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Preface

The unification of the concept of the asymmetry of the wave vector space of the
charge carriers in semiconductors with the modern techniques of fabricating nano-
structured materials such as molecular beam epitaxy, metal organic chemical vapor
deposition, fine line lithography and other modern fabrication techniques in one,
two and three dimensions (such as quantum wells (QWs), Doping super-lattices,
inversion and accumulation layers, quantum well super-lattices, carbon nano-tubes,
quantum wires, quantum wire super-lattices, magnetic quantization, magneto size
quantization, quantum dots, magneto inversion and accumulation layers, magneto
quantum well super-lattices, magneto NIPIs, quantum dot super-lattices and other
field aided low dimensional electronic systems) spawns not only useful quantum
effect devices but also unearth new concepts in the realm of low dimensional solid
state electronics and related disciplines. These semiconductor nanostructures
occupy a central position in the entire arena of condensed matter science, materials
science, computational and theoretical nano-science and technology, semiconductor
optoelectronics, quantized structures and semiconductor physics in general by their
own right and find extensive applications in quantum registers, quantum switches,
quantum sensors, hetero-junction field-effect, quantum logic gates, quantum well
and quantum wire transistors, quantum cascade lasers, high-frequency microwave
circuits, high-speed digital networks, high-resolution terahertz spectroscopy,
advanced integrated circuits, super-lattice photo-oscillator, super-lattice photo-
cathodes, resonant tunneling diodes and transistors, super-lattice coolers, thermo-
electric devices, thin film transistors, micro-optical systems, intermediate-band solar
cells, high performance infrared imaging systems, band-pass filters, optical mod-
ulators, thermal sensors, optical switching systems, single electron/molecule elec-
tronics, nano-tube based diodes, and other nano-electronic devices. Knowledge
regarding these quantized structures may be gained from original research contri-
butions in scientific journals, various patents, proceedings of the conferences,
review articles, and different research monographs [1] respectively. Mathematician
Simmons rightfully tells us [2] that the mathematical knowledge is said to be
doubling in every 10 years, and in this context, we can also envision extrapolation
of the Moore’s law by projecting it in the perspective of the advancement of new

vii
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research and analyses, in turn, generating novel concepts particularly in the entire
arena of materials science in general [3].

Although many new effects in quantized structures have already been reported,
the interest for further research of other aspects of such quantum-confined materials
is becoming increasingly important. One such significant property is Einstein’s
Photoemission (EP) which is a physical phenomenon and occupies a singular
position in the whole arena of Modern Physics and related disciplines in general and
whose importance has already been established since the inception of Einstein’s
photoelectric effect (for which Einstein won Nobel Prize in 1921), which in recent
years finds extensive applications in modern optoelectronics, characterization and
investigation of condensed matter systems, photoemission spectroscopy and related
aspects in connection with the investigations of the optical properties of nano-
structures [4-8]. Interest in low dimensional silicon nanostructures also grew up
and gained momentum, after the discovery of room temperature photoluminescence
and electroluminescence of silicon nano-wires in porous silicon [4]. Work on
ultrathin layers of SiSiO, super-lattices resulting into visible light emission at room
temperature clearly exhibited low dimensional quantum confinement effect [5] and
one of the most popular techniques for analyzing the low dimensional structures is
to employ photoemission techniques. Recent observation of room temperature
photoluminescence and electro luminescence in porous silicon has stimulated
vigorous research activities in silicon nanostructures [6].

In this context, it may be noted that the available reports on the said areas [4-7]
cannot afford to cover even an entire chapter regarding the EP from heavily doped
(HD) quantized structures and incidentally the second book of the present research
group devoted solely to the elementary study of EP [8] from optoelectronic
materials and their nanostructures does not even contain a paragraph regarding the
EP from HD Quantized Structures. The EP depends on the density-of-states (DOS)
function which, in turn, is significantly affected by the different carrier energy
spectra of different semiconductors having various band structures. In recent years,
various energy wave vector dispersion relations of the carriers of different materials
have been proposed [9] which have created the interest in studying the EP from HD
materials and their quantized counterparts. The present monograph solely investi-
gates the EP from HD quantized structures of non-linear optical, II-V, II-VI,
Gallium Phosphide, Germanium, Platinum Antimonide, stressed, IV-VI, Lead
Germanium Telluride, Tellurium, II-V, Zinc and Cadmium diphosphides, Bismuth
Telluride, III-V, II-VI, IV-VI and HgTe/CdTe quantum well HD super-lattices with
graded interfaces under magnetic quantization, III-V, II-VI, IV-VI and HgTe/CdTe
HD effective mass super-lattices under magnetic quantization, quantum confined
effective mass super-lattices and super-lattices of HD optoelectronic materials with
graded interfaces on the basis of the newly derived appropriate respective HD
dispersion relation in each case. Incidentally, even after 20 years of continuous
effort, we see that the complete investigation of the EP comprising of the whole set
of the HD materials and allied sciences is really a sea and permanently enjoys the
domain of impossibility theorems.
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It is well-known that the classical equation of the photo-emitted current density
is [10] J = 4nocoemcgv(kBT)2/h3} exp[(hv — ¢)/(kgT)] (where o e, m,, g,, kg,

T,h,hvand ¢ and are the probability of photoemission, electron charge, effective
electron mass at the edge of the conduction band, valley degeneracy, the Boltzmann
constant, temperature, the Planck constant, incident photon energy along z-axis and
work function respectively). The afore-mentioned equation is valid for both the
charge carriers and in this conventional form it appears that, the photoemission
changes with the effective mass, temperature, work function and the incident
photon energy respectively. This relation holds only under the condition of carrier
non-degeneracy.

The EP has different values for different materials and varies with doping and
with external fields which creates quantization of the wave-vector space of the
carriers leading to various types of quantized structures. The nature of these vari-
ations has been studied in [4-35] and some of the significant features are as follow:

1. The EP from bulk materials increases with the increase in doping.

2. The EP exhibits oscillatory dependence with inverse quantizing magnetic field
because of the Shubnikov de Haas (SdH) effect.

3. The EP changes significantly with the magnitude of the externally applied
quantizing electric field in electronic materials.

4. The EP from quantum confined Bismuth, nonlinear optical, III-V, II-VI and IV-
VI materials oscillate with nano-thickness in various manners which are totally
band structure dependent.

5. The nature of variations is significantly influenced by the energy band constants
of various materials having different band structures.

6. The EP has significantly different values in quantum confined semiconductor
super-lattices and various other quantized structures.

It is well known that heavy doping and carrier degeneracy are the keys to unlock
the important properties of semiconductors and they are especially instrumental in
dictating the characteristics of Ohomic contacts and Schottky contacts respectively
[36]. It is an amazing fact that although the heavily doped semiconductors (HDS)
have been investigated in the literature but the study of the carrier transport in such
materials through proper formulation of the Boltzmann transport equation which
needs in turn, the corresponding HD carrier energy spectra is still one of the open
research problems.

It is well known that the band tails are being formed in the forbidden zone of
HDS and can be explained by the overlapping of the impurity band with the
conduction and valence bands [37]. Kane [38] and Bonch Bruevich [39] have
independently derived the theory of band tailing for semiconductors having
unperturbed parabolic energy bands. Kane’s model [38] was used to explain the
experimental results on tunneling [40] and the optical absorption edges [41, 42] in
this context. Halperin and Lax [43] developed a model for band tailing applicable
only to the deep tailing states. Although Kane’s concept is often used in the lit-
erature for the investigation of band tailing [44, 45], it may be noted that this model
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[38, 46] suffers from serious assumptions in the sense that the local impurity
potential is assumed to be small and slowly varying in space coordinates [45]. In
this respect, the local impurity potential may be assumed to be a constant. In order
to avoid these approximations, we have developed in this book, the electron energy
spectra for HDS for studying the EP based on the concept of the variation of the
kinetic energy [37, 45] of the electron with the local point in space coordinates. This
kinetic energy is then averaged over the entire region of variation using a Gaussian
type potential energy. On the basis of the E—k dispersion relation, we have obtained
the electron statistics for different HDS for the purpose of numerical computation of
the respective EPs. It may be noted that, a more general treatment of many-body
theory for the DOS of HDS merges with one-electron theory under macroscopic
conditions [37]. Also, the experimental results for the Fermi energy and others are
the average effect of this macroscopic case. So, the present treatment of the one-
electron system is more applicable to the experimental point of view and it is also
easy to understand the overall effect in such a case [47]. In a HDS, each impurity
atom is surrounded by the electrons, assuming a regular distribution of atoms, and it
is screened independently [44, 46, 48]. The interaction energy between electrons
and impurities is known as the impurity screening potential. This energy is deter-
mined by the inter-impurity distance and the screening radius, which is known as
the screening length. The screening radius changes with the electron concentration
and the effective mass. Furthermore, these entities are important for HDS in
characterizing the semiconductor properties [49, 50] and the modern electronic
devices [44, 51]. The works on Fermi energy and the screening length in an n-type
GaAs have already been initiated in the literature [52, 53], based on Kane’s model.
Incidentally, the limitations of Kane’s model [38, 45], as mentioned above, are also
present in their studies.

At this point, it may be noted that many band tail models are proposed using the
Gaussian distribution of the impurity potential variation [38, 45]. From the very
start, we have used the Gaussian band tails to obtain the exact E—k dispersion
relations in HD non-linear optical, III-V, II-VI, Gallium Phosphide, Germanium,
Platinum Antimonide, stressed, IV-VI, Lead Germanium Telluride, Tellurium, II-V,
Zinc and Cadmium diphosphides, Bismuth Telluride, III-V, II-VI, IV-VI and HgTe/
CdTe quantum well HD super-lattices with graded interfaces under magnetic
quantization, III-V, II-VI, IV-VI and HgTe/CdTe HD effective mass super-lattices
under magnetic quantization, quantum confined effective mass super-lattices and
super-lattices of HD optoelectronic materials with graded interfaces respectively.
Our method is not at all related with the DOS technique as used in the afore-
mentioned works. From the electron energy spectrum, one can obtain the DOS but
the DOS technique, as used in the literature cannot provide the E—k dispersion
relation. Therefore, our study is more fundamental than those in the existing lit-
erature, because the Boltzmann transport equation, which controls the study of the
charge transport properties of the semiconductor devices, can be solved if and only
if the E-k dispersion relation is known. We wish to note that the Gaussian function
for the impurity potential distribution has been used by many authors. It has been
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widely used since 1963 when Kane first proposed it and we will also use the
Gaussian distribution for the present study.

This book, is divided into two parts (the first and second parts contain four and
ten chapters respectively) and four Appendices, is partially based on our on-going
researches on the EP from HDS from 1990 and an attempt has been made to present
a cross section of the EP from wide range of HDS and their quantized-structures
with varying carrier energy spectra under various physical conditions. The first
chapter deals with the influence of quantum confinement on the EP from non-
parabolic HDS and at first we study the EP from QWs of HD nonlinear optical
materials on the basis of a generalized electron dispersion law introducing the
anisotropies of the effective masses and the spin orbit splitting constants respec-
tively together with the inclusion of the crystal field splitting within the framework
of the k.p formalism. We will observe that the complex electron dispersion law in
HDS instead of real one occurs from the existence of the essential poles in the
corresponding electron energy spectrum in the absence of band tails. It may be
noted that the complex band structures have already been studied for bulk semi-
conductors and super lattices without heavy doping [54] and bears no relationship
with the complex electron dispersion law as formulated in this book. The physical
picture behind the existence of the complex energy spectrum in heavily doped non-
linear optical semiconductors is the interaction of the impurity atoms in the tails
with the splitting constants of the valance bands. The more is the interaction, the
more the prominence of the complex part than the other case. In the absence of band
tails, there is no interaction of the impurity atoms in the tails with the spin orbit
constants and consequently, the complex part vanishes. Besides, the complex
spectra are not related to same evanescent modes in the band tails and the con-
duction bands. One important consequence of the HDS forming band tails is that
the effective mass exists in the forbidden zone, which is impossible without the effect
of band tailing. In the absence of band tails, the effective mass in the band gap of
semiconductors is infinity. Besides, depending on the type of the unperturbed
carrier energy spectrum, the new forbidden zone will appear within the normal
energy band gap for HDS.

The results of HD III-V (e.g. InAs, InSb, GaAs etc.), ternary (e.g. Hg; <Cd,Te),
quaternary (e.g. In;_Ga,As;_ Py lattice matched to InP) compounds form a special
case of our generalized analysis under certain limiting conditions as stated already.
The EP from HD QWs of II-VI, IV-VI, stressed Kane type semiconductors, Te,
GaP, PtSb,, Bi,Te;, Ge, and GaSb has also been investigated by formulating the
respective appropriate HD energy band structure. The importance of the afore-
mentioned semiconductors has also been described in the same chapter. In the
absence of band tails and under the condition of extreme carrier degeneracy
together with certain limiting conditions, all the results for all the EPs from all the
HD QWs of Chap. 1 get simplified into the form [10] Jop = (oeg,/2hd?)
Nzmax
> n[Epp — % (n.m/d,)*] (where d. is the film thickness along z direction, 7, is
Nzmin

the size quantum number along z direction and Ep;p is the Fermi energy in the
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presence of size quantization as measured from the edge of the conduction band in
the vertically upward direction in the absence of any quantization) exhibiting the
necessary mathematical compatibility test. In Chaps. 2 and 3 the EP from nano
wires (NWs) and quantum boxes (QBs) of all the materials of Chap. 1 have
respectively been investigated.

With the advent of modern experimental techniques of fabricating nano-mate-
rials, it is possible to grow semiconductor super-lattices (SLs) composed of alter-
native layers of two different degenerate layers with controlled thickness [55].
These structures have found wide applications in many new devices such as pho-
todiodes [56], photo-resistors [57], transistors [58], light emitters [59], tunneling
devices [60], etc. [61-72]. The investigations of the physical properties of narrow
gap SLs have increased extensively, since they are important for optoelectronic
devices and also since the quality of hetero-structures involving narrow gap
materials has been greatly improved. It is well known that Keldysh [73] first
suggested the fundamental concept of a super-lattice (SL), although it was suc-
cessfully experimental realized by Esaki and Tsu [74]. The importance of SLs in the
field of nano-electronics has already been described in [75—77]. The most exten-
sively studied III-V SL is the one consisting of alternate layers of GaAs and
Ga, Al As owing to the relative ease of fabrication. The GaAs layers forms
quantum wells and Ga;_,AlAs form potential barriers. The III-V SL’s are attractive
for the realization of high speed electronic and optoelectronic devices [78]. In
addition to SLs with usual structure, SLs with more complex structures such as
II-VI [79], TV-VI [80] and HgTe/CdTe [81] SL’s have also been proposed. The
IV-VI SLs exhibit quite different properties as compared to the III-V SL due to the
peculiar band structure of the constituent materials [82]. The epitaxial growth of
II-VI SL is a relatively recent development and the primary motivation for studying
the mentioned SLs made of materials with the large band gap is in their potential for
optoelectronic operation in the blue [82]. HgTe/CdTe SL’s have raised a great deal
of attention since 1979, when as a promising new materials for long wavelength
infrared detectors and other electro-optical applications [83]. Interest in Hg-based
SL’s has been further increased as new properties with potential device applications
were revealed [84]. These features arise from the unique zero band gap material
HgTe [85] and the direct band gap semiconductor CdTe which can be described by
the three band mode of Kane [86]. The combination of the aforementioned mate-
rials with specified dispersion relation makes HgTe/CdTe SL very attractive,
especially because of the possibility to tailor the material properties for various
applications by varying the energy band constants of the SLs. In addition to it, for
effective mass SLs, the electronic sub-bands appear continually in real space [87].

We note that all the aforementioned SLs have been proposed with the
assumption that the interfaces between the layers are sharply defined, of zero
thickness, i.e., devoid of any interface effects. The SL potential distribution may be
then considered as a one dimensional array of rectangular potential wells. The
aforementioned advanced experimental techniques may produce SLs with physical
interfaces between the two materials crystallo-graphically abrupt; adjoining their
interface will change at least on an atomic scale. As the potential form changes from
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a well (barrier) to a barrier (well), an intermediate potential region exists for the
electrons. The influence of finite thickness of the interfaces on the electron dis-
persion law is very important, since the electron energy spectrum governs the
electron transport in SLs.

In this context, it may be noted that the effects of quantizing magnetic field (B)
on the band structures of compound semiconductors are most striking than that of
the parabolic one and are easily observed in experiments. A number of interesting
physical features originate from the significant changes in the basic energy wave
vector relation of the carriers caused by the magnetic field. The valuable infor-
mation could also be obtained from experiments under magnetic quantization
regarding the important physical properties such as Fermi energy and effective
masses of the carriers, which affect almost all the transport properties of the electron
devices [88] of various materials having different carrier dispersion relations [89].
In Chap. 4, the magneto EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer
quantum well heavily doped super-lattices (QWHDSLs) with graded interfaces will
be studied. Besides the magneto EP from II-V, II-VI, IV-VI, HgTe/CdTe and
strained layer quantum well HD effective mass super-lattices respectively has been
explored and the same from the quantum dots of the aforementioned HD SLs has
further been investigated in the same chapter.

It is worth remarking that, in the methods as given in the literature, the physics of
photoemission has been incorporated in the lower limit of the photoemission integral
and assuming that the band structure of the bulk materials becomes an invariant
quantity in the presence of photo-excitation necessary for Einstein’s photoelectric
effect. The basic band structure of semiconductors changes in the presence of intense
external light waves in a fundamental way, which has been incorporated mathe-
matically through the expressions of the DOS function on the basis of a newly
formulated electron dispersion law and the velocity along the direction of photo-
emission respectively in addition to the appropriate fixation of the lower limit of the
photo-emission integral for the purpose of investigating the EP. The second part of
the book investigates the EP from HD III-V semiconductors and their quantized
counter parts. In Chap. 5, we study the EP from HD Kane type semiconductors on
the basis of the newly formulated electron energy spectrum in the presence of intense
light waves. An important concept highly relevant to the measurement of band-gap
in HD electronic materials in the presence of external photo-excitation has also been
discussed in this perspective. Under the conditions of extreme degeneracy, the
invariant band structure concept in the presence of light waves and certain other
limiting constraints all the results of this chapter for the EP assumes the well-known
form [10] J = (2noemeg,/h)(v — vo)?, (vo is the threshold frequency) which indi-
cates the fact current density is independent of temperature and when the energy of
light quantum is much greater than the work function the material, the condition of
extreme degeneracy is reached.

In Chap. 6, the EP has been investigated under magnetic quantization from HD
Kane type materials on the basis of the concept as presented in Chap. 5. Chapter 7
covers the study of the EP from QWs, NWs and QBs of HD optoelectronic
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materials as an extension of the new dispersion relations of the bulk HD materials
as investigated in Chap. 5. In Chap. 8, the magneto EP from HD effective mass
super lattices, quantum well, quantum well wire, and quantum dot HD effective
mass super-lattices have been investigated by formulating the appropriate electron
dispersion laws. The experimental aspects of EP are extremely wide and it is
virtually impossible even to highlight the major developments in a chapter. For the
purpose of condensed presentation, the experimental aspects of EP from different
nano-structured materials have been discussed in Chap. 9 which also contains few
important related applications of the content of this book. The Chap. 10 contains the
conclusion and the scope for future research.

The Appendix A studies the EP from HDnonlinear optical, III-V, IV-VI, stressed
compounds, n-Te,n-GaP, PtSb,, Bismuth Telluriden-Ge,Gallium Antimonidell-V
semiconductors and Lead Germanium Telluride under magnetic quantization
respectively. In this Appendix we shall observe that the EEM depends on Landau
quantum number in addition toFermi energyand the other system constants due to
the specific band structures of theHD materialstogether with the fact EEM exist in
the band gap due to the presence of finite scattering potential as noted already.
Thus we present a very simplified analysis of the EP from HD non-parabolic
semiconductors under magnetic quantization, which is a big topic of research by its
own right.

In Appendix B, the magneto EP from HD III-V, II-VI, IV-VI, HgTe/CdTe and
strained layer super-lattices with graded interfaces and the HD effective mass
super-lattices of the aforementioned materials have been investigated.

It is worth remarking that the influence of crossed electric and quantizing
magnetic fields on the transport properties of semiconductors having various band
structures are relatively less investigated as compared with the corresponding
magnetic quantization, although, the cross-fields are fundamental with respect to the
addition of new physics and the related experimental findings. It is well known that
in the presence of electric field (E,) along x-axis and the quantizing magnetic field
along z-axis, the dispersion relations of the conduction electrons in semiconductors
become modified and for which the electron moves in both the z and y directions.
The motion along y-direction is purely due to the presence of E, along x-axis and in
the absence of electric field, the effective electron mass along y-axis tends to infinity
which indicates the fact that the electron motion along y-axis is forbidden. The
effective electron mass of the isotropic, bulk semiconductors having parabolic
energy bands exhibits mass anisotropy in the presence of cross fields and this
anisotropy depends on the electron energy, the magnetic quantum number, the
electric and the magnetic fields respectively, although, the effective electron mass
along z-axis is a constant quantity. In 1966, Zawadzki and Lax [90] formulated the
electron dispersion law for III-V semiconductors in accordance with the two band
model of Kane under cross fields configuration which generates the interest to study
this particular topic of solid state science in general [91]. The Appendix C inves-
tigates the EP under cross-field configuration from HD nonlinear optical, I1I-V, II-
VI, IV-VI and stressed Kane type semiconductors respectively. This appendix also
tells us that the EEM in all the cases is a function of the finite scattering potential,
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the magnetic quantum number and the Fermi energy even for HD semiconductors
whose bulk electrons in the absence of band tails are defined by the parabolic
energy bands.

With the advent of nano-devices, the build-in electric field becomes so large that
the electron energy spectrum changes fundamentally instead of being invariant and
the Appendix D investigates the EP under intense electric field from bulk specimens
of HD III-V, ternary and quaternary semiconductors. This appendix also explores
the influence of electric field on the EP on the basis of HD new dispersion law in for
OWs, NWs, OBs, under magnetic quantization, QWs under magnetic quantization
and effective mass HD super-lattices under magnetic quantization.

In these four Appendices no graphs together with results and discussions are
being presented since we feel that the readers should not lose a chance to enjoy the
complex computer algorithm to investigate the EP in the respective case generating
new physics and thereby transforming each Appendix into a short monograph by
considering various other important materials having different dispersion relations.

It is needless to say that this monograph is based on the ‘iceberg principle’ [92]
and the rest of which will be explored by the researchers of different appropriate
fields. Since, there is no existing report devoted solely to the study of EP from HD
quantized structures to the best of our knowledge, we hope that the present book
will a useful reference source for the present and the next generation of the readers
and the researchers of materials and allied sciences in general. Since the production
of error free first edition of any book from every point of view is a permanent
member in the domain of impossibility theorems, therefore in spite of our joint
concentrated efforts for couple of years together with the seasoned team of
Springer, the same stands very true for this monograph also. Various expressions
and a few chapters of this book have been appearing for the first time in printed
form. The suggestions from the readers for the development of the book will be
highly appreciated for the purpose of inclusion in the future edition, if any. In this
book, from chapter one to till the end, we have presented 300 open research
problems for the graduate students, Ph.D. aspirants, researchers, engineers in this
pinpointed research topic. We strongly hope that alert readers of this monograph
will not only solve the said problems by removing all the mathematical approxi-
mations and establishing the appropriate uniqueness conditions, but also will
generate new research problems both theoretical and experimental and, thereby,
transforming this monograph into a solid book. Incidentally, our readers after
reading this book will easily understand that how little is presented and how much
more is yet to be investigated in this exciting topic which is the signature of
coexistence of new physics, advanced mathematics combined with the inner fire for
performing creative researches in this context from the young scientists since like
Kikoin [93] we feel that A young scientist is no good if his teacher learns nothing
from him and gives his teacher nothing to be proud of. We emphatically write that
the problems presented here form the integral part of this book and will be useful
for the readers to initiate their own contributions on the EP from HDS and their
quantized counter parts since like Sakurai [94] we firmly believe The reader who
has read the book but cannot do the exercise has learned nothing. It is nice to note
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that if we assign the alphabets A to Z, the positive integers from 1 to 26, chro-
nologically, then the word ATTITUDE receives the perfect score 100 and is the vital
quality needed from the readers since attitude is the ladder on which all the other
virtues mount.

In this monograph, we have investigated various dispersion relations of different
HD quantized structures and the corresponding carrier statistics to study the con-
centration dependence of the EP from HD quantum confined materials. Besides, the
expressions of effective electron mass and the sub-band energy have been formu-
lated throughout this monograph as a collateral study, for the purpose of in-depth
investigations of the said important pinpointed research topics. Thus, in this book,
the readers will get much information regarding the influence of quantization in HD
low dimensional materials having different band structures. For the enhancement of
the materials aspect, we have considered various materials having the same dis-
persion relation to study the influence of energy band constants of the different HDS
on EP. Although the name of the book is extreme specific, from the content, one
can easily infer that it should be useful in graduate courses on materials science,
condensed matter physics, solid states electronics, nano-science and technology and
solid-state sciences and devices in many Universities and the Institutions in addition
to both Ph.D. students and researchers in the aforementioned fields. Last but not the
least, we do hope that our humble effort will kindle the desire to delve deeper into
this fascinating and deep topic by any one engaged in materials research and
device development either in academics or in industries.
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Chapter 1

The EP from Quantum Wells (QWs)
of Heavily Doped (HD) Non-parabolic
Semiconductors

1.1 Introduction

In recent years, with the advent of fine lithographical methods [1-3] molecular
beam epitaxy [4], organometallic vapor-phase epitaxy [5], and other experimental
techniques, the restriction of the motion of the carriers of bulk materials in one
(QWs, doping super-lattices, accumulation, and inversion layers), two (nanowires)
and three (quantum dots, magneto-size quantized systems, magneto inversion
layers, magneto accumulation layers, quantum dot super-lattices, magneto QW
super-lattices, and magneto doping superlattices) dimensions have in the last few
years, attracted much attention not only for their potential in uncovering new
phenomena in nano-science but also for their interesting quantum device applica-
tions [6-9]. In QWs, the restriction of the motion of the carriers in the direction
normal to the film (say, the z direction) may be viewed as carrier confinement in an
infinitely deep 1D rectangular potential well, leading to quantization [known as
quantum size effect (QSE)] of the wave vector of the carriers along the direction of
the potential well, allowing 2D carrier transport parallel to the surface of the film
representing new physical features not exhibited in bulk semiconductors [10-14].
The low-dimensional hetero-structures based on various materials are widely
investigated because of the enhancement of carrier mobility [15]. These properties
make such structures suitable for applications in QWs lasers [16], hetero-junction
FETs [17, 18], high-speed digital networks [19-22], high-frequency microwave
circuits [23], optical modulators [24], optical switching systems [25], and other
devices. The constant energy 3D wave-vector space of bulk semiconductors
becomes 2D wave-vector surface in QWs due to dimensional quantization. Thus,
the concept of reduction of symmetry of the wave-vector space and its consequence
can unlock the physics of low-dimensional structures. In this chapter, we study the
EP from QWs of HD non-parabolic semiconductors having different band structures
in the presence of Gaussian band tails. At first we shall investigate the EP from
QWs of HD nonlinear optical compounds which are being used in nonlinear optics
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and light emitting diodes [26]. The quasi-cubic model can be used to investigate the
symmetric properties of both the bands at the zone center of wave vector space of
the same compound. Including the anisotropic crystal potential in the Hamiltonian,
and special features of the nonlinear optical compounds, Kildal [27] formulated the
electron dispersion law under the assumptions of isotropic momentum matrix ele-
ment and the isotropic spin-orbit splitting constant, respectively, although the an-
isotropies in the two aforementioned band constants are the significant physical
features of the said materials [28-30]. In Sect. 1.2.1, the EP from QWs of HD
nonlinear optical semiconductors has been investigated on the basis of newly for-
mulated HD dispersion relation of the said compound by considering the combined
influence of the anisotropies of the said energy band constants together with the

inclusion of the crystal field splitting respectively within the framework of k- D
formalism. The III-V compounds find applications in infrared detectors [31],
quantum dot light emitting diodes [32], quantum cascade lasers [33], QWs wires
[34], optoelectronic sensors [35], high electron mobility transistors [36], etc. The
electron energy spectrum of III-V semiconductors can be described by the three-
and two-band models of Kane [37-39], together with the models of Stillman et al.
[40], Newson and Kurobe [41] and, Palik et al. [42] respectively. In this context it
may be noted that the ternary and quaternary compounds enjoy the singular position
in the entire spectrum of optoelectronic materials. The ternary alloy Hg,_,CdTe is
a classic narrow gap compound. The band gap of this ternary alloy can be varied to
cover the spectral range from 0.8 to over 30 um [43] by adjusting the alloy com-
position. Hg, _,Cd,Te finds extensive applications in infrared detector materials and
photovoltaic detector arrays in the 8—12 um wave bands [44]. The above uses have
generated the Hg,_,Cd,Te technology for the experimental realization of high
mobility single crystal with specially prepared surfaces. The same compound has
emerged to be the optimum choice for illuminating the narrow sub-band physics
because the relevant material constants can easily be experimentally measured [45].
Besides, the quaternary alloy In;_Ga,As,P;_, lattice matched to InP, also finds
wide use in the fabrication of avalanche photo-detectors [46], hetero-junction lasers
[47], light emitting diodes [48] and avalanche photodiodes [49], field effect tran-
sistors, detectors, switches, modulators, solar cells, filters, and new types of inte-
grated optical devices are made from the quaternary systems [50]. It may be noted
that all types of band models as discussed for III-V semiconductors are also
applicable for ternary and quaternary compounds. In Sect. 1.2.2, the EP from QWs
of HD III-V, ternary and quaternary semiconductors has been studied in accordance
with the corresponding HD formulation of the band structure and the simplified
results for wide gap materials having parabolic energy bands under certain limiting
conditions have further been demonstrated as a special case in the absence of band-
tails and thus confirming the compatibility test. The II-VI semiconductors are being
used in nano-ribbons, blue green diode lasers, photosensitive thin films, infrared
detectors, ultra-high-speed bipolar transistors, fiber optic communications, micro-
wave devices, solar cells, semiconductor gamma-ray detector arrays, semiconductor
detector gamma camera and allow for a greater density of data storage on optically
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addressed compact discs [51-58]. The carrier energy spectra in II-VI compounds
are defined by the Hopfield model [59] where the splitting of the two-spin states by
the spin-orbit coupling and the crystalline field has been taken into account. The
Sect. 1.2.3 contains the investigation of the EP from QWs of HD II-VI compounds.

Lead Chalcogenides (PbTe, PbSe, and PbS) are IV-VI non-parabolic semicon-
ductors whose studies over several decades have been motivated by their impor-
tance in infrared IR detectors, lasers, light-emitting devices, photo-voltaic, and high
temperature thermo-electrics [60-64]. PbTe, in particular, is the end compound of
several ternary and quaternary high performance high temperature thermoelectric
materials [65-69]. It has been used not only as bulk but also as films [70-73], QWs
[74] super-lattices [75, 76] nanowires [77] and colloidal and embedded nano-
crystals [78-81], and PbTe films doped with various impurities have also been
investigated [82-89]. These studies revealed some of the interesting features that
had been seen in bulk PbTe, such as Fermi level pinning and, in the case of
superconductivity [90]. In Sect. 1.2.4, the 2D EP from QWs of HD IV-VI semi-
conductors has been studied taking PbTe, PbSe, and PbS as examples. The stressed
semiconductors are being investigated for strained silicon transistors, quantum
cascade lasers, semiconductor strain gages, thermal detectors, and strained-layer
structures [91-94]. The EP from QWs of HD stressed compounds (taking stressed
n-InSb as an example) has been investigated in Sect. 1.2.5 The vacuum deposited
Tellurium (Te) has been used as the semiconductor layer in thin-film transistors
(TFT) [95] which is being used in CO, laser detectors [96], electronic imaging,
strain sensitive devices [97, 98], and multichannel Bragg cell [99]. Section 1.2.6
contains the investigation of EP from QWs of HD Tellurium. The n-Gallium
Phosphide (n-GaP) is being used in quantum dot light emitting diode [100], high
efficiency yellow solid state lamps, light sources, high peak current pulse for high
gain tubes. The green and yellow light emitting diodes made of nitrogen-doped
n-GaP possess a longer device life at high drive currents [101-103]. In Sect. 1.2.7,
the EP from QWs of HD n-GaP has been studied. The Platinum Antimonide
(PtSb,), finds application in device miniaturization, colloidal nanoparticle synthesis,
sensors and detector materials and thermo-photovoltaic devices [104-106].
Section 1.2.8 explores the EP from QWs of HD PtSb,. Bismuth telluride (Bi,Te;)
was first identified as a material for thermoelectric refrigeration in 1954 [107] and
its physical properties were later improved by the addition of bismuth selenide and
antimony telluride to form solid solutions. The alloys of Bi,Tes are useful com-
pounds for the thermoelectric industry and have been investigated in the literature
[108-112]. In Sect. 1.2.9, the EP from QWs of HD Bi,Te; has been considered.
The usefulness of elemental semiconductor Germanium is already well known since
the inception of transistor technology and, it is also being used in memory circuits,
single photon detectors, single photon avalanche diode, ultrafast optical switch,
THz lasers and THz spectrometers [113-116]. In Sect. 1.2.10, the EP has been
studied from QWs of HD Ge. Gallium Antimonide (GaSb) finds applications in the
fiber optic transmission window, hetero-junctions, and QWs. A complementary
hetero-junction field effect transistor in which the channels for the p-FET device
and the n-FET device forming the complementary FET are formed from GaSb. The
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band gap energy of GaSb makes it suitable for low power operation [117-122]. In
Sect. 1.2.11, the EP from QWs of HD GaSb has been studied. Section 1.3 contains
the result and discussions pertaining to this chapter. The last Sect. 1.4 contains open
research problems.

1.2 Theoretical Background

1.2.1 The EP from QWs of HD Non-linear Optical
Semiconductors

The form of k. p matrix for nonlinear optical compounds can be expressed
extending Bodnar [28] as

_|Hi H
ne [ ) "
where,
Eg, 0 Pk, 0 0 —f+ 0 f_
_ |0 (=2a/3) (V2A./3) © _lfe 0 00
= 1 =1 00 000
Psz (\/EAL/?)) _(5+§AH) 0
0 0 0 0 f+ O 00

in which E, is the band gap in the absence of any field, P| and P, are the
momentum matrix elements parallel and perpendicular to the direction of crystal
axis respectively, 0 is the crystal field splitting constant, A| and A, are the spin-

orbit splitting constants parallel and perpendicular to the C-axis respectively, f+ =

(P L/ \/5) (kx + iky) and i = v/—1. Thus, neglecting the contribution of the higher
bands and the free electron term, the diagonalization of the above matrix leads to
the dispersion relation of the conduction electrons in bulk specimens of nonlinear
optical semiconductors as

V(E) = A(E)K: + f(E)K (1.2)

where
V(E) = E(E + Ey,) {(E + Ego) (E + Eg, + AH)
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E is the total energy of the electron as measured from the edge of the conduction
band in the vertically upward direction in the absence of any quantization,

k2 =k +k;,

WEg, (Eq +AL) 1
o e a7 O (F B 3%0) + (4 B)

2 1
X (E-i—Eg0 +§A|> +§ (Aﬁ - A2|>:|,
WEg, (Eg + A))

SE) = [2mﬁ (Eq, +§AH)} [(E+Eg°) (E+Eg° J%A)]’

fi(E)

h = h/2x, h is Planck’s constant and ml"| and m’, are the longitudinal and transverse

effective electron masses at the edge of the conduction band respectively.

Thus the generalized unperturbed electron energy spectrum for the bulk speci-
mens of the nonlinear optical materials in the absence of band tails can be expressed
following (1.2) as

@4_ <ﬂ2>%= E(aE +1)(bjE + 1)+oz_bH [5E+z(A2—A2)} - <z>£<A2A2L)
2mj - \buey) 2my (c)E +1) 2 OV TN e (qE+ 1)

|
2 2 2 2
_ (RN (Brec (o ALZALY m (o [AIZAL 2l
2m’ b, C| 2 6A” LXHE +1 2 6AH CHE +1

(1.3)

where,
2
b” = 1/(Eg+AH)7CL = 1/ Eg+§AL ;bL = 1/(Eg+AL),
2
= 1/(Eg +§A”) and o = I/Eg
The Gaussian distribution F(V) of the impurity potential is given by [123, 124]

F(V)= (ﬂné)il/zexp(—vmz) (1.4)

where, 1, is the impurity scattering potential. It appears from (1.4) that the variance
parameter 7, is not equal to zero, but the mean value is zero. Further, the impurities
are assumed to be uncorrelated and the band mixing effect has been neglected in
this simplified theoretical formalism.

We have to average the kinetic energy in the order to obtain the E-k dispersion
relation in nonlinear optical materials in the presence of band tails. Using the (1.3)
and (1.4), we get
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E E
R2k? bjc,\ k2
4 F s F
[Zm* é (V)dv} + {(bL c|) 2’ l (V)av

- { /E (E=VIR(E V) 4 N E=V) 4]
[ (

N § E—-V)+1]
OCb” ¢ i
+c[5 / (E— V)F(V)aV += (Aﬁ A2> /F(V)dv}
o - (1.5)

2\aby (.5 r F(V)dv
-(5) T (s -a) | W}

NGV ITCTAYEN: / Py
2mt. bie)\2" 6a )" ) WE-V)+1]
NCREAY / RV
268 )N (qE-V)+1)
The (1.5) can be rewritten as [125-128]

12 k2 b 2i2
T )+ (_”C_L) %](1)

2m; by ¢) 2m},

2/, 2 2\ ob 2 5
{h(cu)+—u{51( )+ §(AH ISLE )} - <§)C—|H<AH fAL>16(cH)}
h2k2 bH CL AT — AT 5 [AF-A%
2ml { bic| ( 64 ) +<§ { 64, })CI(C)H
(1.6)
where,
E
I(1) = /F(V)dV (1.7)

[ E-V)E-V)+ [ (E-V)+1]
I3(CH) = / [c” (E _ V) n 1} F(V)dV (18)




1.2 Theoretical Background

1(4) = / (E — V)F(V)dV (1.9)
B F(V)av
1(a) :/ WE—V 1] (1.10)

Substituting £ — V = x and x/ng = 1y, we get from (1.7)
I(1) = (exp(—Ez/,,é) /\/E) / exp[—té + (2Eto/ng)}dt0
0

Thus,

= [EELE) an

where, Erf(E/n,) is the error function of (E/1,).
From (1.9), one can write

1) = (nm) [ (E=vyexp(-viit)av

[+ Erf (E/n,)] - \/711732 Vexp(~v2/n2)av

After computing this simple integration, one obtains
Thus,

(1.12)

Nlh'j

14) = n, exp(~E/) (2vm) 42 (1+ B (Bfn) = n0(En,)  (113)

From (1.10), we can write

L exp —V2/n;)dv
1) = / [a(gi_v)+)1]

2
7'C17g —00

(1.14)
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When,

1

Vo oo cE TR

— Oand exp(—VZ/r];) — 0;

Thus (1.14) can be expressed as

1) = (1o, v/7) / exp(—2)(u — 1) "\dr (1.15)

where,

%4 <l—l—ocE>
—=tandu = .
Ng oan

It is well known that [129, 130]
W(Z) = (i/n) / (Z — 1) " exp(—7)dr (1.16)

In which i = v/—1 and Z, in general, is a complex number.
We also know [129, 130],

W(Z) = exp(—Z2)Erfc(—iZ) (1.17)
where,

Erfe(Z) = 1 — Erf(2).

Thus,
Erfe(—iu) = 1 — Erf (—iu)

Since,

Erf (—iu) = —Erf (i)
Therefore,

Erfe(—iu) = 1 + Erf(iu).
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Thus,
I(x) = [—iﬁ/(xng] exp(—u?)[1 + Erf (iu)] (1.18)

We also know that [129, 130]

—x2 0 xp(— 2
Erf(x+iy) = Erf(x) + (an> {(1 — cos(2xy)) + isin(2xy) + Ze Z]e; +Zx/24
x o (r,y) + igp(x,y) + e(x, )] (1.19)

where,

fo(x,¥) = [2x — 2x cosh(py) cos(2xy) + p sinh(py) sin(2xy)],
gp(x,y) = [2xcosh(py) sin(2xy) + p sinh(py) cos(2xy)],
le(x, )| ~ 107" Erf (x + iy)|

l

Substituting x = 0 and y = u in (1.19), one obtains,

, 2i exp(—p*/4)
Erf(iu) = (—) { sinh(pu 1.20
= (3) 517 () (120)
Therefore, one can write
I(2) = Co (o, E,ng) — iDa (o, E, 17, (1.21)
where,
2 > (exp(—p?/4)
Cy (o, E,n,) = |——=| exp(— { smh(pu} and
(x Eny) L%ﬁ] [z )

Dar(n.En) = [gexm—uz)].

8

The (1.21) consists of both real and imaginary parts and therefore, I(o) is complex,
which can also be proved by using the method of analytic continuation of the
subject Complex Analysis.
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The integral I3(c|) in (1.8) can be written as

Lie)) = <ﬂ>1(5) n (%lg'_“b”) 1(4) +Cl (1 - Cﬁn) (1 - %)1(1)

620

where

E
1(5) = / (E—V)*F(V)dV (1.23)
From (1.23) one can write

E E E
—_y?
E? / exp V dv — 2E/Vexp -V dv + / VZexp — |dv
ﬂg ’1g A

[ t12
T“/]g —00 —00 —00

1(5) =

The evaluations of the component integrals lead us to write

1+Erf<n£>] =bo(E,n,) (1.24)

_ nE —E? L, 2
1(5) = 2\/ﬁexp<—n2 +4 (ng +2E )

8
Thus combining the aforementioned equations, I3(c|) can be expressed as

L(c)) = Au(E,n,) + iBoi (E, ) (1.25)
where,

An(E,n) = CH

2\/_ ( E2>+%(ﬂ§+2E2>{1+Erf<ﬂ£g>H

Mg EXP(*EZ/WE) }

E
{5[1 +Ef(E/n)l + —— 7

I s byjc) — aby
2
‘i

+ciH (1 - ?7) (1 H) (1 + Erf(E/n,)] — {cfnjﬁ (1 - Cﬁu) (1 - %‘“) exp(uﬁ)}
and By, (E, n,) = ﬂ (1 - 5) (1 - ﬂ) exp(—i).

1+C”

uy =
CIMg
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Therefore, the combination of all the appropriate integrals together with alge-
braic manipulations leads to the expression of the dispersion relation of the con-
duction electrons of HD nonlinear optical materials forming Gaussian band tails as

n*k? hk?

+ =1 1.26
2m T (E,ng) = 2m7 Tn(E,ny) (120

where, T5 (E, n,) and T, (E, 17,) have both real and complex parts and are given by

TZI(E7 qg) = [T27(E7 i’lg) + iTzS(E7 ng)}v T27(E7 V[g) = |:7]%53((EE71/78’))

)

TaEun) = |An(Eu) + 2 [370E0) + 5 (83 = a2 )1 + B8/, )
2 (ab

- {9 ( LHH) (

Gaul(E,n,) = Cunj\/_exp PZ]: {exp smh(pul)}7

S0+ B (E /),

Afl AL)G21 (c|, E, ng)}] ,

T5(E, n,)

2 O(b”

T28 E V[g = |: :| T24 E ng) |:321(E ng) +§T“ (Aﬁ —Ai>H21(C||,E,17g):|7

Ha(cp, E, ) = L—Cexp } Tn(E,n,) = [T (E,n,) + iT30(E, 1)),
T23(E, 1) Tos(E, ) — Toa(E, 1) Ta6(E, 1)

[(Tzs(li ﬂg))z-i-(Tza(E, ng))2:|

[ b CJ_) 1 E (b” cg_) 14
Trs(E, =|(——)z|1+Ef|— ]|+ |(—— )5+
25( rlg) _<bL 4] 2 rf Mg by 4] 2

L(Bres) (6 Af - A
A

1
6AH )GZI (OCH7E’ ng)’:|

2 2 exp(—p?/4) .
_a\/ﬁ’;exp(fuz) Lzl:ep(pp/)smh(pu)” ;

bH Cl 0 Aﬁ 7A2L bHCl I Aﬁ 7A2L
To(E,n,) = [L2) [ - Dy (o, E L Hy (|, E
26(E; 1) (lu o)\2 6A,| oDy (o, E, 1) + b, \2 Y 21 (e, Ey )

Tos(E,ng)Tos(E, 1) + To3(E, ng) Tas (E, 1)

[(Tos(E.n,) )+ (s (E.,) )]

T29(E, 1)

2 2
Ay - A
6A

)“Czl (o, E, 1)

C21(OC7 E, ﬂg) =




14 1 The EP from Quantum Wells (QWs) ...

From (1.26), it appears that the energy spectrum in HD nonlinear optical
semiconductors is complex. The complex nature of the electron dispersion law
in HD semiconductors occurs from the existence of the essential poles in the
corresponding electron energy spectrum in the absence of band tails. It may be
noted that the complex band structures have already been studied for bulk semi-
conductors and super lattices without heavy doping [131, 132] and bears no rela-
tionship with the complex electron dispersion law as indicated by (1.26). The
physical picture behind the formulation of the complex energy spectrum in HDS is
the interaction of the impurity atoms in the tails with the splitting constants of the
valance bands. More is the interaction; more is the prominence of the complex part
than the other case. In the absence of band tails, Ny — 0, and there is no interaction
of the impurity atoms in the tails with the spin orbit constants. As a result, there
exist no complex energy spectrum and (1.26) gets converted into (1.2) when
1N, — 0. Besides, the complex spectra are not related to same evanescent modes in
the band tails and the conduction bands.

It is interesting to note that the single important concept in the whole spectra of
materials and allied sciences is the effective electron mass which is in disguise in
the apparently simple (1.26), and can, briefly be described as follows:

Effective electron mass: The effective mass of the carriers in semiconductors,
being connected with the mobility, is known to be one of the most important
physical quantities, used for the analysis of electron devices under different oper-
ating conditions [133]. The carrier degeneracy in semiconductors influences the
effective mass when it is energy dependent. Under degenerate conditions, only the
electrons at the Fermi surface of n-type semiconductors participate in the con-
duction process and hence, the effective mass of the electrons corresponding to the
Fermi level (EEM) would be of interest in electron transport under such conditions.
The Fermi energy is again determined by the electron energy spectrum and the
carrier statistics and therefore, these two features would determine the dependence
of the effective electron mass in degenerate n-type semiconductors under the degree
of carrier degeneracy. In recent years, various energy wave vector dispersion
relations have been proposed [134—146] which have created the interest in studying
the effective mass in such materials under external conditions. It has, therefore,
different values in different materials and varies with electron concentration, with
the magnitude of the reciprocal quantizing magnetic field under magnetic quanti-
zation, with the quantizing electric field as in inversion layers, with the nano-
thickness as in UFs and nano wires and with superlattice period as in the quantum
confined superlattices of small gap semiconductors with graded interfaces having
various carrier energy spectra [147-178].



1.2 Theoretical Background 15

The transverse and the longitudinal EEMs at the Fermi energy (Ef,) of HD
nonlinear optical materials can, respectively, be expressed as

mi (EFh,ng) = mj{T29(E? ng)}/’E:Er (127)
h

and

mi (Erong) = mi {Tn (E,n) | (1.28)

E=Ey,

where Ef, is the Fermi energy of HDS in the presence of band tails as measured
from the edge of the conduction band in the vertically upward direction in the
absence of band tails and the primes denote the differentiations of the differentiable
functions with respect to Fermi energy in the appropriate case.

In the absence of band tails 7, — 0 and we get

L l%(E){wl(E)}' — (B (E)Y (1.29)
T2 {Ya(B))
and
oy I [ ENNE) — (B HY(E)Y
"0 =5 (U5 (E)) (130

where EF is the Fermi energy as measured from the edge of the conduction band in
the vertically upward direction in the absence of any perturbation, V,(E) =
YE) W (E) = A(E) and y5(E) = fo(E).

Comparing the aforementioned equations, one can infer that the effective
masses exist in the forbidden zone, which is impossible without the effect of
band tailing. For semiconductors, in the absence of band tails the effective
mass in the band gap is infinity.

The DOS function is given by

2gym’, \ [2m;

Nuo(E.ng) = =513

Rll(Eang) COS[!,DH(E, ng)] (131&)
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where,

Ri(En) = [|{To (1) x(Eny) T”i%m}

~ S(Eom) - Tso (E, 1) {y(E. n,) }'
{T30E'7g} 7g 2\/@

) + Tao (E. 1) {3 (E. 1) }
{T29E’7g} E, 1) 2\/@

2

2 1/2

+ {T50(E,n,)} VX(E, 1) L ingx({; :)"g)}

[T” (Esmg) + \/{T27 (E.n,) Y +{Tas (E, %)}2},
[\/{Tﬂ (E, 7’Ig) }2+{T28 (E7 ng) }2 — Ty (E, ng)} and

x(En,)

1
2
1
y(E’ng) B

T E
npn(E, ng) =tan"! {ng E e }\/ , g 29 7Ig
24/y Eng
f——’_’_’ T E
"V—{T';O E ;/’g } 7 g 30{x ng
VA(E )

2

x | {T(E,n, } \/T = iﬂn/gx({;:)ng)}

-1

—{TsoEﬂg} / Eon,) Tso{yE’?g
2¢/(E.n,)

The oscillatory nature of the DOS for HD nonlinear optical materials is apparent
from (1.31a). For, (E7 ng) > 7, the cosine function becomes negative leading to
the negative values of the DOS. The electrons cannot exist for the negative values
of the DOS and therefore, this region is forbidden for electrons, which indicates that
in the band tail, there appears a new forbidden zone in addition to the normal
band gap of the semiconductor.
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The use of (1.31a) leads to the expression of the electron concentration as

2gym’, | /2m] s
ng :W Ill(Eang) +ZL(V)[III(EF;,;7’Ig)]‘| (1.31b)
r=1
Where, I” (EFh’ ng) = |:T29 (E’ ;78) x(EF!M ng) - T30 (EFh? ng) y(EFm ’7g) ] 5

L(r) = 2(kgT)¥ (1 — 21-21)¢(27) m r is the set of real positive integers

whose upper s and &(2r) is the Zeta function of order 2r [129, 130].

