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Foreword to the First Edition

We are delighted to write the foreword of this comprehensive book by Massimo
Rudan, entitled Physics of Semiconductor Devices, a treatise that goes to the heart
of the physics involved in the study of electron devices. While the literature on this
topic is very wide and diversified, it typically covers only part of the whole subject:
either semiconductor physics or device theory. This book bridges the gap between
these two aspects of the discipline, as it thoroughly covers both of them and even
addresses process technology.

Why do we need a book on physics written by an engineer for engineers? Are
not physics books written by physicists good enough? The answer is rooted in the
difference of motivation of science as opposed to engineering. The scientist wants
to know why and investigates the cause or the underlying fundamental laws from
observed effects. The engineer wants to know what for and pursues a purpose, like
building a device, based on such effects. The engineer tries to arrange physical
objects in such a way that a desired and foreseeable action is achieved as can be
expected by virtue of the laws of physics. The engineer goes from the known causes
to the desired effects. In this sense, the engineer’s objective is the inverse of the
scientist’s endeavor.

Is there common ground between physics and engineering? Yes, and that is why
physicists and engineers should be friends. Obviously, knowledge of the appropriate
part of physics (but not all physics) is indispensable for the engineer to build
something useful. That is what this book aims at in the area of electronic devices. On
the other hand, physicists build sophisticated laboratory equipment (sometimes with
the help of engineers) for the purpose of investigating new physical phenomena.
The builders of such unique tools do not have to worry about mass manufacturing
in contrast to engineering, where low-cost production and reliability are major
concerns, yet another difference of motivation.

The complexity of the physical background required for a deep understanding
of device behavior makes it difficult to pursue a deductive teaching methodology,
where every new concept is justified on fundamental physical principles. The limited
number of lecture hours, and the need to comply with the program and objectives of
engineering courses, is often such that many teachers, as well as textbooks, tend to
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viii Foreword to the First Edition

ignore such a background and to use an inductive approach instead. So doing, some
fundamental concepts are delivered to students intuitively, in the form of physical
models with some degree of simplification and no proof behind them. While the
inductive approach may be useful for practical purposes, it bears the drawback of
hiding assumptions and limitations of the model, thereby leading to an insufficient
depth of understanding and lack of criticism on the validity of the obtained results.

This book is fully functional to a deductive teaching approach and, as such,
represents a very useful tool not just for students but for researchers and scientists as
well. The reader can thus find within the same volume both a rigorous justification
for the semiclassical and quantum-mechanical models adopted in practice to clarify
the device operation, such as the most popular drift-diffusion transport model,
and detailed descriptions of the operating principles of the most important semi-
conductor devices. The evolution of microelectronics toward nanoscale structures
makes it imperative to master quantum mechanics and solid-state physics in order
to understand the operation of miniaturized devices. This book is therefore timely
and meets a need felt by many students as well as teachers.

Roughly speaking, this volume addresses four main areas: (i) a review of
analytical mechanics and electromagnetism, (ii) an introduction to statistical and
quantum mechanics, (iii) a treatment of solid-state physics and carrier trans-
port in semiconductors, and (iv) a description of the basic device concepts and
their operating principles. The Appendices highlight mathematical concepts and
proofs of theorems cited somewhere throughout the volume. For example, Chap. 6,
where the Boltzmann transport equation is derived and discussed; Chap. 17, where
the fundamental concepts of crystalline solid-state physics are introduced; and
Chap. 18, with the description of the basic properties of electrons and holes in
semiconductors under equilibrium conditions, highlight the rigorous, yet elegant,
approach to the description of delicate physical concepts, such as the Bloch theorem,
the band structure of crystalline solids in the first Brillouin zone, and the phonon
vibrational spectra. The author’s deep mathematical background shows up in several
demonstrations, where the use of sophisticated mathematical tools leads to simple,
albeit rigorous, proofs of the concepts addressed in the treatment. An important
specificity of this book is also that simplifying assumptions are widely discussed
and their impact on final results is typically highlighted.

In conclusion, Physics of Semiconductor Devices by Massimo Rudan represents
a remarkable piece of work that is likely to provide a valuable learning tool
to electrical engineering students willing to deepen their understanding of this
fascinating field. It will also be a useful consultation tool for researchers, scientists,
and engineers involved in the fundamental aspects of material science and device
design.

Bologna, Italy Giorgio Baccarani
Zürich, Switzerland Henry Baltes
September 2014



Preface to the Second Edition

The second edition of this book has been enriched mostly in the parts devoted
to semiconductors and devices (Chaps. 20 through 25). The analysis of the net
recombination rate in polycrystalline materials, relevant for, e.g., thin-film tran-
sistors, is carried out in Chap. 20. The derivation of the characteristics of the
bipolar transistor, photodiode, and solar cell has been added to Chap. 21, along
with some considerations about the scaling limits of the bipolar architecture. The
new material of Chap. 22 features the analysis of the n-substrate MOS capacitor,
MOS photo-capacitor, and p-channel MOSFET, followed by the description of the
CMOS architecture. A more general theory of the MOSFET, including the diffusive
contribution to the channel current, is given; a brief outline about the scaling rules of
semiconductor devices and the design steps of integrated circuits completes the new
material of this chapter. Chapter 23 has been extended substantially by including the
description of ion implantation. As for the measurement techniques, Chap. 25 has
been enriched with the theory of the Hall effect in the nonideal case and with the
resistivity measurement based on the van der Pauw method.

More material has sparsely been added to other chapters: the derivation of the
Schrödinger equation as the Euler equation of a constrained functional is extended
to more than one dimension in Chap. 1; the theory of the Green function in the
top half plane, instrumental to the van der Pauw measurement scheme, has been
added to Chap. 4; a full derivation of the field generated by a point-like charge is
now included in Chap. 5. The demonstration of the Boltzmann H-theorem and a
discussion about the Kac-ring paradox have been added to Chap. 6. In the chapters
devoted to quantum mechanics, the discussion of Chap. 13 about the properties
of the one-dimensional Schrödinger equation is more extended, and the treatment
of the time-dependent perturbation of Chap. 14 is now embracing the harmonic
perturbation of a general form and the spatially periodic case; the latter analysis
provides in turn the selection rules that are exploited in the discussion of the
electron-phonon interaction, added to Chap. 17. The transport model worked out in
Chap. 19 is used in the complements of the chapter to derive the Onsager relations.

The Appendices have also been enriched with new material, with the aim of
completing a number of topics tackled in the book’s chapters; several sections about
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matrix analysis have been added to Appendix A, followed by other sections showing
the application to the numerical solution of the semiconductor equations in one
dimension. Appendix B has been enriched with the theories of Lagrange multipliers,
conformal mapping, and contraction mappings; finally, the approximations to the
Fermi integrals, the illustration of the Bernoulli numbers and polynomials, the
calculation of a special integral using Cauchy’s residue theorem, the treatment
of the random walk problem, and the central limit theorem have been added to
Appendix C.

About 50 problems, 50 figures, and 3 tables have been added to those of the first
edition and about 20 figures reworked; several new figures are in color. A subject
index featuring about 2;600 entries has been inserted at the end of the volume.

Bologna, Italy Massimo Rudan
June 2017



Preface to the First Edition

This volume originates from the lectures on solid-state electronics and microelec-
tronics that I have been giving since 1978 at the School of Engineering of the
University of Bologna. Its scope is to provide the reader with a book that, starting
from the elementary principles of classical mechanics and electromagnetism,
introduces the concepts of quantum mechanics and solid-state theory and describes
the basic physics of semiconductors including the hierarchy of transport models,
ending up with the standard mathematical model of semiconductor devices and
the analysis of the behavior of basic devices. The ambition of the work has been
to write a book, self-contained as far as possible, that would be useful for both
students and researchers; to this purpose, a strong effort has been made to elucidate
physical concepts, mathematical derivations, and approximation levels, without
being verbose.

The book is divided into eight parts. Part I deals with analytical mechanics and
electromagnetism; purposedly, the material is not given in the form of a resumé:
quantum mechanics and solid-state theory concepts are so richly intertwined with
the classical ones that presenting the latter in an abridged form may make the
reading unwieldy and the connections more difficult to establish. Part II provides
the introductory concepts of statistical mechanics and quantum mechanics, followed
by the description of the general methods of quantum mechanics. The problem of
bridging the classical concepts with the quantum ones is first tackled using the
historical perspective, covering the years from 1900 to 1926. The type of statistical
description necessary for describing the experiments, and the connection with the
limiting case of the same experiments involving massive bodies, is related to the
properties of the doubly stochastic matrices. Part III illustrates a number of appli-
cations of the Schrödinger equation: elementary cases, solutions by factorization,
and time-dependent perturbation theory. Part IV analyzes the properties of systems
of particles, with special attention to those made of identical particles, and the
methods for separating the equations. The concepts above are applied in Part V
to the analysis of periodic structures, with emphasis to crystals of the cubic type
and to silicon in particular, which, since the late 1960s, has been and still is the
most important material for the fabrication of integrated circuits. Part VI illustrates
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the single-electron dynamics in a periodic structure and derives the semiclassical
Boltzmann transport equation; from the latter, the hydrodynamic and drift-diffusion
models of semiconductor devices are obtained using the moments expansion. The
drift-diffusion model is used in Part VII to work out analytically the electrical
characteristics for the basic devices of the bipolar and MOS type. Finally, Part VIII
presents a collection of items which, although important per se, are not in the book’s
mainstream: some of the fabrication-process steps of integrated circuits (thermal
diffusion, thermal oxidation, layer deposition, epitaxy) and methods for measuring
the semiconductor parameters.

In the preparation of the book, I have been helped by many colleagues. I wish
to thank, in particular, Giorgio Baccarani, Carlo Jacoboni, and Rossella Brunetti,
who gave me important suggestions about the matter’s distribution in the book, read
the manuscript, and, with their observations, helped me to clarify and improve the
text; I wish also to thank, for reading the manuscript and giving me their comments,
Giovanni Betti Beneventi, Fabrizio Buscemi, Gaetano D’Emma, Antonio Gnudi,
Elena Gnani, Enrico Piccinini, Susanna Reggiani, and Paolo Spadini.

Last, but not least, I wish to thank the students, undergraduate, graduate, and
postdocs, who for decades have accompanied my teaching and research activity with
stimulating curiosity. Many comments, exercises, and complements of this book are
the direct result of questions and comments that came from them.

Bologna, Italy Massimo Rudan
September 2014
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Acronyms

AM Air mass. Length of the optical path, through Earth’s atmosphere, of
light rays coming from an extraterrestrial source. The AM value at sea
level, when the source is at the zenith, is set equal to unity and used as
normalization parameter.

BJT Bipolar junction transistor. A transistor whose operation is obtained by
a suitable arrangement of two p-n junctions. The term “bipolar” is used
because both electrons and holes are involved in the device functioning.

BTE Boltzmann transport equation. The equation expressing the continuity
of the distribution function in the phase space.

CVD Chemical vapor deposition. A deposition process in which the material
to be deposited is the product of a chemical reaction that takes place on
the surface of the substrate or in its vicinity.

DD Drift diffusion. The term indicates a transport model for semiconduc-
tors made, for each energy band, of the balance equations for the carrier
number and average velocity. Such equations contain the electric field
and the magnetic induction; as a consequence, their solution must be
calculated consistently with that of the Maxwell equations. Compare
with the HD model.

DRAM Dynamic random access memory. A type of random-access, solid-
state memory where each bit is stored in a separate capacitor. The
charged/discharged states of the latter correspond to the logic states
of the memory bit. Due to the leakage of the circuits connected to
the capacitor, the stored datum tends to fade unless it is periodically
refreshed (whence the designation “dynamic”). DRAM memories are
volatile, namely, they lose the data when the power supply is removed.

HD Hydro dynamic. The term indicates a transport model for semiconduc-
tors made, for each energy band, of the balance equation for the carrier
number, average velocity, average kinetic energy, and average flux of
the kinetic energy. Such equations contain the electric field and the
magnetic induction; as a consequence, their solution must be calculated
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consistently with that of the Maxwell equations. Compare with the DD
model.

IC Integrated circuit. Also called chip or microchip. An assembly of elec-
tronic circuits on the same plate of a semiconductor material. The idea
was proposed in the early 1950s and demonstrated in 1958; it provided
an enormous improvement, both in cost and performance, with respect
to the manual assembly of circuits using discrete components.

IGFET Insulated gate field effect transistor. A device architecture demon-
strated in the early 1930s. Its first implementation (1960) using a
thermally oxidized silicon layer gave rise to the MOSFET architecture.

LASER Light amplification by stimulated emission of radiation. A device made
of a material having a high probability of radiative emission, in which
the electron concentration of high-energy states is artificially kept
high by an external power source. The material produces a coherent
emission, and a suitable feedback makes it to oscillate; this results in a
nearly monochromatic light.

LOCOS Local oxidation. The technological process consisting in depositing
and patterning a layer of silicon nitride over the areas where the
substrate’s oxidation must be prevented.

MBE Molecular beam epitaxy. A low-temperature epitaxial process based on
evaporation.

MIS Metal insulator semiconductor. Structure made of the superposition of
a metal contact, an insulator, and a semiconductor.

MOS Metal oxide semiconductor. Structure made of the superposition of a
metal contact, an oxide that acts as an insulator, and a semiconductor.

MOSFET Metal oxide semiconductor, field effect transistor. A transistor whose
active region is an MOS structure. In last-generation devices, the
insulator may be deposited instead of being obtained by oxidizing the
semiconductor underneath. The MOSFET has been for decades, and
still is, the fundamental device of the integrated-circuit architecture.

PCM Phase change memory. A solid-state memory whose logic states are
associated with a high-resistance or low-resistance condition of the
material; such conditions are in turn associated to the material’s phases,
amorphous or crystalline, respectively. The material is forced to switch
from one phase to the other by an externally applied electric signal.

PDE Partial differential equation.
PV Photo voltaic. The adjective refers to physical processes that convert

the energy of a radiation into electric energy (e.g., photovoltaic effect)
or to devices where such processes occur (e.g., photovoltaic cell).

PVD Physical vapor deposition. A deposition process in which the material
to be deposited does not react chemically with other substances.

SGOI Silicon germanium on insulator. A technology analogous to SOI. SGOI
increases the speed of the transistors by straining the material under the
gate, thus making the electron mobility higher.
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SOI Silicon on insulator. A technology introduced in 1998 for semiconduc-
tor manufacturing, in which the standard silicon substrate is replaced
with a layered structure of the silicon-insulator-silicon type. SOI
reduces the parasitic capacitances and the short-channel effect in MOS
transistors.

SOS Silicon on sapphire. A technological process that consists in growing a
thin layer of silicon on a wafer made of sapphire (Al2O3).

SS Subthreshold slope. The inverse of d log10.I/=dVG in a device where a
conductive channel is controlled by a gate; I is the channel current, VG

the gate voltage. A smaller SS corresponds to a faster transition of the
device from the on to the off state or vice versa.

TFT Thin film transistor. A type of field-effect transistor fabricated by
depositing the active semiconductor layer, the dielectric layer, and
the metallic contacts over a nonconducting substrate. An important
application of TFTs is in liquid-crystal displays; for this reason, a
typical type of nonconducting substrate of TFTs is glass.
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Part I
A Review of Analytical Mechanics and

Electromagnetism



Chapter 1
Analytical Mechanics

1.1 Introduction

The differential equations that govern the dynamic problems can be derived from
variational principles, upon which the theories of Euler and Lagrange, and those
of Hamilton and Jacobi, are based. Apart from being the source of the greatest
intellectual enjoyment, these theories have the definite advantage of generality.
Their concepts can in fact be extended to cases where the Newtonian equation of
dynamics does not apply. Among such cases there are the equations governing the
electromagnetic field and those related to the quantum description of the particles’
motion.

The invariance property of the Lagrange equations with respect to a change of
coordinates gives origin to the concept of generalized coordinates and conjugate
momenta; in turn, the introduction of the Hamilton equations provides a picture
in which the intrinsic symmetry of the roles of coordinates and momenta becomes
apparent. Basing on the concept of conjugate coordinates, the time evolution of
a particle or of a system of particles is described in the phase space instead of
the coordinate space. This chapter and the next one illustrate the basic principles
of Analytical Mechanics. Their purpose is to introduce a number of concepts
that are not only useful per se, but also constitute a basis for the concepts of
Quantum Mechanics that are introduced in later chapters. The third chapter devoted
to Analytical Mechanics describes a number of important examples that will be
applied to later developments illustrated in the book.

As the velocity of particles within a semiconductor device is small with respect
to that of light, the nonrelativistic form of the mechanical laws is sufficient for
the purposes of this book. The relativistic form is used only in a few paragraphs
belonging to the chapter devoted to examples, to the purpose of describing a specific
type of collision between particles. This chapter starts with the description of the
Lagrangian function and the Lagrange equations that are derived as a consequence
of the variational calculus, followed by the derivation of the Hamiltonian function
and Hamilton equations. Next, the Hamilton-Jacobi equation is derived after
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4 1 Analytical Mechanics

discussing the time-energy conjugacy. The chapter continues with the definition of
the Poisson brackets and the derivation of some properties of theirs, and concludes
with the description of the phase space and state space.

1.2 Variational Calculus

Consider a real function w./ defined in the interval  2 Œa; b� and differentiable in
its interior at least twice. The first two derivatives will be indicated with Pw e Rw. Now,
define the integral

GŒw� D
Z b

a
g.w; Pw; / d ; (1.1)

where the form of the function g.w; Pw; / is prescribed. If (1.1) is calculated for any
function w fulfilling the requisites stated above, with a and b fixed, the result is some
real number G whose value depends on the choice of w. By this procedure, (1.1)
establishes a correspondence GŒw� between a set of functions and a set of numbers.
Such a correspondence is called functional.

It is interesting to extend to the case of functionals some concepts and procedures
that apply to functions proper; among these the concept of extremum is important.
In fact, one defines the extremum function of a functional by a method similar to that
used for defining the extremum point of a function: some w is an extremum of G if a
variation dw in (1.1) produces a variation dG that is infinitesimal of an order higher
than that of dw. The procedure by which the extremum functions are calculated is
called variational calculus.

To proceed it is necessary to define the variation dw. For this one lets ıw D ˛ �,
with �./ an arbitrary function defined in Œa; b� and differentiable in its interior, and
˛ a real parameter. The function ıw thus defined is the finite variation of w. The sum
wC ıw tends to w in the limit ˛ ! 0. As a consequence, such a limit provides the
infinitesimal variation dw. For simplicity it is convenient to restrict the choice of �
to the case �.a/ D �.b/ D 0, so that w C ıw coincides with w at the integration
boundaries for any value of ˛. Now, replacing w with w C ˛ � in (1.1) makes G a
function of ˛, whose derivative is

dG

d˛
D

Z b

a

�
@g

@.wC ˛�/
�C

@g

@. PwC ˛ P�/
P�

�
d : (1.2)

According to the definition given above, if w is an extremum function of G then it
must be lim˛!0 dG=d˛ D 0; in this case, in fact, the first-order term in the power
expansion of G with respect to ˛ vanishes, and the variation of G becomes second
order in ˛ or higher. In conclusion, one proceeds by imposing that the right-hand
side of (1.2) vanishes for ˛ D 0. Then, integrating by parts the second term in
brackets yields
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Z b

a

@g

@w
� d C

�
@g

@ Pw
�

�b

a

D

Z b

a

�
d

d

@g

@ Pw

�
� d (1.3)

where, in turn, the integrated part vanishes because �.a/ D �.b/ D 0. This makes
the two integrals in (1.3) equal to each other. On the other hand, such an equality
must hold for any choice of � due to the arbitrariness of the latter. It follows that the
integrands must be equal to each other, namely,

d

d

@g

@ Pw
D
@g

@w
: (1.4)

The relation (1.4) thus found is a second-order differential equation in the unknown
w, whose explicit form is easily calculated:

@2g

@ Pw2
RwC

@2g

@w@ Pw
PwC

@2g

@@ Pw
D
@g

@w
: (1.5)

Its solution provides the extremum function w sought. To actually find a solution one
must associate with (1.4) suitable boundary conditions, e.g., w.a/ D wa, Pw.a/ D Pwa,
or w.a/ D wa, w.b/ D wb, and so on. As g does not contain Rw, (1.4) is linear with
respect to Rw. It is also worth noting that, consistently with what happens in the case
of functions proper, the above calculation does not provide in itself any information
about w being a minimum or maximum of G. Such an information must be sought
through additional calculations.

The analysis above is easily extended to the case where g depends on several
functions w1, w2 ; : : : and the corresponding derivatives. Introducing the vectors
w./ D .w1;w2; : : : ;wn/, Pw./ D . Pw1; Pw2; : : : ; Pwn/ one finds that the set of n
extremum functions wi./ of functional

GŒw� D
Z b

a
g.w; Pw; / d (1.6)

is the solution of the set of differential equations

d

d

@g

@ Pwi
D

@g

@wi
; i D 1; : : : ; n ; (1.7)

supplemented with suitable boundary conditions. Equations (1.7) are called Euler
equations of the functional G.

Each Eq. (1.7) is homogeneous with respect to the derivatives of g and does
not contain g itself. As a consequence, the differential equations (1.7) are invariant
when g is replaced with A g C B, where A;B ¤ 0 are constants. As the boundary
conditions of wi are not affected by that, the solutions wi are invariant under the
transformation. Moreover, it can be shown that the solutions are invariant under a
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more general transformation. In fact, consider an arbitrary function h D h.w; / and
let g0 D gC dh=d , thus transforming (1.6) into

G0Œw� D A
Z b

a
g.w; Pw; / d C h.wb; b/ � h.wa; a/ : (1.8)

When each wi is replaced with wi C dwi, the terms involving h do not vary because
the variations vanish at the boundaries of the integration domain. Thus, the variation
of G0 equals that of the integral, namely, it is of a higher order than dwi. In
conclusion, the extremum functions of G are also extremum functions of G0. This
means that the solutions wi./ are invariant under addition to g of the total derivative
of an arbitrary function that depends on w and  only. This reasoning does not apply
if h depends also on the derivatives Pw, because in general the derivatives of the
variations do not vanish at the boundaries.

1.3 Lagrangian Function

In many cases the solution of a physical problem is achieved by solving a set of
second-order differential equations of the form Rwi D Rwi.w; Pw; /. For instance,
for nonrelativistic velocities the law of motion of a particle of constant mass m
is Newton’s law F D m a which, in a Cartesian frame, takes the form

m Rxi D Fi.r; Pr; t/ ; i D 1; 2; 3 : (1.9)

In (1.9), r.t/ D .x1; x2; x3/ is the particle’s position vector1at t. In the following the
particle’s velocity will be indicated with u D Pr.

Equations (1.9) and (1.7) have the same form, as is easily found by observing that
t is the analogue of  and xi is that of wi. As a consequence, one may argue that (1.9)
could be deduced as Euler equations of a suitable functional. This problem is in fact
the inverse of that solved in Sect. 1.2: there, the starting point is the function g,
whose derivatives provide the coefficients of the differential equations (1.7); here,
the coefficients of the differential equation are given, while the function g is to
be found. For the inverse problem the existence of a solution is not guaranteed in
general; if a solution exists, finding the function g may be complicate because the
process requires an integration. In other terms, the direct problem involves only
the somewhat “mechanical” process of calculating derivatives, whereas the inverse
problem involves the integration which is, so to speak, an art.

When dealing with the dynamics of a particle or of a system of particles, the
function g, if it exists, is called Lagrangian function and is indicated with L. The

1The units in (1.9) are: Œm� D kg, Œr� D m, ŒPr� D m s�1, Œ Rxi� D m s�2, ŒFi� D N, where “N”
stands for Newton.
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equations corresponding to (1.7) are called Lagrange equations. The expression of
the Lagrangian function depends on the form of the force Fi in (1.9). Some examples
are given in the following. It is important to note that by “system of particles”
it is meant a collection of particles that interact with each other. If there were no
interactions it would be possible to tackle the dynamics of each particle separately;
in other terms, each particle would constitute a system in itself, described by a
smaller number of degrees of freedom.

1.3.1 Force Deriving from a Potential Energy

Consider the case of a force deriving from a potential energy, namely F D � grad V
with V D V.r; t/, so that (1.9) becomes

m Pui D �
@V

@xi
: (1.10)

Using the replacements   t, wi  xi, g  L and equating (1.7) and (1.10) side
by side yield

@L

@xi
D �

@V

@xi
;

d

dt

@L

@ui
D

d

dt
.m ui/ ; i D 1; 2; 3 : (1.11)

The first of (1.11) shows that the sum T D LCV does not depend on the coordinates
xi. Inserting L D T � V into the second of (1.11) and taking i D 1 show that the
difference ˚ D @T=@u1 � mu1 does not depend on time either, so it depends on
the ui components at most. Integrating ˚ with respect to u1 yields T D mu21=2 C
T1.u2; u3; t/, with T1 yet undetermined. Differentiating this expression of T with
respect to u2 and comparing it with the second of (1.11) specified for i D 2 yield
T D m .u21 C u22/=2C T2.u3; t/, with T2 undetermined. Repeating the procedure for
i D 3 finally provides T D m .u21 C u22 C u23/=2 C T0.t/, with T0 an undetermined
function of time only. The latter, in turn, can be viewed as the time derivative of
another function h. Remembering the invariance property discussed at the end of
Sect. 1.2 with reference to (1.8), one lets T0 D 0. In conclusion, indicating with u
the modulus of u it is T D mu2=2, and the Lagrangian function reads

L D
1

2
mu2 � V : (1.12)

The derivation of (1.12) may appear lengthy. However, the procedure is useful
because it is applicable to forces of a more complicate form.
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1.3.2 Electromagnetic Force

Consider a charged particle subjected to an electromagnetic field and let m and
e be its mass and charge, respectively. The particle’s velocity u is assumed to be
nonrelativistic. The electromagnetic field acts on the particle with the Lorentz force
(Sect. 4.11) 2

F D e .EC u ^ B/ ; (1.13)

where the electric field E and the magnetic induction B are in turn expressed through
the scalar potential ' D '.r; t/ and the vector potential A D A.r; t/ as (Sect. 4.4)

E D � grad' �
@A
@t
; B D rot A : (1.14)

Letting i D 1 in (1.9) one finds from (1.13) mPu1 D e .E1 C u2 B3 � u3 B2/. Using
for E1, B3, B2 the expressions extracted from (1.14) yields

m Pu1 C e

�
@A1
@t
C u2

@A1
@x2
C u3

@A1
@x3

�
D e

�
�
@'

@x1
C u2

@A2
@x1
C u3

@A3
@x1

�
:

(1.15)
Now, using ui D Pxi transforms the term in parentheses at the left-hand side of (1.15)
into dA1=dt � u1 @A1=@x1, which gives (1.15) the more compact form

d

dt
.m u1 C e A1/ D

@

@x1
.e u � A � e'/ : (1.16)

Similar expressions are found for i D 2; 3. Comparing with (1.7) in the same manner
as in Sect. 1.3.1 yields

@L

@xi
D

@

@xi
.e u � A � e'/ ;

d

dt

@L

@ui
D

d

dt
.m ui C e Ai/ ; i D 1; 2; 3 :

(1.17)
Note that (1.17) reduce to (1.11) when A D 0, with e' D V . The first of (1.17)
shows that the sum T D L C e' � e u � A does not depend on the coordinates
xi. Inserting L D T � e' C e u � A into the second of (1.17) transforms the latter
into d.@T=@ui/=dt D d.m ui/=dt. Like in Sect. 1.3.2 the procedure eventually yields
T D mu2=2. In conclusion, the Lagrangian function of a particle subjected to the
Lorentz force (1.13) is

2The units in (1.13) are: ŒF� D N, Œe� D C, ŒE� D V m�1, Œu� D m s�1, ŒB� D
V s m�2 DWb m�2 D T, where “N,” “C,” “V,” “Wb,” and “T” stand for Newton, Coulomb, Volt,
Weber, and Tesla, respectively. The coefficients in (1.13) differ from those of [10] because of the
different units adopted there. In turn, the units in (1.14) are: Œ'� D V, ŒA� D V s m�1 DWb m�1.
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L D
1

2
m u2 � e' C e u � A : (1.18)

It is shown in Sect. 4.4 that the E and B fields are invariant under the gauge
transformation

'  ' �
@h

@t
; A AC grad h ; (1.19)

where h.r; t/ is an arbitrary function. Using (1.19) in (1.18) transforms the terms
containing the potentials as

� e' C e u � A �e' C e u � AC e
dh

dt
; (1.20)

namely, the transformed Lagrangian function differs from the original one by the
total derivative of an arbitrary function that depends on position and time only. As a
consequence, the solutions xi.t/ are invariant under the gauge transformation (1.19).
This is easily understood by observing that the invariance of the E and B fields
makes the Lorentz force (1.13) invariant as well. As a consequence, the particle’s
dynamics is not influenced by the gauge transformation.

1.3.3 Work

The elementary work exerted by a force F acting on a particle of mass m during
the time dt is F � dr, where r is the particle’s position at t in a Cartesian frame and
dr D u dt the elementary displacement. Let P D r.t D a/, Q D r.t D b/ be the
boundaries of the particle’s trajectory. The work exerted from P to Q is found by
integrating F � dr over the trajectory, namely,

Z Q

P
F � dr D m

Z b

a
Pu � u dt D

1

2
m
Z b

a

du2

dt
dt D T.b/ � T.a/ ; (1.21)

where the relation T D mu2=2 has been used. The exerted work is then equal to the
variation of T , which is the same quantity that appears in (1.12, 1.18) and is called
kinetic energy of the particle. If a system having n degrees of freedom is considered
instead of a single particle, the work exerted by the forces is defined as the sum
of terms of the form (1.21). As a consequence, the kinetic energy of the system is
the sum of the kinetic energies of the individual particles. The expression of the
system’s kinetic energy in Cartesian coordinates is

T D
nX

iD1

1

2
mi u2i D

nX

iD1

1

2
mi Px

2
i ; (1.22)
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that is, a positive-definite quadratic form in the velocities. The masses in (1.22)
take the same value when they are referred to the same particle. When other types
of coordinates are used, the kinetic energy is still a second-degree function of the
velocities; however, the function’s coefficients may depend on the coordinates (an
example is given in Sect. 2.8).

When a force deriving from a potential energy V D V.r; t/ is considered, like that
of Sect. 1.3.1, the integrand of (1.21) becomes� grad V �dr. To calculate the integral
it is necessary to account for the explicit dependence of V on t by using mutually
consistent values of r and t; in other terms, the integral in (1.21) can actually be
calculated only after determining the function r.t/. An exception occurs when V
has no explicit dependence on time; in this case one finds

Z Q

P
F � dr D �

Z Q

P
grad V � dr D �

Z Q

P
dV D V.P/ � V.Q/ ; (1.23)

namely, to calculate the integral it suffices to know the boundaries of the trajectory.
Moreover, when V D V.r/ the Lagrangian function (1.12) does not depend
explicitly on time either. It is shown in Sect. 1.6 that in this case also the sum T CV
of the kinetic and potential energies is independent of time. A dynamic property that
does not depend on time is called constant of motion. A force field that makes TCV
a constant of motion is called conservative.

When a force of the form F D e .ECu^B/ is considered, like that of Sect. 1.3.2,
the scalar multiplication by dr D u dt shows that the second term of the force does
not contribute to the work because u^B � u D 0 (Sect. A.7). Remembering the first
of (1.14), the integral corresponding to that of (1.23) reads

Z Q

P
F � dr D �e

Z Q

P

�
grad' C

@A
@t

�
� dr : (1.24)

If the electromagnetic field is independent of time, the calculation is the same as
in (1.23) and the exerted work is e'.P/ � e'.Q/.

1.3.4 Hamilton Principle—Synchronous Trajectories

From the analysis of Sect. 1.2 it follows that the solutions xi.t/ of the motion
equations (1.9) are the extremum functions of the functional

SŒr� D
Z b

a
L.r; Pr; t/ dt : (1.25)

On the other hand, r.t/ describes the particle’s trajectory. The latter is also called
natural trajectory to distinguish it from the r C ır trajectories that are obtained
through a variation. In summary, the natural trajectory of the particle is the
extremum function of (1.25). This statement is called Hamilton principle.
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The integration boundaries in (1.25) determine a time interval b�a that measures
the motion’s duration between the initial and final position of the particle, r.a/ and
r.b/ respectively. The duration is the same also for the r C ır trajectories. In fact,
remembering the derivation of Sect. 1.2, the variation ır vanishes at the integration
boundaries, so that any trajectory obtained through a variation has the same initial
and final positions as the natural one at the same instants a and b. Moreover, any
position r C ır between r.a/ and r.b/ is considered at the same instant as the
position r of the natural trajectory. For this reason the r C ır trajectories of the
functional (1.25) are called synchronous.

1.4 Generalized Coordinates

The extremum functions are calculated as shown in Sect. 1.3 also when a system
of N particles, instead a single particle, is considered. The starting point is
still (1.9), where a new index is introduced to distinguish the masses. The number
of coordinates that describe the motion of all particles in the system is not necessary
equal to 3N; in fact, a number of constraints may exist that limit the relative
positions of the particles. As a consequence, letting n � 3N indicate the number
of degrees of freedom of the system, the set x1.t/ ; : : : ; xn.t/ suffices to determine
the positions of the particles at time t.

Depending on the problem in hand it may be more convenient to use a new set of
coordinates q1.t/ ; : : : ; qn.t/ instead of the Cartesian set x1.t/ ; : : : ; xn.t/. For this, it
is necessary to extend the calculation of the extremum functions to the case where
the new set is used. Let the relation between the old and new coordinates be

8
<̂

:̂

q1 D q1.x1 ; : : : ; xn ; t/
:::

qn D qn.x1 ; : : : ; xn ; t/

8
<̂

:̂

x1 D x1.q1 ; : : : ; qn ; t/
:::

xn D xn.q1 ; : : : ; qn ; t/

(1.26)

The coordinates qi, whose units are not necessarily a length, are called generalized
coordinates. Their time derivatives Pqi D dqi=dt are called generalized velocities.
The explicit dependence on time in (1.26) is present if a relative motion of the two
frames exists: e.g., the relations q1 D x1�v0t, q2 D x2, q3 D x3 transform the x1x2x3
set into the q1q2q3 set that moves with respect to the former one with the velocity
v0 along the first axis.

Differentiating qi twice with respect to time and using the first of (1.26)
provide a relation of the form Rqi D Rqi.x1; Px1; Rx1 ; : : : ; xn; Pxn; Rxn ; t/. The above,
after eliminating the second derivatives Rx1; : : : ; Rxn through (1.9), becomes Rqi D

Rqi.x1; Px1 ; : : : ; xn; Pxn ; t/. Finally, replacing x1; Px1 ; : : : ; xn; Pxn extracted from the sec-
ond of (1.26) yields

Rqi D Rqi.q; Pq; t/ ; i D 1 ; : : : ; n ; (1.27)



12 1 Analytical Mechanics

where q indicates the set q1 ; : : : ; qn, and Pq indicates the corresponding derivatives.
Equations (1.27) have the same form as (1.9), hence they must be deducible as the
extremum functions of a functional. To show this, one starts from (1.25) by writing
the Lagrangian function in the new set of coordinates. A rather lengthy calculation
based on the chain-differentiation rule yields

d

dt

@L

@Pqi
D
@L

@qi
; i D 1; : : : ; n ; (1.28)

that is, the Lagrange equations written in the qi coordinates. Specifically, (1.28)
turns out to be the Lagrange equations of the functional

SŒq� D
Z b

a
L.q; Pq; t/ dt : (1.29)

This result is very important because it shows that the Lagrange equations are
invariant under a change of coordinates of the type (1.26).

The solution of (1.28) provides the time evolution of the coordinates qi describing
the particles’ motion. As (1.28) are n second-order equations, to determine their
solution it is necessary to specify at t D a the values of the n functions qi and
of the correspondent derivatives Pqi, namely, a total of 2 n constants. The function
pi D @L=@Pqi is called generalized momentum or conjugate momentum of qi. From
this definition and from (1.28) it follows

pi D
@L

@Pqi
; Ppi D

@L

@qi
; i D 1; : : : ; n : (1.30)

The derivative Ppi is called generalized force. Due to the definitions (1.30), the
generalized momentum and force depend on the same coordinates as the Lagrangian
function, namely, pi D pi.q; Pq; t/, Ppi D Ppi.q; Pq; t/.

1.5 Hamiltonian Function

From (1.30) one derives the following expression of the total derivative with respect
to time of the Lagrangian function:

dL

dt
D
@L

@t
C

nX

iD1

�
@L

@qi
Pqi C

@L

@Pqi
Rqi

�
D
@L

@t
C

nX

iD1

.Ppi Pqi C pi Rqi/ : (1.31)

The quantity in parentheses in (1.31) is the time derivative of pi Pqi, so that

@L

@t
D �

dH

dt
; H D

nX

iD1

pi Pqi � L : (1.32)
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The quantity H defined by (1.32) is called Hamiltonian function. Remembering the
derivation of the Lagrangian function one observes that L, H, and pi Pqi have the units
of an energy. In turn, the product energy � time is called action. In particular, the
functional (1.29) is called action integral [56, Chap. 8]. From the above observation
it follows that qi pi has the units of an action in all coordinate sets.

By way of example one takes the single-particle Lagrangian functions (1.12)
and (1.18), where the Cartesian coordinates are used. The momentum conjugate to
xi is given, respectively, by

L D
1

2
mu2 � V ! pi D m ui ; L D

1

2
mu2 � e' C eu � A! pi D mui C eAi :

(1.33)
The expression of H is found from (1.32) after introducing the vector p D
.p1; p2; p3/ and indicating its modulus with p. For the case L D mu2=2 � V one
finds

H D
1

2
mu2 C V D

1

2m
p2 C V ; (1.34)

while the case L D mu2=2 � e' C eu � A yields

H D
1

2
mu2 C e' D

1

2m
jp � eAj2 C e' : (1.35)

Still using the Cartesian coordinates, (1.34) is readily extended to the case of a
system of particles having n degrees of freedom. The force acting on the i th degree
of freedom at time t is given by a generalization of (1.10),

mi Pui D �
@V

@xi
; (1.36)

where the time derivative is calculated at t and the x1; : : : ; xn coordinates appearing
in V are calculated at t as well. For the sake of simplicity the coordinate index i is
also used to distinguish the masses in (1.36). It is implied that the same value of
mi must be applied to the indices associated with the same particle. The Lagrangian
function is calculated in the same manner as in Sect. 1.3 and reads

L D
nX

iD1

1

2
miu

2
i � V.r; t/ ; pi D miui ; (1.37)

whence

H D
nX

iD1

1

2
miu

2
i C V.r; t/ D

nX

iD1

1

2mi
p2i C V.r; t/ : (1.38)
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Comparing the two forms of H shown in (1.38), one notes that the second of (1.37)
is exploited to express the Hamiltonian function in terms of the r, p sets instead of
the r, u sets. This procedure is generalized in Sect. 1.6.

1.6 Hamilton Equations

As the Lagrangian function depends on q, Pq, and t, the generalized momentum pi

defined by (1.30) depends on the same variables at most. It is useful to consider also
the inverse relations, where the generalized velocities Pqi are expressed in terms of
q, p, and t. The two sets of relations are

8
<̂

:̂

p1 D p1.q1; Pq1 ; : : : ; qn; Pqn ; t/
:::

pn D pn.q1; Pq1 ; : : : ; qn; Pqn ; t/

8
<̂

:̂

Pq1 D Pq1.q1; p1 ; : : : ; qn; pn ; t/
:::

Pqn D Pqn.q1; p1 ; : : : ; qn; pn ; t/

(1.39)

A simple example is given by the two cases of (1.33). Letting qi D xi, Pqi D ui,
the first case gives (1.39) the form pi D m Pqi and Pqi D pi=m, while the second one
gives (1.39) the form pi D m Pqi C e Ai.q; t/ and Pqi D Œpi � e Ai.q; t/�=m.

Introducing the second of (1.39) into the definition (1.32) of the Hamiltonian
function expresses the latter in terms of q, p, and t. The derivatives of the
Hamiltonian function with respect to the new variables qi, pi are very significant.
In fact, for any index r one finds

@H

@qr
D

nX

iD1

pi
@Pqi

@qr
�

 
@L

@qr
C

nX

iD1

@L

@Pqi

@Pqi

@qr

!

D �
@L

@qr
D �Ppr : (1.40)

The two sums in (1.40) cancel each other thanks to the first of (1.30), while the last
equality is due to the second of (1.30). The derivative with respect to pr is found by
the same token,

@H

@pr
D

 

Pqr C

nX

iD1

pi
@Pqi

@pr

!

�

nX

iD1

@L

@Pqi

@Pqi

@pr
D Pqr : (1.41)

The results of (1.40, 1.41) are condensed in the Hamilton equations

Pqi D
@H

@pi
; Ppi D �

@H

@qi
; i D 1; : : : ; n ; (1.42)

that provide a set of 2n differential equations of the first order in the 2n independent
unknowns q1; : : : ; qn, p1; : : : ; pn. It is important to note that from (1.42) one readily
derives the following:
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@Pqi

@qi
C
@Ppi

@pi
D

@2H

@qi@pi
�

@2H

@pi@qi
D 0 : (1.43)

The Hamilton equations (1.42) provide the time evolution of the generalized coor-
dinates qi; as a consequence, they are equivalent to the Lagrange equations (1.28).
Another way of obtaining the Hamilton equations is to derive them as the extremum
equations of a suitable functional. This is shown in Sect. 1.7.

In contrast to the Lagrange equations (1.28), that are n second-order differential
equations, the Hamilton equations (1.42) are 2n, first-order differential equations.
To determine the solution of the latter it is necessary to prescribe the values of the
2n unknowns q1; : : : ; qn, p1; : : : ; pn at the initial time t D a, that is, 2n constants.
Therefore, the number of constants to be prescribed is the same as for the Lagrange
equations. The independent functions q1; : : : ; qn, p1; : : : ; pn are called canonical
coordinates. For each index i the functions qi; pi are called conjugate coordinates.
Thanks to (1.42) the total derivative of H reads

dH

dt
D
@H

@t
C

nX

iD1

�
@H

@pi
Ppi C

@H

@qi
Pqi

�
D
@H

@t
D �

@L

@t
; (1.44)

where the last equality derives from the first of (1.32). If the Lagrangian function
does not depend explicitly on time it follows dH=dt D 0, namely, H is a constant of
motion. Its value is fixed by the values of the canonical coordinates at the initial time
t D a. From (1.44) it also follows that dH=dt D 0 is equivalent to @H=@t D 0. In
other terms, the Hamiltonian function is a constant of motion if it does not depend
explicitly on time, and vice versa.

If the Lagrangian function does not depend on one of the coordinates, say, qr,
the latter is called cyclic or ignorable. From the second of (1.30) it follows that if
qr is cyclic, its conjugate momentum pr is a constant of motion. Moreover, due to
the second of (1.42) it is @H=@qr D 0, namely, the Hamiltonian function does not
depend on qr either.

1.7 Time–Energy Conjugacy—Hamilton-Jacobi Equation

Equations (1.42) can also be derived as the extremum equations of a functional.
To show this it suffices to replace the Lagrangian function taken from the second
of (1.32) into the functional (1.29), thus yielding

S D
Z b

a

 
nX

iD1

pi Pqi � H

!

dt : (1.45)

Using in (1.45) the expressions of the generalized velocities given by the second
of (1.39), the integrand becomes a function of qi, pi, and t. Then, the extremum
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equations are found by introducing the variations in the coordinates, that become
qiC˛i�i. Like in the case of (1.1) it is assumed that �i vanishes at a and b. Similarly,
the conjugate momenta become pi C ˇi�i. Differentiating (1.45) with respect to ˛i

or ˇi yields, respectively,

@S

@˛i
D

Z b

a

�
.pi C ˇi�i/ P�i �

@H

@.qi C ˛i�i/
�i

�
dt ; (1.46)

@S

@ˇi
D

Z b

a

�
.Pqi C ˛i P�i/ �i �

@H

@.pi C ˇi�i/
�i

�
dt : (1.47)

Letting ˛1 D : : : D ˇn D 0 in (1.46, 1.47), integrating by parts the term containing
P�i, and using the condition �i.a/ D �i.b/ D 0 provide

�
@S

@˛i

�

0

D �

Z b

a

�
Ppi C

@H

@qi

�
�i dt ;

�
@S

@ˇi

�

0

D

Z b

a

�
Pqi �

@H

@pi

�
�i dt :

(1.48)
As in Sect. 1.2 the equations for the extremum functions are found by letting
.@S=@˛i/0 D 0, .@S=@ˇi/0 D 0. Such equations coincide with (1.42). It is worth
observing that as no integration by part is necessary for obtaining the second
of (1.48), the derivation of (1.42) does not require any prescription for the boundary
conditions of �i. On the other hand, considering that in the Hamilton equations qi

and pi are independent variables, one can add the prescription �i.a/ D �i.b/ D 0.
Although the latter is not necessary here, it becomes useful in the treatment of the
canonical transformations, as shown in Sect. 2.2.

In the coordinate transformations discussed so far, time was left unchanged. This
aspect is not essential: in fact, within the coordinate transformation one can replace t
with another parameter that depends single-valuedly on t. This parameter, say, �.t/,
is equally suitable for describing the evolution of the particles’ system; proceeding
in this way transforms (1.45) into

S D
Z �.b/

�.a/

 
nX

iD1

pi Pqi
dt

d�
� H

dt

d�

!

d� D
Z �.b/

�.a/

 
nX

iD1

piq
0
i � H t0

!

d� ; (1.49)

where the primes indicate the derivatives with respect to � . Now, letting qnC1 D t,
pnC1 D �H, the Lagrangian function is recast in the more compact form L DPnC1

iD1 piq0i. Remembering the definition (1.30) of the conjugate momenta, it follows
that the latter becomes pi D @L=@q0i. In conclusion, the negative Hamiltonian
function is the momentum conjugate to � . This result is not due to any particular
choice of the relation �.t/, hence it holds also for the identical transformation � D t;
in other terms, �H is the momentum conjugate to t.

If the upper limit b in the action integral S (Eq. (1.29)) is considered as a variable,
the Lagrangian is found to be the total time derivative of S. Letting b  t, from
the (1.45) form of S one derives its total differential
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dS D
nX

iD1

pi dqi � H dt : (1.50)

As a consequence it is pi D @S=@qi, H D �@S=@t. Remembering that H depends on
the generalized coordinates and momenta, and on time, one may abridge the above
findings into the relation

@S

@t
C H

�
q1; : : : ; qn ;

@S

@q1
; : : : ;

@S

@qn
; t

�
D 0 ; pi D

@S

@qi
; (1.51)

that is, a partial-differential equation in the unknown function S. The former is
called Hamilton-Jacobi equation, while the latter in this context is called Hamilton’s
principal function. As (1.51) is a first-order equation in the n C 1 variables
q1; : : : ; qn; t, the solution S contains n C 1 integration constants. One of them is
an additive constant on S, as is easily found by observing that (1.51) contains the
derivatives of S, not S itself. For this reason the additive constant is irrelevant and
can be set to zero, so that the integration constants reduce to n. It is shown in
Sect. 2.2 that (1.51) provides the time evolution of the generalized coordinates qi. As
a consequence it is equivalent to the Lagrange equations (1.28) and to the Hamilton
equations (1.42) for describing the system’s dynamics.

1.8 Poisson Brackets

Let %, � be arbitrary functions of the canonical coordinates, differentiable with
respect to the latter. The Poisson bracket of % and � is defined as the function3

Œ%; �� D

nX

iD1

�
@%

@qi

@�

@pi
�
@%

@pi

@�

@qi

�
: (1.52)

From (1.52) it follows Œ%; �� D � Œ�; %�, Œ%; %� D 0: Also, due to (1.42) it is

d%

dt
D
@%

@t
C Œ%;H� : (1.53)

Letting % D H shows that (1.44) is a special case of (1.53). If % is a constant of
motion, then

3The definition and symbol (1.52) of the Poisson bracket conform to those of [56, Sect. 9-5]. In
[84, Sect. 42], instead, the definition has the opposite sign and the symbol f%; �g is used. In [136,
Sect. 11] the definition is the same as that adopted here, while the symbol f%; �g is used.
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@%

@t
C Œ%;H� D 0 : (1.54)

If % does not depend explicitly on time, (1.53) yields

d%

dt
D Œ%;H� (1.55)

where, in turn, the right-hand side is equal to zero if % is a constant of motion, while
it is different from zero in the other case. Special cases of the Poisson bracket are

�
qi; qj

�
D 0 ;

�
pi; pj

�
D 0 ;

�
qi; pj

�
D ıij ; (1.56)

with ıij the Kronecker symbol (A.18). Other interesting expressions are found by
introducing the 2 n-dimensional vectors s, e defined as

s D

2

66
666666
6
4

q1
:::

qn

p1
:::

pn

3

77
777777
7
5

; e D

2

66
666666
6
4

@H=@p1
:::

@H=@pn

�@H=@q1
:::

�@H=@qn

3

77
777777
7
5

: (1.57)

Using the definitions in (1.57) one finds

Ps D e ; divs Ps D
nX

iD1

�
@Pqi

@qi
C
@Ppi

@pi

�
D 0 ; (1.58)

the first of which expresses the Hamilton equations (1.42) in vector form, while
the second one derives from (1.43). The symbol divs indicates the divergence with
respect to all the variables that form vector s (Sect. A.3). Now, taking an arbitrary
function % like that used in (1.53) and calculating the divergence of the product % Ps
yields, thanks to (1.58) and to (A.16, A.12),

divs.% Ps/ D % divs PsC Ps � grads% D

nX

iD1

�
@%

@qi
Pqi C

@%

@pi
Ppi

�
D Œ%;H� : (1.59)

1.9 Phase Space and State Space

Given a system of particles having n degrees of freedom it is often convenient to
describe its dynamic properties by means of a geometrical picture. To this purpose
one introduces a 2n-dimensional space whose coordinates are q1; : : : ; qn, p1; : : : ; pn.
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This space has no definite metrical structure; one simply assumes that qi and pi are
plotted as Cartesian coordinates of an Euclidean space [82, Chap. 6-5]. Following
Gibbs, the space thus defined is often called phase space. However, it is convenient
to better specify the terminology by using that of Ehrenfest, in which the term
”-space is used for this space (the citations of Gibbs and Ehrenfest are in [136,
Sect. 17]). At some instant t the whole set of canonical coordinates q1; : : : ; qn,
p1; : : : ; pn corresponds to a point of the ”-space. Such a point is called phase point.
In turn, the state of a mechanical system at some instant t is defined as the set of its
canonical coordinates at that instant. It follows that the phase point represents the
dynamic state of the system at t. As time evolves, the phase points representing the
state at different instants provide a curve of the ”-space called phase trajectory.

A generalization of the ”-space is obtained by adding the time t as a .2n C
1/th coordinate. The .2nC 1/-dimensional space thus obtained is called state space
[82, Chap. 6-5]. The curve of the state space describing the system’s dynamics is
called state trajectory. Consider two systems governed by the same Hamiltonian
function and differing only in the initial conditions. The latter are represented by
two distinct points of the 2n-dimensional section of the state space corresponding
to t D 0. The subsequent time evolution of the two systems provides two state
trajectories that never cross each other. In fact, if a crossing occurred at, say, t D Nt,
the canonical coordinates of the two Hamiltonian functions would be identical there,
thus making the initial conditions of the subsequent motion identical as well. As a
consequence, the two state trajectories would coincide for t � Nt. However, the same
reasoning holds when considering the motion backward in time (t � Nt). Thus, the
two trajectories should coincide at all times, thus contradicting the hypothesis that
the initial conditions at t D 0 were different.

A similar reasoning about the crossing of trajectories is possible in the ”-
space. The conclusion is that the phase trajectories do not cross each other if the
Hamiltonian function does not depend explicitly on time. Instead, they may cross
each other if the Hamiltonian function depends on time; the crossing, however,
occurs at different times (in other terms, the set of canonical coordinates of the
first system calculated at t D t1 may coincide with the set of canonical coordinates
of the second system calculated at t D t2 only in the case t2 ¤ t1).

Despite of the larger number of dimensions, the adoption of the state space is
convenient for the geometrical representation of the system’s dynamics, because a
trajectory is uniquely specified by the initial point and no crossing of trajectories
occurs. With the provision stated above, this applies also to the ”-space. In contrast,
consider a geometrical picture of the Lagrangian type, in which the generalized
coordinates q1; : : : ; qn only are used. The latter may be considered as the Cartesian
coordinates of an n-dimensional Euclidean space called configuration space. To
specify a trajectory in such a space it is necessary to prescribe the position q1; : : : ; qn

and velocity Pq1; : : : ; Pqn of the system at t D 0. If one considers two or more systems
differing only in the initial conditions, the motion of each system could start from
every point of the configuration space and in every direction. As a consequence,
it would be impossible to obtain an ordered picture of the trajectories, which will
inevitably cross each other.
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As mentioned above, the ”-space for a system having n degrees of freedom is a
2n-dimensional space whose coordinates are q1; : : : ; qn, p1; : : : ; pn. It is sometimes
convenient to use a different type of phase space whose dimension is twice the
number of degrees of freedom possessed by each of the system’s particles. To
specify this issue, consider the case of a system made of N point-like particles, with
no constraints. In this case each particle (say, the jth one) has 3 degrees of freedom
and its dynamic state at the time t is determined by the 6 canonical coordinates
Nq1j; Nq2j; Nq3j, Np1j; Np2j; Np3j. Together, the latter identify a point Xj of a 6-dimensional
phase space called 
-space.4 At the time t the system as a whole is represented in
the 
-space by the set of N points X1; : : : ;XN .

1.10 Complements

1.10.1 Higher-Order Variational Calculus

The variational calculus described in Sect. 1.2 can be extended to cases where the
function g in (1.1) depends on derivatives of a higher order than the first. Consider
for instance the functional

GŒw� D
Z b

a
g.w; Pw; Rw; / d : (1.60)

Following the procedure of Sect. 1.2 and assuming that the derivative P� vanishes at a
and b yield the following differential equation for the extremum functions of (1.60):

�
d2

d2
@g

@ Rw
C

d

d

@g

@ Pw
D
@g

@w
: (1.61)

1.10.2 Lagrangian Invariance and Gauge Invariance

It is shown in Sect. 1.2 that the extremum functions wi./ are invariant under
addition to g of the total derivative of an arbitrary function h that depends on
w and  only (refer to Eq. (1.8)). Then, it is mentioned in Sect. 1.3.2 that the E
and B fields are invariant under the gauge transformation (1.19), where h.r; t/ is
an arbitrary function. These two properties have in fact the same origin, namely,
the description based upon a Lagrangian function. In fact, as shown in Sect. 4.2, a
Lagrangian description is possible also in the case of a system having a continuous
distribution of the degrees of freedom like, for instance, the electromagnetic field.

4The letter “
” stands for “molecule,” whereas the letter “”” in the term “”-space” stands for “gas.”
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1.10.3 Variational Calculus with Constraints

In several problems it is required that the function w, introduced in Sect. 1.2 as the
extremum function of functional (1.1), be able to fulfill one or more constraints. By
way of example consider the constraint

G0 D

Z b

a
g0.w; Pw; / d ; (1.62)

where the function g0 and the number G0 are prescribed. A typical case where (1.62)
occurs is that of finding the maximum area bounded by a perimeter of given
length (Dido’s problem). For this reason, extremum problems having a constraint
like (1.62) are called isoperimetric even when they have no relation with geometry
[143, Par. 4-1].

To tackle the problem one extends the definition of the variation of w by letting
ıw D ˛1�1C˛2�2, where �1./, �2./ are arbitrary functions that are differentiable
in the interior of Œa; b� and fulfill the conditions �1.a/ D �1.b/ D 0, �2.a/ D
�2.b/ D 0. If w is an extremum function of G that fulfills (1.62), replacing w with
wCıw transforms (1.1, 1.62) to a pair of functions of the ˛1, ˛2 parameters, namely,

G D G.˛1; ˛2/ ; G0.˛1; ˛2/ D G0.0; 0/ D const. (1.63)

The first of (1.63) has an extremum at ˛1 D ˛2 D 0, while the second one
establishes a relation between ˛1 and ˛2. The problem is thus reduced to that of
calculating a constrained extremum, and is solved by the method of the Lagrange
multipliers, described in Sect. B.6. For this, one considers the function G� D

G.˛1; ˛2/ C �G0.˛1; ˛2/, with � an indeterminate parameter, and calculates the
free extremum of G� by letting

�
@G�

@˛1

�

0

D 0 ;

�
@G�

@˛2

�

0

D 0 ; (1.64)

where index 0 stands for ˛1 D ˛2 D 0. The rest of the calculation is the same
as in Sect. 1.2; the two relations (1.64) turn out to be equivalent to each other and
provide the same Euler equation. More specifically, from the definition of G and G0

as integrals of g and g0 one finds that the Euler equation of this case is obtained
from that of Sect. 1.2 by replacing g with g� D gC �g0:

d

d

@g�
@ Pw
D
@g�
@w

: (1.65)

As (1.65) is a second-order equation, its solution w contains two integration
constants. The � multiplier is an additional indeterminate constant. The three
constants are found from the constraint (1.62) and from the two relations provided
by the boundary or initial conditions of w.
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1.10.4 An Interesting Example of Extremum Equation

Consider the Hamilton-Jacobi equation (1.51) for a single particle of mass m. Using
the Cartesian coordinates and a Hamiltonian function of the form

H D
p2

2m
C V.x1; x2; x3; t/ ; p2 D p21 C p22 C p23 ; (1.66)

the Hamilton-Jacobi equation reads

@S

@t
C
j grad Sj2

2m
C V.x1; x2; x3; t/ D 0 ; pi D

@S

@qi
: (1.67)

If V is independent of time, then H D E and the separation S D W � E t (Sect. 2.4)
yields @S=@t D �E, grad S D grad W D p. It follows

j grad Wj2

2m
C V.x1; x2; x3/ D E : (1.68)

Both Hamilton’s principal (S) and characteristic (W) functions have the dimensions
of an action and are defined apart from an additive constant. Also, the form of
j grad Wj is uniquely defined by that of V � E. In turn, E is prescribed by the initial
conditions of the particle’s motion.

Consider now the case where E � V within a closed domain � whose boundary
is @�. As grad W is real, the motion of the particle is confined within�, and grad W
vanishes at the boundary @�. The Hamilton-Jacobi equation for W (1.68) is recast
in a different form by introducing an auxiliary function w such that

w D w0 exp.W=�/ ; (1.69)

with � a constant having the dimensions of an action. The other constant w0 is used
for prescribing the dimensions of w. Apart from this, the choice of w0 is arbitrary
due to the arbitrariness of the additive constant of W. Taking the gradient of (1.69)
yields � grad w D w grad W, with w ¤ 0 due to the definition. As grad W vanishes
at the boundary, grad w vanishes there as well. As a consequence, w is constant over
the boundary. Inserting (1.69) into (1.68) yields

�2

2m

j grad wj2

w2
C V.x1; x2; x3/ D E ; (1.70)

which determines j grad w=wj as a function of V � E. Rearranging the above and
observing that div.w grad w/ D wr2wC j grad wj2 (Sect. A.1) provides

�2

2m

�
div.w grad w/ � wr2w

�
C .V � E/w2 D 0 : (1.71)
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Integrating (1.71) over � and remembering that grad w vanishes at the boundary,

Z

�

w

�
�
�2

2m
r2wC .V � E/w

�
d� D 0 : (1.72)

The term in brackets of (1.72) does not necessarily vanish. In fact, the form of w is
such that only the integral as a whole vanishes. On the other hand, by imposing that
the term in brackets vanishes, and replacing � with the reduced Planck constant „,
yield

�
„2

2m
r2wC .V � E/w D 0 ; (1.73)

namely, the Schrödinger equation independent of time (7.44). This result shows that
the Schrödinger equation derives from a stronger constraint than that prescribed by
the Hamilton-Jacobi equation.

An immediate consequence of replacing the integral relation (1.72) with the
differential equation (1.73) is that the domain of w is not limited any more by
the condition E � V , but may extend to infinity. Another consequence is that if
the boundary conditions are such that w vanishes over the boundary (which, as
said above, may also be placed at infinity), then (1.73) is solvable only for specific
values of E, that form its spectrum of eigenvalues. Moreover it can be demonstrated,
basing on the form of the Schrödinger equation, that the condition E � Vmin must
be fulfilled (Sect. 8.2.3).

It is interesting to note another relation between the Schrödinger and the
Hamilton-Jacobi equations. For the sake of simplicity one takes the one-dimensional
case of the Hamilton-Jacobi equation expressed in terms of w (1.70):

�2

2m
.w0/2 C V.x/w2 D E w2 ; (1.74)

where the prime indicates the derivative with respect to x. The left-hand side of the
equation may be considered the generating function g D g.w;w0; x/ of a functional
G, defined over an interval of the x axis that may extend to infinity:

GŒw� D
Z b

a

�
�2

2m
.w0/2 C V w2

�
dx : (1.75)

One then seeks the extremum function w of G that fulfills the constraint

G0Œw� D
Z b

a
w2 dx D 1 : (1.76)

The problem is solved by the method of 1.10.3, namely, by letting g0 D w2,
gE D g � E g0, and applying the Euler equation to gE:
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d

dx

@gE

@w0
D

d

dx

�2

m
w0 D

�2

m
w00 ;

@gE

@w
D 2 .V � E/ w ; (1.77)

showing that the Schrödinger equation is actually the Euler equation of the
functional G subjected to the constraint G0, with the eigenvalue E provided by
the Lagrange multiplier. This result holds also in the higher-dimensional cases
(Prob. 1.6), and is in fact the method originally used by Schrödinger to determine
the time-independent equation [118, Eqs. (23,24)].

1.10.5 Constant-Energy Surfaces

Consider the ”-space for a system having n degrees of freedom (Sect. 1.9). If the
system is conservative, the relation H.q1; : : : ; qn, p1; : : : ; pn/ D E introduces a
constraint among the canonical coordinates. Due to this, at each instant of time the
latter must belong to the .2n � 1/-dimensional surface H D E of the phase space,
that is called constant-energy surface. As E is prescribed by the initial conditions,
the phase point of a conservative system always belongs to the same constant-energy
surface.

For a system having one degree of freedom the relation describing the constant-
energy surface reduces to H.q; p/ D E that describes a curve in the q p plane. The
corresponding state trajectory is a curve of the three-dimensional q p t space.

Problems

1.1 In the xy plane find the geodesic y D y.x/ through the points A 	 .a; ya/,
B 	 .b; yb/, A ¤ B.

1.2 Given the Hamiltonian function H D p2=.2m/ C .c=2/ x2, m; c > 0 (that
describes the linear harmonic oscillator, Sect. 3.3), find the constant-energy curves
of the x p plane corresponding to different values of the total energy E.

1.3 Given the Hamiltonian function of the harmonic oscillator of the general form
H D p2=.2m/ C .c=s/ jxjs, m; c; s > 0, find the constant-energy curves of the x p
plane corresponding to a fixed total energy E and to different values of parameter s.

1.4 Draw the state trajectory of a linear harmonic oscillator.

1.5 With reference to the harmonic oscillator of the general form used in Prob. 1.3,
draw the state trajectory in the s ! 1 limit. Hint: from the analysis of Prob. 3.1
it turns out that the problem reduces to describing the motion of a particle within a
square well.

1.6 Extend to the three-dimensional case the derivation of the Schrödinger equa-
tion (1.77) from a Hamilton-Jacobi equation subjected to a constraint. Hint: use the
results of Sect. 4.2.



Chapter 2
Coordinate Transformations and Invariance
Properties

2.1 Introduction

An important generalization of the subject of coordinate transformation is that of
canonical transformation, which leads to the concept of generating function and,
through it, to the definition of the principal function and characteristic function
of Hamilton. The principal function is found to coincide with the solution of the
Hamilton-Jacobi equation introduced in the previous chapter, thus showing the
equivalence of the approach based on the variational principles with that based on
the canonical transformations. Connected with the Hamiltonian formalism is also
the important concept of separability. Still based on Hamilton’s principal function is
the concept of phase velocity applied to a mechanical system, that brings about an
analogy with the electromagnetic theory. The aspects mentioned above give another
indication about the generality that is reached by the formalism of Analytical
Mechanics illustrated in this part of the book.

Another fundamental issue is that of the invariance properties of the mechanical
systems. It is shown that, basing only on the observation of symmetries possessed by
the Lagrangian function or other functions connected to it, one derives the existence
of invariance properties of the system. Among these are the constants of motion,
namely, the dynamic properties that are constant in time and are therefore known
from the motion’s initial condition.

Of special relevance among the constants of motion are the total energy, the total
momentum, and the total angular momentum of the system. The conservation of
the total energy is related to the uniformity of time, that of the total momentum is
related to the uniformity of space, and, finally, that of the total angular momentum
is related to the isotropy of space. Besides the theoretical interest connected to it,
the knowledge of a constant of motion is important also for practical purposes: by
introducing a known constraint among the canonical coordinates, it is of use in the
separation procedure.
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This chapter completes the illustration of the basic principles of Analytical
Mechanics started in the previous one. The purpose of the two chapters is to
introduce a number of concepts that are not only useful per se, but also constitute a
basis for the concepts of Quantum Mechanics that are introduced in later chapters.
The first subject is that of the canonical transformations, followed by the definition
and properties of the Hamilton characteristic function and of the phase velocity.
Then, the invariance properties that derive from the symmetries of the Lagrangian
function are discussed. The chapter continues with a short description of the
Maupertuis principle and of the expression of the angular momentum in spherical
coordinates. The last paragraphs deal with the linear motion and the action-angle
variables.

2.2 Canonical Transformations

Section 1.4 introduced the generalized coordinates q1; : : : ; qn that are defined by
the first of (1.26) starting from a set of Cartesian coordinates x1; : : : ; xn. From
this, one defines the generalized velocities Pqi and, from the second of (1.26),
calculates the Lagrangian function in the new variables L.q; Pq; t/. The conjugate
momenta pi are derived from the latter using the first of (1.30) and, finally, the
new Hamiltonian function is determined from the second of (1.32). From this, the
Hamilton equations (1.42) in the new coordinates are deduced. The process depicted
here is a series of replacement, elimination, and differentiation steps.

Relations like (1.26), that transform a set of coordinates into another one, are
called point transformations. It has been observed in Sect. 1.6 that the canonical
coordinates q1; : : : ; qn, p1; : : : ; pn are mutually independent. It follows that the point
transformations are not the most general coordinate transformations, because they
act on the q1; : : : ; qn only. The most general transformations act simultaneously on
the generalized coordinate and momenta, hence they have the form

8
ˆ̂̂
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
ˆ̂̂
:̂

Qq1 D Qq1.q1 ; : : : ; qn ; p1 ; : : : ; pn ; t/
:::

Qqn D Qqn.q1 ; : : : ; qn ; p1 ; : : : ; pn ; t/
Qp1 D Qp1.q1 ; : : : ; qn ; p1 ; : : : ; pn ; t/
:::

Qpn D Qpn.q1 ; : : : ; qn ; p1 ; : : : ; pn ; t/

(2.1)

where qi; pi indicate the old canonical coordinates and Qqi; Qpi indicate the new ones. If
H is the Hamiltonian function in the old coordinates, introducing into H the inverse
transformations of (2.1) yields a function QH that depends on the new coordinates
and on time.
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For an arbitrary choice of the form of (2.1) it is not possible in general to deduce
from QH the Hamilton equations in the new coordinates. For this it is in fact necessary
to limit the choice of the transformation (2.1) to the cases where the resulting QH is a
Hamiltonian function proper, namely, it is such that

dQqi

dt
D
@ QH

@Qpi
;

dQpi

dt
D �

@ QH

@Qqi
; i D 1; : : : ; n : (2.2)

are fulfilled. The transformations (2.1) that make (2.2) to hold are called canonical
transformations. The procedure by which the Hamilton equations in the old
coordinates are found has been illustrated in Sect. 1.6 and is based on the derivation
of the extremum equation of the action integral (1.45). To obtain (2.2) the same
calculation must be repeated based on the action integral defined in the new
coordinates. It follows that for two sets of coordinates qi; pi and Qqi; Qpi connected
by a canonical transformation, the following must hold simultaneously:

S D
Z b

a

 
nX

iD1

pi
dqi

dt
� H

!

dt ; QS D
Z b

a

 
nX

iD1

Qpi
dQqi

dt
� QH

!

dt : (2.3)

The difference between the two integrals in (2.3) can be set equal to an arbitrary
constant because the calculation uses only the variations of S or QS. As the limits of
the two integrals are fixed to the same values a and b, the constant can in turn be
written as the integral between a and b of the total time derivative of an arbitrary
function K. In this way the relation between the two integrands in (2.3) reads

nX

iD1

pi
dqi

dt
� H D

nX

iD1

Qpi
dQqi

dt
� QH C

dK

dt
: (2.4)

It is worth reminding that in the derivation of the Hamilton equations in Sect. 1.7 it
is assumed that all variations of generalized coordinates and momenta vanish at the
integration limits. Here this applies to both the old and new sets of coordinates. As
a consequence, K can be made to depend on all 4 n coordinates qi, pi, Qqi, Qpi, and on
time t. Due to the 2 n relations (2.1) that define the canonical transformation, only
2 n coordinates are independent. As a consequence K can be made to depend on 2 n
coordinates chosen among the 4 n available ones, and on time. The most interesting
cases are those where K has one of the following forms [56, Sect. 9-1]:

K1 D K1.q; Qq; t/ ; K2 D K2.q; Qp; t/ ; K3 D K3.p; Qq; t/ ; K4 D K4.p; Qp; t/ :
(2.5)

By way of example, select the first form: replacing K1 into (2.4), calculating dK1=dt,
and multiplying both sides by dt yield
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nX

iD1

�
@K1
@qi
� pi

�
dqiC

nX

iD1

�
@K1
@Qqi
C Qpi

�
dQqiC

�
@K1
@t
C H � QH

�
dt D 0 ; (2.6)

where the left-hand side is a total differential in the independent variables qi, Qqi,
and t. To fulfill (2.6) the parentheses must vanish independently from each other,
whence

pi D
@K1
@qi

; Qpi D �
@K1
@Qqi

; QH D H C
@K1
@t

; i D 1; : : : ; n : (2.7)

As K1 is prescribed, the first two equations in (2.7) provide 2 n relations involving
the 4 n coordinates qi, pi, Qqi, Qpi, that constitute the canonical transformations sought.
Using the latter one expresses the right-hand side of the third of (2.7) in terms of
Qqi, Qpi, thus yielding the new Hamiltonian function QH. Qq; Qp; t/. The procedure is the
same for the other functions listed in (2.5), that can all be defined starting from K1.
In fact, letting

K2.q; Qp; t/ D K1.q; Qq; t/C
nX

iD1

Qpi Qqi ; (2.8)

and applying the same procedure used to determine (2.7) yield

pi D
@K2
@qi

; Qqi D
@K2
@Qpi

; QH D H C
@K2
@t

; i D 1; : : : ; n : (2.9)

In (2.8) the independent variables are qi, Qpi, so that the coordinates Qqi are expressed
through them. Similarly, when K3 is used one lets

K3.p; Qq; t/ D K1.q; Qq; t/ �
nX

iD1

piqi ; (2.10)

to find

qi D �
@K3
@pi

; Qpi D �
@K3
@Qqi

; QH D H C
@K3
@t

; i D 1; : : : ; n : (2.11)

Finally, in the case of K4 one lets

K4.p; Qp; t/ D K1.q; Qq; t/C
nX

iD1

Qpi Qqi �

nX

iD1

piqi ; (2.12)
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whence

qi D �
@K4
@pi

; Qqi D
@K4
@Qpi

; QH D H C
@K4
@t

; i D 1; : : : ; n : (2.13)

Regardless of the choice of K, the relation between the old and new Hamiltonian
function is always of the form QH D H C @K=@t. As the canonical transformation is
completely determined when K is prescribed, the latter is called generating function
of the canonical transformation. Two interesting examples are those produced by
the generating functions F1 D

Pn
iD1 qi Qqi and F2 D

Pn
iD1 qi Qpi. Applying (2.7) to

F1 yields Qqi D pi and Qpi D �qi. As a consequence, the effect of the transformation
generated by F1 is that of exchanging the roles of the generalized coordinates and
momenta. This result shows that the distinction between coordinates and momenta
is not fundamental, namely, these two groups of variables globally constitute a
set of 2 n independent coordinates. Applying (2.9) to F2 provides the identical
transformation Qqi D qi, Qpi D pi. A generalization of this example is found using
F2 D

Pn
iD1 zi.q; t/Qpi, where zi are arbitrary functions. The new coordinates are in

this case Qqi D zi.q; t/ which, as indicated at the beginning of this section, are point
transformations. This example shows that all point transformations are canonical.

2.3 An Application of the Canonical Transformation

The discussion of Sect. 2.2 has shown that a canonical transformation based on an
arbitrary generating function K brings a Hamiltonian function H.q;p; t/ into a new
one QH. Qq; Qp; t/. One may then exploit the arbitrariness of K to obtain the form of QH
that is most convenient for solving the problem in hand. For instance, remembering
the definition of cyclic coordinate given in Sect. 1.6, one may seek a transformation
such that the new canonical coordinates Qqi ; Qpi are all cyclic. In this case, thanks
to (2.2), it is dQqi=dt D @ QH=@Qpi D 0, dQpi=dt D �@ QH=@Qqi D 0, namely, each new
canonical coordinate is a constant of motion.

The simplest way to obtain this result is to set the new Hamiltonian function
equal to zero. Remembering from Sect. 2.2 that in every canonical transformation
the relation between the old and new Hamiltonian function is QH D H C @K=@t,
one finds in this case the relation @K=@t C H D 0. To proceed it is convenient to
choose a generating function of the K2 D K2.q; Qp; t/ type in which, as noted above,
the new momenta Qpi are constants of motion. Given that the aim is to obtain the
relation QH D 0, the generating function of this problem is the particular function
of the coordinates qi, Qpi, and t, that fulfills the equation @K2=@t C H D 0. In
other terms, the generating function becomes the problem’s unknown. A comparison
with (1.51) shows that the equation to be solved is that of Hamilton-Jacobi, and that
K2 coincides with Hamilton’s principal function S.
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As mentioned in Sect. 1.7, (1.51) is a first-order, partial differential equation in
the unknown S and in the nC1 variables q1; : : : ; qn; t. As one of the nC1 integration
constants can be set to zero, the actual integration constants are n. This seems
contradictory because the Hamilton-Jacobi equation is expected to be equivalent
to those of Hamilton or Lagrange for the description of the system’s motion. As a
consequence, the number of constants involved should be 2 n. The contradiction is
easily removed by observing that n more constants appear in S, to be identified with
the new momenta Qp1; : : : ; Qpn: remembering the canonical transformations (2.9) to
be used in connection with the generating function of the K2 type one finds

pi D
@S

@qi
; Qqi D

@S

@Qpi
; i D 1; : : : ; n : (2.14)

Calculating the first of (2.14) at the initial time t D a yields a set of n algebraic
equations in the n unknowns Qp1; : : : ; Qpn. In fact, at t D a the old canonical
coordinates qi; pi are known because they are the problem’s initial conditions.
The solution of such algebraic equations yields the first set of motion’s constants
Qp1; : : : ; Qpn. Then, one considers the second of (2.14) at t D a, whose right-hand
sides, at this point of the procedure, are known. As a consequence, the second
of (2.14) yields the new generalized coordinates Qq1; : : : ; Qqn, that are the second set
of motion’s constants.

It is worth observing that the procedure depicted above provides also the
time evolution of the old canonical coordinates. In fact, after all constants
have been calculated, Eq. (2.14) forms 2 n relations in the 2 n C 1 variables
q1; : : : ; qn ; p1; : : : ; pn ; t. From them one extracts the relations q1 D q1.t/; : : : ; pn D

pn.t/. This shows that the Hamilton-Jacobi picture is equivalent to those based on
the Hamilton or Lagrange equations for the solution of the mechanical problem.

2.4 Separation—Hamilton’s Characteristic Function

The Hamilton-Jacobi equation (1.51) can be recast in a more symmetric form by
letting qnC1 D t and incorporating @S=@t D @S=@qnC1 into the other term:

C

�
q1; : : : ; qnC1 ;

@S

@q1
; : : : ;

@S

@qnC1

�
D 0 : (2.15)

Solving (2.15) becomes simpler if one of the coordinates, say qi, and the cor-
responding momentum pi D @S=@qi appear in (2.15) only through a relation
ci D ci.qi; @S=@qi/ that does not contain any other coordinate, nor derivatives with
respect to them, nor time. In this case qi is called separable coordinate and the
solution of (2.15) can be written as S D Si C Wi, where Si depends only on qi

and Wi depends on the other coordinates and time [84, Sect. 48]. Replacing this
expression of S into (2.15) and extracting ci yield a relation of the form Ci D ci with
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Ci D Ci

�
q1; : : : ; qi�1; qiC1; : : : ; qnC1 ;

@Wi

@q1
; : : : ;

@Wi

@qi�1
;
@Wi

@qiC1
; : : : ;

@Wi

@qnC1

�
;

ci D ci

�
qi;
@Si

@qi

�
: (2.16)

The equality Ci D ci must hold for any value of the coordinates. As this is possible
only if the two sides are constant, Ci D ci separates and yields the pair

ci

�
qi;
@Si

@qi

�
D ci0 ; (2.17)

C

�
q1; : : : ; qi�1; qiC1; : : : ; qnC1 ;

@Wi

@q1
; : : : ;

@Wi

@qi�1
;
@Wi

@qiC1
; : : : ;

@Wi

@qnC1
; ci0

�
D 0 ;

where C does not contain qi nor the corresponding derivative. The solution of the
first of (2.17) provides Si.qi/. The latter contains two constants, namely ci0 and
the integration constant. As noted earlier, the latter can be set to zero because an
additive constant on S is irrelevant. In conclusion, ci0 is the only constant that
remains after this step. In turn, the solution of the second of (2.17), which is an
n-variable differential equation, contains n more constant, one of which is additive
and can be disregarded. It follows that the total number of integration constants in
the set (2.17) is still n.

If all coordinates are separable one has S D
Pn

iD1 Si.qi/ and the problem is
solved by n individual integrations (an example is given in Sect. 3.10). In this case
one says that the Hamilton-Jacobi equation is completely separable. A special case
of separable coordinate is that of the cyclic coordinate. If qi is cyclic, in fact, (2.17)
reduces to @Si=@qi D ci0, whence Si D ci0qi and S D ci0qi C Wi. If the cyclic
coordinate is qnC1 D t, the above becomes

@SnC1

@t
D �E ; SnC1 D �E t ; (2.18)

where the symbol E is used for the constant cnC1;0. It is worth noting that the units
of E are always those of an energy regardless of the choice of the generalized
coordinates qi. Comparing (2.18) with (1.51) yields H D E D cost; consistently
with the hypothesis that H does not depend on t. Using the symbol W instead of
WnC1 provides the pair

H

�
q1; : : : ; qn ;

@W

@q1
; : : : ;

@W

@qn

�
D E ; S D W � Et ; (2.19)

that holds when H is a constant of motion. The first of (2.19) is a differential
equation in the generalized coordinates only, called time-independent Hamilton-
Jacobi equation. The unknown function W is called Hamilton’s characteristic
function.
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2.5 Phase Velocity

The dynamics of a mechanical system can be obtained from Hamilton’s principal
function S.q; Qp; t/ as shown in Sect. 2.3. After S has been determined it is possible to
build up an interesting geometrical construction, that is shown below. The indication
of the constants Qpi is omitted for the sake of conciseness.

To begin, fix the time t and let S.q; t/ D S0, where S0 is some constant. This
relation describes a surface belonging to the configuration space q1 ; : : : ; qn. Now
change the time by dt: the corresponding variation in S is obtained from (1.50) and
reads dS D

Pn
iD1 pidqi � Hdt D p � dq � Hdt. In this relation each component

pi D @S=@qi is calculated in terms of the coordinates q1 ; : : : ; qn at the instant t,
hence the vector p D gradqS is a function of q calculated at that instant. If q belongs
to the surface S D S0, then p is normal to the surface at q. Now let S0 D SCdS D S0,
where S0 is the same constant as before. The relation S0.q; t/ D S0 provides the new
surface into which S D S0 evolves in the interval dt. As both S D S0, SC dS D S0
hold, it must be dS D 0, namely, p � dq D Hdt.

When H has no explicit dependence on t, thanks to (2.19) the relation p � dq D
Hdt becomes p � dq D E dt, with p D gradqW. In this case, letting ' be the angle
between the vectors p and dq (whose moduli are indicated with p, dq), and excluding
the points where p D 0, one obtains

cos'
dq

dt
D

E

p
: (2.20)

The product cos' dq in (2.20) is the projection of dq over the direction of p, hence
it provides the variation of q in the direction normal to the surface S D S0. When
the Cartesian coordinates are used, the product cos' dq is a length and the left-hand
side of (2.20) is a velocity that provides the displacement of the point q during the
time interval dt and in the direction normal to the surface S D S0.

As shown above, the vector p is normal to the S D S0 surface at each point
of the latter. Consider for simplicity the case of a single particle of mass m in the
conservative case, and use the Cartesian coordinates; from p D m Pq one finds that at
each instant the surface S D S0 is normal to the particle’s trajectory. This makes the
surface S D S0 the analogue of the constant-phase surface found in the wave theory
(e.g., Sect. 5.9). For this reason, cos' dq=dt is called phase velocity.

Due to its definition, the phase velocity depends on the position q and is the
velocity with which each point of the S D S0 surface moves. It is worth adding that
the phase velocity does not coincide with the actual velocity of any of the system’s
particles. To show this it suffices to consider the single particle’s case with p D m Pq:
from (2.20) one finds that the modulus of the phase velocity is in fact inversely
proportional to that of the particle.
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2.6 Invariance Properties

A number of dynamic properties of the system of particles under consideration
can be inferred directly from the form of the Lagrangian or Hamiltonian function,
without the need of solving the motion’s equations. An example is the conservation
of the momentum conjugate to a cyclic coordinate (Sect. 1.6). Other properties are
discussed below.

2.6.1 Time Reversal

It is found by inspection that the expression (1.22) of the system’s kinetic energy in
Cartesian coordinates is invariant when t is replaced with�t (time reversal). A rather
lengthy calculation based on the chain-differentiation rule shows that this property
still holds after a coordinate transformation.

In some cases the whole Lagrangian function is invariant under time reversal.
This makes the Lagrange equations (1.28) invariant as well. Assume that (1.28) are
solved starting from a given initial condition at t D a to the final instant t D b. Then,
replace t with t0 D �t and solve the Lagrange equations again, using qi.t D b/ and
�Pqi.t D b/ as initial conditions. Letting q0i D dqi=dt0 D �Pqi, (1.28) become

d

d.�t0/

@L

@.�q0i/
D

d

dt0
@L

@q0i
D
@L

@qi
; i D 1; : : : ; n (2.21)

where, due to the hypothesis of invariance, the Lagrangian function is the same as
that used to describe the motion from t D a to t D b. It follows that the trajectories of
the second motion are equal to those of the first one. Moreover, the initial velocities
of the second motion, calculated at t0 D �b, are opposite to those of the first motion
at the same point. Due to the arbitrariness of b, at each point of a trajectory the
velocity described by the time t0 is opposite to that described by t. A motion having
this property is called reversible.

Taking the examples of Sect. 1.3 and remembering the form (1.12, 1.18) of the
corresponding Lagrangian functions one finds that, in the first example, the motion
is reversible if the potential energy V is invariant under time reversal, namely,
V.�t/ D V.t/, while in the second example the motion is reversible if '.�t/ D '.t/
and A.�t/ D �A.t/.

2.6.2 Translation of Time

Consider the case where the Hamiltonian function is invariant with respect to
translations of the origin of time. The invariance holds also for an infinitesimal
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translation dt, hence it is dH=dt D 0. In other terms H is a constant of motion. When
this happens, as illustrated in Sect. 1.6, the Lagrangian and Hamiltonian functions
have no explicit dependence on time, and vice versa.

2.6.3 Translation of the Coordinates

Another interesting case occurs when the Lagrangian function is invariant with
respect to translations of the coordinates’ origin. By way of example consider an
N-particle system with no constraints, whence n D 3N, and use the Cartesian
coordinates xjs. Here the first index is associated with the particles and the second
one with the axes. Then, choose an infinitesimal translation dh1 in the direction of
the first axis and, similarly, infinitesimal translations dh2 and dh3 in the other two
directions. Thus, each coordinate xj1, j D 1; : : : ;N within the Lagrangian function
is replaced by xj1 C dh1, and so on. The translation invariance then yields

dL D dh1

NX

jD1

@L

@xj1
C dh2

NX

jD1

@L

@xj2
C dh3

NX

jD1

@L

@xj3
D 0 : (2.22)

Each sum in (2.22) vanishes independently of the others due to the arbitrariness of
the translations. Taking the sum multiplying dh1 and using (1.28) yield

NX

jD1

@L

@xj1
D

NX

jD1

d

dt

@L

@Pxj1
D

d

dt

NX

jD1

pj1 D
dP1
dt
D 0 ; (2.23)

where P1 D
PN

jD1 pj1 is the first component of the total momentum

P D
NX

jD1

pj (2.24)

of the system of particles. The other two components are treated in the same manner.
In conclusion, if the Lagrangian function is invariant with respect to translations of
the coordinates’ origin, then the total momentum of the system is a constant of
motion.

The above reasoning applies independently to each axis. As a consequence, if
the Lagrangian function is such that the sum

PN
jD1 @L=@xj1 vanishes, while the

analogous sums associated with the other two axes do not vanish, then P1 is a
constant of motion, while P2, P3 are not.

An important example of a Lagrangian function, that is invariant with respect to
translations of the coordinates’ origin, is found when the force Fi acting on the ith



2.6 Invariance Properties 35

particle derives from a potential energy V that depends only on the relative distances
rjk D jrj � rkj among the particles, k ¤ j. An example is given in Sect. 3.7.

2.6.4 Rotation of the Coordinates

Consider the case where the Lagrangian function is invariant with respect to
rotations of the coordinates around an axis that crosses the origin. Like in Sect. 2.6.3
a system of N particles with no constraints is assumed, and the Cartesian coordinates
are used. Let   be the plane that contains the origin and is normal to the rotation
axis. It is convenient to use on   a polar reference (Sect. B.2) in which the rotation
is defined over   by the angle '. In turn, let #j be the angle between the rotation
axis and the position vector rj D .xj1; xj2; xj3/ of the jth particle. The meaning of the
angles is the same as in Fig. B.1, where the axes x; y define plane  ; then, #j and
rj are represented by # and r of the figure, respectively. If an infinitesimal rotation
d' is considered, the position vector rj undergoes a variation drj parallel to   and
of magnitude jdrjj D rj sin#j d'. To specify the direction of drj one takes the unit
vector a of the rotation axis and associates with the rotation the vector a d' such
that

drj D a d' ^ rj : (2.25)

The corresponding variations dPrj of the velocities are found by differentiating (2.25)
with respect to time. The variation of the Lagrangian function is

dL D
NX

jD1

3X

sD1

�
@L

@xjs
dxjs C

@L

@Pxjs
dPxjs

�
; (2.26)

where the variations of the components are found from (2.25) and read dxjs D

d'
�
a ^ rj

	
s, dPxjs D d'

�
a ^ Prj

	
s. Replacing the latter in (2.26) and using (1.28)

yield

dL D d'
NX

jD1

�
a ^ rj � Ppj C a ^ Prj � pj

	
: (2.27)

Due to the rotational invariance, (2.27) vanishes for any d'. Letting the sum vanish
after exchanging the scalar and vector products, and remembering that a is constant,
one finds

a�
NX

jD1

�
rj ^ Ppj C Prj ^ pj

	
D a�

d

dt

NX

jD1

rj^pj D a�
dM
dt
D

d

dt
.M � a/ D 0 ; (2.28)
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where

M D
NX

jD1

rj ^ pj (2.29)

is the total angular momentum of the system of particles. In conclusion, if the
Lagrangian function is invariant with respect to rotations of the coordinates around
an axis that crosses the origin, then the projection of the system’s total angular
momentum M over the rotation axis is a constant of motion.

2.7 Maupertuis Principle

Besides the Hamilton principle described in Sect. 1.3.4, other variational principles
exist. Among them is the Maupertuis, or least action, principle, that applies to a
particle subjected to conservative forces. Let V D V.x1; x2; x3/ be the potential
energy and E D const the total energy, and let A and B indicate the two points of the
.x1; x2; x3/ space that limit the trajectory of the particle. The Maupertuis principle
states that the natural trajectory between A and B is the one that minimizes the
functional

G D
Z

AB

p
E � V ds ; ds2 D dx21 C dx22 C dx23 ; (2.30)

where the integral is carried out along the trajectory. The form of (2.30) explains the
term “least action”: in fact, the relation p2=.2m/ D m u2=2 D E � V shows that the
integrand

p
E � V is proportional to the particle’s momentum p; as a multiplicative

constant is irrelevant for calculating the extremum functions, the minimization of G
is equivalent to that of the action

R
AB p ds.

To calculate the extremum functions of (2.30) it is convenient to parametrize the
coordinates in the form xi D xi./, where the parameter  takes the same limiting
values, say,  D a at A and  D b at B, for the natural and all the virtual trajectories.
Letting Pxi D dxi=d one finds .ds=d/2 D Px21 C Px

2
2 C Px

2
3 which, remembering (1.7),

yields the extremum condition for (2.30):

ı

Z b

a
� d D 0 ; � D

p
E � V

q
Px21 C Px

2
2 C Px

2
3 ;

d

d

@�

@Pxi
D
@�

@xi
: (2.31)

The following relations are useful to work out the last of (2.31): ds=dt D u Dp
.2=m/.E � V/, dxi D Pxi d , dxi=dt D ui. One finds

@�

@Pxi
D
p

E � V
Pxi

ds=d
D

r
m

2
u
Pxi d

ds
D

r
m

2

dxi

dt
D

r
m

2
ui ; (2.32)
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@�

@xi
D

ds

d

�@V=@xi

2
p

E � V
D

ds

d

Fi

2
p

m=2 u
D

dt

d

Fi
p
2m

; (2.33)

with Fi the ith component of the force. The last of (2.31) then yields

d

d

�r
m

2
ui

�
D

dt

d

Fi
p
2m

; Fi D m
dui

d

d

dt
D m

dui

dt
: (2.34)

In conclusion, the equation that provides the extremum condition for functional G
is equivalent to Newton’s second law F D m a.

2.8 Spherical Coordinates—Angular Momentum

Consider a single particle of mass m and use the transformation from the Cartesian
(x; y; z) to the spherical (r; #; ') coordinates shown in Sect. B.1. The kinetic energy
is given by (B.7), namely,

T D
m

2
.Pr2 C r2 P#2 C r2 P'2 sin2 #/ : (2.35)

If the force acting onto the particle is derivable from a potential energy V D
V.x; y; z; t/, the Lagrangian function in the spherical reference is L D T �
V.r; #; '; t/, where T is given by (2.35). The momenta conjugate to the spherical
coordinates are

8
<

:

pr D @L=@Pr D mPr
p# D @L=@ P# D mr2 P#
p' D @L=@ P' D mr2 P' sin2 #

(2.36)

Using (2.36), the kinetic energy is recast as

T D
1

2m

 

p2r C
p2#
r2
C

p2'
r2 sin2 #

!

: (2.37)

The components of the momentum p derived from the Lagrangian function written
in the Cartesian coordinates are mPx, mPy, mPz. It follows that the components of the
angular momentum M D r^ p written in the Cartesian and spherical references are

8
<

:

Mx D m .y Pz � z Py/ D �mr2 . P# sin' C P' sin# cos# cos'/
My D m .z Px � x Pz/ D mr2 . P# cos' � P' sin# cos# sin'/
Mz D m .x Py � y Px/ D mr2 P' sin2 #

(2.38)
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The square modulus of the angular momentum in spherical coordinates reads

M2 D m2r4


P#2 C P'2 sin2 #

�
D p2# C

p2'
sin2 #

; (2.39)

where the last equality is due to (2.36). From (2.37, 2.39) one finds

T D
1

2m

�
p2r C

M2

r2

�
: (2.40)

If M is a constant of motion, (2.40) shows that the kinetic energy depends on r and
Pr only. Comparing (2.36) with (2.38) one also notices that

p' D Mz ; (2.41)

namely, the component along the z axis of the angular momentum turns out to be
the momentum conjugate to the ' coordinate. The latter describes the rotations
along the same axis. In contrast, the other two components of M are not conjugate
momenta. This result is due to the asymmetry of the relations (B.1) that connect the
Cartesian to the spherical coordinates, and does not ascribe any privileged role to
the z axis. In fact, by exchanging the Cartesian axes one makes p' to coincide with
Mx or My.

Another example refers to a particle of mass m and charge e subjected to an
electromagnetic field. Remembering (1.33) one has L D .1=2/m u2 � e U C e u �
A, where the scalar potential is indicated with U to avoid confusion with the '
coordinate. It follows

L D
1

2
m


Pr2 C r2 P#2 C r2 P'2 sin2 #

�
� e U C e u � A ; (2.42)

where the components of u D Pr are given by (B.6), and U, A depend on the
coordinates and time. Indicating the components of A with Ax, Ay, Az, the momenta
read

8
<

:

pr D @L=@Pr D m PrC e Ax sin# cos' C e Ay sin# sin' C e Az cos# cos'
p# D @L=@ P# D m r2 P# C e Ax r cos# cos' C e Ay r cos# sin' � e Az r sin#
p' D @L=@ P' D m r2 P' sin2 # � e Ax r sin# sin' C e Ay r sin# cos'

(2.43)

Thanks to (B.1, B.6), the third of (2.43) can be written as

p' D m .x Py � y Px/C e .x Ay � y Ax/ D x .m PyC e Ay/ � y .m PxC e Ax/ ; (2.44)

that coincides with the component of the angular momentum M D r ^ p D r ^
.m uC e A/ along the z axis. This result shows that (2.41) holds also when the force
acting onto the particle derives from an electromagnetic field.
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Fig. 2.1 Example of
potential energy discussed in
Sect. 2.9

xA xB xC

V

x

E

2.9 Linear Motion

The linear motion is the motion of a system having only one degree of freedom.
Using the Cartesian coordinate x, and assuming the case where the force acting
onto the particle derives from a potential energy V.x/, gives the Hamiltonian
function (1.32) the form H D p2=.2m/CV.x/. As shown in Sect. 1.6, a Hamiltonian
function of this type is a constant of motion whence, remembering that here it is
p D m Px,

1

2
m Px2 C V.x/ D E D const. (2.45)

The constant E is called total energy. Its value is given by the initial conditions
x0 D x.t D a/; Px0 D Px.t D a/. As the kinetic energy m Px2=2 cannot be negative,
the motion is possible only in the intervals of the x axis such that V.x/ � E. In
particular, the velocity Px vanishes at the points where V D E. Instead, the intervals
where V > E cannot be reached by the particle. Equation (2.45) is separable and
provides a relation of the form t D t.x/,

t D a˙

r
m

2

Z x

x0

d
p

E � V./
: (2.46)

By way of example consider a situation like that shown in Fig. 2.1, where it is
assumed that to the right of xC the potential energy V keeps decreasing as x ! 1.
If the initial position of the particle is x0 D xC, there the velocity vanishes and
the particle is subjected to a positive force F D �dV=dx > 0. As a consequence,
the particle’s motion will always be oriented to the right starting from xC. Such a
motion is called unlimited. If the initial position is x0 > xC and the initial velocity
is negative, the particle moves to the left until it reaches the position xC, where it
bounces back. The subsequent motion is the same as described above.
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A different situation arises when the initial position of the particle belongs to
an interval limited by two zeros of the function E � V.x/ like, e.g., xA and xB in
Fig. 2.1. The motion is confined between xA and xB and, for this reason, is called
limited. The particle bounces back and forth endlessly under the effect of a force
that does not depend on time. As a consequence, the time necessary to complete
a cycle xA ! xB ! xA is the same for each cycle. In other terms, the motion is
periodic in time. Also, from (2.46) it is found by inspection that the time spent by
the particle in the xA ! xB part of the cycle is the same as that spent in the xB ! xA

part. The period of the oscillation is then found to be

T D 2

r
m

2

Z xB

xA

dx
p

E � V.x/
: (2.47)

Note that the period depends on the total energy E. However, there are exceptions,
as the example of Sect. 3.3 shows.

2.10 Action-Angle Variables

Consider a linear, conservative motion of constant energy E (Sect. 2.9) and let q, p
be two canonical coordinates describing it. The following hold

H.q; p/ D E ; p D p.q;E/ : (2.48)

The second of (2.48) is derived from the first one by solving for the momentum, and
provides the phase trajectory (Sect. 1.9) starting from the initial conditions q0, p0
of the motion. As shown below, in several mechanical systems of interest the phase
trajectory has some special characteristic that is worth examining.

Consider, first, the situation where the phase trajectory is closed: in this case,
after a time T has elapsed from t D 0, the canonical coordinates take again the
values q0, p0. As a consequence, for t > T the motion repeats itself, and so on. It
follows that both q and p are periodic functions of time with the same period T .
As discussed in Sect. 2.9, this type of periodic motion, in which both q and p are
bounded, is typically found when the initial position q0 lies between two zeros of
E � V , and is of the oscillatory type. It is also indicated with the astronomical term
libration.

A second important situation occurs when p is a periodic function of q. In
this type of motion q is unbounded. However, when q increases by a period the
configuration of the mechanical system remains practically unchanged. In fact, in
this type of motion the canonical coordinate q is always an angle of rotation: the
motion is still periodic and is referred to as rotation. Note that the same mechanical
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system may give rise to a libration or a rotation, depending on the motion’s initial
conditions: a typical example is that of the simple pendulum where q is identified
with the angle of deflection [56, Chap. 10.6]. The action variable is defined as

J.E/ D
I

p.q;E/ dq ; (2.49)

where the integral is carried out over a complete period of libration or rotation,
depending on the case under investigation. The name given to J stems from the
fact that, as mentioned in Sect. 1.5, the product q p has the units of an action in all
coordinate sets. The action variable is a constant of motion because it depends on E
only. Inverting J.E/ yields H D H.J/. Now one applies a canonical transformation
generated by a Hamilton characteristic function of the form W D W.q; J/.
Remembering the procedure depicted in Sect. 2.4, W is the solution of

H

�
q;
@W

@q

�
D E : (2.50)

Applying (2.14) one finds the generalized coordinate w D @W=@J, called angle
variable, conjugate to J. The pair J;w constitutes the set of canonical coordinates
called action-angle variables. Finally, the Hamilton equations in the new coordi-
nates read

Pw D
@H

@J
D const ; PJ D �

@H

@w
D 0 : (2.51)

The time evolution of the action-angle variables is then w D Pw t C w0, J D const.
From the first of (2.51) it also follows that the units of Pw are those of a frequency.
The usefulness of the action-angle variables becomes apparent when one calculates
the change �w over a complete libration or rotation cycle of q:

�w D
I

dw D
I
@w

@q
dq D

I
@2W

@q @J
dq D

d

dJ

I
@W

@q
dq D 1 ; (2.52)

where the last equality derives from combining p D @W=@q with (2.49). On the
other hand, if T is the time necessary for completing a cycle of q, then it is �w D
w.T/�w.0/ D Pw T , whence Pw D 1=T . Thus, the frequency � D Pw is that associated
with the periodic motion of q. In conclusion, the action-angle variables provide a
straightforward method to determine the frequency of a periodic motion without the
need of solving the motion equation. The method is applicable also to conservative
systems having more than one degree of freedom, provided there exists at least one
set of coordinates in which the Hamilton-Jacobi equation is completely separable
[56, Chap. 10.7].
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2.11 Complements

2.11.1 Infinitesimal Canonical Transformations

Consider a system with n degrees of freedom whose Hamiltonian function is
H.q1; : : : ; qn; p1; : : : ; pn; t/. Remembering (1.42) one finds that the canonical coor-
dinates at tCdt are expressed, in terms of the same coordinates at t, by the relations

qi C dqi D qi C
@H

@pi
dt ; pi C dpi D pi �

@H

@qi
dt : (2.53)

Letting Qqi D qi C dqi, Qpi D pi C dpi gives (2.53) the same form as (2.1),
namely, that of a coordinate transformation. It is interesting to check whether such a
transformation is canonical. For this, one notes that the transformation (2.53) differs
by infinitesimal quantities from the identical transformation Qqi D qi, Qpi D pi; as a
consequence one expects the generating function of (2.53), if it exists, to differ by an
infinitesimal function from F2 D

Pn
iD1 qi Qpi which, as shown in Sect. 2.2, generates

the identical transformation. One then lets

K2 D
nX

iD1

qi Qpi C �G.q; Qp; t/ ; (2.54)

where � is an infinitesimal quantity. From the first two equations in (2.9) it follows

pi D
@K2
@qi
D Qpi C �

@G

@qi
; Qqi D

@K2
@Qpi
D qi C �

@G

@Qpi
: (2.55)

In the last term of (2.55) one may replace Qpi with pi on account of the fact that
the difference between � @G=@Qpi and � @G=@pi is infinitesimal of a higher order.
Then, letting � D dt, G.q;p; t/ D H.q;p; t/, and K2 D

Pn
iD1 qi Qpi C H.q;p; t/ dt,

makes (2.55) identical to (2.53). Note that this replacement transforms the third
of (2.9) into QH D H C .@H=@t/ dt, as should be (compare with (1.44)).

The above reasoning shows that the H dt term in (2.54) generates a canonical
transformation that produces the variations of the canonical coordinates in the time
interval dt. Such a transformation is called infinitesimal canonical transformation.
On the other hand, as the application of more than one canonical transformation
is still canonical, the evolution of the coordinates qi; pi during a finite interval of
time can be thought of as produced by a sequence of infinitesimal canonical trans-
formations generated by the Hamiltonian function. In other terms, the Hamiltonian
function generates the motion of the system.
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2.11.2 Constants of Motion

It has been shown in Sect. 2.11.1 that a sequence of infinitesimal canonical trans-
formation generated by the Hamiltonian function determines the time evolution of
the canonical coordinates qi; pi. If such a sequence starts with the initial conditions
qi0; pi0, at some later time t the transformation equations (2.53) take the form

qi D qi.q0;p0; t/ ; pi D pi.q0;p0; t/ : (2.56)

The relations (2.56) are nothing else than the solution of the mechanical problem;
in fact, they express the canonical coordinates at time t, given the initial conditions.
From another viewpoint, they show that the solution of the problem contains 2 n
constants. They are not necessarily constants of motion, in fact, their values at t > 0
are in general different from those at t D 0. If the system has extra properties
(like, e.g., the invariance properties discussed in Sect. 2.6), it also has one or more
constants of motion. The latter keep the value that they possessed at t D 0, so they
are expressible as combinations of the canonical coordinates at t D 0; by way of
example, the total energy E of a single particle subjected to a conservative force
reads E D .p201 C p202 C p203/=.2m/C V.x10; x20; x30/.

For a system having n degrees of freedom the total number of independent
combinations of the initial conditions cannot exceed the number of the initial
conditions themselves. As a consequence, for such a system the maximum number
of independent constants of motion is 2 n.

Problem

2.1 Given the Hamiltonian function H D p2=.2m/ C .c=2/ x2, m; c > 0 (that
describes the linear harmonic oscillator, Sect. 3.3), find the oscillation frequency
� using the action-angle variables.



Chapter 3
Applications of the Concepts of Analytical
Mechanics

3.1 Introduction

This chapter provides a number of important examples of application of the
principles of Analytical Mechanics. The examples are chosen with reference to the
applications to Quantum Mechanics shown in later chapters. The first sections treat
the problems of the square well, linear harmonic oscillator, and central motion. The
subsequent sections deal with the two-particle interaction: first, the description of
the collision is given, along with the calculation of the energy exchange involved
in it, with no reference to the form of the potential energy; this is followed by the
treatment of the collision when the potential energy is of the repulsive-Coulomb
type. The chapter continues with the treatment of a system of strongly bound
particles: the diagonalization of its Hamiltonian function shows that the motion
of the particles is a superposition of harmonic oscillations. Finally, the motion
of a particle subjected to a periodic potential energy is analyzed, including the
case where a weak perturbation is superimposed to the periodic part. A number
of complements are also given, that include the treatment of the collision with a
potential energy of the attractive-Coulomb type, and that of the collision of two
relativistic particles.

3.2 Particle in a Square Well

As a first example of linear motion consider the case of a potential energy V of the
form shown in Fig. 3.1. Such a potential energy is called square well and is to be
understood as the limiting case of a potential energy well whose sides have a finite,
though very large, slope. It follows that the force F D �dV=dx is everywhere equal
to zero with the exception of the two points �xM and CxM , where it tends to C1
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Fig. 3.1 The example of the
square well analyzed in
Sect. 3.2. Only the case
0 � E � V0 is shown

−xM +xM

V0

x

E

V

and�1, respectively. From the discussion of Sect. 2.9 it follows that the case E < 0
is forbidden. The motion of the particle is finite for 0 � E � V0, while it is infinite
for E > V0.

Considering the 0 � E � V0 case first, the motion is confined within the well
and the velocity of the particle is constant in the interval �xM < x < CxM , where
the Hamiltonian function yields m Px2=2 D E. If the particle’s motion is oriented to
the right, the velocity is Px D

p
2E=m. When the particle reaches the position xM

its velocity reverses instantly to become Px D �
p
2E=m. The motion continues at a

constant velocity until the particle reaches the position �xM where it reverses again,
and so on. As the spatial interval corresponding to a full cycle is 4 xM , the oscillation
period is T D

p
8m=E xM .

To treat the E > V0 case assume that the particle is initially at a position x < �xM

with a motion oriented to the right. The Hamiltonian function outside the well yields
m Px2=2 C V0 D E. The constant velocity is Px D

p
2 .E � V0/=m until the particle

reaches the position �xM . There the velocity increases abruptly to Px D
p
2E=m and

keeps this value until the particle reaches the other edge of the well, CxM . There,
the velocity decreases abruptly back to the initial value Px D

p
2 .E � V0/=m, and

the particle continues its motion at a constant velocity in the positive direction.

3.3 Linear Harmonic Oscillator

An important example of linear motion is found when the force derives from a
potential energy of the form V D c x2=2, with c > 0. The force acting on the
particle turns out to be F D �dV=dx D �c x, namely, it is linear with respect to x,
vanishes at x D 0, and has a modulus that increases as the particle departs from the
origin. Also, due to the positiveness of c, the force is always directed towards the
origin. A force of this type is also called linear elastic force, and c is called elastic
constant (Fig. 3.2).

From the discussion of Sect. 2.9 it follows that the case E < 0 is forbidden. The
motion of the particle is always finite because for any E � 0 it is confined between
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Fig. 3.2 The example of the
linear harmonic oscillator
analyzed in Sect. 3.3

2c x  / 2
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−xM +xM

the two zeros xM D ˙
p
2E=c of the equation V D E. The Hamiltonian function

reads

H D
1

2m
p2 C

1

2
c x2 D E D const, (3.1)

yielding the motion’s equation Pp D m Rx D �@H=@x D �c x whose solution is

x.t/ D xM cos.! tC ˛0/ ; Px.t/ D �! xM sin.! tC ˛0/ ; ! D
p

c=m : (3.2)

Due to the form of (3.2), a particle whose motion is derived from the Hamiltonian
function (3.1) is called linear harmonic oscillator. The maximum elongation xM > 0

and the initial phase ˛0 are readily expressed in terms of the initial conditions x0 D
x.t D 0/, Px0 D Px.t D 0/. In fact, letting t D 0 in (3.2) yields x2M D x20 C Px

2
0=!

2

and tan˛0 D �Px0=.! x0/. The total energy in terms of the initial conditions reads
E D m Px20=2C c x20=2 and, finally, the oscillation’s period is T D 2�=!. Note that
T depends on the two parameters m, c appearing in the Hamiltonian function, but
not on the total energy (in other terms, for a given pair m; c the oscillation period
does not depend on the initial conditions). As mentioned in Sect. 2.9, this is an
exceptional case.

3.4 Central Motion

Consider the case of a particle of mass m acted upon by a force that derives from a
potential energy of the form V D V.r/, where r D

p
x2 C y2 C z2 is the modulus of

the position vector r of the particle. The force

F D � grad V D �
dV

dr

r
r
; (3.3)
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depends on r only and is oriented along r. For this reason it is called central force. In
turn, the point whence the force originates (in this case, the origin of the reference)
is called center of force. The corresponding Lagrangian function

L D
1

2
mPr2 � V.r/ ; p D m Pr ; Pr D jPrj (3.4)

turns out to be invariant under any rotation (Sect. 2.6.4). Remembering (2.28, 2.29),
this type of invariance means that the projection of the angular momentum M onto
any direction is conserved. It follows that for a particle acted upon by a central force,
the vector M itself is conserved. On the other hand, it is M D r^m Pr, so the constant
angular momentum is fixed by the initial conditions of the motion.

As M is normal to the plane defined by r and Pr, the trajectory of the particle lies
always on such a plane. It is then useful to select the Cartesian reference by aligning,
e.g., the z axis with M. In this way, the trajectory belongs to the x; y plane and
two coordinates eventually suffice to describe the motion. Turning to the spherical
coordinates (B.1) and using (2.40) yields the Hamiltonian function

H D
1

2m

�
p2r C

M2

r2

�
C V.r/ D

p2r
2m
C Ve.r/ ; Ve D V C

M2

2mr2
; (3.5)

with M2 D p2# C p2'= sin2 # , M D const, and pr D mPr, p# D mr2 P# , p' D Mz D

mr2 P' sin# . However, the z axis has been aligned with M, which is equivalent to
letting # D �=2. It turns out Mz D M, and pr D mPr, p# D 0, p' D M D mr2 P', so
that

H D
1

2m

 

p2r C
p2'
r2

!

C V.r/ D
p2r
2m
C Ve.r/ ; Ve D V C

p2'
2mr2

: (3.6)

As the total energy is conserved it is H D E, where E is known from the initial
conditions. The intervals of r where the motion can actually occur are those in which
E � Ve. Letting r0 D r.t D 0/, the time evolution of the radial part is found from
p2r D m2.dr=dt/2 D 2m .E � Ve/, namely

t.r/ D ˙

r
m

2

Z r

r0

d
p

E � Ve./
: (3.7)

From p' D mr2 P' D const it follows that ' depends monotonically on time, and
also that dt D .mr2=p'/ d'. Combining the latter with (3.7) written in differential
form, dt D ˙

p
m=2 ŒE � Ve.r/�

�1=2 dr, yields the equation for the trajectory,

'.r/ D '0 ˙
p'
p
2m

Z r

r0

d

2
p

E � Ve./
; (3.8)
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with '0 D '.t D 0/. Finally, elimination of r from t.r/ and '.r/ provides the
time evolution of '. It is convenient to let the initial time t D 0 correspond to an
extremum of the possible values of r. In this way the sign of t and ' � '0 changes
at r D r0. By this choice the trajectory is symmetric with respect to the line drawn
from the origin to the point of coordinates r0; '0, and the evolution of the particle’s
motion over each half of the trajectory is symmetric with respect to time.

3.5 Two-Particle Collision

Consider a system made of two particles whose masses are m1, m2. The system
is isolated, namely, the particles are not subjected to any forces apart those due
to the mutual interaction. As a consequence, the Lagrangian function is invariant
under coordinate translations, and the Hamiltonian function is invariant under time
translations. Thus, as shown in Sect. 2.6, the total momentum and total energy of
the system are conserved.

The type of motion that is considered is such that the distance between the
particles is initially so large as to make the interaction negligible. The interaction
becomes significant when the particles come closer to each other; when they move
apart, the interaction becomes negligible again. This type of interaction is called
collision. The values of the dynamic quantities that hold when the interaction is
negligible are indicated as asymptotic values. The labels a and b will be used to
mark the asymptotic values before and after the interaction, respectively.

It is worth specifying that it is assumed that the collision does not change the
internal state of the particles (for this reason it is more appropriately termed elastic
collision [84, Sect. 17]). When the distance is sufficiently large, the particles can
be considered as isolated: they move at a constant velocity and the total energy of
the system is purely kinetic, Ea D Ta and Eb D Tb. On the other hand, due to
the invariance under time translation the total energy of the system is conserved,
Eb D Ea. In conclusion it is Tb D Ta, namely, in an elastic collision the asymptotic
kinetic energy of the system is conserved.

An analysis of the collision based only on the asymptotic values is incomplete
because it does not take into account the details of the interaction between the two
particles. However it provides a number of useful results, so it is worth pursuing.
Letting r1 and r2 be the positions of the particles in a reference O, the position of
the center of mass and the relative position of the particles are

R D
m1 r1 C m2 r2

m1 C m2

; r D r1 � r2 : (3.9)

The corresponding velocities are v1 D Pr1, v2 D Pr2, and v D Pr. The relations
between the velocities are obtained by differentiating (3.9) with respect to time.
Solving for v1, v2 yields
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v1 D PRC
m2

m1 C m2

v ; v2 D PR �
m1

m1 C m2

v : (3.10)

Letting PR D j PRj, the system’s kinetic energy before the interaction is

Ta D
1

2
m1 v

2
1a C

1

2
m2 v

2
2a D

1

2
.m1 C m2/ PR

2
a C

1

2
m v2a ; (3.11)

where m D m1 m2=.m1 Cm2/ is called reduced mass. The expression of the kinetic
energy after the interaction is obtained from (3.11) by replacing a with b.

The total momentum before the collision is Pa D m1 v1a C m2 v2a D .m1 C

m2/ PRa. The conservation of P due to the invariance under coordinate translations
yields Pb D Pa, whence PRb D PRa. Using (3.11) in combination with the
conservation rules PRb D PRa and Tb D Ta yields vb D va, namely, the asymptotic
modulus of the relative velocity is conserved.

The analysis is now repeated in a new reference B in which the particles’
positions are defined as

s1 D r1�R D
m2

m1 C m2

.r1�r2/ ; s2 D r2�R D
m1

m1 C m2

.r2�r1/ : (3.12)

By construction, the origin of B coincides with the system’s center of mass. The
relative position in B is the same as in O, in fact

s D s1 � s2 D r1 � r2 D r : (3.13)

From (3.12, 3.13) one finds

m1 s1 D �m2 s2 ; s1 D
m2

m1 C m2

s ; s2 D �
m1

m1 C m2

s : (3.14)

The velocities in reference B are u1 D Ps1, u2 D Ps2, and u D Ps. The relations among
the latter are found by differentiating (3.12, 3.13) and read

u1 D v1 � PR ; u2 D v2 � PR ; u D v ; (3.15)

u1 D
m2

m1 C m2

u ; u2 D �
m1

m1 C m2

u ; (3.16)

which in turn yield

v1 D PRC
m2

m1 C m2

u ; v2 D PR �
m1

m1 C m2

u : (3.17)

Thanks to (3.16) the system’s kinetic energy before and after the interaction, in
reference B, is
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Ka D
1

2
m1 u21a C

1

2
m2 u22a D

1

2
m u2a ; Kb D

1

2
m u2b : (3.18)

The conservation of the kinetic energy, Kb D Ka, yields ub D ua. Using the third
of (3.15) then yields

ub D ua D vb D va ; (3.19)

that is, the asymptotic modulus of the relative velocity is conserved and has the
same value in the two references. Moreover, (3.16) shows that it is also u1b D u1a

and u2b D u2a, namely, in reference B the asymptotic kinetic energy is conserved
for each particle separately.

3.6 Energy Exchange in the Two-Particle Collision

To complete the asymptotic analysis of the two-particle collision it is useful to
choose for O a reference such that v2a D 0. In this case (3.10) yields va D v1a,
whence the total momentum reads .m1 C m2/ PRa D m1v1a D m1va. Remembering
that PRb D PRa one finds PRb D m1 va=.m1 C m2/. Using the latter relation in the
second of (3.17) specified with the b label yields, after multiplying both sides by
m2,

m2 v2b D m va � m ub : (3.20)

The triangle formed by the vectors m2v2b, mva, and mub is isosceles because
va and ub have the same modulus (Fig. 3.3). Letting 	, � be the angle between
m va and m ub and, respectively, the common value of the other two angles, a
scalar multiplication of (3.20) by va yields m2 v2b cos � D m va � m ub cos	 D m
va .1 � cos	/. Using 2� C 	 D � and va D v1a transforms the latter into

m2v2b D mv1a
1 � cos	

cosŒ.� � 	/=2�
D 2mv1a sin.	=2/ : (3.21)

Fig. 3.3 Graphic
representation of the vector
relation (3.20)

mv1a = mva

m2v2b

mub

χ

θθ
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This relation allows one to calculate, in reference O where the particle of mass m2

is initially at rest, the modulus of the final velocity of this particle in terms of the
initial velocity of the other particle and of angle 	. As only v1a is prescribed, the two
quantities v2b and 	 cannot be determined separately. The reason for this (already
mentioned in Sect. 3.5) is that (3.21) is deduced using the motion’s asymptotic
conditions without considering the interaction’s details. In fact, the calculation is
based only on the momentum and total-energy conservation and on the hypothesis
that the collision is elastic. From (3.21) one derives the relation between the kinetic
energies T1a D .1=2/m1v

2
1a and T2b D .1=2/m2v

2
2b,

T2b .	/ D
4m1 m2

.m1 C m2/
2

T1a sin2.	=2/ : (3.22)

As in reference O the particle of mass m2 is initially at rest, T2b is the variation
of the kinetic energy of this particle due to the collision, expressed in terms of 	.
The maximum variation is T2b.	 D ˙�/. The conservation relation for the kinetic
energy T1bC T2b D T1a coupled with (3.22) yields the kinetic energy of the particle
of mass m1 after the collision,

T1b D T1a � T2b D

�
1 �

4m1 m2

.m1 C m2/
2

sin2.	=2/

�
T1a : (3.23)

Expressing T1a and T1a in (3.23) in terms of the corresponding velocities yields the
modulus of the final velocity of the particle of mass m1 as a function of its initial
velocity and of angle 	,

v1b D Œ.m
2
1 C m2

2 C 2m1m2 cos	/1=2=.m1 C m2/� v1a : (3.24)

Although expressions (3.21–3.24) are compact, the use of angle 	 is inconvenient.
It is preferable to use the angle, say  , between vectors v1b and v1a D va that
belong to the same reference O (Fig. 3.7).1 A scalar multiplication by v1a of the
conservation relation for momentum, m1v1b D m1v1a � m2v2b, followed by the
replacement of the expressions of v2b and v1b extracted from (3.21, 3.24), eventually
yields cos D .m1 C m2 cos	/=.m2

1 C m2
2 C 2m1m2 cos	/1=2. Squaring both sides

of the latter provides the relation between 	 and  ,

tan D
sin	

m1=m2 C cos	
: (3.25)

1Note that the angle � between two momenta p0 D m0v0 and p00 D m00v00 is the same as
that between the corresponding velocities because the masses cancel out in the angle’s definition
� D arccosŒp0 � p00=.p0p00/�. In contrast, a relation like (3.20) involving a triad of vectors holds for
the momenta but not (with the exception of the trivial cases of equal masses) for the corresponding
velocities.
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Using (3.25) one expresses (3.21–3.24) in terms of the deflection  (in reference
O) of the particle of mass m1. If m1 > m2, then  < �=2, while it is  D 	=2

if m1 D m2. When m1 < m2 and 	 D arccos.�m1=m2/, then  D �=2; finally, if
m1 � m2 it is  ' 	 and, from (3.21–3.24), it follows v2b ' 0, T2b ' 0, v1b ' v1a,
T1b ' T1a. In other terms, when m1 � m2 the particle of mass m2 remains at rest;
the other particle is deflected, but its kinetic energy is left unchanged.

In reference O, the angle between the final velocity of the particle of mass m2,
initially at rest, and the initial velocity of the other particle has been defined above
as � D .� � 	/=2. Replacing the latter in (3.25) provides the relation between  
and � ,

tan D
sin.2�/

m1=m2 � cos.2�/
: (3.26)

3.7 Central Motion in the Two-Particle Interaction

Consider an isolated two-particle system where the force acting on each particle
derives from a potential energy V D V.r1; r2/. Using the symbols defined in
Sect. 3.5 yields the Lagrangian function L D m1v

2
1=2 C m2v

2
2=2 � V.r1; r2/. Now

assume that the potential energy V depends on the position of the two particles only
through the modulus of their distance, r D jr1 � r2j. In this case it is convenient to
use the coordinates and velocities relative to the center of mass, (3.12–3.17), to find

L D
1

2
.m1 C m2/ PR

2 C
1

2
m Ps2 � V.s/ ; Ps D jPsj D juj : (3.27)

As discussed in Sects. 2.6.3 and 3.5 the total momentum is conserved, whence PR
is constant. Another way of proving this property is noting that the components
of R are cyclic (Sect. 1.6). The first term at the right-hand side of (3.27), being
a constant, does not influence the subsequent calculations. The remaining terms, in
turn, are identical to those of (3.4). This shows that when in a two-particle system the
potential energy depends only on the relative distance, adopting suitable coordinates
makes the problem identical to that of the central motion. One can then exploit
the results of Sect. 3.4. Once the time evolution of s is found, the description of
the motion of the individual particles is recovered from (3.12) to (3.17), where the
constant PR is determined by the initial conditions.

The total energy of the two-particle system is conserved and, in the new
reference, it reads

1

2
m Ps2 C V.s/ D EB ; EB D E �

1

2
.m1 C m2/ PR

2 : (3.28)
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The total angular momentum is constant as well. Starting from the original reference
and using (3.12–3.17) yields

M D r1 ^ m1v1 C r2 ^ m2v2 D .m1 C m2/R ^ PRC m s ^ u : (3.29)

The constancy of PR yields R D R0 C PR t, with R0 the initial value of R, whence
.R0 C PR t/ ^ PR D R0 ^ PR. Thus, the first term at the right-hand side of (3.29) is
constant, which makes MB D m s^u a constant as well. The latter vector is parallel
to M because the motion is confined to a fixed plane (Sect. 3.4). Then, aligning
the z axis with M, turning to polar coordinates over the x; y plane (sx D s cos',
sy D s sin'), and using (3.8), one finds

'.s/ D '0 ˙
MB
p
2m

Z s

s0

d

2
p

EB � Ve./
; (3.30)

with Ve.s/ D V.s/CM2
B=.2ms2/. It is important to note that the factor MB in (3.30)

is the scalar coefficient of MB D MBk, with k the unit vector of the z axis. As a
consequence, MB may have a sign. As observed in Sect. 2.9, the admissible values
of s are those belonging to the interval such that EB � Ve.s/. If two or more disjoint
intervals exist that have this property, the actual interval of the motion is determined
by the initial conditions. The motion is limited or unlimited, depending on the extent
of this interval.

The analysis cannot be pursued further unless the form of the potential energy V
is specified. This is done in Sect. 3.8 with reference to the Coulomb case.

3.8 Coulomb Field

An important example is that of a potential energy of the form V / 1=r that
occurs for the gravitational and for the electrostatic force. In the latter case the term
Coulomb potential energy is used for V , that reads

V.s/ D
� Z1 Z2 q2

4� "0 s
; s > 0 ; (3.31)

with q > 0 the elementary electric charge, Z1 q and Z2 q the absolute value of the net
charge of the first and second particle, respectively, "0 the vacuum permittivity, and,
finally, � D 1 .�1/ in the repulsive (attractive) case. The form of V fixes the additive
constant of the energy so that V.1/ D 0. The repulsive case only is considered here,
whence Ve is strictly positive and EB � Ve > 0. Defining the lengths

� D
Z1 Z2 q2

8� "0 EB
> 0 ; � D

MB
p
2m EB

(3.32)
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yields Ve=EB D 2�=sC �2=s2. The zeros of EB � Ve D EB .s2 � 2 � s� �2/=s2 are

sA D � �
p
�2 C �2 ; sB D �C

p
�2 C �2 ; (3.33)

where sA is negative and must be discarded as s is strictly positive. The only
acceptable zero is then sB � 2� > 0 that corresponds to the position where the radial
velocity Ps D ˙

p
2 .EB � V/=m reverses, and must therefore be identified with s0

(Sect. 3.4). The definitions (3.32, 3.33) are now inserted into the expression (3.30)
of the particle’s trajectory. To calculate the integral it is convenient to use a new
variable w such that .s0 � �/=. � �/ D .�2 � s20 w2/=.�2C s20 w2/. The range of w
corresponding to s0 �  � s is

0 � w �
j�j

s0

r
s � s0

sC s0 � 2�
; s � s0 � 2� > 0 : (3.34)

From (3.30) the trajectory in the s; ' reference is thus found to be

'.s/ D '0 ˙ 2 arctan

�
�

s0

r
s � s0

sC s0 � 2�

�
: (3.35)

Next, the trajectory in the Cartesian reference sx; sy is found by replacing (3.35) into
sx D s cos', sy D s sin' and eliminating s from the pair sx.s/, sy.s/ thus found.
A graphic example is given in Fig. 3.4. It is worth observing that in the derivation
of (3.35) the factor j�j appears twice, in such a way as to compensate for the sign of
�. The result then holds irrespective of the actual sign of MB D

p
2m EB �. It still

holds for MB D 0, that yields '.s/ D '0; such a case corresponds to a straight line
crossing the origin of the s; ' reference: along this line the modulus s of the relative
position decreases until it reaches s0, then it increases from this point on.

When MB ¤ 0 the angles corresponding to the asymptotic conditions of the
motion are found by letting s ! 1, namely, 'a D '0 � 2 arctan.�=s0/ and 'b D

'0 C 2 arctan.�=s0/. The total deflection is then 'b � 'a which, in each curve of
Fig. 3.4, is the angle between the two asymptotic directions. Now one combines the
definition of angle 	 given in Sect. 3.6 with the equality u D v taken from the last
of (3.15); with the aid of Fig. 3.5 one finds

	 D � � .'b � 'a/ D � � 4 arctan

�
�

s0

�
: (3.36)

The definitions (3.32, 3.33) show that (3.36) eventually provides the relation
	 D 	.EB;MB/. In contrast with the approach of Sect. 3.6, where the asymptotic
conditions only were considered, here the analysis has been brought to the end by
considering a specific type of interaction.

When � ranges from �1 toC1 at a fixed EB, the definitions (3.32, 3.33) make
the ratio �=s0 D �=sA to range from �1 toC1. If �=s0 D 1 (�1), then 	 D 0 (2�),
namely, no deflection between ua and ub occurs. If �=s0 D 0, then 	 D � , namely,
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Fig. 3.4 Graphic representation of the trajectory (3.35) for different values of the angular
momentum. The curves have been obtained by setting the parameters’ values to s0 D 1, '0 D 0,
� D 0:5, and � D 0:01; : : : ; 0:6 (the units are arbitrary)

Fig. 3.5 Graphic
representation of (3.36)
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the motion’s direction reverses at s0 as noted above. From u D v one finds that 	 is
also the angle between va D v1a � v2a and vb D v1b � v2b.

3.9 System of Particles Near an Equilibrium Point

Consider a system of N particles, not necessarily identical to each other, subjected
to conservative forces. The mass and instantaneous position of the jth particle are
indicated with mj and Rj D .Xj1;Xj2;Xj3/, respectively. It is assumed that there are
no constraints, so that the number of degrees of freedom of the system is 3N. The
Hamiltonian function reads
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Ha D Ta C Va D

NX

jD1

P2j
2mj
C Va.X11;X12; : : :/ ; (3.37)

with P2j D m2
j .
PX2j1 C PX

2
j2 C

PX2j3/. The force acting on the jth particle along the kth
axis is Fjk D �@Va=@Xjk. The Hamilton equations (Sect. 1.6) read

PXjk D
@Ha

@Pjk
D

Pjk

mj
; PPjk D �

@Ha

@Xjk
D �

@Va

@Xjk
D Fjk : (3.38)

They show that the relation Fjk D mj RXjk, which yields the dynamics of the jth
particle along the kth axis, involves the positions of all particles in the system due
to the coupling of the latter.

Define the 3N-dimensional vector R D .X11; : : : ;XN3/ that describes the
instantaneous position of the system in the configuration space, and let R0 be a
position where the potential energy Va has a minimum, namely, .@Va=@Xjk/R0 D 0

for all j; k. Such a position is called equilibrium point of the system. To proceed,
assume that the instantaneous displacement R � R0 with respect to the equilibrium
point is small. In this case one approximates V with a second-order Taylor expansion
around R0. To simplify the notation new symbols are adopted, namely, s1 D X11,
s2 D X12; : : :, s3jCk�3 D Xjk; : : :, and hn D sn � sn0, with n D 1; 2; : : : ; 3N and sn0

the equilibrium position. Remembering that the first derivatives of Va vanish at R0

one finds

Va ' Va0 C
1

2

3NX

kD1

hk

3NX

nD1

ckn hn ; ckn D

�
@2Va

@hk @hn

�

R0

: (3.39)

In (3.39) it is Va0 D Va.R0/, and the terms ckn are called elastic coefficients. As
the approximate form of the potential energy is quadratic in the displacements, each
component of the force is a linear combination of the latter,

Fr D �
@Va

@sr
D �

@Va

@hr
D �

3NX

nD1

crn hn ; r D 3jC k � 3 : (3.40)

To recast the kinetic energy in terms of the new symbols it is necessary to indicate
the masses with �n, n D 1; : : : ; 3N, where �3j�2 D �3j�1 D �3j D mj,
j D 1; : : : ;N. Observing that PXjk D Ps3jCk�3 D Ph3jCk�3, one finds a quadratic form
in the derivatives of the displacements,

Ta D
1

2

NX

jD1

3X

kD1

�3jCk�3 PX
2
jk D

1

2

NX

jD1

3X

kD1

�3jCk�3 Ph
2
3jCk�3 D

1

2

3NX

nD1

�n Ph
2
n :

(3.41)
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The relations obtained so far are readily recast in matrix form. First, one defines the
mass matrix M as the real, 3N � 3N diagonal matrix whose entries are ŒM�kn D

�n ıkn > 0, with ıkn the Kronecker symbol (A.18). By construction, the mass matrix
is symmetric and positive definite; the entries of its inverse are ŒM�1�kn D ıkn=�n.
Then, one defines the elastic matrix C as the real, 3N � 3N matrix whose entries
are ŒC�kn D ckn. The entries of the elastic matrix are the second derivatives of
the potential energy Va; as the order of the derivation is irrelevant, the matrix is
symmetric. Also, the derivatives are calculated in a minimum of Va; from the first
of (3.39) it follows that the quadratic form at the right-hand side equals Va � Va0

which, by construction, is positive. It follows that the elastic matrix is positive
definite, namely, for any choice of the displacements (excluding the case where
all displacements are zero) the quadratic form generated by the matrix is positive.
Finally, let h be the column vector of entries h1; h2; : : :, and hT its transpose.
Combining (3.37, 3.39, 3.41) expresses the Hamiltonian function in terms of the
sum of two quadratic forms,

Ha � Va0 D
1

2
Ph

T
M PhC

1

2
hT C h : (3.42)

3.10 Diagonalization of the Hamiltonian Function

Thanks to the properties of the matrices M and C, the right-hand side of (3.42) can
be set in diagonal form. To this purpose one considers the eigenvalue equation

C g� D �� M g� ; � D 1; : : : ; 3N ; (3.43)

where the eigenvalues �� are real because C and M are real and symmetric. As all
coefficients of (3.43) are real, the eigenvectors g� are real as well. Also, due to the
positive definiteness of C and M, the eigenvalues are positive and the eigenvectors
are linearly independent. They can also be selected in order to fulfill the property of
being orthonormal with respect to M, namely, gT

� M g� D ı�� .
Each of the 3N eigenvectors g� has 3N entries. Thus, the set of eigenvectors

can be arranged to form a 3N � 3N real matrix G, whose � th column is the � th
eigenvector. The inverse matrix G�1 exists because, by construction, the columns of
G are linearly independent. The orthonormality relation between the eigenvectors
can now be expressed in matrix form as2

GT M G D I ; (3.44)

2The procedure illustrated here is an application to the case of real matrices of the unitary
transformation illustrated in Sect. A.11.2.
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with I the identity matrix. Equation (3.44) is the basic ingredient for the diagonal-
ization of (3.42). From it one preliminarily derives four more relations,

GT M D G�1 ; G GT M D I ; M G D
�
GT
	�1

; M G GT D I :
(3.45)

The first of (3.45) is obtained by right multiplying (3.44) by G�1 and using
G G�1 D I. Left multiplying by G the first of (3.45) yields the second one. The third
of (3.45) is obtained by left multiplying (3.44) by .GT/�1. Finally, right multiplying
by GT the third of (3.45) yields the fourth one. To complete the transformation of
the equations into a matrix form one defines the eigenvalue matrix L as the real,
3N � 3N diagonal matrix whose entries are ŒL��� D �� ı�� > 0. The set of 3N
eigenvalue equations (3.43) then takes one of the two equivalent forms

C G DM G L ; GT C G D L : (3.46)

The first of (3.46) is the analogue of (3.43), while the second form is obtained
from the first one by left multiplying by GT and using (3.44). The diagonalization
of (3.42) is now accomplished by inserting the second and fourth of (3.45) into the
potential-energy term of (3.42) to obtain

hT C h D hT .M G GT/C .G GT M/h D .hT M G/ .GT C G/ .GT M h/ ;
(3.47)

where the associative law has been used. At the right-hand side of (3.47), the term in
the central parenthesis is replaced with L due to the second of (3.46). The term in the
last parenthesis is a column vector for which the short-hand notation b D GT M h
is introduced. Note that b depends on time because h does. The first of (3.45) shows
that h D G b, whence hT D bT GT . Finally, using (3.44), transforms the term in the
first parenthesis at the right-hand side of (3.47) into hT M G D bT GT M G D bT .
In conclusion, the potential-energy term of (3.42) is recast in terms of b as hT C h D
bT L b, which is the diagonal form sought. By a similar procedure one finds for the

kinetic-energy term Ph
T

M Ph D Pb
T

GT M G Pb D Pb
T Pb.

The terms Pb
T Pb and bT L b have the same units. As a consequence, the units of

L are the inverse of a time squared. Remembering that the entries of L are positive,
one introduces the new symbol !2� D �� for the eigenvalues, !� > 0. In conclusion,
the diagonal form of (3.42) reads

Ha � Va0 D

3NX

�D1

H� ; H� D
1

2
Pb2� C

1

2
!2� b2� : (3.48)

Apart from the constant Va0, the Hamiltonian function Ha is given by a sum of
terms, each associated with a single degree of freedom. A comparison with (3.1)
shows that the individual summands H� are identical to the Hamiltonian function
of a linear harmonic oscillator with m D 1. As a consequence, the two canonical
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variables of the � th degree of freedom are q� D b� , p� D Pb� , and the time evolution
of b� is the same as that in (3.2),

b� .t/ D ˇ� cos.!� tC '�/ D
1

2

h
Q̌
� exp.�i!� t/C Q̌�� exp.i!� t/

i
: (3.49)

The constants ˇ� , '� depend on the initial conditions b� .0/, Pb� .0/. The complex
coefficients are related to the above constants by Q̌� D ˇ� exp.�i'�/. In turn, the
initial conditions are derived from those of the displacements, b.0/ D G�1 h.0/,
Pb.0/ D G�1 Ph.0/.

The 3N functions b� .t/ are called normal coordinates or principal coordinates.
Once the normal coordinates have been found, the displacements of the particles
are determined from h D G b. It follows that such displacements are superpositions
of oscillatory functions. Despite the complicacy of the system, the approximation
of truncating the potential energy to the second order makes the Hamiltonian
function completely separable in the normal coordinates. The problem then becomes
a generalization of that of the linear harmonic oscillator (Sect. 3.3), and the
frequencies of the oscillators are determined by combining the system parameters,
specifically, the particle masses and elastic constants. The Hamiltonian function
associated with each degree of freedom is a constant of motion, H� D E� , whose
value is prescribed by the initial conditions. The total energy of the system is also a
constant and is given by

E D Va0 C

3NX

�D1

E� ; E� D
1

2
Pb2� .0/C

1

2
!2� b2� .0/ : (3.50)

The oscillation of the normal coordinate of index � is also called mode of the
vibrating system.

3.11 Periodic Potential Energy

An interesting application of the action-angle variables introduced in Sect. 2.10 is
found in the case of a conservative motion where the potential energy V is periodic.
For simplicity a linear motion is considered (Sect. 2.9), whence V.x C a/ D V.x/,
with a > 0 the spatial period. Letting E be the total energy and m the mass
of the particle, an unlimited motion is assumed, namely, E > V; it follows that
the momentum p D

p
2m ŒE � V.x/� is a spatially periodic function of period a

whence, according to the definition of Sect. 2.10, the motion is a rotation. For any
position g, the time � necessary for the particle to move from g to g C a is found
from (2.47), where the positive sign is provisionally chosen:
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� D

r
m

2

Z gCa

g

dx
p

E � V.x/
> 0 : (3.51)

The integral in (3.51) is independent of g due to the periodicity of V . As a
consequence, for any g the position of the particle grows by a during the time � .
The action variable is found from (2.49):

J.E/ D
Z gCa

g
p dx D

p
2m

Z gCa

g

p
E � V.x/ dx D const : (3.52)

In turn, the derivative of the angle variable is found from (2.51). It reads Pw D
@H=@J D 1=.dJ=dE/ D const, with H the Hamiltonian function. The second
form of Pw holds because H does not depend on w, and H D E. Using (3.52) and
comparing with (3.51) one finds

1

Pw
D

dJ

dE
D

Z gCa

g

m

Œ2m .E � V.x//�1=2
dx D � : (3.53)

As expected, 1=� is the rotation frequency. In conclusion, the time evolution of
the action-angle variables is given by w D t=� C w0, J D const. Note that the
relation (3.52) between E and J holds when the positive sign is chosen in (2.47); if
the above calculations are repeated after choosing the negative sign, one finds that
�J is associated with the same E. As a consequence, E is an even function of J.

Another observation is that the action-angle variables can be scaled by letting,
e.g., w J D .a w/ .J=a/. In this way the property that the product of two canonically
conjugate variables is dimensionally an action is still fulfilled. A comparison
with (3.52) shows that, thanks to this choice of the scaling factor, P D J=a is
the average momentum over a period, while X D a w is a length. The Hamilton
equations and the time evolution of the new variables are then

PX D
@H

@P
; PP D �

@H

@X
D 0 ; X D

a

�
tC X0 ; P D P0 D const ; (3.54)

where a=� is the average velocity of the particle over the spatial period, and X0 D
X.0/, P0 D P.0/. In conclusion, in the new canonical variables no force is acting
( PP D 0), and the motion of the new position X is uniform in time. However, the
relation between E and P D J=a, given by (3.52), is not quadratic as it would be in
free space.3

In many cases it is of interest to investigate the particle’s dynamics when a
perturbation ıH is superimposed to the periodic potential energy V . It is assumed
that ıH depends on x only, and that E is the same as in the unperturbed case (the
latter assumption is not essential). The Hamiltonian function of the perturbed case

3Compare with comments made in Sect. 19.6.1.
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is then written as the sum of the unperturbed one and of the perturbation; also in this
case an unlimited motion is assumed, specifically, E > V and E > V C ıH. Still
using the positive sign for the momentum, one finds

H.x; p/ D
p2

2m
C V.x/C ıH.x/ D E ; p.x;E/ D

p
2m .E � V � ıH/ :

(3.55)
Like in the unperturbed case one defines the average momentum over a,

QP.g;E/ D

p
2m

a

Z gCa

g

p
E � V � ıH dx ; (3.56)

which depends also on g because ıH is not periodic. Differentiating (3.56) with
respect to E and comparing with (3.51) show that

@ QP

@E
D
Q�

a
; Q�.g/ D

Z gCa

g

m

Œ2m .E � V.x/ � ıH/�1=2
dx ; (3.57)

with Q� the time necessary for the particle to move from g to gC a in the perturbed
case. Using H D E in the above yields

@H

@ QP
D

a

Q�
D
.gC a/ � g

Q�
: (3.58)

So far no hypothesis has been made about the perturbation. Now one assumes that
ıH is weak and varies little over the period a. The first hypothesis implies jıHj �
E�V so that, to first order, Œ2m .E�V � ıH/�1=2 ' Œ2m .E�V/�1=2 �m Œ2m .E�
V/��1=2 ıH. Using P D J=a and (3.52), the average momentum (3.56) becomes

QP.g;E/ ' P.E/ �
1

a

Z gCa

g

m ıH

Œ2m .E � V/�1=2
dx : (3.59)

In turn, the hypothesis that the perturbation varies little over the period a implies
that in the interval Œg; g C a� one can approximate ıH.x/ with ıH.g/, which
transforms (3.59), due to (3.53), into

QP.g;E/ ' P.E/ �
�

a
ıH.g/ : (3.60)

If the procedure leading to (3.60) is repeated in the interval ŒgC a; gC 2 a� and the
result is subtracted from (3.60), the following is found:

QP.gC a;E/ � QP.g;E/

�
D �

ıH.gC a/ � ıH.g/

a
: (3.61)
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The above shows that the perturbed momentum QP varies between g and gC a due
to the corresponding variation in ıH. Fixing the time origin at the position g and
letting � ' Q� in the denominator transform (3.61) into

QP. Q�;E/ � QP.0;E/

Q�
' �

ıH.gC a/ � ıH.g/

a
: (3.62)

The relations (3.58, 3.62) are worth discussing. If one considers g as a position
coordinate and QP as the momentum conjugate to it, (3.58, 3.62) become a pair
of Hamilton equations where some derivatives are replaced with difference quo-
tients. Specifically, (3.62) shows that the average momentum varies so that its
“coarse-grained” variation with respect to time, � QP=� Q� , is the negative coarse-
grained variation of the Hamiltonian function with respect to space, ��H=�g D
��ıH=�g. In turn, (3.58) shows that the coarse-grained variation of position with
respect to time, �g=� Q� , is the derivative of the Hamiltonian function with respect
to the average momentum. In conclusion, (3.58, 3.62) are useful when one is not
interested in the details of the particle’s motion within each spatial period, but wants
to investigate on a larger scale how the perturbation influences the average properties
of the motion.

3.12 Energy-Momentum Relation in a Periodic Potential
Energy

It has been observed, with reference to the non-perturbed case, that the rela-
tion (3.52) between the total energy and the average momentum is not quadratic.
In the perturbed case, as shown by (3.56), the momentum depends on both the total
energy and the coarse-grained position. To investigate this case it is then necessary
to fix g and consider the dependence of QP on E only. To proceed one takes a small
interval of QP around a given value, say QPs, corresponding to a total energy Es, and
approximates the E. QP/ relation with a second-order Taylor expansion around QP,

E ' Es C

�
dE

d QP

�

s

. QP � QPs/C
1

2

�
d2E

d QP2

�

s

. QP � QPs/
2 : (3.63)

Although in general the QP.E/ relation (3.56) cannot be inverted analytically, one
can calculate the derivatives that appear in (3.63). The latter are worked out in the
unperturbed case ıH D 0 for simplicity. Using (3.53), the first derivative is found
to be .dE=d QP/s ' .dE=dP/s D a=�s, with �s D �.Es/. For the second derivative,

d2E

d QP2
'

d2E

dP2
D

d.a=�/

dP
D �

a

�2
d�

dE

dE

dP
D �

a3

�3
d2P

dE2
: (3.64)
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On the other hand, using (3.53) again, it is

d2P

dE2
D

d.�=a/

dE
D �

m2

a

Z gCa

g
K3 dx ; K D Œ2m .E � V.x//��1=2 : (3.65)

Combining (3.64) with (3.65) and defining the dimensionless parameter

rs D

Z g=aC1

g=a
K3 d.x=a/ �

"Z g=aC1

g=a
K d.x=a/

#�3
; (3.66)

transforms (3.63) into

E ' Es C
a

�s
. QP � QPs/C

rs

2m
. QP � QPs/

2 ; (3.67)

where the coefficients, thanks to the neglect of the perturbation, do not depend
on g. The linear term is readily eliminated by shifting the origin of the average
momentum; in fact, letting QP � QPs D Qp � .m=rs/ .a=�s/ yields

E � E.0/ D
rs

2m
Qp2 ; E.0/ D Es �

1

2

m

rs

�
a

�s

�2
: (3.68)

In conclusion, in a small interval of QP or Qp the relation between energy and average
momentum of a particle of mass m subjected to a periodic potential has the same
form as that of a free particle of mass m=rs. In other terms, the ratio m=rs acts as an
effective mass within the frame of the coarse-grained dynamics.

A bound for rs is obtained from Hölder’s inequality (C.119). Letting jFj D K,
G D 1, b D 3, x1 D g=a, x2 D g=aC 1 in (C.119) and using the definition (3.66)
yield rs � 1, whence m=rs � m: the effective mass can never exceed the true mass.
The equality between the two masses is found in the limiting case E � VM � VM �

V � ıH, with VM the maximum of V . In fact, (3.66) yields r ' 1 and, from (3.56), it
is QP '

p
2mE. As expected, this limiting case yields the dynamics of a free particle.

3.13 Complements

3.13.1 Comments on the Linear Harmonic Oscillator

The paramount importance of the example of the linear harmonic oscillator, shown
in Sect. 3.1, is due to the fact that in several physical systems the position of a
particle at any instant happens to depart little from a point where the potential energy
V has a minimum. As a consequence, the potential energy can be approximated
with a second-order expansion around the minimum, that yields a positive-definite
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quadratic form for the potential energy and a linear form for the force. The theory
depicted in this section is then applicable to many physical systems, as shown by
the examples of Sects. 3.9 and 5.6. The approximation of the potential energy with a
second-order expansion, like that discussed in Sects. 3.9, 3.10, is called harmonic
approximation. The terms beyond the second order in the expansion are called
anharmonic.

3.13.2 Degrees of Freedom and Coordinate Separation

With reference to the analysis of the central motion carried out in Sect. 3.4, it is
worth noting that the constancy of M reduces the number of degrees of freedom of
the problem from three to two. Also, the form (3.6) of the Hamiltonian function is
such as to provide a relation containing only r and the corresponding momentum
pr. Thus the coordinate r is separable according to the definition of Sect. 2.4. This
allows one to independently find the time evolution (3.7) of r by solving an ordinary
differential equation of the first order. Then one finds (3.8), that is, the trajectory
'.r/, through another equation of the same type. Finally, combining (3.7) with (3.8)
yields the time evolution of the remaining coordinate '.

It has been noted in Sect. 3.13.2 that, thanks to the constancy of the angular
momentum, the adoption of spherical coordinates allows one to separate the radial
coordinate r. This simplifies the problem, whose solution is in fact reduced to the
successive solution of the evolution equations for r and '. The same problem,
instead, is not separable in the Cartesian coordinates. In other terms, separability
may hold in some coordinate reference, but does not hold in general in an arbitrarily
chosen reference.

Another example of separability is that illustrated in Sects. 3.9, 3.10. In general
the Hamiltonian function is not separable in the Cartesian coordinates, whereas it
is completely separable in the normal coordinates, no matter how large the number
of the degrees of freedom is. Moreover, after the separation has been accomplished,
one finds that all the equations related to the single degrees of freedom (the second
relation in (3.48)) have the same form. In fact, they differ only in the numerical value
of the angular frequency !� . As a consequence, the expression of the solution is the
same for all. Also, as the energy H� of each degree of freedom is independently
conserved, no exchange of energy among the normal coordinates occurs: therefore,
the distribution of energy among the normal coordinates that is present at t D 0 is
maintained forever. This result is baffling because, for instance, it seems to prevent
the condition of thermal equilibrium from being established; actually it is due to
the fact that the system under investigation is isolated: if it were put in contact with
a thermal reservoir, the exchanges of energy occurring with the reservoir would
eventually bring the energy distribution of the system to the condition of thermal
equilibrium.

Still with reference to the system discussed in Sects. 3.9, 3.10, it is important
to underline the formal analogy between the modes of a mechanical, vibrating
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system and those of the electromagnetic field in vacuo described in Sect. 5.6. In
both cases the energy of each mode is that of a linear harmonic oscillator of unit
mass (Eq. (3.48) and, respectively, (5.40)).

3.13.3 Comments on the Normal Coordinates

It has been shown in Sect. 3.9 that the elastic matrix C is positive definite. One may
argue that in some cases the matrix is positive semi-definite. Consider, for instance,
the case where the potential energy depends on the relative distance of the particles,
Va D Va.R1 � R2;R1 � R3; : : :/. For any set of positions R1;R2; : : :, a uniform
displacement Rı of all particles, that transforms each Rj into Rj C Rı , leaves Va

unchanged. As a consequence, if the positions prior to the displacement correspond
to the equilibrium point R01;R02; : : :, it is Va.R01 C Rı; : : :/ D Va.R01; : : :/ D

Va0. In such a case all terms beyond the zero-order term in the Taylor expansion
of Va around the equilibrium point vanish, which implies that the elastic matrix C
is positive semi-definite. In the case examined in Sect. 3.9 the eigenvalues are real
and positive; here, instead, they are real and nonnegative. Remembering (3.48), one
finds that the Hamiltonian function of the degree of freedom corresponding to the
null eigenvalue reads H D Pb2�=2, whence Rb� D 0, b� D b� .0/ C a t, with a a
constant.

The problem tackled in Sect. 3.10 is that of diagonalizing the right-hand side
of (3.42). The diagonalization of a quadratic form entails a linear transformation
over the original vector (h in this case) using a matrix formed by eigenvectors. One

may observe that in (3.42), the kinetic energy Ph
T

M Ph=2 is already diagonal in the
original vector, while the potential energy hT C h=2 is not. If the diagonalization was
carried out using the matrix formed by the eigenvalues of C alone, the outcome of
the process would be that of making the potential energy diagonal while making the
kinetic energy non-diagonal (both in the transformed vector). The problem is solved
by using the eigenvalue equation (3.43) that involves both matrices M and C in the
diagonalization process. In fact, as shown in Sect. 3.10, in the transformed vector b
the potential energy becomes diagonal, and the kinetic energy remains diagonal.

One may observe that, given the solutions of the eigenvalue equation (3.43), the
process of diagonalizing (3.42) is straightforward. The real difficulty lies in solv-
ing (3.43). When the number of degrees of freedom is large, the solution of (3.43)
must be tackled by numerical methods and may become quite cumbersome. In
practical applications the elastic matrix C exhibits some structural properties, like
symmetry or periodicity (e.g., Sect. 17.7.1), that are exploited to ease the problem
of solving (3.43).
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Fig. 3.6 Graphic
representation of (3.69)
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3.13.4 Areal Velocity in the Central-Motion Problem

Consider the central-motion problem discussed in Sect. 3.4. In the elementary time-
interval dt the position vector changes from r to rC dr. The area dA of the triangle
whose sides are r, r C dr, and dr is half the area of the parallelogram Q1Q2Q3Q4

whose consecutive sides are, e.g., r and dr (Fig. 3.6). Thus,

dA D
1

2
jr ^ drj D

1

2
jr ^ Pr dtj D

jMj
2m

dt ;
dA

dt
D
jMj
2m

; (3.69)

with M the angular momentum. The derivative dA=dt is called areal velocity. The
derivation of (3.69) is based purely on definitions, hence it holds in general. For a
central motion the angular momentum M is constant, whence the areal velocity is
constant as well: the area swept out by the position vector r in a given time interval
is proportional to the interval itself (Kepler’s second law). If the particle’s trajectory
is closed, the time T taken by r to complete a revolution and the area A enclosed by
the orbit are related by

A D
Z T

0

dA

dt
dt D

jMj
2m

T ; T D
2m A

jMj
: (3.70)

3.13.5 Initial Conditions in the Central-Motion Problem

The theory of the central motion for a two-particle system has been worked out in
Sects. 3.7, 3.8 without specifying the initial conditions. To complete the analysis it
is convenient to use the same prescription as in Sect. 3.6, namely, to select an O
reference where the particle of mass m2 is initially at rest (v2a D 0). Moreover,
here reference O is chosen in such a way as to make the initial position of the
particle of mass m2 to coincide with the origin (r2a D 0), and the initial velocity
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Fig. 3.7 Definition of the
angles used in Sects. 3.6 and
3.13.5 v1b

v2b

v1a

y

xθ

ψ

c

va D v1a of the particle of mass m1 to be parallel to the x axis (Fig. 3.7), so that
v1a D .v1a � i/ i. From (3.11) one finds E D Ea D Ta D T1a D m1v

2
1a=2 and, from

Sect. 3.5, .m1 C m2/ PRa D m1 v1a. Using r1a D x1a iC y1a j and (3.28) then yields

EB D
1

2
m v21a ; M D r1a ^ m1 v1a D �m1 y1a .v1a � i/k ; (3.71)

with i; j;k the unit vectors of the x; y; z axes and m the reduced mass. On the other
hand, (3.29) shows that M D .m1 C m2/Ra ^ PR CMB whence, writing Ra, PR in
terms of r1a, v1a and equating the two expressions of M provides

MB D �y1a m v1a � i : (3.72)

Replacing (3.72) and the first of (3.71) and in (3.32, 3.33) yields

� D 
y1a ; s0 D �C
p
�2 C c2 ; c D jy1aj : (3.73)

The distance c between the x axis and the direction of v1a (Fig. 3.7) is called impact
parameter. The outcome of the calculation demonstrates the usefulness of choosing
reference O as described above. In fact, for a given form of the potential energy V ,
the angle 	 defined in Sect. 3.6 becomes a function of two easily specified quantities:
kinetic energy (E D m1 v

2
1a=2 or EB D m v21a=2) and impact parameter c (compare,

e.g., with (3.36)). Once 	 is determined, the final kinetic energies T1b, T2b and the
angles  , � are recovered from (3.22, 3.23) and (3.25, 3.26), respectively. Another
property of reference O is that � turns out to be the angle between the x axis and the
final direction of the particle of mass m2.

3.13.6 The Coulomb Field in the Attractive Case

To treat the attractive case one lets � D �1 in (3.31). The trajectory lies in the x; y
plane; in polar coordinates it is still given by (3.30), with
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Fig. 3.8 Dependence of Ve on the distance s from the center of force, as given by (3.74) in arbitrary
units

Ve.s/ D
M2

B

2ms2
�

Z1 Z2 q2

4� "0 s
; s > 0 : (3.74)

In this case Ve becomes negative for some values of s. As a consequence, EB may
also be negative, provided the condition EB � Ve is fulfilled. Then, it is not possible
to use the definitions (3.32) because EB is positive there. The following will be used
instead,

˛ D
Z1 Z2 q2

8� "0
> 0 ; ˇ D

MB
p
2m

; (3.75)

so that Ve.s/ D .ˇ=s/2 � 2 ˛=s. Like in Sect. 3.8 it is assumed that MB differs
from zero and has either sign. It is found by inspection that Ve has only one zero at
s D sc D ˇ2=.2 ˛/ and only one minimum at s D 2 sc, with min.Ve/ D Ve.2 sc/ D

�˛2=ˇ2. Also, it is lims!0 Ve D 1, lims!1 Ve D 0 (Fig. 3.8). The motion is
unlimited when EB � 0, while it is limited when min.Ve/ � EB < 0. The case
EB D min.Ve/ yields s D 2 sc D const, namely, the trajectory is a circumference.
When min.Ve/ D �˛

2=ˇ2 < EB < 0 it is ˛2 > ˇ2 jEBj. Then, the difference
EB � Ve D �.jEBj s2 � 2 ˛ sC ˇ2/=s2 has two real, positive zeros given by

s0 D
˛ �

p
˛2 � ˇ2 jEBj

jEBj
; s1 D

˛ C
p
˛2 � ˇ2 jEBj

jEBj
; s0 < s1 :

(3.76)
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Using the zeros one finds s2
p

EB � Ve D
p
jEBj s

p
.s � s0/.s1 � s/, that is

replaced within (3.30) after letting s   . The upper limit of the integral belongs
to the interval s0 � s � s1. To calculate the integral it is convenient to use a new
variable w such that 2 s0 s1= D .s1� s0/wC s1C s0. The range of w corresponding
to the condition s0 �  � s is

2 s0 s1 � .s0 C s1/ s

.s1 � s0/ s
� w � 1 ; w.s1/ D �1 : (3.77)

From (3.30) the trajectory in the s; ' reference is thus found to be

'.s/ D '0 ˙
MB

jMBj
arccos

�
2 s0 s1 � .s0 C s1/ s

.s1 � s0/ s

�
: (3.78)

As noted in Sect. 3.4, the trajectory is symmetric with respect to '0. When (3.78) is
inverted, the ˙MB=jMBj factor is irrelevant because the cosine is an even function
of the argument. Thus,

1

s
D

s1 C s0
2 s0 s1

�
1C

s1 � s0
s1 C s0

cos.' � '0/

�
: (3.79)

When ' D '0 it is s D s0; when ' D '0C� it is s D s1. The s.'/ relation (3.79) is
the equation of an ellipse of eccentricity e D .s1 � s0/=.s1 C s0/, where the center
of force s D 0 is one of the foci. The distance between the foci is s1 � s0. With
the aid of Fig. 3.9 one finds that the semimajor and semiminor axes are obtained,
respectively, from a D .s1 C s0/=2, b2 D a2 � .s1 � s0/2=4 whence, using (3.76),

a D
˛

jEBj
; b D

jˇj

jEBj
D

jMBjp
2m jEBj

: (3.80)

As the particle’s trajectory is two-dimensional, the problem has four constants of
motion (Sect. 2.11.2); the total energy EB and the angular momentum MB are two of
such constants. As shown by (3.80), the semimajor axis of the elliptical trajectory
depends only on EB; the area of the ellipse in terms of the constants of motion is
A D � a b D .� ˛=

p
2m/ jMBj jEBj

�3=2. The position vector s completes a full orbit
in a period T given by (3.70); combining the latter with the expression of A yields

T D
� ˛
p
2m

jEBj3=2
D �

r
2m

˛
a3=2 ; (3.81)

namely, the period depends on the total energy, but not on the angular momentum.
Thus, the period is still given by (3.81) in the limiting case MB ! 0, which makes
the trajectory to shrink into a segment of length a crossing the origin of the s; '
reference, and the position vector to oscillate along this segment (compare with
problem 3.2). The second form of (3.81) shows that T2 / a3 (Kepler’s third law).
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Fig. 3.9 The elliptical
trajectory described by (3.79)
with '0 D 0
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3.13.7 Dynamic Relations of Special Relativity

The dynamic relations considered in this book refer almost invariably to situations
where the particle velocity is small with respect to that of light. For this reason it is
sufficient to use the nonrelativistic relations. The only exception where the velocities
of the particles involved do not allow for such an approximation is considered in
Sects. 3.13.8 and 7.4.3. For this reason a set of relations of the Special-Relativity
Theory are given here, that apply to the case of a free particle. The first of them is
the relation between velocity u and momentum p,

p D
m0 u

p
1 � u2=c2

; u D juj ; (3.82)

with c the velocity of light and m0 a constant mass. The second relation involves
energy and velocity and reads

E D m c2 ; m D
m0p

1 � u2=c2
: (3.83)

where E is a kinetic energy because a free particle is considered. In the above,
m D m.u/ is called relativistic mass and m0 D m.0/ is called rest mass. The latter
is the mass measured in a reference where the particle is at rest, and is the value of
the mass that is used in nonrelativistic mechanics. From (3.82, 3.83) it follows

p D m u ; m2 c2 � m2 u2 D m2
0 c2 ; m2 c2 D E2=c2 ; (3.84)

whence the elimination of u provides the relation between E and the modulus of p:

E2=c2 � p2 D m2
0 c2 ; p D

q
E2=c2 � m2

0 c2 : (3.85)
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In general the p D p.E/ relation is nonlinear. However, for particles with m0 D 0

the expressions (3.85) simplify to the linear relation p D E=c. An example of this is
found in the theory of the electromagnetic field, where the same momentum-energy
relation is derived from the Maxwell equations (Sect. 5.7). It is worth observing that
if a particle has m0 D 0 and p ¤ 0, its velocity is necessarily equal to c; in fact,
the first of (3.84) yields limm0!0 p D 0 when u < c. Another limiting case is found
when u=c� 1. In fact, the second of (3.83) simplifies to

m '
m0

1 � u2=.2 c2/
' m0

�
1C

u2

2 c2

�
: (3.86)

Inserting the last form into the first of (3.83) yields

E ' m0 c2 C
1

2
m0 u2 : (3.87)

The constant m0 c2 is called rest energy. The limiting case u=c� 1 then renders for
E � m0 c2 the nonrelativistic expression of the kinetic energy.

3.13.8 Collision of Relativistic Particles

This section illustrates the collision between two relativistic particles that constitute
an isolated system. The same approach of Sect. 3.5 is used here, namely, the asymp-
totic values only are considered. Also, the case where the particles’ trajectories
belong to the same plane, specifically, the x; y plane, is investigated. The initial
conditions are the same as in Sect. 3.6: the asymptotic motion of the first particle
before the collision is parallel to the x axis, while the second particle is initially
at rest. Finally, it is assumed that the rest mass of the first particle is zero, so that
the momentum-energy relation of this particle is p D E=c as shown in Sect. 3.13.7,
while the rest mass of the second particle is m0 ¤ 0.

The collision is treated by combining the conservation laws of energy and
momentum of the two-particle system. Let Ea, Eb be the asymptotic energies of the
first particle before and after the collision, respectively. As for the second particle,
which is initially at rest, the energy before the collision is its rest energy m0 c2, while
that after the collision is m c2 (Sect. 3.13.7). The conservation of energy then reads

Ea C m0 c2 D Eb C m c2 ; (3.88)

while the conservation of momentum reads, respectively for the x and y components,

Ea

c
D

Eb

c
cos C m u cos � ; 0 D

Eb

c
sin � m u sin � : (3.89)
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The angles  and � in (3.89) are the same as in Fig. 3.7. Extracting m c2 from (3.88)
and squaring both sides yield

.Ea � Eb/
2 C 2m0 c2 .Ea � Eb/ D m2 c4 � m2

0 c4 D m2 u2 c2 ; (3.90)

where the last equality derives from the second of (3.84). Then, the momentum-
conservation relations (3.89) are used to eliminate � by squaring and adding up the
results, to find

m2 u2 c2 D E2aCE2b � 2Ea Eb cos D .Ea �Eb/
2C 4Ea Eb sin2. =2/ : (3.91)

Eliminating m2 u2 c2 � .Ea � Eb/
2 between (3.90) and (3.91) yields

1

Eb
�
1

Ea
D

2

m0 c2
sin2

�
 

2

�
; (3.92)

that provides the asymptotic energy after the collision of the first particle, as a
function of the asymptotic energy before the collision, the deflection angle of the
same particle, and the rest energy of the second particle. Equation (3.92) is used in
Sect. 7.4.3 for the explanation of the Compton effect.

The nonrelativistic analogue of the above procedure is illustrated in Sect. 3.6. It is
interesting to note that the calculation carried out here seems rather less involved
than the nonrelativistic one. This surprising fact is actually due to the special choice
of the first particle, whose rest energy is zero. In this case, in fact, the relation
between momentum and energy becomes linear. That of the second particle, which
is nonlinear, is eliminated from the equations. On the contrary, in the nonrelativistic
case treated in Sect. 3.6 the energy-momentum relations are nonlinear for both
particles, thus making the calculation more laborious.

3.13.9 Energy Conservation in Charged-Particles’ Interaction

The two-particle interaction considered in Sect. 3.8 involves charged particles.
As the particles’ velocity during the interaction is not constant, the particles radiate
(Sect. 5.11.2) and, consequently, lose energy. This phenomenon is not considered in
the analysis carried out in Sect. 3.8, where the total energy of the two-particle system
is assumed constant. The assumption is justified on the basis that the radiated power
is relatively small. This subject is further discussed in Sect. 5.11.3.
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Problems

3.1 Given the Hamiltonian function of the one-dimensional harmonic oscillator of
the general form H D p2=.2m/C .c=s/ jxjs, m; c; s > 0, find the oscillator’s period.

3.2 Given the Hamiltonian function of the one-dimensional harmonic oscillator of
the general form H D p2=.2m/ � .k=s/ jxj�s D E < 0, m; k; s > 0, find the
oscillator’s period.

3.3 Consider the collision between two particles in the repulsive Coulomb case.
Calculate the relation T1b.T1a; c/, with c the impact parameter (hint: follow the
discussion of Sect. 3.13.5 and use (3.23, 3.36), (3.32, 3.33), and (3.73)).



Chapter 4
Electromagnetism

4.1 Introduction

This chapter outlines the basic principles of the electromagnetic theory in vacuo.
First, the extension of the Lagrangian formalism to functions that depend on more
than one variable is tackled: this yields useful tools for the analysis of continuous
media. Next, the Maxwell equations are introduced along with the derivation of
the electric and magnetic potentials, and the concept of gauge transformation is
illustrated. The second part of the chapter is devoted to the Helmholtz and wave
equations, both in a finite and infinite domain. The chapter finally introduces the
Lorentz force that connects the electromagnetic field with the particles’ dynamics.
The complements discuss some invariance properties of the Euler equations, derive
the wave equations for the electric and magnetic field, and clarify some issues
related to the boundary conditions in the application of the Green method to the
boundary-value problem.

4.2 Extension of the Lagrangian Formalism

In Sect. 1.2 the derivation of the extremum functions has been carried out with
reference to a functional GŒw� of the form (1.1). Such a functional contains one
unknown function w that, in turn, depends on one independent variable  . The result
has been extended to the case where the functional depends on several unknown
functions w1, w2 ; : : :, each dependent on one variable only (compare with (1.6)).
The extension to more than one independent variable is shown here.

To proceed it suffices to consider a single unknown function w that depends on
two independent variables  , � and is differentiable at least twice with respect to
each. The first and second derivatives of w are indicated with w , w� , w , w�� ,
and w� . Letting � be the domain over which w is defined, and g the generating
function, the functional reads
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GŒw� D
Z

�

g.w;w ;w� ; ; �/ d� : (4.1)

Then, let ıw D ˛ �, with �.; �/ an arbitrary function defined in � and differen-
tiable in its interior, and ˛ a real parameter. Like in the case of one independent
variable the choice is restricted to those functions � that vanish at the boundary of
�, so that w and w C ıw coincide along the boundary for any value of ˛. If w is
an extremum function of G, the extremum condition if found by replacing w with
w C ˛ � and letting .dG=d˛/0 D 0, where suffix 0 indicates that the derivative
is calculated at ˛ D 0 (compare with Sect. 1.2). Exchanging the integral with the
derivative in (4.1) yields

�
dG

d˛

�

0

D

Z

�

�
@g

@w
�C

@g

@w
� C

@g

@w�
��

�
d� D 0 : (4.2)

The second and third terms of the integrand in (4.2) are recast in compact form by
defining vector u D .@g=@w ; @g=@w� / and using the second identity in (A.16), so
that the sum of the two terms reads u � grad � D div.�u/ � � div u. Integrating over
� and using the divergence theorem (A.23) yields

Z

�

u � grad � d� D
Z

†

�u � n d† �
Z

�

� div u d� ; (4.3)

where † is the boundary of � and n the unit vector normal to d†, oriented in the
outward direction with respect to †. The first term at the right-hand side of (4.3) is
equal to zero because � vanishes over †.

It is important to clarify the symbols that will be used to denote the derivatives.
In fact, to calculate div u one needs, first, to differentiate @g=@w with respect
to  considering also the implicit -dependence within w, w , and w� ; then, one
differentiates in a similar manner @g=@w� with respect to � . The two derivatives are
summed up to form div u. For this type of differentiation the symbols d=d and d=d�
are used, even if the functions in hand depend on two independent variables instead
of one. The symbols @=@ and @=@� are instead reserved to the derivatives with
respect to the explicit dependence on  or � only. With this provision, inserting (4.3)
into (4.2) yields the extremum condition

Z

�

�
@g

@w
�

d

d

@g

@w
�

d

d�

@g

@w�

�
� d� D 0 : (4.4)

As (4.4) holds for any �, the term in parentheses must vanish. In conclusion, the
extremum condition is

d

d

@g

@w
C

d

d�

@g

@w�
D
@g

@w
; (4.5)
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namely, a second-order partial-differential equation in the unknown function w, that
must be supplemented with suitable boundary conditions. The equation is linear
with respect to the second derivatives of w because g does not depend on such
derivatives.

The result is readily extended to the case where g depends on several functions
w1, w2; : : : ;wl and the corresponding derivatives. Defining the vectors w.; �/ D
.w1; : : : ;wl/, w D .@w1=@; : : : ; @wl=@/, w� D .@w1=@�; : : : ; @wl=@�/, the set of
the l extremum functions wi of functional

GŒw� D
Z

�

g.w;w ;w� ; ; �/ d� (4.6)

is found by solving the equations

d

d

@g

@.@wi=@/
C

d

d�

@g

@.@wi=@�/
D

@g

@wi
; i D 1; : : : ; l ; (4.7)

supplemented with the suitable boundary conditions. It follows that (4.7) are the
Euler equations of G. Finally, the case where the independent variables are more
than two is a direct extension of (4.7). For instance, for m variables 1; : : : ; m one
finds

mX

jD1

d

dj

@g

@.@wi=@j/
D

@g

@wi
; i D 1; : : : ; l : (4.8)

If g is replaced with g0 D gCdiv h, where h is an arbitrary vector of length m whose
entries depend on w and 1; : : : ; m, but not on the derivatives of w, then (4.8) is still
fulfilled. The replacement, in fact, adds the same term to both sides. For instance,
the term added to the left-hand side is

mX

jD1

d

dj

@

@.@wi=@j/

mX

rD1

 
@hr

@r
C

lX

sD1

@hr

@ws

@ws

@r

!

; i D 1; : : : ; l ; (4.9)

where the sum over r is the explicit expression of div h. Remembering that h does
not depend on the derivatives of wi one recasts (4.9) as

mX

jD1

d

dj

mX

rD1

lX

sD1

@hr

@ws

@.@ws=@r/

@.@wi=@j/
D

mX

jD1

@

@j

@hj

@wi
; i D 1; : : : ; l ; (4.10)

where the equality is due to the relation @.@ws=@r/=@.@wi=@j/ D ıisıjr, with ıis.jr/

the Kronecker symbol (A.18). Inverting the order of the derivatives at the right-hand
side of (4.10) yields @ div h=@wi, that coincides with the term added to the right-hand
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side of (4.8). Finally, (4.8) is recast in compact form by defining a vector ui and a
scalar si as

ui D

�
@g

@.@wi=@1/
; : : : ;

@g

@.@wi=@m/

�
; si D

@g

@wi
(4.11)

to find

divui D si ; i D 1; : : : ; l : (4.12)

If wi depends on one variable only, say  , (4.8, 4.12) reduce to (1.7). Using the
language of the Lagrangian theory, the comparison between the one-dimensional
and multi-dimensional case shows that in both cases the functions wi play the role
of generalized coordinates; in turn, the scalar parameter  of (1.7) becomes the
vector .1; : : : ; m/ of (4.8) and, finally, each generalized velocity Pwi becomes the
set @wi=@1, : : : ; @wi=@m.

4.3 Lagrangian Function for the Wave Equation

It has been shown in Sect. 1.3 that the relations Rwi D Rwi.w; Pw; /, i D 1; : : : ; n,
describing the motion of a system of particles with n degrees of freedom, are the
Euler equations of a suitable functional. Then, the analysis of Sect. 4.2 has shown
that when the unknown functions w1; : : : ;wl depend on more than one variable,
the Euler equations are the second-order partial-differential equations (4.8). The
form (4.8) is typical of the problems involving continuous media (e.g., elasticity
field, electromagnetic field). Following the same reasoning as in Sect. 1.3 it is pos-
sible to construct the Lagrangian function whence the partial-differential equation
derives. This is done here with reference to the important case of the wave equation1

r2w �
1

u2
@2w

@t2
D s ; (4.13)

where u D const is a velocity and, for the sake of simplicity, s is assumed to
depend on x and t, but not on w or its derivatives. It is worth noting that when
a differential equation other than Newton’s law is considered, the corresponding
Lagrangian function is not necessarily an energy. For this reason it will provisionally
be indicated with Le instead of L. To proceed one considers the one-dimensional
form of (4.13), @2w=@x2 � .1=u2/ @2w=@t2 D s and replaces  , � , g with x, t, Le,
respectively. Then, one makes the one-dimensional form identical to (4.5) by letting

1Also called D’Alembert equation in the homogeneous case.
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@2Le

@w2x
D 1 ;

@2Le

@w2t
D �

1

u2
;

@Le

@w
D s ; (4.14)

with wx D @w=@x and wt D @w=@t. The second derivatives of Le.w;wx;wt; x; t/ with
respect to the combinations of the arguments not appearing in the first two equations
of (4.14) are set to zero. The third of (4.14) provides Le D s wCc, with c independent
of w. Replacing Le D s wC c into the first two equations in (4.14) and integrating
the first one with respect to wx yield @c=@wx D wx C a01, with a01 independent of
wx. Similarly, from the second equation in (4.14), @c=@wt D �wt=u2Ca02, with a02
independent of wt. Also, remembering that c is independent of w, one finds that a01
and a02 do not depend on w either. Considering that all the second derivatives of Le

not appearing in (4.14) are equal to zero shows that a01 depends on t at most, while
a02 depends on x at most. Integrating @c=@wx D wxCa01 and @c=@wt D �wt=u2Ca02
one finds

c D
1

2
w2x C a01.t/wx C a11 ; c D �

1

2u2
w2t C a02.x/wt C a12 ; (4.15)

where a11 does not depend on w or wx, while a12 does not depend on w or wt. Also,
a11 cannot depend on both t and wt due to @2Le=.@t @wt/ D 0; similarly, a12 cannot
depend on both x and wx due to @2Le=.@x @wx/ D 0. On the other hand, as both (4.15)
hold, a11 must coincide (apart from an additive constant) with the first two terms at
the right-hand side of the second equation in (4.15), and a12 must coincide with the
first two terms at the right-hand side of the first equation. In conclusion,

c D
1

2
w2x �

1

2u2
w2t C a01.t/wx C a02.x/wt ; (4.16)

with a01.t/, a02.x/ arbitrary functions. The last two terms in (4.16) are equal to
d.a01 w/=dxC d.a02 w/=dt, namely, they form the divergence of a vector. As shown
in Sect. 4.2 such a vector is arbitrary, so it can be eliminated by letting a01 D 0,
a02 D 0. The relation Le D s wC c then yields

Le D
1

2
w2x �

1

2u2
w2t C sw : (4.17)

The generalization to the three-dimensional case (4.13) is immediate,

Le D
1

2
j grad wj2 �

1

2u2

�
@w

@t

�2
C s w : (4.18)

with j grad wj2 D w2x C w2y C w2z .
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4.4 Maxwell Equations

The Maxwell equations, that describe the electromagnetic field, lend themselves
to an interesting application of the results of Sect. 4.3. The first group of Maxwell
equations reads

div D D % ; rot H �
@D
@t
D J ; (4.19)

where D is the electric displacement and H the magnetic field.2 The sources of
the electromagnetic field are the charge density % and the current density J. When
point-like charges are considered, they read

%c D
X

j

ej ı
�
r � sj.t/

	
; Jc D

X

j

ej ı
�
r � sj.t/

	
uj.t/ ; (4.20)

where index c is used to distinguish the case of point-like charges from that of a
continuous charge distribution. In (4.20), ej is the value of the jth charge, sj and
uj its position and velocity at time t, respectively, and r the independent positional
variable. If the spatial scale of the problem is such that one can replace the point-
like charges with a continuous distribution, one applies the same procedure as in
Sect. 23.2. The number of charges belonging to a cell of volume�V centered at r isR
�V %c d3s0 D

P0
j ej, where the prime indicates that the sum is limited to the charges

that belong to � at time t. Then one defines %.r; t/ D
P0

j ej=�V . The continuous
distribution of the current density is obtained in a similar manner,

J D
1

�V

Z

�V
Jc d3s0 D

1

�V

X

j

0
ej uj D % v ; v D

P0
j ej uj
P0

j ej
; (4.21)

with v.r; t/ the average velocity of the charges. If all charges are equal, e1 D e2 D
: : : D e, then % D e N, with N.r; t/ the concentration, and J D e N v D e F, with
F.r; t/ the flux density (compare with the definitions of Sect. 23.2). If the charges are
different from each other it is convenient to distribute the sum

P
j over the groups

made of equal charges. In this case the charge density and current density read

% D %1 C %2 C : : : ; J D %1 v1 C %2 v2 C : : : ; (4.22)

2The units in (4.19, 4.23, 4.24) are: ŒD� D C m�2, Œ%� D C m�3, ŒH� D A m�1, ŒJ� D
C s�1 m�2 D A m�2, ŒB� D V s m�2 DWb m�2 D T, ŒE� D V m�1, where “C,” “A,” “V,”
“Wb,” and “T” stand for Coulomb, Ampère, Volt, Weber, and Tesla, respectively. The coefficients
in (4.19, 4.23, 4.24) differ from those of [10] because of the different units adopted there.
In turn, the units in (4.25) are Œ"0� D C V�1 m�1 D F m�1, Œ�0� D s2 F�1 m�1 D H m�1,
where “F” and “H” stand for Farad and Henry, respectively, and those in (4.26) are Œ'� D V,
ŒA� D V s m�1 DWb m�1.
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where %1, v1 are the charge density and average velocity of the charges of the first
group, and so on. Taking the divergence of the second equation in (4.19) and using
the third identity in (A.35) yield the continuity equation

@%

@t
C div J D 0 : (4.23)

Apart from the different units of the functions involved, the form of (4.23) is the
same as that of (23.3). The meaning of (4.23) is that of conservation of the electric
charge. The second group of Maxwell equations is

div B D 0 ; rot EC
@B
@t
D 0 ; (4.24)

where B and E are the magnetic induction and the electric field, respectively. Here
the Maxwell equations are considered in vacuo, so that the following hold

D D "0 E ; B D �0 H ;
1

p
"0 �0

D c ; (4.25)

with "0 ' 8:854 � 10�12 F m�1 and �0 ' 1:256 � 10�6 H m�1 the vacuum
permittivity and permeability, respectively, and c ' 2:998 � 108 m s�1 the speed
of light in vacuo.

4.5 Potentials and Gauge Transformations

Thanks to (4.25), the electromagnetic field in vacuo is determined by two suitably
chosen vectors—typically, E and B—out of the four ones appearing in (4.25). This
amounts to using six scalar functions of position and time. However, the number of
scalar functions is reduced by observing that while (4.19) provides relations between
the electromagnetic field and its sources, (4.24) provides relations among the field
vectors themselves; as a consequence, (4.24) reduces the number of independent
vectors. In fact, using the properties illustrated in Sect. A.9, one finds that from
div B D 0 one derives B D rot A, where A is called vector potential or magnetic
potential. In turn, the vector potential transforms the second of (4.24) into rot.EC
@A=@t/ D 0; using again the results of Sect. A.9 shows that the term in parentheses
is the gradient of a scalar function, that is customarily indicated with �'. Such a
function3 is called scalar potential or electric potential. In summary,

3The minus sign in the definition of ' is used for consistency with the definition of the gravitational
potential, where the force is opposite to the direction along which the potential grows.
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B D rot A ; E D � grad' �
@A
@t
; (4.26)

showing that for determining the electromagnetic field in vacuo it suffices to know
four scalar functions, namely, ' and the three components of A. To proceed, one
replaces (4.26) into (4.19) and uses the third relation in (4.25), to find

r2' C
@

@t
div A D �

%

"0
; � rot rot A �

1

c2
@2A
@t2
D ��0 JC

1

c2
grad

@'

@t
:

(4.27)

Thanks to the first identity in (A.36) the second equation in (4.27) becomes

r2A �
1

c2
@2A
@t2
D ��0 JC grad � ; � D div AC

1

c2
@'

@t
(4.28)

while, using the definition (4.28) of � , one transforms the first equation in (4.27)
into

r2' �
1

c2
@2'

@t2
D �

%

"0
�
@�

@t
: (4.29)

In conclusion, (4.29) and the first equation in (4.28) are a set of four scalar
differential equations whose unknowns are ' and the components of A. Such
equations are coupled because � contains all unknowns; however, they become
decoupled after suitable transformations, shown below.

To proceed, one observes that only the derivatives of the potentials, not the
potential themselves, appear in (4.26); as a consequence, while the fields E, B are
uniquely defined by the potentials, the opposite is not true. For instance, replacing
A with A0 D A C grad f , where f .r; t/ is any differentiable scalar function, and
using the second identity in (A.35), yields B0 D rot A0 D B, namely, B is invariant
with respect to such a replacement. If, at the same time, one replaces ' with a
yet undetermined function '0, (4.26) yields E0 D � grad.'0 C @f=@t/ � @A=@t.
It follows that by choosing '0 D ' � @f=@t one obtains E0 D E. The transformation
.' ;A/! .'0 ;A0/ defined by

'0 D ' �
@f

@t
; A0 D AC grad f : (4.30)

is called gauge transformation. As shown above, E and B are invariant with respect
to such a transformation. One also finds that (4.29) and the first equation in (4.28)
are invariant with respect to the transformation: all terms involving f cancel each
other, so that the equations in the primed unknowns are identical to the original
ones. However, the solutions '0, A0 are different from ', A because, due to (4.30),
their initial and boundary conditions are not necessarily the same. The difference
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between the primed and unprimed solutions is unimportant because the fields, as
shown above, are invariant under the transformation. Using (4.30) in the second
equation of (4.28) shows that � transforms as

� 0 D div A0 C
1

c2
@'0

@t
D � Cr2f �

1

c2
@2f

@t2
: (4.31)

The arbitrariness of f may be exploited to give � 0 a convenient form. For instance
one may choose f such that � 0 D .1=c2/ @'=@t, which is equivalent to letting

div A0 D 0 ; (4.32)

called Coulomb gauge. The latter yields

r2'0 D �
%

"0
; r2A0 �

1

c2
@2A0

@t2
D ��0 JC

1

c2
@

@t
grad'0 ; (4.33)

the first of which (the Poisson equation) is decoupled from the second one. After
solving the Poisson equation, the last term at the right-hand side of the second
equation is not an unknown any more, thus showing that the equations resulting
from the Coulomb gauge are indeed decoupled. Another possibility is choosing f
such that � 0 D 0, which is equivalent to letting

div A0 D �
1

c2
@'0

@t
; (4.34)

called Lorentz gauge. This transformation yields

r2'0 �
1

c2
@2'0

@t2
D �

%

"0
; r2A0 �

1

c2
@2A0

@t2
D ��0 J : (4.35)

that are decoupled and have the form of the wave equation (4.13). Another
interesting application of the gauge transformation is shown in Sect. 5.11.4.

4.6 Lagrangian Density for the Maxwell Equations

To apply the Lagrangian formalism to the Maxwell equations it is useful to use the
expressions (4.26) of the fields in terms of the potentials. It follows that the functions
playing the role of generalized coordinates and generalized velocities are ', Ai, and,
respectively, @'=@xk, @Ai=@xk, @Ai=@t, with i; k D 1; 2; 3, k ¤ i. The Lagrangian
density, whose units are J m�3, then reads

Le D
"0

2
E2 �

1

2�0
B2 � % ' C J � A ; (4.36)
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with

E2 D

�
@'

@x1
C
@A1
@t

�2
C

�
@'

@x2
C
@A2
@t

�2
C

�
@'

@x3
C
@A3
@t

�2
(4.37)

and

B2 D

�
@A3
@x2
�
@A2
@x3

�2
C

�
@A1
@x3
�
@A3
@x1

�2
C

�
@A2
@x1
�
@A1
@x2

�2
; (4.38)

To show that (4.36) is in fact the Lagrangian function of the Maxwell equations one
starts with the generalized coordinate ', to find @Le=@' D �%. Then, considering
the kth component,

@Le="0

@.@'=@xk/
D

@E2=2

@.@'=@xk/
D

@E2=2

@.@Ak=@t/
D
@'

@xk
C
@Ak

@t
D �Ek D �

Dk

"0
: (4.39)

Using (4.8) after replacing g with Le, j with xj, and wi with ' yields div D D %,
namely, the first equation in (4.19). Turning now to another generalized coordinate,
say, A1, one finds @Le=@A1 D J1. As Le depends on the spatial derivatives of A1 only
through B2, (4.38) and the first of (4.26) yield

@B2=2

@.@A1=@x3/
D
@A1
@x3
�
@A3
@x1
D B2 ;

@B2=2

@.@A1=@x2/
D
@A1
@x2
�
@A2
@x1
D �B3 : (4.40)

In contrast, Le depends on the time derivative of A1 only through E2, as shown
by (4.39). To use (4.8) one replaces g with Le and wi with A1, then takes the
derivative with respect to x3 in the first relation in (4.40), the derivative with respect
to x2 in the second relation, and the derivative with respect to t of the last term
in (4.39). In summary this yields

1

�0

�
@B3
@x2
�
@B2
@x3

�
�
@D1

@t
D J1 ; (4.41)

namely, the first component of the second equation in (4.19).

4.7 Helmholtz Equation

Consider the wave equations (4.35) and assume that the charge density % and current
density J are given as functions of position and time. In the following, the apex in '
and A will be dropped for the sake of conciseness. The four scalar equations (4.35)
are linear with respect to the unknowns and have the same structure; also, their
coefficients and unknowns are all real. The solution of (4.35) will be tackled in this
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section and in the following ones, basing upon the Fourier transform whose general
properties are depicted in Sect. C.2. This solution procedure involves the use of
complex functions. The starting assumption is that the condition for the existence
of the Fourier transform with respect to time holds (such a condition is found by
replacing x with t in (C.19)). Then one obtains

r2Ft' C
!2

c2
Ft' D �

1

"0
Ft% ; r2FtAC

!2

c2
FtA D ��0 FtJ : (4.42)

Indicating with f the transform of ' or Ai, and with b the transform of �%="0 or
��0 Ji, i D 1; 2; 3, and letting k2 D !2=c2, each scalar equation in (4.42) has the
form of the Helmholtz equation

r2f C k2 f D b : (4.43)

The solution of (4.43) is sought within a finite domain V (Fig. 4.1), for a given set
of boundary conditions defined over the boundary S of V , and for a given right-
hand side b defined within V and over S. Let r D .x; y; z/ be a point external to V ,
q D .; �; �/ a point internal to V , and

g D r � q ; g D
�
.x � /2 C .y � �/2 C .z � �/2

�1=2
(4.44)

where, by construction, it is g > 0. In the following calculation, r is kept fixed while
q varies. As a consequence, the derivatives of g are calculated with respect to  , �,
and �. It is easily shown that in a three-dimensional space the auxiliary function4

Fig. 4.1 The domain V used
for the solution of the
Helmholtz equation (4.43).
The three possible positions
of point r are shown: external
to V , internal to V , or on the
boundary S

r

q

n
ε

V
S

r

n

r

4Function G is also called Green function. If k D 0, this function fulfills the Laplace equation
r2G D 0. As shown in Sect. 4.12.4, the form of the Green function that solves, e.g., the Laplace
equation depends on the number of spatial dimensions considered.
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G.g/ D
1

g
exp.�i k g/ ; k real, (4.45)

fulfills the homogeneous Helmholtz equation r2GCk2 G D 0. Using the procedure
that leads to the second Green theorem (Sect. A.5, Eq. (A.25)) yields the integral
relation

Z

S

�
G
@f

@n
� f

@G

@n

�
dS D

Z

V
G b dV ; (4.46)

where the unit vector n over S is oriented in the outward direction and, by
construction, point r is external to V .

4.8 Helmholtz Equation in a Finite Domain

The relation (4.46) would not be applicable if r were internal to V , because G
diverges for g ! 0 and, as a consequence, is not differentiable in q D r. On the
other hand, in many applications r happens to be internal to V . In such cases one
must exclude from the integral a suitable portion of volume V; this is achieved
by considering a spherical domain of radius � centered on r and internal to V
(Fig. 4.1). Letting V� , S� be, respectively, the volume and surface of such a sphere,
and considering the new volume V 0 D V � V� , having S0 D S [ S� as boundary,
makes (4.46) applicable to V 0, to yield

Z

S

�
G
@f

@n
� f

@G

@n

�
dSC

Z

S�

.: : :/ dS� D
Z

V
G b dV �

Z

V�

G b dV� ; (4.47)

where the dots indicate that the integrand is the same as in the first integral at the
left-hand side. Over S� it is G D .1=�/ exp.�i k �/, with the unit vector n pointing
from the surface towards the center of the sphere, namely, opposite to the direction
along which � increases. It follows @G=@n D �@G=@� D .i k C 1=�/G. Letting
Œf � and Œ@f=@n� be the average values of f and, respectively, @f=@n over S� , and
observing that G and @G=@� are constant there, yields

Z

S�

�
G
@f

@n
� f

@G

@n

�
dS� D 4� exp.�i k �/

�
�

�
@f

@n

�
� .1C i k �/ Œf �

�
:

(4.48)

As for the integral I D
R

V�
G b dV� it is useful to adopt the spherical coordi-

nates (B.1) after shifting the origin to the center of the sphere. In the new reference
it is r D 0, so that the radial coordinate coincides with g. It follows
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I D
Z �

0

Z �

0

Z 2�

0

g sin# exp.�i k g/ b.g; #; '/ dg d# d' : (4.49)

Taking the absolute value of I and observing that g and sin# are positive yields
jIj � 2� �2 supV� jbj. To proceed, one assumes that f and b are sufficiently smooth
as to fulfill the conditions

lim
�!0

� Œf � D 0 ; lim
�!0

�

�
@f

@n

�
D 0 ; lim

�!0
�2 sup

V�

jbj D 0 : (4.50)

Thanks to (4.50) one restores the original volume V by taking the limit � ! 0.
Observing that lim�!0Œf � D f .r/, one finds

4� f .r/ D
Z

S

�
G
@f

@n
� f

@G

@n

�
dS �

Z

V
G b dV ; (4.51)

that renders f .r/ as a function of b, of the boundary values of f and @f=@n, and of
the auxiliary function G. It is easily found that if r were on the boundary S instead
of being internal to V , the left-hand side of (4.51) would be replaced by 2� f .p/.
Similarly, if r were external to V , the left-hand side would be zero. In conclusion
one generalizes (4.51) to

!r f .r/ D
Z

S

�
G
@f

@n
� f

@G

@n

�
dS �

Z

V
G b dV ; (4.52)

where !r is the solid angle under which the surface S is seen from r considering the
orientation of the unit vector n. Namely, !r D 0, !r D 2� , or !r D 4� when r is
external to V , on the boundary of V , or internal to V , respectively.

Letting k D 0 in (4.45), namely, taking G D 1=g, makes the results of this section
applicable to the Poisson equation r2f D b. It must be noted that (4.52) should
be considered as an integral relation for f , not as the solution of the differential
equation whence it derives. In fact, for actually calculating (4.52) it is necessary to
prescribe both f and @f=@n over the boundary. This is an overspecification of the
problem: in fact, the theory of boundary-value problems shows that the solution
of an equation of the form (4.43) is found by specifying over the boundary either
the unknown function only (Dirichlet boundary condition), or its normal derivative
only (Neumann boundary condition). To find a solution starting from (4.52) it is
necessary to carry out more steps, by which either f or @f=@n is eliminated from the
integral at the right-hand side [69, Sect. 1.8–1.10]. In contrast, when the solution
is sought in a domain whose boundary extends to infinity, and the contribution of
the boundary conditions vanish as shown in Sect. 4.9, the limiting case of (4.52)
provides a solution proper. More comments about this issue are made in Sect. 4.12.3.
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4.9 Solution of the Helmholtz Equation in an Infinite Domain

The procedure shown in Sect. 4.8 is readily extended to the case V ! 1. Here
one may replace S with a spherical surface of radius R ! 1, centered on r; this
makes the calculation of the integral over S similar to that over the sphere of radius
" outlined in Sect. 4.8, the only difference being that the unit vector n now points in
the direction where R increases. Shifting the origin to r and observing that !r D 4�

yield

Z

S

�
G
@f

@n
� f

@G

@n

�
dS D 4� exp.�i k R/

�
R

�
@f

@n

�
C .1C i k R/ Œf �

�
;

(4.53)

where the averages are calculated over S. To proceed one assumes that the following
relations hold,

lim
R!1

Œf � D 0 ; lim
R!1

R

��
@f

@n

�
C i k Œf �

�
D 0 ; (4.54)

that are called Sommerfeld asymptotic conditions. Due to (4.54) the surface
integral (4.53) vanishes. Shifting the origin back from r to the initial position, the
solution of the Helmholtz equation (4.43) over an infinite domain finally reads

f .r/ D �
1

4�

Z

1

b.q/
exp.�i k jr � qj/
jr � qj

d3q ; (4.55)

where
R
1 indicates the integral over the whole three-dimensional q space. The k D

0 case yields the solution of the Poisson equation r2f D b in an infinite domain,

f .r/ D �
1

4�

Z

1

b.q/
1

jr � qj
d3q : (4.56)

4.10 Solution of the Wave Equation in an Infinite Domain

The solutions of the Helmholtz equation found in Sects. 4.8, 4.9 allow one to
calculate that of the wave equation. In fact, it is worth reminding that the Helmholtz
equation (4.43) was deduced in Sect. 4.7 by Fourier transforming the wave equa-
tions (4.35) and i) letting f indicates the transform of the scalar potential ' or of
any component Ai of the vector potential, ii) letting b indicates the transform of
�%="0 or ��0 Ji, i D 1; 2; 3. As a consequence, f and b depend on the angular
frequency ! besides the spatial coordinates. From the definition k2 D !2=c2 one
may also assume that both k and ! have the same sign, so that k D !=c. Considering
for simplicity the case V ! 1, applying (C.17) to antitransform (4.56), and
interchanging the order of integrals yields
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F�1f D �
1

4�

Z

1

1
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�
1
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2�

Z C1

�1

b.q; !/ expŒi! .t � g=c/� d!

�
d3q ;

(4.57)

with g D jr � qj. Now, denote with a the antitransform of b, a.q; t/ D F�1b.
It follows that the function between brackets in (4.57) coincides with a.q; t � g=c/.
As remarked above, when f represents ', then a stands for �%="0; similarly, when
f represents a component of A, then a stands for the corresponding component of
��0 J. In conclusion,

'.r; t/ D
1

4� "0

Z

1

%.q; t � jr � qj=c/

jr � qj
d3q ; (4.58)

A.r; t/ D
�0

4�

Z

1

J.q; t � jr � qj=c/

jr � qj
d3q ; (4.59)

that express the potentials in terms of the field sources % and J, when the asymptotic
behavior of the potentials fulfills the Sommerfeld conditions (4.54). The functions
rendered by the antitransforms are real, as should be. Note that jr � qj=c > 0 is the
time necessary for a signal propagating with velocity c to cross the distance jr� qj.
As t�jr�qj=c < t, the above expressions of ' and A are called retarded potentials.5

4.11 Lorentz Force

It has been assumed so far that the sources of the electromagnetic field, namely
charge density and current density, are prescribed functions of position and time.
This is not necessarily so, because the charges are in turn acted upon by the
electromagnetic field, so that their dynamics is influenced by it. Consider a test
charge of value e immersed in an electromagnetic field described by the vectors E,
B generated by other charges. The force acting upon the test charge is the Lorentz
force [10, Vol. I, Sect. 44]

F D e .EC u ^ B/ ; (4.60)

where u is the velocity of the test charge and E, B are independent of u. The
expression of the Lorentz force does not derive from assumptions separate from
Maxwell’s equations; in fact, it follows from Maxwell’s equations and Special

5Expressions of ' and A obtained from (4.58,4.59) after replacing t� jr� qj=c with tCjr� qj=c
are also solutions of the wave equations (4.35). This is due to the fact that the Helmholtz
equation (4.43) can also be solved by using G� instead of G, which in turn reflects the time
reversibility of the wave equation. However, the form with t � jr � qj=c better represents the
idea that an electromagnetic perturbation, that is present in r at the time t, is produced by a source
acting in q at a time prior to t.



90 4 Electromagnetism

Relativity [52, 135]. The extension of (4.60) to the case of a number of point-like
charges follows the same line as in Sect. 4.4: considering the charges belonging to
a cell of volume �V centered at r, one writes (4.60) for the jth charge and takes the
sum over j, to find

f D

P0
j Fj

�V
D % .EC v ^ B/ ; (4.61)

where %, v are defined in (4.21) and f is the force density (Œf� D N m�3). The fields
in (4.61) are calculated in r and t.

Consider a small time interval ıt during which the charge contained within �V
is displaced by ır D v ıt. The work per unit volume exchanged between the charge
and the electromagnetic field due to such a displacement is

ıw D f � ır D % .EC v ^ B/ � v ıt D E � J ıt ; Œw� D J m�3 ; (4.62)

where (A.32) and (4.21) have been used. When the scalar product is positive, the
charge acquires kinetic energy from the field, and vice versa. Letting ıt! 0 yields

@w

@t
D E � J ; (4.63)

where the symbol of partial derivative is used because (4.63) is calculated with r
fixed.

4.12 Complements

4.12.1 Invariance of the Euler Equations

It has been shown in Sect. 4.2 that the Euler equations (4.8) are still fulfilled if the
generating function g is replaced with g0 D gC div h, where h is an arbitrary vector
of length m whose entries depend on w and 1; : : : ; m, but not on the derivatives of
w. This property is a generalization of that illustrated in Sect. 1.2 with reference to a
system of particles, where it was shown that the solutions wi./ are invariant under
addition to g of the total derivative of an arbitrary function that depends on w and 
only.

4.12.2 Wave Equations for the E and B Fields

The Maxwell equations can be rearranged in the form of wave equations for the
electric and magnetic fields. To this purpose, one takes the rotational of both sides



4.12 Complements 91

of the second equation in (4.24). Using the first identity in (A.36) and the relation
D D "0 E provides �@ rot B=@t D rot rot E D grad div.D="0/ � r2E. Replacing
div D and rot H D rot B=�0 from (4.19) and using "0 �0 D 1=c2 then yield

r2E �
1

c2
@2E
@t2
D

1

"0
grad %C �0

@J
@t
: (4.64)

Similarly, one takes the rotational of both sides of the second equation in (4.19).
Using the relation B D �0 H provides "0 @ rot E=@t C rot J D rot rot H D

grad div.B=�0/ � r2H. Replacing div B and rot E from (4.24) yields

r2H �
1

c2
@2H
@t2
D � rot J : (4.65)

4.12.3 Comments on the Boundary-Value Problem

Considering relation (4.52) derived in Sect. 4.8, one notes that the right-hand side
is made of the difference between two terms; the first one depends on the boundary
values of f , @f=@n, but not on b, while the second one depends only on the values of
b within V and over the boundary. In these considerations it does not matter whether
point r is external to V , on the boundary of V , or internal to it. In latter case the two
terms at the right-hand side of (4.52) balance each other.

If b is replaced with a different function Qb, and thereby the value of the second
integral changes, it is possible to modify the boundary values in such a way as
to balance the variation of the second integral with that of the first one; as a
consequence, f .r/ is left unchanged. A possible choice for the modified b is Qb D 0;
by this choice one eliminates the data of the differential equation and suitably
modifies the boundary values, leaving the solution unaffected. An observer placed
at r would be unable to detect that the data have disappeared. The same process
can also be carried out in reverse, namely, by eliminating the boundary values and
suitably changing the data.

An example is given in Prob. 4.4 with reference to a one-dimensional Poisson
equation where the original charge density differs from zero in a finite interval Œa; b�.
The charge density is removed and the boundary values at a are modified so that the
electric potential ' is unaffected for x � b. Obviously ' changes for a < x < b
because both the charge density and boundary conditions are different, and also for
x � a because the boundary conditions are different.
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4.12.4 Green Function for the Upper Half Plane

The solution of the Laplace equation in two dimensions is considered in this section,
using the method of the Green function introduced in Sect. 4.7. Using the Cartesian
coordinates, let P D .x; y/ be a point of the upper half plane y > 0, Q D .; 0/ a
point of the x axis, and r D jP � Qj D Œ. � x/2 C y2�1=2 > 0 the distance between
them. Treating  as a parameter, the function

G.x; yI / D log.r2/ (4.66)

is harmonic in the upper half plane. Indeed, using a suffix to indicate a partial
derivative, it is Gx D 2 .x�/=r2 and Gy D 2 y=r2, whence Gxx D 2 Œy2�.x�/2�=r4

and Gyy D 2 Œ.x� /2� y2�=r4. Adding the last two relations yields r2G D 0: From
the above it follows that also log r D G=2 is harmonic in the upper half plane. On
the contrary, G is not everywhere harmonic along the x axis because G.x; 0/ diverges
as j � xj ! 0.

Let E.x/ be a piecewise continuous function defined along the x axis. It is also
assumed that E is bounded, namely, that some number M > 0 exists such that
jEj � M for all x. The integral

'.x; y/ D '0 �
1

2�

Z C1

�1

E./G.x; yI / d ; (4.67)

with '0 an arbitrary constant, is harmonic in the upper half plane due to the
properties of G. In addition, its derivative with respect to y along the x axis is �E.
More precisely, if E is continuous at x, then limy!0C

@'=@y D �E.x/, whereas
if E has a first-order discontinuity at x, E.x/ in the above must be replaced with
ŒE.xC/C E.x�/�=2. In fact, from the definition of G it follows

lim
y!0C
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@y
D � lim

y!0C

Z C1

�1

E./ y=�

. � x/2 C y2
d ; (4.68)

where x is kept fixed. Consider an interval of length s centered at x. The contribution
to the integral of this interval is

Z xCs=2

x�s=2

E./ y=�

. � x/2 C y2
d D hEis

Z xCs=2

x�s=2

y=�

. � x/2 C y2
d ; (4.69)

with hEis the average value of E over the interval. Letting � D .�x/=y, the integral
at the right-hand side of (4.69) becomes

Z Cs=.2 y/

�s=.2 y/

1=�

1C �2
d� D

2

�
arctan

�
s

2 y

�
; (4.70)
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whose limit for y ! 0C is 1. The contribution to the integral of the interval from
�1 to x � s=2 is zero because

ˇ̌
ˇ̌
ˇ

Z x�s=2

�1

E./ y=�

. � x/2 C y2
d

ˇ̌
ˇ̌
ˇ
� M

Z x�s=2

�1

y=�

. � x/2 C y2
d : (4.71)

The integral at the right-hand side of (4.71) is equal to .M=�/ Œarctan .�s=.2 y// �
arctan.�1/�, whose limit for y ! 0C is 0. Similarly, the integral over the interval
from xC s=2 toC1 does not contribute. In conclusion,

lim
y!0C

@'

@y
D �hEis : (4.72)

The proof is completed by observing that s can be taken as small as we please.
In conclusion, the integral (4.67) defining ' provides the solution of the Laplace
equation r2' D 0 in the upper half plane, supplemented with the prescription of
the normal derivative along the x axis (Neumann boundary conditions).

The results found in this section have a useful application to a method for
measuring the conductivity of a simply connected, flat sample of material of
arbitrary shape. The method is described in Sect. 25.7.

Problems

4.1 Solve the one-dimensional Poisson equation d2'=dx2 D �%.x/="0, with %
given, using the integration by parts to avoid a double integral. The solution is
prescribed at x D a while the first derivative is prescribed at x D c.

4.2 Let c D a in the solution of Prob. 4.1 and assume that the charge density %
differs from zero only in a finite interval a � x � b. Find the expression of ' for
x > b when both the solution and the first derivative are prescribed at x D a.

4.3 In Prob. 4.2 replace the charge density % with a different one, say, Q%. Discuss
the conditions that leave the solution unchanged.

4.4 In Prob. 4.2 remove the charge density % and modify the boundary conditions
at a so that the solution for x > b is left unchanged.

4.5 Using the results of Probs. 4.2 and 4.3, and assuming that both M0 and M1 are
different from zero, replace the ratio %="0 with �ı.x � h/ and find the parameters
�, h that leave M0, M1 unchanged. Noting that h does not necessarily belong to the
interval Œa; b�, discuss the outcome for different positions of h with respect to a.

4.6 A particle of mass m and charge q enters at t D 0 a region where a constant
magnetic induction B D B k is present, with B > 0. The velocity u0 at t D 0 is
normal to B. Find the particle’s trajectory for t > 0.



Chapter 5
Applications of the Concepts
of Electromagnetism

5.1 Introduction

This chapter provides a number of important applications of the concepts of
Electromagnetism. The solution of the wave equation found in Chap. 4 is used to
calculate the potentials generated by a point-like charge; this result is exploited
later to analyze the decay of atoms in the frame of the classical model, due to the
radiated power. Next, the continuity equations for the energy and momentum of
the electromagnetic field are found. As an application, the energy and momentum
of the electromagnetic field are calculated in terms of modes in a finite domain,
showing that the energy of each mode has the same expression as that of a linear
harmonic oscillator. The analysis is extended also to an infinite domain. The chapter
is concluded by the derivation of the eikonal equation, leading to the approximation
of Geometrical Optics, followed by the demonstration that the eikonal equation is
generated by a variational principle, namely, the Fermat principle. The complements
show the derivation of the fields generated by a point-like charge and the power
radiated by it. It is found that the planetary model of the atom is inconsistent
with electromagnetism because it contradicts the atom’s stability. Finally, a number
of analogies are outlined and commented between Mechanics and Geometrical
Optics, based on the comparison between the Maupertuis and Fermat principles.
The reasoning deriving from the comparison hints at the possibility that mechanical
laws more general than Newton’s law exist.

5.2 Potentials Generated by a Point-Like Charge

The calculation of ' and A based upon (4.58, 4.59) has the inconvenience that as q
varies over the space, it is necessary to consider the sources % and J at different time
instants. This may be avoided by recasting a in the form
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a.q; t � jr � qj=c/ D
Z C1

�1

a.q; t0/ ı.t0 � tC jr � qj=c/ dt0 ; (5.1)

with ı the Dirac delta (Sect. C.4), and interchanging the integration over q in (4.58,
4.59) with that over t0. This procedure is particularly useful when the source of the
field is a single point-like charge. Remembering (4.20), one replaces % and J with

%c.q; t0/ D e ı
�
q � s.t0/

	
; Jc.q; t0/ D e ı

�
q � s.t0/

	
u.t0/ ; (5.2)

where e is the value of the point-like charge, s D s.t0/ its trajectory, and u.t0/ D
ds=dt0 its velocity. First, the integration over space fixes q at s0 D s.t0/, thus yielding

'.r; t/ D
e

4� "0

Z C1

�1

ıŒˇ.t0/�

jr � s0j
dt0 ; A.r; t/ D

e�0
4�

Z C1

�1

ıŒˇ.t0/�u.t0/
jr � s0j

dt0 ;

(5.3)
with ˇ.t0/ D t0 � t C jr � s0j=c. Next, the integration over t0 fixes the latter to the
value that makes the argument of ı to vanish. Such a value is the solution of

jr � s.t0/j D c .t � t0/ ; (5.4)

where t, r, and the function s.t0/ are prescribed. As juj < c it can be shown that the
solution of (5.4) exists and is unique [85, Sect. 63]. Observing that the argument
of ı in (5.3) is a function of t0, to complete the calculation one must follow the
procedure depicted in Sect. C.5, which involves the derivative

dˇ

dt0
D 1C

1

c

djr � s0j
dt0

D 1C
dŒ.r � s0/ � .r � s0/�
2 c jr � s0j dt0

D 1 �
r � s0

jr � s0j
u
c
: (5.5)

Then, letting t0 D � be the solution of (5.4) and P̌ D .dˇ=dt0/t0D� , one
applies (C.57) to (5.3). The use of the absolute value is not necessary here, in fact
one has Œ.r � s0/=jr � s0j� � .u=c/ � u=c < 1, whence j P̌j D P̌. In conclusion one
finds

'.r; t/ D
e=.4 � "0/

jr � s.�/j � .r � s.�// � u.�/=c
; (5.6)

A.r; t/ D
e�0=.4 �/u.�/

jr � s.�/j � .r � s.�// � u.�/=c
; (5.7)

that provide the potentials generated in r and at time t by a point-like charge that
follows the trajectory s D s.�/. The relation between t and � is given by t D �Cjr�
s.�/j=c, showing that t�� is the time necessary for the electromagnetic perturbation
produced by the point-like charge at s to reach the position r. The expressions (5.6,
5.7) are called Liénard and Wiechert potentials. In the case u D 0 they become
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'.r/ D
e

4� "0 jr � sj
; A.r/ D 0 ; (5.8)

s D const, the first of which is the Coulomb potential. The fields E, B generated
by a point-like charge are obtained from (5.6, 5.7) using (4.26). The calculation is
outlined in Sect. 5.11.1.

5.3 Energy Continuity—Poynting Vector

The right-hand side of (4.63) is recast in terms of the fields by replacing J with the
left-hand side of the second equation in (4.19); using D D "0 E,

@w

@t
D E �

�
rot H � "0

@E
@t

�
D E � rot H �

"0

2

@E2

@t
: (5.9)

The above expression is given a more symmetric form by exploiting the first
equation in (4.19). In fact, a scalar multiplication of the latter by H along with
the relation B D �0 H provides 0 D H � rot EC �0 @.H2=2/=@t which, subtracted
from (5.9), finally yields

@w

@t
D E � rot H �H � rot E �

@wem

@t
; wem D

1

2

�
"0 E2 C �0 H2

	
: (5.10)

Then, using the second identity in (A.36) transforms (5.10) into

@

@t
.wC wem/C div S D 0 ; S D E ^H : (5.11)

As wCwem is an energy density, S (called Poynting vector) is an energy-flux density
(ŒS� D J m�2 s�1). To give wem and S a physical meaning one notes that (5.11) has
the form of a continuity equation (compare, e.g., with (23.3) and (4.23)) where two
interacting systems are involved, namely, the charges and the electromagnetic field.
Integrating (5.11) over a volume V yields

d

dt
.W CWem/ D �

Z

†

S � n d† ; W D
Z

V
w dV ; Wem D

Z

V
wem dV ;

(5.12)
where † is the boundary of V , n is the unit vector normal to d† oriented in the
outward direction with respect to V , and W, Wem are energies. If V is let expand
to occupy all space, the surface integral in (5.12) vanishes because the fields E, H
vanish at infinity; it follows that for an infinite domain the sum WCWem is conserved
in time, so that dWem=dt D �dW=dt. Observing that W is the kinetic energy of the
charge, and that the latter exchanges energy with the electromagnetic field, gives
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Wem the meaning of energy of the electromagnetic field; as a consequence, wem is
the energy density of the electromagnetic field, and the sum WCWem is the constant
energy of the two interacting systems.

When V is finite, the surface integral in (5.12) may be different from zero, hence
the sum W CWem is not necessarily conserved. This allows one to give the surface
integral the meaning of energy per unit time that crosses the boundary †, carried
by the electromagnetic field. In this reasoning it is implied that when V is finite, it
is chosen in such a way that no charge is on the boundary at time t. Otherwise the
kinetic energy of the charges crossing † during dt should also be accounted for.

5.4 Momentum Continuity

The procedure used in Sect. 5.3 to derive the continuity equation for the charge
energy can be replicated to obtain the continuity equation for the charge momentum
per unit volume, m. Remembering (4.61) one finds the relation f D Pm D

P0
j Ppj=�V ,

with pj the momentum of the jth charge contained within �V . Using (4.19) along
with J D % v yields

Pm D %EC J ^ B D E div DC
�

rot H �
@D
@t

�
^ B : (5.13)

Adding D ^ @B=@t to both sides of (5.13), using @B=@t D � rot E, and rearranging:

PmC
@D
@t
^ BC D ^

@B
@t
D E div DC .rot H/ ^ BC .rot E/ ^ D : (5.14)

Poynting vector’s definition (5.11) transforms the left-hand side of (5.14) into PmC
"0 �0 @.E ^ H/=@t D @.m C S=c2/=@t. In turn, the kth component of E div D C
.rot E/ ^ D can be recast as

"0 .Ek div EC E � grad Ek/ �
"0

2

@E2

@xk
D "0 div.Ek E/ �

"0

2

@E2

@xk
: (5.15)

Remembering that div B D 0, the kth component of the term .rot H/ ^ B D
H div BC .rot H/^B is treated in the same manner. Adding up the contributions of
the electric and magnetic parts and using the definition (5.10) of wem yield

@

@t

�
mk C

1

c2
Sk

�
C div Tk D 0 ; Tk D wem ik � "0 Ek E � �0 HkH ; (5.16)

with ik the unit vector of the kth axis. As mk C Sk=c2 is a momentum density, Tk

is a momentum-flux density (ŒTk� D J m�3). Following the same reasoning as in
Sect. 5.3 one integrates (5.16) over a volume V , to find
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d

dt

Z

V

�
mk C

1

c2
Sk

�
dV D �

Z

†

Tk � n d† ; (5.17)

where † and n are defined as in (5.12). If V is let expand to occupy all space,
the surface integral in (5.17) vanishes because the fields E, H vanish at infinity; it
follows that for an infinite domain the sum

Z

V

�
mC

1

c2
S
�

dV D pC
Z

V

1

c2
S dV ; p D

Z

V
m dV (5.18)

is conserved in time. As p is the momentum of the charge,
R

V S=c2 d3r takes the
meaning of momentum of the electromagnetic field within V . As a consequence,
S=c2 takes the meaning of momentum per unit volume of the electromagnetic field.

When V is finite, the surface integral in (5.17) may be different from zero, hence
the sum (5.18) is not necessarily conserved. This allows one to give the surface
integral in (5.17) the meaning of momentum per unit time that crosses the boundary
†, carried by the electromagnetic field. In this reasoning it is implied that when
V is finite, it is chosen in such a way that no charge is on the boundary at time
t. Otherwise the momentum of the charges crossing † during dt should also be
accounted for.

5.5 Modes of the Electromagnetic Field

The expressions of the energy and momentum of the electromagnetic field, worked
out in Sect. 5.3 and 5.4, take a particularly interesting form when a spatial region free
of charges is considered. In fact, if one lets % D 0, J D 0, Eqs. (4.33) or (4.35) that
provide the potentials become homogeneous. To proceed one takes a finite region
of volume V; the calculation will be extended in Sect. 5.8 to the case of an infinite
domain. As the shape of V is not essential for the considerations illustrated here, it
is chosen as that of a box whose sides d1, d2, d3 are aligned with the coordinate axes
and start from the origin (Fig. 5.1). The volume of the box is V D d1 d2 d3.

The calculation is based on (4.33) that are the equations for the potentials
deriving from the Coulomb gauge (4.32). Letting % D 0, J D 0 and dropping
the primes yield

r2' D 0 ; r2A �
1

c2
@2A
@t2
D
1

c2
@

@t
grad' ; (5.19)

the first of which is a Laplace equation. It is shown in Sect. 5.11.4 that a gauge
transformation exists such that ' D 0 here. The system (5.19) then reduces to the
linear, homogeneous wave equation for the vector potential A D A.r; t/,
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Fig. 5.1 The domain used
for the expansion of the
vector potential into a Fourier
series (Sect. 5.5)

x1

x2

d1

d2

d3

x3

r2A �
1

c2
@2A
@t2
D 0 : (5.20)

As the vector potential is defined within a finite volume and has a finite module as
well, one can expand it into the Fourier series

A D
X

k

ak exp.i k � r/ ; ak D
1

V

Z

V
A exp.�i k � r/ dV ; (5.21)

where ak D a.k; t/ is complex and the wave vector k is given by

k D n1
2�

d1
i1 C n2

2�

d2
i2 C n3

2�

d3
i3 ; ni D 0;˙1;˙2; : : : (5.22)

The symbol
P

k indicates a triple sum over all integers n1; n2; n3. The definition of
ak yields

a�k D a�k ; a0 D
1

V

Z

V
A dV ; (5.23)

with a0 real. Applying Coulomb’s gauge div A D 0 to the expansion (5.21) provides

div A D
X

k

3X

mD1

akm i km exp.i k � r/ D i
X

k

ak � k exp.i k � r/ D 0 ; (5.24)

that is, a linear combination of functions of r. As such functions are linearly
independent from each other, (5.24) vanishes only if the coefficients vanish, so it
is ak � k D 0. Replacing k with �k and using (5.23) show that a�k � k D a�k � k D 0.
In conclusion, ak has no components in the direction of k, namely, it has only two
independent (complex) components that lie on the plane normal to k: letting e1, e2
be unit vectors belonging to such a plane and normal to each other, one has
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ak D ak � e1 e1 C ak � e2 e2 : (5.25)

Clearly the reasoning above does not apply to a0; however, it is shown below that
eventually this term does not contribute to the fields. The Fourier series (5.21) is
now inserted into the wave equation (5.20), whose two summands become

r2A D
X

k

ak

3X

mD1

.i km/
2 exp.i k � r/ D �

X

k

ak k2 exp.ik � r/ ; (5.26)

�
1

c2
@2A
@t2
D �

1

c2
X

k

Rak exp.i k � r/ : (5.27)

Adding up yields
P

k

�
Rak C c2 k2 ak

	
exp.i k � r/ D 0 whence, using the same

reasoning as that used for discussing (5.24),

Rak C !
2 ak D 0 ; !.k/ D c k � 0 ; !.�k/ D !.k/ : (5.28)

The case k D 0 yields Ra0 D 0 whence a0.t/ D a0.t D 0/ C Pa0.t D 0/ t. The
constant Pa0.t D 0/ must be set to zero to prevent a0 from diverging. When k ¤ 0

the solution of (5.28) is readily found to be ak.t/ D ck exp.�i!t/C c0k exp.i!t/,
where the complex vectors ck, c0k depend on k only and lie on the plane normal to
it. Using the first relation in (5.23) yields c0k D c��k and, finally,

ak D sk C s��k ; sk.t/ D ck exp.�i! t/ ; k ¤ 0 : (5.29)

Thanks to (5.29) one reconstructs the vector potential A in a form that shows
its dependence on space and time explicitly. To this purpose one notes that the
sum (5.21) contains all possible combinations of indices n1, n2, n3, so that a sum-
mand corresponding to k is paired with another summand corresponding to�k. One
can then rearrange (5.21) as A D .1=2/

P
k Œak exp.i k � r/C a�k exp.�i k � r/�,

where the factor 1=2 is introduced to eliminate a double counting. Using (5.29), and
remembering from (5.28) that !.k/ is even render A as a sum of real terms,

A D
X

k

<fck expŒi .k � r � ! t/�C c��k expŒi .k � rC ! t/�g ; (5.30)

The summands of (5.30) corresponding to k and �k describe two plane and
monochromatic waves that propagate in the k and �k direction, respectively. The
two waves together form a mode of the electromagnetic field, whose angular
frequency is ! D c k. The summands corresponding to k D 0 yield the real constant
c0 C c�0 D a0. Finally, the E and B fields are found by introducing the expansion of
A into (4.26) after letting ' D 0. For this calculation it is convenient to use the form
of the expansion bearing the factor 1=2 introduced above: from the definition (5.29)
of sk and the first identity in (A.35) one finds
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E D �
@A
@t
D
1

2

X

k

i!
��

sk � s��k

	
exp.i k � r/C

�
s�k � s�k

	
exp.�i k � r/

�
;

(5.31)

B D rot A D
1

2

X

k

i k ^
��

sk C s��k

	
exp.i k � r/ �

�
s�k C s�k

	
exp.�i k � r/

�
:

(5.32)
As anticipated, the constant term a0 does not contribute to the fields. Also, due to the
second relation in (5.29), the vectors sk, s��k, s�k, and s�k lie over the plane normal
to k. Due to (5.31, 5.32) the E and B fields lie on the same plane as well, namely,
they have no component in the propagation direction. For this reason they are called
transversal.

5.6 Energy of the Electromagnetic Field in Terms of Modes

The expressions of the E, B fields within a finite volume V free of charges have been
calculated in Sect. 5.5 as superpositions of modes, each of them associated with a
wave vector k and an angular frequency ! D c k. Basing upon such expressions
one is able to determine the electromagnetic energy within V in terms of modes.
To this purpose one calculates from (5.31, 5.32) the squares E2 D E � E and B2 D
B � B, inserts the resulting expression into the second relation of (5.10) to obtain
the energy per unit volume, and, finally, integrates the latter over V (last relation
in (5.12)). Letting Ik be the quantity enclosed within brackets in (5.31), it is E2 D
�.1=4/

P
k

P
k0

! !0 Ik � Ik0 , where !0 D c k0. The integration over V avails itself
of the integrals (C.130) to yield

�
1

4

X

k0

! !0
Z

V
Ik � Ik0 dV D V !2

�
sk � s��k

	
�
�
s�k � s�k

	
; (5.33)

so that the part of the electromagnetic energy deriving from E reads

Z

V

"0

2
E2 dV D

"0

2
V
X

k

!2
�
sk � s��k

	
�
�
s�k � s�k

	
: (5.34)

By the same token one lets Yk be the quantity enclosed within brackets in (5.32),
whence B2 D �.1=4/

P
k

P
k0

.k ^ Yk/ � .k0 ^ Yk0/ and

�
1

4

X

k0

Z

V
.k ^ Yk/ � .k0 ^ Yk0/ dV D V

�
k ^

�
sk C s��k

	�
�
�
k ^

�
s�k C s�k

	�
:

(5.35)
The expression at the right-hand side of (5.35) simplifies because, due to (5.29), k
is normal to the plane where sk, s��k, s�k, and s�k lie, so that Œk ^ .sk C s��k/� � Œk ^
.s�kC s�k/� D k2 .skC s��k/ � .s�kC s�k/. Using the relation k2 D !2=c2 D "0 �0 !2
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yields the part of the electromagnetic energy deriving from H D B=�0,

Z

V

1

2�0
B2 dV D

"0

2
V
X

k

!2 .sk C s��k/ � .s�k C s�k/ : (5.36)

Adding up (5.34) and (5.36) one finally obtains

Wem D "0 V
X

k

!2
�
sk � s�k C s�k � s��k

	
D 2 "0 V

X

k

!2 sk � s�k : (5.37)

This result shows that the energy of the electromagnetic field within V is the sum of
individual contributions, each associated with a wave vector k through the complex
vector sk. As the latter lies on the plane normal to k, it is expressed in terms
of two scalar components as sk D sk1 e1 C sk2 e2. Such components are related
to the polarization of the electromagnetic field over the plane [15, Sect. 1.4.2].
These considerations allow one to count the number of indices that are involved
in the representation (5.37) of Wem: in fact, the set of k vectors is described by
the triple infinity of indices n1, n2, n3 2 Z that appear in (5.22), while the two
scalar components require another index � D 1; 2. The sk vectors describe the
electromagnetic field through (5.31) and (5.32), hence one may think of each scalar
component sk� as a degree of freedom of the field; the counting outlined above
shows that the number of degrees of freedom is 2 � Z3. In turn, each degree of
freedom is made of a real and an imaginary part, sk� D Rk� C i Ik� , thus yielding

Wem D
X

k�

Wk� ; Wk� D 2 "0 V !2
�
R2k� C I2k�

	
: (5.38)

As ! D c k, the mode with k D 0 does not contribute to the energy. In (5.38) it
is Rk� D jck� j cosŒi! .t0 � t/�, Ik� D jck� j sinŒi! .t0 � t/�, where the polar form
jck� j exp.i! t0/ has been used for ck� . One notes that each summand in (5.38) is
related to a single degree of freedom and has a form similar to the Hamiltonian
function of the linear harmonic oscillator discussed in Sect. 3.3. To further pursue
the analogy one defines the new pair

qk� .t/ D 2
p
"0 V Rk� ; pk� .t/ D 2!

p
"0 V Ik� ; (5.39)

whence

Wk� D
1

2

�
p2k� C !

2 q2k�
	
;

@Wk�

@pk�
D pk� ;

@Wk�

@qk�
D !2 qk� : (5.40)

On the other hand, the time dependence of Rk� , Ik� is such that

Pqk� D pk� D
@Wk�

@pk�
; Ppk� D �!

2 qk� D �
@Wk�

@qk�
: (5.41)
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Comparing (5.41) with (1.42) shows that qk� , pk� are canonically conjugate
variables and Wk� is the Hamiltonian function of the degree of freedom associated
with k� . Then, comparing (5.40) with (3.1, 3.2) shows that Wk� is indeed the
Hamiltonian function of a linear harmonic oscillator of unit mass.

The energy associated with each degree of freedom is constant in time. In fact,
from the second relation in (5.29) one derives Wk� D 2 "0 V !2 ck� � c�k� . The
same result can be obtained from the properties of the linear harmonic oscilla-
tor (Sect. 3.3). It follows that the total energy Wem is conserved. As shown in
Sect. 5.11.4 this is due to the periodicity of the Poynting vector (5.11): in fact, the
electromagnetic energies the cross per unit time two opposite faces of the boundary
of V are the negative of each other.

5.7 Momentum of the Electromagnetic Field in Terms
of Modes

It has been shown in Sect. 5.4 that the momentum per unit volume of the electro-
magnetic field is S=c2 D E ^ B=.�0 c2/ D "0E ^ B. Using the symbols defined in
Sect. 5.6 one finds "0E ^ B D �."0=4/

P
k

P
k0

! Ik ^ .k0 ^ Yk0/ and

�
"0

4

X

k0

Z

V
! Ik ^ .k0 ^ Yk0/ dV D

"0

2
! V .Zk C Z�k/; (5.42)

with Zk D .sk � s��k/ ^ Œk ^ .s�k C s�k/�. The expression of Zk simplifies because,
due to (5.29), k is normal to the plane where sk, s��k, s�k, and s�k lie, so that Zk D

k .sk� s��k/ � .s�kC s�k/ and ZkCZ�k D 2k sk � s�kC2 .�k/ s�k � s��k. In conclusion,
observing that ! k D .!2=c/k=k,

Z

V

S
c2

dV D 2 "0 V
X

k

! sk � s�k k D
X

k�

1

c
Wk�

k
k
D

1

2c

X

k�

�
p2k� C !

