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Preface

I feel obliged to say something in the preface, in an attempt to help the reader love
the book, regardless of whether he/she chooses to read the book fortunately or
unfortunately. This preface contains five parts. Let me start in the first part about
my beloved physics.

Physical Methods Make Physics Mature

From Aristotle (384–322 B.C.) to the time before G. Galilei (February 15, 1564–
January 8, 1642), physics was developed mainly on the basis of empirical analysis
(observations), which offered correlations (namely relationships involving depen-
dence). Owing to G. Galileo, the situation was significantly changed because he
brought controlled experiments into the research of physics. This approach directly
reveals cause and effect, which represents a deeper understanding than the correla-
tion brought by empirical analysis. Next, it was I. Newton (December 25, 1642–
March 20, 1726) who realized the necessity of introducing the tool of theoretical
analysis (based on mathematics) to generalize the results obtained from both
empirical analysis and controlled experiments. As a result, physics developed much
faster than before, and currently physics has already become a mature discipline.

Physical Methods Might Help Econophysics to Grow Up

The historical route of developing physics sheds light on how to develop econo-
physics (even though econophysics is only a branch of physics, at least to phys-
icists like me). In fact, if we compare physics with econophysics, we can find a
similar route. In the mid-1990s, econophysics got its own name and started to
board the stage of history as a new research direction (certainly, I also agree that
researches within the scope of econophysics appeared much earlier than the
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mid-1990s, but at that time, the word ‘‘econophysics’’ was not yet coined). Since
then, studies on econophysics have been mainly based on empirical analysis (as
well as agent-based simulations, especially after the birth of the minority game in
1997 [1]; these simulations are used to understand empirical observations). Since
the last decade, the situation has been updated by introducing controlled experi-
ments into econophysics, say, the study of the minority game [2–4], political
exchange for election outcome prediction [5, 6], the market-directed resource-
allocation game [7–10], and a laboratory stock market [11]. In the early stage of
introducing controlled experiments [2–4], controlled human experiments (which
will be simply called ‘‘controlled experiments’’ throughout this book) were purely
performed to yield new results. However, such human experiments often have
unavoidable limitations such as specific subjects with specific identities in specific
avenues at specific time. Thus, it becomes somehow difficult to generalize the
results obtained from controlled experiments. To overcome these limitations and
also to achieve more results (that cannot even be obtained from pure human
experiments due to the lack of resources like time, money, and/or human subjects),
since 2009 [7], my group has introduced a combination method of empirical
analysis, controlled experiments, and theoretical analysis (based on agent-based
simulations and/or analytical theory) [7–10] into the research of econophysics.
Owing to the big success of the combination approach in physics, we expect more
from the combination method in the field of econophysics. Because controlled
experiments play the most important role in the combination approach, I call the
econophysics related to the controlled experiments as Experimental Econophysics,
which is the topic of this book.

To benefit the reader, a few well-known scholars have published several elegant
English monographs on econophysics:

• R.N. Mantegna and H.E. Stanley, An Introduction to Econophysics, Cambridge
University Press (2000);

• N.F. Johnson, P. Jefferies, and P.M. Hui, Financial Market Complexity, Oxford
University Press (2003);

• J. Voit, The Statistical Mechanics of Financial Markets (3rd edition), Springer
(2005);

• D. Challet, M. Marsili, and Y.-C. Zhang, Minority Games: Interacting Agents in
Financial Markets, Oxford University Press (2005).

However, these monographs have not touched the field of experimental
econophysics. So, the present book in your hand would be the first English
monograph on Experimental Econophysics. I hope it will help to foster the
development of econophysics, at least to some extent.
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Peer Responses to Experimental Econophysics

What is experimental econophysics in the eyes of econophysicists? I prefer to
answer this question as below.

From May 31 to June 2, 2014, I attended the International Conference on
Econophysics (ICE2014) in Shanghai, China. During the ICE2014, I presented an
invited talk, entitled ‘‘Experimental Econophysics: A laboratory market for
modeling real stock markets.’’ The talk presented both my key thoughts on
experimental econophysics and the content of Chap. 3 of this book. Surprisingly,
the audience appreciated this talk very much, and evoked much stronger reper-
cussions than what I had expected. As a result, during or after my talk, many
scholars (including Prof. R.N. Mantegna of the University of Palermo in Italy) had
great interest to discuss with me the controlled experiments conducted by my
group. In particular, on June 4, 2014, Prof. D. Sornette of ETH Zurich in
Switzerland, who is both a chairman of ICE2014 and a leading worldwide expert
in the field of econophysics, also emailed me:

‘‘I like very much your presentation at ICE2014. I would be glad if you could send me
your presentation in pdf format. I would also appreciate receiving your papers that you
listed, especially the ones on your lab experiments.’’

Such peer appreciation implies that experimental econophysics, coined by me,
has had a good start. Nevertheless, a good start does not mean a good ending; to
achieve the latter, we must do much better.

Who Should Read This Book?

One of my dreams, which are genuine dreams beyond reality, is to let this book
attract a huge number of readers. So, the dream is as follows.

On one hand, everyone who has an interest in physics should read this book
because it guides him/her to know how to develop statistical physics into the field
of economics or finance.

On the other hand, everyone who has an interest in economics or finance should
read this book because it helps him/her know of economic or financial problems
from a different perspective.

The word ‘‘everyone’’ appearing in the above two paragraphs should include
undergraduate students, graduate students, teachers in universities, and researchers
in universities, institutes or industries, who are working in the field related to
physics, economics/finance, complexity science, artificial intelligence, manage-
ment science, sociology, ecology, or evolutionary biology.
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Abstract

Experimental Econophysics describes the method of controlled human experi-
ments, which is developed by physicists to study problems in economics or
finance, namely stylized facts, fluctuation phenomena, herd behavior, contrarian
behavior, hedge behavior, cooperation, business cycles, partial information, risk
management, and stock prediction. Experimental econophysics along with
empirical econophysics are two branches in the field of econophysics. The latter
has been extensively discussed in the existing literature, while the former has been
seldom touched. In this book, the author focuses on the branch of experimental
econophysics. Empirical econophysics is based on the analysis of data in real
markets using statistical tools borrowed from traditional statistical physics.
Differently, inspired by the role of controlled experiments and system modeling
(for computer simulations and/or analytical theory) in developing modern physics,
experimental econophysics specifically relies on controlled human experiments in
the laboratory (producing data for analysis) together with agent-based modeling
(for computer simulations and/or analytical theory), with an aim to reveal the
general cause–effect relationship between specific parameters and emergent
properties of real economic/financial markets. This book covers the basic concepts,
experimental methods, modeling approaches, and latest progress in the field of
experimental econophysics.

xv



Chapter 1
Introduction

Abstract In this chapter, I attempt to offer a general background of experimental
econophysics, the theme of the book. For this purpose, I start by answering some
fundamental questions. That is, why does physics need economics or finance, and
vice versa? What are physical ideas or methods? Then, I introduce both the birth of
econophysics and the two branches of econophysics (namely, empirical econophysics
and experimental econophysics). Finally, I present the methodology of experimental
econophysics.

Keywords Experimental econophysics · Physical idea · Physical method ·
Controlled experiment

It might be a kind of human inability that a single scientist cannot research on all
the aspects of the nature and society. Owing to the human inability, science has
been divided into many disciplines, e.g., mathematics, physics, chemistry, biology,
economics/finance, and so on. As a result, specific researchers always work in the field
of a specific discipline. For example, the researchers, under the name of physicists,
work in the specific field of physics. After a longtime separation between physics
and economics/finance, now the time is ripe for their combination, so that they could
help each other to develop, at least to some extent.

1.1 Why Physics Needs Economics or Finance?

If one counts from G. Galilei (February 15, 1564–January 8, 1642), physics, the
study of nature, has been developing for 400 years or so. This duration is not very
long compared to the millions of years for which humans have lived on earth. How-
ever, everyone has witnessed the significant changes in human life brought about by
physics, such as electricity, computers, mobile phones, artificial satellites, utilization
of nuclear energy, and so on. All of these changes are an outcome of the physical
knowledge of the natural world. According to this fact, it is no doubt that the ideas
and methods of physics are useful to handle the natural world. Here, the natural
world means it contains non-intelligent units that have no adaptability due to the
lack of learning ability. For example, such non-intelligent units are electrons, atoms,
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2 1 Introduction

molecules, colloidal particles, and so on. In sharp contrast to the natural world, the
social world is full of intelligent units, which have adaptability due to the existence of
learning ability; such intelligent units involve humans, companies (containing many
humans), countries, and so on.

Science is always driven by curiosity, and physics is no exception. Inspired by the
success of physics in handling the natural world, one might curiously ask whether
the ideas and methods originally developed from physics for treating the natural
world are also useful for the social world. The answer is definitely in the affirmative.
But, the reader might proceed to ask: “what do you mean by saying the ideas and
methods originally developed from physics for treating the natural world?” or “what
are physical ideas and methods?”

1.1.1 What Are Physical Ideas?

1.1.1.1 Extracting Reasons Should be Coarse-Grained

Let me take the freely falling object as an example. The number of reasons
determining falling height could be based on N : time, air resistance, atmospheric
pressure, humidity, etc. However, G. Galilei (February 15, 1564–January 8, 1642)
neglected the N − 1 reasons and considered only the relation between falling height
(h) and time (t), yielding h = (1/2)gt2. Here, g is acceleration (a constant). As a
result, he established the law of free fall, which helped I. Newton (December 25,
1642–March 20, 1726) to successfully establish classical mechanics in the discipline
of physics. Based on this law, the first idea of physics comes to appear: one should
extract crucial reasons, or equivalently extracting reasons should be coarse-grained.

1.1.1.2 Results Obtained Should Be Universal

After Galilei’s h = (1/2)gt2, I. Newton (December 25, 1642–March 20, 1726)
revealed his second law, F = ma, where F is force, m is mass, and a is acceleration.
This second law helps to explain not only the freely falling object on the earth (by
setting a = g and seeing F as gravity), but also the planetary motion in the sky
(that had been empirically summarized in the laws of planetary motion by J. Kepler
(December 27, 1571–November 15, 1630)). Besides, Newton’s second law can even
be used to predict new phenomena. For example, on August 31, 1846, U. Le Verrier
(March 11, 1811–September 23, 1877) first predicted the existence and position of
Neptune using Newton’s second law plus Newton’s law of gravity; Neptune was
subsequently observed on September 23, 1846, by J. G. Galle (June 9, 1812–July 10,
1910) and H. L. d’Arrest (August 13, 1822–June 14, 1875). The success of Newton’s
second law indicates the second idea of physics, which is “results obtained should be
universal.” Here, “universal” means that the results should not only help to explain
the existing phenomena, but also help to predict the future or unknowns.
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1.1.2 What Are Physical Methods?

1.1.2.1 Empirical Analysis

From Aristotle (384–322 BC) to J. Kepler (December 27, 1571–November 15, 1630),
physicists first observed the natural world and then analyzed the observations, yield-
ing many empirical results, such as Kepler’s laws of planetary motion. Such analysis
is simply empirical analysis, which is based on existing data in nature.

Advantages of empirical analysis: reliability and huge data. Here, “reliability”
means that according to the data collected from nature itself, any results obtained
from the data should be reliable; “huge data” means that the number of data in nature
is huge, which is definitely helpful for understanding the natural world.

Disadvantages of empirical analysis: uncontrollability (correlation) and non-
formatting. Since the data are collected from nature, they are always uncontrol-
lable. Then, what empirical analysis can produce is correlation but not causality.
Clearly, causality represents a deeper understanding than correlation. Regarding
“non-formatting,” it is easy to understand that: the format of data existing in nature
is not fixed but dependent on how people collect them. The non-formatting of data
causes trouble for people to investigate.

1.1.2.2 Controlled Experiments

Since empirical analysis helps to reveal correlation rather than causality, G. Galilei
(February 15, 1564–January 8, 1642) started to perform experiments in the labora-
tory by purposefully tuning one or a few parameters/conditions (all the other para-
meters/conditions are fixed) in order to reveal cause–effect relationships (causality).
His method was that of controlled experiments.

Advantages of controlled experiments: controllability (causality) and formatting.
These are the inverse of the above-mentioned disadvantages of empirical analysis.
Such experiments are controllable because one can tune a variable and see its effect
(causality). As regards “formatting,” it means the format of data could be conveniently
organized during the experiment.

Disadvantages of controlled experiments: deviations and few data. Since such
experiments are conducted in the laboratory, the experimental data may be different
from their counterparts in nature. This difference is what we term as “deviations.”
On the other hand, the experimental data produced in the laboratory cannot be huge,
as one can easily imagine. Thus, I indicate “few data” herein.
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1.1.2.3 The Combination of Empirical Analysis, Controlled Experiments,
and Theoretical Analysis

Due to the above-mentioned advantages and disadvantages of either empirical
analysis or controlled experiments, I. Newton (December 25, 1642–March 20, 1726)
combined both empirical analysis and controlled experiments; for instance, when he
explained Kepler’s laws of planetary motion (outcome of empirical analysis), he also
explained Galilei’s law of free fall (outcome of controlled experiments). The com-
bination of empirical analysis and controlled experiments reserves their advantages,
but removes their disadvantages. More importantly, Newton also realized that the
combination of empirical analysis and controlled experiments can produce results
only for specific areas: empirical analysis corresponds to the specific objects pro-
ducing empirical data (e.g., Kepler’s laws of planetary motion are only valid for
planets); controlled experiments are related to specific laboratory samples/devices
producing experimental data (e.g., Galilei’s law of free fall specifically holds for the
freely falling object in the laboratory). As a result, Newton utilized theoretical analy-
sis (based on mathematics like calculus) to generalize the results (obtained from the
combination of empirical analysis and controlled experiments) from specific areas
to broad areas. For example, his second law (F = ma) helps to explain not only the
motion of either planets (described by Kepler’s laws of planetary motion) or freely
falling objects (described by Galilei’s law of free fall), but also the motion of many
other objects, including a single molecule. Owing to the unprecedent success of this
generalization (which is proved by the fact that physics has significantly improved
human life), the method of combining empirical analysis, controlled experiments,
and theoretical analysis has become the fundamental method for developing physics.
Certainly, in reality, it is already enough for achieving some excellent results by
using only one or two of empirical analysis, controlled experiments, and theoretical
analysis. This fact depends on specific topics, for e.g., in modern condensed matter
physics, where empirical analysis is hardly used. However, in modern astrophysics,
controlled experiments are rare. It is not necessary for me to go into details here. In
principle, the above-mentioned combination is an ideal, complete method.

So far, I have answered the question “what are physical ideas and methods?”
Last but not least, even though physics has helped to significantly improve human

life due to the deep understanding of the natural world using the above-mentioned
physical ideas and methods, it might be not suitable for people to immediately expect
too much when physical ideas and methods are used to understand the social world.
Why? Please note many of the above-listed applications brought about by physics are
not a direct purpose of original research. For example, when M. Faraday (September
22, 1791–August 25, 1867) discovered the law that magnetism is able to produce
electricity, he did not know whether it would be genuinely useful to humans. The
reason he conducted the research was due only to curiosity. In fact, in history, the
large-scale application of electricity only started at the end of the nineteenth century
when Faraday had passed away for many years. This means people must be patient
to wait for the application of a physical discovery as physicists need time to study.
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In other words, the reason that physics needs economics/finance lies in the
curiosity of physicists, which may broaden the realm of physics, especially statistical
physics.

1.2 Why Economics or Finance Needs Physics?

Briefly speaking, economics is a discipline on how to allocate scarce resources effi-
ciently. Since the time of A. Smith (June 5, 1723–July 17, 1790), economics has
developed for more than 200 years. In the duration, mathematics was introduced
into economics, thus causing economics to be a quantitative discipline. Because
the subject discussed in the field of economics is human-activities-related phenom-
ena in the social world, which is too complex, economics is still far from perfect.
For example, existing economic theories fail to envisage even the possibility of a
financial crisis like the recent one [12]. Thus, economics needs different ideas or
methods in an attempt to perfect itself. Physics may be a candidate discipline for
economics to absorb such ideas and methods. In this sense, economics needs physics
so that people might scrutinize economic problems from a different perspective, thus
yielding different insights. Certainly, economics can also resort to ideas or methods
that are beyond physics, e.g., evolutionary biology.

The above conclusion also holds for finance. As regards finance, its relation to
economics is similar to the relation between applied physics and basic physics. That
is, finance focuses on application research, but economics focuses on basic research.
For example, if a seller sells a pen at a price of 1 Chinese Yuan, the exchange
behavior between me and the seller belongs to finance, but the reason that the pen
costs 1 Chinese Yuan rather than 100 Chinese Yuan belongs to economics. Neverthe-
less, throughout this book, I do not sperate economics and finance distinctly because
both are closely related to the trading behavior of humans.

1.3 Physics + Economics or Finance → Econophysics

Physics meets economics or finance, yielding econophysics (the wording “econo-
physics” first appeared in the literature as early as 1996 [13]). According to the above,
econophysics is a branch of physics (at least in the eye of physicists like me), which
uses physical ideas and methods (listed in Sect. 1.1) to analyze problems related to
economics and finance. Loosely speaking, econophysics is what physicists do in the
field of economics or finance since these physicists are naturally armed with physical
ideas and methods. To briefly summarize the above, the aim of econophysicists could
be at least twofold: first, to broaden the realm of traditional physics (throughout this
book, the phrase “traditional physics” means the physics that is used to study nature
with non-intelligent units like atoms, rather than the society with intelligent units like
humans), especially statistical physics, second, to scrutinize economic or financial
problems from a physical perspective.
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1.4 Dividing Econophysics into Two Branches: Empirical
Econophysics and Experimental Econophysics

In general, econophysics contains three methods: empirical analysis (starting from
the articles by H. E. Stanley and coworkers in the mid-1990s, see for example
Ref. [14]), controlled experiments (starting as early as 2003 by T. Platkowski and
M. Ramsza [2]), and theoretical analysis (starting from the establishment of minor-
ity game in 1997 by Challet and Zhang [1]). Here, empirical analysis in the field of
econophysics is based on existing data in real markets, and controlled experiments
mean experiments conducted in the laboratory which produce data by tuning one (or
few) variable(s)/condition(s). The theoretical analysis in the field of econophysics is
based on agent-based modeling (or system modeling), which has two approaches:
agent-based simulations (also called computer simulations) and analytical theory.
Agent-based simulations have helped to develop econophysics significantly, which
are an analog of molecular dynamics simulations [15], Monte Carlo simulations
[16], or finite element simulations [17, 18] in traditional physics. According to tra-
ditional physics, for analytical theory, one needs to start from some common laws
or principles that are often lacking in social human systems (the research object of
econophysics). Thus, compared with agent-based simulations, analytical theory has
not played a very important role in econophysics.

Since the birth of econophysics in the mid-1990s [13], empirical analysis has
dominated the research community of econophysics till now, which forms a branch
of econophysics called empirical econophysics. However, as a discipline, econo-
physics is still too young, with vast development space. As one knows, the maturity
of traditional physics is mainly due to the role of controlled experiments in the lab-
oratory. Accordingly, it seems unbelievable that in the future, econophysics without
controlled experiments could be as mature as traditional physics. Thus, I believe
that for developing econophysics in a healthy manner, econophysicists must resort
to controlled experiments. In this sense, for the time being, to emphasize the impor-
tance of controlled experiments, I suggest a different branch in econophysics, i.e.,
experimental econophysics, which mainly focuses on controlled experiments in the
laboratory. Accordingly, in this book, econophysics is divided into two branches:
empirical econophysics and experimental econophysics.

Clearly, the above two branches are divided according to the two different meth-
ods. It is worth noting that in the above paragraph, I did not mention theoretical
analysis. But, for physicists like me, these simulations must be used to understand
either empirical data (in real markets) or experimental data (in laboratories). So, for
understanding empirical data, theoretical analysis is only a supplementary tool in
empirical econophysics. On the other hand, for mainly understanding experimental
data, theoretical analysis serves as an additional tool in experimental econophysics.

The focus of this book is experimental econophysics [19]. Regarding empirical
econophysics, I refer the reader to some excellent monographs [14, 20–22] and
reviews [23, 24]. If the reader can read Chinese, I would also recommend him/her to
read two relevant monographs in Chinese [25, 26].
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1.5 Methodology of Experimental Econophysics

Section 1.1 describes the combination of empirical analysis, controlled experiments,
and theoretical analysis, which are fundamental in traditional physics. Owing to the
great success of this combination method in traditional physics, I believe experimen-
tal econophysics should also follow this combination method (which actually starts
from the article by my group in 2009 [7]). For this purpose, one should follow three
steps:

• Step 1: He/she should either perform empirical analysis or survey the literature on
empirical data in real markets. Obtain or find empirical results.

• Step 2: Then, he/she should consider how to design a controlled experiment in
the laboratory. In the mean time, he/she should keep the above-mentioned physi-
cal idea (“Extracting reasons should be coarse-grained”) in mind and extract the
key factor(s) that affects the empirical results. Perform controlled experiments,
revealing cause–effect relationships between the factor(s) and the above empirical
results.

• Step 3: Perform theoretical analysis (agent-based simulations and/or analytical
theory) to extend the cause–effect relationships obtained in Step 2 beyond the
specific experimental limitations (namely specific subjects, specific avenue, and
specific time). Use the relationships to explain existing phenomena (empirical
results) and predict the future or unknowns. In other words, until the end of Step
3, the final results (relationships) should be universal enough, which echoes the
above-mentioned second physical idea (“Results obtained should be universal”).

The above three steps serve as the complete, ideal methodology for experimental
econophysics. But, here I should remark that some projects in econophysics cannot
strictly follow the three steps (at least for the time being) due to the complexity of
real human systems like stock markets; see for example Chap. 3 or Chap. 12.

http://dx.doi.org/10.1007/978-3-662-44234-0_3
http://dx.doi.org/10.1007/978-3-662-44234-0_12


Chapter 2
Fundamentals

Abstract In this chapter, I introduce some fundamental knowledge in the field. My
main focus is on how to design both controlled experiments and agent-based models.
For showing the validity of the former, I present the Hayek hypothesis in advance;
for clarifying the latter, I first present the El Farol bar problem and minority game.
In addition, I also present both the information theory (with an emphasis on the
Shannon entropy) and a nonparametric regression analysis (Hodrick-Prescott filter),
which will be used in some other chapters.

Keywords Controlled experiments · Agent-based model · Hayek hypothesis ·
Minority game · Shannon entropy · Regression analysis

This chapter presents some fundamental knowledge or background that may help to
understand the forthcoming chapters.

2.1 Hayek Hypothesis

Even nowadays, the typical method to study economic problems is the hypothetical–
deductive method. Economists often derive an optimal situation of a system from
certain assumptions, such as the complete knowledge of a preference system or
information. F. A. Hayek (May 8, 1899–March 23, 1992; 1974 Nobel Prize winner
in Economic Sciences) pointed out in his famous thesis “The Use of Knowledge in
Society” published in 1945 [27] that this was totally a misunderstanding of social
problems because no one could simply acquire the entire data of such assumptions. So
despite the allocation problem under certain assumptions, a more important problem
was how to obtain and use the decentralized resources and information.

Another thing economists always neglect is the specific knowledge of the indi-
vidual. Other than scientific knowledge, this specific knowledge only gives its owner
a unique benefit due to his/her own understanding of people, environment, and other
special circumstances. That is, the exact part of knowledge economists put into
the assumptions is equally important as scientific knowledge. As the comparative
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stability of the aggregates cannot be accounted for by the “law of large numbers”
or the mutual compensation of random changes and the fact that knowledge of this
kind by its nature cannot enter into statistics, all plans should be made by the “man
on the spot” rather than by any central authorities.

Since central authorities are limited, will the plans made by individuals reach a
so-called equilibrium state? Hayek’s answer was “yes.” If all individuals follow the
simple regulation of “equivalence of marginal rates of substitution,” which is the basic
of microeconomics, the market will indeed be in an equilibrium state finally, without
the necessity of the knowledge of the entire market. Under the “magical” market
mechanism of price, once someone finds an arbitrage opportunity of a commodity,
the price of this commodity will change. Thus the marginal rates of substitution
of this commodity to other commodities change, causing another round of price
change. This effect spreads to more and more kinds of commodities and gradually
covers the whole market, though maybe no one knows why such changes happen.
The whole acts as one market, not because any of its members survey the whole
field, but because their limited individual fields of vision sufficiently overlap so that
through many intermediaries the relevant information is communicated to all.

Actually, the price system is just what A. Smith (June 5, 1723–July 17, 1790)
called “the invisible hand” [28], a mechanism for communicating information, and
the most significant fact about this system is the economy of knowledge with which
it operates, or how little the individual participants need to know to be able to take
the right action. Even if people know about all the factors of a commodity, the actual
price is not available unless obtained from a market with price system.

The above content is known as the Hayek hypothesis [27], which asserts that
markets can work correctly even though the participants have very limited knowledge
of their environment or other participants. Certainly, traders have different talents,
interests, and abilities, and they may interpret data differently or be swayed by fads.
However, there is still room for markets to operate efficiently.

In 1982, “the father of experimental economics” V. L. Smith (2002 Nobel Prize
winner in Economic Sciences) [29] tried proving the Hayek hypothesis using 150–
200 experiments under different circumstances which he thought the correct method
to select a reliable theory. The trading behavior of the market participants led the
market to a competitive equilibrium under a double auction regulation without any
extra information (the participants, i.e., subjects, only knew their own value of the
commodity and the market price), the result of which was contrary to the classical
theory of price taking hypothesis and complete knowledge hypothesis.

A key characteristic of controlled experiments was its specific convertible supply
and demand condition and the reward system to stimulate the subjects. Once the
supply and demand are determined, the equilibrium market price is also determined
and whether the market was operated well could be easily observed. Although all the
experiments [29] had different subjects and supply and demand conditions, they all
ended with the equilibrium state, whether in a stationary or dynamic environment.
Although the experiments [29] were still not perfect, a reliable result related to the
Hayek hypothesis was that the attainment of competitive equilibrium outcomes is
possible under less stringent conditions.



2.1 Hayek Hypothesis 11

To sum, the Hayek hypothesis helps to account for the reliability of controlled
experiments that contain finite subjects. Thus, this Hayek hypothesis may serve as
a theoretical foundation for experimental economics [30] and experimental econo-
physics (introduced in this book), both of which are based on controlled human
experiments in the laboratory. Besides, in the field of experimental econophysics,
theoretical analysis also helps to validate and generalize results obtained from con-
trolled experiments; details can be found in Sects. 1.1 and 1.5.

2.2 How to Design Computer-Aided Controlled Experiments

In the following chapters, I shall introduce the research progress on controlled experi-
ments in the field of experimental econophysics. As a source of econophysics research
ideas, the method of controlled experiments has become increasingly important in
relative studies. Controlled experiments can be conducted in various ways. For exam-
ple, in a simple experiment based on the minority game [1], the organizer may require
subjects to close their eyes and raise hands to signal their choices between the two
rooms in the game. Here, closing eyes prevents communications among the subjects
so that it can be guaranteed that they make decisions independently. However, when
regulations of an experiment become more complicated, or when the number of
subjects becomes larger, computer-aided controlled experiments begin to show their
efficiency as they can implement any experimental design easily and also collect
experimental data and reveal real-time statistical results quickly.

A computer-aided controlled experiment needs programming of both the server
and the client (Fig. 2.1). Two primary missions of the client are to distribute related
information to users and also to provide users a channel to upload their own person-
alized choices. The server’s main tasks are to store users’ information, process users’
uploaded data, and generate new information based on feedback from the behaviors
of users. Generally, the client may be designed in the form of web pages to reduce
costs and increase scalability. Any computer with a network connection can be easily
set as a client. The servers of all the experiments in Chaps. 3–12 were constructed
on the architecture of Linux + Apache + MySQL + PHP/Python (Readers can
download a source code example from the link: http://t.cn/zOlkLEk).

Figure 2.1 shows a general schematic flowchart abstracted from the various exper-
imental systems which will be introduced in Chaps. 3–12. Actually, the detailed
designs of various systems are different in many aspects. For example, in the experi-
ment of controlled laboratory stock market (Chap. 3), the server has to process every
new order immediately since the time in the experiment is continuous. The herd
experiment in Chap. 5 needs to add some robot agents (produced by a computer
program) when computing the final outcome. The experiment of risk and return in
Chap. 12 requires every subject to set their initial investment ratio, and the final out-
come is not simply the “win” or “lose” but the final returns. Hence, we need to make
minor revisions of the server and the web page accordingly for each specific system.

http://dx.doi.org/10.1007/978-3-662-44234-0_1
http://dx.doi.org/10.1007/978-3-662-44234-0_5
http://dx.doi.org/10.1007/978-3-662-44234-0_3
http://dx.doi.org/10.1007/978-3-662-44234-0_12
http://t.cn/zOlkLEk
http://dx.doi.org/10.1007/978-3-662-44234-0_3
http://dx.doi.org/10.1007/978-3-662-44234-0_12
http://dx.doi.org/10.1007/978-3-662-44234-0_3
http://dx.doi.org/10.1007/978-3-662-44234-0_5
http://dx.doi.org/10.1007/978-3-662-44234-0_12
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Fig. 2.1 A schematic flowchart showing how to compile the computer program for conducting
controlled experiments. Adapted from Ref. [26]

Figure 2.2 depicts some screenshots of web pages in a certain controlled experi-
ment. Figure 2.3 shows a site photograph in a controlled experiment.
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Fig. 2.2 Web pages of a controlled experiment. a Background management interface, b login,
c login successful, d choose a room, e waiting for the result, and f result. Adapted from Ref. [26]
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Fig. 2.3 A site photograph in a controlled experiment organized by my group on September 28,
2013

2.3 El Farol Bar Problem and Minority Game

Here, we first present the real El Farol bar problem [31], which gave birth to the
minority game [1] discussed in Chaps. 5–8. An early summary of minority games
can be found in the book by Challet et al. [21].

2.3.1 El Farol Bar Problem

The essence of formation of human social activities lies in the acquisitiveness for
resources. In many social and biological systems, the agents always spontaneously
adaptively compete for limited resources, and thus change their environments. In
order to effectively describe the system with the complexity, scientists have made
a series of attempts. Such a resource competition system is just a kind of complex
adaptive system.

For economic systems, the basic issue appears as well. Generally, in an economic
market, if the resources are rationally allocated the market is full of vitality. Other-
wise, the development will be impeded at least to some extent. Thus, the allocation
of resources is the most fundamental economic problem. As is known, most popular
economic theories are related to deductive reasoning. According to these economic
theories, as long as all individuals are almost smart, everyone will choose the best
action, and then each individual can reason his/her best action.

However, people gradually find that in real life, individuals often have no complete
rationality and superb deductive reasoning ability when making decisions. Instead,

http://dx.doi.org/10.1007/978-3-662-44234-0_5
http://dx.doi.org/10.1007/978-3-662-44234-0_8
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it is common for them to simply use a feasible method of trial and error. Therefore,
it looks like inductive generalization and continuous learning when real individuals
make decisions (namely, inductive reasoning).

In the game theory, researchers often use evolutionary games to study the simi-
lar dynamic process. However, when using evolutionary game models, economists
usually do not take into account the character of limited rationality. Therefore, they
cannot convincingly yield interesting phenomena and critical phase transition behav-
iors. A social human system contains a large number of agents who have the limited
ability for inductive reasoning. Even so, the microscopic simplicity can still lead to
the complexity of the macroscopic system. Obviously, from a physical point of view,
this system has a variety of statistical physical phenomena.

In the past, there were studies on the allocation of resources. For example, in
1994, economist W. B. Arthur put forward a very representative resource allocation
problem, the El Farol Bar problem, when he studied the inductive reasoning and
bounded rationality. [31] It can be described as follows.

There is the El Farol bar in Santa Fe (a city in New Mexico of United States)
which offers Irish music every Thursday night. Each Thursday, 100 persons (here
100 is only set for concreteness) need to decide independently whether to go to this
bar for fun or stay at home because there are only 60 seats in the bar. If more than 60
persons are present, the bar is so crowded that the customers get a worse experience
than staying at home. If most people choose to stay at home on that day, then the
people who go to the bar enjoy the elegant environment and make a wise choice.

In this problem, Arthur assumed no communication in advance among the 100
persons. They only know the historical numbers from the past weeks and have to
make decisions independently. In order to make a wise choice, each person needs
to possess his own strategies which are used to predict the attendance in the bar this
week. People cannot obtain the perfect equilibrium solutions at initial time when
making decisions. They must consider others’ decisions, and keep learning according
to the limited historical experience in their mind. The elements of inductive reasoning
and limited rationality in the El Farol bar problem lay the foundation for the further
development of modeling in econophysics, as shown in Sect. 2.3.2.

2.3.2 Minority Game

Inspired by the above El Farol bar problem, physicists D. Challet and Y. C. Zhang in
1997 proposed a minority game to quantitatively describe this problem and statisti-
cally analyzed the emerging collective phenomena in complex adaptive systems [1].
In the following years, scientists did extensive research on the minority game and its
applications in different fields, which have significantly promoted the development
of econophysics. [20, 21] We introduce the minority game model as follows.

There are two rooms (indicated as Room A and Room B) and N agents, where
N is an odd number. Each agent chooses independently to enter one of the two
rooms. If one room contains fewer agents than the other, then the agents in this
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Table 2.1 A model strategy
table in the minority game
with memory length m = 2

Information Choice

00 1

01 0

10 1

11 0

room win. That is to say, the minority wins. The two rooms in the minority game
actually correspond to the case of unbiased distribution of two resources. This game is
repeated. Each agent can only make a decision next time according to the historical
information. As a matter of fact, in daily life, people often face similar choices.
Examples include choosing which road to avoid traffic jam during rush hours and
choosing a less crowded emergency exit to escape. Although each of us can keep
learning from limited historical experiences, it does not guarantee that we will make
a correct choice every time.

In the minority game, the decision-making process which is based on historical
information is modeled to form strategy tables. For the minority game, one assumes
that agents’ memory length of the historical information is limited. Each agent can
only remember the latest m rounds. If m = 2, it can form a strategy as shown in
Table 2.1. The historical information in the left column records the attendance in
the past two rounds, which is filled with a string of bits of 0 and 1. For example, a
string of “10” represents the past two winning rooms, Room A and Room B. The
right column is the prediction which is filled with bits of 0 or 1. Bit 1 is linked
to the choice of Room A for entrance, while bit 0 to that of Room B. So one can
obtain a strategy pool with a size of 22m

. As m increases, the total number of strategy
tables increases rapidly. In the original minority game model, the designers let each
agent randomly select strategy tables. That is, the right column of each strategy table
is randomly filled with 0 or 1. These agents are likely to repeat the same selected
strategy (namely, the right columns of the strategy tables are the same). However,
appropriately increasing the memory length can significantly reduce the repetition
probability. Here, it is worth noting a special case: if the right column of a strategy
table is all 1 (or 0), this strategy means that the agents are always locked into Room
A (or B) no matter what happens.

According to these results, it is not hard to find that the minority game model with
such a strategy structure is closely related to memory length m. And the historical
information can only increase with 2m .

In econophysics, minority game models have been widely used to simulate a
special kind of complex adaptive systems, the stock markets [20, 32, 33]. Researchers
always hope to generate similar stock market data through the minority game model.
The stand or fall of this similarity often needs to be tested to see whether model
data have the same stylized facts as the real market data. Besides, the minority game
can also be used to study competition problems about an unbiased distribution of
resources [3, 34–36].
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2.4 How to Design Agent-Based Models

Agent-based modeling [37] plays an important role in the progress of complex
systems researches. Differing from stochastic equations, agent-based models try to
regenerate the evolution of a complex system via a bottom-up approach by means of
simulating the behaviors of plentiful homogeneous or heterogeneous agents at the
micro scale. There are two general ideas that can guide the design of a particular
agent-based model. I shall discuss the two ideas in the following two subsections.

2.4.1 Modeling by Abstracting Real-World Systems

The minority game is a famous agent-based model in the field of econophysics. As
one can see from Sect. 2.3, it originates from the El Farol bar problem. There have
been many modifications on the minority game. A particular one is to model on the
stock market [20]. It can be seen that the minority game on stock market has many
simplifications compared to the real market, such as the adoption of linear relation
between excess demand and price change, the neglect of transaction costs, etc. Even
under such simplifications, the minority game can still reproduce many statistical
characteristics of the stock market successfully [20], which gives a clear illustration
of the capabilities of agent-based models to reveal the endogenous mechanisms
under financial markets. Hence, one important idea when trying to build an agent-
based model is to abstract real-world systems. First, regulations in the associated
real-world system should be written down one by one. Second, the importance of
each regulation should be evaluated; key regulations should be introduced into the
model, while trivial ones can be eliminated to make the model simple and clear.
Third, decision-making process for the virtual agents should be carefully designed
to mimic the behaviors of real-world humans. Finally, one can complete the designs
of an agent-based model by combining the simplified structure and a large number
of interacting virtual agents. It can be seen that this idea guides our designs of all the
models appearing in Chaps. 5–11.

One more thing I wish to discuss is the simplifications made in the agent-based
modeling method. In real financial markets, it can be seen that the price of an asset
is the reflection of every market participant’s information-collecting and decision-
making abilities. Moreover, there also exist communications among participants
that may lead to the herding phenomenon. Clearly, if we want to include all these
factors into our agent-based model, the model can become much more complicated.
So we have to compromise by simplifying the model accordingly. But does our model
lose its generality and reasonability? One may refer to the famous Ising model in
statistical physics. In the Ising model, the time is discrete, which is clearly an unreal
assumption in our real world. However, the model can regenerate many ferromagnetic
phenomena very successfully. Hence, we can conclude that a proper simplification
can wipe off trivial factors in the real-world system and make the model more

http://dx.doi.org/10.1007/978-3-662-44234-0_5
http://dx.doi.org/10.1007/978-3-662-44234-0_11
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powerful in explanations of the real-world phenomena. But as we know, making a
good simplification is not always a simple task.

Next, we discuss the second approach for building agent-based models, that is,
building models through physical models.

2.4.2 Modeling Through Borrowing from Physical Models

Since many physical models have already been proven proper to explain related
natural phenomena, it is worth academic research to extend them to economic or
social systems. Here, the Ising model is taken as an example for illustrating this idea.

The Ising model aims at studying the temperature dependence of magnetic sus-
ceptibility during the ferromagnetic phase transition. The model contains a large
number of interacting spins which form a certain topological structure. It is usually
assumed that (1) each spin only has two states, i.e., σ j = + 1

2 for the up direction
and σ j = − 1

2 for the down direction; (2) the range of spin interactions is limited to
the first neighborhood [38].

The fundamental physical picture of the ferromagnetic phase transition is that
when increasing temperature, the dominant state (up or down) shown in the overall
lattice changes through spin interactions. On one hand, the principle of least action
requests that all spins are aligned in the same direction so that the spin interactions
are at the lowest level. On the other hand, thermal motions tend to drive the directions
of the spins to a random arrangement at which the system’s entropy is the largest. The
probabilities of spin states obey the Boltzmann distribution. As long as the system’s
temperature gets higher than the Curie temperature, the thermal motions among
the spins become dominant so that a phase transition occurs from ferromagnetic to
paramagnetic. For a spin, suppose its energy is E+ for the up state (i.e., σ j = ∣

∣+ 1
2

〉

),
and E− for the down state (σ j = ∣

∣− 1
2

〉

). When E− > E+, the probability for the
spin to be in the up state

∣
∣+ 1

2

〉

in the next time step is denoted as p+, and in the
opposite state

∣
∣− 1

2

〉

with a probability of p−. Then we can write,

p+ = e− E+
kT

e− E+
kT + e− E−

kT

, p− = e− E−
kT

e− E+
kT + e− E−

kT

.

It can be seen that when the temperature T gets closer to 0, p+ → E+
E++E− ,

p− → E−
E++E− , now all the spins tend to be arranged in the same direction. If T

becomes much large, p+ → p− → 1
2 , which means that the directions of spins

become totally random. That is, the system transfer from ferromagnetic to paramag-
netic as T increases.

To have a further discussion of the Ising model, here we take the two-dimensional
orthogonal cubic lattice for example. The Hamiltonian can be composed of two parts:
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H(σ j ) = −
∑

i

Ji, jσiσ j − h jσ j .

Here, the first part Ji, jσiσ j represents interactions between spins (near-field or local
effect), where spin i belongs to the first neighborhood of spin j . The second part
h jσ j is the Hamiltonian of σ j in the external magnetic field h j (global effect).
According to the principle of least action, every spin tends to choose states that obey
the Boltzmann distribution. Under this distribution, the probability of being the least
energy state for H(σ j ) is the largest. The state probability is

P(σ j ) = e−βH

∑

σ j

e−βH
,

where β = kB T .
In the simulations, a spin in the lattice is selected randomly and the state of the

spin is adjusted on the basis of thermodynamical laws. By repeating this procedure,
the system can finally reach equilibrium. At equilibrium, one macroscopic property
of the system simply equals the ensemble average of the associated microscopic
property among all the spins. Note that P(σ j ) is not independent of T , thus we can
obtain the relation between one observation of the value of E and the temperature T
or other parameters:

E( f ) =
∑

j

f (σ j )P(σ j ).

A logical framework of the Ising model is shown in Fig. 2.4.

By comparing the similarities between ferromagnetic lattice and financial markets,
one can establish an agent-based model for financial markets based on the logical
framework of the Ising model (Fig. 2.5). The analogy between financial markets and
ferromagnetic lattice is obvious.

First, from the point of interactions, in the Ising model, the spin states depend on
the combined result of both global effect from the macro-external magnetic field and
local effect from the micro-neighboring spin states. And in the financial markets,
investing strategies made by market participants also depend on the combined result
of global information such as the price and trading volume of an asset, fundamental
market information (like GDP or CPI), and local information from the “neighbor-
ing” traders (here “neighboring” means the first neighborhood in the social network
appearing in financial markets for a trader). Hence, we may write the associated
“Hamiltonian” at one lattice grid for traders as H(σ j ) = −∑

i
Ji, jσiσ j − h jσ j .

Second, from the point of “strategies,” in the Ising model, spins always tend to
change their states to find the best one that confirms the least action and the maximum
entropy principles; similarly, in the financial market model, agents should also be
able to modify their investing strategies to find the best one that brings in maximum
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Fig. 2.4 Two-dimensional ferromagnetic phase transition in the Ising Model. Adapted from
Ref. [26]

Fig. 2.5 Agent-based financial market model borrowing from the framework of the Ising Model
in Fig. 2.4. Adapted from Ref. [26]

returns with minimum risks. Third, from the point of feedback process, in the Ising
model, the macromagnetic susceptibility can be obtained by summing up all the
microspin states; accordingly, in the financial market model, through the match of
orders executed by market makers, price at each time is generated.

Thus, we can see that there exists a deep analogy between physical and economic
models.
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The financial market models based on the Ising model’s framework have received
preliminary success [39, 40]. But what strategies should be adopted by agents so that
the real-world phenomena in financial markets can be regenerated? What kind of
payoff function is able to reflect the investment demands properly? Do the time scales
at which agents make decisions impact on global information? All these questions
are still waiting to be answered in the future.

2.4.3 How to Test the Reliability of Agent-Based Models

Whether the agent-based model is successful or not depends on whether it can stand
empirical and experimental tests. Despite that it seems reasonable for the two ideas
of building an agent-based model introduced in Sects. 2.4.1 and 2.4.2, yet the process
does not equal results. The logicality and rationality of the course of establishing a
model cannot prove that the final model is perfectly correct and dependable.

Compared with experimental observations, it is the only way to test whether an
agent-based model is reliable. The experimental observation mentioned here can be
the induction and analysis of not only the existing economical or financial data but
also the controlled experiment data. The former corresponds to empirical econo-
physics [14], however, the latter corresponds to experimental econophysics (topic
of this book). From this, it can be seen that agent-based modeling is a fundamental
method and it may have stronger development in the future.

2.5 Information Theory

2.5.1 Initial Remarks

In books on statistical mechanics, information theory is a chapter that cannot be
ignored. At first look, you may wonder how information theory is linked to statis-
tical physics. They seem like two totally different scientific fields. In this section,
I give a brief introduction to the theory. Through it, you can see how information
theory borrowed the concept of entropy from physics and then how physicists used
information theory to reinterpret their statistical researches and further developed
information theory. What is more, inspired by information theory, physicists also
gave new explanations to the long-hunted Maxwell’s demon. Needless to say, in
econophysics, information theory can have applications as well; see Chap. 9.

http://dx.doi.org/10.1007/978-3-662-44234-0_9
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Fig. 2.6 Illustration of the
composition law of H .
Adapted from Ref. [19]

2.5.2 Shannon Entropy: Historical Beginning and the Unit
of Information

2.5.2.1 Historical Beginning

In 1948, C. E. Shannon (April 30, 1916–February 24, 2001) published his classic
article “A mathematical theory of communication” [41] in the Bell System Technical
Journal which established the discipline of information theory. Obviously, the article
title showed no relation to the physical world. In this article, Shannon discussed how
to quantitatively analyze the amount of uncertainty in a discrete source of information.

Suppose for an experiment, there are n possible outcomes each of which happens
at a rate of p1, p2, …, and pn , respectively. Under different probability distributions
of the outcomes, the experiment contains various amounts of uncertainty. To compare
the uncertainty quantitatively, a measure, denoted as H(p1, p2, . . . , pn), should be
found. Shannon suggested the expression of H having the following three properties:

1. H should be a continuous function of the pi ’s.
2. If all the pi ’s are equal, i.e., pi = 1/n, H should increase monotonically with n.

This is easy to understand, because with equally likely outcomes, there is more
uncertainty when there are more possible outcomes.

3. The composition law: if an experiment is broken into two successive experiments,
the original H should be the weighted sum of the two individual values of H .
Figure 2.6 shows an illustration of the composition law. The single experiment
X on the left has three outcomes with probabilities of p1 = 1/2, p2 = 1/3,
and p3 = 1/6. For the two successive experiments on the right, the experiment
Y has two outcomes, each with a probability of 1/2, and if the second occurs,
the other experiment Z takes place with two outcomes under probabilities 2/3
and 1/3. It can be seen that the final outcomes of the two successive experiments
Y and Z have the same probabilities as the ones in the single experiment X .
Then, the composition law requires, in this special case, that H( 1

2 , 1
3 , 1

6 ) =
H( 1

2 , 1
2 ) + 1

2 H( 2
3 , 1

3 ). Here, the coefficient 1
2 in the equation is because the

experiment Z only takes place half the time.
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To satisfy the three properties above, Shannon showed that the simplest form for
H is

H(p1, p2, . . . , pn) =
n

∑

i=1

f (pi ), (2.1)

where f (pi ) is a continuous function due to the first property. Considering that the
expression of H is universal for any set of probability distributions {p1, p2, …, pn},
we can deduce H under the special case of equal probabilities, namely, pi = 1/n,∀i .
Then, Eq. (2.1) gives

H

(
1

n
,

1

n
, . . . ,

1

n

)

= n f

(
1

n

)

. (2.2)

Suppose a single experiment has n outcomes with equal probabilities of 1/n. It breaks
into two successive experiments: the first one has r evenly happened outcomes and
for each of its outcomes, the second occurs sequentially with s evenly happened
outcomes. And there is n = rs. Then, the composition law requires

H

(
1

n
,

1

n
, . . . ,

1

n

)

= H

(
1

rs
,

1

rs
, . . . ,

1

rs

)

= H

(
1

r
,

1

r
, . . . ,

1

r

)

+ H

(
1

s
,

1

s
, . . . ,

1

s

)

.

(2.3)
Plugging Eq. (2.3) into Eq. (2.2) yields

rs f

(
1

rs

)

= r f

(
1

r

)

+ s f

(
1

s

)

. (2.4)

Let

g(M) = 1

M
f (M), (2.5)

then Eq. (2.4) becomes
g(RS) = g(R) + g(S), (2.6)

where R = 1/r , S = 1/s. Differentiating Eq. (2.6) with respect to R or S yields the
following two equations accordingly:

Sg
′
(RS) = g

′
(R), (2.7)

Rg
′
(RS) = g

′
(S), (2.8)

where g
′
(M) means differentiating g(M) with respect to M . So we obtain

Rg
′
(R) = Sg

′
(S). (2.9)

Because R and S are two independent variables, Eq. (2.9) gives

Mg
′
(M) = Rg

′
(R) = Sg

′
(S) = A, (2.10)
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where A is a constant. Integrating Eq. (2.10) for the unspecified variable M , we can
get the general expression of function g(M)

g(M) = Aln(M) + C, (2.11)

where C is also a constant and ln(M) gives the natural logarithm of M . Plugging
Eq. (2.11) into Eq. (2.5) and letting M = 1

n , we obtain

f

(
1

n

)

= − A

n
ln(n) + C

n
. (2.12)

Now we should try to find the values of the two constants, A and C . On the boundary
condition n = 1, the experiment only has one sure outcome. Therefore, now the
uncertainty should be zero. From Eqs. (2.2) and (2.12), we have H(1) = f (1)

= C = 0. Hence, for equal probabilities, there is

H

(
1

n
,

1

n
, . . . ,

1

n

)

= −Aln(n). (2.13)

Now, let us turn to the second property of H . It is said that H should increase with n
monotonically, hence d H

dn = − A
n ≥ 0, which means A ≤ 0. It is obvious that A �= 0.

So, we let K = −A with K being a positive constant. Then we obtain the general
expression of function f (pi ), namely

f (pi ) = −K pi ln(pi ). (2.14)

Back to Eq. (2.1), now we can write the final form of H that satisfies the three
properties,

H(p1, p2, . . . , pn) = −K
n

∑

i=1

pi ln(pi ), (2.15)

where K is a positive constant.
Now let us take a break from information theory and turn our attention to the

physical world. Consider a system that contains N distinguishable particles obeying
Boltzmann statistics. Assume there are n nondegenerate quantum states, then we can
obtain the entropy of the system expressed as [42],

S = −k N
n

∑

j=1

(
N j

N

)

ln

(
N j

N

)

, (2.16)

where k is the Boltzmann’s constant and N j stands for the number of particles at

the j th state. If we link
N j
N to the probability p j which means that in average N j

particles are in the j th state, Eq. (2.16) becomes
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S = −k N
n

∑

j=1

p j ln(p j ). (2.17)

Compared with Eq. (2.15), we can see the relation between H and S is

S = k N

K
H. (2.18)

In Shannon’s 1948 article [41], he wrote “The form of H will be recognized as that
of entropy as defined in certain formulations of statistical mechanics…We shall call
H = −∑

pi logpi the entropy of the set of probabilities p1, …, pn .” This is where
the information theory and Shannon entropy all began.

2.5.2.2 The Unit of Information

In the expression of Shannon entropy, i.e., Eq. (2.15), K is still left as a constant with
no specific value. In information theory, a common unit for Shannon entropy is bit,
which is a contraction of binary digit. One bit is typically defined as the uncertainty
in one time of coin toss that has equally likely outcomes (i.e., heads or tails). Hence,
in this case, there is H( 1

2 , 1
2 ) = K ln(2) = 1, which yields K = 1/ln(2). Then the

expression of Shannon entropy becomes

H(p1, p2, . . . , pn) = −
n

∑

i=1

pi log2(pi ). (2.19)

Now we can calculate the Shannon entropy for some specific cases. Here is
one example. For a decimal digit, suppose it can choose a value from 0 to 9 with
equal probabilities, i.e., p = 1

10 . Then, using Eq. (2.19), it can be calculated that

H = ∑10
i=1

1
10 log2(10) = log2(10) = 3.32. Therefore, the decimal digit contains

3.32 bits of uncertainty.

2.5.3 When Information Meets Physics: The Principle of
Maximum Entropy and the Fight with Maxwell’s Demon

2.5.3.1 The Principle of Maximum Entropy

Now we have seen that Shannon entropy and the entropy of statistical mechanics
have similar forms. Is this a coincidence? The answer is no. In physics, entropy
is a measure of system’s disorder. The word “disorder” means there is a lack of
“information” for us to know the exact physical state of the system. Hence, in other
words, we can say entropy is the amount of additional information needed to specify
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the exact state of a system. This shows a kind of qualitative relationship between the
two concepts of entropy. In 1957, E. T. Jaynes [43] further developed information
theory by expounding the principle of maximum entropy, and then reinterpreted
statistical mechanics through the viewpoints of information theory. Reading this
article, we can see a deeper connection between the two fields.

The principle of maximum entropy states that given only partial information of
a system, the probability distribution with the largest entropy is the least biased
estimate possible for its current state. Suppose for a particular variable x , it can have
n discrete values xi , i = 1, 2, . . . , n. If one knows that the mean value of x is x̄ , the
restrictions on the unknown probability distribution {p1, p2, . . . , pn} of x now are

x̄ =
n

∑

i=1

pi xi , (2.20)

n
∑

i=1

pi = 1. (2.21)

So, now the principle of maximum entropy tells us that the most proper values of
{p1, p2, . . . , pn} are those that maximize the Shannon entropy H in Eq. (2.15).
Using the method of Lagrange multipliers [42], we can finally get the expression for
{p1, p2, . . . , pn}, i.e.,

pi = e−μxi

Z
, (2.22)

where Z is the partition function,

Z ≡
n

∑

i=1

e−μxi , (2.23)

and μ can be derived from the expression

x̄ = − ∂

∂μ
ln(Z). (2.24)

Inserting Eq. (2.22) into Eq. (2.15) leads to the maximal Shannon entropy

Hmax = Kμx̄ + K ln(Z). (2.25)

Now let us turn to statistical mechanics. For the physical system containing
N distinguishable particles described in Sect. 2.5.2, the expression of entropy is
given in Eq. (2.16). Here, assume the associated energy level for each state is ε j ,
j = 1, 2, . . . , n, and the average energy of the system is U . Then, we can follow the
same steps above to obtain the most proper particle distribution using the principle
of maximum entropy, which is
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N j

N
= e−βε j

Z
, (2.26)

where the partition function Z is

Z =
n

∑

j=1

e−βε j . (2.27)

It is obvious that Eqs. (2.26) and (2.27) fit the Boltzmann distribution for nondegen-
erate energy states. And β = 1/kT where k is the Boltzmann constant. Now the
entropy of the physical system is maximal, which is

Smax = U

T
+ Nkln(Z). (2.28)

Note that Eq. (2.28) also has a similar form with Eq. (2.25).
Hence, in Ref. [43], E. T. Jaynes stated that “If one considers statistical mechanics

as a form of statistical inference rather than as a physical theory, it is found that the
usual computational rules, starting with the determination of the partition function,
are an immediate consequence of the maximum-entropy principle.”

Now we have seen that the principle of maximum entropy can be used in both
statistical mechanics and information theory, which means the methodologies in both
fields can be connected together. But can we further integrate the two concepts of
entropy as a uniform one? The Maxwell’s demon may help to give an answer.

2.5.3.2 The Fight with Maxwell’s Demon

There are various descriptions of the second law of thermodynamics. One is called
the principle of increasing entropy, i.e., the entropy of an isolated system increases
in any irreversible process and is unaltered in any reversible process. Another is the
Clausius statement, namely heat can never pass from a colder to a warmer body
without external work being performed on the system.

In 1867, J. C. Maxwell (June 13, 1831–November 5, 1879) first proposed a thought
experiment that challenged the second law of thermodynamics. This is when the
Maxwell’s demon was born. An illustration of the thought experiment is shown in
Fig. 2.7. The detailed process is described in the following:

1. Suppose there is a container which is divided by an adiabatic diaphragm into
two parts, denoted as part A and part B, respectively, as shown in Fig. 2.7. The
container is filled with a sort of gas and the gas in part A is assumed to be hotter
than the gas in part B.

2. Imagine there is a demon. He can know the paths and velocities of every gas
molecule by simple inspection. He can do nothing but to open or close a hole in
the diaphragm with a zero-mass frictionless slide.
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Fig. 2.7 Illustration of Maxwell’s demon who apparently violates the second law of thermody-
namics

3. His mission is to open the hole to let a gas molecule in part A to enter part
B when that molecule has a velocity less than the rms velocity (rms is short

for root mean square; and the rms velocity is expressed by vrms ≡
√

v2) in B;
meanwhile, a gas molecule from B is allowed to pass into A through the hole if
its velocity exceeds the rms velocity in A. The two procedures are conducted in
such a way that the total number of gas molecules in A or B is unchanged.

We know that a higher temperature shown in a gas system’s macrostate means a
higher average kinetic energy of the gas molecules in the microstate, and vice versa.
Hence, through the demon’s operation, the hotter part A gets hotter and the colder
part B gets colder, and no external work is done. This violates the second law of
thermodynamics obviously.

Since the demon was born, it has attracted a huge amount of discussion. Differ-
ent explanations have been proposed. After Ref. [41], a new explanation framework
emerged which combines the demon with information theory and computer science.
In 1961, R. Landauer (February 4, 1927–April 28, 1999) proposed a physical prin-
ciple which was later called Landauer’s principle [44]. It states that any logically
irreversible manipulation of information, such as the erasure of a bit or the merging
of two computation paths, must be accompanied by a corresponding entropy increase
in noninformation-bearing degrees of freedom of the information processing appara-
tus or its environment [45]. In 1982, C. H. Bennett argued that to determine whether
to let a molecule pass the hole, the demon must acquire information about the mole-
cule’s state and then store it; but no matter how well the demon prepares in advance,
he will eventually run out of his information storage space and must begin to erase
the previous information he has collected; since erasing information is a thermody-
namically irreversible process according to Landauer’s principle, an additional part
of entropy will be created [46]. Hence, this means no matter how hard the demon
works, he still cannot violate the second law of thermodynamics.

Nowadays, the subject of Maxwell’s demon with information theory and computer
science draws a lot of attention. For example, in Ref. [47], an inanimate device that
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mimics the intelligent Maxwell’s demon is designed. The device only requires a
memory register to store information, which is quite interesting.

2.5.4 Discussion

So far, we have seen how information theory and statistical mechanics are connected
and influence each other. This may give us many inspirations when we deal with
econophysics. First, in econophysics, we also need to deal with situations where a
lot of uncertainty exists, such as the different kinds of human behavior in some game
models or the movement of a stock price. In these situations, the Shannon entropy
may have application; see Chap. 9. Second, econophysics has already adopted many
physical concepts or methods (such as fractals, chaos, or even quantum mechanics)
to tackle economic problems. But now it is still far from mature, lacking fundamen-
tal theories or principles. So comparing with the development history of information
theory, we can be confident that maybe one day, in textbooks of physics such as sta-
tistical mechanics, there will be a chapter on econophysics that cannot be neglected.

2.6 Nonparametric Regression Analysis: Hodrick-Prescott Filter

When talking about the analysis of data (e.g., obtained from controlled experiments
or collected from real markets) in econophysics, we often focus on statistical dis-
tribution analysis and time correlation analysis for the time series. Commonly, we
transform the initial raw time series into the dimension of return. On one hand, we
always neglect the time attribute of a series when analyzing the statistical distribu-
tion problem. On the other hand, the statistical attribute is also ignored when arguing
about the time correlation. So, the critical point is that we need not face the time series
directly and primordially but in a side way. It becomes a reduced problem about the
linear or other obvious relationship between two physical quantities, which is what
econophysicists like to do. Compared with the situation where the relationship is
known with an equation, sometimes there is no specific relationship between two
quantities. Therefore, except linear regression or other parametric regression, non-
parametric regression may be preferred occasionally. For example, for a price time
series about one stock, if we want to know its cyclical volatility, one method is to
directly consider the relationship between price and time. However, the price curve
is possibly without regularity. At this time, for perfect effectiveness when solving
real economic problems, economists begin to pay more and more attention to non-
parametric regression analysis. For e.g., here I introduce a kind of nonparametric
regression analysis method.

As is known, a filter generally refers to a physical tool widely used in signal
processing. We can also regard the economic time series as one kind of signal. Since
the signal contains too much information and behaves too randomly, naturally we

http://dx.doi.org/10.1007/978-3-662-44234-0_9
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Fig. 2.8 An example showing the Hodrick-Prescott filter method

can use filters to decompose it and extract useful information from it. To separate the
behavior of a time series into regular and irregular components, several filters have
been developed and are already commonly used in studies of macroeconomic and
financial phenomena. Such filters are Hodrick-Prescott filter [48, 49], Baxter King
filter [50, 51], Christiano-Fitzgerald random walk filter [52, 53], and Butterworth
square wave filter [54, 55]. The Hodrick-Prescott filter is one of the most commonly
used and known methods. It was first proposed in 1980 by R. J. Hodrick and E.
C. Prescott when they tried to analyze postwar United States business cycles [48].
Since economic quantities are changing tardily rather than invariably, they think that
economic performance can be reckoned as the combination of two parts, long-term
potential growth, and short-term fluctuation. The core thought in this method is to
decompose the time series Xt into trend component Gt and cyclical component
Ct , that is, Xt = Gt + Ct . However, economists are more interested in cyclical
component, which refers to business cycles. That is why the Hodrick-Prescott filter
is called as a detrending method and a high-pass filter. If we denote L as a linear lag
operator, L · Gt = Gt−1 and the second difference will be like

�2G = (1 − L)2 · Gt = (Gt − Gt−1) − (Gt−1 − Gt−2).

Suppose that both the cyclical part and the second difference in growth part have
a zero mean value and a normally distributed variance. Then, through solving the
minimization problem below

min
T

∑

t=1

{

C2
t + λ

[

(Gt+1 − Gt ) − (Gt − Gt−1)
]2

}

,

the optimal trend and cyclical components can be obtained from the original series.
Actually, this optimal result refers to the minimized sum of both variance of cyclical
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part and squares of growth part’s second difference. The only parameter λ is given
as the ratio of the two variances

λ = σ2
C

σ2
�2G

,

which determines the smoothness for the trend part. As long as λ gets larger, the
trend part Gt will get smoother. So it becomes an important problem to select an
appropriate λ when applying the Hodrick-Prescott filter to economic data of differ-
ent frequencies. We should have known that the trend component, which represents
the potential growth in an area, is always steady and mainly affected by long-term
economic policies or others. Economists adopt several distinct λ to fit for differ-
ent economic cycles. Empirically, most economists use 6.25 for annual data [56],
λ = 1600 for quarterly economic data, and 1,29,600 for monthly data [56].

Figure 2.8 schematically shows an example of a time series applied with the
Hodrick-Prescott filter. The original data come from one human experiment con-
ducted by my group (for clarity, experimental details are neglected herein; relevant
experiments can be found in Chap. 9), which aims to study a kind of business cycle.
The horizonal axis stands for experimental rounds, and the vertical axis represents
one economic indicator, shown in red, which may present cyclical property. After
we apply the Hodrick-Prescott filter, the separated trend part and cyclical part are
shown above in blue and green, respectively.

http://dx.doi.org/10.1007/978-3-662-44234-0_9


Chapter 3
Stylized Facts: Scaling Law and Clustering
Behavior

Abstract To our knowledge, the existing laboratory experiments have not convinc-
ingly reappeared the stylized facts (say, scaling law and clustering behavior) that have
been revealed for real economic/financial markets by econophysicists. An important
reason is that in these experiments, discrete trading time makes these laboratory
markets deviated from real markets where trading time is naturally continuous. Here
we attempt to overcome this problem by designing a continuous double-auction
stock-trading market and conducting several human experiments in the laboratory.
As a result, the present artificial financial market can indeed reproduce some stylized
facts related to scaling laws and clustering behavior. Also, it predicts some other scal-
ing laws in human behavior dynamics that are hard to achieve in real markets due to
the difficulty in getting the data. Thus, it becomes possible to study real stock markets
by conducting controlled experiments on such laboratory stock markets producing
high frequency data.

Keywords Artificial stock market · Scaling law · Clustering behavior · Human
dynamics

3.1 Opening Remarks

Inspired by H. E. Stanley and his coauthors’ pioneering work [14, 57], physicists
began studying the statistical properties of financial markets using methods widely
used in statistical physics. As a result, many universal rules, e.g., scaling laws (namely
power-law distributions in the eyes of econophysicists) and clustering behaviors,
were empirically observed from stock markets of different countries [14, 57–63]
(and even in the field of music [64]). Clearly, because it is illegal or immoral to
control real markets, these researches lack controllability which, however, is very
important to know the impact of a specific condition on such universal rules. In this
direction, S. P. Li and coworkers [5] conducted an experiment on political exchange
for election outcome prediction, with a focus on the Taiwan general election in 2004.
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Future contracts for election outcome were created and traded among participants
in a web-based market. The liquidation value was determined by the percentage
of votes a candidate would receive on the day of election. It is a good prediction
because participants predict the vote percentage rather than simply buying future
contracts of the candidate they support. Finally, the result was compared to that of the
polls. Interestingly, when investigating the network topology of such an experimental
futures exchange, researchers [6] showed that the network topology is hierarchical,
disassortative, and small-world with a power-law exponent, 1.02 ± 0.09, in the degree
distribution. They also showed power-law distributions of the net incomes and inter-
transaction time intervals [6]. After identifying communities in the network as groups
of the like-minded, they showed that the distribution of the community size is also
distributed in the power law with an exponent, 1.19 ± 0.16 [6].

Inspired by their work [5, 6], we believe that it is also possible to design stock
markets in the laboratory, so that we can reveal the underlying mechanism of the
universal rules.

In fact, economists have already done a lot of great work in laboratory human
stock markets [30, 65]. In the 1990s, Freidman wrote an article to show his series of
experiments; these experiments gave laboratory evidence of the efficiency of two dif-
ferent trading institutions [66]. Later, Porter and Smith designed a laboratory market
with dividends, and also with several other extensions including short sells, limited
price changing rules, associated future markets, etc.; they confirmed the existence
of price bubbles in this market and examined the influence of each extension on
the bubbles [67]. Hirota et al. published an article based on a similar market struc-
ture; studying the trading horizons, they suggested that the investors’ short horizons
and consequent difficulties of backward inductions are important contributors to the
emergence of price bubbles [68]. These experiments offered good insights into the
associated research problems. However, to our knowledge, all the experiments men-
tioned above have not convincingly reproduced the stylized facts (say, scaling laws)
that have been revealed for real economic/financial markets by econophysicists. An
important reason may be that in these experiments, time is divided into trading cycles,
e.g., 5 min. Hence, the participators have to make decisions on the cycles [30, 65–68].
In other words, discrete time steps deviate these laboratory markets from real markets
where trading time is naturally continuous. In this chapter, we attempt to overcome
this problem by designing a continuous double-auction stock-trading market and
then carrying out several human experiments in the laboratory. As an initial work,
the present artificial financial market can produce some stylized facts (clustering
effects and scaling behaviors) that are in qualitative agreement with those of real
markets. Also, it predicts some other scaling laws in human behavior dynamics that
are difficult to achieve in real markets due to the difficulty in getting data.
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3.2 Market Structure

3.2.1 Basic Framework

Consider a market with N traders, indexed by i. Trading time is indicated by t. To
simplify the problem, traders only decide how to manage their portfolios consisting
of one stock and risk-free asset. The risk-free asset in our market is simply bank
savings (cash). There are Q shares of stocks issued in the market. The price of the
stock is determined by the traders’ trading activities and it is updated every time a
deal is made.

3.2.2 Double-Auction Order Book

Double auction has been the most widely used system in equity markets for more
than 140 years [69]. In our market, a computer-aided double-auction order book
is introduced to help deal with the traders’ orders. Traders can have limit orders.
Compared to a market order that only contains a desired amount of stock to be
bought or sold and is executed on the current price, a limit order in addition has a
request of specific limit of price. For example, a limit sell order with a bid price p
and amount q means that this trader is willing to sell q shares of the stock in any
price no less than p. A limit buy order with an ask price p and amount q means that
this trader is willing to buy q shares of stock in any price no more than p. Traders
could have unlimited numbers of orders, but neither borrowing nor short selling is
allowed. Our order book works in the following ways:

1. At first the order book is empty;
2. When an order, for example, a buy order, is posted, the maximum amount of cash

that may be needed is frozen;
3. The system will check if there are sell orders with lower prices. If there is no such

order, storing the buy order in the order book and the process is done; if there
exist such orders, the system will pick out the ones with the lowest prices and sort
them by time to find the oldest one;

4. The system will exchange cash and stock between the traders of this buy order and
the chosen orders in step 3; these cash and stock will be unfrozen and delivered to
the account of the traders. If the buy order is fully digested, the process is done; if
not, the rest will be treated as a new order and again steps 2 and 3 will be repeated;

5. When an order is aborted, the frozen cash or stock is released to the trader’s
account. An example of our double-auction order system can be found in Fig. 3.1.
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Fig. 3.1 An example of how our order book updates. Adapted from Ref. [11]

3.2.3 Exogenous Rewards

It is known that real stock markets are always full of various kinds of information, but
such information has only two roles: tending to increase or decrease the stock price.
Because the stock in our laboratory market has no underlying value, our solution is
to add exogenous rewards to the system. For this purpose, we resort to dividends
(that are used to potentially increase the stock price) and interests (that are utilized to
potentially decrease the stock price) to give traders information about the macroen-
vironment and the stock. In detail, there will be stochastic rewards for holding stock
or cash every few minutes. The rewards for stock are a random amount of cash d
directly added to traders’ account; they are like the dividends in real markets. As
a result, this may increase the stock price. The rewards for cash mean increasing
the traders’ cash by a random percent f, which represent the interests. So, this may
decrease the stock price. The rewards also cover the stock and cash frozen in the
order book. To let the traders have time to evaluate their strategies, all the rewards
are forecast with partial information from the coordinator 2 min before they are dis-
tributed. For example, if the coordinator is going to pay a dividend of “2 cash per
share” at 10:00 a.m., he broadcasts to the traders that there will be a dividend of “1–3
cash per share” at 9:58 a.m.
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Fig. 3.2 A screenshot of the trading platform: the left part shows the trader’s nickname, usable
cash, and stock (the number of shares); the middle chart demonstrates the stock price and trading
volume as a function of time; the right table gives the five highest bid prices and the five lowest
ask prices. The middle chart refreshes per minute; when the mouse pointer (denoted by the white
arrow) hovers above the stock price, it shows detailed information about the time and the price of
that time, say, “10:35, Price: 18.70” as shown in the chart. Adapted from Ref. [11]

3.3 Controlled Experiments

3.3.1 Platform and Subjects

We designed and conducted a series of computer-aided human experiments. The
experiments were held in a big computer laboratory of Fudan University; each subject
had a computer to work with. All the computers were linked to an internal local area
network and we deployed a web server to handle all the requests. We recruited
63 subjects to act as traders, all of whom were students of Fudan University. Our
trading platform provided the following information to the traders: 1 min close prices,
1 min trading volumes, five highest buy orders’ prices and amounts, five lowest sell
orders’ prices and amounts, the trader’s own cash and stock available, the trader’s
trading/ordering history and the trader’s rewards-getting history. Details are shown
in Fig. 3.2. According to our server’s performance, the close price and volume were
shown in a chart which was automatically updated after every 1 min, the order book
information was updated every 15 s, and the traders could look at their histories at
any time during the experiments.

3.3.2 Experimental Settings

Before the experiments, 10 min for trade training was arranged to help the subjects
to get used to the trading interface and market rules. Then, we had two rounds of
experiments. Every round of experiment lasted for 30–40 min, but the traders did not
know when the experiment would end, thus there would be less ending boundary
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effect. At the beginning of a new round, the stock price would be set to 10. In the
first round of experiment, all the traders started with 10,000 cash and 1,000 shares
of stock, while in the second round of experiment, the traders started with a random
amount of cash and stock. In the second round, the traders’ initial stock was randomly
distributed between 200 and 1,800, and to make the total amount of stock and cash
comparable with the first round, every trader’s initial cash was 10 times his/her stock
in number. In the first round of experiment, we initiated 63,000 shares of stock and
630,000 cash; in the second round of experiment, we initiated 63,478 shares of stock
and 634,780 cash.

3.3.3 Payoffs

Our experiments were carried out during the Econophysics course taught in Fudan
University. The subjects were students enrolled in this course. 47 of the 63 subjects
selected the course and 16 students were auditors. The performance of the students
who selected the course took 10 % of their final score of this course. They were
required to trade at least 20 times to get a base score of 3.3 %. And based on their
final wealth ranking, they could get another 3.3–6.7 % score: based on their scores,
top 10 % students would get all of the 6.7 % score, top 10–30 % would get 6.0 % of
the final score, · · · , and the last 10 % would only get 3.3 % score. Their final total
scores were the calculated score rounded to the nearest whole number.

It is worth noting that the crucial role of markets is to let participants have the
chance to pursue profits. In different situations, “profits” could have different forms.
For example, in real stock markets, investors pursue money (“profits”) by exchanging
stocks and money. In our laboratory market, 47 students who selected the course
pursued scores (“profits”), and the other 16 auditors voluntarily participated in the
experiments with an aim to learn how laboratory experiments are conducted for
econophysics (“profits”). In this sense, our laboratory market can be equivalent to
real stock markets, at least to some extent.

3.4 Results and Discussion

3.4.1 Price, Volume, and Return Series

In this section, we will show the data we get from the human experiments (Fig. 3.3).
First, the 1 min close price series, p(t). Here, a 1 min close price is the last transaction
price that occurs at the end of a certain minute: if there is no order execution in this
minute, the close price will stay the same as the price of the last minute. The (log)
return r(t) is defined as follows:
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r(t) = ln p(t) − ln p(t − 1), (3.1)

where trading time t is denoted by the count seconds from the start of the experi-
ment. Figure 3.3a, b gives the price series of our experiments: during the first round
of experiment, there are 2 interests (rewards for cash) and 2 dividends (rewards for
stock), and during the second round of experiment, there are 1 dividend (rewards for
stock) and 4 interests (rewards for cash). Because our rewards are forecast 2 min in
advance, there are notable price changes before the distribution of rewards. Specifi-
cally, before a reward for stock, the price goes up; before a reward for cash, the price
goes down. This could be explained: when a signal of holding stock is sent to the
traders, they tend to hold more units of stock. As a result, more buy orders will come
to the order book and pull up the price. However, if one buys the stock for a price
much higher than the present price, he will gain less profit in this turn of reward. Thus,
the price will not go up infinitely. The same theory works for the case of rewards for
cash. Because traders have different strategies and predictions of future events and
our forecast is not accurate, different traders have different responses to the news.
This mechanism provides liquidity to our markets. Figure 3.3c, d shows the trading
volume series. It is observed that trade activities occur constantly all the time.

Figure 3.3e, f shows the return series of the two rounds of experiments. It is easy to
recognize that there are clusters in the return series; this is distinctly different from
Gaussian random series. So we analyze the return series’ statistical properties. In
order to compare the data from the two rounds clearly, the normalized return, g(t),
is used

g(t) = r(t) − 〈r〉
σ(r)

. (3.2)

Here, 〈· · · 〉 denotes the average of time series · · · , and σ(· · · ) means the standard
deviation of · · · . We calculate the cumulative distribution function (CDF) of the first
and second round, respectively. Since the returns distribute symmetrically around
zero, we respectively calculate the positive returns and negative returns and put them
in Fig. 3.4 for comparison. For the two rounds (Fig. 3.4), the negative and positive
tails share almost the same CDF. Further, in the log–log plot, all the four tails have a
particular region that is approximated by a straight line. Clearly, this behavior is the
evidence of scaling, which meets the statistical analysis of many real stock markets
[50].

The autocorrelation function is another important feature of the return series [60].
If x(t) is a time series, the autocorrelation function, C(�T ), is defined as

C(�T ) = 〈(X−�T − 〈X−�T 〉)(X�T − 〈X�T 〉)〉
√

σ(X−�T )σ (X�T )
, (3.3)

where X−�T is the series with the last �T elements removed and X�T with the
first �T elements removed. 〈X〉 denotes the average of X and σ(X) the standard
deviation. Our calculations of g(t) confirm the existence of short negative correlation
(less than 20 s or so) on both rounds of experiments (as indicated by the green dashed
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Fig. 3.3 Time series of a, b 1 min closing prices, c, d volumes and e, f returns for the a, c, e first
and b, d, f second round of the laboratory human experiment. In a and b, up arrows demonstrate
the time when there is an interest (reward for cash), and down arrows demonstrate the time when
there is a dividend (reward for stock). In a, from left to right, the four arrows denote rewarding “2
cash per share,” “2.4 cash per share,” “10 % of the cash,” and “6 % of the cash,” respectively. In b,
from left to right, the arrows means rewarding “3, 5, 7, and 9 % of the cash” for the four up arrows,
and “3.2 cash per share” for the down arrow. c and d show the trading activities lasting through the
experiments. In e and f, clustering behavior occurs. Adapted from Ref. [11]

line in Fig. 3.5a), which shows our laboratory market is similar to the real developed
stock markets [70]. The short-time correlation also fits our order book information
refreshing time (15 s). We also calculate the autocorrelation of absolute normalized
return, |g(t)|, and find that the correlation lasts longer than 20 s (see Fig. 3.5b). This
result confirms the volatility clustering behavior in our market, and echoes many
other articles, for example, see Refs. [62, 70]. In addition, if we compare the two
rounds we can conclude that in the present market, the initial wealth distribution has
little influence on the statistical properties of return.
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Fig. 3.4 Cumulative distribution functions (CDFs) of the normalized return: a the negative tails of
the experiments and b the positive tails of the experiments. Symbols of squares and circles denote
the results obtained from the first and second round of experiments, respectively. Here, the negative
tails in a denote the CDF (<0.064) of the absolute value of negative normalized returns, and the
positive tails in b denote the CDF (<0.071) of the value of positive normalized returns. In a or b,
“Slope” denotes the slope of the corresponding green dashed line. Adapted from Ref. [11]

3.4.2 Human Behavior Dynamics

Our market experiments also give us an opportunity to study human behavior dynam-
ics. In 2005, Barabasi et al. analyzed the letters of Darwin and Einstein; they found
that both Darwin’s/Einstein’s patterns of correspondence and today’s electronic
exchanges follow the same scaling laws [71]. They used an agent-based model to
explain the origin of this scaling [72]. Here, we turn our eyes to the waiting time of
traders’ actions. We define two kinds of waiting time, stock waiting time and trader
waiting time. Stock waiting time describes the gaps between which two different
orders are posted, see Fig. 3.6. We put all the orders from all the traders together,
sort them by time and calculate the time gaps between two successive orders. While
the stock waiting time focuses on the collective behavior of a group, by defining the
trader waiting time we try to focus on the decision-making processes of individuals.
For trader waiting time, we put orders from different traders in different piles, sort
them respectively, and then calculate the gaps. This is because for any particular
trader she/he only has tens of orders, which are insufficient for statistical analysis.
Instead, if we are looking into the rules that work across the crowds, we could put
all the gaps together and thus get thousands of data. This method has been used in
the literature on human behavior dynamics [73, 74].

The probability density function (PDF) is calculated; see Fig. 3.7. Figure. 3.7a
demonstrates the PDF of stock waiting time in a log plot graph. The data points
obviously locate in a straight line, which means the stock waiting time obeys an
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Fig. 3.5 Autocorrelation function of a normalized return series, g(t), and b absolute normalized
return series, |g(t)|, for Round 1 and Round 2. In a, the green dashed line indicates the transition
point. Details can be found in the text. Adapted from Ref. [11]

Fig. 3.6 Demonstration of the definition of waiting time. The axis represents the time. Assume our
market has only two traders, the first trader’s orders are marked with down arrows and the second
trader’s orders are marked with up arrows. The stock waiting time is shown by the gaps between
each pair of nearby slash lines, and the trader waiting time is indicated by the gaps between each
pair of nearby down arrows and the gaps between each pair of nearby up arrows. Adapted from
Ref. [11]

exponential distribution [72]. This is because the traders have little interactions when
submitting orders, their actions can be seen as independent decisions and overall
exhibit a random-like behavior. However, in Fig. 3.7b, we could find the trader waiting
time is quite different. The PDF in a log–log plot forms a straight line for gaps shorter
than 100 s, and the tail of the PDF drops below the line when the gap is longer than
100 s. In the previous literature, Barabási showed that the power-law distribution of
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Fig. 3.7 Probability density functions (PDFs) of waiting times: a the stock waiting time and b the
trader waiting time. Symbols of squares and circles denote the first and second round of experiments,
respectively. In a or b, “Slope” denotes the slope of the corresponding green dashed line. Adapted
from Ref. [11]

waiting time may come from a priority queuing system [72]. In our market, when
traders make decisions on whether he/she should submit an order, there is no obvious
use of a task queue. So the origin of power law in trader waiting time may contain
some other mechanism. The turning point from which the PDF’s tail drops from the
straight line fits our rewarding time gaps in magnitude. We suspect that the tail of
PDF may present the effect of our exogenous rewards. Such news breaks the traders’
original decision-making processes. For example, if there is no news in the market, a
trader might trade every 20 min; however, if there is periodic news every few minutes,
he/she is likely to respond according to the news. Therefore, the gap of 20 min will
no longer exist. In a word, we believe that the lack of long waiting time causes the
fall of the tail in Fig. 3.7b.

3.5 Conclusions

In contrast to existing laboratory markets where trading time is set to be discrete
[7–9, 65–69], we have designed a double-auction stock-trading market where trading
time is continuous. We have run two experiments in the laboratory with human
subjects and found that the initial outputs of the market fit some existing stylized
facts (clustering effects and scaling behaviors). In addition, we have analyzed the
orders and discovered some scaling laws in human behavior dynamics. Our laboratory
market still has some weak points. For example, the traders of our experiments are
university students and there might be differences if we choose different groups of
traders other than university students. However, as a model market, it is easy for us
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to change different control parameters or add more extensions. Thus, this market is
expected to produce more results in future researches, such as, on either the effect of
leverage (Chap. 4) or the birth of bubbles. The market and its output might also help
modelers to mimic human behaviors in a more precise and realistic way. This chapter
shows a way to study real stock markets by conducting controlled experiments on
laboratory stock markets producing high frequency data.

http://dx.doi.org/10.1007/978-3-662-44234-0_4


Chapter 4
Fluctuation Phenomena: Leverage Could
Be Positive and Negative

Abstract Real stock markets are always full of fluctuations in prices. Overall
fluctuations (i.e., volatility), which can be calculated by the variance of log returns
of a time series of prices, can represent investment risks; extremely big fluctuations,
which are indicated by fat tails in the probability distribution of these log returns, can
incur financial crises. Therefore, it is particularly important to understand such fluc-
tuations, especially in case of the introduction of new financial instruments like the
leverage of borrowing money. Here we include this leverage into a kind of one-stock
market in the laboratory, whose original version was experimentally shown to pro-
duce some stylized facts like scaling laws and clustering behavior in Chap. 3. When
the leverage becomes higher (which means borrowing more money), our human
experiments and computer simulations show that the value of overall fluctuations
(or extremely big fluctuations) increases (or decreases), which is a negative (or pos-
itive) effect. The negative effect means that the investment risk of the whole market
increases; the positive effect indicates that fat tails are shrunk, thus lowering the prob-
ability of the outbreak of financial crises in the market. We reveal that the underlying
mechanism lies in the effect of margin calls. In addition, since wealth distribution
affects the harmony and stabilization of a society, we also study the leverage effect
on wealth distribution in the laboratory market, and report some interesting findings
and mechanisms. This work not only helps to understand the leverage appropriately,
but also helps to enrich fluctuation theory in statistical mechanics.

Keywords Leveraged trading · Fluctuation · Investment risk · Financial crisis ·
Wealth distribution

4.1 Opening Remarks

The preceding chapter successfully shows some stylized facts (scaling and clustering)
of laboratory stock markets that do not have derivative financial instruments; the
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initial success encourages us to proceed further by adding some derivative financial
instruments like leverage.

In the recent years, leverage has played an increasingly important role in both
the developed and emerging markets. With its growing usage in many financial
derivatives, it has provided investors with innovative tools to manage their wealth.
However, with its popularity growing, it has also attracted many arguments around
its effects on financial markets. While some believe it is a positive tool for gaining
without abundant resources, and a powerful financing source for investors especially
qualified companies to compete [75–78], others reckon that the overused leverage
will lead to more fluctuations (namely “volatilities” according to the wording of
economics or finance) and worse instability in the financial markets, and consider it
as a main cause for the recent financial crisis [79–82].

For example, on one hand, leverage is treated as an effective tool for controlling
financial crises. In the work of Feldman [75], he recognized the merits of leverage
in the regime with shared restriction by using an agent-based model to simulate the
effects of regulations of financial leverage in a stock market containing one stock
only (a one-stock market), and the result suggested that leverage in the regime with
share restriction would lead to less financial crises per century. That is to say, leverage
has helped in controlling fat tails (corresponding to extremely large fluctuations) in
the markets so that the possibility of extreme cases like financial crises is lowered.
Besides, leverage is also treated as a useful strategy for competition. In the article by
Hamel [76], they used empirical analysis on the performance of different firms and
found leverage an effective tool for successful companies to get a bigger bang for their
buck in the markets, and to allocate the resources more wisely and efficiently. This
competition advantage is deeply combined with the risk control of the companies,
since only those who are able to avoid big falls in asset prices can compete in a stable
and continuous way.

On the other hand, leverage has been criticized, especially for causing the
extremely large fluctuations in the markets. For instance, Thurner and Farmer [79]
claimed that it was leverage that caused fat tails in the markets. They designed a
model where leveraged assets can be purchased with margin calls, and investments
funds are able to use the strategy of value investing, i.e., systematically attempting
to buy underpriced assets. The results showed that leveraged funds could sometimes
lead to higher profits in good times, but in more cases could also cause the down-
ward price to go worse and suffer substantial losses due to margin calls, making
the extremely large fluctuations even worse. What is more, the leverage also caused
the return of the price to change from normal distribution to fat tails. This result
indicates that leverage is the reason for the increasing probability of extremely large
fluctuations in the financial markets. In Carmassi’s work [80], they reviewed the
related articles and used the method of empirical analysis on the economic data to
identify excessive leverage as one main cause of the recent subprime crisis. To avoid
similar events, they believed that regulations on leverage must be hard. Similarly,
in the above-mentioned work by Feldman [75], he also pointed out the demerits of
leverage in the regime with either margin calls or bubble puncture. All of these works
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show that the growing usage of leverage has come along with the breakout of the
crisis, which corresponds to the extremely large fluctuations (or fat tails).

According to extremely large fluctuations, which can lead to financial crises, the
existing literature on leverage in financial markets is either supportive or critical
within the framework of a model market or regime. This controversy attracts us. To
our knowledge, so far, controlled (human) experiments have not been utilized to study
the impact of leverage. In view of the laboratory stock market recently established
by us [11] (Chap. 3), which can produce some stylized facts (like scaling) as real
stock markets, we feel obliged to raise a question: what is the impact of leverage
in this laboratory stock market (which is also a one-stock market)? The answer
could be useful to understand the pure impact of tuning the strength of leverage
[denoted by “leverage ratio (LR)”] because the market is strictly controlled: except
for LRs, others including trading regulations are fixed. To this end, we reveal that
the impact of leverage of borrowing money in the stock market decreases extremely
large fluctuations (or shrinks fat tails), which reduces the probability of occurrence
of financial crises (a positive effect). Meanwhile, this leverage increases overall
fluctuations, which improves risks of investment in the stock market (a negative
effect).

4.2 The Design of Controlled Experiments and Agent-Based
Modeling

4.2.1 Key Ideas of Leverage

Since financial leverage in real markets has detailed and complicated rules which
vary in different countries and markets, here we pick up the most general and essential
ideas of leverage: leverage qualifications, LRs (leverage ratios, which describe the
strength of leverage), and margin calls. The details are as follows.

• Leverage qualifications: In real markets, leverage needs strict qualifications for
candidates, including wealth, experiences in the field, credit level, etc. Only qual-
ified investors can have access to leverage. In both our human experiments and
agent-based simulations, we set the amount of wealth as the trigger of financial
leverage. That is, if a subject or an agent has earned enough money to meet a
demand line, he/she will get extra funds to buy stocks. This should be a reasonable
simplification since those subjects/agents whose wealth exceeds the demanded
level of money are those who have better trading skills and larger profits.

• LRs: The LR is a key element not only in this chapter, but also in real markets. It
is defined as the ratio of one’s total assets to his/her own wealth. In the regulations
of leverage, this ratio is decided by another important concept: margin rate. Here
margin rate means the least proportion of the earnest money (also known as margin)
an agent should hold in his/her total assets (including the borrowed funds), and it

http://dx.doi.org/10.1007/978-3-662-44234-0_3
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controls the size of the leverage ratio. For e.g., if the margin rate is 50 % and the
earnest money that the borrower must offer is W , then the funds he/she can borrow
is W/50 % = 2W . For consideration of risk control, most countries regulate the
margin rate by setting the least proportion, so that investors can use a higher margin
rate to reduce the total amount of borrowed money to lower the risk of default. The
least margin rate varies in different countries. For example, in the United States,
the margin rate has been adjusted many times by the Federal Reserve, and 50 %
has been adopted since 1974. In Japan, it has been changed many times and has
been set as 30 % since 1991. In China, it has been 50 % since the mechanics of
leverage was introduced. So, when the margin rate is decided, the initially allowed
LR in the market is decided at the same time. Here is the case when the margin
rate is 50 %: LR = (W + W/50 %)/W = 3. In this chapter, we take the LR as a
key variable in the market.

• Margin calls: Investors might perform poorly and suffer losses to some extent. But,
under the threat of failing to get back the funds, financial agencies will demand
borrowers to add their margin to bring the LR back to a safe level to keep the
borrowed funds. If they fail to do so, financial agencies will force borrowers to
return the funds immediately by selling the stocks they hold. This process is a
margin call. The lowest standard by which the financial agency will still maintain
lending can be interpreted as the maintenance requirement, which is also differently
ruled in different countries: in the United States, it is required that the margin should
compose at least 25 % of the net asset value; in China, whether to trigger a margin
call is decided by the maintenance guaranty ratio (MGR):

MGR = Own Assets + Borrowed Assets

Borrowed Assets
. (4.1)

Since the least margin rate in China is 50 %, the initial MGR is 1.5. With the
borrowed assets unchanged, MGR is only affected by the change of one’s own
assets. However, the official lowest requirement of MGR is 1.3. That is to say, the
Chinese financial lending agencies will allow borrowers to lose at most 40 % of
their own wealth when they are using the highest allowed leverage (Own Assets
have suffered a loss from 0.5 to 0.3 times Borrowed Assets). Here we take this
method as our margin call rule. Besides, in order to focus on the effect of leverage,
we set the subjects/agents to use their whole own wealth as the initial margin to
borrow money. So, without extra assets as reserved margin, they will be forced to
return the debts immediately when they meet the margin call.

Next, for both experiments and simulations, we design a mutual structure by
adopting these key ideas and defining some other important rules.
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4.2.2 Mutual Structure for Experiments and Simulations

First, each subject/agent in the market will have the same portfolio at the beginning:
10,000 Yuan cash and 1,000 shares of the stock with an initial price of 10 Yuan. Setting
W , M and E to respectively stand for Wealth, Money, and Equity, we express his/her
total wealth at time t as

W (t) = M(t) + P(t)E(t), (4.2)

where P(t) is the stock price at time t . So, the initial wealth of a subject or an agent,
W (0), is 20,000.

Then, the price movement of the stock is decided by the excess supply or demand:
more demand leads to higher price while more supply makes it lower. To rule the price
definition, we resort to Refs. [83, 84]. Then, when P(t) is available, we determine
the new price P(t + 1) according to the supply and demand at time t ,

ln P(t + 1) − ln P(t) = λ(ln Call − ln Put). (4.3)

Namely
P(t + 1) = P(t)(Call/Put)λ. (4.4)

Here “Call” (or “Put”) is the total value of call/buy (or put/sell) orders, and λ rep-
resents a market depth. The market depth shows the sensitivity of price to supply
and demand. Reasons: when λ is high, the market would fluctuate heavily in case of
huge buy or sell orders; however, a deep market with a low λ can still be stable when
facing the same situation. For example, for the initial price P(0) = 10, in the first
round of transaction, if the total call order is 100,000 and the total put order is 50,000,
then according to Eq. (4.4), the new price P(1) equals 10 × 2λ. Due to the different
number of subjects/agents and length of time in experiments and simulations, we set
λ differently: λ = 0.005 for simulations and λ = 0.16 for experiments.

However, in real markets, when an investor sees a stock price and gives orders,
he/she may not actually have the strike price on the expected value. This is because
all the deals are cleared one by one. During the process, the strike price will change
from P(t) to P(t + 1). Here we assume the strike price is identical for all the
subjects/agents at each time step. So we define the strike price for time t as [85],

P(t)strike = (1 − β)P(t) + β P(t + 1), (4.5)

where β is a market impact factor and it reflects the group effect of subjects/agents’
participation: a larger β would make the majority at time t in the market has bigger
power to decide the strike price, since the strike price would be closer to the new
price P(t +1), which is decided by the buy and sell orders at t . In the extreme cases,
subjects/agents would trade just with the new price P(t + 1) when β = 1, and trade
with the immediate price P(t) when β = 0 [85]. After tests, since in the relatively
short time length of experiments (which will be notified later) , we want the human
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subjects to take the highest impact and motivation level of participation, we set β = 1
for experiments; and for simulations, we set β as 0.5, in order to moderately represent
the group effect in the longer time length of the agent-based simulation market.

Having defined the trading and pricing dynamics, let us move to the trigger of
financial leverage. As mentioned before, only well-performing subjects and agents
can get access to leverage. Assuming the initial wealth of subjects/agents is W (0),
we set a wealth standard Ws for them to trigger the extra funds: a return of 25 %,
means they should at least accumulate their wealth to 1.25W (0) to get qualified for
the further leveraged trading. When a subject or an agent meets this requirement,
say at time t , he/she could borrow money according to the margin rate. If the margin
rate is p, then the amount of borrowed funds is W (t)/p. So, the LR is determined
according to LR= (W (t) + W (t)/p) /W (t). In the human experiment, we use the
four LRs: 1, 2, 3, and 5; in the simulations, we vary the LR from 1 to 9 by an interval
of 0.2.

With the funds, the subjects/agents now have the ability to operate in the markets
with larger orders. In real markets, all the borrowed funds would be immediately
used to buy stocks. But since our qualification standard for subjects/agents is set as
the same, we cannot just simply copy the mechanics in the real markets, which would
make all the amplified orders in almost the same scale and weaken the unpredictability
of both experiments and simulations. So to lower the predictability and improve
the diversity of subjects/agents’ behavior, we provide a more reasonable order size
strategy separately for human subjects and computer agents, which will be discussed
later.

Now we are in a position to talk about the margin calls. In case of leveraging,
if a subject or an agent suffers a great loss, the margin call will happen and he/she
will be forced to sell stocks and return funds at once. For all LRs of experiments and
simulations, the margin call will appear when a subject or an agent with borrowed
funds has lost 40 % of his/her own wealth (which is set to be the same as the official
rule in China).

Lastly, to simplify the process of transactions, we assume that all the orders on
each trading step will be executed. That is, the market is not a closed one and there
exists a market maker whose job is to balance the stock supply and demand. So, the
trading volume at each time step is

Volume = Max(Call, Put). (4.6)

4.2.3 Controlled Experiments

Now we specifically introduce the artificial stock market in the laboratory. The sub-
jects in the experiments could choose to buy or sell stock by their own strategies to
gain profits. As mentioned above, the initial conditions are as below:

The starting price P(0) = 10, the initial wealth of a subject W (0) = 20,000
(10,000 in cash and 10,000 in stock), the demanded wealth to trigger leverage Ws =
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25,000 (which is a 25 % raise of the initial wealth), and a 40 % loss of subjects’ own
assets triggering the margin call.

When margin calls happen, the system would help subjects to make sell orders
automatically to return funds. To make the market more robust and diversified, we
also introduce noise traders by randomly giving call or put orders, which both consist
of a small proportion (within the range from 10 to 30 %) of the total orders in the
market at each time step.

In order to make our experimental results more general, we conducted two exper-
iments at different times and recruited different groups of subjects. Since the stock
price in the experiments is defined by the proportion of buyers and sellers, and thanks
to the random traders’ mechanics, the extreme cases of price fluctuations (all buy
or all sell) for any number of subjects would be confined in the same scale, so the
absolute number of subjects will not affect the results. This is convenient for the
related experiments to be conducted in the future. Our first experiment was con-
ducted on July 8, 2013, for which we recruited 22 subjects and studied LR = 1 and 5.
Similarly, the second experiment was conducted on September 27, 2013, for which
we recruited 46 subjects and investigated LR = 2 and 3.
Besides, there is some other detailed information about the experiments:

• The subjects were students from Department of Physics and School of Economics
of Fudan University, who had the necessary knowledge of financial markets and
could make their trading decisions independently.

• The experiments were done in the computer laboratory of Fudan University, each
subject had a computer to work with. All the computers were linked to an internal
local network and a web server was set up to handle all the transactions.

• For each LR, we conducted 60 time steps.
• We gave the subjects rights to decide their order sizes based on their total wealth.

For each time step, subjects could decide both their investment direction (buy or
sell) and proportion (choose from 1, 20, 40, 60, 80, 100 %). See Fig. 4.1.

• When leveraged, subjects were encouraged to operate in big orders, and when
short of a certain kind of asset, they could not operate with this kind of asset. So
with the last two items mentioned above, we make the order size strategy for the
subjects diversified, reflecting the size effect when they are leveraged.

• The web page on which the subjects operated in the experiment is shown in Fig. 4.1:
With all these information that would be updated each time step during the exper-
iments, the subjects could have an overall understanding of the current situation
and their historical performance, and then they could make their own strategies
and decisions.

Next we introduce the incentive mechanism and scoring rules in the experiments.
In order to build an economic environment where the experimental results are rea-
sonable and reliable, we have related the performance of subjects with profits. The
first experiment is rewarded with cash (Chinese Yuan), and the second experiment is
rewarded with course scores to make sure that all the members have a strong incentive
to perform well and strive for the best return.
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In the first experiment with cash reward, we set the total cash pool for reward as
the number of subjects multiplied by 100 Chinese Yuan, namely 22 × 100 = 2,200
Chinese Yuan. Then we distribute this amount of reward by the scores of subjects.
We assign 70 points as the total full score for each subject in the two rounds of
experiment, each round corresponding to one LR: 30 points for each round and 10
points for their participating. At the end of each round, we have a wealth list of all
the subjects. We set the highest wealth amount in the list as 30 points, and all the
other wealth amounts would take a proportion from the highest and then multiply
30 as its score in this round. For example, for a certain LR, if the amount of the
highest wealth is 50,000 and a subject achieves 30,000, then his/her score for this
single round is (30,000/50,000) × 30 = 18. So, we can have the final score of
each subject as the sum of the 10 participating points and the two scores from the
two rounds of experiment. Finally, we sum these scores of all the 22 subjects and
calculate the percentage of each subject’s score to decide his/her final reward from
the total cash pool. Assume this percentage is 10 %, then his/her final reward would
be 10 % × 2,200 = 220 Yuan. Besides, the top three subjects would have extra
bonus: 150 Yuan for the champion, 100 Yuan for the second place, and 50 Yuan for
the third place. So the well-performing subjects would have good opportunity to gain
a reward which is higher than the average level.

In the second experiment with score reward, all the subjects are the students
of the course, Econophysics, and the experiment is part of the course to let the

Fig. 4.1 A screenshot of the operating platform for conducting the human experiments (in both
English and Chinese). The left part is the information wall, which shows the current status of the
subject (subject) and stock: subject ID, his/her cash, number of his/her stock shares, total assets
as the sum of cash and stocks, and the present stock price. The right part is the operating panel,
which allows subjects to buy (or sell) the stock with the amount of cash (or the number of stock
shares) determined by six investing proportions, each corresponding to a percentage of his/her cash
(or stock shares). Adapted from Ref. [86]
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students understand how human experiments help in the study of econophysics.
This experiment takes 15 % of the full score (100) in the course. Here we use a
different mechanics of rewarding by ranking the total wealth of each subject after
the experiment, and then give the top six students full marks of 15, leaving 40 students
to mark. Then we give them marks with 4 score levels: 13, 11, 9, and 7. This system
is designed from the courses grading system of Fudan University (score levels of
A, B, C, D, F, etc.). Since this experiment is part of the course, this mechanics of
scoring is the most suitable way to encourage students to perform well by elevating
their final course scores.

We know that one vital role of financial markets is to let participants have the
opportunity to pursue profits. Besides economic rewards like money in both real
markets and our first experiment, profits can take different forms as well. Such
as a better course score in our second experiment, which is also quite attractive to
students. In this sense, we have built a profit-oriented environment in the experiments,
which is equivalent to real stock markets (at least to some extent). As a result, both
incentive mechanics have triggered strong motivations of good performance for the
subjects, and played an active role in improving the morale and atmosphere during
the experiments.

4.2.4 Agent-Based Modeling

Agent-based simulations are based on a revised version of minority game (MG) [1,
31, 85, 87]. To comply with the experiments, the simulation model also contains two
kinds of agents: noise traders and speculators. The former gives orders randomly
in the scale of 10–30 % of the total orders, just like the design in the experiments;
the latter uses the strategy books to amplify their profits. The mechanics of agents’
strategy books in the traditional MG model were introduced by Challet and Zhang
in 1997 [1], here we revise the classic methods using the following approach to form
the speculators’ strategy books in our model.

The strategy book in our model is a choice table that consists of two columns, as
shown in Table 4.1. A traditional MG strategy book also consists of two columns:
the left column is for the m history length, and the right column is for choices, which
are the same as in our table. But in the MG model, the history bit “1” or “0” stands
for Room 1 or 2 being the winning side, while in our history series, “1” represents
stock price rising or staying the same, “0” for price falling; and we also modified the
choices to “1” for buying, “−1” for selling and “0” for holding, rather than choosing
rooms in the MG model. So with a length of memory as m, there are totally P = 2m

historical situations and 3P possible strategies. Before the game starts, each agent
will choose s strategies to help him/her make a decision at each time step.

The stock positions of each strategy will also vary with time: adding one when
buying, subtracting one when selling, and stay unchanged when holding. We rate the
strategies with virtual wealth: the wealth that the agent would get if he/she uses it
all the time. And the strategies with higher virtual wealth are preferred by agents: at
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each time step, based on the historical price change sequence, each agent operates
on his/her stock or cash account with the help of his/her best-scored strategy. In our
model, we set m = 3 and s = 4.

Then we come to the order size of agents. To diversify the behavior of agents
and to make the model simulations consistent with the experiments, we define a
parameter r as the risk controller to let each agent in the model decide his/her size
of orders. It works as

r = 1 − exp[−cW (t)], (4.7)

where W (t) is the wealth of an agent at time t (total wealth, including borrowed
funds) and c is a constant. We can easily tell that r has a positive correlation with
W (t) in the scale of (0, 1), and it reaches the limit of 1 when W (t) goes to positive
infinity. So this risk controller will make the richer agents give bigger orders. The
buy or sell orders for agents are

Buy order = r M(t)/P(t), (4.8)

Sell order = r E(t). (4.9)

By adjusting c, we can get the ideal r that makes the agents in this model behave
reasonably, neither too aggressively nor conservatively. So this method provides
us with a reasonable resemblance of the diversity and unpredictability of the real
markets (at least to some extent).

Here are some other simulation conditions: the price-determining mechanics are
also based on supply and demand, and margin calls trigger at a 40 % loss of one’s own
wealth, the same as the experiments. Compared to the experiments, in the simulations
we have built a much more complete database with 1,000 agents and 100 rounds for
each LR. Each round has run 10,000 time steps. The other parameters adopted in the
simulations are P(0) = 10, M(0) = 10000, E(0) = 1000, Ws = 25000, λ = 0.005,
β = 0.5, c = 0.00005, m = 3, and s = 4.

Table 4.1 The strategy table
of agents in the simulation
(when m = 3). Adapted from
Ref. [86]

History Choices

000 1

001 −1

011 0

· · · · · ·
110 1

111 −1
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Fig. 4.2 Time series of prices produced by human experiments with four different LRs (leverage
ratios). The time steps are fixed at 60. Adapted from Ref. [86]

4.3 Results: Experiments and Simulations

4.3.1 Overall Fluctuations

Here we first present our results about the effect of leverage on the overall fluctuations
of the market.

Figure 4.2 demonstrates a direct impression of price movements in the experiment.
We can tell a clear tendency that the situation with larger LRs would have more
fluctuations. Besides, the price series moves in a relatively random way while there
is no leverage (LR = 1); however, with leverage included as LR changes from 2 to 5,
the price movement has become more reasonable, forming several stable trends which
are somehow similar to real markets. This is mainly because there is no instructive
information for the subjects to choose investment direction, and in the zero leverage
(LR = 1) case, subjects could only operate with their own assets, which are relatively
in small scale. However, in the leveraged cases (LR = 2, 3, and 5), when borrowing
money is triggered, a group of subjects may have excessive amounts of money to
invest in the stock market and this buying power could lead to the upward trends in
the price. And when they decide to sell a lot, or when margin calls are met, they would
make big sell orders to bring down the price, which may cause others to suffer a loss
and trigger more margin calls. So when the leverage causes more overall fluctuations,
it also offers a reasonable mechanism of how borrowing and returning funds may
affect the change in prices.

However, the experiment alone has limitations in the size of dataset, due to the
limited time and manpower we could have. The simulations have a more complete
dataset with longer time series and more LRs. So let us combine the results of both
experiments and simulations to see the effects of leverage on fluctuations clearly.

Figure 4.3a displays a clear tendency in the ascending variance along with LRs,
both in experiments and simulations. This echoes the results we get in Fig. 4.2. That is
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to say, with more leverage allowed in the market, more overall fluctuations appear as
well. This is a negative feature of the leverage, since overall fluctuations (volatility)
is a measure of investing risk in the market.

Why does leverage have this effect on price fluctuations? We think that both the
extent of allowed leverage scale and its regulation are the reasons behind; while
a larger LR leads to bigger orders of investment, it also brings larger possibility of
meeting margin calls at the same time. See Fig. 4.3b and c. From Fig. 4.3b, we can tell
both in experiments and simulations that as the LR rises, margin calls happen more
frequently, which is consistent with the trend in volatility. Since we have different
number of subjects in the two experiments, and the number of agents in simulations
is also quite different from the numbers in the experiments, we show the margin calls
met by each participant here to make the results more comparable. We can see that
the human subjects are more likely to meet margin calls, which is mostly because
their strategies are more aggressive than computer agents. While the per capita times
of margin calls rise (Fig. 4.3b), the relative possibility of margin calls also increases
in a similar pattern; see Fig. 4.3c. Figure 4.3c shows that the probability of meeting
margin calls after using leverage gets bigger when LR is higher. This is because a
bigger LR amplifies the orders of participants, which makes it easier for them to suffer
a relatively bigger loss and meet the margin calls. And when margin calls happen,
the subjects and the agents will all be forced to sell stock shares to return the funds
immediately. These increase unwilling sales, which mostly violate agents’ original
trading strategies and cause the price to fluctuate at an unnatural pace leading to
more fluctuations (i.e., greater volatility). Yet, human subjects have confronted with
margin calls with higher possibility.

Now we can say that our model simulations have provided us with a reasonable
approach to study leverage because of its well-fitted results with our experiments and
other related articles [79, 88, 89]. Also, it helps us to obtain a much more complete
dataset in a more controllable way. So we use the simulation to study more features
of leverage, which must be based on the statistical results of large datasets such as
fat tails.

4.3.2 Fat Tails or Extremely Large Fluctuations

Besides the overall fluctuations discussed above, we also need to study the leverage
effects on fat tails of the price return, where the extremely large fluctuations happen.
This is because all the extreme cases like financial crises take place in the part of tails,
with low probability but high severity. For this purpose, we resort to the kurtosis. It
is known that a higher kurtosis corresponds to fatter tails (and sharper peaks).

Figure 4.4a shows that the kurtosis falls down with the increasing LR, while we
have already shown in Fig. 4.3 that there are actually more fluctuations brought in at
the same time. This seems to be a little surprising, since if leverage is an absolutely
good or bad thing, these two values should follow the same trend. Ideally, we want
both fewer overall fluctuations and fewer extremely large fluctuations in order to
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(a)

(b)

(c)

Fig. 4.3 Results obtained from human experiments (left vertical axis) and agent-based simulations
(right vertical axis) as a function of LRs: a the variance in log returns of a time series of prices,
which corresponds to the overall fluctuations or volatility of the system; b per capita times of margin
calls, namely the total number of margin calls divided by the number of subjects or agents; and c the
possibility of margin calls, which is defined as the ratio between the times margin calls occur and
the times the leverage is triggered. All the stars stand for experimental results of a single round of
human experiment with 60 time steps, and all the solid circles represent simulation results, which
are the average of 100 simulation rounds, each having 10,000 time steps. Adapted from Ref. [86]

have a more stable market. But after we bring higher leverage into the market, more
overall fluctuations have come along with the thinner tails, cutting the possibility
of extreme fluctuations, which is a positive sign for the control over crises in the
markets.

In order to see what exactly happened to form the statistical feature as shown in
Fig. 4.4a, we draw the probability distribution function (PDF) of price returns for
different LRs; see Fig. 4.4b where the PDF is a function of the normalized log return.
To make the curves comparable, especially on the tails, we standardize the returns for
each LR so that they all have the mean of zero and the standard deviation of one. The
standard Gaussian distribution is also added in Fig. 4.4b. Figure 4.4 displays both a
clear pattern of the kurtosis trend (Fig. 4.4a) and a direct view of the change in fat
tails (Fig. 4.4b). It is obvious that higher LRs lead to lower kurtosis, where the tails
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get thinner and move toward the standard Gaussian distribution. So it is clear that
the leverage can be used to control the fat tails.

To explain this behavior of cutting fat tails, we go back to Fig. 4.3b and c where the
change in margin calls is shown as a function of LRs. While the increased unwillingly
sales originating from the leverage cause the price to fluctuate in an unnatural pace,
leading to more fluctuations as we have shown in Fig. 4.3a, the accompanying margin
calls could also confine the scale of losses by poorly performed participants, control
the risk of lending agencies, and lead to a lower possibility of extreme fluctuations
in the price. In other words, to lower the risk of defaults by borrowers, the relatively
generous lending policy is combined with a more strict returning policy, demanding
the borrowers to have a high standard of financial performance.

(a)

(b)

Fig. 4.4 Simulation results for leverage effects on fat tails: a shows the kurtosis as a function of
LRs. b displays the PDF of normalized log returns for different LRs, which is compared with the
standard Gaussian distribution (denoted as “Gaussian” in the figure). Here the “normalized log
return” is defined as “(log return - μ)/σ , where μ (or σ ) is the average value (or standard deviation)
of log returns of a time series of prices. Both a and b are the averaged results of 100 simulation
rounds, each having 10,000 time steps. Adapted from Ref. [86]
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Fig. 4.5 The cumulative percentage of wealth (Y axis) as a function of the cumulative percentage
of subjects (X axis). Compared with Figs. 4.2 and 4.3, L R = 4 is also added herein. Adapted from
Ref. [90]

4.3.3 Wealth Distribution

In Sects. 4.3.1 and 4.3.2, we discussed the overall and extreme fluctuations in the
laboratory market. Since the aim of investors in markets is to pursue profits, we are
now in a position to ask a question: what is the wealth distribution of the subjects
in our laboratory market with leveraged trading? Nowadays, wealth distribution has
always been a heated and vital issue in economics, since it greatly concerns the
happiness and stabilization of populations in different countries. If the wealth or
income gap in a country or region between the rich and the poor is too wide, it
may cause many economic and social troubles. So it has drawn great attention from
not only the academia, but also from governments in various countries. Definitely,
wealth distribution is a very general topic which is determined by many factors.
However, against the background of the recent financial crisis, in which innovative
financial tools have been used frequently to raise leverage, the present laboratory
market allow us to specifically study how wealth distribution is affected by using
leverage for borrowing money.

According to Fig. 4.5, as the L R goes up, wealth distribution becomes more
uneven. In other words, with more leverage allowed in the market, the performance
of different subjects has become more diversified. Why does this feature happen?
More volatility in the price fluctuations has raised risk in the market and helped
in creating more and bigger gaining and losing opportunities for the subjects. So
the subjects with better trading skills could use higher leverage as a weapon for
them to gain more wealth than others while the relatively weaker performers would
suffer bigger losses in a more leveraged environment. As a result, wealth distribution
becomes more uneven.
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Fig. 4.6 The effect of risk preference on the subjects’ wealth in all the experiments. The blue
bar (upper panel) displays the frequency counting numbers of the investment proportion which
lies in the certain range on the X axis. The red line (lower panel) shows the performance score of
a certain subject in a certain experiment, in the scale of 0–100; for each experiment, the highest
wealth amount Wh is treated as 100, and another score of a certain wealth amount Wn is calculated
as 100Wn/Wh . Adapted from Ref. [90]

In fact, besides the reason of higher risk with leverage and different trading skills
of subjects, the subjects’ preference of risk also plays an important role in wealth
distribution. Since in our experiments subjects could choose the investment propor-
tion within 1, 20, 40, 60, 80, and 100 %, it is obvious that when choosing to invest in
a larger percentage, subjects would carry more risk. So subjects who like to invest
in a higher percentage have higher preference for risk. Does this preference show its
effect on wealth distribution? We have calculated the average investment proportion
of each subject in all the five experiments and tried to find the relation between their
risk preference and the final wealth distribution. The results are shown in Figs. 4.6
and 4.7.

From Fig. 4.6, we get an overall view of the relation between risk preference
and wealth distribution in the market. Most choices of investment proportion were
between the range of 20–50 %, which means that most of the subjects were relatively
conservative when making decisions; as a result, most of the high performance scores
also fell in this range. However, the more aggressive subjects who chose a higher pro-
portion mostly did not get a higher score. So we can tell that generally the difference
in risk preference also leads to different wealth performance.

To study this phenomenon clearly, we separately show the subjects’ risk preference
and wealth performance in each round of experiments, as shown in Fig. 4.7. Black
dots are the average investment proportion of each subject in a certain round of
experiments; colorful dots represent the final wealth of each subject in the same
round. We can see that basically two patterns have been formed in the five cases:
for LR = 1 and 3 (Fig. 4.7a and c), the black dots lie in a relatively smaller scale
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(a) (b)

(c)

(e)

(d)

Fig. 4.7 The subjects’ risk preference and wealth amount in each experiment: a L R = 1, b L R = 2,
c L R = 3, d L R = 4, and e L R = 5. The left vertical axis denotes the average investment proportion
of each subject in a certain experiment; the right vertical axis corresponds to the final wealth amount
of the subject. In order to see the relation between risk preferences and final wealth amounts, subject
ID in each experiment is put in the order of growing average investment proportions. Adapted from
Ref. [90]

(from 0 to 0.7), which means no extremely risk-chasing subjects occur in the two
experiments. As a result, the wealth distribution has less relation with risk preference
sequence, distributed more randomly; for LR = 2, 4 and 5 (Fig. 4.7b, d and e), the risk
preference rates have covered the range from 0 to 1, indicating that certain subjects
have operated with the highest risk preference in the experiments (namely always
used the biggest orders they can bid). Meanwhile, the wealth of subjects has basically
declined with the growing investment proportion, leaving very few subjects owning
much wealth while most of the others have poor wealth performance. This is because
the existence of extremely aggressive subjects has helped in increasing the volatility
and unpredictability of the market. So, the diversified risk preference of subjects has
also contributed to the risk in the market. Especially in the environment of leverage
where the population is exposed to higher risk, this effect of diversity is amplified,
including both different trading skills and risk preference of individuals, and then
eventually showing in the form of a more diversified wealth distribution.
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4.4 Conclusions

We have utilized the combination approach of both controlled experiments and agent-
based simulations to study the impact of leverage in a laboratory stock market. Our
results indicate that the leverage of borrowing money has both merits and demerits.
On one hand, this leverage shrinks the fat tails and reduces the value of extremely
large fluctuations in prices, thus decreasing the probability of outbreak of financial
crises. On the other hand, it also leads to higher value of overall fluctuations in the
market, thus increasing the risk of investment in the market. The two-sided effect
originates from the strict regulation of margin calls.

In addition, we have also shown that the leverage could make wealth distribution
more uneven. This result comes from higher risk with leverage, different trading
skills of subjects, and the subjects’ preference of risk.

The content reported in this chapter is of value for people to understand and utilize
the leverage appropriately, and it also sheds light on how to study real stock markets
by conducting controlled laboratory experiments.



Chapter 5
Herd Behavior: Beyond the Known Ruinous
Role

Abstract In order to survive, self-serving agents in various kinds of complex adap-
tive systems (CASs) must compete against others for sharing limited resources with
biased or unbiased distribution by conducting strategic behaviors. This competition
can globally result in the balance of resource allocation. As a result, most of the agents
(say, species) can survive well. However, it is a common belief that the formation of
a herd in a CAS will cause excess volatility, which can ruin the balance of resource
allocation in the CAS. Here this belief is challenged with the results obtained from
a modeled resource-allocation system. Based on this system, we design and conduct
a series of computer-aided controlled human experiments, including herd behav-
ior. We also perform agent-based simulations and theoretical analyses, in order to
confirm the experimental observations and reveal the underlying mechanism. We
report that, as long as the ratio of the two resources for allocation is biased enough,
the formation of a typically sized herd can help the system to reach the balanced state.
This resource ratio also serves as the critical point for a class of phase transition iden-
tified herein, which can be used to discover the role change of herd behavior, from
a ruinous one to a helpful one. This chapter is also of value to some fields, ranging
from management and social science, to ecology and evolution, and to physics.

Keywords Resource-allocation system · Herd behavior · Helpful role · Phase
transition

5.1 Opening Remarks

The preceding chapter discussed some fluctuation phenomena in laboratory stock
markets, namely overall fluctuations and extremely large fluctuations. In reality, the
latter may lead to crises. It is common knowledge that crises always originate from
herd behavior of human beings (see for example Ref. [83]). Clearly, this common
knowledge displays the ruinous role of herd behavior. The aim of the present chapter
is to investigate the different roles of herd behavior.
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Most of the social, ecological, and biological systems that involve a large number
of interacting agents can be seen as complex adaptive systems (CASs), as they are
characterized by a high degree of adaptive capacities to the changing environment.
Their dynamics and collective behaviors have attracted much attention among phys-
ical scientists [91–93]. In order to survive, self-serving agents in these CASs must
compete against others for limited resources with biased or unbiased distribution by
conducting strategic behaviors. This can globally result in balanced or unbalanced
resource allocation. Examples of such phenomena evolve many species like humans.
For instance, drivers select different traffic routes, people bet on horse racing with
odds, and so on. In general, the allocation of the resources in a CAS could reach
a balanced state due to the preferences and decision-making ability of agents, as
revealed by investigating a biasedly distributed resource allocation problem [7]. In
practice, however, it will sometimes fail to reach the balanced state. For this, one
important reason is due to the formation of a herd. In fact, herding extensively exists
in collective behaviors of many species in CASs, including humans. Though human
decisions are basically made according to individual thinking, people tend to pay
heed to what others are doing, emulate successful persons, or those of higher status,
and thus follow the current trend. For example, young girls often copy the clothing
style of famous stars who are named as trendsetters in the fashion world. Similarly,
researchers would rather choose to work on a topic that is currently hot in the scientific
society. As a result, large numbers of people may act in concert, and this unplanned
formation of crowds is called herd behavior [94]. Locally, for an individual agent,
herd behavior may suggest either irrationality [95, 96] or rationality [97–99] with an
implication that herding can ruin the balance of the whole resource-allocation sys-
tem by causing excess volatility. Accordingly, herd behavior is commonly seen as a
tailor-made cause for explaining bubbles and crashes in a CAS with the existence of
extremely high volatility. But is this “common sense” always right? Based on results
of this study, we argue that herd behavior should not be labeled as the killer all the
time. Here, we focus on the effect of herding on the whole CAS for resource alloca-
tion, because it is most important for as many agents (involving humans) as possible
to survive in various kinds of CASs like social, ecological, or biological systems.
As a result, we do not study or consider the details of how to reach a herd through
contagion and/or imitating because our results are not dependent on the process of
herding formation.

5.2 Controlled Experiments

To model realistic huge systems of resource allocation including the effects of
herding, we designed and conducted a series of computer-aided human experiments,
on the basis of the resource-allocation system [1, 4, 7], to study the necessary
conditions for a CAS to reach the ideal balanced state. Using such experimental
settings will allow us to investigate the herd behavior in a well-regulated abstract
system for resource allocation, which reflects the fundamental characteristics of many
CASs [35, 87, 100]. Human subjects of the resource-allocation experiment were
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students recruited from several departments of Fudan University. Before the start of
experiments, a leaflet (as shown in Part I of Supplementary Materials at the end of
this chapter) was provided which explained the configurations of the experiment and
actions of the subjects. There are two rooms (Room 1 and Room 2) and the amount of
resources in these two rooms are M1 and M2 (�M1), respectively. As the experiment
evolves, M1 and M2 are kept fixed and unknown to all the subjects. For each experi-
ment round, each subject has to choose one of the two rooms to enter. Those who go
into the same room should share alike the virtual resource (M1 or M2) in it. Apart
from human subjects, there are also imitating agents joining the experiment. All
the imitating agents are generated by a computer program, since their decisions are
made by mimicking human subjects’ behaviors. In particular, each imitating agent
will randomly select a new group (of size 5) of human subjects at every experiment
round, and then follow the choice of the best subject (who has the highest score) in
the group for the next round. In each round of the experiment, the number of human
subjects and imitating agents in Room 1 is denoted as N1 and the number in Room
2 as N2. Therefore, the total number of human subjects and imitating agents can be
counted as N = N1 + N2. The human subjects or imitating agents who earned more
than the global average (M1 + M2)/N are regarded as winners of the round, and
the room which the winners had entered as the winning room. The total number of
human subjects or imitating agents can also be expressed as N = Nn + Nm . Here,
Nn is the total number of human subjects who make decisions by their own, and
Nm is the total number of imitating agents who do not have their own ideas. The
ratio between imitating agents and human subjects is defined as β = Nm/Nn . More
details about the experiment can be found in Part II of Supplementary Materials.

The resource-allocation experiments are conducted repeatedly with different val-
ues of M1/M2 and β. The modeled system is designed as an open system in which
the number of human subjects Nn is fixed while the number of imitating agents Nm

is increased in an implicit manner. As shown in the previous study [7], the hetero-
geneity of preferences is an indispensable factor for the whole system to reach a
balanced state. Hence the preferences of human subjects need to be checked under
the influence of imitating agents. For a human subject in the experiment, his/her
preference is evaluated as the average rate that he/she chooses to enter Room 1. Pref-
erences of the 44 subjects are plotted in Fig. 5.1 with different M1/M2 s and/or β s.
Figure 5.1a shows the preferences of human subjects when M1/M2 = 1 and the imi-
tating agents are absent. Distinctions among the preferences of human subjects can
be easily identified. For example, the 4th subject is strongly partial to entering Room
2 while the 6th subject prefers Room 1 much more. It can be found in Fig. 5.1b,
c, that the human subjects still have diverse preferences even when M1 becomes
much larger than M2. In addition, the heterogeneity of preferences remains even
for the cases in which Nm(= Nn/2) imitating agents are involved; see Fig. 5.1g–i.
Despite this heterogeneity, the average of subjects’ preferences changes along with
M1/M2. In other words, human subjects have the ability to adapt themselves to fit
the environment.

Comparisons of the distributions of human subjects’ preferences, as the resource
distribution M1/M2 is varied and/or the imitating agents are involved, are shown in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5.1 Data obtained from the human experiment. a–c, g–i Preferences of the 44 subjects in
sequence to Room 1 for the cases a–c without and g–i with imitating agents, β= (a–c) 0 and (g–i)
0.5, for the resource distributions M1/M2 = (a, g) 1, (b, h) 3, and (c, i) 20. Here, “Mean” denotes
the average value of the preferences of the 44 subjects. d–f, j–l Distribution of the 44 subjects’
preferences. Adapted from Ref. [8]

Fig. 5.1d–f, j–l. From Fig. 5.1d, e, one can find that when M1/M2 is not so biased,
human subjects alone can do the analysis of the system so well that they can make
the whole system reach the balanced state. Note that the preference distribution has
a peak at 0.5 in Fig. 5.1d and the subjects’ preferences are mainly distributed around
0.75 in Fig. 5.1e. Both the observations can be deduced from the resource distribution,
M1/M2 = 1 and M1/M2 = 3. When the imitating agents are involved, however, the
two preference distributions have some changes in Fig. 5.1j, k. In particular, the peak
almost disappears in Fig. 5.1j and the mean value of subjects’ preference deviates
from the resource distribution bias in Fig. 5.1k. A possible reason for these changes
can be inferred as that human subjects may get confused by the behavior of imitating
agents. Hence in this case, the herd (which is formed by imitating agents) indeed
disturbs the system and weakens the analyzing ability of human subjects. Things are
different if M1/M2 gets even larger, as shown in Fig. 5.1f, l. Here, the involvement of
imitating agents does not bring much change to the preference distribution of human
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(a) (b) (c)

Fig. 5.2 Experimental results for a efficiency e, b stability σ 2/N , and c predictability w1 of the
modeled resource-allocation system, with human subjects Nn = 50. β = 0 and 0.5 correspond to
imitating agents Nm = 0 and 25, respectively. Each experiment lasts for 30 rounds. Adapted from
Ref. [8]

subjects. One may say that, in this case, herd behavior has no harmful effect on the
analyzing ability of the human subjects. Finally, it is interesting to note from the
same figure that a minority of human subjects with preference to Room 2 can stay
alive even in a highly biased system (M1/M2 � 1) when the imitating agents exist.

To evaluate the performance of the whole system, we have calculated efficiency
(which, herein, only describes the degree of balance of resource allocation), sta-
bility, and predictability of the resource-allocation system. The efficiency of the
whole system can be defined as e = |〈N1〉/〈N2〉 − M1/M2|/(M1/M2). A smaller e
means a higher efficiency in the allocation of resources. The stability of the resource-
allocation system can be described as σ 2/N ≡ 1

2N

∑2
i=1〈(Ni − Ñi )

2〉, where 〈A〉
denotes the average of time series A. This definition describes the fluctuation (volatil-
ity) in the room population away from the balanced state, where the optimal room
populations Ñi = Mi N/

∑
Mi can be realized. The predictability of the system is

measured by the “uniformity” of the winning rates in different rooms. The winning
rate in Room 1 is denoted as w1. It is obvious that if w1 is close to 0.5, choices of
the two rooms are symmetrical and the system is unpredictable. If the winning rate
were too biased, smart subjects should be able to predict the next winning room in
the experiment. As shown in Fig. 5.2, when M1/M2 is small (M1/M2 = 1 or 3),
adding some imitating agents will lower the efficiency and cause large fluctuations.
On the other hand, when M1/M2 gets even larger (M1/M2 = 20), the formation of
herd can improve the efficiency, the stability, and the unpredictability of the resource-
allocation system.

5.3 Agent-Based Modeling

An agent-based model is developed to fully understand the preceding experimental
results. Consider a situation where N agents repeatedly join a resource-allocation
system. Among these agents, there are Nn normal agents (which correspond to human
subjects in the preceding experiments) and Nm imitating agents, so that the total
number of agents can be calculated as N = Nn + Nm . To play in the resource-
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allocation system, each normal agent will take S strategies from the full strategy space
and compose a strategy book. A strategy for the resource-allocation experiment is
typically a choice table which consists of two columns. The left column is for the P
possible situations, and the right column is filled with bits of 0 or 1. Bit 1 is linked to
the choice for the entrance of Room 1, while bit 0 to that of Room 2. In the strategy
book of a normal agent, strategies differ from each other in preference, which is
defined as an integer L (0 ≤ L ≤ P). To model the heterogeneity of preference,
let the normal agent pick up a preference number L first. Then each element of the
strategy’s right column is filled in by 1 with the probability L/P , and by 0 with
the probability (P − L)/P (more detailed explanations can be found in Part III of
Supplementary Materials). The process will be repeated S times, each time with a
randomly chosen L for each normal agent to complete the construction of its strategy
book. From the start of the resource-allocation experiment, each normal agent will
score all the strategies in its strategy book so as to evaluate how successful they are
to predict the winning room. Following the hitherto best performing strategy in their
strategy books, normal agents are enabled to make decision to enter one of the two
rooms, once the current situation is randomly given.1 Imitating agents in the model
behave in a different way during the process of decision-making. Before each round
of the play starts, each imitating agent will randomly select a group of k (1 ≤ k ≤ Nn)
normal agents.2 Within this group, the imitating agent will find the normal agent who
has the best performance so far and imitate its behavior in the following experiment
round. It is assumed that the imitating agents know neither the historical record of
the winning room nor the details of strategy books of other group members. The
only information for them to access is the performance of the normal agents, that is,
the virtual money that these normal agents have earned from the beginning of the
experiment. If the number of imitating agents Nm kept increasing, there would be
more and more positive correlations among agents’ decisions, which would trigger
the formation of a herd in the system.

5.4 Simulation Results

Agent-based simulations are carried out in an open system condition, in reference to
the experiments. (Please refer to Part IV of Supplementary Materials to see the results
for a closed system.) Following the analysis of experimental results, we first inves-
tigate the simulation results for the preferences of normal agents. Clearly, Fig. 5.3
shows distributions of the preferences similar to those shown in Fig. 5.1. The qual-
itative agreement indicates that our agent-based modeling has taken into account

1 Here the situation is not the history of winning rooms. Broadly speaking, it can be explained as a
mixture of endogenous and exogenous system information. Results obtained with the real history
bit strings have no essential difference with the current study, though the use of random information
makes the theoretical analysis easier.
2 This corresponds to the case of primary imitators. In fact, in the real system, there might exist
multilevel imitations where some imitators can copy other imitators’ behavior. Similar conclusions
could be achieved.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5.3 Simulation results obtained from the agent-based simulations. a–c, g–i Preferences of the
50 normal agents to Room 1 for the cases a–c without (β = 0) and g–i with (β = 0.5) imitating
agents, and for the resource distributions M1/M2 =(a, g) 1, (b, h) 3, and (c, i) 20. We have run
the simulations for 200 times, each over 400 time steps (first half for equilibration, the remaining
half for statistics). a–c, g–i are typical results of one of the 200 runs. In a–c, g–i, “Mean” denotes
the mean value of the preferences of the 50 normal agents. d–f, j–l Distribution of the 50 normal
agents’ preferences. Note that d–f, j–l are obtained from the average over the 200 runs, and also
the “Mean” in d–f, j–l denotes this average. Simulation parameters: S = 4, P = 16, and Nn = 50.
Adapted from Ref. [8]

the heterogeneity of preferences with reasonable modeling of the decision-making
process for the human subjects. (We had also investigated the preferences of nor-
mal agents in an alternative way by analyzing the Shannon information entropy; see
Part V of Supplementary Materials.) Next, efficiency, stability, and predictability
of the whole modeled system are calculated according to the definitions made in
the experimental study. The change in system behavior along with the variation of
the resource ratio M1/M2 is shown in Fig. 5.4. Differently colored symbols in the
figure represent results obtained under different values of β. As shown in Fig. 5.4a,
when the resource distribution is comparable (M1/M2 ≈ 1), the averaged population
ratio 〈N1〉/〈N2〉 can always be in concert with M1/M2 no matter imitating agents
are involved or not. On the other hand, as the resource distribution gets more and
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(a)

(b)

(c)

(d)

Fig. 5.4 a 〈N1〉/〈N2〉, b e, c σ 2/N , and d w1 as a function of M1/M2, for an open system in
the agent-based simulations. Parameters: Nn = 50, S = 4, P = 16, k = 5, and β = 0, 0.5, 1.0, and
2.0. For each parameter set, simulations are run 200 times, each over 400 time steps (first half for
equilibration, the remaining half for statistics). In a, “slope = 1” denotes the straight line with slope
being 1. Adapted from Ref. [8]

more biased (M1/M2 increases), surprisingly the whole system tends to reach the
balanced state only if more imitating agents (larger β) join the system. Figure 5.4b
shows the change in efficiency of the resource-allocation system. The tendency is that
when the resource ratio gets more biased, a larger size of herd is needed to realize a
higher efficiency of the resource distribution. From both the subfigures, the so-called
“M1/M2 phase transition” [7], where M1/M2 plays the role of control parameter,
can also be identified. As shown in Fig. 5.4c, the increase of the number of imitating
agents will cause larger fluctuations in the low M1/M2 region. However, as M1/M2
increases, more imitating agents can yield higher stability of the resource-allocation
systems. Comparing system behaviors for the cases of β = 0 and β �= 0, the M1/M2
phase transition also indicates the change of role for the herd behavior, namely from
a ruinous herd into a helpful herd. It is clear that the critical point of the M1/M2
phase transitions get larger when the number of imitating agents increases. Denoted
as (M1/M2)c hereafter, the critical point refers to the M1/M2 value where the min-
imum is achieved. This definition together with the mechanism for the increase of
(M1/M2)c will be further discussed in the theoretical analysis of the model. Finally,
the effect of herd behavior on the predictability of the resource-allocation system
is shown in Fig. 5.4d. When more imitating agents are introduced to the system for
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large M1/M2, the prediction of the next winning room becomes more difficult as
winning rates for the two rooms are more symmetric. Notice that the system behavior
under various conditions found herein by the agent-based simulations echoes with
the observations in the experiment.