The consequence of the photoelectric effect is the creation of the concept of
photoelectric current density (J) which, can, in turn, be written through the pho-
toemission integral (P;) as [7]

J= %(P,) (1.31c)
where,
P = / N(E',ng)v:(E',n,)f(E)dE' (1.31d)
Ey

Ey =&+ W —hv, & is obtained by substituting ke = 0,k, =0 and k, =0 in
the dispersion relation, W is the electron affinity, E' = E — Ej, E is the total energy
of the electron as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization, N (E’, ng) is the DOS function
at E=E',v,(E',n,) is the velocity of the emitted electron along z-axis when,
E = E',f(E) is the Fermi Dirac occupation probability factor and can be written in
this case as

-1
f(E)= [1 —|—exp(El:T?”)] . (1.31e)

Thus combining the appropriate equations, the EP from HD non-linear materials
can be expressed as

J = M Real part of / Ny (E,n,)dE (1.31f)

Eo
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where

apeg,m’, Ty (E, ’7g)

My == 5 andN, (E, ) = &) Ru (E',n,) coslyy, (E, I (E)

For dimensional quantization along z-direction, the dispersion relation of the 2D

electrons in this case can be written following (1.26) as

12 (n.m/d;)’ wk;
2mWT21(E7’1g) 2ij22(E7”g)

=1 (1.32)

where, n,(= 1,2,3,...) and d, are the size quantum number and the nano-thickness
along the z-direction respectively.

The general expression of the total 2D DOS (N,pr(E)) can, in general, be
expressed as

2, \"R0A (E,n)
(2n)? OE

n,=1

Nopr(E) = H(E-E,,) (1.33)

where, g, is the valley degeneracy, A(E, n;) is the area of the constant energy 2D
wave vector space and in this case it is for QWs, H (E — Enz) is the Heaviside step
function and E,,_ is the corresponding sub-band energy. Using (1.32) and (1.33), the
expression of the Nopr(E) for QWs of HD nonlinear optical semiconductors can be
written as

m . Fzmax
Nopr(E ig 2N T (B ngn)H(E — By i) (1.34)
n,=1
(n,r/d,)’ .
where, Typ(E, My n,) =[1- W] T, (E, ng) and the sub band energies E, p;
I Mg

in this case is given by the following equation

1 (n.n/d,)”
2mHT21( E,p1,1,)

=1 (1.35)

Thus we observe that both the total DOS and sub-band energies of QWs of HD
nonlinear optical semiconductors are complex due to the presence of the pole in
energy axis of the corresponding materials in the absence of band tails.
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The EEM in this case is given by
m*(Ep1ap, Ny, ;) = m’, [Real part of T\, (Eriup, 1, 1;)] (1.36)

Thus, we observe that the EEM is the function of size quantum number and the
Fermi energy due to the combined influence of the crystal filed splitting constant
and the anisotropic spin-orbit splitting constants respectively. Besides it is a
Junction of n, due to which the EEM exists in the band gap, which is otherwise
impossible.

Combining (1.34) with the Fermi-Dirac occupation probability factor, integrat-
ing between E, p; to infinity and applying the generalized Sommerfeld’s lemma
[179], the 2D carrier statistics in this case assumes the form

m vnzmax
nop = njﬁg Z [Real part of [T p(Er1up; Ng; 1) + Tap(Eriap, Mg, 0;)]]  (1.37)
n,=1

s
where, Top(Er1up; g 0:) = Y L(r)[T1ip(EFimp, g, 02)]; EFiap is the Fermi energy
r=1

in the presence of size quantization of the QWs of HD non-linear optical materials
as measured from the edge of the conduction band in the vertically upward direction
in the absence of any perturbation.

The photoelectric current density in QWs can, in general be written as

Mzmax

o,e

Jp =353 / Nop(E)f (E)v,(E,,)dE (1.38a)

where N,p(E) is the density-of-states function per sub band, v.(E,_) is the velocity
of the electron in the ngh sub band, the factor % originates owing to the fact that only
half of the electron will migrate towards the surface and escape [36].

Thus combining the appropriate equations the J,p in this case assumes the form

[e¢}

Mzmax

Jop = M, Real partof » / N2(E, 1, n,)dE (1.38b)

amin B, p,
where

*

2mH

apegy m* 1
M 2 S e [T (W = hvn), - My = 25 (G
Z
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and

T21(Ewp1, 1)

S AT
n:D15 g

£(E)T}p(E, g, n;)

Therefore using (1.37) and (1.38b) we can study the EP in this case.

In the absence of band-tails, the 2D dispersion relation the EEM in the x-y plane
at the Fermi level, the total 2D DOS, the sub-band energy E,_ the surface electron
concentration per unit area and the EP for QWs of non-linear optical materials in
the absence of band tails can, respectively, be written as

Vi(E) = Yo (E)K + Y3 (E) (nm/d)” (1.39)

m*(Epg,n;) = (h;) o (Ery)] 2 %(EFS){{%(EFS>}/_{%(EFS)}/ (%>2}

—{wEm vl (5 )}{MEFQ}

(1.40)
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U\ (En,) = Y(En, ) (n1/d.)’ (1.42)
nop = %iaj (Ts1(EFs, n;) + Tsa(Efg, 1)) (1.43)
n,=1

JZD_M;Z / 3(E,n.)dE (1.44)
Zmin E"Z[

where

doegy l//l(Enz,)u/z[ l/’%(Enz,) 1
37 onhd, Us(En)  Us(Bn W (En,) — V3(En Wy (En)

x W (B)) 2 W (E){ {1 (E)'} — {%(E)}’(%f} — (U (E) - %(E)(%)Z}{wz<E>}’uf<E).,

N3(Bng) = [
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VU, (E) = Y(E), V,(E) = f1(E), \3(E) = f»(E), sub band energies Er is the
Fermi energy in the 2-D sized quantized material in the presence of size quanti-
zation and in the absence of band-tails as measured from the edge of the conduction
band in the vertically upward direction in the absence of any quantization,

Vi1(Ers) — ¥3(Eps) (nm/d.)’
¢2 (EFS>

T51(EF‘-,}’ZZ) = and

Tsy(Eps, ) ZL [T51(Ers, ).

In the absence of band-tails, the DOS for bulk specimens of non-linear optical
semiconductors is given by

Dy(E) = g,(37°) 4 (E) (1.45)

'g\wa)[wl(E)]’_[%(E)}’[%(E)]S/z_wgwn’[wl(mﬁ”}
2 U (EVWLE)  [a(EVUE) 2 yy(BE) s ()P

(B = [ + B (B)[B(E + B,)] 4B (E + B,) (05 + 26, +5+ &)

Vu(E)

[W,(E)] = :2mj_( += AL)} E,+AL)] [5+2E+2Eg +§AH}

and [y/3(E)]' = :Zmﬁ< +3 An” 1 +A\\)}[2E+2Eg+§AH}

Combining (1.45) with the Fermi-Dirac occupation probability factor and using
the generalized Sommerfeld’s lemma, the electron concentration can be written as

no = g,(37%) " [M(Er) + N(Er)] (1.46a)

where, M(Er) = _ R , Er is the Fermi energy of the bulk specimen in
¥ (EF)\/V3(Er)

the absence of band tailsfermi energy as measured from the edge of the conduction

band in the vertically upward direction and N(Ef) = Z L(r)M(Ep)
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In this case the EP is given by

J=M, / N4 (E)dE (1.47)
where
) = Og:f}; and N4(E)
I 2/

Us(E)" s (BN (E) — 5B, (B)

1.2.2 The EP from QWs of HD III-V Semiconductors

The dispersion relation of the conduction electrons of III-V compounds are
described by the models of Kane (both three and two bands) [38, 156, 157],
Stillman et al. [40] and Palik et al. [42] respectively. For the purpose of complete
and coherent presentation and relative comparison, the EP from QWs of HD III-V
semiconductors have also been investigated in accordance with the aforementioned
different dispersion relations as follows:

(a) The Three Band Model of Kane

Under the conditions, 6 = 0, A = A; = A (isotropic spin orbit splitting constant)
and mﬁ = m’ = m, (isotropic effective electron mass at the edge of the conduction
band), (1.2) gets simplified as

272 2
P aE), t(p) = EE ) B B A (B £ 54)

1.48
. BBt 0B, +28)

which is known as the three band model of Kane [38, 39] and is often used to
investigate the physical properties of III-V materials. Under the said conditions, the
HD electron dispersion law in this case can be written from (1.26) as

k2
2m,

= T31 (E7 7’g> +iT32 (E7 r]g) (149)
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where,

2 b +bc —ob
O )| N e RO

090

i 7@([}(;’)2/4) sinh(puz)} :| )

() D

Thus, the complex energy spectrum occurs due to the term T3, (E, 7,) and this
imaginary band is quite different from the forbidden energy band.
The EEM at the Fermi level is given by

i’ (Er,ng) = me{ T (E.n,) | (1.50)

E=Ep,
Thus, the EEM in HD III-V, ternary and quaternary materials exists in the band

gap, which is the new attribute of the theory of band tailing.
In the absence of band tails, Ny — 0 and the EEM assumes the form

m*(EF) :mc{ln(E)}/|E:EF (1.51)

The DOS function in this case can be written as

g (2m, 32
Mo (Eun) = £ (2) R (B o (En)] (152)

where,
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2 27 1/2
e En))] [(u(En)Y]
R21(E,ng)£ 4oy (E,ng) - 4B, (E,n,) 7
o (Eang) =3 | PaEn) + /(T (Eong) P {Tss(Eone) V|

3T32(E7 ng){T31(E, ”g)}z—{Tn (E, ’78)}3}’
[\/{T33 (E, ng) }2+{T34(E, i’lg)}z —Ts3 (E, ng):| and

{Bu(Eng)} | (E,
{m(E,m )}V Au(E

Thus, the oscillatory DOS function becomes negative for 1, (E7 ng) >mand a

new forbidden zone will appear in addition to the normal band gap.
The electron concentration can be expressed as

1
2
1) = {1 (E.ng) ) =375 (B ) {Ta (B Y]
[
1
2

Yo1 (E, ng) =tan"!

3/2 s
8v 2m, = =
=35 < pe) ) llllle(EF/17”g) + ;L(r)[lllle(Ea ”Ig)}] (1.53)
where,
- 3/2
Illle(EF;m’/Ig) = {'yZ (EF;,717g)} /
The EP in this case is given by
J = Ms Real part of / Ns(E, n,)dE' (1.54)
Eo
where
dpegym,
= and Ns(E,
P YEVE s(E.me)

\/T31(E'7 ng) +iT3(E' n,)
- Tél(E/7 ng) + ing(El> ”g)

Ryi (B, n,) cos [t (E', 1, )]f(E)

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in this case can be written following (1.49) as
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hz(nzn/dz)z T h2(k-v)2

2m, om, (E,ng) + iTx(E. 1) (1.55)

The expression of the Nppr(E) in this case assumes the form
Nz max

> T4p(E,ngn:)H(E — E,ps) (1.56)

n,=1

mC v
Nopr(E) = n—:z

where,

Tsp (E, ng,nz) = [T31(E, ng) +iT3; (E7 ng) — hz(nzn/dz)z(ch)fl}

and the sub band energies E, ps in this case given by

{h2(nz/dz)2}(2mc)7l = TSI(EnZD57 Vlg) (157)

Thus we observe that both the total DOS in QWs of HD III-V compounds and
the sub band energies are complex due to the presence of the pole in energy axis of
the corresponding materials in the absence of band tails.

The EEM in this case is given by

m*(Eriup, g, 0;) = me[T3y (Epiap; g, 0.)] (1.58)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the
2D carrier statistics in this case can be written by using the same conditions from
(1.37) as

nzmax

mC v
nap = nhé; Z [Real part of [Tsp (Er1up; g, 0z) + Ton(Erimp, g, 12)]]  (1.59)

n,=1

N

Ton(EFiup, Mg, n;) = Z L(r)[Tsp(Er1up,Ng,02)],

r=1

The EP in this is given by

[o.¢]

Mzmax

Jop = Mg Real part of Z / Nes(E, n,,n;)dE (1.60a)

nzn]in EH D5
D5
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where

Xpegvinc 1/2
and Ng(E, 1,
2nh2d (m( ) 6( Mg, M )

\/Tﬂ E,.ps,n,) + iT3(E nD5777g)
T3l( n.DS5 ng) + lT32( n.D5 5 ng)

6=

sp(E, 1, 0:)f(E)]

In the absence of band tails, the 2D dispersion relation, EEM in the x-y plane at
the Fermi level, the total 2D DOS, the sub-band energy, the electron concentration
and the EP for QWs of III-V materials assume the following forms

KR
2m,  2m,

m*(Ers) = me{ I (Ers)} (1.61)

(n.m/d;)*=I1(E) (1.60b)

It is worth noting that the EEM in this case is a function of Fermi energy alone
and is independent of size quantum number.

veor(®) = () S ey (e-5.)} e

2
nh g

where, the sub-band energies E,  can be expressed as

2
(E,) =5 - (n.m/d,)* (1.63)
me Vnzmax
nop = nhé; Z [Ts3(Eps,n;) + Tsa(Ers, nz)] (1.64)

n.=1
JzD—M7Z/ 5(E,n,)dE (1.65)

Zmin En )

where

Ts3(Epg,n;) =

R (nm\? .
111 (Ers) — . (di> ] s Tsa(Eps,n;) = ZL(T)T53 (Ers,nz),
¢ z r=1

ooegy Me,1/2 / V11 (En,)
and N+ (E, n.) = I, (E)f(E) YL\ 22
2nh2d (2) 7( z) 11( ) ( ) 111(Enzz)

7=
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In the absence of band tails, the DOS function, the electron concentration, and
the EP in bulk III-V, ternary and quaternary materials in accordance with the
unperturbed three band model of Kane assume the following forms

o\ 32

Du(E) = 45, (25)VI®[1 £ (1.66)
o\ 32

ngp = 387;2 (277126) [Ml (EF) +N1 (EF)] (167)

and

4mem.(KgT) aogy | [(1 +20A 1
7 { nem.(KpT) 0tg {( 37A) [2o¢kBTF2(110)+ <1+2aE0+§ocA>F1(170)

3 (1+aA)
L Fot ocEk%BJTr s*AE0 o (o) + o [m DT M) ¢(’Io)] H (1.68)
where,
11 1 !

Iy(E) =1 (E) |5+ My (Er) = [ (Ep)]?,

E'E+E E+E+A ETE +2A1
_Ey+E,+3A 2 A 2

L(r)M, (EF) e T = 14+ZaA

Z 1(Er) KT P 9\ 3%

3
Zz 21 2r )(71)%71(2"7 l)' ;/IO:hV7¢
@+ 19)”" ksT

and F;(1) is the one parameter Fermi-Dirac integral of order j which can be written
[180—182] as

Fin) = <F(/+ >/Ocl+ej<;)dfc— n)’ j>-l (1.69)
0

or for all j, analytically continued as a complex contour integral around the negative
X-axis

i +0 i »
50 (o) | a0

—00
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where # is the dimensionless quantity and x is independent variable,
Under the inequalities A > Eg or A < E,, (1.48) can be expressed as

R K2

2m,

E(1+aE) = (1.71)

where o = (Ego)f1 and is known as band non-parabolicity.

It may be noted that (1.71) is the well-known two band model of Kane and is
used in the literature to study the physical properties of those III-V and opto-
electronic materials whose energy band structures obey the aforementioned
inequalities.

The dispersion relation in HD III-V, ternary and quaternary materials whose
energy spectrum in the absence of band tails obeys the two band model of Kane as
defined by (1.71), can be written as

K2k?
2m,

=7, (E, ng) (1.72)
where,

2

72(Ey 1) = 1+ Erf (E/n,)

10 (E, 1) + 000 (E, )]

The EEM in this case can be written as

m (B =melnaEn) Y, (1.73a)
Fp

Thus, one again observes that the EEM in this case exists in the band gap.
In the absence of band tails, Ne — 0 and the EEM assumes the well-known form

m*(Er) = m{1 + 20E} | p_p. (1.73b)

The DOS function in this case can be written as

2mc 3/2
NHD(E77’g> 27'52 \/ E rlg {))2 E ng (173C)

Since, the poles of the original two band Kane model are at infinity and and no
finite poles with respect to energy, therefore the HD counterpart will be totally real
and the complex band vanishes.
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The electron concentration is given by

o = 8o (2me\
0 37'[2 hz

N

L (Er, ;1) JFZL(")Hlll(EF,,,ng)] (1.74)

r=1

where,

L (EFh; Hg) = {Vz (EFh’ ”g) }3/2

The EP in this case is given by

00
J=M, / N7 (E, n,)dE (1.75)
Eo
where
oegye
7= 27T2h3 andN7(E, ng) = VZ(E/7ng)f(E)

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in this case can be written following (1.70) as

R (nm/d,)* B (k)
+
2m, 2m,

=7, (E, r]g) (1.76)

The expression of the Napr(E) in this case can be written as

1z max

me
Napr(E) = nh; Z T5p(E, ng,n.)H(E — E, p7) (1.77)

n,=1

where,

T7D(Ev r/g7nz) = [VZ (Ev rlg) - hz(nzn/d2)2(2m0)71]7

The sub-band energies E, p7 in this case given by

{2 em/d) bame) ™" = 9 (Enor,m) (1.78)

Thus, we observe that both the total DOS and sub-band energies of QWs of HD
[II-V compounds in accordance with two band model of Kane are not at all
complex since the dispersion relation in accordance with the said model has no pole
in the finite complex plane.
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The EEM in this case is given by
m* (Epiup, g, 1) = me[yy(Epiap, g, n:)] (1.79)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the

2D carrier statistics in this case can be written by using the same conditions from
(1.77) as

Nz max

m
nop = % [T7D(EF1HD» Ure nz) + TSD(EFIHDa Ure nz)] (180)

n,=1

where,
Tsp(EFiup, g, n;) = ZL NT70(EFiap, g, n2)],

The EP in this case is given by

JzD—Mgz/ 5(E, 1,,,n.)dE (1.81)

“min En D7
where

olpegyme 12 B
My = W%J and Ny (E, 1, n.) = T} (E, 1, no)F(E) x

'))2 (En;D% ng)
y/2 (E11;D7a ng)

Under the inequalities A > E, or, A < E, (1.60a), (1.160b) assumes the form

R SR AN
E(1 E)=—2 = 1.81
(L+oB) =20 2mc<dz> (1.81a)
The EEM can be written from (1.81a) as
m*(Ep,) = m.(1 + 20EF,) (1.81b)

The total 2D DOS function assumes the form

mc V"Zmax
Nopr(E) = nhgz > (1 +2:E)H (E - E) (1.82)

n.=1
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where, the sub-band energy (E,, ) can be expressed as

"2 2
o (/) = B (1 + ocEnZB) (1.83)

The 2D electron statistics can be written as

n2p

mcgv "‘“/ 1+ 2uE)dE

= rrew(E) (1.84)
_ mckpTg, iy L+ 204E. \F ok TF
= — TCh2 Z ( + 2o nZ3) 0(17"1) + 2okp l(nnl)
n,=1
where,
”In, = (EFs - Enz3)/kBT
The EP in this case the can be written as
Toeg e ( 2 1/ W
J 20E, 3)F,
= [2 h2d, mc Z (1+20E, 3) 1+ 20k, 3)Fo(1,,)
+ 20k TFo(1,, )] (1.85)

The forms of the DOS, the electron statistics and the EP for bulk specimens of
II-V materials in the absence of band tails whose energy band structures are
defined by the two-band model of Kane can, respectively, be written as

o\ 3/2
Du(E) = r, () VB 11 (E) (1.86)
o\ 32
no = 35:2 (2h25) [M>(EF) + N2 (EF)] (1.89)
and
g = 4120 K8 T) (5 1) 4 20ks T (1.90)

h3
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where,
Ihe(E) = E(1 4 oE), I, (E) = (1 4 20E), My(Er) = [I10(Er)]?

and

s

Ny(Ep) = L(r)Ma(EF)

r=1

Under the constraints A > E, or A < E, together with the inequality aEr < 1,
the (1.89) assumes the forms as

150kgT
= e i) + (52 Fust| (191)
where,
- (2mmkpT 3/2
and
_ Er
1=t

The dispersion relation in HDS whose energy spectrum in the absence of band
tails obeys the parabolic energy bands (1.69) is given by

2,2
S =1 (Euny) (1.92)
where,
2
73 (E.ng) = (I—FT(E‘/’/@))}VO(E,ng). (1.93)

Since the dispersion relation in accordance with the said model is an all zero
function with no pole in the finite complex plane, therefore the HD counterpart will
be totally real, which is also apparent form the expression (1.92).
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The EEM in this case can be written as

* !

m (EF;,7’7g) = mc{y3 (EFhang)} (194>

In the absence of band tails, Ny — 0 and the EEM assumes the form
m*(Ep) = m, (1.95)
It is well-known that the EEM in unperturbed parabolic energy bands is a
constant quantity in general excluding cross-fields configuration. However, the
same mass in the corresponding HD bulk counterpart becomes a complicated
function of Fermi energy and the impurity potential together with the fact that the

EEM also exists in the band gap solely due to the presence of finite 1.
The DOS function in this case can be written as

me 3/2 !
Mo (Bun) = 5 () B bs(En)Y (199

The electron concentration is given by

& (2
073\ 2

7113(EF,17175,) + E L(F)[1113(EF,,JIg)]] (1.97)
r=1
where,

L (E,ng) = {7 (Er,, ”g)}3/2

The EP in this case is given by

J=M; | Ng(E,n,)dE 1.98
g

Eo
where
NB(E7 ng) =73 (E/7 ng)f(E)

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in this case can be written following (1.93) as

W (nm/d.)’ B (k)
_|_
2m, 2m,

=73 (E.n,) (1.99)
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the expression of the Nopr(E) in this case can be written as
meg, Nz max
Nopr(E) = ng Z Top(E, g, n;)H(E — E, po) (1.100)

n,=1

where,

Top(E. g, n;) = [3(Eong) = B (nem/do)* (2me) ™).

The sub band energies E, po in this case given by

{h(nzn/dz)z}(2m0)71 =73 (En;D(); ”]g) (1.101)

The EEM in this case can be written as
m*(Epiup, g, n:) = me[y3(Epiap, )] (1.102)

Therefore under the same conditions as used in obtaining (1.48) from (1.2), the

2D carrier statistics in this case can be written by using the same conditions from
(1.77) as

me Vnzmux
nap = n—;z [Top(Er1mp, Mg, 1) + Tiop(EFimp, Mg, 0;)] (1.103)

n,=1

where,

Tiop(Erimp, g, 1) = ZL [Ton(EFiap; g, 02)]

The EP in this case is given by

J2D—Mgz / E, 1140, n;)dE (1.104a)

min En po

where

73 (EnZD% ng)

No(E,n,,n;) = T, (B, n,,n,)f(E) x
( g Z) 9D< g Z) ( ) Vg(EnZD% ng)

Under the condition o — 0, the expressions of total 2D DOS, for semiconduc-
tors without forming band tails whose bulk electrons are defined by the isotropic
parabolic energy bands can, be written as
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Zmax

Napr(E) = ’Z“g”ZH(E E) (1.104b)

n,=1

The sub-band energy (E,,:p ) , the nyp and the EP can, respectively, be expressed
as

2 nr\?
E, = == 1.105
= () (1.105)
Ck Tg, "o
nop = B8y ZFO Moy) (1.106a)
n,=1
o,ekpTg, ma
JQD:Td?ZnZ[FO(%)], (1.106b)
where,
d;\ (v2m, 1/2 1 W (n.m 2
> (= - = - [ ==
ng. > (n)( 5 )(W hv)/“andn,, T Er e \d

Converting the summation over n, to the integration over n,, (1.106b) gets
transformed to the well-known relation as [38, 39]

_ Anogem.g, (kBT)2

R Fi(ng) (1.106¢)

This indirect test not only exhibits the mathematical compatibility of our formu-
lation but also shows the fact that our simple analysis is a more generalized one,
since one can obtain the corresponding results for relatively wide gap 2D materials
having parabolic energy bands under certain limiting conditions from our present
derivation.

(b) The Model of Stillman et al.

In accordance with the model of Stillman et al. [40], the electron dispersion law of
III-V materials assumes the form

E = k> —Tok* (1.107)
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A2> {(Ew +A) 24+ 3E,) )

2 2\ 2
_ me h 2
thh=1—— 3E, 4A
. < m0> <2m0) {< % * - Ego

and my is the free electron mass
In the presence of band tails, (1.107) gets transformed as

2
P ey (1.108)
where,
Iia(E,n,) = an[l — (1 — aizy3(Eny))],an = (4h2"‘ ) anday, = @
meta 7
The EEM can be written as
(1.109)

m* (EFm r]g) = mC{IlZ(EFh, ,,,g) }/

The DOS function in this case can be written as

m\ 32 /
Mio(E ) = (35) Vi n) ra(En)y o)

2

The electron concentration is given by

g (2m, 20 el _
"o =35 <h2> Loy (EF,, ) + ;L(r)[lm (E,n,)] (1.111)
where,
Lo (Er,ng) = {IIZ(EF,L,ng)}3/2
The EP in this is given by
(1.112)

o0
J =M / No(E, n,)dE’
Eo
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where

N9(E7 ’7,;) = Ilz(E,3 ’/’g)f(E)

37

For dimensional quantization along z-direction, the dispersion relation of the 2D

electrons in this case can be written following (1.108) as

hz(nzﬂ/dz)2 + h2(ks)2

2m, 2me ha(E.n,)

the expression of the Nopr(E) in this case can be written as

zmzx

ZTIID (E, ngvnz (E*Enzml)

n,=1

Mgy

Nopr(E

where,
2 2 -1
TllD(E7 '/Igvnz) = [112(E7 ng) —h (Hzﬂ/dz) (ch) ]u

The sub band energies E,,_pi; in this case given by

{I e/} me) ™ = 1o (Bour, )
The EEM in this case assumes the form
m*(Epiup, g 0:) = M|l (Epiap; g, n2)]

The 2-D electron statistics in this case can be written as

where,

S

T12p(EFinp, Hg, n,) = ZL(F) [T110(EFiap, Ng> n)],

r=1
The EP in this is given by

Jop = Ms Z / Nio(E, n,n.)dE

Nz min
En.pnl

(1.113)

(1.114)

(1.115)

(1.116)

(1.117a)

(1.117b)



38 1 The EP from Quantum Wells (QWs) ...
where

L2 (Bupin, 1)

N E) 7n :T/ E7 ’n fE X
9( Mg Z) llD( Mg Z)( ) Iiz(Enlelang)

For unperturbed material, the 2-D EEM can be expressed as

m’ (EFs) = mc{[12(EFs)}/ (1118)

where

I12(E) = all[l - a12(E))%]

It appears that the EEM in this case is a function of Fermi energy alone and is
independent of size quantum number.

The total 2D DOS function in the absence of band tails in this case can be
written as

veon(8) = (25) S {ieten(6-£.)} (o)

n,=1
where, the sub band energies E,_ can be expressed as

hZ
Io(Ey,) =5 — (n,m/d,)? (1.120)

The 2D electron concentration assumes the form

me V”zmux
nyp = nhé; Z (Tss(Eps, nz) + Tso(Eps, n:)] (1.121)

n,=1

where

2 (nm\? >
Tss(Ers,n;) = [Ilz(EFs) ~om. <dLZ> ] and Tse(Epy, n;) = ;L(r)T55 (EFs,n;)
The EP in this case is given by

oo

1 En
_ %oegume 2. )1/2[ \/12 33 /112 dE] (1.122a)

2D —
2nhtd, ‘m.
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The expression of electron concentration for bulk specimens of III-V semicon-
ductors (in the absence of band tails) can be written in accordance with the model of
Stillman et al. as

2m\
ny = 3gnz ( 72 ) M, (EF) + Na,, (EF)] (1.122b)

where,

My, (Er) = [Ii2(Er)]* and Na,, (Er) = ZL [Ma,,(EF)]

The EP in this case can be expressed as

o0
4nogeg,m.
J= T/Ilz(E’)f(E)dE’ (1.122¢)
Ey

(c) Model of Palik et al.

The energy spectrum of the conduction electrons in III-V semiconductors up to the
fourth order in effective mass theory, taking into account the interactions of heavy
hole, light hole and the split-off holes can be expressed in accordance with the
model of Palik et al. [42] as

o -
E = — Bk 1.123
2m, t ( )
where
_ it 1+x” 2 [ (Aﬂl me
B = — (1 — yx = |14+ [— andy;; = —
B 4Ego(mc)2 1+ él ( yll) ! Ego = my

The (1.123) gets simplified as

K2

3o = 3(E) (1.124)

where

2m,

I5(E) = b1 {5112 - ((2112)2 - 4EB“)1/2]’ = < W )
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Under the condition of heavy doping forming Gaussian band tails, (1.124)
assumes the form

k>
= I;3(E 1.125
2m. 13( 711g) ( )

where,
T = N % 1/2
Ii3(E,ng) = biafan — ((@12)” — 4Buiys(E,n,)) 7]
The EEM can be written as
m* (Er,,n) = me{Li3(Er,.n,) } (1.126)

The DOS function in this case can be expressed as

. 2 . 3/2 ,
Nip (E,ng) =3 (h—"§> VI (Eong) {1 (E,m,) } (1.127)

Since, the original band model in this case is a no pole function, in the finite
complex plane therefore, the HD counterpart will be totally real and the complex
band vanishes.

The electron concentration is given by

3/2 s
8v (2me = —
ny = 302 (hz ) [1123 (EF/” ng) + E L(r) [1123 (EFII’ ﬂg)]] (1128)
r=1
where,

I3 (EFW '1g) = {113 (EFm ’ig) }3/2

The EP in this is given by
J:M7/N11(E,r]g)dE’ (1.129)
Eo

where

Nii(E,n,) = Ii3(E', n,)(E)
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For dimensional quantization along z-direction, the dispersion relation of the 2D

electrons in this case can be written following (1.108) as

hz(nzrc/dz)2 hz(ks)z
_l’_
2m, 2m,

= [13 (Ea rlg)

the expression of the Nopr(E) in this case can be written as

Nzmax
m
B Z Ty3p(E, ng,n.)H(E — E, p13)

Napr(E) = g

where,
2 2 ~1
T13D(E7 ngv nZ) = [113 (Ea ng) —h (nzﬂ:/dz) (2mc) ]3
The sub band energies E, p3 in this case given by
{h(nzn/dz)z}(2m6)71 = IIS(EnzDB, ng)
The EEM in this case can be expressed as
m*(Epiap, Mg, nz) = mell3(Epiap, g, 1))

The 2-D electron statistics in this case can be written as

np = 7 [T13D(EF1HD> 1’]g, HZ) + T14D(EF1HD7 nga nz)]

n.=1

where,
T1ap(EFinp, Mg, ;) = ZL (T13p(EFiap, Mg, 12)],

The EP in this is given by

Mzmax

JZD :Mg Z / N13(E, ngo,nz)dE

n .
‘min B, p13

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135a)
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where

N13(Ea nga nz) = T{SD(E? ”ga nz)f(E) X

113 (B 1)
113 (Enzl)13 ) ng)

The 2D electron dispersion relation in the absence of band tails this case assumes

the form

P R
2m,. * 2m,

(nzﬁ/dz)zz I3 (E)

The EEM in this case can be written from (1.135b) as
m*(Egy) = me[li3(Er)]

The total 2D DOS function can be written as

Nopr(E) = (ZC}?) ”Z: {[113(E)]’H(E - Enq)}

n,=1

where, the sub band energies E,, can be expressed as

2

h
Ls(E,,) = e (”zﬂ/dz)2

The 2D electron concentration assumes the form

Mzmax

mC v
nop = nhg2 > [T57(Ery, n2) + Tss(Eps, )]

n,=1

where

Ts7(Eps,n;) =

" (n.m 2
I(Er) — 5 (dL> ]and
C Z

Tsg (EFM nz) = ZL(r)T57(EFS7 nz)

r=1

The EP in this case is given by

_ Opegvme 2 1/2 [nlmax 113(E"z4)

= () Py

2witd, w2 E) ] / 1}5(E)f(E)dE]

“min E.,

(1.135b)

(1.135¢)

(1.136)

(1.137)

(1.138)

(1.139)
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The expression of electron concentration for bulk specimens of III-V semicon-
ductors (in the absence of band tails) can be written in accordance with the model of
Stillman et al. as

g 2me
=75

327 _
=32 ) *[Ma, (Er) + Ny, (Er)] (1.139b)

no

where,

S

Ma,,(Er) = [I3(Ep)]? and Ny, (Ep) = > L(r)[Ma,, (EF)]

r=1

The EP in this case can be expressed as

o0

Eo

.
==

1.2.3 The EP in QWs of HD II-VI Semiconductors

The carrier energy spectra in bulk specimens of II-VI compounds in accordance
with Hopfield model [59] can be written as

E=dkl + bk £ ik, (1.140)

where a) = h*/2m’ b} = i*/ 2mj, and Jo represents the splitting of the two-spin
states by the spin orbit coupling and the crystalline field.

Therefore the dispersion relation of the carriers in HD II-VI materials in the
presence of Gaussian band tails can be expressed as

3 (E,ng) = apk; + byk? £ ok, (1.141)

Thus, the energy spectrum in this case is real since the corresponding E-k
relation in the absence of band tails as given by (1.141) is a no pole function in the
finite complex plane.

The transverse and the longitudinal EEMs masses are, respectively, given by

Ao

Vo) + ddyps (E,m,)

m’ (EFh,ng) = mj_{y3 (E, ng)}/ 1+ (1.142)

E=Ep,
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and

i (Erys 1) = mij{vs (E, ng)}/’EfE (1.143)
It

Thus the transverse EEM in HD II-VI semiconductors is a function of electron

energy and is double valued due to the presence of 4y and due to heavy doping the
same mass exists in the band gap.
In the absence of band tails, n, — 0, we get

m' (Ep) =m' |1+ (1.144)
E=Ej
and

m|(EF) = m (1.145)

The volume in k-space as enclosed (1.141) can be expressed as

., i
32, 3(0) (B (37
{n3(Emg) ) +3 7 + i

7o)’ 73(Eon
X (VS(E7 ng) +@> Sin71 3( 8)

V(E’ ng) =

T
/ /
3ag+/ by

4610 3 2
s (Eng) +5)
(1.146)
Therefore, the electron concentration can be written as
n I124(E + L(r)[I124(EF,, 1.147
0= 3n2aoﬂ 124( Fis '1g ; 124( Fy ﬂg)]l ( )

where,

7124(EF/1711g) = {'))3 (EF/mng)
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The EP in this case is given by

\/73(E' 1)
_ ol 1/2/ : £(E)dE/ (1.148)
m11

" 12n2d})\/b), 7% (E [i2e(E

The dispersion relation of the conduction electrons of QWs of HD II-VI mate-
rials for dimensional quantization along z-direction can be written following
(1.141) as

2
7 (E, ng)—a0k2+b0(;> + Joks (1.149)
Z
The EEM can be expressed following (1.149) as

(%) (Errams 1)
[(70)* ~4dlb) (n n) +dayys (Erimp, )]

*

m* (EFIHD7 ng, ng) =m[1F

(1.150)

Thus we observe that the doubled valued effective mass in 2-D QWs of HD II-VI
materials is a function of Fermi energy, size quantum number and the screening
potential respectively together with the fact that the same mass exists in the band
gap due to the sole presence of the splitting of the two-spin states by the spin orbit
coupling and the crystalline field.

The sub-band energy in this case is given by

2

n

73 (Eﬂle47rlg) = b <d—z) (1.151)
Z

The surface electron concentration at low temperatures assumes the form

nop = g;;;l Z (V3 (Eri0p; M) — En,14 + (%)zmjh_z) (1.152)

nz=1

The EP in this cases given by

%8y 12 '““ \/ En.p14; ’78
I ( ) 74(E, n,)f(E)dE] (1.153a)
P d hz mll nlm'n Vg Np;D14, ’73 : £ ]

n D14

The dispersion relation of the conduction electrons of QWs of II-VI materials for
dimensional quantization along z-direction in the absence of band tails can be
written following (1.140) as
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= abl% + b, <'Z ) + ok, (1.153b)
4
Using (1.153b), the EEM in this case can be written as
Y
m*(EFsan) :mi[l +— 5 ( 0) 2 : 2] (1.154)
(o) ~4ay (%) +4dEr]

The sub-band energy E,, assumes the form

E,s = by(n,n/d.)* (1.155)

The area of constant energy 2D quantized surface in this case is given by where

AL(E.n,) = L(:;)z [(/1_0)24—2(16 (E - E) + ,1_0[(1_0)2+ Aq)(E — Enzs)} 1/2”

The surface electron concentration can be expressed in this case as

_2gv Nzmax a
=) / A (Epgons) +A_(Bpem)l = o (E)}E (1.156)

45

where fy(E) is the Fermi-Dirac occupation probability factor.
From (1.156) we get

k T”qu
gme 22N Fo(n,,y) (1.157)

n,=1

where

Mg = (EFS —E,, + (?1)2mjh*2) (kgT)™"

Therefore the EP is given by

opeg, . 2 Mzmax
I = kg T 2288t () P> (/B Fi (1,5)]- (1.158)

nd > my

“min
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1.2.4 The EP from QWs of HD IV-VI Semiconductors

(a) The dispersion relation of the conduction electrons in IV-VI semiconductors can
be expressed in accordance with Dimmock [183] as

2 2m; 2my

P Rk E, K K
5 z:| {.+ o K } PP (1159)

where, Z is the energy as measured from the center of the band gap E,,, m; and mi"
represent the contributions to the transverse and longitudinal effective masses of the

external L, and Ly bands arising from the k- p perturbations with the other bands
taken to the second order.
Substituting, P2 = (R’E,/2m}), P H = (

mj are the transverse and the longitudinal effective masses at k = 0), (1.159) gets
transformed as

thg> and & = [E + ()] (where, m} and

-
2m;

(1.160)

272 h2k2
[E—h k3

2m; 2’"1

P RKE] RAE Rk
Hl—i—ocE—&-oc S+ j}— s <
2ml

2m;" S 2mr o 2mp

From (1.160), we can write
ikt 1 1 1 1 ah*k?
s h2k2 E _ Z
dm TR [(2 < 2m ) e (th 2m,+> +4mlm,+}

m
k2 h2k2 1 1 'tk
[( < > h2k2(>+ - E(1+ocE)] =0
2 m, ml 4ml

(1.161)

Using (1.161), the dispersion relation of the conduction electrons in HD IV-VI
materials can be expressed as

ah' it
4m,

~Z0(E, 1) + WK a1 (E,n )&+ 2 (B )]

+ (23 (Bng )& + Jaa (Eomg)K: = das (Eme) | = 0

(1.162)
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where,
Z(Eng) =5 |1+ Eif %)] »420(Eong) = 4m;‘m; Z(E.n,)
(B = [ z(En) + (e,
2 81) = (537 32080+ (5 =3l
i) = (g ) 2800+ (5= 3 @]

oli"Zy(E,
() = P a1 (6.1) = o) + 2]

Thus, the energy spectrum in this case is real since the corresponding dispersion
relation in the absence of band tails as given by (1.162) is a pole-less function with
respect to energy axis in the finite complex plane.

The respective transverse and the longitudinal EEMs’ in this case can be written
as

-2

{8 (E.n) )
24 //173(E, ng)

~(@(En)Y |-im(En) +\mEn)|

m*L(EFwng) = {220<E’ ng)} ZO(E7 ”g) 7{}“72(E7 ng) }l+

E=Ep,
(1.163)
where,
Jas(E,ng) = 4270 (E,n,) 225 (E,n,) ]
and
. 2 o sa(Eony) Y asa(Eomy) +2{ s (Ein,) ¥
B = |y B ) 20
V Usa(Eong) )+ 47ss (E.n) s
—Ehy

(1.164)
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in which,

Jas(E,ny)

A3 (E,
)Lg4(E,17g) EM and)t85(E,1’]g) = ) 4(E 0 )
7 s g

j~74 (E7 ng)

Thus, we can see that the both the EEMs’ in this case exist in the band gap.
In the absence of band tails, Ny — 0, we get

2 Ts1(E)Y
m' (Ep) == l—{om(E)}/ +w (1.165)
Tu(E) ||, g,
where
2mIm- 1 oF 14+ aF 2mIm-
E) = ! d E E)=|———— - = t 1
a1 (E) s o211 (E), o211 (E) {2m;‘ 2mt++ P ],asn preanll

) 1/2
(WII)E[T—Z{ : + ! } ~ 1 , T311(E)=M

m;ym omym;” 4m; m/ m; m; - (w“)2 ’
aE(1 + aF) 1 oFE (1+0E)]?
Ey=|——+|——
@311 (E) m,*m; + {Zm;* (th*) + 2m;
and

1 LtoE E o 1 a(1420E)
mi (Er) = (m,*mf) ( o o >+1 2[H+ s *ﬁ} (mfz—)+7

T =
o 2m, 2m; 2 |:[L+H+15_£}2+xE(l+aE):|l/2
2

o = +
m; 2m, 2m,

lﬂl le
E=Ef

(1.166)

The volume in k-space as enclosed by (1.162) can be written through the integral
as

/lgb(E.)]k)

vEn) =2 [ [—[zw(E,ngkfHgo(E,ng)]+WSI(E,ng)kmsz(E,ng)kz+zg3<E,ng) k.

o

(1.167)
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where,
BsalEn) s (Eng) — ina(En)] (£
B 84 (E,1g) | +44s5 (E 1) — Asa(E, ~ In(En,
gs(E,ng) = > . J(En,) = W
j-81 (E7 ”g) EL}wgv j-76<E7 ng) = [;“71 (E7 77g)}27)“76(E7 V]g) = [;“71 (E7 ”g)}z
41t (2o (E. )]
Ja1(Eng) = [2291(E, ng) Aza (E,ny) — 4470 (E,ng) 293 (E, ) — 420 (E, ) 474 (E,m,) |
a8 (E,ng) , \
dgs(Ein,) = ——~"% _and jsg(E,n,) = [440(E,n,) /75 (E,
(B = s (B = Wil s 1)
Thus,
Agﬁ(E‘r"’g)
V(E,n,) = [/s1(E;n,)] / [\/k? + Ass (E, 0 )k2 + Jso (E, ) — Ao (E, ) | dk:
0
(1.168)
where,
A2 (E,ny) 53 (E,n,)
J87(E =2my\/ 281 (E Jgs(E =8 Jso(E =——F£C
87( ,ﬂg) T 81( 777g)a 88( ,ﬂg) ;Lgl(E,"g)7 89( 717g) }~81(Ea77g)
and
Ja9 (E,ng) {76 (Eng) )
/190(Ea ’/Ig) = Zﬂ[ 79( g) {386( g)} +/“80(Ea ’7g)’189(E, 178) '
The (1.168) can be written as
V(E7 "g) = [’137(E’ "g)i%(E’ ”g) - ’190(E’ ”g)] (1.169)

in which,
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/’L9l (E7 '1g)
3

x [{or (B.m) Y4 (B m) Y42 (B, ) Y Fo s (o) o (o))

o (V) Gt 6o 2t

Jos (E, ”Ig) = [_Ei [’193 (E, ’7g)7 o4 (Ev ”g”

1/2

[0 on) Vo e, ] [ (Bo1) o+ sl W]‘“H :

Gon(En) =5 [V s (En) =0 (Bon) + (B | i (Bon) ()]

is the incomplete elliptic integral of the 2nd kind and is given by [129, 130],

293 (Eﬁﬂg)

Elin(En) ()] = [ [{1= {sln) Point e} ]z

¢ is the variable of integration in this case,

o3 (E.n,) = tan™" jzzg: ZZ; {402 (E, n,) }ZE% {lss(ﬁ n,) — \/{igs (E, 11,3)}2—4@9(157 ) }7
mwm:ﬂhmg@é?wmymwmmww%ﬂ

is the incomplete elliptic integral of the 1st kind and is given by [129, 130],

793 (E’V’g)

Flin(En) insEn)) = [ (1= {s(Eng Point e} oz

The DOS function in this case is given by

Nao(Eon) = 22 [Uisr (Bon) Y dss (B.n,) + (dos (.n,)Y B (E.m) — {io(Eon,) Y]
(1.170)
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Therefore the electron concentration can be expressed as

Do _4g_ [IIZS(Eang +ZL )25 (g, M) (1.171)

r=1

where,

Tios (Bro ) = [{ 487 (Ery M) s (Brysmg) — {290 (Eris g )}

The EP in the case is given by

O‘Oegv/f /1100 E m) / / /
X101 (E' 15)dE (1.172)
873 Moo(Emg) !

where,

Jioo(E,ny) = [—273(E, 1) + \/)»%3(5, Ng) + 424(E, 1) s (E,n,)[2224(E, 1))~
and 4101 (E, 1) = [287(E, ) Aos(E,1,) — Z90(E, 1,)]

The 2D dispersion relation of the conduction electrons in QWs of IV-VI

materials in the absence of band tails for the dimensional quantization along z
direction can be expressed as

2 Ik 7 (nr)? 2Kk
E(l+oE) + 0B 524 =2 ) 4 oab-— (Z5) —(1 4 aB) |2t 4=
(1+aE) +o <2X4 s ) 2x(,(d.) (reb)| 5 *

2 2x,

N A AN i ?
_ X X ] — ) < 1 E
x le + 2x2 2X4 * 2)65 * le + 2)62 2x6 (dz ) ( to )2)(3 ( )

R (nm\? (22 Wk R (na\* 12 (nm\® R WK R (ngm)?
g [ == x4 Y - Z A S Sad I x4 Y 4+ — z
2X3 dz 2)64 2)65 2X3 dz 2)6(, dz 2m1 2m2 ZM3 dz

(1.173)
where
N m; + 2m; 3m;m; _ m; +2m; 3m; m;
Xy =m, ,Xs = 3 7x6:2m++m+ax1:m[7x2: 3 ax3:2m,+m,>
1 t 1 t
m’ + 2m; 3m;m;
my =m',my =——"" and i

3 STt amy
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Therefore, the HD 2-D dispersion relation In this case assumes the form

R Rk R (nm\? h2k2 wik;
VZ(E’ ﬂg) +W3(E’ VIg) 2x4 T 2xs * “”(E '1g) 2x6 (d ) (1 o (E7 71g 2x; 2x2

e A O I hzkz g . R (nm
TN T e T2 | T 2 T2, 2x6 (145 "g))m a4

R (n\? (P2 WK e R (nm\? h2k2 R R ()’
—a— (= ) (= gLy (2
2)C3 dz 2)C4 2X5 ZX3 dw 2)66 d 2m1 2m2 ZI’H3 dz

(1.174)

Substituting, k, = rcos 0 and k, = rsin (where r and @ are 2D polar coordi-
nates in 2D wave vector space) in (1.174), we can write

[, L 72 cos? 0 N 12 sin® 0\ (#* cos? 0 N 12 sin® 0 N 2l 12 cos® 0 N 2 sin® 0
4 X1 X2 X4 Xs 2

B (n.m\? (HPcost0 K*sin® 0 72 cos?0 T sin® 6
o + +o +
2X3 dz X4 X5 X1 X2 X6

cos?0 sin0 cos? 0 sin’
+h2(1 +OC“/3(E, ;/Ig))( x +T> 7h20('))3(E, r]g)( X5 'V2 E ;/Ig
2 2 72 2 n,m 4
e () i 22) < )
(1.175)
The area A(E, n;) of the 2D wave vector space can be expressed as
A(E,nz):jl—jg (1176)
where
n/2
7 52/ o (1.177)
b
0
and
n/2 )
- ac
J> 52/ b—;do (1.178)
5 1

in which,
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{ (h4) (0052 0 sin® 0) (0052 0 sin® 0)}
a= |o| — + + )
4 X1 X2 X4 X5
n? cos? 0 sin’0 B\ (n.m 2 /cos20 sin®0
b=+ + +oaf5— ) (= +
2 m ny 2x3 d, X4 X5
oy h_2 n.m 2 coszf)+sin29
2x¢ d, m myp
cos?0 sin%0 cos?0 sin’0
+(1+ocy3(E,ng))< - + - >ay3(E,17g)< - + - >]
and

r4

o= e e (E) ) -t () () o) ()]

The (1.177) can be expressed as

/2
7 _2/ t31(E,nz)d0
! A1 (E, n;) cos? 0 + By (E, n.) sin® 0
0
where,
hz
t31(E7 nz) = ClﬂAll(E>nZ) = z_rnltll(Evnz)a
1 ahi? 2 2 2 1+ oy, (E, E,
(Eons) = |14 my | L2 (1) o ()" Lo (Eong) s (E:my)
X4 2x3 \ d; 2x1x6 \ d; X X4

hz
Bll(E, nZ) =—1N (E, nz) and

2m2
i (nn)2 i (nzﬂ)2+1+0(”/3(E>’7g) ays (E, )

X2 X5

d;

d;

l21(E, }’lz) =1|14+m

2)C2)C6

} |

Ty = nt31(E, n.)[Av (E, n,)Byy (E, n.)] 2 (1.179)

2)C3)C5

Performing the integration, we get
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From (1.178) we can write

5 at3, (E,n)h*

) = (1.180)
2B3,(E,n;)
where,
:/ ap +a2z aq + asz )dz (6)2: <A11(E,nz)) (1 181)
J otz } By\(E,n;)
in which a; Exil,az Exi z=tan0,0 is a new variable, a3 = ,L 045,%5 and

—\2__ (A(En,)
(@)= (Bi(E.,nf))‘
The use of the Residue theorem leads to the evaluation of the integral in (1.181)
as

I :%[a1a4+3a2a4], (1.182)

Therefore, the 2D area of the 2D wave vector space can be written as

E 1 /1 E n)r*
pp(Eom) — T (Eon) [1 __(_+3> Wslz(i")} (1.183)
\/All E,n;)Bii(E,n;) Xs x) 8Bi(E,n;)

The EEM for the HD QWs of IV-VI materials can thus be written as

2

m*(E,n;) = %[HSHD(E, n.)] (1.184)

E=Erinp

where,

1 <1 +Q)M (A1 (E, n,) By (E,n.)] "

Osup(E,n;) = |:1 _X_S x_l 8[B11(E, ”z)]

X |:\/A11(E, I’lZ)BU(E, nz){t31(E, I’lz)},—l’31(E7 I’lz)

1 /[Bii(E,n;) V2o [AL(E, n;) 1
X{E{All(Evnz)} [A“(E,nz)] +§{Bll(Eanz)} |:Bu(E,nz):|
1 t31(E, n.)ali* 1/1 3 )
8 /Ay (E,nm)B1, (E,n,) s <x_1 x_z) [Bir(E, o)
x [{BII(E, n) Y2 {131 (E, )Y —2B11 (E,n) {Buy (Ey ) Y 131 (E, nz)}.
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Thus, the EEM is a function of Fermi energy and the quantum number due to the
band non-parabolicity.
The total DOS function can be written as

Nzmax

Nopr(E) = (gv) Z Osin (E nZ)H(E E,,Zm) (1.185)
where the sub-band energy (Enﬂ) in this case can be written as

B (n.n 2 R (n.m 2
W/z(Ensz7 }’]g) + ays (E"Z7Hn s ng) 2_)66 d_ - (1 + ays (Enﬂ,_,n ) ng)) E d_z

_ah_z T 271_2 T s s ’ -0 (1.186)
2x3\ d; ) 2x6 \ d; 2m3 d,
The use (1.185) leads to the expression of 2D electron statistics as

Mzmax

np = - Z (Tssup(Erup, nz) + Tseup (Eriap, n:)] (1.187)
n =1

where

App(Epiup, ;)
T

Tssup(Epiap,n;) = and

S
Tseup(Eriap, n;) = Z L(r)Tssup(EFiap, nz).

