf phase by ¢ then amounts to the substitution f), — COS gareffy + sin (preffx for
the subsequent rotation. Thereby rotations about any axis can be implemented. In
particular, an interferometry fringe is obtained by scanning the relative phase of the
coupling. To emphasize this connection, the output fringe is given by

[Ny = Ny) o cos(grer — ¢-) (5.3)

which combines the phase accumulated during interrogation ¢_ and the reference
phase of the coupling ¢.¢. This is a general statement: any interferometer compares
the accumulated phase to the phase of the associated coupling mechanism. In par-
ticular, to realize an interferometric sequence at all the relative phase of the two
successive pulses needs to be stable. For beam splitting using optical transitions this
is challenging as slight variations of the light’s wave front have large impacts.

For the nonlinear interferometer the pump atoms provide the common phase
reference. Therefore, within the SU(1,1) framework phase changes of the pump
mode can be used to implement boosts along different directions of the hyperbolic
surface. When the first boosts acts along the x-direction (via the action of Iex) a
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nonadiabatic phase change of the pump mode corresponds to the substitution of
K, — cos ¢t K, + sin ¢t K, for the second boost. Therefore, in a more complete
picture the interferometry fringe is given in terms of

(N3 + Ny) o 1+ cos(@rer — 94) (5.4)

Since the reference phase is given by the pump phase, ¢.f = 2¢p the complete phase
dependence is given by the spinor phase ¢ = 2¢y — ¢4+ — ¢, as expected from the
previous considerations.

5.4 Hamiltonian in SU(1,1) Representation

Within the undepleted pump approximation the spin exchange Hamiltonian can be
written in the form

H = 2hk (cos <preflex + sin q)refl%y) + 2h(k — q)Iez (5.5)

using the SU(1,1) operators (Eq.5.1) [2, 8]. Here, phase imprints onto the pump
mode are included by ¢.; and decide whether a boost along the x- or y-direction
is performed. With a phase reference missing, the first such pulse defines the phase
relation for all subsequent pulses. When spin exchange resonance is achieved the
last (detuning) term, o K ., vanishes and a pure boost without additional rotation is
realized.

Note that the exemplary Wigner functions displayed in Fig.5.1 are the result of
a numerical simulation whose parameters match the experimentally extracted ones.
While the experimental parameter characterization is the subject of a later chapter,
here we remark that for N = 400 atoms the spin exchange detuning corresponds
to ¢ = 1.1k. As a result the detuning term in the above equation is only partly
compensated. In Fig.5.1b this is witnessed by the slight rotation of the two-mode
squeezed vacuum state away from the x-axis.

5.5 Coherent States of SU(1,1) and SU(2)

The two-mode squeezed vacuum state corresponds to the coherent state of the SU(1,1)
theory. In general, coherent states are generated by applying linear combinations of
the fundamental operators onto the energetically lowest lying state. In the SU(1,1)
framework that is the action of the K operators acting onto vacuum. The coherent
states are thus given by |r, ¢) = e~ivK:g—irk. [0)4 10}, . In terms of twin-Fock states
this amounts to
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1

Ir ) = cosh (r)

> e tanh” (r) |n), |n), . (5.6)
n=0

Here, r is the magnitude of the boost which is tantamount to the squeezing factor
characterising the two-mode squeezed vacuum state. Comparing this to the previous
definition Eq. 4.8 the phase dependence with respect to the spinor phase ¢ is now
explicitly included.

The SU(2) coherent states are generated similarly by the action of the (col-
lective) pseudo-spin operators onto the lowest lying state. Therefore, |0, ¢1) =
e7¥r/ze71%0,10) |N), . Here the notation using two angles introduced in Fig. 2.1 is
used. For a collective spin, each of the N individual atoms is independently put into
an identical superposition state, |0, o) = (cos8/2|]) + elt sin 6/211)®N. Upon
measuring, this independent distribution of N atoms among two states yields out-
come statistics that are equal to a Bernoulli trial [9]. Such a state can be represented
in Fock states,

N N
16, o) = ;e‘”w\/<n>p”(l —p)N )y IN —n), . (5.7

Here, p = (cos 8 + 1)/2 denotes the success probability, i.e. the probability for being
in state |1).

While the coherent states of SU(1,1) are characterized by a fluctuating total atom
number (N4 + N,), the magnetization (N4 — N ) is constant. In contrast, the coher-
ent states of SU(2) feature binomial fluctuations in population imbalance (magneti-
zation) but have constant total atom number. This contraposition as exemplified in
panels (c) and (d) of Fig.5.2 is crucial and connected to the state’s phase sensitivity
with respect to ¢ and ¢_, respectively. We will continue this discussion on the basis
of experimental data in Chap. 7. Before that we first present our experimental setup.
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Chapter 6 ®)
Experimental System and Manipulation oo
Techniques

In this chapter we detail our experimental apparatus. First, we summarize the setup
of the optical traps. Spin exchange among three hyperfine spin levels of Rubidium is
achieved by the interplay of an applied magnetic bias field and dispersive microwave
fields. Techniques to control the nonlinear coupling strength and to imprint spinor
phase shifts are introduced. Finally, we give a description of our detection scheme.

6.1 Bose-Einstein Condensate

More than 20 years after the first observations of Bose-Einstein condensates in dilute
alkali atoms, their robust generation is now routine to many labs. We will mention
only a few crucial steps of our setup. We start by laser cooling and accumulating
a sample of Rubidium-87 in a three-dimensional magneto-optical trap (mot). This
trap is fed by an atom beam originating from a two-dimensional mot. After a short
period of sub-Doppler cooling the atoms are optically pumped to the lower F = 1
hyperfine manifold and the molasses is reconfined in a magnetic trap. Majorana losses
are avoided by using a time averaged potential technique. Reducing the radius of the
time orbiting potential allows atoms at the edge to leave the magnetic trap. This
circle-of-death evaporation takes about 25s and leaves us with one million atoms
slightly above the transition temperature for Bose-Einstein condensation.

6.2 Optical Trapping Setup

With the atomic cloud being still above the critical temperature to undergo Bose-
Einstein condensation we transfer it into a crossed beams optical dipole trap. Both
beams are derived from a Yb:YAG laser that operates at a wavelength of 1030 nm.
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Fig. 6.1 Experimental setup. a Generation of the optical lattice potential. Experiments are per-
formed in a glass cell (grey). In this bottom-top view the optical lattice is formed by two intersecting
lattice beams. Their crossing angle is 9° giving a lattice spacing of 5.5 um. For transversal confine-
ment a waveguide like potential (blue) is superimposed. The combined optical potential is shown
in the inset; its size corresponds to the field of view of our imaging system—the high-NA objective
is indicated. b Additional optical beams used during the experimental sequence. In this front view
we look along the waveguide beam. Evaporation to Bose-Einstein condensation is performed in the
optical potential formed by the two crossing dipole trap beams. Resonant light (orange) is used for
absorption imaging. State-selective detection is achieved by Stern-Gerlach splitting during time of
flight. The direction of the magnetic field, its gradient, and gravity are indicated

Further forced evaporation is employed by reducing the optical trap depth. For this
the intensity of one beam is lowered. Hereby a BEC of 10* Rubidium atoms without
discernible thermal fraction is generated. After ramping down one of the beams, we
let the BEC expand in the shallow potential of the remaining beam. With a large aspect
ratio of 100 this potential acts like a waveguide. It provides transversal confinement
with a trap frequency of 2w x 440 Hz but only very weak on-axis trapping. At the
point at which the BEC is expanded to an extension of ~150 um along the waveguide,
we adiabatically ramp up a one dimensional optical lattice potential that intersects the
BEC. This optical lattice is formed by two additional beams crossing under an angle
of ~9°. The lattice beams are generated by a Ti:Sa laser and have a wavelength of
A = 810nm. This yields a lattice spacing of 5.5 pym and a longitudinal trap frequency
of 2w x 660 Hz. The lattice beams are red detuned to both the D1 and D2 transition
of Rubidium at 795 nm and 780 nm, respectively. Figure 6.1 shows the experimental
setup with all laser beams indicated. Since quantum mechanical tunnelling between
adjacent lattice sites can be neglected we use the &30 populated lattice sites to
increase the statistical sample size of our experiments. For this each lattice site
constitutes an independent experimental realization. Close to the centre of the cloud
each site contains about 400-500 atoms. The extent of the on-site wave functions
is smaller than the spin healing length. Thereby, dynamics in the internal degree of
freedom are well isolated and the single spatial mode description is valid.
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6.3 Effective Spin-1 System

In its electronic ground state, the hyperfine splitting of Rubidium-87 yields two
manifolds with total spin F = 1 and F = 2, respectively, which are separated by
6.8 GHz in energy. We perform our experiments at a magnetic bias field of B = 0.9G.
The corresponding energy shifts, as described by the Breit-Rabi formula, are depicted
in Fig. 6.2. Here, we draw the contributions caused by the linear (panel a), and the
quadratic Zeeman shift (panel b) separately. The familiar linear Zeeman effect shifts
adjacent mp levels by uB = 2w x 630kHz as indicated. In contrast, the level shifts
due to the quadratic Zeeman effect are orders of magnitude smaller in size. They are
described by AE = (f) “4 - m2F)hq 5B? where the upper (lower) sign is valid for
the spin F = 2 (F = 1) hyperfine manifold and ¢z B> = 27 x 60Hz.

Our experiments on spin exchange are performed within the upper F = 2 man-
ifold. For this an effective three level system is formed by the states |2, 0) and
|2, £1) as indicated in the figure by the grey box. Because of its magnetization con-
serving nature spin exchange is unaffected by the level shifts caused by the linear
Zeeman effect. Therefore only the quadratic Zeeman shifts need to be considered.
The three level description is thus valid because the |2, £2) states, not subjected
to the quadratic Zeeman shift at all, are energetically sufficiently remote. Then the
situation can be mapped onto the spin-1 Hamiltonian as developed in the theory
section. The microscopic nonlinear coupling strength g depends on the underlying
microscopic scattering details and is thus different for spin exchange within F' = 1
and F' = 2. In particular, if two F' = 2 atoms collide an additional scattering channel
with combined spin F' = 4 arises which is absent in the aforementioned F' = 1 case.

ffective spin-1
(a) ive spi (b) °
effective spin-1 @ u B
_— B —_— —_— qB
— " t
F=2 _’_ 4 SqBB2
—0— —_— —_—
— 1
Fe1 — — — g
— t
mp -2 —1 0 1 2 mp -2 —1 0 1 2

Fig. 6.2 Hyperfine structure of Rubidium-87 in a magnetic field. The two hyperfine manifolds,
F = land F = 2 are separated by 6.8 GHz in energy. The level shift caused by an externally applied
magnetic field is described by the Breit-Rabi formula. These level shifts can be divided into a linear
(panel a) and quadratic (panel b) contribution. The former splits adjacent magnetic sublevels by
uB =2m x 630kHz at our magnetic bias field of B = 0.9 G. The quadratic Zeeman effect leads
to level shifts such that the mp = 0 state is separated from both mp = +1 states by an amount
of £¢p B? =27 x 60Hz. The mp = £2 states, not subjected to this level shift, are separated by
4¢p B? from state |2, 0). Because this energy spacing is much larger than the spin exchange coupling
strength, the remaining states form an effective spin-1 system as indicated by the grey box
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As a result, the coupling strength for spin exchange within F = 2 is one order of
magnitude larger than for ' = 1. In our experiments it is of order k = 2w x 20Hz.
Details of this mapping can be found in Appendix A.

This effective description in terms of a three level system embedded in F = 2
remains valid as long as the mp = =42 states do not participate in the spin dynamics.
We guarantee this by working at a sufficiently large magnetic bias field.! In fact,
we chose the magnetic field strength in order to comply with two requirements: the
closedness of the effective three level system—and a not too large energy barrier
between |2, 0) and |2, £1) such that the detuning of the spin exchange can be con-
trolled reliably with dispersive microwave dressing. We will detail both aspects in
the next sections.

6.4 Microwave Dressing

We use state selective microwave dressing to fulfil the spin exchange resonance
condition [1]. In Fig. 6.3 we detail how individual level shifts make up the effective
spin exchange detuning ¢. Starting point are the level shifts caused by the magnetic
bias field as described in the previous section: the quadratic Zeeman shift elevates the
pump mode in energy with respect to both side modes. This energy splitting is shown
on the very left of each panel. We employ microwave dressing that predominantly
shifts the state |2, 0), as depicted in the middle. Additionally, the collisional shifts
reduce the energy of the pump mode, which is represented on the right of each panel.
The effective spin exchange detuning ¢ = 0 corresponds to the case where the energy
shifts caused by microwave dressing and the quadratic Zeeman effect cancel each
other (panel a). In contrast, spin exchange resonance, g = «, is achieved when all
three individual level shifts compensate each other as displayed in panel (c). One
should keep in mind that only the shifts relevant for spin exchange are drawn. Because
of the linear Zeeman shift, the three depicted levels are not energetically degenerate.
In the complete picture this case corresponds to the pump mode being energetically
exactly in the middle of both side modes. Starting with all atoms prepared in the
pump mode, spin exchange leads to population transfer only within the parameter
regime g < 0 < 2« which corresponds to the bifurcated classical phase space.

We now explain the dispersive microwave dressing in more detail. We apply
microwave radiation § = 2w x 110kHz blue detuned to the transition |1, 0) <>
|2, 0). If other transitions were absent, this would shift the two states in energy
by £Q7? /45 where  is the corresponding on-resonance Rabi frequency. However,
such dispersive energy shifts decrease only slowly with the detuning § from reso-
nance. Therefore, for a precise accounting all possible microwave transitions should
be considered. The employed loop antenna radiates microwaves of all three polariza-
tions. Thus, the mutual energy shifts of all eight involved levels have to be taken into

Yet small enough such that an interplay with external dynamics can be neglected. For details see
Appendix A.
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Fig. 6.3 Microscopic level shifts and their contribution to the spin exchange detuning ¢. Spin
exchange is parametrized by the effective coupling strength « and the overall spin exchange detuning
q. The latter has three contributions that arise due to applied magnetic fields, microwave dressing
fields, and collisional interactions of the atoms themselves. Each panel shows a different spin
exchange detuning itemised into these three contributions. The quadratic Zeeman shift elevates the
pump mode above the side modes (outermost left splitting). Microwave dressing is used to (partially)
compensate this energy mismatch (middle). Finally, the collisional interactions lower the pump
mode’s energy by an amount of « (right). The associated classical phase space of spin exchange is
bifurcated for the parameter regime 0 < g < 2«, out of which we exemplify the microscopic energy

shifts for four particular cases: ¢ =0, 0 < ¢ < k, k = g which corresponds to the spin exchange
resonance, and k < g < 2«

account. Such a procedure is outlined in Appendix B. Here, we shortly summarise
the result: we find best agreement among several measurements if we assume that
the three levels (|2, —1), |2, 0), |2, 1)) that constitute the effective spin-1 systems
are shifted in energy by 2 x (44.5, 37, —6) Hz, respectively. In total, these micro-
scopic shifts then lead to an effective spin exchange detuning of ¢ = 2w x 24.5Hz.
Complementary to the microscopic considerations detailed above, we use the
spin exchange itself as a probe to characterize the microwave dressing in an effective
way. In Fig. 6.4 the interferometric sequence is performed for different detuning § of
the microwave dressing. We use such measurements to experimentally find the spin
exchange resonance. Panel (a) shows two exemplary fringes for § = 27 x 155kHz
and § = 27 x 95kHz, respectively, while the power and thus the on-resonance Rabi
frequency remains fixed. While the amplitude of the fringes is almost identical the
detuning shows up most prominently in a spinor phase advance. In panel (b) we
plot the starting spinor phase of each interferometry fringes versus the microwave
detuning 8. At the zero crossing, spin exchange resonance is fulfilled. On this basis
we use the microwave detuning of § = 2w x 110kHz for the main experiments.
The grey line shows the result of a numerical simulation. We use this simulation to
collaborate and correct the calculation of the microscopic level shifts (see Appendix
B). Panels (c) and (d) show the starting phase of the interferometry fringes versus
the duration of spin exchange. For resonant spin exchange (panel c) the spinor phase

remains close to 0. If weaker microwave dressing is employed, a spinor phase is
dynamically built up.
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Fig. 6.4 SU(1,1) interferometry fringes for different microwave dressing. a Performing spin
exchange detuned leads to an additional phase accumulation that shifts the interferometry fringe.
Shown are two fringes that are obtained for different energy shifts. For this the microwave detuning
(value indicated) to atomic resonance is changed. The resulting fringe’s phase offset is plotted in
panel (b) versus the microwave dressing detuning used to initiate and maintain spin exchange. Spin
exchange for 6 ms was used. We deduce that a microwave detuning of 27 x 110kHz corresponds
to spin exchange resonance. This is further collaborated by the fact that for this microwave detuning
the phase stays flat versus spin exchange duration (panel c). For the non-resonant case a phase is
dynamically accumulated. The grey dashed lines correspond to the result of a numerical simulation

6.5 Gradients

The microwave is radiated from a home built single-loop antenna. Its position is
optimized such that gradients (of all three polarizations) over the atomic array are
minimized while still being as close as possible to the glass cell in order to achieve
sufficiently large on-resonance Rabi frequencies. To estimate spatial gradients of the
microwave we perform resonant Rabi flopping. Eventually, the right and left part
of the atomic cloud will start oscillating out of sync from which the power gradi-
ent is estimated. This procedure is repeated for all three microwave polarizations.
As detailed in the previous section, microwave dressing yields a total energy shift
that amounts to ~27 x 36 Hz. This contribution is altered due to gradients of the
microwaves by 2 x 0.1 Hz over a spatial extent of 100 um along the atomic cloud.
Since the nonlinear coupling strength is of order « = 2w x 20 Hz such minute energy
shifts are negligible for the spin exchange dynamics. A more detailed accounting of
the individual gradients can be found in Appendix B.

The magnetic field gradient over the atomic cloud is levelled by positioning small
permanent magnets in vicinity of the glass cell. In order to characterize the magnetic
field gradient we perform a Ramsey sequence on states |1, —1) and |2, —2) and
extend the Ramsey time until the fringes run out of sync spatially. Over the full
extent of the atomic cloud (150 um) we find a magnetic field gradient that amounts
to 0.1 mG. With spin exchange being magnetically insensitive to first order, these
field changes of 0.1 mG translate into an spin exchange detuning of 27 x 10 mHz.
Even an order of magnitude smaller than the microwave dressing gradients such an
energy shift can safely be neglected.
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6.6 Residual Couplings Out of the Effective Spin-1 System

For the spin-1 description to be valid the spin exchange dynamics needs to be
restricted to the subspace formed by the three levels |2, 0) and |2, 4-1). Besides the
desired spin exchange process of the form 2 x |2, 0) < |2, —1) + |2, +1), the five
levels of F = 2 allow for additional channels [2, 3]. In principle, all processes that
leave the total magnetization unaltered are admissible. Figure 6.5 shows these possi-
ble spin exchange channels. We choose the magnetic bias field of B = 0.9 G such that
these spurious spin exchange processes are energetically suppressed. We substantiate
this by a numerical simulation (detailed in Appendix A) which shows the impact of
leaving the three-level approximations at lower magnetic field strengths. Additional
to this detuning, the spurious spin channels are weaker in coupling strength [3]. In
Appendix A we derive the spin interactions of two F' = 2 atoms and provide a thor-
ough description of the full Hamiltonian with a detailed accounting of all allowed
spin exchange channels.

Since only the pump mode is macroscopically populated, the bosonic enhance-
ment is largest for those processes which include the pump mode. With the side modes
|2, 1) being only sparsely populated the associated coupling strength for the pro-
cess |2, —1) + |2, 1) < |2, —2) 4|2, 2) (depicted in orange, panel a) is therefore
negligible. Here, we provide two further examples.

The most important channel is 2 x |2, 1) <> |2, £2) 4 |2, 0) because it has
both, the smallest detuning and largest microscopic coupling strength. Panel (b)
shows one of the two equivalent processes in green. For a simple estimation of the
relevant detuning, we assume that microwave dressing shifts the energy of the pump
exclusively. Additionally, we neglect collisional shifts such that during microwave
dressing the levels |2, 0) and |2, 1) have equal energies. Then, the spin exchange
process in question is detuned by 1.5¢ B> = 27 x 90 Hz. Microscopically, the non-
linear coupling strength of this process is similar to the one characterizing the desired
process g. However, with only the pump mode being macroscopically populated the
associated spin exchange channel is enhanced only by +/N rather than N. Even if

" 7R "

mrp =2 -1 0 1 2 -2 —1 0 1 2

Fig. 6.5 Overview of all spin exchange channels in the F =2 manifold. a Symmetric spin
exchange couplings. b Asymmetric processes. For the sake of clarity only half of the allowed
channels are shown. For a complete accounting, one has to consider the additional processes which
arise under the interchange mp — —mp
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the microscopic nonlinearity were identical the effective coupling is still an order of
magnitude smaller.

From the symmetric processes shown in panel a, 2 x |2, 0) < |2, —=2) + |2, 42)
depicted in red is the most important. Proceeding from |2, 0) it experiences the full
enhancement by the pump atoms. However, in this case the microscopic nonlinearity
is only a twentieth of g, while the detuning is huge, 3¢z B> = 27 x 180Hz. There-
fore, the states mr = %2 do not participate at spin exchange and the effective three
level system remains closed.

6.7 Pump Mode Shelving

Our reason to choose an effective three level system within F' = 2, rather than the
direct F' = 1 system are twofold: first of all, because of the larger coupling strength
the spin exchange is faster and more robust. This being a mere technical reason there
is also a more profound advantage: that is the possibility of having the pump atoms
shelved in a spectator level that does not participate in the spin exchange. We use
this technique to control the strength of the nonlinear coupling which is defined by
the number of pump atoms. In particular, this enables us to abruptly start and stop
the nonlinear process. As a side effect of the large coupling strength in F = 2, the
detuning when deactivating the microwave dressing is not large enough to suppress
residual off-resonant processes. Additionally, the side mode population generated
via the nonlinear process itself acts as a seed to speed up further amplification once
it is initiated. Therefore, the shelving technique is crucial for precise control over the
nonlinear coupling. To this end we transfer the pump mode into the state |1, 0) viaa
fast microwave -pulse as shown in Fig. 6.6. In contrast, within the ' = 1 manifold
already a small energy detuning suffices to efficiently stop spin exchange entirely.

Spin exchange Interrogation
—0— —_——
@ .
— @
mp -2 -1 0 1 2 mrp -2 -1 0 1 2

Fig. 6.6 Pump mode shelving technique. Spin exchange is performed within the upper F =2
hyperfine manifold. For this the pump mode is prepared in state |2, 0) (left panel) and microwave
dressing is applied to ensure energy matching (not shown). To interrupt spin exchange the microwave
dressing is disabled. However, the resulting detuning is not sufficiently large to suppress spin
exchange entirely. We rapidly transfer the pump atoms to the spectator state |1, 0) via a microwave
1 -pulse. With the pump mode shelved in |1, 0) the side mode’s population remains frozenin |2, £1)
and can be used for phase interrogation (right panel)
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This is in part because the mp = %1 states remain empty at all times and cannot
act as a seed. This yields another advantage: to compare the phase sensitivity, the
number of atoms shared in both side modes after the first period of spin exchange
needs to be measured to assess the resource. Such a measurement is simplified when
the off resonant spin exchange during phase interrogation is inhibited.

6.8 Phase Imprint

To realize different spinor phases we imprint a phase onto the pump mode while it is
being shelved in F = 1. The protocol is explained in Fig. 6.7 where we make use of
the Bloch sphere representation. As shown in the left panel, the sphere’s north pole
corresponds to all Ny atoms prepared in state |2, 0) while the south pole is identified
with |1, 0). We start with the pump mode being in state |2,0). A red pointer is
included to track the phase of the pump mode ¢, during the sequence.

We perform the microwave m-pulse that is used for the pump transfer slightly
detuned. With a on-resonance Rabi frequency of 2 x 10kHz the detuning of 6, =
2w x 90Hz has a negligible effect on the transfer efficiency. On the Bloch sphere
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Fig. 6.7 Spinor phase imprint. The spinor phase of the three level system is scanned via phase
imprints onto the pump mode. For this we perform the microwave 7 -pulses used for pump shelving
slightly detuned. We detail the phase imprinting procedure with the help of the Bloch sphere
representation. Here, the north and south pole correspond to state |2, 0) and |1, 0), respectively, as
shown in the grey shaded left panel. The relative phase between these two states is indicated by
the red pointer. The microwave -pulse used for pump mode shelving is represented by a rotation
of ~180° about the y-axis. This mw pulse is detuned by 8y which is much smaller than the
on-resonance Rabi frequency Q. Then, its effect on the population transfer is negligible and the
state is almost perfectly rotated onto the Bloch sphere’s south pole. During the subsequent holding
time 014 the phase evolves at a rate given by dp,y. On the Bloch sphere this is represented by a
rotation about the z-axis. Finally, a second mw m-pulse rotates the state back to the north pole. The
phase ¢ of the pump mode is thereby changed by 8mwhold. Additionally to this dynamical phase
a geometrical phase arises. For a resonant 27 -pulse this geometric phase contribution amounts to
180° with a 1° correction due to the detuning
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this w-pulse rotates the state from the north towards the south pole. During the time
the pump mode is shelved in F = 1 the phase evolves at a rate given by the pulse
detuning d.,,,. We exploit this dynamic phase that accumulates versus holding time
thoid- On the Bloch sphere this corresponds to a rotation of the state about the z-axis.
Upon transfer back to F' = 2 a spinor phase change of ¢y = 28014 + ¢p is realized.
Here, ¢y denotes the geometrical phase that arises during the 277-pulse due to the
detuning and amounts to 2°. As we scan the pump phase via the hold time, this
geometric phase offset is inconsequential.

6.9 State Preparation

Initially the atoms are condensed in the state |1, —1) which is a consequence of the
magnetic trapping. Figure 6.8 shows the experimental sequence in a timing diagram.
The top row indicates microwave pulses used for either state transfers or dispersive
energy shifts. The lower panel shows the atomic populations at the respective stage.
For clarity, only the quadratic Zeeman shift is drawn.

First, by means of two consecutive w-pulses the atoms are transferred to state
|1, 0) (via the intermediate state |2, 0)). At this stage we apply a strong magnetic field
gradient which expels spurious atoms in m g # 0 states (Stern-Gerlach cleaning). In
particular, atoms in the |1, —1) state are cleaned which might have remained from
an imperfect microwave m-pulse. Application of the magnetic field gradient briefly
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Fig. 6.8 Timing diagram of the experimental sequence. The top row indicates the microwave
pulses used throughout the sequence for either state transfers or dispersive dressing. The lower
panel indicates the action of the microwave pulses in a simplified level diagram. Here we only show
the energetic level shifts due to the quadratic Zeeman effect. Starting point for our spin exchange
experiments is a shelved pump mode in state |1, 0) with all other spin states empty. To achieve
this a strong magnetic field gradient expels the atoms in sub states with mr # 0 (Stern-Gerlach
cleaning). Transfer of the pump mode into |2, 0) is done by fast resonant microwave pulses. Thereby
the nonlinear coupling strength for the ensuing spin exchange is effectively quenched. During phase
imprinting the pump mode is shelved in |1, 0). After a second period of spin exchange the atomic
population is detected by absorption imaging
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distorts the magnetic field stabilization servo loop. A holding time of 100 ms is added
to allow the homogeneous magnetic bias field to settle.

At our magnetic bias field of B = 0.9 G spin exchange within the ' = 1 manifold
is suppressed as the detuning of g B> = 2 x 60 Hz is much larger than the nonlinear
coupling strength of 27 x 2 Hz as detailed in the previous sections. This state |1, 0)
is the starting point of all experiments. Spin exchange is subsequently performed
by transferring the pump atoms to state |2, 0) via a fast microwave m-pulse that
takes 46 us thereby effectively quenching the nonlinear coupling strength in ' = 2,
k — 20 Hz. Immediately after state transfer microwave dressing is employed to shift
the pump mode into spin exchange resonance. After a variable time of spin exchange,
which is on the order of 1; = 6 — 10 ms, microwave dressing is stopped and the pump
mode is shelved in F' = 1 for phase imprinting. The holding time in F' = 1 is varied
(typically between #,,g = 0 — 2 ms) to imprint different spinor phases. After the final
period of spin exchange we detect the atomic population by absorption imaging. We
detail the imaging procedure in the next section.

6.10 Detection

After the final period of spin exchange we deactivate microwave dressing and imme-
diately transfer the pump mode from the F = 2 manifold to F = 1 to switch off
the nonlinear coupling. At this stage, we use absorption imaging with a high opti-
cal resolution of 1.1 um to count the number of atoms spin and lattice site resolved
[4, 5]. The internal state is resolved by applying a Stern-Gerlach like magnetic field
gradient. A short period of time of flight (=1 ms) is used to reduce the atomic density.
During this, the optical lattice remains turned on such that the atomic clouds of each
lattice site do not overlap spatially. We image the population within the F = 2 and
F = 1 manifold simultaneously. For this the short pulse of the imaging light (15 ps)
is accompanied by repumping light. Then all three involved spin components appear
on the same absorption image. Shortly after this (1.2 ms) we take an additional image
with the atoms blown away, which acts acts as a reference to correct for fringes and
other optical distortions [6]. Details of the imaging procedure and its calibration can
be found in reference [5]. A typical single shot absorption image is shown in Fig. 6.9.
It shows the outcome when spin exchange was performed for 20 ms.

To reduce the contribution of photon shot noise we count the atom numbers only
within the indicated elliptical regions of interest. Thereby the population of each
side mode, |1) and || ) can be determined in a single shot with an error of £4 atoms
(which corresponds to one standard deviation) [5]. The magnetic field gradient used
for Stern-Gerlach splitting is inhomogeneous over the extent of the optical lattice.
This leads to a nonuniform spacing of the two spin components. Ideally, nonlinear
time reversal revokes the population transfer caused by spin exchange such that the
side modes are empty in the end. To handle this situation, we calibrated each spins
position with respect to the pump mode. Since the pump mode is heavily populated
in any case, their position can be determined reliably from the absorption image. We
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Fig.6.9 Typical absorptionimage. Atomic populations of the three involved spin states (indicated in
level diagram left) are destructively determined by high resolution absorption imaging. To resolve
the internal state, a magnetic field gradient is pulsed on (Stern-Gerlach). During the subsequent
time of flight the optical lattice potential remains active. Atom numbers are counted within the
elliptical regions. Close to the centre each lattice site is populated by 400-500 atoms, falling off to
200 atoms towards the edges. The outcome of each lattice site is treated as an independent individual
measurement (right). The single shot absorption image was obtained after letting resonant spin
exchange elapse for 20 ms. The strong number fluctuations observed in adjacent lattice sites are a
distinguishing feature of this nonlinear process

use the central region extending over &25 lattice sites (as shown) for further analysis.
Each lattice site constitutes an independent measurement of the spin dynamics.

The magnetic moments of the ' = 2 and F = 1 sub states are (almost) identical
in magnitude. Therefore, after Stern-Gerlach splitting the states |2, 1) and |1, 1)
overlap spatially and are not individually resolved. Similar applies to the states |2, 0)
and |1, 0) which appear on the same position of the absorption image. We indepen-
dently checked that the states |1, 1) remain empty during the entire experimental
sequence. Therefore, the absorption image consists of the states |2, £1) and the pump
mode |1, 0) as indicated in the left panel of Fig. 6.9 and all other spin states remain
unpopulated.

6.11 Data Analysis

To characterize the two-mode squeezed vacuum state and its large fluctuations we
typically use statistical sample sizes of 600—1000 measurements. The data collection
is facilitated by using each of the 25 populated lattice sites. For quantitative analysis
we postselect only those experimental runs and lattice sites which have a total atom
number in a well defined range. This is necessary as the nonlinear coupling strength
depends on the total atom number. This postselection window is typically 50 atoms
wide and centred between N = 400-550 atoms. Under such conditions the nonlinear
coupling strength varies by less than 10%.
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6.12 Interleaved Control Measurements

A series of automated control measurements is performed interleaved with the main
measurements on spin exchange. Most importantly, these characterize the amount of
detection noise. For this we image the atomic cloud after the Stern-Gerlach cleaning
procedure. At this stage only the pump mode is populated. On the absorption image,
the elliptical regions of the side modes remain empty. The detection noise is deter-
mined by the apparent atom fluctuations found when summing these empty regions.
This background signal has a Gaussian distribution that is centred at ~0.3 atoms and
has a width corresponding to the detection noise of o = 4 atoms per spin state. Unless
stated otherwise the contribution of this independently characterized detection noise
is subtracted for the main data. Similarly, the atom number offset is subtracted. Any
specific post selection (e.g. on total atom number, lattice sites) is performed on both,
the main data and the control measurements.

Our experiments are performed at a magnetic bias field of B = 0.9 G whose major
component is along the vertical direction. The magnetic field component along this
direction is actively stabilized by means of a fluxgate sensor that is mounted close
to the glass cell. The shot-to-shot fluctuations amount to less than 0.1 mG. Long
term drifts over the course of several days are compensated by automated Ramsey
spectroscopy measurements.
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Chapter 7 ®)
State and Process Characterisation Creck for

The cornerstone enabling time reversal is the process of parametric amplification
which is realized by spin exchange. In this chapter we experimentally characterize the
nonlinear process in detail. Emphasis is placed on the generated number fluctuations
which are generic to the emerging entangled state. These fluctuations reflect the
state’s ability for superior phase estimation. Finally, experimental limitations such
as particle loss, pump depletion effects, and seeded dynamics are considered.

7.1 Experimental Signatures of Parametric Amplification

Spin exchange leads to peculiar mode correlations of the arising state. In this section
we detail these distinctive correlations by comparison to the classical method of dis-
tributing atoms among three modes. The pairwise nature of parametric amplification
stands in stark contrast to this linear coupling of the levels which cannot introduce
particle entanglement.

The mode correlations generated during spin exchange are shown in Fig.7.1a
where the single shot spin populations are plotted. As expected for ideal number
correlations, the data points line up along the diagonal indicating Ny = N,. The
residual width in orthogonal direction is caused mainly by detection infidelities.
This becomes apparent when comparing the width to the initially empty state shown
in grey. Its isotropic extension is caused exclusively by detection noise. The narrow
distributionin Ny — N is accompanied by a large extension along the diagonal. These
fluctuations in N4 + N, are characteristic for the two-mode squeezed vacuum state.
Histograms for both mode populations show excellent agreement with a thermal-
like number distribution when including detection noise by convolution (indicated
in black).
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Fig. 7.1 Atom number correlations. a Starting from an initial vacuum state (grey) parametric
amplification populates the two side modes [1) and ||) in a characteristic manner: ideally, the
pairwise generation process yields perfectly correlated atom numbers, N = Ny — N = 0. In the
correlation plot this corresponds to the diagonal line along which the experimental data points line
up. The residual spread in N_ is caused by detection noise. Being confined on the diagonal line,
large fluctuations in atom number sum N, = Ny + N are exhibited. The population of each mode
follows a thermal-like distribution as witnessed by the corresponding histogram. The black lines
are fits to thermal distributions also taking into account detection noise by convolution. b Atom
number distributions obtained when populating the two modes via a classical process, i.e. linear
coupling. The green data points correspond to a state with similar average atom number as the one
produced by parametric amplification (in panel a). Clearly, the state is concentrated symmetrically
around its average population. Its fluctuations are isotropic and result from both, atomic shot noise
and detection noise. This is clarified when considering a state with larger atom number such that
the atomic shot noise dominates as shown in purple. The individual mode populations follow a
Gaussian distribution as shown by the respective histograms

Linear coupling of the three modes cannot generate such distinctive number cor-
relations as exemplified in Fig. 7.1b. Here, starting with all atoms prepared in |1, 0)
a resonant rf pulse is used to populate the modes |1, &=1). Using short rf pulses only
few atoms are transferred to the side modes. The green data points result from a state
with the same average atom number of (NT> ~ <N i) ~ 11 as the state generated by
spin exchange. However, as a consequence of atomic shot noise the atom number
difference between both modes shows larger fluctuations. This becomes more pro-
nounced when considering a state with higher mode populations as shown in purple.
As witnessed by their histograms the mode populations are close to Gaussian. Their
width is given by both detection noise and atomic shot noise.

7.2 Nonlinear Coupling Strength

To experimentally determine the nonlinear coupling strength we perform spin
exchange for different durations. The average population of the side modes is
expected to grow nonlinearly according to (N4) = (N,) = sinh® k¢, where ¢ is the
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Fig. 7.2 Experimental characterization of the nonlinear coupling strength. a For sufficiently short
evolution times the undepleted pump approximation remains valid and the side mode growth follows
(Ny) =2 sinh2 k¢ (solid and dashed line). We extract « by a fit for evolution times up to 12 ms as
indicated by the solid line. b Postselecting different total atom numbers allows determining the
atom number dependence of the nonlinear coupling strength «. The solid line shows a heuristic
square-root-like dependence. Such a behaviour is expected for a trapped mesoscopic BEC. At our
atomic densities the system lies in between the range of validity for the Thomas-Fermi regime on
the one hand, and the harmonic oscillator regime on the other

evolution time. We use this connection to extract the nonlinear coupling strength «
by afit. Figure 7.2a shows an exemplary data set. To remain within the validity regime
of the undepleted pump approximation we restrict the fit to evolution times shorter
than 12 ms (indicated by solid line). For larger durations the side mode populations
grows significantly slower (see inset and continuation of the fitted curve shown as
the dashed line).

By repeating this procedure for different postselected total atom numbers we
extract the atom number dependence of k = g(N)N. This atom number dependence
of g(N) is caused by the mode function overlap of the BEC’s external wave func-
tion g(N) f d3x|® (x)|*. Panel (b) shows the measured nonlinearity in the range
of N =280 — 600. We find an atom number dependence that is compatible with
k o +/N (indicated by the solid line). Such a scaling behaviour is expected for a
mesoscopic BEC. This is because it falls into a crossover regime between the region
of validity of single-particle (harmonic oscillator) external wave functions and the
Thomas-Fermi approximation. In the former case, the mode function overlap would
be atom number independent such that « o< N is expected. In the Thomas-Fermi
limit, the mode overlap is oc N3/ which leads to a scaling of k¥ o« N*/°. Such an
exponent is experimentally indistinguishable from the square root fit which we use
for interpolation.
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7.3 Atom Loss

The dominant loss mechanism for atoms within the excited hyperfine manifold F = 2
are hyperfine changing collisions [1, 2]. In such a collision event at least one of the two
atoms relaxes down to F = 1 with a corresponding release of energy that allows both
atoms to leave the optical trapping potential. As a two-body process this hyperfine
relaxation is density dependent. For atoms in state my = i with density n; two-body
loss with itself and all other my # i states must be considered, leading to

dni(r) _

— —2K i yni(r)? — Z 2K ; jyni () (r). (7.1)

J#i

Here, K; j, are the loss rates describing collisions between pairs of atoms in state
mp = i and mp = j. Within the single spatial mode approximation we can use our
knowledge of the relationship between density n;(r) and the corresponding atom
number N;. This connection was established in the previous section. Experimentally
we find n; N,-/«/N. ‘We then obtain

dn;
< = 2K ,) -y 2 (,]) (7.2)
J#

By preparing all atoms in a single component mp = i in F' = 2 we can estimate K ;.
For such a case &% = —2K(,',,~)Ni3/2 is solved by

ar
)
Ni(t) = [K(i,,»)t + /Nt = 0)] . (1.3)

Such a loss measurement is shown in Fig. 7.3a. Here, we prepare all atoms into the
myp = 0 state and fit the subsequent loss according to Eq.7.3 (solid blue line). In
a similarly manner, the loss coefficient K ; of mp = 1 is characterized which is
due to symmetry arguments identical to K_; _;. With initially only the my = O state
populated and all other spin states empty, we observe a small growing population of
the mp = 1 state (grey). This is caused by off resonant spin exchange. Especially for
long holding times, such spurious effects yield to systematically overestimated loss
rates and thereby limit this treatment to small durations <300 ms.

We checked that the loss coefficients are independent of the initial atom number.
This is shown in the inset, where K o corresponds to the blue data, and K ; to the
red data points. This atom number independence indicates that indeed two-body spin
relaxation is the prevailing loss mechanism. In contrast, background gas collisions
and off-resonant light scattering of the optical dipole traps are density indepen-
dent. For these processes, an exponential decay is found. The measured 1/e-lifetime
exceeds 15s. Single-body loss as well as dipolar losses (which do not necessarily
conserve the total angular momentum during collisions) are therefore indiscernible
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Fig. 7.3 Measurement of loss rates. The dominant source for loss in the excited hyperfine manifold
F =2 is a two-body process in which at least one of the scattering atoms relaxes to ' = 1. The
concomitant release of energy suffices to expel one or both atoms from the trap. a We assess
this process by preparing pure samples in either |2, 0) or |2, 1) (not shown) and observing the
subsequent decay (blue). The blue line is a fit to extract the lifetime assuming pure two-body decay.
This presumption is checked by confirming that the extracted lifetimes are independent of the initial
atom numbers as shown in the inset. Here, the red (blue) data points correspond to extracted loss
rates Kj; of |2, 0) (|2, 1)). Extracting loss rates is compounded by the fact that spurious spin exchange
takes place. For the shown case of preparing all atoms in |2, 0) this means that |2, 1) gets populated
(grey data). b We check the validity of our loss model for the experimentally most relevant case of
small side mode populations. These side mode populations are generated by resonant spin exchange
for 16 ms (purple) and 20 ms (orange), respectively. The effective 1/e life time of the side mode
population is shown for the case of the pump mode being held in F' = 2 (squares) and shelved in
F =1 (diamonds). Details of the loss model indicated by the solid lines are explained in the text

on time scales of several 100 ms. These loss mechanisms can thus be neglected for
the experiments reported on in this thesis.

Having characterized the intra component loss rates, we follow reference [2] to
estimate the remaining loss rates which describe scattering between two different
myp states. For this the knowledge of K ; and Kj o suffices.

The experiments on time reversal rely on the validity of the undepleted pump
approximation. Therefore, the loss of the sparsely populated side modes in presence
of alarge pump mode is the experimentally most relevant case. We study this situation
in Fig.7.3b. For direct comparison with the main experiments, we use spin exchange
to initially populate the side modes and record the subsequent decay of the side
modes. Let us first focus on the situation in which the pump mode resides in F = 2
(square plot markers). This describes loss during the process of spin exchange. We
treat the case in which the pump mode is shelved in F = 1 (diamonds) afterwards.
With the pump in F = 2, the main contribution to atom number loss of the side
modes is due to K o and K_ o, respectively. However, the loss is not well described
by a pure two-body loss model because of the additional albeit weak channels.
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We take this into account by heuristically fitting an exponential for short loss times
to extract an effective lifetime. We compare this to a numerical simulation which
uses the estimated loss coefficients (solid lines). We let spin exchange populate the
side modes for 16 ms (orange) and 20ms (purple) respectively and find reasonable
agreement for both evolution times.

During phase imprinting the pump mode is shelved within the F = 1 manifold
(diamonds). This has a strong influence on the life time of the side modes as the
dominant loss mechanism is now absent. We find the remaining loss is best described
by Ko,1 = Ko.—1 = 0 (solid lines). The large deviations for lifetimes exceeding 1s
are caused by residual off-resonant spin exchange.

7.4 Detuning and Comparison to Numerical Simulation

Having experimentally extracted the nonlinear coupling strength « and its atom
number dependence we now proceed with an experimental characterization of the
detuning. The difficulties in estimating the detuning from a microscopic point of
view have been addressed in Sect. 6.4 where a detailed calculation of all level shifts
during microwave dressing was performed. Here, we use the complementary top-
bottom approach and extract the detuning from the population dynamics during spin
exchange. For this, one could in principle use the detuning dependence of parametric
amplification. Taking into account such a detuning by introducing § = x — ¢ the side
mode’s growth can be calculated analytically and is described by

2 2
(N,) = ZL(SZ sinh?(v/k2 — 821). (7.4)
2 —

Therefore the population growth depends (only) quadratically on detuning. Being
close to resonance we find this dependence to be too weak to use it for an experimental
determination of the detuning. The reason for this is that Eq. 7.4 requires the validity
of the undepleted pump approximation. Therefore, the dynamic range is restricted to
small side mode populations. To circumvent this problem we use the comparison to
numerical simulations that take into account pump depletion. As detailed in Sect. 3.7
these numerical simulations rely on the truncated Wigner approximation which is
valid up to the point where predominantly atoms from the side mode are scattered
back into the pump mode.

We perform such simulations for three different total atom numbers and use the
independently characterized coupling strength. Since the detuning arises from level
shifts due to microwave dressing and the quadratic Zeeman effect, it is independent
on the total atom number. Therefore, for each of the three cases a common detuning
is used. We find best agreement to the experimental data for a detuning of § =
27 x 24 Hz which is shown for all three atom numbers in Fig. 7.4. A different choice
of parameter generally improves the agreement only for one particular atom number
window, while it leads to significant deviations for the other two cases. The advantage
of this procedure is that only one parameter is free and needs to be found.
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Fig. 7.4 Comparison of the numerical simulation to experimental data. To experimentally charac-
terize the detuning of the spin exchange process we perform numerical simulations (black lines)
for three different total atom numbers; N = (375, 425, 425) (from left to right) and compare the
results to experimental data. While the nonlinear coupling strength depends on the atom number,
the detuning is unique to all three cases. We use the experimentally characterized coupling strength
and its atom number dependency to restrict the numerical simulations to a single parameter, i.e. the
detuning. Best agreement is found for a detuning of § = 27 x 24 Hz (black lines). For comparison,
the nonlinear coupling strength for the three considered cases is k = 27w x (20, 23, 25) Hz

The numerical simulation systematically underestimates the atom number for
evolution times exceeding 22 ms. At first sight, this hints towards an underestimated
coupling strength, however, we explicitly checked that this behaviour cannot be
overcome by additionally adjusting the nonlinear coupling strength. While these
simulations include the independently characterized loss the initial atom number is
fixed. In the experiment, however, the postselection is done for a range of +25 atoms
and characterizes the atom number after the spin exchange process took place. This
might explain the disagreement at long evolution times. However, for our main
experiments which involve evolution times shorter than 16 ms these discrepancies
are insignificant.

For long evolution times exceeding 25ms the growth of the side modes is not
just slowed down by pump depletion. As suggested by the results of the numeri-
cal simulation for N = 475 the population in fact executes oscillations [3]. This is
caused by the collisional shifts which are approximately compensated only for small
populations which corresponds to short durations. These collisional shifts lead to a
dynamically evolving spinor phase—until a phase of & is eventually built up such
that time reversal is achieved and the cycle starts again.

7.5 Number Fluctuations

The individual modes making up the two-mode squeezed vacuum state do not possess
a mean-field. This means that (1| a4 |[1) = 0 and similarly for mode || ) [4]. Under
such conditions the state’s number fluctuations become crucial. With the atom num-
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ber imbalance vanishing, (AN_)? = 0 the fluctuations in atom number sum are the
most distinctive feature of the two-mode squeezed vacuum state. Having shown this
in a qualitative manner at the beginning of this chapter we now characterize them
quantitatively.

The two-mode squeezed vacuum has thermal-like number fluctuations in each of
its constituent modes, (AN;)* = (N4) (N4 + 1) and similarly for N|. Additionally,
both modes are strongly correlated. Due to the covariance of Ny and N, the variance
of the atom number sum is twice larger than the combined individual fluctuations,
(AN;)? = 4(N¢) (Ny +1) = (N4) ((N4) +2). In Fig.7.5a we plot the measured
variance of N, versus this expectation in terms of average number population. For
short evolution times (indicated by colour) we find excellent agreement to this unde-
pleted pump theory. Only for durations exceeding 15 ms pump depletion causes a
levelling off. This effect is well captured by numerical simulations which are based
on the truncated Wigner approximation (shown as dashed line). These fluctuations
are huge compared to Poissonian noise of size (AN, )? = (N, ) which is shown in
grey for comparison.

As detailed, the variance of N, would only be half as large if the two modes were
uncorrelated. These strong mode correlations can also be shown directly. For this the
variance of N_ is evaluated, see Fig.7.5b. For quantum mechanically uncorrelated
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Fig.7.5 Characteristic atom number fluctuations. a The two-mode squeezed vacuum state features
thermal-like fluctuations when considering the summed side mode population, Ny = Ny +Ny.
These excess fluctuations satisfy (AN+)2 = (N4+) ((N4) + 2) which is drawn as the diagonal line.
For sufficiently short evolution times (encoded in colour) we find excellent agreement to this ideal
expectation. For longer evolution times a large fraction of pump atoms is scattered into the side
modes such that the undepleted pump approximation eventually ceases to be valid. This effect is well
captured by a numerical simulation (shown as dashed line). Redistributing atoms among three modes
in a classical process leads to Poissonian noise which is indicated as the grey line for comparison.
b Ideally, each side mode’s population exhibits perfect correlations due to the pairwise scattering
process. To quantify these correlations experimentally we evaluate (AN_)? and compare it to the
respective Poissonian limit. The Poissonian noise corresponds to (AN_)? = (N4 ) (indicated as grey
line). We find suppressed fluctuations by 8.5 dB. The squared plot marker denotes an independent
measurement of the detection noise. This variance contribution due to detection noise was subtracted
for the data in panel a)
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populations we expect binomial statistics to be valid, leading to (AN_)> = (N,.)
which is shown in grey. From a linear fit to the data (black line) we deduce that the
fluctuations are suppressed by a factor of 7 (8.5 dB) compared to this classical level
[5, 6]. An independent measurement of the detection noise (square plot marker)
defines the line’s offset. Ideally, the two-mode squeezed vacuum state fulfils
(AN_)? = 0 irrespective of (N,).

These distinctive coherent number fluctuations of the two-mode squeezed vacuum
state have far reaching implications for phase sensing. We cover these in the next
section.

7.6 Number Fluctuations and Phase Dependence

There is a common argument that connects a state’s coherent number fluctuations to
its sensitivity towards phase changes: in order to be sensitive to a phase imprint of
@_ the probe state needs to have fluctuations of N_ that sample this phase. A similar
relation holds for sensitivity with respect to the sum phase ¢, which accordingly
requires fluctuations of N,. Often this relationship is expressed by the heuristic
uncertainty relation of phase and complementary number fluctuations, which reads
(AN+)?(A@+)? > 1. Therefore, the ability to precisely estimate a phase imprint
relies on large coherent number fluctuations. The large fluctuations of the summed
side mode population NV, inherent to the two-mode squeezed vacuum can therefore
be considered to be the underlying resource for quantum-enhanced measurements.
On the other hand, spin exchange leaves the atom number imbalance N_ unaltered.
As a direct consequence, the process is insensitive to the phase difference ¢_ which
corresponds to the Larmor phase.

It is important to note that the fluctuations of the probe state, i.e. the state that
experiences the phase shift, are crucial. In this thesis’ introduction, a scheme in
which the two-mode squeezed vacuum state is fed into a conventional passive SU(2)
interferometer is discussed. Here, loosely speaking, the first beam splitter converts
the initial state’s fluctuations of the atom number sum N, into fluctuations of the
associated atom number difference N_. Therefore, precise measurements of ¢_ can
be performed.

The potential of a probe state to perform quantum-enhanced phase measurements
can be characterized by the quantum Fisher information F', which conceptually builds
on the associated classical object as employed in statistics and parameter estimation.
Adopted to ametrology setting, the classical Fisher information quantifies how well a
linear phase imprint can be estimated on grounds of probability distributions [7-9]. If
a measurement prescription is characterized by a large classical Fisher information
then already minute phase imprints yield readily distinguishable output distribu-
tions which corresponds to a high phase sensitivity. The quantum Fisher information
eliminates the device dependence. It quantifies the metrological usefulness, i.e. the
phase sensitivity of a probe state under the assumption that the optimal readout is
employed. Furthermore, the quantum Fisher information is often applied to com-



102 7 State and Process Characterisation

pare various quantum states [10, 11]. Within this paradigm, the single shot phase
sensitivity is connected to the quantum Fisher information F via the Cramér-Rao
bound that states (Ag)?> > F~'. This inequality is valid for linear phase imprints;
in the following we call the operator that generates the phase shift 0. For pure
states the Fisher information is given by the variance of this phase shift generat-
ing operator and thus reads F' = 4(AQ)2. Within this framework the above heuristic
argumentation connecting fluctuations to sensitivity can be tightened and formalised:
the operator generating linear spinor phase shifts is given by kz. Consequently, the
quantum Fisher Information of the two-mode squeezed vacuum state |r, ¢) is given
by F = 4(AQ)* = (r, 9| (AN,)? |r, ¢). Finally, the Cramér-Rao bound states that
the phase sensitivity fulfils

(Ap ) = [(N) L (IN), + 217! (7.5)

where the lower bound agrees with the ultimate Heisenberg limit. The nonlinear
readout saturates this bound [12]—which is the subject of later chapters. Therefore,
the coherent number fluctuations inherent to the two-mode squeezed vacuum state
are the resource for quantum-enhanced interferometry.

7.7 Effects of Pump Depletion

In light of pump depletion the perfect agreement between the sum variance on the
one hand, and the average population on the other hand might come as a surprise. In
particular since the severe effects of pump depletion are clearly visible in the popula-
tion growth for evolution times exceeding 15 ms, as shown in Fig.7.2. However, the
relationship between (AN, )? and (N, ) that is distinctive for the two-mode squeezed
vacuum state remains to a good approximation intact for evolution times < 20 ms.

Therefore, the main effect pump depletion is causing can be divided into two
separate periods of time: for short evolution times, parametric amplification remains a
good approximation—only the nonlinear coupling strengthk = gN is (dynamically)
reduced. While this leads to a reduced growth rate of the side modes, the emerging
state still shares the essential features of the two-mode squeezed vacuum state. This
is reflected in the relationship between average population and the respective number
fluctuations.

Only for longer evolution times this effective description breaks down and the
generated state significantly deviates. This becomes most evident when considering
the full number distribution of N which is shown in Fig. 7.6. Here for short evolution
times (r = 14 ms) the thermal-like distribution arises. The black line is the expectation
of a two-mode squeezed vacuum state for the directly observed average population
(indicated by dark coloured bin). Therefore, the black line is not a fit to the data but
exploits the fact that the two-mode squeezed vacuum state is fully characterized by a
single parameter, e.g. its average value. This relationship breaks down as the evolution
time proceeds. We use this comparison to assess the effect of pump depletion. For
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Fig. 7.6 Breakdown of the undepleted pump approximation. The atom number distribution of the
two-mode squeezed vacuum state is completely described by a single parameter, e.g. its average
mode population. Here, we show the full atom number distribution of N, obtained after three
different evolution times under spin exchange. The respective average value is indicated as the
dark coloured histogram bin. Based on this value the expected thermal-like distribution is shown in
black. While we find perfect agreement for an evolution time of = 14 ms, significant deviations
show up for longer evolution times. Here the measured atom number histogram cannot be described
by a thermal-like distribution. At this stage the undepleted pump approximation breaks down and
the analogy to parametric amplification is invalidated. The grey dashed line shows the results of a
numerical calculation that reproduces the characteristics of the data

t = 20ms the distribution that would correspond to the measured average value does
not fit to the shape of the experimental histogram that resembles a triangle. For
even longer evolution times we observe an almost uniform distribution that does not
even share the characteristic skew of the thermal-like distribution [13]. At this stage,
the state wraps around the Bloch sphere and explores the curvature of the sphere as
indicated in Fig. 3.5. This causes the departure from the two-mode squeezed vacuum.
For all evolution times we find reasonable agreement to our numerical simulation
which is shown as the grey dashed line.

7.8 Influence of a Seed

We aim at performing spin exchange with initially empty side modes [14—16]. Under
such circumstance the quantum nature of the process is most pronounced as the two-
mode squeezed vacuum state with its large coherent fluctuations emerges.

Let us consider the consequences if one side mode is instead populated initially.
We assume that this spurious population follows Poissonian fluctuations. In Sect. 4.6
the analogy between the amplification of vacuum fluctuations and spin exchange
was developed. Within this framework the characteristic two-mode squeezed vac-
uum fluctuations that arise during amplification, stem exclusively from the sponta-
neous process. If, hypothetically, the spontaneous process were absent the ampli-
fication would not add extra noise. Therefore, the resulting state of spin exchange
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Fig. 7.7 Dependence of the atom number fluctuations on initial seeds. Measurements of the atom
number sum and its fluctuations can be used to bound the size of a minute seed that might have
triggered the spin exchange initially. For this we replot the data of Fig.7.5 restricted to small side
mode populations (N4) < 9. In this range, depleted pump and loss effects can be neglected. The
extremal atom number fluctuation of (ANJr)2 = (N4+) ((N4) + 2) (bold solid line) are obtained only
for a vanishing seed. The grey lines show the expected atom number fluctuations for the indicated
seed size. Here the seed size corresponds to the average atom number that is in each of the two side
modes. The same result is obtained for unequal partitioning as long as the total size remains equal.
Therefore a seed of 1 atom could also correspond to 2 atoms in one mode while the other mode is
empty. We find best agreement to our experimental data if we assume an initial seed of 0.25 atoms;
On grounds of this analysis we can exclude seeds greater than 0.5 atoms

is a combination of the amplified initial state, and a two-mode squeezed vacuum
state contribution. If the spontaneous process prevails, one has on top of the largely
fluctuating two-mode squeezed vacuum state a small admixture of a coherent state.
Therefore, the initial coherent population reveals itself in reduced number fluctua-
tions. We exploit this connection to experimentally assess the size of a potential seed
in a regime where absorption imaging cannot be used unambiguously, i.e. for aver-
age mode populations < 0.5 atoms. Thereby we probe an initial seed via the ensuing
spin exchange dynamics. For this we compare the measured number fluctuations
of N, to the extremal value of (ANﬁL)2 = (N;) ((N4) + 2) which corresponds to
the spontaneous contribution. In Fig.7.7 this limit amounts to the solid black line.
The experimental data and its exposition is identical to Fig.7.5. However, here we
restrict ourselves to small atom numbers; then the discussion is model independent
as the influence of loss and pump depletion can be neglected. The grey lines show the
predicted number fluctuations for various seed sizes. For instance, the line labelled 1
reflects a seed with 1 atom per side mode; portioning the—in total—?2 atoms differ-
ently among the two modes yields equivalent results. We find the experimental data
to lie somewhat consistently below the bound of the two-mode squeezed vacuum
state. Best agreement is found when assuming a seed of size 0.25 atom. Seed sizes
larger than 0.5 atoms can be excluded on this basis.
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Chapter 8 )
Quantum-Enhanced Sensing Gzt
Based on Time Reversal

Having characterized the building block of spin exchange and the nascent entan-
gled state we now detail the interferometric sequence that arises when two periods
of spin exchange are performed in sequence. In this section we study the symmet-
ric case where initial entangling and subsequent nonlinear readout are matched in
length. First, we study the particular case of time reversal and present its connection
to noiseless amplification. We then continue with the full phase dependence and
experimentally assess the quantum-enhanced performance. We explicitly demon-
strate a phase sensitivity that beats the classical limit. We conclude with describing
the noise tolerance of the presented interferometry scheme which will be revisited
in the following chapter. The content of this chapter is published in reference [1].

8.1 Time Reversal

Having established that the fluctuations of N, are idiosyncratic for the two-mode
squeezed vacuum we now present the complete scheme for disentangling readout
via time reversal. This scheme is divided into three parts; entangled state generation,
phase interrogation, and finally, a matched period under time reversal to disentangle
the state. Such a tripartite time sequence is shown in Fig.8.1a where the variance
of Ny is plotted as a time trace: first, evolution under the nonlinear spin exchange
Hamiltonian generates the entangled state (time frame indicated by red arrow). Dur-
ing this initial entangled state preparation the variance experiences a drastic build-up
(up to 8 ms). Subsequently, spin exchange is stopped to allow for linear phase inter-
rogation. This interrogation time is chosen such that a dynamic spinor phase of
accumulates. The second period #, of spin exchange then proceeds with negative
coupling strength (see blue arrow). Therefore the fluctuations are revoked. We find a
pronounced minimum for approximately matched evolution times #; ~ t,. Ideally, at
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Fig. 8.1 Disentangling with nonlinear time reversal. a The nonlinear readout scheme is divided
into three parts. During the first period an entangled state is generated (red arrow): the time trace of
the characteristic variance (AN, )> shows a drastic increase as quantum correlations are built up.
During the interrogation stage (grey) nonlinear spin exchange is stopped. With a spinor phase of &
being accumulated the ensuing period of spin exchange revokes the fluctuations generated during
the first period. We find a pronounced minimum close to the matched case of equal evolution times,
t| ~ tp. This setting is studied in more detail in panel b: here the entanglement and subsequent
disentanglement is probed for different strengths of the nonlinear process, i.e. by tuning «¢. For this
the side mode variance (ANJr)2 before (red diamonds) and after time reversal (blue) is shown. The
red line shows the expected behaviour in undepleted pump approximation. Over the entire range of
nonlinear couplings we find good reversion to the initial state (dashed)

this point the second period of spin exchange reverses the effect of the first such that
the well-known separable initial state is recovered. For longer evolution times the
process of entanglement generation starts all over again concomitant with growing
fluctuations.

In the following we investigate the balanced situation of two equally long periods
of spin exchange. In panel (b) the variance after the first (red diamonds) and sec-
ond (blue circles) period of spin exchange is shown, respectively. By postselecting
experimental realizations with different total atom numbers the effective nonlinear
coupling strength is varied additionally to choosing evolution times in the range of
t; = t, =7-10ms. For the full range of experimental parameters we find good rever-
sion to the initial state with vanishing atom number (dashed line). The red solid line
is a fit to the expected variance increase within undepleted pump approximation.

8.2 Noiseless Amplification

Within the amplification framework the time reversal readout can be understood as
noiseless amplification. To see this we first have to clarify in what sense amplifi-
cation usually adds spurious noise [2, 3]. For this we consider a single mode, say
|1) with average atom number <N %“) In the process of spin exchange the atom num-
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ber of this mode gets amplified to (N§™) = cosh®(«t) (N'") + sinh (i) as shown in
Sect. 4.6. Here, the term sinh?(k7) describes the effect of spontaneous amplification,
i.e. amplification of vacuum fluctuations. This is responsible for a degradation of
signal-to-noise during amplification. To see this we look at the atom number vari-
ance of this single mode [4]. It is given by

(ANS™)* = cosh* (k1) (AN}")* 4 (N} + 1) sinh® (k1) cosh® (k7). (8.1)

In the large gain and population limit the signal-to-noise ratios read: Sin/Sout =
Sin + 1 where Sj, denotes the signal-to-noise ratio for the input mode, S, =
(NiT“)z/(ANiT")2 and a similar definition holds for mode |1). For Poissonian mode
population at the input the signal-to-noise ratio is thereby bisected. This is usually
referred to when saying that the noise figure increases by at least 3 dB during ampli-
fication [2].

While we used the specific spin exchange Hamiltonian for this derivation the argu-
ment is general. It goes back to Haus and Caves [5, 6] who recognized that quantum
amplification cannot be realized by simply substituting mode operators like a — Ga
where |G|> would correspond to the amplifier’s gain. Instead, quantum mechanics
forces the introduction of additional degrees of freedom for the amplifier—otherwise
the bosonic commutation relations could not be retained. Such internal modes dete-
riorate the signal via their spontaneous amplification [2].

For the spin exchange an extra degree of freedom is given by the other side mode,
i.e. || ). The 3dB noise limit on amplification can be surpassed by using entangle-
ment [7, 8]. For this the mode to be amplified (|1)) needs to be entangled with the
amplifier’s internal mode (]| )). In the spin exchange setting this is naturally the case.
Under such conditions the amplification is noiseless. This is because the sponta-
neous term sinh?(k7) which degrades the output signal is removed by destructive
interference between the two entangled modes.

As we start the interferometric sequence with initially empty side modes we probe
this destructive interference in its purest form. Therefore, the absorption of fluctua-
tions which is enabled by entanglement makes noiseless amplification possible. In
light of this amplification framework we can now reinterpret the results shown in
Fig. 8.1b: in fact, the variance obtained after the initial entangling reflects the quan-
tum mechanically required spurious noise during amplification. This corresponds
to Eq.8.1 when no input signal is applied. Therefore the measurement originally
used to characterizes the generation of the entangled state also represents the min-
imal amount of noise that is added during amplification. This noise level can only
be surpassed by using entanglement. This is demonstrated by the subsequent time
reversal. Here almost no spurious noise is added during the final amplification pro-
cess and the noise limit of amplification is clearly surpassed. In this scheme the
first period of spin exchange is used to generate entanglement with respect to the
amplifier’s internal mode. For actual amplification purposes the signal that shall be
amplified has to be mixed with this entangled state. This could readily be achieved
by applying a microwave pulse to either of the side modes in between both periods
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of spin exchange. A analogous scheme has recently been realized with entangled
photons [7]. This noiseless amplification during readout is an important feature of
the interferometric sequence which we will detail in the following chapter.

8.3 Interferometry Fringe

With time reversal being reached for the particular phase setting ¢ = 7 we now
study the nonlinear readout scheme for arbitrary phase imprints. After a spinor phase
imprint of ¢ the nonlinear readout implements the mode transformation

ay coshkt e¥sinhit) (ay
(ai) - (e‘i‘” sinhkt coshkt ) <aI ' (8.2)

Applying this transformation to the two-mode squeezed vacuum state yields an inter-
ferometry fringe that is given by

(Ny) = (NIIS9e)((NImsi9e) 1 2) (1 + cos @) = V(1 + cos @). (8.3)

Here (N f“de) denotes the average atom number of the initial two-mode squeezed
vacuum state that acts as the probe state. This state is generated by the first period of
spin exchange and constitutes the quantum resource for phase sensing. The nonlinear
coupling strength (and duration) for both periods of spin exchange are matched.
Otherwise evolution under the time reversed generation process at phase ¢ = 7
would not yield complete cancellation. We will study this nonbalanced scheme in a
later chapter.

Experimentally, we detail the occurrence of an interferometry fringe in Fig. 8.2.
In panel (a) a time trace of the side mode population during the interferometric
sequence is shown. The first period of spin exchange ends after 8 ms as indicated by
the vertical grey line. At this point different spinor phases are imprinted. For this,
microwave dressing is stopped, and the pump mode is shelved in |1, 0) to quickly
interrupt spin exchange. Holding the atoms for a variable time (which is not shown
in the figure) realizes different spinor phases. Then spin exchange is continued by
swapping the pump back to |2, 0) and reactivating microwave dressing. The solid
lines denote the results of numerical simulations without any free parameters. After
8 ms (indicated by the dashed rectangle) the average side mode population constitutes
the interferometry fringe as shown in panel b (note the common plot markers). The
black line is a sinusoidal fit, while the horizontal grey line indicates the average side
mode population (N9} generated by the first period of spin exchange.
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Fig.8.2 Side mode populations for different phase imprints. a Average side mode population (V)
during the interferometric sequence. The first period of spin exchange lasts for 8 ms. At this point
(indicated by the vertical grey line), different spinor phases are imprinted (see legend) before spin
exchange is continued for another 8 ms. Time reversed dynamics is obtained for a phase imprint
of 7 (red). All other shown phase imprints lead to an amplified output signal. Solid lines show
the result of numerical simulations. b The characteristic interferometry fringe is obtained in the
balanced case of equal durations, #; = t, (square plot markers in panel a). The horizontal grey line
denotes the average side mode population after the first period of spin exchange

8.4 Population Distribution

The state leaving the interferometric sequence is a two-mode squeezed vacuum state.
In Fig. 8.3 we show experimentally obtained histograms of the summed side mode
populations N,. The black lines are fits to the expected thermal distribution also
taking into account detection noise by convolution with a Gaussian of appropriate
width. The red histogram on the left shows the probe state inside the interferometer.
Its average atom number ((N}fsme) = 2.8) is indicated by the dark coloured bin. At
this small average population the width of the histogram is predominantly caused by
detection noise. The blue histograms are recorded at the output of the interferometer
for different applied spinor phase imprints inside. They show the skewed popula-
tion distributions characteristic of the two-mode squeezed vacuum state. With the
individual distributions being widespread, their average value (indicated by the dark
coloured histogram bin) remains constrained to the grey shaded area. A zoom-in into
this grey shaded area reveals the interferometry fringe (lower panel). The black line
is a sinusoidal fit which agrees with the results of numerical simulations. The average
atom number of the probe state inside the interferometer is denoted by the horizon-
tal red line. The intrinsic amplification of the nonlinear readout scheme becomes
apparent when comparing this level to the maximal fringe size as indicated.



112 8 Quantum-Enhanced Sensing Based on Time Reversal

100

+ 80
=
S 60
2 é,\bz\e}
3 40} &% ®
8— \’9’ \0
% 20

0

N
o

Amplification

o

Mean population, (N, )
S

0 90 180 270 360
Phase, ¢ (deg)

Fig. 8.3 Full counting statistics of the time reversal sequence. Experimental population distri-
butions of N, at different stages of the interferometer: the red histogram shows the population
within the interferometer. Its average value is indicated by the red horizontal line. The grey scale
bar denotes a frequency of 5%. For all phase imprints the population distributions recorded at the
output of the interferometer (blue) follow a thermal-like distribution. The black lines are fits to
thermal distributions also taking into account Gaussian detection noise. Each histograms contains
about 750 experimental realizations. The respective average values (indicated by the dark coloured
bins) give rise to the interferometry fringe which is shown in the lower panel. Note that the lower
panel is a zoom-in into the grey shaded area

8.5 Variance Fringe

The fluctuations of the interferometry fringe follow directly from the fact that the
output state is two-mode squeezed vacuum. The variance of N, reads

(AN;)* = (N1) ((Ny) +2) = 2V(1 + cos ) + [V(1 + cos ). (8.4)

This relationship leads to a non-sinusoidal atom number variance: the output signal
has two Fourier components with the effect of a flattening close to the fringe minimum
at spinor phase setting ¢ = 7. Therefore close enough to the point of complete time
reversal the variance remains levelled. The measured fringe of the atom number sum
variance (AN, )? as depicted in Fig. 8.4 and clearly shows this nonsinusoidal fringe.
The black solid line is the expectation within undepleted pump theory. Here based
on the measured interferometry fringe of (N,) the variance expectation (AN,)? =
(Ny) ((Ny) 4 2) is plotted. The deviations at the fringe maxima are caused by pump
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Fig. 8.4 Variance fringe. Fringe of the atom number sum variance recorded at the output. The
phase dependence is non-sinusoidal: in the vicinity of the dark fringe at ¢ = 7, the variance is
significantly flattened resembling a bathtub curve. The black line shows the expected behaviour in
undepleted pump approximation. This is not a fit to the data but instead takes the average atom
number as input. Significant deviations are found only at the maxima where pump depletion limits
the variance growth. The grey dashed line denotes a numerical simulation. Close to the dark fringe
both methods describe the data similarly well

depletion. This effect is well captured in the numerical simulation (dashed grey line).
Close to the minimum, pump depletion is negligible and both theory lines coincide.
Error bars of the variance are estimated using the jackknife method. In this resampling
technique, the error of the variance is determined by the impact it makes if any single
observation is omitted. The combination of both, a flattened variance and a sinusoidal
average output signal as shown in Fig. 8.3 allows for improved phase sensitivity. We
elaborate on this in the next section.

8.6 Quantum-Enhanced Phase Sensitivity

By virtue of the nonlinear readout the spinor phase is mapped onto the first moment
of the output distribution, i.e. the average atom number. Consequently, the phase
sensitivity can be estimated by employing error propagation onto this average output
signal [9, 10],
(AN})?
(Ap)” = .

= 8.5
d(Ny) /dol|? (8

Remarkably, this simple procedure is optimal as it saturates the Cramér-Rao bound
[11]. High phase sensitivities correspond to small errors (A¢)? on the inferred phase
with the classical bound being given by (A¢)? = (N‘fsjde)_1 . On a phenomenological
level this limit can be surpassed because the atom number variance of the output
signal remains levelled close to the fringe minimum. At the same time the output
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fringe is sinusoidal and magnified by the interferometer’s intrinsic amplification. The
combination of both effects yields a phase sensitivity given by

(Ap)? =

1—wwLMWwa%+a+“+mWﬂ- (8.6)

The optimal working point is at spinor phase ¢ = 7 which corresponds to the time
reversal setting. Here a phase sensitivity at the ultimate Heisenberg limit is attained,
(A@)? = (N4) ((N4y +2))~". When leaving this working point phase sensitivity
degrades. Quantum-enhanced performance is obtained only within a phase win-
dow given by ¢ = £ arccos (— (N;) /({(N+) + 2)). Therefore, the larger the size
of the probe state, (N, ), the smaller the region of quantum-enhanced performance
gets [10].

Figure 8.5 details the experimental procedure to extract the phase sensitivity. Panel
(a) shows the average atom number (N, ) in close vicinity of the dark fringe. We
determine the slope of the signal by a sinusoidal fit (black solid line). Since pump
depletion limits the growth of the side mode population at the fringe’s maximum
this fit takes into account only the data points close to the minimum. We investigate
and justify this fitting procedure below. Based on this fit the expected shape of the
associated number variance is estimated. The result is shown as the solid black line
in panel (b). We find perfect agreement when allowing for an offset of 4 atoms>
that displaces the expected variance curve vertically. This heuristic offset takes into
account the experimentally nonideal reversion to vacuum. For a two-mode squeezed
vacuum state this variance corresponds to an average mode population of 0.65 %+
0.05 atoms per side mode. The independently characterized detection noise (which
amounts to 33 atoms” in (AN, )?) is indicated by the dotted horizontal line.

The resulting phase sensitivity is shown in panel (c). For this we evaluate the
measured atom number variance at each phase setting and divide it by the derivative
of the output signal which in turn is obtained from the fit as detailed above. At
spinor phase ¢ = 7 a division by zero is encountered. However on both sides of
the divergence we find experimental phase sensitivities that surpass the Standard
Quantum Limit (SQL, indicated by the grey bar). The black solid line shows the
phase sensitivity that is expected from the fits of the atom number (N,) and the
variance, respectively. The width of the divergence at phase ¢ = 7 is caused by the
residual fluctuations found at the fringe minimum. In contrast, the dashed line shows
the phase sensitivity if reversibility were ideal and no offset in variance is included.
In the inset the phase sensitivity over the full phase range 0-2 is shown. High phase
sensitivity which surpasses the Standard Quantum Limit is reached only in vicinity
of the dark fringe where (partial) time reversal occurs. At other working points only
poor sensitivity is found. We find good agreement to the theory over almost two
orders of magnitude.

The value of the SQL and Heisenberg limit, respectively, are determined by
directly measuring the phase sensing average atom number inside the interferome-
ter. For these measurements we omit the second period of spin exchange. Similar
to the control measurements used to independently characterize the detection noise
we perform these runs interleaved with the measurements of the full interferomet-
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Fig.8.5 Quantum-enhanced phase sensitivity. The phase sensitivity is estimated by applying Gaus-
sian error propagation onto the average atom number (N ). a The derivative of the output signal is
determined by a sinusoidal fit (black line). To limit spurious effects of pump depletion we restrict
the fit to the vicinity of the fringe minimum. The corresponding variance is shown in panel (b). The
dotted line indicates the contribution of detection noise which amounts to 33.5 & 1.3. The fringe
shows the characteristic levelling-off close to spinor phase 7. The black line denotes the expected
variance in undepleted pump theory. We find good agreement when allowing for an atom variance
offset (as shown in panel a) which takes into account the nonideal reversibility. ¢ Phase sensitivity.
The Standard Quantum Limit (denoted by the grey bar, width corresponds to two s.d.) is surpassed
in close vicinity of the fringe minimum. The dashed line denotes the undepleted pump theory which
attains the Heisenberg limit (grey bar), while the black lines includes additional fluctuations due to
the nonideal reversibility which leads to a divergence at spinor phase 7. The SQL and Heisenberg
limit, respectively, are determined by independent measurements of the atom resource inside the
interferometer. The inset shows the phase sensitivity over the full phase range; over two orders of
magnitude we find good agreement to theory

ric sequence. The width of the grey bars reflect the uncertainty in determining this
average atom number (N fsme) =28+0.2.

We choose such small probe sizes to ensure that during the nonlinear readout the
pump is not significantly depleted. By recording the entire fringe, we demonstrate
the nonlinear readout in its idealised form of an SU(1,1) interferometer. Note that for
phase sensing applications the limitation on small probe sizes is relaxed significantly.
This is because the optimal working point is close to time reversal where pump
depletion is negligible. In such situations, the probe size can be increased by an
order of magnitude—until eventually pump depletion in the preparation step (and
not during readout) limits the generation of an entangled state.
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8.7 Fringe Enhancement and Noise Suppression

In this section we study the underlying working principle of the balanced interfer-
ometer in more detail. During the nonlinear readout the output fringe’s size gets
magnified while the fluctuations at the point of time reversal remain suppressed. In
the previous section we identified this interplay as the key feature which enables
quantum-enhanced phase sensitivity. Here we systematically study this interplay for
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Fig. 8.6 Fringe enhancement and noise suppression. a Output fringes obtained for different dura-
tions of spin exchange as indicated by colour. For illustrative reasons the individual fringes are
displaced and drawn next to each other. The atom number generated by the first period of spin
exchange is indicated by the respective horizontal line. Starting from this level, the second period
of spin exchange amplifies the atom number in a nonlinear fashion. Thereby the overall fringe size
is drastically enhanced easing detection. For each case, both periods of spin exchange have equal
duration such that time reversal to the initial vacuum state is expected at the minima. Solid lines
are sinusoidal fits. b Zoom-in into the fringe minima. Experimentally, best reversibility is found
for short durations of spin exchange. ¢ Atom number variance of the output fringe. While at the
maxima the variance grows massively, the flattened region around the dark fringe becomes com-
pressed for longer durations under spin exchange. Starting from the average side mode population
(shown in panel a), the solid lines indicate the expected variance in undepleted pump approximation.
The inset shows the data semi-logarithmically, highlighting the suppression of fluctuations down
to single quanta level. d Zoom-in into the fringe minima. We find the phase dependence of the
variance to be well described within undepleted pump theory (solid lines). We merely allow for a
phase-independent noise offset to take into account the imperfect reversibility
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a wider range of nonlinear couplings; in particular, we explore the regime of larger
spin exchange durations.

Figure 8.6a shows the output fringe obtained for different durations of spin
exchange, ranging between 69 ms as indicated. For clarity, the fringes are displaced
horizontally. Technically, the phase of each fringe is scanned by an identical holding
period that ranges between 0-2 ms. Clearly, the fringe size increases drastically for
larger durations of spin exchange. Going from 6 to 9 ms (a mild increase of 50%) mag-
nifies the fringe by a factor of four. The solid lines are sinusoidal fits. The horizontal
lines denote the average atom number within the interferometer. Experimentally, we
find a less perfect reversibility for long durations. The corresponding fringe minima
are shown in panel (b). We investigate this theoretically not expected behaviour at
a later point in time. The fringes of the atom number variance are shown in panel
(c). Here the solid lines correspond to the expected behaviour within undepleted
pump approximation. The variance fringe grows drastically in size when extending
the duration under spin exchange. Consequently, the phase window for which a flat-
tened variance is found becomes narrower; thereby, the region of quantum-enhanced
phase sensitivity shrinks accordingly as mentioned above. The inset shows the data
in logarithmic scale. The horizontal bar denotes the level of fluctuations generated
by the first period of spin exchange. Compared to this level, we find significantly
reduced fluctuations close to the fringe minima. Panel (d) shows a common zoom-in
into the minimum of each variance fringe. We find perfect agreement to the unde-
pleted pump theory. This excellent agreement to theory motivates us to estimate the
phase sensitivity in an indirect manner by using these fitted curves. We detail this
procedure in the next sections.

8.8 Determining the Derivative of the Qutput Signal

A crucial part in determining the phase estimation is the experimental determination
of the output signal’s slope. Ideally, the visibility of the fringe } and thus the signal’s
slope is given by the number of atoms inside the interferometer,

V — Z(N_i:Side> ((N_TSi‘k:) + 2) (87)

Experimentally, however, the fringe visibility is reduced by both, pump depletion that
affects the fringe maximum, and incomplete reversion at the minimum, respectively.
In Fig.8.7 we experimentally assess the connection between fringe visibility and
average probe atom number. We employ two fitting methods to estimate the slope
of the signal. To compare both methods we use the inferred value of the probe atom
number as a common reference. Finally we compare the respective fitting result to
the directly measured average atom number of the probe state which is plotted on the
y-axis. For this procedure we consider balanced interferometry sequences with dura-
tions of spin exchange ranging between 6—10ms. Additionally, we include different
total atom numbers in the analysis to extend the dynamic range to <Ni“ide> =1-10.
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Examples of the underlying interferometry fringes are shown in Fig. 8.6a. The theory
expectation (Eq.8.7) is represented by the black diagonal line in Fig. 8.7a. The red
data shows the result if the entire fringe is fitted with one sinusoidal function. Since
pump depletion strongly modifies the output fringe this yields a severely under-
estimated slope of the signal. This is exemplified in panel (b) which shows the
extreme case of (N;) = 12 (rightmost point in panel a) corresponding to 10 ms of
spin exchange. Evidently, the data cannot be described by such a single sinusoidal
fringe (red). In particular the signal’s slope close to the fringe minimum is underes-
timated massively (see inset). To capture the slope more accurately we restrict the
sinusoidal fit to the minimum (indicated by solid blue line). The dashed line shows
the continuation of this sinusoidal fit and thus the influence of pump depletion.
Going back to panel (a) the atom number extracted by this fitting method is
shown in blue. While it yields better agreement to the theory expectation the slope
is still underestimated which is caused by the residual atom number found in the
minimum. Remarkably, both fitting methods underestimate the probe atom number
by a fixed (relative) portion. The two dashed line indicate this linear trend. Fitting
the minimum underestimates the average atom number inside the interferometer by
~15% regardless of the nonlinear coupling strength employed. Therefore, pump
depletion and imperfect reversibility cannot be treated in a threshold-like manner
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Fig. 8.7 Output fringe and atom number inside. Comparison of the directly measured average side
mode population within the interferometer (y-axis) and the inference from the output fringe (x-axis).
Agreement between the methods corresponds to the black diagonal line. Taking into account the
entire fringe amounts to taking the overall fringe height as a measure (red). Because pump depletion
limits the growth predominantly at the maxima this procedure systematically underestimates the
atom number. If only the minimum of the fringe is fitted (blue) a more accurate result is obtained. In
this case, the atom number is underestimated because of imperfect reversion at the fringe minimum
which reduces the curvature. b To illustrate the deviation from a sinusoidal fringe in the clearest
manner, we show an exemplary fringe for the longest experimentally studied spin exchange durations
(10 ms) and largest total atom numbers (550). Clearly, the sinusoidal fit (red) barely reflects the data.
In particular, it clearly underestimates the fringe’s curvature around the minimum (see inset). A fit
that only takes into account the data in close vicinity of the minimum is shown in blue



8.8 Determining the Derivative of the Output Signal 119
which modifies the slope only when a specified atom number (V. ) is exceeded.
Since the probe atom number is never overestimated, the fitting procedure provides a
experimentally reliable method that estimates the fringe’s curvature in a conservative
manner.

8.9 Indirect Estimation of the Phase Sensitivity

In Sect. 8.6 we experimentally characterized the phase sensitivity in a model inde-
pendent way. For this the spinor phase was sampled with high resolution. For the
more coarsely grained data presented in the previous Sect. 8.7 the good agreement
to the undepleted pump theory permits us to estimate the phase sensitivity in an
indirect manner. For this purpose, we assume that close to the fringe minimum the
shape of the variance follows the undepleted pump theory. The nonideal reversibility
is taken into account by including an additional offset. This variance offset is deter-
mined directly from the experimental data (see Fig.8.6 d) and corresponds to the
experimentally observed minimal variance. In Fig. 8.8 we plot this variance offset
found at the fringe minimum versus the size of the fringe. The colour coding is in
accordance with Fig. 8.6, blue data corresponds to 10 ms of spin exchange. For each
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Fig. 8.8 Indirect estimation of the phase sensitivity. From the comprehensive data presented in
Fig. 8.6 the phase sensitivity can be estimated. Since the experimental phase increment is too coarse
to allow for an analysis akin to Sect. 8.6 we use a more indirect way to assess the phase sensitivity.
For this the variance obtained at the minimum is plotted versus the size of the output fringe. The
latter is extracted by fitting either the entire fringe data set (panel a), or, more accurately, by taking
into account only the minimum (panel b). In either case, the dashed lines indicates the amount of
spurious noise that is tolerated by the time reversal sequence to still operate at the Standard Quantum
Limit (SQL). For this we assume that the spurious noise adds to the variance fringe, whose functional
form (phase dependence) is otherwise left unchanged. Even when underestimating the slope of the
signal (left panel) sub-shot noise performance is expected for sufficiently long evolution times.
Colour coding is similar to Fig.8.6 and used to indicate the duration under nonlinear evolution
(blue corresponds to 10ms). Additionally, runs with different total atom numbers (375, 425, 475)
are postselected
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duration we postselect three different total atom numbers in the range of 350-500.
In panel (a) the fringe size is estimated by fitting the overall fringe. Therefore, this
plot summarises the variance found in the fringe minimum (y-axis), and the overall
fringe size (x-axis) as indicated in the inset. As shown in the previous section, a
more accurate way to estimate the slope of the signal is by considering only the
data close to the dark fringe. Such a determination of the fringe size is performed
in panel (b). In both panels the dashed line indicates the excess variance for which
a phase sensitivity at the Standard Quantum Limit (SQL) is retained. Therefore, we
infer phase sensitivities that surpass the SQL for a wide range of parameters. The
comparison to panel (a) elucidates the robustness of this improvement.

8.10 Residual Atom Number in Minimum

In this section we take a closer look at the residual atom number found in the fringe
minimum. As shown in the inset of Fig. 8.6b best reversibility is achieved for short
durations ¢ of spin exchange. Additionally, we empirically find a strong dependence
on the total atom number. Combining these two findings, the residual atom number
behaves similar to oc N¢. Figure 8.9a shows this behaviour. Over a wide range of
spin exchange durations as indicated in colour and different total atom numbers the
data points coalesce to a common trend.

On grounds of the numerical simulation this behaviour is unaccounted for. In
particular, particle loss cannot be held responsible for the imperfect reversibility. To
explain this imperfection, loss rates 50 times larger than the observed ones would be
needed. In principle, a source might be phase jitter which yields to a washing out of
the fringe as indicated in the inset of panel (b). However, this leads to inconsistencies
which we investigate further in Fig. 8.9b. Here the amount of phase jitter A¢ which
would explain the observed residual atom number is plotted. We find this value to be
nearly atom number independent. This is because the overall size of the output fringe
is given by sinh* k' and thus shares the proportionality with oc N2. This atom number
independence is evidence that suggests a exogenous origin. However, we find this
assumption contradicted by the different amount of phase noise that is inferred for
each evolution time. Even worse, for longer durations of spin exchange the amount
of phase noise is reduced.

Being unable to explain this finding, we finally checked that the effect of atom
number dependent collisional shifts is negligible. In principle, because we postselect
experimental runs in a finite atom number window such collisional shifts could lead
to dephasing. We detail the sensitivity to collision shifts in the next section.



8.11 Characterization of Collisional Shifts 121

Evolution time ¢ (ms) +
6

o
° 8
o
o

—_
Q
~
—_
O
~

o

-
o

N
=
Corresponding phase noise, Ay (deg)
N
o
T
]
1
—
1

Residual population in fringe minimum

o

N
N

xfi 05 400 450 500 550
N?t (ms) Total atom number, N

Fig. 8.9 Residual population in fringe minimum. a Atom number offset at the minimum of the
fringe for different durations of the nonlinear spin exchange ¢ (indicated by colour) and different
total atom numbers N. Heuristically, we find that the residual atom number scales similar to o« N 2
(x-axis). As detailed in the text, a proportionality with respect to N2 hints at phase jitter as a possible
cause. However, in panel b we exemplify that phase jitter (as shown in the inset) cannot be held
responsible. Here, the spinor phase jitter A (one s.d.) that is needed in order to fully explain the
residual atom number at the fringe minimum is calculated and the result plotted versus the total
atom number N. The dominant source of (putative) spinor phase fluctuations is the microwave
dressing, therefore the phase jitter should be worse for long periods of spin exchange. However,
panel b shows the opposite trend. We therefore conclude that the residual atom number at the fringe
minima is not caused by phase jitter

8.11 Characterization of Collisional Shifts

The collisional interactions lead to an energy shift of the pump mode with respect
to both side modes. Therefore, these shifts contribute to the dynamic spinor phase
rotation during interrogation such that the fringe frequency is altered. In Fig.8.10
we show interferometry fringes obtained for different postselections on total atom
numbers, ranging from N = 300 (red) to N = 500 (green). For illustrative clarity
the fringes are displaced vertically. To make the collisional interactions visible we
extend the duration of phase evolution up to 55ms. After this hold time the colli-
sional shifts lead to a significant dephasing of the fringes. The additional change in
fringe visibility is caused by the atom number dependence of the nonlinear coupling
strength. In fact, both, the collisional shifts as well as the nonlinear coupling strength
describing population transfer are identical, given by 7k as stated above. In panel
(b) we compare the measurement of both effects: the coloured data shows the mea-
sured fringe frequency as a function of atom number. In contrast, the grey diamonds
and the solid line represents the atom number dependence found for the nonlinear
coupling as plotted in Fig. 7.2. Both measurements agree when adding to the latter
a frequency offset which corresponds to the detuning of the microwave m-pulses
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Fig. 8.10 Measurement of the collisional shifts. a Interferometry fringes obtained for different
total atom numbers (indicated by colour, and identical to panel b). For illustrative reasons the
corresponding fringes are displaced vertically by 10atoms. The hold time under which the spinor
phase dynamically evolves ranges up to 55 ms. Eventually, the collisional shifts lead to a dephasing
of the fringes as shown in the right panel. b The coloured data points show the frequency of the
output fringes shown in panel (a) versus total atom number. For comparison, the grey diamonds (and
solid line) represent the data of Fig. 7.2, in which the nonlinear coupling strength « is determined via
the nonlinear population growth. Excellent agreement between both results is found when the latter
is offset by 2t x 180 Hz which corresponds to the detuning 8,y = 27 x 90 Hz of the microwave
m-pulse used for pump shelving

used for pump mode shelving. Based on this perfect agreement we deduce that the
microwave detuning is 8w = 271 X 90Hz.

8.12 Immunity Towards Detection Noise

As motivated in this thesis’ introduction the nonlinear time reversal scheme is par-
ticularly robust towards detection infidelities. This is because at the point of highest
phase sensitivity, the entangled probe state is disentangled which facilitates robust
readout. In this section we quantitatively compare the performance of different inter-
ferometry schemes when spurious detection noise is added.

A passive interferometer using N uncorrelated particles performs at best at the
Standard Quantum Limit, (Ag)? = 1/N. The interferometry fringe is recovered
by measuring the atom number imbalance. To assess the phase sensitivity error
propagation on the average atom number imbalance suffices. Allowing for additional
technical detection noise the optimal working point is at the steepest slope of the
signal, i.e. the point of vanishing imbalance. Quantifying the detection noise by an
additional variance of Ay, we obtain a phase sensitivity of

1 A
(M) = = + ==

<+ (8.8)
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Fig.8.11 Sensitivity towards detection noise for different interferometry schemes. Using an uncor-
related state (black dotted) in a passive interferometer allows reaching the Standard Quantum Limit
(SQL) of phase sensitivity. If detection noise is added, the achievable phase sensitivity diminishes
in an asymptotically linear fashion. Using a maximally entangled probe state (blue dashed) in such
an interferometer, allows in principle to attain the ultimate Heisenberg limit. However, for this,
accurate detection is indispensable. Already small detection noise contributions on the order of
0.1atoms? in variance prevent reaching quantum-enhanced sensitivities. The nonlinear detection
scheme combines the advantages of both mentioned techniques: it attains the Heisenberg limit but
is also robust with respect to detection noise as it resembles the unentangled state behaviour for
large detection noise

This behaviour is shown in Fig. 8.11 as the dotted black line. For this, a probe state
of size N = 2.8 is chosen to be consistent with the experimentally realized case in
Sect. 8.6.

The phase sensitivity of such an SU(2) interferometer can be improved when using
the two-mode squeezed vacuum state at its input. However, to exhaust this quantum
resource, accurate single-particle readout is essential since the full atom number
correlations of the output signal need to be analysed. This is typically achieved by
evaluating the atom number parity I1. This observable is assigned +1 if the single
shot output atom number (at one output port) is even, and — 1 for an odd atom number
detected. In Fig. 8.12a we show simulated atom number distributions recorded at one
output port of the interferometer. Similar histograms were introduced in this thesis’
introduction. We use a two-mode squeezed vacuum state with average atom number
N = 2.8. The black histograms correspond to the ideal case of vanishing detection
noise, while the red distribution is obtained when detection noise of 0.3 atoms? in
variance is included. For both cases, panel (b) shows the average parity as a function
of applied phase shift. For the ideal case (black) an average parity signal of 41 is
reached at phase 7 /2. At this working point, highest phase sensitivity (at the Heisen-
berg limit) is reached. Retuning to the histograms, this corresponds to the lowest
panel at which only even atom numbers are detected. Highest sensitivity is reached
at this point, because already a minute phase change causes the population of odd
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atom numbers. At this stage, the additional detection noise of 0.3 atoms” appears to
be insignificant (red). However, quantum-enhanced phase sensitivity is lost at this
stage. The results of this calculation are shown in Fig.8.11 as the blue dashed line.
For this simulation the entire atom number distribution is used. Using a more sophis-
ticated analysis of the data, quantum-enhanced phase sensitivity can be maintained
for slightly larger detection noises. Such an analysis is routinely done in practical
applications. Here, only experimental realizations are postselected, for which the
detected atom number falls into a well-specified window around the integers. How-
ever, if this binning threshold is too small, too many realizations are discarded which
deteriorates the phase sensitivity. In Fig.8.13c the trade off between postselection
and phase sensitivity is shown. By optimization, a phase sensitivity barely at the SQL
can still be attained at a detection noise of 0.3 atoms?.

The linear readout is characterized by a threshold behaviour as shown in Fig. 8.11:
as long as the detection noise is sufficiently small such that no ambiguities arise
when determining the single shot parity, the phase sensitivity remains close to the
Heisenberg limit. However, when the detection noise exceeds this level, the parity
cannot be evaluated in a single shot and the output signal therefore ceases. The output
fringe cannot be recovered by averaging more experimental realizations. At this point
phase sensitivity degrades extremely fast and is even inferior than interferometry
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Fig. 8.12 Parity detection of the two-mode squeezed vacuum state a Using the two-mode squeezed
vacuum state in a passive SU(2) interferometer requires accurate measurements of the parity signal.
Simulations are performed for a probe state with average atom number (N) = 2.8. The ideal output
histograms (atom number detected at one output port) for four phase settings are shown in black.
Highest phase sensitivity is reached at phase 7/2 where the output signal consists of even atom
numbers (lowest histogram). The red lines show the corresponding histogram when detection noise
of A = 0.3 atoms? in variance is added. Although the overlap of even and odd atom numbers might
seem insignificant, quantum-enhanced phase sensitivity is lost (see main text). The average parity
signal corresponding to these histograms is shown in panel (b). Here, the red line corresponds to
the case of finite detection noise while black is the ideal theory prediction. Post processing the raw
data of the histograms (panel a) can be used to improve the phase sensitivity. Here, measurement
outcomes that do not lie within a specified binning window are discarded. The phase sensitivity
shows a pronounced minimum at which the SQL can barely be reached for A ~ 0.3 (for details see
text)
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with uncorrelated particles (black dotted). Therefore, using an entangled state in this
situation is not just not better than using a robust classical states, but instead worse:
the linear readout relies crucially on accurate detection.

The nonlinear readout scheme combines the advantages of both aforementioned
techniques: the detection robustness of uncorrelated particles with the quantum-
enhancement sensitivity of entangled particles. Due to the (dis-) entangling prior to
detection, the phase sensitivity is mapped onto the easily detectable first moment: the
atom number distribution follows a thermal-like distribution which is characterized
entirely by its average atom population. In contrast to linear readout, there is no
fine grained structure which has to be resolved. Therefore, when detection noise is
added the output fringe can be averaged down—no matter how large the noise is.
However, the optimal working point depends on the magnitude of the detection noise
as demonstrated in Fig. 8.13. Taking this into account, the phase sensitive shown as
the red line in Fig.8.11 can be reached. For small detection noise, the Heisenberg
limit is asymptotically attained. For larger noise the phase sensitivity degrades mildly
in a fashion comparable to the separable state.
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Chapter 9 ®)
Interferometry Beyond Exact Time e
Reversal

In this chapter we study the situation that arises when the two durations of spin
exchange do not match in length. If the nonlinear readout is shorter than the initial
entangled state preparation only an incomplete time reversal can be carried out. Con-
sequently, the probe state does not get fully disentangled and only partial absorption
of fluctuations is achieved. In the opposite case the duration of the nonlinear readout
is prolonged. This overcompensating regime is the most interesting as it provides
benefits for approaching a Heisenberg-limited phase sensitivity in presence of tech-
nical fluctuations. This relies on the noiseless amplification that allows magnifying
the output signal to an extent that spurious noise can be rendered less significant.

First we analyse this nonbalanced scheme in more detail and discuss its beneficial
features before we proceed with the experimental results. Finally we experimen-
tally assess the phase sensitivity and demonstrate its improvement under realistic
conditions.

9.1 Partial and Overcompensating Time Reversal

In this section we study the nonbalanced case theoretically. First, we consider the
output signal and derive its form. For this we note that the output signal is a sinusoidal
fringe. This follows directly from the mode transformations (Eq. 4.3) being linear.
The maximum of this fringe occurs for spinor phase setting ¢ = 0 where both periods
of nonlinear dynamics add up. This is equivalent to (resonant) spin exchange for the
combined duration #; + #,. At this point the atom number reads (N, ) = 2 sinh?(a +
B). Here, we combined the nonlinearity and evolution time under spin exchange to
kt; = « and kt, = . On the other hand, at the minimum of the fringe both periods
partly compensate. The atom number is then identical to performing spin exchange
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Fig. 9.1 Unbalanced interferometry (theory) a Simulated output fringe for four different durations
of nonlinear readout as indicated by colour. The first nonlinear process is fixed in length (= 100%)
and generates a probe state with (NESide) = 2.8. The orange and green curve show the resulting
fringe if the readout is shortened or extended by 25%, respectively. While the fringe size is greatly
influenced the atom number found in the minimum is identical for both cases (inset). Extending the
readout by 50% (purple) amplifies the fringe by almost a factor of three at the expense of a growing
atom number offset found at the minimum. b Simulated phase sensitivity. The blue curve shows the
symmetric case for which the Heisenberg limit is attained at the dark fringe (180°). The shortened
nonlinear readout (orange) achieves poorer phase sensitivity. This is a consequence of both, the
smaller overall fringe size and the remaining atom number (and its corresponding fluctuations) at
its minimum. In contrast the enlarged nonlinear readout (green and purple, respectively) reaches
the Heisenberg limit. In this case the remaining atom number in the fringe minimum is fully
compensated for by the enlarged output fringe. Depending on the duration of the nonlinear readout
the optimal working point shifts.

with only the surplus time (N, ) = 2sinh?(a — f). From these two limiting cases
the form of the entire fringe follows to be

(Ny) = (sinh*(a + B) — sinh®(a — B)) (1 + cos ) + 2sinh*( — B).  (9.1)

Figure 9.1a shows the expected output fringe for four exemplary cases. Compared
to the symmetric case (@ = 8, indicated in blue), the overall fringe size is diminished
for a shortened readout (8 < «, orange) and magnified for prolonged readouts (8 >
«, green and purple). Consequently, by performing an extended nonlinear readout
the slope of the signal is magnified,

d (N4) /dp = — (sinh*(a + B) — sinh* (e — B)) sin g. (9.2)

The price for this enhanced output signal is a concomitant increased noise level.
Since the state at the output is two-mode squeezed vacuum, the corresponding vari-
ance fringe is given by

(AN2)? = (N4) ((N4) +2) 9.3)
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which directly reflects the magnified output fringe. In particular, at the fringe mini-
mum a residual average atom number of (N, ) = 2 sinh? (o — B) with a correspond-
ing variance of (AN, )? = sinh?>(2(a — B)) is found. The inset of Fig.9.1a shows
this residual atom number that is left in the minimum. The balanced case of t; = 1,
is shown in blue. Only here, a perfectly dark fringe is recovered.

The magnified slope of the output signal and its collateral additional fluctuations
are intimately connected and increase in lock step such that Heisenberg limited
phase sensitivity is retained. The resulting phase sensitivity is shown in Fig.9.1b.
Only for a shortened nonlinear readout stage the Heisenberg limit is inaccessible
(orange). While for the balanced case Heisenberg-limit phase sensitivity is reached
at 7 the prolonged nonlinear readout attains the same limit. However, since the fringe
minimum is not dark the working point of this prolonged time reversal sequence is
shifted. In fact, Heisenberg limit phase sensitivity is attained at phase settings

¢ = £2 arctan \4/sm @+ p) +sinh (@ + §) 9.4)

sinh*(a — B) + sinh?(a — B)

This remarkable result provides a practical path towards noise resilient phase esti-
mation. This is because the slope of the output fringe can, in principle, be magnified
ad libitum. Albeit pump depletion will eventually limit amplification of the entire
fringe, the interferometer’s best working point is still in close vicinity of the fringe
minimum where depletion effects remain negligible.

9.2 Advantage of Overcompensating Time Reversal

The enhanced slope of the signal makes a larger amount of noise tolerable. This is
demonstrated in Fig. 9.2a which shows the phase sensitivity for four readout durations
in presence of additional detection noise. The first period of parametric amplification
is fixed and generates a probe state with average population of (NI™i4) = 2.8. We
choose the amount of detection noise such that the performance of the balanced
interferometer (blue) is declined to the Standard Quantum Limit. This case is similar
to the one discussed in Sect. 8.12. Additionally, we show the phase sensitivity for
extended nonlinear readout. A significant better phase sensitivity is attained already
when the readout is prolonged by 25% as witnessed by the green curve. For larger
durations of the nonlinear readout the Heisenberg limit is asymptotically reached.
In panel (b) we show the best attainable phase sensitivity as a function of additional
technical noise. In Sect. 8.12 we argued that the balanced time reversal offers excep-
tionally high tolerance of detection noise when compared to linear readout schemes.
Here, the advantage of the amplified nonlinear readout becomes manifest. Being able
to a posteriori amplify the output signal the noise immunity can be improved further.
This fact is collaborated by the complementary graph of Fig.9.2c. Here the best
achievable phase sensitivity is plotted versus the duration of the nonlinear readout.
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Fig. 9.2 Noise resilience of unbalanced interferometry (theory). Panels a Phase sensitivity in
presence of detection noise for four different durations of nonlinear readout (indicated by colour,
legend on top). For all three panels, the first boost is fixed in length (= 100%) and generates a probe
state with (N f“de) = 2.8. Additional detection noise is added and fixed in strength such that the
phase sensitivity of the symmetric interferometer (blue) is deteriorated up to the Standard Quantum
Limit (SQL). Extended nonlinear readout improves the attainable phase sensitivity such that the
Heisenberg limit is asymptotically reached. b Phase sensitivity attained at the optimal working
point for different amounts of detection noise. Extending the nonlinear readout makes a larger
portion of additional detection noise tolerable. The complementary plot of this situation is depicted
in panel (c). It depicts the best attainable phase sensitivity versus the nonlinear readout’s duration.
This highlights that under any amount of detection noise (see legend) Heisenberg-limited phase
sensitivity is asymptotically reached for sufficiently long nonlinear readout

By employing sufficiently long nonlinear readout any amount of noise added can
eventually be tolerated such that phase estimation approaching the ultimate Heisen-
berg limit is recovered.

9.3 Experimental Nonbalanced Time Reversal

To study the unbalanced nonlinear readout we perform spin exchange for 1, = 8§ ms.
After scanning the spinor phase we vary the length of the second period of nonlin-
ear evolution in the range of £, = 1-12ms. Figure 9.3a shows the output fringes of
(N;) for each duration of the nonlinear readout. For illustrative clarity the fringes
are plotted next to each other. Clearly, the overall fringe size increases as the readout
is prolonged (note the logarithmic scale). At the same time, the atom number in the
respective minimum of the fringe is minimal in the case of balanced interferometry
(blue). This fringe minimum is studied in more detail in the following panels b)
and c¢) where the atom number variance found at the minimum is plotted versus the
duration of the nonlinear readout. We show the result for two postselected total atom
numbers N as indicated. The red data point shows the outcome of omitted nonlinear
readout. Here a variance of (NiESide) =29 and 38 atoms? is detected, respectively,



9.3 Experimental Nonbalanced Time Reversal 131

(a)
100
 Duration of second boost:
c
ke]
©
2
& 2
g 10f 1ms
g 2o kit
° 5
& [
2t |
= 450 — 500
Phase
(b) £ 40 () 40
g N =400 — 450 N =450 — 500
£ 30 30
€
5 + | 4
£ 20 20
< ¢ ¢
3 10 10 \
5 \4’ ¢ 4> N\ $ ¢
§ O 0 \¢ /
10 12 0o 2 4 6 8 10 12
Duratlon of second boost (ms) Duration of second boost (ms)

Fig. 9.3 Unbalanced interferometry. a Interferometry fringes of (N, ). The first period of spin
exchangeis fixed at#; = 8 ms while the second period is varied between#, = 1 — 12 ms asindicated.
For the sake of clarity, the fringes are drawn horizontally displaced. While overall size of the output
fringe increases, the atom number found in the minimum is minimal for the balanced case of #; & 1;.
The red denotes the measured average atom number of the probe state. b, ¢ Atom number variance
(AN4)? found in the corresponding fringe minimum versus duration of the nonlinear readout.
Panels b) and c) show the result for different total atom numbers as indicated. Starting from the
measured fluctuations of the probe state, the red line indicates the expectation within undepleted
pump theory. Ideally, the fluctuations are completely absorbed at #; = #,. Experimentally, we find
a pronounced minimum for slightly shorter durations of the nonlinear readout

which corresponds to the probe state. Starting from this level, the fluctuations are
reduced successively. The red lines indicate the theoretical expectation in undepleted
pump approximation. Ideally, perfect time reversal is expected at the balanced case
of t; = t, where the fluctuations are fully absorbed. For longer durations of nonlinear
readout the atom number fluctuations increase again. Experimentally, we find min-
imal fluctuations for slightly shorter durations. As detailed in the previous section,
the excess atoms found at the minimum lead to additional fluctuations. The reason
for this nonideal reversion to the initial state remains unclear so far. We can, how-
ever, use the prolonged nonlinear readout to learn more about these fluctuations.
This is because, if the nonideal reversibility is caused by a deteriorated probe state, a
prolonged nonlinear readout could not improve the achievable phase sensitivity. On
the other hand, if technical fluctuations prevail the phase sensitivity would indeed
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improve. Therefore, this experimental setting might be a realistic testing bed to study
the improvement of the practically achievable phase sensitivity in the presence of
noise.

9.4 Phase Sensitivity

To experimentally estimate the phase sensitivity for the prolonged readout we restrict
ourselves to a small phase range around the respective fringe minimum. Here, pump
depletion is negligible and the slope of the output signal can be determined reliably
by a sinusoidal fit. Figure 9.4a shows the average atom number in close vicinity of
the minimum. The initial period of spin exchange was 8 ms and we postselect atom
numbers in the range of 400—450. Clearly, both, the offset level as well as the slope
increase with prolonged nonlinear readout. Panel (b) shows the corresponding atom
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Fig. 9.4 Experimental phase sensitivity with prolonged nonlinear readout. The duration of the first
period of spin exchange is fixed at 8 ms. Panel a shows the average atom number close to the fringe
minimum for three durations of nonlinear readout. Clearly, larger durations increase the slope of
the signal. However, as a trade-off the atom number found in the fringe minimum is enlarged. b
Corresponding atom number variance. The solid lines indicate the expected signal when taking
the average atom number as a basis. Additional (technical) fluctuations are taken into account by
allowing for an offset. ¢ Resulting phase sensitivity. In the symmetric case (blue) the Standard
Quantum Limit is only just surpassed. This is a consequence of additional fluctuations that prevent
ideal reversion to vacuum at the fringe minimum. For longer durations of the nonlinear readout the
phase sensitivity is significantly improved. The solid lines denote the expected phase sensitivity of
the corresponding fit shown in panel a)
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Fig. 9.5 Best observed phase sensitivity with prolonged nonlinear readout. Phase sensitivity versus
duration of the nonlinear readout for three different total atom numbers. The phase sensitivity is
determined by the procedure detailed in Fig.9.4c. Here, we plot the best directly observed phase
sensitivity. For each atom number the Standard Quantum Limit and the corresponding Heisenberg
limit are shown. The matched nonlinear readout is indicated by the vertical dashed line. For short
durations only poor phase sensitivities are reached. For all atom numbers best phase sensitivity is
found for slightly prolonged nonlinear readout

number variance. The solid lines amount to the theoretical expectation that follows
from the measured average atom number, see Eq.9.3. Employing error propagation
similar to the balanced case studied above yields the phase sensitivity that is shown
in panel (c). As a consequence of the additional noise the balanced interferometer
(blue) performs only just below the Standard Quantum Limit. However, by employing
the prolonged nonlinear readout better phase sensitivities are reached. Remarkably,
already an elongation of 25% in duration yields a significantly better sensitivity
(green). The solid lines take into account the fitted average population (panel a) and
the expected variance (panel b).

We repeat this analysis for different total atom numbers. Thereby, the nonlinearity
of both periods of spin exchange is symmetrically altered. In Fig. 9.5 the experimen-
tally best observed phase sensitivity is plotted versus the duration of the nonlinear
readout. The symmetric case of #; = f, = 8 ms is indicated by the vertical dashed
line. As expected for shortened readout the phase sensitivity is massively deterio-
rated. For longer readout the phase sensitivity is slightly improved. It is important to
note that these data points correspond to the best directly observed phase sensitivity
at one specific spinor phase without interpolation. For each of the three different total
atom numbers, the phase sensitivity behaves similar to the one shown in Fig.9.4c.
In this Figure, we find error bars that overlap significantly for a single spinor phase
setting. However, the common trend taking into account the entire phase dependence
points at an improvement. This improvement under prolonged readout suggests that
technical fluctuations play an important role in the nonideal reversion to the initial
state as discussed in Sect. 8.10. Because of the varying total atom numbers the probe
state features different populations which implies different levels of the SQL and
Heisenberg limit, respectively, as indicated in each panel.



Chapter 10 ®)
Nonlinear Time Reversal as a Diagnostic oo

Tool

Thus far we have presented the advantages of nonlinear readout with respect to
performing quantum-enhanced phase measurements. Besides this metrology setting
the nonlinear readout provides benefits also for other applications. In this section
we employ the nonlinear readout as a versatile tool to efficiently extract informa-
tion of a probe state. In this view, the nonlinear readout is an autonomous building
block to characterize its input state. Before we employ the nonlinear readout as an
EPR entanglement witness we remain within the interferometry line of thinking and
present a measurement of phase damping. Usually such phase damping is considered
a deficiency caused by technical imperfections. It might, however, also be caused
by intrinsically quantum mechanical effects that are connected to questions of phase
diffusion in Bose-Einstein condensates.

10.1 Phase Damping

In this section we investigate the damping of the interferometry fringe when the phase
interrogation is extended to long durations. Figure 10.1 shows such a measurement.
We find significant phase damping for holding times exceeding 50 ms. During the
hold time the pump atoms are shelved within the ' = 1 manifold. Therefore loss
of both, the pump as well as the side modes during phase evolution is strongly
suppressed. Loss is thus not responsible for the fringe damping. This is further
demonstrated in the inset of Fig. 10.1: while the phase dependent signal gets damped,
the single shot outcomes (shown in grey) exhibit high visibility—even after 150 ms
when the averaged signal shows no phase dependence at all.

As detailed in the previous chapters the collisional shifts lead to a varying fringe
frequency (Sect. 8.11). In principle, the averaging of runs with different total atoms
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Fig. 10.1 Fringe damping of the nonlinear readout. a Output fringe versus holding times. We
find significant damping on time scales of 50-100ms. After 150 ms no phase dependent signal at
all is recovered any more (see panel b) for a zoom-in). The black solid line denotes the result of a
numerical simulation whose details are described in the main text. Since the pump atoms are shelved
in F = 1 during holding, the damping is dominantly caused by phase scrambling. The single shot
outcomes show only small loss of visibility (grey data in inset)

number could therefore yield to a washing out of the fringe. For this measurement we
postselect total atom numbers in the window 380—-420. We checked that the damping
is not caused by a too wide postselection window.

In the numerical simulations that are based on the truncated Wigner approxi-
mation such damping is absent. To reproduce the data we heuristically supplement
the simulation with a phase randomization procedure. For this we take an initial
phase distribution ¢ that is Gaussian. For each run we then draw a phase from either
@ X /thold, OF @ X thola Where fyo1q indicates the hold time during which the phase
dynamically evolves. In the first case the phase variance grows linearly in time which
is called diffusive. In contrast, the second case describes a ballistic regime meaning
that the variance growth is quadratically in time. We find best agreement to the exper-
imental data for the quadratically growing phase variance. In Fig. 10.1 the result of
this numerical simulation is shown as the solid line. Simulations incorporating the
diffusive phase scrambling behaviour predict instead an envelope that shrinks too
slowly for short hold times while at the same time predicting too high visibility at
long times.

In a linear interferometry scheme, pure dephasing yields a loss of contrast that
eventually converges to the centre of the original fringe. The numerical simulation
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Fig.10.2 Fringe damping for different atom numbers. a Coefficient 77 (see Eq. 10.1 for a definition)
versus total atom number. This parameter captures amplitude damping as indicated in the inset. We
find no pronounced dependence on atom number. In contrast, panel b shows the coefficient 7> which
describes phase damping as illustrated in the inset. Here, we find longer coherence times for larger
atom number. This trend can be reproduced by a numerical simulation by making the phase spread
atom number dependent. The grey dashed line shows the result of such a simulation. Here, we take
the phase uncertainty (s.d.) to be inversely proportional to atom number

reproduces such a curve. However, in the experiment the contrast as well as the
average side mode population eventually shrink. Such a pattern corresponds to addi-
tional amplitude loss. In the language of nuclear magnetic resonance, one routinely
distinguishes between two relaxation times, the so-called 7 and 7, time [1, 2]. The
former entails amplitude damping, while the latter describes pure dephasing. In this
spirit we fit the experimental data to

(N, oc e Mo/ T 4 e=oa/ T2 co5 atyg1q) (10.1)

in order to separate both effects from each other.

The results of this fitting procedure are summarized in Fig. 10.2 where the two fit
parameters 7} and 7, are plotted against total atom number. By postselecting runs
with different total atom numbers, both, the pump as well as the side mode popula-
tion (via the larger nonlinear coupling strength) are enlarged. While the amplitude
damping (described by T7) is constant over the entire range of atoms numbers, we
find a strong atom number dependence of 75. To reproduce this trend by the numer-
ical simulation we make the phase uncertainty atom number dependent. The grey
dashed line shows the result when the phase uncertainty (standard deviation) is made
inversely proportional to the atom number. The data point at 400 atoms corresponds
to the curve shown in Fig. 10.1 which is taken as a reference. We conclude that a
larger condensate maintains its phase relation over longer periods and thus supports
high visibility fringes for longer hold times.

The particular atom number dependence of T, presents a promising result. In fact,
itis indicative that indeed phase jitter of the highly populated pump mode is probed by
the sparsely populated side modes. Such a situation is ideally suited for investigating
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fundamental aspects of phase diffusion, e.g. the temperature dependence. Note that if
the decaying contrast were caused by decoherence of the entangled probe state, one
would expect the opposite trend: a more fragile entangled state as the number of atoms
(and thus also the size of the entangled state) is increased. Technical fluctuations on
the other hand are expected to be atom number independent.

The reasons for the appreciable amplitude damping remain unclear. In fact, from
the independently conducted relaxation measurements as presented in Sect. 7.3 we
expect that less than 1% of the atoms get lost during phase interrogation. The numer-
ical simulations use these loss rates. This would correspond to 7, times exceeding
1 s which is markedly different from the observed damping. In the direct time series
(Fig. 10.1) this discrepancy becomes visible as the different offset level the fringes
converge to at long hold times.

10.2 Witnessing EPR Entanglement

The nonlinear readout can be employed to efficiently gather information about the
probe state. In quantum optics balanced homodyne detection is the standard tool for
such state characterization. We presented the method in detail above. It builds on
the mode transformation implemented by a phase shift in conjunction with a regular
beam splitter. Generalising to the nonbalanced case (6 # m/2) this transformation

reads |
ar cosf  e¥sinf) (ay
(‘U) ~ <—ei¢ sinf cosf a, ) (10.2)

In a very similar manner the mode transformation performed during the nonlinear
readout can be used to characterize a state, i.e.

a coshkt e?sinhkt) (a
D)= (.50 1). (10.3)
a, e “sinhkt coshkt a,

For the class of states which are similar to two-mode squeezed vacuum this nonlinear
readout is particularly efficient. This is because for these states the nonlinear readout
amounts to (partial) time reversal. In this section we use the nonlinear readout as
an entanglement witness [3, 4]. Prima facie this might seem redundant, as beating
the Standard Quantum Limit of phase estimation already proves that the probe state
was entangled. However, the two-mode squeezed vacuum state is the prototypical
state that shows a very particular form of quantum correlations—namely entangle-
ment that is of the so-called Einstein-Podolsky-Rosen type [5]. This name derives
from the famous paper in which the triumvirate presents an apparent paradox, that
questions the completeness of quantum mechanics [6]. In particular Einstein refused
the concept of a probabilistic theory and saw in it merely a lack of a more detailed
description. Ironically however, contrary to their intention the authors did not show
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a shortcoming of the quantum mechanics framework but what soon after was recog-
nized as an essential feature, namely entanglement.

The paradox involves two particles whose position (X; and X,, respectively)
and momentum (Y; and Y>) exhibit perfect correlations. Such a scenario is quantum
mechanically valid. The authors assumed that the two particles could not influence
each other when being spatially separated. Then one could measure the position of the
first particle (X ) exactly and—because of the perfect correlations—infer the position
of the second with any desirable precision. A similar inference could subsequently
be done with the particle’s momentum. However, as complementary observables
the Heisenberg uncertainty relation has to apply which poses a lower bound on the
achievable precision of momentum and position. Therefore, it seems that the Heisen-
berg uncertainty relation is violated. Nowadays the two fallacious assumptions that
lead to this apparent paradox are known as locality and counterfactual definiteness.

Generalizing the argument to also apply to nonideal correlations one refers to the
EPR argument when the following inequality is satisfied [5, 7]

Here we already adopted the scenario to the case where the rdle of the two distinct
particles is played by spin modes |1) and || ). In this case the particle’s position and
momentum correspond to mode quadratures [8, 9]. Moreover, we have introduced a
scaling factor g which can be chosen to optimally compare the two modes by rescaling
one with respect to the other [5]. Atomic EPR-entanglement was first demonstrated
in [10] using linear readout [11].

We now show that the nonlinear readout can be used to evaluate this inequality.
To this end we calculate the average atom number <NT) that is obtained in mode |1)
after the nonlinear readout took place

(Ny)+1/2= cosh%ﬁ)(a;aT +1/2) + sinh*(B)(a]a, +1/2)+
cosh(B) sinh(B) (e (ayay) + e’ (aiai)) (10.5)

All quantities on the right hand side refer to the initial state. In particular the anoma-
lous moments <a WT) and (aiaw appear which quantify the strong inter mode cor-

relations. Our aim is to connect these correlations to the EPR argument. For this we
insert the definition of the mode quadratures (as defined in Chap. 4) and arrive at

(NT> +1/2 _ 2 2 2 2 2
—coshz(,B) = <XT + YT)/Z + tanh (ﬂ)(Xi + Y¢>/2+
tanh(B) (cos(9) (X1 X,) — (Y1 Y})) —sin(@)((X1Y)) + (X, 1}))

(10.6)
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In the following we assume that the individual quadratures are centred at vacuum,
ie. <X T) = 0 and similarly for the other modes. For the two-mode squeezed vacuum
state this is fulfilled. For other probe states this can be achieved by first displacing the
state accordingly. At the spinor phase setting ¢ = 7 where time reversal is achieved
this simplifies to

<NT)ﬁ—var(x —gX)/2+var(Yy +gY,)/2=D (10.7)
COShz(ﬂ) = +— g4y +Tgry = .
Here we used the scaling factor g = tanh 8. The right hand side is known as the
Duan criterium [12]; D < 1 signals mode inseparability. The stronger EPR inequality
Eq.10.4 is satisfied for D < 1/2. This follows immediately from noticing that XY <
(X2 +12)/2[5].

To experimentally evaluate the Duan criterium one merely has to compare two
average atom numbers [3, 4]. The first is the atom number (N ¢) leaving the nonlinear
readout when it is applied to the entangled state in question. The second needed
quantity is cosh? 8 which corresponds to <N T) + 1 when vacuum is fed to the same
nonlinear readout stage. This is equivalent to the average atom number found after
a single period of spin-exchange. Therefore, in the measurements on symmetric
nonlinear readout the amount by which the minimum of the fringe falls below the
atom number of the probe state inside the interferometer signals EPR entanglement.
This procedure should be compared to measuring mode quadratures for which a
experimentally more demanding fluctuation analysis is needed.

The scaling factor g can be adjusted by varying the length of the nonlinear read-
out. For an ideal two-mode squeezed vacuum state that is generated by parametric
amplification with nonlinearity « the optimal scaling factor reads g = tanh(2w) [7].
This corresponds to the situation where the nonlinear readout is twice as long as the
initial entangling. Ideally, at this point the Duan criterium reads D = 1/ cosh(2x).

Our experimental results are shown in Fig. 10.3. Here we evaluate the Duan cri-
terium for varying durations of the nonlinear readout. The entangled state was gen-
erated by 8ms of spin exchange. The two horizontal lines indicate the region of
witnessed inseparability D < 1 and EPR entanglement D < 1/2, respectively. The
error bars reflect the statistical uncertainty in measuring the average atom number
after the nonlinear readout. The lowest value' of D = 0.28 4+ 0.02 is found for the
symmetric case where the duration under entangling and nonlinear readout is iden-
tical (indicated by the vertical dashed line). In view of the optimal scaling factor g
this behaviour is unexpected. To investigate this further the inset shows the result of
a numerical simulation which qualitatively resembles the data.

VAt this stage the summed side mode population with vacuum input at the nonlinear readout is
(N4) = 5.5 £ 0.1 which is reduced down to (N) = 1.1 & 0.15 with the EPR entangled state. The
stated error bars are statistical. Systematic shifts as large as +1 atom can be tolerated to still violate
the Duan criterium. For this purpose we treated the worst case in which the true atom number
after the nonlinear readout with vacuum at its input is overestimated by one atom—while the other
quantity is underestimated by one atom.
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Fig. 10.3 Witnessing EPR entanglement with nonlinear readout. Experimentally inferred value of
the Duan criterium D versus duration of the nonlinear readout. Mode inseparability is signalled
by D < 1. The stronger EPR entanglement is witnessed by D < 1/2. Both limits are indicated by
horizontal lines. Initially, a probe state that exhibits EPR correlations is generated by performing spin
exchange for 8 ms. By changing the duration of the subsequent nonlinear readout different scaling
factors g are realized. We find a lowest value of D ~ 0.3 when performing nonlinear readout for
8ms which corresponds to the symmetric case of time reversal. The error bars take into account
the statistical uncertainty in determining the average atom number. The inset shows the result of a
numerical simulation. Ideally, the probe state could violate the Duan criterium up to D = 0.1 (black
line). In the lossless case this value is reached at 16 ms of nonlinear readout which is twice as long
as the initial entangling. However, the interplay of loss and a scaling factor (indicated on top axis)
that quickly approaches unity yields an optimum for slightly shorter durations

The black horizontal line shows the minimally attainable value of the Duan cri-
terium D = 0.1. Ideally this value would be reached for a subsequent nonlinear
readout of 16 ms. However, atom loss and a quickly unity approaching scaling fac-
tor g cause a pronounced minimum for slightly shorter durations. The axis on top
shows the respective scaling factor g. It approaches unity rapidly as the duration of
nonlinear readout is prolonged.
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Chapter 11 )
Outlook ot

In this thesis we presented a nonlinear readout scheme which leverages time-reversed
dynamics. In the context of applied quantum technologies, such a nonlinear readout
technique addresses the detection problem that arises when employing highly entan-
gled probe states. For the experimental implementation, we utilise spin exchange
interactions in a mesoscopic atom cloud which—in a first step—Iead to an entan-
gled spin state. We demonstrated that the underlying interactions can be controlled
comprehensively, which promotes spin exchange to the central building block of our
experimental model system. In particular, the entangling interactions can be time
reversed and used to disentangle a state by revoking its nonclassical correlations in
order to allow for feasible detection.

To show this explicitly, we constructed an interferometric sequence which incor-
porates this nonlinear readout. It is also known under the name SU(1,1) inter-
ferometer. In this scheme, phase imprints are measured by the effect they have
on the reversibility during time reversal. Perfect time reversal back to the initial
state is only achieved if the entangled probe state remains unperturbed. Instead,
accumulated phases during interrogation prevent such reversibility—a working prin-
ciple that resembles the Loschmidt Echo [1]. We characterized the phase sensitiv-
ity experimentally and verified that quantum-enhanced performance is achieved by
merely detecting average spin populations. This mapping onto readily detectable first
moments stands in contrast to using linear readout which usually requires technically-
challenging single particle detection with high fidelity. Our experiments therefore
provide a direct example of how nonlinear transformations that build on particle inter-
actions, widen the spectrum of highly entangled states that are useful with present-day
detection technology.

Our experimental results are consistent with theoretical predictions. The scheme
is capable of exhausting the quantum resource by detecting solely mean atom
numbers—in principle, up to the fundamental Heisenberg limit of phase
sensitivity.
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Spin exchange can be understood as parametric amplification. Initially empty
spin states get populated spontaneously via the amplification of vacuum noise such
that a heavily fluctuating probe state emerges. This state’s inherent fluctuations are
the essential resource for superior phase sensing. While a posteriori amplification
cannot enhance phase sensitivity since it cannot differentiate between signal and
noise, we demonstrated that amplified noise to start with enables quantum-enhanced
phase measurements. In contrast, vacuum noise entering a passive interferometer is
detrimental as it limits the achievable phase sensitivity [2]. An additional amplifi-
cation stage can be used to magnify the output state to ease detection even further.
We investigated this scheme of an active interferometer and showed that quantum-
enhanced performance is not only maintained but improved in realistic, viz noisy
environments. This noiseless amplification is enabled by the nonclassical correla-
tions present during readout. Therefore, the resource entanglement is used twice in
this scheme, during interrogation for improved phase sensitivity, and during readout
for noiseless amplification.

Furthermore, detached from these interferometry applications, we employed the
nonlinear readout as an instrument to study phase damping, and as an entanglement
witness to detect correlations of the Einstein-Podolsky-Rosen type in the atomic
cloud. For the latter applications, the absorption of fluctuations down to single atom
level is crucial.

Several aspects of the work described in this thesis call for further investigations.
In this chapter we provide an outlook by highlighting a few ideas in more detail:
the technique of time reversal allows to measure out-of-time-ordered correlators
(OTOC). Such correlators have recently been identified as a key diagnostics into
questions of how initially well-localized information is spread such that isolated
quantum many-body systems effectively lose the memory of their initial condition
and eventually thermalise. This process is referred to as scrambling of quantum
information. We first introduce the main idea behind such correlators and show
that the nonlinear readout as demonstrated in this thesis in fact implements such an
object. Subsequently, we present an experimentally feasible method to extend the
nonlinear time reversal beyond the undepleted pump approximation. We detail how
scrambling of quantum information can be accessed experimentally, when applying
this extended time reversal scheme to measure OTOCSs in more general situations.

Besides this field of topics which is centred at OTOCs and their application we
also detail perspectives of the interferometric line of thinking. Recently, theoretical
investigations into the SU(1,1) interferometer were centred at increasing the side
mode population. Finally, we discuss how the measurements on phase spreading can
be complemented and detail how nonlinear readout can be used for state tomography
and reconstruction of the covariance matrix.
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11.1 Out-of-Time-Ordered Correlators

Inverting the sign of a nonlinear Hamiltonian facilitates measurements of out-of-
time ordered correlators (OTOC). Being related to what is called the butterfly effect
in chaotic systems they describe the impact of a (minute) perturbation onto the
ensuing dynamics [3, 4]. These correlators are connected to time reversal because
the perturbation’s impact is quantified by a gedankenexperiment in which the arrow
of time is inverted. Recently, these correlation functions have attracted significant
theoretical and experimental attention [5-8]. In this section we introduce OTOCs
and explain their connection to the nonlinear readout stage.
For two commuting operators W and V the out-of-time-ordered correlator is given
by
Ft) = <W,*\7TW,\7>. (11.1)

where W, is the time evolved operator of W, i.e. W, = e™"/"We-"1/h Such a
correlation function describes the overlap of two states (¥ |¥,) which differ in their
ordering of the two operators V and W,: &) = WtV linit) and |¥;) = \7W, |init)
where [init) is a suitable initial state. Both operators act at different time: operator 1%
fort =0, and W, for, say, a later time r > 0. However, then the chronological order
and the order of application do not agree for state |{¥,). Therefore, the state |¥;)
describes a hypothetical setting in which time runs backwards. In contrast, for time
ordered correlation functions operators for later times stand to the left of operators
for earlier times.

Being related to different operator orderings, OTOCs measure the commutator
between W, and V. Initially, both operators commute per definitionem. However,
the Hamiltonian H introduces quantum correlations such that both operators fail to
commute eventually. This emerging non-commutativity is measured by the real part
of the OTOC,

Re F(r) = 1 —<‘[Vf/,, V]‘2> . (11.2)

As the concept of OTOC relies on the notion of time reversal there is a natural
connection to the experiments reported on in this thesis. Here, we show that the
output of the time reversal sequence is in fact a measurement of an out-of-time-
ordered correlator. For this we note that the state at the output of the time reversal
sequence reads

|W) = eiMre iKere=iMl |yac) | (11.3)
Here, the first period of spin exchange is described by the action of e 7'/ acting onto
the initial state with empty side modes |vac). Subsequently, a spinor phase rotation
of ¢ is employed before a second period under spin exchange follows. Inspired
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by reference [7] we define W = e~ 1K= which is the operator generating the spinor
phase rotation. We introduced this operator which belongs to the SU(1,1) framework
in Chap. 5. Then the above Eq. 11.3 can be written as

@) = e We T |vac) = W, |vac) . (11.4)

Measurements of the side mode population are formally described by (¥ | K - ).
Writing this out yields

(Ny) o< (vac| W K. W, |vac) o (vac| W, K. W, K. |vac) . (11.5)

In the last step we used that the initial vacuum state |vac) is an eigenstate of K . At
time ¢ = 0 the two operators W,and V = K . commute as required. Therefore, deter-
mining the side mode population leaving the SU(1,1) interferometer is tantamount to
measuring the above OTOC. However, within the undepleted pump approximation
the output state is a two-mode squeezed vacuum. This state is exhaustively described
by a single parameter, e.g. its average mode population. In this idealised framework
measurements of OTOCs can therefore not provide additional information. This sit-
uation changes drastically when leaving the undepleted pump approximation.

11.2 Time Reversal Beyond Undepleted Pump
Approximation

In this section we present a path towards realising time reversal without imposing
the undepleted pump approximation. The spin exchange Hamiltonian consists of
two parts, the elementary scattering event as governed by Hgcc and attached col-
lisional energy shifts described by H,. Within this thesis we inverted the former
part by controlled phase imprints—a method that relies on the fact that the nonlinear
coupling strength k = gNj is given in an effective way by the phase (and magni-
tude) of the pump mode. Since the collisional shifts are not affected by such phase
imprints they are compensated by other means, i.e. by invoking the undepleted pump
approximation.

Due to their intimate connection both Hamiltonian terms depend identically on
the microscopic nonlinearity g which in turn is related to the microscopic scatter-
ing details, in particular all possible s-wave scattering channels. Consequently, the
microscopic coupling strength for spin exchange within the F' = 2 and F' = 1 man-
ifold have opposite signs: while F' = 1 is ferromagnetic (g < 0), the effective three
level system embedded in F' = 2 features antiferromagnetic interactions with g > 0.
This provides a way to invert the full many body Hamiltonian without relying on the
undepleted pump approximation: initially spin exchange is performed within F = 1.
Then after swapping all three involved states to F' = 2 a subsequent period of spin
exchange continues with opposite sign of the nonlinearity—thereby realising time
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reversal. However, the coupling strength’s magnitude for spin exchange in F =2
is an order of magnitude larger than for F = 1. To compensate for the different
coupling strengths in F = 2 and F' = 1 the external detuning can be adjusted. This
is necessary because the spin exchange resonance condition ¢ = gN, depends on
the associated coupling strength. This can be achieved by changing the strength of
microwave dressing. Alternatively, for some applications it might suffice to achieve
time reversal—ceteris paribus—by transferring only one-tenth of the pump popula-
tion to F' = 2 such that both effective coupling strengths are equal in magnitude and
differ only by the sign. One has to keep in mind, though, that this changes the total
atom number of the system under consideration.

11.3 Scrambling of Quantum Information

Driven classical systems can exhibit chaotic behaviour. In such a situation the knowl-
edge of the initial condition is readily lost. In closed quantum systems, in contrast,
information cannot be lost—which leads to questions about how isolated systems
equilibrate or eventually thermalise. Scrambling describes how information is dis-
tributed to the many degrees of freedom of a quantum system. Then a measurement
that is restricted to a sub part of the entire system cannot retrieve the information any
more. Such information scrambling is connected to the growth of entanglement [9].
Measurements of OTOCs are to a large extent motivated by assessing such scram-
bling behaviour of quantum many-body systems. Therefore, being able to perform
time reversal beyond the undepleted pump approximation opens up a route to study-
ing how information is delocalised. Here we follow reference [10] and adopt their
findings to our experimental system.

A first prerequisite is a system that features chaotic behaviour. Spin exchange
allows for such chaotic dynamics which arises when the detuning ¢ is driven period-
ically [11, 12]. In classical chaotic systems the Lyapunov exponent quantifies how
two initially close trajectories subsequently diverge in an exponential fashion. In
quantum mechanics the notion of chaos is linked to the decay of the Loschmidt echo
(which corresponds to the Lyapunov exponent) [13]. This Loschmidt echo is given
by (init|eiH" e it |init). It therefore describes the overlap between the two states
starting from the same initial state |init) but governed by slightly different Hamil-
tonians H; and H, = H; + §H where 6H is considered a weak perturbation. This
Loschmidt echo, which corresponds to a time ordered correlation function, and its
dynamic decay can be compared to the respective decay of the OTOC. The signature
of many-body scrambling is a slowed down decay of the OTOC and a particular
dependence on the number of degrees of freedom. More details can be found in
reference [10].
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11.4 Interferometry Within the Depleted Pump Regime

When it comes to improving a measurement’s precision the use of entanglement
is usually the ultima ratio. Evidently, it is imperative in situations in which the
attainable precision is bounded by quantum effects. Similarly, we take for granted
that there are severe limitations on the size of the resource. If this were not the case
one could readily achieve higher precision by employing more atoms. Regarding the
latter point, however, there are various scenarios conceivable: in some situations the
size of the probe state is ultimately limited. This might for instance arise when the
impact of the probe atoms onto the sample needs to be minimised [14, 15]. In such
situations a small yet highly sensitive probe state is desirable. Then, the amplifying
nonlinear readout is the optimal scheme because the side modes are only sparsely
populated but nonetheless perform phase sensing at the ultimate Heisenberg limit.
In other fields of application, however, the fotal number of atoms—and not the ones
used for sensing—are the limiting factor. For such situations the presented nonlinear
readout is not ideally suited because a large portion of atoms is held back in the pump
mode. While these atoms enable the parametric amplification they are not used for
the actual phase interrogation.

Recent theoretical works reexamine the here presented atomic SU(1,1) inter-
ferometer with the aim to achieve quantum-enhanced performance also for these
applications, i.e. with respect to the total number of employed atoms. In reference
[16] the authors find sub-shot noise phase sensitivities also when going deep into the
depleted pump regime of spin exchange. In contrast, the authors of reference [17]
study a slightly adjusted scheme in which spin exchange is supplemented with linear
coupling. Thereby the phase sensing atom number in the side mode is enlarged and
quantum-enhanced phase sensitivity is predicted.

11.5 Phase Spreading

The arguments put forward in this section are based on references [ 18—20]. In Section
10.1 we demonstrate that the nonlinear readout can be employed as a tool to study
phase damping. Such phase damping has been observed in a variety of experiments,
more recently e.g. in reference [21], by splitting a condensate into two equal parts.
This splitting introduces relative number fluctuations which in turn impose a phase
uncertainty of the initial state. Collisional interactions then lead to a growing phase
uncertainty in time. This explanatory approach ignores finite temperature effects
[18]. Their importance, however, is clarified by the failure of a zero-temperature
theory [22] which takes into account collisional interactions to reproduce the phase
spreading found in experiments [23]. The r6le of the noncondensed fraction is the
subject of more recent theoretical investigations [20].

To facilitated the study of such fundamental aspects of phase spreading, effects
due to collisional interactions should be minimized. Therefore, the unequal atom
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distribution of the amplifying nonlinear readout might come as an advantage. This is
because the sparsely populated side modes can be used to probe the phase uncertainty
of the large pump mode without significantly disturbing it.

11.6 State Tomography, Extension to Many Spatial Modes

In Sect. 10.2 we employed the nonlinear readout as an EPR entanglement witness. In
a similar fashion, the nonlinear readout can be used as an autonomous building block
to partly reconstruct a state’s covariance matrix [24, 25]. This matrix is used widely in
quantum optics to characterize quantum states in the Gaussian regime. In this regime,
the states are exhaustively described by their mean quadratures and their (mutual)
(co-) variances. Furthermore, it might be used for more general state tomography
[26]. Such tomographic reconstruction techniques are presented in references [27—
29] and build on the symmetry of the SU(1,1) mode transformations.

Going beyond the single spatial mode treatment, we believe that the high degree
of experimental control qualifies the nonlinear readout for the characterization of
entanglement in spatially-extended Bose-Einstein condensates [30-32]. Recently,
we implemented a steerable laser beam with which different parts of the atomic
cloud can be addressed. With this technique available, the nonlinear readout might
be performed with spatially nonuniform parameters.
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Appendix A
Spin Exchange in F = 2

In this section we discuss spin exchange within the F' = 2 hyperfine manifold taking
into account all five sublevels. In the main text, an effective three level system that
is embedded within F = 2 is considered. Here we justify this simplified description
in more detail. We present the full Hamiltonian for spin exchange within F = 2 and
identify all spin exchange processes among the five involved levels. In particular we
investigate the spurious processes that lead out of the effective three level system. To
this end we derive the relative coupling strength and the associated spin exchange
detuning for each scattering process. Finally, we employ a numerical calculation to
examine under which conditions the effective three-level description remains valid.

Due to the five magnetic sublevels of F' = 2 a slight change of notation is in order.
In the following, we call g; the annihilation operator, and N; the population of the
mode mp =i withi =0, 1 £ 2.

A.1 Scattering Potential

In this section we treat the scattering of two atoms each having spin F = 2. Thisis a
continuation of the theory developed in the main part, Sect. 3.2. In direct analogy to
Eq. 3.2 the scattering potential for two F' = 2 atoms can be written in the following
way

V =aoPo + axP2 + asPs (A.D)

In contrast to the aforementioned F' = 1 case, an additional scattering channel with
combined spin F =4 exists. This quintet channel is described by the scattering
length a4. This scattering potential can be reformulated in a microscopic way

V =co+ciF) - Fy +5¢,A04, (A.2)
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Here, A, is the annihilation operator for a spin singlet. It can be expressed in terms
of Clebsch-Gordan coefficients as A, = ZM(F =0,01F, =2,i, F, =2, j)aa;.
Note that the factor of 5 is missing in reference [1]. The coefficients are given by
(co, 1, C2) = (4““7’3”4, uz, 3(“4_”2)3_57("2_“0)) [1-3]. Spin exchange is driven by the
terms described by coefficients ¢; and c;, respectively [4]. Thus the nonlinear cou-
pling strength follows from both, singlet-triplet and quintet-triplet scattering length

differences.

A.2 Full Hamiltonian

Expanding the scattering potential in terms of individual mode operators, one arrives
at the Hamiltonian

H occo ((N—l + No+ N2+ (N_a + Nz)) +

&) (2(1011051;([2 — 2a0a0a:ai] —4 +4NrN_» + 4N N_1 + No(Ny — 1)) +

cl (2\/8 +2v6 + Zﬁaza,]a'(ag + 2«/8(1()(1,1 a'];'aiz + 4 +
6agagaja’ | + (6No — 1)(Ny + N_1) + (N1 — N_)? +4N_5(N_y — 1) + 4N2(Ny — D)+
(8N_1 — 4Ny —4Ny)N_» + (8N; —4N_| —4N_3)N>) (A.3)

Here the colour coding is in accordance with Fig. A.1 to indicate the elementary
spin exchange processes. Each of the coloured terms includes the corresponding
hermitian conjugate which is omitted in the formula for clarity. We detail these at a
later point. Let us first consider the particular case of vanishing populations in states
mp = =£2. Then, the Hamiltonian simplifies to

H o —cs (2aoa0ajail +he 4+ 2Ny + DN, + N_l)) +

o (6a0aoa1ai1 +he. + (6No — (N + N_l)) (Ad)

for this we added the term ¢, (N; — N_;)?> — N?) which is a constant for the effective
three level system. For large pump mode populations one thus arrives at

H = (6¢1 — 2¢3) (aoaoajail +he. + No(Ny + N_])) (A.5)

which is similar to the F' = 1 case, Eq. 3.4 except for a different microscopic non-
linear coupling strength.
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A.3 All Possible Spin Exchange Processes

Within F = 2 there are several possible elementary spin exchange processes. The
only requirement is the conservation of magnetization. Figure A.1 shows all processes
in the underlying energy landscape of the quadratic Zeeman shift. The respective pro-
cesses are colour coded to facilitate comparison with the Hamiltonian terms, Eq. A.3.
The nonlinear coupling strength can thereby directly be read off. For instance,
the desired spin exchange process 2 x |0) <> |1) 4+ |—1) has the coupling strength,
6c1 — 2¢p = [(12(ag — az) + T(a, — ap)] /35. In Table A.1 we list all possible spin
exchange processes with their respective coupling strength. For the numerical value
in terms of scattering length differences we resort to reference [3]. There, using
spin exchange the scattering length differences are measured to be ¢; ~ 1 ag and
¢y & —0.1 ap where ap denotes the Bohr radius. Compared to the F = 1 case, the
coupling strength for spin exchange in F = 2 is by a factor ~9 larger.
Additionally, we state the spin exchange detuning (in units of ¢ B> = 27 x 60 Hz)
of the particular process. The underlying energy shifts as generated by the magnetic

7R "

mp =2 -1 0 1 2 -2 -1 0 1 2

Fig.A.1 Overview of all spin exchange channels inthe F = 2 manifold. For reference we reproduce
Fig. 6.5. a Symmetric spin exchange couplings. b Asymmetric processes. For the sake of clarity
only half of the allowed channels are shown. For a complete accounting, one has to consider the
additional processes which arise under the interchange mr — —mp

Table A.1 Coupling strength and spin exchange detuning for spurious spin exchange channels.
In the left column all channels that leave the effective three level system are listed. The coupling
strength is read off from the Hamiltonian. Its numerical value in units of Bohr radii ap is based on
reference [3]. The remaining two columns state the spin exchange detuning in units of g B2 when
dispersive microwave dressing is applied and turned off, respectively

Process Coupling | Scattering length | Dressing off| Dressing on
difference (ap)
2 x |0)«> |—1) + |+1) 6c1 —2cy | 5.8 1 0
2 x |0y« [2) + |—-2) ) —0.30 4 L5
4(c1 —c2)| 3.6 3 3
27/6c; 4.9| 2 L5
10) + |[£1)<> [F1) + [£2) | 24/6c1 49| 1 1.5
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Linear Zeeman Quadratic Zeeman
shift 700 kHz/G 72Hz/G? shift
+2>< +3>< B
+1x +4x - —
=2 —  —
=1x 43—
—2X
FIX —— 3%
F=1— — —dx
—1X e—  —3x

Fig. A.2 Level shifts of Rubidium-87 in a magnetic field. The linear Zeeman effect shifts the
atomic levels proportional to their magnetic quantum number m . The shift between adjacent
levels amounts to 700 kHz/G as shown in the left column. The quadratic Zeeman effect shifts the
magnetic sublevels proportional to (4 — sz). Therefore, only the m p = =2 states are not subjected
to this level shift. Adjacent levels are shifted by 72 Hz/G? (right column)

bias field are detailed in Fig. A.2. To assess the spin exchange detuning we distin-
guish between the case of activated and deactivated microwave dressing. To this end
we assume that microwave dressing merely shifts the mr = 0 component to be in
resonance with mp = =£1 which is a reasonable approximation.

A.4 Numerical Simulation of the Full F = 2 Hamiltonian

From the previous section we deduce that the description in terms of an effective three
level system is valid because of the large detuning to the |2, £2) states. In this section
we investigate the region of validity and the robustness of the effective three level
approximation. For this we numerically simulate spin exchange among all five levels
taking the full F = 2 Hamiltonian. For this purpose we resort to the truncated Wigner
approximation. We start with 400 atoms prepared in |0) and all other states empty.
The numerical value of the coupling strength is fixed at ¥« = 27 x 25 Hz which
is slightly larger than the experimentally extracted value. While we tune the spin
exchange process 2 x |2, 0) <> |2, 1) + |2, —1) into resonance, the energy detuning
to the states |2, +2) is left as a free parameter. We call this detuning g,. The energy
landscape is summarised in the inset of Fig. A.3b. In the experiment this detuning
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Fig. A.3 Full F =2 spin exchange simulation. a Simulated mode populations treating the full
F =2 Hamiltonian. The process 2 x |0) <> |1) + |—1) is tuned into resonance by shifting the
pump mode in energy. The states |+2) are detuned from the pump by amount g (see inset of
panel b). In the experiment this detuning depends on the quadratic Zeeman shift and amounts to
q> = 2m x 200 Hz. This value is indicated by the vertical dashed line. We use a coupling strength
of k = 2m x 25Hz and let spin exchange evolve for f.,, = 10, 15, and 20 ms (see legend). We
find significant population of the |£2) states only for a detuning g» < 50 Hz and evolution times
fevo > 20 ms. b Variance of the atom number difference Ny — N_j versus detuning ¢,. For the
effective three level treatment, this atom number difference between the states |+1) vanishes.
Significant deviations are found for detuning g» < 100 Hz and large evolution times fey, > 20 ms.
At the detuning where the experiments are performed the effect is negligible

is determined by the quadratic Zeeman shift and amounts to g, ~ 27w x 200 Hz.
In panel (a) we plot the summed spin population of either |2, £1) (blue) or |2, £2)
(red) found after a variable time of spin exchange ranging up to 25 ms (see inset)
well above the experimentally employed time scales. A population of the |2, +2)
levels (with a concomitant decrease in levels |2, =1)) occurs only for detunings that
fall below g, = 2m x 50Hz. The experimental value is indicated by the vertical
dashed line. At this stage any population outside the effective three level system
encompassing the |2, £1) levels is negligible. In panel (b) we go one step further than
average mode populations and also consider fluctuations which are a more sensitive
probe: the variance of N — N_j is plotted versus the detuning ¢, . Ideally, the variance
vanishes for all durations of spin exchange (colour coding identical to panel a). The
influence of the spurious additional levels |2, +2) shows up predominantly for long
durations of spin exchange exceeding 20 ms. For shorter durations and at the detuning
employed in the experiments a insignificant contribution is found.

A.5 External Trap Levels

Thus far we investigated the closedness of the effective spin-1 system solely with
respect to spin dynamics—and did not take into account any interplay with exter-
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(@ (b) B=09G () B=15G

mp -2 =1 0 1 2 mp -2 =1 0 1 2

Fig. A.4 Spinexchange among external modes. a Harmonic trap in transversal direction of the opti-
cal waveguide potential. b At amagnetic bias field of B = 0.9 G—as employed in the experiments—
the higher lying trap levels (blue) are out of reach for spin exchange. This situation changes at higher
magnetic bias fields as exemplified in panel c). Here, spin exchange starting from the pump mode
in mp = 0 might lead to population of the mp = +2 states that belong to a higher trap level as
indicated

nal dynamics. This is valid for sufficiently small magnetic bias fields. If, however,
the energy shifts caused by the quadratic Zeeman shift are comparable to trap fre-
quencies, spin exchange might populate higher lying trap modes [5]. We explain
this in Fig. A.4. Our spin exchange experiments are performed at a magnetic field of
B = 0.9G. At atransversal trap frequency of 2 x 440 Hz the higher lying state of
the harmonic potential (depicted in panel a) is inaccessible. Besides the large detun-
ing the spin exchange coupling strength suffers from a reduced mode overlap to the
excited trap states. Therefore, the effective spin-1 description remains valid. How-
ever, this situation changes drastically if the magnetic bias field is increased. Panel
(c) shows the quadratic Zeeman shifts arising at B = 1.5 G. Here, spin exchange into
a higher lying trap mode becomes possible as indicated. Such and similar processes
might invalidate the effective spin-1 system at larger magnetic bias fields.
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Technical Details

B.1 Accounting of the Level Shifts Due to Microwave
Dressing

To assess the level shifts exerted by the microwave dressing, we first detail the
radiation characteristics of our microwave antenna, i.e. the relative strength of the
three microwave polarizations. For this we start from state |1, 0) and measure the
on-resonance Rabi frequency for the three direct microwave transitions to |2, —1),
|2, 0), and |2, 1). We find Rabi frequencies of Qs +,) = 27 x (4.9, 3.3, 3.1) kHz.
Therefore, the microwave antenna radiates polarizations with relative strength (in
Rabi frequency) 7 : oy : 0— = 1:0.74:0.8; here, the different line strengths of
the respective microwave transitions have been eliminated. Therefore, the energy
shift of the |2, 0) level results from three contributions due to the off-resonant
microwave coupling to all F = 1 sub states. However, because of the large first order
Zeeman shift, the dominant dispersive energy shift is caused by microwave coupling
of |2,0) < |1, 0). Each of the two side modes |2, 1) is shifted in energy by two
off-resonant couplings.

The microwave that is used for dressing is power stabilized via a servo loop. This
ensures reproducibility on the time scale of several weeks. However, as a side effect,
the levelling mechanism leads to power drifts during the microwave pulse. We have
observed power reductions amounting to 20% in Rabi frequency on the time scale
of milliseconds. However, all stated Rabi frequencies are measured via resonant
Rabi flopping with short pulse durations 500< ps. We find agreement among a
series of measurements only, if we heuristically reduce the Rabi frequencies of each
polarization by 15%.

We will now detail these independent measurements from which we infer the
spin exchange detuning. The first is described in Fig. 6.4 where fringes of the non-
linear readout are investigated for different detuning used for dispersive microwave
dressing. Independently, the effective detuning can be estimated on basis of the
side mode population growth during a single period of spin exchange. For this we
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Fig. B.1 Overview of the energy shifts exerted by microwave dressing. a We perform microwave
dressing § = 27 x 110kHz blue detuned to the transition |1, 0) <> |2, 0). Coupling due to this
transition generates the dominant energy shift. Additional energy shifts arise due to all other possible
couplings as indicated. b Inferred energy shifts of the effective three level system. The dashed levels
represent the energy landscape due to the quadratic Zeeman effect. Microwave dressing shifts the
levels from the dashed to the solid line

performed numerical simulations as discussed in the main part (see Sect. 7.4). Finally,
to find the spin exchange resonance condition in the first place, we typically scan
the microwave detuning § at constant power and record the side mode population
after a fixed evolution time. In such spectroscopic measurements, the onset of spin
exchange—corresponding to ¢ = 0—is witnessed by a sudden and rapid growth
of the side mode population. Experimentally, we find this point at a detuning of
6 = 2m x 70kHz. All these three measurement are in agreement with the micro-
scopic calculation of energy shifts if we assume the above introduced power drop
(Fig.B.1).

B.2 Spatial Gradients of the Microwave Dressing

To assess the microwave gradients over the extent of the atomic cloud we perform
resonant Rabi flopping. Eventually, different parts of the cloud dephase due to the
spatial gradient of the on-resonance Rabi frequency. Expressed in Rabi frequency,
the gradients of each polarization amount to (7, o4, 0_) = (0.03%, 0.15%, —1.3%)
over 100 wm. Therefore, the gradient of the associated energy shift is dominated by
the o_ polarization. This gradient amounts to less than 1 mHz over 100 pum.
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B.3 Spatial Gradients

In this section we show that spatial gradients are indiscernible for the experiments
on spin exchange and interferometry. Thereby, we justify the usage of all lattice
sites to increase the statistical sample size irrespective of their spatial position along
the one-dimensional array. With spin exchange being magnetically insensitive to first
order we argued above that the dominant source of spatial gradients is the microwave
dressing. Here, we assess spatial gradients (regardless of the source) by their effective
action onto spin exchange. First, we investigate a potential spatial dependence of
the nonlinear coupling strength «. For the interferometry measurements a spatially
constant spinor phase is important which is assessed in the second part.

In Fig. B.2a we evaluate the nonlinear coupling strength for each lattice site sep-
arately. For this, we take the average atom number population of every individual
lattice site as areference and use experimental runs for which the on-site atom number
falls into a narrow window of +5%. The spatial position along the one-dimensional
lattice is colour encoded. As the coupling strength depends on the total atom number
it is highest in the centre of the atomic cloud (=60 wm) and falls off towards both
edges. To asses gradients the coupling strength for similar total atom numbers but at

(a) (b) (c)
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Fig. B.2 Spatial gradients. a Spin exchange coupling strength « evaluated at each individual lattice
site. The spatial position along the one-dimensional lattice site is indicated in colour. The atomic
density is highest at the centre of the atomic cloud (at 2260 pm) and falls off towards both edges.
With the nonlinear coupling strength being intrinsically density dependent a spatial gradient can
be estimated by comparing lattice sites with similar atom number that are close to the left and
right edge of the cloud, respectively. b To assess spatial gradients quantitatively we evaluate the
coupling strength difference between pairs of lattice sites that are taken symmetrically from the
centre (see inset). Going outwards step-by-step we increase the distance between the compared
lattice sites while their respective atom number remains equal. Plotting the difference in coupling
strength versus the baseline shows a flat behaviour and thus no spatial gradients are discernible.
Similarly, a potential spatial gradient of the spinor phase imprint can be characterized (panel c).
For this the phase offset of the interferometry fringes is evaluated at pairs of lattice sites separated
in space by Ax (see inset). Plotting the phase difference versus their spatial distance shows a flat
profile. For comparison the two grey lines indicate the expected behaviour if the nonlinear coupling
strength « had a spatial variation of 1 Hz/100 pm
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different edges of the cloud should be compared. This is done quantitatively in panel
(b). Starting at the centre of the atomic cloud we compare the extracted coupling
strength of both adjacent lattice sites. These two lattice sites have equal atom num-
bers and are separated in space by two lattice sites (11 wm). Going further towards
the edges in this symmetrical fashion, lattice sites with equal atom number but larger
spatial separation are compared with each other. Thereby the atom number depen-
dence is cancelled and a spatial gradient would show up as a linear slope. Even when
comparing the two outermost lattice sites separated by 120 pwm we find no indication
for a spatial gradient.

In a similar manner we characterize eventual spatial gradients of the spinor phase.
The spinor phase might have a spatial variation because of two reasons; first, the
dependence could be inherited from a spatially varying nonlinear coupling strength.
In this case, a spinor phase gradient builds up during the spin exchange period.
Finally, a spinor phase variation could be caused by spatially inhomogeneous phase
accumulation during the interrogation period. To evaluate such gradients we compare
the SU(1,1) interferometry fringes of two lattice sites with similar atom number. In
panel (c) the phase difference of the two interferometry fringes is plotted versus the
separation of the two considered lattice sites. We find no indication for gradients.
For comparison the two grey lines indicate the expected behaviour if the nonlinear
coupling strength « had a spatial variation of 1 Hz/100 pm.



Appendix C
Notation and Mathematics

In this chapter we summarise essential formulas and mathematical notations used
throughout this thesis.

C.1 SU(2) Schwinger Boson Representation

The Schwinger Boson representation describes a method to construct spin operators
in terms of Fock states which describe bosonic modes. Describing a (fictious) spin,
these operators satisfy the rotational SU(2) symmetry.

Spin-1/2

We first treat the spin-1/2 case. To this end we combine the two bosonic mode
operators to a vector, @ = (d; a i)[‘ Then the Schwinger Boson representation is
given by the Jordan map

Ji=a'—a. (C.1)

Here o; denote the Pauli matrices which read

oy = <(1) (1)> oy = ((1) Bl) o, = <(1) _01) . (C.2)

Written out this yields the spin operators as stated in Eq. 2.1.

Spin-1

The above procedure can be extended to three bosonic modes. For this purpose we
combine the three mode operators in the following vector, @ = (ay ap a ¢)t. In this
case the Jordan map reads

~

S, =a's;a (C.3)

© Springer International Publishing AG, part of Springer Nature 2018 161
D. Linnemann, Quantum-Enhanced Sensing Based on Time Reversal

of Entangling Interactions, Springer Theses,

https://doi.org/10.1007/978-3-319-96008-1



162 Appendix C: Notation and Mathematics

where s; denotes matrices which describe a spin-1. They are given by

L (010 . f0-10 10 0
ss=—=[101) s,=—|10 1] s.=(00 0 |. (C.4)
v2\o10 v2\o 1 o 00 —1

This yields the spin operators as defined in Eq. 2.6.

C.2 SU(3) Schwinger Boson Representation

To fully describe the three bosonic modes a4, @y, and @, a treatment within the
SU(3) symmetry group is appropriate [6, 7]. Similarly to the above description in
terms of spin operators that satisfy the rotational SU(2) symmetry, the Schwinger
Boson representation can be generalized to the present case of SU(3) [8]. To do
s0, we introduce Cartesian coordinates, a, = (4, — a1)/v/2, a, = i@, + a)/v/2,
a, = do and use the following vector notation @ = (ay, ay, a,). Then the Jordan map
reads

where the eight matrices A; are named after Gell-Mann. They read

010 0-i0 100 | (100
am=(100] m=lioo] xm=[0-10] rs=—[010
000 000 000 3\o0 -2
001 00 —i 000 000
am=|000] as=[0o00]| r=[001 r=(00-i
100 i00 010 0i 0
(C.5)

Here the unusual ordering facilitates the comparison with the Pauli matrices: the
first three matrices A; are just the Pauli matrices o; with the third column and row
filled up with zeros. Therefore, these three matrices describe SU(2) subspaces within
SU(3). In a similar fashion, the matrices {A4, A5} and {Ag, A7} contain Pauli matrices.
In either case, to complete the SU(2) subspace a diagonal matrix with elements as
contained in L3 and Lg is needed. We describe these arising SU(2) subspaces now
in more detail.

The eight operators L; satisfy the commutator relations [ii, L j] =1ifijk I:k with
the structure constants f;;z. The nonvanishing structure constants are given in the
following Table [8]:

ijk|123]147| 156 |246|257|345| 367 | 458 | 678
fie] 111/2]=1/2]1/2]1/2]1/2|-1/2]|/3/2|+/3/2
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From this table one can identify all SU(2) subspaces of SU(3), e.g. {S1, S», S3} and
{S,, Ss, §7}. It is important to note that in order to complete the SU(2) subspace
of L4 and Ls one has to construct a linear superposition of operators L3 and Ls as
motivated above. The coefficients of this superposition can be read off from from
the commutator relations. Therefore, we have the two particularly important SU(2)
subspaces: {L4,L5,(\/§Lg + L3)/2} and {L6,L7,(«/§L8 — L3)/2}.

Explicitly, all eight operators read

2L, = i(aTaI — aiab = Qxy
2L, = awI - aTa; = —S’z
2L; = —aTai - am?
Lo .
2Ly = E(aoal + amé —aray — aoa%) = Oy
i ' ‘ . N N
2Ls = ﬁ(—aoal + aw& — amg + apay) =3,
i i i i t _ 5
2L¢ = E(—ao% +ayay +ayay — aoay) =0y
L i ; t 8
2L = —E(agai +ayay + aray +aoay) =-S5

1 .
2Lg = g(aial — 2apay + aTaD

Here, we identify the operators L;to spin operators S; and Q; ; denote quadrupole
operators that are introduced in reference [9]. Using the operators §; = (d; +
&L)/ﬁ and 5_ = (ay — ai)/\/i the two SU(2) subspaces discussed above can be
written in the particular elegant form stated in the main text:

2L¢=—F, = —(ager — aosi)/i
2L = —F, = —(Clgs+ + agsi)
\/§L8 —Ly=-F, = —(agao - Sjrs"")
2Ly = -G, = —(ags, + aosl')
2Ls = Gy = (ags_ —aps!)/i

V3Ls+ Ly = —G. = —(ajap — s's_)
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C.3 Input-Output Relation for Bilinear Hamiltonian

Every Hamiltonian that is at most quadratic in bosonic field operators performs a
mode transformation according to

:
Cl¢ aT a
<a¢> — A (m) + B (ﬁ) +y. (C.6)

Since this transformation needs to keep the bosonic commutator relations intact, the
matrices are required to fulfil: AB’ = BA" and AAT = BBT + 1[10, 11]. Possible
parametrisations for SU(2) and SU(1,1) are given by (with y = 0)

A— ( cos 6 €' sin O

i ) and B =0 for SU2)  (C7)

coshr 0 0 e sinh r
A= ( 0 cosh r) and B = (ei“’ sinh r 0 ) for SUCLL) (C.8)

With these relations any combination of elements, e.g. the complete interferometric
sequence can be built up.

C.4 Special Unitary Group, SU(2) and SU(1,1)

The name SU(n) refers to the special unitary group. In matrix representation this
group applies to n dimensional unitary matrices U that have determinant of unity.
For SU(2) a possible parametrization of all allowed matrices reads

cosf  e?sind
U= {(—ei‘” sinf cos@ ) ‘(p €[0,27),9 € [0, 77)}- (C9)

Since this is identical to the mode transformation of a passive interferometer its name
affix SU(2) is justified.

The SU(n) group can be generalized by weakening the unitarity property: instead
of stipulating that UTU = 1, (unitarity, 1, denotes unity matrix of size ) one merely
requires that UTAU = A. Here A is a diagonal matrix with the first k entries being
(+1) and the [ next entries being (—1) withn = k + [. This property is called pseudo-
unitarity. Matrices of this form satisfy the generalized special unitary group, encoded
by SU(k, I). For the special case of SU(1,1) the matrix A reads A = diag(1, —1).
In this framework the SU(2) group corresponds to the specific case SU(2,0). All
possible matrices can be parametrized by
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U— coshr ¢¥sinhr
“ |\e¥sinhr coshr

Therefore the mode transformation of parametric amplification are described by the
SU(1,1) group.

¢ €[0,2m),r €0, oo)} . (C.10)
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