2q2k�
	 k

k
;

(5.43)
where the last two equalities derive from (5.37, 5.38, 5.40). One notes from (5.43)
that the momentum of the electromagnetic field is the sum of individual momenta,
each related to a single degree of freedom. The modulus of the individual momen-
tum is equal to the energy Wk� pertaining to the same degree of freedom divided by
c. The same relation between momentum and energy has been derived in Sect. 3.13.7
with reference to the dynamic relations of Special Relativity. Each summand
in (5.43) is constant in time, so the electromagnetic momentum is conserved; as
noted in Sects. 5.6,5.11.4 this is due to the periodicity of the Poynting vector.
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5.8 Modes of the Electromagnetic Field in an Infinite Domain

The treatment of Sects. 5.5, 5.6, 5.7 is extended to the case of an infinite domain by
means of the Fourier transform (Sect. C.2)1

A D
ZZZ C1

�1

bk
exp.i k � r/
.2 �/3=2

d3k ; bk D

ZZZ C1

�1

A
exp.�i k � r/
.2 �/3=2

d3r :

(5.44)
where bk D b.k; t/ is complex, with b�k D b�k , and the components of the wave
vector k are continuous. Relations of the same form as (5.25) and (5.28) hold for
bk, yielding

bk D Qsk C Qs
�
�k ; Qsk.t/ D dk exp.�i! t/ ; k ¤ 0 : (5.45)

where the complex vector dk depend on k only and lies on the plane normal to it.
Relations similar to (5.30, 5.31, 5.32) hold as well, where ck and sk are replaced
with dk and Qsk, respectively, and the sum is suitably replaced with an integral over
k. To determine the energy of the electromagnetic field one must integrate over the
whole space the energy density wem. Using (C.56) and the second relation in (5.45)
one finds

Wem D

ZZZ C1

�1

wem d3r D 2 "0

ZZZ C1

�1

!2 dk � d�k d3k : (5.46)

It is sometimes useful to consider the frequency distribution of the integrand at the
right-hand side of (5.46). For this one converts the integral into spherical coordinates
k; #; � and uses the relation k D !=c D 2� �=c to obtain dk D d.�; #; �/; then,
from (B.3),

Wem D

Z C1

�1

Uem.�/ d� ; Uem D
2 "0

c2
.2 � �/4

Z �

0

Z 2�

0

jdj2 sin# d# d� ;

(5.47)
where Uem (whose units are J s) is called spectral energy of the electromagnetic
field. By a similar procedure one finds the total momentum that reads

ZZZ C1

�1

S
c2

d3r D 2 "0

ZZZ C1

�1

! jdj2 k d3k : (5.48)

1For the existence of (5.44) it is implied that the three-dimensional equivalent of condition (C.19)
holds.
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5.9 Eikonal Equation

Consider the case of a monochromatic electromagnetic field with angular frequency
!. For the calculation in hand it is convenient to consider the Maxwell equations in
complex form; specifically, rot H D @D=@t yields, in vacuo,

< Œ.rot Hc C i! "0 Ec/ exp.�i! t/� D 0 ; (5.49)

while rot E D �B=@t yields

< Œ.rot Ec � i! �0 Hc/ exp.�i! t/� D 0 : (5.50)

The solution of (5.49, 5.50) has the form Ec D Ec0 exp.i k�r/, Hc D Hc0 exp.i k�r/,
with Ec0 ;Hc0 D const, i.e., a planar wave propagating along the direction of k. In a
nonuniform medium it is " D ".r/, � D �.r/, and the form of the solution differs
from the planar wave. The latter can tentatively be generalized as

Ec D Ec0 .r/ expŒi k S.r/� ; Hc D Hc0.r/ expŒi k S.r/� ; (5.51)

with k D !
p
"0 �0 D !=c. Function k S is called eikonal (ŒS� D cm).

Replacing (5.51) into (5.49, 5.50) and using the first identity in (A.35) yield

grad S ^Hc0 C c "Ec0 D �
c

i!
rot Hc0 ; (5.52)

grad S ^ Ec0 � c�Hc0 D �
c

i!
rot Ec0 : (5.53)

Now it is assumed that ! is large enough to make the right-hand side of (5.52,
5.53) negligible; in this case grad S, Ec0, Hc0 become normal to each other. Vector
multiplying (5.52) by grad S and using (5.53) then yield

grad S ^ .grad S ^Hc0/C
"�

"0 �0
Hc0 D 0 : (5.54)

Remembering that c D 1=
p
"0 �0 one defines the phase velocity, refraction index,

and wavelength of the medium as

uf .r/ D
1
p
"�

; n.r/ D
c

uf
; �.r/ D

uf

�
; (5.55)

respectively, so that "�=."0 �0/ D n2. Using the first identity in (A.33) and
remembering that grad S �Hc0 D 0 transforms (5.54) into .j grad Sj2 � n2/Hc0 D 0.
As Hc0 ¤ 0 it follows
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j grad Sj2 D n2 ; n D n.r/ ; (5.56)

that is, a partial-differential equation, called eikonal equation, in the unknown S.
The equation has been derived in the hypothesis that ! D 2�� is large, hence
� D uf =� is small; it is shown below that this condition is also described by stating
that Ec0.r/, Hc0.r/, and S.r/ vary little over a distance of the order of �.

The form of (5.51) is such that S.r/ D const defines the constant-phase surface
(the same concept has been encountered in Sect. 2.5 for the case of a system of
particles). It follows that the normal direction at each point r of the surface is
that of grad S. Let t D dr=ds be the unit vector parallel to grad S in the direction
of increasing S. A ray is defined as the envelope of the t vectors, taken starting
from a point A in a given direction. The description of rays obtained through the
approximation of the eikonal equation is called Geometrical Optics.

The eikonal equation (5.56) can be given a different form by observing that from
the definition of t it follows grad S D n t and t � grad S D dS=ds D n, whence

grad n D grad
dS

ds
D

d grad S

ds
D

d .nt/
ds
D

d

ds

�
n

dr
ds

�
: (5.57)

This form of the eikonal equation is more often used. It shows that the equation
is of the second order in the unknown function r.s/, where r is the point of the
ray corresponding to the curvilinear abscissa s along the ray itself. The equation’s
coefficient and data are given by the refraction index n. As the equation is of
the second order, two boundary conditions are necessary to completely define the
solution; for instance, the value of r.s D 0/ corresponding to the initial point
A, and the direction t D dr=ds of the ray at the same point. Remembering
that dt=ds D n=%c, where %c is the curvature radius of the ray at r, and n the
principal normal unit vector, the eikonal equation may also be recast as grad n D
.dn=ds/ t C .n=%c/n. Using the curvature radius one can specify in a quantitative
manner the approximation upon which the eikonal equation is based; in fact, for
the approximation to hold it is necessary that the electromagnetic wave can be
considered planar, namely, that its amplitude and direction do not significantly
change over a distance of the order of �. This happens if at each point r along
the ray it is %c � �.

5.10 Fermat Principle

It is worth investigating whether the eikonal equation (5.57) worked out in Sect. 5.9
is derivable from a variational principle. In fact it is shown below that the Fermat (or
least time) principle holds, stating that if A and B are two different points belonging
to a ray, the natural ray (that is, the actual path followed by the radiation between
the given points) is the one that minimizes the time

R
AB dt. The principle thus reads
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ı

Z

AB
dt D 0 ; (5.58)

where the integral is carried out along the trajectory. The analysis is similar to that
carried out in Sect. 2.7 with reference to the Maupertuis principle.

Using the relations (5.55) and observing that dt D ds=uf D n ds=c trans-
form (5.58) into ı

R
AB n ds D 0. Introducing a parametric description r D r./

of the ray, with  D a when r D A and  D b when r D B, yields

Z

AB
n ds D

Z b

a
g d ; g D n

ds

d
D n.x1; x2; x3/

q
Px21 C Px

2
2 C Px

2
3 ; (5.59)

@g

@Pxi
D n

2Pxi

2 ds=d
D n

dxi

ds
;

@g

@xi
D
@n

@xi

ds

d
: (5.60)

Remembering (1.7), the Euler equation for the ith coordinate reads

d

d

�
n

dxi

ds

�
D
@n

@xi

ds

d
; i D 1; 2; 3 ; (5.61)

whence

d

ds

�
n

dxi

ds

�
D
@n

@xi
: (5.62)

As (5.62) is the ith component of the eikonal equation (5.57), such an equation
is indeed derivable from the variational principle (5.58). Some comments about
the formal analogy between the Maupertuis and Fermat principles are made in
Sect. 5.11.6.

5.11 Complements

5.11.1 Field Generated by a Point-Like Charge

The Liénard and Wiechert expressions (5.6, 5.7) provide the potentials generated
in r at time t by a point-like charge that follows a trajectory s. More specifically,
if s D s.�/ is the position occupied by the charge at the instant � , and r is the
position where the potentials produced by the charge are detected at time t > � , the
relation (5.4) holds, namely, jr� s.�/j D c .t� �/, that links the spatial coordinates
with the time instants. Letting

g D r � s.�/ ; g D jgj ; u D
ds
d�
; Pu D

du
d�
; (5.63)



5.11 Complements 109

the fields E, B are determined by applying (4.26) to (5.6, 5.7), which amounts
to calculating the derivatives with respect to t and the components of r. This is
somewhat complicate because (4.26) introduces a relation of the form � D �.r; t/,
so that ' D '.r; �.r; t// and A D A.r; �.r; t//. It is therefore convenient to calculate
some intermediate steps first. To this purpose, (5.4) is recast in implicit form as

�.x1; x2; x3; t; �/ D

"
3X

iD1

.xi � si.�//
2

#1=2

C c .� � t/ D 0 ; (5.64)

whence grad � D g=g, @�=@t D �c, @�=@� D c � u � g=g. The gradient indicates
derivation with respect to the xi coordinates. The differentiation rule of the implicit
functions then yields

@�

@t
D �

@�=@t

@�=@�
D

c

c � u � g=g
: (5.65)

Basing on (5.64, 5.65) and following the calculation scheme reported, e.g., in [120,
Chap. 6] and in Probs. 5.3–5.9, one obtains

E D
e .@�=@t/3

4 � "0 g3

��
1 �

u2

c2

� 

g � g

u
c

�
C g ^

�

g � g

u
c

�
^
Pu

c2

�
; (5.66)

B D
g
g
^

E
c
: (5.67)

This result shows that E and B are the sum of two terms, the first of which decays
at infinity like g�2, while the second decays like g�1. The latter term differs from
zero only if the charge is accelerated ( Pu ¤ 0); its contribution is called radiation
field. Also, E and B are orthogonal to each other, while g is orthogonal to B but not
to E; however, if g is large enough to make the second term in (5.66) dominant, g
becomes orthogonal also to E and (5.67) yields B D E=c. In the case u D 0 the
relations (5.66, 5.67) simplify to

E D
e

4� "0 g2
g
g
; B D 0 ; (5.68)

that hold approximately also for u D const, u=c� 1.

5.11.2 Power Radiated by a Point-Like Charge

The expressions of the E and B fields worked out in Sect. 5.11.1 are readily exploited
to determine the power radiated by a point-like charge. Remembering the results of
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Sect. 5.3, it suffices to integrate the Poynting vector over a surface † surrounding
the charge. Introducing (5.67) into the definition (5.11) of Poynting’s vector and
using the first identity in (A.33) yield

S D
1

�0 c
E ^

�
g
g
^ E

�
D
"0 c

g

�
E2 g � E � g E

	
: (5.69)

The case Pu ¤ 0, u=c � 1 is considered, which is typical of a bound particle.
As the surface † can be chosen arbitrarily, it is convenient to select it at a large
distance from the charge in order to make the second term in (5.66) dominant and E
practically normal to g. This simplifies (5.66) and (5.69) to

S ' "0 c E2
g
g
; E '

e

4� "0 g

�
g
g
�
Pu

c2
g
g
�
Pu

c2

�
; (5.70)

where the first identity in (A.33) has been used. Letting # be the angle between g
and Pu, one combines the two expressions in (5.70) to find

S ' "0 c E � E
g
g
D

1

4� "0

e2 Pu2

4 � c3
sin2 #

g2
g
g
: (5.71)

To proceed one chooses for † a spherical surface centered at s.�/ and shifts the
origin to its center. This yields g D r at time � , whence the unit vector normal
to † becomes n D g=g. The radiation emitted by the charge reaches † at a later
time t D � C g=c; however, thanks to the hypothesis u=c � 1, during the interval
t� � the charge moves little with respect to center of the sphere. For this reason, the
surface integral can be calculated by keeping the charge fixed in the center of the
spherical surface, so that the integral

R
†
.sin2 #=g2/ d† must be evaluated with g D

const. Such an integral is easily found to equal 8�=3: first, one turns to spherical
coordinates and expresses the volume element as J d# d' dg D d† dg; then, one
finds from (B.3) the ratio d†=g2 D sin# d� d' and replaces it in the integral. In
conclusion, combining the above result with (5.12, 5.71),

�
d.W CWem/

dt
D

1

4� "0

e2 Pu2

4 � c3

Z

†

sin2 #

g2
n � n d† D

2 e2=3

4 � "0 c3
Pu2 : (5.72)

The expression at the right-hand side of (5.72), called Larmor formula, gives
an approximate expression of the power emitted by a point-like charge, that is
applicable when u=c � 1. As shown by the left-hand side, part of the emitted
power (�dW=dt) is due to the variation in the charge’s mechanical energy, while the
other part (�dWem=dt) is due to the variation in the electromagnetic energy within
the volume enclosed by †.
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5.11.3 Decay of Atoms According to the Classical Model

The power radiated by a point-like charge has been determined in Sect. 5.11.2
under the approximations Pu ¤ 0, u=c � 1, typical of a bound particle. The
radiated power (5.72) is proportional to the square of the particle’s acceleration: this
result is of a paramount importance, because it shows that the so-called planetary
model of the atom is not stable. Considering for instance the simple case of
hydrogen, the model describes the atom as a planetary system whose nucleus is
fixed in the reference’s origin while the electron orbits around it. If no power was
emitted the motion’s description would be that given, e.g., in Sect. 3.13.6, where the
Hamiltonian function is a constant of motion. In other terms, the total energy would
be conserved. In fact, in the planetary motion the electron’s acceleration, hence the
emitted power, differ from zero; the emission produces an energy loss which was
not considered in the analysis of Sect. 3.13.6. Some comments about this problem
were anticipated in Sect. 3.13.9.

To proceed it is useful to carry out a quantitative estimate of the emitted power.
The outcome of it is that in the case of a bound electron the emission is relatively
weak, so that one can consider it as a perturbation with respect to the conservative
case analyzed in Sect. 3.13.6. The estimate starts from the experimental observation
of the emission of electromagnetic radiation by excited atoms; here the datum that
matters is the minimum angular frequency !0 of the emitted radiation, which is
found to be in the range Œ1015; 1016� rad s�1. The simplest model for describing the
unperturbed electron’s motion is that of the linear harmonic oscillator [10, Vol. II,
Sect. 4]

s.�/ D s0 cos.!0�/ ; (5.73)

with s0 D js0j the maximum elongation with respect to the origin, where the
nucleus is placed. Equation (5.73) may be thought of as describing the projection
over the direction of s0 of the instantaneous position of an electron that follows a
circular orbit. The product e s is called electric dipole moment of the oscillator. Other
experimental results, relative to the measure of the atom’s size, show that s0 is of
the order of 10�10 m so that, calculating u D ds=d� D �s0 !0 sin.!0�/ from (5.73)
and letting !0 D 5� 1015, one finds u=c � s0 !0=c ' 2� 10�3. This shows that the
approximations of Sect. 5.11.2 are applicable.

It is worth noting that the type of motion (5.73) is energy conserving, hence
it must be understood as describing the unperturbed dynamics of the electron.
Remembering the discussion of Sect. 3.3 one finds for the total, unperturbed energy
the expression Eu D m!20 s20=2, with m D 9:11 � 10�31 kg the electron mass.
To tackle the perturbative calculation it is now necessary to estimate the energy
Er lost by the electron during an oscillation period 2�=!0 and compare it with
Eu. From Pu D du=d� D !20 s one obtains the maximum square modulus of
the electron’s acceleration, Pu2M D !40 s20; inserting the latter into (5.72) and using
e D �q D �1:602 � 10�19 C for the electron charge provide the upper bounds
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Er �
2�

!0

2 e2=3

4 � "0 c3
!40 s20 D

e2 s20 !
3
0

3 "0 c3
;

Er

Eu
�
2 e2!0
"0 m c3

' 4 � 10�7 : (5.74)

This result shows that the energy lost during an oscillation period is indeed small,
so that the electron’s motion is only slightly perturbed with respect to the periodic
case. The equation of motion of the perturbed case can now tentatively be written as

m RsC m!20 s D Fr ; (5.75)

where Fr is a yet unknown force that accounts for the emitted power. A scalar
multiplication of (5.75) by u yields m u � Pu C m!20 s � u D dW=d� D u � Fr, with
W D .m=2/ .u2 C !20 s2/. One notes that W has the same expression as the total
energy Eu of the unperturbed case; however, W is not conserved due to the presence
of Fr ¤ 0 at the right-hand side. In fact, �dW=d� D �u � Fr > 0 is the power
emitted by the electron, and its time average over 2�=!0,

� hu � Fri D �
!0

2�

Z 2�=!0

0

u � Fr d� > 0 ; (5.76)

is the variation in the oscillator’s energy during a period; a part of it crosses the
surface †, while the other part is the variation in the electromagnetic energy within
† (Sects. 5.3 and 5.11.2). The part that crosses † is the time average of (5.72)2; for
the sake of simplicity it is assumed that it is dominant with respect to the other one.
The factor hPu2i that appears in (5.72) is worked out by taking the time average of
the identity d.u � Pu/=d� D Pu2 C u � Ru and observing that hd.u � Pu/=d�i is negligibly
small, whence hPu2i D �hu � Rui > 0. In conclusion, defining a time �0 such that
e2=.6 � "0 c3/ D m �0 and equating (5.76) to the time average of (5.72) yield hu �
m �0 Rui D hu � Fri. It is found �0 ' 6 � 10�24 s.

As a crude approximation one finally converts the equality of the averages just
found into an equality of the arguments, whence Fr ' m �0 Ru. Replacing the latter
into (5.75) yields Rs C !20 s D �0 Ru, that is, a linear, homogeneous equation of the
third order in s with constant coefficients. The equation is solved by letting s D
s.� D 0/ exp.˛ �/ cos.! �/, with ˛, ! undetermined. Using the tentative solution
provides the system of characteristic algebraic equations

�0 !
2 D 3 �0 ˛

2 � 2 ˛ ; ˛2 C !20 D �0 ˛
3 C .1 � 3 �0 ˛/ !

2 ; (5.77)

whence the elimination of !2 yields 8 ˛2 � 2 ˛=�0 � !20 D 8 �0˛
3. Thanks to the

smallness of �0 the latter equation may be solved by successive approximations
starting from the zeroth-order solution ˛.0/ ' ��0 !20=2 (this solution is found by

2Remembering the discussion of Sect. 5.11.2, the use of (5.72) implies that the particle’s position
departs little from the center of the spherical surface. Thus the radius of † must be much larger
than the size of the atom.
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solving 8 ˛2 � 2 ˛=�0 � !20 D 0 and using the binomial approximation; the other
possible value of ˛.0/ is positive and must be discarded to prevent s from diverging).
Replacing ˛.0/ into the first equation in (5.77) yields !2 D !20 .1C3 �

2
0 !

2
0=4/ ' !

2
0 .

In conclusion, the zeroth-order solution of the differential equation for s reads

s.�/ ' s.� D 0/ cos.!0 �/ exp.��0 !
2
0 �=2/ : (5.78)

Basing upon (5.78) one can identify the decay time of the atom with the time
necessary for the modulus of s to reduce by a factor 1=e with respect to the initial
value. The decay time is thus found to be 2=.�0 !20/ ' 13 � 10�9 s. As the ratio of
the decay time to the period 2�=!0 is about 107, the perturbative approach is indeed
justified.

As anticipated at the beginning of this section, the planetary model of the atom
is not stable. The approximate solution (5.78) of the electron’s dynamics shows that
according to this model the electron would collapse into the nucleus in a very short
time due to the radiation emitted by the electron. This behavior is not observed
experimentally: in fact, the experiments show a different pattern in the energy-
emission or absorption behavior of the atoms. The latter are able to absorb energy
from an external radiation and subsequently release it: an absorption event brings
the atom to a higher-energy state called excited state; the absorbed energy is then
released by radiation in one or more steps (emissions) until, eventually, the atom
reaches the lowest energy state (ground state). However, when the atom is in the
ground state and no external perturbations is present, the atom is stable and no
emission occurs. In conclusion, the experimental evidence shows that the planetary
model is not applicable to the description of atoms.3

5.11.4 Comments About the Field’s Expansion into Modes

The homogeneous wave equation (5.20) used in Sects. 5.5, 5.8 as a starting point for
the derivation of the field’s expansion into modes is based on the hypothesis that a
gauge transformation exists such that ' D 0. In turn, (5.20) derives from (5.19),
that implies the Coulomb gauge div A D 0. To show that these conditions
are mutually compatible one chooses f in (4.30) such that '0 D 0, whence
E0 D �@A0=@t due to the second relation in (4.26). In a charge-free space it is
div D0 D "0 div E0 D 0; it follows @ div A0=@t D 0, namely, div A0 does not depend
on time. The second equation in (4.19) with J D 0 yields .1=c2/ @E0=@t D rot B0,
so that �.1=c2/ @2A0=@t2 D rot rot A0. Now let A0 D A00 C grad g, where g is an
arbitrary function of the coordinates only; the second identity in (A.35) and the

3In this respect one might argue that the inconsistency between calculation and experiment is due
to some flaw in the electromagnetic equations. However, other sets of experiments show that it is
not the case.
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first identity in (A.36) then yield �.1=c2/ @2A00=@t2 D grad div A00 � r2A00, with
div A00 D div A0 � r2g. Choosing g such that div A00 D 0 and dropping the double
apex finally yield (5.20) [85, Sect. 46].

The vector potential A has been expressed in (5.21) as a Fourier series and
in (5.44) as a Fourier integral. Such expressions produce a separation of the spatial
coordinates from the time coordinate: the former appear only in the terms exp.i k�r/,
while the latter appears only in the terms ak and, respectively, bk.

The Fourier series (5.21) applies to the case of a finite domain of the form shown
in Fig. 5.1 and prescribes the spatial periodicity of A at all times. By way of example,
let 0 � x2 � d2, 0 � x3 � d3 and consider the point rA D x2 i2Cx3 i3; then, consider
a second point rB D d1 i1 C x2 i2 C x3 i3. By construction, rA and rB belong to two
opposite faces of the domain of Fig. 5.1 and are aligned with each other in the x1
direction. From (5.22) one obtains for any k

exp.i k � rB/ D exp.i 2� n1/ exp.i k � rA/ D exp.i k � rA/ (5.79)

which, combined with (5.21), yields A.rB; t/ D A.rA; t/. Clearly an equality of this
form is found for any pair of opposite boundary points that are aligned along the
coordinate direction normal to the faces where the points lie. On the other hand, such
an equality is a homogeneous relation among the boundary values of the solution of
the differential equation (5.20), namely, it is a homogeneous boundary condition of
the Dirichlet type.

The reasoning based on (5.79) is applicable also to the expressions (5.31, 5.32) to
yield E.rB; t/ D E.rA; t/ and B.rB; t/ D B.rA; t/, namely, the fields have the same
periodicity as A. The Poynting vector S D E ^H has this property as well, whence
S.rB; t/ � nB D �S.rA; t/ � nA; in fact, the unit vector n is oriented in the outward
direction with respect to the domain (Sect. 5.3), so that when two opposite faces of V
are considered it is nB D �nA. Using (5.12) with W D 0 shows that dWem=dt D 0

namely, as noted in Sect. 5.6, the electromagnetic energy within V is conserved.
The same reasoning applies to the conservation of the electromagnetic momentum
found in Sect. 5.7. As for the initial condition on A, from (5.21) and (5.29) one
derives A.r; t D 0/ D

P
k.ckC c��k/ exp.i k � r/. It follows that the initial condition

is provided by the vectors ck.

5.11.5 Finiteness of the Total Energy

The differential equation (5.20) is linear and homogeneous with respect to the
unknown A; when the Fourier series (5.21) is replaced in it, the resulting equa-
tion (5.28) is linear and homogeneous with respect to ak, hence (due to (5.29))
with respect to sk and ck as well. It follows that the fields (5.31, 5.32) are linear
and homogeneous functions of these quantities. The same applies in the case of an
infinite domain (Sect. 5.8), in which the fields E, B are linear and homogeneous
functions of Qsk and dk.
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In turn, the energy density wem of the electromagnetic field, given by the second
relation in (5.11), is a quadratic and homogeneous function of the fields; this
explains why the expressions (5.37) and (5.46) are quadratic and homogeneous
functions of sk, ck or, respectively, Qsk, dk.

When (5.37) is considered, the energy associated with the individual degree of
freedom is Wk� D 2 "0 V !2 jck� j

2; as the sum
P

k� Wk� spans all wave vectors, the
factor !2 D c2 k2 diverges. On the other hand, the energy of the electromagnetic
field within a finite region of space is finite; this means that the term jck� j

2 becomes
vanishingly small as jkj ! 1, in such a way as to keep the sum

P
k� Wk� finite.

The same reasoning applies to the term jdk� j
2 in (5.46); in this case the finiteness

of the total energy Wem is due to the fact that the vanishing of the fields at infinity
makes the Fourier transform in (5.44) to converge.

5.11.6 Analogies Between Mechanics and Geometrical Optics

A number of analogies exist between the Maupertuis principle, discussed in
Sect. 2.7, and the Fermat principle discussed in Sect. 5.10. The principles read,
respectively,

ı

Z

AB

p
E � V ds D 0 ; ı

Z

AB
n ds D 0 ; (5.80)

and the analogies are:

1. A constant parameter is present, namely, the total energy E on one side, the
frequency � on the other side (in fact, the Fermat principle generates the eikonal
equation which, in turn, applies to a monochromatic electromagnetic field,
Sect. 5.9).

2. Given the constant parameter, the integrand is uniquely defined by a property of
the medium where the physical phenomenon occurs: the potential energy V.r/
and the refraction index n.r/, respectively.

3. The outcome of the calculation is a curve of the three-dimensional space: the
particle’s trajectory and the optical ray, respectively. In both cases the initial
conditions are the starting position and direction (in the mechanical case the
initial velocity is obtained by combining the initial direction with the momentum
extracted from E � V).

In summary, by a suitable choice of the units, the same concept is applicable to both
mechanical and optical problems. In particular it is used for realizing devices able
to obtain a trajectory or a ray of the desired form: the control of the ray’s shape is
achieved by prescribing the refraction index n by means of, e.g., a lens or a system
of lenses; similarly, the trajectory of a particle of charge e is controlled by a set of
electrodes (electrostatic lenses) that prescribe the electric potential ' D V=e. The
design of electron guns and of the equipments for electron-beam lithography and
ion-beam lithography is based on this analogy.
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It must be emphasized that the Maupertuis principle is derived without approxi-
mations: as shown in Sect. 2.7, the principle is equivalent to Newton’s law applied
to a particle of constant energy. The Fermat principle, instead, is equivalent to the
eikonal equation; the latter, in turn, is derived from the Maxwell equations in the
hypothesis that at each position along the ray the curvature radius of the ray is
much larger than the wavelength. In other terms, the mechanical principle is exact
whereas the optical principle entails an approximation. If the exact formulation of
electromagnetism given by the Maxwell equation was used, the analogy discussed
here would be lost.

The rather surprising asymmetry outlined above could be fixed by speculating
that Newton’s law is in fact an approximation deriving from more general laws,
possibly similar to the Maxwell equations. In this case one could identify in
such laws a parameter analogue of the wavelength, and deduce Newton’s law
as the limiting case in which the parameter is small. It will be shown later that
mechanical laws more general than Newton’s laws indeed exist: they form the object
of Quantum Mechanics.4

The analogy between Mechanics and Geometrical Optics discussed here is one
of the possible courses of reasoning useful for introducing the quantum-mechanical
concepts; however, in this reasoning the analogy should not be pushed too far. In
fact, one must observe that the Maupertuis principle given by the first expression
in (5.80) provides the nonrelativistic form of Newton’s law, whereas the Maxwell
equations, of which the Fermat principle is an approximation, are intrinsically
relativistic. As a consequence, the analogy discussed in this section is useful
for generalizing the geometrical properties of the motion, but not the dynamic
properties.

Problems

5.1 Solve the eikonal equation (5.57) in a medium whose refraction index depends
on one coordinate only, say, n D n.x1/.

5.2 Use the solution of problem 5.1 to deduce the Descartes law of refraction.

5.3 With reference to the fields generated by a point-like charge (Sect. 5.11.1),
express @2�=@t2 in terms of @�=@t, g, u, and Pu D @u=@� using the same procedure
as that leading to (5.65).

5.4 Show that (5.6) and (5.7) can be recast in the form

' D
@�

@t

e

4� "0 g
; A D

@�

@t

e u
4� "0 c2 g

;

and find the corresponding expressions of E and B.

4Once Quantum Mechanics is introduced, Newtonian Mechanics is distinguished from it by the
designation Classical Mechanics.
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5.5 Starting from the result of Prob. 5.4, determine the expression of the electric
field E in terms of @�=@t, g, u, and Pu D @u=@� .

5.6 Using the result of Prob. 5.5, show that

4� "0 g

e .@�=@t/3
E ^



g � g

u
c

�
D

�
1 �

u
c
�

g
g

� 

g � g

u
c

�
^
Pu

c2
:

5.7 With reference to the fields generated by a point-like charge (Sect. 5.11.1), and
to the expression of the magnetic induction B worked out in Prob. 5.4, an application
of the first identity in (A.35) yields

4� "0 c2

e
B D

1

g

@�

@t
rot u � u ^ grad

�
1

g

@�

@t

�
:

Rework the above expression in terms of @�=@t, g, u, and Pu D @u=@� .

5.8 Starting from the results of Probs. 5.4 and 5.7, determine the expression of the
magnetic induction B in terms of @�=@t, g, u, and Pu D @u=@� .

5.9 Starting from the results of Probs. 5.6 and 5.8, derive the compact expres-
sion (5.67) of the magnetic induction B.



Part II
Introductory Concepts to Statistical

and Quantum Mechanics



Chapter 6
Classical Distribution Function and Transport
Equation

6.1 Introduction

When a system made of a large number of molecules is considered, the description
of the dynamics of each individual member of the system is practically impossible,
and it is necessary to resort to the methods of Statistical Mechanics. The chapter
introduces the concept of distribution function in the phase space and provides the
definition of statistical average (over the phase space and momentum space) of a
dynamic variable. The derivation of the equilibrium distribution in the classical
case follows, leading to the Maxwell-Boltzmann distribution. The analysis proceeds
with the derivation of the continuity equation in the phase space: the collisionless
case is treated first, followed by the more general case where the collisions are
present, thus leading to the Boltzmann Transport Equation. In the Complements,
after a discussion about the condition of a vanishing total momentum and angular
momentum in the equilibrium case, and the derivation of statistical averages based
on the Maxwell-Boltzmann distribution, the Boltzmann H-theorem is demonstrated.
This is followed by an illustration of the apparent paradoxes brought about by
Boltzmann’s Transport Equation and H-theorem: the violation of the symmetry of
the laws of mechanics with respect to time reversal, and the violation of Poincaré’s
time recurrence. The illustration is carried out basing on Kac’s ring model. The
chapter is completed by the derivation of the equilibrium limit of the Boltzmann
Transport Equation.

6.2 Distribution Function

Consider a system made of N identical particles with no constraints. For the sake
of simplicity, point-like particles are assumed, so that the total number of degrees
of freedom is 3N. The dynamics of the jth particle is described by the canonical
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122 6 Classical Distribution Function and Transport Equation

coordinates q1j, q2j, q3j, p1j, p2j, p3j that belong to the 6-dimensional 
-space
introduced in Sect. 1.9.

If the number of particles is large, the description of the dynamics of each
individual belonging to the system is in fact impossible. For instance, the number
density of air at 20 ıC and 1 atm is about 2:5� 1019 cm�3. Even if the measurement
of the initial conditions was possible, it would not be feasible in practice [83,
Sect. 1]. This aspect is present also when the number of particles is much lower
than in the example above.

The problem is faced by adopting the viewpoint of statistical mechanics, whose
object is not the description of the dynamic behavior of the individual particles
but, rather, that of the distribution of the dynamic properties over the phase space.
To this purpose one identifies each point of the 
-space with the pair of vectors
q D .q1; q2; q3/, p D .p1; p2; p3/ pertaining to it, and considers the elementary
volume d! D d3q d3p of the 
-space centered at .q;p/, with d3q D dq1 dq2 dq3
and the like for d3p. Then, the number of particles dN that at time t belong to d! is
given by

dN D f
.q;p; t/ d! ; (6.1)

with f
 the concentration in the
-space. The procedure here is similar to that carried
out in Sect. 23.2, the difference being that the space considered here is the phase
space instead of the configuration space of Sect. 23.2.1 In both cases, the motion of
the particles is described as that of a continuous fluid: in fact, index j is dropped
from the canonical coordinates, which do not indicate any more a specific particle,
but the center of the elementary cell of the phase space where the concentration f

is considered. As in Sect. 23.2, this procedure is legitimate if the cells of volume d!
into which the phase space is partitioned can be treated as infinitesimal quantities
in the scale of the problem that is being investigated, and the number of particles
within each cell is large enough to make their average properties significant. The
concentration f
 is also called distribution function. By definition it fulfills the
normalization condition

Z
f
.q;p; t/ d! D N ; (6.2)

where the integral is 6-dimensional and extends over the whole 
-space. As the
order of integration is immaterial, the calculation can be split into two steps, namely,

n.q; t/ D
ZZZ C1

�1

f
.q;p; t/ d3p ; N D
ZZZ C1

�1

n.q; t/ d3q : (6.3)

1Note that here the symbol N indicates the number of particles; instead, in Sect. 23.2 the number
of particles is indicated with N , whereas N indicates the concentration.
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The function n.q; t/ defined by the first of (6.3) is the concentration of the particles
in the configuration space.

Basing on the distribution function it is possible to define the average of a
dynamic function. For the sake of generality the dynamic function is considered to
be a vector that depends on all canonical coordinates and time, say, a D a.q;p; t/.
Due to the smallness of the cell size one assumes that the dynamic function takes
the same value for all particles within the same cell. As a consequence, the product
a f
 d! is the cell value of the function weighed by the number of particles belonging
to the cell. The statistical average of a over the phase space is then

AvŒa�.t/ D
1

N

Z
a.q;p; t/ f
.q;p; t/ d! ; (6.4)

where the integral is 6-dimensional, while the average over the momentum space is

a.q; t/ D
1

n.q; t/

ZZZ C1

�1

a.q;p; t/ f
.q;p; t/ d3p : (6.5)

Using the expression of N given by (6.2), and that of n given by the first of (6.3),
shows that the definitions (6.4, 6.5) indeed provide the weighed averages of interest.
By way of example, the dynamic function may be identified with the particle
velocity u: using the Cartesian coordinates one finds for the average velocity v in
the configuration space the expression

v.r; t/ D
1

n.r; t/

ZZZ C1

�1

u.r;p; t/ f
.r;p; t/ d3p : (6.6)

Similarly, the average Hamiltonian function in the configuration space reads

H.r; t/ D
1

n.r; t/

ZZZ C1

�1

H.r;p; t/ f
.r;p; t/ d3p : (6.7)

6.3 Statistical Equilibrium

This section deals with the properties of a system of particles in a condition
of macroscopic equilibrium. Considering that in general the systems that are
considered are composed of a large number of particles or molecules, the statistical
concepts introduced in Sect. 6.2 will be used. Generally speaking, the condition of
statistical equilibrium is fulfilled if the distribution function is independent of time.
This condition may be achieved in different ways: for instance, f
 D const fulfills
the required condition. A more general definition of a distribution function fulfilling
the condition of statistical equilibrium is f
 D f
.c/, where c is any constant of
motion of the system. In case of a conservative system, energy is the most natural
constant of motion to be used.
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To proceed, consider a conservative system having a total energy ES, enclosed in
a stationary container of volume �. Let the walls of the container be such that no
energy flows across them. Also, the container is assumed to be sufficiently massive
so that it can be regarded as stationary despite the transfer of kinetic energy due to
the molecules’ collisions with the walls. If any external force acts on the molecules,
it is assumed to be independent of time and conservative [136, Sect. 26]. Finally,
the total momentum and angular momentum of the system are assumed to vanish;
this condition is by no means obvious and requires some reasoning, as detailed in
Sect. 6.6.1.

So far it has not been explicitly indicated whether the molecules that form the
system are identical to each other or not; in the practical cases it is to be expected
that the system under consideration be made of a mixture of different atoms or
molecules. As the extension to a mixture is straightforward [136, Sect. 30], the
analysis is limited here to a system made of identical molecules. It should be
noted that the molecules are identical, but distinguishable from each other: from the
point of view of Classical Mechanics a continuous observation of the trajectory of
each molecule is in fact possible, without disturbing its motion. As a consequence,
two systems that differ by the exchange of two molecules are to be considered as
different from each other.

To proceed one assumes that the number of molecules forming the system is
N, and that each molecule has R degrees of freedom. The canonical coordinates
that describe the motion of a single molecule are then q1; : : : ; qR, p1; : : : ; pR, so
that the number of dimensions of the 
-space is 2R. As anticipated in Sect. 6.2,
the description of the precise state of each molecule is impossible in practice; the
state of the system will then be specified in a somewhat less precise manner, as
detailed below. First, each q axis of the 
-space is divided into equal intervals of
size �q1; : : : ; �qR and, similarly, each p axis is divided into equal intervals of size
�p1; : : : ; �pR. As a consequence, the 
-space is partitioned into elements, called
cells, whose volume and units are, respectively,

�M D .�q1 �p1/ : : : .�qR�pR/ ; Œ�M� D (J s)R : (6.8)

The partitioning of the 
-space into cells has the advantage, first, that the set of
cells is countable. Besides that, the partitioning into cells of finite size has a deeper
meaning, that becomes apparent when the theory outlined in this section is extended
to the quantum-mechanical case. In fact, due to the Heisenberg uncertainty relation
(Sect. 10.6), the precision by which two conjugate variables can simultaneously be
known is limited, so that each product�qi�pi in (6.8) is bounded below, the bound
being of the order of the Planck constant.

After the partitioning is accomplished, the state of the system is assigned by
specifying the numbers N1;N2; : : : � 0 of molecules that belong, respectively, to the
cell labeled 1; 2; : : :; such numbers are subjected to the constraint N1CN2C: : : D N
which, in view of the calculations that follow, is more conveniently expressed as
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FN.N1;N2; : : :/ D 0 ; FN D N �
X

i

Ni : (6.9)

The sum in (6.9) may be thought of as extending to all cells, due to the fact that
only in a finite number of cases the cell population Ni differs from zero. Clearly,
the description using the numbers N1;N2; : : : is less precise than that given by
the molecules’ trajectories, and provides a partial specification of the state of each
molecule within the limits of the size of �M. This means, among other things, that
identical molecules belonging to different cells are distinguishable from each other,
whereas identical molecules belonging to the same cell are not distinguishable.

As mentioned above, the total energy of the system is ES, which provides a
second constraint to be vested with mathematical form. It is provisionally assumed
that the system is dilute, namely, that the energy of the interaction among the
molecules is negligible. It follows that one can approximately assign to each
molecule a total energy that corresponds to its position, momentum, and internal
configuration, in other terms, to the cell where the molecule belongs. Letting
the energy corresponding to the ith cell be Ei, the constraint on energy reads
N1 E1 C N2 E2 C : : : D ES, namely,

FE.N1;N2; : : :/ D 0 ; FE D ES �
X

i

Ni Ei : (6.10)

The above reasoning does not apply to concentrated systems, where the interaction
energy is strong. However, it can be shown that (6.10) still holds, albeit with a
different interpretation of Ei [136, Sect. 29]. Another observation is that, given the
constraints to which the system is subjected, the set of numbers N1;N2; : : : may
not be unique. It is therefore necessary to extract the set, that actually describes the
system, from a larger number of sets made of all possible sets that are compatible
with the constraints.

To proceed, let N1;N2; : : : be a set that provides a molecules’ distribution
compatible with the constraints; such a set is called accessible state. It is postulated
that no accessible state is privileged with respect to any other; this is in fact the
fundamental hypothesis of equal a priori probability of the accessible states, upon
which Statistical Mechanics is based [136, Sect. 23]. Remembering that the parti-
cles are identical to each other, any system obtained from the original distribution
by exchanging two molecules is also compatible with the constraints. However,
the system resulting from the exchange of molecules belonging to different cells
is different from the original one because such molecules are distinguishable; in
contrast, an exchange within the same cell does not produce a different system. As
the total number of possible exchanges of N molecules of the system as a whole is
NŠ, and the number of possible exchanges within the ith cell is NiŠ, the total number
of different systems corresponding to a set N1;N2; : : : is

W.N1;N2; : : :/ D
NŠ

N1ŠN2Š : : :
(6.11)
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As time evolves, the interactions among the molecules make the numbers N1;N2; : : :
to change, so that, if the system is inspected at successive times, it may be found to
belong to different accessible states (as the principles of Classical Mechanics apply
here, such an inspection does not perturb the state of the system); in principle, given
enough time, the system will go through all accessible states. Now, the dependence
of W on N1;N2; : : : is quite strong, so that some accessible states correspond to a
large number W of systems, others to a much smaller number.2 As no accessible
state is privileged with respect to any other, the majority of inspections carried
out onto the system will provide the accessible state that maximizes W. Such an
accessible state corresponds, by definition, to the condition of statistical equilibrium
of the system under consideration.

6.4 Maxwell-Boltzmann Distribution

The analysis carried out in Sect. 6.3 led to the conclusion that the condition of
statistical equilibrium of the system is found by maximizing the expression of W
given by (6.11), under the constraints (6.9) and (6.10). The calculation is based upon
the Lagrange method that determines the free maximum of an auxiliary function F
embedding the constraints (Sect. B.6). It is convenient to maximize log W, which is
a monotonic function of W, instead of W itself, so that the auxiliary function reads

F.N1;N2; : : : ; ˛; ˇ/ D log W C ˛ FN C ˇ FE ; (6.12)

where ˛, ˇ are the Lagrange multipliers, respectively related to the total number
of molecules and total energy of the system. In a typical system the total number
of molecules and the populations of the majority of nonempty cells are very large,3

so that the Stirling approximation (C.104) is applicable; it follows, after neglecting
terms of the form log

p
2� N and log

p
2� Ni,

log W D log.NŠ/ �
X

i

log.NiŠ/ ' N log.N/ � N �
X

i

Ni log.Ni/C
X

i

Ni ;

(6.13)

where �N and
P

i Ni cancel each other due to (6.9). The function to maximize then
becomes F D N log.N/ �

P
i Ni log.Ni/ C ˛ FN C ˇ FE. Here the property of Ni

of being very large is again of help, because, on account of the fact that a change

2This is apparent even if the numbers N1;N2; : : : are much smaller than in realistic systems. Let
for instance N D 8: the combination N1 D 8, N2 D N3 D : : : D 0 yields W D 1, whereas the
combination N2 D N3 D N4 D N5 D 2, N1 D N6 D N7 D : : : D 0 yields W D 2:520. It is
implied that 8E1 D 2 .E2 C E3 C E4 C E5/ D ES.
3The hypothesis that the populations are large is not essential. A more complicate calculation, in
which such a hypothesis is not present, leads to the same result [32].
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of Ni by one unit is negligibly small with respect to Ni itself, in calculating the
maximum one treats the integers Ni as continuous variables. Taking the derivative
of F with respect to, say, Nr and equating it to zero yields log Nr C 1 D �˛ � ˇ Er.
Neglecting the unity at the left-hand side eventually yields the Maxwell-Boltzmann
distribution law

Nr D exp.�˛ � ˇ Er/ : (6.14)

The Lagrange multipliers are then determined from (6.9, 6.10); the first one yields

X

r

exp.�˛ � ˇ Er/ D N ; N exp.˛/ D
X

r

exp.�ˇ Er/ D Z ; (6.15)

where Z denotes the partition function.4 Extracting exp.˛/ from (6.15) and replac-
ing it into (6.10) provide the relation

ES

N
D
1

Z

X

r

Er exp.�ˇ Er/ D �
@

@ˇ
log Z ; (6.16)

with ˇ the only unknown. This procedure is able to express ˇ and, consequently,
˛, in terms of the dynamic properties of the molecules. A different method to
determine the parameters that relates them with macroscopic quantities typical of
Thermodynamics, like pressure and temperature, is shown in the following. First,
one introduces a constant C such that

C N�M D exp.�˛/ ; (6.17)

where �M is given by (6.8). After replacing (6.17) in (6.14), the cell’s volume
�M is made smaller and smaller so that, after dropping index r, (6.14) is recast in
differential form as

dN D C N exp.�ˇ E/ dM ;
1

C
D

Z
exp.�ˇ E/ dM ; (6.18)

where the integral is extended over the
-space and energy E is expressed in terms of
the 2R coordinates q1; : : : ; qR; p1; : : : ; pR. The nature of the system is now specified
as that of a monatomic gas of mass m, described by the Cartesian coordinates xi and
conjugate momenta pi. Integrating (6.18) over the container’s volume � yields the
number dNp of atoms belonging to the elementary volume of the momentum space.
As the gas is assumed to be dilute, the energy in (6.18) is substantially of the kinetic
type,

4Symbol Z comes from the German term Zustandssumme (“sum over states”) [119, Chap. II].
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E '
1

2m

�
p21 C p22 C p23

	
; (6.19)

so that the integrand is independent of the spatial coordinates. It follows

dNp D C N� exp.�ˇ E/ dp1 dp2 dp3 : (6.20)

The integral of (6.20) over the momentum space yields N, whence

1

C�
D

ZZZ C1

�1

exp.�ˇ E/ dp1 dp2 dp3 : (6.21)

The pressure P exerted by the gas is uniform over all the container’s walls, hence it
can be calculated with reference to any surface element d† belonging to them. One
can then choose a surface element normal to the x1 axis, placed in such a way that
the atoms impinging on it travel in the positive direction. Let p1 be the component of
momentum of one of such atoms before hitting the wall; after the atom is reflected by
the wall, the component transforms into �p1, so that the variation in the momentum
component along the x1 direction is 2 p1. The p2, p3 components, instead, are left
unchanged. The product of 2 p1 by the number of atoms hitting d† in the unit time
provides the force dF exerted by the gas on the surface element, whence the pressure
is obtained as P D dF=�†. Now, consider an elementary cylinder whose base and
height are d† and dx1 respectively; the number d QN1 of atoms that belong to such a
cylinder and whose momentum p1 belongs to dp1 is obtained as the product of the
atoms’ concentration dNp=� times the cylinder’s volume d† dx1 D d† dt dx1=dt D
d†.p1=m/ dt, integrated over the other two momenta p2, p3:

d QN1 D d†
p1
m

dt dp1 C N
ZZ C1

�1

exp.�ˇ E/ dp2 dp3 : (6.22)

As each atom in (6.22) undergoes a change 2 p1 in the momentum component due
to the reflexion at the wall, the force dF D P d† is obtained by multiplying (6.22)
by 2 p1, dividing it by dt, and integrating over p1 between 0 and C1; in fact, only
the atoms that move towards the wall must be accounted for. Eliminating d† yields

P

C N
D
2

m

Z C1

0

ZZ C1

�1

p21 exp.�ˇ E/ dp1 dp2 dp3 : (6.23)

Due to the form of (6.19), the integrals in (6.21) and (6.23) are products of
one-dimensional integrals over p1, p2, and p3. As a consequence, in the ratio
between (6.23) and (6.21) the integrals over p2 and p3 cancel each other to yield

P�

N
D
2

m

R C1
0

p21 expŒ�ˇ p21=.2m/� dp1
R C1
�1 expŒ�ˇ p21=.2m/� dp1

: (6.24)
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Letting Y indicates the integral at the denominator of (6.24), the integral at the
numerator is found to be �m dY=dˇ. Using (C.27) one finds

P� D �2
d
p
2� m=ˇ=dˇ
p
2� m=ˇ

D
N

ˇ
: (6.25)

The assumption that the gas used in the derivation of (6.25) is dilute makes it
possible to consider it as a perfect gas, for which the phenomenological relation
P� D N kB T holds, with kB D 1:38� 10

�23 J/K the Boltzmann constant and T the
gas temperature. Comparing with (6.25) yields

ˇ D
1

kB T
: (6.26)

It can be shown that the validity of (6.26) is not limited to the case where the simple
derivation shown here applies. Actually, (6.26) is found to hold for any system that
follows the Maxwell-Boltzmann distribution law [136, Sect. 32] and also, as shown
in Sects. 15.9.1, 15.9.5, for quantum systems in equilibrium.

6.5 Boltzmann Transport Equation

The expressions worked out in this section show the important role of the distribu-
tion function. It is then necessary to determine the equation fulfilled by it when the
system is not in an equilibrium condition. The derivation is made in two steps; in the
first one the interactions between molecules are neglected, in the second one they
are accounted for. To start with the first step one observes that, due to the neglect
of collisions, the only force acting on the molecules is that of an external field. To
denote the position in the phase space it is convenient to use the symbol s introduced
in Sect. 1.8. Here the symbol has a slightly different meaning, because the space is
6-dimensional instead of being n-dimensional. However, the relations (1.57, 1.58,
1.59) still hold. Applying to the 
-space the same reasoning used in Sect. 23.2 to
find the continuity equation (23.3), and considering the case where no particles are
generated or destroyed, yield

@f

@t
C divs

�
Ps f

	
D 0 : (6.27)

From (1.58, 1.59) it follows divs.Ps f
/ D Ps � gradsf
. Replacing the latter into (6.27)
and using the Cartesian coordinates yields the Boltzmann collisionless equation5

5In plasma physics, (6.28) is also called Vlasov equation [107, Sect. 13.2].
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@f

@t
C Pr � gradrf
 C Pp � gradpf
 D 0 : (6.28)

From the meaning of a continuity equation it follows that �divs
�
Ps f

	

is the time
variation of f
 per unit volume d! of the
-space. As f
 depends on r, p, and t, (6.28)
is recast in compact form as df=dt D 0.

To accomplish the second step, namely, adding the effects of collisions, one
observes that the latter produce a further time change in f
. In principle, one might
incorporate such effects into �divs

�
Ps f

	
; however, it is more convenient to keep

the effects of collisions separate from those of the external field. In fact, assuming
as before that the system under consideration is dilute, each molecule spends a
relatively large fraction of time far enough from the other molecules not to suffer
any interaction; in other terms, the time during which a molecule is subjected to the
external field is much longer than that involved in a collision. For this reason it is
preferable to write the continuity equation, when the collisions are accounted for, as

@f

@t
C Pr � gradrf
 C Pp � gradpf
 D C ; (6.29)

called Boltzmann Transport Equation. In (6.29), term C indicates the time variation
of f
 per unit volume d! due to collisions, whereas �divs

�
Ps f

	

keeps the meaning
of variation due to the external field. The compact form of (6.29) reads in this case

df

dt
D C ;

Z
C d! D 0 : (6.30)

where the second relation is due to the normalization condition (6.2). In the
equilibrium condition the distribution function has no explicit dependence on
time (@f
=@t D 0) and depends on constants of motion only, so that C D 0.
The condition C D 0 does not prevent collisions from happening; in fact, in the
equilibrium condition the change in the state of two colliding particles is balanced
by simultaneous state changes of other particles that occur in the same elementary
volume d!, in such a way that the distribution function is left unchanged (principle
of detailed balance).

In the calculation of C it is assumed that collisions are of the binary type,
namely, that they involve only two particles at the time because the probability
of a simultaneous interaction of more than two particles is negligibly small. This
hypothesis, along with the assumption of a short duration of the interactions, greatly
simplifies the calculation of C. This issue will not be pursued further here, because
it will be developed directly in the quantum case (Sect. 19.3.1). It is worth observing
that in a general nonequilibrium condition it is C ¤ 0; the second relation in (6.30)
then indicates that the form of C must be such, that in the integration over the

-space every elementary contribution to the integral is balanced by an opposite
contribution.



6.6 Complements 131

When the system under consideration is made of charged particles, the external
field that matters is the electromagnetic one; if the particles are identical to each
other, (6.29) takes the form

@f

@t
C u � gradrf
 C e .EC u ^ B/ � gradpf
 D C ; (6.31)

with E.r; t/ the electric field, B.r; t/ the magnetic induction, e the common value of
the particles’ charge, and u the velocity (Sect. 1.3.2).

6.6 Complements

6.6.1 Momentum and Angular Momentum at Equilibrium

In the introductory discussion about statistical equilibrium, carried out in Sect. 6.3,
it has been assumed that the total momentum and angular momentum of the system
vanish. To discuss this issue, consider the box-shaped container whose cross-section
is shown in Fig. 6.1, filled with molecules identical to each other, having initial
positions near the right wall of the container. If the initial velocities are normal to
the wall and equal to each other, as schematically indicated by the arrows, the total
momentum P of the particles at t D 0 is different from zero. If the left and right
walls are perfectly reflecting and parallel to each other, the particles keep bouncing
back and forth between the two walls, and the total momentum alternates between
P and �P. As the container’s mass is large, absorbing the momentum 2P leaves the
stationary condition of the container unaltered. On the other hand, as remarked in
Sect. 1.3, this picture should not be regarded as describing a “system of particles,”
because the latter have no mutual interaction. To establish the interaction one must
assume that the initial velocities are slightly misaligned, or the walls are not exactly
parallel, or both; in this way the molecules will start colliding with each other and,
after some time, their velocities will not be parallel anymore. If each collision,
and reflection at the walls, is energy conserving, the total energy of the system
does not change; in contrast, opposite velocity components of different molecules
compensate each other in the calculation of the total momentum, so that the latter
will vanish after a sufficiently large number of collisions.6 A similar argument is
applicable to the case of the cylindrical container whose cross-section is shown in
Fig. 6.2, where the initial positions and velocities of the molecules are such that all
molecules would move along the square described by the arrows. In this case the
total angular momentum with respect to the cylinder’s axis is different from zero.

6If the walls are perfectly reflecting, and the collisions are elastic (Sect. 3.5), the molecular motions
are reversible so that, in both examples of this section, the initial condition is recovered by reversing
the direction of time. More comments about this are made in Sect. 6.6.4.
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Fig. 6.1 Schematic picture
used for discussing the issue
of the total momentum of
identical molecules within a
container

Fig. 6.2 Schematic picture
used for discussing the issue
of the total angular
momentum of identical
molecules within a container

A slight misalignment of the initial conditions, or a deviation of the container’s wall
from the perfectly cylindrical form, or both, will eventually make the molecules to
collide with each other.

6.6.2 Averages Based on the Maxwell-Boltzmann Distribution

In a system made of classical particles in equilibrium at temperature T , each
having R degrees of freedom, the average occupation number at energy Er is
given by (6.14). In general, the number of energy levels is large and their
separation small, so that one disposes of the index and considers the number
of particles belonging to the infinitesimal interval dq1 dp1 : : : dqR dpR centered at
.q1; p1; : : : ; qR; pR/. After dropping the index, the energy becomes a function of
the position .q1; p1; : : : ; qR; pR/ of the interval’s center, E D E.q1; p1; : : : ; qR; pR/;
in turn, the Maxwell-Boltzmann distribution (6.14) takes the form exp.�˛ �
ˇ E/. Given these premises, and extending to the case of R degrees of freedom
the definitions of Sect. 6.2, the statistical average over the Maxwell-Boltzmann
distribution of a function �.q1; p1; : : : ; qR; pR/ is
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AvŒ�� D

R
: : :
R
� exp.�ˇ E/ dq1 dp1 : : : dqR dpRR

: : :
R

exp.�ˇ E/ dq1 dp1 : : : dqR dpR
; (6.32)

where the factor exp.�˛/ has been canceled out. An interesting case occurs when
� depends on the generalized coordinates through the total energy only (� D �.E/)
and, in turn, the energy is a positive-definite quadratic form of the coordinates,

E D a1 q21 C b1 p21 C : : :C aR q2R C bR p2R ; ai ; bi > 0 : (6.33)

Letting n D 2R and using the Herring-Vogt transformation (17.66) yield

E D �=ˇ ; � D u21 C : : :C u2n ; (6.34)

where

u1 D
p
ˇ a1 q1 ; u2 D

p
ˇ b1 p1 ; : : : ; un�1 D

p
ˇ aR qR ; un D

p
ˇ bR pR :

(6.35)

In turn it is du1 : : : dun D c dq1 dp1 : : : dqR dpR, with c D ˇR
p

a1 b1 : : : aR bR. Using
the procedure involving the density of states illustrated in Sect. B.5 yields

AvŒ�� D

R C1
0

�.�/ exp.��/ b.�/ d�
R C1
0

exp.��/ b.�/ d�
D

R C1
0

�.�/ exp.��/ �n=2�1 d�
R C1
0

exp.��/ �n=2�1 d�
; (6.36)

where the last expression is obtained after canceling out the numerical factors
appearing in (B.40). An important case of (6.36) is � D E D �=ˇ, which yields
the average energy of the particles. Remembering (C.95, C.96), and using (6.26),
one finds

AvŒE� D kB T
� .n=2C 1/

� .n=2/
D

n

2
kB T D R kB T : (6.37)

The physical systems where the energy is a quadratic form of the type (6.33) are
made of linear-harmonic oscillators, like those deriving from the diagonalization of
the Hamiltonian function of a system of particles near the mechanical-equilibrium
point (Sect. 3.10), or from the expression of the energy of the electromagnetic field
in vacuo in terms of modes (Sect. 5.6). For systems of this type the average energy of
the particles equals kB T times the number R of degrees of freedom of each particle.

Another important system is the dilute one, where the energy is essentially
kinetic. In this case the form of the latter is found by letting ai ! 0 in (6.33),
so that the energy is made of a sum of R terms instead of n D 2R. Thus, the average
energy of the particles is given by an expression of the form (6.37) where n=2 is
replaced with R=2:

AvŒE� D kB T
� .R=2C 1/

� .R=2/
D R

kB T

2
: (6.38)
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The above shows that in a dilute system the average energy of the particles equals
kB T=2 times the number R of degrees of freedom of each particle. The result
expressed by (6.37) or (6.38) is called principle of equipartition of energy.

6.6.3 Boltzmann’s H-Theorem

A measure of the extent by which the condition of a system departs from the
equilibrium case is given by Boltzmann’s HB quantity, whose definition is that
of statistical average of log f
. The case considered here refers to a spatially
homogeneous system in the absence of external forces, so that df
=dt D @f
=@t.
Remembering (6.4) one finds

HB.t/ D AvŒlog f
� D
1

N

Z
f
 log f
 d! ; (6.39)

whose time derivative, using (6.30), reads

dHB

dt
D
1

N

Z �
@f

@t

log f
 C
@f

@t

�
d! D

Z
C log f
 d! : (6.40)

As indicated in Sect. 6.5, the collision term will be worked out directly in the
quantum case. However, it is worth anticipating that the analysis of the collision
term C leads, both in the classical and quantum cases, to an important conclusion:
the time derivative dHB=dt is negative for any distribution function f
 different
from the equilibrium one, while it vanishes in the equilibrium case. This result
is the Boltzmann H-theorem. This implies that if a uniform system is initially
set in a condition described by a nonequilibrium distribution function, and the
external forces are removed, then the initial distribution cannot be stationary: an
equilibration process occurs, that brings the distribution to the equilibrium one, and
whose duration is dictated by the time constants typical of C. The decrease of HB

with respect to time while the system reaches the equilibrium condition reminds one
of the behavior of entropy. In fact, it can be shown that HB is the entropy apart from
a negative multiplicative factor and an additive constant [141, Sect. 18.3].7

The demonstration of the Boltzmann H-theorem is given below considering for
simplicity the partitioning of the phase space into a discrete set of cells, like that
used in Sect. 6.3. As before, the number of particles of the system is N; the cells are
labeled by a single index. Letting Nr D Nr.t/ be the number of particles belonging
to the rth cell at time t, the fraction Pr.t/ of particles belonging to the same cell is

7Compare with the definition of entropy given in Sect. 15.9.1 which, at first sight, looks different.
The equivalence between the two definitions is justified in Sects. 47 and 102 of [136].
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0 � Pr D
Nr

N
� 1 : (6.41)

From
P

r Nr D N, the normalization condition
P

r Pr D 1 follows. Using the above
definitions, the statistical average of any dynamic quantity G in the discrete case is
(compare with (6.4))

AvŒG�.t/ D

P
r Nr GrP

r Nr
D
X

r

Pr Gr ; (6.42)

with Gr the value of G in the rth cell. Here it is G D log P, and the corresponding
average is (compare with (6.39))

HB.t/ D AvŒlog P� D
X

r

Pr log Pr � 0 : (6.43)

Note that in some cells it is Pr D 0; however, in (6.43) the logarithm of Pr appears
only in the product Pr log Pr, which vanishes when Pr ! 0. Similarly, the product
vanishes for Pr D 1, whereas it is negative for 0 < Pr < 1 (Fig. 6.5). It follows
that HB is by construction a non-positive quantity. Observing that N > 0, the only
condition for HB to vanish occurs when all particles belong to the same cell. To
examine the time evolution of HB one calculates the derivative

dHB

dt
D
X

r

.1C log Pr/
dPr

dt
: (6.44)

In turn, the time derivative of Pr is obtained from a balance equation: let Wsr � 0

be the unconditional probability per unit time that a particle makes a transition from
the sth to the rth cell, s ¤ r. Thus, the number of particles that in the unit time
make a transition from the sth to the rth cell is Wsr Ns; adding up the above over
all cells different from r provides the increase per unit time in the population of the
rth cell. In parallel to this, there are particles that make a transition from the rth
cell to any different cell, thus contributing to the decrease of Nr; letting Wrs be the
unconditional probability per unit time of a transition from the rth to the sth cell,
the balance equation at time t reads

dNr

dt
D
X

s

Wsr Ns �
X

s

Wrs Nr : (6.45)

In the sums at the right-hand side of (6.45) the prescription s ¤ r is not necessary
because the two summands corresponding to s D r cancel each other. The quantity
Wsr depends on the interactions of the particles among each other and with external
perturbing agents. If the system is assumed to be isolated, Wsr is determined only by
the mutual interactions of the particles. The calculation shows that in this case Wsr

is independent of time; also, it can be shown that Wsr is invariant upon the exchange
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of the indices,8 namely, Wrs D Wsr. Using this result in (6.45) and dividing both
sides by N yield, due to (6.41),

dPr

dt
D
X

s

Wsr .Ps � Pr/ : (6.46)

Inserting the above into (6.44),

dHB

dt
D
X

rs

.1C log Pr/ Wsr .Ps � Pr/ : (6.47)

Now, considering that both indices in (6.47) span over all cells of the phase
space, the derivative dHB=dt is equally well represented by an expression derived
from (6.47) after exchanging r and s. Observing that the order of the indices in the
sum and in Wsr is immaterial, one finds

dHB

dt
D
X

rs

.1C log Ps/ Wsr .Pr � Ps/ : (6.48)

Finally, dHB=dt is given another expression, obtained as half the sum of (6.47)
and (6.48); such a procedure has the advantage of eliminating the unity at the right-
hand side, and yields

dHB

dt
D
1

2

X

rs

.log Pr � log Ps/ Wsr .Ps � Pr/ : (6.49)

Remembering that Wsr is nonnegative, and that the logarithm is a monotonic
function of the argument, one draws the expected conclusion dHB=dt � 0.

6.6.4 Paradoxes—Kac-Ring Model

It is known that the Boltzmann Transport Equation (6.29), and the H-theorem
derived from it, bring about two apparent paradoxes: the first one is that the equation
contains irreversibility, because any initial distribution function, different from the
equilibrium one, evolves towards the equilibrium distribution when the external
forces are removed, whereas an opposite evolution never occurs. This outcome is
in contrast with the symmetry of the laws of mechanics with respect to time reversal
(Sect. 2.6.1). The second paradox is the violation of Poincaré’s time recurrence,
which states that every finite mechanical system returns to a state arbitrarily close to

8The demonstration is carried out in the quantum case (Chap. 14) using the first-order perturbation
method.
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the initial one after a sufficiently long time (called Poincaré cycle); this is forbidden
by the H-theorem that prevents entropy from decreasing back to the initial value.

A discussion about the mathematical origin of the paradoxes can be found, e.g., in
[141, Sect. 18.4]; a qualitative insight into the question is given by a simple model,
called Kac’s ring model, also reported in [141] and taken from [76]. In the model,
N objects are uniformly distributed over a circle, so that at time t D 0 each object
is ascribed to a specific arc. The objects have two possible states, say, either “0” or
“1.” The time variable is discrete so that, when time evolves from k�t to .kC1/�t,
k D 0; 1; 2; : : :, each object moves clockwise from the arc it occupied at time k�t to
the next arc. A number n < N of markers is present along the circle: specifically, the
markers’ positions are at the junctions between two neighboring arcs. The objects
that cross the position of a marker change the state from “0” to “1” or vice versa;
those that do not cross the position of a marker keep their state.

Given the number of objects and markers, the initial state of each object, and the
markers’ positions along the circle, one wants to investigate the time evolution of
the states. Such an evolution is obviously time reversible and fulfills Poincaré’s time
recurrence; in fact, the set of objects goes back into the initial condition after N time
steps if n is even, and after 2N time steps if n is odd.

Providing the time evolution of the individual object’s state is in fact a micro-
scopic description of the system; as remarked in Sect. 6.2, such a description
becomes impossible when the number of objects in the system is large. A less
detailed, macroscopic description of the Kac ring consists, for instance, in providing
the time evolution of the number of “0” states. However, the outcome of the latter
analysis seems to indicate that an irreversible process takes place; for instance,
Fig. 6.3 shows a computer calculation of the time evolution of the number of “0”
states in two samples made of N D 4;000 objects, which at time t D 0 were all
set to “0.” The markers of the two samples are n D 4 and n D 8, respectively,
and the number of time steps is much smaller than N. Both curves tend to decrease
and, after some fluctuations (that depend on the markers’ positions), stabilize to a
constant value; the same behavior occurs at a larger number of markers, although the
number of time steps necessary to reach a constant value increases (curve n D 16 in
Fig. 6.4). A further increase in the number of markers makes the fluctuations more
pronounced (curve n D 32 in the same figure) (Fig. 6.5).

On the other hand, a similar calculation using a number of time steps larger than
the number of objects shows that the stabilization at or around a constant value is
eventually lost: the system fulfills Poincaré’s time recurrence and recovers the initial
condition (Fig. 6.6). Such an outcome is not detectable in real many-body systems,
because the Poincaré cycle is enormously long with respect to the typical time scales
of experiments.9

A detailed analysis of the dilemma is given in [58], where the time evolution of
the Kac-ring model is calculated as follows: let Fk be the number of objects that at

9A crude estimate of the Poincaré cycle yields� exp.N/, with N the total number of molecules in
the system [65, Sect. 4.5]. In typical situations such a time is longer than the age of the universe.
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Fig. 6.3 Kac-ring model: computer calculation of the time evolution of the number of “0” states
in two samples made of N D 4;000 objects, which at time t D 0 were all set to “0.” The markers of
the two samples are n D 4 and n D 8, respectively, and the number of time steps is much smaller
than N
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Fig. 6.4 Kac-ring model: computer calculation of the time evolution of the number of “0” states
in two samples made of N D 4;000 objects, which at time t D 0 were all set to “0.” The markers
of the two samples are n D 16 and n D 32, respectively, and the number of time steps is much
smaller than N

time k�t are in the “0” state, and let fk � Fk be the number of objects that at time
k�t are in the “0” state and sit in front of a marker; similarly, let Vk D N � Fk be
the number of objects that at time k�t are in the “1” state, and let vk � Vk be the
number of objects that at time k�t are in the “1” state and sit in front of a marker.
From the definitions it follows
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Fig. 6.6 Kac-ring model: computer calculation of the time evolution of the number of “0” states
in two samples made of N D 4;000 objects, which at time t D 0 were all set to “0.” The markers
of the two samples are n D 16 and n D 32, respectively, and the number of time steps is larger
than N

FkC1 D Fk C vk � fk ; VkC1 D Vk � vk C fk ; DkC1 D Dk C 2 vk � 2 fk ;
(6.50)

where Dk D Fk � Vk. As remarked above, Fk, Vk are macroscopic quantities,
describing global features of the system under examination. In contrast, fk, vk are
microscopic quantities; in fact, they can be computed only if the positions of the
markers and the state of the objects at every arc are known. The point is that there is
no way to eliminate fk, vk from (6.50) as they stand; as the set of available equations
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is not closed, the time evolution of the macroscopic quantities cannot be computed
without introducing further relations.

To proceed, one introduces the hypothesis of a random distribution of markers,
so that the probability that a marker is present at the edge of an arc, in the clockwise
direction, is P D n=N. It follows fk D P Fk and vk D P Vk, whence the third relation
in (6.50) becomes DkC1 D C Dk, with C D 1 � 2P. As the result holds for any
index, the time evolution follows in the form

Dk D Ck D0 ; jCj < 1 : (6.51)

where the inequality derives from 0 < P < 1. In (6.51) it is limk!1 Dk D

0, namely, the additional hypothesis makes the system to reach an equilibrium
configuration in which the populations of “0” and “1” states are equal: in fact,
the dynamics described by (6.51) is irreversible. In conclusion, the hypothesis
of a random distribution of markers has provided the closure condition of the
problem, at the cost of disregarding the past history of the system’s evolution
(besides, Dk in (6.51) is not an integer any more). The basic idea is that such a
random distribution of markers represents the typical behavior of large rings. More
discussion on this issue is found in [58].

6.6.5 Equilibrium Limit of the Boltzmann Transport Equation

As remarked in Sect. 6.5, in the equilibrium condition the distribution function has
no explicit dependence on time (@f
=@t D 0) and depends on constants of motion
only, so that C D 0. From (6.29) it then follows that Pr � gradrf
C Pp � gradpf
 D 0. In
case of a conservative system, energy is the most natural constant of motion to be
used; in fact it is H.r;p/ D E D const, with H the Hamiltonian function (Sect. 1.6).
From f
 D f
.H/ one derives gradrf
 D .df
=dH/ gradrH and gradpf
 D
.df
=dH/ gradpH, so that the equilibrium limit of the Boltzmann Transport Equation
reads

df

dH

�
Pr � gradrH C Pp � gradpH

	
D 0 ; (6.52)

Apart from the trivial case f
 D const, it is df
=dH ¤ 0. On the other hand,
recasting the Hamilton equations (1.42) as Pr D gradpH, Pp D �gradrH, and
replacing them in (6.52), reduces the term in parentheses to�Pr� PpCPp�Pr, thus showing
that the equation is fulfilled identically regardless of the explicit form of f
.H/.
This result implies that the equilibrium distribution (6.14) cannot be extracted solely
from the equilibrium limit of (6.29); its derivation requires also the maximization
procedure described in Sects. 6.3 and 6.4.
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The equilibrium limit of the Boltzmann Transport Equation described in this
section applies in general; as a consequence, it includes also cases like that of (6.31),
where a magnetic force is involved. This seems to contradict one of the hypotheses
used in Sect. 6.3 to derive the equilibrium distribution, namely, that the system
is acted upon by conservative forces. To clarify the issue one uses the concepts
illustrated in Sects. 1.5,1.6; first, one notes that the equilibrium limit is achieved
by making the external force independent of time, so that the scalar and vector
potentials whence E and B derive are independent of time as well: ' D '.r/,
A D A.r/ (the dependence on space is kept to account for the possibility that
the system under consideration is not uniform). It follows that the Hamiltonian
function, which in this case is given by (1.35), is still a constant of motion; as a
consequence, the procedure leading to (6.52) is applicable. One notes in passing
that each summand in the resulting identity �Pr � PpC Pp � Pr becomes in this case

Pp � u D e .EC u ^ B/ � u D e E � u ; (6.53)

where the mixed product vanishes due to (A.32).

Problem

6.1 Calculate the average energy like in (6.37) assuming that energy, instead of
being a continuous variable, has the discrete form En D n h �, n D 0; 1; 2; : : :,
h � D const. This is the hypothesis from which Planck deduced the black-body’s
spectral energy density (Sect. 7.4.1).



Chapter 7
From Classical Mechanics to Quantum
Mechanics

7.1 Introduction

This chapter tackles the difficult problem of bridging the concepts of Classical
Mechanics and Electromagnetism with those of Quantum Mechanics. The subject,
which is fascinating per se, is illustrated within a historical perspective, covering
the years from 1900, when Planck’s solution of the black-body radiation was given,
to 1926, when Schrödinger’s paper was published.

At the end of the 1800s, the main branches of physics (mechanics, thermody-
namics, kinetic theory, optics, electromagnetic theory) had been established firmly.
The ability of the physical theories to interpret the experiments was such, that many
believed that all the important laws of physics had been discovered: the task of
physicists in the future years would be that of clarifying the details and improving
the experimental methods. Fortunately, it was not so: the elaboration of the
theoretical aspects and the refinement in the experimental techniques showed that
the existing physical laws were unable to explain the outcome of some experiments,
and could not be adjusted to incorporate the new experimental findings. In some
cases, the theoretical formulations themselves led to paradoxes: a famous example
is the Gibbs entropy paradox [87]. It was then necessary to elaborate new ideas
that eventually produced a consistent body generally referred to as modern physics.
The elaboration stemming from the investigation of the microscopic particles led
to the development of Quantum Mechanics, that stemming from investigations on
high-velocity dynamics led to Special Relativity.

This chapter starts with the illustration of the planetary model of the atom,
showing that the model is able to justify a number of experimental findings; this
is followed by the description of experiments that cannot be justified in full by
the physical theories existing in the late 1800s: stability of the atoms, spectral
lines of excited atoms, photoelectric effect, spectrum of the black-body radiation,
Compton effect. The solutions that were proposed to explain such phenomena are
then illustrated; they proved to be correct, although at the time they were suggested
a comprehensive theory was still lacking. This part is concluded by a heuristic
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derivation of the time-independent Schrödinger equation, based upon the analogy
between the variational principles of Mechanics and Geometrical Optics.

In the final part of this chapter the meaning of the wave function is given: for
this, an analysis of the measuring process is carried out first, showing the necessity
of describing the statistical distribution of the measured values of dynamic quantities
when microscopic particles are dealt with; the connection with the similar situations
involving massive bodies is also analyzed in detail. This chapter is concluded with
the illustration of the probabilistic interpretation of the wave function.

7.2 Planetary Model of the Atom

Several experiments were carried out in the late 1800s and early 1900s, whose
outcome was the determination of a number of fundamental constants of atomic
physics; among them, the electron charge-to-mass ratio was measured by J. J.
Thomson in 1897, and electron charge was measured by R. Millikan in 1909
(Table D.1). A theory of the atom was proposed by E. Rutherford after a series of
experiments in 1909–1914, that led to the measurement of the atomic radius ra. The
experiments consisted in measuring the broadening of beams of finely collimated
˛ particles1 passing through thin metal foils. The latter were typically made of
gold sheets with a thickness of a few thousand atomic layers; the dynamics of
the interaction between an ˛ particle and the metal foil was treated by Classical
Mechanics, using an interaction of the Coulomb type (Sect. 3.8). The outcome of
the experiments led Rutherford to conceive the planetary model of the atom; this
model depicts the atom as made of a small nucleus of atomic charge Z q surrounded
by Z electrons, where q is the absolute value of the electron charge and Z indicates
the position of the element in the periodic table. The model assumes that as the
˛-particles are rather heavy, they are deflected mainly by the nuclei2 of the foil;
the type of deflection implies that the majority of the ˛ particles is deflected only
once when crossing the foil, thus indicating that the foil’s atoms are placed far apart
from each other. In fact, the deflection experiments made it possible to estimate3 the
atom’s and nucleus’ diameters, respectively, as

ra � 0:1 nm ; re � 2 � 10
�6
p

Z nm ; Z D 1; 2; : : : : (7.1)

1These particles are obtained by ionizing helium atoms.
2The meaning of the term “nucleus” in this context needs to be clarified. Throughout this book
the term is used to indicate the system made of protons, neutrons, and core electrons, namely,
those electrons that do not belong to the outer shell of the atom and therefore do not participate
in the chemical bonds. In solid-state materials, core electrons are negligibly perturbed by the
environment, in contrast to the electrons that belong to the outer shell (valence electrons).
3The estimate means that for scale lengths equal or larger than those indicated in (7.1), an atom
or a nucleus can be considered as geometrical points having no internal structure. The electron’s
radius can be determined in a similar way using X-ray diffusion.
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As Z ranges from 1 to about 100, the second relation in (7.1) shows that re � ra

(compare with Table D.1).
The simplest atom is that of hydrogen. The planetary model depicts it as an

electron moving nearby the proton under the effect of a Coulomb potential V , where
the energy reference is chosen in such a way as to make V.1/ D 0. Then, the theory
of the Coulomb interaction in the attractive case applies (Sect. 3.13.6). As the proton
is much more massive than the electron, its position can be approximated with that
of the atom’s center of mass, and placed in the origin; in summary, it is

V.r/ D V.r/ D �
q2

4 � "0 r
; TCV D

1

2
m u2�

q2

4 � "0 r
D E D const ; (7.2)

where r is the electron position, u its velocity’s module, T and E its kinetic and total
energies, respectively, and "0 the permittivity of vacuum. The planetary model is
extended to more complicate atoms by considering an outer electron moving nearby
a core of net charge q embedding Z protons and Z � 1 electrons, or to even more
complicate cases (hydrogenic-like systems). Observing that T D E � V D E C
jVj � 0, and remembering the analysis of Sect. 3.8, one finds that two cases are
possible: the first one, shown in Fig. 7.1, is E � 0, corresponding to V � 0 � E and
rmax D 1 (free electron). The second case is E < 0, corresponding to V � E < 0

and rmax <1 (bound electron). For the qualitative reasoning to be carried out here,
it is sufficient to consider the simpler case of a bound electron whose trajectory is
circular (Fig. 7.2). In such a case, using the results of Sects. 3.7 and 3.13.6 after
letting Z1 D Z2 D 1 and replacing s with r, yields r D 4� "0 M2

B=.m q2/ D const,
where M2

B D m2 r2 u2. Combining these relations with the first one in (7.2) shows
that F D jFj D m jaj D m u2=r D 2T=r whence, using F D q2=.4 � "0 r2/ D
�V=r, one finds

Fig. 7.1 Classical
description of the electron’s
orbit for E � 0

r
E

V

rm

Tm

rm

Vm
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Fig. 7.2 Classical
description of the electron’s
orbit for E < 0. For
simplicity, a circular orbit is
considered

E

V

Ta

ra

Va

ra

r

T D �
V

2
; E D T C V D

V

2
D �

q2

8 � "0 r
D const < 0 : (7.3)

It follows dE=dr D jEj=r > 0, that is, the total energy is larger at larger orbits (this
is a particular case of the general theory worked out in Prob. 3.2).

Despite its simplicity, the planetary model is able to explain phenomena like
the excitation and ionization of atoms; excitation corresponds to the absorption of
energy from an external electromagnetic field, such that an initially bound electron
increases its energy from E1 to E2, where E1 < E2 < 0: the electron in the final
state is still bound. The inverse process is the emission of energy in the form of an
electromagnetic radiation, so that the electron’s total energy decreases from E2 to E1.
In turn, ionization corresponds to the absorption of energy such that an initially
bound electron becomes free: E1 < 0 and E2 � 0. The inverse process is the capture
of a free electron by an ionized atom, with an energy emission equal to E2 � E1.

The above reasoning can also be used to explain the behavior of systems more
complicate than single atoms. For instance, consider a finite linear monatomic
chain, namely, a system made of a finite number of identical atoms placed along
a line, at equal mutual distances (Fig. 7.3), which can be thought of as a rudimental
version of a crystal. The positions of the atoms are marked by the dots visible
in the upper part of the figure. Let the chain be aligned with the x axis; if each
nucleus is made to coincide with a local origin of the reference, the distance
r D

p
x2 C y2 C z2 in the expression of the potential energy becomes jxj; the

potential energy pertaining to each nucleus is proportional to 1=jxj and is indicated
with a dashed line in the figure. An electron placed at some position in the chain
is subjected to the sum of the potential energies; being the latter negative, the
sum is lower than the individual contributions: in the figure, it is indicated by the
continuous line, which for simplicity is drawn by adding up the contributions of
the nearest-neighboring nuclei only. The chain, however, has a finite length; when
the leftmost nucleus is considered, the potential energy on its left does not suffer any
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Eα
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Fig. 7.3 Schematic description of the potential energy in a linear monatomic chain

lowering: this creates the energy step visible in the figure. The same happens on the
right side of the rightmost nucleus. The shape of the potential energy thus obtained
is able to qualitatively explain several features of crystals. For instance, consider by
way of example the case where the only force acting on an electron inside the crystal
derives from the potential energy of Fig. 7.3, namely, it is a conservative force. If
the total energy of the electron under consideration is E1, the electron’s position is
confined within the potential well dictated by the initial position of its motion. Thus,
the electron oscillates within the well like in the example of Prob. 3.2, and its motion
cannot extend out of it; if all electrons of the crystal are bound, the material is an
insulator. This reasoning implies that the situation where all electrons are bound is
maintained also under the application of an external voltage; due to this, no electric
current ensues.

If the total energy of the electron under consideration is E2, the electron can move
within the whole crystal; finally, if the total energy is E3, the electron overcomes
one or the other of the energy steps and moves into vacuum: for this reason,
the minimum energy E0 necessary for the electron to leave the crystal is called
vacuum level. If the two ends of the crystal are connected to a voltage generator
by suitable contacts, and an external voltage is applied, the material can carry an
electric current, whose amplitude depends also on the number of electrons whose
energy is sufficiently high.4 It is worth noting that although this is prohibited in the
frame of Classical Mechanics, the electrons whose energy is of the type E2 may also
contribute to the current; in fact, Quantum Mechanics shows that they have a finite
probability to penetrate the energy step and reach the contact. This phenomenon is
called tunnel effect (Sect. 11.3.1).

To proceed it is convenient to give Fig. 7.3 a simpler appearance: in fact,
considering that the interatomic distance is a fraction of a nanometer, the spatial
extent in the x direction where each peak is placed is hardly visible in a macroscopic
representation; for this reason, it is sufficient to graphically indicate the envelope
E˛ of the peaks. By the same token, the steps on the sides are described as
discontinuities (Fig. 7.4). The electrons with E < E˛ or E � E˛ are called,

4The combination of the number of such electrons with other factors also determines whether the
material is a conductor or a semiconductor (Chap. 18).
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Fig. 7.4 The same structure
of Fig. 7.3, where the peaks
are replaced with the
envelope

(vacuum level)

free electrons

bound electrons

E0

Eβ

Eα

W

respectively, bound electrons and free electrons.5 In the equilibrium condition the
total energy of the electrons is prescribed; it follows that the majority of the electrons
has an energy E lower than a given value Eˇ (which is not necessarily larger than
E˛). Thus, the difference W D E0 � Eˇ is a measure of the energy that is necessary
to extract an electron from the material: among other things, the model explains the
existence of a minimum extraction energy of the electrons.6

7.3 Experiments Contradicting the Classical Laws

About 1900, experimental evidence was found for a number of phenomena that
contradict the calculations based on the known physical laws, that is, the laws of
Analytical Mechanics, Electromagnetism, and Statistical Mechanics. A number of
such phenomena are listed in this section.

7.3.1 Stability of the Atom

The solution of the electromagnetic equations shows that an accelerated electron
radiates a power given by (5.72), namely, q2 Pv2=.6 � "0 c3/, with Pv the electron’s
acceleration. As discussed in Sect. 5.11.2, this is in contradiction with the planetary
model of the atom (7.3), in which T C V D E D const: due to the radiated power,
the electron should lose energy and, as a consequence, the atom should shrink. The
possibility of an extremely slow, non-detectable shrinking must be ruled out: in fact,
a perturbative calculation (Sect. 5.11.3) shows that due to the energy loss the atomic
radius should decrease from the initial value, say, r, to the value r=e in about 10�8

s. This, however, is not observed (Sect. 9.7.2).

5The description is qualitative; for instance, it does not consider the band structure of the solid
(Sect. 17.6).
6When the material is a conductor, Eˇ coincides with the Fermi level (Sect. 15.8.1), and W is called
work function; in a semiconductor, Eˇ coincides with the lower edge EC of the conduction band
(Sect. 17.6.5) and the minimum extraction energy (typically indicated with a symbol different from
W) is called electron affinity (Sect. 22.2).
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7.3.2 Spectral Lines of Excited Atoms

The planetary model explains the emission of electromagnetic radiation by excited
atoms. The explanation, however, is qualitative only, because the model does not
impose any constraint on the frequency of the emitted waves. In contrast, the
experiments show that the waves emitted by, e.g., hydrogen atoms have frequencies
� of the form (Balmer law, 1885),7

�nm D �R

�
1

n2
�
1

m2

�
; �R ' 3:3 � 10

15 s�1 ; (7.4)

where n;m are integers, m > n � 1. The emissions described by (7.4) are also
called spectral lines. The lower series of spectral lines are shown in Fig. 7.5 along
with their designations; the numbers in the figure correspond to n, m in (7.4).
Another experimental finding shows that instead of occurring with a single emission
of frequency �nm, the release of electromagnetic energy by the atom may be
accomplished in steps; if that happens, the frequencies associated with the individual
steps fulfill a relation called Ritz emission rule: considering, e.g., two steps, it reads

�nm D �nk C �km ; (7.5)

with �nk, �km the frequencies of the individual steps.

Fig. 7.5 Designation of the
lower series of spectral
lines (7.4)

2

1

3
4

Lyman (ultraviolet)

Balmer (visible)

Brackett (far infrared)

Paschen (infrared)

7The ratio R D �R=c ' 1:1 � 105 cm�1 is called Rydberg constant. The formula was generalized
in the 1880s to the hydrogenic-like atoms by Rydberg: the expression (7.4) of the frequencies must
be multiplied by a constant that depends on the atom under consideration.
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Fig. 7.6 Schematic
cross-section of the apparatus
used for measuring the
photoelectric effect
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7.3.3 Photoelectric Effect

It is found that an impinging electromagnetic radiation extracts charges from a metal
(H. Hertz, 1887) and that these charges are electrons (J. J. Thomson, 1899). The
phenomenon is ascribed to the absorption of energy from the radiation: the electron
absorbs an energy sufficiently large to be extracted from the metal. An electron thus
extracted is also called photoelectron. A sketch of the measuring apparatus is given
in Fig. 7.6, where two electrodes, anode (A) and cathode (K), are placed inside a
vacuum tube in order to prevent interactions between the photoelectrons and the
atmosphere. A voltage VAK is applied to the electrodes, such that VAK > 0 when the
electric potential at the anode is larger than that at the cathode. A monochromatic
radiation of a given intensity is made to impinge on the cathode, whose surface
is marked with †, and the current I flowing in the tube is recorded. Important
parameters are the radiation’s frequency �, the spectral intensity of the radiation,
� D dE=.d† dt d�/, where d† is the surface element of the cathode, and the spectral
power8

… D

Z

†

� d† D
dE

dt d�
: (7.6)

The outcome of the experiment is shown in arbitrary units in Figs. 7.7 and 7.8. The
first one shows a set of the I D I.VAK/ curves at constant �, with … a parameter.
When VAK is positive and sufficiently high, it is expected that practically all electrons
extracted from the cathode be driven to the anode; as a consequence, the slope of
the curves should be negligible. Also, when the intensity of the radiation increases,
the number of extracted electrons, and the current with it, should also increase. This
is in fact confirmed by the curves of Fig. 7.7. When, instead, VAK is negative, only
the electrons leaving the cathode with a sufficiently high kinetic energy are able
to reach the anode, whereas those whose initial kinetic energy is low are repelled

8The units of � and … are Œ�� D J cm�2 and Œ…� D J, respectively.
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Fig. 7.7 The I D I.VAK/ curves, in arbitrary units, obtained from the photoelectric effect at
constant frequency of the radiation, with the spectral power used as a parameter
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Fig. 7.8 The I D I.VAK/ curves, in arbitrary units, obtained from the photoelectric effect at
constant spectral power of the radiation, with frequency used as a parameter

towards the cathode by the electric field imposed by the reverse bias.9 Considering
for simplicity a one-dimensional case, energy conservation yields for an electron
traveling from cathode to anode,

9The concentration of electrons in the vacuum tube is small enough not to influence the electric
field; thus, the latter is due only to the value of VAK and to the form of the electrodes.
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1

2
m u2A �

1

2
m u2K D q VAK ; (7.7)

where uK is the electron’s velocity at the cathode and uA that at the anode. The
blocking voltage VR > 0 is the value VAK D �VR such that uA D 0; from (7.7) one
obtains the relation

1

2
m u2K D q VR ; (7.8)

which allows one to measure the kinetic energy of the most energetic electrons
that are extracted from the cathode at given spectral power and frequency of the
radiation.10 Such electrons are those that inside the cathode have an energy in the
vicinity of Eˇ (Fig. 7.4) and do not suffer energy losses while being extracted. If EL

is the energy that the most energetic electron absorbs from the radiation, its kinetic
energy at the cathode is .1=2/m u2K D EL �W, with W the metal’s work function,
whence

q VR D EL �W ; (7.9)

so that the photoelectric effect provides in fact a method for measuring EL. The
classical model predicts that the blocking voltage should increase with …; this,
however, does not happen: as shown in Fig. 7.7, at a given frequency the blocking
voltage is the same for all values of…. In addition, it is unexpectedly found that both
I and VR depend on the frequency � (Fig. 7.8). In fact, the comparison between the
experimental blocking voltages and (7.9) shows that the energy EL that the electron
absorbs from the electromagnetic field is proportional to the frequency,

EL D h � ; (7.10)

with h ' 6:626�10�34 J s the Planck constant. If h � < W, no current is measured;
this provides a threshold value for the frequency to be used in the experiment.

7.3.4 Spectrum of the Black-Body Radiation

Consider a body at temperature T in equilibrium with an electromagnetic field. Due
to the detailed-balance principle, the spectral intensity �B emitted by the body, that
is, the electromagnetic power emitted by it per unit surface element d† and unit
frequency d�, in the direction normal to d†, fulfills the relation

10The most energetic electrons succeed in overcoming the effect of the reverse bias and reach the
vicinity of the anode; they constantly slow down along the trajectory to the point that their velocity
at the anode vanishes. Then, their motion reverses and they are driven back to the cathode.
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Fig. 7.9 The approximation
to a black body consisting in
a small hole in the wall of an
enclosure kept at constant
temperature. If a thermometer
(represented by the shaded
area) was suspended within
the enclosure, it would
indicate the same temperature
T as the walls, irrespective of
its position or orientation

T

�B D ˛ � ; (7.11)

where � is the spectral intensity of the radiation (compare with (7.6)), and 0 � ˛ � 1
the fraction of � absorbed by the body at frequency �. By Kirchhoff’s law (1859),
for any body in thermal equilibrium with radiation it is

�B

˛
D K.�;T/ ; (7.12)

where K is a universal function of � and T [107, Sect. 9–15]. A black body is a
body such that ˛ D 1 at all frequencies; thus, for a black body at equilibrium with
radiation it is �B D K. A good approximation to a black body is a small hole in the
wall of an enclosure kept at constant temperature, like that illustrated in Fig. 7.9: any
radiation entering the hole has a negligible probability of escaping, due to multiple
reflections at the walls; as a consequence, the hole acts like a perfect absorber.
Thanks to �B D K, the spectral intensity emitted by any black body has the same
characteristics: in particular, it is not influenced by the form of the enclosure, the
material of which the walls are made, or other bodies present in the enclosure. As a
consequence, �B, or any other function related to it, can be calculated by considering
a convenient geometry of the problem and assuming that the radiation propagates in
vacuo. It is found experimentally that

Z 1

0

�B.�;T/ d� D � T4 ; (7.13)

where � D 5:67 � 10�12 W cm�2 K�4 is the Stefan-Boltzmann constant.
One of the functions related to �B is the spectral energy density u of the black

body, that is, the energy per unit volume and frequency. The integral of u over the
frequencies yields the energy density; remembering that equilibrium is assumed,
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one finds11

weq
em.T/ D

Z 1

0

u.�;T/ d� : (7.14)

In turn, the integral of u over the coordinates gives the equilibrium value of the
spectral energy, whose general definition is given by (5.47).

The spectral energy density u can be calculated as the product of the number
of monochromatic components of the electromagnetic field per unit volume and
frequency, times the energy of each monochromatic component. The first factor is
readily found by taking an enclosure of prismatic form like that of Sect. 15.9.4; the
calculation yields 8� �2=c3, which is obtained by dividing both sides of (15.74) by
the enclosure’s volume V . As for the energy of each monochromatic component, the
only assumption possible in the frame of Classical Mechanics is that the energy of
the electromagnetic field at equilibrium is distributed over the frequencies according
to the Maxwell-Boltzmann distribution (6.14). Assuming that each monochromatic
component is equivalent to a one-dimensional linear-harmonic oscillator, the energy
to be associated with it is the average energy of a system with one degree of freedom;
thus, letting R D 1 in (6.37) yields for the average energy the value kB T . The
product of the two factors thus found yields for the spectral energy density of the
black body the expression

u.�;T/ D 8�
kBT

c3
�2 ; (7.15)

called Rayleigh-Jeans law. Experimental results for u as a function of frequency are
shown in Fig. 7.10, with temperature a parameter. The comparison with experiments
shows that the parabolic behavior of (7.15) approximates the correct form of the
curves only at low frequencies; clearly the result expressed by (7.15) cannot be
correct, because it makes the equilibrium energy density (7.14) to diverge.12

7.3.5 Compton Effect

When X-rays of a given frequency interact with atoms and are scattered with an
angle  with respect to the direction of incidence, the frequency of the emerging
rays is found to depend on  . This outcome is in contrast with the prediction of
the electromagnetic theory, according to which the frequency of the scattered rays
should be equal to that of the impinging ones. The dependence of frequency on the
scattering angle is also called Compton effect.

11Compare with the general definition (5.10) of wem, where the assumption of equilibrium is not
made.
12This unphysical outcome is also called ultraviolet catastrophe.
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Fig. 7.10 Spectral energy density of the black body at different temperatures. The value
T D 5;800 K corresponds to the surface temperature of the sun

Fig. 7.11 Scheme of the
experimental setup for
measuring the Compton
effect ψ

The experimental setup for measuring the Compton effect is schematically shown
in Fig. 7.11. The gray box in the middle of the figure is a piece of solid material,
onto which the radiation impinges from the left (dark arrows); the vertical lines
are the intersections of the constant-phase planes with the plane of the figure. The
gray arrows on the right represent the part of the radiation that does not interact
with the material and exits from it unaltered, while the white arrows indicate
some of the directions of the rays scattered by the material. The circumferences
are the intersections with the figure’s plane of the spherical waves produced by the
scattering. The origin of the measuring angle is aligned with the direction of the
incoming radiation, so that  D 0 corresponds to the absence of scattering,  D �
to reflection.
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7.4 Quantum Hypotheses

In the early 1900s, a number of hypotheses were made to solve the contradictions
between the experimental evidence and the calculations based on the physical laws
known at that time. The solutions thus found and the new concepts originating
from them were eventually combined into a unified and coherent theory, Quantum
Mechanics.

In essence, the contradictions with the physical laws known in the early
1900s were found thanks to the refinement of the experimental techniques. Such
refinements were in turn made available by the general advancement of science that
had taken place in the preceding decades. Thanks to them, it was possible to start
investigating the microscopic world, namely, the dynamics of elementary particles.
A parallel improvement took place in the same years in the investigation of the
dynamics at high velocities, and led to the concepts of Special Relativity (1905).13

7.4.1 Planck’s Solution of the Black-Body Problem

To explain the features of the black-body radiation, Planck made in 1900 the
hypothesis that a monochromatic electromagnetic energy is absorbed or emitted
only in quantities that are integer multiples of a fixed quantity h�, where h is a
suitable constant [104]. The occupation number then becomes

Pn D P0 exp.�nˇ h �/ ; ˇ D 1=.kB T/ : (7.16)

As a consequence, using the same procedure as in Sect. 6.6.2 after replacing the
integrals with sums, yield for the average energy AvŒn h �� the expression14

AvŒn h �� D

P1
nD0 n h � PnP1

nD0 Pn
D

h �

exp.ˇ h �/ � 1
: (7.17)

In contrast with the constant value kB T used in the determination of the Rayleigh-
Jeans law, here the average energy of each monochromatic component depends
on the component’s frequency. Multiplying (7.17) by the number 8� �2=c3 of
monochromatic components of the electromagnetic field per unit volume and
frequency, found in Sect. 7.3, yields for the spectral energy density of the black
body the expression

13As the particles’ velocities that occur in solid-state physics are low, Special Relativity is not
used in this book; the only exception is in the explanation of the Compton effect, illustrated in
Sect. 7.4.3.
14The detailed calculation leading to (7.17) is shown in Prob. 6.1.
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u.�;T/ D 8�
h �3=c3

expŒh �=.kB T/� � 1
; (7.18)

called Planck law (1900). The derivation of (7.18) involves one undetermined
parameter, h. If the latter is made equal to the Planck constant introduced in
the description of the photoelectric effect (Sect. 7.3), the resulting expression fits
perfectly the experimental data like those of Fig. 7.10. Remembering that the
spectral energy density of a black body in equilibrium is a universal function, it
follows that h does not depend on the specific experiment, namely, it is a universal
constant.

The low-frequency limit of (7.18), h � � kB T , is independent of h and renders
the Rayleigh-Jeans law (7.15).

7.4.2 Einstein’s Solution of the Photoelectric Effect

In 1905, Einstein proposed the following explanation of the photoelectric effect:
the transport of electromagnetic energy is quantized; specifically, a monochromatic
electromagnetic wave of frequency � is made of the flux of identical objects,
called photons, each carrying the energy h �. In the interaction with a photon, an
electron may absorb an energy up to h �. If the absorbed energy is exactly h�,
the photon is annihilated [45].15 This theory provides a correct explanation of the
photoelectric effect: with reference to Fig. 7.7, the photoelectric current increases
as the spectral power … increases at constant �, because the number of photons is
larger: as a consequence, the number of photoelectrons is larger as well. In turn, with
reference to Fig. 7.8, the blocking voltage VR increases as � increases at constant…,
because the photons are more energetic; however, they are fewer, which explains
why the curves intersect each other: the spectral power, in fact, can be written as
… D dE=.dt d�/ D h � ŒdN=.dt d�/�, where the quantity in brackets is the number
of photons per unit time and frequency; as a consequence, the constraint… D const
of the experiment of Fig. 7.8 makes the quantity in brackets to decrease when the
photon energy h � increases.

7.4.3 Explanation of the Compton Effect

The concept of photon, introduced in Sect. 7.4.2, explains the Compton effect
by describing the interaction of the electron with the electromagnetic field as
the collision between the electron and a photon [29]. As the photon’s velocity

15Einstein’s hypothesis is more general than Planck’s: the latter, in fact, assumes that energy is
quantized only in the absorption or emission events.
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is c, its rest mass is zero (Sect. 3.13.7); in turn, the modulus of the photon’s
momentum is p D E=c, which is consistent with classical electromagnetism
(compare with (5.43)).

The analysis of the electron-phonon collision is worked out assuming that
the system made of the two particles under consideration is isolated; thus, the
calculation is based upon the energy- and momentum-conservation equations, and
the results of Sect. 3.13.8 hold. The dynamic quantities for the photon are given by

E D h � ; p D
E

c
D

h �

c
D

h

�
; (7.19)

the second of which derives from (5.55) expressed in vacuo. Defining the reduced
Planck constant „ D h=.2 �/ ' 1:055 � 10�34 J s, and using the modulus k of the
wave vector, (7.19) becomes

E D „ 2� � D „! ; p D
„

�=.2 �/
D „ k : (7.20)

The second relation of (7.20) in vector form reads

p D „k : (7.21)

Here the useful outcome of the analysis of Sect. 3.13.8 is (3.92), that relates the
photon’s energies prior and after the collision (Ea and Eb, respectively) with the
deflection angle  (Fig. 3.7). Using E D c h=� in (3.92) yields

�b � �a D 2 �0 sin2
�
 

2

�
; �0 D

h

m0 c
; (7.22)

with �0 ' 2:43 � 10�12 m the Compton wavelength (1923). The frequency
corresponding to it is �0 D c=�0 ' 1:2 � 1020 Hz. The maximum difference in
wavelength corresponds to the case of reflection, max.�b � �a/ D 2 �0. Even in
this case, the smallness of �0 makes the effect difficult to measure; in practice, the
shift in wavelength is detectable only for sufficiently small values of �a, typically in
the range of 10�10 m corresponding to the X-ray frequencies (� � 1018 s�1). Due
to the large energy of the photon, the energy transferred to the electron brings the
latter into a high-velocity regime; this, in turn, imposes the use of the relativistic
expressions for describing the electron’s dynamics.

7.4.4 Bohr’s Hypothesis

The description of the monochromatic components of the electromagnetic field as
a flow of identical photons with energy h � lends itself to the explanation of the
Balmer law (7.4). Such an explanation (Bohr’s hypothesis, 1913) is based on the
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idea that if �nm is the frequency of the emitted radiation, the corresponding energy
of the emitted photon is h �nm; multiplying (7.4) by h and remembering that m > n
then yields

h �nm D h �R

�
1

n2
�
1

m2

�
D

�
�

h �R

m2

�
�

�
�

h�R

n2

�
: (7.23)

As the left-hand side is the energy of the emitted photon, the terms on the right-hand
side can be recast as

Em D �
h�R

m2
; En D �

h�R

n2
; En < Em < 0 I (7.24)

then, if Em (En) is interpreted as the atom’s energy before (after) emitting the
photon, Balmer’s law becomes the expression of energy conservation. From this,
the emission rule of Ritz is easily explained; in fact, (7.5) is equivalent to

Em � En D .Em � Ek/C .Ek � En/ : (7.25)

Bohr’s hypothesis is expressed more precisely by the following statements:

1. The energy variations of the atom are due to the electrons of the outer shell, that
exchange energy with the electromagnetic field.

2. The total energy of a non-radiative state is quantized, namely, it is associated
with an integer index: En D �h �R=n2, n D 1; 2; : : :; the values of energy thus
identified are called energy levels. The lowest level corresponds to n D 1 and is
called ground level or ground state.

3. The total energy can vary only between the quantized levels by exchanging with
the electromagnetic field a photon of energy �nm D .Em � En/=h.

It is interesting to note that by combining Bohr’s hypothesis with the planetary
model of the atom, the quantization of the other dynamic quantities follows from
that of energy; again, the case of a circular orbit is considered. By way of example,
using En D �h �R=n2 in the second relation of (7.3) provides the quantization of the
orbit’s radius:

r D rn D �
q2

8 � "0 En
D

q2

8 � "0

n2

h �R
: (7.26)

The smallest radius r1 corresponds to the ground state n D 1; taking �R from (7.4)
and the other constants from Table D.1 one finds r1 ' 0:05 nm; despite the
simplicity of the model, r1 is fairly close to the experimental value ra given in (7.1).

In turn, the velocity is quantized by combining (7.3) to obtain T D �V=2 D �E;
replacing the expressions of T and E then yields

1

2
m u2 D

h �R

n2
; u D un D

r
2 h �R

m n2
: (7.27)
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The largest velocity is found from (7.27) by letting n D 1 and using the minimum
value for the mass, that is, the rest mass m D m0. It turns out u1 ' 7 � 10�3 c;
as a consequence, the velocity of a bound electron belonging to the outer shell
of the atom can be considered nonrelativistic. Thanks to this result, from now on
the electron’s mass will be identified with the rest mass. Finally, for the angular
momentum M D r p D r m u one finds

M D Mn D
q2 n2

8 � "0 h �R
m

r
2 h �R

m n2
D

1

2�

�
q2

"0

r
m

8 h �R

�
n : (7.28)

The quantity in brackets in (7.28) has the same units as M, namely, an action
(Sect. 1.5) and, replacing the constants, it turns out16 to be equal to h. Using the
reduced Planck constant it follows

Mn D n„ : (7.29)

The Bohr hypothesis provides a coherent description of some atomic properties;
yet it does not explain, for instance, the fact that the electron belonging to an
orbit of energy En D �h �R=n2 does not radiate, in contrast to what is predicted
by the electromagnetic theory (compare with the discussion in Sect. 7.3). Another
phenomenon not explained by the hypothesis is the fact that only the ground state
of the atom is stable, whereas the excited states are unstable and tend to decay to the
ground state.

7.4.5 De Broglie’s Hypothesis

The explanation of the Compton effect (Sect. 7.4.3) involves a description of the
photon’s dynamics in which the latter is treated like a particle having energy and
momentum. Such mechanical properties are obtained from the wave properties of
a monochromatic component of the electromagnetic field: the relations involved
are (7.19) (or (7.20)), by which the photon energy is related to the frequency, and
its momentum to the wave vector. It is worth specifying that such relations are
applied to the asymptotic part of the motion, namely, when the photon behaves
like a free particle. In 1924, de Broglie postulated that analogous relations should
hold for the free motion of a real particle: in this case, the fundamental dynamic
properties are energy and momentum, to which a frequency and a wavelength (or a
wave vector) are associated by relations identical to (7.19), (7.20),17

16This result shows that the physical constants appearing in (7.28) are not independent from each
other. Among them, �R is considered the dependent one, while q, m D m0, "0, and h are considered
fundamental.
17The wavelength associated with the particle’s momentum is called de Broglie’s wavelength.
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! D 2� � D 2�
E
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D
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„
; k D

2�
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D
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D

p

„
; k D

p
„
: (7.30)

The usefulness of associating, e.g., a wavelength to a particle’s motion lies in the
possibility of qualitatively justifying the quantization of the mechanical properties
illustrated in Sect. 7.4.4. For this, consider the case of the circular orbit of the
planetary motion, and associate a wavelength with the particle’s momentum, � D
h=p. Such an association violates the prescription that (7.30) apply only to a free
motion; however, if the orbit’s radius is very large, such that �� r, the orbit may be
considered as locally linear and the concept of wavelength is applicable. Replacing
� D h=p in (7.29) yields

2� r D n� ; (7.31)

namely, the quantization of the mechanical properties implies that the orbit’s length
is an integer multiple of the wavelength associated with the particle. This outcome
suggests that the formal description of quantization should be sought in the field of
eigenvalue equations.

De Broglie also postulated that a function D  .r; t/, containing the parameters
!, k defined in (7.30), and called wave function, is associated with the particle’s
motion. Its meaning is provisionally left indefinite; as for its form, it is sensible to
associate with the free motion, which is the simplest one, the simplest wave function,
that is, the planar monochromatic wave. The latter is conveniently expressed in
complex form as

 D A expŒi .k � r � ! t/� ; (7.32)

where A ¤ 0 is a complex constant, not specified. Due to (7.30), the constant
wave vector k identifies the momentum of the particle, and the angular frequency
! identifies its total energy, which in a free motion coincides with the kinetic
energy. It is worth pointing out that despite its form, the wave function is not
of electromagnetic nature; in fact, remembering that in a free motion it is H D
p2=.2m/ D E, with H the Hamiltonian function, it follows

„! D
1

2m
„2 k2 ; !.k/ D

„

2m
k2 ; (7.33)

which is different from the electromagnetic relation ! D c k. By the same token
it would not be correct to identify the particle’s velocity with the phase velocity uf

derived from the electromagnetic definition; in fact, one has

uf D
!

k
D

E=„

p=„
D

p2=.2m/

p
D

p

2m
: (7.34)
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The proper definition of velocity is that deriving from Hamilton’s equations (1.42);
its ith component reads in this case

ui D Pxi D
@H

@pi
D
1

„

@H

@ki
D
@!

@ki
D
„ki

m
D

pi

m
: (7.35)

The concepts introduced so far must now be extended to motions of a more
general type. A sensible generalization is that of the conservative motion of a
particle subjected to the force deriving from a potential energy V.r/. In this case
the association described by (7.30) works only partially, because in a conservative
motion the total energy is a constant, whereas momentum is generally not so. As a
consequence, letting ! D E=„ yields for the wave function the form

 D w.r/ exp.�i! t/ ; (7.36)

which is still monochromatic but, in general, not planar. Its spatial part w.r/ reduces
to A exp.i k � r/ for the free motion. The function of the form (7.36) is postulated
to be the wave function associated with the motion of a particle at constant energy
E D „!. While the time dependence of  is prescribed, its space dependence must
be worked out, likely by solving a suitable equation involving the potential energy
V , the particle’s mass and, possibly, other parameters.

7.5 Heuristic Derivation of the Schrödinger Equation

The concept of wave function introduced in Sect. 7.4.5 has been extended from
the case of a free motion, where the wave function is fully prescribed apart from
the multiplicative constant A, to the case of a conservative motion (7.36), where
only the time dependence of the wave function is known. It is then necessary
to work out a general method for determining the spatial part w.r/. The starting
point is the observation that w is able at most to provide information about the
particle’s trajectory, not about the particle’s dynamics along the trajectory. One of
the methods used in Classical Mechanics to determine the trajectories is based on
the Maupertuis principle (Sect. 2.7); moreover, from the discussion carried out in
Sect. 5.11.6 it turns out that the analogy between the Maupertuis principle and the
Fermat principle of Geometrical Optics (compare with (5.80)) provides the basis for
a generalization of the mechanical laws. The first of the two principles applies to a
particle (or system of particles) subjected to a conservative force field prescribed
by a potential energy V.r/, with E a given constant; the second one applies to
a monochromatic ray (� D const) propagating in a medium whose properties
are prescribed by the refraction index n.r/. The latter is related to frequency and
wavelength by n D c=.� �/ (compare with (5.55)); as a consequence, (5.80) can be
rewritten as
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ı

Z

AB

p
E � V ds D 0 ; ı

Z

AB

1

�
ds D 0 : (7.37)

Considering that the variational principles hold apart from a multiplicative constant,
the two expressions in (7.37) transform into each other by letting

p
E � V D

˛

�
; (7.38)

where ˛ is a constant that must not depend on the form of V or �, nor on other
parameters of the problem. For this reason, ˛ is left unchanged also after removing
the Geometrical-Optics approximation; when this happens, the Fermat principle is
replaced with the Maxwell equations or, equivalently, with the wave equations for
the electric field (4.64) and magnetic field (4.65). For simplicity, the latter equations
are solved in a uniform medium with no charges in it, on account of the fact
that ˛ is not influenced by the medium’s properties. Also, considering that in the
uniform case (4.64) and (4.65) have the same structure, and that the function w
under investigation is scalar, the analysis is limited to any scalar component C of E
or H; such a component fulfills the equation

r2C �
1

u2f

@2C

@t2
D 0 ; (7.39)

with uf D const the medium’s phase velocity. Solving (7.39) by separation with
C.r; t/ D � .r/ �.t/ yields

� r2� D
1

u2f
R� � ;

r2�

�
D

1

u2f

R�

�
D �k2 ; (7.40)

where the separation constant �k2 must be negative to prevent � from diverging. As
a consequence, k is real and can be assumed to be positive. The solution for the time
factor is � D cos.!tC '/, where the phase ' depends on the initial conditions, and
! D 2� � D uf k > 0. It follows k D 2� �=uf D 2�=�, whence the spatial part
of (7.39) reads

r2�C
.2 �/2

�2
� D 0 ; (7.41)

namely, a Helmholtz equation (Sect. 4.7). By analogy, the equation for the spatial
part w of the wave function is assumed to be

r2wC
.2 �/2

˛2
E w D 0 ; (7.42)
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which is obtained from (7.41) by replacing � with w and using (7.38) with V D
0. The value of ˛ is determined by expressing E in (7.42) in terms of the de
Broglie wavelength; using the symbol �dB for the latter to avoid confusion with
the electromagnetic counterpart, one finds E D p2=.2m/ D h2=.2m�2dB/, namely,

r2wC
.2 �/2

˛2
h2

2m

1

�2dB

w D 0 : (7.43)

Equation (7.43) becomes identical to (7.41) by letting ˛2 D h2=.2m/ whence, using
the reduced Planck constant „, (7.42) becomes r2w C .2m E=„2/w D 0. Such
a differential equation holds in a uniform medium; hence, the dynamic property
involved is the kinetic energy of the particle. The extension to the case of a
nonuniform medium is then obtained by using the general form E�V of the kinetic
energy in terms of the coordinates; in conclusion, the equation for the spatial part of
the wave function in a conservative case is

r2wC
2m

„2
.E � V/w D 0 ; �

„2

2m
r2wC V w D E w : (7.44)

The above is the time-independent Schrödinger equation. It is a homogenous
equation, with E the eigenvalue and w the eigenfunction.18 Although the derivation
based on the analogy between mechanical and optical principles is easy to follow, it
must be remarked that the step leading from (7.43) to (7.44) is not rigorous; in the
electromagnetic case, in fact, Eq. (7.41) for the spatial part holds only in a uniform
medium; when the latter is nonuniform, instead, the right-hand side of (7.41) is
different from zero, even in a charge-free case, because it contains the gradient of
the refraction index. As shown in Sect. 1.10.4, the actual method used in 1926 by
Schrödinger for deriving (7.44) consists in seeking the constrained extremum of
a functional generated by the Hamilton-Jacobi equation; in such a procedure, the
hypothesis of a uniform medium is not necessary.

It is also worth noting that in the analogy between mechanical and optical
principles the spatial part of the wave function, and also the wave function as a
whole, is the analogue of a component of the electromagnetic field. From this
standpoint, the analogue of the field’s intensity is the wave function’s square
modulus. In the monochromatic case, the latter reads j j2 D jwj2. This reasoning is
useful in the discussion about the physical meaning of  .

18The structure of (7.44) is illustrated in detail in Chap. 8.
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7.6 Measurement

To make the wave function a useful tool for the description of the particles’
dynamics it is necessary to connect the value taken by  , at a specific position
and time, with some physical property of the particle (or system of particles) under
investigation. To make such a connection it is in turn necessary to measure the
property of interest; otherwise, the hypotheses illustrated in the previous sections
would be relegated to a purely abstract level. In other terms, the meaning of the
wave function can be given only by discussing the measuring process in some detail.
The analysis is carried out below, following the line of [86]; in particular, a general
formalism is sought which applies to both the macroscopic and microscopic bodies;
the specific features brought about by the different size of the objects that are being
measured are made evident by suitable examples.

The measurement of a dynamic variable A pertaining to a physical body is
performed by making the body to interact with a measuring apparatus and recording
the reading shown by the latter. For simplicity it is assumed that there is a finite
number of possible outcomes of the measurement, say, A1; : : : ;AM . The extension
to the case of a continuous, infinitely extended set of outcomes can be incorporated
into the theory at the cost of a more awkward notation. Letting Ai be the outcome
of the measurement of A, consider the case where the body is later subjected to
the measurement of another dynamic variable B. Assume that the outcome of such
a measurement is Bj, out of the possible outcomes B1; : : : ;BN . Next, the body is
subjected to the measurement of a third variable C, thus yielding the value Ck, and
so on.

As in general the dynamic variables depend on time, it is necessary to specify
the time of each measurement. The most convenient choice is to assume that the
time interval between a measurement and the next one is negligibly small, namely,
that the measurement of B takes place immediately after that of A, similarly for
that of C, and so on. The duration of each measurement is considered negligible as
well. A special consequence of this choice is the following: if the measurement of
A yielded Ai, and the measurement is repeated (namely, B D A), the outcome of the
second measurement is again Ai.

Consider now the case where, after finding the numbers Ai, Bj, and Ck from the
measurements of A, B, and C, respectively, the three variables are measured again,
in any order. The experiments show that the results depend on the size of the body
being measured. For a massive body the three numbers Ai, Bj, and Ck are always
found. One concludes that the dynamic state of a massive body is not influenced
by the interaction with the measuring apparatus or, more precisely, that if such an
influence exists, it is so small that it cannot be detected. As a consequence one may
also say that the values of the dynamic variables are properties of the body that exist
prior, during, and after each measurement.

The situation is different for a microscopic body. By way of example, consider
the case of a measurement of B followed by a measurement of A, the first one
yielding Bn, the second one yielding Ai. If the measurement of B is carried out
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again after that of A, the result is still one of the possible outcomes B1; : : : ;BN , but
it is not necessarily equal to Bn. In other terms, the individual outcome turns out to
be unpredictable. For a microscopic body one concludes that the interaction with
the measuring apparatus is not negligible. It is worth observing that the apparatus
able to measure the dynamic variable A may also be conceived in such a way as to
block all outcomes that are different from a specific one, say, Ai. In such a case the
apparatus is termed filter. Using the concept of filter one may build up the statistical
distribution of the outcomes, for instance by repeating a large number of times the
experiment in which the measurement of B is carried out after filtering Ai. The
statistics is built up by recording the fraction of cases in which the measurement
of B carried out on an Ai-filtered body yields the result Bj, j D 1; : : : ;N.

7.6.1 Probabilities

The fraction of measurements of the type described above, namely, of those that
yield Bj after a measurement of A that has yielded Ai, will be indicated with the
symbol P.Ai ! Bj/. Obviously the following hold:

0 � P.Ai ! Bj/ � 1 ;

NX

jD1

P.Ai ! Bj/ D 1 : (7.45)

The first relation in (7.45) is due to the definition of P.Ai ! Bj/, the second
one to the fact that the set of values B1; : : : ;BN encompasses all the possible
outcomes of the measurement of B. It follows that P.Ai ! Bj/ is the probability
that a measurement of the dynamic variable B, made on a particle that prior to the
measurement is in the state Ai of the dynamic variable A, yields the value Bj. The
possible combinations of P.Ai ! Bj/ are conveniently arranged in the form of an
M-row�N-column matrix:

PAB D

2

66666
6
4

P.A1 ! B1/ : : : P.A1 ! BN/
:::

:::

P.Ai ! B1/ : : : P.Ai ! BN/
:::

:::

P.AM ! B1/ : : : P.AM ! BN/

3

77777
7
5

: (7.46)

Due to (7.45), each row of PAB adds up to unity. As the number of rows is M, the
sum of all entries of matrix (7.46) is M. The same reasoning can also be made when
the measurement of B is carried out prior to that of A. In this case the following
N-row�M-column matrix is obtained:
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PBA D

2

66666
6
4

P.B1 ! A1/ : : : P.B1 ! AM/
:::

:::

P.Bj ! A1/ : : : P.Bj ! AM/
:::

:::

P.BN ! A1/ : : : P.BN ! AM/

3

77777
7
5

; (7.47)

with

0 � P.Bj ! Ai/ � 1 ;

MX

iD1

P.Bj ! Ai/ D 1 : (7.48)

As the number of rows in (7.48) is N, the sum of all entries of matrix PBA is N. It
can be proven that it must be

P.Bj ! Ai/ D P.Ai ! Bj/ (7.49)

for any pair of indices ij. In fact, if (7.49) did not hold, thermodynamic equilibrium
would not be possible [86, Chap. V-21]. Equality (7.49) makes PBA the transpose of
PAB. As a consequence, the sum of all entries of the two matrices must be the same,
namely, N D M. In other terms the outcomes of the measurements have the same
multiplicity, and the matrices (7.46), (7.47) are square matrices of order N D M.
Combining (7.49) with the second of (7.48) yields

MX

iD1

P.Ai ! Bj/ D

MX

iD1

P.Bj ! Ai/ D 1 ; (7.50)

showing that in the matrices (7.46), (7.47) not only each row, but also each column
adds up to unity. A square matrix where all entries are nonnegative and all rows and
columns add up to unity is called doubly stochastic matrix. Some properties of this
type of matrices are illustrated in [94, Chap. II-1.4] and in Sect. A.11.4.

Note that (7.49) does not imply any symmetry of PAB. In fact, symmetry would
hold if P.Aj ! Bi/ D P.Ai ! Bj/. If the filtered state is Ai and the measurement of
the dynamic variable A is repeated, the result is Ai again. In other terms,

P.Ai ! Ai/ D 1 ; P.Ai ! Ak/ D 0 ; k ¤ i : (7.51)

This result can be recast in a more compact form as PAA D I, with I the identity
matrix.
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7.6.2 Massive Bodies

It is useful to consider the special case where the measurement of B does not change
the outcome of a previous measurement of A, and vice versa. In other terms, assume
that the measurement of A has yielded Ai and the subsequent measurement of B has
yielded Bj; then, another measure of A yields Ai again, a later measure of B yields
Bj again, and so on. It follows that in P0AB it is P0.Ai ! Bj/ D 1, while all remaining
entries in the ith row and jth column are equal to zero. This situation is typical of
the bodies that are sufficiently massive, such that the interference suffered during the
measurement of a dynamic variable is not detectable. For the sake of clarity an apex
is used here to distinguish the probabilities from those of the general case where the
body’s mass can take any value. Considering a 4 � 4 matrix by way of example, a
possible form of the matrix would be

P0AB D

2

66
4

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

3

77
5 ; (7.52)

that is, one of the 4Š possible permutation matrices of order 4. Clearly all the other
permutation matrices of order 4 different from (7.52) are equally possible. The
meaning of a matrix like (7.52) is that the successive measurements of A and B yield
either the pair A1;B2, or the pair A2;B3, or A3;B1, or A4;B4. Matrix (7.52) may be
thought of as a limiting case: starting from a microscopic body described by a 4�4,
doubly stochastic matrix whose entries are in general different from zero, the size
of the body is increased by adding one atom at a time, and the set of measurements
of A and B is repeated at each time. As the reasoning that prescribes the doubly
stochastic nature of the matrix holds at each step, the successive matrices must tend
to the limit of a permutation matrix. Which of the 4Š permutation matrices will be
reached by this process depends on the initial preparation of the experiments. One
may wonder why a matrix like

P0AB D

2

66
4

0 1 0 0

0 1 0 0

1 0 0 0

0 0 0 1

3

77
5 ; (7.53)

should not be reached. In fact, such a matrix is not acceptable because it is
not doubly stochastic: its transpose implies that the outcomes B1 and B2 are
simultaneously associated with A2 with certainty, which is obviously impossible
not only for a massive body, but for any type of body. This reasoning is associated
with another argument, based on the theorem mentioned in Sect. A.11.4, stating that
a doubly stochastic matrix is a convex combination of permutation matrices. Letting
�1; : : : ; �M be the combination’s coefficients as those used in (A.70), in the process
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of transforming the microscopic body into a macroscopic one all the coefficients but
one vanish, and the nonvanishing one tends to unity. As a consequence, out of the
original combination, only one permutation matrix is left.

7.6.3 Need of a Description of Probabilities

The non-negligible influence of the measuring apparatus on the dynamic state of
a microscopic body makes it impossible to simultaneously measure the dynamic
variables that constitute the initial conditions of the motion. As a consequence, the
possibility of using the Hamiltonian theory for describing the dynamics is lost. As
outlined in the above sections, the distinctive mark of experiments carried out on
microscopic objects is the statistical distribution of the outcomes; thus, a theory that
adopts the wave function as the basic tool must identify the connection between the
wave function and such a statistical distribution. The theory must also contain the
description of the massive bodies as a limiting case.

7.7 Born’s Interpretation of the Wave Function

Basing on the optical analogy and the examination of experiments, the probabilistic
interpretation of the wave function introduced by Born states that the integral

Z

�

j .r; t/j2 d3r (7.54)

is proportional to the probability that a measuring process finds the particle within
the volume � at the time t.19 Note that the function used in (7.54) is the square
modulus of  , namely, as noted in Sect. 7.5, the counterpart of the field’s intensity
in the optical analogy. Also, considering that by definition the integral of (7.54) is
dimensionless, the units20 of  are m�3=2.

When � !1 the integral in (7.54) may, or may not, converge. In the first case,
 is said to be normalizable, and a suitable constant � can be found such that the
integral of j� j2 over the entire space equals unity. The new wave function provides
a probability proper,

Z

�

j�  j2 d3r � 1 ; ��2 D

Z

1

j j2 d3r : (7.55)

19From this interpretation it follows that j j2 d3r is proportional to an infinitesimal probability,
and j j2 to a probability density.
20A more detailed discussion about the units of the wave function is carried out in Sect. 9.7.1.
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In the second case  is not normalizable21: a typical example is the wave function
of a free particle,  D A expŒi .k � r � !t/�; however, it is still possible to define a
probability ratio

Z

�1

j j2 d3r

�Z

�2

j j2 d3r

��1
; (7.56)

where both volumes �1 and �2 are finite. Relation (7.56) gives the ratio between the
probability of finding the particle within �1 and that of finding it within �2.

Consider a particle whose wave function at time t differs from zero within some
volume � , and assume that a process of measuring the particle’s position is initiated
at t and completed at some later time t0; let the outcome of the experiment be an
improved information about the particle’s location, namely, at t0 the wave function
differs from zero in a smaller volume � 0  � . This event is also called contraction
of the wave function.

Problem

7.1 Considering the sun as a black body whose surface temperature is 5;780 K
(compare with Fig. 7.10), find the solar constant, that is, the power per unit area
that impinges normally onto the outer edge of the earth’s atmosphere. Assume that
the earth’s orbit is circular with a radius equal to R, and use r D R=216 for the
radius of the sun.

21This issue is further discussed in Sect. 8.2.



Chapter 8
Time-Independent Schrödinger Equation

8.1 Introduction

The properties of the time-independent Schrödinger equation are introduced step by
step, starting from a short discussion about its boundary conditions. Considering
that the equation is seldom amenable to analytical solutions, two simple cases
are examined first: that of a free particle and that of a particle in a box. The
determination of the lower energy bound follows, introducing more general issues
that build up the mathematical frame of the theory: norm of a function, scalar
product of functions, Hermitean operators, eigenfunctions and eigenvalues of oper-
ators, orthogonal functions, and completeness of a set of functions. This chapter is
concluded with the important examples of the Hamiltonian operator and momentum
operator. The complements provide examples of Hermitean operators, a collection
of operators’ definitions and properties, examples of commuting operators, and a
further discussion about the free-particle case.

8.2 Properties of the Time-Independent Schrödinger
Equation

A number of properties of the time-independent Schrödinger equation are discussed
in this section. The equation holds only when the force is conservative; however,
as will be shown later, many of its properties still hold in more complicate cases.
Equation (7.44) is a linear, homogeneous partial-differential equation of the second
order, with the zero-order coefficient depending on r. As shown in Prob. 8.1, it is
a very general form of linear, second-order equation. The boundary conditions are
specified on a case-by-case basis depending on the problem under consideration.
More details about the boundary conditions are discussed below. One notes that:
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172 8 Time-Independent Schrödinger Equation

1. The coefficients of (7.44) are real. As a consequence, the solutions are real.
In same cases, however, it is convenient to express them in complex form. An
example is given in Sect. 8.2.1.

2. The equation is linear and homogeneous and, as shown below, its boundary
conditions are homogeneous as well. It follows that its solution is defined apart
from a multiplicative constant. The function w D 0 is a solution of (7.44);
however, it has no physical meaning and is not considered.

3. As the equation is of the second order, its solution w and first derivatives @w=@xi

are continuous. These requirements are discussed from the physical standpoint
in Sect. 9.4. The second derivatives may or may not be continuous, depending
on the form of the potential energy V .

4. The solution of (7.44) may contain terms that diverge as jrj ! 1. In this case
such terms must be discarded because they are not compatible with the physical
meaning of w (examples are given in Sect. 8.2.1).

Given the above premises, to discuss the boundary conditions of (7.44) it is
convenient to distinguish a few cases:

A. The domain � of w is finite; in other terms, some information about the
problem in hand is available, from which it follows that w vanishes identically
outside a finite domain �. The continuity of w (see point 3 above) then implies
that w vanishes over the boundary of �, hence the boundary conditions are
homogeneous. After discarding possible diverging terms from the solution, the
integral

R
�
jwj2 d� is finite (the use of the absolute value is due to the possibility

that w is expressed in complex form, see point 1 above).
B. The domain of w is infinite in all directions, but the form of w is such thatR

�
jwj2 d� is finite. When this happens, w necessarily vanishes as jrj ! 1.

Thus, the boundary conditions are homogeneous also in this case.1

C. The domain of w is infinite, and the form of w is such that
R
�
jwj2 d� diverges.

This is not due to the fact that jwj2 diverges (in fact, divergent terms in w
must be discarded beforehand), but to the fact that w, e.g., asymptotically tends
to a constant different from zero, or oscillates (an example of asymptotically
oscillating behavior is given in Sect. 8.2.1). These situations must be tackled
separately; one finds that w is still defined apart from a multiplicative constant.

As remarked above, the time-independent Schrödinger equation is a second-order
differential equation of a very general form. For this reason, an analytical solution
can seldom be obtained, and in the majority of cases it is necessary to resort
to numerical-solution methods. The typical situations where the problem can be
tackled analytically are those where the equation is separable (compare with

1It may happen that the domain is infinite in some direction and finite in the others. For instance,
one may consider the case where w vanishes identically for x � 0 and differs from zero for x < 0.
Such situations are easily found to be a combination of cases A and B illustrated here.
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Sect. 10.3), so that it can be split into one-dimensional equations. Even when this
occurs, the analytical solution can be found only for some forms of the potential
energy. The rest of this chapter provides examples that are solvable analytically.

8.2.1 Schrödinger Equation for a Free Particle

The equation for a free particle is obtained by letting V D const in (7.44). Without
loss of generality one may let V D 0, thus yielding r2w D �.2m E=„2/w. As the
above can be solved by separating the variables, it is sufficient to consider here only
the one-dimensional form

d2w

dx2
D �

2m E

„2
w : (8.1)

The case E < 0 must be discarded as it gives rise to divergent solutions, which are
not acceptable from the physical standpoint. The case E D 0 yields w D a1xC a2,
where a1 must be set to zero to prevent w from diverging. As a consequence, the
value E D 0 yields w D a2 D const, that is one of the possibilities anticipated at
point C of Sect. 8.2. The integral of jwj2 diverges. Finally, the case E > 0 yields

w D c1 exp.i k x/C c2 exp.�i k x/ ; k D
p
2m E=„2 D p=„ > 0 ; (8.2)

where c1, c2 are constants to be determined. Thus, the value E > 0 yields the
asymptotically oscillating behavior that has also been anticipated at point C of
Sect. 8.2. The integral of jwj2 diverges. One notes that w is written in terms of
two complex functions; it could equally well be expressed in terms of the real
functions cos.k x/ and sin.k x/. The time-dependent, monochromatic wave function
 D w exp.�i! t/ corresponding to (8.2) reads

 D c1 expŒi .k x � ! t/�C c2 expŒ�i .k xC ! t/� ; ! D E=„ : (8.3)

The relations k D p=„, ! D E=„ stem from the analogy described in Sect. 7.4.5.
The total energy E and momentum’s modulus p are fully determined; this outcome
is the same as that found for the motion of a free particle in Classical Mechanics: for
a free particle the kinetic energy equals the total energy; if the latter is prescribed,
the momentum’s modulus is prescribed as well due to E D p2=.2m/. The direction
of the motion, instead, is not determined because both the forward and backward
motions, corresponding to the positive and negative square root of p2 respectively,
are possible solutions. To ascertain the motion’s direction it is necessary to acquire
more information; specifically, one should prescribe the initial conditions which, in
turn, would provide the momentum’s sign.

The quantum situation is similar, because the time-dependent wave function (8.2)
is a superposition of a planar wave c1 expŒi .k x � ! t/� whose front moves in the
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positive direction, and of a planar wave c2 expŒ�i .k xC! t/� whose front moves in
the negative direction. Here to ascertain the motion’s direction one must acquire the
information about the coefficients in (8.2): the forward motion corresponds to c1 ¤
0, c2 D 0, the backward motion to c1 D 0, c2 ¤ 0. Obviously (8.2) in itself does not
provide any information about the coefficients, because such an expression is the
general solution of (8.1) obtained as a combination of the two linearly independent,
particular solutions exp.i k x/ and exp.�i k x/; so, without further information about
c1 and c2, both the forward and backward motions are possible.

Another similarity between the classical and quantum cases is that no constraint
is imposed on the total energy, apart from the prescription E � 0. From this
viewpoint one concludes that (8.1) is an eigenvalue equation with a continuous
distribution of eigenvalues in the interval E � 0.

8.2.2 Schrödinger Equation for a Particle in a Box

Considering again the one-dimensional case of (7.44),

d2w

dx2
D �

2m

„2
.E � V/w ; V D V.x/ ; (8.4)

let V D const D 0 for x 2 Œ0; a� and V D V0 > 0 elsewhere. The form of the
potential energy is that of a square well whose counterpart of Classical Mechanics
is illustrated in Sect. 3.2. Here, however, the limit V0 ! 1 is considered for the
sake of simplicity. This limiting case is what is referred to with the term box. As
shown in Sect. 11.5, here w vanishes identically outside the interval Œ0; a�: this is
one of the possibilities that were anticipated in Sect. 8.2 (point A). The continuity
of w then yields w.0/ D w.a/ D 0. It is easily found that if E � 0 the only solution
of (8.4) is w D 0, which is not considered because it has no physical meaning. When
E > 0, the solution reads

w D c1 exp.i k x/C c2 exp.�i k x/ ; k D
p
2m E=„2 > 0 : (8.5)

Letting w.0/ D 0 yields c1C c2 D 0 and w D 2 i c1 sin.k x/. Then, w.a/ D 0 yields
k a D n� with n an integer whence, using the relation k D kn D n�=a within those
of E and w,

E D En D
„2 �2

2m a2
n2 ; w D wn D 2 i c1 sin


n�

a
x
�
: (8.6)

This result shows that (8.4) is an eigenvalue equation with a discrete distribution
of eigenvalues, given by the first relation in (8.6). For this reason, the energy is
said to be quantized. To each index n it corresponds one and only one eigenvalue
En, and one and only one eigenfunction wn; as a consequence, this case provides
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a one-to-one-correspondence between eigenvalues and eigenfunctions.2 Not every
integer should be used in (8.6) though; in fact, n D 0 must be discarded because the
corresponding eigenfunction identically vanishes. Also, the negative indices are to
be excluded because E�n D En and jw�nj

2 D jwnj
2, so they do not add information

with respect to the positive ones. In conclusion, the indices to be used are n D
1; 2; : : :

As expected, each eigenfunction contains a multiplicative constant; here the
integral of jwj2 converges, so the constant can be exploited to normalize the
eigenfunction by letting

R a
0
jwnj

2 dx D 1. One finds

Z a

0

jwnj
2 dx D 4 jc1j

2

Z a

0

sin2

n�

a
x
�

dx D
4 jc1j2a

n�

Z n�

0

sin2.y/ dy : (8.7)

Integrating by parts shows that the last integral equals n�=2, whence the normal-
ization condition yields 4 jc1j2 D 2=a. Choosing 2 c1 D �j

p
2=a provides the

eigenfunctions

wn D

r
2

a
sin

n�

a
x
�
: (8.8)

The first eigenfunctions are shown in Fig. 8.1. Remembering that w D 0 outside
the interval Œ0; a�, one notes that dw=dx is discontinuous at x D 0 and x D a. This
apparently contradicts the continuity property of the first derivative mentioned in

0 0.2 0.4 0.6 0.8 1
x / a

-1

-0.5
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1

(a
 / 

2)
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2
w n

n = 1
n = 2
n = 3
n = 4

Fig. 8.1 The first eigenfunctions of the Schrödinger equation in the case of a particle in a box

2The one-to-one correspondence does not occur in general. Examples of the Schrödinger equation
are easily given (Sect. 9.6) where to each eigenvalue there corresponds more than one—even
infinite—eigenfunctions.



176 8 Time-Independent Schrödinger Equation

Sect. 8.2, point 3. However, in the case considered here the limit V0 ! 1 has
introduced a discontinuity of the second kind into the potential energy; for this
reason, the property mentioned above does not apply.

8.2.3 Lower Energy Bound in the Schrödinger Equation

In the example of Sect. 8.2.1, where the free particle is considered, the lower bound
for the particle’s total energy is E � Vmin, with Vmin the minimum3 of the potential
energy; in contrast, in the example of the particle in a box illustrated in Sect. 8.2.2,
the lower bound is E > Vmin. A more general analysis of the lower bound for the
total energy in the Schrödinger equation is carried out here.

Consider the time-independent Schrödinger equation in a conservative
case, (7.44), and let � be the domain of w (which may extend to infinity), with †
the boundary of �. Recasting (7.44) as �r2w D 2m .E � V/w=„2 and integrating
it over � after multiplying both sides by w� yields

�

Z

�

w� r2w d� D
2m

„2

Z

�

.E � V/ jwj2 d� : (8.9)

It is implied that w is a physically meaningful solution of (7.44), whence w does
not vanish identically within �. Thanks to the identity (A.17) and the divergence
theorem (A.23) the above becomes

2m

„2

Z

�

.E � V/ jwj2 d� D
Z

�

j grad wj2 d� �
Z

†

w�
@w

@n
d† ; (8.10)

with @w=@n the derivative of w in the direction normal to †. Consider now the case
where w vanishes over †; as w� vanishes as well, the boundary integral in (8.10) is
equal to zero. In contrast, the other integral at the right-hand side of (8.10) is strictly
positive: in fact, as w vanishes at the boundary while it is different from zero inside
the domain, its gradient does not vanish identically in �. It follows

Z

�

.E � V/ jwj2 d� > 0 ; E >

R
�

V jwj2 d�
R
�
jwj2 d�

� Vmin ; (8.11)

where the last inequality stems from the fact that jwj2 is strictly positive. In
conclusion, when V is such that w vanishes at the boundary, then the strict inequality
E > Vmin holds. When V does not vanish at the boundary, the reasoning leading

3Such a minimum is set to zero in the example of Sect. 8.2.1.



8.3 Norm of a Function—Scalar Product 177

to (8.11) does not apply and the lower bound for E must be sought by a direct
examination of the solutions. An example of this examination is that of the free-
particle case shown in Sect. 8.2.1.

8.3 Norm of a Function—Scalar Product

The functions f , g; : : : that are considered in this section are square-integrable
complex functions,4 namely, they have the property that the integrals

jjf jj2 D
Z

�0

jf j2 d�0 ; jjgjj2 D
Z

�00

jgj2 d�00 ; : : : (8.12)

converge. In (8.12), �0 is the domain of f , �00 that of g, and so on. The variables
in the domains �0, �00; : : : are real. The nonnegative numbers jjf jj and jjgjj are the
norm of f and g, respectively. If f , g are square integrable over the same domain �,
a linear combination � f C� g, with �, � arbitrary complex constants, is also square
integrable over � [96, Chap. V.2].

If a square-integrable function f is defined apart from a multiplicative constant,
for instance because it solves a linear, homogeneous differential equation with
homogeneous boundary conditions, it is often convenient to choose the constant
such that the norm equals unity. This is accomplished by letting ' D c f and
jj'jj D 1, whence jcj2 D 1=jjf jj2.

Consider two square-integrable functions f and g defined over the same domain
�; their scalar product is defined as

hgjf i D
Z

�

g� f d� : (8.13)

From (8.13) it follows

hf jgi D
Z

�

f � g d� D

�Z

�

f g� d�

��
D hgjf i� : (8.14)

It is implied that f , g are regular enough to make the integral in (8.13) to exist; in
fact, this is proved by observing that for square-integrable functions the Schwarz
inequality holds, analogous to that found in the case of vectors (Sect. A.2): if f and
g are square integrable, then

jhgjf ij � jjf jj � jjgjj ; (8.15)

4Some definitions and properties illustrated in this section have an analogue in the theory of
matrices outlined in Sect. A.11.
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where the equality holds if and only if f is proportional to g (compare with (A.5)).
In turn, to prove (8.15) one observes that � D f C � g, where � is an arbitrary
constant, is also square integrable. Then [62],

jj� jj2 D jjf jj2 C j�j2 jjgjj2 C � hf jgi C �� hgjf i � 0 : (8.16)

The relation (8.15) is obvious if f D 0 or g D 0. Let g ¤ 0 and choose � D
�hgjf i=jjgjj2. Replacing in (8.16) yields (8.15). For the equality to hold it must be
� D 0, which implies that f and g are proportional to each other; conversely, from
f D c g the equality follows.

The symbol hgjf i for the scalar product is called Dirac’s notation.5 If hgjf i D 0,
the functions f , g are called orthogonal. For any complex constants b, b1, b2 the
following hold:

hgjb f i D b hgjf i ; hgjb1 f1 C b2 f2i D b1 hgjf1i C b2 hgjf2i ; (8.17)

hb gjf i D b� hgjf i ; hb1 g1 C b2 g2jf i D b�1 hg1jf i C b�2 hg2jf i ; (8.18)

namely, the scalar product is distributive and bilinear. The properties defined here
are the counterpart of those defined in Sect. A.1 for vectors.

8.3.1 Adjoint Operators and Hermitean Operators

A function appearing within a scalar product may result from the application of
a linear operator, say, A , onto another function.6 For instance, if s D A f , then
from (8.13, 8.14) it follows

hgjsi D
Z

�

g�A f d� ; hsjgi D
Z

�

.A f /� g d� D hgjsi� : (8.19)

Given an operator A it is possible to find another operator, typically indicated with
A �, having the property that, for any pair f ; g of square-integrable functions,

Z

�

�
A �g

	�
f d� D

Z

�

g�A f d� (8.20)

5The two terms hgj and jf i of the scalar product hgjf i are called bra vector and ket vector,
respectively.
6In this context the term operator has the following meaning: if an operation brings each function f
of a given function space into correspondence with one and only one function s of the same space,
one says that this is obtained through the action of a given operator A onto f and writes s D A f .
A linear operator is such that A .c1 f1 C c2 f2/ D c1 A f1 C c2 A f2 for any pair of functions f1, f2
and of complex constants c1, c2 [96, Chap. II.11].
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or, in Dirac’s notation, hA �gjf i D hgjA f i. Operator A � is called the adjoint 7 of
A . In general it is A � ¤ A ; however, for some operators it happens that A � D A .
In this case, A is called Hermitean. Thus, for Hermitean operators the following
holds:

hgjA f i D hA gjf i D hgjA jf i : (8.21)

The notation on the right of (8.21) indicates that one can consider the operator as
applied onto f or g. Examples of Hermitean operators are given in Sect. 8.6.1. It
is found by inspection that for any operator C , the operators S D C C C � and
D D �i .C � C �/ are Hermitean.

The following property is of use: a linear combination of Hermitean operator
with real coefficients is Hermitean; considering, e.g., two Hermitean operators A ,
B and two real numbers �, �, one finds

Z

�

g� .�A C �B/ f d� D
Z

�

Œ.�A C �B/ g�� f d� : (8.22)

8.4 Eigenvalues and Eigenfunctions of an Operator

A linear operator A may be used to generate a homogeneous equation (eigenvalue
equation) in the unknown v, having the form8

A v D A v ; (8.23)

with A a parameter. Clearly (8.23) admits the solution v D 0 which, however,
is of no interest; it is more important to find whether specific values of A exist
(eigenvalues), such that (8.23) admits nonvanishing solutions (eigenfunctions). In
general (8.23) must be supplemented with suitable boundary or regularity conditions
on v.

The set of the eigenvalues of an operator found from (8.23) is the operator’s
spectrum. It may happen that the eigenvalues are distinguished by an index, or a set
of indices, that take only discrete values; in this case the spectrum is called discrete.
If, instead, the eigenvalues are distinguished by an index, or a set of indices, that
vary continuously, the spectrum is continuous. Finally, it is mixed if a combination
of discrete and continuous indices occurs.

An eigenvalue is simple if there is one and only one eigenfunction corresponding
to it, while it is degenerate of order s if there are s linearly independent eigenfunc-

7The adjoint operator is the counterpart of the conjugate-transpose matrix in vector algebra.
8Some definitions and properties illustrated in this section have an analogue in the theory of
matrices outlined in Sect. A.11.
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tions corresponding to it. The order of degeneracy may also be infinite. By way of
example, the Schrödinger equation for a free particle in one dimension discussed
in Sect. 8.2.1 has a continuous spectrum of eigenvalues E D „2 k2=.2m/ of index
k, namely, E D Ek. Each eigenvalue is degenerate of order 2 because to each E
there correspond two linearly independent eigenfunctions exp.i k x/, exp.�i k x/,
with k D

p
2m E=„. Instead, the Schrödinger equation for a particle in a box

discussed in Sect. 8.2.2 has a discrete spectrum of eigenvalues En given by the first
relation in (8.6). Each eigenvalue is simple as already indicated in Sect. 8.2.2.

Let v.1/; : : : ; v.s/ be the linearly independent eigenfunctions belonging to an
eigenvalue A degenerate of order s; then a linear combination of such eigenfunctions
is also an eigenfunction belonging to A. In fact, letting ˛1; : : : ; ˛s be the coefficients
of the linear combination, from A v.k/ D A v.k/ it follows

A
sX

kD1

˛k v
.k/ D

sX

kD1

˛kA v.k/ D

sX

kD1

˛k A v.k/ D A
sX

kD1

˛k v
.k/ : (8.24)

8.4.1 Eigenvalues of Hermitean Operators

A fundamental property of the Hermitean operators is that their eigenvalues are
real. Consider, first, the case where the eigenfunctions are square integrable, so
that hvjvi is different from zero and finite. To proceed one considers the discrete
spectrum, where the eigenvalues are An. Here n indicates a single index or also a set
of indices. If the eigenvalue is simple, let vn be the eigenfunction belonging to An;
if it is degenerate, the same symbol vn is used here to indicate any eigenfunction
belonging to An. Then, two operations are performed: in the first one, the eigenvalue
equation A vn D An vn is scalarly multiplied by vn on the left, while in the second
one the conjugate equation .A vn/

� D A�n v
�
n is scalarly multiplied by vn on the

right. The operations yield, respectively,

hvnjA vni D An hvnjvni ; hA vnjvni D A�n hvnjvni : (8.25)

The left-hand sides in (8.25) are equal to each other due to the hermiticity of A ; as
a consequence, A�n D An, that is, An is real.

Another fundamental property of the Hermitean operators is that two eigen-
functions belonging to different eigenvalues are orthogonal to each other. Still
considering the discrete spectrum, let Am, An be two different eigenvalues and let
vm (vn) be an eigenfunction belonging to Am (An). The two eigenvalues are real
as demonstrated earlier. Then, the eigenvalue equation A vn D An vn is scalarly
multiplied by vm on the left, while the conjugate equation for the other eigenvalue,
.A vm/

� D Am v
�
m, is scalarly multiplied by vn on the right. The operations yield,

respectively,
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hvmjA vni D An hvmjvni ; hA vmjvni D Am hvmjvni : (8.26)

The left-hand sides in (8.26) are equal to each other due to the hermiticity of A ; as
a consequence, .Am � An/ hvmjvni D 0. But An ¤ Am, so it is hvmjvni D 0.

8.4.2 Gram-Schmidt Orthogonalization

When two eigenfunctions belonging to a degenerate eigenvalue are considered, the
reasoning that proves their orthogonality through (8.26) is not applicable because
An D Am. In fact, linearly independent eigenfunctions of an operator A belonging
to the same eigenvalue are not mutually orthogonal in general. However, it is
possible to form mutually orthogonal linear combinations of the eigenfunctions. As
shown by (8.24), such linear combinations are also eigenfunctions, so their norm is
different from zero. The procedure (Gram-Schmidt orthogonalization) is described
here with reference to the case of the nth eigenfunction of a discrete spectrum, with
a degeneracy of order s. Let the non-orthogonal eigenfunctions be v.1/n ; : : : ; v

.s/
n ,

and let u.1/n ; : : : ; u
.s/
n be the linear combinations to be found. Then one prescribes

u.1/n D v
.1/
n , u.2/n D v

.2/
n C a21 u.1/n where a21 is such that hu.1/n ju

.2/
n i D 0; thus

hu.1/n jv
.2/
n i C a21 hu

.1/
n ju

.1/
n i D 0 ; a21 D �

hu.1/n jv
.2/
n i

hu.1/n ju
.1/
n i

: (8.27)

The next function is found by letting u.3/n D v
.3/
n C a31 u.1/n C a32 u.2/n , with

hu.1/n ju
.3/
n i D 0, hu.2/n ju

.3/
n i D 0, whence

hu.1/n jv
.3/
n i C a31 hu

.1/
n ju

.1/
n i D 0 ; a31 D �

hu.1/n jv
.3/
n i

hu.1/n ju
.1/
n i

; (8.28)

hu.2/n jv
.3/
n i C a32 hu

.2/
n ju

.2/
n i D 0 ; a32 D �

hu.2/n jv
.3/
n i

hu.2/n ju
.2/
n i

: (8.29)

Similarly, the kth linear combination is built up recursively from the combinations
of indices 1; : : : ; k � 1:

u.k/n D v
.k/
n C

k�1X

iD1

aki u.i/n ; aki D �
hu.i/n jv

.k/
n i

hu.i/n ju
.i/
n i

: (8.30)

The denominators in (8.30) are different from zero because they are the squared
norms of the previously defined combinations.
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8.4.3 Completeness

As discussed in Sect. 8.2.1, the eigenfunctions of the Schrödinger equation for a
free particle, for a given k D

p
2m E=„ and apart from a multiplicative constant,

are wCk D exp.i k x/ and w�k D exp.�i k x/. They may be written equivalently
as w.x; k/ D exp.i k x/, with k D ˙

p
2m E=„. Taking the multiplicative constant

equal to 1=
p
2� , and considering a function f that fulfills the condition (C.19) for

the Fourier representation, one applies (C.16) and (C.17) to find

f .x/ D
Z C1

�1

exp.i k x/
p
2�

c.k/ dk ; c.k/ D
Z C1

�1

exp.�i k x/
p
2�

f .x/ dx : (8.31)

Using the definition (8.13) of scalar product one recasts (8.31) as

f .x/ D
Z C1

�1

c.k/w.x; k/ dk ; c.k/ D hwjf i : (8.32)

In general the shorter notation wk.x/, ck is used instead of w.x; k/, c.k/. A set of
functions like wk.x/ that allows for the representation of f given by the first relation
in (8.32) is said to be complete. Each member of the set is identified by the value
of the continuous parameter k ranging from �1 toC1. To each k it corresponds a
coefficient of the expansion, whose value is given by the second relation in (8.32).

Expressions (8.31) and (8.32) hold true because they provide the Fourier
transform or antitransform of a function that fulfills (C.19). On the other hand, wk.x/
is also the set of eigenfunctions of the free particle. In conclusion, the eigenfunctions
of the Schrödinger equation for a free particle form a complete set.

The same conclusion is readily found for the eigenfunctions of the Schrödinger
equation for a particle in a box. To show this, one considers a function f .x/ defined
in an interval Œ�˛=2;C˛=2� and fulfilling

R C˛=2
�˛=2 jf .x/j dx < 1. In this case the

expansion into a Fourier series holds:

f .x/ D
1

2
a0 C

1X

nD1

Œan cos.2 � n x=˛/C bn sin.2 � n x=˛/� ; (8.33)

with a0=2 D Nf D .1=˛/
R C˛=2
�˛=2 f .x/ dx the average of f over the interval, and

�
an

bn


D
2

˛

Z C˛=2

�˛=2

ncos

sin

o�2� n x

˛

�
f .x/ dx ; n D 1; 2; : : : (8.34)

Equality (8.33) indicates convergence in the mean, namely, using g D f � Nf for the
sake of simplicity, (8.33) is equivalent to
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lim
N!1

Z C˛=2

�˛=2

(

g �
NX

nD1

Œan cos.2 � n x=˛/C bn sin.2 � n x=˛/�

) 2

dx D 0 :

(8.35)
Defining the auxiliary functions

	n D
p
2=˛ cos.2 � n x=˛/ ; �n D

p
2=˛ sin.2 � n x=˛/ (8.36)

a more compact notation is obtained, namely, f D Nf C
P1

nD1 .h	njf i	n C h�njf i �n/

or, observing that h�njconsti D h	njconsti D 0,

g D
1X

nD1

.h	njgi	n C h�njgi �n/ : (8.37)

The norm of the auxiliary functions (8.36) is unity, h	nj	ni D h�nj�ni D 1 for n D
1; 2; : : :, and all auxiliary functions are mutually orthogonal: h	mj	ni D h�mj�ni D

0 for n;m D 0; 1; 2; : : :, m ¤ n, and h�mj	ni D 0 for n;m D 0; 1; 2; : : : A set
whose functions have a norm equal to unity and are mutually orthogonal is called
orthonormal. Next, (8.37) shows that the set 	n, �n, n D 0; 1; 2; : : : is complete in
Œ�˛=2;C˛=2� with respect to any g for which the expansion is allowed. Letting
c2n�1 D h	njgi, c2n D h�njgi, w2n�1 D 	n, w2n D �n, (8.37) takes the even more
compact form

g D
1X

mD1

cm wm ; cm D hwmjgi : (8.38)

From the properties of the Fourier series it follows that the set of the �n functions
alone is complete with respect to any function that is odd in Œ�˛=2;C˛=2�, hence
it is complete with respect to any function over the half interval Œ0;C˛=2�. On the
other hand, letting a D ˛=2 and comparing with (8.8) show that �n (apart from
the normalization coefficient) is the eigenfunction of the Schrödinger equation for a
particle in a box. In conclusion, the set of eigenfunctions of this equation is complete
within Œ0; a�.

One notes the striking resemblance of the first relation in (8.38) with the vector-
algebra expression of a vector in terms of its components cm. The similarity is
completed by the second relation in (8.38), that provides each component as the
projection of g over wm. The latter plays the same role as the unit vector in algebra,
the difference being that the unit vectors here are functions and that their number is
infinite. A further generalization of the same concept is given by (8.32), where the
summation index k is continuous.

Expansions like (8.32) or (8.38) hold because wk.x/ and wm.x/ are complete sets,
whose completeness is demonstrated in the theory of Fourier’s integral or series;
such a theory is readily extended to the three-dimensional case, showing that also the
three-dimensional counterparts of wk.x/ or wm.x/ form complete sets (in this case
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the indices k or m are actually groups of indices, see, e.g., (9.5)). One may wonder
whether other complete sets of functions exist, different from those considered in
this section; the answer is positive: in fact, completeness is possessed by many other
sets of functions,9 and those of interest in Quantum Mechanics are made of the
eigenfunctions of equations like (8.23). A number of examples will be discussed
later.

8.4.4 Parseval Theorem

Consider the expansion of a complex function f with respect to a complete and
orthonormal set functions wn,

f D
X

n

cn wn ; cn D hwnjf i ; hwnjwmi D ınm ; (8.39)

where the last relation on the right expresses the set’s orthonormality. As before, m
indicates a single index or a group of indices. The squared norm of f reads

jjf jj2 D
Z

�

jf j2 d� D

*
X

n

cn wnj
X

m

cm wm

+

: (8.40)

Applying (8.17, 8.18) yields

jjf jj2 D
X

n

c�n
X

m

cmhwnjwmi D
X

n

c�n
X

m

cm ınm D
X

n

jcnj
2 ; (8.41)

namely, the norm of the function equals the norm of the vector whose components
are the expansion’s coefficients (Parseval theorem). The result applies irrespective
of the set that has been chosen for expanding f . The procedure leading to (8.41)
must be repeated for the continuous spectrum, where the expansion reads

f D
Z

˛

c˛ w˛ d˛ ; c˛ D hw˛jf i : (8.42)

Here a difficulty seems to arise, related to expressing the counterpart of the third
relation in (8.39). Considering for the sake of simplicity the case where a single
index is present, the scalar product hw˛jwˇi must differ from zero only for ˇ D ˛,
while it must vanish for ˇ ¤ ˛ no matter how small the difference ˛ � ˇ is. In
other terms, for a given value of ˛ such a scalar product vanishes for any ˇ apart
from a null set. At the same time, it must provide a finite value when used as a

9The completeness of a set of eigenfunctions must be proven on a case-by-case basis.



8.5 Hamiltonian Operator and Momentum Operator 185

factor within an integral. An example taken from the case of a free particle shows
that the requirements listed above are mutually compatible. In fact, remembering
the analysis of Sect. 8.4.3, the scalar product corresponding to the indices ˛ and ˇ
reads

hw˛jwˇi D
1

2�

Z C1

�1

expŒi .ˇ � ˛/ x� dx D ı.˛ � ˇ/ ; (8.43)

where the last equality is taken from (C.43). As mentioned in Sect. C.4, such an
equality can be used only within an integral. In conclusion,10

Z

�

jf j2 d� D hf jf i D
Z C1

�1

c�˛ d˛
Z C1

�1

cˇ ı.˛ � ˇ/ dˇ D
Z C1

�1

jc˛j
2 d˛ :

(8.44)

One notes that (8.44) generalizes a theorem of Fourier’s analysis that states that the
norm of a function equals that of its transform.

8.5 Hamiltonian Operator and Momentum Operator

As mentioned in Sect. 7.5, the form (7.44) of the time-independent Schrödinger
equation holds only when the force is conservative. It is readily recast in the more
compact form (8.23) by defining the Hamiltonian operator

H D �
„2

2m
r2 C V ; (8.45)

that is, a linear, real operator that gives (7.44) the form

H w D E w : (8.46)

The term used to denote H stems from the formal similarity of (8.46) with the
classical expression H.p;q/ D E of a particle’s total energy in a conservative field,
where H D T C V is the Hamiltonian function (Sect. 1.5). By this similarity, the
classical kinetic energy T D p2=.2m/ corresponds to the kinetic operator T D

�„2=.2m/r2; such a correspondence reads

T D
1

2m

�
p21 C p22 C p23

	
” T D �

„2

2m

�
@2

@x21
C
@2

@x22
C
@2

@x23

�
:

(8.47)

10The relation (8.44) is given here with reference to the specific example of the free particle’s
eigenfunctions. For other cases of continuous spectrum the relation hw˛jwˇi D ı.˛�ˇ/ is proven
on a case-by-case basis.
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The units of T are those of an energy, hence „2 r2 has the units of a momentum
squared. One notes that to transform T into T one must replace each component of
momentum by a first-order operator as follows:

pi ( Opi D �i „
@

@xi
; (8.48)

where Opi is called momentum operator. The correspondence (8.47) would still hold
if the minus sign in (8.48) were omitted. However, the minus sign is essential for a
correct description of the particle’s motion.11

From the results of Sect. 8.6.1 one finds that the momentum operator and
its three-dimensional form Op D �i „ grad are Hermitean for square-integrable
functions. Their units are those of a momentum. The Hamiltonian operator (8.45)
is a real-coefficient, linear combination of r2 and V; combining (8.22) with the
findings of Sect. 8.6 shows that (8.45) is Hermitean for square-integrable functions.

The one-dimensional form of the momentum operator yields the eigenvalue
equation

� i „
dv

dx
D Qp v ; (8.49)

where Qp has the units of a momentum. The solution of (8.49) is v D const �
exp.i Qp=„/, where Qp must be real to prevent the solution from diverging. Letting
const D 1=

p
2� , k D Qp=„ yields v D vk.x/ D exp.i k x/=

p
2� , showing

that the eigenfunctions of the momentum operator form a complete set (compare
with (8.31)) and are mutually orthogonal (compare with (8.43)). As jvk.x/j2 D
1=.2 �/, the eigenfunctions are not square integrable; the spectrum is continuous
because the eigenvalue „ k can be any real number.

8.6 Complements

8.6.1 Examples of Hermitean Operators

A real function V , depending on the spatial coordinates over the domain �, and
possibly on other variables ˛; ˇ; : : :, may be thought of as a purely multiplicative
operator. Such an operator is Hermitean12; in fact,

11Consider for instance the calculation of the expectation value of the momentum of a free particle
based on (10.18). If the minus sign were omitted in (8.48), the direction of momentum would be
opposite to that of the propagation of the wave front associated with it.
12Some definitions and properties illustrated in this section have an analogue in the theory of
matrices outlined in Sect. A.11.
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Z

�

g� V f d� D
Z

�

V g� f d� D
Z

�

.Vg/� f d� : (8.50)

In contrast, an imaginary function W D i V , with V real, is not Hermitean because

hgjW f i D �hW gjf i : (8.51)

Any operator that fulfills a relation similar to (8.51) is called anti-Hermitean or
skew-Hermitean.

As a second example consider a one-dimensional case defined over a domain �
belonging to the x axis. It is easily shown that the operator .i d=dx/ is Hermitean: in
fact, integrating by parts and observing that the integrated part vanishes because f
and g are square integrable yield

Z

�

g� i
df

dx
d� D

�
g� i f

�
�
�

Z

�

i
dg�

dx
f d� D

Z

�

�
i

dg

dx

��
f d� : (8.52)

By the same token one shows that the operator d=dx is skew-Hermitean. The
three-dimensional generalization of .i d=dx/ is .i grad/. Applying the latter onto
the product g� f yields g� i grad f � .i grad g/� f . Integrating over � with † the
boundary of � and n the unit vector normal to it yields

Z

�

g� i grad f d� �
Z

�

.i grad g/� f d� D i
Z

†

g� f n d† : (8.53)

The form of the right-hand side of (8.53) is due to (A.25). As f , g vanish over the
boundary, it follows hgji grad f i D hi grad gjf i, namely, .i grad/ is Hermitean.

Another important example, still in the one-dimensional case, is that of the
operator d2=dx2. Integrating by parts twice shows that the operator is Hermitean. Its
three-dimensional generalization in Cartesian coordinates is r2. Using the second
Green theorem (A.25) and remembering that f , g vanish over the boundary provides
hgjr2f i D hr2gjf i, that is, r2 is Hermitean.

8.6.2 A Collection of Operators’ Definitions and Properties

A number of definitions and properties of operator algebra are illustrated in this
section. The identity operator I is such that I f D f for all f ; the null operator
O is such that Of D 0 for all f . The product of two operators, A B, is an operator
whose action on a function is defined as follows: s D A Bf is equivalent to g D Bf ,
s D A g; in other terms, the operators A and B act in a specific order. In general,
BA ¤ A B. The operators A A , A A A ; : : : are indicated with A 2, A 3; : : :

An operator A may or may not have an inverse, A �1. If the inverse exists, it is
unique and has the property A �1A f D f for all f . Left multiplying the above by
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A and letting g D A f yield A A �1g D g for all g. The two relations just found
can be recast as

A �1A D A A �1 D I : (8.54)

From (8.54) it follows .A �1/�1 D A . If A and B have an inverse, letting C D
B�1A �1 one finds, for all f and using the associative property, the two relations
BC f D BB�1A �1f D A �1f and A BC f D A A �1f D f , namely, A BC D
I ; in conclusion,

.A B/�1 D B�1A �1 : (8.55)

From (8.55) one defines the inverse powers of A as

A �2 D .A 2/�1 D .A A /�1 D A �1A �1 ; (8.56)

and so on. Let A v D �v be the eigenvalue equation of A . Successive left multip-
lications by A yield

A 2v D �2 v ; A 3v D �3 v ; : : : (8.57)

As a consequence, an operator of the polynomial form

Pn.A / D c0 A n C c1 A n�1 C c2 A n�2 C : : :C cn (8.58)

fulfills the eigenvalue equation

Pn.A / v D Pn.�/ v ; Pn.�/ D c0 �
n C : : :C cn : (8.59)

By definition, an eigenfunction cannot vanish identically. If A has an inverse, left-
multiplying the eigenvalue equation A v D �v by A �1 yields v D �A �1v ¤ 0,
whence � ¤ 0. Dividing the latter by � and iterating the procedure show that

A �2v D ��2v ; A �3v D ��3v ; : : : (8.60)

An operator may be defined by a series expansion, if the latter converges:

C D �.A / D

C1X

kD�1

ck A k : (8.61)

By way of example,

C D exp.A / D I CA C
1

2Š
A 2 C

1

3Š
A 3 C : : : (8.62)
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Given an operator A , its adjoint A � is defined as in Sect. 8.3.1. Letting C D A �,
applying the definition of adjoint operator to C , and taking the conjugate of both
sides show that .A �/� D A . From the definition of adjoint operator it also follows

.A B/� D B�A � : (8.63)

An operator is unitary if its inverse is identical to its adjoint for all f :

A �1f D A �f : (8.64)

Left multiplying (8.64) by A , and left multiplying the result by A �, yields for a
unitary operator

A A � D A �A D I : (8.65)

The application of a unitary operator to a function f leaves the norm of the latter
unchanged. In fact, using definition (8.12), namely, jjf jj2 D hf j f i, and letting g D
A f with A unitary, yields

jjgjj2 D
Z

�

.A f /�A f d� D
Z

�

.A �A f /� f d� D
Z

�

f � f d� D jjf jj2 ; (8.66)

where the second equality holds due to the definition of adjoint operator, and the
third one holds because A is unitary. The inverse also holds true: if the application
of A leaves the function’s norm unchanged, that is, if jjA f jj D jjf jj for all f , then

Z

�

.A �A f � f /� f d� D 0 : (8.67)

As a consequence, the quantity in parenthesis must vanish, whence the operator is
unitary. The product of two unitary operators is unitary:

.A B/�1 D B�1A �1 D B�A � D .A B/� ; (8.68)

where the second equality holds because A and B are unitary. The eigenvalues of
a unitary operator have the form exp.i �/, with � a real number. Let an eigenvalue
equation be A v D �v, with A unitary. The following hold,

Z

�

jA vj2 d� D j�j2
Z

�

jvj2 d� ;
Z

�

jA vj2 d� D
Z

�

jvj2 d� ; (8.69)

the first one because of the eigenvalue equation, the second one because A is
unitary. As an eigenfunction cannot vanish identically, it follows j�j2 D 1 whence
� D exp.i �/. It is also seen by inspection that if the eigenvalues of an operator have
the form exp.i �/, with � a real number, then the operator is unitary.
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It has been anticipated above that in general it is BA ¤ A B. Two operators
A , B are said to commute if

BA f D A Bf (8.70)

for all f . The commutator of A , B is the operator C such that

i C f D .A B �BA / f (8.71)

for all f . The definition (8.71) is such that if both A and B are Hermitean, then C is
Hermitean as well. The commutator of two commuting operators is the null operator.
A very important example of non-commuting operators is the pair q,�i d=dq, where
q is any dynamic variable. One finds

i C f D �i q
df

dq
C i

d.q f /

dq
D i f ; (8.72)

namely, the commutator is in this case the identity operator I .

8.6.3 Examples of Commuting Operators

Operators that contain only spatial coordinates commute; similarly, operators that
contain only momentum operators commute. The operators A , B, C defined
in (10.4) commute because they act on different coordinates; note that the definition
of A is such that it may contain both x and Opx D �i „ @=@x, and so on.

As an example of operators containing only momentum operators one may
consider the Hamiltonian operator �.„2=2m/r2 of a free particle discussed in
Sect. 8.2.1 and the momentum operator�i „r itself (Sect. 8.5). As for a free particle
they commute, a measurement of momentum is compatible in that case with a
measurement of energy. Considering a one-dimensional problem, the energy is
E D p2=.2m/, where the modulus of momentum is given by p D „ k; for a
free particle, both energy and momentum are conserved. The eigenfunctions are
const � exp.˙i p x=„/ for both operators.

Remembering (8.72) one concludes that two operators do not commute if one of
them contains one coordinate q, and the other one contains the operator �i „ @=@q
associated with the momentum conjugate to q.

8.6.4 Momentum and Energy of a Free Particle

The eigenfunctions of the momentum operator are the same as those of the
Schrödinger equation for a free particle. More specifically, given the sign of Qp,
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the solution of (8.49) coincides with either one or the other of the two linearly
independent solutions of (8.1). This outcome is coherent with the conclusions
reached in Sect. 8.2.1 about the free particle’s motion. For a free particle whose
momentum is prescribed, the energy is purely kinetic and is prescribed as well,
whence the solution of (8.49) must be compatible with that of (8.1). However,
prescribing the momentum, both in modulus and direction, for a free particle,
provides the additional information that allows one to eliminate one of the two
summands from the linear combination (8.2) by setting either c1 or c2 to zero. For
a given eigenvalue Qp, (8.49) has only one solution (apart from the multiplicative
constant) because it is a first-order equation; in contrast, for a given eigenvalue E, the
second-order equation (8.1) has two independent solution and its general solution is
a linear combination of them.

In a broader sense the momentum operator Opx D �i „ d=dx is Hermitean also for
functions of the form vk.x/ D exp.i k x/=

p
2� , which are not square integrable. In

fact, remembering (C.43) one finds

hvk0 jOpxvki D �
i „

2�

Z C1

�1

exp.�i k0 x/
d

dx
exp.i k x/ dx D „ k ı.k0 � k/ : (8.73)

Similarly it is hOpxvk0 jvki D „ k0 ı.k0 � k/. As mentioned in Sect. C.4, the two
equalities just found can be used only within an integral over k or k0. In that case,
however, they yield the same result „ k. By the same token one shows that

hvk0 jOp2xvki D „
2 k2 ı.k0 � k/ ; hOp2xvk0 jvki D „

2 .k0/2 ı.k0 � k/ ; (8.74)

hence the Laplacian operator is Hermitean in a broader sense for non-square-
integrable functions of the form vk.x/ D exp.i k x/=

p
2� .

Problems

8.1 The one-dimensional, time-independent Schrödinger equation is a homoge-
neous equation of the form

w00 C q w D 0 ; q D q.x/ ; (8.75)

where primes indicate derivatives. In turn, the most general, linear equation of the
second order with a nonvanishing coefficient of the highest derivative is

f 00 C a f 0 C b f D c ; a D a.x/ ; b D b.x/ ; c D c.x/ : (8.76)

Assume that a is differentiable. Show that if the solution of (8.75) is known, then
the solution of (8.76) is obtained from the former by simple integrations.
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8.2 Consider the one-dimensional, time-independent Schrödinger equation w00 C
q w D 0, where q.x/ D �� g.x/. Being the above a linear, second-order equation, it
is expected to have, at most, two linearly independent solutions for each eigenvalue
� D 2m E=„2. Letting w1, w2 be the two solutions corresponding to the same �,
show that the Wronskian of the two solutions is equal to a constant (the definition
of Wronskian is in Sect. A.12).

8.3 Given the one-dimensional, time-independent Schrödinger equation w00Cq w D
0, where q.x/ D � � g.x/, let w1, w2 be two linearly independent solutions
corresponding to the eigenvalue � D 2m E=„2. Show that if the solution w1 is
known, one can obtain the other solution w2 by simple integrations. Hint: consider
an interval I where w1 ¤ 0 and let w2 D v w1, with v to be determined.

8.4 Consider the one-dimensional, time-independent Schrödinger equation w00 C
q w D 0, where q.x/ D � � g.x/ with � D 2m E=„2 and g D 2m V=„2. Show that
if the eigenvalue E is simple and the potential energy V is even, the eigenfunction
corresponding to E is either even or odd.



Chapter 9
Time-Dependent Schrödinger Equation

9.1 Introduction

The time-dependent Schrödinger equation is derived from the superposition princi-
ple, in the conservative case first, then in the general case. The derivation of the
continuity equation follows, leading to the concept of wave packet and density
of probability flux. Then, the wave packet for a free particle is investigated in
detail, and the concept of group velocity is introduced. The first complement deals
with an application of the semiclassical approximation; through it one explains
why an electron belonging to a stationary state emits no power, namely, why the
radiative decay predicted by the classical model does not occur. The polar form
of the time-dependent Schrödinger equation is then shown, that brings about an
interesting similarity with the Hamilton-Jacobi equation of Classical Mechanics.
The last complement deals with the Hamiltonian operator of a particle subjected to
an electromagnetic field and shows the effect of a gauge transformation on the wave
function.

9.2 Superposition Principle

Following de Broglie’s line of reasoning one associates the monochromatic wave
function w.r/ exp.�i! t/ with the motion of a particle with definite and constant
energy E D „!. The analogy with the electromagnetic case then suggests that a
more general type of wave function—still related to the conservative case—can be
expressed as a superposition, that is, a linear combination with constant coefficients,
of monochromatic wave functions. This possibility is one of the postulates of de
Broglie’s theory, and is referred to as Superposition Principle. To vest it with a
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mathematical form one must distinguish among the different types of spectrum;
for the discrete spectrum, indicating with cn the complex coefficients of the linear
combination, the general wave function reads

 .r; t/ D
X

n

cn wn exp.�i!n t/ ; (9.1)

with En, wn the eigenvalues and eigenfunctions of the time-independent Schrödinger
equation H wn D En wn, and !n D En=„. As usual, n stands for a single index or
a set of indices. The form of (9.1) is such that the spatial coordinates are separated
from the time coordinate; fixing the latter by letting, say, t D 0, and remembering
that the set of eigenfunctions wn is complete, yield

 tD0 D  .r; 0/ D
X

n

cn wn ; cn D hwnj tD0i : (9.2)

The above shows that the coefficients cn are uniquely determined by the initial
condition  tD0. On the other hand, once the coefficients cn are known, the whole
time evolution of  is determined, because the angular frequencies appearing in the
time-dependent terms exp.�i!n t/ are also known. In other terms,  is determined
by the initial condition and by the time-independent Hamiltonian operator whence
En, wn derive.

An important aspect of (9.1) is that it allows one to construct a wave function of
a given form; for such a construction, in fact, it suffices to determine the coefficients
by means of the second relation in (9.2). In particular it is possible to obtain a wave
function that is square integrable at all times, even if the eigenfunctions wn are
not square integrable themselves. Thanks to this property the wave function (9.1)
is localized in space at each instant of time, hence it is suitable for describing the
motion of the particle associated with it. Due to the analogy with the electromagnetic
case, where the interference of monochromatic waves provides the localization
of the field’s intensity, a wave function of the form (9.1) is called wave packet.
Remembering that the wave function provides the probability density j j2 used
to identify the position of the particle, one can assume that the wave packet’s
normalization holds:

Z

�

j j2 d3r D
X

n

jcnj
2 D 1 ; (9.3)

where the second equality derives from Parseval’s theorem (8.41). From (9.3) it
follows that the coefficients are subjected to the constraint 0 � jcnj

2 � 1.
As all possible energies En appear in the expression (9.1) of  , the wave packet

does not describe a motion with a definite energy. Now, assume that an energy
measurement is carried out on the particle, and let t D tE be the instant at which
the measurement is completed. During the measurement the Hamiltonian operator
of (8.46) does not hold because the particle is interacting with the measuring
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apparatus, hence the forces acting on it are different from those whence the
potential energy V of (8.45) derives. Instead, for t > tE the original Schrödinger
equation (8.46) is restored, so the expression of  is again given by a linear
combination of monochromatic waves; however, the coefficients of the combination
are expected to be different from those that existed prior to the measurement, due to
the perturbation produced by the latter. In particular, the form of for t > tE must be
compatible with the fact that the energy measurement has found a specific value of
the energy; this is possible only if the coefficients are set to zero, with the exception
of the one corresponding to the energy that is the outcome of the measurement. The
latter must be one of the eigenvalues of (8.46) due to the compatibility requirement;
if it is, say, Em, then the form of the wave function for t > tE is

 .r; t/ D wm expŒ�i Em .t � tE/=„� ; (9.4)

where the only nonvanishing coefficient, cm, has provisionally been set to unity.
The reasoning leading to (9.4) can be interpreted as follows: the interaction with

the measuring apparatus filters out from (9.1) the term corresponding to Em; as a
consequence, the coefficients cn whose values were previously set by the original  
are modified by the measurement and become cn D ınm when n ¤ m. If the filtered
eigenfunction wm is square integrable, then (9.3) holds, whence

P
n jcnj

2 D jcmj
2 D

1, cm D exp.i˚/. As the constant phase ˚ does not carry any information, it can
be set to zero to yield cm D 1. If wm is not square integrable, the arbitrariness of the
multiplicative constant still allows one to set cm D 1.

As the energy measurement forces the particle to belong to a definite energy
state (in the example above, Em), for t > tE the particle’s wave function keeps
the monochromatic form (9.4). If, at a later time, a second energy measurement is
carried out, the only possible outcome is Em; as a consequence, after the second
measurement is completed, the form of the wave function is still (9.4), whence
jcmj

2 D 1. One notes that the condition jcmj
2 D 1 is associated with the certainty

that the outcome of the energy measurement is Em whereas, when the general
superposition (9.1) holds, the coefficients fulfill the relations

P
n jcnj

2 D 1, 0 �
jcnj

2 � 1, and the measurement’s outcome may be any of the eigenvalues. It is
then sensible to interpret jcnj

2 as the probability that a measurement of energy finds
the result En. This interpretation, that has been worked out here with reference to
energy, is extended to the other dynamic variables (Sect. 10.2).

When the spectrum is continuous the description of the wave packet is

 .r; t/ D
ZZZ C1

�1

ck wk exp.�i!k t/ d3k ; (9.5)

with Ek, wk the eigenvalues and eigenfunctions of H wk D Ek wk, and !k D Ek=„.
Such symbols stand for Ek D E.k/, wk D w.r;k/, and so on, with k a three-
dimensional vector whose components are continuous. The relations corresponding
to (9.2, 9.3) are
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 tD0 D  .r; 0/ D
ZZZ C1

�1

ck wk d3k ; ck D hwkj tD0i ; (9.6)

Z

�

j j2 d3r D
ZZZ C1

�1

jckj
2 d3k D 1 : (9.7)

The expression of  tD0 in (9.6) lends itself to providing an example of a wave
function that is square integrable, while the eigenfunctions that build up the super-
position are not. Consider, in fact, the relation (C.83) and let ck D � exp.��2 k2=2/,
wk D exp.i k x/=

p
2� in it, with � a length; in this way (C.83) becomes the one-

dimensional case of (9.6) and yields  tD0 D expŒ�x2=.2 �2/�, showing that a
square-integrable function like the Gaussian one can be expressed as a combination
of the non-square-integrable spatial parts of the plane waves.

The extraction of the probabilities in the continuous-spectrum case accounts for
the fact that the E.k/ varies continuously with k. To this purpose one takes the
elementary volume d3k centered on some k and considers the product jckj

2 d3k.
Such a product is given the meaning of infinitesimal probability that the outcome of
an energy measurement belongs to the range of E.k/ values whose domain is d3k
(more comments are made in Sect. 9.7.1).

9.3 Time-Dependent Schrödinger Equation

The Superposition Principle illustrated in Sect. 9.2 prescribes the form of the
wave packet in the conservative case. Considering for simplicity a discrete set of
eigenfunctions, the time derivative of  reads

@ 

@t
D
X

n

cn wn
En

i „
exp.�iEn t=„/ : (9.8)

Using the time-independent Schrödinger equation H wn D Enwn transforms the
above into

i „
@ 

@t
D
X

n

cn H wn exp.�i En t=„/ ; i „
@ 

@t
DH  : (9.9)

The second relation in (9.9) is a linear, homogeneous partial-differential equation,
of the second order with respect to the spatial coordinates and of the first order with
respect to time, whose solution is the wave function  . It is called time-dependent
Schrödinger equation; as its coefficients are complex, so is  . To solve the equation
it is necessary to prescribe the initial condition  .r; t D 0/ and the boundary
conditions. For the latter the same discussion as in Sect. 8.2 applies, because the
spatial behavior of  is prescribed by the Hamiltonian operator.
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The reasoning leading to the second relation in (9.9) is based on the Superpo-
sition Principle, namely, once the form of  is given, the equation fulfilled by
 is readily extracted. Such a reasoning is not applicable in the nonconservative
cases, because the time-independent equation H wn D Enwn does not hold then,
so the eigenvalues and eigenfunctions upon which the superposition is based are
not available. However, another line of reasoning shows that the time-dependent
Schrödinger equation holds also for the nonconservative situations [86]. Although
in such cases the wave function  is not expressible as a superposition of
monochromatic waves, it can still be expanded using an orthonormal set. If the set
is discrete, vn D vn.r/, the expansion reads

 .r; t/ D
X

n

bn vn.r/ ; bn.t/ D hvnj i ; (9.10)

whereas for a continuous set vk D v.r;k/ one finds

 .r; t/ D
ZZZ C1

�1

bk vk d3k ; bk.t/ D hvkj i : (9.11)

9.4 Continuity Equation and Norm Conservation

Remembering that the square modulus of the wave function provides the local-
ization of the particle, it is of interest to investigate the time evolution of j j2,
starting from the time derivative of  given by the time-dependent Schrödinger
equation (9.9). Here it is assumed that the wave function is normalized to unity and
that the Hamiltonian operator is real, H � DH D �„2=.2m/r2CV; a case where
the operator is complex is examined in Sect. 9.5. Taking the time derivative of j j2

yields

@j j2

@t
D  �

@ 

@t
C  

@ �

@t
D  �

H  

i „
�  

H  �

i „
; (9.12)

with  �H  �  H  � D �„2=.2m/ . � r2 �  r2 �/. Identity (A.17) then
yields

@j j2

@t
C div J D 0 ; J D

i „

2m
. grad � �  � grad / : (9.13)

The first relation in (9.13) has the form of a continuity equation (compare with (23.3)
and (4.23)). As j j2 is the probability density, J takes the meaning of density of the
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probability flux1; it is a real quantity because the term in parentheses in the second
relation of (9.13) is imaginary.

Relations (9.13) provide a physical explanation of the continuity requirements
that were discussed from the mathematical standpoint in Sect. 8.2. Such require-
ments, namely, the continuity of the wave function and of its first derivatives
in space, were introduced in Sect. 8.2 with reference to the solutions of the
time-independent Schrödinger equation; however, they hold also for the time-
dependent one because the spatial behavior of  is prescribed by the Hamiltonian
operator. Their physical explanation is that they provide the spatial continuity of
the probability density and of the probability-flux density. Integrating (9.13) over a
volume �0 whose surface is †0 yields

d

dt

Z

�0

j j2 d�0 D �
Z

†0

J � n d†0 ; (9.14)

with n the unit vector normal to †0, oriented in the outward direction. The integral
at the left-hand side of (9.14) is the probability of localizing the particle within �0,
that at the right-hand side is the probability flux across †0 in the outward direction;
as a consequence, the meaning of (9.14) is that the time variation of the localization
probability within �0 is the negative probability flux across the surface. If �0 !1
the surface integral vanishes because  is square integrable and, as expected,

d

dt

Z

1

j j2 d� D 0 : (9.15)

The above is another form of the normalization condition and is also termed norm-
conservation condition. Note that the integral in (9.15) does not depend on time
although  does.

The density of the probability flux can be given a different form that uses the
momentum operator Op D �i „ grad introduced in Sect. 8.5; one finds

J D
1

2m

�
 . Op /� C  � Op 

�
D
1

m
<
�
 � Op 

	
: (9.16)

Although this form is used less frequently than (9.13), it makes the analogy with the
classical flux density much more intelligible.

When the wave function is of the monochromatic type (9.4), the time-dependent
factors cancel each other in (9.13), to yield

div J D 0 ; J D
i „

2m
.w grad w� � w� grad w/ : (9.17)

If w is real, then J D 0.

1Remembering that Œj j2� D m�3, one finds ŒJ � D m�2 s�1.
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9.5 Hamiltonian Operator of a Charged Particle

The Hamiltonian function of a particle of mass m and charge e, subjected to an
electromagnetic field, is given by (1.35), namely,

H D
3X

iD1

1

2m
.pi � e Ai/

2 C e' ; (9.18)

where the scalar potential ' and the components of the vector potential Ai may
depend on the spatial coordinates and time. To find the Hamiltonian operator
corresponding to H one could apply the same procedure as in Sect. 8.48, that
consists in replacing pi with Opi D �i „ @=@xi. In this case, however, a difficulty
arises if Ai depends on the coordinates; in fact, the two equivalent expansions of
.pi � e Ai/

2, namely, p2i C e2 A2i � 2 pi e Ai and p2i C e2 A2i � 2 e Ai pi yield two
different operators: the first of them contains the summand @.Ai  /=@xi, the other
one contains Ai @ =@xi, and neither one is Hermitean. If, instead, one keeps the order
of the factors in the expansion, namely, .pi � e Ai/

2 D p2i C e2 A2i � e Ai pi � pi e Ai,
the resulting Hamiltonian operator reads H DHR C i HI , with

HR D �
„2

2m
r2 C e' C

e2

2m
A � A ; HI D

„ e

2m

3X

iD1

�
Ai

@

@xi
C

@

@xi
Ai

�
;

(9.19)

and is Hermitean (compare with Sect. 10.2). The particle dynamics is determined
by the time-dependent Schrödinger equation i „ @ =@t D H  . The continuity
equation fulfilled by is found following the same reasoning as in Sect. 9.4, starting
from

@j j2

@t
D  �

.HR C i HI/ 

i „
�  

.HR � i HI/ 
�

i „
: (9.20)

The terms related to HR yield � div<. � Op /=m as in Sect. 9.4. Those related
to HI yield div.e A j j2/=m. In conclusion, the continuity equation for the wave
function of a charged particle reads

@j j2

@t
C div J D 0 ; J D

1

m
<
�
 � . Op � e A/  

�
: (9.21)

It is worth noting that the transformation from the Hamiltonian function (9.18) to
the Hamiltonian operator (9.19) produced by replacing pi with Opi is limited to the
dynamics of the particle; the electromagnetic field, instead, is still treated through
the scalar and vector potentials, and no transformation similar to that used for
the particle is carried out. The resulting Hamiltonian operator (9.19) must then be
considered as approximate; the term semiclassical approximation is in fact used to
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indicate the approach based on (9.19), where the electromagnetic field is treated
classically whereas Quantum Mechanics is used in the description of the particle’s
dynamics. The procedure by which the quantum concepts are extended to the
electromagnetic field is described in Sect. 12.3.

The semiclassical approximation is useful in several instances, among which
there is the calculation of the stationary states of atoms. As shown in Sect. 9.7.2,
it explains why the radiative decay predicted in Sect. 5.11.3 using the classical
(planetary) model does not actually occur.

9.6 Approximate Form of the Wave Packet for a Free Particle

The energy spectrum of a free particle is continuous, and the wave packet is given
by (9.5), with

wk.r/ D
1

.2 �/3=2
exp.i k � r/ ; Ek D

„2

2m

�
k21 C k22 C k23

	
D „!k : (9.22)

As �1 < ki < C1, here the order of degeneracy of Ek is infinite. Now, remem-
bering that the wave packet is normalized to unity, it follows that j .r; t/j2 d3r is
the infinitesimal probability that at time t the particle is localized within d3r ; also,
from the analysis carried out in Sect. 9.2, the product jckj

2 d3k is the infinitesimal
probability that the outcome of an energy measurement belongs to the range of E.k/
values whose domain is d3k. Note that ck does not depend on time.

Considering the example of a Gaussian wave packet given at the end of Sect. 9.2,
one can assume that j .r; t/j2 is localized in the r space and jckj

2 is localized in
the k space. This means that j .r; t/j2 and jckj

2 become vanishingly small when
r departs from its average value r0.t/ and respectively, k departs from its average
value k0. Such average values are given by2

r0.t/ D
ZZZ C1

�1

r j .r; t/j2 d3r ; k0 D
ZZZ C1

�1

k jckj
2 d3k : (9.23)

An approximate expression of the wave packet is obtained by observing that, due
to the normalization condition (9.7), the main contribution to the second integral
in (9.7) is given by the values of k that are in the vicinity of k0. From the identity
k2i D .k0i � k0i C ki/

2 D k20i C 2 k0i .ki � k0i/C .ki � k0i/
2 it then follows

!k D
„

2m
k20 C

„

m
k0 � .k � k0/C

„

2m
jk � k0j2 (9.24)

2Definitions (9.23) provide the correct weighed average of r and k thanks to the normalization
condition (9.7). A more exhaustive treatment is carried out in Sect. 10.5.
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where, for k close to k0, one neglects the quadratic term to find

!k ' !0 C u � .k � k0/ ; !0 D
„

2m
k20 ; u D

„

m
k0 D .gradk!k/k0 ; (9.25)

with u the group velocity. The neglect of terms of order higher than the first used to
simplify (9.24) could not be applied to ck; in fact, ck has typically a peak for k D k0,
so its first derivatives would vanish there. Using (9.25) and letting ˚0 D k0 � r�!0 t
transform (9.5) into .r; t/ ' exp.i˚0/A .r � u t Ik0/, where the envelope function
A is defined as

A .r � u t Ik0/ D
ZZZ C1

�1

ck

.2 �/3=2
exp Œi .r � u t/ � .k � k0/� d3k : (9.26)

Within the limit of validity of (9.25), the envelope function contains the whole
information about the particle’s localization: j j2 D jAj2. Also, the dependence of A
on r and t is such that, for any two pairs .r1; t1/, .r2; t2/ fulfilling r2�u t2 D r1�u t1
the form of A.r2; t2/ is the same as that of A.r1; t1/. In other terms, A moves without
distortion in the direction of u, and its velocity is .r2 � r1/=.t2 � t1/ D u. As
time evolves, the approximation leading to (9.25) becomes less and less accurate;
taking by way of example t1 D 0 as the initial time, and observing that the
summands in (9.25) belong to the phase �i!k t, the approximation holds as long
as „ jk � k0j2 t=.2m/� 2� .

9.7 Complements

9.7.1 About the Units of the Wave Function

Consider the wave function  associated with a single particle. When the wave
function is square integrable and normalized to unity, its units are Œ � D m�3=2 due
to
R
j j2 d3r D 1 . Then, if the eigenvalues of the Hamiltonian operator are discrete,

the second equality in (9.3) shows that jcnj
2, cn are dimensionless and, finally, (9.2)

shows that wn has the same units as  . If the eigenvalues are continuous, the second
equality in (9.7) shows that jckj

2 has the dimensions of a volume of the real space,
so that Œck� D m3=2 and, finally, (9.6) shows that wk has the same units as  .

There are situations, however, where units different from those illustrated above
are ascribed to the eigenfunctions. One example is that of the eigenfunctions of the
form wk D exp.i k �r/=.2 �/3=2, worked out in Sect. 8.2.1, which are dimensionless;
another example is that of eigenfunctions of the form (10.7), whose units are
Œı.r � r0/� D m�3. When such eigenfunctions occur, the units of the expansion’s
coefficients must be modified in order to keep the correct units of  (compare with
the calculation shown in Sect. 14.6).
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The considerations carried out here apply to the single-particle case. When
the wave function describes a system of two or more particles, its units change
accordingly (Sect. 15.2).

9.7.2 An Application of the Semiclassical Approximation

As indicated in Sect. 9.5 for the case of a particle subjected to an electromagnetic
field, the semiclassical approximation consists in using the Hamiltonian opera-
tor (9.19), which is derived from the Hamiltonian function (9.18) by replacing pi

with Opi. The electromagnetic field, instead, is still treated through the scalar and
vector potentials. Experiments show that the approximation is applicable in several
cases of interest. For instance, consider again the problem of the electromagnetic
field generated by a single electron, discussed in classical terms in Sect. 5.11.2.
If  is the wave function (assumed to be square integrable) associated with the
electron in the quantum description, the electron’s localization is given by j j2. It
is then sensible to describe the charge density and the current density produced by
the electron as

% D �q j j2 ; J D �q J ; (9.27)

where q is the elementary charge and J is defined in (9.13). If the electron is in a
stationary state, namely,  .r; t/ D w.r/ exp.�i! t/, then % and J are independent
of time. From (4.58, 4.59) it follows that the potentials ', A are independent of time
as well. As a consequence, the distribution of charge and current density associated
with the electron’s motion is stationary (compare with (9.17)), which also yields
that the acceleration Pu vanishes. From Larmor’s formula (5.72) one finally finds that
in this situation the electron emits no power; thus, the radiative decay predicted in
Sect. 5.11.3 using the classical model does not occur.

9.7.3 Polar Form of the Schrödinger Equation

The time-dependent Schrödinger equation (9.9) is easily split into two real equations
by considering the real and imaginary part of  . However, in this section the wave
function will rather be written in polar form,  D ˛.r; t/ expŒiˇ.r; t/�, ˛ � 0,
which reminds one of that used to derive the eikonal equation (5.51) of Geometrical
Optics. Despite the fact that the resulting relations are nonlinear, the outcome of
this procedure is interesting. Considering a Hamiltonian operator of the type H D

�„2 r2=.2m/C V , replacing the polar expression of  in (9.9), and separating the
real and imaginary parts yield two coupled, real equations; the first of them reads
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@˛

@t
D �

„

2m

�
˛r2ˇ C 2 grad˛ � gradˇ

	
; (9.28)

where the units of ˛2 are those of the inverse of a volume. As for the second equation
one finds

@.„ˇ/

@t
C

1

2m
j grad.„ˇ/j2 C V C Q D 0 ; Q D �

„2

2m

r2˛

˛
; (9.29)

where the units of grad.„ˇ/ are those of a momentum. Using the short-hand
notation

P D ˛2 D j j2 ; S D „ˇ ; ve D
grad S

m
; HQ D

1

2
mv2e C QC V ; (9.30)

and multiplying (9.28) by 2˛, transforms (9.28, 9.29) into

@P

@t
C div.P ve/ D 0 ;

@S

@t
C HQ D 0 : (9.31)

The wave function is assumed to be square integrable, so that
R
�

P d3r D 1. It
is easily found that the first of (9.31) is the continuity equation (9.13): from the
expression (9.16) of the current density one finds in fact

J D
1

m
<
�
 � Op 

	
D
„

m
<
�
˛2 gradˇ � i˛ grad˛

	
D P ve : (9.32)

The two differential equations (9.31), whose unknowns are ˛, ˇ, are coupled with
each other. The second of them is similar to the Hamilton-Jacobi equation (1.51) of
Classical Mechanics, and becomes equal to it in the limit „ ! 0, that makes Q to
vanish and S to become the Hamilton principal function (Sect. 1.7). Note that the
limit Q! 0 decouples (9.31) from each other. In the time-independent case (9.31)
reduce to div.P ve/ D 0 and m v2e=2 C Q C V D E, coherently with the fact that
in this case Hamilton’s principal function becomes S D W � E t, with W the (time-
independent) Hamilton characteristic function. Although ve plays the role of an
average velocity in the continuity equation of (9.31), determining the expectation
value needs a further averaging: in fact, taking definition (10.13) of the expectation
value and observing that the normalization makes the integral of grad˛2 to vanish
yield

m hvei D

Z

�

 � Op d3r D
Z

�

˛2 r.„ˇ/ d3r D m
Z

�

˛2 ve d3r : (9.33)

The last relation in (9.30) seems to suggest that Q is a sort of potential energy to
be added to V . In fact this is not true, as demonstrated by the calculation of the
expectation value of the kinetic energy T ,
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hTi D �
„2

2m

Z

�

 �r2 d3r D
Z

�

 �
�
1

2
m v2e C Q

�
 d3r ; (9.34)

showing that Q enters the expectation value of T , not V . To better investigate the
meaning of Q it is useful to consider alternative expressions of hQi, like

hQi D
„2

2m

Z

�

jr˛j2 d3r D
1

2m

�
h Op � Opi � hp2ei

	
; (9.35)

where Op D �i „ grad and pe D m ve. The derivation of (9.34, 9.35) follows the
same pattern as that of (9.28, 9.29). The first form of (9.35) shows that hQi is
positive definite irrespective of the shape of ˛. The second one is the analogue of
the definition of dispersion around the average: the analogy with the treatment used
in statistical mechanics (compare with (19.79)) suggests that p2e=.2m/ provides the
analogue of the convective part of the kinetic energy, while Q provides the analogue
of the thermal part of it [109].

It is interesting to note that the analogy between the Schrödinger equation and a
set of a continuity and a Hamilton-Jacobi-like equations had been observed by de
Broglie, who introduced the concept of pilot wave in [34]. This cost him severe
criticism by Pauli at the Fifth Solvay Conference in 1927. He resumed the idea
more than 20 years later, stimulated by the papers by Bohm introducing the concept
of quantum potential, see, e.g., [14]. The most recent paper by de Broglie on the
subject is [35], published when the author was 79 years old.

9.7.4 Effect of a Gauge Transformation on the Wave Function

The Hamiltonian function (1.35) of a particle of mass m and charge e, subjected to
an electromagnetic field, has been derived in Sect. 1.5 and reads H D

P3
iD1.pi �

e Ai/
2=.2m/Ce', with pi the ith component of momentum in Cartesian coordinates,

' the electric potential, and Ai the ith component of the magnetic potential. If a
gauge transformation (Sect. 4.5) is carried out, leading to the new potentials

'  '0 D ' �
@#

@t
; A A0 D AC grad# ; (9.36)

the resulting Hamiltonian function H0 differs from the original one. In other terms,
the Hamiltonian function is not gauge invariant. However, the Lorentz force e .EC
Pr ^ B/ is invariant, whence the dynamics of the particle is not affected by a gauge
transformation.

Also in the quantum case it turns out that the Hamiltonian operator is not gauge
invariant, H 0 ¤ H . As consequence, the solution of the Schrödinger equation is
not gauge invariant either:  0 ¤  . However, the particle’s dynamics cannot be
affected by a gauge transformation because the Lorentz force is invariant. It follows
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that if the initial condition is the same, j 0j2tD0 D j j
2
tD0, then it is j 0j2 D j j2 at

all times; for this to happen, there must exist a real function � such that

 0 D  exp.i �/ ; � D �.r; t/ : (9.37)

From the gauge invariance of j j2 at all times it follows @j 0j2=@t D @j j2=@t
whence, from the continuity equation (9.13), one obtains div J0 D div J with
J D <Œ �. Op � e A/ �=m. Gauge transforming the quantities in brackets yields
. 0/� Op 0 D  � Op Cj j2 „ grad � and . 0/� e A0  0 D j j2 e ACj j2 e grad# ,
whose difference provides

J0 � J D
1

m
j j2 grad .„ � � e#/ : (9.38)

In (9.38) it is j j2 ¤ 0 and grad j j2 ¤ 0; also, „ � � e# is independent of  . It
follows that, for div.J0 �J / D 0 to hold, from (A.17) it must be grad .„� � e#/ D
0, namely, „� � e# is an arbitrary function of time only. Setting the latter to zero
finally yields the expression for the exponent in (9.37), that reads3

� D
e

„
# : (9.39)

Problems

9.1 Using the one-dimensional form of (9.26) determine the envelope function
A.x � u t/ corresponding to ck D

p
�=
p
� exp.��2 k2=2/, with � a length. Noting

that
R C1
�1 jckj

2 dk D 1, show that A is normalized to 1 as well.

9.2 Using the envelope function A.x � u t/ obtained from Prob. 9.1 and the one-
dimensional form of definition (9.23), show that x0.t/ D u t.

3The units of # are Œ#� D V s.



Chapter 10
General Methods of Quantum Mechanics

10.1 Introduction

The preceding chapters have provided the introductory information about Quantum
Mechanics. Here the general principles of the theory are illustrated, and the methods
worked out for the Hamiltonian operator are extended to the operators associated
with dynamic variables different from energy. The important concept of separable
operator is introduced, and the property of some operators to commute with each
other is related to the mutual compatibility of measurements of the corresponding
dynamic variables. Then, the concepts of expectation value and uncertainty are
introduced, and the Heisenberg uncertainty principle is worked out. This leads in
turn to the analysis of the time derivative of the expectation values, showing that
the latter fulfill relations identical to those of Classical Mechanics. The form of the
minimum-uncertainty wave packet is worked out in the complements.

10.2 General Methods

The discussion carried out in Sect. 9.2 has led to a number of conclusions regarding
the eigenvalues of the time-independent Schrödinger equation (7.44). They are:

• The energy of a particle subjected to a conservative force is one of the eigenvalues
of the time-independent equation H w D Ew, where H is derived from the
corresponding Hamiltonian function by replacing pi with �i „ @=@xi. Any other
energy different from an eigenvalue is forbidden.

• The wave function of a conservative case (taking by way of example the discrete-
eigenvalue case) is  D

P
n cn wn exp.�i En t=„/. The particle’s localization is

given by j j2, where it is assumed that  is normalized to unity. The probability
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that a measurement of energy finds the eigenvalue Em is jcmj
2; an energy

measurement that finds the eigenvalues Em forces cn to become ınm.
• The time evolution of  is found by solving the time-dependent Schrödinger

equation i „ @ =@t D H  . The latter holds also in the nonconservative
situations; although in such cases the wave function  is not expressible as
a superposition of monochromatic waves, it can still be expanded using an
orthonormal set like in (9.10) or (9.11).

An important issue is now extending the conclusions listed above to the dynamic
quantities different from energy (e.g., momentum, angular momentum, and so on).
The extension is achieved by analogy, namely, it is assumed that for any dynamic
variable one can construct an eigenvalue equation whose solution provides the
possible values of the variable itself. This line of reasoning yields the procedures
listed below, that are called general methods of Quantum Mechanics:

1. Given a dynamic variable A, an operator A is associated with it. It is found,
first, by expressing A in terms of canonical coordinates qi; pi (Sect. 1.6), then, by
replacing the momentum’s components pi with Opi D �i „ @=@qi in such a way
that A is Hermitean.

2. It is checked whether the eigenvalue equation A v D Av possesses a complete,
orthonormal set of eigenfunction. If the check fails, the operator is not con-
sidered; otherwise it is accepted and is called observable [96, Chap. V.9]. The
eigenvalue equation is subjected to the same boundary or asymptotic conditions
as H w D Ew.

3. Let An or Aˇ be the eigenvalues of A v D Av, with n (ˇ) a set of discrete
(continuous) indices. Such eigenvalues are the only values that a measure of the
dynamic variable A can find.

4. Thanks to completeness, the wave function  describing the particle’s localiza-
tion can be written, respectively for discrete or continuous spectra,

 D
X

n

an.t/ vn.r/ ;  D

Z

ˇ

aˇ.t/ vˇ.r/ dˇ ; (10.1)

with an D hvnj i, aˇ D hvˇj i.
5. If the wave function in (10.1) is normalizable, then

P
n janj

2 D 1,
R
ˇ
jaˇj2 dˇ D

1 at all times. For a discrete spectrum, Pn D jan.tA/j2 is the probability that a
measurement of A finds the eigenvalue An at t D tA. For a continuous spectrum,
the infinitesimal probability that at t D tA the domain of Aˇ is found in the
interval dˇ around ˇ is dP D jaˇ.tA/j2 dˇ.

6. When the measurement is carried out at t D tA and an eigenvalue, say, Am,
is found, the coefficients of the first expansion in (10.1) are forced by the
measurement to become jan.t

C
A /j

2 D ımn, and the wave function at that instant1

1Measurements are not instantaneous (refer to the discussion in Sect. 9.2). Here it is assumed that
the duration of a measurement is much shorter than the time scale of the whole experiment.
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becomes  .r; tCA / D vm.r/. The time evolution of  starting from tCA is
prescribed by the time-dependent Schrödinger equation i„ @ =@t D H  , with
 .r; tCA / as the initial condition. In this respect there is a neat parallel with
Classical Mechanics, where the time evolution of the canonical variables starting
from the initial conditions is prescribed by the Hamilton equations (1.42).

According to the general methods listed above, the eigenvalues of A are the only
possible outcome of a measurement of the dynamic variable A. As the eigenvalues
represent a physical quantity, they must be real; this makes the requirement that
A must be Hermitean easily understood: if an operator is Hermitean, then its
eigenvalues are real (Sect. 8.4.1). The inverse is also true: if the eigenfunctions of
A form a complete set and its eigenvalues are real, then A is Hermitean. In fact,
for any pair of functions f , g, considering the discrete spectrum by way of example,
one has

hgjA f i � hA gjf i D
X

n

X

m

g�n fm ŒhvnjA vmi � hA vnjvmi� D

D
X

n

X

m

g�n fm hvnjvmi
�
Am � A�n

	
D
X

n

g�n fn
�
An � A�n

	
D 0 ; (10.2)

which holds for all f , g because the eigenfunctions vn are mutually orthogonal and
the eigenvalues An are real.

As indicated at 1 point above, the dynamic variable A is transformed into the
operator A by replacing pi with Opi. The operator obtained from such a replacement
is not necessarily Hermitean: its hermiticity must be checked on a case-by-case
basis. For instance, the dynamic variable A D x px can be written in equivalent ways
as x px, px x, and .x px C px x/=2. However, their quantum counterparts

� i „x
@

@x
; �i „

@

@x
x ; �i

„

2

�
x
@

@x
C
@

@x
x

�
(10.3)

are different from each other, and only the third one is Hermitean (compare with
Sect. 9.5).

10.3 Separable Operators

Let A be an operator acting only on the x coordinate. Similarly, let B and C the
two operators acting only on y and z, respectively. The eigenvalue equations for the
discrete-spectrum case read

A uk D Ak uk ; Bvm D Bm vm ; C wn D Cn wn ; (10.4)
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where uk.x/, vm.y/, and wn.z/ are three complete and orthonormal sets of eigen-
functions. Given a square-integrable function f .x; y; z/, thanks to the completeness
of the three sets the following expansion holds:

f .x; y; z/ D
X

n

an.x; y/wn D
X

n

"
X

m

bmn.x/ vm

#

wn D

D
X

n

(
X

m

"
X

k

ckmn uk

#

vm

)

wn D
X

kmn

ckmn uk vm wn ; (10.5)

showing that the set made of the products uk vm wn is complete. Also, for any linear
combination of the above operators, with a, b, c constant vectors, it is

.a A C b B C c C / uk vm wn D .a Ak C b Bm C c Cn/ uk vm wn ; (10.6)

that is, uk vm wn is an eigenfunction corresponding to eigenvalue a AkCb BmCc Cn. It
is important to add that in (10.4) it is implied that the boundary conditions of A uk D

Ak uk depend on x alone, those of Bvm D Bm vm on y alone, and the like for the
third equation. In other terms, separability means that at least one set of coordinates
exists, such that both the equation and boundary conditions are separable.

As a first example of application of (10.6), consider the classical position of
a particle, r D x1 i1 C x2 i2 C x3 i3. Such a dynamic variable does not contain
the components of momentum; as a consequence, the operator associated with it
is r itself, and generates the eigenvalue equation r g.r/ D r0 g.r/. Separating the
latter and considering the eigenvalue equation for xi, one finds xi vi.xi/ D xi0 vi.xi/,
namely, .xi � xi0/ vi.xi/ D 0 for all xi ¤ xi0. It follows vi D ı.xi � xi0/, whence
r0 D x10 i1 C x20 i2 C x30 i3, and

gr0 .r/ D ı.x1 � x10/ ı.x2 � x20/ ı.x3 � x30/ D ı.r � r0/ : (10.7)

As a second example consider the classical momentum of a particle, p D p1 i1 C
p2 i2 C p3 i3. Remembering the discussion of Sect. 8.5 one finds for the operator
associated with p,

Op D �i „

�
i1
@

@x1
C i2

@

@x2
C i3

@

@x3

�
D �i „ grad ; (10.8)

whose eigenvalue equation reads �i „ grad f D p0 f . Separation yields for the ith
eigenvalue equation, with vi D vi.xi/, the first-order equation �i „ dvi=dxi D pi0 vi

(compare with (8.49)), whence vi D .2 �/�1=2 exp.i ki xi/, with ki D pi0=„, so that
k D p=„ D k1 i1 C k2 i2 C k3 i3, and

fk.r/ D .2 �/�3=2 exp.i k � r/ : (10.9)
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Neither (10.7) nor F (10.9) are square integrable. The indices of the eigenvalues
(r0 in (10.8) and k in (10.9)) are continuous in both cases. Also, from the results
of Sects. C.2 and C.5 one finds that gr0 .r/ D g.r; r0/ is the Fourier transform of
fk.r/ D f .r;k/.

10.4 Eigenfunctions of Commuting Operators

It has been shown in Sect. 10.2 that a measurement of the dynamic variable A at
time tA yields one of the eigenvalues of the equation A a D A a. Considering
for instance a discrete spectrum, let the eigenvalue be Am. The initial condition
 .r; tCA / for the time evolution of the particle’s wave function after the measurement
is one of the eigenfunctions of A corresponding to Am. If a measurement of another
dynamic variable B is carried out at a later time tB, the wave function at t D tB
is forced to become one of the eigenfunctions of Bb D B b, say, bk. The latter
can in turn be expanded in terms of the complete set derived from A , namely,
bk D

P
nhanjbki an. As the coefficients of the expansion are in general different

from zero, there is a finite probability that a new measurement of A at tC > tB
finds a value different from Am. In principle this could be due to the fact that if A
is not conserved, its value has evolved, from the outcome Am of the measurement
carried out at t D tA, into something different, as prescribed by the time-dependent
Schrödinger equation having  .r; tCA / as initial condition.2 However, the instant
tB of the second measurement can in principle be brought as close to tA as we
please, so that the two measurements can be thought of as simultaneous. As a
consequence, the loss of information about the value of A must be ascribed to the
second measurement, specifically, to its interference with the wave function, rather
than to a natural evolution3 of the value of A: the gain in information about the
eigenvalue of B produces a loss of information about that of A; for this reason, the
two measurements are said to be incompatible.

From the discussion above one also draws the conclusion that if it were bk D am,
the two measurements of outcome Am and Bk would be compatible. This is in itself
insufficient for stating that the measurements of A and B are compatible in all cases;
for this to happen it is necessary that the whole set of eigenfunctions of A coincides
with that of B: in this case, in fact, the condition bk D am is fulfilled no matter what
the outcome of the two measurements is.

It would be inconvenient to check the eigenfunctions to ascertain whether two
observables A, B are compatible or not. In fact, this is not necessary thanks to the
following property: if two operators A and B have a common, complete set of

2By way of example one may think of A as the position x, that typically evolves in time from the
original value xA D x.tA/ even if the particle is not perturbed.
3In any case, the evolution would be predicted exactly by the Schrödinger equation. Besides, the
eigenvalue would not change if A were conserved.
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eigenfunctions, then they commute, and vice versa (as indicated in Sect. 8.6.2, two
operators commute if their commutator (8.71) is the null operator). Still assuming
a discrete spectrum, for any eigenfunction vn it is A Bvn D A Bn vn D BnA vn D

Bn An vn. Similarly, BA vn D BAn vn D AnBvn D An Bn vn, showing that A and
B commute for all eigenfunctions. Then, using the completeness of the common
set vn to expand any function f as f D

P
n fn vn, one finds

A Bf D
X

n

fnA Bvn D
X

n

fnBA vn D BA
X

n

fn vn D BA f : (10.10)

This proves that if two operators have a complete set of eigenfunctions in common,
then they commute. Conversely, assume that A and B commute and let vn be an
eigenfunction of A ; then, A Bvn D BA vn and A vn D An vn. Combining the
latter relations yields A Bvn D BAn vn which, letting gn D Bvn, is recast as
A gn D Angn. In conclusion, both vn and gn are eigenfunctions of A belonging to
the same eigenvalue An.

If An is not degenerate, the eigenfunctions vn and gn must be the same function,
apart from a multiplicative constant due to the homogeneity of the eigenvalue
equation. Let such a constant be Bn; combining gn D Bn vn with the definition
gn D Bvn yields Bvn D Bn vn, thus showing that vn is an eigenfunction of B as
well. The property holds also when An is degenerate, although the proof is somewhat
more involved [95, Chap. 8-5]. This proves that if two operators commute, then they
have a complete set of eigenfunctions in common. Examples are given in Sect. 8.6.3.

10.5 Expectation Value and Uncertainty

The discussion carried out in Sect. 10.2 has led to the conclusion that the wave
function  describing the particle’s localization can be expanded as in (10.1),
where vn or vˇ are the eigenfunctions of an Hermitean operator A that form a
complete, orthonormal set. Considering a discrete spectrum first, the coefficients of
the expansion are an D hvnj i; assuming that the wave function is normalizable, it
is
P

n janj
2 D 1.

The meaning of the coefficients is that Pn D jan.t/j2 is the probability that a
measurement of A finds the eigenvalue An at time t. From this it follows that the
statistical average of the eigenvalues is

hAi.t/ D
X

n

Pn An : (10.11)

The average (10.11) is called expectation value.4 It can be given a different form by
observing that Pn D a�n an D .

P
m a�m ımn/ an and that, due to the orthonormality of

the eigenfunctions of A , it is ımn D hvmjvni; then,

4If the wave function is normalized to a number different from unity, the definition of the
expectation value is

P
n Pn An=

P
n Pn, and the other definitions are modified accordingly.
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X

n

 
X

m

a�m hvmjvni

!

an An D h
X

m

amvmj
X

n

anAnvni D h
X

m

amvmj
X

n

anA vni :

(10.12)

Combining (10.12) with (10.11) and remembering that A is Hermitean yields

hAi D h jA j i : (10.13)

The same result holds for a continuous spectrum:

hAi D
Z

˛

P˛ A˛ d˛ D
Z

˛

ja˛j
2 A˛ d˛ D h jA j i ; (10.14)

where
Z

˛

ja˛j
2 A˛ d˛ D

Z

˛

�Z

ˇ

a�ˇ ı.ˇ � ˛/ dˇ

�
a˛ A˛ d˛ ; (10.15)

and
R
ˇ
jaˇj2 dˇ D 1 at all times. The expectation values of Hermitean operators

are real because they are the statistical averages of the eigenvalues, themselves real.
Using (8.57) one extends the definition of expectation value to the powers of the
eigenvalues; for instance,

hA2i D h jA 2j i D

Z

�

 �A A  d� D hA  jA  i D jjA  jj2 � 0 ;

(10.16)

where the hermiticity of A is exploited. The variance of the eigenvalues is given by

.�A/2 D
D
.A � hAi/2

E
D
˝
A2 � 2 hAiAC hAi2

˛
D hA2i � hAi2 ; (10.17)

real and nonnegative by construction; as a consequence, hA2i � hAi2. The general
term used to indicate the positive square root of the variance, �A D

p
.�A/2 � 0,

is standard deviation. When it is used with reference to the statistical properties of
the eigenvalues, the standard deviation is called uncertainty.

Assume by way of example that the wave function at t D tA coincides with one
of the eigenfunctions of A . With reference to a discrete spectrum (first relation
in (10.1)), let  .tA/ D vm. From (10.13) and (10.17) it then follows hAi.tA/ D
Am, �A.tA/ D 0. The standard deviation of the eigenvalues is zero in this case,
because the measurement of A can only find the eigenvalue Am. As a second example
consider a continuous spectrum in one dimension, and let  .tA/ D exp.i k x/=

p
2� ,

namely, an eigenfunction of the momentum operator. In this case the wave function
is not square integrable, so one must calculate the expectation value as
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hAi.tA/ D lim
x0!1

R Cx0
�x0

 �.tA/A  .tA/ dx
R Cx0
�x0

 �.tA/  .tA/ dx
: (10.18)

If one lets A D Op D �i „ d=dx, the result is hpi.tA/ D „ k, �p.tA/ D 0. In fact, like
in the previous example, the wave function coincides with one of the eigenfunctions
of the operator. If, however, one applies another operator to the same wave function,
its variance does not necessarily vanish. A remarkable outcome stems from applying
Ox D x, that is, the operator associated with the dynamic variable canonically
conjugate to p: one finds hxi.tA/ D 0, �x.tA/ D1.

In conclusion, the examples above show that the term “uncertainty” does not
refer to an insufficient precision of the measurements (which in principle can be
made as precise as we please), but to the range of eigenvalues that is covered by the
form of .tA/. In the last example above all positions x are equally probable because
j .tA/j2 D const, whence the standard deviation of position diverges.

10.6 Heisenberg Uncertainty Relation

Consider the wave function  describing the dynamics of a particle, and let A
and B be Hermitean operators. A relation exists between the standard deviations
of these operators, calculated with the same wave function. Defining the complex
functions f D .A � hAi/  and g D .B � hBi/  yields

jjf jj2 D .�A/2 ; jjgjj2 D .�B/2 ; hf jgi � hgjf i D i hCi ; (10.19)

where the first two relations derive from (10.17) while hCi in the third one is the
expectation value of the commutator C D �i .A B � BA /. Letting � D i �
in (8.16), with � real, and using (10.19) provides

.�A/2 C �2 .�B/2 � � hCi � 0 ; (10.20)

namely, a second-degree polynomial in the real parameter �. In turn, the coefficients
of the polynomial are real because they derive from Hermitean operators. For the
polynomial to be nonnegative for all �, the discriminant hCi2�4 .�A/2 .�B/2 must
be non-positive. The relation between the standard deviations then reads

�A�B �
1

2
jhCij : (10.21)

The interpretation of this result follows from the discussion carried out at the end of
Sect. 10.5. If A and B commute, then their commutator is the null operator, whose
eigenvalue is zero. As a consequence it is �A�B � 0, namely, the minimum of the
product is zero. Remembering the result of Sect. 10.4, when two operators commute
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they have a common, complete set of eigenfunctions. If the wave function used for
calculating the variance (10.17) is an eigenfunction of A and B, then both standard
deviations�A and�B vanish and�A�B D 0, namely, the minimum can in fact be
attained. If, instead, A and B do not commute, the minimum of the product�A�B
must be calculated on a case-by-case basis. The most interesting outcome is found
when the two operators are associated with conjugate dynamic variables: A D qi

and B D �i „ @=@qi. Remembering (8.72) one finds C D „I , C D „, hCi D „,
whence

�A�B �
„

2
: (10.22)

Inequality (10.22) is also called Heisenberg principle or uncertainty principle,
because it was originally deduced by Heisenberg from heuristic arguments [63].5

The more formal deduction leading to (10.21) was given shortly after in [77]
and [144].

10.7 Time Derivative of the Expectation Value

The expectation value (10.11) of a Hermitean operator is a real function of time. In
Classical Mechanics, the generalized coordinates and momenta are also functions
of time, whose evolution is given by the Hamilton equations (1.42); the latter
express the time derivatives of coordinates and momenta in terms of the Hamiltonian
function. Then, for an arbitrary function % of the canonical coordinates, the total
derivative with respect of time is expressed through the Poisson bracket as in (1.53).
A relation of the same form as (1.53) is found in Quantum Mechanics by calculating
the time derivative of the expectation value (10.13). It is assumed that operator A
depends on time, but does not operate on it; as a consequence, the symbol @A =@t
indicates the operator resulting from differentiating A with respect to its functional
dependence on t. With these premises one finds

d

dt

Z

�

 �A  d� D
Z

�

�
@ �

@t
A  C  �

@A

@t
 C  �A

@ 

@t

�
d� : (10.23)

The time derivative of  is obtained from the time-dependent Schrödinger equation
(9.9). Considering the case where H is real yields @ =@t D �i H  =„ and
@ �=@t D i H  �=„, whence

d

dt
hAi D

Z

�

 �
@A

@t
 d�C

i

„

Z

�

 � .H A �A H /  d� ; (10.24)

5Namely, (10.22) is a theorem rather than a principle. A similar comment applies to the Pauli
principle (Sect. 15.6). The English translation of [63] is in [145].
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which has the same structure as (1.53). Other relations similar to those of Sect. 1.8
are also deduced from (10.24). For instance, letting A DH yields

d

dt
hHi D

�
@H

@t

�
; (10.25)

similar to (1.44). If hAi is a constant of motion, then

Z

�

 �
@A

@t
 d�C

i

„

Z

�

 � .H A �A H /  d� D 0 ; (10.26)

similar to (1.54) while, if A does not depend on time, (10.24) yields

d

dt
hAi D

i

„

Z

�

 � .H A �A H /  d� ; (10.27)

similar to (1.55). Finally, if A does not depend on time and commutes with
H , (10.24) yields dhAi=dt D 0, namely, the expectation value hAi is a constant
of motion.

10.8 Ehrenfest Theorem

An important application of (10.27) is found by replacing A with either a position
operator or a momentum operator. The calculation is shown here with reference to
the Hamiltonian operator H D �„2=.2m/r2 C V , where the potential energy V is
independent of time. Letting first A D x yields

.H x � x H /  D
„2

2m

�
x
@2 

@x2
�
@2x 

@x2

�
D
„2

2m

�
�2
@ 

@x

�
(10.28)

whence, using Opx D �i „ @=@x, it follows

d

dt
hxi D

i

„

Z

�

 �
„2

2m

�
�2
@ 

@x

�
d� D

1

m
h jOpxj i D

hpxi

m
: (10.29)

In conclusion, the relation dhxi=dt D hpxi=m holds, similar to the one found in
a classical case when the Hamiltonian function has the form H D p2=.2m/ C V
(compare with the second relation in (1.33)). Still with H D �„2=.2m/r2 C V ,
consider as a second example A D Opx D �i „ @=@x, to find

.H Opx � Opx H /  D �i „

�
V
@ 

@x
�
@.V  /

@x

�
D i „ 

@V

@x
: (10.30)
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From this, letting Fx D �@V=@x be the component of the force along x, it follows

d

dt
hpxi D

i

„

Z

�

 � i „ 
@V

@x
d� D hFxi ; (10.31)

also in this case similar to the classical one. Combining (10.29) and (10.31) shows
that the expectation values fulfill a relation similar to Newton’s law,

m
d2

dt2
hxi D hFxi : (10.32)

This result is called Ehrenfest theorem. If the dependence of Fx on position is weak
in the region where  is significant, the normalization of the wave function yields

d

dt
hpxi ' Fx

Z

�

 �  d� D Fx : (10.33)

In this case, called Ehrenfest approximation, the expectation value of position fulfills
Newton’s law exactly. If, on the contrary, Fx depends strongly on position in the
region where  is significant (as happens, e.g., when the potential energy has the
form of a step or a barrier), then the outcome of the quantum calculation is expected
to be different from the classical one (see, e.g., Sects. 11.2 and 11.3).

10.9 Complements

10.9.1 Minimum-Uncertainty Wave Function

It has been shown in Sect. 10.6 that when the two operators are associated with
conjugate dynamic variables, A D q and B D �i „ d=dq, the relation between
their standard deviations is given by (10.22). It is interesting to seek a form of
the wave function such that the equality �A�B D „=2 holds. If it exists, such
a form is called minimum-uncertainty wave function. To proceed one notes that the
equality yields the value �m D .jhCij=2/=.�B/2 corresponding to the minimum
of the polynomial (10.20); moreover, such a minimum is zero. On the other hand,
imposing the equality in (8.16) after letting � D i �m yields the more compact form
jjf C i �m gjj2 D 0, equivalent to f C i �m g D 0. Remembering the definitions given
in Sect. 10.6, it is f D .A � hAi/  , g D .B � hBi/  . Now, letting q0 D hAi,
p0 D „ k0 D hBi, from the relation f C i �m g D 0 one obtains the first-order
differential equation �m „ d =dq D Œi �m p0 � .q � q0/�  , whose solution is

 .q/ D  0 exp
�
i k0 q � .q � q0/

2=.2 �m „/
�
: (10.34)
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The normalization condition h j i D 1 yields  0 D .� �m „/
�1=4. Using hCi D „

and combining the expression of �m with the equality �A�B D „=2 provide �m D

2 .�A/2=„ whence, letting �q D �A,

 .q/ D
1

4
p
2�
p
�q

exp

�
i k0 q �

.q � q0/2

.2�q/2

�
: (10.35)

The minimum-uncertainty wave function turns out to be proportional to a Gaussian
function centered at q0. The factor exp.i k0 q/ disappears from j j2, whose peak
value and width are determined by �q. Note that this calculation leaves the
individual values of �q and �p D �B unspecified.

Problems

10.1 Starting from the wave packet (9.5) describing a free particle, determine
the time evolution of its position without resorting to the approximation used in
Sect. 9.6.

10.2 Using the results of Prob. 10.1, determine the time evolution of the standard
deviation of position.

10.3 Starting from the wave packet (9.5) describing a free particle, determine the
time evolution of its momentum without resorting to the approximation used in Sect.
9.6.

10.4 Using the results of Prob. 10.3, determine the time evolution of the standard
deviation of momentum.

10.5 Consider a one-dimensional wave function that at some instant of time is given
by a minimum-uncertainty packet (10.35) whose polar form is

˛ D
1

4
p
2�
p
�

exp

�
�
.x � x0/2

4 �2

�
; ˇ D k0 x : (10.36)

The wave packet is normalized to 1. Using the concepts introduced in Sect. 9.7.3,
find the “convective” and “thermal” parts of the expectation value of the kinetic
energy.



Part III
Applications of the Schrödinger Equation



Chapter 11
Elementary Cases

11.1 Introduction

The time-independent Schrödinger equation is a linear, second-order equation with
a coefficient that depends on position. An analytical solution can be found in a
limited number of cases, typically one-dimensional ones. This chapter illustrates
some of these cases, starting from the step-like potential energy followed by the
potential-energy barrier. In both of them, the coefficient of the Schrödinger equation
is approximated with a piecewise-constant function. Despite their simplicity, the
step and barrier potential profiles show that the quantum-mechanical treatment may
lead to results that differ substantially from the classical ones: a finite probability of
transmission may be found where the classical treatment would lead to a reflection
only, or vice versa. The transmission and reflection coefficients are defined by
considering a plane wave launched towards the step or barrier. It is shown that
the definition of the two coefficients can be given also for a barrier of a general
form, basing on the formal properties of the second-order linear equations in one
dimension. Finally, the case of a finite well is tackled, showing that in the limit of an
infinite depth of the well one recovers the results of the particle in a box illustrated
in a preceding chapter.

11.2 Step-Like Potential Energy

Consider a one-dimensional, step-like potential energy as shown in Fig. 11.1, with
V D 0 for x < 0 and V D V0 > 0 for x > 0. From the general properties of the
time-independent Schrödinger equation (Sect. 8.2.3) it follows E � 0. To proceed,
it is convenient to consider the two cases 0 < E < V0 and E > V0 separately.
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Fig. 11.1 The example of the
step-like potential energy
analyzed in Sect. 11.2. Only
the case 0 � E � V0 is
shown V0

x

E

V

11.2.1 Case A: 0 < E < V0

The Schrödinger equation is split over the two partial domains to yield
�

x < 0 W �w00 D k2w ; k D
p
2m E=„

x > 0 W w00 D ˛2w ; ˛ D
p
2m .V0 � E/=„

(11.1)

where the derivatives are indicated with primes. The solutions on the left and right
of the origin are respectively given by

w D

�
w� D a1 exp.i k x/C a2 exp.�i k x/ ; x < 0
wC D a3 exp.�˛ x/C a4 exp.˛ x/ ; x > 0

(11.2)

where it must be set a4 D 0 to prevent wC from diverging. Using the continuity of
w and w0 in the origin yields

�
wC.0/ D w�.0/ ; a1 C a2 D a3
w0C.0/ D w0�.0/ ; i k .a2 � a1/ D ˛ a3

(11.3)

Eliminating a3 provides the relation ˛ .a1 C a2/ D i k .a2 � a1/ whence

a2
a1
D

i kC ˛

i k � ˛
D

k � i˛

kC i˛
;

a3
a1
D 1C

a2
a1
D

2 k

kC i˛
; (11.4)

that determine a2, a3 apart from the arbitrary constant a1. This should be expected
as w is not normalizable. From ja2=a1j D jk � i˛j=jk C i˛j D 1 one finds
a2=a1 D exp.�i'/, with ' D 2 arctan.˛=k/. The solution of the time-independent
Schrödinger equation is then recast as

w D

�
w� D 2 a1 exp.�i'=2/ cos.k xC '=2/ ; x < 0
wC D Œ2 k=.kC i˛/� a1 exp.�˛ x/ ; x > 0

(11.5)
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The eigenvalues E are continuous in the range 0 � E < V0. The monochromatic
wave function corresponding to wk is  k.x; t/ D w.x/ exp.�iEk t=„/, with Ek D

„2 k2=.2m/.
The quantity R D ja2=a1j2 is called reflection coefficient of the monochromatic

wave. As shown in Sect. 11.4 from a more general point of view, R is the probability
that the wave is reflected by the step. In the case investigated here, where a particle
with 0 < E < V0 is launched towards a step, it is a2=a1 D exp.�i'/whence R D 1.

The solution (11.3) or (11.5) shows that w becomes vanishingly small on the right
of the origin as x! C1. When a wave packet is built up using a superposition of
monochromatic solutions, chosen in such a way that each energy Ek is smaller than
V0, its behavior is similar; as a consequence, the probability of finding the particle
on the right of the origin becomes smaller and smaller as the distance from the origin
increases. In conclusion, if a particle described by such a packet is launched from
x < 0 towards the step, the only possible outcome is the same as in a calculation
based on Classical Mechanics, namely, a reflection. A difference between the
classical and quantum treatment exists though: in the former the reflection occurs
at x D 0, whereas in the latter the reflection abscissa is not defined. This is better
understood by considering a wave packet of standard deviation �x approaching the
origin from x < 0. Considering the approximate form of the packet described in
Sect. 9.6, the incident envelope has the form Ai D A.x � u t/, and the localization
of the incident particle is described by j ij

2 D jAij
2. Due to its finite width, the

packet crosses the origin during a time �t � �x=u starting, e.g., at t D 0. At a later
instant �t C t0, where t0 � 0 is the time that the wave packet takes to move away
from the step to the extent that the interaction with it is practically completed, only
the reflected packet exists, described by j rj

2 D jArj
2, with Ar D AŒxC u .t � t0/�.

For 0 � t � �t C t0 both incident and reflected packets exist. One could think
that the reflection abscissa is given by the product u t0; however, t0 depends on
the form of the packet, so the reflection abscissa is not well defined. Before the
particle starts interacting with the step, only the incident packet exists and the
normalization

R 0
�1 j ij

2 dx D 1 holds; similarly, after the interaction is completed,

only the reflected packet exists and
R 0
�1 j rj

2 dx D 1. For 0 � t � �t C t0 the
normalization is achieved by a superposition of the incident and reflected packets.

11.2.2 Case B: E > V0

Still considering the one-dimensional step of Fig. 11.1, let E > V0. In this case the
time-independent Schrödinger equation reads

�
x < 0 W �w00 D k2 w ; k D

p
2m E=„

x > 0 W �w00 D k21 w ; k1 D
p
2m .E � V0/=„

(11.6)
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whose solution is

w D

�
w� D a1 exp.i k x/C a2 exp.�i k x/ ; x < 0
wC D a3 exp.i k1 x/C a4 exp.�i k1 x/ ; x > 0

(11.7)

Remembering the discussion of Sect. 9.6, function w� in (11.7) describes a superpo-
sition of two planar and monochromatic waves, belonging to the x < 0 region, that
propagate in the forward and backward direction, respectively; a similar meaning
holds for wC with reference to the x > 0 region. Now one assumes that an extra
information is available, namely, that the particle was originally launched from
x < 0 towards the origin; it follows that one must set a4 D 0, because a wave
that propagates in the backward direction cannot exist in the region x > 0. By the
same token one should set a1 D 0 if the particle was launched from x > 0 towards
the origin. From the continuity of w and w0 in the origin it follows

�
wC.0/ D w�.0/ ; a1 C a2 D a3
w0C.0/ D w0�.0/ ; k .a1 � a2/ D k1 a3

(11.8)

Eliminating a3 yields k1 .a1 C a2/ D k .a1 � a2/ whence

a2
a1
D

k � k1
kC k1

;
a3
a1
D 1C

a2
a1
D

2 k

kC k1
; (11.9)

that determine a2, a3 apart from the arbitrary constant a1. The eigenvalues are
continuous in the range E > V0. The monochromatic, time-dependent wave function
reads

 D

�
 � D w� exp.�i E� t=„/ ; x < 0
 C D wC exp.�i EC t=„/ ; x > 0

(11.10)

where E� D E.k/ D „2 k2=.2m/ and EC D E.k1/ D „2 k21=.2m/ C V0. Note
that k > k1 > 0, namely, the modulus of the particle’s momentum in the x > 0

region is smaller than in the x < 0 region; this is similar to what happens in the
classical treatment. On the other hand, from k > k1 it follows a2 ¤ 0, showing that
a monochromatic plane wave propagating in the backward direction exists in the
x < 0 region. In other term, a finite probability of reflexion is present, which would
be impossible in the classical treatment. As before, the reflection coefficient of the
monochromatic wave is defined as R D ja2=a1j2 < 1. In turn, the transmission
coefficient is defined as T D 1 � R whence, from (11.9),

R D

ˇ̌
ˇ̌a2
a1

ˇ̌
ˇ̌
2

D
.k � k1/2

.kC k1/2
; T D

4 k k1
.kC k1/2

D
k1
k

ˇ̌
ˇ̌a3
a1

ˇ̌
ˇ̌ : (11.11)

Like in the 0 < E < V0 case one may build up a wave packet of standard
deviation �x. Still considering a packet approaching the origin from x < 0, the
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envelope has the form Ai D A.x � u t/. Before the particle starts interacting with
the step, its localization is given by j ij

2 D jAij
2. The packet crosses the origin in a

time �t � �x=u and, using the symbols k0, k10 to indicate the center of the packet
in the momentum space for x < 0 and x > 0, respectively, from the first of (11.11)
the reflected packet is described by

j rj
2 D

.k0 � k10/2

.k0 C k10/2
jA.xC u t/j2 : (11.12)

It has the same group velocity, hence the same width, as j ij
2. The transmitted

packet has the form

j tj
2 D

.2k0/2

.k0 C k10/2
jA.k0 x=k10 � u t/j2 ; (11.13)

and its group velocity is u1 D dx=dt D k10 u=k0 < u. As all packets cross
the origin in the same time interval �t it follows �x=u D �x1=u1 whence
�x1 D .k10=k0/�x < �x. This result shows that the transmitted packet is slower
and narrower than the incident packet (if the incident packet was launched from
x > 0 towards the origin, the transmitted packet would be faster and broader). FromR 0
�1 j ij

2 dx D 1 it follows

Pr D

Z 0

�1

j rj
2 dx D

.k0 � k10/2

.k0 C k10/2
; (11.14)

Pt D
k10
k0

Z 1

0

j tj
2 d

k0 x

k10
D

k10
k0

.2 k0/2

.k0 C k10/2
D

4 k0 k10
.k0 C k10/2

: (11.15)

The two numbers Pr, Pt fulfill the relations 0 < Pr;Pt < 1 , PrCPt D 1, and are the
reflection and transmission probabilities of the wave packet. The treatment outlined
above for the case E > V0 still holds when V0 < 0, E > 0. In particular, if V0 < 0

and jV0j � E, like in Fig. 11.2, from (11.16) it turns out Pr ' 1. This result is quite
different from that obtained from a calculation based on Classical Mechanics; in
fact, its features are similar to those of the propagation of light across the interface
between two media of different refraction index [15, Sects. 1.5,1.6]. The oddity of
the result lies, instead, in the fact that term

p
2m=„ cancels out in the expressions

of Pr and Pt, so that one finds

Pr D
.
p

E0 �
p

E0 � V0/2

.
p

E0 C
p

E0 � V0/2
; Pt D

p
E0 .E0 � V0/

.
p

E0 C
p

E0 � V0/2
; (11.16)

with E0 the total energy corresponding to k0 and k10. Thus, the classical result Pr D

0, Pt D 1 cannot be recovered by making, e.g., m to increase: the discontinuity in the
potential energy makes it impossible to apply the Ehrenfest approximation (10.33)
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Fig. 11.2 Another example
of the step-like potential
energy analyzed in Sect. 11.2,
with V0 < 0 and jV0j 	 E

V0

V
E

x

no matter what the value of the mass is. The same happens for the monochromatic
wave: in fact, using (11.6) and replacing E0 with E in (11.16) makes the latter equal
to (11.11). To recover the classical result it is necessary to consider a potential
energy whose asymptotic values 0 and V0 are connected by a smooth function, and
solve the corresponding Schrödinger equation. The classical case is then recovered
by letting m increase (Prob. 11.1).

11.3 Energy Barrier

Consider a one-dimensional energy barrier as shown in Fig. 11.3, with V D V0 > 0
for 0 < x < s and V D 0 elsewhere. From the general properties of the time-
independent Schrödinger equation (Sect. 8.2.3) it follows E � 0. To proceed, it is
convenient to consider the two cases 0 < E < V0 and E > V0 separately.

11.3.1 Case A: 0 < E < V0

The Schrödinger equation is split over the three domains to yield
8
<

:

x < 0 W �w00 D k2 w ; k D
p
2m E=„

0 < x < s W w00 D ˛2 w ; ˛ D
p
2m .V0 � E/=„

s < x W �w00 D k2 w ; k D
p
2m E=„

(11.17)

where the derivatives are indicated with primes. The solutions of (11.17) are,
respectively,

w D

8
<

:

w� D a1 exp.i k x/C a2 exp.�i k x/ ; x < 0
wB D a3 exp.˛ x/C a4 exp.�˛ x/ ; 0 < x < s
wC D a5 exp.i k x/C a6 exp.�i k x/ ; s < x

(11.18)
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Using the continuity of w and w0 in the origin,

�
w�.0/ D wB.0/ ; a1 C a2 D a3 C a4
w0�.0/ D w0B.0/ ; i k .a1 � a2/ D ˛ .a3 � a4/

(11.19)

Solving for a1, a2 and letting # D 1 C i˛=k yields 2 a1 D # a4 C #� a3, 2 a2 D
# a3C #� a4. Using the same reasoning as in Sect. 11.2.2, one now assumes that an
extra information is available, namely, that the particle was originally launched from
x < 0 towards the barrier; it follows that one must set a6 D 0 in (11.18), because
a wave that propagates in the backward direction cannot exist in the region x > s.
By the same token one should set a1 D 0 if the particle were launched from x > s
towards the barrier. Taking the first case (a6 D 0) and using the continuity of w and
w0 at x D s provides

�
wB.s/ D wC.s/ ; a3 exp.˛ s/C a4 exp.�˛ s/ D a5 exp.i k s/
w0B.s/ D w0C.s/ ; ˛ Œa3 exp.˛ s/ � a4 exp.�˛ s/� D i k a5 exp.i k s/

(11.20)

whence 2 a3 D a5 � exp.i k s � ˛ s/, 2 a4 D a5 �� exp.i k s C ˛ s/, with � D
1 C i k=˛. In summary, a1, a2 are linear combinations of a3, a4; the latter, in
turn, are proportional to a5. It follows that if it were a5 D 0, then it would also
be a3 D a4 D 0 and a1 D a2 D 0. However, this is impossible because w�
cannot vanish identically; as a consequence it is necessarily a5 ¤ 0. This shows
that wC D a5 exp.i k x/ differs from zero, namely, that a wave propagating in the
forward direction exists for x > s.

As the relations involving the coefficients ai are homogeneous, they determine
a2, a3, a4, a5 apart from the arbitrary constant a1. This should be expected as w
is not normalizable. As shown below, the determination of the ratios between the
coefficient does not impose any constraint on the total energy; as a consequence, the
eigenvalues 0 � E < V0 are continuous. The ratio a5=a1 is found from

4
a1
a5
D 2

a3
a5
#�C2

a4
a5
# D � exp.i k s�˛ s/ #�C�� exp.i k sC˛ s/ # : (11.21)

Letting� D # �� D 2Ci .˛=k�k=˛/ one finds 4 a1=a5 exp.�i k s/ D � exp.˛ s/C
�� exp.�˛ s/, one finds a1=a5 exp.�i k s/ D cosh.˛ s/Ci .˛=k�k=˛/ sinh.˛ s/=2.
Using the identity cosh2 ��sinh2 � D 1 finally yields for the transmission coefficient
of the monochromatic wave

1

T
D

ˇ̌
ˇ̌a1
a5

ˇ̌
ˇ̌
2

D 1C
1

4

�
˛

k
C

k

˛

�2
sinh2.˛ s/ : (11.22)

A similar calculation provides the ratio a2=a1; it is found

R D

ˇ̌
ˇ̌a2
a1

ˇ̌
ˇ̌
2

D
.˛=kC k=˛/2 sinh2.˛ s/=4

1C .˛=kC k=˛/2 sinh2.˛ s/=4
D 1 �

ˇ̌
ˇ̌a5
a1

ˇ̌
ˇ̌
2

D 1 � T : (11.23)
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In the classical treatment, if a particle with 0 < E < V0 is launched from the left
towards the barrier, it is reflected at x D 0; similarly, it is reflected at x D s if it
is launched from the right. In the quantum treatment it is T > 0: in contrast to the
classical case, the particle can cross the barrier. For a given width s of the barrier
and total energy E of the particle, the transmission coefficient T decreases when
V0 increases; for E and V0 fixed, T becomes proportional to exp.�2˛s/ when s
increases to the extent that ˛ s � 1. Finally, T ! 1 as s ! 0; this was expected
because the potential energy becomes equal to zero everywhere.1

The interaction of the particle with the barrier is better understood by considering
a wave packet approaching the origin from x < 0. The incident envelope has
the form Ai D A.x � u t/. Before reaching the origin the particle’s localization
is described by j ij

2 D jAij
2. After the interaction with the barrier is completed,

both the reflected and transmitted packet exist, that move in opposite directions
with the same velocity. Letting Pr D

R 0
�1 j rj

2 dx, Pt D
R1

s j tj
2 dx, and observing

that
R 0
�1 j ij

2 dx D 1, it follows that the two numbers Pr Pt fulfill the relations
0 < Pr;Pt < 1, Pr C Pt D 1, and are the reflection and transmission probabilities
of the wave packet. In summary, the solution of the Schrödinger equation for the
energy barrier shows that a particle with 0 < E < V0 has a finite probability of
crossing the barrier, which would be impossible in the classical treatment. The same
result holds when the form of the barrier is more complicate than the rectangular one
(Sect. 11.4). The phenomenon is also called tunnel effect.

11.3.2 Case B: 0 < V0 < E

Still considering the one-dimensional barrier of Fig. 11.3 let 0 < V0 < E. The
Schrödinger equation over the three domains reads

8
<

:

x < 0 W �w00 D k2 w ; k D
p
2m E=„

0 < x < s W �w00 D k21 w ; k1 D
p
2m .E � V0/=„

s < x W �w00 D k2 w ; k D
p
2m E=„

(11.24)

where the derivatives are indicated with primes. The solutions of (11.24) are,
respectively,

w D

8
<

:

w� D a1 exp.i k x/C a2 exp.�i k x/ ; x < 0
wB D a3 exp.i k1 x/C a4 exp.�i k1 x/ ; 0 < x < s
wC D a5 exp.i k x/C a6 exp.�i k x/ ; s < x

(11.25)

1If the potential energy were different on the two sides of the barrier, namely, V D V0 > 0 for
0 < x < s, V D VL for x < 0, and V D VR ¤ VL for x > s, with V0 > VL;VR, the limit s ! 0

would yield the case discussed in Sect. 11.2 (compare also with Sects. 11.4 and 17.9.4).
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Fig. 11.3 The example of the
one-dimensional energy
barrier analyzed in Sect. 11.3.
Only the case 0 � E � V0 is
shown V0

x

E

V

s

As in Sect. 11.3.2 one assumes that the particle was originally launched from x < 0,
so that a6 D 0. The calculation follows the same line as in Sect. 11.3.2, and yields
that w� and wC are the same as in (11.24), whereas wB is found by replacing ˛ with
i k1 there. The determination of the ratios between the coefficient ai does not impose
any constraint on the total energy; as a consequence, the eigenvalues E > V0 are
continuous. Using cosh.i �/ D cos.�/, sinh.i �/ D i sin.�/ then yields

ˇ̌
ˇ̌a1
a5

ˇ̌
ˇ̌
2

D 1C
1

4

�
k

k1
�

k1
k

�2
sin2.k1 s/ (11.26)

where, from (11.24), k1=k D
p
1 � V0=E. Similarly,

ˇ̌
ˇ̌a2
a1

ˇ̌
ˇ̌
2

D
.k=k1 � k1=k/2 sin2.k1 s/=4

1C .k=k1 � k=k1/
2 sin2.k1 s/=4

D 1 �

ˇ̌
ˇ̌a5
a1

ˇ̌
ˇ̌
2

: (11.27)

In the classical treatment, if a particle with 0 < V0 < E is launched towards the
barrier, it is always transmitted. In the quantum treatment it may be R > 0: in
contrast to the classical case, the particle can be reflected.2 The barrier is transparent
(R D 0) for k1 s D i� , with i any integer. Letting �1 D 2�=k1 yields s D i�1=2,
which is equivalent to the optical-resonance condition in a sequence of media of
refractive indices n1, n2, n1 [15, Sect. 1.6].

2The reflection at the barrier for k1 s ¤ i� explains why the experimental value of the Richardson
constant A is lower than the theoretical one. Such a constant appears in the expression Js D
A T2 expŒ�EW=.kB T/� of the vacuum-tube characteristics [31]. This is one of the cases where the
effect is evidenced in macroscopic-scale experiments. Still considering the vacuum tubes, another
experimental evidence of the tunnel effect is the lack of saturation of the forward current-voltage
characteristic at increasing bias.
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11.4 Energy Barrier of a General Form

The interaction of a particle with an energy barrier has been discussed in Sect. 11.3
with reference to the simple case of Fig. 11.3. Here it is extended to the case of a
barrier of a general form—still considering the one-dimensional, time-independent
Schrödinger equation for a particle of mass m, to the purpose of calculating the
transmission coefficient T . The equation reads

d2w

dx2
C q w D 0 ; q.x/ D

2m

„2
.E � V/ ; (11.28)

where the potential energy V.x/ is defined as follows:

V D VL D const. ; x < 0 I V D VR D const. ; 0 < s < x : (11.29)

In the interval 0 � x � s the potential energy is left unspecified, with the only
provision that its form is such that (11.28) is solvable. It will also be assumed that
E > VL;VR; as a consequence, the total energy is not quantized and all values of E
larger than VL and VR are allowed. For a given E the time-dependent wave function
takes the form  .x; t/ D w.x/ exp.�i E t=„/, where

w.x/ D a1 exp.i kL x/C a2 exp.�i kL x/ ; x < 0 ; (11.30)

w.x/ D a5 exp.i kR x/C a6 exp.�i kR x/ ; s < x : (11.31)

The real parameters kL; kR > 0 are given by kL D
p
2m .E � VL/=„ and, respec-

tively, kR D
p
2m .E � VR/=„. Like in the examples of Sect. 11.3 it is assumed

that the particle is launched from �1, so that the plane wave corresponding to the
term multiplied by a6 in (11.31) does not exist. As a consequence one lets a6 D 0,
whereas a1, a2, a5 are left undetermined. In the interval 0 � x � s the general
solution of (11.28) is

w.x/ D a3 u.x/C a4 v.x/ ; 0 � x � s ; (11.32)

where u, v are two linearly independent solutions. The continuity equation for the
wave function (9.13), becomes in this case dJ =dx D 0, namely, J D const. In
turn, the density of the probability flux reads

J D
i „

2m

�
w

dw�

dx
� w�

dw

dx

�
: (11.33)

Applying (11.33) to (11.30) and (11.31) yields, respectively,

J D
„ kL

m

�
ja1j

2 � ja2j
2
	
; x < 0 I J D

„ kR

m
ja5j

2 ; s < x : (11.34)
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As J is a constant one may equate the two expressions in (11.34) to obtain

ˇ̌
ˇ̌a2
a1

ˇ̌
ˇ̌
2

C
kR

kL

ˇ̌
ˇ̌a5
a1

ˇ̌
ˇ̌
2

D 1 : (11.35)

The division by ja1j2 leading to (11.35) is allowed because, by hypothesis, the
particle is launched from �1, so that a1 ¤ 0. From (11.35) one defines the
reflection and transmission coefficients

R D

ˇ̌
ˇ̌a2
a1

ˇ̌
ˇ̌
2

; T D
kR

kL

ˇ̌
ˇ̌a5
a1

ˇ̌
ˇ̌
2

: (11.36)

Given E, VL, VR, and a1, the transmission and reflection coefficients depend on the
form of the potential energy in the interval 0 � x � s. By way of example, if
VL D 0 and the potential energy in the interval 0 � x � s is equal to some constant
VB � 0, then R is expected to vary from 0 to 1 as VB varies from 0 to C1. On
the other hand, R and T cannot vary independently from each other because of the
relation RC T D 1. As a consequence, it suffices to consider only one coefficient,
say, T . From the discussion above it follows that the coefficient T depends on the
shape of the potential energy that exists within the interval 0 � x � s, namely,
it is a functional of V: 0 � T D TŒV� � 1. One may also note that the relation
R C T D 1 derives only from the constancy of J due to the one-dimensional,
steady-state condition. In other terms, the relation R C T D 1 does not depend
on the form of the potential energy within the interval 0 � x � s. It must then
reflect some invariance property intrinsic to the solution of the problem. In fact, the
invariance is that of the density of the probability flux J , which is intrinsic to the
form of the Schrödinger equation and leads to the relation (11.35).

For the sake of generality one provisionally considers a slightly more general
equation than (11.28), built by the linear operator

L D
d2

dx2
C p.x/

d

dx
C q.x/ ; (11.37)

where the functions p and q are real. If u is a solution of the differential equation
L w D 0 in the interval 0 � x � s, let P.x/ be any function such that p D dP=dx,
and define

v.x/ D u.x/
Z x

a

expŒ�P./�

u2./
d ; (11.38)

where a, x belong to the same interval. It is found by inspection that L v D 0 in the
interval 0 � x � s, namely, v is also a solution. Moreover, the Wronskian of u and
v (Sect. A.12) reads

W.x/ D u v0 � u0 v D exp.�P/ : (11.39)
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As the Wronskian never vanishes, u and v are linearly independent. This shows that
for any solution u of the differential equation L w D 0 in a given interval, (11.38)
provides another solution which is linearly independent from u (see also Prob. 8.3).
As the differential equation is linear and of the second order, the general solution is
then given by a linear combination of u and v.

Being the equation L w D 0 homogeneous, the solution u may be replaced by
�u, with � ¤ 0 a constant. In this case v must be replaced by v=� due to (11.38).
It follows that the Wronskian (11.39) is invariant under scaling of the solutions.
Another consequence of the homogeneity of L w D 0 is that the dimensions of w
may be chosen arbitrarily. The same holds for the dimensions of u. Once the latter
have been chosen, the dimensions of v follow from (11.38); in fact, the product uv
has the dimensions of a length. From (11.32) it then follows that the products a3 u
and a4 v have the same dimensions.

The linear independency allows one to choose for u and v the two fundamental
solutions, namely, those having the properties [66, Sect. 5.2]

u.0/ D 1 ; u0.0/ D 0 ; v.0/ D 0 ; v0.0/ D 1 ; (11.40)

so that the Wronskian W equals 1 everywhere. Then, letting a6 D 0 in (11.31) and
prescribing the continuity of the solution and its derivative at x D 0 and x D s
yields, from (11.32),

a3 D a1 C a2 ; a4 D i kL .a1 � a2/ ; (11.41)

a5 exp.jkRs/ D a3 us C a4 vs ; i kR a5 exp.i kR s/ D a3 u0s C a4 v
0
s ; (11.42)

where suffix s indicates that the functions are calculated at x D s. Eliminating
a5 exp.i kR s/ yields .i kR us � u0s/ a3 D .v0s � i kR vs/ a4 whence, from (11.41),

a2
a1
D

kLkRvs C u0s C j .kL v
0
s � kR us/

kLkRvs � u0s C j .kL v0s C kR us/
D

AC jB

CC jD
: (11.43)

In conclusion, T D 1� ja2=a1j
2 D .C2 � A2CD2 � B2/=.C2CD2/. Using W D 1

transforms the numerator into C2�A2CD2�B2 D 4 kL kR .us v
0
s�vs u0s/ D 4 kL kR.

In turn, the denominator reads C2 C D2 D 2 kL kR C .kR us/
2 C .u0s/

2 C .kL v
0
s/
2 C

.kL kR vs/
2, whence

T D
4 kL kR

2 kL kR C .kR us/2 C .u0s/
2 C .kL v0s/

2 C .kL kR vs/2
: (11.44)

The expression of the transmission coefficient may be recast as T D 1=.1CF/, with

F D
1

4 kL kR

h�
u0s
	2
C .kR us/

2
i
C

kL

4 kR

h�
v0s
	2
C .kR vs/

2
i
�
1

2
: (11.45)
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It is easily shown that F > 0; in fact, this condition is equivalent to .kR us�kL v
0
s/
2C

.u0s C kL kR vs/
2 > 0. In conclusion, (11.44) is the expression of the transmission

coefficient across a barrier of any form, with no approximation [110]. To calculate
T it is necessary to determine the four quantities us, u0s, vs, and v0s. Actually only
three of them suffice thanks to the condition us v

0
s � u0s vs D 1.

Repeating the calculation of this section after letting a1 D 0, a6 ¤ 0 provides
the known result that, for a given barrier, the transmission probability for a particle
of energy E is the same whether the particle is launched from the left or from the
right. The property holds also in the relativistic case [98].

11.5 Energy Well

Taking a one-dimensional case, let V D V0 < 0 for 0 < x < s and V D 0 elsewhere.
From the general properties of the time-independent Schrödinger equation it follows
E � V0. The case E > 0 is treated in the same way as that of Sect. 11.3.2 and leads
to similar results. The case V0 < E < 0, shown in Fig. 11.4, is instead different
from those investigated above: the total energy is quantized and the wave function
is square integrable. The Schrödinger equation over the three domains reads

8
<

:

x < 0 W w00 D ˛2 w ; ˛ D
p
�2m E=„

0 < x < s W �w00 D k2 w ; k D
p
2m .E � V0/=„

s < x W w00 D ˛2 w ; ˛ D
p
�2m E=„

(11.46)

where the derivatives are indicated with primes. The solutions of (11.46) are,
respectively,

w D

8
<

:

w� D a1 exp.˛ x/C a5 exp.�˛ x/ ; x < 0
wW D a2 exp.i k x/C a3 exp.�i k x/ ; 0 < x < s
wC D a4 exp.�˛ x/C a6 exp.˛ x/ ; s < x

(11.47)

Fig. 11.4 The example of the
one-dimensional energy well
analyzed in Sect. 11.5. Only
the case V0 < E < 0 is shown

V0

E

xs

V
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where it must be set a5 D a6 D 0 to prevent w� and wC from diverging. Using the
continuity of w and w0 in the origin,

�
w�.0/ D wW.0/ ; a1 D a2 C a3
w0�.0/ D w0W.0/ ; ˛ a1 D i k .a2 � a3/

(11.48)

Solving for a2, a3 and letting # D 1 C i˛=k yields 2 a2 D #� a1, 2 a3 D # a1
whence a2=a3 D #�=# . Then, using the continuity of w and w0 at x D s yields

�
wW.s/ D wC.s/ ; a4 exp.�˛ s/ D a2 exp.i k s/C a3 exp.�i k s/
w0W.s/ D w0C.s/ ; �˛ a4 exp.�˛ s/ D i k Œa2 exp.i k s/ � a3 exp.�i k s/�

Solving for a2, a3 yields 2 a2 D a4 # exp.�˛ s � i k s/, 2 a3 D a4 #� exp.�˛ s C
i k s/, whence a2=a3 D .#=#�/ exp.�2 i k s/. In summary, a2, a3 are proportional
to a1 and to a4. It follows that if it were a1 D 0 or a4 D 0, then it would also be
a2 D a3 D 0. However, this is impossible because w cannot vanish identically; as
a consequence it is necessarily a1 ¤ 0, a4 ¤ 0. This shows that, in contrast to the
classical case, the particle penetrates the boundaries of the well. The relations found
so far determine two different expressions for a2=a3 : For them to be compatible,
the equality #2 exp.�i k s/ D .#�/2 exp.i k s/ must hold, which represents the
condition of a vanishing determinant of the 4 � 4, homogeneous algebraic system
whose unknowns are a1, a2, a3, and a4. Using # D 1Ci˛=k, the equality is recast as

�
1 �

˛2

k2

�
sin.k s/ D 2

˛

k
cos.k s/ ;

k2 � ˛2

2 ˛ k
D cot.k s/ : (11.49)

Finally, replacing the expressions of ˛ and k provides the transcendental equation

E � V0=2p
�E .E � V0/

D cot

 

s

p
2m

„

p
E � V0

!

; V0 < E < 0 ; (11.50)

in the unknown E, whose roots fulfill the compatibility condition. As a consequence,
such roots are the eigenvalues of E. Given m, s, and V0, let n � 1 be an integer such
that

.n � 1/ � < s
p
�.2m=„2/V0 � n� : (11.51)

Such an integer always exists and indicates the number of branches of cot.k s/
that belong (partially or completely) to the interval V0 < E < 0. In such an
interval the left-hand side of (11.50) increases monotonically from �1 to C1;
as a consequence, (11.50) has n roots V0 < E1 ;E2 ; : : : ;En < 0. An example
with five roots is shown in Fig. 11.5; the corresponding calculation is carried out
in Prob. 11.2. When an eigenvalue, say Ei, is introduced into (11.46), it provides ˛i,
ki, and #i D 1C i˛i=ki; in conclusion,
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Fig. 11.5 Graphic solution of (11.50) using the auxiliary variable �. The solutions �1; : : : ; �5 are
the intercepts of the left-hand side (thicker line) with the branches of the right-hand side. The data
are given in Prob. 11.2

ai2 D
1

2
#�i ai1 ; ai3 D

1

2
#i ai1 ; ai4 D

#�i
#i

exp.˛i sC i ki s/ ai1 :

(11.52)

The ith eigenfunction wi can thus be expressed, from (11.50), in terms of ai1 alone.
The latter, in turn, is found from the normalization condition

R C1
�1 jwij

2 dx D 1.
The case of the box treated in Sect. 8.2.2 is obtained by letting V0 ! �1 here;

at the same time one lets E! �1 in such a way that the difference E � V0 is kept
finite. In this way, w� and wC in (11.47) vanish identically and yield the boundary
conditions for wW used in Sect. 8.2.2.

Problems

11.1 Consider a smooth potential energy described by

V.x/ D
V0

1C exp.�x=a/
; (11.53)

with V0 > 0, a > 0 (Fig. 11.6). The limit of V.x/ for a! 0 yields the discontinuous
step of Sect. 11.2. Considering a monochromatic wave with E > V0 launched from
the left towards the barrier, the reflection coefficient is found to be [55, Sect. 2.2]
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Fig. 11.6 The smooth potential energy considered in Prob. 11.1, with V0 D 2 and E D 2:5

(arbitrary units)

R.a/ D
sinh2Œ� a

p
2m .
p

E �
p

E � V0/=„�

sinh2Œ� a
p
2m .
p

EC
p

E � V0/=„�
: (11.54)

Discuss the limiting cases a ! 0 and m ! 1 and compare the results with those
found in Sect. 11.2.

11.2 Find the eigenvalues of the Schrödinger equation for an energy well like that
of Fig. 11.5, having a width s D 15 Å D 1:5� 10�9 m and a depth3 �V0 D 3 eV '
4:81 � 10�19 J. Use m ' 9:11 � 10�31 kg, „ ' 1:05 � 10�34 J s.

3The electron Volt (eV) is a unit of energy obtained by multiplying 1 J by a number equal to the
modulus of the electron charge expressed in C (Table D.1).



Chapter 12
Cases Related to the Linear Harmonic Oscillator

12.1 Introduction

The chapter is devoted to the solution of the Schrödinger equation for the linear
harmonic oscillator, and to a number of important application of the results. The
importance of the problem has already been outlined in the sections devoted to the
classical treatment: its results can in fact be applied, with little or no modification,
to mechanical situations where the positional force acting on the particle can be
replaced with a first-order expansion, or to more complicate systems whose degrees
of freedom can be separated into a set of Hamiltonian functions of the linear-
harmonic-oscillator type. Such systems are not necessarily mechanical: for instance,
the energy of the electromagnetic field in vacuo is amenable to such a separation,
leading to the formal justification of the concept of photon. Similarly, a system of
particles near a mechanical-equilibrium point can be separated in the same manner,
providing the justification of the concept of phonon. An interesting property of the
Fourier transform of the Schrödinger equation for the linear harmonic oscillator is
shown in the complements.

12.2 Linear Harmonic Oscillator

An example of paramount importance is that of the linear harmonic oscillator,
whose classical treatment is given in Sect. 3.3. The potential energy is shown in
Fig. 12.1. From the general properties of the time-independent Schrödinger equation
(Sect. 8.2.3) it follows E � 0. Also, the time-independent wave function w is
expected to be square integrable. The Hamiltonian operator is found by replacing p
with Op D �i „ d=dx in (3.1), yielding the Schrödinger equation

�
„2

2m

d2w

dx2
C
1

2
m!2 x2 w D E w ; ! D

p
c=m ; (12.1)
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Fig. 12.1 The potential
energy of the linear harmonic
oscillator (Sect. 12.2)

c x2 / 2

x

V

E

with c the elastic constant. The equation is conveniently recast in normalized form
by defining the dimensionless quantities � D E=.„!/,  D .m!=„/1=2 x:

H 0w D � w ; H 0 D
1

2

�
2 �

d2

d2

�
: (12.2)

The eigenvalues and eigenfunctions of (12.2) are found by means of the factorization
method illustrated in Sect. 13.3. To begin, one defines the first-order operator

Oa D
1
p
2

�
 C

d

d

�
; (12.3)

whence, for all f and g vanishing at infinity, an integration by parts yields

Z C1

�1

g� Oaf d D
Z C1

�1

�
Oa�g
	�

f d ; (12.4)

with Oa� D . � d=d/=
p
2 the adjoint operator of Oa. As Oa� ¤ Oa, Oa is not Hermitean.

Also, Oa and Oa� do not commute; using the definitions of Oa and Oa� yields

OaOa� � Oa� Oa D I ; OaOa� C Oa� Oa D 2H 0 ; (12.5)

with I the identity operator. From (12.5), after defining the operator N D Oa� Oa,
called number operator, one finds 2H 0 D .I C Oa� Oa/C Oa� Oa D 2N CI , whence

H 0w D N wCI w=2 D � w N w D

�
� �

1

2

�
w D �w ; (12.6)

where � D � � 1=2. The second relation in (12.6) shows that H 0 and N have the
same eigenfunctions, while their eigenvalues differ by 1=2. Using the same relation
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and observing that Oa and Oa� are real, one finds

Z C1

�1

w� Oa� Oaw d D
Z C1

�1

jOawj2 d D �
Z C1

�1

jwj2 d ; (12.7)

showing that N D Oa� Oa, in contrast to Oa and Oa�, is Hermitean, hence its eigenvalues
� are real. Moreover, they are nonnegative: in fact, the integral of jwj2 in (12.7)
is strictly positive because an eigenfunction cannot vanish identically; in turn, the
integral of jOawj2 is strictly positive if Ow ¤ 0, whereas it vanishes if Ow D 0

identically. As a consequence it is � D 0 if and only if Oaw D 0, otherwise it is
� > 0. Another relation is found by left multiplying by Oa� the first relation in (12.5),
to find N Oa��Oa�N D Oa�, whence a new operator is defined: N Oa� D Oa� .N CI /.
The action of the latter upon an eigenfunction w of N results in

N Oa�w D Oa� .N CI /w D Oa�� wC Oa�w D .� C 1/ Oa�w : (12.8)

In other terms, if � is an eigenvalue of N and w is an eigenfunction belonging to
�, then � C 1 is also an eigenvalue of N , with eigenfunction Oa�w. This reasoning
can be repeated indefinitely: N Oa� Oa�w D .� C 2/ Oa� Oa�w ; : : :; its conclusion is that
if a number � � 0 is known to be an eigenvalue of N , then all numbers � C 1,
� C 2; : : : belonging to the unlimited ladder1 beginning with � are also eigenvalues
of N . Also, if w is an eigenfunction belonging to �, the eigenfunctions belonging
to � C 1, � C 2; : : : are Oa�w, Oa� Oa�w; : : :.

One may argue that the same kind of reasoning should be applicable in the
backward direction as well, to check whether � � 1, � � 2 are eigenvalues of N . In
fact, right multiplying by Oa the first relation in (12.5) yields OaN �N Oa D Oa, whence
Oa .N �I / D N Oa. The action of N Oa upon an eigenfunction w of N results in

N Oaw D Oa .N �I /w D Oa� w � Oaw D .� � 1/ Oaw : (12.9)

Remembering that the eigenvalues of N are nonnegative, (12.9) shows that if � is
an eigenvalue of N and � � 1, than � � 1 is also an eigenvalue of N , to which Oaw
belongs. By induction, N OaOaw D .� � 2/ OaOaw, and so on. However, the backward
process cannot be repeated indefinitely because one of the numbers � � 2, � � 3; : : :
will eventually be found to be negative: this result contradicts (12.7), that shows
that the eigenvalues cannot be negative. The contradiction is due to the implicit
assumption that the eigenvalue � can be any real number, and is readily eliminated
by specifying that � D n D 0; 1; 2; : : :; consider in fact the eigenvalue n D 1 and
let w be an eigenfunction belonging to it. Applying (12.9) shows that w0 D Oaw is an
eigenfunction of N belonging to n D 0, namely, N w0 D 0. The next step in the
backward process would yield Oaw0 which, however, is not an eigenfunction because
it vanishes identically: this is easily found by combining hw0jN w0i D jjOaw0jj2

1The term “ladder” is introduced in Sect. 13.3.
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with N w0 D 0. In other terms, the backward process comes automatically to an
end when the eigenvalue n D 0 is reached.

The above reasoning shows that only the numbers n D 0; 1; 2; : : : are eigenvalues
of N . It also provides an easy method to calculate the eigenfunctions, that starts
from the result Oaw0 D 0 just found. Such a relation is a differential equation of the
form

1
p
2

�
 C

d

d

�
w0 D 0 ;

dw0
w0
D � d ; w0 D c0 exp

�
�
2

2

�
:

(12.10)

The normalization constant is found from (C.27), which yields c0 D ��1=4. The
eigenfunctions corresponding to n D 1; 2; : : : are found recursively with w1 D Oa�w0,
w2 D Oa�w1 D Oa� Oa�w0 ; : : : For example,

w1 D
1
p
2

�
w0 �

dw0
d

�
D

w0
p
2
2  : (12.11)

From this construction it is easily found that the eigenvalues are not degenerate, and
that wn is even (odd) if n is even (odd).2 Also, it can be shown that wn has the form
[96, Chap. XII.7]

wn./ D
�
nŠ 2np�

	�1=2
exp.�2=2/Hn./ ; (12.12)

where Hn is the nth Hermite polynomial

Hn./ D .�1/
n exp.2/

dn

dn
exp.�2/ : (12.13)

The eigenfunctions of the linear harmonic oscillator form a real, orthonormal set:

Z C1

�1

wnwm dx D ınm : (12.14)

By remembering that � D � � 1=2 D n and � D E=.„!/, one finds for the energy
E of the linear harmonic oscillator the eigenvalues

En D

�
nC

1

2

�
„! ; n D 0; 1; 2; : : : (12.15)

2The eigenfunction’s nature of being either even or odd is related to a general property of the
one-dimensional Schrödinger equation, specifically: if the eigenvalue E is simple and the potential
energy V is even, the eigenfunction corresponding to E is either even or odd (Prob. 8.4).
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In conclusion, the energy of the linear harmonic oscillator is the sum of the
minimum energy E0 D „!=2 > 0, also called zero-point energy, and of an
integer number of elementary quanta of energy „!. The paramount importance of
the example of the linear harmonic oscillator has already been emphasized in the
classical treatment of Sect. 3.13.1. Examples of application of the quantization of
the linear harmonic oscillator are given in Sects. 12.3, 12.4, and 12.5.

The Hermite polynomials (12.13) fulfill the recursive relation [59]

HnC1 � 2  Hn C 2 n Hn�1 D 0 ; n D 1; 2; : : : ; (12.16)

which is useful to determine some properties of the Oa, Oa� operators. For instance,
combining the definition of Oa� with (12.12) one obtains

Oa�wn D
1=
p
2

.nŠ 2n
p
�/1=2

exp.�2=2/

�
2  Hn �

dHn

d

�
: (12.17)

On the other hand, one finds from (12.13) that dHn=d D 2  Hn �HnC1. Replacing
the derivative in (12.17) yields

Oa�wn D
1=
p
2

.nŠ 2n
p
�/1=2

exp.�2=2/HnC1 D
p

nC 1wnC1 : (12.18)

This result shows that, apart from the multiplicative constant, Oa� transforms the state
of index n into that of index nC 1. Due to (12.15), the transformation corresponds
to an increase EnC1 � En D „! in the total energy of the oscillator. Since its
action “creates” a quantum of energy, Oa� is called creation operator. Using the same
procedure, combined with the recursive relation (12.16), one finds

Oawn D
p

n wn�1 : (12.19)

Due to the above, Oa is called destruction operator or annihilation operator. Note
that, due to (12.18, 12.19), the successive application of Oa and Oa� to wn is equivalent
to N wn D n wn.

12.3 Quantization of the Electromagnetic Field’s Energy

The energy of the electromagnetic field within a finite volume V free of charge has
been calculated in Sect. 5.6 in terms of the field’s modes. In such a calculation the
shape of V was chosen as that of a box whose sides d1, d2, d3 are aligned with the
coordinate axes and start from the origin (Fig. 5.1), so that V D d1 d2 d3. The energy
reads

Wem D
X

k�

Wk� ; Wk� D 2"0V !
2 sk� s�k� ; (12.20)
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where "0 is the vacuum permittivity, k D
P3

iD1 2 � ni ii=di, ni D 0;˙1;˙2; : : :,
� D 1; 2, and ! D c jkj, with c the speed of light and ii the unit vector of the ith
axis. Finally, sk� .t/ is one of the two components of the complex vector defined
by (5.29). The energy Wk� of the degree of freedom k; � is written in Hamiltonian
form by introducing the canonical coordinates qk� ; pk� such that

2
p
"0 V ! sk� D ! qk� C i pk� : (12.21)

Using (12.21) transforms (12.20) into

Wk� D
1

2
.! qk� C i pk� / .! qk� � i pk� / D

1

2

�
p2k� C !

2 q2k�
	
: (12.22)

The Hamiltonian operator is obtained by replacing qk� with Oqk� D qk� and pk� with
Opk� D �i „ d=dqk� in the last expression on the right of (12.22):

H 0
k� D �

„2

2

d2

dq2k�
C
!2

2
q2k� : (12.23)

It should be noted, however, that if the intermediate expression in (12.22), instead
of that on the right, is used for the replacement of the classical coordinates with the
corresponding operators, a different result is obtained. In fact, Oqk� and Opk� do not
commute so that, from (8.72), one obtains

H �
k� DH 0

k� �
1

2
„! : (12.24)

A third form of the Hamiltonian operator, different from the two above, is obtained
by exchanging the order of factors in the intermediate expression in (12.22) prior to
the replacement of the coordinates with operators:

H C
k� DH 0

k� C
1

2
„! : (12.25)

To proceed one considers H 0
k� first. The Schrödinger equation generated by it,

H 0
k�w0k� D E0k� w0k� (12.26)

is the equation (12.2) of the linear harmonic oscillator, whose eigenvalues (12.15)
read E0.nk� / D .nk� C 1=2/ „!, with nk� D 0; 1; 2 : : :, and are nondegenerate.
The second form (12.24) of the Hamiltonian operator generates the Schrödinger
equation H �

k�w�k� D E�k� w�k� , namely,

H 0
k� w�k� D

�
E�k� C

1

2
„!

�
w�k� ; (12.27)
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again the equation for the linear harmonic oscillator, whose operator is identical
to that of (12.26). As a consequence, its eigenvalues are E�.nk� / C „!=2 D

.nk� C 1=2/ „!, whence E�.nk� / D nk� „!. By the same token the eigenvalues
of (12.25) are found to be EC.nk� / D .nk�C1/ „!. From (12.20), the energy of the
electromagnetic field is the sum of the energy of the single modes; the three cases
considered above then yield:

W0
em D

X

k�

�
nk� C

1

2

�
„! ; W�em D

X

k�

nk� „! ; WCem D
X

k�

.nk� C 1/ „! ;

with ! D c jkj. In the expression of W0
em and WCem the sum over k of the terms

„!=2 and, respectively, „!, diverges. This is not acceptable because the total
energy within V is finite. On the contrary, for the expression of W�em to converge it is
sufficient that nk� vanishes from some jkj on; the correct Hamiltonian is thus H �

k� .
Grouping for each k the summands corresponding to � D 1 and � D 2, and letting
nk D nk1 C nk2, provides

W�em D
X

k

nk „! : (12.28)

In conclusion, the energy of each mode of oscillation is a multiple (0 included) of the
elementary quantum of energy „!.k/. This result provides the formal justification
of the concept of photon. The integer nk� is the occupation number of the pair k; � ,
whereas nk is the number of photons3 of the mode corresponding to k. Like in the
classical treatment, the energy of the electromagnetic field is the sum of the energies
of each mode of oscillation.

12.4 Quantization of the Electromagnetic Field’s Momentum

The momentum of the electromagnetic field within a finite volume V free of charge
has been calculated in Sect. 5.7 in terms of the field’s modes. Premises and symbols
here are the same as in Sect. 12.3. The momentum reads

Z

V

S
c2

dV D 2 "0 V
X

k

! sk � s�k k D
X

k�

1

c
Wk�

k
k
; (12.29)

3To complete the description of the photon it is necessary to work out also the quantum expression
of its momentum. This is done in Sect. 12.4. The concept of photon was introduced by Einstein in
1905 [45] (the English translation of [45] is in [133]). The quantization procedure shown here is
given in [41].
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with S the Poynting vector and k D jkj. For each pair k; � , the same quantization
procedure used for the energy in Sect. 12.3 is applicable here and yields the
operator H �

k� k=.c k/. As the latter differs by a constant vector from the Hamiltonian
operator (12.24) corresponding to the same pair k; � , the eigenvalues of the ith
component of momentum turn out to be

1

c
nk� „!

ki

k
D nk� „ki ; nk� D 0; 1; 2; : : : (12.30)

In conclusion, the eigenvalues of momentum corresponding to k; � are nk� „k.
Letting as in Sect. 12.3 nk D nk1 C nk2, the momentum of the electromagnetic field
is expressed in quantum terms as

P
k nk „k. This result shows that the momentum

of each mode of oscillation is a multiple (0 included) of the elementary quantum
of momentum „k, and completes the formal justification of the concept of photon
started in Sect. 12.3. Each photon has energy and momentum, given by „! and „k
respectively. Like in the classical treatment, the momentum of the electromagnetic
field is the sum of the momenta of each mode of oscillation.

12.5 Quantization of a Diagonalized Hamiltonian Function

A system of particles near an equilibrium point has been investigated in Sects. 3.9
and 3.10. The analysis led to the separation of the Hamiltonian function that reads

Ha � Va0 D

3NX

�D1

H� ; H� D
1

2
Pb2� C

1

2
!2� b2� : (12.31)

In (12.31), 3N is the number of degrees of freedom, b� the normal coordinate of
index � , !� the angular frequency corresponding to b� , and Va0 the minimum of the
system’s potential energy. Apart from the constant Va0, the Hamiltonian function Ha

is given by a sum of terms, each associated with a single degree of freedom. In turn,
each summand H� is identical to the Hamiltonian function of a linear harmonic
oscillator with m D 1. As a consequence, the quantum operator corresponding
to (12.31) takes the form

Ta C Va D

3NX

�D1

H� C Va0 ; H� D �
„2

2

@2

@b2�
C
1

2
!2� b2� ; (12.32)

and generates the eigenvalue equation .Ta C Va/ v D E v, where

 
3NX

�D1

H�

!

v D E0 v ; E0 D E � Va0 : (12.33)
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Being Ha the sum of operators acting on individual degrees of freedom, the
Schrödinger equation is separable (Sect. 10.3) and splits into 3N equations of the
form

H� v� �.�/ D E��.�/ v� �.�/ ; E0 D
3NX

�D1

E��.�/ ; (12.34)

where � D 1; 2; : : : ; 3N refers to the degrees of freedom, whereas �.�/ D
0; 1; 2; : : : counts the set of eigenvalue indices corresponding to a given � . Remem-
bering the solution of the Schrödinger equation for linear harmonic oscillator
(Sect. 12.2), the energy of the individual degree of freedom is

E��.�/ D

�
�.�/C

1

2

�
„!� ; �.�/ D 0; 1; 2; : : : : (12.35)

The total energy of the system then reads

E D Va0 C

3NX

�D1

�
�.�/C

1

2

�
„!� : (12.36)

As indicated in Sect. 3.10, the oscillation of the normal coordinate of index � is
called mode of the vibrating system. The classical expression of the energy associ-
ated with each mode has the same form as that of a mode of the electromagnetic
field (compare (12.31) with (12.22)). By analogy with the electromagnetic case, a
particle of energy „!� , called phonon, is introduced in the quantum description,
and the energy of the mode is ascribed to the set of phonons belonging to the mode.
The integers �.�/ are the occupation numbers of the normal modes of oscillation.4

Note that the quadratic form (12.31) of the total energy H� of each degree of
freedom of the oscillating system was derived directly, in contrast with that of the
electromagnetic field where the product of two linear forms was involved (compare
with (12.22)). For this reason, the discussion about three possible forms of the
Hamiltonian operator, carried out in Sect. 12.3, is not necessary here. The total
energy (12.36) does not diverge because the number of degrees of freedom is finite.

The standard way of describing the interaction of an electron with the vibrating
nuclei is using the quantum-mechanical, first-order perturbation theory (Sect. 17.8).

4The equilibrium distribution of the phonons’ occupation numbers �.�/ is the Bose-Einstein
statistics (Sect. 15.8.2).
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12.6 Complements

12.6.1 Comments About the Linear Harmonic Oscillator

The normalized form (12.2) of the Schrödinger equation for the linear harmonic
oscillator is �d2wn=d2C 2 wn D 2 �n wn. Due to the exponential decay at infinity,
the Fourier transform (C.16) of the eigenfunction exists. Let

un.�/ D Fwn D
1
p
2�

Z C1

�1

wn./ exp.�i � / d : (12.37)

Thanks to the property (C.22) of the Fourier transform it is Fd2wn=d2 D ��2 un,
F 2 wn D �d2un=d�2. Fourier transforming (12.2) thus yields

1

2
�2 un �

1

2

d2un

d�2
D �n un ; (12.38)

namely, an equation identical to (12.2), having the same eigenvalue. As �n is not
degenerate, it follows un / wn, namely, the eigenfunctions of the linear harmonic
oscillator are equal to their own Fourier transforms apart from a multiplicative
constant at most.5

5Compare with (C.83), where the property is demonstrated for the Gaussian function; the latter,
apart from scaling factors, coincides with the eigenfunction of the linear harmonic oscillator
belonging to the eigenvalue corresponding to n D 0.



Chapter 13
Other Examples of the Schrödinger Equation

13.1 Introduction

A number of properties of the one-dimensional, time-independent Schrödinger
equation can be worked out without specifying the form of the coefficient. To this
purpose one examines the two fundamental solutions, which are real because the
coefficient is such. One finds that the fundamental solutions do not have multiple
zeros and do not vanish at the same point; more precisely, the zeros of the first
and second fundamental solution separate each other. It is also demonstrated that
the character of the fundamental solutions within an interval is oscillatory or non-
oscillatory depending on the sign of the equation’s coefficient in such an interval.
After completing this analysis, the chapter examines an important and elegant
solution method, consisting in factorizing the operator. The theory is worked out
for the case of localized states, corresponding to discrete eigenvalues. The procedure
by which the eigenfunctions’ normalization is embedded into the solution scheme is
also shown. The chapter continues with the analysis of the solution of a Schrödinger
equation whose coefficient is periodic; this issue finds important applications in the
case of periodic structures like, e.g., crystals. Finally, the solution of the Schrödinger
equation for a particle subjected to a central force is worked out; the equation is
separated and the angular part is solved first, followed by the radial part whose
potential energy is specified in the Coulomb case. The first complements deal
with the operator associated with the angular momentum and to the solution of
the angular and radial equations by means of the factorization method. The last
complement generalizes the solution method for the one-dimensional Schrödinger
equation in which the potential energy is replaced with a piecewise-constant
function, leading to the concept of transmission matrix.

© Springer International Publishing AG 2018
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13.2 Properties of the One-Dimensional
Schrödinger Equation

In the general expression (11.44) for the transmission coefficient, the fundamental
solutions u, v appear in the denominator. It is then necessary to investigate the zeros
of the solutions of (11.28). Due to the u.0/ D 1 prescription, the possible zeros of u
belong to the interval 0 < x � s, while those of v belong to the interval 0 � x � s.

If one or more zero exist, they cannot be multiple. In fact, if u had a multiple
zero at xm it would be u.xm/ D 0, u0.xm/ D 0, hence u D 0 would be a solution
of (11.28) compatible with such conditions. In fact, because of the uniqueness of
the solution, u D 0 would be the only solution. Observing that u is continuous, this
would contradict the condition u.0/ ¤ 0. Similarly, if v had a multiple zero it would
vanish identically. Remembering that the derivative of the solution is continuous,
this would contradict the condition v0.0/ D 1 of (11.40). Another property is that
u and v cannot vanish at the same point. This is apparent from the relation W.x/ D
u v0 � u0 v D 1 demonstrated in Sect. A.12. For the same reason, u0 and v0 cannot
vanish at the same point.

If one of the solutions, say u, has more than one zero in 0 < x � s, then the
following property holds: between two consecutive zeros of u there is one and only
one zero of v. Let xL, xR be two consecutive zeros of u, with 0 < xL < xR � s.
The property is demonstrated by showing, first, that a contradiction would arise
if there were no zeros of v between xL and xR (that is to say, at least one zero
must exist there) and, second, that if a zero of v exists between xL and xR, it must
be unique [127]. To proceed one considers the function u=v in the interval xL �

x � xR. By definition u=v vanishes at the boundaries of such an interval while,
as shown above, v cannot vanish at the boundaries. If one assumes that there are
no zeros of v inside the interval, then u=v exists everywhere in the interval, and is
also everywhere continuous with a continuous first derivative because u and v are
solutions of the second-order differential equation (11.28). As u=v vanishes at xL

and xR, its derivative must vanish at least once in the open interval xL < x < xR.
However, this is impossible because d.u=v/=dx D �W=v2 D �1=v2 ¤ 0. This
shows that v must have at least one zero between xL and xR. Such a zero is also
unique because, if v had two zeros in xL < x < xR, then by the same reasoning
u would have one zero between them, so xL and xR would not be consecutive. The
property may be restated as the zeros of two real linearly independent solutions of
a second-order linear differential equation separate each other. The property does
not hold for complex solutions.

So far the properties demonstrated in this section did not consider the sign of the
coefficient q.x/ D 2m .E � V/=„2 of (11.28). The coefficient separates the interval
0 � x � s into subintervals where q is alternatively positive or negative. If q is
continuous the extrema of the subintervals are the zeros of q, otherwise they may
be discontinuity points of q. In either case the behavior of the solution u within
each subinterval depends on the sign of q there. To show this, consider the function
d.u u0/=dx D .u0/2�q u2, where the expression at the right-hand side has been found



13.2 Properties of the One-Dimensional Schrödinger Equation 249

by means of (11.28). If q � 0 in the subinterval, then d.u u0/=dx is nonnegative.
It follows that u u0 is a nondecreasing function in the subinterval, hence it has one
zero at most. Remembering that u and u0 cannot vanish at the same point, one of
the following holds: (i) neither u nor u0 vanishes in the subinterval, (ii) either u or
u0 vanishes once in the subinterval. For a given interval a function is called non-
oscillatory if its derivative vanishes at most once. It follows that the solution u is
non-oscillatory in those subintervals where q � 0. The case V D V0 > E > 0 in the
interval 0 < x < s, considered in Sect. 11.3.1, is of this type.

The investigation about the behavior of the solutions may be extended to the
case of an infinite domain, at least for typical forms of the potential energy V [96,
Chap. III.9]. Consider for instance the domain 0 � x <1, and assume that for x >
0 the potential energy is such that the constraint�q.x/ � ˛2 > 0 is fulfilled. Without
further specifying the form of q, it is possible to analyze the asymptotic behavior of
the solutions by comparison with those of the simple case �q D const D ˛2. The
fundamental solutions1 of the simple case are Qu D cosh.˛ x/ and Qv D sinh.˛ x/=˛,
neither of which is acceptable from a physical point of view because both diverge as
x ! 1. However, two linear combinations of the fundamental solutions, namely,
Qu�˛ Qv D exp.�˛ x/ and QuC˛ Qv D exp.˛ x/, are also linearly independent solutions
of w00 D ˛2 w, the first of which is physically acceptable.

Turning now to the general case �q.x/ � ˛2 > 0, and letting u, v be its
fundamental solutions, one finds that u is by construction positive and concave
upward for x D 0; thus, it increases when x departs from 0, thus making the second
derivative �q u even more positive. In conclusion, u remains positive for x > 0;
moreover, it keeps increasing at least as fast as exp.˛ x/. One can prove the last
statement by the following procedure: multiply by Qu both sides of u00 D �q u, then
multiply by u both sides of Qu00 D ˛2 Qu, and subtract the resulting expressions from
each other. Following the same steps as in Prob. 8.2, and remembering that here
˛2 C q is non-positive, one finds for the Wronskian W.u; Qu/ D u˛ sinh.˛ x/ �
u0 cosh.˛ x/ the relation2

dW.u; Qu/

dx
D .˛2 C q/ u Qu � 0 : (13.1)

Integrating (13.1) from 0 to x and observing that W.u; Qu/ vanishes at x D 0, one
finds W.u; Qu/ � 0; from this, remembering that u does not vanish, it follows

u0

u
D

d

dx
log u � ˛

sinh.˛ x/

cosh.˛ x/
D

d

dx
log cosh.˛ x/ (13.2)

whence, integrating both sides from 0 to x and taking the exponentials, u �
cosh.˛ x/; moreover, (13.2) shows that asymptotically it is u0 � ˛ u. In a similar

1The fundamental solutions are defined by (11.40).
2The definition of Wronskian is in Sect. A.12.
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manner one finds that, by construction, the second fundamental solution v has a
positive derivative and is concave upward for x D 0; thus, it remains positive and
keeps increasing for x > 0. Following the same steps as for u yields W.v; Qv/ D
v cosh.˛ x/ � v0 sinh.˛ x/=˛ � 0, whence

v0

v
D

d

dx
log v � ˛

cosh.˛ x/

sinh.˛ x/
D

d

dx
log sinh.˛ x/ : (13.3)

Integrating both sides from 0 to x and taking the exponentials yield v � sinh.˛ x/;
also, (13.3) shows that asymptotically it is v0 � ˛ v. As a final consideration, the
Wronskian of the two linearly independent solutions u, v is equal to a constant
(Prob. 8.2); using the values of the fundamental solutions and their derivatives at
x D 0 yields W.u; v/ D 1.

Having discussed some properties of the fundamental solutions, one may seek a
linear combination of u, v that vanishes at infinity. To this purpose, one observes
that the ratios u=v and u0=v0 have the following property:

u

v
�

u0

v0
D

W.u; v/

v v0
D

1

v v0
I (13.4)

next, using again W.u; v/ D 1 along with u00 D �q u and v00 D �q v, one finds

d

dx


u

v

�
D �

1

v2
< 0 ;

d

dx

�
u0

v0

�
D �

q

.v0/2
> 0 : (13.5)

Due to (13.5), u=v is a decreasing function while u0=v0 is an increasing function;
as their difference (13.4) vanishes asymptotically, the two ratios have a common
positive limit � as x ! 1. The following inequalities then hold, u0=v0 < � < u=v
or, equivalently, u0=v0 � � < 0 < u=v � �. Using (13.4), the latter form can further
be refined to yield

�
1

v v0
D

u0

v0
�

u

v
<

u0

v0
� � < 0 <

u

v
� � <

u

v
�

u0

v0
D

1

v v0
; (13.6)

which in turn splits as

�
1

v
< u0 � � v0 < 0 ; 0 < u � � v <

1

v0
: (13.7)

Due to the asymptotic behaviors discussed above, the denominators v, v0 in (13.7)
are such that v � sinh.˛ x/, v0 � ˛ v � ˛ sinh.˛ x/; as a consequence, the
linear combination u � � v of the two fundamental solutions is always positive,
and vanishes at infinity at least as fast as 1=v0, a fortiori at least as fast as
1= sinh.˛ x/ � exp.�˛ x/. At the same time the derivative u0 � � v0 of the linear
combination is always negative, and vanishes at infinity in the same manner.
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Finally, the linear combination found above is the only solution that vanishes at
infinity; in fact, consider another linear combination, say, w D uC� v with � ¤ ��:
the new solution can be recast in the form w D u�� vC .� C�/ v. While the term
u�� v vanishes asymptotically, the remaining term diverges with the same strength
as v because � C � ¤ 0.

13.3 Localized States—Operator’s Factorization

It may happen that the form of the potential energy V in the interval 0 �
x � s is such that V has one or more negative minima (Fig. 13.1). In this case
negative eigenvalues of E may exist, giving rise to localized states. To treat this case
one must preliminarily observe that the eigenfunctions do not vanish identically
outside the interval 0 � x � s, because the minima of V are finite. As a consequence,
it is convenient to replace the above interval with x1 � x � x2, where the
two boundaries may be brought (independently from each other) to �1 or C1,
respectively. Letting

� D
2m

„2
E ; rl.x/ D �

2m

„2
V ; (13.8)

the Schrödinger equation (11.28) becomes

w00 C rl wC �w D 0 : (13.9)
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Fig. 13.1 Form of the potential energy that gives rise to localized states (Sect. 13.3). Only one
state E is shown
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The integer index l D 0; 1; : : : is attached to r.x/ for convenience. In fact, in typical
applications the form of the potential energy in (13.8) may be prescribed by a
previous separation procedure in which the index is involved. As will be shown
after the analysis of the solution procedure, index l may eventually be disposed
of. For the time being, the solutions of (13.9) must be considered as dependent
on the eigenvalue � and on the index l, namely, w D w�l.x/. Also, for a given
pair �, l the eigenfunctions are nondegenerate due to the normalization condition.
As a consequence, two eigenfunctions belonging to the same pair differ by a
multiplicative constant at most.

13.3.1 Factorization Scheme

A possible method for solving (13.9) is expanding w into a power series, replacing
the series into (13.9), collecting the terms of equal power, and letting their
coefficients vanish. This provides a recurrence relation involving the coefficients of
the series; then, the latter is suitably truncated to obtain a square-integrable solution.
Another method for solving (13.9), that greatly reduces the calculation effort and
brings about a procedure of supreme elegance, is the operator’s factorization. The
conditions that make the factorization possible are illustrated in [67] and are briefly
reported here. In essence they amount to finding a function gl.x/ and a parameter Ll

such that (13.9) may be recast as

�
glC1 C

d

dx

��
glC1 �

d

dx

�
w�l D .� � LlC1/w�l ; (13.10)

�
gl �

d

dx

��
gl C

d

dx

�
w�l D .� � Ll/w�l : (13.11)

Note that both (13.10) and (13.11) must be identical to (13.9). An additional
constraint is that, for a given integer n, it must be LnC1 > LlC1, l D 0; 1; : : : ; n�1. To
proceed, the boundary conditions w�l.x1/ D w�l.x2/ D 0 will be assumed. If one or
both boundaries are at infinity, the condition

R
jw�lj

2 dx <1 will also be assumed.
Now, imposing that (13.10) is identical to (13.9) yields g2lC1 C g0lC1 C LlC1 D �rl

whence, letting l l � 1,

g2l C g0l C Ll D �rl�1 : (13.12)

Similarly, imposing that (13.11) is identical to (13.9) leads to

g2l � g0l C Ll D �rl : (13.13)
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Adding (13.13) to (13.12) and subtracting (13.13) from (13.12) yield, respectively,

g2l C Ll D �
1

2
.rl�1 C rl/ ; g0l D �

1

2
.rl�1 � rl/ : (13.14)

Differentiating the first relation of (13.14) with respect to x and replacing g0l from
the second one provides

gl D
1

2

r0l�1 C r0l
�2 g0l

D
1

2

r0l�1 C r0l
rl�1 � rl

: (13.15)

Finally, replacing (13.15) into the first relation of (13.14),

Ll D �
1

2
.rl�1 C rl/ �

1

4

�
r0l�1 C r0l
rl�1 � rl

�2
: (13.16)

In conclusion, the factorization is possible if Ll given by (13.16) is independent of
x. In this case, gl is given by (13.15). As rl is real, both Ll and gl are real as well.

13.3.2 First-Order Operators

If the factorization (13.10,13.11) succeeds, it is useful to define the first-order, real
operators

A Cl D gl C
d

dx
; A �l D gl �

d

dx
; (13.17)

so that (13.10,13.11) are rewritten as

A ClC1A
�

lC1w�l D .� � LlC1/w�l ; A �l A Cl w�l D .� � Ll/w�l : (13.18)

The two operators (13.17) are mutually adjoint. In fact, for any pair of functions f1,
f2 fulfilling the same boundary conditions as w�l one finds

Z x2

x1

f �1 A Cl f2 dx D
�
f �1 f2

�x2
x1
C

Z x2

x1

.A �l f1/
� f2 dx ; (13.19)

where the integrated part vanishes due to the boundary conditions. From the above
result one finds a property of the eigenvalue �. In fact, multiplying (13.18) by w��l
and integrating, one finds

Z x2

x1

jA �lC1w�lj
2 dx D .� � LlC1/

Z x2

x1

jw�lj
2 dx ; (13.20)
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where (13.19) has been used after letting f1 D w�l, f2 D A �lC1w�l. From (13.20) it
follows that if w�l is an eigenfunction, that is, if w�l does not vanish identically, then
the case � < LlC1 is impossible. In fact, the integral at the right-hand side of (13.20)
is strictly positive, while that at the left-hand side is nonnegative. There remain two
possibilities, namely:

1. A �lC1w�l does not vanish identically, whence both integrals of (13.20) are strictly
positive. It follows that � > LlC1. Also, as will be shown later, A �lC1w�l is another
eigenfunction of (13.9). The opposite is also true, namely, � > LlC1 implies that
A �lC1w�l does not vanish identically.

2. A �lC1w�l vanishes identically, whence � D LlC1. The opposite is also true,
namely, � D LlC1 implies that A �lC1w�l vanishes identically. In this case A �lC1w�l

is not an eigenfunction of (13.9).

The discussion above allows one to identify the eigenvalue �. In fact, there must be
a value of the index l, say l D n, such that the equality � D LnC1 holds. It follows
that the eigenvalue is identified by the index n, � D �n.

As mentioned before the condition LnC1 > LlC1, l D 0; 1; : : : ; n � 1 holds. As
a consequence, the eigenfunction corresponding to the pair �n; l may be indicated
with wnl instead of w�l. In particular, the eigenfunction corresponding to l D n is
wnn. As shown in case 2 above, such an eigenfunction corresponds to the equality
�n D LnC1 which, in turn, implies the condition A �nC1wnn D 0. Remembering
the second relation of (13.17), such a condition yields the first-order equation
.gnC1 � d=dx/ wnn D 0, whose solution is real and reads

wnn D cnn exp

�Z x

x1

gnC1./ d

�
;

1

c2nn

D

Z x2

x1

exp

�Z x

x1

2 gnC1./ d

�
dx ;

(13.21)
with cnn D

p
c2nn > 0.

13.3.3 The Eigenfunctions Corresponding to l < n

The result given in (13.21) shows that if the factorization is achieved, the eigenfunc-
tion corresponding to l D n is found by solving a first-order equation. It remains to
determine the eigenfunctions corresponding to l D 0; 1; : : : ; n � 1. For this, left
multiplying the first relation in (13.18) by A �lC1, letting l  l C 1 in the second
relation of (13.18), and remembering that � D LnC1, one finds

A �lC1A
C

lC1A
�

lC1wnl D .LnC1 � LlC1/A
�

lC1wnl ; (13.22)

A �lC1A
C

lC1w�;lC1 D .LnC1 � LlC1/wn;lC1 : (13.23)
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The above shows that both wn;lC1 and A �lC1wnl are eigenfunctions of the operator
A �lC1A

C
lC1 belonging to the same eigenvalue. As the eigenfunctions are nondegen-

erate, it must be

A �lC1wnl D const � wn;lC1 ; (13.24)

where the constant may be determined by imposing the normalization condition.
The result shows that if wn0 is known, one may calculate a sequence of eigen-
functions belonging to �n D LnC1 (apart from the normalization constant) by
successive applications of first-order operators: A �1 wn0 D const � wn1, A �2 wn1 D

const�wn2; : : :. The process stops for l D n because, as shown earlier, A �nC1wnn D 0

is not an eigenfunction anymore, so any further application of the operator beyond
l D n provides a sequence of zeros. In a similar manner, left multiplying the second
relation in (13.18) by A Cl and letting l  l � 1 in the first relation of (13.18), one
finds

A Cl A �l wn;l�1 D .LnC1 � Ll/wn;l�1 ; (13.25)

A Cl A �l A Cl wnl D .LnC1 � Ll/A
C

l wnl : (13.26)

From the above one finds that both wn;l�1 and A Cl wnl are eigenfunctions of the
operator A Cl A �l belonging to the same eigenvalue, whence

A Cl wnl D const � wn;l�1 : (13.27)

The result shows that if wnn is known, one may calculate a sequence of eigenfunc-
tions belonging to �n D LnC1 (apart from the normalization constant) by successive
applications of first-order operators: A Cn wnn D const � wn;n�1, A Cn�1wn;n�1 D

const�wn;n�2; : : :. The process stops for l D 0which, by hypothesis, is the minimum
of l. The derivation also shows that since wnn and the operators are real, all the
eigenfunctions found using the factorization method are real as well.

13.3.4 Normalization

The results of this section may be summarized as follows: (13.24) shows that
the application of the first-order operator A �lC1 to an eigenfunction of indices
n; l provides an eigenfunction of indices n; l C 1. Similarly, (13.27) shows that
the application of the first-order operator A Cl to an eigenfunction of indices n; l
provides an eigenfunction of indices n; l � 1. These results may be described as a
process of going up or down along a ladder characterized by an index n � 0, whose
steps are numbered by a second index l D 0; 1; : : : ; n. It follows that by applying
two suitably chosen operators one may go up and down (or down and up) one step in
the ladder and return to the same eigenfunction apart from a multiplicative constant.
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This is indeed true, as shown by (13.18), that also indicate that the multiplicative
constant to be used at the end of the two steps starting from wnl is LnC1 � Ll

when the operators’ index is l. It follows that the constants in (13.24,13.27) must be
chosen as

p
LnC1 � LlC1 and

p
LnC1 � Ll, respectively. This provides a method for

achieving the normalization of the eigenfunctions, starting from an eigenfunction
wnn normalized to unity as in (13.21). For this one defines the auxiliary, mutually
adjoint operators

BCnl D
A Clp

LnC1 � Ll
; B�nl D

A �lp
LnC1 � Ll

; (13.28)

so that (13.18) becomes

BCn;lC1B
�
n;lC1wnl D wnl ; B�nlB

C
nl wnl D wnl : (13.29)

Thanks to the auxiliary operators the multiplicative constant at the end of the two
steps becomes unity. Remembering that the eigenfunctions and operators are real,
multiplying both of (13.29) by wnl and integrating yield

Z x2

x1

.B�n;lC1wnl/
2 dx D

Z x2

x1

.BCnl wnl/
2 D

Z x2

x1

w2nl dx ; (13.30)

On the other hand, replacing the constant in (13.24), (13.27) with
p

LnC1 � LlC1,p
LnC1 � Ll, respectively, one derives

B�n;lC1wnl D wn;lC1 ; BCnl wnl D wn;l�1 : (13.31)

Comparing (13.31) with (13.30) shows that if one of the eigenfunctions of the ladder
is normalized to unity, all the others have the same normalization. In particular,
if wnn is normalized to unity as in (13.21), then the whole ladder of normalized
eigenfunction is found by repeatedly applying the same procedure:

BCnnwnn D wn;n�1 ; BCn;n�1wn;n�1 D wn;n�2 ; : : : ; BCn1wn1 D wn0 :

(13.32)

13.4 Schrödinger Equation with a Periodic Coefficient

An important case of (11.28) occurs when the coefficient q is periodic [49], with
a period that will be denoted with 2!. The independent variable (not necessarily a
Cartesian one) will be denoted with z:

w00.z/C q.z/w.z/ D 0 ; q.zC 2!/ D q.z/ ; (13.33)
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where primes indicate derivatives. Here the variable z is considered real; the theory,
however, can be extended to the case of a complex variable. Let u.z/, v.z/ be
fundamental solutions (Sect. 11.4), with u.0/ D 1, u0.0/ D 0, v.0/ D 0, v0.0/ D 1.
As (13.33) holds for any z, it holds in particular for zC 2!. From the periodicity of
q it follows

w00.zC 2!/C q.z/w.zC 2!/ D 0 ; (13.34)

namely, w.zC2!/ is also a solution. Similarly, u.zC2!/, v.zC2!/ are solutions.
As the equation has only two independent solutions it must be

u.zC2!/ D a11 u.z/Ca12 v.z/ ; v.zC2!/ D a21 u.z/Ca22 v.z/ ; (13.35)

with aij suitable constants. The values of the latter are readily related to those of
u; v by letting z D 0 and using the initial conditions: u.2 !/ D a11, u0.2 !/ D a12,
v.2!/ D a21, v0.2 !/ D a22. As the Wronskian of u; v equals unity it follows
a11a22 � a12a21 D 1. One now seeks a constant s such that

u.zC 2!/ D s u.z/ ; v.zC 2!/ D s v.z/ : (13.36)

This is equivalent to diagonalizing (13.35), namely, s must fulfill for any z the
following relations:

.a11 � s/ u.z/C a12 v.z/ D 0 ; a21 u.z/C .a22 � s/ v.z/ D 0 : (13.37)

Equating to zero the determinant of the coefficients in (13.37) yields

s D
a0
2
˙

s
a20
4
� 1 ; a0 D a11 C a22 : (13.38)

If a0 D 2 the two solutions of (13.38) are real and take the common value s� D
sC D 1. In this case, as shown by (13.36), the functions u; v are periodic with
period 2!. Similarly, if a0 D �2 the two solutions of (13.38) are real and take the
common value s� D sC D �1. In this case, as shown by (13.36), the functions u; v
are periodic with period 4!, whereas their moduli juj, jvj are periodic with period
2!. As the moduli juj, jvj do not diverge as further and further periods are added
to z, the case a0 D ˙2 is stable. If a0 > 2 the two solutions of (13.38) are real
and range over the intervals 0 < s� < 1 and, respectively, sC > 1. In particular
it is s� ! 0 for a0 ! 1. If a0 < �2 the two solutions of (13.38) are real and
range over the intervals sC < �1 and, respectively, �1 < s� < 0. In particular it
is s� ! 0 for a0 ! �1. From the relations (13.36) it follows that the moduli of
the solutions corresponding to sC diverge: in fact one has u.zC n 2!/ D .sC/n u.z/
and v.zC n 2!/ D .sC/n v.z/, so the case ja0j > 2 is unstable. When ja0j < 2 the
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two solutions are complex, namely, s˙ D exp.˙i�/ with tan2 � D 4=a20 � 1. As
the modulus of the solutions is unity, the case ja0j < 2 is stable.

The discussion about stability may seem incomplete because the possible cases
depend on the value of a0 D a11 C a22 D u.2 !/C v0.2 !/, which depends on the
fundamental solutions that are yet to be found. On the other hand, the analysis of
stability must eventually reduce to considering only the properties of the coefficient
of (13.33). In fact, it can be shown that if q.z/ is positive for all values of z and
the absolute value of 2!

R 2!
0

q.z/ dz is not larger than 4, then ja0j < 2 [92].
Multiplying both sides of the first relation in (13.36) by expŒ�˛ .z C 2!/�, with
˛ an undetermined constant, yields

Qu.zC 2!/ D s exp.�2!˛/ Qu.z/ ; Qu.z/ D exp.�˛ z/ u.z/ : (13.39)

A similar treatment is applied to v.z/, to yield another auxiliary function Qv. Now
one exploits the undetermined constant to impose that the auxiliary functions be
periodic of period 2!: for this one lets s exp.�2! ˛/ D 1, whence

˛ D
log s

2!
: (13.40)

The constant ˛ defined by (13.40) is termed characteristic exponent or Floquet
exponent. Three of the cases listed in the discussion above about stability, namely,
s˙ D exp.˙i�/, s˙ D 1, and s˙ D �1 lead now to the single expression
˛˙ D ˙i�=.2!/, with 0 � � � � , showing that ˛ is purely imaginary. The
cases 0 < s� < 1 and sC > 1 lead to real values of ˛ (negative and positive,
respectively) and, finally, the cases sC < �1 and �1 < s� < 0 lead to complex
values of ˛. Considering the stable cases only, one transforms (13.33) by replacing
w.z/ with, e.g., Qu.z/ expŒ˙i� z=.2!/� to find

Qu00.z/˙ 2 i
�

2!
Qu0.z/C

�
q.z/ �

�2

4!2

�
Qu.z/ D 0 : (13.41)

The coefficients and the unknown function of (13.41) are periodic functions of
period 2!. As a consequence it suffices to solve the equation within the single
period, say, 0 � z � 2!. An example is given in Sect. 17.9.4; a different approach
leading to the generalization to three dimensions is shown in Sect. 17.6.

13.5 Schrödinger Equation for a Central Force

In the investigation about the properties of atoms it is important to analyze the
dynamics of particle subjected to a central force in the case where the motion is
limited. The treatment based on the concepts of Classical Mechanics is given in
Sects. 3.4 (where the general properties are illustrated), 3.7 (for the two-particle
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interaction), 3.8 (for a Coulomb field in the repulsive case), and 3.13.6 (for a
Coulomb field in the attractive case). To proceed one considers a particle of mass3

m0 acted upon by a force deriving from a potential energy of the central type, V D
V.r/, and expresses the time-independent Schrödinger equation �„2=.2m0/r

2wC
V.r/w D E w in spherical coordinates r, # , ' (Sect. B.1). Remembering the
transformation (B.25) of the r2 operator one obtains

1

r

@2.r w/

@r2
C
1

r2
O�wC

2m0

„2
ŒE � V.r/� w D 0 ; (13.42)

where operator O� is defined as

O� D
1

sin2 #

�
sin#

@

@#

�
sin#

@

@#

�
C

@2

@'2

�
: (13.43)

The r coordinate is separated by letting w D %.r/Y.#; '/ in (13.42) and dividing
both sides by w=r2:

r2
�
1

r %

d2.r %/

dr2
C
2m0

„2
.E � V/

�
D �

1

Y
O�Y : (13.44)

Each side of (13.44) must equal the same dimensionless constant, say, c, whence the
original Schrödinger equation separates into the pair

O�Y D �c Y ;

�
�
„2

2m0

d2

dr2
C Ve.r/

�
r % D E r % ; Ve D V C

c„2

2m0 r2
:

(13.45)

The first equation in (13.45), called angular equation, does not depend on any
parameter specific to the problem in hand. As a consequence, its eigenvalues c and
eigenfunctions Y can be calculated once and for all. Being the equation’s domain
two dimensional, the eigenfunctions Y are expected to depend onto two indices,
say, l, m. After the angular equation is solved, inserting each eigenvalue c into the
second equation of (13.45), called radial equation, provides the eigenvalues and
eigenfunctions of the latter. For the radial equation, the solution depends on the
form of V.r/. It is also worth noting the similarity of Ve with its classical counterpart
(3.5), that reads

Ve D V C
M2

2m0 r2
; M2 D const : (13.46)

3To avoid confusion with the azimuthal quantum number m, the particle’s mass is indicated with
m0 in the sections dealing with the angular momentum in the quantum case.
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To tackle the solution of the angular equation O�Y D �c Y one associates an operator
Lx, Ly, Lz with each component of the classical angular momentum M D r ^
p, and another operator L 2 to its square modulus M2. The procedure, illustrated
in Sect. 13.6.1, shows that the three operators Lx, Ly, Lz do not commute with
each other, whereas L 2 commutes with each of them. Also, it is found that L 2

is proportional to O�, specifically, L 2 D �„2 O�. In conclusion, the Schrödinger
equation in the case of a central force reads

H w D E w ; H D �
„2

2m0 r

@2

@r2
rC

L 2

2m0 r2
C V.r/ : (13.47)

As the r coordinate does not appear in L 2, the latter commutes with H ; moreover,
L 2 does not depend on time. As a consequence, its expectation value is a constant
of motion (Sect. 10.7). Similarly, Lz commutes with L 2 and does not contain r or
t, so it commutes with H as well and its expectation value is also a constant of
motion. As H , L 2, and Lz commute with each other, they have a common set of
eigenfunctions.

13.5.1 Angular Part of the Equation

The conservation of the expectation values of L 2 and Lz is the counterpart of
the classical result of the conservation of M2 and Mz (Sect. 2.8). In contrast, the
expectation values of Lx and Ly are not constants of motion. To determine the
eigenfunctions w of H , L 2 and Lz it is convenient to solve the eigenvalue equation
for Lz first:

Lzw D Lz w ; �i „
@w

@'
D Lz w ; w D v.r; #/ exp.i Lz '=„/ ; (13.48)

with v yet undetermined. For an arbitrary value of Lz, the exponential part of
w is a multi-valued function of '. This is not acceptable because w should not
vary when ' is changed by integer multiples of 2� . A single-valued function is
achieved by letting Lz=„ D m, with m an integer. In conclusion, the eigenvalues and
eigenfunctions of Lz are

Lz D m „ ; w D v.r; #/ exp.i m'/ : (13.49)

Combining (13.49) with (13.43) provides

O�w D
exp.i m'/

sin2 #

�
sin#

@

@#

�
sin#

@

@#

�
� m2

�
v.r; #/ : (13.50)
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This result shows that in (13.47) the factor exp.i m'/ cancels out, so that O� actually
involves the angular coordinate # only. This suggests to seek the function v.r; #/
by separation. Remembering that w was originally separated as w D %.r/Y.#; '/
one finds

v.r; #/ D %.r/P.#/ ; Y.#; '/ D P.#/ exp.i m'/ : (13.51)

As the separation transforms O�Y D �c Y into O�P D �c P, the equation to be solved
for a given integer m reduces to

1

sin2 #

�
sin#

d

d#

�
sin#

d

d#

�
� m2

�
P D �c P : (13.52)

From L 2 D �„2 O�, it follows that the eigenvalue of L 2 is � D „2 c. The
eigenvalues c of (13.52) are found by the factorization method described in
Sect. 13.3.1; they have the form c D l .l C 1/, with l a nonnegative integer, called
orbital (or total) angular momentum quantum number. For a given l, the allowed
values of m, called azimuthal (or magnetic) quantum number, are the 2 lC1 integers
�l; : : : ; 0; : : : ; l. The details of the eigenvalue calculation are given in Sect. 13.6.2.

The factorization method provides also the eigenfunctions of L 2 and Lz, that
are called spherical harmonics and, as expected, depend on the two indices l, m.
The details of the calculation of the eigenfunctions Ym

l are given in Sect. 13.52. The
lowest-order spherical harmonics are shown in Table 13.1. As the eigenfunctions
fulfill the equations

L 2Ym
l D „

2 l .lC 1/Ym
l ; LzY

m
l D „m Ym

l ; (13.53)

the only possible results of a measurement of M2 are „2 l .lC1/, with l D 0; 1; 2; : : :
and, for a given l, the only possible results of a measurement of Mz are „m, with m D
�l; : : : ;�1; 0; 1; : : : ; l. It follows that the only possible results of a measurement of
M are „

p
l .lC 1/. For any l > 0 it is max .jMzj/ D „ l < „

p
l .lC 1/ D M;

as a consequence, for l > 0 the angular momentum M lies on a cone centered on
the z axis. The half amplitude ˛ D arccosŒm=

p
l.lC 1/� of such a cone is strictly

positive, showing that the other two components Mx, My cannot vanish together
when M ¤ 0. A geometrical construction describing the relation between M and
Mz is given in Fig. 13.2. The groups of states corresponding to the orbital quantum

Table 13.1 The lowest-order
spherical harmonics

Ym
l Form of the function

Y00 1=
p
4�

Y�1
1

p
3=.8 �/ sin# exp.�i'/

Y01 �
p
3=.4 �/ cos#

Y11 �
p
3=.8 �/ sin# exp.i'/
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Fig. 13.2 Geometrical
construction showing the
relation between M and Mz.
The l D 3 is case considered,
whence one finds
m D �3; : : : ; 0; : : : ; 3 andp

l .lC 1/ ' 3:46

−1

2−

3−

= 0m

α

1

2

3
z

Table 13.2 Symbols and
names for the states
corresponding to
l D 0; 1; 2; 3

l m Symbol Name

0 0 s Sharp

1 �1, 0, 1 p Principal

2 �2, �1, 0, 1, 2 d Diffuse

3 �3, �2, �1, 0, 1, 2, 3 f Fundamental

numbers l D 0; 1; 2; 3 are denoted with special symbols and names that originate
from spectroscopy [13, Chap. 15] and are listed in Table 13.2. For l � 4 the symbols
continue in alphabetical order (“g,” “h,” : : :), while no special names are used.

13.5.2 Radial Part of the Equation in the Coulomb Case

To solve the radial part of the Schrödinger equation (second and third relation in
(13.45)) one uses the eigenvalue c D l .lC 1/ to find

�
�
„2

2m0

d2

dr2
C Ve.r/

�
r %.r/ D E r %.r/ ; Ve D V C

„2 l .lC 1/

2m0 r2
: (13.54)

As anticipated above, the solution of (13.54) depends on the form of V.r/. Of
particular interest is the Coulomb potential (3.31) that is considered here in the
attractive case

V.r/ D �
Z q2

4 � "0 r
; (13.55)

with "0 the vacuum permittivity, q > 0 the elementary electric charge, and Z q
the charge whence the central force originates. This form of the potential energy is
typical of the case of an electron belonging to a hydrogen or hydrogen-like atom.
As usual, the arbitrary constant inherent in the definition of the potential energy is
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such that limr!1 V D 0. As a consequence, the electron is bound if E < 0 (in
other terms, according to the definition given in Sect. 3.13.6, the classical motion is
limited). The eigenvalues E of (13.54,13.55) are found by the factorization method
described in Sect. 13.3.1; they have the form

E D En D �
m0

2„2

�
Z q2

4 � "0

�2
1

n2
; (13.56)

where n is an integer, called principal quantum number, fulfilling the relation n �
lC 1. The details of the eigenvalue calculation are given in Sect. 13.6.2. As l � 0,
the minimum value of n is 1. For a given n the possible values of the orbital quantum
number are l D 0; 1; : : : ; n � 1; also, as found earlier, for each l the possible values
of the azimuthal quantum number are m D �l; : : : ; 0; : : : ; l. It follows that for a
given n the number of different pairs l;m is

n�1X

lD0

.2 lC 1/ D n2 ; (13.57)

namely, each eigenvalue En of the energy corresponds to n2 possible combinations4

of the eigenvalues of M and Mz. As for the angular part of the equation, the
factorization method provides also the eigenfunctions of (13.54); the details are
given in Sect. (13.6.5).

13.6 Complements

13.6.1 Operators Associated with Angular Momentum

Consider the classical angular momentum M D r^p (Sect. 2.6), whose components
in rectangular coordinates are given by (2.38), namely,

Mx D y pz � z py ; My D z px � x pz ; Mz D x py � y px : (13.58)

The operators corresponding to (13.58) are

8
<

:

Lx D �i „ .y @=@z � z @=@y/
Ly D �i „ .z @=@x � x @=@z/
Lz D �i „ .x @=@y � y @=@x/

(13.59)

4The actual degree of degeneracy of En is 2 n2, where factor 2 is due to spin (Sect. 15.5.1).
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It is easily found that Lx, Ly, Lz are Hermitean and fulfill the relations

8
<

:

Lx Ly �Ly Lx D i „Lz

Ly Lz �Lz Ly D i „Lx

Lz Lx �Lx Lz D i „Ly

(13.60)

namely, Lx, Ly, Lz do not commute with each other. Left multiplying the third
relation in (13.60) by Lx and the second one by Ly provide, respectively,

L 2
x Lz D Lx Lz Lx � i „Lx Ly ; L 2

y Lz D Ly Lz Ly C i „Ly Lx :

(13.61)

Similarly, right multiplying the third relation in (13.60) by Lx and the second one
by Ly,

Lz L 2
x D Lx Lz Lx C i „Ly Lx ; Lz L 2

y D Ly Lz Ly � i „Lx Ly :

(13.62)

The operator associated with M2 D M2
x C M2

y C M2
z is L 2 D L 2

x C L 2
y C L 2

z
whence, using (13.61,13.62),

L 2 Lz �Lz L 2 D .L 2
x CL 2

y /Lz �Lz .L
2

x CL 2
y / D 0 : (13.63)

Similarly,

L 2 Lx �Lx L 2 D 0 ; L 2 Ly �Ly L 2 D 0 : (13.64)

In conclusion, the components Lx, Ly, Lz do not commute with each other, while
the square modulus of the angular momentum commutes with any single component
of it. To check whether L 2 or any of the components Lx, Ly, Lz commute with
the Hamiltonian operator of a central force, it is necessary to express all operators
in spherical coordinates. To this purpose, using Lz by way of example, one finds

�
Lz

i „
D x

@

@y
� y

@

@x
D r sin# cos'

@

@y
� r sin# sin'

@

@x
: (13.65)

The partial derivatives @=@x and @=@y in terms of the spherical coordinates are
extracted from (B.4); in particular, the first one reads @=@x D sin# cos' @=@r C
.1=r/ cos# cos' @=@# � .1=r/ .sin'= sin#/ @=@', while the expression of @=@y is
obtained from that of @=@x by replacing cos' with sin' and sin' with � cos'.
When such expressions of the partial derivatives are used within (13.65), several
terms cancel out to finally yield the relation

Lz D �i „
@

@'
(13.66)
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which, consistently with the classical one, Mz D p' (Sect. 3.4), shows that the
operator associated with the z component of the angular momentum is conjugate to
the generalized coordinate '. The quantum relation can thus be derived directly from
the classical one by letting Lz D Op' D �i „ @=@'. As already noted in Sect. 2.8, the
remaining components of Mx, My are not conjugate momenta. The expression of Lx

in spherical coordinates reads

Lx D i „

�
sin'

@

@#
C

cos#

sin#
cos'

@

@'

�
; (13.67)

while that of Ly is obtained from (13.67) by replacing cos' with sin' and sin'
with � cos'. Combining the above findings, one calculates the expression of L 2 D

L 2
x CL 2

y CL 2
z , that turns out to be

L 2 D �
„2

sin2 #

�
sin#

@

@#

�
sin#

@

@#

�
C

@2

@'2

�
D �„2 O� : (13.68)

13.6.2 Eigenvalues of the Angular Equation

The solution of the angular equation is found by the factorization method described
in Sect. 13.3.1. Remembering that Lz and L 2 commute, the whole eigenfunction
Y D P.#/ exp.i m'/, introduced in Sect. 13.5 and common to both operators, will
be used here. The following hold:

LzY D Lz Y ; L 2Y D �Y ; (13.69)

with Lz D m „, m an integer. Applying the operator Lx ˙ i Ly to the first equation
in (13.69) yields

�
Lx ˙ i Ly

	
LzY D m „

�
Lx ˙ i Ly

	
Y , where the upper (lower)

signs hold together. Due to the commutation rules (13.60) the left-hand side of the
above transforms into

�
LzLx � i „Ly

	
Y˙i

�
LzLy C i „Lx

	
Y D Lz

�
Lx ˙ i Ly

	
Y
„

�
Lx ˙ i Ly

	
Y ;

whence the first eigenvalue equation in (13.69) becomes

Lz
�
Lx ˙ i Ly

	
Y D .m˙ 1/ „

�
Lx ˙ i Ly

	
Y : (13.70)

Iterating the above reasoning shows that if Y is an eigenfunction of Lz belonging to
the eigenvalue m „, then .Lx C i Ly/Y , .Lx C i Ly/

2Y; : : : are also eigenfunctions
of Lz which belong, respectively, to .m C 1/ „, .m C 2/ „; : : :, and so on.
Similarly, .Lx� i Ly/Y , .Lx� i Ly/

2Y; : : : are also eigenfunctions of Lz belonging,
respectively, to .m � 1/ „, .m � 2/ „; : : :, and so on. At the same time, due to the
commutativity of L 2 with Lx and Ly, it is
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�
Lx ˙ i Ly

	
L 2Y D L 2

�
Lx ˙ i Ly

	
Y D �

�
Lx ˙ i Ly

	
Y ; (13.71)

showing that .Lx ˙ i Ly/Y is also an eigenfunction of L 2, belonging to the same
eigenvalue as Y . By induction, .Lx ˙ i Ly/

2Y ; : : : are also eigenfunctions of L 2,
belonging to the same eigenvalue as Y . To summarize, if Y D P.#/ exp.i m'/ is
an eigenfunction common to operators Lz and L 2, belonging to the eigenvalues
Lz D m „ and �, respectively, then,

1. .Lx C i Ly/Y is another eigenfunction of L 2 still belonging to �, and is also
an eigenfunction of Lz belonging to .mC 1/ „. Similarly, .Lx C i Ly/

2Y is still
another eigenfunction of L 2 belonging to �, and is also an eigenfunction of Lz

belonging to .mC 2/ „, and so on.
2. .Lx � i Ly/Y is another eigenfunction of L 2 still belonging to �, and is also

an eigenfunction of Lz belonging to .m � 1/ „. Similarly, .Lx � i Ly/
2Y is still

another eigenfunction of L 2 belonging to �, and is also an eigenfunction of Lz

belonging to .m � 2/ „, and so on.

By this reasoning, starting from a given pair �, Y it seems possible to construct
as many degenerate eigenfunctions of L 2 as we please. This, however, leads to
unbounded eigenvalues of Lz, which are not admissible as shown below. As a
consequence, the procedure depicted here can be applied only a finite number of
times. To demonstrate that the eigenvalues of Lz are bounded one starts from the
relation L 2 D L 2

x C L 2
y C L 2

z and from a given pair �, Y . As Y is also an
eigenfunction Lz belonging to, say, m „, an application of L 2 to Y followed by a
left scalar multiplication by Y� yields, thanks to (13.69),

� � m2„2 D
hLxYjLxYi C hLyYjLyYi

hYjYi
� 0 ; (13.72)

where the hermiticity of Lx, Ly has been exploited. Inequality (13.72) provides
the upper bound for jmj. To find the acceptable values of m one defines mC D
max.m/, and lets YC be an eigenfunction of L 2 and Lz belonging to � and mC „,
respectively. From (13.70) one obtains Lz .Lx C i Ly/YC D .mC C 1/ „ .Lx C

i Ly/YC but, as the eigenvalue .mC C 1/„ is not acceptable, it must be .Lx C

i Ly/YC D 0. Similarly, letting m� D min.m/, and letting Y� be an eigenfunction
of L 2 and Lz belonging to � and m� „, respectively, it must be .Lx� i Ly/Y� D 0.
Due to the commutation rules it is .Lx � i Ly/ .Lx C i Ly/ D L 2

x CL 2
y � „Lz,

whence

L 2 D .Lx � i Ly/ .Lx C i Ly/C „Lz CL 2
z : (13.73)

Application of (13.73) to YC and Y� yields

�
L 2YC D

�
L 2

z C „Lz
	

YC D „2 mC
�
mC C 1

	
YC

L 2Y� D
�
L 2

z � „Lz
	

Y� D „2 m� .m� � 1/ Y�
(13.74)
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By construction, YC and Y� belong to the same eigenvalue of L 2; as a consequence
it must be mC

�
mC C 1

	
D m� .m� � 1/. A possible integer solution of the above

is m� D mCC1which, however, is not acceptable because mC D max.m/. The only
acceptable solution left is m� D �mC. In conclusion, letting l D mC (so that
m� D �l) and using (13.74), the eigenvalues of L 2 take the form

� D „2 l .lC 1/ ; (13.75)

with l a nonnegative integer. For a given l, the allowed values of m are the 2 l C 1
integers �l; : : : ; 0; : : : ; l.

13.6.3 Eigenfunctions of the Angular Equation

Due to the findings illustrated in Sect. 13.6.2, the eigenfunctions of O�, whose form is
Y.#; '/ D P.#/ exp.i m'/, depend on the two indices l;m and, for this reason, will
be indicated with Ym

l . In particular, the eigenfunction YC introduced in Sect. 13.6.2,
which belongs to l D max.m/ and fulfills the equation .Lx C i Ly/Y D 0, will
be indicated with Yl

l . Similarly, as P depends on l and may depend on m as well,
it will be indicated with Pm

l . The eigenfunction Yl
l is readily found by solving the

first-order equation .Lx C i Ly/Yl
l D 0, where operator Lx is expressed in terms

of ', # through (13.67), and Ly is obtained from (13.67) by replacing cos' with
sin' and sin' with � cos'. After eliminating the factor „ expŒi .lC1/ '� one finds
a differential equation for Pl

l, that reads

dPl
l

d#
� l

cos#

sin#
Pl

l D 0 ;
1

Pl
l

dPl
l

d#
D

l

sin#

d sin#

d#
: (13.76)

In conclusion it is found, with a an arbitrary constant,

Pl
l D a .sin#/l ; Yl

l D a exp.i l'/ .sin#/l : (13.77)

Then, remembering the discussion of Sect. 13.6.2, the remaining 2 l eigenfunctions
Yl�1

l ; : : : ;Y0l ; : : : ;Y
�l
l are found by successive applications of

Lx � i Ly D �„ exp.�i'/

�
@

@#
� i

cos#

sin#

@

@'

�
; (13.78)

with the help of the auxiliary relations �i @Yl
l=@' D l Yl

l and

�
@

@#
C l

cos#

sin#

�
Yl

l D
@Œ.sin#/l Yl

l �=@#

.sin#/l
D a

exp.i l'/

.sin#/l
d

d#
.sin#/2l :

(13.79)
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In fact, combining Lz
��

Lx � i Ly
	

Ym
l

�
D .m � 1/ „

��
Lx � i Ly

	
Ym

l

�
with

Lz Ym
l D m „Ym

l provides the recursive relation Ym�1
l D

�
Lx � i Ly

	
Ym

l . In
particular, letting m D l, m D l � 1; : : : yields

Yl�1
l D

�
Lx � i Ly

	
Yl

l ; Yl�2
l D

�
Lx � i Ly

	
Yl�1

l ; : : : (13.80)

where Yl
l is given by (13.77) while

�
Lx � i Ly

	
Yl

l D Yl�1
l D a

expŒi .l � 1/ '�

.sin#/l�1
�„

sin#

d

d#
.sin#/2l : (13.81)

The denominator .sin#/l in the above has been split into two parts for the sake of
convenience. The next functions are found from

Yl�s�1
l D

�
Lx � i Ly

	
Yl�s

l D
�„

exp.i'/

�
@

@#
C .l � s/

cos#

sin#

�
Yl�s

l D

D
exp.�i'/

.sin#/l�s�1

�„

sin#

@

@#

�
.sin#/l�s Yl�s

l

�
; (13.82)

where the product .sin#/l�s Yl�s
l is taken from the previously calculated expression

of Yl�s
l . Iterating the procedure yields

Yl�s
l D a

expŒi .l � s/'�

.sin#/l�s

�„

sin#

d

d#
: : :
�„

sin#

d

d#„ ƒ‚ …
s times

.sin#/2l : (13.83)

As Yl�s
l is a solution of the linear, homogeneous equations LzY D Lz Y and L 2Y D

�Y , the constant a„s that builds up in the derivation can be dropped. Letting m D
l � s one finds

Ym
l D clm

exp.i m'/

.sin#/m
�1

sin#

d

d#
: : :
�1

sin#

d

d#„ ƒ‚ …
l�m times

.sin#/2l ; (13.84)

where the coefficient clm has been added for normalization purposes. One may
recast (13.84) in a more compact form by letting � D cos# , whence �1 � � � 1
and d� D � sin# d# . As a consequence,

Ym
l D clm

exp.i m'/

.1 � �2/m=2
dl�m

d� l�m
.1 � �2/l : (13.85)
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The eigenfunctions Ym
l are square integrable and mutually orthogonal [96, App.

B.10]. To examine some of their properties it is convenient to introduce some special
functions; to begin with, the associate Legendre functions are defined in the interval
�1 � � � 1 by

Pm
l .�/ D

.�1/m

2l l Š
.1 � �2/m=2

dlCm

d� lCm
.�2 � 1/l ; (13.86)

with l D 0; 1; : : : and, for each l, m D �l; : : : ;�1; 0; 1; : : : ; l. As .1 � �2/m=2 and
.�2 � 1/l are even functions of �, Pm

l is even (odd) if lCm is even (odd): Pm
l .��/ D

.�1/lCm Pm
l .�/. Furthermore, it is

Pm
l .�/ D .�1/

m .lC m/ Š

.l � m/ Š
P�m

l : (13.87)

Replacing m with �m in (13.86) shows that Ym
l is proportional to P�m

l which, in
turn, is proportional to Pm

l due to (13.87). In conclusion, using � D cos# ,

Ym
l .#; '/ D clm exp.i m'/Pm

l .cos#/ ; (13.88)

with 0 � # � � and 0 � ' � 2� . As for the indices it is l D 0; 1; : : :

and m D �l; : : : ;�1; 0; 1; : : : ; l. The functions Ym
l defined by (13.88) are called

spherical harmonics. Combining the definition of Ym
l with the properties of Pm

l
shown above yields Y�m

l D .�1/m .Ym
l /
�. Note that Ym

l and Y�m
l are linearly

independent, whereas Pm
l and P�m

l are not. Letting

clm D

�
.2lC 1/ .l � m/ Š

4 � .lC m/ Š

�1=2
; (13.89)

the set made of the spherical harmonics is orthonormal, namely,

Z 2�

0

Z �

0

�
Y��
	�

Ym
l d# d' D

�
1 ; � D l and � D m
0 ; otherwise

(13.90)

and complete (Sect. 8.4.3), namely,

F.#; '/ D
1X

lD0

lX

mD�l

alm Ym
l .#; '/ ; alm D

Z 2�

0

Z �

0

�
Ym

l

	�
F d# d' ;

(13.91)

where F is a sufficiently regular function of the angles. The inner sum of (13.91),

Yl.#; '/ D

lX

mD�l

alm Ym
l .#; '/ (13.92)
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is also called general spherical harmonic of order l, whereas the special case m D 0
of the associate Legendre function,

P0l .�/ D
1

2l l Š

dl

d� l
.�2 � 1/l ; (13.93)

is a polynomial of degree l called Legendre polynomial.

13.6.4 Eigenvalues of the Radial Equation—Coulomb Case

The case E < 0 of the radial equation (13.54) is considered here, corresponding
to a limited motion. As a consequence, the eigenvectors are expected to depend
on a discrete index, and the eigenfunctions are expected to be square integrable.
Calculating the derivative and multiplying both sides of (13.54) by �2m0=.„

2 r/
yield

d2%

dr2
C
2

r

d%

dr
�
2m0

„2
Ve %C

2m0

„2
E % D 0 : (13.94)

To proceed one scales the independent variable by multiplying both sides of (13.94)
by a2, where a is a length. The term involving Ve becomes

� a2
2m0

„2
Ve % D

�
2m0 Z q2 a

4� "0 „2 .r=a/
�

l .lC 1/

.r=a/2

�
% ; (13.95)

where both fractions in brackets are dimensionless. As a may be chosen arbitrarily,
it is convenient to select for it a value that makes the first fraction equal to 2=.r=a/,
namely,

a D
4� "0 „

2

m0 Z q2
: (13.96)

As a consequence, the term involving E becomes

a2
2m0

„2
E % D �% ; � D

�
4� "0

Z q2

�2
2„2

m0

E : (13.97)

Adopting the dimensionless variable x D r=a and using the relations a2 d2%=dr2 D
d2%=dx2, .2 a2=r/ d%=dr D .2=x/ d�=dx yields the radial equation in scaled form,

d2%

dx2
C
2

x

d%

dx
C

�
2

x
�

l .lC 1/

x2

�
%C �% D 0 : (13.98)
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The range of the independent variable is 0 � x < 1, so the equation has a double
pole in the origin: it is necessary to select solutions that vanish in the origin in such
a way as to absorb the pole (more on this in Sect. 13.6.5). The replacement % D �=x
gives (13.98) the simpler form

d2�

dx2
C

�
2

x
�

l .lC 1/

x2

�
� C �� D 0 ; (13.99)

which is identical to (13.9). The factorization of (13.99) is then accomplished
following the scheme shown in Sect. 13.3, and is based upon the function gl D

l=x � 1=l; in this case operators (13.17) and parameter (13.16) read, respectively,

A Cl D
l

x
�
1

l
C

d

dx
; A �l D

l

x
�
1

l
�

d

dx
; Ll D �1=l2 : (13.100)

The latter depends only on l and fulfills the relation LnC1 > LlC1, l D 0; 1; : : : ; n�1.
As a consequence, remembering the second relation in (13.97), the eigenvalues5

� D �n D LnC1 of (13.99) and those of (13.94) are, respectively,

�n D �
1

.nC 1/2
; En D �

�
Z q2

4 � "0

�2
m0=.2„

2/

.nC 1/2
; n D 0; 1; : : : :

(13.101)

13.6.5 Eigenfunctions of the Radial Equation—Coulomb Case

The eigenfunction corresponding to l D n is found by applying (13.21). As the
eigenfunction is indicated here with �nn, one must solve A �nC1�nn D 0, namely,
using (13.100), Œ.nC 1/=x � 1=.nC 1/ � d=dx� �nn D 0, whose solution is

�nn D cnn xnC1 exp

�
�

x

nC 1

�
; n D 0; 1; : : : ; (13.102)

which vanishes both in the origin and at infinity, thus fulfilling the requirements
stated in Sect. 13.6.4. The eigenfunction (13.102) is also square integrable with,
from (C.95,C.97),

1

c2nn

D

Z 1

0

x2nC2 exp

�
�

2 x

nC 1

�
dx D .2 nC 2/ Š

�
nC 1

2

�2 nC3

: (13.103)

5In (13.56) a more convenient notation is used, obtained from (13.101) through the replacements
nC 1 n0  n, with n0 D 1; 2; : : :.
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Combining the first definition in (13.28) with the third relation in (13.100), the
auxiliary operator BCnl reads

BCnl D
l .nC 1/

p
.nC 1 � l/.nC 1C l/

A Cl : (13.104)

Then, from the second of (13.31), the normalized eigenfunctions corresponding to
l < n are found recursively from

�n;n�1 D BCnn�nn ; �n;n�2 D BCn;n�1�n;n�1 ; : : : (13.105)

The last eigenfunction found by the recursive procedure is �n0 D BCn1�n1 as
expected. In fact, a further iteration would not yield an eigenfunction because
BCn0 D 0.

The eigenfunction of (13.94) corresponding to the lowest total energy Emin D

E.n D 0/ is found by combining (13.102,13.103) with � D %=x and x D r=a, thus
yielding %.r/ D .1=2/ exp.�r=a/. There is only one spherical harmonic compatible
with this energy eigenvalue, specifically, Y00 D 1=

p
4� (Table 13.1). Thus, the

product w.Emin/ D .c=2/ exp.�r=a/=
p
4� , with c a normalization constant, is the

eigenfunction of the Schrödinger equation (13.42) corresponding to the lowest total
energy. The normalization constant is necessary because % is obtained from scaling
another function � , originally normalized to unity. Taking the Jacobian determinant
J D r2 sin# from (B.3) one finds

1

c2
D

1

16�

Z 1

0

Z �

0

Z 2�

0

exp

�
�
2 r

a

�
r2 sin# dr d# d' D

a3

16
; (13.106)

whence w.Emin/ D exp.�r=a/=
p
� a3.

13.6.6 Transmission Matrix

The one-dimensional, time-independent Schrödinger equation (11.28) is solvable
analytically in a limited number of cases, some of which have been illustrated in
the sections above. When the analytical solution is not known one must resort to
approximate methods; an example is given here, with reference to a finite domain
0 � x � s. The latter is tessellated by selecting N points x1 < x2 < : : : < xN ,
internal to the domain, called nodes. The boundaries of the domain are indicated
with 0 D x0 < x1 and s D xNC1 > xN . The segment bounded by xi and xiC1 is
indicated with hiC1 and is called element. The same symbol indicates the length of
the element, hiC1 D xiC1 � xi. Finally, a subdomain �i, called cell, is associated
with each node. For the internal nodes x1; : : : ; xN the cell is bounded by xi � hi=2

and xi C hiC1=2. The same symbol is used to indicate also the cell length, �i D
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Fig. 13.3 Illustration of the
concepts of node, element,
and cell (Sect. 13.6.6)

i 1+hh i

Ω i
x i−i 1x i 1+x

.hi C hiC1/=2 (Fig. 13.3). The left boundary x0 is associated with the cell �0 of
length h1=2 placed on the right of x0, while the right boundary xNC1 is associated
with the cell �NC1 of length hNC1=2 placed on the left of xNC1.

The approximation methods that are applicable to a given tessellation are
numerous. The method depicted in this section replaces the coefficient q.x/ of
(11.28) over each element hi with an approximating function qi.x/ such that the
solution wi.x/ to (11.28) over hi can be found analytically. The approximating
functions qi may differ from an element to another, thus yielding different analytical
solutions. Then, the continuity of the analytical solutions and their derivatives is
imposed at each node; finally, the same continuity is imposed at the boundaries 0
and s, where the form of the wave function is supposed to be known.

To proceed, consider an internal node i D 1; 2; : : : ;N and the two elements hi,
hiC1 adjacent to it. The solutions wi, wiC1 over the two elements are expressed in
terms of the fundamental solutions u, v (compare with Sect. 11.4):

wi.x/ D au
i ui.x/Cavi vi.x/ ; wiC1.x/ D au

iC1uiC1.x/CaviC1viC1.x/ ; (13.107)

with au
i , avi , au

iC1, aviC1 undetermined constants. The fundamental solutions fulfill the
boundary conditions

uiC1.xi/ D 1 ; u0iC1.xi/ D 0 ; viC1.xi/ D 0 ; v0iC1.xi/ D 1 ;

(13.108)
i D 1; 2; : : : ;N, where primes indicate derivatives. Imposing the continuity of w, w0

at xi yields

au
iC1 D au

i ui.xi/C avi vi.xi/ ; aviC1 D au
i u0i.xi/C avi v

0
i.xi/ : (13.109)

Letting

ai D

�
au

i

avi

�
; Ni D

�
ui.xi/ vi.xi/

u0i.xi/ v
0
i.xi/

�
; (13.110)

the relations (13.109) take the form

aiC1 D Ni ai : (13.111)
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Matrix Ni is known by construction, and provides the link between the unknown
vectors ai and aiC1. Vector ai belongs to element hi only, whereas matrix Ni belongs
to element hi (due to ui, vi) and also to node xi (because ui, vi are calculated at xi).
Iterating (13.111) yields

aNC1 D NIa1 ; NI D NNNN�1 : : :N2N1 : (13.112)

Remembering the discussion in Sect. A.12 one finds det Ni D W D 1, whence
det NI D det NN : : : det N1 D 1. Now it is necessary to link the solution over h1
with that over x < 0, is given by (11.30). Although the two functions exp.˙i kL x/
in the latter are not fundamental solutions, it is convenient to keep the form (11.30)
because a2=a1 provides the information about the reflection coefficient directly.
Letting

aL D

�
a1
a2

�
; NL D

�
1 1

i kL �i kL

�
; (13.113)

the continuity of w and w0 at x D 0 yields a1 D NL aL. Similarly, it is necessary to
link the solution over hNC1 with that over x > 0, which is given by (11.31). Again,
the two functions exp.˙i kR x/ in the latter are not fundamental solutions; however,
they are kept here because a5=a1 provides the information about the transmission
coefficient directly. Letting

aR D

�
a5
a6

�
; NR D

�
exp.i kR s/ exp.�i kR s/

i kR exp.i kR s/ �i kR exp.�i kR s/

�
; (13.114)

the continuity of w and w0 at x D s yields NR aR D NNC1 aNC1, with det NNC1 D 1,
det NL D �2 i kL, det NR D �2 i kR. Combining the relations found so far,

aR D N aL ; N D N�1R NNC1 NI NL ; (13.115)

where

N�1R D

�
exp.�i kR s/=2 exp.�i kR s/=.2 i kR/

exp.i kR s/=2 i exp.i kR s/=.2 kR/

�
; det N�1R D �

1

2 i kR
:

(13.116)

whence det N D det N�1R det NNC1 det NI det NL D kL=kR. Matrix N (also called
transmission matrix in [24]) provides the link between aL and aR. Splitting the first
relation of (13.115) into its components gives

a5 D N11 a1 C N12 a2 ; a6 D N21 a1 C N22 a2 : (13.117)
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Fig. 13.4 Example of a
potential energy V.x/
replaced with a
piecewise-constant function
Vi (Sect. 13.6.6) Vi

h i

E

V(x)

If the particle is launched, e.g., from �1 one lets a6 D 0, whence

a2
a1
D �

N21
N22

;
a5
a1
D

det N
N22

D
kL=kR

N22
: (13.118)

Combining (13.118) with (11.35) yields6 jN21j2 C kL=kR D jN22j2.
The derivation of the transmission matrix has been carried out here without

specifying the form of the fundamental solutions ui, vi over the corresponding
element hi. In the practical cases, to easily find an analytical solution over each
element one approximates the coefficient q.x/ of (11.28) with a constant, qi D const
in hi; this is equivalent to replacing the potential energy V.x/ with a piecewise-
constant function Vi (Fig. 13.4). Depending on the sign of qi D 2m .E � Vi/=„

2 the
possible cases for ui, vi are:

8
<

:

qi D �˛
2
i < 0 ui D coshŒ˛i .x � xi�1/� vi D sinhŒ˛i .x � xi�1/�=˛i

qi D k2i > 0 ui D cosŒki .x � xi�1/� vi D sinŒki .x � xi�1/�=k
qi D 0 ui D 1 vi D x � xi�1

(13.119)

with ˛i, ki real. As the potential energy is replaced with a piecewise-constant
function, the accuracy of the approximation is not very high. Other methods are
more accurate; in particular, it can be shown that the Numerov process provides a
higher-order accuracy without a significant increase in the computational cost [19],
[20]. The details of the method are illustrated in Sect. A.13.3 and its application to
the solution of the time-independent Schrödinger equation is shown in Prob. 13.3.

6Within a numerical solution of the Schrödinger equation, the relation jN21j2 C kL=kR D jN22j2

may be exploited as a check for the quality of the approximation.
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Problems

13.1 Letting Z D 1 in (13.56) one finds the expression of the energy levels of
the hydrogen atom in a bound state, consistently with that obtained from the Bohr
hypothesis (Sect. 7.4.4). Use the same equation to calculate the minimum energy
that must be given to the electron to extract it from the hydrogen atom (ionization
energy).

13.2 With reference to the hydrogen atom, calculate the expectation value of the
radius r corresponding to the eigenfunction w.Emin/ D exp.�r=a/=

p
� a3 found in

Sect. 13.6.5.

13.3 Apply the Numerov process illustrated in Sect. A.13.3 to discretize the time-
independent Schrödinger equation (11.28).



Chapter 14
Time-Dependent Perturbation Theory

14.1 Introduction

In many physical problems it is necessary to consider the collision of a particle
with another particle or system of particles. The treatment based on Classical
Mechanics is given in Sects. 3.5,3.6 with reference to the motion’s asymptotic
conditions, without considering the form of the interaction, while Sect. 3.8 shows a
detailed treatment of the Coulomb interaction. Here the approach based on Quantum
Mechanics is shown, dealing with the following problem: a particle in a conservative
motion enters at t D 0 an interaction with another particle or system of particles;
such an interaction has a finite duration tP, at the end of which the particle is in a
conservative motion again. The perturbation produced by the interaction, which is
described by a suitable Hamiltonian operator, may change the total energy of the
particle; the analysis carried out here, called time-dependent perturbation theory,
allows one to calculate such an energy change. The other particle or system, with
which the particle under consideration interacts, is left unspecified. However, it is
implied that the larger system, made of the particle under consideration and the
entity with which it interacts, is isolated, so that the total energy is conserved:
if the particle’s energy increases due to the interaction, then such an energy is
absorbed from the other entity, or vice versa. As in Classical Mechanics, other
dynamic properties of an isolated system are conserved; an example of momentum
conservation is given in Sect. 14.8.3.

The discussion is carried out first for the case where the eigenvalues prior and
after the perturbation are discrete and nondegenerate. Starting from the general
solution of the perturbed problem, a first-order approximation is applied, which
holds for small perturbations, and the probability per unit time of the transition
from a given initial state to another state is found. The analysis is repeated for the
degenerate case (still for discrete eigenvalues) and, finally, for the situation where
both the initial and final state belong to a continuous set. The last section shows
the calculation of the perturbation matrix for a screened Coulomb perturbation.
The complements deal with the important problems of a perturbation constant in
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time and a harmonic perturbation; a short discussion follows about the Fermi golden
rule, the transitions from discrete to continuous levels, and the general form of the
harmonic perturbation.

14.2 Discrete Eigenvalues

Let H be the Hamiltonian operator that describes the dynamics of the particle when
the perturbation is absent. Such an operator is assumed to be conservative, namely,
H D �„2 r2=.2m/C V.r/. When the perturbation is present, namely, for 0 � t �
tP, the Hamiltonian operator is referred to as H 0. The two operators, respectively
called unperturbed Hamiltonian and perturbed Hamiltonian, are Hermitean, so their
difference ıH D H 0 � H , called perturbation Hamiltonian, is Hermitean as
well. Also, it is assumed that H and H 0 are real, and that ıH does not act on
time; however, it is ıH D ıH .t/ because the perturbation is present only when
0 � t � tP.

For t < 0 and t > tP the wave function is unperturbed; remembering the concepts
introduced in Sect. 9.2 and considering the case of discrete eigenvalues, it reads

 D
X

n

cn wn.r/ exp.�i En t=„/ ; (14.1)

with wn the solutions of H wn D En wn. As usual, n stands for a single index or a
set of indices. For the sake of simplicity, here it is assumed provisionally that the
energy eigenvalues are not degenerate, so that a one-to-one correspondence exists
between En and wn; this assumption will be removed later (Sect. 14.5). The wave
function is assumed to be square integrable and normalized to unity, whence jcnj

2

is the probability that the particle under consideration is found in the nth state, and
hwsjwni D ısn. As noted above, expansion (14.1) holds for both t < 0 and t > tP.
However, prior to the perturbation and as a consequence of a measurement, the
additional information about the energy state is available; assuming that the outcome
of the measurement was the rth state, it follows (Sect. 9.2) that for t < 0 it is cn D 0

when n ¤ r, and1

jcrj
2 D 1 ; cr D 1 ;  D wr.r/ exp.�i Er t=„/ : (14.2)

When t! 0 the last relation in (14.2) yields .r; t D 0/ D wr which, by continuity,
provides the initial condition for the time-dependent Schrödinger equation to be
solved in the interval 0 � t � tP; such an equation reads

1The phase of cr is irrelevant and is set to zero.
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.H C ıH /  D i „
@ 

@t
: (14.3)

Thanks to the completeness of the wns one expands the wave function as  DP
n bn.t/wn.r/, where functions bn are unknown (compare with (9.10)). However,

it is convenient to transfer the role of unknowns to a new set of functions an.t/ D
bn.t/ exp.i En t=„/, so that the expansion reads

 D
X

n

an.t/wn.r/ exp.�i En t=„/ : (14.4)

By this token, the initial condition yields an.0/ D ınr. Replacing (14.4) in (14.3),
X

n

an exp.�i En t=„/ .H wn C ıH wn/ D

D i „
X

n

wn exp.�i En t=„/ .dan=dt � i En an=„/ ; (14.5)

where the first and last terms cancel out due to H wn D En wn. The next step
is a scalar multiplication of the remaining terms by one of the eigenfunctions
of the unperturbed problem, say, ws. The sum i „

P
n wn exp.�i En t=„/ dan=dt at

the right-hand side of (14.5) transforms, due to hwsjwni D ısn, into the single
term i „ exp.�i Es t=„/ das=dt. In conclusion, the time-dependent Schrödinger equa-
tion (14.3) becomes a set of infinite, coupled linear equations in the unknowns as:

das

dt
D

1

i „

X

n

an hns exp.�i!ns t/ ; as.0/ D ısr ; (14.6)

with

hns.t/ D
Z

�

w�s ıH wn d3r ; !ns D .En � Es/=„ : (14.7)

The coefficients of (14.6) embed the eigenvalues and eigenfunctions of the unper-
turbed problem. Due to its form, the set of elements hns.t/ is called perturbation
matrix; remembering that ıH is real, the definition (14.7) of the elements shows
that hsn D h�ns.

14.3 First-Order Perturbation

The differential equations (14.6) are readily transformed into a set of integral
equations by integrating from t D 0 to t � tP and using the initial condition:

as D ısr C
1

i „

Z t

0

X

n

an.t
0/ hns.t

0/ exp.�i!ns t0/ dt0 : (14.8)
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As mentioned above, the solution of the Schrödinger equation for t > tP is (14.1),
with jcnj

2 the probability that a measurement carried out at t D tP yields the
eigenvalue En. The coefficients cn are found by observing that after the solution
of (14.6) or (14.8) is calculated, the time-continuity of  and the uniqueness of
the expansion yield cn D an.tP/. It follows that the probability that at t D tP an
energy measurement finds the eigenvalue Es is jas.tP/j2. On the other hand, the
energy state prior to the perturbation was assumed to be Er, and the functions an.t/
inherit this assumption through the initial condition an.0/ D ınr; as a consequence,
the quantity jas.tP/j2 D jbs.tP/j2 can be thought of as the probability that the
perturbation brings the particle from the initial state Er to the final state Es: for
this reason, Prs D jas.tP/j2 is called transition probability from state r to state s.
Thanks to the normalization condition it is

P
s Prs D

R
�
j .tP/j2 d3r D 1; the term

of equal indices, Prr, is the probability that the perturbation leaves the particle’s state
unchanged.

The two forms (14.6) and (14.8) are equivalent to each other; however, the second
one is better suited for an iterative-solution procedure, that reads

a.kC1/s D ısr C
1

i „

Z t

0

X

n

a.k/n hns exp.�i!ns t0/ dt0 ; (14.9)

where a.k/n .t/ is the kth iterate. The iterations are brought to an end when jja.kC1/s �

a.k/s jj < �, where the bars indicate a suitable norm and � is a small positive constant.
To start the procedure it is necessary to choose the iterate of order zero, a.0/n .t/,
which is typically done by letting a.0/n .t/ D a.0/n .0/ D ınr; in other terms, the initial
iterate of an is selected as a constant equal to the initial condition of an. Replacing
this value into the integral of (14.9) yields the first-order iterate

a.1/r D 1C
1

i „

Z t

0

hrr dt0 ; a.1/s D
1

i „

Z t

0

hrs exp.�i!rs t0/ dt0 ; (14.10)

s ¤ r. If the perturbation is small enough, the first-order iterate is already close
to the solution, so that ar ' a.1/r , as ' a.1/s . This case happens when the norm
of the integrals in (14.10) is much smaller than unity; it follows Prr ' 1, Prs �

1. The approximate solution thus found is called first-order solution, or first-order
perturbation. Note that, as hrr is real, the iterate a.1/r is a complex number whose
real part equals unity; as a consequence it is ja.1/r j

2 > 1. This nonphysical result is
due to the approximation.
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14.4 Comments

Considering the case where the initial and final states are different, and observing
that the entries of the perturbation matrix vanish for t < 0 and t > tP, one can
calculate as.tP/ by replacing the integration limits 0 and tP with �1 and C1,
respectively. This shows that a.1/s is proportional to the Fourier transform (C.16) of
hrs evaluated at !rs D .Er � Es/=„,

a.1/s D
1

i „

Z C1

�1

hrs exp.�i!rs t0/ dt0 D

p
2�

i „
Fhrsj!D!rs

: (14.11)

In conclusion, the first-order solution of the time-dependent Schrödinger equa-
tion (14.3) yields the following probability of a transition from state r to state s:

Prs D
2�

„2
jFhrsj

2 : (14.12)

The units of hns are those of an energy. It follows that the units of Fhrs are those
of an action, and Prs is dimensionless, as expected. Some important consequences
derive from (14.12):

1. It may happen that for a given perturbation Hamiltonian ıH the eigenfunctions
wr, ws (s ¤ r) are such that hrs D 0. In this case ıH is not able to induce
the transition from state r to state s: the transition is forbidden. Basing on this
observation one can determine the pairs of indices for which the transitions are
permitted, thus providing the so-called transition rules or selection rules. For
this analysis it is sufficient to consider the symmetry of the integrand in the
definition (14.7) of hrs, without the need of calculating the integral itself.

2. By exchanging r and s one finds hsr D h�rs, while !rs becomes�!rs. From (14.11)
it follows that Fhsr D .Fhrs/

�, whence Psr D Prs: for a given perturbation
Hamiltonian ıH the probability of the r ! s and s ! r transitions are the
same.

The transition from an energy state to a different one entails a change in the total
energy of the particle under consideration. Such a change is due to the interaction
with another particle or system of particles whence ıH originates. Examples are
given in Sects. 14.8.1 and 14.8.2.

The replacement of the integration limits 0 and tP with �1 andC1, carried out
above, has the advantage of making the presence of the Fourier transform clearer;
however, remembering that the duration tP of the perturbation is finite, one observes
that the probability Prs is a function of tP proper. From this, the probability per unit
time of the transition is defined as

PPrs D
dPrs

dtP
: (14.13)
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14.5 Degenerate Energy Levels

In Sect. 14.2 nondegenerate energy levels have been assumed for the sake of
simplicity. The case of degenerate levels is considered here, still assuming that the
indices are discrete. By way of example, let each energy value En correspond to a
set wn1; : : : ;wn� ; : : : of linearly independent, mutually orthogonal eigenfunctions.
An example of this is given by the eigenvalues (13.56) of the Schrödinger equation
for a central force of the Coulomb type, whose degree of degeneracy in the spinless
case is given by (13.57). Expression (14.1) of the unperturbed wave function, that
holds for t < 0 and t > tP, becomes in this case

 D
X

n�

cn� wn� .r/ exp.�i En t=„/ ; (14.14)

with wn� the solutions of H wn� D En wn� . As before, the wave function is
assumed to be square integrable and normalized to unity, whence jcn� j

2 is the
probability that the particle under consideration is found in the state labeled by
n; � , and hwsˇjwn� i D ısn ıˇ� . Prior to the perturbation and as a consequence
of measurements, the additional information about the energy state is available,
along with that of the observable associated with index � , whose measurement
is compatible with that of energy (compare with Sect. 10.4); assuming that the
outcome of the measurements was the state labeled r; ˛, it follows that for t < 0

it is cr˛ D 1,  D wr˛.r/ exp.�i Er t=„/, while all other coefficients vanish. As
a consequence, the initial condition for the time-dependent Schrödinger equation
to be solved in the interval 0 � t � tP is  .r; t D 0/ D wr˛ . Following
the same reasoning as in Sect. 14.2 shows that in such an interval the expansion
 D

P
n� an� .t/wn� .r/ exp.�i En t=„/ holds, and the time-dependent Schrödinger

equation transforms into the set of infinite, coupled linear equations

dasˇ

dt
D

1

i „

X

n�

an� h�ˇns exp.�i!ns t/ ; asˇ.0/ D ısr ıˇ˛ ; (14.15)

with

h�ˇns .t/ D
Z

�

w�sˇ ıH wn�d3r ; !ns D .En � Es/=„ : (14.16)

The first-order perturbative solution of (14.15) is obtained following the same
path as in Sect. 14.3. Within this approximation, and considering a final state s; ˇ
different from the initial one, the probability of a r; ˛ ! s; ˇ transition induced by
the perturbation is

P˛ˇrs D
1

„2

ˇ̌
ˇ̌
Z tP

0

h˛ˇrs .t/ exp.�i!ns t/ dt

ˇ̌
ˇ̌
2

: (14.17)
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Thanks to the normalization condition it is
P

sˇ P˛ˇrs D
R
�
j .tP/j2 d3r D 1, which

can be expressed as

X

s

P˛rs D 1 ; P˛rs D
X

ˇ

P˛ˇrs : (14.18)

This shows that the inner sum P˛rs is the probability that the perturbation induces a
transition from the initial state r; ˛ to any final state whose energy is Es ¤ Er.

14.6 Continuous Energy Levels

When the spectrum is continuous, the wave packet describing a particle in a three-
dimensional space and in a conservative case is given by (9.5), namely

 .r; t/ D
ZZZ C1

�1

ck wk.r/ exp.�i Ek t=„/ d3k ; (14.19)

with Ek, wk the eigenvalues and eigenfunctions of H wk D Ek wk, and k a three-
dimensional vector whose components are continuous. If the wave function is square
integrable and normalized to unity, (9.7) holds:

Z

�

j j2 d3r D
ZZZ C1

�1

jckj
2 d3k D 1 : (14.20)

Remembering the discussion of Sects. 9.2, 9.6, and 10.2, the product j .r; t/j2 d3r is
the infinitesimal probability that at time t the particle is localized within d3r around
r, and the product jckj

2 d3k is the infinitesimal probability that the outcome of an
energy measurement belongs to the range of E.k/ values whose domain is d3k.

To proceed one assumes that the unperturbed Hamiltonian operator is that of a
free particle, H D �.„2=2m/r2; it follows that the wave function and energy
corresponding to a wave vector k read (Sect. 9.6)

wk.r/ D
1

.2 �/3=2
exp.i k � r/ ; Ek D

„2

2m

�
k21 C k22 C k23

	
D „!k : (14.21)

Thanks to the completeness of the eigenfunctions (14.21), during perturbation the
wave function is given by

 .r; t/ D
ZZZ C1

�1

ak.t/wk.r/ exp.�i Ek t=„/ d3k : (14.22)
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Due to (14.20), the units of jckj
2 and, consequently, of jakj

2, are those of a volume.
The same reasoning as in Sect. 14.2 yields in this case

Z
dak

dt
wk.r/ exp .�i Ek t=„/ d3k D

Z
ak

i „
ıH wk.r/ exp .�i Ek t=„/ d3k

(14.23)

(for the sake of simplicity, the symbol of triple integral over k or r is replaced with
R

in (14.23) and in the relations below). Considering a state g, a scalar multiplication
of (14.23) by the corresponding eigenfunction wg is carried out; performing the
integration over r first, yields at the right-hand side the entry of the perturbation
matrix of labels k and g:

hkg.t/ D
1

.2 �/3

Z
exp.�i g � r/ ıH exp.i k � r/ d3r ; (14.24)

where the units of hkg.t/ are those of an energy times a volume. At the left-hand side
of (14.23), still performing the integration over r first, and using (C.56), provides

Z
dak

dt
ı.k � g/ exp .�i Ek t=„/ d3k D

dag

dt
exp

�
�i Eg t=„

	
(14.25)

which, combined with (14.24) and (14.23), yields

dag

dt
D

1

i „

Z
ak hkg exp

�
�i .Ek � Eg/ t=„

�
d3k ; (14.26)

the analogue of (14.6) and (14.15). However, a difference with respect to the discrete
case exists, because an in (14.6) and an� in (14.15) are dimensionless quantities,
whereas ak in (14.26) is not. As a consequence, when the first-order perturbation
method is used, and ak within the integral of (14.26) is replaced with the initial
condition, its expression contains one or more parameters whose values enter the
final result. Given these premises, choose for the initial condition, e.g., a Gaussian
function centered on some vector b ¤ g,

ak.0/ D �
�3=4 �3=2 exp.��2 jk � bj2=2/ ; (14.27)

with � > 0 a length. Inserting (14.27) into (14.22) yields the initial condition for
the wave function (compare with (C.83)),

 .r; 0/ D ��3=4 ��3=2 expŒ�r2=.2 �2/C i b � r� : (14.28)

Both (14.27) and (14.28) are square integrable and normalized to unity for any
positive �; when the latter becomes large,  .r; 0/ becomes more and more similar
to a plane wave, while the peak of ak.0/ around b becomes narrower and higher.
Assuming that the k-dependence of hkg is weaker than that of ak.0/, one replaces k
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with b in hkg and Ek, so that in (14.26) only the integral of ak.0/ is left, which
yields .2

p
�=�/3=2. Completing the calculation as in Sects. 14.4 and 14.5, and

remembering that g ¤ b, provides

ag.tP/ '
.2
p
�=�/3=2

i „

Z tP

0

hbg.t/ exp
�
�i!bg t

	
dt ; !bg D

Eb � Eg

„
:

(14.29)

The product dPbg D jag.tP/j2 d3g is the infinitesimal probability that at the end of
the perturbation the outcome of an energy measurement belongs to the range of E.g/
values whose domain is d3g.

Typical applications of (14.26) are encountered in the cases where the perturba-
tion matrix is independent of time, hbg D h.0/bg D const ¤ 0. A calculation similar
to that of Sect. 14.8.1 yields in this case

dPbg D
8�3=2 jh.0/bg j

2

�3 „2
f .!bg/ d3g ; f .!bg/ D

�
sin.!bg tP=2/

!bg=2

�2
: (14.30)

In place of the domain d3g one can consider the corresponding range of energy
dEg; for this, one profits by the concept of density of states introduced in
Sect. B.5. Here the calculation is simple because the E D E.g/ relation is
given by (14.21) so that, by the same calculation leading to (B.34), one obtains
d3g D .1=2/ sin# d# d' .2m=„2/3=2

p
Eg dEg. Considering that the initial state

b and the duration tP are prescribed, the factor f .!bg/ in (14.30) depends only

on Eg, while h.0/bg may depend on the angles # , ' (compare with Prob. 14.1).
Integrating (14.30) over the angles and letting

H.0/

b .Eg/ D

Z �

0

Z 2�

0

jh.0/bg j
2 sin# d# d' ; (14.31)

yield the infinitesimal probability that a perturbation constant in time induces a
transition from the initial condition (14.28) to a final state whose energy belongs
to the range dEg:

dPb D

Z �

0

Z 2�

0

dPbg sin# d# d' D

�
2� m

„2

�3=2 4 f .!bg/H.0/

b

�3 „2

p
Eg dEg :

(14.32)

14.7 Screened Coulomb Perturbation

An important case of perturbation is that of a charged particle deflected by another
charged particle fixed in the origin. The perturbation Hamiltonian is independent of
time and, in vacuo, takes the form (3.31) of the Coulomb potential energy.2 Though,

2This case is the quantum analogue of that treated in classical terms in Sect. 3.8.
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the perturbation matrix (14.24) calculated using (3.31) diverges. Such an outcome
is explained by observing that as the vanishing behavior of the Coulomb potential
energy away from the origin is weak, the particle is actually subjected to it at large
distances from the origin; as a consequence, using the free particle’s eigenfunctions
exp.i k � r/=.2 �/3=2 as solutions of the unperturbed Schrödinger equation is too
strong an approximation. A more appropriate approach adopts for the perturbation
Hamiltonian the screened Coulomb potential energy

ıH D
A

4� r
exp.�qc r/ ; r > 0 ; A D

� Z e2

"0
; (14.33)

with e > 0 the elementary electric charge, Z a positive integer, "0 the vacuum
permittivity, qc > 0 the inverse screening length, and, finally, � D 1 .�1/ in the
repulsive (attractive) case. The asymptotic vanishing of (14.33) is much stronger
than that of the pure Coulomb case, and the resulting matrix elements are finite,
as shown below. Although the choice of a screened potential energy is not realistic
in vacuo, an expression like (14.33) is more appropriate than (3.31) when a solid
material is considered (Sect. 20.5).

To calculate (14.24) one lets q D k � g and chooses a Cartesian reference such
that q is aligned with the z axis: turning to spherical coordinates (B.1) transforms
d3r into r2 sin# d# d' dr and q � r into q r cos# . Letting � D cos# , and observing
that the integration over ' yields a 2� factor, one gets

h.0/kg D
A=2

.2 �/3

Z 1

0

�Z C1

�1

exp.�i q r�/ d�

�
exp.�qc r/ r dr D

A=.2 �/3

q2c C q2
:

(14.34)

14.8 Complements

14.8.1 Perturbation Constant in Time

The simplest example of the time-dependent perturbation theory of Sect. 14.1 occurs
when the matrix elements hrs are constant in time during the perturbation. In this
case one lets hrs D h.0/rs D const ¤ 0 for 0 � t � tP, and hrs D 0 elsewhere.
From (14.10) it follows

h.0/rs

Z tP

0

exp.�i!rs t/ dt D h.0/rs exp.�i!rs tP=2/
sin.!rs tP=2/

!rs=2
; (14.35)

Prs D
jh.0/rs j

2

„2
f .!rs/ ; f .!rs/ D

�
sin.!rs tP=2/

!rs=2

�2
: (14.36)
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Fig. 14.1 Form of f .!rs/=tP,
with f given by the second
expression in (14.36), for
different values of tP (in
arbitrary units)
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The form of f .!rs/=tP is shown in Fig. 14.1 in arbitrary units. The zeros of f
nearest to !rs D 0 are !C D 2�=tP and !� D �2�=tP, which provides the width
!C � !� D 4�=tP of the peak; in turn, the height of the peak is f .!rs D 0/ D t2P,
thus indicating that the area of the peak is proportional to tP. In fact, from (C.15)
one obtains

Z C1

�1

f .!rs/ d!rs D 2� tP : (14.37)

The form of f .!rs/=tP suggests that if tP is sufficiently large, such a ratio may be
approximated with a Dirac delta (Sect. C.4), namely, f .!rs/ � 2� tP ı.!rs/, where
the coefficient 2� tP is chosen for consistency with (14.37). To this purpose one also
notes that due to the smallness of „, the modulus of !rs D .Er � Es/=„ is very large
(whence f .!rs/ is very small) unless Es D Er. Using the approximate form within
the probability’s definition (14.36) yields

Prs � 2�
jh.0/rs j

2

„2
tP ı.!rs/ D 2�

jh.0/rs j
2

„
tP ı.Er � Es/ : (14.38)

As expected, Prs is invariant when r and s are interchanged (compare with (C.55)
and comments therein). Differentiating (14.38) with respect to tP yields the proba-
bility3 per unit time of the transition from state r to state s:

PPrs � 2�
jh.0/rs j

2

„2
ı.!rs/ D 2�

jh.0/rs j
2

„
ı.Er � Es/ : (14.39)

3The expressions in terms of energy in (14.38,14.39) are obtained from ı.!/ d! D ı.E/ dE D
ı.E/ d„!. Compare with the comments about the dimension of Dirac’s ı made in Sect. C.5.
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This shows that the particle’s energy is approximately conserved when the pertur-
bation lasts for a long time. The result is intuitive, because in the limit tP ! 1 a
constant perturbation is equivalent to a shift in the potential energy, which makes the
Hamiltonian operator conservative at all times. On the other hand, the conservation
of energy does not imply the conservation of other dynamic quantities like, e.g.,
momentum (compare with the analysis of the two-particle collision carried out in
classical terms in Sect. 3.6 and in quantum terms in Sects. 14.6 and 17.8).

14.8.2 Harmonic Perturbation

Another important example is that of the harmonic perturbation at an angular
frequency !0 > 0: in this case the matrix elements read hrs D h.0/rs cos.!0 t/ for
0 � t � tP, h.0/rs D const ¤ 0, and hrs D 0 elsewhere. From (14.10) it follows

Z tP

0

hrs exp.�i!rs t/ dt D
h.0/rs

2

�
exp

�
S tP
2 i

�
�.S/C exp

�
D tP
2 i

�
�.D/

�
;

(14.40)

with S D !rs C !0, D D !rs � !0, �.�/ D sin.� tP=2/=.�=2/. Comparing the
definition of � with (14.36) shows that f D �2, whence

Prs D
jh.0/rs j

2

4„2
F.!rs/ ; F D f .S/C f .D/C 2 �.S/ �.D/ cos.!0 tP/ : (14.41)

The form of F.!rs/=tP is shown in Fig. 14.2 in arbitrary units. The largest peaks
correspond to !rs D !0 and !rs D �!0; if tP � 1=!0 holds, the two peaks are
practically separate whence, using as in Sect. 14.8.1 the approximation f ' 2� tP ı,
one finds

Prs ' 2�
jh.0/rs j

2

4„2
Œı.!rs C !0/C ı.!rs � !0/� tP : (14.42)

Remembering that !rs D .Er � Es/=„ ; the transition probability per unit time due
to the harmonic perturbation is finally found to be

PPrs D 2�
jh.0/rs j

2

4„
Œı.Er � Es C „!0/C ı.Er � Es � „!0/� : (14.43)

When r and s are interchanged, the two summands between brackets replace
each other. As !0 ¤ 0, the arguments of ı in (14.42) or (14.43) cannot vanish
simultaneously. If the first vanishes it is Es D Er C „!0 > Er, namely, the final
energy Es is larger than the initial one: the particle acquires the quantum of energy
„!0 from the perturbing entity (absorption). If the second argument vanishes it
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Fig. 14.2 Form of F.!rs/=tP, with F given by the second expression in (14.41), with tP D 1,
!0 D 5 (in arbitrary units)

is Es D Er � „!0 < Er: the particle releases the energy quantum to the perturbing
entity (emission). For example, the energy can be absorbed from, or emitted towards,
an electromagnetic field; in this case the particle interacts with the mode at angular
frequency !0 by absorbing or emitting a photon (Sect. 12.28). The total energy of
the particle and field is conserved in both cases.4 The same description applies to
the interaction with a vibrational field; in this case the particle absorbs or emits a
phonon (Sects. 12.5 and 17.8).

14.8.3 Fermi’s Golden Rule

Expression (14.32) gives the infinitesimal probability that a perturbation constant in
time induces a transition from the initial state b to a final state whose energy belongs
to the range dEg; it is an example of a more general expression denoted with Fermi’s
Golden Rule. Remembering from Sect. 14.8.1 that for a sufficiently large value of
tP, it is f .!bg/ � 2� tP ı.!bg/, one finds from (14.32)

dPb �

�
2� m

„2

�3=2 8 � tP ı.Eb � Eg/H.0/

b

�3 „

p
Eg dEg : (14.44)

Dividing (14.44) by tP provides the infinitesimal probability per unit time. Factor
ı.Eb � Eg/ entails the conservation of energy; as the unperturbed Hamiltonian

4The spatial dependence of the field is embedded in h.0/rs .
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operator, upon which the derivation of (14.44) is based, is that of a free particle,
the relation Eg D Eb combined with the second relation in (14.21) implies g2 D b2,
namely, the modulus of momentum is also conserved. The result is the same as in the
case of the classical treatment of a particle’s collision with another particle having a
much larger mass (Sect. 3.6).

14.8.4 Transitions from Discrete to Continuous Levels

The transition probability is calculated following a reasoning similar to that of
Sect. 14.5 also in the case where the initial state is labeled by a discrete index and the
final state belongs to a continuous set. A physical situation where such a transition
may occur is that of a particle initially trapped within a well: with reference to
Sect. 11.5, the energy levels are discrete if E < 0, whereas they are continuous for
E > 0, namely, the spectrum is mixed (Sect. 8.4). A particle whose initial state
belongs to the discrete set may absorb from the perturbation an amount of energy
sufficient for reaching the continuous set of states, thus leaving the well. As the final
energy belongs to a continuous set, the outcome of the calculation is the expression
of an infinitesimal probability like in Sect. 14.6.

14.8.5 Harmonic Perturbation—General Case

The general case of harmonic perturbation derives from a perturbation Hamiltonian
of the form (compare with the example of Sect. 14.8.2)

ıH D A exp.i!q t/CA � exp.�i!q t/ ; !q > 0 ; (14.45)

in the time interval 0 � t � tP, where A is a Hermitean, time-independent operator
having the dimensions of an energy, such that A D 0 for t < 0 and t > tP; the
angular frequency depends on a three-dimensional vector q that is provisionally left
unspecified. From the definition (14.45) it follows that ıH is Hermitean. Defining
the complex constants

ak k0 D

Z

�

w�k0

A wk d3r ; a�k0 k D

Z

�

w�k0

A �wk d3r ; (14.46)

with k, k0 three-dimensional indices, and applying (14.7), one finds the elements of
the perturbation matrix, hk k0.t/ D ak k0 exp.i!q t/C a�k0 k exp.�i!q t/. In (14.46),
� is the domain where the eigenfunctions are defined. The Fourier transform of hk k0

with respect to time is found to be
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Fhk k0 D ak k0 exp

�
D tP
2 i

�
�.D/C a�k0 k exp

�
S tP
2 i

�
�.S/ ; (14.47)

with S D !k k0 C !q, D D !k k0 � !q, and �.�/ D sin.� tP=2/=.�=2/. Letting
f D �2 and ak k0 D ck k0 exp.i'k k0/, with ck k0 , 'k k0 real quantities, the expression
of Pk k0 D jFhk k0 j2=„2 reads

Pk k0 D
1

„2

�
jak k0 j2 f .D/C jak0 kj

2 f .S/C 2 ck k0 �.S/ �.D/ cos.!q tP C 'k k0/
�
:

(14.48)

The discussion of the result is similar to that of Sect. 14.8.2: for a sufficiently large
value of tP it is f ' 2� tP ı; also, for !k k0 D !q the quantity in brackets in (14.48)
becomes

t2P

"

jak k0 j2 C jak0 kj
2 sin2.!q tP/

.!q tP/2
C 2 ck k0

sin.!q tP/

!q tP
cos.!q tP C 'k k0/

#

:

(14.49)

The case !k k0 D �!q yields a similar result with jak k0 j2 and jak0 kj
2 interchanged.

If !q � 1=tP holds, the two peaks of Pk k0 at !q and �!q are practically separated
(compare with Fig. 14.2) whence, using f ' 2� tP ı, one finds

Pk k0 '
2�

„2

�
jak k0 j2 ı.!k k0 � !q/C jak0 kj

2 ı.!k k0 C !q/
�

tP : (14.50)

Using „!k k0 D Ek�Ek0 and taking the derivative of (14.50) with respect to tP yield
the probability per unit time of the k ! k0 transition:

PPk k0 D
2�

„

�
jak k0 j2 ı.Ek � Ek0 � „!q/C jak0 kj

2 ı.Ek � Ek0 C „!q/
�
:

(14.51)

Like in the case of (14.43), the arguments of the ı symbols in (14.51) cannot vanish
simultaneously because !q ¤ 0. If the first argument vanishes it is Ek0 D Ek �

„!q < Ek, namely, the particle undergoing the transition emits the quantum of
energy „!k. If the second argument vanishes it is Ek0 D EkC„!q > Ek, namely, the
particle undergoing the transition absorbs the quantum of energy „!q. This results
may be viewed in two ways: if the particle is considered on its own, the result of
the perturbation is that the particle energy is either increased by the amount „!k

(absorption) or decreased by the same amount (emission). If, instead, the system
made of the particle and the perturbing agent is viewed as a whole, the result of the
perturbation is the exchange of the energy „!q between the two parts of the system,
whose total energy is conserved.

The result established by (14.50) and (14.51) is based upon the obvious assump-
tion that states Ek and Ek0 exist, namely, that they are eigenvalues of the unperturbed
Hamiltonian of the particle under investigation. It follows that an energy transition
of the particle may occur only if, within its energy spectrum, there exist two states
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fulfilling the relation Ek � Ek0 D j„!qj. If they do not exist, the arguments of the ı
symbols in (14.50) or (14.51) never vanish and no transition occurs. In other terms,
the particle is not able to exchange energy with the perturbing agent. This apparently
surprising result is due to the limit �P ! 1. In fact, in the limit the frequency
spectrum of the perturbation becomes monochromatic and only the energy „!q

becomes available. Without the limit �P ! 1 the transition probability per unit
time is found by taking the derivative of (14.48) with respect to tP. The resulting
spectrum extends over all frequencies; correspondingly, there are much more pairs
of states Ek and Ek0 between which the particle may undergo a transition due to the
interaction with the perturbing agent, albeit with different probabilities. The analysis
above applies in the same manner to the results of Sects. 14.8.1 and 14.8.2.

14.8.6 Spatially Oscillating Harmonic Perturbation

An interesting type of perturbation is that whose spatial part oscillates. In this case,
operator A of (14.45) is simply multiplicative, A D W.r/, so that

ıH D W exp.i!q t/CW� exp.�i!q t/ ; (14.52)

and the integrals to be calculated take the form (compare with (14.46)),

I D
Z

�

w�k0

W.r/wk d3r ; (14.53)

where the indices at the left-hand side are omitted for simplicity. Some results of
this section are used in the description of the interaction between an electron and
the lattice, given in Sect. 17.8; to proceed it is then necessary to anticipate some
concepts that will be illustrated in more detail in Sect. 17.5.1. When the Hamiltonian
operator is periodic, the eigenfunctions of the unperturbed problem have the form of
Bloch functions, so that the expansion of the wave function takes the form (17.51).
In the following, the Bloch functions belonging to a given branch of the dispersion
relation are considered, so that the sum over index i in (17.51) is omitted, and indices
k, k0 only are retained. In turn, � in (14.53) is the crystal volume. Dropping the
branch index and letting l be any translation vector of the crystal (Sect. 17.2) give
the Bloch functions the form

wk D uk.r/ exp.i k � r/ ; uk.rC l/ D uk.r/ : (14.54)

Due to the general properties of the Schrödinger equation, wk fulfills the orthog-
onality condition

R
�

w�k0

wk d3r D ıŒk � k0�, where the right-hand side is the
three-dimensional generalization of the Kronecker symbol (compare with (C.130)).
Using the Bloch functions (14.54) transforms (14.53) into
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I D
Z

�

u�k0

uk W.r/ exp
�
�i
�
k0 � k

	
� r
�

d3r ; (14.55)

showing that for the eigenfunctions considered here the perturbation-matrix entry is
proportional to the spatial Fourier transform of u�k0

uk W.r/. The expression (14.55)
is rather complicate due to the necessity of explicitly calculating the periodic part
uk.r/ of the Bloch function for each crystal. The calculation becomes easier when
W has a special form, as shown in the example below. Prior to specifying any form
of W, one observes that the crystal volume � is the union of the volumes of the
lattice cells, whose number is Nc. It follows � D �0 [�1 [ : : : [�Nc�1, whence

I D
Nc�1X

mD0

Im ; Im D

Z

�m

w�k0

.r/W.r/wk.r/ d3r : (14.56)

Letting �0 denote the cell containing the origin of the reference, it is

Im D

Z

�0

w�k0

.rC lm/W.rC lm/wk.rC lm/ d3r ; (14.57)

where lm is the direct-lattice vector of the mth cell (that is, the vector connecting the
cell associated with the origin with the cell of index m), and wk D uk.r/ exp.i k � r/.
Due to the periodicity of uk it is

Im D expŒi .k�k0/ � lm�
Z

�0

u�k0

.r/ uk.r/W.rC lm/ expŒi .k�k0/ �r� d3r : (14.58)

An interesting case occurs when W has the form of the spatial part of a plane wave,
W.r/ D W0 exp.i kd � r/, with kd a vector of the scaled reciprocal lattice; in this
case, (14.58) becomes

Im D W0 expŒi .k � k0 C kd/ � lm�
Z

�0

u�k0

.r/ uk.r/ expŒi .k � k0 C kd/ � r� d3r :

(14.59)

Relation Between Initial and Final State

In (14.59), the dependence of Im on m is actually on the three integer indices5 of
lm D m1 a1 C m2 a2 C m3 a3 whence, letting

k � k0 C kd D 2� �1 b1 C 2� �2 b2 C 2� �3 b3 (14.60)

5Here and in the following, a1, a2, a3 are the characteristic vectors of the Bravais lattice (Sect. 17.2),
and b1, b2, b3 are the characteristic vectors of the reciprocal lattice (Sect. 17.3).
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and using ai � bj D ıij with ıij the Kronecker symbol (A.18), one finds, for the
exponential factor multiplying the integral in (14.59), the expression expŒi .k�k0C
kd/ � lm� D expŒ2 � i .�1 m1 C �2 m2 C �3 m3/�. It follows that (14.59) is recast as

Im D W0 I0 expŒ2 � i .�1 m1 C �2 m2 C �3 m3/� ; (14.61)

where only the last factor depends on m. This expedites the conclusion of the
analysis; in fact, to calculate the transition probability one adds up the cells’
contributions, as prescribed by the first relation in (14.56), and takes the square
modulus of the result. It is shown in Prob. 14.3 that if Nc is large (as is in the practical
cases), it follows

ˇ̌
ˇ̌
ˇ

Nc�1X

mD0

expŒi .k � k0 C kd/ � lm�

ˇ̌
ˇ̌
ˇ

2

' N2
c

X

�

ıŒk � k0 C kd � g� � ; (14.62)

with g� any translation vector of the scaled reciprocal lattice. As shown in
Prob. 14.3, the left-hand side of (14.62) is expressible as the product of three
functions of the form sin2.� �s Ns/= sin2.� �s/, with �s any integer. Figure 14.3
shows a plot of one of them: the function is invariant when any integer is added
to �s; also, it is appreciably different from zero only in the small regions around
integer values of �s. Note that the value used for Ns in the figure is rather small;
more realistic values of Ns provide even more pronounced peaks6: in other terms,
the function is practically zero everywhere, except when �s is an integer; in this case
the value of the function is N2

s . Thus, the product of three such functions vanishes
everywhere except at the points where �1, �2, �3 are simultaneously integer, in which

Fig. 14.3 Plot of
sin2.� �s Ns/=.� �s/

2 with
Ns D 10. The function is
appreciable only around
integer values of �s, even
when the value of Ns is rather
small

-2 -1 0 1 2
γs

0

20

40

60

80

100

si
n2 ( π

γ s N
s ) 

/ s
in

2 ( π
γ s )

6In a cube of material with an atomic density of 6:4 � 1027 m�3, the number of atoms per unit
length in each direction is 4;000 �m�1. The value of Ns is similar.
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case the function equals .N1N2N3/2 D N2
c and k � k0 C kd equals any translation

vector g� of the scaled reciprocal lattice. In conclusion, (14.62) holds (with the sum
of the Kronecker symbol ranging over the three integers �1, �2, �3), and the vectors
k, k0, and kd fulfill the constraint

k � k0 C kd D g� D 2� �1 b1 C 2� �2 b2 C 2� �3 b3 : (14.63)

As a consequence, the product g� � lm=.2 �/ D m1 �1 Cm2 �2 Cm3 �3 is an integer,
thus making the exponential factor multiplying the integral in (14.59) equal to unity.
Thanks to the above findings, the integral in (14.59) is given the more compact form

Yk k0.g� / D
Z

�0

u�k0

.r/ uk.r/ exp.i g� � r/ d3r ; (14.64)

whence the dependence on m disappears, and

Im D W0 Yk k0.g� / ; kC kd D k0 C g�
Im D 0 ; kC kd ¤ k0 C g� :

(14.65)

The above are easily adapted to the case where W� is used instead of W. In fact, one
replaces W0 with W�0 and kd with �kd. Defining the overlap factor

Gk k0.g� / D jYk k0.g� /j
2 (14.66)

one also finds

jIj2 D jW0j
2N2

c Gk k0.g� / ; k˙ kd D k0 C g�
jIj2 D 0 ; k˙ kd ¤ k0 C g� ;

(14.67)

with g� any translation vector of the scaled reciprocal lattice. The positive (negative)
sign holds when W (W�) is used.

Selection Rules

It has been found in Sect. 14.8.6 that when the spatial part of the perturbation has
a plane-wave form, the connection among the state of the electron before (k) and
after (k0) the perturbation, and the wave vector kd of the perturbing wave, is given
by (14.67). One in fact assumes that k and kd are given, whereas k0 is to be found
from (14.67). Therefore, the relation is a selection rule for the possible final states;
as g� is an arbitrary translation vector, many final states are possible. The number
of allowed transitions is strongly reduced by the constraint that k, k0, and kd belong
to the first Brillouin zone (Sect. 17.4). In this case (compare with (17.37)),
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Table 14.1 Possible
coefficients of g� when
kC kd D k0 C g� in (14.67)

�1 0 �1 0 0 0 �1 �1 �1

�2 0 0 �1 0 �1 0 �1 �1

�3 0 0 0 �1 �1 �1 0 �1

k D
3X

sD1

ns

Ns
2� bs ; ns D 0; 1; : : : ;Ns � 1 : (14.68)

A similar expression holds for k0, with ns replaced by another integer n0s, and for kd,
with ns replaced by ds, still an integer. A prismatic cell is assumed with one vertex
coinciding with the origin; it follows that the coefficients of the selection rule are
related by

ns ˙ ds D n0s C �s Ns ; (14.69)

with �s an arbitrary integer and 0 � ns; n0s; ds � Ns�1. When the positive sign holds
in (14.69), the range of possible values of the left-hand side is 0 � nsCds � 2Ns�2.
If the values of ns, ds are such that 0 � ns C ds � Ns � 1, then the selection rule
for the sth axis is fulfilled with �s D 0 and n0s D ns C ds. If the values of ns, ds,
instead, are such that Ns � ns C ds � 2Ns � 2, then the selection rule for the sth
axis is fulfilled with �s D �1 and n0s D ns C ds � Ns. Note that the outcome �s D 0

or �s D �1 occurs independently for each index s. As a consequence, the eight
combinations shown in Table 14.1 are possible.

When the negative sign holds in (14.69), the range of possible values of the left-
hand side is 1 � Ns � ns � ds � Ns � 1. If the values of ns, ds are such that
0 � ns � ds � Ns � 1, then the selection rule for the sth axis is fulfilled with �s D 0

and n0s D ns�ds. If the values of ns, ds, instead, are such that 1�Ns � ns�ds � �1,
then the selection rule for the sth axis is fulfilled with �s D 1 and n0s D ns� dsCNs.
As a consequence, the eight combinations shown in Table 14.2 are possible. In all
cases the values of �s and n0s are unique once ns and ds are given. In other terms,
for a given pair of vectors k, kd of the first Brillouin zone, the only g� vectors that
make k0 to belong to the first Brillouin zone as well are those listed in Table 14.1 or
Table 14.2. If vector g� is null, then the transition from k to k0 is called an N-process
(“N” stands for “normal”). If g� is different from zero, then the transition is called a
U-process (“U” stands for Umklapp, meaning “flip over”). Note that a process may
be either N or U depending on how the scaled reciprocal space is divided into cells.7

The selection rules may also be considered from another viewpoint, namely,
that of prescribing the initial state k and the final state k0 of the transition, and
determining the pairs kd, g� that make the transition possible. As before, the

7The term Umklapp derives from the German verb umklappen. R. Peierls in his autobiography
[102, p. 43] states the he was the originator of the term in 1929, when he was studying crystal
lattices.
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Table 14.2 Possible
coefficients of g� when
k� kd D k0 C g� in (14.67)

�1 0 1 0 0 0 1 1 1

�2 0 0 1 0 1 0 1 1

�3 0 0 0 1 1 1 0 1

constraint that k, k0, and kd belong to the first Brillouin zone limits the choices
of g� according to Table 14.1 or Table 14.2.

Like in Sects. 14.8.1, 14.8.2, and 14.8.5, the analysis is concluded by calculating
the Fourier transform of the perturbation-matrix entry, in order to determine the
relation between the initial and final energy (to be coupled with the relations
between k and k0 found in this section) and, from this, the transition probability
from the initial to the final state. This part of the analysis is carried out in Sect. 17.8,
with reference to the important application to the interaction of an electron with a
periodic lattice.

Problems

14.1 Using (14.31) and (14.34), find H.0/

b for the screened Coulomb perturbation.
Assume for simplicity that the condition g D b holds (Sect. 14.8.3).

14.2 Analyze the behavior of (14.51) upon exchange of the indices k and k0.

14.3 Prove the limit shown in (14.62).

14.4 Prove that when Nc is large, it is
PNc�1

mD0 expŒi .k�k0Ckd/ �lm� ' Nc
P

� ıŒk�
k0 C kd � g� �, without resorting to the square modulus like in Prob. 14.3.

14.5 Calculate the overlap factor (14.66) when the potential energy V vanishes
within �.
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Chapter 15
Many-Particle Systems

15.1 Introduction

This chapter illustrates the properties of many-particle systems. The quantum-
mechanical description of the latter is obtained by solving the time-dependent
Schrödinger equation. After commenting the simplifications that occur when the
Hamiltonian operator is separable, the important issue of the symmetry or anti-
symmetry of the wave function is introduced for the purpose of illustrating the
peculiar properties possessed by the systems of identical particles. Then, the concept
of spin and the exclusion principle are introduced. After a general discussion,
the above concepts are applied to the important case of a conservative system,
and further properties related to the separability of the Hamiltonian operator are
worked out. The remaining part of the chapter is devoted to the derivation of
the equilibrium statistics in the quantum case (Fermi-Dirac and Bose-Einstein
statistics). The connection between the microscopic statistical concepts and the
macroscopic thermodynamic properties is illustrated in the complements, where two
important examples of calculation of the density of states are also given.

15.2 Wave Function of a Many-Particle System

The quantum-mechanical concepts outlined in Parts II and III dealt with wave
functions  describing a single particle. In such a case, if  is normalized to
unity, the product j .r; t/j2 d3r is the infinitesimal probability that at time t the
particle’s position belongs to the elementary volume d3r D dx dy dz centered on r;
specifically, the x coordinate belongs to dx, and so on. It is now necessary to extend
the treatment to the case of many-particle systems. This is readily accomplished by
considering, first, a system made of two particles: the wave function  describing
such a system depends on two sets of coordinates, r1, r2, and time. The first set
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labels one of the particles, the second set labels the other particle. Assume that  is
normalized to unity,

Z
j .r1; r2; t/j2 d3r1 d3r2 D 1 ; (15.1)

where
R

is a short-hand notation for a six-fold integral over dx1 : : : dz2. Then, the
product j .r1; r2; t/j2 d3r1 d3r2 is the infinitesimal probability that at time t, set r1
belongs to d3r1 and set r2 belongs to d3r2. The wave function in (15.1) is the solution
of the time-dependent Schrödinger equation

i „
@ 

@t
DH  ;  .r1; r2; 0/ D  0.r1; r2/ ; (15.2)

where the initial condition  0 is prescribed. In turn, the Hamiltonian operator
in (15.2) is derived, following the procedure illustrated in Sect. 10.2, from the
Hamiltonian function that describes the two-particle system in the classical case.
Considering by way of example a case where the forces acting on the two particles
derive from a potential energy V D V.r1; r2; t/, the Hamiltonian function and the
Hamiltonian operator read, respectively,

H D
p21
2m1

C
p22
2m2

C V ; H D �
„2

2m1

r21 �
„2

2m2

r22 C V ; (15.3)

where m1, m2 are the particles’ masses, while p21 D p2x1C p2y1C p2z1, r
2
1 D @

2=@x21C
@2=@y21 C @

2=@z21, and the same for label 2.
It may happen that the Hamiltonian operator is separable with respect to the two

sets r1, r2, namely, H D H1 CH2 such that H1 does not contain any component
of r2 and H2 does not contain any component1 of r1. Also, let  1 D  1.r1; t/,
 2 D  2.r2; t/ be solutions, respectively, of

i „
@ 1

@t
DH1 1 ; i „

@ 2

@t
DH2 2 ; (15.4)

with the initial conditions  10 D  1.r1; 0/,  20 D  2.r2; 0/. Letting  D  1  2
and using (15.4) yield

i „
@ 

@t
�H  D  2

�
i „
@ 1

@t
�H1 1

�
C  1

�
i „
@ 2

@t
�H2 2

�
D 0 ;

(15.5)
showing that  1  2 solves the Schrödinger equation for the particles’ system, with
 10  20 as initial condition. The concepts introduced in this section are readily

1By way of example, (15.3) is separable if V D V1.r1; t/C V2.r2; t/.
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extended to the case of larger systems. Letting N > 2 be the number of particles,
and still assuming that the system’s wave function is normalized to unity,

Z
j .r1; r2; : : : ; rN ; t/j

2 d3r1 d3r2 : : : d
3rN D 1 ; (15.6)

the product j .r1; r2; : : : ; rN ; t/j2 d3r1 d3r2 : : : d3rN is the infinitesimal probability
that at time t, set ri belongs to d3ri, with i D 1; 2; : : : ;N. If the Hamiltonian
operator is separable, the solution of the time-dependent Schrödinger equation of
the system has the form  D  1.r1; t/ : : :  N.rN ; t/. From (15.6) one also notes that
the units of  depend on the number of particles involved; specifically, in (15.6) it is
Œ � D cm�3N=2 (compare with the discussion of Sect. 9.7.1).

15.3 Symmetry of Functions and Operators

The Hamiltonian operator and the wave function describing a many-particle system
contain sets of coordinates like r1, r2 : : :. It is important to introduce a number of
properties related to the exchange of two such sets within the operator or the wave
function. The problem is tackled first in a rather abstract way; the applications to
specific cases of interest are shown in Sect. 15.6.

Consider a function f D f .q1; q2; : : : ; qn/, where qk represents a group of
coordinates.2 Let Sij be an operator such that [96, Chap. XIV.3]

Sijf .q1; : : : ; qi; : : : ; qj; : : : ; qn/ D f .q1; : : : ; qj; : : : ; qi; : : : ; qn/ ; (15.7)

namely, Sij exchanges the names of the ith and jth group, leaving the rest
unchanged. From the definition it follows S 2

ij D Sij Sij D I . Now, let � be
an eigenvalue of Sij, and w an eigenfunction corresponding to it: Sijw D �w. The
following relations hold together:

S 2
ij w D w ; S 2

ij w D �2w ; (15.8)

the first due to the general property shown before, the second to the definition of
� and w. As a consequence, � D ˙1, namely, Sij has two eigenvalues. As their
modulus equals unity, Sij is unitary (Sect. 8.6.2), namely, S �1ij D S

�
ij .

The properties of the operator’s eigenfunctions are found by letting ws D Sijw,
so that ws is the function that results from exchanging the names of the ith and jth
group of coordinates. Depending on the eigenvalue, two cases are possible: the first
one is � D C1, whence Sijw D C1 � w and Sijw D ws hold together, so that
ws D w; the second case is � D �1, whence Sijw D �1 � w and Sijw D ws hold

2A “group” of coordinates may also consist of a single coordinate.
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together, so that ws D �w. A function such that ws D w is called symmetric with
respect to indices ij, while a function such that ws D �w is called antisymmetric
with respect to indices ij. In conclusion,

• all symmetric functions are eigenfunctions of Sij belonging to � D C1;
• all antisymmetric functions are eigenfunctions of Sij belonging to � D �1.

The set of eigenfunctions of Sij is complete; in fact, for any function f it is

f D
1

2
.f CSijf /C

1

2
.f �Sijf / ; (15.9)

where the first term at the right-hand side is symmetric and the second one is
antisymmetric, so that both terms at the right-hand side are eigenfunctions of Sij.
This shows that any function is expressible as a linear combination of eigenfunction
of Sij.

Only a specific pair ij of coordinate groups has been considered so far. On the
other hand, it may happen that a function is symmetric (antisymmetric) with respect
to all pairs of indices; in this case it is called symmetric (antisymmetric) with no
further specification.

The definitions above extend to operators. For instance, an operator A is
symmetric with respect to ij if A s D SijA D A ; it is symmetric without further
specification if A s D A for any pair ij. Given a function f and an operator A , and
letting let f s D Sijf , it is for all f ,

.A f /s D SijA f D SijA S �1ij Sijf D A sf s : (15.10)

If A is symmetric, replacing A s D A in (15.10) shows that SijA f D A Sijf
namely, Sij commutes with all symmetric operators.

The operator whose symmetry properties are of interest is typically the Hamil-
tonian one. Considering for instance a system of N particles interacting with each
other through Coulomb interactions in vacuo, one has

H D �

NX

kD1

„2

2mk
r2k C

1

2

NX

kD1

NX

sD1
s¤k

ek es

4� "0 jrk � rsj
(15.11)

with "0 the vacuum permittivity, r2k D @2=@x2k C @
2=@y2k C @

2=@z2k , and mk, ek the
mass and charge of the kth particle, respectively. In general, this operator has no
particular symmetry property; however, it is symmetric with respect to the groups
of coordinates xk; yk; zk when the particles are identical to each other (m1 D m2 D

: : : D mN , e1 D e2 D : : : D eN).
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15.4 Conservation of Symmetry in Time

Consider a wave function  expanded into a complete set of orthonormal functions
wk. Using as in Sect. 15.3 the symbols qi for the groups of coordinates, one has

 .q1; : : : ; qn; t/ D
X

k

ak.t/wk.q1; : : : ; qn/ : (15.12)

The wave function is assumed to be normalized to unity, so that from Parseval
theorem (8.41) it follows

h j i D
X

k

jakj
2 D 1 (15.13)

at all times. Now assume that  is the solution of a Schrödinger equation deriving
from a symmetric Hamiltonian operator, and that  is itself symmetric at some
instant t0 with respect to the pair ij. As the functions wk of (15.12) are linearly
independent, the symmetry of  entails that of wk for all k. As a consequence,
for the pair ij, wk is an eigenfunction of the operator Sij corresponding to � D
1. Combining (15.13) with the definition (10.13) of the expectation value of the
eigenvalues yields h�i D 1 at t D t0. In turn, due to symmetry, H commutes
with Sij; this yields, for the time derivative (10.27) of the average value of the
eigenvalues of Sij,

d

dt
h�i D �i „

Z
 �

�
H Sij �SijH

	
 dq1 : : : dqn D 0 ; (15.14)

namely, h�i is conserved in time. The above calculation can be summarized as
follows:

• Given a symmetric Hamiltonian H , select a pair of indices ij. Due to commu-
tativity, a complete set of eigenfunctions wk of H exists, that belongs also to
operator Sij.

• The eigenfunctions wk of H can thus be separated into two sets, made of
symmetric and antisymmetric functions, respectively.

• Let  .q1; : : : ; t/ D
P

k ak.t/wk.q1; : : :/ be the wave function of the system
described by H , and let  be symmetric at some instant t0. It follows that
the nonvanishing coefficients ak.t0/ in the expansion of  .q1; : : : ; qn; t0/ are only
those multiplying the symmetric eigenfunctions.

As h�i D
R
 �Sij  dq1 : : : qn D 1 at all times, the expansion of  is made in

terms of the symmetric wks at all times. Hence,  is always symmetric with respect
to the groups of coordinates of indices ij. The above reasoning can be repeated
for all pairs of indices for which  is symmetric. Note that, in order to repeat the
reasoning for different pairs of indices, say, ij and jk, one needs not assume that the
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corresponding operators Sij, Sjk commute with each other (in fact, they typically
do not commute). The analysis holds equally for the case where  , at time t0, is
antisymmetric with respect to two indices. In such case, it remains antisymmetric at
all times with respect to them.

15.5 Identical Particles

It is interesting to ascertain whether the mathematical properties related to symmetry
or antisymmetry, briefly discussed in Sects. 15.3 and 15.4, correspond to some
physical property. This is indeed so, and is especially important when a system of
identical particles is considered.

Take for instance a system of two identical particles interacting with each other.3

In classical terms, the two identical objects that form the system can always be
made distinguishable from each other, without disturbing their motion. The typical
example is that of two identical billiard balls that are made distinguishable by
a different coloring; although the latter has no influence on the balls’ dynamics,
it allows one to distinguish them from each other irrespective of the number of
collisions they undergo. As a consequence, the conjugate variables describing the
motion of each particle (e.g., position and momentum) are exactly known at each
instant of time. By way of example consider the collision of two identical, charged
particles schematically illustrated in Fig. 15.1: it is assumed that the particles are
initially far apart, with equal moduli of the initial velocities; the initial velocity of
the particle labeled 1 is described by the upper-left arrow visible in cases a and b
of the figure, while the initial velocity of the particle labeled 2 is described by the
lower-right arrow. As they come closer, the particles repel each other due to the

Fig. 15.1 Schematic
description of a system made
of two identical particles

1 2 2

1 2 1 1

2

a b c

3The reasoning outlined here does not apply to systems where the particles are different, i.e., they
can be distinguished in j j2, e.g., by the mass or electric charge.
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Coulomb interaction, and their classical motion is described as in Sects. 3.5–3.8.
If the initial velocities were exactly aligned (this case is not shown in the figure),
the two particles would bounce back along the same direction; if, however, the
initial velocity of particle 1 was slightly misaligned to the left, the collision would
yield case a, whereas it would yield case b for a right misalignment. Even if the
misalignment is made as small as we please, either case a or b occurs, and the two
possible outcomes are distinguishable from each other.

In the quantum-mechanical description, instead, it is not possible to track each
particle separately, because the information about the system’s dynamics derives
from the wave function; when the particles come closer, the norm of the wave
function in (15.1) is significantly different from zero in a finite region of space,
which is schematically indicated by the circle of case c in Fig. 15.1. Due to
the Heisenberg principle (10.22), it is impossible to determine the position and
momentum of each particle at the same time with arbitrary precision. It follows
that, for identical particles, the collision is described as an event where two particles
enter the circle and two particles eventually leave it, without the possibility of
distinguishing between cases a and b: the two cases must in fact be counted as
one, and the wave function describing the system must be consistent with it. This
requires j j2 be symmetric with respect to the groups r1; r2:

j sj2 D jS12 j
2 D j j2 ; (15.15)

which implies  s D exp.i˛/ with ˛ a real constant. On the other hand,
remembering the first equation in (15.8),

S 2
12 D exp.2 i˛/ ; S 2

12 D  ; (15.16)

whence exp.j˛/ D ˙1. In conclusion, when the two particles of the system are
indistinguishable from each other, the system’s wave function is either symmetric
or antisymmetric. One may argue that when the system is made of more than
two identical particles, its wave function could be symmetric with respect to some
pairs of indices and antisymmetric with respect to other pairs. However, this is not
possible, as the simple case of three identical particles shows [86, Sect. 26]. Assume
that  is symmetric with respect to r1; r2 and antisymmetric with respect to r1; r3;
it follows

 .r1; r2; r3; t/ D  .r2; r1; r3; t/ D � .r2; r3; r1; t/ D � .r1; r3; r2; t/ D
(15.17)

D  .r3; r1; r2; t/ D  .r3; r2; r1; t/ D � .r1; r2; r3; t/ ; (15.18)

that is, a contradiction. In other terms,  can either be symmetric with respect to all
the identical particles of the system, or antisymmetric with respect to all of them.
This result has a far-reaching consequence, namely, the class of all particles is made
of two subclasses: the first one collects the types of particles whose systems are
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described by symmetric wave functions; they are called Bose particles or bosons.
The second subclass collects the types of particles whose systems are described
by antisymmetric wave functions; they are called Fermi particles or fermions. This
applies to all known particles, including composite ones (e.g., atoms) and particles
describing collective motions (e.g., phonons, photons).4

15.5.1 Spin

The properties discussed so far in this section bring about an interesting question:
consider a single particle, e.g., an electron. Although electrons are fermions,5 here
the concept of symmetry or antisymmetry does not apply because the wave function
of a single electron contains only one group of coordinates. Then add a second
electron, so that a system of two identical particles is formed: how do these electrons
“know” that, when paired, the wave function of their system must be antisymmetric?
It is reasonable to assume that each particle in itself must possess a property that
makes it to behave like a fermion or a boson within a system of particles identical
to it. Such a property, called spin, does in fact exist; as its existence can be proven
only within the frame of the relativistic quantum theory [42, 43], [124, Sect. 15],
which is beyond the scope if this book, only a brief illustration of spin’s properties
of interest will be given.

In contrast with the other dynamic quantities considered so far, there is no
classical counterpart of spin. Therefore, the latter cannot be derived from the
expression of a dynamic variable by replacing conjugate coordinates with suitable
operators. It can be shown that the eigenvalues of spin are derived in a manner
similar to that of angular momentum: this leads, like in Sect. 13.5.1, to determining
the square modulus of spin, �2, and its component along one of the coordinate axes,
say, �z. Their values are given by expressions similar to (13.53), specifically,

S2 D „2 s .sC 1/ ; Sz D „ sz : (15.19)

The important difference with (13.53) is that s, instead of being a nonnegative
integer, is a nonnegative half integer: s D 0; 1

2
; 1; 3

2
; 2; : : :; in turn, sz can take the

2 sC 1 values �s;�sC 1; : : : ; s � 1; s.
The introduction of spin must be accounted for in the expression of the wave

function: the latter, in the case of a single particle, must be indicated with  .r; sz; t/,
and its normalization to unity, if existing, is expressed by

4The names “bosons,” “fermions” of the two subclasses have this origin: when a system of identical
particles is in thermodynamic equilibrium, the particles’ energy follows a statistical distribution
whose expression is named after Bose and Einstein (Sect. 15.8.2) and, respectively, Fermi and
Dirac (Sect. 15.8.1).
5It must be noted, however, that in condensed-matter physics two electrons or other fermions may
bind together at low temperatures to form a so-called Cooper pair, which turns out to have an
integer spin, namely, it is a composite boson [30].
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X

sz

Z

�

j .r; sz; t/j
2 d3r D 1 : (15.20)

If (15.20) holds, the product j .r; sz; t/j2 d3r is the probability that at time t the
particle is in the elementary volume d3r centered on r, and the component of its
spin along the z axis is Sz D „ sz.

The connection between spin and boson-like or fermion-like behavior is the
following: the quantum number s is integer for bosons, half integer for fermions
[101]. It is then meaningful to use the terms “boson” or “fermion” for an individual
particle. All known fermions have s D 1=2, whence 2 sC 1 D 2. It follows that for
fermions the z-component of spin has two possible values, „=2 (spin up) and �„=2
(spin down). As anticipated above, electrons are fermions. Photons are bosons with
s D 1.

The similarity between the expressions of the quantum numbers for spin and
those of the angular momentum (Eqs. (13.53) cited above) is the origin of the
qualitative visualization of spin in classical terms: spin is described as an intrinsic
angular momentum of the particle, as if the particle was a sphere spinning on its
axis.

15.6 Pauli Exclusion Principle

Consider a system of identical particles, so that its Hamiltonian operator H is
symmetric with respect to each pair of particle labels ij. Its wave function, in turn, is
either symmetric or antisymmetric depending on the nature of the particles forming
the system. It may happen that when solving the Schrödinger equation of the system,
a solution is found, say ', that does not possess the necessary symmetry properties.
One can then exploit a relation like (15.9) to construct from ' another solution
which is either symmetric or antisymmetric. For this, one must remember that '
depends on the groups of coordinates .r1; sz1/, .r2; sz2/; : : : which, for the sake of
conciseness, will be indicated with the symbol qi D .ri; szi/. Remembering from
Sect. 15.3 that the Hamiltonian operator, due to its symmetries, commutes with any
operator Sij, one finds

Sij

�
H � i „

@

@t

�
' D

�
H � i „

@

@t

�
's ; (15.21)

where Sij exchanges qi with qj. The parenthesis on the left-hand side of (15.21) is
zero because ' solves the Schrödinger equation; it follows that 's is also a solution.
Due to the linearity of the Schrödinger equation, the two functions

' C 's ; ' � 's ; (15.22)
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are solutions of the Schrödinger equation, which are also symmetric and, respec-
tively, antisymmetric with respect to the pair ij. The procedure is easily generalized
to obtain a wave function that is symmetric or antisymmetric with respect to all pairs
of indices. To this purpose, one considers the NŠ permutations of the system’s N
particles; let � be an index representing the order of each permutation with respect
to the fundamental one (1 � � � NŠ), and S� the operator that achieves the �th
permutation of the particles’ coordinates within '. The functions

 D a
X

�

S�' ;  D b
X

�

.�1/�S�' (15.23)

are solutions of the Schrödinger equation, which are also symmetric and, respec-
tively, antisymmetric with respect to all particles’ permutations. Symbols a and
b denote two constants, that can be used to normalize  if ' is normalizable.
The above constructions can be worked out at any instant, as the symmetry or
antisymmetry of the wave function is conserved in time (Sect. 15.4). The second
relation in (15.23) lends itself to an interesting derivation. Considering for simplicity
the case N D 2 one finds

 D b Œ'.r1; sz1; r2; sz2; t/ � '.r2; sz2; r1; sz2; t/� ; (15.24)

If it were r2 D r1, sz2 D sz1, the wave function (15.24) would vanish, which is not
acceptable. The same unphysical results are found by letting rj D ri, szj D szi in
the second expression in (15.23). The conclusion is that in a system of identical
fermions, two (or more) particles with the same spin cannot occupy the same
position; this finding derives solely from the antisymmetry of the wave function for
a system of identical fermions, and is called Pauli principle or exclusion principle.6

As shown in Sect. 15.7 it can be restated in different forms depending on the system
under consideration. No similar restriction applies to systems of identical bosons,
as the form of the first relation in (15.23) shows.

15.7 Conservative Systems of Particles

An important example of a system of N interacting particles occurs when the
forces are conservative. To begin, the general case of nonidentical particles is
considered. The Hamiltonian function and the corresponding Hamiltonian operator
read, respectively:

6Like the Heisenberg principle illustrated in Sect. 10.6, that of Pauli was originally deduced from
heuristic arguments. The analysis of this section shows in fact that it is a theorem rather than a
principle.
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H D
NX

iD1

p2i
2mi
C V ; H D �

NX

iD1

„2

2mi
r2i C V ; (15.25)

where the symbols are the same as in (15.3). Here the potential energy depends only
on the spatial coordinates, V D V.r1; : : : ; rN/. If the system is in a state of definite
and constant energy ES, its wave function reads

' D W exp.�i ES t=„/ ; W D W.q1; : : : qN/ ; (15.26)

where ES is an eigenvalue of H W D E W. Extending to this case the definition of
Sect. 15.2, the system is separable if V D

P
i Vi.ri/, which gives the Hamiltonian

operator the form

H D

NX

iD1

Hi ; Hi D �
„2

2mi
r2i C Vi.ri/ : (15.27)

Assuming that the eigenvalues are discrete, the ith Hamiltonian yields the single-
particle equations

Hiwn.i/ D En.i/wn.i/ ; (15.28)

where index n.i/ denotes the nth eigenvalue of the ith particle. From the general
properties of operators (Sect. 10.3) it follows that each eigenfunction of the whole
system is the product of eigenfunctions like wn.i/,

W D wn.1/.q1/wn.2/.q2/ : : : wn.N/.qN/ ; (15.29)

and the eigenvalue of H is the sum of eigenvalues like En.i/:

ES D En.1/ C En.2/ C : : :C En.N/ : (15.30)

If the particles are identical, m1 D m2 D : : : D mN , then the single-particle Hamilto-
nian operators Hi become identical to each other; as a consequence, each eigenvalue
equation like (15.28) produces the same set of eigenvalues and eigenfunctions. It
follows that all NŠ permutations of the indices 1; 2; : : : ;N in (15.30) leave the total
energy unchanged. On the other hand, as for any pair of groups qr, qs it is

wn.r/.qr/wn.s/.qs/ ¤ wn.s/.qr/wn.r/.qs/ ; (15.31)

the total eigenfunction is changed by a permutation of the coordinate indices. Thus,
to ES there correspond NŠ eigenfunctions w, namely, the eigenvalues of H W D E W
for a system of identical particles are NŠ-fold degenerate.
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As noted in Sect. 15.6, the solution (15.26) of the system’s Schrödinger equation
is not necessarily symmetric or antisymmetric. A solution with the correct symmetry
property is found from (15.23) and has the form

 D a exp.�i ES t=„/
X

�

S�wn.1/.q1/ : : :wn.N/.qN/ (15.32)

in the symmetric case, and

 D b exp.�i ES t=„/
X

�

.�1/� S�wn.1/.q1/ : : :wn.N/.qN/ (15.33)

in the antisymmetric one. It is worth specifying that S� acts on the coordinate
groups q1; : : : ;qN , not on the indices n.1/; : : : ; n.N/.

When the wave function has the form (15.32) or (15.33), and the eigenfunctions
wn.1/; : : : ;wn.N/ are normalized to unity, the constants a and b are readily found.
Considering the symmetric case with N D 2, the wave function reads

 D a exp.�i ES t=„/
�
wn.1/.q1/wn.2/.q2/C wn.2/.q1/wn.1/.q2/

�
; (15.34)

where it is assumed that the single-particle eigenfunctions are normalized to unity:

X

sz1

Z
jwn.i/.r1; sz1/j

2 d3r1 D 1 ;
X

sz2

Z
jwn.i/.r2; sz2/j

2 d3r2 D 1 : (15.35)

In (15.35) it is i D 1; 2, and the indication of the domain of r1, r2 is omitted. As
n.2/ ¤ n.1/, the pairs of eigenfunctions with such indices are mutually orthogonal
(Sect. 8.4.1), whence

X

sz1

X

sz2

ZZ
j .r1; sz1; r2; sz2/j

2 d3r1 d3r2 D 2 jaj
2 : (15.36)

Imposing the normalization of  to unity, and observing that the phase factor in a
is irrelevant, yield a D 1=

p
2. The treatment of (15.33) is identical and yields the

same result for b. By the same token, one finds a D b D 1=
p

NŠ in the N-particle
case. Still with reference to the antisymmetric wave function (15.33), one notes that
its spatial part can be recast as a determinant,

X

�

.�1/� S�wn.1/.q1/ : : :wn.N/.qN/ D

2

6
4

wn.1/.q1/ � � � wn.N/.q1/
:::

: : :
:::

wn.1/.qN/ � � � wn.N/.qN/

3

7
5 ; (15.37)

that is called Slater determinant. A transposition of two particles involves the
exchange of the corresponding coordinate sets, but not of the eigenfunction indices;
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this is equivalent to exchanging two rows of the determinant, whence the change
of sign. Also, if two or more particles belonged to the same state (including spin),
two or more columns of the Slater determinant would be equal to each other and
the wave function (15.33) would vanish. This is another form of the proof of Pauli’s
exclusion principle.

15.8 Equilibrium Statistics in the Quantum Case

This section illustrates the quantum-mechanical treatment of a system of particles in
a condition of macroscopic equilibrium. The approach is the same as that outlined
in Sect. 6.3 for the classical case; however, the constraints to which the particles
are subjected are different. Here the term “particle” is used in a broader meaning,
incorporating, e.g., also the case of photons (Sect. 12.3) and phonons (Sect. 16.6).
As in Sect. 6.3 one considers a conservative system of identical particles, having a
total energy ES, enclosed in a stationary container of volume �. The conservation
of the total energy introduces a first constraint, identical to (6.10):

FE.N1;N2; : : :/ D 0 ; FE D ES �
X

i

Ni Ei : (15.38)

The constraint identical to (6.9),

FN.N1;N2; : : :/ D 0 ; FN D N �
X

i

Ni ; (15.39)

describing the conservation of the total number of particles, may, instead, be fulfilled
or not depending on the type of particles. For instance, a system of photons does
not fulfill it: in fact, a photon may be absorbed by the container’s wall and, say,
two photons may be emitted by it, such that the energy of the emitted photons
equals that of the absorbed one. In this way, constraint (15.38) applies, whereas
constraint (15.39) does not. Another difference from the classical treatment is that,
as remarked in Sect. 15.5, identical quantum particles belonging to a system are not
distinguishable from each other; as a consequence, the method of counting their
placement into the cells of the phase space (illustrated in Sect. 6.3 for the classical
case) is different here. A further distinction must be made between the cases of
systems made of fermions, to which the exclusion principle applies, and systems
made of bosons, to which it does not apply. To appreciate the strong differences
that are introduced by the constraints due to indistinguishability and exclusion, the
example below is of help.

Consider a system made of three identical particles, whose total energy ES is,
in some units �, equal to 3 �. For simplicity, the particles are considered spinless
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Fig. 15.2 Placement of three identical particles into equally spaced energy states. The particles’
total energy equals three energy units �. Different graphic symbols are used for the particles to
make the classical treatment clearer

and, instead of the phase space, a space made of energy cells7 is used, where the
energies of the particles are assumed to be quantized starting from a ground level.
As a consequence, the energies allowed to the particles are 0, �, 2 �, 3 �; : : :; the
energy levels are shown in Fig. 15.2, where the particles are drawn with different
graphics to make them provisionally distinguishable. If the system is considered
as classical, it is easily found that there are ten possible ways of placing the three
particles into the available states in such a way as to fulfill the energy constraint
ES D 3 �. One way is to place all three particles in the � state. Another choice is
to place one particle in the 3 � state and the remaining two in the ground state; this
provides three different ways, as there are three distinct possibilities to choose the
particle to be placed in the 3 � state. The last choice is to place one particle in the
ground state, another particle in the � state, and the remaining one in the 2 � state;
this yields 3Š ways as shown in the figure. If, instead, the particles are bosons, the
three former combinations with energies .0; 0; 3�/ reduce to a single one because of
the particles’ indistinguishability; by the same token, the six former combinations
with energies .0; �; 2�/ reduce to a single one as well. This gives a total of three
ways for bosons, in contrast with the ten ways of the classical particles. Finally, if
the particles are fermions, the combinations .�; �; �/ and .0; 0; 3�/must be excluded
because the exclusion principle forbids one or more fermions to occupy the same
state; as a consequence, the only way left for fermions is .0; �; 2�/ that fulfills both
indistinguishability and exclusion.

Coming back to the general case, consider a system in thermodynamic equi-
librium at temperature T , with ES the system’s total energy. As in the classical
case outlined in Sect. 6.3, the system is considered dilute, namely such that the
mutual interaction among the particles, albeit necessary for the existence of the
system, is weak enough to assume that the energy of the interaction among the
particles is negligible within the Hamiltonian operator. It follows that the latter is
separable, and the expressions found in Sect. 15.7 are applicable. As the particles are
identical, the single-particle eigenvalues En.i/ and eigenfunctions wn.i/.qi/ obtained

7The use of energy intervals does not entail a loss of generality, as the subsequent treatment of the
general case will show.
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by solving (15.28) are the same for all particles. Also, the indices8 n.i/ are those
of an energy, so that the procedure of placing the particles into the available
states can be carried out directly in the energy space. To account for spin, states
corresponding to the same energy and different spin are to be considered as distinct.
The minimum eigenvalue of (15.28) is fixed by the form of the potential energy
within the Hamiltonian operator. Given these premises, the energy axis is divided
into equal intervals of length �E; as in the classical case, the partitioning has the
advantage that the set of intervals is countable. The intervals are numbered starting
from the one containing the minimum eigenvalue mentioned above, and their size
�E is such that each of them contains a number of eigenvalues of (15.28). Let gr be
the number of eigenvalues within the rth interval, r D 1; 2 : : :, and Nr the number
of particles whose eigenvalues belong to the same interval; if the size �E is taken
small, one can approximate the energy of the Nr particles with the product Nr Er,
where Er is the energy at the interval’s center. Following the same procedure as in
Sect. 6.4, one then constructs the function

F.N1;N2; : : : ; ˛; ˇ/ D log W C ˛ FN C ˇ FE ; (15.40)

where ˛, ˇ are the Lagrange multipliers, respectively, related to the total number of
particles and total energy of the system, and the form of W depends on the type of
particles, as shown below. If the constraint on the total number of particles is not
applicable, one lets ˛ D 0. Using the numbers N1, N2; : : : as continuous variables,
taking the derivative of F with respect to Nr, and equating it to zero yield

@

@Nr
log W D ˛ C ˇ Er : (15.41)

On the other hand, it is W D W1 W2 : : : ;Wr : : :, where Wr is the number of ways
in which Nr particles can be placed into the gr states of the rth interval, subjected to
the constraints of the type of particles under consideration. As in the left-hand side
of (15.41) only the rth summand depends on Nr, the relation to be worked out is
eventually

@

@Nr
log Wr D ˛ C ˇ Er : (15.42)

The expression of Wr depends on the type of particles; it is given in Sect. 15.8.1 for
the case of fermions and in Sect. 15.8.2 for that of bosons.

8Here the eigenvalues of the Hamiltonian operator are discrete because the system is enclosed in a
container, hence the wave function is normalizable. As usual, the notation n.i/ stands for a group
of indices.
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15.8.1 Fermi-Dirac Statistics

For a system of fermions it is Nr � gr due to the exclusion principle. To calculate the
number of ways of placing Nr particles into gr states one provisionally assumes that
the particles are distinguishable. There are gr possibilities to place the first particle;
after the latter has been placed, there remain gr � 1 states due to the exclusion
principle, hence the different ways of placing the first two (distinct) particles are
gr .gr � 1/. The process continues until all Nr particles are used up, thus leading to
gr .gr � 1/ : : : .gr � Nr C 1/ ways of placing them. On the other hand, the particles
are not distinct; as a consequence, after the placement is completed, any of the NrŠ

permutations of the particles corresponds to the same placement. In conclusion, the
product above must be divided by NrŠ, thus leading to

Wr D
gr .gr � 1/ : : : .gr � Nr C 1/

NrŠ
D

grŠ

NrŠ .gr � Nr/Š
D

 
gr

Nr

!

: (15.43)

Using the same procedure as in Sect. 6.4 yields

d log Wr

dNr
D

d logŒ.gr � Nr/Š�

d.�Nr/
�

d log.NrŠ/

dNr
' log.gr � Nr/ � log.Nr/ (15.44)

which, combined with (15.42), provides Nr D gr=Œexp.˛ C ˇEr/ C 1�. For
convenience, the total number of particles is indicated here with NS instead of N;
the constraints then read

UX

rD1

gr

exp.˛ C ˇ Er/C 1
D NS ;

UX

rD1

grEr

exp.˛ C ˇ Er/C 1
D ES ; (15.45)

by which the two Lagrange multipliers ˛ and ˇ are determined. The sums are
carried out up to a maximum energy EU; in fact, being the total energy of the system
prescribed, there exists a maximum energy that the single particle cannot exceed. As
outlined in Sect. 15.9.1, a comparison with the findings of Thermodynamics shows
that in full analogy with the classical case treated in Sect. 6.4, it is

ˇ D
1

kBT
; (15.46)

where kB ' 1:38 � 10�23 J K�1 is Boltzmann’s constant and T the system
temperature. As a consequence it is ˛ D ˛.T/. Defining the Fermi energy or Fermi
level EF.T/ D �kB T ˛.T/, the expression of Nr becomes

Nr D
gr

exp Œ.Er � EF/ = .kB T/�C 1
: (15.47)
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Fig. 15.3 The Fermi-Dirac statistics as a function of energy for different values of the system’s
temperature. For simplicity the temperature dependence of the Fermi level EF is not considered

In general the number of energy levels is large and their separation small so that,
instead of using the number gr of states at energy Er, one disposes of the index and
considers the number g.E/ dE of states in the infinitesimal interval dE around E.
Thus, g.E/ indicates the number of states per unit energy, and is called density of
states in energy (compare with Sect. B.5). The constraints now read

Z EU

E1

g.E/ dE

exp.˛ C ˇE/C 1
D NS ;

Z EU

E1

E g.E/ dE

exp.˛ C ˇE/C 1
D ES ; (15.48)

with ˇ D 1=.kBT/. Consistently, Nr is replaced with N.E/ dE, where N.E/
is the number of particles per unit energy.9 As a consequence, the relation
N.E/ D g.E/P.E/ is fulfilled, where function

P.E/ D
1

exp Œ.E � EF/ = .kB T/�C 1
(15.49)

is called Fermi-Dirac statistics. As 0 < P.E/ < 1, the Fermi-Dirac statistics bears
also the meaning of occupation probability of a state at energy E. Its high-energy
tail (E�EF � kB T) identifies with the Maxwell-Boltzmann distribution law (6.14).
The dependence of (15.49) on E is shown in Fig. 15.3 at different temperatures.
The states whose energy is substantially lower than the Fermi level (E � EF �

kB T) are mostly filled with particles, those whose energy is substantially higher
than the Fermi level are mostly empty. The energy states in the vicinity of the Fermi

9The units are Œg�; ŒN� D J�1.
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level have a probability around 1=2 of being filled. For the sake of simplicity the
dependence of EF on T is not considered in the figure; in fact, it is influenced by the
form of g.E/ and must therefore be determined on a case-by-case basis. A discussion
about this issue is found in [70, Sect. 8.6] and is summarized in Prob. 15.2. In the
limit T ! 0 the function becomes discontinuous, specifically it is P D 1 for E < EF

and P D 0 for E > EF.

15.8.2 Bose-Einstein Statistics

For a system of Bosons the exclusion principle does not hold, hence it may be Nr �

gr. Also in this case, to calculate the number of ways of placing Nr particles, not
subjected to the exclusion principle, into gr states, one provisionally assumes that
the particles are distinguishable. This yields a number of ways equal to .grCNr�1/

.gr CNr � 2/ : : : gr. Then, to account for indistinguishability one divides the result
by NrŠ to find10

Wr D
.gr C Nr � 1/ : : : gr

NrŠ
D
.gr C Nr � 1/Š

NrŠ .gr � 1/Š
D

 
gr C Nr � 1

Nr

!

: (15.50)

Using the same procedure as in Sect. 6.4 yields

d log Wr

dNr
D

d logŒ.gr C Nr � 1/Š�

dNr
�

d log.NrŠ/

dNr
' log.gr C Nr � 1/ � log Nr

(15.51)

which, combined with (15.42) after neglecting the unity in grCNr � 1, yields Nr D

gr=Œexp.˛CˇEr/� 1�. As in the latter it is Nr; gr > 0, it follows ˛CˇEr > 0. Still
indicating the number of particles with NS instead of N, the constraints read

UX

rD1

gr

exp.˛ C ˇ Er/ � 1
D NS ;

UX

rD1

gr Er

exp.˛ C ˇ Er/ � 1
D ES ; (15.52)

by which the two Lagrange multipliers ˛ and ˇ are determined. The explanation of
the upper summation limit U in (15.52) is similar to that given in Sect. 15.8.1. As
outlined in Sect. 15.9.5, a comparison with the findings of Thermodynamics shows
that in full analogy with the cases of Sects. 6.4 and 15.8.1, ˇ is given by (15.46),
whence it is ˛ D ˛.T/. Defining EB.T/ D �kB T ˛.T/, the expression of Nr

becomes

Nr D
gr

exp Œ.Er � EB/ = .kB T/� � 1
: (15.53)

10Compare with Prob. 15.3.
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The inequality ˛ C ˇ Er > 0 found above implies Er > EB. If the constraint on
the number of particles does not hold, one lets ˛ D 0 whence EB D 0, Er > 0.
In general the number of energy levels is large and their separation small so that
instead of using the number gr of states at energy Er, one disposes of the index and
considers the number g.E/ dE of states in the infinitesimal interval dE around E.
The constraints now read

Z EU

E1

g.E/ dE

exp.˛ C ˇ E/ � 1
D NS ;

Z EU

E1

E g.E/ dE

exp.˛ C ˇ E/ � 1
D ES ; (15.54)

with ˇ D 1=.kB T/. Consistently, Nr is replaced with N.E/ dE, where N.E/ is
the number of particles per unit energy. As a consequence, the relation N.E/ D
g.E/P.E/ is fulfilled, where function

P.E/ D
1

exp Œ.E � EB/ = .kB T/� � 1
(15.55)

is called Bose-Einstein statistics. As P.E/ may be larger than unity, the Bose-
Einstein statistics is not a probability; rather, it represents the occupation number
of a state at energy E. Its high-energy tail (E � EB � kB T) identifies with the
Maxwell-Boltzmann distribution law (6.14).

15.9 Complements

15.9.1 Connection with Thermodynamic Functions

The calculation of the equilibrium distribution carried out in Sects. 6.4, 15.8.1,
and 15.8.2 respectively for classical particles, fermions, and bosons, entails the
maximization of the function log W, subjected to suitable constraints. On the
other hand, from the second principle of Thermodynamics one derives that the
equilibrium state of a system corresponds to the condition that the system’s entropy
S has a maximum. For this reason one expects that a functional dependence W.S/
exists; to identify its form one notes that if W1 and W2 indicate the value of W
of two independent systems, the value for the composite system is W1 W2 due to
the definition of W. On the other hand, entropy is additive, so that the functional
dependence sought must be such that S.W1 W2/ D S.W1/C S.W2/, namely, of the
logarithmic type. In fact it is

S D kB log W ; (15.56)
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with kB D 1:38 � 10�23 J K�1 the Boltzmann constant. The choice of the constant
makes (15.56) consistent with the definition dS D dQ=T of entropy in Thermody-
namics, with dQ the heat absorbed during an infinitesimal transformation.11

Now, consider a system subjected to both constraints (15.38) and (15.39), and
assume that the container where the system is placed undergoes an infinitesimal
volume change12 d� which, in turn, makes all variables Nr and gr to change; due
to (15.41) it is @ log W=@Nr D ˛ C ˇ Er so that [37]

1

kB
dS D d log W D

UX

rD1

�
.˛ C ˇ Er/ dNr C

@ log W

@gr
dgr

�
: (15.57)

Using the constraints and the relation dS D dQ=T transforms (15.57) into

dQ D kB T ˛ dN C kB T ˇ dES C kB T
UX

rD1

�
@ log W

@gr

dgr

d�

�
d� : (15.58)

Assuming that during the change in volume there is no exchange of matter with
the environment, one lets dN D 0 in (15.58); the first principle of Thermodynamics
shows that for this type of transformation it is dQ D dESCP d�, with P the pressure
at the boundary of �. A comparison with (15.58) then yields

kB T ˇ D 1 ; kB T
UX

rD1

�
@ log W

@gr

dgr

d�

�
D P : (15.59)

The first of (15.59) coincides with (6.26), and provides the expected relation
between one of the Lagrange multiplier of (15.45) and a state function of Ther-
modynamics.

15.9.2 Density of States for a Particle in a Three-Dimensional
Box

The density of states g.E/ that has been introduced in (15.48) and (15.54) is
the number of states per unit energy. Its form depends on the system under
consideration. Two examples of the derivation of g.E/ are given here (with reference
to the problem of an electron in a box) and in Sect. 15.9.4 (with reference to
photons).

11Compare with the nonequilibrium definition of entropy introduced in Sect. 6.6.3 and the note
therein.
12The geometrical configuration is kept similar to the original one during the change in volume.
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The problem of the particle confined within a one-dimensional box has been
tackled in Sect. 8.2.2. The set of eigenvalues is given by the first relation in (8.6),
and the corresponding eigenfunctions are (8.8). For a three-dimensional box whose
sides have lengths d1, d2, d3, due to the properties of separable operators (Sect. 10.3),
the eigenfunctions are products of one-dimensional eigenfunctions,

wn1n2n3 .r/ D
p
8=V sin.kn1 x1/ sin.kn2 x2/ sin.kn3 x3/ ; (15.60)

where V D d1 d2 d3 is the volume of the box. In turn, the eigenvalues are

En1n2n3 D En1 C En2 C En3 ; Eni D
„2 k2ni

2m
; kni D ni

�

di
; (15.61)

namely,

E D
„2 k2

2m
; k D n1

�

d1
i1 C n2

�

d2
i2 C n3

�

d3
i3 ; ni D 1; 2; : : : (15.62)

with i1; : : : the unit vectors of the Cartesian axes and k2 D k � k. In contrast with
the one-dimensional case, the eigenvalues (15.61) are degenerate, because different
triads n1, n2, n3 correspond to the same energy.

The density of states could be calculated by the procedure depicted in Sect. (B.5),
with the provision that in this case the variables kni belong to a discrete set whereas
those in Sect. B.5 are continuous. On the other hand, the relations involved here
are simple enough to be tackled by a direct calculation. One observes, first, that
the distance between two consecutive projections of k along the ith axis is �=di;
as a consequence, one may partition the k1k2k3 space into equal volumes13 �3=V ,
so that each k vector is associated with one and only one volume: this shows that
the density of k vectors in the k1 k2 k3 space is Qk D V=�3. Given the electron’s
energy E, from the geometrical point of view the first relation in (15.62) describes
a sphere of radius .2m E=„2/1=2 in the k1 k2 k3 space; thus, the total number Nk of
�3=V volumes contained within the sphere is obtained by multiplying the sphere’s
volume by the density Qk. Clearly the volumes that are near the boundary produce
a ragged surface; the latter is identified with that of the sphere by assuming that the
distribution of k vectors belonging to the spherical surface is very dense. With this
provision one finds

Nk D Qk
4

3
� k3 D

V

�3
4

3
�

�
2m E

„2

�3=2
D

V

�2
8
p
2m3=2

3„3
E3=2 : (15.63)

As indices n1; n2; n3 take only positive values, the k vectors belong to 1=8 of the
sphere only; it follows that their number is Nk=8. Each k vector is associated with

13Here the term “volume” is used in a broader meaning; in fact, the units of �2=V are m�3.
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a triad of quantum numbers n1, n2, n3; however, to completely define the state of
the electron a fourth quantum number is necessary, related to spin (Sect. 15.5.1).
Remembering that electrons have two possible spin states, one finds that the number
of electron states within the sphere is twice the number of k vectors, namely, Nk=4.
Finally, the number of states per unit energy is found by differentiating the latter
with respect to energy,14

d
Nk

4
D

p
2Vm3=2

�2„3
E1=2 dE D g.E/ dE ; g.E/ D

p
2V m3=2

�2 „3
E1=2 : (15.64)

Apart from the constants involved, this result is consistent with (B.34). Along with
the density of state in energy it is useful to define a combined density of states in
energy and coordinate space, that is indicated with � . In the case of the electron
within a box one finds, from (15.64),

�.E/ D
g.E/

V
D

p
2m3=2

�2 „3
E1=2: (15.65)

15.9.3 Density of States for a Two- or One-Dimensional Box

As observed in Sect. B.5, the functional dependence of g on E is influenced by the
number of spatial dimensions: considering by way of example the case of an electron
within a two-dimensional box, one must associate with each vector k an area of the
k1k2 space equal to �2=.d1 d2/ D �2=A, where A D d1 d2 is the area of the box. The
density of the k vectors in the k1k2 space is Qk D A=�2, whence the total number
of �2=A areas in a circle of radius .2m E=„2/1=2 is

Nk D Qk � k2 D
A

�2
�
2m E

„2
: (15.66)

As indices n1; n2 take only positive values, the k vectors belong to 1=4 of the circle
only; it follows that their number is Nk=4. Accounting for spin one finds that the
number of states within the circle is twice the number of k vectors, namely, Nk=2.
Finally, the number of states per unit energy is found by differentiating the latter
with respect to energy,

g.E/ D
dNk=2

dE
D

A m

� „2
: (15.67)

When the energy dependence on the k coordinates is quadratic, the density of states
of a two-dimensional case is constant (compare with (B.33)).

14As noted above the k vectors, hence the values of energy corresponding to them, are distributed
very densely. This makes it possible to treat E as a continuous variable.
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Finally, considering the case of an electron within a one-dimensional box, one
must associate to each vector k a segment �=d1 of the k1 space, to find Qk D d1=�
for the density of the k vectors. The total number of �=d1 segments in a domain of
length .2m E=„2/1=2 is

Nk D
d1
�

�
2m E

„2

�1=2
: (15.68)

Accounting for spin one finds that the number of states within the domain is twice
the number of k vectors, namely, 2Nk. Finally, the number of states per unit energy
is found by differentiating the latter with respect to energy,

g.E/ D
d2Nk

dE
D

d1 .2m/1=2

� „E1=2
; (15.69)

to be compared with (B.32). Expression (15.67) is useful, e.g., for treating the
problem of a two-dimensional charge layer in the channel of a semiconductor
device (Sect. 17.6.7); in turn, expression (15.69) is used with reference to nanowires
(Sect. 17.6.7);

15.9.4 Density of States for Photons

Consider the case of the electromagnetic field within a box whose sides d1, d2, d3
are aligned with the coordinate axes and start from the origin. It is assumed that no
charge is present within the box, so that the calculation of the modes is the same as
that illustrated in Sect. 5.5. The wave vectors have the form

k D n1
2�

d1
i1 C n2

2�

d2
i2 C n3

2�

d3
i3 ; ni D 0;˙1;˙2; : : : ; (15.70)

the angular frequency of the mode corresponding to k is! D c k, with k the modulus
of k, and the energy of each photon of that mode is E D „! D „ c k, with c
the speed of light. The calculation of the density of states associated with this case
follows the same line as that used in Sect. 15.9.2 for a particle in a three-dimensional
box; the differences are that the distance between two consecutive projections of k
along the ith axis is 2�=di instead of �=di, the indices ni are not limited to the
positive values, and the E.k/ relation is linear instead of being quadratic.

With these premises, and with reference to Fig. 15.4, the volume associated with
each k is .2 �/3=.d1 d2 d3/ D .2 �/3=V , where V is the volume of the box, so that
the density of the k vectors in the k space is Qk D V=.2 �/3; in turn, the total number
of k vectors within a sphere of radius k like that shown in the figure is15

15The calculation shown here is equivalent to counting the number of elements of volume
.2 �/3=.d1 d2 d3/ that belong to the spherical shell drawn in Fig. 15.4. The result is then multiplied
by 2 to account for spin.
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Fig. 15.4 Constant-energy
sphere of the k space
illustrating the procedure for
determining the density of
states
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: (15.71)

Due to spin, the total number of states is 2Nk so that, differentiating with respect to
energy,

d2Nk D
V

�2
E2

„3 c3
dE D g.E/ dE ; g.E/ D

V

�2 „3 c3
E2 : (15.72)

The result expressed by (15.72) can be recast in equivalent forms by using another
variable proportional to energy; for instance, letting G.!/ denote the density of
states with respect to angular frequency and Qg.�/ denote the density of states with
respect to frequency, from the relations

Qg.�/ d� D G.!/ d! D g.E/ dE ; E D „! D „ 2� � (15.73)

one obtains

G.!/ D
V

�2 c3
!2 ; Qg.�/ D 8�

V

c3
�2 : (15.74)

15.9.5 Derivation of Planck’s Law

As illustrated in Sect. 7.4.1, Planck’s law provides the black-body’s spectral energy
density u at equilibrium. From its definition it follows that the product u d� is the
electromagnetic energy per unit volume in the elementary interval d�; using the
quantum concepts, the electromagnetic energy in d� may, in turn, be written as
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the product of the number dNph of photons belonging to d� by the energy h � of
each photon. Considering that photons are bosons, and that the equilibrium case is
considered, the number dNph is given in turn by the product Qg.�/ d� P.E D h �/,
with P the Bose-Einstein statistics (15.55). In summary, using the second relation
in (15.74), one finds

u d� D
1

V
h � dNph D

h �

V

Qg.�/ d�

exp.ˇ h �/ � 1
D

8� h �3=c3

exp.ˇ h �/ � 1
d� : (15.75)

The expression of the Bose-Einstein statistic used in (15.75) accounts for the fact
that the number of photons is not conserved, so that the only constraint to be
considered is that on the total electromagnetic energy within volume V . It follows
that the Bose-Einstein statistics has only one Lagrange multiplier, whose value is
provisionally left undetermined. From (15.75) one derives Planck’s law

u.�; ˇ/ D
8� h �3=c3

exp.ˇ h �/ � 1
; (15.76)

to be compared with (7.18). Like in Sect. 15.9.1, the undetermined parameter ˇ is
obtained by comparing the result of the microscopic derivation carried out above
with those of Thermodynamics. Letting Weq

em be the electromagnetic energy within
V at equilibrium, the following relations hold (compare with Sect. 7.3):

Weq
em

V
D

Z 1

0

u d� ;
Weq

em

V
D
4

c
� T4 ; (15.77)

with � ' 5:67 10�12 W cm�2K�4 the Stefan-Boltzmann constant. In fact, the first
one derives from the definition of spectral energy density, while the second one
(Stefan law, 1879) is found experimentally. On the other hand, using (C.137) one
finds

Z 1

0

u d� D
8� h

c3 .ˇh/4

Z 1

0

.ˇ h �/3

exp.ˇ h �/ � 1
d.ˇ h �/ D

8�

c3 h3 ˇ4
�4

15
: (15.78)

Combining (15.78) with (15.77) yields 1=.ˇT/4 D 15 c2 h3 �=.2 �5/; replacing the
constants at the right-hand side of the latter shows that the units and numerical
value of it are those of k4B; it follows that 1=.ˇT/4 D k4B and the expected result
ˇ D 1=.kB T/ is found. Conversely, the Stefan-Boltzmann constant can be expressed
in terms of the other fundamental constants as

� D
�2

60

k4B
c2 „3

: (15.79)
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Problems

15.1 Estimate the extension of the energy region where the main variation of the
Fermi-Dirac statistics (15.49) occurs.

15.2 Using the definition (15.49) of the Fermi-Dirac statistics and the first relation
in (15.48), and assuming that the density of states is different from zero around EF,
discuss the temperature dependence of EF. Consider the case where EF > 0 and
P.E D 0/ ' 1.

15.3 Prove (15.50) by combinatorial calculus.



Chapter 16
Separation of Many-Particle Systems

16.1 Introduction

The chapter illustrates a number of steps that are necessary to reduce the many-
particle problem to a tractable form. The analysis starts from a system of interacting
electrons and nuclei; such a system is not made of identical particles and its
Hamiltonian operator is not necessarily separable. Besides that, the number of
particles that are present in the typical volume of, e.g., a solid-state device is
so huge that the solution of the Schrödinger equation of such a system in the
original form is a hopeless task. The first step consists in the application of the
adiabatic approximation, by which the system made of the electrons is separated
from that of the nuclei. The way in which such a separation is accomplished has
the inconvenience that the nuclei are kept fixed in the equilibrium positions; this
approximation is too strong, because it prevents the exchange of energy between
the two systems from occurring: in fact, it is used provisionally and is removed
at a later stage. The next step deals with the electron system which, despite the
separation from the nuclei, is still too complicate to be dealt with directly; using
the Ritz method, the Schrödinger equation for the electron system is separated
into single-particle equations, in which each electron is subjected to the average
field of the others. This step yields the Hartree equations and greatly simplifies
the problem; in fact, the equations, besides being separated, are also identical to
each other, so that the set of eigenvalues and eigenfunction obtained from one of
them is applicable to all electrons. The Hartree equations do not comply with the
exclusion principle, which must necessarily be fulfilled because the system under
consideration is made of identical fermions; a further modification, yielding the
Hartree-Fock equations, provides the wave function with the expected antisymmetry
property. Finally, the system of nuclei is taken again into consideration for the
purpose of eliminating the simplification that the nuclei are fixed in the equilibrium
positions: considering the fact that the nuclei are strongly bound together, so that
their displacement from the equilibrium position is small, the nuclei are treated
as a system of linear harmonic oscillators. In this way, the interaction between
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328 16 Separation of Many-Particle Systems

an electron and the nuclei is described (in a later chapter) using the quantum-
mechanical, first-order perturbation theory applied to the two-particle collision of
an electron with a phonon.

16.2 System of Interacting Electrons and Nuclei

The analysis of a conservative system of identical particles, started in Sect. 15.7,
is based on the single-particle Hamiltonian operator (15.28). It must be noted,
however, that the typical systems to be dealt with are not made of identical particles
but, rather, of a mixture of subsystems; the particles of each subsystem are identical
to each other, but different from those of the other subsystems. Moreover, the
Hamiltonian operator of each subsystem is not necessarily separable. It follows
that the existence of a single-particle Hamiltonian operator like (15.28) is by no
means obvious. It is then necessary to tackle the problem from a more general point
of view, starting from the consideration of a mixture of systems, and determining
the approximations that may simplify the problem to a level that is practically
affordable.

To this purpose, consider a conservative system made of K electrons and N
nuclei, interacting with each other. The particles are bound together, so that the
system’s wave function can be assumed to be normalized to unity. The coordinates
associated with the electrons are indicated with small letters and grouped into a
single vector r D .r1; : : : ; rK/; those of the nuclei are indicated with capital letters:
R D .R1; : : : ;RN/. The interaction among the particles is assumed to be of the
Coulomb type, so that the contributions to the potential energy due to the electron-
electron and nucleus-nucleus interactions are, respectively,

Ue.r/ D
1

2

KX

i;jD1

q2

4 � "0 jri � rjj
; Ua.R/ D

1

2

NX

i;jD1

Zi Zj q2

4 � "0 jRi � Rjj
; (16.1)

with j ¤ i, where q > 0 is the electron charge, "0 the vacuum permittivity, and Zj q
the charge of the jth nucleus; factor 1=2 is introduced to avoid a double summation.
In addition one must consider the electron–nucleus interaction, whose contribution
to the potential energy is

Uea.r;R/ D
KX

iD1

NX

jD1

�Zj q2

4 � "0 jri � Rjj
: (16.2)

Remembering (15.3), letting ri D .xi1; xi2; xi3/, Ri D .Xj1;Xj2;Xj3/, and defining

r2i D
@2

@x2i1
C

@2

@x2i2
C

@2

@x2i3
; r2j D

@2

@X2j1
C

@2

@X2j2
C

@2

@X2j3
; (16.3)
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the kinetic parts of the system’s Hamiltonian operator are

Te D �

KX

iD1

„2

2m
r2i ; Ta D �

NX

jD1

„2

2mj
r2j : (16.4)

The time-independent Schrödinger equation of the system then reads

H w D Ew ; H D Te CTa C Ue C Ua C Uea C Uext ; (16.5)

where the eigenfunctions depend on all variables, w D w.r;R/. In (16.5), Uext D

Uext.r;R/ is the potential energy due to an external, conservative field acting on
the system. If it were Uea C Uext D 0, the Hamiltonian would be separable with
respect to the two subsystems, H D .TeCUe/C .TaCUa/. The time-independent
equations resulting from the separation would be

.Te C Ue/ u D Ee u ; .Ta C Ua/ v D Ea v ; (16.6)

with u D u.r/, v D v.R/; due to the general properties of separable operators
(compare with Sect. 10.3), the eigenvalues and eigenfunctions of (16.5) would have
the form w D u v, E D EeCEa. As in general it is UeaCUext ¤ 0, the Schrödinger
equation (16.5) is not actually separable, and its solution may often present a
formidable challenge: considering by way of example that the concentration of
atoms in solid matter is of the order of 5 � 1022 cm�3, and that to a nucleus
there correspond Z electrons, with Z the atomic number, the number of scalar
coordinates necessary to describe a cubic centimeter of solid matter is of the order
of 15 .ZC 1/ � 1022. It is then necessary to make a number of approximations; they
are introduced step by step and, as illustrated in Sects. 16.3, 16.4, and 16.5, they are
capable to bring the problem back to the solution of single-particle equations.

16.3 Adiabatic Approximation

The problem of solving the Schrödinger equation (16.5) for a system of interacting
electrons and nuclei is simplified by observing that the mass of a nucleus is much
larger than that of the electrons. As a first consequence, one expects that the
interaction with an individual electron influences little the motion of a nucleus;
rather, the latter is expected to be influenced by the average interaction with many
electrons. A second consequence is that if the particles’ dynamics is provisionally
considered in classical terms, the motion of the nuclei is much slower than
that of the electrons; as a consequence, the classical positions R of the nuclei
can be considered as slowly varying parameters when the electron dynamics is
investigated. For this reason, the procedure shown below, based on the latter obser-
vation, is called adiabatic approximation or also Born-Oppenheimer approximation
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[78, Sect. 8]. In quantum terms, the approximation leads to the splitting of the
original equation (16.5) into a set of two coupled equations. To this purpose, let

He D Te C Ue C Uea C Uext ; (16.7)

where the dependence on R is algebraic only. Considering such a dependence, the
Hamiltonian operator He provides an eigenvalue equation whose eigenvalues and
eigenfunctions depend on R; they read

He u D Ee u ; Ee D Ee.R/ ; u D u.r;R/ : (16.8)

Also, from the Schrödinger equation (16.8) one finds that, for any function v that
depends only on R, the following holds: Heu v D Ee u v. As v is undetermined,
one may seek a form of v such that w D u v is also an eigenfunction of the
full Hamiltonian operator H of (16.5). From the definition of He it follows
H D Ta C Ua CHe, whence the original Schrödinger equation (16.5) is recast as

.Ta C Ua CHe/ uv D E uv : (16.9)

The second relation in (16.4) shows that each Laplacian operator in Ta acts on both
u and v, specifically, r2j u v D ur2j vC vr

2
j uC 2rj u � rj v. Multiplying the latter

by �„2=.2mj/ and adding over j transforms (16.9) into

u .Ta C Ua C Ee/ v C vTauC Gau v D E u v ; (16.10)

where the short-hand notation Gau v D �
PN

jD1.„
2=mj/rj u � rj v has been used. To

proceed one notes that the coefficients in the Schrödinger equation (16.8) are real,
so that u can be taken real as well. Remembering that the particles described by u
are bound, one finds that u is normalizable so that, for any R,

Z
u2.r;R/ dr D 1 ; dr D d3r1 : : : d3rK ; (16.11)

with the integral extended to the whole K-dimensional space r. Remembering that
rj acts on Rj, from (16.11) one derives

Z
urj u dr D

1

2

Z
rj u2 dr D

1

2
rj

Z
u2 dr D 0 ; (16.12)

whence

Z
u Gau v dr D �

NX

jD1

„2

mj
rj v �

Z
urj u dr D 0 : (16.13)
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Left multiplying (16.10) by u, integrating over r, and using (16.11,16.13) yield

.Ta C Ua C Ee C Uu/ v D E v ; Uu.R/ D
Z

uTau dr : (16.14)

In this way, the original Schrödinger equation (16.5) is eventually split into two
coupled equations, (16.8) and (16.14); the former is written in extended form as

.Te C Ue C Uea C Uext/ u D Ee u : (16.15)

The first equation, (16.14), is the equation for the nuclei, in fact its kinetic operator
Ta acts on R only, and its potential-energy term Ua C Ee C Uu depends on R
only; this equation is coupled with the second one, (16.15), because Ee is an
eigenvalue of (16.15) and Uu is given by the integral in (16.14) that involves the
eigenfunctions of (16.15). In turn, (16.15) is the equation for the electrons, in fact
its kinetic operator Te acts on r only; the part UeaCUext of its potential-energy term
couples (16.15) with (16.14) due to the dependence on R.

In principle, one may solve (16.15) after fixing R and, from the solution, calculate
Ee and Uu to be used in (16.14). From v one then determines the expectation value
of R that updates the starting point for the solution of (16.15). Considering the
case of solid matter, and still reasoning in classical terms, a zero-order solution
for the iterative procedure depicted above is found by observing that the nuclei,
being massive and tightly bound together, are expected to depart little from their
equilibrium positions R0. One then fixes R D R0 in (16.15) to find, for the electrons’
Schrödinger equation, the approximate form

.Te C Ve/ u D Ee u ; Ve.r/ D Ue.r/C Uea.r;R0/C Uext.r;R0/ : (16.16)

This separates completely the equation for the electrons, that may be thought of as
forming a separate system of total energy Ee. Clearly, keeping the positions of the
nuclei fixed is rather crude an approximation; in this way, in fact, the nuclei cannot
exchange energy with the electrons any more. On the other hand, it can be shown
that the solution of (16.16) provides an acceptable approximation for the energy of
the electrons. Another advantage of keeping the nuclei in the equilibrium positions
occurs in the investigation of materials where the nuclei are arranged in periodic
structures; in fact, one exploits in this case the properties of differential equations
having periodic coefficients (compare with Sects. 13.4 and 17.5.1). In conclusion,
the present analysis will continue by provisionally considering only the system of
electrons as described by (16.16); obviously the problem of the exchange of energy
with the system of nuclei cannot be dispensed with and will be resumed at a later
stage (Sect. 16.6).
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16.4 Hartree Equations

Equation (16.16), describing the separate system of K electrons after fixing the
nuclei to the equilibrium positions R0, lends itself to the application of the Ritz
method outlined in Sect. 16.7.1. For the sake of generality, one starts by assuming
that the K particles are distinguishable; for this reason, the symbols Te, Ve, u,
and Ee of (16.16) are not used. Also, the application of the Ritz method will
be carried out in the case where the external forces are absent, Uext D 0; such
forces will be introduced again into the problem in Sect. 19.2.1, where the single-
particle dynamics is described. Given these premises, the operator A , its minimum
eigenvalue A1, and the corresponding eigenfunction v1 used in Sect. 16.7.1 for
describing the Ritz method are indicated here with A D H , A1 D E1, v1 D w1,
where

H D

KX

iD1

Ti C

KX

iD1

X

j<i

Vij ; Ti D �
„2 r2i
2mi

; Vij D
�ij q2 Zi Zj

4�"0 jri � rjj
;

(16.17)

with �ij D ˙1. The above describes a system of different particles interacting
through Coulomb potentials. Introducing the auxiliary function f as in (16.37),
one minimizes the functional hf1 : : : fK jH jf1 : : : fKi subjected to the K constraints
hfijfii D 1. Using the method of Lagrange multipliers (Sect. B.6), this is equivalent
to finding the absolute minimum of

FH Œf1; : : : ; fK � D hf1 : : : fK jH jf1 : : : fKi �
KX

iD1

�ihfijfii ; (16.18)

with �i the multipliers. The terms related to Ti are separable, while those related to
Vij are separable in pairs. From the orthonormalization condition it follows

FH D

KX

iD1

0

@hfijTijfii � �ihfijfii C
i�1X

jD1

hfi fjjVijjfi fji

1

A : (16.19)

The minimum of FH is found by letting ıFH D FH Œf1 C ıf1; : : : ; fK C ıfK � �
FH Œf1; : : : ; fK � D 0 . Neglecting the second-order terms and observing that Ti is
Hermitean yield

ıhfijTijfii D hıfijTijfii C hfijTijıfii D 2<hıfijTijfii : (16.20)

By the same token one finds ı�ihfijfii D �i 2<hıfijfii and ıhfi fjjVijjfi fji D
2<hfi ıfjjVijjfi fji C 2<hfj ıfijVijjfi fji. The symmetry of the Coulomb terms yields
Vji D Vij, whence
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i�1X

jD1

�
hfi ıfjjVijjfi fji C hfj ıfijVijjfi fji

	
D

KX

jD1

hfj ıfijVijjfi fji ; (16.21)

with j ¤ i at the right-hand side. The minimization condition of (16.19) then reads

2<

KX

iD1

0

@hıfijTijfii � �i hıfijfii C
KX

jD1

hfj ıfijVijjfi fji

1

A D 0 ; (16.22)

with j ¤ i in the inner sum. As the variations ıfi are independent of each other, the
term within parentheses in (16.22) must vanish for each i, thus yielding a system of
K coupled equations. The inner sum has a double integral in it, and is recast as

KX

jD1

hfj ıfijVijjfi fji D hıfijUijfii ; Ui.ri/ D

KX

jD1

hfjjVijjfji ; (16.23)

still with j ¤ i. The ith equation of the system then reads

hıfijTijfii � �i hıfijfii C hıfijUijfii D hıfij .Ti C Ui � �i/ fii D 0 : (16.24)

As the above holds for any ıfi, the terms on the right-hand side of the scalar products
of (16.24) must cancel each other. In conclusion, the minimization condition
provides a set of K single-particle equations coupled through the terms Ui:

.Ti C Ui/ fi D �i fi ; i D 1; : : : ;K : (16.25)

The above are called Hartree equations and constitute a set of Schrödinger equations
whose potential energy is given by the second relation in (16.23):

Ui.ri/ D

KX

jD1

Z
�ij q2 Zi Zj

4� "0 jri � rjj
jfjj

2 drj ; j ¤ i : (16.26)

The potential energy of the ith particle is the sum of two-particle potential energies
averaged with the localization probabilities of the particles different from the ith.
The eigenvalue �i is then the energy of the ith particle in the field of the other K � 1
particles (for this reason, the sum �1C : : :C�N is not the total energy of the system).