The EP in this case is given by

Nzmax /12 e ”7

doegy ZTHD g

Jop = E / Osim(Eon e
hd, [nzmi“ [712( Ey 71D, ng f (E)dE]]

where,

V12(En1m0, M) = [=710(Entmp, Mg) + \/V%O(EHJHD: Ng) + 4011 (Enmps1,)]/2,

o) = 5 2 1 (1 + oy B 1) 2 = 05 (Enip 1) 2] and
Y10 Ln, 7HD5’7g - 4X3X6 2m3 V3 n;7HD7ng 2X3 V3 (Ln, 7HD7]7g 2)%
okt

yll(EnﬂHDv’/lg) = [ ]71["/2(Enz7HD»77g)]

4x3x6
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In the absence of band-tails the EEM in QWs of IV-VI materials can be written as

2

' (E,n.) = % oS (1.188)

where, |
0s(E,n;) = [1 —xis (xil + x%) % [A10(E, n;)Bio(E,n;)] ™"

x [\/Alo(E,nz)Blo(E, n.){t30(E,n.)} — tz0(E, n.)

x {% {Aw(E,n)Y {%} 1/2%{310(5, n)Y {;%} mH

S s ) P E

< | {Buo(E.no) Y {1(E.n.)Y ~2B1o(E.no){Buo(E. )} 1o (E, )
where

I3O(E7 nz) = Co,

> nm\ >
E(1 4+ oE El— ) (==
a8+ a8 ) (%)

—(1 + aE) <2h_;> <%>2_a (43216) <%> 4] ’

h2
Ay(E,n.) = —to(E, n),

- 2m1
1 oh® (n.m 2+ ah® (n.m 2+ 1+oE oF
X4 2)63 dz 2)61)66 dz X1 X4

co =

llo(E,nZ) =|1+m

|

h2
Bio(E,n;) = —t(E, n;)and

2m2
ah® (n.m 2+ ah? (n.m 2+ 14+oE oF
2x3x5 \ d, 2x2x6 \ d; X Xs

Thus, the EEM is a function of Fermi energy and the quantum number due to the

14+my

lgo(E, nz) =

band non-parabolicity.
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The total DOS function can be written as

Zmax

Nopr(E) = (f—n) Z 05(E,n.)H(E — E,) (1.189)
n,=1

where the sub-band energy (Enﬂ) in this case can be written as

2 (nm\? 2 (nm\?
En 1 En En — = —(1 En — (=
27( +O( 27)_|—oC 27 2X6 (dz> ( +OC 27) 2x3 <d2)

B e\ R (nem\® | (e
ZX3 dz 2x6 dz 2H13 dz

In the absence of band-tails, the expression of 2D electron statistics can be
written as

(1.190)
=0

Mzmax

8v
nyp = %; [Tss0(EFy,nz) + Tseo(Epy, nz)] (1.191)
where,
Ao(Epg, n
Tsso(Ers,n;) = Ao(Er, n:) ,Ao(E, ny)
7'Et30(E, l’lz) |:1 1 <1 3) OCt30(E, nz)ﬁ4] d
= —— =4+ =) ==, an
VAw(E,n;)Bio(E,n,) xs \x1 - x2) 8Bj(E,n.)

S
Tso(Epg,n;) = ZL(r)TSO(EFv; n;)
r=1

where

—7s0 T4/ 30 + 4751
E) =

7s1(

2
ahi* . 1 oE 14aE
E)=[—]'—-—
ySO( ) [4x3x6] [ZX3 2.X6+ 2X3 ],
ahi*
7s1(E) = [—]7'E(1 + aE)

4x3x6
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For bulk specimens of IV-VI materials, the expressions of electron concentration
and the EP assume the forms

mo = (£5) Ma.(Er,) + Na,(Er) (1.193)
= i(:fh / 11171(71(5)'2)/) M,\4(E')f (E)dE' (1.194a)

0

where

oy 2m m;
My, (Er,) = [OCSJAI (Er,) — o3(EF, )%, (EF,) — §4 [Ta, (EF,))]S] \0l5 = { s ‘UAI}

o? 1 - 1 7? o?
@ - )
MTNT6 g mpmy | dmy mommy

As(EF, Ta1(E|
I ) = EB [ (03 ) + B £ ) + 283 )F G )] + 1ER)
[ TAI EFI +AA(EFI) + ZBA(EF;.)}
1/2 R -1/2
x [A3(Er) + B4 (Er,)] " [BA(Er,) + 73, (E,)]
) — tan—! AER) g Ai(Er,) — Bi(Er,)
B4(EF,) Ax(EF,)
1/2
An(ER) = o0 E) +\/hlBr) 45 (BR)| /Y2
Bu(ER,) = [TAz (Er,) — £/ %4, (EF,) — 414, (EF,)
©a, (EF,) a,(EF,)
Ep) = 220 o (Byy) = 28R
t4,(EF,) = »Ta3(Er,) proy
ol 1 o-Ep, 14 oa-Ef 1 1
E _|Z _ b b .
@, (Er,) |:2 [Zm;* 2m; * 2m; } L"f my m,’m,*}

P {1 o- Ep, l+oc~EFhH

_m,*mj 2my - 2m) 2m;
(0 Er,(1 +0-Ep) [ 1 o Ep 140 Ep]
E — b b b b
@ (Er) m; m; 2mf 2myf + 2m; ’
[1  o-Ep, 1+a-Ef a? [ 1 1
Ep) = I L —
w(Er,) 12m:  2m} * 2m; ]’a 4 \mymt  mymf
(En) = 2mfm 2T T 1 A toEn B
- o
AR czhz Comy m; 2m;

+

{ 1 14oa-Ep _oz-EFb}2+a.EF/)(l+o<.EF,))

* — + -t
2m, m; 2m; my;m;

1/21| 1/2
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E(4,q) is the incomplete Elliptic integral of second kind, F(4, g) is the incomplete
Elliptic integral of first kind,

Na, (Er,) ZL My, (ER,)],

—Iis(E') 4/ Ii5(E") + 4116 (E')

117<E/): 2 )
2mims 1 1 1 1

Ii5(E' L — 4 gF' (— ——)]and

15( ) ahz [ml+ml + (ml m;-)} an
4

Le(E) = m’ CE(1+ oE)

(b) The dispersion relation of the conduction electrons in bulk specimens of IV-
VI semiconductors in accordance with the model of Bangert and Kastner is given by

o1(BE)k2 + an(E)k2 = 1 (1.194b)
where
— oyt R (5’ Q’
o1(E) = (26)""| o0(1 + oE) +A’C(1 +mE) ALl +ac3E)]
and

et (A 5+Q°
wz(E) - (2 ) I[Eg()(l 4 OCIE) AZ(I + O(3E)
(R)* =2.3 x 10" "(ev,)?, (5)* = 4.6(R)?,
1 1 1

o = y 02 = -7, 03 = -7,
Ego Ac Ac

A’ =328ev, A.=3.07eV, (0) =13(R)’ (A)’=0.8x10"*(eVm)’

]7

The electron energy spectrum in heavily doped IV-VI materials in accordance
with this model can be expressed by using the methods as given in this chapter as

n\2 02
21(4) = K [{c1(on, E, Ey) — iDy (4 E, Eg)} (R) (02, E, Eg) — iDa(o2, E, Eg)}%

c

2
+{C3(o<3,E,Eg)fiD3(oc3,E,Eg)}(A,), ]+k2[ 2(4) {e1(on,E, Eg) — iDy (o1, E, E) }
(S+0)

N {e3(a3, E, Ey) — iD3 (23, E, Ey) }] (1.194c¢)
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where
a_l a_l a_l G_1+oc,-E
1_Eg’2_Ai.73_A:.” i — ﬂgai 3
2 o
Ci(aiaEarl ) =\ = exp(—ulz) X exp(—p2/4)(smh(pu,)) p_l
D)= v Z{ }
i=1,2,3 Doy, E,n,) = L:/’?j exp(—u?),
Therefore (1.194¢) can be written as,
FL(E, n )k; + F2(E,n,)k; =1 (1.1944)
where,
(R .
Fi(E,ng) = [299(E,n,)] [E—{CI(OHE’ E,) —iDy(o,E, Eg)}
8
(5)° .
+ N {Cs(0a, E, Eg) — iDy (02, E, E, })
(Jig . ;
+T{ 3(03, E, Eg) — iD3(03, E, Eg) }] an
_12(A)? .
Fa(Eny) = Pl ng)] PSS €y, B - iy (1.}
8
S+0) ,
+( Q) {C5(03,E, Eg) — iD3 (03, E, Eg) }]

"
AC

Since F\(E, n,) and F»(E, 1,) are complex, the energy spectrum is also complex
in the presence of Gaussian band tails.
The EEMs can be written as

hz FI] (EF/ )N )

m’, (Ep,,n,) = (=) Real part of (———-=5) (1.194e)
* e 2 lZ(Eang)
hz Fé(EF/ N )

m} (EF,,n,) = (=) Real part of (————%%) (1.194f)
. e 2 F%(EFIM Vlg)

It appears then that, the evolution of the masses needs an expression of the
carrier concentration, which in turn is determined by the DOS function.
The DOS function in this case can be expressed as
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NHD(E”?g)Z%Fé(E,ng), F35(E,n,) = [Fi(E, ny)y/F2(Eon,)] ™" (1.194¢)

The electron concentration is given by

o = 3% Real part of [F3 (Er,. 1) + Y L(1) [Fa(E,, 1) (1.194h)
r=1

3

The EP can be written as

Real part of/ Fs(E', n,)F5(E', n ) f(E)E' (1.194i)

Eo

xpegy
J =
6m2h

where

F3(E',n,)
Fé(E,7’7g) F2(E/7’7g)

Fs(E',n,) =

The 2D dispersion relation in this case assumes the form
k? :F6(E7ng7nz) (1194.])
where,

[1 = F>(E, ) (/)]

F¢(E, n,,n;) =
() = [ g B
The EEM in this case is given by
] n /
m (EFIHD7 i’]g, Vlz) = ?Real part of [F6(EF1HD7 ﬂg, I’lz)] (11941()

The total DOS function can be written as

Mzmax

8v
N2DT(E> :EZF%(Ea ng7nZ)H(E_E”z71HD) (]']941>

n.=1
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where E, ., the quantized energy in this case and is given by
2
1= Fz(E,,ZﬂHD,ng)(nnz/dz) (1.194m)

The surface electron concentration can be expressed as

Nzmax

ny = %Real part of [Z [Fo(Eriup, g, 1) + ZL(r) [Fs(Er1ap, g, n2)l]]

n=1 r=1

(1.194n)

The EP in this case is given by

%pegy g F2 Eﬂ ]Hl)’n r
o = 2581 2 oy Mg I [ FEnnrE)E)
0 ngu Fé(EnzﬂHDang) F2 nnHDvng v
(1.1940)
In the absence of band-tails the EEMs can be written as
" F! (Ep)
“(Ep) = (=) (= 1.194
() = ()G ) (1.194p)
1. F,(Er)
¥ (Ep) = (=) (=2 1.194
mll( F) <2)(F122(EF)) ( q)
where
(R)® (5)° () 1
Fi(E) = + 2F
u(E) [Ega(l—l-oclE) A(1 + o,F) Ag0(1+a3E)” ]
and
A)? S5+0)° .
Fu(E) = (— &) Yoy

Ego(l —|—O(1E) Alglo(l —|—OC3E)

It appears then that, the evolution of the masses needs an expression of the
carrier concentration, which in turn is determined by the DOS function.
The DOS function in this case can be expressed as

N(E) = 3‘:2F;3(E), Fi3(E)= [F11(E) Flz(E)T1 (1.194r)
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The electron concentration is given by

N

ny = % [Fi3(EF) + ZL(") [F13(EF)]] (1.194s)
r=1

The EP can be written as

7= %% / Fus(E')FL, (E))(E)dE! (1.1940)
Eo
where
FlS(El) _ Fl22(E/)

- Fi,(E)/Fi(E)

In the absence of band-tails, the 2D dispersion relation in this case assumes the
form

ki = Fi6(E, n;) (1.194u)
where,

[1 = Fo(E)(n.n/d.)’]

F16(E7nz) = [ Fll(E) ]
The EEM in this case is given by
m*(Er,n) = = [Fig(Er, ) (1.194V)

The total DOS function can be written as

n

Zmax

Napr(B) = 353 Fig(E,n)H(E ~ E,) (1.194w)

n,=1

where E,

w18 the quantized energy in this case and is given by

1 = Fia(Enpy ) (nn/d.)’ (1.194x)
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The surface electron concentration can be expressed as

Zmax

= ivz[z[F“(EF’“Z +ZL )[Fi6(Er,, n:)l]] (1.194y)

The EP in this case is given by

N max F2 " w
Jp =08 N 12 (Enc) / Flo(E,n.)f (E)dE]].  (1.194z)

hd; Fi2 (E":m ) m

“711

1.2.5 The EP from QWs of HD Stressed Kane Type
Semiconductors

The electron energy spectrum in stressed Kane type semiconductors can be written

[184-186] as
(aok()}f)) 2+ (bolc(;f)> 2+ (EOIZEQ 2: : (1.193)

2 2 U
where, [ao(E)]’= A(,(K# Ko(E) = [E —Cre— 22 ‘)} (ﬁ>, C, is the con-

E)+IDy(E)’ 3E 283
duction band deformation potential, ¢ is the trace of the strain tensor & which can be
Ex &y O
written as € = | &y &, O |, C,is aconstant which describes the strain interac-
0 0 &

tion between the conduction and valance bands, E, = E, + E — Ci¢, B, is the
momentum matrix element,

Ao(E) = [1 @), oo —@1,

Eé 2E§ 2E£,
1
ag = — §(b()+2m)
- 1 - - 2n
by==(—m), dy =—
0 3( m)7 0 \/§7

m,n are the matrix elements of the strain perturbation operator,

I,
Dy(E) = (dov/3) Z—é,
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_ 2 I_(O(E) ~ - I_(Q(E)
[bo(E)] :m, [co(E)] = Lo(E) and
zO(E) =|1-— (a();r:/gcl) + 3bE05zz _ S_ZZ]

The use of (1.195) can be written as
(E— o)kl + (E—op)k; + (E— o)kl = hE> —E* + E 41, (1.196a)

where

[ 3_ b
o = |E; — Cie — (a0 + Cl)8+§b08xx P (\/§/2>6xyd0:|,

2
[ 3 b _
w = |E; — Cie — (ap + C1)8+§b08xx —708 — (\/g/z)sxydo},
b
2

3. _
E —Cie— (Elo + C1)3+_b0811 —5¢

o3 5

h (/232)
2= (Vo) [6(E, - Cie) + 3C12],
(

3 = 1/232) [3 (Eg — Cie) + 6Ce(E, — Ci¢) — 2C§e§y} and

= (Yag) [-3Cie(E, — Cie)® +2€32 |
The (1.196a) can be written as
ER* — Tyk? — Tyk? — Tyk? = [qE® — RoE* + VeiE + pe]  (1.196b)
where,
Ti7 =0y, Tyy =, T37 =03, i =qg7, 2 =Re7, 3 = Veyand ty = pgy
Under the condition of heavy doping, (1.196b) can be written as

I(4)k — Tl (1)k; — Tyl (1)k; — Ts7kZ1(1)
= [ge71(6) — Re71(5) + V71 (4) + per1(1)] (1.196¢)
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where,
1(6) = / (E—V)'F(V)av (1.197)

The (1.197) can be written as

1(6) = E*I(1) — 3E*I(7) + 3EI(8) — I(9) (1.198)
In which,
1(7) = / VF(V)av (1.199)
1(8) = / V2E(V)av (1.200)
109) = / V3F(V)av (1.201)

Using (1.4), together with simple algebraic manipulations, one obtains

107) =3 f <E2> (1.202)

IR E

I8) == |1+Erf| = 1.203

and

_;13 _E2 E2
1(9 14+ — 1.204
( ) 2\/— ( ) ng ( )
Thus (1.197) can be written as
_|E E , 3 E? )

1(6) = |5 1+Erf<n—g> [E += ﬂg]—kz\/_exp( )[4E +n} (1.205)
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Thus, combining the appropriate equations, the dispersion relations of the
conduction electrons in HD stressed materials can be expressed as

Pii(E,ng)k; + Qi (E,ng)k + Su (E,ng)k2 = 1 (1.206)
where,
E T17/2)|1 + Erf (E
P = [ = oL LT E])
Mg

E E , 3
1+Erf<n—g) [E +—n} 2\[

i ()il
Pe7

—Re700(E, ny) + Verro (Esng) + > [L+Eif (E/n,)] |

on o) = [FolEone) = (Z/(?, 5; Exf(E, ng)q and
Lf7 o) — T3 2)|1 E E’ 8
() = [(E1) <A/(E>E7>+ 7 ( n)}]

Thus, the energy spectrum in this case is real since the dispersion relation of the
corresponding materials in the absence of band tails as given by (1.195) has no
poles in the finite complex plane.

The EEMs along x, y and z directions in this case can be written as

2
i Erong) = [Fn(Ern) - (/21 + B (1))

X [{AM(EFha 1)} [0 (Er,mg) — (Ti/2)[1 + E’f(EFhv”g)]H
)| (e ()

(1.207)
m;.v (EFM”g) = h? [[VO (EFh’ng) — (T3 /2) [1 +E'f(EFh/'7g)”

X [{AM (Er,,n,) }/[Vo (Er,,ng) — (T /2)[1 + E'f(EFh/”g)]H

Er, T —E%,,
e ()] -G ()|

1
—A4(Er,,n,) 3

-2

*A14(EFh,’1g)
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and

2
m; (EFM ng) - % “7)0 (EFwng) - (T37/2) [1 +Erf(Eph/17g)”_2

X {{Am (EF,I, ﬂg)}l[Vo (EFh7 ”Ig) —(T%7/2) [1 + E’f(EFh/”g)]H

o))

1
_A14 (EFha ng)

2
(1.209)
Thus, we can see that the EEMs in this case exist within the band gap.
In the absence of band tails, Ny — 0 we get
my.(Ep) = Wao(Er){ao(Er)} (1.210)
m(Er) = W*bo(Er){bo(EF)}’ (1.211)
and
m (Er) = W*¢o(Er){co(Er)}’ (1.212)

The DOS function in this case can be written as

Nup (E, ﬂg) = % Ao (E, Wg)

where

Do) = {15(8,)} [ {rs 1) s () (s (o) Y

(A (E )Y (A (E, ng)}’] and
Ais(E,ng) = [[0(Eong) = (Tia/2) [1+ Exf (E/n)]] [0 (Eomg) — (Tar /2) [1 + Exf (E, )]

% [ro(Evng) — (Tso/2) [1 + Exf (E/n,)]]] (1.213)
Using (1.213), the electron concentration at can be written as
g |5 > .
ng = W 1126 (EFm l’[g) + ZL(V) [1126 (EFh, "g)] (1214)
r=1
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where

) A (Er,, 1 2
Lo (Er, 1) = [{ Xlg(g; ;)i
o tlg

}

The EP in this case is given by

o0

AIOO(E/7 ng)S%I (El7 ng) f

_ dpegy /
- 2
6mh Ey Slll(E,ang) Sll(El7ng)

(E)dE/] (1.215)

The dispersion relation of the conduction electrons in HD QWs of Kane type
semiconductors can be written as

Pii(E ny )k + Qi1 (E,ng)k; + Sui (E, n,) (mn./dz)’= 1 (1.216)

The EEM can be expressed as

2

m* (Epiap, Mg, nz) = 714/56 (Eriap; g, 1)

where,

7|1 = Su(E.n,) (n.7/d.)’]

As¢(E,ng,n;) =
! \/Pll(Evng)Qll(E7ng)

(1.217)

From (1.217), it appears that the EEM is a function of Fermi energy, and size
quantum number and the same mass exists in the band gap.
Thus, the total 2D DOS function can be expressed as

Mzmax

Nopr(E) = (%) ZA,sé(EFlleﬂ?g,nz) (1.218)

n,=1

The sub band energies (EnZg HD) are given by

$i1 (Enps g ) (en./d.)” = 1 (1.219)
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The 2D surface electron concentration per unit area for QWs of stressed HD
Kane type compounds can be written as

nop = ~— Z Ts7p(Ersiap; Ngs 1z) + Tssup(Ersiap; Mg "z)] (1.220a)
n =1
where,

Ts1(Ersiup: Mg, nz) = Ase (Epiap, g, 1)

and

Tssup(EF1HD; Ng: ;) = ZL )Ts760(EF 18D, g, 112)-

r=1

The EP in this case is given by

dpegy amay S ( n; 777 r
o = %8S | i1 Eram I [ AlEnny e
hd Su(E

Zmin

N:8HD 9 ng Sll nsHmng Engn

(1.220b)

In the absence of band tails, the 2D electron energy spectrum in QWs of stressed
materials assumes the form

e B
ao(E))  [bo(E)”  [co(E))

(n.m/d.)* =1 (1.221)

The area of 2D wave vector space enclosed by (1.221) can be written as

A(Ea nz) - T[PZ(Ea nz)éO(E)I;O(E)
where

Pz(E7 ny) =1[1- [nzn/dzZ'O(E)]z]'

From (1.221), the EEM can be written as

2
m*(Ep,,n;) = % [P2(Er,, n.)ao(Er,)bo(Er,)) (1.222)
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Thus, the total 2D DOS function can be expressed as

Nopr(E (gv) Z 0s(E,n.)H(E — E,.,) (1.223)

in which,

06(E,n.) = |2P(E,n.){P(E,n.)} ao(E)bo(E) + {P(E,n.)}*{ao(E)} by(E)
+{P(E.n.) Y {bo(E)} ao(E)|
The sub band energies (E,,,) are given by
co(Ep,) = n.m/d. (1.224)

The 2D surface electron concentration per unit area for QWs of stressed Kane
type compounds can be written as

n, <max

Z T()l EFsanz) + T62(EFsanz)] (1'225)

n,=1

np =

2

where
To1(Ery,n;) = [P?(Eps, n)ao(Ers)bo(Ery)| and

Tea(Ersn;) = Y L(r)Te1 (Eps, ).

r=1

The EP in this case is given by

O‘Oegv Mzmax
J2D 2hd [ Co ,111 / 661‘:‘1‘1 ]] (1226)

/x 211

The DOS function for bulk specimens of stressed Kane type semiconductors in
the absence of band tail can be written as

Do(E) = g,(37%) ' Ty(E) (1.227)
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where

To(E) = [ao(E)bo(E)[co(E)]' + ao(E)[bo(E)] eo(E) + [ao(E))'bo(E)eo(E)]

Combining (1.227) with the Fermi-Dirac occupation probability factor and
using the generalized Sommerfeld lemma the electron concentration in this case can
be expressed as

no = g,(37%) ' [M4(Er) + N4(Er)] (1.228)
where,
M4(Ep) = [Zlo(Ep)Z)Q(EF)Z‘Q(EF)}aHd

N4(EF) = i L(}”)M4(EF).
r=1

The EP in this case is given by

o0

- fg,‘;fh / To(E")[eo(E')] f(E)dE'. (1.229)

Ey

1.2.6 The EP from QWs of HD Te

The dispersion relation of the conduction electrons in Te can be expressed as [187]
E = Y, k2 + Y, k2 £ [Y2K2 + y2k2] (1.230)

where, the values of the system constants are given in Table 1.1.
The carrier energy spectrum in HD Te can be written as

13(E,ng) = Y k2 + Wok? £ W3R + y3k2] (1.231)

The EEMs along k, and k; directions assume the forms

. i 4
mz(EFh’ng):W 1— : 3
! \/% + 4‘101)}3 (EFIx7 ng)
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1.2 Theoretical Background
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1.2 Theoretical Background 71

and

. i ¥
mx(EFh7'/Ig) = W 1— - 4
\/lp4 + 4‘#2)’3 (EFh7 ng)

Vg(EF;,vng) (1233)

The investigations of EEMs require the expression of electron concentration,
which can be written from (1.231) as

ny = g_v2 [t11p(EF,s 1) + tonp(Er, s 1) (1.2342)

31
where,

i (Er,,ng) = [3Wsup(Er, . 1) Usun (Er,, 1) — Vel aup (Er,, 1))

E
Vsup(Er,Ng) = M+ lﬁﬂ

2 293
\/lﬂg + 4,75 (EF, ”g)
Dsup(Er,, ng) = 2
1
lp6 = i—z and tzHD(EFh, 1’]g) = ZL(V)IIHD(EFW ’18)
r=1
0 2 /
o0egy \/Wz (L)
_ B, 5. )f(E)dE 1.1234b
J 127‘E2h[/ V%(E/7ng) tlHD( ’7g /] ( 3 )

Eo

The 2D electron energy spectrum in HD QW of Te can be written using (1.230)
as

12

2 2
ksz = Ysup(E, ’7g) — g (%) + 5 %HD(E, Wg) - (ﬂd_FZZ) ] (1.235)

where,

Y/

lp7 - 3/2 and l/ISHD(E r’g)
2

Wy + 473 (E, ”Ig)%‘h + 433
VRV
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The EEM in this case is given by

2

. I Ysup (Erian, Ng)Wspp (EFtap, 1g)
m*(Ep1up, g, ;) = > Wsup(Eriap, n,) £ Lo JARLL =

Vo Erripn,) — (un/d,)?

(1.236)
The total DOS function in this case can be expressed as
gv Mz max
NZDT Z lpSHD E Vlg)H(E - E":59Hu) (1237)

where E,

nsomp 1S the lowest positive root of the equation

12
TN,

2 2
lpSHD(E”Z”HD’ng) l/jﬁ (TE Z) + W7 lpBHD( "59HD7178) <d_> ] =0 (1238)

The surface electron concentration is given by
g Nzmax
nop = ;L Z (1107 (EF1aD Ngs 12) + Lorpre (EF1HD, Ng: 11z) | (1.239a)

Nz=1

where,

2
n
tlHDTE(EFlHDanganz) = [WSHD(EFIHDvﬂganZ) ‘/fa( z) ]and

S

tupre(EF1HD, Ng; N2) = Z L(r) [tipre(EF1aD, 1g: 11z) |

r=1

The EP in this case is given by

_ocoeg f \/W2+4W1/3( nngmng
2¢1/3( nz59HD’r’g

/ lpSHD E Ug)f( )dE]]
E“ 259HD

(1.239b)
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The 2D electron energy spectrum in QWs of Te in the absence of band tails
assumes the form

R = Us(E) — s () Y R(E) - ()V (1.240)

d.
where,
l//4 Vi + 4BV + 4oys
E and
¥s(E) = % 202 Vi(E) = RS

Thus, the total 2D DOS function can be expressed as

Mzmax

Nopr(E (gv) Zt40 (E,n.)H(E — E,_,) (1.241)

where,

tao(E, ) = (W) — () g WA(E) - (“7’5)2]”]”

The sub-band energies (E,_,,) are given by

E., =¥, (nzn/dz)z + 5(n;m/d;) (1.242a)
Using (1.240) the EEM can be expressed as

72
m*(EF,,n;) = Etﬁto(EFw”z) (1.242b)

The 2D surface electron concentration per unit area for QWs of Te can be written
as

Mzmax

8v
mp = p Z [tao(EFy, n;) + ta1(Epy, 1)) (1.243)

n,=1

where

S

ta1(Ers, 1) = Z L(r)tao(EFs, nz)-
r=1
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The EP in this case is given by

[o¢]

o = zo:;lei; [Z [\/m] / o (E,n)f (E)AET]]]  (1.244)

E

212

The electron concentration and the EP for bulk specimens of Te in the absence of
band tails can, respectively, be expressed as

no = 3“37: [M, (Er) + Ny (Er)] (1.245)
and
—zjfg” / \/mm E')f(E)dE/ (1.246)
where,
Mo(Er) = [30s(Er)Ts(Er) — YeT3(ER)],  Ws(Er) = wﬁ% and
() = [l [yUR + 40— andNo) = 3 Lo o ),

1.2.7 The EP from QWs of HD Gallium Phosphide

The energy spectrum of the conduction electrons in n-GaP can be written as [188]

1/2

%) <A
g +|Vs|  (1.247)

2m’ 2mH

E =

2 2 h4k(% 2 2 2
Ak + k2] — W(I<S+I<Z)+|VG\
I

where, ko and |V| are constants of the energy spectrum and A’ = 1.
The dispersion relation of the conduction electrons in HD n-GaP can be
expressed as

1/2
[ S K2

— AR+ K] — 0 -V
2 * +2m‘*|[ s + z] m‘*‘2 ‘ G|

v3(E, ) = (k2 +K2) + |Vg*

(1.248)
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The EEMs assume the forms as

_ hzyg (EFM ”g)

m?(Er,,1,) = > [1 £ (C + bD)[C? + 4bD* + 4bCy3(EF, , 1,)
— 4bCD + 4b%y;(Ex,,n,)D] " 2} (1.249)
and
* hz ! /
mg(Ep,,n,) = 3[t11y3(Ele7ng) — tats(EF,, 1,)] (1.250)
where,
hz 2

b +A,b, 1y = @,
2a?

1 h
C = (Wko/m})*, D = |Vgl, 11 = —a=

= * ) *
2m 2m

i
g3 = (4abe + 4d%c), 22(Er,,n,) = [g2 — 4aCy3(Er,,n,)|(g3) "', g2 = (4a’b* + C* + 4aCD)

The electron concentration can be expressed as

& |5 - -
m 1127(EFh?17g) +ZL(”)[1127(EF;,777g)] (1251)
r=1

nyg =

where
27 (E,, n,) = [Miap(Er, 1))
Miup(Er,,n,) = [2(t1173(Er,» M) + 121) 1/ 281 + to173(EF,, 1)
+ (31/3)0°_(Ep,, n,) + (1a1/2)
% 0 (Er 1)/ 0 (Er,.my) + 15(Er )

— \/t5(Er,; )] + (tarts(Er,,1g) /2)

] Gf (EFh7 rlg) + \/63 (EFm ﬂg) +1s (EFm rlg)
n )

Is (EFh ’ ng)

81
o3| =52 8= —(C + 2aD),

tg1 = [t4) + 465,131 + (483,13,82)(83) '] 131 =

b
a7

t9 = [41‘11[311‘21 + 8!11l21l§1 — (lﬁlgllilaC)(g3)7l],
0_(Er,,n,) = (t31V2)  [te1 + 1173(Er,sMg) — /181 + t0173(Er, s 1))

toy = (13, + 2t1131) and 17 = (211131)
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The EP in this case is given by

PR l27(E' ) f(E) dE/
47r2\/m’f1 J V/1()0(El777g)
0

(1.252)

where

ARtKS AR’K2 8VGh2k?
0 _ [4V2 + 0 _ 0
T ey
_ 43’3(E/7'Ig)h k0]1/2]1/2

mj

leO(Ela ’/’g) = [2’))3 (E’a r’g) + 2\/G -

The 2D dispersion relation in QW of HD GaP can be expressed following
(1.248) as

mn,

LV G BE R (125

kf = tuy;(E,ng) + 121 — t31( pi
Z

The EEM in this case can be written following (1.253) as

2

. T
m"(EFiap, Mg, nz) = > 11175 (Er1ap, Ng) — tarts(Epiap, 1,)t5(Eriap, 1)

n —
X () + G(Erimp. )] (1.254)
Z

The total DOS function up to Fermi level assumes the form

7z max

8v ’ /
o Z [t1175(Er1up; Ny) — tarts(Epiup, 1,)t5(EFiap, 1)

ne—1

Nopr((Eriap, ) =

n _
[( d Z)2 + tg(EFlHD7 ng)] l/zH(EFIHD - E”zSTHD)
z

(1.255)

where, E, ., is given by the equation

T T
t11y3(En7_8THD7 ng) + by — t31(71)2 — Iy [(72)2 + tg(E"zsmm ng)]l/z =0 (1256)
z Z
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The surface electron concentration in QW of HD n-GaP can be written as

Mzmax

ns = iz f3HDGaP(EF1HD,11g,nz) +I4HDGaP(EF1HD,11g,nz)] (1.257a)

-

where,

n
tiapGar(EF1HD, ngz) = t173(Er1mp, 77g7nz) + 1 — 131 (d—z)2
Z

nn,
— t[(— pi 5 + £ (Eriap. Mg 1z)] 12
4
tanpGap(EF1HD, Mg: N2) = ZL [t3:DGaP (EF1HD; g5 112)]
The EP in this case is given by
n [o¢]
aoeg <max
Jop = %[Z [7/101(Enzxmm U PERL: / 7101 (E, Wg;nz)f(E)dEH

4dzn m Nz min
Il En, 8THD

(1.257b)
where

n _
Y101 (Ea ’1g7nz) = [tll'))g(E, ng) - t41t5(Ev ng)t/S(Ev ng)[(diz)z + tg(Ea ng)] 1/2]

Z

The 2D electron dispersion relation in size-quantized n-GaP in the absence of
band tails assumes the form

2 2 2 2 211/2
E = ak® + C(mn/d,)> + |Vg| - [Dks + |V62+D(nn/d,) } (1.258)
The sub-band energy (E,,,) are given by
2 2 2 1/2
Er = Clanc/d.)’ + |Vo| = ||Vl +D(mn./d.)’| (1.259)

The (1.258) can be expressed as

K = tp(E,n,) (1.260)
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in which,

t(E,n;) = [{2a(E — 1) + D} — {[2a(E — 1) + Dl —4d? {(E B 1‘1)2—t2} }1/2}
n = |Vg| + C(mn./d.)* and t, = |V |*+D(nn./d.).

The total DOS function is given by

Zmax

Napr(E ZZ thy(E,n,)|H(E — E, ) (1.261a)

Using (1.260) the EEM can be expressed as

. i
m*(Ep,,n;) = 5412(15&”1) (1.261b)

The electron statistics in QWs in n-GaP assumes the form

Mzmax

nyp = [(Alij) HZZZI [f42(EFs; nz) + t43(EFS7nz)H

. (1.262)
143 (EFsan) = ZL(F) [t42(EFs7nz)
r=1
where,
N
t43(Epy,n;) = ZL(V Vta2(Ers, 1)
r=1
The EP in this case is given by
o egv Zmax
Sy = —208 (NS5, / lo(Esn)f(E)E]]  (1.263)
8d,ma? /mj i
mm )l 13
where
2h%kg 4Rk 8VGhk2
leZ(Eﬂ;U) = [2Enm +2Vg - e [4‘/2 + m*zo T 0
Il [ I
_ 4Eﬂzlsh2k(2)]l/2]l/2

m
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The EEMs in bulk specimens of n-GaP in the absence of band tails can be
written as

2

N h
my(Ef) = > [t — ta1t5(EF))] (1.264)
and
hZ
m(Er) = (1 — CHbCEF + 4p*D* + C* — 4bCD] /) (1.265)
where
—4aCE
ts(Er) = [g2g73F] 12

The electron concentration and the EPin this case assume the forms

no = % M, (Er) + Ny (Er)] (1.266)

o0
%8y M, (E')

J =
1672, fmtJ Viea(E')
I £

f(E)dE' (1.267)

where
My(Er) = (200 Er + i) Vi Er ¥ a1
+ 07 (Er) + L (B(Er)\ 62(Er) + 15(Er)
 das(Er) | [$(ER) + VP (E) +s(Er)|
2 i5(Er)
D(Er) = (1V2) [to1 + Ertny — [ts1 + 191 E¢]"/?]
NEF) = 3 LM )
and

21%k2 N Aky  8Velky 4E/h2k(2)]1/2]1/2

i mit o m

“/102(E/) = [ZE/ +2Vg -
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1.2.8 The EP in QWs of HD Platinum Antimonide

The dispersion relation for the n-type PtSb, can be written as [189]

a a at
[E+ dok — e ][E + 8 — v—k2 'k 7= I(E)k“ (1.268)
The (1.268) assumes the form
E + 01k + iak2][E + 3o + 03k? — 04k?] = L (k2 + k2)? (1.269)
where
w) = [/IO%Z—H%Z}, wy = )voazz, w3 = [n’azz— vazz], Wy = vaZz, I :I(%z)z,

Ao, 1, 0o, v, n’ and a are the band constants.
The carrier dispersion law in HD PtSb, can be written as

Tllk? - kf[Tzl(E Ng) — T31kz2] + [T41k? —Tsi(E, ’/]g)k? —Te1(E,n,)] =0

(1.270)
where,
T = (I — ww3), To(E, 1) = 0100 + 173(E, 1) + @373(E, 1)1
T35 = [211 + wrwy — w2w3] Ty = [211 + w2w4],
TSl(E ng) [a)Z/O(E ng) (1)4"/3(E, ng) + 602’)/3(E7 ng)]a
Tﬁl(E ng) [ (Ea ng) VOV3(E7 ng)]and
v8(E,ng) = 200(E,n,)[1 + Erf(E/n,)] ™"

The EEMs are given by

2
mt (EF/m ”g) = F]l [Tél (EFm ng)
n (T21(EF, 1g) T3, (EF, 1) + 2T1]Té1(EFh7ng)} and (1.271)
\/T221 (EF,,n,) + 4T Te1 (ER,, 1)
2
mt (Ep/,, ng) (2T )[TSI (EFh7 Wg) + [T51 (EF/, ng)TSI (EF/, ng) + 2Ty T61 (EFh7 ng)]

x [T2,(Er, 1) + 4T Tot (Egy, )]~ (1.272)
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The electron concentration assumes the form

no = % Tios(Er, 1) + > L(r)[Tios(Er, . 1)) (1.273a)

r=1
where,

I28(Er,, ) = [Menp(Er,, 1)),

3
Menp(Er,, 1) = [Touap(Er,, 1) poup (Er, s 1) — Thon

3
TZI(EFi >ng)
T E _C
o1 ( Fi» 715) 2T )
o (Er, 1) = [(2T41) " [T51(Ep,,n,) + \/TSZI (Ery, 1) + 4T Te1 (Er, ,m)))'
Tio1 = [T31/2T11],
pZHD(EF/ ) r]g)
J3(EF,,n,) = f[[Ay{D Er,,0,) + Biup(Er, 1)\ Eo(n(Er, . n,), t(EF,, 1))
- [AgHD(EFw r’g) - BgHD(EF/,v ng)]FO(n(EF/n r’g)v t(EFhv ng))]
P2up(EF, s 1g) 1/2
+ % [(AgHD(EFI(7 ng) - p%HD(EFb ) r]g))(B%HD(EFm ng) - p%HD(EFh’ r’g))} ! 3

Eo(n(EF,,n,),t(EF,,n,)) and Fo(n(EF,,n,),t(EF,,1,)) are the incomplete elliptic
integrals of second and first respectively,

Al (Er, ng) = ;[le(EFha’?g )+ \/T12 (EF,, ) — 4T13(EF,, 1,)],
T12(Er,, n,) = [T7(Eg,,n,)/Te1]Ter = [T5, — 4T\ Tui),
T7(Er,,n,) = [2T31T21 (EF,, g) — 4T11 T51(EF,, 1),
T13(Er,, g) = (Ts(Er,;1,)/Ts),
Ts(Er,,n,) = [T3,(Er, 1,) + 4T1iTe1 (Er,, 1),
Bp(Ery ) = 5 [Ta(Ery. 1)~/ Th B ) — 4T15(Eryon,),

T = [VTe1/2T1)t(Er, 1) = [Bs(Er,, n,)/As(Er, m,)],

. pZ(Eang)
n(Er,,1,) = sin™! [Z———5
( Fy g) [B3(EF1,717g)
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The EP in this case is given by

\/ Utoo(E', ) [Lios (E', m, ) f (E)dE'
= 0%y / i ¢ (1.273b)

~6n%h Uloo(E', ”Ig)

where

Unoo (') = (2Tar) ™ [Ts1 (B 1) + /T (B, n,) + 4T Tt (B, )
From (1.270) the dispersion relation in QWs of HD PtSb, can be expressed as
Ti1k — Pip(E,ng,n.)k; + Papp(E, 1y, n;) =0 (1.274)
where,

Piup(E,ng,n;) = [T21(EF,,ng) — T31(nn./d;)]
PZHD(E7 M) nZ) = [T4l (Tmz/dz)4 —Ts (EF1,7 ng)(nnz/dz)z — T (EFh’ ng)]

(1.274) can be written as
k2 = Ago(E, n,, 1) (1.275)

where,

Aco(E, g, 1) = [Piap(E, ng,n;) — \/P%HD(E7 Ng,1z) — 4T11Paup(E, 1y, 1))

The EEM assumes the form

2

m*(Ep1up, g, ;) = 7A/60(EF1HD> Ng>1z) (1.276)

The surface electron concentration is given by

Nz max

Z [A6o (EF1:p; gs 11z) + Beo(EFi1mp, Mg, 1) (1.277a)

n.—

8v

ngp =—
2n

where,

S0
Beo(EFinp, g, nz) = Z L(r)[Aeo(EF11p, g, )]
r=1
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The EP in this case is given by

Zmax UIOO Ny a’/l
%0eg, G2 ns / Al (E, g, n.)f (E)AE (1.277b)

Jop =
2hd, n_ U100 12100 9 ’Ig
min Enroo
where E, , is the lowest positive root of the equation

P2HD(E11:]OO’ nganz) =0 (1.277¢)

From (1.269), we can write the expression of the 2D dispersion law in QWs of n-
PtSb,, in the absence of band tails as

K = ty(E, n;) (1.278)

where,

t44(E, nz) = [2A9]_1 |:—A10(E, nz) + \/A%o(E, nz) + 4A9A11(E, nz)],
2
nn,
(U3E+601{E+5o—w4< ) }
d;
;)\ > wm\*
21 <
+“’2“’3<dz> i ‘(dz> ]

A = [I] —+ 601(1)3] Alo(E }’lz) =

and

2
E E+5o—a)4<%>
d,

2

n

E + 6y — <
oo “"‘(d)

Al](E7 I’ZZ) =

The area of k, space can be expressed as
A(E,n;) = mtge(E, ny) (1.279)

The total DOS function assumes the form

Mzmax

Naor(E) = 55> [tu(E.n) H(E — E,.) (1.280)

n,=1
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where the quantized levels E, ,

E,,=(2)" [— {“’2 (%>2+ %0 = @ @1)2}

can be expressed through the equation

1/2
nnzzé 7rnz22417m4 nn.4 5nnz2
+ wy & + 00 — 4 d—z + pa + wymy dz — w00 d—z
(1.281a)
Using (1.278), the EEM in this case can be written as
x 7,
m*(Ep,,n;) = 7t44(EFS,nZ) (1.281b)
The electron statistics can be written as
nop = —Z taa(Er., n2) + tas(Ep., 1) (1.282)
n,=1
where
s
tas(Epap, ;) = Z L(r)[ts4(EF2p, n:)]
r=1
The EP in this case is given by
v w }’l
Top = 2068 Z 100 (Ers) / #,,(E,n.)f (E)dE (1.283)
dzh noo wlOO n; 14

Enyg

where

wloo(E) = [H((DzE —+ (30602 — (/)4E)2 —+ 4((/)2(04 —+ Il)(E2 —+ 50E>1/2 —+ ((,OzE
+ S0y — w4E)|[2(wp4 + 1)) 7).

1.2.9 The EP from QWs of HD Bismuth Telluride

The dispersion relation of the conduction electrons in BiTe; can be written as
[190-192]
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E(1 4 aE) = @k} + dok; + @3k + 24k ky (1.284)
where
n? W n? n?
0 = 2—mOO€11, Wy = Z_moom’ 03 = 2—”1(]0!33, W4 = 2—’%00!23

in which o, 0, 033 and o3 are system constants.
The dispersion relation in HD Bi,Te; assumes the form

12(E, ) = @1k; + @k + @3k; + 2akky (1.285)

The EEMs can, respectively, be expressed as

2

) h

my(EF,; 1) = Z—Mv’z (Erys 1) (1.286)
h2

my(Er,,1,) = 2—wzv’2(Ep,,, M) (1.287)
hz

m;(Ep,,n,) = ﬁy/z(EFha M) (1.288)

The DOS function in this case is given by

(B ) (En,
N(E) — drg, (270 72(E;1g) 75 (E, ) (1.289)

(=5
2
h Vo003 — 4oy 103,

Thus combining (1.289) with the Fermi Dirac occupation probability factor, the
electron concentration can be written as

8v (2m0
ng = —
0732\ 2

)3/2(061106220633 - 4“11“%3)71/2[U1HD(EF;,7 Ng) + Uaup(EF,, 1)
(1.290a)

where,

Uinp(EF, s Ng) = [72(EF,; 1,)] 2 Usip (EF,,ng) ZL )U1up(EF, ;1))
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The EP in this case is given by

2molgeg,\/ @ _1,2m T
=V fi : [\/061106220!33 — 4oy 035 1(—h20)3/2 / 72(E', n, )f (E)dE'
Ey

(1.290b)

The dispersion relation in QWs of HD Bi,Te; can be expressed as

T, B _ _
n(E.ng) = o1 ) + @2k? + @3k2 + 2Dak:ky (1.291)
The EEM can be expressed as
* mo /
m*(Epiup, Ny) = ———=—===="2(Er11,1,) (1.292)
\/ X133 — 40(23
The surface electron concentration can be written as
nyp = ZRao (Er1up, g, nz) + Re1 (Epimp, 1y, )] (1.293a)
n,=1
1 ZMOVI (EFIHD7 n ) 2mgy mn
Rso(EF1up; Mg, 1) = : . % (=) and

Vooss — 403, n? W (dx

Re1(EF1mD, Mg 0:) = ZL [Reo(EF1HD, 1, 1]

The EP in this case is given by

J— ogoegvﬁ/ ni“* \/ /2 ngw-m’r/g

))2 M790HD ng

/ Riy(E,ng,n)f (E)AE  (1.293b)

" 290HD

Nz min

The 2D electron dispersion law in QWs of Bi,Te; in the absence of band tails
assumes the form

(1+ocE)—c01(d Ty + Wk, + @3k + 20ak-k, (1.294)

X
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The area of the ellipse is given by

T 2moE(1 + oE _ T
An(E, ny) = —— = { 0 (2 )—wl( )
\/ o33 — 40(23 h dx

The total DOS function assumes the form

nX max

8vMo Z
hay [Oln0l33 — 4&%3 ny=1

where, (E,,,) can be expressed through the equation

Nopr(E) = (1+20E)H(E — E,_,)

nyT

d

_ 2
E'lzls (1 + aE”zlS) = 0‘)1( )

The EEM in this case assumes the form as

_ m()(l + 2OC(EE‘))

m*(Ep,) = ———=—5=
0033 — 4OC%3

The electron concentration can be written as

B kB Tgv mg Ny max

nop = 5 E
nh A/ 0la20l33 — 4&%3 ny=1

93

(1.295)

(1.296)

(1.297a)

(1.297b)

[(1 4+ 20E)Fo(n,,,,) + 20ksTF 1 (1,,,)]

(1.298)
where,
EFS - Enzls
7711]5 D —
kgT
The EP in this case is given by
owpeg, (kgT)v/ o1 @ JE, (1 +aE,
J2D _ - 0€8 ( B ) 1 [Z ‘15( 215)[(1 +20‘En115)F0(77n15)
(nh\ dz) \V 220023 — 40(_232 Hzmin (1 + 20(E”115)
+ 200k TFy ()] (1.299)
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1.2.10 The EP from QWs of HD Germanium

It is well known that the conduction electrons of n-Ge obey two different types of
dispersion laws since band non-parabolicity has been included in two different ways
as given in the literature [193-195].

(a) The energy spectrum of the conduction electrons in bulk specimens of n-Ge
can be expressed in accordance with Cardona et al. [193, 194] as

1/2
E2 hz
S L E, K 1.300
4 + 80™s 2m1 ( )

E, K2
E=— —80 __Z
2 T 2m;

+

where in this case m and m) are the longitudinal and transverse effective masses

along (111) direction at the edge of the conduction band respectively
The (1.300) can be written as

2
K2 R k2 Rk

S — E(1 + oE | —(1 +24E z 1.301
2m’, (I+e )+°‘<2m* (1+20E) 2m’ ( )

m
\ l

The dispersion relation under the condition of heavy doping can be expressed
from (1.301) as

2
h2k2 2k2 2k2
S =, (E 2 —(1 4209, (E —= 1.302
o ya( ,ng)+oc<2m*| (1 + 2005(E, 1)) 2 ( )
The EEMs can be written as
m;k (EFha ’/’g) = miy/Z(EFhv ng) (1303)

and

[Vg (EFh7 ng)[l + 20(?3 (EFh7 ng)] - VI2(EFh7 ng)}
11+ 2093 (Ep ) — o (B, )

]

m: (EFh7 ng) = mﬁ [V/3 (EFh7 ’1g> -

(1.304)
The electron concentration can be written as
8ng,m’ , [2m} 5
- _
nop = T 1129(EFh7 ”g) + ZIL(r) [1129 (EFh7 '/Ig)] (13053)
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where,
Lo (ER,, 1) = [Msup(EF,, 1)),

o
M8HD<EF111 '/Ig) = [V3 (EF/n ng)} ' [VZ(EFIN ”g) +z

s 73 (Er,,1,)]

13(EF,, ;)
_ % (1 + 2ap3(EF, 1))
4naoegv / 200(E, 'Ig) /
J= \/E (oo (B )1 = — g/ (B)dE
g ym(E’ Mg)
(1.305b)
where

72 W i

(1 + 2a3(E. )]

P e (14 223 B, )] — [

mj
)1

P200(E, 1) = [2“(2 -
)

h2
- 4’))2(Ea ng)(z *
)

Zm|

In the presence of size quantization, the dispersion law in QW of HD Ge can be
written following (1.302) as

w) —(1+2ozy3(E,ng))w (1.306a)

2m’

s E
* VZ( ang) +O{< 2mﬁ ”

The EEM assumes the form

. N ah? n.m
m; (Eriap, Ng,nz) = m' [V5(Erimp, ) — g (dL)ZVQ(EF/,’ M) (1.306b)
™=

The surface electron concentration per unit area is given by

* Mzmax

m
nyp = nth Z [Ri(EF1mp, ”Ig,nz) + Sl(Eme,ng,nz)] (1.307a)

n,=1

where,

*

rz2<nzn/dz>2>2
ZmH

Ri(Eri1p, Mg nz) = [72(EF1up, 1) + 0‘(

— (14 203(EF11p, 1))
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and

s
S1(EF1HD; Mg, 1) = ZL [Ri(EFi11D, Mg, 12)]

r=1

The EP in this case is given by

e vm* nm’iX\/W
Jop = ETLN / R\(E,n,,n)f(E)dE  (1.307b)
dz nh n; /200( N2100HD ) ﬂg

min

En, '2100HD

where E is the lowest positive root of the equation

'Nz100HD

2 2
he on,moo., e n,m

(d_z) ] - [1 + 200)3 (Enzl()UHD7 ng)] <d_7)2 =0

72 (Eﬂ:moﬁm '/’g) + OC[

2m"‘| ZmW

In the presence of size quantization along k, direction, the 2D dispersion relation
of the conduction relations in QWs of n-Ge in the absence of band tails can be
written by extending the method as given in [187] as

ek
2my  2m;

= 9(E,n.) (1.308)

where,

(E,ny) = |E(1 +oE) — (1 + 20E) ('
) = 205 \ d

2
2 (n.m 2
2mj; \ d,

and

*_ %

o 3mHmL

3_2 * *
m m

The area of ellipse of the 2D surface as given by (1.308) can be written as

2 [k ok
AEn) = TV 0 ) (1.309a)
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The EEM in this case can be written as

m*(Ep,;n;) = (/mim3)[y(Er,, n)| (1.309b)

The DOS function per sub-band can be expressed as

|2k 2 JE (M 2 (1.310)
2m; \ d, '

The total DOS function is given by
R (mn\?
14 24E -2 -
+ 2o o <2 ( i ) )
where, E,  is the positive root of the following equation

R (mn\? e A :
Enl‘f’(l + aE”zlﬁ) - (1 + ZaEnzlc) <ZM§ <dzz) > ! a<2M§ <dzz) > -0

(1.312)

¥ 0%
4\/mim;

T

Nop(E) =

Mzmax

NZDT \/m mzz

n,=1

H(E — Ey)

(1.311)

Thus combining (1.311) with the Fermi Dirac occupation probability factor, the
2D electron statistics in this case can be written as

4,/m mikg T "emas
222N (A +20m,, JFo(n,, ) +20ksTFi (1, )] (1313)

- 2
mh —

n

kaT [EFZD - En716]~

Ar(ny) = [1 + 2012 /2m%) (nn, [ d.) }andnnzm =

The EP in this case is given by

ope 4kgT \/mims &2\ /501 (Bpe)
s = 206 T R 1o Bras)yy ) 42, o, )

dhwh e (B)
+ 20kyT Fy(n,, )] e

The expressions of EEMs’ in bulk specimens of Ge in the absence of band tails
can be written following (1.301) as
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m} (Er) = m| (1.315)
m;(Er) = m’| (1 4 20EF) (1.316)

The DOS function for bulk specimens of Ge in the absence of band tails can be
written following (1.301) as

3
2mp\* | 1 5 s 18a(m 2 4\3
e = (532) [E“a“m?({f) £ o = (-

(1.317)

Using (1.317), the electron concentration in bulk specimens of Ge can be written
as

5 189 kT
no = N F%(’?)_ZakBTF%( )—i—T kBT(mll B > Fg(’?) .

n? '
2amiksT\ 2
N zgv<m>

(1.318)
2
The EP in this case is given by

dageg,m . _ 5 1080k T3 m)
T mD) ™ ) 2 Fony) — 3 oG Rany) + 52— ()" Fa o)

(1.319)

J =

(b) The dispersion relation of the conduction electron in bulk specimens of n-Ge
can be expressed in accordance with the model of Wang and Ressler [195] can be
written as

2
h2k2 h2 k2 h2k2 2 h2k2 h2k2 h2k2
E= S el A 1320
2m A <2mj> * (2mj> omi )~ "\ 2m; (1.320)

where,

oy = 54(2 ) By = 1.4ps,

4dm*
Bs =——1[(m})~" — (mo)”'J*, 05 = &7(7&;’”“) %7 = 0.8f85 and &g
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The energy spectrum under the condition of heavy doping can be written as

N A N Y i e\’
E _ "t s _ 5 s\ _5 s 2| _ 5 z
15(Esng) 2m * 2m’ i (2mj> s <2m’i> 2m] %o 2m

(1.321a)

The sub band energy and the 2D Dispersion relation can respectively be
expressed as

_ _ nmn N Ty
[068 - OC3(dL)2 - 0510[( d ) + OC11( d ) + all(En:[IDZAH ;/’g)]l/z] =0 (1321b)
4 Z Z
h2k2 _ 1/2
oy 8 — gk — oo [k7 + okl + a2 (E, )] (1.321c¢)
'

where

1 n? | e e
= —_— = — —_ 4
®= 0w *T 2oc4 (2mH) 0= 5% (Zmﬁ) 5T T Al

2my [ Ao — 2005 2my (1 — 4oy (En ))
H 4 5 - H 4’))3 v lg

— | —=———| and u13(E,n,) = (—

h’ [ } 2(E:ng) = W ) [ os” — 4020

o1 =

06_52 — 40400

The EEMSs’ can be written as

. my5(Epns 1)
mz (EFhv'/Ig) = [ H — £ |
\/1 - 40{6?3(EF/17 ng)

(1.322)

m’ Y3 (Epn,s 1)
\/1 4“4?3 (EFhv ng)

(EFh77]g (1323)

The electron concentration in HD Ge in accordance with the model of Wang and
Ressler can be expressed as

zhgz [I5(EF,, 15) + 14(EF, , 1,)] (1.324a)

nyg =
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where
_ %) _
13(EF/lvn.v) = l:agpl()(EFwng) - ?p:l‘jO(EFh’ 77\) - “10]10(EF/,777X)}
Lk !
puo(Eron) = [ [t = /T~ Faars(Br )|
6
Ai(Er,,n,) ;
JIO(EF;,v ng) = # [_EO(/“(EF;M '/]g)7 CI(EF,,7 ng))
[A% (EFh 5 ng) + B%(EFM ng)] + ZB% (EFI17 ng)FO(/l(EFh ’ ’7g)7 q(EFh7 ng))}
Ay (Eg,, 1) ~ =
+ % [p%()(EF/M ng) +A%(EF},? ng) + 2B%(EF/17 ’/Ig)]
1
AY(Er,,ng) + po(Erng) | 5 1
— : VAL (Ep,,ng) = 5[0 + /57, — 433, (Er,. 1)),
B%(EFh:ng) + p%O(EFmI/Ig) ! e 2 " 12 e
_ 1 . -
B%(EFW ng) = i [all - a%] - 40‘%2(EF117 7]g)]7
, _ plO(EFm'I )
MEF,,n,) = tan” =&
( Fp ng) [BI(EF]””]g)]
q(EF n ) _ A%(EF;nng) _B%(EFm”g)
Ve A%(EFm”g)
and

N

I4(EFh’ ng) = ZL(F) [13 (EFM na)}

r=1
The EP in this case is given by
- 7203 (B, 1)
O(Oegvml/ 1wl 8 f
J=—"-——= | L(E n,)——f(E)dE 1.324b
2717h3 3( g) ,))/203(E/”1g) ( ) ( )
Ey
where
_h2 i hZ h22 _h2
V203 (E, 1g) = [2“6(2"1—*) ] [2m‘*‘ - (2m—*) - 4“6(2111—*)/3(3 1g)]

The dispersion relation in QW of HD Ge can be written as

1/2
[ nm _ nm -
)2 — 10 {(di)‘* + ocu(dL)Z + o (E, ng) , (1.325)
Z Z

nk? (="
= — Qg ——
amt 0 N,
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The (1.325) can be expressed as

n’k?
o Ars(E,ng,nz) (1.326)
where,
_ _ mm _ o nm _om,m _
A75(E7 7Ig7nz) = [068 — Otg(di)z - alo[(di)él + all(di)z + <>C12(E7 y]g)]l/z]
Z Z Z
The EEM is given by
(Eriap, g, nz) = m ALs(Erpiup, g, 1) (1.327)
The electron concentration per unit area assumes the form
nop = "8 NR (B Aso(E 1328
2D = 2 Z [A7s( FlHD717ganz) + A76(EF1mD, ngan)} (1.328a)

n,=1

where,
A76(EF1HD7’7ganz) = E L(r>[A75(EF1HD777ganZ)]
r=1

The EP in this case is given by

My 1 /0203 (B3 11,)
Hegumy Ly T ¢ / A (B, ng,n.)f (B)E  (1.328b)

Jap =
3 7
dmh ng o 5203( M2205HD 7 178
"05HD

is the lowest positive root of the equation

where |-
A75(Ep,sMgn:) =0 (1.328¢)
and
(2957 + (o10)’]

S203(E, 1) = a1 = \/5201 0202 (E, 11, )] 6201 (B, mg) = (%) — (@02)]
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and

(#)° — 12 (E, 1) (310)]

(@) — (@10%)]

0202(E, 17,) =

The 2D dispersion law in the absence of band tails can be expressed as

E = As(n.) + Ag(n.) p — a4 p* (1.329)
where,
W mn W mn W mn
A = ATl § 20024 — 11—z Tizy2
and
_R K
p= 2m; ' 2my
The (1.329) can be written as
2Kk
. =INL(E 1.330
where,
N(E,n;) = (223)"'[A(n;) — [A(n.) — 454 + 48445 (n.)]'"?)
From (1.330), the area of the 2D k,-space is given by
2 * %
AE,n) = TV (g (1.331a)

72
Using (1.331a) in this case can be expressed as
m’ (Ep,,n:) = (\/mim3) [y (Er., n:)] (1.331b)
The DOS function per sub-band can be written as

4 \/mim}
NZD(E):; h; 21 (E,n.)Y (1.332)
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where

(B n)Y'= o IH(E.n)

The total DOS function assumes the form

Nopr(E) = 4V " '”3 S {L(Em)YH(E — E,,) (1.333)

n,=1

where, the sub-band energy (E,_,) are given by

W onm, R onm,
En - —) 1 - — 1.334
The electron statistics can be written as
4\/m mh
nop = ——3—2 Z ta6(EFs, ;) + t47(Eps, ) (1.335)

n,=1

where

s
ta6(Ers, nz) = I1(EFy, 12), ta7(Eps, 1) = ZL (ta6(EFs,nz))

r=1

The EP in this case is given by

4 Zmax 5204 X
e/ PR / I/(E, n,)f(E)dE]] (1.336)

Jbop =
e dmh’ nzm 5/204( )

where

o P2, W
%«)pmmy[mf¢%?—wgmm.
1.2.11 The EP from QWs of HD Gallium Antimonide

The dispersion relation of the conduction electrons in n-GaSb can be written as
[196]
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2 / 1 2
— Z}:j ES’" E;" 1+ };{f (LC _ mio)}% (1.337)
where
E;a = [Eg ﬂ]e
2(112+T)
The (1.337) can be expressed as
ZZ‘Z = L3(E) (1.338)

where

L(E) = [E + Ejyy — (me/mg)(Ey/2)
— [(Eyo/2) + [((Ey)*/2)(1 = (me/mo))]
+ [(Efo/2)(1 = (me/mo))]* + EEj(1 — (me /my))]'/?]
Under the condition of heavy doping (1.338) assumes the form

R k2
2m

= Bo(E.n,) (1.339)

c

where,

mC E/ E/ E/ mc El mc
Ra(E.ng) = s Bong) + By — 2 — (5P 4 R (- 2R 4 (BP0 - 2
me
+ 73 (EJ "g)Eg(l - m_o)]l/z]
The EEM can be written as
m* (EFha ng) = mC{I36(EFh’ ”g)}/ (1 340)

The DOS function in this case can be written as

v (2m,
Niup(E,n) = 2“;2 ( ) B (E,np) {Iss (s ) } (1.341)

Since, the original band model in this case is a no pole function, therefore, the
HD counterpart will be totally real, and the complex band vanishes.
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The electron concentration is given by

g 2me
no =355 )2 [{L36(Er,, 1)} 3/2+ZL L (Erm) 2 (1.342)

The EP in this case is given by

4opmeg,m. T
*T/I%(E’,ng)f(E)dE' (1.343)
Ey

For dimensional quantization along z-direction, the dispersion relation of the 2D
electrons in QWs of HD GaSb can be written following (1.339) as

n (nzﬂ/dz)2 h2(k5)2
+
2m, 2m,

= I (E, 1,) (1.344)

The expression of the N,p7 (E) in this case can be written as

mc . Nz max
Nopr(E) = g Z T} 10p(E, 1,0 )H(E — B, pi19) (1.345)
n,=1
where,

Tiop(E, 1g,n;) = [Be(E, 1) — K (n.m/d.)*(2me) ],
The sub band energies E, pi19 in this case given by
{hz(nzn/dz)z}(zmc)_l = L6(En.p119, 1) (1.346)
The EEM in this case assumes the form
m*(Er1mp, g, 0z) = me[ly(Epiap, Mg, ;)] (1.347)

The 2-D electron statistics in this case can be written as

Nzmax

Z T11o0(EFiap, Mg, 0z) + Triop(EFiap, Mg, 02)] (1.348a)

n.=1

mLV

h2

nyp =
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where,
T1290(EF18D, 15 ;) ZL(”) [T1190(EF18D, Mg, 12)] 5
r=1
The EP in this case is given by

[ / T110p(E, 0y, n.)f(E)dE]] (1.348b)

"2p119

_ aoegv\/m_c ey /136 (Enlmw ) ng)
\/EdZTCES n, . 1.4)6 (E"Zm 19 ’73)

‘min

The total 2D DOS function in the absence of band tails in this case can be
written as

Mmax

mC V
Nopr(E g ) A{lL6(E)HE — Ey.)} (1.349)

n,=1

where, the sub-band energies E,_,, can be expressed as

244

2

% (nn./d,)? (1.350a)

136(Enz44) =
The EEM in this case can be written as

m*(Eg,) = (m¢)[l(Er,)]' (1.350b)
The 2D carrier concentration assumes the form

Nmax

megy = =
nop = (Thﬁ) > [Tss(Ery, 1) + Tso(Ere, )] (1.351)
n,=1
where
- R
Tss(Ers, n:) = [l6(EFs) — ﬁ(nnz/dz) ] and Tse (Ers, n;) = ZL [Tss(Ers, nz)]

The EP in this case is given by

J OCOegV /mL Zmax A /136 n. 44 / I E)f ]] (1 352)
2D — B) " 6 .
V2d.nh - 136
B g
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The expression of electron concentration for bulk specimens of GaSb (in the
absence of band tails) can be expressed as

32
gv (2me = _
o= 3n2 < 72 ) [Ma,,(EF) + Na,, (EF)] (1.353)

where,
MAIO(EF) = [136(EF>]3/2 andNAlo (EF) = ZL(}’) [MAlo(EF)}

The EP in this case is given by

e gy 2 2mC I
g B / I,%E, (Mar00(E)] f(E)IE] (1.354)
36

Thus, we can summarize the whole mathematical background in the following
way.

In this chapter, we have investigated the 3D and 2D EPs from HD bulk and QWs
of non-linear optical materials on the basis of a newly formulated electron dis-
persion law considering the anisotropies of the effective electron masses, the spin
orbit splitting constants and the influence of crystal field splitting within the
framework of K.p formalism. The results for 3D and 2D EPs from HD bulk and
QWs of III-V, ternary and quaternary compounds in accordance with the three and
two band models of Kane form a special case of our generalized analysis. We have
also studied the EP in accordance with the models of Stillman et al. and Palik et al.
respectively since these models find use to describe the electron energy spectrum of
the aforesaid materials. The 3D and 2D EPs has also been derived for HD bulk and
QWs of II-VI, IV-VI, stressed materials, Te, n-GaP, p-PtSb,, Bi,Te;, n-Ge and
n-GaSb compounds[sub]Band structure by using the models of Hopfield,
Dimmock, Bangert and Kastner, Seiler, Bouat and Thuillier, Rees, Emtage, Kohler,
Cardona, Wang et al. and Mathur et al. respectively and transforming each and on
the basis of the appropriate carrier energy spectra. The well-known expressions of
the EPs in the absence of band tails for wide gap materials have been obtained as
special cases of our generalized analysis under certain limiting conditions. This
indirect test not only exhibits the mathematical compatibility of our formulation but
also shows the fact that our simple analysis is a more generalized one, since one can
obtain the corresponding results for relatively wide gap materials having parabolic
energy bands under certain limiting conditions from our present derivation.
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1.3 Results and Discussion

Using the appropriate equations and taking the energy band constants as given in
Table 1.1, we have plotted the normalized EP from QWs of HD CdGeAs, (an
example of nonlinear optical materials) as a function of d, as shown in plot (a) of
Fig. 1.1, in which the plot (b) corresponds to 6 = 0. The plot (c) has been drawn in
accordance with the three band model of Kane and the plot (d) refers to the two
band model of Kane together with the plot (e) exhibiting the variation in accordance
with the parabolic energy bands for the overall assessments of the energy band
constants on the EP in this case. The Fig. 1.2 exhibits the plots of the normalized EP
from QWs of HD CdGeAs, as a function of the normalized incident photon energy
for all cases Figs. 1.2 and 1.3 shows the dependence of the said variable on the
normalized electron degeneracy for all cases of Fig. 1.2.

The normalized EP from QWs of HD n-InAs (an example of III-V materials) in
accordance with the three and two band models of Kane as functions of film
thickness, normalized incident photon energy and the normalized electron degen-
eracy have, respectively, been presented in Figs. 1.4, 1.5 and 1.6. The Figs. 1.7, 1.8
and 1.9 exhibit the variations of normalized EP from QWs of HD n-InSb as
functions of film thickness, normalized incident photon energy and the normalized
electron degeneracy respectively. The variations of the normalized EP from QWs of
HD CdS (an example of II-VI materials) as functions of thickness, normalized

Normalised EP

45 50

Thickness (in nm)

Fig. 1.1 Plot of the normalized EP from QWs of HD CdGeAs, as a function of d, in accordance
with a generalized band model, b 6 = 0, ¢ the three-band model of Kane, d the two band model of
Kane, and e the parabolic energy bands
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Fllm Thickness = 10nm

Normalised ep

4 (e) Q

10 11 12 13 14 15 16 17 1.8 19 20
Normalized Incident Photon Energy

Fig. 1.2 Plot of the normalized EP from QWs of HD CdGeAs, as a function of normalized
incident photon energy for all cases of Fig. 1.1

Film Thickness = 10nm

Normalised EP

1 10 100
Normalized Electron Degeneracy

Fig. 1.3 Plot of the normalized EP from QWs of HD CdGeAs, as a function of normalized
electron degeneracy for all cases of Fig. 1.1
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11

Normalised EP
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4 |
3] (b)
2] \
(a)
10 20 30 40 50 60 70 80 90 100

Thickness (in nm)

Fig. 1.4 Plot of the normalized EP from QWs of HD n-InAs as a function of d_ in accordance with
a the three band model of Kane and b the two band model of Kane

Fllm Thickness = 10nm

Normalised EP
w

(b)

_ (a)

1.0 1.25 1.5 1.75 2.0 2.25 2.5
Normalized Incident Photon Energy

Fig. 1.5 Plot of the normalized EP from QWs of HD n-InAs as a function of normalized incident
photon energy in accordance with a the three band model of Kane and b the two band model of
Kane
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Film Thickness = 10nm
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o

(b)\

1 10 100
Normalized Electron Degeneracy

Fig. 1.6 Plot of the normalized EP from QWs of HD n-InAs as a function of normalized electron
degeneracy in accordance with a the three band model of Kane and b the two band model of Kane

Normalised EP
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10 20 30 40 50 60 70 80 90 100
Thickness (in nm)

Fig. 1.7 Plot of the normalized EP from QWs of HD n-InSb as a function of d, in accordance with
a the three band model of Kane and b the two band model of Kane
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Film Thickness = 10nm

(b)
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Fig. 1.8 Plot of the normalized EP from QWs of HD n-InSb as a function of normalized incident

photon energy in accordance with a the three band model of Kane and b the two band model of
Kane

Film Thickness = 10nm

Normalised EP

1 10 100
Normalized Electron Degeneracy

Fig. 1.9 Plot of the normalized EP from QWs of HD n-InSb as a function of normalized electron
degeneracy in accordance with a the three band model of Kane and b the two band model of Kane
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(a)

Normalised EP
{=2]

(b)

10 20 30 40 50 60 70 80 90 100
Thickness (in nm)

Fig. 1.10 Plot of the normalized EP from QWs of HD CdS as a function of d, with a Jo =0 and
by =0

incident photon energy and normalized electron degeneracy have respectively been
drawn in Figs. 1.10, 1.11 and 1.12, where the plots for 20 = 0 have further been
drawn for the purpose of assessing the influence of the splitting of the two-spin
states by the spin orbit coupling and the crystalline field. The thickness, normalized
photon energy and the normalized electron degeneracy dependences of normalized
EP from QWs of HD GaP have been shown in Figs. 1.13, 1.14 and 1.15 respec-
tively. The dependence of normalized EP with reference to the aforementioned
variables from QWs of HD n-Ge and PtSb,, has been shown in Figs. 1.16, 1.17,
1.18, 1.19, 1.20 and 1.21 in accordance with the models of Cardona et al.,Wang and
Ressler and Emtage respectively. Figures 1.22, 1.23 and 1.24 manifest the varia-
tions of the normalized EP from QWs of HD stressed n-InSb as functions of the
film thickness, normalized incident photon energy and the normalized electron
degeneracy respectively. The Figs. 1.25, 1.26, 1.27 exhibit the normalized EP from
QWs of HD IV-VI materials as functions of film thickness, normalized incident
photon energy and normalized electron degeneracy.

The influence of quantum confinement is immediately apparent from Figs. 1.1,
1.4, 1.7, 1.10, 1.13, 1.16, 1.19, 1.22 and 1.25 since the EP depends strongly on the
thickness of the quantum-confined materials in contrast with the corresponding bulk
specimens. The EP decreases with increasing film thickness in an oscillatory way
with different numerical magnitudes for QWs of HD materials. It appears from the
aforementioned figures that the EP exhibits spikes for particular values of film
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(a)

Normalised EP

1.0 1.02 1.03 1.06 1.08 1.10 111 113 114
Normalized Incident Photon Energy

Fig. 1.11 Plot of the normalized EP from QWs of HD CdS as a function of normalized incident
photon energy with a Zo =0 and b 29 =0

Film Thickness = 10nm
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(b)

1 T
1 10 100
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Fig. 1.12 Plot of the normalized EP from QWs of HD CdS as a function of normalized electron
degeneracy witha 2 =0and b 1y =0
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Fig. 1.13 Plot of the normalized EP from QWs of HD n-GaP as a function of d,
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Normalized Incident Photon Energy

Fig. 1.14 Plot of the normalized EP from QWs of HD n-GaP as a function of normalized incident
photon energy
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Film Thickness = 10nm

Normalised EP
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1 10 100
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Fig. 1.15 Plot of the normalized EP from QWs of HD n-GaP as a function of normalized electron
degeneracy
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(a)

Normalised EP
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Fig. 1.16 Plot of the normalized EP from QWs of HD n-Ge as a function of thickness in
accordance with a Cardona et al. and b Wang et al.
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Fig. 1.17 Plot of the normalized EP from QWs of HD n-Ge as a function of normalized incident
photon energy for both the cases of Fig. 1.16

Film Thickness = 10nm

MNormalised EP

1 10 100
Normalized Electron Degeneracy

Fig. 1.18 Plot of the normalized EP from QWs of HD n-Ge as a function of normalized electron
degeneracy for both the cases of Fig. 1.16
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Fig. 1.19 Plot of the normalized EP from QWs of HD n-PtSb, as a function of thickness
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Fig. 1.20 Plot of the normalized EP from QWs of HD n-PtSb, as a function of normalized
incident photon energy
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Fig. 1.21 Plot of the normalized EP from QWs of HD n-PtSb, as a function of normalized
electron degeneracy
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Fig. 1.22 Plot of the normalized EP from QWs of HD stressed n-InSb as a function of film
thickness
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Normalised EP
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Fig. 1.23 Plot of the normalized EP from QWs of HD stressed n-InSb as a function of normalized
incident photon energy

Film Thickness = 10nm
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Fig. 1.24 Plot of the normalized EP from QWs of HD stressed n-InSb as a function normalized
electron degeneracy



1.3 Results and Discussion 121
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Fig. 1.25 Plot of the normalized EP from QWs of HD PbTe as a function of film thickness in

accordance with the models of a the Dimmok and b the Bangert and Kastner respectively. The
plots ¢ and d exhibit the same for PbSe
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Fig. 1.26 Plot of the normalized EP from QWs of HD PbTe as a function of incident photon
energy in accordance with the models of a the Dimmok and b the Bangert and Kastner
respectively. The plots ¢ and d exhibit the same for PbSe
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Film Thickness = 10nm

Normalised EP

1 10 100
Normalized Electron Degeneracy

Fig. 1.27 Plot of the normalized EP from QWs of HD PbTe as a function of electron degeneracy
in accordance with the models of a the Dimmok and b the Bangert and Kastner respectively. The
plots ¢ and d exhibit the same for PbSe

thickness which, in turn, depends on the particular band structure of the specific
material. Moreover, the photoemission from QWs of HD compounds can become
several orders of magnitude larger than of bulk specimens of the same materials,
which is also a direct signature of quantum confinement. This oscillatory depen-
dence will be less and less prominent with increasing film thickness. It appears from
Figs. 1.3, 1.6, 1.9, 1.12, 1.15, 1.18, 1.21, 1.24 and 1.27 that the EP increases with
increasing carrier degeneracy and also exhibits spikes for all types of quantum
confinement as considered in this chapter. For bulk specimens of the same material,
the EP will be found to increase continuously with increasing electron degeneracy
in a non-oscillatory manner. The Figs. 1.2, 1.5, 1.8, 1.11, 1.14, 1.17, 1.20, 1.23 and
1.26 illustrate the dependence of the EP from quantum-confined HD materials on
the normalized incident photon energy.

The EP increases with increasing photon energy in a step like manner for all the
figures. The appearance of the discrete jumps in all the figures is due to the
redistribution of the electrons among the quantized energy levels when the size
quantum number corresponding to the highest occupied level changes from one
fixed value to the others. With varying electron degeneracy, a change is reflected in
the EP through the redistribution of the electrons among the size-quantized levels. It
may be noted that at the transition zone from one sub band to another, the height of
the peaks between any two sub-bands decreases with the increasing in the degree of
quantum confinement and is clearly shown in all the curves. It should be noted that
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although, the EP varies in various manners with all the variables as evident from all
the figures, the rates of variations are totally band-structure dependent. The influ-
ence of the energy band models on the EP from various types of HD quantum-
confined materials can also be assessed from the plots. With different sets of energy
band parameters, different numerical values of the EP will be obtained though the
nature of variations of the same as shown here would be similar for the other types
of materials and the simplified analysis of this chapter exhibits the basic qualitative
features of the EP phenomena from such compounds. Another important point in
this context is the existence of the effective mass within the forbidden zone, which
is impossible without the formation of band tails.

It is an amazing fact that the study of the carrier transport in HD quantized
materials through proper formulation of the Boltzmann transport equation which
needs in turn, the corresponding HD carrier energy spectra is still one of the open
research problems.

It may be noted that with the advent of MBE and other experimental techniques,
it is possible to fabricate quantum-confined structures with an almost defect-free
surface. The numerical computations have been performed using the fact that the
probability of photon absorption in direct band-gap compounds is close to unity. If
the direction normal to the film was taken differently from that as assumed in this
work, the expressions for the EP from QWs of HD materials would be different
analytically, since the basic dispersion relations for many materials are anisotropic.
In formulating the generalized electron energy spectrum for non-linear optical
materials, we have considered the crystal-field splitting parameter, the anisotropies
in the momentum-matrix elements, and the spin-orbit splitting parameters,
respectively. In the absence of the crystal field splitting parameter together with the
assumptions of isotropic effective electron mass and isotropic spin orbit splitting,
our basic relation as given by (1.2) converts into the well-known three-band Kane
model and is valid for III-V compounds, in general. It should be used as such for
studying the electronic properties of n-InAs where the spin-orbit splitting parameter
(A) is of the order of band gap (E,). For many important materials A > E, and
under this inequality, the three band model of Kane assumes the form E(1 +
EEg“) = I?k? /2m, which is the well-known two-band Kane model. Also under the
condition, E, — 00, the above equation gets simplified to the well-known form of
parabolic energy bands as E = i*k?/2m.. It is important to note that under certain
limiting conditions, all the results for all the models as derived here have trans-
formed into the well-known expression of the 2D EP for size quantized materials
having parabolic bands. We have not considered other types of compounds or
external physical variables for numerical computations in order to keep the pre-
sentation brief. With different sets of energy band constants, we shall get different
numerical values of the 2D EP though the nature of variations of the 2D EP as
shown here would be similar for the other types of materials and the simplified
analysis of this chapter exhibits the basic qualitative features of the 2D EP for such
compounds.
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Our method is not at all related to the DOS technique as used in the literature.
From the E-k dispersion relation, we can obtain the DOS, but the DOS technique as
used in the literature cannot provide the E-k dispersion relation. Therefore, our
study is more fundamental than those of the existing literature because the Boltz-
mann transport equation, which controls the study of the charge transport properties
of semiconductor devices, can be solved if and only if the E-k dispersion relation is
known. We wish to note that we have not considered the many body effects in this
simplified theoretical formalism due to the lack of availability in the literature of
proper analytical techniques for including them for the generalized systems as
considered in this chapter. Our simplified approach will be useful for the purpose of
comparison when methods of tackling the formidable problem after inclusion of the
many body effects for the present generalized systems appear. It is worth remarking
in this context that from our simple theory under certain limiting conditions we get
the well-known result of the EP from wide gap materials having parabolic energy
bands. The inclusion of the said effects would certainly increase the accuracy of the
results, although the qualitative features of the 2D EP in QWs of HD materials
discussed in this chapter would not change in the presence of the aforementioned
effects. The influence of energy band models and the various band constants on the
EP for different materials can also be studied from all the Figures of this chapter.
One important concept of this chapter is the presence of poles in the finite complex
plane in the dispersion relation of the materials in the absence of band tails creates
the complex energy spectrum in the corresponding HD samples. Besides, from the
DOS function in this case, it appears that a new forbidden zone has been created in
addition to the normal band gap of the semiconductor. If the basic dispersion
relation in the absence of band tails contains no poles in the finite complex plane,
the corresponding HD energy band spectrum will be real, although it may be the
complicated functions of exponential and error functions and deviate considerably
from that in the absence of band tailing.

The numerical results presented in this chapter would be different for other
materials but the nature of variation would be unaltered. The theoretical results as
given here would be useful in analyzing various other experimental data related to
this phenomenon. We must note that the study of transport phenomena and the
formulation of the electronic properties of HD nano-compounds are based on the
dispersion relations in such materials. It is worth remarking that this simplified
formulation exhibits the basic qualitative features of 2D EP from 2D materials. The
basic objective of this chapter is not solely to demonstrate the influence of quantum
confinement on the 2D EP from QWs of HD non-parabolic materials but also to
formulate the appropriate electron statistics in the most generalized form, since the
transport and other phenomena in HD 2D materials having different band structures
and the derivation of the expressions of many important electronic properties are
based on the temperature-dependent electron statistics in such compounds. Finally,
we can write that the analysis as presented in this chapter can be used to investigate
the Burstein Moss shift, the carrier contribution to the elastic constants, the specific
heat, activity coefficient, reflection coefficient, Hall coefficient, plasma frequency,
various scattering mechanisms and other different transport coefficients of modern
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HD non-parabolic quantum confined HD devices operated under different external
conditions having varying band structures.

1.4 Open Research Problems

The problems under these sections of this monograph are by far the most important
part for the readers and few open research problems are presented from this
chapter till end. The numerical values of the energy band constants for various
semiconductors are given in Table 1.1 for the related computer simulations.
(R.1.1)  Investigate the EP for the HD bulk semiconductors whose respective
dispersion relations of the carriers in the absence of band tails and any
externally applied field are given below:
(a) The electron dispersion law in n-GaP can be written as [197]
22 22 R 172
ki Bk A
_ ) s o4

C 2mp o 2mY 2

E (R.1.1)

A 2
(5) +P\k; + Dikik;

where, A =335meV, P, = 2 x 10 '%Vm, D, = P,a; and
a; =54 % 10"%m.

(b) The dispersion relation for the conduction electrons for IV-VI
semiconductors can also be described by the models of Cohen
[198], McClure and Choi [199], Bangert et al. [200] and Foley
et al. [201] respectively.

(1) In accordance with Cohen [198], the dispersion law of the
carriers is given by

> 2 2 4 2

py | p: oDy apy Py
E(1+oE) =2 ¢ 7= =20 « > (1 4 oE
(1+aE) 2m, Jr2m3 2m, + <4m2m’2> +2m2( +aE)

(R.1.2)

where m;, m, and m5 are the effective carrier masses at the
band-edge along x, y and z directions respectively and mi) is
the effective- mass tensor component at the top of the
valence band (for electrons) or at the bottom of the con-
duction band (for holes).

(ii) The carrier energy spectra can be written, following
McClure and Choi [199] as
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(R.1.3)

(iii) The carrier energy spectrum of IV-VI semiconductors in
accordance with Foley et al. [201] can be written as

1/2

E E)’
E+—£=E () + {E+(k) + Eg} +PLK; + Pk (R.1.4)
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where, E, (k) =5++5=%, E_(k) =3,*+5,> represents the
1 I L I

contribution from the interaction of the conduction and the
valance band edge states with the more distant bands and the free

electron term, - :l[ij:i},%:l{l + 1},
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For n-PbTe
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(¢) The hole energy spectrum of p-type zero-gap semiconductors (e.g.
HgTe) is given by Ivanov-Omskii et al. [202]

Pk 32 2Eg
E= S e AN
om: | 1286 ( 7 ) n

k
ko

(R.1.5)

where m;; is the effective mass of the hole at the top of the valence

b) 2
— mge” — mye”
band, Ep = e and kg = P

(d) The conduction electrons of n-GaSb obey the following two dis-
persion relations:
(i) In accordance with the model of Seiler et al. [203]

E, E SOPkE Vofi (k)R | @afs (k)R2
E=|-=22472801 211/2 | S0 1 +
y t o ek e 2mo
(R.1.6)

-1
where oy = 4P (E, + 2A) [Ez (E; + A)} , P is the isotropic

momentum matrix element, f; (k) = k=2 {kfk§+ kyzkz2 + k2K



1.4 Open Research Problems 127

represents the warping of the Fermi surface, f>(k) =

1/2
[{18 (k2 + 202 + 1282 ) — o2k bk '} represents
the inversion asymmetry splitting of the conduction ban-
dand ¢, Vg and g represent the constants of the electron
spectrum in this case.

(i) In accordance with the model of Zhang et al. [204]

E= B+ EP Ko |2+ [E + B K 0

+KO[EL) + ED Ky + EJKs, | (R.1.7)
where
5 ki +ki+k 3
Kl :zm[T‘g 7

32 DY) [z “5) 105

639,639 [k2kk2 1 (ki+ki+ki 3 1
Ke,1 = y ;
the coefficients are in eV, the values of k are 10(s) times
those of k in atomic units (a is the lattice constant),
EY =1.0239620, EY =0,  E =-1.1320772,
EY = 0.05658, ELY = 1.1072073, E”) = —0.1134024 and
EY) = —0.0072275.
(e) In addition to the well-known band models of III-V semicon-
ductors as discussed in this monograph, the conduction electrons

of such compounds obey the following three dispersion relations:
(i) In accordance with the model of Rossler [205]

272

ks _
Btk hfRE g RG]
2 1.
510 [ (KK + KK + B82) — 9K
where, o0 = 011 + 012k, Bio = P11 + Bk and
910 = T11 + T2k, in which, & = —2,132 x 1079 eVm?,
a2 = 9,030 x 107 eVm’, B} = —2,493 x 10~*’eVm*,

B =12,594 x 107 eVm?, ,; = 30 x 1073%eVm® and
I, = —154 x 10742 eVm*.

(i) In accordance with Johnson and Dickey [206], the electron
energy spectrum assumes the form
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2

212 210 7F 1/2
E:_%+ﬂ{l 1}+Eg{1 4hkf1(E)}

202 |my my 2m. E,

)
m,

mo — p2 (E+%) - _ (E+A) (E+EA+%)
where, U2 = P |:Eg(Eg+A) » h(E) = (Ee+2) (E+E,+A) M

~1
0.139m and m.;, = {m% _ %] .
(iii)) In accordance with Agafonov et al. [207], the electron

energy spectrum can be written as

g1 B, n’k* | DV3 3B

2my,

ki + k) + k,

e (R.1.9)

1/2 _
where, = (Eg + §p2k2) , B=-21: and

_ 2

= 40 (m)
The dispersion relation of the carriers in n-type Pb;_,-Ga, Te with
x = 0.01 can be written following Vassilev [208] as

[E — 0.606k? — 0.0722k7| [E + E, + 0.411k} + 0.0377k?]

= 0.23k% + 0.02k? = [0.06E, + 0.061k> + 0.0066k>] k, (R1.10)
where, E,(= 0.21eV) is the energy gap for the transition point,
the zero of the energy F is at the edge of the conduction band of
the I' point of the Brillouin zone and is measured positively
upwards, k,, k, and k_ are in the units of 10°m ™",

The energy spectrum of the carriers in the two higher valance
bands and the single lower valance band of Te can, respectively,
be expressed as [209]

E =A0k? + Biok?
2 2 172 2 2 2
[ A%+ (Biok)?] " and E = Ay + 410k + Biok? & Biok:
(R.1.11)

where, E is the energy of the hole as measured from the top of the
valance and within it, A;p = 3.77 x 10~ %eVm?, Bjy = 3.57x
10-%Vm?, Ajp = 0.628eV, (f,)° = 6 x 10 eVm? and A| =
1,004 x 107> eV are the spectrum constants.

The dispersion relation of the holes in p-InSb can be written in
accordance with Cunningham [210] as
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®

@

E = ca(1+ f) 2 j:% [2\6\/5,/16 n 5y4\/1§;g4k} (R.1.12)

— R — ” . —b _3
Where, Cqy = g + 94, 94 =4.7 2y’ V4 = j, b4 = §b5 + 204,

bs =24 Zh—r:lo,ﬂ = }1 [sin2 20 + sin* 0 sin? 2(;5] , 0 is measured from

the positive z-axis, ¢ is measured from positive x-axis, g4 =
sin 0 [0052 0+ }‘Sin4 0 sin’ 2(;5] and E; = 5 x 107%eV.

The energy spectrum of the valance bands of CuCl in accordance
with Yekimov et al. [211] can be written as

k>
E, = — 294)—— R.1.13
n= (76 — 277) e ( )
and
1/2
A A TN e
E s = () - 4+ =1 A - 7
1s = (V6 +77) e 2 1 + 77 g +9( 2 )
(R.1.14)
where,

76 = 0.53, y; = 0.07, A} = 70 meV.

In the presence of stress, y, along (000) and (111) directions, the
energy spectra of the holes in semiconductors having diamond
structure valance bands can be respectively expressed following
Roman et al. [212] as

E = Aek® + [Bk* + 8% + Byoo(2k2 — K2)] (R.1.15)
and
) D 12
E = Aek* + [B%k“ +85+ 7%57 (22 — kf)] (R.1.16)

where, Ag, B7, Dg and Cg are inverse mass band parameters in
which d¢ = I7(S11 — S12) 16, S; are the usual elastic compliance

constants, B3 = (B% —&—%) and &7 = (’;S\S/%“) %6- For gray tin,
ds = —4.1eV, I, = —2.3eV, Ag = 19.2/2 B; = 2631 D¢ =

2my’ 2my’

2 2

314 and ¢2 = —11121.
2mg 6 2myg




130

R.1.2)

(R.1.3)

(R.1.4)

(R.1.5)

(R.1.6)
(R.1.7)
(R.1.8)
(R.1.9)
(R.1.10)

(R.1.11)

(R.1.12)
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(k) The dispersion relation of the carriers of cadmium and zinc di-
phosphides are given by [213]
BaB3 (k)

Bl P e

e { [mon(ps - PLOY] 1 gz (1 B0

)-n (-5}

4
(R.1.17)

where f,, B,, fyand 5 are system constants and f;(k) =
K2+k2 242
k2

Investigate the EP for bulk specimens of the HD semiconductors in the
presences of Gaussian, exponential, Kane, Halperian, Lax and Bonch-
Burevich types of band tails [38, 39] for all systems whose unperturbed
carrier energy spectra are defined in R.1.1.
Investigate the EP for QWs of all the HD semiconductors as considered
in R.1.2.
Investigate the EP for HD bulk specimens of the negative refractive
index, organic, magnetic and other advanced optical materials in the
presence of an arbitrarily oriented alternating electric field.
Investigate the EP for the QWs of HD negative refractive index, organic,
magnetic and other advanced optical materials in the presence of an
arbitrarily oriented alternating electric field.
Investigate the EP for the multiple QWs of HD materials whose
unperturbed carrier energy spectra are defined in R.1.1.
Investigate the EP for all the appropriate HD low dimensional systems
of this chapter in the presence of finite potential wells.
Investigate the EP for all the appropriate HD low dimensional systems
of this chapter in the presence of parabolic potential wells.
Investigate the EP for all the appropriate HD systems of this chapter
forming quantum rings.
Investigate the EP for all the above appropriate problems in the presence
of elliptical Hill and quantum square rings.
Investigate the EP for parabolic cylindrical HD low dimensional
systems in the presence of an arbitrarily oriented alternating electric field
for all the HD materials whose unperturbed carrier energy spectra are
defined in R.1.1.
Investigate the EP for HD low dimensional systems of the negative
refractive index and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field and non-uniform light
waves.
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(R.1.13) Investigate the EP for triangular HD low dimensional systems of the

negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field in the presence of strain.

(R.1.14) Investigate the EP in HD quantum wires of non-parabolic semiconduc-

tors as discussed in this chapter.

(R.1.15) Investigate the EP for all the problems of (R.1.13) in the presence of

arbitrarily oriented magnetic field.

(R.1.16) Investigate the EP for all the problems of (R.1.13) in the presence of

alternating electric field.

(R.1.17) Investigate the EP for all the problems of (R.1.13) in the presence of

alternating magnetic fieldAlternating magnetic field.

(R.1.18) Investigate the EP for all the problems of (R.1.13) in the presence of

crossed electric field and quantizing magnetic fields.

(R.1.19) Investigate the EP for all the problems of (R.1.13) in the presence of

(R.1.20)

crossed alternating electric field and alternating quantizing magnetic
fields.

(a) Investigate the EP for HD low dimensional systems of the negative
refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating
electric field considering many body effects

(b) Investigate all the appropriate problems of this chapter for a Dirac
electron.

(R.1.21) Investigate all the appropriate problems of this chapter by including the

many body, image force, broadening and hot carrier effects respectively.

(R.1.22) Investigate all the appropriate problems of this chapter by removing all

the mathematical approximations and establishing the respective
appropriate uniqueness conditions.
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Chapter 2

The EP from Nano Wires (NWs)

of Heavily Doped (HD) Non-parabolic
Semiconductors

2.1 Introduction

It is well-known that in nano wires (NWSs), the restriction of the motion of the carriers
along two directions may be viewed as carrier confinement by two infinitely deep 1D
rectangular potential wells, along any two orthogonal directions leading to quanti-
zation of the wave vectors along the said directions, allowing 1D carrier transport
[1-4]. With the help of modern fabricational techniques, such one dimensional
quantized structures have been experimentally realized and enjoy an enormous range
of important applications in the realm of nanoscience in the quantum regime. They
have generated much interest in the analysis of nanostructured devices for investi-
gating their electronic, optical and allied properties [5—8]. Examples of such new
applications are based on the different transport properties of ballistic charge carriers
which include quantum resistors [9—14], resonant tunneling diodes and band filters
[15, 16], quantum switches [17], quantum sensors [18-20], quantum logic gates [21,
22], quantum transistors and sub tuners [23-25], heterojunction FETs [26, 27], high-
speed digital networks [28-31], high-frequency microwave circuits [32], optical
modulators [33], optical switching systems [34-36], and other devices.

In this chapter in Sects. 2.2.1,2.2.2,2.2.3,2.2.4,2.2.5,2.2.6,2.2.7,2.2.8,2.2.9,
2.2.10 and 2.2.11 we have investigated the EP from NWs of HD non-linear optical,
II-V, II- VI, stressed Kane type, Te, GaP, PtSb,, Bi,Te;, Ge and GaAs respectively.
The Sect. 2.3 contains the result and discussions pertaining to this chapter. The
Sect. 2.4 presents 24 open research problems.
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2.2 Theoretical Background

2.2.1 The EP from Nano Wires of HD Nonlinear Optical
Semiconductors

The dispersion relation of the 1D electrons in this case can be written following
(1.32) as

s (nz”/dz)2 i (n,v”/dy)z hzk%

=1 2.1
Zm‘*‘Tn (E, ”g) 2mﬁT22(E, i’[g) 2m‘*|T21 (E, ng) ( )

where, n,(= 1,2,3,...), d, are the size quantum number and the nano-thickness
along the z-direction respectively, n,(=1,2,3,...) and d, are the size quantum
number and the nano-thickness along the y-direction respectively.

The 1D DOS function per sub-band is given by

_ 2g, Ok,

Nip(E) = & 3E (2.2)

The velocity of the emitted electrons along the x-direction can be written as
1 0F

(E) = —— 2.3
wB) =i 23)
Therefore the photocurrent is given by
ny, n, 0
0plgy R TR 20k,\ (10E
I = —— == |f(E)dE 24
N WEEGIIL @)
y=1n;= A,
where,
Al =E +W—hv. (2.5)
Using (2.4), one can write,
aoegvk T Mymax Mzmax
I= TBReal part of Z Z Fo(Ne1up), (2.6)

ny=1n,=1

where

_ |EFtpNW — (EEHDNW +W-— hV)
Ne1ap = kT
B

Eripyw in the Fermi energy in this case, E| gy is the complex sub-band energy
which can be expressed in this case as
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R (n.m/d,)? 1 (nym/d,)*
2m) Ty (Elrpvw 1) 2my Ty (E' ipvw 1)

=1 (2.7)

The EEM in this case in given by
2

m* (Epigpyw, 0y, g, 17,) = 5 [Real part of (T1apnw (E, 0y, n, Wg)]z]

O(Er1pnw)
(2.8)

where

1 (n.m/d.)* _ 7 (n,m/d,)? ]2m|*iT2] (E, '78)}1/2
2m‘*‘T21 (E, }’]g) 2mﬁT22 (E7 Vlg)J hz

(r- (2.9)

T1apww (E, ny, 1z, ’Yg)

Thus, we observe that the EEM is the function of size quantum numbers in both
the directions and the Fermi energy due to the combined influence of the crystal
filed splitting constant and the anisotropic spin-orbit splitting constants respec-
tively. Besides it is a function of g due to which the EEM exists in the band gap,
which is otherwise impossible.

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 Mymax Mzmax
nip = ( )Realpartofz Z TIHDNW(EFIHDNW,ny,nZ,ng) (2.10)

ny=1n=1
+Taripww (Ertapnw, 0y, 2,1, |

where Toppnw (Eriapnw, 0y, 0z, 1g) = Y oy L(r) [Tiapnw (EFiapyw, 0y, 0z, 1)),
In the absence of band-tails, for electron motion along x-direction only, the 1D
electron dispersion law in this case can be written following (1.2) as

P(E) = fi(E)E +{(E) (nny /dy)’+ fo(E)(nn, /d)? (2.11)

The sub-band energy (E}) are given by the equation

P(ED) = fi(E}) (nny /) + fo(E}) (nn- /o) (2.12)
The EP in this case is given by

Mymax Mzmax

ooegvkgT
_ F
s 0(762)

ny=1n,=1

I=
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where

Erig — E +W—hv
N2 = [ (kl T ) ) (2.13)
B

and Eryy is the Fermi energy in this case
The electron concentration per unit length can be written as

2gv n"mﬂx anaX
nip = ( - > Z Z [11(EF1a; ny, 1) + 12(Brig, 0y, my)] (2.14)

ny=1n,=1

where
11 (Epa, ny, n;) = [V(EFld) -h (EFld)(ﬂny/dr)z—fz(EFld)(”nz/dz)z} l/z[fl(EFld)]il/z

and
s

15 (Epld, ny, nz) = ZL(F) [tl (Epld, ny, I’lz):l .

r=1

2.2.2 The EP from Nano Wires of HD III-V Semiconductors

(i) Three band model of Kane

The dispersion relation of the 1D electrons in this case can be written following
(1.55) as

hz(nzn/dz)z n? (nvn/dy)z n2k2
' 5= =Ta(E T3 (E 2.15
2me " 2m, +2mc 31(E, 1) + T3 (1) (2.15)

The EP in this case is given by

. ocoegkaT Mymax Mzmax
1= — Real part of nz::l nz::l Fo(Me3up), (2.16)
where
_ [Erimonw — (Eygpyw + W — )
Ne3up = T :
B

and E} vy is the sub-band energy in this case which can be expressed as
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n (nzn/dz)z 4 hz(nyn/dy)2

2m5 2mc = T31 (E;HDNW7 ng) + iT31 (E/ZHDNWa ng) (2 17)

The EEM in this case is given by
m" (Epiapnw Mg) = Me[T3 (Eriapnw, 1g)] (2.18)

Thus, it appears that the evaluation of Jjp requires an expression of carrier
statistics which can, in turn, be written as

2o Mymax Mzmax
np = ( il) Z Z [Tsupnw (Ertapnw, 0y, 02, 1) + Tappnw (Briapnw, 0y, 0z, 1)

ny=1n;=1

(2.19)
where

Tsupww (Ertapnw, 0y, 0z, 1) = | [T31(Eriapvw, g) + iT31 (Briapyw , 1)

1/2
Rr/d)’ Rmyr/d,)? 2om]

1=

2m,. 2m,.

where Tyrpyw (Eriapnw, 0y, 0z, 1) = 3,y L(r) [Tsupnw (Eriapnw, 0y, 0z, 1))
The one dimensional electron dispersion law is given by
nk2
ij + Gy (ny,n;) = I (E) (2.20)

where,

2
Ga(ny,n;) = (R°n* /2m,) [(ny/dy) Jr(nz/dz)Z]
The sub band energy E), can be written as
Ga(ny,n.) = I1(E)) (2.21)

The EP in this case is given by

Mymax Mzmax

o,egvkgT
I= T ah Z Z Fo(nes) (2:22)

ny=1n,=1

where

o EFld — (Eé + W — hV)
Nea = kBT )
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The electron statistics in this case can be written as

zgv\/z_]ncn'vmax Mzmax
nh Z Z [13(EF14, ny, ;) + t4(Epia, ny,n.)| 229

ny=1n,=1

nip =

where

I3 (EFld;nyanz) = [III(EFld) - GZ(nyanz)]l/za

So
Iy (EFld; My, nz) = ZL(V) [ts (EFlda Ny, nz)} .
r=1

(ii)) Two band model of Kane

The dispersion relation of the 1D electrons in this case can be written as

hz(“zn/dz)2 n hz(“,\“/dy)2 _’_%

= (E 2.24
2mc 2mc ch '}72( ang) ( )
The EP in this case is given by
OcoegkaT n}'max Nzmax
| =— F
nh L 2 0(Neaip ) (2.25)
where
_ [Eritmonw = (Esppyw + W — hv)
Neaup = ksT

and Efpyw is the sub-band energy in this case which can be expressed as

W (nzn/dz)z i W (nyn/dy)z

2m, om, = 02 (Esupww: ) (2.26)
The EEM in this case is given by
m*(Ep1apnw, ) = me[13 (Eriapnw, )] (2.27a)

Thus, it appears that the evaluation of Jjp requires an expression of carrier
statistics which can, in turn, be written as

2g ) Mymax Mzmax
nip = (7;) Z Z [ Tsoww (Ertapww , 0y, 0z, 1) + Tspww (Eriapnw, 0y, 0z, 1) |

ny=1n;=1

(2.27b)
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where
Trrpww (Eriapnw, iy, 0z, 1) = [ [VZ(EFIHDNW7 M) — hz(%m/cddz
. M} m] -
2m, 2
and

Tsupnw (Eriapyw, ny, 0z, 17,) = ZS L(r)[Trapnw (Eriaonw, iy, 0z, 1)

r=1
The expression of 1D dispersion relation, for NWs of III-V materials whose energy
band structures are defined by the two-band model of Kane in the absence of band
tailing assumes the form

2 k2

h
E(l1 +aE) = 2mx + Gy (ny, n) (2.28)

In this case, the quantized energy Ej is given by
E, = (20)”" [_1 + 4/ 1+ 424G, (ny,nz)] (2.29)

The EP in this case is given by

Mymax Mzmax

Z Fo(nes), (2.30)

ny=1n,=1

_ O‘oegkaT

1
nh

where

. EFld — (Eg +W—- hV)
Hes = knT )

The carrier statistics in the case can be expressed as

2 N /ch Mymax Mzmax
nip = i TZ > [ts(Erra, ny,n2) + to(Eria, ny, n)] (2.31)

ny=1n,=1

where

ts(Eria,ny,n;) = [Epia(1 4 eEp1a) — Ga(ny,n)] 1/2’

N
t6(Epia,ny,n;) = Z L(r)[ts (Ep1a, ny, nz)].
r=1
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(iii) Parabolic energy bands

The dispersion relation of the 1D electrons in this case can be written as

R (n,7/d,)? N R (nym/d,)* R

2, 2 + 2_m¢ = 73(E,n,) (2.32)

The EP in this case is given by

OCOEgkaT Mymax Mzmax
I= TZ > Folnesmn): (2.33)

ny=1n,=1

where

_ EFIHDNW — (EgHDNW + W - hV)
NesHD = ksT

and Ef;,\y is the sub-band energy in this case which can be expressed as

w (nzn/dz>2 n " (nyn/dy)z

2m, me 73 (Esppww- 1lg) (2.34)
The EEM in this case is given by
m* (EFIHDNW77]g) = m.[5(Eriapnw, ”Ig)] (2.35a)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 g Mymax Mzmax
vV
nip = <77:> [T9HDNW(EF1HDNW>ny7nz>”Ig) + TlOHDNW(EFlHDNanyvnm”g)]

ny=1n.=1

(2.35Db)
where
R (n,7/d,)?
Toupnw (Er1apnw , 0y, 0, ’7g) = [[v3(Er1apnw, ’7g) - %
_ i (nyn/dy)z] %]1/2
2m, 72

where Tioupyw (Eriapnw, 0y, 0z, 1) = > 1 L(r)[Toupnw (Er1apnw, 0y, 0z, 1)),

The expression of 1D dispersion relation, for NWs of III-V materials whose
energy band structures are defined by the two-band model of Kane in the absence of
band tailing assumes the form
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2,2
E= Ik + Gy (ny,n;) (2.36)

2m

c

In this case, the quantized energy EJ is given by

E} = Gs(ny,n.) (2.37)

The EP in this case is given by

Mymax Mzmax

0foegkaT
I= i P ’; Fo(ner), (2-38)
where
_ EFld — (E% +W—- hV)
Ne7 = kT

The carrier statistics in the case can be expressed as

2g, /Zm(.nk Tn)'max Nzmax ~
nip = g% Z Z Foi(ig7) (2.39)

ny=1n;=1

where
fer = [Er1a — B3] (ksT)™!

Converting the summation over quantum numbers to the corresponding inte-
grations in (2.38), the photocurrent density from semiconductors having isotropic
parabolic energy bands with non-degenerate electron concentration gets trans-
formed into the well known form as given in the preface. Besides, (2.39) is well-
known in the literature.

(iv) The Model of Stillman et al.
The dispersion relation of the 1D electrons in this case can be written as

R(nn/d)’ K (nym/d,) WK

where

04(E, n,) = 112(E, ny)

The EP in this case is given by

Mymax Mzmax

Z Fo(neorp), (2.41)

ny=1n;=1

[— a,egvkpT
N nh

where
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_ [Ertaonw = (Egppyw + W — hv)
Neoup = ksT

and Egyyy is the sub-band energy in this case which can be expressed as

W (nzn/dz)z + w (nyﬂ/dy)2

2m, 2m, = Oa(Egapww 1) (2.42)
The EEM in this case is given by
m*(Epiapyw, M) = me[0y(Eriapyw, 1,)] (2.43a)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g Mymax Mzmax
v
nip = < . ) [T”HDNW(EFIHDNW7ny,nz7i1g) + T12HDNW(EF1HDNW7nyunu”/g)]

ny=1n,=1

(2.43b)
where

hz(nzn/dz)z

T11uonw (Bpiapyw, ny, 0z, 1,) = H94(EF1HDNWa Mg) — o
(o

iiz(nyn/dy)2 2m, 2
2m, n?
where TIZHDNW(EFIHDNW7 ny, ng, i’lg) = Zj:l L(r) [Tl lHDNW(EFlHDNW7 Ny, Nz, Wg)],
The expression of 1D dispersion relation, for NWs of III-V materials whose
energy band structures are defined by the model of Stillman et al. in the absence of
band tailing assumes the form

272

Ik
In(E) = 2m" + G, (ny,nz) (2.44)
C

In this case, the quantized energy Ej is given by
Ilz(Eé) = G2 (ny,nz) (245)

The EP in this case is given by

Mymax Mzmax

Fo(ne9)s

ny=1n,=1

o OCoegkaT

1
nh
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where

Epig — (EL+ W — hy
Neo = { ( k"’BT ) (2.46)

The carrier statistics in the case can be expressed as

2g, /2 C”ymax Tzmax
nip = i hm Z Z [Po(EFia,ny, ;) + Q9(Erias ny, 1)) (2.47)

ny=1n,=1

where

Po(Epia,ny,n;) = [I2(Er1a) — G2 (”y’”z)]l/z

and Qg (EFlda My, ”z) = Z L(r) [P9 (EFm, ny, nz)] .
r=1

(v) The Model of Palik et al.

The dispersion relation of the 1D electrons in this case can be written as

R*(n.m/d.)’ R (nym/d,)? R
2% og(E 2.4
et T o 0s(E, n,) (2.48)

where
0s(E,ng) = I3(E,n,)

The EP in this case is given by

tpeg k Tn,\‘max Mzmax
B
=" Fo(Me10mp) (2.49)
nh — L
ny=1n,=1
where
_ [Erimonw — (Eloppyw + W — hv)
Ne10aD = T )
B

and E'y,pyw 18 the sub-band energy in this case which can be expressed as

R} (n.m/d.)? K (nym/d,)? /
(n,m/d.) 4 (ny7/dy) = 05(Elorpnws 1g) (2.50)

2m, 2m,
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The EEM in this case is given by
m* (Briapnw, Mg) = me[05(Ep 1w, 1)) (2.51a)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g Mymax Mzmax

vV

nip = <7> [T13HDNW (Er1mpnw, Dy, 0z, 1g) + Tiaupyw (Eriapyw, 0y, 0, ”g)]
ny=1n,=1

(2.51b)

where

w (nzn/dz)z

Tisupnw (Ertapyw, 0y, 0, 1) = HQS(EMHDNW, M) — o

R (nym/d,)* | 2m, 2
2m, 72
where Tiampyw (Eriapnw, 0y, 0z, 1) = >0 L(r) [Tisupvw (EFiapnw, 0y, 0z, 1,)],
The expression of 1D dispersion relation, for NWs of III-V materials whose
energy band structures are defined by the model of Palik et al. in the absence of
band tailing assumes the form

k2
I13(E) = zm" + G, (ny,nz) (2.52)

In this case, the quantized energy E}, is given by
Ii3(E}y) = Gy (ny,n;) (2.53)

The EP in this case is given by

Mymax Mzmax

 oegvkgT
I= T Z Z Fo(n610), (2.54)

ny=1n,=1

where

Epia — (Ejg+ W — hv)]

Ne1o = [ ksT
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The carrier statistics in the case can be expressed as

2 ﬂ‘m“ Zm:
2gv - ey (2.55)

Z P11(Eria,ny,n;) + Qu2(Epia, ny, nz)]

ny=1n,=1

where

P11 (EFia, ny,nz) = [L3(Er1a) — G (nwnz)]l/z

and Q12 (Er1a, ny, 1) ZL (P11 (Epia, ny,nz)].

2.2.3 The EP from Nano Wires of HD II-VI Semiconductors

The 1D electron dispersion law in NW of HD II-VI semiconductors can be written
following (1.141) as

My | Moy | 5 Tl | T o)) " k
Y3 (E, = — )]+ A 2.56
() = (5 + (51 AICEY + (51 45 @359
The EP in this case is given by
agegkaTn}‘max Nzmax
I= T onh Z Z Fo(Me13up), (2.57)

ny=1n,=1

where

_ [Erisovw — (Ejsppyw + W — )
Ne13ap =

kgT

and E|;,pyw is the sub-band energy in this case which can be expressed as

nyT, » nyT, » YU nym )
73 (Espnw: g) = aol(5-)" + (5)71 £ ol(57)" + (50) ]1/ (2.58)
dx dy dX d)’
The EEM in this case is given by
m’ (Epipnw, ) = m)|y3(Epiapnw, 1) (2.59)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as
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Myxmax Mymax

np = (g;v) Z Z [Tv7upnw (Ertapnw s 0, 0y, 1) + Tigapnw (Beiapww , i, Dy, 1, )|
n=1n,=1
(2.60)
where
nm nym
Tv7pnw (Eptapnw, 0, 0y, 11,) = [[73(Eriapnw, 1) — ag( 4 )+ (dL)Z}
x Y
2m;
7 M2 T2 /27 T \1/2
# Tl + (BB
and

N
Tisupnw (Er1apyw, ny, ny, 1) = Z L(r)[T17aonw (EFiapnw , N, Dy 1))

r=1

The 1D dispersion relation for NWs of II-VI materials in the absence of band-
tails can be written as

E = bk + G3 .+ (ne,ny) (2.61)

where

1/2
6o (o) = Land (Y 4 (=) Vi (=) (7))
3£ UxyIly) = 0 dx dy 0 dx dy

The EP photocurrent from NWs of II-VI materials is given by

1= BTN N Lo (ko) [Erva— (G (neoms) + W — ]}

R B~ (6 () + W ]}
(2.62)

The 1D electron statistics can be written as

gV\ / me ﬂ:kBT Mymax Mzmax .
o = TZ ZF’T‘(’/IGS,:‘:),”&K,:E = (kgT)"' [Er1a — [G3 .2 (ne,ny)]].
ny=1n,=1

(2.63)
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2.2.4 The EP from Nano Wires of HD IV-VI Semiconductors

(i) Dimmock Model

The 1D electron dispersion law in NW of HD IV-VI semiconductors can be
expressed following (1.174) as

” onm, KB n "2
E E - Y E, K?
aEong) + (o) (5 (50 5 (5 ) + B 5

m onm W onm
- (rans(Bng) (5 (558 + 5 (57

3

hz Ny, » Flz l’lyﬂz h nxﬂfz hz nyT, »
‘“(mdﬁ 26 )\ ) s )
"2

P onm, W T o
gl (= i _k 2.64
“<2x,(dx)+2x2<d) 2% (2:64)
1+ oy (E i K
_< +O())3( a”g))% z
N (nxn 2 7 w2 (nyn)z h4k4
2)63 < 2)C4 dx 2)(?5 dy 4x3x6
" ony i i
B TR
2m1 d, 2m, " d, 2my *
Equation (2.64) can be written as
k; = T36(E, g, g, 1y) (2.65)

where

T36(E7 ngan)ﬁny) = [(2C22)71[_BHD(E3 Vlganxany)

+ BIZ'-ID(Ev ”g?nxany) +4C22AHD(E7 7]g7nxany)ﬂl/2

h4
Cyp = (¢-—), Bup(E 22
22 (a4x3x6)’ Hp( yNgy 1 ny)

[ i (nxn)er i (nyn)2 i
= || — _ -
2x;  d,y 2% d, 2xe
2 2

h
+ (1 + OCV3(E7 ”g)) 2_)63 - d”/3(E, ’1g)2_6

L ah_z h_z(”ﬂ” n (nyn)z ]
2m3 2)(3 dx ZX5 dy

2X4
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and

P onam, R nym,
AHD(E7 ﬂg7”x>ny) :[_[2_’/”1 (d_)c 2—’/’12(21_)]) b)Z(E, ng)
P onm, B nyn)2>

E PR - (2
o) (s 5 4 5

P onm, B nyT, o
(5 )
P onm, W nyT, 5
(25 +2xs(dy)>

P onm, B onym,
—(1 E — (= — (2=
(1 as(Em) (- (57 4 (57

The EP in this case is given by

OCO e gkaT Mxmax Mymax

I 7 Z Fo(Ne14mp)- (2.66)
& ne=1n,=1
where
E — (E, +W—hy
Ne14up = rioww — (Brapw ) ) (2.66)
kgT

and E',;pyw 18 the sub-band energy in this case which can be expressed as

0= T36(E14HDNW7 ’iga”m”y) (2.67)
The EEM in this case is given by
* hz 0 2

m (EFIHDNW777ganXany) = 2 0F [T36(EF1HDNW777ganxany)] (2.68)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

ng) Mymax ymax
nip = ( [T36rpnw (Er1pnw , s 1y, 11,)
n Z:l Z::I § (2.69)

+ Ts7upnw (Eriapnw , e ny, 1) |

where
Ts6rpnw (Er1apnw, 0, 0y, 1) = T36(Briapyw, s Dy 1)

where Ts7upnw (BFiapnw, 0, 0y, 1) = D70y L(r) [Tssupww (Eriapyw, 0, 0y, 17,)],
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The 1D electron dispersion law in NW of IV-VI semiconductors in the absence
of band tails can be expressed as
P onm, R nyn)z)

E(1 + 4E) + oE( — -
(1+0E) +o <2x4(dx 2%,

K> W onm B nm
E—k2 — (14 0E) [ — (5)? + — (252
Foby ok — (14 )(le(dx +2x2(dy)

W nm m nm W nm W nym
—a — P+ — () ) (— )P+ — (=)
2)61 dx 2)C2 dy 2)64 dx Z)CS dy

P onm, B onmo\ R, ” o,

— o O 2 (14 aE)—k
“(le(dx) +2x2(dy)>2x6z (1+aE)7k:

ah_2k2 h_z(""” 2 +h_2(M)2 —u Ik
2)63 < 2)64 dx 2)C5 dy 4)63)66

B onm, K nyT, 5 "

“omd.) " 2my

(2.70)

Equation (2.70) can be written as
kz = T40(E, nx,ny) (271)
where
Tao(E, nyyny) = [(2Ca2) "' [~ Bo(E, ny, 1)
+\/B(E.nmy) + 4Cn A (E.nymy) )2

where

P onm, W nyT, 5 i 2
xyy) = ~ - — 1 E)—
BoE.mom) = [ 5 (50 + 55 ) 3t (1) 5

Ehz 2 ah_z h_z(nxn2+h_2(nyn)2 |
2x¢  2m3 2x3 \2x4 ° dy 2xs5  d,

and
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The EP in this case is given by

_ OcoegkaT nlmax ”,Vmux
I = Tn:l ,; Fo(n615), (2.72)
where
_ [Eria — (B + W — hv)
Ne1s = ksT )

and E), is the sub-band energy in this case which can be expressed as
0= T4Q(E,20, Ny, l’ly) (273)

The EEM in this case is given by

2

0
(T30 (Eria, ny, ny)] (2.74)

m*(Epia, ny,ny) = EX

Thus, it appears that the evaluation of Jjp requires an expression of carrier
statistics which can, in turn, be written as

2gv Nxmax Mymax
nip = ( T ) Z Z [T40(EF1d,nx,ny) + T41(EF1danxvny)} (273)

ny=1n,=1
where 41 (Bpia,nx,ny) = 37, L(r)[Ta0(EF1a, s, 0y)]-

(i) Bangert and Kastner Model

Following (1.194d), the 1D dispersion relation in NW of IV-VI semiconductors in
accordance with the present model can be written as

N, T nyT
FIEn) (G + G+ BBk =1 (2.76)
x Y
The (2.76) can be written as
k; = Teo(E,ng, nx, ny) (2.77)

where

N, ny,m

TGO(Ea "gvnx’ny) = [[1 - F (E, ng)[(dix)z + ( dyv

VNIE (B n,)] '
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The EP in this case is given by

OcoegkaTnAmax Mymax
I= — Z Fo(neisup) (2.78)
n=1ny=1

where

Er1upnw — (EiSHDNW +W-— h")
ksT ’

Ne1sap = [

and E{sypyw is the sub-band energy in this case which can be expressed as
0 - T()O(EQSHDNWa nga My, "y) (279)

The EEM in this case is given by

2

0
[Tf() (EFIHDNW7 Mg, Ny, ny)] (280)

M (EF1HpNw , g, e, 1y) = 5 E

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g , Mxmax Tymax
nip = ( L) Z Z [ Tsorpnw (Eptapyw, i, ny, 1)
n n=1n,=1 (281)

+ Tsiupnw (Eriapnw , i, ny, 1, )|
where

Tsoupnw (Ertapnw, s Ny, 1) = Tao(Ep1apyw, i, 0y, 1)

s
and Tsipnw (Eriapnw, 0, 0y, 1) = > L(r) [Tsoupnw (Br1apnw , e, 0y, 17,)
r=1

The 1D dispersion relation in the absence of band tailing can be written in this
case following (1.194b) as

Tiny

o1 (B)[(55) + ( ) )]+ o (B)2 = 1 (2.82)

dy
The (2.82) can be written as

kz = T61(E, nx,ny) (283)
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where
Ny T, o nyT., 2 —141/2
Tor (E, nmy) = [[1 = on(B)[(72)" + o) Tl (E)] ] /
X y
The EP in this case is given by
aoegkaT n-'(max n}'max
I= T ah Fo(ne16)s (2.84)

n=1n,=1

where

o Epld — (Eél + W - hV)
Ne16 = kT )

and E), is the sub-band energy in this case which can be expressed as
0 = Te1 (Eyy, g, ny) (2.85)

The EEM in this case is given by

2

0
(T2, (EFia, nx, ny)] (2.86)

m*(Eriq4, 0y, ny) = 3O

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 gv Mxmax "lymax
= T61 (E v T62(EF1q, 0y, 0y 2.87
n1ip ( . > Z Z [ 61(Er1a, ni; ny) + T2 (Ep1a, 1 Hy)} ( )

ny=1n,=1

where Te2(Eria, 0y, 0y) = > L(7)[T61 (EF1a, 0, my)].

2.2.5 The EP from QWs of HD Stressed Kane Type
Semiconductors

The 1D dispersion relation in this case can be written following (1.206) as

Py (E, ng)(%)2 +0on(E, ng)(%)2 +Su (E,n, )2 = 1 (2.88)
X y

The (2.88) can be written as

kz = T70(E, ng,nx,ny) (289)
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where

T,

Tr0(E, g, e, ny) = [[1 — Py (E, ’7g)(7)2 + 0 (E,n,)(

mny

4, (811 (E,mg)] "2

The EP in this case is given by
dpeg, kBT Mxmax "ymax
I= B Z Fo(Ne30up)- (2.90)

ne=1 ny=1

where

_ |Eriupnw — (Eg()HDNW +W- h")
Ne3oup = kT )

and E%y, v is the sub-band energy in this case which can be expressed as
0= T70(Eg0HDNWv ng’nxvny) (2.91)

The EEM in this case is given by
" 0

m*(EFlHDNW777 ,nx,ny) = __[T720(EF1HDNW77’ ;nm”y)] (292)
& 2 OFE J

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 g Mymax Mymax

v

nip = | — Troupnw (Ertapnw, 0y, y, 1) + T7iapnw (Eptapaw , i, 0y, 1, )
7 s g

n=1 n,=1
(2.93)
where
Troupnw (Er1apyw, 0,y 1) = T70(Briapyw, Dy Dy, 1)
and

S

T71apnvw (EF1apw ;s D, Dy, 17,) = L(r)[Troapnw (EF1HDNW , Dy Dy 17,)]
s s
r=1

In the absence of band tailing the 1D dispersion relation in this case assumes the
form

k, = t70(E, ny, ny) (2.94)
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where

_ nn 2 n 2171/2

(s mam) = o)1= (2 ) = (sl

£ y
The EP in this case is given by
B OCOEngBT Mxmax Mymax
I_Tn:n;%(%m’ (2.95)
where
. EFld — (EA/Q + w— hV)
Neaz = kT )

and Ej, is the sub-band energy in this case which can be expressed as
0= t6()<E:‘27 Ny, ny) (296)
The EEM in this case is given by

i " 0
m (EFlda My, ny) = 7@ [th(EFld; Ny, ny)] (2'97)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 . Mxmax Mymax
nip = ( 8 ) Z Z [t60(Er1a, 0, 0y) + f61 (Epia, 0, ny) | (2.98)

n ny=1 ny,=1

where 761 (EFiq,ny,ny) = >0 L(r)[teo(EF1a, 0y, 0y)].

2.2.6 The EP from Nano Wires of HD Te

The 1D dispersion relation may be written in this case following (1.235) as

ke = 172 (E; ny, Nz, Wg) (299)
where
n,T n
t(E,ny,nz,n,) = —(;*)2 + ¥sup(E,n,) — wﬁ(f)z
y Z
12

£ U Wi (B, ) — (597
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The EP in this case is given by

ny, n;
aoegkaT Ymax ‘*Zmax

[ =——— Z Z Fo(Ne310p) (2.100)
2mh ny=1n,=1

where

_ [Ertuonw — (B pgpyw + W — hv)
Ne31np = ksT )

and Ef ;pyw 18 the sub-band energy in this case which can be expressed as

0= t72(EngDNWa’7g7n)’7nz) (2.101)

The EEM in this case is given by
2

y A0
m (EFIHDNW777ganyanz) = 7675[tgz(EFlHDNW,ngvnw”z)} (2.102)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g Mymax Mzmax
v
nip = (n > E [l72HDNW(EF1HDNW7Hy7Hz7ﬂg) + t73HDNW(EF1HDNW,ny,nm’?gﬂ

ny=1n,=1
(2.103)
where

tr2upnw (Br1aDNw, Dy 1, 1,) = t72(BFtrpNw, Dy, 0, 1)

and
N

t23upnw (EFiapnw , Dy, 0z, 17,) = ZL(F) [t72pnw (EF1apNw s 0y, 0z, 1, )]
r=1

In the absence of band tailing the 1D dispersion relation in this case assumes the
form

k. = H70(E,ny,n,) (2.104)

where

nym

d,

d—) + s [WA(E) — (5222

)2 +¥s(E) — Ye( a4

Hyo(E,ny,n;) = [—(
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The EP in this case is given by

ymax Mzmax

_ oc(,egkaTn

1—72 ZFO(%M) (2.105)
2nth ny=1n,=1
where
_ [Eria — (Ejy + W — hv)
Neaa = ksT )

and Ej, is the sub-band energy in this case which can be expressed as
0 = Hy(E}y, ny,n;) (2.106)
The EEM in this case is given by

0

= ?@[H%O(Eﬂmnwnz)} (2.107)

m*(EFlda ny7 nz)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 Mymax Mzmax
nip = (%) Z Z [H70(Er1a,0y,10;) + H71(Ep14, 1y, 1) | (2.108)

ny=1n,=1

where H71(EF1d7 Ily, Ilz) = Zi:l L(V) [H70(Epld, l’ly7 nz)].

2.2.7 The EP from Nano Wires of HD GaP

The 1D dispersion relation may be written in this case following (1.253) as

ky = u70(E, ny,n ,1,) (2.109)
where
nyT n,m
u70<E7 Ny, Nz, ng) = _(dL)z + 1 1”/3(E7 ng) + 1t — 131 (dL)z
Yy Z
no 1/2

— () + B(En,)]?
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The EP in this case is given by

a() engBT Mymax Mzmax
== > Fo(nssamn), (2.110)

ny=1n,=1

where

Ne32aDp =

Er1upnw — (EQZHDNW +W-— h")
kgT ’

and E%, ;v is the sub-band energy in this case which can be expressed as
0= M7O(E§2HDNWa Ng, My, n) (2.111)

The EEM in this case is given by

72
N 0
m (EFIHDNWaVIg,nyanz) =23 [U7Q(EF1HDNW7’7ga”y,nz)} (2.112)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g rl‘lna)( n max

.

nip = ( - ) E [”70HDNW(EF1HDNW7ny7nzvng) + ”71HDNW(EF]HDNW>ny7HZ7”g)]
ny=1n,=1

(2.113)

where

urorpnw (Er1apnw, 0y, 0z, 11, ) = u70(Epiapw, ny, g, 1,)
and

uriapnw (Briapnw, 0y, 0z, 1,) = E L(r)[wroupnw (EFiapnw, y; 0z, 1)),

In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.260) as

kx = X71(E, ny,nz) (2114)

where
nym
X1 (E.ny, o) = [=(50) + taa(E.no)) 2

y
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The EP in this case is given by

ymax Mzmax

_ o.eg kgT e

I—W ZFO(”I646)7
my=1 =1 (2.115)
EFld — (E, + W — hv

where 17646 = [ ( ZZT )},

and Ej, is the sub-band energy in this case which can be expressed as
0 = X71(Ejg: ny, 1z (2.116)

The EEM in this case is given by

K0

= Ea_E[Xgl(EFldvnyvnz)} (2.117)

m* (EFlda ny, nz)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 . Mymax Mzmax
nip = ( i ) >N [X91(Bria,ny,n2) + Xo2(Erra, ny, nc) (2.118)

ny=1n,=1

where X75(Eri4,ny,n;) = > L(r)[X71(EF1a, ny, n)].

2.2.8 The EP from Nano Wires of HD PtSb,
The 1D dispersion relation may be written in this case following (1.275) as
k. = Vo(E, ny,n;, 1,,) (2.119)

where V7o (E, ny, N, ﬂg) = [_(VZZI)Z + Aso (Ea Mg, ny)]l/Z

The EP in this case is givenv by

%8 kgT Mymax Mzmax
0 v

I E :Fo(n634HD)v (2.120)
mh ny=1n,=1
where
_ [Erimonw — (Esgppyw + W — hv)
Ne34up = ks T ,
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and E%, ;v is the sub-band energy in this case which can be expressed as
0 = Vao(Esapipaw Mgs My 12) (2.121)
The EEM in this case is given by

o

m* (Ep1upnw, Mg, Ny, n;) = 2 OE [V%O(EFIHDNW7 Mg, Ny, n)| (2.122)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g Mymax Mzmax

v

np = <7> [V7OHDNW(EF1HDNW7nya N, 1) + Vaiupnw (Ertapnw, ny, ng, ”g)]
ny=1n,=1

(2.123)
where
Vaoupnw (Eriapnw, Dy, 0z, 1) = Vao(Erp1apyw, 0y, ng, 1)

and

N

Vauaoww (Eriapnw, 0y, nz, 1) = Z L(r)[Vaoroww (Eripnw , 0y, 0z, 1))
r=1

In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.278) as

ke = D71(E7 nyvnz) (2124)
where

n.,m
D71(E,ny,n,) = [_(dL)Z + 144(E, “z)]l/z
y

The EP in this case is given by

Mymax Mzmax

ZFO(’/IMS)v (2.125)

ny=1n,=1

= OCoegkaT
27k

where

_ [Eria — (Ejg+ W — hv)
Neag = kT )
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and Ejg is the sub-band energy in this case which can be expressed as
0 = D7 (Ejg, ny, n;) (2.126)
The EEM in this case is given by

K

=57 D3, (EF14, 1y, 1) (2.127)

m*(Eriq, ny, n;)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 ) Mymax Mzmax
nip = < i > Z Z [D71(EFi4,ny,0;) 4+ D72 (Epiq, 0y, 1) | (2.128a)

ny=1n,=1

where D72(Epld, Ily, Ilz) = Zf’:l L(l’) [D71 (EFlda Ily, nz)} .

2.2.9 The EP from Nano Wires of HD Bi,Te;

The dispersion relation in this case can be written following (1.285) as

kx = J70(Ea Ny, Nz, ’1g) (2128b)
where
2
__ T __ n, __ hyn,mt,,_ | _
‘]70(E7 ny, N, ng) = HVZ(Ea ng) - w2(dL)2 - (1)3(di)2 — 204 ii ; K 1) 1}1/2
y ¢4 vz

The EP in this case is given by

o, engBT Mymax Mzmax
[=——"— Fo(nesorp) (2.129)
nh ny=1n,=1
where
_ |Erpnw — (Eg()HDNW + W - h")
Nesoup = ks T )

and Efy, vy is the sub-band energy in this case which can be expressed as

0= J70(E/50HDNW7ng7n)’7nZ) (2.130)
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The EEM in this case is given by

”o .,
M (Ep1HpNw s gy Ny, ) = 53 (370 (EFtHDNW , g, Ty )] (2.131)
Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2gv> Mymax Mzmax
nip = ( [Jr0mpnw (EF1HDNW 3 Ry 1z, 1],)
- z::l Z::l § (2.132)

+J71aponw (EF1apNw , iy, 112, Wg)}

where

Jroupnw (Brtapnw, iy, 0z, 1) = J70(Epiapyw, ny, ng, 1)

and

S

Jriapnw (Briapnw, 0y, g, ’Ig) = ZL(”) (J70upnw (EF1zpnw s Dy, 1z, ’7g>]7
r=1

In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.278) as

ke = B71(E,ny,n,) (2.133)
where
By (E,ny,n.) = [[E(1 + «E) — @(%)2 - 63(%)2 —2m, "2’;’:2](61)1]‘/2
The EP in this case is given by
I= % yi i Fo(M6s0) (2.134)

ny=1n,=1

where

_ [Era— (Esy + W — hv)
Nes0 = kpT )
and E%, is the sub-band energy in this case which can be expressed as

0 = By1(E5p, ny, nz) (2.135)
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The EEM in this case is given by

K0

= Eﬁ[B%I(EFldvnwnz)] (2.136)

m*(EFldu ny7 nz)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2 . Mymax Mzmax
nip = ( i ) Z Z [B71(EF1a,0y,0;) + B2 (EF14,ny, 1) (2.137)

ny=1n,=1

where B72(EF1d7 Ily7 I’IZ) = Zi:l L(V) [B71(Epld, Ily7 nz)].

2.2.10 The EP from Nano Wires of HD Ge

(a) Model of Cardona et al.

The dispersion relation in accordance with this model in the present case can be
written following (1.306b) as

ky :L70(EanyanZ717g) (2138)
where
hz n;m 7.2
L7O(E7 Ny, Nz, ”g) = HVZ(Ea ”g) + a[ﬁ (7) ]
I ™
hz n;m, » zmﬁ 1/2
— (1 + 207 (E hcaiav] il N BV
The EP in this case is given by
Ao, kBT Mymax Mzmax
[ =——— Z Fo(Mesarn) (2.139)
mh ny=1n,=1
where
_ |EFiaDNW — (EngDNW +W- hv)
Nes2HD = ksT )
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and E%, ;v is the sub-band energy in this case which can be expressed as
0= L7O(EQ2HDNW7 Mg, My, n) (2.140)

The EEM in this case is given by

. B0
m (EFIHDNW77Ig7nyunz) = 7@[L$0(EF1HDNW,ﬂgynyanz)] (2~141)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g Mymax Mzmax

v

nip = (7) [L70HDNW(EF1HDNW7nya N, Ng) + Lytupnw (EFtapnw, ny, 1z, ”g)]
ny=1n,=1

(2.142)
where

Lyoupnw (Ertapnw s 0y, Nz, 1) = Lao(Er1apnw, Dy, Nz, 1)
and

Lyiapnw (Briapnw, 0y, 0, 17,) = E L(r)[Lyoupnw (Ertapnw, iy, 0z, 1)

In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.278) as

kx = B77(E,ny,nz) (2143)

where
2
he n.m

2mH
(—
d,

h2

2
h nm

2mﬁ ( d,

By (E,ny,n:) = [[E(1 + o) + o )’ = (1 +2¢E) HC) e

2m”

The EP in this case is given by

Aymax Mz,
O((,egkaT Ymax ‘“Zmax

I = —oh Z Z Fo(neeo) (2.144)

ny=1n,=1

where

- EFld — (E/60 + W — hV)
Neco = kT )
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and Ey, is the sub-band energy in this case which can be expressed as

0= B77(Eg0,ny,nz) (2145)

The EEM in this case is given by
n*

= EE[B%(EFldvny’nz)] (2.146)

m*(Epiq4, Ny, nz)

Thus, it appears that the evaluation of Jjp requires an expression of carrier
statistics which can, in turn, be written as

2 ) Mymax Mzmax
nip = < : > Z Z [B77(EF14; 0y, 1) + Brg(Epia,ny, n;)] (2.147)

n ny=1n,=1

Where B78 (Ep]d, Ily7 HZ) = Zi:l L(r) [B77(Ep1d, Ily7 HZ)].
(b) Model of Wang et al.

The dispersion relation in accordance with this model in the present case can be
written following (1.326) as

kx = ﬁ70(E7 Ily, ng, ’/Ig) (2148)
where
nyT 2m* mn mn nn
E (N2 L 2 AV nd | = N2
Bao ,ny7nz,’lg) [ (dv) + 72 [og — ot dz) alo[(_dz ) -1-0611(—0[Z )

+ ()] )
The EP in this case is given by

T Mymax Mzmax

soegvk
=t Z Fo(Nesanp) (2.149)

nh ny=1n,=1

I

where

_ [Erisovw — (Esyppyw + W — hv)
Nesaup = )

kgT
and E%, ;v is the sub-band energy in this case which can be expressed as

0 = B0 (Essrpnw- Ng» Ny, 1) (2.150)
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The EEM in this case is given by

/)

5 3E (B30 (Erimpnw, Mg, ny, 1) (2.151)

*
M (Ep1apNnw, Ngs Ny, ) =

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

2g Mymax Mzmax
nip = <7v> Z Z [B70HDNw(EF1HDNW7ny7nzvng) + ﬁ71HDNW(EF1HDNW7n)’7nzvng)]
ny=1n.=1

(2.152)

where

Brorpnw (Brtapnw, 0y, 0z, 1) = Bao(Ertapnw, ny, iz, 1)

and

ﬂ71HDNW(EF1HDNW7nyanz>”Ig E L(r ﬁ70HDNW EFlHDNW’HY’nzvng)]

In the absence of band tailing the 1D dispersion relation in this case can be
written using (1.278) as

ke = P77(Ea n,V7nZ) (2153)
where
m T, 2mt 1/2
Pra(E,myne) = ([ (B, — 5 (o510

The EP in this case is given by

ny, ng,
O(UegkaT ymax ‘“Zmax

I=— "= Z Z Fo(nes0), (2.154)

ny=1n,=1

where

B {Em — (Eg+ W — hv)}
NMego = )

kgT

and Ej, is the sub-band energy in this case which can be expressed as

0 = Pr7(Egg. ny. ) (2.155)


http://dx.doi.org/10.1007/978-3-319-11188-9_1

172 2 The EP from Nano Wires (NWs) ...

The EEM in this case is given by
n* o

=27 [P3;(EF14, 1y, 1;)] (2.156)

m*(EFldyny; nz)

Thus, it appears that the evaluation of Jip requires an expression of carrier
statistics which can, in turn, be written as

ng Mymax Mzmax
nip = < = > Z Z [P77(EF14,0y,0;) + P7s(Epia, 1y, n;)] (2.157)

ny=1n,=1

where P7g(Epi4,ny,n;) = > _| L(r)[P77(EF14,ny,1.)].

2.2.11 The EP from Nano Wires of HD GaSb

The dispersion relation of the 1D electrons in this case can be written as

h2 d 2 hz d, 2 h2k2
(n;m/d,) + (nym/d,) +—= = I3%(E, 'lg) (2.158)
2m, 2m, 2m,

The EP in this case is given by

ymax "zmax

otgegkaTn
I = T Z Z Fo(M100mp) (2.159)
ny=1n,=1
where
_ [Eriaovw — (Elgoupyw + W — hv)
MooaD = ksT

and E|yypyw 18 the sub-band energy in this case which can be expressed as

hz(nzn/dz)2 hz(nvﬁ/d\v)z
+ ) )
2m, 2m,

= 136(E/100HDNW7 ﬂg) (2.160)

The EEM in this case is given by

m* (Epiapnw, ) = e[l (Eriapnw, )] (2.161)
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Thus, it appears that the evaluation of Jjp requires an expression of carrier
statistics which can, in turn, be written as

2 Mymax Mzmax
nip = (%) Z Z [R7tonw (Briapvw, 0y, 02, 11,) + Rsrpvw (Ertapnw, 0y, nz,1,) |

ny=1n,=1
(2.162)
where
7 (n;n/d.)*
Ryupxw (Briapyw, 0y, g, 1) = ([l (Eriapnw, 1) — om.
R’ (nyn/dy)z] 2mc] 12
2m, h?

where Rgupyw (Eriapnw, ny, 0z, 11,) = > L(r) [Rogpnw (Er1apnw, 0y, 0,1, )]
The expression of 1D dispersion relation, for NWs of GaSb whose energy band
structures in the absence of band tailing assumes the form

k2
Ii(E) = zm’f + Gy (ny, n) (2.163)

In this case, the quantized energy E,, is given by
Is(Elpr) = Ga(ny, n:) (2.164)
The EP in this case is given by

Zmax

Nymax 1
O!oegkaT Ymax

1 ZFO(WIOI)a (2.165)
nh ny=1 n,=1
where
_ [Eria — (Ejg + W — hv)
Mo1 = ksT

The carrier statistics in the case can be expressed as

2 , /2 . Mymax Mzmax
nip = i Tmz Z [Ri01(EF1a; ny, 1) + Rio2(Erra, iy, )| (2.166)

ny=1n=1
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where
Riot (Eriasny.nz) = [Be(Eria) — G2 (nyanz)]l/za

5
Ri02(EFia, ny,n;) = ZL(”) [Ri01 (EF1a,ny, n2)].
r=1

2.3 Results and Discussion

Using the appropriate equations and taking the energy band constants as given in
the Table 1.1, we have plotted the normalized EP from NWs of HD CdGeAs, (an
example of nonlinear optical materials) as a function of d, as shown in plot (a) of
Fig. 2.1, in which the plot (b) corresponds to = 0. The plot (c) has been drawn in
accordance with the three band model of Kane and the plot (d) refers to the two
band model of Kane together with the plot (e) exhibiting the variation in accordance
with the parabolic energy bands for the overall assessments of the energy band
constants on the EP in this case. The Fig. 2.2 exhibits the plots of the normalized EP
from NWs of HD CdGeAs, as a function of the normalized incident photon energy

dy =15nm

(d)

Normalized EP
o

[/

(c)
(a)

(b)

%

10 15 20 25 30 35 40
Film Thickness (d,) (in nm)

If

Fig. 2.1 Plot of the normalized EP from NWs of HD CdGeAs; as a function of d, in accordance
with a generalized band model, b 6 = 0, ¢ the three-band model of Kane, d the two band model of
Kane and e the parabolic energy bands
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for all cases Figs. 2.1 and 2.3 shows the dependence of the said variable on the
normalized electron degeneracy for all cases of Fig. 2.1.

The normalized EP from NWs of HD n-InAs (an example of III-V materials) in
accordance with the HD three and two band models of Kane as functions of film
thickness, normalized incident photon energy and the normalized electron degen-
eracy have, respectively, been presented in Figs. 2.4, 2.5 and 2.6. The Figs. 2.7, 2.8
and 2.9 exhibit the variations of normalized EP from NWs of HD n-InSb as
functions of film thickness, normalized incident photon energy and the normalized
electron degeneracy respectively. The variations of the normalized EP from NWs of
HD CdS (an example of II-VI materials) as functions of thickness, normalized
incident photon energy and normalized electron degeneracy have respectively been
drawn in Figs. 2.10, 2.11 and 2.12, where the plots for IO = 0 have further been
drawn for the purpose of assessing the influence of the splitting of the two-spin
states by the spin orbit coupling and the crystalline field. The thickness, normalized
photon energy and the normalized electron degeneracy dependences of normalized
EP from NWs of HD GaP have been shown in Figs. 2.13, 2.14 and 2.15 respec-
tively. The dependence of normalized EP with reference to the aforementioned
variables from NWs of HD n-Ge and PtSb,, has been shown in Figs. 2.16, 2.17,
2.18, 2.19, 2.20 and 2.21 in accordance with the HD models of Cardona et al.,
Wang and Ressler and Emtage respectively. Figures 2.22, 2.23 and 2.24 manifest
the variations of the normalized EP from from NWs of HD stressed n-InSb as

dy =15nm
gl d, =10nm

e (©)
b)

Normalized EP
|_ L]

3 <o ]

<@ [T

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Normalized Incident Photon Energy

Fig. 2.2 Plot of the normalized EP from NWs of HD CdGeAs, as a function of normalized
incident photon energy for all cases of Fig. 2.1
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|;|z =15nm
d, =10nm
6 y
5
(c)
&
T (d)
N 4
g
5 (e)
= 3
2
(b)
(a)
14 -
10 100

Normalized Electron Degeneracy

Fig. 2.3 Plot of the normalized EP from NWs of HD CdGeAs, as a function of normalized
electron degeneracy for all cases of Fig. 2.1

10

dy =15nm

5 (b)

Normalized EP

2 ]
(a) K

1 T T T T T

10 15 20 25 30 35 40

Film Thickness (d,) (in nm)

Fig. 2.4 Plot of the normalized EP from NWs of HD n-InAs as a function of d, in accordance
with a the three band model of Kane and b the two band model of Kane
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d,=15nm
g4 d; =10nm

Normalized Ep

(b)

g @ |

1.0 1.25 1.5 1.75 2.0 2.25 2.5
Normalized Incident Photon Energy

Fig. 2.5 Plot of the normalized EP from NWs of HD n-InAs as a function of normalized incident
photon energy in accordance with a the three band model of Kane and b the two band model of Kane

d,= 15nm

dy=10nm

Normalized EP

(b),

1 10 100
Normalized Electron Degeneracy

Fig. 2.6 Plot of the normalized EP from NWs of HD n-InAs as a function of normalized electron
degeneracy in accordance with a the three band model of Kane and b the two band model of Kane
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10
d, =15nm

Normalized ep
o

(b)

1 T T T g T

10 15 20 25 30 35 40
Film Thickness (d,) (in nm)

Fig. 2.7 Plot of the normalized EP from NWs of HD n-InSb as a function of d, in accordance with
a the three band model of Kane and b the two band model of Kane

dy, =15nm
g4 d, =10nm

Normalized EP

(a)

1.0 1.25 1.5 1.75 2.0 2.25 2.5
Normalized Incident Photon Energy

Fig. 2.8 Plot of the normalized EP from NWs of HD n-InSb as a function of normalized incident
photon energy in accordance with a the three band model of Kane and b the two band model of
Kane
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Fig. 2.9 Plot of the normalized EP from NWs of HD n-InSb as a function of normalized electron
degeneracy in accordance with a the three band model of Kane and b the two band model of Kane

dy =15nm

Normalized EP

(a) \
4
(b)
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10 15 20 25 30 35 40
Film Thickness (d,) (in nm)

Fig. 2.10 Plot of the normalized EP from NWs of HD CdS as a function of d, with a 4y # 0 and
blg=0
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d,=15nm
8 d, =10nm

Normalized EP
]

4
e
(a)

3
2 b

(b)
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Fig. 2.11 Plot of the normalized EP from NWs of HD CdS as a function of normalized incident
photon energy with a Zg # 0 and b iy =0

dx =10nm, d, =15nm (CdS)

(a)

Normalized EP

P 3

1 10 100
Normalized Electron Degeneracy

1

Fig. 2.12 Plot of the normalized EP from NWs of HD CdS as a function of normalized electron
degeneracy with a o #0 and b 1y =0
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dy =15nm

Normalized EP

10 1l5 2.0 2l5 3I0 3.5 40
Film Thickness (d,) (in nm)

Fig. 2.13 Plot of the normalized EP from NWs of HD n-GaP as a function of d,

d,=15nm
g | d, =10nm

Normalized EP
o

1.0 1.03 1.06 1.10 1.13 116 1.19
Normalized Incident Photon Energy

Fig. 2.14 Plot of the normalized EP from NWs of HD n-GaP as a function of normalized incident
photon energy
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Fig. 2.15 Plot of the normalized EP from NWs of HD n-GaP as a function of normalized electron
degeneracy

d, = 15nm

(a)

Normalized EP
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Fig. 2.16 Plot of the normalized EP from NWs of HD n-Ge as a function of thickness in
accordance with the models of a Cardona et al. and b Wang et al.
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|:I,‘|r =15nm
8| d, =10nm

Normalized EP

; )

1.0 1.03 1.05 1.08 1.10 1.13 1.15
Normalized Incident Photon Energy

Fig. 2.17 Plot of the normalized EP from NWs of HD n-Ge as a function of normalized incident
photon energy for all the cases of Fig. 2.16

functions of the film thickness, normalized incident photon energy and the nor-
malized electron degeneracy respectively.

The Figs. 2.25, 2.26 and 2.27 exhibit the normalized EP as functions of film
thickness, normalized incident photon energy and normalized electron degeneracy
from NWs of HD PbTe as a function of film thickness in accordance with the
models of (a) the Dimmok and (b) the Bangert and Kastner respectively. The plots
(c) and (d) exhibit the same for PbSe.

The influence of quantum confinement is immediately apparent from Figs. 2.1,
2.4,2.7,2.10,2.13, 2.16, 2.19, 2.22 and 2.25. Since the EP depends strongly on the
thickness of the quantum-confined materials in contrast with the corresponding bulk
specimens. The EP decreases with increasing film thickness in an oscillatory way
with different numerical magnitudes for HD NWs as compared with HD QWs. It
appears from the aforementioned figures that the EP exhibits spikes for particular
values of film thickness which, in turn, depends on the particular band structure of
the specific material. Moreover, the EP from HD NWs of different compounds can
become several orders of magnitude larger than of bulk specimens of the same
materials, which is also a direct signature of quantum confinement. This oscillatory
dependence will be less and less prominent with increasing film thickness.
It appears from Figs. 2.3, 2.6, 2.9, 2.12, 2.15, 2.18, 2.21 and 2.24 that the EP
increases with increasing degeneracy and also exhibits spikes for all types of
quantum confinement as considered in this chapter. For bulk specimens of the same
material, the EP will be found to increase continuously with increasing electron
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Fig. 2.18 Plot of the normalized EP from NWs of HD n-Ge as a function of normalized electron
degeneracy for all the cases of Fig. 2.16
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Fig. 2.19 Plot of the normalized EP from NWs of HD n-PtSb, as a function of film thickness
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Fig. 2.20 Plot of the normalized EP from NWs of HD n-PtSb, as a function of normalized
incident photon energy
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Fig. 2.21 Plot of the normalized EP from NWs of HD n-PtSb, as a function of normalized
electron degeneracy



186 2 The EP from Nano Wires (NWs) ...

dy =15nm

Normalized EP

10 15 20 25 30 35 40
Film Thickness (d,) (in nm)

Fig. 2.22 Plot of the normalized EP from NWs of HD stressed n-InSb as a function of film
thickness
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Fig. 2.23 Plot of the normalized EP from NWs of HD stressed n-InSb as a function of normalized
incident photon energy
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Fig. 2.24 Plot of the normalized EP from NWs of HD stressed n-InSb as a function of normalized

electron degeneracy

10
dy=15nm
9
8
T
& (@
T s
N
©
E 5 \
P
=)
= ‘.—-“_—‘__—____'_‘————-—_...
4 \ |
(a
3 [ ——
__-‘-—_-‘-_-____‘“-\—u-
2 (b) ——
(c)
1 . . . : .
10 15 20 25 30 35 40

Film Thickness (d,) (in nm)

Fig. 2.25 Plot of the normalized EP from NWs of HD PbTe as a function of film thickness in
accordance with the models of a the Dimmok and b the Bangert and Kastner respectively. The
plots ¢ and d exhibit the same for PbSe
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Fig. 2.26 Plot of the normalized EP from QWs of HD PbTe as a function of normalized incident
photon energy in accordance with the models of a the Dimmok and b the Bangert and Kastner
respectively. The plots ¢ and d exhibit the same for PbSe
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Fig. 2.27 Plot of the normalized EP from QWs of HD PbTe as a function of electron degeneracy
in accordance with the models of a the Dimmok and b the Bangert and Kastner respectively. The
plots ¢ and d exhibit the same for PbSe
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degeneracy in a non-oscillatory manner. The Figs. 2.2, 2.5, 2.8, 2.11, 2.14, 2.17,
2.20 and 2.23 illustrate the dependence of the EP from quantum-confined materials
on the normalized incident photon energy. The EP increases with increasing photon
energy in a step like manner for all the figures. The appearance of the discrete
jumps in all the figures is due to the redistribution of the electrons among the
quantized energy levels when the size quantum number corresponding to the
highest occupied level changes from one fixed value to the others. With varying
electron degeneracy, a change is reflected in the EP through the redistribution of the
electrons among the size-quantized levels. It may be noted that at the transition zone
from one sub band to another, the height of the peaks between any two sub-bands
decreases with the increasing in the degree of quantum confinement and is clearly
shown in all the curves. It should be noted that although, the EP varies in various
manners with all the variables as evident from all the figures, the rates of variations
are totally band-structure dependent.

Finally, it may be noted that the basic aim of this chapter is not solely to
demonstrate the influence of quantum confinement on the EP from NWs of HD
non-linear optical, III-V, II-VI, IV-VI, n-GaP, n-Ge, PtSb,, and stressed compounds
respectively but also to formulate the appropriate electron statistics in the most
generalized form, since the transport and other phenomena in quantized structures
having different band structures and the derivation of the expressions of many
important electronic properties are based on the temperature-dependent electron
statistics in such materials.

2.4 Open Research Problems

(R.2.1) Investigate the EP for bulk specimens of the HD semiconductors in the
presences of Gaussian, exponential, Kane, Halperian, Lax and Bonch-
Burevich types of band tails for all systems whose unperturbed carrier
energy spectra are defined in R.1.1 in the presence of strain.

(R.2.2) Investigate the EP for NWs of all the HD semiconductors as considered
in R.1.2.

(R.2.3) Investigate the EP in the presence of strain for HD bulk specimens of the
negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field.

(R.2.4) Investigate the EP for the NWs of HD negative refractive index, organic,
magnetic and other advanced optical materials in the presence of an
arbitrarily oriented alternating electric field.

(R.2.5) Investigate the EP for the multiple NWs of HD materials whose
unperturbed carrier energy spectra are defined in R.1.1.

(R.2.6) Investigate the EP for all the appropriate HD low dimensional systems of
this chapter in the presence of finite potential wells.
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(R2.7)
(R.2.8)
(R2.9)

(R.2.10)

(R.2.11)

(R.2.12)

(R2.13)
(R.2.14)
(R.2.15)
(R.2.16)

(R.2.17)

(R.2.18)

(R.2.19)

(R.2.20)

(R.2.21)
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Investigate the EP for all the appropriate HD low dimensional systems of
this chapter in the presence of parabolic potential wells.

Investigate the EP for all the appropriate HD systems of this chapter
forming quantum rings.

Investigate the EP for all the above appropriate problems in the presence
of elliptical Hill and quantum square rings in the presence of strain.
Investigate the EP for parabolic cylindrical HD low dimensional systems
in the presence of an arbitrarily oriented alternating electric field for all
the HD materials whose unperturbed carrier energy spectra are defined in
R.1.1 in the presence of strain.

Investigate the EP for HD low dimensional systems of the negative
refractive index and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field and non-uniform light
waves and in the presence of strain.

Investigate the EP for triangular HD low dimensional systems of the
negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field in the presence of strain.

Investigate the EP for all the problems of (R.1.12) in the presence of
arbitrarily oriented magnetic field.

Investigate the EP for all the problems of (R.1.12) in the presence of
alternating electric field.

Investigate the EP for all the problems of (R.1.12) in the presence of
alternating magnetic field.

Investigate the EP for all the problems of (R.1.12) in the presence of
crossed electric field and quantizing magnetic fields.

Investigate the EP for all the problems of (R.1.12) in the presence of
crossed alternating electric field and alternating quantizing magnetic
fields.

Investigate the EP for HD NWs of the negative refractive index, organic
and magnetic materials.

Investigate the EP for HD NWs of the negative refractive index, organic
and magnetic materials in the presence of alternating time dependent
magnetic field.

Investigate the EP for HD NWs of the negative refractive index, organic
and magnetic materials in the presence of in the presence of crossed
alternating electric field and alternating quantizing magnetic fields.

(a) Investigate the EP for HD NWs of the negative refractive index,
organic, magnetic and other advanced optical materials in the presence
of an arbitrarily oriented alternating electric field considering many body
effects.
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(b) Investigate all the appropriate problems of this chapter for a Dirac electron.

(R.2.22) Investigate all the appropriate problems of this chapter by including the

many body, image force, broadening and hot carrier effects respectively.

(R.2.23) Investigate all the appropriate problems of this chapter by removing all

the mathematical approximations and establishing the respective
appropriate uniqueness conditions.
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Chapter 3

The EP from Quantum Box of Heavily
Doped (HD) Non-parabolic
Semiconductors

3.1 Introduction

It is well known that as the dimension of the QWSs increases from 1D to 3D, the
degree of freedom of the free carriers decreases drastically and the density-of-states
function changes from the Heaviside step function in OWs to the Dirac’s delta
function in Quantum Box (QB) [1, 2].

The QBs can be used for visualizing and tracking molecular processes in cells
using standard fluorescence microscopy [3-6]. They display minimal photo-
bleaching [7], thus allowing molecular tracking over prolonged periods and con-
sequently, single molecule can be tracked by using optical fluorescence microscopy
[8, 9]. The salient features of quantum dot lasers [10-12] include low threshold
currents, higher power, and great stability as compared with the conventional one
and the QBs find extensive applications in nano-robotics [13—16], neural networks
[17-19] and high density memory or storage media [20]. The QBs are also used in
nano-photonics [21] because of their theoretically high quantum yield and have
been suggested as implementations of qubits for quantum information processing
[22]. The QBs also find applications in diode lasers [23], amplifiers [24, 25], and
optical sensors [26, 27]. High-quality QBs are well suited for optical encoding [28,
29] because of their broad excitation profiles and narrow emission spectra. The new
generations of QBs have far-reaching potential for the accurate investigations of
intracellular processes at the single-molecule level, high-resolution cellular imaging,
long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics
[30, 31]. The QB nanotechnology is one of the most promising candidates for use in
solid-state quantum computation [32, 33]. It may also be noted that the QBs are
being used in single electron transistors [34, 35], photovoltaic devices [36, 37],
photoelectrics [38], ultrafast all-optical switches and logic gates [39—42], organic
dyes [43—45] and in other types of nano devices.

In this chapter in Sects. 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9,
3.2.10 and 3.2.11 we have investigated the EP from QBs of HD non-linear optical,
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II-V, II- VI, stressed Kane type, Te, GaP, PtSb,, Bi,Te;, Ge and GaAs respectively.

The Sect. 3.3 contains the result and discussions pertaining to this chapter. The
Sect. 3.4 presents 23 open research problems.

3.2 Theoretical Background

3.2.1 The EP from QB of HD Nonlinear Optical
Semiconductors

The dispersion relation in this case can be written following (2.1) as

hz(“z”/dz)z T hz(“yn/dy)z + w (”xn/dx)z

=1 3.1
2mWT21(E1QBHDa’7g) ZmﬁT22(E1QBHDa77g) ZmﬁTZI(ElQBHDa’/]g) G-

where Ejgpnp is the totally quantized energy in this case.
The total density-of-states function in this case is given by

ng Mmax Mmax emax

" ddyd > > V(E—Eigsmn) (3.2)

R N

Nopr(E

where &'(E — Ejgpup) is the Dirac’s Delta function.
Using (3.2) and Fermi-Dirac occupation probability factor, the total electron
concentration can be written as

Mrmax Mimax Memax

2g,
nOD:ddd Realpaltofz Z ZFfl(’thD) (33)
xUy Moy My—] N—j

where #3p = (lq_z;T)_1 (Eroprp — Eiggup) and Epoppp is the Fermi energy in this
case.
Therefore the electron concentration per sub-band is given by

2g,
Anop = dede Real part of [F_; (4311p)] (3.4)

The quantized energy along Z direction the E,,, in this case is given by

ﬁz(nzﬂf/dz)z
2mﬁ T21 (E’lel)l ’ ;/’g)

—1 (3.5)
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The expression of the total photo-emitted current density in this case is

Ny Ny N
Tmax ' Wmax "Zmax

Real part of Z Z Z (Anop)vz (En ) (3.6)

Ny=1 Ny=1 nzmin

€op8y

Jop =

where VZ(E”:HDI) = [nznh] [m\*\dZTél (E”:Hm ) ”g)]_l

For the purpose of comparison we shall also formulate the EP in the absence of
band tails is this case.

Let E, (i = x,y and z) be the quantized energy levels due to infinitely deep
potential well along ith-axis with n;(=1,2,3,...) as the size quantum numbers.
Therefore, from (1.2), one can write

WEv) = (En) (d> (39)

From (1.2), the totally quantized energy (Eop;) can be expressed as

7(Egp1) = fi(Egp1) K?) 2+ (nd—’jy) 2 (”d—'f) 2] (3.10)

The total density-of-states function in this case is given by

+f(Eop1)

2 g Mrmax ™max max
v

Yo > 8(E - Egp) (3.11)
Xty

z Ny=1 Ny=1 Nz=1

Nopr(E) =

The total electron concentration in this case can be written as

n;
Mamax Mymax emax

> F_1(n3,) where ny, = (ksT) ™' (Epop — Eop1)  (3.12)

Mami My—i Nz

2gy
d.d,d,

nop =

Therefore the electron concentration per sub-band is given by

28y
Anop = (m)F—l(ﬂ31) (3.13)
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The expression of the total photo-emitted current density in this case is

Mimax max max

Jop = eoc;gv Z Z Z (Anop)v. (Enz) (3.14)

Nyx=1 Ny=1 nfmin

where the n, , should be the nearest integer of the following inequality
Monin 2 -~ s (3.15)

and the velocity of the photo-emitted electrons in the n,th sub-band can be written
as

v:(Ey.) = %Ql (En,) (3.16)
2 (B ) [ (Ex)] "

B ACRHCAEICHIAGS)

Using the appropriate equations we get

in which 0 (E,,)

Jop = ( evpgy > Z Z ZFfl(WSI)Ql (E":)' 317
hdxdydz M=t My=1 Ny,

in

3.2.2 The EP from QB of HD III-V Semiconductors

The dispersion relation of the conduction electrons of III-V semiconductors are
described by the models of Kane (both three and two bands) Stillman et al. and
Palik et al., respectively. For the purpose of complete and coherent presentation, the
EP effect in QBs of HD III-V compounds have also been investigated in accordance
with the aforementioned different dispersion relations for relative comparison as
follows:

(a) The three band model of Kane
The dispersion relation in this case can be written following (2.15) as

2 2 2
hz(nz”/dz) +h2(nyn/dy) +h2(nxn/dx)

2m, 2m, 2m,

= Tu4a(BogpHp; 1) (3.18)

where Tu4(Bagpnup, ,) = T31(Bagsup, 1g) + iT31(E2gpup, 1) and Eagpup is
the totally quantized energy in this case.
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The total electron concentration can be written as

nxmux n.“max n‘"max

28
nop = - Real part of Z Z ZF—I(’?szm)) (3.19)
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where 13, = (ksT) ™' (Eroprp — Exgpin)-
Therefore the electron concentration per sub-band is given by

28y
dyd,d,

Anop = Real part of [F_| (130mp)] (3.20)

The quantized energy along Z direction the E,_, , in this case is given by

ZHD2
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=1 (3.21)

The expression of the total photo-emitted current density in this case is

08y Real part of i i 2\ (Angp)va (E"zﬂm) (3.22)
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where V22 (EnzHl)Z ) = [nznh] [mCdZ T4/14 (E”zHl)z ? ng)] -

The quantized energy levels (E,,, E, and E, along X, y, and z directions
respectively) in the absence of band tails in QBs of III-V semiconductors in
accordance with the three band model of Kane can be expressed as

I TN, 2
Ill(EnX) _2m(d > (3.23)

2 ()’
111 (En),) - Tn/lc <dyy) (324)

R (mn\*
and [11 (Enz) = m (d—z) (325)
c Z

The totally quantized energy (Egpz) (changed) in this case assumes the form

I (Egpa) = % [('{%)Z(%)Z(%)z} (3.26)
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(b)
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The velocity of the photoelectron in the n.th quantized level is given by

Vz (En;) = \/mZCQZ (Enz) (3.27)

where, QZ(E,,Z) = [(Ill(Enz))l- *1< hl(En:))

Thus the photo-emitted current density can be expressed as
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in which n_ is the nearest integer of the following inequality,
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and 13, = (kT) ™" (Erop — Egps)
The electron concentration in this case is given by
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dud,d DD Falnm). (3.30)

e My R

nop =

The two band model of Kane
The dispersion relation in this case can be written following (2.24) as

hz(nzn/dz)z +h2(n}’n/dy)2 +h2(nxn/dx)2

=9 (E 31
2m, 2m, 2m, Pa( 3QBHD777g) (3.31)

and Esppmp is the totally quantized energy in this case.
The total electron concentration can be written as

n*mux n"max n:mﬂx
2gy

dpd,d, Z F_1(n33p) (3.32)
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Therefore the electron concentration per sub-band is given by

Aoy = P 1 () (333)
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The quantized energy along Z direction the E, . in this case is given by

zHD3
5 (nzn/ dz)2

=1 3.34
2mc?2 (En ( )

ZHD3 ) ng)
The expression of the total photo-emitted current density in this case is

Mxmax max Mmax
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where Va3 (E”zHDS) = [I’lz‘lth] [mcdzylz(En:Hmv ﬂg)]

For two band model of Kane and the photo-emitted current density in the

absence of band tails assumes the form

do8ve 2 Mnax Mimax Mmax
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(1 +24E,.)] and 133 = g7 [Erop — Egps]
The E, obeys the equation
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The totally quantized energy (Egps) in this case is given by
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The electron concentration in this case is given by

2gv Mmax max Mmax

nOD:—Z Z ZF—I(’?s,%)- (3.39)
dxdydz My=1 My=1 Ng=|

The parabolic energy bands

The dispersion relation in this case can be written following (2.32) as

hz(nzn/dz)z +h2(nyn/dy)2 +h2(nxn/dX)2

=7 (E 4
2m, 2m, 2m, 73( 4QBHD777g) (3.40)

and Euppmp is the totally quantized energy in this case.
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The total electron concentration can be written as

2g Mrmax ™max max
v

dodd ZF—I(’?MHD) (3.41)
xly

T M=l My—1 Ny

nop =

where n3p = (ksT) ™' (Eroprp — Bagpn)-
Therefore the electron concentration per sub-band is given by

Anop = [F-1(M34mp)] (3.42)

dlyd.

The quantized energy along Z direction the E,_, , in this case is given by

zHD4

hz(nzn/dz)2

=1 3.43
2mcy3 (En ( )

ZHD4 ) ﬂg)

The expression of the total photo-emitted current density in this case is

ne Ny N
eao “max Jmax “max
JOD = 2gv Z (AnOD)VZ4 (E11;H1)4) (344)
=1 Ny=1 N

where VZ4(EnzHD4) = [nznh] [mcdzyg (Ensz? ng)]71

In the absence of band tails the expressions for Angp, E,_, n,,, , Jop and total
electron concentration (nop), for QBs of wide-gap materials can, respectively,
be written as

Ao = a1 345
nop ddod, 1(n') (3.45)
R ()2

Fn. = A 3.46
4 2me ( dz > ( )

d 2m,
e = (?> g (W= hv) (3.47)

a()EhTCgv Mxmax ymax "zmax ,

0 nd iy F- 3.48
oD medyd,d? 112::1 nz::l HX: [ F_1(n")] ( )

2 Mxmax Mymax Mzmax
v

nop = dxjydz Z Z Z F_i(n) (3.49)

ny=1n,=1n,=1

where, i’ = (kT) ™" [Erop — % (%)2}-
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(d) The Model of Stillman et al.
The dispersion relation of the electrons in this case can be written following
(2.40) as

Rnr/d)’ | Pn/d)’ | Pnm/d)’

2m 2m, 2m, = 04(Esopnp, 1,) (3.50)

and Esgppp is the totally quantized energy in this case.
The total electron concentration can be written as

Ry My T
max max “max

nop = ddd Z ZZ 1(M35mp) (3.51)

anlnvlnl

where 135p = (kBTYl (Eroprp — Esosmp)-
Therefore the electron concentration per sub-band is given by

2g,
Angp = dud,d. [F-1(35mp)] (3.52)

The quantized energy along Z direction the E,_,, in this case is given by

1 (n.7/d,)*

_Pa/d) 3.53
2m604 (Enzyus ) ”g) ( )

The expression of the total photo-emitted current density in this case is

n*mux n"max n:mux

Jop = eaggv Z Z Z (AnOD)VZ5 (EnzHDS) (354)

Nyx=1 Ny=1| n«'min
-1
where Vz5 (EnzHDS) [I’lz‘lth] [mcd 0, (E ( BT ng)]
In the absence of band tails, the photoelectric current density in this case can
be written as

%ogve 2 1/2 Mxmax "ymax "zmax
= dxd,d; <m—0) ,IZ::I nz::l nZ Os (En, ) F-1(ns5) (3.55)

where n,, > = m[’lZ(W hV)]l/z QS(Enz) = “112(Enz)]1/2 [112(E"z)]71}
and 1135 = (ksT) ' [Erop — Egps]
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The E, obeys the equation
(hz/sz) (7'mz/dz)25 I (Enz) (3.56)
The E¢ps in this case can be defined as
2 | (n\? (m\? [(n)\?
I»(E, = = e = 3.57
12(Egns) 2m, [(a’,) - (dy> - <dz) ( )

The electron concentration in this case is given by

n n n;
“max ' “Ymax ' ‘max

o = dfilzz SONS Foilns): (3.58)

My=1 MNy=1 MNz=|

The model of Palik et al.
The dispersion relation of the electrons in this case can be written following
(2.48) as

2 2 2
W (n;m/d;) + W (nyn/dy) + K (n,m/d,)

2m 2m, 2m, = 05(Econup; 1,) (3.59)

and Egpppp is the totally quantized energy in this case.
The total electron concentration can be written as

Mrmax Wmax

28,
d.dyd Z F_1(n361p) (3.60)

z Ny=1 My=1 Nz=1

nop =

where 1365 = (ksT) ™ (Eropip — Esosip)-
Therefore the electron concentration per sub-band is given by

Anop = [F-1 (361p)] (3.61)

ddyd.

The quantized energy along Z direction the E,_, in this case is given by

HD6

hz(nzn/dz)2

A et 7 3.62
2m, 95 (E"zHDe ) ng) ( )

The expression of the total photo-emitted current density in this case is

JOD = e(xggl’ Z Z Z (AnOD)VZ6 (Eﬂ;[-[Da) (363)

Nyx=1 Ny=1 Ng

min

where v, (E";Hm) = [nznh] [mchGIS (EnzHDG’ VIg)] -
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The photoemission current density in the absence of band tails in this case is
given by

toegy 2 1/27xmax Mymax Mzmax
" Py <m‘) Z Z Z Q7 (En.)F-1(n37) (3.64)

=1 ny=1ng ..

where, 1, > (Y25 () (W = m))'", 0 (E,) = [ [13(E.)] /15 (En) |

d (Erop—Eqp7)
and 137 =~ 7
The E, and Epp; are defined by the following equations:
w2 (mn\?
Ii3(E,) = —= 3.65
13( ‘") 2mc<dz> ( )

I3(Egpr) = 2’11 [(”d_’f)ar (nd—?)er (%) 2] (3.66)

The electron concentration in this case is given by

2gL Max Mimax Memax
o = gad DD Foalny): (3.67)

Y ey ny=1 ngmy

3.2.3 The EP from OB of HD II-VI Semiconductors

The 0D electron dispersion law in QB of HD II-VI semiconductors can be written
following (2.56) as

2 2
MMy | Mo = Ty | o, | B (ngm/dy)
W 4 TR

S+ GO RO+ G + T

(3.68)

73 (ErgaHp, ) = agl(

where E7ppnp is the totally quantized energy in this case.
The total electron concentration can be written as

g Txmax ™imax Mmax
v

hop = dydyd Z Z Z F_1(n37mp) (3.69)

T M1 Ny—p Ny

Where 1137HD = (kBT)_l (EFODHD — E7QBHD)-
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Therefore the electron concentration per sub-band is given by
Anop = S [F_1 (137 (3.70)
dd,d,

The quantized energy along Z direction the E, . in this case is given by

W (nzﬂ:/dz)2

RS (3.71)
2mHv3 (EnZHm’ ’7g>

The expression of the total photo-emitted current density in this case is

eopg, Manax Mymax "max
JOD = Zg Z (AnOD)vﬂ (En:H1)7) (372)
Ny=1 Ny=1 N

‘min

where Va7 (Eﬂzym) = [I’lzTEh] [mﬁdz“/g (Ensz ’ ng)] -
In the absence of band tails the totally quantized energy Egpio, in this case can
be expressed as

E | [Ty 2+ nn, 2 n 1 (hnn, zj:j T, 2+ nn, 2
P10 =% | \ g, d, 2mi \"d |\, d,

(3.73)

1/2

The v, (Enz) and E,_ are given by
vz (Enz) = E <7Z;Z> (3.74)
Z

hz 2
E, = Py (%) (3.75)
I\

The electron concentration can be written as

Mxmax ymax Mzmax

[F 1 (na..)] (3.76)

I i
oD =
dxdydz ny=1ny=1n,=1
where, 1749, = ,(BLT [Erop — Egpio,. |

The photo-emitted current density is given by

Txmax "ymax "zmax

opghime
Joo =575 F_ 3.77
" 2d,dyd2mi A nsz n:F 1 (1s0..) (3.77)

> &V ()2,

where, n; . > 24—
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3.2.4 The EP from QOB of HD IV-VI Semiconductors

(a) Dimmock Model
In this case the dispersion relation of the electrons can be written as the
following (2.65) as
n,m
dL = T36(EsosHp; g 11 1ty) (3.78)

Z

where Egpppp is the totally quantized energy in this case.
The total electron concentration can be written as

Mrmax ™max max

_ &
~ didyd, > D Foilinsgnn) (3.79)

nop

My=1 MNy=1 Nz=|

where 3g5p = (kaT) ™" (Eropup — Egoshp)-
Therefore the electron concentration per sub-band is given by

Anop = [F-1 (1380p)] (3.80)

8v
dyd,d,

The quantized energy along Z direction the E,_, . in this case is given by

zHD8

? (nzn)z
2x6 dz
P onm, ot nm, R onm,

2 )

y2<EnzHDS7 ng) + Y3 (EnzHDiU ng)
(3.81)

—[1 Ep s " 2ms
[ +OCV3( ZHD8 '/’g)} dz 4x3x6 dz 2m3 dz

The expression of the total photo-emitted current density in this case is

n ny n;
Ymax ' Ymax ' “Zmax

Jop = coo8y Z Z Z (AnOD)Vzg (EnzHDS) (382>

4 Ny—=1 Ny=1| Ng_.
where
1 12 / hz nzﬂ: 2
Vz8 (E”zHDS) = ﬁ [VZ(EVleDS’ ’18) + OW3 (EnZHDS’ ﬂg) 2_x6 (7)
z
R nn W nm ol nm
— wl(E, T (B (B
O‘/3( zHD871/Ig) 2x3 ( d, ] [m3 d, x3x6 - d;
i n,m

+ [1 + oy3 (E'le[>8> ng)] g (d—z)]
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In the absence of band tailing, the electron dispersion relation in this case can

be written following (2.71) as

n,m
—— = Tuo(Egpi1, Ny, i)
d;

where Egpp; is the totally quantized energy in this case.
In this case E, and v, (Enz) are given by

W n.m

G

m nm
EI’[ 1 En El'l :
(1 +0oE,)+o e (— 7

4 2
h I’ZZTC 4 h I’ZZTC 2

5~ 1+, ) 5 (5T

_4)63)6(, dz ZM3 dz

1 [( + aE, )—2 (’11_’7) x;x( rzi_n) ]
Vz En. - 6 :
(Ex.) (14 29E,,) + 22 (557 — o 12 (25)7]

St

The electron concentration per band can be written as

Angp = [F-1(n41)]

8v
dd,d,
where, 14, = g7 [Erop — Egpii]
The photo emitted current density is given by

ne Ny N
max ' Ymax '‘Zmax

]OD = efngv Z Z Z (AI’lOD)VZ (Enz)-

My=1 My=1 Nz,

Bangert and Kastner Model

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

The electron dispersion relation in this case is given by following (2.77) as

n,m
Vi Ts0(Eogprp; Mg, i, 1ty)
Zz

where Eopppp is the totally quantized energy in this case.
The total electron concentration can be written as

d—xdyd S z“: Z F_1(30mp)

T Meml Myol Ny

8v
nop =

where 395p = (ksT) ™" (Eroprp — Evosup)-

(3.88)

(3.89)
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Therefore the electron concentration per sub-band is given by

8v
a1 o) (390)

An()D =

The quantized energy along Z direction the E,_, , in this case is given by

ZHD9

n.m

F (E”zHD9 ) ;/Ig) (_

Z =1 (3.91)

The expression of the total photo-emitted current density in this case is

n ny n;
Ymax °“Ymax ' Zmax

Jop — eoczgv Z Z Z (Anop)v-o (EnzHDt)) (3.92)

where V29 (Eﬂang) = [_2(%)F2 (E”anm ng)] [hFé (En;HDQ’ ’1g)]71
In the absence of band-tails following (2.83) the dispersion relation is given by
n,m

Vi To1(E120D; g5 1 1y) (3.93)
e

where Ej»gp is the totally quantized energy in this case.
The total electron concentration can be written as

7 z
Uimax Wmax Memax

F_1(n4) (3.94)

8v

dedyd

z Nyx=1 Ny=1 MNz=1

nop =

where 14, = (kgT) ™" (Erop — Ei20p)
Therefore the electron concentration per sub-band is given by

8v
Angp = F_ .95
o = o 1P (395)

The quantized energy along Z direction the E, in this case is given by

m(&»(%f ~1

The expression of the total photo-emitted current density in this case is

max max Mmax

g, > (Anop)v(E,,) (3.96)

4
ey Ny—y N

Zmin

Jop =

where V(E”z) = [_2(%)602(Enz7”g)][hwlz(En:a ﬂg)]fl'
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3.2.5 The EP from QB of HD Stressed Kane Type
Semiconductors

The electron dispersion relation in this case is given by following (2.89) as

n,m
dL = T70(E100BHD; Ngs x; Ty) (3.97)
Z
where Ejogpnp is the totally quantized energy in this case.
The total electron concentration can be written as

ne Ny n,
2 “max max —“‘max
v

g
dedyd

z My=1 Ny=1 MNz=1

nop = F_1(Naoup) (3.98)

where 1401p = (ksT) ™" (Eropup — E100BHD)-
Therefore the electron concentration per sub-band is given by

Anop = [F_1(s0mp)] (3.99)

dyd,d;

The quantized energy along Z direction the E,,, , in this case is given by

HD10

n,m
Sll(E’lel)lm ng)(L)z =1 (3100)

The expression of the total photo-emitted current density in this case is

Ny My g
Tmax Dmax "Zmax

Jop = ea;gv Z Z Z (AnOD)vZIO(Eﬂ;HDm) (3101)

Ny=1 Ny=1 nzmi"

n.m -1
where Vz10 (Enszo) = [_Z(Tz)Sll(En:Hmo’ ng)][hSIII(E"zHDm? ”g)]
In the absence of band-tails the v, (E,,Z) for QBs of stressed materials can be
written form (1.195) as

Q21 (En) 1
E, ) =———> wh E,)=——= 3.102
v.(En.) p where 05 (E,,) [Eo(Enz)]/ ( )
The E, can be expressed through the equation
e (E,) =58 (3.103)
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The totally quantized energy Epp3 in this case assumes the form

(722:) 2 @, (Egpas)] *+ (ﬂd_’:v> 2 (b, (Egpas)] T <nd_:lz) 2 € (Egpns)] =1

(3.104)
The electron concentration is given by
2 2y Mxmax "ymax Mzmax B B 0

Nop = dxdvdz Z_l Z_l Z_l Ffl(ﬂ53) where N5z = (kBT) (EFOD — EQD23) (3105)

The photo-emitted current density can be written as

OC()E’gV Mymax "ymax "zmax _
Jop = SN 0un(En)F-(s3) (3.106)
dxdydzh n=1n,=1n,=1

where n, . satisfies the following inequality

I (d;) [co(W — hv)].

3.2.6 The EP from OB of HD Te

The OD dispersion relation may be written in this case following (2.99) as

n,T

dx

= t72(E1108uD, 1y, 0, 1) (3.107)

where Ej1gpnp is the totally quantized energy in this case.
The total electron concentration can be written as

My My T
g “max max “max
v

dd,d.

nop = F_1(Na2mp) (3.108)

My=1 Ny=1 Nz=|

where 145p = (ksT) ™" (Eropup — Ei208HD)-
Therefore the electron concentration per sub-band is given by

8v
Angp = v, [F-1(Na2mp)] (3.109)



http://dx.doi.org/10.1007/978-3-319-11188-9_2

210 3 The EP from Quantum Box ...

The quantized energy along Z direction the E,_, . in this case is given by

ZHD11

n,m

W) = Vsap Eronss 1)) = Vi i) =

) )? (3.111)

The expression of the total photo-emitted current density in this case is

Mrmax Mymax M2max

Z (Anop)veit (Enpn, ) (3.112)

Ny=1 Ny=1 Nng

edp8y
4

Jop =

‘min
where

1 h[l//’SHD (Enwnn ’ ng) + l//81~1D( NzHD11 9 ’79) l///81-11)( NzHD11 Y ng) [llléﬁl) (E”:HDII ) ng) - (%)2]71/2]

Ve (Bugpn )] = - - - 21-1/2
[ ( ‘ )] [2‘//6(” 1[) + ("n [lpSHD( VleH”g) - (%) ] / ]

In the absence of doping v, (Enz.i) in this case is given by

vZ(E ):—Q12( m) (3.113)

2
where Q1 (E,,Z_i) =, /21&1(%) + 5 in which £, =y, (%) :t(’;,i) Vs

The totally quantized energy can be written as

n n 2 n 2
B S ey
2 2 1/2
§<7le> 2 (7;'1") +(7;iyy) H (3.114)

The electron concentration is given by
n.

Mymax ymax "zmax

op = dxfiidz > D> Falm) (3.115)

+

n=1ny=1n,=1

Where 1’]44_L = (E[:()D — EQD14¢)/]<BT.
The photo-emitted current density is given by

Mamax Mymax 7

O(O egv Zmax

2hd,d,d, > 0o (E)Ffl (Ma..) (3.116)

=1 ny=1n=1

Jop =

where n,, can be determined from

2
W —hy =, <”’Z) :tx//3.d£.n1mm. (3.117)
Z Z
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3.2.7 The EP from QB of HD Gallium Phosphide

The 0D dispersion relation may be written in this case following (2.109) as

N,

dy

= u70(E1408HD, Ny, N, 11,) (3.118)

where E40pnp is the totally quantized energy in this case.
The total electron concentration can be written as

Manax Mymax 2max

o> = dx(cgi;d Z Z Z F_1(Naap) (3.119)

< My=1 Ny=1 Nz=1

where 145p = (kBT)_l(EFODHD — Eiag8Hp)-
Therefore the electron concentration per sub-band is given by

Angp = —"— [F_ 3.120
nop ddyd, [F—1(Naanp)] ( )
The quantized energy along Z direction the E,,, , in this case is given by
n,m n,m
173 (Enszu ’7g) + 1 — t31(di)2 — Iy [(di)z + tg(Enszu ’/’g)l/Z =0 (3121)
Z Z

The expression of the total photo-emitted current density in this case is

Mrmax Wmax emax

JOD = eazgv Z Z Z (AnOD)VZM (E’leDM) (3122)

Ny=1 Ny=1 nzmin

_ (2631 (55)+1a (55) (55 + 2 (Enyprg )]

Y By M) 1485 B gy M) En gy M) 52+ 2 (En gy )]
In the absence of doping, the totally quantized energy (Egpie) in this case can be

written as

Eopys = 0 () ()] ] ()T (o ()
P10 " o |\ dy dy 2m; |\ d, d, d.
1/2
sy )] e
mﬁ2 dy dy d;

where [v:14(Enp., )]

+ Vgl

+ V6

(3.123)
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The v, (Enz) and E, can be respectively written as

v,(E,.) = hl (TZZZ)QIO( ) (3.124)

—1/2

where, Q1 (E,,) = |1 — <Iiﬁz’)
I

W (n)
z\q,
()

1/2
R (an\* |G (mn
dE, = z £ V + |V, 3.125
and B, =51 () - [*z(dz>+lc| Vel (3125)
The electron concentration assumes the form
2 g Mymax Mymax Mzmax
= F_ 3.126
nop dodyd. 2.2 ngl [F_1(146)] ( )
where, 145 = g7 [Erop — Eopis)
The photo-emitted current density is given by
aonhg\) n'fmmx n,\"max nzmax _
Jop = W Z Qo (EnZ)F—l (M46) (3.127)

H =1 ny=1ng .

where, n, is the nearest integer of the following equation

1/2

1 13 1\ ?
(W —hv) = —— (”n““'"> Vel — |IVeP+ <&> . (3.128)
2m' \ . (m‘) d.

3.2.8 The EP from QB of HD Platinum Antimonide

The OD dispersion relation may be written in this case following (2.119) as

N, T

d

= Va0(Eisup, 0y, 0z, 11,) (3.129)

where Ejsppnp is the totally quantized energy in this case.
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The total electron concentration can be written as

n n Z
xmax max max

dy d d > D Failasmp) (3.130)

L omoy ny= mg=

nop =

where ysp = (ksT) ™ (Epoprp — Eisoprp).-
Therefore the electron concentration per sub-band is given by

AnOD - dxdydz [Ffl(n45HD)] (3131)

The quantized energy along Z direction the E, in this case is given by

ZHD15

;T 4 n,m

T41(dL) = TSI(E"szs?’/’g)(d ) +T61( nHD15717g) (3132>
z z

The expression of the total photo-emitted current density in this case is

Mamax ™max max

Jop = erngv Z Z Z (Anop)vzis (Enypns ) (3.133)

Ny=1 Ny=1 Nz ..
[4T41("'”) —2Ts51 (E, pis: 1) (5]
RIS (En gy 55 ’73)(1 %)’ Ty Enggypys )]

In the absence of band tailing the OD dispersion relation in this case can be
written using (2.124) as

where [v,15 (EnzHDl5 ) | =

n, T

= D71(Egpi7,1ny,10;) (3.134)

X

where Egp7 is the totally quantized energy in this case
The total electron concentration can be written as

Txmax ™max Mmax

8v

did,d,

~1(1150) (3.135)

nop =
My=1 MNy=1 Nz=|

where 1’]50 = (kBT)_l (EFOD — EQD17)
Therefore the electron concentration per sub-band is given by

8
Anop = ddod. [F-1(ns0)] (3.136)
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The quantized energy along Z direction the E,_in this case is given by

[En, + 02 (B, — 04 (C5)? 4 80 = L (CE

4
3.137
d, : d, d, ) ( )

The expression of the total photo-emitted current density in this case is

Mrmax Mimax Memax

Jop = e“zg” S SS (Anp)v.(E) (3.138)

Ny=1 Ny=| nzmi“

where v ( £ ) LD 2D 04 (B 02 (55)) —2 (S5 0 (B 00— 4 (55)°)]
i\ R[2E,, +00+ (02 —4) (Z2)7]

3.2.9 The EP from QB of HD Bismuth Telluride

The dispersion relation in this case can be written following (2.128b) as

N, T

d

= J70(E1s0BHD, Ny, 0z, 1) (3.139)

where Eigppup is the totally quantized energy in this case.
The total electron concentration can be written as

2 g Mmax Ymax zmax
v

~ dd,d. > Foi(asap) (3.140)

© Hx=1 Ny=1 Nz=|

nop

where 45 = (ksT) ™' (Epoprp — Eisoprp).-
Therefore the electron concentration per sub-band is given by

2g,
Anop = dvdyd. [F_1(Masup)] (3.141)

The quantized energy along Z direction the E,,,,, in this case is given by

2
nyn,m

dyd, )

_nm ~
V2 (E”zﬁmm ’Ig) = w3 (dL)z + 2(1)4(
z

(3.142)

The expression of the total photo-emitted current density in this case is

Ny Ry N
max ~max “max

Jo =D DD (Bnon)vao (Enyun) (3.143)

My=1 Ny=| nzmi"

-1 2 y
where [sz() (Enanzo)] = % [V,Z (Enanzoﬂ '/’g)} [(D3 (%) + w4 (%)]
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The dispersion relation of the conduction electrons in Bi,Te; in the absence of
doping can be written following (1.284) as
hZ
E(l+aE) =5 — (ank§ + ok + oask? + 20(23kvkz) (3.144)
mo .

where ;1,002,033 and o3 are spectrum constants.
The v, (Enz) is given by

nhomnz

& (En‘") - dzmo(l + ZaEnz)

(3.145)

in which E, should be determined from the following equation

2 g\ 2
E, (1+0E,) = 2 <a33 (d—;> ) (3.146)

The totally quantized energy Egps3 can be written as

K> Ny 2 nym\ 2 n.m\ > w2nyn
Eop33(1 + aEgpss) = 2o [0611 <d> o020 (;,) +033 (;,) +20€23< p ;VZ Z)
X y ¢4 ylz

(3.147)
The hole concentration is given by
p _ 2% %nﬁi%[l—l—exp(n )]~ where :L[E — Eops33)
0D d. dy d. e e 62 62 kT FOD 0D33
(3.148)
The photo-emitted current density assumes the form
mopeg, sy 2R E2 n[1 + exp(ng)] !
Jop =—F———5 3.149
w modxdydzz nzz:l ny=1n;_. (1 + ZOCE”:) ( )
where n, . should be the nearest integer of the following equation
o3 2
(W = W)+ oW — )] = =22 o, (3.150)

mo


http://dx.doi.org/10.1007/978-3-319-11188-9_1

216 3 The EP from Quantum Box ...
3.2.10 The EP from QB of HD Germinium

(a) Model of Cardona et al.
The dispersion relation in accordance with this model in the present case can
be written following (2.138) as

Ny T

dx

= L7o(Ezo0pHp, Ny, Nz, 17,) (3.151)

where Exopprp is the totally quantized energy in this case.
The total electron concentration can be written as

ng lemux nymax I‘LZmﬂX
didyd

T Mem1 My—1 Ny

nop = F_1(nsomp) (3.152)

where 150 = (ksT) ™" (Eroprip — Eaogsmp)-
Therefore the electron concentration per sub-band is given by

28y
d.dd,

Anop = (F—1(s0mp)] (3.153)

The quantized energy along Z direction the E, in this case is given by

ZHD22

W onmo, " n.mo
0= VZ(Enszzv ng) + a[ﬁ (dL) ] - [1 + 2?3 (EnzHD227 ng)] ﬁ (dL)
== [
(3.154)

The expression of the total photo-emitted current density in this case is

Ny Ry N
“max 2 max “max

Z (Anop)va2z (Enns ) (3.155)

Ny—| Ny—| N

eapy
2

Jop =

Zmin

(14073 (En ﬁngm—%—a(f‘,y il
where (v (E, = 3
[ @2 ( D22 ] RS (Enipy M) =75 <E”1HD22"78)(Z_%) <%)_]
In the absence of doping the totally quantized energy Egp3 in this case can be

written as
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E R (mn,\’
Egpso = ——2+— (—Z>

2 " 2mi\ d

2 2 2\ 11/2
Egn VE "2 Ty n iy

4 80 2m d, dy
The v, (En) and E,_ can be respectively written as

h (7n
vV (En;) = mﬁ <d_:>

? mn; 2
E,, =
: 2mH d,

The electron concentration assumes the form

+

2 Mxmax Mymax "zmax
v

nop = ddd Z[ —1(142)]

< ny=1 ny=1n.=1
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(3.156)

(3.157)

(3.158)

(3.159)

where, Ngp = kBLT [EFOD — EQD3O] in which EQD3Q is determined from (3156)

The EP is given by
o TChg Mymax ymax Mzmax
0 ve
Joo = ey an 1(142)

H n=1ny=1n, min

where, n,_ is the nearest integer of the following inequality

4. \/ 2™
T

> (W hv)'/2.

Nzin

(b) Model of Wang and Ressler

(3.160)

(3.161)

The dispersion relation in accordance with this model in the present case can

be written following (2.148) as

T

dx

= Br0(Eaagrp; 0y, Nz, 1)

where Exuppmp is the totally quantized energy in this case.
The total electron concentration can be written as

2 Mamax Mymax emax
V

nop = &
7 ded,d.

F_1(ns4mp)

My=1 My=1 Nz=|

where 1754HD = (kBT)il(EF()DHD — E24QBHD)'

(3.162)

(3.163)
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Therefore the electron concentration per sub-band is given by

Anop = dedyd, [F-1(Nsamp)] (3.164)

The quantized energy along Z direction the E,,,,, in this case is given by

n,m _ n,m _ ;7 _
[&8 - &9(di)2 - alo[(‘;%)z‘ + all(dz;)z + alZ(En;HDzM ng)]l/z] =0 (3165)
Z Z Z

The expression of the total photo-emitted current density in this case is
nXmllX n.“mux n7|nax

J()D = Z Z Z (AHOD)VZM (E”zHD24) (3166)

Ny=1 Ny=1 Ng

‘min

where

[(2(%)569)\/(%)4 + 801 (55801 (B M) + 2200(55)° + 10211 (45)]

1
4 (E, =_| :
V; 24( nzynu) i L [&12<E";H1>24"714)] }
2

s/ )" + 301 (55801 (B 1) +

In the absence of doping, the totally quantized energy Epp4o in this case is
given by

2
E " (7, 2+ 2 Ty, 2+ nny ? R Ty 2+ nn, 2
e — _ _ —C _ _— _
0 " omi\d. ) " om | \d d, "\om’ dy d,
2
(R A nny 2 i nn, (R nn, 4
2m* d, d, 2m; |\ d. 2m ) \ d.

(3.167)
The v,(E,,) and E,, can be respectively written as
vi(En) = - (") 00, (E,) (3.168)
A m‘*‘ d, ¢

2
where, Qll(Enz) =|l—e = z <%>

2
2\ R’ .\t
En. = 2m (d_z> e <2m*> (71) (3.169)
I 2 I z
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The electron concentration assumes the form

Nxmax My Nzma
2gv Amax “Ymax ‘‘Zmax

d.dyd > [Fi(nso)] (3.170)

<=1 ny=1n,=1

nop =

where, 150 = g7 [Erop — Egpao)
The photo-emitted current density is given by

aonhgve Nymax "ymax "zmax

= ddydem > 0u(E)Faln)  (371)
xty!

27 my=1 ny=1 n

Jop

‘min

where, n,_  is the nearest integer of the following inequality
" (mn : R ’ nn N
W _ h _ Zmin > s Zmin . 3.172
(W= hv) 2] ( d, > “ <2mﬁ) ( d > (3.172)

3.2.11 The EP from QB of HD Gallium Antimonide

The dispersion relation of the OD electrons in this case can be written following
(2.158) as

2 (nym\2
/)’ | W (nm/dy) | )

= Ix(E 3.173
om, om, om, 36( 30QBHD7’7g) ( )

where E3gppnp is the totally quantized energy in this case.
The total electron concentration can be written as

Mmax Ymax zmax
28y

d.d,d, Z Z Z F_1(6omp) (3.174)

My=1 My=1 Nz=|

nop =

where goup = (kT) ™" (Eropup — E3008HD)-
Therefore the electron concentration per sub-band is given by

28y
AnOD = dxdydz [F—l(n6OHD)] (3175)
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The quantized energy along Z direction the E,_, ., in this case is given by

ZHD30

" n.m
() = B (B 1) (3.176)
Z

2m,

The expression of the total photo-emitted current density in this case is

s n;
Mamax ™max max

J()D = eaggv Z Z Z (AnOD)Vz3O (EnzHD3U) (3177)

M=l Ny=1 Mg .0

hn,m

T demelig(En gy 1)

In the absence of band tails, the (1.337) can be written as

E
— aok® + 21 [T+ o0k — 1] (3.178)

where V730 (Enzymo)

@)\ 1 _ 1
where oy = 2m " and a9 = ((Egl) [E — m_()]
From (3.178), we get

E
k2 = O(—9+ A1 — [Otle + 0613}1/2 (3179)
E? E}
where o) = g% {oclo +3 } oy = (“ij‘), w3 = gy [oc%o + 10% - &'g%}

The v,(E,,) in this case is given by

v:(Ey,) = %Qw(Enz) (3.180)

()(1 b (3 )2)1/2H in which E,,

should be determined from the following equation

2n,m O([o[
E, == £
() e

where Q19 (E,.) = [2059( ) + gl

1/2

1 +0 (“d—iZ)z]_ (3.181)
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The totally quantized energy Eppeo assumes the form
2 2 2
)" (7 (n
() () ()]
m\°  (mn\* (72
— -2 —= -1 3.182
() () () ]| o

The electron concentration is given by

Eopso = a9

E
+7g1 1+ o

2 , Mxmax Mymax "zmax
nop = ﬁ DD Foilnmo) where 29 = (Eron — Egoeo)/ (ksT)  (3.183)
XV =1 ny=1ng

The photo-emitted current density can be written as

Jop = Hcsy Z Z Z Q19 (E"z)Ffl(nm) 15
hdxdydz ne=1n=1n,

where n, . should be determined from the following equation

(3.185)

3.3 Results and Discussion

Using the appropriate equations, we have plotted the normalized EP from QBs of
HD CdGeAs; as a function of film thickness as shown in plot (a) of Fig. 3.1, where
the plot (b) indicates the case for 6 = 0. The plots (c) and (d) represent the pho-
toemission in this case in accordance with three band models of Kane. In Figs. 3.2
and 3.3, the aforementioned variable has been plotted as functions of normalized
incident photon energy and normalized electron degeneracy respectively for all
cases of Fig. 3.1. In Fig. 3.4, the normalized EP from QBs of HD n-InSb has been
plotted as a function of d, in accordance with the (a) three band model of Kane, (b)
two band model of Kane, the models of (c¢) Stillman et al. and (d) Palik et al.
respectively. The plots (e-h) refer to QBs of HD GaAs in accordance with the said
models respectively in the same figure. In Figs. 3.5 and 3.6, the normalized EP for
all cases of Fig. 3.4 has been plotted as functions of normalized incident photon
energy and the normalized electron degeneracy respectively. The Fig. 3.7 exhibits
the normalized EP from QBs of HD CdS as a function of d, as shown in plot (a), in
which the plot (b) is valid for Jo = 0. The plot (c) in the same figure is valid for
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Fig. 3.1 Plot of the normalized EP from QBs of HD CdGeAs, as a function of d, in accordance
with a generalized band model b 6 = 0, ¢ the three-band model of Kane and d the two band model
of Kane
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Fig. 3.2 Plot of the normalized EP from QBs of HD CdGeAs, as a function of normalized
incident photon energy for all the cases of Fig. 3.1
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Fig. 3.3 Plot of the normalized EP from QBs of HD CdGeAs, as a function of normalized
electron degeneracy for all the cases of Fig. 3.1
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Fig. 3.4 Plot of the normalized EP as a function of d, from QBs of HD n-InSb in accordance with
the a three band model of Kane, b two band model of Kane, ¢ model of Stillman et al. and d model

of Palik et al. respectively. The plots e—h refer to QBs of HD GaAs in accordance with the said
models
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Fig. 3.5 Plot of the normalized EP from QBs of HD n-InSb and HD n-GaAs as a function of
normalized incident photon energy for all the cases of Fig. 3.4
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Fig. 3.6 Plot of the normalized EP from QBs of HD n-InSb and HD n-GaAs as a function of
normalized electron degeneracy for all the cases of Fig. 3.4
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Fig. 3.7 Plot of the normalized EP from QBs of « HD CdS with 4y # 0, b /9 = 0 respectively and
¢ HD GaP as a function of d,
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Fig. 3.8 Plot of the normalized EP from QBs of « HD CdS with 4 # 0, b /9 = 0 respectively and
¢ HD GaP as a function of normalized incident photon energy
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Fig. 3.9 Plot of the normalized EP from QBs of a HD CdS with 7o #0,b Jo=0 respectively and
¢ HD GaP as a function of normalized electron degeneracy

QBs of HD GaP respectively. In Figs. 3.8 and 3.9, the aforementioned variable has
been plotted as functions of normalized incident photon energy and normalized
electron degeneracy respectively for all cases of Fig. 3.7.

The Fig. 3.10 exhibits the plot of the normalized EP as a function of film
thickness from QBs of HD n-Ge in accordance with the models of (a) Cardona et al.
and (b) Wang et al. respectively. The curve (c) in the same figure refers to the EP
from QBs of HD Tellurium in accordance with the models of Bouat et al. The
curves (d) and (e) refer to Te for two different values of temperature. In Figs. 3.11
and 3.12, the normalized EP has been plotted as functions of normalized incident
photon energy and normalized electron degeneracy respectively for all cases of
Fig. 3.10. In Fig. 3.13, we have drawn the plots of the normalized EP as a function
of film thickness from HD QBs of (a) n-PtSb, (b) zerogap materials, taking HgTe as
an example and (c) Pb;_,Ge,Te. In Figs. 3.14 and 3.15, the normalized EP in this
case has been plotted as functions of normalized incident photon energy and nor-
malized carrier degeneracy respectively for all cases of Fig. 3.13. In Fig. 3.16, we
have drawn the plots of the normalized EP as a function of film thickness from QBs
of HD GaSb in accordance with the model of Mathur et al. for three different values
of temperature respectively. The curve (d) in the same figure refers to the QBs of
HD stressed materials, where stressed n-InSb has been considered as an example. In
Figs. 3.17 and 3.18, the normalized EP in this case has been plotted as functions of
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l:ly= 15nm

d,=10 nm

Normalized EP

10 20 30 40 50 60 70 80
Film thickness d,(nm)

Fig. 3.10 Plot of the normalized EP from HD QBs of a n-Ge in accordance with the model of
Cardona et al. b n-Ge in accordance with the model of Wang et al. as a function of film thickness
The curve c refers to the same plot for HD QBs of Tellurium in accordance with the model of
Bouat et al. The curves d and e exhibit the same dependence for Te for two different temperatures
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Fig. 3.11 Plot of the normalized EP as a function of normalized incident photon energy for all the
cases of Fig. 3.10
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Fig. 3.12 Plot of the normalized EP as a function of normalized electron degeneracy for all the
cases of Fig. 3.10
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Fig. 3.13 Plot of the normalized EP from HD QBs of a PtSb,, » HgTe and ¢ Pb,_,Ge,Te as a
function of film thickness
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Fig. 3.14 Plot of the normalized EP from HD QBs of a PtSb,, » HgTe and ¢ Pb;_,Ge,Te as a
function of normalized incident photon energy
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Fig. 3.15 Plot of the normalized EP from HD QBs of a PtSb,, » HgTe and ¢ Pb;_,Ge,Te as a
function of normalized carrier degeneracy
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Fig. 3.16 Plot of the normalized EP from HD QBs of GaSb in accordance with the model of
Mathur et al. for three different values of temperature as a function of film thickness. The plot
d refers to QBs of HD stressed InSb
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Fig. 3.17 Plot of the normalized EP as a function of normalized incident photon energy for all the
cases of Fig. 3.16
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Fig. 3.18 Plot of the normalized EP as a function of normalized electron degeneracy for all the
cases of Fig. 3.16

normalized incident photon energy and the normalized electron degeneracy
respectively for all cases of Fig. 3.16.

The Fig. 3.19 exhibits the plot of the normalized EP as a function of film
thickness from QBs of HD PbSe in accordance with the models of (a) Dimmock,
(b) the Cohen, (c) Bangert et al. and (d) the Lax respectively. In Figs. 3.20 and 3.21,
the same variable has been plotted as functions of normalized incident photon
energy and normalized electron degeneracy respectively for all cases of Fig. 3.19.
The Fig. 3.22 depicts the plot of the normalized EP as a function of film thickness
from QBs of IV-VI materials taking HD n-PbTe as an example in accordance with
the models of (a) Dimmock (b) Cohen, (c) Bangert et al. (d) Lax respectively.
Besides, the plot (e) of Fig. 3.22 exhibits the EP from QBs of II-V materials taking
HD CdSb as an example. In Figs. 3.23 and 3.24, the normalized EP in this case has
been plotted as functions of normalized incident photon energy and normalized
carrier degeneracy respectively for all cases of Fig. 3.22.

The Fig. 3.25 shows the plot of the normalized EP as a function of film thickness
from QBs of HD Bi,Te; for two different temperatures respectively. In Figs. 3.26
and 3.27, the normalized EP in this case has been plotted as functions of normalized
incident photon energy and normalized carrier degeneracy respectively for all cases
of Fig. 3.25.

It appears from the Figs. 3.1, 3.4, 3.7, 3.10, 3.13, 3.16, 3.19, 3.22 and 3.25 that
the normalized EP increases with decreasing film thickness and exhibits spikes for
various values of d, which are totally band structure dependent. The Figs. 3.2, 3.5,
3.8, 3.11, 3.14, 3.17, 3.20, 3.23 and 3.26 exhibit the step-functional dependence of
the normalized EP from the HD QBs of different materials with the incident photon
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Fig. 3.19 Plot of the normalized EP as a function of film thickness from QBs of HD PbSe in
accordance with the models of « Dimmock and b the Cohen, ¢ Bangert et al. and d the Lax
respectively
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Fig. 3.20 Plot of the normalized EP as a function of normalized incident photon energy for all the
cases of Fig. 3.19



3.3 Results and Discussion

233

dx= 10nm

dz=10nm

Normalized EP

Normalized Electron Degeneracy

10

100

Fig. 3.21 Plot of the normalized EP as a function of normalized electron degeneracy for all the

cases of Fig. 3.19
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Fig. 3.22 Plot of the normalized EP from QBs of HD PbTe in accordance with the models of
a Dimmock, b Cohen, ¢ Bangert et al. and d Lax respectively as a function of film thickness. The
plot e refers to QBs of HD CdSb
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Fig. 3.23 Plot of the normalized EP as a function of normalized incident photon energy for all the
cases of Fig. 3.22

Normalized EP

1 10 100
Normalized Carrier Degeneracy

Fig. 3.24 Plot of the normalized EP as a function of normalized carrier degeneracy for all the
cases Fig. 3.22



3.3 Results and Discussion 235

5
dy- 15nm
dy=10 nm
4
o
w
-
83
= (b)
£
1™
=}
=
(a)
2
1 T T T T T T
10 20 30 40 50 60 70 80

Film thickness d_ (nm)

Fig. 3.25 Plot of the normalized EP from QBs of HD Bi,Te; for two different temperatures as a
function of film thickness
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Fig. 3.26 Plot of the normalized EP from QBs of HD Bi,Te; for two different temperatures as a
function of normalized incident photon energy
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Fig. 3.27 Plot of the normalized EP from QBs of HD Bi,Te; for two different temperatures as a
function of normalized carrier degeneracy

energy. It is apparent from the Figs. 3.3, 3.6, 3.9, 3.12, 3.15, 3.18, 3.21, 3.24 and
3.27 that the normalized EP from the HD QBs of various materials increases with
increasing normalized carrier degeneracy and exhibits spikes for different values of
carrier concentration which are again band structure dependent. It may be noted that
the HD QBs lead to the discrete energy levels, somewhat like atomic energy levels,
which produce very large changes. This follows from the inherent nature of the
quantum confinement of the carrier gas dealt with here. In QBs, there remain no
free carrier states in between any two allowed sets of size-quantized levels unlike
that found for QWs and NWs where the quantum confinements are 1D and 2D,
respectively. Consequently, the crossing of the Fermi level by the size-quantized
levels in HD QBs would have much greater impact on the redistribution of the
carriers among the allowed levels, as compared to that found for QWs and NWs
respectively. Although the EP varies in various manners with all the variables in all
the limiting cases as evident from all the figures, the rates of variations are totally
band-structure dependent. The quantum signature of HD QBs for the EP is rather
prominent as compared to the same from QWs and NWs.

The photoemission from HD QWs, NWs and QBs will further be investigated in
details in Chaps. 1 and 2 and this chapter in the presence of external photo-
excitation with the realization that it is the band structure which changes in a
fundamental way and consequently alters the photoemission together with the fact
that in general all the physical properties of all the electronic materials changes
radically leading to new physical concepts.
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3.4 Open Research Problems

(R.3.1)

(R.3.2)

(R.3.3)

(R.3.4)

(R3.5)
(R.3.6)
(R3.7)
(R3.8)
(R.3.9)

(R.3.10)

(R.3.11)

(R.3.12)

(R.3.13)

(R.3.14)

(R.3.15)

(R.3.16)

Investigate the EP for bulk specimens of the HDS under non uniform
strain in the presences of Gaussian, exponential, Kane, Halperian, Lax
and Bonch-Burevich types of band tails for all systems whose unper-
turbed carrier energy spectra are defined in R.1.1.

Investigate the EP for QBs of all the HD semiconductors as considered
in R.3.1.

Investigate the EP in the presence of non uniform strain for HD bulk
specimens of the negative refractive index, organic, magnetic and other
advanced optical materials in the presence of an arbitrarily oriented
alternating electric field.

Investigate the EP for the QBs of HD negative refractive index, organic,
magnetic and other advanced optical materials in the presence of an
arbitrarily oriented alternating electric field.

Investigate the EP for the multiple QBs of HD materials whose unper-
turbed carrier energy spectra are defined in R.1.1.

Investigate the EP for all the appropriate HD zero dimensional systems
of this chapter in the presence of finite potential wells.

Investigate the EP for all the appropriate HD zero dimensional systems
of this chapter in the presence of parabolic potential wells.

Investigate the EP for all the appropriate HD totally quantized systems of
this chapter forming quantum rings.

Investigate the EP for all the above appropriate problems in the presence
of elliptical Hill and quantum square rings in the presence of strain.
Investigate the EP for parabolic cylindrical HD low dimensional systems
in the presence of an arbitrarily oriented alternating electric field for all
the HD materials whose unperturbed carrier energy spectra are defined in
R.1.1 in the presence of strain.

Investigate the EP for HD zero dimensional systems of the negative
refractive index and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field and non-uniform light
waves and in the presence of strain.

Investigate the EP for triangular HD zero dimensional systems of the
negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric
field in the presence of strain.

Investigate the EP for all the problems of (R.3.12) in the presence of
arbitrarily oriented magnetic field.

Investigate the EP for all the problems of (R.3.12) in the presence of
alternating electric field.

Investigate the EP for all the problems of (R.3.12) in the presence of
alternating magnetic field.

Investigate the EP for all the problems of (R.3.14) in the presence of
crossed electric field and quantizing magnetic fields.
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(R.3.17) Investigate the EP for all the problems of (R.1.14) in the presence of
crossed alternating electric field and alternating quantizing magnetic
fields.

(R.3.18) Investigate the EP for HD QBs of the negative refractive index, organic
and magnetic materials.

(R.3.19) Investigate the EP for HD QBs of the negative refractive index, organic
and magnetic materials in the presence of alternating time dependent
magnetic field.

(R.3.20) Investigate the EP for HD QBs of the negative refractive index, organic
and magnetic materials in the presence of in the presence of crossed
alternating electric field and alternating quantizing magnetic fields.

(R.3.21) (a) Investigate the EP for HD QBs of the negative refractive index,
organic, magnetic and other advanced optical materials in the presence
of an arbitrarily oriented alternating electric field considering many body
effects.

(b) Investigate all the appropriate problems of this chapter for a Dirac
electron.

(R.3.22) Investigate all the appropriate problems of this chapter by including the
many body, image force, broadening and hot carrier effects respectively.

(R.3.23) Investigate all the appropriate problems of this chapter by removing all
the mathematical approximations and establishing the respective
appropriate uniqueness conditions.
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Chapter 4
The EP from Heavily Doped (HD)
Quantized Superlattices

4.1 Introduction

In recent years, modern fabrication techniques have generated altogether a new
dimension in the arena of quantum effect devices through the experimental reali-
zation of an important artificial structure known as semiconductor superlattice (SL)
by growing two similar but different semiconducting compounds in alternate layers
with finite thicknesses [1-33]. The materials forming the alternate layers have the
same kind of band structure but different energy gaps. The concept of SL was
developed for the first time by Keldysh [34-38] SL and was successfully fabricated
by Esaki and Tsu [34-38]. The SLs are being extensively used in thermal sensors
[39, 40], quantum cascade lasers [41—43], photodetectors [44, 45], light emitting
diodes [46—49], multiplication [50], frequency multiplication [51], photocathodes
[52, 53], thin film transistor [54], solar cells [55, 56], infrared imaging [57], thermal
imaging [58, 59], infrared sensing [60] and also in other microelectronic devices.

The most extensively studied III-V SL is the one consisting of alternate layers of
GaAs and Ga;—,Al,As owing to the relative easiness of fabrication. The GaAs and
Ga;_, Al As layers form the quantum wells and the potential barriers respectively.
The ITII-V SL’s are attractive for the realization of high speed electronic and opto-
electronic devices [61]. In addition to SLs with usual structure, other types of SLs
such as II-VI [62], IV-VI [63] and HgTe/CdTe [64] SL’s have also been investigated
in the literature. The IV-VI SLs exhibit quite different properties as compared to the
III-V SL due to the specific band structure of the constituent materials [65]. The
epitaxial growth of II-VI SL is a relatively recent development and the primary
motivation for studying the mentioned SLs made of materials with the large band
gap is in their potential for optoelectronic operation in the blue [65]. HgTe/CdTe
SL’s have raised a great deal of attention since 1979, when as a promising new
materials for long wavelength infrared detectors and other electro-optical applica-
tions [66]. Interest in Hg-based SL’s has been further increased as new properties
with potential device applications were revealed [66, 67]. These features arise from

© Springer International Publishing Switzerland 2015 241
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the unique zero band gap material HgTe [68] and the direct band gap semiconductor
CdTe which can be described by the three band mode of Kane [69]. The combination
of the aforementioned materials with specified dispersion relation makes HgTe/
CdTe SL very attractive, especially because of the tailoring of the material properties
for various applications by varying the energy band constants of the SLs.

We note that all the aforementioned SLs have been proposed with the
assumption that the interfaces between the layers are sharply defined, of zero
thickness, i.e., devoid of any interface effects. The SL potential distribution may be
then considered as a one dimensional array of rectangular potential wells. The
aforementioned advanced experimental techniques may produce SLs with physical
interfaces between the two materials crystallographically abrupt; adjoining their
interface will change at least on an atomic scale. As the potential form changes from
a well (barrier) to a barrier (well), an intermediate potential region exists for the
electrons [70]. The influence of finite thickness of the interfaces on the electron
dispersion law is very important, since; the electron energy spectrum governs the
electron transport in SLs. In addition to it, for effective mass SLs, the electronic
subbands appear continually in real space [71].

In this chapter, the magneto EP from III-V, II-VI, IV-VI, HgTe/CdTe and
strained layer quantum well heavily doped superlattices (QWHDSLs) with graded
interfaces has been studied in Sects. 4.2.1-4.2.5. From Sects. 4.2.6-4.2.10, the
magneto EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well
heavily doped effective mass superlattices respectively has been presented. In
Sects. 4.2.11-4.2.20, the same from the quantum dots of the aforementioned
heavily doped SLs has been investigated. Section 4.3 contains the result and dis-
cussions pertinent to this chapter. The last Sect. 4.4 presents open research
problems.

4.2 Theoretical Background

4.2.1 The Magneto EP from III-V Quantum Well HD
Superlattices with Graded Interfaces

The electron dispersion law in bulk specimens of the heavily doped constituent
materials of III-V SLs whose un-doped energy band structures are defined by three
band model of Kane can be expressed as

n*k .
q
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where
i= L2, TH(E, A Eginy) = (2/(1 + Erf (E/ng:))[(4b;/¢;) - 00(E, 1)
+ [(og¢; + bye; — 040;) /5] 0 (E, ﬂg;)
+[(1/e) (1 = (/) (1 = (b /C’))E[ + Erf (E/ny)]
= (1/ep)(1 = (/) (1 = b/ ) (2/ (cjngiv/m) exp(—us)

(> (exp(—p*/4)/p) sinh(pu)]],
1 + CjE

2,
b = +A) Eji+=-A) , u= and
( g ) ( 8 3 ]) J C]ﬂg,

Toy(E, Ay, Egiy ) = <m> 1 <1 _C—j) <1 _ﬁ) C:{Z]exp( ).

Therefore, the dispersion law of the electrons of heavily doped quantum well
II-V SLs with graded interfaces can be expressed as [71]

I2 = Gy + iHy (4.2)
where Gs = [ 5 18] Cr = cos™ (@), @7 = ()7(1 - G — H3) — /(1 - G} — H3)* + 4G}
2r 127!
- M52(07 17g2) Ms2(07 ’7g2)
a20 e —_— + 1 4 N I
Mg, (O, ”gl) My, (07 ’1g1)
2r 127!
ay = Ms2(0717g2) 1 4 MSQ(O, ng2)
MYI(O,V]gl) le(ov ng)

CaolE, ks ks gt) = [ = Pu(E, ngy)K; = 01 (Esng )k ] *[S1 (B, gy )] /2
Do (E, ky, ky, o) = [1 — P2 (E, Wgz)kf — Oy(E, ﬂgz)ki]l/z[sz(Ev Wgz)]_l/z
G7 = [G1 + (psG2/2) — (psH2/2) + Ao/2){psH2 — psH3 + poHs — pioHa

+puHs — pipHs + (1/12)(p1,Gs — p14Hs) ],
G = [(cos(hy))(cosh(hz))(cosh(g1))(cos(g2))

+ (sin(hy)) (sinh(hy)) (sinh(g1)) (sin(g2))], hi = e1(bo — Ao), e1 = 27 (\/# + 3 +1)?
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= [(2my /B*) - Tii(E, Eq1, A ng) — K], 1o = [(2my /1) Tar(E, Eg1, Av,g)],

hy = ealbo — Ao),ea = 27 (/17 + 8 — 1) g, = di(ao — Ao),dy = 27 (/3% 3 + ),
x1 = [=(2my /R?) - Ty (E = Vo, Ey, Ay, ng) + k7], yi = [(2mly /0%) T (E — Vo, Eg, Ao, 10)],
2 = do(ap — Ao) dz =27(\/ +33 —x)% ps = (03 + ) p1ps — papal,
=[d? + e —ds — e, ps = [die) + daer], p, = 2[dids + erea], py = [dier — e1dy],
G, = [(Sin(hl))((COSh(hz))(Smh(gl))(008(82)) + (cos(hy))(sinh(hz))(cosh(g1))(sin(g2))],
s = (93 +P3) "' [P1ps + P2p3);

H, = [(sin(hy))(cosh(h))(sin(g2)) (cosh(g1)) — (cos(hi))(sinh(hz))(sinh(g1))(cos(g2))],
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G4 = [(cos(hy))(cosh(hy))(cos(g2))(sin(g1)) — (sin(hy))(sinh(hz))(cosh(g1))(sin(g2))],
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H, = [(cos(hy))(cosh(hz))(cosh(g1))(sin(g2)) + (sin(h))(sinh(h2))(sinh(g1))(cos(g2))],

pu =2[di + & —dy — e,
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p1o = 4ldids + e1e3),

Hs = [(cos(hy))(cosh(h2))(sinh(g1))(sin(g2)) + (sin(hi))(sinh(h2))(cosh(g1))(cos(g2))],
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The simplified dispersion relation of heavily doped quantum well III-V super-
lattices with graded interfaces under magnetic quantization can be expressed as

k2 = Gsgn + iHse (4.3)

where
C3p, — D3 2¢B 1 I
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I~
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Hop, =[(sin(hig,))(cosh(hag ) (sin(g2e..)) (cos(g1£,))
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Pr2en = Hdigadop s + €1En€2E],

Hsg, = [(cos(hig,))(cosh(hag ,)) (sinh(g1£,)) (Sin(g2e,0))
+ (sin(hig,)) (sinh(hog,) ) (cosh(g1)) (cos(g2))],
P13En = [{S(dlE,ne:l;EJl - 331E7ne§E,nd1E7n)
+ 5d2E,n(e%E,n - 3e%E,neZE-ﬂ)}(d12E.n + d%E,n)
+ (e%E,n + e%E,11)71{5(61E1'1d%E,n - 3d2E,ne%E,nd1E-,n)
+5 (dggﬂeZE,n - Sd%EﬁndZE,neZE.n)} — 34(digpne1en + o perpn)),s
Gegn = [(sin(hig,))(cosh(hzg,))(sinh(g1g,))(cos(g2e.))
+ (cos(hig,))(sinh(hog ) (cosh(g1)) (sin(g2))],
Plaen = [{S(dlE,negE,n - 332E,ne§5,nd1E,n)
+ SdZE:”(_e?E,n + 3e§E,nelEJl)}(d%E,n + d%E,n)717
+ (e%E,n + e%E,n)_l {5(_61E~,”dgE,n + 3d%E,nd2E,nglE,n>
+ 5(—de1neQE,n + 3d§ET,1d1E,n92E.n)}
+ 34(digneren — dreneien),

-1
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Hegn = [(sin(hig,))(cosh(hagy))(cosh(gie,)) (sin(g2e.))
— (cos(hig,))(sinh(hog ) (sinh(gi£,)) (cos(gaen))],
Hign = [Hipn + (0sgnHoen/2) + (Pop,G2en/2)
+ (8o/2){PsEnG3En + P7EH3ER + Pr0ERGaER + Pop nHAEN
+ P1264GsEn + Pr1gaHsen + (1/12) (0145 1GoEn + P135,Hoen) },
Hig, = [(sin(hig,))(sinh(hog ) ) (cosh(gie.x)) (cos(g2en))
+ (cos(hig))(cosh(hzg,)) (sinh(g1e.)) (sin(g2e.4))],
Dig, = sinh™ (@7E,), Hsgpn = (2C75,D16,0/ L)

The dispersion relation in heavily doped quantum well III-V superlattices under
magnetic quantization assumes the form

n:7.2 .
(dL) = G8E4l,n + ZH8E41J1 (44)
Z
where Ejy , is the totally quantized energy in this case.
The electron concentration in this case is given by
Nmax zmax

eBg,
nosL =+ Real part of Z Z F_1(n41) (4.5)

n=0 n,=1

where 1, = (kBT)fl(EFSL — E41,,) and Ergy, is the Fermi energy in this case.
The EP in this case(Jg.) is given by

2 Mmax zmax
ope Bgv
JSL = 27‘chdz Real pal't of ; nz Ffl (”/41)"11 (EnzSLl) (463)
where
2mn
Va1 (EnzSLl) = 2 (4.6b)

11/
hd, (G + iHy) |k,:0,kv:o,kz:% and E=E,g,

E,;s11 is the quantized energy along z direction and is obtained by substituting
ky =0,k =0,k, = ”d—” and E = E, ;511 in (4.2) and the primes denote the differ-

entiation with respect to energy.
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4.2.2 The Magneto EP from II-VI Quantum Well HD
Superlattices with Graded Interfaces

The electron energy spectra of the heavily doped constituent materials of II-VI SLs
are given by

i S
E = s 4 Coks 4.7
73(E Ng1) o + - 0 (4.7)
1,1 [l,1
and
k>
zmzz = Tl2(Ea A27Eg2a 77g2) + iT22(E7 A27Eg27 7’g2) (48)

where m’} | and mrl , are the transverse and longitudinal effective electron masses

respectively at the edge of the conduction band for the first material. The energy-
wave vector dispersion relation of the conduction electrons in heavily doped
quantum well II-VI SLs with graded interfaces can be expressed as

k2 = Gig + iH19 (4.9)

where

o L
Cis = cos™ ' (wis), w15 = (2)7[(1 = Gy — Hig) — \/(1 — Gy — Hy)? + 4G,
1
Gig = 3 [G11 + G12 + Ao(Gi3 + Gia) + Ao(Gis + Gie)],
Gi1 = 2(cos(g1))(cos(g2))(cos yyy (E, k)

2mJ_’1
G2 = ([Qu(E, k;)(sinh g1)(cos g2) — Qo (E, k) (sin g2)(cosh g1)](siny, (E, k;)))
d, k21(E ks)dy d ko1 (E, ky)da
ko1 (E, ky) f+f1 nd D (E k) = kwk) ﬁ+@}
Gi3 = ([Q3(E, k;)(cosh g1)(cos g2) — Qu(E, k;)(sinh g1)(sin g2)](sin 7y, (E, k)))

2 1
R Y BRI ER) = [

k2
i(E k) = kot (E, k) (Bo — A)y Koy (E k) = {[p3(E, ) — Sicu ‘“}”2,

Q(E k) = |

Qs (E k) = |
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Gis = ([Qs(E, ks)(sinh g1 )(cos g2) — Q6(E, k) (sin g1 ) (cosh g2)](cos 7y, (E, k)))-

Qs (E,ks) = By — 7 KB, (E, k)], Q6(E. k) = B+ — 2 I (E. k)]

d, d>

&L +d2 &+
Gis = ([Q9(E, k;)(cosh g1)(cos g2) — Quo(E, ks ) (sinh g1)(sin g2)] (cos 7y, (E, &)))

Qy(E, k5) = [2d} —2d2 — I3, (E, k)], Quo(E, ks) = [2d,d5)

([Q7(E, k) (sinh g1)(cos g2) — Qs(E, k;)(sin 1) (cosh g2)](sin yy, (E, &) /12)),

5d, 5(d} — 3d3d,)
O, (E, k) = B (E k) + =122 _ 34k, (E, k,)d],
7(E, k) [d2+d2 o1 (E k) + T (B, k) 21 (E, ky)di]
5dy, 4 5(d3 — 3d3d,
Qg (E, k, K (E k) + =221 4 34k (E, k,)db],
(E k) = [dz & o1 (E k) + T (B, k) + 34ka1 (E, ks )do]

Hig :%[Hn + Hiy + Ao(His + Hi4) + Ao(His + Hig)),s
H“ = 2(sinh g; sin g cosy,;(E,ks)),

([22(E, k;)(sinh g1)(cos g2) + Q1 (E, k) (sin g2) (cosh g1)
([Q4(E, k;)(cosh g1)(cos g2) + Q3(E, k;) (sinh g1)(sin g2)
[@ )

|(sinyyy (E, k))),
|(sinyyy (E, k)))
= ([Q6(E, k) (sinh g1)(cos g2) + Q5 (E, ks)(sin g1) (cosh g2)] (cos 1, (E, ks ))
= ([Quo(E, ks)(cosh g1)(cos g2) + Qo(E, k) (sinh g1 ) (sin g2)] (cos y,, (E, ks)
= ([Qs(E, k;)(sinh g1)(cos g2) + Q7 (E, ks)(sin g1 ) (cosh g2)] (siny,, (E, k) /

)’
)
12))7

2C18D18

ng = l: ] and Dlg = sinh’l(wlg)

0

The simplified dispersion relation in heavily doped quantum well II-VI super-
lattices with graded interfaces under magnetic quantization can be expressed as

k2 = Giop, + iHyog (4.10)

where Giog,, =

)

Cisen ~Disen 268 (, 1,
L h 2

—1
Cisgan =08 (O155), 01580 = (2)7 [(1 = Gigg,, — Hisg,)
1
- \/ — Gy — 18E7n)2 +4Gigop ),

Gisen =2 [Grien + Gr2en + Ao(Gisgn + Gragn) + Ao(Gisen + Gieen)),

Giign = 2(c0s(g1£n))(c08(g2E.n))(c08 y11 (E, 1)), 711 (E,n) = ka1 (E, n)(bo — Ao),
2 e e 12 2m |
(o) = Al E) ~ o {55 (n+5) p2o{ 52 (n5) b 150
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Gioen =([Q1(E,n)(sinh g1£,)(cos g2g1)

— O (E, n)(singag») (cosh gig,)] (sinyy, (E, n)))
dign  ku(E, Vl)dw.n]

ko (E.n)  diy, +dig,"~
dog p kot (E,n)dag n

ko (E,n) — dig, +d5g,

Q(E,n) =|

Q2(Ea n’) :[ ]7
Gizen =([Q3(E, n)(cosh g1£,,)(cos g26,)
- Q4(E7 n)(SinhglE,n)(Sin gZE,n)](Sin 711 (Ev I’l)))

2 1
g, — dop, 2d\gndoEn

Q3(E,n) = [ - 3k21(Ea I’L)], Q4(E7 n) = [
k1 (E, n) ka1 (E, n)

G14E,n = ([Q5 (E, n) (sinh glE.’n)(COS ng’n)
— Q6(E, n)(sing1£,) (cosh gag.n)|(cos yy, (E, n))).

dlEn 2
Qs(E,n) =[3dign, — ———5—k;,(E,n)],
5( ”) [ 1E, d%E,n+d%E,n 21( ")]
dar
Qs (E, n) = [Bdap + 25— K, (E. n)]

d%E n + d%E n

GlSE,n = ([99 (E7 I’l) (COSh glE,n)(cos g2E.n)
- Qlo(Ev n)(SinhglE,n)(Sin gZE,n)](COS 11 (Ev I’l)))
Q(E,n) =[2diy,, — 2d55, — k3, (E,n)], Quo(E,n) = [2digndag )]

Gieen = ([Q7(E,n)(sinh g1£,)(cos g2e,n)
— Qg(E, n)(sin g1£,,) (cosh gag,,)|(sin y1, (E, n) /12)),

Sdign 3 5(dig, — 3d3g ,d1E )
Qy(E,n) = [—2HED 13 (F ) 4 2CIE: : — 3k (E. n)dy],
7( ) [dle"n_’_d%E‘n 21( ) k21(E7n) 21( ) IE,]
5d2E n 3 S(dgE n 3d§E ndlEJl)
Qu(E,n) = [0 13 (g : ; 34ky, (E, n)dog
s(E,n) [d%E,n+d%E,n 51 (E,n) + o (1) + 34k1 (E, n)dor ]

1
Hisen =3 [Hiign + Hizen + Ao(Hizen + Hisgn) + Ao(Hisen + Hisen)),
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Hyig, = 2(sinh gig,)(sin gap.n)(cos yy(E, n)),
Hig, = ([Q(E,n)(sinh g1£,)(cos g26.)

+ Qi(E, n)(sin g2¢,0) (cosh g1,)|(sin 71, (E, n))),
Hizgn = ([Qu(E,n)(cosh gig,)(cos gae.n)

+ Q3(E, n)(sinh g1£,,) (sin g2e.4)] (siny,, (E, n))),
Hug, = ([Q6(E,n)(sinh g1£,)(cos g2.)

+ Qs(E, n)(sin g1£,) (cosh gag )| (cos y11 (E, n))),
Hisgn = ([Quo(E, n)(cosh gig,)(cos gae.)

+ Qo(E, n)(sinh g1£,) (sin g2£.4)] (cos 7, (E, n))),
Hisen = ([Qg(E,n)(sinh g1, )(cos g2£.1)

+ Q7(E, n)(sing1£,)(cosh gag )| (sin yy, (E, n) /12)),
Hiop, = {%} and Disg, = sinh™ ! (wi55,)

0
The dispersion relation in quantum well heavily doped II-VI superlattices under
magnetic quantization assumes the form
n,m

(7)2 = Giog,, +iHi9g,, (4.11)
Z

where Ey ,, is the totally quantized energy in this case.
The electron concentration in this case is given by

eBgv Nmax Mzmax
mosL =~ Real part of Z Z F_1(n4) (4.12)

n=0 n,=1

where 1, = (k,gT)_l (Erst. — Eaz,y) and Eggy, is the Fermi energy in this case.
The EP in this case(Jg.) is given by

2 Rmax Mzmax
ape”Bg,
Jst. = g Real part of ; Z F_i (1) (Engsiz) (4.13a)
where
2nn
va(Bpzsia) = 2 (4.13b)

hd,(G)y + iH)g)

k=0,ky=0,k; === and E=Eys12

E,s1o is the quantized energy along z direction and is obtained by substituting
ky =0,k =0,k, = ”d—” and E = E,;g;» in (4.9) and the primes denote the differ-

entiation with respect to energy.
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4.2.3 The Magneto EP from IV-VI Quantum Well HD
Superlattices with Graded Interfaces

The E-k dispersion relation of the conduction electrons of the heavily doped con-
stituent materials of the IV-VI SLs can be expressed as

— _ _ _ = 1
12 = [2po,] " [~ Goi(E. ks 1gi) + [[@0.4(E, ks, )] + 4Po,iRo i (E, ks, n)JF] (4.14)

where, po; = (i) /(dmpmip), 1= 1,2, @oi(E keng) = (1 /2)((1/my) + (1/my;)) + (B /4)
k(U /mifmg ) + (1/mymy ) — 073 (E, ) ((1/mif) — (1/m;;] and

Roi(E. ks i) = [12(E, ) + 3 (E, ngi) [(7 /2)ak? (1 /my)
= (/mi))] = [(12 2)k3 (1 fmy) + (1/mg))] = (B [k (1 /mgsmy;))]

The electron dispersion law in heavily doped quantum well IV-VI SLs with
graded interfaces can be expressed as

cos(Lok) = %(DZ(E, ky) (4.15)

where

(1)2 (E-, k.x) S [2 COSh{ﬁZ (E-, k.x)} COS{VZ(Ev k.v)} + 1:2<E7 kx) Sinh{ﬂZ (Ea k.v)} Sin{”&’zz (E-, ks)}

<wmmmf

A
T Kai2(E, k)

—3Ky2(E, k?)) cosh{f,(E, k) } sin{yy (E, k) }

_{Kaa(E k)Y

+ <3K112(E7k\') W

}mmmmanmmn

T Ao [z({Km(E, k)Y —{Kaa(E, k,\)}z) cosh{ i (E, k) } cos{ya (E, k) }

5{Kin(E k) | 5{Kn(E k)’
Ko12(E, ks) Ky12(E, ky)

1

+12

— 34Ky12(E, ko) K112 (E, kA)} sin{,(E. k) } Si“{"&’zz(E-,k.\)}H )

Br(E, ks) = Ki12(E, k) [ao — Ao],
ki (E k) = [2Po2] ' [~Go2(E — Vo, ks, Nga) — [[Go2(E — Vo, ks, 10)]”
+ 4Po2Ro (E — Vo, ks, 2],
122(E k) = Koo (E, ks)[bo — Ao,
1By, (E, ks) = [2p9.1] " [~ 0.1 (E. ks 1) + [[Go.1 (E, ks, 1))
+4po, 1Ry (E, ks»ﬂgl)]%]v and

& (E k) = K12 (E, k) _Kzlz(E,kx)
N T k(B k) Kin(E k)|
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The simplified dispersion relation in heavily doped quantum well IV-VI super-
lattices with graded interfaces under magnetic quantization can be expressed as

1 1 > 2¢B 1
K== {cos1 {(I)Q(E, n)}} e (n + ) (4.16)
S 2 hi 2

where

®2(E;n) = |2cosh{fy(E,n)} cos{ya(E,n)} + e2(E, n) sinh{f(E, n)} sin{pp(E, n)}

+ Ao[({Ki2(E,m)} [ Kapa(E, 1)) — 3Kapa(E, ) cosh{ B, (E, n)} sin{y,,(E,n)}

+ <3K112(E,n) 7M

Kii2(E,n) > sinh{ B (E, n)} cos{yn(E, n)}]

+ 40 {2({K112<E,n)}2—{1<212<a m}) cosh{fy(E,n)} cos{raa(E.m)}

1

5{Ki12(E,n)} N 5{Kx2(E,n)}
12

Ka12(E, n) Ki12(E,n)

34Ky (E, n)K11a(E, n) | sinh{B,(E, n)} sin{yn(E, n)}”,

BZ(Ea I’l) = Kllz(Ev n)[ao - AO]?

K15 (E, 1) = [2p024] ' [~Go.2n(E — Vo, Ng2) — (@920 (E — Vo, %2)]2
- 1
+ 4P9 20R9 20 (E — Vo, )],

an(E = Vo) = [0 /2)((1 /) + (1)) + 3/ 4) 52 () (o

+ (1/mjymy)) = 02y3(E = Vo, 1) (1/mfy) = (1/mp)],

_ 2eB 1 .
Roon(E — Vo,1g0) = [12(E — Vo, ngp) + 73 (E — V07’7g2)[h2/2)°‘27 (" + 5) ((1/my)

= (1/mp))] = [(1? /2)k5(1/miy) + (1/mp))]
2
o) [ ()| 1/,
VZ(Ea I’l) = K212(E7 n) [bO - AO]Jkglz(Ev n) = [2139,111]71[_E]9~1n(E7 ngl)
+ (9,11 (E, ngl)]z + 4f)9‘lnk9,ln(E7 ﬂgl)H

Si—
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n(Ei) = 10221/ + (1)) 4 0 /4) 57 () (o)
(1) = (B (o) = (1)

Ro. (B, 1) = [2(E, ) + 73, 2/ 2)o (2eB /) + (1 /)
(1]~ IR 208 (1) + (1)
o (1 /4)(2eB/B)(n + 3 (1 /i) and

& (E,n) = {KHZ(E, n)  Ku(E, n)}

Kyio(E,n)  Kin(E,n)|

The dispersion relation in quantum well heavily doped quantum well IV-VI
superlattices under magnetic quantization assumes the form

2 2
mn, 1 (1 2le|B 1
(&) gl ot} 550w

where Ey3 , is the totally quantized energy in this case.
The electron concentration in this case is given by

Mmax Mzmax

nosy, = ZZFLI(’/I‘B) (417b>

n=0 n,=1

where 7,43 = (kBT)fl(EFSL — Es3,) and Ergy, is the Fermi energy in this case.
The EP in this case(Jg.) is given by

max lzmax

Z F_1(143)vz3 (Enzses) (4.17c¢)

n=0 nzmin

. O(0€2Bgv X
- 2nhd,

Jst

where

2Ly sin(%)
V3 (Engsiz) = 70, (B, 0) SL3~ 0 (4.174d)
Nz, )

E, 513 is the quantized energy along z direction and is obtained from the equation

Lon,n 1
~50)] = 5 @2(Buesia, 0). (4.17¢)

cos|( i 3



4.2 Theoretical Background 255

4.2.4 The Magneto EP from HgTe/CdTe Quantum Well HD
Superlattices with Graded Interfaces

The electron energy spectra of the constituent materials of HgTe/CdTe SLs are
given by

»  |B3 +4A\E — Byi\/B5, +4AE
K2 = T (4.18)
1
n*k?
and W = TIQ(E, Az,Egz, '/’g2) + iTQQ(E, Az,Egz, ﬂg2) (419)
2

where By = (3\e|2/1288m), A = (h2/2mz1). &1 18 the semiconductor per-
mittivity of the first material. The energy-wave vector dispersion relation of the
conduction electrons in heavily doped quantum well HgTe/CdTe SLs with graded
interfaces can be expressed as

k2 = Gio» + iH19 (4.20)
where
G2 = [((Cfsz - D%sz)/Lg) - k.?]a
Ciga =cos™ (@ig2), 0152 = (2)7[(1 = Gy, — Hiyy)
- \/(1 — Gy — Hip,)* + 4G%82}%7
Gis2 -1 (G112 + G122 + Ao (G132 + Giaz) + Ao(Gis2 + Gie)s

2
Gi12 =2(cos(g12))(cos(g22))(cos y5 (E, &s))

Bj, +4AIE — Boi1\/Bj, +4AE 2
247 s
Gz = ([Qu2(E, ks)(sinh g12)(cos g22) — Qoa(E, ky)(sin g22)(cosh g12)](sin 75(E, k)))
diz ks (E, ks)d1o, dx ks (E, ks)dao
_ QH(E. k) =] 1
k(E k) dh+ds 2(E:k) = E ) dh+d3,
Gz = ([Q2(E, ks)(cosh g12)(cos gn) — Qua(E, k;)(sin g12)(sin g22)](sin y5(E, k))),

12
78(E k) = ks(E, k) (bo — Ao), ks(E, ki) =

)

d% — d? 2d»d:
Qo (E k) = [H2 -2 33 (E k)], Qua(E, k) = [ 22
3 (E, k) [kg(E,ks) 3kg(E, k)], Qaa(E, ks) [ks(EkS)L
Giaz = ([Qs52(E, ks)(sinh g12)(cos g22) — Qea(E, k) (sin g12)(cosh g22)](cos y5(E, ks))),
dl2 2 d22 2
Qo (E, k) = Bdin — =22 R2(E, k)], Qea(E, k) = Bdo + 2 2(E, k)],
52(E, ks) = [3d1a &+ & 3 (E k)], Qea(E k) = | 22+df2+d§2 3 (E k)]
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G5y = ([Qoa(E, ks)(cosh g12)(cos g22)
— Qi2(E, ky)(sinh g12)(sin g27)](cos 75(E, k))),
Qo (E, ks) = [2d3, — 2d3, — kg (E, k)], Qioa(E, ks) = [2d1ndba),
Gie2 = ([Q72(E, ki) (sinh g12)(cos g22)
— Qg (E, k) (sin gp2)(cosh g20)](sin yg(E, ks/12))),

5d 5(d3, —32d
QO (E, k) = [ﬁ K2 (E, ky) + W — 34kg(E, k;)d12],
12 22 s R
Sdin 5(d3, — 3%,d12)
Qo (E k) = o2 12(E, k) + 22922 — 722912) | 34 (B ky)don),
82(E, k) [d122+d§2 3 (E,ks) ks (B, k) s(E, ky)dx]

1
Hig = 3 [Hiiz + Hizo + Ao(Hiz2 + Hiaz) + Ao(Hisz + Hien )],

Hy1z = 2(sinh g2 sin g2z cos y5(E, ky)),

Hiz = ([Q2(E, k) (sinh g12)(cos g22) + Qu2(E, k) (sin g22)(cosh g12)](sin 75(E, k))),
Hiz = ([Qu2(E, k) (cosh g12)(cos g2) + Q3a(E, ks)(sinh g12)(sin g22)](sin y4(E, ky))),
Hip = ([Qe2(E, k) (sinh g12)(cos g22) + Qs2(E, ks) (sin g12)(cosh g22)](cos yg(E, ks))),
Hisy = ([Qu02(E, ky)(cosh g12)(cos g22) + Qoo (E, k) (sinh g12)(sin g22)](cos y5(E,k;))),
Hiso = ([Qs2(E, ks)(sinh g15)(cos g22) + Q72(E, ks)(sin g12)(cosh g22)](sin yg(E, ks/12)),

Hig = [((2C182D182)/L(2))] and Dyg> = sinh™ ' (w152)

The simplified dispersion relation in heavily doped quantum well HgTe/CdTe
superlatices with graded interfaces under magnetic quantization can be expressed as

(k))* = Grozgn + iHio2en (4.21)

where

Diggen _ (2¢B/h)(n + (1/2)),

2
Clsopn —
Giogn, =

2
LO
-1

Cis20p = COS?l(w182E,n), o1g2e, = (2)7[(1 = G%SZE,V: - H12825,n)
2 3
- \/(1 - G%SZE,n - H1282E,n) + 4G%82E7n]'7
1

Gigopn = 3 (G126 + Gi22En + Ao(Gi3260 + Grazen) + Ao(Gisoen + Gieoe )],

Giien = 2(cos(g12))(cos(g22))(cos y5(E, n)), y3(E,n) = ks(E,n)(bo — Ao),

1/2
B 1 —+ 1 01 01 1 — (ZeB/h)(n ( /2))

kg (E, n) =
2A2

)
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Giaop = ([Qu2(E,n)(sinh g12,)(cos g22£)
— Q) (E, n)(sin gaog,)(cosh giog,)|(sin y5(E, ky))),
0 ks(E ks)diogn dyor,  ks(E,n)dxngn
Qi (En) = | dign  ks(E, ks)dia, 1, QB ) = 22 s(E,n)dg. ]

lkS (E7 kS) d%ZE,n + d%ZE,n kg (E’ I’l) d%ZE,n + d%2E,n

G200 = ([Q32(E, n)(cosh gi2g,)(cos gxEn)
— Qup(E, n)(sinh giop,)(sin g2)](sin y5(E,n))),

dirg, — b 2d1og ndnE
Q-+ (E — [ LB g (E Qi (E _ [ZleknTosh
32( ,}’l) [ kg(E,n) 8( ,}’l)], 42( 7]’[) [ kg(E,I’l) ]

Guazop = ([Qs2(E, n)(sinh g1ap.,)(cos gagn)
— Qe (E,n)(sin g12g.,)(cosh gapn)|(cos y5(E,n))),

d2En )
Qs2(E,n) = [3diogn ——5——75—ks(E,n)],
' d122E n T d§2E,n ’

dyEn )
Q@(E, n) = [3d225n 7]( (E, I’l)},
d%ZE n + d%ZE n
Gis20p = ([Qo2(E, n)(cosh gi2g,)(c0S g22£,)
— Qo2 (E, n)(sinh giog,)(sin gaa)|(cos y5(E,n))),
Qoy(E,n) = [2d},z,, — 2d3yp, — kg (E,n)], Quoa(E,n) = [2d 12z ndlzk ),

Gisaen = ([Q72(E, n)(sinh giap,)(cos g22r)
— Qg (E,n)(sin gia,)(cosh gaop )] (sin yg0p(E,n/12)),

Sdiag 5(diygn — 3d5p w122 )
Q72(E, I’l) = [m kg( s I’l) kg(E7 n) — 34’k§;(E'7 n)dIQEJJ,
Sdxnen 2 5(d3hgn — 3435y 12 )
Qs (E,n) = [5—2—ki (E,n) + ’ + 34kg(E, n)drg a,
82( ) [d122E,n + d%2E7n ’ ( ) ks (E7 7’1) ( ) }

1
Hisopn = = [Hien + Hinogn + Ao(Hizoen + Hiaoen) + Ao(Hiszen + Hic2en)]
2

Hipae, = 2(sinh g1ag,)(sin gae.)(cos y5(E, n))),
Hiop = ([Q2(E, n)(sinh gi2g,)(cos gaen) + Qi2(E, n)(sin grg,)(cosh giag,

) (sin pg(
Quy(E,n)(cosh giag,)(cos g22rn) + Q3 (E,n)(sinh gi2g,)(sin g22e.)
) )

E,n))),
sin 75(E,n)))

I(
Hizgn = (] I( )
Hingn = ([Qe2(E,n)(sinh g12g,)(cos gxnpn) + Qs2(E, n)(sin gi2g.,)(cosh gxga)|(cos y5(E, n))),
Hisoop = ([Quo2(E, n)(cosh giag)(cos ganen) + Qo (E,n)(sinh giag,)(sin gxnga)|(cos y5(E,n))),
Hi6opn = ([Qs2(E,n)(sinh g12g,)(cos gxEn) + Qra(E, n)(sin gi2e,)(cosh gxp,)|(sin yg(E, n/12)),

Hioog, = [((2C 150z, D1s28,4)/L3)] and Dy, = sinh ™ (w1526,
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The dispersion relation in quantum well heavily doped HgTe/CdTe superllatices
under magnetic quantization assumes the form
n,m

(d—)2 = Gi92£,, + iH192E,,, (4.22a)
Z

where Ey4, is the totally quantized energy in this case.
The electron concentration in this case is given by

eB 2, Nmax Mzmax
mosL =~ Real part of Z Z F_1(Na4) (4.22b)

n=0 n,=1

where 1, = (kBTY1 (Epst — Eaay) and Epgy is the Fermi energy in this case.
The EP in this case(Jg.) is given by

2 Nmax Mzmax
dpe Bgv
Jst = 3 Real part of ; Z F_1(14g)vea(Enzsia) (4.22¢)
where
2nn
vz4(EnzSL4) = < (422(1)

/ e
hdz (G192 + 1H192) |kx:0,kv=0.,k;:"j—;" and E=E,;s14

E,.s14 is the quantized energy along z direction and is obtained by substituting
ke =0,k = 0,k, = ”d—” and E = E,g14 in (4.20) and the primes denote the differ-

entiation with respect to energy.

4.2.5 The Magneto EP from Strained Layer Quantum Well
HD Superlattices with Graded Interfaces

The dispersion relation of the conduction electrons of the constituent materials of
the strained layer super lattices can be expressed as

[E — TyJk; + [E — Toilk; + [E = Tsilk! = qE> —RE + VE+(  (4.23)
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where

T _ | 3 bigi | V3ditxi
Ty = 0;,0; = |Eg — Cligi — (a; + Cy;)ei + zbigxxi - 7& + %] ;

3 bi i 3di Xyl
Ty = w;, w; = {Egi = Ciigi — (@i + Cr)e +§bi8”i B 28 fZS y }’

. [ 3 bie;
T3i = 5[7 (5[ = Egi — Ciiﬁi + ((l,‘ + Cfl)f‘, + Ebigzzi — 28:|

, 3 .
Ri =dqi [ZA, + CiisiLqi = W, A,‘ = Egi — Cli8i7
2i

Vi=qi |:Ai2 - @ + ZAiCT,-Sz} 1S =i {@ - CiieiAiz:|

Therefore the electron energy spectrum in HD stressed materials can be written
as

where
— Yo(E, i) — T
Pi(E,ny) = %
i 7’7gi
— —qin; —E2 E2 S E
A,'(E‘7 rlgi) = |: 2\/%’ CXp(ﬂ—gl> 1 +Z —RiQU(E7 ngi) + ViVO(Ea ﬂgi) +% 1 +Erf<11_g,):|:|‘
1 — E,ng) — oD - o(E, 1) — 175
o =5 [1+ Exf(E/n,). Qi(E. ) = Dol ) “ W] g i,y = Lol ) — ]

Ai(E7 y’gi) Ai(E7 r’gi)

The energy-wave vector dispersion relation of the conduction electrons in heavily
doped strained layer quantum well SLs with graded interfaces can be expressed as

cos(Lok) = %56 (E, ky) (4.25)

where
6(E, ks) = [2cosh[T4(E, )] cos[T5(E, ng1)]]| + [To(E, ks)] sinh[T4(E, ng,)] sin[Ts(E, 1))

k5 (E,n , .
+ Ao {( ol gZ) — 3k, (E, ng1)> cosh[T4(E, ’7;;2)] Sm[T5(E7 11g1)}

k(/)(E7 ngl)
k/z(E_’ ’1[:1) .
_ W) slnh[T4(E, Vlgz)} cos [T5(E, 11g1)}:|
+ Ao [2(k3 (E, Ng2) — K*(E, Me1)) cosh[T4(E, n,y)] cos[T5(E, n,,)]]

L (5K(E,ng)  SKP(E,ny)
12\ ko(E,ng1) ko(E,ng)

+| 3ko(E, 1)

— 34ko(E, ngo)K'(E, '1g1)> sinh [T5(E, )] sin[T5(E, 1))]
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[T4(E, ny)] = ko(E, ngp)a0 — Ao,
_ _ 1/2
Ko(E. ) = [S2(E = Vo)) [Pa(E = Vo) + Ca(E = Vo)t — 1],
(T5(E,1,0)] = K (E, 1) [bo — o),

_ o _ 1/2
k,(Ev ngl) = E(E7 ngl)] lﬂ |:1 - Pl (E7 ngl)k\% - Ql (E7 ngl)k\z’:| and
kO(E7 77g2) k,(E>17gl)
Te(E, ks) = —
k) {m, Net)  ko(E,1,0)

Therefore the dispersion relation of the conduction electrons in heavily doped
strained layer quantum well QEPs with graded interfaces can be expressed as

cos(Lok) = = @4(E,n) (4.26)

1
2
where
Do(E,n) = [ZCOSh[ 4(E,n ’1@7)] COS[TS(E,n,ngI)” + [T6(E, m)] sinh{T4(E, 1, n,a)] sin(Ts (E, 1,11 )]
K (E,n, 1)
ko(E,ny Mg
+ (3]%(& n, ﬂgz) - l:)((%:l;’i))

+ Mo [2065(E, n, ) — Ky (ky n,11g1)) cosh [Ty (E, n,n,)] cos [T5(E,n, )] ]

1 (5K(E,nng)  SKG(E,n,ny)
12\ Ko(k,n,mg ko(E, n, 1)

—

- 3k6(E,n,ﬂgl)> cosh[T4(E, n, )] sin[Ts(E,n, 1,)]

)
K .
) sinh [T4(E, n, )| cos[Ts(E,n, ngl)}:|

— 34ko(E, n, g )ko(E, n, nm)) sinh [T4(E, n, 1,5)] sin[T5(E, n, ngl)]}

[T4(E’nv ngZ)} = kO(Ev n, Wgz)[ao - AO]a
Ko(E,n,10) = [S2(E = Vo,10)] ™[ (0 + 1/2)heB/(+/p, (E)pa(E))| - 1172

) =
PI(E) h /(2P2(E Vo, ngZ))MDZ(E) = hz/(QE(E — Vo, ng))
] = k(,)(E’n’ ng)[bo - Ao]v

o
=3
S|
3
=

R
=

I

¢
-

Enng)] 1= [0+ 17208/ (/s EroaED)] |

p3(E) = 2/(2P1 (E7 ngl))ﬂp4<E) = hz/(2E(E, ﬂgl))
kO(E n 7]g2) kg (E7”777g1)
o) = | Emnen) é@m%J




4.2 Theoretical Background 261

The energy-wave vector dispersion relation of the conduction electrons in
heavily doped quantum well strained layer SLs with graded interfaces can be

expressed as
2 2
nn, 1 1 2|e|B 1
( 0 ) = L—% [cos {2 @6 (Es70,1) H - (n + 2) (4.27)

where Ey; , is the totally quantized energy in this case.
The electron concentration in this case is given by

Nmax Mzmax

eBg,
nosL = — DY Foalm) (4.28a)

n=0 n,=1

where 1,; = (kBT)fl(EFSL — E47,,) and Epg,, is the Fermi energy in this case.
The EP in this case(Jg.) is given by

2 nmax nZ“]IlX
o dpe Bgv
St 2nhd, e HZF —1(147)v27(Enzsir) (4.28b)
where
2Ly sin(%’f“)
v (Buesiy) = o (4.28¢)

E[GG (EnzSL7> 0)]/
E,;s17 is the quantized energy along z direction and is obtained from the equation

L
cos[(%

Z

)] = %a() (EnzSL7> O) (428d>

4.2.6 The Magneto EP from III-V Quantum Well HD
Effective Mass Super Lattices

Following Sasaki [71], the electron dispersion law in III-V heavily doped effective
mass super-lattices (EMSLs) can be written as

1
k2 = ﬁ{cosil(fZI(Ev kyakz))}z - ki (429)
0
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in which

F1(E ky k) = ay cos[agCar (E, ko, ngy) + boDai (E ki)
— a3 c08[agCot (E, ki, Mg ) — boDai (E ki ng)] K = k_ﬁ + 12,

M5 (0,
o — | MOn2)
M;(0,1n4)

2T 9 -1

1/2
4 MZ(O’ ngZ)
My (0, 1) 7

2r 1/27]
a = MZ(Oa ’7g2) -1 4 M2(0717g2)
Ml (Oangl) Ml (07’75’1) ’

o 2 l,b 7’]5, 1 oici + C,‘b,‘ — (X,'bi 1 o bi
Mi(0,1;) = m; {ﬁ (0, 1) +2{ o VE 2 <L72> * e (1 *g) (1 - ;)
1 oc[> ( b,-) 2 -2 -1 z ( (—p2>> 1. p
——(1=-Z2)[1=-= —-exp| 5 exp( —— ] | =sinh| —
¢ ¢ ci) cillgy/T cmﬁi P C%”;i ,;1 P p Cillgi
—1 % —p2> 1 P
+exp exp (— —cosh ,
() (S (e

OC,b r’gt o Ci —+ b,'C,' — OC,'b,‘ 7’[5,,' 1 o b[
T(0,n,;) = 2 S B GO L R R (R S
T(0.ng) = [ ¢ 4 + ( c? 2ﬁ+ 2¢; ¢ ¢

(=D (-0 ko) S e ()]

Ca1(E ki, ng) = er +iex, Dy (E ki, ng) = e3 + e,
e =[(\/B+B+n)/2)F e =[((/B+8—1n)/2),

2m* 2m*
h= { hZCI T\ (E, A1, ng1, Eg1) —kﬂ’ e h2d ot (B, A Egr ),

ez =

)

1/2 1/2
VB4 +1 «/t§+t§—t3]
2

2

2m’, 2m,
13 = |: h 2 TlZ(E AZ; ’1g27 g2) ki:| sl = h;z T22(E7 A27 7’g27Eg2)7

Therefore (4.29) can be expressed as

K2 = 87 + idg (4.30)
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where
1
07 = [ﬁ (05— 05) — ki}aés = cos™ ' ps,
0
12
1= =52 =\ (1 - 83— 02) +40]
ps = ) )

03 = (a1 cos Ajcosh Ay — a; cos Azcosh Ay),

04 = (ay sinA;sinh Ay — a; sin Az sinh Ay),

Ay = (apey + boes), Ay = (aper + boes), Az = (aper — boes), Ay = (ager — boes),
8¢ = sinh™! ps and Jg = [25556/L§]

Therefore the magneto electron dispersion relation in this case assumes the form

(ke)® = 07,0 + 05 (4.31)

where

1 2eB 1 _
sn = [ (3~ i) = {7 0] s = o8

1/2
2

1 - 5§E7n - 5421EA11 - \/(1 - 5§E7n - 52E,n) + 4542&E.n

pSE,n = 2 5

03gn = (a1 cos Ajg, cosh Agg,, — az cos Azg, cosh Aug ),
Oagpn = (a; sin A, sinh Agg , — az sin Asg , sinh Aug ),

Ay = (aveipn + boesen), Mopn = (aoerpn + boeapn), Aspn = (aveien — boesen),
Asgp = (aoerpn — boesk ),

Sz = sinh™' psp, and Sspn = [205£4065.0/ L3,

1 1
eien = [((\/Bip, + 6 +11ea) /27, e2pn = [(\/ g, + 15 — ti£a) /2],

o a— 1/2 1/2
l%E.n + tézt + t3E<,” \/ Z%E.n + t421 — BEn
e3gn = T y@4En = s )
2m’ 2¢B 1 2m’; 2¢B 1
HEn = [ hzd T (E, Ay, 11, Eg) — 7(" + 5)}, BEn = { hfz Tio(E, Ay, g, Ega) — 7(" + 5)
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The dispersion relation in quantum well heavily doped III-V superlattices under
magnetic quantization assumes the form

nym

dy

(5-)> = 141 + i08a1 (4.32)

where Al is the totally quantized energy in this case.
The electron concentration in this case is given by

Nmax Mzmax
e

Bg,
nosL = n—: Real part of Z Z F_1(n4s) (4.33a)

n=0 n,=1

where 7,45 = (kBT)fl(EFSL — Al) and Epg, is the Fermi energy in this case.
The EP in this case(Jgy) is given by

2 Mmax Mx max
ope-Bg
Ts = 2nhdxv Real part of ; nz: F_1(145)Vss(Enzsts) (4.33b)
where
27tn,
VxS(EnzSLS) = 7 — (433(:)
hdx<(37 + 153) |kj,:0,’k1:0,kxz% and E=E,;55

E,;s15 is the quantized energy along x direction and is obtained by substituting

ky =0,k; = 0,k, = %" and E = E,5;5 in (4.30) and the primes denote the differ-

entiation with respect to energy.

4.2.7 The Magneto EP from II-VI Quantum Well HD
Effective Mass Super Lattices

Following Sasaki [70], the electron dispersion law in heavily doped II-VI EMSLs
can be written as

k2= Az +iA, (4.34)
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where

1
Az = E(Aﬁ — A7) - kf}
0

2 A2 2 A2 2 21"
1_A9_A10_\/(1—A9_A10) + 447,

ALl :cosflpa,p6 = > ,

Ag = (a7 cos Ag cosh A7 — @; cos Ag cosh A7),
Ao = (aj sin Ag sinh A7 + @; sin Ag sinh A7),

Ag = [agCo2 (E, ks, 1g1) + boes], As = boes, Ag = [agCoa(E, Ky, 1,1) — boes],

- 1
om, &5 ?
Co(E ks, ny1) = P 73(E Mg1) — m ;
[ (0, S0\ ] 2
7 _
ar = 7g2 ’7g2 , M (0, '7g1) :le(l 7_>7
L O 7]51 O ngl T
_ 127~
@ = M; (0, ’7g2) _1 4 M;(0, ”Igz)
L Ml (07 175'1) Ml (07 ngl)
2A1A
Apy = cos™' pg, Ay = %
0

The electron dispersion law in heavily doped II-VI QEP can be written as

(k)* = A3 + iAraga, (4.35)
where

1 2¢B 1
Aspn = L2 (A%lEn A%ZE,n) - {7 (n +§)}]

1- Agli‘,n - A%()E,n - \/(1 - AgEn A%()E n) +4A1()En
2 ’

-1
Avign = €OS™ PeEn Popn =
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Aog, = (@1 cos Agg, cosh Aqg,, — @3 cos Agg,, cosh Agg,,),
Ao, = (@i sin Agg, sinh Aqg, + @3 sin Agg , sinh Agg,),
Acgn = [a0Coen (EgnsNig1) + boesen),

Avgp = Doeapn, Asgn = [a0Coopn(Epn, Ne1) — boesgn),

ComnEomn = |20 L gy {ZeB( 1)} c HZ@B( 1)}] 12172
22En\LEnN = - Y Eny N - ¥ n+z)rFCo n+- )
&l o)’ O ami | h 2 h 2

2A11E0A12E R
L

1
Apgn = €08™ pegn, Aagn =

The dispersion relation in quantum well heavily doped III-V superlattices under
magnetic quantization assumes the form
n,m

(d_)2 = Az +ihisary (4.36)
Z

where A2 is the totally quantized energy in this case.
The electron concentration in this case is given by

Nmax "z max

eBg,
nosL = —h Real part of Z Z F_1(N4g) (4.37a)

n=0 n,=1

where 1,4 = (k,gT)_l (Epsy, — A2) and Epgy, is the Fermi energy in this case.
The EP in this case(Jgy) is given by

Nmax 7z max

%€’ %e Bgy
SL = g, Redl partof E%Z 1(n46)vz6(Enzsts ) (4.37b)
where
2nn
V6(Enzszs) = z (4.37¢)

/! <Al
d (A} +iAY) ’kxzo,ky:o,kz:';;jf and E=Eyg16

E,zs16 1S the quantized energy along x direction and is obtained by substituting
ke =0,k, = 0,k, = "% and E = Eys16 in (4.34) and the primes denote the differ-

entiation with respect to energy.
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4.2.8 The Magneto EP from IV-VI Quantum Well HD
Effective Mass Super Lattices

Following Sasaki [70], the electron dispersion law in IV-VI, EMSLs can be written
as

K= 3 {cos Yo (E, ke, b))} — K (4.38)

where

fo3(E ke, ky) = az cos[agCo3 (E, ky, ky, 1) + boDa3 (E, ke, Ky, 11,1) |
— ay cos[agCo3 (E, kv, ky, ) — boDa3(E, ke, ky,n2)]

-1

2r 1/27
4 M3 (07ng2)
M3 (07ng1) 7

(O ’7g2)

+1
(O ngl)

asz =

[ ) T (M) ]
* (0 '1g1) M3(07’7g1) 7

1
9.(0,
> m; m/z)} 49 ’7g1
2 2 Ol
—— | —= 9.(0, 2pgil 1 —— £ s
[ ™ <mu ml,) i) "’( +ﬁ>”

ol " 1 aing (1 1
Poi =1 ——:99.(0, = |5 - -
Ps; dmimyp;” D0 1) = |:2 <m,vl +m,J) VT (mlt. m“>

Cor(E ke k1) = [[253] ™ [0 (. Koo ) + [{T7(E ko 1)}

_ 172
+ (455 Ro( Bk k)] ]|

FHI\)
:‘+

M;5(0,n,) = (4pg,) {sc,(l

TN

-1

h

+ (4p97)Ro.1(0,14:)]

Nei il
Vo2

)

R‘)l(o ’7gx) =

D23(E7 km kya ’1g2) :[[2m]71 [_CIT,Z(Ev kxv kya ’7g1) + [{qT,Z(Ev kx; kya ngl)}z

N 1/2
+ (4m)R9,2(E7kx7ky7ngl)} 1/2:|j| )
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P21 1 it 1 1
_iEakkav i) — |~ | T likz
B v i) [2 <ml+l + mﬁ) to 4 (mlfimt- + m*-m,-)

i 1" i
1 1
— 073 (E, Mg) <F - m—ﬂ ;
LT

| 1
72(E,ng:) + 73 (E, ﬂgi)“i?k.\- mif, -

2 -1
hZ 1 1 EZ k4 * w\ 1/2
YRR NI PO o A
2 0 \my; omy 4 mm; m ny

Therefore the electron dispersion law in heavily doped IV-VI, EMSLs under
magnetic quantization can be written as

E(E, kkayv ngi) =

(k) = (/B3] cos (s (Em)Y = CZ (b )] (439)

where fo3(E,n) = a3 c0s [agCasg.n(E, n,1g1) 4+ boDo3g.n(E,n,1,1)]
— ag cos[agCozp.n(E,n,1y5) — boDosgn(E,n,ng)],

C23(E7n7'7g1) = [[ZITJ]_I [—W(E,I’l, ngl) + {{W(Eﬂla ’Ig1)}2
_ 1/2
+ (4P Roa (E.mng)] )]

D23(E7n7 ’7g2) = [[ZIT,Z]71 [_W(E7 n, ngZ) + |:{CIT,2(E7n7 ng2>}2

L 1/2771/2
+ (4p9,2)R9,2(E7n7'1g2)] / :|:| ’

i(E - h’ L, ! +ah4(2e3(+1)) Lo,

q9,i 7n7ngi - 2 m;[ ml_,z 14 )il n 2 mltm m+,mlji

1 1
*ai‘V3(E7 r’gi) Wim’ )
Li Li

Ros(E,n ) = lmE, 1)+ 1By Cor (n42)) ( - #)

. 2
12 2B 1(1 1) oi® (28 (n + 1))

—5 G L,

" =
1,i
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The energy-wave vector dispersion relation of the conduction electrons in
heavily doped quantum well strained layer SLs with graded interfaces can be

expressed as
2 2
nn, 1 1 2|e|B 1
<dz ) L2 [cos {2f23(A3,n)H - (n —|—2> (4.40)

where A3 is the totally quantized energy in this case.
The electron concentration in this case is given by

Nmax 7z max

eBg,
nosy — - Z Z F—l(n48) (4413)

n=0 n,=1

where 17,; = (kgT) ' (Epsy — E47.,) and Epg is the fermi energy in this case.
The EP in this case(Jgy) is given by

2 Mmax Tz max
dpe Bgv
27nhd. Z F_1(Nag) Va8 (Enzsis) (4.41b)

2 n=0 ngmin

SL —

where

2L, sin(L‘Z’:”)
A>3 (Buzsis, 0))

ves(Enzsis) = (4.41c)

E,s18 is the quantized energy along z direction and is obtained from the equation

os{ ()] = 3o Brsis ). (4.414)

4.2.9 The Magneto EP from HgTe/CdTe Quantum Well HD
Effective Mass Super Lattices

Following Sasaki [71], the electron dispersion law in heavily doped HgTe/CdTe
EMSLs can be written as

kzz = App +iAun (4.42)
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s

1
where Az = |5 (A — ALy) — k?}
0

12
1 L= A5y — Aoy — \/(1 — A5y — Alon)’ + 4ATy
Avip = €0s™ pen; Perr = 2 ’

A9H = (alH Cos As[-] cosh AGH — apy COS A7H cosh A@H),
A[QH = (a”.] sin ASH sinh Aﬁ[—] + au sin A7H sinh A@H),

Asy = [a0Coon (E, ks, n1) + boes], Ao = boes, Ay = [a0Coon (E, Ky, 1) — boes),

2
Bj, + 2A.E — Boi(Bj, +4AiE) kz} 1/
242 s

Con(E ks, 1) = {

_ l M>(0,1,,) r[ M>(0,1,) 1/2]_1
S N AR

cl me

MZ(O?” 2) ’ MZ(OJI 2) V2
SR Y WO
me me

2A11HA2E
Apoy = cos™ per, A = —
0

The electron dispersion law in heavily doped HgTe/CdTe EMSLs under mag-
netic quantization can be written as

(k.)* = A3 + Mz (4.43)
where Aizppn = [(1/L )( LIHE,n A?zHE‘n) - ZC%B(’H”%)]

— 1
Anpig = c0s™ pegas Pozn = (1= Adpg,, — Ao, — \/(1 — g — Dloriga)” + 48%0mg0) /21

Ao = (@t cos Aspg., cosh Agug, — ar €08 A cosh Agrig ),

a0Coougn (Egn, M) + boes], Asuen = boes,

Avonen = (alH sin Asyg  sinh Agyg,, + @ sin Aqye, sinh Agyg ),
ASHE n — [

Arhgn = |a0ConEn(Egpetag) — b0€3]a

1
BOI + 2A1EE7,1 — 301(331 + 4A1EE,n) _ [ZC;B (n N l)] /2'
2A2 7 2

C22HE,n (EE.JH ngl ) =

1 2A N HE nA12HE 5

A = A == AR
12HE;n = COS ~ D6HEns A4HEn = 12

0
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The dispersion relation in quantum well heavily doped III-V superlattices under
magnetic quantization assumes the form

n,m .
<dL)2 = A3 a4 + iA1span (4.44)
Zz
where A4 is the totally quantized energy in this case.
The electron concentration in this case is given by

eBgv Nmax "z max
nosL = —h Real part of nz:; nz::l F_1(n4g) (4.45a)

where 17,5 = (kgT) ' (Eps, — A4)
The EP in this case(Jsy) is given by

2 Nmax Tlzmax
14 Bgv
L= 2nhd, Real part of ; nz F_1(148)vzs1 (Enzsist ) (4.45Db)

where

27n,

E, = - 4.45
VZSI( zSLSI) hdz(AlB —|—1A/14) ( C)

ke=0,ky=0,k: =% and E=E,5181
E,.s1s1 is the quantized energy along x direction and is obtained by substituting

ky =0,ky, = 0,k, = "d—“ and E = E, ;5131 in (4.34) and the primes denote the dif-
ferentiation with respect to energy.

4.2.10 The Magneto EP from Strained Layer Quantum Well
HD Effective Mass Super Lattices

The dispersion relation of the constituent materials of heavily doped III-V super
lattices can be written as

Fi(Ea ngz)k)% + Qi(Ea ngz)kf + gi(E7 ﬂg;)kz =1 (446)
where Pi(E, 151) = (70(E, flg:) — Lo T1) (A, i)™, Lo = (1/2)[1 + Erf (E/ng)),

Ty = [Eg — Cjier — (ai + C§)é + (3/2)biew — (bici/2) + (V3dieni/2)],
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B, ) = [(—amy/23/m) exp(—(E 2 )1+ (2 /12)) = R0 (E, ) + Vino(E. 1)
(G20 + B (Efng)l) i = (3/2B3), Ri = ai2A: + Cils Ai = B — i

Vi = gi[A} — (2C360i/3) + 2ACi 8], 6 = qil2C3i60i/3) — CligiA]),
Oi(E,ny) = (30(E,ny) — IoTa) (Ai(E, ) ™', Toi = [Egi — Ciei — (ai + C5)ei + (3/2)bitw — (bici/2)

- (\/gdi’g)f}'i/z)]? Si(E7 ng) = ’\/'O(E7 r]gi) - IOT';I)(AI(E7 r’gi)717
T3; = [Egi — Cljei + (ai + CYp)ei + (3/2)biezzi — (biei/2)],

The electron energy spectrum in heavily doped strained layer effective mass
super-lattices can be written as

(1) = [Li feos (fro(E. ke k) — kf} (4.47)

wheref40(E, kx, k)> = app COS [a0C40(E, kx, ky, '/Igl) + b0D40 (E, kx, ky, i1g1 )]
— ay; ¢08 [agCao(E, ke, ky, 1g2) — boDao(E, ke, ky, 1g3) ],

2 ) Ma(0.1,) 127!
Msl(oa ’7g1) 7
M;i(0,n) = (7/2)pi(ng)

p(1) = [(gi/2v/m) = (T3/2)] 7 % [{(01/2V/7) = (T3/2)} {(Vi/2) = Ritgi/ V/7) + (i + ngiv/7)}
= ((1/2) = (Tsi/ngv/m){(ci/2) + (Ving/2V/m) = (Rirgi/4) = (qitri/2v/7)}]

M, (0,
[ Ma(O,ng)

MSl (07 ”gl)

27 127!
a MsZ(Oy ngZ) +1 4 Ms2 (07 77g2)
0= Y ;
Msl (07 ’1g1> Msl (Oa ngl)
2T 1/27 1
a Ms2(07 77g2) 1 4 M32(07 ’/IgZ)
21 = —_ —
Msl (07 ng) Msl (07 ’/Igl)

C40(E7 kkayvngl) = [1 - Pl(E7 ngl)k)% - QI(E7 ngl)kyg]l/z[sl(E7 ngl)]_l/z
D40(Ea kmkyvngZ) = [1 - P2(E7 Wgz)k)% - Ql(Ev Wgz)ki]l/z[gz(Ea ngZ)]71/2
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Therefore, the electron dispersion law in heavily doped strained layer effective
mass quantum dot super-lattices can be expressed as

() = I Leos ™ (B )Y — (12 0+ ) (4.45)

where fio(E, n) = ax cos[ayCao(E, n, 1) + boDao(E, n, ’Ig1)]
— a1 cos[agCao(E, n, 1) — boDao(E,n )],

Cul o) = [ = gt 3] S, E )
bso(E, 1) \/ Vso(Es g W1 (Es 1g1),
: -
Yso(E;1g1) :mvlﬁﬂ(l‘? Me1) = 201 (Eony)
Duo(E. 1) = [1 = g (04 ) (B
Gson (Es12) = Vs (B s (E.1g0)
n? i

Wso1(Esngn) = Wsii(E,ng) =

2P (E, ﬂgz) QQZ(Ev Wgz)

The energy-wave vector dispersion relation of the conduction electrons in
heavily doped quantum well strained layer SLs with graded interfaces can be

expressed as
2 2
n, 1 1 2le|B 1
(2= & oo Lo 22 (o) aa

where A8 is the totally quantized energy in this case.
The electron concentration in this case is given by

eBgv Nmax Mzmax
nos. = > Foalns) (4.50a)

n=0 n,=1

where 175 = (kgT) ™" (Eps — A8)
The EP in this case(Jgy) is given by

aOeZBgV Nmax Mzmax

Tso=— 17 ZZ F_1(n50)vz50(Enzseso) (4.50b)

2 n=0 Nmin
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2Ly sin(Lodzz |
hlfao (Enzsi50,0)]”
and is obtained from the equation

where v,8(E,;s150) = E,.s150 is the quantized energy along z direction

Lon,n

cos|( i

)] = %ﬁ‘()(EnzSLS(), 0). (4.50c)

4.2.11 The EP from III-V Quantum Dot HD Superlattices
with Graded Interfaces

The electron concentration in this case is given by

n"mdx n‘mux n«'mi\x

2
nognsL = 5d Real part of Z Z Z F_1(100) (4.51)

Ny=1 MNy=1 Nz=1

where Higo = (kBT)il(EFQDHDSL — EH) and Eppypst, is the Fermi energy in this
case and and ey is the totally quantized energy which can be obtained by
substituting k, =% k, =" k; =" and E = ¢, in (4.2).

The electron dens1ty per sub band assumes the form

2g,
NoopsL = ﬁ Real part of [F_(179)] (4.52)
xGyd;

The EP in this case(Jg.) is given by

Mymax Tlymax Mzmax

doegy
Jopst = dudyd. Real part of Z Z ZFfl(nl()O)Vzl(EnzSLl) (4.53)

ny=1ny=1 nzmin

4.2.12 The EP from II-VI Quantum Dot HD Superlattices
with Graded Interfaces

The electron concentration in this case is given by

My My N
max max “max

2g,
nogosL = d,d. Real part of Z Z Z F_1(1101) (4.54)
X

Ny=1 Ny=1 Ng=|



4.2 Theoretical Background 275

where 7,9, = (kBT)fl(EFQDHDSL — @) and e is the totally quantized energy
which can be obtained by substituting k, = %,ky = "(}—n , k= "d—” and E = e; in
(4.9).

The electron density per sub-band assumes the form

28y
nogpsL = ﬁ Real part of [F_;(1o;)] (4.55)
xQya;

The EP in this case(Jg.) is given by

Mymax "lymax Mzmax
xpegy

W Real part of Z Z Z F_1(0101)v2(Enzsiz) (4.56)
xQyd;

. ny=1ny=1 nzmin

JopsL =

4.2.13 The EP from IV-VI Quantum Dot HD Superlattices
with Graded Interfaces

The electron concentration in this case is given by

Mmax Mymax emax

2gy
NoopsL = ﬁ Real part of Z Z Z F_1(1102) (4.57)

AHYHz M Ny—| N—

where 17,0 = (kBT)fl(EFQDHDSL —e31) and e is the totally quantized energy
which can be obtained by substituting k, = %,ky = "d‘—n , k= "d—” and E =e3; in
(4.15).

The electron density per sub-band assumes the form

2g,
NoopsL = dxd—vdz Real part of [F_(17,)] (4.58)

The EP in this case(Jsy) is given by

Real part of Z Z Z F_1(0102)v23(Enzs3) (4.59)

ny=1ny=1 nzmin

20egy
dd,d.

JopsL =
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4.2.14 The EP from HgTe/CdTe Quantum Dot HD
Superlattices with Graded Interfaces

The electron concentration in this case is given by

2 Mamax Mymax emax

d.d,d,

noopsL = VI 104) (4 .60)

Ny=1 Ny=1 MNz=1

where 17,04 = (kBT)fl(EFQDHDSL —es1) and e3 is the totally quantized energy
which can be obtained by substituting k, = M Jky = "dn ,
(4.20).

The electron density per sub-band assumes the form

k, = %% and E = ¢y, in

nooDSL = Real part of [F_;(17104)] (4.61)

28y
dd,d,
The EP in this case(Jsy) is given by

Mymax "lymax Mzmax

JopsL = 1(1104) V24 (Enzsia)- (4.62)

ddd

n’(:l n¥_1 Ny, zmin

4.2.15 The EP from Strained Layer Quantum Dot HD
Superlattices with Graded Interfaces

The electron concentration in this case is given by

Ny Ny N,
max 2 max “max

2g,
noEDSL = m Real part of Z Z Z F_1(105) (4.63)

Ax=1 Ry=1 Nz=|

where ;o5 = (kBT)fl(EFQDHDSL —es1) and es; is the totally quantized energy
which can be obtained by substituting k, = M Jky = "f , k= "d—” and E =es1 in
(4.25).

The electron density per sub-band assumes the form

28,
noopsL = P jd Real part of [F_(105)] (4.64)

xGylz
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The EP in this case(Jsy) is given by

Mymax "lymax Mzmax

Jopsr = 1(1105)v27(Enzser).- (4.65)

ny=1 ny=1 nzmin

4.2.16 The EP from III-V Quantum Dot HD Effective Mass
Superlattices

The electron concentration in this case is given by

ne Ny N
max S max “max

2gy
noops. = ﬁ Real part of Z Z Z F_1(1106) (4.66)
XUy

Ny=1 Ny=1 Nz=|

where 7,05 = (kBT)fl(EpQDHDSL — 1) and e is the totally quantized energy
which can be obtained by substituting k. = "5* , k, = % , k= "d—” and E = ¢g in
(4.30).

The electron density per sub-band assumes the form

nooDSL = Real part of [F_1(1,06)] (4.67)

2gy
B dyd,d,
The EP in this case(Jsy) is given by

TMymax "ymax Mzmax

%08y
Jobst. = d.dyd, Real part of Z Z ZFfl(WIOG)VZS(EnzSLS)' (4.68)

ny=1ny=1 Nzmin

4.2.17 The EP from Heavily Doped Effective Mass Quantum
Dot I1I-VI Super-Lattices

The electron concentration in this case is given by

Mxmax max emax

2g,
noopsL = dod, d 1(1107) (4.69)

Ny=1 Ny=1 Nz=|

where 7,y = (kBT)_l(EFQDHDSL —e71) and ey is the totally quantized energy
which can be obtained by substituting
ke ="k, ="" k=" and E = ey, in (4.34).
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The electron density per sub-band assumes the form

2g,
nognsL = 5d Real part of [F_(17,97)] (4.70)

xGylz

The EP in this case(Jgy) is given by

Nymax Mymax Mzmax

Jovst. = d d d  Real part of Z Z ZF (1107)vz6 (Enzste)- (4.71)

ne=1ny=1 Nzmin

4.2.18 The EP from Heavily Doped Effective Mass Quantum
Dot IV-VI Super-Lattices

The electron concentration in this case is given by

Real partof > > Filng) (472

Ny—1 My—1 Ng—|

2g,
noopsL. = dodd

xGyd;

where 7,03 = (kBT)fl(EFQDHDSL —es1) and eg; is the totally quantized energy
which can be obtained by substituting k, = "* k} = "f , k, = "d—" and E = &g in
(4.38).

The electron density per sub-band assumes the form

28,
noopsL = p 5d Real part of [F_(10g)] (4.73)

xUylz
The EP in this case(Jgy) is given by

Mymax "lymax Mzmax

Jopst = dodé;iv Real part of Z Z ZF (M108)V28 (Enzsis)- (4.74)

ne=1n,=1 nzmin

4.2.19 The EP from Heavily Doped Effective Mass
HgTe/CdTe Quantum Dot Super-Lattices

The electron concentration in this case is given by

T . -
Wmax Wmax emax

2g,
noopsL = ﬁ Real part of Z Z Z Ffl(l’]log) (475)
xUyHz

Ny=1 Ny=1 Nz=|
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where 7,99 = (kBT)fl(EpQDHDSL —e91) and ey is the totally quantized energy
which can be obtained by substituting k. = "% k, =""  k, =" and E = ey, in

d_y )
(4.42).
The electron density per sub-band assumes the form

28,
nooDSL = ﬁ Real part of [F_1(1,09)] (4.76)
xQyd;

The EP in this case(Jsy) is given by

Rymax Mymax Mzmax

Real part of Z Z Z F_1(1109)ves1 (Enesest)- (4.77)

ny=1 ny=1 nymin

topegy
dylyd.

Jopst =

4.2.20 The EP from Heavily Doped Strained Layer Effective
Mass Quantum Dot Super-Lattices

The electron concentration in this case is given by

2g v Tamax Mmax emax
nogDsL = - Z Z F-1(110) (4.78)
xQyd;

Ny=1 Ny=1 MNz=1

where 1,y = (kBT)_l(EFQDHDSL —ey10) and ey is the totally quantized energy
which can be obtained by substituting k, = ’3:1 Ky = % , k= "d—n and E =¢yj9 in
(4.42).

The electron density per sub-band assumes the form

28,
nogpsL = dodd

xlylz

[F-1(n110)] (4.79)

The EP in this case(Jgy) is given by

a()egv Nymax "ymax Mzmax
Jopst = ddd. Z Z Z F_1(1110)Vz50(Enzsiso)- (4.80)
xUylz

ny=1 ”y:l Nzmin
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4.3 Results and Discussion

Using the appropriate equations in Figs. 4.1, 4.2, 4.3 and 4.4, the normalized EP
from QW HD III-V SLs (taking GaAs/Ga;—,Al,As and In,Ga,_,As/InP QW HD
SLs) with graded interfaces under the magnetic quantization has been plotted as
functions of the inverse quantizing magnetic field, normalized electron degeneracy,
film thickness and the normalized incident photon energy respectively. It appears
from Fig. 4.1 that the EP in this case oscillates with inverse quantizing magnetic field
due to SdH effect. The Fig. 4.2 exhibits the fact that the EP increases with increasing
carrier degeneracy in an oscillatory way and the nature of oscillations is different as
compared with Fig. 4.1. From Fig. 4.3, it can be inferred that the EP oscillates with
film thickness and for certain values of film thickness the EP exhibits very large
values. From Fig. 4.4, it appears that EP increases with increasing photon energy in
quantum steps. The plot of the normalized magneto EP from II-VI HD QWSLs
(taking CdS/ZnSe QW HD SL as an example) with graded interfaces as a function of
inverse quantizing magnetic field has been shown in the curve (b) of Fig. 4.5 where
the plot (a) has been drawn with 1y = 0 for the purpose of assessing the splitting of
the two spin states by the spin orbit coupling and the crystalline field on the magneto
EP in this case. The plot (c) of Fig. 4.5 has been drawn for HgTe/CdTe QW HD SL
whereas the plot (d) is valid for IV-VI QW HD SL (using PbSe/PbTe as an example).
The Figs. 4.6, 4.7 and 4.8 demonstrate the plots of the EP as functions of normalized
electron degeneracy, film thickness and normalized incident photon energy
respectively for all the cases of Fig. 4.5. The plot of the normalized magneto EP for
II-V QW effective mass HD SLs (taking HD GaAs/Ga,—,Al,As as an example) as a

8
Film Thickness : 10 nm
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Inverse Magnetic Field {teslaf1}

Fig. 4.1 Plot of the normalized EP from a GaAs/Ga;_,Al,As and b In,Ga;_As/InP QWHD
superlattices with graded interfaces as a function of inverse quantizing magnetic field
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Fig. 4.2 Plot of the normalized EP from a GaAs/Ga;_,Al,As and b In,Ga;_,As/InP QWHD
superlattices with graded interfaces under quantizing magnetic field as a function of normalized
electron degeneracy
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Fig. 4.3 Plot of the normalized EP from a GaAs/Ga;_,Al,As and b In,Ga;_As/InP QWHD
superlattices with graded interfaces under quantizing magnetic field as a function of film thickness

function of inverse quantizing magnetic field has been shown in the curve (a) of
Fig. 4.9. The plots (b), (c) and (d) in the same figure have been drawn for I[I-VI QW
effective mass HD SL (taking CdS/ZnSe HD SL as an example, IV-VI QW effective
mass HD SL (taking PbSe/PbTe HD SL as an example) and HgTe/CdTe QW HD
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Fig. 4.4 Plot of the normalized EP from a GaAs/Ga,_,Al,As and b In,Ga,_,As/InP QWHD
superlattices with graded interfaces under quantizing magnetic field as a function of normalized
incident photon energy

Film Thickness : 10 nm
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Fig. 4.5 Plot of the normalized EP from a CdS/ZnSe with A, = 0, b CdS/ZnSe with A, # 0
¢ HgTe/CdTe and d PbSe/PbTe QWHD superlattices with graded interfaces as a function of
inverse magnetic field

effective mass SL respectively. The plots for normalized EP as functions of nor-
malized electron degeneracy, film thickness and normalized incident photon energy
for all the cases of Fig. 4.9 has respectively been drawn in the Figs. 4.10, 4.11 and
4.12. The plot (a) of Fig. 4.13 exhibits the variation of the normalized EP as a
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Fig. 4.6 Plot of the normalized EP from a CdS/ZnSe with 7o =0, b CdS/ZnSe with 7, #0
¢ HgTe/CdTe and d PbSe/PbTe QWHD superlattices with graded interfaces under quantizing
magnetic field as a function of normalized electron degeneracy
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Fig. 4.7 Plot of the normalized EP from a CdS/ZnSe with A, = 0, b CdS/ZnSe with 2, # 0
¢ HgTe/CdTe and d PbSe/PbTe QWHD superlattices with graded interfaces under quantizing
magnetic fieldas a function of film thickness

function of film thickness for QB HD SLs with graded interfaces of (a) HgTe/CdTe,
(b) HgTe/Hg,—Cd,Te (an example of III-V QB HD SLs, (c) CdS/ZnSe (an example
of II-VI QB HD SLs with 4y # 0) and (d) PbSe/PbTe (an example of IV-VI QB HD
SLs respectively. The Figs. 4.14 and 4.15 demonstrate the plots for normalized EP as
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Magnetic Field: 2 tesla
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Fig. 4.8 Plot of the normalized EP from a CdS/ZnSe with 7, =0, b CdS/ZnSe with 7, #0
¢ HgTe/CdTe and d PbSe/PbTe QWHD superlattices with graded interfaces under quantizing
magnetic field as a function of normalized incident photon energy
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Fig. 4.9 Plot of the normalized EP from a GaAs/Ga,_,Al,As, b CdS/ZnSe with /, # 0, (c) PbSe/

PbTe and (d) HgTe/CdTe QW effective mass HD superlattices as a function of inverse quantizing
magnetic field

functions of normalized electron degeneracy and the normalized incident photon
energy respectively for all the cases of Fig. 4.13. The plot (a) of Fig. 4.16 exhibits the
variation of the normalized EP as a function of film thickness for QB effective HD
SLs of (a) HgTe/CdTe, (b) HgTe/Hg-4Cd,Te (an example of III-V HD SLs, (c)
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Fig. 4.10 Plot of the normalized EP from a GaAs/Ga,_,Al,As, b CdS/ZnSe with 7, # 0, ¢ PbSe/
PbTe and d HgTe/CdTe QW effective mass HD superlattices under quantizing magnetic field as a
function of normalized electron degeneracy
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Fig. 4.11 Plot of the normalized EP from a GaAs/Ga,_,Al,As, bCdS/ZnSe with o # 0, ¢ PbSe/
PbTe and d HgTe/CdTe QW effective mass HD superlattices under quantizing magnetic field as a
function of film thickness

CdS/ZnSe (an example of I1I-VI QB HD SLs with 70 # 0) and (d) PbSe/PbTe (an
example of IV-VI QB HD SLs respectively.

The Figs. 4.17 and 4.18 exhibit the plots for EP as functions of normalized
electron degeneracy and the normalized incident photon energy respectively for all
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Fig. 4.12 Plot of the normalized EP from a GaAs/Ga;_,AlAs, b CdS/ZnSe with o # 0, ¢ PbSe/
PbTe and d HgTe/CdTe QW effective mass HD superlattices under quantizing magnetic field as a
function of normalized incident photon energy
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Fig. 4.13 Plot of the normalized EP from a HgTe/CdTe b HgTe/Hg,_,Cd,Te, ¢ CdS/ZnSe with

4o #0 and d PbSe/PbTe QB HD superlattices with graded interfaces as a function of film
thickness

the cases of Fig. 4.16. The nature of variation of the plots in the different types of
HD SLs under different physical conditions as shown from Figs. 4.5, 4.6, 4.7, 4.8,
4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 and 4.18 have already been
discussed in describing the plots of Figs. 4.1, 4.2, 4.3 and 4.4. Finally, it is logical
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Fig. 4.14 Plot of the normalized EP from a HgTe/CdTe b HgTe/Hg,_,Cd,Te, ¢ CdS/ZnSe with
4o # 0 and d PbSe/PbTe QB HD superlattices with graded interfaces as a function of normalized

electron degeneracy
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Fig. 4.15 Plot of the normalized EP from a HgTe/CdTe b HgTe/Hg,-,Cd,Te, ¢ CdS/ZnSe with
4o # 0 and d PbSe/PbTe QB HD superlattices with graded interfaces as a function of normalized

incident photon energy

to conclude that the numerical values of the EP are totally different in all cases
which exhibit the signature of the respective band structure of HD SL under dif-
ferent physical conditions and the rates of variation are again totally energy spec-

trum dependent.
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Fig. 4.16 Plot of the normalized EP from a HgTe/CdTe b HgTe/Hg,-.Cd,Te, ¢ CdS/ZnSe with
o # 0 and d PbSe/PbTe QB HD superlattices as a function of film thickness
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Fig. 4.17 Plot of the normalized EP from a HgTe/CdTe b HgTe/Hg,_,Cd,Te, ¢ CdS/ZnSe with

4o # 0 and d PbSe/PbTe QW effective mass HD superlattices as a function of normalized electron
degeneracy
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Fig. 4.18 Plot of the normalized EP from a HgTe/CdTe b HgTe/Hg;-,Cd,Te, ¢ CdS/ZnSe with
4o # 0 and d PbSe/PbTe QW effective mass HD superlattices as a function of normalized incident
photon energy

4.4 Open Research Problem

(R.4.1) Investigate the influence of arbitrarily oriented alternating quantizing
magnetic field and strain on the EP for all types of HD super-lattices whose
carrier energy spectra are described in this book.
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Part II

The EP from HD III-V Semiconductors
and Their Quantized Counter Parts



Chapter 5
The EP from HD Kane Type
Semiconductors

5.1 Introduction

With the advent of nano-photonics, there has been a considerable interest in
studying the optical processes in semiconductors and their nanostructures [1]. It
appears from the literature, that the investigations have been carried out on the
assumption that the carrier energy spectra are invariant quantities in the presence of
intense light waves, which is not fundamentally true. The physical properties of
semiconductors in the presence of light waves which change the basic dispersion
relation have relatively less investigated in the literature [2—12]. In this appendix we
shall study the EP in HD III-V, ternary and quaternary semiconductors on the basis
of newly formulated electron dispersion law under external photo excitation.

In Sect. 5.2.1 of the theoretical background Sect. 5.2, we have formulated the
dispersion relation of the conduction electrons of HD III-V, ternary and quaternary
materials in the presence of light waves whose unperturbed electron energy spec-
trum is described by the three-band model of Kane in the absence of band tailing. In
Sect. 5.2.2, we have studied the EP for all the aforementioned cases. The Sect. 5.3
contains the results and discussion for this chapter and the Sect. 5.4 contains the
open research problems.

5.2 Theoretical Background

5.2.1 The Formulation of the Electron Dispersion Law
in the Presence of Light Waves in HD III-V, Ternary
and Quaternary Semiconductors

The Hamiltonian (I:I ) of an electron in the presence of light wave characterized by
the vector potential A can be written following [11] as
© Springer International Publishing Switzerland 2015 295
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= D(p+ |e|§>.2/2m} V() (5.1)

in which, p is the momentum operator, V(¥) is the crystal potential and m is the free
electron mass.
(5.1) can be expressed as

H=Hy+H (5.2)
where
)
p o
Hy=—+YV
0 2m+ ()
and
N |e| -
H=—7A. 53
P (53)

The perturbed Hamiltonian A’ can be written as

i = (%Jf') (A’ : v) (5.4)

where i = v/—1 and p = —ihV
The vector potential (A) of the monochromatic light of plane wave can be
expressed as

A = AgE, cos(5y - 7 — i) (5.5)

where A is the amplitude of the light wave, & is the polarization vector, 5 is the
momentum vector of the incident photon, 7 is the position vector, w is the angular
frequency of light wave and 7 is the time scale. The matrix element of I:Ijll between

initial state, y,(§,7) and final state ,, (E, 7) in different bands can be written as

el e
H), :%<nk|A -p

n

lcj> (5.6)
Using (5.4) and (5.5), we can re-write (5.6) as

. —ifi[e]A B ‘ o '
H}ld = (l4|e|0) TC;'S . [{<nk‘e(lm">V‘le>eﬂw’} + {<nk‘e(lso‘r)V‘lZ]'>elwt}]
m

(5.7)
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The first matrix element of (5.7) can be written as

nk|e ™V (1) = e("[‘?ﬁ“*;]'?)i"u* K 7)u(g, P)d’r
(w79 )ig) = [ g, (K.7)u(d.7)

n / la-7]7) (’;’7)Vuz(c7,?)d3r (5.8)

The functions uju; and u),Vu; are periodic. The integral over all space can be
separated into a sum over unit cells times an integral over a single unit cell. It is
assumed that the wave length of the electromagnetic wave is sufficiently large so that

if K and g are within the Brillouin zone, (Zj + 50 — l_c') is not a reciprocal lattice vector.

Therefore, we can write (5.8) as
7 (5o 7)o |12 P2 P A
<nk|e % V|lq> = g {zqé(q—!—so—k)5n1—|—5(q—|—so—k>

/ u; (K. 7) V(@ P)br (5.9)

cell

CoPVf i N e
=1 q 5<q + 50 — k) u, (k, r) Vu (4, 7)d’r
cell
where Q is the volume of the unit cell and [ ' (k, P)uy(§, P)d*r = 6(G — K)o = 0,

since n # 1.

The delta function expresses the conservation of wave vector in the absorption of
light wave and 5 is small compared to the dimension of a typical Brillouin zone
and we set § = k.

From (5.8) and (5.9), we can write,

- A - -
= |62| C& - pu(K)3(q — k) cos(wr) (5.10)
m

where
pu(k) = —ifi / w Vuyd®r = / u’ (k, P)pu (k, F)d*r

Therefore, we can write

N elAg., . -
H, = letdo 2|m0 &+ pu(k) (5.11)

where g = & cos wt.
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When a photon interacts with a semiconductor, the carriers (i.e., electrons) are
generated in the bands which are followed by the inter-band transitions. For
example, when the carriers are generated in the valence band, the carriers then make
inter-band transition to the conduction band. The transition of the electrons within

the same band i.e., I:I,’m = <ni<”ﬁ”nl?> is neglected. Because, in such a case, i.e.,

when the carriers are generated within the same bands by photons, are lost by
recombination within the aforementioned band resulting zero carriers.
Therefore,

(k| |nk) = 0 (5.12)

With n = ¢ stands for conduction band and [ = v stand for valance band, the
energy equation for the conduction electron can approximately be written as

2>av (5.13)

where I, (E) = E(aE + 1)(bE+ 1)/(cE + 1),a = 1/E,,, E,, is the un-perturbed
2
band-gap, b =1/(E, + A), c = 1/(E, +2A/3), and <’é’-pcv(k)’ > repre-

av

o)/ | 5 (7
2R (2m) <S'p”’(k)
In(E) = (ﬁ) TTTE® - E®

sents the average of the square of the optical matrix element (OME).
For the three-band model of Kane, we can write,

-,

élk = Ec(k)

-,

E,(k) = (E2, + Eo,*K* /m,)'/? (5.14)

where m, is the reduced mass and is given by m; ' = (m.)”" + m "', and m, is the
effective mass of the heavy hole at the top of the valance band in the absence of any
field.

The doubly degenerate wave functions u; (12’, ?) and u, (/2’, 7) can be expressed
as [13, 14]

w (B.F) = axe (i) 1]+ e {X/\;;Y' T’} +enlZ 1] (5.15)
and
w2 (K.7) = ax_[(is) 1] - bi- [X'jgy’ y} talZ1] (5.16)

s is the s-type atomic orbital in both unprimed and primed coordinates, |’ indicates
the spin down function in the primed coordinates,
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ags = BlEg, — (Yors)* (Egy — 5/)1/2(11}0 + 5’)1/2],
B = [(6(Eg +2A/3)(Eq, + M) /7],

1/2
— 2 2y . _ [CEik FEy)
1= (6Eg + 9Eg A+ 4A7), yoe = {m )

q B} 12 .
= E(K) — E,(F) = E, [1 + 2(1 + ;"7) ’Eