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These notes discuss, in a style intended for physicists,
how to average data and fit it to some functional form.
I try to make clear what is being calculated, what
assumptions are being made, and to give a derivation
of results rather than just quote them. The aim is put
a lot of useful pedagogical material together in a
convenient place.
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Chapter 1
Introduction

These notes describe how to average and fit numerical data that you have obtained,
presumably by some simulation.

Typically you will generate a set of values xi , yi , . . . , i = 1, . . . N , where N
is the number of measurements. The first thing you will want to do is to estimate
various average values, and determine error bars on those estimates. As we shall
see, this is straightforward if one wants to compute a single average, e.g. 〈x〉, but
not quite so easy for more complicated averages such as fluctuations in a quantity,
〈x2〉−〈x〉2, or combinations of measured values such as 〈y〉/〈x〉2. Averaging of data
will be discussed in Chap. 2.

Having obtained several good data points with error bars, you might want to fit
this data to some model. Techniques for fitting data will be described in the second
part of these notes in Chap. 3.

I find that the books on these topics usually fall into one of two camps. At one
extreme, the books for physicists don’t discuss all that is needed and rarely prove the
results that they quote. At the other extreme, the books for mathematicians presum-
ably prove everything but are written in a style of lemmas, proofs, ε’s and δ’s, and
unfamiliar notation, which is intimidating to physicists. One exception, which finds
a good middle ground, is Numerical Recipes [1] and the discussion of fitting given
here is certainly influenced by Chap. 15 of that book. In these notes I aim to be fairly
complete and also to derive the results I use, while the style is that of a physicist
writing for physicists. I also include scripts in python, perl, and gnuplot to perform
certain tasks in data analysis and fitting. For these reasons, these notes are perhaps
rather lengthy. Nonetheless, I hope, that they will provide a useful reference.

Reference

1. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn.
(Cambridge University Press, Cambridge, 1992)

© The Author(s) 2015
P. Young, Everything You Wanted to Know About Data Analysis
and Fitting but Were Afraid to Ask, SpringerBriefs in Physics,
DOI 10.1007/978-3-319-19051-8_1
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Chapter 2
Averages and Error Bars

2.1 Basic Analysis

A reference for the material in this subsection is the book by Taylor [1].
Suppose we have a set of data from a simulation, xi , (i = 1, . . . , N ), which we

shall refer to as a sample of data. This data will have some random noise so the xi

are not all equal. Rather they are governed by a distribution P(x), which we don’t
know.

The distribution is normalized,
∫ ∞

−∞
P(x) dx = 1, (2.1)

and is usefully characterized by its moments, where the nth moment is defined by

〈xn〉 =
∫ ∞

−∞
xn P(x) dx . (2.2)

We will denote the average over the exact distribution by angular brackets. Of par-
ticular interest are the first and second moments from which one forms the mean μ

and variance σ 2, by

μ ≡ 〈x〉 (2.3a)

σ 2 ≡ 〈 (x − 〈x〉)2 〉 = 〈x2〉 − 〈x〉2. (2.3b)

The term “standard deviation” is used for σ , the square root of the variance.
In this section we will estimate the mean 〈x〉, and the uncertainty in our estimate,

from the N data points xi . The determination of more complicated averages and
resulting error bars will be discussed in Sect. 2.2

© The Author(s) 2015
P. Young, Everything You Wanted to Know About Data Analysis
and Fitting but Were Afraid to Ask, SpringerBriefs in Physics,
DOI 10.1007/978-3-319-19051-8_2
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4 2 Averages and Error Bars

In order to obtain error bars we need to assume that the data are uncorrelated
with each other. This is a crucial assumption, without which it is very difficult to
proceed. However, it is not always clear if the data points are truly independent of
each other; some correlations may be present but not immediately obvious. Here, we
take the usual approach of assuming that even if there are some correlations, they
are sufficiently weak so as not to significantly perturb the results of the analysis. In
Monte Carlo simulations, measurements which differ by a sufficiently large number
of Monte Carlo sweeps will be uncorrelated. More precisely the difference in sweep
numbers should be greater than a “relaxation time”. This is exploited in the “binning”
method in which the data used in the analysis is not the individual measurements, but
rather an average over measurements during a range of Monte Carlo sweeps, called
a “bin”. If the bin size is greater than the relaxation time, results from adjacent bins
will be (almost) uncorrelated. A pedagogical treatment of binning has been given
by Ambegaokar and Troyer [2]. Alternatively, one can do independent Monte Carlo
runs, requilibrating each time, and use, as individual data in the analysis, the average
from each run.

The information from the data is usefully encoded in two parameters, the sample
mean x and the sample standard deviation s which are defined by1

x = 1

N

N∑
i=1

xi , (2.4a)

s2 = 1

N

N∑
i=1

(xi − x)2 . (2.4b)

In statistics, notation is often confusing but crucial to understand. Here, an average
indicated by an over-bar, · · ·, is an average over the sample of N data points. This is
to be distinguished from an exact average over the distribution 〈· · · 〉, as in Eqs. (2.3a)
and (2.3b). The latter is, however, just a theoretical construct since we don’t know the
distribution P(x), only the set of N data points xi which have been sampled from it.

1The factor of N is often replaced by N − 1 in the expression for the sample variance in Eq. (2.4b).
We note, though, that the final answer for the error bar on the mean, Eq. (2.16), will be independent
of how the intermediate quantity s2 is defined. The rationale for N − 1 is that the N terms in
Eq. (2.4b) are not all independent since x , which depends on all the xi , is subtracted. Rather, as
will be discussed more in the section on fitting, Chap. 3, there are really only N − 1 independent
variables (called the “number of degrees of freedom” in the fitting context) and so dividing by N −1
rather than N also has a rational basis. Here we prefer to use N .

http://dx.doi.org/10.1007/978-3-319-19051-8_3


2.1 Basic Analysis 5

Next we derive two simple results which will be useful later:

1. The mean of the sum of N independent variables with the same distribution is N
times the mean of a single variable, and

2. The variance of the sum of N independent variables with the same distribution is
N times the variance of a single variable.

The result for the mean is obvious since, defining X = ∑N
i=1 xi ,

μX ≡ 〈X〉 =
N∑

i=1

〈xi 〉 = N 〈xi 〉 = Nμ. (2.5)

The result for the standard deviation needs a little more work:

σ 2
X ≡ 〈X2〉 − 〈X〉2 (2.6a)

=
N∑

i, j=1

(〈xi x j 〉 − 〈xi 〉〈x j 〉
)

(2.6b)

=
N∑

i=1

(
〈x2i 〉 − 〈xi 〉2

)
(2.6c)

= N
(
〈x2〉 − 〈x〉2

)
(2.6d)

= Nσ 2. (2.6e)

To get from Eqs. (2.6b) to (2.6c) we note that, for i �= j , 〈xi x j 〉 = 〈xi 〉〈x j 〉 since
xi and x j are assumed to be statistically independent. (This is where the statistical
independence of the data is needed.) If the means and standard deviations are not all
the same, then the above results generalize to

μX =
N∑

i=1

μi , (2.7a)

σ 2
X =

N∑
i=1

σ 2
i . (2.7b)

Now we describe an important thought experiment. Let’s suppose that we could
repeat the set of N measurements very many many times, each time obtaining a value
of the sample average x . From these results we could construct a distribution, P̃(x),
for the sample average as shown in Fig. 2.1.

If we do enough repetitions we are effectively averaging over the exact distrib-
ution. Hence the average of the sample mean, x , over very many repetitions of the
data, is given by



6 2 Averages and Error Bars

Fig. 2.1 The distribution of
results for the sample mean x
obtained by repeating the
measurements of the N data
points xi many times. The
average of this distribution is
μ, the exact average value of
x . The mean, x , obtained
from one sample of data
typically differs from μ by
an amount of order σx , the
standard deviation of the
distribution P̃(x)

P(x)
_~

x

_

σ

x
μ

〈x〉 = 1

N

N∑
i=1

〈xi 〉 = 〈x〉 ≡ μ, (2.8)

i.e. it is the exact average over the distribution of x , as one would intuitively expect,
see Fig. 2.1. Eq. (2.8) also follows from Eq. (2.5) by noting that x = X/N .

In fact, though, we have only the one set of data, so we can not determine μ

exactly. However, Eq. (2.8) shows that

the best estimate of μ is x, (2.9)

i.e. the sample mean, since averaging the sample mean over many repetitions of the
N data points gives the true mean of the distribution, μ. An estimate like this, which
gives the exact result if averaged over many repetitions of the experiment, is said to
be unbiased.

We would also like an estimate of the uncertainty, or “error bar”, in our estimate
of x for the exact average μ. We take σx , the standard deviation in x (obtained if one
did many repetitions of the N measurements), to be the uncertainty, or error bar, in
x . The reason is that σx is the width of the distribution P̃(x), shown in Fig. 2.1, so a
single estimate x typically differs from the exact result μ by an amount of this order.
The variance σ 2

x is given by

σ 2
x ≡ 〈x2〉 − 〈x〉2 = σ 2

N
, (2.10)

which follows from Eq. (2.6e) with x = X/N .
The problem with Eq. (2.10) is that we don’t know σ 2 since it is a function

of the exact distribution P(x). We do, however, know the sample variance s2, see
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Eq. (2.4b), and the average of this over many repetitions of the N data points, is
closely related to σ 2 since

〈s2〉 = 1

N

N∑
i=1

〈x2i 〉 − 1

N 2

N∑
i=1

N∑
j=1

〈xi x j 〉 (2.11a)

= 〈x2〉 − 1

N 2

[
N (N − 1)〈x〉2 + N 〈x2〉

]
(2.11b)

= N − 1

N

[
〈x2〉 − 〈x〉2

]
(2.11c)

= N − 1

N
σ 2. (2.11d)

To get from Eqs. (2.11a) to (2.11b), we have separated the terms with i = j in the
last term of Eq. (2.11a) from those with i �= j , and used the fact that each of the xi

is chosen from the same distribution and is statistically independent of the others. It
follows from Eq. (2.11c) that

the best estimate of σ 2 is
N

N − 1
s2, (2.12)

since averaging s2 over many repetitions of N data points gives σ 2. The estimate for
σ 2 in Eq. (2.12) is therefore unbiased. Note that the expression for s2 in Eq. (2.4a)
is a sum of positive terms, so it is “self-averaging”, which means that the deviation
of the result for one sample of N data points from the average over many data sets
(σ 2 in this case) tends to zero for N → ∞.

Combining Eqs. (2.10) and (2.12) gives

the best estimate of σ 2
x is

s2

N − 1
, (2.13)

since this estimate is also unbiased. We have now obtained, using only information
from the data, that the mean is given by

μ = x ± σx , (2.14)

where

σx = s√
N − 1

, (2.15)

which we can write explicitly in terms of the data points as

σx =
[

1

N (N − 1)

N∑
i=1

(xi − x)2

]1/2

. (2.16)
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Remember that x and s are the mean and standard deviation of the (one set) of data
that is available to us, see Eqs. (2.4a) and (2.4b).

As an example, suppose N = 5 and the data points are

xi = 10, 11, 12, 13, 14, (2.17)

(not very random looking data it must be admitted!). Then, from Eq. (2.4a) we have
x = 12, and from Eq. (2.4b)

s2 = 1

5

[
(−2)2 + (−1)2 + 02 + 12 + 22

]
= 2. (2.18)

Hence, from Eq. (2.15),

σx = 1√
4

√
2 = 1√

2
. (2.19)

so

μ = x ± σx = 12 ± 1√
2
. (2.20)

How does the error bar decrease with the number of statistically independent data
points N? Equation (2.11d) shows that s2 does not vary systematically with N , at
large N (where we neglect the factor of−1 compared with N ) and so from Eq. (2.15)
we see that

the error bar in the mean goes down like 1/
√

N for large N .

Hence, to reduce the error bar by a factor of 10 one needs 100 times as much data.
This is discouraging, but is a fact of life when dealing with random noise.

For Eq. (2.15) to be really useful we need to know the probability that the true
answer μ lies more than σx away from our estimate x . Fortunately, for large N , the
central limit theorem, derived inAppendixA, tells us (for distributions where the first
two moments are finite) that the distribution of x is a Gaussian. For this distribution
we know that the probability of finding a result more than one standard deviation
away from the mean is 32%, more than two standard deviations is 4.5% and more
than three standard deviations is 0.3%. Hence we expect that most of the time x will
be within σx of the correct result μ, and only occasionally will be more than two
times σx from it. Even if N is not very large, so there are some deviations from the
Gaussian form, the above numbers are often a reasonable guide.

However, as emphasized in Appendix A, distributions which occur in nature typ-
ically have much more weight in the tails than a Gaussian. As a result, the weight in
the tails of the distribution of the sum can also bemuch larger than for aGaussian even
for quite large values of N , see Fig. A.1. It follows that the probability of an “outlier”
can be much higher than that predicted for a Gaussian distribution, as anyone who
has invested in the stock market knows well!
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We conclude this subsection by discussing the situation when there are several
random variables, x, y, z, . . ., for whichwe generate a sample of data: (xi , yi , zi , . . .)

with i = 1, 2, . . . , N . We indicate the means and standard deviations of the different
variables by suffices, i.e.

μx ≡ 〈x〉 (2.21a)

σ 2
x ≡ 〈x2〉 − 〈x〉2, (2.21b)

for averages over the exact distribution, and

s2x ≡ 1

N

N∑
i=1

(xi − x)2 . (2.22)

for the sample variance. Themain new feature is the appearance of cross-correlations
between different variables. One defines the “covariance” of x and y by

Cov(x, y) ≡ 〈xy〉 − 〈x〉〈y〉 = 〈( x − 〈x〉) (y − 〈y〉) 〉. (2.23)

It is convenient to have a more compact notation for the covariance, analogous to
that in Eq. (2.21b) for the variance. I use the notation σ 2

xy for the covariance of x and
y, i.e.

σ 2
xy ≡ 〈( x − 〈x〉) (y − 〈y〉) 〉. (2.24)

This notation is not ideal since there is no guarantee that the covariance σ 2
xy is

positive.2 The standard notation is to write the covariance of x and y as σxy (no
square), but I find this even more confusing.

By analogy to Eq. (2.24) I write the sample covariance of x and y as

s2xy ≡ 1

N

N∑
i=1

(xi − x) (yi − y) . (2.25)

2.2 Advanced Analysis

In Sect. 2.1 we learned how to estimate a simple average, such as μx ≡ 〈x〉, plus the
error bar in that quantity, from a set of data xi . Trivially this method also applies to
a linear combination of different averages, μx , μy, . . . etc. However, we often need

2One should therefore think of σ 2
xy as a single quantity, rather than the square of something, just

as χ2, discussed extensively in the section on fitting below, is never regarded as the square of an
object called χ . Admittedly, though, χ2 can not be negative.
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more complicated, non-linear functions of averages. One example is the fluctuations
in a quantity, i.e. 〈x2〉 − 〈x〉2. Another example is a dimensionless combination of
moments, which gives information about the shape of a distribution independent of
its overall scale. Such quantities are very popular in finite-size scaling (FSS) analyses
since theFSS form is simpler than for quantitieswith dimension.Anpopular example,
first proposed by Binder, is 〈x4〉/〈x2〉2, which is known as the “kurtosis” (frequently
a factor of 3 is subtracted to make it zero for a Gaussian).

Hence, in this section we consider how to determine non-linear functions of
averages of one or more variables, f (μy, μz, . . .), where

μy ≡ 〈y〉, (2.26)

etc. For example, the two quantities mentioned in the previous paragraph corre-
spond to

f (μy, μz) = μy − μ2
z , (2.27)

with y = x2 and z = x and

f (μy, μz) = μy

μ2
z
, (2.28)

with y = x4 and z = x2.
The natural estimate of f (μy, μz) from the sample data is clearly f (y, z). How-

ever, it will take some more thought to estimate the error bar in this quantity. The
traditional way of doing this is called “error propagation”, described in Sect. 2.2.1
and Chap.3 of Ref. [1]. However, it is now more common to use either “jackknife”
or “bootstrap” procedures, described in Sects. 2.2.2 and 2.2.3. At the price of some
additional computation, which is no difficulty when done on a modern computer
(though it would have been tedious in the old days when statistics calculations were
done by hand), these methods automate the calculation of the error bar.

In addition, the estimate of f (μy, μz) turns out to have some bias if f is a non-
linear function. Usually this is small effect because it is order 1/N , see for example
Eq. (2.34), whereas the statistical error is of order 1/

√
N . Since N is usually large, the

bias is generallymuch less than the statistical error and so can generally be neglected.
In any case, the jackknife and bootstrap methods also enable one to eliminate the
leading (∼1/N ) contribution to the bias in a automatic fashion.

2.2.1 Traditional Method

First we will discuss the traditional method, known as error propagation [1], to
compute the error bar and bias. We expand f (y, z) about f (μy, μz) up to second
order in the deviations:
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f (y, z) = f (μy, μz) + (∂μy f ) δy + (∂μz f ) δz + 1

2
(∂2μyμy

f ) δ2y

+ (∂2μyμz
f ) δyδz + 1

2
(∂2μzμz

f ) δ2z + · · · , (2.29)

where

δy = y − μy, (2.30)

etc.
The terms of first order in the δ′s in Eq. (2.29) give the leading contribution to the

error, but would average to zero if the procedure were to be repeated many times.
However, the terms of second order do not average to zero and so give the leading
contribution to the bias. We now estimate that bias.

Averaging Eq. (2.29) over many repetitions, and noting that

〈δ2y〉 = 〈y2〉 − 〈y〉2 ≡ σ 2
y , 〈δ2z 〉 = 〈z2〉 − 〈z〉2 ≡ σ 2

z , 〈δyδz〉 = 〈y z〉 − 〈y〉〈z〉 ≡ σ 2
y z,

(2.31)

we get

〈 f (y, z)〉 − f (μy, μz) = 1

2
(∂2μyμy

f ) σ 2
y + (∂2μyμz

f ) σ 2
y z + 1

2
(∂2μzμz

f ) σ 2
z + · · · .

(2.32)

As shown in Eq. (2.13) σ 2
y is (N − 1)−1 times the average sample variance 〈s2y〉.