The solution of (16.25) is found by iteration; one starts with i D 1 and
provides an initial guess for f2; : : : ; fK , so that the initial guess for U1 is calculated
from (16.26) and used in (16.25). The solution of the latter yields the first iteration
for f1 and, remembering the Ritz method outlined in Sect. 16.7.1, the parameters
embedded in f1 are exploited at this stage to lower the eigenvalue; then, one proceeds
with i D 2, using the first iteration for f1 and the initial guess for f3; : : : ; fK , and
so on. It must be noted that the initial guess is used within an integral, whose



334 16 Separation of Many-Particle Systems

effect is that of averaging the difference between the initial guess and the actual
solution; therefore, it may happen that the accuracy of the first iteration is sufficient,
to the extent that the iterative process may be brought to an end. In this case, the
K equations (16.25) become independent of each other and the solution effort is
greatly reduced.

16.5 Hartree-Fock Equations

It is now necessary to investigate the problem originally introduced in Sect. 16.3,
namely, that of equation (16.16), which describes the separate system of electrons
after fixing the nuclei to the equilibrium positions R0. The Hartree equations (16.25)
cannot be applied as they stand, because they have been deduced for a system made
of distinguishable particles. To treat a system of electrons, instead, it is necessary to
account for the particles’ spin that was not considered in Sects. 16.3 and 16.4, and
ensure the antisymmetry of the wave function (Sect. 15.7). The procedure is similar
to that depicted in Sect. 16.4, the difference being that the auxiliary function f is not
expressed as a product like in (16.37), but is given by a Slater determinant (15.37),
whose entries depend on the position and spin coordinates of the corresponding
particle [78, Sect. 8], [124, Sect. 16.3].

The calculations are rather involved and are not reported here. It is important
to mention that like in Sect. 16.4, the derivation is carried out by assuming that
the external forces are absent (Uext D 0). The procedure yields a set of K equations,
coupled with each other, that generalize the Hartree equations (16.25) and are called
Hartree-Fock equations. If the accuracy of the first iteration is sufficient, the original
Hamiltonian operator of (16.16), describing the system of electrons as a whole, is
separated into K single-particle, identical operators:

Te C Ve D

KX

iD1

�
�
„2

2m
r2i C Vei.ri/

�
: (16.27)

In this way the form (15.28) of the Schrödinger equation for the electrons, sought at
the beginning of Sect. 16.2, is recovered.

16.6 Schrödinger Equation for the Nuclei

In the process of separating the Schrödinger equation for the electrons, (16.15),
from that of the nuclei, (16.14), that is carried out in Sect. 16.3, the positions
of the nuclei are fixed to the equilibrium values R D R0. This is done to the
purpose of calculating the coefficients Ee and Uu (compare with (16.6) and (16.14),
respectively); such coefficients depend on R and can be obtained only by solving the
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equation for the electrons. After this step is accomplished, one turns to the equation
for the nuclei, in which Ee and Uu are fixed to constants from the previous iteration;
the potential energy of (16.14) then becomes

Va.r/ D Ua.r/C Ee.r0/C Uu.r0/ : (16.28)

If the positions of the nuclei are kept fixed, that is, the iterative procedure outlined
in Sect. 16.3 is brought to an end without solving (16.14), the exchange of energy
between the system of electrons and that of nuclei cannot take place. It is then
necessary to proceed to the solution of (16.14); such a solution is obtained by
means of an approximation shown below, and the iterative procedure for the solution
of (16.14) and (16.15) is stopped right after. In this way, one keeps for the energy
of the electrons the eigenvalues obtained with the nuclei fixed at R0, which is a
convenient choice due to the advantages illustrated in Sect. 16.3.

As for the nuclei, it has already been observed in Sect. 16.3 with respect to
the case of solid matter that the nuclei, being massive and tightly bound together,
are expected to depart little from their equilibrium positions R0. To improve with
respect to the zero-order approximation R D R0, and provisionally reasoning in
classical terms, one assumes that the instantaneous displacement R�R0 with respect
to the equilibrium point is small, so that Va in (16.28) can be approximated with a
second-order Taylor expansion around R0. The classical form of the problem is thus
brought to the case already solved in Sects. 3.9 and 3.10: indicating with Ta C Va

the classical equivalent of the operator TaCVa, the vibrational state of the nuclei is
described in terms of the normal coordinates b� , whose conjugate momenta are Pb� ,
and the total energy of the nuclei reads (compare with (3.50)):

Ta C Va D

3NX

�D1

H� C Va0 ; H� D
1

2
Pb2� C

1

2
!2� b2� ; (16.29)

with !� > 0 the angular frequency of the mode. As a consequence, the quantum
operator takes the form

Ta C Va D

3NX

�D1

H� C Va0 ; H� D �
„2

2

@2

@b2�
C
1

2
!2� b2� (16.30)

which, introduced into (16.14), yields

3NX

�D1

H� v D E0v ; E0 D E � Va0 : (16.31)

This procedure provides the separation of the degrees of freedom of the nuclei and
completes the separation process whose usefulness was anticipated in Sect. 16.2.
The solution of (16.31) is illustrated in Sect. 12.5 and shows that the mode’s energy
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is ascribed to the set of phonons belonging to the mode itself. As the phonons are
bosons, the equilibrium distribution of their occupation numbers is given by the
Bose-Einstein statistics. The description of the interaction between an electron and
the nuclei is obtained from the quantum-mechanical, first-order perturbation theory
applied to the two-particle collision of an electron with a phonon (Sect. 17.8).

16.7 Complements

16.7.1 Ritz Method

Let A be a Hermitean operator with a discrete spectrum and a complete, orthonor-
mal set of eigenfunctions. For the sake of simplicity, the eigenvalues are assumed
nondegenerate:

A vn D Anvn ; hvmjvni D ımn : (16.32)

Consider the expansion of a function f in terms of the eigenfunctions of A , f DP1
nD1 cn vn, with cn D hvnjf i. From Parseval theorem (8.41) one finds

hf jA jf i D
1X

nD1

An jcnj
2 : (16.33)

As the eigenvalues are real, one orders them in a nondecreasing sequence:
A1 � A2 � A3 � : : :, whence

hf jA jf i � A1

1X

nD1

jcnj
2 D A1 hf jf i : (16.34)

More generally, if f is orthogonal to the first s � 1 eigenfunctions, then c1 D c2 D
: : : D cs�1 D 0, and

f D
1X

nDs

cn vn ; hf jA jf i � As hf jf i ; (16.35)

where the equality holds if and only if f D const � vs. In conclusion, the functional

GA Œf � D
hf jA jf i

hf jf i
(16.36)

has a minimum for f D vs, whose value is As. The findings above are the basis of the
Ritz method that provides approximations for the eigenvalues and eigenfunctions of
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A . For instance, the minimum eigenvalue A1 and the corresponding eigenfunction
v1.r/ are approximated by letting v1 ' f .r; ˛1; ˛2; : : :/, where the form of f is
prescribed and ˛1; ˛2; : : : are parameters. The latter are then used to minimize
GA Œf �. The constraint hf jf i D 1 is imposed along the calculation, yielding A1 '
min˛ GA Œf � D hf jA jf i : When A1; v1 have been found, the next pair A2; v2 is
determined by using an approximating function orthonormal to v1; and so on.
For a system made of N particles, the eigenfunctions depend on 3N coordinates:
vn D vn.r1; : : : ; rN/ : It is convenient to approximate them by separating the
variables:

f D f1.r1/ : : : fN.rN/ ; (16.37)

where each fi may also depend on parameters. The normalization constraint then
yields

hfijfii D 1 ; i D 1; : : : ;N : (16.38)
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Chapter 17
Periodic Structures

17.1 Introduction

This chapter outlines a number of concepts that are useful in the description of
periodic structures. The first sections describe the geometrical entities (characteristic
vectors, direct and reciprocal lattices, translation vectors, cells, and Brillouin
zones) used for describing a lattice. The analysis focuses on the lattices of cubic
type, because silicon and other semiconductor materials used in the fabrication
of integrated circuits have this type of structure. The next sections introduce the
mathematical apparatus necessary for solving the Schrödinger equation within a
periodic structure, specifically, the translation operators, Bloch theorem, and peri-
odic boundary conditions. Basing on such tools, the Schrödinger equation is solved,
leading to the dispersion relation of the electrons, whose properties are worked out
and discussed. The analogy between a wave packet in a periodic potential and in
free space is also outlined. Then, the parabolic-band approximation is introduced,
leading to the concept of effective mass and to the explicit calculation of the density
of states. Examples of the structure of the conduction and valence bands of silicon,
germanium, and gallium arsenide are provided. Considering the importance of two-
dimensional and one-dimensional structures in modern technological applications,
a detailed derivation of the subbands and the corresponding density of states is
also given. Then, the same mathematical concepts used for solving the Schrödinger
equation (Bloch theorem and periodic boundary conditions) are applied to the
calculation of the lattice’s vibrational spectrum in the harmonic approximation.
The properties of the eigenvalues and eigenfunctions of the problem are worked
out, leading to the expression of the vibrational modes. Basing on the above,
the description of the electron-lattice interaction is worked out. The complements
provide a number of details about the description of crystal planes and directions,
and about the connection between the symmetries of the Hamiltonian operator
and the properties of its eigenvalues. A number of examples of application of the
concepts outlined in the chapter are given in the last part of the complements;
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specifically, the Kronig-Penney model, showing a one-dimensional calculation of
the electrons’ dispersion relation, and the derivation of the dispersion relation of the
one-dimensional monatomic and diatomic chains. The complements are concluded
by a discussion about some analogies between the energy of the electromagnetic
field and that of the vibrating lattice, and between the dispersion relation of the
electrons and that of the lattice.

17.2 Bravais Lattice

The concepts illustrated in the previous chapters will now be applied to study the
properties of a specific class of materials, the crystals. In fact, in the majority of
cases the solid-state devices are manufactured using a crystal as basic material.1

A crystal is made of a periodic arrangement of an atom, or a group of atoms,
called basis. As a periodic structure is unlimited in all spatial directions, the general
properties of crystals are derived using the provisional hypothesis that the material
extends to infinity. The more realistic case of a finite crystal is considered at a later
stage.

To describe the properties of a crystal it is convenient to superimpose to it a
geometrical structure, called Bravais lattice, made of an infinite array of discrete
points generated by translation operations of the form [16]

l D m1 a1 C m2 a2 C m3 a3 ; (17.1)

with m1, m2, m3 any integers. In (17.1), l is called translation vector while a1,
a2, a3 are the characteristic vectors; the discrete points generated by (17.1) are
called nodes. The set of vectors l is closed under vector addition. Although the
characteristic vectors are not necessarily of equal length, nor are they orthogonal
to each other, they form a complete set; it follows that any vector r of the three-
dimensional space is expressible as

r D �1 a1 C �2 a2 C �3 a3 ; (17.2)

with �1, �2, �3 real numbers. In a zero-dimensional or one-dimensional space only
one Bravais lattice is possible. In a two-dimensional space there are five Bravais
lattices, such as oblique, rectangular, centered rectangular (rhombic), hexagonal,
and square [79]. An example of oblique lattice is shown in Fig. 17.1. Another

1Some important exceptions exist. Thin-Film Transistors (TFT), commonly used in flat-screen or
liquid-crystal displays, are obtained by depositing a semiconductor layer (typically, silicon) over
a nonconducting substrate; due to the deposition process, the structure of the semiconductor layer
is amorphous or polycrystalline. Phase-Change Memories (PCM) exploit the property of specific
materials like chalcogenides (for example, Ge2Sb2Te5), that switch from the crystalline to the
amorphous state, and vice versa, in a controlled way when subjected to a suitable electric pulse.
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Fig. 17.1 Schematic
description of a
two-dimensional Bravais
lattice of the oblique type.
Three atoms have been
removed to better show the
characteristic vectors. The
latter are not orthogonal to
each other, and their lengths
are different

1a

a 2

Fig. 17.2 Examples of cells
in a two-dimensional Bravais
lattice of the oblique type

a

b

c

a

b

c

important concept is that of cell. Still considering a two-dimensional lattice of the
oblique type, a cell is a two-dimensional surface that is associated with each node
and has the following properties: (i) the association is one-to-one, (ii) the cells are
equal to each other, and (iii) the union of the cells covers the lattice exactly. The
cell so defined is not unique; by way of examples, all the shaded surfaces shown in
Fig. 17.2 fulfill the properties listed above. It may seem that the cell of case c) is not
correct, because it touches four nodes; however, each node is shared by four cells,
so that the one-to-one correspondence is maintained. In fact, the type of cell shown
in case c) is most useful to extend the definitions given so far to the more realistic
three-dimensional case. One notes in passing that the common value of the area of
the cells depicted in Fig. 17.2 is A D ja1 ^ a2j, with a1, a2 the characteristic vectors
indicated in Fig. 17.1.

In a three-dimensional space the simplest cells are three-dimensional volumes
that fulfill the same properties as in the two-dimensional case and have the atoms
placed at the corners. Such an arrangement is called primitive. It can be shown that
seven primitive arrangements are possible; each of them may further be enriched
in five possible ways, by adding a) one atom at the center of the cell, or b) one
atom at the center of each face of the cell, or c) one atom at the center of each
pair of cell faces (this can be done in three different ways). The addition of extra
atoms to the primitive arrangement is called centering. The total number of three-
dimensional arrangements, including the primitive ones, is thus 7�6 D 42; however,
it is found that not all of them are distinct, so that the actual number of distinct three-
dimensional cells reduces to 14 [79].
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Fig. 17.3 Schematic
description of a
three-dimensional Bravais
lattice of the FCC type. Four
atoms have been removed to
better show the characteristic
vectors. The latter are
orthogonal to each other and
of equal length

a2
1a

3a

Table 17.1 Crystal constants
of silicon and germanium

Material Lattice constant (nm) Interatomic distance (nm)

Si 0.543 0.233

Ge 0.566 0.244

A three-dimensional lattice whose characteristic vectors are mutually orthogonal
and of equal length is called cubic. Besides the primitive one, other two arrange-
ments of cubic type are possible: the first one has one additional atom at the cell’s
center and is called body-centered cubic (BCC), the second one has one additional
atom at the center of each cell’s face and is called face-centered cubic (FCC). A
portion of a lattice of the FCC type is shown in Fig. 17.3. Examples of chemical
species whose crystalline phase has a cubic cell are carbon (C) in the diamond phase,
silicon (Si), and germanium (Ge); in fact, this type of crystallization state is also
collectively indicated with diamond structure. Elements like C, Si, and Ge belong to
the fourth column of the periodic table of elements; Si and Ge are semiconductors,
while C in the diamond phase is an insulator.2 The FCC cell is also exhibited by
some compound materials, an example of which is gallium arsenide (GaAs), a
semiconductor of the so-called III-V type.3 Some properties of Si, Ge, and GaAs,
along with those of other III-V semiconductors, are listed in Tables 17.1 and 17.2.
The type of crystallization state of GaAs and the other materials of Table 17.2 is
called zincblende structure.4

2The meaning of “insulator” or “semiconductor,” as well as that of “conductor,” is specified in
Sect. 18.2.
3The term “III-V” derives from the fact the Ga and As belong, respectively, to the third and fifth
column of the periodic table of elements.
4Zincblende is another name for Sphalerite, an economically important mineral whence zinc is
extracted. It consists of zinc sulfide in crystalline form with some contents of iron, (Zn,Fe)S.
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Table 17.2 Crystal constants
of some III-V semiconductors

Material Lattice constant (nm) Interatomic distance (nm)

GaAs 0.563 0.244

GaP 0.545 0.236

GaSb 0.609 0.264

InAs 0.605 0.262

InP 0.586 0.254

InSb 0.647 0.280

AlSb 0.613 0.265

17.3 Reciprocal Lattice

As indicated in Sect. 17.2, the type of cell having the nodes at the corners is the most
useful one for introducing a number of definitions. For instance, observing that the
characteristic vectors coincide with the cell’s edges (this property is evident for the
FCC cell as shown in Fig. 17.3; however, it applies also to the other types of cells),
one obtains for the cell’s volume

�l D a1 � a2 ^ a3 D a2 � a3 ^ a1 D a3 � a1 ^ a2 ; (17.3)

where the orientation of the characteristic vectors is chosen in such a way as to make
�l positive.

The major advantage of dealing with a periodic structure is the possibility of
using the Fourier series. In fact, the functions describing the physical properties
of the structure are expected to be periodic, so that one can take advantage
of the Fourier expansion. The latter, in turn, entails a transformation from the
coordinate space to another space reciprocal to it. Considering, for instance, the one-
dimensional case of the Fourier transform given in (C.17), there the k space is the
reciprocal of the x space; similarly, in an n-dimensional space like that considered
in (C.20), the k space is the reciprocal of the x space: both vectors k, x are linear
combinations of the same set of mutually orthogonal, unit vectors i1; : : : ; in, so that
the scalar product k � x yields k1 x1 C : : : C kn xn. In the case considered here,
instead, one must account for the fact that the reference a1, a2, a3 of the space under
consideration is made of vectors that, in general, are neither mutually orthogonal
nor of equal length. For this reason it is necessary to introduce a reciprocal lattice
by defining its characteristic vectors as

b1 D
a2 ^ a3
�l

; b2 D
a3 ^ a1
�l

; b3 D
a1 ^ a2
�l

: (17.4)

From the definition (17.3) of �l and the mixed-product property (A.32) one finds
that the characteristic vectors fulfill the orthogonality and normalization relation

ai � bj D ıij ; (17.5)
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with ıij the Kronecker symbol (A.18). The translation vectors and the general
vectors of the reciprocal lattice are linear combinations of b1, b2, b3 whose
coefficients are, respectively, integer numbers or real numbers. To distinguish the
lattice based on b1, b2, b3 from the one based on a1, a2, a3, the latter is also called
direct lattice. The common value of the cells’ volume in the reciprocal lattice is

�G D b1 � b2 ^ b3 D b2 � b3 ^ b1 D b3 � b1 ^ b2 : (17.6)

Observing that ai is a length, from (17.4) it follows that bj is the inverse of a
length; as a consequence, the units of �G are m�3, and the product � D �l �G is
a dimensionless constant. The value of � is found by combining the first relation
in (17.4), which yields �l b1 D a2 ^ a3, with (17.6), so that

� D �l �G D �l b1 � b2 ^ b3 D a2 ^ a3 � .b2 ^ b3/ D a2 � a3 ^ .b2 ^ b3/ ; (17.7)

where the last equality is due to the invariance of the mixed product upon
interchange of the “wedge” and “dot” symbols (Sect. A.7). Then, using (A.33) to
resolve the double vector product,

�l �G D a2 �.a3 � b3 b2 � a3 � b2 b3/ D a2 �.ı33 b2 � ı32 b3/ D a2 �b2 D 1 : (17.8)

From the properties that provide the definition of cell (Sect. 17.2) it follows that for
a given lattice, the volume of the cell does not depend on its form. As a consequence
it is �l �G D 1 no matter what the cell’s form is. Also, after defining e1 D b2 ^ b3=�G

one finds, by a similar calculation,

e1 D
b2 ^ b3
�G

D
b2 ^ .a1 ^ a2/

�l �G
D b2 � a2 a1 � b2 � a1 a2 D a1 ; (17.9)

and the like for e2 and e3; thus, the direct lattice is the reciprocal of the reciprocal
lattice.

Given a direct lattice of characteristic vectors a1, a2, a3, it is convenient to
introduce, besides the reciprocal lattice of characteristic vectors b1, b2, b3 defined
by (17.4), another lattice called scaled reciprocal lattice, whose characteristic
vectors are 2� b1, 2� b2, 2� b3. A translation vector of the scaled reciprocal lattice
has the form

g D n1 2 � b1 C n2 2 � b2 C n3 2 � b3 ; (17.10)

with n1; n2; n3 any integers, whereas a general vector of the scaled reciprocal lattice
has the form

k D �1 2 � b1 C �2 2 � b2 C �3 2 � b3 ; (17.11)



17.3 Reciprocal Lattice 347

with �1; �2; �3 any real numbers. From the definitions (17.1,17.10) of l and g one
finds

l � g D
3X

isD1

mi ai � ns 2� bs D 2�

3X

isD1

mi ns ıis D 2�

3X

iD1

mi ni ; (17.12)

namely, l � g D 2� M with M an integer. It follows that

exp Œi g � .rC l/� D exp .i g � r/ exp .i 2� M/ D exp .i g � r/ ; (17.13)

that is, exp .i g � r/ is periodic in the r space. This shows the usefulness of the
scaled reciprocal lattice for treating problems related to periodic structures. In fact,
given a periodic function in the r space, F.rC l/ D F.r/, the Fourier expansion is
generalized to the non-orthogonal case as

F.r/ D
X

g

Fg exp .i g � r/ ; Fg D
1

�l

Z

�l

F.r/ exp .�i g � r/ d3r ; (17.14)

with
P

g D
P

n1

P
n2

P
n3

. The property holds also in reverse, namely,

expŒi l � .kC g/� D exp.i l � k/ ; (17.15)

so that, given a periodic function in the k space, ˚.k C g/ D ˚.k/, the following
expansion holds:

˚.k/ D
X

l

˚l exp .i l � k/ ; ˚l D
1

�g

Z

�g

˚.k/ exp .�i l � k/ d3k ; (17.16)

with
P

l D
P

m1

P
m2

P
m3

. From (17.8) one also finds that in the scaled reciprocal
lattice the volume of the cell is given by

�g D
.2 �/3

�G
D
.2�/3

�l
: (17.17)

The origin of the reference of the direct or reciprocal space has not been identified so
far. After selecting the origin, consider the cell of the r space whose sides emanate
from it; these sides are made to coincide with the characteristic vectors (compare,
e.g., with Fig. 17.3), so that, to any point r D �1 a1C�2 a2C�3 a3 that belongs to
the interior or the boundary of the cell, the following restriction apply: 0 � �i � 1.
Similarly, if one considers the cell of the k space whose sides emanate from the
origin, for any point k D �1 2 � b1C�2 2 � b2C�3 2 � b3 that belongs to the interior
or the boundary of the cell it is 0 � �i � 1.



348 17 Periodic Structures

Fig. 17.4 A Wigner-Seitz
cell in a two-dimensional,
oblique lattice

17.4 Wigner-Seitz Cell—Brillouin Zone

It has been mentioned in Sect. 17.2 that the cell properties do not identify the cell
uniquely. Cells of a form different from that shown, e.g., in the two-dimensional
example of Fig. 17.2 can be constructed. Among them, of particular interest is the
Wigner-Seitz cell, whose construction is shown in Fig. 17.4 still considering a two-
dimensional lattice of the oblique type. First, the node to be associated with the
cell is connected to its nearest neighbors as shown in the figure (the connecting
segments are the continuous lines); then, the axis of each segment is drawn (dashed
lines). As the axis is the locus of points having the same distance from the extrema
of the connecting segment, one can select a contour, made of portions of the axes
(thick line), such that the following property holds: any point inside the contour
is closer to the node associated with the cell than to any other lattice node. From
the construction described above it also follows that the shaded surface so obtained
fulfills the requisites listed in Sect. 17.2, so it is a cell proper; such a cell, named
after Wigner and Seitz, fulfills the additional property of the closeness of the internal
points. Its construction in the three-dimensional case is similar, the only difference
being that the axis is replaced with the plane normal to the connecting segment at
the midpoint.

The concept of Wigner-Seitz cell, that has been introduced above using the direct
lattice by way of example, is applicable also to the reciprocal and scaled-reciprocal
lattices. In the scaled reciprocal lattice, the Wigner-Seitz cell associated with the
origin is called first Brillouin zone. The set of Wigner-Seitz cells adjacent to the first
Brillouin zone is called second Brillouin zone, and so on. The first Brillouin zone of
the FCC lattice is shown in Fig. 17.5; its boundary is made of six square faces and
eight hexagonal faces. The center of the zone is called � point; the k1 axis belongs to
the Œ100� crystal direction5 and intercepts the boundary of the Brillouin zone at two
opposite positions called X points, that coincide with the center of square faces; the
k2, k3 axes belong to the Œ010� and Œ001� directions, respectively, and intercept the
boundary at X points as well. In turn, the f111g directions intercept the boundary at
positions called L points that coincide with the center of the hexagonal faces. There

5The symbols indicating the crystal directions are illustrated in Sect. 17.9.1.
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Fig. 17.5 The first Brillouin
zone of the FCC lattice

k1

k3

2k

Γ

Χ

Χ

L

Χ

is a total of eight L points, because the set f111g is made of the Œ111�, ŒN111�, ŒN1N11�,
Œ1N11� directions along with those of complementary signs.

17.5 Translation Operators

The typical procedure by which the physical properties of periodic structures, like
crystals, are investigated entails the solution of eigenvalue equations generated by
quantum-mechanical operators. In this respect it is useful to introduce a class of
operators, called translation operators, that are associated with the direct-lattice
vectors l defined by (17.1). To ease the notation, the translation operator associated
with the ith lattice vector li is indicated with Ti D T .li/. A translation operator is
defined by the property

Tif .r/ D f .rC li/ (17.18)

for all functions f defined over the direct lattice. It is easily found that translation
operators are linear and non-Hermitean. Also, they commute with each other; in
fact,

TiTsf .r/ D f .rC li C ls/ D TsTif .r/ (17.19)

for all functions f and all indices i; s. Remembering the property derived in
Sect. 10.4, it follows that all translation operators have a common set of eigen-
functions v. Combining this result with definition (17.18) provides the form of the
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eigenvalues ˛ of the translation operators. For this, consider the operators associated
with three arbitrary vectors li, ls, and lu, and generate the eigenvalue equations

Ti v D ˛.li/ v ; Ts v D ˛.ls/ v ; Tu v D ˛.lu/ v : (17.20)

If one now lets lu D liC ls, it follows TiTs v.r/ D v.rC liC ls/ D Tu v.r/, that is,
TiTs D Tu. On the other hand, the first two eigenvalue equations in (17.20) provide
TiTs v D Ti ˛.ls/ v D ˛.li/ ˛.ls/ v which, combined with the third one, yields

˛.li/ ˛.ls/ D ˛.lu/ D ˛.li C ls/ : (17.21)

The result shows that the functional dependence of ˛ on the translation vector must
be of the exponential type:

˛.l/ D exp.c � l/ ; c D
3X

sD1

.<	s C i=	s/ 2 � bs ; (17.22)

where c is a complex vector whose units are the inverse of a length. For this reason
c is given the general form shown in the second relation of (17.22), with bs a
characteristic vector of the reciprocal lattice, s D 1; 2; 3, and 	s a dimensionless
complex number that is momentarily left unspecified.

17.5.1 Bloch Theorem

The expression (17.22) of the eigenvalues of the translation operators makes it
possible to specify some property of the eigenfunctions; in fact, combining the
definition of translation operator, T v.r/ D v.rC l/, with the eigenvalue equation
T v.r/ D exp.c � l/ v.r/ yields

vc.rC l/ D exp.c � l/ vc.r/ ; (17.23)

called Bloch theorem (first form). The importance of this result can be appreciated
by observing that if v is known within a lattice cell, and c is given, then the
eigenfunction can be reconstructed everywhere else. The index in (17.23) reminds
one that the eigenfunction depends on the choice of c. The theorem can be recast
differently by defining an auxiliary function uc.r/ D vc.r/ exp.�c � r/, so that

vc.rC l/ D exp.c � l/ vc.r/ D exp.c � l/ uc.r/ exp.c � r/ : (17.24)

In turn, from the definition of uc one draws vc.r C l/ D uc.r C l/ expŒc � .r C l/�
which, combined with (17.24), yields the Bloch theorem (second form):
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vc.r/ D uc.r/ exp.c � r/ ; uc.rC l/ D uc.r/ : (17.25)

The second form of the Bloch theorem shows that the auxiliary function uc is
periodic in the direct lattice, so that the eigenfunctions of the translation operators
are the product of an exponential function times a function having the lattice
periodicity. One notes the similarity of this result with that expressed by (13.39);
in fact, the Bloch theorem is a form of the Floquet theorem (Sect. 13.4).

The eigenfunctions of the translation operators play an important role in the
description of the physical properties of periodic structures. For this reason, vectors
c of the general form are not acceptable because their real part would make
vc.r/ D uc.r/ exp.c � r/ to diverge as r departs more and more from the origin.6

It is then necessary to impose the restriction c D i k, with k real. This is achieved
by letting <	s D 0 and =	s D �s in the second relation of (17.22), so that the
eigenvalues of the translation operators become

˛.l/ D exp.i k � l/ ; k D
3X

sD1

�s 2� bs : (17.26)

Remembering (17.15), such eigenvalues are periodic in the scaled reciprocal lattice.
In turn, the first and second forms of the Bloch theorem become, respectively,

vk.rC l/ D exp.i k � l/ vk.r/ ; (17.27)

vk.r/ D uk.r/ exp.i k � r/ ; uk.rC l/ D uk.r/ : (17.28)

Eigenfunctions of the form (17.27,17.28) are also called Bloch functions. They fulfill
the eigenvalue equation T vk.r/ D exp.i k � l/ vk.r/ so that, observing that T is real
and taking the conjugate of the eigenvalue equation yield

T v�k .r/ D exp.�i k � l/ v�k .r/ : (17.29)

If, instead, one replaces k with �k in the original equation, the following is found:

T v�k.r/ D exp.�i k � l/ v�k.r/ : (17.30)

Comparing (17.30) with (17.29) shows that v�k and v�k belong to the same
eigenvalue. Moreover, comparing the second expression in (17.26) with (17.11)
shows that k is a vector of the scaled reciprocal lattice.

A further reasoning demonstrates that the variability of k in (17.27,17.28) can
be limited to a single cell of the scaled reciprocal lattice; for instance, to the first
Brillouin zone or, alternatively, to the cell of the k space whose sides emanate from
the origin, so that the coefficients of (17.11) fulfill the relation 0 � �i � 1 as shown

6This aspect is further elaborated in Sect. 17.5.3.
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in Sect. 17.3. The property derives from the periodicity of the eigenvalues in the
scaled reciprocal lattice, expŒi .kC g/ � l� D exp.i k � l/, due to which the values of
exp.i k � l/, with k ranging over a single cell, provide the whole set of the operator’s
eigenvalues. As expŒi .k C g/ � l� is the same eigenvalue as exp.i k � l/, the Bloch
function vkCg.r/ is the same as vk.r/. Note that the reasoning does not prevent the
eigenvalue from being degenerate: if this is the case, one finds

v
.1/

kCg D v
.1/

k ; v
.2/

kCg D v
.2/

k ; : : : (17.31)

17.5.2 Periodic Operators

An operator A is periodic in the direct lattice if A .rC l/ D A .r/ for all vectors
r and all translation vectors l of the direct lattice. Periodic operators commute with
translation operators: this is shown by letting v0 D A v, so that

T .l/A .r/v.r/ D T .l/v0.r/ D v0.rC l/ D

D A .rC l/v.rC l/ D A .r/v.rC l/ D A .r/T .l/v.r/ : (17.32)

From the commutativity property T A D AT it follows that T and A have a
common set of eigenfunctions, so that the eigenfunctions of a periodic operator are
Bloch functions; letting Ak be the eigenvalue, one has

A vk D Ak vk ; (17.33)

with k belonging to a single cell of the scaled reciprocal lattice, and vkCg D vk.
Since an eigenfunction belongs to one eigenvalue only, it follows

AkCg D Ak ; (17.34)

namely, if an operator is periodic in the direct lattice, its eigenvalues are periodic in
the scaled reciprocal lattice.

17.5.3 Periodic Boundary Conditions

In the derivation of the Bloch theorem, carried out in Sect. 17.5.1, it has been
observed that complex vectors c in the expression vc.r/ D uc.r/ exp.c � r/ of the
eigenfunctions are not acceptable because their real part would make the function
to diverge. In fact, as noted in Sect. 17.5.2, such eigenfunctions belong also to the
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Fig. 17.6 A finite block of
material obtained by
sectioning a crystal by means
of three pairs of parallel
crystal planes

a2

a3 a1

Q

P

operators that commute with the translation operators and may describe physical
properties of the crystal, so that diverging solutions must be discarded. On the other
hand, such a divergence is due to the assumption that the crystal is unlimited; in
the more realistic case of a finite block of material, diverging solutions would not
appear. Unfortunately, a finite block of material is not periodic, hence the useful
concepts and properties worked out so far in this chapter are not applicable to it.

To further investigate on the subject one notes that a finite block may be thought
of as derived from the original crystal by sectioning the latter using three pairs
of parallel crystal planes, as shown in Fig. 17.6. One of the vertices of the block
coincides with the origin of the reference of the direct lattice, and the block’s sides
are aligned with the characteristic vectors. Also, the type of cell chosen here is the
one whose sides coincide with the characteristic vectors themselves. The relation
between the total number Nc of the block’s cells, the block’s volume �, and that of
the cell is easily found to be

Nc D N1 N2 N3 D
�

�l
; (17.35)

with Ns the number of cell sides that match the side of the block in the sth direction.
In a finite volume of material, the number of cells that belong to the interior is
typically much larger than the number of cells that are adjacent to the boundaries;
when solving a single-electron Schrödinger equation within such a structure, it is
found that in the interior of it the eigenfunctions practically coincide with Bloch
functions, whereas the effect of the real part of vector c in vc.r/ D uc.r/ exp.c � r/
becomes relevant only when the position under investigation is close to a boundary.
In fact, the real part of c is such that the eigenfunctions become vanishingly small
far away from the volume considered [24, Sects. F-XI, O-III].

The considerations above show that for practical purposes one may keep the
analysis based on the original periodicity of the unlimited structure by replacing
the vanishing boundary conditions with a different type of conditions, able to
formally restore periodicity in a finite structure. This is accomplished by imposing
the identity of the Bloch functions corresponding to two boundary points facing each
other along the direction of a characteristic vector. This prescription, called periodic
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boundary condition or Born-Von Karman boundary condition, is illustrated with
the aid of Fig. 17.6. Consider for instance point r D �1 a1C�2 a2 (labeled P in the
figure), that belongs to the boundary plane defined by a1, a2. Point Q facing P on the
opposite boundary plane is such that Q � P D l D N3 a3 whence, applying the first
form (17.23) of Bloch’s theorem, one obtains vc.rC N3 a3/ D exp.N3 c � a3/ vc.r/.
Imposing vc.rC N3 a3/ D vc.r/ yields N3 c � a3 D i n3 2 � , with n3 any integer, so
that, using expression (17.22) for c,

N3 c � a3 D 2� N3 .<	3 C i=	3/ D i n3 2 � : (17.36)

In conclusion, <	3 D 0 and =	3 D 2� n3=N3. The same reasoning is repeated
along the other directions to finally yield

c D i k ; k D
3X

sD1

ns

Ns
2� bs : (17.37)

In summary, the application of the periodic boundary conditions gives c the same
imaginary form c D i k that was found in an unlimited structure, the difference
being that in a finite structure the components of k are discrete instead of being
continuous: given the size of the structure, which is prescribed by N1, N2, N3,
each k vector of the scaled reciprocal lattice is associated with a triad of integers
n1, n2, n3.

Note that the reasoning carried out at the end of Sect. 17.5.1 about the variability
of k still holds; as a consequence, k can be restricted to a single cell of the scaled
reciprocal lattice, so that its coefficients �s D ns=Ns fulfill the relation 0 � �s � 1

as shown in Sect. 17.3. In fact, as �s D 0 and �s D 1 are redundant, the above
relation must more appropriately be recast as 0 � ns=Ns < 1, corresponding to
ns D 0; 1; : : : ;Ns � 1 or, alternatively, 0 < ns=Ns � 1, corresponding to ns D

1; 2; : : : ;Ns. In both cases, ns can take Ns distinct values, so that the total number
of distinct k vectors in a cell of the scaled reciprocal lattice is N1 N2 N3 D Nc.
From (17.35) one finds that such a number equals the number of the structure’s cells
in the direct lattice. Also, as the k vectors are equally spaced in each direction, their
density in the reciprocal scaled lattice is uniform; it is given by the ratio Nc=�g, with
�g the cell’s volume. Remembering that the latter is invariant (Sect. 17.3), one may
think of k as restricted to the first Brillouin zone. Combining (17.8) with (17.17)
and (17.35) yields for the density

Nc

�g
D
�=�l

�g
D

�

.2�/3
: (17.38)

One can also define a combined density of the k vectors in the r;k space, which
is obtained by dividing (17.38) by the volume �. This yields the dimensionless
combined density

1

�

Nc

�g
D

1

.2 �/3
: (17.39)
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17.6 Schrödinger Equation in a Periodic Lattice

The concepts introduced in the previous sections of this chapter are applied here
to the solution of the Schrödinger equation in a periodic lattice. It is assumed
provisionally that the lattice is unlimited; as a consequence, the components of the k
vector are continuous. The Schrödinger equation to be solved is the single-electron
equation (16.27) obtained from the separation procedure outlined in Sects. 16.2
through 16.5. This means that the nuclei are kept fixed and the force acting on the
electron derives from a potential energy7 having the periodicity of the direct lattice:
V.rC l/ D V.r/, with l given by (17.1). As mentioned in Sects. 16.4 and 16.5, the
external forces are absent (Uext D 0). The equation then reads

H w D E w ; H D �
„2

2m
r2 C V : (17.40)

Replacing r with r C l is equivalent to add a constant to each component of r,
say, xi  xi C li, hence the partial derivatives in (17.40) are unaffected. As a
consequence, the Hamiltonian operator as a whole has the lattice periodicity, so
that its eigenfunctions are Bloch functions. Remembering (17.28), they read

wk.r/ D uk.r/ exp.i k � r/ ; uk.rC l/ D uk.r/ ; (17.41)

with k belonging to the first Brillouin zone (Sect. 17.5.3). Letting k2 D jkj2, (17.41)
yields r2wk D exp.i k �r/ .�k2Cr2C2 i k �grad/ uk whence, if Ek is the eigenvalue
corresponding to wk, the Schrödinger equation (17.40) becomes

V uk D

�
Ek C

„2

2m

�
�k2 Cr2 C 2 i k � grad

	�
uk : (17.42)

As both V and uk have the periodicity of the lattice, they can be expanded in terms
of the translation vectors of the scaled reciprocal lattice g D n1 2 � b1Cn2 2 � b2C
n3 2 � b3:

V.r/ D
X

g

Vg exp.i g � r/ ; uk.r/ D
X

g

skg exp.i g � r/ ; (17.43)

where
P

g D
P

n1

P
n2

P
n3

and

Vg D
1

�l

Z

�l

V.r/ exp.�i g � r/ d3r ; skg D
1

�l

Z

�l

uk.r/ exp.�i g � r/ d3r :

(17.44)

7The indices of (16.27) are dropped for simplicity.
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Letting g2 D jgj2, from the expansion of uk it follows .r2 C 2 i k � grad/uk D

�
P

g.g
2 C 2k � g/ skg exp.i g � r/ whence, using g2 C 2k � gC k2 D jgC kj2,

V uk D
X

g

�
Ek �

„2

2m
jgC kj2

�
skg exp.i g � r/ : (17.45)

In turn, the left-hand side of (17.45) reads

V uk D
X

g0

X

g00

Vg0 skg00 expŒi .g0 C g00/ � r� D
X

g0

X

g�g0

Vg0 sk;g�g0 exp.i g � r/ ;

(17.46)

with g D g0 C g00. Note that the last expression on the right of (17.46) is left
unchanged if

P
g�g0

is replaced with
P

g. In fact, as for each vector g0 the indices ni

of g span from�1 toC1, all16 combinations of indices of g and g0 are present in
either form of the expansion; using

P
g instead of

P
g�g0

merely changes the order
of summands. Combining (17.45) with (17.46) then yields

X

g

exp.i g � r/

8
<

:

X

g0

Vg0 sk;g�g0 �

�
Ek �

„2

2m
jgC kj2

�
skg

9
=

;
D 0 : (17.47)

As the factors exp.i g � r/ are linearly independent from each other for all r, to
fulfill (17.47) it is necessary that the term in braces vanishes. To proceed it is useful
to associate8 a single index b with the triad .n1; n2; n3/ defining g, and another single
index b0 to the triad .n01; n

0
2; n
0
3/ defining g0. Remembering that at the beginning

of this section the assumption of an unlimited lattice has been made, k must be
considered a continuous variable, so that s and E become functions of k proper. In
conclusion, (17.47) transforms into

X

b0

sb�b0.k/Vb0 D ŒE.k/ � Tb.k/� sb.k/ ; b D 0;˙1;˙2; : : : ; (17.48)

with Tb.k/ the result of the association b $ .n1; n2; n3/ in „2 jg C kj2=.2m/. For
each k, (17.48) is a linear, homogeneous algebraic system in the infinite unknowns
sb and coefficients Vb0 , E.k/ � Tb.k/, with E.k/ yet undetermined.

8The association b$ .n1; n2; n3/ can be accomplished in a one-to-one fashion by, first, distributing
the triads into groups having a common value of d D jn1j C jn2j C jn3j, then ordering the
groups in ascending order of d: for example, d D 0 corresponds to .0; 0; 0/, d D 1 to
Œ.0; 0; 1/; .0; 1; 0/; .1; 0; 0/; .0; 0;�1/; .0;�1; 0/; .�1; 0; 0/�, and so on. As each group is made by
construction of finite number of triads, the latter are numbered within each group using a finite set
of values of b; in order to have b ranging from �1 to C1, one associates a positive (negative)
value of b with the triads in which the number of negative indices is even (odd).



17.6 Schrödinger Equation in a Periodic Lattice 357

The solution of (17.48) provides an infinite set of eigenvalues E1.k/, E2.k/; : : : ;
Ei.k/; : : : associated with the given k. As the latter ranges over the first Brillouin
zone, the functions Ei.k/ are thought of as branches9 of a many-valued function.
For each branch-index i, the function Ei.k/ is called dispersion relation, and the set
of values spanned by Ei.k/ as k runs over the Brillouin zone is called energy band
of index i. Being an eigenvalue of a periodic operator, Ei.k/ is periodic within the
reciprocal, scaled lattice (compare with (17.34)); also, it can be shown that Ei.k/ is
even with respect to k (Sect. 17.9.3):

Ei.kC g/ D Ei.k/ ; Ei.�k/ D Ei.k/ : (17.49)

When a finite structure is considered, supplemented with the periodic boundary
condition discussed in Sect. 17.5.3, vector k is discrete. On the other hand, for the
derivation of (17.47) it is irrelevant whether k is continuous or discrete; hence, the
analysis carried out in this section still holds for a discrete k, provided the additional
relations derived in Sect. 17.5.3, that describe the form of k and the corresponding
densities, are accounted for. It must be remarked that the number Ns of cells along
each direction in the direct lattice is typically very large.10 As a consequence,
a change by one unity of ns in (17.37) is much smaller than the corresponding
denominator Ns, so that for all practical purposes Ei.k/ is treated as a function of
continuous variables when the derivatives with respect to the components of k enter
the calculations.

The analysis carried out in this section clarifies the role of k. In fact, for a
given band index i, k labels the energy eigenvalue; for this reason, remembering
the discussion about spin carried out in Sect. 15.5, k and the quantum number
associated with spin determine the state of the particle. For fermions, the quantum
number associated with spin has two possible values, so that two states with opposite
spins are associated with each k vector. When the periodic boundary conditions
are considered, the density of k vectors in the k space is given by (17.38), and
the combined density of k vectors in the r;k space is given by (17.39). As a
consequence, the density of states in the k space and in the r;k space are given,
respectively, by

Qk D 2
Nc

�g
D

�

4�3
; Q D 2

1

�

Nc

�g
D

1

4�3
: (17.50)

9Typically, a graphic representation of Ei.k/ is achieved by choosing a crystal direction and
drawing the one-dimensional restriction of Ei along such a direction. Examples are given in
Sect. 17.6.5.
10For instance, in a cube of material with an atomic density of 6:4�1027 m�3, the number of atoms
per unit length in each direction is 4;000 �m�1.
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17.6.1 Wave Packet in a Periodic Potential

From the solution of the Schrödinger equation worked out from (17.48) one
reconstructs the periodic part of the Bloch function using the second relation
in (17.43). Such a function inherits the band index i, so that the Bloch functions11

read wi k D �i k exp.i k � r/; they form a complete set so that, letting !i k D !i.k/ D
Ei.k/=„, the expansion of the wave function  .r; t/ in terms of the eigenfunctions
of the periodic Hamiltonian operator (17.40) reads

 .r; t/ D
X

i k

ci k wi k.r/ exp.�i!i k t/ D
X

i k

ci k �i k.r/ expŒi .k � r � !i k t/� ;

(17.51)

with ci k D hwi kj itD0 a set of constants. The expansion (17.51) bears a strong sim-
ilarity with that of the wave packet describing a free particle (compare with (9.1)),
the only difference between the two expansions being the periodic factor �i k.r/. The
similarity suggests that an approximate expression of the wave packet is achieved
by following the same reasoning as in Sect. 9.6, namely, by expanding !i.k/ around
the average value k0 of the wave vector and retaining the first-order term of the
expansion12:

!i.k/ ' !i.k0/C ui.k0/ � .k � k0/ ; ui.k0/ D .gradk!i/0 ; (17.52)

with ui the group velocity of the ith band. The approximation holds as long as
jRij t � 2� , where Ri is the rest of the expansion. Letting !i 0 D !i.k0/,
�i 0 D �i.k0/, and ˚i 0 D k0 � r � !i 0 t, the approximate expression of  reads

 .r; t/ '
X

i k

ci k �i 0 exp.i˚i 0/ exp Œi .r � ui t/ � .k � k0/� : (17.53)

The envelope function is now defined as in (9.26), the difference being that a sum
is used here instead of an integral:

A .r � ui t Ik0/ D
X

k

ci k exp Œi .r � ui t/ � .k � k0/� ; (17.54)

so that

 .r; t/ '
X

i

�i 0 exp.i˚i 0/A .r � ui t Ik0/ : (17.55)

11Here the periodic part of wi k is indicated with �i k to avoid confusion with the group velocity.
12In the case of a free particle (Sect. 9.6) the approximation neglects only the second order because
!.k/ has a quadratic dependence on the components of k. Here, instead, the expansion has in
general all terms due to the more complicate form of !i.k/, so the neglected rest Ri contains
infinite terms.
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Fig. 17.7 A one-dimensional example of the periodic factor �n 0 of (17.56)

As a further approximation one considers the fact that the number of k vectors
of the first Brillouin zone is in general very large, because it equals the number Nc

of direct-lattice cells. It follows that although the set of eigenfunctions belonging
to a single branch is not complete, such a set is still able to provide an acceptable
description of the wave packet. In this case one fixes the branch index, say, i D n,
so that  .r; t/ ' �n 0 exp.i˚n 0/A.r � un t Ik0/. It follows

j .r; t/j2 ' j�n 0.r/j2 jA .r � un t Ik0/ j2 : (17.56)

In (17.56), the periodic factor jun 0.r/j2 is a rapidly oscillating term whose period
is of the order of the lattice constant; such a term does not provide any information
about the particle’s localization. This information, in fact, is carried by the envelope
function, like in the case of a free particle outlined in Sect. 9.6. A one-dimensional
example about how (17.56) is built up is given in Figs. 17.7, 17.8, 17.9, and 17.10.

17.6.2 Parabolic-Band Approximation

The dispersion relation En.k/ obtained from the solution of the Schrödinger
equation (17.40) in a periodic lattice fulfills the periodicity condition given by the
first expression in (17.49). As a consequence, En.k/ has necessarily a number of
extremum points within the first Brillouin zone or at the boundary of it.13

13As mentioned in Sect. 17.6, En.k/ is considered as a function of a continuous vector variable k
even when the periodic boundary conditions are assumed.
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Fig. 17.8 A one-dimensional example of the envelope function A.r� un t I k0/ of (17.56)
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Fig. 17.9 Product of the two functions shown in Figs. 17.7 and 17.8

In view of further developments of the theory it is useful to investigate the form of
En.k/ in the vicinity of such extremum points. To this purpose, the absolute minima
are considered first; for a given branch index n assume that the number of such
minima is MC, and let ka be the value of k at the ath minimum, a D 1; : : : ;MC,
with EC D En.ka/. At k D ka the Hessian matrix of En.k/ is symmetric and positive
definite, hence it can be diagonalized with positive real eigenvalues. In other terms,
the reference in the k space can be chosen in such a way as to make the Hessian
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Fig. 17.10 The function of Fig. 17.9 squared

matrix of En.k/ diagonal; using such a reference, the second-order expansion of
En.k/ around ka reads

En.k/ ' EC C
1

2

3X

iD1

�
@2En

@k2i

�

a

.ki � kia/
2 � Ea ; a D 1; : : : ;MC : (17.57)

The first derivatives are missing from (17.57) because the expansion is carried out at
an extremum. The coefficients .@2En=@k2i /a are in general different from each other,
so that the sum in (17.57) may be thought of as a positive-definite quadratic form
generated by a 3 � 3 diagonal matrix. Noting the units of the matrix entries one
defines the inverse, effective-mass tensor of the ath minimum as

. Oma/
�1 D

2

4
1=m1 a 0 0

0 1=m2 a 0

0 0 1=m3 a

3

5 ;
1

mia
D

1

„2

�
@2En

@k2i

�

a

> 0 (17.58)

so that, using the notation Ene.k/ D En.k/ � EC � 0, ıki D ki � kia, (17.57) takes
the form

Ene D

3X

iD1

„2

2mia
.ki � kia/

2 D
1

2
„ ık � . Oma/

�1 „ ık : (17.59)

Being the inverse, effective-mass tensor diagonal, the effective-mass tensor Oma is
given by
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Oma D

2

4
m1 a 0 0

0 m2 a 0

0 0 m3 a

3

5 : (17.60)

The approximation shown above, that consists in replacing the dispersion relation
with its second-order expansion near an extremum, is called parabolic-band
approximation. The group velocity to be associated with a k vector in the vicinity
of a minimum is found by applying to (17.59) the second relation in (17.52):

un.k/ D
1

„
gradkEn.k/ D

1

„
gradkEne.k/ D . Oma/

�1 „ ık : (17.61)

The calculation in the vicinity of an absolute maximum is similar.14 Assume that
the number of maxima in the nth branch of the dispersion relation is MV , and let
ka be the value of k at the ath maximum, a D 1; : : : ;MV , with EV D En.ka/. The
second-order expansion of En.k/ around ka reads

En.k/ ' EV C
1

2

3X

iD1

�
@2En

@k2i

�

a

.ki � kia/
2 � Ea ; a D 1; : : : ;MV ; (17.62)

where the Hessian matrix is negative definite. For this reason, the inverse, effective-
mass tensor at the ath maximum is defined as

. Oma/
�1 D

2

4
1=m1 a 0 0

0 1=m2 a 0

0 0 1=m3 a

3

5 ;
1

mia
D �

1

„2

�
@2En

@k2i

�

a

> 0 (17.63)

so that, using the notation Enh.k/ D EV � En.k/ � 0, (17.57) takes the form

Enh D

3X

iD1

„2

2mia
.ki � kia/

2 D
1

2
„ ık � . Oma/

�1 „ ık : (17.64)

The group velocity to be associated with a k vector in the vicinity of a maximum
reads

un.k/ D
1

„
gradkEn.k/ D �

1

„
gradkEnh.k/ D �. Oma/

�1 „ ık : (17.65)

14The parabolic-band approximation is not necessarily limited to absolute minima or absolute
maxima; here it is worked out with reference to such cases because they are the most interesting
ones. However, it applies as well to relative minima and relative maxima. The different values of
the inverse, effective-mass tensor’s entries between an absolute and a relative minimum of a branch
in GaAs give rise to interesting physical effects (Sect. 17.6.6).
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It is important to note that the expressions of the parabolic-band approximation
given in this section have been worked out in a specific reference of the k space,
namely, the reference where the Hessian matrix is diagonal. In so doing, the
reference of the direct space r has been fixed as well, because the two references
are reciprocal to each other (Sect. 17.3). In other terms, when diagonal expressions
like (17.59) or (17.64) are used in a calculation of dynamic properties, the reference
in the r space cannot be chosen arbitrarily.

17.6.3 Density of States in the Parabolic-Band Approximation

Calculations related to many-particle systems often involve the density of states
in energy (e.g., Sects. 15.8.1,15.8.2). The calculation of this quantity is relatively
simple for the dispersion relation En.k/ in the parabolic-band approximation,
because the dispersion relation is quadratic in the components of k and, in turn,
the density of the k vectors is constant. In fact, it is found from (B.34) that in the
three-dimensional case a quadratic expression A D u2 C v2 C w2 yields a density
of states equal to A1=2. It is then sufficient to reduce (17.59) and (17.64) to the
quadratic expression above. Taking (17.59) by way of example, one disposes of
the multiplicative factors and the shift in the origin by applying the Herring-Vogt
transformation

�i D
„

p
2mia

.ki � kia/ ; (17.66)

to find

Ene D

3X

iD1

�2i D �
2 ; dki D

p
2mia

„
d�i ; (17.67)

with � > 0, and

d3k D dk1 dk2 dk3 D 2

p
2

„3
m3=2

ea d3� ; mea D .m1a m2a m3a/
1=3 : (17.68)

Turning to spherical coordinates �1 D � sin# cos', �2 D � sin# sin', �3 D
� cos# yields d3� D �2d� sin# d# d' (Sect. B.1), where the product �2 d� is found
by combining the relations 2 � d� D dEne and d� D dEne=.2

p
Eea/:

�2 d� D
1

2

p
Ene dEne : (17.69)

The number of states belonging to the elementary volume d3k is dN D Qk d3k, with
Qk the density of states in the k space given by the first expression in (17.50). If the
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elementary volume is centered on a k vector close to the ath minimum of En.k/, so
that the parabolic-band approximation holds, one has

dNa D Qk d3k D
�

4�3
2

p
2

„3
m3=2

ea

1

2

p
Ene dEne sin# d# d': (17.70)

The integral over the angles yields 4� , whence

Z 2�

'D0

Z �

#D0

dNa D �

p
2

�2 „3
m3=2

ea

p
Ene dEea D ga.Ene/ dEne (17.71)

where, by construction, ga.Ene/ is the density of states in energy around the ath
minimum. Adding ga over the MC absolute minima yields the total density of states
in energy,

g.Ene/ D

MCX

aD1

ga D �

p
2

�2 „3
MC m3=2

e

p
Ene ; me D

 
1

MC

MCX

aD1

m3=2
ea

!2=3

;

(17.72)

with me the average effective mass of the absolute minima. The combined density of
states in the energy and r spaces then reads

�.Ene/ D
g.Ene/

�
D

p
2

�2 „3
MC m3=2

e

p
Ene : (17.73)

Note that apart from the different symbol used to indicate the volume in the r
space, and the replacement of m with MC m3=2

e , the relations (17.72) and (17.73)
are identical, respectively, to (15.64) and (15.65), expressing the density of states
and combined density of states in a box.

The calculation of the density of states in energy in the vicinity of the MV absolute
maxima is identical to the above and yields

g.Enh/ D

MVX

aD1

ga D �

p
2

�2„3
MV m3=2

h

p
Enh ; mh D

 
1

MV

MVX

aD1

m3=2
ha

!2=3

;

(17.74)

where mh is the average effective mass of the absolute maxima. In turn it is
mha D .m1a m2a m3a/

1=3, with mia given by the second relation in (17.63).

17.6.4 Crystals of Si, Ge, and GaAs

Among semiconductors, silicon (Si), germanium (Ge), and gallium arsenide (GaAs)
are very important for the electronic industry. This section is devoted to illustrating
some properties of their crystal and energy-band structures. The crystals of silicon
and germanium are of the face-centered, cubic type; the reciprocal lattices have the



17.6 Schrödinger Equation in a Periodic Lattice 365

Fig. 17.11 Tetrahedral
organization of the
elementary, body-centered
cubic block of silicon or
germanium. The side of the
cube is one half the lattice
constant a

a / 2

body-centered, cubic structure. The lattice constants, that is, the physical sizes of the
unit cell, are the same in the Œ100�, Œ010�, and Œ001� directions (Sect. 17.9.1). Their
values at T D 300K are given in Table 17.1 [99]. The crystals of the materials under
consideration are formed by elementary blocks like that shown in Fig. 17.11. Each
atom has four electrons in the external shell, so that it can form four chemical bonds
with other identical atoms; the latter place themselves symmetrically in space, to
build up the tetrahedral structure shown in the figure. In this structure, which is of
the body-centered cubic type with a side equal to one half the lattice constant a, the
chemical bonds of the central atom are saturated, whereas the atoms placed at the
vertices still have three bonds unsaturated; as a consequence, they may behave as
centers of new tetrahedral structures identical to the original one.

An example of this is given in Fig. 17.12: the top half of the figure shows two
replicas of the elementary block of Fig. 17.11 sharing an atom belonging to an
upper corner, while the bottom half of the figure shows again two replicas, this
time sharing an atom belonging to a lower corner. The atoms drawn in white do
not belong to any of the elementary blocks considered in the figure, and serve the
purpose of demonstrating how the rest of the crystal is connected to them. Note
that the structure in the bottom half of Fig. 17.12 is identical to that of the top half,
the difference being simply that one structure is rotated by 90 degrees with respect
to the other on a vertical axis. The construction is now completed by bringing the
two halves together, as shown in Fig. 17.13; this provides the diamond structure
mentioned in Sect. 17.2. Such a structure is of the face-centered, cubic type, with an
additional atom at the center of each tetrahedral block.

The minimum distance d among the atoms (interatomic distance) is the distance
from the atom in the center of the tetrahedral elementary block to any of the atoms
at its vertices; its relation with the lattice constant is easily found to be

d D

p
3

4
a : (17.75)

The description is similar for gallium arsenide [99], and for a number of semicon-
ductors of the III-V type, whose crystal constants are listed in Table 17.2.
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Fig. 17.12 Diamond
structure. The top and bottom
halves are shown separately

Fig. 17.13 Diamond
structure obtained by joining
together the top and bottom
halves shown separately in
Fig. 17.12

a

17.6.5 Band Structure of Si, Ge, and GaAs

Coming now to the description of the band structure, it is important to focus on the
bands that are able to contribute to the electric conduction of the material. In fact,
considering the aim of manufacturing electronic devices out of these materials, the
bands that do not contribute to the electric current are not relevant. It is intuitive
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that a band with no electrons, that is, whose states have a zero probability of being
occupied, is not able to provide any conduction; it is less intuitive (in fact, this is
demonstrated in Sect. 19.3) that a band whose states are fully occupied does not
provide any conduction either. It follows that the only bands of interest are those
where only a fraction of the electronic states are occupied. Although a discussion
involving the electric current must necessarily refer to a nonequilibrium condition, it
is easier to base the reasoning upon the equilibrium condition at some temperature
T; in fact, in this case the occupation probability of the electronic states is given
by the Fermi-Dirac statistics (15.49). As a consequence, the number of electrons
belonging to a band whose energy values range, say, from Ea to Eb, is given by the
first relation in (15.48) with ˛ C ˇ E D .E � EF/=.kB T/, namely,

Nab D

Z Eb

Ea

g.E/

expŒ.E � EF/=.kB T/�C 1
dE : (17.76)

As mentioned in Sect. 17.6 each branch of the dispersion relation Ei.k/ spans an
energy band. In many cases the bands are disjoint from each other, namely, energy
intervals exist that contain no eigenvalue of the Schrödinger equation (17.40). Such
intervals are called forbidden bands or gaps. In the equilibrium condition the energy
of an electron can never belong to a gap, no matter what the value of the occupation
probability is, because the density of states is zero there. Also, at a given temperature
the position of the Fermi level EF is either within a band (edges included), or
within a gap; the latter case, typical of semiconductors, is illustrated with the aid
of Fig. 17.14, where it is assumed (using the units of .E � EF/=.kB T/) that a gap
exists between the energies EV , EC such that .EV � EF/=.kB T/ D �0:15 and
.EC � EF/=.kB T/ D C0:15. In other terms, EV is the upper energy edge of a band,
and EC the lower energy edge of the next band. These assumptions also imply that
the Fermi level coincides with the gap’s midpoint. As will become apparent below,
the two bands that are separated by the Fermi level are especially important; for this
reason they are given specific names: the band whose absolute maximum is EV is
called valence band, that whose absolute minimum is EC is called conduction band.

As shown in the figure, the case is considered (typical of Si, Ge, and GaAs)
where the gap’s width contains the main variation of the Fermi-Dirac statistics15;
as a consequence, the occupation probability becomes vanishingly small as the
difference E � EC becomes larger, so that only the energy states near the absolute
minimum EC have a nonvanishing probability of being occupied. Thank to this
reasoning, to the purpose of calculating (17.76) one can replace the density of
states g.E/ with the simplified expression (17.72) deduced from the parabolic-
band approximation; such an expression, g.E/ /

p
E � EC, is shown in Fig. 17.14

in arbitrary units, along with the g.E/P.E/ product (thick line), that represents

15The extension of the energy region where the main variation of the Fermi-Dirac statistics occurs
is estimated in Prob. 15.1.
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Fig. 17.14 Calculation of the particles’ population in the conduction and valence bands of a
semiconductor. To make them more visible, the products g.E/P.E/ and g.E/ Œ1 � P.E/� have
been amplified with respect to g.E/ alone. The gap’s extension is arbitrary and does not refer to
any specific material

the integrand of (17.76) with reference to the conduction band. To make it more
visible, the g.E/P.E/ product is drawn in a scale amplified by 103 with respect to
that of g.E/ alone. The number of electrons belonging to the conduction band is
proportional to the area subtended by the g.E/P.E/ curve.

Coming now to the valence band, the probability 1 � P.E/ that a state at energy
E is empty becomes vanishingly small as the difference EV � E becomes larger,
so that only the energy states near the absolute maximum EV have a nonvanishing
probability of being empty. Empty states are also called holes. The number of holes
is given by an integral similar to (17.76), where P.E/ is replaced with 1 � P.E/.
This calculation is made easier by observing that, due to the form of the Fermi-
Dirac statistics, it is

1 �
1

expŒ.E � EF/=.kB T/�C 1
D

1

expŒ.EF � E/=.kB T/�C 1
: (17.77)

Also in this case one can use for the density of states the parabolic-band approxi-
mation; such an expression, g.E/ /

p
EV � E, is shown in Fig. 17.14 in arbitrary

units, along with the g.E/ Œ1 � P.E/� product (thin line). As before, the product is
drawn in a scale amplified by 103 with respect to that of g.E/ alone. The number
of holes belonging to the valence band is proportional to the area subtended by the
g.E/ Œ1 � P.E/� curve.

Thanks to the spatial uniformity of the crystal, the concentration of the electrons
in the conduction band is obtained by dividing their number by the crystal volume
� or, equivalently, by replacing the density of states in energy g with the combined
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Fig. 17.15 Schematic view
of the two branches of the
valence band of Si, Ge, or
GaAs in the Œ100� direction

0
[100] direction

0

E 
(k

1)

Light holes
Heavy holes

density of states in energy and volume � given by (17.73). A similar reasoning holds
for holes. The explicit expressions of the concentrations are given in Sect. 18.3. Here
it is important to remark that the perfect symmetry of the curves g.E/P.E/ and
g.E/ Œ1�P.E/� in Fig. 17.14 is due to the simplifying assumptions that EF coincides
with the gap’s midpoint and that MV m3=2

h D MC m3=2
e (compare with (17.73)

and (17.74)). Neither hypothesis is actually true, so that in real cases the two curves
are not symmetric; however, as shown in Sect. 18.3, the areas subtended by them are
nevertheless equal to each other.

Valence Band

The valence band of Si, Ge, and GaAs is made of two branches of E.k/, having the
same absolute maximum EV at k D 0 (so that MV D 2), but different curvatures.
They are shown in Fig. 17.15, where the horizontal axis coincides with the Œ100�
direction in the k space, corresponding to the scalar variable k1. As a consequence,
the origin of the horizontal axis coincides with the � point (Sect. 17.4); the axis
intersects the boundary of the first Brillouin zone at the X points (not shown in the
figure). The origin of the vertical axis coincides with EV . The two branches are not
spherically symmetric; in fact, letting EV D 0, the dependence of each of them on
the spherical coordinates k; #; ' has the form [70, Sect. 8.7]

�
˛

2
k2 Œ1˙ j.#; '/� ; ˛ > 0 ; (17.78)

called warped. In the parabolic-band approximation the angular part j is neglected
with respect to unity, and the two branches become spherically symmetric around
k D 0; still with EV D 0, the dependence on k1 of each branch has the form E D
�˛ k21=2, where the constant ˛ is smaller in the upper branch (indicated by the thick
line in Fig. 17.15), and larger in the lower one. As a consequence, the corresponding
component of the effective-mass tensor (17.63), that reads in this case m1 D „

2=˛,
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Table 17.3 Normalized
effective masses of the
valence band of Si, Ge, and
GasAs

Material mhh.Ta/=m0 mhl.Ta/=m0

Si 0:5 0:16

Ge 0:3 0:04

GaAs 0:5 0:12

is larger in the upper branch and smaller in the lower one. For this reason, the holes
associated with the energy states of the upper branch are called heavy holes, those
associated with the lower branch are called light holes.

The analysis is identical in the other two directions Œ010� and Œ001� so that, for
each branch of the valence band, the diagonal entries of the effective-mass tensor
are equal to each other. Such tensors then read mhh I , mhl I , with I the identity
tensor; the first index of the scalar effective mass stands for “hole,” while the second
one stands for “heavy” or “light.” The second-order expansions around EV take
respectively the form16

EV � Eh.k/ D
„2

2mhh

3X

iD1

k2i ; EV � El.k/ D
„2

2mhl

3X

iD1

k2i : (17.79)

Due to (17.79), the constant-energy surfaces EV �Eh.k/ D const and EV �El.k/ D
const are spheres, whose radius squared is 2mhh .EV�Eh/=„

2 and 2mhl .EV�El/=„
2,

respectively. The values of mhh and mhl at room temperature Ta are listed in
Table 17.3 [128, Sect. 2-3]; they are normalized to the rest mass of the free electron,
m0 ' 9:11 � 10�31 kg. The effective masses depend in general on temperature
because a change in the latter modifies the lattice constants: as a consequence, the
characteristic vectors of the reciprocal lattice change as well, thus deforming the
dispersion relation E.k/; on the other hand, the variation of the effective masses
with temperature is weak, so it is typically neglected.17

Conduction Band

The conduction band of Si, Ge, and GaAs has only one branch. However, the
absolute minima (also called valleys) are placed differently. In GaAs there is only
one absolute minimum at k D 0, with spherical symmetry. In the parabolic-band
approximation, the constant-energy surface is given by

16From now on the band index n introduced in (17.56) is omitted from the notation.
17In contrast, the temperature dependence of the energy gap, due to the deformation of the
dispersion relation, cannot be neglected because of its strong effect on the carrier concentration
(Sect. 18.3).
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Fig. 17.16 Schematic view
of the conduction band of
GaAs in the Œ100� direction

0
[100] direction

E
 (k

1)

Fig. 17.17 Schematic view
of the conduction band of Si
in the Œ100� direction

0
[100] direction

E 
(k

1)

E.k/ � EC D
„2

2me

3X

iD1

k2i ; (17.80)

namely, a sphere whose radius squared is 2me .E � EC/=„
2. The band exhibits also

secondary minima at EC C�E, with �E ' 0:36 eV (Fig. 17.16).
The conduction band of Si has six absolute minima (MC D 6), grouped into three

pairs. The latter belong to the Œ100�, Œ010�, and Œ001� directions, respectively, and are
symmetrically placed with respect to the � point k D 0. Their coordinates are

Œ100� W .˙km; 0; 0/ ; Œ010� W .0;˙km; 0/ ; Œ001� W .0; 0;˙km/ ; (17.81)

where km ' 0:85 kB > 0, with kB the distance between the � and X points
(Fig. 17.17). In the parabolic-band approximation, the surfaces at constant energy
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Fig. 17.18 Constant-energy
surfaces of the conduction
band of silicon

[001]

[100]

[010]

Γ

of the conduction band of Si are ellipsoids of revolution about the Œ100�, Œ010�, or
Œ001� axes (Fig. 17.18). Their expressions are

Œ100� W Ee1 D E.k/ � EC D
„2

2

�
.k1 � km/

2

ml
C

k22
mt
C

k23
mt

�
; (17.82)

Œ010� W Ee2 D E.k/ � EC D
„2

2

�
k21
mt
C
.k2 � km/

2

ml
C

k23
mt

�
; (17.83)

Œ001� W Ee3 D E.k/ � EC D
„2

2

�
k21
mt
C

k22
mt
C
.k3 � km/

2

ml

�
: (17.84)

Similarly, Ee4, Ee5, Ee6 are derived from Ee1 , Ee2, Ee3, respectively, by letting km  

�km. The effective masses ml and mt are called longitudinal and transverse mass,
respectively.

The conduction band of Ge has eight absolute minima, grouped into four pairs.
The pairs belong to the four f111g directions and are placed at the boundary of the
first Brillouin zone (Fig. 17.19); thus, only four absolute minima must be accounted
for (MC D 4). In the parabolic-band approximation, the surfaces at constant energy
of the conduction band of Ge are ellipsoids of revolution about the corresponding
axis; like in silicon, for each ellipsoid the longitudinal mass corresponds to the
direction of the axis itself, while the transverse masses correspond to the directions
normal to it. The values of ml and mt at room temperature Ta, normalized to the rest
mass of the free electron, are listed in Table 17.4 [128, Sect. 2-3].
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Fig. 17.19 Schematic view
of the conduction band of Ge
in the Œ111� direction

0
[111] direction

0

E 
(k
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Table 17.4 Normalized
effective masses of the
conduction band of Si, Ge,
and GasAs

Material ml.Ta/=m0 mt.Ta/=m0

Si 0.97 0.19

Ge 1.6 0.082

GaAsa 0.068 0.068
aThe effective masses of GaAs are
equal to each other due to the band’s
isotropy

17.6.6 Further Comments About the Band Structure

As better detailed in Sects. 19.5.2 and 19.5.3, among the coefficients of the equations
describing the transport phenomena in a semiconductor are the electron and hole
mobilities, that enter the relation between current density and electric field in a
uniform material. For the conduction band of the semiconductors considered here,
and in the parabolic-band approximation, the electron mobility �n turns out to be
proportional to 1=mn D .2=mt C 1=ml/=3, that is, a weighed average of the entries
of the inverse, effective-mass tensor.18 Table 17.4 shows that GaAs has the largest
value of 1=mn; thus, it is expected to have the largest mobility, which is indeed the
case. As far as holes are concerned, the effective masses of heavy holes of Si, Ge,
and GaAs are similar to each other; also the effective masses of light holes have
the same order of magnitude. Besides, considering that the valence band has two
branches of E.k/, the effective masses do not combine in the simple way as for the
conduction band.

The secondary minima of GaAs, placed at an energy EC C�E with �E ' 0:36
eV (Fig. 17.16), have a larger effective mass than the absolute minimum; due to

18If the magnitudes of mt and ml are significantly different, the smaller effective mass dictates the
magnitude of mn.
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this, the mobility of the electrons in the upper valleys is smaller than that of
the electrons populating the absolute minimum. As �E is relatively small, the
population of the secondary minima is not negligible; in a nonequilibrium condition,
the scattering events tend to increase the electron population of the upper valleys
at the expense of that of the absolute minimum, with a ratio between the upper
and lower population that depends on the applied electric field. This gives rise to
a negative differential resistivity in the current-to-voltage curve of the material,
i.e., an operating region exists where the current density decreases as the electric
field increases. The phenomenon is called Ridley-Watkins-Hilsum mechanism [128,
Sect. 14-3].

In semiconductors, the absorption of energy from an electromagnetic field may
induce the transition of an electron from a state belonging to the valence band to
a state belonging to the conduction band. Such a transition increases by one the
number of electrons in the conduction band and, at the same time, increases by
one the number of holes in the valence band; for this reason it is called generation
of an electron-hole pair. The opposite phenomenon may also occur, namely, a
release of electromagnetic energy due to the transition of an electron from a state
belonging to the conduction band to a state belonging to the valence band. Such
a transition decreases by one the number of electrons in the conduction band
and, at the same time, decreases by one the number of holes in the valence band
(recombination of an electron-hole pair). It is worth pointing out that generation
and recombination events may also occur with an energy absorption from, or
release to, an external agent different from the electromagnetic field (e.g., the
agent could be a vibrational mode of the lattice); for this reason, the phenomena
considered here better specified as generations-recombinations of the radiative
type. In GaAs, the minimum of the conduction band and the maxima of the two
branches of the valence band correspond to the same value of k; semiconductors
fulfilling this condition are called direct-gap semiconductors. Instead, Si and Ge are
indirect-gap semiconductors, because the maxima of the valence band correspond
to k D 0, whereas the minima of the conduction band correspond to k ¤ 0.
Direct- and indirect-gap semiconductors behave differently as far as generation-
recombination of the radiative type are concerned; in fact, the probability of such
events is much higher in direct-gap semiconductors. This explains why some classes
of solid-state optical devices like, e.g., lasers, are manufactured using direct-gap
semiconductors.19

19The reasoning seems to contradict the fact that large-area, solid-state optical sensors used in
cameras and video cameras, based on the CCD or CMOS architecture, are made of silicon. In fact,
the complex structure of these several-megapixel sensors and related signal-management circuitry
can be realized only with the much more advanced technology of silicon. The relative ease of
fabricating complex structures largely compensates for the poorer optical properties of the material.
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17.6.7 Subbands

The calculations of the density of states carried out so far have been based on
the assumption that all components of the k vector can be treated as continuous
variables. In particular, the adoption of the parabolic-band approximation in the case
of a periodic lattice (Sect. 17.6) leads to expressions for the density of states g.E/
and combined density of states �.E/ that are formally identical to those obtained for
a particle in a three-dimensional box (Sect. 15.9.2). However, in some situations it
happens that not all components of k may be treated as continuous. To describe this
case it is convenient to use the example of the box first; that of the periodic lattice is
worked out later, in the frame of the parabolic-band approximation.

To proceed, consider like in Sect.. 15.9.2 a three-dimensional box whose sides
have lengths d1; d2; d3, so that the eigenvalues of the Schrödinger equation are
En1n2n3 D „

2k2=.2m/, where k2 is the square of

k D n1
�

d1
i1 C n2

�

d2
i2 C n3

�

d3
i3 ; ni D 1; 2; : : : (17.85)

The distance between two consecutive projections of k along the ith side is �ki D

�=di, and the volume associated with each k is �k1 �k2 �k3 D �3=V , with V D
d1 d2 d3 the volume of the box in the r space. The density of the k vectors in the k
space is Qk D V=�3.

Two-Dimensional Layer

Now, in contrast to what was implicitly assumed in Sect. 15.9.2, let one side of the
box be much different from the others, for instance, d2 � d1, d3 � d1; d2. It follows
that �k3 � �k1; �k2. If the magnitudes involved are such that k1; k2 may still be
considered continuous variables, while k3 cannot, one must calculate the density of
states by treating k1, k2 differently from k3. Considering k1 D n1 �=d1, k2 D n2 �=d2
as continuous, fix E and s in the relations

2m

„2
E D k21 C k22 C n23

�2

d23
; n3 D s <

d3
�

p
2m E

„
: (17.86)

For each integer s D 1; 2; : : : the two relations (17.86) determine in the k1; k2 plane
a circumference of radius cs D

p
c2s , with

c2s D k21 C k22 ; c2s D
2m E

„2
� s2

�2

d23
: (17.87)
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It is mins cs > 0 because smax < d3
p
2m E=.� „/, and maxs cs D c1 > 0. For a

fixed s the states are distributed over the circumference of radius cs: such a set of
states is also called subband.

The density of states in energy of the subband thus defined is calculated following
the same reasoning as in Sect. 15.9.3: in fact, one observes that the density of k
vectors in the two-dimensional space k1; k2 is d1d2=�2, namely, the inverse of the
area �2=.d1d2/ associated with each k belonging to the given circumference. Then,
the total number of k vectors in a circle of radius cs is

Nks D
d1 d2
�2

� c2s D
d1 d2
�

�
2m E

„2
� s2

�2

d23

�
: (17.88)

Remembering that indices n1; n2 are positive, it is necessary to consider only the
first quadrant; as a consequence, Nks must be divided by 4. Further, it is necessary
to multiply it by 2 to account for electron spin. In conclusion, the density of states
of the two-dimensional subbands is

g2D.E/ D
d.2Nks=4/

dE
D

d1 d2 m

� „2
D const ; (17.89)

to be compared with (15.67). Note that (17.89) is independent of index s. This result
is useful, e.g., for treating the problem of a two-dimensional charge layer in the
channel of a semiconductor device.

Wire

Now, assume that d2 � d3, and d2; d3 � d1. It follows that �k2; �k3 � �k1. If the
magnitudes involved are such that k1 may still be considered a continuous variable,
while k2; k3 cannot, one must calculate the density of states by treating k1 differently
from k2; k3. Considering k1 D n1�=d1 as continuous, fix E, r, s in the relations

2m

„2
E D k21 C n22

�2

d22
C n23

�2

d23
; n2 D r ; n3 D s ; (17.90)

with r2=d22 C s2=d23 � 2m E=.�2 „2/. For each pair of integers r; s D

1; 2; : : :, (17.90) determine in the k space two points given by the relation

�2rs D
2m E

„2
�

r2 �2

d22
�

s2 �2

d23
; �rs D

q
�2rs : (17.91)

It is minrs �rs > 0 and maxrs �rs D �11. For a fixed pair r; s the states are placed at
the ends of the segment Œ��rs;C�rs� parallel to k1. The density of states in energy
of such a segment is calculated following the same reasoning as in Sect. 15.9.3: in
fact, one observes that the density of k vectors in the one-dimensional space k1 is
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d1=� , namely, the inverse of the length �=d1 associated with each k belonging to
the segment. Then, the total number of k vectors in the segment of length 2 �rs is

Nkrs D
d1
�
2�rs D

2d1
�

�
2mE

„2
� r2

�2

d22
� s2

�2

d23

�1=2
: (17.92)

Remembering that index n1 is nonnegative, it is necessary to consider only the
positive half of the segment. As a consequence, Nkrs must be divided by 2. Further,
it is necessary to multiply it by 2 to account for electron spin. The density of states
of the one-dimensional case then reads

g1D.E/ D
d.2Nkrs=2/

dE
D

2d1 m

� „2 �rs
; (17.93)

to be compared with (15.67). Note that, in contrast with the two-dimensional
case (17.89), here the result depends on both indices r; s.

A device with d2; d3 � d1 is also called wire. When the device size is such that
the transport of a particle in it must be studied by means of Quantum Mechanics, it
is also called quantum wire. The E.�rs/ relation may be recast as

„2

2m
�2rs D E � Ers ; Ers D

�2 „2

2m

�
r2

d22
C

s2

d23

�
: (17.94)

As Ers is an increasing function of the indices, its minimum is attained for r D s D 1
and represents the ground state in the variables k2; k3. It is interesting to note that
if the total energy E is prescribed, e.g., by injecting the particle from an external
source, such that E11 < E < min.E12;E21/, then the particle’s wave function has
the form

 D

r
8

V
sin.�11 x1/ sin.� x2=d2/ sin.� x3=d3/ exp.�i E t=„/ (17.95)

(compare with (15.60)). Remembering the expression (15.64) of the density of states
in a box where d1 � d2 � d3, the results obtained so far are summarized as:

g3D.E/ D
V
p
2m3 E

�2 „3
; g2D.E/ D

d1 d2 m

� „2
; g1D.E/ D

d1
p
2m

� „
p

E � Ers
:

(17.96)
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17.6.8 Subbands in a Periodic Lattice

The calculations leading to (17.96) consider the case of a box within which the
potential energy is zero (as a consequence, the total energy E is purely kinetic),
and prescribe a vanishing wave function at the boundaries. If a periodic lattice is
present, with the provisions indicated in Sect. 17.5.3 one can apply the periodic
boundary conditions. In this case, the spacing between the components of k in each
direction doubles (ni �=di  2 ni �=di), but the number of components doubles
as well (ni D 1; 2; : : :  ni D 0;˙1;˙2; : : :), so the density of states remains
the same. In a semiconductor the calculation leading to the density of states is
made more complicate by the presence of the lattice. However, the analysis may
be brought to a simple generalization of that carried out in a box by means of the
following simplifications:

• It is assumed that a band structure exists even if the size of the device is small
in one or two spatial directions. In fact, it can be shown that the presence of a
number of atomic planes of the order of ten is sufficient to form a band structure.

• The analysis is limited to the case of parabolic bands.

The case of the conduction band of silicon is considered by way of example, with
the k1; k2; k3 axes placed along the Œ100�; Œ010�; Œ001� directions. The parabolic-band
approximation yields for the kinetic energies Ee1, Ee2, Ee3 � 0 the expressions
given in (17.82), (17.83), and (17.84); the other three kinetic energies Ee4, Ee5, Ee6

are derived from Ee1, Ee2, Ee3, respectively, by letting km  �km. Apart from the
constant EC, the energies Ee1;Ee2; : : : are simplified forms of the eigenvalues of
the Schrödinger equation (17.40). Conversely, to the purpose of determining the
corresponding eigenfunctions, one may view Ee1;Ee2; : : : as the exact eigenvalues
of simplified forms of the original Hamiltonian operator (17.40), that hold near the
band’s minima; such simplified forms are expected to be of the purely kinetic type.
They are found by replacing ki with �i d=dxi in (17.82), (17.83), and (17.84), thus
yielding

Œ100� W He1 D
„2

2

"

C
1

ml

�
i
@

@x1
C km

�2
�
1

mt

@2

@x22
�
1

mt

@2

@x23

#

; (17.97)
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; (17.98)
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; (17.99)

with ml and mt the longitudinal and transverse masses. Considering He1 first, the
solution of the time-independent Schrödinger equation generated by it,

He1w1.r; n1; n2; n3/ D E.n1; n2; n3/w1.r; n1; n2; n3/ ; (17.100)
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is found by separation, specifically, by letting E D E˛.n1/CEˇ.n2/CE� .n3/, w1 D
exp.i km x1/ ˛.x1; n1/ ˇ.x2; n2/ �.x3; n3/. One finds for the k vector the expression

k D n1
�

d1
i1 C n2

�

d2
i2 C n3

�

d3
i3 ; (17.101)

with ni D 1; 2; : : :, while the eigenfunctions and eigenvalues read

w1 D

r
8

V
exp.i km x1/ sin

�
n1 �

d1
x1

�
sin

�
n2 �

d2
x2

�
sin

�
n3 �

d3
x3

�
;

(17.102)

E D
„2

2ml
n21
�2

d21
C
„2

2mt
n22
�2

d22
C
„2

2mt
n23
�2

d23
: (17.103)

The eigenvalues and eigenfunctions of He2, He3 are found by a cyclic permutation
of the indices, 1  2  3  1, while those of He4, He5, He6 are derived from
those of He1, He2, He3, respectively, by letting km  �km.

One notes that the k vectors and the eigenfunctions are not influenced by the
effective masses, whereas the eigenvalues are. As a consequence, the density of
states is affected as well. In the case where d1 � d2 � d3 the density of states
associated with the minimum of index 1 is found by the same procedure as that
leading to the first relation in (17.96); the result is

g.1/3D.E/ D
d1 d2 d3

p
2ml m2

t

�2 „3

p
E : (17.104)

Such a density of states is not affected by interchanging the effective masses; thus,
the total density of states is found by adding over the densities of states of the MC

minima of the conduction band:

g3D.E/ D MC
d1 d2 d3

p
2ml m2

t

�2 „3

p
E : (17.105)

Like in the case of a box, the distance between two consecutive projections of
k along the ith side is �ki D �=di, and the volume associated with each k is
�k1 �k2 �k3 D �3=V , with V D d1d2d3. The density of the k vectors in the k
space is Qk D V=�3.

Consider now the case of a two-dimensional layer, namely, d2 � d1, while d3 �
d1; d2. Let k1 D n1�=d1, k2 D n2�=d2, and fix n3 D 1 whence, for the minima of
indices 1 and 4,

E D
„2

2ml
k21 C

„2

2mt
k22 C

„2

2mt

�2

d23
; E �

„2

2mt

�2

d23
: (17.106)
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A calculation similar to that carried out in a box provides, for the minima of indices
1 and 4, an expression similar to that of the second relation in (17.96):

g.1/2D D g.4/2D D
d1 d2
p

ml mt

� „2
: (17.107)

For the other pairs of minima one finds

g.2/2D D g.5/2D D
d1 d2

p
ml mt

� „2
; g.3/2D D g.6/2D D

d1 d2 mt

� „2
: (17.108)

In conclusion, for a two-dimensional layer with d3 � d1; d2 and n3 D 1, within the
parabolic-band approximation, the density of states for the minima of indices 1, 2,
4, and 5 is the same constant for all energies E � „2 �2=.2mt d23/. The total density
of states for these minima is

g.1;2;4;5/2D D 4
d1 d2

p
ml mt

� „2
: E � Et D

„2 �2

2mt d23
; n3 D 1 ; (17.109)

while g.1;2;4;5/2D;n3D1
D 0 for E < Et. Similarly, still with n3 D 1, the density

of states for the minima of indices 3 and 6 is another constant for all energies
E � „2 �2=.2ml d23/. The total density of states for these minima is

g.3;6/2D D 2
d1 d2 mt

� „2
; E � El D

„2 �2

2ml d23
; n3 D 1 ; (17.110)

while g.3;6/2D;n3D1
D 0 for E < El. Now, let n3 D 2; it is easily found that the value of

g.1;2;4;5/2D;n3D2
is the same as above, however, it holds for E � 4Et. It adds up to the value

found for n3 D 1, giving rise to a stair-like form of g.1;2;4;5/2D as a function of energy.

The same is obtained for g.3;6/2D;n3D2
when E � 4El, and so on. An example of such a

density of states is sketched in Fig. 17.20, where the ratio g.1;2;4;5/2D =g.1;2;4;5/2D;n3D1
is shown

as a function of E=Et. The total density of states is found by adding up the two stair-
like functions. From Table 17.4 one finds that in silicon at room temperature it is
ml ' 0:97m0, mt ' 0:19m0, whence Et ' 5:1El and g.1;2;4;5/2D;n3D1

' 4:47 g.3;6/2D;n3D1
.

As shown by Fig. 17.20, the derivative of the density of states with respect to
energy diverges at some points. Such divergences are called Van Hove singularities
[3, Chap. 8].

Finally, consider the case of a wire, namely, d2 � d3, while d2; d3 � d1. Let
k1 D n1�=d1 and fix n2 D n3 D 1 whence, for the minima of indices 1 and 4,

E D
„2

2ml
k21 C

„2

2mt

�2

d22
C
„2

2mt

�2

d23
; E �

�2 „2
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�
1
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C
1

d23

�
D E.1;4/11 :

(17.111)
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Fig. 17.20 Normalized,
two-dimensional density of
states (17.109) for the
1; 2; 4; 5 valleys of silicon, as
a function of E=Et, in the
parabolic-band
approximation
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A calculation similar to that carried out in a box provides, for the minima of indices
1 and 4, an expression similar to that of the third relation in (17.96):

g.1/1D D g.4/1D D
2 d1 ml

� „2 �
.1;4/
11

D
d1
p
2ml

� „

q
E � E.1;4/11

; (17.112)

while g.1;4/1D D 0 if E < E.1;4/11 . For the other minima one finds

g.2;5/1D D
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p
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� „

q
E � E.2;5/11

; E � E.2;5/11 D
�2 „2
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�
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(17.113)
with g.2;5/1D D 0 if E < E.2;5/11 , and

g.3;6/1D D
d1
p
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� „

q
E � E.3;6/11

; E � E.3;6/11 D
�2 „2

2

�
1

mt d22
C

1

ml d23

�
;

(17.114)
with g.3;6/1D D 0 if E < E.3;6/11 . In conclusion, for a wire with d2; d3 � d1 and
n2 D n3 D 1, within the parabolic-band approximation, the density of states of each
pair of minima is the sum of expressions of the form (17.112,17.113,17.114); the
latter are complicate because all possible pairs of indices r; s combine with the two
lengths d2; d3, that in general are not commensurable with each other. A somewhat
easier description is obtained by considering (17.112) alone and letting d2 D d3 in
it; this yields E21 D E12 D 2:5E11, E22 D 4E11, E31 D E13 D 5E11, and so on, and

g.1;4/1D D
g.1;4/1D .E D 2E11/p

E=E11 � 1
; E11 < E � E21 : (17.115)
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Fig. 17.21 Normalized,
one-dimensional density of
states for the 1; 4 valleys of
silicon, as a function of
E=E11, in the parabolic-band
approximation and with
d2 D d3
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In the next interval E21 < E � E22, the density of states is the sum of (17.115) and
2=
p

E=E11 � 2:5, where factor 2 accounts for the .r D 2; s D 1/, .r D 1; s D 2/

degeneracy; in the interval E22 < E � E31 one adds the further summand
1=
p

E=E11 � 4, and so on. The normalized density of states g1D.E/=g1D.2E11/
is shown in Fig. 17.21 as a function of E=E11. Also in this case the Van Hove
singularities are present; in addition, the density of states itself diverges at such
points. However, such divergences are integrable; consider for instance an integral
of the form

Z 1

E0

c
p

E � E0
P.E/ dE ; (17.116)

with c a constant and 0 < P < 1 a distribution function. Splitting the integration
domain into two intervals E0 � E � E0 and E0 � E < 1, with E0 > E0, one finds
for the first integral, that contains the singularity,

Z E0

E0

c
p

E � E0
P.E/ dE �

Z E0

E0

c
p

E � E0
dE <1 : (17.117)

17.7 Calculation of Vibrational Spectra

The discussion carried out in Sect. 16.6 has led to the conclusion that in the case
of solid matter the nuclei, being massive and tightly bound together, are expected
to depart little from their equilibrium positions R0. The classical description of the
nuclear motion is thus brought to the case already solved in Sects. 3.9 and 3.10: the
vibrational state of the nuclei is described in terms of the normal coordinates b� ,
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whose conjugate momenta are Pb� , and the total energy of the nuclei reads (compare
with (3.50))

Ta C Va D

3NX

�D1

H� C Va0 ; H� D
1

2
Pb2� C

1

2
!2� b2� ; (17.118)

where each H� corresponds to one degree of freedom and !� > 0 is the angular
frequency of the corresponding mode. The system is completely separable in the
normal coordinates, and each normal coordinate evolves in time as a linear harmonic
oscillator. The calculation is based on Classical Mechanics; it is carried out in this
chapter because it exploits the periodicity properties of the material and, in this
respect, presents several analogies with the solution of the Schrödinger equation
in a periodic lattice. To determine the vibrational frequencies !� it is necessary to
solve the eigenvalue equation (3.43), namely,

C g� D !2� M g� ; � D 1; : : : ; 3N ; (17.119)

with g� the eigenvectors. The entries of C, M are given by

cpn D ŒC�pn D

�
@2Va

@hp @hn

�

0

; ŒM�pn D �n ıpn ; (17.120)

where Va is the potential energy, hp the displacement of the pth degree of freedom
with respect to the equilibrium position, �p the mass associated with the pth degree
of freedom, and ıpn the Kronecker symbol (A.18).

The calculation is in principle the same for any system of particles; however, if
the system has special properties, they reflect into the form of the eigenvalues and
eigenvectors. A particularly important case is that of a periodic structure, such as a
crystal. Considering this case, let the crystal be made of Nc elementary cells, with a
basis made of Nb nuclei (the definition of basis is in Sect. 17.2). It follows that the
total number of nuclei is N D Nb Nc, and the total number of degrees of freedom
is 3N. With respect to a given origin O (Fig. 17.22), the mth cell of the lattice is
identified by the corresponding translation vector of the direct lattice, lm; the latter
determines a local origin within the mth cell. In turn, the equilibrium position of the
˛th nucleus of the mth cell with respect to the local origin is identified by a vector
e˛ of the direct lattice.

17.7.1 Labeling the Degrees of Freedom—Dynamic Matrix

To proceed, it is convenient to label the degrees of freedom in such a way as to
distinguish the indices of the cells from those of the basis and of the coordinate
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Fig. 17.22 Definition of the
labels used to identify the
degrees of freedom in a
periodic lattice
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axes. To this purpose, one observes that the component along the uth coordinate
axis of the equilibrium position of the jth nucleus is

Xju0 D sq0 ; q D uC 3 .j � 1/ ; j D ˛ C Nb .m � 1/ ; (17.121)

with u D 1; 2; 3; ˛ D 1; : : : ;Nb; m D 1; : : : ;Nc. The same applies to the
displacements, which are more conveniently expressed in terms of three indices:

hq  � hm˛u ; hr  � hnˇw : (17.122)

The entries of C are identified in the same manner:

cqr D

�
@2Va

@hq@hr

�

0

 � cnˇw
m˛u D

�
@2Va

@hm˛u @hnˇw

�

0

; (17.123)

with

m; n D 1; : : : ;Nc ; ˛; ˇ D 1; : : : ;Nb ; u;w D 1; 2; 3 : (17.124)

The order of derivation is irrelevant, so that cnˇw
m˛u D cm˛u

nˇw. As the number of nuclei
is finite, the crystal is not actually periodic; as indicated in Sect. 17.5.3, periodicity
is recovered by imposing periodic boundary conditions to the quantities of interest
(Sect. 17.5.3).20 With this provision, the entries of C are invariant with respect to
the lattice translations. The latter are related only to the cell indices m; n and are
obtained by the replacements lm  lm C l� , ln  ln C l� , with � any integer. In
particular, taking l� D �ln yields

20As mentioned in Sect. 17.5.3, the periodic boundary conditions are actually an approximation;
however, the interatomic interactions typically give rise to short-range forces, hence the above
reasoning holds for all the cells that are not too close to the boundaries.
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cnˇw
m˛u D cˇw

˛u .lm; ln/ D cˇw
˛u .lm � ln; 0/ D cˇw

˛u .lm � ln/ : (17.125)

The above shows that the entries of C depend on the relative positions of the cells.
Due to the invariance of C with respect to the lattice translations one sees that, given
˛; u and ˇ; w, there are only Nc distinct entries of C out of N2

c , namely, the distinct
entries are those such that m � n D 0, m � n D 1; : : : , m � n D Nc � 1. In fact, all
remaining N2

c �Nc entries are derived from the first Nc ones by suitable translations
of the indices. In turn, using the new indices (17.124) the entries of M read

�r ıqr  � �nˇw ı
nˇw
m˛u D �ˇ ı

nˇw
m˛u; (17.126)

where the last equality is due to the fact that the mass of a given nucleus of the cell
does not depend on the cell position within the crystal nor on the coordinate axis.
In the new indices the eigenvalue equation (17.119) becomes

X

nˇw

cnˇw
m˛u gnˇw D !

2 �˛ gm˛u ; (17.127)

where the indices’ ranges are given in (17.124). The indices of the eigenvalue and
eigenvector have been omitted for simplicity. Defining

dnˇw
m˛u D

cnˇw
m˛u

p
�˛ �ˇ

; zm˛u D
p
�˛ gm˛u ; znˇw D

p
�ˇ gnˇw ; (17.128)

transforms (17.127) into

X

nˇw

dnˇw
m˛u znˇw D !

2 zm˛u : (17.129)

The latter form of the eigenvalue equation is more convenient because it eliminates
the coefficient �˛ from the right-hand side. Matrix D of entries dnˇw

m˛u is called
dynamic matrix and, due to the properties of C, is symmetric (dnˇw

m˛u D dm˛u
nˇw) and

translationally invariant:

dnˇw
m˛u D dˇw

˛u .lm; ln/ D dˇw
˛u .lm � ln; 0/ D dˇw

˛u .lm � ln/ : (17.130)
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17.7.2 Application of the Bloch Theorem

As a consequence of the translation invariance of D, Bloch’s theorem (17.23)
applies,21 namely, for any eigenvector of indices p�e, and letting l0 D 0, the
following holds:

z�e.lp/ D exp.c � lp/ z�e.0/ : (17.131)

In (17.131), c is any complex vector of the reciprocal lattice, and p D 0; : : : ;Nc�1;
� D 1; : : : ;Nb; e D 1; 2; 3. The complex form of the eigenvectors is adopted for
convenience; at the end of the calculation, a set of real eigenvectors is recovered
from suitable combinations of the complex ones. Using the periodic boundary
conditions, the expression of c is found to be

c D i q ; q D
3X

sD1

�s

Ns
2� bs ; (17.132)

with N1;N2;N3 the number of cells along the directions of the characteristic vectors
of the direct lattice, b1;b2;b3 the characteristic vectors of the reciprocal lattice,
and �1; �2; �3 integers, with �s D 0; 1; : : : ;Ns � 1. The total number of distinct q
vectors is thus N1 N2 N3 D Nc. Comparing (17.132) with (17.37) shows that the
structure of the q vector is the same as that of the k vector found in the solution of
the Schrödinger equation (Sect. 17.5.3). Inserting (17.130) into (17.129) yields, for
the line of indices m˛u of the eigenvalue equation,

X

nˇw

Anˇw
m˛u zˇw.0/ D !

2z˛u.0/ ; (17.133)

with

Anˇw
m˛u D

1
p
�˛�ˇ

cˇw
˛u .lm � ln/ expŒi q � .ln � lm/� : (17.134)

As the eigenvalues !2 are real, the matrix made of the entries Anˇw
m˛u must be

Hermitean; in fact, this is easily found by observing that D is real and symmetric:

Am˛u
nˇw D d˛u

ˇw.ln � lm/ expŒi q � .lm � ln/� D
�
Anˇw

m˛u

	�
: (17.135)

Another property stems from the expression at the left-hand side of (17.133),

21The Bloch theorem was derived in Sect. 17.5.1 with reference to eigenfunctions that depend on a
continuous parameter like, e.g., vector c; the theorem equally holds for a translationally invariant
operator in the discrete case, like the dynamic matrix considered here.
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X

nˇw

Anˇw
m˛u zˇw.0/ D

X

ˇw

 
X

n

Anˇw
m˛u

!

zˇw.0/ ; (17.136)

where Anˇw
m˛u is translationally invariant because it depends on the cell indices only

through the difference lm� ln. It follows that
P

n Anˇw
m˛u does not depend on m. This is

easily verified by carrying out the sum first with, say, m D 1, then with m D 2, and
observing that the terms of the second sum are the same as in the first one, displaced
by one position. In summary, letting A be the 3Nb � 3Nb, Hermitean matrix of
entries

Aˇw
˛u .q/ D

NcX

nD1

dˇw
˛u .lm � ln/ expŒi q � .ln � lm/� ; (17.137)

(17.133) becomes

X

ˇw

Aˇw
˛u .q/ zˇw.0/ D !

2z˛u.0/ : (17.138)

For a given q, (17.138) is an eigenvalue equation of order 3Nb, whose eigenvalues
are found by solving the algebraic equation

det .A � !2 I/ D 0 ; (17.139)

with I the identity matrix. As the entries of A depend on q, the calculation of the
3Nb eigenvalues of (17.138) must be repeated for each distinct value of q, namely,
Nc times. The total number of eigenvalues thus found is 3Nb �Nc D 3N, as should
be. This result shows that while the translation invariance eliminates the dependence
on lm, it introduces that on q. As the number of different determinations of the two
vectors lm and q is the same, namely, Nc, the total number of eigenvalues is not
affected. Letting the Nc determinations of q be numbered as q1;q2 : : : qp : : :, the
algebraic system (17.138) is recast as

X

ˇw

Aˇw
˛u .qp/ zˇw.0;qp/ D !

2.qp/ z˛u.0;qp/ ; p D 1; 2; : : :Nc (17.140)

which, for each qp, yields 3Nb eigenvalues !2 and 3Nb eigenvectors of length 3Nb;
as a consequence, the set of column vectors made of the eigenvectors associated
with qp forms a 3Nb � 3Nb matrix, indicated here with Z1p. By letting qp span
over all its Nc determinations, the total number of eigenvalues turns out to be 3N,
namely,

!2�e.q1/ ; : : : ; !
2
�e.qNc

/ ; � D 1; : : : ;Nb ; e D 1; 2; 3 : (17.141)
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Similarly, the total number of eigenvectors (of order 3Nb) turns out to be 3N,

z�e.0;q1/ ; : : : ; z�e.0;qNc
/ ; � D 1; : : : ;Nb ; e D 1; 2; 3 : (17.142)

They provide the set of Nc square matrices of order 3Nb, indicated with Z11, Z12; : : :,
Z1Nc . Finally, each z�e.0;qp/ provides an eigenvector of order 3N whose entries are

z˛u
�e.lm;qp/ D exp.i qp � lm/ z˛u

�e.0;qp/ ; (17.143)

where, as usual, ˛; � D 1; : : : ;Nb; u; e D 1; 2; 3 and, in turn, m D 0; : : : ;Nc � 1;
p D 1; : : : ;Nc. The first index of matrices Z11;Z12; : : : corresponds to m D 0.
Similarly, index m D 1 provides a new set of matrices Z21;Z22; : : :, and so on.
The whole set of N2

c matrices Zmp is equivalent to the 3N � 3N matrix Z of the
eigenvectors of the dynamic matrix, according to the following scheme:

Z D

2

666
4

Z11 Z12 : : : Z1Nc

Z21 Z22 : : : Z2Nc

:::
:::
: : :

:::

ZNc1 ZNc2 : : : ZNcNc

3

777
5
: (17.144)

17.7.3 Properties of the Eigenvalues and Eigenvectors

Remembering that A (defined in (17.137)) is Hermitean, and !2 is real, one finds
.A � !2 I/� D A� � !2 I D AT � !2 I D .A � !2 I/T , whence

det Œ.A � !2 I/�� D det Œ.A � !2 I/T � D det .A � !2 I/ : (17.145)

This shows that the eigenvalue equation A.qp/ z.0;qp/ D !2 .qp/ z.0;qp/, and
its conjugate, A�.qp/ z�.0;qp/ D !2 .qp/ z�.0;qp/ have the same eigenvalues.
Moreover, as the entries (17.137) of A are polynomials in expŒi qp � .ln � lm/� with
real coefficients, the following hold:

Aˇw
˛u .�qp/ D

�
Aˇw
˛u .qp/

��
; A.�qp/ D A�.qp/ : (17.146)

The above properties give rise to other important consequences for the eigenvalues
and eigenvectors. In fact, from the property A.�qp/ D A�.qp/ and the hermiticity
of A one finds

detŒA.�qp/ � !
2 I� D detfŒA.qp/ � !

2 I�Tg D detŒA.qp/ � !
2 I� ; (17.147)
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showing that the eigenvalues calculated from A.�qp/ are the same as those
calculated from A.qp/. It follows that ! is an even function of qp:

!.�qp/ D !.qp/ ; A.�qp/ z.0;�qp/ D !
2.qp/ z.0;�qp/ : (17.148)

Taking the conjugate of the second equation in (17.148) and using again the relation
A.�qp/ D A�.qp/ yield A.qp/ z�.0;�qp/ D !2.qp/ z�.0;�qp/. Comparing the
above with the original eigenvalue equation A.qp/ z.0;qp/ D !2 .qp/ z.0;qp/

provides a relation between the eigenvectors:

z.0;�qp/ D z�.0;qp/ : (17.149)

From Bloch’s theorem (17.131) it follows z˛u
�e.lm;qp/ D exp.i qp � lm/ z˛u

�e.0;qp/

which, combined with (17.149), allows one to recover a set of real eigenvectors of
the dynamic matrix:

z˛u
�e.lm;qp/C z˛u

�e.lm;�qp/ D z˛u
�e.0;qp/ exp.i qp � lm/C z� ˛u

�e .0;qp/ exp.�i qp � lm/

where, as usual, indices p�e count the eigenvectors and indices m˛u count the
entries. Using the results of Sect. 3.10, the displacements of the particles from the
equilibrium position are given by h D Gb, where G is the matrix of the eigenvalues
of (17.119) and the entries of b have the form (3.49), namely,

bp�e.t/ D
1

2

n
Qbp�e0 expŒ�i!�e.qp/ t�C Qb�p�e0 expŒi!�e.qp/ t�

o
; (17.150)

with Qbp�e0 depending on the initial conditions bp�e0.0/, Pbp�e0.0/. In turn, the entries
of matrix g are gm˛u

p�e , where the lower indices refer to the columns and count
the eigenvectors, the upper ones refer to the rows and count the entries of each
eigenvector. Due to (17.128), such entries equal the corresponding terms of the real
eigenvector of the dynamic matrix, divided by

p
�˛ . In conclusion, from h D Gb,

the displacements are given by

hm˛u D
X

p�e

gm˛u
p�e bp�e D

X

p�e

1
p
�˛

zm˛u
p�e bp�e : (17.151)

Using (17.150) yields

hm˛u D
1
p
�˛
<
X

p�e

z˛u
�e .0;qp/

h
Qbp�e0 exp.i˚m

p�e/C
Qb�p�e0 exp.i�m

p�e/
i
;

(17.152)

where the phases are defined by

˚m
p�e D qp � lm � !�e.qp/ t ; �m

p�e D qp � lm C !�e.qp/ t : (17.153)
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The above result shows that in the harmonic approximation, the displacements have
the form of a superposition of plane and monochromatic waves, whose wave vector
and angular frequency are qp, !�e.qp/. The wave corresponding to a given qp is
called vibrational mode. Typically, the number of qp vectors is very large; in such
cases, the same reasoning made in Sect. 17.6 with reference to the k vectors holds,
and q is considered a continuous variable ranging over the first Brillouin zone.

Function !�e.q/ is also called dispersion relation, and is viewed as a multi-
valued function of q having 3Nb branches. For each branch, letting q D jqj, the
wavelength is defined by � D 2�=q and the phase velocity by uf D !=q D � �,
with � D !=.2�/ the frequency. The group velocity is defined by u D gradq!. As
shown in Sect. 3.10, the total energy of the system is the sum of the mode energies,
and in the classical description is expressed in terms of the initial conditions as

Ta C Va D Va0 C

3NX

�D1

E� ; E� D
1

2
Pb2� .0/C

1

2
!2� b2� .0/ : (17.154)

As remarked in Sect. 12.5, the classical expression of the energy associated with
each mode has the same form as that of a mode of the electromagnetic field. In turn,
the energy quantization shows that each mode energy is made of terms of the form
„!�e.q/, thus leading to the concept of phonon (Eqs. (12.35,12.36)).

17.8 Interaction of an Electron with the Lattice

The calculation of the vibrational spectra, carried out in Sect. (17.7) using the
harmonic approximation, yields expression (17.152) for the displacements of the
nuclei with respect to the equilibrium positions. More precisely, (17.152) provides,
in classical terms, the uth component of the instantaneous displacement of the
˛th atom of the mth cell, where �˛ is the mass of the ˛th atom of the basis
and qp a vector of the scaled reciprocal lattice belonging to the first Brillouin
zone; the form of this vector is given by the second relation in (17.132), namely,
qp D

P3
sD1.ps=Ns/ 2 � bs, with ps D 0; 1; : : : ;Ns � 1. The quantity z˛u

�e .0;qp/

in (17.152) is the component of indices ˛ u of the eigenvector of indices � e of
the 3Nb � 3Nb dynamic matrix associated with qp. In turn, Qbp�e0 is a constant that
depends on the initial conditions of the normal coordinate bp�e.t/. Finally, the phases
in (17.152) are defined by (17.153), where the angular frequency !�e.qp/ > 0 is the
positive square root of the eigenvalue of indices � e of the 3Nb�3Nb dynamic matrix
associated with qp. In summary, in the harmonic approximation the displacements
have the form of a superposition of plane and monochromatic waves, with wave
vector qp and angular frequency !�e.qp/.

It must be remembered that the solution of the single-electron Schrödinger
equation in a periodic lattice, carried out in Sect. 17.6, is based on the hypothesis that
the nuclei are kept fixed in the equilibrium positions, so that the force acting on the
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electron derives from a potential energy V having the periodicity of the lattice. As a
consequence, the set of eigenvalues and eigenfunctions obtained from the solution
of (17.40) do not account for the displacements of the nuclei produced by the lattice
vibrations. As remarked in Sect. 16.6, if the positions of the nuclei are kept fixed, the
exchange of energy between the system of electrons and that of nuclei cannot take
place; in order to let such an exchange occur, it is necessary to incorporate the lattice
vibrations into the problem. This task is carried out below using the perturbative
approach, namely, starting from the set of eigenvalues and eigenfunctions of the
unperturbed problem and accounting for the effect of the lattice vibrations using the
first-order perturbative approach of Chap. 14.

Let the equilibrium positions of the nuclei be R0m˛ D lm C e˛ , with m D
1; : : : ;Nc and ˛ D 1; : : : ;Nb. In the above, e˛ is the vector connecting the center
of the mth cell with the equilibrium position of the ˛th atom of that cell; the
potential energy of the electron in the unperturbed case is V D V.r;R011;R012; : : :/.
Similarly, the displaced positions of the atoms are denoted with Rm˛ D R0m˛Chm˛ ,
where hm˛ is the displacement vector of components hm˛u, u D 1; 2; 3; the
corresponding potential energy is Vdis D Vdis.r;R11;R12; : : :/ and the force acting
on the electron is � grad Vdis, where the gradient is calculated with respect to the
components of r. At this point it is necessary to better analyze the form of the
potential energy: if the latter were simply due to the combined effects of hydrogen-
like, Coulomb centers placed at the equilibrium positions of the atoms, its form
would be

VC D �
q2

4 � "0

NbX

˛D1

C˛ ; C˛ D
1

jr � e˛j
C

1

jr � l1 � e˛j
C

1

jr � l2 � e˛j
C : : : :

(17.155)

The sum C˛ in (17.155) is made of Nc terms, each one containing a different
translation vector from l0 D 0 to lNc�1. The perturbed form of the potential energy,
still in the hypothesis of hydrogen-like, Coulomb centers, is obtained by introducing
the displacements hm˛ into the denominators of (17.155). Actually, due to the
screening effect of the electrons the potential energy is more complicate than a
superposition of interactions of the Coulomb type. However, it is still reasonable
to assume that its form is of the type

Vdis �

NcX

mD1

NbX

˛D1

U .r � lm � e˛ � hm˛/ : (17.156)

Another observation about the potential energy is that in a form like (17.155),
the largest contribution to the sum is given by the summand having the minimum
denominator. For example, assume that r is close to the equilibrium position of, say,
an atom belonging to the mth cell. In this case the denominator jr � lm � e˛ � hm˛j

is small with respect to the other denominators, thus making the contribution of
the mth cell to the sum dominant. This property becomes even more pronounced
when the screening effect is accounted for, and may conveniently be exploited when
evaluating integrals over � like, e.g., (17.157) below.
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Note that the potential energies V or, similarly, Vdis, are a different concept
from the potential energy Va used for the harmonic approximation of the lattice
vibrations: the latter is in fact the potential energy of the system of interacting nuclei
and, as a consequence, the first-order term of its Taylor expansion with respect to
the displacements is zero when the series is started from the equilibrium condition,
namely, from the minimum of Va. Instead, the single-electron potential energy has
no special property even when the nuclei are in the equilibrium positions.

If Vdis as a whole is considered as the perturbation, the eigenfunctions of the
unperturbed problem, namely, those corresponding to Vdis D 0, are the spatial part
of planar waves; this yields for the perturbation-matrix entry22

Hk k0 D
X

m˛

Z

�

U .r � lm � e˛ � hm˛/ exp
�
�i
�
k0 � k

	
� r
�

d3r ; (17.157)

where each summand is proportional to the spatial Fourier transform of U. Noting
that U is real one finds, as expected, Hk0 k D H�k k0

. To calculate the integral
in (17.157) one lets r0 D r � lm � e˛ � hm˛ . The integration domain in (17.157)
should be shifted accordingly; however, as observed above, only the small portion
of the integration domain around the atom of indices m˛ contributes to the integral,
so the original domain � may be kept. Remembering that the displacements are
small, one lets

exp
�
�i
�
k0 � k

	
� hm˛

�
' 1 � i

�
k0 � k

	
� hm˛ ; (17.158)

to find

Hk k0 '
X

m˛

�
1 � i

�
k0 � k

	
� hm˛

�
exp

�
�i
�
k0 � k

	
� lm
�

J˛.k;k0/ ; (17.159)

with

J˛.k;k0/ D
Z

�

U.r0/ exp
�
�i
�
k0 � k

	
� .r0 C e˛/

�
d3r0 : (17.160)

As before, one finds that interchanging k with k0 transforms the integral in (17.160)
into its conjugate; thus, this property is retained also by the simplified form (17.159)
of Hk k0 . From (17.159) one also finds that the perturbation-matrix entry is made of
different contributions; they are treated separately below.23

22The perturbation-matrix entry is indicated here with a capital letter to avoid confusion with the
displacements.
23Treating the contributions separately from each other may seem inconsistent due to the fact that
eventually the transition probability is found by squaring the modulus of the Fourier transform of
Hk k0 (Chap. 14). However, as shown below, the terms of Hk k0 are mutually incompatible due to
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17.8.1 Rigid Lattice

Consider the contribution of the unity in the first factor of (17.159), which
corresponds to the case of vanishing displacements. One carries out the sum over m
first, after letting k � k0 D 2� �1 b1 C 2� �2 b2 C 2� �3 b3; the sum is treated in
the same manner as in Sect. 14.8.6 and problems therein, to yield

Nc�1X

mD0

expŒi .k � k0/ � lm� D Nc ıŒk � k0 � g� � ; (17.161)

where g� is an arbitrary translation vector of the scaled reciprocal lattice. As
illustrated in Chap. 14, the transition probability from state k to state k0 is obtained
from the Fourier transform with respect to time of the perturbation-matrix entry; in
particular, due to the absence of displacements the case considered here corresponds
to a perturbation constant in time (Sect. 14.8.1), so that the transition probability is
proportional to ı.Ek � Ek0/. In summary, the electron’s energy is conserved and the
following relations hold:

k D k0 C g� ; Ek D Ek0 : (17.162)

This result describes a situation where the lattice acts as a rigid body and no
exchange of energy with the electron takes place. If Ek has a spherical symmetry,
from the second relation in (17.162) the equality of the moduli follows, k0 D k;
letting 2 # be the angle between k and k0 (Fig. 17.23), one obtains g� D 2 k sin# .
The latter relation is recast in an interesting form by choosing an auxiliary set of
characteristic vectors a01, a02, a03 of the Bravais lattice such that the characteristic

Fig. 17.23 Vectors used for
determining the Bragg
relation

k’

gγ

kθ

the selection rules, namely, if one them contributes to the final result, the others vanish; thus, no
inconsistency occurs.
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vector b03 of the reciprocal lattice is parallel to g� . It follows g� D 2� i b03, with
i an integer. Applying (17.4) to the auxiliary set, one finds that b03 D a01 ^ a02=�

0
l

is normal to the lattice plane … defined by a01 and a02; the closest plane parallel
to … is reached by the characteristic vector a03 which, in general, is not normal
to …: thus, the distance d between two consecutive parallel planes of the Bravais
lattice, in the chosen reference, is obtained by projecting a03 along the direction of
b03. Using (17.5), one finds d D a03 � b

0
3=b03 D 1=b03, so that the modulus of g�

turns out to be g� D 2� i=d. Combining the latter with g� D 2 k sin# and letting
k D 2�=� yields the Bragg law

2 d sin# D i� ; (17.163)

of fundamental importance in the investigation of diffraction phenomena in crystals.
Using (17.162) within (17.160) yields

J˛.k; g� / D
Z

�

U.r0/ exp
�
i g� � .r

0 C e˛/
�

d3r0 ; (17.164)

whence the part of (17.159) corresponding to vanishing displacements becomes

Hk g� D Nc

X

˛

J˛.k; g� / : (17.165)

17.8.2 Energy Exchange Between Electron and Lattice

If there is an exchange of energy between electron and lattice, Ek ¤ Ek0 , then the
contribution of the unity in the first factor of (17.159) vanishes due to ı.Ek�Ek0/, so
that one must consider the contribution deriving from i

�
k � k0

	
� hm˛ . To proceed,

consider the first summand in the expression (17.152) of the displacement,

h0m˛.t/ D
1
p
�˛
<
X

p�e

z˛�e .0;qp/ Qbp�e0 exp
˚
i
�
qp � lm � !�e.qp/ t

��
; (17.166)

where z˛�e is a vector of components z˛u
�e , u D 1; 2; 3. Remembering that <� D

.�C��/=2, it follows that (17.166) provides in fact two contributions: from the first
one, the sum over m acquires the extra factor exp.i qp � lm/, whence (17.161) must
be replaced with

Nc�1X

mD0

expŒi .k � k0 C qp/ � lm� D Nc ıŒk � k0 C qp � g� � : (17.167)
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In parallel, the time part acquires the extra factor expŒ�i!�e.qp/ t�, whence ı.Ek �

Ek0/ must be replaced with ıŒEk � Ek0 � „!�e.qp/� (compare with the analysis of
the harmonic perturbation in Sect. 14.8.2). Thus, (17.162) is replaced with

kC qp D k0 C g� ; Ek D Ek0 C „!�e.qp/ : (17.168)

Conversely, the second contribution from h0m˛ provides the extra factors exp.�i qp �

lm/ and expŒi!�e.qp/ t�, whence

k � qp D k0 C g� ; Ek D Ek0 � „!�e.qp/ : (17.169)

As !�e.qp/ > 0, the relations involving energy in (17.168) and (17.169) are
mutually incompatible; they are also incompatible with (17.162). When (17.168)
applies, the electron emits a phonon24 of energy „!�e.qp/, which is absorbed by
the lattice; correspondingly, the electron’s momentum changes by „k0 � „k D
„qp � „ g� . Here one lets k0 � k D qp � g� in the definition (17.160); the result is
further simplified by imposing that the three vectors k, k0, and qp belong to the first
Brillouin zone. In this case, following the same reasoning as in Sect. 14.8.6 one finds
that if two of such vectors are prescribed, then the third one is uniquely defined, and
the possible combinations of components of g� are those listed in Table 14.1; also,
as qp is fixed, the sum over p must eventually be dropped from (17.166).

When (17.169) applies, the electron absorbs a phonon of energy „!�e.qp/, which
is emitted by the lattice; correspondingly, the electron’s momentum changes by
„k0 � „k D �„qp � „ g� . The further prescription that k, k0, and qp belong to
the first Brillouin zone yields for the components of g� the combinations listed in
Table 14.2.

On must now consider the second summand in the expression (17.152) of the
displacement, namely,

h00m˛.t/ D
1
p
�˛
<
X

p�e

z˛�e .0;qp/ Qb
�
p�e0 exp

˚
i
�
qp � lm C !�e.qp/ t

��
: (17.170)

The analysis is identical to that of h0m˛.t/ and leads to the following result: when
the energy balance of (17.168) applies, then the relation between the wave vectors
is k� qp D k0 C g� ; observing that qp ¤ 0, the above is incompatible with the first
relation in (17.168), hence only one of the two cases of phonon emission may occur.
Similarly, when the energy balance of (17.169) applies, then the relation between
the wave vectors is kCqp D k0Cg� , incompatible with the first relation in (17.169),
hence only one of the two cases of phonon absorption may occur.

It is worth observing that the approach of this section and that of Sect. 14.8.6
are different; however, the final result is the same. In Sect. 14.8.6 it is assumed
that the unperturbed problem derives from the solution of the Schrödinger equation

24The concept of phonon is introduced in Sect. 12.5 and elaborated further in Sect. 16.6.
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with a periodic potential, whence the eigenfunctions of the unperturbed problem
are Bloch functions; then, it is assumed that the spatial part of the perturbation
has the form of a plane wave, W.r/ D W0 exp.i kd � r/. Here, the whole lattice
potential Vdis is considered as the perturbation, whence the eigenfunctions of the
unperturbed problem are planar waves.25 The key point is (17.158), which brings
in the displacement hm˛; the latter, in turn, brings in factor exp.i qp � lm/ through
(17.166), or factor exp.�i qp � lm/ through (17.170). Comparing the expressions
shows in fact that kd in (14.62) is the analogue of qp in (17.167). As a consequence,
the selection rules are the same in the two approaches.

17.9 Complements

17.9.1 Crystal Planes and Directions in Cubic Crystals

From the general definition (17.1) of the translation vector, which provides the
positions of all nodes of the crystal, it follows that a crystal plane is defined by
the set of all triads of integers m1;m2;m3 such that, for a given vector g0 of the
scaled reciprocal lattice, the quantity .m1 a1 C m2 a2 C m3 a3/ � g0=.2 �/ equals
a fixed integer. Such a plane is normal to g0. In turn, given two crystal planes
defined as above using, respectively, two nonparallel vectors g1 and g2, a crystal
direction is defined by the set of all triads of integers m1;m2;m3 that belong to the
two crystal planes so prescribed. In cubic crystals, the typical method by which the
crystal planes are identified is outlined below [128, Sect. 2-2].

Let the plane be indicated with …. After labeling the nodes by the respective
triads of integers m1;m2;m3, as shown in Fig. 17.24, one starts by finding the
intercepts of … with the directions of the characteristic vectors. Letting such
intercepts be .m�1 ;m

�
2 ;m

�
3 /, the triad .r m�1 ; r m�2 ; r m�3 / with r ¤ 0 an integer, spans

a set of planes parallel to …. If M is the largest divisor of m�1 ;m
�
2 ;m

�
3 , then the new

triad m0i D m�i =M identifies the plane …0 parallel to … and closest to the origin.
Then, the inverse of the triad’s elements is taken: 1=m01, 1=m02, 1=m03. This avoids
the occurrence of infinities; in fact, if … was parallel to one of the characteristic
vectors, say, ai, then m�i and m0i would become infinite. One the other hand, using
the inverse indices may bring to fractional numbers, a circumstance that must be
avoided as well; so, as the last step, the new elements 1=m0i are multiplied by the
least multiple N of the m0i that are not infinite:

.m001 ;m
00
2 ;m

00
3 / D

�
N

m01
;

N

m02
;

N

m03

�
: (17.171)

25Both approaches provide the same factor exp
�
�i

�
k0 � k

	
� r
�

that enters the calculation of the
perturbation-matrix entry, (14.55) and (17.157) respectively.
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Fig. 17.24 Example of node
labeling in the cubic lattice

a2

a1

1,1,11,0,1
a3

1,1,0

0,0,0

0,0,1

1,0,0

Fig. 17.25 Schematic
representation of the .111/
plane (top left) and of the
.001/ and .010/ planes
(bottom right) in a cubic
crystal

(010)

(001)

(111)

The elements m00i thus found are the Miller indices of …. They are enclosed in
parentheses as in (17.171). By way of example, if m�1 D 1, m�2 D 2, m�3 D 4,
then M D 2 so that m01 D 1, m02 D 1, m03 D 2. Calculating the inverse indices
yields 1=m01 D 0, 1=m02 D 1, 1=m03 D 1=2; the least multiple is N D 2, so that the
Miller indices are found to be .0; 2; 1/.

The indices that turn out to be negative are marked with a bar; for instance, in
.hNkl/ the second index is negative. Some planes have the same symmetry; in cubic
crystals this happens, for instance, to planes .100/, .010/, .001/, .N100/, .0N10/, and
.00N1/. A set of planes with the same symmetry is indicated with braces, e.g., f100g.
Examples of the .111/, .001/, and .010/ planes are given in Fig. 17.25. As remarked
in Sect. 24.4 about the silicon-oxidation process, the .111/ plane has the highest
concentration of atoms, followed by the f100g planes.

Symbols using three integers are also used to identify the crystal directions. To
distinguish them from the symbols introduced so far, such triads of integers are
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enclosed in brackets. Consider, for instance, the line connecting nodes P and Q,
oriented from P to Q. Letting m1P, m2P, m3P be the coordinates of P, and the like
for those of Q, one forms the new triad m01 D m1Q � m1P, m02 D m2Q � m2P, and
m03 D m2Q � m2P. Then, the indices of the crystal direction are obtained as

Œm001 ;m
00
2 ;m

00
3 � D

�
m01
M
;

m02
M
;

m03
M

�
; (17.172)

with M the largest divisor of m01;m
0
2;m
0
3. Also in this case, negative indices are

marked with a bar. By way of examples, the characteristic vectors a1, a2, and a3
in Fig. 17.24 are aligned, respectively, with the Œ100�, Œ010�, and Œ001� directions.

17.9.2 Examples of Translation Operators

A one-dimensional example of translation operator is easily found by considering
the Taylor expansion of a function f around some position x:

f .xC l/ D
1X

nD0

ln

nŠ

�
dnf

dxn

�

lD0

D

1X

nD0

ln

nŠ

dn

dxn
f .x/ D exp

�
l

d

dx

�
f .x/ ; (17.173)

where the expression on the right stems from a formal application of the Taylor
expansion of the exponential function, in which a numerical factor within the
exponent is replaced with the operator d=dx. Extending the above reasoning to three
dimensions yields

T .l/ D exp.l � grad/ : (17.174)

17.9.3 Symmetries of the Hamiltonian Operator

Given an operator R, a second operator A is associated with R in the following
manner [74, Sect. 1.5]:

A f .r/ D f .R�r/ (17.175)

for all functions f . Thus, the action of A on f at r is the same as calculating the
original function at r0 D R�r. Let R be unitary (Sect. 8.6.2), whence r D Rr0. A
unitary operator acting on r leaves the norm r D jrj unchanged; as a consequence,
the unitary operations possible on the coordinates are only those that perform a
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rotation or a reflexion of the coordinate axes, or both. It follows that the unit volume
d� D d3r is also invariant: d3Rr D d3r, thus showing that A is unitary as well:

Z

�

jA f .r/j2 d3r D
Z

� 0

jf .r0/j2 d3Rr0 D
Z

� 0

jf .r0/j2 d3r0 ; (17.176)

where � 0 is the transformed domain. This reasoning does not apply to the translation
operators T . In fact, the operation T r D r C l does not leave the norm of r
unchanged. This shows in passing that T is not unitary. Other consequences of
the above definitions and of the proof that A is unitary are

A f .Rr0/ D f .r0/ ; A �f .r0/ D f .Rr0/ : (17.177)

Also, A commutes with the operators that are invariant under the transformation
r R�r. In fact, if B is such an operator,

A B.r/f .r/ D B.R�r/f .R�r/ D B.r/A f .r/ (17.178)

for all functions f . As R� is the inverse of R, then B is also invariant under the
transformation r Rr. As a consequence, B commutes also with A �.

Let Bvn D bn vn be the eigenvalue equation for B (a discrete spectrum is
assumed for the sake of simplicity). If bn is s-fold degenerate, and v.1/n , v.2/n ; : : :,
v
.s/
n are s linearly independent eigenfunctions corresponding to bn, then

B
sX

iD1

ci v
.i/
n D

sX

iD1

ci Bv
.i/
n D

sX

iD1

ci bn v
.i/
n D bn

sX

iD1

ci v
.i/
n ; (17.179)

namely, any nonvanishing linear combination of the form 'n D
Ps

iD1ci v
.i/
n is also an

eigenfunction of B belonging to bn. Let M be the space of all linear combinations of
the form of 'n; from (17.179) it follows that all members of M are eigenfunctions of
B belonging to bn. Conversely, all eigenfunctions of B belonging to bn are members
of M: letting qn ¤ 0 be one such eigenfunction, if qn was not a member of M it
would be qn �

Ps
iD1 ci v

.i/
n ¤ 0 for all choices of the coefficients ci. But this would

imply that qn, v.1/n , v.2/n , : : :, v.s/n are sC 1 linearly independent eigenfunctions of bn,
thus contradicting the hypothesis that the latter’s degeneracy is of order s. Finally, if
A commutes with B it is

BA 'n D A B'n D A bn'n D bnA 'n ; (17.180)

namely, A 'n belongs to M.
In crystals, the unitary coordinate transformations r0 D Rr that leave the

Hamiltonian operator H invariant are of particular interest. In fact, such coordinate
transformations provide a method to study the degenerate eigenvalues of H .
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Let B D H , and let H be invariant under a coordinate transformation Rr.
If, in addition, H is translationally invariant and the periodic boundary conditions
apply (Sect. 17.5.3), then the eigenfunctions w of H are Bloch functions, namely,
they fulfill the Bloch theorem

wi.rC l;k/ D exp.i k � l/wi.r;k/ ; (17.181)

with l a translation vector and i the band index. Let A be the operator associated
with R. Then, from H A � D A �H ,

H A �wi.r;k/ D Ei.k/A �wi.r;k/ ; (17.182)

with Ei.k/ the eigenvalue. One infers from (17.182) that if wi.r;k/ and A �wi.r;k/
are linearly independent, then the eigenvalue is degenerate. Such a degeneracy
does not depend on the detailed form of the Hamiltonian operator, but only on
its symmetry properties. For this reason, the degeneracy is called essential. If
further degeneracies exist, that depend on the detailed form of H , they are called
accidental.

Let M.k/ be the space made of the linearly independent eigenfunctions of E.k/,
and of any nonvanishing linear combination of them, and define

vi.r;k0/ D A �wi.r;k/ D wi.Rr;k/ ; (17.183)

where symbol k0 accounts for a possible influence on k of the coordinate transfor-
mation Rr. Being an eigenfunction of H , vi.r;k0/ is a Bloch function,

vi.rC l;k0/ D exp.i k0 � l/ vi.r;k0/ ; (17.184)

where vi.rC l;k0/ D wi.RrCRl;k/. On the other hand, Bloch’s theorem applied
to wi.RrCRl;k/ yields

wi.RrCRl;k/ D exp.jk �Rl/wi.Rr;k/ ; (17.185)

where the equality k �Rl D R�k � l holds due to the definition of adjoint operator.
Comparison with the expression of the Bloch theorem applied to vi.r C l;k0/
provides k0 D R�k, whence

wi.Rr;k/ D vi.r;R�k/ : (17.186)

In conclusion, if wi.r;k/ is a Bloch function belonging to M.k/ and Rr a
coordinate transformation that leaves the Hamiltonian operator invariant, then the
eigenfunction obtained by such a transformation also belongs to M.k/ and is labeled
by R�k. The following also holds true,

H vi.r;R�k/ D Ei.R
�k/ vi.r;R�k/ (17.187)
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which, compared with H wi.r;k/ D Ei.k/wi.r;k/, shows that

Ei.R
�k/ D Ei.k/ : (17.188)

The theory of this section is applied by way of example to the Hamiltonian operator
of a system of K electrons and N nuclei, interacting through electrostatic forces, that
was introduced in Sect. 16.2. The potential energy is (compare with (16.5))

Ue.r/C Ua.r/C Uea.r;R/C Uext.r;R/ ; (17.189)

with

Ue.r/ D
KX

i;jD1

q2

4 � "0 jri � rjj
; j ¤ i : (17.190)

Similar expressions hold for Ua and Uea (the second relation in (16.1) and (16.2),
respectively). If Uext D 0, the potential energy is invariant upon the reflexion
transformation Rr D �r, RR D �R. Clearly, the kinetic part of the Hamiltonian
operator is also invariant. In the adiabatic approximation (Sect. 16.3), the coordi-
nates of the nuclei are fixed to the equilibrium positions R0, which preserves the
reflexion invariance. Finally, the reflexion invariance is still preserved in the Hartree
and Hartree-Fock approximations (Sects. 16.4 and 16.5, respectively), which also
provide single-electron Hamiltonian operators that are translationally invariant. Due
to lattice periodicity, the eigenfunctions of the Hamiltonian operator are Bloch
functions. Denoting now with r the coordinates associated with a single electron,
the transformation Rr D �r corresponds to R�k D �k whence, from (17.188),

Ei.�k/ D Ei.k/ : (17.191)

This type of degeneracy is accidental because it depends on the detailed form of the
Hamiltonian operator. If the crystal has also a reflection symmetry, then the reflexion
invariance of the single-electron Hamiltonian operators occurs irrespective of the
form of the interactions. In this case, the degeneracy is essential.

17.9.4 Kronig-Penney Model

The general method for solving the Schrödinger equation in a periodic lattice, shown
in Sect. 17.6, is applied here to a one-dimensional case, where the potential energy
is described as the series of equal barriers shown in Fig. 17.26. The approach is
called Kronig-Penney model; it is amenable to an analytical solution and, despite its
simplicity, is able to capture the main properties of the dispersion relation E.k/.
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Fig. 17.26 Potential energy
in the Kronig-Penney model

V0
E

ba

x

V

As shown in the figure, the potential energy is prescribed as V D 0 for n .a C
b/ < x < n .a C b/ C a, and V D V0 > 0 for n .a C b/ � b < x < n .a C b/ ;
with n D 0;˙1;˙2 : : : There is only one characteristic vector in the direct lattice,
a1 D .aC b/ i1; the corresponding characteristic vector of the reciprocal lattice is

b1 D
i1

aC b
: (17.192)

As a consequence, the first Brillouin zone extends from ��=.aC b/ toC�=.aC b/
in the i1 direction. From the general properties of the time-independent Schrödinger
equation (Sect. 8.2.3) it follows E � 0. As shown in Fig. 17.26, the case 0 < E < V0
is considered. A non-localized wave function w is expected even in the E < V0 case
due to the tunnel effect. From the Bloch theorem, the wave function has the form

wk D uk exp.i k x/ ; uk.xC aC b/ D uk.x/ ; (17.193)

where k belongs to the first Brillouin zone. In the intervals where V D 0 the
Schrödinger equation reads

� w00 D ˛2 w ; ˛ D
p
2m E=„ > 0 : (17.194)

Replacing (17.193) into (17.194) yields

u00k C 2 i k u0k � .k
2 � ˛2/ uk D 0 ; (17.195)

whose associate algebraic equation has the roots

s D �i k˙
p
�k2 C .k2 � ˛2/ D �i k˙ i˛ : (17.196)

The solution of (17.194) then reads

uCk D c1 expŒi .˛ � k/ x�C c2 expŒ�i .˛ C k/ x� ; (17.197)

with c1; c2 undetermined coefficients. The procedure is similar in the intervals where
V D V0 and yields
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w00 D ˇ2w ; ˇ D
p
2m .V0 � E/=„ ; u00k C 2 i k u0k � .k

2 C ˇ2/ uk D 0 ;

(17.198)

s D �i k˙
p
�k2 C .k2 C ˇ2/ D �i k˙ ˇ ; (17.199)

whence

u�k D c3 expŒ.ˇ � i k/ x�C c4 expŒ�.ˇ C i k/ x� ; (17.200)

with c3; c4 undetermined coefficients. The regional solutions uCk , u�k must fulfill
the continuity conditions imposed by the general properties of the Schrödinger
equation; in addition, they must fulfill the periodicity condition prescribed by the
Bloch theorem (second relation in (17.193)). To proceed, one focuses on the period
�b � x � a, so that the continuity conditions at x D 0 for the function,
uCk .0/ D u�k .0/, and first derivative, .uCk /

0.0/ D .u�k /
0.0/, provide

c1 C c2 D c3 C c4 ; i˛ .c1 � c2/ D ˇ .c3 � c4/ : (17.201)

Combining (17.201),

c1 D �c3 C �
� c4 ; c2 D �

� c3 C �c4 ; 2 � D 1 � iˇ=˛ : (17.202)

In turn, from the periodicity of u, namely, uCk .a/ D u�k .�b/, and of u0, namely,
.uCk /

0.a/ D .u�k /
0.�b/, one finds

c1 AC
c2
A
D K L


c3
B
C c4 B

�
; c1 A �

c2
A
D �K L


c3
B
� c4 B

�
i
ˇ

˛
;

(17.203)

with

A D exp.i˛ a/ ; B D exp.ˇ b/ ; K D exp.i k a/ ; L D exp.i k b/ :
(17.204)

Combining (17.203),

c1 D
K L

A


�
B

c3 C �
� B c4

�
; c2 D A K L

�
��

B
c3 C � B c4

�
: (17.205)

Eliminating c1; c2 between (17.202) and (17.205) finally provides an algebraic
system in the two unknowns c3; c4:

�

�
1 �

K L

A B

�
c3 C �

�

�
1 �

B K L

A

�
c4 D 0 ; (17.206)

��
�
1 �

A K L

B

�
c3 C � .1 � A B K L/ c4 D 0 : (17.207)
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Fig. 17.27 Graphic solution of 17.210, with # D 10. The two vertical lines mark the values of
˛ a delimiting the lowest band

As expected, the system is homogeneous, so a solution is possible only if the
determinant vanishes. This in turn determines a relation between ˛.E/, ˇ.E/, and k,
that eventually provides the dispersion relation E.k/. The determinant vanishes if

.��2 � �2/

�
K LC

1

K L

�
D ��2

�
A

B
C

B

A

�
� �2

�
A BC

1

A B

�
: (17.208)

Introducing the expressions (17.202,17.204) of �;A;B;K;L transforms (17.208)
into

ˇ2 � ˛2

2 ˛ ˇ
sin.˛ a/ sinh.ˇ b/C cos.˛ a/ cosh.ˇ b/ D cosŒk .aC b/� ; (17.209)

which has the form F.E/ D G.k/. From this, the relation E D E.k/ can be
determined. Note that G.�k/ D G.k/ and GŒk C 2�=.a C b/� D G.k/. As a
consequence, the function E.k/ is even and has the periodicity of the reciprocal
scaled lattice, as should be.

To the purpose of completing the analysis one may simplify (17.209) by
considering a limiting case, namely, V0 � E so that, from (17.194,17.198), the
limit ˇ2 � ˛2 would result. This, however, would eliminate the tunnel effect
and reduce the problem to that of a series of boxes. To avoid this outcome, the
proper limiting case is b ! 0 and V0 ! 1, in such a way as to leave the area
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b V0 of each barrier unchanged.26 In other terms, one lets b D const=V0, so that
ˇ2 b ! const ¤ 0 while ˇ b ! 0. It follows sinh.ˇ b/ ! ˇ b, cosh.ˇ b/ ! 1 so
that, letting # D lim.a bˇ2=2/, the F.E/ D G.k/ relation (17.209) simplifies to

#
sin.˛ a/

˛ a
C cos.˛ a/ D cos.k a/ ; # > 0 ; ˛ D

p
2m E

„
: (17.210)

The function E D E.k/ can be determined by inverting (17.210); alternatively,
it may be obtained in graphic form as shown in Fig. 17.27, where # has been
fixed to 10: given k, the right-hand side of (17.210) is fixed at some value �1 �
cos.k a/ � 1. The energy E is then found by seeking ˛ a such that the two sides
become equal. The horizontal, dashed lines in the figure correspond to cos.ka/ D 1
and cos.k a/ D �1; they limit the interval where (17.210) has real solutions. The
horizontal, continuous line corresponds to cos.k a/ D 0:4, while the oscillating
curve represents the left-hand side of (17.210). The latter intercepts the cos.k a/ D
0:4 line at infinite points ˛1 a, ˛2 a; : : :; from each ˛i thus found, one determines the
energy corresponding to the given k from the relation ˛i D

p
2m Ei=„. Each branch

of the multi-valued function E.k/ is then found by repeating the procedure for all
values of k within the first Brillouin zone, thus making cos.k a/ to range from �1 to
1. In the figure, the two vertical lines mark the values of ˛ a delimiting the lowest
band. The following are also worth noting:

• Letting � indicate the left-hand side of (17.210), there are no real solutions for
� > 1 or � < �1; the intervals with no real solutions are the forbidden bands. In
fact, the k solutions in the forbidden bands are complex: it is k a D ˙i log.�Cp
�2 � 1/ when � > 1, and k a D � ˙ i log.j�j C

p
�2 � 1/ when � < �1.

• At large energies the (17.210) relation tends to cos.˛a/ D cos.ka/, namely, to
the free-particle one: k D ˛ D

p
2m E=„.

• Like in the general case, for a finite structure where the periodic boundary
conditions are applied, the above calculation still holds, with k a discrete variable.

17.9.5 Linear, Monatomic Chain

The calculation of vibrational spectra has been carried out in general form in
Sect. 17.7. Simple examples of application, with reference to a one-dimensional
lattice, are given in this section and in the next one. Like the Kronig-Penney model
used in Sect. 17.9.4 for determining the dispersion relation of electrons, the one-
dimensional models of the lattice vibrations are amenable to analytical solutions; the
latter, as shown below, are able to provide the explicit expression of the dispersion
relation.

26The same type of limit is applicable to the single-barrier case, whose transmission coefficient is
given in (11.22).
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To begin, consider a one-dimensional monatomic lattice made of Nc cells (linear,
monatomic chain). Let the lattice be aligned with the x axis, and the corresponding
characteristic vector be a D a i, a > 0, with i the unit vector of the x axis. Finally,
let the positions of the Nc C 1 nodes be 0, a, 2 a, : : :, n a, : : :. The translation vector
associated with the nth node is ln D n a i. Finally, it is assumed that the motion
of each atom is constrained to the x axis, and the periodic boundary conditions are
applied.

Due to the periodic boundary conditions the nodes of indices n D 0 and n D Nc

are actually the same node. As a one-dimensional case is considered, with Nb D 1,
the total number of atoms is N D Nc. The number of the lattice’s degrees of freedom
is Nc, and the correspondence with the indices used in the general theory (compare
with (17.124)) is

m ; n D 1; : : : ;Nc ; ˛ ; ˇ D 1 ; u ;w D 1 : (17.211)

As only one atom per cell is present, one may assume that the equilibrium position
of each nucleus coincides with that of a node. In the harmonic approximation the
force acting on the rth nucleus is a linear function of the displacements:

Fr D �

NcX

kD1

crk hk ; (17.212)

where all coefficients crk in general differ from 0. In real crystals, however, the
interaction between nuclei becomes rapidly negligible as the distance increases. As
a consequence, the dynamics of a nucleus may be tackled in a simplified manner by
considering only the interaction with the neighboring nuclei to be effective. This is
equivalent to letting crk D 0 when jr � kj > 1, whence

Fr D �cr�1
r hr�1 � cr

r hr � crC1
r hrC1 D Fr.hr�1; hr; hrC1/ : (17.213)

In the coefficients of (17.213), the lower index refers to the node being acted
upon by the force at the left-hand side, the upper index refers to the node whose
displacement contributes to such a force. When the nuclei of indices r � 1, r,
r C 1 are in the equilibrium positions it is Fr.0; 0; 0/ D 0 for all r. On the other
hand, it is also Fr.ı; ı; ı/ D 0, with ı ¤ 0 an arbitrary displacement. In fact,
when all displacements are equal, the interatomic distance remains the same as in
the equilibrium condition. From Fr.ı; ı; ı/ D 0 it follows that the coefficients are
connected by the relation

cr�1
r C cr

r C crC1
r D 0 : (17.214)

Moreover, on account of the fact that all atoms are identical and all equilibrium
distances are also identical, it is Fr.�ı; 0; ı/ D 0, ı ¤ 0, whence
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cr�1
r D crC1

r : (17.215)

From (17.214,17.215) it follows

cr
r D �cr�1

r � crC1
r D �2 cr�1

r D �2 crC1
r : (17.216)

Finally, the relation Fr.0; ı; 0/ D �cr
r ı, on account of the fact that .0; 0; 0/ is an

equilibrium condition, shows that cr
r > 0. As shown in Sect. 17.7 for the general

case, due to the translation invariance the elastic coefficients do not depend on the
cell index, but on the difference between cell indices (compare with (17.125)); in
conclusion, letting

	 D �cr�1
r D �crC1

r > 0 ; cr
r D 2	 ; (17.217)

and letting � be the common mass of the nuclei, the dynamics of the rth nucleus is
described by the equation

� Rhr D �	 .2 hr � hrC1 � hr�1/ : (17.218)

The general theory shows that the displacement has the form

hr D h0 exp .i q r a � i! t/ ; (17.219)

(compare with (17.152)), where h0 is a complex constant, q r a D q � lr D q i � r a i,
and ! D !.q/. Replacing (17.219) in (17.218) and dividing by hr yield

�!2 D 	 Œ2 � exp.i q a/ � exp.�i q a/� D 4	 sin2.q a=2/ : (17.220)

Defining Q! D
p
	=� and remembering that ! is nonnegative, one finds the

dispersion relation

!.q/ D 2 Q! j sin.q a=2/j : (17.221)

From the periodic boundary condition h.r D Nc/ D h.r D 0/ one finds, with � an
integer,

exp.i q Nc a/ D 1 ; q Nc a D 2� � ; q D
�

Nc

2�

a
: (17.222)

Replacing this form of q within (17.219) and (17.221) shows that using � C Nc

instead of � leaves hr and ! unchanged. As a consequence, it is sufficient to consider
only Nc consecutive values of �, say, � D 0; 1; : : : ;Nc � 1, which in turn limit the
possible values of q to an interval of length 2�=a. This was expected, because the
values of the indices in (17.211) are such that the number of eigenvalues of the
problem is Nc. Thus, the dispersion relation has only one branch, given by (17.221).
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Fig. 17.28 Normalized dispersion relation of a linear, monatomic chain. The vertical lines, placed
at a q=2 D ˙�=2, are the limits of the first Brillouin zone

One also notes that 2�=a is the size of the first Brillouin zone in the one-dimensional
case. Typically, the interval of q is made to coincide with the first Brillouin zone,
namely, ��=a � q < C�=a. Also, as mentioned in Sect. 17.7, in most cases q is
treated as a continuous variable. The phase and group velocities are

uf D
!

q
D ˙a Q!

sin.q a=2/

q a=2
; u D

d!

dq
D ˙a Q! cos.q a=2/ ; (17.223)

respectively, where the positive (negative) sign holds when q is positive (negative).
At the boundary of the Brillouin zone it is q a=2 D �=2, whence ! D 2 Q!, uf D

˙a Q!=� , u D 0. Near the center of the Brillouin zone it is ! ' a Q! jqj, uf ' u '
˙a Q!. At the center it is ! D 0.

The dispersion relation (17.221) normalized to Q! D
p
	=� is shown in

Fig. 17.28 as a function of q a=2. The range of the first Brillouin zone is ��=2 �
q a=2 � C�=2. Remembering that the wavelength corresponding to q is � D 2�=q,
the interval near the origin, where the phase and group velocities are equal to each
other and independent of q, corresponds to the largest values of the vibrations’
wavelength. As some of these wavelengths fall in the audible range, the branch
is called acoustic branch.

17.9.6 Linear, Diatomic Chain

As a second example, consider a one-dimensional lattice made of Nc cells, with a
two-atom basis. Let the lattice be aligned with the x axis, and the corresponding
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characteristic vector be a D a i, a > 0, with i the unit vector of the x axis. Finally,
let the positions of the Nc C 1 nodes be 0, a, 2 a, : : :, n a, : : :. The translation vector
associated with the nth node is ln D n a i. Finally, it is assumed that the motion
of each atom is constrained to the x axis, and the periodic boundary conditions are
applied.

Due to the periodic boundary conditions the nodes of indices n D 0 and n D Nc

are actually the same node. As a one-dimensional case is considered, with Nb D 2,
the total number of atoms is N D 2Nc. The number of degrees of freedom of the
lattice is 2Nc, and the correspondence with the indices (17.124) used in the general
theory of Sect. 17.7 is

m ; n D 1; : : : ;Nc ; ˛ ; ˇ D 1; 2 ; u ;w D 1 : (17.224)

As two atoms per cell are present, one may assume that the equilibrium position
of one type of nucleus coincides with that of a node. Such nuclei will be given the
index ˛; ˇ D 1, while the other nuclei will be given the index ˛; ˇ D 2. In the
harmonic approximation the force acting on a nucleus is a linear function of the
displacements:

Fr D �

2NcX

kD1

crk hk : (17.225)

In real crystals, the interaction between nuclei becomes rapidly negligible as the
distance increases. Following the same reasoning as in Sect. 17.9.5, the dynamics
of a nucleus is tackled in a simplified manner by considering only the interaction
with the neighboring nuclei to be effective. This is equivalent to letting crk D 0

when jr � kj > 1. For a nucleus of type 1 the neighboring nuclei are of type 2. It
is assumed that the node numbering is such, that the neighbors of interest belong to
the cells of indices r � 1 and r. It follows

Fr;1 D �cr�1;2
r;1 hr�1;2 � cr;1

r;1 hr;1 � cr;2
r;1 hr;2 D Fr;1.hr�1;2 ; hr;1 ; hr;2/ : (17.226)

In the coefficients of (17.226), the left-lower index refers to the node being acted
upon by the force at the left-hand side, the left-upper index refers to the node whose
displacement contributes to such a force, the right-lower and right-upper indices
refer to the nucleus type. When the nuclei involved are in the equilibrium positions
it is Fr;1.0; 0; 0/ D 0. On the other hand, it is also Fr;1.ı; ı; ı/ D 0, with ı ¤ 0

an arbitrary displacement. In fact, when all displacements are equal the interatomic
distance remains the same as in the equilibrium condition. From Fr;1.ı; ı; ı/ D 0 it
follows

cr�1;2
r;1 C cr;1

r;1 C cr;2
r;1 D 0 : (17.227)



410 17 Periodic Structures

As, on the other hand, there is no special symmetry in the interaction of the nucleus
of indices r; 1 with the neighboring ones, it is in general (in contrast to the case of
a monatomic linear chain) cr�1;2

r;1 ¤ cr;2
r;1. Finally, the relation Fr;1.0; ı; 0/ D �cr;1

r;1 ı,

on account of the fact that .0; 0; 0/ is an equilibrium condition, shows that cr;1
r;1 > 0.

The calculation is then repeated for a nucleus of type 2, whose neighboring nuclei
are of type 1. Due to the node numbering chosen here, the neighbors of interest
belong to the cells of indices r and rC 1. As a consequence,

Fr;2 D �cr;1
r;2 hr;1 � cr;2

r;2 hr;2 � crC1;1
r;2 hrC1;1 D Fr;2.hr;1 ; hr;2 ; hrC1;1/ : (17.228)

By the same reasoning leading to (17.227) one finds

cr;1
r;2 C cr;2

r;2 C crC1;1
r;2 D 0 ; (17.229)

where, like in the case of (17.227), it is in general cr;1
r;2 ¤ crC1;1

r;2 . Finally, the

relation Fr;2.0; ı; 0/ D �cr;2
r;2 ı, on account of the fact that .0; 0; 0/ is an equilibrium

condition, shows that cr;2
r;2 > 0. Due to the lattice periodicity the coefficients do not

depend on the cell index, whence one lets

� 	1 D cr�1;2
r�1;1 D cr;2

r;1 D crC1;2
rC1;1 D : : : � 	2 D cr�1;2

r;1 D cr;2
rC1;1 D crC1;2

rC2;1 D : : :

(17.230)

Remembering the invariance relation cnˇw
m˛u D cm˛u

nˇw of the general theory one also
finds

cr;1
r;2 D cr;2

r;1 D �	1 ; crC1;1
r;2 D cr;2

rC1;1 D cr�1;2
r;1 D �	2 ; (17.231)

whence

cr;1
r;1 D cr;2

r;2 D 	1 C 	2 > 0 : (17.232)

Finally, from the relations Fr;1.0; 0; ı/ D 	1 ı, Fr;1.ı; 0; 0/ D 	2 ı, it follows that
	1 > 0, 	2 > 0, on account of the fact that .0; 0; 0/ is an equilibrium condition.
Letting �1, �2 be the masses of the two types of nuclei, the dynamics of the rth
nuclei is described by the equations

�1 Rhr;1 D �	1 .hr;1 � hr;2/ � 	2 .hr;1 � hr�1;2/ ; (17.233)

�2 Rhr;2 D �	1 .hr;2 � hr;1/ � 	2 .hr;2 � hrC1;1/ ; (17.234)

where the displacements have the form

hr;1.2/ D h0;1.2/ exp .i qra � i!t/ ; (17.235)
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thanks to the general theory. In (17.235), h0;1, h0;2 are complex constants, q r a D
q � lr D q i � r a i, and ! D !.q/. Replacing (17.235) in (17.233,17.234) and dividing
by hr;1, hr;2, respectively, yield

�1 !
2 h0;1 D 	1 .h0;1 � h0;2/C 	2 Œh0;1 � h0;2 exp.�i q a/� ; (17.236)

�2 !
2 h0;2 D 	1 .h0;2 � h0;1/C 	2 Œh0;2 � h0;1 exp.Ci q a/� : (17.237)

Defining A11, A12, A21, A22 such that

�1 A11 D 	1 C 	2 ; ��1 A12 D 	1 C 	2 exp.�i q a/ ; (17.238)

�2 A22 D 	1 C 	2 ; ��2 A21 D 	1 C 	2 exp.Ci q a/ ; (17.239)

the homogeneous algebraic system (17.236,17.237) transforms into

�
A11 � !

2
	

h0;1 C A12 h0;2 D 0 ; A21 h0;1 C
�
A22 � !

2
	

h0;2 D 0 : (17.240)

The trace T D A11 C A22 and determinant D D A11 A22 � A12 A21 of the matrix
formed by A11, A12, A21, A22 read

T D
�1 C �2

�1�2
.	1 C 	2/ ; D D 2

	1 	2

�1 �2
Œ1 � cos.q a/� : (17.241)

The eigenvalues !2 are found by solving the algebraic equation .!2/2�T !2CD D
0, whose discriminant is

�.q/ D T2 � 4D D

�
.	1 C 	2/ .�1 C �2/

�1 �2

�2
C 8

	1 	2

�1 �2
Œcos.q a/ � 1� :

(17.242)

Remembering that 	1; 	2 > 0, the minimum �m of (17.242) occurs for q D ˙�=2.
Letting K	 D .	1 � 	2/

2=.4 	1 	2/ � 0 and K� D .�1 � �2/
2=.4�1 �2/ � 0, one

finds the relation

�.q/ � �m D 16
	1 	2

�1 �2

��
1C K	

	 �
1C K�

	
� 1

�
� 0 ; (17.243)

showing that the discriminant is nonnegative. It follows that the eigenvalues !2 are
real, as should be. The solution of the algebraic equation provides two branches of
the dispersion relation to be found by taking the square root of

!2 D
T

2
˙
1

2

p
�.q/ : (17.244)
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Fig. 17.29 Normalized dispersion relation of a linear, diatomic chain with �1 D �2 D � and
	1 D 3 	2. The vertical lines, placed at a q=2 D ˙�=2, are the limits of the first Brillouin zone

Observing that �.0/ D T2, one finds that selecting the minus sign in (17.244)
provides the branch that contains ! D 0. As in the case of the monatomic chain,
this branch is called acoustic branch. In the other branch it is always ! > 0; in ionic
crystals like, e.g., sodium chloride, the frequencies typical of this branch are excited
by infrared radiation. For this reason, the branch is called optical branch.

The acoustic and optical branch of a linear, diatomic chain are shown
in Fig. 17.29, where �1 D �2 D � is assumed for simplicity. Letting
Q! D

p
.	1 C 	2/=�, one finds for the acoustic branch

!2ac

Q!2
D 1 �

�
1 � 4

	1 	2

.	1 C 	2/2
sin2


q a

2

��1=2
: (17.245)

At the center of the first Brillouin zone it is !ac D 0, while the maximum of !ac is
reached at the boundary qa=2 D ˙�=2 of the zone. For the optical branch one finds

!2op

Q!2
D 1C

�
1 � 4

	1 	2

.	1 C 	2/2
sin2


q a

2

��1=2
: (17.246)

At the center of the first Brillouin zone !op reaches its maximum. The minimum of
!op is reached at the boundary qa=2 D ˙�=2 of the zone. The discretization of q
due to the periodic boundary conditions, and the definitions of the phase and group
velocity, are the same as those already given for the monatomic lattice.
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From (17.245,17.246), the distance G D !op.q D ˙�=a/ � !ac.q D ˙�=a/
between the minimum of the optical branch and the maximum of the acoustic branch
fulfills the relation

G

Q!
D

�
1C
j	1 � 	2j

	1 C 	2

�1=2
�

�
1 �
j	1 � 	2j

	1 C 	2

�1=2
: (17.247)

It is G > 0 if 	2 ¤ 	1, whereas G D 0 if 	2 D 	1. The latter case is called
degenerate.

17.9.7 Analogies

It is interesting to note the analogy between the expression of the energy of the
electromagnetic field in vacuo, described as a superposition of modes (Eqs. (5.38,
5.40)), and that of a system of vibrating nuclei (Eqs. (3.48) and (17.118)). In essence,
the two expressions derive from the fact that in both cases the energy is a positive-
definite, symmetric quadratic form. In the case of the electromagnetic field the
form is exact because of the linearity of the Maxwell equations; for the vibrating
nuclei the form is approximate because of the neglect of the anharmonic terms
(Sect. 3.13.1).

Other analogies exist between the dispersion relation E.k/ of the electrons
subjected to a periodic potential energy, worked out in Sect. 17.6, and the dispersion
relation !.q/, worked out in Sect. (17.7). Both relations are even and periodic in the
reciprocal, scaled lattice; both have a branch structure, the difference being that the
number of branches of !.q/ is finite because the number of degrees of freedom of
the vibrating lattice is finite, whereas that of E.k/ is infinite.



Chapter 18
Electrons and Holes in Semiconductors
at Equilibrium

18.1 Introduction

The purpose of this chapter is to provide the equilibrium expressions of the electron
and hole concentrations in a semiconductor. For comparison, the cases of insulators
and conductors are discussed qualitatively, and the concepts of conduction band,
valence band, and generation of an electron-hole pair are introduced. The important
issue of the temperature dependence of the concentrations is also discussed. Then,
the general expressions of the concentrations in an intrinsic semiconductor are
worked out, followed by an estimate of the Fermi level’s position. Next, the equi-
librium expressions are worked out again, this time in the case where substitutional
impurities of the donor or acceptor type are present within the semiconductor. The
mechanism by which donor-type dopants provide electrons to the conduction band
and acceptor-type dopants provide holes to the valence band is explained. An impor-
tant outcome of the analysis is that the introduction of suitable dopants makes the
concentration of majority carriers practically independent of temperature, at least in
a range of temperatures of practical interest for the functioning of integrated circuits.
The simplifications due to the complete-ionization and nondegeneracy conditions
are illustrated, along with the compensation effect. Finally, the theory is extended
to the case of a nonuniform doping distribution, where the concentrations must
be calculated self-consistently with the electric potential by solving the Poisson
equation. The last section illustrates the band-gap narrowing phenomenon. In the
complements, after a brief description of the relative importance of germanium,
silicon, and gallium arsenide in the semiconductor industry, a qualitative analysis of
the impurity levels is carried out by an extension of the Kronig-Penney model, and
the calculation of the position of the impurity levels with respect to the band edges
is carried out.

© Springer International Publishing AG 2018
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18.2 Equilibrium Concentration of Electrons and Holes

The expressions worked out in this chapter are obtained by combining the informa-
tion about the band structure of the crystal under investigation, given in Chap. 17,
with that of the equilibrium distribution of fermions (Chap. 15). A qualitative
description is given first, starting from the simplified case where the structures of
the conduction and valence band are symmetric (Fig. 17.14).

Considering again a case where the Fermi level EF coincides with the gap’s
midpoint and MV m3=2

h D MC m3=2
e , let the only difference with respect to the

material of Fig. 17.14 be that the energy gap is larger (Fig. 18.1). Despite the fact
that the situations illustrated in the two figures may appear similar to each other,
it must be realized that a 2 � 1031 amplification factor, with respect to the scale of
g.E/ alone, is necessary to make the products g.E/P.E/, g.E/ Œ1 � P.E/� visible in
Fig. 18.1, in contrast to the 103 factor used in Fig. 17.14. In practice, for the material
of Fig. 18.1 the states in the conduction band are empty and those of the valence
band are full.1
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Fig. 18.1 Description of the particles’ population in the conduction and valence bands of an
insulator. To make them more visible, the products g.E/P.E/ and g.E/ Œ1 � P.E/� have been
amplified, with respect to g.E/ alone, by a factor 2 � 1031 (compare with Figs. 17.14 and 18.2).
The gap’s extension is arbitrary and does not refer to any specific material

1The curves of Figs. 17.14, 18.1 are drawn in arbitrary units. To better appreciate the difference in
a practical situation, one may use the equilibrium concentration of electrons in silicon at T D 300

K, which is about 1016 m�3. Thus, if Fig. 17.14 is thought of as representing silicon, the ratio of the
amplification factors used in Figs. 17.14 and 18.1 produces, in the latter, a concentration of about
one electron in 1000 km3.
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Fig. 18.2 Description of the electron population in the conduction band of a conductor. The
product g.E/P.E/ is drawn in the same scale as g.E/ alone (compare with Figs. 17.14 and 18.1).
The gap’s extension is arbitrary and does not refer to any specific material

Remembering that a band whose states are empty and, similarly, a band whose
states are fully occupied, do not provide any conduction, it turns out that the
electrical conductivity of a material like that of Fig. 18.1 is expected to vanish: the
material is an insulator.

A different case is found when the Fermi level is inside a band, like in the crystal
illustrated in Fig. 18.2. The name conduction band is given in this case to the band
where the Fermi level belongs; the band beneath is called valence band also in this
case. Due to the position of the Fermi level, the parabolic-band approximation is
grossly mistaken, and is used for a qualitative discussion only. In the figure, the
g.E/P.E/ product is drawn without using any amplification factor, thus showing
that the electron concentration in the conduction band is much larger than for a
semiconductor; the latter band, in turn, is the only one that contributes to conduction,
because the concentration of holes in the valence band is negligible. Due to the
much larger concentration of charges one expects that the conductivity of the crystal
under investigation be large; in fact, this is found to be the case, and the crystal is a
conductor.

In summary, the combination of a few factors: position of the Fermi level with
respect to the bands, gap’s width, and structure of the density of state, dictates the
presence of partially filled bands and the concentration of charges in them. Other
situations may occur besides those depicted in Figs. 17.14, 18.1, and 18.2, e.g., the
Fermi level may be positioned within the gap, but closer to one of the band edges
than to the other. They are illustrated in Sects. 18.4.1 and 18.4.2.

Another important issue is the dependence of the electron and hole populations
on temperature. Considering the case of a semiconductor first, the discussion is
carried out with reference to Figs. 17.14 and 15.3; the latter illustrates the tempera-
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ture dependence of the Fermi-Dirac statistics, using the simplifying hypothesis that
the position of the Fermi level does not change with temperature.2 Following the
reasoning carried out in Sect. 17.6.5, the temperature dependence of the effective
masses is neglected as well. When temperature increases, the occupation probability
of the conduction-band states increases, thus making the concentration of electrons
in the conduction band to increase; at the same time, the occupation probability
of the valence-band states decreases, thus making the concentration of holes in the
valence band to increase as well. This outcome is easily understood if one thinks
that the increase in temperature is achieved by transferring energy from an external
reservoir to the semiconductor; part of this energy is absorbed by the nuclei and
produces a change in the equilibrium distribution of phonons (Sect. 16.6), while the
other part is absorbed by the electrons and produces a redistribution of the latter
within the available energy states. The absorption of energy by electrons that, prior
to the temperature increase, belonged to valence-band states makes some of them
to transit to the conduction band. As each electron that makes a transition leaves a
hole in the valence band, this is an example of generation of an electron-hole pair
(compare with Sect. 17.6.6).

As shown in Sect. 19.5.5, the conductivity of a semiconductor is proportional
to �n n C �p p, where n is the concentration of conduction-band electrons, p the
concentration of valence-band holes, and �n, �p the electron and hole mobilities,
respectively. Mobilities account for the scattering events undergone by electrons
and holes during their motion within the material, and are found to decrease
when temperature increases. It follows that the decrease in mobility competes with
the increase of the concentrations in determining the temperature dependence of
conductivity in a semiconductor. In practice, the increase in the concentrations is
much stronger due to the exponential form of the Fermi-Dirac statistics, so that the
conductivity of a semiconductor strongly increases with temperature.3

The qualitative analysis of conductivity is the same for a conductor where, as
holes are absent, the conductivity is proportional to �n n. However, the outcome is
different; in fact, while�n, like that of a semiconductor, decreases when temperature
increases, the electron concentration n is unaffected by temperature. In fact, from
Fig. 18.2 one finds that the deformation of the Fermi-Dirac statistics due to a
temperature variation produces a rearrangement of the electron distribution within
the conduction band itself, and no hole-pair generations; as a consequence, the
energies of some electrons of the conduction band change, while the electron
number (hence the concentration n) does not. As mobility depends weakly on
temperature, the conductivity of a conductor turns out to slightly decrease as
temperature increases.

2The temperature dependence of the Fermi level is influenced by the shape of the density of states
( [70] and Prob. 15.2). Such a dependence is neglected in the qualitative discussion carried out here.
3This is a negative aspect because the electrical properties of the material are strongly influenced
by the ambient temperature. The drawback is absent in doped semiconductors, at least in the range
of temperatures that are typical of the operating conditions of semiconductor devices (Sect. 18.4.1).
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The calculation of the equilibrium electron concentration in the conduction band
of a semiconductor is based on (17.76), where the density of states in energy g
is replaced with the combined density of states in energy and volume � given
by (17.73). The concentration of electrons and the Fermi level are indicated here
with ni, EFi instead of n, EF to remark the fact that the semiconductor is free
from impurities (for this reason, the semiconductor is called intrinsic). From the
discussion of Sect. 17.6.5, the parabolic-band approximation is acceptable, so that
the combined density of states is given by (17.73).4 Remembering that the lower
edge of the conduction band is indicated with EC, and letting ECU be the upper edge
of the same band, one finds

ni D

Z ECU

EC

�.E/P.E/ dE '
Z C1

EC

p
2MC m3=2

e
p

E � EC=.�
2 „3/

expŒ.E � EFi/=.kB T/�C 1
dE ; (18.1)

where the upper integration limit has been replaced with C1 on account of the
fact that the integrand vanishes exponentially at high energies. Using the auxiliary
variables

�e D EC � EFi ; x D
E � EC

kB T
� 0 ; e D �

�e

kB T
; (18.2)

with x, e dimensionless, transforms (18.1) into

ni D

p
2

�2„3
MCm3=2

e .kB T/3=2
Z C1

0

p
x

exp.x � e/C 1
dx : (18.3)

From the definition (C.116) of the Fermi integral of order 1=2 it then follows

ni D NC ˚1=2.e/ ; NC D 2MC


 me

2� „2
kB T

�3=2
; (18.4)

with NC the effective density of states of the conduction band. Observing that ˚1=2
is dimensionless, the units of NC are m�3.

The concentration of holes in the valence band is determined in a similar manner,
namely, starting from an integral of the form (17.76), where P.E/ is replaced with
1�P.E/ and the density of states in energy g is replaced with the combined density
of states in energy and volume � . The concentration of holes is indicated here with
pi and, as for the electrons, the parabolic-band approximation is adopted, so that the
combined density of states is obtained from (17.74). Finally, 1 � P.E/ is expressed
through (17.77). Remembering that the upper edge of the valence band is indicated
with EV , and letting EVL be the lower edge of the same band, one finds

4As before, the band index is dropped from (17.73).
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pi D

Z Ev

EVL

�.E/ Œ1 � P.E/� dE '
Z EV

�1

p
2MV m3=2

h

p
EV � E=.�2 „3/

expŒ.EFi � E/=.kB T/�C 1
dE ;

(18.5)
where the lower integration limit has been replaced with �1 on account of the
fact that the integrand vanishes exponentially at low energies. Using the auxiliary
variables

�h D EFi � EV ; x D
EV � E

kB T
� 0 ; h D �

�h

kB T
; (18.6)

transforms (18.5) into

pi D

p
2

�2„3
MVm3=2

h .kB T/3=2
Z C1

0

p
x

exp.x � h/C 1
dx ; (18.7)

whence, introducing the effective density of states of the valence band,

pi D NV ˚1=2.h/ ; NV D 2MV


 mh

2� „2
kB T

�3=2
: (18.8)

18.3 Intrinsic Concentration

Equations (18.2,18.4) and (18.6,18.8) express the equilibrium concentrations of
electron and holes in a semiconductor in terms of temperature and of the distance of
the Fermi level from the edge EC of the conduction band or, respectively, from the
edge EV of the valence band. Obviously the two distances are not independent from
each other; from (18.2,18.6) one finds in fact

� .e C h/ D
�e C �h

kB T
D

EC � EFi C EFi � EV

kB T
D

EG

kB T
; (18.9)

where EG D EC � EV is the extension of the semiconductor’s gap, known from the
calculation of the band structure, or also from electrical or optical measurements. As
the band structure is influenced by temperature, the gap depends on temperature as
well (Sect. 17.6.5); such a dependence is important because it strongly influences
the concentration of electrons and holes. The results of gap’s calculations or
measurements, that show that EG decreases when temperature increases, are usually
rendered in compact form by means of interpolating expressions, an example of
which is

EG.T/ � EG0 � ˛
T2

T C ˇ
; (18.10)
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Fig. 18.3 Plot of the gap as a function of temperature for Ge, Si, and GaAs. The vertical line
marks T D 300 K

Table 18.1 Gap and average effective masses of silicon, germanium, and gallium arsenide

Material EG0 (eV) ˛ (eV/K) ˇ (K) EG.Ta/ me=m0 mh=m0

Si 1.160 7:02� 10�4 1,108 1.12 0.33 0.56

Ge 0.741 4:56� 10�4 210 0.66 0.22 0.31

GaAs 1.522 5:80� 10�4 300 1.43 0.68 0.50

Note: Symbol Ta indicates the room temperature

where EG0 is the gap’s width extrapolated at T D 0 and ˛ > 0, ˇ > 0 are material’s
parameters. Table 18.1 reports the parameters related to the gap’s width for Si, Ge,
and GaAs, along with the values of the average effective masses normalized to the
rest mass of the free electron [128, Chap. 2-3]. The plot of EG.T/ is shown in
Fig. 18.3 for the three semiconductors of Table 18.1.

Note that expressions (18.4,18.8) can be used only if the position of the
Fermi level is known; in fact, the latter (which is unknown as yet) enters the
definitions (18.2,18.6) of parameters e, h. To proceed one remembers that in
the T ! 0 limit the Fermi-Dirac statistics becomes discontinuous, specifically
it is P D 1 for E < EFi and P D 0 for E > EFi (Sect. 15.8.1); on the other
hand, the experimental evidence shows that in the T ! 0 limit the conductivity
of a semiconductor vanishes: this corresponds to a situation where all states of the
conduction band are empty while those of the valence bands are filled. In conclusion,
when T ! 0 the Fermi level is still positioned in the gap and it is ni D pi D 0. If,
starting from this situation, the temperature is brought again to some finite value
T > 0, such that some of the valence-band electrons transit to the conduction band,
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the total number of holes thus formed equals that of the transited electrons. Due to
the spatial uniformity of the material, the concentrations are equal to each other as
well; in conclusion it is5

ni D pi ; MC m3=2
e ˚1=2.e/ D MV m3=2

h ˚1=2.h/ ; (18.11)

the second of which has been obtained by deleting the common factors from (18.4)
and (18.8). Relations (18.9) and (18.11) are a set of two equations in the unknowns
e, h, whose solution allows one to determine the position of the Fermi level
through (18.2) or (18.6).

The second relation in (18.11) can also be exploited for carrying out an estimate
of e, h, basing on the values of the masses given in Table 18.1. To this purpose
one observes6 that the ratio MC m3=2

e =.MV m3=2
h / is about 1:4, 1:2, 0:8 for Si, Ge,

and GaAs, respectively, so that a crude estimate is obtained by letting ˚1=2.e/ '

˚1=2.h/. As the Fermi integral is a monotonic function of the argument (Sect. C.13),
it follows e ' h. Replacing from (18.2,18.6) yields EFi ' .EC C EV/=2, and
�e ' �h ' EG=2 > 0.

The usefulness of this estimate actually lies in that it simplifies the Fermi
integrals. Taking for instance the case of room temperature, it is kB Ta ' 26

meV; using the values of EG.Ta/ from Table 18.1 shows that EG � kBTa, whence
�e � 1 and �h � 1, so that the approximate expression (C.112) applies:
˚1=2./ ' exp./. In conclusion, (18.4,18.8) simplify to ni ' NC exp.e/, pi '

NV exp.h/, namely,

ni ' NC exp

�
�

EC � EFi

kB T

�
; pi ' NV exp

�
�

EFi � EV

kB T

�
: (18.12)

As the two concentrations are equal to each other it is customary to use the same
symbol ni for both; the product of the two expressions (18.12) combined with (18.9)
yields

ni pi D n2i ' NC NV exp.e C h/ D NC NV expŒ�EG=.kB T/� : (18.13)

The expression of the intrinsic concentration thus reads

ni '
p

NC NV exp

�
�

EG

2 kB T

�
; NC NV D

MC MV

2�3 „6
.me mh/

3=2 .kB T/3 :

(18.14)

5Note that the reasoning leading to the first relation in 18.11 is not limited to the case of the
parabolic-band approximation, but holds for a general form of the densities of states.
6Remembering the discussion carried out in Sect. 17.6.5 it is MC.Si/ D 6, MC.Ge/ D 4,
MC.GaAs/ D 1, MV D 2.
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Table 18.2 Intrinsic
concentrations of silicon,
germanium, and gallium
arsenide

Material NC.Ta/ (cm�3) NV .Ta/ (cm�3) ni.Ta/ (cm�3)

Si 2:82� 1019 1:05� 1019 7:61� 109

Ge 1:04� 1019 0:43� 1019 1:39� 1012

GaAs 4:45� 1019 0:99� 1019 2:40� 106

Note: In this field it is customary to express the concentrations
in cm�3 instead of m�3
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Fig. 18.4 Arrhenius plot of the intrinsic concentration in Ge, Si, and GaAs. The vertical line marks
T D 300 K

Its values at room temperature are listed in Table 18.2 along with those of
the effective densities of states, for Si, Ge, and GaAs. As for the temperature
dependence of ni one notes that, besides appearing in the exponent’s denominator in
the first relation of (18.14), the lattice temperature also influences the numerator
EG and the NC NV factor. Among these dependencies, that of the exponent’s
denominator is by far the strongest; it follows that a first-hand description of ni.T/
can be given by considering only the latter. This yields to the Arrhenius plots shown
in Fig. 18.4, where the relations ni.T/ reduce to straight lines. It is important to
note that despite the similarity of the effective densities of states for the three
semiconductors considered here (Table 18.2), the intrinsic concentrations differ by
orders of magnitude. This is due to the exponential dependence of ni on EG, which
amplifies the differences in EG (visible in Table 18.1) of the three semiconductors.

The estimate of the position of the Fermi level in an intrinsic semiconductor
carried out above has led to the conclusion that the Fermi integrals used for
calculating the intrinsic concentrations can be replaced with exponentials.7Such a

7This is not necessarily true for an extrinsic semiconductor, where suitable impurity atoms are
introduced into the semiconductor lattice (Sects. 18.4.1, 18.4.2).
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conclusion can now be exploited for a more precise calculation of the Fermi level’s
position, where the coefficients of (18.11) are kept. Using the exponentials in (18.11)
one finds

MC m3=2
e exp.e/ D MV m3=2

h exp.h/ : (18.15)

Taking the logarithm of both sides and using (18.9) yield h� e D hC e� 2 e D

logŒMC m3=2
e =.MV m3=2

h /�, whence

EC � EFi D
EG

2
C

kB T

2
log

 
MC m3=2

e

MV m3=2
h

!

: (18.16)

The second term at the right-hand side of (18.16) is the correction with respect to
the estimate carried out earlier. In the T ! 0 limit, the Fermi level in the intrinsic
semiconductors under consideration coincides with the gap’s midpoint. When the
temperature increases, if MC m3=2

e > MV m3=2
h the distance EC � EFi becomes larger,

that is, the Fermi level moves towards the valence band; the opposite happens if
MC m3=2

e < MV m3=2
h . For all practical purposes, considering that the argument of

the logarithm in (18.16) is close to unity and the coefficient kB T is always small
with respect to EG, the position of the Fermi level can be thought of as coinciding
with the gap’s midpoint.

18.4 Uniform Distribution of Impurities

As described in Chap. 23, the fabrication of integrated circuits (IC) requires the
introduction into the semiconductor material of atoms (called impurities or dopants)
belonging to specifically selected chemical species. Dopants are divided into two
classes, termed n-type and p-type. With reference to silicon (Si), the typical n-type
dopants are phosphorus (P), arsenic (As), and antimony (Sb), while the typical p-
type dopants are boron (B), aluminum (Al), gallium (Ga), and Indium (In). For a
qualitative introduction to the effects of dopants it is instructive to start with the
case of an intrinsic semiconductor; the analysis is based on the simplified picture in
which the original arrangement of the atoms in space, like that shown in Fig. 17.11,
is deformed in such a way as to become two dimensional. This representation,
shown in Fig. 18.5 with reference to silicon, is convenient for the description carried
out below. Each silicon atom has four electrons in the external shell, so that it can
form four covalent bonds8 with other identical atoms; each pair of lines connecting
two atoms in Fig. 18.5 stands for a pair of shared electrons. In the T ! 0 limit,
the electrons are permanently bound to the atoms because the energy necessary to

8In a covalent bond atoms share their outermost electrons.
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Fig. 18.5 Two-dimensional representation of the intrinsic silicon lattice. The upper-left part of the
figure shows the T ! 0 limit

ionize is not available; this situation is drawn in the upper-left part of the figure. If,
instead, the temperature is brought to some finite value T > 0 by transferring energy
from an external reservoir to the semiconductor, part of this energy is absorbed by
some of the electrons; the latter break the bond and become free to move within the
material.9 This situation is depicted in the lower-right part of Fig. 18.5, where the
free electrons are represented with black dots.

When an electron becomes free and departs from an atom, the unbalanced
positive charge left behind in the nucleus deforms the shape of the potential energy
in the vicinity of the nucleus itself. The deformation is such that the potential-energy
barrier that separates the nucleus from the neighboring ones becomes lower and
thinner; this, in turn, enhances the probability of tunneling across the barrier by an
electron belonging to a shared pair. Such a tunneling event restores the original pair,
but leaves an unbalanced positive charge behind; instead of considering it as the
motion of an electron from a complete to an incomplete pair, the tunneling event
is more conveniently described as the opposite motion of an empty state, that is, a
hole. This is indicated in Fig. 18.5 by the combinations of arrows and white dots.

The above description, based on a spatial picture of the material, is able to
provide a qualitative explanation of the existence of electrons and holes in a
semiconductor,10 and completes the description given in Sect. 18.3, that focuses on

9Remembering that an equilibrium situation is considered here, the contributions to the electric
current of these electrons cancel each other.
10A similar description could as well apply to a conductor. However, in such a case the barrier
deformation is small and tunneling does not occur.
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an energy picture. It also constitutes the basis for analyzing the case of a doped
semiconductor, as shown in the following sections.

18.4.1 Donor-Type Impurities

As explained in Chap. 23, when a dopant atom is introduced into the semiconductor
lattice, in order to properly act as a dopant it must replace an atom of the
semiconductor, namely, it must occupy a lattice position (substitutional impurity).
The concentration of the dopant atoms that are introduced into a semiconductor
is smaller by orders of magnitude than the concentration of the semiconductor
atoms themselves. As a consequence, the average distance between dopant atoms
within the lattice is much larger than that between the semiconductor atoms. Due to
this, when the band structure is calculated, the modification in the potential energy
introduced by the dopant atoms can be considered as a perturbation with respect to
the periodic potential energy of the lattice; the resulting band structure is therefore
the superposition of that of the intrinsic semiconductor and of a set of additional
states, whose characteristics will be described later. For the moment being, the
spatial description is considered, still using the two-dimensional picture, where it
is assumed that phosphorus is used as dopant material (Fig. 18.6).

As the dopant concentration is small with respect to the semiconductor’s, each
phosphorus atom is surrounded by silicon atoms. Phosphorus has five electrons
in the external shell: thus, it forms four covalent bonds with silicon, while the

Si

Si

Si

Si

Si Si

Si

Si

Si Si

Si

Si

Si

Si Si

Si

Si

Si

Si

P Si

Si

Si

Si

Si Si

Si

Si

Si Si

Si

Si

Si

Si Si

Si

Si

Si

Si

P

Fig. 18.6 Two-dimensional representation of the n-doped silicon lattice. The upper-left part of the
figure shows the T ! 0 limit
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remaining electron does not participate in any bond. In the T ! 0 limit, the
electrons are permanently bound to the atoms as in the intrinsic case; this situation is
drawn in the upper-left part of the figure, where the electron that does not form any
bond is represented, in a particle-like picture, as orbiting around the phosphorus
atom. The orbit’s radius is relatively large because the binding force is weak.11

The white dot inside the phosphorus atom indicates the positive nuclear charge that
balances the orbiting electron. If, instead, the temperature is brought to some finite
value T > 0 by transferring energy from an external reservoir to the semiconductor,
a fraction of the orbiting electrons breaks the bond and become free to move within
the material. At the same time, electrons belonging to shared pairs may also break
their bonds, like in intrinsic silicon. This situation is depicted in the lower-right part
of Fig. 18.6, where the free electrons are represented with black dots.

The deformation in the shape of the potential energy in the vicinity of a
phosphorus nucleus is different from that near a silicon nucleus. In the latter case,
the phenomenon is the same as in the intrinsic material: a series of tunneling events
takes place, leading to the motion of holes from one site to a neighboring one. This
is still represented by the combinations of arrows and white dots in Fig. 18.6. In the
case of phosphorus, instead, the barrier deformation is small and tunneling does not
occur: thus, the phosphorus atoms provide free electrons to the lattice, but no holes.

It is intuitive that the insertion of a prescribed amount of n-type dopants into the
semiconductor lattice provides a method for controlling the number of free electrons
and, through them, the material’s conductivity. Moreover, if the ionization of the
dopant atoms is not influenced by temperature, at least in a range of temperatures
of practical interest, and the number of electrons made available by the dopant
is dominant with respect to that provided by the intrinsic semiconductor, the
drawback mentioned in Sect. 18.2 is eliminated: conductivity becomes temperature
independent and its value is controlled by the fabrication process. This analysis is
better specified below, starting from the consideration of the density of states in an
n-type semiconductor, shown in Fig. 18.7.

Concentration of Ionized Impurities (Donor Type)

Atoms like that of phosphorus contribute electrons to the lattice; for this reason they
are also called donors. The concentration of donors is indicated with ND and, in
this section, is assumed to be uniform in space. When donor atoms are present, the
equilibrium concentrations of electrons and holes are different from those of the
intrinsic case; they are indicated with n and p, respectively, and are termed extrinsic
concentrations. Their derivation is identical to that of the intrinsic case and yields

n D NC ˚1=2.e/ ; p D NV ˚1=2.h/ ; (18.17)

11In a more precise, quantum-mechanical description the electron is described as a stationary wave
function extending over several lattice cells.
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Fig. 18.7 Density of states in an n-doped semiconductor. The gap’s extension is arbitrary and does
not refer to any specific material

with NC, NV given by (18.4,18.8), respectively, and

e D �
�e

kB T
D �

EC � EF

kB T
; h D �

�h

kB T
D �

EF � EV

kB T
: (18.18)

The above expression of e, h is similar to (18.2,18.6), the only difference being
that the intrinsic Fermi level EFi is replaced here with the extrinsic Fermi level EF.

In addition to the electrons of the conduction band and holes of the valence band,
a third population of particles must be accounted for, namely, that associated with
the dopants. Let NCD � ND be the spatially constant concentration of the ionized
donors.12 The difference nD D ND � NCD is the concentration of the donor atoms
that have not released the orbiting electron to the lattice. Equivalently, nD may be
thought of as the concentration of orbiting electrons that have not been released;
such a concentration is given by

nD D

Z

�ED

�D.E/PD.E/ dE ; (18.19)

where �D.E/ is the combined density of states produced by the donor atoms, �ED

the energy range where �D.E/ ¤ 0, and PD.E/ the occupation probability of such

12A phosphorous atom that has not released the orbiting electron is electrically neutral; when the
orbiting electron breaks the bond and becomes free to move within the lattice, the atom becomes
positively ionized. The symbol NC

D reminds one of that. A second ionization does not occur
because the energy necessary for it is too high.
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Fig. 18.8 Schematic
representation of the donor
states

ED

EV

EC

EVL

EG

ECU

states. The form of �D depends on the concentration ND; for low or moderately
high values of the donor concentration, �D has the form shown in Fig. 18.7. Such
a density of states can be approximated by a Dirac delta centered at an energy ED,
called donor level, positioned within the gap at a small distance from the edge EC

of the conduction band:

�D.E/ ' ND ı.E � ED/ : (18.20)

The coefficient in (18.20) is such that (18.19) yields nD D ND when PD D 1. The
distance of the donor level from the minimum of the conduction band is calculated
in Sect. 18.7.3; for the typical n-type dopants used with silicon it is EC � ED '

0:033 eV. Another important feature of the donor levels (still in the case of low
or moderately high values of the impurity concentration) is that they are localized
in space, as schematically illustrated in Fig. 18.8. For this reason, the Fermi-Dirac
statistics describing the equilibrium distribution of the electrons within the donor
states is slightly different from that used for the band electrons and reads

PD.E/ D
1

.1=dD/ expŒ.E � EF/=.kB T/�C 1
; (18.21)

with dD the donors’ degeneracy coefficient ( [33, Sect. 3.4] and Prob. 18.1). In sil-
icon, germanium, and gallium arsenide it is dD D 2 [128, Sect. 2-4]. Combin-
ing (18.19) with (18.20) and (18.21) yields nD D ND PD.ED/, namely,

NCD D ND Œ1 � PD.ED/� D
ND

dD expŒ.EF � ED/=.kB T/�C 1
: (18.22)

Like in the intrinsic case discussed in Sect. 18.3, expressions (18.17,18.22) can
be used only if the position of the Fermi level is known. To proceed one considers
again the T ! 0 limit, where the Fermi-Dirac statistics becomes discontinuous and
the experimental evidence shows that the conductivity of a doped semiconductor
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vanishes: this corresponds to a situation where all states of the conduction band
are empty, those of the valence bands are filled, and the donor states are filled as
well (in other terms, no dopant atoms are ionized). In conclusion, when T ! 0

the Fermi level of an n-doped semiconductor is positioned between ED and EC, so
that n D p D NCD D 0. If, starting from this situation, the temperature is brought
again to some finite value T > 0, such that some of the valence-band electrons and
some of the electrons belonging to the dopant atoms transit to the conduction band,
the total number of holes and ionized donors thus formed is equal to that of the
transited electrons. Due to the spatial uniformity of the material, the same relation
holds among the concentrations, so that

n D pC NCD ; (18.23)

whose limit for ND ! 0 yields (18.11) as should be. Now, inserting (18.17,18.22)
into (18.23) after letting D D .ED � EC/=.kB T/ < 0 provides

NC ˚1=2.e/ D NV ˚1=2.h/C
ND

dD exp.e � D/C 1
: (18.24)

The latter, along with the relation e C h D �EG=.kB T/, forms a system in
the two unknowns e, h, whose solution determines the position of EF with
respect to the band edges EC and EV at a given temperature T > 0 and donor
concentration ND. It is easily found that for a fixed temperature, the argument
e D .EF � EC/=.kB T/ increases when ND increases. In fact, using the short-hand
notation f .e/ D dD exp.e � D/C 1 > 1 one finds from (18.24)

dND

de
D ND

f � 1

f
C f

�
NC

d˚1=2.e/

de
� NV

d˚1=2.h/

dh

dh

de

�
; (18.25)

where the right-hand side is positive because dh=de D �1 and ˚1=2 is a monoton-
ically increasing function of the argument (Sect. C.13). In the intrinsic case ND D

0 it is EF D EFi and e < 0; as ND increases, the Fermi level moves towards
EC, thus making e less and less negative. At extremely high concentrations of the
donor atoms, the Fermi level may reach EC and even enter the conduction band, thus
making e positive. As n, p, and NCD are nonnegative, it is intuitive that an increasing
concentration of donor atoms makes n larger than p; for this reason, in an n-doped
semiconductor electrons are called majority carriers while holes are called minority
carriers.13

The behavior of the Fermi level with respect to variations in temperature, at a
fixed dopant concentration, cannot be discussed as easily as that with respect to
the dopant variations, because (18.24) is not expressible in the form T D T.EF/

13The electrons of the conduction band and the holes of the valence band are collectively indicated
as carriers.
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or its inverse. The analytical approach is made easier when some approximations
are introduced into (18.24), as shown below. From a qualitative standpoint, one
may observe that at very high temperatures the concentration of electron-hole
pairs generated by the semiconductor prevails over the concentration of electrons
provided by the dopant atoms, so that position of the Fermi level must be close to
the intrinsic one; in contrast, when T ! 0 the Fermi level is positioned between
ED and EC as remarked above. In conclusion, for an n-doped semiconductor one
expects that dEF=dT < 0.

In view of further elaborations it is convenient to associate with the Fermi level
an electric potential 'F, called Fermi potential, defined by

q'F D EFi � EF ; (18.26)

with q > 0 the elementary charge. In an n-type semiconductor it is EF > EFi; thus,
the Fermi potential is negative.

Complete Ionization and Nondegenerate Condition (Donor Type)

When the Fermi level’s position and temperature are such that

e � D < �1 ; EF < ED � kB T ; (18.27)

the exponential term at the right-hand side of (18.22) is negligible with respect to
unity, so that NCD ' ND. This condition is indicated with complete ionization. Note
that, since D < 0, the complete-ionization condition in an n-doped semiconductor
also implies e < �1; as a consequence, the approximation ˚1=2.e/ ' exp.e/

for the Fermi integral holds (Sect. C.13). Moreover, it is h < e < �1 because
the Fermi level belongs to the upper half of the gap; thus, the same approximation
applies to ˚1=2.h/ as well. When both equilibrium concentrations n and p are
expressible through the approximation ˚1=2./ ' exp./, the semiconductor is
called nondegenerate and the balance relation (18.24) reduces to

NC exp

�
�

EC � EF

kB T

�
' NV exp

�
�

EF � EV

kB T

�
C ND : (18.28)

From the exponential expressions of n and p it follows, using (18.13),

n p ' NC NV exp

�
�

EC � EV

kB T

�
D NC NV exp

�
�

EG

kB T

�
D n2i : (18.29)

Letting NCD D ND in (18.23) and multiplying both sides of it by n provides, thanks
to (18.29), an easy algebraic derivation of the electron and hole concentrations in
the nondegenerate and spatially uniform case:



432 18 Electrons and Holes in Semiconductors at Equilibrium

0 2 4 6 8
1 / T (arbitrary units)

-6

-4

-2

0

2

4

lo
g 

n 
(n

 in
 a

rb
itr

ar
y 

un
its

)

Fig. 18.9 Arrhenius plot of n.T/ for an n-type semiconductor, in arbitrary units

n2 � ND n � n2i D 0 ; n D
ND

2
C

s
N2

D

4
C n2i ; p D

n2i
n
: (18.30)

The range of validity of (18.30) is quite vast; in silicon at room temperature the
approximation (18.28) holds up to ND ' 1017 cm�3; also, even for the lowest
doping concentrations (about 1013 cm�3) it is ND � ni, so that (18.30) can
further be approximated as n ' ND, p ' n2i =ND. Thus, the concentration of
majority carriers turns out to be independent of temperature, while that of minority
carriers still depends on temperature through ni. Assuming by way of example
ND D 10

15 cm�3 and taking a temperature such that ni D 10
10 cm�3 (compare with

Table 18.2), one finds n ' 1015 cm�3, p ' 105 cm�3. This result is very important
because it demonstrates that the concentration of minority carriers is negligible; as
anticipated above, the inclusion of a suitable concentration of dopants makes the
material’s conductivity independent of temperature. The Arrhenius plot of n.T/ for
an n-type semiconductor is shown in Fig. 18.9 in arbitrary units. The left part of
the curve, called intrinsic range, corresponds to the situation where the intrinsic
concentration prevails due to the high temperature; the plateau, called saturation
range, corresponds to the situation where n ' ND; finally, the right part of the curve,
called freeze-out range, corresponds to the case where n ' NCD < ND, with NCD
decreasing as temperature decreases. From the practical standpoint, the important
outcome is that the saturation region covers the range of temperatures within which
the integrated circuits operate.14

14For instance, for silicon with ND D 1015 cm�3 the saturation region ranges from Tmin ' 125 K
to Tmax ' 370 K [128, Sect. 2–4].
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Coupling n D ND with the expression of n given by the left-hand side of (18.28)
and considering the values of NC given in Table 18.2 yield

EF D EC � kB T log

�
NC

ND

�
< EC ; (18.31)

whence, as anticipated,

dEF

dND
D

kB T

ND
> 0 ;

dEF

dT
D kB log

�
ND

NC

�
D �

EC � EF

T
< 0 : (18.32)

From definition (18.26) of the Fermi potential it follows EC � EF D EC � EFi C

q'F; replacing the latter in n D NC expŒ�.EC � EF/=.kB T/� yields an alternative
expression of the equilibrium concentration and of the Fermi potential itself,

n D ni exp

�
�

q'F

kB T

�
; 'F D �

kB T

q
log

�
ND

ni

�
< 0 : (18.33)

18.4.2 Acceptor-Type Impurities

The analysis carried out in Sect. 18.4.1 is repeated here in a shorter form with refer-
ence to a substitutional impurity of the acceptor type like, e.g., boron (Fig. 18.10).

As the dopant concentration is small with respect to the semiconductor’s, each
boron atom is surrounded by silicon atoms. Boron has three electrons in the
external shell: while these electrons form covalent bonds with silicon, the remaining
unsaturated bond deforms the shape of the potential energy in the vicinity of the
boron atom. This attracts an electron from a shared pair of a neighboring silicon. In
other terms, to form four covalent bonds with silicon, boron generates an electron-
hole pair as shown in the figure. In the T ! 0 limit, the holes are permanently
bound to the atoms as in the intrinsic case; this situation is drawn in the upper-left
part of the figure, where the hole is represented, in a particle-like picture, as orbiting
around the boron atom. The orbit’s radius is relatively large because the binding
force is weak. The black dot inside the boron atom indicates the negative charge
that balances the orbiting hole. If, instead, the temperature is brought to some finite
value T > 0 by transferring energy from an external reservoir to the semiconductor,
a fraction of the orbiting holes break the bond and become free to move within the
material. At the same time, electrons belonging to shared pairs may also break their
bonds, like in intrinsic silicon. This situation is depicted in the lower-right part of
Fig. 18.10, where the free holes are represented with white dots. The negative charge
within the boron atom remains trapped within the atom itself: thus, the boron atoms
provide free holes to the lattice, but no electrons.
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Fig. 18.10 Two-dimensional representation of the p-doped silicon lattice. The upper-left part of
the figure shows the T ! 0 limit

The analysis is better specified below, starting from the consideration of the
density of states in a p-type semiconductor, shown in Fig. 18.11.

Concentration of Ionized Impurities (Acceptor Type)

Atoms like that of boron trap electrons from the lattice; for this reason they are also
called acceptors. The concentration of acceptors is indicated with NA and, in this
section, is assumed to be uniform in space. When acceptor atoms are present, the
equilibrium concentrations of electrons and holes are different from those of the
intrinsic semiconductor; their derivation is identical to that of the intrinsic or n-type
case and yields again (18.17), with NC, NV given by (18.4,18.8), respectively, and
e, h given by (18.18).

In addition to the electron of the conduction band and holes of the valence band,
a third population of particles must be accounted for, namely, that associated with
the dopants. Let N�A � NA be the spatially constant concentration of the acceptors
that have released the orbiting hole to the lattice.15 Equivalently, N�A may be thought
of as the concentration of electrons that have been captured by the acceptor atoms;

15A boron atom that has not released the orbiting hole is electrically neutral; when the orbiting hole
breaks the bond and becomes free to move within the lattice, the atom becomes negatively ionized,
because the release of a hole is actually the capture of a valence-band electron by the boron atom.
The symbol N�

A reminds one of that. The release of a second hole does not occur.
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Fig. 18.11 Density of states in a p-doped semiconductor. The gap’s extension is arbitrary and does
not refer to any specific material

N�A D
Z

�EA

�A.E/PA.E/ dE ; (18.34)

where �A.E/ is the combined density of states produced by the acceptor atoms,�EA

the energy range where �A.E/ ¤ 0, and PA.E/ the occupation probability of such
states. The form of �A depends on the concentration NA; for low or moderately high
values of the acceptor concentration, �A has the form shown in Fig. 18.11. Such a
density of states can be approximated by a Dirac delta centered at an energy EA,
called acceptor level, positioned within the gap at a small distance from the edge EV

of the conduction band:

�A.E/ ' NA ı.E � EA/ : (18.35)

The coefficient in (18.35) is such that (18.34) yields N�A D NA when PA D 1. The
distance of the acceptor level from the maximum of the valence band is calculated
in Sect. 18.7.3; for the typical p-type dopants used with silicon it is EA �EV ' 0:05

eV for the heavy holes and EA � EV ' 0:016 eV for the light holes. Another
important feature of the acceptor levels (still in the case of low or moderately
high values of the impurity concentration) is that they are localized in space, as
schematically illustrated in Fig. 18.12. For this reason, the Fermi-Dirac statistics
describing the equilibrium distribution of the electrons within the acceptor states is
slightly different from that used for the band electrons and reads

PA.E/ D
1

.1=dA/ expŒ.E � EF/=.kB T/�C 1
; (18.36)
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Fig. 18.12 Schematic
representation of the acceptor
states
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with dA the acceptors’ degeneracy coefficient. In silicon, germanium, and gallium
arsenide it is dA D 4 [128, Sect. 2–4]. Combining (18.34) with (18.35) and (18.36)
yields

N�A D
NA

.1=dA/ expŒ.ED � EF/=.kB T/�C 1
: (18.37)

The position of the Fermi level is calculated by the same token as for the n-type
dopant and is based on the balance relation

nC N�A D p ; (18.38)

whose limit for NA ! 0 yields (18.11) as should be. Now, inserting (18.17,18.37)
into (18.38) after letting A D .EV � EA/=.kB T/ < 0, provides

NC ˚1=2.e/C
NA

.1=dA/ exp.h � A/C 1
D NV ˚1=2.h/ : (18.39)

The latter, along with the relation e C h D �EG=.kB T/, forms a system in
the two unknowns e, h, whose solution determines the position of EF with
respect to the band edges EC and EV at a given temperature T > 0 and acceptor
concentration NA. It is easily found that for a fixed temperature, the argument
h D .EV �EF/=.kB T/ increases when NA increases. The demonstration is identical
to that leading to (18.25). In the intrinsic case NA D 0 it is EF D EFi and h < 0;
as NA increases, the Fermi level moves towards EV , thus making h less and less
negative. At extremely high concentrations of the acceptor atoms, the Fermi level
may reach EV and even enter the valence band, thus making h positive. As n, p,
and N�A are nonnegative, it is intuitive that an increasing concentration of acceptor
atoms makes p larger than n; for this reason, in a p-doped semiconductor holes are
called majority carriers while electrons are called minority carriers.
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To discuss from a qualitative standpoint the dependence of the Fermi level
with respect to variations in temperature one may observe that, like in an n-
doped material, at very high temperatures the concentration of electron-hole pairs
generated by the semiconductor prevails over the concentration of holes provided
by the dopant atoms, so that position of the Fermi level must be close to the intrinsic
one; in contrast, when T ! 0 the Fermi level is positioned between EV and EA. In
conclusion, for a p-doped semiconductor one expects that dEF=dT > 0. Also, in a
p-type semiconductor it is EF < EFi; thus, the Fermi potential (18.26) is positive.

Complete Ionization and Nondegenerate Condition (Acceptor Type)

When the Fermi level’s position and temperature are such that

h � A < �1 ; EA < EF � kB T ; (18.40)

the exponential term at the right-hand side of (18.37) is negligible with respect to
unity, so that N�A ' NA. This condition is indicated with complete ionization. Note
that, since A < 0, the complete-ionization condition in a p-doped semiconductor
also implies h < �1; as a consequence, the approximation ˚1=2.h/ ' exp.h/

for the Fermi integral holds (Sect. C.13). Moreover, it is e < h < �1 because
the Fermi level belongs to the lower half of the gap; thus, the same approximation
applies to ˚1=2.e/ as well. In conclusion, the semiconductor is nondegenerate and
the balance relation (18.39) reduces to

NC exp

�
�

EC � EF

kB T

�
C NA ' NV exp

�
�

EF � EV

kB T

�
: (18.41)

From the exponential expressions of n and p it follows, like in the n-type case,
that the product of the equilibrium concentrations fulfills (18.29). The algebraic
derivation of the electron and hole concentrations in the nondegenerate and spatially
uniform case is also similar:

p2 � NA p � n2i D 0 ; p D
NA

2
C

s
N2

A

4
C n2i ; n D

n2i
p
; (18.42)

with the further approximation p ' NA, n ' n2i =NA holding within the low and
moderately high range of dopant concentrations, and around room temperature.

Coupling p D NA with the expression of p given by the left-hand side of (18.41)
and considering the values of NV given in Table 18.2 yield

EF D EV C kB T log

�
NV

NA

�
> EV ; (18.43)
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whence, as anticipated,

dEF

dNA
D �

kB T

NA
< 0 ;

dEF

dT
D kB log

�
NV

NA

�
D

EF � EV

T
> 0 : (18.44)

From definition (18.26) of the Fermi potential it follows EF � EV D EFi � EV �

q'F; replacing the latter in p D NV expŒ�.EF � EV/=.kB T/� yields an alternative
expression of the equilibrium concentration and of the Fermi potential itself,

p D ni exp

�
q'F

kB T

�
; 'F D

kB T

q
log

�
NA

ni

�
> 0 : (18.45)

18.4.3 Compensation Effect

The architecture of semiconductor devices is such that donor and acceptor dopants
are present in the same region (Fig. 18.13). Letting ND, NA be the corresponding
concentrations, still assumed uniform in space, the equilibrium concentrations of
electrons and holes are expressed by (18.17) as in the other cases discussed above,
with NC, NV and e, h given by (18.4,18.8) and (18.18), respectively. In turn, the
concentrations of ionized donors and acceptors are given by (18.22) and (18.37),
respectively. The balance equation reads

nC N�A D pC NCD ; (18.46)

namely, NC ˚1=2.e/CNA PA.EA/ D NV ˚1=2.h/CND Œ1 � PD.ED/�. One observes
that if NCD D N�A , the balance equation (18.46) coincides with that of an intrinsic
semiconductor (compare with (18.11)). As a consequence, the position of the Fermi

Fig. 18.13 Schematic
representation of a
semiconductor with both
donor and acceptor states
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EVL

EG

ECU

EA
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level is given by (18.16), and the electrons released by the donor atoms are trapped
by the acceptor ones. In this case the semiconductor is fully compensated. If,
instead, it is NCD ¤ N�A , the semiconductor is partially compensated, and one must
distinguish between two cases of the balance relation (18.46), depending on the sign
of the net ionized impurity concentration N D NCD � N�A . In the first case,

N > 0 ; n D pC N ; (18.47)

the balance relation is identical to that of an n-doped semiconductor (compare
with (18.23)), with an effective donor-dopant concentration equal to N. In the second
case,

N < 0 ; nC jNj D p ; (18.48)

the balance relation is identical to that of a p-doped semiconductor (compare
with (18.38)), with an effective acceptor-dopant concentration equal to jNj. In the
nondegenerate case, (18.29) still holds. If complete ionization also occurs, then
N D ND � NA; when the donor-type dopant prevails, electrons are the majority
carriers, and the same calculation as that leading to (18.30) yields

n D
N

2
C

r
N2

4
C n2i : (18.49)

If N � ni, then

n ' N ; p '
n2i
N
; 'F D �

kB T

q
log

�
N

ni

�
< 0 : (18.50)

If, on the contrary, the acceptor-type dopant prevails, holes are the majority carriers,
and the same calculation as that leading to (18.42) yields

p D �
N

2
C

r
N2

4
C n2i : (18.51)

If �N � ni, then

p ' �N D jNj ; n '
n2i
jNj

; 'F D
kB T

q
log

�
jNj

ni

�
> 0 : (18.52)
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18.5 Nonuniform Distribution of Dopants

This section deals with the more realistic case where the donor concentration ND,
the acceptor concentration NA, or both, depend on position. A qualitative reasoning
shows that the balance equations (18.23), (18.38), or (18.46) do not hold anymore.
To show this, consider the simple case where only the n-type dopant is present,
ND D ND.r/, NA D 0, and select two nearby positions, say, r1 and r2, in the
limiting case T ! 0; then, let the temperature increase such that a fraction of the
donor atoms ionizes. If ND.r1/ ¤ ND.r2/, the numbers of electrons transiting to the
conduction band at r1 and r2 is different, so that the concentration in one position,
say, r1 is larger than that in the other; thus, some electrons diffuse16 from the former
position to the latter. On the other hand, as the position of the positive charges
within the ionized donors is fixed, the spatial rearrangement of the conduction-band
electrons unbalances the negative charges with respect to the positive ones, so that
the local charge density differs from zero. The same reasoning applies when both
donor and acceptor dopants are present, so that in a general nonuniform case it is

%.r/ D q
�
p.r/ � n.r/C NCD .r/ � N�A .r/

�
¤ 0 : (18.53)

A nonvanishing charge density produces in turn an electric field E D E.r/ whose
action balances the diffusion. In conclusion, the equilibrium condition is kept by
an exact balance of the two transport mechanisms. Considering that the equilibrium
condition is time-independent, the Maxwell equations in the semiconductor reduce
to "sc div E D %, with E D � grad' (Sect. 4.4), ' and "sc being the electric potential
and semiconductor permittivity, respectively.17 In other terms, the electric field due
to the nonuniformity of % is found by solving the Poisson equation.

The effect onto the total energy of the electrons due to the presence of an electric
field also influences the statistical distribution of the electrons in the energy states.
It will be demonstrated in Sect. 19.2.2 that the statistical distribution to be used here
is a modified form of the Fermi-Dirac statistics where E is replaced with E�q'.r/:

P.E; r/ D
1

exp Œ.E � q'.r/ � EF/ = .kB T/�C 1
(18.54)

Similarly, (18.21) and (18.36) become

PD.A/.E; r/ D
1

.1=dD.A// expŒ.E � q'.r/ � EF/=.kB T/�C 1
; (18.55)

16Diffusive transport is introduced in Sect. 19.3.3.
17Note that the material’s permittivity must be used here instead of vacuum’s. This is coherent
with the use of charge density and, in a nonequilibrium situation, of current density, which entail
averages over volumes of space.



18.5 Nonuniform Distribution of Dopants 441

Note that the calculations leading to the concentrations are carried out in the same
manner as in Sects. 18.4.1,18.4.2, because they involve integrals over energy only.
As a consequence, (18.17) generalizes to

n.r/ D NC ˚1=2 .e.r// ; e.r/ D �
�e.r/
kB T

D �
EC � EF � q'.r/

kB T
; (18.56)

and

p.r/ D NV ˚1=2 .h.r// ; h.r/ D �
�h.r/
kB T

D �
EF C q'.r/ � EV

kB T
: (18.57)

Similarly, (18.22,18.34) become

NCD .r/ D ND.r/ Œ1 � PD.ED; r/� ; N�A .r/ D NA.r/PA.EA; r/ : (18.58)

The summands at the right-hand side of (18.53) depend on position through the
electric potential ' and also through the explicit dependence of ND and NA; as a
consequence, inserting the expression of the charge density into the right-hand side
of the Poisson equation yields

� "sc r
2' D %.'; r/ ; (18.59)

namely, a second-order, partial differential equation in the unknown ', with
position-dependent coefficients. The equation must be supplemented with suitable
boundary conditions.18 Equation (18.59) is the generalization of the balance
equation (18.46) to the nonuniform case: in the case of (18.46), the problem is
algebraic and yields EF, whereas in the case of (18.59) it is differential and yields
EF C q'. After solving (18.59) one reconstructs n, p, NCD , and N�A at each point
through (18.56), (18.57), and (18.58). In the nondegenerate case, (18.56) becomes

n D n.0/ exp

�
q'

kB T

�
; n.0/ D NC exp

�
EF � EC

kB T

�
D ni exp

�
�q'F

kB T

�
;

(18.60)
with n.0/ the value of the electron concentration in the position(s) where ' D 0.
The last expression of n.0/ is obtained by combining definition (18.26) with the first
relation in (18.12). Similarly,

p D p.0/ exp

�
�q'

kB T

�
; p.0/ D NV exp

�
EV � EF

kB T

�
D ni exp

�
q'F

kB T

�
:

(18.61)

18Such boundary conditions must be coherent with the choice of the zero point of the total energy.
An example is given in Sect. 21.2.
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From (18.60,18.61) one finally obtains

n D ni exp

�
q .' � 'F/

kB T

�
; p D ni exp

�
q .'F � '/

kB T

�
: (18.62)

One observes that (18.29) still holds, namely, n p D n.0/ p.0/ D n2i : in the
nondegenerate case, the equilibrium product does not depend on position. If
complete ionization also occurs, then NCD .r/ D ND.r/, N�A .r/ D NA.r/: the ionized-
dopant concentrations do not depend on the electric potential.

18.6 Band-Gap Narrowing

When the dopant concentration is large, the density of states associated with the
dopant atoms can no longer be described as in Figs. 18.7, 18.11. Rather, considering
by way of example an n-type dopant, the form of the density of states is similar
to that shown in Fig. 18.14, namely, it overlaps the lower portion of the conduction
band forming the so-called impurity band. In addition, the dopant atoms are close
to each other, to the extent that the probability of tunneling of an electron, from
a neutral to a nearby, ionized donor atom, is not negligible (Sect. 18.7.2). In a
nonequilibrium condition, the tunneling electrons give rise to a current density;
the phenomenon is referred to as impurity-band conduction. From the practical
standpoint, the union of the conduction and impurity bands is viewed as a broader
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Fig. 18.14 Density of states in an n-doped semiconductor, where the high concentration of the
dopant produces the band-gap narrowing. The gap’s extension is arbitrary and does not refer to any
specific material
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conduction band whose lower edge is shifted with respect to the undoped, or
moderately doped case; the effect is also called band-gap narrowing. The analysis is
similar when a large concentration of acceptor atoms is present. In conclusion, band-
gap narrowing is in general produced by the lowering of the conduction-band edge,
�EC.r/ > 0, combined with the lifting of the valence-band edge, �EV.r/ > 0.
Both quantities are position dependent because in general the dopant concentrations
are such. Indicating with ECi, EVi the lower edge of the conduction band and,
respectively, the upper edge of the valence band in the undoped or moderately doped
case, and observing that the variations due to heavy doping are positive, one has for
the actual positions of the band edges:

EC.r/ D ECi ��EC.r/ ; EV.r/ D EVi C�EV.r/ ; (18.63)

whence

EG.r/ D EGi ��EG.r/ ; EGi D ECi � EVi ; �EG D �EC C�EV > 0 :

(18.64)
To calculate the carrier concentrations when band-gap narrowing is present, one

must replace EC with ECi � �EC.r/ in the second relation of (18.56), and EV with
EVi C�EV.r/ in the second relation of (18.57), to find

e.r/ D �
ECi � EF � q'.r/

kB T
C
�EC.r/

kB T
; (18.65)

h.r/ D �
EF � EVi C q'.r/

kB T
C
�EV.r/

kB T
: (18.66)

Band-gap narrowing makes e, h to increase with respect to the moderately doped
case; as a consequence, the equilibrium carrier concentrations n and p are larger
as well. As mentioned in Sect. 18.3, band gap is measured by either electrical or
optical methods. The results of gap’s measurements, that show that EG decreases
when the dopant concentration exceeds some limiting value Nr, are usually rendered
in compact form by means of interpolating expressions, an example of which is, for
silicon [125], [126],

�EG D Er



F C

p
F2 C 0:5

�
; F D log

�
ND C NA

Nr

�
; (18.67)

with Er D 9 meV, Nr D 1017 cm�3. The function described by (18.67) is shown
in normalized form in Fig. 18.15. Expressions like (18.67) describe the cumulative
effect of the total doping concentration, without distinguishing between the donor
or acceptor contribution to band-gap narrowing. For this reason, when band-gap
narrowing is accounted for in numerical calculations, �EG is equally distributed
between the two bands, namely, �EC D �EV D �EG=2.
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Fig. 18.15 Band-gap narrowing as a function of the total doping concentration, in normalized
form, using the experimental expression (18.67)

It is interesting to note that the onset of band-gap narrowing corresponds to a
total dopant concentration of about 1017 cm�3, where the nondegeneracy condition
still holds. As a consequence, a range of dopant concentrations exists where the
exponential approximation can be used for the equilibrium carrier concentrations,
whereas the band-gap narrowing effect must be accounted for.19 The nondegeneracy
condition reads in this case

ECi � EF � q' ��EC > kB T ; EF � EVi C q' ��EV > kB T : (18.68)

Remembering (18.62), the equilibrium concentrations become

n D ne exp

�
q .' � 'F/

kB T

�
; ne D ni exp

�
�EC

kB T

�
> ni ; (18.69)

p D pe exp

�
q .'F � '/

kB T

�
; pe D ni exp

�
�EV

kB T

�
> ni ; (18.70)

where pe D ne on account of�EV D �EC. The common value ne is called effective
intrinsic concentration. The equilibrium product then reads

n p D n2e ; n2e D n2i exp

�
�EG

kB T

�
: (18.71)

19Such a range may be quite large if one considers the compensation effect (Sect. 18.4.3).
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18.7 Complements

18.7.1 Si, Ge, GaAs in the Manufacturing of Integrated
Circuits

As noted in Sect. 18.3, silicon, germanium, and gallium arsenide have similar
effective densities of states, but different gap extensions (Table 18.1); in this respect,
silicon is considered as a reference material, so that germanium is indicated as a
narrow-gap material while gallium arsenide is indicated as a wide-gap material.
The differences in the gap extension produce huge differences in the intrinsic
concentration ni (Table 18.2); the latter, in turn, has a strong influence on the
functioning of the integrated circuits. In fact, the saturation current of a p-n junction
is proportional to n2i (Sect. 21.3.1); as a consequence, this parameter determines the
current of the junction when a reverse bias is applied to it. When many junctions
are present, as is typically the case in integrated circuits, the inverse currents may
build up and give rise to a substantial parasitic current. From this standpoint, gallium
arsenide is preferable with respect to silicon, which in turn is preferable with respect
to germanium. Gallium arsenide is also preferable because of the smaller effective
mass of the electrons, which makes the electron mobility larger (Sect. 17.6.6). On
the other hand, silicon is much less expensive; in fact it is the second most abundant
element in Earth’s crust (the first one is oxygen); gallium, germanium, and arsenic
are much rarer.

The historical development of the semiconductor-device manufacture has fol-
lowed, instead, a different path. Until the mid-sixties of the last century, germanium
was preferred; the reason for this was that a technological process, able to purify
the material to the level required by the electronic industry, was available for
germanium first. As soon as the purification method became available for silicon
as well, the latter replaced germanium in the fabrication of semiconductor devices
and, soon after, of integrated circuits. The silicon technology developed with a
steady pace, giving rise to decades of exponential miniaturization and development
in the integrated-circuit manufacture. The miniaturization of gallium-arsenide-based
circuits did not proceed with the same pace because the technology of compound
materials is more complicate.

In 1980, practically 100% of the worldwide market share of integrated circuit
was silicon based, almost equally distributed between the bipolar and MOSFET
technologies [21]. In the following years the MOSFET technology became domi-
nant, reaching a market share of 88% in the year 2000; of the remaining 12%, the
bipolar, silicon-based technology kept an 8% share, while the remaining 4% was
taken by integrated circuits using III-V compounds.

In 1989, germanium was introduced again in the silicon integrated-circuit
technology to form silicon-germanium alloys (Si1�xGex). The alloy makes a flexible
band-gap tuning possible; it is used for manufacturing heterojunction bipolar tran-
sistors, yielding higher forward gain and lower reverse gain than traditional bipolar
transistors. Another application of the alloy is in the Silicon-Germanium-On-
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Fig. 18.16 Potential energy
in the Kronig-Penney model
modified to account for
impurity atoms
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Insulator (SGOI) technology. The difference in the lattice constants of germanium
and silicon induces a strain in the material under the gate, that makes electron
mobility to increase.

18.7.2 Qualitative Analysis of the Impurity Levels

A qualitative analysis of the impurity levels may be carried out basing on a modified
version of the Kronig-Penney model discussed in Sect. 17.9.4. To this purpose,
consider the case of donor atoms placed at equal distances in a one-dimensional
lattice, like that of Fig. 18.16. The deeper wells are those introduced by the dopants,
while the finer structure above the x axis is due to the semiconductor nuclei.
Note that the relative distances in the figure are not realistic and are used only
for illustrative purposes; assuming in fact that the structure represented a cross-
section of a three-dimensional semiconductor, where a uniform donor concentration
ND is present, the distance between two neighboring impurity atoms is found to
be .1=ND/

1=3. If the semiconductor’s concentration is Nsc, the ratio .Nsc=ND/
1=3

indicates how many semiconductor atoms are present in the interval between two
neighboring impurities. Considering silicon by way of example (Nsc D 5 � 1022

cm�3) and taking ND D 5 � 10
16 cm�3 yield .Nsc=ND/

1=3 D 100.
With this provision, let c be the width of the barrier separating two dopant-

induced wells, and consider a negative value E0 of the electron’s energy. If c is
large, the probability that the electron tunnels from a well to an adjacent, empty one
is negligibly small; in this case, the electron is confined within the well where the
localization probability is the largest, and the energy states E0 < 0 are similar to
those of a single well (the energy states of the finite rectangular well are worked
out in Sect. 11.5). The lowest state of the well is the ground state ED shown in
Fig. 18.16. If, instead, a positive energy state E is considered, the wave function is
extended over the whole lattice like in the Kronig-Penney model. In summary, the
addition of dopant atoms with a low or moderately high concentration, such that
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their mutual distance c is large, provides a set of energy states that adds up to the
band structure of the intrinsic semiconductor. The states introduced by the dopants
are localized in space at the positions of the dopant atoms, and are distributed in
energy as discrete levels whose mutual distances depend on the form of the well. In
turn, the states with positive energy have a structure similar to that of the intrinsic
semiconductor, because in this respect the dopant atoms have little effect on the
lattice; in Fig. 18.16, the lower edge EC of the conduction band coincides with
E D 0. As said above, electrons belonging to the dopant atoms cannot move as
long as they are confined within wells, because tunneling is precluded; on the other
hand, they may be promoted to conduction-band states by absorbing energy in a
collision, and become band electrons, that is, mobile. Conversely, a band electron
may lose energy due to a collision, and be trapped in an empty well.

When, due to an increasing dopant concentration, the width c of the barrier
becomes smaller, the transmission coefficient increases, and the electrons belonging
to the wells have a non-negligible probability of moving from a well to another.
When the structure of the wells becomes finer, the description of their energy
states becomes more similar to that applicable to the intrinsic semiconductor: for an
infinite structure one obtains a continuum of states that fill up the well and connect
to those of the conduction band. This explains the band-gap narrowing phenomenon
introduced in Sect. 18.6.

18.7.3 Position of the Impurity Levels

To determine the position of the impurity levels for the case of a low or moderately
high impurity concentration of the donor type, one considers the dispersion relation
E.k/ of the conduction band of the intrinsic semiconductor, in the parabolic-band
approximation (17.57,17.58):

E.k/ ' EC C

3X

iD1

„2

2mia
.ki � kia/

2 ;
1

mia
D

1

„2

�
@2E

@k2i

�

a

> 0 : (18.72)

Now, assume that a donor-type impurity is added in the origin, and that the impurity
is ionized. As a consequence, it gives rise to a hydrogenic-like potential energy20

of the form V D �q2=.4 � "sc r/. The effect of V may be considered as a local
perturbation over the band structure, so that when the ionized impurity is present
the total energy of an electron becomes H D E.k/CV.r/, with E.k/ the same as in
the unperturbed case. Shifting the origin of k to ka, and replacing ki with �i @=@xi,

20Compare with Sect. 7.2. Like in Sect. 18.5, the semiconductor permittivity is used instead of that
of vacuum, because the wave function of an electron subjected to the force due to V extends over
several lattice cells.
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one obtains the Hamiltonian operator21

H ' EC �

3X

iD1

„2

2mia

@2

@x2i
�

q2

4 � "sc r
: (18.73)

To estimate the eigenvalues of H one may replace each mia with the average mea D

.m1a m2a m3a/
1=3 (Sect. 17.6.3), to obtain

�
„2

2mea
r2vn �

q2

4 � "sc r
vn D .E

0
n � EC/ vn ; (18.74)

with vn the eigenfunction. Apart from the coefficients, (18.74) is identical to
the Schrödinger equation for the Coulomb case treated in Sect. 13.5.2, whose
eigenvalues are given by (13.56). It follows

E0n D EC �
mea

2„2

�
q2

4 � "sc

�2
1

n2
; n D 1; 2; : : : (18.75)

Thus, the donor impurity provides infinite levels from the minimum E01 to the
maximum EC. Considering the case of silicon by way of example, one has m1a D

ml D 0:97 m0, m2a D m3a D mt D 0:19 m0 (Table 17.4), with m0 ' 9:11 � 10�31

kg the rest mass of the electron, whence mea D 0:33 m0. Letting ED D E01 and using
"sc ' 11:7 "0, with "0 D 8:854 � 10�14 F cm�1 the vacuum permittivity, one finds
the ionization energy of the donor impurity in silicon:

EC � ED D
mea

2„2

�
q2

4 � "sc

�2
' 32:8 meV : (18.76)

The analysis is similar for an ionized, acceptor-type impurity. The hydrogenic-like
potential energy becomes V D q2=.4 � "sc r/, and the dispersion relation around a
maximum ka of the valence band reads

E.k/ ' EV �

3X

iD1

„2

2mia
.ki � kia/

2 ;
1

mia
D �

1

„2

�
@2E

@k2i

�

a

> 0 : (18.77)

When the impurity is present the Hamiltonian operator becomes

H ' EV C

3X

iD1

„2

2mia

@2

@x2i
C

q2

4 � "sc r
: (18.78)

21More comments about the procedure of obtaining an operator from a simplified form of the
eigenvalues of a more general operator are made in Sect. 19.2.
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Again, to estimate the eigenvalues one replaces each mia with the average mha. One
finds

�
„2

2mha
r2vn �

q2

4 �"sc r
vn D .EV � E00n / vn ; (18.79)

whence

E00n D EV C
mha

2„2

�
q2

4 � "sc

�2
1

n2
; (18.80)

n D 1; 2; : : :. The acceptor impurity provides infinite levels from the minimum EV

to the maximum E001 . Letting EA D E001 one finds the ionization energy EA � EV of
the donor impurity. Taking again silicon by way of example, and using the values
mhh D 0:5 m0, mhl D 0:16 m0 from Table 17.3, one finds EA � EV D 49:7 meV for
the heavy holes and EA � EV D 15:9 meV for the light holes.

The ionization energies of phosphorus and boron in vacuo are about 10:5 eV
and 8:3 eV, respectively, that is, much higher than those calculated here. The
strong difference is ascribed to the presence of the silicon crystal: a comparison
between (13.56) and (18.75) or (18.80) shows in fact that the coefficients of 1=n2

in the crystal case are much smaller than that in vacuo, due to the presence of the
effective mass in the numerator and of the square of the material permittivity in the
denominator. The small distance between the ground state of the impurity atoms
and the edge of the band explains the ease with which the dopants ionize at room
temperature.

Problem

18.1 Prove (18.21) by combinatorial calculus.
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Chapter 19
Mathematical Model of Semiconductor Devices

19.1 Introduction

This chapter describes the reasoning that leads from the single-particle Schrödinger
equation for an electron in a crystal to the mathematical model of semiconductor
devices. The latter is a set of equations describing the evolution in space and time
of a number of average quantities of interest: with reference to the electrons of the
conduction band or holes of the valence band, such quantities are the concentration,
average velocity, current density, average kinetic energy, and so on. The model of
semiconductor devices has different levels of complexity depending on the trade-off
between the information that one needs to acquire about the physical behavior of the
device under investigation and the computational cost of the system of differential
equations to be solved. In fact, the possible models are hierarchically ordered from
the drift-diffusion model, which is the simplest one, to the hydrodynamic model, and
so on. In essence, these models are different approaches to the problem of solving, in
a more or less simplified form, the Boltzmann Transport Equation. Those described
in this chapter are the most widely adopted in the commercial simulation programs
used by semiconductor companies. Other important methods, that are not addressed
in this book, are the Monte Carlo method and the spherical-harmonics expansion.

The steps leading to the mathematical model of semiconductor devices start
with a form of the single-particle Schrödinger equation based on the equivalent
Hamiltonian operator, where it is assumed that the external potential energy is a
small perturbation superimposed to the periodic potential energy of the nuclei; this
leads to a description of the collisionless electron’s dynamics in terms of canonically
conjugate variables, that are the expectation values of the wave packet’s position and
momentum. The dynamics of the Hamiltonian type makes it possible to introduce
the statistical description of a many-electron system, leading to the semiclassical
Boltzmann Transport Equation. After working out the collision operator, the per-
turbative approximation is considered; the simplified form of the transport equation
thus found is tackled by means of the moments method, whence the hydrodynamic
and drift-diffusion versions of the model are derived. A detailed analysis of the
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454 19 Mathematical Model of Semiconductor Devices

derivation of the electron and hole mobility in the parabolic-band approximation
is provided. Then, the semiconductor model is coupled with Maxwell’s equation,
and the applicability of the quasi-static approximation is discussed. The typical
boundary conditions used in the analysis of semiconductor devices are shown, and
an example of analytical solution of the one-dimensional Poisson equation is given.

The complements discuss the analogy between the equivalent Hamiltonian
operator and the corresponding Hamiltonian function introduced in an earlier
chapter, provide a detailed description of the closure conditions of the models, and
illustrate the Matthiessen’s rule for the relaxation times. Finally, a short summary of
the approximations leading to the derivation of the semiconductor model is given.

19.2 Equivalent Hamiltonian Operator

The separation procedure outlined in Sects. 16.2 through 16.5 has led to the single-
electron Schrödinger equation (17.40), namely, Œ�„2=.2m/r2CV�w D E w, where
the nuclei are kept fixed and the force acting onto the electron derives from a
potential energy having the periodicity of the direct lattice: V.rC l/ D V.r/, with
l given by (17.1); as mentioned in Sects. 16.4,16.5, the external forces are absent
(Uext D 0).

Thanks to the periodicity of the Hamiltonian operator (17.40) it is possible to
recast the time-independent Schrödinger equation into a different form as shown
below. The procedure is based on the analogy with the Schrödinger equation for a
free particle, �r2w D k2 w with k2 D 2m E=„2. One notes in fact that the left-hand
side is obtained by replacing k with�i grad in the right-hand side; this is just another
form of the transformation of momentum into the momentum operator (Sect. 8.5),
which in the present case yields the whole Hamiltonian operator because for a free
particle the energy is purely kinetic. This type of transformation can be pursued
also for the Schrödinger equation with a periodic potential energy by observing that
the eigenvalues Ei.k/, for each branch i, are periodic within the reciprocal, scaled
lattice, Ei.kC g/ D Ei.k/ (Sect. 17.6), hence they can be expanded in terms of the
direct-lattice translation vectors l (Sect. 17.3):

Ei.k/ D
X

l

Eil exp.i l � k/ ; Eil D Ei.l/ D
1

�g

Z

�g

Ei.k/ exp.�i l � k/ d3k :

(19.1)
The eigenvalue Ei.k/ is now transformed into an operator by letting k  �i grad;
remembering (17.174), this yields

Ei.k/ Ei.�i grad/ D
X

l

Eil exp.l � grad/ D
X

l

Eil Tl : (19.2)

The form of operator (19.2) is purely kinetic, as the space coordinates do not appear
in it. The shape of the potential energy V whence Ei.k/ originates is embedded in the
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coefficients Eil of expansion (19.1). To complete the procedure one must show that
operator (19.2) has the same eigenvalues and eigenfunctions as the original operator
Œ�„2=.2m/r2 C V�w D E w. Applying Ei.�i grad/ to a Bloch function wik yields,
using the first relation in (19.1) and the periodicity1 of �ik (Sect. 17.6),

X

l

Eil Tl �ik.r/ exp.i k � r/ D �ik.r/
X

l

Eil expŒi k � .rC l/� D

D �ik.r/ exp.i k � r/
X

l

Eil exp.i k � l/ D wik.r/Ei.k/ : (19.3)

The result

Ei.�i grad/wik D Ei.k/wik (19.4)

shows that, for each branch i, the purely kinetic operator Ei.�i grad/ has the same
eigenvalues and eigenfunctions as the Hamiltonian whence Ei.k/ originates. For this
reason, operator Ei.�i grad/ is called equivalent Hamiltonian. In summary, when
the potential energy is periodic it is possible to directly reconstruct an equivalent
operator by letting k  �i grad, in the same way as for a free particle. In this
respect, the latter case may be viewed as a limiting condition of the former one,
obtained by extending the period of the potential energy to infinity.2 Another
similarity between the free-particle case and that of a periodic potential energy is
that the Hamiltonian operator is purely kinetic (albeit, in the latter case, at the cost
of a more complicate form of the kinetic term).

19.2.1 Electron Dynamics

As illustrated in Sect. 17.6.1, the general solution of the time-dependent Schrödinger
equation

�
�
„2

2m
r2 C V.r/

�
 D i „

@ 

@t
; (19.5)

for a particle subjected to a periodic potential energy V , is (17.51), or its approxi-
mation using the wave packet of branch i D n,

1Like in Sect. 17.6.1, the periodic part of the Bloch function is indicated with �ik to avoid confusion
with the group velocity.
2This method of reconstructing the operator from the eigenvalues was anticipated in Sect. 18.7.3.
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 .r; t/ ' �n0 exp.i˚n0/
X

k

cnk exp Œi .r � un t/ � .k � k0/� ; (19.6)

with ˚n0 D k0 � r � !n0 t.
Now, consider the case where an external,3 non-periodic potential energy U.r/ is

added to the periodic one; the Hamiltonian operator becomes�„2=.2m/r2CVCU,
yielding the eigenvalue equation

�
�
„2

2m
r2 C V.r/C U.r/

�
w0q D E0q w0q ; (19.7)

with q the label of the new eigenvalues. As the set w0q is complete, a possible
expansion of  is

 D
X

q

c0q w0q exp.�i E0q t=„/ : (19.8)

However, expansion (19.8) is inconvenient because the Hamiltonian operator
in (19.7) is not periodic; as a consequence, the properties of the eigenvalues and
eigenfunctions typical of the periodic case are lost. A more suitable expansion4 is
found by using the eigenfunctions of the Hamiltonian operator corresponding to
U D 0, namely, the Bloch functions; in this case the coefficients of the expansion
depend on time:

 D
X

ik

aik.t/wik D
X

ik

cik.t/wik exp.�i!ik t/ ; (19.9)

where cik D aik exp.i!ik t/ ! const as U ! 0. This form is more convenient
because it holds also in the case where the external potential energy depends on
time, U D U.r; t/. The approximate expression (19.6) of the wave function becomes

 .r; t/ ' �n0 exp.i˚n0/A ; A D
X

k

cnk.t/ exp Œi .r � un t/ � .k � k0/� ;

(19.10)
with j j2 D j�n0j

2 jAj2 and
R
�
j j2 d3r D 1. As �n0 is a rapidly varying function of

r, the physical information about the dynamics of the wave packet is given by jAj2.
So far, the only approximation in (19.10) is the use of a single branch n of the

dispersion relation. On the other hand, it must be observed that in the sum VCU the
first term has the periodicity of the lattice, namely, it varies rapidly in space, whereas
the external potential energy is typically a slowly varying function; in fact, it is due

3For the sake of simplicity, suffix “ext” is dropped from the symbol of the external energy.
4The approach is the same as that used for treating the time-dependent perturbation theory
(compare with 14.4).
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to the application of external generators and/or to the presence of a nonuniform
distribution of charge within the material.5 Also, the field associated with U is weak,
so that it does not influence the form of V . This leads to the idea of treating U as a
perturbation superimposed to the periodic Hamiltonian operator �„2=.2m/r2CV .
Using this approximation, the Hamiltonian operator of the perturbed problem is
rewritten as

�
„2

2m
r2 C V.r/C U.r; t/ ' En.�i grad/C U.r; t/ ; (19.11)

where index n reminds one that the eigenfunctions of only the nth branch are
used in the expansion. The approximation inherent in (19.11) consists in using the
properties of the unperturbed problem in the perturbed case; in fact, the functional
dependence of En.�i grad/ on �i grad derives from the unperturbed eigenvalues
En.k/. Remembering that En.�i grad/ is purely kinetic, (19.11) is similar to the
Hamiltonian operator of a particle subjected only to the external potential U. The
approximate form of the time-dependent Schrödinger equation then reads

ŒEn.�i grad/C U�  D i „
@ 

@t
: (19.12)

19.2.2 Expectation Values—Crystal Momentum

The solution of (19.12) consists in determining the coefficients cnk.t/ of (19.10); this
can be tackled by the method illustrated in Sect. 14.2, namely, by reducing (19.12) to
a system of coupled differential equations in the unknowns cnk. More interesting it
is to use (19.12) for calculating the expectation values of position and momentum;
remembering that  ' exp.i˚n0/ �n0 A is normalized to unity, one readily finds
hri D h jrj i D r0, where r0 denotes the center of the wave packet in the position
space. As for momentum, it is hpi D h j � i „gradj i, namely, using ˚n0 D k0 �
r � !n0 t,

hpi D �i „
Z

�

 � Œi k0  C exp.i˚n0/ grad.�n0 A/� d3r D

D „k0

Z

�

j j2 d3r � i „
Z

�

.�n0A/
� grad.�n0 A/ d3r : (19.13)

5The field produced by nonuniformities in the local charge density, which is present also in an
equilibrium condition if the dopant distribution is not spatially constant (compare with Sect. 18.5),
is classified as “external” because it can be treated as a perturbation. Instead, rapid variations
of the physical properties of the material, like those that typically occur at interfaces, cannot be
treated using the perturbative method and require the solution of the Schrödinger equation without
approximations.
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The first term at the right-hand side of (19.13) yields „k0 due to normalization.
Letting �n0 A D a C i b, one finds in the second term .�n0 A/� grad.�n0 A/ D
.1=2/ grad.a2Cb2/C i .a gradb�b grada/. The contribution of grad.a2Cb2/ to the
integral is zero due to normalization; since A is slowly varying and normalizable,
while �n0 oscillates rapidly, it follows

hpi D „k0 C „
Z

�

.a gradb � b grada/ d3r ' „k0 ; (19.14)

with k0 the center of the wave packet in the k space. The product „k0 is called
crystal momentum. As for the time derivatives of hri and hpi one finds, from (17.52),

Pr0 D un D
1

„
.gradkEn/k0 D

i

„

X

l

l Eil exp.i l � k0/ ; (19.15)

where the last expression derives from (19.1). For the time derivative of momentum
one preliminarily observes that En.�i grad/ commutes with the gradient operator;
in fact,

En.�i grad/ grad D
X

l

EnlTl grad .r; t/ D
X

l

Enl grad .rC l; t/ ; (19.16)

grad En.�i grad/ D grad
X

l

Enl  .rCl; t/ D
X

l

Enl grad .rCl; t/ : (19.17)

Then, using definition (10.24) of the time derivative of an expectation value,6 and
remembering that the operator associated with p is �i „ grad, one finds

„ Pk0 D
dhpi

dt
D h j ŒEn.�i grad/C U� grad � grad ŒEn.�i grad/C U� j i :

(19.18)
Moreover it is U grad � grad.U / D � gradU, so that (19.18) eventually
reduces to

„Pk0 D
dhpi

dt
D �

Z

�

j j2 gradU d3r : (19.19)

As U is slowly varying in space, Ehrenfest approximation (10.33) applies, whence

„ Pk0 D
dhpi

dt
' � .gradU/r0 : (19.20)

6Definition (10.24) could be used also for deriving (19.15).
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Introducing the function Hn.r0;k0; t/ D En.k0/ C U.r0; t/, one finds that (19.15)
and (19.20) are equivalent, respectively, to

Pxi 0 D
@Hn

@.„ ki 0/
; „ Pki 0 D �

@Hn

@xi 0
; i D 1; 2; 3 : (19.21)

Relations (19.21) are of paramount importance in solid-state theory. They show
in fact that within a periodic lattice the dynamics of the expectation values of a
wave packet, subjected to an external potential energy that varies slowly in space,
is described by Hamilton equations (compare with (1.42)), where r0 D hri and
„k0 D hpi play the role of position and momentum, respectively. It follows that
Hn is a Hamiltonian function proper. Another important observation is that the time
variations of the wave packet’s momentum are due to the external force only; as a
consequence, if U D const one has „ Pk0 D 0, namely, the crystal momentum is a
constant of motion.

A further insight into the structure of Hn is obtained by calculating the work
exerted onto the wave packet by the external force �gradr0U D „

Pk0 during an
elementary time dt:

dW D „ Pk0 �dr0 D „ Pk0 �un dt D „un �dk0 D .gradkEn/k0 �dk0 D dEn : (19.22)

The work equals the variation of En; it follows that En, apart from an additive
constant, is the kinetic energy of the wave packet. In turn, U is the potential
energy which, as mentioned above, derives from the external force only. If the force
acting on the electron is due to an electric field, then U D �q'; this justifies the
modified form (18.54) of the Fermi-Dirac statistics to be used when an electric field
is present.7 In the more general case where a magnetic field is also acting on the
electron, „ ı Pk is given by the Lorentz force

„ ı Pk D F D �q .EC un ^ B/ ; (19.23)

and the Hamiltonian operator in (19.12) must be modified accordingly (compare
with (9.19)).

It is important to remark again that the description of the wave packet’s dynamics
given in this section holds when the force is a weak perturbation with respect to the
unperturbed situation. As a consequence, the description does not apply when the
electron undergoes a collision; in fact, the force acting during a collision is strong
and cannot be treated as a perturbation.

7More comments about the analogy with the perturbation theory in the classical case are made in
Sect. 19.6.1.
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19.2.3 Dynamics in the Parabolic-Band Approximation

When the wave packet is centered onto a wave vector k0 near the ath minimum of
the conduction band, the diagonal expansion of En.k/ yields (17.57). Dropping the
branch index n and letting k D k0, ıki D ki0 � kia yield

Ee D E.k0/�EC '
1

2

3X

iD1

„2

mia
.ki0 � kia/

2 D
1

2
„ ık�. Oma/

�1 „ ık � 0 ; (19.24)

with . Oma/
�1 given by (17.58). Expression (19.24) bears a strong similarity with the

kinetic energy of the classical case. The same applies to the expression of group
velocity given by (17.61), namely,

u D . Oma/
�1 „ ık : (19.25)

Replacing (19.25) into (19.24) yields Ee D .1=2/ Omau � u. When the expectation
value „k0 of momentum coincides with „ka, corresponding to an absolute mini-
mum EC of the conduction band, it is Ee D 0. Such a value is also the minimum
of the positive-definite quadratic form at the right-hand side of (19.24). This shows
that Ee is the kinetic energy of the electron, and allows one to identify EC as the
additive constant mentioned above.

In general, the relation between force and acceleration within a crystal is
anisotropic. For the sake of simplicity consider the case of the parabolic-band
approximation; the time derivative of (19.25) then yields

Pu D . Oma/
�1 „ ı Pk D . Oma/

�1 F : (19.26)

If the entries of the mass tensor are different from each other, the acceleration is not
parallel to the force; the physical reason for this is easily understood if one thinks
that the forces due to the crystal structure are embedded in the mass tensor through
the second derivatives of E.k/. The mass tensor becomes a scalar only if the branch
E is isotropic: Oma D ma I , with I the identity tensor. More comments about this
issue are made in Sect. 19.6.2.

The analysis for the valence band is similar. Again, the branch index n is dropped
and symbols k D k0, ıki D ki0 � kia are used,8 to find (17.64), namely,

Eh D EV�E.k0/ '
1

2

3X

iD1

„2

mia
.ki0 � kia/

2 D
1

2
„ ık�. Oma/

�1 „ ık � 0 ; (19.27)

with . Oma/
�1 given by (17.63), mia > 0. For the group velocity one finds

8For Si, Ge, and GaAs it is kia D 0 (Sect. 17.6.5).
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u D
1

„
.gradkE/k0 D � . Oma/

�1 „ ık : (19.28)

The work exerted onto the wave packet by the external force �gradr0U D „
Pk0

during an elementary time dt is

dW D „ Pk0 � u dt D d

"

�

3X

iD1

„2

2mia
ık2i

#

D dE ; (19.29)

which, again, shows that E is the kinetic energy of the electron apart from an additive
constant. The negative signs in (19.27) and (19.28) make the discussion of the
valence-band case somewhat awkward; however, the difficulty is readily eliminated
if one refers to holes instead of electrons. For example, consider the case of an
electron whose expectation value of momentum, initially equal to „ka, is brought
by the action of an external field to some other value „k00 in the vicinity of „ka.
For this transition to occur it is implied that the initial state ka is occupied9 and
the final state k00 is empty. As a consequence of (19.27), E changes from EV to
E.k00/ < EV , namely, it decreases during the time interval �t during which the
energy variation occurs; hence, the external field has exerted in �t a negative work
onto the electron, in fact, energy has been absorbed from the electron by the field.
If a hole is considered instead, the initial and final states of the transition exchange
roles; however, from the standpoint of the energy balance nothing changes, namely,
the field still absorbs energy from the particle. It follows that the hole’s energy must
decrease due to the transition: this is possible only if the energy axis associated
with the hole is reversed with respect to that of the electron, so that, apart from an
additive constant, the hole’s kinetic energy is �E. From this point on, the reasoning
becomes identical to that outlined above for the electron of the conduction band:
using (19.27), when the expectation value „k0 of momentum coincides with „ka,
corresponding to an absolute maximum EV of the valence band, it is Eh D 0. Such
a value is also the minimum of the positive-definite quadratic form at the right-hand
side of (19.27). This shows that Eh is the kinetic energy of the hole, and allows one
to identify EV as the additive constant.

19.3 Dynamics in the Phase Space

The theory outlined in Sects. 19.2, 19.2.1, and 19.2.2 has led to the conclusion that
the dynamics of the expectation values of a wave packet describing an electron’s
motion, subjected to an external potential energy that varies slowly in space, is
described by the Hamilton equations (19.21) where hri and hpi play the role of
position and momentum.

9For the sake of simplicity, spin is not considered here.
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For a system made of a large number of electrons, the description of the dynamics
of the individual wave packets is impossible from the practical standpoint. In this
case one resorts to the same device as that used in Sect. 6.2 for a system of classical
particles, namely, the distribution function. Being the formal apparatus identical to
that of Sect. 6.2, only the relevant differences will be remarked. The 
-type phase
space is defined here by the variables

s D

2

66
66666
4

x1
x2
x3
k1
k2
k3

3

77
77777
5

; e D

2

66
66666
4

@H=@k1
@H=@k2
@H=@k3
�@H=@x1
�@H=@x2
�@H=@x3

3

77
77777
5

; (19.30)

(compare with (1.57)) so that the distribution function10 reads f D f .r;k; t/. Note
that the units of f are different from those of the classical distribution function. For
the latter, in fact, it is Œf
� D .J s/�3, so that the product f
 d3r d3p is dimensionless
(compare with (6.1)); in the present case, instead, both f d3r d3k and d3r d3k are
dimensionless, hence the distribution function itself is dimensionless.

The system considered for the investigation is that of the electrons belonging to
the conduction band. Remembering the first relation in (6.3), the concentration and
average velocity of such electrons are given by

n.r; t/ D
ZZZ C1

�1

f .r;k; t/ d3k ; v.r; t/ D
1

n

ZZZ C1

�1

u.k/ f .r;k; t/ d3k ;

(19.31)
with u the electron’s group velocity. In the equilibrium condition it is f eq D Q P,
where the Fermi-Dirac statistics P depends on k only through E.k/, namely, it
is even with respect to k. In turn, u D .1=„/ gradkE is odd, so that the whole
integrand in the second definition of (19.31) is odd. As the integration domain is
symmetric with respect to k D 0, it is veq D 0 as should be. In a nonequilibrium
condition it is f D Q˚ , with ˚.r;k/ the occupation probability of a state. If
the band is completely filled, then ˚ D 1; the electron flux n v then becomes
proportional to the integral of u; as the latter is odd, the flux vanishes: this explains
why a completely filled band does not contribute to the material’s conduction, as
anticipated in Sect. 17.6.5.

The Boltzmann collisionless equation in the r;k space is derived in the same
manner as for (6.28); it reads

@f

@t
C Pr � gradrf C Pk � gradkf D 0 : (19.32)

10Suffix 
 is dropped to distinguish this distribution function from that of the classical case.
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The effects of collisions may be grouped into two classes: the collisions of the
first class induce transitions that change the number of electrons of the band.
Such transitions are the generations and recombinations introduced in Sect. 17.6.6,
where the initial state of the electron belongs to the conduction band and the final
one belongs to the valence band, or vice versa.11 The transitions of this class are
collectively called inter-band transitions.

The collisions of the second class are those where the initial and final state belong
to the same band, and are called intra-band transitions; they do not change the
number of electrons of the band. The distinction between the two classes is useful
because the inter-band transitions exhibit characteristic times that are much larger
than those of the intra-band transitions. In turn, the intra-band transitions are further
divided into two subclasses: the intra-valley transitions, where the initial and final
states are in the vicinity of the same extremum of the band, and the inter-valley
transitions, where the initial and final state are in the vicinity of different extrema.12

Within each class, the transitions are further grouped depending on the entity
with which the collision occurs; typical examples of collisions are those with
phonons, impurities, defects, and photons. Like in the classical case, collisions are
not accounted for in the derivation of (19.32), where the effect of only the slowly
varying external potential energy is present; the further time change of f due to
collisions is more conveniently kept separate from that of the external potential
energy. Also, it is assumed that the system under consideration is dilute, so that
each wave packet spends a relatively large fraction of time without suffering any
collision; in other terms, the time during which an electron is subjected to the
external field is much longer than that involved in a collision. For this reason it
is preferable to write the Boltzmann Transport Equation (BTE), when the collisions
are accounted for, as

@f

@t
C u � gradrf �

q

„
.EC u ^ B/ � gradkf D C (19.33)

(compare with (6.29) and (6.31)). To derive (19.33), the expression (19.23) of the
Lorentz force acting on the electron is used, after dropping index n from the group
velocity. Term C embeds the forces acting during the collisions; such forces are
short ranged and much more intense than those due to the external field; as a
consequence, the Ehrenfest approximation (10.33) does not apply, so that a full
quantum-mechanical approach is necessary to treat the collision term.

The relations involving the expectation values at the left-hand side of (19.32)
and (19.33) are formally identical to those of the classical case, despite the fact

11In addition to this one must also consider the trapping-detrapping phenomena involving localized
states. So far, only the localized states due to dopants have been considered (Sect. 18.4); other types
of localized states are introduced in Chap. 20.
12Here the extrema are the minima of the conduction band. The region near an extremum of a band
is also called valley.
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the dynamic variables are actually derived from a quantum-mechanical description;
in addition, the electromagnetic field appears in the non-quantized form. Therefore,
the form of such equations is also called semiclassical.

19.3.1 Collision Term

The left-hand side of (19.33) equals df=dt, whence the right-hand side is the rate of
change of f due to collisions. As f .r;k; t/ d3r d3k is the number of electrons of the
conduction band that at time t belong to the elementary volume d3r d3k centered on
.r;k/, the rate of change can be expressed as

C D Cin � Cout ; (19.34)

where Cin d3r d3k is the number of electrons entering d3r d3k per unit time, due to
collisions, and Cout d3r d3k is the number of electrons leaving d3r d3k per unit time,
due to collisions. To illustrate the reasoning it is convenient to refer to Fig. 19.1,
where a one-dimensional case is illustrated using the x; k coordinates. Instead of an
elementary volume dx dk, a finite, rectangular cell is considered, whose position at
time t1 is fixed by the vertices A1, B1, C1, and D1. For simplicity it is assumed that no
external force is present (U D const), so that the crystal momentum is conserved.
In particular, the vertices’ momenta at t D t1 are „ km D „ k.A1/ D „ k.B1/ and
„ kM D „ k.C1/ D „ k.D1/. The corresponding positions are x.A1/ D x.C1/ D 0,
x0 D x.B1/ D x.D1/. Letting m� indicate the effective mass, the position of the
vertices at a subsequent time t2 D t1 C�t is

x.A2/ D
„ km

m�
�t ; x.B2/ D x0 C x.A2/ ; x.C2/ D

„ kM

m�
�t ; x.D2/ D x0 C x.C2/ ;

this giving rise to the parallelogram also shown in Fig. 19.1. If no collisions occur,
the electrons inside the parallelogram at t D t2 are the same as those that were
inside the rectangle at t D t1; in contrast, when collisions occur, some electrons
leave the rectangle without reaching the parallelogram (hence, Cout ¤ 0), while
the parallelogram is reached by other electrons that originally did not belong to
the rectangle (Cin ¤ 0). This is schematically indicated by the arrows in Fig. 19.1.
In general it is Cout ¤ Cin, so that df=dt ¤ 0. The description is the same also in
the case when the external force is present, the difference being that the trajectories
in the phase space are not rectilinear and the deformation of the domain is more
complicate.

To give the analysis a more formal aspect it is necessary to determine how the
population of the elementary domain d6s D d3r d3k evolves in the elementary time
interval dt. To begin, one introduces the scattering probability per unit time and unit
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Fig. 19.1 Example of the
time evolution of a
phase-space domain in a
one-dimensional case. The
situation with no external
force is considered

A1

D1

B1

C1 C2

A2 B2

D2

x

k

phase volume, S, from an initial state to a final state of the phase space.13 The initial
(final) state is indicated by the first (second) pair of arguments of S, namely,

S
�
r;k! r0;k0

	
d3r0 d3k0 (19.35)

is the probability per unit time that an electron scatters from .r;k/ to the elementary
volume d3r0 d3k0 centered at .r0;k0/. Then, let dNin D Cin d6s, dNout D Cout d6s,
and s D .r;k/, s0 D .r0;k0/. The number dNin is determined by observing that the
electrons contributing to it are those that initially belong to elementary phase-space
volumes, say, d6s0, different from d6s. The population of d6s0 at time t is f .s0; t/ d6s0;
if the latter is multiplied by the scattering probability per unit time from s0 to d6s,
given by S .s0 ! s/ d6s, the unconditional number of transitions from d6s0 to d6s is
obtained. The actual number of such transitions is then found by remembering that
electrons are fermions, so that transitions towards d6s are possible only if the final
states are empty; in other terms, the unconditional number of s0 ! s transitions
must be multiplied by 1�˚.s; t/, where ˚.s; t/ is the probability that the final state
is full. Finally, the contributions of all elementary volumes d6s0 must be summed
up, to find14

dNin D

Z

s0

�
f .s0; t/ d6s0

� �
S
�
s0 ! s

	
d6s
�
Œ1 � ˚.s; t/� : (19.36)

The derivation of dNout is similar; one obtains

13The units of S are ŒS� D s�1.
14For the sake of conciseness, in Sects. 19.3.1, 19.3.2, and 19.3.3 the six-fold integrals over
d3r0 d3k0 and the three-fold integrals over d3k0 are indicated with

R
s0

and
R

k0
, respectively.
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dNout D

Z

s0

�
f .s; t/ d6s

� �
S
�
s! s0

	
d6s0

� �
1 � ˚.s0; t/

�
: (19.37)

The collision term C D Cin � Cout is now determined by subtracting (19.37)
from (19.36) and dividing the result by d6s. This shows that C is the sum of two
terms; the first one is linear with respect to f and reads

Z

s0

�
f .s0; t/ S

�
s0 ! s

	
� f .s; t/ S

�
s! s0

	�
d6s0 : (19.38)

As for the second term, one must preliminarily observe that f D Q˚ , with
Q D 1=.4 �3/ the density of states in the phase space, (17.50); then, the second
term of C turns out to be quadratic with respect to ˚ or f :

Q
Z

s0

˚.s; t/ ˚.s0; t/
�
S
�
s! s0

	
� S

�
s0 ! s

	�
d6s0 : (19.39)

19.3.2 Point-Like Collisions

The two summands (19.38), (19.39) in the expression of C are substantially
simplified thanks to the property that the collisional forces, albeit very strong, are
short ranged; as a consequence, whereas the momentum of the colliding electron
may undergo a large change due to the collision, the electron’s position changes
little. The issue is illustrated with the aid of Fig. 19.2, that schematically describes
an electron collision with a negatively ionized dopant. The latter is represented by
the black circle, whereas the gray region around it indicates the positive charge
attracted by the negative ion; such a positive charge acts like an electric screen
that tends to neutralize the ion. As a consequence of the screen, the decay of the
electrostatic potential acting between the ion and the incoming electron, when the
relative distance increases, is much stronger than in the pure Coulomb case.15 In
practice, one can assume that the electron-ion repulsion is non-negligible only when
the electron is inside the screen. This makes the dynamics of the interaction rather
different from that of the pure Coulomb case, treated in Sect. 3.8. As shown in the
figure, the final momentum k0 may differ largely from the initial one, k; in contrast,
considering the atomic scale of the phenomenon, the final position r0 may be thought
of as coinciding with the initial one, r. To vest this observation with mathematical

15The derivation and treatment of the screened Coulomb interaction are carried out in Sects. 20.6.4
and 14.7, respectively.
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Fig. 19.2 Qualitative picture
of a collision between an
electron and a negatively
ionized impurity. The latter is
schematically represented by
the black circle, whereas the
gray area indicates the
screening region. The initial
and final state of the electron
are indicated with .r;k/ and
.r0;k0/, respectively

r, k r’, k’

form, considering that the scattering probability in (19.38) and (19.39) undergoes
an integration over r0, one lets16

S
�
s! s0

	
D S0

�
r;k! k0

	
ı.r0 � r/ : (19.40)

Another important consequence of the above discussion is that although the duration
of the interaction is very short, the force acting on the electron due the interaction
is much stronger than the external forces, to the extent that the effects of the latter
can be neglected during the interaction itself. It follows that S and S0 do not depend
on the external forces; this greatly simplifies the analysis of S0. Inserting (19.40)
into (19.38) yields, for the first part of C,

Z

k0

�
f .r;k0; t/ S0

�
r;k0 ! k

	
� f .r;k; t/ S0

�
r;k! k0

	�
d3k0 I (19.41)

in turn, the second part (19.39) becomes

Q
Z

k0

˚.r;k; t/ ˚.r;k0; t/
�
S0
�
r;k! k0

	
� S0

�
r;k0 ! k

	�
d3k0 : (19.42)

The term S0 is typically calculated using the first-order perturbation theory
(Sect. 14.3), which shows that the transition probability is invariant upon reversal of
the initial and final states. It follows that the quantity in brackets in (19.42) vanishes,
so that (19.41) is in fact the only contribution to C. The latter is recast in a more
compact form by defining the relaxation time �.r;k/ and the collision operator
Qf .r;k/ such that

16Note that the units of S0 are different from those of S: in fact, ŒS0� D cm3=s. Examples
of calculations of phonon scattering and ionized-impurity scattering are given in Sects. 20.5.1
and 20.5.2, respectively.
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1

�
D

Z

k0

S0
�
r;k! k0

	
d3k0 ; Qf D

R
k0

f .r;k0; t/ S0 .r;k0 ! k/ d3k0
R

k0

S0 .r;k! k0/ d3k0
;

(19.43)
to find C D Cin � Cout D .Qf � f /=� . The BTE (19.33) thus becomes

@f

@t
C u � gradrf �

q

„
.EC u ^ B/ � gradkf D �

f � Qf

�
: (19.44)

In the derivation of (19.44) no distinction is made between the inter-band and intra-
band transitions. For a dilute system one can assume that the transitions of the
two types are uncorrelated, so that the corresponding probabilities are additive:
S0 D S0b C S0v , where index b (v) stands for “inter-band" (“intra-band"). As a
consequence,

1

�
D
1

�b
C
1

�v
;

1

�b
D

Z

k0

S0b d3k0 ;
1

�v
D

Z

k0

S0v d3k0 : (19.45)

For the semiconductors of interest, the relaxation times defined in (19.45) differ by
several orders of magnitude (e.g., in electronic-grade silicon17 is �b > 10

�6 s, �v <
10�12 s). This makes the intra-band transitions dominant (� D �b �v=.�bC�v/ ' �v);
one exception exists though, where the effects of the intra-band transitions cancel
each other exactly, so that the inter-band transitions only are left. Such an exception
is discussed in Sect. 19.4.

19.3.3 Perturbative Form of the BTE

The Boltzmann Transport Equation (19.44) is an integral-differential equation in the
phase space and time, in the unknown f . The kernel of the integral part is S0, while
the equation coefficients are E.r; t/, B.r; t/, �.r;k/, and u.k/ D .1=„/ gradkH. In
equilibrium f becomes f eq D Q P, with P.r;k/ the Fermi-Dirac statistics; as shown
in Sect. 19.2.2, P depends on position if the semiconductor is not uniform. Moreover
it is df eq=dt D 0; hence, to make the collision term to vanish at equilibrium, it must
be Qf eq D f eq (detailed-balance principle, Sect. 6.5).

In general, the solution of the BTE is quite a difficult task. The issue of effective
solution methods for this equation will be introduced later; however, a solution
procedure is outlined here which, although seldom used in practical cases, has the
advantage of providing a simplified form of (19.44), upon which a number of models
for semiconductor-device analysis are based. The procedure consists in setting up

17The semiconductor’s purification degree necessary for manufacturing integrated circuit is called
electronic grade; it indicates that the ratio between the concentration of impurities and that of the
semiconductor atoms is smaller than 10�9. Lower-quality materials, with a ratio smaller than 10�6,
are used in the fabrication of solar cells; in this case the purification degree is called solar grade.
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the iterative scheme

df .mC1/

dt
D �

f .mC1/ � Qf .m/

�
; Qf .m/ D

R
k0

f .m/ S0 d3k0
R

k0

S0 d3k0
: (19.46)

with m the iteration index. In this way the Qf .m/ term at the right-hand side of the
first equation in (19.46) is known from the previous iteration, so that the integral-
differential equation is transformed into a number of differential-only equations.
If convergence occurs, the iterations are brought to an end when a suitable norm
jjf .mC1/ � f .m/jj is smaller than a prescribed value.

To start the procedure it is reasonable to choose, for the approximation of order
zero, the equilibrium distribution: f .0/ D f eq; from the detailed-balance principle it
follows Qf .0/ D f eq. The first step of the iteration procedure then yields f .1/, called
first-perturbation solution. In many cases of practical interest, the material or device
under investigation is sufficiently close to the equilibrium condition to make f .1/ an
acceptable solution; one then stops the iterations at the first-perturbation solution
and takes f ' f .1/. This is equivalent to solving the perturbative form of the BTE

@f

@t
C u � gradrf �

q

„
.EC u ^ B/ � gradkf D �

f � f eq

�
: (19.47)

It is interesting to comment on the form of (19.47). The first term at the left-
hand side differs from zero only if the distribution function depends explicitly on
time; hence, it vanishes in a nonequilibrium condition if the latter is of the steady-
state type. The second term vanishes if the distribution function is independent
of the spatial coordinates, hence it describes a contribution to electron transport
that originates from a spatial nonuniformity. For this reason this term is called
diffusive term (compare with Sect. 23.3). The third term vanishes if the external
force is missing, hence it originates from the action of the external forces on the
electrons and, for this reason, is called drift term. At the right-hand side of (19.47),
the magnitude of the relaxation time influences the amount by which the distribution
function departs from equilibrium; to better show this, one recasts (19.47) as

f D f eq � � L f ; L D
@

@t
C u � gradr �

q

„
.EC u ^ B/ � gradk ; (19.48)

with L the Liouvillian operator. If � ! 0, then f ! f eq; this shows that
the perturbative solution is in fact acceptable if the relaxation time is sufficiently
small.18 It is worth adding that in Classical Mechanics a simplified form of (19.48)
is widely used to investigate transport problems. A brief outline of the procedure is
given in Sect. 19.6.7.

18On the other hand, in a collisionless case it is S0! 0 whence, from (19.43), it follows � !1.
In this situation there is no limit to the departure of f from f eq.
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A final comment refers to the spatially uniform case, where f D f .k; t/, � D
�.k/; then, (19.47) simplifies to

@f

@t
�

q

„
.EC u ^ B/ � gradkf D �

f � f eq

�
: (19.49)

If the fields are set to zero at some instant of time, say, t D 0, (19.49) reduces to a
differential equation with respect to time only, with k a parameter; thus, for each k
the solution approaches the equilibrium distribution19 according to the law

f D f eq C .ftD0 � f eq/ exp.�t=�/ : (19.50)

In passing, this result explains why � is called “relaxation time.”

19.4 Moments Expansion of the BTE

The moments expansion of the BTE is a transformation method that has successfully
been applied to the analysis of semiconductor devices. It reduces the original
equation to a set of partial-differential equations in the r; t space; the number of
such equations can be adapted to the type of information to be acquired about the
device under investigation. More specifically, applying the moments method to the
BTE and truncating the series of moments at a suitable order, one extracts from the
BTE a hierarchically ordered set of models, ranging from the simplest to the more
complicate ones ( [112–114], and references therein).

The BTE is an equation in the r;k; t space. The basic idea of the moments
method is that for the description of carrier-transport phenomena in semiconductor
devices, it is often sufficient to rely on equations defined over the r; t space alone; in
fact, for practical applications the information about the distribution of the crystal
momentum is less important. The equations in the r; t space are extracted from
the BTE by multiplying the latter by suitable functions ˛.k/ and integrating the
result over the k space. The integration saturates the k coordinates and, as shown in
Sect. C.6, provides an equation in the r; t space.20 Remembering that the electron
dynamics using the equivalent Hamiltonian operator is described by expanding
the electron’s wave function in terms of the Bloch functions (Sect. 19.2.1), the
integration over the k space is in fact limited to the first Brillouin zone. On the
other hand, the typical behavior of the distribution function at the boundary � of the
first Brillouin zone is such that ˛.k/ f .r;k; t/ ! 0 when k ! k� . This amount to

19Compare with the discussion carried out in Sect. 6.6.3.
20As indicated in Sect. C.6, term “moment" is specifically used when ˛ is a polynomial in k. As the
dependence of ˛ on k is not specified yet, it is implied that the form of ˛ is such that the integrals
in (19.51) converge.
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assuming that there are no electrons at the boundary.21 From a practical standpoint,
the hypothesis has the same effect as that of replacing the first Brillouin zone with
an infinite domain and assuming that the distribution function in a nonequilibrium
condition vanishes at infinity in the same exponential-like fashion as it does at
equilibrium, where it becomes proportional to the Fermi-Dirac statistics [108, 111].
With these premises, using the general form (19.33) of the equation, the moment of
the BTE with respect to ˛ reads

ZZZ C1

�1

˛

�
@f

@t
C u � gradrf �

q

„
.EC u ^ B/ � gradkf

�
d3k D

ZZZ C1

�1

˛ C d3k :

(19.51)
As the BTE is a continuity equation of the distribution function in the phase
space, (19.51) is expected to be a continuity equation in the r space; in fact, as shown
below, it is the continuity equation of the product n˛, where n is the concentration
of the electrons in the conduction band, given by the first relation in (19.31), and

˛.r; t/ D
1

n

ZZZ C1

�1

˛.k/ f .r;k; t/ d3k (19.52)

is the average of ˛ over the k space. The continuity equation is derived below by
working out separately the different terms appearing in (19.51).

19.4.1 Time Derivative

The derivation of this term is readily accomplished by observing that the ˛ @f=@t D
@.˛ f /=@t, whence

ZZZ C1

�1

˛
@f

@t
d3k D

@

@t

ZZZ C1

�1

˛ f d3k D
@

@t
.n˛/ : (19.53)

This shows that (19.51) is the continuity equation of n˛, as anticipated.

21In the case of the conduction band of germanium, the minima are at the boundary (Sect. 17.6.5),
which makes the hypothesis inconsistent as it stands; to perform the integration one must shift
the origin of the k space and exploit the periodicity of the band structure. The hypothesis that
the distribution function vanishes at the boundary of the first Brillouin zone is made also in the
application of the moments method to the holes of the valence band.
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19.4.2 Diffusion Term

To calculate this terms one starts with the relation ˛ u � gradrf D divr.˛ u f /, that
derives from the second identity in (A.16) and from the fact that ˛ u does not depend
on r. Thus,

ZZZ C1

�1

˛ u � gradrf d3k D divr

ZZZ C1

�1

˛ u f d3k D divr .n˛ u/ : (19.54)

19.4.3 Drift Term

The term containing the electric field is treated starting from the identity

˛ E � gradkf D E � gradk.˛ f / � f E � gradk˛ : (19.55)

The integral of the first term at the right-hand side of (19.55) vanishes due
to identity (A.26) and to the asymptotic behavior of f described earlier. As a
consequence,

�

ZZZ C1

�1

˛ E � gradkf d3k D E �
ZZZ C1

�1

f gradk˛ d3k D E � n gradk˛ : (19.56)

The term containing the magnetic induction is treated more easily by rewriting the
mixed product as gradkf � ˛ u ^ B D gradkf ^ ˛ u � B (compare with (A.31)) and
using the first identity in (A.35), to find

gradkf ^ ˛ u � B D rotk.f ˛ u/ � B � f rotk.˛ u/ � B : (19.57)

The integral of rotk.f ˛ u/ � B over k vanishes due to identity (A.38) and to the
asymptotic behavior of f ; this yields

�

ZZZ C1

�1

˛ u ^ B � gradkf d3k D B �
ZZZ C1

�1

f rotk.˛ u/ d3k : (19.58)

In turn, identity (A.35) transforms the integrand at the right-hand side of (19.58) as
f rotk.˛ u/ D f ˛ rotkuC f gradk˛ ^ u where, thanks to the definition (17.52) of the
group velocity, it is rotku D .1=„/ rotkgradkH D 0. Thus, (19.58) becomes

�

ZZZ C1

�1

˛ u ^ B � gradkf d3k D B �
ZZZ C1

�1

f gradk˛ ^ u d3k D

D

ZZZ C1

�1

f gradk˛ � u ^ B d3k D n gradk˛ � u ^ B : (19.59)
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In (19.59), the term containing the magnetic induction does not contribute to the
moment if ˛ or f depends on k through energy alone, ˛ D ˛.H/ or f D f .H/. In
fact, in the first case it is gradk˛ D .d˛=dH/ gradkH, whence

gradk˛ � u ^ B D
d˛

dH
„u � u ^ B D 0 : (19.60)

The same calculation holds when f D f .H/, starting from the integrand at the left-
hand side of (19.59).

19.4.4 Collision Term

Here it is convenient to distinguish between the inter-band and intra-band transi-
tions, introduced in Sects. 19.3, 19.3.2. Thus, the collision term is written C D
Cb C Cv , where as above suffix b (v) stands for “inter-band" (“intra-band"). This
yields

ZZZ C1

�1

˛ C d3k D Wb CWv ; Wb.v/Œ˛� D

ZZZ C1

�1

˛ Cb.v/ d3k ; (19.61)

where the functional symbol reminds one that Wb.v/ is determined by the form of ˛.

19.4.5 Moment Equations

Adding up (19.53), (19.54), (19.56), (19.59), and (19.61) after multiplying the drift
terms by q=„ provides the explicit form of (19.51), that reads

@

@t
.n˛/C divr .n ˛ u/C

q

„
n gradk˛ � .EC u ^ B/ D WbŒ˛�CWvŒ˛� : (19.62)

A simple reasoning shows that the equations of the form (19.62) that are obtained
from different choices of ˛ are coupled with each other. To show this one takes for
simplicity the one-dimensional case and let ˛ D c km, with m a positive integer and
c a constant. Also, the parabolic-band approximation is assumed to hold, so that u
is a linear function of k. It follows that the time derivative in (19.62) contains the
moment of order m of f , while the diffusion term (due to the product ˛ u) contains
the moment of order m C 1; in turn, the summand proportional to E in the drift
term contains the moment of order m � 1 due to the derivative of ˛, while the
summand proportional to B contains the moment of order m. These considerations
are sufficient to show that the equation whose unknown is the moment of order m is
coupled with those whose unknowns are the moment of order m � 1 and mC 1.
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In the typical applications of the moments expansion a finite set of equations
is considered, starting from the lowest-order moment m D 0 up to some order
m0. The system of equations thus obtained is indeterminate because, due to the
coupling mentioned above, the number of equations is m0 whereas the number of
unknown moments appearing in them is m0 C 1. To make the system determinate
it is then necessary to add an extra condition, that is found by prescribing an
approximate form of the .m0 C 1/th moment.22 Such a prescription reduces the
number of unknown moments to m0 and makes the system of differential equations
determinate; for this reason it is called closure condition. The typical choice for the
closure condition is to approximate the .m0 C 1/th moment using the equilibrium
distribution.

Moment of Order Zero

The moment of order zero is obtained by letting ˛ D 1 in (19.62), whose left-hand
side becomes @n=@t C divr .n u/; the electron concentration n is the moment of
order zero and u D v is the average velocity, as defined in (19.31). If the zero-order
moment of the collision term does not introduce further unknowns, the equation’s
unknowns are two: n and v. The form of the left-hand side shows that integrating the
zero-order moment of the BTE over an arbitrary volume � of the r space provides
the balance equation for the number of electrons of the conduction band (compare
with Sect. 23.2):

d

dt

Z

�

n d�C
Z

†

n v � s d† D
Z

�

WbŒ1� d�C
Z

�

WvŒ1� d� ; (19.63)

where † is the boundary of � and s the unit vector normal to †, oriented in
the outward direction. The second integral at the right-hand side of (19.63) does
not contribute to the electrons’ balance; in fact, it describes transitions that do not
influence the number of electrons of the band because both the initial and final state
belong to it. On the other hand, due to the arbitrariness of �, the integral vanishes
only if WvŒ1� D 0. This result shows that the zero-order moment of the intra-band
transitions vanishes,23 so that the only transitions of importance for the zero-order
moment, despite being dominated by much larger relaxation times, are the inter-
band ones. This is the exception anticipated in Sect. 19.3.2. The zero-order moment
for the electrons of the conduction band then reads

22The choice of the highest-order moment as the function to be approximated is reasonable in view
of the analysis of the moments method carried out in Sect. C.6. In fact, as the moments are the
coefficients of a converging Taylor series, they become smaller and smaller as the order increases;
thus, the error due to approximating the highest-order coefficient is expected to be the smallest.
23A similar reasoning is used to explain (20.16).
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@n

@t
C divr .n v/ D WbŒ1� : (19.64)

The form of the inter-band term WbŒ1�, which is not relevant for the analysis in hand,
is worked out in Chap. 20.

General Form of the Higher-Order Moments

As shown above, the contribution of the intra-band transitions vanishes for ˛ D 1.
In contrast, it becomes dominant for other choices of ˛; in fact, in such cases the
intra-band transitions do not cancel out any more and their scattering rates turn out
to be much higher than those of the inter-band transitions. This allows one to adopt
an approximation for WbŒ˛�, namely,

WbŒ˛� D

ZZZ C1

�1

˛ Cb d3k ' ˛
ZZZ C1

�1

Cb d3k : (19.65)

In other terms it is assumed that since the contribution of WbŒ˛� to the collision term
is small when ˛ ¤ 1, the error introduced by (19.65) is negligible. Expanding the
time derivative in (19.62) and using (19.64), (19.65) yield

n
@˛

@t
Cdivr .n˛ u/�˛ divr .n v/C

q

„
n gradk˛ � .EC u ^ B/ D WvŒ˛� ; (19.66)

where only the intra-band transitions appear. Due to its simpler form, (19.66) will
be used in the following to derive the balance equations with ˛ ¤ 1.

Moments of Order One, Two, and Three

The moment of order one of the BTE is found by letting ˛ D ui with i D 1; 2; 3

in (19.66); this yields the continuity equation for the ith component of the average
velocity of the electrons, ui D vi:

n
@vi

@t
C divr .n ui u/ � vi divr .n v/C

q

„
n gradkui � .EC u ^ B/ D WvŒui� :

(19.67)
To proceed it is necessary to introduce the definition of average kinetic energy and
average flux of the electrons’ kinetic energy,24

24In the equilibrium condition the product Ee f eq is even with respect to k. In turn, u D
.1=„/ gradkE is odd, so that beq D 0. Compare with the similar comment made about the average
velocity in (19.31).
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w.r; t/ D
1

n

ZZZ C1

�1

Ee.k/ f .r;k; t/ d3k ; (19.68)

b.r; t/ D
1

n

ZZZ C1

�1

Ee.k/u.k/ f .r;k; t/ d3k ; (19.69)

with Ee D E.k/ � EC. Then, the moment of order two of the BTE is found by
letting ˛ D Ee in (19.66); this yields the continuity equation for the average kinetic
energy of the electrons, (19.68). In the derivation, the term containing the magnetic
induction vanishes due to (19.60); using the definition (17.52) of the group velocity,
the equation reads

n
@w

@t
C divr .n b/ � w divr .n v/C q n v � E D WvŒEe� : (19.70)

The moment of order three of the BTE is found by letting ˛ D Ee ui with i D 1; 2; 3
in (19.66); this yields the continuity equation for the average flux of the electrons’
kinetic energy, (19.69); the equation reads

n
@bi

@t
Cdivr

�
n Ee ui u

	
�bi divr .n v/C

q

„
n gradk.Ee ui/ � .EC u ^ B/ D WvŒEe ui� :

(19.71)
The choices ˛ D 1, ˛ D ui, ˛ D Ee, and ˛ D Ee ui are such that each moment
equation provides the balance relation of a dynamic quantity of interest: number
of electrons, average velocity, average kinetic energy, average flux of the kinetic
energy; the even-order moments yield a scalar equation, whereas the odd-order
moments yield a vector equation.

19.4.6 Hierarchical Models

The order-one moment (19.67) contains the new unknown ui u besides n and v
already present in (19.64); the order-two moment (19.70) contains again n and v,
and the new unknowns w, b. The order-three moment contains n, v, b, and the
new unknown Ee ui u. The drift terms and the collision terms, depending on their
form, may or may not introduce extra unknowns; even if they don’t, the number
of unknowns listed above exceeds that of the equations. It is worth anticipating
that the finite set of balance equations indicated in Sect. 19.4.5 is obtained by
taking the equations in pairs: specifically, the first pair is made of the balance
equations of order zero and one, (19.64) and (19.66), that are collectively termed
drift-diffusion model; in this case, the three unknowns n, v, and ui u are reduced to
two by the closure condition (Sect. 19.4.5), that consists in replacing the highest-
order moment ui u with its equilibrium expression. A more elaborate model is
obtained by taking the first two pairs, namely, the balance equations of order zero
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through three, (19.64), (19.66), (19.71), and (19.71), that are collectively termed
hydrodynamic model; the six unknowns n, v, and ui u, w, b, Ee ui u are reduced
to five by prescribing the closure condition, then to four by determining a relation
between the second-order moments ui u and w.

By this procedure one constructs a set of hierarchically ordered models of
increasing complexity. The type of model adopted in practical applications depends
on the trade-off between the information that one needs to acquire about the physical
behavior of the device under investigation and the computational cost of the system
of differential equations to be solved. To date, the moments method has been
investigated up to order 6 [60], and has been extended to order 21 using a scheme
based on Legendre polynomial expansion [75]; the standard implementations in
the commercial simulation programs used by semiconductor Companies adopt the
hydrodynamic model.25

The balance equations derived so far are still rather cumbersome in view of the
application to the analysis of semiconductor devices. A number of simplifications
are illustrated below, which eventually lead to the standard form of the hydrody-
namic model [50, 54, 111, 116]. To begin, one considers the time derivatives at the
left-hand side of the balance equations. Such derivatives differ from zero only if
the distribution function depends explicitly on time, which typically happens when
time-dependent boundary conditions are imposed to the device under investigation.
In the practical cases, the maximum frequency of the electric signals applied to a
device or an integrated circuit is lower by many orders of magnitude than the inverse
relaxation times associated with the intra-band transitions; this makes it possible to
neglect the time derivatives of vi, w, and bi. A quasi-static approximation26 is thus
assumed in the continuity equations (19.67), (19.70), and (19.71). The argument
leading to this approximation does not apply to the case of (19.64) because only
the inter-band transitions take place there, whose relaxation times are much longer
than those of the intra-band transitions and, in many cases, also than the inverse
maximum frequency of the external signal. As a consequence, the term @n=@t
in (19.64) must be retained when the boundary conditions depend on time.

As a second approximation, one adopts the parabolic-band approximation; this
implies that in a nonequilibrium condition the electrons of the conduction band still
occupy energy states in the vicinity of the absolute minima. Such a condition is in
general fulfilled as shown below.27 Letting a indicate one of the absolute minima of
the conduction band and using (19.24) after dropping suffix “0” yield

25Comprehensive reviews of the solution methods for the BTE are in [71, 72] as far as the Monte
Carlo method is concerned, and in [64] for deterministic methods.
26A similar reasoning is used to treat the time derivative of the vector potential when the
semiconductor equations are coupled with the Maxwell equations (Sect. 19.5.4).
27The adoption of the parabolic-band approximation may be avoided at the cost of redefining the
carrier temperature and introducing more relaxation times [134].
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ui D
„ .ki � kia/

mia
; gradkui D

„

mia
ii ; gradk.Ee ui/ D „

�
Ee

mia
ii C ui u

�
;

(19.72)
with ii the unit vector of the ith axis. From now on, the equations derived from
the parabolic-band approximation refer to the ath valley. In principle, the electron
concentration, average velocity, and the other averages should be indicated with na,
va, and so on; this is not done here to avoid complicacies in the notation. The suffix
will be introduced in Sect. 19.5.2, where the contributions of the valleys are summed
up. This comment does not apply to the moment of order zero, (19.64), because its
derivation does not entail any simplifying hypothesis.

With these premises, one manipulates the terms ui u, Ee ui u by introducing the
auxiliary quantity c D u � v, called random velocity. Clearly it is ci D ui � vi D 0,
so that ui u D vi vC ui u; it follows

divr.n ui u/ D divr.n ci c/C vi divr.n v/C n v � gradrvi : (19.73)

The last term at the right-hand side of (19.73) is called convective term. In the
typical operating conditions of the semiconductor devices this term can be neglected
(refer to [108] and the comments below). Replacing into (19.67) the simplified form
of (19.73) along with the second relation of (19.72) yields

divr .n mia ci c/C q n .EC v ^ B/i D mia WvŒui� : (19.74)

The latter equation contains the unknowns n and v already present in (19.64), and
the new unknown ci c. The drift term does not introduce extra unknowns. Note that
ci c is actually made of three vectors, so that it may be thought of as a symmetric
3 � 3 tensor with components ci cj, i; j D 1; 2; 3. To give it a more compact form,
after observing that mia ci c has the units of an energy, one defines the electron-
temperature tensor of components Tij such that

kB Tij D mia ci cj ; n kB Tij D

ZZZ C1

�1

mia ci cj f d3k ; (19.75)

with kB the Boltzmann constant. Letting Ti be the vector of entries Ti1;Ti2;Ti3, so
that kB Ti D mia ci c, one finds for the ith component of the moment of order one

divr .n kB Ti/C q n .EC v ^ B/i D mia WvŒui� : (19.76)

In the equilibrium condition the electron-temperature tensor reduces to the product
of a scalar coefficient times the identity tensor; in the limit of the Boltzmann dis-
tribution, the scalar coefficient identifies with the lattice temperature (Sect. 19.6.4),
thus providing an estimate of the modulus jcj of the random velocity. The modulus
jvj of the average velocity in a nonequilibrium condition can be estimated as well,
basing upon the current density and carrier concentration of the devices’ operating
conditions. It is found that in typical situations it is jvj � jcj, so that the average
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motion of the carriers in a nonequilibrium condition can be thought of as that of a
slowly drifting fluid. This justifies the neglect of the convective term in (19.73), and
also allows one to neglect vi v with respect to ci c when these terms appear in the
same expression.

The simplifications used in (19.67) apply in the same manner to the moment of
order three, (19.71); in fact it is Ee ui u D Ee ui cC Ee ui v, whence

divr.n Ee ui u/ D divr.n Ee ui c/C bi divr.n v/C n v � gradrbi: (19.77)

Using the third relation of (19.72) in the drift term of (19.71) transforms the latter
into .q=mia/ n Œ.w ii C mia vi vC mia ci c/ � EC b ^ B � ii C mia ui u � u ^ B�, where
the mixed product vanishes due to the repeated factor, and mia vi v is negligible as
shown above. Replacing (19.77) into (19.71) after neglecting the time derivative and
the convective term yields

divr
�
n mia Ee ui c

	
C q n Œ.w ii C kB Ti/ � EC b ^ B � ii� D mia WvŒEe ui�:

(19.78)
The relation between the second-order moments necessary to reduce the num-
ber of unknowns is now determined starting from the expression of Ee in the
parabolic-band approximation. Using the first relation in (19.72) yields Ee D

.1=2/
P3

iD1 mia u2i whence, from (19.68),

w D
1

2

3X

iD1

mia v
2
i C

3

2
kB Te ; Te D

T11 C T22 C T33
3

; (19.79)

with Te the electron temperature. The two summands of w in (19.79) are also called
convective part and thermal part of the average kinetic energy, respectively. The
same reasoning that has led to the neglect of mia vi v with respect to mia ci c also
shows that the thermal part is dominant with respect to the convective part, so that
w ' .3=2/ kB Te. Moreover, it can be assumed that the electron-temperature tensor
retains the same structure of the equilibrium case, so that

2

4
T11 T12 T13
T21 T22 T23
T31 T32 T33

3

5 '

2

4
T11 0 0

0 T22 0

0 0 T33

3

5 ' Te.r; t/I ; (19.80)

with I the identity tensor. As a consequence, .w ii C kB Ti/ � E D .5=2/ kB Te ii � E
and divr.n kB Ti/ D @.n kB Te/=@xi. The latter is the ith component of gradr .n kB Te/.
In summary, the balance equations for the moments of order one, two, and three read

@ .n kB Te/

@xi
C q n .EC v ^ B/i D mia WvŒui� ; (19.81)

divr .n b/ � .3=2/ kB Te divr .n v/C q n v � E D WvŒEe� ; (19.82)

divr
�
n mia Ee ui c

	
C q n Œ.5=2/ kB Te EC b ^ B�i D mia WvŒEe ui� : (19.83)
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Macroscopic Relaxation Times of the Higher-Order Moments

As remarked in Sect. (19.4.5), the collision terms of the moments of order higher
than zero account for the intra-band transitions only. These terms are worked out
here using the perturbative form of the BTE (Sect. 19.3.3); this approach is coherent
with the other approximations from which the balance equations (19.81–19.83)
derive. The collision term of (19.82) then becomes

WvŒEe� D �

ZZZ C1

�1

Ee
f � f eq

�
d3k ; (19.84)

with � ' �v (Sect. 19.3.2). The equilibrium part is worked out by defining the
energy-relaxation time �w such that

ZZZ C1

�1

Ee
f eq

�v
d3k D

1

�w

ZZZ C1

�1

Ee f eq d3k D
neq weq

�w
'
3

2

neq kBTeq
e

�w
;

(19.85)
where the definitions (19.68), (19.79) of the electrons’ average kinetic energy and
temperature are used. The left-hand side of (19.85) does not vanish because the
integrand is positive definite. The nonequilibrium part of WvŒEe� is approximated as

ZZZ C1

�1

Ee
f

�v
d3k '

1

�w

ZZZ C1

�1

Ee f d3k D
n w

�w
'
3

2

n kBTe

�w
; (19.86)

based on the observation that due to the smallness of the intra-band relaxation time
�v , the distribution function departs little from the equilibrium one (Sect. 19.3.3).

The derivation of the analogues of �w for the collision terms of (19.81)
and (19.83) is somewhat more complicate. In fact, in most semiconductors, among
which Si, Ge, and GaAs, the relaxation time �v is even with respect to k [73],
which makes the integrals of ui f eq=�v and Ee ui f eq=�v to vanish because the
integrand is odd. To overcome the difficulty one expands f � f eq into a Taylor
series with respect to a parameter and truncates the series in such a way as to retain
the first summand which is odd with respect to k. For instance, letting � be the
parameter28 and assuming that the first-order term of the expansion is odd, one lets
f � f eq ' .df=d�/eq � whence

ZZZ C1

�1

ui
.df=d�/eq

�v
d3k D

1

�pi

ZZZ C1

�1

ui .df=d�/eq d3k ; (19.87)

ZZZ C1

�1

Ee ui
.df=d�/eq

�v
d3k D

1

�bi

ZZZ C1

�1

Ee ui .df=d�/eq d3k ; (19.88)

28Typically the parameter used in this procedure is the electric field [73]. An expansion truncated
to the first order is coherent with the first-order perturbation approach.
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with �pi and �bi the momentum-relaxation time and relaxation time of the energy flux,
respectively.29 Due to their definitions, �pi and �bi are diagonal tensors. However,
as their degree of anisotropy is small, they are approximated by scalar quantities,
�pi ' �p and �bi ' �b. Investigations about the relaxation times have been carried
out by different techniques, specifically, the spherical-harmonics expansion method
to determine the dependence on the average energy [112, 116], and the Monte Carlo
method to study the anisotropy properties [17, 18, 57].

Using (19.87), (19.88) along with the definitions (19.31), (19.69) of the average
velocity and average flux of kinetic energy finally yields

ZZZ C1

�1

ui

�v

�
df

d�
�

�eq

d3k D
n vi

�p
;

ZZZ C1

�1

Ee ui

�v

�
df

d�
�

�eq

d3k D
n bi

�b
:

(19.89)

19.5 Hydrodynamic and Drift-Diffusion Models

In Sect. 19.4 the moments method has been applied to derive a set of balance equa-
tions; the general form of the latter has successively been modified by introducing
a number of simplifications: among them is the parabolic-band approximation, due
to which, as indicated in Sect. 19.4.6, a set of equations restricted to the ath valley
of the conduction band is obtained. In order to recover the equations for the whole
band, it is necessary to add up the single-valley contributions. The procedure is
the same for the hydrodynamic and drift-diffusion models; it will be worked out
explicitly only for the simpler case of the drift-diffusion model.

19.5.1 HD Model

As anticipated in Sect. 19.4.6, the hydrodynamic (HD) model is obtained by
taking the balance equations of order zero through three, (19.64), (19.81), (19.82),
and (19.83), and imposing the closure condition onto the fourth-order moment.
For simplicity, the latter is considered in the nondegenerate case whence,
from (19.159), it is mia

�
Ee ui c

	eq
' ii .5=2/ .kB T/2. Letting W D WbŒ1� and

using (19.85), (19.86), (19.89) yield

@n

@t
C divr .n v/ D W ;

@ .n kB Te/

@xi
C q n .EC v ^ B/i D �

mia

�p
n vi ;

(19.90)

29The term “momentum” for �pi derives from the observation that the continuity equation for the
ith component of the average velocity vi of the electrons (19.67) may also be thought of as the
continuity equation for the ith component of the average momentum, mia vi. In turn, �bi is also
called heat-relaxation time.
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divr .n b/ �
3

2
kB Te divr .n v/C q n v � E D �

3

2

kB

�w
Œn Te � .n Te/

eq� ; (19.91)

5

2
.kB T/2

@n

@xi
C q n

�
5

2
kB Te EC b ^ B

�

i

D �
mia

�b
n bi : (19.92)

which constitute a system of first-order, partial-differential equations in the
unknowns n, v, Te, and b. In general, the model’s equations are to be solved
over a volume that encloses the device under investigation; the boundary conditions
that typically apply are discussed in Sect. 19.5.6. Two of the equations are scalar
(namely, (19.91) and the first one in (19.90)), while the other two are vector
equations. The system is nonlinear because the unknowns are multiplied by each
other.30 Note, however, that the second equation in (19.90) is linear with respect to
the components of v; the latter can be extracted and replaced into the two scalar
equations. The same procedure is applicable to (19.92), which is linear with respect
to the components of b. After the replacements are completed, the system reduces to
two scalar equations of the second order. An example is given in Sect. 19.5.5, with
reference to the simpler case of the drift-diffusion model. Due to the components mia

of the effective-mass tensor, the vector equations are anisotropic; however, when the
contributions of the different valleys are combined together, the anisotropy cancels
out (the explicit calculation is provided for the drift-diffusion model below).

The qualitative analysis of the model carried out above implies that the electric
field and magnetic induction are known, so that they are embedded in the model’s
coefficients. In fact, this is not true, because the fields are influenced by the
distribution of electric charge and current density that are some of the model’s
unknowns. For this reason, as shown below, the hydrodynamic equations, and the
drift-diffusion ones as well, must be coupled with the Maxwell equations.

19.5.2 DD Model

The drift-diffusion (DD) model is obtained by taking the balance equations of order
zero and one, (19.90), and imposing the closure condition onto the second-order
moment. For simplicity, the latter is considered in the nondegenerate case, whence
Teq

e D T (Sect. 19.6.4); the model thus reads

@n

@t
C divr .n v/ D W ; kB T

@na

@xi
C q na .EC va ^ B/i D �

mia

�p
na via :

(19.93)

30Also, the generation-recombination term W embeds nonlinear dependencies on some of the
unknowns, Chap. 20.
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As indicated in Sect. 19.4.6, the first equation in (19.93) refers to the whole
conduction band because its derivation did not entail any simplifying hypothesis;
in contrast, the second equation refers to the ath minimum of the band due to the
parabolic-band approximation. This explains the index attached to n and to the
average velocity; the momentum-relaxation time, instead, does not depend on the
valley [112]. As noted above, the dependence on the components via is linear,
which makes it possible to express them in terms of the other functions. In fact,
it is more convenient to extract, instead of va, the electron-current density of the
ath minimum; remembering (4.21) and (4.22), the latter is given by Ja D �q na va.
Then, the second equation in (19.93) is recast as

Jia D J0ia �
q �p

mia
.Ja ^ B/i ; J0ia D kB T

q �p

mia

@na

@xi
C

q �p

mia
q na .E/i ; (19.94)

with J0ia D Jia.B D 0/. Letting �ia D q �p=mia, the matrix form of (19.94) reads

2

4
J1a

J2a

J3a

3

5 D

2

4
J01a

J02a

J03a

3

5 �

2

4
�1a 0 0

0 �2a 0

0 0 �3a

3

5

2

4
J2a B3 � J3a B2
J3a B1 � J1a B3
J1a B2 � J2a B1

3

5 ; (19.95)

equivalent to

2

4
1 �1a B3 ��1a B2

��2a B3 1 �2a B1
�3a B2 ��3a B1 1

3

5

2

4
J1a

J2a

J3a

3

5 D

2

4
J01a

J02a

J03a

3

5 : (19.96)

The diagonal tensor O�a of entries �ia is called mobility tensor of the ath valley. Note
that the product of a mobility by a magnetic induction is dimensionless. Letting
Ma D �1a �2a �3a . O�a/

�1 B, the components of the current density are found by
solving the algebraic system (19.96), where the determinant of the matrix is

DM D 1C �1a �2a �3a

�
B21
�1a
C

B22
�2a
C

B23
�3a

�
D 1C B �Ma : (19.97)

The components of Ja are finally found to be

DM Jia D J0ia C �ia
�
B ^ J0a

	
i C

�
Ma � J0a

	
Bi : (19.98)

In typical situations the modulus of the magnetic induction is small, so that terms
that are quadratic in the components of B may be neglected. This yields the
approximate form

Jia ' J0ia C �ia
�
B ^ J0a

	
i : (19.99)
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The electron current density of the whole conduction band is thus found as

J D
MCX

aD1

Ja D

MCX

aD1

�
kB T O�a gradna C O�a q na EC O�a

�
B ^ J0a

	�
: (19.100)

In the perturbative approach followed here, it can be assumed that the total electron
concentration n equally distributes31 over the valleys, na D n=MC. The first two
summands at the right-hand side of (19.100) then yield

J0 D
MCX

aD1

J0a D q O�n n EC q ODn gradn ; (19.101)

where the diagonal tensors O�n, ODn are defined as

O�n D
1

MC

MCX

aD1

O�a ; ODn D
kB T

q
O�n : (19.102)

They are called electron-mobility tensor and electron-diffusivity tensor, respectively.
The second relation in (19.102), that states that diffusivity and mobility are propor-
tional through kB T=q, is called Einstein relation.32 The form of O�n is specified on
a case-by-case basis, depending on the semiconductor under consideration. Taking
silicon by way of example (MC D 6), the mass tensor is obtained from (17.82); thus,
the mobility tensor O�a has one of the following forms:

2

4
�l 0 0

0 �t 0

0 0 �t

3

5 ;

2

4
�t 0 0

0 �l 0

0 0 �t

3

5 ;

2

4
�t 0 0

0 �t 0

0 0 �l

3

5 ; (19.103)

with �l D q �p=ml, �t D q �p=mt. The first form in (19.103) applies to the two
minima belonging to axis k1, and so on; thus, the electron-mobility tensor (19.102)
is found to be

O�n D
1

6

0

@2

2

4
�l 0 0

0 �t 0

0 0 �t

3

5C 2

2

4
�t 0 0

0 �l 0

0 0 �t

3

5C 2

2

4
�t 0 0

0 �t 0

0 0 �l

3

5

1

A D �n I ;

(19.104)

31From this assumption and from (19.100) it also follows J D �q
PMC

aD1 na va D

�q .n=MC/
PMC

aD1 va, whence J D �q n v with v D .1=MC/
PMC

aD1 va.
32The relation derives from Einstein’s investigation on the Brownian motion [46] and has therefore
a broader application. In a semiconductor it holds within the approximations of parabolic bands
and nondegenerate conditions.
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with I the identity tensor and �n D .�l C 2�t/=3 the electron mobility. The
second definition in (19.102) then yields ODn D Dn I , with Dn D .kB T=q/�n the
electron diffusivity or electron-diffusion coefficient. From these results and (19.101)
one derives

J0 D q�n n EC q Dn gradn ; J0a D
1

�n MC
O�a J0 : (19.105)

From this, after a somewhat lengthy calculation, the last term at the right-hand side
of (19.100) is found to be

MCX

aD1

O�a
�
B ^ J0a

	
D an �n B ^ J0 ; an D

�t .�t C 2�l/

3�2n
: (19.106)

As anticipated in the qualitative discussion about the HD model, despite the fact that
each vector equation is anisotropic, when the contributions of the different valleys
are combined together the anisotropy cancels out. From the definition of the electron
mobility �n D .�l C 2�t/=3 one may also extract a scalar effective mass mn D

q �p=�n that fulfills 1=mn D .2=mt C 1=ml/=3. Using the room-temperature values
taken from Table 17.4 yields, for silicon, mn=m0 ' 0:26. By the same token one
finds an ' 2:61.

In the next sections, the current density of the electrons in the conduction band
will be used in equations involving also the current density of the holes in the
valence band; for this reason it is necessary to use different symbols. Specifically, Jn

for the former and Jp for the latter; with this provision, the above calculation yields

Jn D q�n n EC q Dn gradnC q an �n B ^ .�n n EC Dn gradn/ ; (19.107)

which is called drift-diffusion transport equation. Thus the DD model for the
electrons of the conduction band is given by (19.107) along with the first equation
in (19.93); the latter is rewritten here as

@n

@t
�
1

q
div.Jn/ D Wn ; (19.108)

where a specific symbol for the generation-recombination term has been introduced
as well.

19.5.3 DD Model for the Valence Band

The transport models illustrated so far are applicable to the valence band as well;
here, the DD model will be worked out. Remembering the discussion of Sect. 19.2.3
about the dynamics in the parabolic-band approximation, the model is described
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in terms of the concentration and current density of holes. The two quantities are
defined by adapting the corresponding expression for electrons, (19.31), as shown
below. Letting f D Q˚ , with Q D 1=.4 �3/ the density of states in the phase space
and ˚ the occupation probability, the hole concentration is

p.r; t/ D
ZZZ C1

�1

Q .1 � ˚/ d3k : (19.109)

In turn, the hole current density is defined starting from the definition of the electron
current density of the valence band. The latter is similar to (19.31), the difference
being that the integration in (19.31) is restricted to the branch of E.k/ belonging to
the conduction band, whereas the integration in (19.110) below is restricted to one
of the two branches of the valence band:

Ja D �q
ZZZ C1

�1

u.k/Q˚.r;k; t/ d3k : (19.110)

Letting ˚ D 1 � .1 � ˚/ transforms (19.110) into

Ja D q
ZZZ C1

�1

u Q.1 � ˚/ d3k � q
ZZZ C1

�1

u Q d3k ; (19.111)

where the second integral vanishes because u is odd with respect to k. As a
consequence, the current density of the branch under consideration may also be
thought of as given by the motion of the empty states (holes), having the group
velocity u.k/ and the positive charge q. Moreover, one defines the average velocity
of holes using Q .1 � ˚/ as weighing function, to find

Ja D q pa

R
k u Q .1 � ˚/ d3k
R

k Q .1 � ˚/ d3k
D q pa va (19.112)

where the definition (19.109) of the hole concentration has been specified for the
branch under consideration, and the short-hand notation

R
k has been used.

Given the above definitions, the derivation of the drift-diffusion model for holes
follows the same pattern as for the electrons. Remembering the description of the
band structure given in Sect. 17.6.5, for the valence band index a ranges over h
and l; moreover, due to the isotropy of each branch deriving from the parabolic-
band approximation (compare with 17.78), the effective mass is scalar. Then, the
equivalent of (19.94) read, in vector form,

Ja D J0aC
q �pa

ma
Ja^B ; J0a D �kB T

q �pa

ma
grad paC

q �pa

ma
q pa E ; (19.113)

where index a is attached also to the momentum-relaxation time because the two
branches are different. Still due to such a difference, the holes do not distribute
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equally over the branches; the contribution of the drift and diffusion components
then read, respectively,

q �ph

mhh
q ph EC

q �pl

mhl
q pl E D q .�ph C �pl/ p E ; (19.114)

� kB T
q �ph

mhh
grad ph� kB T

q �pl

mhl
grad pl D �kB T .�phC�pl/ grad p ; (19.115)

where

�ph D
q �ph

mhh

ph

p
; �pl D

q �pl

mhl

pl

p
: (19.116)

An approximate expression of �ph, �ph is obtained by replacing the concentrations
with the corresponding equilibrium values ph D NVh ˚1=2.h/, pl D NVl ˚1=2.h/,
with

NVh D 2MV


 mhh

2� „2
kB T

�3=2
; NVl D 2MV


 mhl

2� „2
kB T

�3=2
(19.117)

(compare with (18.8)), whence, using p D ph C pl,

�ph '
q �ph m1=2

hh

m3=2
hh C m3=2

hl

; �pl '
q �pl m1=2

hl

m3=2
hh C m3=2

hl

: (19.118)

Then, Ja is extracted from the first relation in (19.113), whose matrix form is

2

4
1 �a B3 ��a B2

��a B3 1 �a B1
�a B2 ��a B1 1

3

5

2

4
J1a

J2a

J3a

3

5 D

2

4
J01a

J02a

J03a

3

5 ; (19.119)

�a D q �pa=ma. The determinant of the matrix in (19.119) is DM D 1C �
2
a B2. Still

considering the case where B is weak, one finds

Ja ' J0a � �a B ^ J0a : (19.120)

In turn, the contribution of the last term at the right-hand side of the above yields

� ap B ^
�
q�p p E � q Dp gradp

	
; �p D �ph C �pl ; (19.121)

with �p the hole mobility. In turn, the hole diffusivity (or hole-diffusion coefficient)
and the dimensionless parameter ap are given by

Dp D
kB T

q
�p ; ap D

1

�2p

�
q �ph

mhh
�ph C

q �pl

mhl
�pl

�
: (19.122)
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Putting (19.114), (19.115), and (19.121) together finally provides the drift-diffusion
transport equation for the holes,

Jp D q�p p E � q Dp gradp � q ap �p B ^
�
�p p E � Dp gradp

	
: (19.123)

Thus, the DD model for the holes of the valence band is given by (19.123) along
with the balance equation for the holes’ number (compare with (19.93)), that reads

@p

@t
C
1

q
div.Jp/ D Wp : (19.124)

19.5.4 Coupling with Maxwell’s Equations

As anticipated in Sect. 19.5.1, as the electromagnetic field is influenced by the
distribution of charge and current density, it is necessary to couple the equations
describing the charge transport (in the form, e.g., of the hydrodynamic or drift-
diffusion model) with the Maxwell equations. For this, one inserts the total charge
density % and current density J into the right-hand sides of (4.19); considering that
there are different groups of charges and currents, one uses (4.22), where the charge
density is given by (18.53), namely,33

% D q .p � nC N/ ; N D NCD � N�A : (19.125)

In turn, the current density reads

J D Jp C Jn D %p vp C %n vn D q p vp � q n vn ; (19.126)

with Jn and Jp given by (19.107) and (19.123), respectively. As noted in Sect. 18.5,
the material’s permittivity must be used here instead of vacuum’s; as a consequence,
the relation between electric displacement and field reads D D "sc E.

One notes that the E and B fields are the sum of two contributions: the first
one derives from the internal charge and current-density distribution as mentioned
above, while the second one derives from external sources, e.g., voltage or current
generators connected to the device or integrated circuits, or electric and magnetic
fields present in the environment. In general, the internal contribution to B is
negligible and is not considered in semiconductor devices or integrated circuit;

33Equation (18.53) is the definition of charge density in a semiconductor; as a consequence it holds
in general, not only in the equilibrium condition considered in Sect. 18.5. In fact, it can readily
be extended to account for charges trapped in energy states different from those of the dopants
(Sect. 20.2.2).
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it follows that B is to be accounted for in (19.107) and (19.123) only when
it derives from external sources34 and, due to this, it must be thought of as a
prescribed function of r and t. With these premises, the analysis will continue
here after letting B D 0. Despite this simplification, the continuity and transport
equations (19.108), (19.107) and (19.123), (19.124) must be coupled with the whole
set of Maxwell equations: in fact, the expression of the electric field in terms of the
potentials is given by the second relation in (4.26), namely, E D �grad ' � @A=@t;
as a consequence, in a dynamic condition both the scalar and vector potential must
be determined. In a steady-state or equilibrium condition, instead, the expression of
the electric field reduces to E D �grad '; in this case it is sufficient to couple it
with the first equation in (4.19) only.

The presence of the vector potential A makes the model more complicate; thus, it
is useful to ascertain whether, in the typical operating conditions, the time derivative
@A=@t in the expression of E should be kept or not. As noted above, the derivative
differs from zero only if the boundary conditions (e.g., the applied voltages) vary
with time. To associate a characteristic time with a boundary condition one takes
the period associated with the maximum frequency of the boundary condition’s
spectrum, �min D 1=�max; then, one compares �min with the time �t necessary for
the electromagnetic perturbation produced by the boundary condition to propagate
to a position internal to the semiconductor. If d is the distance between a point
on the boundary and an internal point, the propagation time can be estimated to
be �t D d=uf , with uf the radiation’s phase velocity corresponding to �max. If it
happens that �t � �min, the propagation is practically instantaneous, namely, the
electromagnetic field at the internal point is consistent with the boundary condition
existing at the same instant of time; as a consequence, the boundary condition is
thought of as stationary, and the @A=@t derivative is neglected. This is called quasi-
static approximation; the condition of its applicability is summarized as35

�t D
d

uf
� �min D

1

�max
; �max �

uf

d
: (19.127)

To estimate the condition one must fix the value of d; as a conservative choice
one takes the channel length of the MOSFET transistors of the old generations,
d � 10�7 m. Using uf � 108 m s�1 yields �max � 1015 Hz, which is amply
fulfilled in the present state-of-the-art integrated circuits. Note that the condition is
even better verified in the last-generation devices, whose channel length is shorter
than 10�7 m.

The choice of the channel length in the above estimate is dictated by the fact
that the channel is the active region of the device. Choosing, instead, d as the (much

34A typical example is found when a semiconductor device or circuit is used as a magnetic-field
sensor or in specific measurement setups, like in the Hall-voltage measurement (Sect. 25.4).
35A similar reasoning is used to treat the time derivative of vi, w, and bi in the derivation of the
BTE’s moments of order larger than zero (Sect. 19.4.6).
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larger) thickness of the silicon wafer would not make sense, because the phenomena
taking place in the wafer’s bulk are relatively unimportant. Other distances within an
integrated circuit are larger by orders of magnitude than the value of d considered in
the estimate; for instance, the diameter of the integrated circuit itself is of the order
of 10�2 m, hence the quasi-static approximation is not applicable to the case of two
devices placed, e.g., at opposite corners of a chip and connected by a line. In fact,
the propagation of signals along the lines connecting different devices on a chip is
modeled using the whole set of Maxwell equations.36

19.5.5 Semiconductor-Device Model

Thanks to the quasi-static approximation, the equations describing the semiconduc-
tor, in the drift-diffusion case and with B D 0, read

divD D q .p � nC N/ ; D D �"sc grad'; (19.128)

@n

@t
�
1

q
divJn D Wn ; Jn D q�n n EC q Dn gradn ; (19.129)

@p

@t
C
1

q
divJp D Wp ; Jp D q�p p E � q Dp gradp : (19.130)

As outlined in Chap. 24, insulating layers play an essential role in the fabrication
of integrated circuits; it is then necessary to extend the model to incorporate also
the description of such layers. This is easily accomplished by observing that mobile
charges are absent in an insulator, so that the balance equations for the number of
particles and the transport equations reduce to identities, 0 D 0. The model for the
insulators then reduces to Poisson’s equation only. The right-hand side of the latter
does not necessarily vanish because, as indicated in Sect. 24.1, contaminants may
enter the insulator during the fabrication steps; some of these contaminants may
ionize and act as fixed charges so that, letting Nox be their density, the model for the
insulator reads37

divD D q Nox ; D D �"ox grad' ; n D p D 0 ; Jn D Jp D 0 :

(19.131)
The set of equations (19.128–19.131) is commonly called semiconductor-device
model. It is made of partial-differential equations of the first order, in the
unknowns ', n, p and D, Jn, Jp. The coefficients are �n, �p, Dn D .kB T=q/ �n,

36The progressive device scaling from one generation to the next is in general associated with
an increase in the size of the chips. Due to this, the constraints on the circuit’s speed are rather
imposed by the lines connecting the devices than by the devices themselves.
37The insulator’s permittivity is indicated with "ox because, in the examples used later, silicon
dioxide (SiO2) is used as the reference insulator.
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Dp D .kB T=q/ �p. In turn, N, Wn, Wp are either known functions or are expressed in
terms of the unknowns themselves. Some of the equations are nonlinear because the
unknowns are multiplied by each other. Each equation on the left in (19.128–19.131)
contains the divergence of a vector; in turn, the expression of the vector is given by
the corresponding equation on the right, in terms of the scalar unknowns (in fact
it is E D �grad'). It follows that by introducing the expressions of D, Jn, and Jp

into the divergence operator, each pair of first-order equation is transformed into a
single, second-order equation. This observation is useful in view of the application
of numerical methods to the solution of the semiconductor-device model.

Remembering the derivation of the transport model, the terms Wn, Wp

in (19.129), (19.130) are due to the generation-recombination phenomena.
Specifically, Wn is the difference between the number of electrons entering the
conduction band, and of those leaving it, per unit volume and time; in turn, Wp

is the difference between the number of holes entering the valence band, and of
those leaving it, per unit volume and time.38 For this reason, they are also called
net generation rates. As mentioned in Sect. 19.3, the transitions of a given class are
further grouped depending on the entity with which the particle’s collision occurs.
As far as the net generation rates are concerned, it is customary to separate the
contribution of the phonon collisions from those of the other types (e.g., electron-
electron collisions, electron-photon collisions, and so on); in fact, unless the device
is kept at a very low temperature, the phonon collisions are the most important ones.
Thus, the net generation rates are recast as

Wn D Gn � Un ; Wp D Gp � Up ; (19.132)

where Un, Up describe the transitions due to phonon collisions, while Gn, Gp

describe those of the other types. The minus signs in (19.132) come from the fact
that Un is defined as the difference between the number of electrons leaving the
conduction band, and of those entering it, because of phonon collisions, per unit
volume and time; similarly, Up is defined as the difference between the number
of holes leaving the valence band, and of those entering it, because of phonon
collisions, per unit volume and time. The terms used for Un, Up are net thermal
recombination rates, those for Gn, Gp are net nonthermal generation rates.

Another comment about the semiconductor-device model concerns the drift
terms in (19.129), (19.130). The latter can be recast as Jdr

n D �n E and Jdr
p D �p E,

where

�n D q�n n ; �p D q�p p (19.133)

are the electron conductivity and hole conductivity, respectively. From J D JnC Jp,
in a uniform material one obtains J D � E, that is, Ohm’s law, with

� D �n C �p D q
�
�n nC �p p

	
: (19.134)

38The units are ŒWn;Wp� D m�3 s�1.
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VG
VS VD

Fig. 19.3 MOS structure used to discuss the boundary conditions for the mathematical model of
semiconductor devices. Only the conducting boundaries are shown. Note that the vertical scale of
the drawing is not realistic

19.5.6 Boundary Conditions

In practical applications, the equations of the semiconductor-device model, (19.128)
through (19.131), are solved over a closed domain whose boundary39 is indicated
here with � . The boundary is partitioned into portions, some of which, indicated
with �i1; �i2; : : :, are insulating boundaries, namely, they cannot be crossed by
electrons or holes; the remaining portions, �c1; �c2; : : :, can be crossed by the
carriers and are termed conducting boundaries.

Considering that the domain over which the equations are solved is in general a
part of a much larger domain enclosing an integrated circuit, some flexibility exists
as for the choice of � . Thanks to this, it is possible to select �i1; �i2; : : : such that
the normal component of the vector unknowns vanishes there; in other terms, letting
s be the unit vector normal to an insulating boundary at some point r, it is

E � s D 0 ;
@'

@s
D 0 ; r 2 �i1; �i2; : : : : (19.135)

where @=@s indicates the derivative normal to the boundary at r. An example of how
this can be accomplished is given in Figs. 19.3 and 19.4, representing the schematic
cross-section of a MOSFET. In Fig. 19.3 only the conducting boundaries are shown,
with VS, VG, and VD indicating the voltage applied to the source, gate, and drain
contact, respectively. The bulk contact is grounded, as shown by the line below;
such a contact is the ground reference for the whole chip and, for this reason,
extends laterally beyond the region occupied by the MOSFET under consideration.
The insulating boundaries must now be selected in order to form a closed line that
completes the boundary �; in principle, such a completion may be accomplished
in different ways. Consider, however, the completion shown in the upper part of
Fig. 19.4: as in general it is VS ¤ VG, it is likely that one of the field lines in the
region between the source and gate contacts coincides with the segment ab. As a

39A two- or three-dimensional case is considered. In the one-dimensional case the boundary
reduces to the two points enclosing the segments over which the equations are to be solved.
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Fig. 19.4 The same structure
as in Fig. 19.3, to which the
insulating boundaries have
been added (dash-dotted
lines). The upper part of the
figure shows the correct
placement of the insulating
boundaries, the lower part
shows a wrong placement

VG
VS VD

c

d

a
b

VG
VS VD

consequence, choosing ab as the insulating boundary in that region guarantees that
the component of E normal to such a boundary is zero, thus achieving the condition
sought. The same reasoning applies to line cd. By this procedure one succeeds in
prescribing the boundary conditions for the Poisson equation along the insulating
boundaries. If, instead, the insulating boundaries were placed differently, like, e.g.,
in the lower part of Fig. 19.4, the component of E normal to the boundary would be
different from zero; besides that, it would be impossible to determine it a priori, and
Poisson’s equation would become ill-posed.

Once the insulating boundaries are completed, the same condition as (19.135) is
prescribed onto the current densities, namely, Jn � s D Jp � s D 0 whence, using the
second equation in (19.129),

� q�n n
@'

@s
C q Dn

@n

@s
D 0 ; r 2 �i1; �i2; : : : : (19.136)

Combining the above with (19.135) yields @n=@s D 0; repeating the calculation
for the holes finally shows that at the insulating boundaries the boundary condition
is the same for all scalar unknowns ', n, p:

@'

@s
D 0 ;

@n

@s
D 0 ;

@p

@s
D 0 ; r 2 �i1; �i2; : : : ; (19.137)

i.e., a boundary condition of the homogeneous Neumann type.
The conducting boundaries �c1; �c2; : : : are typically covered with metal layers or

heavily doped polycrystalline layers that provide the electric contacts to the device.
Unless the operating condition of the device departs strongly from equilibrium, a
contact is able to supply the amount of charge necessary to keep the equilibrium
and charge-neutrality conditions in the semiconductor layer adjacent to it. Thus at
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each point r of this layer one takes % D 0 or, more specifically,

%c D q .pc � nc C Nc/ D 0 ; r 2 �c1; �c2; : : : ; (19.138)

where index c indicates the conducting boundary. In most cases the metal or
polycrystalline layer is connected to a voltage generator, so that the electric potential
is prescribed, or to another part of the integrated circuit, so that the electric potential
can be determined from a separate calculation. In these cases, the electric potential
of the contact is known. From it, one derives the electric potential 'c of the
conducting boundary adjacent to the contact; in fact, when the departure from the
equilibrium condition is not too strong, the difference between the electric potential
of the conducting boundary and that of the contact does not depend on the current
density that crosses the boundary, and equals the contact’s work function.40 The
latter is experimentally known, thus yielding 'c. In conclusion, at a conducting
boundary where the voltage is prescribed, the boundary condition is the same for
all scalar unknowns: ' D 'c, n D nc, p D pc, r 2 �c1; �c2; : : :, i.e., a boundary
condition of the Dirichlet type. Note that the quantities in parenthesis in (19.138)
depend on 'c (compare with (18.56) and (18.57)); as a consequence, they can be
calculated only after the electric potential has been determined.

In some instances a current generator is connected to a contact; as a consequence,
the voltage is not prescribed at the corresponding conducting boundary. However,
such a voltage can be determined by observing that the flux of the current density
across the boundary equals the generator’s current. This provides the extra relation
that keeps the well-posedness of the mathematical problem.41

19.5.7 Quasi-Fermi Potentials

The drift-diffusion transport equations, given by the second relation in (19.129),
(19.130), can be recast in a monomial form by defining two auxiliary functions

'n.r; t/ D ' �
kB T

q
log

�
n

ni

�
; 'p.r; t/ D ' C

kB T

q
log

�
p

ni

�
; (19.139)

whose inversion yields

n D ni exp

�
q .' � 'n/

kB T

�
; p D ni exp

�
q .'p � '/

kB T

�
: (19.140)

40Examples of application of this concept are given in Sects. 21.2.2 and 22.2.
41This outcome becomes immediately clear by applying a numerical-discretization method to the
problem. In fact, the component of the current density normal to the contact depends on the electric
potential of the contact itself; thus, the extra relation provided by the flux-conservation equation
embeds the extra unknown 'c.
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In the equilibrium limit, (19.140) must coincide with (18.62), namely, 'n !

'F, 'p ! 'F. It follows that the auxiliary functions (19.139) are a formal
generalization of the concept of Fermi potential; they have the advantage of keeping
the exponential form of the expressions of n and p in the nonequilibrium case.
For this reason, 'n and 'p are called Quasi-Fermi potentials for electrons and
holes, respectively.42 From (19.140) one finds .kB T=q/ gradn D n grad.' � 'n/

and .kB T=q/ gradp D p grad.'p � '/ which, replaced into the second relation
of (19.129), (19.130), respectively, yield

Jn D �q�n n grad' C q
kBTL

q
�n gradn D �q�n n grad'n; (19.141)

Jp D �q�p p grad' � q
kB T

q
�p gradp D �q�p p grad'p: (19.142)

One notes that the monomial forms (19.142), (19.142) thus achieved are similar
to drift-diffusion equations where the drift term only is present. This result allows
one to interpret �grad'n and �grad'p as effective fields acting on the electrons (or,
respectively, holes) and incorporating both drift and diffusion effects. The monomial
form is useful for describing unipolar devices, where one of the current densities Jn,
Jp dominates over the other and is essentially solenoidal (Sect. 22.8).

The definition of the quasi-Fermi potential given above is applicable only to
drift-diffusion equations of the form (19.129), (19.130), that are valid within the
approximations of parabolic band and nondegenerate conditions. However, the
concept of quasi-Fermi potential can be generalized by disposing, e.g., of the
nondegeneracy hypothesis. For this, one starts from the equilibrium expressions of n
and p, given by (18.56) and (18.57), respectively, and replaces EF in the definitions
of e, h with EF D EFi�q'F (compare with (18.26)); then, the Fermi potential 'F is
replaced with 'n in the definition of e, and with 'p in that of h. The nonequilibrium
concentrations then read

n D NC ˚1=2 .e/ ; e D �
EC � EFi

kB T
C

q .' � 'n/

kB T
; (19.143)

and

p D NV ˚1=2 .h/ ; h D �
EFi � EV

kB T
C

q .'p � '/

kB T
: (19.144)

42By some authors, 'n and 'p are called Imref potentials, where “Imref” is “Fermi” read from right
to left [128].
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19.5.8 Poisson Equation in a Semiconductor

In the equilibrium condition the concentrations of electrons (19.143) and
holes (19.144) depend on the electric potential only. In turn, the ionized donor and
acceptor concentrations depend on the electric potential and, possibly, on position
if the dopant distributions are position dependent. In summary, the general form
of the equilibrium charge concentration is % D %.'; r/. The semiconductor-device
model reduces to the Poisson equation alone because at equilibrium it is @=@t D 0,
Jn D Jp D 0; the equation reads �"sc r

2' D q .p � n C N/ D %.'; r/, which is
a semi-linear partial differential equation (PDE).43 If the explicit dependence on r
is absent, % D %.'/, and the problem is one dimensional, say, in the x direction,
Poisson’s equation can be solved analytically over a domain I where d'=dx ¤ 0. In
fact, multiplying by d'=dx both sides of �"sc d2'=dx2 D %.'/, one obtains

� "sc
d2'

dx2
d'

dx
D %.'/

d'

dx
;

d

dx

�
d'

dx

�2
D

d

dx
S.'/ ; (19.145)

where dS=d' D �2 %.'/="sc. Integrating (19.145) from x0 to x, where both points
belong to I, and letting '0 D '.x0/ yield

�
d'

dx

�2
D G2.'/ ; G.'/ D

"�
d'

dx

�2

0

C S.'/ � S.'0/

#1=2
: (19.146)

Separating the variables in (19.146) then provides

dx D ˙
d'

G.'/
; x D x0 ˙

Z '

'0

d Q'

G. Q'/
; (19.147)

namely, the inverse relation x D x.'/. The choice of the sign is made on case-
by-case basis (an example is given in Sect. 21.2). The approach can be extended
to the nonequilibrium case if it happens that the electric potential depends on one
independent variable, say, x, while the Poisson equation contains terms that depend
also on independent variables different from x. In fact, the other variables can be
considered as parameters during the integration with respect to x. An example of
this case is given in Sect. 22.11.1.

43A PDE of order s in the unknown ' is called quasi-linear if it is linear in the order-s derivatives
of ' and its coefficients depend on the independent variables and the derivatives of ' of order
m < s. A quasi-linear PDE where the coefficients of the order-s derivatives are functions of the
independent variables alone is called semi-linear. A PDE which is linear in the unknown function
and all its derivatives, with coefficients depending on the independent variables alone, is called
linear. PDEs not belonging to the classes above are fully nonlinear.
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19.6 Complements

19.6.1 Comments on the Equivalent Hamiltonian Operator

It has been observed in Sect. 19.2.2 that in the description of the wave-packet
dynamics based on the equivalent Hamiltonian operator and crystal momentum, that
the time variations of the latter are due to the external force only; as a consequence,
if U D const one has „ Pk0 D 0, namely, the crystal momentum is a constant of
motion. The periodic part of the potential energy is incorporated with the kinetic part
to form an equivalent operator. Thus, the expression of the Hamiltonian operator
is eventually made of two terms, the equivalent-kinetic part, where the space
coordinates do not explicitly appear, and the potential part due to the external force
only; from this standpoint it is similar to that of a particle in vacuo.

The same results were found in the analysis of the motion of a classical particle
subjected to a periodic potential onto which a weak perturbation is superimposed
(Sect. 3.11). The classical investigation makes it clear that the crystal momentum
is in fact different from the actual momentum of the particle; also, the subsequent
elaboration carried out in Sect. 3.12 shows that the concept of effective mass is not
distinctive of Quantum Mechanics.

19.6.2 Special Cases of Anisotropy

It is interesting to note that for an anisotropic branch the acceleration Pu may still be
parallel to F; this happens when the force is parallel to one of the coordinate axes.
Taking by way of example a force parallel to the first coordinate axis, F D F i1, it
follows in fact

Pu1g D F=m1a ; Pu2g D 0 ; Pu3g D 0 : (19.148)

This seems to imply that a suitable choice of the reference is sufficient to make the
acceleration parallel to the force. However, this is not so: as noted in Sect. 17.6.2,
for (19.24) to hold, the reference in the k space must be chosen in such a way as to
make the Hessian matrix of En.k/ diagonal; this, in turn, fixes the reference in the
r space, because the two references are reciprocal to each other. As a consequence,
if one rotates the r reference to align one of its axes with the force, the k reference
rotates as well; as the mass tensor in the new reference is not necessarily diagonal,
the anisotropy present in the old reference is maintained.
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19.6.3 ˛-Moment at Equilibrium

The derivation of the moment with respect to ˛ of the BTE has been shown
in Sect. 19.4.5, leading to (19.62). In the equilibrium condition the distribution
function f eq is independent of t and depends on k through the Hamiltonian function
H only; since the latter is even with respect to k, the distribution function is
even as well. In turn, as the transitions balance each other, the right-hand side
of (19.62) vanishes. The term with the magnetic induction vanishes as well (compare
with (19.60)); in conclusion, in the equilibrium condition (19.62) reduces to

divr .n˛ u/eq C
q

„

�
n gradk˛ � E

	eq
D 0 : (19.149)

It is easily found that (19.149) yields the identity 0 D 0 if ˛ is even with respect to k.
This, on the contrary, is not true when ˛ is odd; in this case the equilibrium condition
consists in the balance between the diffusion term, due to the spatial nonuniformity
of .n˛ u/eq, and the second term, proportional to the carrier concentration and
linearly dependent on the electric field.

19.6.4 Closure Conditions

The closure conditions for the drift-diffusion and hydrodynamic model are derived
in this section. The former consists in calculating (19.75) using the equilibrium
distribution f eq D Q P, with Q D 1=.4 �3/ the density of states in the r;k space
and P the Fermi-Dirac statistics. In the equilibrium case it is v D 0, whence c D u,
and

neq kB Teq
ij D

mia

4�3

ZZZ C1

�1

ui uj

expŒ.Ee C �e/=.kB T/�C 1
d3k ; (19.150)

with Ee D E�EC and �e D EC�q'�EF (compare with (18.54)). In the above, Ee is
even with respect to all components of k. For j ¤ i the integrand is odd with respect
to ki because ui D .1=„/ @Ee=@ki, and with respect to kj because uj D .1=„/ @Ee=@kj;
as a consequence it is Tij D 0 for j ¤ i, while

neq kB Teq
ii D

mia

4�3

ZZZ C1

�1

u2i
expŒ.Ee C �e/=.kB T/�C 1

d3k ; (19.151)

namely, in the equilibrium condition the electron-temperature tensor is diagonal.
For this result to hold, the parabolic-band approximation is not necessary.

In the parabolic-band approximation, (19.24) and (19.72) hold, and the temper-
ature tensor in equilibrium is evaluated at the ath minimum of the conduction band
by letting
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�i D
„ ıki
p
2mia

; d3k D 2

p
2

„3
m3=2

ea d3� ; mia u2i D 2 �
2
i ; (19.152)

where the first relation is the Herring-Vogt transformation (17.66) and mea is defined
in (17.68). Adding up over the minima and using (17.72) yield

neq kB Teq
ii D

p
2

�3 „3

ZZZ C1

�1

MC m3=2
e �2i

expŒ.�2 C �e/=.kB T/�C 1
d3� : (19.153)

As the value of the integral in (19.153) does not depend44 on index i, it follows
that the diagonal entries Teq

ii are equal to each other; as a consequence, the common
value of the three integrals can be replaced with Teq

e D .T
eq
11CTeq

22CTeq
33/=3, namely,

neq kB Teq
ii D

p
2

3�3 „3

ZZZ C1

�1

MC m3=2
e �2

expŒ.�2 C �e/=.kBTL/�C 1
d3� : (19.154)

Turning to spherical coordinates (B.1) yields d3� D �2 d� sin � d� d�, with
�2 D �21C�

2
2C�

2
3 D Ee and d� D 1=.2

p
Ee/ dEe, �2 d� D

p
Ee dEe=2. The integral

over the angles equals 4� whence, using (C.111) with � .1C 3=2/ D .3=2/
p
�=2,

neq kB Teq
ii D kB T NC ˚3=2.e/ ; (19.155)

with NC D 2MC Œme kB T=.2 � „2/�3=2 the effective density of states (18.4), and
e D ��e=.kBT/. On the other hand, from (18.17) it is neq D NC ˚1=2.e/, whence

Teq
e .r/ D T

˚3=2.e/

˚1=2.e/
: (19.156)

The dependence on position is due to e D .q' � EC C EF/=.kB T/. However, in
the nondegenerate case the approximation (C.112) holds, ˚˛.e/ D exp.e/, and the
electron-temperature tensor at equilibrium reduces to Teq

e D T .
Coming now to the hydrodynamic model, and remembering (19.83), the closure

condition is found by calculating the equilibrium value of n mia Ee ui c, that reads

neq mia
�
Ee ui c

	eq
D

mia

4�3

ZZZ C1

�1

Ee ui c P d3k ; (19.157)

44Let i D 1, whence (19.153) takes the form
RRR

C1

�1

�1 S.�21 C �22 C �23/ d�1 d�2 d�3. A cyclic

permutation 1  2  3  1 of the axes transforms the integral into
RRR

C1

�1

�2 S.�21 C �22 C
�23/ d�1 d�2 d�3, where the integration limits of each coordinate are unchanged. As the value of an
integral does not depend on the names of the axes, the two integrals above are equal to each other.
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with P the Fermi-Dirac statistics. The procedure is similar to that of the drift-
diffusion model. At equilibrium one can replace c with u; then, out of the three
components of u, only that of index i contributes to the integral, because those of
index j ¤ i make the integrand odd with respect to both ki and kj. In other terms,
the integrand in (19.157) is replaced with Ee u2i P ii, which differs from the integrand
of (19.151) because of factor Eeii; this shows that the tensor defined by (19.157) is
diagonal as well.45 When the transformation (19.152) is used, the right-hand side
of (19.157) becomes similar to (19.153), the only difference being the additional
factor �2 ii that derives from Eeii. The next step, replacing the common value of the
three integrals with one third of their sum, yields an expression similar to (19.154),
the only difference being that �2 is replaced with �4 ii. Transforming into spherical
coordinates and inserting (C.111) with � .1 C 5=2/ D .5=2/ � .1 C 3=2/ D

.15=4/
p
�=2 finally yield

neq mia
�
Ee ui c

	eq
D ii

5

2
.kB T/2 NC ˚5=2.e/ : (19.158)

It follows

mia
�
Ee ui c

	eq
D ii

5

2
.kB T/2

˚5=2.e/

˚1=2.e/
' ii

5

2
.kB T/2 ; (19.159)

where the approximation holds in the nondegenerate case.

19.6.5 Matthiessen’s Rule

The effects of the inter-band and intra-band transitions have been separated in
Sect. 19.3.2 under the assumption that the two types are uncorrelated. The separation
may further be pursued within each class, depending on the entity with which the
collision occurs. Here the collisions leading to the intra-band transitions only are
considered. With reference to (19.45), and assuming that the intra-band transitions
are uncorrelated, one lets S0v D S.1/0v C S.2/0v C : : :, whence

1

�v
D

1

�v1
C

1

�v2
C : : : ;

1

�vj
D

ZZZ C1

�1

S0v.j/.r;k! k0/ d3k0 : (19.160)

This way of combining the relaxation times, also called Matthiessen’s rule,
still holds in the definitions of the macroscopic relaxation times �p, �w, and
�b (Sect. 19.4.6), and in the definitions (19.104), (19.118) of electron and hole
mobilities through �p.

45As above, for this result to hold the parabolic-band approximation is not necessary.
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19.6.6 Order of Magnitude of Mobility and Conductivity

As shown in Sect. 19.5.2, the electron and hole mobilities are expressed by relations
of the form � D q �p=m�, where �p is the momentum-relaxation time and m�

an effective mass. To the purpose of estimating the order of magnitude it is not
necessary to distinguish between electron and hole cases. Considering the T D 300
K case and taking �p � 0:25 � 10

�12 s, m� � 0:4 � 10�30 kg yield46

� D q
�p

m?
� 1:60 � 10�19 C �

0:25 � 10�12 s

0:4 � 10�30 kg
D 103

cm2

V s
: (19.161)

The diffusion coefficient at T D 300 K is estimated from the Einstein rela-
tion (19.102), D D .kB T=q/ �, where

kB T

q
�
1:38 � 10�23 .J=K/ � 300 K

1:60 � 10�19 C
D 26 � 10�3 V : (19.162)

One finds

D � 26 � 10�3 V � 103
cm2

V s
D 26

cm2

s
: (19.163)

To estimate the conductivity one takes by way of example the expression for
electrons (19.133), �n D q�n n, where, due to the estimates above, it is q�n �

1:60� 10�19 C� 103 cm2=.V s/ D 1:60� 10�16 cm2=�. For silicon at T D 300 K
it is n D ni � 10

10 cm�3 (Table 18.2)47; in comparison, when silicon is doped with
a uniform donor concentration equal to, say, N0D D 10

16 cm�3, it is n ' N0D D 10
16

cm�3 (compare with (18.30)). In conclusion,

�nŒintrinsic� � 10�6 .� cm/�1 ; �nŒN
0
D� � 1 .� cm/�1 : (19.164)

As a further comparison, the estimates for an insulator and, respectively, a conductor
are made with n ' 104 cm�3 and n ' 1022 cm�3 to find

�nŒinsulator� � 10�12 .� cm/�1 ; �nŒconductor� � 106 .� cm/�1 :
(19.165)

46Mobility is traditionally expressed in cm2/(V s) instead of m2/(V s).
47The equilibrium concentrations are used in the estimates.
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19.6.7 Onsager Relations

A method widely used in Classical Mechanics to treat transport problems is based
on a simplified form of (19.48), which is illustrated below. To avoid a change in
notation, the method will be described as if it were applied to the conduction band of
a semiconductor. To this purpose, consider the equilibrium statistics for the electrons
of the conduction band in a uniform case, given by (18.54) with ' D 0, and recast
the numerator of the exponent as E�EF D EeCEC �EF, with Ee D E.k/�EC the
kinetic energy of the electrons (compare with (19.24)). Taking the nondegenerate
form of (18.54), the equilibrium distribution function f eq D Q P becomes f eq D

f0 expŒ�Ee.k/=.kB T/�. The simplified form of (19.48) is obtained, first, by letting
B D 0 and considering the steady-state case; then, the distribution function acted
upon by the Liouvillian operator is replaced with fa D f0 expŒ�Ee.k/=.kB Ta/�, with
Ta.r/ a function to be determined. The transport equation (19.48) then becomes
f D f eq � � L fa; observing that

gradkfa D �
„u

kB Ta
fa ; gradrfa D

Ee

kB Ta

gradrTa

Ta
fa ; (19.166)

its explicit form reads

f D f eq �
�

kB Ta

�
q E � uC Ee u �

gradrTa

Ta

�
fa : (19.167)

Then, one calculates the moments of order one and three of (19.167); using the
symbols of Sect. 19.4.5 yields, for the moment of order one,

�n vi D
q E

kB Ta
�

ZZZ C1

�1

ui u � fa d3kC
gradrTa

kB T2a
�

ZZZ C1

�1

Ee ui u � fa d3k : (19.168)

Similarly, the moment of order three yields

� n bi D
q E

kB Ta
�

ZZZ C1

�1

Ee ui u � fa d3kC
gradrTa

kB T2a
�

ZZZ C1

�1

E2e ui u � fa d3k :

(19.169)
Note that the coefficient of the second term at the right-hand side of (19.168) is
identical to the coefficient of the first term at the right-hand side of (19.169); this
identity is also called Onsager relation. Similar relations hold for the next moments;
in fact, the moment of order five is obtained by integrating (19.167) over k after
multiplying it by E2e ui, and so on.

The above finding holds irrespective of the dependence of � on k because it is
essentially based on the form of fa. On the other hand, the analysis of the coefficients
of (19.168) and (19.169) is greatly simplified when the dependence is of the form
� D �.Ee/; thanks to spherical symmetry one can in fact follow the same reasoning
as in Sect. 19.6.4: the only even component of ui u is in this case u2i ii, whence E �ui u
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is replaced with Ei u2i and gradrTa �ui u is replaced with .@Ta=@xi/ u2i . The integrals of
the other components vanish. The relation between f0 and the electron concentration
n is given by

n D
ZZZ C1

�1

f0 expŒ�Ee=.kB Ta/� d
3k : (19.170)

In the spherically symmetric case considered here it is Ee D „
2 .k21Ck22Ck23/=.2m/

whence, letting �i D „ ki=
p
2m kB Ta and turning to spherical coordinates, d�3 D

�2 d� sin# d# d', one finds, after an integration over the angles that yields a factor
4� ,

n D 4� f0

�
2m kB Ta

„2

�3=2 Z C1

0

�2 exp.��2/ d� : (19.171)

The integral in (19.171) is equal to
p
�=4 due to C.33. From now on it is convenient

to use the components of u D .„=m/k as integration variables in (19.168)
and (19.169); thus, f0 d3k must be replaced with F0 d3u, with F0 D f0 .m=„/3 and48

n D

�
2� kB Ta

m

�3=2
F0 : (19.172)

To proceed one observes that, apart from factor F0 � , all integrands in (19.168)
and (19.169) have the form Es

e u2i expŒ�Ee=.kB Ta/� d3u with s D 0; 1; 2; thus,
they can be manipulated in the same way. First, like in Sect. 19.6.4, one replaces
ui with u2=3; this makes the coefficients independent of the coordinate index.
Second, one turns to spherical coordinates and integrates over the angles, thus
yielding a factor 4� . Third, one lets � D Ee=.kB Ta/; the integrand thus becomes
.4=3/ � .kB Ta/

s �s u4 exp.��/ du. On the other hand, it is m u2=2 D kB Ta �,
whence u4 du D .2 kB Ta=m/5=2 .1=2/ �3=2 d�. Combining with the previous one and
using (19.172) yield the general form of the integrands of (19.168) and (19.169):

n
�

m

4

3
p
�
.kB Ta/

sC1 �sC3=2 exp.��/ d� : (19.173)

A simple approximation for the relaxation time is � D �0 .Ee=E0/�˛ , where �0, E0,
and ˛ are positive parameters independent of Ee (compare with Sect. 20.5.1). The
approximation transforms (19.173) into

n
�0

m

4

3
p
�
.kB Ta/

sC1

�
E0

kB Ta

�˛
�s�˛C3=2 exp.��/ d� : (19.174)

48Note that f0 is dimensionless, while the units of F0 are .s=m2/3.
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Replacing (19.174) into (19.168) after multiplying by q both sides of the latter and
integrating with respect to � from zero to infinity yield

� q n v D Jn D � EC 	
gradrTa

Ta
; (19.175)

where, thanks to (C.95),

� D q
�0

m
n

4

3
p
�

�
E0

kB Ta

�˛
� .5=2 � ˛/ ; 	 D

kB Ta

q

� .7=2 � ˛/

� .5=2 � ˛/
� :

(19.176)
By the same token one finds from (19.169)

� n b D 	EC � gradrTa ; (19.177)

with

� D
k2B Ta

q2
� .9=2 � ˛/

� .5=2 � ˛/
� : (19.178)

The � and � coefficients are the electric conductivity and thermal conductivity of
the electrons, respectively.49 The ratio �=� is proportional to Ta; this property has
been observed first in metals and is called Wiedemann-Franz law [79, Chap. 10].
The ratio �=.� Ta/ is called Lorenz number. If the flow of electrons is prevented,
letting Jn D 0 in (19.175) shows that a temperature gradient produces an electric
field E D �Œ	=.� Ta/� gradrTa; this is called thermoelectric effect, with 	=.� Ta/

the thermoelectric coefficient. Eliminating E from (19.175) and (19.177) yields

� n b D
	

�
Jn C

�
� �

	2

� Ta

�
gradrTa ; (19.179)

where the coefficient of gradrTa is called Peltier coefficient.
The approach depicted in this section prescribes a form of the distribution

function and, for this reason, is less general than the hydrodynamic model illustrated
in section 19.5.1. It is interesting to check whether the Onsager relation is found
also in the hydrodynamic equations describing the particle and energy flux, namely,
the second of (19.90) and (19.92). Apparently, the Onsager relation is not fulfilled
because �b ¤ �p; however, it can be shown that when the perturbation with respect
to equilibrium is small it is �b ! �p [132]. Thus, the Onsager relation can also be
deduced from the limiting case of the hydrodynamic model.

49These definitions hold also in the general case where the form of � has no special symmetry. In
this case, however, all coefficients of (19.168) and (19.169) are tensors.
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19.6.8 A Resumé of the Transport Model’s Derivation

The number of steps that lead to the hydrodynamic or drift-diffusion model for
semiconductors is quite large; thus, a brief summary is of use. The starting point
is the single-particle Schrödinger equation for an electron in a crystal. To reach
this stage of the theory a considerable amount of work has already been spent,
necessary to reduce the many-particle problem to a tractable form (Chap. 16). When
the external forces are absent, the single-particle equation is recast in a form based
on the equivalent Hamiltonian operator, that exploits the periodicity of the lattice
(this implies in turn that the nuclei are kept fixed in the equilibrium positions).
Finally, the external forces are added, assuming that the external potential energy
is a small perturbation; thanks to this hypothesis, it is possible to describe the
collisionless motion of a single electron by means of a Hamiltonian function whose
canonical variables are the expectation values of the wave packet’s position and
momentum (Sects. 19.2.1 and 19.2.2).

Basing on the Hamiltonian function thus found, the analysis shifts from the
description of the single-particle to the statistical treatment of a system made
of a large number of electrons, following the same pattern as in the classical
case; this leads to the semiclassical BTE (Sect. 19.3), for which the general form
of the collision term is worked out (Sect. 19.3.1). The latter is simplified, first,
by considering point-like collisions, then by taking the perturbative form of the
collision operator (Sects. 19.3.2 and 19.3.3).

The perturbative form of the BTE is treated with the moments method, that
provides a hierarchical set of models, e.g., the drift-diffusion and the hydrodynamic
model. Important approximations at this stage are, for all moments of order larger
than zero, the neglect of the inter-band transitions, of the time derivatives, and of
the convective terms. The models reach the final form thanks to the hypothesis of
parabolic bands and the approximation of the relaxation-time tensors with scalar
quantities.

Problem

19.1 In the expressions (19.115), (19.118) defining the hole mobility �p, assume
that �ph ' �pl. Letting �p be the common value, determine the value of the
normalized effective mass mh=m0 to be used in �p D q �p=mh for silicon at room
temperature. Also, determine the value of parameter ap in (19.122) in the same
conditions.



Chapter 20
Generation-Recombination and Mobility

20.1 Introduction

This chapter illustrates the main contributions to the transitions of the inter-band
type, that give rise to the generation-recombination terms in the continuity equations
for electrons and holes, and to those of the intra-band type, that give rise to
the electron and hole mobilities in the current-density equations. The inter-band
transitions that are considered are the net thermal recombinations (of the direct
and trap-assisted type), Auger recombinations, impact-ionization generations, and
net-optical recombinations. The model for each type of event is first given as a
closed-form function of the semiconductor-device model’s unknowns, like carrier
concentrations, electric field, or current densities. Such functions contain a number
of coefficients, whose derivation is successively worked out in the complements by
means of a microscopic analysis. The case of semiconductors having a distribution
of traps within the gap, like, e.g., polycrystalline silicon, is treated as well. Some
discussion is devoted to the optical-generation and recombination events to show
how the concepts of semiconductor laser, solar cell, and optical sensor may be
derived as particular cases of nonequilibrium interaction between the material and
an electromagnetic field. The intra-band transitions are treated in a similar manner:
two examples, the collisions with acoustic phonons and ionized impurities, are
worked out in some detail; the illustration then follows of how the contributions
from different scattering mechanisms are combined together in the macroscopic
mobility models. The material is supplemented with a brief discussion about
advanced modeling methods.
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20.2 Net Thermal Recombinations

As anticipated in Sect. 19.5.5, it is customary to separate the net generation rates
Wn, Wp into two contributions, namely, those deriving from the phonon collisions
and those of the other types (e.g., electron-electron collisions, electron-photon
collisions, and so on). The separate contributions are defined in (19.132); this section
deals with the net thermal recombination rates Un, Up.

In the calculations carried out below, the nonequilibrium carrier concentrations
are derived by integrating over the bands’ energy. This is consistent with the general
definitions (19.31) and (19.109). In fact, considering the nonequilibrium electron
concentration n as defined in (19.31), one introduces the variable transformation
illustrated in Sect. B.5 and replaces the quantities appearing in it as follows:

.u; v;w/ .k1; k2; k3/ ; �  .r; t/ ; � E ; (20.1)

S n ; s f D Q˚ ; b � ; Ns P ; (20.2)

where Q, �.E/ are, respectively, the density of states in the phase space r;k and
the combined density of states in energy and r space, while ˚.r;k; t/, P.r;E; t/ are
the nonequilibrium occupation probabilities in the phase space and, respectively, in
energy; the integration in energy is carried out over the range corresponding to the
conduction band’s branch. The hole concentration is treated in the same manner. In
conclusion,

n.r; t/ D
ZZZ C1

�1

Q˚ d3k D
Z ECU

EC

� P dE ; (20.3)

p.r; t/ D
ZZZ C1

�1

Q .1 � ˚/ d3k D
Z EV

EVL

� .1 � P/ dE : (20.4)

20.2.1 Direct Thermal Recombinations

To begin, a graphic example of thermal transitions is shown in Fig. 20.1, where the
edges of the conduction and valence bands are indicated with the same symbols
used in Sect. 18.2; the transition marked with a is a recombination event, in which
an electron belonging to an energy state of the conduction band transfers to an
empty state of the valence band. The energy difference between the initial and
final state is released to the lattice in the form of a phonon. The opposite transition,
where the electron’s energy increases due to phonon absorption, is an electron-hole
generation and is marked with b in the figure. The transitions of type a and b are
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Fig. 20.1 A graphic example
of direct thermal
recombination (a) and
generation (b). The edges of
the conduction and valence
bands are indicated with the
same symbols used in
Sect. 18.2. The same drawing
applies also to the description
of the direct optical
recombinations and
generations (Sect. 20.4)

E CU

E C

E V

E VL

a b

called direct thermal recombination and direct thermal generation, respectively. Let
ra be the number of direct thermal recombination per unit volume and time, and rb

the analogue for the generations; considering the conduction band as a reference,
the difference ra � rb provides the contribution to the net thermal recombination
rate Un due to the direct thermal transitions. When the valence band is considered
instead, the rates of electrons transitions reverse; however, for the valence band the
transitions of holes must be considered: as consequence, the contribution to Up is
again ra � rb. In conclusion,

UDT D UDTn D UDTp D ra � rb ; (20.5)

where D stands for “direct” and T for “thermal.” The expressions of ra, rb are
determined by a reasoning similar to that used in Sect. 19.3.1 to express the collision
term of the BTE; here, however, the analysis is carried out directly in the energy
space instead of the k space.1 Let P.r;E; t/ be the occupation probability of a state
at energy E; then, let C be the probability per unit time and volume (in r) of an
electron transition from a state of energy E to a state of energy E0 belonging to
a different band, induced by the interaction with a phonon.2 Such a probability
depends on the phonon energy „! (Sect. 12.5), and also on the position in r if the
semiconductor is nonuniform. Typically, the equilibrium distribution is assumed for
the phonons, which makes C independent of time; as the collisions are point-like

1A more detailed example of calculations is given below, with reference to collisions with ionized
impurities.
2The units of C are ŒC� D m�3 s�1. Remembering that the phonon energy equals the change in
energy of the electron due to the transition (Sect. 14.8.2), it is C D 0 for „! < EC � EV D EG

(refer also to Fig. 20.1).
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(Sect. 19.3.2), the spatial positions of the initial and final states coincide, whence
C D C.r; „!;E! E0/.

Indicating with g.E/ the density of states of the band where the initial state
belongs, the product g dE P is the number of electrons within the elementary
interval dE around the initial state; such a product is multiplied by C to find the
number of unconditional E! E0 transitions per unit time and volume. On the other
hand, the transitions take place only if the final states around E0 are empty; as the
empty states in that interval are g0 dE0 .1 � P0/, the number of actual transitions per
unit time and volume from dE to dE0 turns out to be g dE P C g0 dE0 .1 � P0/. Now,
to calculate the ra or rb rate it is necessary to add up all transitions: for ra one lets E
range over the conduction band and E0 over the valence band; the converse is done
for rb. As the calculation of the latter is somewhat easier, it is shown first:

rb D

Z EV

EVL

g dE P
Z ECU

EC

C g0 dE0
�
1 � P0

	
: (20.6)

As in normal operating conditions the majority of the valence-band states are filled,
while the majority of the conduction-band states are empty, one lets P ' 1 and
1 � P0 ' 1, whence, using symbol GDT for rb,

GDT.r; „!/ D
Z EV

EVL

g dE
Z ECU

EC

C g0 dE0 : (20.7)

Thus, the generation rate is independent of the carrier concentrations. To proceed,
one uses the relation g D �� , with � the combined density of states in energy and
volume, given by (15.65), and the definition (20.4) of the hole concentration. Thus,
the recombination rate is found to be

ra D

Z ECU

EC

g dE P
Z EV

EVL

C g0 dE0 .1 � P0/ D p
Z ECU

EC

K g P dE ; (20.8)

where K.r; „!;E/, whose units are ŒK� D s�1, is the average of �C over the
valence band, weighed by g0 .1 � P0/:

K D

R EV

EVL
�C g0 .1 � P0/ dE0

R EV

EVL
g0 .1 � P0/ dE0

: (20.9)

Strictly speaking, K is a functional of P0; however, the presence of P0 in both
numerator and denominator of (20.9) makes such a dependence smoother, so that
one can approximate K using the equilibrium distribution instead of P0. By the same
token one uses the definition of the electron concentration (20.3) to find
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ra D ˛DT n p ; ˛DT.r; „!/ D

R ECU

EC
�K g P dE

R ECU

EC
g P dE

; (20.10)

where the integrals are approximated using the equilibrium probability. In conclu-
sion,

UDT D ˛DT n p � GDT ; (20.11)

where ˛DT is the transition coefficient of the direct thermal transitions, with units
Œ˛DT � D m3 s�1, and GDT their generation rate (ŒGDT � D m�3 s�1). As in the
equilibrium case it is ra D rb, namely, GD D ˛D neq peq, it follows UDT D ˛DT .np�
neqpeq/.

20.2.2 Trap-Assisted Thermal Recombinations

An important contribution to the thermal generation and recombination phenomena
is due to the so-called trap-assisted transitions. As mentioned in Sect. 19.3, among
the possible collisions undergone by electrons or holes are those with lattice defects.
The latter may originate from lattice irregularities (e.g., dislocations of the material’s
atoms occurring during the fabrication process, Sect. 24.1), or from impurities
that were not eliminated during the semiconductor’s purification process, or were
inadvertently added during a fabrication step. Some defects may introduce energy
states localized in the gap; such states, called traps, may capture an electron from
the conduction band and release it towards the valence band, or vice versa. The
phenomena are illustrated in Fig. 20.2, where four traps located in the energy gap
are shown in order to distinguish among the different transition events, that are: a)
capture of a conduction-band electron by a trap, b) release of a trapped electron
towards the conduction band, c) release of a trapped electron towards the valence
band (more suitably described as the capture of a valence-band hole by the trap),

Fig. 20.2 Different types of
trap-assisted transitions

E Fi
tE

E

E

E CU

E C

E V

E VL

a b

c d
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and d) capture of a valence-band electron from the valence band (more suitably
described as the release of a hole towards the valence band). Each transition is
accompanied by the absorption or emission of a phonon. Thus, transitions of type
a and b contribute to the net thermal recombination Un of the conduction band,
while those of type c and d contribute to the net thermal recombination Up of the
valence band. Also, a sequence of two transitions, one of type a involving a given
trap, followed by one of type c involving the same trap, produces an electron-
hole recombination and is therefore called trap-assisted thermal recombination;
similarly, a sequence of two transitions, one of type d involving a given trap,
followed by one of type b involving the same trap, produces an electron-hole
generation and is therefore called trap-assisted thermal generation.

To calculate the contribution of the trap-assisted transitions to Un and Up

it is necessary to distinguish between two kinds of traps: those of donor type,
that are electrically neutral when the electron is present in the trap and become
positively charged when the electron is released, and those of acceptor type, that are
electrically neutral when the electron is absent from the trap and become negatively
charged when the electron is captured. In this respect, the traps are similar to the
dopants’ atoms. Instead, a strong difference is made by the position of the traps’
energy within the gap. Consider, for instance, traps localized near the gap’s midpoint
(the latter is indicated by the intrinsic Fermi level EFi in Fig. 20.2); the phonon
energy necessary for the transition is about EG=2 in all cases, to be compared with
the value EG necessary for a direct transition. On the other hand, the equilibrium-
phonon distribution (Sect. 16.6) is the Bose-Einstein statistics (15.55); it follows that
the number dNph of phonons in the interval d! is

dNph D
gph.!/ d!

expŒ„!=.kB T/� � 1
; (20.12)

with „! the energy and gph the density of states of the phonons. Due to (20.12),
dNph=d! rapidly decreases as the phonon energy increases, thus making the
probability of an electron-phonon interaction much larger at lower energies. For
this reason, even in an electronic-grade semiconductor, where the concentration of
defects is very small (Sect. 19.3.2), the traps are able to act as a sort of “preferred
path” in energy for the inter-band transitions, to the extent that the contribution
to Un, Up of the trap-assisted transitions is largely dominant over that of the
direct transitions. Therefore, in the continuity equations (20.13) below, and in the
subsequent derivation of the trap-assisted, thermal-transition rates, symbols Un, Up

refer only to the latter transitions, not any more to the sum of the trap-assisted and
direct ones.

The net thermal-recombination terms Un, Up appear in (19.129) and (19.130)
after replacing Wn, Wp with (19.132); this yields

@n

@t
C Un �

1

q
divJn D Gn ;

@p

@t
C Up C

1

q
divJp D Gp : (20.13)
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To introduce the trap-assisted transitions one formally duplicates (20.13) as if the
acceptor and donor traps formed two additional bands; as the acceptor traps are
either neutral or negatively charged, the charge and current densities of the band
associated with them are thought of as due to electrons; instead, the charge and
current densities of the band associated with the donor traps are thought of as due
to holes. In summary, the two additional equations read

@nA

@t
C UnA �

1

q
divJnA D GnA ;

@pD

@t
C UpD C

1

q
divJpD D GpD ; (20.14)

with a and d standing for “acceptor” and “donor,” respectively. To ease the
calculation it is assumed that the nonthermal phenomena are absent, whence Gn D

Gp D GnA D GpD D 0. Combining (20.13) with (20.14) and observing that
J D Jp C JpD C Jn C JnA is the total current density of the semiconductor yield

@Œq .pC pD � n � nA/�

@t
C divJ D q .Un C UnA/ � q .Up C UpD/ : (20.15)

As the net dopant concentration N is independent of time, it is @Œq .p C pD � n �
nA/�=@t D @Œq .pCpD�n�nACN/�=@t D @%=@t; thus, the left-hand side of (20.15)
vanishes due to (4.23), and3

Un C UnA D Up C UpD : (20.16)

The two continuity equations (20.14) are now simplified by observing that in
crystalline semiconductors the current densities JpD, JnA of the traps are negligible.
In fact, the trap concentration is so low that inter-trap tunneling is precluded by
the large distance from a trap to another; the reasoning is the same as that used in
Sect. 18.7.2 with respect to the impurity levels.4 Letting JpD D JnA D 0 makes the
two equations (20.14) local:

@nA

@t
D �UnA ;

@pD

@t
D �UpD : (20.17)

In steady-state conditions the traps’ populations are constant, thus yielding
UnA D UpD D 0 and, from (20.16), Un D Up. In equilibrium all continuity
equations reduce to the identity 0 D 0, whence the net-recombination terms vanish
independently, Ueq

n D Ueq
nA D Ueq

p D Ueq
pD D 0.

3The result expressed by (20.16) is intuitive if one thinks that adding up all continuity equations
amounts to counting all transitions twice, the first time in the forward direction (e.g., using the
electrons), the second time in the backward direction (using the holes). The reasoning is similar to
that leading to the vanishing of the intra-band contribution in (19.63).
4In a polycrystalline semiconductor with a large spatial concentration of traps it may happen
that the traps’ current densities are not negligible; in fact, the whole system of equations (20.13)
and (20.14) must be used to correctly model the material [26–28]. The conduction phenomenon
associated with these current densities is called gap conduction.
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20.2.3 Shockley-Read-Hall Theory

The Shockley-Read-Hall theory describes the trap-assisted, net thermal-recomb-
ination term in a crystalline semiconductor based upon the steady-state relation
Un D Up. In fact, the outcome of the theory is used also in dynamic conditions;
this approximation is acceptable because, due to the smallness of the traps’
concentration, the contribution of the charge density stored within the traps is
negligible with respect to that of the band and dopant states; the contribution of
the time variation of the traps’ charge density is similarly negligible. The theory
also assumes that only one trap level is present, of energy Et; with reference to
Fig. 20.2, the trap levels must be thought of as being aligned with each other. If
more than one trap level is present, the contributions of the individual levels are
summed up at a later stage. In the theory it is not important to distinguish between
acceptor-type or donor-type traps; however, one must account for the fact that a trap
can accommodate one electron at most.

Still with reference to Fig. 20.2, let ra be the number of type-a transitions per
unit volume and time, and similarly for rb, rc, rd. The derivation of these rates is
similar to that of the direct transitions and is shown in the complements; here the
expressions of the net thermal-recombination terms are given, that read

Un D ra � rb D ˛n n Nt .1 � Pt/ � en Nt Pt ; (20.18)

Up D rc � rd D ˛p p Nt Pt � ep Nt .1 � Pt/ ; (20.19)

where Nt is the concentration of traps of energy Et, Pt the trap-occupation
probability, ˛n, ˛p the electron- and hole-transition coefficients, respectively, and
en, ep the electron- and hole-emission coefficients, respectively.5 The ratios en=˛n,
ep=˛p are assumed to vary little from the equilibrium to the nonequilibrium case.
From Ueq

n D Ueq
p D 0 one derives

en

˛n
D neq

�
1

Peq
t
� 1

�
;

ep

˛p
D peq

�
1

Peq
t
� 1

��1
: (20.20)

The occupation probability at equilibrium is the modified Fermi-Dirac statistics
(compare with (18.21) or (18.36))

Peq
t D

�
1

dt
exp

�
Et � EF

kB T

�
C 1

��1
;

1

Peq
t
� 1 D

1

dt
exp

�
Et � EF

kB T

�
;

(20.21)
with dt the degeneracy coefficient of the trap. It follows, after introducing the short-
hand notation nB D en=˛n, pB D ep=˛p,

5It is Œ˛n;p� D m3 s�1, Œen;p� D s�1.
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nB D
neq

dt
exp

�
Et � EF

kB T

�
; pB D peq dt exp

�
EF � Et

kB T

�
: (20.22)

Note that nB pB D neq peq. Replacing (20.22) into (20.18), (20.19) and letting
Un D Up yield

˛n n .1 � Pt/ � ˛n nB Pt D ˛p p Pt � ˛p pB .1 � Pt/; (20.23)

whence

Pt D
˛n nC ˛p pB

˛n .nC nB/C ˛p .pC pB/
; 1 � Pt D

˛n nB C ˛p p

˛n .nC nB/C ˛p .pC pB/
:

(20.24)

In this way one expresses the trap-occupation probability as a function of two of
the unknowns of the semiconductor-device model, namely, n and p, and of a few
parameters. Among the latter, nB and pB are known (given the trap’s energy) because
they are calculated in the equilibrium condition. In conclusion, replacing (20.24)
into (20.18) or (20.19) yields, for the common value USRH D Un D Up,

USRH D
n p � neq peq

.nC nB/=.Nt ˛p/C .pC pB/=.Nt ˛n/
; (20.25)

where the indices stand for “Shockley-Read-Hall.” Eventually, the only unknown
parameters turn out to be the products Nt ˛p and Nt ˛n which, as shown in Sect. 25.2,
can be obtained from measurements.

The expression obtained so far, (20.25), has been derived considering a single
trap level Et. Before adding up over the levels it is convenient to consider how
sensitive USRH is to variations of Et; in fact, one notes that the numerator of (20.25)
is independent of Et, whereas the denominator D has the form

D D cC 2 � cosh � ; � D
Et � EF

kB T
C
1

2
log� ; (20.26)

where

c D
1

Nt

�
n

˛p
C

p

˛n

�
; � D

1

Nt

s
neq

˛p

peq

˛n
; � D

1

d2t

neq=˛p

peq=˛n
: (20.27)

The denominator has a minimum where � D 0; thus, USRH has a maximum there.
Moreover, the maximum is rather sharp due to the form of the hyperbolic cosine.
It follows that the trap level EtM that most efficiently induces the trap-assisted
transitions is found by letting � D 0. The other trap levels have a much smaller
efficiency and can be neglected; in conclusion, it is not necessary to add up over the
trap levels.6 With this provision, one finds

6This simplification is not applicable in a polycrystalline or amorphous semiconductor.
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EtM D EF C
kB T

2
log

�
d2t

peq=˛n

neq=˛p

�
: (20.28)

An estimate of EtM is easily obtained by considering the nondegenerate condition,
whence neq D NC expŒ.EF � EC/=.kB T/� and peq D NV expŒ.EV � EF/=.kB T/�
(compare with (18.28)). It follows

EtM '
EC C EV

2
C

kB T

2
log

�
d2t

NV ˛p

NC ˛n

�
: (20.29)

Observing that the second term at the right-hand side of (20.29) is small, this result
shows that the most efficient trap level is near the gap’s midpoint which, in turn, is
near the intrinsic Fermi level EFi. In fact, combining (20.29) with (18.16) yields

EtM ' EFi C
kB T

2
log

�
d2t
˛p

˛n

�
' EFi : (20.30)

Defining the lifetimes

�p0 D
1

Nt ˛p
; �n0 D

1

Nt ˛n
; (20.31)

gives (20.25) the standard form

USRH D
n p � neq peq

�p0 .nC nB/C �n0 .pC pB/
; (20.32)

which is also called Shockley-Read-Hall recombination function. In equilibrium it is
Ueq

SRH D 0; in a nonequilibrium condition, a positive value of USRH, corresponding to
an excess of the n p product with respect to the equilibrium product neq peq, indicates
that recombinations prevail over generations, and vice versa. In a nonequilibrium
condition it may happen that USRH D 0; this occurs at the boundary between a
region where recombinations prevail and another region where generations prevail.

In a nondegenerate semiconductor (20.22) become, letting Et D EtM D EFi and
using (18.12),

nB D
ni

dt
; pB D dt ni ; (20.33)

whence nB pB D n2i . This result is useful also in a degenerate semiconductor for
discussing possible simplifications in the form of USRH.
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Limiting Cases of the Shockley-Read-Hall Theory

The operating conditions of semiconductor devices are often such that the SRH
recombination function (20.32) can be reduced to simpler forms. The first case is
the so-called full-depletion condition, where both electron and hole concentrations
are negligibly small with respect to nB and pB. Remembering that neq peq D nB pB

one finds

USRH ' �
nB pB

�p0 nB C �n0 pB
D �

p
nB pB

�g
; �g D

r
nB

pB
�p0 C

r
nB

pB
�n0 :

(20.34)
In a nondegenerate condition nB, pB take the simplified form (20.33), whencep

nB=pB D ni and �g D �p0=dt C �n0 dt. In a full-depletion condition USRH is
always negative, namely, generations prevail over recombinations; for this reason,
�g is called generation lifetime.

The second limiting case of interest is the so-called weak-injection condition.
This condition occurs when both inequalities below are fulfilled:

jn � neqj � ceq ; jp � peqj � ceq ; (20.35)

where ceq is the equilibrium concentration of the majority carriers in the spatial
position under consideration. From the above definition it follows that the concept
of weak injection is applicable only after specifying which carriers are the majority
ones. Expanding the product n p to first order in n and p around the equilibrium
value yields n p ' neq peq C neq .p � peq/ C peq .n � neq/. As a consequence, the
numerator of (20.32) becomes

n p � neq peq ' neq .p � peq/C peq .n � neq/ : (20.36)

To proceed, it is necessary to distinguish between the n-type and p-type regions.

Weak-Injection Condition, n-Type Semiconductor

The weak-injection condition (20.35) reads jn � neqj � neq, jp � peqj � neq. As a
consequence, one lets n ' neq in the denominator of (20.32) and neglects nB with
respect to neq; in fact, in a nondegenerate condition it is nB ' ni � neq, and the
same inequality is also applicable in a degenerate condition. As the lifetimes are
similar to each other, the term �n0 .p C pB/ in the denominator is negligible with
respect to �p0 neq, because p is a concentration of minority carriers and pB is similar
to nB. In conclusion, the denominator of (20.32) simplifies to �p0 neq, whence

USRH '
p � peq

�p0
C

n � neq

.neq=peq/ �p0
: (20.37)
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The second term at the right-hand side of (20.37) is negligible7 because neq=peq �

1; letting �p D �p0 finally yields

USRH '
p � peq

�p
; (20.38)

with �p the minority-carrier lifetime in an n-doped region.

Weak-Injection Condition, p-Type Semiconductor

The weak-injection condition (20.35) reads jn � neqj � peq, jp � peqj � peq. As a
consequence, one lets p ' peq in the denominator of (20.32) and neglects pB with
respect to peq; the other term in the denominator of (20.35) is neglected as above,
thus simplifying the denominator to �n0 peq. In conclusion,

USRH '
p � peq

.peq=neq/ �n0
C

n � neq

�n0
: (20.39)

The first term at the right-hand side of (20.39) is negligible because peq=neq � 1;
letting �n D �n0 finally yields

USRH '
n � neq

�n
; (20.40)

with �n the minority-carrier lifetime in a p-doped region.
The simplified expressions of USRH found here are particularly useful; in fact,

in contrast to (20.32), the weak-injection limits (20.38) and (20.40) are linear
with respect to p or n. Moreover, as (20.38) and (20.40) depend on one unknown
only, they decouple the continuity equation of the minority carriers (the first one
in (19.129) or in (19.130)) from the other equations of the semiconductor’s model;
thanks to this it is possible to separate the system of equations. The simplification
introduced by the full-depletion condition is even stronger, because (20.34) is
independent of the model’s unknowns. On the other hand, all simplifications
illustrated here are applicable only in the regions where the approximations hold;
once the simplified model’s equations have been solved locally, it is necessary to
match the solutions at the boundaries between adjacent regions.

7Considering for instance the example in Sect. 18.4.1, one has neq ' 1015 cm�3, peq ' 105 cm�3,
whence neq=peq ' 1010.
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20.2.4 Thermal Recombination with Tail and Deep States

In recent years, thin-film transistors made of amorphous silicon (˛-Si:H TFTs) or
polycrystalline silicon (poly-TFTs) have acquired great importance in microelec-
tronics; in fact, they can be fabricated with a low thermal budget and on large-area
substrates and, at the same time, they are able to achieve performances adequate
for the realization of complex circuits. Typical applications are in the area of solid-
state image sensors, active-matrix liquid-crystal displays, charge-coupled devices,
and static random-access memories. These materials are characterized by a large
amount of defects, giving rise to localized states with a complex energy distribution
within the gap; typically, the concentration of the acceptor-like states is larger in the
upper half of the gap, while that of the donor-like states is larger in the lower half of
the gap.

Traps in amorphous silicon are due to the irregular distribution of atoms and
to defects in the material; the lack of long-range order in the atomic structure
produces a distribution of localized states with energies near the conduction- and
valence-band edges (tail states); in turn, the defects give rise to a distribution of
states localized near midgap (deep states). As for the spatial localization, traps in
amorphous silicon are uniformly distributed in the semiconductor’s volume, while
defects in polycrystalline silicon are located at the grain boundaries; for the latter
material a simplifying hypothesis is used, that consists in describing the traps as
uniformly distributed over the volume [51]. Given these premises, for both materials
the energy distribution of traps in the gap can be modeled as the superposition
of two distributions of acceptor and donor states; in turn, the densities of states
per unit volume, �D and �A, for each group of donor- and acceptor-like states is
approximated as the sum of two exponential functions, describing the deep and tail
states, respectively [25, 103, 137]:

�D.E/ D �TD exp

�
EV � E

�TD

�
C �DD exp

�
EV � E

�DD

�
; (20.41)

�A.E/ D �TA exp

�
E � EC

�TA

�
C �DA exp

�
E � EC

�DA

�
(20.42)

(compare with 18.20, 18.35). In (20.41), (20.42), �TD ; : : : and �TD ; : : : are con-
stants, with suffixes TD, DD standing for “Tail-Donor,” “Deep-Donor,” respectively,
and the like for TA, DA. When the number of energy states in the gap is large,
distinguishing between bands and gap seems meaningless; the distinction, however,
is kept as long as the gap states, although dense in energy, are still much less
dense in space than those of the bands, so that the contribution of the gap states to
current transport is negligible (in other terms, the mobility of the carriers belonging
to the gap states is much smaller than that of the band carriers). This condition
is assumed here; thus, proceeding in the same manner as in Sect. 20.2.3 yields
(compare with (20.18) and (20.19))
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Un D

Z EC

EV

f�A Œn˛nA .1 � PA/ � enA PA�C �D Œn˛nD .1 � PD/ � enD PD�g dE ;

(20.43)

Up D

Z EC

EV

˚
�A
�
p˛pA PA � epA .1 � PA/

�
C �D

�
p˛pD PD � epD .1 � PD/

��
dE ;

(20.44)
where n, p are the concentration of electrons in the conduction band and that of
holes in the valence band, (20.3) and (20.4) respectively. The meaning of the other
symbols in (20.43), (20.44) is as follows:

n˛nA D

Z ECU

EC

S.0/CA.E
0;E; r/ �C.E

0/PC.E
0; r; t/ dE0 ; (20.45)

with �C, PC the density of states per unit volume and the nonequilibrium occu-
pation probability of the conduction band; in turn, letting SCA.E0; r0;E; r/ be the
unconditional probability per unit time of a transition from a conduction-band state
of energy E0 and position r0 to an acceptor trap of energy E and position r, it is
SCA D S.0/CA ı.r

0 � r/. The Dirac symbol in the definition indicates that the change in
position during the transition is negligible (compare with 19.40). Symbol n˛nD has
a similar meaning. Similarly,

p˛pA D

Z EV

EVL

S.0/AV .E;E
0; r/ �V.E

0/
�
1 � PV.E

0; r; t/
�

dE0 ; (20.46)

with �V , PV the density of states per unit volume and the nonequilibrium occupation
probability of the valence band; in turn it is SAV D S.0/AV ı.r

0 � r/, where SAV is
the unconditional probability per unit time of a transition from an acceptor trap
of energy E and position r to a valence-band state of energy E0 and position r0.
Finally, the emission probability per unit time of an electron, from an acceptor state
of energy E to the conduction band, is given by

enA D

Z ECU

EC

S.0/AC.E;E
0; r0/ �C.E

0/ dE0 ; (20.47)

and the like for enD; in turn, the emission probability per unit time of a hole, from
an acceptor state of energy E to the valence band, is given by

epA D

Z EV

EVL

S.0/VA .E
0 ;E ; r/ �V.E

0/ dE0 ; (20.48)

and the like for epD. The concentrations of electrons belonging to the acceptor traps
and of holes belonging to the donor traps are, respectively (compare with (20.3)
and (20.4)),
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nA.r; t/ D
Z EC

EV

�A.E
0; r/PA.E

0; r; t/ dE0 ; (20.49)

pD.r; t/ D
Z EC

EV

�D.E
0; r/

�
1 � PD.E

0; r; t/
�

dE0 : (20.50)

Observing that (20.14), (20.15), (20.16), and (20.17) hold also for the distribution
of traps considered here, and replacing (20.17) into (20.16), one finds

Up �
@pD

@t
D Un �

@nA

@t
: (20.51)

The expressions of Up and Un are given by (20.43), (20.44), while those of
@pD=@t and @nA=@t are obtained from (20.49), (20.50); introducing such expressions
into (20.51) and letting

DA D ˛nA nCenAC˛pA pCepA ; DD D ˛nD nCenDC˛pD pCepD ; (20.52)

yield

Z EC

EV

f�A Œ.˛nA nC epA/�DA PA� PPA�C �D Œ.˛nD nC epD/�DD PD� PPD�g dE D 0 ;

(20.53)
with PPA D @PA=@t, PPD D @PD=@t. As equality (20.53) holds for any distributions of
states, it follows

@PA

@t
C DA PA D ˛nA nC epA ;

@PD

@t
C DD PD D ˛nD nC epD : (20.54)

The expressions (20.52) of the denominators DA, DD generalize that of the
denominator in (20.24), which refers to the case of a single trap level; in turn,
the steady-state form of (20.54) generalizes the first expression in (20.24). In
conclusion, the continuity equations for a semiconductor having a distribution
of traps within the gap, neglecting gap conduction, are (20.13) and (20.54),
supplemented with the definitions (20.43), (20.44) of the net recombination rates.

20.3 Auger Recombination and Impact Ionization

An important, nonthermal recombination mechanism is Auger recombination. The
phenomenon is due to the electron-electron or hole-hole collision and is illustrated
in Fig. 20.3. With reference to case a, two electrons whose initial state is the
conduction band collide and exchange energy. The outcome of the collision is that
one of the electrons suffers an energy loss equal or larger than the energy gap and
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Fig. 20.3 Auger
recombinations initiated by
electrons (a) and holes (c)

E Fi

E CU

E C

E V

E VL

a c

makes a transition to an empty state of the valence band; the other electron absorbs
the same amount of energy and makes a transition to a higher-energy state of the
conduction band. The phenomenon is also indicated as an Auger recombination
initiated by electrons. The analogue for holes is shown in case c of Fig. 20.3:
two holes whose initial state is in the valence band collide and exchange energy.
Remembering that hole energy increases in the opposite direction with respect to
that of electrons (Sect. 19.2.3), the hole that suffers an energy loss equal or larger
than the energy gap makes a transition to a filled state of the conduction band;
the other hole absorbs the same amount of energy and makes a transition to a
higher-energy state of the valence band. The phenomenon is indicated as an Auger
recombination initiated by holes.

The phenomenon dual to Auger recombination is illustrated in Fig. 20.4 and is
called impact ionization. With reference to case b, an electron whose initial state is in
the conduction band at high energy collides and exchanges energy with an electron
whose initial state is in the valence band. The initial energy E of the electron in the
conduction band is such that E � EC is equal or larger than the energy gap, whereas
the initial energy of the electron in the valence band is near EV . The outcome of
the collision is that although the high-energy electron suffers an energy loss equal
or larger than the energy gap, its final state is still in the conduction band; the
other electron absorbs the same amount of energy and makes a transition to the
conduction band. The phenomenon is in fact an electron-hole pair generation and is
also indicated as an impact-ionization event initiated by electrons. The analogue for
holes is shown in case d of Fig. 20.4: a hole whose initial state is in the valence band
at high energy collides and exchanges energy with a hole whose initial state is in the
conduction band. The initial energy E of the hole in the valence band is such that
jE�EV j is equal or larger than the energy gap, whereas the initial energy of the hole
in the conduction band is near EC. The outcome of the collision is that although the
high-energy hole suffers an energy loss equal or larger than the energy gap, its final
state is still in the valence band; the other hole absorbs the same amount of energy
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Fig. 20.4 Impact-ionization
transitions initiated by
electrons (b) and holes (d)
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and makes a transition to the valence band. The phenomenon is in fact an electron-
hole pair generation and is also indicated as an impact-ionization event initiated by
holes.

The derivation of the Auger and impact-ionization rates is shown in the com-
plements; here the expressions of the net recombinations due to the Auger and
impact-ionization events are given, that read

UAI
n D ra � rb D cn n2 p � In n ; UAI

p D rc � rd D cp p2 n � Ip p ; (20.55)

where UAI
n refers to the electron-initiated transitions and UAI

p to the hole-initiated
ones. As usual, ra indicates the number of transitions of type a per unit time and
volume; the same holds for rb, rc, and rd. In (20.55), cn, In are the transition coeffi-
cients for the Auger recombination and impact ionization initiated by electrons, and
cp, Ip the analogue for holes; cn, cp are also called Auger coefficients.8 In equilibrium
it is UAI

n D UAI
p D 0, whence In D cn neq peq, Ip D cp neq peq. The above holds also

in a nonequilibrium case as long as the operating conditions are not too far from
equilibrium; with these premises it follows

UAI
n D cn n .n p � neq peq/ ; UAI

p D cp p .np � neq peq/ ; (20.56)

When the operating condition departs strongly from equilibrium, the simplification
leading to (20.56) is no longer applicable and the general expressions (20.55) must
be used. Referring to all recombinations as due to transitions of electrons, their
rate is easily found to be ra C rc; similarly, the total generation rate is rb C rd.
In conclusion, the net recombination rate due to the Auger and impact-ionization
phenomena is given by

8The units are Œcn;p� D cm6 s�1 and ŒIn;p� D s�1.
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UAI D UAI
n C UAI

p : (20.57)

For Auger recombination to occur it is necessary that an electron collides with
another electron, or a hole collides with another hole. The probability of such
an event is relatively small because in normal operating conditions and at room
temperature there is a high probability that a carrier collides with a phonon; as
a consequence, for the collisionless motion of an electron to be interrupted by a
collision with another electron it is necessary that the electron concentration be very
high. This situation occurs only in a heavily doped, n-type region; similarly, an
Auger recombination initiated by holes can be significant only in a heavily doped,
p-type region.9

Considering now the case of impact-ionization, for this phenomenon to occur it is
necessary that an electron, or a hole, acquires a kinetic energy larger than the energy
gap. This is a rare event as well,10 because in general the carrier undergoes a phonon
collision when its kinetic energy is still significantly lower than the energy gap. The
impact-ionization event occurs only if the carrier acquires a substantial energy over
a distance much shorter than the average collisionless path, which happens only in
presence of a strong electric field.11

The qualitative reasoning outlined above explains why the conditions for a strong
Auger recombination are incompatible with those that make impact-ionization
dominant; in fact, a large charge density, like that imposed by a heavy dopant
concentration, prevents the electric field from becoming strong. Vice versa, a strong
electric field prevents a large carrier concentration from building up. It is therefore
sensible to investigate situations where only one term dominates within UAI .

20.3.1 Strong Impact Ionization

As indicated in Sect. 20.3, far from equilibrium the approximations In D cn neq peq,
Ip D cp neq peq are not valid, and the general expressions (20.55) must be used.
Here the situation where impact ionization dominates over the other generation-
recombination mechanisms is considered, using the steady-state case. If impact
ionization is dominant, it is Un � Gn D Up � Gp ' UAI ' �In n � Ip p. The
continuity equations (the first ones in (19.129) and (19.130)) then become

9In fact, Auger recombination becomes significant in the source and drain regions of MOSFETs
and in the emitter regions of BJTs, where the dopant concentration is the highest.
10In principle, high-energy electrons or hole exists also in the equilibrium condition; however, their
number is negligible because of the exponentially vanishing tail of the Fermi-Dirac statistics.
11The high-field conditions able to produce a significant impact ionization typically occur in the
reverse-biased p-n junctions like, e.g., the drain junction in MOSFETs and the collector junction
in BJTs.
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divJn D �q In n � q Ip p ; divJp D q In nC q Ip p : (20.58)

As outlined in Sect. 20.3, impact-ionization dominates if the electric field is high.
For this reason, the transport equations in (19.129) and (19.130) are simplified by
keeping the ohmic term only, to yield Jn ' q�n n E and Jp ' q�p p E. As a
consequence, the electron and hole current densities are parallel to the electric field.
Let e.r/ be the unit vector of the electric field, oriented in the direction of increasing
field, E D jEj e; it follows Jn D Jn e and Jp D Jp e, with Jn and Jp strictly positive.
Extracting n, p from the above and replacing them into (20.58) yield

� divJn D kn Jn C kp Jp ; divJp D kn Jn C kp Jp ; (20.59)

where the ratios

kn D
In

�n jEj
; kp D

Ip

�p jEj
; (20.60)

whose units are Œkn;p� D m�1, are the impact-ionization coefficients for electrons
and holes, respectively. Equations (20.59) form a system of differential equations of
the first order, whose solution in the one-dimensional case is relatively simple if the
dependence of the coefficients on position is given (Sect. 21.5).

20.4 Optical Transitions

The description of the optical transitions is similar to that of the direct thermal
transitions given in Sect. 20.2.1; still with reference to Fig. 20.1, the transition
marked with a can be thought of as an optical-recombination event if the energy
difference between the initial and final state is released to the environment in
the form of a photon. The opposite transition (b), where the electron’s energy
increases due to photon absorption from the environment, is an optical electron-hole
generation. The expression of the net optical-recombination rate is similar to (20.11)
and reads

UO D ˛O n p � GO ; (20.61)

whose coefficients are derived in the same manner as those of UDT (Sect. 20.2.1).
In normal operating conditions the similarity between the direct-thermal and

optical generation-recombination events extends also to the external agent that
induces the transitions. In fact, the distribution of the phonon energies is typically
the equilibrium one, given by the Bose-Einstein statistics (15.55) at the lattice tem-
perature; as for the photons, the environment radiation in which the semiconductor
is immersed can also be assimilated to the equilibrium one, again given by the Bose-
Einstein statistics at the same temperature.
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The conditions of the optical generation-recombination events drastically change
if the device is kept far from equilibrium. Consider for instance the case where
the electron concentration of the conduction band is artificially increased with
respect to the equilibrium value at the expense of the electron population of the
valence band, so that both n and p in (20.61) increase. This brings about an excess
of recombinations; if the probability of radiative-type generation-recombination
events is high,12 the emission of a large number of photons follows. The angular
frequencies of the emitted photons is close to .EC � EV/=„, because the majority
of the electrons in the conduction band concentrate near EC, and the final states of
the radiative transitions concentrate near EV . In this way, the energy spent to keep
the artificially high concentration of electron-hole pairs is transformed into that of
a nearly monochromatic optical emission. In essence, this is the description of the
operating principle of a laser.13 Another method for keeping the device far from
equilibrium is that of artificially decreasing both the concentration of electrons of the
conduction band and the concentration of holes of the valence band. The outcome is
opposite with respect to that described earlier: the decrease of both n and p in (20.61)
brings about an excess of generations, which in turn corresponds to the absorption
of photons from the environment. The absorption may be exploited to accumulate
energy (thus leading to the concept of solar cell), or to provide an electrical signal
whose amplitude depends on the number of absorbed photons (thus leading to the
concept of optical sensor).

In a nonequilibrium condition the amount of energy exchanged between the
semiconductor and the electromagnetic field is not necessarily uniform in space.
Consider, by way of example, the case of an optical sensor on which an external
radiation impinges; as the nonequilibrium conditions are such that the absorption
events prevail, the radiation intensity within the material progressively decreases
at increasing distances from the sensor’s surface. Therefore, it is important to
determine the radiation intensity as a function of position.

It is acceptable to assume that the absorption events are uncorrelated from each
other. Thus, one can limit the analysis to a monochromatic radiation; the effect of
the whole spectrum is recovered at a later stage by adding up over the frequencies.
When absorption prevails, (20.61) simplifies to UO ' �GO, where GO is a function
of the radiation’s frequency � and possibly of position. If the radiation’s intensity
varies with time, GO depends on time as well.14 When the radiation interacts with
the external surface of the material, part of the energy is reflected; moreover, the
radiation is refracted at the boundary, so that the propagation direction outside the
material differs in general from that inside. Letting  be the propagation direction
inside the material, consider an elementary volume with a side d aligned with 

12As indicated in Sect. 17.6.6, among semiconductors this is typical of the direct-gap ones.
13In fact, LASER is the acronym of Light Amplification by Stimulated Emission of Radiation.
14In principle, a time dependence of the intensity is incompatible with the hypothesis that
the radiation is monochromatic. However, the frequency with which the intensity may vary is
extremely small with respect to the optical frequencies.
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Fig. 20.5 Sketch of photon
absorption in a material layer

ξd Φ (ξ+dξ)(ξ)Φ
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and a cross-section dA normal to it (Fig. 20.5). The monochromatic radiation can be
described as a flux of photons of equal energy h �, with h the Planck constant, and a
momentum’s direction parallel to  . Let˚./ be the flux density of photons entering
the volume from the face corresponding to  , and ˚.Cd/ the flux density leaving
it at  C d; the following holds, ˚ D K uf , where K./ is the concentration of the
photons and uf their constant phase velocity. Then,

@˚

@
D

@K

@.=uf /
D
@K

@t
: (20.62)

The derivatives in (20.62) are negative because the photon concentration decreases
in time due to absorption; as the loss of each photon corresponds to the loss of
an energy quantum h �, the loss of electromagnetic energy per unit volume and
time is �h � .@˚=@/. By a similar token one finds15 that the energy absorbed by
the optical-generation events per unit time and volume is h � GO. The latter is not
necessarily equal to �h � .@˚=@/; in fact, some photons crossing the elementary
volume may be lost due to collisions with nuclei (this, however, is a rare event), or
with electrons that are already in the conduction band, so that no electron-hole pair
generation occurs. To account for these events one lets

GO D ��
@˚

@
> 0 ; (20.63)

with 0 < � < 1 the quantum efficiency. In moderately doped semiconductors
� is close to unity because the concentration of the conduction-band electrons is
small; instead, the efficiency degrades in degenerate semiconductors. The spatial
dependence of the generation term can be derived from (20.63) if that of the photon
flux is known. To proceed, one defines the absorption coefficient as

15It is implied that h � � EC � EV , and that two-particle collisions only are to be considered.
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k D �
1

˚

@˚

@
> 0 ; (20.64)

with Œk� D m�1. In general it is k D k.˚; ; �/; however, as the absorption effects are
uncorrelated, the flux density lost per unit path d is proportional to the flux density
available at  . Then, k is independent of ˚ ; neglecting momentarily the dependence
on  as well, one finds

˚./ D ˚B expŒ�k.�/ � ; (20.65)

with ˚B D ˚. D 0C/ on account of the fact that due to the reflection at the
interface, the flux density on the inside edge of the boundary is different from that
on the outside edge. When k is independent of position, its inverse 1=k is called
average penetration length of the radiation. When k depends on position, (20.64) is
still separable and yields

˚./ D ˚B exp.�km / ; km D
1
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0

k. 0I �/ d 0 : (20.66)

Combining (20.66) with (20.63), the optical-generation term is found to be

GO D �˚B k.; �/ exp

"

�

Z 

0

k. 0; �/ d 0
#

: (20.67)

20.5 Macroscopic Mobility Models

It has been shown in Sect. 19.5.2 that the carrier mobilities are defined in terms of the
momentum-relaxation times. Specifically, in the parabolic-band approximation it is,
for the electrons of the conduction band, �n D .�l C 2�t/=3, with �l D q �p=ml,
�t D q �p=mt, where �p is the electron momentum-relaxation time (19.87); similarly,
for the holes of the valence band the carrier mobility is given by inserting (19.118)
into the second relation of (19.121), namely, a linear combination of the heavy-hole
and light-hole momentum-relaxation times. As, in turn, the inverse momentum-
relaxation time is a suitable average of the inverse intra-band relaxation time,
the Matthiessen rule follows (Sect. 19.6.5); in conclusion, the electron and hole
mobilities are calculated by combining the effects of the different types of collisions
(e.g., phonons, impurities, and so on) suffered by the carrier.16 In the case of
electrons, the application of the Matthiessen rule is straightforward, leading to

16As mentioned in Sect. 19.6.5, it is assumed that the different types of collisions are uncorrelated.
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1

�n
D

mn

q

 
1

�
ph
p

C
1

�
imp
p

C : : :

!

; (20.68)

where the index refers to the type of collision, and 1=mn D .1=ml C 2=mt/=3. For
holes a little more algebra is necessary, which can be avoided if the approximation
�ph ' �pl is applicable.

In the typical operating conditions of semiconductor devices the most important
types of collisions are those with phonons and ionized impurities. For devices
like surface-channel MOSFETs, where the flow lines of the current density are
near the interface between semiconductor and gate insulator, a third type is
also very important, namely, the collisions with the interface. The macroscopic
mobility models are closed-form expressions in which mobility is related to a
set of macroscopic parameters (e.g., temperature) and to some of the unknowns
of the semiconductor-device model; the concept is similar to that leading to the
expressions of the generation-recombination terms shown in earlier sections.

20.5.1 Example of Phonon Collision

By way of example, a simplified analysis of the contribution to mobility of
the electron-phonon collision is outlined below, starting from the definition of
the ith component of the momentum-relaxation tensor �pi given by (19.87); the
simplifications are such that the first-order expansion f � f eq ' .df=d�/eq � is not
used here. Starting from the perturbative form (19.47) one considers the steady-
state, uniform case and lets B D 0, � D �v , to find

q

„
E � gradkf D

f � f eq

�v
: (20.69)

Replacing f with f eq at the left-hand side of (20.69) and using the definition (17.52)
of the group velocity yield gradkf eq D .df eq=dH/ „u, with H the Hamiltonian
function defined in Sect. 19.2.2. Inserting into (19.87) yields

�pi

ZZZ C1

�1

ui E � u .df eq=dH/ d3k D
ZZZ C1

�1

ui E � u .df eq=dH/ �v d3k : (20.70)

As the derivative df eq=dH is even with respect to k, the integrals involving velocity
components different from ui vanish because the corresponding integrand is odd; as
a consequence, only the ith component of the electric field remains, and cancels out.
A further simplification is obtained by replacing the Fermi-Dirac statistics, with the
Maxwell-Boltzmann distribution law, f eq ' Q expŒ.�EeC q' �ECCEF/=.kB T/�,
to find



530 20 Generation-Recombination and Mobility

�pi

ZZZ C1

�1

u2i expŒ�Ee=.kB T/� d3k D
ZZZ C1

�1

u2i expŒ�Ee=.kB T/� �v d3k :

(20.71)
To proceed it is necessary to make an assumption about �v . Remembering the
definition of the relaxation time given by the first relation in (19.43), it is reasonable
to assume that the scattering probability S0 increases with the kinetic energy Ee of
the electron, so that the relaxation time decreases; a somewhat stronger hypothesis
is that the relaxation time depends on Ee only, namely, the collision is isotropic.17

In this case, (20.71) is readily manipulated by a Herring-Vogt transformation.
Following the same procedure as in Sect. 19.6.4, one finds that all numerical factors
cancel out; as a consequence, one may replace the auxiliary coordinate �2i with
�2=3 D Ee=3, thus showing that �pi D �p is isotropic as well. One eventually finds

�p D

R C1
0

�v.Ee/ E3=2e expŒ�Ee=.kB T/� dEe
R C1
0

E3=2e expŒ�Ee=.kB T/� dEe

: (20.72)

A simple approximation for the relaxation time is �v D �v0 .Ee=E0/�˛ , where �v0,
E0, and ˛ are positive parameters independent of Ee (compare with Sect. 19.6.7).
From (C.95) it follows

�p D �v0
� .5=2 � ˛/

� .5=2/

�
E0

kB T

�˛
: (20.73)

When the electron-phonon interaction is considered, �v0 D �
ph
v0 is found to be

inversely proportional to kB T and to the concentration Nsc of semiconductor’s
atoms; moreover, for acoustic phonons18 it is ˛ D 1=2 [78, Sects. 61,62], whence

� ap
p D �v0.Nsc;T/

4

3
p
�

�
E0

kB T

�1=2
; �ap

n / N�1sc .kB T/�3=2 ; (20.74)

where “ap” stands for “acoustic phonon.” More elaborate derivations, including also
the contribution of optical phonons, still show that carrier-phonon collisions make
mobility to decrease when temperature increases.

17The first-principle derivation of the scattering probabilities is carried out by applying Fermi’s
Golden Rule (Sect. 14.8.3) to each type of perturbation, using the Bloch functions for the
unperturbed states [73]. Examples are given in Sect. 14.8.6 for the case of the harmonic
perturbation in a periodic structure, and in this chapter (Sect. 20.5.2) for the case of ionized-
impurity scattering.
18Acoustic phonons are those whose momentum and energy belong to the acoustic branch
of the lattice-dispersion relation (Sect. 17.9.5); a similar definition applies to optical phonons
(Sect. 17.9.6).
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20.5.2 Example of Ionized-Impurity Collision

As a second example one considers the collisions with ionized impurities. The
interaction with a single ionized impurity is a perturbation of the Coulomb type;
due to the presence of the crystal, the more suitable approach is the screened
Coulomb perturbation, an example of which is shown in Sect. 14.7, leading to the
perturbation-matrix element (14.34):

h.0/kg D
A=.2 �/3

q2c C q2
; A D

� Z e2

"0
: (20.75)

In (20.75), e > 0 is the elementary electric charge, Z a positive integer, "0 the
vacuum permittivity, qc > 0 the inverse screening length,19 q D jqj D jk � gj
and, finally, � D 1 .�1/ in the repulsive (attractive) case. The wave vectors k
and g correspond to the initial and final state of the transition, respectively. In
principle, (20.75) should not be used as is because it holds in vacuo; in fact, the
eigenfunctions of the unperturbed Hamiltonian operator used to derive (20.75)
are plane waves. Inside a crystal, instead, one should define the perturbation
matrix hkg.t/ using the Bloch functions wk D uk exp.i k � r/ in an integral of
the form (14.24). However, it can be shown that the contribution of the periodic
part uk can suitably be averaged and extracted from the integral, in the form of
a dimensionless coefficient, whose square modulus G is called overlap factor.20

For this reason, the collisions with ionized impurities is treated starting from the
definition (20.75) to calculate the perturbation matrix, with the provision that the
result is to be multiplied by G and the permittivity "sc of the semiconductor replaces
"0 in the second relation of (20.75).

Like in Sect. 14.6, a Gaussian wave packet (14.27) centered on some wave vector
b ¤ g is used as initial condition. In this case the perturbation is independent of
time, hbg D h.0/bg D const ¤ 0; as a consequence, the infinitesimal probability dPb

that such a perturbation induces a transition, from the initial condition (14.27), to a
final state whose energy belongs to the range dEg, is given by (14.32). In turn, the

integral (14.31) providing H.0/

b .Eg/ is calculated in Prob. 14.1. Assuming that the
duration tP of the interaction is large enough to make Fermi’s Golden Rule (14.44)
applicable, and inserting the overlap factor, one finally obtains

dPb � G

�
2� m

„2

�3=2
8 � tP ı.Eb � Eg/A2

�3 „ .2 �/5 q2c .q
2
c C 8m Eg=„2/

p
Eg dEg : (20.76)

19An example of derivation of the screening length is given in Sect. 20.6.4.
20An example of this procedure is given in Sect. 14.8.6 with reference to the case where the spatial
part of the perturbation has the form of a plane wave.
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where the relation Eg D „
2 g2=.2m/ has been used. Integrating over Eg and dividing

by tP provides the probability per unit time of a transition from the initial energy Eb

to any final energy; letting Ec D „
2 q2c=.2m/, one finds

PP.Eb/ D
1

�vc

p
4Eb=Ec

1C 4Eb=Ec
:

1

�vc
D

G A2=
p
2� m

8�2 .�2 Ec/3=2
: (20.77)

The above expression provides the contribution to the intra-band relaxation time
of the scattering due to a single impurity. One notes that since A is squared, the
effect onto (20.77) of a positive impurity is the same as that of a negative one. If
the effect of each impurity is uncorrelated with that of the others,21 the probabilities
add up; letting NI D NCD C N�A be the total concentration of ionized impurities,
the product NI d3r is the total number of ionized impurities in the elementary
volume d3r; it follows that the probability per unit time and volume is given
by PP.Eb/NI . Considering that NI depends on position only, mobility inherits the
inverse proportionality with NI ; letting “ii” indicate “ionized impurity,” one finds
�ii

n / 1=NI .
The derivation of the dependence on NI shown above is in fact oversimplified,

and the resulting model does not reproduce the experimental results with sufficient
precision. One of the reasons for this discrepancy is that the inverse screening length
qc depends on the dopant concentration as well, as is apparent, for instance, from
the second relation of (20.105). In order to improve the model, while still keeping
an analytical form, the expression is modified by letting 1=�ii

n / N˛
I ; with ˛ a

dimensionless parameter to be extracted from the comparison with experiments.
One then lets

1

�ii
n.NI/

D
1

�ii
n.NR/

�
NI

NR

�˛
; (20.78)

with NR a reference concentration.

20.5.3 Bulk and Surface Mobilities

Combining the phonon and ionized-impurity contributions using the Matthiessen
rule yields 1=�B

n .T;NI/ D 1=�
ph
n .T/C 1=�ii

n.NI/, namely,

�B
n .T;NI/ D

�
ph
n .T/

1C c.T/ .NI=NR/˛
; (20.79)

21In silicon, this assumption is fulfilled for values of the concentration up to about 1019 cm�3

[80, 106].
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Fig. 20.6 Graph of the theoretical mobility curve (20.80), normalized to its maximum, for
different values of b, with b0 D 0. Each curve has a flex at r D rflex D �b0=b and takes the
value 0:5 there. The slope at the flex is �b=4

with c.T/ D �
ph
n .T/=�ii

n.NR/. In practical cases the doping concentration ranges
over many orders of magnitude; for this reason, (20.79) is usually represented in
a semilogarithmic scale: letting r D log10.NI=NR/, b D ˛ loge 10, and b0 D
loge c, (20.79) becomes

�B
n .T;NI/ D

�
ap
n .T/

1C exp.b rC b0/
: (20.80)

The curves corresponding to b D 1; 1:5; 3 and b0 D 0 are drawn in Fig. 20.6, using
r as independent variable at a fixed T . Index “B” in the mobility defined in (20.79)
or (20.80) stands for “bulk.” More generally, the term bulk mobility is ascribed to
the combination of all contributions to mobility different from surface collisions.

As mentioned at the beginning of this section, in surface-channel devices the
degradation of mobility produced by the interaction of the carriers with the interface
between channel and gate insulator is also very important. The macroscopic models
of this effect are built up by considering that the carrier-surface interaction is more
likely to occur if the flow lines of the current density are closer to the interface
itself; such a closeness is in turn controlled by the intensity of the electric field’s
component normal to the interface, E?. In conclusion, the model describes the
contribution to mobility due to surface scattering as a decreasing function of E?,
e.g., for electrons,

1

�s
n.E?/

D
1

�s
n.ER/

�
E?
ER

�ˇ
; (20.81)
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with ER a reference field and ˇ a dimensionless parameter to be extracted from
experiments. Combining the bulk and surface contributions using the Matthiessen
rule yields 1=�n.T;NI ;E?/ D 1=�B

n .T;NI/C 1=�
s
n.E?/, namely,

�n.T;NI ;E?/ D
�B

n .T;NI/

1C d.T;NI/ .E?=ER/ˇ
; (20.82)

with d.T;NI/ D �
B
n .T;NI/=�

s
n.ER/.

20.5.4 Beyond Analytical Modeling of Mobility

In general the analytical approaches outlined above do not attain the precision
necessary for applications to realistic devices. For this reason, one must often resort
to numerical-simulation methods; in this way, the main scattering mechanisms are
incorporated into the analysis (e.g., for silicon: acoustic phonons, optical phonons,
ionized impurities, and impact ionization), along with the full-band structure of the
semiconductor, which is included in the simulation through the density of states and
group velocity defined in the energy space. The latter, in turn, are obtained directly
from the corresponding functions in the momentum space by integrating the full-
band system over the angles. The energy range considered to date allows for the
description of carrier dynamics up to 5 eV.

As mentioned above, the ionized-impurity collisions can be treated as interac-
tions between the carrier and a single impurity as long as the impurity concentration
is below some limit. When the limit is exceeded, impurity clustering becomes
relevant and must be accounted for [80]. In fact, at high doping densities the
carrier scatters with a cluster of K ions, where K is a function of the impurity
concentration. Finally, different outcomes are found for majority- or minority-
mobility calculations: e.g., minority-hole mobility is found to be about a factor 2
higher than the majority-hole mobility for identical doping levels.

Figures 20.7 and 20.8 show the outcome of electron- and hole-mobility calcu-
lations for bulk silicon, obtained from the spherical-harmonics method illustrated
in [140]. The method incorporates the models for the scattering mechanisms listed
above. The electron and hole mobility have been calculated as a function of the total
ionized-dopant concentration NI , using the lattice temperature T as a parameter; in
the figures, they are compared with measurements taken from the literature.

To include the surface effects in the analysis it is necessary to account for the
fact that in modern devices the thickness of the charge layer at the interface with
the gate insulator is so small that quantum confinement and formation of subbands
must be considered. The typical collisions mechanisms to be accounted for at the
semiconductor–insulator interface are surface roughness, scattering with ionized
impurities trapped at the interface, and surface phonons. Figures 20.9 and 20.10
show the outcome of electron and hole surface-mobility calculations in silicon,
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Fig. 20.7 Electron mobility
in silicon calculated with the
spherical-harmonics
expansion method (HARM)
as a function of the total
ionized-dopant concentration
NI , using the lattice
temperature T as parameter.
The calculations are
compared with measurements
by Lombardi [91], Klaassen
[80], and Arora [2] (courtesy
of S. Reggiani)
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Fig. 20.8 Hole mobility in
silicon calculated with the
spherical-harmonics
expansion method (HARM)
as a function of the total
ionized-dopant concentration
NI , using the lattice
temperature T as parameter.
The calculations are
compared with measurements
by Lombardi [91], Klaassen
[80], and Arora [2] (courtesy
of S. Reggiani)
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also obtained from the spherical-harmonics method [106]. The electron and hole
mobility have been calculated as functions of the dopant concentration (NA and
ND, respectively), at room temperature; in the figures, they are compared with
measurements taken from the literature.
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Fig. 20.9 Electron surface
mobility in silicon calculated
with the spherical-harmonics
expansion method (HARM)
method at room temperature,
using the acceptor
concentration NA as
parameter. The calculations
are compared with
measurements by Takagi
[131] (courtesy of S.
Reggiani)
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Fig. 20.10 Hole surface
mobility in silicon calculated
with the spherical-harmonics
expansion method (HARM)
at room temperature, using
the donor concentration ND as
parameter. The calculations
are compared with
measurements by Takagi
[131] (courtesy of S.
Reggiani)
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20.6 Complements

20.6.1 Transition Rates in the SRH Recombination Function

The expressions of the transition rates ra, rb, rc, rd to be used in the calculation of
the Shockley-Read-Hall recombination function (20.32) are determined by the same
reasoning as that used in Sect. 20.2.1 for the direct thermal transitions. Let P.r;E; t/
be the occupation probability of a state at energy E, and C.E! E0/ the probability
per unit time and volume (in r) of a transition from a filled state of energy E to an
empty state of energy E0. Such a probability is independent of time; it depends on
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the energy of the phonon involved in the transition, and possibly on position. Then,
define P0 D P.r;E D E0; t/, Pt D P.r;E D Et; t/, where Et is the energy of the
trap. Finally, let �.E/ be the combined density of states in energy and volume of the
bands, and �t.r;E/ the same quantity for the traps (the latter depends on position
if the traps’ distribution is nonuniform). The number of transitions per unit volume
and time, from states in the interval dE belonging to a band, to states in the interval
dE0 belonging to the trap distribution, is obtained as the product of the number
��.E/ dE P of filled states in the interval dE, times the transition probability per
unit volume and time C, times the number ��t.r;E0/ dE0 .1 � P0/ of empty states
in the interval dE0. Thus, letting �Et be an energy interval belonging to the gap
and containing the traps, the transition rate from the conduction band to the traps is
given by

ra D

Z ECU

EC

Z

�Et

��.E/ dE P C.E! E0/��t.r;E0/ dE0 .1 � P0/ : (20.83)

By the same token, the transition rate from the valence band to the traps is

rd D

Z EV

EVL

Z

�Et

��.E/ dE P C.E! E0/��t.r;E0/ dE0 .1 � P0/ : (20.84)

In turn, the number of transitions per unit volume and time, from states in the
interval dE0 belonging the trap distribution, to states in the interval dE belonging to
a band, is obtained as the product of the number ��t.r;E0/ dE0 P0 of filled states in
the interval dE0, times C.r;E0 ! E/, times the number��.E/ dE .1�P/ of empty
states in the interval dE. Thus, the transition rates from the traps to conduction or
valence band are respectively given by

rb D

Z ECU

EC

Z

�Et

��t.r;E0/ dE0 P0 C.r;E0 ! E/� �.E/ dE .1 � P/ ; (20.85)

rc D

Z EV

EVL

Z

�Et

��t.r;E0/ dE0 P0 C.r;E0 ! E/� �.E/ dE .1 � P/ : (20.86)

The combined density of states of the traps is treated in the same manner as that of
the dopant atoms (compare with (18.20) and (18.35)) by letting

�t.r;E0/ D Nt.r/ ı.E0 � Et/ ; (20.87)

where Nt.r/ is the trap concentration. Thanks to this, the integrals over �Et are
easily evaluated to yield

ra D Nt .1 � Pt/�
2

Z ECU

EC

� P C.r;E! Et/ dE D Nt .1 � Pt/ ˛n n ; (20.88)
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rc D Nt Pt �
2

Z EV

EVL

� .1 � P/C.r;Et ! E/ dE D Nt Pt ˛p p ; (20.89)

where the definitions (20.3), (20.4) of the electron and hole concentrations are used,
and the transition coefficients for electrons and holes are defined as the weighed
averages

˛n D �
2

R ECU

EC
� P C dE

R ECU

EC
� P dE

; ˛p D �
2

R EV

EVL
� .1 � P/C dE

R EV

EVL
� .1 � P/ dE

: (20.90)

Like in the case of (20.10), the integrals in (20.90) are approximated using the
equilibrium probability. The remaining transition rates rb, rd are determined in a
similar manner, using also the approximation 1 � P ' 1 in (20.85) and P ' 1

in (20.84). Like in Sect. 20.2.1, the approximation is justified by the fact that in
normal operating conditions the majority of the valence-band states are filled, while
the majority of the conduction-band states are empty. In conclusion,

rb D Nt Pt �
2

Z ECU

EC

� .1 � P/C.r;Et ! E/ dE ' Nt Pt en ; (20.91)

rd D Nt .1 � Pt/�
2

Z EV

EVL

� P C.r;E! Et/ dE ' Nt .1 � Pt/ ep ; (20.92)

with the emission coefficients defined by

en D �
2

Z ECU

EC

� C dE ; ep D �
2

Z EV

EVL

� C dE : (20.93)

20.6.2 Coefficients of the Auger and Impact-Ionization Events

The expression of the coefficients cn, cp and In, Ip, to be used in the calculation of the
net recombination rates (20.55) due to the Auger and impact-ionization phenomena,
is found in the same way as the transition rates of the SRH recombination function
(Sect. 20.2.3) or the direct thermal recombinations (Sect. 20.2.1). Let P.r;E; t/ be
the occupation probability of a state of energy E, and Cn.E1;E2 ! E01;E

0
2/ the

combined probability per unit time and volume (in r) of an electron transition from
a filled state of energy E1 in the conduction band to an empty state of energy E01 in
the conduction band, and of another electron from a filled state of energy E2 to an
empty state of energy E02, where E2 and E02 belong to different bands.
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Auger Coefficients

In an Auger recombination it is E01 > E1; also, E2 belongs to the conduction band
while E02 belongs to the valence band. Due to energy conservation it is22

Cn D Cn0 ı
�
.E1 � E01/C .E2 � E02/

�
; (20.94)

where E2 � E02 ' EG; it follows E01 ' E1 C EG. Then, define Pi D P.r;E D Ei; t/,
P0i D P.r;E D E0i ; t/, with i D 1; 2, and let �.E/ be the combined density of states in
energy and volume for the bands; in particular, let gi D ��.Ei/ and g0i D ��.E

0
i/.

From the above definitions one finds, for the rate ra of the Auger recombinations
initiated by electrons,

ra D

Z
g1 dE1 P1 g2 dE2 P2 Cn g01 dE01 .1 � P01/ g02 dE02 .1 � P02/ ; (20.95)

where
R

indicates a fourfold integral that extends thrice over the conduction band
and once over the valence band. Observing that P01 � 1 and integrating over E01
with Cn D Cn0 ı.E1 C EG � E01/ yield

ra D

Z ECU

EC

g1 dE1 P1 Cn0 gG

Z ECU

EC

g2 dE2 P2

Z EV

EVL

g02 dE02 .1 � P02/ ; (20.96)

where gG D g.E1 C EG/ and ŒCn0 gG� D s�1 m�3. Thanks to (20.3) and (20.4), the
second integral in (20.96) equals � n and the third one equals � p. Letting

cn D �
3

R ECU

EC
Cn0 gG g1 P1 dE1

R ECU

EC
g1 P1 dE1

; (20.97)

finally yields ra D cn n2 p. The derivation of rc D cp p2 n is similar.

Impact Ionization’s Transition Coefficients

Using the same symbols introduced at the beginning of Sect. 20.6.2, for an impact-
ionization event induced by an electron it is E1 > E01; in turn, E2 belongs to the
valence band and E02 belongs to the conduction band. It follows

rb D

Z
g1 dE1 P1 g2 dE2 P2 Cn g01 dE01 .1 � P01/ g02 dE02 .1 � P02/ ; (20.98)

22The units of Cn0 are ŒCn0 D J s�1 m�3�.
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where the fourfold integral extends thrice over the conduction band and once over
the valence band. From the energy-conservation relation E1 C E2 D E01 C E02 and
from E02 � E2 ' EG it follows E01 ' E1 � EG. Observing that P2 ' 1, P01 � 1,
P02 � 1, and integrating over E01 with Cn D Cn0 ı.E1 � EG � E01/ yield

rb D

Z ECU

EC

Cn0 gG g1 P1 dE1

Z EV

EVL

g2 dE2

Z ECU

EC

g02 dE02 ; (20.99)

where gG D g.E1 � EG/, and the product of the second and third integral
is a dimensionless quantity that depends only on the semiconductor’s structure.
Indicating such a quantity with �n, and letting

In D �n

R ECU

EC
Cn0 gG g1 P1 dE1

R ECU

EC
g1 P1 dE1

; (20.100)

finally yields rb D In n. The derivation of rd D Ip p is similar.

20.6.3 Total Recombination-Generation Rate

The expressions for the most important generation-recombination terms have been
worked out in this chapter. Only one of them, the SRH recombination function
USRH, involves energy states different from those of the conduction and valence
bands; in principle, such states would require additional continuity equations to be
added to the semiconductor-device model. However, as discussed in Sect. 20.2.3,
this is not necessary in crystalline semiconductors. The other mechanisms (direct
thermal recombination-generation UDT , Auger recombination and impact ionization
UAI , and optical recombination-generation UO) do not involve intermediate states.
As a consequence, with reference to (20.13) the generation-recombination terms
of the electron-continuity equation are equal to those of the hole continuity
equation. Finally, assuming that the different generation-recombination phenomena
are uncorrelated and neglecting UDT with respect to USRH (Sect. 20.2.2) yield

Un � Gn D Up � Gp ' USRH C UAI C UDO : (20.101)

20.6.4 Screened Coulomb Potential

In the context of physics, the general meaning of screening is the attenuation
in the electric field intensity due to the presence of mobile charges; the effect
is treated here using the Debye-Hückel theory [39], which is applicable to a
nondegenerate semiconductor where the dopants are completely ionized. For a
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medium of permittivity ", with charge density %, the electric potential in the
equilibrium condition is found by solving Poisson’s equation

� "r2' D % : (20.102)

One starts by considering a locally neutral material, to which a perturbation is added
due, for instance, to the introduction of a fixed charge Zc ec placed in the origin; this,
in turn, induces a variation in %. The corresponding perturbation of ' is calculated
to first order by replacing ' with ' C ı' and % with % C .@%=@'/ ı', where the
derivative is calculated at ı' D 0; the perturbed form of Poisson’s equation reads:

� "r2' � "r2ı' D %C
@%

@'
ı' : (20.103)

As the unperturbed terms cancel out due to (20.102), a Poisson equation in the
perturbation is obtained,

r2ı' D q2c ı' ; q2c D �
@%=@'

"
; (20.104)

where 1=qc is the screening length or Debye length. The definition implies that
@%=@' < 0; this is in fact true, as shown below with reference to a nondegenerate
semiconductor with completely ionized dopants.23 Letting NCD D ND, N�A D NA

in (19.125), and using the nondegenerate expressions (18.60), (18.61), of the
equilibrium concentrations, one finds that N D ND�NA is left unaffected by the per-
turbation, while the electron concentration24 n transforms into n expŒe ı'=.kB T/�
and the hole concentration p transforms into p expŒ�e ı'=.kB T/�. From % D

e .p � nC N/ one obtains, to first order,

@%

@'
D �

e2

kB T
.nC p/ ; q2c D

e2 .nC p/

" kB T
> 0 : (20.105)

The left-hand side of the Poisson equation in (20.104) is conveniently recast using
a set of spherical coordinates r; �; � whose origin coincides with the center of
symmetry of the perturbation; using (B.25) one finds

r2ı' D
1

r

@2

@r2
.r ı'/C

r�2

sin �

@

@�

�
sin �

@ı'

@�

�
C

r�2

sin2 �

@2ı'

@�2
: (20.106)

Considering a perturbation with a spherical symmetry, only the first term at the right-
hand side of (20.106) is left, whence (20.104) becomes an equation in the unknown
r ı':

23As shown by (A.118), the property @%=@' < 0 holds true also in the degenerate case.
24The electron charge is indicated here with e to avoid confusion with qc.
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d2

dr2
.r ı'/ D q2c .r ı'/ : (20.107)

The general solution of (20.107) is r ı' D A1 exp.�qc r/C A2 exp.qc r/, where it
must be set A2 D 0 to prevent the solution from diverging as r becomes large. In
conclusion,

ı' D
A1
r

exp.�qc r/ : (20.108)

The remaining constant is found by observing that for very small r the pure Coulomb
case ı' ' A1=r is recovered, whence A1 D Zcece=.4 � "/. This makes (20.108) to
coincide with (14.33).
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Chapter 21
Bipolar Devices

21.1 Introduction

The mathematical model of semiconductor devices, derived in Chap. 19, is applied
here to the description of the fundamental bipolar device, the p-n junction. The term
bipolar indicates that both electrons and holes contribute to the current. The analysis
is carried out using the simple example of a one-dimensional abrupt junction in
steady state, with the hypotheses of nondegeneracy and complete ionization, that
lend themselves to an analytical treatment. The equilibrium condition is considered
first, and the solution of Poisson’s equation is tackled, showing that the structure
can be partitioned into space-charge and quasi-neutral regions. Then, the Shockley
theory is illustrated, leading to the derivation of the ideal I.V/ characteristic. The
semiconductor model is then applied to illustrating two features of the reverse-
bias condition, namely, the depletion capacitance and the avalanche due to impact
ionization. Next, the model is used to work out the features of the photodiode,
both in the continuous and storage mode, of the solar cell, and of the bipolar
junction transistor. The complements justify the simplification of considering only
the diffusive transport for the minority carriers in a quasi-neutral region, and provide
the derivation of the Shockley boundary conditions. Finally, the expression of the
depletion capacitance is worked out for the case of an arbitrary charge-density
profile. The typical parameters of the p-n junction and of the solar cell are also
illustrated in the complements, along with the single-generator equivalent circuit
for the bipolar junction transistor.
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21.2 P-N Junction in Equilibrium

A very simple, yet fundamental, semiconductor device is the p-n junction, whose
one-dimensional version is sketched in Fig. 21.1. The device is fabricated by
thermally diffusing (Chap. 23), or ion implanting p-type dopant atoms into an n-
type substrate, or vice versa. As a consequence, the diffused or implanted profile
is not spatially uniform. The substrate profile may in turn result from a similar
process, so that in general it is not uniform either. The locus of points where the
ionized dopant concentrations are equal to each other, NCD D N�A , is a surface called
metallurgical junction.1 The theory of the p-n junction is carried out with reference
to a simplified structure, where the device is one dimensional and aligned with the
x axis; in this case the metallurgical junction is a plane normal to x and, as shown
in Fig. 21.1, its position is made to coincide with the reference’s origin. Also, the
nonuniform dopant concentrations NA.x/ and ND.x/ are approximated by piecewise-
constant functions, NA D const for x < 0 and ND D const for x > 0. The device
obtained from this approximation is called abrupt p-n junction. Considering the
actual form of the dopant distribution, the approximation is not realistic; however,
the much simpler model based on it is still able to capture the essential features
of the device characteristics. Moreover, the model assumes that the conditions of
nondegeneracy and complete ionization hold; this assumption makes the analytical
approach possible.

Within an integrated circuit the p-n junction is supplemented with contacts that
connect it to the rest of the circuit. Such contacts are typically made of metals,
metal silicides, or heavily doped polycrystalline semiconductors; as a consequence,
two more junctions are present: the first one is between the contact and the p-doped
semiconductor, the other one between the contact and the n-doped semiconductor.
It is implied that the contacts are made of the same material; if it is not so, more
junctions must be considered as shown below.

Fig. 21.1 Schematic
example of a one-dimensional
p-n junction

p−type semiconductor

n−type semiconductor

metallurgical  junction

x0

1The metallurgical junction is often indicated with the same term used for the whole device,
namely, p-n junction or simply junction.
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21.2.1 Built-In Potential

A qualitative description of the device in the equilibrium condition starts from the
assumption that the extension of the p-doped and n-doped regions along the x axis
is large, so that, far away from the junction, the semiconductor can be considered
as uniformly doped of the p or n type, respectively. This fixes the boundary
conditions for the electron and hole concentrations:2 in fact, remembering that in the
nondegeneracy and complete-ionization conditions the equilibrium concentrations
in a uniform semiconductor are given by (18.42) for the p type and by (18.30) for
the n type, one finds

pp0 D p.�1/ ' NA ; np0 D n.�1/ '
n2i
NA

; (21.1)

nn0 D n.C1/ ' ND ; pn0 D p.C1/ '
n2i
ND

: (21.2)

The above concentrations are also called asymptotic concentrations; the last approx-
imations are derived from the assumption NA;ND � ni which, as outlined in
Sect. 18.4.1, has a vast range of validity. The distance between the conduction-band
edge and the Fermi level is found from n D NC expŒ�.EC � EF/=.kB T/� (compare
with (18.28)); combining with (21.1) and (21.2) yields

n2i
NA
' NC exp

�
�

EC.�1/ � EF

kB T

�
; ND ' NC exp

�
�

EC.C1/ � EF

kB T

�
;

(21.3)
whence

EC.�1/ � EC.C1/ D kB T log

�
NA ND

n2i

�
: (21.4)

An identical expression is found for EV.�1/ � EV.C1/. These findings show
that EC, EV are functions of position; their explicit form is determined below.
Alternatively, one may use (18.60) and (18.61), to find

 0 D
kB T

q
log

�
NA ND

n2i

�
;  0 D '.C1/ � '.�1/ ; (21.5)

where  0 is called built-in potential.3 One notes that so far the values of the
constants n.0/, p.0/ in (18.60) and (18.61) have been left unspecified; remembering

2The use of asymptotic conditions is not applicable to shallow junctions like, e.g., those used for
the fabrication of solar cells. In this case, the theory is slightly more involved (Sect. 21.7).
3The same quantity is also called barrier potential and is sometimes indicated with  B.
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that n.0/ is the value of n in the position(s) where ' D 0, and the same for p.0/, the
numerical values sought are determined by specifying the zero point of '. Here such
a point is fixed by letting '.C1/ D 0 whence, using (21.3) and (21.4), one finds

p.0/ D p.C1/ D pn0 ; n.0/ D n.C1/ D nn0 : (21.6)

The expressions of the carrier concentrations in terms of the band energies EC,
EV must be coherent with those expressed in terms of '. In fact, the relation
between EC.x/ and '.x/ is found by combining n D n.0/ expŒq'=.kB T/� with
n D NC expŒ.EF � EC/=.kB T/� and using n.0/ D NC expfŒEF � EC.C1/�=.kB T/g;
a similar procedure is applied to EV , to eventually find

EC.x/ D EC.C1/ � q'.x/ ; EV.x/ D EV.C1/ � q'.x/ : (21.7)

Letting N.x/ D �NA for x < 0 and N.x/ D CND for x > 0, the electric potential is
found by solving the Poisson equation

d2'

dx2
D

q

"sc

�
nn0 exp

�
q'

kB T

�
� pn0 exp

�
�q'

kB T

�
� N.x/

�
(21.8)

with boundary conditions '.�1/ D � 0 and '.C1/ D 0. One notes that within
each half domain the charge density in (21.8) has the form � D �.'/, which
makes the theory of Sect. 19.5.8 applicable. Therefore, it is convenient to separately
solve (21.8) in each half space, and apply suitable matching conditions at x D 0

afterwards. When the regional-solution method is used, the boundary conditions
'.�1/ D � 0 and '.C1/ D 0 apply separately in each half domain, as shown
below.

In the n-doped region the charge density reads � D q .p � nC ND/; when x !
C1 the latter becomes 0 D pn0 � nn0 C ND: in fact, as at large distances from
the origin the material behaves like a uniformly doped semiconductor, local charge
neutrality is fulfilled at infinity. Using the dimensionless potential u D q'=.kB T/
and indicating the derivatives with primes give the equation the form

u00 D
1

L2D
AD.u/ ; AD D exp.u/ � 1C

pn0

nn0
Œ1 � exp.�u/� ; L2D D

"sc kB T

q2 nn0
;

(21.9)

with LD the Debye length for the electrons. The normalized charge density AD

vanishes for u D 0, and is positive (negative) when u is positive (negative). Note
that, by letting x ! C1 in n D ni expŒ.' � 'F/=.kB T/�, p D ni expŒ.'F �

'/=.kB T/�, and using the normalized Fermi potential uF D q'F=.kB T/, one
finds pn0=nn0 D .ni=ND/

2 D exp.2 uF/, where uF < 0 on account of the
fact that here an n-doped region is considered. Following the method illustrated
in Sect. 19.5.8 transforms the left-hand side of the first equation in (21.9) into
u00 u0 D .1=2/ Œ.u0/2�0. This term is then integrated from x D 0 to x D C1; the
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result is simplified by observing that the region far from the junction is substantially
uniform, whence the electric potential is constant there. As u0 is proportional to the
electric field, it follows that u0.C1/ D 0; in conclusion, the integration of (21.9)
from x � 0 toC1 yields

�
u0
	2
D

2

L2D
BD.u/ ; BD D exp.u/ � 1 � uC

n2i
N2

D

ŒuC exp.�u/ � 1� : (21.10)

It is easily found that BD is nonnegative; in fact, from (21.10) one derives BD D 0

for u D 0, and at the same time dBD=du D AD.u/ is positive for u > 0, negative
for u < 0; as a consequence, BD grows from zero in either direction when u departs
from the origin. Letting F2D D BD one finds ju0j D

p
2FD=LD; as the condition

u D 0 holds only asymptotically, the modulus of u0 always grows as u departs
from the origin, showing that u is monotonic. Considering that u must fulfill the
other boundary condition u.�1/ D �q 0=.kB T/ < 0, one concludes that u is a
monotonically growing function, whence, choosing the positive sign and separating
the variables, one finds

du

FD.u/
D

p
2

LD
dx (21.11)

for x � 0. The above must be tackled numerically because it has no analytical
solution.4 To integrate (21.11) one needs the value of the potential in the origin,
u.x D 0C/; for the time being the latter is not known, and must be calculated
from the matching conditions as shown below. Such a calculation provides also
the derivative in the origin, u0.x D 0C/ D

p
2FDŒu.x D 0C/�=LD.

The solution for x < 0 follows the same pattern, where the asymptotic neutrality
condition reads nn0 exp.�	0/ � pn0 exp.	0/ C NA D 0, with 	0 D q 0=.kB T/.
Letting v D u C 	0, np0=pp0 D .ni=NA/

2 D exp.�2 uF/ � 1, and using (21.5)
provide

v00 D
1

L2A
AA.v/ ; AA D

n2i
N2

A

Œexp.v/ � 1�C 1 � exp.�v/ ; L2A D
"sc kB T

q2 pp0
;

(21.12)

where LA is the Debye length for the holes. Like in the n-doped region, the
normalized charge density AA vanishes for u D 0 and is positive (negative) when
u is positive (negative). Also in this case, one transforms the normalized Poisson
equation (21.12) into v00 v0 D .1=2/ Œ.v0/2�0; integrating the latter from x D �1,
where v.�1/ D u.�1/C 	0 D 0, to x � 0 and letting v0.�1/ D 0 yield

4The numerical procedure is outlined in the note of Sect. 22.2.1.
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�
v0
	2
D

2

L2A
BA.v/ ; BA D

n2i
N2

A

Œexp.v/ � 1 � v�C v C exp.�v/ � 1 : (21.13)

Following the same reasoning as for BD, one shows that BA is nonnegative, so u is a
monotonically growing function also for x < 0. Letting F2A D BA and choosing the
positive sign when separating the variables, one finally finds

dv

FA.v/
D

p
2

LA
dx (21.14)

for x � 0. From (21.13) one also obtains v0.x D 0�/ D u0.x D 0�/ D
p
2FAŒv.x D

0�/�=LA. On the other hand, as the electric potential and field are continuous, it is
u0.x D 0�/ D u0.x D 0C/ D u0.x D 0/ and u.x D 0�/ D u.x D 0C/ D u.x D 0/;
equating the derivatives and using the continuity of the potential yield the matching
condition

1

LA
FAŒu.x D 0/C 	0� D

1

LD
FDŒu.x D 0/� ; (21.15)

namely, a transcendental equation in the unknown u.x D 0/. Once found, u.x D 0/
is used as integration limit in (21.11) and (21.14).

21.2.2 Space-Charge and Quasi-Neutral Regions

The form of the electric potential ' is shown in Fig. 21.2 for a p-n junction at
equilibrium with NA D 1016 cm�3, ND D 1015 cm�3. The form of the bands is
shown in Fig. 21.3 for the same device. It is interesting to note that the device
can be thought of as made of three regions: in the intermediate region, whose
boundaries are marked by dashed vertical lines in Fig. 21.2, the electric potential
has a non-negligible curvature, thus showing that the charge density is large. The
region is called space-charge region and contains the metallurgical junction, marked
by the continuous vertical line. In the two regions on the sides of the space-charge
region, the electric potential is nearly constant,5 whence the electric field �d'=dx
is negligibly small. As a consequence, the charge density � D �"sc d2'=dx2 is
negligible as well; for this reason, the two regions under consideration are called
quasi-neutral regions.6

5The electric potential cannot be exactly constant, because the solution of (21.8) is an analytical
function; as a consequence, if ' was constant in a finite interval, it would be constant everywhere.
6The inverse reasoning would not be correct: in fact, � D 0 may yield d'=dx D const ¤ 0, which
makes ' a linear function of x; deducing ' D const from � D 0 is correct only if the additional
condition of spatial uniformity holds.
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Fig. 21.2 Solution of the one-dimensional Poisson equation (21.8) in an abrupt p-n junction at
equilibrium, with NA D 1016 cm�3, ND D 1015 cm�3. The continuous vertical line marks the
position of the metallurgical junction, the dashed vertical lines mark the edges of the space-charge
region
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Fig. 21.3 Form of the bands for the same device as in Fig. 21.2

The transition from the space-charge region and one or the other quasi-neutral
region is sharp. Thanks to this, it is possible to identify the width l of the space-
charge region and correlate it with other parameters of the device; such a correlation
is worked out in Sect. 21.4 in a specific operating regime. For convenience, the width
of the space-charge region is expressed as l D lpCln, where lp is the extension of the
space-charge region on the p side of the metallurgical junction, and ln the analogue
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Fig. 21.4 Electron and hole concentrations in a one-dimensional, abrupt p-n junction at equilib-
rium, with NA D 1016 cm�3, ND D 1015 cm�3. The figure is drawn in a logarithmic scale. The
continuous vertical line marks the position of the metallurgical junction, the dashed vertical lines
mark the edges of the space-charge region

on the n side. As shown in Fig. 21.2, it is ln > lp; as explained in Sect. 21.4, this is
due to the global charge neutrality and to the fact that ND < NA.

If the equilibrium carrier concentrations corresponding to the electric potential
of Fig. 21.2 are drawn in a logarithmic scale, the curves look similar to that of
Fig. 21.2, apart from scaling factors and from the inversion due to the negative
sign in p D pn0 expŒ�q'=.kB T/�. This is shown in Fig. 21.4. A more realistic
representation, shown in Fig. 21.5, uses a linear scale. The hole concentration
p ranges from pp0 ' NA D 1016 cm�3 in the p-type quasi-neutral region to
pn0 ' n2i =ND D 10

5 cm�3 in the n-type quasi-neutral region; similarly, the electron
concentration n ranges from np0 ' n2i =NA D 104 cm�3 in the p-type quasi-neutral
region to nn0 ' ND D 10

15 cm�3 in the n-type quasi-neutral region. This shows that
the two concentrations vary by several orders of magnitude over the space-charge
region, whose length is about 1 �m; for this reason, if these gradients existed alone,
they would make holes (electrons) to diffuse in the positive (negative) direction of
the x axis. Such diffusions in fact do not occur, because in the equilibrium condition
they are balanced by the electric field. The latter is negative: in fact, the electric
potential increases with x, so that the force associated with the electric field E is
negative (positive) for holes (electrons); the equations for the current densities of
the semiconductor device model in (19.129) and (19.130) yield in this case

� q�p p E D �q Dp
dp

dx
> 0 ; �q�n n E D Cq Dn

dn

dx
> 0 ; (21.16)

whence Jp D Jn D 0. The description of the p-n junction in the equilibrium
condition is completed by adding the contacts; as indicated above, this amounts to
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Fig. 21.5 The same concentrations as in Fig. 21.4, drawn in a linear scale

introducing two more junctions. The contacts are made of materials different from
the semiconductor of which the p-n junction is made, hence the atomic structure of
the contact’s material must adapt to that of the semiconductor when the contact is
deposited on it; for this reason, the structure of the contact-semiconductor junction
must be described on a case-by-case basis. From the qualitative standpoint, one
can use the analogy with the p-n junction to deduce the existence of a built-in
potential ˚mp between the contact and the p-type semiconductor, and of another
built-in potential ˚mn between the contact and the n-type semiconductor. The built-
in potentials are influenced by the dopant concentration of the semiconductor,
namely, ˚mp D ˚mp.NA/ and ˚mn D ˚mn.ND/. Assume that the contacts are made
of the same material; if they are short-circuited, a closed loop is formed where, from
Kirchhoff’s voltage law, the built-in potentials fulfill the relation

 0 C ˚mn � ˚mp D 0 : (21.17)

This situation is schematically illustrated in Fig. 21.6, where it is assumed that the
material of the contacts is the same.7 In the figure, the built-in potentials at the
contacts are represented by discontinuities; in the practical cases, in fact, to prevent
the contact-semiconductor junction from behaving like a rectifying device, a heavy
dose of dopant is preliminarily introduced into the semiconductor region onto which
the contact is to be deposited. For this reason, the spatial extension where ˚mp

or ˚mn occurs is negligibly small with respect to the typical scale length of the
device. Regardless of this, another important outcome of the fabrication process
mentioned above is that the concentration of carriers available in the materials
forming a contact is very large; for this reason, as mentioned in Sect. 19.5.6, a

7If it is not so, one must add to the left-hand side of (21.17) the barrier between the two materials.
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Fig. 21.6 Electric potential for the same device as in Fig. 21.2, including the built-in potentials of
the contacts

contact is able to supply the amount of charge necessary to keep the equilibrium
and charge-neutrality conditions in the semiconductor layer adjacent to it. This also
implies that within some limits to be specified later, in a nonequilibrium condition
the built-in potential is practically the same as in equilibrium. In circuit theory, a
contact whose built-in potential is independent of the current that crosses it is called
ideal Ohmic contact; this condition is equivalent to that of a vanishing differential
resistivity of the contact.

21.3 Shockley Theory of the P-N Junction

The analytical derivation of the current-voltage characteristic of the p-n junction is
based on the hypothesis that the device is not too far from equilibrium, so that the
weak-injection condition (20.35) is fulfilled in the quasi-neutral regions. Within this
limit, the approximation that the contacts are ideal is acceptable. A nonequilibrium
condition is obtained by applying, e.g., a bias voltage V between the contacts; if V
is such that the electric potential at the contact of the p region is higher than that of
the n region, the condition is called forward bias; when it is lower, the condition is
called reverse bias. Figure 21.7 shows the symbol of the p-n junction used in circuit
theory, along with the standard references for the applied voltage V and current I.
In a one-dimensional case the current is given by I D Ae J, with Ae the device
cross-sectional area and J the total current density.

Numerical solutions of the semiconductor-device model show that in the weak-
injection condition the partitioning of the device into space-charge and quasi-neutral
regions still holds; this implies that when a bias voltage is applied between the
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Fig. 21.8 Electric potential '
in a p-n junction in
forward-biased (V > 0,
thick-red lines) and
equilibrium (thin-blue lines)
conditions. When V > 0, the
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drawing is not in the same
scale as that of Fig. 21.6
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contacts, such a voltage adds algebraically to the built-in potential. In fact, the
discontinuities at the contacts are the same as in the equilibrium condition due
to the contacts’ ideality, and the electric potential in the quasi-neutral regions is
nearly constant; the extension of the space-charge region, instead, changes due to
the application of the external voltage, lp D lp.V/, ln D ln.V/. When a forward
bias is applied, lp and ln slightly decrease, as qualitatively shown in Fig. 21.8; the
drawing is not in the same scale as Fig. 21.6 and is meant only to show the change
in l. The same applies to Fig. 21.9 that refers to the reverse bias and shows that in
this case lp and ln increase. Using (21.17), the application of Kirchhoff’s voltage
law to either case yields, for the voltage drop  across the space-charge region, the
expression

 C ˚mn C V � ˚mp D 0 ;  C V �  0 D 0 : (21.18)

In reverse bias (V < 0) it is always  >  0 > 0; in forward bias (V > 0)
a sufficiently large value of V in (21.18) could make  to become negative.
However, when V becomes large the weak-injection condition does not hold any
more, and (21.18) does not apply; in conclusion, the range of forward biases to be
considered here is such that the condition  0 >  > 0 is always fulfilled.

When a forward bias is applied, due to  <  0 the electric field within the
space-charge region decreases with respect to the equilibrium case;8 thus, the drift
term in the drift-diffusion equations of (19.129) and (19.130) becomes weaker.
The diffusion term, in contrast, becomes slightly stronger, because the values of
the electron concentrations in the quasi-neutral regions are fixed by the asymptotic
conditions, and the width of the space-charge region slightly decreases with respect

8The width of the space-charge region decreases as well (Fig. 21.8); such a decrease, however, is
small and does not compensate for the decrease in the potential drop.
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Fig. 21.9 Electric potential '
in a p-n junction in
reverse-biased (V < 0,
thick-red lines) and
equilibrium (thin-blue lines)
conditions. When V < 0, the
extension l of the
space-charge region is larger
than in equilibrium. The
drawing is not in the same
scale as that of Fig. 21.6
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to the equilibrium case. In conclusion, the diffusion term prevails and the current-
density equations yield

� q Dp
dp

dx
> �q�p p E > 0 ; q Dn

dn

dx
> �q�n n E > 0 ; (21.19)

so that Jp � i D q p vp > 0 and Jn � i D �q n vn > 0. The total current density
.Jp C Jn/ � i is positive as well.

When a reverse bias is applied, due to  >  0 the voltage drop across the
space-charge region increases with respect to the equilibrium case. The region’s
width increases as well; however, the increase in l is relatively weak, whence the
electric field within the space-charge region increases and the drift term in the drift-
diffusion equations of (19.129) and (19.130) becomes stronger. The diffusion term,
in contrast, becomes weaker, because the values of the electron concentrations in
the quasi-neutral regions are fixed by the asymptotic conditions. In conclusion, the
drift term prevails and the current-density equations yield

� q�p p E > �q Dp
dp

dx
> 0 ; �q�n n E > q Dn

dn

dx
> 0 ; (21.20)

so that Jp � i D q p vp < 0, Jn � i D �q n vn < 0. The total current density is negative
as well.

The I.V/ relation of the p-n junction is worked out here in the one-dimensional
and steady-state case, thus leading to the Shockley equations [121, 122]. The steady-
state form divJ D 0 of the continuity equation (4.23) reduces in one dimension to
dJ=dx D 0, whence

J D Jp.x/C Jn.x/ D const : (21.21)

The hole and electron current densities depend on position and fulfill the steady-
state continuity equations of (19.129) and (19.130); in the latter, only the net thermal
recombination term is considered to find
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dJp

dx
D �q USRH ;

dJn

dx
D q USRH : (21.22)

Once Jp, Jn are determined from (21.22), they are specified at a suitable position and
added up. As shown below, such positions are the boundaries �lp and ln between
the space-charge and quasi-neutral regions, for instance, J D Jp.�lp/ C Jn.�lp/.
Observing that�lp is the boundary of the p-type region, Jp.�lp/ is a majority-carrier
current density, whereas Jn.�lp/ is a minority-carrier current density. The opposite
happens if the other boundary is chosen, to yield J D Jp.ln/ C Jn.ln/. To proceed,
it is convenient to seek for an expression of J where both current densities refer
to minority carriers; this is achieved by integrating (21.22) over the space-charge
region to define the recombination current density

JU D

Z ln

�lp

q USRH dx D Jp.�lp/ � Jp.ln/ D Jn.ln/ � Jn.�lp/ : (21.23)

Combining (21.23) with the expression of the total current density at, e.g., ln
provides

J D Jp.ln/C Jn.ln/ D Jp.ln/C Jn.�lp/C JU ; (21.24)

which has the desired form.

21.3.1 Derivation of the I.V/ Characteristic

Remembering the simplified form (20.38) or (20.40) of the net thermal-recombin-
ation term in the weak-injection condition, and using peq D pn0 in the n-type region
and neq D np0 in the p-type region, transforms (21.22) into, respectively,

dJp

dx
D �q

p � pn0

�p
; x > ln ; (21.25)

dJn

dx
D q

n � np0

�n
; x < �lp : (21.26)

In this way, the hole- and electron-continuity equations are decoupled from
each other; also, they are to be solved over disjoint intervals. To the current-
continuity equations one associates the corresponding drift-diffusion equation taken
from (19.129) or (19.130); it follows that in each quasi-neutral region the drift-
diffusion equation is that of the minority carriers. It can be shown that in a
quasi-neutral region, when the weak-injection condition holds, the diffusion term
of the minority carriers dominates over the drift term (the details are worked out in
Sect. 21.9.1). Thus, for x < �lp (p-type region), Jn D q�n n E C q Dn dn=dx '
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q Dn dn=dx. Inserting the latter into (21.26) yields Dn d2n=dx2 D .n � np0/=�n.
In this derivation the diffusion coefficient Dn D kB T �n=q is not subjected to
the derivative; in fact, the two parameters that influence bulk mobility, T and NA

(Sect. 20.5), are independent of position. The equation then reads,

d2.n � np0/

dx2
D

n � np0

Ln
; Ln D

p
�n Dn ; (21.27)

with Ln the diffusion length of the minority carriers in the p-type region. It is a
second-order, linear equation in the unknown n; it is decoupled from the rest of the
semiconductor-device model: in fact, the simplified form of the net-recombination
term contains only the electron concentration, and the neglect of the drift term
eliminates the coupling with the Poisson equation. The boundary conditions must
be fixed at x ! �1 and x D �lp; the former is n.�1/ D np0, whereas the
latter needs a more elaborate derivation, given in Sect. 21.9.2, whose outcome (also
called Shockley’s boundary condition) is n.�lp/ D np0 expŒq V=.kB T/�. The general
solution of (21.27) is

n D np0 C An exp.x=Ln/C Bn exp.�x=Ln/ ; (21.28)

whence the asymptotic boundary condition yields Bn D 0. The other boundary
condition provides n.�lp/ D np0 C A�n , with A�n D An exp.�lp=Ln/. The electron
current density is then found from

Jn D q Dn
dn

dx
D q

Dn

Ln
An exp.x=Ln/ D Jn.�lp/ expŒ.xC lp/=Ln� ; (21.29)

where, using n.�lp/ D np0 C A�n and the boundary condition at x D �lp,

Jn.�lp/ D
q Dn A�n

Ln
D

q Dn np0

Ln
F ; F.V/ D exp Œq V=.kB T/� � 1 : (21.30)

In the same manner one finds

Jp.ln/ D
q Dp pn0

Lp
F ; Lp D

p
�p Dp ; (21.31)

where F is the same as in (21.30), and Lp is the diffusion length of the minority
carriers in the n-type region. Inserting (21.30) and (21.31) into (21.24) yields the
total current density,

J D Jp.ln/C Jn.�lp/C JU D q

�
Dp pn0

Lp
C

Dn np0

Ln

�
F C JU : (21.32)
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Multiplying (21.32) by the cross-sectional area Ae and defining the saturation
current density

Js D q

�
Dp pn0

Lp
C

Dn np0

Ln

�
D q n2i

 p
Dp=�p

ND
C

p
Dn=�n

NA

!

; (21.33)

yield the expression of the I.V/ characteristic of the p-n junction:

I D Is

�
exp

�
q V

kB T

�
� 1

�
C IU ; Is D Ae Js ; IU D Ae JU : (21.34)

The characteristic fulfills the equilibrium condition I.0/ D 0; in fact, at equilibrium
it is USRH D 0. When q V=kB T � 1, the exponential term in (21.34) prevails over
the other terms and the characteristic becomes I ' Is exp ŒqV=.kB T/�, namely, the
well-known exponential form of the forward-bias case. Finally, when q V=kB T �
�1, the current becomes I ' �Is C IU . As the order of magnitude of Is may be
similar to that of IU , it is necessary to calculate the latter explicitly. The analysis
is made easier by the observation that the electric field (which in the reverse-bias
condition prevails over diffusion) drains the holes from the space-charge region to
the p-type quasi-neutral region; similarly, the electrons of the space-charge region
are drained towards the n-type quasi-neutral region. As a consequence, the carrier
concentrations in the space-charge region are negligible, and the full-depletion
condition (20.34) applies there; using the nondegenerate expression one finds, for
the reverse-bias current,

I ' �Is C IU ' �Is C Ae

Z ln

�lp

q
�ni

�g
dx D �Is � q Ae

ni

�g
l.V/ < 0 ; (21.35)

where the expression (21.23) of the recombination current density has been used,
and l D l.V/ is the width of the space-charge region. As shown in Sect. 21.4, in
the reverse-bias condition and for an abrupt junction it is l /

p
 0 C jVj; as a

consequence, jIUj increases with jVj.
The approximations that have been introduced to derive the I.V/ characteristic

are many; in fact, (21.34) is referred to as the ideal characteristic. However, it
captures quite well the general behavior of the device as long as the applied voltage
is within the limit of the weak-injection approximation. When the forward bias
exceeds such a limit, the drift term is not negligible anymore and the effect of
the electric field in the quasi-neutral regions must be accounted for. Considering in
turn the reverse-bias condition, at large values of jVj the electric field in the space-
charge region becomes sufficiently strong to induce impact ionization (Sect. 20.3)
and, possibly, the junction breakdown due to avalanche (Sect. 21.5).

The dependence of the I.V/ characteristic on temperature is due, besides that
of q V=.kB T/, to the coefficients of Js and JU . To this purpose, the second
form of (21.33) is more useful because it shows explicitly the term n2i , whose
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temperature dependence is exponential (18.14); in fact, the temperature dependence
of Dp=�p, Dn=�n is much weaker. The same considerations apply to JU , whose main
dependence on temperature is due to factor ni. The dependence on ni of the reverse
current (at constant temperature) has been used in the considerations about the
parasitic currents in integrated circuits made in Sect. 18.7.

21.4 Depletion Capacitance of the Abrupt P-N Junction

It has been anticipated in Sect. 21.3.1 that when a reverse bias is applied to
the junction, the full-depletion condition holds in the space-charge region; as a
consequence, the charge density � in the latter is essentially due to the dopant atoms.
In the abrupt junction considered here, the dopants’ concentration is piecewise
constant; a simplified description of the charge density in the situation in hand
is obtained from the abrupt space-charge edge (ASCE) approximation, which
describes � with the form sketched in Fig. 21.10. In other terms, the approximation
consists in replacing with a discontinuity the smooth change of � at x D �lp, x D 0,
and x D ln; thus, the space charge is given by

� D �q NA ; �lp < x < 0 ; (21.36)

� D q ND ; 0 < x < ln ; (21.37)

and � D 0 elsewhere. The electric field and the electric potential are continuous
because there are no charge layers or double layers; letting E0 D E.0/, from
dE=dx D �="sc and (21.36), (21.37) one draws

E0 � E.�lp/

lp
D �

q NA

"sc
;

E.ln/ � E0
ln

D
q ND

"sc
; (21.38)

Fig. 21.10 Charge density in
a reverse-biased p-n junction
using the ASCE
approximation, in arbitrary
units. The ratio NA=ND is the
same as in Fig. 21.6

Dq N

− q NA

ln0 x

ρ

− lp
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Fig. 21.11 Electric field
consistent with the charge
density of Fig. 21.10, in
arbitrary units

ln

E0

x

ρ

0
− lp

the first of which holds for �lp � x � 0, the second one for 0 � x � ln. In the
quasi-neutral regions the field is negligible; in the order of approximation used here
one lets E D 0 in such regions, whence E.�lp/ D E.ln/ D 0 and, from (21.38),

E0 D �
q ND

"sc
ln D �

q NA

"sc
lp < 0 ; ND ln D NA lp : (21.39)

In conclusion, the electric field is a piecewise-linear function whose form is shown
in Fig. 21.11. Due to d'=dx D �E, the integral of �E over the space-charge region
equals the potential drop  :

 D '.ln/ � '.�lp/ D �
Z Cln

�lp

E dx D �
1

2
E0 .ln C lp/ : (21.40)

Inserting into (21.40) one or the other form of E0 from (21.39), one obtains two
equivalent expressions for lp C ln:

ln C lp D ln C
ND

NA
ln D ND ln

�
1

ND
C

1

NA

�
D NA lp

�
1

ND
C

1

NA

�
: (21.41)

Then, combining (21.41) with (21.40) one finds

 D
q

2 "sc

�
1

ND
C

1

NA

�
.NDln/

2 D
q

2 "sc

�
1

ND
C

1

NA

� �
NAlp

	2
; (21.42)

whence

ln D
1

ND

�
2 "sc  =q

1=ND C 1=NA

�1=2
; lp D

1

NA

�
2 "sc  =q

1=ND C 1=NA

�1=2
; (21.43)
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and

l D ln C lp D

�
2 "sc

q

�
1

ND
C

1

NA

�
 

�1=2
;  D  0 � V : (21.44)

Multiplying by q Ae both sides of the second relation in (21.39) yields q ND Ae ln D
q NA Ae lp, that represents the global charge conservation in the device. Such a
conservation is implied by the assumption that E D 0 in the quasi-neutral regions,
as is found by integrating divD D � over the space-charge region. In the charge-
conservation relation the widths lp, ln depend on V through (21.43); it follows that
in the reverse-bias condition the device can be assimilated to a nonlinear capacitor
where the charge per unit area of the two oppositely charged sides is, respectively,
Qp D �q NA lp and Qn D q ND ln. The differential capacitance per unit area
is defined as C D dQp=dV D �dQn=dV; from the definition,9 two equivalent
expressions follow,

C D �q NA
dlp
dV
D q

d.NA lp/

d 
; C D �q ND

dln
dV
D q

d.ND ln/

d 
: (21.45)

Using (21.43), the differential capacitance per unit area of the abrupt p-n junction is
found to be

C D

�
q "sc=.2 /

1=ND C 1=NA

�1=2
D
Œ.q "sc=2/=.1=ND C 1=NA/�

1=2

Œ 0 .1 � V= 0/�1=2
; (21.46)

which is given the more compact form10

C D C0

�
1 �

V

 0

��1=2
; C0 D C.V D 0/ D

�
q "sc=.2 0/

1=ND C 1=NA

�1=2
:

(21.47)

Combining (21.47) with (21.44) one derives the interesting relation

1

C2
D

2

q "sc

�
1

ND
C

1

NA

�
 D

l2

"2sc

; C D
"sc

l
; (21.48)

namely, the standard expression for the capacitance per unit area of the parallel-
plate capacitor. Such an expression is not limited to the case where the dopant

9Definition C D dQp=dV is coherent with the choice of the reference in Fig. 21.7. The units of C
are ŒC� D F cm�2. Compare with the calculation of the MOS capacitance in Sect. 22.3.
10It is worth reminding that the result holds only in the reverse-bias condition. In the forward-
bias condition the injection of carriers from the quasi-neutral regions into the space-charge region
prevents one from neglecting the contribution of the carrier concentrations to the charge density
and makes the use of (21.47) erroneous.
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concentration is piecewise constant; as shown in Sect. 21.9.3, it applies in fact to
all cases.

From the standpoint of circuit design, the capacitance associated with a p-n
junction is a parasitic effect that hampers the circuit’s speed. However, the effect
is also exploited to manufacture voltage-controlled capacitors, called variable
capacitors or varactors. In these devices, that are operated in reverse bias, the
geometry is designed to maximize the capacitance; they are used, e.g., in voltage-
controlled oscillators, parametric amplifiers, and frequency modulation.11 The bias
range of these devices is such that the reverse current is negligibly small; if the
modulus of the reverse bias is made to increase and is eventually brought outside
this range, carrier multiplication due to impact ionization (Sect. 20.3) takes place;
this, as shown in Sect. 21.5, leads to a strong increase of the reverse current.

21.5 Avalanche Due to Impact Ionization

The situation where impact ionization dominates over the other generation-recomb-
ination mechanisms has been illustrated in Sect. 20.3.1, showing that in the steady-
state case the continuity equations for electrons and holes reduce to (20.59). Such
equations are applicable, for instance, to the space-charge region of a reverse-biased
p-n junction; when the value of jVj becomes large, the increase in the number of
carriers due to impact ionization may give rise to an avalanche phenomenon that
eventually leads to the junction’s avalanche breakdown, namely, a strong increase
in the current due to carrier multiplication.12 The absolute value VB of the voltage at
which the phenomenon occurs is called breakdown voltage. To illustrate avalanche,
the one-dimensional case is considered, so that (20.59) become

dJn

dx
D kn Jn C kp Jp ;

dJp

dx
D �kn Jn � kp Jp ; (21.49)

where the impact-ionization coefficients kn, kp depend on x through the electric
field E and are determined experimentally.13 To ease the notation the boundaries
of the space-charge region are indicated with a, b; also, considering the reference’s
orientation (Fig. 21.7), it is E; Jn; Jp < 0, where the electric field is significant

11Varactors are also manufactured using technologies other than the bipolar one; e.g., with MOS
capacitors or metal-semiconductor junctions.
12If the breakdown is accompanied by current crowding, the junction may be destroyed due to
excessive heating. Special p-n junctions, called avalanche diodes, are designed to have breakdown
uniformly spread over the surface of the metallurgical junction, to avoid current crowding. Such
devices are able to indefinitely sustain the breakdown condition; they are used as voltage reference
and for protecting electronic circuits against excessively high voltages.
13An example of model for kn, kp is that proposed by Chynoweth [23]: kn D kns exp.�jEcn=Ejˇn /,
kp D kps exp.�jEcp=Ejˇp /, where the parameters depend on temperature [105, 138].
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only for a � x � b. As in the one-dimensional and steady-state case it is
J D Jn.x/C Jp.x/ D const, eliminating Jp from the first equation in (21.49) yields

dJn

dx
D kn Jn C kp .J � Jn/ D .kn � kp/ Jn C kp J ; (21.50)

namely, a first-order equation in Jn containing the yet undetermined parameter J.
The equation is recast as

dJn

dx
�

dm

dx
Jn D kp J D kn J �

dm

dx
J ; m D

Z x

a
.kn � kp/ dx0 (21.51)

where m.a/ D 0, dm=dx D kn � kp. Multiplying by the integrating factor exp.�m/
and dividing by J transform (21.51) into

1

J

d

dx
ŒJn exp.�m/� D kn exp.�m/ �

dm

dx
exp.�m/ ; (21.52)

where �.dm=dx/ exp.�m/ D d exp.�m/=dx. Integrating (21.52) from a to b and
using m.a/ D 0 yield

Jn.b/

J
expŒ�m.b/� �

Jn.a/

J
D Yn C expŒ�m.b/� � 1 ; (21.53)

where the electron-ionization integral is defined as

Yn D

Z b

a
kn exp.�m/ dx : (21.54)

The above result is somewhat simplified by observing that due to impact ionization,
the concentration of electrons in the conduction band increases from a to b, whereas
that of holes increases from b to a; the concept is rendered in Fig. 21.12: consider a
portion x1 < x < x2 of the space-charge region, where it is assumed for simplicity
that the electric potential is linear. As the electric field is oriented toward the left,
electrons (indicated by the black dots) are accelerated toward the right end of the
space-charge region, holes (the white dots) are accelerated toward the left end.
The vertical lines indicate the exchange of energies involved in impact-ionization
events initiated by electrons or holes. An electron transited from the valence to
the conduction band is accelerated by the field and may acquire a kinetic energy
sufficient for initiating an impact-ionization event itself; the same applies to holes.
As a consequence, the number of conduction-band electrons is multiplied from
left to right, namely, the number of those exiting at x2 is larger than the number
entering at x1; similarly, the number of valence-band holes is multiplied from right
to left. Due to the multiplication mechanism, taking x D b by way of example, the
major contribution to J D Jn.b/C Jp.b/ is given by Jn.b/. Then, letting J ' Jn.b/
in (21.53) and canceling out some terms provide
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Fig. 21.12 Schematic
description of the avalanche
phenomenon. The details are
given in the text
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D Yn ; Mn D

Jn.b/

Jn.a/
� 1 ; (21.55)

where Mn is the electron-multiplication factor. The latter is a measure of the impact
ionization’s level. As long as Yn < 1, corresponding to a finite value of Mn, the
avalanche condition does not occur; when Yn ! 1, then Mn !1: in this case, the
injection of a negligibly small number of electrons at a produces a large electron
current density at b. The operating conditions where Mn is large must be avoided
because an excessive current may damage the device. Note that in the design stage
of the device one first calculates Yn from (21.54), then obtains Mn from (21.55).
Thus, it may well happen that Yn > 1, corresponding to Mn < 0; this outcome is not
physically sound and simply indicates that the parameters used in the calculation of
the ionization integral (21.54) are not consistent.14

The analysis of the impact-ionization condition can also be carried out starting
with the elimination of Jn from the second equation in (21.49). The equation
corresponding to (21.51) reads

dJp

dx
D �kp Jp � kn .J � Jp/ D

dm

dx
Jp � kn J I (21.56)

in turn, the equation corresponding to (21.53) is

Jp.b/

J
expŒ�m.b/� �

Jp.a/

J
D �

Yp

expŒm.b/�
C expŒ�m.b/� � 1 ; (21.57)

with the hole-ionization integral given by

Yp D

Z b

a
kp expŒm.b/ � m� dx : (21.58)

14This happens, for instance, if a value of jVj larger than the breakdown voltage is used in (21.54).
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Letting J ' Jp.a/ in (21.57) yields

1 �
1

Mp
D Yp ; Mp D

Jp.a/

Jp.b/
� 1 ; (21.59)

where Mp is the hole-multiplication factor. Using the definition (21.51) of m, the
relation between the ionization integrals is found to be

Yn D expŒ�m.b/�Yp C 1 � expŒ�m.b/� : (21.60)

The above shows that Yp D 1 corresponds to Yn D 1, namely, the avalanche
condition Yp D 1 for the holes coincides with that of the electrons, as should be.

21.6 Photodiode

The analysis of the p-n junction, depicted in Sects. 21.2 and 21.3, is readily
extended to incorporate the description of a radiation detector, the photodiode. More
specifically, the device described in this section is the depletion-layer photodiode,
that consists of a reverse-biased p-n junction subjected to an impinging radiation. In
the reverse-bias condition, the space-charge region is practically depleted from the
mobile carriers; it follows that in such a region the radiation-induced generations
prevail over the recombinations. The carriers thus generated modulate the device
current: in this way, as outlined in the discussion of Sect. 20.4, the impinging
radiation is exploited to provide an electric signal whose amplitude depends on the
number of absorbed photons. Typical applications aim at detecting visible light; in
this case the device is also termed optical sensor.15

In the description that follows, a one-dimensional, abrupt junction is considered,
whose structure is analyzed with the help of Fig. 21.13; in the latter, the impinging
photons are sketched by the wavy arrows, while the black dot indicates an electron
and the white dot a hole. The following considerations are also worth attention:
first, the approximation of considering the structure as one dimensional makes the
upper contact to cover the semiconductor area completely; in real devices, the
upper contact covers only a fraction of the sensor’s area and, moreover, the area
free from the contact is covered with an anti-reflection coating to minimize the
loss of photons;16 in the simplified structure considered here it is assumed that

15A reverse-biased p-n junction can also be used for detecting photons in a broader range of
frequencies than the visible one, including x-rays or �-rays, or high-energy particles, like electrons,
˛-particles, or neutrons. The mechanism is in all cases the creation of electron-hole pairs without
significantly altering the junction’s functioning.
16Anti-reflection coatings are structures made of the superposition of layers having different
refraction indices. The thicknesses of the layers are such that a destructive interference is produced
in the rays reflected at the interfaces, while a constructive interference is produced in the
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Fig. 21.13 Continuous mode
photodiode. The applied bias
V is negative and constant;
the resistor mimics the input
resistance of the circuit that
measures the photodiode’s
current xj
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the contact is partially transparent. Next, the radiation-induced generations occur in
both the space-charge and quasi-neutral regions.17 The electron-hole pairs generated
in the space-charge region are separated by the electric field and move in opposite
directions, as graphically sketched in Fig. 21.13. In contrast, the electrons and holes
generated in the quasi-neutral regions, where the electric field is small, have a
relatively high chance of recombining.18 It follows that most of the electron-hole
pairs generated within the quasi-neutral regions are useless as far as the functioning
of the photodiode is concerned. This disadvantage is particularly severe in the quasi-
neutral region close to the upper contact, which in the example of Fig. 21.13 is
the pC region: in fact, remembering from the analysis of Sect. 20.4 that the optical
generation decays exponentially along the propagation direction (x in this case), the
number of generated pairs is maximum near the upper contact. To limit the loss it
is then necessary to make the depth of the upper neutral region as small as possible,
namely, the junction’s width xj must be minimized (shallow junction). At the same
time, it is necessary to make the space-charge region’s depth as large as possible,
so that the majority of the pairs are generated in it; for this reason, the junction is
strongly asymmetric, specifically, the dopant concentration of the upper region is
much larger than that of the lower region. In the case considered here it is NA � ND

whence, remembering the second relation in (21.39), it follows lp � ln.

transmitted rays. The coating’s design is optimized in order to obtain maximum transmission in
a specific range of wavelengths and incidence angles.
17As shown in detail in Sect. 21.6.1, the photodiode is analyzed under the same hypotheses as those
used for the p-n junction, among which is the partitioning of the structure into space-charge and
quasi-neutral regions (Sect. 21.2.2).
18An exception is made for the pairs generated in the quasi-neutral regions near the edges of the
space-charge region. The pairs move due to diffusion; if they succeed in reaching the edge before
recombining, they are separated by the electric field and contribute to the radiation-generated
current.
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The minimization of xj brings about the problem, already noted in Sect. 21.2.1,
that the asymptotic boundary condition typical of the p-n junction’s theory does not
hold when the distance between the contact and the edge of the space-charge region
is too short; a slightly more involved theory must be applied, whose outcome is that
the expression of the saturation current density Js differs from that given by (21.33).
The derivation of the new expression is identical for the photodiode and the solar
cell, and will therefore be postponed to the analysis of the latter (Sect. 21.7). As
a final remark, in the derivation of the photodiode’s characteristic it is acceptable
to assume that the absorption events are uncorrelated from each other, so that one
can limit the analysis to a monochromatic radiation. The more general approach
in which one recovers the effect of the whole spectrum by adding up over the
frequencies is shown in Sect. 21.7.

21.6.1 Photodiode—Continuous Mode

The continuous mode of operation of the photodiode corresponds to the case
where the applied bias V < 0 is constant in time. Therefore, one uses the one-
dimensional, steady-state form of the continuity equations for the electrons and
holes. The analysis follows the same pattern as for the p-n junction (Sect. 21.3),
the difference being that in addition to thermal recombination, one must consider
optical generation as well. The continuity equations (21.22) then become

dJp

dx
D q GO � q USRH ;

dJn

dx
D �q GO C q USRH ; (21.61)

with GO given by (20.67). Using the recombination current density JU found
in (21.23), and defining the optical current density

JG D

Z ln

�lp

q GO dx ; (21.62)

one integrates over the space-charge region one of the equations in (21.61), say, the
first one, to find

Jp.ln/ � Jp.�lp/ D JG � JU : (21.63)

Combining (21.63) with the expression of the total current density at �lp, namely,
J D Jp.�lp/C Jn.�lp/, yields

J D Jp.ln/C Jn.�lp/C JU � JG ; (21.64)
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to be compared with (21.24). Like in Sect. 21.3, the rest of the calculation is based
upon the weak-injection approximation, which allows one to decouple the continuity
equations for the minority carriers in the quasi-neutral region and to assume that,
still in such regions, the diffusion term in the transport equation for the minority
carriers dominates over the drift term. Remembering that a reverse bias is applied
to the photodiode, the recombination current is given by the same expression as
in (21.35), namely, IU D �q Ae ni l=�g, with l D l.V/ the width of the space-charge
region and Ae the cross-sectional area of the device. In turn, the optical current
IG D Ae JG is found by inserting (20.67) into (21.62); assuming for simplicity that
the absorption coefficient k is independent of position, one finds

IG D Ae q �˚B k
Z ln

�lp

exp .�k x/ dx D Ae q �˚B exp.k lp/ Œ1 � exp.�k l/� ;

(21.65)
where k depends on the photons’ wavelength �. In (21.65), 0 < � < 1 is
the quantum efficiency (compare with (20.63)), and ˚B D ˚.x D 0C/ is the
photons’ flux density on the inside edge of the interface between the top contact
and the semiconductor. The expression of IG simplifies when specific materials or
applications are considered; taking for instance the case of silicon used for visible-
light detection, 1=k ranges monotonically between 1=k ' 0:25 �m at � D 0:4 �m
and 1=k ' 5 �m at � D 0:7 �m, with 1=k ' 1 �m at � D 0:5 �m [128, Sect. 12-4].
In turn, the order of magnitude of l can be determined with the aid of the expressions
shown in Sect. 21.9.4. From the analysis one finds that the dopant concentrations
and the applied voltage can be adapted to obtain k l � 1 and k lp � 1, so that
IG ' Ae q �˚B. This brings about the advantage that IG becomes independent of the
applied voltage.

The calculation of the term Jp.ln/C Jn.�lp/ in (21.64) follows the same pattern
as for the solar cell and is postponed to Sect. 21.7. It leads to a constant saturation
current whose expression, as anticipated above, differs from that given by (21.33)
due to a modified boundary condition. Indicating the saturation current with I0s and
introducing the other simplifications discussed above provide the expression

I ' �q Ae

�
�˚B C l

ni

�g

�
� I0s (21.66)

for the current of a photodiode operating in the continuous mode. As the calculation
of the current has been carried out starting from the steady-state form of the
semiconductor equation, the result is applicable in principle only to the situations
where the flux density of photons, ˚B, is independent of time. However, the result
may still be used in time-dependent cases, provided the period of the time variation
of ˚B is much larger than the other relevant time constants (the minority-carrier
lifetimes in this case).
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Fig. 21.14 Storage mode
photodiode. The applied bias
V0 is negative and constant,
while V , VD vary with time
depending on the action of
the switch; the resistor
mimics the input resistance of
the circuit that measures the
photodiode’s current
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21.6.2 Photodiode—Storage Mode

The current of a photodiode functioning in the continuous mode, whose simplified
expression is (21.66), may be rather small under the typical illumination conditions;
for this reason, the noise introduced by the external circuit (such a circuit is
mimicked by resistor R in Fig. 21.13) may bring in an unacceptable degradation of
the electric signal obtained from the device. To increase the amplitude of the output
signal one may renounce the continuous mode operation, and sample the signal only
at specific instants. This solution leads to the concept of storage-mode photodiode,
which can be accomplished by introducing a suitable modification in the external
circuit.

In the storage-mode operation of the photodiode, a constant voltage V0 < 0 is
applied (Fig. 21.14), while the switch is alternately opened and closed. When the
switch is open, no current can flow in the circuit; thus, the effect of the generation-
recombination processes is to modify the charge stored in the photodiode. This, in
turn, changes the voltage drop VD across the photodiode according to the relation
dQ D C dVD, where Q is the charge per unit area and C D C.VD/ the differential
capacitance per unit area. The latter is obtained from (21.47) in the case of an
abrupt junction, and from (21.126) in the case of a diffused junction; here a general
expression will be used, namely,

C D
C0

.1 � VD= 0/1=m
; m D 2; 3 ; (21.67)

where the constant C0 must be consistent with the choice of m. The expression of dQ
is more easily derived with reference to the equivalent circuit shown in Fig. 21.15,
where IG D q Ae �˚B indicates the optical-generation current.19

19For the use of a current generator in the equivalent circuit, refer to the analysis of the solar cell
carried out in Sect. 21.7.
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Fig. 21.15 Equivalent circuit
used to analyze the
functioning of the
storage-mode photodiode VD
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It is assumed that IG is independent of time, and much larger than the other two
summands at the right-hand side of (21.66); therefore, only IG is considered in the
equivalent circuit. When the switch is kept closed and possible earlier transients
have vanished, it is I D �IG < 0, so that the voltage drop across the photodiode is
VD D V0CR IG; the choice of V0 is such that V0CR IG < 0. If the switch is opened
at, say, t D 0, the external current I vanishes while IG starts modifying the charge
stored in the capacitor according to the relation Ae dQ D IG dt. Combining the latter
with dQ D C dVD and using (21.67) yield

dt

�0
D

d.VD= 0/

.1 � VD= 0/1=m
; �0 D

Ae C0  0
IG

; (21.68)

whose solution provides the time evolution of VD when the switch is open. This
condition is kept until a suitable time Ti, called integration time, has elapsed; then,
the switch is closed again. To find the voltage drop across the photodiode right
before the closing of the switch, one solves (21.68) and calculates the solution at
t D Ti; this yields

�
1 �

1

m

�
Ti

�0
D

�
1 �

V0 C R IG

 0

�1�1=m

�

�
1 �

Vi

 0

�1�1=m

; (21.69)

with Vi D VD.Ti/ and V0 C R IG D VD.0/. The left-hand side of (21.69) and IG are
positive, whence Vi > V0. Also, Ti is selected in such a way as to keep Vi negative,
whence 0 > Vi > V0. Note that during the integration time it is VR D 0. The closing
of the switch restores the voltage V0 of the upper electrode of the photodiode, forcing
a voltage variation, from Vi to V0, virtually in zero time. As the capacitor does
not allow for a time discontinuity of VD, the same variation is forced in the lower
electrode of the photodiode; as a consequence VR changes, virtually in zero time,
from 0 to V0 � Vi < 0, making a current peak to flow in the load resistor. The ratio
between the current peak and the optical-generation current,

� D
.Vi � V0/=R

IG
(21.70)
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Fig. 21.16 Time evolution of
the voltage VD across a
storage-mode photodiode.
The integration time Ti ranges
from t D 0 to t D 15 ms
(vertical line); the sampling
time Ts ranges from t D 15

ms to t D 20 ms. The
calculations are shown in
Probs. 21.10 and 21.11
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is also called current gain of the storage-mode operation. In typical operating
conditions the current peak is much larger than IG, thus alleviating the noise
problems discussed above (an example is in Prob. 21.7).

The switch is kept closed for a time interval Ts, called sampling time, long enough
to restore the condition VD D V0 C R IG. The differential equation describing the
circuit during the sampling time is different from (21.68) because here it is I ¤ 0.
From .I C IG/ dt D Ae dQ D Ae C.VD/ dVD and R I D V0 � VD one finds

dt

R Ae C0
D

dVD

.V0 C R IG � VD/ .1 � VD= 0/1=m
; (21.71)

whose initial condition is VD D Vi. The solution of (21.71) for m D 2 and m D 3 is
in Probs. 21.8 and 21.9, respectively. The time evolution of VD in the integration time
and in the sampling time is shown in Fig. 21.16 for m D 2 and m D 3. Observing
that during the sampling time it is VR D V0 � VD and I D VR=R, the time evolution
of VR and I within the sampling time is the same as that of VD apart from scaling
factors and/or additive constants; within the integration time, instead, it is VR D 0,
I D 0 as remarked above.

Typical applications of storage-mode devices are in the field of imaging, where
individual sensors are organized into arrays that provide a signal to be displayed
on a screen. The temporal sensitivity and resolution of human vision are such that
an image is perceived as stable when the frame rate is higher than about 50 Hz.20

Above such a limit, no flicker is perceived by the average observer despite the fact
that static images are presented one after the other. The interlaced technique can
effectively be used to double the perceived frame rate; in this technique, each frame
is made of two fields, one of which contains the odd-numbered lines of the image,
the other one contains the even-numbered lines. When the interlaced technique

20The frame rate is the frequency at which an imaging device (e.g., a computer display, a film, or
a video camera) displays consecutive images.
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is used, the frame rate can in fact be reduced to about 25 Hz, corresponding to
40 ms per frame. The estimates carried out in Probs. 21.8 and 21.9 show that the
photodiode’s performance complies with these specifications.

21.7 Solar Cell

In contrast to the photodiode, whose purpose is that of sensing the radiation, the
solar cell exploits the radiation-induced generations to convert the radiation’s energy
into electric energy. Such a conversion is also termed photovoltaic (PV) effect.

The schematic cross-section of a solar cell is shown in Fig. 21.17; observing
that there is no external bias, one cannot prescribe the sign of V a priori: such
an information must be obtained by solving the full p-n junction’s model first,
and deducing the value of V and I afterwards. Thus, besides considering optical
generation in addition to thermal recombination, the general approach of Sect. 21.3
will be followed. As remarked in Sect. 21.6, the whole spectrum of the radiation
must be used; to this purpose, one takes the simplified form of the optical-generation
term (20.67) in which, like in Sect. 21.6.1, it is assumed that the absorption
coefficient k is independent of position:

GO.�/ D gO exp.�k x/ ; gO.�/ D �˚B k : (21.72)

The zero of x is made to coincide with the inside edge of the interface between the
top contact and the semiconductor. Considering a discrete spectrum of the radiation,
the symbols GO, gO are replaced with Gi, gi, respectively, where index i refers
to the ith monochromatic component. As noted in Sect. 21.6.2, it is acceptable to
assume that the absorption events are uncorrelated from each other, so that the
generations due to the whole spectrum are described by

P
i Gi. With these premises,

Fig. 21.17 Solar cell. The
resistor mimics the input
resistance of the load to
which the energy is delivered
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the continuity and transport equations for the minority carriers in the p-type, quasi-
neutral region read

1

q

dJn

dx
'

n � np0

�n
�
X

i

Gi ;
1

q
Jn ' Dn

dn

dx
D Dn

d.n � np0/

dx
; (21.73)

where the weak-injection expression USRH ' .n � np0/=�n has been used for the
thermal-recombination term.

21.7.1 Current of the Solar Cell

The equation to be solved in the quasi-neutral region of the solar cell, adjacent to
the top contact, is found by combining the two equations in (21.73):

d2.n � np0/

dx2
D

n � np0

L2n
�
X

i

gi

Dn
exp.�ki x/ ; L2n D �n Dn ; (21.74)

whose solution is sought as the sum of the solution of the homogenous equation and
of a tentative solution of the nonhomogeneous one:

n � np0 D An exp.x=Ln/C Bn exp.�x=Ln/C
X

i

Ci exp.�ki x/ ; (21.75)

with An, Bn, Ci undetermined coefficients. Replacing (21.75) into (21.74) provides,
after eliminating the terms deriving from the solution of the homogeneous equation,
the relation

X

i

��
1

L2n
� k2i

�
Ci �

gi

Dn

�
exp.�ki x/ D 0 ; (21.76)

which must be fulfilled for any x. Observing that the exponentials are linearly
independent from each other, the left-hand side of (21.76) vanishes only if each
term in brackets vanishes. It could happen that ki D 1=Ln for some value of i; in
this case, however, the corresponding summand Ci exp.�ki x/ D Ci exp.�x=Ln/

would be incorporated into the second term at the right-hand side of (21.75), thus
becoming a part of the homogeneous solution. In conclusion, when treating the
nonhomogeneous part of (21.75), one may always assume that ki ¤ 1=Ln; this
eventually yields the expression of the coefficients Ci,

Ci D
�n gi

1 � k2i L2n
: (21.77)
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The remaining two constants, An and Bn, are found as usual from the boundary
conditions of the electron concentration in the quasi-neutral region. To this purpose
one notes, from Fig. 21.17, that the position of the boundary between the quasi-
neutral and space-charge regions is s D xj� lp so that, using the Shockley boundary
condition (Sect. 21.9.2), the following holds:

An exp.s=Ln/C Bn exp.�s=Ln/C
X

i

Ci exp.�ki s/ D np0 F ; (21.78)

with F D expŒq V=.kB T/� � 1. As for the boundary condition at x D 0, that is,
at the interface between the top contact and the semiconductor, the minimization
of xj, necessary for the efficient operation of the device, prevents one from using
the asymptotic conditions (21.1) typical of the p-n junction’s theory; this had
already been noted in Sects. 21.2.1 and 21.6.1. On the other hand, as discussed in
Sect. 19.5.6, a contact is able to supply the amount of charge necessary to keep the
equilibrium and charge-neutrality conditions in the semiconductor layer adjacent to
it; as a consequence, here the boundary condition at x D 0 reads

An C Bn C
X

i

Ci D 0 : (21.79)

Solving the algebraic system (21.78, 21.79) provides the two coefficients An, Bn.
The solution is somewhat simplified if s � Ln and s � 1=ki; comparing with
the estimates of the diffusion lengths given in (21.129), the first condition is easily
fulfilled. As for the second one, remembering the figures given in Sect. 21.6.1, for
very shallow junctions the constraint is fulfilled in the near-infrared and part of the
visible range. Then, linearizing the exponentials reduces (21.78) to21

Œ.An � Bn/=Ln �
X

i

Ci ki� s D np0 F � .An C Bn C
X

i

Ci/ ; (21.80)

where the term in parentheses at the right-hand side vanishes due to (21.79). The
ratio Jn.s/=.q Dn/ is now determined by combining (21.75) with the second relation
in (21.73) and letting x D s; using (21.80) one obtains

Jn.s/

q Dn
D

np0 F

s
C

 
An C Bn

L2n
C
X

i

Ci k2i

!

s D
np0 F

s
: (21.81)

It is easily found from (21.73), (21.74), and (21.75) that the term in parentheses
of (21.81) equals the derivative of Jn=.q Dn/ calculated at x D 0; such a derivative
vanishes due to the equilibrium condition imposed by the contact (namely, USRH �P

i Gi D 0 there).

21The solution without the linearization of the exponentials is left to Prob. 21.12.
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The calculation of the current density on the other edge of the space-charge
region, x D xj C ln D s C l, is made easier by the fact that, as discussed in
Sect. 21.6, the depth l of the space-charge region is made as large as possible, so
that the majority of the electron-hole pairs are generated there; for this reason, the
optical-generation term can be neglected in the n-type, quasi-neutral region, to yield

Jp.sC l/

q Dp
D

pn0 F

Lp
: (21.82)

Finally, integrating the continuity equation dJn=dx D q .USRH �
P

i Gi/ over the
space-charge region yields

Jn.sC l/ � Jn.s/ D �JG C JU ; (21.83)

with JU the recombination current density (21.23) and

JG D q
X

i

Z sCl

s
gi exp.�ki x/ dx D q

X

i

gi

ki
exp.�ki s/ Œ1 � exp.�ki l/� > 0 :

(21.84)

Using ki s � 1, ki l � 1 and remembering the definition of gi (compare with the
second relation in (21.72)) yield for the optically generated current density JG D

q
P

i �i˚i. In conclusion, the total current density is found from J D Jp.s C l/ C
Jn.sC l/ D Jp.sC l/�JGCJUCJn.s/; replacing from (21.81), (21.82), and (21.83),
and multiplying both sides by the cross-sectional area Ae yield for the solar cell’s
current

I D I0s F C IU � IG ; I0s D q Ae

�
Dn np0

s
C

Dp pn0

Lp

�
; (21.85)

with IU D Ae JU and IG D Ae JG. As anticipated in Sect. 21.6, the expression of the
saturation current I0s differs from (21.33) due to the modified boundary condition
of the shallow junction. The first two terms I0s F C IU in the expression (21.85) of
the solar cell’s current have the standard form of the p-n junction’s current; the
extra term �IG, due to the radiation, does not depend on the voltage drop across the
device: therefore, it is represented by a current generator in the equivalent circuit
of the cell, shown in Fig. 21.18. When the radiation is absent, the device is at
equilibrium and IG D I D 0, V D 0.
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Fig. 21.18 Equivalent circuit
of the solar cell
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21.8 Bipolar Junction Transistor

The bipolar junction transistor22 (BJT) was proposed in 1948 [9, 121]. The first
prototype of the device, constructed in December 1947 using germanium, was
a point-contact transistor, namely, a structure where the tip of a triangle-shaped
block of material produces a point-contact diode. The structure was improved in
1948 by replacing the point contact with a p-n junction.23 After being used for
about two decades for fabricating BJTs, germanium was almost totally replaced
by silicon in the mid-sixties of the last century (Sect. 18.7.1). The research that led
to the invention of the transistor aimed at replacing vacuum tubes with smaller and
less power-consuming devices; the initial applications to low-frequency amplifiers
quickly extended to include high-power, high-frequency, and switching operations:
thus, the introduction of the BJT had a formidable impact on the semiconductor
industry and the related research activities. Until the introduction of the MOS
transistor, the BJT has been the basic ingredient in the fabrication of the electronic
circuits.

The electric current in a BJT is transported by both type of carriers, electrons
and holes; for this reason the device is called bipolar. There exist two possible
architectures of the devices, the n-p-n type and the p-n-p type; the schematic cross-
section of an n-p-n BJT is shown in Fig. 21.19. The starting point is a p-type silicon
substrate, with an NA D const dopant concentration.24 At the beginning of the
process, the upper surface of the semiconductor wafer is in the position marked
by the dash-dotted arrows; the superimposed structure does not exist yet. In the first
step of the fabrication, a limited area is defined by a suitable mask, and a heavy
n-type thermal diffusion is carried out in it, to create a region called buried layer
or subcollector; this region is shown as the dark area marked with nC in the figure.
Purpose of the buried layer is to provide a low-resistance path between the active
part of the transistor and the collector contact. Next, a lightly doped, n-type epitaxial
layer is grown over the entire wafer; this layer, shown as the area marked with n�

in the figure, replicates the crystalline structure of the wafer underneath. As epitaxy

22The term is a contraction of transfer resistor.
23This explains the term “junction” in the name.
24The terminology of the process steps is better explained in the chapters devoted to the
technological issues.
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Fig. 21.19 Structure of the
bipolar junction transistor of
the n-p-n type
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is a high-temperature process, during the epitaxial growth the buried layer diffuses
in all directions; this explains why the upper edge of the buried layer is higher than
the interface between the substrate and the epitaxial layer.25

As in the normal operation of the device one of its p-n junctions is forward biased,
it might happen that a part of the junction’s current flows into an adjacent device,
thus creating a parasitic effect that hampers the circuit’s performance. In this respect,
BJTs are not self-isolated.26 The problem is fixed by means of isolation diffusions,
that consist of heavily doped p regions diffused across the epitaxial layer down to
the substrate. In this way a volume of material belonging to the epitaxial layer,
forming a well that will later become the collector region of the BJT, is completely
surrounded by a p-type region and is therefore isolated from the adjacent devices.27

Next, the p-type base region is diffused within the collector region, and the n-
type emitter region is diffused within the base region. In summary, two p-n junctions
are formed, the base-emitter (B-E) junction and the base-collector (B-C) junction.
For reasons dictated by the need of optimizing the device performance, the dopant
concentration in the base must be larger than that of the collector, and the dopant
concentration in the emitter must be larger than that of the base. Finally, the emitter
(E), base (B), and collector (C) contacts are deposited. As indicated in Sect. 21.2.2,
to prevent the contact-semiconductor junction from behaving like a rectifying
device, a heavy dose of dopant is preliminarily introduced into the semiconductor
region onto which the contact is to be deposited. Here, this is necessary for the
collector contact, because the epitaxial layer is lightly doped; in general, besides
introducing a large dopant concentration in the area near the contact, a heavily doped

25The details of the epitaxial process are given in Sects. 24.6 and 24.7; those of thermal diffusion
are in Chap. 23.
26In contrast, MOS transistors are self-isolated, because their junctions are never forward biased
(Sects. 22.7, 22.8). However, in some MOS architectures parasitic currents are possible, and
precautions must be taken against them using, e.g., channel stops (Sect. 22.10).
27The p-n junction formed by the substrate and the epitaxial layer is kept reverse biased by the
application of a suitable voltage between the substrate and collector contacts.
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Table 21.1 BJT: nomenclature of the functioning regimes

B-E j. B-C j. Condition Comment

F F Saturation Avoided in analog applications

F R Forward High gain

R R Cut-off Negligible currents, practically an open circuit

R F Reverse Poor gain, seldom used

Fig. 21.20 Functioning
regimes and symbol of the
n-p-n type transistor
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region (here of the n type) is diffused from the collector contact down to the buried
layer; purpose of this is again lowering the series resistance.

To distinguish the applied voltages from one another, two letters are used;
considering the base metallization as the reference contact, in an n-p-n BJT the
typical choice of the two independent voltages is VBE D VB�VE and VBC D VB�VC,
with VCE D VBE � VBC. The situation where the base contact is chosen as reference
is called common-base configuration. It is clear from the description above that the
BJT architecture is structurally asymmetric; this reflects into the different behaviors
of the device, depending on the working conditions of the two junctions. The four
combinations of the applied biases are termed as shown in Table 21.1, along with
the combinations’ names and some comments; the indications “F” and “R” stand
for “forward bias” and “reverse bias,” respectively.28

A diagram describing the functioning regimes of the n-p-n transistor is shown in
Fig. 21.20 along with the device symbol. Note that the arrows associated with the
voltages point toward the p regions, so that the junctions are forward biased when
VBE > 0 and VBC > 0.

The structure of the BJT of the p-n-p type is dual to that of the n-p-n type; with
reference to Fig. 21.19, the cross-section is obtained by exchanging the “p” and “n”
letters. The voltages to be used in the common-base configuration are VEB D VE�VB

and VCB D VC � VB, with VCE D VCB � VEB. A diagram describing the functioning
regimes of the p-n-p transistor is shown in Fig. 21.21 along with the device symbol.
Again, the arrows associated with the voltages point toward the p regions, so that
the junctions are forward biased when VEB > 0 and VCB > 0.

28The nomenclature of Table 21.1 is fully general and is applicable to both the n-p-n and p-n-p
transistors. The forward condition is also called normal mode or active mode.
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Fig. 21.21 Functioning
regimes and symbol of the
p-n-p type transistor
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Fig. 21.22 Structure and
effective dopant
concentration in the intrinsic
transistor of the n-p-n type

IE IB IC

VBCVBE

x

N

NE

E

B

Cp n
N

n
C

NB

21.8.1 Current-Voltage Characteristics of the P-N-P BJT

The structure of the BJT, shown in Fig. 21.19, is rather complicate; for this reason,
an analytical derivation of the current-voltage characteristics is not viable for
the device as is, and some simplifications are necessary. The standard approach
consists in deriving the characteristics of the intrinsic transistor, namely, the one-
dimensional structure marked by the dashed contour visible in the figure; the dopant
concentration is considered constant in the emitter, base, and collector regions: in
this way, the structure to be analyzed is reduced to the one-dimensional juxtaposition
of two abrupt p-n junctions.

The intrinsic transistor, rotated by 90 degrees for convenience, is shown
in Fig. 21.22 for the n-p-n type, along with the diagram of the net concentration
of ionized impurities, N D NCD � N�A . In the following, the complete-ionization
condition is assumed to hold; it follows that, indicating with NE, NC the constant
donor concentrations of the emitter and collector regions, respectively, and with
NB the constant acceptor concentration of the base region, the diagram of N takes
the piecewise-constant shape shown in the right part of the figure. The emitter (IE),
base (IB), and collector (IC) currents are also marked in the same figure; note that
the arrows associated with the currents point toward the p region, while they point
away from the n regions; thus, the relation IB D IE C IC holds. Remembering that
VBE and VBC are being used as independent voltages, it is convenient to select IE

and IC as the independent currents.
By comparing the intrinsic transistor of Fig. 21.22 with the transistor’s symbol of

Fig. 21.20 one notes that in the former, VBE and VBC are the voltage drops across the
junctions of the intrinsic transistor while, in the latter, the same symbols (and VCE

as well) indicate the voltages between the external contacts. In principle, different
symbols should be used, because the voltage drops of the intrinsic device do not
account for other effects due to the rest of the structure; among such effects are the
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Fig. 21.23 Structure and
effective dopant
concentration in the intrinsic
transistor of the p-n-p type
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Fig. 21.24 Symbols used to indicate the positions of the two junctions, the edges of the space-
charge regions, and the width of the quasi-neutral base region. The same nomenclature applies to
both the n-p-n and p-n-p types

extra drop due to the collector current flowing through the buried layer, and that
due to the base current that flows laterally (that is, normal to the x direction) across
the base region. In the calculations carried out below, the same notation is used
for simplicity; distinct symbols are to be used when the extra effects are accounted
for.29

The intrinsic transistor and net impurity concentration of the p-n-p type are those
shown in Fig. 21.23, where NE, NC are acceptor concentrations and NB a donor
concentration.

The hypotheses upon which the analytical theory of the intrinsic BJT is based
are the same as those used for the p-n junction (Sect. 21.3). It is assumed that the
working conditions are such that the device’s partitioning into quasi-neutral and
space-charge regions holds: as shown in Fig. 21.24, the position of the emitter junc-
tion is indicated with OE, and the left and right edges of the space-charge region of
the same junction are indicated with O�E , OCE , respectively; a similar nomenclature
applies to the collector region. The device has two space-charge regions and three
quasi-neutral regions; the length of the quasi-neutral base region is marked with W
and is particularly important in determining the electric characteristics of the BJT.
The analytical theory carried out below refers to the p-n-p type;30 to distinguish the

29A typical way for considering the effect of the lateral flow is to introduce a series resistance
(called intrinsic base resistance) between the base contact of the intrinsic device and the external
base contact.
30The choice of the p-n-p type is dictated only by a convenience in notation, due to the fact that the
current density of the minority carriers in the base (holes) has the same orientation as the x axis.
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parameters of the different regions one introduces the symbols for the equilibrium
concentrations of the minority carriers,31

nE D
n2i
NE

; pB D
n2i
NB

; nC D
n2i
NC

: (21.86)

The diffusion coefficients of the minority carriers in the three quasi-neutral regions
are indicated with DE, DB, and DC, respectively; the corresponding lifetimes with
�E, �B, and �C, and the diffusion lengths with

LE D
p
�E DE ; LB D

p
�B DB ; LC D

p
�C DC : (21.87)

The emitter current density can be written JE D Jn.O�E /CJp.O�E / or, expressing the
last term at the right-hand side as the sum of a minority-carrier current density and
a recombination current density,

JE D Jn.O
�
E /C Jp.O

C
E /C

Z OC

E

O�

E

q USRH dx I (21.88)

in the same manner, the collector current density can be written JC D Jn.O
C
C / C

Jp.O
C
C /, or

JC D Jn.O
C
C /C Jp.O

�
C / �

Z OC

C

O�

C

q USRH dx : (21.89)

Considering the quasi-neutral emitter region first and following the same reason-
ing as for the p-n junction (Sect. 21.3.1) yield

Jn.O
�
E / D q

DE nE

LE
FE ; FE D exp Œq VEB=.kB T/� � 1 ; (21.90)

to be compared with (21.30). Similarly, for the minority-carrier current density in
the quasi-neutral collector region one finds32

Jn.O
C
C / D �q

DC nC

LC
FC ; FC D exp Œq VCB=.kB T/� � 1 : (21.91)

To complete the analysis one must determine the minority-carrier current densities
at the edges of the quasi-neutral base region, Jp.O

C
E / and Jp.O�C / respectively. This

31Expressions (21.86) for the equilibrium concentrations imply the assumption of nondegeneracy
and complete ionization (Sect. 21.2.1).
32As the quasi-neutral emitter region extends from OC

C to infinity, after solving d2.n� nC/=dx2 D
.n � nC/=L2C one must discard the solution exp.x=LC/ and keep the solution exp.�x=LC/. Then,
the current density is found from Jn D q DC dn=dx; this explains the minus sign in (21.91).
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calculation is slightly more involved because the length W of the region is finite,
hence the asymptotic conditions for the concentration do not apply. One starts from
the differential equation for the minority carriers’ concentration within the region,
d2.p � pB/=dx2 D .p � pB/=L2B, whose solution reads

p.x/ � pB D A exp.�x=LB/C B exp.x=LB/ (21.92)

with A, B undetermined constants. To proceed, one places the origin of x at OCE , so
that the position of O�C in this reference is W. The minority-carrier concentration at
the edges of the quasi-neutral base region fulfills the Shockley boundary conditions
(Sect. 21.9.2), that in this case read

p.0/ D pB exp

�
q VEB

kB T

�
; p.W/ D pB exp

�
q VCB

kB T

�
I (21.93)

replacing (21.93) into (21.92) yields the algebraic system

pB FE D AC B ; pB FC D A exp.�W=LB/C B exp.W=LB/ (21.94)

in the unknowns A, B. Once the two constants are determined, the current density is
calculated from

Jp D �q DB
dp

dx
D q

DB

LB
ŒA exp.�x=LB/ � B exp.x=LB/� : (21.95)

Constant A is determined by multiplying by exp.W=LB/ the first equation in (21.94)
and subtracting the second equation from the result; similarly, constant B is deter-
mined by multiplying by exp.�W=LB/ the first equation in (21.94) and subtracting
the second equation from the result. Letting x D 0 or, alternatively, x D W in (21.95)
and using the constants thus found yield the current densities sought:

Jp.O
C
E / D Jp.0/ D q

DB pB

LB

�
FE coth

�
W

LB

�
�

FC

sinh.W=LB/

�
; (21.96)

Jp.O
�
C / D Jp.W/ D q

DB pB

LB

�
FE

sinh.W=LB/
� FC coth

�
W

LB

��
: (21.97)

The expressions of the emitter and collector currents are now found by multiply-
ing (21.88), (21.89) by the cross-sectional area Ae of the device and letting

IUE D Ae

Z OC

E

O�

E

q USRH dx ; IUC D Ae

Z OC

C

O�

C

q USRH dx I (21.98)

in turn, Jn.O�E /, Jn.O
C
C /, Jp.O

C
E /, and Jp.O�C / are taken from (21.90), (21.91),

(21.96), and (21.97), respectively. It must be remarked that the relation between
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current and current density in the emitter reads IE D Ae ŒJn.O�E / C Jp.O�E /�, while
that in the collector reads IC D �Ae ŒJn.O

C
C /C Jp.O

C
C /�; the minus sign in the latter

is due to the fact that the orientation of IC is opposite to that of the x axis (Fig. 21.23).
To make the resulting expressions more compact one defines the coefficients

a11 D q Ae

�
DE nE

LE
C

DB pB

LB
coth

�
W

LB

��
; a12 D �q Ae

DB pB=LB

sinh.W=LB/
; (21.99)

a21 D a12 ; a22 D q Ae

�
DC nC

LC
C

DB pB

LB
coth

�
W

LB

��
I (21.100)

such coefficients, whose units are those of a current, form a 2�2 symmetric matrix in
which the diagonal entries are positive while the non-diagonal entries are negative.
The coefficients depend on the voltages VEB, VCB through the width W of the quasi-
neutral base region; in fact,

W D .OC � OE/ � lnE.VEB/ � lnC.VCB/ D W.VEB;VCB/ ; (21.101)

where lnE D OCE � OE (lnC D OC � O�C ) is the length of the portion of the
space-charge region of the emitter (collector) junction belonging to the base region.
Thanks to (21.99), (21.100) the emitter and collector currents are written in compact
form as

IE D .a11 FE C IUE/C a12 FC ; IC D a21 FE C .a22 FC C IUC/ : (21.102)

21.8.2 Equivalent Circuit of the P-N-P BJT

The right-hand sides of (21.102) depend on the voltages VEB, VCB through the coeffi-
cients a11; : : : ; a22 and the dimensionless factors FE, FC defined in (21.90), (21.91).
Thus, (21.102) have the form IE D IE.VEB;VCB/, IC D IC.VEB;VCB/ which, from
the standpoint of circuit theory, describe a voltage-driven two-port circuit. The
first equation in (21.102) shows that the current flowing into the emitter may be
thought of as the sum of two currents, a11 FE C IUE and a12 FC, respectively; as a
consequence, the two contributions must be represented as two elements in parallel,
subjected to the voltage VEB; a similar representation applies to the collector port. To
better determine the elements of the circuit it is convenient to neglect the relatively
weak dependence of a11; : : : ; a22 on the voltages33 with respect to the exponential

33The voltage-dependence of the space-charge region’s width in the reverse-bias condition is
worked out in Sect. 21.4 for an abrupt junction and in Sect. 21.9.3 for a diffused junction. The
dependence is the strongest in the reverse-bias condition. When a forward bias is applied, the
width of the space-charge region is small; also, its variation is negligible because the bias itself
varies little.
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Fig. 21.25 The Ebers and
Moll equivalent circuit for the
BJT of the p-n-p type

B

FC12a FE21a

IE

VEB

IC

VCBI

dependence of FE, FC. It follows that the first element describing IE becomes
identical to the equation of a p-n junction subjected to VEB, with a11 the saturation
current (compare with (21.34)). In turn, the term a12 FC, which depends on VCB

only, is a current driven by the voltage present at the other port; as a consequence,
it is represented in the circuit by a voltage-driven current generator. The analysis of
the collector port is similar, thus eventually leading to the Ebers and Moll model
of the BJT, shown in Fig. 21.25. The importance of the width of the quasi-neutral
base region can now be appreciated by observing that the coefficients a11; : : : ; a22
depend on W through the ratio W=LB. In the limit W=LB � 1, (21.99), (21.100)
yield the limiting cases a12 ; a21 �! 0 and

a11 �! q Ae

�
DE nE

LE
C

DB nB

LB

�
; a22 �! q Ae

�
DC nC

LC
C

DB nB

LB

�
:

(21.103)

As a consequence, the current generators of Fig. 21.25 become open circuits, and
the circuit reduces to the assembly of two independent p-n junctions in which the
current of each port is controlled only by the voltage of the same port. In fact, the
limit W=LB � 1 is not realistic: the order of magnitude of W is about 1 �m, while
the typical diffusion lengths are much larger (compare with the estimate (21.129));
due to this, the full expressions of a11; : : : ; a22 must be kept. From the physical
point of view, this means that the closeness of the two junctions is such that the
current of each port is influenced also by the voltage present at the other port; thus,
the behavior of the BJT is substantially different from that of two independent p-n
junctions.34

The typical values of W and LB are actually such that the other limit W=LB �

1 holds; in this case it is coth.W=LB/ �! 1= sinh.W=LB/ �! LB=W, and the
coefficients (21.99), (21.100) simplify to

34From the technological point of view, the scaling down of W is more difficult than that of the
channel length L of the MOS transistor. In fact, W is limited by the positions of the emitter-base
and collector-base junctions, which are in turn determined by two diffusion processes (Sect. 21.8).
In contrast, L is obtained from a lithographic process, whose control is much finer than that of
thermal diffusions. This is the main reason why the evolution of the BJT technology, in terms of
scaling, has ceased progressing when W has reached the value of about 0:7 �m.
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a11 ' q Ae

�
DE nE

LE
C

DB pB

W

�
; a12 ' �q Ae

DB pB

W
; (21.104)

a21 D a12 ; a22 ' q Ae

�
DC nC

LC
C

DB pB

W

�
: (21.105)

Beside the form (21.102) of the device equations, it is often useful to consider
the mixed form IE D IE.VEB;VCB/, IC D IC.VCB; IE/. Remembering that the
dependence of a11; : : : ; a22 on the voltages is neglected, this is easily accomplished
by eliminating FE from (21.102). Letting

hFB D �
a21
a11

> 0 ; IC0 D
a11 a22 � a12 a21

a11
(21.106)

one finds for the mixed form

IE D .a11 FE C IUE/C a12 FC ; IC � IUC D �hFB .IE � IUE/C IC0 FC :

(21.107)

In the forward regime (Table 21.1) the emitter-base junction is forward biased,
whence IE � IUE; at the same time, the collector-base junction is reverse biased,
whence FC ' �1: as hFB is of order unity (see below) and IC0 is small, the collector
current is of the same order of magnitude as the emitter current, whence IC � IUC.
In summary, in the forward regime the second equation in (21.107) simplifies to
�IC ' hFB IE C IC0. Using the expressions (21.104), (21.105) for a11; : : : ; a22 one
finds

hFB '

�
1C

DE nE W

DB pB LE

��1
< 1 ; IC0 ' q Ae

�
DC nC

LC
C hFB

DE nE

LE

�
:

(21.108)

From �IC ' hFB IE C IC0 it follows that IC0 is the negative collector current when
the emitter port is open; such a current is necessarily small because the collector-
base junction is reverse biased.35 As a further approximation, applicable when
IE ¤ 0, one neglects IC0 to find �IC ' hFB IE; this justifies the designation36

current gain ascribed to hFB (suffixes “F” and “B” remind one that �IC ' hFB IE

applies in the forward regime and in the common-base configuration). From the
first equation in (21.108) it follows that hFB approaches unity from below when
the ratio DE nE W=.DB pB LE/ is made smaller. Singling out the three factors, and
remembering the estimate of W=LB carried out above, one finds that the ratio W=LE

is smaller than unity; as for the ratio of the diffusion coefficients, the Einstein
relation (19.102) yields DE=DB D �nE=�pB, where �nE is the mobility of the

35The same result stems from the observation that IC0 has the same structure as a saturation current;
compare, e.g., with the estimate (21.130).
36The term “gain” is used in a broader meaning. In fact, it is hFB < 1.
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minority carriers (electrons) in the emitter, and �pB is the mobility of the minority
carriers (holes) in the base. Their ratio is larger than one, but still of order unity.37

Finally, using (21.86) one finds nE=pB D NB=NE; as the two dopant concentrations
can be made to differ by orders of magnitude, the ratio NB=NE provides an easy way
to achieve a current gain close to unity. This explains why the dopant concentration
in the emitter must be larger than that in the base, as anticipated in Sect. 21.8.

Still in the forward regime, the contribution lnE.VEB/ to the width of the quasi-
neutral base region (21.101) varies little because in the typical operating conditions
the forward bias VEB is practically constant; the variations of the other contribution
lnC.VCB/, instead, may be large because the collector-base junction is reverse biased.
To limit the variations, the dopant concentration in the collector is made much
smaller than that of the base; in this way, the space-charge region of the collector-
base junction is strongly asymmetric, and extends mainly in the collector (compare
with the second relation in (21.39)): thus, the variation of lnC.VCB/ is negligible
and W may be considered constant. This explains why the dopant concentration in
the collector must be smaller than that in the base, as anticipated in Sect. 21.8. A
light dopant concentration in the collector is also useful to prevent the junction’s
avalanche breakdown (Sect. 21.5); in fact, a larger width of the space-charge region
corresponds to a smaller electric field.

The output characteristics of the BJT of the p-n-p type, in the common-base
configuration, represent the IC D IC.VCB; IE/ relation, with VCB, IE used as
independent variable and parameter, respectively. The characteristics are drawn in
Fig. 21.26 using the second equation in (21.107) with hFB D 0:95, after neglecting
IUC and IUE. The portion of the characteristics on the right of the vertical line
describes the forward regime, while the portion on the left of it describes the
saturation regime (Table 21.1). Limiting the discussion to the forward regime, one
notes that �IC is independent of VCB and practically equal to IE; in other terms,
the current at the output port (collector) is dictated by the voltage of the input
port (emitter). From the physical point of view, this means that the closeness of
the two junctions is such that the majority of the carriers (holes) injected by the
emitter into the base are able to diffuse to the space-charge region of the collector
without recombining. Once the holes reach the space-charge region, which is reverse
biased, the strong electric field present in it pulls them into the collector. The small
fraction of holes that recombine within the base region give rise to the base current
IB D IE C IC; combining the latter with the second equation in (21.107), still
neglecting IUC and IUE, and eliminating IE yield

37Moreover, the degradation of �nE is more severe than that of �pB because the dopant concentra-
tion in the emitter is larger (Sect. 20.5.2). In the BJT of the n-p-n type, the ratio of the diffusion
coefficients becomes DE=DB D �pE=�nB < 1, which is more advantageous; all other parameters
being the same, the n-p-n BJT is thus preferable. This is true also in time-dependent conditions,
because the dynamics of the device is essentially controlled by the mobility of the minority carriers
in the base.
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Fig. 21.26 Output characteristics of a BJT of the p-n-p type, drawn with hFB D 0:95. The units
of the voltage axis are normalized to kB T=q, those of the current axis are arbitrary

� IC D hFE IB �
IC0 FC

1 � hFB
; hFE D

hFB

1 � hFB
; (21.109)

with hFE the current gain in the common-emitter configuration. Using the simplified
expression (21.108) for hFB one finds hFE ' DB pB LE=.DE nE W/.

The input characteristics of the BJT of the p-n-p type, in the common-base
configuration, represent the IE D IE.VEB;VCB/ relation, with VEB, VCB used as
independent variable and parameter, respectively. They are derived from the first
equation in (21.107) after neglecting IUC and IUE, namely, IE ' a11 FECa12 FC. For
a qualitative analysis one rewrites the above as IE D .a11�ja12j/FECja12j .FE�FC/;
then, using (21.104) and making the same estimate as that used for hFB, one finds
IE ' ja12j .FE � FC/. As in the forward regime it is FC ' �1, it follows that the
curves corresponding to different values of VCB are barely distinguishable from one
another, and the input characteristics practically reduce to the single I.V/ curve of a
p-n junction.

21.9 Complements

21.9.1 Weak-Injection Limit of the Drift-Diffusion Equations

In the calculation of the I.V/ characteristic of the p-n junction carried out in
Sect. 21.3.1 it has been stated that in a quasi-neutral region, when the weak-injection
condition holds, the diffusion term of the minority carriers dominates over the drift
term. To better discuss this issue, the case of a p-doped region is considered, so
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that the majority-carrier concentration is ceq D peq D pp0 and (20.35) become
jp � pp0j � pp0, jn � np0j � pp0. The latter may be recast as

jp � pp0j � ˛ pp0 ; jn � np0j � ˛ pp0 ; (21.110)

with ˛ � 1. Indicating with pm, pM the minimum and maximum values of p
imposed by (21.110), one finds pM � pp0 D ˛ pp0, pp0 � pm D ˛ pp0, whence

pM D .1C ˛/ pp0 ; pm D .1 � ˛/ pp0 : (21.111)

Similarly, for the minority-carrier concentration one finds nM � np0 D ˛ pp0, np0 �

nm D ˛ pp0, whence

nM D np0 C ˛ pp0 ; nm D np0 � ˛ pp0 : (21.112)

The maximum absolute variation of p turns out to be:

pM � pm D 2 ˛ pp0 : (21.113)

Instead, the maximum variation of n must be treated with some care. In fact, using
the nondegenerate case one finds

nM D
n2i
pp0
C ˛ pp0 D pp0

 
n2i
p2p0
C ˛

!

; (21.114)

nm D
n2i
pp0
� ˛ pp0 D pp0

 
n2i
p2p0
� ˛

!

: (21.115)

Even for a relatively low dopant concentration, say, NA ' pp0 D 10
16 cm�3, at room

temperature one has n2i =p2p0 ' 10�12, which is much smaller than the reasonable
values of ˛. It follows nM ' ˛ pp0, nm ' 0, where the limit of nm must be chosen as
such because n is positive definite. In conclusion, the maximum relative variations
of p and n with respect to the equilibrium values are given by

pM � pm

pp0
D 2 ˛ ;

nM � nm

np0
' ˛

pp0

np0
D ˛

p2p0
n2i
� 2 ˛ : (21.116)

By way of example, one may let ˛ D 10�3, still with NA D 1016 cm�3. While
the maximum relative variation of p is 2 � 10�3, that of n is 109; it follows that
the constraint imposed onto the derivative is strong in the case of p, much weaker
for n. Within the same example, the maximum absolute variation is 2 � 1013

cm�3 for p and 1013 cm�3 for n, in both cases much smaller than the majority-
carrier concentration (1016 cm�3). The conclusion is that in a quasi-neutral region,
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under the weak-injection conditions, the diffusive transport prevails for the minority
carriers, whereas the transport of the majority carriers is dominated by drift. With
reference to the p-doped region considered here, one has Jp ' q�p p E and
Jn ' q Dn gradn, respectively.

21.9.2 Shockley’s Boundary Conditions

The derivation of the analytical model of the p-n junction’s I.V/ characteristic,
worked out in Sect. 21.3.1, requires the boundary conditions for the minority-carrier
concentrations at the boundaries of the space-charge region; specifically, one needs
to determine n.�lp/ and p.ln/. The derivation is based on calculating approximate
expressions for the ratios n.�lp/=n.ln/, p.ln/=p.�lp/, where the denominators are
majority-carrier concentrations that are in turn approximated with n.ln/ ' nn0 ' ND

and p.�lp/ ' pp0 ' NA.
To proceed, one considers the electron drift-diffusion equation Jn D q�n n E C

q Dn dn=dx, and observes that in the space-charge region the drift and diffusion
terms have opposite signs; also, their moduli are much larger than that of the
current density. In fact, the latter is small due to the weak-injection condition,
whereas the terms at the right-hand side of the equation are large because the
electric potential and the electron concentration have non-negligible variations over
the space-charge region. It follows that the moduli of the drift and diffusion terms
are comparable to each other: �q�n n E ' q Dn dn=dx � jJnj and, similarly,
�q�p p E ' �q Dp dp=dx� jJpj for holes. Now, the approximation is introduced,
that consists in neglecting Jn and Jp; this yields equilibrium-like expressions for
the concentrations, n ' n.0/ expŒq'=.kB T/�, p ' n.0/ expŒ�q'=.kB T/�, which are
used to calculate the ratios sought:

n.�lp/

n.ln/
' exp

�
q.V �  0/

kB T

�
D

n2i
NA ND

exp

�
q V

kB T

�
; (21.117)

p.ln/

p.�lp/
' exp

�
q.V �  0/

kB T

�
D

n2i
NA ND

exp

�
q V

kB T

�
: (21.118)

The last form of (21.117), (21.118) is obtained from the definition (21.5) of the
built-in potential. Using n.ln/ ' nn0 ' ND and p.�lp/ ' pp0 ' NA along with
np0 D n2i =NA and pn0 D n2i =ND (compare with (21.1, 21.2)), finally yields the
Shockley boundary conditions

n.�lp/ ' np0 exp

�
q V

kB T

�
; p.ln/ ' pn0 exp

�
q V

kB T

�
: (21.119)
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21.9.3 Depletion Capacitance—Arbitrary Doping Profile

The expression of the depletion capacitance worked out in Sect. 21.4 for an abrupt p-
n junction is extended here to an arbitrary doping profile, still in one dimension. Let
a < x < b be the region where the charge density � differs from zero, and assume
for the electric potential that ' D '.a/ D const for x < a and ' D '.b/ D const
for x > b. Also, it is assumed that there are no single layers or double layers of
charge, whence the electric field E and ' are continuous. The constancy of ' in
the outside regions implies the global charge neutrality, as is found by integrating
"sc dE=dx D � from a to b and using the continuity of E:

Z b

a
� dx D 0 : (21.120)

Thanks to (21.120) one finds, for any x,

Z x

a
� dxC

Z b

x
� dx D 0 ; Q D �

Z x

a
� dx D

Z b

x
� dx ; (21.121)

which provides the definition of the charge per unit area Q. The definition holds
also if x is outside the interval Œa; b�; in this case, however, one finds Q D 0. In the
following it is assumed that x is internal to the space-charge region. The solution
of the Poisson equation is taken from Prob. 4.2; using E.a/ D 0 and the global
charge-neutrality condition after letting  D '.b/ � '.a/ yields

"sc  D

Z b

a
x � dx : (21.122)

If the voltage drop changes by a small amount,    C d , the space-charge
boundaries are modified, a aC da, b bC db, whence Q changes as well:38

dQ D
Z bCdb

b
� dx D �.b/ db D

Z aCda

a
� dx D �.a/ da : (21.123)

On the other hand, from (21.122) it follows

"sc d D
Z bCdb

aCda
x � dx �

Z b

a
x � dx D b �.b/ db � a �.a/ da D .b � a/ dQ :

(21.124)

38After the change in the boundaries’ positions, x in (21.121) is still internal to the space-charge
region.
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Thus, the capacitance per unit area of the space-charge region is

C D
dQ

d 
D

"sc

b � a
; (21.125)

which is the expected generalization of (21.48). Note that the absence of charge
layers makes the variation dQ to depend on the variations in a and b only. As a
consequence it is a D a. /, b D b. /, whence C D C. /. If  and �.x/ are
prescribed, the values of a, b are determined by the system of equations (21.120)
and (21.122).

It is interesting to note that if the charge density has a power form, � � xn, then
 depends on the .nC 2/th power of b� a. Consider by way of example a diffused
junction, namely, a junction obtained, e.g., by diffusing a dopant of the p type
into a uniform n-type substrate. Expanding � to first order around the metallurgical
junction and using the full-depletion and ASCE approximations yield � ' k x for
�l=2 < x < l=2 and � D 0 elsewhere. Using (21.122) and (21.124) then yields

"sc  D
1

12
k l3 ; C D C0

�
1 �

V

 0

��1=3
; C0 D

�
k "2sc

12 0

�1=3
:

(21.126)
The general expression (21.125) of the capacitance per unit area of the space-charge
region finds a useful application in a measuring technique for the doping profile
(Sect. 25.6).

21.9.4 Order of Magnitude of Junction’s Parameters

Still considering an abrupt, p-n silicon junction with NA D 1016 cm�3, ND D 1015

cm�3, the built-in potential at room temperature is

 0 D
kB T

q
log

�
NA ND

n2i

�
' 0:65 V (21.127)

(compare with (21.5)). The carrier mobilities have been estimated in Sect. 19.6.6; in
fact, hole mobility is smaller than electron mobility and, as outlined in Sect. 20.5.3,
the mobility degradation due to impurity scattering is expected to vary from one
side of the junction to the other because the dopant concentrations are different.
The experimental minority-carrier mobilities for the dopant concentrations and
temperature considered here are �n ' 1000 cm2 V�1 s�1 in the p region and
�p ' 500 cm2 V�1 s�1 in the n region [128, Sect. 1-5], whence

Dn D
kB T

q
�n ' 26 cm2 s�1 ; Dp D

kB T

q
�p ' 13 cm2 s�1 : (21.128)
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The experimental values of the minority-carrier lifetimes are �n ' 5 � 10�5 s and
�p ' 2 � 10

�5 s. The corresponding diffusion lengths (21.27), (21.31) are

Ln D
p
�n Dn ' 360 �m ; Lp D

p
�p Dp ' 160 �m : (21.129)

The above values provide for the saturation current density (21.33)

Js D q

�
Dp pn0

Lp
C

Dn np0

Ln

�
' 14 pA cm�2 : (21.130)

From (21.44), the width of the depletion region at zero bias is found to be

l.V D 0/ D ln C lp D

�
2 "sc

q

�
1

ND
C

1

NA

�
 0

�1=2
' 1 �m ; (21.131)

with ln=lp D NA=ND D 10. The permittivity of silicon "sc D 11:7 � "0 has been
used, with "0 ' 8:854 � 10�14 F cm�1 the vacuum permittivity. Finally, the value
of the differential capacitance per unit area at zero bias (21.47) is

C0 D

�
q "sc=.2 0/

1=ND C 1=NA

�1=2
D

"sc

l.V D 0/
' 11 nF cm�2 : (21.132)

21.9.5 Solar Cell’s Parameters

As apparent from (21.85), the I.V/ characteristic of the solar cell is obtained by
shifting that of a standard p-n junction by an amount equal to IG. The curve is
drawn in Fig. 21.27 in arbitrary units; the intercept with the V axis is the open-
circuit voltage VOC D V.I D 0/ D .kB T=q/ logŒ.IG � IU/=I0s C 1� > 0, that
with the I axis is the short-circuit current ISC D I.V D 0/ D IU � IG < 0. As
the intercept of the I.V/ curve with the load characteristic I D �V=R belongs
to the fourth quadrant, the working voltage is positive while the corresponding
current is negative. It follows that the power P D V I is negative, namely, it is
delivered by the cell to the load resistance; as this reasoning applies to any value
of R, the latter can be adapted in order to maximize the transferred power. The
voltage that yields the maximum power is in fact determined by letting dP=dV D 0,
namely, I C V .dI=dV/ D 0, with I given by (21.85). The solution provides
the maximum-power voltage VMP which, replaced into (21.85), renders in turn
the maximum-power current IMP. The two values thus found eventually yield the
maximum-power resistance RMP D �VMP=IMP.

A number of parameters are used to quantify the solar cell’s performance; among
them, the fill factor has two alternative definitions, namely,
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Fig. 21.27 I.V/ characteristic of the solar cell, in arbitrary units (black line), and maximum-power
load characteristic I D �V=RMP (red line). The absolute value of the shaded area shows the power
delivered by the cell
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: (21.133)

The efficiency �c of the cell is defined as the ratio between the maximum power per
unit area delivered to the load and the power per unit area impinging on the cell:

�c D
jVMP IMPj=Ae

Pin=Ae
: (21.134)

Due to the atmospheric absorption and the angle of incidence of sunlight, the
denominator of (21.134) is substantially lower than the solar constant39 dPE=dA '
136 mW cm�2. The maximum theoretical efficiency of a solar cell made of a
single p-n junction with a 1:34 eV band gap has been calculated in [123] using
a 1:5 air mass;40 the resulting figure is about 33:7%. Silicon, whose band gap
at room temperature is about 1:12 eV, has a slightly smaller figure: 32%. The
efficiency of actual devices is lower than the theoretical one due to different types
of losses: e.g., reflection at the surface, shielding due to the wires deposited over the
surface, electron-hole recombinations, lateral resistance in the semiconductor, series

39The solar constant is calculated in Prob. 7.1.
40In this matter, air mass (AM) indicates the length of the optical path, through earth’s atmosphere,
of light rays coming from an extraterrestrial source. The parameter is used to quantify the
attenuation due to absorption and scattering. The AM value at sea level, when the source is at
the zenith, is set equal to unity and used as normalization parameter.
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resistance of the wires.41 To date (2017), the maximum efficiency of commercial
solar cells made of crystalline materials is about 24%.

It is worth pointing out that the figures indicated so far refer to single-junction
cells, in which a single band gap exists: such cells cannot absorb the part of the
spectrum whose energy is below the band gap itself, and have a limited efficiency
in absorbing photons whose energy is much higher than the band gap. For instance,
the maximum wavelength that can be absorbed by silicon at room temperature is

�M D
h c

EG
D
6:63 � 10�34 J s � 3 � 1010 cm s�1

1:12 � 1:602 � 10�19 J
D 1:11 �m ; (21.135)

that belongs to the near infrared. A multi-junction cell consists of a stack of two
or more single-junction cells, each with a different band gap; this arrangement is
able to absorb a larger fraction of the spectrum, making the maximum theoretical
efficiency to reach 42% or 49% in a two-cell or three-cell stack, respectively.

Another parameter that influences the efficiency of the solar cell is temperature.
In the normal functioning of a cell, temperature reaches about 350 K due to
the combined effect of the exposure to sunlight and of the internal losses; even
higher temperatures are reached when light concentrators are used. The increase
in temperature degrades the cell’s efficiency; from a thermodynamic viewpoint this
was expected, because the cell can be thought of as an engine that delivers energy by
working between two temperatures: the larger one, TH , is that of the sun, the lower
one, TL, is that of cell itself. In turn, the efficiency of a real engine cannot exceed
that of a reversible engine, 1 � TL=TH [47, Sect. III-9].

A more detailed analysis shows that an increase in temperature makes VOC and,
consequently, VMP, to decrease. This shows, in passing, that the fill factor (21.133)
is not an efficiency: the I.V/ curve may deform in a way that makes the product
VMP IMP, hence the efficiency, to decrease, without altering the fill factor.

21.9.6 Equivalent Circuit of the P-N-P BJT (Single Generator)

The equivalent circuit of Fig. 21.25 is easily transformed into a circuit in which only
one current generator is present. To this purpose, the original equations (21.102) are
recast as

IE D Œ.a11 C a21/ FE C IUE�C a12 .FC � FE/ ; (21.136)

IC D Œ.a22 C a12/FC C IUC�C a21 .FE � FC/ ; (21.137)

41Due to the need of minimizing at the same time the shielding effect and the series resistance, the
total area and layout of the wiring over the top surface of a solar cell must be optimized carefully.



596 21 Bipolar Devices

Fig. 21.28 The upper part of
the figure shows the
transformation from the
two-generator equivalent
circuit of Fig. 21.25 to the
single-generator circuit, still
in the common-base
configuration. The lower part
shows the transformation of
the latter into the
common-emitter
configuration
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where the equality a21 D a12 has been exploited. The term in brackets in (21.136)
is identical to the equation of a p-n junction, subjected to VEB, whose saturation
current is a11 C a21; the remaining term IG D a12 .FC � FE/ D ja12j .FE � FC/ is
another contribution to IE, controlled by VEB and VCB. Similarly, (21.137) expresses
IC as the sum of�IG and the current of a p-n junction subjected to VCB, having a22C
a12 as saturation current. The equivalent circuit corresponding to (21.136, 21.137)
is shown in the upper part of Fig. 21.28 where, to the purpose of carrying out a
subsequent transformation, and remembering that IB D IE C IC, the emitter contact
is split into two branches: the upper branch belongs to the loop that closes into
the collector, while the lower branch belongs to the loop that closes into the base.
A replica of the single-generator equivalent circuit is shown in the lower part of
Fig. 21.28, where the two-port circuit is drawn in the common-emitter configuration
IB D IB.VEB;VEC/, IC D IC.VEB;VEC/. The current gain of such a configuration is
given by (21.109). In turn, using the expressions (21.104), (21.105) for a11; : : : ; a22
one finds a11 C a21 ' q Ae DE nE=LE and a22 C a12 ' q Ae DC nC=LC.

Still with reference to the lower part of Fig 21.28, in the forward regime (VEB >

0, VCB < 0, FC ' �1) one simplifies the circuit by neglecting the current flowing
between B and C; it follows IG ' �IC. Thus, from (21.109), IG ' hFE IBC IC0=.1�

hFB/ ' hFE IB. In this way, the equivalent circuit reduces to the simplest form, made
of two elements only. The corresponding low-frequency, small-signal circuit, also
known as Giacoletto circuit [53], is found by linearizing the emitter-base junction
around the operating point V.0/

EB , I.0/B D IB.V
.0/
EB /. To this purpose, one obtains first

the base current IB D IE C IC by adding up (21.136) and (21.137); in the forward
regime the result reduces to



21.9 Complements 597

IB ' q Ae
DE nE

LE
exp

�
q VEB

kB T

�
: (21.138)

Letting vEB D VEB � V.0/
EB and iB D IB � I.0/B , the linearized relation for the base-

emitter port reads

iB D
vEB

r�
; r� D

kB T=q

I.0/B

; (21.139)

with r� the small-signal input resistance in the common-emitter configuration. In
turn, the relation for the collector-emitter port is

iG D hFE iB D gm vEB ; gm D
hFE

r�
D

hFE I.0/B

kB T=q
D

I.0/C

kB T=q
; (21.140)

with gm the transconductance.

21.9.7 Comment on the Diffusion Length

The analysis of the p-n junction and of the BJT carried out in this chapter has
shown that the diffusion length of the minority carriers plays an important role in
determining the spatial behavior of the carrier concentration. Refer for instance to
the n-type quasi-neutral region of a p-n junction, whose extent is assumed to be
large enough to make the asymptotic condition applicable (Sect. 21.2.1); letting the
origin of x coincide with the boundary between the quasi-neutral and space-charge
regions (Fig. 21.6), the hole concentration reads

p D pn0 C Ap exp.�x=Lp/ ; Lp D
p
�p Dp : (21.141)

Thus, Lp determines the rate of decay of the minority-carrier concentration toward
the asymptotic value. The expression of Lp shows that the diffusion length is in
fact the result of two competing mechanisms, thermal recombination and diffusion.
In the weak-injection approximation (21.25), the net thermal recombination rate
is dictated by �p only; in the �p ! 0 limit it must be p ! pn0 to prevent the
left-hand side of (21.25) from diverging. Without the limit, when the lifetime is
small the minority-carrier concentration is kept close to the equilibrium value; if, at
the same time, the diffusion coefficient Dp is small, the hole current density Jp D

�q Dp dp=dx and average velocity, related to the former by Jp D q p vp, are also
small. In these conditions, the holes entering the quasi-neutral region at x D 0

move slowly and recombine quickly, thus providing a spatially rapid decay to the
asymptotic value; this is rendered by (21.141), where Lp is small. The reasoning can
be repeated using other combinations of the values of �p and Dp. Also, it can easily
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be proven from (21.141) that Lp is the average value of the inverse function x D x.p/
(Prob. 21.13); thus, Lp can be thought of as the average distance traveled by a hole
within the quasi-neutral region before recombining.

Problems

21.1 The built-in potential  0 of an abrupt p-n junction is calculated in Sect. 21.2.1
assuming that the nondegeneracy and complete-ionization conditions hold. Find
a method to determine  0 when the two hypotheses above are disposed of (the
outcome of the calculation is not necessarily a closed-form equation).

21.2 Show that avalanche due to impact ionization is possible only if both
coefficients kn and kp are different from zero.

21.3 Evaluate the widths ln, lp of the space-charge region in an abrupt, silicon p-n
junction at room temperature, with NA D 1017 cm3 and ND D 1014 cm3, subjected
to a 2:1 V reverse bias.

21.4 Consider the current of a silicon photodiode operating in the continuous mode,
given by (21.66). Using for l the value calculated in Prob. 21.3, and letting Ae D 1

cm2, �g D 100 �s (the definition of �g is in Sect. 20.2.3, compare also with the
values of the minority-carrier lifetimes given in Sect. 21.9.4), estimate the current
due to the second term in parentheses in (21.66) at room temperature.

21.5 Calculate the time constant �0 of (21.68) letting Ae D 1 cm2 and using for IG

a value five times larger than that of the recombination current found in Prob. 21.4.
For  0 and C0 take the values from (21.127) and (21.132), respectively.

21.6 If the integration time Ti is much shorter than �0, one can linearize (21.69).
Find by this method the value of Vi corresponding to Ti D 15 ms. Let V0 D �2:6
V, R D 100 k�, m D 2, and use for �0 and IG the same values as in Prob. 21.5.

21.7 Using the same values as in Prob. 21.6, find the current gain of the storage-
mode operation.

21.8 Solve (21.71) for m D 2, using the initial condition VD D Vi and assuming
that IG is independent of time.

21.9 Solve (21.71) for m D 3, using the initial condition VD D Vi and assuming
that IG is independent of time.

21.10 Draw the graph of VD.t/ within the integration time, with m D 2 and m D 3.
For the parameters use the values V0 C R IG ' �2:6 V,  0 D 0:65 V, �0 D 143 ms,
Ti D 15 ms.
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21.11 Draw the graph of VD.t/ within the sampling time, with m D 2 and m D 3.
Use the same parameters as in Prob. 21.10, and � D 0:98 ms. For the initial
condition use the value of VD at the end of the integration time, as found in
Prob. 21.10.

21.12 Solve the algebraic system (21.78, 21.79) without linearizing the exponen-
tials.

21.13 Use (21.141) to show that the minority-carrier diffusion length in a quasi-
neutral region (Lp in this case) is the average value of the inverse function x D x.p/.



Chapter 22
MOS Devices

22.1 Introduction

The mathematical model of semiconductor devices, derived in Chap. 19, is applied
here to the description of two fundamental devices of the insulated-gate type:
the MIS capacitor, whose most important implementation is the MOS capacitor,
and the IGFET, whose most important implementation is the MOSFET. Both
devices can be realized starting from either a p-doped or an n-doped substrate.
The analysis of the MOS capacitor is carried out using the simple example of
a one-dimensional device in steady state, with the hypotheses of nondegeneracy
and complete ionization, that lend themselves to an analytical treatment. Observing
that in a steady-state condition the device is in equilibrium, the theory needs the
solution of Poisson’s equation only. From the solution of the latter, the device’s
capacitance is calculated, followed by a number of other important relations,
that are useful in the subsequent treatment of the MOSFET. The functioning of
the photocapacitor is worked out thereafter, by combining the analysis of the
MOS capacitor with that of the storage-mode photodiode illustrated in Chap. 21.
The theory of the MOSFET is then tackled in two dimensions and in steady-
state conditions, first deriving a general expression for the channel current that
holds in the case of a well-formed channel. The calculation is then completed by
introducing the gradual-channel approximation: the differential conductances are
derived first, followed by the expression of the drain current as a function of the
applied voltages. A further simplification leads to the linear-parabolic model, which
is widely used in the semiqualitative analyses of circuits. Then, still basing upon
the linear-parabolic model, the input-output characteristic of the CMOS inverter
is derived. The complements address the solution of the Poisson equation in the
channel when a nonequilibrium condition holds, to provide a formal proof of the
relation between the surface and quasi-Fermi potentials used in the gradual-channel
approximation; then, a few phenomena that are not accounted for by the gradual-
channel approximation are discussed, and the neglect of the dependence on position
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of the average carrier mobility is justified. Finally, the theory of the MOSFET is
worked out again after disposing of the hypothesis of a well-formed channel; in
this way, the subthreshold operation of the device is described. This chapter is
concluded by the illustration of the scaling rules applied to the miniaturization of
semiconductor devices, and by a brief account on the design procedures typically
adopted in the integrated-circuit production.

22.2 Metal-Insulator-Semiconductor Capacitor

The Metal-Insulator-Semiconductor (MIS) capacitor is a fundamental device that
constitutes the basis for the field-effect transistors used in the fabrication of
integrated circuits. The device has also extensively been used for studying the
properties of semiconductor surfaces [128]. A one-dimensional version of it is
sketched in Fig. 22.1: the structure is fabricated by depositing or thermally growing
(Chap. 24) an insulator layer over a semiconductor substrate. The fabrication
process must obtain an electrically clean interface; in fact, the number of localized
electronic states at the interface must be kept to a minimum to avoid carrier trapping-
detrapping processes. The contact deposited onto the insulator is called gate contact,
the other one is called bulk contact.

In the standard silicon technology, the insulator is obtained by thermally growing
silicon dioxide (Sect. 24.2). For this reason, the thickness of the insulator is indicated
in the following with tox instead of the generic symbol ti used in Fig. 22.1; by
the same token, the insulator’s permittivity is indicated with "ox, and the device is
called MOS capacitor. In the last years, the progressive scaling down in the size of
semiconductor devices has brought the insulator thickness to the range of nanome-
ters. A smaller thickness has the advantage of providing a larger capacitance;
however, it may eventually lead to dielectric breakdown and leakage by quantum

t i

gate contact bulk contactinsulator

contact−insulator interface

semiconductor−insulator interface

x0

semiconductor

Fig. 22.1 Cross-section of a metal-insulator-semiconductor capacitor. The thickness of the insu-
lator layer is not realistic: in real devices the layer is much thinner than the contacts
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Fig. 22.2 The three materials
forming the MOS capacitor
shown separately. The
symbols’ meaning is
illustrated in the text

0E

CE m

A ox

EC
ox

0E 0E

EF

EF
m EF

ox CE

E
Fi

VE

W

EV
ox

metal oxide semiconductor

A

tunneling. Silicon dioxide, which has been used as a gate insulator for decades, is
being replaced in advanced devices with insulating layers made of materials having
a larger permittivity (high-k dielectrics). Such layers are obtained by deposition
(Sect. 24.5). Still with reference to the silicon technology, the conductive layers are
made of metals, heavily doped polycrystalline silicon, or metal silicides; here they
will be indicated with the generic term “metal.”

Like in the case of p-n junctions, the theory of the MOS capacitor is carried
out with reference to a simplified structure, where the device is one dimensional
and aligned with the x axis; in this case the semiconductor–insulator interface is
a plane normal to x and, as shown in Fig. 22.1, its position is made to coincide
with the reference’s origin. A constant dopant concentration is present in the
semiconductor region; to further simplify the analytical approach one also assumes
that the conditions of nondegeneracy and complete ionization hold.

To describe the functioning of the device it is necessary to consider the fact that
in a region where the important electric phenomena occur, different materials are
brought into an intimate contact. With reference to Fig. 22.2, the three materials
(gate metal, oxide, and semiconductor) are initially considered separate from each
other, and in the equilibrium condition. The left part of the figure shows the
conduction band of the metal, with Em

C the band’s lower edge and Em
F the metal’s

Fermi level. Due to the form of the Fermi-Dirac statistics, the probability that an
electron’s energy exceeds Em

F is small; remembering the discussion of Sect. 7.2, the
minimum energy necessary for an electron to transit from the metal into vacuum
is the metal work function W D E0 � Em

F , with E0 the vacuum level (left part
of Fig. 22.2). For an insulator or a semiconductor, the electrons with maximum
energy belong to states in the vicinity of the lower edge of the conduction band,
Eox

C (center) or EC (right); in this case the minimum energy necessary for transiting
into vacuum is the electron affinity Aox D E0�Eox

C or A D E0�EC, respectively. The
semiconductor considered in the figure is uniformly doped of the p type, as shown
by the fact that the Fermi level is below the intrinsic Fermi level EFi (Sect. 18.4.2).
However, the analysis carried out here applies also to a semiconductor of the n type.
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Fig. 22.3 The three materials
forming the MOS capacitor
after being brought into
contact. The symbols’
meaning is illustrated in the
text
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When the materials are brought into contact, they form a single, nonuniform
system; as a consequence, in the equilibrium condition the Fermi levels must align
with each other. On the other hand, the vacuum levels must align as well, and the
bands must adapt to compensate for a possible charge redistribution that occurs
when the materials contact each other. The situation is similar to that represented
in Fig. 21.3 for the p-n junction. The values of the parameters W;A; : : : selected for
drawing Fig. 22.2 fulfill the relation

W � A D EC � EF : (22.1)

As a consequence, there is no need for the bands to modify their shape; as shown in
Fig. 22.3, which represents the situation after the materials have been brought into
contact, the bands do not deform. The condition where the semiconductor’s bands
are everywhere parallel to the Fermi level is indicated with flat-band condition.1 It is
important to remark that condition (22.1) seldom occurs in realistic cases; however,
as shown below, the case W � A ¤ EC � EF is easily incorporated into the analysis.

When the bulk contact is considered, Figs. 22.2 and 22.3 must be completed
by adding the band structure of the contact’s material to the right of that of the
semiconductor. Assuming that the gate and bulk contacts are made of the same
material, the structure to be added is identical to that already present on the left part
of the figures. In the interior of each material, due to spatial uniformity, the electric
potential is piecewise constant, thus the electric field is zero.

Consider now the case where a voltage VG is applied between the gate and bulk
contacts; the voltage reference is such that VG > 0 when the electric potential of
the gate contact is larger than that of the bulk contact, and vice versa. In steady-
state conditions, the insulator prevents a current from flowing through the device;
therefore, during the transient consequent to the application of VG, the electric

1The form of 22.1 is general enough to hold for both p- and n-type semiconductors.



22.2 Metal-Insulator-Semiconductor Capacitor 605

charge adjusts itself to the new boundary conditions. At the end of the transient
the device is again in an equilibrium condition, while the form of the bands is
different from that of Fig. 22.3. Similarly, the electric potential in the oxide and
semiconductor is not constant any longer; its form is found by solving the Poisson
equation in each region.

22.2.1 Surface Potential—P-Type Substrate

The solution of the Poisson equation in the semiconductor region follows the same
pattern as for the p-n junction (Sect. 21.2.1). Here a uniformly p-doped region
is considered; its extension along the x axis is large, so that, far away from the
semiconductor–insulator interface, the semiconductor behaves as if it were isolated.
This fixes the carrier-equilibrium concentrations in the bulk; the asymptotic value
of the electric potential is set to zero, '.C1/ D 0 whence, remembering that the
nondegeneracy and complete-ionization conditions hold, it is

p.0/ D p.C1/ D pp0 ' NA ; n.0/ D n.C1/ D np0 '
n2i
NA

: (22.2)

The Poisson equation in the semiconductor then reads

u00 D
1

L2A
A.u/ ; A.u/ D

n2i
N2

A

Œexp.u/ � 1�C 1 � exp.�u/ ; (22.3)

with LA the Debye length for the holes defined in (21.12). The normalized charge
density A.u/ has the same sign as u (compare with Sect. 21.2.1). Multiplying by u0

both sides of the first equation in (22.3), transforming its left-hand side into u00 u0 D
.1=2/ Œ.u0/2�0, and integrating from x � 0 toC1 yield

�
u0
	2
D

2

L2A
B.u/ ; B.u/ D

n2i
N2

A

Œexp.u/ � 1 � u�CuCexp.�u/�1 : (22.4)

Following the same reasoning as for (21.10), one finds that B is nonnegative and u
monotonic. However, in contrast with the case of the p-n junction, where the sign of
u0 is positive due to the boundary condition at x! �1, here u may either increase
or decrease monotonically; in fact, the sign of u0 is fixed by the boundary condition
VG, which in turn may be either positive or negative. In conclusion, one finds

u0 D ˙

p
2

LA
F.u/ ; F.u/ D

s
n2i
N2

A

Œexp.u/ � 1 � u�C uC exp.�u/ � 1 ;

(22.5)
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where the sign must be found on a case-by-case basis. Separating (22.5) finally
yields

du

F.u/
D ˙

p
2

LA
dx ; (22.6)

which must be solved numerically because it has no analytical solution.2 Much
information, however, is gained directly from (22.5), without the need of integrat-
ing (22.6). To this purpose, one notes that the electric potential is continuous at
the semiconductor–oxide interface; in fact, the normalized charge density in the
semiconductor (22.3) has no charge layers in it, hence it cannot contribute to a
double charge layer at the interface. As a consequence, one can adopt the same
symbol 's for the electric potential at x D 0, without distinguishing between the
two sides of the interface; 's is called surface potential, whilst us D q's=.kB T/ is
the normalized surface potential. In contrast, the electric field is discontinuous at
the same interface; for this reason, one defines

u0s D lim
x!0C

du

dx
; Es D �

kB T

q
u0s ; Eox D � lim

x!0�

d'

dx
: (22.7)

The relation between Es and Eox is found by considering a cylinder of thickness c
placed across the semiconductor–oxide interface, such that the unit vector nR normal
to the right face is parallel to the unit vector i of the x axis, whereas the unit vector
nL normal to the left face is antiparallel to i (Fig. 22.4). Letting Ae be the common
area of the two faces, the total charge within the cylinder is Ae Q, with Q the charge
per unit area. Integrating div D D % over the cylinder’s volume and using (A.23)
yield

Ae Q D
Z

Ae

D � n dAe D Ae ŒDL i � .�i/C DR i � i� D Ae .DR � DL/ ; (22.8)

with DR (DL) the electric displacement on the right (left) face. From D D "E one
then finds Q D "sc ER � "ox EL. It has been shown above that there are no charge
layers on the semiconductor’s side; as for the oxide layer, in principle it should
be free of charges, although some contaminants may be present (Sect. 24.1). Here
it is assumed that the oxide is free of charge; in conclusion, letting the cylinder’s
thickness c go to zero, one obtains Q! 0, whence, using the limits (22.7),

"sc Es D "ox Eox : (22.9)

2The numerical evaluation from (22.6) of the inverse relation x D x.u/ is straightforward, though.
Letting  D

p
2 x=LA, 0 D 0, u0 D us, F0 D F.u0/, it is ukC1 D uk
 ıu, FkC1 D F.ukC1/, and

kC1 D k C .1=Fk C 1=FkC1/ ıu=2, with k D 0; 1; : : :.
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Fig. 22.4 The cylinder used
to calculate the relation
between electric displacement
and charge per unit area
across an interface
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To find Eox one observes that in a one-dimensional medium free of charge the
electric potential is linear, whence Eox is given by the negative potential drop across
the oxide divided by the oxide thickness tox. To complete the analysis it is then
necessary to consider the interface between oxide and gate metal.

In the interior of the metal the electric potential is uniform; its value with respect
to the metal of the bulk contact is VG. However, in the solution of the Poisson
equation within the semiconductor, the asymptotic condition '.C1/ D 0 has been
chosen, which holds inside the semiconductor region; the surface potential 's is
referred to such a zero as well. If (22.1) holds, the distinction between bulk contact
and bulk semiconductor does not matter because the electric potential is the same;
however, in the realistic cases it is not so, whence VG and 's are referred to two
different zeros. Assuming that the interior of the oxide and the semiconductor–
oxide interface are free of charge, and remembering the discussion carried out in
Sect. 21.2.2, the difference between the external zero (namely, that within the bulk
contact) and the internal zero (given by the asymptotic condition) is the built-in
potential ˚mp between the bulk contact and the p-type semiconductor; thus, the gate
voltage referred to the internal zero is V 0G D VG � ˚mp. Also, the electric potential
is continuous across the interface between the oxide and the gate metal, because no
double layer is present there. In contrast, as E D 0 within the metal while Eox ¤ 0,
the electric field is generally discontinuous; in fact, a charge layer of density

%m D Qm ı.xC t�ox/ ; (22.10)

with Qm the charge per unit area of the metal, builds up at the gate-metal’s surface.
In conclusion, the electric field within the oxide reads

Eox D
V 0G � 's

tox
: (22.11)
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22.2.2 Relation Between Surface Potential and Gate Voltage

Combining (22.5), (22.7), (22.9), and (22.11) one finds

Cox
�
V 0G � 's

	
D 
"sc

kB T

q

p
2

LA
F.'s/ ; Cox D

"ox

tox
; (22.12)

where Cox is the oxide capacitance per unit area, and F.'s/ is obtained by replacing
u with q's=.kB T/ in the second relation of (22.5). The left-hand side of (22.12) is
the charge per unit area Qm in the gate metal. This is easily found by considering
the same cylinder as above, this time placed across the metal-oxide interface.
Integrating div D D % over the cylinder’s volume, using (22.10), and observing
that DL D 0 because the metal’s interior is equipotential yield

Ae Qm D

Z

Ae

D � n dAe D Ae DR D Ae Cox
�
V 0G � 's

	
: (22.13)

Due to the global charge neutrality, the following relation holds between the charge
per unit area in the gate metal, Qm, and that within the semiconductor, Qsc:

QmCQsc D 0 ; Qsc D

Z 1

0

q .p�n�NA/ dx D �Cox
�
V 0G � 's

	
: (22.14)

In conclusion, (22.12) provides the relation between surface potential and gate volt-
age. When 's D 0, the electric potential vanishes everywhere in the semiconductor,
namely, V 0G D 0 corresponds to the flat-band condition. When V 0G > 0, the charge
in the gate metal is positive; as a consequence, the left-hand side of (22.12) is
positive as well, whence V 0G > 's and the positive sign must be chosen at the right-
hand side. The opposite happens when V 0G < 0. An example of the 's D 's.V 0G/
relation is given in Fig. 22.5, showing the normalized surface potential us in an
MOS capacitor as a function of the normalized gate voltage u0G D q V 0G=.kB T/.
The semiconductor’s doping is of the p type with NA D 1016 cm�3, corresponding
to 2 uF D 2 q'F=.kB T/ D log.pp0=np0/ ' 27:6.

The 's D 's.V 0G/ relation lends itself to identifying different functioning regimes
of the MOS capacitor. This identification can be carried out more accurately basing
upon the values of the electron and hole concentrations at the semiconductor surface,
ns D n.x D 0/ and ps D p.x D 0/. In the nondegenerate conditions considered here,
the expressions of the surface concentrations read

ns D np0 exp.us/ D ni exp.us � uF/ ; ps D pp0 exp.�us/ D ni exp.uF � us/ ;

(22.15)

where uF D .1=2/ log.pp0=np0/ ' log.NA=ni/ > 0: Depending on the value
of us, several functioning regimes are identified, which are listed in Table 22.1.
The regimes’ designations are given by comparing the carrier concentrations at the
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Fig. 22.5 Normalized
surface potential us in an
MOS capacitor with a p-type
substrate (NA D 1016 cm�3),
as a function of the
normalized gate voltage u0
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Table 22.1 MOS capacitor, p substrate—functioning regimes

Norm. surface potential Concentrations Designation

us < 0 ns < np0 < ni < pp0 < ps Accumulation

us D 0 ns D np0 < ni < pp0 D ps Flat band

0 < us < uF np0 < ns < ni < ps < pp0 Depletion

us D uF np0 < ns D ni D ps < pp0 Mid gap

uF < us < 2 uF np0 < ps < ni < ns < pp0 Weak inversion

us D 2 uF np0 D ps < ni < ns D pp0 Threshold

2 uF < us ps < np0 < ni < pp0 < ns Strong inversion

surface with the intrinsic and asymptotic ones. When us < 0 the majority-carrier sur-
face concentration (holes, in the example used here) exceeds the asymptotic one; the
regime is called accumulation. When us D 0, both majority- and minority-carrier
concentrations equal the corresponding asymptotic concentrations everywhere, and
the already-mentioned flat-band condition holds. For 0 < us < uF, the majority-
carrier concentration is smaller than the asymptotic one, while the minority-carrier
concentration is smaller than the intrinsic one. By continuity, the majority-carrier
concentrations is smaller than the asymptotic one not only at the semiconductor’s
surface, but also in a finite region of width xd, which is therefore depleted from
carriers; for this reason, the condition 0 < us < uF is called depletion regime, and
xd is called depletion width.3 When us D uF, both majority- and minority-carrier
concentrations at the surface equal the intrinsic concentration; remembering that
in an intrinsic semiconductor the Fermi level practically coincides with the gap’s

3The depletion width xd is conceptually the same thing as the extension lp of the space-charge
region on the p side of a metallurgical junction (Sect. 21.2.2). A different symbol is used to avoid
confusion in the analysis of the MOSFET (Sect. 22.8).
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Fig. 22.6 Schematic representation of the charge density and electric potential in a p-substrate
MOS capacitor in the accumulation regime

midpoint (Sect. 18.3), this regime is called mid gap. When uF < us < 2 uF, the
minority-carrier concentration at the surface exceeds that of the majority carriers;
however, it is still lower than the asymptotic concentration of the majority carriers:
the regime is called weak inversion. When us D 2 uF , the surface concentration of
the minority carriers equals the asymptotic concentration of the majority carriers,
and vice versa; the regime is called threshold of the strong inversion, or simply
threshold. Finally, when us > 2 uF, the minority-carrier concentration at the surface
exceeds the asymptotic concentration of the majority carriers, and the regime is
called strong inversion. In Fig. 22.5 the normalized surface potential at threshold,
2 uF , is marked by the horizontal bar; one notes that in the strong-inversion regime
the surface potential rapidly saturates as the gate voltage increases.

The form of the electric potential and charge density is shown in Fig. 22.6 for
the accumulation regime. The upper part of the figure shows the charge density,
which is schematically represented by a negative charge layer at the metal-oxide
interface and by the thicker, positive layer at the semiconductor oxide interface.
The lower part of the figure shows the electric potential along with the band structure
of the semiconductor; note that two different vertical axes are used, in such a way
that energy increases upwards and the electric potential increases downwards. The
zero of the electric potential coincides with the horizontal part of the dashed line
(in fact, here it is V 0G < 's < 0). The mid-gap condition, V 0G > 0, 's D 'F, is
illustrated in Fig. 22.7, whose general description is similar to that of Fig. 22.6; here
the charge layer on the gate metal is positive and balances the negative charge of
the semiconductor. Due to the depletion that occurs in the region adjacent to the
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Fig. 22.7 Schematic representation of the charge density and electric potential in a p-substrate
MOS capacitor in the mid-gap condition

semiconductor–oxide interface, the charge density is dominated by the contribution
from the negative acceptor ions, % ' �q NA. In the figure, the charge density of
the semiconductor is schematically indicated by the shaded area, that corresponds
to a charge per unit area equal to �q NA xd. Finally, Fig. 22.8 shows the form of
the electric potential and charge density for the threshold condition, V 0G > 0, 's D

2 'F. Again, the general description is similar to that of Figs. 22.6 and 22.7; here,
there are two contributions to the negative charge of the semiconductor: the first one
comes from the contribution of the negative acceptor ions, whose charge density is
schematically indicated by the shaded area of width xd (note that due to the larger
value of VG, the depletion width is larger than that of the mid-gap condition). The
second contribution to the semiconductor’s charge is due to the electrons, whose
concentrations at the interface or near it is sufficiently large to be significant; they
form a negative layer, called inversion layer, whose width, albeit larger than that of
the positive layer located at the metal-oxide interface,4 is much smaller than xd.

Numerical solutions of the semiconductor-device model show that, with the
exception of the accumulation regime, the semiconductor region of a uniformly
doped MOS capacitor can be partitioned into a space-charge and a quasi-neutral
region; the quasi-neutral region behaves as an isolated, uniform semiconductor,

4The width of the region where the charged layer at the metal-oxide interface is significant is of
the order of 1 nm. That of an inversion layer is of the order of 5 nm; an example is given below,
with reference to Fig. 22.14.
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Fig. 22.8 Schematic representation of the charge density and electric potential in a p-substrate
MOS capacitor at threshold

whereas in the volume of the space-charge5 region the charge density is essentially
dominated by the ionized dopants. In the threshold and strong-inversion regimes, the
layer of mobile charges near the semiconductor–oxide interface gives a significant
contribution, which must be accounted for; it can be approximated as a charge
layer at the interface. Considering the range 's > 0 only, namely, excluding the
accumulation regime for the p-substrate MOS capacitor, the charge per unit area in
the semiconductor is found to be

Qsc D

Z 1

0

% dx '
Z xd

0

% dx ' �q
Z xd

0

.nC NA/ dx D Qi C Qb ; (22.16)

where the first approximation is due to neglecting the charge of the quasi-neutral
region, the second one to neglecting the holes in the space-charge region. Quantities
Qi;Qb < 0 are, respectively, the integral of �q n and �q NA; they are called
inversion charge per unit area and bulk charge per unit area.

5With reference to MOS devices, the space-charge region is also called depleted region.
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22.3 Capacitance of the MOS Structure—P-Type Substrate

The capacitance per unit area of the MOS structure is given by6

C D
dQm

dVG
D

dQm

dV 0G
: (22.17)

Combining (22.17) with (22.12) and (22.14) yields

1

C
D

dV 0G
dQm

D
d
�
V 0G � 's

	
C d's

dQm
D

1

Cox
C

d's

d.�Qsc/
: (22.18)

The above is recast in a more compact form by defining the semiconductor
capacitance per unit area

Csc D �
dQsc

d's
D �

q

kB T

dQsc

dus
D ˙

p
2 "sc

LA

dF

dus
> 0 ; (22.19)

where the positive (negative) sign holds for us > 0 (us < 0). In conclusion, the
capacitance is the series of the oxide and semiconductor capacitances:

1

C
D

1

Cox
C

1

Csc
: (22.20)

In (22.20) it is Cox D const while Csc has a rather complicate dependence on us.
However, basing on the second equation in (22.5), one may investigate the limiting
cases of (22.20). For this, using exp.�2 uF/ D n2i =N2

A, one finds for the asymptotic
behavior of F in a p-substrate device,

F ' exp.us=2 � uF/ ; us � 1 I F ' exp.�us=2/ ; us � �1 : (22.21)

When, instead, it is jusj � 1, expanding the exponentials yields exp.˙us/ ' 1 ˙

us C u2s=2, whence, observing that exp.�2 uF/� 1,

F2 '
1

2
Œ1C exp.�2 uF/� u2s '

1

2
u2s ; F ' ˙

us
p
2
: (22.22)

6Like in the case of the depletion capacitance of the p-n junction (Sect. 21.4), definition C D
dQm=dVG is coherent with the choice of the voltage reference described in Sect. 22.2. The units of
C are ŒC� D F m�2.
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Then, from (22.19) the asymptotic values of Csc are found to be

Csc '
1
p
2

"sc

LA
exp.us=2 � uF/ ; us � 1 ; (22.23)

Csc '
1
p
2

"sc

LA
exp.�us=2/ ; us � �1 : (22.24)

Both limits correspond to the same asymptotic value of the capacitance per unit
area,

C D
Cox Csc

Cox C Csc
' Cox ; jusj � 1 : (22.25)

Near the origin, instead, one finds

Csc '
"sc

LA
; jusj � 1 : (22.26)

The limit of C for us ! 0 is called flat-band capacitance per unit area; from (22.26)
one finds

C ' CFB D
Cox

1C Cox LA="sc
< Cox ; jusj � 1 : (22.27)

Examples of capacitance’s calculations are shown in Fig. 22.9.

Fig. 22.9 Normalized
capacitance C=Cox as a
function of the normalized
gate voltage u0

G, in a
p-substrate MOS capacitor
with NA D 1016 cm�3, for
different values of
r D "sc tox=."ox

p
2 LA/. The

details of the calculations are
in Prob. 22.1
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22.4 Simplified Expression of the Inversion Charge

To the purpose of applying some results of the MOS capacitor’s theory to the
analysis of MOSFETs, it is convenient to determine a simplified form of the
inversion layer’s charge, that holds in all the functioning regimes with the exception
of accumulation. For this, one starts from the expression of the semiconductor
charge per unit area which, combining (22.12) and (22.13), reads

Qsc D ˙Q.1/
sc F.us/ ; Q.1/

sc D "sc
kB T

q

p
2

LA
; (22.28)

where the negative (positive) sign must be chosen when us > 0 (us < 0), and Q.1/
sc

is the value of Qsc corresponding to F D 1. The relation Qsc D Qsc.us/ is shown in
normalized units in Fig. 22.10. In turn, Fig. 22.11 shows, still in normalized form,
the individual contributions of electrons, holes, and bulk charge to F2 D ŒQsc=Q.1/

sc �
2;

such contributions are, respectively, exp.�2 uF/ Œexp.us/ � 1�, exp.�us/ � 1, and
Œ1� exp.�2 uF/� us. The contribution of holes dominates for us < 0, that of the bulk
charge dominates for 0 < us < 2 uF and, finally, that of the electrons dominates for
us > 2 uF .

When accumulation is excluded, in a p-substrate capacitor one must take us > 0.
The approximate dependence of F on the normalized potential is easily worked out
from (22.5), whose limiting case in the depletion and weak-inversion regimes is

F '
p

us ; 0 < us < 2 uF : (22.29)

Fig. 22.10 Normalized
charge per unit area as a
function of the normalized
surface potential, in a
p-substrate MOS capacitor
with NA D 1016 cm�3
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Fig. 22.11 Individual
contributions of electrons,
holes, and bulk charge to
F2 D ŒQsc=Q.1/

sc �
2, as a

function of the normalized
surface potential us, in a
p-substrate MOS capacitor
with NA D 1016 cm�3
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Introducing (22.29) into (22.28) yields, for 0 < us < 2 uF ,

Qsc ' �

p
2 "sc kB T

q LA

r
q's

kB T
D �Cox �

p
's ; � D

p
2 "sc q pp0

Cox
; (22.30)

where the expression (21.12) of the Debye length LA has been used.7 It is interesting
to note that a relation identical to (22.30) is obtained using the full-depletion and
ASCE approximations (Sect. 21.4); in fact, letting % D �q NA for 0 < x < xd and
% D 0 for x > xd (compare, e.g., with Figs. 22.7 and 22.8) yields a simplified form
of the Poisson equation,

'00 '
q NA

"sc
; 0 < x < xd : (22.31)

The boundary conditions of (22.31) are obtained in the same manner as in the p-
n junction, and read '.xd/ D 0, '0.xd/ D 0; the solution of (22.31) fulfilling the
boundary conditions is '.x/ D q NA .x � xd/

2=.2 "sc/. Letting x D 0 in the above
yields a relation between the surface potential and the depletion width; in turn, in
the full-depletion and ASCE approximations the bulk charge per unit area is Qb D

�q NA xd. In summary,

's D
q NA

2 "sc
x2d ; Qb D �q NA xd D �

p
2 "sc q NA 's : (22.32)

Observing that for 0 < us < 2 uF it is Qsc ' Qb, and that NA ' pp0, one
finds that the second relation in (22.32) coincides with the first one in (22.30).

7The units of � are Œ�� D V1=2.
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Combining Qsc ' Qb with (22.30) and with the general expression (22.14) yields
V 0G�'s D �

p
's; from it, one finds a simplified 's D 's.V 0G/ relation, that holds in

the depletion and weak-inversion conditions:8

p
's D

q
V 0G C .�=2/

2 � �=2 : (22.33)

The contribution of electrons to the semiconductor charge per unit area, Qi D

�q
R xd

0
n dx, becomes relevant from the threshold condition on. Remembering the

discussion of Sect. 22.2.2, the electron charge is approximated as a charge layer
at the interface, �q n ' Qi ı.xC/; as a consequence, the space charge can be
considered as entirely due to the ionized dopant atoms also when 's > 2'F, so
that (22.31) and (22.32) still hold. From (22.16) one then finds the result sought, that
is, a simplified form of the inversion layer’s charge of a p-substrate MOS capacitor,
that holds in the depletion, weak-inversion, and strong-inversion regimes:

Qi D Qsc � Qb D �Cox
��

V 0G � 's
	
� �
p
's
�
< 0 : (22.34)

22.4.1 Flat-Band Voltage

The theory worked out so far was initially based on the assumption that rela-
tion (22.1) holds between the gate metal’s work function, the semiconductor’s
affinity, and the position of the semiconductor’s Fermi level with respect to the
band edges. The assumption was then removed and, to account for the possibility
that W � A ¤ EC � EF, the difference V 0G D VG � ˚mp has been used to
replace VG when the gate voltage referred to the bulk semiconductor is to be
considered, with ˚mp the built-in potential between the bulk contact and the p-
type semiconductor (Sect. 22.2.1). This outcome is better understood with the aid
of Fig. 22.3, where the electron affinity A of the semiconductor is larger than that
used in Fig. 22.3, so that W � A < EC � EF. As shown in the figure, the distance
between the Fermi level of the metal and the vacuum level is prescribed by W;
such a distance is the same everywhere in the metal, because the interior of the
latter is equipotential. In turn, the distance between the vacuum level and the edge
of the semiconductor’s conduction band, at the semiconductor–oxide interface, is
prescribed by A. This forces the conduction band’s edge to come nearer to the Fermi
level; in this way, the band’s edge shift downwards with respect to its position in the
semiconductor bulk, whose distance from the Fermi level (marked with E1C � EF

8The negative sign in front of the square root in (22.33) must be discarded.
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Fig. 22.12 The same
materials as in Fig. 22.3, with
W � A < EC � EF . The
semiconductor’s bands curve
downwards near the
semiconductor–oxide
interface
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in the figure) is prescribed by charge neutrality. The equilibrium concentration
of electrons, which in the nondegenerate and complete-ionization condition reads
n D NC expŒ�.EC � EF/=.kB T/� (Sect. 18.4), is larger at the semiconductor–oxide
interface than in the bulk; in fact, when the materials are connected, a number
of electrons flow from the metal to the semiconductor, leaving behind a layer of
positive charge at the metal–oxide interface (Fig. 22.12).9

The analysis is completed by supposing that a fixed charge density %ox.x/ is
present in the oxide. If this is the case, it is not correct to assume that the electric
potential is linear within the oxide; however, (22.11) still holds by giving Eox the
meaning of average oxide field. The Poisson equation in the oxide is readily solved
using the procedure shown in Prob. 4.1; from �"ox '

00 D %ox one finds

"ox '
0 D "ox '

0.�tCox/ � H ; H.x/ D
Z x

�tox

%ox./ d ; (22.35)

where the origin has been placed at the semiconductor–oxide interface. Integrat-
ing (22.35) by parts, letting x D 0, and dividing by tox yield

Cox .V
0
G � 's/ D �"ox '

0.�tCox/ � Qox ; Qox D

Z 0

�tox



tox
%ox./ d ; (22.36)

9When the materials are put together, the flow of electrons from the metal to the semiconductor,
or vice versa, occurs thanks to the electric connection between the gate and bulk contacts provided
by the external voltage generator. This connection makes it possible to establish the condition of
thermal equilibrium of the whole system. If the contacts were left open, no flow of charge would
be possible (apart from the occurrence of tunneling events across the oxide which, given enough
time, would be able to restore equilibrium), and the Fermi level of each material would keep the
value it possessed when the materials were still separate; this situation would be similar to that of
two thermal reservoirs at different temperatures, separated by a thermal insulator.
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where '.0/ D 's and '.�tox/ D V 0G have been used. On the other hand,
applying (22.8) to the metal–insulator interface and using (22.10), one finds
�"ox '

0.�tCox/ D Qm whence Qm D Cox .V 0GCQox=Cox�'s/. From V 0G D VG�˚mp

it follows

V 0G C
Qox

Cox
D VG � VFB ; VFB D ˚mp �

Qox

Cox
: (22.37)

The constant voltage VFB is called flat-band voltage. The designation is due to the
fact that letting VG D VFB establishes the flat-band condition in the semiconductor.
It is possible that a fixed layer of charge is also present in the oxide, in addition to
%ox; its effect on VFB is readily incorporated into the analysis leading to (22.37) by
adding to %ox a term of the form Qf ı.x� h/, with Qf the charge per unit area of the
layer (compare with Prob. 4.5).

Definition (22.37) of VFB does not account for the fact that, besides the fixed
charge, mobile charges may be present within the oxide or at the semiconductor–
oxide interface. The former type of mobile charges is typically made of con-
taminants (Sect. 24.1); they may become mobile at temperatures slightly larger
than room temperature, thus making VFB unstable. Consequently, the threshold
voltage (22.85) or (22.113) of the MOS transistor becomes unstable as well. The
charge at the semiconductor–oxide interface is due in turn to a distribution of
interfacial electronic states, called surface states, whose energy belongs to the band
gap. Such states are due to the disruption of periodicity caused by the finiteness of
the crystal’s size. In a bare silicon crystal the surface concentration of surface states
turns out to be equal to that of the atoms themselves [4]; in silicon, the latter is
about .5:0 � 1022/2=3 ' 1:36 � 1015 cm�2 (Sect. 24.2). When the semiconductor–
oxide interface is considered, instead, the concentration of surface states is much
smaller; the typical figures for the silicon–oxide interface range from 109 to 1011

cm�2, depending on the quality of the oxide growth’s process and on the subsequent
annealing steps.

In the following it is assumed that the effect of the mobile charges described here
is negligible. Also, the analysis carried out in this section shows that the presence
of a fixed charge density %ox merely shift V 0G by a constant amount. For this reason,
from now on symbol V 0G will be given the more general meaning V 0G D VG � VFB.

22.4.2 Quantitative Relations in the MOS Capacitor

In the p-type silicon substrate considered so far it is pp0 ' NA D 1016 cm�3 and,
at room temperature, ni ' 1010 cm�3. In turn, the asymptotic minority-carrier
concentration is np0 D n2i =NA ' 104 cm�3; it follows exp.�2 uF/ D np0=pp0 '

10�12 and, as shown, e.g., in Fig. 22.5, 2 uF ' 27:6. Using kB T=q ' 26 mV then
yields 2 'F ' 0:72 V. As "sc ' 11:7� 8:854� 10

�14 D 1:036� 10�12 F cm�1, one
finds
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Fig. 22.13 Normalized
semiconductor charge
Qsc=Q.1/

sc as a function of the
normalized gate voltage u0

G,
for a p-substrate MOS
capacitor with NA D 1016

cm�3
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LA D

s
2 "sc kB T

q2 pp0
' 5:8 � 10�2 �m ; (22.38)

Q.1/
sc D

2 "sc kB T

q LA
D
p
2 "sc kB T pp0 ' 9:3 � 10

�9 C cm�2 : (22.39)

The relation Qsc.V 0G/ is found from Qsc D �Cox ŒV 0G � '.V
0
G/�, where '.V 0G/ is

obtained from (22.12). The result is shown in normalized form in Fig. 22.13.
Note that the results illustrated so far have been obtained without the need

of integrating (22.6). The result of a numerical integration of (22.6) is shown in
Fig. 22.14, where the dependence on position of n and NA � p is drawn for a p-
substrate MOS capacitor with NA D 1016 cm�3 in the strong-inversion regime
(us D 2:5 uF). The term .NA � p/=pp0 is significant in a surface region of the
semiconductor, whose thickness is several units of x=LA. The term n=pp0 is much
larger, but only in a much thinner region near the surface. If the width of the
inversion layer is conventionally taken at the intersection between the two curves
of Fig. 22.14, that occurs at x=LA ' 0:1, one finds from (22.38) a width of about
5 nm.

With reference to Fig. 22.2, and using aluminum as metal and silicon as
semiconductor, one has [97, Sect. 8.1] W D 4:1, A D 4:05, and Aox D 0:95

eV. The band gap of thermally grown silicon dioxide is about 9 eV.

22.5 MOS Photocapacitor

The functioning of the MOS photocapacitor is easily understood by combining
the analysis of the MOS capacitor, carried out in Sect. 22.2, with that of the
storage-mode photodiode, carried out in Sect. 21.6.2. A one-dimensional sketch
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Fig. 22.14 Normalized
concentrations n=pp0 and
.NA � p/=pp0 as a function of
position x=LA, for a
p-substrate MOS capacitor
with NA D 1016 cm�3 in
strong inversion
(us D 2:5 uF)
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Fig. 22.15 One-dimensional
sketch of the MOS
photocapacitor with a
uniform, p-type substrate.
The relative thicknesses of
the different layers shown in
the figure are not realistic
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of the device is shown in Fig. 22.15, where the case of a uniform, p-substrate
capacitor is considered. The impinging photons are sketched by the wavy arrows,
while the black dots indicate the electrons and the white dot indicates a hole.
The considerations about the use of a one-dimensional structure and of a partially
transparent contact are the same as in Sect. 21.6. The resistor shown in the figure
mimics the input resistance of the circuit that measures the photocapacitor’s current.

The applied voltage V.t/ is periodically switched between the flat-band voltage
VFB and a value VGI that, in the steady-state condition, corresponds to strong
inversion. The time extent Ts during which the applied voltage equals VFB is called
sampling time, while the time extent Ti during which the applied voltage equals
VGI is called integration time. It is assumed that prior to the switching from VFB to
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VGI the earlier transients have vanished, so that the net local charge is negligible.10

As the applied voltage has a step-like form, the majority carries (holes) are pushed
away from the semiconductor–insulator interface and a depleted region of width xd

is formed in a negligible time after the application of the gate voltage; observing
that the inversion layer is not present yet, the value of xd is found by combining the
first relation in (22.32) with (22.33), namely,

xd D

s
2 "sc

q NA
's ;

p
's D

p
VGI � VFB C .�=2/2 � �=2 ; (22.40)

with NA the constant concentration of the acceptor dopant. Due to the absence of
the inversion layer, the value of xd rendered by (22.40) is considerably larger than
the one that would correspond to the equilibrium condition. During the integration
time, an inversion layer is built up by the combined contributions of the thermal
and optical generations in the depleted region; thus, xd gradually decreases while
the modulus of the inverted charge increases. When the gate voltage is switched
back to VFB, the majority carriers flood the depleted region, which disappears in a
time of the order of that required by a hole to reach the interface; as this time is
negligible, the form of the inversion layer is not initially affected by the process. On
the other hand, as the disappearing of the depleted region makes the electric field to
vanish, the electrons of the inversion layer diffuse toward the substrate and, at the
same time, recombine with the holes; this, in turn, produces a current in the external
circuit. Under the typical operating conditions of the device, the contribution of
optical generation to the inversion layer is dominant with respect to that of thermal
generation; it follows that the measured current is essentially due to the illumination,
whereas the effect of thermal generation superimposed to it can be considered as a
noise signal.

Like in the case of the storage-mode photodiode (Sect. 21.6.2), it is important to
identify the order of magnitude of the integration and sampling times. While the
former can be made relatively small, the latter cannot be reduced below the limit
necessary for the inversion layer to disappear completely; if, in fact, at the moment
of the gate voltage’s switching from VFB to VGI , a fraction of the electron charge
was still present in the semiconductor, it would add to the one generated in the next
integration cycle, thus introducing an error in the measured signal.

To analyze the semiconductor’s behavior during the sampling time one must
solve the minority-carrier continuity equation, whose one-dimensional form reads

@n

@t
C

n � np0

�n
�
1

q

@Jn

@x
D Gs exp.�k x/ : (22.41)

10This charge would be exactly zero if the illumination was missing.
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In the above it is assumed for simplicity that the weak-injection condition holds
(Sect. 20.2.3), and that the absorption coefficient k (Sect. 20.4) is constant with
respect to both position and radiation frequency. Remembering (20.67), it is Gs D

�˚B k exp.�k s/, where ˚B is the flux density of the photons on the inside edge of
the contact–oxide interface; the exponential exp.�k s/ accounts for the absorption
within the oxide, whose thickness is s (the origin is placed at the semiconductor–
oxide interface). The integral of the minority-carrier excess concentration n � np0

over the semiconductor thickness L provides the excess charge Q per unit area at
time t; observing that Jn.x D 0/ D 0 due to the presence of the oxide, and that L is
large enough to yield Jn.L/ ' Jn.1/ D 0, the integration of (22.41) over L renders

dQ

dt
C

Q

�n
D q

Gs

k
; Q D

Z L

0

q
�
n � np0

	
dx : (22.42)

Let t D 0 be the instant at which the gate voltage VG is brought from VG.0
�/ D VGI

to VG.0
C/ D VFB; from (22.42) one finds11

Q.t/ � q �n
Gs

k
D

�
Q0 � q �n

Gs

k

�
exp.�t=�n/ ; (22.43)

with Q0 the excess minority charge per unit area at t D 0.
The above result shows that the approach to the asymptotic condition12 is

dominated by the minority-carrier lifetime �n. The process can be made considerably
shorter by building the photocapacitor in a p-type epitaxial layer13 of thickness
a grown over an n-type substrate (Fig. 22.16). From a qualitative standpoint, the
advantage of this implementation is that the heavily doped nC substrate acts as
a contact, so that the excess charge is expected to vanish in the short time that
is necessary to diffuse across a. On the other hand, in this case the asymptotic
condition Jn.L/ D 0 does not hold anymore; to determine the time decay of Q
one must then solve the continuity equation

@n

@t
C

n � np0

�n
� Dn

@2n

@x2
D Gs exp.�k x/ ; (22.44)

where the drift term of the current has been neglected due to the vanishing of the
electric field discussed above. At t D 0, the excess minority charge forms a layer
at the semiconductor–oxide interface, so that the initial condition of (22.44) reads
n.x; 0/ � np0 D Q0 ı.xC/. The boundary condition at x D 0 is @n=@x D 0 at all

11It is assumed that the minimum period of variation of the photon flux density is small with respect
to �n, so that in the integration of (22.42) Gs can be considered a constant.
12Note that in the asymptotic limit the excess charge does not vanish; in fact it is Q.1/ D
q �n Gs=k.
13Epitaxy is described in Sect. 24.6.
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Fig. 22.16 One-dimensional
sketch of the MOS
photocapacitor built in a
p-type epitaxial layer. The
relative thicknesses of the
different layers shown in the
figure are not realistic
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times, equivalent to Jn.0/ D 0, while the boundary condition at x D a is n.a; t/ D
np0 because the heavily doped substrate acts as a contact. Introducing the auxiliary
unknown f D .n � np0/ exp.t=�n/ transforms (22.44) into

@f

@t
D Dn

@2f

@x2
C Gs exp.�k xC t=�n/ ; (22.45)

whose initial condition is f .x; 0/ D Q0 ı.xC/ while the boundary conditions are
@f=@x D 0 and f .a; t/ D 0. To solve the above equation one may resort to a Fourier
expansion; to this purpose, let ! be a function defined in �2 a � x � 2 a and even
in such an interval: !.�x; t/ D !.x; t/; moreover, let !.x; t/ D f .x; t/ in the interval
of interest, 0 � x � a. As ! is even, its Fourier expansion reads

! D

1X

kD0

	k.t/ �k.x/ ; 	k D
1

2 a

Z C2 a

�2 a
�k ! dx ; �k D cos



k�

x

2 a

�
:

(22.46)

Clearly ! fulfills the boundary condition @!=@x D 0 at x D 0, but not the boundary
condition !.a/ D 0. To fulfill the latter, one must restrict the choice to those ! such
that !.2 a�x/ D �!.x/ for 0 � x � a, namely, that are odd in the interval of length
2 a centered at x D a. Letting �k.2 a � x/ D ��k.x/ it is found cos.k�/ D �1, that
is, k D 2 iC 1 with i D 0; 1; 2; : : :; defining gi D cosŒ.iC 1=2/ � x=a� and using the
properties of ! and gi then yields

ci D
1

2 a

Z C2 a

�2 a
gi ! dx D

1

a

Z 2 a

0

gi ! dx D
2

a

Z a

0

gi ! dx : (22.47)
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As f D ! in the interval 0 � x � a, the Fourier expansion of f reads

f D
1X

iD0

ci.t/ gi.x/ ; ci D
2

a

Z a

0

f cos

�
x

Li

�
dx ; (22.48)

with 1=Li D .iC 1=2/ �=a. From gi D cosŒ.iC 1=2/ � x=a� it follows g0i.0/ D 0,
g.a/ D 0, and g00i D �gi=L2i ; also,

Z a

0

gi
@f

@t
dx D

d

dt

Z a

0

gi f dx D
a

2

dci

dt
(22.49)

and, integrating by parts and using the boundary conditions,

Z a

0

gi
@2f

@x2
dx D

Z a

0

d2gi

dx2
f dx D �

1

L2i

Z a

0

gi f dx D �
a

2

ci

L2i
: (22.50)

Multiplying by gi both sides of (22.45), integrating from 0 to a, and
using (22.49), (22.50) finally provide a first-order differential equation for ci:

dci

dt
C

ci

�i
D ˛i exp.t=�n/ ; �i D

L2i
Dn

; ˛i D
2

a

Z a

0

gi Gs exp.�k x/ dx ;

(22.51)
with the initial condition

ci.0/ D
2

a

Z a

0

gi f .x; 0/ dx D
2

a

Z a

0

gi Q.0/ ı.xC/ dx D
2

a
Q0 ; (22.52)

independent of i. Integrating (22.51) yields

ci.t/ exp.t=�i/ � ci.0/ D ˛i �
?
i

�
exp.t=�?i / � 1

�
;

1

�?i
D
1

�n
C
1

�i
(22.53)

whence, turning to the original unknown n � np0 D f exp.�t=�n/,

n � np0 D

1X

iD0

gi
�
˛i �

?
i C

�
ci.0/ � ˛i �

?
i

	
exp.�t=�?i /

�
: (22.54)

Like in the case of the uniform substrate, the excess charge per unit area Q.t/ D
q
R a
0
.n � np0/ dx does not vanish for t ! 1 as long as Gs ¤ 0. Using �i D L2i =Dn

and the definition of the minority-carrier diffusion length Ln D
p
�n Dn one finds

�i D �n
L2i
L2n
D �n

a2

Œ� Ln .iC 1=2/�2
: (22.55)
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The slowest decay rate associated with (22.55) is much shorter than that found in
the case of a uniform substrate (Prob. 22.14).

22.6 MOS Capacitor—N-Type Substrate

The theory of the n-substrate MOS capacitor is similar to that of the p-substrate one,
and is briefly illustrated in this section. A constant concentration ND of donor atoms
is assumed, such that the nondegeneracy and complete-ionization conditions hold.
The value of the electric potential is set to zero in the bulk of the semiconductor,
'.1/ D 0; the asymptotic conditions for the electron and hole concentrations then
read

n.0/ D n.C1/ D nn0 ' ND ; p.0/ D p.C1/ D pn0 '
n2i
ND

: (22.56)

The Poisson equation in the semiconductor takes the form (compare with (22.3))

u00 D
1

L2D
A.u/ ; A.u/ D exp.u/ � 1C

n2i
ND

Œ1 � exp.�u/� ; (22.57)

with u D q'=.kB T/ the normalized electric potential and LD the Debye length for
the electrons defined in (21.9). The equation is solved following the same procedure
as in Sect. 22.2.1 to yield

u0 D ˙

p
2

LD
F.u/ ; F D

s

exp.u/ � 1 � uC
n2i
N2

D

ŒuC exp.�u/ � 1� ;

(22.58)

where the sign must be found on a case-by-case basis. Observing that (22.9)
and (22.11) hold irrespective of the type of substrate14 one finds, with the usual
meaning of symbols, the relation between surface potential and gate voltage in the
n-substrate MOS capacitor:

Cox .V
0
G � 's/ D 
"sc

kB T

q

p
2

LD
F.'s/ : (22.59)

When 's D 0, the electric potential vanishes everywhere in the semiconductor,
namely, V 0G D 0 corresponds to the flat-band condition. When V 0G > 0, the charge in
the gate metal is positive; as a consequence, the left-hand side of (22.59) is positive

14Here, however, Qsc is the integral of q .p � n C ND/, instead of q .p � n � NA/, over the
semiconductor domain.
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Table 22.2 MOS capacitor, n substrate—functioning regimes

Norm. surface potential Concentrations Designation

us > 0 ps < pn0 < ni < nn0 < ns Accumulation

us D 0 ps D pn0 < ni < nn0 D ns Flat band

uF < us < 0 pn0 < ps < ni < ns < nn0 Depletion

us D uF pn0 < ps D ni D ns < nn0 Mid gap

2 uF < us < uF pn0 < ns < ni < ps < nn0 Weak inversion

us D 2 uF pn0 D ns < ni < ps D nn0 Threshold

us < 2 uF ns < pn0 < ni < nn0 < ps Strong inversion

as well, whence V 0G > 's and the positive sign must be chosen at the right-hand side.
The opposite happens when V 0G < 0.

Like in the p-substrate case, the 's D 's.V 0G/ relation lends itself to identifying
different functioning regimes of the MOS capacitor. The identification is carried out
basing upon the values of the electron and hole concentrations at the semiconductor
surface, ns D n.x D 0/ and ps D p.x D 0/. In the nondegenerate conditions
considered here, the expressions of the surface concentrations are given by (22.15),
where uF D .1=2/ log.pn0=nn0/ ' log.ni=ND/ < 0: The functioning regimes
are listed in Table 22.2; their designations are given by comparing the carrier
concentrations at the surface with the intrinsic and asymptotic ones. The discussion
about functioning regimes, depletion width, form of the electric potential and charge
density, and differential capacitance is similar to that of the p-substrate case.

To obtain a simplified form of the inversion layer’s charge that holds in all the
functioning regimes with the exception of accumulation, one recasts (22.59) as

Qsc D ˙Q.1/
sc F.us/ ; Q.1/

sc D "sc
kB T

q

p
2

LD
; (22.60)

where the negative (positive) sign must be chosen when us > 0 (us < 0), and
Q.1/

sc is the value of Qsc corresponding to F D 1. The relation Qsc D Qsc.us/ is
shown in normalized units in Fig. 22.17. When accumulation is excluded, in an n-
substrate capacitor one must take us < 0. The approximate dependence of F on the
normalized potential is easily worked out from (22.58), whose limiting case in the
depletion and weak-inversion regimes is

F '
p
�us ; 2 uF < us < 0 : (22.61)

Introducing (22.61) into (22.60) yields, for 2 uF < us < 0 (compare with (22.30)),

Qsc '

p
2 "sc kB T

q LD

r
�

q's

kB T
D Cox �

p
�'s ; � D

p
2 "sc q nn0

Cox
: (22.62)
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Fig. 22.17 Normalized charge per unit area as a function of the normalized surface potential, in a
n-substrate MOS capacitor with ND D 1016 cm�3

A relation identical to (22.62) is obtained using the full-depletion and ASCE
approximations (Sect. 21.4); in fact, letting % D q ND for 0 < x < xd and % D 0

for x > xd yields a simplified form of the Poisson equation in 0 < x < xd, namely,
'00 ' �q ND="sc. Solving the latter using '.xd/ D 0, '0.xd/ D 0 as boundary
conditions yields '.x/ D �q ND .x � xd/

2=.2 "sc/. Letting x D 0 in the above
provides a relation between the surface potential and the depletion width; in turn,
in the full-depletion and ASCE approximations the bulk charge per unit area is
Qb D q ND xd. In summary,

� 's D
q ND

2 "sc
x2d ; Qb D q ND xd D

p
�2 "sc q ND 's : (22.63)

Observing that for 2 uF < us < 0 it is Qsc ' Qb, and that ND ' nn0, one finds that
the second relation in (22.63) coincides with the first one in (22.62). Combining
Qsc ' Qb with (22.62) and with the general expression Qsc D �Cox .V 0G � 's/

yields V 0G � 's D ��
p
�'s; from it, one finds a simplified 's D 's.V 0G/ relation

that holds in the depletion and weak-inversion conditions:15

p
�'s D

q
�V 0G C .�=2/

2 � �=2 ; V 0G < 0 : (22.64)

The contribution of holes to the semiconductor charge per unit area, Qi D

q
R xd

0
p dx, becomes relevant from the threshold condition on. In the same manner as

for the electrons (Sect. 22.2.2), the hole charge is approximated as a charge layer at

15The negative sign in front of the square root in (22.64) must be discarded.
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the interface, q p ' Qi ı.xC/; as a consequence, the space charge can be considered
as entirely due to the ionized dopant atoms also when 's < 2'F < 0, so that (22.63)
still hold. From Qsc D Qi CQb one then finds the result sought, that is, a simplified
form of the inversion layer’s charge of an n-substrate MOS capacitor, that holds in
the depletion, weak-inversion, and strong-inversion regimes:

Qi D Qsc � Qb D Cox
��
�V 0G C 's

	
� �
p
�'s

�
> 0 : (22.65)

22.7 Insulated-Gate Field-Effect Transistor—MOSFET

The principle of the insulated-gate, field-effect transistor (IGFET) was demonstrated
in the early 1930s [128, Chap. 10]. The first structures using a thermally oxidized
silicon layer were fabricated in 1960. The IGFET architecture using silicon dioxide
as gate dielectric is more commonly called MOSFET. This device architecture,
jointly with the continuous improvements in the silicon technology, made it possible
the tremendous progress in the fabrication of integrated circuits during the last
decades, and is the most common component in digital and analog circuits.

The electric current in a MOSFET is transported by one type of carriers only,
electrons or holes; for this reason the device is called unipolar. In a p-substrate
device, the carriers are the electrons that form the charge layer at the semiconductor–
insulator interface; therefore, this type of transistor is called n-channel MOSFET.
Conversely, in an n-substrate device the carriers are holes, and the transistor is
called p-channel MOSFET. The schematic cross-section of an n-channel MOSFET
is shown in Fig. 22.18. The starting point is a p-type silicon substrate, with an
NA D const dopant concentration, onto which a layer of silicon dioxide is thermally
grown and patterned; then, the gate contact (G) is deposited. The extension Lg of
the gate metal in the horizontal direction is called geometrical length of the gate.
The next step is the introduction of a heavy dose of an n-type dopant on the two
sides of the gate. As shown in the figure, lateral diffusion (Sect. 23.8.3) makes the
gate oxide to partially overlap the n-doped regions.16

The metallizations of the nC regions provide two more contacts, called source (S)
and drain (D); the bottom metal layer contacting the p-type substrate is indicated
with bulk (B), and the term channel denotes the interfacial semiconductor region
between the two junctions. To distinguish the applied voltages from one another,
two letters are used; considering the bulk metallization as the reference contact, in
an n-channel MOSFET a typical choice of the three independent voltages is VGB D

VG�VB, VSB D VS�VB, and VDB D VD�VB. As the standard MOSFET architecture
is structurally symmetric, it is not possible to distinguish the source contact from

16The n-type regions are typically obtained by ion implantation, whose lateral penetration is
limited. However, ion implantation is followed by a thermal process (annealing), during which
thermal diffusion takes place.
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Fig. 22.18 Cross-section of
an n-channel MOSFET. The
black areas are the metal
contacts
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the drain contact basing on geometry or dopant distribution: the distinction is to be
based on the applied voltages; in fact, in the typical operating regime of the device
the source-bulk and drain-bulk junctions are never forward biased, whence in an
n-channel MOSFET it is VSB � 0 and VDB � 0. The drain contact is identified17 by
the condition VDB � VSB D VDS > 0.

22.8 N-Channel MOSFET—Current-Voltage Characteristics

To work out the theory of the MOSFET, one introduces a reference whose x axis is
normal to the semiconductor–insulator interface, while the y axis is parallel to it. The
origin (O) is placed at the intersection of the source p-n junction and the interface
(Fig. 22.18). The y coordinate corresponding to the intersection of the drain p-n
junction and the interface is indicated with L; the latter is called electric length of
the gate, or channel length. The device is considered uniform in the z direction; its
width along such a direction is indicated with W.

Purpose of the analysis is to derive the steady-state characteristics, namely, the
relations between the currents at the contacts and the applied voltages. To proceed,
one assumes that the gate voltage VGB is such that at all positions y along the
channel the strong-inversion condition holds. Thus, a layer of electrons is present,
indicated in Fig. 22.18 with the shaded area underneath the gate oxide; the term

17In fact, in some types of logic circuits the source and drain contact may exchange their roles
depending on the applied voltages.
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well-formed channel is used to denote this situation. The minimum gate voltage
necessary for obtaining a well-formed channel will be identified later. In a steady-
state condition there is no current through the gate contact because the gate insulator
is in series to it; also, the current flowing through the bulk contact is negligibly small
because the two junctions are never forward biased. Since the channel layer connects
two heavily doped regions of the n type, the application of a drain-source voltage
VDS > 0 gives rise to a current ID that flows from the drain to the source contact (its
reference is shown in Fig. 22.18); for a given VDS, the drain current ID is controlled
by the amount of charge available in the channel, which is in turn controlled by
the gate voltage VGB. In other terms, the device is an electronic valve in which the
gate-bulk port controls the current flowing into the drain-source port; moreover,
in the steady-state condition the control port does not expend energy, because the
gate current is zero. This, among other things, explains the success of the MOSFET
concept.

Due to the uniformity in the z direction, the electron and hole current densities
have the form

Jn D Jnx iC Jny j ; Jp D Jpx iC Jpy j ; (22.66)

with i, j the unit vectors of the x and y axes, respectively. On the other hand, it
is Jnx D Jpx D 0 because no current can flow through the insulator, so only the
y components Jny, Jpy are left in (22.66). In turn, the condition of a well-formed
channel implies that the concentration of holes is negligibly small with respect to
that of the electrons,18 whence jJnyj � jJpyj. It follows J D Jn C Jp ' Jn D

Jny.x; y/ j. The equality J D Jn is the mathematical form of the MOSFET’s property
of being unipolar. It also entails div J D div Jn; therefore, remembering that in a
steady-state condition it is div J D 0, it follows that div Jn D 0 as well.

Consider now two planes parallel to the x; z plane, placed at different positions y1
and y2 in the channel; their intersections with the x; y plane are respectively marked
with S1 and S2 in Fig. 22.18. From the divergence theorem (A.23) and the property
div Jn D 0 it follows19

ZZ

2

Jn � j dx dz �
ZZ

1

Jn � j dx dz D 0 I (22.67)

as a consequence, the channel current

I D
Z W

zD0

Z xd

xD0
Jn � j dx dz D W

Z xd

0

Jny dx (22.68)

18Compare with Fig. 22.14; the latter describes an equilibrium case; however, the situation is
similar to the one depicted here.
19In the integrals of (22.67) the upper limit of x is given by the depletion width xd.y/ shown in
Fig. 22.18. Compare also with Sect. 22.11.1.
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is independent of y. The last form of (22.68) derives from the uniformity in z. To
express Jny in (22.68) it is convenient to adopt the monomial form (19.141) of the
electron current density, Jn D �q�n n grad'n, with 'n the electron quasi-Fermi
potential. The components of Jn in monomial form read

Jnx D �q�n n
@'n

@x
; Jny D �q�n n

@'n

@y
; (22.69)

where Jnx D 0 as found above. In the channel it is n ¤ 0, whence for Jnx to vanish
it must be @'n=@x D 0; as a consequence, 'n in the channel20 depends on y only. In
conclusion,

I D W
d'n

dy

Z xd

0

�q�n n dx : (22.70)

In the integral of (22.70) it is n D n.x; y/ and �n D �n.x; y/; defining the effective
electron mobility as the average

�e.y/ D

R xd

0
�q�n n dx

R xd

0
�q n dx

> 0 ; (22.71)

yields

I D W
d'n

dy
�e.y/Qi.y/ ; Qi D

Z xd

0

�q n dx < 0 ; (22.72)

where Qi is the inversion-layer charge per unit area at position y in the channel.
In (22.72), �e and Qi are positive- and negative-definite, respectively, and I, W are
constant; it follows that d'n=dy has always the same sign and, as a consequence,
'n.y/ is invertible. Using the inverse function y D y.'n/ within �e and Qi

makes (22.72) separable; integrating the latter over the channel yields

Z L

0

I dy D L I D W
Z 'n.L/

'n.0/

�e.'n/Qi.'n/ d'n : (22.73)

In turn, the dependence of �e on y is weak,21 whence

I D
W

L
�e

Z 'n.L/

'n.0/

Qi.'n/ d'n : (22.74)

20Far from the channel the semiconductor is practically in the equilibrium condition, whence 'n !
'F as x increases. However, in the bulk region where the dependence of 'n on x is significant, the
electron concentration is negligible; as a consequence, the integral in (22.68) is not affected.
21This issue is discussed in Sect. 22.11.1.
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22.8.1 Gradual-Channel Approximation

In the derivation of (22.74) the condition of a well-formed channel has not been
exploited yet; this condition makes a number of approximations possible, which
are collectively indicated with the term gradual-channel approximation;22 they
lead to an expression of (22.74) in closed form. First, one uses the definition of
surface potential which, in the two-dimensional analysis considered here, is given
by 's.y/ D '.x D 0; y/; it is shown in Sect. 22.11.1 that the condition of a well-
formed channel entails the relation

's D 'n C 'F : (22.75)

It follows that d'n=dy in (22.72) can be replaced with d's=dy, thus showing that
the transport in a well-formed channel is dominated by the drift term, Jny D

�q�n n d's=dy D q�n n Esy, with Esy the y-component of the electric field at x D 0;
using (22.75) one changes the variable from 'n to 's in the integral of (22.74). The
integration limits in terms of 's are found by the same reasoning leading to (22.75),
and read (Sect. 22.11.1)

's.0/ D VSB C 2 'F ; 's.L/ D VDB C 2 'F : (22.76)

In conclusion, (22.74) becomes

I D
W

L
�e

Z VDBC2 'F

VSBC2 'F

Qi.'s/ d's : (22.77)

The next step of the gradual-channel approximation consists in determining the
relation Qi.'s/, for which the solution of the Poisson equation in two dimensions is
necessary. As shown in Sect. 22.11.1, one can exploit the strong difference between
the strengths of the electric-field components in the x and y directions, to give the
equation a one-dimensional form in which the y coordinate acts as a parameter. This
is equivalent to assimilating each elementary portion of the channel, like that marked
with dy in Fig. 22.18, to a one-dimensional MOS capacitor whose surface potential
is the local value 's.y/. The final step of the gradual-channel approximation is the
adoption of the full-depletion and ASCE approximations (Sect. 21.4), so that the
inversion-layer charge per unit area at position y in the channel is given by (22.34),

22The gradual-channel approximation is not limited to the analysis of the MOSFET shown
here. Indeed, it is a widely used method to treat the Poisson equation in devices in which the
geometrical configuration and applied voltages are such that the variation of the electric field in
one direction is much weaker than those in the other two directions. Typically, the former direction
is the longitudinal one (that is, along the channel), the other two the transversal ones. From
the mathematical standpoint, the approximation amounts to eliminating a part of the Laplacian
operator, so that the dependence on all variables but one becomes purely algebraic.
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namely, Qi D �Cox
��

V 0GB � 's
	
� �
p
's
�
< 0. Observing that VDB C 2 'F >

VSB C 2 'F while the integrand in (22.77) is negative, it follows that I < 0,
whence ID D �I due to the reference chosen for the drain current (Fig. 22.18).
In conclusion, (22.77) transforms into23

ID D ˇ

Z VDBC2 'F

VSBC2 'F

��
V 0GB � 's

	
� �
p
's
�

d's ; ˇ D
W

L
�e Cox : (22.78)

22.8.2 Differential Conductances and Drain Current,
N-Channel

The drain current’s expression (22.78) of the n-channel MOSFET provides a relation
of the form ID D ID.VGB;VDB;VSB/, where VGB D V 0GB C VFB. In the integrated-
circuit operation an important role is played by the differential conductances of
the device, each of them defined as the partial derivative of ID with respect to one
of the applied voltages. In some cases the differential conductances can be found
without the need of actually calculating the integral in (22.78); for this reason,
here such conductances are calculated first. Prior to that, it is worth noting that
in circuit applications it is often preferred to use the source contact, instead of the
bulk contact, as a voltage reference. The transformation from one reference to the
other is easily obtained from

VDS D VDB � VSB > 0 ; VGS D VGB � VSB ; VBS D �VSB � 0 : (22.79)

Then, the drain conductance24 is defined as the derivative of ID with respect to VDB,
at constant VSB and VGB; or, equivalently, as the derivative with respect to VDS, at
constant VBS and VGS:

gD D

�
@ID

@VDB

�

VSB;VGB

D

�
@ID

@VDS

�

VBS;VGS

: (22.80)

Remembering that the derivative of an integral with respect to the upper limit is the
integrand calculated at such limit, from (22.78) one finds

gD D ˇ
h�

V 0GB � VDB � 2 'F
	
� �

p
VDB C 2 'F

i
: (22.81)

23The units of ˇ are Œˇ� D A V�2.
24The drain conductance is also called output conductance; in this case it is indicated with go.
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Using (22.76) and (22.34) yields

gD D ˇ
h�

V 0GB � 's.L/
	
� �

p
's.L/

i
D

W

L
�e Œ�Qi.L/� ; (22.82)

namely, the drain conductance is proportional to the inversion charge per unit area
at the drain end of the channel. The quantity in brackets in (22.82) is nonnegative by
construction; its zero corresponds to the value of 's.L/ obtained from (22.33). Such
a zero is indicated with 'sat

s and is termed saturation surface potential. From (22.79),
the saturation voltage in the bulk and source references is found to be

Vsat
DB D '

sat
s � 2 'F ; Vsat

DS D Vsat
DB � VSB ; (22.83)

respectively. Similarly, the current Isat
D D ID.Vsat

DS/ (which depends on VGS) is called
saturation current. If a value of VDS larger than Vsat

DS is used, the right-hand side
of (22.81) becomes negative; this result is not physically sound and indicates that
the gradual-channel approximation is not applicable in that voltage range.25

Still considering the drain conductance, it is also important to determine its limit
for VDB ! VSB, or VDS ! 0. Again, there is no need to calculate the integral
in (22.78) which, in this limiting case, is the product of the integration interval VDS

times the integrand calculated in the lower integration limit; in turn, the derivative
eliminates VDS, whence

gD.VDS ! 0/ D ˇ
h�

V 0GB � VSB � 2 'F
	
� �

p
VSB C 2 'F

i
: (22.84)

Replacing V 0GB with VGB � VFB and using (22.79) yield

gD.VDS ! 0/ D ˇ .VGS � VT/ ; VT D VFB C 2 'F C �
p
2 'F � VBS

(22.85)

where, remembering that the junctions are never forward biased, it is VBS � 0.
The VT D VT.VBS/ voltage defined in (22.85) is called threshold voltage, and its
dependence on VBS is called body effect. Near VDS D 0 the relation between ID

and VDS is ID D ˇ .VGS � VT/ VDS: there, the current-voltage characteristics are
approximated by straight lines whose slope, for a given VBS, is prescribed by VGS.
At larger values of VDS the limiting case (22.85) does not hold any longer: the slope
of the ID D ID.VDS/ curves decreases, to eventually vanish when VDS reaches Vsat

DS.
Considering that ID is nonnegative, the theory depicted above is applicable as long
as ˇ .VGS � VT/ � 0; this observation allows one to better specify the condition
of a well-formed channel, used at the beginning: from the formal standpoint the
condition of a well-formed channel is VGS > VT .

25In fact, beyond the saturation voltage the Poisson equation near the drain end of the channel
cannot be reduced anymore to a one-dimensional equation where y is treated as a parameter
(compare with Sect. 22.11.1).
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The integration of (22.78) is straightforward and yields ID D I0D � I00D, where I0D
is obtained by integrating ˇ .V 0GB�'s/. In this calculation many terms cancel out to
yield the relatively simple expression

I0D D ˇ

�
.VGS � VFB � 2 'F/ VDS �

1

2
V2

DS

�
: (22.86)

In turn, I00D is obtained by integrating ˇ �
p
's and reads

I00D D ˇ
2

3
�
h
.VDS C 2 'F � VBS/

3=2 � .2 'F � VBS/
3=2
i
: (22.87)

Comparisons with experiments show that the model ID D I0D � I00D, where the two
contributions are given by (22.86) and (22.87), provides a fair description of the
drain current up to the saturation voltage. Beyond saturation, the model is not correct
any longer: in fact, the terms with a negative sign within the expression of ID give
rise to a negative slope gD; instead, the experiments show that for VDS > Vsat

DS the
current tends to saturate. For this reason, the analytical model is given a regional
form: for a prescribed pair VGS, VBS, the regional model first separates the on
condition VGS > VT from the off condition VGS � VT . The on condition is further
separated into the linear region26 0 < VDS � Vsat

DS, where the drain current is
described by the ID D I0D � I00D model worked out above, and the saturation region
VDS > Vsat

DS, where the regional model lets ID D Isat
D . Finally, in the off condition the

model lets ID D 0.
As the threshold voltage defined in (22.85) refers to a p-type substrate, from the

definition (18.26) of the Fermi potential and the analysis of Sect. 18.4.2 one finds
2 'F D .kB T=q/ log.pp0=np0/ > 0; on the other hand, the flat-band voltage (22.37)
may have either sign, depending on the materials used. It follows that the threshold
voltage as a whole may have either sign as well. It is then customary to distinguish
two types of n-channel transistors: the enhancement-type ones have VT > 0, so that
a gate voltage VGS > VT > 0 is necessary to achieve the condition of a well-formed
channel, whereas the transistor is in the off condition when VGS D 0; the depletion-
type transistors have VT < 0, so that the condition of a well-formed channel is
already present when VGS D 0, whereas a gate voltage VGS � VT < 0 is necessary
to put the device in the off condition.

For a given bulk-source voltage VBS, the ID D ID.VDS/ curves corresponding to
different values of VGS are called output characteristics. Other types of characteris-
tics are also used to enrich the picture of the MOSFET’s behavior: for instance,
the transfer characteristics are the ID D ID.VGS/ curves drawn using VBS as a

26The term linear originates from the behavior of the curves near the origin, shown by (22.85). The
term is ascribed to the region up to Vsat

DS despite the fact that far away from the origin the curves are
blatantly nonlinear.
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Fig. 22.19 Low frequency,
small-signal circuit of an
n-channel MOSFET

iG iB iD

iS

GSv BSv g vBS gmvGS g DSvDB

parameter and letting VDS D const, with a value of VDS small enough to let the
limiting case (22.85) hold.

Besides the drain conductance (22.80), two more differential conductances are
defined in a MOSFET: the first one is the transconductance gm, given by the
derivative of ID with respect to VGB, at constant VDB and VSB; or, equivalently, as
the derivative with respect to VGS, at constant VDS and VBS. Observing that VGS

appears only in I0D one finds

gm D

�
@ID

@VGB

�

VSB;VDB

D

�
@ID

@VGS

�

VDS;VBS

D ˇ VDS : (22.88)

The second one is the bulk transconductance gB, defined as the derivative of ID with
respect to VBS at constant VDS and VGS:

gB D

�
@ID

@VBS

�

VDS;VGS

D �

�
@I00D
@VBS

�

VDS

: (22.89)

The small-signal circuit of an n-channel MOSFET is shown in Fig. 22.19. Since the
circuit is derived from the steady-state transport model, it holds at low frequencies
only. The small-signal voltages are indicated with vDS, vGS, and vBS. The gate
and bulk contacts are left open because the corresponding currents are zero; as
a consequence, iD D iS is the only nonzero small-signal current of the circuit.
Observing that

iD D gD vDS C gm vGS C gB vBS ; (22.90)

the drain-source branch of the circuit is made of three parallel branches. One of them
is represented as a resistor 1=gD because the current flowing in it is controlled by the
voltage vDS applied to the same port; the other two branches are voltage-controlled
generators because the current of each branch is controlled by the voltage applied
to a different port.

It is worth adding that the body effect mentioned above is actually an incon-
venience, because it introduces a complicate dependence on VBS which must be
accounted for during the circuit’s design. The body effect is suppressed by letting
VBS D 0: in a circuit’s design, this is obtained by shorting the bulk and source
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contacts, which amounts to reducing the original four-contact device to a three-
contact device.27 This solution is adopted whenever the circuit’s architecture allows
for it.

Linear-Parabolic Model, N-Channel

In semiqualitative circuit analyses the whole term I00D is neglected, thus leading to
a simplified model ID ' I0D, called linear-parabolic model. As the neglect of I00D
is equivalent to letting � ! 0, it follows gB ' 0 and, from the second relation
in (22.85), the simplified threshold voltage reads

VT ' VFB C 2 'F : (22.91)

In turn, from ID ' I0D D ˇ Œ.VGS �VFB � 2 'F/VDS �V2
DS=2� one finds for the drain

conductance

gD ' ˇ .VGS � VFB � 2 'F � VDS/ D ˇ .VGS � VT � VDS/ ; (22.92)

whence

Vsat
DS D VGS � VT : (22.93)

The transconductance gm is the same as in the general case. Note that the linear-
parabolic expression of the drain current may be recast as ID ' ˇ .Vsat

DS VDS�V2
DS=2/,

with Vsat
DS given by (22.93). As a consequence,

Isat
D ' ˇ

��
Vsat

DS

	2
�
1

2

�
Vsat

DS

	2
�
D
1

2
ˇ .VGS � VT/

2 : (22.94)

The linear-parabolic model then yields for the saturation region

ID D Isat
D ; gD ' 0 ; gm ' ˇ .VGS � VT/ ; gB ' 0 : (22.95)

An example of the output characteristics of an n-channel MOSFET obtained from
the linear-parabolic model is given in Fig. 22.20, using VT D 1 V, ˇ D 0:3 A V�2.
The dashed curve represents (22.94). The symbol of the enhancement-type device28

is shown in Fig. 22.21.

27Note that letting VBS D 0 also makes gB to vanish.
28Other symbols than that of Fig. 22.21 are used in the literature. For instance, the arrow may be
placed over the bulk contact, pointing toward the gate in the n-channel device, or away from the
gate in the p-channel one. The symbol of the depletion-type device is similar; however, the vertical
bar representing the channel region is thicker than that of Fig. 22.21 to remind one that the channel
is already formed when VGS D 0.
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Fig. 22.20 Output
characteristics of an n-type
MOSFET obtained from the
linear-parabolic model, with
VT D 1 V, ˇ D 0:3 A V�2.
The dashed curve
represents (22.94)
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Fig. 22.21 Symbol of the
n-channel MOSFET of the
enhancement type
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22.9 P-Channel MOSFET—Current-Voltage Characteristics

The structure of the p-channel MOSFET is dual to that of the n-channel type; with
reference to Fig. 22.18, the cross-section is obtained by exchanging the “p” and
“n” letters. Like in the n-channel device, the applied voltages are distinguished
from one another by means of two letters; considering the bulk metallization as
the reference contact, in a p-channel MOSFET the standard choice of the three
independent voltages is VGB D VG�VB, VSB D VS�VB, and VDB D VD�VB. In the
typical operating regime of the p-channel MOSFET, the source-bulk and drain-bulk
junctions are never forward biased, whence VSB � 0 and VDB � 0. The drain contact
is identified by the condition VSB � VDB D VSD > 0.

To derive the steady-state characteristics of the device, one proceeds in the same
manner as for the n-channel MOSFET, i.e., by introducing a reference like in
Fig. 22.18. Next, one assumes that the gate voltage VGB is such that at all positions
y along the channel the strong-inversion condition holds. Thus, a layer of holes is
present, providing the condition of a well-formed channel. Since the channel layer
connects two heavily doped regions of the p type, the application of a source-drain
voltage VSD > 0 gives rise to a current IS that flows from the source to the drain
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Fig. 22.22 Symbol of the
p-channel MOSFET of the
enhancement type IS

VSB
VSD

S

D

G

V

B
SG

DI

contact; such a current is indicated in Fig. 22.22, where the symbol of the p-channel
MOSFET of the enhancement type is depicted. For a given VSD, the source current
IS is controlled by the amount of charge available in the channel, which is in turn
controlled by the gate voltage VGB. Like in the n-channel device, one obtains an
electronic valve in which the gate-bulk port controls the current flowing into the
source-drain port; moreover, in the steady-state condition the control port does not
expend energy, because the gate current is zero.

Due to the uniformity in the z direction, the electron and hole current densities
have the form (22.66), with i, j the unit vectors of the x and y axes, respectively. On
the other hand, it is Jnx D Jpx D 0 because no current can flow through the insulator,
so only the y components Jny, Jpy are left in (22.66). In turn, the condition of a well-
formed channel implies that the concentration of electrons is negligibly small with
respect to that of the holes, whence jJpyj � jJnyj. It follows J D Jn C Jp ' Jp D

Jpy.x; y/ j. Following the same reasoning as that leading to (22.68), one finds for the
channel current

I D
Z W

zD0

Z xd

xD0
Jp � j dx dz D W

Z xd

0

Jpy dx : (22.96)

The above is independent of y. To express Jny in (22.96) it is convenient to adopt the
monomial form (19.142) of the hole current density, Jp D �q�p p grad'p, with 'p

the hole quasi-Fermi potential; this leads to (compare with (22.70))

I D �W
d'p

dy

Z xd

0

q�p p dx : (22.97)

In the integral of (22.97) it is p D p.x; y/ and �p D �p.x; y/; defining the effective
hole mobility as the average

�h.y/ D

R xd

0
q�p p dx

R xd

0
q p dx

> 0 ; (22.98)

yields

I D �W
d'p

dy
�h.y/Qi.y/ : Qi D

Z xd

0

q p dx > 0 ; (22.99)
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where Qi is the inversion-layer charge per unit area at position y in the channel.
In (22.99), both �h and Qi are positive-definite, and I, W are constant; it follows
that d'p=dy has always the same sign and, as a consequence, 'p.y/ is invertible.
Using the inverse function y D y.'p/ within �h and Qi makes (22.99) separable;
integrating the latter over the channel yields

Z L

0

I dy D L I D W
Z 'p.0/

'p.L/
�h.'p/Qi.'p/ d'p : (22.100)

Due to the choice of the reference, which is the same as for the n-channel device, the
positions y D 0 and y D L correspond to the source and drain ends of the channel,
respectively. As the dependence of �h on y is weak,29 (22.100) becomes (compare
with (22.74))

I D
W

L
�h

Z 'p.0/

'p.L/
Qi.'p/ d'p : (22.101)

To complete the calculation of (22.101) one makes use of the gradual-channel
approximation, starting from the condition of a well-formed channel. Using the
definition 's.y/ D '.x D 0; y/ of the surface potential, the latter condition in a
p-channel device reads

's D 'p C 'F : (22.102)

It follows that d'p=dy in (22.99) can be replaced with d's=dy, that is, transport in
a well-formed channel is dominated by the drift term, Jpy D �q�p p d's=dy D
q�p p Esy, with Esy the y-component of the electric field at x D 0; using (22.102)
one changes the variable from 'n to 's in the integral of (22.101). The integration
limits in terms of 's are found by the same reasoning leading to (22.102) and read
(Sect. 22.11.1)

's.0/ D VSB C 2 'F ; 's.L/ D VDB C 2 'F : (22.103)

In conclusion, (22.101) becomes (compare with (22.77))

I D
W

L
�h

Z VSBC2 'F

VDBC2 'F

Qi.'s/ d's : (22.104)

The next step consists in determining the relation Qi.'s/, for which the solution of
the Poisson equation in two dimensions is necessary. Following again the reasoning
of Sect. 22.11.1, one gives the equation a one-dimensional form in which the y

29This issue is discussed in Sect. 22.11.1.
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coordinate acts as a parameter. This is equivalent to assimilating each elementary
portion of the channel, of width dy, to a one-dimensional, n-substrate MOS capacitor
whose surface potential is the local value 's.y/. Finally, introducing the full-
depletion and ASCE approximations (Sect. 21.4), one finds the expression of the
inversion-layer charge per unit area at position y in the channel, for a p-channel
MOSFET. The result is similar to that already obtained for a p-substrate capacitor
and is given by (22.65), namely:

Qi D Cox
��
�V 0GB C 's

	
� �
p
�'s

�
> 0 ; (22.105)

with

V 0GB D VGB � VFB ; � D

p
2 "sc q nn0

Cox
: (22.106)

Observing that VSB C 2 'F > VDB C 2 'F and that the integrand in (22.104) is
positive, it follows that I > 0, whence IS D I due to the reference chosen for the
drain current (Fig. 22.22). In conclusion, (22.104) transforms into

IS D ˇ

Z VSBC2 'F

VDBC2 'F

��
�V 0GB C 's

	
� �
p
�'s

�
d's ; ˇ D

W

L
�h Cox :

(22.107)

22.9.1 Differential Conductances and Drain Current,
P-Channel

The differential conductances are calculated from (22.107) in the same way as for
the n-channel device. Prior to that, one remembers that in circuit applications it is
often preferred to use the source contact, instead of the bulk contact, as a voltage
reference. The transformation from one reference to the other is easily obtained
from

VSD D VSB�VDB > 0 ; VSG D VSB�VGB ; VSB D �VBS � 0 : (22.108)

Then, the source conductance, or output conductance, is defined as the derivative of
IS with respect to VBS, at constant VBD and VGB; or, equivalently, as the derivative
with respect to VSD, at constant VBD and VGD:

gS D

�
@IS

@VBS

�

VBD;VBG

D

�
@IS

@VSD

�

VBD;VGD

: (22.109)
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Remembering that the derivative of an integral with respect to the upper limit is the
integrand calculated at such limit, from (22.107) one finds

gS D ˇ
h�
�V 0GB C VSB C 2 'F

	
� �

p
�VSB � 2 'F

i
D

W

L
�h Qi.0/ : (22.110)

The last form of (22.110) is obtained by combining the first relation in (22.103)
with (22.105), and shows that the source conductance is proportional to the inversion
charge per unit area at the source end of the channel. The zero of gS, which is
nonnegative by construction, corresponds to a value of 's.0/ equal to the saturation
surface potential; the latter is given in turn by (compare with (22.33))

p
�'sat

s D

q
�V 0GB C .�=2/

2 C �=2 : (22.111)

The saturation voltage in the bulk and source references is then found to be

Vsat
SB D '

sat
s � 2 'F ; Vsat

SD D Vsat
SB � VDB ; (22.112)

respectively. Similarly, the current Isat
S D IS.Vsat

SD/ (which depends on VSG) is called
saturation current. If a value of VSD larger than Vsat

SD is used, the right-hand side
of (22.110) becomes negative; this result is not physically sound and indicates that
the gradual-channel approximation is not applicable in that voltage range.30 The
limit of the source conductance for VSB ! VDB, or VSD ! 0, is

gS.VSD ! 0/ D ˇ .VSG � VT/ ; VT D �VFB � 2 'F C �
p

VBS � 2 'F ;

(22.113)

where V 0GB D VGB � VFB has been used. Remembering that the junctions are never
forward biased, it is VBS � 0. The VT D VT.VBS/ voltage defined in (22.113) is the
threshold voltage of the p-channel MOSFET. Near VSD D 0 the relation between IS

and VSD is IS D ˇ .VSG � VT/ VSD: considering that IS is nonnegative, the theory
depicted above is applicable as long as ˇ .VSG � VT/ � 0; this observation allows
one to better specify the condition of a well-formed channel, used at the beginning:
from the formal standpoint the condition of a well-formed channel in a p-channel
MOSFET is VSG > VT .

The integration of (22.107) is straightforward and yields IS D I0S � I00S , where I0S
is obtained by integrating ˇ .�V 0GB C 's/. In this calculation many terms cancel out
to yield the relatively simple expression

I0S D ˇ

�
.VSG C VFB C 2 'F/ VSD �

1

2
V2

SD

�
: (22.114)

30In fact, beyond the saturation voltage the Poisson equation near the drain end of the channel
cannot be reduced anymore to a one-dimensional equation where y is treated as a parameter
(compare with Sect. 22.11.1).
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In turn, I00S is obtained by integrating ˇ �
p
�'s, and reads

I00S D ˇ
2

3
�
h
.VSD � 2 'F C VBS/

3=2 � .�2 'F C VBS/
3=2
i
: (22.115)

Like in the case of the n-channel device, comparisons with experiments show
that the model IS D I0S � I00S , where the two contributions are given by (22.114)
and (22.115), provides a fair description of the source current up to the saturation
voltage. Beyond saturation, the model is not correct any longer: in fact, the terms
with a negative sign within the expression of IS give rise to a negative slope gS;
instead, the experiments show that for VSD > Vsat

SD the current tends to saturate.
For this reason, the analytical model is given a regional form: for a prescribed pair
VSG, VBS, the regional model first separates the on condition VSG > VT from the off
condition VSG � VT . The on condition is further separated into the linear region
0 < VSD � Vsat

SD, where the source current is described by the IS D I0S � I00S model
worked out above, and the saturation region VSD > Vsat

SD, where the regional model
lets IS D Isat

S . Finally, in the off condition the model lets IS D 0.
As the threshold voltage defined in (22.113) refers to an n-type substrate, it is

2 'F D .kB T=q/ log.pn0=nn0/ < 0; on the other hand, the flat-band and threshold
voltages may have either sign. Like in the case of the n-channel devices, it is then
customary to distinguish two types of p-channel transistors: the enhancement-type
ones have VT > 0, so that a gate voltage VSG > VT > 0 is necessary to achieve the
condition of a well-formed channel, whereas the transistor is in the off condition
when VSG D 0; the depletion-type transistors have VT < 0, so that the condition
of a well-formed channel is already present when VSG D 0, whereas a gate voltage
VSG � VT < 0 is necessary to put the device in the off condition.

The output characteristics of the p-channel MOSFET are the IS D IS.VSD/ curves
corresponding to different values of VSG, for a given bulk-source voltage VBS; the
transfer characteristics are the IS D IS.VSG/ curves drawn using VBS as a parameter
and letting VSD D const, with a value of VSD small enough to let the limiting
case (22.113) hold.

The transconductance gm of the p-channel MOSFET is the derivative of IS with
respect to VBG, at constant VBS and VBD; or, equivalently, the derivative with respect
to VSG, at constant VSD and VSB. Observing that VSG appears only in I0S one finds

gm D

�
@IS

@VBG

�

VBS;VBD

D

�
@IS

@VSG

�

VSD;VSB

D ˇ VSD : (22.116)

The bulk transconductance gB is the derivative of IS with respect to VSB at constant
VSD and VSG:

gB D

�
@IS

@VSB

�

VSD;VSG

D �

�
@I00S
@VBS

�

VSD

: (22.117)
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Like in the n-channel device, the body effect is suppressed by letting VBS D 0,
that is, by shorting the bulk and source contacts, whenever the circuit’s architecture
allows for it.

Linear-Parabolic Model, P-Channel

The expressions worked out so far may further be simplified by neglecting I00S , this
yielding the linear-parabolic model IS ' I0S of the p-channel MOSFET. As the
neglect of I00S is equivalent to letting � ! 0, it follows gB ' 0 and, from the second
relation in (22.113), the simplified threshold voltage reads

VT ' �VFB � 2 'F : (22.118)

In turn, from IS ' I0S D ˇ Œ.VSGCVFBC2 'F/VSD�V2
SD=2� one finds for the source

conductance

gS ' ˇ .VSG C VFB C 2 'F � VSD/ D ˇ .VSG � VT � VSD/ ; (22.119)

whence

Vsat
SD D VSG � VT : (22.120)

The transconductance gm is the same as in the general case. Note that the linear-
parabolic expression of the drain current may be recast as IS ' ˇ .Vsat

SD VSD�V2
SD=2/,

with Vsat
SD given by (22.120). As a consequence,

Isat
S ' ˇ

��
Vsat

SD

	2
�
1

2

�
Vsat

SD

	2
�
D
1

2
ˇ .VSG � VT/

2 : (22.121)

The linear-parabolic model then yields for the saturation region

IS D Isat
S ; gS ' 0 ; gm ' ˇ .VSG � VT/ ; gB ' 0 : (22.122)

22.10 CMOS Inverter

The CMOS architecture (the designation stands for “Complementary Metal-Oxide-
Semiconductor”) is to date the most successful technology for constructing inte-
grated circuits. The scheme of the CMOS inverter, which is the basic structure
of the logic circuits manufactured with this technology, is shown in Fig. 22.23; it
is obtained by connecting a p-channel MOSFET with an n-channel MOSFET, in
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Fig. 22.23 The CMOS
inverter
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such a way that the two gate contacts are connected to each other, and the two
drain contacts are connected to each other. Whenever possible, the bulk contact is
shorted with the source contact of the same device, thus eliminating the body effect
(Sect. 22.8.2); in this case, each MOSFET is described in terms of two voltages
only, instead of three, and the threshold voltages (22.85) and (22.113) reduce to two
constants.31 From the technological standpoint, even the simple arrangement shown
in Fig. 22.23 requires the presence of two different substrates in the same wafer: a
p-type substrate to build the n-channel device, and an n-type substrate to build the
p-channel device. This is achieved, starting from a given wafer, by preliminarily
diffusing a region (called well or tub) of the opposite polarity with respect to that of
the wafer, in which one of the two transistors is then accommodated. An example
of fabrication of the n-well structure in silicon is illustrated in the following.

A CMOS structure can be realized using either the bulk technology, where the
devices are fabricated directly within the silicon wafer, or the silicon on insulator
(SOI) technology, where the devices are fabricated within an epitaxial layer of
crystalline silicon grown on an insulator, e.g., sapphire (Sect. 24.6). The simpler
bulk technology is shown here, with reference to Fig. 22.24. Starting from a lightly
doped, p-type substrate, the area of the well is defined by a suitable mask, and
the well is obtained by implanting n-type dopants.32 The implant is followed by a
thermal process that drives-in the impurities. As the duration of the thermal process
is rather long, the final gradient of the impurity concentration is small; this makes the
impurity profile of the well relatively flat. This step is followed by a p-type implant,
called channel stop, in the area that separates the regions where the two transistors

31Elimination of the body effect is possible in simple structures like that shown in Fig. 22.23, where
the source contact of the p-channel MOSFET is connected to the highest voltage of the circuit, and
the source contact of the n-channel MOSFET is connected to the lowest one. However, when the
circuit becomes slightly more complicate like, e.g., in a NAND or a NOR gate, shorting the bulk
and source contact of all devices becomes impossible.
32The terminology of the process steps is better explained in the chapters devoted to the
technological issues.
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Fig. 22.24 Cross-section of an n-well CMOS inverter

will be fabricated; to further separate the n-channel from the p-channel transistor,
a thick oxide layer is grown in the area above the channel stop; this layer is called
field oxide and is marked with “F.O.” in Fig. 22.24. Purpose of the channel stop and
of the field oxide is to prevent the formation of an inversion layer of electrons at the
silicon surface: such a layer, in fact, would form a parasitic channel connecting the
two transistors. As shown in the figure, the drain metallization is right above the field
oxide. In some operating conditions of the inverter the voltage drop between drain
and substrate would be large enough to form the parasitic channel; this is averted
by the combined effect of the field oxide, that lowers the vertical component of the
electric field, and of the channel stop, that lowers the surface concentration of the
electrons.

In the next step, the gate oxide is thermally grown over the active areas of
the two transistors, and suitably patterned; this is followed by the deposition and
patterning of the gate contacts, usually made of polysilicon.33 The source and
drain regions of the n-channel transistor are obtained by implanting a donor-type
dopant while protecting from the implant the active area of the p-channel device; a
successive implant of acceptor-type dopant creates in the same manner the source
and drain regions of the p-channel transistor. Both implants use the corresponding
gate electrode as a mask; this technique, called self-aligned gate, has the advantage
that the implantation process, along with the subsequent annealing step, ensure that
the gate overlaps the edges of the source and drain regions. Finally, the drain and
source contacts are deposited and patterned; as shown in Fig. 22.24, the source
contacts of both transistors extend laterally with respect to the source region: in
the n-channel device, part of the source contact overlaps the substrate region, while
in the p-channel device part of the source contact overlaps the well region. By
this contrivance, the source and bulk contacts of each transistor are shorted, and
the body effect eliminated. As indicated in Sect. 21.2.2, to prevent the contact-
semiconductor junction from behaving like a rectifying device, a heavy dose of
dopant is preliminarily introduced into the semiconductor region onto which the

33The gate contacts are connected with each other in a position not visible in the cross-section of
Fig. 22.24.
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contact is to be deposited; as shown in the figure, in the CMOS inverter two heavily
doped regions of this type are formed, of the p and n type respectively. The p-well
structure is dual with respect to that of Fig. 22.24; it is obtained from the latter by
exchanging “p” and “n” letters, including those of Sp and Sn.

In the standard operating conditions, the input signal of the inverter is applied
to the common gate contact, and the output signal is taken from the common
drain contact; concerning the latter, in complex digital circuits the output contact
is connected to several input contacts belonging to other logic gates. The fan out of
the inverter is the maximum number of input contacts it can be connected to without
altering its functioning. In general, such input contacts are the gate contacts of other
MOS transistors: as a consequence, from the circuit viewpoint they can globally
be mimicked as a nonlinear capacitor. The analysis that follows is limited to the
steady-state functioning of the inverter, whence one can assume that no current is
absorbed from the drain contact; the capacitor sketched in Fig. 22.23 is simply meant
to remind which type of load should be used in dynamic conditions.

22.10.1 I-O Characteristic of the CMOS Inverter

To describe the functioning of the CMOS inverter, it is necessary to distinguish the
quantities pertaining to the p-channel device from those of the n-type one. For this, it
suffices to add an extra index; in particular, the voltages and current of the p-channel
MOSFET are denoted with VSGp, VSDp, and ISp, while symbols VGSn, VDSn, and IDn

are reserved for the n-channel device. The threshold voltages (22.85) and (22.113),
are indicated with

VTn D VFBn C 2 'Fn C �n

p
2 'Fn ; VTp D �VFBp � 2 'Fp C �p

p
�2 'Fp :

(22.123)

For the correct functioning of the inverter, both transistors must be of the enhance-
ment type, namely, remembering the definitions of Sects. 22.8.2 and 22.9.1, the
choice of the materials and the fabrication process must be such that VTn > 0 and
VTp > 0. A fixed bias VSS > 0 is applied between the source contact of the p-channel
transistor and that of the n-channel one, as shown in Fig. 22.23; it is assumed that
the inequality

VSS > VTn C VTp (22.124)

holds, which is easily achieved in the practical cases. The voltages VGSn and VDSn

are considered the input (Vin) and output (Vout) voltages of the inverter, respectively.
With these premises, the qualitative functioning of the inverter is readily discussed,
basing on the linear-parabolic model for the current-voltage characteristics worked
out in Sects. 22.8 and 22.9. Let, for instance, be 0 � Vin � VTn, so that the n-channel
transistor is in the off condition and IDn D 0. As a consequence it is also ISp D 0 due
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to the steady-state condition. On the other hand, it is VSGp � VTp D VSS � Vin � VTp

which, after adding and subtracting VTn, yields VSGp � VTp D .VSS � VTn � VTp/C

.VTn � Vin/; in the latter, the first term in parentheses is positive due to (22.124),
and the second one is nonnegative. In conclusion, VSGp�VTp > 0 and the p-channel
device is in the on condition. For the latter to be compatible with ISp D 0, it is
necessary for the device to work in the linear region with VSDp D 0; in fact, the
saturation region is ruled out because it implies ISp ¤ 0. From the general relation
VSS D VDSnCVSDp it then follows Vout D VSS. As long as 0 � Vin � VTn, the output
voltage is the highest and no power is dissipated by the inverter.

Let now the input voltage be increased by a small amount ıVin > 0 starting from
the threshold value, so that Vin D VTn C ıVin. It follows VGSn � VTn D ıVin, which
makes the n-channel device to turn on, yielding ISp D IDn ¤ 0. In turn, the current
flow makes Vout to decrease and become Vout D VSS�ıVout, with ıVout > 0, whence
VSDp D VSS � Vout D ıVout and VDSn D VSS � ıVout. Then,

.VGSn � VTn/� VDSn D ıVin � .VSS � ıVout/ D .ıVin C ıVout/� VSS ; (22.125)

�
VSGp � VTp

	
� VSDp D VSS �

�
VTn C VTp

	
� .ıVin C ıVout/ : (22.126)

As ıVinC ıVout can be made as small as we please, from (22.125) it follows .VGSn�

VTn/ � VDSn < 0, which shows that the n-channel device works in the saturation
region; at the same time, thanks to (22.126) it is .VSGp � VTp/ � VSDp > 0, namely,
the p-channel device is in the linear region. If the input voltage is further increased,
the p-channel transistor will eventually turn from the linear to the saturation region.
This happens for VSGp�VTp D VSDp, namely, VSS�Vin�VTp D VSS�Vout, equivalent
to Vout D VinC VTp. When this occurs, the operating region of the n-channel device
is given by

VGSn � VTn � VDSn D Vin � VTn � Vout D �
�
VTn C VTp

	
: (22.127)

As VTn;VTp > 0, the n-channel device is still in the saturation region, namely, both
transistors are working in the saturation region. In this regime, equating the currents
at the output node, ISp D IDn, provides an expression where only the input voltage
appears. This is so, because in the saturation region the expression of the current
provided by the model is independent of the drain-source voltage. In fact, equating
the currents yields ˇp .VSS � Vin � VTp/

2 D ˇn .Vin � VTn/
2, whence .VSS � VTn �

VTp/=.Vin � VTn/ D 1 ˙
p
ˇn=ˇp. The minus sign in the latter must be discarded

because the left-hand side is positive definite and finite. In conclusion, the input
voltage at which both transistors work in the saturation region is found to be

Vsat
in D VTn C

VSS � VTn � VTp

1C
p
ˇn=ˇp

: (22.128)

It is worth observing that this result is not physically sound because the output
voltage corresponding to Vsat

in is not defined. This happens because the model
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assumes perfect saturation,34 which never occurs in practice. However, in real
CMOS inverters the slope jdVout=dVinj, although finite, is still very large when both
transistors operate in the saturation region.

In the frame of the linear-parabolic model, the condition in which the n-channel
transistor turns from the saturation to the linear region must be found by keeping
Vin D Vsat

in and decreasing Vout until the condition VGSn � VTn D VDSn is fulfilled.
When Vin D Vsat

in and Vout decreases, the n-channel transistor turns from the
saturation to the linear region as soon as VGSn � VTn D VDSn. This is equivalent
to Vin � VTn D Vout, namely

Vout D Vsat
in � VTn : (22.129)

When Vin is increased beyond Vsat
in , more current is drawn by the n-channel

transistor, which makes Vout to decrease and the saturation condition of the p-
channel one to become deeper. The description of this region of the Vout.Vin/ curve
is similar to that of the region VTn � Vin � Vsat

in . The p-channel transistor reaches
the off condition as soon as the relation VSGp D VTp is fulfilled, namely,

VSS � Vin D VTp ; Vin D VSS � VTp : (22.130)

As long as VSS � VTp � Vin � VSS, the p-channel transistor remains in the off
condition, whence Vout D 0 and ISp D IDn D 0. Thus, the output voltage is the
lowest and no power is dissipated by the inverter.

The functioning conditions of the CMOS inverter are summarized in Table 22.3,
where columns Tn, Tp indicate the operating regions of the n-channel and p-
channel transistor, respectively. Letters A, B, C, or D in the first column mark some
significant points of the Vout.Vin/ curve. The full curve is shown by the black, thick
line in Fig. 22.25; in the same figure, the continuous, blue line represents the relation
Vout D Vin � VTn, which is equivalent to VDSn D VGSn � VTn. Remembering (22.93),
the line marks the boundary between the linear and saturation regions of the n-
channel transistor; such a line intercepts the horizontal axis at VTn. In turn, the

Table 22.3 CMOS
inverter—functioning
conditions

Point Vin Vout Tn Tp

– 0 VSS off lin

A VTn VSS off ! sat lin

B Vsat
in Vsat

in C VTp sat lin ! sat

C Vsat
in Vsat

in � VTn sat ! lin sat

D VSS � VTp 0 lin sat ! off

– VSS 0 lin off

34The conclusion would be the same if the terms I00

D , I00

S , calculated from (22.87), (22.115) with
the saturation value of the drain-source voltages, were kept. The expression of Vsat

in , instead, would
become more complicate than (22.128).
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Fig. 22.25 The black, continuous line shows the input-output curve of the CMOS inverter. The
curve has been drawn using VSS D 6 V, VTp D VTn D 1 V, and ˇp D ˇn

continuous, red line represents the relation Vout D Vin C VTp, which is equivalent to
VSDp D VSGp � VTp. Remembering (22.120), the line marks the boundary between
the linear and saturation regions of the p-channel transistor; such a line intercepts
the horizontal axis at �VTp. The vertical, dashed lines mark the boundary between
the off and on condition of the n-channel transistor (blue line) and of the p-
channel transistor (red line). Other details on the derivation of the curve are given in
Prob. 22.6.

22.11 Complements

22.11.1 Poisson’s Equation in the MOSFET Channel

The derivation of the MOSFET’s current carried out in Sect. 22.8 is based upon two
integrals; the first one, (22.68), is calculated over a section of the channel at some
position y, the second one, (22.73), is calculated along the channel from y D 0

to y D L. Apparently this procedure eliminates the need of solving the Poisson
equation. In fact, the solution of the latter is deeply rooted in the relation (22.75),
which is a fundamental point of the procedure itself, and in the choice of the
integration limits (22.76), which are also related to (22.75).

The Poisson equation in a nonequilibrium condition is conveniently tackled by
expressing the carrier concentrations in terms of the quasi-Fermi potentials 'n and
'p; the device considered here is the same n-channel MOSFET of Sect. 22.8. Using
the normalized form un D q'n=.kB T/ and up D q'p=.kB T/, the concentrations
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read n D ni exp.u� un/ and p D ni exp.up � u/, respectively. Remembering that in
the equilibrium limit it is un; up ! uF, with uF the normalized Fermi potential, it is
useful to introduce the differences

	n D un � uF ; 	p D up � uF ; (22.131)

by which the concentrations take the form

n D np0 exp.u � 	n/ ; p D pp0 exp.	p � u/ : (22.132)

In the equilibrium limit it is 	n; 	p ! 0. Moreover, when a nonequilibrium
condition holds, at any position y in the channel it is limx!1 	n; 	p D 0; in fact,
as observed in Sect. 22.8, far from the channel the semiconductor is practically
in the equilibrium condition, whence 'n ! 'F as x increases. The same applies
to 'p. With these provisions, the charge density in the semiconductor reads % D
q
�
pp0 exp.	p � u/ � np0 exp.u � 	n/ � NA

�
, namely,

% D �q pp0 A ; A D
n2i
N2

A

Œexp.u � 	n/ � 1�C 1 � exp.	p � u/ ; (22.133)

and the Poisson equation takes the form

@2u

@x2
C
@2u

@y2
D

1

L2A
A ; (22.134)

with LA the holes’ Debye length defined in (21.12). One notes that (22.133), (22.134)
are generalizations of (22.3). In the description of the MOSFET the accumulation
condition is not considered, hence the holes’ contribution exp.	p � u/ to A is
negligible in the channel region; thus,

A '
n2i
N2

A

Œexp.u � 	n/ � 1�C 1 '
n2i
N2

A

exp.u � 	n/C 1 > 0 ; (22.135)

where the term n2i =N2
A D exp.�2 uF/ is negligible with respect to unity. Remember-

ing that the quasi-Fermi potential in the channel does not depend on x, in (22.135)
it is u D u.x; y/ ; 	n D 	n.y/, with u.1; y/ D 0, u0.1; y/ D 0 due to the charge
neutrality of the bulk region; in fact, as shown by numerical solutions, both u and u0

practically vanish when x reaches the value of the depletion width xd.y/.
The Poisson equation is to be solved in two dimensions. If the condition of

a well-formed channel holds, the components of the electric field along the x
and y directions are quite different from each other. The x component at the
semiconductor–oxide interface, Esx, which is due to the voltage applied to the gate
contact, is large because it maintains the strong-inversion condition of the surface.
Moreover, the derivative @Ex=@x D �@2u=@x2 is also large, because Ex changes
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from Esx to zero in the short distance xd.y/. In contrast, the y component of the
electric field at the interface, Esy, which is due to the voltage VDS applied between
the drain and source contacts, is small; in fact, VDS is small in itself because the
linear region only is considered, and the channel length L is larger than the insulator
thickness. Moreover, numerical solutions show that for 0 < VDS < Vsat

DS the
dependence of both Esx and Esy on y is weak, which in particular makes @Ey=@y D
�@2u=@y2 also small at the semiconductor–insulator interface. In conclusion, one
approximates (22.134) as

@2u

@x2
C
@2u

@y2
'

d2u

dx2
D

1

L2A
A : (22.136)

The dependence of A on y remains, and y is treated as a parameter in the solution
procedure. Due to the form of (22.136), the solution method is identical to that used
in Sect. 22.2.1 to treat the equilibrium case; it yields

�
q Esx

kB T

�2
D

2

L2A
F2 ; F2 D exp.�	n � 2 uF/ Œexp.us/ � 1�C us : (22.137)

Remembering that the accumulation condition is excluded, here it is us.y/ � 0; the
flat-band condition us D 0 corresponds to F D 0. In the strong-inversion condition
the contribution of the electron charge (proportional to exp.us/ � 1 in (22.137))
is dominant; for this to happen it is necessary that the exponent us � 	n � 2 uF

in (22.136) be positive; it follows that the threshold condition is identified by us D

	n C 2 uF . Remembering the definition (22.131) of 	n one then finds

us D un C uF ; 0 � y � L ; (22.138)

that is, the normalized form of (22.75). Note that us D 	nC2 uF is coherent with the
definition of the threshold condition at equilibrium (Table 22.1), which is obtained
by letting 	n D 0. Also, specifying us D 	n C 2 uF at the source and drain ends of
the channel provides the integration limits (22.76) [128, Sec. 10-2].

The neglect of the variation in the y component of the electric field along the
channel makes the general relation

Qsc D �Cox .V
0
GB � 's/ D �Cox

kB T

q
.u0GB � us/ (22.139)

still valid at each position y along the channel, with Qsc < 0 because us > 0

(Qsc D 0 in the flat-band condition us D 0). Also, when the inversion charge
is approximated by a charge layer at x D 0C, the volume charge is entirely due
to the ionized dopants, whose contribution in the second relation of (22.137) is
proportional to us like in the equilibrium case. Using the same relation Qi D

Qsc � Qb as in Sect. 22.4 one finally finds that the theory worked out in this section
makes (22.34) applicable also in a nonequilibrium condition in which the channel is
well formed.
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Fig. 22.26 Illustration of the
electric field’s components at
the channel ends in the
saturation condition

E

E

Ey

x

VG
VS VD

Ey

Ex

E

22.11.2 Inversion-Layer Charge and Mobility Degradation

In the model (22.78) for the drain current worked out in the previous sections, the
inversion-layer charge Qi decreases from source to drain due to the increase in 's

along the channel (compare with (22.34)). Considering that the MOSFET current
is carried by the inversion-layer charge, the vanishing of the latter occurring at
the drain end of the channel when VDS ! Vsat

DS may seem an oddity. However, it
is important to remember that a number of approximations are necessary to reach
the result expressed by (22.86) and (22.87); such approximations make the theory
applicable only in the linear region and in the condition of a well-formed channel.

When VDS ! Vsat
DS, the vertical component of the electric field at the interface,

Esx, is made weaker by the interplay between the voltages applied to the gate
electrode and to the nearby drain electrode; for this reason, at the drain end of
the channel the flow lines of Jn do not keep close to the interface any longer, but
spread into the substrate, thus decreasing the carrier density. The phenomenon is
better understood with the aid of Fig. 22.26, where the linear-parabolic model is
used with, e.g., VT D 0:5, VS D 0, VGS D 1:5, VDS D 2 V. As Vsat

DS D 1 V, the
saturation condition VDS > Vsat

DS D 1 holds. Along the dash-dotted line enclosed
in the right oval, the direction of the electric field is that shown in the vector
diagram in the upper-right part of the figure; in particular, the vertical component
of the field at the position marked by the vertical dashed line points upwards. As a
consequence, the channel electrons are repelled downwards and the flow lines of the
current density detach from the interface. On the source end of the channel, instead,
the vertical component of the field points downwards. By continuity, a position
within the channel exists where, in saturation, the vertical component of the field
vanishes; such a position (not shown in the figure) is called inversion point. Also,
the large component of the electric field along the y direction, which exists within
the space-charge region of the reverse-biased drain junction, makes the carriers’
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average velocity to increase at the drain end of the channel; as the total current
is constant, a further decrease in the carrier concentration occurs. The two effects
briefly illustrated above are not accounted for by the simplified model and require a
more elaborate approach in which the two-dimensional structure of the electric field
is accounted for.

Another comment is useful, this time related to the off condition. When VGS !

VT , the current of a real device does not actually vanish; in fact, a current (called
subthreshold current), due to the carriers present in the channel in the weak-
inversion condition, flows for VGS < VT . Also in this case a more elaborate theory
is necessary, showing that the subthreshold current vanishes exponentially as VGS

decreases (Sect. 22.11.5).
It is worth concluding this section by commenting the simplification used

in (22.74), where the effective electron mobility �e is assumed to be independent
of the position y along the channel. The factors that affect mobility in a MOSFET
are collisions with phonons, ionized impurities, and semiconductor–oxide interface;
remembering the features of the macroscopic mobility models (Sect. 20.5), the elec-
tron mobility �n.x; y/ is made to depend on the lattice temperature T , concentration
of ionized impurities NA, and x component of the electric field Ex.x; y/. The first
two parameters, T and NA, do not introduce a dependence on position because they
are themselves constant. The x dependence of Ex is absorbed by the integral (22.71)
that defines �e; it follows that the average mobility depends on y because Ex does.
Such a dependence, in turn, is relatively weak in the strong-inversion condition as
remarked in Sect. 22.11.1. Therefore, the dependence of�e on position is considered
negligible.

22.11.3 Comments About the CMOS Inverter

With respect to other technologies, the CMOS inverter has a number of advantages;
they are briefly listed below, using for comparison the old-fashioned inverters made
of an n-channel MOSFET with a resistive load (Fig. 22.27), or a p-channel MOSFET
still with a resistive load (Fig. 22.28). For a given bias VSS, the CMOS inverter
has the largest difference between the maximum and minimum output voltages
(dynamic range). In fact, as shown in Sect. 22.10, in a CMOS inverter described with
the linear-parabolic model such voltages are VSS and zero, respectively; a resistive-
load inverter (Probs. 22.7 and 22.8) cannot attain both limits.35 Connected to the
above comment is the fact that the transition of Vout from VSS to zero is actively
forced by the turning on of the n-channel transistor (pull-down device); similarly,
the transition of Vout from zero to VSS is actively forced by the turning on of the

35As shown in Sect. 22.11.5, in a real CMOS inverter the dynamic range is slightly decreased,
with respect to VSS, due to the subthreshold current; however, the conclusions about the CMOS
inverter’s superiority do not change.
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Fig. 22.27 The inverter
made of an n-channel
MOSFET with a resistive
load. It is
Vin D VGS ;Vout D VDS
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Fig. 22.28 The inverter
made of a p-channel
MOSFET with a resistive
load
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p-channel transistor (pull-up device). In a resistive-load inverter, instead, one of
the two transitions is produced by the much less efficient charging (discharging),
through the load resistor, of the capacitance associated with the logic gates
connected to the inverter’s output.

Another advantage of the CMOS inverter is that it has almost zero power
consumption in the steady-state condition. In the linear-parabolic model the static
power consumption is exactly zero because the current is such; in a real CMOS
inverter, some power is dissipated due to subthreshold conduction; however, it is
still much smaller than in other technologies.

More energy is consumed during the transients; assuming for simplicity that the
capacitor C associated with the output’s logic gates is linear, the energy dissipated
during either transient is C V2

SS=2: such an energy is still very small due to the fact
that MOS transistors are an easily scalable technology, which is another advantage
of the CMOS inverter with respect to earlier implementations.36 The combination
of small power consumption and ease of miniaturization, along with the relatively
simple and easy-to-replicate structure of the CMOS gates, makes it possible to
manufacture densely integrated and highly performing circuits. It is mainly thanks
to these properties that the CMOS architecture in silicon is to date (2017) the
most successful technology for manufacturing microprocessors or other integrated
circuits.

36An integrated resistor occupies a larger area than a MOSFET; this is another reason why
resistors are not suited for miniaturization. The scaling procedures are illustrated in some detail
in Sect. 22.11.6.
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22.11.4 Exact Charge Partitioning in the MOS Capacitor

In view of the application to the theory of MOS transistors, the analysis of the
charge distribution within the MOS capacitor, in all functioning regimes with
the exclusion of accumulation, has been carried out using the approximation of
Sect. 22.4; with reference to the p-substrate capacitor, the procedure consists in
partitioning the semiconductor’s volume into the space-charge and quasi-neutral
regions, and using the expression (22.32) of the bulk charge per unit area Qb, with
xd the extension of the space-charge region. From this, the simplified form (22.34)
is found, that describes the inversion layer’s charge of a p-substrate MOS capacitor
in the depletion, weak-inversion, and strong-inversion regimes.

One may argue that a more precise analysis could be carried out without an
a priori partitioning of the semiconductor’s volume into regions; this is in fact
possible, starting from the integral expression (22.14) of the semiconductor charge
per unit area,37 and considering the individual charge contributions within the
integral. In this process, however, care must be taken to avoid diverging terms. To
investigate this issue one observes that if the partitioning into regions is not carried
out, the integral defining the semiconductor charge per unit area extends over an
infinite domain,

Qsc D

Z 1

0

q .p � n � NA/ dx : (22.140)

While the integral as a whole does converge because the asymptotic vanishing
of the integrand is sufficiently fast (see below), the integral of p or n alone may
not converge, and the integral of NA obviously diverges. This outcome is an
artifact due to the consideration of an infinite domain; however, as shown below,
a separate calculation of the charges is still possible, keeping the domain as is: in
this way, the complicacy of placing the neutrality condition at a finite distance is
avoided. To proceed, one remembers that in a p-type substrate the relation between
the normalized electric potential and normalized field at any position within the
semiconductor is given by (22.5), where the sign is negative because accumulation is
excluded. Remembering that the charge density reads % D �q pp0 A.u/, with A given
by the second relation in (22.3), one changes the integration variable in (22.140) by
letting dx D du=u0 D �LA du=.

p
2F/. Using the integration limits u.0/ D us and

u.1/ D 0, one finds

Qsc D �Q.1/
sc

Z us

0

A.u/

2F.u/
du ; (22.141)

37The effect of a fixed oxide charge is included in (22.14) by redefining V 0

G as indicated at the end
of Sect. 22.4.1.
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with Q.1/
sc given by the second relation in (22.28). In the u! 0 limit, corresponding

to the asymptotic condition in the x coordinate, the integrand takes the indeterminate
form 0=0; however, near u D 0 it is A � .1 C n2i =N2

A/ u and F � .1 C

n2i =N2
A/
1=2 u=

p
2, which shows that the limit of A=F is finite, whence the integral

converges. On the contrary, if one replaces A with .n2i =N2
A/ exp.u/, to calculate the

electrons’ contribution alone, or with � exp.�u/, to calculate that of the holes, the
corresponding integrals diverge. If, instead, one uses in the numerator the quantities
.n2i =N2

A/ Œexp.u/�1� and 1�exp.�u/, the integrals converge; when the normalization
is eliminated, such quantities correspond n�np0 and NA�p, respectively. Observing
that their sum is A, and that in the depletion, weak-inversion, and strong-inversion
regimes it is n� np0 and NA � p, one lets

Qi D �Q.1/
sc exp.�2 uF/

Z us

0

exp.u/ � 1

2F.u/
du ; exp.�2 uF/ D

n2i
N2

A

;

(22.142)

Qb D �Q.1/
sc

Z us

0

1 � exp.�u/

2F.u/
du : (22.143)

The above fulfills the relation Qsc D QiCQb and provide a more exact partitioning
of the charge in the MOS capacitor. The analysis of the n-substrate capacitor is sim-
ilar. One observes that (22.142), (22.143) cannot be integrated analytically as they
stand; their sum (22.141), instead, is integrable analytically: remembering (22.28)
and combining it with (22.141), one finds in fact

F.us/ D

Z us

0

A.u/

2F.u/
du ; (22.144)

which can also be proven by a direct calculation. Relations (22.142) and (22.143)
are useful to check the accuracy of the approximations used in Sect. 22.4; as shown
in [5], when accumulation is excluded the approximations are sufficiently accurate
and can also be extended to the treatment of the nonequilibrium case (Sect. 22.11.5).

22.11.5 MOSFET Theory Including the Subthreshold Current

The current-voltage relation of the n-channel MOSFET has been derived in
Sect. 22.8.1 starting from (22.74) and applying the gradual-channel approximation.
Such an approximation entails the use of (22.34) for the inversion-layer charge
per unit area at any position y in the channel, and of the condition (22.75) of a
well-formed channel. As indicated in Sect. 22.11.4, the expression of the charge is
accurate enough, both in the equilibrium and nonequilibrium conditions. In order to
improve the theory, one may then dispose of the condition of a well-formed channel;
in this case, when changing the variable from 'n to 's in (22.74), one finds



22.11 Complements 659

I D
W

L
�e

Z 's.L/

's.0/

Qi.'s/
d'n

d's
d's ; (22.145)

to be compared with (22.77). To proceed, one exploits the results of Sect. 22.11.1,
specifically, the definitions (22.131) and the relation (22.137), that holds between
surface potential, electron quasi-Fermi potential, and gate voltage when the accu-
mulation condition is excluded. Remembering that at each channel position y it is
Esx D �Qsc="sc, one recasts (22.137) as38

r2
�
u0GB � us

	2
D exp.�	n � 2 uF/ Œexp.us/ � 1�C us ; r D

1
p
2

"ox

"sc

LA

tox
;

(22.146)

with 	n D un � uF. For a given u0GB D q V 0GB=.kB T/, the first relation in (22.146)
has the form 	n D 	n.us/; it is somewhat simplified by neglecting the unity with
respect to exp.us/, to find39

	n D us � 2 uF � log
h
r2
�
u0GB � us

	2
� us

i
: (22.147)

The integration limits of (22.145) are found by inverting (22.147) numerically after
letting 	n.0/ D q VSB=.kB T/ and 	n.L/ D q VDB=.kB T/, respectively. The factor
d'n=d's D d	n=dus to be inserted into the integral of (22.145) is readily found
to be

d	n

dus
D 1C

2 r2
�
u0GB � us

	
C 1

r2
�
u0GB � us

	2
� us

: (22.148)

Note that neglecting the term with the logarithm in (22.147) reproduces (22.75). It
follows that the use of (22.147) disposes of the condition of a well-formed channel
and allows one to incorporate the subthreshold current in the analysis. Also, it is
d	n=dus ¤ 1, thus indicating that the transport is not necessarily dominated by
the drift term; in fact, the diffusion component of the electron current is included
through the quasi-Fermi potential. Using the normalized potential, the relation ID D

�I (Sect. 22.8.1), and the definition (22.78) of ˇ transforms (22.145) into

ID D ˇ

�
kB T

q

�2 Z us.L/

us.0/

��
u0GB � us

	
� .1=r/

p
us
� d	n

dus
dus : (22.149)

38From (22.30) one notes that r � D
p

kB T=q.
39Prior to the simplification, (22.146) yields u0

GB D 0 for us D 0, that is, the flat-band condition as
expected. When the unity is neglected, the condition us D 0 yields r u0

GB D exp.�uF � 	n=2/ �
exp.�uF/ D ni=NA � 1. In turn, at room temperature it is LA ' 41 nm when NA D 1016 cm�3,
whence ."ox="sc/ LA=

p
2 ' 10 nm in silicon. Thus, for typical oxide thicknesses, r turns out to be

of order unity.
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Fig. 22.29 The us D us.	n/ relation calculated from (22.147) for different values of u0

GB. The
constant acceptor concentration of the substrate is NA D 1016 cm�3, corresponding to 2 uF ' 27:6.
The dashed line shows the us D 	n C 2 uF approximation

It is found by inspection that ID is made of two parts: the first one derives from the
first term (that is, the unity) at the right-hand side of (22.148), and is structurally
identical to the current I0D � I00D found in Sect. 22.8.2; the only difference here with
respect to the case of Sect. 22.8.2 is that one must obtain the integration limits
from (22.147) instead of using VSB C 2 'F and VDB C 2 'F directly. The other part
of ID derives from the second term at the right-hand side of (22.148); its analytical
calculation, although a little more elaborate, is feasible (Prob. 22.11).

The form of the us D us.	n/ relation calculated from (22.147) is shown in
Fig. 22.29 for different values of u0GB. The dashed line shows the 	n D us C 2 uF

approximation; it is found that the approximation is fair when the surface potential
is sufficiently smaller than the lower zero of the logarithm’s argument in (22.147).
Then, the surface potential us saturates at the value corresponding to such a zero
(the latter is calculated in Prob. 22.11). The observation is important because it
shows that (22.149) provides a smooth transition from the linear to the saturation
region: when VDB is such that 	n.L/ D q VDB=.kB T/ enters the saturation region,
the upper limit us.L/ of the integral (22.149) is pinned to the saturation value; as a
consequence, the current does not increase anymore from that value of VDB on.

In contrast to the simpler model of Sect. 22.8, the theory worked out here makes
the hypothesis of a strong-inversion regime at each point of the channel unnecessary;
with reference to Eq. (22.147) and Fig. 22.29, at some position y, depending on the
values of 	n and u0GB the condition may or may not hold. The latter case is also
indicated with subthreshold condition. If both VDB and VSB are such that the drain
and source ends of the channel are in the subthreshold condition, the whole channel
is such, and the expression (22.149) of the drain current becomes (Prob. 22.12):
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ID ' ˇ
exp.u�s � 2 uF/

q2=.kB T/2

�
1C

1=.2 r2/

u0GB � u�s

�
expŒ�	n.0/� � expŒ�	n.L/�

.1C 4 r2 u0GB/
1=2

;

(22.150)

where u�s D u0GB C Œ1 � .1 C 4 r2 u0GB/
1=2�=.2 r2/ (Prob. 22.11). The above result

is important because it provides the dependence of the drain current on the gate
voltage near threshold, namely, when the channel is making the transition from
the on to the off condition, or vice versa. For a reliable use of the device as
a switch, the transitions must occur in a small interval of gate voltages. The
strongest dependence of (22.150) on u0GB is the exponential one embedded in u�s
so that when the other voltages are kept fixed, the subthreshold current reads
ID ' const � expŒq VGB=.kB T/�. In fact, the experimental log.ID/ vs. VGB relation
is to a good approximation a straight line; the subthreshold slope (indicated with S,
or SS) is defined40 as

S D

�
d log10.ID/

dVGB

��1
'

kB T

q
log.10/ : (22.151)

From the above definition it follows that .kB T=q/ log.10/ is the variation�VGB that
makes ID to vary by a factor 10; at room temperature it is �VGB ' 60 mV.

22.11.6 Scaling Rules for MOSFETs

An integrated circuit (IC, or chip) is a complex electric circuit (e.g., a computer’s
processor) whose elements are simultaneously fabricated41 on the same physical
support (wafer); it may incorporate transducers (e.g., optical, thermal, chemical,
or mechanical sensors; solid-state displays). An IC is fabricated by means of a
sequence of optical, chemical, and physical processes applied onto a wafer of
semiconductor material.42 The above processes involve only the surface region
of the wafer and a limited portion of its thickness; this explains the term planar
technology by which the fabrication of integrated circuits is typically indicated.

The integration level is determined by the chip’s area and by the number of
elementary devices per unit area. Since their introduction in the 1960s, the speed
of the integrated circuits, along with their computing and storage capacity, have
increased exponentially; this trend is consistent with the well-known Moore law,

40The definition of subthreshold slope is not limited to the MOS transistor, but applies in general
to the devices where a conductive channel is controlled by a gate. The value of 60 mV per decade
calculated in (22.151) is the minimum (that is, the most favorable one); in real devices, S is larger
(that is, worse).
41In contrast, in a discrete circuit the individual components are fabricated independently and
assembled afterwards.
42Some process steps are illustrated in the chapters devoted to the technological issues.
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that is, the observation that the number of transistors in an integrated circuit
approximately doubles every two years. This steady improvement in the fabrication
of chip makes it possible to identify subsequent “generations” of the integrated-
circuit technology, that are referred to as nodes, each node being marked by a
characteristic length.43 By way of example, the 1971 node was 10 �m, the 2017 one
is 10 nm [68]. Considering that the chip as a whole, and each elementary device in
it, are essentially two-dimensional structures, it is sensible to associate a “radius”
with each of them; the steady improvement in the resolution and quality of the
fabrication processes has made it possible, at each generation of integrated circuits,
to decrease by a constant factor the radius of the elementary device and to increase
by a constant factor that of the chip: as a consequence, the number of elementary
devices of the chip, hence the chip’s capability to perform complex functions, have
grown exponentially.

In addition to the above, other advantages of miniaturization of the elementary
devices are that the electric power absorbed by the individual device decreases, and
that of the whole chip decreases as well thanks to clever circuit design made possible
by complexity; as a consequence, portable equipments become lighter as the number
and size of batteries decrease. Also, as the transistors’ switching time decreases
along with size, computers of the new generation perform more operations per unit
time with respect to those of the old generation.

If the applied voltages are left unchanged, the decrease in size of a device
brings about an increase in the electric field. This is not acceptable because it
eventually gives rise to, e.g., junction breakdown due to avalanche (Sect. 21.5), or
gate-oxide breakdown; it is then necessary to decrease the applied voltages in order
to prevent these phenomena from happening. The methodologies by which this goal
is achieved are termed scaling rules; if, in particular, the latter are such that the
electric field within the new-generation device is the same as in the old-generation
one, they are referred to as constant-field scaling rules.

As the spatial dependence of the electric field is found by solving the Poisson
equation �"r2' D %, it is necessary to examine how the equation behaves under
scaling. It is assumed that the material does not change from the old-generation to
the new-generation device, so that the permittivity is the same in the two cases. The
shrinking of the device can be described as a variable transformation, such that the
coordinates xold

i of the old-generation device are replaced with xnew
i D xold

i =�, where
� > 1 is the common scaling factor of the coordinates. At the same time, the electric
potential 'old becomes 'new D 'old=�, where � > 1 is the corresponding scaling
factor. For the time being it is assumed that no relation exists between � and �; this
approach is more general than the constant-field scaling rules, and is referred to as
generalized scaling theory [6]. It is important to note that the transformation of
the electric potential does not involve the interfaces between different media like,
for instance, the metal–semiconductor interfaces of the contacts; in fact, the work-

43Such a length is that of the half-pitch, namely, half the distance between identical features in a
DRAM array.
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function differences present at the interfaces are not scalable and must be treated
separately. With this provision, the Poisson equation in the new-generation device
reads

� "

3X

iD1

d2.'old=�/

d.xold
i =�/2

D %new ; (22.152)

that becomes identical to that of the old-generation device if %new D %old �2=�. At
the same time, the components of the electric field transform as

Enew
i D �

@.'old=�/

@.xold
i =�/

D
�

�
Eold

i : (22.153)

It is readily found from (22.153) that the constant-field scaling rules are derived from
the generalized scaling theory by letting � D � D xold

i =xnew
i ; in this case, the charge

density must scale as %new D �%old. The constant-field scaling relation for % is
fulfilled in the insulator regions (%ox ' 0); as for the semiconductor regions, where
% D q .p� nCN/, in principle the relation is not fulfilled due to the presence of the
electron and hole concentrations. However, one remembers that in most operating
conditions the semiconductor domain can be divided into neutral and space-charge
regions (Sects. 21.2.2 and 22.2.2). In the space-charge regions, the mobile-carrier
concentrations are negligible with respect to the dopant’s, % D q .p�nCN/ ' q N;
thus, the scaling relation is fulfilled if

Nnew D �Nold : (22.154)

In the neutral regions it is % ' 0, whence the scaling relation is fulfilled anyhow.
The most important application of the scaling rules relates to the MOS technol-

ogy. Considering the linear-parabolic model for the drain current in the n-channel
transistor (Sect. 22.8.2), one has

ID D ˇ Œ.VGS � VT/VDS � V2
DS=2� ; ˇ D

W

L
�e
"ox

tox
: (22.155)

The use of (22.155), where the contact voltages appear, seems to contradict the
prescription that the interfaces with the contacts should not be considered; one
notes, however, that with the exception of the threshold voltage VT , the voltages
appearing in (22.155) are actually voltage differences, from which the non-scalable
constants are automatically eliminated.44 The effect of the remaining non-scalable
voltage, VT , is provisionally neglected by assuming VGS � jVT j. In conclusion, the
term in brackets of (22.155) can be viewed as the square of a scalable voltage. As
far as coefficient ˇ is concerned, the permittivity does not change because, as said

44The reasoning implies that all contacts are made of the same material.
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before, the material is the same as in the old generation; the geometrical factor, in
turn, scales like Wnew=.Lnew tnew

ox / D �Wold=.Lold told
ox /. Finally, to determine how �e

behaves under scaling, one refers to the discussion carried out in Sect. 20.5.3 about
the mobility dependence on macroscopic parameters in surface-channel devices.
Specifically, such parameters are lattice temperature, dopant concentration, and
intensity of the electric field’s component normal to the semiconductor–insulator
interface. Experimental evidence shows that a difference in lattice temperature from
one generation to another can be neglected; in turn, the intensity of the electric field’s
components is obviously invariant. In contrast, one expects a mobility degradation
to occur, due to the increase in the dopant concentration as prescribed by (22.154);
however, if one limits the analysis to the single step that brings from one generation
to the next one, factor � in (22.154) is limited between 1 and 2, which makes the
effect of the increase in the dopant concentration negligible as well.45 In conclusion,
assuming that �e is invariant under scaling and using symbol VX to collectively
indicate the voltages in (22.155) yield

Inew
D D cost �

�
Vnew

X

	2

tnew
ox

D cost �

�
Vold

X =�
	2

told
ox =�

D
Iold
D

�
: (22.156)

Remembering that in an MOS transistor the electric power is dissipated in the
source-drain port (Sect. 22.8), one finds that the power P dissipated within a single
transistor scales as

Pnew D Vnew
DS Inew

D D
Vold

DS

�

Iold
D

�
D

Pold

�2
: (22.157)

Letting � be the number of transistors per unit area, it is �new D �2 �old. Combining
the latter with (22.157) shows that, as anticipated above, the power QP dissipated per
unit area within the chip is invariant under the constant-field scaling:

QPnew D �new Pnew D �2 �old Pold

�2
D �old Pold D QPold : (22.158)

This is a fundamental result: it shows that scaling makes it possible to concentrate
a larger number of devices in the same area without producing an excessive heat.46

Moreover, as anticipated above, smaller transistors exhibit a shorter switching
time. To demonstrate this it is convenient to refer to the CMOS architecture
(Fig. 22.23) and to examine the charging or discharging processes of the capacitive
load that, as indicated in Sect. 22.10, mimics the inverter’s fan-out. Letting A be the

45In the planar technology, the scaling factor that makes the number of transistors in an integrated
circuit to double is � D

p
2.

46This also explains why variations in �e are negligible as far as the effect of temperature is
concerned.
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capacitor area, and considering a linear capacitor for simplicity, one finds Cnew D

"ox Anew=tnew
ox D "ox .Aold=�2/=.told

ox =�/ D Cold=�. Remembering the description of
Sect. 22.10.1, the voltage V across the capacitor coincides with VDSn; it is equal to
VSS when the p-channel transistor is in the on state and the n-channel transistor is
in the off state. When the states reverse, the capacitor discharges through the n-
channel transistor, which is now in the on state; as a consequence, a current flows
in the circuit made of the capacitor and the n-channel transistor. In the opposite
situation, in which V is initially equal to zero, when the transistors’ states reverse
the capacitor charges through the p-channel transistor. In both cases, the current I is
the drain (source) current of an MOS transistor, whose scaling rule is (22.156); in
turn, the equation describing the circuit is I D C dV=dt. Observing that the scaling
factors of V and I cancel each other, one finds

dtnew D Cnew dVnew

Inew
D

Cold

�

dVold

Iold
D

dtold

�
; (22.159)

namely, within the constant-field scaling rules, the scaling factor of time is the same
as that of lengths.

The presence of quantities that are not scalable introduces some complicacies
into the plain form of the scaling theory depicted so far; the general conclusions,
however, do not change. As mentioned above, non-scalable quantities typically arise
at the interfaces among different media; the problem is not necessarily restricted
to the device boundaries: for instance, in a reverse-biased abrupt p-n junction
(Sect. 21.4), the expression of the electric field at the junction reads

E0 D �

s
2 q

"sc

 0 � V

1=ND C 1=NA
;  0 D

kB T

q
log

�
ND NA

n2i

�
: (22.160)

One finds that  0 increases under scaling by the additive term .2 kB T=q/ log�;
only in the limiting case jVj �  0 the scaling factors of V and 1=ND C 1=NA

cancel each other, thus making E0 invariant under scaling. Another non-scalable
quantity is the threshold voltage, whose expression for an n-channel transistor is
given by (22.85); it embeds the Fermi potential 'F D .kB T=q/ log.ND=ni/, the
work-function difference at the interface between semiconductor and bulk contact
(through the flat-band voltage, Sect. 22.4.1) and, possibly, the fixed oxide charge
and the surface-state charge.47

Other problems connected with miniaturization exist, deriving either from
fundamental physical limits or practical issues. The insulator thickness belongs to

47It is interesting to observe that if jVBSj 	 2 'F , the last term of the threshold voltage (22.85)
scales by the correct factor �. Remembering in fact that in the expression (22.30) of � the factor
Cox is a capacitance per unit area, in the approximation jVBSj 	 2 'F it is �

p
�VBS D const �

tox
p
�VBS NA. As the scaling factors within the square root cancel each other, the whole product

�
p
�VBS scales like tox.
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the first class: as mentioned in Sect. 22.2, the progressive scaling has brought the
insulator thickness to the range of nanometers. This may eventually lead to dielectric
breakdown and leakage by quantum tunneling; for this reason, silicon dioxide is
being replaced in advanced devices with high-k dielectrics. Another problem that is
aggravated by miniaturization is the statistical variability produced by the random
distribution of the dopant atoms. For instance, implanting a dopant with a 6 � 1018

cm�3 concentration into a channel whose size is 40� 20� 20 nm3 yields about 100
implanted atoms; therefore, considering the dopant distribution still a continuous
function becomes a rather simplistic approximation. Practical problems, in turn,
derive from the increase (of exponential nature) in the cost of investments that are
necessary to move from one generation of integrated circuits to the next one, and
from the increasing complexity of the integrated circuits’ design: the latter issue
is in fact tackled by means of advanced techniques for automatic design, and of
sophisticated models describing each phase of the design. A brief outline of this
aspect is given in Sect. 22.11.7.

22.11.7 A Brief Account on IC Design

A rough scheme of the IC-design tree is depicted in Fig. 22.30. The design of a new
IC can be stimulated by a direct request from a customer or by a market analysis
carried out by the manufacturer. With reference to the left section of Fig. 22.30,
the first steps of the design are a feasibility study including the description of
the functional specs, the choice of the technology (e.g., CMOS) along with an
estimate of the chip size, followed by chip planning, namely, the placement of the
individual blocks forming the chip. The next steps are the design of the circuits
able to abide by the functional specs, of the devices able to provide the static
and dynamic characteristics required by the circuits, and of the processes able to
yield the devices of interest. The design of equipments that make the processes
feasible is also important; it is uncommon, however, that the design of equipments
is accomplished by the same manufacturer that produces the integrated circuits.

As a whole, the steps listed above are also called top-down design, because they
start from an overview of the global system and break it successively into smaller
blocks. This part of the process is followed by the validation part, in which the
functionality of the individual blocks is checked separately and in detail (bottom-
up design). To complete the design it may be necessary to repeat several times
the top-down, bottom-up suite. When the design is complete, the layout of the
circuit is represented in a figure called stick diagram, useful for planning the relative
placement of the devices. The stick diagram for the CMOS inverter of Fig. 22.23 is
shown in Fig. 22.31 by way of example; the colors have a meaning: the red (light
blue) stick represents the p-channel (n-channel) transistor, the green sticks are the
input contact, the black sticks represent the bias or ground lines, and the output
contact; finally, the dots indicate the positions where different layers contact each
other.
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Stick Diagram

Layout Design

Manufacture

Mask Production

Design−Rule Check

Device Design

Process Design

Circuit Design

Chip Planning

Equipment Design

Top−down design Bottom−up design

Functional Specs

Customer Market Analysis

Choice of Technology

Fig. 22.30 Pictorial scheme of the top-down and bottom-up design of integrated circuits

Fig. 22.31 Stick diagram of
the CMOS inverter of
Fig. 22.23

n channel MOS

p channel MOS

Bias

Ground

Input Ouput

The placement of each device in the layout is accomplished thanks to the stick
diagram; after its completion, the circuit’s layout is examined by means of an
automatic procedure (design-rule checker) to verify whether a set of recommended
design rules is satisfied; the rules specify restrictions about geometry and connec-
tivity (for instance, minimum width of each shape, minimum distance between
two adjacent objects, and many others), able to account for variability in the
manufacturing process. The steps involving the production of the stick-diagram,
of layout design, and of design-rule checking are depicted in the right section of
Fig. 22.30; again, it may be necessary to repeat the suite several times. The final
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layout is then used for the production of masks and the rest of the manufacturing
process.

It is important to mention that the steps encircled by the left and right frames
in Fig. 22.30 are carried out by computer simulation. Considering in particular
the design of circuits, devices, processes, and equipment (left frame), two aspects
are fundamental for each step: the accurate physical modeling of the problem in
hand, and the ability of solving the equations resulting from the physical modeling.
An example of numerical methods useful for solving the semiconductor-device
equations is given in Sect. A.13.

Problems

22.1 Work out a method for drawing the curves of Fig. 22.9 without approxima-
tions.

22.2 Prove that the condition of a well-formed channel in a p-channel MOSFET is
given by (22.102).

22.3 Using the linear-parabolic model, find the current of the CMOS inverter when
both transistors work in the saturation region.

22.4 Using the linear-parabolic model, determine the analytical form of the
Vout.Vin/ curve between points A and B of Table 22.3. Repeat the calculation for
the part of the curve between points C and D.

22.5 Find the conditions that make the Vout.Vin/ curve antisymmetric around the
point .VSS=2;VSS=2/.

22.6 Discuss the Vout.Vin/ curve of the CMOS inverter shown in Fig. 22.25.

22.7 Calculate the Vout.Vin/ curve of the inverter made of an n-channel MOSFET
with a resistive load.

22.8 Draw the Vout.Vin/ curve of the inverter made of an n-channel, silicon
MOSFET with a resistive load, using the expressions found in Prob. 22.7 and the
following values for the parameters: �n D 993 cm2=.V s/, tox D 5 nm, W=L D 1,
VSS D 5 V, R D 3:5 k�, VTn D 0:5 V.

22.9 Calculate the Vout.Vin/ curve of the inverter made of a p-channel MOSFET
with a resistive load.

22.10 Draw the Vout.Vin/ curve of the inverter made of a p-channel, silicon
MOSFET with a resistive load, using the expressions found in Prob. 22.9 and the
following values for the parameters: �p D 662 cm2=.V s/, tox D 5 nm, W=L D 1,
VSS D 5 V, R D 5:25 k�, VTp D 0:5 V.

22.11 Complete the calculation of (22.149).
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22.12 Starting from (22.149), calculate the subthreshold expression (22.150) of the
drain current.

22.13 Given V 0GB, VSB, and VDB, use the concepts of Sects. 22.9 and 22.11.5 to
calculate the normalized surface potential us at each position y along the channel.
Repeat the calculation for 	n.

22.14 Letting �n D 10 �s, Dn D 10 cm2/s, and a D 10 �m, find the slowest decay
rate associated with (22.55).
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Chapter 23
Thermal Diffusion—Ion Implantation

23.1 Introduction

The fabrication of integrated circuits requires the introduction into the semicon-
ductor material of atoms belonging to specifically selected chemical species. Such
atoms are called impurities or dopants. As shown in Chap. 18, the inclusion
of dopants into the semiconductor lattice attains the important goals of fixing
the concentration of mobile charges in the material and making it practically
independent of temperature.

Dopants are divided into two classes, termed n-type and p-type. With reference
to silicon (Si), the typical n-type dopants are phosphorus (P), arsenic (As), and
antimony (Sb), while the typical p-type dopants are boron (B), aluminum (Al),
gallium (Ga), and Indium (In). When a dopant atom is introduced into the
semiconductor lattice, in order to properly act as a dopant it must replace an atom
of the semiconductor, namely, it must occupy a lattice position. When this happens,
the dopant atom is also called substitutional impurity. An impurity atom that does
not occupy a lattice position is called interstitial. Interstitials cannot properly act
as dopants; in fact, they degrade the conductivity and other electrical properties of
the semiconductor.

The concentration of the dopant atoms that are introduced into a semiconductor
is smaller by orders of magnitude than the concentration of the semiconductor
atoms themselves. As a consequence, the average distance between dopant atoms
within the lattice is much larger than that between the semiconductor atoms. Thus,
the material resulting from a doping process is not a chemical compound: it is
still the semiconductor in which some of the electrical properties are modified
by the presence of the dopant atoms. In fact, while the presence and type of
dopants are easily revealed by suitable electrical measurements, they may remain
undetectable by chemical analyses.

© Springer International Publishing AG 2018
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The first part of this chapter illustrates the diffusive transport with reference to
the processes that are used for introducing impurities into a semiconductor in a
controlled way. First, the expressions of the continuity equation and of the diffusive
flux density are derived. These expressions are combined to yield the diffusion
equation, whose form is reduced to a one-dimensional model problem. The model
problem allows for an analytical solution, based on the Fourier-transform method,
that expresses the diffused profile at each instant of time as the convolution of the
initial condition and an auxiliary function.

Then, the solution of the model problem is used to calculate the impurity profiles
resulting from two important processes of semiconductor technology, namely, the
predeposition and the drive-in diffusion. In the next part of this chapter the solution
of the model problem is extended to more general situations. Specific data about
the parameters governing the diffusion processes in semiconductors are in [61,
Chap. 3], [129, Chap. 10], [130, Chap. 7], [88, Chap. 12]. Many carefully drawn
illustrations of the diffusion process are found in [93, Sec. 1.5]. The properties of
the Fourier transform are illustrated in [89, 146] and Sect. C.2.

The last part of this chapter illustrates the features of ion implantation; it starts
from the description of the ion implanter, followed by the analysis of the energy
exchange between the ion and the crystal, and the statistical construction of the
implanted profile. Some remarks about the annealing techniques are given at the end
of this chapter. Specific data about the parameters governing ion implantation may
be found in [130, Chap. 8] and [88, Chap. 11]. Many carefully drawn illustrations
of the diffusion process are found in [93, Sec. 1.6].

23.2 Continuity Equation

The continuity equation described in this section is a balance relation for the
number of particles. Here it is not necessary to specify the type of particles that
are being considered: they may be material particles, like molecules or electrons,
particles associated with the electromagnetic field (photons), those associated with
the vibrational modes of atoms (phonons), and so on.1 Although the type of particles
is not specified, it is assumed that all particles considered in the calculations are of
the same type.

The balance relation is obtained by considering the space where the particles
belong and selecting an arbitrary volume V in it, whose boundary surface is denoted
with S. The position of the volume is fixed. Let N .t/ be the number of particles

1The continuity equations for the free carriers in semiconductors, and the corresponding transport
equations, are deduced and extensively discussed in Chap. 19. The derivation of the continuity
equation for the impurity atoms is repeated here in a more concise manner, to let the reader use the
material of this chapter without the need of referring to concepts introduced elsewhere in the book.
The transport equation here is simpler than those of Chap. 19 because the drift term is missing due
to the atoms’ neutrality. Other types of continuity equations are illustrated in Chaps. 4 and 5 with
reference to the electromagnetic field, and in Chap. 9 with reference to the wave function.
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that are inside S at time t. Due to the motion of the particles, in a given time interval
some of them move across S in the outward direction, namely, from the interior to
the exterior of S. In the same interval of time, other particles move across S in the
inward direction. Let Fout.t/ and Fin.t/ be the number of particles per unit time that
cross S in the outward or inward direction, respectively, and let F D Fout �Fin.
The quantity F , whose units are s�1, is the flux of the particles across the surface
S. If the only reason that makes N to change is the crossing of S by some particles,
the balance relation takes the form of the first equation in (23.1). The minus sign
at the right-hand side is due to the definition of F ; in fact, N decreases with time
when F > 0, and vice versa.

Besides the crossing of the boundary S by some particles, there is another
mechanism able to contribute to the time variation of N , namely, the generation or
destruction of particles inside the volume V . This possibility seems to violate some
commonly accepted conservation principle. However, it is not so, as some examples
given in Sect. 23.8.1 will show. As a consequence, the description of the particle
generation or destruction must be included. This is accomplished by letting
Wge.t/ and Wde.t/ be the number of particles per unit time that are generated or,
respectively, destroyed within the volume V . Defining W D Wge �Wde, the balance
relation that holds when generation or destruction are present takes the form of the
second equation in (23.1):

dN

dt
D �F ;

dN

dt
D �F CW : (23.1)

The quantity W , whose units are s�1, is the net generation rate within volume V .
It is convenient to recast (23.1) in local form. This is done basing on the second

equation of (23.1), which is more general, and is accomplished by describing the
motion of the particles as that of a continuous fluid. Such a description is legitimate
if V can be partitioned into equal cells of volume�V1;�V2; : : : having the following
properties: i) the cells can be treated as infinitesimal quantities in the length scale of
the problem that is being considered and, ii) the number of particles within each cell
is large enough to make their average properties significant. If the above conditions
are fulfilled one lets �Vk ! dV and introduces the concentration N.r; t/, such that
N dV is the number of particles that at time t belong to the volume dV centered at
position r. Similarly, one defines the net generation rate per unit volume W.r; t/
such that W dV is the net generation rate at time t within dV . The units of N and W
are m�3 and m�3s�1, respectively. From the definitions of N, W it follows that the
number N .t/ of particles that are inside S at time t is found by integrating N.r; t/
over V , and that the net generation rate W .t/ is found by integrating W over V .

To recast in local form the part of (23.1) related to the flux F , one associates a
velocity v.r; t/ to the concentration N.r; t/. In general, such a velocity is different
from the velocity of each individual particle that contributes to the concentration N.
In fact, v is a suitable average of the particles’ velocities, whose definition (6.6) is
given in Sect. 6.2. In the elementary time dt the concentration originally in r moves
over a distance v dt in the direction of v. As a consequence, if r belongs to the
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Fig. 23.1 Illustration of the
symbols used in the
calculation of the flux
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boundary surface S, a crossing of S by the particles may occur, thus contributing
to the flux. To calculate the contribution to the flux at a point r belonging to S,
one takes the plane tangent to S at r and considers an elementary area dS of this
plane centered at r (Fig. 23.1). The construction implies that the surface S is smooth
enough to allow for the definition of the tangent plane at each point of it.

Let s be the unit vector normal to dS, oriented in the outward direction with
respect to S. If v is normal to s, no crossing of S occurs and the contribution to the
flux at point r is zero. If the scalar product v � s is positive, the crossing occurs in
the outward direction and contributes to Fout. Its contribution is found by observing
that the elementary cylinder, whose base area and side are dS and, respectively, v dt,
has a volume equal to v � s dS dt. Due to the sign of v � s, the cylinder is outside the
surface S. The number of particles in the cylinder is found by multiplying its volume
by the concentration N.r; t/. Letting F D Nv, such a number reads F � s dS dt. As
the particles that are in the cylinder at time t C dt were inside the surface S at time
t, dividing the above expression by dt yields the elementary contribution of point r
to the flux, dF D F � s dS > 0. The contribution from a point r where v � s < 0 is
calculated in a similar way. The flux F is then found by integrating F � s over the
surface S. The quantity F � s D dF=dS, whose units are m�2s�1, is the flux density.

Introducing the relations found so far into the second form of (23.1) and
interchanging the derivative with respect to t with the integral over V yield

Z

V

�
@N

@t
�W

�
dV D �

Z

S
F � s dS D �

Z

V
div F dV : (23.2)

The last equality in (23.2) is due to the divergence theorem (A.23), whereas the use
of the partial-derivative symbol is due to the fact that the N, in contrast with N ,
depends also on r. The procedure leading to (23.2) does not prescribe any constraint
on the choice of the volume V . As a consequence, the two integrals over V that
appear in (23.2) are equal to each other for any V . It follows that the corresponding
integrands must be equal to each other, thus yielding the continuity equation
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@N

@t
C div F D W ; F D Nv : (23.3)

As mentioned above, (23.3) is the local form of the second equation of (23.1), which
in turn is a balance relation for the number of particles. In the steady-state condition
the quantities appearing in (23.3) do not depend explicitly on time, hence (23.3)
reduces to div F D W. In the equilibrium condition it is v D 0 and (23.3) reduces to
the identity 0 D 0. It is worth noting that in the equilibrium condition the velocity
of each particle may differ from zero; however, the distribution of the individual
velocities within any elementary volume dV is such that the average velocity v
vanishes. Similarly, in the equilibrium condition the generation or destruction of
particles still occurs; however, they balance each other within any dV .

To proceed it is assumed that the net generation rate per unit volume W, besides
depending explicitly on r and t, may also depend on N and F, but not on other
functions different from them.

23.3 Diffusive Transport

The continuity equation (23.3) provides a relation between the two quantities N and
F (or, equivalently, N and v). If both N and F are unknown it is impossible, even in
the simple case W D 0, to calculate them from (23.3) alone. However, depending on
the specific problem that is being considered, one can introduce additional relations
that eventually provide a closed system of differential equations. The important case
of the diffusive transport is considered in this section.

It is convenient to specify, first, that the term transport indicates the condition
where an average motion of the particles exists, namely F ¤ 0 for some r and t.
The type of transport in which the condition F ¤ 0 is caused only by the spatial
nonuniformity of the particles’ concentration N is called diffusive. Simple examples
of diffusive transport are those of a liquid within another liquid, or of a gas within
another gas. They show that in the diffusive motion of the particles, the flux is
oriented from the regions where the concentration is larger towards the regions
where the concentration is smaller.

The analytical description of the diffusion process dates back to 1855 [48]. Here
the relation between F and N in the diffusive case is determined heuristically, basing
on the observation that grad N is a sensible indicator of the spatial nonuniformity
of N. Specifically it is assumed, first, that F depends on N and grad N, but not
on higher-order derivatives of N. The dependence on grad N is taken linear, F D
F0 � D grad N, with F0 D 0 because F must vanish when the concentration is
uniform. Finally, one remembers that the particles’ flux is oriented in the direction
of a decreasing concentration, namely, opposite to grad N. It follows that D > 0, so
that the relation takes the form

F D �D grad N ; D > 0 : (23.4)
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The above is called transport equation of the diffusion type, or Fick’s first law of
diffusion. Parameter D is the diffusion coefficient, whose units are m2s�1. From the
derivation leading to (23.4) it follows that if a dependence of F on N exists, it must
be embedded in D. In the case D D D.N/ the relation (23.4) is linear with respect
to grad N, but not with respect to N. The diffusion coefficient may also depend
explicitly on r and t. For instance, it depends on position when the medium where
the diffusion occurs is nonuniform; it depends on time when an external condition
that influences D, e.g., temperature, changes with time.

For the typical dopants used in the silicon technology, and in the temperature
range of the thermal-diffusion processes, the experimentally determined dependence
on temperature of the diffusion coefficient can be approximated by the expression

D D D0 expŒ�Ea=.kBT/� ; (23.5)

where kB (J K�1) is the Boltzmann constant and T (K) the process temperature.
In turn, the activation energy Ea and D0 are parameters whose values depend on
the material involved in the diffusion process. The form of (23.5) makes it more
convenient to draw it as an Arrhenius plot, that displays the logarithm of the function
using the inverse temperature as a variable: log D D log.D0/ � .Ea=kB/ .1=T/.
At the diffusion temperatures, Ea and D0 can often be considered independent of
temperature. In this case the Arrhenius plot is a straight line (examples of Arrhenius
plots are given in Chap. 24). At room temperature the diffusion coefficient of
dopants in silicon is too small to make diffusion significant. In order to activate
the diffusion mechanism a high-temperature process is necessary, typically between
900ıC and 1;100ıC. Data about the diffusion coefficients of different dopants in
silicon are reported, e.g., in [130, Sect. 7.5].

23.4 Diffusion Equation—Model Problem

Inserting (23.4) into (23.3) yields the diffusion equation

@N

@t
D div.D grad N/CW ; (23.6)

where W depends on r, t, N, and grad N at most, while D depends on r, t, and N
at most. The above is a differential equation in the only unknown N. It must be
supplemented with the initial condition N0.r/ D N.r; t D 0/ and suitable boundary
conditions for t > 0. If the diffusion coefficient is constant, or depends on t at
most, (23.6) becomes

@N

@t
D Dr2N CW ; D D D.t/ : (23.7)
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It is convenient to consider a simplified form of (23.7) to be used as a model
problem. For this, one takes the one-dimensional case in the x direction and lets
W D 0, thus yielding

@N

@t
D D

@2N

@x2
: (23.8)

Equation (23.8) is also called Fick’s second law of diffusion. Thanks to the linearity
of (23.8), the solution can be tackled by means of the Fourier-transform method,
specifically, by transforming both sides of (23.8) with respect to x. Indicating2 with
G.k; t/ D FxN the transform of N with respect to x, and using some of the properties
of the Fourier transform illustrated in Appendix C.2, one finds

Fx
@N

@t
D

dG

dt
; FxD

@2N

@x2
D D Fx

@2N

@x2
D �k2D G : (23.9)

The symbol of total derivative is used at the right-hand side of the first of (23.9)
because k is considered as a parameter. The Fourier transform of the initial condition
of N provides the initial condition for G, namely, G0 D G.k; t D 0/ D FxN0.
Equating the right-hand sides of (23.9) and rearranging yield dG=G D �k2D.t/ dt.
Integrating the latter from 0 to t,

log.G=G0/ D �k2a.t/ ; a.t/ D
Z t

0

D.t0/ dt0 ; (23.10)

with a an area. The concentration N is now found by antitransforming the expression
of G extracted from the first of (23.10):

N.x; t/ D F�1k G D
1
p
2�

Z C1

�1

G0 exp.ikx � ak2/ dk : (23.11)

In turn, G0 within the integral of (23.11) is expressed as the transform of N0. After
rearranging the integrals one finds

N.x; t/ D
Z C1

�1

N0./

�Z C1

�1

1

2�
expŒik .x � / � ak2� dk


d : (23.12)

As shown in Appendix C.7, the expression in braces in (23.12) is the integral form
of the function �.x � ; t/ defined by (C.76). As a consequence, the solution of the
simplified form (23.8) of the diffusion equation is the convolution between � and
the initial condition N0, namely,

2Symbol Fx indicating the Fourier transform should not be confused with the symbol F used for
the particles’ flux in Sect. 23.2.
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N.x; t/ D
Z C1

�1

N0./�.x � ; t/ d : (23.13)

A straightforward calculation shows that � fulfills (23.8) for all  . As a conse-
quence, (23.13) is a solution as well. In addition, due to (C.80), (23.13) also fulfills
the initial condition N0.

23.5 Predeposition and Drive-in Diffusion

Basing on the model problem worked out in Sect. 23.4 it is possible to describe the
thermal diffusion of dopants in silicon. The modification induced in the electrical
properties of the silicon lattice by the inclusion of atoms belonging to different
chemical species (e.g., phosphorus or boron) is described elsewhere (Sects. 18.4.1
and 18.4.2). Here the analysis deals with the diffusion process in itself.

The formation of a diffused profile in silicon is typically obtained in a two-
step process [61, 93, 130]. In the first step, called predeposition, a shallow layer
of dopants is introduced into the semiconductor. The most common predeposition
methods are the diffusion from a chemical source in a vapor form or the diffusion
from a solid source (e.g., polycrystalline silicon) having a high concentration of
dopants in it. In both methods the silicon wafers are placed in contact with the
source of dopant within a furnace kept at a high temperature.

During a predeposition step, new dopant atoms are continuously supplied by the
source to the silicon region. As a consequence, the number of dopant atoms in the
silicon region increases with time. When the desired amount of atoms is reached,
the supply of dopants is blocked, whereas the diffusion process is continued. During
this new step, called drive-in diffusion, the number of dopant atoms in the silicon
region remains constant. The drive-in diffusion is continued until a suitable profile
is reached.

Typically, the blocking of the flow of dopant atoms from the source to the
silicon region is achieved by introducing oxidizing molecules into the furnace
atmosphere, thus resulting in the growth of a silicon-dioxide layer at the silicon
surface (the details of the oxidation process are given in Chap. 24).

It is worth anticipating that in some processes the predeposition step is skipped,
and the dopant atoms are introduced into the silicon wafers at low temperature by
means of an ion-implantation process (Sect. 23.7).

23.5.1 Predeposition

Figure 23.2 provides a schematic picture of the source–wafer structure during a
predeposition step. The interface between wafer and source is assumed to coincide
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Fig. 23.2 Normalized
profiles N=C produced at
different instants by a
predeposition, using the first
of (23.15) as initial condition
with arbitrary units for the x
coordinate. The outcome is a
set of complementary error
functions whose expression is
the first of (23.16). The
legends show the value of 4 a
for each curve, also in
arbitrary units, with a D a.t/
given by the second
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with the y; z plane, with the x axis oriented towards the wafer’s bulk, and the initial
condition N0 is assumed constant in the source region. The diffusion coefficients in
the source and wafer regions are provisionally taken equal to each other. Thanks to
these assumptions the problem has no dependencies on the y; z variables, and the
one-dimensional form (23.8) of the diffusion equation holds. In the practical cases
the extent of the source region in the x direction is large and the concentration of the
dopant atoms in it is high. As a consequence, the source is not depleted when the
atoms diffuse into the wafer. The spatial form of the concentration N at a given time
t D t0 is called diffused profile. Its integral over the semiconductor region,

Q.t0/ D
Z C1

0

N.x; t D t0/ dx .m�2/ ; (23.14)

is called dose. For convenience the constant value of the initial condition in the
source region is indicated with 2C (m�3). It follows that the initial condition
of the predeposition step is given by the first of (23.15). In turn, the general
expression (23.13) of the dopant concentration reduces to the second of (23.15):

N0./ D

�
2C  < 0

0  > 0
I N.x; t/ D 2C

Z 0

�1

�.x � ; t/ d : (23.15)

Using (C.79) and (C.71) one finds the following expressions for the diffused profile
and dose of the predeposition step,

N.x; t/ D C erfc

�
x
p
4 a

�
; Q.t/ D C

r
4 a

�
; (23.16)
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where the dependence on t derives from the second of (23.10). As parameter a
increases with time, the dose increases with time as well, consistently with the
qualitative description of predeposition given earlier in this section. In most cases
the diffusion coefficient is independent of time, a D D t, thus yielding Q /

p
t.

Still from the second of (23.10) one finds a.0/ D 0. Combining the latter with the
properties (C.69) of the complementary error function shows that limt!0C

N.x; t/
coincides with the initial condition given by the first of (23.15). Also, the solu-
tion (23.16) fulfills the boundary conditions N.�1; t/ D 2C, N.C1; t/ D 0

at any t > 0. Finally it is N.0; t/ D C at any t > 0. This explains the term
constant-source diffusion that is also used to indicate this type of process. In fact,
the concentration at the wafer’s surface is constant in time. Figure 23.2 shows the
normalized concentration N=C calculated from the first of (23.16) at different values
of a.

The analysis of the diffusion process carried out so far was based on the
assumption of a position-independent diffusion coefficient D. In the actual cases
this assumption is not fulfilled because the dopant source and the wafer are made
of different materials. As a consequence, the solution of (23.8) must be reworked.
In the case of predeposition this is accomplished with little extra work, which is
based on the first of (23.16) as shown below.

One assumes, first, that the diffusion coefficient in either region is independent
of time, as is the standard condition of the typical processes. In each region the
diffusion coefficient takes a spatially constant value, say, DS in the source and DW ¤

DS in the wafer. Now, observe that (23.8) is homogenous and contains the derivatives
of N, but not N itself. It follows that if C erfcŒx=.4 a/1=2� is the solution of (23.8)
fulfilling some initial and boundary conditions, then A erfcŒx=.4 a/1=2� C B is also
a solution of (23.8), fulfilling some other conditions that depend on the constants A
and B. One then lets, with t > 0,

NS D AS erfc

�
x

p
4DSt

�
C BS ; x < 0 ; (23.17)

NW D AW erfc

�
x

p
4DWt

�
C BW ; x > 0 ; (23.18)

and fixes two relations among the constants in order to fulfill the initial condi-
tions (23.15):

lim
tD0C

NS D 2AS C BS D 2C ; lim
tD0C

NW D BW D 0 : (23.19)

In order to fix the remaining constants one must consider the matching conditions
of the two regional solutions (23.17, 23.18) at the source–wafer interface. The
concentrations across an interface between two different media are related by the
segregation coefficient k [130, Sect. 1.3.2]. Also, given that no generation or
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destruction of dopant atoms occurs at the interface, the flux density �D @N=@x
must be continuous there. In summary, the matching conditions at the source–wafer
interface are

NW.0
C; t/ D k NS.0

�; t/ ; DW

�
@NW

@x

�

0C

D DS

�
@NS

@x

�

0�

: (23.20)

Using (23.17, 23.18, 23.19) transforms (23.20) into AW D k .2C � AS/ and,
respectively,

p
DW AW D

p
DS AS whence, remembering the first of (23.19) and

letting � D DW=DS,

AS D
k
p
�

1C k
p
�
2C ; BS D

1 � k
p
�

1C k
p
�
2C ; AW D

k

1C k
p
�
2C :

(23.21)

Thanks to (23.21), the concentration of the dopant atoms in the source region at the
source–wafer interface at t > 0 turns out to be NS.0

�; t/ D AS C BS D 2C=.1 C
k
p
�/. If, in particular, the source of dopant is in the gaseous phase, it is �� 1. As

k is of order unity, one finds for the gaseous source NS.0
�; t/ ' 2C, namely, the

interface concentration of the source region is practically equal to the asymptotic
one. Figure 23.3 shows the diffused profile N calculated from (23.17, 23.18) at two
different instants t1 and t2 D 16 t1, with DS D 400DW . The coefficients are, in
arbitrary units, AS D 2, BS D 78, AW D 40, BW D 0. From the first of (23.19)
it follows C D 41. Letting .4DW t1/1=2 D 1 (a.u.) one has .4DS t1/1=2 D 20,
.4DW t2/1=2 D 4, and .4DW t2/1=2 D 80. These values are used to calculate the four
curves shown in the figure.
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Fig. 23.3 Diffused profiles calculated at t1 and t2 D 16 t1 when two different materials are
involved. The calculation is based on (23.17), (23.18) as described at the end of Sect. 23.5.1. The
legends show the .4D t/1=2 value for each curve
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23.5.2 Drive-in Diffusion

As indicated at the beginning of this section, the drive-in diffusion is started when
the desired amount of atoms has been introduced into the silicon lattice, and is
continued until a suitable profile is reached.

In principle, the profile to be used as initial condition of a drive-in diffusion is
not exactly equal to the final profile of the predeposition step. In fact, the boundary
condition .@NW=@x/0C

is different from zero during the predeposition step. Instead,
during the growth of the silicon-dioxide layer that blocks the supply of dopant atoms
from the source region, the boundary condition becomes equal to zero to adapt to
the situation of a vanishing flux density of dopants across the interface.

The calculation of the drive-in diffusion is tackled more easily by assuming
that the blocking of the supply of dopants atoms is instantaneous, so that the final
profile of the predeposition step is “frozen.” Then, one considers the full domain
�1 < x < C1 instead of the wafer domain 0 � x < C1, with the same
diffusion coefficient D D DW everywhere. In this way one can still use the model
problem (23.8). As for the initial condition N0, one mirrors the final profile of the
predeposition step over the negative axis, thus making the initial condition even with
respect to x. Letting x  �x in (23.13) one easily proves that N.�x; t/ D N.x; t/
if N0.�/ D N0./; namely, if the initial condition is even, then the solution is even
at all times. With the provisions above one finds .@NW=@x/0C

D �.@NW=@x/0� ,
which automatically fulfills the condition of a vanishing flux density of dopants
across the origin. Then, the application of (23.13) provides the profile of the drive-
in diffusion in the wafer region 0 � x < C1:

The final profile (23.16) of the predeposition step, used as initial condition, does
not lend itself to an analytical calculation of the drive-in diffusion. Some examples
of calculation are given below, in which profiles of a simpler form than (23.16) are
used as approximations. Let Q be the dose present within the wafer region. As a first
example one lets

N0./ D 2Q ı./ ; N.x; t/ D 2Q
Z C1

�1

ı./�.x � ; t/ d : (23.22)

From the properties of the Dirac ı (Sect. C.4) it follows

N.x; t/ D 2Q�.x; t/ D 2Q
expŒ�x2=.4 a/�
p
4� a

; (23.23)

showing that when the initial condition is a Dirac ı, the profile resulting from a
diffusion process is Gaussian. Only the portion of (23.23) belonging to the wafer
region, that is, x � 0, must in fact be considered. Integrating (23.23) from 0 to
C1 and using (C.78) yield the expected value Q of the dose at all times. Although
rather crude, the approximation of using a Dirac ı as initial condition is acceptable,
because the profile obtained from a predeposition or an ion-implantation process is
typically very thin.
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As a second example one takes a Gaussian profile as the initial condition,
specifically, the second of (23.23) where, to better distinguish the symbols, a
is replaced with a1. It is assumed that the drive-in diffusion to be calculated is
characterized by another value of the parameter, say, a2. The difference between
a2 and a1 may be due to the duration of the diffusion process under investigation,
to a temperature-induced difference in the diffusion coefficients, or both. As usual
the instant t D 0 is set as the initial time of the diffusion process. Applying (23.13)
yields

N.x; t/ D 2Q
Z C1

�1

expŒ�2=.4 a1/�
p
4� a1

expŒ�.x � /2=.4 a2/�
p
4� a2

d : (23.24)

Using the auxiliary variable � D �a1 x=.a1Ca2/, whence x� D ��Ca2 x=.a1C
a2/, transforms the exponent of (23.24) as

�
2

4 a1
�
.x � /2

4 a2
D �

x2

4 .a1 C a2/
�

a1 C a2
4 a1a2

�2 : (23.25)

Then, integrating with respect to
p
.a1 C a2/=.4a1a2/ � and using again (C.78) yield

N.x; t/ D 2Q
expŒ�x2=.4 a1 C 4 a2/�p

4� .a1 C a2/
: (23.26)

As before, the integral of the profile from 0 toC1 yields the dose Q at all times. The
result expressed by (23.26) is important because it shows that a diffusion process
whose initial condition is a Gaussian profile yields another Gaussian profile. The
parameter of the latter is found by simply adding the parameter a2 D

R t
0

D.t0/ dt0

of the diffusion process in hand, whose duration is t, to the parameter a1 of the
initial condition. Clearly, the result is also applicable to a sequence of successive
diffusion processes. In fact, it is used to calculate the final profiles after the wafers
have undergone the several thermal processes that are necessary for the integrated-
circuit fabrication.

23.6 Generalization of the Model Problem

The generalization of the model problem (23.8) to three dimensions, that is,
equation (23.7) with W D 0 and initial condition N0.r/ D N.r; t D 0/, is
still tackled by means of the Fourier transform. For this, it is necessary to define
the vectors r D .r1; r2; r3/, s D .s1; s2; s3/, k D .k1; k2; k3/, and the elements
d3k D dk1 dk2 dk3, d3s D ds1 ds2 ds3. Using (C.20) and following the procedure
of Sect. 23.4, one finds again the relations (23.10). This time, however, it is k2 D
k21 C k22 C k23. The solution N.r; t/ is readily found as a generalization of (23.12),
namely
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N.r; t/ D
ZZZ C1

�1

N0.s/
�ZZZ C1

�1

1

.2�/3
expŒik � .r � s/ � ak2� d3k


d3s :

(23.27)

The expression in braces in (23.27) is the product of three functions of the same
form as (C.76). It follows

N.r; t/ D
ZZZ C1

�1

N0.s/
expŒ�jr � sj2=.4a/�

.4� a/3=2
d3s : (23.28)

When the net generation rate per unit volume, W, is different from zero, it is in
general impossible to find an analytical solution of (23.7). An important exception
is the case where W is linear with respect to N and has no explicit dependence on r
or t. In this case (23.7) reads

@N

@t
D Dr2N �

N � Na

�
; D D D.t/ ; (23.29)

where the two constants Na (m�3) and � (s) are positive. This form of W is such
that the particles are generated if N.r; t/ < Na, while they are destroyed if N.r; t/ >
Na. Equation (23.29) is easily solved by introducing an auxiliary function N0 such
that N D Na C N0 exp.�t=�/. In fact, N0 turns out to be the solution of the three-
dimensional model problem, so that using (23.28), the solution of (23.29) reads

N.r; t/ D Na C exp.�t=�/
ZZZ C1

�1

N0.s/
expŒ�jr � sj2=.4a/�

.4� a/3=2
d3s : (23.30)

23.7 Ion Implantation

The reproducibility of thermal diffusion, as a method for introducing dopant atoms
into a semiconductor material, is limited. The analysis carried out in the previous
sections has shown that the predeposition process is controlled by the boundary
condition, where a constant concentration of the dopant is kept, and by the diffusion
coefficient. Similarly, the drive-in diffusion is controlled by the zero-flux boundary
condition and by the diffusion coefficient. Thus, the profile obtained from a thermal
diffusion is invariably of the same type; another drawback of the process is the
strong dependence on temperature of the diffusion coefficient (23.5), which makes
the reproducibility more difficult.

In the sixties of the last century, ion implantation has emerged as a method,
alternative to thermal diffusion, for introducing dopant atoms in the semiconductor.
The ion implanter (Fig. 23.4) consists of an ion source where the dopant atoms
(in solid, liquid, or gaseous phase) are ionized by a confined electric discharge, one
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Fig. 23.4 Schematic cross-section of an ion implanter

or more acceleration systems, and an analyzing system where the ions are filtered
according to their mass and kinetic energy. The ion beam thus obtained is uniformly
distributed, by means of a scanning system, over the wafer (target). When the ions
enter the wafer, they gradually lose energy due to collisions, until they come to rest.
The collision between an ion and a wafer’s nucleus may displace the nucleus from its
lattice site; this happens if the energy released by the ion during the collision is larger
than the displacement threshold energy (about 15 eV in silicon). The damage is
removed at a later stage by a suitable heat treatment (annealing); besides removing
the damage, annealing drives the implanted ions into the substitutional positions.

The neutrality of the implanted ions is restored by electrically connecting the ion
source with the target holder (Fig. 23.4). This also provides a method for measuring
the current flowing through the connection; since all ions are equal to each other, this
yields a very precise measurement of the ion current and, as a consequence, of the
implanted dose (more details are given below). From the description of the process,
it is clear that the dose is controlled independently from the penetration depth of the
ions; such a depth is in fact determined by prescribing the kinetic energy of ions
through the acceleration systems. It follows that a large variety of profiles can be
obtained from the convolution of subsequent implantation steps with different doses
and penetrations. In summary, the advantages of ion implantation are:

• Fine control of dose and penetration.
• Flexibility in building-up profiles.
• Reproducibility.
• Small lateral penetration.
• Applicability to compound semiconductors.
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• Low temperature.3

The disadvantages with respect to thermal diffusion are the cost of the equipments,
the higher complexity of the process, and crystal damage.4

23.7.1 Ion Implanter

The ion implanter is made of a number of blocks that are illustrated with reference
to Fig. 23.4. The whole process is carried out in vacuo to prevent the molecules
of the atmosphere from interfering with the motion of the ions. The first block of
the implanter is the ion source, where a suitable compound containing the dopant
is subjected to a high electric field. Typical compounds are boron trifluoride (BF3),
arsine (AsH3), or phosphine (PH3). A fraction of the atoms ionize; as a consequence,
free electrons and ionized atoms of different chemical species are present in the ion
source. While the electrons are collected by a suitable contact, some of the ions
escape through a hole in the wall of the ion source and transfer from the latter to
the second block, where an electric field is present. If VA is the potential drop across
the second block, the ions are accelerated and their kinetic energy increases by q VA

(Fig. 23.5).

Fig. 23.5 Detail of the
analyzing system

0

0

0
B upward

0
V  > A

V  > B

V > 

r

u

3This aspect is particularly relevant because each high-temperature process activates the diffusion
coefficients and deforms the doping profiles already present in the semiconductor.
4In contrast, thermal diffusion has simpler process and equipments, and does not produce a
crystal damage; this, however, does not compensate for its drawbacks (high temperature, modest
reproducibility, difficult application to compound semiconductors, large lateral penetration).
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It is important to note that although the increase in kinetic energy is known,
the actual kinetic energy of the ions is not, because there is no information about
the distribution of the ion velocities when the ions escape from the ion source;
moreover, the ions that escape are a mixture of those deriving from the dopant
atoms and from the other atoms of the compound. For this reason, it is necessary to
introduce an analyzing system made of a third and fourth block, where the ions are
filtered: the result of the filtering action is that all ions belonging to chemical species
different from the dopant are eliminated, and the dopant ions whose kinetic energy
is different from that prescribed by the process are eliminated as well. In summary,
the filtering action must involve two dynamic properties: the mass, to distinguish the
ions belonging to different chemical species, and the kinetic energy; or, equivalently,
other two dynamic properties uniquely related to the above like, e.g., momentum and
velocity. As shown below, the ions having the prescribed momentum are obtained
from the third block, called magnetic filter; these ions then enter the fourth block, the
electromagnetic filter, that eliminates the ions not possessing the prescribed velocity.
The outcome is that only those ions having the correct momentum and velocity pass
the two filters. After the filtering action is completed, the ions are oriented onto the
target by suitable deflection electrodes. Prior to that, a further acceleration block
may be present, with VB the potential drop.

The action of the magnetic filter is described below, with the aid of Fig. 23.5.
The magnetic induction is oriented upward with respect to the plane of the cross-
section shown in the figure, and the initial velocity of the ion belongs to such a
plane. As the orientation of the magnetic induction is the same as in Prob. 4.6, the
ion’s trajectory within the magnetic filter is a portion of circumference of radius
r D u=! D u m=.qB/, whence

m u D r q B : (23.31)

The ion escapes from the magnetic filter if r D r0, with r0 the filter’s radius
(Fig. 23.5); otherwise, it is intercepted by the filter’s walls. Letting r D r0, (23.31)
shows that B can be calibrated to obtain a desired value of the ion’s momentum m u.

The magnetic filter is followed by the electromagnetic filter. In the latter, the
same magnetic induction B as before is present; in addition to it, a constant electric
field E is applied as well through the voltage V shown in the figure. Let u be the
velocity of the ion at the instant of entering the electromagnetic filter, that is, at
the instant of escaping the magnetic filter; as before, the direction of u is normal
to B, while its modulus (with which the ion escapes the magnetic filter) is yet
unknown, because (23.31) prescribes the product m u only. Finally, the direction
of E is normal to both B and u. The structure of the apparatus is such that the
ion escapes the electromagnetic filter only if it suffers no deviation; this happens
if F D q .EC u ^ B/ D 0. Considering the orientation of the three vectors
in the above, it follows E D u B; combining the latter with (23.31) provides
m D r0 q B2=E. Finally, collecting the above results one finds for the mass, velocity,
and kinetic energy of the filtered ion,



690 23 Thermal Diffusion—Ion Implantation

m D r0 q
B2

E
; u D

E

B
; T D

1

2
r0 q E : (23.32)

This result shows that a suitable choice of E and B filters only the ions of a certain
mass; other ions possibly present in the ion source are eliminated. Moreover, all
filtered ions have the same kinetic energy.

From the description above it follows that the ion beam is formed by identical
ions that move in the same direction with a common velocity of modulus u and a
uniform concentration cI . In principle, the direction of the ions’ velocities should
spread due to mutual repulsion; however, the beam is dilute, to the extent that this
effect is negligible. Let the velocity of the ions be aligned with the x axis, and let A
be the cross-section of the beam in the direction normal to x. From the concentration
cI D dnI=.dx dA/ of the ions in the beam, one finds the relation

u cI D u
dnI

dx dA
D u

dnI

u dt dA
D

dnI

dt dA
D F ; (23.33)

with F the ion flux. The latter is constant due to the constancy of u and cI . The
current density of the ions is J D q F, and the corresponding current reads

I D
Z

A
J dA D A J D A q F : (23.34)

Letting tP be the implant’s duration, and using (23.49), the implanted dose is found
from

Q D
Z tP

0

F dt D
1

q A

Z tP

0

I dt D
I

q A
tP : (23.35)

In (23.35), the area A of the beam is given; as the current measurement is
accomplished with a very high accuracy,5 the dose is determined with the same
accuracy by calibrating the duration tP of the process. For this reason the accuracy
of ion implantation is superior to that of thermal diffusion. From (23.32) and (23.35)
one finds that, as mentioned before, the kinetic energy and the dose are controlled
independently from each other.

23.7.2 Ion Trajectories

When it enters the semiconductor, the implanted ion undergoes a series of collisions
with the nuclei of the semiconductor, and also with the electron cloud surrounding

5Remembering the description of the process given at the beginning of the section, the current that
is measured is in fact that of the electrons extracted from the dopant atoms.



23.7 Ion Implantation 691

Fig. 23.6 Sketch of the
trajectory of implanted ions
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the nuclei. As indicated above, the ion gradually loses energy until it comes to
rest; also, due to collisions, the ion’s trajectory within the semiconductor is not a
straight line: for this reason, it is convenient to use a curvilinear abscissa s along the
trajectory, whose origin is in the position where the ion enters the semiconductor.

A sketch of such a trajectory is shown in Fig. 23.6, where the y z plane defines
the semiconductor’s surface; the semiconductor belongs to the half space x > 0, and
the ion under consideration enters the semiconductor, with an initial velocity u, in a
position corresponding to the origin of the reference. The collisions with the nuclei
are considered point-like, whence the trajectory is represented as a broken line; at
each collision, the ion loses a fraction of its energy. Along the segment from one
collision to the next, the ion still suffers an energy loss due the interaction with the
electrons. Letting P indicate the final position of the ion, a number of parameters
are of use: specifically, letting r D PO (called range) be the modulus of the position
vector at the end of the trajectory, the projection of r along the x axis, rP D QO, is
called projected range, while the distance between the final position and the x axis,
rL D QP, is called lateral range.

Due to the randomness of the collisions, ions entering the semiconductor at the
same position and with the same velocity follow in general different trajectories;
three of them are shown in Fig. 23.6 by way of example. It is then necessary to
describe the outcome of the process by means of statistical parameters; one of them
is the dose Q defined in (23.35), other parameters are the average projected range
and the average lateral range, respectively defined as6

RP D hrPi ; RL D hrLi : (23.36)

6The masks used in an ion-implantation process are similar to those used in thermal diffusion.
For the ions that enter the semiconductor far from the mask’s edges, the lateral ranges rL tend to
compensate each other when calculating the average lateral range. For this reason, more attention
is given here to the average range.
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Table 23.1 Example of
parameters of an ion
implanter

Parameter Symbol Min Max Units

Current (low) I 50 500 
A

Current (medium) I 0:5 5 mA

Current (high) I 5 50 mA

Dose Q 1012 1018 cm�2

Kinetic energy T 1 1000 keV

Average projected range RP 10�2 10 
m

The averages in (23.36) are taken over all ions. Some typical parameters character-
izing ion implanters are given in Table 23.1; the range of the current qualifies the
small, medium, or large equipment.

The loss S D �dT=ds > 0 of kinetic energy suffered by the ion along the element
ds of trajectory is called stopping power;7 due to the different mechanisms involved,
it is convenient to separate the losses produced by the interaction with electrons from
those due to collisions with nuclei:

S D Se C Sn ; Se D �

�
dT

ds

�

e

; Sn D �

�
dT

ds

�

n

: (23.37)

If the electronic and nuclear stopping powers are expressible in terms of the kinetic
energy possessed by the ion when entering the element ds of trajectory, the relation
defining the stopping power is readily separated to yield

ds D �
dT

Se.T/C Sn.T/
; s0 D

Z r0 q E=2

0

dT

Se.T/C Sn.T/
; (23.38)

where the upper integration limit is taken from (23.32). In this way it is possible
to express the length s0 of the trajectory, although its form is not known. The
expressions for Se and Sn are given with different orders of approximation [130,
Chap. 8], [88, Chap. 11]. When the kinetic energy of the ion is low, the electronic
stopping power can be assimilated to a viscous drag force which, to first order, is
proportional to the velocity of the ion; in this order of approximation one obtains
Se.T/ as

Se /
p

T : (23.39)

As for the nuclear stopping power, a qualitative analysis may be based on the
calculation shown in Prob. 3.3, relative to the variation �T in the kinetic energy
of a particle of mass m1, that interacts with another particle of mass m2 initially
at rest; the interaction potential energy is of the Coulomb type, with Z1 q, Z2 q the
particles’ charges and c the impact parameter. The calculation leads to

7The units of the stopping power are those of a force.
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�T D �
4 .m1=m2/T

.1C m1=m2/2 C .c=˛/2 T2
; ˛ D

Z1 Z2 q2

8� "0
> 0 : (23.40)

The above expression can be recast in a more manageable form as

�K D �b
K

1C K2
; K D

m2 c=˛

m1 C m2

T ; b D
4m1 m2

.m1 C m2/2
� 1 :

(23.41)

In the problem in hand, the exchange of energy occurs over a path of the order of
the lattice constant a; dividing by a both sides of the first relation in (23.41), and
assuming that �K is small, one obtains dK=ds ' �.b=a/K=.1C K2/. Combining
the above with (23.39) after using K instead of T in the latter yields

� ds D
dK

Se.K/C Sn.K/
D

.1C K2/ dK

g
p

K .1C K2/C .b=a/K
; (23.42)

with g a suitable constant. The above treatment of the nuclear stopping power is only
qualitative because it does not take screening into account; in fact, if the electronic
stopping power was missing (g D 0), integration of (23.42) would yield a diverging
length of the trajectory due to the long-range decay of the pure Coulomb potential
(compare with Sect. 20.6.4). Also, an integration of (23.42) would imply that the
impact parameter is the same for all collisions; this parameter appears in fact in
one of the integration limits due to the second relation in (23.38). A more realistic
analysis shows that the majority of the implanted ions8 undergo a large number
of collisions, so that many different impact parameters are involved in a single
trajectory; it is then reasonable to assume that for such ions the same set of impact
parameters, although in different order, are present. It follows that the same set of
energy losses applies to all ions, whence the lengths of the trajectories are equal for
all; this helps in building up a statistical theory of the position of the end points of
the trajectories.

A sketch of the behavior of the nuclear and electronic stopping power is shown in
Fig. 23.7, in arbitrary units and using

p
T as abscissa. The energy Tc corresponding

to the intersection is called critical energy. If r0 q E=2 � Tc, as the ion enters the
semiconductor a large part of the energy loss is due to nuclear collisions; some of
the latter, in turn, displace the nuclei, so that the crystal damage starts from the
superficial layers of the semiconductor. When, instead, it is r0 q E=2 > Tc, most
of the initial energy loss is due to electronic collisions, which produce no damage;
however, as the ion continues its motion into the semiconductor its kinetic energy
decreases, and eventually reaches the critical value: as a consequence, the crystal
damage is larger far from the semiconductor’s surface.

8The ions not belonging to this majority are included in the analysis at a later stage (Sect. 23.7.3).
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Fig. 23.7 The nuclear and electronic stopping power. The vertical line marks the critical energy

23.7.3 Implanted Profile

As mentioned in Sect. 23.7.2, for the majority of implanted ions the same set of
energy losses apply, although in different order. This yields the same length s0 of
the trajectories; their end points, however, are different, and a statistical description
is necessary. For a single ion, the important parameter is the projected range rP,
namely, the distance of the end point from the semiconductor surface in the direction
x normal to the surface. The rP values of the different ions are distributed around the
average projected range RP: it is therefore of interest to determine the form N.rP/ of
such a distribution (called implanted profile) around the average. Let P.rP/ be the
probability density of the implanted profile, such that P.rP/ drP is the probability
that the end point of the trajectory of an ion lies between rP and rP C drP. From the
normalization condition

R1
0

P.rP/ drP D 1 and from the definition (23.14) of the
dose it follows N.rP/ D Q P.rP/.

For the analysis of the implanted profile, the simplified form of the trajectory
of an ion, shown in Fig. 23.8, is of help; the number of collisions shown is much
smaller than in realistic cases, and a two-dimensional path is assumed. Each portion
of the trajectory between two nuclear collisions is projected along the axis normal
to the semiconductor surface, the projections being labeled �1, �2, : : :; the projected
and lateral ranges are indicated as well. In the analysis, the length of each projection
is described by a probability density p.�i/, such that p.�i/ d�i is the probability
that the ith projection lies between �i and �i C d�. The projections are assumed
to be independent from each other, with the same probability density applicable
to all; the projected range is the sum rP D �1 C �2 C � � � C �n, and the issue is
to find the probability density P.rP/. The conditions of the problem are those of the
random walk problem (Sect. C.18); also, the number of collisions is sufficiently high
to concentrate the majority of the projected ranges in the vicinity of the average.
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Fig. 23.8 Example of the
random walk of an ion within
the semiconductor
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If the provisional assumption is made that the probability density p.�i/ complies
with the definition (C.169) of slowly varying function, the central part of the profile
has a Gaussian form (Sect. C.19):

N.rp/ '
Q

p
2� �Rp

exp

�
�
.rp � Rp/

2

2 .�Rp/2

�
; (23.43)

with �Rp the standard deviation. In principle, the normalization condition
of (C.173) does not hold as it stands, because the implanted profile exists only
for x � 0; however, the dopant concentration near the semiconductor surface is
small enough to render

R1
0

N.rP/ drP D Q.

23.7.4 Deviations from the Gaussian Profile

Experimental evidence shows that the actual implanted profile deviates from the
Gaussian function derived in Sect. 23.7.3. Besides the approximations inherent in
the derivation of (23.43), two additional sources of error must be considered. They
are described with the aid of Fig. 23.9, representing the trajectories of three different
ions; symbols c1, c2, : : : indicate the impact parameters of each collision. For the
trajectory on the left it is assumed that a large number of collisions occur; this
trajectory partakes in the statistical treatment described above. One notes that the
collision characterized by c4, which is shorter than the other impact parameters,
produces a dislocation of the nucleus: the latter moves from the original lattice
position (the white dot) from a new position (the annular symbol). The trajectory
in the center describes an ion that enters the semiconductor in a position that is
practically symmetric with respect to the nuclei, so that the ion penetrates the
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Fig. 23.9 For the trajectory
on the left (green line) a large
number of collisions occur.
The central trajectory (blue
line) describes a channeling
ion. The trajectory on the
right (red line) describes an
ion that soon after entering
the semiconductor suffers a
nuclear collision in which
most of its kinetic energy is
lost
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Semiconductor
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material for several lattice constants before suffering a sensible deviation due to
nuclear collisions. This event, called channeling, pertains to a small fraction of the
implanted ions; for such ions, the typical depth of the end points of the trajectories
is much larger than RP C �RP: thus, channeling builds up a tail of the implanted
profile that cannot be tackled with the statistical treatment shown above.9 Finally,
the trajectory on the right describes an ion that soon after entering the semiconductor
suffers a nuclear collision in which most of its kinetic energy is lost; such ions are a
small fraction of the total ions implanted, whence the statistical treatment above is
not applicable. The typical depth of their end points is much smaller than RP��RP:
thus, the implanted profile near the semiconductor surface turns out to be richer than
that predicted by the Gaussian distribution.

A sensible method to treat the deviations with respect to the theory of Sect. 23.7.3
is that of generalizing the Gaussian distribution by introducing more parameters
in it. To this purpose one observes from (23.43) that a normalized Gaussian
distribution, P D N=Q in this case, is characterized by two parameters: the mean
value RP, which is the moment of order 1 of the distribution (Sect. C.18), and
the standard deviation �RP, which is obtained from the moment of order 2. It is
expected that the modified distribution will depend also on moments of order higher
than 2, or on parameters related to such moments. To this purpose one defines the
skewness � and kurtosis ˇ of a distribution P by the relations10

9Some techniques have been devised to reduce channeling. The basic idea is disrupting the
orderly arrangement “seen” by the ion when approaching the semiconductor. For instance, pre-
amorphization of the surface layers of the wafer, or growth of an insulating layer (e.g., thermally
grown silicon dioxide is amorphous). Another method consists in tilting the wafer with respect
to the incident beam; tilting angles are typically less than 15ı, with 7ı the preferred choice [88,
Chap. 11].
10It is assumed that �RP ¤ 0. The units of � and ˇ are those of rP.
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� D

Z C1

�1

�
rP � RP

�RP

�3
P.rP/ drP ; ˇ D

Z C1

�1

�
rP � RP

�RP

�4
P.rP/ drP :

(23.44)

The skewness is an indicator of the asymmetry of the distribution about the
mean value; it may be negative. For a Gaussian distribution the integrand in the
definition of � is odd, whence � D 0. The kurtosis is positive definite; for a Gaussian
distribution one may let u D .rP � RP/=.

p
2�RP/ and limit the integration domain

to the positive u axis, with the provision of multiplying the final result by 2. Then,
letting w D u2 yields ˇ D .4=

p
�/� .5=2/ D 3, with � the Euler Gamma function

(Sect. C.10).
To express a more general distribution in terms of the moments it is convenient to

start from its differential form; to ease the notation one lets s D rP � RP, � D �RP,
whence the Gaussian distribution reads P D .2 � �2/�1=2 expŒ�s2=.2 �2/�, with a
differential form given by

dP

ds
D �

s

�2
P : (23.45)

The above expression is generalized by replacing �s=�2 with the ratio of two
polynomials; of particular importance in this matter is the Pearson family of
distributions, defined by the equation

dP

ds
D

sC a

b0 C b1sC b2s2
P ; (23.46)

where the parameters a, b0, b1, and b2 must be expressed in terms of the moments
of order 2, 3, and 4, namely,11 � , � , and ˇ. Introducing the auxiliary parameter
w D 10 ˇ � 12 �2 � 18, one finds [130, Chap. 8]

b0 D �
2 3 �

2 � 4 ˇ

w
; b1 D a D � �

ˇ C 3

w
; b2 D

3 �2 C 6 � 2 ˇ

w
:

(23.47)

The Pearson distributions are thus defined in terms of their moments of order
1 through 4. For implanted profiles the most commonly used one is the so-
called Pearson IV distribution, in which the coefficients satisfy the condition
0 < b21=.4 b0 b2/ < 1. The values of b0, b1, b2 are found by comparison with the
experimental data.

11The moment of order 0 is the normalization condition, and that of order 1 specifies the position
of the distribution along the horizontal axis. As a consequence, they do not enter this analysis. Note
that the moments of order m > 1 are defined with reference to that of order 1, namely, from the
average of .rP � RP/

m.
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23.7.5 Annealing

Ion implantation produces lattice damage; in addition, for most of the implanted
ions the end point of the trajectory does not coincide with a lattice site, namely,
the ion is not in a substitutional position. A thermal process (annealing) becomes
then necessary, to achieve i) removal of lattice damage by epitaxial regrowth of
the damaged layers, and ii) electrical activation of the implanted ions (namely, by
moving into the lattice sites the ions introduce electronic states in the expected
positions of the energy gap; in this way, they act as dopants proper). Annealing
also results in increasing carrier lifetimes and mobility. Different techniques are
available: thermal annealing, in which the wafer is kept for about 1 h in a furnace at
900–1000ıC; laser annealing, where local heating of the surface layers of the wafer
is induced by laser irradiation; rapid thermal annealing, where the surface layers
of the wafer are heated to about 1000ıC for a relatively short time (1–20 s) using
a tungsten halogen lamp. Thermal annealing modifies the existing dopant profiles
due to thermal diffusion; this must be accounted for in the fabrication process of the
integrated circuit. A problem with laser annealing is that constructive or destructive
interferences occur when the laser wavelength is of the same order as the thicknesses
of the layers subjected to irradiation; the local difference in temperature may force
the layers to bend due to different thermal expansions. Rapid thermal annealing does
not suffer the drawbacks of the other two methods.

23.8 Complements

23.8.1 Generation and Destruction of Particles

The discussion carried out in Sect. 23.2 about the continuity equation implies the
possibility that particles may be generated or destroyed. To tackle this issue consider
the problem “counting the time variation of students in a classroom.” Assuming
that the classroom has only one exit, to accomplish the task it suffices to count the
students that cross the exit, say, every second. The students that enter (leave) the
room are counted as a positive (negative) contribution.

Consider now a slightly modified problem: “counting the time variation of non-
sleeping students in a classroom.” To accomplish the task it does not suffice anymore
to count the students that cross the exit. In fact, a student who is initially awake
inside the classroom may fall asleep where she sits (one assumes that sleeping
students do not walk); this provides a negative contribution to the time variation
sought, without the need of crossing the exit. Similarly, an initially sleeping student
may wake up, thus providing a positive contribution. Falling asleep (waking up) is
equivalent to destruction (creation) of a non-sleeping student.

In the two examples above the objects to be counted are the same, however, in the
second example they have an extra property that is not considered in the first one.
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This shows that creation/destruction of a given type of objects may occur or not,
depending on the properties that are considered. When particles instead of students
are investigated, it is often of interest to set up a continuity equation for describing
the time variation, in a given volume, of the particles whose energy belongs to a
specified range. Due to their motion, the particles undergo collisions that change
their energy. As a consequence a particle may enter, or leave, the specified energy
range without leaving the spatial volume to which the calculation applies. In this
example the origin of the net generation rate per unit volume W introduced in
Sect. 23.2 is the extra property about the particles’ energy.

23.8.2 Balance Relations

As indicated in Sect. 23.2, and with the provisions illustrated in Sect. 23.8.1, the
continuity equation is a balance relation for the number of particles. Due to
its intrinsic simplicity and generality, the concept of balance relation is readily
extended to physical properties different from the number of particles; for instance,
momentum, energy, energy flux, and so on. A detailed illustration of this issue is
given in Chap. 19. It is also worth noting, in contrast, that the transport equation of
the diffusion type (23.4), being based on a specific assumption about the transport
mechanism, is less general than the continuity equation.

23.8.3 Lateral Diffusion

The treatment of predeposition and drive-in diffusion carried out in Sect. 23.5 is
based on a one-dimensional model. This implies that the concentration of the dopant
at the interface between the source and wafer regions is constant along the y and z
directions. In the practical cases this is impossible to achieve, because the area over
which the source is brought into contact with the wafer is finite. In fact, prior to
the predeposition step the surface of the wafer is covered with a protective layer,
called mask. As indicated in Sect. 24.1, in the current silicon technology the mask
is typically made of thermally grown silicon dioxide. Next, a portion of the mask is
removed to expose the silicon surface over a specific area, called window, through
which the predeposition step takes place.

From the description above it follows that the initial condition N0 of the predepo-
sition step is constant only within the window, while it is equal to zero in the other
parts of the y; z plane. This makes the hypothesis of a one-dimensional phenomenon
inappropriate, and calls for the use of the three-dimensional solution (23.28). The
subsequent drive-in diffusions must be treated in three dimensions as well, due to
the form of their initial conditions. An important effect is the diffusion of the dopant
underneath the edges of the mask. This phenomenon, called lateral diffusion, makes
the area where the doping profile is present larger than the original mask, and must
be accounted for in the design of the integrated circuit.
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23.8.4 Alternative Expression of the Dose

The definition of the dose Q deriving from the one-dimensional model problem
is (23.14). Letting W D 0 in (23.3), using its one-dimensional form @N=@t D
�@F=@x and observing that it is F.C1; t/ D 0 due to the initial condition give
the following expression for the time derivative of the dose:

dQ

dt
D �

Z C1

0

@F.x; t/

@x
dx D F.0; t/ : (23.48)

Integrating (23.48) and remembering that the dose at t D 0 is equal to zero yield

Q.t0/ D
Z t0

0

F.0; t/ dt : (23.49)

The procedure leading from the original definition (23.14) of the dose to its
alternative expression (23.49) is based solely on (23.3); hence, it does not depend
on a specific transport model.

23.8.5 The Initial Condition of the Predeposition Step

The initial condition N0 of the predeposition step is given by the first of (23.15).
To carry out the solution of the diffusion equation it is necessary to recast N0 in
an integral representation of the Fourier type. However, (23.15) does not fulfill the
condition (C.19) that is sufficient for the existence of such a representation.

Nevertheless the solution procedure leading to (23.13) is still applicable. In fact,
remembering the definition (C.8) of the unit step function H, the initial condition
can be recast as N0./ D 2C Œ1 � H./�. In turn, as shown in Appendix C.4, H can
be represented in the required form.

Problems

23.1 A Gaussian doping profile N D 2Q exp.�x2=c1/=
p
�c1 undergoes a thermal-

diffusion process at a temperature such that D D 10�11 cm2/s. Assuming c1 D
1:6 � 10�7 cm2, calculate the time that is necessary to reduce the peak value of the
profile to 2=3 of the initial value.

23.2 A Gaussian doping profile N D 2Q exp.�x2=c1/=
p
�c1, c1 D 9� 10�8 cm2,

undergoes a thermal-diffusion process with c2 D 16 � 10�8 cm2 yielding another
Gaussian profile. Find the value Nx (in microns) where the two profiles cross each
other.
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23.3 A Gaussian doping profile N D 2Q exp.�x2=c1/=
p
� c1, c1 D 2:5 � 10�6

cm2, undergoes a 240 minute-long thermal-diffusion process at a temperature such
that the diffusion coefficient is D D 2:5 � 10�10 cm2 s�1. Determine the ratio
between the peak value of the final profile and that of the initial one.

23.4 A Gaussian doping profile N D 2Q exp.�x2=c1/=
p
� c1, c1 D 10�6 cm2,

undergoes a thermal-diffusion process in which c2 D 3�10�8 cm2. Find the position
Nx (in microns) where the value of the initial doping profile equals the value that the
final profile has in x D 0.

23.5 A Gaussian doping profile N D 2Q exp.�x2=c1/=
p
� c1/ undergoes a

thermal-diffusion process in which c2 D 10�8 cm2. The value of the final profile
in the origin is equal to that of the initial profile at x0 D 1:1 �

p
c1. Find the value

of c1 in cm2.

23.6 A Gaussian doping profile N D 2Q exp.�x2=c1/=
p
� c1/, c1 D 1:8 � 10�8

cm2, undergoes a thermal-diffusion process whose duration is t D 10 min, with
D D 10�11 cm2 s�1. At the end of the process the concentration at some point x0 is
N1 D 3 � 1016 cm�3. If the process duration was 20 min, the concentration at the
same point would be N2 D 3 � 1017. Find the value of x0 in microns.

23.7 The doping profile resulting from a predeposition process with D D 10�11

cm2 s�1 is N.x/ D NS erfc.x=
p

c/. The ratio between the dose and surface
concentration is Q=NS D �=

p
� , � D 1;095 nm. Find the duration t of the

predeposition process, in minutes.

23.8 The initial condition of a drive-in diffusion is given by N0 D 2Q .h�x/=h2 for
0 � x � h, and by N0 D 0 elsewhere, where Q > 0 is the dose. Find the expression
of the profile at t > 0.



Chapter 24
Thermal Oxidation—Layer Deposition

24.1 Introduction

High-quality oxide is essential in silicon technology. The most important applica-
tions of the oxide are the passivation of the wafer’s surface, the isolation between
metallizations, the formation of masks for, e.g., diffusion or implantation of dopants,
the isolation between devices, and the formation of the gate insulator in MOS
devices.

While the oxides used for passivation or isolation between metallization are
typically obtained by chemical vapor deposition (Sect. 24.5), the oxide suitable for
the other applications listed above is obtained by thermal oxidation. In fact, the
extraordinary evolution of the VLSI technology in the last decades is due to a large
extent to the excellent electrical properties of the thermally grown layers of silicon
dioxide and to the reliability and control of the growth process.

In crystalline silicon dioxide (quartz), one silicon atom forms chemical bonds
with four oxygen atoms, creating a tetrahedral structure. In turn, one oxygen atom
forms chemical bonds with two silicon atoms. The tetrahedra are thus connected
to form a structure with a stoichiometric ratio 1 W 2 and density % D 2:65 g cm�3

(Fig. 24.1). In thermally grown SiO2 not all tetrahedra are connected, because at the
silicon–oxide interface chemical bonds must be created with the pre-existing silicon
crystal, whose interatomic distance is different from that of SiO2. As a consequence,
the oxide has a shorter-range order giving rise to a more open (amorphous) structure
with density % D 2:20 g cm�3. Because of this the diffusion of contaminants, in
most cases Na and Li ions [4], or H2O ions, is easier than in crystalline silicon
dioxide.

Also, the need of adapting to the silicon crystal produces a mechanical stress
in the oxide layer closer to the silicon surface, which in turn influences the
concentration of substrate defects and the value of some electrical properties in
MOS devices (typically, the threshold voltage, Sect. 22.8.2). The properties of
the mechanically stressed layer are influenced by the process temperature T . At
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Fig. 24.1 Structure of
quartz. Silicon atoms are
represented in gray, oxygen
atoms in white. Within the
tetrahedron, the distance
between two oxygen atoms is
about 0:227 nm, that between
the silicon atom and an
oxygen atom is about 0:160
nm. The schematic
representation in two
dimensions is shown in the
lower-right part of the figure

relatively low process temperatures, T < 950ıC, the stressed layer is thinner and
the mechanical stress in it is stronger; when T > 950ıC, the stress distributes over
a thicker layer and becomes locally weaker.

The growth of a thermal oxide’s layer is obtained by inducing a chemical reaction
between the silicon atoms belonging to the wafer and an oxidant species that is
brought into contact with it. As mentioned above, another technique for obtaining
an oxide layer is deposition. The latter process has actually a broader scope, in fact
it is used for depositing several types of conducting or insulating materials that are
necessary in the fabrication of the integrated circuits. Deposition differs from the
thermal growth because the chemical reaction may be absent or, if present, it does
not involve the species that are in the solid phase. One special type of deposition is
epitaxy, that is used to grow a crystalline layer over another crystalline layer.

This chapter illustrates the oxidation of silicon, starting from the description of
the chemical reactions involved in it, and deriving the relation between the thickness
of the oxide layer and that of the silicon layer consumed in its growth. The kinetics
of the oxide growth is analyzed, the linear–parabolic model is worked out, and its
features are commented. Then, a brief description of the deposition processes is
given, followed by the description of the chemical reaction involved in the epitaxial
process and by the analysis of the epitaxial kinetics.

In the last part of this chapter a number of complementary issues are discussed.
Specific data about the parameters governing the thermal oxidation, deposition, and
epitaxial processes in semiconductors are in [61, Chap. 2], [129, Chap. 9], [130,
Chap. 3], [88, Chap. 3]. Many carefully drawn illustrations are found in [93, Sec.
1.2].
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24.2 Silicon Oxidation

Silicon exposed to air at room temperature oxidizes spontaneously and forms a
shallow layer of SiO2 of about 1 nm called native oxide. As soon as the native oxide
is formed, the oxygen molecules of the air cannot reach the silicon surface anymore
and the chemical reaction dies out. In fact, oxidation of silicon is caused by the
inward motion of the oxidant. To activate the reaction and grow a layer of the desired
thickness it is necessary to place the wafers at atmospheric pressure in a furnace
(Fig. 24.2) kept at a temperature in the range 800ıC � T � 1;200ıC. This increases
the diffusion coefficient of the oxidant. The latter penetrates the already-formed
oxide layer and reaches the silicon surface, where new SiO2 molecules are formed.

The furnace is made of a quartz or polycrystalline-silicon tube heated by a
resistance or by induction through a radiofrequency coil. To grow the oxide layer
in a reproducible way it is necessary to control the temperature inside the furnace
within ˙1ıC. The oxidant is introduced from one end of the furnace after being
mixed with a carrier gas (typically, N2 or Ar).

The chemical reactions involved in the growth of thermal oxide are different
depending on the type of oxidant. The latter is either molecular oxygen (O2)
or steam (H2O). The corresponding thermal growth is called, respectively, dry
oxidation or wet (steam) oxidation. The reactions read

SiC O2• SiO2 ; SiC 2H2O• SiO2 C 2H2 ; (24.1)

where the hydrogen molecules produced by the second reaction are eliminated by
the carrier gas. The formation of SiO2 molecules is accompanied by a change in
volume. In fact, each newly formed SiO2 molecule uses up a silicon atom initially
belonging to the silicon crystal. On the other hand, the concentration of the silicon
atoms in a silicon crystal is about N1 D 5:0 � 1022 cm�3, while that of the silicon

Tube

Boat

Silicon wafers

Resistance heater

Filtered air

End cap

Carrier gas Exhaust

Fig. 24.2 Furnace for silicon oxidation. The intake of the carrier gas (O2 or H2O) is on the left
end of the furnace, the exhaust on the right end. The tube, end cap, and boat are made of fused
quartz to avoid contamination
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0.44 s

s

Oxide surface

Silicon−oxide interface

Original silicon surface

Fig. 24.3 The left part of the figure shows the position of the original silicon surface (prior to
oxidation). The right part shows the position of the oxide’s surface on of the silicon–oxide interface
after an oxide layer of thickness s has been grown

atoms in a thermally grown SiO2 layer is about N2 D 2:2�1022 cm�3. Thus the ratio
between the volume V of SiO2 and that of the silicon consumed for its formation is

V.SiO2/

V(Si)
D

N1
N2
' 2:28 : (24.2)

As the oxide layer is free to expand only in the direction normal to the wafer, (24.2)
is actually the ratio between the thickness s of the newly formed SiO2 layer and that
of the silicon layer consumed in the process. It follows

s(Si)

s.SiO2/
D

V(Si)=A

V.SiO2/=A
D

N2
N1
' 0:44 ; (24.3)

with A the area of the oxidized region. In other terms, when an oxide layer of thick-
ness s is grown, the silicon–oxide interface shifts by 0:44 s with respect to the orig-
inal position (Fig. 24.3). If the oxidation takes place uniformly over the whole area
of the wafer, the shift of the interface is uniform as well. However, in many cases the
oxidation involves only portions of the wafer’s area. This makes the silicon–oxide
interface nonplanar, because the shift is different from one portion to another.

24.3 Oxide-Growth Kinetics

Growth kinetics is modeled after Deal and Grove [38]. The model describes the
sequence of steps by which the oxidant, initially in the gaseous phase, comes into
contact with silicon and reacts with it. The steps are: the oxidant i) diffuses from the
source region into the already-formed oxide, ii) crosses the oxide still by diffusion
and reaches the silicon–oxide interface, iii) produces a chemical reaction that forms
a new SiO2 molecule.

The motion of the gas parallel to the wafer surface is not considered. As a
consequence, the only nonvanishing component of the oxidant average velocity
has the direction x normal to the wafer surface. The corresponding flux density is
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F D F � i, with i the unit vector parallel to x. The oxidant concentration N is assumed
uniform over the wafer’s surface, thus making N and F to depend on x and t only.

The concentration of the oxidant in the bulk of the gaseous phase, NG, is a known
boundary condition because it is regulated by the microprocessors controlling the
furnace. In the gaseous region, at the gas–oxide interface, and in the oxide region, no
generation or destruction of oxidant molecules occurs. The flux density is given by

F D �DS
@N

@x
; F D �DO

@N

@x
; (24.4)

respectively in the source and oxide region. In (24.4), the symbol DS (DO) indicates
the diffusion coefficient of the oxidant in the source (oxide) region. Each diffusion
coefficient is taken independent of time and spatially constant in its own region.
The matching conditions at the source–oxide interface are the same as in (23.20),
namely,

NO D k NS ; DO

�
@N

@x

�

O

D DS

�
@N

@x

�

S

; (24.5)

where k is the gas–oxide segregation coefficient, while the index S (O) attached
to the concentration or its derivative indicates that the function is calculated at the
source–oxide interface on the side of the source (oxide). As one of the two phases
is gaseous, it is DS � DO whence j.@N=@x/Sj � j.@N=@x/Oj. The situation here is
similar to that illustrated in Fig. 23.3. It follows that the interface concentration of
the source region, NS, is practically equal to the boundary condition NG. The first
of (24.5) then yields NO D k NG.

To proceed one observes that due to the thinness of the oxide layer, the oxidant
concentration in it can be described by a linear approximation. Due to this, the flux
density in the oxide layer (the second equation in (24.4)) becomes

F D �DO
NI � NO

s
D DO

kNG � NI

s
; (24.6)

where NI is the oxidant concentration on the oxide side of the silicon–oxide
interface, and s the oxide thickness. Note that the flux density in (24.6) is constant
with respect to x, whereas it is time dependent because s increases with time.

When the oxidant reaches the silicon–oxide interface it reacts with silicon, so that
there is no flux density of the oxidant on the semiconductor’s side of this interface.
In fact, the oxidant’s molecules are destroyed at the interface to form molecules of
SiO2. The flux density FI entering the silicon–oxide interface gives the number of
oxidant molecules destroyed per unit area and time which, to a first approximation,
is taken proportional to the concentration NI . It follows

FI D vr NI ; (24.7)
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where the constant vr (m s�1) is called reaction velocity. As FI is just another
symbol to denote the spatially constant flux density within the oxide, one com-
bines (24.7) with (24.6) to obtain

NI D
DO k NG

vrsC DO
: (24.8)

At a given instant equation (24.8) expresses NI in terms of the boundary condition
NG, the process parameters k, DO, vr, and the oxide thickness s.

24.4 Linear-Parabolic Model of the Oxide Growth

The relation between the oxidant’s flux density F and the growth velocity ds=dt of
the oxide layer is found as follows. Letting A be the area of the oxidized region, the
product A F provides the number of oxidant molecules reaching the silicon–oxide
interface per unit time. Each molecule, in turn, makes the volume V of the oxide
layer to increase by a finite amount w. As a consequence, the volume increase per
unit time of the oxide layer is dV=dt D wA F. As shown in Sect. 24.2, the oxide layer
is free to expand only in the direction normal to the wafer, so that dV=dt D A ds=dt.
Combining the above relations and using (24.7, 24.8) yield a differential equation
in the unknown s:

ds

dt
D w FI D w vr NI D vr DO

w k NG

vr sC DO
: (24.9)

The above is readily separated as .s=DOC1=vr/ ds D w k NG dt and integrated from
t D 0, to yield

1

cp

�
s2 � s2i

	
C
1

cl
.s � si/ D t ;

�
cp D 2w k NG DO

cl D w k NG vr
; (24.10)

with si D s.t D 0/. The relation between s and t given by (24.10) is called linear–
parabolic model of the oxide growth. The quantities cp (m2 s�1) and cl (m s�1) are
the parabolic coefficient and linear coefficient, respectively. The model is recast as

1

cp
s2 C

1

cl
s D tC � ; � D

1

cp
s2i C

1

cl
si : (24.11)

Using (24.11) and the definitions (24.10) of cp and cl one finds two limiting cases
of the s.t/ relation. Specifically, it is s ' cl .tC �/ when the oxide thickness is such
that vr s� 2D, while it is s ' Œcp .tC �/�1=2 when the oxide thickness is such that
vr s� 2D. Due to the form of cp and cl, in the first limiting case the oxide growth
does not depend on the diffusion coefficient DO, whereas in the second limiting
case it does not depend on the reaction velocity vr. This is easily understood if
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one considers that the concentration NO D k NG is prescribed. As a consequence,
as long as the oxide thickness is small the derivative of the concentration (hence
the flux density) is limited essentially by the flux density entering the silicon–oxide
interface, (24.7); on the contrary, when the oxide thickness becomes large the flux
density is limited essentially by the diffusion across the oxide because the value of
the concentration NI at the silicon–oxide interface becomes less important.

The linear-parabolic model (24.11) is recast in terms of dimensionless variables
by multiplying both sides by c2l =cp, thus yielding .cl s=cp/

2Ccl s=cp D c2l .tC�/=cp.
Inverting the latter yields the curve shown in Fig. 24.6; the two limiting cases are
reported as well. The differential form of (24.11),

dt

ds
D
2

cp
sC

1

cl
; (24.12)

is a linear relation between dt=ds and s. Such quantities can be measured indepen-
dently from each other, thus providing a method for measuring cp and cl. Repeating
the measurement at different temperatures shows that the temperature dependence
of the parabolic and linear coefficients is given by

cp D cp0 expŒ�Eap=.kBT/� ; cl D cl0 expŒ�Eal=.kBT/� : (24.13)

The form of (24.13) is due to the temperature dependence of D / expŒ�Eap=.kBT/�
and, respectively, vr / expŒ�Eal=.kBT/�. In fact, the parameters w, NG that appear
in the definitions (24.10) are independent of temperature, whereas the temperature
dependence of the segregation coefficient k, that can be measured independently, is
shown to be relatively weak.

The measurement of cp and cl allows one to determine also other properties of the
oxidation process; for instance, the effect of carrying out a steam or dry oxidation,
and the influence of the substrate orientation. As for the first issue one finds

k.Steam/ > k.Dry/ ; DO.Steam/ > DO.Dry/ : (24.14)

The Arrhenius plots of cp and cl are shown in Figs. 24.4 and 24.5, respectively.
In each plot the upper (lower) continuous curve refers to the steam (dry) oxidation.
As for the effect of the crystal orientation of the silicon wafer, one observes that
the number of chemical reactions per unit time involved in the formation of SiO2

molecules must depend on the surface density of silicon atoms at the silicon–oxide
interface. Due to this, the reaction velocity is expected to depend on the orientation
of the interface. The crystal planes that are typically used in the silicon technology
are the .111/ one, whose surface density is 11:8 � 1014 cm�2, and those equivalent
to the .100/ one,1 whose surface density is 6:8� 1014 cm�2. In fact the experiments
show that

1The definitions of the crystal planes are given in Sect. 17.9.1.
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Fig. 24.4 Parabolic
coefficient cp as a function of
1;000=T . The units are

m2 h�1. The activation
energy of the steam case is
0:71 eV, that of the dry case is
1:24 eV
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Fig. 24.5 Linear coefficient
cl as a function of 1;000=T .
The units are 
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activation energy of the steam
case is 2:05 eV, that of the
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Fig. 24.6 The
linear-parabolic
model (24.11) is drawn using
dimensionless variables (blue
line). The linear (black curve)
and parabolic (red curve)
limiting cases are also shown
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: (24.15)

The effect on cl of the crystal orientation is shown by the dotted curves in the
Fig. 24.5.

24.5 Layer Deposition and Selective Oxide Growth

The deposition of films of different materials is necessary at several steps of
the integrated-circuit fabrication. Conducting materials provide the electrical con-
nections among the individual devices of the integrated circuit, while insulating
materials provide the electrical insulation between the metal layers, and the protec-
tion from the environment. The majority of the deposition processes take place in
the vapor phase under reduced-pressure or vacuum conditions. One exception is the
deposition of resist, which is carried out in the liquid phase.

When the material to be deposited does not react chemically with other sub-
stances, the process is called physical vapor deposition (PVD). An example of
PVD is the deposition of a metal by evaporation in vacuo. When the material to
be deposited is the product of a chemical reaction that takes place over the wafer
surface or in its vicinity, the process is called chemical vapor deposition (CVD).
The materials that are most widely used in CVD processes are polycrystalline
silicon (also termed polysilicon), silicon dioxide (SiO2), and silicon nitride (Si3N4).
Examples of CVD reactions are given in Table 24.1. More examples are found in
[130, Sect. 6-2].
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Table 24.1 Examples of CVD reactions

Product Reactiona Deposition temperature (ıC)

Polysilicon SiH4! SiC 2H2 575–650

Silicon dioxide SiH4 C O2! SiO2 C 2H2 400–450

Silicon nitride 3SiH4 C 4NH3! Si3N4 C 12H2 700–900
aSiH4 and NH3 are called silane and ammonia, respectively

The structure of the deposited layer depends on the substrate’s properties and
deposition conditions. In the manufacturing of integrated circuits the substrate is
crystalline, that is, it has long-range order extending throughout the entire volume
(Chap. 17). If the material to be deposited on a crystalline substrate is the same as
that of the substrate, by means of a carefully controlled process it is possible to
obtain a deposited layer that replicates the substrate’s structure. Such a process is
called epitaxy and, with reference to silicon, is described in Sect. 24.6.

The structure of silicon deposited on a different material is polycrystalline, that is,
it has a long-range order only within small volumes. Such volumes, called grains,
have an average diameter of about 1 
m and are oriented randomly with respect
to each other. Polycrystalline silicon is used for fabricating the gate electrodes in
MOS devices, for obtaining ohmic contacts to shallow junctions, and for producing
resistors. To increase the gate’s conductivity, a layer of metal or metal silicide (like
tungsten or tantalum silicide) may be deposited over the polycrystalline silicon.

The structure of deposited SiO2 or Si3N4 is amorphous, that is, it has a short-
range order only. The applications of SiO2 have been illustrated in Sect. 24.1. Silicon
nitride Si3N4 provides a strong barrier to the diffusion of water, that corrodes
the metallizations, and of other contaminants, like sodium, that make the devices
unstable by changing their threshold voltage. In addition, Si3N4 is resistant to high
temperatures and oxidizes slowly. For these reasons it is used for passivating the
wafer and for producing the masks that are necessary for the selective oxidation
of silicon. The latter process, also called local oxidation (LOCOS), consists in
depositing and patterning a Si3N4 layer over the areas where the substrate’s
oxidation must be prevented. As oxidation is isotropic, a lateral penetration of the
oxidized region occurs under the edge of Si3N4. This produces a characteristic
profile of the oxide layer called bird’s beak (Fig. 24.7). To compensate for the
effect of the lateral penetration, the Si3N4 mask must be larger than the area whose
oxidation is to be prevented.

A layer replicates the topography of the surface onto which it is deposited. For
this reason it is important to avoid, or reduce, the formation of steps on the substrate.
In fact, over a step the layer’s thickness is smaller than on a flat surface (Fig. 24.8)
which, in turn, may cause reliability problems in the final circuit. For instance, the
nonuniform thickness of a metal line causes a nonuniform distribution of the current
density. This may induce metal migration and the eventual breakdown of the metal
connection.
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Fig. 24.7 Schematic
cross-section of the transition
from field oxide to gate
oxide, showing the bird’s
beak profile

Field oxide

Gate oxide

Silicon nitride

Silicon

Fig. 24.8 Schematic
description of the thinning of
a metal layer deposited over a
step

Oxide

Metal

Silicon

24.6 Epitaxy

Epitaxy (from the Greek verb epitàsso, “to deploy side by side”) is used to grow a
monocrystalline layer over another monocrystalline layer. Most epitaxial processes
use the CVD method. When the epitaxial layer is made of the same material as
the substrate, e.g., silicon over silicon, the term homoepitaxy is also used, while
the term heteroepitaxy is reserved to the case where the materials are different.
Heteroepitaxy is possible when the difference between the lattice constants2 of
the two materials is small. An example of heteroepitaxy is the silicon-on-sapphire
(SOS) process that belongs to the silicon-on-insulator (SOI) technological family
and consists in growing a thin layer of silicon (about 0:5 
m) on a wafer made of a
sapphire crystal (Al2O3). Another application of heteroepitaxy is the fabrication of
the heterojunctions that are necessary in optoelectronic devices.

In the silicon technology, epitaxy originated from the need of producing high-
resistance layers in bipolar technology. This type of layers is necessary, e.g.,
for realizing the collector region of the bipolar junction transistor, whose dopant
concentration must be substantially lower than that of the base region (Sect. 21.8).
Due to the high temperature of the CVD process (about 1;200ıC), during an
epitaxy a diffusion occurs of the substrate dopant into the epitaxial layer and of
the epitaxial-layer’s dopant into the substrate. This effect must be accounted for,
and compensated, at the design stage of the process.

2The definition of lattice constant is given in Sect. 17.6.4.
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The fundamental reaction of epitaxy combines silicon tetrachloride SiCl4 with
molecular hydrogen in the vapor phase to obtain silicon in solid phase, while the
hydrochloric acid HCl remains in the vapor phase and is eliminated:

SiCl4 C 2H2• SiC 4HCl : (24.16)

Reaction (24.16) is reversible: an excess of HCl removes silicon atoms from the
wafer’s surface and releases SiCl4 and 2H2 in the vapor phases. This reaction is
used in the first stages of the process to the purpose of cleaning the wafer’s surface.
Besides (24.16), a secondary reaction takes place as well, namely,

SiCl4 C Si! 2SiCl2 : (24.17)

Reaction (24.17) removes silicon from the wafer’s surface and releases silicon
dichloride SiCl2 in the vapor phase. For this reason, reactions (24.16) and (24.17)
compete with each other. When the vapor concentration of SiCl4 is sufficiently low
the first reaction prevails and the thickness of the epitaxial layer increases with time.
In contrast, at higher SiCl4 concentrations the second reaction prevails and silicon
is etched.

The epitaxial layer is doped by introducing hydrides of the dopants into the vapor
phase. The hydride, e.g., arsine (AsH3), phosphine (PH3), or diborane (B2H6), is
absorbed on the surface, decomposes, and is incorporated in the growing layer, e.g.,

2AsH3 ! 2AsC 3H2 : (24.18)

24.7 Kinetics of Epitaxy

As in the case of the oxide-growth kinetics (Sect. 24.3), the motion of the vapor
parallel to the wafer surface is not considered. As a consequence, the only
nonvanishing component of the average velocity of the SiCl4 molecules has the
direction x normal to the wafer surface. The corresponding flux density is F D F � i,
with i the unit vector parallel to x. The SiCl4 concentration N is assumed uniform
over the wafer’s surface, thus making N and F to depend on x and t only.

The SiCl4 concentration in the bulk of the vapor phase, NG, is a known boundary
condition because it is regulated by the microprocessors controlling the furnace. The
flux density is given by

F D �D
@N

@x
' vG .NG � NI/ ; (24.19)
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where D is the diffusion coefficient of SiCl4 in the vapor phase and NI the SiCl4
concentration at the wafer’s surface. The diffusion coefficient is taken independent
of time and spatially constant. The form of the right-hand side of (24.19), where the
parameter vG (m s�1) is called gas-phase, mass-transfer coefficient, is due to the
observation that D is very large because the diffusion takes place in the vapor phase.
As a consequence, the derivative @N=@x is so small that a linear approximation for
N is acceptable (the situation here is similar to that illustrated for the region on the
left of the origin in Fig. 23.3). Note that the flux density in the vapor phase (24.19)
is constant with respect to x. In principle it depends on time because the extension
of the vapor phase decreases due to the growth of the epitaxial layer. However, this
time dependence can be disregarded because the relative variation in the vapor-phase
extension is negligible.

The flux density FI entering the silicon surface gives the number of SiCl4
molecules destroyed per unit area and time which, to a first approximation, is taken
proportional to the concentration NI . It follows

FI D vr NI ; (24.20)

where the constant vr (m s�1), as in the case of the oxide-growth kinetics, is called
reaction velocity. As FI is just another symbol to denote the spatially constant flux
density, one combines (24.20) with (24.19) to obtain

NI D
vG

vr C vG
NG : (24.21)

At a given instant equation (24.21) expresses NI in terms of the boundary condition
NG and process parameters vG, vr.

The relation between the flux density F of SiCl4 and the growth velocity ds=dt
of the epitaxial layer is found by the same reasoning as that used in Sect. 24.4 for
the growth velocity of SiO2. From (24.20, 24.21) it follows

ds

dt
D wFI D wvrNI D w

vrvG

vr C vG
NG (24.22)

whence, observing that s.t D 0/ D 0,

s D cl t ; cl D w
vrvG

vr C vG
NG : (24.23)

The s.t/ relation (24.23) is linear with respect to time. The growth velocity cl of
the epitaxial layer depends on the concentration NG of SiCl4 at the boundary and on
the process parameters w, vr, and vG. The temperature dependence of the gas-phase
mass-transfer coefficient vG is weak. As w and NG are independent of temperature,
the temperature dependence of cl is to be ascribed to vr. It is found

vr D vr0 expŒ�Eal=.kBT/� : (24.24)
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Fig. 24.9 Normalized
growth velocity as a function
of the normalized inverse
temperature, as given
by (24.23) and (24.24), at
different values of the
rv D vG=vr0 ratio
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When the temperature is such that vr � vG, which typically happens for T <

1;150ıC, the second of (24.23) yields the limiting case cl ' w NG vr, whence cl /

expŒ�Eal=.kBT/�; when, instead, it is vr � vG, which typically happens for T >

1;200ıC, the limiting case is cl ' w NG vG D const. An Arrhenius plot of the
normalized growth velocity cl=.w NG vG/ as a function of the normalized inverse
temperature Eal=.kBT/ is shown in Fig. 24.9 for different values of the rv D vG=vr0

ratio.

24.8 Complements

24.8.1 An Apparent Contradiction

In commenting (24.6) it was noted that the flux density F in the oxidation process is
constant with respect to x, whereas it depends on time due to the time dependence
of the oxide thickness s. This seems to bring about a contradiction. In fact, as
the one-dimensional form of the continuity equation (23.3) with W D 0 yields
@N=@t C @F=@x D 0, the constancy of F makes N independent of time. However,
N does depend on time. This is demonstrated by Fig. 24.10 that shows the linear
approximation of the oxidant concentration within the oxide at two different
instants, t1 and t2 > t1. The value k NG at the source–oxide interface is kept constant
by the boundary condition as explained in Sect. 24.3, while the value NI at the
silicon–oxide interface changes with time due to (24.8), and the oxide’s thickness
changes as well.

The contradiction is eliminated by observing that the continuity equation (23.3)
has been derived for the case where the boundary is fixed, whereas the growth
of thermal oxide is a moving-boundary process. The motion of the boundary is
not a rigid one (otherwise the problem could be fixed by moving the reference
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Fig. 24.10 Oxidant
concentration within the
oxide at two different
instants, t1 and t2 > t1
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accordingly), because the oxide volume is actually expanding. In conclusion, equa-
tion (23.3) must not be used. In fact, the derivation of the linear–parabolic model of
the oxide growth (24.10) is based solely on the definition of the flux density.

24.8.2 Elementary Contributions to the Layer’s Volume

The relation ds=dt D w FI was used to connect, in Sect. 24.4, the growth velocity
of the oxide layer to the flux density of the oxidant and, in Sect. 24.7, the growth
velocity of the epitaxial layer to the flux density of SiCl4. The coefficient w is the
amount by which one oxidant or SiCl4 molecule makes the volume of the layer to
increase. To specify w for the oxidation process one must distinguish between the
dry and steam cases. In the first one, each molecule of the oxidant produces one
SiO2 molecule. As a consequence, w is the volume of the SiO2 molecule. In the
steam case, two H2O molecules are necessary for producing one SiO2 molecule,
hence w is half the volume of the latter. By the same token, in the epitaxial process
w is the volume of a Si atom.

24.8.3 Features of the Oxide Growth and Epitaxial Growth

The quadratic term in the left-hand side of (24.10) becomes dominant at larger
oxide thicknesses. This in turn slows down the growth rate, as shown by (24.9).
A qualitative explanation of the phenomenon is easily obtained by considering that
in order to reach the silicon–oxide interface, the oxidant must diffuse across the
already-formed oxide. The slope of the oxidant concentration, hence its flux density,
decreases with time because the thickness of the oxide region increases, while the
value k NG at the source–oxide interface is kept constant by the boundary condition.
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The decrease in the oxidant concentration NI at the silicon–oxide interface, shown
by (24.8), is not sufficient to contrast the decrease in the concentration’s slope. The
reasoning above does not apply to the epitaxial growth; in fact, in this case the
chemical reaction occurs at the vapor–silicon interface and there is no intermediate
layer to be crossed. As a consequence, the corresponding model (24.23) has no
quadratic term.

In the analysis of the oxide-growth kinetics carried out in Sect. 24.3 it is assumed
that the interface concentration in the source region, NS, is practically equal to the
boundary condition NG. The simplification is used in the expression (24.6) of the
flux density in the oxide layer. The calculation then proceeds by considering only the
oxidant diffusion across the already-formed layer and the chemical reaction at the
silicon–oxide interface. In this respect, the assumption NS D NG has the mere effect
of introducing a negligible change in (24.6). A similar approximation would not be
possible in the analysis of the epitaxial growth. In fact, letting NI D NG in (24.19)
would set the flux density to zero. The difference between the two cases is that in the
epitaxial growth the flux density exists only in the vapor phase, while in the oxide
growth it exists both in the gaseous and solid phases. However, as DS � DO, only
the diffusion in the solid phase plays a significant role in determining the kinetics of
the oxidation process.

24.8.4 Reaction Velocity

The reaction velocity vr is among the parameters used in the analysis of the oxide-
growth kinetics and epitaxial kinetics. This parameter controls the flux density
through (24.7) or (24.20), and is found to depend also on the concentration Ndop

of dopant atoms in the silicon lattice. The dependence is negligible as long as
Ndop � ni.T/, where ni (called intrinsic concentration, Sect. 18.3) is calculated at
the process temperature. When Ndop > ni.T/, the reaction velocity increases with
Ndop. It should be noted that ni ' 1018 cm�3 at T D 1;000ıC. As a consequence,
the dependence of vr on Ndop becomes important only at relatively high dopant
concentrations.

24.8.5 Molecular Beam Epitaxy

Epitaxy can also be obtained by a process different from CVD, that is called
molecular beam epitaxy (MBE) and is based on evaporation. The main advantages
of MBE are the low-temperature processing and the fine control of the dopant
distribution throughout the epitaxial layer. On the other side, MBE has a low
throughput and a higher cost. As a consequence, CVD is used is in the majority
of cases for growing epitaxial layers in the silicon technology [130, Sect. 6-3].
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Fig. 24.11 Typical growth
velocity cl of an epitaxial
process, expressed in microns
per minute, as a function of
the mole fraction of
tetrachloride. The shaded area
shows the typical operating
range

c
l

[SiCl4]   

5

4

3

2

1

0

−1

−2

6

0 0.1 0.2 0.3 0.4

Polycrystal

Crystal

Growth
Etching

Typical range

24.8.6 Secondary Reaction in the Epitaxial Growth

The analysis of the epitaxial kinetics carried out in Sect. 24.7 is based on the hypoth-
esis that only the fundamental reaction (24.16) is present. However, as mentioned in
Sect. 24.7, the secondary reaction (24.17) also takes place, which removes silicon
atoms from the wafer’s surface and, therefore, competes with (24.16). At low
concentrations of SiCl4 the effect of the secondary reaction is negligible and the
theory of Sect. 24.7 holds; in particular, as shown by (24.23), the growth velocity cl

is proportional to the concentration NG of SiCl4 in the bulk of the vapor phase. At
larger tetrachloride concentrations the dependence of cl on NG becomes sublinear
as shown in Fig. 24.11. Further increases in NG make cl to continuously decrease,
and to eventually vanish when the secondary reaction balances the fundamental one.
Further on, the secondary reaction prevails and cl becomes negative, that is, silicon
is etched.

The growth velocity also influences the structure of the epitaxial layer. When
cl is low the deposited silicon atoms match the preexisting crystalline structure, so
that the newly formed layer is crystalline as well. Higher values of cl make the
matching more and more difficult. Beyond a critical value of cl the epitaxial layer is
polycrystalline, as sketched in Fig. 24.11. To avoid the growth of a polycrystal it is
necessary to keep the SiCl4 concentration in the range shown in the figure.

Problems

24.1 A silicon wafer covered with an si D 0:21 
m-thick thermal oxide undergoes
a second thermal oxidation whose duration is 136 minutes. Using the values cp D

4:43 � 10�2 
m2 h�1 for the parabolic coefficient and cl D 8:86�10
�1 
m h�1 for

the linear coefficient, calculate the silicon thickness consumed during the second
thermal oxidation.
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24.2 Consider a thermal-oxidation process of silicon where the parabolic and linear
coefficients are, respectively, 4:43�10�2 
m2 h�1 and 8:86�10�1 
m h�1. At some
instant the oxidant concentration NI at the silicon–oxide interface is 1� 1012 cm�3.
Find the gradient of the oxidant concentration within the oxide layer at the same
instant, expressed in 1017 cm�4 units.

24.3 A silicon wafer covered with an si D 105-nm thick layer of thermal oxide
undergoes a second thermal-oxidation process that consumes a 100-nm thick layer
of silicon. Letting the parabolic and linear coefficients be cp D 4:43�10

�2 
m2 h�1

and cl D 8:86 � 10�1 
m h�1, respectively, determine the duration in minutes of
the second oxidation process.

24.4 Consider a thermal-oxidation process of silicon where the parabolic and linear
coefficients are, respectively, 0:12 
m2 h�1 and 3 
m h�1. At some instant the oxide
thickness is 20 nm, and the oxidant concentration in the oxide at the source–oxide
interface is NO D 3�10

12 cm�3. Find the oxidant concentration at the silicon–oxide
interface, expressed in 1011 cm�3 units.

24.5 A silicon wafer covered with an si D 5-nm thick layer of thermal oxide
undergoes a thermal-oxidation process that grows a �s1 D 7-nm thick oxide
layer and a successive thermal-oxidation process that grows a �s2 D 20-nm thick
oxide layer. In both processes the parabolic and linear coefficients are, respectively,
4:1�10�2 
m2 h�1 and 8:5�10�1 
m h�1. Determine the total duration in seconds
of the two processes.

24.6 A silicon wafer covered with an si D 80-nm thick layer of thermal oxide
undergoes a thermal-oxidation process whose linear coefficient is 1 
m h�1. The
ratio between the diffusion coefficient of the oxidant within the oxide and the
reaction velocity at the silicon–oxide interface is r D DO=vr D 50 nm. Find how
many minutes are necessary to reach a final oxide thickness equal to 150 nm.

24.7 A silicon wafer covered with an si D 40-nm thick layer of thermal oxide
undergoes a thermal-oxidation process where the oxidant’s diffusion coefficient in
the oxide is DO D 4:5 � 10�6 cm2 s�1, the reaction velocity is vr D 4 cm s�1, and
the product of the parabolic coefficient and the process duration is cptP D 5� 10�11

cm2. Calculate the final thickness of the oxide in nm.

24.8 A silicon wafer undergoes an epitaxial growth that produces a 12 
m-thick
silicon layer. At the end of the process the wafer’s weight has increased by 907 mg.
Using pSi D 2:33 g cm�3 for the specific weight of silicon, determine the wafer’s
diameter in inches (1 in D 2:54 cm).

24.9 A 1:2 
m-thick epitaxial layer of silicon is grown by a 1 minute-long process
in which the reaction velocity is vr D 10 cm s�1. Find the concentration of SiCl4 at
the silicon surface expressed in 1016 cm�3 units.
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24.10 The flux density of SiCl4 in an epitaxial process in silicon is 8:33 � 1016

cm�2s�1. Remembering that the concentration of the silicon atoms in the crystal
lattice is 5 � 1022 cm�3, determine how many minutes are necessary to grow a 2

m-thick epitaxial layer.

24.11 Determine the reaction velocity vr (in cm min�1) of an epitaxial process in
silicon that in 5 min grows an s D 2 
m thick layer. For the surface concentration
of the silicon tetrachloride and the atomic volume of silicon use, respectively, the
values 1016 cm�3 and .5 � 1022/�1 cm3.

24.12 In an epitaxial process the ratio between the SiCl4 concentration in the bulk
of the vapor phase and at the wafer’s surface is a D NG=NI D 2, while the ratio
between the reaction velocity and growth velocity is b D vr=cl D 4:87 � 105.
Remembering that the concentration of the silicon atoms in the crystal lattice is
5 � 1022 cm�3, determine the value of NG in cm�3.



Chapter 25
Measuring the Semiconductor Parameters

25.1 Introduction

A number of methods used for measuring the semiconductor parameters are
illustrated here. Apart from the intrinsic usefulness, the methods are interesting
because they show the connection with the theories worked out in other chapters.
For example, the measurement of lifetimes exploits the features of the net thermal
recombination and of optical generation, that are combined in a simplified form
of the continuity equation for the minority carriers. Similarly, the measurement of
mobility carried out with the Haynes-Shockley experiment is based on a clever use
of the diffusion of optically generated carriers. The Hall effect, in turn, provides a
powerful method to extract the information about the concentration and mobility of
the majority carriers; the method exploits the effect of a magnetic field applied in the
direction normal to that of the current density, and is widely used for determining,
e.g., the dependence of concentration and mobility on the concentration of dopants
and on temperature. The analysis of the Hall effect is enriched by a detailed
treatment of the case where the standard theory is not applicable because the device
is not sufficiently slender; a deeper analysis based on the concept of stream function
shows that the equations describing the current-density field are in fact solvable
for any aspect ratio of the device. This chapter is completed by the illustration
of a method for measuring the doping profile in an asymmetric, reverse-biased,
one-dimensional junction; the procedure is based on the observation that despite
the fact that the relation between the applied voltage and the extension of the
space-charge region is nonlinear, the differential capacitance of the junction has
the same form as that of a parallel-plate, linear capacitor. Finally, the van der Pauw
method for measuring the conductivity of a sample is illustrated, based on the use
of a two-dimensional Green function introduced in an earlier chapter and on the
conformal-mapping method shown in the Appendix.

© Springer International Publishing AG 2018
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25.2 Lifetime Measurement

The lifetimes have been introduced in Sect. 20.2.3 with reference to the trap-
assisted, thermal generation and recombination phenomena. A measurement
method for the lifetimes is illustrated here with the aid of Fig. 25.1 that shows
a uniformly doped, thin layer of semiconductor of length L and cross-section A.
The method is able to measure the minority-carrier lifetime; in the example shown in
the figure, which refers to an n-doped material, the outcome is �p. The x axis is taken
normal to the external surface of the semiconductor, with the origin placed on such
a surface. The latter, parallel to the y; z plane, is illuminated with a monochromatic
radiation of frequency �, whose intensity is uniform over the surface and constant
in time. Remembering the expression (20.67) of the optical-generation term, and
observing that due to uniformity the absorption coefficient does not depend on
position, one finds

GO D �˚B k exp .�k x/ ; k D k.�/ : (25.1)

At the same time, a constant voltage V is applied to the semiconductor, producing
an electric field in the z direction. The device is thin in the x and y directions, and
elongated in the z direction, to the extent that the flow lines of the current density
are substantially parallel to the z axis; also, the small extension in the x direction
makes it possible to neglect the x-dependence of GO and let GO ' Gc D �˚B k.
With these premises,1 the material is spatially uniform also in the nonequilibrium
case; it follows that the condition of local charge neutrality holds. For simplicity
one assumes that the n-dopant concentration ND is sufficiently low to ensure that
nondegeneracy and complete ionization hold, NCD D ND; thus, local neutrality reads

n D pC ND : (25.2)

The nonequilibrium condition prescribed by the combination of illumination and
bias is adjusted in such a way that a weak-injection condition holds (Sect. 20.2.3);
in this case the hole-continuity equation (19.124) reads

Fig. 25.1 Measurement
scheme for the
minority-carrier lifetime

y

x

z

AI
An

L

V

1The required thinness of the device can be achieved by growing an n-type epitaxial layer over a
p-type substrate, and keeping the layer-substrate junction reverse biased.
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@p

@t
C
1

q
div Jp D G � U ' Gc �

p � pn0

�p
: (25.3)

In the steady-state, uniform condition considered here, (25.3) reduces to

�p D p � pn0 D �p Gc ; (25.4)

showing that optical generation is exactly balanced by thermal recombination. If, at
time t D 0, the source of light is removed, Gc vanishes and recombination prevails;
it follows that the semiconductor undergoes a transient to adapt to the new situation.
On the other hand, spatial uniformity still holds: during the transient the spatial
derivatives in (25.3) are still zero, and the equation reads

dp

dt
D

d.p � pn0/

dt
D �

p � pn0

�p
; t > 0 : (25.5)

From (25.4), the initial condition of (25.5) is �p.t D 0/ D �p Gc; thus, the solution
of (25.5) is found to be

�p D �pGc exp.�t=�p/ : (25.6)

To determine the conductivity of the device it is necessary to find the electron
concentration n or, equivalently, the difference �n D n � nn0. This is easily
accomplished by observing that spatial uniformity holds also during the transient;
as a consequence, the condition of local charge neutrality (25.2) applies. At the end
of the transient, the latter becomes nn0 D pn0 C ND which, subtracted from (25.2),
yields �n D �p at all times. The semiconductor conductivity (19.134) can then be
written

� D �0 C �p exp.�t=�p/ ; (25.7)

with �0 D q .�n nn0C�p pn0/ and �p D q .�nC�p/ �p Gc. In the one-dimensional,
uniform case considered here, the current is the product of the current density times
the cross-section A of the device, and the electric field is the ratio of the applied
voltage to the length L (Fig. 25.1). In conclusion, for t > 0 the current I D V=R D
V � A=L is given by

I D I0 C Ip exp.�t=�p/ ; (25.8)

with I0 D �0 .A=L/V , Ip D �p .A=L/V , namely, the current’s decay time is the
minority-carrier lifetime. The quantity to be measured is the current through the
device which, for t < 0, is equal to the constant I0 C Ip, while it decreases
exponentially towards I0 for t > 0 (Fig. 25.2). The measurement of �p is easily
accomplished by observing that the tangent to the exponential branch drawn at the
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Fig. 25.2 Time dependence
of the current flowing in the
sample of Fig. 25.1 when the
minority-carrier lifetime (�p

in this case) is measured

I0

τp

+ IpI0

I

t

origin intercepts2 the asymptotic value I0 at t D �p. Note that the hypothesis of a
monochromatic illumination is not essential; in fact, the analysis still holds if Gc

in (25.3) is replaced with the integral of Gc over the frequencies.

25.2.1 Thermal Velocity and Capture Cross-Section

In an n-doped material the hole lifetime is related to the hole-transition coefficient
˛p and to the trap concentration Nt by �p D �p0 D 1=.˛pNt/ (Sect. 20.2.3). It follows
that measuring �p after deliberately introducing a known concentration Nt of traps
into the semiconductor provides the value of the transition coefficient ˛p. The latter
is often recast in a different form by defining the carrier thermal velocity uth with
the relation

1

2
m� u2th D

3

2
kB T ; (25.9)

where m� D me for electrons and m� D mh for holes, with me, mh the average
effective masses. Using the data of Table 18.1 one finds, for silicon, me '

2:98 10�31 kg and mh ' 3:20 10�31 kg. In turn, the capture cross-sections of the
traps, for electrons and holes respectively, are defined by

�e D
˛n

uth;e
; �h D

˛p

uth;h
: (25.10)

From the above definitions it follows that in an n-doped material

�p D �p0 D
1

˛p Nt
D

1

�h uth;h Nt
: (25.11)

In particular, in silicon at TL D 300K it is from (25.9) uth;e ' uth;h � 2�10
7 cm s�1.

The measure of ˛p thus provides for the cross-section the value �h ' 5 10�15 cm2.

2See also Prob. 21.13.
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A qualitative picture of the cross-section as a circle centered at the trap yields the
definition of a radius rh such that �h D � r2h. It turns out rh ' 4 10

�8 cm, namely, rh

is of the order of the atomic radius.3 The measure of �n, ˛n, and �e is carried out in
a similar way, starting from a p-doped material.

25.3 Mobility Measurement—Haynes-Shockley Experiment

A measurement method for mobility is illustrated with the aid of Fig. 25.3, showing
a uniformly doped layer of semiconductor to which a constant positive voltage V is
applied; this produces an electric field in the x direction, E D E i1. The method is
able to measure the minority-carrier mobility; in the example shown in the figure,
which refers to an n-doped material, the outcome is �p.

Holes are generated at some position x by, e.g., illuminating the material with
a laser pulse. The electric field makes the holes to drift to the right, where they
are eventually collected after crossing a distance �x1 in the direction parallel to E.
The lower part of Fig. 25.3 shows three profiles of the hole distribution at successive
instants of time, from left to right.4 The leftmost, thin profile corresponds to the

n0

nV

Δ x
x1

p − p

Vs

1

Measuring electrode

Fig. 25.3 Measurement scheme for mobility (Haynes-Shockley experiment)

3The fact that the size of the capture cross-section is sometimes similar, like in the present case,
to the size of an atom may explain the popularity of expressing the capture phenomenon in terms
of cross-sections. This, however, oversimplifies the problem: capture cross-sections, in fact, range
from 10�25 to 10�12 cm2 [12, Sect. 4.1.2].
4The generated electrons drift to the left and are absorbed by the left contact.
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instant of the laser pulse; the other two profiles are shifted to the right because of
the action of the field. The hole distribution becomes progressively wider and shorter
because of diffusion; also, its area decreases with time due to recombination. When
the profile crosses the section corresponding to the measuring electrode, the largest
value of the measured voltage VS corresponds to the profile’s peak. This allows one
to measure the time �t necessary for the profile’s peak to cover the distance from
the section where the laser pulse is applied to that of the measuring electrode. Then,
the average velocity of the peak is found from �x1=�t.

The analysis of the experiment is carried out assuming that the perturbation is
sufficiently small, so that a weak-injection condition holds. The continuity equation
for the minority carriers reads

@p

@t
C

p � pn0

�p
C div

�
�p p E � Dp grad p

	
D 0 ; (25.12)

with �p, Dp D const due to spatial uniformity. Remembering that div D D %,
in (25.12) it is

div.p E/ D E � grad pC p
%

"sc
' E � grad p ; (25.13)

on account of the fact that due to the weak-injection condition, the perturbation
with respect to the local charge neutrality is small, whereas grad p is large. Using
the auxiliary function f D .p � pn0/ exp.t=�p/ transforms (25.12) into

@f

@t
� Dp r

2f C �p E � grad f D 0 : (25.14)

The above equation is further simplified by applying a suitable change of the
variables,

r? D r?.r; t/ D r � v t ; t? D t?.r; t/ D t ; (25.15)

where v is a constant velocity, yet undefined. The relations between the spatial
derivatives with respect to the old and new variables read

@f

@xi
D

3X

jD1

@f

@x?j

@x?j
@xi
D

@f

@x?i
; (25.16)

so that, using the star to indicate the operators acting on the new spatial variables,

grad?f D grad f ; r2?f D r2f : (25.17)
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The time derivatives are treated in the same manner to find

@f

@t
D
@f

@t?
@t?

@t
C

3X

jD1

@f

@x?j

@x?j
@t
D
@f

@t?
� v � grad?f : (25.18)

Replacing (25.17), (25.18) into (25.14) yields

@f

@t?
D Dp r

2
?f C

�
v � �p E

	
� grad?f : (25.19)

Exploiting the arbitrariness of v one lets v D �p E, so that (25.19) simplifies to a
diffusion equation, @f=@t? D Dp r

2
?f . The solution of the latter is given by (23.28),

namely,

f .r?; t?/ D
ZZZ C1

�1

f .s; 0/�.r? � s; t?/ d3 ; (25.20)

with

�.r? � s; t?/ D
1

�
4� Dp t?

	3=2 exp

�
�
jr? � sj2

4Dp t?

�
; (25.21)

and f .s; 0/ D p.s; 0/ � pn0. Using again the old variables yields

p D pn0 C exp.�t=�p/

ZZZ C1

�1

f .s; 0/�.r � v t � s; t/ d3 : (25.22)

The input pulse can be selected in such a way that f .s; 0/ � c ı.s/, where c is a
dimensionless constant. In conclusion,

p D pn0 C
c exp.�t=�p/
�
4� Dp t

	3=2 exp

�
�
.x1 � �p E t/2 C x22 C x23

4Dp t

�
; (25.23)

which, apart from the additive constant pn0, is a Gaussian whose amplitude
decreases in time and whose peak moves along the x1 direction with the constant
velocity v D �p E. Measuring the time�t1 needed for the peak to cross the distance
�x1 finally yields the mobility

�p D
1

E

�x1
�t1

: (25.24)
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25.4 Hall-Voltage Measurement

The measurements based on the Hall effect are a powerful investigation tool that
exploits the combined action of the electric and magnetic field. The Hall effect is
the production of a voltage drop, transverse to the direction of the electric current,
due to the application of a magnetic field. The qualitative features of the method
are explained with the aid of Fig. 25.4. Consider a uniformly doped, prismatic
block of semiconductor. The block is slender, and a constant voltage V is applied
to it to produce an electric field E aligned with the longitudinal direction. As a
consequence, one can assume that the flow lines of the current density be parallel to
E; due to spatial uniformity, such a current density is essentially due to the drift of
majority carriers. At the same time, a constant magnetic-induction field B is applied,
normal to one of the lateral faces. The upper part of the figure refers to an n-doped
semiconductor; there, the majority carriers are electrons, whose average velocity
is oriented opposite to the field; it follows that the Lorentz force F D %� v� ^ B
(Sect. 4.11) is oriented as shown in the figure. The negative indices in the expression
of the Lorentz force remind one that the charge density and average velocity are
those of negative charges. The mobile electrons are pushed by the Lorentz force
towards the lower face of the device, where they form a negative charge layer.
The flow lines of the current density are still parallel to the longitudinal direction;
however, their density is not uniform anymore. Due to the global charge neutrality,
the negative charge layer is compensated by a positive charge layer that forms at the
upper face. The two opposite layers, schematically indicated in the diagram in the
upper-right part of Fig. 25.4, produce an electric field normal to the upper and lower
faces; as a result, a measurable voltage drop (Hall voltage) between the two faces
comes into existence: for the example in hand, the voltage of the upper face is larger
than that of the lower face.

Fig. 25.4 Scheme of a
Hall-voltage measurement > 0V
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In a p-doped semiconductor (lower part of the figure), the majority carriers are
holes, whose average velocity is oriented in the direction of the field; the Lorentz
force F D %C vC ^ B is oriented as in the previous case, because both charge
density and average velocity change sign with respect to the n-doped semiconductor.
The consequence is that the mobile holes are pushed towards the lower face of the
device, where they form a positive charge layer. In conclusion, the sign of the Hall
voltage is opposite with respect to the case of the n-doped semiconductor.

The analysis of the experiment is based on the drift-diffusion equations incor-
porating the magnetic terms, (19.107), (19.123); the diffusion terms are neglected,
whence

Jn D q�n n E� q an �
2
nn E^B ; Jp D q�p p EC q ap �

2
p p E^B : (25.25)

The total current density J D Jn C Jp then reads

J D � EC r �2E ^ B ; (25.26)

where � D q�p pC q�n n is the electric conductivity and

r D
q

�2

�
ap �

2
p p � an �

2
n n
	
D

ap �
2
p p � an �

2
n n

q
�
�p pC �n n

	2 (25.27)

is the Hall coefficient. The two quantities � and r can be measured independently as
shown below; while � is positive definite, r has a sign. In particular, the following
limiting cases hold: for the p-type dopant it is p � n, whence � ' q�p p and
r ' ap=.q p/ > 0; thus,

p D
ap

q r
; �p D

r

ap
� .p� n/ : (25.28)

Similarly, for the n-type dopant it is n � p, whence � ' q�n n and r '
�an=.q n/ < 0; thus,

n D �
an

q r
; �n D �

r

an
� .n� p/ : (25.29)

From (25.28) and (25.29) it follows that the concentration and mobility of the
majority carriers can be determined independently, provided � and r are known.
In turn, the measurement of � and r is easily carried out by applying (25.26) to the
prismatic sample of Fig. 25.4. Let iL be the unit vector of the longitudinal direction,
and iW the unit vector parallel to B, so that B D B iW . Observing that EW D 0,
JW D 0, and E ^ B D EL B iH � EH B iL, it follows

JL D � EL � r �2 EH B ; JH D � EH C r �2 EL B ; (25.30)
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with JH D 0. In turn, B is small enough to make the following approximations
possible:

J D JL ' �EL ; EH D �r � EL B ' �r J B : (25.31)

On the other hand, it is EL ' VL=L, EH ' VH=H, and J D I=.W H/, where the
block’s length L, height H, and width W are indicated in Fig. 25.4; thus, VH D

�r B I=W and I=.W H/ D � VL=L. In conclusion,

� D
L I

W H VL
; r D �

W VH

B I
; (25.32)

namely, the two parameters are obtained by combining the Hall voltage with
other known physical and geometrical parameters. Typical applications of the
measurement scheme shown in this section are the measurements of concentrations
and mobilities as functions of temperature and dopant concentration.

25.5 Hall Voltage—Arbitrary Aspect Ratio

The measurement technique based on the Hall effect, outlined in Sect. 25.4, is based
on the hypothesis that the sample under investigation is slender, so that the flow lines
of the current density are aligned with the longitudinal direction, whose unit vector
is iL, and the contacts where the Hall voltage is measured are far away from the
contacts onto which the external perturbation is applied. A typical arrangement is
that shown in Fig. 25.4, where the contacts used for measuring the Hall voltage are
in the mid section of the sample. In more realistic situations the device of interest
exhibits geometrical features that do not allow for the approximations listed above.
As a typical example, consider the device shown in Fig. 25.5, which is used for
measuring the conductivity and the Hall voltage. The former quantity is measured by
the four-contact, van der Pauw method outlined in Sect. 25.7: for this, the contacts
labeled c1, c2, c3, c4, also termed Hall probes, are used, while the two lateral contacts
k1, k2 are left open. In turn, the Hall voltage VH is measured at a pair of Hall probes,
e.g., c1 and c3, after applying the external perturbation to the lateral contacts and a
magnetic induction B normal to the x; y plane. Here it is assumed for simplicity that
the external perturbation is a constant current I forced into the device.

To decrease the relative error in the conductivity measurement, for a given length
L of the device it is preferable to place the probes near the contacts, like in Fig. 25.5;
on the other hand, considering that the contacts are equipotential, to measure the
Hall voltage it would be preferable to place the probes far away from the contacts,
to avoid a possible perturbation due to the proximity of the equipotential regions
created by the contacts themselves. Clearly, the latter constraint is incompatible
with the former. Even if a third pair of Hall probes was placed at the mid section
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Fig. 25.5 Scheme for the
combined conductivity and
Hall-voltage measurements
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of the sample, when the latter is not sufficiently elongated the ratio H=L influences
the distribution of the current density, again due to the presence of the equipotential
regions.

In the experimental setup for the measurement of conductivity and Hall voltage,
the thickness h of the active region (i.e., in the z direction normal to the x; y plane
of Fig. 25.5) is typically very small, and the dopant distribution is constant. At
the same time, the carrier concentration in the active region is high enough to make
the diffusive part of the current density negligible. By way of example, one may
use a resistor fabricated within an epitaxial layer, or a MOSFET whose gate bias is
sufficiently high to produce a strong-inversion regime in the channel. Considering
that there are only two components of the current density and one component of the
magnetic induction, B D Bz, one applies directly (19.95) so that, for the valley of
index a, and assuming that the carriers are electrons, one finds

J1a D J01a � �1a B J2a ; J2a D J02a C �2a B J1a ; (25.33)

with J01a D q�1a na E1 and J02a D q�2a na E2 due to the neglect of the diffusive
component.5 When adding up (25.33) over the valleys, the result depends on which,
between J1a and J2a, is aligned with the x axis. To avoid this complicacy one takes a
suitable average of �1a and �2a, indicated with �H; letting � D �H B one finds

� Ex ' Jx C � Jy ; � Ey ' Jy � � Jx : (25.34)

In (25.34) it is Jx D
P

a J1a and Ex D E1; similarly, it is Jy D
P

a J2a and Ey D E2;
in turn, the conductivity is given by the standard expression � D q n

P
a �1a=MC.

5It is useful to remark that in a uniform resistor it is J0

3a D q�3a na E3 D 0, since E3 D 0 due to
uniformity; in a MOSFET’s channel it is J0

3a D kB T �3a @na=@x3 C q�3a na E3 D 0 because the
drift and diffusion components balance each other. Also, in a MOSFET’s channel the components
of the current density parallel to the x; y plane depend also on z; however, one can neglect such a
dependence in (25.33) by considering J1a and J2a as averages over h [115].



734 25 Measuring the Semiconductor Parameters

Note that thanks to the approximation leading to (25.34) it is not necessary to
assume that B is small (compare with (19.98) and (19.99)).

The two-dimensional current field (25.33) is expressible as J D rot. k/, where
k is the unit vector of the z axis and  a function of x; y only, which is sometimes
called stream function. The latter fulfills the Laplace equation (Prob. 25.1),

r2 D 0 ; (25.35)

supplemented with suitable boundary conditions (Prob. 25.2). Once the current
density is found, the components of the electric field are determined from (25.33);
then, from E D � grad', the voltage drop between any two points of the domain,
boundary included, is found from the negative path integral of E along any line
connecting the two points and belonging to the domain.

25.5.1 Solution of the Stream-Function Equation

The solution of (25.35) is sought over the domain D of Fig. 25.5, namely, the
rectangle �H=2 � x � H=2, �L=2 � y � L=2. The device has two contacts
connected with a current generator, whose current is I; they are placed at the two
ends y D ˙L=2 and have a common width H. The voltage measurements at the
Hall probes are performed using a zero-admittance equipment, hence no current is
absorbed there. However, the Hall probes may still affect the boundary condition
of (25.35), because the portion of the boundary onto which a probe is applied
becomes equipotential. Such an effect obviously disappears in the ideal case of
point-like probes, and may still be considered negligible if the common width s
of the probes is much smaller than L [8, 90]. As such a constraint is easily fulfilled
by the present technology, the effect of the probes’ size is neglected here. From
Prob. 25.2, the boundary conditions of (25.35) are found to be6

 .�H=2; y/ D  0 ;

�
@ .x; y/

@y

�

yD�L=2

D �
� I

h H
(25.36)

and

 .CH=2; y/ D  1 ;

�
@ .x; y/

@y

�

yDCL=2

D �
� I

h H
; (25.37)

6With reference to Prob. 25.2, the second condition in (25.36) is derived by observing that along the
side y D �L=2 the unit vector t is aligned with the side itself and points in the positive direction of
x. As a consequence, n points in the positive direction of y, namely, n D j and @ =@y D @ =@n.
By the same token, the sign in the second condition of (25.37) is justified by observing that the
currents at the contacts sum to zero, and by using the relation @ =@y D �@ =@n that holds on the
side y D L=2 because n D �j there. It is assumed that the current density is uniformly distributed
along the contact.
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with 0� 1 D I=h. As for the thickness h, it is sufficient to assume that h is small, in
order to keep the validity of the two-dimensional analysis carried out here; as shown
in Prob. 25.4, the actual value h does not influence the measurement’s results. The
solution of (25.35) is a harmonic function, fulfilling (25.36) and (25.37), which may
be written as  D P C Q, with P D . 1 �  0/ x=H C . 1 C  0/=2; clearly, P is
harmonic and fulfills the same Dirichlet conditions as  at x D ˙H=2, whereas it
fulfills the homogeneous Neumann conditions at y D ˙L=2. As a consequence, Q
must be harmonic and fulfill the same Neumann conditions as  at y D ˙L=2, and
the homogeneous Dirichlet conditions at x D ˙H=2:

Q.˙H=2; y/ D 0 ;

�
@Q.x; y/

@y

�

yD˙L=2

D �
� I

h H
: (25.38)

Condition (25.38) suggests to seek for a function that is even with respect to x and
odd with respect to y, e.g., qn D cos.kn x/ sinh.kn y/ with kn D .2 n C 1/ �=H;
in fact, qn is harmonic and fulfills by construction the homogeneous Dirichlet
condition at x D ˙H=2. On the contrary, it does not fulfill the nonhomogeneous
Neumann condition at y D ˙L=2; to achieve this result one forms a linear
combination Q D

P1
nD0 �n qn and suitably determine the coefficients �n. It is

sufficient to investigate the case y D L=2 because @Q=@y is even; the condition
to be fulfilled then reads

�
� I

h H
D

�
@Q.x; y/

@y

�

yDL=2

D

1X

nD0

�n kn cosh.kn L=2/ cos.kn x/ : (25.39)

Multiplying both sides of (25.39) by cos.km x/, integrating from �H=2 to CH=2,
and observing that the integral of cos.km x/ cos.kn x/ equals .H=2/ ımn, with ımn

the Kronecker symbol (A.18), shows that the coefficients of the linear combination
sought fulfill the relation .�1/m 4 � I=.h H �m/ D �k2m H cosh.km L=2/; as a
consequence,

Q D �
4 � I

h

1X

nD0

.�1/n
cos.kn x/

H2 k2n

sinh.kn y/

cosh.kn L=2/
: (25.40)

Both differentiation and integration term-by-term of the series (25.40) are admissi-
ble (Prob. 25.3). As far as function P is concerned, one exploits the arbitrariness left
in  (Prob. 25.2) by letting  1 D 0, whence  0 D I=h and

P D
I

2 h

�
1 �

2 x

H

�
: (25.41)
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25.5.2 Local Hall Voltage

The analysis carried out in this section allows one to calculate the local Hall voltage,
that is, the voltage drop VH.y/ D '.H=2; y/ � '.�H=2; y/ between two points
facing each other on the insulating boundaries x D ˙H=2 (Fig. 25.5). To proceed,
one starts from the first of (25.34) and combines  D PC Q with (25.40), (25.41),
and with the results of Prob. 25.1, to obtain

� Ex D Jx C � Jy D
@Q

@y
� �

�
dP

dx
C
@Q

@x

�
: (25.42)

Using (25.42), the local Hall voltage reads

VH.y/ D
Z �H=2

CH=2
Ex.x; y/ dx D

�

�
. 1 � 0/C

1

�

d

dy

Z �H=2

CH=2
Q.x; y/ dx : (25.43)

The term @Q=@x does not contribute to the integral in (25.43) because Q fulfills the
homogeneous Dirichlet boundary conditions at x D ˙H=2. Thanks to the uniform
convergence (Prob. 25.3), the series (25.40) can be integrated term by term; in this
calculation one uses

R CH=2
�H=2 cos.kn x/ dx D 2 .�1/n=kn and  0 �  1 D I=h, to

eventually find

VH.y/ D VH0

�
1 �

8

�2
S.y/

�
; (25.44)

where

VH0 D �
� I

� h
D �

�H B I

� h
; S.y/ D

1X

nD0

cosh.kny/

.2 nC 1/2 cosh.kn L=2/
: (25.45)

The above result is to be compared with that obtained in Sect. 25.4, where the
standard Hall-voltage theory yielded VH D �r B I=W; introducing into the latter
expression the second relation of (25.29), that applies to the case where the electron
current is dominant, shows that expression of the Hall voltage of the standard theory
is made to coincide7 with VH0 by letting W D h and an �n D �H . For y D 0 the
series in (25.45) attains the minimum, S.0/ D

P1
nD0Œ.2n C 1/2 cosh.kn L=2/��1,

whose leading term is 1= coshŒ� L=.2H/�; this shows that the contribution of the
series at y D 0 is small when H � L. In this limiting case the result of
the standard theory is recovered; in the other cases, instead, the measured Hall

7The difference in sign is related to the orientation of B with respect to the z axis. In the analysis
of Sect. 25.5, such an orientation is not specified.
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voltage differs significantly from VH0 [115]. Also, remembering from Prob. 25.3
that

P1
nD0.2nC 1/�2 D �2=8, it also follows VH.˙L=2/ D 0, which is consistent

with the condition Et D 0 imposed by the contact.

25.6 Measurement of Doping Profiles

The calculation of the depletion capacitance for an arbitrary doping profile, in the
one-dimensional case, has been carried out in Sect. 21.9.3; the analysis has yielded,
among others, the two relations (21.124) and (21.125) that are reported below:

dQ D %.b/ db ; C D
dQ

d 
D

"sc

b � a
; (25.46)

where C is the differential capacitance per unit area of the space-charge region,
whose boundaries are a and b, and  D '.b/ � '.a/. For a strongly asymmetric
junction it is, e.g., b � a ' b, and (25.46) become

C '
"sc

b
; "sc d ' b %.b/ db D

1

2
%.b/ db2 D

1

2
%.b/ d

�
"2sc

C2

�
: (25.47)

As a consequence,

%.b/ D
2

"sc

"
d
�
1=C2

	

d 

#�1
: (25.48)

Basing upon (25.48), a measurement scheme can be devised, which proceeds as
follows:

1. C is measured at a given bias V , and b is determined from b D "sc=C.
2. C is measured again after slightly varying the bias from V to VC dV D VC d .
3. A numerical calculation of the derivative yields %.b/.

An example of application of the above scheme is given with reference to an
asymmetric p-n junction with, e.g., a D �lp, b D ln, and ln � lp. In the reverse-bias
condition, and using the full-depletion approximation (20.34), it is % ' q N, whence

N.ln/ '
2

q "sc

"
d
�
1=C2

	

d 

#�1
: (25.49)

This provides a method for measuring the dopant distribution.



738 25 Measuring the Semiconductor Parameters

25.7 Van der Pauw Method

The theory of the Green function in two dimensions, outlined in Sect. 4.12.4, lends
itself to an interesting application to a technique for measuring the conductivity
and Hall coefficient of a sample. The method, named after van der Pauw [139],
is outlined here with reference to the conductivity measurement. The sample to be
measured is approximately two dimensional (that is, its thickness is uniform and
much smaller that the length and width) and simply connected. Apart from these
constraints, its form is arbitrary. Four point-like contacts are placed at arbitrary
points along the sample’s periphery; two of them are connected with a current
generator, whereas the other two contacts are used to measure the voltage drop
produced by the current.

25.7.1 Solution over the Upper Half Plane

To begin with, one considers the case of a thin layer of material of uniform
conductivity � , extending over the upper half plane; due to uniformity, the current
flow is described by Ohm’s law J D � E, with E a two-dimensional field. Charge
neutrality is supposed to hold, so that the electric potential ' is found by solving
the Laplace equation r2' D 0. As for the boundary conditions, it is assumed that a
current Iab is forced by a generator through two contacts lying along the x axis and
centered at x D a and x D b, respectively. The current enters the layer at the contact
centered at a and leaves it at the contact centered at b. The size s of both contacts is
provisionally left undetermined. Let J D k=s be the component of J normal to the x
axis at the contact centered at a, with k D const > 0. Letting h be the thickness of
the layer in the direction normal to the x; y plane, it is

Iab D h
Z aCs=2

a�s=2
J dx D h k > 0 ; (25.50)

independent of the contact’s size. The normal component of the electric field at
the contact centered at a turns out to be Ea D J=� D �=s, with � D k=� D
Iab=.h �/ > 0, while that at the contact centered at b reads Eb D �J=� D ��=s. The
remaining parts of the x axis are electrically isolated. Thus, the normal component
of the current density and, consequently, that of the electric field are zero there. Due
to the form of E it also follows

Z C1

�1

E./ d D 0 : (25.51)

The assumptions above prescribe the normal derivative of ' everywhere along the
x axis, and make it possible to determine ' in the upper half plane y > 0. It is
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also possible to determine ' along the x axis away from the contacts. For this, with
no loss of generality one may assume a < b. Letting y D 0 in (4.67), one splits
the integral over the subintervals of the x axis; in so doing, one finds that only the
integrals extended over the contacts are different from zero. The other parts of the x
axis, in fact, do not contribute due to the vanishing normal component of E. Using
Ea D �=s and Eb D ��=s yields

'.x; 0/ D '0 �
�=s

2�

"Z aCs=2

a�s=2
G.x; 0I / d �

Z bCs=2

b�s=2
G.x; 0I / d

#

: (25.52)

Replacing into the first integral the expressions (4.66) of G, with y D 0, provides

�=s

2�

Z aCs=2

a�s=2
2 log j � xj d !

�

�
log ja � xj ; (25.53)

where the limiting case holds for s ! 0. Combining with a similar result for the
contact centered at b yields

'.x; 0/ D '0 C
�

�
log
jb � xj

ja � xj
: (25.54)

The above result holds away from the contacts, namely, for x ¤ a and x ¤ b.
Selecting two more points c > b and d > c and using � D Iab=.h �/, the voltage
difference Vdc D '.d; 0/ � '.c; 0/ is determined from (25.54) and reads

Vdc D
Iab

� h �
log

.d � b/ .c � a/

.d � a/ .c � b/
; (25.55)

where all quantities in parentheses are positive. In (25.55) it is assumed that two
point-like contacts are placed at x D c, x D d, and the voltage difference Vdc

produced by Iab is measured. Observing that the positions a; b; c; d of the contacts
are prescribed, the only unknown left in (25.55) is the conductivity � . Also,
introducing the positive quantities � D b � a, � D c � b, and � D d � c,
transforms (25.55) into

exp.�%dc
ab �/ D

.�C �C �/�

.�C �/ .�C �/
< 1 ; (25.56)

where %dc
ab D � h Vdc=Iab has the units of a resistivity. Due to the inequality in (25.56)

it is found that %dc
ab > 0. A suitable change in the positions of the current generator

and voltmeter provides

Vad D
Ibc

� h �
log

.c � a/ .d � b/

.b � a/ .d � c/
; (25.57)
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corresponding to a cyclic permutation of indices, a ! b ! c ! d ! a. Letting
%ad

bc D � h Vad=Ibc transforms (25.57) into

exp.�%ad
bc �/ D

� �

.�C �/ .�C �/
< 1 ; (25.58)

which shows that %ad
bc is positive as well. Adding up (25.56) and (25.58) yields

exp.�%dc
ab �/C exp.�%ad

bc �/ D 1 : (25.59)

The above shows that suitable measurements of the ratios %dc
ab and %ad

bc provide a
relation for � , in which the relative distances of the four contacts where the current
generator or voltmeter are applied do not explicitly appear. In fact, the power of the
method lies in its ability to accurately measure the conductivity of the sample by
making the procedure independent of the positions of the contacts.

25.7.2 Solution over the Unit Circle

Another fundamental property of (25.59) is that it does not depend on the sample’s
geometry. Consider by way of example the conformal-mapping transformation
x; y ! u; v, shown in Sect. B.7, that brings the upper half plane y > 0 onto the
disk u2 C v2 < 1. As a consequence of the transformation, the solution of the
Laplace equation with Neumann boundary conditions, given by (4.67), transforms
into (B.65), (B.66), where the polar coordinates u D � cos# , v D � sin# are
used for convenience. The same boundary conditions used in the case of the upper
half plane will be studied here. In particular, in that problem the component of the
electric field normal to the x axis at the contact of size s centered at a was Ea D �=s.
Similarly, the normal component at the contact of the same size centered at b was
Eb D ��=s. The remaining part of the x axis was supposed to be electrically
isolated. When the variable transformations x; y ! u; v and u; v ! �; # are
carried out, the boundary is specified by letting y ! 0, u2 C v2 ! 1, and � ! 1,
respectively; as a consequence, the first integral in (25.52) transforms as

Z aCs=2

a�s=2

�

s
G.x; 0I / d D

�

s

Z �.aCs=2/

�.a�s=2/

G0.1; # I �/

1 � cos �
d� ; (25.60)

with �.a˙ s=2/ D �2 arctanŒ1=.a˙ s=2/�. Letting �a D �.a/, the integral at the
right-hand side of (25.60) tends to �G0.1; # I �a/ for s ! 0, as is easily found by
observing that

lim
s!0

�.aC s=2/ � �.a � s=2/

s .1 � cos �a/
D 1 : (25.61)
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From the form of E it also follows
R 2�
0

E0.�/ d� D 0. The angles # and �a

determine over the circumference C two points of coordinates .cos#; sin#/ and
.cos �a; sin �a/, respectively; from the same procedure as that leading to (25.53) it
follows that �G0.1; # I �a/ D � log

˚
4 sin2Œ.# � �a/=2�

�
. Combining the above with

a similar result obtained at the other contact yields, due to (B.65),

 .1; #/ D '0 C
�

�
log
jsinŒ.# � �b/=2�j

jsinŒ.# � �a/=2�j
: (25.62)

Using � D Iab=.h �/, the difference Vdc D  .1; # D �d/� .1; # D �c/ then reads

Vdc D
Iab

� h �
log

sinŒ.�d � �b/=2� sinŒ.�c � �a/=2�

sinŒ.�d � �a/=2� sinŒ.�c � �b/=2�
: (25.63)

The inequalities a < b < c < d in the x; y domain correspond to 0 < �a < �b <

�c < �d < 2� in the �; # domain; it follows 0 < .�d � �a/=2 < �d=2 < � ,
and similarly for the other arguments of the trigonometric functions that appear
in (25.63). As a consequence, such quantities are all strictly positive. Also, letting

� D .�b � �a/=2 ; � D .�c � �b/=2 ; � D .�d � �c/=2 ; (25.64)

provides for the resistivity %dc
ab D � h Vdc=Iab the expression

exp.�%dc
ab �/ D

sin.�C �C �/ sin�

sin.�C �/ sin.�C �/
: (25.65)

Using the identity 2 sin ı sin � D cos.ı��/�cos.ıC�/, the trigonometric functions
in (25.65) can be manipulated to show that exp.�%dc

ab �/ < 1, whence %dc
ab is positive.

A suitable change in the positions of the current generator and voltmeter provides

Vad D
Ibc

� h �
log

sinŒ.�c � �a/=2� sinŒ.�d � �b/=2�

sinŒ.�b � �a/=2� sinŒ.�d � �c/=2�
; (25.66)

corresponding to a cyclic permutation of indices, a ! b ! c ! d ! a. Using
%ad

bc D � h Vad=Ibc and (25.64) transforms (25.66) into

exp.�%ad
bc �/ D

sin� sin �

sin.�C �/ sin.�C �/
< 1 ; (25.67)

which shows that %ad
bc is positive as well. Combining (25.65) with (25.67) finally

yields

exp.�%dc
ab �/C exp.�%ad

bc �/ D 1 ; (25.68)
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Fig. 25.6 Form of the
	 D �!= logŒ1� exp.�!/�
relation, with 	 D %dc

ab=%
ad
bc

and ! D %dc
ab � , found in the

analysis of the van der Pauw
method
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ρab

dc / ρbc
ad
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σ

identical to (25.59). In other terms, despite the fact that the expressions appearing
in the intermediate steps, leading either to (25.59) or (25.68), are different, the final
expression is the same. New forms of the domain obtained by other conformal-
mapping transformations would still lead to the same result. In conclusion, the
relation connecting the sample’s conductivity with the measurement results is
independent not only of the contacts’ positions, but also of the form of the sample
itself. The latter can then be chosen in such a way as to minimize the experimental
errors.

Using the auxiliary parameters 	 D %dc
ab=%

ad
bc > 0 and ! D %dc

ab � > 0

gives (25.59) and (25.68) the form 	 D �!= logŒ1 � exp.�!/�, whose inverse
is shown in Fig. 25.6.

Problems

25.1 Show that in a simply connected, two-dimensional domain D of arbitrary
shape, belonging to the x; y plane, the current field (25.33) is expressible as J D
rot. k/, where k is the unit vector of the z axis and  a function of x; y only. Show
that  is harmonic, namely, r2 D 0.

25.2 Considering the domain D used in Prob. 25.1, assume that n � 2 contacts are
placed along the boundary, with n � 1 of them connected to current generators. Let
Ii be the current through the ith contact, and si the length of the same contact. Find
the boundary conditions to be associated with the solution of the r2 D 0 equation
discussed in Prob. 25.1.

25.3 Prove that both differentiation and integration term-by-term of the
series (25.40) are admissible.
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25.4 With reference to the device of Fig. 25.5, calculate the product � h from the
measurement of the voltage drop Vc between two Hall probes symmetrically placed
along the same insulating boundary.

25.5 Starting from (25.45), find a form of the series S.y/ that lends itself to a fast
calculation.



Appendix A
Vector and Matrix Analysis

A.1 Scalar Product

Consider two complex, n-dimensional column vectors

a D

2

6
4

a1
:::

an

3

7
5 ; b D

2

6
4

b1
:::

bn

3

7
5 ; (A.1)

whose entries are the components in an n-dimensional Cartesian reference and may
depend on position, time, and other parameters. The scalar product of the two
vectors is indicated with a � b and is defined as

a � b D
nX

iD1

a�i bi : (A.2)

with a�i the complex conjugate of ai. Two nonvanishing vectors a and b are
orthogonal if a � b D 0. As b � a D .a � b/�, the order of the factors in the scalar
product matters; in fact it becomes irrelevant only when the factors are real. The
scalar product is distributive and bilinear; if, say, a D h1 p1 C h2 p2, then

a�.k1 b1 C k2 b2/ D h�1 k1 p1 �b1Ch�2 k1 p2 �b1Ch�1 k2 p1 �b2Ch�2 k2 p2 �b2 ; (A.3)

where h1; h2; k1; k2 are complex constants (in (A.3), the product k1 b1 is the vector
of components k1 b1i, and so on). The modulus of a is defined as

a D jaj D
p

a � a D

 
nX

iD1

jaij
2

!1=2
� 0 : (A.4)
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A.2 Schwarz Inequality and Generalizations

Using (A.2, A.3, A.4) one proves the Schwarz inequality

ja � bj � a b : (A.5)

The above is obvious if a D 0 or b D 0; let b ¤ 0 and define c D a � .a � b/b=b2,
whence c � b D 0. It follows

a2 D

�
cC

a � b
b2

b
�
�

�
cC

a � b
b2

b
�
D c2 C

ja � bj2

b2
�
ja � bj2

b2
; (A.6)

which is equivalent to (A.5). The strict equality in (A.5) holds if and only if b D
k a, with k any complex constant. Observing that ja � bj2 D <2.a � b/ C =2.a � b/,
from (A.5) one also derives the inequalities �a b � <.a �b/ � Ca b. Thanks to this,
one defines the cosine of the angle # between two nonvanishing vectors a and b as

cos# D
<.a � b/

a b
: (A.7)

Other types of products may be defined besides the scalar product, also involving
higher-rank factors: for instance, n � n matrices of the second rank like

A D

2

66
6
4

A11 A12 : : : A1n

A21 A22 : : : A2n
:::

:::
: : :

:::

An1 An2 : : : Ann

3

77
7
5
; B D

2

66
6
4

B11 B12 : : : B1n

B21 B22 : : : B2n
:::

:::
: : :

:::

Bn1 Bn2 : : : Bnn

3

77
7
5
; (A.8)

and so on. Given a second-rank matrix A of entries Aij, its transpose Q D AT is the
matrix of entries Qij D Aji. Transposition applies also to vectors: the transpose of
the column vector a defined in (A.1) is the row vector aT D Œa1; : : : ; an�. With these
premises, given the column vectors a, b and the matrices A, B, the products A B,
A b, and a bT yield, respectively, an n � n matrix, an n-dimensional column vector,
and an n � n matrix whose entries are

.A B/ij D
nX

kD1

Aik Bkj ; .A b/i D
nX

jD1

Aij bj ;
�
a bT

	
ij D ai bj : (A.9)

Applying definitions (A.9) one finds

.A B/T D BTAT ; .A b/T D bTAT ;
�
a bT

	T
D b aT : (A.10)
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A.3 Nabla Operator

A further extension of the concepts introduced in this chapter consists in replacing
one or more factors with an operator. An important example is that of the real, vector
operator nabla,1

r D

2

6
4

@=@x1
:::

@=@xn

3

7
5 ; (A.11)

where x1; : : : ; xn are the coordinates of an n-dimensional Cartesian reference. The
product of r and a complex, scalar function f .x1; : : : ; xn/ is defined in the same
manner as the product of a vector and a scalar quantity introduced above: rf is a
vector of components .r/if , namely,

rf D

2

6
4

@f=@x1
:::

@f=@xn

3

7
5 : (A.12)

In turn, the scalar product of r and a complex vector a of the same dimension as r
yield

r � a D
@a1
@x1
C : : :C

@an

@xn
: (A.13)

The product defined by (A.12) is also called gradient of f , whereas the scalar
product (A.13) is also called divergence of a. The corresponding symbols are
rf D grad f and r � a D div a, respectively. The scalar product of r by itself
is called Laplacian operator

r2 D r � r D
@2

@x21
C : : :C

@2

@x2n
; (A.14)

then,

r2f D
@2f

@x21
C : : :C

@2f

@x2n
; r2a D

2

6
4

r2a1
:::

r2an

3

7
5 : (A.15)

Combining the above definitions yields the identities

1Symbol r is not a Greek letter. However, the term nabla is a Greek word, meaning “harp.”



748 A Vector and Matrix Analysis

r2f D r � .rf / D div grad f ; r � .f �a/ D div.f �a/ D f � div aC grad f � a :
(A.16)

If, in turn, it is a D grad g, the second relation of (A.16) with the aid of the first one
yields the identity

div.f � grad g/ D f � r2gC grad f � grad g : (A.17)

A.4 Dyadic Products

Sometimes it is convenient to adopt a notation that uses the basis set of real, mutually
orthogonal unit vectors i1; : : : ; in associated with the axes of a Cartesian reference.
By construction it is ir � is D ırs, where the Kronecker symbol ırs is the entry of
indices rs of a second-rank matrix defined as

ırs D

�
1 s D r
0 s ¤ r

(A.18)

The expression of vector a in terms of the basis vectors is a D a1 i1 C : : : C an in.
The notation applies also to the higher-rank objects; for instance, in this notation the
matrix A of (A.8) reads

A D A11 i1 iT1 C A12 i1 iT2 C : : :C An;n�1 in iTn�1 C Ann in iTn ; (A.19)

A group like ir iTs is also called dyadic product. Observing that ir is an n-dimensional
column vector whose rth entry is equal to 1 while all the other entries are equal to 0,
the application of the third equation in (A.9) shows that ir iTs is an n � n matrix
whose entry of indices rs is equal to 1, while all the other entries are equal to
zero. As a consequence, the form (A.19) expresses A as a sum of matrices, each
associated with an individual entry. Using this notation, a product like A b readsP

rs Ars ir iTs
P

k bk ik. On the other hand, due to the second equation in (A.9), the
same product is equal to

P
rs Ars bs ir. This shows that ir iTs ik D ir ısk, that is, the

juxtaposition of the right unit vector of the dyadic product with the next unit vector
must be treated as a scalar product.

The relation defined by the second equation in (A.9) applies also when b is
replaced with a vector operator, with the provision that the operator is meant to act
towards the left. For instance, replacing b with r yields .Ar/i D

Pn
jD1 @Aij=@xj.

It follows that the divergence of a second-rank matrix is a column vector of
the form

div A D
nX

jD1

@A1j

@xj
i1 C : : :C

nX

jD1

@Anj

@xj
in : (A.20)
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In turn, considering the product defined by the third equation in (A.9) and replacing
b with r, still with the provision that the operator acts towards the left, yield
.arT/ij D @ai=@xj. It follows that the gradient of a column vector is a second-rank
matrix of the form

grad a D
@a1
@x1

i1 iT1 C
@a1
@x2

i1 iT2 C : : :C
@an

@xn�1
i1 iTn�1 C

@an

@xn
in iTn (A.21)

whence, from (A.20),

div.f A/ D f div AC A grad f ; div.a bT/ D a div bC .grad a/b : (A.22)

A.5 Divergence Theorem

The divergence theorem (or Gauss theorem) states that

Z

V
div v dV D

Z

S
n � v dS ; (A.23)

where V is an n-dimensional volume, dV D dx1 : : : dxn, S the .n � 1/-dimensional
surface enclosing V , and n the unit vector normal to the surface element dS, oriented
in the outward direction with respect to S. Letting v D f � grad g and using (A.17)
yield the first Green theorem

Z

S
f �
@g

@n
dS D

Z

V

�
f � r2gC grad f � grad g

	
dV ; (A.24)

where @g=@n D n � grad g is the derivative of g in the direction of n. It is easily
found that (A.24) is the generalization to n dimensions of the integration by parts.
Rewriting (A.24) after letting v D g grad f �, and subtracting from (A.24), yield the
second Green theorem

Z

S

�
f �
@g

@n
� g

@f �

@n

�
dS D

Z

V

�
f � r2g � gr2f �

	
dV : (A.25)

A special case of the first Green theorem occurs when vector b D grad g is constant;
the relation (A.24) then reduces to

Z

S
f � n dS � b D

Z

V
grad f dV � b ; b D const. (A.26)

As identity (A.26) holds for any choice of b, the two integrals in it are equal to each
other.



750 A Vector and Matrix Analysis

A.6 Vector Product

Another possible product between two vectors is the vector product a ^ b, which
yields a column vector. In contrast with the other products introduced in this section,
the definition of the vector product will be limited to the three-dimensional case; it
is given as the expansion of a determinant, namely,

a ^ b D

2

4
i1 i2 i3
a1 a2 a3
b1 b2 b3

3

5 ) a ^ b D

2

4
a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

3

5 : (A.27)

From (A.27) it follows b ^ a D �a ^ b and a ^ a D 0. The latter also shows
that if two nonvanishing vectors are parallel to each other, say, b D k a ¤ 0, then
a ^ b D 0. When the vector product involves the unit vectors associated with the
axes of a right-handed Cartesian reference, the following relations are found:

i1 ^ i2 D i3 ; i2 ^ i3 D i1 ; i3 ^ i1 D i2 : (A.28)

An intrinsic relation that provides the modulus of a^b is found by specifying (A.7)
for the case of three-dimensional, real vectors, thus yielding

cos2 # D 1 � sin2 # D


P3
iD1 ai bi

�2

a2 b2
: (A.29)

As cos# D 1 when the two vectors are parallel, b D k a, k > 0, while cos# D �1
when they are antiparallel, b D k a, k < 0, the range of # is Œ0; ��. Letting rij D

ai bj�aj bi and observing that .
P3

iD1 a2i / .
P3

iD1 b2i / D .
P3

iD1 ai bi/
2Cr223Cr231Cr212

provides

sin2 # D
r223 C r231 C r212

a2 b2
D
ja ^ bj2

a2 b2
; ja ^ bj D a b sin#; (A.30)

where sin# � 0 due to the range of # .

A.7 Mixed Product

The vector product a ^ b can in turn be scalarly multiplied by another vector c,
to yield a scalar quantity called mixed product. For the sake of simplicity, in the
definition of the mixed product the three vectors will be considered real. From (A.2)
one finds



A Vector and Matrix Analysis 751

a ^ b � c D
3X

iD1

.a ^ b/i ci D

2

4
c1 c2 c3
a1 a2 a3
b1 b2 b3

3

5 D

2

4
a1 a2 a3
b1 b2 b3
c1 c2 c3

3

5 : (A.31)

The two determinants in (A.31) are equal because they transform into each other by
interchanging rows an even number of times. On the other hand, from their equality
it follows a^b�c D a�b^c, namely, the mixed product is invariant upon interchange
of the “wedge” and “dot” symbols.

Considering three nonvanishing vectors a, b, c, where a and b are not parallel
to each other, and remembering the properties of determinants, one finds that the
mixed product vanishes if c is parallel to a or parallel to b. In fact,

a ^ b � a D a ^ b � b D 0 : (A.32)

It follows that the vector product a^ b is normal to both a and b, namely, is normal
to the plane defined by the two nonparallel vectors a and b. If one associates the
plane of a and b with that of the unit vectors i1 and i2, then, using (A.28), the vector
product simplifies to a ^ b D .a1 b2 � a2 a1/ i3, that provides the information about
the direction of a ^ b. Finally, using (A.27) twice provides the expression for the
double vector product

a ^ .b ^ c/ D a � c b � a � b c ; .a ^ b/ ^ c D a � c b � b � c a : (A.33)

A.8 Rotational of a Vector

The expressions involving the vector product can be extended to the case where one
or two vectors are replaced with the nabla operator (A.11). The vector product

r ^ a D

2

4
i1 i2 i3

@=@x1 @=@x2 @=@x3
a1 a2 a3

3

5 D

2

4
@a3=@x2 � @a2=@x3
@a1=@x3 � @a3=@x1
@a2=@x1 � @a1=@x2

3

5 (A.34)

is also called rotational of a, the corresponding symbol being r ^ b D rot a.
Combining (A.34) with the three-dimensional case of (A.12) and (A.13) shows that
the following identities hold:

rot.f a/ D f rot aC grad f ^ a ; rot grad f D 0 ; div rot a D 0 ; (A.35)

rot rot a D grad div a � r2a ; div.a ^ b/ D b � rot a � a � rot b : (A.36)

Integrating the second equation in (A.36) over a three-dimensional volume V and
using (A.23) yield the identity
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Z

S
n � a ^ b dS D

Z

V
.b � rot a � a � rot b/ dV : (A.37)

A special case of (A.37) occurs when vector a is constant. In fact, noting that n � a^
b D �n � b ^ a D �n ^ b � a, (A.37) reduces to

a �
Z

S
n ^ b dS D a �

Z

V
rot b dV ; a D const: (A.38)

As identity (A.38) holds for any choice of a, the two integrals in it are equal to each
other.

A.9 Rotational Theorem

The rotational theorem (or Stokes theorem) states that

Z

S
n � rot v dS D

Z

C
t � v dC ; (A.39)

where C is the boundary curve of the open surface S, t the unit vector tangent to
C, and n the unit vector normal to the surface element dS. The direction of the unit
vectors is such that the orientation of b D t^ n is external with respect to the curve
(Fig. A.1).

A.10 Helmholtz Theorem

A vector u such that rot u D 0 is called irrotational. From the second identity
in (A.35) one finds that if u D grad f , then u is irrotational. The inverse is not true
in general; however, if the domain of u is simply connected, the condition rot u D 0
implies that u can be expressed as a gradient: u D grad f .

Fig. A.1 Rotational theorem
(Sect. A.9): orientation of the
unit vectors

n

−n

b

t
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A vector v such that div v D 0 is called solenoidal. From the third identity
in (A.35) one finds that if v D rot a, then v is solenoidal. The inverse is not true
in general; however, if the domain of v is simply connected, the condition div v D 0
implies that v can be expressed as a rotational: v D rot a.

The Helmholtz theorem states that a vector w defined in a simply connected
domain can be expressed in a unique manner as the sum of an irrotational and a
solenoidal vector:

w D grad f C rot a : (A.40)

Scalar f is found by taking the divergence of both sides of (A.40) and using the
identities div grad f D r2f , div rot a D 0. In turn, vector a is found by taking the
rotational of both sides of (A.40) and using the first identity in (A.36) along with
the auxiliary condition div a D 0. By this procedure it is found that f and a fulfill
the relations

r2f D div w ; r2a D � rot w : (A.41)

The right-hand sides of (A.41) are known because w is prescribed. As a conse-
quence, the problem of finding f and a is equivalent to solving a set of Poisson
equations. The solution of (A.41) is unique provided that w vanishes at infinity
faster than r�1 [82, Sect. XI.3]. Unless some additional prescriptions are imposed
on f and a, (A.40) still holds if one adds to f an arbitrary constant and, to a, the
gradient of an arbitrary scalar function.

A.11 Matrices

The following definitions and properties2 apply to a real square matrix A of order
N, whose entries are indicated with aij D .A/ij. It is known that the determinant of
a matrix changes its sign when two rows or columns are exchanged. It follows that
if the matrix is non-singular, det A ¤ 0, the matrix obtained by a sequence of such
exchanges is still non-singular.

In the numerical solution of the differential equations that model a semicon-
ductor device it is necessary to repeatedly solve an algebraic system of the form
A x D b, with A a non-singular, real square matrix of order N. This section
illustrates a number of matrix properties that are useful for the problem under
consideration; the application to the semiconductor-device equations is illustrated
in Sect. A.13.

It is important to distinguish the solution of the algebraic system, which amounts
to finding x given the data b, from the inversion of A, which amounts to finding
B D A�1. The second operation lends itself to solving the system as well: in fact,

2Several definitions and properties illustrated in this section have an analogue in the theory of
operators. An illustration of the latter is given in Sects. 8.3, 8.4, and 8.6.
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x D A�1 b D B b; however, it is much more expensive than the first one.3 To show
this, let b D ik, where ik is a vector whose kth entry is equal to unity, while all other
entries vanish; observing that the jth entry of ik is equal to the Kronecker symbol
ıjk (A.18), the entries of x D B ik are

xi D

NX

jD1

Bij ıjk D Bik : (A.42)

Thus, the solution vector x is the kth column of B D A�1; the whole inverse matrix
B is found by repeating the solution process with k D 1; 2; : : : ;N. In conclusion, if
C.N/ is the computational cost of solving the N�N algebraic system A x D b, then
the cost of inverting A is N C.N/.

The main diagonal of a square matrix of order N is the set of entries a11; : : : ; aNN .
A real, square matrix of entries aij is symmetric when aji D aij; thus, a symmetric
matrix is defined by prescribing the N diagonal elements and the .N2 � N/=2
elements on one side of the diagonal. A real, square matrix is anti-symmetric or
skew-symmetric when aji D �aij; thus, the diagonal elements of a skew-symmetric
matrix vanish, and the matrix is defined by giving the .N2 � N/=2 elements on one
side of the diagonal.

A diagonal matrix is a square matrix in which all entries that do not belong to
the main diagonal are equal to zero.

The transpose AT of a square matrix A of order N is the matrix of entries .AT/ij D

.A/ji; thus, a real, symmetric matrix is equal to its transpose, AT D A. A non-
singular, square matrix A is orthogonal if AT D A�1; for an orthogonal matrix it
then follows A AT D AT A D I, whence the scalar product of each column by itself
is equal to unity, a2r1C� � �Ca2rN D 1, while the scalar product of a column by another
column is equal to zero, ar1 as1 C � � � C arN asN D 0; the same property applies to
rows. If A is orthogonal, the norm of vector d D A c is equal to that of vector c; the
demonstration is the same as for the unitary matrix, given by (A.43).

A real square matrix A is real normal if it commutes with its transpose,
AT A D A AT . Symmetric, skew-symmetric, and orthogonal matrices matrices are
real normal.

The above definitions are extended to the case of a complex square matrix A of
order N, whose entries are still indicated with aij. The conjugate transpose A� of A
is the matrix of entries .A�/ij D .A/�ji . Matrix A is Hermitean if .A/ji D .A/�ij ; thus,

a Hermitean matrix is equal to its conjugate transpose, A� D A. From the definition
it follows that in a Hermitean matrix the entries of the main diagonal are real. A non-
singular, complex square matrix A is unitary if A� D A�1; for a unitary matrix it
then follows A A� D A� A D I, whence the scalar product of each column by itself
is equal to unity, jar1j

2 C � � � C jarN j
2 D 1, while the scalar product of a column

by another column is equal to zero, a�r1 as1 C � � � C a�rN asN D 0. The same property

3The statement is true in the general case, that is, when A has no special structure.
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applies to rows: ja1rj
2 C � � � C jaNrj

2 D 1 and a�1r a1s C � � � C a�Nr aNs D 0. If A is
unitary, the norm of vector d D A c is equal to that of vector c; in fact, observing
that the product of two rows of a unitary matrix can be written in compact form asPN

iD1 a�ir ais D ırs, it is

d� �d D
NX

iD1

 
NX

rD1

air cr

!�  NX

sD1

ais cs

!

D

NX

r sD1

c�r cs

NX

iD1

a�ir ais D c� �c : (A.43)

Matrix A is skew-Hermitean if .A/ji D �.A/�ij ; thus, a skew-Hermitean matrix is

equal to the negative of its conjugate transpose, A� D �A. From the definition
it follows that in a skew-Hermitean matrix the entries of the main diagonal are
imaginary.

A complex square matrix A is normal if it commutes with its conjugate transpose,
A� A D A A�. Hermitian, skew-Hermitian, and unitary matrices are normal. Instead,
a unitary matrix is not necessarily Hermitean: for this to hold it must simultaneously
be A� D A�1 and A� D A, whence A must fulfill the constraint A2 D I.

A.11.1 Eigenvalues

Given an N � N non-singular matrix V, consider the algebraic system

V e D � e ; (A.44)

with � an undetermined parameter. If � exists, such as (A.44) has a nontrivial
solution, then � is an eigenvalue of V and the nontrivial solution thus found is the
eigenvector corresponding to �. For the existence of nontrivial solutions of (A.44)
it is necessary that

det.V � �I/ D 0 : (A.45)

The above is an algebraic equation of degree N, called characteristic equation
or also secular equation, which has N solutions �1; : : : ; �N ; such solutions are
not necessarily distinct from each other, and are generally complex. Successively
inserting �1; �2; : : : into (A.44) yields the eigenvectors e1; e2; : : :, that are the only
nontrivial solutions of (A.44).

The eigenvalues of a non-singular matrix are different from zero; in fact, if it
were �m D 0, then it would be V em D 0; however, the latter equation can have a
nontrivial solution only if V were singular, contrary to the hypothesis. The converse
is also true: if V is singular, then there exists a nonvanishing vector em that makes
the left-hand side of (A.44) equal to zero; this is compatible with (A.44) only if the
corresponding eigenvalue is equal to zero.
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From the homogeneity of (A.44) it follows that the eigenvectors are determined
apart from a multiplicative constant. For each eigenvector er, the constant can then
be chosen such that the vector is normalized to unity: jerj D 1. Another important
property is that eigenvectors corresponding to different eigenvalues are different
(that is, nonparallel) from each other. Let the eigenvalues be �r and �s ¤ �r, and
let er be an eigenvector corresponding to �r, and es an eigenvector corresponding
to �s. Specifying (A.44) for index r and index s, and subtracting from each other
the two relations thus found, yields V .er � es/ D �r er � �s es. If it were es D er

it would follow .�r � �s/ er D 0; however, the latter relation is impossible because
er, being an eigenvector, does not vanish, and the two eigenvalues are different by
hypothesis. As a corollary, it follows that an eigenvector belongs to one and only
one eigenvalue.

The spectral radius of a matrix is the maximum modulus of its eigenvalues, % D
maxi.j�ij/. There are several theorems providing upper bounds for % [94, Chap.
III]; among these, the Gershgorin theorem states that

j�j � min.R;C/ ; (A.46)

where the two real parameters R;C depend on the entries of V as shown below. To
demonstrate (A.46) one starts from (A.44) and let � be an eigenvalue of V, with e
an eigenvector corresponding to it. Take the entry of e whose modulus is maximum,
say, ei, and consider the ith row of (A.44),

PN
jD1 Vij ej D � ei. Using the arbitrary

multiplicative constant of the eigenvalues, normalize e so that ei D 1; it follows
ViiC

P
j¤i Vij ej D �where, by construction, jejj � 1. Thus, letting Ri D

PN
jD1 jVijj,

j�j � jViij C

ˇ̌
ˇ̌
ˇ̌
X

j¤i

Vij ej

ˇ̌
ˇ̌
ˇ̌ � jViij C

X

j¤i

jVijj � Ri : (A.47)

This shows that the eigenvalue under consideration belongs to the disc of the
complex plane centered in the origin and having Ri as radius. On the other hand, as
the reasoning leading to (A.47) can be repeated for any eigenvalue, one concludes
that the maximum of such discs contains all eigenvalues of V, namely, j�j �
R D maxi.Ri/. Repeating the procedure starting from the transpose of (A.44)
yields j�j � C D maxi.Ci/ with Ci D

PN
jD1 jVjij, namely, the moduli of the

entries are added columnwise; since both constraints j�j � R and j�j � C hold
simultaneously, (A.46) ensues.

Linear Independence of the Eigenvectors

From the properties demonstrated in Sect. A.11.1 it follows that two eigenvectors er,
es belonging to different eigenvalues are linearly independent. If the opposite were
true, there would exist two nonvanishing constants �r, �s such that �r er C �ses D

0; this, however, is impossible because the two eigenvectors would be parallel to
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each other. More generally, it is found that the eigenvectors of V belonging to m >

2 distinct eigenvalues are linearly independent. For this, assume that (A.45) has
m distinct roots, with 2 < m � N, and number such roots with indices ranging
from 1 to m, so that the corresponding eigenvectors are e1; : : : ; em. Now, if these
eigenvectors were linearly dependent, there would exist m constants �1; : : : ; �m such
that

�1e1 C : : :C �mem D 0 ; (A.48)

with at least two of the constants different from zero. Multiplying (A.48) by V and
using (A.44) provides

�1 �1 e1 C : : :C �m �m em D 0 : (A.49)

Now, for any index k such that 1 � k � m, multiplying (A.48) by �k and subtracting
the result from (A.49) yield

mX

jD1

�j .�k � �j/ ej D 0 (A.50)

where, apart from the summand with j D k, the differences in parentheses are
different from zero because the eigenvalues are distinct; from (A.50) it then follows
that the m� 1 eigenvectors e1, : : :, ek�1, ekC1, : : :, em are linearly dependent. On the
other hand, this reasoning can be repeated for all values of k between 1 and m; as a
consequence, if (A.48) were true, then all sets made of m � 1 eigenvalues extracted
from e1; : : : ; em would fulfill relations similar to (A.48). Starting from this result
one may repeat the reasoning to show that linear independence would be absent for
all sets made of m� 2; m� 3; : : : eigenvectors, to finally reach all sets made of two
eigenvectors. This, however, is absurd as shown above; in conclusion, (A.48) holds
only if all constants �1, : : :, �m vanish, thus showing that eigenvectors belonging to
distinct eigenvalues are linearly independent.4

If it is m D N, matrix V has N distinct eigenvalues, each of them associated
with a different eigenvector. If, instead, it is m < N, thus implying that (A.45)
has multiple eigenvalues, the above reasoning is not applicable to the indices larger
than m; in fact, if one included in (A.50) also the summands relative to �mC1, �mC2,
: : :, the parentheses containing repeated eigenvalues would vanish, and the left-hand
side of (A.50) would still be made of m � 1 summands.

4Note that the conclusion is reached without assuming any special property of the matrix, apart
from that of being non-singular.
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Orthogonalization of a Set of Vectors

It is shown here that from a set of N linearly independent vectors p1;p2; : : : ;pN it
is possible to extract a set of N mutually orthogonal vectors w1;w2; : : : ;wN . The
procedure, called Gram-Schmidt orthogonalization, forms linear combinations of
the pr vectors according to the scheme

w1 D p1 ; w2 D p2Cd21 w1 ; w3 D p3Cd31 w1Cd32 w2 ; : : : (A.51)

or, more generally, wr D prC
Pr�1

kD1 drk wk, where coefficients drk are provisionally
left undetermined. Left multiplying by w�1 the second relation in (A.51), and
prescribing that w2 and w1 are orthogonal, yields d21 jw1j

2 D �w�1 � p2. The left-
hand side of the latter cannot vanish: if it did, it would also be p1 D w1 D 0

and, in this case, vectors pr would not be linearly independent. Thus, extracting
d21 D �w�1 � p2=jw1j

2 and replacing it in the second relation in (A.51), provides
w2 as a linear combination of p1 and p2; therefore, w2 does not vanish. Then, one
proceeds by left multiplying the third relation in (A.51) by either w�1 or w�2 , and
prescribing that w3 be orthogonal to w1 in the first case, and to w2 in the second
case. Remembering that w1 and w2 are orthogonal, one finds d31 jw1j

2 D �w�1 � p3
and d32 jw2j

2 D �w�2 � p3, where the vectors at the left-hand side are different from
zero. Thus, one extracts the coefficients d31 and d32, determines w3, and so on. In
conclusion, the general expression for the coefficients reads drk jwkj

2 D �w�k � pr.

A.11.2 Properties of Hermitean Matrices

The eigenvalues and eigenvectors of Hermitean matrices have a number of proper-
ties that are worth illustrating. To begin one finds that if V is Hermitean, the scalar
product a� � V a is real for any choice of vector a; in fact, the product a� � V a reads

NX

ijD1

a�i Vij aj D

NX

jiD1

a�j Vji ai D

NX

jiD1

a�j V�ij ai ; (A.52)

where the second form is obtained from the first one by exchanging the indices.
From (A.52) it follows that the sum is equal to its conjugate, namely, it is real. A
consequence of this finding is that the eigenvalues of a Hermitean matrices are real;
to show this, let er be an eigenvector of V and �r the corresponding eigenvalue.
A scalar multiplication on the left by e�r of the eigenvalue equation (A.44) yields
e?r � V er D �r e?r � er, where the left-hand side is real as demonstrated with (A.52).
The right-hand side e?r � er D

PN
jD1

�
<.erj/

2 C=.erj/
2
�
D jerj

2 is strictly positive
because an eigenvector does not vanish; in conclusion,
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�r D
1

jerj2

nX

j;kD1

e?rj Vjk erk (A.53)

is real. It may happen that the real product a� � V a is strictly positive (negative) for
any choice of vector a; in this case, A is called positive definite (negative definite).
From (A.53) it then follows that the eigenvalues of a positive-definite Hermitean
matrix are all positive; thus, as shown in Sect. A.11.1, such a matrix is non-singular.

Other relations are derived by considering eigenvectors with different indices,
e.g., er and es: left multiplying V er D �r er by e?s , right multiplying the conjugate
of V es D �s es by er, and subtracting the relations thus obtained, one finds that the
left-hand sides delete each other due to the hermiticity of V. In conclusion,

.�r � �s/ e?s � er D 0 : (A.54)

If all roots of the characteristic equation (A.45) are distinct, the term in parentheses
in (A.54) is different from zero for any pair of indices r, s; it follows that all eigen-
vectors are mutually orthogonal. Remembering (Sect. A.11.1) that the eigenvectors
are defined apart from a multiplicative constant, hence they are normalizable to
unity, for a Hermitean matrix with distinct eigenvalues one can always assume

e?s � er D ısr ; (A.55)

with ısr the Kronecker symbol (A.18). Eigenvalues that fulfill (A.55) are called
orthonormal.5

If the characteristic equation (A.45) has multiple roots, there are pairs of indices
such that the difference in parentheses of (A.54) vanishes; for this reason, the
analysis cannot be based upon (A.54). However, as shown in Sect. A.11.1, there
always exist N mutually independent eigenvectors; also, for Hermitean matrices it
is always possible to find a set of N mutually orthonormal eigenvectors, regardless
of the multiplicity of the eigenvalues (section “Diagonalization of Hermitean
Matrices—Multiple Eigenvalues”). Finally, if V is real and symmetric the eigen-
value equation (A.44) is an algebraic system with real coefficients; it is then possible
to select the normalization constants in a way that makes all eigenvectors real.

5Condition (A.55) provides a simpler demonstration, with respect to the general one shown in
Sect. A.11.1, of the linear independence of the eigenvectors. If the eigenvectors were linearly
dependent there would be N constants �1; : : : ; �N , not all vanishing, such that the relationPN

rD1 �r er D 0 holds. Assuming for instance that �s ¤ 0, left multiplying the above relation
by e?s , and using (A.55), yields that all summands at the left-hand side vanish with the exception
of the sth one, thus yielding the absurd conclusion jesj

2 D 0.
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Diagonalization of Hermitean Matrices

Let V be an N�N Hermitean matrix, whose eigenvalues and eigenvectors are �r and
er, respectively. Assume that all eigenvalues are distinct; it follows (section “Linear
Independence of the Eigenvectors”) that the eigenvectors are mutually independent;
also, one can assume (section “Orthogonalization of a Set of Vectors”) that the
eigenvectors are mutually orthogonal and normalized to unity. With these premises,
let G be an N � N matrix whose columns are the eigenvectors of V, namely, the
entry of indices k r of G is the kth entry of er. From the linear independence of the
eigenvectors it follows that G is non-singular, whence its inverse G�1 exists. Left
multiplying G by its conjugate transpose G�, one finds that the entry of indices s r
of the product is

PN
kD1.G

�/sk Gkr D
PN

kD1 G?
ks Gkr D e?s � er. Remembering that the

set of eigenvectors is orthonormal, one finds from (A.55) that G�G D I, namely,
from the definition of Sect. A.11, G is unitary.

Now, let D be a diagonal matrix of order N, whose diagonal entries are the
eigenvalues �r, namely, Dkr D �r ıkr. From the above definitions, the N algebraic
systems V er D �r er are recast in matrix form as V G D G D. Left multiplying the
latter by G�1 yields

G�1 V G D D: (A.56)

This result shows that the matrix made of the eigenvectors produces a similarity
transformation (Sect. A.11.3) that brings the Hermitean matrix V into the matrix
made of its eigenvalues. This type of similarity transformation is called diagonal-
ization, because it yields a diagonal matrix, or also unitary transformation, because
it is based upon a unitary matrix. An example of application to the diagonalization
of a Hamiltonian function is shown in Sect. 3.10.

Diagonalization of Hermitean Matrices—Multiple Eigenvalues

This section examines the case of a Hermitean matrix whose characteristic equa-
tion (A.45) ha multiple roots. One starts by considering a unitary matrix W, not
necessarily made of the eigenvectors of V. As shown in Sect. A.11, a unitary matrix
is not Hermitean in general; instead, for any matrix W the property holds that if V
is Hermitean, then W� V W is also Hermitean; in fact,

�
W� V W

	
jk D

NX

s rD1

W?
sj Vsr Wrk ;

�
W� V W

	?
kj D

NX

r sD1

Wrk V?
rs W?

sj; (A.57)

where the right-hand sides are equal because V is Hermitean. Also, the product of
two unitary matrices is unitary; observing in fact that for any pair of square matrices
Wa, Wb it is .Wa Wb/

� DW�
b W�

a, for unitary matrices it is

.Wa Wb/
� .Wa Wb/ D .W

�
b W�

a/ .Wa Wb/ DW�
b .W

�
a Wa/Wb D I : (A.58)
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Now, let �.N/1 be an eigenvalue of (A.44), with e1 an eigenvector corresponding to it,
normalized to unity. In the N-dimensional space it is always possible to find other
N � 1 vectors, linearly independent with respect to e1 and to each other; then, using
the orthogonalization procedure of section “Orthogonalization of a Set of Vectors,”
one extracts N � 1 vectors w2; : : : ;wN , also normalized to unity, that are orthogonal
to e1 and with respect to each other. Let WN be the unitary matrix having e1 as
first column and w2; : : : ;wN as the remaining columns. Remembering that e1 is an
eigenvector of V, the first column of the product V WN is �.N/1 e1, whence6

W�
N V WN D

2

666
4

�
.N/
1 0 : : : 0

0
::: VN�1

0

3

777
5
: (A.59)

The .N � 1/ � .N � 1/ matrix VN�1 is Hermitean as well so that, iterating the
procedure, one defines a unitary matrix WN�1 such that

W�
N�1 VN�1 WN�1 D

2

6
66
4

�
.N�1/
2 0 : : : 0

0
::: VN�2

0

3

7
77
5
; (A.60)

with �.N�1/2 an eigenvalue of VN�1. Letting

UN DWN ; UN�1 D

2

6
66
4

1 0 : : : 0

0
::: WN�1

0

3

7
77
5
; (A.61)

one finds

U�
N�1 U�

N V UN UN�1 D

2

6
66666
4

�
.N/
1 0 0 : : : 0

0 �
.N�1/
2 0 : : : 0

0 0
:::

::: VN�2

0 0

3

7
77777
5

: (A.62)

6One notes in fact that the first entry in the first column of (A.59) reads �.N/1 je1j
2 D �

.N/
1 , while

the others are �.N/1 e1 � wr D 0. Also, considering that W�
N V WN is Hermitean, the entries of the

first row apart from the first one must vanish as well.
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The next iteration yields

W�
N�2 VN�2 WN�2 D

2

666
4

�
.N�2/
3 0 : : : 0

0
::: VN�3

0

3

777
5
; UN�2 D

2

666
4

1 0 : : : 0

0 1 : : :
:::
::: WN�2

0

3

777
5

(A.63)

with �.N�2/3 an eigenvalue of VN�2, and so on. At the end of the procedure one finds a
relation similar to (A.62) whose right-hand side is a diagonal matrix D; the elements
of the latter are eigenvalues of Hermitean matrices, hence they are real. In turn, at
the left-hand side one finds that matrix V is right multiplied by the unitary matrix
G D UN UN�1 : : :U2 U1 and left multiplied by the conjugate transpose of the above.
One then finds that the procedure eventually leads to (A.56); in other terms, one can
identify the entries �.N/1 ; �

.N�1/
2 ; : : : ; �

.1/
N of D with the eigenvalues of V, and the

columns of G D UN UN�1 : : :U2 U1 with its eigenvectors. In conclusion, without
resorting to the hypothesis that the eigenvalues are simple, it has been demonstrated
that a Hermitean matrix can be diagonalized with a unitary transformation; this, in
turn, provides a set of N orthonormal eigenvectors. As shown in Sect. A.11.2, if
matrix V is real and symmetric it is possible to choose the normalization constants
such that the eigenvectors are real.

Eigenvalues of Other Special Matrices

Let A be a complex square matrix. If A is normal, and er is an eigenvector of A
corresponding to eigenvalue �r, then er is also an eigenvector of A�, corresponding
to eigenvalue ��r . To show this one defines B D A � � I so that the eigenvalue
equation (A.44) takes the form B e D 0. Matrix B is normal by construction, and
B� D A� � �� I. From jB ej2 D .B e/� .B e/ D 0 one finds

.B e/� .B e/ D e� B� B e D e� B B� e D jB� ej2 D 0 : (A.64)

The above is equivalent to B� e D 0, namely, to A� e D �� e as anticipated.
Other properties refer to the eigenvalues of skew-Hermitian matrices and of

unitary matrices. The nonvanishing eigenvalues of a skew-Hermitian matrix A D
�A� are imaginary; to show this, one left multiplies by e� the eigenvalue equation
A e D � e, to find

� jej2 D e� A e D �e� A� e D � .A e/� e D � .� e/� e D ��� jej2 ; (A.65)

with jej2 ¤ 0. It follows � D ���, namely, � is either equal to zero or to an
imaginary number.
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If A is unitary, A� A D I, the modulus of its eigenvalues is equal to unity. To
show this, one left multiplies by A� the eigenvalue equation A e D � e and exploits
the property of normal matrices demonstrated with (A.64), to find

e D �A� e D ��� e ; (A.66)

with e ¤ 0. It follows j�j2 D 1.

Permutation Matrices

A given set of row and column exchanges to which A may be subjected is
conveniently described by means of a permutation matrix P of order N; in each
row and in each column of a permutation matrix there is one and only one entry
equal to 1, while all the remaining entries are equal to 0; for instance, a possible
permutation matrix of order 3 is

P D

2

4
0 1 0

1 0 0

0 0 1

3

5 : (A.67)

If A is a 3� 3 matrix, then A P, with P given by (A.67), is the 3� 3 matrix obtained
by exchanging the first two columns of A, while P A is the 3 � 3 matrix obtained
by exchanging the first two rows of A. It is easily found that jdet Pj D 1 for all
permutation matrices; it follows that permutation matrices are non-singular.

A.11.3 Similarity Transformations

Let V be a square matrix of order N, and let G be a non-singular square matrix, still
of order N. Using the above, one constructs a third matrix G�1 V G. This operation,
that applies to both real and complex matrices, is called similarity transformation;
the two matrices V and G�1 V G are called similar. If two matrices are similar, they
have the same determinant and the same eigenvalues. The first property is due to the
fact that the determinant of a product is equal to the product of determinants,

det.G�1 V G/ D det.G�1/ det.V/ det.G/ D det.G�1G/ det.V/ D det.V/ ;
(A.68)

The second property derives from the eigenvalue equation for V. Letting �r be an
eigenvalue and I the identity matrix, consider the matrix

G�1 V G � �r I D G�1 V G � �r G�1 I G D G�1 .V � �r I/G ; (A.69)

where I D G�1 G D G�1 I G has been used. From (A.68) it follows det.G�1 V G�
�r I/ D det.V � �r I/. By definition, �r makes the right-hand side of the above to
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vanish for all r; it follows that V and G�1 V G have the same eigenvalues. From
the identity V e D V G G�1 e, which holds for any vector e of length N, it follows
for the rth eigenvalue G�1 V G G�1 er D �r G�1 er; as a consequence, G�1 er is an
eigenvector of G�1 V G for all r.

A.11.4 Doubly Stochastic Matrices

Consider a set of M square matrices of order M, S1; : : : ;SM , and a set of M real,
nonnegative numbers �k such that �1 C : : :C �M D 1. The matrix

S D
MX

kD1

�kSk (A.70)

is called convex combination of the Sk matrices.
The following theorem is easily proved: if the matrices Sk are doubly stochastic,7

then S is doubly stochastic as well. In fact from the definition of S it is .S/ij DPM
kD1 �k.Sk/ij whence, adding the terms row-wise,

MX

jD1

.S/ij D
MX

kD1

�k

MX

jD1

.Sk/ij D

MX

kD1

�k D 1 : (A.71)

The same result is obtained when summing column-wise. As permutation matrices
are doubly stochastic, from the above theorem the special case follows: a convex
combination of permutation matrices is a doubly stochastic matrix. The inverse
property also holds: a doubly stochastic matrix is a convex combination of per-
mutation matrices [11].

A.11.5 Diagonally Dominant Matrices and Irreducible
Matrices

The following definitions are of use. Let A be a real, square matrix of order N,
whose entries are aij; its main diagonal is said to be strongly dominant if

jaiij >
X

j¤i

jaijj ; i D 1 ; : : : ;N : (A.72)

7The definition of doubly stochastic matrix is given in Sect. 7.6.1.
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Conversely, if (A.72) holds for at least one index i while, for all indices for
which (A.72) does not hold it is

jaiij �
X

j¤i

jaijj ; (A.73)

the diagonal is said to be weakly dominant.
A square matrix A of order N is called reducible if a permutation matrix P exists

such that

P A P�1 D
�

F O
H G

�
; (A.74)

where F, G are square matrices, O is a matrix whose entries are equal to zero, and
P�1 is the inverse of P. If no permutation matrix exists that makes (A.74) to hold,
then A is irreducible. If A is reducible, let Na be the order of F and Nb D N � Na

that of G; then, assume that an algebraic system A u D b is to be solved, with u, b
the unknown and data vectors, respectively. Left multiplying the system by P, and
observing that P�1 P D I, with I the identity matrix, yields P A P�1 P u D P b.
Defining the vectors w D P u and g D P b, let wa and ga be the vectors made of the
first Na entries of w and g, respectively, and let wb and gb be the vectors made of the
remaining Nb entries. The algebraic system to be solved then becomes

F wa D ga ; H wa CG wb D gb : (A.75)

If A is non-singular, P AP�1 is non-singular as well,8 whence w is unique. It follows
that the solution of the first equation in (A.75), whose unknown vector is made of
the first Na entries of w, is also unique; as a consequence, F is non-singular. Solving
for wa the first equation in (A.75), and replacing the result in the second one, yields
an algebraic system in the unknown vector wb. By the same token one finds that G
is also non-singular, whence wb is found. Thus, the solution of the original algebraic
system A u D b of order N has been reduced to that of two systems of lower order.

The irreducibility property is amenable to an interesting graphic representation:
given an N � N matrix, with N > 1, choose N different points of the plane and
arbitrarily number them from 1 to N; then, for each nonvanishing entry aij of the
matrix, j ¤ i, draw an arc oriented from the ith to the jth point.9 The construction
yields an oriented graph; the latter is called connected if, for any choice of two
different points i, j, one or both of the following occur: A) there exists an arc that
connects points i and j; B) there exists an oriented path, made of more than one arc,

8If A, B are two square matrices of order N, it is det.A B/ D .det A/ .det B/. From P P�1 D I it
follows˙1� det.P�1/ D 1, namely, det P D det.P�1/; thus, det.P AP�1/ D det A.
9The diagonal entries aii are of no interest in this construction; for the sake of completeness one
might draw a closed arc at each point i for which aii ¤ 0.
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that connects point i to point ˛, point ˛ to ˇ, : : :, point � to j. It can be shown that
if the oriented graph of A is connected, then A is irreducible, and vice versa [147,
Par. 2.5].

A.11.6 Properties of Diagonally Dominant Matrices

Still considering a real square matrix A of order N, and basing upon the definitions
given in Sect. A.11.5, the following theorems are now proven:

1. If the main diagonal of A is strongly dominant, then A is non-singular.
2. If A is irreducible and its main diagonal is weakly dominant, then A is non-

singular and all entries aii of the main diagonal are different from zero.

The demonstration of the first theorem starts from (A.72), which shows that aii ¤ 0,
i D 1 ; : : : ;N; next, consider the auxiliary, homogeneous system A v D 0, whose
ith row reads aii viC

P
j¤i aij vj D 0. Letting bij D 0 for j D i and bij D �aij=aii for

j ¤ i transforms the latter into

vi D

NX

jD1

bij vj ; i D 1 ; : : : ; N : (A.76)

Using the new symbols transforms (A.72) into
PN

jD1 jbijj < 1 for i D 1 ; : : : ; N.
Now, define M D max1�i�N jvij, and let k be an index such that jvkj D M; thus,
fixing i D k in (A.76),

M D jvkj D

ˇ
ˇ̌
ˇ̌
ˇ

NX

jD1

bkj vj

ˇ
ˇ̌
ˇ̌
ˇ
�

NX

jD1

jbkjj jvjj : (A.77)

If A were singular, there would be a nontrivial solution to A v D 0, whence it would
be M > 0. In this case, multiplying by M both sides of

PN
jD1 jbijj < 1, letting i D k,

and subtracting from (A.77) would provide

NX

jD1

jbkjj .jvjj �M/ > 0 : (A.78)

This inequality is false because, due to the definition of M, the quantity in
parentheses in (A.78) is non-positive for all indices. It follows M D 0, namely,
the only possible solution of the homogeneous system A v D 0 is the trivial one,
whence A is non-singular.

The demonstration of the second theorem starts from the trivial case N D 1;
it must be ja11j > 0 due to the definition of weakly dominant diagonal, whence
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the theorem for the trivial case is proven. Consider now the nontrivial case N >

1 and assume that aii D 0 for some index i; from (A.73) it follows aij D 0 for
all j, namely, all entries of the i row vanish. By suitable permutations it is then
possible to transform this row into the first one; comparing with (A.74) shows that
A is reducible, contrary to the hypothesis. The rest of the proof follows the same
reasoning as for the first theorem: the condition that the main diagonal is weakly
dominant prescribes that the strict inequality

PN
jD1 jbijj < 1 holds for at least one

index i, whereas for all indices i for which the strict inequality does not hold it is

NX

jD1

jbijj � 1 : (A.79)

If A were singular it would be M > 0, so that (A.78) would be replaced by

NX

jD1

jbkjj .jvjj �M/ � 0 ; (A.80)

where M and k have the same meaning as in the first theorem. Due to the definition
of M, the quantity in parentheses in (A.80) is non-positive for all indices; it follows
that jvjj D M for all values of j such that bkj ¤ 0. On the other hand, A is
irreducible, whence (remembering the construction of the oriented graph illustrated
above) for any pair j ¤ k it is bkj ¤ 0, or there exist indices ˛ ; ˇ ; : : : ; �
such that bi˛ b˛ˇ : : : b�j ¤ 0. Due to (A.80), this is equivalent to jvjj D M or
jv˛j D jvˇj D : : : D jvjj D M, both of which imply jvjj D M for all j ¤ k.
Now, let m be one of the indices such that

NX

jD1

jbmjj < 1 : (A.81)

On the other hand, it is also

M D jvmj �

NX

jD1

jbmjj jvjj D

NX

jD1

jbmjjM : (A.82)

The two relations (A.81), (A.82) are incompatible for M > 0; it follows M D 0,
namely, also in this case the only possible solution of the homogeneous system
A v D 0 is the trivial one, whence A is non-singular.
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A.11.7 Solution of a Tridiagonal Algebraic System

In problems deriving from the numerical discretization of the semiconductor
equations in one dimension (Sect. A.13), one must solve an algebraic system A x D
b made of N equations in N unknowns, whose matrix A has a tridiagonal form,
namely,

A D

2

66
666666
4

r1 z1 0 : : : 0

w2 r2 z2 : : : 0

0 w3 r3 z3 : : :
:::

0 : : : wN�1 rN�1 zN�1

0 : : : 0 wN rN

3

77
777777
5

: (A.83)

It is assumed that all terms wi, ri, zi are different from zero, so that the matrix
is irreducible (Sect. A.11.5), and also that the main diagonal is dominant, namely,
jr1j > jz1j, jrN j > jzN j, and jrij > jzij C jwij for i D 2; : : : ;N � 1. It follows that
matrix A is non-singular (Sect. A.11.6).

L U Decomposition

One of the possible methods for solving an algebraic system (not necessarily
tridiagonal) is the so-called A D L U decomposition, where L is a lower-
triangular matrix and U an upper-triangular matrix.10 For a matrix not having a
special structure, the decomposition is in general expensive from the computational
viewpoint; however, for a tridiagonal matrix it is simple, and the form of L and U
turns out to be:

L D

2

6
666666
6
4

1 0 0 : : : 0

�2 1 0 : : : 0

0 �3 1 0 : : :
:::

0 : : : �N�1 1 0

0 : : : 0 �N 1

3

7
777777
7
5

; U D

2

6
666666
6
4

g1 z1 0 : : : 0

0 g2 z2 : : : 0

0 0 g3 z3 : : :
:::

0 : : : 0 gN�1 zN�1

0 : : : 0 0 gN

3

7
777777
7
5

: (A.84)

10A lower(upper)-triangular matrix is a square matrix in which all entries above (below) the main
diagonal are equal to zero.
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It follows that the decomposition requires only to determine the entries �i and gi.
The determinant of L is equal to unity, that of U is equal to g1 : : : gN . It can be shown
that U also is non-singular; as a consequence the diagonal entries gi are nonzero.11

The relations between the entries of A and those of L and U are found
from (A.83), (A.84) by performing the matrix multiplication. Considering the first
row of A one finds r1 D g1; the relations for the other rows are ri D �i zi�1C gi and
wi D �i gi�1, with i D 2; : : : ;N. Next, replacing A with L U in the original system
A x D b, one splits the latter into two subsystems:

L e D b ; U x D e : (A.85)

The first of (A.85) is equivalent to e1 D b1 and �i ei�1C ei D bi, with i D 2; : : : ;N,
that is, to a sequence of steps that provides the entries ei by forward substitution,
while the second of (A.85) is equivalent to gN xN D eN and gi xi C zi xiC1 D ei,
with i D N � 1; : : : ; 1, that is, to a sequence of steps that provides the entries xi by
backward substitution. In the algorithm used to solve (A.85) it is not necessary to
store the vector of entries �i: unless such a vector is necessary for other purposes,
one can use a single scalar �. Proceeding in this way one finds g1 D r1 and e1 D b1;
then, for i D 2; : : : ;N,

� D
gi�1

wi
; gi D ri � � zi�1 ; ei D bi � � ei�1 ; (A.86)

that combines the calculation of the entries gi with the forward substitution that
yields the entries ei. Then, the backward substitution proceeds as

xN D
eN

gN
; xi D

ei � zi xiC1

gi
; i D N � 1; : : : ; 1 : (A.87)

The divisions by wi or gi in (A.86), (A.87) are possible because it is wi ¤ 0 and
gi ¤ 0 as shown above. The method requires the storage of two vectors, g and e,
besides those necessary for the storage of A and b. The computational cost of the
solution of A x D b is found from (A.86), (A.87), and turns out to be 6 .N � 1/
multiplications and 3 .N � 1/ additions.12

A Cheaper Solution Scheme

The tridiagonal structure lends itself to another solution methods, that has some
advantages over the L U decomposition. The method is outlined here, with reference

11From det L D 1 and L�1 L D I it follows in fact det U D det .L�1 A/ D det L�1 det A D
det A.
12It is mentioned in Sect. A.13.1 that the cost of solving an order-N system is C ' const � Na,
with a ranging between 2 and 3. This, however, refers to matrices having no special structure.
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to the algebraic system deriving from the discretization of Poisson’s equation; for
consistency with the symbols of (A.110), here the unknown is indicated with u
instead of x. To begin, one considers the simplest form of (A.110), where a D 1 and
all elements are equal, h1 D : : : D hN D h. Remembering that �i D .hi C hiC1/=2,
this yields

� ui�1 C 2 ui � uiC1 D ci ; ci D h2 Ci ; i D 1; 2; : : : ;N : (A.88)

As a consequence, the entries of matrix A in (A.83) become r1 D : : : D rN D 2 and
w2 D : : :wN D z1 D : : : D zN�1 D �1. The equations corresponding to nodes 1
and 2 read

u1 � u0 D c1 C u2 � u1 ; u2 � u1 D c2 C u3 � u2 I (A.89)

iterating (A.89) up to node i � 1 yields

ui�1 � ui�2 D ci�1 C ui � ui�1 : (A.90)

If relations like (A.89) and (A.90) are added up, the data ci cumulate while the
majority of the unknowns cancel each other; letting pi D

Pi
jD1 cj for i D 1; : : : ;N,

one finds in fact

u1 � u0 D pi�1 C ui � ui�1 ; i D 2; : : : ;N C 1 : (A.91)

Rewriting (A.91) for i D 2; 3 provides

u1 � u0 D p1 C u2 � u1 ; u1 � u0 D p2 C u3 � u2 ; (A.92)

the first of which is obviously a replica of the first relation in (A.89). Again, if
relations like (A.91) and (A.92) are added up, the terms pi cumulate while the
majority of the unknowns cancel each other; one finds

.i � 1/ .u1 � u0/ D yi�1 C ui � u1 ; i D 2; : : : ;N C 1 ; (A.93)

where y1 D p1, y2 D p1 C p2, and yi D
Pi

jD1 pj. As u0 is a boundary
condition, (A.93) contains the two unknowns u1 and ui; one now exploits the second
boundary condition uNC1 by letting i D N C 1 in (A.93), thus providing a relation
for u1, namely, N .u1�u0/ D yNCuNC1�u1. The latter is recast in a more compact
form as

u1 D u0 C R ; R D
uNC1 � u0 C yN

N C 1
: (A.94)

Replacing (A.94) into (A.93) finally yields
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ui D u0 C i R � yi�1 ; i D 2; : : : ;N : (A.95)

An example of FORTRAN programming of the algorithm is given in Table A.1,
with uL D uNC1. The method requires the storage of one vector, y D .y1; y2; : : :/;
the storage of p D .p1; p2; : : :/ is not necessary, as shown in the table. The
computational cost of the solution is found from (A.95) and from the calculation
of pi and yi; it turns out to be N � 1 multiplications and 4 .N � 1/ additions.
Recasting (A.93) as ui D u0 C i .u1 � u0/ � yi�1 one finds the discrete counterpart
of

u.x/ D u0 C u00 x �
Z x

0

.x � s/C.s/ ds ; (A.96)

which is in turn the solution of �u00 D C in the continuous case.13 In fact, one finds

2

6666
6
4

y1
y2
:::

yn�1

yn

3

7777
7
5
D

2

6666
6
4

1 0 � � � 0

2 1 � � � 0
:::

:::
: : :

:::

n � 1 n � 2 � � � 0
n n � 1 � � � 1

3

7777
7
5

2

6666
6
4

c1
c2
:::

cn�1

cn

3

7777
7
5
; (A.97)

where the matrix corresponds to the x � s kernel of (A.96).

Table A.1 FORTRAN program for solving a tridiagonal system with (A.95)

c
q = y(1) = c(1)

c
do 100, i = 2,N

q = q + c(i)
y(i) = y(i-1) + q

100 continue
c

R = ( uL - u0 + y(N) ) / (N+1)
u(1) = u0 + R

c
do 200, i = 2,N

u(i) = u0 + i * R - y(i-1)
200 continue
c

13Solution (A.96) holds when the given boundary conditions are u0 and u0

0; if, instead, u0 and
uL D u.x D L/ are given, one determines u0

0 in terms of uL by letting x D L in (A.96).
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The procedure leading to (A.95) is readily extended to the case of a nonuniform
grid and of position-dependent material properties. The starting point is (A.109),
where �i Ci may be replaced by another expression if a different interpolation
scheme is used prior to discretization (e.g., the Numerov process of Sect. A.13.3).
Rewriting Si � SiC1 D �i Ci with i D 1; 2; : : : and adding up the results yield
S1 � SiC1 D Pi, with Pi D

Pi
jD1 �j Cj and i � N. Still from (A.109) one obtains

uiC1 � ui D .hiC1=aiC1/ SiC1; adding up such relations yields

uiC1 � u0 D
h1
a1

S1 C
h2
a2
.S1 � P1/C � � � C

hiC1

aiC1
.S1 � Pi/ : (A.98)

Letting Qi D
Pi

jD1.hj=aj/, Y1 D 0, and YiC1 D
PiC1

jD2.hj=aj/Pi�1 transforms (A.98)
into

uiC1 D u0 C QiC1 S1 � YiC1 ; i D 0; : : : ;N ; (A.99)

with u0 a boundary condition. Using the other boundary condition uNC1, one extracts
S1 from (A.99) by letting i D N; it is found S1 D .uNC1 � u0 C YNC1/=QNC1, with
QNC1 � const > 0 by construction. In this way, all terms at the right-hand side
of (A.99) are defined; as a consequence, (A.99) provides the solution sought. The
method requires the storage of two vectors, Q D .Q1;Q2; : : :/ and Y D .Y1;Y2; : : :/,
while no vector is necessary to store P D .P1;P2; : : :/. The computational cost is
3 .N�1/multiplications and 6 .N�1/ additions, to be compared with the 6 .N�1/
multiplications and 3 .N�1/ additions of the L U decomposition. Another advantage
of the method illustrated in this section is that each nodal value (A.95) or (A.99)
can be calculated independently from the others; in contrast, to calculate the ith
unknown with the backward substitution (A.87) it is necessary to calculate first all
the other unknowns whose index is larger than i.

A.12 Wronskian Determinant

The Wronskian determinant provides the condition of linear independence of
functions [66, Sect. 5.2]. Although its properties hold for any number of functions,
they will be discussed here for the case of two functions only, say, u and v defined on
some interval of the independent variable x. It is convenient to seek for the condition
of linear dependence first. If u, v are linearly dependent, then two nonvanishing
constants c1, c2 exist such that

c1 uC c2 v D 0 (A.100)

for all x in the interval. If (A.100) holds, it is easily found that both c1 and c2 must
differ from zero. Also, as the function at the left-hand side of (A.100) vanishes
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identically, its derivative vanishes as well. Such a derivative exists because u and v
are supposed to be solutions of a second-order differential equation. Then,

c1 u0 C c2 v
0 D 0 (A.101)

for all x in the interval. As (A.100, A.101) hold together, for all x the two constants
c1, c2 are the nontrivial solution of a homogeneous algebraic system. Now, if the
nontrivial solution of the algebraic system exists for all x, the determinant W D

u v0 � u0 v must vanish identically. That is, the condition W D 0 (identically) is
necessary for the linear dependence of u, v. As a consequence, the condition W ¤ 0
(identically) is sufficient for the linear independence of u, v.

A.13 Numerical Solution of the Semiconductor Equations

As mentioned in Sect. 22.11.7, several steps in the design of integrated circuits
are carried out by computer simulation. In many cases, this entails the solution of
differential equations; as the form of the latter is seldom amenable to an analytic
solution, one must resort to numerical methods. In this section, a brief account is
given of methods useful for solving the drift-diffusion model in a semiconductor
region, in the form worked out in Sect. 19.5.5; the equations read

div D D q .p � nC N/ ; D D �"sc grad' D "sc E ; (A.102)

@n

@t
�
1

q
div Jn D Wn ; Jn D q�n n EC q Dn grad n ; (A.103)

@p

@t
C
1

q
div Jp D Wp ; Jp D q�p p E � q Dp grad p : (A.104)

Apart from the constants q, "sc, the model’s coefficients are the mobilities �n,
�p and the diffusion coefficients Dn, Dp; the latter are proportional to the
corresponding mobilities through the Einstein relations (19.102). The data are
the dopant distribution N and the generation-recombination rates Wn, Wp. The
model (A.102), (A.103), (A.104) can be viewed as a set of six equations of the first
order with respect to the spatial variables; alternatively, inserting the expression of
D, Jn, or Jp, appearing on the right, into the divergence operator belonging to the
same line, yields a set of three equations of the second order. The latter form is the
most common one for the application of numerical methods, because only three
scalar unknowns appear in it (', n, and p). The equations must be supplemented
with suitable boundary conditions. In dynamic conditions, the equations are also of
the first order with respect to time, and the initial condition must be supplemented
as well.
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A suitable definition of the symbols recasts the set of equations (A.102), (A.103),
(A.104) in the more compact form

� div S D C ; S D a grad uC b u : (A.105)

In fact, (A.105) reduces to (A.102) by letting u D q'=.kB T/, a D "sc, b D 0,
S D �q D=.kB T/, C D q %=.kB T/; in turn, it reduces to (A.103) by letting u D n,
a D Dn, b D �n E, S D Jn=q, C D Wn � @n=@t; finally, it reduces to (A.104) by
letting u D p, a D �Dp, b D �p E, S D Jp=q, C D �Wp C @p=@t. As mentioned
above, elimination of S transforms the pair of first-order equations (A.105) into a
single, second-order equation, whose unknown is u.

A.13.1 Decoupled/Coupled Solution

Apart from the simpler case where the drift term is negligible, the problem to be
solved is nonlinear due to the presence of the n E, p E products in the transport
equations. Also, the mobilities and generation-recombination terms depend in
general on the problem’s unknowns (besides depending on parameters like, e.g.,
lattice temperature); such dependences may be nonlinear as well. To handle the
presence of nonlinear terms one may resort to different solution strategies; the
simplest one, called decoupled solution, works as follows: a tentative solution
n.0/.r/, p.0/.r/ is prescribed for the carrier concentrations, and (A.102) is solved
to yield the first-iteration electric potential '.1/.r/. Next, (A.103) is solved for n
using '.1/ and p.0/ as data, to yield the first-iteration electron concentration n.1/;
finally, (A.104) is solved for p using '.1/ and n.1/ as data, to yield the first-iteration
hole concentration p.1/. In general, the spatial dependence of n.1/, p.1/ differs from
that of n.0/, p.0/; then, one solves again (A.102) using n.1/, p.1/ at the right-hand
side, to find the second-iteration electric potential '.2/.r/, and so on. If the iterative
scheme converges, the process is brought to an end when one or more suitable error
indicators become lower than a prescribed limit; examples of such indicators are the
norms of the increments between two successive iterations,

jj'.kC1/ � '.k/jj ; jjn.kC1/ � n.k/jj ; jjp.kC1/ � p.k/jj ; (A.106)

with k the iteration index. The advantage of the decoupled solution lies in the fact
that the problem is decomposed into simpler problems, whose computational cost
is relatively small; on the other hand, the precision of the method is limited: from
a qualitative standpoint the power of the method is of the first order, namely, the
improvement in the solution is about one digit per iteration.

In contrast, the coupled solution prescribes the tentative solution '.0/.r/, n.0/.r/,
p.0/.r/ to all unknowns, and linearizes the whole set of equations around the
tentative solution. In this way, the actual unknowns of the linearized system are the
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increments ı'.r/, ın.r/, ıp.r/; once found, they are added to the tentative solution
to yield the first-iteration solution:

'.1/ D '.0/ C ı' ; n.1/ D n.0/ C ın ; p.1/ D p.0/ C ıp : (A.107)

The norm of the increments is monitored at each iteration to check the convergence
behavior. By way of example, consider the equilibrium condition, in which the
set of equations (A.102), (A.103), (A.104) reduces to the Poisson equation alone,
�"sc r

2' D % where (compare with (18.56) and (18.57)) it is % D q Œp.'/� n.'/C
N�. Linearizing the equation yields, for the kth iteration,

� "sc r
2ı' C q

�
dn

d'
�

dp

d'

�.k/
ı' D "sc r

2'.k/ C %.k/ : (A.108)

At convergence, both sides of (A.108) vanish; in fact, the increment ı' tends to zero
while '.k/ at the right-hand side tends to the equation’s solution. The advantage
of the coupled-solution method is that its power is of the second order; on the
other hand, its computational cost is significantly higher than that of the decoupled
solution.14 As a rule of thumb, the more accurate coupled scheme is used when
the solution is nearly reached, so that a small number of iterations is sufficient to
complete the calculation; the cheaper decoupled scheme is used instead during the
initial stages. It must be remarked that the convergence of the iteration methods
(either coupled or decoupled) is not guaranteed: it depends on the coefficients of the
equations and on the choice of the tentative solution. Although the discussion about
the iteration methods is beyond the scope of this book, a hint about their general
structure is given in Sect. B.8.

It is also important to note that the above description of the decoupled- and
coupled-solution schemes is referred to the dependence of the unknowns on the
spatial coordinates, at a given instant of time t. If the problem depends on time,
when the spatial solution is completed, the process must be repeated after updating
the time variable. Considering that the differential problem with respect to time is of
the first order, one has to deal with an open integration. As before, the convergence
of the integration process depends on the structure of the equations and is not
guaranteed in general.

14As shown below, the differential equation to be solved is transformed into an algebraic system
whose matrix has the size N�N, with N the number of spatial points where the unknown function
is sought. If C.N/ is the computational cost of solving an N � N algebraic system, the cost of
the iteration in a decoupled solution is 3C.N/. When, instead, the coupled solution is used, each
iteration entails the solution of a 3N � 3N algebraic system, thus yielding a cost per iteration
equal to C.3N/. If the matrix has no special structure, the dependence of C on N is of the type
C ' const � Na, with a ranging between 2 and 3 depending on the solution method and the type
of matrix. It follows C.3N/=Œ3C.N/� D 3a�1.
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Fig. A.2 Illustration of the
concepts of node, element,
and cell used in the
discretization of the
semiconductor equations

i 1+hhi

Ω i
x i−i 1x i 1+x

A.13.2 Discretization Scheme in One Dimension

An example of the solution method of (A.105) in one dimension is given here.
The solution is sought within a finite interval Œx0; xNC1�, with prescribed boundary
conditions u0 D u.x0/, uNC1 D u.xNC1/. The interval is subdivided into N C 1

regions (elements), whose end points are called nodes. The number of internal nodes
is N, their positions are x1 < x2 < : : : < xN . The element bounded by xi and
xiC1 is indicated with hiC1; the same symbol indicates the length of the element,
hiC1 D xiC1 � xi. Finally, a subdomain �i, called cell, is associated with each node.
For the internal nodes x1; : : : ; xN the cell is bounded by xi � hi=2 and xi C hiC1=2.
The same symbol is used to indicate also the cell length, �i D .hi C hiC1/=2. The
left boundary x0 is associated with the cell �0 of length h1=2 placed on the right of
x0, while the right boundary xNC1 is associated with the cell�NC1 of length hNC1=2

placed on the left of xNC1. This procedure yields the same tessellation (or grid) as
that used in Sect. 13.6.6 with reference to the Schrödinger equation (Fig. A.2). The
lengths of the elements are not necessarily equal to each other; indeed, the choice
of the number of nodes, and of their placement along the domain, is by no means
an easy task. The general rule for constructing a grid is that the nodes should be
denser where the curvature of the unknown function is larger; unfortunately, the
information about curvature is not available a priori. An excessively large number
of nodes makes the solution procedure more expensive; nevertheless, a uniform
grid might in some cases be preferable to a coarser, nonuniform grid, because
uniform grids lend themselves to the application of more efficient discretization
methods (A.13.3).

Discretization of the Poisson Equation

To proceed, consider (A.105) in one dimension with b D 0, namely, the Poisson
equation made of the pair �dS=dx D C and S D a du=dx. Aim of the calculation
is to determine u at the nodes, given C and the boundary conditions. In the
Poisson equation, coefficient a represents the material’s permittivity; if the domain
Œx0; xNC1� extends over different materials, the permittivity changes. To consider this
possibility, one must place a node at the interface between the two materials, and
ascribe the correct value to a on the two sides of the interface. More generally, one
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can also assume that a takes a different value over each element:15 to indicate this,
one associates the element’s index with a. Now, the integration of�dS=dx D C over
the ith cell yields Si � SiC1 D

R
�i

C dx, where the integral at the right-hand side can
be calculated to various degrees of approximation, depending on the information
available about C; the zero-order approximation consists in replacing the integral
with the product�i Ci, with Ci the nodal value of C. The next step is the elimination
of S by means of S D a du=dx; to this purpose, one must express Si and SiC1 in terms
of the nodal values of u. The simplest way is using the difference quotients over each
element; in summary, one obtains

Si�SiC1 ' �i Ci ; Si ' ai
ui � ui�1

hi
; SiC1 ' aiC1

uiC1 � ui

hiC1
: (A.109)

Replacing Si, SiC1 and collecting the nodal values of u yield

�
ai

hi
ui�1C

�
ai

hi
C

aiC1

hiC1

�
ui�

aiC1

hiC1
uiC1 D �i Ci ; i D 1; 2; : : : ;N; (A.110)

namely, an algebraic system made of N equations in the N unknowns u1; : : : ; uN .
The N �N system matrix is given a more compact form by introducing the symbols
˛i D ˇi C �i, where ˇi D ai=hi and �i D aiC1=hiC1, with i D 1; : : : ;N. The first
(i D 1) and last (i D N) equations embed the boundary conditions; the latter can be
moved to the right-hand side, to yield

˛1 u1 � �1 u2 D �1 C1 C ˇ1 u0 ; �ˇN uN�1 C ˛N uN D �N CN C �N uNC1:

(A.111)

From the form of (A.110) it follows that the entries ˛1; : : : ; ˛N are placed along
the main diagonal of the matrix, while ˇ2; : : : ; ˇN are placed right below the main
diagonal and �1; : : : ; �N�1 are placed right above it; as all the remaining entries
vanish, the matrix is tridiagonal. Also, from the definition it follows �i D ˇiC1,
namely, the matrix is symmetric. In conclusion, letting

A D

2

66
666
4

˛1 ��1 0 � � � 0 0 0

�ˇ2 ˛2 ��2 � � � 0 0 0
:::

:::
:::
: : :

:::
:::

:::

0 0 0 � � � �ˇN�1 ˛N�1 ��N�1

0 0 0 � � � 0 �ˇN ˛N

3

77
777
5
; u D

2

66
666
4

u1
u2
:::

uN�1

uN

3

77
777
5
;

(A.112)

15Coefficient a eventually becomes a factor of the entries of the matrix into which the differential
operator �d2=dx2 is transformed. As is apparent from the discussion in Sect. A.11, it is necessary
that jaj � const > 0, namely, a must be either strictly positive or strictly negative. When the
Poisson equation is concerned, this condition is fulfilled because a stands for permittivity. As for
the drift-diffusion equation (discussed below), a is proportional to the carrier mobility: in this case,
care must be taken not to use models in which the degradation due to parameters (like, e.g., dopant
concentration) makes mobility to become arbitrarily small.
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the algebraic system to be solved reads

A u D cC e ; c D

2

66666
4

�1 C1
�2 C2
:::

�N�1 CN�1

�N CN

3

77777
5
; e D

2

66666
4

ˇ1 u0
0
:::

0

�N uNC1

3

77777
5
: (A.113)

Remembering the definitions given in Sect. A.11, the diagonal of A is weakly
dominant (in fact, strict inequality holds only for the first and last rows). Also,
A is irreducible: in fact, using for a moment the two-index notation, it is ��i D

.A/i;iC1 ¤ 0, �ˇiC1 D .A/iC1;i ¤ 0, with i D 1 ; : : : ;N � 1; remembering
the construction based on the oriented graph illustrated in Sect. A.11.5, one finds
that all points of the graph are pairwise connected in both directions, whence the
graph is connected. As a consequence of the second theorem in Sect. A.11.6, A is
non-singular and the solution of (A.113) is unique.16 It must be remarked that the
tridiagonal structure of A is due to the fact that the nodes are numbered in a specific
order. On the other hand, any permutation in the node numbering is equivalent to
multiplying A by one or more permutation matrices and, as shown in Sect. A.11,
a permutation multiplies det A by ˙1. Thus, if det A ¤ 0 for a specific node
numbering, it will be so for any other numbering.

Discretization of the Linearized Poisson Equation

The solution method for the Poisson equation is readily extended to the linearized
form (A.108); in fact one lets, as before, a D "sc, b D 0, and

u D
q

kB T
ı' ; S D �

q

kB T
ıD ; (A.114)

C D
q

kB T

�
"sc r

2'.k/ C %.k/
�
; 	 D q

�
dn

d'
�

dp

d'

�.k/
; (A.115)

to find, in one dimension,

�
dS

dx
D C � 	 u ; S D a

du

ds
: (A.116)

16The solution of (A.113), u D A�1 cC A�1 e, is the sum of two contributions: the first of them
derives only from the data, and the second one derives only from the boundary condition. Compare
with the comments in Sect. 4.12.3.
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In principle, the term 	 u could be incorporated into the definition of C; this,
however, is not convenient because of its explicit dependence on the unknown.
The discretization scheme of (A.116) leads again to an algebraic system of the
form (A.112), (A.113), the only difference being in the definition of the diagonal
entries of A; one finds in fact ˛i D ˇiC �iC�i 	i where, as before, ˇi D ai=hi and
�i D aiC1=hiC1, i D 1; : : : ;N.

An important observation is that 	i > 0; this is easily found in the approximation
of parabolic bands and nondegenerate conditions, where the equilibrium concentra-
tions are given by (18.62); one finds in fact d.n � p/=d' D q .nC p/=.kB T/ > 0.
The result is the same also in the general case (Sect. 18.5), where the equilibrium
concentrations are given by

n D
Z ECU

EC

�.E/P.E; '/ dE ; p D
Z EV

EVL

�.E/ Œ1 � P.E; '/� dE ; (A.117)

with �.E/ > 0 the density of states per unit volume and 0 < P.E; '/ < 1 the
position-dependent Fermi-Dirac statistics (18.54). In fact, the dependence on '
in (18.54) is such that dP=d' D q P .1 � P/=.kB T/, whence

dn

d'
�

dp

d'
D

Z ECU

EC

�.E/
P .1 � P/

kB T=q
dEC

Z EV

EVL

�.E/
P .1 � P/

kB T=q
dE > 0 : (A.118)

Observing that ˇi; �i > 0 the addition of the positive term �i 	i to the diagonal
makes the latter strongly dominant (Sect. A.11.5). This does not change the nature of
the system’s matrix, which would be non-singular even if all 	i vanished; however,
when an algebraic system is tackled with an iterative-solution method, the more
dominant the diagonal, the faster the convergence.

Discretization of the Drift-Diffusion Equation

Consider now the case of (A.105) with b ¤ 0, still in one dimension; this yields
the pair of normalized continuity and drift-diffusion transport equations �dS=dx D
C and S D a du=dx C b u. Aim of the calculation is again to determine u at the
nodes, given C and the boundary conditions. As symbol u is used here to indicate
the carrier concentration, a change in notation is necessary with respect to the case
of Poisson’s equation; specifically, one lets � D q'=.kB T/ in the electron-transport
equation, and � D �q'=.kB T/ in the hole-transport equation: with this provision,
both equations take the form S D a .du=dx � u d�=dx/. Integration of �dS=dx D C
over the ith cell yields, like in the case of Poisson’s equation, Si � SiC1 ' �i Ci.
The transport equation is more suitably recast in the self-adjoint form S exp.��/ D
a d Œu exp.��/� =dx; integration of the latter over the ith element hi, with S D Si and
a D ai, provides
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Si Yi ' ai Œui exp.��i/ � ui�1 exp.��i�1/� ; Yi D

Z hi

0

exp.��/ dx > 0 :

(A.119)

Letting wi D ui exp.��i/ gives the first relation in (A.119) the more compact form
Si Yi ' ai .wi � wi�1/. Replacing Si, SiC1 and collecting the nodal values of u yield

�
ai

Yi
wi�1 C

�
ai

Yi
C

aiC1

YiC1

�
wi �

aiC1

YiC1
wiC1 D �i Ci ; i D 1; 2; : : : ;N ;

(A.120)
structurally identical to (A.110). The auxiliary unknown w D u exp.��/ has a
physical meaning: remembering in fact that the drift-diffusion equations in (A.103)
and (A.104) hold within the approximations of parabolic bands and nondegenerate
conditions (Sect. 19.5.2), the electron and hole concentrations can be expressed
by means of the quasi-Fermi potentials 'n, 'p like in (19.140); it follows that
w D ni expŒ�q'n=.kB T/� for the electrons, and w D ni expŒq'p=.kB T/� for the
holes. Given the boundary conditions u0, uNC1 of the concentration (Sect. 19.5.6),
the algebraic system to be solved has the form (A.112), (A.113), with ˛i D ˇi C �i,
ˇi D ai=Yi and �i D aiC1=YiC1, i D 1; : : : ;N; in particular, the system matrix is
tridiagonal and symmetric. The matrix is also irreducible with a weakly dominant
diagonal; as a consequence of the second theorem in Sect. A.11.6, it is non-singular:
in conclusion, the solution w1, : : :, wN is unique.

To calculate the denominator Yi, one must provide the explicit form of the electric
potential over the corresponding element hi. To this purpose one observes that in the
solution of the Poisson equation carried out earlier, the derivative of the electric
potential over each element is approximated with the difference quotient; this is
equivalent to assuming that the electric potential is piecewise constant over the
elements. The same approximation is used here to yield � D �i�1C .�i��i�1/ x=hi

over hi. From the integral in (A.119) it then follows

Yi

hi
D

exp.��i�1/ � exp.��i/

�i � �i�1
;

exp.��i/

Yi
D

B.�i � �i�1/

hi
; (A.121)

with B the Bernoulli function (Sect. C.17). Similarly, one finds hi exp.��i�1/ D

Yi B.�i�1 � �i/. The calculation can now be completed in two alternative ways:
if the quantities wi are used as unknowns, one extracts Yi from the first relation
in (A.121) and replaces it into (A.120). If, on the contrary, the original unknowns
ui are to be kept, one replaces exp.��i/=Yi from the second relation in (A.121); in
this case, letting Bk

j D B.�j � �k/, the algebraic system for determining the carrier
concentration takes the form17

17The discretization method leading to (A.122) was proposed in [117] and is referred to as
exponential fitting or Scharfetter-Gummel discretization scheme.
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�
ai Bi

i�1

hi
ui�1C

 
ai Bi�1

i

hi
C

aiC1 BiC1
i

hiC1

!

ui�
aiC1 Bi

iC1

hiC1
uiC1 D �i Ci ; (A.122)

with i D 1; 2; : : : ;N. The structure of the algebraic system generated by (A.122) is
still tridiagonal, and the matrix is irreducible; however, it is not symmetric: in fact,
the matrix would be symmetric if it were BiC1

i D Bi
iC1, namely, B.�i � �iC1/ D

B.�iC1 � �i/. Remembering from Sect. C.17 that B.��/� B.�/ D �, the symmetry
condition does not hold in general.18 Also, the main diagonal of the matrix generated
by (A.122) is not necessarily dominant. To show this, observing that the ratios ai=hi,
i D 1; 2; : : : have all the same sign, assume that for some index i it is �i D 0,
�i�1 D �iC1 D � ; (A.122) then transforms into

B.�/

�
�

ai

hi
ui�1 C exp.�/

�
ai

hi
C

aiC1

hiC1

�
ui �

aiC1

hiC1
uiC1

�
D �i Ci ; (A.123)

whose diagonal term is strongly dominant if � > 0, weakly dominant if � D 0,
nondominant if � < 0 (these cases correspond, respectively, to an electric potential
that is concave, constant, or convex at the ith node). More generally, letting �� D
�i�1 � �i, �C D �iC1 � �i, and using B.��/ � B.�/ D �, the difference between
the diagonal and non-diagonal terms of (A.122) reads .ai=hi/ �

�C .aiC1=hiC1/ �
C;

as �� and �C may have either sign, the latter sum may turn out to be positive, null,
or negative.

A.13.3 The Numerov Process

Considering the discretized form (A.110) of Poisson’s equation, a few comments
are useful. First, the right-hand side �i Ci is one of the possible approximations ofR
�i

C dx; other forms of the right-hand side are possible if a different interpolation
scheme was used. Also, the left-hand side of (A.110) may be viewed as an
interpolation of the unknown function u over the three nodes xi�1, xi, xiC1, that
determines one of the nodal values when the other two are given; it is therefore of
interest to investigate the order of the approximation of the left-hand side. For this,
one takes the case19 a D 1 and seeks for a parabolic interpolation of the unknown
u over a triad of consecutive nodes, u  f .x/ D f0 x2 C f1 x C f2. After fixing
xi D 0, let the abscissæ of the right and left node be hR and �hL, respectively;
the corresponding nodal values of the unknown are u0, uR, and uL, while the cell’s

18Symmetry holds only when � ! 0 over each element. In fact, lim�!0 B.�/ D 1; this case
corresponds to � D const (diffusive-only transport), where the equation to be solved becomes
identical to Poisson’s.
19The restriction a D 1 is taken here for the sake of simplicity. As shown below, the analysis would
be the same in the general case a D a.x/.
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length is .hL C hR/=2. Here the equation to be solved reads �d2u=dx2 D C: in the
parabolic approximation its left-hand side becomes �2 f0, namely, a constant; one
then chooses such a constant as C0 D C.0/. Then, the coefficients of the parabolic
interpolation are readily found by imposing that f equals the nodal values of u; in
particular, one finds f2 D f .0/ D u0, so that the other two nodal values fulfill the
relations

f0 h2R C f1 hR D uR � u0 ; f0 h2L � f1 hL D uL � u0 (A.124)

whence

hR .u0 � uL/C hL .u0 � uR/ D �f0 .h
2
R hL C h2L hR/ : (A.125)

Letting �f0 D C0=2 and dividing both sides by hR hL renders .u0 � uL/=hL C .u0 �
uR/=hR D C0 .hL C hR/=2, identical to the special case of (A.110) where a is set
equal to unity. This shows that the left-hand side of (A.110) is in fact a parabolic
interpolation.

As for the calculation of the right-hand side, the accuracy of the interpolation
can be increased, with respect to that of (A.110), without changing the number of
nodes involved in it, and with a negligible increase in the computational cost, by
better exploiting the form of the equation. This is achieved by the so-called Numerov
process (the original reference is [100], cited, e.g., in [22]), which is illustrated
below. Prior to that, one disposes of the simplifying assumption a D 1 as follows:
consider the general form of the equation, �dS=dx D C, S D a du=dx, and assume
that a D a.x/ is a given function of position; changing the independent variable
from x to  , such that

 D

Z x

x0

dx0

a.x0/
; dx D a.x/ d ; (A.126)

yields

�
dS

d
D B ; B D a C ; S D

du

d
; (A.127)

where u, S, a, and C are now functions of  . With no loss of the generality one
can then base the description of the Numerov process upon the form �d2u=d2 D
B where, due to the change in the independent variable, the new elements of the
discretization grid will be indicated with si. To proceed, it is necessary to assume
that the elements are all equal, s1 D : : : D sNC1 D s; a series expansion of u at i,
using s as increment,20 combined with u00 D �B, provides

20It must be assumed that s is smaller than the convergence radius of the series.
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uiC1 D ui C u0i s � Bi
s2

2
� B0i

s3

6
� B00i

s4

24
� � � (A.128)

By the same token one expresses ui�1 using�s as increment; this yields a new series
whose odd-degree terms have the opposite sign with respect to those of (A.128).
Adding up the two series, and leaving out the terms with the derivatives of u of the
sixth order or higher, yields

2 ui � uiC1 � ui�1 ' Bi s2 C B00i
s4

12
: (A.129)

The second derivative of (A.129), after leaving out the term with the sixth derivative
of u and using again u00 D �B, reads

� 2Bi C BiC1 C Bi�1 ' B00i s2 : (A.130)

Multiplying both sides of (A.130) by s2=12, and replacing into (A.129), eliminates
B00i ; in conclusion, one finds21

�
ui�1

s
C
2 ui

s
�

uiC1

s
D s

Bi�1 C 10Bi C BiC1

12
: (A.131)

As shown above, the essence of the method is the elimination of the derivatives of
odd order, and the exploitation of the form of the original equation to eliminate the
fourth derivative of u. In this respect, the method is applicable to other classes of
equations that provide the form of the second derivative of the unknown function,
without involving the first derivative; an example of this is the time-independent
Schrödinger equation, which is in fact amenable to the application of the Numerov
process (Sect. 13.6.6 and Prob. 13.3). One also notes that if the last term at the right-
hand side of (A.129) was neglected, the discretized form of the Poisson equation
would become identical to (A.109), the latter with a D 1 and h1 D : : : D hNC1 D h.
Due to this, and considering also that the derivative of the fifth order is eliminated
from the beginning, one finds that the interpolation of the right-hand side provided
by the Numerov process is more accurate by three orders with respect to the standard
one [19, 20].22

By a suitable generalization of the variable transformation (A.126), the Numerov
process can be extended to the discretization of the continuity and drift-diffusion
equations. As shown above, these equations can be recast as �dS=dx D C
and, respectively, S exp.��/ D a dw=dx, with w D u exp.��/. By analogy
with (A.126) one changes the independent variable from x to �, such that

21Using the new unknown v D 12 u=s2 in (A.131) makes the grid’s details invisible.
22The elimination of the odd-order derivatives requires the uniformity of the elements’ size; this
drawback, however, is largely compensated by the superior accuracy of the method, which allows
for coarser grids.
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� D

Z x

x0

expŒ��.x0/�
dx0

a.x0/
; dx D a.x/ expŒ�.x/� d� I (A.132)

this yields

�
dS

d�
D D ; D D a exp.�/C ; S D

dw

d�
; (A.133)

where w, � , S, a, and D are now functions of �. With no loss of generality one
can then base the description of the Numerov process upon the form �d2w=d�2 D
D. Note that, since the nodal values of � are involved in the calculation, one
should take a uniform grid with the same elements s1 D : : : D sNC1 D s as
for the Poisson equation. This, in general, is not possible because the variable
transformations (A.126) and (A.132) are different; for this reason, an interpolation
of � from one grid to the other is necessary.23 The solution of (A.133) is then
completed as for the Poisson equation, leading to an equation identical to (A.131)
where w and D replace u and B.

23If the Poisson equation is solved over a domain where the permittivity a is constant, then the
grid transformation (A.126) becomes trivial. However, the interpolation to the other grid is still
necessary.



Appendix B
Coordinates

B.1 Spherical Coordinates

When the problem in hand has a spherical symmetry it is convenient to describe
the position of a particle by means of the spherical coordinates. With reference to
Fig. B.1, the transformation relations between the Cartesian (x; y; z) and spherical
(r; #; ') coordinates are

8
<

:

x D r sin# cos'
y D r sin# sin'
z D r cos#

8
<

:

r2 D x2 C y2 C z2

cos# D z=r
tan' D y=x

(B.1)

that are a special case of (1.26). The limits of the spherical coordinates are 0 � r <
1, 0 � # � � , 0 � ' < 2� . The 3 � 3 matrix of the partial derivatives of the
Cartesian coordinates with respect to the spherical ones, expressed in terms of the
latter (Jacobian matrix), is

Fig. B.1 Cartesian (x; y; z)
and spherical (r; #; ')
coordinates

θ

ϕ

x

z

y

r
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@.x; y; z/

@.r; #; '/
D

2

4
sin# cos' r cos# cos' �r sin# sin'
sin# sin' r cos# sin' r sin# cos'

cos# �r sin# 0

3

5 ; (B.2)

where the left-hand side is a short-hand notation for a matrix whose elements are
J11 D @x=@r, J12 D @x=@# , and so on. The Jacobian determinant is

J D det
@.x; y; z/

@.r; #; '/
D r2 sin# : (B.3)

The matrix of the partial derivatives of the spherical coordinates with respect to the
Cartesian ones, expressed in terms of the former, is

@.r; #; '/

@.x; y; z/
D

2

4
sin# cos' sin# sin' cos#

.1=r/ cos# cos' .1=r/ cos# sin' �.1=r/ sin#
�.1=r/ sin'= sin# .1=r/ cos'= sin# 0

3

5 ;

(B.4)
whence

det
@.r; #; '/

@.x; y; z/
D

1

r2 sin#
D
1

J
: (B.5)

To calculate (B.4) consider, e.g., the last term of the second row, .@#=@z/xy D

�.1=r/ sin# . The second line of the second group of (B.1) yields .@ cos#=@z/xy D

1=r � z2=r3, where .@r=@z/xy D z=r has been used, that in turn derives from
the first line of the second group of (B.1). The relation z D r cos# then yields
.@ cos#=@z/xy D .1=r/ sin2 # . On the other hand, the same quantity can also
be written as .@ cos#=@z/xy D � sin# .@#=@z/xy. Comparing the two expressions
above yields the result sought.

Differentiating with respect to time the first of (B.1) yields the relations

8
<

:

Px D Pr sin# cos' C r P# cos# cos' � r P' sin# sin'
Py D Pr sin# sin' C r P# cos# sin' C r P' sin# cos'
Pz D Pr cos# � r P# sin#

(B.6)

that express the components of the velocity in the Cartesian reference as functions of
the generalized coordinates r; #; ' and generalized velocities Pr; P#; P' of the spherical
reference. From (B.6) the expression of the kinetic energy in spherical coordinates
follows:

T D
1

2
m .Px2 C Py2 C Pz2/ D

1

2
m


Pr2 C r2 P#2 C r2 P'2 sin2 #

�
: (B.7)
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B.2 Polar Coordinates

To describe the motion of particles confined over a plane one may adopt, instead of
the Cartesian coordinates x; y, the polar coordinates r; '. The relations between the
two groups of coordinates are

�
x D r cos'
y D r sin'

�
r2 D x2 C y2

tan' D y=x
(B.8)

The limits of the polar coordinates are 0 � r < 1, 0 � ' < 2� . The Jacobian
matrix and the Jacobian determinant are, respectively,

@.x; y/

@.r; '/
D

�
cos' �r sin'
sin' r cos'

�
; J D det

@.x; y/

@.r; '/
D r : (B.9)

Differentiating with respect to time the first of (B.8) yields the relations

�
Px D Pr cos' � r P' sin'
Py D Pr sin' C r P' cos'

(B.10)

that express the components of the velocity in the Cartesian reference as functions
of the generalized coordinates r; ' and generalized velocities Pr; P' of the polar
reference. From (B.10) the expression of the kinetic energy in polar coordinates
follows:

T D
1

2
m .Px2 C Py2/ D

1

2
m
�
Pr2 C r2 P'2

	
: (B.11)

B.3 Coordinate Rotation

Consider a coordinate transformation that consists in a rotation around the origin,
bringing a right-handed system of coordinates x D .x1; x2; x3/ into another right-
handed system s D .s1; s2; s3/. The transformation is described by the linear
relations

8
<

:

s1 D a11 x1 C a12 x2 C a13 x3
s2 D a21 x1 C a22 x2 C a23 x3
s3 D a31 x1 C a32 x2 C a33 x3

(B.12)

which can be recast in the matrix form s D Ax. It is known that a matrix describing
this type of transformation is orthogonal ([56, Sect. 4.2] and Sect. A.11), namely,
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3X

iD1

aij aik D ıjk ; det A D 1 ; A�1 D AT ; j; k D 1; 2; 3 ; (B.13)

where apex T indicates the transpose. From (B.13) it follows
�
A�1

	T
D A. As a

consequence, the effect of the rotation onto the modulus of a particle’s velocity is
found from

�
PxT ; Px

	
D
h�

A�1 Ps
	T
; A�1 Ps

i
D
�
PsTA; A�1 Ps

	
D
�
PsT ; A A�1 Ps

	
D
�
PsT ; Ps

	
:

(B.14)
In (B.14) the symbol .aT ;b/ denotes the scalar product between the vectors a and
b, namely, it is equivalent to a � b. The above calculation shows that u2 D .PxT ; Px/ is
invariant under rotation of the coordinate system. The same reasoning applies to the
modulus of position r2 D .xT ; x/ D .sT ; s/.

B.4 Differential Operators Under Coordinate
Transformations

Consider the coordinate transformation between the two sets xi, i, i D 1; 2; : : : ; n:

i D i.x1; : : : ; xn/ ; xi D xi.1; : : : ; n/ : (B.15)

If a function f is transformed using the above, the following hold:

@f

@xi
D

nX

jD1

@f

@j

@j

@xi
;

@2f

@x2i
D

nX

jD1

 
@f

@j

@2j

@x2i
C

nX

kD1

@2f

@j@k

@j

@xi

@k

@xi

!

: (B.16)

Adding up over i in the second of (B.16) yields

r2f D
nX

jD1

 
@f

@j
r2j C

nX

kD1

@2f

@j@k
rj � rk

!

; (B.17)

where symbols r and r2 indicate, respectively, the gradient and the Laplacian
operator with respect to the coordinates xi. By way of example consider the
transformation (B.1) from Cartesian to spherical coordinates. Remembering (B.4)
one finds

rr � rr D 1 ; r# � r# D
1

r2
; r' � r' D

1

r2 sin2 #
; (B.18)

rr � r# D 0 ; r# � r' D 0 ; r' � rr D 0 ; (B.19)
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whence

r2f D
@f

@r
r2rC

@2f

@r2
C
@f

@#
r2#C

@2f

@#2
1

r2
C
@f

@'
r2'C

@2f

@'2
1

r2 sin2 #
: (B.20)

In turn, letting � D sin# cos#=r, � D sin' cos'=r, � D sin2 # , the terms r2r,
r2# , r2' are found from

2

4
@2r=@x2 @2r=@y2 @2r=@z2

@2#=@x2 @2#=@y2 @2#=@z2

@2'=@x2 @2'=@y2 @2'=@z2

3

5 D
1

r
� (B.21)

�

2

4
1 � � cos2 ' 1 � � sin2 ' �

� .sin2 '=� � 2 cos2 '/ � .cos2 '=� � 2 sin2 '/ 2�

2�=� �2�=� 0

3

5 ; (B.22)

whence

r2r D
2

r
; r2# D

1

r2
cos �

sin �
; r2' D 0 ; (B.23)

r2f D
@f

@r

2

r
C
@2f

@r2
C
@f

@#

1

r2
cos �

sin �
C
@2f

@#2
1

r2
C
@2f

@'2
1

r2 sin2 #
D (B.24)

D
1

r

@2

@r2
.rf /C

1

r2 sin#

@

@#

�
sin#

@f

@#

�
C

1

r2 sin2 #

@2f

@'2
: (B.25)

B.5 Density of States

Consider a function s that depends on the coordinates u, v, w, and on one or more
additional parameters that will collectively be indicated with � . Let

S.�/ D
ZZZ

s.u; v;w; �/ du dv dw ; (B.26)

where the integration is carried out over the whole domain of u, v, w. Next, consider
the transformation from the original variables to the new variables ˛, ˇ, �,

˛ D ˛.u; v;w/ ; ˇ D ˇ.u; v;w/ ; � D �.u; v;w/ ; J D
@.u; v;w/

@.˛; ˇ; �/
;

(B.27)
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which is assumed to be invertible, so that the Jacobian determinant J does not
vanish. After the transformation is carried out, (B.26) takes the form

S.�/ D
ZZZ

s.˛; ˇ; �; �/ jJj d˛ dˇ d� : (B.28)

It may happen that one is interested in the dependence of s on one of the new
variables, say, �, rather than in the details about its dependence on the whole set
of new variables. In this case one first carries out the integrals with respect to ˛ and
ˇ in (B.28), to find

h.�; �/ D
ZZ

s.˛; ˇ; �; �/ jJj d˛ dˇ : (B.29)

Then one defines

b.�/ D
ZZ
jJj d˛ dˇ : (B.30)

A function like b.�/ plays an important role in many physical problems (e.g.,
Sects. 14.6, 15.8.1, 15.8.2). For this reason, although its derivation in this section
is of a purely formal nature, b.�/ will be called density of states in �. Note that the
density of states depends only on the structure of the variable transformation (B.27)
and (at most) on �. The form of (B.29) and (B.30) shows that the ratio Ns D h=b is
a weighed average of s.˛; ˇ; �; �/ over the two variables ˛ and ˇ, that uses jJj as
weight. Introducing the definition of Ns into (B.28) gives the latter form

S.�/ D
Z

b.�/ Ns.�; �/ d� : (B.31)

If s happens to be independent of ˛ and ˇ, definition (B.29) yields h D s b, whence
Ns.�; �/ D s.�; �/. The derivation of b is not limited to a three-dimensional case;
in fact it applies to any number of dimensions. In the following, a few examples
in one, two, and three dimensions are given, in which one of the transformation
relations (B.27), namely, � D �.u; v;w/, has a quadratic form; these examples are
in fact particularly significant for the physical applications, where � stands for the
energy and u, v, w stand for the generalized coordinates.

Considering a one-dimensional case with � D u2, one finds1

u D ˙�1=2 ; jJj D

ˇ̌
ˇ̌@u

@�

ˇ̌
ˇ̌ D

1

2
��1=2 ; b.�/ D 2

1

2
��1=2 D ��1=2 :

(B.32)

1Factor 2 in the last expression of (B.32) accounts for the fact that both positive and negative parts
of the segment Œ��1=2;C�1=2� must be considered.
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This case is straightforward because there are no other variables involved in the
transformation. Instead, in the two-dimensional case with � D u2Cv2, a convenient
transformation involving the second variable is of the polar type (B.8), specifically,
u D �1=2 cos', v D �1=2 sin'. One finds

jJj D
1

2
; b.�/ D

Z 2�

0

1

2
d' D � : (B.33)

In the three-dimensional case with � D u2 C v2 C w2, a convenient transformation
involving the other two variables is of the spherical type (B.1), specifically, u D
�1=2 sin# cos', v D �1=2 sin# sin', w D �1=2 cos# . One finds

jJj D
1

2
�1=2 sin# ; b.�/ D

Z 2�

0

Z �

0

1

2
�1=2 sin# d# d' D 2� �1=2 :

(B.34)
The above examples show that despite the fact that the � D �.u; v;w/ relation is
quadratic in all cases, the form of b.�/ changes depending on the number of spatial
dimensions.

Still considering the case where one of the transformation relations (B.27) has
a quadratic form, the analysis can be extended to arbitrary values of the number
of spatial dimensions. As a starting point, and considering provisionally the three-
dimensional case, one notes from (B.30) that the following equality holds:2

B D
Z

b.�/ d� D
ZZZ
jJj d˛ dˇ d� D

ZZZ
du dv dw : (B.35)

Remembering the definition of b, it follows that B is the number of states in the
domain of u; v;w. Due to the last integral in (B.34), B is also equal to the volume
of such a domain; in turn, due to the first integral, B can be thought of as the sum
of the volumes of elementary shells of thickness d�, with b.�/ the area of each shell
(that is, the area of the two-dimensional surface � D const). These observations
provide the key to extending the analysis to the case where � is a quadratic form in
an arbitrary number of dimensions,

u21 C u22 C : : :C u2n D � ; � D g2 : (B.36)

Letting � D const, (B.36) is the equation of an .n� 1/-dimensional sphere of radius
g � 0 immersed into the n-dimensional space. The problem is thus reduced to
expressing the area of the sphere in terms of �; although it can be solved by using a

2In the practical applications of the concepts illustrated here, the integrands in (B.35) embed a
constant factor Q0, called density of states in the u; v;w space which, besides describing some
properties of the physical problem under investigation, makes B dimensionless. Here, all variables
involved are dimensionless, and Q0 is set equal to unity.
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generalization of the spherical coordinates to n dimensions, a more elegant approach
consists in finding a recursive expression involving also the sphere’s volume.

To this purpose, let Vn indicate the volume of a sphere of an n-dimensional space,
and let Sn�1 indicate the surface area of the same sphere. When n D 1, the sphere
is a segment whose volume is the length V1 D 2 g; for n D 2, the sphere is a circle
whose volume is the area V2 D � g2; for n D 3 it is V3 D .4=3/ � g3; for n D 4

it is V4 D �2 g4=2, and so on; in turn, for n D 2 the surface is a circumference
whose area is the length S1 D 2� g; for n D 3 it is S2 D 4� g2; for n D 4 it is
S3 D 2�2 g3, and so on. Consistently with the expression of B as the integral of b
given by (B.35), one finds from the above values the general relation

Vn D
g

n
Sn�1 : (B.37)

Combining (B.37) with V1 D 2 g also yields S0 D 2, that is, the “surface” of
the segment considered above; such a surface is made of the segment’s endpoints
f�1;C1g. From (B.37) it also follows that Vn / gn and Sn�1 / gn�1, whence
Sn / g Vn�1 and V0 D const. From the values found above one finds S2=.g V1/ D
S3=.g V2/ D 2� ; it follows that Sn D 2� g Vn�1 and V0 D 1. The latter is the
“volume” of a sphere in a zero-dimensional space. The recursive relation involving
the volumes then reads

Vn D
g

n
Sn�1 D

g

n
2� g Vn�2 D

2� g2

n
Vn�2 ; V0 D 1 ; V1 D 2 g :

(B.38)
The above can further be improved by observing that the sequence V0, V1; : : :
embeds Euler’s Gamma function of half-integer order; in fact, combining (B.37)
and (B.38) with the definitions of Sect. C.10, yields

Vn D
�n=2

� .n=2C 1/
gn ; Sn�1 D

n�n=2

� .n=2C 1/
gn�1 : (B.39)

The last step consists in expressing the result in terms of �. This is accomplished by
noting that b.�/ d� D Sn�1.g/ dg, where g D

p
� and dg D d

p
� D d�=.2

p
�/;

then, one finds

b.�/ d� D
n�n=2 �.n�1/=2

� .n=2C 1/

d�

2 �1=2
; b.�/ D

n�n=2

2 � .n=2C 1/
�n=2�1 : (B.40)

Letting n D 1; 2; 3 in the second expression of (B.40) renders (B.32), (B.33), (B.34),
respectively.
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B.6 Constrained Extrema—Lagrange Method

In several occasions it is necessary to determine an extremum point of a function
under one or more additional constraints (constrained extremum). To begin, one
considers a function f that depends on two variables, x and y. It is implied that
f is differentiable in its domain of definition, D; for the sake of conciseness, the
partial derivatives with respect to the variables are indicated here with fx and fy. The
problem to be solved is finding an extremum of f in D subjected to a constraint of
the form F.x; y/ D 0, where it is assumed that F is differentiable in D and that if the
extremum exists, either Fx, or Fy, or both, are different from zero there.

To proceed, let x0, y0 be the extremum’s coordinates; since F D 0 everywhere in
D, it must be dF D 0 in .x0; y0/, namely,

Fx.x0; y0/ dxC Fy.x0; y0/ dy D 0 (B.41)

where, by hypothesis, at least one of the two derivatives is different from zero.
Assume that Fy.x0; y0/ ¤ 0; then, using suffix “0” to indicate that the derivatives are
calculated in the extremum, from (B.41) the relation dy D �.Fx=Fy/0 dx follows.
Such a relation provides the increment dy corresponding to an arbitrary increment
dx, in other terms it provides the derivative at .x0; y0/ of the function y D y.x/
implicitly defined by F D 0. The same reasoning applies when Fx.x0; y0/ ¤ 0,
yielding in this case the inverse function x D x.y/.

In the extremum it is also df D 0, namely,

fx.x0; y0/ dxC fy.x0; y0/ dy D 0 ; (B.42)

where the relation between dx and dy is prescribed by (B.41). For (B.41) and (B.42)
to be compatible it must be

det

�
fx.x0; y0/ fy.x0; y0/
Fx.x0; y0/ Fy.x0; y0/

�
D 0 : (B.43)

The determinant vanishes if, e.g., the rows are a linear combination of each other,
say, fx D �Fx, fy D �Fy, with � ¤ 0 an undetermined parameter. Combining the
above with the constraint F D 0 yields

fx.x0; y0/ D �Fx.x0; y0/ ; fy.x0; y0/ D �Fy.x0; y0/ ; F.x0; y0/ D 0 ; (B.44)

namely, a system of three equations in the unknowns x0, y0, �, whose solution
provides the coordinates of the extremum and the parameter. The latter is called
Lagrangian multiplier. It is worth noting that the first two equations in (B.44) are
equivalent to
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@

@x
.f � �F/ D 0 ;

@

@y
.f � �F/ D 0 : (B.45)

Thus, the calculation of a constrained extremum entails the construction of the
auxiliary function f � �F. If no constraint exists, the procedure is brought back
to the calculation of the unconstrained extremum of f , which requires the solution
of the system

fx.x0; y0/ D 0 ; fy.x0; y0/ D 0 (B.46)

in the two unknowns x0, y0; such equations may be thought of as derived from (B.45)
by letting � D 0 there.

In the example using a two-variable function shown above it would be impossible
to add another constraint, say, G D 0: in fact, the increments dy D �.Fx=Fy/0 dx and
dy D �.Gx=Gy/0 dx are different in general. It follows that the number of constraints
must be smaller than the number of variables. Some other examples of the procedure
are shown below.

Consider the Lagrange method applied to a function of three variables x, y, z,
to which one constraint of the form F.x; y; z/ D 0 is applied. Following the same
reasoning as in the two-variable case one obtains

fx dxC fy dyC fz dz D 0 ; Fx dxC Fy dyC Fz dz D 0 ; (B.47)

where the derivatives are calculated at the extremum point .x0; y0; z0/. Assuming
that Fz.x0; y0; z0/ ¤ 0 and eliminating dz from (B.47) yields

.fx Fz � fz Fx/ dxC
�
fy Fz � fz Fy

	
dy D 0 : (B.48)

On account of the arbitrariness of dx and dy in (B.48), the corresponding coefficients
must vanish, leading to the system

fx D �Fx ; fy D �Fy ; fz D �Fz ; F D 0 (B.49)

in the four unknowns x0, y0, z0, �.
As a final example consider the case of the constrained extremum of a function

that depends on three variables, subjected to two constraints, namely, F D 0, G D 0.
Letting df D 0, dF D 0, and dG D 0 in the extremum provides, as in the case
of (B.43),

det

2

4
fx.x0; y0; z0/ fy.x0; y0; z0/ fz.x0; y0; z0/
Fx.x0; y0; z0/ Fy.x0; y0; z0/ Fz.x0; y0; z0/
Gx.x0; y0; z0/ Gy.x0; y0; z0/ Gz.x0; y0; z0/

3

5 D 0 : (B.50)
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The determinant vanishes if, e.g., the rows are a linear combination of each other,
say, fx D �Fx C �Gx, fy D �Fy C �Gy, fz D �Fz C �Gz, with � ¤ 0, � ¤ 0 the
two Lagrangian multipliers. In conclusion, the system to be solved is made of the
two constraints F D 0, G D 0 and of

@

@x
.f � �F � �G/ D 0 ;

@

@y
.f � �F � �G/ D 0 ;

@

@z
.f � �F � �G/ D 0 :

(B.51)
The solution of the above yields the coordinates x0, y0, z0 of the extremum and the
two multipliers �, �.

B.7 Conformal Mapping

A conformal mapping is a variable transformation that preserves the angles, both in
amplitude and orientation [7]. It is introduced here to show how the solution of a
differential equation over a domain can be transformed into that over a different
domain. To this purpose, consider a variable transformation in two dimensions
defined by

u D u.x; y/ ; v D v.x; y/ ; (B.52)

where x; y belong to a domain D and u; v to a domain D0 and such that for all points
of D,

J D

�
@u=@x @u=@y
@v=@x @v=@y

�
¤ 0 : (B.53)

As a consequence, transformation (B.52) is invertible, namely, there exist the
relations x D x.u; v/ and y D y.u; v/. It follows that starting from a function '.x; y/
defined in D and letting  .u; v/ D 'Œx.u; v/; y.u; v/�, it is

'.x; y/ D  Œu.x; y/; v.x; y/� : (B.54)

Let ' be harmonic in D. Using the r operator (Sect. A.3), it follows

r2' D
@ 

@u
r2uC

@ 

@v
r2v C

@2 

@u2
jruj2 C

@2 

@v2
jrvj2 C 2

@2 

@u@v
ru � rv D 0 :

(B.55)

The conditions on the variable transformations are sought for which  is harmonic
with respect to u; v. They are easily found as r2u D r2v D 0, ru � rv D 0, and
jruj2 D jrvj2 ¤ 0. The first condition shows that u and v must be harmonic. The
second one yields
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@u=@x

@v=@y
D �

@u=@y

@v=@x
D !.x; y/ ; (B.56)

with ! yet undetermined. As a consequence, the third condition becomes jruj2 D
!2 jrvj2, thus yielding ! D ˙1 for all x; y. Taking ! D 1 provides the Cauchy-
Riemann relations of the first kind

@u

@x
D
@v

@y
;

@u

@y
D �

@v

@x
; (B.57)

by which u and v are harmonic conjugate and the complex function defined by uCjv
is analytical in D. Alternatively, taking ! D �1 provides the Cauchy-Riemann
relations of the second kind

@u

@x
D �

@v

@y
;

@u

@y
D
@v

@x
: (B.58)

by which u and �v are harmonic conjugate and the complex function defined by
u� jv is analytical in D. An invertible transformation fulfilling the Cauchy-Riemann
relations determines a conformal mapping between the domains D and D0 [7, 142].

By way of example, let w D x2 C .yC 1/2 and

u D .x2 C y2 � 1/=w ; v D �2 x=w : (B.59)

It is easily found that u and v are harmonic and fulfill the Cauchy-Riemann relations
of the first kind (B.57). In particular,

@u

@x
D
@v

@y
D 4

x .yC 1/

w2
;

@u

@y
D �

@v

@x
D 2

.yC 1/2 � x2

w2
: (B.60)

From the above the Jacobian determinant of the variable transformation turns out to
be jruj2 D 4 w2 > 0. To find the inverse relations one observes that from the above
definitions,

u � 1 D �2 .yC 1/=w ; v D �2 x=w : (B.61)

Squaring (B.61), adding term by term, and using the definition of w yield .u�1/2C
v2 D 4=w D �2 v=x whereas, dividing term by term, yields .u�1/=v D .yC1/=x.
Combining the above results and letting m D .u � 1/2 C v2, one finds

x D �2 v=m ; y D 2 .1 � u/=m � 1 : (B.62)

In particular, letting y D 0 provides u2 C v2 D 1, thus showing that the variable
transformation (B.59) carries the x axis of the x; y space onto the circumference C
of unit radius centered in the origin of the u; v space. In turn, the upper half plane
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y > 0 is carried onto the disk u2 C v2 < 1 whose boundary is C. In fact, inside the
disk it is m D u2 � 2 u C 1 C v2 < 2 .1 � u/, whence y D 2 .1 � u/=m � 1 > 0.
At the same time, letting u D 1 � �, v D ˙�, yields m D 2 �2, whence x D 
2=�,
showing that the values of jxj may become arbitrarily large as u; v span the disk. A
similar reasoning shows that the exterior of the disk, u2 C v2 > 1, is carried onto
the lower half plane y < 0. When the point Q D .; 0/ runs over the x axis from
left to right, like, e.g., it does in the expression (4.67) of the electric potential, the
corresponding point

Q0 D

�
2 � 1

2 C 1
;
�2

2 C 1

�
(B.63)

makes a counterclockwise rotation around C, starting from .1;0/. Letting for
simplicity  D � cot.�=2/, in the u; v coordinates (4.67) becomes

 .u; v/ D '0 �
1

2�

Z 2�

0

E0.�/
G0.u; vI �/

1 � cos �
d� ; (B.64)

where E0.�/ D EŒ.�/� and G0.u; vI �/ D GŒx.u; v/; y.u; v/I .�/�. In conclusion,
the function (B.64) obtained from '.x; y/ by a transformation using harmonic-
conjugate functions, is harmonic inside the disk of boundary C. Due to the form
of the boundary it is more convenient to turn to the polar coordinates u D � cos# ,
v D � sin# , with 0 � � � 1, and 0 � # � 2� . For the sake of simplicity
the functions expressed in polar coordinates are indicated by the same symbols as
before. From (B.64) it then follows

 .�; #/ D '0 �
1

2�

Z 2�

0

E0.�/
G0.�; # I �/

1 � cos �
d� ; (B.65)

G0 D log
�
1C �2 � 2 � cos.# � �/

�
: (B.66)

Using the same procedure as in Sect. 4.12.4 shows that the Neumann boundary
conditions used there are left unaltered when the variable transformation is applied.

B.8 Contraction Mapping

Before illustrating the contraction mapping it is necessary to provide some prelimi-
nary concepts. Given a set X of elements x, y, z, : : :, one defines a distance by means
of a nonnegative, single-valued real function % having the following properties: for
any x, y, and z of X it is

1. �.x ; y/ D 0 if and only if x D y,
2. %.x ; y/ D %.y ; x/ (symmetry),
3. %.x ; z/ � %.x ; y/C %.y ; z/ (triangle inequality).
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A set equipped with a distance is called metric space and is indicated with R; its
elements are called points. In general, there are several functions % that fulfill the
requisites of distance; each of them defines a different metric space.

A sequence x1 ; x2 ; : : : ; of points of a metric space R (also indicated with fxng)
fulfills the Cauchy criterion if, given " > 0, there exists an index n" such that
�.xn ; xm/ < " for all n ;m > n"; a sequence that fulfills the Cauchy criterion is called
Cauchy sequence. A metric space R is complete if every Cauchy sequence fxng of
points of R converges to an element of R; otherwise, R is incomplete.3 Examples of
complete metric spaces are the space of real numbers with distance %.x ; y/ D jx�yj,
and the space of N-tuples x D .x1 ; x2 ; : : : ; xN/ with Euclidean distance

%.x ; y/ D

 
NX

kD1

jxk � ykj
n

!1=n

; n D 2 : (B.67)

The triangle inequality for (B.67) is readily checked using the Schwarz inequal-
ity (A.5). The Euclidean distance (B.67) is generalized by letting n D 3; 4; : : :. As n
increases, the difference xk � yk having the largest modulus becomes dominant and,
in the n!1 limit, (B.67) yields

%.x ; y/ D maxkjxk � ykj : (B.68)

Now, consider a correspondence A between a point y of a metric space R and
another point z of R. Such a correspondence is indicated with z D A y. For the time
being, these symbols are used without a specific reference to the objects of interest;
for instance, R could be the real line, an N-dimensional space, a space of functions,
and so on; correspondingly, A could be a function proper, a matrix, an operator, and
so on. Multiple applications of correspondence A are indicated with powers, e.g.,
A2y means A.A y/. Given these premises, a point x of R is called fixed point of A if
A brings x on itself, namely,

x D A x : (B.69)

In turn, correspondence A is called contraction mapping or contraction if, for any
pair of points x, y of R there exists a positive number ˛ < 1 such that

%.A x ;A y/ � ˛ %.x ; y/ : (B.70)

From (B.70) it follows that a contraction is continuous. The theorem holds [81, Sect.
2-8.1]: Any contraction defined over a complete metric space has one and only one

3For instance, in the metric space of rational numbers Z with distance �.x ; y/ D jx� yj, consider
the sequence whose nth element has the integer part equal to unity and the decimal part made of
the first n decimal figures of

p
2: x1 D 1:4, x2 D 1:41, x3 D 1:414, and so on. This sequence does

not converge in Z.
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fixed point. The theorem, called fixed-point theorem or successive-approximations
theorem, can be exploited to prove the existence and uniqueness of the solution
of several classes of equations. As shown in the examples below, it also provides
practical methods for calculating the solution.

B.8.1 Determining the Zero of a Function

Let ' be a function defined over the interval I D Œa; b�, such that '.x/ belongs to I
as well; also, for any pair p, q of I, let ' fulfill the Lipschitz condition

j'.p/ � '.q/j � K jp � qj ; 0 < K < 1 : (B.71)

As jp�qj is a distance proper, ' is a contraction and, given the initial point x0 within
I, the sequence x0 ; x1 D '.x0/ ; x2 D '.x1/ ; : : : ; converges to the unique root of
the equation '.x/ D x. If, in particular, ' is differentiable in I, for the mean-value
theorem there exists  2 Œp; q� such that Œ'.p/ � '.q/�=.p � q/ D '0./. Observing
that (B.71) applies to any pair p, q, one may recast it as

ˇ̌
'0
ˇ̌
� K < 1 in I : (B.72)

The example shows that to determine the zero of an equation of the form f .x/ D 0

within an interval I, one may resort to an auxiliary equation '.x/ D x such that ' is a
contraction in I and its fixed point coincides with the zero of f . For a given function f
there are in general several possibilities to define such a '; one of these, particularly
interesting for the applications, provides the so-called Newton’s method, extensively
used in the numerical solution of the semiconductor equations (Sect. A.13.1).

B.8.2 Solving an Algebraic System

Let R be a real, N-dimensional space, over which the following distance between
two points x, Qx is selected:

%.x ; Qx/ D max
1�i�N

jxi � Qxij : (B.73)

Over the metric space thus defined, consider the correspondence y D A x given by
the set of linear relations

yi D

NX

jD1

cij xj C bi ; i D 1 ; : : : ;N : (B.74)
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To determine the conditions that make A a contraction, consider any pair of points
x, Qx and the corresponding points y D A x, Qy D A Qx. From yi� Qyi D

PN
jD1 cij .xj� Qxj/

one obtains, for every index i,

jyi � Qyij �

NX

jD1

ˇ̌
cij

ˇ̌ ˇ̌
xj � Qxj

ˇ̌
� %.x ; Qx/

NX

jD1

ˇ̌
cij

ˇ̌
: (B.75)

It follows

�.y ; Qy/ D max
1�i�N

jyi � Qyij � �.x ; Qx/ max
1�i�N

NX

jD1

ˇ̌
cij

ˇ̌
: (B.76)

Comparing with (B.70) one finds

˛ D max
1�i�N

NX

jD1

ˇ̌
cij

ˇ̌
< 1 ;

NX

jD1

ˇ̌
cij

ˇ̌
� ˛ < 1 ; i D 1 ; : : : ;N : (B.77)

If (B.77) holds, then the sequence x1 D A x0 ; x2 D A x1 D A2 x0 ; : : : ; with x0 an
arbitrary initial point, converges to the fixed point of A. Indicating the latter with z,
it is

zi D

NX

jD1

cij zj C bi ; i D 1 ; : : : ;N (B.78)

so that, letting cii D 1 � aii and cij D �aij for j ¤ i, one finds that z is the solution
of the algebraic system4

NX

jD1

aij xj D bi ; i D 1 ; : : : ;N : (B.79)

The uniqueness of the solution implies that the matrix of (B.79) is non-singular. It is
interesting to note that by a suitable manipulation one can always make the diagonal
entries aii negative, whence jciij D j1 � aiij D 1C jaiij; from (B.77) it follows

NX

jD1

ˇ̌
aij

ˇ̌
<

NX

jD1

ˇ̌
cij

ˇ̌
� ˛ < 1 ; i D 1 ; : : : ;N : (B.80)

4It is worth mentioning that other definitions, different from (B.73), are possible for the distance
between x and Qx. It follows that condition (B.77) is sufficient, but not necessary, for the existence
and uniqueness of the solution of the algebraic system (B.79).
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Comparing with the definitions and results of Sect. A.11.1 one finds that if the
spectral radius of a non-singular matrix is smaller than unity, the contraction
mapping described above is unconditionally convergent, namely, it converges for
any choice of the initial point x0.



Appendix C
Special Integrals

C.1 Sine Integral

Define the two functions

si.t/ D �
�

2
C

Z t

0

sin x

x
dx ; N.a/ D

Z 1

0

sin.ax/

x
dx : (C.1)

The first of them is called sine integral and fulfills the limit limt!1 si D 0, whence
N.1/ D �=2. To demonstrate the above one starts from the functions

F.y/ D
Z 1

0

exp.�x/
sin.xy/

x
dx ; G.y/ D

Z 1

0

exp.�xy/
sin x

x
dx ; y � 0 :

(C.2)
The following hold true: F.0/ D 0, G.0/ D N.1/, F.1/ D G.1/, and

dF

dy
D

Z 1

0

exp.�x/ cos.xy/ dx ;
dG

dy
D

Z 1

0

exp.�xy/ sin x dx : (C.3)

Integrating (C.3) by parts twice yields dF=dy D 1=.1C y2/, dG=dy D �1=.1C y2/
whence

F.y/ D arctan yC F.0/ ; G.y/ D � arctan yC G.0/ ; 0 � y <
�

2
: (C.4)

It follows F.1/ D F.0/ C �=4 D �=4 and F.1/ D G.1/ D G.0/ � �=4 D
N.1/ � �=4. Combining the above yields the result sought. This implicitly proves
the convergence of the integrals in (C.1). The calculation of the second of (C.1) is
now straightforward and yields

© Springer International Publishing AG 2018
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N.a/ D

8
<

:

��=2 ; a < 0 ;
0 ; a D 0 ;

C�=2 ; a > 0 :
(C.5)

The integrand in the second of (C.1) is even with respect to x. It follows that an
integration carried out from �1 toC1 yields 2N.a/. Basing on this one also finds

Z C1

�1

exp.i ax/

i x
dx D 2N.a/C

Z C1

�1

cos.ax/

i x
dx D 2N.a/ : (C.6)

When calculating the second integral in (C.6) one must let z D ˙ax, �;Z > 0 and
use the principal part. In fact, observing that the integrand is odd one obtains

Z C1

�1

cos.ax/

i x
dx D ˙i lim

�!0
Z!1

�Z ��

�Z

cos z

z
dzC

Z CZ

C�

cos z

z
dz

�
D 0 : (C.7)

Combining (C.7) with (C.6) provides an integral representation of the Fourier type
for the step function

H.a/ D

8
<

:

0 a < 0
1=2 a D 0
1 a > 0

9
=

;
D
1

2
C

1

2�

Z C1

�1

exp.iax/

ix
dx : (C.8)

Still from (C.6), using the identity 2 i sin x D exp.i x/ � exp.�i x/, one finds

Z C1

�1

sin x

x
exp.�i a x/ dx D N.�aC 1/ � N.�a � 1/ D

8
<

:

0 jaj > 1
�=2 a D ˙1
� jaj < 1

(C.9)

From (C.9) one derives integrals of a similar form, where sin x=x is replaced with
sinn x=xn, n D 2; 3; : : :. The example with n D 2 is given below: one starts from

d

da

Z C1

�1

sin2 x

x2
exp.�i a x/ dx D

Z C1

�1

sin2 x

i x
exp.�i a x/ dx ; (C.10)

and uses the identity 2 sin2 x D 1 � cos.2 x/ to find

Z C1

�1

1 � cos.2 x/

2 i x
exp.�i a x/ dx D N.�a/C

Z C1

�1

cos.2 x/

2 x
sin.a x/ dx ;

(C.11)
where N.�a/ derives from (C.6) and the integral on the right-hand side is obtained
by eliminating the odd part of the integrand. From the identity sinŒ.a C 2/ x� C
sinŒ.a � 2/ x� D 2 sin.a x/ cos.2 x/ such an integral transforms into
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Z C1

�1

sinŒ.aC 2/ x�C sinŒ.a � 2/ x�

4 x
dx D

1

2
N.aC 2/C

1

2
N.a � 2/ ; (C.12)

where the second definition in (C.1) has been used. Combining (C.10), (C.11),
and (C.12) yields

d

da

Z C1

�1

sin2 x

x2
exp.�i a x/ dx D

8
<

:

�=2 �2 < a < 0
��=2 0 < a < 2
0 jaj > 2

(C.13)

This result shows that the derivative with respect to a of the integral sought is
piecewise constant in the interval �2 < a < C2, and vanishes elsewhere. The
integral is also continuous with respect to a and should not diverge, because
j sin2 x=x2j � j sin x=xj and (C.9) converges. This reasoning allows one to fix the
integration constants, to finally obtain

Z C1

�1

sin2 x

x2
exp.�i a x/ dx D

8
<

:

.�=2/ .aC 2/ �2 < a < 0
�.�=2/ .a � 2/ 0 < a < 2

0 jaj > 2
(C.14)

By a procedure similar to that used to prove (C.14) one finds

d

da

Z C1

�1

sin2.a x/

x2
dx D 2N.a/ ;

Z C1

�1

sin2.a x/

x2
dx D

�
� a ; a > 0
�� a ; a < 0

(C.15)

C.2 Fourier Transform

Let f .x/ be a function defined over the entire x axis. Its Fourier transform is defined
as the integral

G.k/ D Fxf D
1
p
2�

Z C1

�1

f .x/ exp.�i k x/ dx : (C.16)

In turn, the Fourier antitransform is defined as

f .x/ D F�1x G D
1
p
2�

Z C1

�1

G.k/ exp.i k x/ dk : (C.17)

Combining (C.16) and (C.17) provides a representation of f in the form
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f .x/ D
1

2�

Z C1

�1

exp.i k x/

�Z C1

�1

f ./ exp.�i k / d

�
dk : (C.18)

A sufficient condition for the representation (C.18) is

Z C1

�1

jf .x/j dx <1 : (C.19)

If f is discontinuous of the first kind at some point x0, the left-hand side of (C.18)
must be replaced with Œf .xC0 /C f .x�0 /�=2. As the condition (C.19) is sufficient, but
not necessary, there are functions that admit an integral representation like (C.18)
without fulfilling (C.19). An important example is the unit step function shown in
Sect. C.1.

If f depends also on one or more parameters, f D f .x; u; v; : : :/, then it is G D
G.k; u; v; : : :/. In an n-dimensional space, defining the vectors x D .x1; : : : ; xn/ and
k D .k1; : : : ; kn/, the Fourier transform reads

G.k/ D Fxf D
1

.2 �/n=2

Z C1

�1

: : :

Z C1

�1

f .x/ exp.�i k � x/ dx1 : : : dxn : (C.20)

A useful relation is found by differentiating both sides of (C.17). To this purpose,
one must assume that the conditions for exchanging the derivative with the integral
are fulfilled. It is found

df

dx
D

1
p
2�

Z C1

�1

i k G.k/ exp.ikx/ dk : (C.21)

Iterating the procedure yields

dnf

dxn
D

1
p
2�

Z C1

�1

.i k/n G.k/ exp.ikx/ dk ; (C.22)

showing that if G.k/ is the Fourier transform of f .x/, then the Fourier transform of
dnf=dxx is .i k/n G.k/. Relations like (C.21) and (C.22) are useful, for instance, in
the solution of linear differential equations with constant coefficients, because they
turn differential relations into polynomial relations (compare with the solution of
the diffusion equation carried out in Sect. 23.4).

C.3 Gauss Integral

The relation

IG D

Z C1

0

exp.�x2/ dx D
Z 0

�1

exp.�x2/ dx : (C.23)
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is called Gauss integral or Poisson integral. To calculate its value one may start
from the double integral

F.R/ D
Z Z

˙.R/
expŒ�.x2 C y2/� dxdy ; (C.24)

where ˙.R/ is a circle of radius R centered on the origin. Using the polar
coordinates (B.8) yields

F.R/ D
Z 2�

0

d#
Z R

0

exp.��2/ � d� D � Œ1 � exp.�R2/� ; (C.25)

whence limR!1 F.R/ D � . On the other hand, due to (C.24) it is also

lim
R!1

F.R/ D
ZZ C1

�1

expŒ�.x2 C y2/� dxdy D lim
a!1

�Z Ca

�a
exp.�x2/ dx

�2
:

(C.26)
Combining (C.25, C.26) with (C.23) provides

Z C1

�1

exp.�x2/ dx D
p
� ; IG D

p
�

2
: (C.27)

From (C.27) it follows that for any � > 0 it is

I0.�/ D
Z 1

0

exp.��x2/ dx D
1

2

r
�

�
: (C.28)

Another integral generated by exp.��x2/ is

I1.�/ D
Z 1

0

x exp.��x2/ dx D
1

2�
: (C.29)

Thanks to (C.28) and (C.29) it is possible to calculate all integrals of the form

In.�/ D

Z 1

0

xn exp.��x2/ dx ; n � 0 : (C.30)

In fact, using the recursive relation

d

d�
In D

Z 1

0

@

@�
xn exp.��x2/ dx D �

Z 1

0

xnC2 exp.��x2/ dx D �InC2 ;

(C.31)
in combination with (C.29) yields all the integrals whose index is odd,

I2mC1 D
mŠ

2
��.mC1/ ; m D 0 ; 1 ; 2 ; : : : : (C.32)
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Similarly, combining (C.31) with (C.28) yields all the integrals whose index is even,

I2m.�/ D
.2m � 1/ŠŠ

2mC1
��.mC1=2/

p
� ; m D 0 ; 1 ; 2 ; : : : ; (C.33)

where

.2m � 1/ŠŠ D .2m � 1/.2m � 3/ : : : 3 � 1 ; .�1/ŠŠ D 1 ; (C.34)

Finally, observing that the integrand of (C.30) is even (odd) if n is even (odd), one
finds

Z C1

�1

x2m exp.��x2/ dx D 2 I2m.�/ ;

Z C1

�1

x2mC1 exp.��x2/ dx D 0 :

(C.35)
The results of this section still hold for a complex � with <� > 0.

C.4 Dirac’s ı

Consider a function �B.x; a/ defined as follows:

�B D

�
1=a �a=2 � x � Ca=2
0 x < �a=2 ; x > a=2

(C.36)

with a > 0. The above definition yields

lim
a!0

�B D

�
0 x ¤ 0
C1 x D 0

;

Z C1

�1

�B.x; a/ dx D
1

a

Z Ca=2

�a=2
dx D 1 :

(C.37)
As the value of the integral in (C.37) is independent of a, the integral is equal to unity
also in the limit a ! 0. Figure C.1 shows how the form of �B changes with a: the
width of the peak decreases as a decreases, while its height increases so that the area
subtending the function remains constant. Note that the procedure depicted above
gives a different result if one carries out the integration after calculating the limit.
In other terms, the integration and the limit are to be carried out in a specific order
(integration first). For a continuous function f .x/ the mean-value theorem provides

Z C1

�1

�B.x; a/ f .x/ dx D
1

a

Z Ca=2

�a=2
f .x/ dx D f .Nx/ ; (C.38)

with �a=2 < Nx < Ca=2. As a consequence,
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Fig. C.1 Generation of a
Dirac ı using a barrier-like
function. The peak’s width is
equal to a

-4.0 -2.0 0.0 2.0 4.0
x

0.0

1.0

2.0

Δ B ( 
x,

 a
 )

-4.0 -2.0 0.0 2.0 4.0
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2.0

lim
a!0

Z C1

�1

�B.x; a/ f .x/ dx D f .0/ : (C.39)

This result is expressed in a more compact form by defining a linear functional ı.x/
(called Dirac’s symbol) such that

Z C1

�1

ı.x/ f .x/ dx D f .0/ : (C.40)

The functional associates the number f .0/ with the function f .x/. If the reasoning
leading to (C.40) is repeated after shifting �B from the origin to another point x0,
one finds the generalization of (C.40)

Z C1

�1

ı.x � x0/ f .x/ dx D f .x0/ : (C.41)

From (C.41) and (C.16) one obtains

Z C1

�1

ı.x � x0/ dx D 1 ; Fxı.x � x0/ D
1
p
2�

exp.�i k x0/ : (C.42)

The antitransform (C.17) then reads

ı.x � x0/ D
1

2�

Z C1

�1

expŒi k .x � x0/� dk ; (C.43)

that provides an integral representation of the Dirac ı. However, it is important to
note that (C.43) has no meaning unless it is used within an integral like, e.g., (C.41).
With this provision, one can consider the Dirac ı as the “derivative” of the step
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Fig. C.2 Generation of a Dirac ı using a Lorentzian function. The peak’s width is proportional
to a

function; in fact, after a suitable change in the symbols, one finds that the integral at
the right-hand side of (C.43) is the derivative with respect to x of the integral at the
right-hand side of (C.8). More details about the integral representation of the Dirac
ı are given in Sect. C.5.

The function �B.x; a/ defined above is an example of generating function of the
Dirac ı. Several other examples may be given, as shown below. In all cases, if the
generating function�.x; x0; a/ is centered at some point x0, it is even with respect to
x0 and has the properties lima!0 � D 0 if x ¤ x0 and lima!0 � D C1 if x D x0.
Consider for instance the Lorentzian function (centered at x0 D 0)

�L D
a=�

a2 C x2
;

Z C1

�1

�L dx D
1

�

Z C1

�1

d

dx
arctan


 x

a

�
dx D 1 ; (C.44)

with a > 0. Apart from the limiting case a! 0 the function has only one maximum
that occurs at x D 0 and equals 1=.a�/. For x D ˙a the function’s value halves
with respect to the maximum, so 2a is conventionally taken as the width of�L. The
product 2=� of the maximum value by the conventional width is independent of a
and is of order unity (Figs. C.2 and C.3). Finally, for a continuous function f .x/ it is

lim
a!0

Z C1

�1

�L.x; a/f .x/ dx D f .0/ : (C.45)

Another example of a ı-generating function is the parameterized Gaussian function
(centered at x0 D 0)
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Fig. C.3 Generation of a
Dirac ı using a parameterized
Gaussian function. The peak’s
width is proportional to a
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�G D
exp.�x2=a2/

a
p
�

; a > 0 ;
Z C1

�1

�G.x; a/ dx D 1 (C.46)

(more details about this function and integrals related to it are given in Sects. C.3
and C.8). The function has only one maximum that occurs at x D 0 and equals
1=.a
p
�/. For x D ˙a

p
log 2 ' ˙0:833 a the function’s value halves with respect

to the maximum, thus yielding a conventional width of 2a
p

log 2. The product
2
p

log 2=
p
� of the maximum value by the conventional width is independent of

a and of order unity. For a continuous function f .x/ it is

lim
a!0

Z C1

�1

�G.x; a/f .x/ dx D f .0/ : (C.47)

A final example of a ı-generating function is the negative derivative of the Fermi
function (centered at x0 D 0)

�F D �
d

dx

1

exp.x=a/C 1
D

exp.x=a/

a Œexp.x=a/C 1�2
; a > 0 ; (C.48)

Z C1

�1

�F.x; a/ dx D
Z �1

C1

d

dx

1

exp.x=a/C 1
dx D 1 : (C.49)

(more details about this function and integrals related to it are given in Sect. C.13).
The function has only one maximum that occurs at x D 0 and equals 1=.4a/.
For x D ˙a log.3 C

p
8/ ' ˙1:76 a the function’s value halves with respect to

the maximum, thus yielding a conventional width of 2a log.3C
p
8/. The product

.1=2/ log.3C
p
8/ of the maximum value by the conventional width is independent

of a and of order unity (Fig. C.4). For a continuous function f .x/ it is
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Fig. C.4 Generation of a
Dirac ı using a Fermi
function. The peak’s width is
proportional to a
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lim
a!0

Z C1

�1

�F.x; a/f .x/ dx D f .0/ : (C.50)

The ı-generating functions � vanish for x ! ˙1, otherwise they would not
be integrable from �1 to C1. Assuming that � is differentiable with respect to x
yields, after integrating by parts,

Z C1

�1

f .x/
d�.x; a/

dx
dx D Œ�.x; a/ f .x/�C1�1 �

Z C1

�1

�.x; a/
df

dx
dx ; (C.51)

with f a differentiable function. In (C.51) the integrated part is zero because �
vanishes at infinity. Taking the limit a! 0 at both sides of (C.51) and using (C.40)
yields

Z C1

�1

f .x/
dı.x/

dx
dx D �

Z C1

�1

ı.x/
df

dx
dx D �f 0.0/ ; (C.52)

which is used as the definition of the derivative of ı. Such a definition generalizes
to

Z C1

�1

f .x/
dnı.x/

dxn
dx D .�1/n f .n/.0/ : (C.53)

One notes in passing that the Fermi-Dirac statistics P.x/ D 1=Œexp.x=a/C1� fulfills
the relation P.�x/ D 1 � P.x/, whence P.�x/ � 1=2 D �ŒP.x/ � 1=2�, namely,
H.x/ D P.x/� 1=2 is an odd function of x. As a consequence, the derivative of P is
even; in particular, one finds �a dP=dx D P .1�P/ D P.x/P.�x/. These properties
are exploited, e.g., in Prob. 15.2.
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C.5 Some Properties of Dirac’s ı

An integral representation of ı is derived from (C.18) after rearranging it as

f .x/ D
Z C1

�1

�Z C1

�1

expŒi k .x � /�

2 �
dk

�
f ./ d (C.54)

and comparing with (C.41):

ı. � x/ D
Z C1

�1

expŒi k .x � /�

2 �
dk : (C.55)

Replacing k with �k in (C.55) shows that ı is even with respect to its argument,
ı.x � / D ı. � x/. Also, comparing (C.55) with (C.16) shows that ı. � x/ is
the Fourier transform of exp.i k x/=

p
2� . The generalization of (C.55) to more than

one dimension is immediate; e.g., the three-dimensional case reads

ı.g � x/ D
ZZZ C1

�1

expŒi k � .x � g/�
.2 �/3

d3k : (C.56)

The discrete-case analogue of (C.56) is given by (C.126, C.130), where the gener-
alization of the Kronecker symbol is given. Note that the latter is dimensionless,
whereas the units of Dirac’s ı depend on its argument: by way of example, the
integral

R C1
�1 ı. � x/ d D 1 shows that the units of ı. � x/ are the inverse of

those of d; similarly, the integral
RRR C1
�1 ı.g � x/ d3g D 1 shows that the units of

ı.g � x/ are the inverse of those of d3g, and so on.
A generalization of Dirac’s ı is found by replacing ı.x/ with ıŒq.x/�, with q.x/ a

function having one or more zeros. Let x1 be a simple zero of q, namely, q0.x1/ ¤ 0,
and consider the contribution of it to the integral

R C1
�1 ıŒq.x/� dx. Observing that in

a finite neighborhood I1 of x1 there are no other zeros, one can determine such
a contribution by replacing q.x/ with q0.x1/ .x � x1/; in this way, to bring the
calculation back to the standard form one may provisionally scale the differential
dx by 1=q0.x1/. However, if the scaling factor was negative, the evenness of ı would
be violated; thus, the correct scaling factor is jq0.x1/j, and

Z

I1

ıŒq.x/� f .x/ dx D
1

jq0.x1/j
f .x1/ : (C.57)

If q has n simple zeros, from (C.57) it follows

Z C1

�1

ıŒq.x/� f .x/ dx D
1

jq0.x1/j
f .x1/C : : :C

1

jq0.xn/j
f .xn/ : (C.58)
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C.6 Moments Expansion

For a given function f .k/ consider the integral

Mn D

Z C1

�1

knf .k/ dk ; n D 0; 1; : : : (C.59)

It is assumed that the integral converges for any n. This implies that f vanishes at
infinity with a strength larger than any power. As the present considerations apply
to a distribution function, the vanishing of f is typically of the exponential type. The
quantity Mn is called moment of order n of function f . Thanks to its properties, f
can be Fourier transformed; let

g.y/ D F f D
1
p
2�

Z C1

�1

f .k/ exp.�i y k/ dk : (C.60)

Using the Taylor expansion exp.�i y k/ D
P1

nD0.�i y k/n=nŠ yields

g.y/ D
1X

nD0

1

nŠ

.�i/n Mn
p
2�

yn : (C.61)

The above is the Taylor expansion of g around the origin; it follows

.�i/n Mn
p
2�

D

�
dng

dyn

�

0

: (C.62)

The above analysis shows that if the moments Mn of f .k/ are known, from them
one constructs the Fourier transform g.y/ D F f by means of a Taylor series. Then,
one recovers the original function from the inverse transform f .k/ D F�1g. In
conclusion, the knowledge of the set of moments of f is equivalent to the knowledge
of f . The result holds true also in the multi-dimensional case f D f .k/, where

MlCmCn D

ZZZ C1

�1

kl
1 km

2 kn
3 f .k/ d3k ; l;m; n D 0; 1; : : : (C.63)

is the moment of order lC mC n of f .
If only the lower-order moments are used, then the Taylor series for the Fourier

transform is truncated and provides an approximation Qg for g. As a consequence of
this approximation, the inverse transform Qf D F�1 Qg provides an approximate form
of the original function f .

An extension of the above concepts is obtained by replacing the monomial
expression kl

1 km
2 kn

3 with a function ˛.k/, that can be expressed by a polynomial
interpolation. In this case, in fact, the integral of ˛.k/ f .k/ is a combination of
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moments of f . A further generalization consists in considering f , ˛, or both, as
functions of other variables besides k:

M˛.r; t/ D
ZZZ C1

�1

˛.r;k; t/ f .r;k; t/ d3k : (C.64)

If f .r;k; t/ is the solution of a differential equation generated by an operator A ,
say, A f D 0, one can derive a set of moments from such an equation by selecting
different forms of ˛:

ZZZ C1

�1

˛A f d3k D 0 : (C.65)

Each moment depends on the other variables r; t. If operator A contains the
derivatives with respect to r, t, or both, then the moment of A f D 0 is a differential
equation in r, t, or both.

C.7 Error Function

The error function and the complementary error function are defined, respectively,
as

erf.x/ D
2
p
�

Z x

0

exp.�2/ d ; erfc.x/ D 1 � erf.x/ : (C.66)

From the definitions (C.66) and from the Gauss integral (C.23) the following
properties are derived:

d

dx
erf.x/ D

2
p
�

exp.�x2/ ; erf.�x/ D � erf.x/ ; (C.67)

erf.�1/ D �1 ; erf.0/ D 0 ; erf.C1/ D 1 ; (C.68)

erfc.�1/ D 2 ; erfc.0/ D 1 ; erfc.C1/ D 0 : (C.69)

Integrating by parts yields

Z x

0

erfc./ d D x erfc.x/C
1
p
�

�
1 � exp.�x2/

�
: (C.70)

Applying the de l’Hôpital rule shows that the first term at the right-hand side
of (C.70) vanishes for x!C1. It follows
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Z C1

0

erfc.x/ dx D
1
p
�
: (C.71)

Still applying the de l’Hôpital rule shows that

lim
x!0

erf.x/

x
D

2
p
�
; lim

x!C1

erfc.x/

exp.�x2/
D lim

x!C1

1=
p
�

x
; (C.72)

whence

erf.x/ '
2
p
�

x for jxj � 1 ; erfc.x/ '
1
p
�

exp.�x2/

x
for x� 1 :

(C.73)
Other applications of the integration by parts yield

Y D
Z x

0

 erfc./ d D x2 erfc.x/ � Y �
1
p
�

Z x

0



�
d

d
exp.�2/

�
d D

(C.74)

D
1

2
x2 erfc.x/C

1

4
erf.x/ �

1

2
p
�

x exp.�x2/ : (C.75)

C.8 Parametrized Gaussian Function

The relations introduced in Sects. C.3 and C.7 are useful for investigating the
properties of function

�.x � ; a/ D
expŒ�.x � /2=.4 a/�

p
4� a

; a > 0 : (C.76)

The behavior of � in the limit a! 0 depends on the argument x �  , namely

lim
a!0

�.x � ; a/ D

�
0  ¤ x
C1  D x

(C.77)

In contrast, its integral over  is independent of x and a. In fact, using (C.23) after
letting � D .x � /=

p
4a yields

Z C1

�1

�.x � ; a/ d D
1
p
�

Z C1

�1

exp.��2/ d� D 1 : (C.78)

Adopting the same variable change leading to (C.78) and using (C.23, C.66) yields
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Z 0

�1

�.x � ; a/ d D
1

2
erfc

�
x
p
4a

�
: (C.79)

The relations (C.78, C.79) hold also in the limit for a ! 0, provided the limit is
calculated after the integration. This property is typical of the functions that generate
the Dirac ı (Sect. C.4). In fact it can be shown that for a continuous function g.x/
the following holds:

lim
a!0

Z C1

�1

g./�.x � ; a/ d D g.x/ : (C.80)

Other examples of ı-generating functions are given in Sect. C.4. This section is
concluded by showing that�.x� ; a/ admits an integral representation of the form

�.x � ; a/ D
1

2�

Z C1

�1

expŒik.x � / � ak2� dk : (C.81)

To prove (C.81) one recasts the argument of the exponential by means of the identity

ik.x � / � ak2 D �
.x � /2

4a
� a

�
k �

i.x � /

2a

�2
; (C.82)

and uses (C.23) with
p

a Œk�i.x�/=.2a/� as the integration variable. It is interesting
to note in passing that letting  D 0, a D �2=2 in (C.81) yields

expŒ�x2=.2 �2/� D
�
p
2�

Z C1

�1

exp.��2 k2=2/ exp.i k x/ dk ; (C.83)

namely, the Gaussian function is the Fourier transform of itself.

C.9 Euler’s Beta Function

The function defined by the integral

B.� ; �/ D
Z 1

0

x��1 .1 � x/��1 dx ; (C.84)

with �, � complex numbers such that <.�/ > 0, <.�/ > 0, is called Euler’s Beta
function or Euler’s integral of the first kind [82]. Letting x D y=.yC1/ and replacing
y with x gives (C.84) the equivalent form
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B.� ; �/ D
Z C1

0

x��1 .1C x/�.�C�/ dx : (C.85)

Limiting the variables’ range to 0 < <.�/ ;<.�/ < 1 and letting

� D 1 � � ; T0.�/ D B.� ; 1 � �/ (C.86)

yields

T0.�/ D
Z C1

0

x��1

1C x
dx D

�

sin.��/
: (C.87)

The last equality is demonstrated by applying Cauchy’s residue theorem [142, Sect.
64] to the function f .z/ D z��1=.1 C z/, with z complex, that over the real axis
reduces to the integrand of (C.87). To proceed, one must first observe that f .z/ is a
multivalued function; this is readily seen by letting z D r exp.i˛/ and recasting f
in the form f .z/ D .1C z/�1 expŒ.�� 1/ .log rC i˛/�. One then considers only one
branch of f , letting for instance 0 � ˛ < 2� . Also, it is found that f is continuous
in the complex plane with the exception of the positive part of the real axis; in fact,
in the vicinity of a point x of it, it is ˛ ! 0 for =.z/ > 0 and ˛ ! 2� for =.z/ < 0.

The corresponding limits of f are

lim
z!x

f .z/ D
x��1

1C x
; lim

z!x
f .z/ D

x��1

1C x
exp.i 2 ��/ : (C.88)

The residue theorem states that
R

C f .z/ dz D i 2� R, with C the integration path and
R the residue. To apply it to the present case one selects an integration path made
of two circumferences A and B, centered in the origin and having radii a < 1 and
b > 1, respectively, and of segment Q D Œa ; b� (Fig. C.5): circumference A is traced
clockwise starting from z D a; next, segment Q is traced from a to b along the upper
edge, where f .z/ is given by the first expression in (C.88). Then, circumference B
is traced counterclockwise, followed by segment Q from b to a along the lower
edge, where f .z/ is given by the second expression in (C.88). In the interior of the
integration path f has the simple pole z0 D �1 D exp.i�/, whose residue is

R D lim
z!z0

.z � z0/ f .z/ D lim
r!1
˛!�

expŒ.� � 1/ .log rC i˛/� D � exp.i��/ ; (C.89)

whence

Z

A
f .z/ dzC

Z

B
f .z/ dzC Œ1 � exp.i 2 ��/�

Z b

a

x��1

1C x
dx D �i 2� exp.i��/ :

(C.90)
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Fig. C.5 Integration path
of (C.87)

1

I

R

a

b

To evaluate (C.87) one takes the limits a ! 0 and b ! 1 in (C.90); as shown
below, the limit makes the first two integrals at the left-hand side of (C.90) to vanish,
this leading directly to (C.87).

Relation (C.87) can be exploited for calculating other integrals. For instance, for
real values of � one lets � D 1=.2�/, x D y2� to find

Z C1

0

1

1C y2�
dy D

�=.2�/

sinŒ�=.2�/�
; � >

1

2
: (C.91)

To show that the first two integrals at the left-hand side of (C.90) vanish in the limit,
one lets � D p C i q and observes that over circumference A it is j1 C zj � 1 � a
and jz��1j D ap�1 exp.�˛ q/; the first of the above is obvious, the second one is
found by letting �C i! D .��1/ .log rC i˛/ and observing that jz��1j D exp.�/.
Indicating with M the maximum of exp.�˛ q/ with ˛ varying between 0 and 2� ,
the following inequalities hold over A:

jf .z/j � M
ap�1

1 � a
;

ˇ̌
ˇ
ˇ

Z

A
f .z/ dz

ˇ̌
ˇ
ˇ � 2� M

ap

1 � a
: (C.92)

By the same token one finds over B:

jf .z/j � M
bp�1

b � 1
;

ˇ̌
ˇ̌
Z

B
f .z/ dz

ˇ̌
ˇ̌ � 2� M

bp

b � 1
: (C.93)

Remembering that 0 < p D <.�/ < 1, one finally finds

lim
a!0

ap

1 � a
D lim

b!1

bp

b � 1
D 0 ; (C.94)
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C.10 Euler’s Gamma Function

The function defined by the integral

� .�/ D

Z C1

0

x��1 exp.�x/ dx ; (C.95)

with � a complex number such that <.�/ > 0, is called Euler’s Gamma function or
Euler’s integral of the second kind [44, Sect. 1.3].1 The negative of its derivative
� 0 D d�=d� calculated for � D 1 is called Euler’s constant, � D �� 0.1/ DR C1
0

exp.�x/ log.x/ dx ' 0:5772. From (C.95) one finds � .1/ D 1 and, after
integrating by parts,

� .�C 1/ D �� .�/ : (C.96)

If � D n D 1; 2; : : : (C.96) yields

� .nC 1/ D n� .n/ D n.n � 1/ � .n � 1/ D : : : D nŠ : (C.97)

The definition of � is extended by analytic continuation to the complex plane with
the exception of the points � D 0;�1;�2; : : : ;�n; : : :. At each negative integer �n,
the function � has a simple pole with a residue equal to .�1/n=nŠ [82], namely,

lim
�!�n

.�C n/ � .�/ D
.�1/n

nŠ
; n D 0; 1; 2 : : : (C.98)

A straightforward calculation shows that the Beta and Gamma functions are
connected by the relation [82]

� .�/ � .�/ D � .�C �/B.� ; �/ : (C.99)

Thanks to (C.99) one extends the definition of B to the complex plane with the
exception of the points � ; � ; � C � D 0 ;�1 ;�2 ; : : : ;�n ; : : : : Moreover,
limiting the variables’ range to 0 < <.�/ ;<.�/ < 1 and letting � D 1 � � so
that � .�C �/ D � .1/ D 1, from (C.87) one finds

� .�/ � .1 � �/ D

Z C1

0

x��1

1C x
dx D T0.�/ ; 0 < <.�/ < 1 : (C.100)

For � D 1=2 (C.100) yields

1As remarked in [44], Legendre’s notation � .�/ is unfortunate because the argument that appears
at the right-hand side of the definition is �� 1. Gauss used the notation˘.�� 1/ for the left-hand
side of (C.95).
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�

�
1

2

�
D
p
� (C.101)

whence, thanks to (C.96),

�

�
3

2

�
D
1

2
�

�
1

2

�
D
1

2

p
� ; �

�
5

2

�
D
3

2
�

�
3

2

�
D
3

4

p
� ; : : :

(C.102)
Iterating (C.102) and comparing with (C.33) show that � .m C 1=2/ D 2 I2m.1/,
m D 0 ; 1 ; 2 ; : : :

C.11 Gamma Function’s Asymptotic Behavior

Euler’s Gamma function introduced in Sect. C.10, considered for real values of �,
lends itself to a significant application of the asymptotic analysis. Specifically, one
seeks another function f .�/, expressible through elementary functions, such that
lim�!1Œ� .� C 1/=f .�/� D 1. The asymptotic analysis applied to the � function
shows that [36]

lim
�!1

� .�C 1/

��C1=2 exp.��/
D
p
2� ; (C.103)

namely, the function sought is f .�/ D
p
2� ��C1=2 exp.��/. Equation (C.103) is

called Stirling’s formula. Remembering (C.97) one has � .�C 1/ D � .nC 1/ D nŠ
when � is a natural number. From (C.103) it follows

nŠ '
p
2� nnC1=2 exp.�n/ D

p
2� n .n=e/n ; (C.104)

that provides an approximation to the factorial for n� 1. Letting by way of example
n D 10, the rounded value of the right-hand side of (C.104) turns out to be 3 598 696,
that differs from 10Š D 3 628 800 by less than 1%.

The asymptotic value of the derivative of log� is also of interest, for instance
when determining the equilibrium distribution of particles in statistical mechanics
(Sects. 6.4, 15.8.1, 15.8.2). Using (C.103) one finds

d

d�
log� .�C 1/ '

1

2 �
C log� ' log� ; �� 1 : (C.105)
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C.12 Integrals Related to the Harmonic Oscillator

Consider the integral

I.s/ D
Z 1

0

d
p
1 � s

; (C.106)

where s is a real parameter, s > 0. Letting u D s one finds 1=
p
1 � s D .1 �

u/1=2�1, d D u1=s�1 du=s whence, using (C.84, C.99, C.101),

I.s/ D
1

s
B.1=s; 1=2/ D

p
�

s

� .1=s/

� .1=sC 1=2/
: (C.107)

By way of example I.2/ D �=2, which can also be derived directly from (C.106).
When s!1 one can use (C.98) with n D 0. It follows

lim
s!1

I.s/ D 1 : (C.108)

Now consider the integral

J.s/ D
Z 1

0

d
p
1=s � 1

; (C.109)

still with s > 0. The same procedure used for calculating I.s/ yields

J.s/ D
1

s
B.1=sC 1=2; 1=2/ D

p
�

s

� .1=sC 1=2/

� .1=sC 1/
D
�

s

1

I.s/
; (C.110)

and lims!1 J.s/ D 0. By way of example J.1/ D �=2, which can also be derived
directly from (C.109). The integrals (C.107), (C.110) appear in the theory of the
harmonic oscillator (Sect. 3.3 and problems 3.1, 3.2).

C.13 Fermi Integrals

The Fermi integral of order ˛ is defined as

˚˛./ D
1

� .˛ C 1/

Z 1

0

x˛

1C exp.x � /
dx ; ˛ > �1 ; (C.111)

where � is defined by (C.95) and ˛ is a real parameter. The constraint ˛ > �1

guarantees the convergence of the integral. If � � 1 one has exp.x � / �
exp.�/� 1 and, from (C.95),
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˚˛./ '
exp./

� .˛ C 1/

Z 1

0

x˛ exp.�x/ dx D exp./ ;  � �1 : (C.112)

A relation between Fermi integral of different order is found by considering, for
some ˛ > 0, the integral of order ˛ � 1:

1

� .˛/

Z 1

0

x˛�1

1C exp.x � /
dx D

1

˛ � .˛/

Z 1

0

x˛ exp.x � /

Œ1C exp.x � /�2
dx ; (C.113)

where the right-hand side is derived through an integration by parts. Observing
that ˛ � .˛/ D � .˛ C 1/ and using again (C.111) shows that the right-hand side
of (C.113) is equal to d˚˛=d . Then,

d˚˛
d
D ˚˛�1 ;

d log˚˛
d

D
˚˛�1

˚˛
: (C.114)

The Fermi integrals are positive by construction; from the first relation in (C.114)
it then follows that the Fermi integrals are monotonically increasing functions of
the argument  . The Fermi integral of order 0 is expressed in terms of elementary
functions,

˚0 D log Œexp./C 1� : (C.115)

In the applications to the semiconductor theory the Fermi integrals of small
half-integer order (1=2, 3=2) are the most important ones (Sects. 18.2, 19.6.4).
Remembering (C.101, C.102), they read

˚1=2./ D

Z 1

0

2 x1=2=
p
�

1C exp.x � /
dx ; ˚3=2./ D

Z 1

0

.4=3/ x3=2=
p
�

1C exp.x � /
dx:

(C.116)

Approximations for the Fermi integrals are found, e.g., in [12, App. C]; there it is
shown, for instance, that for the integral of order 1=2 the curve

˚1=2./ '
exp./

1C 0:27 exp./
;  < 1:3 (C.117)

gives an error within ˙3% in the indicated range. Still considering the integral
of order 1=2, [12, App. C] shows that for larger values of the argument other
expressions are applicable: e.g., the curve

˚1=2./ '
4

3
p
�

�
2 C

�2

6

�3=4
;  � 0:7 (C.118)

gives an error within˙3% in the indicated range. The behavior of (C.112), (C.117),
and (C.118) is shown in Fig. C.6.
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Fig. C.6 Approximations to the Fermi integrals: the black line represents (C.112), applicable to
the Fermi integrals of any order for  � �1; the red line represents (C.117) that renders ˚1=2
within ˙3% when  < 1:3; the blue line represents (C.118) that renders ˚1=2 within ˙3% when
 � 0:7

The Fermi integrals embed the Fermi-Dirac statistics (18.54), whose form is
P.�/ D 1=Œexp.�/ C 1�. It is easily found that the latter fulfills the relation
P.�/ C P.��/ D 1, whence �P.��/ C 1=2 D P.�/ � 1=2, namely, K.�/ D
P.�/ � 1=2 is an odd function of �. It follows that the set of coefficients in the
Taylor expansion of P.�/ D K.�/C 1=2 is made of those of K.�/, whose index is
odd, and of the zero-order coefficient 1=2.

C.14 Hölder’s Inequality

Hölder’s inequality states that for any pair of real constants b; c > 1 such that 1=bC
1=c D 1 it is

Z

�

jF Gj dx �

�Z

�

jFjb dx

�1=b �Z

�

jGjc dx

�1=c

; (C.119)

where F, G are any complex functions defined over the real interval � and such that
the integrals in (C.119) converge. The inequality is proven starting from the function
'.r/ D rb � b r C b � 1, r > 0, b > 1, whose first derivative is '0.r/ D b rb�1 � b
and the second one '00 D b .b � 1/ rb�2. As a consequence, for r > 0 the function
has only one minimum, located at r D 1. The inequality rbCb � b rC1 then holds,
whence
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rb�1

b
C

1

c r
� 1 ; c D

b

b � 1
> 1 : (C.120)

Let F1.x/ and G1.x/ be any two complex functions defined over � and fulfilling the
normalization condition

Z

�

jF1j
b dx D

Z

�

jG1j
c dx D 1 : (C.121)

Letting rb�1 D jF1jb�1=jG1j and replacing in (C.120) yields

jF1jb

b
C
jG1j

c

c
� jF1 G1j � 0 ;

1

b
C
1

c
D 1 : (C.122)

Since the function at the left-hand side of (C.122) is nonnegative, its integral
is nonnegative as well. Integrating (C.122) over � and using the normalization
condition (C.121) yields

Z

�

jF1 G1j dx �
1

b
C
1

c
D 1 : (C.123)

On the other hand, the normalization condition also yields

�Z

�

jF1j
b dx

�1=b

D

�Z

�

jG1j
c dx

�1=c

D 1 ; (C.124)

whence

Z

�

jF1G1j dx �

�Z

�

jF1j
b dx

�1=b �Z

�

jG1j
c dx

�1=c

: (C.125)

As (C.125) is homogeneous, it still holds after replacing F1, G1 with F D �F1 and
G D �G1, where �, � are arbitrary positive real numbers. This proves Hölder’s
inequality (C.119).

C.15 Integrals Related to the Electromagnetic Modes

In several applications (e.g., calculations related to the modes of the electromagnetic
field, Sect. 5.5) one must evaluate integrals of the form

Y D
Z

V
expŒi .k˙ k0/ � r� d3r ; (C.126)
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where k D k.n1; n2; n3/ is given by

k D n1
2 �

d1
i1 C n2

2 �

d2
i2 C n3

2 �

d3
i3 ; ni D 0;˙1;˙2; : : : ; (C.127)

i1, i2, i3 being the unit vectors parallel to the coordinate axes. The integration domain
in (C.126) is a box whose sides d1, d2, d3 are aligned with the axes and start from
the origin (Fig. 5.1). The volume of the box is V D d1 d2 d3. As .k ˙ k0/ � r D
.k1˙k01/ x1C.k2˙k02/ x2C.k3˙k03/ x3, where the upper (lower) signs hold together,
the integral becomes Y D Y1 Y2 Y3, with

Yi D

Z di

0

expŒi .ki ˙ k0i/ xi� dxi D
expŒi .ki ˙ k0i/ di� � 1

i .ki ˙ k0i/
: (C.128)

Letting �i D .ki ˙ k0i/ di=2 D � .ni ˙ n0i/, (C.128) becomes

Yi D di exp.i �i/
exp.i �i/ � exp.�i �i/

2 i �i
D di exp.i �i/

sin �i

�i
: (C.129)

It follows that Yi D 0 if ni ˙ n0i ¤ 0, while Yi D di if ni ˙ n0i D 0. Combining the
three integrals shows that it is Y D 0 if k˙ k0 ¤ 0, while it is Y D V if k˙ k0 D 0.
The result is recast in a compact form by means of the three-dimensional extension
of the Kronecker symbol (A.18):

Y D V ıŒk˙ k0; 0� D V ıŒk˙ k0� ; (C.130)

where the last form is obtained by dropping the zero for the sake of conciseness.
Compare (C.126, C.130) with (C.56) and the comments therein.

C.16 Riemann’s Zeta Function

The function defined by

�.� ; a/ D
1X

kD1

1

.kC a/�
; (C.131)

where � is a complex number with <.�/ > 1 and a � 0 is real, is called Riemann’s
Zeta function. It can be represented in integral form by combining it with the Gamma
function (C.95): letting x D .kCa/ y in the latter, then replacing y back with x, yields

� .�/ D .kC a/�
Z C1

0

x��1 expŒ�.kC a/ x� dx : (C.132)
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Dividing (C.132) by .kC a/�, letting k D 1 ; 2 ; : : :, and adding over k provides

� .�/

1X

kD1

1

.kC a/�
D

Z C1

0

x��1 exp.�ax/

"
1X

kD1

exp.�kx/

#

dx ; (C.133)

where
P1

kD1 exp.�k x/ D exp.�x/ Œ1Cexp.�x/Cexp.�2 x/C: : :� D 1=Œexp.x/�1�
so that, from (C.131),

�.� ; a/ D
1

� .�/

Z C1

0

x��1

exp.x/ � 1
exp.�a x/ dx ; <.�/ > 1 : (C.134)

Remembering (C.96) one finds that (C.134) fulfills the recursive relation

@

@a
�.� ; a/ D �� �.�C 1 ; a/ : (C.135)

Also, letting a D 0 and � D 2m, with m D 1 ; 2 ; : : : transforms (C.134) into

Z C1

0

x2m�1

exp.x/ � 1
dx D � .2m/ �.2m ; 0/ D

.2 �/2m

4m
jB2mj ; (C.136)

with B2m D .�1/mC1 jB2mj, m � 1 the Bernoulli number of order 2m ( [59] and
Sect. C.17). Thanks to (C.136) one calculates integrals used in different applications.
For instance, letting m D 2 and using B4 D �1=30, one finds

Z C1

0

x3

exp.x/ � 1
dx D

1

15
�4 ; (C.137)

that is used in (15.78) to calculate the Lagrangian multiplier in the equilibrium
statistics for photons. From (C.134) one derives another important class of integrals;
in fact, replacing x with 2 x in the denominator of (C.134) yields

Z C1

0

x��1

exp.2 x/ � 1
exp.�a x/ dx D 2�� � .�/ �.� ; a=2/ ; <.�/ > 1

(C.138)

whence, using the identity 2=Œexp.2 x/ � 1� D 1=Œexp.x/ � 1� � 1=Œexp.x/ C 1�

within (C.134), (C.138) provides

Z C1

0

x��1

exp.x/C 1
exp.�a x/ dx D � .�/

�
�.� ; a/ � 21�� �.� ; a=2/

�
:

(C.139)
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Letting a D 0 and � D 2m, m D 1 ; 2 ; : : : in the latter, and using (C.136),
transforms (C.139) into

Z C1

0

x2m�1

exp.x/C 1
dx D

�2m

2m

�
22m�1 � 1

	
jB2mj : (C.140)

For instance, for m D 1 and m D 2, (C.140) provides

Z C1

0

x

exp.x/C 1
dx D

1

12
�2 ;

Z C1

0

x3

exp.x/C 1
dx D

7

120
�4 :

(C.141)

C.17 Bernoulli Function

The definition of the Bernoulli function and its Taylor expansion around the origin
are

B.x/ D
x

exp.x/ � 1
; B.x/ D

1X

kD0

Bk
xk

kŠ
; Bk D

dkB

dxk

ˇ̌
ˇ̌
xD0

: (C.142)

The form of the function is shown in Fig. C.7; it is not singular in the origin, in fact
it is B.0/ D B0 D 1, however, when considered in the complex plane z, it has poles
for z D 2� n i, n ¤ 0. It follows that the expansion (C.142) converges for jxj < 2� .
The coefficients Bk are called Bernoulli numbers. It is easily found that the only
nonvanishing Bernoulli number of odd index is B1 D �1=2; in fact, the Bernoulli
function fulfills the relation B.�x/�B.x/ D x, whence B.�x/� x=2 D B.x/C x=2,

Fig. C.7 Bernoulli function
(thick line) and its asymptote
for x!�1 (thin line)
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namely, H.x/ D B.x/ C x=2 is an even function of x. It follows that the set of
coefficients in the expansion of B.x/ D H.x/� x=2 is made of those of H.x/, which
are of even index, and B1. To calculate the coefficients of even index it is convenient
to use a recursive relation, starting from the definition of B.x/ written in the form
B.x/ Œexp.x/ � 1�=x, and replacing each factor with the corresponding expansion:

�
B0 C B1

x

1Š
C B2

x2

2Š
C B3

x3

3Š
C : : :

� �
1C

x

2Š
C

x2

3Š
C

x3

4Š
C : : :

�
D 1 :

(C.143)
As the two series in (C.143) are absolutely convergent, the product series converges
absolutely to the product of the two for any ordering of the factors. Grouping the
latter according to the powers of equal degree yields B0 D 1 and

1

2Š 0Š
B0 C

1

1Š 1Š
B1 D 0 ;

1

3Š 0Š
B0 C

1

2Š 1Š
B1 C

1

1Š 2Š
B2 D 0 ; : : : (C.144)

For any index n � 1 (C.144) becomes

B0
nŠ 0Š

C
B1

.n � 1/Š 1Š
C � � � C

Bk

.n � k/Š kŠ
C � � � C

Bn�1

1Š .n � 1/Š
D 0 : (C.145)

Multiplying (C.145) by nŠ yields for any n � 1

n�1X

kD0

�
n
k

�
Bk D 0 ;

�
n
k

�
D

nŠ

.n � k/Š kŠ
: (C.146)

By way of example, (C.146) yields for n D 3 ; 5 ; 7

B0 C 3B1 C 3B2 D 0

B0 C 5B1 C 10B2 C 10B3 C 5B4 D 0

B0 C 7B1 C 21B2 C 35B3 C 35B4 C 21B5 C 7B6 D 0

Using B0 D 1, B1 D �1=2, the first relation above yields B2 D 1=6. The second
and third relation, remembering that B3 D B5 D 0, provide B4 D �1=30 and
B6 D 1=42, and so on. From this construction it is also found that the Bernoulli
numbers are all rational, and that the signs of the coefficients of even index starting
from B2 alternate: B2m D .�1/

mC1 jB2mj, m � 1.
The expressions (C.142) are readily generalized by considering the Taylor

expansion of B.x/ exp.x y/, which reads

B.x/ exp.x y/ D
1X

kD0

QBk.y/
xk

kŠ
; jxj < 2� ; (C.147)
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where QBk.y/ is the kth derivative with respect to x of the left-hand side calculated for
x D 0. Since each derivative of exp.x y/ entails a multiplication by y, the coefficient
QBk.y/ turns out to be a polynomial of degree k, called Bernoulli polynomial.2 The
relation between the Bernoulli polynomials and the Bernoulli numbers if found by
comparing (C.147) with (C.142), thus yielding Bk D QBk.0/. If one integrates both
sides of (C.147) with respect to y from any real number a to a C 1, the left-hand
side yields exp.a x/. Expanding the latter in a Taylor series and equating with the
integral of the right-hand side yield3

exp.a x/ D
1X

kD0

ak xk

kŠ
D

1X

kD0

xk

kŠ

Z aC1

a

QBk.y/ dy ;
Z aC1

a

QBk.y/ dy D ak :

(C.148)

In turn, differentiating the second relation in (C.148) provides QBk.aC 1/� QBk.a/ D
k ak�1. The left-hand side of the latter is equal to the integral

R aC1
a
QB0k.y/ dy; on

the other hand, from the second relation in (C.148) one also derives ak�1 DR aC1
a
QBk�1.y/ dy. Combining the above one finally finds the recursive relation

QB0k.y/ D k QBk�1.y/. It is also of interest to consider the Fourier expansion of QB0k.y/,
that reads [1, Sect. 23.1.16], [40, Sect. 65]

Bk.y/ D �2
kŠ

.2 �/k

1X

rD1

r�k cos.2 � r y � � k=2/ : (C.149)

Expansion (C.149) holds for 0 < y < 1 if k D 1, and for 0 � y � 1 if k > 1. Letting
y D 0 and choosing for k any odd value larger than unity yields, as expected, the
identity 0 D 0; for any even value k D 2m, instead, (C.149) provides

1X

rD1

1

r2m
D
.�1/mC1 .2 �/2m

2 .2m/Š
B2m D

.2 �/2m

2 .2m/Š
jB2mj ; m � 1 ; (C.150)

that is, the sum of the even powers of the inverse of the natural numbers (compare
with (C.136)); letting, e.g., m D 1 ; 2 ; 3 yields

1X

rD1

1

r2
D
�2

6
;

1X

rD1

1

r4
D
�4

90
;

1X

rD1

1

r6
D

�6

945
: (C.151)

2Another expression of these polynomials is Bk.y/ D
Pk

iD0

�
k
i

�
Bi yk�i, n � 0 [40, Sect. 65].

3Term-by-term integration of (C.147) is possible thanks to the uniform convergence of the series.
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C.18 Random Walk Problem

The problem considered in this section goes under the general name of random walk
problem. In its simplest formulation, the problem considers an object performing a
one-dimensional motion made of steps of equal length, in which each step has the
same probability 0 < p < 1 of being made in the positive direction; the probability
for the negative direction is therefore q D 1 � p. Given the initial position of the
object, the issue is determining the probability that after n steps the position has a
specified value. A generalization of the problem is considering a motion in two or
more dimensions; in this case, the issue is to find the probability that after n steps
the object is located at a specified distance from the origin.

Another generalization, which is considered below, is that of a one-dimensional
motion where the length � of each step is a continuous variable. In this case one
must assign a probability density p.�/ such that p.�/ d� is the probability that the
displacement at the ith step lies between � and �C d�; function p is the same for all
steps, and the outcome of each step is independent from that of the other steps. The
total displacement after n steps is x D �1 C � � � C �n; letting P.x/ be the probability
density such that P.x/ dx is the probability that the total displacement lies between
x and xC dx, the issue is determining P, given p.

The problem may be tackled by provisionally considering the simpler example of
a die tossed four times, thus giving the sequence of four numbers fm1;m2;m3;m4g,
1 � mi � 6. The probability4 QP.x/ is sought that the sum x D m1 C m2 C m3 C m4

equals a given number, e.g., x D 7. As the probability that the ith event yields mi is
Qpi.mi/ D 1=6, it follows that the probability of each sequence fm1;m2;m3;m4g of
four independent events is Qp1.m1/ � � � Qp4.m4/ D 1=6

4 D 1=1;296. Clearly,

6X

m1D1

6X

m2D1

6X

m3D1

6X

m4D1

Qp1.m1/ Qp2.m2/ Qp3.m3/ Qp4.m4/ D 1 : (C.152)

The probability of interest is then obtained as

QP D
6X

m1D1

6X

m2D1

6X

m3D1

6X

m4D1

� Qp1.m1/ Qp2.m2/ Qp3.m3/ Qp4.m4/ ; (C.153)

where � D 1 when m1 C m2 C m3 C m4 D 7 and � D 0 otherwise, namely, using
the Kronecker symbol (A.18), � D ıŒm1Cm2Cm3Cm4; 7� D ıŒm1Cm2Cm3C

m4 � 7; 0� D ıŒm1 C m2 C m3 C m4 � 7�. The sequences thus selected are four of
the type f1114g, four of the type f1222g, and twelve of the type f1123g, whence
QP.7/ D .4C 4C 12/=1;296 D 5=324.

4The symbols used in the example are different because they indicate probabilities rather than
probability densities.
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Although this example may seem trivial, it provides a hint for solving the original
problem. As the displacements are independent from each other, the probability of
a particular sequence �1, �2, : : :, �n is given by p.�1/ p.�2/ : : : p.�n/, where p fulfills
the normalization condition

Z C1

�1

p.�i/ d�i D 1 : (C.154)

The moment of order m of p is defined5 like in (C.59); in particular, the mean value
of � is h�i D M1, whence h� � h�ii D 0. In turn, the dispersion of � is

.��/2 D h.� � h�i/2i D h�2i � h�i2 � 0 : (C.155)

Finally, the standard deviation of � is �� D
q
.��/2. Now, to find the probability

density P.x/, with x D
Pn

iD1 �i, one starts from the counterpart of (C.153) in the
continuous case and lets

P.x/ D
Z C1

�1

� � �

Z C1

�1

ı./ p.�1/ d�1 � � � p.�n/ d�n ; (C.156)

with  D �x C
Pn

iD1 �i. Using the integral expression (C.43) of ı./ trans-
forms (C.156) into

P.x/ D
1

2�

Z C1

�1

exp.�i k x/� (C.157)

�

�Z C1

�1

p.�1/ exp.i k �1/ d�1 � � �
Z C1

�1

p.�n/ exp.i k �n/ d�n

�
dk :

The quantity in brackets of (C.157) is the product of n replicas of the same integral;
in conclusion, the probability distribution P is found to be

P.x/ D
1

2�

Z C1

�1

qn.k/ exp.�i k x/ dk ; q.k/ D
Z C1

�1

p.�/ exp.i k �/ d� :

(C.158)
Letting n D 1 in the first relation in (C.158) shows that q.k/ vanishes asymptotically
due to the properties of the Fourier transform (Sect. C.2); also, comparing the second
relation with (C.154) provides q.0/ D 1. Other relations are

q0 D
dq

dk
D

Z C1

�1

i � p.�/ exp.i k �/ d� ; q0.0/ D i h�i ; (C.159)

5It is assumed that the decay at infinity of the probability density p is such that the integrals defining
the moments Mm converge for all m � 0.
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q00 D
d2q

dk2
D

Z C1

�1

��2 p.�/ exp.i k �/ d� ; q00.0/ D �h�2i : (C.160)

The above results help in finding useful relations between moments of p and P; in
fact,

Z C1

�1

P.x/ dx D
Z C1

�1

qn.k/

�
1

2�

Z C1

�1

exp.�i k x/ dx

�
dk D qn.0/ D 1 ;

(C.161)
where the integral in brackets equals ı.k/ due to (C.43). Then,

hxi D
Z C1

�1

x P.x/ dx D
1

2�

Z C1

�1

�
x
Z C1

�1

qn.k/ exp.�i k x/ dk

�
dx :

(C.162)
Observing that x exp.�i k x/ is the derivative of i exp.�i k x/ with respect to k, the
integral over k in (C.162) can be calculated by parts using the asymptotic behavior
of q. This yields

hxi D �
i

2�

Z Z C1

�1

n qn�1.k/ q0.k/ exp.�i k x/ dk dx : (C.163)

Integrating over x first, using again (C.43), and inserting the second relation
of (C.159), transforms (C.163) into

hxi D �i n
Z C1

�1

qn�1.k/ q0.k/ ı.k/ dk D �i n qn�1.0/ q0.0/ D n h�i : (C.164)

Similarly,

hx2i D �n q00.0/ � .n2 � n/
�
q0.0/

	2
D n h�2i C .n2 � n/ h�i2 (C.165)

whence, observing that .�x/2 D hx2i � hxi2 (compare with (C.155)),

.�x/2 D n h�2iC .n2�n/ h�i2�n2h�i2 D n h�2i�n h�i2 D n .��/2 : (C.166)

The above results provide interesting information about the sum of statistically
independent variables; in particular, if h�i ¤ 0 it is

�x

hxi
D

p
n��

n h�i
D

1
p

n

��

h�i
: (C.167)

This shows that when n increases, the fractional deviation �x=hxi of the values of x
around the mean becomes increasingly negligible.
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C.19 Central Limit Theorem

The results of Sect. C.18 have been obtained without the need of specifying the
form of the probability density p.�/; in fact, the only hypothesis is that the events
are mutually independent. It has also been proven that when the number n of events
becomes large, the distribution of the sum x tends to concentrate around the mean
value hxi. This suggests that when the number of events is large, it is sensible
to seek for an approximate description of the central part of P.x/ (namely, that
corresponding to the values of x sufficiently near to hxi), because the majority of
the P.x/ values belong there.

To begin, one remembers that q.0/ D 1 and limjkj!1 q.k/ D 0. This means that
for jkj sufficiently large it is jq.k/j < q.0/ D 1. From the second relation in (C.158)
one finds that the rapidness with which q vanishes for k ¤ 0 depends on the form
of p.�/; if p.�/ varies slowly in a range �a < � < �b in which many oscillations
of exp.i k �/ occur, the oscillations almost cancel each other and the corresponding
integral tends to vanish:

Z �b

�a

p.�/ exp.i k �/ d� ' p.�a/

Z �b

�a

exp.i k �/ d� ' 0 : (C.168)

The condition that makes p a slowly varying function in the given range is
�p D jdp=d�j .�b � �a/ � p; in turn, the condition that the range contains many
oscillations reads jkj .�b � �a/� 1; combining the two conditions yields

1

jkj

ˇ̌
ˇ̌dp

d�

ˇ̌
ˇ̌� p ; (C.169)

where the range of �b��a has been eliminated. For all values of k that fulfill (C.169),
jqj rapidly decays to zero as k departs from zero. The decay is much more rapid for
qn when n is large; this suggests to calculate P.x/ in (C.158) by expanding qn, or
some function of it, into a Taylor series around k D 0 and truncating the series to
some order. To proceed, one recasts the second relation in (C.158) by expanding the
exponential, to find (compare with (C.61))

q.k/ D
Z C1

�1

p.�/
1X

mD0

1

mŠ
.i k �/m d� D

1X

mD0

h�mi

mŠ
.i k/m : (C.170)

As indicated above, qn decays rapidly to zero for a large n; it is then preferable to
use the logarithm by letting q.k/ D 1C# , where # D h�i i k� .1=2/ h�2i k2C� � � is
the part of the series starting from m D 1. It follows qn D expŒn log.1C#/�, where
j#j < 1 because the values of k near k D 0 are considered: this makes it possible
to use the series expansion log.1C #/ D # � .1=2/ #2 C .1=3/ #3 C � � � . Finally,
one replaces the expression of # in the last series and retains only the terms that are
first or second order in k: one finds that # contributes a term of the first order and
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another term of the second order; next, .1=2/ #2 contributes a term of the second
order, which is kept, and higher-order terms, which are neglected; the terms from
.1=3/ #3 on are not considered. Thus,

n log.1C #/ ' n h�i i k �
n

2

�
h�2i � h�i2

	
k2 D i hxi k �

1

2
.�x/2 k2 ; (C.171)

where (C.164) and (C.166) have been used. Taking the exponential of the above and
replacing it into the first relation of (C.158) yield

P.x/ '
1

2�

Z C1

�1

expŒi .hxi � x/ k � .�x/2 k2=2� dk ; (C.172)

which is identical to (C.81). It follows

P.x/ '
1

p
2� �x

exp

�
�
.x � hxi/2

2 .�x/2

�
;

Z C1

�1

P.x/ dx D 1 ; (C.173)

where the second relation derives from (C.78). In conclusion, for a sufficiently large
set of mutually independent events, having a slowly varying probability density
p.�/, the central part of the probability density of the sum x D �1 C � � � C �n

is well approximated by a Gaussian. This result, called central-limit theorem, is
very important because its conditions, being relatively unrestrictive, apply to a large
variety of practical cases.



Appendix D
Tables

Table D.1 Fundamental constants

Quantity Symbol Valuea Units

Vacuum permittivity "0 8:85419 � 10�12 F m�1

Speed of light c 2:99792 � 108 m s�1

Electron charge q 1:60219 � 10�19 C

Electron rest mass m0 9:10953 � 10�31 kg

Proton rest mass M0 1:67265 � 10�27 kg

Boltzmann constant kB 1:38066 � 10�23 J K�1

Stefan-Boltzmann const. � 5:67037 � 10�12 W cm�2 K�4

Planck constant h 6:62616 � 10�34 J s

Reduced Planck const. „ 1:05459 � 10�34 J s

Atomic radius ra � 10�10 m

Electron radius re 2:81794 � 10�15 m

a The ratio between the proton and electron rest masses is M0=m0 ' 1836

The vacuum permeability is found from �0 D 1=.c2"0/

© Springer International Publishing AG 2018
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Table D.2 Greek alphabet Small Capitala Name Small Capital Name

˛ A alpha � N nu, ni

ˇ B beta  & xi

� � gamma o O omicron

ı � delta � ˘ pi

" E epsilon % P rho

� Z zeta � ˙ sigma

� H eta � T tau

� , # ( theta ) * upsilon

+ I iota �, ' ˚ phi

� K kappa 	 X chi

� , lambda  � psi

� M mu, mi ! ˝ omega

aSymbol r is not a Greek letter. However, its name nabla
is a Greek word, meaning “harp”



Solutions

Problems of Chap. 1

1.1 The distance between A and B is a functional of y:

GŒy� D
Z

AB

p
dx2 C dy2 D

Z b

a

p
1C Py2 dx :

As g.y; Py; x/ D
p
1C Py2 it is @g=@y D 0, whence the Euler-Lagrange equation reads

0 D
d

dx

@g

@Py
D

d

dx

2Py

2g
D
Ryg � Py.2PyRy=2g/

g2
D
Ry

g3
.g2 � Py2/ D

Ry

g3
;

that is, Ry D 0 ; y D c1x C c2. The two constants are found from c1a C c2 D ya ;

c1bC c2 D yb.

1.2 Letting H D E one finds

x2

a2
C

p2

b2
D 1 ; a D

p
2E=c ; b D

p
2m E :

The curves are ellipses whose axes are proportional to
p

E. The area of each ellipse
is � a b D 2� E=!, with ! D

p
c=m. As shown in Sect. 3.3, ! is the angular

frequency of the oscillator, so that the area becomes E T , with T D 2�=! the period.
Examples of constant-energy curves, in arbitrary units, are shown in Fig. D.1, where
the parameters have been set to m D 0:5, c D 1, and E D 2, E D 4:5, E D 8. The
x coordinate ranges between �xM and xM , with xM D

p
2E=c, the p coordinate

ranges between �pM and pM , with pM D
p
2m E. As time evolves, the phase point

follows the curve in the clockwise direction; in fact, as the phase point reaches the
maximum elongation xM > 0 from the left, the momentum at xM changes from
positive to negative.

© Springer International Publishing AG 2018
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Fig. D.1 Constant-energy curves of the linear harmonic oscillator discussed in Prob. 1.2

Fig. D.2 Constant-energy
curves of the nonlinear
harmonic oscillator discussed
in Prob. 1.3
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1.3 Letting H D E one finds for the maximum elongation xM D .s E=c/1=s. Note
that the units of c depend on the value of s. Examples of constant-energy curves,
in arbitrary units, are shown in Fig. D.2, where the parameters have been set to
m D 1, c D 1, E D 1, and s D 0:5, s D 1, s D 2, s D 10, s D 100. The x
coordinate ranges between �xM and xM , and the p coordinate ranges between �pM

and pM , with pM D
p
2m E. The form of the constant-energy curves becomes more

and more rectangular as s increases. Compare with Prob. 3.1, where it is shown that
the s ! 1 limit yields the case of a square well. As in Prob. 1.2, the phase point
follows the curve in the clockwise direction.

1.4 The state trajectory of the linear harmonic oscillator is sketched in Fig. D.3.
Assume that the particle is initially at A; its position x coincides with the negative
extremum �xM of the trajectory, its momentum is zero, and the force acting on the
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Fig. D.3 State trajectory of
the linear harmonic oscillator

B

x

p

t

A

particle is positive. When the particle reaches the positive extremum xM (point B
in Fig. D.3), half a period has elapsed, corresponding to the difference between the
positions of B and A along the vertical axis. At B the motion reverses (dashed line
starting from B). Note that the orientations of the x and p axes are different from
those used in Probs. 1.2 and 1.3; for this reason, here the motion of the phase point
viewed from the positive side of the t axis is counterclockwise.

1.5 The state trajectory of the harmonic oscillator of the general form used in
Prob. 1.3, in the s ! 1 limit, is sketched in Fig. D.4. The problem reduces to
describing the motion of a particle within a square well. Assume that the particle is
initially at A; its position x coincides with the negative edge �xM of the well, and its
momentum is positive. The particle’s motion at A is oriented in the positive direction
of the x axis; when the particle reaches the positive edge xM (point B in Fig. D.4),
a time has elapsed corresponding to the difference between the positions of B and
A along the vertical axis. As shown by the first portion of the state trajectory (thick
line between A and B), the x.t/ relation is linear; in fact, the particle’s velocity p=m
is constant. At point B, the particle is reflected by the right edge of the well, so that
its momentum reverses in zero time: this is described by the segment between B
and C, the two extrema of which have the same position along the x axis and also
along the t axis. After the reflection has occurred, the particle continues its motion
with a constant (negative) momentum towards the left edge of the well (dashed line
starting from C). Note that the orientations of the x and p axes are different from
those used in Probs. 1.2 and 1.3; for this reason, here the motion of the phase point
viewed from the positive side of the t axis is counterclockwise.

1.6 The generating function of the functional is the three-dimensional form of the
left-hand side of (1.77), g D �2 .w2x C w2y C w2z /=.2m/C V w2, with wx D @w=@x
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Fig. D.4 State trajectory of
the harmonic oscillator of the
general form

x
A

B

C

p

t

and the like for wy, wz. The generating function of the constraint is g0 D w2;
applying (4.5) to gE D g � E g0 yields

d

dx

@gE

@wx
C

d

dy

@gE

@wy
C

d

dz

@gE

@wz
D
@gE

@w
;

with

@gE

@w
D 2 .V � E/w ;

d

dx

@gE

@wx
D

d

dx

�2

m
wx D

�2

m
wxx ;

and the like for wy, wz. Combining the above and observing that wxx C wyy C wzz D

r2w yield

�
�2

2m
r2wC V w D E w :
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Problems of Chap. 2

2.1 From (2.49) one finds

J.E/ D
p

m c
I p

2E=c � x2 dx ;

where the integration path is the ellipse described in problem 1.2. Letting x Dp
2E=c sin' transforms the above into

J.E/ D 2

r
m

c
E
Z 2�

0

cos2 ' d' D
2�

!
E ; ! D

r
c

m
:

The first of (2.51) then yields � D Pw D @H=@J D @E=@J D !=.2�/.

Problems of Chap. 3

3.1 Like in problem 1.3, letting H D E > 0 one finds for the maximum elongation
xM D .s E=c/1=s, where the units of c depend on the value of s. The motion is limited
to the interval Œ�xM;CxM� and the potential energy is symmetric with respect to the
origin. Using (2.47) and exploiting the symmetry yield

T D 4

r
m

2

Z xM

0

dx
p

E � V.x/
D

r
8m

E

Z xM

0

Œ1 � .x=xM/
s��1=2 dx :

Letting  D x=xM and using (C.106, C.107) yield

T D

r
8m

E
xM

Z 1

0

d
p
1 � s

D
p
8� m

.1=s/ � .1=s/

� .1=sC 1=2/


 s

c

�1=s
E1=s�1=2 :

The result shows that the case s D 2, namely, that of the linear harmonic oscillator,
is special. In fact, the period does not depend on the total energy, whereas for s ¤ 2
it does. Still in the case s D 2 one finds T D 2�=!, ! D

p
c=m, as should be

(compare with the results of Sect. 3.3). In turn, the case s ! 1 yields s1=s ! 1,
c1=s ! 1 whence, using (C.108), lims!1 T D

p
8m=E. The above is the period

in a square well of length 2 (compare with the description of Sect. 3.2). In fact, as
s ! 1, the potential energy cjxjs=s transforms into a square well with xM D 1.
The potential energy is shown in Fig. D.5 for some values of s. Thanks to the result
of this problem one may tune the form of the potential energy to make the period
proportional to a chosen power h D 1=s � 1=2 � �1=2 of the energy. For instance,
letting s D 2=3 makes T proportional to E, namely, T D

p
m=.3c3/ 2�E.
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Fig. D.5 Form of the potential energy cjxjs=s for c D 1 and different values of s (Prob. 3.1)

3.2 The solution is similar to that of Prob. 3.1. Letting H D E < 0 one finds for
the maximum elongation xM D Œk=.s jEj/�1=s, where the units of k depend on the
value of s. The motion is limited to the interval Œ�xM;CxM� and the potential energy
is symmetric with respect to the origin. Using (2.47) and exploiting the symmetry
yield

T D 4

r
m

2

Z xM

0

dx
p

E � V.x/
D

s
8m

jEj

Z xM

0

Œ.xM=x/s � 1��1=2 dx :

Letting  D x=xM and using (C.109, C.110) yield

T D

s
8m

jEj
xM

Z 1

0

d
p
1=s � 1

D
p
8� m

� .1=sC 1=2/

s� .1=sC 1/

�
k

s

�1=s

jEj�1=s�1=2 :

The Coulomb case s D 1 yields T D
p
2m� k jEj�3=2 (in fact, in the Coulomb case

and for a closed trajectory the period is always proportional to jEj�3=2, compare
with (3.81)). Note that in the case considered here the particle crosses the origin
because the initial conditions are such that its trajectory is aligned with the x axis.
The limit s ! 1 yields s1=s ! 1, c1=s ! 1 whence, using (C.108, C.110),
lims!1 T D 0. The potential energy is shown in Fig. D.6 for some values of s.

3.3 The O reference is chosen as in Sect. 3.13.5, whence T1a D E D .m1=m/EB.
From (3.36) one extracts �=s0 D tanŒ.� � 	/=4�, to find

2�=s0
1 � .�=s0/2

D
2� s0

s20 � �
2
D tan


� � 	
2

�
D

1

tan.	=2/
;
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Fig. D.6 Form of the
potential energy �kjxj�s=s
for k D 1 and different values
of s (problem 3.2)
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Fig. D.7 Normalized loss of
energy c .T1a � T1b/=˛ as a
function of the normalized
initial energy c T1a=˛

(problem 3.3), for different
values of the ratio m1=m2
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where s0 is given by the second of (3.33). It follows that s20 � �
2 D 2 � s0 and

tan.	=2/ D �=�. Then, noting that (3.23) contains sin2.	=2/ D tan2.	=2/=Œ1 C
tan2.	=2/�, and using (3.73), one finds sin2.	=2/ D 1=.1C c2=�2/. The expression
of � is taken from the first of (3.32), with ˛ given by (3.75). Inserting the result
into (3.23) yields

T1b D
˛2 .1 � m1=m2/

2 C c2 T21a

˛2 .1C m1=m2/2 C c2 T21a

T1a ; T1a�T1b D
4 .m1=m2/T1a

.1C m1=m2/2 C .c=˛/2 T21a

:

Obviously it is T1b < T1a. It follows that T1a � T1b is the loss of energy due to the
collision. It is also interesting to note that using the normalized energies c T1a=˛ and
c T1b=˛ makes the expressions above to depend on the m1=m2 ratio only. The loss
of energy is drawn in normalized form in Fig. D.7 for different values of m1=m2.
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Problems of Chap. 4

4.1 Using primes to indicate derivatives, a first integration yields

'0 D '0.c/ � H ; H.x/ D
Z x

c

%./

"0
d ;

where H is integrated by parts:

Z x

a
H./ d D x H.x/ � a H.a/ �

Z x

a

%./

"0
d :

Integrating '0 and using the expression of
R x

a H./ d yield the solution

' D '.a/C '0.c/ .x � a/ � x
Z x

c

%./

"0
d C a

Z a

c

%./

"0
d C

Z x

a

%./

"0
d :

4.2 Letting c D a in the solution to Prob. 4.1 yields at any point x within Œa; b� the
expression

'.x/ D '.a/C '0.a/ .x � a/ � x
Z x

a

%./

"0
d C

Z x

a

%./

"0
d :

For x > b it is % D 0 so that the solution of '00 D 0 is linear and has the form
'.x/ D '.b/C'0.b/ .x� b/. The term '.b/ in the latter is obtained by letting x D b
in the above expression of '.x/. One finds '.b/ D '.a/C'0.a/ .b�a/�b M0CM1,
with

M0 D

Z b

a

%./

"0
d ; M1 D

Z b

a

%./

"0
d

the first two moments of %="0 (compare with Sect. C.6). The derivative '0 is found
from Prob. 4.1 with c D a, and reads

'0.x/ D '0.a/ �
Z x

a

%./

"0
d ;

whence '0.b/ D '0.a/�M0. Using the expressions of '.b/, '0.b/ thus found yields

'.x/ D '.a/C '0.a/ .x � a/ �M0 xCM1 ; x > b :

4.3 From the findings of Prob. 4.2 one observes that the solution ' is invariant for
any charge density Q% that leaves M0 and M1 unchanged. Due to this, if both M0 and
M1 differ from zero, the new charge density must contain two adjustable parameters
in order to fit the values of M0, M1 through the expressions introduced in Prob. 4.2.
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Fig. D.8 Example of charge
density such that M0 D 0 and
M1 D 0

ρ0

− ρ0

− ξ0 ξ0 ξ

ρ

If only one moment differs from zero, one parameter suffices, while no parameter is
necessary if both moments are equal to zero. Figure D.8 gives an example of charge
density such that M0 D 0 and M1 D 0.

4.4 The starting point is the solution for x > b found in Prob. 4.2. When the charge
density is removed, the new solution reads

'.x/ D Q'.a/C Q'0.a/ .x � a/ :

For x > b the two solutions become equal to each other by letting Q'.a/ D '.a/ �
M0 aCM1 and Q'0.a/ D '0.a/ �M0.

4.5 Considering that the value of h is unknown, the integrals that define the moments
(Prob. 4.2) must be extended from �1 to C1. One finds � D M0, h D M1=M0.
If h � a, the solution is given by ' D '.a/ C '0.a/ .x � a/ � M0 x C M1 for
x � h, while it is given by ' D '.a/ C '0.a/ .x � a/ for x < h. If h < a, the
solution is given by ' D '.a/ C '0.a/ .x � a/ for x � h, while it is given by
' D '.a/ C '0.a/ .x � a/ � M0 x C M1 for x < h. At h the electric potential is
continuous, '.hC/ D '.h�/ D '.a/ C '0.a/ .h � a/, whereas the electric field is
discontinuous, '0.h�/ � '0.hC/ D M0. The case M0 ¤ 0, M1 D 0 yields � D M0,
h D 0, while the case M0 D 0, M1 ¤ 0 cannot be fulfilled by �ı.x � h/.

4.6 From (4.60), the force acting on the particle is

F D q u ^ B D q

2

4
i j k

ux uy uz

0 0 B

3

5 D q uy B i � q ux B j ;

whence Newton’s law reads

m Pux D q B uy ; m Puy D �q B ux ; m Puz D 0 :

Letting ux0, uy0, uz0 be the components of the initial velocity, from the third relation
above one derives z.t/ D z0 C uz0 t, with z0 D z.0/. Combining the other two
relations yields
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Rux D �.q B=m/2 ux D �!
2 ux ; Ruy D �.q B=m/2 uy D �!

2 uy ;

! D q B=m > 0, whose solution is

ux D ax cos.! t/C bx sin.! t/ ; uy D ay cos.! t/C by sin.! t/ :

The expression of ux yields ax D ux0; observing that Pux0 D ! bx and Pux0 D ! uy0,
one finds bx D uy0. By the same token, by D �ux0. Now, let the initial conditions be
ux0 > 0 and uy0 D uz0 D 0, whence z D z0, bx D ay D 0; thus, ux D ux0 cos.! t/
and uy D �ux0 sin.! t/. In conclusion,

x D x0 C .ux0=!/ sin.! t/ ; y D y0 C .ux0=!/ cos.! t/ :

Combining the above yields u2 D u2x C u2y D u2x0 and

.x � x0/
2 C .y � y0/

2 D u2x0=!
2 ; z D z0 ;

that is, the trajectory is a circumference of radius r D ux0=! belonging to the plane
z D z0.

Problems of Chap. 5

5.1 From n D n.x1/ one finds that grad n D i1 dn=dx1 is parallel to x1 whereas
dn=dx2 D dn=dx3 D 0. From the eikonal equation (5.57) it follows

d

ds

�
n

dx2
ds

�
D 0 ;

d

ds

�
n

dx3
ds

�
D 0 ;

whence n dx2=ds D const, n dx3=ds D const. The ratio of the latter relations yields
dx2=dx3 D const, namely, x2 D a x3 C b, where a, b are constants. This expression
is one of the two parametric equations u.x1; x2; x3/ D 0, v.x1; x2; x3/ D 0 describing
the ray, and shows that the ray belongs to a plane parallel to x1. By a suitable rotation
around x1, such that x2 ! x02, x3 ! x03, the plane of the ray is made parallel to
the plane x1 x02, so that the third coordinate x03 is fixed. In the new reference, let #
be the angle between the direction of the ray and x1 at some point P; it is dx1 D
cos# ds ; dx02 D sin# ds. The eikonal equation in the new reference then provides

n
dx02
ds
D const ; n sin# D const :

5.2 Like in problem 5.1 one considers the case where the refraction index depends
only on the x1 coordinate. Let the medium be made of three regions separated
by two planes parallel to each other. The two external regions A and B have a
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constant refraction index, nA and, respectively, nB ¤ nA. The internal region I,
whose thickness is s, has a refraction index that varies continuously from nA to
nB as x1 varies from the A-I interface to the I-B interface. Applying the solution
of problem 5.1 to this case shows that nA sin#A D const everywhere in region A,
hence the ray is a straight line there; similarly it is nB sin#B D const everywhere in
region B, with the same constant. It follows

nB sin#B D nA sin#A :

Unless #A D 0, the position of the ray along the x02 axis at the I-B interface is
different from that at the A-I interface; if, however, s is made to vanish, the position
becomes the same, thus yielding the Descartes law of refraction: the ray crossing
an interface between two media is continuous, whereas its slopes on the two sides
of the interface fulfill the relation above. The result still holds in the cases where
the interface between the two media is not planar, provided its curvature is small
enough to make Geometrical Optics applicable.

5.3 Using (5.65) and grad � D g=g, one finds

@�

@xi
D �

@�=@xi

@�=@�
D �

gi=g

c � u � g=g
D �

@�

@t

gi

c g
; grad � D �

@�

@t

g
c g
:

Combining the third relation in the above with g D c .t � �/ yields grad g D
�c grad � D .g=g/ @�=@t. It follows

@g

@t
D
@g

@�

@�

@t
D �

@�

@t
u �

g
g
;

@g
@t
D �

@g
@�

@�

@t
D �

@�

@t
u ;

whence

@

@t

�
g
g

�
D

u � g g � g � g u
g3

@�

@t
:

Starting from the above relations and from @u=@t D Pu @�=@t, and using (5.65)
repeatedly, one finds

@2�

@t2
D
@

@t

�
c

c � u � g=g

�
D c

@ .u � g=g/ =@t

.c � u � g=g/2
D
1

c

�
@�

@t

�2
@ .u � g=g/

@t
;

where

@ .u � g=g/

@t
D

g
g
�
@u
@t
C u �

@.g=g/

@t
D

g
g
� Pu
@�

@t
C u �

u � g g � g � g u
g3

@�

@t
:

Combining the above finally yields the result sought,
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@2�

@t2
D

1

c g3

�
@�

@t

�3 �
.g � u/2 � g2 u2 C g2 g � Pu

�
:

5.4 It suffices to use (5.65) in (5.6), (5.7), and to replace �0 with 1=."0 c2/ in the
second one. The corresponding expressions of E, B are found from (4.26),

4� "0

e
E D � grad

�
@�

@t

1

g

�
�
1

c2
@

@t

�
@�

@t

u
g

�
;

4 � "0 c2

e
B D rot

�
@�

@t

u
g

�
:

5.5 The expression of the electric field E derived in Prob. 5.4 is made of two terms.
For the first one, one calculates

S D � grad

�
@�

@t

1

g

�
D �

1

g

@ grad �

@t
C
@�

@t

grad g

g2
;

where the time derivative and the gradient have been exchanged in the first term.
The grad � and grad g terms are replaced, respectively, with �.@�=@t/ g=.c g/ and
.@�=@t/ g=g (Prob. 5.3), to yield

S D
g

c g2
@2�

@t2
C

1

c g

@�

@t

@.g=g/

@t
C

g
g3

�
@�

@t

�2
:

As for the second term in the expression of the electric field E derived in Prob. 5.4,
one calculates

V D �
1

c2
@

@t

�
@�

@t

u
g

�
D �

1

c2
u
g

@2�

@t2
�
1

c2

�
@�

@t

�2 � Pu
g
C

u � g u
g3

�
;

where the relations @u=@t D Pu @�=@t and @g=@t D �.@�=@t/u � g=g have been used
(Prob. 5.3). Next, one forms the sum T D S C V D 4� "0 E=e and groups some
terms, to find

T D
c g � g u

c2 g2
@2�

@t2
C

1

c g

@�

@t

@.g=g/

@t
C

�
@�

@t

�2 c2 g � g2 Pu � u � g u
c2 g3

:

The right-hand side of the above has three summands, Ti, i D 1; 2; 3; the first of
them, using the expression of @2�=@t2 from Prob. 5.3, reads

T1 D
�
@�

@t

�3
.g � u/2 � g2 u2 C g2 g � Pu

c3 g5
.c g � g u/ :

The second and third summands, using the expression of @.g=g/=@t from Prob. 5.3,
yield
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T2 C T3 D
�
@�

@t

�2 c g � u g � c g � g uC c2 g g � g3 Pu � g g � u u
c2 g4

;

which can be rearranged by introducing the relation c g D .c g�g �u/ .@�=@t/ taken
from (5.65)

T2 C T3 D
�
@�

@t

�3 c g � u g � c g � g uC c2 g g � g3 Pu � g g � u u
c3 g5

.c g � g � u/ :

From the above one calculates c3 g5 .@�=@t/�3 .T1 C T2 C T3/. In so doing, the
products c .g � u/2 g, c2 g .g � u/ g, and c g2 .g � u/u are canceled out by similar
products having the opposite sign. The remaining products are regrouped to yield,
after eliminating c3 g2 from both sides,

g3

.@�=@t/3
T D

�
1 �

u2

c2

� 

g � g

u
c

�
C
1

c2

h

g � g

u
c

�
g � Pu � g �



g � g

u
c

�
Pu
i
:

The term in brackets is given a more compact form by letting a D Pu, b D g�g u=c,
c D g and using the second identity in (A.33); combining the result with T D
4� "0 E=e finally yields

4� "0 g3

e .@�=@t/3
E D

�
1 �

u2

c2

� 

g � g

u
c

�
C g ^

�

g � g

u
c

�
^
Pu

c2

�
;

that coincides with (5.66).
5.6 Vector multiplying by g=g the equation before last of Prob. 5.5 yields

g2

.@�=@t/3
T ^ g D �g �



g � g

u
c

� Pu
c2
^

g
g
C

��
1 �

u2

c2

�
C g �

Pu
c2

�
g ^

u
c
;

where the identity g ^ g D 0 has been accounted for. Similarly, vector multiplying
by u=c the same equation provides

�
g3

.@�=@t/3
T ^

u
c
D g �



g � g

u
c

� Pu
c2
^

u
c
�

��
1 �

u2

c2

�
C g �

Pu
c2

�
g ^

u
c
;

where the identity u ^ u D 0 has been accounted for. When the last two equations
are added up, the following equation ensues:

g2

.@�=@t/3
T ^



g � g

u
c

�
D �g �



g � g

u
c

� Pu
c2
^

g
g
C g �



g � g

u
c

� Pu
c2
^

u
c
:

Dividing both sides by g and using T D 4� "0 E=e yield the result sought.
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5.7 The first component of rot u reads

.rot u/1 D
@u3
@x2
�
@u2
@x3
D

du3
d�

@�

@x2
�

du2
d�

@�

@x3
D .grad � ^ Pu/1 ;

and the like for the other components. Then, the expression of grad � is taken from
Prob. 5.3, thus yielding

4� "0 c2

e
B D �

�
@�

@t

�2 g
c g2
^ Pu � u ^ grad

�
1

g

@�

@t

�
:

The second term at the right-hand side needs further elaboration, which is carried
out in Prob. 5.8.

5.8 One notes that the expression of E derived in Prob. 5.4, and that of B derived in
Prob. 5.7, have a term in common, namely, gradŒ.1=g/ @�=@t�. Eliminating the latter
yields

4� "0 c2

e
B D �

�
@�

@t

�2 g
c g2
^ PuC u ^

�
4� "0

e
EC

1

c2
@

@t

�
@�

@t

u
g

��
:

Expanding the time derivative of .u=g/ @�=@t yields three terms, one of which is
.1=g/ .@�=@t/ @u=@t D .1=g/ .@�=@t/2 Pu. The other two terms do not contribute to
B because they are proportional to u (in fact, the u ^ u D 0 identity holds). Thus,

4� "0 c2

e
B D u ^

4� "0

e
E �

1

c g2

�
@�

@t

�2 

g � g

u
c

�
^ Pu :

Dividing both sides by c .@�=@t/3=g3 yields

g3

.@�=@t/3
4 � "0 c

e
B D

g3

.@�=@t/3
u
c
^
4� "0

e
E �

g

@�=@t



g � g

u
c

�
^
Pu

c2
:

Due to (5.65) it is 1=.@�=@t/ D 1 � g � u=.g c/, while E is expressible in terms of
@�=@t, g, u, and Pu D @u=@� as shown in Prob. 5.6. Thus, the above equation is the
result sought.
5.9 Rearranging the first equation of Prob. 5.6 after multiplying both sides by g
yields

4� "0 g2

e .@�=@t/3
g ^ E D

4� "0 g3

e .@�=@t/3
u
c
^ E �

g

@�=@t



g � g

u
c

�
^
Pu

c2
;

whose right-hand side is identical to that of the last equation of Prob. 5.8. Equating
the left-hand sides then yields



Solutions 853

B D
g
g
^

E
c
;

that coincides with (5.67).

Problems of Chap. 6

6.1 Letting # D ˇ h �, with ˇ D 1=.kB T/, the Boltzmann distribution takes the
form Nn D N0 exp.�n#/, whence

1X

nD0

Nn D N0 Œ1C exp.�#/C exp.�2 #/C : : :� D
N0

1 � exp.�#/
;

and

1X

nD0

n h � Nn D h � N0 Œexp.�#/C 2 exp.�2 #/C 3 exp.�3 #/C : : :� :

Observing that n exp.�n#/ D �d exp.�n#/=d# , one finds

1X

nD0

n h � Nn D �h �
d

d#

 
1X

nD0

Nn � N0

!

D h �
N0 exp.�#/

Œ1 � exp.�#/�2
;

whence

AvŒEn� D

P1
nD0 n h � NnP1

nD0 Nn
D

h �

exp.#/ � 1
D

h �

exp.ˇ h �/ � 1
:

Problems of Chap. 7

7.1 From (7.13), the power per unit area emitted by a black body is � T4, with
� D 5:67 � 10�12 W cm�2 K�4 the Stefan-Boltzmann constant. Thus, the power
emitted by the whole surface of the sun is P D 4� r2 � T4, with T D 5;780 K. As
the emitted radiation spreads uniformly over a spherical surface whose radius is R,
the power per unit area at the outer edge of the earth’s atmosphere (solar constant) is

dPE

dA
D

P

4� R2
D

1

2162
� T4 ' 136 mW cm�2 :
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Problems of Chap. 8

8.1 Consider the homogeneous equation associated with (8.76), g00Ca g0Cb g D 0,
and let f D g h and u D h0; this splits (8.76) into the system

g00 C a g0 C b g D 0 ; g u0 C .2 g0 C a g/ u D c :

If g is known, then u is found by integrating a first-order equation, whence f D
g
R

u d . To find g one lets A.x/ D
R

a d , g D exp.�A=2/w, thus transforming the
homogeneous equation for g into

w00 C q w D 0 ; q D b � a2=4 � a0=2 ;

which is a time-independent Schrödinger equation.

8.2 As both w1 and w2 are solutions corresponding to the same eigenvalue, it is
w001Cq w1 D 0 and w002Cq w2 D 0. Multiply the first one by w2, the second one by w1,
and subtract; this yields w2 w001 D w1 w002 . The latter is recast as .w2 w01/

0 D .w1 w02/
0,

namely

d

dx

�
w1 w02 � w2 w01

	
D

dW

dx
D 0 ; W D const,

with W the Wronskian. As shown in Sect. A.12, the condition W D 0 is necessary
for the linear dependence of w1, w2; as a consequence, the condition W ¤ 0 is
sufficient for the linear independence of w1, w2. The calculation carried out in this
problem does not tell whether the constant is zero or not; to discriminate between
the two cases, one must add some prescription on the solutions (an example is given
in Prob. 8.3).
8.3 The procedure shown here is used also in Sect. 11.4. As both w1 and w2 are
solutions corresponding to the same eigenvalue, it is w001Cq w1 D 0 and w002Cq w2 D
0. Letting w2 D v w1 in the latter yields v w001 C2 v

0 w01Cv
00 w1Cv q w1 D 0, where

the first and last summands cancel each other due to the equation fulfilled by w1.
Thus, letting a be any point of I, the relation 2 v0 w01 C v

00 w1 D 0 is equivalent to

�
w21 v

0
	0
D 0 ; w21 v

0 D w21.a/ v
0.a/ ; v D v.a/C w21.a/ v

0.a/
Z x

a

d

w21./
;

where x belongs to I as well. Now, if it were v0.a/ D 0, it would be w2 D v.a/w1,
that is, the two solutions would be linearly dependent in contrast to the hypothesis. It
follows that v0.a/ ¤ 0 and, as a consequence, v is monotonic in I because w1.a/ ¤ 0
and the integrand 1=w21 is positive. Given these premises, it is found by inspection
that w2 D v w1 fulfills w002 C q w2 D 0. The Wronskian of the two solutions w1, w2
(Sect. A.12) reads W D w1 w02 � w2 w01 D w21.a/ v

0.a/ ¤ 0.
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By way of example, in the case of a free particle (Sect. 8.2.1) one of the two
solutions of (8.1) can be written as w1 D cos.k x/; then, letting I 	 Œ��=4;C�=4�

and a D 0 it follows v D v.0/ C v0.0/ tan.k x/=k. Although this is not relevant
for the reasoning here, one may note that w1 is a fundamental solution (Sect. 11.4);
in order to make w2 a fundamental solution as well, one lets v.0/ D 0, v0.0/ D 1

to find w2 D v w1 D sin.k x/=k. The two solutions are linearly independent, and
W D 1.

As a second example, consider the case of the energy well of Sect. 11.5; as shown
in (11.47), one of the two solutions in the left region (x < 0) is w1 D exp.˛ x/.
Letting I 	 .�1; 0� and a D 0 one finds v D v.0/Cv0.0/ exp.�˛ x/ sinh.˛ x/=˛;
thus, w2 D v.0/ exp.˛ x/ C v0.0/ sinh.˛ x/=˛. If v0.0/ ¤ 0, such a solution
is linearly independent from w1; however, as sinh.˛ x/ diverges for x ! �1,
the result is not acceptable from a physical point of view: one must then let
v0.0/ D 0 which, however, renders w2 D v.0/w1. Thus, imposing the additional
prescription that w2 should not diverge makes the two solutions linearly dependent,
whence W D 0.
8.4 Let w1 be the eigenfunction corresponding to E, namely, w1 fulfills the equation
w001 .x/Cq.x/w1.x/ D 0. It follows that w001 .�x/Cq.�x/w1.�x/ D 0 also holds. On
the other hand, if V is even, q is also even; as a consequence,

w001 .�x/C q.x/w1.�x/ D 0

is fulfilled with the same eigenvalue. Being the latter simple, it must be w1.�x/ D
a w1.x/, with a some nonvanishing constant. As this relation holds for any x,
one may replace x with �x to find w1.x/ D a w1.�x/; multiplying by a both
sides of the latter yields a2 w1.�x/ D a w1.x/ D w1.�x/, whence a D ˙1 and
w1.�x/ D ˙w1.x/. An example of this property is found from the analysis of the
linear harmonic oscillator (Sect. 12.2).

Problems of Chap. 9

9.1 Inserting the expression of ck into the one-dimensional form of (9.26) yields

A .x � u t I k0/ D

p
�=2

�3=4

Z C1

�1

exp
�
i .x � u t/ .k � k0/ � �

2 k2=2
�

dk :

Following the same procedure as in Sect. C.8 one finds

i .x � u t/ .k � k0/ �
1

2
�2 k2 D �

.x � u t/2

2 �2
�
�2

2



k � j

x � u t

�2

�2
;
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whence

A .x � u t I k0/ D
1

�1=4
p
�

exp

�
�i k0 .x � u t/ �

.x � u t/2

2 �2

�
:

The particle’s localization is determined by

jA.x � u t/j2 D
1
p
� �

exp

�
�
.x � u t/2

�2

�
:

Using again the results of Sect. C.8 yields jjAjj D 1.

9.2 Remembering that j j2 D jAj2, the one-dimensional form of (9.23) reads

x0.t/ D
Z C1

�1

x jAj2 dx D
Z C1

�1

.x � u t/ jAj2 dxC u t
Z C1

�1

jAj2 dx :

Letting s D x � u t one finds that the integral of s jA.s/j2 vanishes because the
integrand is odd and the integration domain is symmetric with respect to the origin.
Using the result jjAjj D 1 of Prob. 9.1 then yields x0.t/ D u t.

Problems of Chap. 10

10.1 To determine the time evolution of the expectation value of the wavepacket
for a free particle one starts from the general expression (9.5), with wk.r/ and Ek D

„!k given by (9.22), and ck given by the second relation in (9.7). The wave function
is assumed normalized,

R C1
�1 j .r; t/j

2 d3r D
R C1
�1 jc.k/j

2 d3k D 1. Using the first
spatial coordinate x1 and defining mk D ck exp.�i!k t/, the following are of use:
x1 wk D �i @wk=@k1, x21 wk D �@

2wk=@k21, and

�

Z C1

�1
mk
@wk

@k1
dk1 D

Z C1

�1
wk

@mk

@k1
dk1 ;

Z C1

�1
mk
@2wk

@k21
dk1 D

Z C1

�1
wk

@2mk

@k21
dk1 ;

where the last two equalities are obtained by integrating by parts and observing that,
due to the normalization condition, ck and @ck=@k1 vanish at infinity. In turn,

i
@mk

@k1
D

�
u1 t ck C i

@ck

@k1

�
exp.�i!k t/ ; u1 D

@!k

@k1
D
„ k1
m

;

�
@2mk

@k21
D

��
u21 t2 C i

„

m
t

�
ck C 2 i u1 t

@ck

@k1
�
@2ck

@k21

�
exp.�i!k t/ :
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The expectation value hx1i D h jx1j i involves an integration over r to calculate
the scalar product, an integration over k to calculate the integral expression of  ,
and an integration over k0 to calculate the integral expression of  �. Performing the
integration over r first, letting c0k D c.k0/, !0k D !.k

0/, and using (C.56) yields

hx1i D
ZZZ C1

�1

�
u1 t jckj

2 C i c�k
@ck

@k1

�
d3k :

Letting ck D ak C i bk, with ak and bk real, and using the asymptotic vanishing of
ck, one finds

ZZZ C1

�1

i c�k
@ck

@k1
d3k D x01 ; x01 D

ZZZ C1

�1

�
@ak

@k1
bk �

@bk

@k1
ak

�
d3k ;

where x01 is a real constant. Repeating the calculation for x2 and x3, and letting
u D gradk!, r0 D .x01; x02; x03/, finally yields

hri D r0 C
ZZZ C1

�1

u t jckj
2 d3k ;

d

dt
hri D

ZZZ C1

�1

u jckj
2 d3k D const :

If jckj
2 is even with respect to all components of k, the expectation value of r does

not change with respect to the initial value r0. Otherwise, it moves at constant speed.
10.2 The time evolution of the standard deviation of position is found following the
same line and using the same symbols and relations as in Prob. 10.1, starting with

hx21i D
ZZZ C1

�1

��
u21 t2 C i

„

m
t

�
jckj

2 C 2i u1 t c�k
@ck

@k1
� c�k

@2ck

@k21

�
d3k :

An integration by parts combined with the normalization condition for ck shows that

ZZZ C1

�1

2i u1 t c�k
@ck

@k1
d3k D �i

„

m
tC 2 t

ZZZ C1

�1

u1

�
@ak

@k1
bk �

@bk

@k1
ak

�
d3k ;

where the second term at the right-hand side is real, whereas the first one cancels
out in the expression of hx21i. Finally, another integration by parts yields

�

ZZZ C1

�1

c�k
@2ck

@k21
d3k D

ZZZ C1

�1

ˇ̌
ˇ̌@ck

@k1

ˇ̌
ˇ̌
2

d3k :

In conclusion,

hx21i D
ZZZ C1

�1

ˇ̌
ˇ̌u1 t ck C i

@ck

@k1

ˇ̌
ˇ̌
2

d3k :
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Repeating the calculation for x2 and x3 yields

hr � ri D
Z C1

�1

ju t ck C i gradkckj
2 d3k ;

where the definition of the squared length of a complex vector is found in (A.2)
and (A.4). The standard deviation of the wave packet in the r space is the positive
square root of hr � ri � hri � hri D

P3
iD1.�xi/

2, where the expression of hri was
derived in Prob. 10.1. It is easily shown that the standard deviation diverges with t.
In fact, the leading term of hx21i and, respectively, hx1i2 is

hx21i � t2
ZZZ C1

�1

u21 jckj
2 d3k ; hx1i

2 � t2
�ZZZ C1

�1

u1 jckj
2 d3k

�2
;

the first of which is positive, whereas the second one is nonnegative. Letting f D ck,
g D u1ck in the Schwartz inequality (8.15) and using the normalization condition of
ck yields

ZZZ C1

�1

u21jckj
2 d3k >

�ZZZ C1

�1

u1jckj
2 d3k

�2
;

where the strict inequality holds because f and g are not proportional to each other.
For the leading term it follows that .�x1/2 D hx21i � hx1i

2 � const � t2, where the
constant is strictly positive. The same reasoning applies to x2, x3. In conclusion, the
standard deviation �xi associated with the ith coordinate diverges in time with the
first power of t.
10.3 Still with reference to the wave packet of a free particle used in Probs. 10.1
and 10.2, the time evolution of the expectation value in the p space is found starting
with the first component p1 of momentum. The corresponding operator is Op1 D
�i „ @=@x1, and the following relations are of use: Op1wk D „ k1 wk, Op21wk D „

2 k21 wk.
The expectation value hp1i D h jp1j i involves an integration over r to calculate
the scalar product, an integration over k to calculate the integral expression of  ,
and an integration over k0 to calculate the integral expression of  �. Performing the
integration over r first, letting c0k D c.k0/, !0k D !.k

0/, and using (C.56) yields

hp1i D
ZZZ C1

�1

„ k1 jckj
2 d3k D p01 :

The real constant p01 defined above is independent of time. In conclusion, repeating
the calculation for p2 and p3, and letting p0 D .p01; p02; p03/, the following holds:
hpi D p0. If jckj

2 is even with respect to all components of k, the expectation value
of p is zero.
10.4 The calculation of h jOp21j i is carried out following the same line as in
Prob. 10.3, leading to
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hp21i D
ZZZ C1

�1

„2 k21 jckj
2 d3k :

Repeating the calculation for x2 and x3 yields

hp � pi D
ZZZ C1

�1

„k � „k jckj
2 d3k :

In turn, the standard deviation of the wave packet in the p space is the positive square
root of hp �pi� hpi � hpi D

P3
iD1.�pi/

2. Letting f D ck, g D „k1ck in the Schwartz
inequality (8.15) and using the normalization condition of ck yields

ZZZ C1

�1

„2 k21 jckj
2 d3k >

�ZZZ C1

�1

„ k1 jckj
2 d3k

�2
;

where the strict inequality holds because f and g are not proportional to each other. It
follows that .�p1/2 D hp21i�hp1i

2 is strictly positive and constant in time. The same
reasoning applies to p2, p3. In conclusion, the standard deviation�pi associated with
the ith component of momentum is constant in time.
10.5 One finds hxi D x0, d„ˇ=dx D „ k0, hpei D „ k0,

�
p2e
2m

�
D
„2 k20
2m

; hQi D
„2

8m �2
; hTi D

„2

2m

�
k20 C

1

4 �2

�
:

One notes that for a fixed hTi all nonnegative values of the “convective” and
“thermal” parts that add up to hTi are allowed. In the particular case of a
free particle, where hTi D hEi, the above shows that different values of the
average momentum and “dispersion” may combine to yield the same total
energy.

Problems of Chap. 11

11.1 Letting b� D � a
p
2m .
p

E �
p

E � V0/=„, bC D � a
p
2m .
p

E Cp
E � V0/=„ and remembering that sinh b ' b when jbj � 1 yields, with m

fixed,

R.a! 0/ D

�
b�

bC

�2
D
.
p

E �
p

E � V0/2

.
p

EC
p

E � V0/2
;

that coincides with the first relation in (11.11). Conversely, when a > 0 is fixed and
m is let grow one finds
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R ' expŒ2 .b� � 2 bC/� D exp


�4� a

p
2m

p
E � V0=„

�
;

namely, limm!1 R D 0, thus recovering the classical limit.

11.2 The maximum of the cotangent’s argument s
p
2m .E � V0/=„2 is found by

letting E D 0. It is found

� D
s

„

p
�2m V0 ' 13:4 ;

13:4

�
' 4:3 :

As a consequence, the cotangent has four complete branches and one incomplete
branch in the interval V0 < E < 0, corresponding to five eigenvalues E1; : : : ;E5.
Using the normalized parameter 0 < � D

p
1 � E=V0 < 1, the equation to be

solved reads

�2 � 1=2

�
p
1 � �2

D cot .� �/ :

Over the � axis, the 5 branches belong to the intervals .0; �=�/, .�=�; 2�=�/,
.2�=�; 3�=�/, .3�=�; 4�=�/, .4�=�; 1/.

Problems of Chap. 13

13.1 Letting Z D 1 one finds that the lowest total energy of the electron in the
hydrogen atom has the value

E1.Z D 1/ D �
m0

2„2

�
q2

4 � "0

�2
:

As noted in Sect. 13.5.2, the electron is bound as long as E < 0. As a consequence,
the minimum energy for which it becomes free is limn!1 En D 0. The hydrogen
atom’s ionization energy is thus found to be

Eion D 0 � E1.Z D 1/ D jE1.Z D 1/j D
m0

2„2

�
q2

4 � "0

�2
:

Replacing the constants’ values of Table D.1 yields Eion ' 2:18 � 10�18

J ' 13:6 eV.
13.2 The time-dependent wave function is in this case D w.Emin/ exp.�i Emin t=„/,
whence j j2 D exp.�2 r=a/=.� a3/. Taking the Jacobian determinant J D r2 sin#
from (B.3) and using the definitions of Sect. 10.5 one finds
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hri D
Z 1

0

Z �

0

Z 2�

0

r
exp.�2 r=a/

� a3
r2 sin# dr d# d' D

3

2
a :

From (13.96) one finds a1 D a.Z D 1/ D 4� „2 "0=.m0 q2/ ' 5:3 � 10�11 m '
0:53 Å, where the constants’ values are taken from Table D.1. Note that a1 D r1=2,
with r1 the radius of the ground state derived from the Bohr hypothesis (Sect. 7.4.4).
The expectation value of r turns out to be hri ' 0:8 Å.
13.3 The time-independent Schrödinger equation to be discretized is (11.28); it
reads

d2w

dx2
C q w D 0 ; q.x/ D

2m

„2
.E � V/ :

The symbols of node, nodal value, element, and cell are those introduced in
Sects. 13.6.6 and A.13.2. The elements are taken equal to each other, h1 D : : : D

hNC1 D h. Expanding into a series the unknown function w at xi, using h as
increment, and combining the result with w00 D �q w, provides

wiC1 D wi C w0i h � qi wi
h2

2
� .qi wi/

0 h3

6
� .qi wi/

00 h4

24
� � �

Then, one expresses wi�1 using �h as increment, thus yielding a new series whose
odd-degree terms have the opposite sign with respect to those of the first series.
Adding up the two series, and leaving out the terms with the derivatives of w of the
sixth order or higher, yields

2wi � wiC1 � wi�1 ' qi wi h2 C .qi wi/
00 h4

12
:

The second derivative of the above, after leaving out the term with the sixth
derivative of w and using again w00 D �q w, reads

�2 qi wi C qiC1 wiC1 C qi�1 wi�1 ' .qi wi/
00 h2 :

One then combines the last two equations after multiplying both sides of the second
one by h2=12; this results in the elimination of .qi wi/

00, whence

�

�
1C

h2

12
qi�1

�
wi�1 C

�
2 �

10 h2

12
qi

�
wi �

�
1C

h2

12
qiC1

�
wiC1 D 0 :
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Problems of Chap. 14

14.1 From h.0/bg D ŒA=.2 �/
3�=.q2c C q2/ and q D jb � gj one finds

H.0/

b .Eg/ D
A2

.2 �/6

Z �

0

Z 2�

0

1

.q2c C q2/2
sin# d# d' ;

A D � Z e2="0. Observing that b is a fixed vector one can use it as the reference
for angle # , so that q2 D .b � g/ � .b � g/ D b2 C g2 � 2 b g cos# . From g D b
it follows q2 D 4 g2 sin2.#=2/. On the other hand, it is sin# d# D d sin2.#=2/
whence, integrating over ' and letting � D sin2.#=2/,

H.0/

b .Eg/ D
A2

.2 �/5

Z 1

0

d�

.q2c C 4 g2 �/2
D

A2=.2 �/5

q2c .q
2
c C 4 g2/

:

The dependence on Eg is found through the relation Eg D „
2 g2=.2m/.

14.2 The first term in brackets in (14.51) transforms as

jak k0 j2 ı.Ek � Ek0 � „!q/ ! jak0 kj
2 ı
�
�.Ek � Ek0 C „!q/

�
;

while the second one transforms as

jak0 kj
2 ı.Ek � Ek0 C „!q/ ! jak k0 j2 ı

�
�.Ek � Ek0 � „!q/

�
:

As ı is invariant upon change of sign of its argument, the negative sign before the
parenthesis in the two relations above can be eliminated. This shows that the two
summands in (14.51) merely exchange places upon exchange of the indices, so that
the whole sum is invariant. In conclusion, (14.51) is invariant upon exchange of the
indices k and k0. One notes in passing that the coefficient jak k0 j2 is also invariant,
due to the hermiticity of H .
14.3 Due to the form of the exponential, the summands are made of the product of
three independent factors:

Nc�1X

mD0

expŒi .k� k0C kd/ � lm� D
N1�1X

m1D0

exp.2 � i �1 m1/

N2�1X

m2D0

: : :

N3�1X

m3D0

exp.2 � i �3 m3/ :

Each factor in the above is recast as

Ni�1X

miD0

exp.2 � i �i mi/ D expŒ� i �i .Ni � 1/�
sin.� �i Ni/

sin.� �i/
;

whence
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ˇ̌
ˇ̌
ˇ

Nc�1X

mD0

expŒi .k � k0 C kd/ � lm�

ˇ̌
ˇ̌
ˇ

2

D

3Y

sD1

sin2.� �s Ns/

sin2.� �s/
:

14.4 From the solution to Prob. 14.3 one takes the relation

� D

Ni�1X

miD0

exp.2 � i �i mi/ D expŒ� i �i .Ni � 1/�
sin.� �i Ni/

sin.� �i/
:

It has already been shown in Prob. 14.3 that when Ni is large, the modulus of � is
significant only when �i is integer. Now assume, first, that �i differs slightly from an
even number, say, �i D 2 nC ", where n is an integer and j"j � 1. It follows

� D �e D exp Œi� ".Ni � 1/�
sin.� "Ni/

sin.� "/
;

whence lim"!0 �e D Ni. Similarly, if �i differs slightly from an odd number, say,
�i D 2 nC 1C ", it follows

� D �o D exp Œi� ."C 1/ .Ni � 1/�
sinŒ� ."C 1/Ni�

sinŒ� ."C 1/�
;

where the exponential may be written as .�1/Ni�1 expŒi� " .Ni � 1/�. In turn, after
expanding its numerator and denominator, the fraction in the definition of �o reads
.�1/Ni�1 sin.� "Ni/= sin.� "/. The product of the last two expressions equals the
right-hand side of the definition of �e, so that lim"!0 fo D Ni.
14.5 In this case uk is constant; remembering that its square modulus is the inverse
of a volume, it is sensible to let uk D 1=

p
�, whence

Yk k0.g� ;V D 0/ D
1

�

Z

�0

exp.i g� � r/ d3r :

The evaluation of the integral above is the same as that occurring in the theory of
the electromagnetic field (Sect. C.15), the only difference being that the reference is
not orthogonal:

r D �1a1 C �2a2 C �3a3 ;

with �i real numbers and d3r D �l d3� (Sect. 17.3). As the integral does not depend
on the form chosen for the cell, one may use for �0 a prismatic cell whose sides
coincide with a1, a2, a3, respectively, so that one vertex coincides with the origin.
As a consequence, the limits of �i for the �0 cell are 0 and 1. Then, remembering
that ai � bj D ıij, one finds that Yk k0.g� ;V D 0/ is given by the factor �l=� D 1=Nc

multiplied by three integrals of the form
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Yi D

Z 1

0

exp.2 � i �i �i/ d�i D exp.� i �i/
sin.� �i/

� �i
;

i D 1; 2; 3. As �i is an integer, the above function vanishes for every �i with the
exception of �i D 0. In conclusion,

Gk k0.g� ;V D 0/ D 1=N2
c ; g� D 0

Gk k0.g� ;V D 0/ D 0 ; g� ¤ 0 :

Problems of Chap. 15

15.1 After selecting a number 0 < � < 1=2, define EC and E� such that P.EC/ D
�, P.E�/ D 1 � �. It follows

EC � E� D 2 kB T log
1 � �

�
:

Letting, e.g., � D 0:1 one finds E.P D 0:1/ � E.P D 0:9/ D 2 kB T log 9 '
4:39 kB T . Similarly, letting � D 0:01 one finds E.P D 0:01/ � E.P D 0:99/ D

2 kB T log 99 ' 9:19 kB T . At T D 300 K it is kB T ' 25:8 meV. From the above
results one finds E.P D 0:1/ � E.P D 0:9/ ' 113 meV and E.P D 0:01/ � E.P D
0:99/ ' 237 meV, respectively.
15.2 From the qualitative standpoint one may discuss the problem by remembering
that, from the findings of Sect. C.4, P.E/ � 1=2 is odd with respect to E � EF; as a
consequence, a decrease in the occupation probability produced, by a temperature
change, at E D EF � �E, corresponds to a probability increase by the same
amount at E D EF C �E. If it were g.E/ D const, a number of particles
would relocate from one side of EF to the other. However, g.E/ is not constant
in general; it follows that the number of states available on the two sides of EF is
not the same and, when temperature changes, EF must shift in order to compensate
for this.

From the quantitative standpoint, and for the conditions specified by the problem,
one may let E1 D 0 and EU !1 in the first relation of (15.48). This yields [70]

NS D

Z 1

0

g.E/P.E/ dE D �
Z 1

0

G.E/
dP

dE
dE ; G.E/ D

Z E

0

g.E0/ dE0 :

Function G is now expanded into a Taylor series around EF to the second order,
namely, G.E/ ' G.EF/C g.EF/ .E � EF/C .1=2/ g0.EF/ .E � EF/

2. Inserting the
zero-order term into the integral provides G.EF/P.E D 0/ ' G.EF/. Then, using
again the findings of Sect. C.4, the integral of the first-order term yields



Solutions 865

g.EF/

kB T

Z 1

0

.E � EF/P .1 � P/ dE D 0 ;

because the integrand is odd1 with respect to E�EF. For the integral of the second-
order term one finds, letting E � EF D kB T � and p.�/ D 1=Œexp.�/C 1�,

g0.EF/

2 kB T

Z 1

0

.E � EF/
2 P .1 � P/ dE D �g0.EF/ .kB T/2

Z 1

�F

1

2
�2 p0.�/ d� ;

with �F D �EF=.kB T/. In the same order of approximation as for P.E D 0/ '

1 one replaces �F with �1; then, observing that the integrand is even with
respect to � D 0, integrating by parts, and using the first relation in (C.141),
one finds

�

Z 1

�1

1

2
�2 p0.�/ d� D �

Z 1

0

�2 p0.�/ d� D 2
Z 1

0

� p.�/ d� D
�2

6
:

Collecting the results yields NS ' G.EF/ C .�2=6/ g0.EF/ .kB T/2. As expected,
the relation between EF and T depends on the form of the density of states g:
if it were g0 D 0, EF would not depend on temperature. Note that the integral
involving the third derivative of G also vanishes, still because the integrand is odd;
it follows that the first term left out in this approximation is of the fourth order
in E � EF. In the T ! 0 limit the above relation becomes NS ' G.EF0/, with
EF0 D EF.T D 0/; equating the two expressions of NS and using the definition of G
provides

Z EF

EF0

g.E/ dE ' �
�2

6
g0.EF/ .kB T/2 :

If T is close to zero the above becomes

EF ' EF0 �
�2

6

g0.EF0/

g.EF0/
.kB T/2 ;

showing that if g0.EF0/ > 0 (which is the typical case), EF decreases when
temperature increases.
15.3 Object of the combinatorial problem is placing Nr particles, not subjected to
the exclusion principle, into gr states. The particles are not distinguishable. Since
the exclusion principle does not apply, both cases gr � Nr and gr < Nr are possible.
They are considered below, with the aid of tables whose columns are labeled by
numbers that refer to the particles; the entries of each line are letters that indicate

1In principle, the statement would be correct if the integral was started from �1. It is
approximately true due to the condition P.E D 0/ ' 1.
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the states. The left table shows the placement of two particles, labeled 1 and 2, into
three states, labeled A, B, and C; in the right table, four particles, labeled from 1 to
4, are placed into the same three states.

1 2

A A
A B
A C
B B
B C
C C

1 2 3 4

A A A A
A A A B
� � � �

� � � �

B C C C
C C C C

The state labels may be repeated within the same line because the exclusion
principle does not apply; e.g., the first line of the left table shows that in this
placement both particles 1 and 2 belong to state A. In each line the state labels
are ordered in ascending order because, due to indistinguishability, permutations
of these labels do not introduce new placements. It is found by inspection that the
number of placements (lines) of each table equals the number Ck

n of k-combinations
with repetitions of n objects, where n D gr is the number of states and k D Nr is the
number of particles. In particular it is C1

n D n.
To find Ck

n it is necessary to determine its relation with Ck�1
n . To this purpose,

one starts from the total number of states k Ck
n appearing in the table, and observes

that each state appears the same number of times; thus, the number of appearances
of single state, say, A, is k Ck

n=n. Now, one selects in the table only the placements
where state A appears, and suppresses A once in each placement; this yields the .k�
1/-combinations of n elements, whose number is Ck�1

n . The number of appearances
of A in the latter is, by the same token, .k�1/Ck�1

n =n; as a consequence, the number
of appearances of A in the original table (before suppression) can be calculated in
an alternative way as

Ck�1
n C

k � 1

n
Ck�1

n D
nC k � 1

n
Ck�1

n :

Equating the latter to k Ck
n=n provides Ck

n D Œ.nCk�1/=k�Ck�1
n ; iterating the above

as Ck�1
n D Œ.nC k � 2/=.k � 1/�Ck�2

n , down to C2
n D Œ.nC 1/=2�C1

n and C1
n D n,

and multiplying term-by-term the relations thus found, eventually yield

Ck
n D

.nC k � 1/ .nC k � 2/ � � � .nC 1/ n

k .k � 1/ � � � 1
D

�
nC k � 1

k

�
D

�
gr C Nr � 1

Nr

�
:
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Problems of Chap. 18

18.1 The derivation of (18.21) follows the same line as that of (15.49). The starting
point is determining the number of way of placing the electrons into the available
states, subjected to the constraints of exclusion and indistinguishability. The states
of the bands are the same as for an undoped semiconductor; for such states the
number of placements W D W1 W2 : : : Wr : : : still applies, where Wr is the number
of ways in which Nr particles can be placed into the gr states of the rth energy
interval; its value is given by (15.43). In a doped semiconductor one must then
consider the additional states associated with the dopants. Considering an n-doped
semiconductor where a constant concentration ND of donors is present, the total
number of donor atoms is KD D �ND, with � the volume of the crystal. In each
donor atom, the states able to accommodate the electron are those not involved in the
formation of the covalent bonds with the semiconductor atoms; thus, if the available
orbitals are fD, the available states are dD D 2 fD due to spin.

Given these premises, to the placements W considered above one must add
the placements of a number of electrons, say, kD, into the donor atoms; the latter
counting, however, must be carried out differently: in each group of dD states it is
possible in fact to accommodate one electron at most, while in each group of gr

states of the bands it is possible to accommodate more than one electron. Let WD

be the number of ways to place kD electrons into the KD groups of states, with the
provision that at most one electron can be placed into each group (kD � KD), and
that a given group has dD states able to accommodate the electron. If it were dD D 1,
the outcome would be W 0D D KDŠ=ŒkDŠ .KD � kD/Š�; in fact, the counting would be
identical to that leading to (15.49). As dD > 1, there are dD ways to place the first
electron into one of the dopant atoms; for each of the above placements, there are dD

to place the second electron into another atom, and so on. In conclusion one finds

WD D dkD
D W 0D D dkD

D

KDŠ

kDŠ .KD � kD/Š
;

and the total number of possible placements is WD W. Given the constraints
(compare with (15.38), (15.38))

FE D ES � kD ED �
X

i

Ni Ei ; FN D N � kD �
X

i

Ni ;

one maximizes (compare with (15.40))

F.N1;N2; : : : ; kD; ˛; ˇ/ D log W C log WD C ˛ FN C ˇ FE :

The treatment of W is identical to that of Sect. 15.8.1; that of WD yields
d log WD=dkD D ˛ C ˇ ED, whence
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˛ C ˇ ED D
d

dkD

�
dkD

D

KDŠ

kDŠ .KD � kD/Š

�
' log dD C log

�
KD

kD
� 1

�
:

Taking the exponential of both sides yields (18.21).

Problems of Chap. 19

19.1 Using (19.115) and adding up the two expressions in (19.118) one finds

�p D q

 
m1=2

hh

m3=2
hh C m3=2

hl

C
m1=2

hl

m3=2
hh C m3=2

hl

!

�p D
q �p

mh
:

Using the values taken from Table 17.3 yields

m0

mh
D

0:51=2

0:53=2 C 0:163=2
C

0:161=2

0:53=2 C 0:163=2
;

whence mh ' 0:377m0. As for ap, using the common value of the relaxation time
in (19.122) yields

ap D
q �p

�2p

�
�ph

mhh
C
�pl

mhl

�
:

Replacing the expressions (19.118) of �ph, �pl,

ap D
m3=2

hh C m3=2
hl

m1=2
hh m1=2

hl



m1=2

hh C m1=2
hl

� D
0:53=2 C 0:163=2

0:51=2 0:161=2
�
0:51=2 C 0:161=2

	 ' 1:33 :

Problems of Chap. 21

21.1 The equilibrium condition is considered. In the n region of the device, at a
sufficiently large distance from the junction, due to the spatial uniformity of the
material the charge neutrality condition (18.23) holds. Using the form (18.24) of the
latter, one finds

NC ˚1=2.e/ D NV ˚1=2.h/C
ND

dD exp.e � D/C 1
;

where �D D .EC � ED/=.kB T/ > 0 is the normalized distance between the edge
of the conduction band and the ground level of the donor atoms. In turn, e and
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h are given by (18.56) and (18.57), respectively. It follows that when the above
equation is coupled with the relation eC h D �EG=.kB T/ to form a system in the
two unknowns e, h, the solution determines the position of EF C q'.C1/ with
respect to the band edges EC and EV in the n region, at a given temperature T > 0

and donor concentration ND.
Similarly, in the p region (18.38), (18.39) hold, namely,

NC ˚1=2.e/C
NA

.1=dA/ exp.h � A/C 1
D NV ˚1=2.h/ ;

where �A D .EA � EV/=.kB T/ > 0 is the normalized distance between the ground
level of the acceptor atoms and the edge of the valence band. The above, along with
the relation e C h D �EG=.kB T/, again forms a system in the two unknowns e,
h, whose solution determines this time the position of EF C q'.�1/ with respect
to the band edges EC and EV in the p region, at a given temperature T > 0 and
acceptor concentration NA. The built-in potential is then found from

q 0 D ŒEF C q'.C1/� � ŒEF C q'.�1/� :

Due to the presence of the Fermi integrals, the charge-neutrality equations cannot
be solved analytically as they stand. The approximating expressions for the Fermi
integrals shown in Sect. C.13 ease the calculation somewhat.
21.2 The relations to be used are (21.54), (21.58), and (21.60). If kp D 0, kn > 0,
one finds Yp D 0, Yn D 1 � expŒ�m.b/�. On the other hand, it is in this case
m.b/ D

R b
a kn dx > 0, whence Yn < 1. If, instead, kn D 0, kp > 0, one finds Yn D 0,

Yp D 1 � expŒm.b/� with m.b/ D �
R b

a kp dx < 0, whence Yp < 1. In conclusion,
the condition for avalanche never occurs.
21.3 The dopant concentrations are such that the nondegeneracy and complete-
ionization conditions hold. The product NA ND is the same as in (21.127), so that
 0 ' 0:65 V. Next, one applies (21.44), with  D  0 � V D 2:75 V and 1=ND C

1=NA ' 10�14 cm3. In the calculation, one may profit by (21.131), where 1=ND C

1=NA D 1:1 � 10�15 cm3 and  D  0 D 0:65 V; in fact, it suffices to replace
the new values to find that the term in brackets of (21.131) increases by the factor
.2:75=0:65/�.10=1:1/ ' 38:46whence, extracting the square root, l D lnClp ' 6:2

m. From the second relation in (21.39) it then follows ln D l=.1 C ND=NA/ ' l
and lp D ln ND=NA ' 6:2 nm.
21.4 In silicon at room temperature it is ni ' 1010 cm�3, whence l ni=�g ' 6:2 �

1010 cm�2 s�1. It follows q Ae l ni=�g ' 10 nA.
21.5 Introducing the values indicated in the text into �0 D Ae C0  0=IG, one finds
�0 D 143 ms.
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21.6 The linearization of (21.69) starting from VD.0/ D V0CR IG D �2:6C 10
5�

50 � 10�9 ' �2:6 V yields

Vi ' VD.0/C

�
dVD

dt

�

tD0

Ti D V0 C R IG C  0

�
1 �

V0 C R IG

 0

�1=2 Ti

�0
;

namely,

Vi ' �2:6C 0:65

�
1C

2:6

0:65

�1=2
15

143
' �2:45 V :

21.7 From (21.70) one obtains

G D
.�2:45C 2:6/ V

105 � � 50 � 10�9 A
D 30 :

21.8 Defining  D .1 � VD= 0/
1=2 and ˛ D Œ1 � .V0 C R IG/= 0�

1=2 trans-
forms (21.71) into

�
˛ dt

R Ae C0
D

d

 � ˛
�

d

 C ˛
D d log

 � ˛

 C ˛
:

Letting i D .1 � Vi= 0/
1=2, � D 2R Ae C0=˛ in the above equation and fixing the

origin of t at the beginning of the sampling time yield

1 � VD= 0

1 � .V0 C R IG/= 0
D

�
i cosh.t=�/C ˛ sinh.t=�/

i sinh.t=�/C ˛ cosh.t=�/

�2
:

The solution fulfills the initial condition VD D Vi; the limit for t!1 is VD D V0C
R IG. Using the values of Probs. 21.5 and 21.6 yields � ' 0:98 ms; this shows that,
in practice, the duration of the sampling time can be limited to a few milliseconds.
21.9 Defining  D .1 � VD= 0/

1=3 and ˛ D Œ1 � .V0 C R IG/= 0�
1=3 trans-

forms (21.71) into

�
˛ dt

R Ae C0
D d log. � ˛/ �

1

2
d log.2 C ˛  C ˛2/C

p
3 d arctan

�
2  C ˛
p
3 ˛

�
;

whose integration provides the inverse relation t D t.VD/.
21.10 It is 1 � .V0 C R IG/= 0 ' 5, whence

VD '  0

�
1 �


p
5 � t=.2 �0/

�2�
; m D 2 ;

with VD D Vi D �2:45 V for t D 15 ms, and
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VD '  0

h
1 �

�
251=3 � t=.1:5 �0/

	3=2i
; m D 3 ;

with VD D Vi D �2:48 V for t D 15 ms. The corresponding curves are shown in
Fig. 21.16.
21.11 It is ˛2 D 1 � .V0 C R IG/= 0 ' 5, whence, from Prob. 21.8,

VD

 0
' 1�5

�
i cosh.t=�/C ˛ sinh.t=�/

i sinh.t=�/C ˛ cosh.t=�/

�2
; m D 2 ; 2i D 1�Vi= 0 ' 4:77 :

As for the m D 3 case, one takes the result of Prob. 21.9 and draws the curve
representing the inverse function. The corresponding curves are shown in Fig. 21.16.
21.12 Multiply by exp.�s=Ln/ both sides of (21.79) and subtract the result
from (21.78); rearranging the terms yields

An D
np0 F �

P
i Ci exp.�ki s/C exp.�s=Ln/

P
i Ci

2 sinh.s=Ln/
:

Similarly, multiply by exp.s=Ln/ both sides of (21.79) and subtract the result
from (21.78), thus yielding

Bn D �
np0 F �

P
i Ci exp.�ki s/C exp.s=Ln/

P
i Ci

2 sinh.s=Ln/
:

21.13 With reference to Fig. D.9, and using x as independent variable, one finds for
the area between p.x/ and its asymptotic value:

Z 1

0

.p � pn0/ dx D Ap

Z 1

0

exp.�x=Lp/ dx D Lp Ap :

The same area is obviously found using p as independent variable; thus,

1

Ap

Z pn0CAp

pn0

x.p/ dp D Lp :

Note that the equation of the tangent to p.x/ at x D 0 is y D pn0 C Ap .1 � x=Lp/;
thus, the tangent intersects the asymptotic value at x D Lp. This property of the
exponential function is exploited, e.g., for measuring the minority-carrier lifetimes
(Sect. 25.2).
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0 1 2 3 4
p   (a. u.)

0

2

4

6

8

10

x 
  (

a.
 u

.)

pn0
pn0 + Ap exp ( - x / Lp )
pn0 + Ap ( 1 - x / Lp )

Fig. D.9 The blue line is the inverse function of (21.141), drawn with pn0 D 1, Ap D 2, Lp D 2

in arbitrary units. The tangent to p.x/ at x D 0 (dashed line) intersects the asymptotic value pn0

at x D Lp. The area of the rectangle marked in red is equal to the area between p.x/ and the
asymptotic value

Problems of Chap. 22

22.1 The differential capacitance of the MOS structure, extracted from (22.19)
and (22.20), reads

C

Cox
D

1

1C Cox=Csc
; Csc D ˙

p
2 "sc

LA

dF

dus
> 0 ;

where the plus (minus) sign holds for us > 0 (us < 0). From (22.3) and (22.5) one
finds dF2=dus D A.us/; on the other hand, it is dF2=dus D 2F dF=dus, whence

Csc D ˙
"sc
p
2LA

A

F
;

Cox

Csc
D ˙

F

r A
; r D

"sc tox

"ox

p
2LA

:

Then, the C.VG/ relation is found by eliminating us from

u0G D us ˙ 2 r F ;
C

Cox
D

1

1˙ F=.r A/
:

In particular, from (22.26) one finds C.V 0G D 0/ D Cox=Œ1C 1=.
p
2 r/�.

22.2 Using the normalized form (22.132) of the electron and hole concentrations,
the Poisson equation reads (compare with (22.133) and (22.134))
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@2u

@x2
C
@2u

@y2
D

1

L2D
A ; A D exp.u � 	n/ � 1C

n2i
N2

D

�
1 � exp.	p � u/

�
;

with LD the electrons’ Debye length (21.9). When the channel is well formed, the
term exp.u � 	n/, proportional to the electron concentration, is negligible; also,
�1 C .ni=ND/

2 ' �1. Using the gradual-channel approximation and the relation
.ni=ND/

2 D exp.2 uF/, the above reduces to (compare with (22.135))

L2D
@2u

@x2
D �1 �

n2i
N2

D

exp.	p � u/ < 0 :

Following the same reasoning as in Sect. 22.11.1 yields (compare with (22.137))

�
q Esx

kB T

�2
D

2

L2D
F2 ; F2 D exp.	p C 2 uF/ Œexp.�us/ � 1� � us :

The exponential term in the above becomes dominant when 	p C 2 uF � us � 0,
whence the threshold condition is given by 	pC2 uF D us. Remembering (22.131),
the latter becomes us D up C uF, which is the normalized form of (22.102).
22.3 With reference to Table 22.3, the current sought corresponds to the part of
the Vout.Vin/ curve between points B and C. Letting VGS D Vsat

in in (22.94) and
combining the result with (22.128) yield

QIsat D
1

2
ˇn
�
Vsat

in � VTn
	2
D
1

2

�
VSS � VTn � VTp

	2


1=
p
ˇn C 1=

p
ˇp

�2 :

22.4 Between A and B the n-channel transistor works in the saturation region,
whence IDn D .ˇn=2/ .Vin � VTn/

2. The p-channel transistor, instead, works in the
linear region, whence ˇp Œ.VSS�Vin�VTp/ .VSS�Vout/� .VSS�Vout/

2=2�. Equating
the two current and solving for Vout yield

Vout D Vin C VTp C

q
.VSS � VTp � Vin/2 � .ˇn=ˇp/ .Vin � VTn/2 :

The negative sign before the square root must be discarded because it must be
Vout D VSS when Vin D VTn. Between C and D the p-channel transistor works in the
saturation region, whence ISp D .ˇp=2/ .VSS�Vin�VTp/

2. The n-channel transistor,
instead, works in the linear region, whence IDn D ˇn Œ.Vin � VTn/Vout � V2

out=2�.
Proceeding as above yields

Vout D Vin � VTn �

q
.Vin � VTn/2 � .ˇp=ˇn/ .VSS � Vin � VTp/2 :

The positive sign before the square root must be discarded because it must be Vout D

0 when Vin D VSS � VTp.



874 Solutions

22.5 The relations describing the CMOS inverter become particularly simple if
VTp D VTn D VT and ˇp D ˇn D ˇ. The former condition can be achieved by a
suitable channel implant, the latter by designing the gates’ geometry in such a way
that the equality �p .W=L/p D �n .W=L/n holds. When the two conditions apply,
one finds from (22.128) and from Prob. 22.3:

Vsat
in D

1

2
VSS ; QIsat D

1

8
ˇ .VSS � 2VT/

2 :

In turn, the Vout.Vin/ relation between points A and B found in Prob. 22.4 becomes

Vout D Vin C VT C

q
V2

SS � 2VSS .VT C Vin/C 4VT Vin :

Similarly, the relation between points C and D becomes

Vout D Vin � VT �

q
�V2

SS C 2VSS .VT C Vin/ � 4VT Vin :

Shifting the origin by letting V 0in D Vin � VSS=2 and V 0out D Vout � VSS=2 transforms
the Vout.Vin/ relation corresponding to the interval between points A and B into

V 0out D V 0in C VT C 2

q
.VT � VSS=2/V 0in :

Note that both factors under the square root are negative. Still in the new variables,
the Vout.Vin/ relation between C and D becomes

V 0out D �

�
.�V 0in/C VT C 2

q
.VT � VSS=2/ .�V 0in/

�
;

showing that these two portions of the curve are antisymmetric. The proof for the
remaining parts of the curve is trivial (Prob. 22.6).
22.6 Let 0 � Vin � VTn: the current is zero at A and in the region to the left of A; the
corresponding output voltage is VSS. As Vin increases from VTn to Vsat

in , the current
grows from 0 to QIsat and Vout decreases from VSS (point A) to Vsat

in C VTp (point B);
the expression of this part of the curve is worked out in Prob. 22.4. Similarly, let
VSS � VTp � Vin � VSS: the current is zero at D and in the region to the right of D;
the corresponding output voltage is zero. As Vin decreases from VSS � VTp to Vsat

in ,
the current grows from 0 to QIsat and Vout increases from zero (point D) to Vsat

in � VTn

(point C); the expression is worked out in Prob. 22.4 as well. Finally, the part of the
curve between points B and C is vertical with Vin D Vsat

in , while Vout ranges between
Vsat

in C VTp (point B) and Vsat
in � VTn (point C).

22.7 Assume that the threshold voltage VTn fulfills the inequality VSS > VTn, where
VSS is the bias applied to the resistor’s upper contact (Fig. 22.27). Then, let 0 � Vi �

VTn, so that the transistor is in the off condition. It follows IR D .VSS � Vout/=R D
IDn D 0, whence Vout D VSS. As long as 0 � Vin � VTn, the output voltage is
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the highest and no power is dissipated by the inverter. Let now the input voltage be
increased by a small amount starting from Vin D VTn, to become Vin D VTn C ıVin

with ıVin > 0. It follows VGSn � VTn D ıVin, which makes the transistor to turn on,
IR D IDn > 0. In turn, the current flow makes Vout to decrease and become Vout D

VSS � ıVout, with ıVout > 0. One finds for the current R IR D VSS � Vout D ıVout.
From VDSn D VSS � ıVout one obtains

.VGSn � VTn/ � VDSn D ıVin � .VSS � ıVout/ D .ıVin C ıVout/ � VSS :

As ıVinCıVout can be made as small as we please, it follows .VGSn�VTn/�VDSn < 0,
namely, the transistor is in the saturation region, whence

VSS � Vout

R
D
1

2
ˇn .Vin � VTn/

2 :

If the input voltage is further increased, the transistor will eventually turn from the
saturation to the linear region. This happens for VDSn D VGSn � VTn, namely Vout D

Vin � VTn. Replacing in the above provides an algebraic equation whose solution
yields

QVin D VTn C

p
1C 2Rˇn VSS � 1

Rˇn
:

The minus sign before the square root must be discarded because it would make
QVin < VTn. If QVin < VSS, then there is an interval of input voltages QVin � Vin � VSS

where the transistor is in the linear region, namely,

VSS � Vout

R
D ˇn

�
.Vin � VTn/ Vout �

1

2
V2

out

�
:

The above is applicable up to the maximum input voltage Vin D VSS. Using the
normalized quantities x D Vin=VSS, y D Vout=VSS, a D VTn=VSS, b D Rˇn VSS, and
Qx D QVin=VSS D aC .

p
1C 2 b � 1/=b, yields

y D 1 for 0 � x � a ; y D 1 �
1

2
b .x � a/2 for a � x � Qx < 1 ;

and

y D x � aC 1=b �
q
.x � aC 1=b/2 � 2=b ; Qx � x � 1 :

In the latter, the plus sign before the square root has been discarded because Vout

vanishes as R increases, hence limb!1 y D 0. One finds that Vout reaches its
minimum Vmin

out for Vin D Vmax
in D VSS; correspondingly, the current and dissipated

power reach their maximum values Imax D .VSS � Vmin
out /=R, Pmax D VSS Imax.
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22.8 Remembering that the relative dielectric constant of SiO2 is "rel
ox ' 3:9, it

follows

ˇn D
W

L
�n Cox ' 993

cm2

V s
�
3:9 � 8:85 � 10�14

5 � 10�7
F

cm2
' 6:85 � 10�4

A

V2
;

b D 3:5 � 103 � � 6:85 � 10�4
A

V2
� 5 V ' 12 ; Qx D

1

10
C
1

3
' 0:433 ;

QVin D 0:433 � 5 V ' 2:17 V ; Vout. QVin/ D 2:17 V � 0:5 V ' 1:67 V :

The curve is shown in Fig. D.10, using the normalized variables x D Vin=VSS, y D
Vout=VSS. The dynamic range is smaller than VSS; in fact, it is Vout.0/ D VSS whereas
Vout.VSS/ D Vmin

out > 0 (compare with the comments in Sect. 22.11.3).
22.9 Assume that the threshold voltage VTp fulfills the inequality VSS > VTp where
VSS is the bias applied to the transistor’s source (Fig. 22.28). Then, let 0 � VSS �

Vin � VTp, so that the transistor is in the off condition. It follows IR D Vout=R D
ISp D 0, whence Vout D 0. As long as 0 � VSS � Vin � VTp, the output voltage
is the lowest and no power is dissipated by the inverter. Let now the input voltage
be decreased by a small amount starting from VSS � Vin D VTp, to become Vin D

VSS � VTp � ıVin with ıVin > 0. It follows VSGp � VTp D ıVin, which makes the
transistor to turn on, IR D ISp > 0. In turn, the current flow makes Vout to increase
and become Vout D ıVout, with ıVout > 0. One finds for the current R IR D ıVout.
From VSDp D VSS � ıVout one obtains

Fig. D.10 Input-output curve
of the inverter made of an
n-channel MOSFET with a
resistive load (Probs. 22.7
and 22.8)
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�
VSGp � VTp

	
� VSDp D .ıVin C ıVout/ � VSS :

As ıVinCıVout can be made as small as we please, it follows .VSGp�VTp/�VSDp < 0,
namely, the transistor is in the saturation region, whence

Vout

R
D
1

2
ˇp
�
VSS � Vin � VTp

	2
:

If the input voltage is further decreased, the transistor will eventually turn from
the saturation to the linear region. This happens for VSDp D VSGp � VTp, namely
Vout D Vin C VTp. Replacing in the above provides an algebraic equation whose
solution yields

QVin D VSS � VTp �

p
1C 2Rˇp VSS � 1

Rˇp
:

The plus sign before the square root must be discarded because it would make
Vout. QVin/ > VSS. If QVin > 0, then there is an interval of input voltages 0 � Vin � QVin

where the transistor is in the linear region, namely,

Vout

R
D ˇp

��
VSS � Vin � VTp

	
.VSS � Vout/ �

1

2
.VSS � Vout/

2

�
:

The above is applicable down to the minimum input voltage Vin D 0. Using the
normalized quantities x D Vin=VSS, y D Vout=VSS, c D VTp=VSS, d D Rˇp VSS, and
Qx D QVin=VSS D 1 � c � .

p
1C 2 d � 1/=d yields

y D 0 for 1 � c � x � 1 ; y D
1

2
d .1 � x � c/2 for 0 < Qx � x < 1 � c ;

and

y D xC c � 1=dC
q
.1 � x � cC 1=d/2 � 2=d :

In the latter, the minus sign before the square root has been discarded because Vout

tends to VSS as R increases, hence limd!1 y D 1. The expressions of Prob. 22.7
transform into those found here by replacing x, Qx, y, a, b with 1 � x, 1 � Qx, 1 � y,
c, d, respectively. One finds that Vout reaches its maximum Vmax

out for Vin D Vmin
in D

0; correspondingly, the current and dissipated power reach their maximum values
Imax D Vmax

out =R, Pmax D VSS Imax.

22.10 Remembering that the relative dielectric constant of SiO2 is "rel
ox ' 3:9, it

follows

ˇp D
W

L
�p Cox ' 662

cm2

V s
�
3:9 � 8:85 � 10�14

5 � 10�7
F

cm2
' 4:57 � 10�4

A

V2
;
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Fig. D.11 Input-output curve of the inverter made of an p-channel MOSFET with a resistive load
(Probs. 22.9 and 22.10)

d D 5:25 � 103 � � 4:57 � 10�4
A

V2
� 5 V ' 12 ; Qx D

9

10
�
1

3
' 0:567 ;

QVin D 0:567 � 5 V ' 2:83 V ; Vout. QVin/ D 2:83 VC 0:5 V ' 3:33 V :

The curve is shown in Fig. D.11, using the normalized variables x D Vin=VSS, y D
Vout=VSS. The dynamic range is smaller than VSS; in fact, it is Vout.VSS/ D 0 whereas
Vout.0/ D Vmax

out < VSS (compare with the comments in Sect. 22.11.3).
22.11 As mentioned in the text, the first part of ID derives from the first term (that
is, the unity) at the right-hand side of (22.149). It reads

I0D � I00D D ˇ .kB T=q/2
��

u0GB us � u2s=2
	
� .2=3/ .1=g/ u3=2s

�us.L/

us.0/
:

To calculate the other part of the current, with reference to the second term at the
right-hand side of (22.148), one preliminarily finds the zeros of the denominator,
that read

u˙s D u0GB C
1

2 r2

�
1˙

q
1C 4 r2 u0GB

�
;

where the positive or negative signs hold together. The range of values of us is
us < u�s . Using the zeros, the second term at the right-hand side of (22.148)
becomes
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d	n

dus
� 1 D

1

uCs � us
C

1

u�s � us
; uCs > u�s > us :

The above form is not suitable because it diverges when us ! u�s . In fact, the zero
is canceled by a zero belonging to the other factor in (22.149); it is then convenient
to cancel the zeros beforehand by recasting the integrand as

Y.us/ D
��

u0GB � us
	
� .1=r/

p
us
� �d	n

dus
� 1

�
D 2

r
�
u0GB � us

	
C 1=.2 r/

r
�
u0GB � us

	
C
p

us
:

If the expression of u�s is replaced into the denominator at the right-hand side of the
above, the result is strictly positive, whence no divergence occurs. The integrand
is further simplified to yield Y.us/ D 2 � 2 Œ

p
us � 1=.2 r/�=Œr .u0GB � us/C

p
us�;

multiplying the latter by dus and using the new variable w D
p

us � 1=.2 r/ yield

Y.w/ D

�
wC

1

2 r

� �
4C

2=r

kC w
�

2=r

k � w

�
dw ; k2 D u0GB C

1

4 r2
;

whose integration is elementary.
22.12 The working conditions of the device are such that the surface potential is
near saturation at each point of the channel. This allows one to calculate (22.149) by
letting us.0/ ' u�s and assuming that us varies little along the channel. The integral
in (22.149) is thus evaluated as the product of the integration domain us.L/ � us.0/

times the integrand calculated at us.0/. The integration domain is in turn extracted
from (22.147) by recasting it as

r2
�
u0GB � us

	2
� us � exp.us � 2 uF � 	n/ D 0 ;

where the exponential is small because 	n > us � 2 uF due to the saturation
condition. If the exponential was missing, the solutions of the above would be
the zeros already found in Prob. 22.11. Thus, the solutions here are determined by
replacing 1C4 r2 u0GB with 1C4 r2 u0GBC4 r2 exp.us�2 uF�	n/ under the square root
in Prob. 22.11. Discarding the solution corresponding to the positive sign, expanding
the square root to first order, and letting us D u�s in the exponential yield

us ' u0GB C
1

2 r2

�
1 �

q
1C 4 r2 u0GB

�
1C

2 r2 exp.u�s � 2 uF � 	n/

1C 4 r2 u0GB

��
;

whence

us.L/ � us.0/ '
expŒ�	n.0/� � expŒ�	n.L/�

.1C 4 r2 u0GB/
1=2 exp.2 uF � u�s /

;
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with 	n.0/ D q VSB=.kB T/ and 	.L/ D q VDB=.kB T/. The analysis is completed
by calculating the integrand of (22.149) after letting us D us.0/ D u�s . The first
part of the integrand derives from the first term (that is, the unity) at the right-hand
side of (22.149); it is found by inspection that this part vanishes for us D u�s . Thus,
the remaining part is Y.u�s / (Prob. 22.11); observing that

p
u�s D r .u0GB � u�s /, one

finds Y.u�s / D 1C 1=Œ2 r2 .u0GB � u�s /�, whence (22.150) ensues.
22.13 Consider the integration along the channel carried out in (22.73); if the
integration were interrupted at some point y internal to the channel, the outcome
would be

y I D W
Z '�

n

'n.0/

�e.'n/Qi.'n/ d'n ;

with '�n the electron quasi-Fermi potential at y. Similarly, (22.149) is replaced with

y

L
ID D ˇ

�
kB T

q

�2 Z u�

s

us.0/

��
u0GB � us

	
� .1=r/

p
us
� d	n

dus
dus ;

where ID is calculated beforehand from (22.149). Calculating the above integral
with u�s ranging from us.0/ to us.L/ yields a set of values; multiplying each of them
by L=ID yields the corresponding position y, thus providing the inverse function y D
y.u�s /. For each u�s one finds the corresponding 	n from (22.147) which, combined
with the former, provides the other inverse function y D y.	n/.
22.14 From the data it follows Ln D 100 
m. As �iC1 < �i and, in particular,
�1 D �0=9, the slowest decay rate corresponds to the term with i D 0, whereas
the terms with i > 0 are less important. Using a D 10 
m yields �0 ' �n=100,
�?0 ' �0.

Problems of Chap. 23

23.1 The maximum initial profile is N.x D 0; t D 0/ D 2Q=
p
�c1. Remember-

ing (23.26), at the end of the diffusion process the profile has become N.x; t D
tP/ D 2Q Œ�.c1 C c2/��1=2� exp

�
�x2=.c1 C c2/

�
, whence N.x D 0; t D tP/ D

2Q Œ�.c1Cc2/��1=2, with tP the process duration and c2 D 4D tP. From N.x D 0; t D
tP/ D .2=3/N.x D 0; t D 0/ it follows 1=

p
c1 C c2 D 2=.3

p
c1/, c2 D .5=4/ c1

and, finally, tP D .5=16/ .c1=D/ D 5;000 s.
23.2 The initial and final profiles are Ni.x/ D 2Q exp.�x2=c1/=.�c1/1=2 and,
from (23.26), Nf .x/ D 2Q expŒ�x2=.c1 C c2/�=Œ�.c1 C c2/�1=2. Letting Nf D Ni

and defining r D Œ.c1 C c2/=c1�1=2 and a2 D .c1 C c2/ c1=c2 yield r D exp.x2=a2/,
whence Nx D 104 � a .log r/1=2 ' 2:68 
m.
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23.3 Converting to seconds one finds tP D 14;400 s, whence c2 D 4D tP D
14:4 � 10�6 cm2. Considering that N.x; t D 0/ D 2Q exp.�x2=c1/=.�c1/1=2 and,
from (23.26), N.x; t D tP/ D 2Q expŒ�x2=.c1 C c2/�=Œ� .c1 C c2/�1=2, the ratio
sought is N.x D 0; t D tP/=N.x D 0; t D 0/ D Œc1=.c1 C c2/�1=2 D 0:385.
23.4 Due to (23.26), the final profile is Nf D 2Q expŒ�x2=.c1Cc2/�=Œ�.c1Cc2/�1=2.
From N.Nx/ D Nf .0/ one has exp.�Nx 2=c1/ D Œc1=.c1 C c2/�1=2. As a consequence,
the position sought is Nx D Œ.c1=2/ log.1C c2=c1/�1=2 D 0:83 
m.
23.5 Due to (23.26) the final profile is Nf D 2Q expŒ�x2=.c1Cc2/�=Œ�.c1Cc2/�1=2.
Let ˛ D 1:1. From the condition Nf .0/ D N.x D ˛

p
c1/ one derives 1=Œ�.c1 C

c2/�1=2 D exp.�˛2/=.�c1/1=2, whence c1 D c2=Œexp.2˛2/ � 1� D 0:976 � 10�9

cm2.
23.6 Letting c2 D 4D t D 2:4 � 10�8 cm2 and r D c2=.c1 C c2/ D 4=7, one
eliminates Q at x D x0 to find N1=N2 D

p
1C r expŒ�r x20=.c1 C 2 c2/�, whence

x0 D 104 � Œ.1=r/ .c1 C 2 c2/ log.
p
1C r N2=N1/�1=2 D 4:06 
m.

23.7 Remembering (C.71) one has Q D
R1
0

NS erfc.x=
p

c/ dx D NS

p
c=� ,

whence c D 4D t D �2, t D �2=.4D/ D 2:99 � 1016 nm2 s�1 ' 5 min.
23.8 As indicated in Sect. 23.5.2, the initial profile must preliminarily be mirrored
onto the negative axis with N0 D 2Q .hC x/=h2 for �h � x � 0 and with N0 D 0

for x < �h. Then, the profile is obtained from (23.13) as the portion of N.x/ D
.2Q=h2/ .I� C IC/ calculated for x � 0, where

I� D
Z 0

�h
.hC /�.x � ; t/ d ; IC D

Z Ch

0

.h � /�.x � ; t/ d

and�.x�; t/ is given by (C.76). Letting � D .�x/=.4 a/1=2,� D x=h, b D 4 a=h2,
and using (C.66) yield

N D .Q=h/
�
.�C 1/Y� C .� � 1/YC � .b=�/1=2 .Z� C ZC/

�
;

with Y
 D erfc.�=
p

b/� erfcŒ.�˙ 1/=
p

b � and Z
 D exp.��2=b/� expŒ�.�˙
1/2=b�. When t ! 0C it is b ! 0. This makes the Z
 terms to vanish, while the
terms containing Y
 render the initial condition N0. When t > 0 the dose is found
by integrating h N over � from 0 to C1. A somewhat lengthy calculation based
on the expressions of Appendix C.7 shows that the integral of .b=�/1=2 .Z� C ZC/
vanishes whereas that of .�C1/Y�C.��1/YC yields unity. As expected, the result
of the dose calculation is Q. The normalized profile h N=Q is shown in Fig. D.12
as a function of the normalized coordinate � at different values of the parameter
b D b.t/.
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Fig. D.12 Normalized
profiles h N=Q resulting from
the drive-in diffusion of
problem 23.8. The coordinate
is � D x=h. Each profile
corresponds to the value of
b.t/ shown in the legend. The
parameter is defined by
b D 4 a=h2, while a D a.t/ is
defined by the second
of (23.10). As explained in
Sect. 23.5.2, only the profile’s
portion on the right of the
origin must be considered -10 -5 0 5 10
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Problems of Chap. 24

24.1 The relation between time t and oxide thickness s is given by (24.11), s2=cpC

s=cl D t0 with t0 D t C s2i =cp C si=cl. Solving for s and discarding the negative
solution yield s D Œ.c2p=c2l C 4cpt0/1=2 � cp=cl�=2, with cp=cl D 0:05 
m. It follows
t0 D t C s2i =cp C si=cl ' 136=60 C 0:995 C 0:237 D 3:50 h and 4cpt0 D 0:620


m2. The total oxide thickness and the thickness of silicon that is consumed in the
second process are, respectively, s D Œ.0:052C4cpt0/1=2�0:05�=2 ' 0:369 
m and
h D 0:44 .s � si/ ' 70 nm.
24.2 The gradient sought is found by remembering that, from (24.10), it is
cp D 2w k0 NG DO and cl D w k0 NG vr, whence cl=cp D vr=.2DO/ D 20 
m�1,
vr=DO D 4 � 105 cm�1. On the other hand, from (24.7, 24.6), �DO grad N D
�DO dN=dx D vrNI whence dN=dx D �NO vr=DO D �4 � 10

17 cm�4.
24.3 Converting the units one finds cp D 738 nm2min�1, cl D 14:8 nm min�1.
Letting h be the thickness of silicon consumed one has h D 0:44 .s � si/, s D
si C h=0:44 whence, from (24.11), t D .s2 � s2i /=cp C .s � si/=cl D 150 min.
24.4 Converting the units yields cp D 2;000 nm2 min�1, cl D 50 nm min�1.
From (24.10) it follows vr=DO D 2cl=cp D 0:05, 1 C s vr=DO D 2 whence,
using (24.8), NI D NO=.1C s vr=DO/ D 15 � 10

11 cm�3.
24.5 Converting the units yields cp D 11:4 nm2 s�1, cl D 0:237 nm s�1.
From (24.10) the duration of the first process is found as t1 D .s2f � s2i /=cp C .sf �

si/=cl. Similarly, that of the second process is t2 D .s2 � s2f /=cp C .s � sf /=cl.
As the coefficients cp, cl are the same one adds the expressions of t1 and t2 to
each other and lets s D si C �s1 C �s2. This yields t1 C t2 D .s2 � s2i /=
cp C .s � si/=cl D 202 s.
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24.6 Converting the units yields cl D 16:67 nm min�1. Using the definitions (24.10)
of cp and cl one finds r D DO=vr D cp=.2 cl/, whence tP D Œ.s2 � s2i /=.2r/C s �
si�=cl D 13:9 min.

24.7 Letting t D tP and multiplying the first of (24.10) by cp yield s2 C bsC c D 0
with b D cp=cl, c D �s2i � .cp=cl/ si � cpt. Here si and cptP are given while cp=cl D

2DO=vr D 2:25 � 10�6 cm. Solving for s and discarding the negative root provide
the final thickness s D Œ.b2 � 4c/1=2 � b�=2 D 76:1 nm.

24.8 From the relation �P D s�r2 pSi, where �P, s are the weight and thickness
of the epitaxial layer, and r the wafer’s radius, one finds 2 r D 2

p
�P=.�spSi/ '

20:4 cm ' 8 in.

24.9 The surface concentration NS of SiCl4 is found from the relations s=t D cl D

w F2 D w vr NS, whence NS D s=.w vr t/ D 1 � 1016 cm�3.

24.10 Using 1=w D 5� 1022 cm�3 in the relations (24.22, 24.23) yields t D s=cl D

s=.wFI/ D 2 min.

24.11 Letting tP be the duration of the process one has, from (24.22, 24.23),
cl D s=tP D w vr NI , whence, using 1 
m D 10�4 cm, vr D s=.w NI tP/ D 200

cm min�1.

24.12 From (24.21) and the second of (24.23) one finds b D .vrCvG/=.vG w NG/ D

.NG=NS/ .w NG/
�1 D a=.w NG/, whence NG D a=.w b/ D 2 � .5 � 1022=4:87 �

105/ D 2:05 � 1017 cm�3.

Problems of Chap. 25

25.1 As the problem is independent of time it is E D � grad'. At any point along
the boundary of D, let n be the unit vector normal to the boundary and pointing
inwards, and t the tangent unit vector such that k D t ^ n, with k the unit vector
of the z axis. Due to the steady-state condition and the hypothesis that one type
of carriers prevail, it is div J D 0, with J the two-dimensional current field whose
components Jx, Jy are defined by (25.34). As the domain is simply connected, there
exist a function  .x; y/ such that J D rot. k/; thus, letting i, j be the unit vectors
of the x and y axes, it is

J D
@ 

@y
i �

@ 

@x
j ; k ^ J D

@ 

@y
jC

@ 

@x
i D grad :

Taking the divergence of the second equation above yields

�r2 D k � rot J D
@Jy

@x
�
@Jx

@y
:
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Then, one differentiates the first of (25.33) with respect to y, the second one with
respect to x, and subtracts the results using div J D 0; this provides

�

�
@Ey

@x
�
@Ex

@y

�
D
@Jy

@x
�
@Jx

@y
;

where the term in parenthesis is the component of rot E along the z axis. On the
other hand, it is rot E D 0 due to the steady-state condition. Combining this with
the two equations above yields r2 D 0.
25.2 The triad of unit vectors k D t^n is considered here at any point belonging to
the interior of D or to its boundary; thus, t is not necessarily parallel to a boundary.
Starting from E D Et t C En n, letting � D �H B, and observing that J ^ k � t D
J � k ^ t D J � n and J ^ k � n D J � k ^ n D �J � t, the two-dimensional current
field (25.33) is recast as

� Et D Jt C � Jn ; � En D Jn � � Jt :

Suffixes t and n indicate the component along t or n. Another relation is found from
k ^ J D grad , whence

k ^ J D
@ 

@t
tC

@ 

@n
n ; Jt D

@ 

@n
; Jn D �

@ 

@t
;

where @ =@t and @ =@n indicate the derivative in the direction of t or n. The
boundary conditions for are obtained from the above. Along a contact it is Et D 0,
whence Jt D �� Jn; integrating the above along the ith contact,

h
Z

si

@ 

@n
ds0 D �� Ii ;

@ 

@n
D �

� Ii

h si
;

where si, h are the contact’s length and thickness, s0 is the curvilinear abscissa along
the contact, and Ii the current through it. As n points inwards, the direction of Ii

is taken inwards as well. The second form of the above equation is due to the fact
that due to the smallness of the contact, Jn is uniformly distributed along it; such a
relation provides a nonhomogeneous Neumann condition for  along the contacts.

Along an insulating boundary it is Jn D 0, whence @ =@t D 0, En D �� Et, and
Jt D � Et. This shows that  D const along an insulating boundary, corresponding
to a Dirichlet condition, yet unknown.2 Let  i�1,  i be the values of  along two
insulating boundaries that are separated by the ith contact. Integrating�@ =@t along
the contact yields

2Note that the boundary conditions of  are dual to those of the electric potential ': the latter is
an unknown constant along the contacts, whereas a mixed Neumann condition En D �� Et holds
along the insulating boundaries, to be compared with Jt D �� Jn.
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 i�1 �  i D �

Z

si

@ 

@t
ds0 D

Z

si

Jn ds0 D
Ii

h
:

From div J D 0 it also follows
Pn

iD1 Ii D 0 and
Pn

iD1 . i�1 �  i/ D 0, with
n the number of contacts and  0 D  n. The differential equation r2 D 0,
supplemented with the boundary conditions shown above, provides  apart from an
additive constant. Prescribing the value of  along one of the insulating boundaries,
e.g.,  0, fixes the Dirichlet conditions along the other insulating boundaries. In this
way, the problem is completely defined.
25.3 From the definitions of qn, kn, and �n given in Sect. 25.5 one finds j�n qnj �

4 � I=.h H2 k2n/ D 4 � I=Œh�2 .2 nC1/2�. Adding up over n and combining the result
with the relation

P1
nD0.2 n C 1/�2 D �2=8 [59] shows that the series (25.40) is

uniformly and absolutely convergent. This makes derivation and integration term-
by-term admissible. Differentiating (25.40) term-by-term with respect to y, letting
y D L=2, and using knH D .2 nC 1/ � yield

�
@Q.x; y/

@y

�

yDL=2

D �
� I

h H

4

�

1X

nD0

.�1/n
cos.kn x/

2 nC 1
:

The series above converges, but not absolutely; in order to prove that it is in fact the
derivative of Q one observes that, due to the boundary condition (25.39), the right-
hand side of the above equation must equal�� I=.h H/. This is indeed true, thanks to
one of the possible series expansions of � valid in the interval 0 � x=H � �=2 [59].
As cosŒ.2 nC 1/ x=H� is even, the expansion holds in the interval ��=2 � x=H � 0
as well.
25.4 The calculation is similar to that of Sect. 25.5.2. Taking by way of example
the side x D H=2, let yc be the distance of the probes from the x axis (Fig. 25.5).
The voltage drop sought is Vc D '.H=2; yc/� '.H=2;�yc/. Combining the second
of (25.34) with  D P C Q, with (25.40) and (25.41), and with the results of
Prob. 25.1, yields

�� Ey D
dP

dx
C
@Q

@x
C �

@Q

@y
:

Using the above, the voltage Vc reads

Vc D �

Z Cyc

�yc

Ey.H=2; y/ dy D
1

�

Z Cyc

�yc

dP

dx
dy D

 1 �  0

� H
2 yc D

2 yc

� h H
I :

The term @Q=@x does not contribute to the integral because Q is odd with respect to
y; in turn, the term @Q=@y does not contribute because Q fulfills the homogeneous
Dirichlet condition at x D H=2. The ratio Gc D I=Vc is the conductance measured
at the probes, whence � h D 2 ycGc=H; replacing the latter into the first relation
of (25.45) yields
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VH0 D �
H

2 yc
�H B Vc :

The last relation shows that, as anticipated in Sect. 25.5.1, the device thickness h
does not explicitly appear in the final calculation. The same result would be found
if the product � h was measured by the van der Pauw method outlined in Sect. 25.7.

25.5 A fast calculation of S.y/ is accomplished by taking the interval 0 � y � L=2,
introducing the ratio! D H=L and the normalized coordinate � D y=L; letting ˛n D

kn y D .2 nC 1/ � �=!, with 0 � � � 1=2, and ˇn D kn L=2 D .2 nC 1/ �=.2!/,
one finds

VH.�/

VH0
D 1 �

8

�2

1X

nD0

exp.˛n � ˇn/

.2nC 1/2
�
1C exp.�2 ˛n/

1C exp.�2 ˇn/
;

with �1=2 � ˛n�ˇn � 0. The values in the remaining part of the domain are found
from S.�y/ D S.y/. The above result shows in passing that the local Hall voltage
does not separately depend on the device’s width and length, but only on the ratio
H=L.
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A
Abrupt junction, 546
Absorption, 288, 291

coefficient, 527
Acceleration system, 686
Acceptor

dopant, 434
level, 435
traps, 512

Accessible state, 125
Accidental degeneracy of eigenvalues, 400
Accumulation condition, 608
Acoustic branch

in lattice vibrations, 412
Action, 13

integral, 13
variable, 41

Action-angle
variables, 40

in a linear harmonic oscillator, 43
Activation energy, 678
Adiabatic approximation, 330
Adjoint operator, 179, 189
Affinity, 148, 603
Air mass, 594
Alpha particles, 144
Ammonia, 711
Amorphous silicon, 519
Ampère, unit, 80
Analogies between Mechanics and Geometrical

Optics, 115
Analyzing system, 686
Angular

equation, 259
momentum, 38

constant, 48
eigenfunction, 267
eigenvalue, 265
in a system at equilibrium, 131
operator, 263
with electromagnetic forces, 38

Anharmonic terms, 65
Anisotropy, 460, 497
Annealing, 629, 687, 698
Annihilation operator, 241
Anti(skew)-Hermitean operator, 187
Anti(skew)-symmetric matrix, 754
Anti-reflection coating, 566
Antisymmetric function, 304
Approximation

adiabatic, 330
ASCE, 560, 616, 628
Born-Oppenheimer, 330
gradual-channel, 633
harmonic, 65
quasi-static, 477

Arbitrary aspect ratio
in Hall-voltage meas., 732

Areal
velocity, 67

Arrhenius plot, 678, 709
Arsine, 688, 689, 714
ASCE

approximation, 560
ASCE approximation, 616, 628
Associate Legendre function, 269
Asymptotic

behavior of Schrödinger equation, 249
boundary conditions, 547, 605
concentrations, 547, 605
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Asymptotic (cont.)
conditions

of Sommerfeld, 88
values

in a two-particle collision, 49
Atomic basis, 342
Auger

coefficient, 523
recombination, 521

Avalanche
breakdown, 563
diode, 563

Average
effective mass, 364
kinetic energy

convective part, 479
thermal part, 479

over the momentum space, 123
statistical, 123
using Maxwell-Boltzmann distrib.,

132
velocity

of charges, 80
Average lateral range, 691
Average penetration length

of radiation, 528
Average projected range, 691
Average velocity

of electrons, 462
Axis

semimajor, 70
semiminor, 70

Azimuthal quantum number, 261

B
Backward motion

in classical mechanics, 19
Backward substitution, 769
Balmer law, 149
Band

completely filled, 462
conduction, 367
forbidden, 367
gap, 367
of energy, 357
valence, 367
warped, 369

Band structure
of SI, Ge, GaAs, 366

Band-gap narrowing, 443
Barrier

of a general form, 230
potential, 547

transparent, 229
Base region, 578
Basis, atomic, 342
Bernoulli

function, 780, 828
number, 827, 829
polynomial, 830

Beta function of Euler, 817
Binary collision, 130
Bipolar devices, 577
Bird’s beak, 712
Black-body radiation, 152
Bloch

function, 292, 351
theorem

first form, 350
second form, 350

Blocking voltage, 152
Body effect, 635
Body-centered cubic (BCC)

lattice, 343
Bohm, 204
Bohr hypothesis, 158
Boltzmann

collisionless equation, 129, 462
constant, 129
H-theorem, 134

Boltzmann Transport Equation, 130, 463
equilibrium limit, 140
moment expansion, 470
perturbative form, 468

Born, probabilistic interpretation, 169
Born-Oppenheimer approximation, 330
Born-Von Karman boundary conditions, 353
Boron trifluoride, 688
Bose-Einstein statistics, 319
Bosons, Bose particles, 308
Bottom-up design of ICs, 666
Bound electron, 145, 148
Boundary conditions

asymptotic, 547, 605
for the stream function, 734
in semiconductor equations, 492
in the solar cell, 575
of Born and Von Karman, 353
of Shockley, 558, 590
of Sommerfeld, asymptotic, 88
of the Dirichlet type, 87

for stream function, 735
in semiconductors, 494

of the Neumann type, 87, 93
for stream function, 735
in semiconductors, 493

periodic, 353
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Boundary values and data
in a differential equation, 91

Bra vector, 178
Bragg law, 394
Bravais lattice, 342

types of, 342
Breakdown

due to avalanche, 563
voltage, 563

Brillouin zone, 348
BTE (Boltzmann Transport Equation),

463
BTE’s moment expansion

closure condition, 474,
498

collision term, 473
diffusion term, 472
drift term, 472
moment equations, 473
time derivative, 471

Built-in potential, 547
Bulk

contact, 629
Bulk charge per unit area, 612
Bulk contact, 602
Bulk mobility, 533
Bulk technology

for CMOS, 646
Bulk transconductance

in MOSFETs, 637, 644
Buried layer, 577

C
Calculus, variational, 4
Canonical

coordinate, 122
Canonical coordinate, 15
Canonical transformation, 27, 28

application, 29
generating function, 29
identical, 29
infinitesimal, 42

Capacitance per unit area
at flat band, 614
of semiconductor, 613
of the oxide, 608

Capacitor
Metal-Insulator-Semiconductor, 602
MIS, 602
MOS, 602, 626

functioning regimes, 608, 627
variable (varactor), 563

Capture cross-section of traps, 726

Carriers, 430
Catastrophe, ultraviolet, 154
Cauchy

residue theorem, 818
sequence, 798

Cell
Bravais lattice, 342
centering, 343
of a tessellation, 272
of mu(
) space, 124
primitive, 343

Center of force, 48
Centering of Bravais lattice, 343
Central

force, 48
in Schrödinger equation, 258

motion, 47
initial conditions, 67
symmetry of trajectory, 49
two-particle interaction, 53

Central-limit theorem, 835
Change of reference

in mobility measurement, 728
Channel

in MOSFET, 629
length, 630
stop

in CMOS, 647
well formed, 631
width, 630

Channeling, 695
Characteristic

exponent, 258
vector, Bravais lattice, 342

Characteristic equation, 755
Characteristic function

of Hamilton, 22, 31, 203
Charge

continuous distribution of, 80
density, 80
of electron, 144
per unit area, 607
point-like, 80

fields generated by, 109
potentials generated by, 96
power radiated by, 110

Charge partitioning
in MOS capacitors, 657

Charge-to-mass ratio
of electron, 144

Charged particles’ interaction
radiated power, 73

Chip, 661
Chynoweth, model, 563



896 Index

Circuit, of Giacoletto, 596
Closure condition

in BTE’s moment expansion, 474, 498
CMOS

architecture, 645
inverter, 645

Coarse-grained dynamics, 63
Coating

anti-reflection, 566
Coefficient

absorption, 527
Hall, 731
of Auger, 523
of electron emission, 514
of electron transition, 514
of hole emission, 514
of hole transition, 514
of impact-ionization, 525

Coefficients
elastic, 57

Collector region, 578
Collision

between two particles, 49
relativistic, 72

binary, 130
elastic, 49
electron with ionized impurity, 531
electron-phonon, 529
operator, 467
point-like, 466
term, 464, 466
types of, 463

Combinations with repetitions, 866
Combined

density of states, 364
Combined density

of the k vectors, 354
Common-base configuration

in BJTs, 579
Common-emitter configuration

in BJTs, 596
Commutation property

of a periodic operator, 352
Commutator

of operators, 190
Commuting operators

eigenfunctions, 211
Compensation effect, 439
Complementary error function, 815
Complete ionization, 431, 437
Complete separation

of coordinates, 31
Completeness, 182, 208, 210
Compton

effect, 73, 154, 157
wavelength, 158

Concentration
in configuration space, 123
intrinsic, 422
of electrons and holes, 416

Concentrations
asymptotic, 547, 605

Condition
of Lipschitz, 799

Conductance
differential

in MOSFETs, 634, 642
of drain, 634
output, 634

Conducting boundaries, 492
Conduction

band, 367, 417
within the gap, 513

Conductivity
electric, 504
in Hall-voltage meas., 734
in lifetime measurement, 725
of electrons, 491
of holes, 491
order of magnitude, 501
thermal, 504

Conductor, 417
Configuration space, 19
Conformal mapping, 795
Conjugacy

time-energy, 16
Conjugate

coordinate, 15
momentum, 12

Conjugate transpose
matrix, 754

Conservation
of energy

relativistic case, 72
of momentum

for a cyclic coordinate, 33
relativistic case, 72

of symmetry in time, 305
Conservative force field, 10
Constant

angular momentum, 48
Rydberg, 149
Stefan-Boltzmann, 153, 325

Constant perturbation, 286
Constant-energy

curve, 24
surface, 24, 371

Constant-field scaling rules, 662
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Constants
of motion, 43

Constrained extremum, 793
Contact

bulk, 602, 629
drain, 629
gate, 602, 629
ideal Ohmic, 554
in the p-n junction, 552
source, 629

Continuity equation, 674, 676
for the electric charge, 81
for the electric-field energy, 97
for the wave function, 197

Continuous
spectrum, 179

Continuous distribution
of charge, 80

Continuous mode
in photodiodes, 568

Contraction mapping, 797, 798
Convective

term, 478
Convective part

of the kinetic energy, 204
Convergence

unconditional, 801
Convex combination

of matrices, 764
Coordinate

canonical, 15, 122
complete separation, 31
conjugate, 15
constraints, 11
cyclic, 15, 31
generalized, 11
rotation, 787
separation, 30, 65

Coordinate rotation
invariance, 35

Coordinate transformation
density of states, 790
in operators, 788

Coordinate translation
invariance, 34

Coordinates
normal, 60, 66
polar, 787
principal, 60
spherical, 37, 785

Core electrons, 144
Coulomb

field, 54
attractive case, 68

gauge transformation, 83, 99
perturbation

screened, 285
potential, 97, 328

screened, 286, 540
potential energy, 54

Coulomb, unit, 80
Coupled solution

semiconductor equations, 774
Covalent bond, 424
Creation operator, 241
Critical energy, 693
Cross-section

of traps, 726
Crystal, 342
Crystal direction, 396
Crystal momentum, 458, 497
Crystal plane, 396
Cubic lattice, 343
Current

density, 80
of the solar cell, 576

Current gain
in photodiodes, 572
of the BJT (common-base conf.), 586
of the BJT (common-emitter conf.),

588
Curvature radius of a ray

in Geometrical Optics, 107
CVD

layer deposition, 711
Cyclic

coordinate, 15, 31

D
D’Alembert

equation, 78
Data and boundary values

in a differential equation, 91
de Broglie, 204

hypothesis, 160
wavelength, 160

Deal and Grove model, 706
Debye length

for the electrons, 548
for the holes, 549, 605
in screening, 541

Decoupled solution
semiconductor equations, 774

Deep states, 519
Defects

of the lattice, 511
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Degeneracy coefficient
of acceptors, 436
of donors, 429

Degenerate
eigenvalue, 179

Degenerate vibrational branches, 413
Degrees of freedom, 65

of the electromagnetic field, 103
Delta of Dirac, 808
Density

of charge, 80
of current, 80
of flux, 80
of states, 357
of the k vectors, 354

Density of probability, 831
Density of states, 790, 791

effective, 419, 420
examples, 790
in energy, 317
in parabolic bands, 363
photons, 323
three-dimensional box, 320
three-dimensional case, 379
two- or one-dimensional box, 322
two-dimensional layer, 379
wire, 380

Density of the probability flux, 198
Depleted

region, 612
Depletion condition, 517
Depletion regime, 608
Depletion type

MOSFETs, 636, 644
Depletion width, 608
Deposition

chemical vapor deposition (CVD), 711
physical vapor deposition (PVD), 711

Descartes
law of refraction, 116

Design
of ICs, 666

Design-rule checker, 666
Destruction operator, 241
Detailed-balance principle, 130
Determinant

Jacobian, 786
Slater, 312
Wronskian, 231, 772

Diagonal
matrix, 754

Diagonalization
of a matrix, 760
of the Hamiltonian function, 58

Diagonalized Hamiltonian function
quantization, 244

Diagonally dominant
matrix, 766

Diamond structure, 344
Diborane, 714
Dido’s problem, 21
Dielectrics

high-k, 603, 666
Differential capacitance

in doping measurement, 737
of the p-n junction, 562, 591

Differential conductances
in MOSFETs, 634, 642

Differentiation
term-by-term, 735

Diffused junction, 592
Diffused profile, 681
Diffusion

constant source, 682
model problem, 679

Diffusion coefficient, 678
of electrons, 485
of holes, 487
position dependent, 682

Diffusion equation, 678
Diffusion length

of minority carriers, 558
Diffusive term

in BTE, 469
Diffusive transport, 677
Diffusivity

of electrons, 485
of holes, 487
tensor, 484

Dilute system, 125, 314
Diode

avalanche, 563
Dipole

moment, 111
Dirac

delta, 808
properties, 813

symbol, 809
Dirac notation, 178
Direct lattice, 346
Direct-gap semiconductor, 374
Dirichlet

boundary conditions, 87
for stream function, 735
in semiconductors, 494

Discrete
circuit, 661
spectrum, 179
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Discretization
Scharfetter-Gummel scheme, 780

Discretization scheme
drift-diffusion equation, 779
Poisson equation, 776, 778
semiconductor equations, 776

Dispersion
of a variable, 832

Dispersion relation, 357, 390
in a vibrational spectrum, 408

Displacement
electric, 80

Displacement threshold energy, 687
Distance, 797

Euclidean, 798
symmetry, 797
triangle inequality, 797

Distribution
of Maxwell-Boltzmann, 127

Distribution function, 122
Divergence operator, 747
Divergence theorem, 749
Donor

traps, 512
Donor dopant, 427
Donor level, 429
Dopant, 424, 673

non uniform, 440
Dopant distribution

statistical variability of, 666
Doping profile

measurement, 737
Dose, 681, 700
Double vector product, 751
Doubly stochastic

matrix, 167, 764
Drain

contact, 629
Drain conductance

in MOSFETs, 634
Drift term

in BTE, 469
Drift-diffusion equation

discretization scheme, 779
for electrons, 485
for holes, 488

Drift-diffusion equations
with magnetic term, 731

Drift-diffusion model, 476, 482
Drive-in diffusion, 680, 684
Dyadic product, 748
Dynamic matrix, 385

eigenvalues of, 386, 388

Dynamic range
in CMOS, 655

Dynamic relations
of Special Relativity, 71

Dynamics, coarse-grained, 63

E
Ebers and Moll model

of the BJT, 585
Eccentricity, 70
Effect

Compton, 73, 154, 157
Hall, 730

Effective
mass

in Classical Mechanics, 64
mobility, 632, 640

Effective intrinsic concentration, 444
Effective mass, 497

average, 364
Effective-mass tensor, 361
Efficiency

of the solar cell, 594
quantum, 527

Ehrenfest
terminology, 19

Ehrenfest approximation, 217, 458
Ehrenfest theorem, 217
Eigenfunction, 179
Eigenvalue

degenerate, 179
equation, 179
of a matrix, 755
simple, 179

Eigenvalues
properties of, 762

Eigenvector
of a matrix, 755

Eigenvectors
linear independence of, 756
mutually orthogonal, 759
orthonormal, 759

Eikonal
equation, 107

Eingenfunction
of angular momentum, 267

Eingenvalue
of angular momentum, 265

Einstein
solution of photoelectric effect, 157

Einstein relation, 484
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Elastic
coefficients, 57
collision, 49
constant, 46, 238
force

linear, 46
matrix, 58

Electric
displacement, 80

Electric conductivity, 504
Electric dipole moment, 111
Electric length

of gate, 630
Electric potential, 81
Electromagnetic field

analogy with the linear harmonic oscillator,
104

conservation of the total energy, 104
degrees of freedom, 103
energy density of, 98
energy of, 98, 114

in terms of modes, 103
energy-flux density of, 98
Hamiltonian function of, 104
modes of, 99, 100, 114

in an infinite domain, 105
momentum density of, 98
momentum of

in terms of modes, 104
momentum-flux density of, 98
polarization of, 103
quantization of energy, 157, 241
quantization of momentum, 243
sources of, 80
spectral energy, 105

Electromagnetic filter, 689
Electron

core, 144
valence, 144

Electron affinity, 148, 603
Electron charge, 144
Electron gun, 115
Electron ionization

integral, 564
Electron Volt, unit, 236
Electron-beam

lithography, 115
Electron-emission coefficient, 514
Electron-lattice interaction, 390, 393

energy exchange, 394
Electron-phonon collision, 529
Electron-temperature, 479

tensor, 478
Electron-transition coefficient, 514

Electronic-grade purification, 468
Electrons

Debye length, 548
Electrostatic lens, 115
Element

of a tessellation, 272
Elliptical

trajectory, 70
Emission, 288, 291
Emission or absorption of energy

by atoms, 113
Emission rule

of Ritz, 149
Emitter region, 578
Energy

conservation
relativistic case, 72

critical, 693
emission or absorption by atoms,

113
kinetic, 9
of the electromagnetic field, 98, 114

in terms of modes, 103
rest, 72
total, 39

period depending on, 40
Energy band, 357
Energy barrier, 226
Energy density

of the electromagnetic field, 98
Energy exchange

in a two-particle collision, 51
Energy level, 159
Energy-flux density

of the electromagnetic field, 98
Energy-flux relaxation time, 481
Energy-relaxation time, 480
Enhancement type

MOSFETs, 636, 644
Entropy, 319
Envelope function, 201, 358
Epitaxial layer

in Hall-voltage meas., 733
in lifetime measurement, 724

Epitaxy, 713
kinetics of, 714
secondary reaction, 719

Equation
angular, 259
eikonal, 107
Hamilton-Jacobi, 15, 203

complete separation, 31
integration constants, 30
separation, 30
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Laplace, 99
of continuity

for the electric charge, 81
for the electric-field energy, 97

of D’Alembert, 78
of Helmholtz, 85

in a finite domain, 86
in an infinite domain, 88

of Poisson, 83, 87
in a semiconductor, 441, 496, 548, 605
in MOSFETs, 651
in scaling rules, 662

of waves, 78
in an infinite domain, 88

radial, 259
Equations

of Euler, 5
extension to several variables, 77

of Hartree, 333
of Hartree and Fock, 334
of Lagrange, 7
of Maxwell, 80

first group, 80
second group, 81

of Shockley
in a p-n junction, 556

Equilibrium
statistical, 123, 126

Equilibrium point
of a system of particles, 57

Equilibrium statistics
quantum case, 313

Equipartition of energy, 134
Equivalence

between Fermat principle and eikonal
equation, 108

between Hamilton’s and Lagrange’s
equations, 15

between Maupertouis principle and
Newton’s second law, 37

of Hamilton-Jacobi equation with
Lagrange’s equations, 17

Equivalent circuit
of the BJT, 584, 595

Equivalent Hamiltonian operator, 455
Error function, 815
Essential degeneracy of eigenvalues, 400
Euclidean

distance, 798
Euler

equations, 5
extension to several variables, 77

Euler’s Beta function, 817

Euler’s constant, 820
Euler’s Gamma function, 820

in density of states, 792
Euler’s integral

first kind, 817
second kind, 820

Excitation of an atom, 146
Excited state

of an atom, 113
Exclusion principle, 310
Expansion

into moments, 814
Expectation value, 212

as a constant of motion, 216
time derivative, 215

Experiments contradicting classical laws, 148
Exponent

characteristic, 258
Exponential fitting, 780
External field

in electron dynamics, 457
Extremum function, 4

invariance, 6
Schrödinger equation, 23

Extrinsic
concentration, 427
semiconductor, 423

F
Face-centered cubic (FCC)

lattice, 343
Factorization

eigenfunctions’ normalization, 255
first-order operators, 253
of an operator, 252

Fan out
in CMOS, 648

Farad, unit, 80
Fermat

principle, 107
Fermi

golden rule, 289
Fermi energy, 316
Fermi function, 811
Fermi integral, 822

approximating functions, 823
Fermi level, 316

estimate of, 422
extrinsic, 428

Fermi potential, 431
Fermi-Dirac statistics, 317
Fermions, Fermi particles, 308
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Fick’s
first law of diffusion, 678
second law of diffusion, 679

Field
Coulomb, 54

attractive case, 68
magnetic, 80
transversal, 100

Field oxide, 712
in CMOS, 647

Fill factor
of the solar cell, 593

Filter, 166
electromagnetic, 689
magnetic, 689

First-kind integral
of Euler, 817

First-order perturbation, 279, 280
First-order solution, 280
First-perturbation

in BTE, 469
Fixed point, 798

theorem, 798
Flat-band

condition, 604
voltage, 619

Flat-band capacitance
per unit area, 614

Flat-band condition, 608
Floquet

exponent, 258
Flux

density, 80
Flux density, 676
Foci, 70
Force

center of, 48
central, 48

Formula
of Larmor, 110, 202
of Stirling, 126, 821

Forward bias
in the p-n junction, 554

Forward substitution, 769
Fourier

series, 100
transform, 281, 805

of a Gaussian, 817
Fourier expansion

in a direct lattice, 347
in a reciprocal lattice, 347

Frame rate
in imaging, 572

Free electron, 145, 148
Freedom

degrees of, 65
Freeze-out range, 432
Full-depletion condition, 517
Fully compensated semiconductor, 439
Function

of Bloch, 292
Functional, 4
Functioning conditions

in CMOS, 650
Functioning regimes

in BJTs, 579
MOS capacitor, 608, 627

Fundamental constants
table of, 837

Fundamental solutions, 232

G
Gamma (� ) point, 348
Gamma function

asymptotic behavior, 821
Gamma function of Euler, 820
Gamma(”)-space, 19
Gap

of energy, 367
Gap conduction, 513
Gas-phase mass-transfer coefficient, 714
Gate

contact, 602, 629
electric length, 630
geometrical length, 629
self-aligned

in CMOS, 647
Gate oxide, 712
Gauge

invariance, 20
Gauge transformation, 9, 82

Coulomb, 83, 99
effect on the wave function, 204
equivalence with Lagrangian invariance, 90
invariance of fields under, 83
Lorentz, 83

Gauss
integral, 807

Gauss theorem, 749
Gaussian function

parametrized, 810, 816
General methods

of Quantum Mechanics, 208
Generalized

coordinate, 11
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force, 12
momentum, 12
velocity, 11

Generalized scaling theory, 663
Generating function

of a canonical transformation, 29
of a functional, 76
of Dirac’s delta, 810

Generation
of electron-hole pairs, 374, 418
of radiative type, 374

Generation lifetime, 517
Generations

of integrated circuits, 662
thermal

direct, 508
trap-assisted, 511

Geodesic, 24
Geometrical length

of gate, 629
Geometrical Optics, 107, 202

analogies with Mechanics, 115
Germanium

in integrated-circuit technology, 446
Gershgorin theorem, 756
Giacoletto circuit, 596
Gibbs

terminology, 19
Golden rule

of Fermi, 289
Gradient operator, 747
Gradual-channel

approximation, 633
Grains, 712
Gram-Schmidt orthogonalization, 181,

758
Graph

oriented
connected, 765

Greek alphabet
table of, 837

Green
first theorem of, 749
second theorem of, 86, 749

Green function, 85
in two dimensions, 92, 738

unit circle, 740
upper half plane, 738

Ground level (state), 159
Ground state

of an atom, 113
Group velocity, 362

of a vibrational mode, 390, 412
of a wave packet, 201

H
H-theorem

of Boltzmann, 134
Half-pitch, 662
Hall

coefficient, 731
effect, 730
probe, 732
voltage, 730

arbitrary aspect ratio, 732
local, 736

Hamilton
characteristic function, 22, 31, 203
equations, 14

in vector form, 18
principal function, 17, 29, 203
principle, 10

Hamilton-Jacobi
equation, 15, 17, 203

complete separation, 31
integration constants, 30
relation with Schrödinger’s, 23
separation, 30
time-independent, 31

Hamiltonian
constant of motion, 15, 31
function, 12

diagonalization of, 58
of the electromagnetic field, 104

operator, 185, 329
equivalent, 455
for a charged particle, 199
perturbed, 278
semiclassical approximation, 200
separable, 302
symmetries, 303, 398
unperturbed, 278

total derivative, 15
Hamiltonian relations

for a wave packet, 459
Harmonic

approximation, 65
Harmonic oscillator

general form, 24
linear, 24

in Classical Mechanics, 46
in Quantum Mechanics, 237

related integrals, 822
Harmonic perturbation, 288

periodic structure, 292
Hartree equations, 333
Hartree-Fock equations, 334
Haynes-Shockley experiment, 727
Heat-relaxation time, 481
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Heavy hole, 370
Heisenberg principle, 124, 215
Helmholtz

equation, 85
in a finite domain, 86
in an infinite domain, 88

Helmholtz theorem, 753
Henry, unit, 80
Hermite polynomial, 240
Hermitean

matrix, 754, 758
operator, 179, 208
operator’s eigenvalues, 209

Herring-Vogt transformation, 133, 363
Hertz, H., 150
Hessian

matrix, 361
Heteroepitaxy, 713
Hierarchical models

from BTE’s moment expansion, 476
High-k

dielectrics, 603, 666
Hoelder

inequality, 64, 824
Hole

heavy, 370
in the valence band, 368
light, 370

Hole ionization
integral, 565

Hole-emission coefficient, 514
Hole-transition coefficient, 514
Holes

Debye length, 549, 605
Homoepitaxy, 713
Hydrides, 714
Hydrodynamic model, 477, 481
Hydrogenic-like systems, 145

I
I-O characteristic

in CMOS, 648
IC-design tree, 666
Ideal characteristic

of a p-n junction, 559
Identical particles, 306
Identity

operator, 187
IGFET, 629
III-V semiconductors, 344
Imaging

frame rate, 572
interlaced technique, 572

Impact
parameter, 68

Impact ionization, 522
Impact-ionization coefficient, 525
Implanted profile, 694
Impurities, 673
Impurity, 424
Impurity band, 442, 444

conduction, 442
Impurity levels

position of, 447
qualitative analysis, 446

Imref potential, 495
Incompatible measurements, 211
Index

of refraction, 106
Indirect-gap semiconductor, 374
Inequality

Hölder’s, 64, 824
of Schwarz, 746

Infinitesimal
canonical transformation, 42

Input characteristics
of the BJT (common-base conf.), 588

Input resistance
in small-signal circuit, 597

Insulating boundaries, 492
Insulator, 417
Integral

equation, 279
of Gauss, 807
of ionization (electrons), 564
of ionization (holes), 565
of Poisson, 807

Integrals
related to e.m. modes, 825

Integrated circuit, 661
Integration

term-by-term, 735
Integration level, 661
Integration time

in photocapacitors, 621
in photodiodes, 571

Inter-band transitions, 463
Inter-valley transitions, 463
Interaction

electron-lattice, 390, 393
energy exchange, 394

Interatomic distance, 365
Interlaced technique

in imaging, 572
Interstitial, 673
Intra-band transitions, 463
Intra-valley transitions, 463
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Intrinsic
concentration, 422

effective, 444
Intrinsic concentration

in reaction velocity, 718
Intrinsic range, 432
Intrinsic semiconductor, 419
Intrinsic transistor, 580
Invariance

gauge, 20
relation with Lagrangian’s, 20

of fields
under gauge transformation, 83

of the Lagrange equations, 12
under coordinate rotation, 35
under coordinate translation, 34
under time reversal, 33
under time translation, 34

Inverse
matrix, 754
operator, 187

Inverse screening length, 286
Inversion charge

per unit area, 612
Inversion layer, 611
Inversion point

in MOSFETs, 654
Inverter

CMOS, 645
Ion concentration, 690
Ion flux, 690
Ion implantation, 680, 686
Ion implanter, 686, 688
Ion source, 686
Ion trajectory, 690
Ion-beam

lithography, 115
Ionization

impact, 522
Ionization energy, 276, 449
Ionization of an atom, 146
Ionized impurity concentration, net, 439
Ionized-impurity collision, 531
Irreducible

matrix, 765
Irrotational vector, 752
Isolation diffusion, 578
Isoperimetric

variational calculus, 21
Iterative solution, 280

J
Jacobian

determinant, 786
matrix, 785

Junction
p-n, 546
abrupt, 546
metallurgical, 546
shallow, 567

K
Kac-ring model, 136
Kepler

second law of, 67
third law of, 70

Ket vector, 178
Kinetic

energy, 9
Kinetic energy

convective part, 204
for a system of particles, 9
of a hole, 461
of a wave packet, 459
thermal part, 204

Kinetics
of oxidation, 706, 718

Kronecker symbol, 748
Kronig-Penney model, 401
Kurtosis, 696

L
L point, 348
Ladder of eigenvalues, 239, 255
Lagrange

equations, 7
extension to several variables, 75

multipliers, 21, 126, 315, 318, 325, 793
Lagrange equations, 7

electromagnetic force, 8
Lagrangian

and action integral, 16
density

for the Maxwell equations, 83
Lagrangian function

for the wave equation, 78
in mechanics, 6

Laplace
equation, 99

Laplace equation
for the stream function, 734

Laplacian operator, 747
Larmor

formula, 110, 202
Laser, 526
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Laser annealing, 698
Laser pulse

in mobility measurement, 727
Lateral diffusion, 699
Lateral penetration, 712
Lateral range, 691
Lattice

direct, 346
Lattice constant, 364
Lattice defects, 511
Law

of Balmer, 149
of Moore, 661
of Planck, 157, 324
Rayleigh-Jeans, 154
Stefan, 153, 325

Least action
principle, 36

Least time
principle, 107

Legendre function
associate, 269

Legendre polynomial, 270
Lens

electrostatic, 115
Libration, 40
Lifetime

generation, 517
of minority carriers, n region, 518
of minority carriers, p region, 518

Lifetimes
in Shockley-Read-Hall theory, 516
measurement of, 724

Light hole, 370
Limited

motion, 39
Limits to scaling theory, 665
Linear

elastic force, 46
harmonic oscillator

in Classical Mechanics, 46
in Quantum Mechanics, 237

motion, 39
operator, 178

Linear harmonic oscillator
eigenfunction, 238
eigenvalue, 238
factorization, 238

Linear region
in MOSFETs, 636, 644

Linear, diatomic chain, 408
Linear, monatomic chain, 146, 405
Linear-parabolic model

in MOSFETs, 638, 645

Liouvillian
operator, 469, 502

Lipschitz
condition, 799

Lithography, 115
Liénard and Wiechert

potentials, 96
Local Hall voltage, 736
Localized states

in Schrödinger equation, 251
LOCOS (local oxidation), 712
Longitudinal mass, 372
Lorentz

gauge transformation, 83
Lorentz force, 8, 89

in Hall-voltage meas., 730
Lorentzian function, 810
Lower(upper) triangular

matrix, 768
LU decomposition

of a matrix, 768

M
Magnetic

field, 80
Magnetic filter, 689
Magnetic potential, 81
Magnetic quantum number, 261
Magnetic term

in drift-diffusion equations, 731
Majority carriers, 430, 436
Many-particle systems, 301
Mask, 699
Mass

effective
in Classical Mechanics, 64

longitudinal, 372
matrix, 58
reduced, 50, 68
relativistic, 71
rest, 71
transverse, 372

Matrices, 753
Matrix

anti(skew)-symmetric, 754
conjugate transpose, 754
convex combination, 764
diagonal, 754
diagonalization, 760
diagonally dominant, 766
doubly stochastic, 167, 764
dynamic, 385
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eigenvalue, 755
eigenvector, 755
elastic, 58
Hermitean, 754, 758
Hessian, 361
inverse, 754
irreducible, 765
Jacobian, 785
lower(upper) triangular, 768
LU decomposition, 768
main diagonal, 754
normal, 755
of masses, 58
orthogonal, 754, 787
permutation, 168, 763
perturbation, 279
positive (negative) definite, 759
real normal, 754
reducible, 765
similar, 763
skew-Hermitean, 755
spectral radius, 756, 801
symmetric, 754
transmission, 274
transpose, 746, 754
tridiagonal, 768, 777
unitary, 754

Matrix diagonal
strongly dominant, 764
weakly dominant, 765

Matthiessen rule, 500, 528, 534
Maupertouis

principle, 36
Maximum-power voltage

of the solar cell, 593
Maxwell

equations, 80
first group, 80
second group, 81

Maxwell equations
Lagrangian density, 83

Maxwell-Boltzmann
distribution, 127

MBE (molecular beam epitaxy), 718
Mean value

of a variable, 832
Measurement, 165

Hall voltage, 730
lifetimes, 724
massive bodies, 168
mobility, 727

Measurement of doping profile, 737
Measurements

incompatible, 211

Mechanics
analogies with Geometrical Optics, 115

Memory
Phase Change (PCM), 342

Metal-Insulator-Semiconductor
capacitor, 602

Metallurgical
junction, 546

Method
of Newton, 799
of van der Pauw, 738

Metric space
complete/incomplete, 798

Mid-gap condition, 610
Miller indices, 397
Millikan, R., 144
Miniaturization

of ICs, 662
Minimum-uncertainty wave function, 217
Minority carriers, 430, 436

diffusion length of, 558
MIS

capacitor, 602
Mixed

spectrum, 179
Mixed product, 750
Mixed-form model

of the BJT, 586
Mobility, 373

bulk, 533
effective, 632, 640
measurement of, 727
models

macroscopic, 529
numerical calculations, 536
of electrons, 485
of holes, 487
order of magnitude, 501
surface, 534
tensor, 483, 484

Mobility degradation
in MOSFETs, 654

Mode
of a vibrating system, 60, 245

Model
of Chynoweth, 563
of Kronig and Penney, 401

Model problem
for diffusion, 679, 685

Modes
of the electromagnetic field, 99, 100, 114

in an infinite domain, 105
Modulus

of a vector, 745
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Molecular beam epitaxy, 718
Moment

dipole, 111
of a function, 814

Moment of a distribution, 832
Moments of BTE

at equilibrium, 498
hierarchical models, 476
order one, 475
order three, 476
order two, 476
order zero, 474

Moments’ expansion, 814
Momentum

angular, 38
eigenfunction, 267
eigenvalue, 265
in a system at equilibrium, 131
operator, 263
with electromagnetic forces, 38

conjugate, 12, 13
conservation

for a cyclic coordinate, 33
relativistic case, 72

in a system at equilibrium, 131
of the electromagnetic field

in terms of modes, 104
operator, 186

Momentum density
of the electromagnetic field, 98

Momentum-flux density
of the electromagnetic field, 98

Momentum-relaxation time, 481
Moore law, 661
MOS

capacitor, 602, 626
functioning regimes, 608, 627

photocapacitor, 620
MOS transistor, 629, 639
MOSFET, 629, 639

channel, 629
in Hall-voltage meas., 733

Motion
central, 47

initial conditions, 67
constants of, 43
limited, 39
linear, 39
reversible, 33
unlimited, 39

Mu(
)-space, 20, 122
cells of, 124

Multi-junction
solar cells, 595

Multiplication factor
of electrons, 565
of holes, 566

Multipliers
Lagrange, 21, 126, 315, 318, 325, 793

Mutually orthogonal
eigenvectors, 759

N
n-type dopant, 424
Nabla

operator, 747
Narrow-gap material, 445
Natural

trajectory, 10
Net generation rate, 491, 675
Net non-thermal generation rate, 491
Net thermal recombination rate, 491
Neumann

boundary conditions
for stream function, 735
in semiconductors, 493

Newton’s method, 799
Newton, unit, 6
Node

Bravais lattice, 342
in IC technology, 662
of a tessellation, 272

Non-degenerate semiconductor, 431
Non-oscillatory solutions

of Schrödinger equation, 249
Non-scalable quantities, 665
Norm conservation

for the wave function, 198
Norm of a function, 177
Normal

coordinates, 60, 66
matrix, 755

Normal (N) process, 296
Normalizable

wave function, 169
Normalization condition

of distribution function, 122
Nucleus, 144
Null

operator, 187
Number operator, 238
Numerical solution

semiconductor equations, 773
Numerov process, 782

drift-diffusion equation, 783
Schrödinger equation, 275
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O
Observable, 208
Occupation number

vibrating system, 245
Off condition

in MOSFETs, 636, 644
Ohm law, 491
Ohmic

contact
ideal, 554

On condition
in MOSFETs, 636, 644

Onsager relations, 503
Open-circuit voltage

of the solar cell, 593
Operator

adjoint, 179, 189
angular momentum, 263
anti(skew)-Hermitean, 187
creation, 241
destruction (annihhilation), 241
divergence, 747
factorization of, 252
gradient, 747
Hamiltonian, 185
Hermitean, 179, 208

eigenvalues, 209
identity, 187
in form of a series, 188
inverse, 187
Laplacian, 747
linear, 178
Liouvillian, 469, 502
momentum, 186
nabla, 747
null, 187
number, 238
of polynomial form, 188
periodic, 352
product, 187
separable, 209
translation, 349, 398
unitary, 189

Operators
commutator of, 190
commuting, 211

Optical
sensor, 526, 566
transitions, 525

Optical branch
in lattice vibrations, 412

Optical current density
in photodiodes, 568

Optical generation

in lifetime measurement, 724
Optics

Geometrical, 107, 202
Orbital quantum number, 261
Oriented

graph, 765
path, 765

Orthogonal
matrix, 754, 787
vectors, 745

Orthogonal functions, 178
Orthogonalization

Gram-Schmidt, 181, 758
Orthonormal

eigenvectors, 759
Output characteristics

in MOSFETs, 636, 644
of the BJT (common-base conf.), 587

Output conductance
in MOSFETs, 634, 642

Overlap factor, 295, 531
Oxidation

dry, 705, 709
kinetics, 706, 718
linear coefficient, 708
linear-parabolic model, 708
local, 712
of silicon, 705
parabolic coefficient, 708
substrate orientation, 709
temperature, 709
wet (steam), 705, 709

Oxide
native, 705

Oxide capacitance
per unit area, 608

P
p-n junction, 546

contacts of, 552
differential capacitance, 562, 591
diffused, 592
forward bias, 554
ideal characteristic of, 559
recombination current density, 557
reverse bias, 554
Shockley equations, 556
symbol of, 554

p-type dopant, 424
Parabolic-band approximation, 362
Paradoxes, 136
Parameter

impact, 68
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Parseval theorem, 184, 194
Partially compensated semiconductor, 439
Partition function, 127
Pauli, 204
Pauli principle, 310
Pearson family

of distribution, 697
Pearson IV

distribution, 697
Peltier coefficient, 504
Penetration length

of radiation, 528
Periodic

boundary conditions, 353
coefficient

in Schrödinger equation, 256
potential energy

energy-momentum relation, 63
in Classical Mechanics, 60

Periodic operator, 352
Permeability

of vacuum, 81
Permittivity

of vacuum, 81
Permutation

matrix, 168, 763
Perturbation

constant, 286
first order, 279, 280
Hamiltonian operator, 278
harmonic, 288

periodic structure, 292
matrix, 279
screened Coulomb, 285

Phase
point, 19
trajectory, 19
velocity, 32, 106

Phase space, 18
dynamics of a wave packet, 461

Phase velocity
of a vibrational mode, 390, 412

Phase-Change Memory (PCM), 342
Phonon, 245, 336
Phosphine, 688, 714
Photocapacitor

integration time, 621
MOS, 620

epitaxial, 623
sampling time, 621

Photodiode
continuous mode, 568
current gain, 572
depletion-layer type, 566

integration time, 571
optical current density, 568
sampling time, 572
storage mode, 570

Photoelectric effect, 150
Photoelectron, 150
Photon, 157
Photovoltaic (PV) effect, 573
Pilot wave

of de Broglie, 204
Planar technology, 661
Planck

constant, 124, 152
constant, reduced, 23, 158
law, 157, 324
solution of black-body problem, 156

Planetary model of the atom, 144
emitted power, 111
stability, 111, 148

Poincaré cycle, 137
Point transformation, 26
Point-like

charge, 80
fields generated by, 109
potentials generated by, 96
power radiated by by, 110

probe, 734
Poisson

brackets, 17
equation, 83, 87

in a semiconductor, 441, 496, 548,
605

in MOSFETs, 651
in scaling rules, 662

integral, 807
Poisson equation

discretization scheme, 776, 778
Polar coordinates, 787
Polarization

of the electromagnetic field, 103
Polycrystalline silicon, 519, 711
Polynomial

operator, 188
Polysilicon, 711
Positive (negative) definite

matrix, 759
Potential

at the semiconductor’s surface, 606
barrier, 547
built-in, 547
Coulomb, 97, 328
electric, 81
magnetic, 81
retarded, 89
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scalar, 8, 81
vector, 8, 81

Potential energy
Coulomb, 54
energy barrier, 226
periodic

energy-momentum relation, 63
in Classical Mechanics, 60

step-like, 221
well, 233

Potentials
Liénard and Wiechert, 96

Poynting
vector, 97

Predeposition, 680, 681, 700
Primitive

cell, 343
Principal

coordinates, 60
Principal function

of Hamilton, 17, 29, 203
Principal normal unit vector

of a ray
in Geometrical Optics, 107

Principal quantum number, 263
Principle

of detailed balance, 130
of equipartition of energy, 134
of exclusion, 310
of Fermat, 107
of Hamilton, 10
of least action, 36
of least time, 107
of Maupertouis, 36
of Pauli, 310
of superposition, 193, 196

Probabilistic interpretation
of Born, 169

Probability
in energy measurements, 195
in measurement, 166
of a transition, 280

for continuous levels, 283
for degenerate levels, 282
per unit time, 281

of scattering, 464
Probability density, 831
Probability flux

density of, 198
Probe

Hall, 732
point-like, 734

problems, 839–841, 843, 844, 846–865,
867–874, 876–886

Product
of operators, 187

Profile
doping

measurement, 737
Programming

a solution algorithm, 771
Projected range, 691
Pull-down device

in CMOS, 655
Pull-up device

in CMOS, 655
PVD

layer deposition, 711

Q
Quantization

diagonalized Hamiltonian function, 244
energy, 174
energy of electromagnetic field, 157, 241
momentum of electromagnetic field, 243

Quantum efficiency, 527
Quantum hypotheses, 156
Quantum Mechanics

general methods, 208
Quantum number

azimuthal (magnetic), 261
orbital (total), 261
principal, 263

Quantum potential
of Bohm, 204

Quantum wire, 377
Quartz

tetrahedral structure, 703
Quasi-Fermi potential, 495
Quasi-linear

differential equation, 496
Quasi-neutral

region, 550
Quasi-static approximation, 477, 489

R
Radial equation, 259

in the Coulomb case, 262
eigenfunction, 271
eigenvalue, 270

Radiated power
in charged particles’ interaction, 73

Radiation field, 109
Radius

of electron, 144
Random velocity, 478



912 Index

Random walk problem, 695, 831
Range

ion implantation, 691
Rapid thermal annealing, 698
Ratio

charge-to-mass
of electron, 144

Ray
curvature radius of

in Geometrical Optics, 107
in Geometrical Optics, 107
principal normal unit vector of

in Geometrical Optics, 107
Rayleigh-Jeans

law, 154
Reaction velocity, 708, 715
Real normal

matrix, 754
Reciprocal lattice, 345

scaled, 346
Recombination

Auger, 521
of electron-hole pairs, 374
of radiative type, 374
Shockley-Read-Hall, 516
total, 540

Recombination current density
in a p-n junction, 557

Recombinations
thermal, 508

direct, 508
trap-assisted, 511

Recursive relation
for Hermite polynomials, 241

Reduced
mass, 50, 68

Reducible
matrix, 765

Reflection coefficient, 223
Refraction

Descartes law of, 116
index, 106

Region
of space charge, 550
quasi neutral, 550

Relativistic
mass, 71

Relaxation time, 467, 470
macroscopic, 480

Rest
energy, 72
mass, 71

Retarded
potential, 89

Reverse bias
in the p-n junction, 554

Reversible
motion, 33
wave equation

with respect to time, 89
Richardson constant, 229
Ridley-Watkins-Hilsum mechanism, 374
Riemann’s Zeta function, 826
Ritz

emission rule, 149
Ritz method, 336
Rotation, 40

of coordinates, 787
Rotational operator, 751
Rotational theorem, 752
Rutherford, E., 144
Rydberg constant, 149

S
Sampling time

in photocapacitors, 621
in photodiodes, 572

Saturation
current, 635, 643
current density, 559
surface potential, 635, 643
voltage, 635, 643

Saturation range, 432
Saturation region

in MOSFETs, 636, 644
Scalar potential, 8, 81
Scalar product, 745

of functions, 177
Scaling rules

in MOSFETs, 661
with constant field, 662

Scaling theory
generalized, 663
limits to, 665

Scanning system, 686
Scattering probability, 464
Scharfetter-Gummel

discretization, 780
Schrödinger equation

asymptotic behavior of solutions, 249
dependent on time, 196, 208
for a central force, 258
for a free particle, 173
for a particle in a box, 174
for the nuclei, 334
heuristic derivation, 162
in a periodic lattice, 355
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in systems of electrons and nuclei, 329
independent of time, properties of, 171
initial condition, 278
localized states, 251
lower energy bound, 176
many-particle systems, 302
non-oscillatory solutions, 249
polar form, 202
properties in one dimension, 248
time dependent, 279
time independent, 164
with a periodic coefficient, 256
zeros separate each other, 248

Schwarz inequality, 177, 746
Screen

electric, 466
Screened Coulomb

perturbation, 285
potential, 286, 540

Screening, 540
Screening length, 286, 541
Second-kind integral

of Euler, 820
Secular equation, 755
Segregation coefficient, 682, 707
Selection rules, 281, 295
Self-aligned gate

in CMOS, 647
Self-isolated

devices, 578
Semi-linear

differential equation, 496
Semiclassical approximation

application of, 202
for the Hamiltonian operator, 200

Semiclassical equations, 464
Semiconductor

extrinsic, 423
Semiconductor capacitance

per unit area, 613
Semiconductor equations

coupled/decoupled solution, 774
discretization scheme, 776
numerical solution, 773

Semiconductor-device model, 490
Semimajor

axis, 70
Semiminor

axis, 70
Sensor

optical, 526, 566
Separable operator, 209
Separation

of coordinates, 30, 65

Series
Fourier, 100
of operators, 188

SGOI technology, 446
Shallow

junction, 567
Shockley

boundary conditions of, 558, 590
equations

in a p-n junction, 556
Shockley-Read-Hall recombination, 516
Shockley-Read-Hall theory, 514
Short-circuit curent

of the solar cell, 593
Silane, 711
Silicon

amorphous, 519
polycrystalline, 519

Silicon dioxide, 711
Silicon nitride, 711
Silicon-on-sapphire process, 713
Similar

matrix, 763
Similarity

transformation, 763
Simple

eigenvalue, 179
Sine integral, 803
Single-junction

solar cells, 595
Skew-Hermitean

matrix, 755
Skewness, 696
Slater

determinant, 312
Slowly-varying function, 834
Small-signal circuit

in MOSFETs, 637
input resistance, 597
transconductance, 597

SOI technology
for CMOS, 646

Solar cell, 526
boundary conditions, 575
current, 576
efficiency, 594
fill factor, 593
maximum-power voltage, 593
multi-junction, 595
open-circuit voltage, 593
short-circuit current, 593
single-junction, 595

Solar constant, 170, 594
Solar-grade purification, 468
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Solenoidal vector, 752
Solution

first order, 280
for the stream function, 734

Solution algorithm
programming of, 771

solutions, 839–841, 843, 844, 846–865,
867–874, 876–886

Solvay Conference
fifth, 204

Sommerfeld
asymptotic conditions, 88

Source
contact, 629

Source conductance
in MOSFETs, 642

Sources
of the electromagnetic field, 80

Space
configuration, 19
gamma(”), 19
mu(
), 20, 122
phase, 19
state, 19

Space-charge
region, 550, 609

Special Relativity
dynamic relations of, 71

Spectral energy
of the electromagnetic field, 105

Spectral energy density, 153
Spectral lines of atoms, 149
Spectral radius

of a matrix, 756, 801
Spectrum, 179
Speed of light

in vacuo, 81
Sphalerite, 344
Spherical

coordinates, 37
Spherical coordinates, 785
Spherical harmonic, 261, 269

general, 270
Spin, 308
Spin up/spin down, 309
Square

well, 45
Square-integrable function, 177
Standard deviation

of a variable, 832
Standard deviation of the eigenvalues, 213
State

of a mechanical system, 19
of an atom, 113

trajectory, 19
State space, 18
States

deep, 519
tail, 519

Statistical
average, 123
equilibrium, 123, 126

Statistical Mechanics, 122
Statistical variability

in dopant distribution, 666
Statistically-independent variables, 833
Statistics of equilibrium

quantum case, 313
Stefan law, 153, 325
Step function, 804
Step-like potential energy, 221
Stick diagram, 666
Stirling

formula, 126, 821
Stokes theorem, 752
Stopping power, 692
Storage mode

in photodiodes, 570
Stream function, 734
Strong-inversion condition, 610
Strongly dominant

matrix diagonal, 764
Subbands, 376

in a periodic lattice, 378
Subcollector, 577
Substitutional impurity, 426, 673
Subthreshold condition

in MOSFETs, 660
Subthreshold current

in MOSFETs, 655, 658
Subthreshold slope, 661
Successive approximations

in algebraic systems, 799
Successive-approximations

theorem, 799
Superposition Principle, 193, 196
Surface

of constant energy, 24, 371
Surface mobility, 534
Surface potential, 606
Surface states, 619
Symbol

of the p-n junction, 554
Symmetric

function, 304
matrix, 754

Symmetries
in the Hamiltonian operator, 303, 398



Index 915

Synchronous
trajectory, 11

System of electrons and nuclei, 328
System of particles, 7

equilibrium point of, 57
near an equilibrium point, 56

Systems of particles
conservative, 310

T
Table

fundamental constants, 837
Greek alphabet, 837

Tail states, 519
Target, 686
Technology

planar, 661
Technology node, 662
Term-by-term

differentiation, 735
integration, 735

Tesla, unit, 80
Tessellation, 272
Theorem

central limit, 835
fixed point, 798
of Bloch, first form, 350
of Bloch, second form, 350
of Cauchy, 818
of Gershgorin, 756
of Green

first, 749
second, 86, 749

of Helmholtz, 753
of Parseval, 184, 194
of Stokes, 752
successive approximations, 799

Theory
Shockley-Read-Hall, 514

Thermal annealing, 698
Thermal conductivity, 504
Thermal generations

direct, 508
trap-assisted, 511

Thermal part
of the kinetic energy, 204

Thermal recombinations, 508
direct, 508
trap-assisted, 511

Thermal velocity, 726
Thermally-grown SiO2, 703
Thermoelectric

coefficient, 504

effect, 504
Thin-film transistors, 342, 519
Thomson, J. J., 144, 150
Threshold

of strong inversion, 610
voltage, 635, 643

Time reversal
invariance, 33

Time translation
invariance, 34

Time-dependent
Schrödinger equation, 196, 208

Time-energy conjugacy, 15, 16
Time-independent

Schrödinger equation, properties of, 171
Top-down design of ICs, 666
Total

energy, 39
period depending on, 40

Total angular momentum
of a system of particles, 36

Total momentum
of a system of particles, 34

Total quantum number, 261
Trajectory

elliptical, 70
natural, 10
symmetric in central motion, 49
synchronous, 11

Transconductance
in MOSFETs, 637, 644
in small-signal circuit, 597

Transfer characteristics
in MOSFETs, 636, 644

Transform
Fourier, 281, 805

Transformation
canonical, 27, 28
gauge, 9, 82
of similarity, 763
point, 26
unitary, 760

Transistor
bipolar junction transistor (BJT), 577
point-contact transistor, 577
thin-film, 342, 519

Transistor (BJT)
common-base configuration, 579
common-emitter configuration, 596
current gain (common-base conf.), 586
current gain (common-emitter conf.), 588
Ebers and Moll model, 585
equivalent circuit, 584, 595
functioning regimes, 579
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Transistor (BJT) (cont.)
input characteristics (common-base conf.),

588
intrinsic tr., 580
mixed-form model, 586
output characteristics (common-base

conf.), 587
Transition

probability, 280
for continuous levels, 283
for degenerate levels, 282
per unit time, 281

rules, 281
Transition rates

in Auger recombination, 539
in impsct ionization, 539
in SRH recombination, 536

Transitions
inter-band, 463
inter-valley, 463
intra-band, 463
intra-valley, 463
optical, 525
trap-assisted, 511

Translation
operator, 349, 398

Translation vector, 342
Transmission

matrix, 274
Transmission coefficient, 224, 233
Transparent energy barrier, 229
Transpose

matrix, 746, 754
vector, 746

Transversal
field, 100

Transverse mass, 372
Trap-assisted transitions, 511
Traps

acceptor type, 512
donor type, 512

Triangle inequality, 797
Tridiagonal

matrix, 768, 777
Tub

in CMOS, 646
Tunnel effect, 147, 228
Two-dimensional layer, 375
Two-particle collision, 49

energy exchange, 51
relativistic, 72

Two-particle interaction
central motion, 53

U
Ultraviolet catastrophe, 154
Umklapp (U) process, 296
Uncertainty, 213
Uncertainty principle, 215
Unconditional convergence, 801
Unipolar

devices, 629
Unitary

matrix, 754
operator, 189
transformation, 760

Units
in Electromagnetism, 8, 80
in Mechanics, 6

Unlimited
motion, 39

Upper triangular
matrix, 768

V
Vacuum

permeability, 81
permittivity, 81
speed of light, 81

Vacuum level, 147, 604
Valence

band, 367, 417
Valence electrons, 144
Valley, 463

in the conduction band, 370
van der Pauw

method, 732, 738
Van Hove singularity, 380
Varactor, 563
Variable

of action, 41
Variable capacitor (varactor), 563
Variables

action-angle, 40
Variance of the eigenvalues, 213
Variation

in variational calculus, 4
Variational calculus, 4

constraints, 21
Dido’s problem, 21
for several functions, 5
higher order, 20
isoperimetric, 21

Vector
characteristic, 342
irrotational, 752
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Poynting, 97
solenoidal, 752
translation, 342
transpose, 746
wave vector, 100

Vector potential, 8, 81
Vector product, 750
Vectors

modulus of, 745
orthogonal, 745

Velocity
areal, 67
group, 390

of a wave packet, 201
phase, 32, 106, 390
random, 478
thermal, 726

Vibrating system
mode of, 60, 245
occupation number, 245

Vibrational mode, 390
Vibrational spectrum, 382

acoustic branch, 412
in a linear, diatomic chain, 408
in a linear, monatomic chain, 405
optical branch, 412

Vlasov equation, 129
Volt, unit, 80
Voltage

breakdown, 563
Hall, 730

W
Wafer, 661
Warped band, 369
Wave

equation, 78
in an infinite domain, 88

vector, 100
Wave equation

for the E and B fields, 91
Lagrangian function for, 78
time reversibility, 89

Wave function, 161

minimum-uncertainty, 217
normalizable, 169
spatial part, 162
units of, 201

Wave packet, 194, 358
approximate form, 200
group velocity, 201
kinetic energy of, 459

Wavelength, 106
Compton, 158
de Broglie, 160
of a vibrational mode, 390

Weak-injection condition, 517
Weak-inversion condition, 610
Weakly dominant

matrix diagonal, 765
Weber, unit, 80
Well

in CMOS, 646
square, 45

Well-formed channel, 631
Wide-gap material, 445
Wiedemann-Franz law, 504
Wigner-Seitz cell, 348
Window, 699
Work, 9

of the electromagnetic force, 10
per unit volume, 90

Work function, 148, 603
Wronskian

determinant, 231, 772

X
X point, 348
X-ray diffusion, 144

Z
Zero-point energy, 241
Zeros of solutions

in Schrödinger equation, 248
Zincblende structure, 344
Zustandssumme, 127
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