We summarize the simulation results here and make some more comments to
emphasize the significance of findings in our study. The performance of the resource-
allocation system consisting of normal agents or human subjects with the full
decision-making ability is, in some cases, inferior to those including imitating agents
(who form the herd). This might seem questionable at first sight. In particular, it may
be argued that the failure to reach the balanced resource allocation for large M1/M2
when β = 0 is only due to the relatively small population of the normal agents.
However, it has been proved in the theoretical analysis (see the equation for the pop-
ulation in the next section or Eq. (5.5) in Part III of Supplementary Materials) and
the agent-based simulation of resource-allocation systems [7] that the total number
of agents is indeed not a key factor. When the resource distribution is not biased so
much, the normal agents can play pretty well so that the resource-allocation system
behaves in a healthy manner (efficient or balanced, stable, and unpredictable). In
such situations, adding imitating agents will only bring about a “crowded system” in
which larger fluctuations (volatility) turn up. In this respect, our study shares some
common features with the Binary-Agent-Resource model [101, 102]. In particular,
the “crowd effect” has been observed in these models and the inclusion of imitat-
ing agents in our model can be explained as a special kind of networking effects.
Only if the resource distribution becomes so biased that most normal agents cannot
completely solve the decision-making problem by referencing their strategy books,
adding the imitating agents could become a helpful factor in consuming the remained
arbitrage opportunities in the system. This explains the reason why the herd behav-
ior in the resource-allocation system can effectively help the system to realize the
balanced state and reduce instability and predictability in the mean time.

5.5 Theoretical Analysis

To further understand the underlying mechanism for these phenomena, we also con-
duct theoretical analysis by deriving the critical points (M1/M2)c for the M1/M2
phase transition identified in the agent-based simulations. (For details of derivation,
refer to Part III of Supplementary Materials.) As a result of the theoretical analysis,
the maximum of population ratio in Room 1 〈R1(= N1/N )〉max can be obtained
under the condition M1 ≥ M2. It reads as the following (the meaning of the symbols
can also be found in Part III of Supplementary Materials),

〈R1〉max = 1 − 1

(β + 1)P

P
∑

L̃=1

⎡

⎣

(

L̃

P + 1

)s

+ β

(

L̃

P + 1

)ks
⎤

⎦ ,
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Fig. 5.5 Critical points of the M1/M2 phase transition, (M1/M2)c, varying with different popu-
lation ratios β: simulation results (symbols) versus theoretical results (line). The simulation results
are obtained from the data in Fig. 5.4a, c. Adapted from Ref. [8]

where L̃ stands for the preference of a normal agent’s strategy. If 〈R1〉max =
M1/(M1 + M2), the system can fluctuate around the balanced state. Otherwise,
the system can never reach the balanced state. Then some insightful comments can
be added:

• The state of the resource-allocation system depends only on M1/M2, β, k, P , and
S. It has no concern with Nn or Nm .

• An optimized value of β may be calculated by setting 〈R1〉max = M1/(M1 + M2),
which could make the system more stable. After substituting this expression into
the equation for 〈R1〉max , we can obtain numerical solutions for the critical points
(M1/M2)c of the phase transitions. Figure 5.5 shows a good agreement between
the simulation results and those of theoretical derivation for the critical points.

• It is easy to prove that ∂〈R1〉max/∂β > 0, which means that β and 〈R1〉max are
positively related. When β → ∞, the population ratio will converge to 〈R1〉max →
1− 1

P

∑P
L̃=1

( L̃
P+1 )ks . At this limit, the model suggested here will be equivalent to

the original resource-allocation model without the imitating agents [102], except
that in this case, each agent would occupy kS (instead of S) strategies.

5.6 Discussion and Conclusions

We have revealed that, if the bias between the two resources M1/M2 was large and
is unknown to the subjects/agents, a herd of a typical size could help the overall
system to reach the optimal state, namely the state with minimal fluctuation, high
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efficiency, and relatively low predictability. The corresponding ratio between the two
resources also works as the critical point of a class of M1/M2 phase transition. The
phase transition can be used to discover the role change of herd behavior, namely
from a ruinous herd to a helpful herd as the resources distribution gets more and
more biased. The main reason for this generalization could be understood as follows.
When a large bias exists in the distribution of resource, the richer room will offer more
arbitrage opportunities so that it deserves to be chosen without too much deliberation.
Since imitating agents learn from the local best human subject or normal agent, the
herd formed by these agents will certainly be more oriented to the richer room.
To balance a highly biased resource distribution, in fact, it correspondingly needs a
suitable number of participants who have a highly biased orientation in their choices.
But every coin has two sides. Normal agents will be confused if too many imitating
agents are involved. Because in that case, they have to estimate not only the unknown
system but also the behavior of the herd. The effect of herd behavior would become
negative again under these situations. We emphasize that these arguments are quite
general. In particular they are independent of the process of herding. In Part VI of
Supplementary Materials, results of a different agent-based model, in which imitating
agents follow the majority of the linked group, rather than the best normal agent, are
shown. Similar results are achieved indeed.

This chapter is also expected to be important to some fields, ranging from man-
agement and social science, to ecology and evolution, and to physics. In management
and social science, administrators should not only conduct risk management after the
formation of herd, but also need to consider system environment and timing to see
whether the herd is globally helpful or not. In ecology and evolution, it is not only
necessary to study the mechanism of herd formation as usual, but also to pay more
attention to the effect of herding on the whole ecological system and/or evolution
groups. For physics, this chapter not only presents the existence of phase transition
in such a CAS, but also proposes a new equilibrium theory. Namely, in the presence
of symmetry breaking, a CAS is likely to reach the equilibrium state only through
cluster performance after the elements that construct the system form typically sized
clusters.

5.7 Supplementary Materials

5.7.1 Part I: Leaflet to the Human Experiments

There are totally 50 subjects doing the experiments together. The experiment situation
is the same for everyone. Once the experiments begin, any kind of communication
is not allowed.

Together with other subjects, you shall engage in a resource-allocation experiment.
For the experiment, there are two virtual rooms (Room 1 and Room 2), and the
amounts of virtual money in the two rooms are M1 and M2, respectively. The value
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M1/M2

Time for making decision s

a

t

Time remained: 60 seconds

(a) (b)

Fig. 5.6 The desktops of the experiment-control computer program used in the computer-aided
human experiments: The control panel a for the coordinator and b for the human subjects. Adapted
from the Supplementary Materials of Ref. [8]

of M1/M2 is fixed in one experiment, but is not announced. In each round, you have
to choose to enter one of the two rooms, to share alike the virtual money inside the
room. After everyone has made a decision, those who earned more than the global
average are regarded as winners of the round, and the room which the winners had
entered as the winning room.

After you log in, you will see the choosing panel on the computer screen (as shown
in Fig. 5.6b), buttons with numbers of 1 and 2 are used to choose Room 1 and Room 2.
The left of the panel displays your current score (a) and the current experiment round
(t). During the experiment, 60 s were given for making choice. If you could not decide
your choice within 60 s, the experiment-control computer program would assign you
a random choice with probability 50 %. Nevertheless, the subject who borrowed the
computer’s choice twice would be automatically kicked out of the experiment. In
each round of the experiment, the experiment-control computer program will update
the score for each subject after all the subjects have made their choices. If your score
is added 1 point, it means that the room you have chosen happened to be the winning
room. If the score keeps unchanged, it may have two possible interpretations: either
the other room won or neither of the rooms won (i.e., the experiment ended in a
draw).

The initial capital of each subject is 0 point and the total payoff of a subject
is the accumulated scores (points) of all the experiment rounds. At the end of the
experiments, as a premium, this payoff (points) will be converted to the monetary
payoff in Chinese Yuan with a fixed exchange rate 1:1 (namely, one point equals to
one Chinese Yuan). Try to win more points, and then you can get more premium.
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5.7.2 Part II: About the Computer-Aided Human Experiment

All the experiments are carried out in an online manner. Human subjects can get the
necessary information only from their computer terminals. The desktop designs of
the experiment-control computer program are shown in Fig. 5.6. The control panel for
the experiment coordinator is configurated as panel (a), and that for human subjects
as panel (b). At the beginning of the experiment, the coordinator input the value of
M1/M2 and β, and set the time length (60 ) for the human subjects to make their
decisions. When all the human subjects have logged in, the coordinator can click
the “start” button to start the experiment. After all the subjects have made their
choices, the coordinator clicks the “reset” button to end the current round and set
anew. On panel (b), buttons with numbers of 1 and 2 are used to choose Room 1
and Room 2. The left of the panel displays the current score (a) of the subject and
the current experiment round (t). To keep every subject conducting the experiment
independently, procedures and rules of the experiment are designed carefully so that
possible direct or indirect communications can be shut off. For example, subjects can
only make their own choices by clicking the button instead of raising their hands.
This could make sure that subjects cannot get information from sounds, expressions,
or gestures of the others. There is also no need for the experiment coordinator to
announce the result of winning room. Participants can only deduce the winning
room from the change of their scores on the desktop panels. In addition, no human
subjects had been kicked off during the experiments. For all the experiments with
M1/M2 = 1, 3, and 20, the total number of human subjects was kept to be 50. Among
those, 44 human subjects played through all the three experiment sessions. On the
other hand, we had member changes for the remaining six subjects.

5.7.3 Part III: The CAS—Theoretical Analysis of the Agent-Based
Modeling

Besides the simulations performed in the main text for the agent-based modeling,
here we present some theoretical analysis for the same open system. It is reasonable
to assume that, if P is not too small, the right column of a strategy filled in by 1
with probability L/P is equal to the one filled in by 1 with the number of L . Hence
strategies with the same preference number L can be regarded as the same. It is
worth noting that if the situations vary in a random manner, the probability is L/P
for a normal agent to choose Room 1 using a strategy with preference number L .
Next, we assume that the preference number of the best strategy held by normal
agent i at time T , is Li . Denote the choice of room as xi so that xi = 1 if Room 1
is chosen and xi = 0 otherwise. At the same time, let imitating agent j choose to
follow the normal agent μ, the best agent (who has the highest score) in the group
of size k (1 ≤ k ≤ Nn). For the imitating agent, its choice of room is y j = xμ, and
its preference number becomes L j = Lμ. With these definitions, the total number
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of agents in Room 1 at time T can be written as

N1 =
Nn∑

i=1

xi +
Nm∑

i=1

y j , (5.1)

It is obvious that 〈xi 〉 = Li/P , which can be used to respectively derive the expec-
tation and the variance of the population in Room 1 as

〈N1〉 = 1

P

( Nn∑

i=1

Li +
Nm∑

i=1

L j

)

, (5.2)

σ 2
N1

=
Nn∑

i=1

σ 2
xi

+
Nm∑

j=1

σ 2
y j

+
Nn∑

i=1

Nm∑

j=1

(〈xiy j 〉 − 〈xi 〉〈y j 〉)

+
Nm∑

p,q=1,p �=q

(〈ypyq〉 − 〈yp〉〈yq〉). (5.3)

Owing to the specific method for the construction of strategies in the resource-
allocation model, the covariance between the choices of different normal agents
can be neglected. On the right-hand side of Eq. (5.3), the third item is the correla-
tion between choices of the normal agents and those of the imitating agents who
followed them. The fourth item is the correlation between the choices of different
imitating agents who followed the same normal agent. Both terms should always be
positive, which means that adding the imitating agents could cause large fluctuations
(volatility) in the resource-allocation system. It should be emphasized here that the
stability defined in the main text is different from the traditional definition of vari-
ance. The former characterizes both the deviation and the fluctuation to the idealized
room population in the balanced state, while the latter only represents the fluctuation
to the mean value of the time series. When the resource distribution is comparable
(M1/M2 ≈ 1), since normal agents are able to produce the idealized population
or 〈N1〉/〈N2〉 ≈ M1/M2, these two kinds of definitions are approximately equal.
This explains why the stability can be destroyed when imitating agents are involved
in situations with a nearly unbiased resource distribution. However, when the sys-
tem environment becomes difficult for the normal agents to adapt to, the difference
between the “variance” and the “stability” cannot be neglected. If no imitating agents
are involved, the normal agents alone cannot make the system reach the balanced
state. In that case, even if the fluctuation of N1/N2 to its average value could be
made small, the deviation to the idealized population ratio can still be very large.
This would make the system suffer from higher dissipation. If an appropriate portion
of imitating agents is added, the deviation of N1/N2 to the idealized room population
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diminishes, leaving only some fluctuations around M1/M2, which could result in a
reduction of waste in the resource allocation.

Then, we study the performance of different strategies (namely, strategies with
different preference numbers). We also consider the condition of M1/M2 ≥ 1, as
used in the main text. Assume that at time T , the winning rate of Room 1 is α(T ).
The expectation of the increment of score for the strategy with the preference number
L should be 1 − L

P + ( 2L
P − 1)α(T ). Then the expectation of the cumulative score

for this strategy from t = 1 to t = T can be expressed as

f (L , T ) =
(

1 − L

P

)

T +
(

2L

P
− 1

) T
∑

t=1

α(t),

From this expression, we can calculate the dependence of the cumulative score on
the preference number as

� f

�L
= 2

P

T
∑

t=1

[α(t) − 0.5]. (5.4)

It is easy to derive from Eq. (5.3) that if
∑T

t=1[α(t) − 0.5] > 0, f should be a
monotonically increasing function with L . Now we assume that [α(T ) − 0.5] is
always positive, which is not a too stringent condition as long as M1 is large enough.
As the experiment evolves under this assumption, the gap among different strategies
of different preference numbers will become larger and larger. Eventually, the best
performed strategy owned by a normal agent would be the one with the largest L
in its strategy book. As a consequence, imitating agents will choose to follow those
who own the strategy with the largest preference number Lmax. From Eq. (5.1), it is
obvious that 〈N1〉 will also reach its maximum value 〈N1〉max, when both Li and L j

reach their maximum values. With this maximum value of the expected population
in Room 1, we can propose the following two conditions:

• If 〈N1〉max < M1
M1+M2

N , the system can never reach the balanced state.

• If 〈N1〉max > M1
M1+M2

N , the system can fluctuate around the balanced state.

Denoting the population ratio 〈R1〉 = 〈N1〉/N , we need to calculate 〈R1〉max =
〈N1〉max/N , to evaluate the conditions above. As the normal agents construct their
strategies in a random way, a strategy with an arbitrary preference number may be
picked up with a uniform probability 1/(P + 1). Thus, among the S strategies of a

normal agent, the probability to have Lmax = L̃ is p(L̃) = ( L̃+1
P+1 )S − ( L̃

P+1 )S . Since
an imitating agent would choose the best normal agent among the k group members,

the probability to have (Lmax)ks = L̃ should be p′(L̃) = ( L̃+1
P+1 )kS − ( L̃

P+1 )kS . With
these probabilities, we obtain the population ratio as
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(a)

(b)

(c)

(d)

Fig. 5.7 a 〈N1〉/〈N2〉, b e, c σ 2/N , and d w1 as a function of M1/M2, for a closed system.
Parameters: N = 150, S = 4, P = 16, k = 5, and β = 0, 2.0, 4.0, and 9.0. Simulations are run
200 times, each over 400 time steps (first half for equilibration, the remaining half for statistics).
In a, “slope = 1” denotes the straight line with slope being 1. Adapted from the supplementary
materials of Ref. [8]
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5.7.4 Part IV: A Closed CAS—Simulations Based on Agent-Based
Modeling

For the opensystem discussed in the main text, if there are too many imitating agents
in the resource-allocation system, it may still become a disturbing factor to the
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(a) (b)

Fig. 5.8 The change in a the averaged information entropy (SI ) for all the agents including the
normal agents and imitating agents and b the averaged information content for the normal agents
(In) and imitating agents (Im ), respectively. Simulations are run 200 times, each over 400 time steps
(first half for equilibration, the remaining half for statistics). Parameters: Nn = 50, S = 4, P = 16,
and k = 5. Adapted from the supplementary materials of Ref. [8]

system. For completeness of the study, here we consider a closed system in which
the number of normal and imitating agents is fixed at N = 150 with the parameter β

being varied. As shown in Fig. 5.7, in the larger M1/M2 region, situations with the
imitating agents (β = 2.0 and 4.0) are generally better than those without imitating
agents (β = 0), similar to cases of the open system. Meanwhile, there clearly exists
an optimized β(= 4.0 in the current case) with which the best state of the closed
system can be realized in the aspects of the efficiency (which, herein, only describes
the degree of balance of resource allocation in the model system) and the stability.
When β = 9.0, the system seems to be disturbed by the imitating agents and the
performance (except the system unpredictability) becomes even worse than the case
of β = 2.0. The reason for this phenomenon may be explained as follows. If too
many imitating agents join the system, even the best normal agents may be confused.
Typically, they might have wrong estimations about the system situation and then
make incorrect decisions. When their decisions are learnt by the imitating agents,
the herd will over-consume the arbitraging opportunities in the system as a result
of the distribution of biased resources, thus yielding a less efficient (or equivalently
balanced) and less stable but still unpredictable state.

5.7.5 Part V: An Alternative Approach to Analyzing Preferences
of Normal Agents and Imitating Agents in the Agent-Based
Modeling: Analysis of the Shannon Information Entropy

To study the agents’ preferences and their estimation of the system, the Shannon infor-
mation entropy [41, 103] may be introduced to our agent-based modeling. The infor-
mation entropy SI of a discrete random variable X with possible values {x1, ..., xn} is
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Fig. 5.9 a 〈N1〉/〈N2〉, b e, c σ 2/N , and d w1 as a function of M1/M2, for an open system.
Parameters: Nn = 50, P = 16, S = 4, k = 5, and β = 0, 0.5, 1.0, and 2.0. The imitating agents
follow the majority of their local groups. Simulations are run 200 times, each over 400 time steps
(first half for equilibration, the remaining half for statistics). In a, “slope = 1” denotes the straight
line with slope being 1. Adapted from the supplementary materials of Ref. [8]

defined as SI (X) = −∑n
i=1 P(xi ) ln P(xi ), in which P(xi ) denotes the probability

mass function of xi . In the agent-based model, the information entropy for a normal
agent is SI i = − Li

P ln Li
P − P−Li

p ln P−Li
P , where Li stands for the preference of the

current strategy. If the normal agent chooses two rooms with equal probability, this
information entropy would reach the maximum value of ln 2. On the other hand, the
information entropy SI j for imitating agent j will be the same as that of the normal
agent he/she follows in the local group. Thus the average information entropy of all
the agents (i.e., normal agents and imitating agents) can be calculated as

SI = 1

N

⎛

⎝

Nn∑

i=1

SI i +
Nm∑

j=1

SI j

⎞

⎠ ,

and the results are shown in Fig. 5.8a. As the average information entropy decreases
as M1/M2 becomes larger, a clear-cut average preference of agents emerges as the
distribution of resources gets more biased. This agrees with the analysis of subjects’
preferences in the human experiments; see Fig. 5.1. Furthermore, the information
content of agent i can be defined as Ii = (ln 2 − SI i )/ ln 2. Note that a larger Ii
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(a) (b)

(d)(c)

Fig. 5.10 a 〈N1〉/〈N2〉, b e, c σ 2/N , and d w1 as a function of M1/M2, for a closed system.
Parameters: N = 150, P = 16, S = 4, k = 5, and β = 0, 2.0, 4.0, and 9.0. Others are the same as
those in Fig. 5.8. Adapted from the supplementary materials of Ref. [8]

indicates that the agent has more confidence in a certain room. The average infor-
mation content for all the normal agents (In) and imitating agents (Im) are shown in
Fig. 5.8b. In this figure, In decreases with the increase of the population of imitating
agents when M1/M2 is small. This means that normal agents can be confused by
the actions of imitating agents in a rather uniform distribution of the resource. When
M1/M2 gets larger, In is nearly a constant implying that imitating agents will no
longer affect the estimation of the normal agents. All these go well with the analysis
of the experimental results in Fig. 5.1. The averaged information content of imitating
agents has a rather drastic change as the environment varies. When M1/M2 = 1,
Im is pretty low, even lower than that of the normal agents, a fact indicating that
imitating agents have almost unbiased preferences when the resource distribution is
uniform. As M1/M2 increases, imitating agents are apt to flood into a specific room
and thus form the herd in the modeled system.
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5.7.6 Part VI: A Different Agent-Based Modeling in Which
Imitating Agents Follow the Majority, Rather than the Best
Agent: An Open CAS Versus a Closed One

To make our result more general, a different modeling is studied. Following the
most successful person is often seen in daily life, and there is another common case
following the majority. For example, people often decide which store or restaurant to
patronize on the basis of how popular they are. In this sense, we make some changes
to our agent-based modeling adopted in the main text. Their main structures are
similar, but the difference between them is that the “imitating agent” now follows
the majority decision of his/her group (namely the current imitating agents act as
local majority followers). This means if more than half of the group members choose
Room 1, he/she will enter Room 1 accordingly.

As shown in Figs. 5.9 and 5.10, the system behaviors are similar as those of
“imitating the best.” The main difference between Figs. 5.4 and 5.9 lies in Fig. 5.9c.
When M1/M2 is small, adding imitating agents (local majority followers) will cause
relatively larger fluctuations. From Fig. 5.10, we can find that in the closed system
of “following the majority”, there also exists a proper β for one certain system
environment M1/M2. Compared with Figs. 5.7 and 5.10 shows that “following the
majority” works not that well as “following the best” and this is easy to understand.
The best normal agent owns the best strategy and is usually much more sensitive
than common ones, while the majority reflects the average level of all the normal
agents in the group. Although quantitatively different, the main conclusions arising
from the two kinds of “following” are similar. Thus, the mechanism on how to form
the herd is not an essential problem, and both “imitating the best” and “following
the majority” can lead to similar conclusions.



Chapter 6
Contrarian Behavior: Beyond the Known
Helpful Role

Abstract Similar to herd behavior discussed in Chap. 5, contrarian behavior is also
a kind of self-organization in complex adaptive systems (CASs). Here we report the
existence of a transition point in a model resource-allocation CAS with contrarian
behavior by using human experiments, computer simulations, and theoretical analy-
sis. The resource ratio and system predictability serve as the tuning parameter and
order parameter, respectively. The transition point helps to reveal the positive or neg-
ative role of contrarian behavior. This finding is in contrast to the common belief that
contrarian behavior always has a positive role in resource allocation, say, stabilizing
resource allocation by shrinking the redundancy or the lack of resources. It is further
shown that resource allocation can be optimized at the transition point by adding an
appropriate size of contrarians. This chapter is also expected to be of value to some
other fields ranging from management and social science to ecology and evolution.

Keywords Resource-allocation system ·Contrarian behavior ·Ruinous role ·Phase
transition

6.1 Opening Remarks

In the preceding chapter, we studied the role of herd behavior. Here “herd behavior”
means following the majority. In this chapter, we want to raise and answer a connected
question: what if one follows the minority, instead of the majority? Following the
minority actually corresponds to contrarian behavior, an inverse behavior of herd.

For engaging in competitions for sharing resources, agents in complex adaptive
systems (CASs) often utilize various kinds of strategic behaviors, one of which is
contrarian behavior. Contrarian behavior means figuring out what the herd is doing,
and doing the opposite [104]. Contrarian behavior can be regarded as a kind of self-
organization, which is one of the characteristics that distinguish CASs [105] from
other types of complex systems. To dig out the nature of contrarian behavior is also
of practical importance when one faces relevant problems of resource allocation,
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such as risk evaluation and crisis management. Thus, contrarian behavior has been
an active subject of study in various fields like finance/economics [106], complexity
science [107], and social science [108–111]. In the social field, previous contrarian
studies using Galam model of two state opinion dynamics [108–110] aimed at the
effect of contrarian choices on the dynamics of opinion forming, which shed sig-
nificant light on hung elections. In this chapter, we designed to study the effect of
contrarian behavior on social resource allocation. It is a common belief that contrar-
ian behavior always stabilizes resource allocation by shrinking the redundancy or
the lack of resources (positive role). However, is this common belief true? Here we
specially raise this question because unbiased or biased distributions of resources
are everywhere in Nature where contrarians are often needed. In other words, to
comply with the real world, we need to investigate the role of contrarian behavior as
the environment (which here is defined by the ratio between two resources, namely
resource ratio) varies.

The above-mentioned CASs involving competitions of agents for various kinds
of resources can be modeled as a typical class of artificial Well-Regulated Market-
Directed resource-allocation systems (simply denoted as “resource-allocation sys-
tems” in the following) [7, 8], as an extension of the original minority game [1].
Such resource-allocation systems can reflect some fundamental characteristics of
the above CASs in the real world [1, 7, 8, 20, 31], such as a resource-allocation
balance emerged as a result of system efficiency [7, 8]. Thus, without loss of gener-
ality, we shall investigate the role of microscopic agents’ contrarian behavior in the
macroscopic properties of the resource-allocation system. In the process, we identify
a class of transition points which help to distinguish the positive role (stabilizing, etc.)
and the negative role (unstabilizing, etc.) of contrarian behavior for an unbiased/a
weakly biased and a strongly biased distribution of resources, respectively. Compar-
ing with the contrarian study of Galam [108], which also shows the transition point
at a critical value of the contrarian proportion to identify opinion group forming, here
the transition points in this chapter helps to reveal that the allocation of resources
can be optimized at the transition point by adding an appropriate size of contrarians
which is observed in human experiments. To proceed, based on the Extensively-
Adopted approaches of both statistical analysis [14, 112–114] and Agent-Based
modelling [1, 7, 8, 12, 20, 115], we resort to three complementary tools: human
experiments (producing data for statistical analysis), Heterogeneous-Agent-Based
computer simulations (of Agent-Based modeling), and Statistical-Mechanics-Based
theoretical analysis (of Agent-Based modeling).

6.2 Controlled Experiments

We designed and conducted a series of computer-aided human experiments on the
basis of the resource-allocation system [1, 7, 8, 20, 31]. As revealed in [7, 8] the sys-
tem can reach macroscopic dynamic balance that corresponds to the most stable state
where the resources are allocated most efficiently and the total utilities of the system
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are maximal due to the absence of macroscopic arbitrage opportunities. Here we add a
proportion of contrarians to observe how contrarian behavior affects the macroscopic
properties of the resource-allocation system. For the experiments we recruited 171
subjects, all of which are students and teachers from several departments of Fudan
University. The experiments were conducted in a big computer laboratory and each
subject had a computer to work with. All the subjects were given a leaflet interpret-
ing how the experiment would be performed before the experiment started. In the
computer-aided online experiment, there are two virtual rooms: Room 1 and Room
2. Each room owns a certain amount of resources marked as M1 or M2 accordingly.
The subjects do not know the exact resource ratio, M1/M2, at every experimental
round. In the experiment, no kind of communication is allowed, and every subject
chooses to enter Room 1 or Room 2 independently to share the resources in it.
Meanwhile, the computer program secretly adds contrarians into the system whose
behaviors are controlled by the following settings. In every round of the experiment,
each contrarian randomly chooses five subjects as his/her group. Then the contrarian
will choose to enter the less-entered room according to the group. For example, if
most of the subjects in a contrarian’s group choose to enter Room 1, the contrarian
will choose to enter Room 2. The total number of subjects and contrarians entering
Room 1 and Room 2 are denoted as N1 and N2, respectively. After every experi-
mental round, if M1/N1 > M2/N2, we say Room 1 (or Room 2) is the winning
(or losing) room, because the subjects and contrarians entering Room 1 obtain more
resources per capita, and vice versa. The subjects in the winning room are granted
10 scores, and those in the losing room are given zero score. The final rewards are
based on the scores each subject obtains in all the experimental rounds according to
the exchange rate: 10 scores = 1 Chinese Renminbi. Besides, we pay every subject
30 Chinese Renminbi as attendance fee, and reward the top 10 subjects (having the
highest scores) each with extra 100 Chinese Renminbi. The details are explained in
Supplementary Materials at the end of this chapter.

In the experiment, we adjusted two parameters: one, resource ratio M1/M2 and,
next, the ratio between the number of contrarians and subjects, βc. 30 experimental
rounds were repeated under each parameter set: M1/M2 and βc. Let us denote the
number of subjects as Nn and the number of contrarians as Nc , thus yielding βc =
Nc/Nn . In addition, the total number of all the subjects and contrarians is N =
Nn + Nc = N1 + N2.

The experiment was conducted in two successive days: 88 subjects on the first
day and 83 on the second day. The different numbers or different subjects show
no influence on the results of the experiment. The experimental results are shown in
Fig. 6.1 where 〈N1〉/〈N2〉 is plotted as a function of M1/M2. When the distribution of
resources is weakly biased up to M1/M2 = 3, the experimental results of 〈N1〉/〈N2〉
are approximately located on the line with slope = 1 for the three values of βc.
In such cases, the system reaches dynamic balance at which the total utilities of the
system are maximal due to the elimination of the macroscopic arbitrage opportunities.
Nevertheless, for the strongly biased resource ratio, say M1/M2 = 10, the balance is
broken as shown by the three experimental values that deviate far from the “slope= 1”
line. In other words, as the resource ratio is unbiased or weakly biased, adding a
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Fig. 6.1 Population ratio, 〈N1〉/〈N2〉, as a function of resource ratio, M1/M2. The line with
“slope = 1” indicates the balance state where 〈N1〉/〈N2〉 = M1/M2. Each experiment lasts for 30
rounds (the first six rounds for equilibration and the last 24 rounds for statistics). Simulations are run
for 400 time steps (the last 200 time steps for statistics and the first 200 time steps for equilibration).
In a, the number of normal agents in simulations is 100. In b, the numbers of normal agents are
respectively 1,000, 83, and 88. 〈· · · 〉 denotes the average over the last 24 rounds for the experiment
or the last 200 time steps for the simulations. The three experimental data at M1/M2 = 1 are
overlapped. Parameters for the simulations: S = 8 and P = 64. Adapted from Ref. [9]

small proportion of contrarians does not hurt the system balance. In contrast, as the
resource ratio is biased enough, the contrarians of the same proportion break the
balance instead.

Then, we analyze the experimental results from both individual and overall aspects
of preference. As we know, different individuals have different preferences to a
resource, which reflects the heterogeneity of preferences. The heterogeneity has
remarkable influence on achieving balance in the system. Here, the preference of
each subject is defined as his/her average rate of entering Room 1 in the 30 rounds
of experiments. The statistical results are shown in Fig. 6.2. Figure 6.2a shows the
result for M1/M2 = 1 and βc = 0. The preferences of the subjects are different in
spite of the unbiased distribution of the two resources, M1/M2 = 1. We see that the
third subject preferred Room 1 while the second subject preferred Room 2. Such
heterogeneity of preferences remains after introducing contrarians in Fig. 6.2b–c. As
for the larger resource ratios in Fig. 6.2d–f and g–i, the subjects still have different
preferences. However, the average preference of all the subjects varies with M1/M2,
which illustrates the environmental adaptability of the subjects.

Next, in order to clearly observe the influence of contrarians on the macroscopic
system, we calculated the stability of the system, f = 1

2N

∑2
i=1〈(Ni − Ñi )

2〉 [7],
where 〈· · · 〉 denotes the average of time series · · · . This definition describes the
fluctuation in the room population away from the balance state at which the optimal
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Fig. 6.2 Experimental data of the preference of each subject to Room 1 for the nine parameter sets
with M1/M2 =1(a–c), 3(d–e), and 10(g–i) and βc = 0(a, d, g), 0.1(b, e, h), and 0.3(c, f, i). For
each parameter set, the experiment lasts for 30 rounds (the first six rounds for equilibration and
the last 24 rounds for statistics). In the figure, “Mean” denotes the average preference of all the
subjects. Adapted from Ref. [9]

room population, Ñi = Mi N/(M1 + M2), can be realized. Clearly, the smaller the
value of f is, the closer the system approaches to dynamic stability. Figure 6.3a dis-
plays that, for small M1/M2, the fluctuations of the system decrease after introducing
contrarians. Namely, the system becomes more stable. However, for large M1/M2,
adding contrarians makes the system more unstable. Thus, we generally conclude
that M1/M2 has a threshold, which distinguishes the different role of contrarians
in the stability of the system. This experimental phenomenon will be further inter-
preted in the following part on computer simulations and theoretical analysis about
transition points.

To further evaluate the performance of the overall system, we have also calculated
the efficiency and predictability of the resource-allocation system. Here, efficiency is

defined as e =
∣
∣
∣
〈N1〉〈N2〉 − M1/M2

∣
∣
∣ /(M1/M2) [7]. Evidently, a larger value of e means a

lower efficiency of resource allocation, and vice versa. Figure 6.3b shows the change
of e when adding contrarians into the experiment. When M1/M2 is 1 or 3, the adding
of contrarians makes the resource-allocation system more efficient. However, for
M1/M2 = 10, the presence of contrarians reduces efficiency. Figure 6.3c shows the
predictability of the system which is represented by the winning rate of Room 1,
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Fig. 6.3 Experimental data for a stability f , b efficiency e , and c predictability w1 at M1/M2 = 1,
3, and 10. Each experiment lasts for 30 rounds (the first six rounds for equilibration and the last 24
rounds for statistics). Adapted from Ref. [9]

w1 [8]. Note w1 = 0.5 means the winning rate is the same for both Room 1 and
Room 2, which is hard for the subjects to predict. If w1 deviates from 0.5, the winning
rate of one room is higher than the other, so the subjects can predict the results easily.
According to Fig. 6.3c, when M1/M2 = 1, the winning rate w1 fluctuates around
0.5 which means it is hard to carry out the prediction. But if M1/M2 becomes larger,
the subjects are easy to predict the winning room for the next round especially when
enough contrarians are added.

6.3 Agent-Based Modeling

Clearly the above experiment has some unavoidable limitations: specific time, spe-
cific experiment avenue (a computer room in Fudan University), specific subjects
(students and teachers of Fudan University), and the limited number of subjects. Now
we are obliged to extend the experimental results (Figs. 6.1, 6.2 and 6.3) beyond such
limitations. For this purpose, we establish an Agent-Based model on the basis of the
resource-allocation system. In this model, we denote Nn as normal agents and Nc as
contrarians. Normal agents correspond to the subjects in the experiment and each of
them decides to enter one of the two rooms using their strategy table which is the same
as that designed in the Agent-Based model of market-directed resource-allocation
game [7, 8]. Particularly, the table of a strategy is constructed by two columns. The
left column represents P potential situations and the right column is filled with 0 and
1 according to the integer, L , which characterizes the heterogeneity in the decision-
making of normal agents. For a certain value of L , (L ∈ [0, P]), there is a probability
of L/P to be 1 in the right column of the table and a probability of (P −L)/P to be 0.
Here 0 and 1 represent entering Room 2 and Room 1, respectively. At each time step,
normal agents choose to enter a room according to the right column of the strategy
tables directed by the given situation Pi , (Pi ∈ [1, P]). Before the simulation starts,
every normal agent will randomly choose S strategy tables, each determined by an
L . At the end of every time step, each normal agent will score the S strategy tables by
adding 1 (or 0) score if the strategy table predicts correctly (or incorrectly). Then, the
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strategy table with the highest score will be used for the next time step. In addition,
because contrarians have no strategy tables, their behavior is set to be the same as
that already adopted in the experiment.

6.4 Simulation Results

For computer simulations, we use 100 normal agents and set S = 8 and P = 64.
The result of 〈N1〉/〈N2〉 versus M1/M2 is shown in Fig. 6.1a. Clearly, qualitative
agreement between experiments and simulations is displayed. In order to confirm
this result, we conduct more simulations with different number of normal agents
to compare with experimental results, which is shown in Fig. 6.1b. We choose
to use 83 and 88 normal agents which is consistent with experiments, and 1,000
normal agents which represents the case of a remarkably different size. Comparing
the different simulations in Fig. 6.1a, b, their results show no qualitative differences
though the number of normal agents varies. Therefore, we can say that the number
of agents has no influence on our simulation results. This means that the experimen-
tal results reported in Fig. 6.1 are general (at least to some extent), being beyond
the above-mentioned experimental limitations. Thus, we are confident to carry out
more simulations in the following. For convenience, we use 100 normal agents in
the remainder of this chapter.

In order to compare with the experiment, the preferences of 100 normal agents are
also calculated; see Fig. 6.4. The simulation results are similar to the experimental
results in Fig. 6.2. That is, normal agents also show the heterogeneity of preferences
and the environmental adaptability.

Then we are in a position to scrutinize the role of contrarians. To compare with
the experimental results in Fig. 6.3, we also calculate stability f , efficiency (e) and
predictability (w1); see Fig. 6.5.

From Fig. 6.5, we find that the resource-allocation system clearly exhibits a transi-
tion point when taking M1/M2 and w1 as the tuning parameter and order parameter,
respectively. This echoes what we have reported in [8]. In the mean time, at the
transition point, (M1/M2)t , f reaches the lowest value which means the system
becomes the most stable. In detail, for a small βc, increasing M1/M2 will increase
the system stability until f has the minimum value at (M1/M2)t , which corresponds
to the most stable state of the system. Once the minimum value is passed, the stability
of the system will worsen for larger M1/M2. The former (or the latter) is the positive
(or negative) role of contrarians. As for large βc, increasing M1/M2 will always make
the system more unstable (negative role). Besides, as βc increases, (M1/M2)t moves
toward the direction of decreasing M1/M2. We discuss the movement of (M1/M2)t

in the following theoretical analysis.
Figure 6.5b shows the simulation results for the change in system efficiency, e.

When M1/M2 is small, increasing contrarians can make the system more efficient at
a certain range. In contrast, for large M1/M2, adding contrarians always reduces the
efficiency. Such simulation results echo the experimental results shown in Fig. 6.3b.
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Fig. 6.4 Simulation data of the preference of each normal agent to Room 1 for the nine parameter
sets with M1/M2 = 1(a–c), 3(d–e), and 10(f–i) and βc = 0(a, d, g), 0.1(b, e, h), and 0.3(c, f, i).
For each parameter set, simulations are run for 400 time steps (the last 200 time steps for statistics
and the first 200 time steps for equilibration). In the figure, “Mean” denotes the average preference
of the 100 normal agents. Adapted from Ref. [9]

Figure 6.5c displays the predictability of Room 1. Similarly, we can see from
Fig. 6.5c that when M1/M2 is very small (close to 1), the winning rate of two rooms
remains almost unchanged at 0.5 or so, even though βc varies. That is, in this case,
the system is unpredictable. When M1/M2 is gradually increasing, adding more
contrarians will cause w1 to increase from the value for βc = 0; namely it becomes
more easy for agents to predict the winning room. Again, these simulation results
agree with the experimental results in Fig. 6.3c.

Now, we understand the role of contrarians in the resource-allocation system. On
one hand, contrarians have positive roles as M1/M2 is small. Namely, adding con-
trarians help to not only improve the system stability, but also increase the system
efficiency while keeping the system unpredictable. On the other hand, contrarians
have negative roles as M1/M2 becomes large enough. That is, adding contrarians can
hurt the system stability and efficiency while making the system more predictable.
Both positive and negative roles have been well distinguished by identifying a tran-
sition point, (M1/M2)t . Further, it is clear that the transition points identified herein
also help to reveal that the allocation of resources can be optimal (i.e., stable, efficient,
and unpredictable) at (M1/M2)t by adding an appropriate size of contrarians.
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Fig. 6.5 βc − M1/M2 contour plots for a stability f , b efficiency e, and c predictability w1. For
each parameter set, simulations are run for 400 time steps (the last 200 time steps for statistics and
the first 200 time steps for equilibration). Adapted from Ref. [9]

6.5 Theoretical Analysis

In order to get a better understanding of the underlying mechanics of the Agent-
Based model, we conduct theoretical analysis. When S and P are fixed, the system
of our interest could reach the most stable state only at the transition point, i.e., a

particular ratio between the two resources,
(

M1
M2

)

t
. If we adjust the values of βc, the

transition point,
(

M1
M2

)

t
, will change accordingly.
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6.5.1 The properties of the transition point,
(

M1
M2

)
t

6.5.1.1 Without contrarians

It can be proved that for the Agent-Based model, the transition point has two proper-
ties: (1) every normal agent uses the strategy with the largest preference, (Li )max, in
his/her hand; (2) the system is in the balance state, which means the ratio between the
numbers of agents in the two rooms is equal to the ratio between the two resources [7].
We first define

N1 =
∑

xi ,

where the choice of agent i is denoted as xi = 1 (Room 1) or 0 (Room 2). Then, at
the transition point, the expected ratio of normal agents who choose to enter Room
1 is

〈N1〉
Nn

=
∑〈xi 〉

Nn
=

∑Nn
i (Li )max

P Nn
=

(
M1

M1 + M2

)

t
, (6.1)

where 〈· · · 〉 denotes the averaged value of · · · . Equation (6.1) shows that when
M1

M1+M2
>

(
M1

M1+M2

)

t
, Room 1 will become unsaturated. This means the system

does not stay at the balance state.

6.5.1.2 With contrarians

From the properties of the transition point and the behavior of the contrarians, it
can be shown that, all the normal agents still use the largest-preference strategy
(Li )max at the transition point when contrarians are added. Every contrarian follows
the minority in his/her group to make a choice denoted as xc. Then the expected ratio
of agents (both normal agents and contrarians) who choose to enter Room 1 at the
transition point becomes

〈N1〉
N

=
∑Nn

i (Li )max + P
∑Nc

c 〈xc〉
(1 + βc)P Nn

=
(

M1

M1 + M2

)

t ′
, (6.2)

where βc = Nc
Nn

and
(

M1
M1+M2

)

t ′
stands for the new transition point with contrarians

added.
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6.5.2 Finding the expressions of
∑Nn

i (Li )max and
∑Nc

c 〈xc〉

6.5.2.1 Without contrarians

The probability that Li takes a certain integer from the range 0 to P is 1
P+1 . Then,

the probability of (Li )max being a certain value of L is

p(L) =
(

L + 1

P + 1

)S

−
(

L

P + 1

)S

.

If Nn is large enough, there is

Nn∑

i

(Li )max =
P

∑

L=0

Nn p(L)L = P Nn

[

1 − 1

P

P
∑

L=1

(
L

P + 1
)S

]

, (6.3)

In the absence of contrarians, the substitution of Eq. (6.3) into Eq. (6.1) leads to

〈N1〉
Nn

= 1 − 1

P

P
∑

L=1

(
L

P + 1

)S

=
(

M1

M1 + M2

)

t
≡ mn, (6.4)

where mn represents the transition point for the system with only normal agents.

6.5.2.2 With contrarians

Since normal agents still use their strategy with (Li )max at the transition point after
adding contrarians into the resource-allocation system, therefore, for them we have

〈Nn1〉
Nn

= 1 − 1

P

P
∑

L=1

(
L

P + 1

)S

=
(

M1

M1 + M2

)

t
≡ mn .

When contrarian c chooses k normal agents as his/her group, the probability to get
a normal agent who chooses Room 1 can be expressed approximately as 〈Nn1〉

Nn
=

(
M1

M1+M2

)

t
≡ mn . Then, the probability for xc = 1 (or 0) is

y
∑

q=0

Cq
k

[(
M1

M1 + M2

)

t

]q [(
M2

M1 + M2

)

t

]k−q

≡ mc (or 1 − mc),

where
(

M2
M1+M2

)

t
= 1 − mn , y = k−1

2 , and k is odd. Thus, we have the average of

xc, 〈xc〉, as
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Fig. 6.6 Transition point (M1/M2)t versus βc , as a result of theoretical analysis (curve obtained
according to Eq. (6.6)) and simulation (data extracted from Fig. 6.5a). Parameters: S = 8 and
P = 64. Adapted from Ref. [9]

〈xc〉 = mc =
y

∑

q=0

Cq
k (mn)q(1 − mn)k−q . (6.5)

Plugging Eq. (6.5) into Eq. (6.2) yields

〈N1〉
N

= P Nnmn + P Ncmc

(1 + βc)P Nn
=

(
M1

M1 + M2

)

t ′
,

and then we have 〈N1〉
N

= mn + βcmc

1 + βc
=

(
M1

M1 + M2

)

t ′
. (6.6)

Clearly, by adjusting βc, we can change the transition point of the resource-allocation

system. Figure 6.6 shows the monotonically decreasing trend of
(

M1
M2

)

t
for increasing

βc, which displays an excellent agreement between theoretical and simulation results.
In both experiments and computer simulations, we have found that when the sys-

tem is in the balance state [M1/M2 < (M1/M2)t ], the fluctuations in the system
decrease after introducing a small number of contrarians. Because in both experi-
ments and simulations the behavior of contrarians is set to follow the same rule, it is
necessary to further analyze the influence of this behavior on the stability of the whole
system. Equation (6.5) describes the probability of contrarians choosing to enter
Room 1 when the system reaches balance. It is known that at this balance state, the
number of subjects in the experiments (or normal agents in the simulations) choosing
to enter each room still varies at every time step due to fluctuations. Hence we replace
mn in Eq. (6.5) with Nn1/Nn and get 〈xc〉 = ∑y

q=0 Cq
k (Nn1/Nn)q(1− Nn1/Nn)k−q ,
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where Nn1 is the number of subjects or normal agents who choose to enter Room 1,
and the average of xc, 〈xc〉, represents the expected probability of contrarians choos-
ing Room 1. Note that 〈xc〉 is a random variable due to the fluctuations of Nn1. Then,
according to Eq. (6.6), we obtain

N1

N
= Nn1/Nn + βc〈xc〉

1 + βc
. (6.7)

By drawing N1/N versus Nn1/Nn , we achieve Fig. 6.7, which shows the influence of
the deviations of Nn1/Nn on N1/N under different values of βc. For M1/M2 = 1, it is
shown that the balance point of the system lies on A0 (0.5,0.5) when βc = 0, 0.1, 0.3,

and 0.5. And the deviations of Nn1/Nn can cause the system to vibrate around A0
along a certain line in Fig. 6.7 which is determined by βc. Then, Fig. 6.7 shows that,
under the same range of deviations of Nn1/Nn , by increasing βc, we can bring down
the vibration of N1/N around N1/N = 0.5. In addition, we can see from Fig. 6.7 that,
when βc becomes too large, such as βc = 1 or 2, A0 is no longer a stable point. The
state of the system tends to move to the right end of the associated line because now
more subjects or normal agents choosing to enter Room 1 will make Room 1 easier to
win. That is, when βc is too large, adding more contrarians will lead the system to a
more unstable state. For a biased distribution of resources, say, M1/M2 = 3, Fig. 6.7
shows that the balance point of the system lies on different points for different values
of βc, i. e., B0 (0.75, 0.75), B1 (0.82, 0.75), and B2 (0.97, 0.75) for βc =0, 0.1, and
0.3. It can be shown that adding a small number of contrarians makes the system
with a biased distribution of resources more stable due to the following two reasons:
(1) under the same deviations of Nn1/Nn , the vibration of N1/N (say, around B0,
B1, or B2 for M1/M2 = 3) decreases slightly when adding more contrarians; (2)
when adding more contrarians, the values of Nn1/Nn at the balance points (e. g., B0,
B1, and B2 for M1/M2 = 3) increase; in this case, subjects or normal agents will be
more certain to choose Room 1, which reduces the deviation range of Nn1/Nn , thus
decreasing the vibration of N1/N .

6.6 Conclusions

In summary, using the three tools, we have investigated the role of contrarian behav-
ior in a resource-allocation system. In contrast to the common belief that contrarian
behavior always plays a positive role in resource allocation (say, stabilizes resource
allocation by shrinking the redundancy or the lack of resources), the transition points
have helped us to reveal that the role of contrarian behavior in resource-allocation
systems can be either positive (to stabilize the system, to improve the system effi-
ciency, and to make the system unpredictable) or negative (to unstabilize the system,
to reduce the system efficiency, and to make the system predictable) under differ-
ent conditions. Further, the transition points identified herein have also helped us to
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Fig. 6.7 N1/N versus Nn1/Nn according to Eq. (6.7). The three horizontal gray dot lines are given
by N1/N = 0.5, 0.75, and 0.909, which are respectively related to the balance state of three resource
ratios, M1/M2 = 1, 3, and 10. Adapted from Ref. [9]

Fig. 6.8 The control panel for the organizer to adjust parameters. Adapted from Ref. [9]

show that resource allocation can be optimized by including an appropriate size of
contrarians.

This chapter is also expected to be of value to some other fields. In management and
social science, administrators should not only conduct contrarianism when finding
the formation of herd, but also need to consider system environment and timing to
see whether contrarianism is globally positive or negative. In ecology and evolution,
it is not only necessary to study the mechanism of contrarian formation, but also to
pay more attention to the effect of contrarianism on the whole ecological system and
evolution groups.
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Fig. 6.9 The two panels for subjects in the experiments. Adapted from Ref. [9]

6.7 Supplementary Materials

6.7.1 About the Experiment

The existence of contrarians is not informed to the subjects in the experiment. The
contrarians generated by the computer program play the online game together with
the subjects. The parameters, M1/M2 and βc, are controlled by the organizer via
the control panel (Fig. 6.8) and every parameter set (i.e., each pair of M1/M2 and
βc) lasts for 30 rounds. The values of the parameter set are not informed to the
subjects either. The organizer only lets every subject know whether he/she wins or
loses after each experimental round (Fig. 6.9). Details can be found in the following
leaflet which was explained to the subjects who participated in the computer-aided
online human experiment.
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6.7.2 Leaflet to the Experiment

Thank you for participating in this experiment! Please read the instructions of the
experiment carefully before starting to play. If you have any questions, please feel
free to ask. No communication is allowed once the experiment starts.

Everyone will be allocated with an anonymous account in the experiment. You
will use the account throughout the experiment. After logging in, you will see page
1/2 (in Fig. 6.9) with two options: Room 1 and Room 2. Each room will own an
amount of resources, labeled as M1 and M2. You can choose to enter either Room
1 or Room 2, and then click “Okay” and wait. The page will automatically turn to
page 2/2 after all the subjects have finished. The result of this round and the current
score will be shown in page 2/2. You will have 15 seconds to check the results. After
that, the page will automatically change to page 1/2 again and the next round starts.

The total number of subjects entering Room 1 is N1, and N2 for Room 2. After
all subjects finish, the computer program will choose the winners according to the
resource per capita determined by M1

N1
> M2

N2
or M1

N1
< M2

N2
.

If M1
N1

> M2
N2

, those who choose Room 1 win.

if M1
N1

< M2
N2

, those who choose Room 2 win.

Example:
Suppose the resources in Room 1 and Room 2 are both 100 units. If 30 subjects

choose to enter Room 1 and 70 subjects choose to enter Room 2, each subject in
Room 1 will have more resources per capital, and he/she wins. Suppose the resources
in Room 1 and Room 2 are 100 units and 200 units, respectively. If 50 subjects choose
to enter Room 1 and 50 subjects choose to enter Room 2, then each subject in Room
2 will have more resources per capital, and he/she wins.

Notice:
The resources in Room 1 and Room 2 (M1 and M2) and the number of subjects

entering Room 1 and Room 2 (N1 and N2) will not be announced. You cannot see
the other subjects’ options. Only your results will be shown on your computer screen
after every round. You ca use this information to decide which room to enter in the
next round. Every account’s original score is set to zero. 10 scores will be added in
every round if you win and zero added if you lose. We will pay you cash with the
exchange rate, 10 scores = 1 Chinese Yuan, after the experiment finishes. Besides, we
pay every subject 30 Chinese Yuan as attendance fee, and reward the top 10 subjects
(with the highest scores after all the experiment is completed), each with extra 100
Chinese Yuan.



Chapter 7
Hedge Behavior: Statistical Equivalence
of Different Systems

Abstract In Chaps. 5 and 6, we have identified a class of phase transitions in the
market-directed resource-allocation game, and found that there exists a critical point
at which the phase transitions occur. The critical point is given by a certain resource
ratio. Here, by performing computer simulations and theoretical analysis, we report
that the critical point is robust against various kinds of human hedge behavior where
the numbers of herds and contrarians can be varied widely. This means that the
critical point can be independent of the total number of participants composed of
normal agents, herds, and contrarians, under some conditions. This finding means
that the critical points we identified in this complex adaptive system (with adaptive
agents) is also an intensive quantity, similar to those revealed in traditional physical
systems (with non-adaptive units).

Keywords Resource-allocation system · Hedge behavior · Critical point · Phase
transition · Fluctuation

7.1 Opening Remarks

After introducing both Chaps. 5 and 6, one may ask: what if the system has both herd
behavior and contrarian behavior? The combination of both of them is just hedge
behavior, which is to be discussed in this chapter.

In Chaps. 5 and 6, we have identified a class of phase transitions in the market-
directed resource-allocation game (MDRAG), and found that there exists a critical
point at which the phase transitions occur. The critical point, which is given by a
certain resource ratio, corresponds to the most stable state (with the minimum fluc-
tuation) where the resources are the most effectively allocated and the total utilities
of the system are maximal [7]. By previous researches, we have known that herd
behavior or contrarian behavior always changes the location of the critical point.

Hedge behavior is also a kind of self-organization in complex adaptive systems
(CASs). Here, we introduce hedge behavior into the MDRAG to analyze the effects
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of hedge behavior on the whole system’s fluctuations. By performing controlled
experiments, agent-based simulations, and theoretical analysis, we report that the
critical point can be robust against various kinds of human hedge behavior where the
number of herds and contrarians is varied widely. The critical point also helps to reveal
the robustness of the most stable state (corresponding to the minimal fluctuation)
of the CAS when hedge behavior exists or disappears. This finding means that the
critical points we identified in this CAS with adaptive agents may also be an intensive
quantity, similar to those revealed in traditional physical systems with nonadaptive
units. In other words, two systems with different numbers of agents may have the
same critical point; this is what I mean “statistical equivalence of different systems”
in the title of this chapter.

7.2 Controlled Experiments

Our experiment includes three types of participants, namely subjects, imitators, and
contrarians. Subjects consist of students and teachers recruited from various depart-
ments of Fudan University, and they would independently make decisions to mimic
the normal behavior of free competitions. An imitator (or contrarian) would make
decisions by following the majority (or minority) of a reference group made of sub-
jects, so as to model the herd (or contrarian) behavior. In our experiment, all the
imitators and contrarians were robots generated by computer program because their
strategies for making decisions were simple. The 68 subjects were requested to par-
ticipate in the whole experiment (Systems A–D). The participants’ structures of the
four resource-allocation systems are given as follows:

• System A: 68 subjects;
• System B: 68 subjects + 55 imitators;
• System C: 68 subjects + 11 contrarians;
• System D: 68 subjects + 55 imitators + 11 contrarians.

Clearly, System D focuses on a kind of hedge behavior.
The human experiment was conducted in the computer laboratory of Fudan

University. Before the experiment started, we gave leaflets (as shown in Supplemen-
tary Materials at the end of this chapter) to the subjects that interpreted how the
experiment would be conducted. The experiment contains an online game that has
two rooms, Room 1 and Room 2, denoted by two buttons in the working panel on
each subject’s computer screen. Each room owns an amount of virtual money marked
as M1 or M2. Each subject could play the game with all the other subjects through the
working panel, which shows not only the above-mentioned two buttons, but also the
cumulative score the subject had obtained. No communication among subjects was
allowed once the experiment started. Subjects were only told their own results by the
working panel after each round, and they made decisions on choosing to enter which
room for the next round according to their own results. It is worth noting that during
the experiment, no information on imitators and/or contrarians was announced to the
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subjects. Also, the subjects do not know the exact amount or ratio of resources (M1
or M2) in the two rooms in any round of the experiment. Human subjects choose to
enter Room 1 or 2 independently in every round. In System A, after one round of
the option, we remark the total number of the subjects in Room 1 and Room 2 as N1
and N2. If M1/N1 > M2/N2, then subjects in Room 1 win, and vice versa.

In System B, we secretly add imitators which subjects do not know. Imitators will
follow human subjects’ option to enter one of the two rooms. In every round, each
imitator will randomly choose a reference group (five subjects) from the 68 subjects.
Then, it will choose to enter the room which the majority of the five subjects in its
group choose to enter. If most of the subjects in its group choose to enter Room 1,
then it will choose to enter Room 1, and vice versa. After one round of the option, we
remark the total number of the participants including subjects and imitators in Room
1 and Room 2 as N1 and N2. If M1/N1 > M2/N2, then the subjects (and imitators)
in Room 1 win, and vice versa.

In System C, we secretly add contrarians. The behavior of contrarians is contrary
to that of imitators. Namely, a contrarian chooses to enter the room which the minority
of the five subjects in its group choose to enter. That is, if most of the human subjects in
its group choose to enter Room 1, then it will choose to enter Room 2, and vice versa.
After one round of the option, we remark the total number of the participants including
subjects and contrarians in Room 1 and Room 2 as N1 and N2. If M1/N1 > M2/N2,
then subjects (and contrarians) in Room 1 win, and vice versa.

In System D, imitators and contrarians are both secretly added. We remark the total
number of the participants including subjects, imitators, and contrarians in Room 1
and Room 2 as N1 and N2. If M1/N1 > M2/N2, then human subjects (together with
imitators and contrarians) in Room 1 win, and vice versa.

Total 30 rounds of experiment will be repeated for each of the four systems. In
each round of the experiment, winners will be granted scores, and the final reward
will be paid to each subject according to the scores they get in the experiment. Details
can be found in the Leaflet shown in Supplementary Materials.

Throughout this chapter, for each system, the data of the first round is used
for equilibration, and only the remaining 29 rounds are adopted for analysis (see
Table 7.1).

To proceed, let us recall the number of human subjects as Nn , number of imitators
as Nh , and number of contrarians as Nc. Also, we define β1 = Nh/Nn and β2 =
Nc/Nn . The total number of all the participants is N = Nn +Nh +Nc = N1+N2. We
conducted the experiment under two resource ratios: M1/M2 = 1 and M1/M2 = 3.
The former (or the latter) corresponds to an unbiased (or a biased) distribution of
resources. The most important parameter of the system is Ni (i = 1 or 2) because all
the macroscopic properties of this system can only be analyzed on the basis of this
parameter. Because Ni is directly proportional to the total number of participants in
the system, it is naturally an extensive quantity. We are now in a position to investigate
the fluctuations of Ni .

In statistical physics, a macroscopic quantity describing a system is the average of
the relevant microscopic quantity, A, over all possible microstates, 〈A〉, under given
macroscopic conditions. Namely, this average 〈A〉 is given by
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Table 7.1 N1 and N2 from the 2nd to 30th experimental round under M1/M2 = 1 and 3 for
Systems A, B, C and D

Round M1/M2 = 1 M1/M2 = 3

A B C D A B C D

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2 N1 N2

2 42 26 71 52 36 43 69 65 32 36 80 43 52 27 105 29

3 33 35 73 50 38 41 61 73 38 30 87 36 57 22 92 42

4 36 32 41 82 39 40 63 71 44 24 101 22 51 28 73 61

5 39 29 66 57 45 34 71 63 42 26 92 31 49 30 92 42

6 37 31 70 53 35 44 78 56 48 20 89 34 50 29 104 30

7 33 35 51 72 43 36 56 78 47 21 87 36 58 21 95 39

8 38 30 45 78 38 41 80 54 52 16 95 28 57 22 107 27

9 33 35 55 68 42 37 78 56 43 25 97 26 59 20 107 27

10 20 48 60 63 49 30 48 86 49 19 98 25 59 20 96 38

11 30 38 65 58 46 33 64 70 52 16 94 29 65 14 96 38

12 30 38 60 63 39 40 72 62 50 18 66 57 47 32 97 37

13 38 30 72 51 40 39 73 61 57 11 105 18 58 21 89 45

14 27 41 79 44 37 42 81 53 55 13 77 46 60 19 90 44

15 35 33 62 61 41 38 83 51 41 27 92 31 57 22 103 31

16 37 31 48 75 41 38 66 68 49 19 101 22 55 24 97 37

17 29 39 50 73 33 46 77 57 52 16 76 47 57 22 103 31

18 36 32 63 60 40 39 38 96 48 20 97 26 60 19 98 36

19 43 25 44 79 38 41 58 76 46 22 82 41 65 14 111 23

20 41 27 69 54 40 39 68 66 50 18 74 49 52 27 106 28

21 37 31 56 67 42 37 49 85 55 13 91 32 59 20 87 47

22 28 40 57 66 39 40 57 77 56 12 86 37 62 17 101 33

23 38 30 59 64 44 35 61 73 54 14 76 47 54 25 98 36

24 23 45 72 51 36 43 78 56 45 23 86 37 57 22 104 30

25 21 47 59 64 38 41 80 54 55 13 97 26 57 22 98 36

26 39 29 58 65 43 36 70 64 43 25 78 45 56 23 97 37

27 23 45 84 39 37 42 61 73 48 20 109 14 58 21 107 27

28 28 40 72 51 42 37 74 60 53 15 99 24 62 17 114 20

29 33 35 80 43 42 37 63 71 43 25 90 33 56 23 88 46

30 41 27 67 56 41 38 69 65 56 12 102 21 56 23 89 45

〈A〉 =
∑

s

ρs As, (7.1)

where ρs is the probability when the system lies in the s-th microstate, and As is the
value of A at the s-th microstate. Then, the fluctuation, σ 2

0 , of A is defined as
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σ 2
0 = 〈(As − 〈A〉)2〉 =

∑

s

ρs(As − 〈A〉)2. (7.2)

Thus, to proceed, we define the fluctuation, σ 2, of Ni according to Eq. (7.2) as

σ 2 = 〈
(

N1 − Ñ1

)2〉 = 〈
(

N2 − Ñ2

)2〉 ≡ 1

2

2
∑

i=1

〈
(

Ni − Ñi

)2〉, (7.3)

where 〈· · · 〉 denotes the average of · · · over the 29 rounds of experiment. The second
“=” in Eq. (7.3) holds due to the feature of the resource-allocation system. According
to Eq. (7.3), we obtain the fluctuation per participant, σ 2

N , as

σ 2

N
= 1

2N

2
∑

i=1

〈
(

Ni − Ñi

)2〉. (7.4)

Regarding Ñi in Eqs. (7.3) and (7.4), according to Eq. (7.1), it should be the average
of Ni over the 29 rounds, namely Ñi = 〈Ni 〉. The calculated values of σ 2

N ’s for
the four systems are displayed in Fig. 7.1. Let us start by discussing System A that
contains only 68 subjects (β1 = β2 = 0). As a result of free competitions for either
M1/M2 = 1 or M1/M2 = 3, the nonzero fluctuations come to appear in System
A, which is consistent with our intuition. Adding imitators causes a higher degree
of fluctuations; see System B. Inversely, adding contrarians yields a lower degree
of fluctuations; see System C. Interestingly, adding both imitators and contrarians
always yields a value of σ 2

N between those of System B and System C; see System
D. Therefore, it can be concluded that there exists an appropriate ratio between the
amounts of imitators and contrarians, which will cause the value of σ 2

N for System D

to equal that of System A. That is, σ 2

N could be a nonzero constant for both System
A and System D. On the other hand, it is worth noting that System D has not only
subjects, but also imitators and contrarians. However, System A has subjects only. In
other words, the number of participants, N , in System D is distinctly different from
that in System A. Owing to such arguments, we can conclude that the fluctuations of
the system with collective behaviors (say, System D in this chapter) can, in principle,
be equal to that one without collective behaviors (say, System A in this chapter)
as long as the amounts of imitators and contrarians are appropriately introduced.
This conclusion implies a way to stabilize the resource-allocation system by adding
imitators and contrarians appropriately.

Figure 7.1 shows the results of σ 2

N where Ñi = 〈Ni 〉 due to Eq. (7.1). To take

into account the feature of the present system, we are allowed to define Ñi in a
different way. Based on our previous study [7, 8], the resource-allocation system
could eventually achieve the balance state where
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Fig. 7.1 σ 2

N of Systems A, B, C, and D for M1/M2 = 1 and 3. Ñi was determined by Eq. (7.1).
The experiment for each system lasts 30 rounds (the 2nd–30th rounds are used for statistics)

Table 7.2 〈N1〉, 〈N2〉, and 〈N1〉/〈N2〉 obtained under M1/M2 = 1 and M1/M2 = 3 for Systems
A, B, C and D

System Participant M1/M2 〈N1〉 〈N2〉 〈N1〉/〈N2〉
A β1 = 0, β2 = 0 1 33.38 34.62 0.964

B β1 = 0.81, β2 = 0 1 62.35 60.65 1.028

C β1 = 0, β2 = 0.16 1 40.14 38.86 1.033

D β1 = 0.81, β2 = 0.16 1 67.1 66.9 1.003

A β1 = 0, β2 = 0 3 48.38 19.62 2.466

B β1 = 0.81, β2 = 0 3 89.79 33.21 2.704

C β1 = 0, β2 = 0.16 3 56.72 22.28 2.546

D β1 = 0.81, β2 = 0.16 3 98.07 35.93 2.729

The experiment for each system lasts 30 rounds (the 1st round is for equilibration, and the remaining
29 rounds are for statistics)

〈N1〉
〈N2〉 = M1

M2
(7.5)

as long as the numbers of both rounds and participants are large enough. The balance
state corresponds to the system where macroscopic arbitrage opportunities have been
exhausted (or, the efficiency of resource allocation reaches the maximum) [7, 8]. For
the present four systems, Table 7.2 displays the values of 〈N1〉, 〈N2〉, and 〈N1〉/〈N2〉,
and it clearly shows that Eq. (7.5) approximately holds in spite of the finite numbers
of both rounds and participants. That is, the present four systems with various kinds
of human behaviors have also a high efficiency of resource allocation. Thus, owing
to Eq. (7.5), we may redefine Ñi as

Ñi = Mi

M1 + M2
N . (7.6)
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Fig. 7.2 Same as Fig. 7.1, but Ñi was determined by Eq. (7.6) instead

(a)

(a) (b) (c) (d) (e) (f) (g) (h)

(b) (c) (d)

(e) (f) (g) (h)

Fig. 7.3 The average preference of all kinds of participants for Systems A–D under two resource
ratios: a–d M1/M2 = 1 and e–h M1/M2 = 3. The red line on each pie chart is used to divide
the preference to Room 1 and Room 2. The experiment for each system lasts for 30 rounds (the
2nd–30th rounds are used for statistics)

The relevant result is shown in Fig. 7.2, which qualitatively agrees with Fig. 7.1. That
is, adopting a different definition for Ñi (Eq. 7.6) does not affect the conclusions
obtained from Fig. 7.1.

Figures 7.1 and 7.2 clearly show the possible equivalence of two different kinds of
systems; that is, the different systems can, in principle, evolve with the same fluctua-
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tion. Now, we are in a position to recover the underlying mechanism. This requires us
to further observe the detailed participants’ choice behaviors. One good way could
be to analyze their preferences of choices in each experiment. As we all know, dif-
ferent individuals have different preferences on resources, which is reflected by the
heterogeneity of preferences. This heterogeneity can have remarkable influence on
achieving the balance of the system [7]. Here, the preference of each participant is
defined as the average rate of entering into Room 1 or Room 2 in the 29 rounds
of experiments. Figure 7.3 shows the statistical results of all the participants in the
four systems under two resource ratios: M1/M2 = 1 and M1/M2 = 3. We note
that in System A, the average preference of all human subjects varies with M1/M2,
which can be clearly seen in Fig. 7.3a and e. In Systems B or C, the secret join of
imitators or contrarians makes human subjects adjust their preferences. In System
D, human subjects’ preferences adjust accordingly under the combined actions of
secretly added imitators and contrarians. Thus, we conclude that the equivalence
mentioned above originates from the spontaneous changes in preferences of human
subjects in different systems, which arises from human adaptability due to learning
ability. In other words, this equivalence becomes true due to the spontaneous coop-
eration of imitators and contrarians arising from self-adaptive preference adjustment
of subjects.

7.3 Agent-Based Simulations

The above experimental findings encourage us to do more researches, in order to
generally reveal the influence of system’s fluctuations caused by hedge behavior. So,
we structured an agent-based model and carried out a series of computer simulations
based on the MDRAG which is an extended version of the minority game [1]. This
MDRAG can be described as followed. There will be two rooms: Room 1 and Room
2, each of which owns its resource marked as M1 and M2. Here, M1 � M2. Some
agents see the two rooms, but do not know the amount and ratio of resources in two
rooms. Everyone needs independently to choose to enter one of the two rooms. After
all agents finish their choices, the resources in Room 1 are equally divided by who
entered Room 1, while the resources in Room 2 are equally divided by the agents
who entered Room 2. If the agents in Room 1 get more per capita resource than the
agents in Room 2, we regard them (choosing Room 1) as winners, and vice versa.
In this model, we label the number of agents in Room 1 and Room 2 N1 and N2,
respectively. If M1/N1 > M2/N2, then agents in Room 1 win, and vice versa.

In the MDRAG, the system will reach a most stable state [7] at the critical point.
Under the assumption that changing the behaviors of agents might change the system
equilibrium, if we could observe how the introduction of different behaviors would
change the resource allocation, the model will be optimal. Based on the previous
researches [8, 9, 107, 111], we know that herd behavior and contrarian behavior in the
MDRAG could respectively shift the critical point to opposite directions, accordingly
affecting the fluctuation of the system. Hence, we introduced herd behavior and
contrarian behavior as a kind of hedge behavior.
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In our agent-based model, there are Nn normal agents, Nh imitators and Nc con-
trarians. We define β1 = Nh/Nn and β2 = Nc/Nn . The total number of all agents
is N = Nn + Nh + Nc = N1 + N2. Each of normal agents decides to enter one
of the two rooms based on its strategy table. At the beginning, each normal agent
has S strategy tables, each of which determined by a preference index L and has P
potential situations [7]. L characterizes the heterogeneity of preferences of normal
agents, where L ∈ [0, P]. At the end of a round, each normal agent will score the
S strategy tables in its hand. Then, the best strategy table will be used for the next
round. When the computer gives the current situation, Pi (Pi ∈ [1, P]), at every
round, each normal agent enters the room according to its best strategy table. The
table of a strategy’s left column represents P potential situations and the right column
is filled with 1 and 0, which represent entering Room 1 and Room 2, respectively.
The probability of 1 or 0 is determined by a certain preference index of L . The rule
of constructing the right column of the table is that for a probability of L/P the right
column is filled with 1 and for probability of (P − L)/P the right column is filled
with 0.

Meanwhile, the system may secretly add some contrarians and imitators generated
by the computer in certain rounds. Imitators and contrarians have no strategy tables,
whose decisions at a certain round are based on the choices of normal agents. In every
round, every imitator or contrarian will randomly choose several normal agents as
its group from all normal agents. The logic is as follows: An imitator will choose to
enter the room where majority of the normal agents in its group choose to enter. If
most of the normal agents in its group choose to enter Room 1, then it will choose to
enter Room 1, and vice versa. Contrarians choose to enter the room where minority
of the normal agents in its group chooses to enter. If most of the normal agents in its
group choose to enter Room 1, then it will choose to enter Room 2, and vice versa.
After one round of the option, we remark the total number of agents in Room 1 and
Room 2 including normal agents, contrarian and imitators, labeled as N1 and N2,
respectively. If M1/N1 > M2/N2, then agents in Room 1 win, and vice versa.

Based on the mentioned model, computer simulations are carried out with 100
normal agents for simulation parameters, S = 11 and P = 121. In the process,
we changed the parameters including the ratio of resource distribution between
the two rooms and the ratio of contrarians and imitators. Total 400 time steps
of simulation will be lasted under each parameter set. In order to scrutinize the
effect of hedge behavior on the whole resource-allocation system, we calculated
the fluctuation of the systems. The fluctuation of the systems can be defined as
σ 2

N = 1
2N

∑2
i=1〈

(

Ni − Ñi

)2〉, the smaller the value is, the closer the system ap-

proaches to the equilibrium, because the optimal resource population is given by
Ñi = Mi N/(M1 + M2). The previous studies indicated that the resource alloca-
tion system exhibits a phase transition as M1/M2 varies. In other words, at the
critical point, (M1/M2)t , σ 2

N reaches the lowest value which means the system
becomes the most stable. See Fig. 7.4. The systems reach the most stable state at
M1/M2 = 11 without imitators and contrarians. At this moment, the critical point
is (M1/M2)t = 11. But the fluctuation of the system changes when herd behavior is
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Fig. 7.4 Simulation results for fluctuation σ 2/N in different M1/M2 from 1 to 14 with normal
agents (black), herd behavior (red), contrarian behavior (green), and hedge behavior (blue). The
circles in dashed frame are magnified above the red arrow because the overlapped circles are hard
to distinguish. Three black arrows on the horizontal axis indicate the four critical points of the most
stable state of the four curves. The arrow at M1/M2 = 6.5 indicates the most stable state of green
curve while the arrow at M1/M2 = 13.5 indicates the most stable state of red curve and the arrow
at M1/M2 = 11 indicates the most stable state of black and blue curves. Note, the two critical
points of the most stable state of black and blue curves are well overlapped, and thus denoted by
one arrow only, which clearly shows that suitable hedge behavior could let the system (with hedge
behavior) have the same most stable state as the original system (without hedge behavior). For each
parameter set, simulations are run 100 times, each over 400 time steps (the last 200 time steps for
statistics). Adapted from Ref. [116]

introduced. Likewise, contrarian behavior can also affect the system’s fluctuations.
However, if we introduce herd and contrarian behaviors simultaneously, we found
the proper hedge proportion that makes the critical point unchanged by adjusting
simultaneously the strength of the two different behaviors.

As we all know, the adaptive agents are the most remarkable feature of CASs.
In order to analyze the robustness of critical points under hedge behavior, we need
to scrutinize the microscopic behaviors of the system, i.e., the performance of each
agent. Here, we observe their performance by normal agents’ preference. We define
the preference of each normal agent as the average rate of entering Room 1 or Room
2 in last 200 statistical time steps of simulations. We select three resource ratios to
observe: M1/M2 = 1 that represents a uniform (or unbiased) distribution, M1/M2 =
3 that stands for a small bias, and M1/M2 = 14 that indicates an extreme bias.
Figures 7.5 and 7.6 show the statistical results of simulations under different resource
ratios and numbers of imitators and contrarians. We note that the average preference
of all normal agents varied with M1/M2, which can be clearly seen in Fig. 7.5. This
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Fig. 7.5 The average preference of all normal agents for the 12 parameter sets: M1/M2 = 1 (a–d),
3 (e–h), and 14 (i–l) with β1 = 0 and β2 = 0 (a, e, i), β1 = 0.7 and β2 = 0 (b, f, j), β1 = 0 and
β2 = 0.05 (c, g, k), and β1 = 0.7 and β2 = 0.05 (d, h, l). For each parameter set, simulations
are run for 400 time steps (the first 200 time steps for equilibration and the last 200 rounds for
statistics). Adapted from Ref. [116]

shows the global environmental adaptability of normal agents. It is noted that in
the case with hedge behavior, the proportions of normal agents’ preferences to two
rooms are mainly same. It indicates that adaptability of normal agents results in
consistent microscopic performances of systems in both cases, which further brings
the robustness of critical points under the existence of hedge behavior. In Fig. 7.6
we can see that the preferences of each normal agent are different no matter in
which environment of resources or behaviors. In this system, normal agents show
heterogeneity of preferences, which has a remarkable influence on achieving the
balance of CASs. It implies that even if individuals are different, they can still emerge
consistency as a whole.

From Fig. 7.4, we infer that for any strength of one behavior, a proper hedge pro-
portion exists to make critical points of the system robust. Also, by adjusting the
hedge proportion, the resource allocation system could reach the most stable state in
any satisfied resource ratio. Thus, it is very helpful for optimizing resources alloca-
tions under any resource distributions. Therefore, we carried out more comprehensive
simulations. The simulation results are shown in Fig. 7.7.

In Fig. 7.7 each color represents the most stable equilibrium state (i.e., with the
critical point, (M1/M2)t , that corresponds to the minimum value of σ 2

N ) in a certain
combination of β1 and β2. We can see that, for the case without imitators and con-
trarians, system can reach equilibrium at the critical point, (M1/M2)t = 11. Herd
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Fig. 7.6 The preference of each normal agent for the 12 parameter sets: M1/M2 = 1 (a–d), 3
(e–h), and 14 (i–l) with β1 = 0 and β2 = 0 (a, e, i), β1 = 0.7 and β2 = 0 (b, f, j), β1 = 0 and
β2 = 0.05 (c, g, k), and β1 = 0.7 and β2 = 0.05 (d, h, l). For each parameter set, simulations are
run 400 time steps (the first 200 time steps for equilibration and the last 200 rounds for statistics).
Adapted from Ref. [116]

Fig. 7.7 Critical point, (M1/M2)t , as functions of β1 and β2 as a result of the computer simulations
with 100 normal agents. For each parameter set, simulations are run 100 times, each over 400 time
steps (the last 200 time steps for statistics). Adapted from Ref. [116]
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behavior makes the critical point shift to a larger M1/M2, while contrarian behavior
makes the critical point shift to a smaller M1/M2, which means either herd behavior
or contrarian behavior always changes the system’s fluctuation. However, if we adjust
the two behaviors simultaneously, then this kind of hedge behavior can make critical
points robust no matter how many agents exist. Besides, the system can achieve the
optimal state at any resource ratio by adjusting the values of β1 and β2 appropriately.

Such adjustment of hedge behavior can surely give references to CASs. We found
that the critical point of the system is robust and independent of the total number of
agents composed of normal agents, imitators and contrarians, under some conditions.
Also, the resource allocation system could be controlled to reach the most stable state
(corresponding to a certain critical point) in any resource bias through adjusting the
proportion of two kinds of agents, β1 and β2.

7.4 Theoretical Analysis

The further understanding of critical point (M1/M2)t versus β1 and β2 is necessary
for understanding the microscopic mechanism in the system. For this purpose, we
conduct theoretical analysis.

For the fixed values of S and P , the system could reach the most stable state only
at the critical point (i.e., specifically ratio of resource ratio, (M1/M2)t ) under the
situation without contrarians and imitators. In order for resource allocation systems
to reach the optimal states at any ratio of resource distribution, we have to adjust the
values of β1 and β2, thus changing critical points, (M1/M2)t , accordingly.

7.4.1 The Properties of Critical Points

7.4.1.1 MDRAG

All normal agents use the strategy (Li )max with the largest preference in their hand.
Meanwhile, the ratio of numbers of agents in two rooms is equal to the ratio of
resource distribution. Then, we have

N1 =
∑

xi ,

where the choice of agent i is denoted as xi=1 (Room 1) or 0 (Room 2). Next, we
obtain

〈N1〉
Nn

=
∑〈xi 〉

Nn
=

∑Nn
i (Li )max

P Nn
=

(
M1

M1 + M2

)

t
, (7.7)

where 〈· · · 〉 denotes the averaged value of · · · .
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7.4.1.2 MDRAG + Imitators + Contrarians

All normal agents use (Li )max. An imitator follows the majority of its group to choose
xh , while every contrarian follows the minority in his group to choose xc. Thus we
obtain

〈N1〉
N

=
∑Nn

i (Li )max + P
∑Nh

h 〈xh〉 + P
∑Nc

c 〈xc〉
(1 + β1 + β2)P Nn

=
(

M1

M1 + M2

)

t ′
, (7.8)

where β1 = Nh
Nn

and β2 = Nc
Nn

.

7.4.2 Solve
∑Nn

i (Li )max,
∑Nh

h 〈xh〉 and
∑Nc

c 〈xc〉

(a) For normal agent i with S strategies, the probability of Li taking 0 to P is 1
P+1 .

Then, the probability of (Li )max being a certain value of L is

p(L) =
(

L + 1

P + 1

)S

−
(

L

P + 1

)S

.

If Nn is large enough, there is

Nn∑

i

(Li )max =
P

∑

L=0

Nn p(L)L

= P Nn

[

1 − 1

P

P
∑

L=1

(
L

P + 1
)S

]

, (7.9)

Plugging Eq. (7.9) into Eq. (7.7), under the situation without contrarians and imita-
tors, there is

〈N1〉
Nn

= 1 − 1

P

P
∑

L=1

(
L

P + 1

)S

=
(

M1

M1 + M2

)

t
≡ mn . (7.10)

According to Eq. (7.10), it is known that if P and S are fixed, we can solve the critical
point denoted by (M1/M2)t without contrarians and imitators.

(b) We know that normal agents still use their strategies with (Li )max at critical
points after introducing contrarians and imitators into the system. Therefore, for
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Table 7.3 Probability of xc xc Probability

1
∑y

q=0 Cq
k

[(
M1

M1+M2

)

t

]q [(
M2

M1+M2

)

t

]k−q ≡ mc

0 1 − mc

normal agents, there is

〈Nn1〉
Nn

= 1 − 1

P

P
∑

L=1

(
L

P + 1

)S

=
(

M1

M1 + M2

)

t
≡ mn .

Approximately, when imitator h and contrarian c respectively choose k normal
agents, the probability that they got the normal agents who came into Room 1 is

denoted as 〈Nn1〉
Nn

=
(

M1
M1+M2

)

t
≡ mn . Then, the probability that xc equals to 1 or 0

is shown in Table 7.3. Here y = k−1
2 , and k is odd. Then we have

〈xc〉 = mc =
y

∑

q=0

Cq
k (mn)q(1 − mn)k−q . (7.11)

So, 〈xh〉 = 1 − mc.
(c) Plugging Eq. (7.11) into Eq. (7.8) yields

〈N1〉
N

= P Nnmn + P Nh(1 − mc) + P Ncmc

(1 + β1 + β2)P Nn

=
(

M1

M1 + M2

)

t ′
.

Then, 〈N1〉
N = mn+β1(1−mc)+β2mc

1+β1+β2
=

(
M1

M1+M2

)

t ′
.

By adjusting β1 and β2 appropriately, we could get a robust critical point of the
system. Besides, the system could reach the most stable state under any resource ratio
M1/M2. Figure 7.8 shows (M1/M2)t versus β1 and β2 as a result of the theoretical
analysis with the same parameters as those adopted in the previous simulations,
which echoes with the simulation results shown in Fig. 7.7.

7.5 Conclusions

In summary, using controlled experiments, agent-based simulations and theoretical
analysis, we have investigated the role of hedge behavior in a resource-allocation
system. The critical point identified here helps to reveal the robustness of the most
stable state of the system (at which the fluctuation becomes minimal) whether hedge
behavior exists or not.
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7.6 Supplementary Materials

7.6.1 Leaflet to the experiment

Everyone completes this experiment via a computer in front of you. You will use
an allocated anonymous account throughout the experiment. After logging in, you
will see two virtual rooms on the screen: Room 1 and Room 2. Each room owns a
certain amount of virtual money, but you are not told the amount and ratio. You can
choose to enter one of the two rooms by clicking the relevant button in the working
panel on the computer screen, and then wait. The subjects chose in the same room
will share equally the virtual money inside the room. After all the subjects finished,
the system will calculate per capita money of the two rooms, respectively. The room
in which subjects get higher per capita money is regarded as the winning room and
the subjects who had entered the winning room as winners in this round. You will
see your own result (win or lose) of this round and the current score on the computer
screen. After that, next round starts. Throughout the experiment, the total number
of human subjects was kept to be 68, but the number of subjects entering Room
1 and Room 2 in every round will not be told. Each subject cannot see the other
subjects’ options. Only your result (win or lose) will be told after every round. You
can only use this information to judge which room to enter in the next round. After
the experiment starts, any kinds of communication are not allowed. The experiment
contains four systems, each will be conducted for 30 rounds.

Each account has an original score with zero point. Total 10 points will be added
in every round if you win and zero point will be added if you lose. At the end
of the whole experiment, we will pay you cash with the exchange rate: 10 points
= 1 Renminbi. Besides, we will reward the top 3 plays, each with additional 100
Renminbi.

Fig. 7.8 Critical point, (M1/M2)t , as functions of β1 and β2 as a result of theoretical analysis.
Adapted from Ref. [116]



Chapter 8
Cooperation: Spontaneous Emergence
of the Invisible Hand

Abstract There has been a belief that with the directing power of the market, the
efficient state of a resource-allocation system can eventually be reached even in a
case where the resource is distributed in a biased way. To mimic the realistic huge
system for the resource allocation, we design and conduct a series of controlled exper-
iments. From the experiments we find that efficient allocation can be spontaneously
realized despite a lack of communications among the participants or any instructions
to them. To explain the underlying mechanism, we construct an agent-based model
by introducing heterogeneous preferences into the strategy-building procedures. The
model produces results in good agreement with the experiments. We investigate the
influence of agents’ decision-making capacity on the system behavior and the phase
structure of the model as well. A number of phase transitions are identified in the
system. In the critical region, we find that the overall system will spontaneously
display an efficient, stable, and unpredictable mode in which the market’s invisible
hand can fully play its role.

Keywords Resource-allocation system ·The invisible hand ·Balanced state ·Phase
transition

8.1 Opening Remarks

The statistical equivalence of different systems discussed in the preceding chapter
implies a kind of spontaneous cooperation in different systems. In this chapter, we
are prepared to investigate a single system to see the possibility of a different kind
of spontaneous cooperation, namely the invisible hand [28].

As mentioned in the preceding chapters, most social, economic, and biological
systems involving a large number of interacting agents can be regarded as complex
adaptive systems (CAS) [105], because they are characterized by a high degree
of adaptive capacities to the changing environment. The interesting dynamics and
phase behaviors of these systems have attracted the interest of physical scientists.

© Springer-Verlag Berlin Heidelberg 2015
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A number of microscopic CAS models have been proposed [100, 117–120], among
which the minority game (MG) [1, 31, 87] is a representative model. Along with
the progress in the research on econophysics [14], MG has been mostly applied to
simulate one kind of CAS, namely the stock market [32, 33]. Alternatively, MG can
also be interpreted as a multiagent system competing for a limited resource [34, 35]
which distributes equally in two rooms. However, agents in the real world often have
to face competition in the limited resource, which distributes in different places in a
biased manner. Examples for such phenomena include companies competing among
markets of different sizes [121], drivers selecting different traffic routes [122], people
betting on horse racing with the odds of winning a prize, and making decisions on
which night to go to which bar [123].

From a global point of view, the ideal evolution of a resource allocating system
would be the following: Although each agent would compete against others only
with a self-serving purpose, the system as a whole could eventually reach a harmonic
balanced state where the allocation of resource is efficient, stable, and arbitrage-free
(which means that no one can benefit from the “misdistribution” of the resource).
Note that during the process of evolution to this state, agents could neither have been
told about the actual amount of the resources in a specific place, nor could they have
any direct and full communications, just as if there were an “invisible hand” [28]
directing them to cooperate with each other. Then, does this invisible hand always
work? In practice, there is plenty of evidence that the invisible hand does have
very strong directing power in places such like financial markets, though sometimes
it fails to work. Such temporary ineffectiveness implies that there must be some
basic conditions required for the invisible hand to exert its full power. Through an
experimental and numerical study with a market-directed resource allocation game
(MDRAG, which is an extended version of the MG model), we found that agents
equipped with heterogeneous preferences, as well as a decision-making capacity
which matches the environmental complexity, are sufficient for the spontaneous
realization of such a harmonic balanced state.

Table 8.1 Results of GAME-I [7]

Session Group Round M1 M2 M3 〈N1〉 〈N2〉 〈N3〉
1 A (N = 12) 1–10 3 2 1 5.3 4.6 2.1

2 A (N = 12) 1–10 3 2 1 5.5 3.8 2.7

3 B (N = 12) 1–10 3 2 1 5.5 4 2.5

4 C (N = 24) 1–20 3 2 1 12.2 7.4 4.4

5 D (N = 10) 1–10 5 3 – 6.1 3.9 –

6 D (N = 10) 1–10 3 1 – 7.4 2.6 –



8.2 Controlled Experiments 117

Table 8.2 Results of GAME-II [7]

Session Group Round M1 M2 〈N1〉 〈N2〉
1 D (N = 10) 1–10 2 1 6.2 3.8

2 E (N = 10) 1–10 1 3 3.3 6.7

3 F (N = 11) 1–10 3 1 7.2 3.8

3 F (N = 11) 11–20 3 1 8.3 2.7

4 C (N = 24) 1–15 7 1 17.8 6.2

4 C (N = 24) 16–30 7 1 21.1 2.9

8.2 Controlled Experiments

To illustrate the system behavior, we designed and conducted a series of economic
experiments, collaborating with university students. In the experiments, 89 students
from different (mainly physics, mathematics, and economics) departments of Fudan
University were recruited and randomly divided into seven groups (Group A–G,
see Tables 8.1, 8.2, 8.3, and 8.4). The number of students in each group was set for
convenience and denoted by N in Tables 8.1, 8.2, 8.3, and 8.4. In the games played in
the experiments, students were told that they have to make a choice among a number
of rooms, in each round of a session, for sharing the different amounts of virtual
money in different rooms. Students who get more than the global average, namely
those belonging to the relative minority, would win the payoff. At the beginning of
a session, subjects were told the number of rooms (2 or 3), and in some cases the
different but fixed amount of virtual money in each room. In the following, Mi is
used to denote the amount of virtual money in room i . A piece of global information,
about the payoff in the preceding round in all rooms, is announced before a new
round starts. In each round, the students must make their own choices without any
kind of communication. The payoff per round for a student in room i is 2 points if
Mi/Ni >

∑
Mi/N , and −1 point otherwise. Here Ni is the number of the students

choosing room i . The total payoff of a student is the sum of payoffs of all rounds
which will be converted to money payoffs in RMB with a fixed exchange rate. Since
the organizational and statistic procedures were done by humans, one session of
10 rounds took roughly 20 minutes. More details can be found in the leaflet to the
experiment with nine items:

1. A group of subjects are taking part in this experiment. The game situation is the
same for each subject. In the experiments, no kind of communication is allowed.

2. At the beginning of the game, all of you will be told the kind of game (GAME-I,
GAME-II or GAME-III), as well as the total number of subjects (N ), rooms (2
or 3) and play rounds, respectively.

3. In each round of the game, you have to choose and enter one of the rooms. The
amount of virtual money in each room is different but fixed, represented by Mi

(i = 1, 2, . . .).
4. You will be told each Mi (only in GAME-I).
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Table 8.3 Track of 11 subjects in group F (N = 11) converging to M1/M2 = 3 [7]

Round N1 N2 Round N1 N2

1 5 6 11 8 3

2 9 2 12 10 1

3 4 7 13 9 2

4 6 5 14 7 4

5 6 5 15 9 2

6 7 4 16 7 4

7 7 4 17 7 4

8 8 3 18 9 2

9 10 1 19 8 3

10 10 1 20 9 2

5. In each round, you can choose a room to share the virtual money in it and get your
quota, Mi/Ni , if you select room i . Here Ni denotes the total number of subjects
in room i .

6. You may make a new room choice in every round.
7. Your payoff per round: After the statistics of each round is done, you will receive a

payoff which depends on the relation between your quota and the global average:

payoff per round =
{

2 points, if Mi/Ni >
∑

Mi/N
−1 point, otherwise

.

8. Your information per round:

• The current round number;
• Ni of each room in the preceding round (only in GAME-I, announced by the

game organizer);
• Payoff (2 or −1) of each room in the preceding round (announced by the game

organizer);
• Your rooms chosen and payoffs got in the preceding game rounds (recorded by

yourself);
• Your cumulated payoffs (calculated by yourself).

9. The initial capital of each subject is 0 point. The exchange rate is 1 RMB per
(positive) point.

Three kinds of games, GAME-I, GAME-II, and GAME-III, have been investi-
gated. GAME-II differed from GAME-I in the global information being announced.
In GAME-I, both the resource distribution Mi and the current population Ni in
room i were announced, while only payoffs (2 or −1) in each room of the cur-
rent round were conveyed to subjects in GAME-II. Note that the environmental
complexity was increased in GAME-II, since in order to win the game, subjects
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Table 8.4 Results of GAME-III [7]

Session Group Round M1 M2 〈N1〉 〈N2〉
1 G (N = 10) 1–5 3 1 5.4 4.6

1 G (N = 10) 6–10 3 1 8.2 1.8

1 G (N = 10) 11–15 3 1 7 3

1 G (N = 10) 16–20 3 1 7 3

1 G (N = 10) 21–25 1 3 7.8 2.2

1 (N = 10) 26–30 1 3 4.2 5.8

1 G (N = 10) 31–35 1 3 2.8 7.2

1 G (N = 10) 36–40 1 3 2.6 7.4

1 G (N = 10) 41–45 1 3 2.4 7.6

would have to predict other subjects’ decisions, in the meantime, infer the actual
amount of virtual money in different rooms. In GAME-III, the global informa-
tion is the same as that of GAME-II, except an abrupt change of amount of vir-
tual money is introduced during the play of the game without an announcement.
(On the contrary, all the subjects have already been told that each Mi is unchanged.)
No further information was given to the subjects.

Results of six sessions of GAME-I, four of GAME-II, and one of GAME-III
are given in Tables 8.1, 8.2, 8.3, and 8.4. In Table 8.1, the results of GAME-I are
listed, where the time average of the subject number in room i is represented as
〈Ni 〉. As the data shows, a kind of cooperation seems to emerge in the game within
10 rounds. In particular, ratios of 〈Ni 〉 converge to the ratios of Mi , implying that
the system becomes efficient in delivering the resource even if it was distributed in
a biased way. To the subjects, no room is better or worse in the long run, there is
also no evidence that any of them could systematically beat the resource allocation
“market.” One might naively think that the system could evolve to this state only
because the subjects knew the resource distribution prior to the play of the games,
and the population in each room during the play. However, results of GAME-II show
that this explanation could not be correct. As shown in Table 8.2, although subjects
who know neither the resource distribution nor the current populations in different
rooms, seem not to be able to adapt to the unknown environment during the first
10 or 15 rounds, eventually the relation 〈N1〉/〈N2〉 ≈ M1/M2 is achieved again
in groups C and F. For instance, Table 8.3 shows the track through which group F
gradually found the balanced state under the environmental complexity M1/M2 = 3.
Furthermore, the results of GAME-III support the conclusion of GAME-II, in which
the system can reach this state even with an abrupt change of the unknown resource
distribution during the play of the game, see the results of 21–45 rounds played by
the G group in Table 8.4. It is surprising that subjects can “cooperate” even without
direct communications as well as the information of the resource distribution. We
can define the source of a force which drives the subjects to get their quota evenly
as the “invisible hand” of the resource allocation market. In the sequel, however, we
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Table 8.5 A typical strategy
table [7]

Economic situations Choices

1 0

2 1

3 1

· · · · · ·
P − 1 0

P 1

shall show that the effectiveness of this invisible hand relates to the heterogeneous
preference and the adequate decision-making capacity of the subjects of the game.

8.3 Agent-Based Modeling

To find the mechanism behind this adaptive system of resource distribution, two
multiagent models are used and their results are compared with each other. The first
model is the traditional MG, while the second one is an extended MG called as
Market-Directed Resource Allocation Game (MDRAG). MG and MDRAG have a
common framework: There are N agents who repeatedly join a resource allocation
market. The amounts of resource in two rooms are M1 and M2, respectively. Before
the game starts, each agent will choose S strategies to help him/her make decision
in each round of play. The strategy used in MG and MDRAG is typically a choice
table which consists of two columns, as shown in Table 8.5. The left column is for the
P possible economic situations, and the right side is filled with the corresponding
room number, namely room 0 or room 1. Thus, if the current situation is known,
an agent should immediately choose to enter the corresponding room. With a given
P , there are totally 2P different strategies. At each time step, based on a randomly
given exogenous1 economic state [124], each agent chooses between the two rooms
with the help of the prediction of his/her best scored strategy. After everyone has
made a decision, agents in the same room will share the resource in it. Agents who
earn more than the global average (M1 + M2)/N become the winners, and the room
which they entered is denoted as the winning room. To a strategy in the game, a unit
of score would be added if it had given a prediction of the winning room, whether it
was actually used or not.

On the other hand, MDRAG differs from MG in the strategy-building procedures.
In traditional MG, agents “randomly” choose S strategies from the strategy pool of
2p size. Here “randomly” means that each element of the right column of a strategy
table is filled in with 0 or 1 equiprobably. Using this method, strategies of different
preferences will have a binomial distribution. Here the preference of a strategy is
defined as the tendency or probability with which a specific room will be chosen when

1 The alternative is the use of endogenous binary history of the game results as the economic
situations. We have confirmed that there would be no change in the simulation results.
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the strategy is activated. For a large P , the number of 0 and the number of 1 in the right
column are nearly equal. Hence, globally there would be no preference difference
among agents who uniformly pick up these strategies. In MDRAG, however, we use
a new method to fill the strategy table to introduce heterogeneous preferences to
the agents. First, K (0 ≤ K ≤ P) denoting the number of 0 in the right column is
randomly selected from the P + 1 integers. In other words, strategies with different
preferences (different values of K ) are chosen equiprobably from the strategy pool.
Second, each element of the strategy’s right column should be filled in by 0 with the
probability K/P , and by 1 with the probability (P − K )/P . It is clear that a strategy
with an all-zero right column can be picked up with the probability 1/(P + 1) in
MDRAG, while this could happen only with a probability of 1/2p in the traditional
MG and practically could never be chosen by any MG agent if N S � 2p.

To make descriptions easier to understand, explanations of the model parame-
ters are provided. The ratio M1/M2 represents the environmental complexity of the
games. Note that if M1/M2 = 1, agents need only to worry about other people’s
decision. Assuming that room 1 always contains more resource, the trivial case will
be M1/M2 > N − 1, since all the agents can easily find out that going to room 1
would be the right choice under this situation. On the other hand, when the ratio is
set 1 < M1/M2 ≤ N − 1, the larger this ratio is, the more difficult it would be for
the market to direct the system to the ideal state. Other parameters concern with the
decision-making capacity, which can be generalized into three elements (http://plato.
stanford.edu/entries/decision-capacity/), namely (i) the possession of a set of values
and goals necessary for evaluating different options; (ii) the ability to communicate
and understand information; (iii) the ability to reason and to deliberate about one’s
choices. The first element has already been built in both the models as the evaluation
of the strategies with the minority-favorable payoff function. The second element
relates to the model parameter P . Since the total number of possible situations is
dependent on the completeness of the perception of the world, we relate it to the
cognition ability. Finally, more strategies could be helpful if one needs to deliber-
ate his/her choices of decisions, hence the strategy number S is related to the third
element of the decision-making capacity, the ability of choice deliberation.

8.4 Results

Results of the economic experiments are compared with the simulation results of
the traditional MG and MDRAG in Fig. 8.1. For each parameter set, we performed
the simulation 200 times. In each of these simulations, the code was run over 400
time steps. The first half of the time evolution is for the equilibration of the system,
while the remaining half is for the statistics. With a certain set of parameters (S = 8
and P = 16), MDRAG’s results perfectly agree with the experimental data under
a higher environmental complexity. In other words, agents in both experiments and
MDRAG can be directed by the market to cooperate with each other, so that an
efficient allocation of the biasedly distributed resource can be realized even without
giving the agents full information or instructions. On the other hand, the traditional

http://plato.stanford.edu/entries/decision-capacity/
http://plato.stanford.edu/entries/decision-capacity/
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Table 8.6 Performances of MDRAG and MG in 3-room cases [7]

Resource MDRAG MG

M1 M2 M3 〈N1〉 〈N2〉 〈N3〉 〈N1〉 〈N2〉 〈N3〉
1 1 1 39.9 40.3 39.8 39.2 41.5 39.3

1 2 3 19.7 40.1 60.2 25.1 40.7 54.2

1 4 7 9.6 40 70.4 24.8 40.4 54.8

1 2 9 9.8 19.6 90.6 29.3 33.8 56.9

MG fails to reproduce the experimental results unless the distribution of resource
is biased very weakly up to M1/M2 = 3. Note that MDRAG differs from MG
solely in the introduction of heterogeneous preferences in the strategies; hence one
may infer that the heterogeneity of agents’ preferences is a significant factor to
have the “invisible hands” to be effective. This argument is further supported by
numerical experiments in the 3-room cases (with parameters P = 24, N = 120
and S = 10). Again, here MDRAG is superior to MG in bringing out the directing
power of the market. Shown in Table 8.6, the ratio of 〈N1〉 : 〈N2〉 : 〈N3〉 converges
to M1 : M2 : M3 only in the equilibrium states of MDRAG.

Figure 8.1 also shows that the decision-making capacity, in particular the delib-
eration of choices (the parameter S), would be another factor having influence on
the effectiveness of the invisible hand. Typically, as the environmental complexity
(M1/M2) increases, both MG and MDRAG will deviate from the experimental re-
sults. Nevertheless, the problem of MG is much severe. As shown in the figure, even
MG with extremely large S (S = 48, a situation which is inconsistent with the real
system and will drastically increase the computational cost) can just work at a very
low level of environmental complexity. At the same time, the result of MDRAG
provides a perfect fit with the experimental data when S is large enough, but not too

Fig. 8.1 〈N1〉/〈N2〉 as func-
tions of M1/M2, P = 16
in MG and MDRAG, and
N = 24 for all the simu-
lations and the experiment.
Simulations are run 200 times,
each over 400 time steps
(first half for equilibration,
the remaining half for sta-
tistics). The line with slope
= 1 indicates the efficient
states: 〈N1〉/〈N2〉 = M1/M2.
Adapted from Ref. [7]
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large for a given P value (the reason will be explained in the following discussion).
In other words, MG does not provide a good fit even for large S, while MDRAG can
fit the data with less demanding condition in terms of computational cost.

8.5 Discussion and Conclusions

Through a large number of numerical simulations, we have found the dependence
of equilibrium states of the system on the model parameters, together with a number
of phase transitions in the models. To explore in detail, three parameters are de-
fined which describe system behaviors in three aspects, namely efficiency, stability,
and predictability. First, the efficiency of resource allocation can be described as
e = |〈N1〉/〈N2〉 − M1/M2|/(M1/M2). Note that 0 ≤ e < 1 and a smaller e means
a higher efficiency in the allocation of the resource. The stability of a system can
be described by σ 2/N ≡ 1

2N

∑2
i=1〈(Ni − Ñi )

2〉, which denotes the population

fluctuation away from the optimal state.2 Here Ñi = Mi N/
∑

Mi , and 〈A〉 is the av-
erage of time series At . The predictability is related to H ≡ 1

2N P

∑P
μ=1

∑2
i=1〈Ni −

Ñi |μ〉2, in which 〈A|μ〉 is the conditional average of At given that μt = μ, one of
the P possible economic situations. If σ 2/N �= H , it means that agents may take
different actions at different times for the same economic situation (namely the mar-
ket behavior is unpredictable). For clarity, we describe the predictability of system
by defining J = 1 − H N/σ 2. It is obvious that 0 ≤ J < 1 and a smaller J means
higher predictability.

The variation of system behavior along with the change in environmental com-
plexity M1/M2 is shown in Fig. 8.2. As shown in Fig. 8.2a, the system changes from
an efficient state into an inefficient state at some critical value (M1/M2)c ∼ S. For
other values of P , the system behavior keeps the same as long as P is larger than
M1/M2. In Fig. 8.2b, around the same critical value of M1/M2, σ 2/N changes from
a decreasing function to an increasing function, giving the smallest fluctuation in the
population distribution at the critical point. Meanwhile, the order parameter J also
falls to zero at (M1/M2)c, suggesting that a phase transition, called the “M1/M2
phase transition,” occurs at this critical point. To be more illustrative, when the en-
vironmental complexity is smaller than the critical value, the system could reside in
an efficient, unpredictable, but relatively unstable state. Getting closer to the phase
transition point, the stability of system will be improved until the most stable state
is reached. Then after crossing the critical point, the decision-making capability of
the whole system is exhausted and it will fall into an inefficient, predictable, and
unstable state. At the vicinity of the critical point, as if participants of the game are
worried about being eliminated from the competition, the market inspires all of its
guiding potential and leads the system to the ideal state for resource allocation, a
state that is both efficient and stable and where no unfair arbitrage chance can exist.

2 Large fluctuations in populations can cause a higher dissipation in the system. Hence an efficient
and stable state means an optimal state with a low waste in the resource allocation.
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(a)

(b)

Fig. 8.2 The “M1/M2 phase transition” in MDRAG, for N = 100, P = 64, and S = 8. Simulations
are run 300 times, each over 400 time steps (first half for equilibration, the remaining half for
statistics). The dashed line denotes M1/M2 = 8. a e as a function of M1/M2. b σ 2/N and J versus
M1/M2, respectively. Adapted from Ref. [7]

It is important to know that MDRAG and MG have totally different phase struc-
tures, which could be analyzed by comparing the S − P contours of the descriptive
parameters for the two models, see Fig. 8.3. From the analysis, we could also know
how the decision-making capacity influences the overall performance of the resource
allocation system, in case the environmental complexity is fixed (M1/M2 = 4).
Features of the contour maps (Fig. 8.3) are summarized as the following (different
M1/M2’s do not change the conclusions):

(i) Comparing with the traditional MG as a whole, MDRAG has a much wider
range of parameters for the availability of efficient, stable, and unpredictable
states. In particular, there is almost no eligible region in Fig. 8.3a if we take the
criterion of efficiency as e < 0.08. Also, the predictable region (J < 0.02) in
Fig. 8.3f is smaller than the MG’s results in Fig. 8.3c. These facts indicate that
MDRAG has a better performance than MG as a resource allocating system.

(ii) Patterns of the contour maps suggest that MG and MDRAG have totally differ-
ent dependencies on parameters. Figure 8.3a–c indicates that P and S are not
independent in the traditional MG model, which confirms the previous findings
[20]. On the other hand, in MDRAG, there is always a region where the system
behavior is almost controlled by the parameter S. In Fig. 8.3d, for large enough
P , the system can reach the efficient state if S exceeds a critical value Sp, where
Sp will converge to the limit value M1/M2 with increasing P . For S < Sp, the
system can never reach the efficient state no matter how P changes. For a very
large P and S < M1/M2, it can be proved that the probability for agents to
enter the richer room is S/(S + 1), so that the system stays in the inefficient
states (〈N1〉/〈N2〉 < M1/M2).
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(a) (b) (c)

(d) (e) (f)

Fig. 8.3 S − P contour maps for different parameters on log–log scales with N = 80 and
M1/M2 = 4. For each data point, simulations are run 50 times, each over 400 time steps (first
half for equilibration, the remaining half for statistics). a–c are e, σ 2/N , and J as functions of S
and P in MG, respectively. d–f are e, σ 2/N , and J as functions of S and P in MDRAG, respectively.
Regions filled with slash shadow denote the predictable states. Adapted from Ref. [7]

(iii) Observing Fig. 8.3d, f, one may find both an “S phase transition” and a “P
phase transition.” As mentioned above, for large enough P , the increase in S
can abruptly bring the system from the inefficient/predictable phase to the ef-
ficient/unpredictable phase, which is called “S phase transition.” On the other
hand, in the narrow region where S < M1/M2, the increase in P can also pro-
duce a drastic change from the unpredictable to the predictable phase, which
is called “P phase transition.” The existence of the “S phase transition” can be
explained by the fact that the number of available choices in decision-making
is a key factor for agents to find the right choice from strategies with an ade-
quate heterogeneity of preferences. But for S 
 P , it will also cause a slight
decrease in the efficiency because of the conflicts in the different predictions
from the equally good strategies with the same preference. This explains why
“MDRAG, S = 48” performs worse than “MDRAG, S = 8” when P = 16
in Fig. 8.1. The “P phase transition” reflects that for some incompetent ability
of choice deliberation, a critical value of the cognition ability can enhance the
decision-making capacity to match the environmental complexity.

(iv) It is also noteworthy that the parameter α = 2p/N , which is the main con-
trol parameter in the MG model [1, 87], no longer controls the behavior of
the MDRAG system. Varying N while keeping M1/M2 as a constant, the ba-
sic feature, especially the critical position of the contour maps, will remain
unchanged.
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In aspects of the competition for resources, the feed of global information and
the inductive optimization of strategies, both MG and MDRAG may be regarded
as eligible models for the economic experiments. However, MG fails to reproduce
experimental results in most cases. By simply accommodating a broader preference
distribution of the strategies, MDRAG fits the experimental results without any co-
ordinating capability of the agents. This enables us to comment on the possible
mechanism of the “invisible hand,” and conditions under which the complex adap-
tive systems will spontaneously converge to the efficient states. The most important
thing for the “invisible hand” to work is that different subjects of the economic
games should have different preferences, just like the agents in the MDRAG model
who have heterogeneous preferences in their strategies. Next, the subjects should
also own an adequate capacity of decision-making which matches the complexity
of the environment. From the M1/M2 phase transition in the MDRAG simulations,
we could infer that there would be a failure in achieving the balanced efficient state
if the game of experiment were designed too complicated, e.g., too many rooms or
too biased distribution of the virtual money. Nevertheless, for the MDRAG model
itself, since the model parameters can be tuned freely, we believe that the market
directing power can always be brought out completely in this paradigm as long as
the computational power is enough. To put it further, when the experiment happens
to be set at the critical range of subjects’ decision-making capacity, just like a finely
tuned MDRAG where parameters are set to be critical values of the phase transitions
mentioned above, an idealized state of the resource allocating system can be real-
ized, namely the system is efficient, stable, and unpredictable. For example, see the
overlapped regions for small e, small σ 2/N and finite J in Fig. 8.3d–f.

Finally, although these intriguing conclusions are supported by the results of
MDRAG simulations, there are still some important effects in the real world not
included in the model, such as the difference in the decision-making capacities among
the agents and the agents’ responses to changes of the environment. One challenging
task is to consider a suitable relation between agents’ behavior and the distribution
of resources (M1/M2) which may have an influence on the dynamic behavior of the
whole system.



Chapter 9
Business Cycles: Competition Between Suppliers
and Consumers

Abstract Drastic fluctuations of economic indices (stock market indices, gross
domestic product, inflation rates, etc.) are a common phenomenon from country
to country. Such economic fluctuations often contain the periodicity of boom and
bust, thus forming business cycles. Then searching for the origins of business cycles
has received extensive attention in the literature. Although controlled human exper-
iments in the laboratory offer a direct way to reveal causalities, researchers have
seldom been able to use such experiments to directly study business cycles because
of the complexity of human systems. Here we propose a free-competition market,
which consists of two types of alternative products to trade with, and then recruit
human subjects into the market to do a series of controlled experiments. Strikingly,
business cycles emerge in this market, which is due to the endogenous competitions
among the subjects (acting as suppliers and consumers) with heterogeneous prefer-
ences and a decision-making capacity that matches with environmental complexity.
The accompanying agent-based simulations also confirm the emergence of busi-
ness cycles, thus generalizing our experimental results beyond specific experimental
conditions. Moreover, we reveal that by changing the adaptability level of agents,
the business cycles undergo a new phase transition from a nonstationary fractional
Brownian motion to a stationary fractional Gaussian noise. This chapter should be
of value to different disciplines, such as physics, economics/finance, complexity
science, and sociology.

Keywords Free competition market ·Business cycle ·Economic fluctuation ·Phase
transition

9.1 Opening Remarks

The preceding chapter helped to reveal a kind of cooperation, the invisible hand, in a
single system. The mechanism lies in free competitions between subjects for sharing
fixed amount of resources. But, what happens if the amount of resources is no longer
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fixed? This is the topic of this chapter. We shall show the emergence of business
cycles.

It is common sense that economic indices like gross domestic products, infla-
tion rates, and stock market indices always evolve with fluctuations [59, 125, 126].
The fluctuations can be classified as noises and drastic fluctuations [48]. Noises are
inevitable, which come from a large number of stochastic processes in human soci-
ety; drastic fluctuations are caused by fundamental changes in a country’s economy,
which can lead to either a huge craze or a deep depression in the populations. Through
a long historical view, one can see that drastic economic fluctuations usually form
so-called business cycles with a periodicity of boom and bust [127, 128] (e.g., the
bust may be closely related to the 1997 Asian financial crisis, the bursting of dot-com
bubbles in 2001, or the recent subprime mortgage crisis which triggered the global
recession of 2008). Clearly, to study the microscopic dynamics of business cycles is
of particular importance [129]. First, it may uncover the general basic mechanisms
under the evolutions of economic indices in different countries. Second, it may help
to predict the emergence or the burst of bubbles so as to prevent economic crises.
However, by reviewing the literature on business cycles, we find that most research
has only studied some factors empirically that may affect the properties of business
cycles [130, 131], or have put particular emphasis on technical methods of analyzing
the time series of business cycles [50, 132]. Understanding the dynamics of business
cycles is still far from satisfactory [129].

In the research on complex adaptive systems like human society, one can
see that bottom-up modeling is usually an efficient method to study the micro-
scopic dynamics under the macroscopic phenomena appearing in the systems
[115, 133, 134]. Generally, microscopic entities in bottom-up modeling can either
be real human subjects or virtual agents with artificial intelligence. The former par-
ticipate in controlled human experiments [7, 9, 11], while the latter compose agent-
based models [119, 135]. Due to the following reasons, we believe that the bottom-up
approach is a reasonable choice to study business cycles as well. (1) For most products
or financial assets, there are a large number of suppliers and consumers in the asso-
ciated market. (2) The interactions among the suppliers and consumers are usually
complex and cannot be easily described by simple stochastic processes. (3) Intu-
itively, business cycles are caused by fundamental changes in a country’s economy.
However, tracing back to the very beginning, it is the transformation of behaviors
of the suppliers and consumers that leads to the overall changes in the economic
indices.

Therefore, in this chapter, we design a free-competition artificial market with two
types of alternative products to trade. The participants in the market are divided into
two groups, namely suppliers and consumers. Every supplier chooses which type of
products to produce, while every consumer has to decide on which to buy, in order to
maximize his/her own utility. As mentioned above, the participants can be real human
subjects or virtual agents. So, we recruit students from Fudan University and conduct
a series of controlled experiments in this market. Then we also construct an associated
agent-based model. In both the human experiments and the agent-based model, it is
found that business cycles can be generated naturally through interactions among the
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Fig. 9.1 A sketch showing the design of our artificial market. There are two types of products
trading freely in the market, Product 1 and Product 2. Participants are divided into two groups,
suppliers and consumers. Every supplier should choose which type of products to produce, while
every consumer has to decide which to buy. Obviously, to maximize their own utilities, suppliers
prefer to produce those products that sell at a higher price, while consumers like to buy those that
come cheaper. Adapted from Ref. [136]

participants. Thanks to the flexibility of the agent-based modeling method, we also
investigate the influence of agents’ adaptability on the generation of business cycles
in the simulations. Interestingly, by changing the adaptability level of agents, it is
shown that business cycles undergo a phase transition from a nonstationary fractional
Brownian motion to a stationary fractional Gaussian noise. This may help us to better
understand the microscopic dynamics of business cycles in human society.

9.2 The Design of an Artificial Market

Figure 9.1 shows a sketch of our market design. To order to wipe off unrelated factors
in the study of business cycles, we built a simple free-competition artificial market
described as follows.

1. The market is an isolated system without interference from outside. Hence, if the
phenomenon of business cycles emerges in this system, it can only be attributed
to the interactions among the market subjects.

2. There are two types of alternative products in the market, Product 1 and Product
2, which can be traded freely. The word “alternative” here means that the general
functions of the two types of products can be seen as nondistinctive, for example,
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umbrella and raincoat, desktop computer and laptop computer, similar stocks in
the same stock sector, etc.

3. The subjects in the market are divided into two groups, suppliers and con-
sumers. The total number of suppliers is denoted as M , while N is the total
number of consumers. The suppliers can choose the type of products to pro-
duce, while the consumers can decide which to buy. The number of suppli-
ers for Product 1 or Product 2 is denoted as M1 or M2 respectively with
M = M1 + M2. Similarly, the number of consumers for Product 1 or Prod-
uct 2 is N1 or N2 with N = N1 + N2.

4. We assume that one supplier produces one unit of the type of products he/she
chooses, and one consumer only purchases one unit of the associated type of
products. Hence, M1 (or N1) denotes the amount of supply (or demand) for
Product 1, while M2 (or N2) represents the amount of supply (or demand) for
Product 2.

5. Since the two types of products are alternatives, it is obvious that
M1/N1 = M2/N2 is the balanced state for the market. If M1/N1 > M2/N2,
Product 1 is cheaper than Product 2. Hence, in this situation, suppliers producing
Product 2 and consumers buying Product 1 make the right choices. In contrast,
for M1/N1 < M2/N2, suppliers for Product 1 and consumers for Product 2 are
the winners because now Product 2 is cheaper. For the two types of products,
it is clear that, to maximize their own utilities, suppliers prefer to produce that
which sells at a higher price, while consumers like to buy that which is cheaper.

6. The time in the market is discretized. One time step may represent 1 week, 1
month, etc. Every consumer has to decide the type of products to purchase at
each time step. However, suppliers cannot alter their product lines so frequently,
thus they will make a choice at a longer timescale. This setting is specified later
in the description of our human experiments and agent-based simulations.

7. To eliminate herd effects in the market, we rule that at each time step subjects
should make decisions independently, which means no kind of communication
is allowed.

9.3 Human Experiments and Results Analyses

9.3.1 Scenario of Human Experiments

Here we describe the specific settings of our controlled human experiments. In the
experiments, about 50 students from Fudan University were recruited to trade in
our market via a local area network (the number of subjects has small fluctuations
because a few students joined in the middle of the experimental process, which in
fact does not affect the final statistical results). The students were randomly assigned
to two groups, suppliers and consumers, before the experiment started. As mentioned
above, consumers make a choice at every time step. For suppliers, the experiment is
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Fig. 9.2 The results of the controlled human experiments. Blue points stand for the percentage of
consumers who decide to buy Product 1 (i.e., N1/N ), while red for that of suppliers to produce
Product 1 (i.e., M1/M). In the experiment, �T is set as 10, 6, and 3 accordingly for the three
successive stages. There are several errors caused by students who attend in the middle of the
experiments. Due to technical problems, from Round 31 there should be one round of 10 time steps
followed, but in fact the round was conducted by actually 11 time steps; similarly, from Round
76, there should be one round of 6 time steps but actually the round had 7 time steps. However, it
should be noted that these errors did not affect the statistical results of the experiments. Adapted
from Ref. [136]

divided into three stages, each of which lasts about 40–50 time steps. In each stage,
we define one round as �T time steps. The suppliers can choose the type of products
to produce at the beginning of one round and then they should produce one unit of
the products at one time step until the round ends. The values of �T for the three
stages in a series are set as 10, 6, and 3 accordingly, in the experiments. At every
time step, the suppliers choosing to produce the type of products that sell at a higher
price, or the consumers buying the other type of products that come cheaper, get one
point each. To give the subjects incentives for better performance, we announced
before the experiments that the students could exchange their total points into cash
and the top 3 subjects could also win an additional cash reward after finishing all the
experiments. After several warm-up steps for the students to get familiar with the
market rules, our experiments were finally conducted for 127 time steps.

Figure 9.2 shows the evolution of the percentage of consumers to buy Product 1
(i.e., N1/N ) as well as the percentage of suppliers to produce Product 1 (i.e., M1/M)
during the 127 experimental time steps. It can be seen that N1/N fluctuates around
M1/M regardless of how M1/M changes after each round. One can also see that a
rise in the value of M1/M in one round is usually followed by a drop in its value in the
next round. To make the patterns of N1/N and M1/M clearer, more data processing
is carried out in the next two subsections.
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(a) (b)

(c) (d)

Fig. 9.3 The smoothing regression and the frequency spectrum analysis on the experimental data.
a and c show the local linear kernel regression results for the two experimental time series, N1/N
and M1/M (shown in blue), respectively. The smooth kernel part f (t) (shown in red) and the noisy
residual part εt (shown in green) are separated from the two original series accordingly. b and
d show the spectral analysis results for the two series. The prominent peaks, f2, f3 and f4, are
trivial because they are related to the round length �T set manually in the experiments. However,
the smallest frequency f1 is intrinsic which emerges only from the interactions among the human
subjects. Adapted from Ref. [136]

9.3.2 Smoothing Regression

As mentioned above, fluctuations can be classified as noises and drastic fluctuations.
To check whether business cycle phenomenon exists in the experimental time series
of N1/N and M1/M , it is obvious that noises should be eliminated at first from the
two series accordingly. Therefore, here we adopt the linear kernel smoothing method,
which is commonly used in image processing to obtain the regression results for the
two time series as shown in Fig. 9.3 (details of the linear kernel smoothing method
can be found in Part I of Supplementary Materials at the end of this chapter). In
Fig. 9.3a and c, the “residual” part separated by the smoothing method shows the
noises and the extracted “kernel” part gives the nontrivial information about the
drastic fluctuations for the two series respectively. Next, we analyze the “kernel”
parts of the two time series to find business cycles.
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9.3.3 Frequency Spectrum

Spectral analysis is adopted here to find whether business cycles emerge in the
two experimental time series of N1/N and M1/M . By using the discrete Fourier
transform (see Part II of Supplementary Materials) on the extracted kernel parts,
we finally obtain the frequency spectrums for the two series as shown in Fig. 9.3b
and d. The prominent peaks are labeled by the corresponding frequency values in
the two subfigures. It should be noted that f2, f3, and f4 in the two subfigures are
trivial because these frequencies are related to the round length �T which is set
previously as 10, 6, and 3 successively, with an approximate relation of fi = 1

2�T ,
for i = 2, 3, 4. However, the smallest frequency f1 = 0.016 (round−1) in the two
subfigures refers to an intrinsic periodicity under the two kernel series respectively.
Hence, we call this frequency the intrinsic frequency, which emerges only from the
interactions among the human subjects.

Although business cycle phenomenon shows clearly in our controlled human
experiments, it should be noted the experiments inevitably have some shortages.
First, the number of human subjects and the time steps conducted in the experiments
are limited. Second, the round length �T is set manually by the directors of the
experiments, but a better way should be that suppliers can decide �T on their own.
To overcome these shortages, we further build an agent-based model accordingly on
the market which is discussed in the following section.

9.4 Agent-Based Modeling and Results Analyses

9.4.1 Agents’ Decision-Making Process

The decision-making process for the agents in our model is modified based on that
in the market-directed resource allocation game [1, 7, 11]. Before trading in the
market, every agent should create S strategies first. A particular strategy is shown
in Table 9.1. The left column represents the P situations and the right offers the
associated choice, one for Product 1, and zero for Product 2. For each agent’s S
strategies, he/she will first draw a random integer L from the range [0, P], and
then fill 1 in the “Choice” column with a probability of L/P and hence zero with
(P − L)/P . At a time step, a situation Pi is drawn randomly from the range [1, P]
to represent the current situation. If an agent’s strategy gives the right choice under
the situation at this time step (namely, for suppliers, the strategy suggests to sell the
type of products with a higher price, or for consumers, to buy the other type that
comes cheaper), the performance of the strategy will be added one point accordingly
whether it is used or not. Every supplier or consumer will use his/her highest-scored
strategy when he/she has to make decisions in the market. And if there is more than
one strategy that ties for the best performance, the agent will randomly choose one
from them.
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Table 9.1 A particular strategy Situation Choice

1 0

2 1

3 0

. .

. .

. .

P − 1 1

P 1

Similar to the human experiments, consumers in the agent-based model should
choose which type of products to buy at each time step. However, artificial sup-
pliers will have the ability to determine the round length �T on their own. It is
easy to understand that if the market is generally in the balanced state, namely
M1/N1 = M2/N2, no supplier can gain any excess profits any longer, so now the
suppliers will prefer to make a change. Therefore, we define an arbitrage index (AI)
[137, 138] for the suppliers, which is derived from the Shannon entropy (Sect. 2.5),
as AI = 1 + ∑2

i=1 pi log2 pi , where pi = 〈Mi /Ni 〉〈M1/N1〉+〈M2/N2〉 and 〈. . .〉 stands for the
average of . . . from the last time step denoted as tr when the suppliers are able to
make new choices to the current time step t . Clearly, AI ∈ [0, 1] and a lower value
of AI means that the market is closer to the balanced state. In the model, we suppose
that suppliers will make new choices from the two types of products once the value
of AI drops below a warning value.

The numbers of suppliers and consumers are set equally in all the simulations,
namely M = N = 100. For the same parameter settings (i.e., the values of S and
P , and the warning value of AI) of the model, a simulation with 5,000 time steps
will be repeated 20 times to do the statistical analyses. Figure 9.4 shows segments of
N1/N and M1/M series from time step 3,000 to 4,000 with S = P = 32 with the
warning value of AI being 0.2. The patterns are similar to what we have seen for the
experimental results in Fig. 9.2. By applying the linear kernel smoothing method on
the simulated N1/N and M1/M series, we obtain Fig. 9.5a and c. The “kernel” parts
also show a degree of periodicity in the two series. In order to show the periodicity
clearly in the frequency domain, we again use the discrete Fourier transform on the
“kernel parts” of the two series. Several prominent peaks are shown in Fig. 9.5b and
d which indicate that business cycle phenomenon can also occur in our agent-based
model. We can see that the smallest peak frequency (i.e., f1 in the Fig. 9.5b and d)
is much lower than the ones in the experimental results (as shown in Fig. 9.3b and
d), which is due to the different adaptability levels of the human subjects and virtual
agents. Besides, the warning value of AI can also affect the simulated business cycles,
which will be discussed in the analyses followed.

http://dx.doi.org/10.1007/978-3-662-44234-0_2
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Fig. 9.4 The N1/N and M1/M series generated by our agent-based model with S = 32, P = 32
and the warning value of AI being 0.2. The simulation results are only shown from time step 3,000
to 4,000 here. Adapted from Ref. [136]

(a) (b)

(c) (d)

Fig. 9.5 The smoothing regression and frequency spectrum analysis on the simulated data. a and
c show the local linear kernel regression results for N1/N and M1/M series respectively (shown in
blue). The smoothed kernel parts are shown in red and the noisy residual parts are in green. b and
d show the spectral analysis results for the two series. Each prominent peak is also labeled in the
two subfigures. Adapted from Ref. [136]

9.4.2 Stationarity Analysis

Because we are able to obtain data with much longer time steps in the simulations
than in the human experiments, more analyses can be done on the simulated series of
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N1/N and M1/M . Besides the previous adopted discrete Fourier transform method,
we also employ Periodogram method (see Part III of Supplementary Materials) to
analyze the “kernel” parts of the two series.

We know that a power-law noise, such as the pseudo-random process following
the fractional Brownian motion (fBm) or the fractional Gaussian noise (fGn), has a
power spectrum density that satisfies A( f ) ∼ 1/ f β [139, 140]. For a process of fBm,
the exponent β is greater than one, which means that the process is nonstationary
with strong persistence. In contrast, for a process of fGn, there is β < 1, which has
a property of stationarity. Therefore, β = 1 becomes the boundary between the two
types of processes with different natures.

Figure 9.6a and c show the simulated N1/N series for two sets of S and P . We
then calculate the values of the exponent β for the two series using the Periodogram
method, and it can be seen in Fig. 9.6b and d that the model with S = 60 and P = 180
is of the fGn process and the other model with S = 180 and P = 60 belongs to
the fBm process. Clearly, the business cycle phenomenon is more apparent in the
fBm process than in the fGn. Note that the parameters S and P represent the number
of strategies that an agent holds and that of possible situations he/she could face,
respectively. Obviously, a larger value of S alongside a smaller value of P stands for
a higher adaptability level of the agents compared to the environments around them.
Therefore, we can conclude that the adaptability level of the agents can affect the
stationarity and cyclicity of the system.

9.4.3 Phase Transitions

As we mentioned above, the warning value of AI can affect the properties of business
cycles. So here we first try to check how the warning value influences the exponent
β. As shown in Fig. 9.7, by increasing the warning value of AI, β abruptly drops
from the upper part with values greater than one to the lower part smaller than one.
This means a phase transition occurs from the fBm state to the other fGn state. The
difference between the models with the two different parameter settings is that the
model in which agents have higher adaptability level reaches the transition point at
a bigger warning value of AI.

To further investigate the effect of the adaptability level of the agents on the
properties of business cycles, we draw a contour map to show the relation between
β and various S and P values as in Fig. 9.8. The warning value of AI is set as 0.2 for
all the simulations. Transitions between the fBm and fGn phases for our agent-based
simulations are clearly shown at the two sides of the critical line β = 1.00. Compared
to the agents in the fGn phase, agents in the fBm phase generally have a higher value
of S alongside a lower value of P , which represents a higher adaptability level.

Therefore, we conclude that the model consisting of agents with higher adapt-
ability level (i.e., larger S values alongside with small P values) can generate more
apparent business cycle phenomenon with nonstationary fBm process (shown in



9.4 Agent-Based Modeling and Results Analyses 137

(a) (b)

(c) (d)

Fig. 9.6 Effect of the values of S and P on the business cycle properties for the simulated time
series. The parameters used in (a) are: S = 60, P = 180. And the ones used in (c) are: S = 180,
P = 60. The warning value of AI is set as 0.2 in both simulations. Each figure depicts one of 20
simulations with corresponding parameters. Only the time steps from 3,000 to 4,000 are displayed.
Clearly, series in (a) and (c) are of different natures. The former is fGn and the latter is fBm, given
the values of β shown in (b) and (d) using the Periodogram method. Since the tail part in (b) or (d),
roughly accounted for 90 % of the total points, is meaningless for our statistics, we neglect this tail
part when we do the linear fitting to get the value of β accordingly [141]. For 20 times simulations
with parameters S = 60 and P = 180, averaged β = 0.14 ± 0.09, and for that with S = 180 and
P = 60, averaged β = 2.45 ± 0.08. Adapted from Ref. [136]

Figs. 9.6 and 9.8), and the associated business cycles are more robust to the changes
in the warning value of AI for the suppliers in the model.

9.5 Conclusions

In this chapter, an artificial market with two types of alternative products has been
designed to study the microscopic dynamics under the business cycle phenomenon.
First, we have conducted a series of controlled human experiments and found that the
business cycles can be generated only through interactions among human subjects.

To overcome the shortages in the human experiment method, we have then
designed an agent-based model on the market accordingly. In the simulations, it
has been confirmed again that business cycles can emerge only from the agents’
interactions. By raising the adaptability level of the agents, phase transitions have
been found from the stationary fGn (fractional Gaussian noise) state to the nonsta-
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Fig. 9.7 The relation between the warning value of AI and the exponent β for the corresponding
simulated series. The blue points show the results for the model with S = 60 and P = 180, and
the red for the model with S = 180 and P = 60. It is clearly shown that when increasing the
warning value, the phases of both the models transfer from the process of fBm to fGn, although
with different transition points. Error bars indicate standard errors in 95 % confidence level. Adapted
from Ref. [136]

tionary fBm (fractional Brownian motion) state. Compared with the fGn state, the
business cycle phenomenon in the fBm state is more apparent and also more robust
with respect to the changes in the warning value of AI (Arbitrage Index).

In further research, an information generator can be added into the market to
broadcast good or bad news related to the products, for the purpose of investigating
the effect of the exogenous market information on the business cycles. Besides, the
herd effect on business cycles can also be studied in the framework of our market.
The market can also be modified to contain more types of products for participants
to trade with. Obviously, these modifications can be easy to carry out thanks to the
flexibility in the nature of the bottom-up approach.

Finally, this chapter is of value to a range of different disciplines such as eco-
nomics, social science, complexity science, and physics. Through this chapter, one
can see that the combination of controlled human experiments and agent-based
models have the potential to become a rigorous method to study the underlying
dynamics in complex human systems.
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Fig. 9.8 The contour map for the relation between the exponent β and the model parameters S
and P . The warning value of AI is set as 0.2 for all the simulations. The critical line of β = 1.00
is shown in the map which separates the two different phases (black solid line). The area above the
critical line is the fBm phase with mostly S > P , which indicates the associated agents have a high
level of adaptability. And the area under the critical line is the fGn phase with mostly S < P , and
the agents here are inclined to make choices randomly because of their low adaptability. Adapted
from Ref. [136]

9.6 Supplementary Materials

9.6.1 Part I: Local Linear Kernel Regression

This regression works the same as the Hodrick-Prescott filter (Sect. 2.6). Its details
are as follows.

The most popular smoothing method is the moving average method. From the
idea of moving average, centered moving average has been developed. Similarly, a
kernel used to distribute weights has also been developed for smoothing regression.
Thus, the local linear kernel regression is also called the kernel smoothing regression
derived from k-nearest-neighbors (kNN) algorithm [142].

For our human experimental series with T time steps, denoted as yt ,
t = 0, . . . , T − 1, this regression can be represented as yt = f (t) + εt , where f (t)
is an estimate for the nonparametric regression of yt and εt stands for noise fluctua-
tions [143]. Different from the kNN algorithm using the moving average value of the k
nearest neighbors for the corresponding data y0 at each time t0, the local linear kernel
regression fits these data with an optimum linear function, f̂ (t0) = α̂(t0)+ β̂(t0) · t0,
and a specific kernel function, Kh(

t j −t0
h ), j = 1, . . . , k. The h in the kernel func-

tion denotes the bandwidth, standing for the distance between the core data and its
furthest neighbor. Usually, a kernel function for estimating or regression, which is

http://dx.doi.org/10.1007/978-3-662-44234-0_2
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nonnegative, continuous, symmetric, real-valued, and integrates to one, determines
the weight distribution of the core data’s neighbors. In addition, given that logistic
distribution is commonly used for modeling discrete choices [144] and it has heavier
tails and more distinct robustness [145], we use Kh(u) = (eu + 2 + e−u)−1 as the
kernel function instead of normal distribution. Eventually, the local linear regression
process can be interpreted by solving a minimizing problem,

min
α(t0),β(t0)

k
∑

j=1

Kh(
t j − t0

h
)(y j − α(t0) − β(t0) · t j ).

Hence, the solved regression function f̂ differs with respect to the bandwidth h.
In fact, if it lacks smoothness, f̂ has bigger variance and lower bias. Otherwise, if it
smoothes too much, f̂ has smaller variance but higher bias instead. To balance the
tradeoff, it is required to minimize the mean squared error, namely

MSE( f̂ ) = Bias2( f̂ ) + Variance( f̂ ).

Using the estimating method from Bowman and Azzalini [143], the optimal hopt
can be calculated by, hopt = √

hy · ht , where the hy and ht satisfy the following
formula:

hm =
(

4

3T

) 1
5 median(|m − median(m)|)

0.6745
,

where m denotes the y or t series. After obtaining the optimal bandwidth substitute it
into the former minimizing problem to get the associated smoothed series. Compared
with Gaussian kernel function, the logistic kernel can make the extracted series
smoother with the assurance of the minimum of MSE.

9.6.2 Part II: Discrete Fourier Transform

Since the 1960s, mathematicians, statisticians, and economists have published enor-
mous articles to discuss the application of the spectral analysis in economics [125].
The fundamental idea of the spectral analysis is that, the economic time series are
believed to be the composition of a large number of sine waves with different fre-
quencies. The discrete Fourier transform is one of these spectral analysis methods.
The discrete Fourier transform converts a time series from the time domain into the
frequency domain with the aim to analyze the frequency components in that series.

For our human experimental series with T time steps, i.e., yt , t = 0, . . . , T −1, the
transformed series f (k), k = 0, . . . , T − 1, can be obtained by the discrete Fourier
transform below, and the inverse transform expression is also shown as follows:
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f (k) =
T −1
∑

t=0

yt e
2π
T i tk, 0 ≤ k ≤ T − 1,

yt = 1

T

T −1
∑

k=0

f (k)e− 2π
T ikt , 0 ≤ t ≤ T − 1.

9.6.3 Part III: Periodogram Method

The periodogram method also converts a series from the time domain into the fre-
quency domain like the discrete Fourier transform. Actually, it shows the power
spectrum density of the signal series. In signal processing, for a power-law noise
such as fractional Brownian motion (fBm) and fractional Gaussian noise (fGn), its
power spectrum density is proportional to 1/ f β . β stands for the color of a signal as
an exclusive exponent. It can be calculated as

A( f ) = 1

2πT

∣
∣
∣
∣
∣

T −1
∑

t=0

yt e
it f

∣
∣
∣
∣
∣

2

.

It gives the frequencies density distribution, where f stands for frequency and
A( f ) for its amplitude. Actually, A( f ) is proportional to f −β , indicating a power
law, so a linear fitting for a log–log periodogram can be used to get the coefficient β.



Chapter 10
Partial Information: Equivalent
to Complete Information

Abstract It is a common belief in economics and social science that if there is
more information available for agents to gather in a human system, the system can
become more efficient. The belief can be easily understood according to the well-
known efficient market hypothesis. In this work, we attempt to challenge this belief
by investigating a complex adaptive system, which is modeled by a market-directed
resource-allocation game with a directed random network. We conduct a series of
controlled human experiments in the laboratory to show the reliability of the model
design. As a result, we find that even under partial information, the system can still
almost reach the optimal (balanced) state, which was demonstrated as a result of
complete information in Chap. 8. Furthermore, the ensemble average of the sys-
tem’s fluctuation level goes through a continuous phase transition. This behavior
means that in the second phase if too much information is shared among agents, the
system’s stability will be harmed instead, which differs from the belief mentioned
above. Also, at the transition point, the ensemble fluctuations of the fluctuation level
remain at a low value. This phenomenon is in contrast to the textbook knowledge
of continuous phase transitions in traditional physical systems, namely fluctuations
will rise abnormally around a transition point since the correlation length becomes
infinite. Thus, this work is of potential value to a variety of fields, such as physics,
economics, complexity science, and artificial intelligence.

Keywords Resource-allocation system · Partial information · Complete informa-
tion · Balanced state · Continuous phase transition

10.1 Opening Remarks

In Chaps. 5–9, each subject always knows the overall competition results of all the
other subjects, which is defined as complete information herein. In reality however,
one often makes decisions according to the result of a part of a crowd (which is defined
as partial information in this chapter), rather than on the complete information. So,
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it becomes interesting to know the different effect of partial information. This is the
topic of the present chapter.

It is well known in statistical physics that there exist a lot of phase transition
phenomena, e.g., the melting of ice (classified as first-order phase transition) and the
superfluid transition (classified as second-order phase transition); both second-order
and higher order phase transitions are also called continuous phase transitions [38].
In complex adaptive systems, phase transition phenomena can be seen as well [7, 87,
146–148].

In economics and social science, it is a common belief that if more information is
distributed to agents, the associated system will be more efficient (here “more effi-
cient” means that the system is easier to lie in the optimal state and also the fluctuation
level of the system is lower). For example, the famous Efficient Market Hypothe-
sis [149] implies that market efficiency will be higher if more information is available
to investors, i.e., efficiency upgrading from the weak form to the strong form [149,
150]. In this chapter, we recheck this information effect in a complex adaptive sys-
tem related to resource-allocation problems [1, 7–10, 151] as these problems are of
particular importance. For instance, some believe governments should get involved
to guarantee that resources are distributed to places where they are needed the most,
while others think markets can use the invisible hand [28] to ensure the efficiency of
resource allocation [28, 152]. Both agent-based simulations and controlled human
experiments have been adopted to discuss these problems. In the associated artificial
system, the invisible hand phenomenon emerges as well [7]. In previous research [7],
all subjects could get access to global information to evaluate their strategies. How-
ever, in many real problems, global information is either difficult to collect or is
confidential. For example, when a company hesitates whether or not to step into an
emerging market, it is hard to know all the other competitive companies’ reactions
and, also, it would take a long time to learn about the real return on investment. There-
fore, the company can only draw up its own strategies under the currently obtained
partial information. This leads to the question: when market participants obtain only
partial information, can the invisible hand still work in the market?

To model this question, agents in our system are connected via a directed random
network and everyone evaluates his/her own performance through partial information
gathered from his/her first-order neighborhood. It is obvious that a higher connection
rate can make the system more information-concentrated. Our agent-based model
is designed on the basis of the market-directed resource allocation game [7], which
can be used to simulate the biased or unbiased resource distribution problems. We
also conduct a series of controlled human experiments to show the reliability of
the model design. We find that the system can reach the optimal (balanced) state
even under a small information concentration. Furthermore, when the information
concentration increases, the ensemble average of the fluctuation level goes through
continuous phase transition, which means that in the second phase, agents getting
too much information will harm the system’s stability (a higher fluctuation level
means a lower stability of the system). This is contrary to the belief mentioned above
(namely, it will be better for market efficiency when more information is shared). At
the transition point, the ensemble fluctuations of the fluctuation level remain low. We
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also show that when the system becomes infinitely large, this fluctuation transition
phenomenon remains. Our finding is in contrast to the textbook knowledge about
continuous phase transitions, which states fluctuations will rise abnormally around
a transition point since the correlation length becomes infinite. Thus, we call this
continuous phase transition anomalous continuous phase transition.

10.2 Agent-Based Modeling

To proceed, let us first introduce the abstract resource allocation system of interest.
The system contains a repeated game. In the game, there are N agents facing two
rooms labeled Room 1 and Room 2. Each room has a certain amount of resources,
denoted as M1 and M2 accordingly, and let M = M1 + M2. Both M1 and M2 are
fixed during the repeated game. It can be seen that our system is more general than
the famous minority game [1]; in the minority game [1], values of M1 and M2 are the
same, which is only the case of unbiased resource distribution. Agents decide at each
time step on which room to enter and then divide the resources in it evenly. Here, the
number of agents entering Room 1 or Room 2 at a time step is marked as N1 or N2
respectively (N = N1 + N2). Obviously, the goal for every agent is the same, namely
to choose the room from where they can obtain more resources. The values of M1
and M2 are unknown to all the agents. They cannot know the global values of M1/N1
and M2/N2 at each time step in the game either, which is the amount of resources
actually distributed to one agent in each room. So an agent can only evaluate his/her
performance by viewing information from his/her acquaintances. In the model, every
agent has a probability of k to make another agent into his/her group (for convenience
of description, the agent himself/herself is also included in the group). Hence, the
agents form a directed random network that is fixed during the game. At each time
step, suppose in Agent i’s group, there is M1/N i

1 ≥ M2/N i
2, where N i

1 or N i
2 is

the number of agents in his/her group that enter Room 1 or Room 2. As a result,
for Agent i , Room 1 is the winning room. However, in other agents’ eyes, Room 2
may be the winning room according to the information from their own groups. It is
obvious that if k = 1, all the agents can obtain global information. As k decreases,
the information an agent can get becomes less and less, compared to the global
information. Particularly, k = 0 means Agent i’s group has only himself/herself
inside. So now Agent i obtains no information from the other agents. Therefore,
we may say that the value of k represents the system’s information concentration,
0 ≤ k ≤ 1. Note that our system’s framework is closer to reality than that of [153].
In [153], market states are not affected by agents’ production or exchange behaviors
so that an agent can even get the exact information about what state the market will
be in before his/her decision is made.

As regards our agent-based model, what is left is the design of agents’ decision-
making process. In order to test our system under a variety of M1/M values, we adopt
the design from the market-directed resource allocation game [7], which models
biased or unbiased resource distribution problems satisfactorily. In the model, every
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Table 10.1 A particular
strategy. Adapted from
Ref. [154]

Exogenous situation Choice

1 0

2 1

3 1

. .

. .

. .

P − 1 0

P 1

agent will create S strategies before the game starts. Every strategy has two columns
and one is shown in Table 10.1. The left column is P exogenous situations (here
exogenous situations mean a combination of endogenous situations, i.e., history
tracks of the winning room one agent observes, and the other situations that affect
one agent’s decisions. It was shown in [124] that statistical properties are almost the
same for models that use either exogenous or endogenous situation strategies). For
every situation, the right column offers a choice, respectively, and here number 1 is
for the choice of Room 1 and 0 for the choice of Room 2. When an agent creates
a strategy, he/she will first randomly choose a number L from 0 to P and then fill
the number 1 in the right column of the strategy with a probability of L/P , and so
0 with a (P − L)/P probability (here we can see the difference in strategy creation
process between the market-directed resource allocation game [7] and the minority
game [1]. In the minority game, the right column of a strategy is filled in by 1 or
0 with equal probabilities, i.e., both with a probability of 0.5). The strategies are
fixed once they are created before the game start. At each time step, a particular
exogenous situation will be picked randomly from 1 to P . Every agent will use
his/her highest-scored strategy to choose rooms under the current situation. After
each time step, every agent will then assess the performance of his/her strategies
based on the partial information obtained from his/her group. For example, to Agent
i , if Room 1 is winning, all his/her strategies that offer the right choice at the given
situation will be added one point. In the simulations, we set S = 8 and P = 16. Based
on the former theoretical analysis [8], it can be calculated that now (〈N1〉/N )max =
1 − 1

P

∑
_L̃ = 1

P
[(

L̃
P+1

)S
]

= 0.911. And for M1/M ≤ (〈N1〉/N )max, namely

M1/M ≤ 0.911, the system in which agents all get access to global information (i.e.,
k = 1) can reach the optimal (balanced) state where 〈N1〉/N = M1/M . Here 〈· · · 〉
denotes the time average of · · · . Hence, we vary the value of M1/M from 0.667 to
0.9 in the simulations.

At the beginning of a repeated game, every agent randomly creates his/her S strate-
gies and a directed network is also linked stochastically. Then this micro-structure
is fixed during the game. Therefore, in our simulations, the concept of ensemble is
used to analyze the average properties of the systems that have the same parameter
settings but with different micro-structures.
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10.3 Controlled Experiments

It is well known that for a targeted system, there can be many different designs in
the agent-based modeling method. Thus, how to validate a model is crucial. One
way is to compare simulated results with field data [83, 155–159]; the other is to
do controlled experiments in laboratory systems [7, 8–10, 160]. In this research we
prefer the latter, and recruited 25 students from the Department of Physics at Fudan
University as the human subjects. The game settings are the same as our agent-based
model except that artificial agents are now replaced by human subjects. Two kinds of
money rewards are provided to give the subjects incentives: (A) Each subject will be
given one virtual point if he/she chooses the right room at each time step, and after
the experiments, the accumulative virtual points a subject wins will be exchanged for
cash in the ratio: 1 point = 1 Chinese Yuan; (B) Bonuses of 150, 100, and 50 Chinese
Yuan are also offered to the three best-performed subjects, respectively. The rules
and rewards are made clear to the students before the experiments [30]. A round
of repeated pre-games with 15 time steps is also offered to the students to let them
become familiar with the rules. Each set of parameters (i.e., k and M1/M) is then
carried out to the students for one round with 15 time steps. Note that each set of
k’s and M1/M’s values is selected randomly before each round of repeated game so
that the students can hardly figure out whether his/her experience gained in the last
game can be used in the next one.

10.4 Results

The blue stars in Fig. 10.1 show the ensemble average of 〈N1〉/N versus M1/M
under four different values of k for 50 simulated systems. The error bars repre-
sent standard deviation (denoted as SDm) among the 50 systems’ 〈N1〉/N values.
The experimental results are given in Tables 10.2, 10.3, 10.4 and 10.5. For each
set of k and M1/M , 〈N1〉/N (represented as red circles in Fig. 10.1) is calculated
on the last five experimental time steps to avoid relaxation time. In both simula-
tions and experiments, N = 25. Deviations between the simulated and experi-
mental results in each sub-figure (denoted as Dev) are defined as the average of
|(〈N1〉/N )e − (〈N1〉/N )m |/SDm over all the points (here | · · · | denotes the absolute
value of · · · ; the subscript m stands for the simulations and e for the experiments). For
the four sub-figures, the values of Dev are (a) 2.33, (b) 1.56, (c) 1.81, and (d) 2.71,
respectively. Suppose in the simulated ensemble, 〈N1〉/N follows a Gaussian distri-
bution, then the experimental values of 〈N1〉/N fall in (a) 98 %, (b) 88.2 %, (c) 93 %,
and (d) 99.4 % confidence interval accordingly. In the experiments, there always exist
some uncontrolled factors such as mood swings of the students during the games.
So for Fig. 10.1, it can be said that our agent-based model is a good mimic of the
human system. Thanks to the flexibility of the agent-based modeling method, we
further extend the number of agents to N = 1,001 and the ensemble size to 500. The
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(a)

(c)

(b)

(d)

Fig. 10.1 〈N1〉/N versus M1/M for k = a 0.2, b 0.52, c 0.76, and d 1. The simulated ensemble
contains 50 systems, each of which has the same parameters: N = 25, S = 8, and P = 16.
Each system evolves for 600 time steps (the first half for stabilization which is enough for system
relaxation and the second half for statistics). The blue stars show the ensemble average of 〈N1〉/N
and error bars are added. The red circles show the experimental results and for each data point, one
system with the associated parameters is conducted for 15 time steps and 〈N1〉/N is calculated on
the last 5 time steps shown in Tables 10.2, 10.3, 10.4 and 10.5 to avoid the relaxation time steps. The
number of human subjects recruited in the laboratory system is the same as the simulations, i.e.,
N = 25. The diagonal dash line with slope = 1 indicates the optimal (balanced) state: 〈N1〉/N =
M1/M . Adapted from Ref. [154]

simulated 〈N1〉/N versus k is shown in Fig. 10.2. It can be seen that even for a small
value of information concentration, e.g., k = 0.2, the system can still reach the op-
timal (balanced) state where 〈N1〉/N = M1/M . This means that the invisible hand
can still influence the system when only a small part of information is distributed to
every agent.

For the system discussed in Fig. 10.2, the other important property is the
fluctuation level which is given as

Var = 1

2N

2
∑

i=1

〈(Ni − 〈Ni 〉)2〉 ≡ 1

N
〈(N1 − 〈N1〉)2〉. (10.1)
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Table 10.2 Experimental data of N1/N ’s under different values of M1/M for k = 0.2 within the
15 time steps

Time step M1/M = 0.667 = 0.75 = 0.8 = 0.833 = 0.9

1 0.6 0.56 0.56 0.72 0.8

2 0.6 0.68 0.68 0.76 0.8

3 0.64 0.72 0.64 0.68 0.8

4 0.56 0.6 0.76 0.64 0.72

5 0.68 0.76 0.76 0.76 0.84

6 0.64 0.6 0.76 0.76 0.76

7 0.52 0.76 0.72 0.76 0.84

8 0.6 0.68 0.72 0.72 0.76

9 0.6 0.48 0.64 0.76 0.84

10 0.56 0.68 0.72 0.68 0.8

11 0.64 0.64 0.84 0.76 0.76

12 0.68 0.56 0.64 0.68 0.84

13 0.56 0.72 0.64 0.72 0.88

14 0.68 0.72 0.56 0.76 0.84

15 0.68 0.64 0.64 0.68 0.8

Average 0.648 0.656 0.664 0.72 0.824

The last 5 time steps are taken to calculate the time average value of N1/N (denoted as “Average”
in the table), i.e., 〈N1〉/N shown in Fig. 10.1. Adapted from Ref. [154]

Table 10.3 Experimental data of N1/N ’s under different values of M1/M for k = 0.52 within the
15 time steps

Time step M1/M = 0.667 = 0.75 = 0.8 = 0.833 = 0.857 = 0.875 = 0.889 = 0.9

1 0.64 0.64 0.56 0.8 0.76 0.8 0.76 0.88

2 0.6 0.68 0.72 0.48 0.76 0.64 0.76 0.6

3 0.6 0.6 0.68 0.72 0.88 0.76 0.76 0.72

4 0.68 0.68 0.8 0.76 0.68 0.84 0.84 0.88

5 0.52 0.64 0.72 0.84 0.84 0.8 0.76 0.72

6 0.72 0.84 0.72 0.52 0.72 0.64 0.84 0.84

7 0.64 0.68 0.72 0.68 0.8 0.76 0.76 0.68

8 0.44 0.88 0.72 0.84 0.84 0.84 0.76 0.8

9 0.56 0.6 0.72 0.68 0.6 0.8 0.8 0.84

10 0.68 0.8 0.72 0.76 0.72 0.76 0.76 0.76

11 0.68 0.68 0.68 0.88 0.76 0.68 0.72 0.72

12 0.56 0.68 0.72 0.84 0.8 0.76 0.84 0.84

13 0.64 0.8 0.64 0.8 0.84 0.88 0.8 0.84

14 0.68 0.76 0.76 0.84 0.88 0.84 0.84 0.92

15 0.72 0.64 0.8 0.8 0.84 0.88 0.84 0.88

Average 0.656 0.712 0.72 0.832 0.824 0.808 0.808 0.84

The last 5 time steps are taken to calculate the time average value of N1/N , i.e., 〈N1〉/N shown in
Fig. 10.1. Adapted from Ref. [154]
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Table 10.4 Experimental data of N1/N ’s under different values of M1/M for k = 0.76 within the
15 time steps

Time step M1/M = 0.667 = 0.75 = 0.8 = 0.833 = 0.857 = 0.875 = 0.889 = 0.9

1 0.52 0.8 0.8 0.76 0.84 0.64 0.84 0.68

2 0.88 0.44 0.64 0.84 0.6 0.84 0.64 0.8

3 0.6 0.64 0.8 0.76 0.88 0.76 0.8 0.8

4 0.56 0.76 0.68 0.72 0.68 0.8 0.8 0.88

5 0.76 0.64 0.64 0.88 0.72 0.8 0.8 0.76

6 0.68 0.76 0.76 0.72 0.84 0.88 0.8 0.84

7 0.6 0.68 0.68 0.8 0.8 0.72 0.92 0.88

8 0.56 0.68 0.84 0.76 0.68 0.84 0.8 0.8

9 0.72 0.68 0.68 0.8 0.88 0.76 0.84 0.88

10 0.52 0.6 0.76 0.72 0.8 0.72 0.76 0.84

11 0.6 0.76 0.8 0.76 0.92 0.68 0.8 0.76

12 0.68 0.76 0.76 0.88 0.92 0.84 0.84 0.88

13 0.64 0.76 0.76 0.8 0.64 0.88 0.8 0.96

14 0.68 0.68 0.84 0.84 0.64 0.88 0.92 0.8

15 0.6 0.8 0.84 0.76 0.84 0.84 0.92 0.84

Average 0.64 0.752 0.8 0.808 0.792 0.824 0.856 0.848

The last 5 time steps are taken to calculate the time average value of N1/N , i.e., 〈N1〉/N shown in
Fig. 10.1. Adapted from Ref. [154]

Table 10.5 Experimental data of N1/N ’s under different values of M1/M for k = 1 within the 15
time steps

Time step M1/M = 0.667 = 0.833 = 0.9

1 0.6 0.8 0.8

2 0.88 0.76 0.88

3 0.8 0.76 0.8

4 0.6 0.8 0.84

5 0.68 0.72 0.72

6 0.6 0.76 0.92

7 0.64 0.88 0.84

8 0.68 0.8 0.84

9 0.64 0.64 0.6

10 0.64 0.72 0.76

11 0.68 0.8 0.8

12 0.68 0.84 0.92

13 0.64 0.84 0.92

14 0.68 0.8 0.88

15 0.72 0.84 0.92

Average 0.68 0.824 0.888

The last 5 time steps are taken to calculate the time average value of N1/N , i.e., 〈N1〉/N shown in
Fig. 10.1. Adapted from Ref. [154]
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10.2 Simulated results of 〈N1〉/N versus k for different values of M1/M . The values of 〈N2〉/N
are not shown here because of 〈N2〉/N = 1 − 〈N1〉/N . The ensemble contains 500 systems each
of which has the same parameters: N = 1,001, S = 8, and P = 16. Each system evolves for 600
time steps (the first half for stabilization which is enough for system relaxation and the second half
for statistics). The horizontal dash line shows the value of 〈N1〉/N for the optimal (balanced) state:
〈N1〉/N = M1/M . Adapted from Ref. [154]

The ensemble average of the simulated system’s fluctuation level, denoted as
Mean(Var), is shown in Fig. 10.3. It can be seen that Mean(Var) declines slightly
when information concentration k increases from zero. This is normal due to the
following reason: as k increases, Agent i’s group becomes larger, and then the infor-
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(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 10.3 Fluctuations in the simulated system. For the eight M1/M values, the ensemble averages
of the fluctuation level (denoted as Mean(Var)) under different k values are represented by red circles,
while blue stars are for the ensemble fluctuations of the fluctuation level (denoted as Var(Var)).
Mean(Var) goes through a continuous phase transition from a normal phase to an abnormal phase
as k increases. The insets give detailed information around the transition point (kc stands for the
critical value of k) accordingly. The ensemble contains 500 systems, each of which has the same
parameters: N = 1,001, S = 8, and P = 16. Each system evolves for 600 time steps (the first half
for stabilization which is enough for system relaxation and the second half for statistics). Adapted
from Ref. [154]

mation he/she obtains at every time step will be more stable, which makes Agent i
more certain about his/her choices. Hence, we interpret it as a normal phase. But after
that, Mean(Var) climbs up abnormally, which means that now agents getting more
information will be more harmful to the system’s stability (a higher fluctuation level
means a lower stability of the system); this is in contrast to the belief that more infor-
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mation is better, so we interpret this as an abnormal phase. This phenomenon can be
explained by the following feedback process. For k = 1, because of the full network
connection, uncertainties in Agent i’s choice can be transferred to all the other agents
and increase their own uncertainties, and then the other agents’ uncertainties will be
again transferred back to Agent i and further increase his/her choice fluctuations.
However, when k decreases from 1, owing to the presence of the directed network,
for one acquaintance in Agent i’s group, he/she may not have Agent i in his/her
own group. This means the uncertainties of Agent i cannot be fully transferred to
his/her group members now, so the overall fluctuation level will decrease. Hence,
here a continuous phase transition between a normal phase and an abnormal phase
comes to appear as k increases from 0 to 1. The lowest Mean(Var) point is labeled as
the transition point and the associated critical value of k is denoted as kc. Detailed
information around the transition point is shown in the insets of Fig. 10.3.

In the traditional continuous phase transition theory [38], it is stated that around
a transition point, fluctuations will increase heavily since the correlation length
becomes infinite. On the contrary, in Fig. 10.3, it can be seen that at the
transition point, the ensemble fluctuations of the fluctuation level, denoted as
Var(Var), remain at a low value, which is only of magnitude 10−5 versus Mean(Var)
being 10−2. However, at the abnormal phase where k is large, Var(Var) has a great rise
as k increases, and for M1/M ≥ 0.875, Var(Var) even begins to decline obviously
when k increases further.

The above phase transition phenomenon comes to appear in our system that con-
tains a limited number of agents. So we attempt to analyze the relation between kc

and N . Because the critical information concentration kc shows no relation to M1/M
in Fig. 10.3, we average it over different values of M1/M and obtain kc. Figure 10.4
displays a power-law relation between kc and N in the tail (i.e., for N ≥ 401) as
kc = 50∗ N−0.71. Hence, when the system becomes infinitely large, i.e., N → +∞,
there still exists this anomalous phase transition at kc → 0+.

10.5 Discussion and Conclusions

In this chapter, we have designed an agent-based model with partial information
for biased resource-allocation problems. A series of controlled human experiments
have been conducted to show the reliability of the model design. We have found that
even for a small information concentration, the system can still reach the optimal
(balanced) state. Furthermore, we have found that the ensemble average of the sim-
ulated system’s fluctuation level has a continuous phase transition. This means that
in the abnormal phase, too much information can hurt the system’s stability. Hence,
back to the question raised at the beginning, we can say that markets are able to use the
invisible hand most efficiently only at the transition point where partial information
is obtained by agents.

On the other hand, at the transition point, the ensemble fluctuations of the fluctua-
tion level remain low. When increasing the number of agents, the critical value of in-
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Fig. 10.4 A log–log plot showing kc versus N . Here, kc is the average of kc’s under different
values of M1/M . For each value of N , the ensemble contains 50 systems each of which has the same
parameters: S = 8 and P = 16. Each system evolves for 600 time steps (the first half for stabilization
which is enough for system relaxation and the second half for statistics). The blue line fits the tail
of the data (i.e., from N = 401 to N = 10,001) according to log10(kc) = a + b ∗ log10(N ); details
are given in the inset where the regression coefficient, R̄2 = 0.98322, indicates well fitting of the
tail since R̄2 = 1.0 means a perfect fit [161]. Error bars are added as well. Adapted from Ref. [154]

formation concentration obeys a power-law decay in the tail. This behavior confirms
that when the system becomes infinitely large, there still exist this kind of fluctuation
transition phenomena. This finding is in contrast to the textbook knowledge of
continuous phase transitions also addressed at the beginning, namely fluctuations
will rise abnormally around a transition point since the correlation length becomes
infinite. This may pave the way for investigating the role of human adaptability in
further developing traditional physics.

Therefore, this chapter is expected to be of value to various fields ranging from
physics, economics, complexity science to artificial intelligence.



Chapter 11
Risk Management: Unusual Risk-Return
Relationship

Abstract For survival and development, autonomous agents in complex adaptive
systems involving the human society must compete against or collaborate with others
for sharing limited resources or wealth, by using different methods. One method is
to invest, in order to obtain payoffs with risk. It is a common belief that investments
with a positive risk-return relationship (namely high risk high return and vice versa)
are dominant over those with a negative risk-return relationship (i.e., high risk low
return and vice versa) in the human society; the belief has a notable impact on the
daily investing activities of investors. Here we investigate the risk-return relation-
ship in a model complex adaptive system, in order to study the effect of both market
efficiency and closeness that exist in the human society and play an important role in
helping to establish traditional finance/economics theories. We conduct a series of
computer-aided human experiments, and also perform agent-based simulations and
theoretical analysis to confirm the experimental observations and reveal the underly-
ing mechanism. We report that investments with a negative risk-return relationship
have dominance over those with a positive risk-return relationship instead in such
complex adaptive systems. We formulate the dynamical process for the system’s
evolution, which helps to discover the different role of identical and heterogeneous
preferences. This work might be valuable not only to complexity science, but also to
finance and economics, to management and social science, and to physics.

Keywords Resource-allocation system · Risk-return relationship · Preference ·
Dynamic process

11.1 Opening Remarks

Subjects in all kinds of laboratory markets, introduced in Chaps. 3–10, are always
facing risks. In this chapter, we shall show the relationship between risk and return
by studying a laboratory market.
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For survival and development, agents in various kinds of complex adaptive
systems (CASs) involving human society must compete against or collaborate with
each other for sharing limited resources or wealth, by utilizing different methods. One
of the methods is to invest, in order to obtain payoffs with risk. Accordingly, under-
standing the risk-return relationship (RRR) is of both academic value and practical
importance. So far this relationship has a two-fold character. On one hand, invest-
ments are considered as high risk high return and vice versa; the RRR is positive
(risk-return tradeoff) [162, 163]. This is also an outcome of the traditional financial
theory under the efficient market hypothesis. On the other hand, some investments
are found high risk low return and vice versa; the RRR is negative (Bowman’s para-
dox) [164, 165]. However, almost all investment products take “high risk high return”
as a bright spot to attract investors, and neglect the possible existence of “high risk
low return”. This actually results from a received belief that investments with a pos-
itive RRR are dominant over those with a negative RRR in the human society; the
belief directs investors to operate investing activities including gambling [166]. Here
we investigate the RRR by designing and investigating a model CAS which includes
the following two crucial factors:

• Market efficiency. The present system exhibits market efficiency at which it reaches
a statistical equilibrium [8, 7]. We shall address more relevant details at the end of
the next section.

• Closeness. The system involves two conservations: one is the population of
investors (Conservation I), the other is wealth (Conservation II). Regarding Con-
servation I/II, we fix the total number/amount of the subjects/wealth in the system.
Clearly the two factors have real traces in human society. Accordingly they have
played an important role in helping to establish traditional finance/economics the-
ories. The present designing system just allows us to investigate the joint effect of
the two factors on the RRR.

11.2 Controlled Experiments

On the basis of the CAS, we conducted a series of computer-aided human exper-
iments. Details are as follows. There are two virtual rooms, Room 1 and Room 2
(represented by two buttons on the computer screen of the subjects), for subjects
to invest in. The two rooms have volumes M1 and M2, which may represent the
arbitrage space for a certain investment in the real world. For the experiments, we
recruited 24 students from Fudan University as subjects. These subjects acted as
fund managers, who were responsible for implementing investing strategy of the
fund and managing its trading activities. We told the subjects the requirement of
total 30 rounds for every single M1/M2, and offered every subject 1,000 points (the
amount of virtual money constructs the fund managed by the subject) as his/her
initial wealth for each M1/M2. In an attempt to make the subjects maximize their
pursuit of self-interest, we promised to pay the subjects Chinese Yuan according to a
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fixed exchange rate, 100:1 (namely, one hundred points equal to one Chinese Yuan),
at the end of the experiments, and to offer every subject 30 Chinese Yuan as a bonus
of attendance. Extra 50 Chinese Yuan would be given to the subject who gets the
highest score for a single M1/M2. At the beginning of the 1st round of each M1/M2,
we told the 24 subjects the value of M1/M2, and asked each subject to decide his/her
investing weight [signed as x(i) for Subject i]. Note the investing weight, x(i), is
the percentage of his/her investing wealth (investment capital) with respect to his/her
total wealth, and it will keep fixed within the 30 rounds for a certain M1/M2. In each
round, each subject can only invest in one of the two rooms independently. After all
the subjects made their decisions, with the help of the computer program, we imme-
diately knew the total investments in each room (signed as W1 and W2 for Room 1
and Room 2, respectively) in this round. While keeping the total wealth conserved,
we redistributed the total investment W1 + W2 according to the following two rules:

(1) We divided the total investment, W1 + W2, by the ratio of M1 and M2, yielding
(W1 + W2)

M1
M1+M2

and (W1 + W2)
M2

M1+M2
as the payoff for Room 1 and Room 2,

respectively.
(2) We redistributed the payoff of Room k (k = 1 or 2) by the investment of the

subjects. Namely, for each round, the payoff for Subject i choosing Room k to
invest in, wpayoff(i), is determined by wpayoff(i) = (W1 + W2)

Mk
M1+M2

× win(i)
Wk

,
where win(i) is the investing wealth of Subject i , win(i) = x(i)w(i). Here w(i)
is the total wealth possessed by Subject i at the end of the previous round.

Before the experiments, we told the subjects the above two rules for wealth re-
allocation. After each round, every subject knows his/her payoff, wpayoff(i). If there
is wpayoff(i) > win(i), that is, Subject i gets more than the amount he/she has
invested, we consider Subject i as a winner at this round. Equivalently, if W1

M1
< W2

M2
,

the subjects choosing Room 1 to invest in win. Clearly, when W1
W2

= M1
M2

, every
subject obtains the payoff which equals to his/her investing wealth. Namely, the
arbitrage opportunity has been used up. Accordingly, we define the W1

W2
= M1

M2
state

as an equilibrium (or balanced) state [1]. This state may have some practical sig-
nificance because global arbitrage opportunities for investing in the human society
always tend to shrink or even disappear once known and used by more and more
investors. As shown in Fig. 11.1 (as well as Table 11.1), our experimental system can
indeed achieve 〈W1/W2〉 ≈ M1/M2 at which the system automatically produces the
balanced allocation of investing wealth; this system thus reaches a statistical equi-
librium. In other words, the “Invisible Hand” plays a full role [7], or alternatively
the system exhibits market efficiency. That is, all subjects are pursuing self-interest
and we run the present system under three conditions: with sufficient information
(namely, the wealth change for each round reflects the possible information), with
free competition (i.e., no subjects dominate the system and there are zero transaction
costs), and without externalities (the wealth change of a subject reflects the influence
of his/her behavior on the others).
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Fig. 11.1 Averaged ratio, 〈W1/W2〉, versus M1/M2 for the human experiments with 24 subjects
(red squares) and agent-based computer simulations with 1,000 agents (blue dots). Here “〈· · · 〉”
denotes the average over the total 30 experimental rounds (experimental data of W1/W2 for each
round are shown in Table 11.1) or over the 800 simulation rounds (the additional 200 rounds were
performed at the beginning of the simulation for each M1/M2; during the 200 rounds, we train
all of the strategies by scoring them whereas the wealth of each agent remains unchanged). All
the experimental and simulation points lie on or beside the diagonal line (“slope = 1”), which is
indicative of 〈W1/W2〉 ≈ M1/M2. Parameters for the simulations: S = 4 and P = 16. Adapted
from Ref. [10]

If a subject chooses a large investing weight, he/she will invest more virtual money
in a room. According to the rules of our experiment, the room he/she chooses will
then be more likely to be the losing one. Besides, the initial wealth is the same for
every subject and he/she knows nothing about the others. From this point of view, the
larger investing weight he/she chooses, the higher risk (or uncertainty) he/she will
take for the fund (i.e., the initial 1,000 points). Therefore, throughout this chapter,
we simply set the investing weight, x(i), to equal the risk he/she is willing to take.
Here we should remark that the present definition of risk appears to be different from
that in financial theory. For the latter, one often defines risk according to variance.
Nevertheless, these two “risk”s are essentially the same because they both describe
the uncertainty of funds and have a positive association with each other. On the other
hand, we should mention that the risk for each subject does not change with the
evolution of time. This is a simplification which makes it possible to discuss the pure
effect of a fixed value of “risk”. Nevertheless, if we choose to let the “risk” change
with the time, for the same purpose, we may take an average of the “risk” over the full
range of time. Figure 11.2a–f displays the risk-return relationship for the investments
in the designing CAS. From statistical point of view, we find that investments with
a negative RRR are dominant over those with a positive RRR in the whole system.
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Table 11.1 Experimental data of W1/W2’s for six M1/M2’s within 30 rounds. Adapted from
Ref. [10]

Round M1/M2 = 1 M1/M2 = 2 M1/M2 = 3 M1/M2 = 6 M1/M2 = 7 M1/M2 = 9

1 1.247723 1.143654 5.267782 2.98977 24.41429 2.146853

2 0.582237 0.702725 1.717598 11.02642 6.827457 4.860541

3 0.759914 1.897306 2.43237 10.32266 11.25343 11.30546

4 1.903253 1.240914 2.699907 2.97036 5.688661 9.681926

5 1.940527 1.564242 3.999681 3.977399 6.546176 5.249869

6 1.4852 4.711605 2.815152 6.900399 5.13295 6.16301

7 0.71966 2.087147 8.280381 2.991117 9.27272 7.25918

8 0.675138 1.692307 4.590899 3.35285 7.12301 8.996662

9 1.029128 2.73341 1.833477 4.363129 4.329496 7.133701

10 0.867554 2.095702 3.063358 7.273544 8.198398 14.26918

11 1.50125 1.305197 3.862686 18.23372 5.927536 5.500789

12 0.846259 2.292878 3.826587 8.50234 4.673143 5.141253

13 0.629585 1.992493 5.31337 4.613084 13.47519 34.4646

14 0.784858 2.462247 4.687499 19.73941 4.867279 3.889573

15 1.484235 1.807911 2.991726 3.40541 9.820732 7.442826

16 2.309969 1.544355 3.301258 4.864645 19.63957 15.74645

17 1.01251 2.078769 1.009523 8.219743 4.389477 11.55617

18 0.987891 2.624829 1.531467 2.935522 6.684373 8.712361

19 1.319123 2.25104 2.29988 3.813827 6.655679 6.623739

20 0.872338 2.045779 3.140856 5.690231 9.253236 7.973963

21 1.166773 2.006077 5.282071 5.889009 5.021116 5.825073

22 0.896165 1.419159 3.53215 6.137386 7.409623 8.32772

23 0.872224 2.141954 2.629218 11.09127 7.033376 15.57089

24 1.275063 1.990766 4.722947 5.989491 7.216511 10.87512

25 0.695696 2.151347 3.410795 7.790409 8.787551 4.759215

26 1.149307 2.150258 3.400615 8.213546 6.472158 13.14246

27 1.379602 1.621164 5.898509 5.078065 6.915495 7.992252

28 0.809361 1.62651 2.421057 3.698009 5.514453 11.76899

29 0.772988 1.670855 3.576442 7.848631 7.483899 16.27463

30 0.367173 2.010509 2.90843 11.10609 8.9996 4.854004

11.3 Agent-Based Modelling

Obviously the human experiments have some unavoidable limitations: specific time,
specific avenue (a computer room of Fudan University), specific subjects (students
from Fudan University), and the limited number of subjects. Now we are obliged
to extend the experimental results (Fig. 11.2a–f) beyond such limitations. For this
purpose, we resort to an agent-based model [1, 4, 115].
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(a)

(d)
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(g) (h)
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Fig. 11.2 Relationship between the risk, x(i), and the return, rT(i) = [wT(i) − w0(i)]/w0(i), for
a–f 24 subjects and g–l 1,000 agents at various M1/M2’s. a–f Data of the human experiments (total
30 rounds for each M1/M2); g–l Data of the agent-based computer simulations (total 800 rounds for
each M1/M2, with additional 200 rounds performed at the beginning of the simulations; during the
200 rounds, we train all of the strategies by scoring them whereas the wealth of each agent remains
unchanged). Here wT (i) is Agent i’s wealth at the end of T rounds (the total number of rounds, T ,
is T = 30 and 800 for the experiments and simulations, respectively), and w0(i) is Agent i’s initial
wealth. All of the subjects or agents are divided into two groups with preference <1 (red squares)
and preference = 1 (blue dots). Here, the “preference” is given by C1/T , where C1 is the number of
times for subjects or agents to choose Room 1 within the total T rounds. The values or distribution
of the preferences of the subjects or agents can be found in Figs. 11.4 and 11.5. Here, “Linear Fit”
denotes the straight line fitting of the data in each panel using the least square method, which serves
as a guide for the eye. (The fitting functions are listed in Table 11.2.) All of the lines are downward,
which indicate a statistically negative relationship between risk and return. The present negative
relationship just reflects the dominance of investments with a negative RRR in the whole system, in
spite of a relatively small number of investments with a positive RRR. Other parameters: g–l S = 4
and P = 16. Adapted from Ref. [10]. a M1/M2 = 1 b M1/M2 = 2 c M1/M2 = 3 d M1/M2 = 6
e M1/M2 = 7 f M1/M2 = 9 g M1/M2 = 1 h M1/M2 = 2 i M1/M2 = 3 j M1/M2 = 6 k M1/M2 = 7
l M1/M2 = 9

Similar to the above experiments, we set two virtual rooms, Room 1 and Room 2
(with volume M1 and M2, respectively), for N agents (fund managers) to invest in.
Then, for each M1/M2, assign every agent 1,000 points as his/her initial wealth and
an investing weight, x(i), which is randomly picked up between 0 and 1 with a step
size of 0.001. In order to avoid the crowding or overlapping of strategies of different
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Table 11.2 Linear fitting functions for Fig. 11.2a–l. Adapted from Ref. [10]

M1/M2 For the experimental data For the simulation data

1 rT (i) = 0.17 − 0.31x(i) (Fig. 11.2a) rT (i) = 0.40 − 0.82x(i) (Fig. 11.2g)

2 rT (i) = 0.0073 − 0.036x(i) (Fig. 11.2b) rT (i) = 0.53 − 1.08x(i) (Fig. 11.2h)

3 rT (i) = 0.49 − 0.74x(i) (Fig. 11.2c) rT (i) = 0.37 − 0.76x(i) (Fig. 11.2i)

6 rT (i) = 0.31 − 0.41x(i) (Fig. 11.2d) rT (i) = 0.44 − 0.89x(i) (Fig. 11.2j)

7 rT (i) = 0.24 − 0.29x(i) (Fig. 11.2e) rT (i) = 0.35 − 0.68x(i) (Fig. 11.2k)

9 rT (i) = 0.26 − 0.33x(i) (Fig. 11.2f) rT (i) = 0.20 − 0.38x(i) (Fig. 11.2l)

agents [87, 167, 168], we design the decision-making process for each agent with
four steps.

Step 1 set a positive integer, P , to represent the various situations for investing
[7, 8].

Step 2 assign each agent S strategies according to S integers between 0 and P ,
respectively. For example, if one of the S integers is L , then the corresponding
strategy of the agent is given by the ratio L/P (0 ≤ L/P ≤ 1), which
represents the probability for the agent to choose Room 1 to invest in [8].

Step 3 for an agent, each strategy has its own score with an initial score, 0, and is
added one score (or zero score) if the strategy predicts (or does not predict)
the winning room correctly after each round.

Step 4 every agent chooses either Room 1 or Room 2 to invest in according to the
prediction made by the strategy with the highest score.
In addition, both the payoff function and the rules for re-distributing invest-
ing wealth in Room 1 and Room 2 are set to be the same as those already
mentioned in Sect. 11.2.

11.4 Comparison Between Experimental
and Simulation Results

As shown by Fig. 11.1, our agent-based computer simulations also give 〈W1/W2〉 ≈
M1/M2, that is, the system under simulation also exhibits market efficiency. Fur-
thermore, according to the simulations, we achieve the same qualitative conclusion:
investments with a negative RRR are statistically dominant over those with a pos-
itive RRR in the whole system; see Fig. 11.2g–l. Nevertheless, when we scrutinize
Fig. 11.2j–l, we find that some particular data seem to be located on a smooth upward
line. We plot these data in blue, and further find that they just correspond to all the
agents with “preference = 1”. Encouraging by this finding, we blue all the data of
“preference = 1” in the other 9 panels of Fig. 11.2, and observe that a similar upward
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(d)

(a) (b) (c)

(e) (f)

Fig. 11.3 Same as Fig. 11.2g–l, but showing the relationship between the risk, x(i), and the relative
wealth, wT(i)/w0(i), on a logarithmic scale. “Linear Fit” corresponds to the line fitting the data
of preference < 1 or preference = 1 using the least square method, which serves as a guide
for the eye. (The fitting functions are listed in Table 11.3.) Adapted from Ref. [10]. a M1/M2 = 1
b M1/M2 = 2 c M1/M2 = 3 d M1/M2 = 6 e M1/M2 = 7 f M1/M2 = 9

line also appears in the experimental results [see the blue dots in Fig. 11.2a–f; note
the blue dots in Fig. 11.2c, e are also, on average, in an upward line even though they
appear to be not so evident].

For the upward lines themselves, they are clearly indicative of investments with a
positive RRR. Hence, to distinctly understand our main conclusion about the domi-
nance of investments with a negative RRR in the whole system, we have to overcome
the puzzle, namely, the strange appearance of these upward lines (constructed by the
blue dots in Fig. 11.2). For convenience, we just need to answer Question 1: why do
all the “preference = 1” data dots of Fig. 11.2g–l exist in an upward line? To this
end, the answer to Question 1 will also help to reveal the mechanism underlying the
above main conclusion.

11.5 Comparison among Experimental, Simulation, and
Theoretical Results

To answer Question 1, we attempt to study the relationship between risk and wealth;
see Fig. 11.3. In Fig. 11.3, the “preference = 1” data dots appear to be arranged in an
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Table 11.3 Linear fitting functions for Fig. 11.3a–l. Adapted from Ref. [10]
M1
M2

For “preference < 1” For “preference = 1”

1 log10
wT (i)
w0(i) = 0.10 − 0.31x(i) (Fig. 11.3a) log10

wT (i)
w0(i) = 0.05 + 0.058x(i) (Fig. 11.3a)

2 log10
wT (i)
w0(i) = 0.07 − 0.23x(i) (Fig. 11.3b) log10

wT (i)
w0(i) = 0.02 + 0.24x(i) (Fig. 11.3b)

3 log10
wT (i)
w0(i) = 0.09 − 0.28x(i) (Fig. 11.3c) log10

wT (i)
w0(i) = 0.01 + 0.05x(i) (Fig. 11.3c)

6 log10
wT (i)
w0(i) = 0.09 − 0.37x(i) (Fig. 11.3d) log10

wT (i)
w0(i) = 0.01 + 0.19x(i) (Fig. 11.3d)

7 log10
wT (i)
w0(i) = 0.10 − 0.42x(i) (Fig. 11.3e) log10

wT (i)
w0(i) = 0.003 + 0.29x(i) (Fig. 11.3e)

9 log10
wT (i)
w0(i) = 0.11 − 0.68x(i) (Fig. 11.3f) log10

wT (i)
w0(i) = 0.004 + 0.48x(i) (Fig. 11.3f)

upward straight line, and the straight line exactly corresponds to the upward line con-
structed by the blue dots in Fig. 11.2g–l due to the relationship between the wealth and
return. So, Question 1 equivalently becomes Question 2: why do all the “preference =
1” data dots of Fig. 11.3 exist in an upward straight line? To answer it, we start by con-
sidering Agent i with investment weight, x(i). His/her return and wealth after t rounds
are, respectively, r ′

t (i) and wt (i). Here, the subscript tε[0, T ]. (Note T stands for the
total number of simulation rounds, T = 800.) Clearly, when t = 0, wt (i) = w0(i),
which just denotes the initial wealth of Agent i . Then, we obtain the expression for
r ′

t (i) = [wt (i) − wt−1(i)]/[wt−1(i)x(i)]. Accordingly, we have w1(i) = w0(i)[1 +
r ′

1(i)x(i)] and w2(i) = w1(i)[1 + r ′
2(i)x(i)] = w0(i)[1 + r ′

1(i)x(i)][1 + r ′
2(i)x(i)],

thus yielding wT (i) = w0(i)[1 + r ′
1(i)x(i)] . . . [1 + r ′

T (i)x(i)] = w0(i)
T∏

t=1
[1 +

r ′
t (i)x(i)]. As a result, we obtain log10

wT (i)
w0(i) = log10{

T∏

t=1
[1 + r ′

t (i)x(i)]} =
T∑

t=1
log10[1+ r ′

t (i)x(i)] =
[

T∑

t=1
r ′

t (i)

]

x(i) = T 〈r ′
t (i)〉x(i). Here the third “=” holds

due to r ′
T (i)x(i) → 0 for the T simulation rounds of our interest. In this equation,

〈r ′
T (i)〉 denotes the average return, namely, the value obtained by averaging r ′

T (i) over

the T rounds, and wT (i)
w0(i) represents the relative wealth. Thus, the relationship between

log10
wT (i)
w0(i) and x(i) should be linear; the sign of the slope of the straight lines is only

dependent on the average return, 〈r ′
T (i)〉. Because the agents with preference = 1

always enter Room 1 with M1(> M2), the average return, 〈r ′
T (i)〉, for them is not

only positive but also the same. This is why all the blue points in Fig. 11.3 lie on an
upward straight line. However, for the other agents with preference < 1 (Fig. 11.3),
they will change rooms from time to time, so their average return, 〈r ′

T (i)〉, is different
from one another. This is the reason why the red points do not form a straight line
as the blue points do. From this point of view, the downward straight line we draw
from the red points in Fig. 11.3 is just a statistical analysis showing a trend. So, the
answer to Question 2 can simply be “because for the small number of agents with
preference = 1, their average return, 〈r ′

T (i)〉, is not only positive but also the same”.
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(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

(l)(k)(j)

Fig. 11.4 Preferences of a–f the 24 subjects in the human experiments (plotted in the bar graph) or
g–l the 1,000 agents in the agent-based computer simulations, for various M1/M2’s. Here, “Mean”
denotes the preference value averaged for a–f the 24 subjects or g–l 1,000 agents. In a–f, the present
24 subjects are ranked by their risk (namely, their investing weight) from low to high, within the range
a [0.16, 1], b [0.01, 1], c [0.02, 1], d [0.16, 1], e [0.31, 1], and f [0.29, 1]; see Table 11.4 for details.
Similarly, in g–l, the 1,000 agents are ranked by their risk from low to high, within the range (0, 1]
assigned according to the code “(double)rand()%1, 001/1, 000” in the C programming language.
In a–f, the ratio between the numbers of subjects with “preference = 1” and “preference < 1”
are, respectively, a 2/22, b 4/20, c 5/19, d 7/17, e 11/13, and f 8/16. In g–l, the ratio between the
numbers of agents with “preference = 1” and “preference < 1” are, respectively, g 2/998, h 23/977,
i 94/906, j 233/767, k 200/800, and l 220/780. Adapted from Ref. [10]. a M1/M2=1 b M1/M2 = 2
c M1/M2 = 3 d M1/M2 = 6 e M1/M2 = 7 f M1/M2 = 9 g M1/M2 = 1 h M1/M2 = 2 i M1/M2 = 3
j M1/M2 = 6 k M1/M2 = 7 l M1/M2 = 9

According to the above theoretical analysis, we can now understand that the sta-
tistical dominance of investments with a negative RRR in the whole system results
from the distribution of subjects’/agents’ preferences: the heterogeneous preferences
(<1) owned by a large number of subjects/agents together with the identical prefer-
ences (=1) possessed by a small number of subjects/agents. Details about the actual
values for the preferences can be found in Figs. 11.4 and 11.5. Figures 11.4 and 11.5
also show the environmental adaptability of subjects or agents.
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Table 11.4 Values for the risk (namely, investing weight) of the 24 subjects for six M1/M2’s in
the human experiments. We ranked the 24 subjects by their risk from low to high, as already used
in Fig. 11.4a–f. Adapted from Ref. [10]

Subject M1
M2

= 1 [(a)] M1
M2

= 2 [(b)] M1
M2

= 3 [(c)] M1
M2

= 6 [(d)] M1
M2

= 7 [(e)] M1
M2

= 9 [(f)]

1 0.16 0.01 0.02 0.16 0.31 0.29

2 0.21 0.02 0.2 0.2 0.46 0.31

3 0.29 0.11 0.21 0.41 0.47 0.39

4 0.31 0.2 0.4 0.46 0.49 0.4

5 0.36 0.26 0.41 0.49 0.52 0.47

6 0.42 0.41 0.45 0.5 0.7 0.57

7 0.42 0.48 0.46 0.61 0.75 0.7

8 0.42 0.5 0.46 0.7 0.75 0.7

9 0.46 0.5 0.48 0.7 0.79 0.71

10 0.47 0.52 0.5 0.74 0.86 0.74

11 0.48 0.57 0.63 0.76 1 0.79

12 0.5 0.6 0.72 0.8 1 0.9

13 0.5 0.64 0.74 0.8 1 1

14 0.55 0.74 0.89 0.82 1 1

15 0.56 0.81 0.91 0.86 1 1

16 0.61 1 1 0.86 1 1

17 0.61 1 1 1 1 1

18 0.63 1 1 1 1 1

19 0.66 1 1 1 1 1

20 0.67 1 1 1 1 1

21 0.72 1 1 1 1 1

22 1 1 1 1 1 1

23 1 1 1 1 1 1

24 1 1 1 1 1 1

11.6 Discussion and Conclusions

On the basis of the designed CAS (complex adaptive system), we have revisited the
relationship between risk and return under the influence of market efficiency and
closeness by conducting human experiments, agent-based simulations, and theoret-
ical analysis. We have reported that investments with a negative RRR (risk-return
relationship) have dominance over those with a positive RRR in this CAS. We have
also revealed the underlying mechanism related to the distribution of preferences.
Our results obtained for the overall system do not depend on the evolutionary time,
T , as long as T is large enough. On the other hand, the experimental data for each T
have been listed in Table 11.1. Clearly, the results for each T can change accordingly.
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(a)

(d)

(g)

(j) (k)

(h)

(e)

(b) (c)

(f)

(i)

(l)

Fig. 11.5 Same as Fig. 11.4, but showing the distribution of preferences. Adapted from
Ref. [10]. a M1/M2 = 1 (Experiment) b M/M2 = 2 (Experiment) c M1/M2 = 3 (Experiment)
d M1/M2 = 6 (Experiment) e M1/M2 = 7(Experiment) f M1/M2 = 9 (Experiment) g M1/M2 = 1
(Simulation) h M1/M2 = 2 (Simulation) i M1/M2 = 3 (Simulation) j M1/M2 = 6 (Simulation)
k M1/M2 = 7 (Simulation) l M1/M2 = 9 (Simulation)

In fact, such changes echo with those fluctuations or volatilities yielding arbitrage
opportunities for investors in the real human society.

This chapter should be valuable not only to complexity science, but also to finance
and economics, to management and social science, and to physics. In finance and
economics, it may remind investors about their investing activities. In management
and social science, our results are valuable to clarify the relationship between risk
and return under some conditions. In physics, the present chapter helps to reveal a
new macroscopic equilibrium state in such a CAS.



Chapter 12
Prediction: Pure Technical Analysis Might
not Work Satisfactorily

Abstract The prediction of market trends is crucial for both investors and researchers.
Based on various kinds of historical market information, many theories of techni-
cal analysis have been established. Here, by using controlled human experiments,
we would like to figure out whether the pure technical analysis improves investors’
prediction on the price movement indeed. We discover that the average predictive
accuracy of experienced subjects is similar to that of unexperienced subjects under
different conditions, such as the emerging or mature market, markets with either
noisy fluctuations or clear trends, and markets with different information of tech-
nical indicators. Further, we study the wealth distribution of subjects and report
that the Gini coefficient always increases as the experiment continues, indicating the
Matthew effect in our experiment. Our findings question the validity of pure technical
analysis, and pave a way for further investigation.

Keywords Predictive accuracy · Technical analysis · Sharpe ratio · Wealth distri-
bution · Gini coefficient

12.1 Opening Remarks

The aim of econophysics research could be at least twofold: first, to explain existing
economic or financial phenomena and second, to predict or forecast the trend of
markets. In Chaps. 3–11, we mainly paid attention to the former. In this chapter, we
intend to focus on the latter. As an initial task, here we want to ask whether pure
technical analysis holds for predicting.

Technical analysis is a study of how to forecast future price trends through past
market actions, primarily prices and volumes [169]. In 1882, C.H. Dow (November
6, 1851–December 4, 1902), E.D. Jones (October 7, 1856–February 16, 1920), and
C.M. Bergstresser (June 25, 1858–September 20, 1923) founded Dow Jones and
Company. Dow wrote a series of articles for Wall Street Journal expressing his ideas.
Later, S. A. Nelson compiled Dow’s articles in his book named The ABC of Stock

© Springer-Verlag Berlin Heidelberg 2015
J.-P. Huang, Experimental Econophysics, New Economic Windows,
DOI 10.1007/978-3-662-44234-0_12

167

http://dx.doi.org/10.1007/978-3-662-44234-0_3
http://dx.doi.org/10.1007/978-3-662-44234-0_11


168 12 Prediction: Pure Technical Analysis Might not Work Satisfactorily

Speculation [170, 171]. Most technicians regard Dow’s Theory as the foundation
for technical analysis [169, 172].

Technical analysis is based on three premises [169, 173–175]. First, market action
discounts everything. That is, factors determining market prices are all included in
the price changes, such as macroeconomy, government’s interference, and investor
psychology. Second, prices move in trends. The purpose of technical analysis is
to find the beginning of a trend in the early stage. Then, technicians will follow it
until the trend is reaching an end. Third, history repeats itself. Through the study of
past market data, technicians identify and categorize different chart patterns, which
indicate certain market trends. Since they occurred in history several times, they are
assumed to repeat in the future.

Why is technical analysis useful? Some people believe that it is due to the ineffi-
ciency of markets. There is a time interval before any influential factors thoroughly
reflect the price change. Thus, it is the residual information that generates the trend.
Nevertheless, some think that it is based on the investor psychology [169, 176].
Technical analysis is a practical and widely used method for stock investors. There
are many well-known and influential theories such as Elliott wave theory, Fibonacci
numbers, reversal patterns, support and resistance, time cycle, Japanese candlesticks,
moving averages, and so on [174, 177–179]. In the turning point of the market or the
initial stage of a market trend, technicians can always discover such crucial timing
at an early time point with technical indicators and theories.

Nowadays, methods of technical analysis expand from traditional chart patterns to
new areas such as quantitative and statistical analysis [180, 181]. With the develop-
ment of computer science, technicians develop mechanical trading systems or trading
models, which enable computers to automatically detect signals to buy or sell [182,
183]. Actually, today almost all well-known funds and investment banks employ
technicians to study market trends in technical analysis particularly. For example,
Renaissance Technologies and Medallion Fund became one of the most profitable
funds in the world merely based on technical analysis. Therefore, the importance
and influence of technical analysis is self-evident.

However, there are often some criticisms to the technical approach. The contro-
versy between fundamental analysis and technical analysis has been existing for long.
When tracing the trends, technicians do not need to consider the potential causes of
price changes as they are all included in the market, while the cause for price changes
is the key point for these fundamental analysts [169, 174]. Apart from this contro-
versy, some believe that technical analysis is a self-fulfilling prophecy [184, 185].
History repeats itself because most traders act according to the theory. Thus, investors
create so-called patterns such as the wave theory. Self-fulfilling prophecy is a great
challenge to the foundation of technical analysis. Another question is whether or
not past data can be used to forecast the future. After all, past data only indicates
what has happened [186]. Moreover, the randomness of analysis indicators some-
times leads to contradictory predictions. Randomness also means that the technical
indicator guiding investors’ operation is somewhat subjective [187]. Further, the
basic concepts of technical analysis violate economical theories such as the efficient
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market hypothesis [149] and the random walk hypothesis [188]. The bankrupcy of
some well-known technical analysis companies also casts a shadow on this theory.

12.2 Controlled Experiments

12.2.1 Experiment Design

To study whether the stock market is predictable and what factors affect the accu-
racy of such predictability, we designed a computer-aided human experiment. The
purpose of this experiment is to study whether human subjects can predict price
trends based on technical analysis and beat the markets. If it does happen, then what
technical indicators are useful in the prediction and when are these indicators effec-
tive? Therefore in the experimental design stage, we need to consider the following
aspects:

1. Valuation criteria: predictability. This experiment is based on real market data.
As there is so much historical data in the world, subjects do not have enough time
to use all of them. Thus, we have to select representative data according to their
predictability.

2. Controllable indicators:

a. Different markets. If the price is predictable, then there are arbitrage opportu-
nities. Comparing a mature market and an emerging market, theoretically it
is harder to predict the price trends in a mature market. Therefore, we choose
two typical markets to study. We adopt NASDAQ Index in the United States,
representing the mature market, and the CSI 300 Index in China, represent-
ing the emerging market, as the object of study in our experiment. We also
reshuffle these data to make a comparison.

b. Different trends. Even for the same index, its levels of predictability are
not always the same. For example, investors always adjust their operations
according to the current markets trends. Investors certainly have different
market prediction when in a strong bull market or in a market with large
fluctuations. Therefore, we choose trends as another indicator. But, is there
a quantitative method to evaluate trends? Yes, of course. For instance, the
Sharpe ratio [189] and predictability [190] in minority game are able to pro-
vide us with such methods. In our experiment, we prefer to use the Sharpe
ratio as our indicator. Actually, we found the results of predictability to be
similar regardless of which indicator we chose.
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c. Different scale. Markets show different characteristics in different timescales,
such as minutes, hours, days, and weeks. Thus, timescale might be another
indicator that affects the market predictability. However, our data are limited
in daily price, and thus, timescale is not included in our experiment.

d. Technical indicators. As some subjects might use technical approaches in
the experiment to make predictions, we offer different technical indicators,
namely two kinds of information: one including only daily closing price and
the other including candlestick as well as moving average of 5 and 20 days.
There are of course many other technical indicators such as volumes. As an
initial task, we do not choose all of them due to limitation of time. We study
whether the subjects perform better when they are given more information.

e. Subjects. Do subjects’ features affect their performance in this experiment?
Will a well-experienced investor make more accurate predictions than a
novice? Will the knowledge of technical theories be beneficial in the exper-
iment? Furthermore, will subjects with different genders and educational
background perform differently? Accordingly, in our experiment, we dis-
tinguish subjects according to their investment experience, educational back-
ground, and gender.

Finally, based on the previous discussion we choose seven groups of daily data
from the CSI Index and NASDAQ Index. Each group is composed of 140 daily prices,
the first 120 of which are for reference and the last 20 are for subjects to predict.
Moreover, we add four groups of reshuffled data to make a comparison. We also
design a questionnaire for the subjects.

12.2.2 Experimental Process

The experiment was performed in the computer room of Fudan University; each
subject’s computer was connected to the server through a local area network. The 46
subjects were all students of Fudan University, who chose the course of Econophysics.
Their performance would determine 15 % of their final academic scores in this course.
Specific details are as follows (which were announced to the subjects before the
experiment). The performance of each student accounted for 15 % academic score of
this course. Every student who attended the experiments would get a basic academic
score of 5 %. The other 10 % academic score was based on the trading performances
of the students. In detail, we summed the rankings of students for 11 rounds of
experiments. The top 10 % of students would get all the remaining 10 % academic
score, while the next 10 % would get 9 %, and so on. Accordingly, the worst 10 %
would get only 1 % academic score.
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Fig. 12.1 Experimental interface. Subjects were requested to make choices in the left column with
the information provided in the right column. This experiment provided candlesticks and moving
average of 5 (red curve) and 20 (dark blue curve) days. Adapted from Ref. [191]

a. Pre-experiment training. Before the experiment, the organizers distributed ques-
tionnaires to collect subjects’ information. Subjects were informed about the
background and the basic process of the experiment, such as moving average,
candlestick, and method of scoring. The organizers offered a group of experi-
ment as warm-up. Subjects were required to sign an Agreement of participance
in the experiment after they fully understood the experiment.

b. Experiment process. Every subject logged in the website with previously pro-
vided username and password. After log-in, subjects entered an interface with
two columns, as shown in Fig. 12.1.

The right column displays the past data. Data in the yellow frame are the previous
120 daily prices. Subjects needed to predict the price changes in the white frame,
and they did not know which real market index and which specific time we chose
for the experiment. This setting was used to prevent subjects from figuring out the
price trends before predictions. In case subjects recognized the data, we processed
the market index and unified them over 10,000. Subjects were requested to make
choices in the left column. For each round, subjects had six kinds of investment
ratios, indicating subjects’ different levels of prediction to the price change in the
next round. For example, if subjects chose “100 % sell out,” they firmly believed the
next round’s price would drop. While if they chose “100 % buy in,” they were fully
confident of the rise in price. After subjects made a choice, they clicked the NEXT
button and waited for the (experimental) score for this round.To prevent some subjects
from choosing faster and releasing the next round’s data to other subjects, the server
revealed the score of this round only after all subjects made their choices. The score
was calculated as follows: Round score = investment ratio × index revenue. Index
revenue = difference between the closing price of two adjacent rounds ÷ closing
price of last round. Therefore, the score of each subject was based merely on his/her
own performance, having no connection with other subjects.
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Table 12.1 The order and information of 11 groups of experiment

Order Market Sharpe ratio Price chart Reshuffle

1 CSI 0.01 Candlestick + moving average

2 CSI 0.03 Closing price

3 CSI 0.01 Candlestick + moving average Yes

4 NASDAQ 5.83 Closing price

5 NASDAQ 0.03 Candlestick + moving average

6 NASDAQ 0.02 Closing price Yes

7 NASDAQ 5.55 Candlestick + moving average

8 NASDAQ 0.02 Closing price

9 CSI 3.57 Candlestick + moving average

10 NASDAQ 5.5 Candlestick + moving average Yes

11 CSI 3.57 Candlestick + moving average Yes

CSI is the abbreviation of the CSI 300 Index and NASDAQ the NASDAQ index. The price chart
column has two levels of information provided to subjects. Here, “Candlestick + moving average”
denotes that candlesticks and moving averages of prices are provided; “Closing price” means that
only closing prices are provided to the subjects, see for e.g., Fig. 12.2. Reshuffle column shows the
real market data that are reshuffled. Adapted from Ref. [191]

When subjects got to know their score, they started the next prediction. There were
20 rounds of prediction for each group; we performed 11 groups in total (Table 12.1).
Particularly, when subjects made choices at each round, they were supposed to give
one unit of capital to make investment. Previous gains or losses could not be invested
in the next round. Thus, earnings in every round were independent. The subjects’ final
score was the summation of scores in 20 rounds. During the experiment, subjects
could see their rankings in the computer screen in order to stimulate subjects and
add some fun. As subjects were independent, they were permitted to discuss and
exchange ideas during the experiment. The order of 11 groups is shown in Table 12.1.
As there were three kinds of controlled indicators, we separated the order of similar
experiments.

After 11 groups of experiments, subjects handed in the questionnaire and left
the lab.

12.3 Experimental Results

12.3.1 Winning Percentage

We calculate the winning percentage of different markets. If the subject’s score of
a round is larger than zero, the subject’s prediction and the market trends are in the
same direction. That is to say, the subject wins in this round. In this method, we can
get the winning percentage of each group of experiment. The results are shown in
Table 12.2. From Table 12.2, we can see that in general, the winning percentage is
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Fig. 12.2 Experiment only with the closing price. Sometimes subjects were provided with this
kind of price chart to make predictions. Adapted from Ref. [191]

Table 12.2 The average winning percentage of the 46 subjects in each group of experiment

Experiment Average winning percentage (%)

CSI-0.01 (CMA) 49.78

CSI-0.01-reshuffle (CMA) 41.63

CSI-0.03 40.11

CSI-3.57 (CMA) 59.67

CSI-3.57-reshuffle 54.35

NASDAQ-0.02 51.41

NASDAQ-0.02-reshuffle 46.52

NASDAQ-0.03 (CMA) 44.13

NASDAQ-5.55 (CMA) 55.33

NASDAQ-5.55-reshuffle (CMA) 57.93

NASDAQ-5.83 50.87

Details of each subject are shown in Fig. 12.3. Here, the digit following either “CSI-” or
“NASDAQ-” is the Sharpe ratio of the experiment; “CMA” in parentheses means that the price
chart includes both candlesticks and moving averages, whereas other experiments without “(CMA)”
mean they only show closing prices to the subjects. Adapted from Ref. [191]

around 0.5. Here the discussion of the absolute number of the Sharpe ratio is of little
significance. We separate it into categories by their magnitude: 10−2 and 100.

In the above, we have considered several controlled indicators affecting the accu-
racy of predictability, including the markets, trends, technical analysis, and reshuffle.
Now we are in a position to discuss these indicators in detail.

First, for the CSI 300 Index, when the market has noisy fluctuations (namely with
small Sharpe ratios), subjects tend to predict less successfully. The winning percent-
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Fig. 12.3 The winning percentage of subjects (players) for the 11 groups of experiment. a–k cor-
responds to the experiment order in Table 12.2: a CSI-0.01 (CMA); b CSI-0.01-reshuffle (CMA);
c CSI-0.03; d CSI-3.57 (CMA); e CSI-3.57-reshuffle; f NASDAQ-0.02; g NASDAQ-0.02-reshuffle;
h NASDAQ-0.03 (CMA); i NASDAQ-5.55 (CMA); j NASDAQ-5.55-reshuffle (CMA);
k NASDAQ-5.83. The horizontal axis corresponds to the 46 subjects and the vertical axis their
winning percentages. Adapted from Ref. [191]

ages of experiments with the Sharpe ratio of 0.01 and 0.03 are obviously smaller
than 3.57. However, it is not always the same for the NASDAQ Index. Specifically,
the winning percentages of experiment with the Sharpe ratio of 0.02 are slightly
larger than 5.83. Second, we study the effects of different market information on
predictability. For experiments with similar trends in the CSI 300 Index, such as
the first and third lines of Table 12.2, subjects given more information tend to make
more accurate predictions. But for experiments of NASDAQ index, such as the sixth
and eighth lines in Table 12.2, subjects’ forecast based merely on closing prices is
more accurate than that based on more information. The technical indicators do not
have significant impacts on the results of our experiment. Third, we move on to the
reshuffled data where the autocorrelation of stock prices is removed. For the exper-
iment and its reshuffle data, such as the first two lines in Table 12.2, the winning
percentage is lower after reshuffle. While for the experiments such as the ninth and
tenth lines in Table 12.2, the winning percentage rises. Some reason might be used
to explain this phenomenon. We suppose that when confronted with complicated
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time series (small Sharpe ratios), people tend to care more about the correlation of
details, which helps them grasp some regulations. Thus after the reshuffle, subjects’
performance turns worse. However, when there is a strong and clear price trend (large
Sharpe ratios), people choose to buy and hold. Their strategy lacks elasticity when
the market changes. Reshuffled data average the fluctuations in the real market and
avoid successive losses. Thus, subjects tend to win more often.

12.3.2 Statistics of Subjects

We analyze the questionnaire to further discuss subjects’ performance in the experi-
ment, and study whether gender, educational background, experience, and technical
analysis really affect the predictions. Our statistical result is shown in Table 12.3. We
average subjects’ winning percentage according to four factors.

According to Table 12.4, we can see that subjects’ predictions show little dif-
ference considering these four factors. To our surprise, the subject with years of
investment experiences does not perform best in our experiment. Some real market
investors even rank near the bottom in our experiment. Thus based on the results in
our experiment, investment experience is not a crucial factor in predictions. Well-
experienced investors do not distinguish from novices by candlesticks and moving
averages. Subjects using technical analysis here do not have obvious advantages.

12.3.3 Wealth Distribution

In our experiment, subject’s score = investment ratio × index revenue. The sign
of scores determines whether they win or lose, while the absolute number of scores
represents subject’s investment earnings. In fact, during the experiment, every subject
is supposed to make investments based on their judgment of price changes. If we
understand the subjects’ operations in this way, we can study the wealth distribution
based on subjects’ scores.

First let us look at, for example, the experiment with data from the CSI 300 Index
with the Sharpe ratio of 0.01, shown in Fig. 12.4. Before the first round, subjects have
nothing in their hands and everyone’s wealth is equal. After that, subjects receive
one unit of capital every round. As the experiment continues, the wealth difference
of 46 subjects widens. Finally, there is a relatively broad distribution of wealth.

The process of widening wealth gap is called the Matthew effect in economics.
This effect represents the phenomenon of “the rich get richer” [192]. Our experiment
shows the similar phenomena. We can use the Gini coefficient to illustrate the gap
between the amounts of wealth. The Gini coefficient describes the inequality of
wealth or income. The zero value of Gini coefficient means perfect equality, and the
Gini coefficient close to 1 means an extreme inequality [193]. The Gini coefficient
of each group is shown in Fig. 12.5.
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Table 12.3 Statistical results of the questionnaire

Username Gender Grade Experience Background Winning percentage (%)

13110190069 1 3 3 3 57.3

12110190071 1 3 3 3 55.5

13110190051 1 3 3 3 54.1

13110190085 1 3 3 3 52.7

09110190005 1 3 3 3 52.3

13110190028 1 3 3 3 52.3

13110190056 1 3 3 3 52.3

13110190074 1 3 3 3 50.0

13110190080 1 3 3 3 45.0

13110190063 2 3 3 3 51.8

13210190001 1 2 3 3 56.8

13110190011 1 2 3 3 54.1

13110190041 1 2 3 3 53.2

13110190040 1 2 3 3 51.4

10300190001 1 1 3 3 58.2

10300190024 1 1 3 3 57.3

11307110036 1 1 3 3 55.5

11307110076 1 1 3 3 55.5

11307110034 1 1 3 3 54.1

11307110201 1 1 3 3 53.6

11307110197 1 1 3 3 52.3

11307110018 1 1 3 3 51.4

11307110207 1 1 3 3 50.9

10300190059 1 1 3 3 50.0

11307110168 1 1 3 3 48.2

10301020077 1 1 3 3 47.7

11300200007 2 1 3 3 56.4

11307110322 2 1 3 3 51.4

11307110308 2 1 3 3 50.5

13110190073 2 3 1 3 52.7

11300300032 1 1 1 3 50.5

13250190001 1 2 3 2 58.2

13110190060 1 2 3 2 49.5

12210720009 2 2 3 2 55.5

(countinued)

For all the 11 groups of experiments, at first the Gini coefficient equals zero. As the
experiment continues, the Gini coefficient becomes larger. However, the final Gini
coefficient is quite different. We suppose the controllable indicators might contribute
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Table 12.3 (countinued)

Username Gender Grade Experience Background Winning percentage (%)

11307110028 1 1 3 2 55.0

11307110348 1 1 3 2 55.0

11307110233 1 1 3 2 52.3

10300190038 1 1 3 2 51.4

11307110256 2 1 3 2 54.1

11307110318 2 1 3 2 51.4

11307110333 2 1 3 2 50.9

11307110035 1 1 2 2 56.4

10300190005 1 1 2 2 51.8

12110190036 1 3 1 1 58.2

12110190005 1 3 1 1 56.8

13110190014 1 2 1 1 45.0

The second column is the gender (1-male and 2-female); the third column is the educational back-
ground (1-undergraduate and 2/3-graduate); the fourth column is the subject’s investment experience
(1/2-yes and 3-no); the fifth column is the subjects’ background of technical analysis (1/2-yes and
3-no). Adapted from Ref. [191]

Table 12.4 Average winning percentage of subjects with different features

Gender Male 53.00 %

Female 52.70 %

Grade Undergraduate 53.10 %

Graduate 52.90 %

Investment experience Yes 53.10 %

No 52.90 %

Tech analysis background Yes 53.40 %

No 52.70 %

Adapted from Ref. [191]

to the different Gini coefficient. Thus, we distinguish the experimental results and
average their Gini coefficients. The results are shown in Fig. 12.6. Figure 12.6d shows
that the Gini coefficient of real markets is larger than that of the reshuffled data. Apart
from that, results in Fig. 12.6a–c do not have an obvious difference.

12.4 Discussion and Conclusions

The prediction of market prices might be the most important job for investors. Tra-
ditional technical analysis tries to discover market trends based on historical market
data, and many theories have been established. In order to study the predictability
of technical analysis in real markets, we have designed the computer-aided human
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Fig. 12.4 An example of subjects’ scores changing with round. For the experiment with data from
the CSI 300 Index and the Sharpe ratio of 0.01, the wealth difference of 46 subjects widens during
the experiment. Adapted from Ref. [191]

Fig. 12.5 Gini coefficient. All the Gini coefficients for the 11 groups of experiment increase from
zero, representing the widening gap of subjects’ wealth. The final value of the Gini coefficient is
different for each group of experiment. Adapted from Ref. [191]

experiment. In our experiment, we first discuss the predictability under different
controllable variables. Our experimental results have shown that there is no evident
difference in predictability between mature and emerging markets, between noisy
fluctuations and (relatively) clear trends, or between different information-levels of
technical indicators. This means that in our experiments technical analysis can hardly
be useful for forecasting future trends. The different degrees of predictability revealed
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in our experiment might result from others factors, which remains to be studied in
the future.

We have also investigated factors affecting subjects’ performance. In our exper-
imental results, we found that gender, educational background, and investment
experience have little impact on the subjects’ performance. Actually, some well-
experienced subjects are even worse than the novices. Then which factor contributes
to the subjects’ predictability results? Will subjects predict more accurately due to
their higher ability or just due to their better luck? We have found that some subjects
always rank higher in the 11 groups of experiments. We believe pure luck cannot
illustrate this phenomenon.

Finally, we calculated the wealth distribution of subjects and found the Matthew
effect in the experiments. For each experiment, the Gini coefficient always increases
as the experiment continues. The wealth distribution appears to be quite different in
the 11 groups of experiment. Due to limited experimental conditions, we only had

(a) (b)

(c) (d)

Fig. 12.6 Average of the Gini coefficients with different controllable indicators. a Data with the
small Sharpe ratios (experiment 1 with Sharpe ratio of 0.01, experiment 2 with 0.03, experiment 5
with 0.03, and experiment 8 with 0.02) versus data with the large Sharpe ratios (experiment 4 with
Sharpe ratio of 5.83, experiment 7 with 5.55, and experiment 9 with 3.57). Reshuffled data are not
included. b Reshuffled data with small Sharpe ratios (experiment 3 with Sharpe ratio of 0.01 and
experiment 6 with 0.02) versus reshuffled data with large Sharpe ratios (experiment 10 with Sharpe
ratio of 5.55 and experiment 11 with 3.57). c Combination of (a) and (b). d Reshuffled data versus
real market data. The experiment order is from Table 12.1. Adapted from Ref. [191]
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46 subjects and 11 groups of experiment in total. These are not enough to draw a
solid conclusion. The experimental results can only provide a qualitative judgment.
We hope further study will be conducted, and hopefully more hiding connections
may be revealed eventually.



Chapter 13
Summary and Outlook

Abstract I first summarize all the content introduced in Chaps. 1-12. Then, I give
my personal outlook on experimental econophysics.

Keywords Experimental econophysics · Empirical analysis · Controlled experi-
ment · Theoretical analysis

This book describes the field of experimental econophysics with focus on the
following topics related to economics or finance: stylized facts, fluctuation phe-
nomena, herd behavior, contrarian behavior, hedge behavior, cooperation, business
cycles, partial information, risk management, and stock prediction. The book covers
the basic concepts, methods, and latest progress in the field of experimental econo-
physics.

The combination of empirical analysis, controlled experiments, and theoreti-
cal analysis is the fundamental method in the field of experimental econophysics
(Chap. 1). Clearly, controlled experiments are the most important part within this
combination. Thus, how to develop experimental econophysics mainly relies on how
to design and perform controlled experiments convincingly. The laboratory markets
presented in this book offer an approximation of real markets, which are made of
diverse traders. The results of our controlled experiments lend support to the Hayek
hypothesis [27, 29] which asserted that markets can work correctly even though the
participants have very limited knowledge of their environment or other participants
(see Sect. 2.1). In fact, traders have different talents, interests, and abilities, and they
may interpret data differently or be swayed by fads. Nevertheless, there is still room
for markets to operate efficiently. These comments on the Hayek hypothesis might
also be used to explain why our laboratory markets could be a reasonable approxi-
mation of real markets.

Regarding the further development of controlled experiments in the field of
experimental econophysics, below I point out the following three directions [194].

(1) It is necessary to develop controlled experiments to study and predict the move-
ment of real financial/economic markets that are often out-of-equilibrium [195],
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which should be helpful for making suggestions for policy makers. For this
purpose, it is necessary to take into account the development of complex net-
works [196–202] that can be used to describe the relations among humans, thus
yielding emergent features originating from the interplay between the structure
and the corresponding function of markets.

(2) With the deep development of economic and financial systems in global scope,
economic/financial crises have more catastrophic influences than ever. However,
mathematical statistics is unable to dig the essential mechanism underlying the
crises. This points to a truth: it is urgently needed a more efficient method
to model the social human systems. Controlled experiments, combined with
empirical analysis and theoretical analysis, might be a promising candidate. As
a result, statistical physics might play a more important role in the prediction of
crises.

(3) Extending controlled experiments from humans to other animals like ants [203]
or fish [204] could be of value in studying statistical physics of other kinds
of adaptive agents beyond human beings. By doing so, people can understand
these animals more by using concepts or tools originating from the traditional
statistical physics.

So far, I have listed only three directions of controlled experiments. The readers
are definitely smarter than me, and they might be able to dig out more instructive
directions. Certainly, with the development of controlled experiments, accompany-
ing empirical analysis and theoretical analysis should also be developed accordingly,
to make the experimental results more useful and universal. In the mean time, econo-
physicists should also try to get a lot of nutrients from other successful disciplines
like experimental (or behavioral) economics [30] and social psychology [205], so
that experimental econophysics could flourish and prosper as soon as possible.



Appendix A

A.1 A Model Ethics Statement

Physicists (working on traditional physics) are not familiar with ethics statements
because physical experiments under their study are always related to non-intelligent
samples like Au/SiO2 composites. When physicists perform controlled human exper-
iments in the field of econophysics, they need to prepare ethics statements. This is
because such experiments are performed to study human beings and human rights
must be respected. As a result, every controlled experiment described in this book
needs to be conducted under the requirement of ethics. Here, let me take the con-
trolled experiment presented in Chap. 10 as an example, and provide the relevant
ethics statement (with updates) as follows.

Applicant Name: J. P. Huang
Email address: jphuang@fudan.edu.cn
Experiment name: Resource allocation game
The number of human subjects needed: 25–30
Brief experiment plan:
We plan to recruit 25–30 students from the Department of Physics, Fudan

University to do a series of resource allocation game. All the experiments are
computer-aided and will be conducted for 2 h in Computer Room 121, Physics Build-
ing, Fudan University.

In the game, the subjects are connected by virtual directed random networks. A
player’s first-order neighborhood becomes his/her group members. The subjects are
faced with two virtual rooms with different amount of resource. At each time step,
every subject should decide on which room to choose to enter on the basis of the
partial information obtained from his/her own group. After the experiments, all the
subjects are offered a certain amount of money as reward according to their own
performances. The average cash reward is 100 Chinese Yuan per capita.
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All the experimental data are collected anonymously and used only for research
purpose.

Applicant’s Signature:
Date:

Statement of the Ethics Committee of Department of Physics, Fudan
University

(a) On April 29, 2013
The application for the human experiments submitted by Prof. J. P. Huang has

been approved by the committee.
(b) On May 7, 2013
The process of the experiments was supervised by the committee. The committee

confirms that the human experiments were carried out under the requirement of
ethics.

Signature of the Committee Director:
Date:

A.2 Announcement of Free Experimental Data Sharing

The book describes a number of controlled human experiments conducted in the
laboratory. These experiments have offered us a large amount of experimental data.
We are willing to freely share these data with any researchers, who have interest in
developing controlled experiments in the field of experimental econophysics. In order
to get the relevant original experimental data, email me at jphuang@fudan.edu.cn.
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