Furthermore, as noted below Eq. (2.12), s2y is self averaging, which means that the
difference between the value of s2y from one data set and the average over all data
sets, σ 2

y , tends to zero for N → ∞. Hence we can replace σ 2
y by (N − 1)−1s2y ,

and similarly replace σ 2
z by (N − 1)−1s2z . In the same way, we can replace σ 2

y z by

(N −1)−1 times s2yz , the sample covariance of y and z, defined in Eq. (2.25). Hence,
from Eq. (2.32), we have

f (μy, μz) = 〈 f (y, z)〉 − 1

(N − 1)

[
1

2
(∂2μyμy

f ) s2y + (∂2μyμz
f ) s2yz + 1

2
(∂2μzμz

f ) s2z

]
+ · · · .

(2.33)

The leading contribution to the bias is the 1/(N −1) term. It follows from Eq. (2.33)
that if one wants to eliminate the leading contribution to the bias one should

estimate f (μy, μz) from f (y, z) − 1

(N − 1)

[
1

2
(∂2μyμy

f ) s2y + (∂2μyμz
f ) s2yz + 1

2
(∂2μzμz

f ) s2z

]
.

(2.34)
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As claimed earlier, the bias correction is of order 1/N . Note that it vanishes if f is a
linear function, as shown in Sect. 2.1. The generalization to functions of more than
two averages, f (μy, μz, μw, . . .), is obvious.

Next we discuss the leading error in using f (y, z) as an estimate for f (μy, μz).
This comes from the terms linear in the δ’s in Eq. (2.29). Just including these terms
we have

〈 f (y, z)〉 = f (μy, μz), (2.35a)

〈 f 2(y, z) 〉 = f 2(μy, μz) + (∂μy f )2 〈δ2y〉 + 2(∂μy f ) (∂μz f ) 〈δyδz〉 + (∂μz f )2 〈δ2z 〉. (2.35b)

Hence

σ 2
f ≡ 〈 f 2(y, z) 〉 − 〈 f (y, z)〉2

= (∂μy f )2 〈δ2y〉 + 2(∂μy f ) (∂μz f ) 〈δyδz〉 + (∂μz f )2 〈δ2z 〉. (2.36)

As above, we use s2yy/(N −1) as an estimate of 〈δ2y〉 and similarly for the other terms.
Hence

the best estimate of σ 2
f is

1

(N − 1)
(∂μy f )2 s2y + 2(∂μy f ) (∂μz f ) s2yz + (∂μz f )2 s2z .

(2.37)

This estimate is unbiased to leading order in N . Note that we need to keep track not
only of fluctuations in y and z, characterized by their variances s2y and s2z , but also
cross correlations between y and z, characterized by their covariance s2yz .

Hence, still to leading order in N , we get

f (μy, μz) = f (y, z) ± σ f , (2.38)

where we estimate the error bar σ f from Eq. (2.37) which shows that it is of order
1/

√
N . The generalization to functions of more than two averages is obvious.

Note that in the simple case studied in Sect. 2.1 where f (μx ) is a linear function,
f = μx , Eq. (2.33) tells us that there is no bias, which is correct, and Eq. (2.37)
gives an expression for the error bar which agrees with Eq. (2.15).

In Eqs. (2.34) and (2.37) we need to keep track how errors in the individual
quantities like y propagate to the estimate of the function f . This requires inputting
by hand the various partial derivatives into the analysis program, and keeping track
of all the variances and covariances. In the next two sections we see how resampling
the data automatically takes account of error propagation without needing to input
the partial derivatives and keep track of variances and covariances. There are two
resampling approaches, called jackknife and bootstrap, and each provide a fully
automatic method of determining error bars and bias.
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2.2.2 Jackknife

We define the i th jackknife estimate, y J
i (i = 1, 2, . . . , N ) to be the average over all

data in the sample except the point i , i.e.

y J
i ≡ 1

N − 1

∑
j �=i

y j

(
= y + 1

N − 1
(y − yi )

)
. (2.39)

We also define corresponding jackknife estimates of the function f (again for con-
creteness we will assume that f is a function of just 2 averages but the generalization
will be obvious):

f J
i ≡ f (y J

i , z J
i ). (2.40)

In other words, we use the jackknife values, y J
i , z J

i , rather than the sample means,
y, z, as the arguments of f . For example a jackknife estimate of the Binder ratio
〈x4〉/〈x2〉2 is

f J
i = (N − 1)−1 ∑

j,( j �=i) x4j[
(N − 1)−1

∑
j,( j �=i) x2j

]2 (2.41)

The overall jackknife estimate of f (μy, μz) is then the average over the N jackknife
estimates f J

i :

f J ≡ 1

N

N∑
i=1

f J
i . (2.42)

It is straightforward to show that if f is a linear function of μy and μz then f J =
f (y, z), i.e. the jackknife and standard averages are identical, see e.g. Eq. (2.39).
However, when f is not a linear function, so there is bias, there is a difference, and
we will now show the resampling carried out in the jackknife method can be used to
determine bias and error bars in an automated way.

We proceed as for the derivation of Eq. (2.33), which we now write as

f (μy, μz) = 〈 f (y, z)〉 − A

N
− B

N 2 + · · · , (2.43)

where A is the term in rectangular brackets in Eq. (2.33), and we have added the next
order correction. The jackknife data sets have N −1 points with the same distribution
as the N points in the actual distribution, and so the bias in the jackknife average
will be of the same form, with the same values of A and B, but with N replaced by
N − 1, i.e.

f (μy, μz) = 〈 f J 〉 − A

N − 1
− B

(N − 1)2
· · · . (2.44)
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We can therefore eliminate the leading contribution to the bias by forming an appro-
priate linear combination of f (y, z) and f J , namely

f (μy, μz) = N 〈 f (y, z)〉 − (N − 1)〈 f J 〉 + O

(
1

N 2

)
. (2.45)

It follows that, to eliminate the leading bias without computing partial derivatives,
one should

estimate f (μy, μz) from N f (y, z) − (N − 1) f J . (2.46)

The bias is then of order 1/N 2. However, as mentioned earlier, bias is usually not a
big problem because, even without eliminating the leading contribution, the bias is of
order 1/N whereas the statistical error is of order 1/

√
N which is much bigger if N is

large. In most cases, therefore, N is sufficiently large that one can use either the usual
average f (y, z), or the jackknife average f J in Eq. (2.42), to estimate f (μy, μz),
since the difference between them will be much smaller than the statistical error. In
other words, elimination of the leading bias using Eq. (2.46) is usually not necessary.

Next we show that the jackknife method gives error bars, which agree with
Eq. (2.37) but without the need to explicitly keep track of the partial derivatives
and the variances and covariances.

We define the variance of the jackknife averages by

s2f J ≡ (
f J

)2 −
(

f J
)2

, (2.47)

where
(

f J
)2 = 1

N

N∑
i=1

(
f J
i

)2
. (2.48)

Using Eqs. (2.40) and (2.42), we expand f J away from the exact result f (μy, μz).
Just including the leading contribution gives

f J − f (μy, μz) = 1

N

N∑
i=1

[
(∂μy f ) (y J

i − μy) + (∂μz f ) (z J
i − μz)

]

= 1

N (N − 1)

N∑
i=1

[
(∂μy f )

{
N (y − μy) − (yi − μy)

}

+ (∂μz f ) {N (z − μz) − (zi − μz)}
]

= (∂μy f ) (y − μy) + (∂μz f ) (z − μz), (2.49)
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where we used Eq. (2.39). Similarly we find

(
f J

)2 = 1

N

N∑
i=1

[
f (μy, μz) + (∂μy f ) (y J

i − μy) + (∂μz f ) (z J
i − μz)

]2

= f 2(μy , μz) + 2 f (μy , μz)
[
(∂μy f ) (y − μy) + (∂μz f ) (z − μz)

]

+ (∂μy f )2

[
(y − μy)2 + s2y

(N − 1)2

]
+ (∂μz f )2

[
(z − μz)

2 + s2z
(N − 1)2

]

+ 2(∂μy f )(∂μz f )

[
(y − μy)(z − μz) + s2yz

(N − 1)2

]
. (2.50)

Hence, from Eqs. (2.47) to (2.49), the variance in the jackknife estimates is given by

s2f J = 1

(N − 1)2

[
(∂μy f )2 s2y + (∂μz f )2 s2z + 2(∂μy f )(∂μz f )s2yz

]
, (2.51)

which is just 1/(N −1) times σ 2
f , the estimate of the square of the error bar in f (y, z)

given in Eq. (2.37). Hence

the jackknife estimate for σ f is
√

N − 1 s f J . (2.52)

Note that this is directly obtained from the jackknife estimates without having to put
in the partial derivatives by hand. Note too that the

√
N − 1 factor is in the numerator

whereas the factor of
√

N − 1 in Eq. (2.15) is in the denominator. Intuitively the
reason for this difference is that the jackknife estimates are very close, much closer
than the error in the means, since they would all be equal except that each one omits
just one data point.

If N is very large, roundoff errors could become significant fromhaving to subtract
large, almost equal, numbers to get the error bar from the jackknife method. It is then
advisable to group the N data points into Ngroup groups (or “bins”) of data and take,
as individual data points in the jackknife analysis, the average of the data in each
group. The above results clearly go through with N replaced by Ngroup.

To summarize this subsection, to estimate f (μy, μz) one can use either f (y, z)

or the jackknife average f J in Eq. (2.42). The error bar in this estimate, σ f , is related
to the standard deviation in the jackknife estimates s f J by Eq. (2.52).

2.2.3 Bootstrap

The bootstrap, like the jackknife, is a resampling of the N data points. A brief
discussion, in the context of data analysis is given in Ref. [3]. Whereas jackknife
considers N new data sets, each of containing all the original data points minus
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one, bootstrap uses Nboot data sets each containing N points obtained by random
(Monte Carlo) sampling of the original set of N points. During the Monte Carlo
sampling, the probability that a data point is picked is 1/N irrespective of whether
it has been picked before. (In the statistics literature this is called picking from a
set “with replacement”.) Hence a given data point xi will, on average, appear once
in each Monte Carlo-generated data set, but may appear not at all, or twice, and
so on. The probability that xi appears ni times is close to a Poisson distribution
with mean unity. However, it is not exactly Poissonian because of the constraint in
Eq. (2.53). It turns out that we shall need to include the deviation from the Poisson
distribution even for large N . We shall use the term “bootstrap” to denote the Monte
Carlo-generated data sets.

More precisely, let us suppose that the number of times xi appears in a bootstrap
data set is ni . Since each bootstrap dataset contains exactly N data points, we have
the constraint

N∑
i=1

ni = N . (2.53)

Consider one of the N variables xi . Each time we generate an element in a bootstrap
dataset the probability that it is xi is 1/N , which we will denote by p. From standard
probability theory, the probability that xi occurs ni times is given by a binomial
distribution

P(ni ) = N !
ni ! (N − ni )! pni (1 − p)N−ni . (2.54)

The mean and standard deviation of a binomial distribution are given by

[ni ]MC = N p = 1, (2.55)

[n2
i ]MC − [ni ]2MC

= N p(1 − p) = 1 − 1

N
, (2.56)

where [. . . ]MC denotes an exact average over bootstrap samples (for a fixed original
data set xi ). For N → ∞, the binomial distributiongoes over to aPoissondistribution,
for which the factor of 1/N in Eq. (2.56) does not appear. We assume that Nboot is
sufficiently large that the bootstrap average we carry out reproduces this result with
sufficient accuracy. Later, we will discuss what values for Nboot are sufficient in
practice. Because of the constraint in Eq. (2.53), ni and n j (with i �= j) are not
independent and we find, by squaring Eq. (2.53) and using Eqs. (2.55) and (2.56),
that

[ni n j ]MC − [ni ]MC [n j ]MC = − 1

N
(i �= j). (2.57)

First of all we just consider the simple average μx ≡ 〈x〉, for which, of course,
the standard methods in Sect. 2.1 suffice, so bootstrap is not necessary. However, this
will show how to get averages and error bars in a simple case, which we will then
generalize to non-linear functions of averages.
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We denote the average of x for a given bootstrap data set by x B
α , where α runs

from 1 to Nboot, i.e

x B
α = 1

N

N∑
i=1

ni,αxi . (2.58)

We then compute the bootstrap average of the mean of x and the bootstrap variance
in the mean, by averaging over all the bootstrap data sets. We assume that Nboot is
large enough for the bootstrap average to be exact, so we can use Eqs. (2.56) and
(2.57). The result is

x B ≡ 1

Nboot

Nboot∑
α=1

x B
α = 1

N

N∑
i=1

[ni ]MC xi = 1

N

N∑
i=1

xi = x (2.59)

s2
x B ≡ (

x B
)2 −

(
x B

)2 = 1

N2

(
1 − 1

N

)∑
i

x2i − 1

N3

∑
i �= j

xi x j = 1

N

(
x2 − x2

)
= s2

N
, (2.60)

where

(
x B

)2 ≡ 1

Nboot

Nboot∑
α=1

[(
x B
α

)2]
MC

. (2.61)

We now average Eqs. (2.59) and (2.60) over many repetitions of the original data
set xi . Averaging Eq. (2.59) gives

〈x B〉 = 〈x〉 = 〈x〉 ≡ μx . (2.62)

This shows that the bootstrap average x B is an unbiased estimate of the exact average
μx . Averaging Eq. (2.60) gives

〈
s2x B

〉
= 1

N

〈
s2

〉
= N − 1

N 2 σ 2 = N − 1

N
σ 2

x , (2.63)

where we used Eqs. (2.10) and (2.11c). Since σx is the uncertainty in the sample
mean, we see that

the bootstrap estimate of σx is

√
N

N − 1
sx B . (2.64)

Remember that sx B is the standard deviation of the bootstrap data sets. Usually N is
sufficiently large that the square root in Eq. (2.64) can be replaced by unity.

As for the jackknife, these results can be generalized to finding the error bar in
some possibly non-linear function, f (μy, μz), rather than for μx . One computes the
bootstrap estimates for f (μy, μz), which are
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f B
α = f (yB

α , zB
α ). (2.65)

In other words, we use the bootstrap values, yB
α , f B

α , rather than the sample means,
y, z, as the arguments of f . The final bootstrap estimate for f (μy, μz) is the average
of these, i.e

f B = 1

Nboot

Nboot∑
α=1

f B
α . (2.66)

Following the same methods in the jackknife section, one obtains the error bar, σ f ,
in f (μy, μz). The result is

the bootstrap estimate for σ f is

√
N

N − 1
s f B , (2.67)

where

s2f B = (
f B

)2 −
(

f B
)2

, (2.68)

is the variance of the bootstrap estimates. Here

(
f B

)2 ≡ 1

Nboot

Nboot∑
α=1

(
f B
α

)2
. (2.69)

Usually N is large enough that the factor of
√

N/(N − 1) is Eq. (2.67) can be replaced
by unity. Equation (2.67) corresponds to the result Eq. (2.64) which we derived for
the special case of f = μx .

Again, following the same path as in the jackknife section, it is straightforward to
show that the bias of the estimates in Eqs. (2.66) and (2.67) is of order 1/N and so
vanishes for N → ∞. However, if N is not too large it may be useful to eliminate
the leading contribution to the bias in the mean, as we did for jackknife in Eq. (2.46).
The result is that one should

estimate f (μy, μz) from 2 f (y, z) − f B . (2.70)

The bias in Eq. (2.70) is of order 1/N 2, whereas f (y, z) and f B each have a bias of
order 1/N . However, it is not normally necessary to eliminate the bias since, if N is
large, the bias is much smaller than the statistical error.

I have not systematically studied the values of Nboot that are needed in practice
to get accurate estimates for the error. It seems that Nboot in the range 100–500 is
typically chosen, and this seems to be adequate irrespective of how large N is.

It is sometimes stated, e.g. [3], that the bootstrap method can give error bars
correctly even when there are correlations in the data. This is not so. If one applies
bootstrap to the direct average of a set of data, it simply reproduces the results of
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the standard analysis. Bootstrap is useful both to get error bars when one is looking
at combination of averages of the data, and to get confidence limits when the noise
on the data is not Gaussian, see Sect. 3.7. Unfortunately, bootstrap does not work
miracles and cannot give correct error bars for correlated data.

To summarize this subsection, to estimate f (μy, μz) one can either use f (y, z),
or the bootstrap average in Eq. (2.66), and the error bar in this estimate, σ f , is related
to the standard deviation in the bootstrap estimates by Eq. (2.67).

2.2.4 Jackknife or Bootstrap?

The jackknife approach involves less calculation than bootstrap, and is fine for esti-
mating combinations of moments of the measured quantities. Furthermore, identical
results are obtained each time jackknife is run on the same set of data, which is not
the case for bootstrap. However, the range of the jackknife estimates is very much
smaller, by a factor of

√
N for large N , than the scatter of averages which would be

obtained from individual data sets, see Eq. (2.52). By contrast, for bootstrap, σ f B ,
which measures the deviation of the bootstrap estimates f B

α from the result for the
single actual data set f (y, z), is equal to σ f , the deviation of the average of a single
data set from the exact result f (μy, μz) (if we replace the factor of N/(N − 1) by
unity, see Eq. (2.67)). This is the main strength of the bootstrap approach; it samples
the full range of the distribution of the sample distribution. Hence, if you want to
generate data which covers the full range then should use bootstrap. This is useful in
fitting, see for example, Sect. 3.7. However, if you just want to generate error bars
on combinations of moments quickly and easily, then use jackknife.
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Chapter 3
Fitting Data to a Model

A good reference for the material in this section is Chap. 15 of Numerical Recipes [1].
Frequently we are given a set of data points (xi , yi ), i = 1, 2, · · · , N , with corre-

sponding error bars, σi , through which we would like to fit to a smooth function f (x).
The function could be straight line (the simplest case), a higher order polynomial,
or a more complicated function. The fitting function will depend on M “fitting para-
meters”, aα and we would like the “best” fit obtained by adjusting these parameters.
We emphasize that a fitting procedure should not only

1. give the values of the fit parameters, but also
2. provide error estimates on those parameters, and
3. provide a measure of how good the fit is.

If the result of part 3 is that the fit is very poor, the results of parts 1 and 2 are probably
meaningless.

The definition of “best” is not unique. However, the most useful choice, and the
one nearly always taken, is “least squares”. For this case, one minimizes the weighted
sum of the squares of the difference between the observed y-value, yi , and the fitting
function evaluated at xi . The weight of each point depends on its error bar, since
the fit should be more tightly bound to points with smaller error bars than to those
with large error bars. The quantity to be minimized, called χ2 (“chi-squared”),1 is
defined by

χ2 =
N∑

i=1

(
yi − f (xi )

σi

)2

. (3.1)

A big advantage of least squares over other definitions of “best” fit is that for a linear
model (see below) the equations which determine the fit parameters are themselves

1χ2 should be thought of as a single variable rather than the square of something called χ. This
notation is standard.
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linear. We should mention that Eq. (3.1) implicitly assumes that the data points are
uncorrelated. A generalization of the least squares method which is applicable, in
principle, to correlated data is given later in Eqs. (G.5)–(G.7).

Often we assume that the distribution of the errors is Gaussian, since, according
to the central limit theorem discussed in Appendix A, the sum of N independent
random variables has a Gaussian distribution (under fairly general conditions) if N
is large. However, distributions which occur in nature usually have more weight in
the “tails” than a Gaussian, and as a result, even for moderately large values of N ,
the probability of an “outlier” might be much bigger than expected from a Gaussian,
see Fig. A.1.

If the errors are distributed with a Gaussian distribution, and if f (x) has the exact
values of the fit parameters, then χ2 in Eq. (3.1) is a sum of squares of N random
variables with a Gaussian distribution with mean zero and standard deviation unity.
However, when we have minimized the value of χ2 with respect to the M fitting
parameters aα the terms are not all independent. It turns out, see Appendix B, that,
at least for a linear model (which we define below), the distribution of χ2 at the
minimum is that of the sum of the squares of N − M (not N ) Gaussian random
variables with zero mean and standard deviation unity.2 We call N − M the “number
of degrees of freedom” (NDOF ). The χ2 distribution is discussed in Appendix C. The
formula for it is Eq. (C.6).

The simplest problems are where the fitting function is a linear function of the
parameters. We shall call this a linear model. Examples are a straight line (M = 2),

y = a0 + a1x, (3.2)

and an (M − 1)th order polynomial,

y = a0 + a1x + a2x2 + · · · + aM−1x M−1 =
M−1∑
α=0

aαxα, (3.3)

where the parameters to be adjusted are the aα. (Note that we are not stating here
that y has to be a linear function of x , only of the fit parameters aα.)

An example where the fitting function depends non-linearly on the parameters is

y = a0xa1 + a2. (3.4)

Linear models are fairly simply because, as we shall see below, the parameters
are determined by linear equations, which, in general, have a unique solution that
can be found by straightforward methods. However, for fitting functions which are
non-linear functions of the parameters, the resulting equations are non-linear which
may have many solutions or none at all, and so are much less straightforward to
solve. We shall discuss fitting to both linear and non-linear models in these notes.

2Although this result is only valid if the fitting model is linear in the parameters, it is usually taken
to be a reasonable approximation for non-linear models as well.
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Sometimes a non-linear model can be transformed into a linear model by a change
of variables. For example, if we want to fit to

y = a0xa1 , (3.5)

which has a non-linear dependence on a1, taking logs gives

ln y = ln a0 + a1 ln x, (3.6)

which is a linear function of the parameters a′
0 = ln a0 and a1. Fitting a straight line

to a log-log plot is a very common procedure in science and engineering. However,
it should be noted that transforming the data does not exactly take Gaussian errors
into Gaussian errors, though the difference will be small if the errors are “sufficiently
small”. For the above log transformation this means σi/yi � 1, i.e. the relative error
is much less than unity.

3.1 Fitting to a Straight Line

To see how least squares fitting works, consider the simplest case of a straight line
fit, Eq. (3.2), for which we have to minimize

χ2(a0, a1) =
N∑

i=1

(
yi − a0 − a1xi

σi

)2

, (3.7)

with respect to a0 and a1. Differentiating χ2 with respect to these parameters and
setting the results to zero gives

a0

N∑
i=1

1

σ2
i

+ a1

N∑
i=1

xi

σ2
i

=
N∑

i=1

yi

σ2
i

, (3.8a)

a0

N∑
i=1

xi

σ2
i

+ a1

N∑
i=1

x2
i

σ2
i

=
N∑

i=1

xi yi

σ2
i

. (3.8b)

We write this as

U00 a0 + U01 a1 = v0, (3.9a)

U10 a0 + U11 a1 = v1, (3.9b)
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where

Uαβ =
N∑

i=1

xα+β
i

σ2
i

, and (3.10)

vα =
N∑

i=1

yi xα
i

σ2
i .

(3.11)

The matrix notation, while an overkill here, will be convenient later when we do a
general polynomial fit. Note that U10 = U01. (More generally, later on, U will be a
symmetric matrix). Equations (3.9) are two linear equations in two unknowns. These
can be solved by eliminating one variable, which immediately gives an equation for
the second one. The solution can also be determined from

aα =
M−1∑
β=0

(
U−1

)
αβ

vβ, (3.12)

(where we have temporarily generalized to a polynomial of order M − 1). For the
straight-line fit, the inverse of the 2 × 2 matrix U is given, according to standard
rules, by

U−1 = 1

�

(
U11 −U01

−U01 U00

)
(3.13)

where

� = U00U11 − U 2
01, (3.14)

and we have noted that U is symmetric so U01 = U10. The solution for a0 and a1 is
therefore given by

a0 = U11 v0 − U01 v1

�
, (3.15a)

a1 = −U01 v0 + U00 v1

�
. (3.15b)

We see that it is straightforward to determine the slope, a1, and the intercept, a0, of
the fit from Eqs. (3.10), (3.11), (3.14) and (3.15) using the N data points (xi , yi ),
and their error bars σi .
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3.2 Fitting to a Polynomial

Frequently we need to fit to a higher order polynomial than a straight line, in which
case we minimize

χ2(a0, a1, · · · , aM−1) =
N∑

i=1

(
yi − ∑M−1

α=0 aαxα
i

σi

)2

(3.16)

with respect to the M parameters aα. Setting to zero the derivatives of χ2 with respect
to the aα gives

M−1∑
β=0

Uαβ aβ = vα, (3.17)

where Uαβ and vα have been defined in Eqs. (3.10) and (3.11). Equation (3.17)
represents M linear equations, one for each value of α. Their solution is again given
by Eq. (3.12), i.e. it is expressed in terms of the inverse matrix U−1, which is called
the covariance matrix.

3.3 Error Bars

In addition to the best fit values of the parameters we also need to determine the error
bars in those values. Interestingly, this information is also contained in the covariance
matrix U−1.

First of all, we explain the significance of error bars in fit parameters. We assume
that the data is described by a model with a particular set of parameters �atrue which,
unfortunately, we don’t know. If we were, somehow, to have many real data sets each
one would give a different set of fit parameters �a(i), i = 0, 1, 2, . . ., because of noise
in the data, clustered about the true set �atrue. Projecting on to a single fit parameter,
a1 say, there will be a distribution of values P(a1) centered on atrue

1 with standard
deviation σ1, see the top part of Fig. 3.1. Typically the value of a1 obtained from our
one actual data set, a(0)

1 , will lie within about σ1 of a1. Hence we define the error
bar to be σ1.

Unfortunately, we can’t determine the error bar this way because we have only
one actual data set, which we denote here by y(0)

i to distinguish it from other data
sets that we will introduce. Our actual data set gives one set of fit parameters, which
we call �a(0). Suppose, however, we were to generate many simulated data sets from
of the one which is available to us, by generating random values (possibly with a
Gaussian distribution though this won’t be necessary yet) centered at the yi with
standard deviation σi . Fitting each simulated dataset would give different values for
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Fig. 3.1 The top figure shows the distribution of one of the fit parameters a1 if one could obtain
many real data sets. The distribution has standard deviation σ1 about the true value atrue

1 and is
Gaussian if the noise on the data is Gaussian. In fact, however, we have only one actual data set
which has fit parameter a(0)

1 , and this typically lies within about σ1 of atrue
1 . Hence we define the error

bar on the estimate of atrue
1 to be σ1. However, we cannot calculate σ1 directly from the distribution

of a1 because we have only one the one value, a(0)
1 . However, we can generate many simulated data

sets from the one actual set and hence we can estimate the standard deviation, σS
1 , of the distribution

of the resulting fit parameter aS
1 , which is shown in the lower figure. This distribution is centered

about the value from the actual data, a(0)
1 , and has standard deviation, σS

1 . The important point is
that if one assumes a linear model then one can show that σS

1 = σ1, see text. Even if the model is
non linear, one usually assumes that the difference in the standard deviations is sufficiently small
that one can still equate the true error bar with the standard deviation from the simulated data sets.
We emphasize that the error bar quoted by fitting programs is actually σS

1 , and this is assumed to
equal σ1. Furthermore, as shown in Appendices E and F, if the noise on the data is Gaussian (and
the model is linear) both the distributions in this figure are also Gaussian

�a, clustered now about �a(0), see the bottom part of Fig. 3.1. We now come to an
important, but rarely discussed, point:

For a linear model the standard deviation of the fit parameters of these simulated data sets
about �a(0), is equal to the standard deviation of the fit parameters of real data sets �a about
�atrue. The latter is what we really want to know (since it is our estimate of the error bar on
�atrue) but can’t determine directly. See Fig. 3.1 for an illustration. This result is also applicable
to a non-linear model if it can be represented by an effective linear model for the needed
range of parameters about the minimum of χ2. Furthermore, we show in Appendices E and
F that if the noise on the data is Gaussian (and the model is linear), the two distributions in
Fig. 3.1 are also both Gaussian.
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We shall now prove this result. As stated above, to derive the error bars in the
fit parameters we take simulated values of the data points, yS

i , which vary by some

amount δyS
i about y(0)

i , i.e. δyS
i = yS

i − y(0)
i , with a standard deviation given by the

error bar σi . The fit parameters of this simulated data set, �aS , then deviate from �a(0)

by an amount δ�aS where

δaS
α =

N∑
i=1

∂aα

∂yi
δyS

i . (3.18)

Averaging over fluctuations in the yS
i we get the variance of aS

α to be

(
σS

α

)2 ≡ 〈
(
δaS

α

)2〉 =
N∑

i=1

σ2
i

(
∂aα

∂yi

)2

, (3.19)

since 〈(δyS
i

)2〉 = σ2
i , and the data points yi are statistically independent. Writing

Eq. (3.12) explicitly in terms of the data values,

aα =
∑
β

(
U−1

)
αβ

N∑
i=1

yi xβ
i

σ2
i

, (3.20)

and noting that U is independent of the yi , we get

∂aα

∂yi
=

∑
β

(
U−1

)
αβ

xβ
i

σ2
i

. (3.21)

Substituting into Eq. (3.19) gives

(
σS

α

)2 =
∑
β,γ

(
U−1

)
αβ

(
U−1

)
αγ

[
N∑

i=1

xβ+γ
i

σ2
i

]
. (3.22)

The term in rectangular brackets is just Uβγ , and since U is given by Eq. (3.10) and
is symmetric, the last equation reduces to

(
σS

α

)2 =
(

U−1
)

αα
. (3.23)

Recall that σS
α is the standard deviation of the fitted parameter values about the �a(0)

when constructing simulated data sets from the one set of data that is available to us.
However, the error bar is defined to be the standard deviation the fitted parameter

values would have relative to atrue
α if we could average over many actual data sets. To
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Fig. 3.2 An example of a
straight-line fit to a set of
data with error bars

determine this quantity we simply repeat the above calculation with δyi = yi − ytrue
i

in which yi is the value of the i th data point in one of the actual data sets. Since U
is a constant (for a linear model) equations (3.18) to (3.23) go through unchanged
simply omitting the superscript S’s. The (unknown) values of ytrue

i never enter. In
other words

σ2
α =

(
U−1

)
αα

, (3.24)

which shows that σs
α = σs for a linear model. However, this equality does not hold

precisely for fitting to a non-linear model. We have therefore showed that the diagonal
elements of the covariance matrix U−1 give the square of the errors bar in the fit
parameters.

In addition to error bars, we also need a parameter to describe the quality of the fit.
A useful quantity is the probability that, given the fit, the data could have occurred
with a χ2 greater than or equal to the value found. This is generally denoted by Q
and, as shown in Appendix C, is given by

Q = 1

�(NDOF/2)

∫ ∞

χ2/2
y(NDOF/2)−1 e−y dy, (3.25)

assuming the data have Gaussian noise. Here NDOF ≡ N − M is the number of
degrees of freedom. Note that the effects of non-Gaussian statistics is to increase the
probability of outliers, so fits with a fairly small value of Q, say around 0.01, may
be considered acceptable. However, fits with a very small value of Q should not be
trusted and the values of the fit parameters are probably meaningless in these cases.
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For the case of a straight line fit, the inverse of U is given explicitly in Eq. (3.13).
Using this information, and the values of (xi , yi ,σi ) for the data in Fig. 3.2, the fit
parameters (assuming a straight line fit) are

a0 = 0.84 ± 0.32, (3.26)

a1 = 2.05 ± 0.11, (3.27)

in which the error bars on the fit parameters on a0 and a1, which are denoted by
σ0 and σ1, are determined from Eq. (3.24). The data was generated by starting with
y = 1 + 2x and then adding some noise with zero mean. Hence the fit should be
consistent with y = 1 + 2x within the error bars, and it is. The value of χ2 is 7.44
so χ2/NDOF = 7.44/9 = 0.866 and the quality of fit parameter, given by Eq. (3.25),
is Q = 0.592 which is good.

The off-diagonal elements of the covariance matrix U−1 are also useful since they
contain information about correlations between the fitted parameters. More precisely,
one can show, following the lines of the above derivation of σ2

α, that the correlation
of fit parameters α and β, known mathematically as their “covariance”, is given by
the appropriate off-diagonal element of the covariance matrix,

Cov(α,β) ≡ 〈δaα δaβ〉 =
(

U−1
)

αβ
. (3.28)

The correlation coefficient, rαβ , which is a dimensionless measure of the correlation
between δaα and δaβ lying between −1 and 1, is given by

rαβ = Cov(α,β)

σασβ
. (3.29)

A good fitting program should output the correlation coefficients as well as the fit
parameters, their error bars, the value of χ2/NDOF , and the goodness of fit parame-
ter Q.

So far we have considered a polynomial fit, which is a particular case of a linear
model. If we fit to a general linear model, writing

f (x) =
M∑

α=1

aα Xα(x), (3.30)

where X1(x), X2(x), · · · , X M (x) are fixed functions of x called basis functions, χ2

is given by

χ2 =
N∑

i=1

(
yi − ∑M

α=1 aα Xα(xi )

σi

)2

, (3.31)
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and the matrix U is given by

Uαβ =
N∑

i=1

Xα(xi ) Xβ(xi )

σ2
i

. (3.32)

Similarly, the quantities vα in Eq. (3.11) become

vα =
N∑

i=1

yi Xα(xi )

σ2
i

, (3.33)

and, as before, the best fit parameters are given by the solution of the M linear
equations

M∑
β=1

Uαβ aβ = vα, (3.34)

for α = 1, 2, . . . , M , namely by Eq. (3.12).
For a linear model, χ2 is a quadratic function of the fit parameters and so the

elements of the “curvature matrix”,3 (1/2) ∂2χ2/∂aα∂aβ are constants, independent
of the values of the fit parameters. In fact, we see from Eqs. (3.1), (3.30) and (3.32)
that

1

2

∂2χ2

∂aα∂aβ
= Uαβ, (3.35)

so the curvature matrix is equal to U , given by Eq. (3.32) (Eq. (3.10) for a polynomial
fit). Note that for a linear model the curvature matrix U is a constant, independent
of the fit parameters and data values. However, U is not constant for a non-linear
model.

3.4 Interpolating

In a physics context it usually the fitting parameters per se which are of interest.
However, in other contexts where fitting is performed, for example machine learn-
ing [2], one is less interested in the fitting model and more interested in predicting
the value of the function for a new value of x . We give a brief discussion of this here.

We assume a general linear model as in Eq. (3.30). Clearly the best estimate for y
at some value x is the fitting function with the optimized fitting parameters evaluated
at x , i.e.

3It is conventional to include the factor of 1/2.
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y(x) =
M∑

α=1

aα Xα(x), (3.36)

and the error bar (squared) is given by

σ2
y =

∑
α,β

〈δaαδaβ〉 Xα(x)Xβ(x)

=
∑
α,β

(
U−1

)
αβ

Xα(x)Xβ(x), (3.37)

where we used Eqs. (3.24) and (3.28).
It is instructive to substitute for the optimized fitting parameters into Eq. (3.36),

i.e.

y(x) =
M∑

α=1

Xα(x)

M∑
β=1

(
U−1

)
αβ

N∑
i=1

yi Xβ(xi )

σ2
i

=
N∑

i=1

k(x, xi ) yi , (3.38)

where the kernel k(x, xi ) is given by

k(x, xi ) =
∑
α,β

Xα(x)
(
U−1

)
αβ

Xβ(xi )

σ2
i

. (3.39)

The kernel is independent of the yi and has the simple, intuitive property that

N∑
i=1

k(x, xi ) = 1. (3.40)

Clearly Eq. (3.40) is correct if the yi in Eq. (3.38) are constant. In fact, Eq. (3.40) is
correct quite generally as long as one of the basis functions is a constant (the usual
situation). In this case X1(x), say, is equal to 1 so

∑
i Xβ(xi )/σ

2
i = U0β according

to Eq. (3.32). Hence

N∑
i=1

k(x, xi ) =
∑
α,β

Xα(x)
(

U−1
)

αβ
Uβ1 =

∑
α

Xα(x) δα1 = 1, (3.41)

which is Eq. (3.40).
Presumably the data close to x have the larger weight in Eq. (3.40). It would be

interesting to examine this. I expect that Eq. (3.40) is approximately true even if one
of the basis functions is not a constant.
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3.5 Fitting to a Non-linear Model

As for linear models, one minimizesχ2 in Eq. (3.1). The difference is that the resulting
equations are non-linear so there might be many solutions or non at all. Techniques for
solving the coupled non-linear equations invariably require specifying an initial value
for the variables aα. The most common method for fitting to non-linear models is the
Levenberg-Marquardt (LM) method, see e.g. Numerical Recipes [1]. Implementing
the Numerical Recipes code for LM is a little complicated because it requires the
user to provide a routine for the derivatives of χ2 with respect to the fit parameters
as well as for χ2 itself, and to check for convergence. Alternatively, one can use
the fitting routines in the scipy package of python or use gnuplot. But see
the comments in Appendix D about getting the error bars in the parameters correct,
which apply when fitting to linear as well as non-linear models. Gnuplot and scipy
scripts for fitting to a non-linear model are given in Appendix H.

One difference from fitting to a linear model is that the curvature matrix, defined
by the LHS of Eq. (3.35), is not constant but is a function of the fit parameters. Hence
it is no longer true that the standard deviations of the two distributions in Fig. 3.1 are
equal. However, it still generally assumed that the difference is small enough to be
unimportant and hence that the covariance matrix, which is now defined to be the
inverse of the curvature matrix at the minimum of χ2, still gives information about
error bars on the fit parameters. This is discussed more in the next two subsections,
in which we point out, however, that a more detailed analysis is needed if the model
is non-linear and the spread of fitted parameters is sufficiently large that it cannot be
represented by an effective linear model, i.e. χ2 is not well fitted by a parabola over
the needed range of parameter values.

As a reminder:

• The curvature matrix is defined in general by the LHS of Eq. (3.35), which, for a
linear model, is equivalent to Eq. (3.32) (Eq. (3.10) for a polynomial fit.)

• The covariance matrix is the inverse of the curvature matrix. For a linear model
this matrix is constant, independent of the fit parameters or data values. However,
for a non-linear model this is no longer true and we are then interested in the
covariance matrix at the minimum of χ2. Its diagonal elements give error bars
on the fit parameters according to Eq. (3.24) (but see the caveat in the previous
paragraph for non-linear models) and its off-diagonal elements give correlations
between fit parameters according to Eqs. (3.28) and (3.29).

3.6 Confidence Limits

In the last two subsections we showed that the diagonal elements of the covariance
matrix give an error bar on the fit parameters. In this section we extend the notion of
error bar to embrace the concept of a “confidence limit”.
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There is a theorem [1] which states that, for a linear model, if we take simulated
data sets assuming Gaussian noise in the data about the actual data points, and
compute the fit parameters �aS(i), i = 1, 2, . . . for each data set, then the probability
distribution of the �aS is given by the multi-variable Gaussian distribution

P(�aS) ∝ exp

⎛
⎝−1

2

∑
α,β

δaS
α Uαβ δaS

β

⎞
⎠ , (3.42)

where δ�aS ≡ �aS(i) − �a(0), U , given by Eq. (3.32), is the curvature matrix which can
also be defined in terms of the second derivative of χ2 according to Eq. (3.35), and
�a(0) is the fit to the actual data set. A proof of this result is given in Appendix E. It
applies for a linear model with Gaussian noise, and also for a non-linear model if
the uncertainties in the parameters do not extend outside a region where an effective
linear model could be used. (In the latter case one still needs a non-linear routine to
find the best parameters). Note that for a non-linear model, U is not a constant and
it is the curvature at the minimum of χ2 which has to be put into Eq. (3.42).

From Eq. (3.35) the change in χ2 as the parameters are varied away from the
minimum is given by

�χ2 ≡ χ2(�aS) − χ2(�a(0)) =
∑
α,β

δaS
α Uαβ δaS

β , (3.43)

in which the χ2 are all evaluated from the single (actual) data set y(0)
i . Equation

(3.42) can therefore be written as

P(�aS) ∝ exp

(
−1

2
�χ2

)
. (3.44)

We remind the reader that in deriving Eq. (3.44) we have assumed the noise in the
data is Gaussian and that either the model is linear or, if non-linear, the uncertainties
in the parameters do not extend outside a region where an effective linear model
could be used.

Hence the probability of a particular deviation, δ�aS , of the fit parameters in a
simulated data set away from the parameters in the actual data set, depends on how
much this change increases χ2 (evaluated from the actual data set) away from the
minimum. In general a “confidence limit” is the range of fit parameter values such
that �χ2 is less than some specified value. The simplest case, and the only one we
discuss here, is the variation of one variable at a time, though multi-variate confidence
limits can also be defined, see Numerical Recipes [1].

We therefore consider the change in χ2 when one variable, aS
1 say, is held at a

specified value, and all the others (β = 2, 3, · · · , M) are varied in order to minimize
χ2. Minimizing �χ2 in Eq. (3.43) with respect to aS

β gives
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M∑
γ=1

Uβγ δaS
γ = 0, (β = 2, 3, . . . , M). (3.45)

The corresponding sum for β = 1, namely
∑M

γ=1 U1γ δaS
γ , is not zero because δa1

is fixed. It will be some number, c say. Hence we can write

M∑
γ=1

Uαγ δaS
γ = cα, (α = 1, 2, . . . , M), (3.46)

where c1 = c and cβ = 0 (β 
= 1). The solution is

δaS
α =

M∑
β=1

(
U−1

)
αβ

cβ =
(

U−1
)

α1
c. (3.47)

For α = 1 this gives

c = δaS
1 /

(
U−1

)
11

. (3.48)

Substituting Eq. (3.47) into Eq. (3.43), and using Eq. (3.48) we find that �χ2 is

related to
(
δaS

1

)2
by

�χ2 = (δaS
1 )2(

U−1
)

11

. (3.49)

(Curiously, the coefficient of (δa1)
2 is one over the 11 element of the inverse of U ,

rather than U11 which is how it appears in Eq. (3.43) in which the β 
= 1 parameters
are free rather than adjusted to minimize χ2.)

From Eq. (3.44) we finally get

P(aS
1 ) ∝ exp

(
−1

2

(δaS
1 )2

σ2
1

)
, (3.50)

where

σ2
1 =

(
U−1

)
11

. (3.51)

As shown in Appendices E and F, Eqs. (3.42), (3.44) and (3.50) also apply,
under the same conditions (linear model and Gaussian noise on the data) to the
probability for δa1 ≡ atrue

1 − a(0)
1 , where we remind the reader that a(0)

1 is the fit
parameter obtained from the actual data, and atrue

1 is the exact value. In other words
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the probability of the true value is given by

P(�atrue) ∝ exp

(
−1

2
�χ2

)
, (3.52)

where

�χ2 ≡ χ2(�atrue) − χ2(�a(0)), (3.53)

in which we remind the reader that both values of χ2 are evaluated from the single
set of data available to us, y(0)

i . Projecting onto a single parameter, as above, gives

P(atrue
1 ) ∝ exp

(
−1

2

(δa1)
2

σ2
1

)
, (3.54)

so 〈(δa1)
2〉 = σ2

1 = (
U−1

)
11, in agreement with what we found earlier in Eq. (3.24).

We emphasize that Eqs. (3.52) and (3.54) assume Gaussian noise on the data points,
and that either the model is linear or, if non-linear, the range of uncertainty in the
parameters is small enough that a description in terms of an effective linear model
is satisfactory.

However we have done more than recover our earlier result, Eq. (3.24), by more
complicated means since we have gained additional information. From the properties
of a Gaussian distribution we now know that, from Eq. (3.54), the probability that
aα lies within one standard deviation σα of the value which minimizes χ2 is 68 %,
the probability of its being within two standard deviations is 95.5 %, and so on.
Furthermore, from Eq. (3.52), we see that

if a single fit parameter is one standard deviation away from its value at the minimum of χ2

(the other fit parameters being varied to minimize χ2), then �χ2 = 1.

This last sentence, and the corresponding equations Eqs. (3.52) and (3.54), are not
valid for a non-linear model if the uncertainties of the parameters extends outside the
range where an effective linear model can be used. In this situation, to get confidence
limits, one should do a bootstrap resampling of the data, as discussed in the next
subsection. Even for a linear model one needs bootstrap resampling to get confidence
limits if the noise on the data is non-Gaussian.

However, if one is not able to resample the data we argue that it is better to take
the range where �χ2 ≤ 1 as an error bar for each parameter rather than the error bar
determined from the curvature of χ2 at the minimum, see Fig. 3.3. The left hand plot
is for a linear model, for which the curve of �χ2 against δa1 is exactly a parabola,
and the right hand plot is a sketch for a non-linear model, for which it is not a parabola
though it has a quadratic variation about the minimum shown by the dashed curve.
For the linear case, the values of δa1 where �χ2 = 1 are the same as the values
±σ1, where σ1 is the standard error bar obtained from the local curvature in the
vicinity of the minimum. However, for the non-linear case, the values of δa1 where
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Fig. 3.3 Left The change in χ2 as a fit parameter a1 is varied away from the value that minimizes
χ2 for a linear model. The shape is a parabola for which �χ2 = 1 when δa = ±σ1, where σ1 is the
error bar. Right The solid curve is a sketch of the change in χ2 for a non-linear model. The curve
is no longer a parabola and is not even symmetric. The dashed curve is a parabola which fits the
solid curve at the minimum. The fitting program only has information about the local behavior at
the minimum and so gives an error range ±σ1 at which the value of the parabola is 1. However, the
parameter a1 is clearly more tightly constrained on the plus side than on the minus side, so a better
way to determine the error range is to look globally and locate the values of δa1 where �χ2 = 1.
This gives an error bar σ+

1 on the plus side, and a different error bar, σ−
1 , on the minus side, both of

which are different from σ1

�χ2 = 1 are different from ±σ1, and indeed the values on the positive and negative
sides, σ+

1 and σ−
1 , are not equal. For the data Fig. 3.3, it is clear that the value of

a1 is more tightly constrained on the positive side than the negative side, and so it
is better to give the error bars as +σ+

1 and −σ−
1 , obtained from the range where

�χ2 ≤ 1, rather the symmetric range ±σ1. While it is plausible that the range where
�χ2 ≤ 1 is a reasonable estimate of the uncertainty in the fit parameter, one can not
assign a precise confidence limit to it. If possible, error bars and a confidence limit
should be obtained from an alternative approach, a bootstrap resampling of the data
as discussed in the next section.

3.7 Confidence Limits by Resampling the Data

Each data point (xi , yi ) with its error bar σi , comes from averaging over Ni values
of “raw data” whose mean is yi and whose standard deviation gives σi according to
Eq. 2.15. If one has access to this raw data, one can do a bootstrap resampling of it
to obtain:

• Confidence limits for a linear model if the noise is non-Gaussian.
• Both error bars and confidence limits for a non-linear model in which the range of

parameter uncertainty extends outside the region where an effective linear model
is applicable.

http://dx.doi.org/10.1007/978-3-319-19051-8_2
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As discussed in Sect. 2.2.3, one generates bootstrap data sets in which the data
points have values yB

i,α, where α runs from 1 to Nboot, the number of bootstrap data

sets. The distribution of the yB
i,α for a given i has a standard deviation equal to the

estimate of standard deviation on the mean of the actual data set, i.e. σi , see Eq. 2.67
(replacing the factor of

√
N/(N − 1) by unity which is valid since N is large in

practice). Hence, if we fit each of the Nboot bootstrap data sets, the scatter of the
fitted parameter values will be a measure of the uncertainty in the values from the
single actual dataset. Forming a histogram of the values of a single parameter we
can obtain a confidence interval within which 68 %, say, of the bootstrap datasets lie
(16 % missing on either side) and interpret this range as a 68 % confidence limit for
the actual parameter value. The justification for this interpretation has been discussed
in the statistics literature, see e.g. the references in Ref. [1], but I’m not able to go
into the details here. The method can be applied to both linear and non-linear models,
and does not assume Gaussian noise.

Unfortunately, use of the bootstrap procedure to get error bars in fits to non-
linear models does not yet seem to be a standard procedure in the statistical physics
community.

If one does not have access to the “raw” data, but is confident that the noise
is close to Gaussian, another possibility, which is useful for non-linear models, is
is to generate simulated data sets, assuming Gaussian noise on the yi values with
standard deviation given by the error bars σi . Each simulated dataset is fitted and
the distribution of fitted parameters is determined. This corresponds to the analytical
approach in Appendix E but without the assumption that the model can be represented
by an effective linear one over of the needed parameter range.

3.8 A Tale of Two Probabilities. When Can
One Rule Out a Fit?

In this section we assume that the noise on the data is Gaussian. We have, so
far, considered two different probabilities. Firstly, as discussed in Appendix C,
the value of χ2 is typically in the range NDOF ± √

2NDOF . The quality of fit
parameter Q is the probability that, given the fit, the data could have this value
of χ2 or greater, and is given mathematically by Eq. (3.25). It varies from unity when
χ2 � NDOF − √

2NDOF to zero when χ2 
 NDOF + √
2NDOF . In other words Q only

changes substantially if χ2 changes by an amount of order
√

NDOF . We emphasize
that Q is the probability of the data given the fit.

Secondly, in the context of error bars and confidence limits, we have discussed,
in Eqs. (3.52) and (3.54), the probability that a fit parameter, a1 say, takes a certain
value relative to the optimal one. Equation (3.52) tells us that the relative probability
of two fits changes substantially when χ2 varies by unity. Note that Eqs. (3.52) and
(3.54) refer to the relative probabilities of two fits, given the data.

http://dx.doi.org/10.1007/978-3-319-19051-8_2
http://dx.doi.org/10.1007/978-3-319-19051-8_2
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At first it seems curious that Q needs a much bigger change in χ2 to change
significantly than does the relative probability of two fits (

√
NDOF rather than 1).

While there is no mathematical inconsistency, since the two probabilities refer to
different situations (one is the probability of the data given the fit and the other is the
relative probability of two fits given the data), it is useful to understand this difference
intuitively.

We take, as an example, a problem where we want to know whether the data can
be modeled by a straight line, or whether a quadratic term needs to be included as
well. A set of data is shown in Fig. 3.4.

Looking at the left panel one sees that the data more or less agrees with the
straight-line fit (Q = 0.124). However, one also sees systematic trends: the data is
too high for small x and for high x , and too low for intermediate x . The probability
that this trend would occur by chance is very low. Chi-squared just sums up the
contributions from each data point and is insensitive to any systematic trend in the
deviation of the data from the fit. Hence the value of χ2, in itself, does not tell us
that this data is unlikely to be represented by a straight line. It is only when we add
another parameter in the fit which corresponds to those correlations, that we realize
the straight-line model is relatively very unlikely. In this case, the extra parameter is
the coefficient of x2, and the resulting parabolic fit is shown in the right figure.

The qualitative comments in the last paragraph are made more precise by the
parameters of the fits. The straight-line fit gives a0 = 0.59±0.26, a1 = 2.003±0.022
with χ2 = 48.2, Q = 0.124, whereas the parabolic fit gives a0 = 2.04 ± 0.40, a1 =
1.588 ± 0.090, a2 = 0.0203 ± 0.00425 with χ2 = 25.5, Q = 0.924. The actual
parameters which were used to generate the data are a0 = 2, a1 = 1.6, a2 = 0.02,
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Fig. 3.4 Left A straight-line fit to a data set. The value of Q is reasonable. However, one notices
that the data is systematically above the fit for small x and for large x while it is below the fit for
intermediate x . This is unlikely to happen by random chance. This remark is made more precise
in the right figure. Right A parabolic fit to the same data set. The value of Q is larger than for the
straight-line fit, but the main result is that the coefficient of the quadratic term is about 5 σ away
from zero, showing that the straight-line fit in the left panel is much less likely than the parabolic
fit
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and there is Gaussian noise with standard deviation equal to 0.8. Hence the parameters
of the quadratic fit are correct, but those of the linear fit are not. Although the quality
of fit factor Q for the straight-line fit is reasonable, the quadratic fit strongly excludes
having the fit parameter a2 equal to zero, since zero is 4.78 standard deviations away
from the best value. As shown in Eq. (A3), the probability of a 4.78-sigma deviation
or greater for a Gaussian distribution is erfc(4.78/

√
2) � 1.78×10−6, which is tiny.

Thus a careful analysis correctly concludes that the straight-line fit is unlikely to be
correct.

From the figures we see that difference in χ2 between the quadratic fit and
the straight-line fit (in which we force a2 = 0) is 22.8, which should equal
(0.0203/0.00425)2 according to Eqs. (3.49) and (3.24), and indeed it does. This
provides a useful check on the parameters computed by the fit program (gnuplot in
this case).

The moral of this tale is that a reasonable value of Q does not, in itself, ensure that
you have the right model. Another model might be more probable. To quote from
Ch. 14 of Numerical Recipes [1],4

If a statistic falls in a reasonable part of the distribution, you must not make the mistake of
concluding that the (null) hypothesis is “verified” or “proved”. That is the curse of statistics.
It can never prove things, only disprove them!

We will discuss more the question of determining the right model (model selection)
in the next section.

3.9 Model Selection (i.e. How to Avoid Over-Fitting):
Maximum Likelihood Versus Bayes

Apart from the last subsection we have assumed that the model is given, and our goal
is to obtained the best fit parameters of that model. In the last subsection we started
a discussion of how to compare different models, which is necessary if the correct
model is not known.

For the data shown in Fig. 3.4 we showed that the value of χ2 for the parabolic fit
(M = 3) is much smaller than that of the straight-line fit (M = 2), and we argued
that it is therefore preferred. This is correct since the data was indeed obtained from
a parabolic function (plus noise). However, suppose we consider higher order fits.
Since the fit is obtained by minimizing χ2, it is clear that χ2 can only decrease with
the number of fit parameters M . (Here we consider polynomial fits for which the
order of the polynomial is M −1.) This is illustrated by the left panel line in Fig. 3.5,
which shows χ2 against the number of fit parameters M for 2 ≤ M ≤ 12 for the
data in Fig. 3.4.

Based on the plot of χ2 in the left panel Fig. 3.5, should we say that a 9th order
polynomial (M = 10), say, is to be preferred to a quadratic fit because it has a

4I find the use of the word “null” in the quote to be confusing. It is, however, common usage in the
statistics literature. The brackets round it are mine.
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Fig. 3.5 Left A plot of χ2 against the number of fit parameters for polynomial fits to the data in
Fig. 3.4. (Note the order of the polynomial is M −1.) The values of χ2 decrease monotonically with
M , as expected. There is a rapid drop in going from M = 2 to M = 3, but then a much more gradual
decrease. This is consistent with the fact that the data was generated from a parabolic function plus
Gaussian noise. The reason for the subsidiary drop in going from M = 7 to 8 is unclear. Perhaps,
by coincidence, the noise in the data has generated a noticeable x7 component. Right The goodness
of fit parameter Q, see Ref. [1] and Eq. (3.25), for different values of M . Although the value of χ2

monotonically decreases with increasing M as shown in the left panel, the goodness of fit parameter
involves χ2 per degree of freedom, where NDOF = N − M , and so there is a penalty be paid as
the number of fit parameters increases, since this decreases the number of degrees of freedom. As
a result, Q has a peak at M = 3, a parabola, (which indeeds corresponds to the function which
generated the data) and then (slowly) decreases. Based on this data, one would come to the (correct)
conclusion the data should be fitted to a parabola. For M > 3, which is the region of over-fitting,
the variation of Q with M is non-monotonic, at least in this case

smaller χ2? Intuitively we would say “no” because we feel that a fit with a smaller
number of parameters is more likely to be correct than a fit with a larger number, if
the quality of the fits is very similar. Clearly if the number of fit parameters is equal
to the number of data points, 40 here, then the fit will go perfectly through the points.
However, in practice this can lead to large oscillations between the points, in order to
force the curve to exactly fit the data. This unphysical result is called “over-fitting”.
In addition, the fit parameters become very large when over-fitting.

The problem of determining the correct model (the order of polynomial in the
present example) is called “model selection”.

We shall apply different approaches to the model selection problem to two sets
of data: that in Fig. 3.4 and also the smaller data set with just ten points shown in
Fig. 3.9. Table 3.1 shows the parameters for all possible polynomial fits to the data
in Fig. 3.6.

We will discuss two approaches to the problem of model selection and over-fitting.
These correspond to the the two basic approaches to statistics, the one more familiar
to most physicists is called “frequentist”, and the other is called “Bayesian”. The
frequentist approach is called “maximum likelihood” in the context of fitting, and
is just the least-square method described in the earlier part of these notes. We ex-
plain in Sect. 3.9.1 below why last-squares is called maximum likelihood and how
one can approach model selection within this approach. However, a fully system-
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Table 3.1 Fit parameters aα for polynomial fits to the data shown in Fig. 3.9 for different numbers
of fit parameters M

M = 2 M = 3 M = 4 M = 7 M = 10 exact

a0 −0.826 0.650 0.148 −2.206 −31.02 1

a1 −1.303 −9.42 −4.52 44.14 740.3 −10

a2 8.12 −3.57 −364.9 −6329.6 8

a3 7.79 1304.1 24157.5

a4 −2407.2 −35884.6

a5 2210.4 −29162.7

a6 −789.6 185757

a7 −275351

a8 183538

a9 −47449.3

For the larger values of M the fit parameters are very large indicating severe over-fitting
Note The order of the polynomial is M − 1
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Fig. 3.6 The data points are obtained by adding Gaussian noise with standard deviation 0.5 to the
parabolic function y = 1 − 10x + 8x2 (shown by the solid line). Also shown are polynomial fits
with M = 2, 3, 4 and 10 parameters. The values of χ2 for all values of M from 2 through 10 are
shown in the left panel of Fig. 3.7. For M = 10 (= N ) the fit goes perfectly through the points.
However, unphysical oscillations are seen in the fitting function for M = 10, clear evidence of over
fitting. Furthermore the fit parameters get very large when M increases, as shown in Table 3.1
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atic, maximum likelihood method for model selection does not appear to have been
developed. The alternative Bayesian approach is described in Sect. 3.9.2. It has been
argued elsewhere, e.g. [2], to provide provides a systematic, robust method of model
selection which avoids over-fitting. However, we shall find some reservations about
this approach when we apply it to actual data.

3.9.1 Maximum Likelihood

First we will show that the “frequentist” approach to statistics, called maximum like-
lihood in the context of fitting, corresponds to the least-squares approach discussed
up to now in these notes. In the frequentist approach to statistics, we determine the
probability of a particular event in a random process by repeating the process many
times and dividing the number of times the specified event occurred by the total num-
ber of events. In the limit when the number of events tends to infinity this ratio tends
to the actual probability. This is to be distinguished from the “Bayesian” approach,
discussed in the next subsection, in which, in addition to the data, we include extra
information in the form of a “prior” distribution for some parameters.

In curve fitting, we only have one set of data, but, as we have repeatedly em-
phasized in these notes, we obtain unbiased estimates of fit parameters and their
uncertainties by a thought experiment in which we consider the results that would
be obtained if we could obtain many data sets. In particular, the error bars in the fit
parameters come precisely from the scatter that would be obtained by repeating the
fit on many data sets, assuming that the fit from the one set of data that we actually
have is correct. If, as we shall do in the rest of this section, we assume Gaussian
noise on the data, the error bars determine the whole probability distribution of the
data.

Thus the frequentist approach gives the probability of the data given the fit. This
seems a bit strange. We would really like to know what is the probability that the set of
fitted parameters in correct. However, as stated by Numerical Recipes [1] (implicity
assuming the frequentist approach)

. . . there is no statistical universe of models from which the parameters are drawn. There is
just one model, the correct one, and a statistical universe of data sets that are drawn from it!

Thus, as mentioned earlier in these notes, in the frequentist approach, we take the
probability of the data given the fit, as a measure of whether the fit parameters are
likely to be right. If we assume that the fit is correct, and the noise on the data is
Gaussian with variance σ2

i , then this probability is

P({y}) = 1

(2π)N/2
(∏N

i=1 σi

) exp

⎡
⎢⎣−1

2

N∑
i=1

⎛
⎝

yi − ∑
α

aα Xα(xi )

σi

⎞
⎠

2
⎤
⎥⎦ . (3.55)
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For ease of notation, we have written this for a linear model, but the generalization
to a non-linear model is obvious.

A sensible approach, then, is to maximize this probability, which is known as
“maximum likelihood” method. It is equivalent to maximizing the expression in the
exponential in Eq. (3.55), which is just (−1/2) times χ2, and hence to minimizing
χ2. Thus, in the context of fitting, maximum likelihood is equivalent to the standard
least-squares approach.

We can use the result that least-squares is equivalent to maximum likelihood to
formulate the least squares method for correlated data. This is described in Appen-
dix G.

Now we now that least-squares corresponds to maximum likelihood (frequentist)
approach to statistics, we can use it to tackle the problem of overfitting.

The intuition that the simplest model which fits the data is to be preferred can be
inferred from the results for χ2 in in Fig. 3.5 since χ2 decreases considerably in going
from M = 2 (a straight line) to 3 (a parabola), but then decreases only slightly for
larger M . We might therefore conclude “by eye” that underlying model is a parabola.
But how can we select the right model in a systematic manner?

Intuitively, we would like to add a penalty to χ2 which increases with M and then
look at the minimum of the resulting quantity as a function of M . One way to do this
is to consider the quality of fit factor Q [1], given in Eq. (3.25) since this involves the
value of χ2 per degree of freedom, so if χ2 does not decrease by much on increasing
M by one, the value of χ2 per degree of freedom will increase, so Q can decrease.
This is shown in the right part of Fig. 3.5 where a peak in Q is seen at M = 3 (the
correct value). At larger values of M , in the region of over-fitting, the variation of Q
with M is non-monotonic, at least in this case.

We have also analyzed the data in Fig. 3.9 which has just 10 data points. The data
are from a quadratic function, f (x) = 1 − 10x + 8x2, plus Gaussian noises with
standard deviation 0.5. The value of χ2, shown in the left part of Fig. 3.7, decreases
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Fig. 3.7 Left A plot of χ2 versus M for the data in Fig. 3.9. This shows a rapid drop in going
from M = 2 to 3 but then continues to decrease on further increasing M . However, the data is
being over-fitted in this region. Right A plot of the confidence of fit factor Q for the data shown in
Fig. 3.9. This shows a peak at M = 3, followed by a gradual decrease. (For still larger values of M ,
Q increases again, presumably connected with the fact that the fit is perfect for M = N )
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considerably when M in increases from 2 and 3, but decreases much more slowly
for the next few values of M . Of course, χ2 = 0 for M = N (= 10). Fit parameters
for different values of M are shown in Table 3.1 and the corresponding values of Q
are shown in the right part of Fig. 3.7. A clear peak is seen for M = 3, the parabolic
fit, indicating, again correctly, that a parabola is the right function to model the data.

3.9.2 A Bayesian Approach

The Bayesian approach heavily uses “conditional” probability distributions, so we
start by explaining these. Consider two random variables x and y. We write P(X, Y )

as the probability that x has the value X and y has the value Y , and also write P(X)

as the probability that x has value X , irrespective of the value of y. Clearly P(X)

can be obtained by summing P(X, Y ) over Y , i.e.

P(X) =
∑

Y

P(X, Y ). (3.56)

We also need conditional probabilities, such as P(X |Y ), which is the probability
that x has value X given that y has value Y , and P(Y |X) which is the probability
that y has value Y given that x has value X .

We can relate P(X, Y ) to conditional probabilities in two different ways. Firstly,
we can determine the probability that x has value X , and multiply this by the condi-
tional probability of Y given X . Alternatively, we can do the same thing with X and
Y interchanged. Thus we have

P(X, Y ) = P(Y |X) P(X) = P(X |Y )P(Y ). (3.57)

If we divide by P(X) we get

P(Y |X) = P(X |Y ) P(Y )

P(X)
, (3.58)

which is known as Bayes’ theorem and plays a central role in the Bayesian approach
to statistics. From Eqs. (3.56) and (3.57) we have

P(X) =
∑

Y

P(X |Y ) P(Y ), (3.59)

so the denominator in Eq. (3.58) is the normalizing constant which ensures that the
sum of the conditional probabilities on the left hand side over all values of Y is equal
to one. We can therefore also write Bayes’ theorem in the form
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P(Y |X) = P(X |Y ) P(Y )∑
Y ′ P(X |Y ′) P(Y ′)

. (3.60)

In the Bayesian approach to statistics, Eq. (3.58) is interpreted in the following
way. P(Y ) is taken to be some knowledge about Y which has been acquired before
the statistical analysis is performed, and is called the “prior”. Data is then used
to determine P(X |Y ), the probability of X given this value of Y . Bayes’ theorem
then gives P(Y |X), the probability of Y now that the statistical information about
X has been included, and is called the “posterior” distribution. If, later on, more
information is available, say that a third variable z has value Z , then P(Y |X) can be
taken as the prior, and the posterior distribution for y, including information about
both x and z is given according to Bayes’ theorem by

P(Y |X, Z) = P(Z |Y, X) P(Y |X)

P(Z |X)
, (3.61)

where P(Y |X, Z) is the conditional probability for Y given both that x = X and
z = Z , and the denominator is equal to

∑
Y P(Z |Y, X) P(Y |X). If Eq. (3.61) looks

confusing, note that X is fixed throughout and could be omitted from the notation,
in which case Eq. (3.61) just Bayes’ theorem, Eq. (3.58), for Y and Z .

Bayesian statistics is sometimes regarded with suspicion on the grounds that the
prior distributions used seem either to be subjective or to be determined by mathe-
matical convenience rather than physical intuition. Nonetheless, Bayesian methods
can be very useful in many situations, and the problem of model selection in fitting is
claimed [2] to be one of them. Recall from Fig. 3.9 and Table 3.1 that the problem with
maximum likelihood methods is that they prefer complicated models which over-fit
the data, give oscillatory behavior between the data points, and produce unphysically
large values for the fit parameters.

Thus, we have the notion that simpler models are better, and this is precisely the sort of
additional information that is included in Bayesian analysis in the form of a prior. Hence a
Bayesian analysis is natural for the model selection problem.

Our goal is to determine the best “model”, M, to fit the data. Specifying a model
requires specifying a functional form and the number of fit parameters M . Since we
stick to polynomials here we can indicate a model simply by specifying the number
of parameters M . We want to compute the relative probabilities of different values
of M , given the data, i.e. P(M |D), where the symbol D indicates our set of data.

To do this we need some additional information to prevent over-fitting. We there-
fore introduce a prior for the fit parameters, and a mathematically convenient choice
is a Gaussian,

P(F |γ) =
( γ

2π

)M/2
exp

[
−γ

2

M∑
α=1

a2
α

]
, (3.62)
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in which we write F to symbolically indicate the fitting parameters. The quantity
γ is called a “hyperparameter” because it controls the parameters of the fit. Equa-
tion (3.62) gives the probability of the fit parameters given a particular value for
the hyperparameter. For simplicity we have taken the same value of γ for each of
the fit parameters. Clearly Eq. (3.62) can be criticized for the reason mentioned
above, namely that it is chosen for mathematical convenience rather than any real
prior information. Nonetheless, we shall see that it serves the purpose of penalizing
over-fitting.

The probability of M given the data is obtained by summing over all possible
values of γ so we have

P(M |D) =
∑
γ

P(γ|D) =
∑
γ

P(D|γ)P(γ)

P(D)
, (3.63)

where we used Bayes’ equation to get the last equality. The denominator is a constant
independent of the model or fit parameters and will be ignored from now on. What do
we take for P(γ)? Since we have no information on it, one might think of setting it to
a constant. However, a constant distribution between 0 and ∞ is not normalizable, so
we have to put in bounds. This is tricky because we have no idea of γ is very large or
very small or in between. One does better by taking P(log γ) to be constant because,
even though one still needs bounds, one can cover a huge range of magnitudes. Hence
we take P(γ) ∝ 1/γ. We expect that P(D|γ) will be fairly sharply peaked at some
value γ̂ and that this value will dominate the sum in Eq. (3.63). Hence we have

P(M |D) ∝ P(D|γ̂)

γ̂
, (3.64)

and so the ratio of probabilities for two different values of M is

P(M1|D)

P(M2|D)
= PM1(D|γ̂M1)

PM2(D|γ̂M2)

γ̂M2

γ̂M1

, (3.65)

where we temporarily indicate that the distribution P(D|γ) depends on the number
of fit parameters M . (The ratio of the γ values in Eq. (3.65) comes from our choice
of a uniform distribution for P(ln γ) and is often ignored.)

Hence our goal is to determine P(D|γ) and maximize it with respect to γ. Now
P(D|γ) is obtained by summing over all possible values for the fit parameters, i.e.

P(D|γ) =
∑

F

P(D|F) P(F |γ). (3.66)

The probability of the data given the fit, P(D|F), is given by the maximum
likelihood result in Eq. (3.55), namely
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P(D|F) = 1

(2π)N/2
(∏N

i=1 σi

) exp

[
−1

2

N∑
i=1

(
yi − ∑

α aα Xα(xi )

σi

)2
]

.(3.67)

Multiplying this by Eq. (3.62) and substituting into Eq. (3.66) we get

P(D|γ) =
( γ

2π

)M/2 1

(2π)N/2
(∏N

i=1 σi

)
M∏

α=1

(∫ ∞

−∞
daα

)
exp

[
−1

2
E0({aα})

]
,

(3.68)

where the cost function, E0({aα}), is given by

E0({aα}) =
N∑

i=1

(
yi − ∑M

α=1 aα Xα(xi )

σi

)2

+ γ
∑
α

a2
α. (3.69)

The first term in E0({aα}) is just χ2 and the second term has the effect of a “regu-
larizer” which penalizes fits with large parameter values. Over-fitting leads to very
large parameter values, see Table 3.1 for an example, so the second term in Eq. (3.69)
acts as to suppress over-fitting, as desired.

We need to find a minimum of Eq. (3.69) with respect to the fit parameters (equiv-
alent to the maximum of the exponential in Eq. (3.68)), which is straightforward
because it is quadratic function of the parameters (a mathematical advantage of the
Gaussian prior). The solution for the parameters is still given by Eq. (3.12), with the
vα still given by Eq. (3.33), and the only change is that Uαβ now has an extra term
involving γ,

Uαβ =
N∑

i=1

Xα(xi ) Xβ(xi )

σ2
i

+ γ δαβ . (3.70)

We will write the values of fit parameters at the minimum of E0 as âα.
From Eq. (3.12) these are given by

âα =
M∑

β=1

(
U−1

)
αβ

vβ, (3.71)

where now U is given by Eq. (3.70) and v by Eq. (3.33). These maximize the
exponential in Eq. (3.68) and are called the maximum posterior (or MAP) values
of the fit parameters.

The expectation value of aα using the Gaussian weight in Eq. (3.68) is just the
optimal value âα. To perform the integrals in Eq. (3.68) we expand the aα about âα

and perform the resulting Gaussian integrals by completing the square. The result is
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P(D|γ) = γM/2

(det U )1/2

1

(2π)N/2
(∏N

i=1 σi

) exp

[
−1

2
E0({âα})

]
, (3.72)

see the discussion below Eq. (G.3) for an explanation of where the determinant comes
from. Because γ in Eq. (3.70) only appears proportional to the identity matrix, the
eigenvectors of U are independent of γ and so the eigenvalues can be written as
λI = λ

(0)
I + γ, where λ

(0)
I is the eigenvalue in the unregularized case with γ = 0.

We use an uppercase Roman letter to label one of the M eigenvalues. Hence, from
Eq. (3.72), the log of the probability of the data given the hyperparameter γ is given by

ln P(D|γ) = −1

2
E({âα}, γ), (3.73)

where the cost function, E({âα}, γ), which we have to minimize with respect to γ,
is given by

E({âα}, γ) = E0({âα}) +
M∑

I=1

ln

(
λ(0)

I + γ

γ

)
+

N∑
i=1

ln(2πσ2
i ) (3.74)

=
N∑

i=1

⎛
⎜⎜⎜⎝

yi −
M∑

α=1
âα Xα(xi )

σi

⎞
⎟⎟⎟⎠

2

+ γ

M∑
α=1

â2
α +

M∑
I=1

ln

(
λ

(0)
I + γ

γ

)
+

N∑
i=1

ln(2πσ2
i ),

(3.75)

where we have written det U = ∏
I (λ

(0)
I +γ). We should mention that the eigenvalues

λ
(0)
I are independent of both the parameters âα and also γ since they come from

diagonalizing the matrix U in Eq. (3.70) without the γ term. In the machine learning
literature P(D|γ) ≡ exp(−E({âα}, γ)/2) is called the evidence function [2].

We now discuss each of the terms in the cost function E in Eq. (3.75).

1. The first term is just χ2.
2. Intuitively we want to add to χ a term which increases with M to penalize over-

fitting. This role is played by the the second and third terms in Eq. (3.75), which
are each the sum of M factors. The second term is the regularizer which was
discussed after Eq. (3.69).

3. The third term is the most interesting. From Eq. (3.62) we see that 1/γ is the
variance of the prior distribution for each of the aα. Further, 1/(λ

(0)
I +γ), being the

I th eigenvalue of the covariance matrix, is the variance of the posterior distribution
of the linear combination of fit parameters corresponding to the I th eigenvector.
We’ll call this σ2

I . Since we chose the same value of γ for each of the fit parameters,
the variance of the prior distribution for eigenvector I is also 1/γ for all I . We’ll

denote this by
(
σ

(P)
I

)2
. We therefore use the following definitions,
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σ(P)
I = 1

γ1/2 , σI = 1(
γ + λ(0)

I

)1/2 , σ(0)
I = 1(

λ(0)
I

)1/2 , (I = 1, 2, . . . , M),

(3.76)

in which we also define σ(0)
I to be the standard deviation in the estimate of the

I th eigenvector for γ = 0, see Fig. 3.8 for an illustration. Hence the third term in
Eq. (3.75) can be written as

2
M∑

I=1

ln

(
σ

(P)
I

σI

)
. (3.77)

Equivalently, from Eqs. (3.73) and (3.75) the (multiplicative) contribution of this
term to P(D|γ) is

P(D|γ) ∝
M∏

I=1

(
σI

σ
(P)
I

)
. (3.78)

I

I

I
(P)

a   − <a  >I

Fig. 3.8 The posterior (dashed line) and prior (solid line) distributions for a combination of fit
parameters corresponding to the I th eigenvector, aI , of the covariance matrix. The width of the
prior distribution, σ(P)

I is equal to 1/γ1/2 (for all I ). The width of the posterior distribution, σI ,

is equal to 1/(γ + λ
(0)
I )1/2 where λ

(0)
I is the I th eigenvalue of the matrix U (the inverse of the

covariance matrix) in the absence of the hyperparameter γ. Parameters which are not much affected
by the regularization due to γ have λ

(0)
I 
 γ, so σI � σ

(P)
I , while parameters which are affected

by the regularization have λ(0)
I � γ, which gives σI � σ(P)

I . The third term in Eq. (3.75) gives a

penalty of 2 ln
(
σ

(P)
I /σI

)
, see Eq. (3.77), to the cost function E for each parameter in the fit which

is not significantly altered by regularization
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As a reminder, the factor of σ
(P)
I (= γ−1/2) in Eq. (3.77) or (3.78) comes from

the normalization of the prior distribution in Eq. (3.62), while the factor of σI ,
the width of the distribution of posterior distribution in fit parameter I , comes
from integrating over the fit parameters in Eq. (3.68) (see also Eq. (3.66)). We
see that the third term provides a penalty given by Eq. (3.77) for each parameter
I which is not much affected by the regularization, i.e. γ � λ

(0)
I . In this way, we

prevent the minimum of the cost function being at γ = 0, which would just give
the maximum likelihood result.

4. The fourth and last term in Eq. (3.75) depends on the data but is independent of the
fit parameters or the hyperparameter γ and so will be omitted in our subsequent
discussion.

We emphasize that the maximum posterior (MAP) values of the fitting parameters,
âα, depend on the hyperparameter γ. However, when we minimize the cost function
E({âα}, γ) in Eq. (3.75) with respect to γ we can neglect this dependence because the
âα are precisely those values where ∂E0/∂aα equal zero (and the difference between
E and E0 in Eq. (3.74) does not depend on the âα). Hence minimizing Eq. (3.75)
with respect to γ we find that the optimal choice for γ is given by the self-consistent
solution of

γ

M∑
α=1

â2
α =

M∑
I=1

λ
(0)
I

γ + λ
(0)
I

. (3.79)

We remind the reader that the fit parameters âα depend on γ, but the eigenvalues
λ

(0)
I are independent of the âα and γ. We denote by γ̂ the value of γ which satisfies

Eq. (3.79).
Note that we really want the probability for the model, and in Eq. (3.64) this is not

given exactly by P(γ̂|D) but has an extra factor of γ̂−1. Furthermore, we will neglect
the last term in Eq. (3.75) since it is independent of fit parameters or γ. Hence, for
different values of M we will compare the values of

P(M |D) ∝ exp

(
−1

2
E({âα}, γ̂)

)
(3.80)

where

E({âα}, γ̂) =
N∑

i=1

(
yi − ∑M

α=1 âα Xα(xi )

σi

)2

+ γ̂

M∑
α=1

â2
α +

M∑
I=1

ln

(
λ

(0)
I + γ̂

γ̂

)
+ 2 ln γ̂.

(3.81)

Our Bayesian procedure to avoid overfitting is therefore as follows:

1. Choose a value for M and initial value for γ.
2. Determine the optimal fitting parameters âα from Eq. (3.71), and hence also the

eigenvalues λ
(0)
I .
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3. Substitute these values into the RHS of Eq. (3.79) to get a new value for γ. Go
to 3.9.2 and iterate to convergence to determine the optimal value γ̂.

4. Repeat for different values of M and compare the values of the cost function
E({âα}, γ̂) in Eq. (3.81). The optimal choice for M is at the minimum of E .

The Bayesian procedure we have described has some undesirable features. In
the maximum likelihood approach, the value of χ2 correctly remains the same if a
translation or scaling of either the x or y axes takes place, and the fit itself is the same
apart from the trivial change of variables. However, the cost function in the Bayesian
analysis does not have these invariances. For example, if we just add a constant to
all the data the fit should remain the same except that the constant is added to fit
parameter a0. However, the coupling of the regularization parameter γ to a0 in the
second term in Eq. (3.75) means that the fit is changed in a non-trivial way in the
Bayesian analysis. Because of this lack of invariance, it may be useful to transform
the data so that the x and y variables lie between −1 and 1, say, before doing the
Bayesian analysis, and, indeed, we shall find it necessary to do this.

Even if all the axes are transformed in this way, we still find some strange features
in the self-constency condition, Eq. (3.79), used to determine γ̂. The λ

(0)
I are the

eigenvalues of the matrix U in Eq. (3.32). The elements of U get very large if the
error bars on the data are small. We find that in this case the optimal value of γ

does not get correspondingly large, with the result that λ
(0)
I 
 γ̂ even for several

parameters I which are not well determined by the data. This disagrees with the
interpretation in Ref. [2] that those fit parameters I with λ

(0)
I 
 γ̂ are those which

are well determined by the data.
In Fig. 3.9 we plot the optimized cost function E({âα}, γ̂) given by Eq. (3.81), for

the two different data sets, as a function of M . Recall that both sets were determined
from parabolas plus noise, and so the optimal choice of M should be 3. This is
correctly reproduced for the data in Fig. 3.4 but not for the data in Fig. 3.9.
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Fig. 3.9 Left The optimized cost function E({âα}, γ̂) in Eq. (3.81) plotted against M for the data
in Fig. 3.4. Right The same quantity but for the data in Fig. 3.9. For both data sets the optimal choice
for M (where E is a minimum) should equal three. Hence this method works for the data in Fig. 3.4
but not for that in Fig. 3.9
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Fig. 3.10 Left The optimized cost function E({âα}, γ̂) in Eq. (3.81) is plotted versus M when the
data in Fig. 3.4 is scaled so that the x and y variables lie between −1 and 1. Right The same quantity
but for the data in Fig. 3.9. Unlike the unscaled analysis in Fig. 3.9, this correctly gives a minimum
at M = 3 for both data sets

From the above discussion we suspect that the problem with the data in Fig. 3.9
is due to lack of invariance of the method to shift and scaling of the axes. We have
therefore performed the same analysis but with the x and y variables scaled to lie
between −1 and 1 and show the results in Fig. 3.10. Now, the minimum is correctly
found at M = 3 for both data sets.

3.9.3 Conclusions for Model Selection

In the maximum likelihood approach one computes the goodness of fit factor Q and
looks for a peak as a number of fit parameters, M , see the right hand panel in Figs. 3.5
and 3.7. Although χ2 monotonically deceases with increasing M , Q depends on χ2

per degree of freedom and the latter decreases with increasing M . Hence there is a
penalty on increasing M which can only be compensated for if there is a substantial
decrease in χ2. If M is too large, which is the over-fitting regime, χ2 only decreases
slightly with M and so Q decreases. (Eventually Q may increase again since the
function fits the data perfectly for M = N .)

In the Bayesian approach, one applies a regularization parameter γ and determines
its optimal value. From this a cost function function is found whose minimum value
is the optimal choice for M . This worked “off the shelf” for one set of data studied,
see Fig. 3.9, but to have it work for both sets of data it was necessary to scale the x
and y coordinates to the range −1 to 1, see Fig. 3.10. The Bayesian approach is more
complicated than maximum likelihood method and evidently has to be applied with
care. It can be generalized, for example, by allowing different hyperparameters for
each fit variable, but at a substantial additional complexity.
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Appendix A
Central Limit Theorem

In this appendix we give a proof of the central limit theorem.
We assume a distribution that falls off sufficiently fast at ±∞ that the mean and

variance are finite. This excludes, for example, the Lorentzian distribution:

PLor = 1

π

1

1 + x2
. (A.1)

A common distribution which does have a finite mean and variance is the Gaussian
distribution,

PGauss = 1√
2π σ

exp

[
− (x − μ)2

2σ 2

]
. (A.2)

Using standard results for Gaussian integrals you should be able to show that the
distribution is normalized and that the mean and standard deviation are μ and σ

respectively. We note that the probability that that a Gaussian random variable is
more than c σ , where c is a constant, away from the mean is given by

P(|x − μ| > c σ) = 2√
2π σ

∫ ∞

μ+cσ
exp
[
−(x − μ)2/(2σ 2)

]
,

= 2√
π

∫ ∞

c/
√
2

e−t2 dt

= erfc(c/
√
2), (A.3)

where erfc is the complementary error function [1].
Consider a distribution, not necessarily Gaussian, with a finite mean and distrib-

ution. We pick N independent and identically distributed random numbers xi from
such a distribution and form the sum
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X =
N∑

i=1

xi .

distribution.
The determination of the distribution of X , which we call PN (X), uses the Fourier

transform of P(x), called the “characteristic function” in the context of probability
theory. This is defined by

Q(k) =
∫ ∞

−∞
P(x)eikx dx .

Expanding out the exponential we can write Q(k) in terms of the moments of P(x)

Q(k) = 1 + ik〈x〉 + (ik)2

2! 〈x2〉 + (ik)3

3! 〈x3〉 + · · · .

It will be convenient in what follows to write Q(k) as an exponential, i.e.

Q(k) = exp

[
ln

(
1 + ik〈x〉 + (ik)2

2! 〈x2〉 + (ik)3

3! 〈x3〉 + · · ·
)]

= exp

[
ikμ + (ik)2σ 2

2! + c3(ik)3

3! + c4(ik)4

4! + · · ·
]

, (A.4)

where c3 involves third and lower moments, c4 involves fourth and lower moments,
and so on. The cn are called cumulant averages.

For the important case of a Gaussian, the Fourier transform is obtained by “com-
pleting the square”. The result is that the Fourier transform of a Gaussian is also a
Gaussian, namely,

QGauss(k) = exp

[
ikμ − k2σ 2

2

]
, (A.5)

showing that the higher order cumulants, c3, c4, etc. in Eq. (A.4) all vanish for a
Gaussian.

The distribution PN (x) can be expressed as

PN (x) =
∫ ∞

−∞
P(x1)dx1

∫ ∞

−∞
P(x2)dx2 · · ·

∫ ∞

−∞
P(xN )dxN δ(X −

N∑
i=1

xi ).

(A.6)
We evaluate this by using the integral representation of the delta function

δ(x) = 1

2π

∫ ∞

−∞
eikx dk, (A.7)

so
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PN (X) =
∫ ∞

−∞
dk

2π

∫ ∞

−∞
P(x1)dx1

∫ ∞

−∞
P(x2)dx2 · · ·

∫ ∞

−∞
P(xN )dxN exp[ik(x1 + x2 + · · · xN − X)] (A.8)

=
∫ ∞

−∞
dk

2π
Q(k)N e−ik X , (A.9)

showing that the Fourier transform of PN (x), which we call QN (k), is given by

QN (k) = Q(k)N . (A.10)

Consequently

QN (k) = exp

[
ik Nμ − Nk2σ 2

2
+ Nc3(ik)3

4! + Nc4(ik)4

4! + · · ·
]

. (A.11)

Comparing with Eq. (A.4) we see that

the mean of the distribution of the sum of N independent and identically distributed random
variables (the coefficient of −ik in the exponential) is N times the mean of the distribution
of one variable, and the variance of the distribution of the sum (the coefficient of −k2/2!) is
N times the variance of the distribution of one variable.

These are general statements applicable for any N and have already been derived in
Sect. 2.1.

However, if N is large we can now go further. The distribution PN (X) is the
inverse transform of QN (k), see Eq. (A.9), so

PN (X) = 1

2π

∫ ∞

−∞
exp

[
−ik X ′ − Nk2σ 2

2! + N
c3(ik)3

3! + Nc4(ik)4

4! + · · ·
]

dk,

(A.12)

where

X ′ = X − Nμ. (A.13)

Looking at the −Nk2/2 term in the exponential in Eq. (A.12), we see that the
integrand is significant for k < k�, where Nσ 2(k�)2 = 1, and negligibly small for
k � k�. However, for k ∼ k� the higher order terms in Eq. (A.12), (i.e. those of
order k3, k4 etc.) are very small since N (k�)3 ∼ N−1/2, N (k�)4 ∼ N−1 and so on.

http://dx.doi.org/10.1007/978-3-319-19051-8_2
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Hence the terms of higher order than k2 in Eq. (A.12), do not contribute for large N
and so

lim
N→∞ PN (X) = 1

2π

∫ ∞

−∞
exp

[
−ik X ′ − Nk2σ 2

2

]
dk. (A.14)

In other words, for large N the distribution is the Fourier transform of a Gaussian,
which, as we know, is also a Gaussian. Completing the square in Eq. (A.14) gives

lim
N→∞ PN (X) = 1

2π

∫ ∞

−∞
exp

[
− Nσ 2

2

(
k − i X ′

Nσ 2

)2
]

dk exp

[
− (X ′)2

2Nσ 2

]

= 1√
2π N σ

exp

[
− (X − Nμ)2

2Nσ 2

]
, (A.15)

where, in the last line, we used Eq. (A.13). This is a Gaussian with mean Nμ and
variance Nσ 2. Equation (A.15) is the central limit theorem in statistics. It tells us
that,

for N → ∞, the distribution of the sum of N independent and identically distributed
random variables is a Gaussian whose mean is N times the mean, μ, of the distribution of
one variable, and whose variance is N times the variance of the distribution of one variable,
σ 2, independent of the form of the distribution of one variable, P(x), provided only that μ
and σ are finite.

The central limit theorem is of such generality that it is extremely important. It is
the reason why the Gaussian distribution has such a preeminent place in the theory
of statistics.

Note that if the distribution of the individual xi is Gaussian, then the distribution
of the sum of N variables is always Gaussian, even for N small. This follows from
Eq. (A.10) and the fact that the Fourier transform of a Gaussian is a Gaussian.

In practice, distributions that we meet in nature, have a much broader tail than
that of the Gaussian distribution, which falls off very fast at large |x − μ|/σ . As a
result, even if the distribution of the sum approximates well a Gaussian in the central
region for only modest values of N , it might take a much larger value of N to beat
down the weight in the tail to the value of the Gaussian. Hence, even for moderate
values of N , the probability of a deviation greater than σ can be significantly larger
than that of the Gaussian distribution which is 32%. This caution will be important
in Chap.3 when we discuss the quality of fits.

Wewill illustrate the slow convergence of the distribution of the sum to aGaussian
in Fig. A.1, in which the distribution of the individual variables xi is

P(x) = 3

2

1

(1 + |x |)4 . (A.16)

http://dx.doi.org/10.1007/978-3-319-19051-8_3
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Fig. A.1 Figure showing the approach to the central limit theorem for the distribution in Eq. (A.16),
which has mean, μ, equal to 0, and standard deviation, σ , equal to 1. The horizontal axis is the sum
of N random variables divided by

√
N which, for all N , has zero mean and standard deviation unity.

For large N the distribution approaches a Gaussian. However, convergence is non-uniform, and is
extremely slow in the tails. Note the log vertical scale which is necessary to display the weight in
the tails

This has mean 0 and standard deviation 1, but moments higher than the second do
not exist because the integrals diverge. For large N the distribution approaches a
Gaussian, as expected, but convergence is very slow in the tails.



Appendix B
The Number of Degrees of Freedom

We assume Gaussian noise on the data and consider first a straight line fit, so we
have to determine the values of a0 and a1 which minimize Eq. (3.7). The N terms in
Eq. (3.7) are not statistically independent at the minimum because the values of a0
and a1, given by Eq. (3.8), depend on the data points (xi , yi , σi ).

Consider the “residuals” defined by

εi = yi − a0 − a1xi

σi
. (B.1)

If the model were exact and we use the exact values of the parameters a0 and a1 the
εi would be independent and each have a Gaussian distribution with zero mean and
standard deviation unity. However, choosing the best-fit values of a0 and a1 from the
data according to Eq. (3.8) implies that

N∑
i=1

1

σi
εi = 0, (B.2a)

N∑
i=1

xi

σi
εi = 0, (B.2b)

which are are two linear constraints on the εi . This means that we only need to
specify N − 2 of them to know them all. In the N dimensional space of the εi

we have eliminated two directions, so there can be no Gaussian fluctuations along
them. However the other N − 2 dimensions are unchanged, and will have the same
Gaussian fluctuations as before. Thus χ2 has the distribution of a sum of squares
of N − 2 Gaussian random variables. We can intuitively understand why there are
N − 2 degrees of freedom rather than N by considering the case of N = 2. The fit
goes perfectly through the two points so one has χ2 = 0 exactly. This implies that
there are zero degrees of freedom since, on average, each degree of freedom adds 1
to χ2.
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Clearly this argument can be generalized to any fitting function which depends
linearly on M fitting parameters, assuming Gaussian noise on the data. The result is
that χ2 has the distribution of a sum of squares of NDOF = N − M Gaussian random
variables, in which the quantity NDOF is called the “number of degrees of freedom”.

Even if the fitting function depends non-linearly on the parameters, this last result
is often taken as a reasonable approximation.



Appendix C
The Chi-squared Distribution
and the Goodness of Fit Parameter Q

The χ2 distribution for m degrees of freedom is the distribution of the sum of m
independent random variables with a Gaussian distribution with zero mean and stan-
dard deviation unity. To determine this we write the distribution of the m variables
xi as

P(x1, x2, · · · , xm) dx1dx2 · · · dxm = 1

(2π)m/2 e−x21/2 e−x22/2 · · · e−x2m/2 dx1dx2 · · · dxm .

(C.1)
Converting to polar coordinates, and integrating over directions, we find the distrib-
ution of the radial variable to be

P̃(r) dr = Sm

(2π)m/2 rm−1 e−r2/2 dr, (C.2)

where Sm is the surface area of a unit m-dimensional sphere. To determine Sm we
integrate Eq. (C.2) over r , noting that P̃(r) is normalized, which gives

Sm = 2πm/2

�(m/2)
, (C.3)

where �(x) is the Euler gamma function defined by

�(x) =
∫ ∞

0
t x−1 e−t dt. (C.4)

From Eqs. (C.2) and (C.3) we have

P̃(r) = 1

2m/2−1�(m/2)
rm−1e−r2/2. (C.5)
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This is the distribution of r but we want the distribution of χ2 ≡ ∑
i x2i = r2. To

avoid confusion of notation we write X for χ2, and define the χ2 distribution for m
variables as P(m)(X). We have P(m)(X) d X = P̃(r) dr so the χ2 distribution for m
degrees of freedom is

P(m)(X) = P̃(r)

d X/dr

= 1

2m/2�(m/2)
X (m/2)−1 e−X/2 (X > 0). (C.6)

The χ2 distribution is zero for X < 0. Using Eq. (C.4) and the property of the gamma
function that �(n + 1) = n�(n) one can show that

∫ ∞

0
P(m)(X) d X = 1, (C.7a)

〈X〉 ≡
∫ ∞

0
X P(m)(X) d X = m, (C.7b)

〈X2〉 ≡
∫ ∞

0
X2 P(m)(X) d X = m2 + 2m, so (C.7c)

〈X2〉 − 〈X〉2 = 2m. (C.7d)

Furthermore, the peak of the distribution is at X = m − 2 (for m > 2).
From Eqs. (C.7b) and (C.7d) we see that typically χ2 lies in the range m − √

2m
to m + √

2m. For large m the distribution approaches a Gaussian according to the
central limit theory discussed in Appendix A. Typically one focuses on the value of
χ2 per degree freedom since this should be around unity for all m.

The goodness of fit parameter is the probability that the specified value of χ2, or
greater, could occur by random chance. From Eq. (C.6) it is given by

Q = 1

2m/2�(m/2)

∫ ∞

χ2
X (m/2)−1 e−X/2 d X, (C.8)

= 1

�(m/2)

∫ ∞

χ2/2
y(m/2)−1 e−y dy, (C.9)

which is known as an incomplete gamma function. Code to generate the incomplete
gamma function is given in Numerical Recipes [1]. There is also a built-in function
to generate the goodness of fit parameter in the scipy package of python and in
the graphics program gnuplot, see the scripts in Appendix H.

The χ2 distribution for several value of m ≡ NDOF is plotted in Fig. C.1. The
mean and variance are given by Eqs. (C.7b) and (C.7d). For large m, according to
the central limit theorem, the χ2 distribution becomes a Gaussian.
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Fig. C.1 The χ2 distribution for several values of NDOF the number of degrees of freedom. The
mean and standard deviation depend on NDOF in the way specified. The goodness of fit parameter
Q, defined in Eq. (3.25), depends on the values of NDOF and χ2, and is the probability that χ2 could
have the specified value or larger by random chance. The area of the shaded region in the figure is
the value of Q for NDOF = 10, χ2 = 15. Note that the total area under each of the curves is unity
because they represent probability distributions

Note that Q = 1 for χ2 = 0 and Q → 0 for χ2 → ∞. Remember that m is
the number of degrees of freedom, called NDOF elsewhere in these notes, and that
NDOF = N − M , where N is the number of data points and M is the number of fit
parameters.

http://dx.doi.org/10.1007/978-3-319-19051-8_3


Appendix D
Asymptotic Standard Error and How to Get
Correct Error Bars from Gnuplot

Sometimes one does not have error bars on the data. Nonetheless, one can still use
χ2 fitting to get an estimate of those errors (assuming that they are all equal) and
thereby also get an error bar on the fit parameters. The latter is called the “asymptotic
standard error”. Assuming the same error bar σass for all points, we determine σass
from the requirement that χ2 per degree of freedom is precisely one, i.e. its mean
value according to Eq. (C.7b). This gives

1 = χ2

NDOF

= 1

NDOF

N∑
i=1

(
yi − f (xi )

σass

)2

, (D.1)

or, equivalently,

σ 2
ass = 1

NDOF

N∑
i=1

(yi − f (xi ))
2 . (D.2)

The error bars on the fit parameters are then obtained from Eq. (3.24), with the
elements of U given by Eq. (3.10) in which σi is replaced by σass. Equivalently, one
can set the σi to unity in determining U from Eq. (3.10), and estimate the error on
the fit parameters from

σ 2
α = (U )−1

αα σ 2
ass, (asymptotic standard error). (D.3)

A simple example of the use of the asymptotic standard error in a situation where
we don’t know the error on the data points, is fitting to a constant, i.e. determining
the average of a set of data, which we already discussed in detail in Chap. 2. In this
case we have

U00 = N , v0 =
N∑

i=1

yi , (D.4)
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so the only fit parameter is

a0 = v0

U00
= 1

N

N∑
i=1

yi = y, (D.5)

which gives, naturally enough, the average of the data points, y. The number of
degrees of freedom is N − 1, since there is one fit parameter, so

σ 2
ass = 1

N − 1

N∑
i=1

(yi − y)2 , (D.6)

and hence the square of the error on a0 is given, from Eq. (D.3), by

σ 2
0 = 1

U00
σ 2
ass = 1

N (N − 1)

N∑
i=1

(yi − y)2 , (D.7)

which is precisely the expression for the error in the mean of a set of data given in
Eq. (2.16).

I now mention that a popular plotting program, gnuplot, which also does fits
but unfortunately presents error bars on the fit parameters incorrectly if there are
error bars on the data. Whether or not there are error bars on the points, gnuplot
gives the “asymptotic standard error” on the fit parameters. Gnuplot calculates the
elements of U correctly from Eq. (3.10) including the error bars, but then apparently
also determines an “assumed error” from an expression like Eq. (D.2) but including
the error bars, i.e.

σ 2
ass = 1

NDOF

N∑
i=1

(
yi − f (xi )

σi

)2

= χ2

NDOF

, (gnuplot). (D.8)

Hence gnuplot’s σ 2
ass is just the chi-squared per degree of freedom. The error bar

(squared) quoted by gnuplot is (U )−1
αα σ 2

ass, as in Eq. (D.3). However, this is wrong
since the error bars on the data points have already been included in calculating the
elements of U , so the error on the fit parameter α should really be (U )−1

αα . Hence,

to get correct error bars on fit parameters from gnuplot when there are error bars on the
points, you have to divide gnuplot’s asymptotic standard errors by the square root of the
chi-squared per degree of freedom (which gnuplot calls FIT_STDFIT and, fortunately,
computes correctly).

I have checked this statement by comparing with results from Numerical Recipes
routines, and also, for straight-line fits, by my own implementation of the formulae.
It is curious that I found no hits on this topic when Googling the internet. Can
no one else have come across this problem? Correction of gnuplot error bars is
implemented in the gnuplot scripts in Appendix H.

http://dx.doi.org/10.1007/978-3-319-19051-8_2
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The need to correct gnuplot’s error bars applies to linear as well as non-linear
models.

I recently learned that error bars on fit parameters given by the routine
curve_fit of python also have to be corrected in the sameway. This is shown in
two of the python scripts in Appendix H. Curiously, a different python fitting routine,
leastsq, gives the error bars correctly.



Appendix E
The Distribution of Fitted Parameters
Determined from Simulated Datasets

In this section we derive the equation for the distribution of fitted parameters
determined from simulated datasets, Eq. (3.42), assuming an arbitrary linear model,
see Eq. (3.30). Projecting on to a single fitting parameter, as above, this corresponds
to the lower figure in Fig. 3.2.

We have one set of y-values, y(0)
i , for which the fit parameters are �a(0). We then

generate an ensemble of simulated data sets, yS
i , assuming the data has Gaussian

noise with standard deviation σi centered on the actual data values y(0)
i . We ask for

the probability that the fit to one of the simulated data sets has parameters �aS .
This probability distribution is given by

P(�aS) =
N∏

i=1

⎧⎪⎨
⎪⎩

1√
2πσi

∫ ∞

−∞
dyS

i exp

⎡
⎢⎣−

(
yS

i − y(0)
i

)2
2σ 2

i

⎤
⎥⎦
⎫⎪⎬
⎪⎭

M∏
α=1

δ

⎛
⎝∑

β

UαβaS
β − vS

α

⎞
⎠ detU,

(E.1)

where the factor in curly brackets is (an integral over) the probability distribution
of the data points yS

i , and the delta functions project out those sets of data points
which have a particular set of fitted parameters, see Eq. (3.34). The factor of detU
is a Jacobian to normalize the distribution. Using the integral representation of the
delta function, and writing explicitly the expression for vα from Eq. (3.33), one has

P(�aS) =
N∏

i=1

⎧⎪⎨
⎪⎩

1√
2πσi

∫ ∞

−∞
dyS

i exp

⎡
⎢⎣−

(
yS

i − y(0)
i

)2
2σ 2

i

⎤
⎥⎦
⎫⎪⎬
⎪⎭× (E.2)

M∏
α=1

⎛
⎝ 1

2π

∫ ∞

−∞
dkα exp

⎡
⎣ikα

⎛
⎝∑

β

UαβaS
β −

N∑
i=1

yS
i Xα(xi )

σ 2
i

⎞
⎠
⎤
⎦
⎞
⎠ detU .

(E.3)
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We carry out the y integrals by “completing the square”,

P(�aS) =
M∏

α=1

(
1

2π

∫ ∞

−∞
dkα

) N∏
i=1

⎧⎪⎨
⎪⎩

1√
2πσi

∫ ∞

−∞
dyS

i exp

⎡
⎢⎣−

(
yS

i − y(0)
i + i �k · �X(xi )

)2
2σ 2

i

⎤
⎥⎦
⎫⎪⎬
⎪⎭

(E.4)

× exp

[
− 1

2σ 2
i

((�k · �X(i)
)2 + 2i

(�k · �X(xi )
)

y(0)
i

)]
× exp

⎡
⎣i
∑
α,β

kα Uαβ aS
β

⎤
⎦ detU.

(E.5)

Doing the yS-integrals, the factors in curly brackets are equal to unity. Using
Eqs. (3.32) and (3.33) and the fact that the Uαβ are independent of the yS

i , we then
get

P(�aS) =
M∏

α=1

(
1

2π

∫ ∞

−∞
dkα

)
exp

⎡
⎣−1

2

∑
α,β

kα Uαβ kβ + i
∑
α,β

kα δvS
α

⎤
⎦ detU,

(E.6)
where

δvS
β ≡ vS

β − v
(0)
β , (E.7)

with

v(0)
α =

N∑
i=1

y(0)
i Xα(xi )

σ 2
i

. (E.8)

We do the k-integrals by working in the basis in which U is diagonal. The result is

P(�aS) = (detU )1/2

(2π)M/2 exp

⎡
⎣−1

2

∑
α,β

δvS
α

(
U−1

)
αβ

δvS
β

⎤
⎦ . (E.9)

Using Eq. (3.34) and the fact that U is symmetric we get our final result

P(�aS) = (detU )1/2

(2π)M/2 exp

⎡
⎣−1

2

∑
α,β

δaS
α Uαβ δaS

β

⎤
⎦ , (E.10)

which is Eq. (3.42), including the normalization constant in front of the exponential.
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Appendix F
The Distribution of Fitted Parameters
from Repeated Sets of Measurements

In this section we derive the equation for the distribution of fitted parameters deter-
mined in the hypothetical situation that one has many actual data sets. Projecting on
to a single fitted parameter, this corresponds to the upper panel in Fig. 3.2.

The exact value of the data is ytruei = �atrue · �X(xi ), see Eq. (3.30), and the
distribution of the yi in an actual data set, which differs from ytruei because of noise,
has a distribution, assumed Gaussian here, centered on ytruei with standard deviation
σi . Fitting each of these real data sets, the probability distribution for the fitted
parameters is given by

P(�a) =
N∏

i=1

⎧⎪⎨
⎪⎩

1√
2πσi

∫ ∞

−∞
dyi exp

⎡
⎢⎣−

(
yi − �atrue · �X(xi )

)2
2σ 2

i

⎤
⎥⎦
⎫⎪⎬
⎪⎭

M∏
α=1

δ

⎛
⎝∑

β

Uαβaβ − vα

⎞
⎠ detU,

(F.1)
see Eq. (E.1) for an explanation of the various factors. Proceeding as in Appendix E
we have

P(�a) =
N∏

i=1

⎧⎪⎨
⎪⎩

1√
2πσi

∫ ∞

−∞
dyi exp

⎡
⎢⎣−

(
yi − �atrue · �X(xi )

)2
2σ 2

i

⎤
⎥⎦
⎫⎪⎬
⎪⎭×

(F.2)

M∏
α=1

⎛
⎝ 1

2π

∫ ∞

−∞
dkα exp

⎡
⎣ikα

⎛
⎝∑

β

Uαβaβ −
N∑

i=1

yi Xα(xi )

σ 2
i

⎞
⎠
⎤
⎦
⎞
⎠ detU,

(F.3)
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and doing the y-integrals by completing the square gives

P(�a) =
M∏

α=1

(
1

2π

∫ ∞

−∞
dkα

)
(F.4)

× exp

[
− 1

2σ 2
i

((�k · �X(i)
)2 + 2i

(�k · �X(xi )
) (

�atrue · �X(xi )
))]

× exp

⎡
⎣i
∑
α,β

kα Uαβ aβ

⎤
⎦ detU. (F.5)

Using Eq. (3.32) we then get

P(�a) =
M∏

α=1

(
1

2π

∫ ∞

−∞
dkα

)
exp

⎡
⎣−1

2

∑
α,β

kα Uαβ kβ + i
∑
α,β

kα Uαβ δaβ

⎤
⎦ detU,

(F.6)
where

δaβ ≡ aβ − atrue
β , (F.7)

and we used Eq. (3.32). The k-integrals are done by working in the basis in which
U is diagonal. The result is

P(�a) = (detU )1/2

(2π)M/2 exp

⎡
⎣−1

2

∑
α,β

δaα Uαβ δaβ

⎤
⎦ . (F.8)

In other words, the distribution of the fitted parameters obtained from many sets of
actual data, about the true value �atrue is a Gaussian. Since we are assuming a linear
model, the matrix of coefficientsUαβ is a constant, and so the distribution in Eq. (F.8)
is the same as in Eq. (E.10). Hence

For a linear model with Gaussian noise, the distribution of fitted parameters, obtained from
simulateddata sets, relative to value from the one actual data set, is the sameas the distribution
of parameters from many actual data sets relative to the true value, see Fig. 3.2.

This result is also valid for a non-linearmodel if the range of parameter values needed
is sufficiently small that themodel can be represented by an effective one. It is usually
assumed to be a reasonable approximation even if this condition is not fulfilled.
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Appendix G
Fitting Correlated Data

Consider N data points (xi , yi , σi ), i = 1, 2, · · · N . Correlations among the y-values
are described by a matrix C where

Ci j ≡ 〈δyiδy j 〉 = 〈yi y j 〉 − 〈yi 〉 〈y j 〉. (G.1)

In this section we assume a linear model for ease of notation, but the generalization
to a non-linear model is straightforward. Assuming Gaussian noise, the probability
distribution for the data which gives these correlations is

P({y}) = 1

(2π)N/2(det C)1/2
exp

⎡
⎣−1

2

∑
i, j

(
yi −

∑
α

aα Xα(xi )

) (
C−1

)
i j

⎛
⎝y j −

∑
β

aβ Xβ(x j )

⎞
⎠
⎤
⎦ , (G.2)

where we have used the following properties of Gaussian integrals:

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 · · ·

∫ ∞

−∞
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in which we assumed that the matrix A is positive definite, i.e. all its eigenvectors
are positive. Equations (G.3) and (G.4) are obtained by doing a change of variables
in the N -dimensional space of the y-s to new variables which are in the direction of
the eigenvectors of A. The Jacobian of the transformation is unity because it is the
determinant of the (orthogonal)matrix,U , which the diagonalizes the real, symmetric
matrix A. The integrals are now independent and canbe easily performed. InEq. (G.3)
the product of the eigenvalues has been written as the determinant. In Eq. (G.4) we
have noted that if A = U DU−1, where D is the diagonal matrix with eigenvalues
on the diagonal, then A−1 = U D−1U−1 (and, since U is orthogonal, U−1 = U T ,
the transpose).

Since least-squares is equivalent to maximum likelihood we have to maximize the
probability in Eq. (G.2). This is equivalent to minimizing a “cost function” which is
minus (two times) the exponent in Eq. (G.2), i.e.

∑
i, j

(
yi −

∑
α

aα Xα(xi )

) (
C−1

)
i j

⎛
⎝y j −

∑
β

aβ Xβ(x j )

⎞
⎠ . (G.5)

In the absence of correlations Ci j = σ 2
i δi j ,

(
C−1

)
i j = δi j/σ

2
i and we recover the

earlier expression for χ2 in Eq. (3.31). Minimizing Eq. (G.5) with respect to the aα

we get equations of the same form as before, namely

M∑
β=1

Uαβ aα = vβ, (G.6)

but with different expressions for U and v, namely

Uαβ =
∑
i, j

Xα(xi )
(

C−1
)

i j
Xβ(x j ), (G.7a)

vα =
∑
i, j

Xα(xi )
(

C−1
)

i j
y j . (G.7b)

rather than Eqs. (3.32) and (3.33). The covariance matrix of the parameters is still
given by Eq. (3.28).

In practice, though, we rarely have enough information on the correlations
between data points for Eqs. (G.5–G.7) to be useful.
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Appendix H
Scripts for Some Data Analysis
and Fitting Tasks

In this Appendix I give sample scripts using perl, python and gnuplot for some basic
data analysis and fitting tasks. I include output from the scripts when acting on certain
datasets which are available on the web.

Note “this_file_name” refers to the name of the script being displayed
(whatever you choose to call it.)

H.1 Scripts for a Jackknife Analysis

The script reads in values of x on successive lines of the input file and computes
〈x4〉/〈x2〉2, including an error bar computed using the jackknife method.

H.1.1 Perl

#!/usr/bin/perl

#

# Usage: "this_file_name data_file"

# (make the script executable; otherwise you have to preface the command with "perl")

# $n = 0;

$x2_tot = 0; $x4_tot = 0;

#

# read in the data

#

while(<>) # Note this very convenient perl command which reads each line of

# of each input file in the command line

{

@line = split;

$x2[$n] = $line[0]**2;

$x4[$n] = $x2[$n]**2;

$x2_tot += $x2[$n];

$x4_tot+= $x4[$n];

$n++;

}

#

© The Author(s) 2015
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# Do the jackknife estimates

#

for ($i = 0; $i < $n; $i++)

{

$x2_jack[$i] = ($x2_tot - $x2[$i]) / ($n - 1);

$x4_jack[$i] = ($x4_tot - $x4[$i]) / ($n - 1);

}

$x2_av = $x2_tot / $n; # Do the overall averages

$x4_av = $x4_tot / $n;

$g_av = $x4_av / $x2_av**2;

$g_jack_av = 0; $g_jack_err = 0; # Do the final jackknife estimate

for ($i = 0; $i < $n; $i++)

{

$dg = $x4_jack[$i] / $x2_jack[$i]**2;

$g_jack_av += $dg;

$g_jack_err += $dg**2;

} $g_jack_av /= $n;

$g_jack_err /= $n;

$g_jack_err = sqrt(($n - 1) * abs($g_jack_err - $g_jack_av**2));

printf " Overall average is %8.4f\n", $g_av;

printf " Jackknife average is %8.4f +/- %6.4f \n", $g_jack_av, $g_jack_err;

Executing this file on the data in http://young.physics.ucsc.edu/bad-honnef/data.
HW2 gives

Overall average is 1.8215

Jackknife average is 1.8215 +/- 0.0368

H.1.2 Python

#

# Program written by Matt Wittmann

#

# Usage: "python this_file_name data_file"

# import fileinput

from math import *

x2 = []; x2_tot = 0.

x4 = []; x4_tot = 0.

for line in fileinput.input(): # read in each line in each input file.

# similar to perl’s while(<>)

line = line.split()

x2_i = float(line[0])**2

x4_i = x2_i**2

x2.append(x2_i) # put x2_i as the i-th element in an array x2

x4.append(x4_i)

x2_tot += x2_i

x4_tot += x4_i

n = len(x2) # the number of lines read in

#

# Do the jackknife estimates

#

x2_jack = []

x4_jack = []

for i in xrange(n):

x2_jack.append((x2_tot - x2[i]) / (n - 1))

x4_jack.append((x4_tot - x4[i]) / (n - 1))

x2_av = x2_tot / n # do the overall averages

x4_av = x4_tot / n

http://young.physics.ucsc.edu/bad-honnef/data.HW2
http://young.physics.ucsc.edu/bad-honnef/data.HW2
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g_av = x4_av / x2_av**2

g_jack_av = 0.; g_jack_err = 0.

for i in xrange(n): # do the final jackknife averages

dg = x4_jack[i] / x2_jack[i]**2

g_jack_av += dg

g_jack_err += dg**2

g_jack_av /= n

g_jack_err /= n

g_jack_err = sqrt((n - 1) * abs(g_jack_err - g_jack_av**2))

print " Overall average is %8.4f" % g_av

print " Jackknife average is %8.4f +/- %6.4f" % (g_jack_av, g_jack_err)

The output is the same as for the perl script.

H.2 Scripts for a Straight-Line Fit

H.2.1 Perl, Writing Out the Formulae by Hand

#!/usr/bin/perl

#

# Usage: "this_file_name data_file"

# (make the script executable; otherwise preface the command with "perl")

#

# Does a straight line fit to data in "data_file" each line of which contains

# data for one point, x_i, y_i, sigma_i

# $n = 0;

while(<>) # read in the lines of data

{

@line = split; # split the line to get x_i, y_i, sigma_i

$x[$n] = $line[0];

$y[$n] = $line[1];

$err[$n] = $line[2];

$err2 = $err[$n]**2; # compute the necessary sums over the data

$s += 1 / $err2;

$sumx += $x[$n] / $err2 ;

$sumy += $y[$n] / $err2 ;

$sumxx += $x[$n]*$x[$n] / $err2 ;

$sumxy += $x[$n]*$y[$n] / $err2 ;

$n++;

}

$delta = $s * $sumxx - $sumx * $sumx ; # compute the slope and intercept

$c = ($sumy * $sumxx - $sumx * $sumxy) / $delta ;

$m = ($s * $sumxy - $sumx * $sumy) / $delta ;

$errm = sqrt($s / $delta) ;

$errc = sqrt($sumxx / $delta) ;

printf ("slope = %10.4f +/- %7.4f \n", $m, $errm); # print the results

printf ("intercept = %10.4f +/- %7.4f \n\n", $c, $errc);

$NDF = $n - 2; # the no. of degrees of freedom is n - no. of fit params

$chisq = 0; # compute the chi-squared

for ($i = 0; $i < $n; $i++)

{

$chisq += (($y[$i] - $m*$x[$i] - $c)/$err[$i])**2;

}

$chisq /= $NDF;

printf ("chi squared / NDF = %7.4lf \n", $chisq);



80 Appendix H: Scripts for Some Data Analysis and Fitting Tasks

Actingwith this script on the data in http://young.physics.ucsc.edu/bad-honnef/data.
HW3 gives

slope = 5.0022 +/- 0.0024

intercept = 0.9046 +/- 0.2839

chi squared / NDF = 1.0400

H.2.2 Python, Writing Out the Formulae by Hand

#

# Program written by Matt Wittmann

#

# Usage: "python this_file_name data_file"

#

# Does a straight-line fit to data in "data_file", each line of which contains

# the data for one point, x_i, y_i, sigma_i

#

import fileinput

from math import *

x = []

y = []

err = [] s = sumx = sumy = sumxx = sumxy = 0.

for line in fileinput.input(): # read in the data, one line at a time

line = line.split() # split the line

x_i = float(line[0]); x.append(x_i)

y_i = float(line[1]); y.append(y_i)

err_i = float(line[2]); err.append(err_i)

err2 = err_i**2

s += 1 / err2 # do the necessary sums over data points

sumx += x_i / err2

sumy += y_i / err2

sumxx += x_i*x_i / err2

sumxy += x_i*y_i / err2

n = len(x) # n is the number of data points

delta = s * sumxx - sumx * sumx # compute the slope and intercept

c = (sumy * sumxx - sumx * sumxy) / delta

m = (s * sumxy - sumx * sumy) / delta

errm = sqrt(s / delta)

errc = sqrt(sumxx / delta)

print "slope = %10.4f +/- %7.4f " % (m, errm)

print "intercept = %10.4f +/- %7.4f \n" % (c, errc)

NDF = n - 2 # the number of degrees of freedom is n - 2

chisq = 0.

for i in xrange(n): # compute chi-squared

chisq += ((y[i] - m*x[i] - c)/err[i])**2;

chisq /= NDF

print "chi squared / NDF = %7.4lf " % chisq

The results are identical to those from the perl script.

http://young.physics.ucsc.edu/bad-honnef/data.HW3
http://young.physics.ucsc.edu/bad-honnef/data.HW3
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H.2.3 Python, Using a Built-In Routine from Scipy

#

# Python program written by Matt Wittmann

#

# Usage: "python this_file_name data_file"

#

# Does a straight-line fit to data in "data_file", each line of which contains

# the data for one point, x_i, y_i, sigma_i.

#

# Uses the built-in routine "curve_fit" in the scipy package. Note that this

# requires the error bars to be corrected, as with gnuplot

# from pylab import *

from scipy.optimize import curve_fit

fname = sys.argv[1] if len(sys.argv) > 1 else ’data.txt’

x, y, err = np.loadtxt(fname, unpack=True) # read in the data

n = len(x)

p0 = [5., 0.1] # initial values of parameters

f = lambda x, c, m: c + m*x # define the function to be fitted

# note python’s lambda notation

p, covm = curve_fit(f, x, y, p0, err) # do the fit

c, m = p

chisq = sum(((f(x, c, m) - y)/err)**2) # compute the chi-squared

chisq /= n - 2 # divide by no.of DOF

errc, errm = sqrt(diag(covm)/chisq) # correct the error bars

print "slope = %10.4f +/- %7.4f " % (m, errm)

print "intercept = %10.4f +/- %7.4f \n" % (c, errc)

print "chi squared / NDF = %7.4lf " % chisq

The results are identical to those from the above scripts.

H.2.4 Gnuplot

#

# Gnuplot script to plot points, do a straight-line fit, and display the

# points, fit, fit parameters, error bars, chi-squared per degree of freedom,

# and goodness of fit parameter on the plot.

#

# Usage: "gnuplot this_file_name" #

#

The data is assumed to be a file "data.HW3", each line containing

# information for one point (x_i, y_i, sigma_i). The script produces a

# postscript file, called here "HW3b.eps".

#

set size 1.0, 0.6

set terminal postscript portrait enhanced font ’Helvetica,16’

set output "HW3b.eps"

set fit errorvariables # needed to be able to print error bars

f(x) = a + b * x # the fitting function

fit f(x) "data.HW3" using 1:2:3 via a, b # do the fit

set xlabel "x"

set ylabel "y"

ndf = FIT_NDF # Number of degrees of freedom

chisq = FIT_STDFIT**2 * ndf # chi-squared

Q = 1 - igamma(0.5 * ndf, 0.5 * chisq) # the quality of fit parameter Q

#

# Below note how the error bars are (a) corrected by dividing by

# FIT_STDFIT, and (b) are displayed on the plot, in addition to the fit

# parameters, neatly formatted using sprintf.
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Fig. H.1 Plot showing the data used and the resulting fit to a linear model discussed in Sect.H.2

#

set label sprintf("a = %7.4f +/- %7.4f", a, a_err/FIT_STDFIT) at 100, 400

set label sprintf("b = %7.4f +/- %7.4f", b, b_err/FIT_STDFIT) at 100, 330

set label sprintf("{/Symbol c}ˆ2 = %6.2f", chisq) at 100, 270

set label sprintf("{/Symbol c}ˆ2/NDF = %6.4f", FIT_STDFIT**2) at 100, 200

set label sprintf("Q = %9.2e", Q) at 100, 130

plot \ # Plot the data and fit

"data.HW3" using 1:2:3 every 5 with errorbars notitle pt 6 lc rgb "red" lw 2, \

f(x) notitle lc rgb "blue" lw 4 lt 1

The plot shows the result of acting with this gnuplot script on the data in http://
young.physics.ucsc.edu/bad-honnef/data.HW3. The results agree with those of the
other scripts.

H.3 Scripts For a Fit to a Non-linear Model

We read in lines of data each of which contains three entries xi , yi and σi . These are
fitted to the form

y = Tc + A/xω, (G.1)

to determine the best values of Tc, A and ω.

http://young.physics.ucsc.edu/bad-honnef/data.HW3
http://young.physics.ucsc.edu/bad-honnef/data.HW3
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H.3.1 Python

#

# Python program written by Matt Wittmann

#

# Usage: "python this_file_name data_file"

#

# Does a fit to the non-linear model

#

# y = Tc + A / x**w

#

# to the data in "data_file", each line of which contains the data for one point,

# x_i, y_i, sigma_i.

#

# Uses the built-in routine "curve_fit" in the scipy package. Note that this

# requires the error bars to be corrected, as with gnuplot

#

from pylab import *

from scipy.optimize import curve_fit

from scipy.stats import chi2

fname = sys.argv[1] if len(sys.argv) > 1 else ’data.txt’

x, y, err = np.loadtxt(fname, unpack=True) # read in the data

n = len(x) # the number of data points

p0 = [-0.25, 0.2, 2.8] # initial values of parameters

f = lambda x, Tc, w, A: Tc + A/x**w # define the function to be fitted

# note python’s lambda notation

p, covm = curve_fit(f, x, y, p0, err) # do the fit

Tc, w, A = p

chisq = sum(((f(x, Tc, w, A) - y)/err)**2) # compute the chi-squared

ndf = n -len(p) # no. of degrees of freedom

Q = 1. - chi2.cdf(chisq, ndf) # compute the quality of fit parameter Q

chisq = chisq / ndf # compute chi-squared per DOF

Tcerr, werr, Aerr = sqrt(diag(covm)/chisq) # correct the error bars

print ’Tc = %10.4f +/- %7.4f’ % (Tc, Tcerr)

print ’A = %10.4f +/- %7.4f’ % (A, Aerr)

print ’w = %10.4f +/- %7.4f’ % (w, werr)

print ’chi squared / NDF = %7.4lf’ % chisq

print ’Q = %10.4f’ % Q

When applied to the data in http://young.physics.ucsc.edu/bad-honnef/data.HW4
the output is

Tc = -0.2570 +/- 1.4775

A = 2.7878 +/- 0.8250

w = 0.2060 +/- 0.3508

chi squared / NDF = 0.2541

Q = 0.9073

H.3.2 Gnuplot

#

# Gnuplot script to plot points, do a fit to a non-linear model

#

# y = Tc + A / x**w

#

# with respect to Tc, A and w, and display the points, fit, fit parameters,

http://young.physics.ucsc.edu/bad-honnef/data.HW4
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Fig. H.2 Plot showing the data used and the resulting fit to a non-linearmodel discussed in Sect.H.3

# error bars, chi-squared per degree of freedom, and goodness of fit parameter

# on the plot.

#

# Here the data is assumed to be a file "data.HW4", each line containing

# information for one point (x_i, y_i, sigma_i). The script produces a

# postscript file, called here "HW4a.eps".

#

set size 1.0, 0.6

set terminal postscript portrait enhanced

set output "HW4a.eps"

set fit errorvariables # needed to be able to print error bars

f(x) = Tc + A / x**w # the fitting function

set xlabel "1/xˆ{/Symbol w}"

set ylabel "y"

set label "y = T_c + A / xˆ{/Symbol w}" at 0.1, 0.7

Tc = 0.3 # need to specify initial values

A = 1

w = 0.2

fit f(x) "data.HW4" using 1:2:3 via Tc, A, w # do the fit

set xrange [0.07:0.38]

g(x) = Tc + A * x

h(x) = 0 + 0 * x

ndf = FIT_NDF # Number of degrees of freedom

chisq = FIT_STDFIT**2 * ndf # chi-squared

Q = 1 - igamma(0.5 * ndf, 0.5 * chisq) # the quality of fit parameter Q

#

# Below note how the error bars are (a) corrected by dividing by

# FIT_STDFIT, and (b) are displayed on the plot, in addition to the fit

# parameters, neatly formatted using sprintf.

#

set label sprintf("T_c = %5.3f +/- %5.3f",Tc, Tc_err/FIT_STDFIT) at 0.25, 0.33

set label sprintf("{/Symbol w} = %5.3f +/- %5.3f",w, w_err/FIT_STDFIT) at 0.25, 0.27

set label sprintf("A = %5.2f +/- %5.2f",A, A_err/FIT_STDFIT) at 0.25, 0.21

set label sprintf("{/Symbol c}ˆ2 = %5.2f", chisq) at 0.25, 0.15

set label sprintf("{/Symbol c}ˆ2/NDF = %5.2f", FIT_STDFIT**2) at 0.25, 0.09

set label sprintf("Q = %5.2f", Q) at 0.25, 0.03
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#

# Plot the data and the fit

# plot "data.HW4" using (1/$1**w):2:3 with errorbars notitle lc rgb "red" lw 3 pt 8 ps 1.5, \

g(x) notitle lc rgb "blue" lw 3 lt 2 , \

h(x) notitle lt 3 lw 4

The plot shows the result of acting with this gnuplot script on the data at http://young.
physics.ucsc.edu/bad-honnef/data.HW4 The results agree with those of the python
script above.

The quoted error bars in Tc are clearly ridiculous and arise because the code
gives symmetric error bars whereas the variation of χ2 about the minimum is very
asymmetric, as sketched in the right panel of Fig. 3.4. It would be better to get
asymmetric error bars for Tc by determining χ2 as a function of Tc, while optimizing
with respect to the other parameters, and then estimating the values of Tc where
�χ2 = 1, see Fig. 3.4 and the discussion in Sect. 3.6. The interested student is invited
to do this. Even better would be to do the bootstrap analysis discussed in Sect. 3.7 but
this requires the raw data, that is to say the Ni y-values for each data point i which,
when averaged, give the results for yi and σi used in the fit. Unfortunately the raw
data is not available in this case.
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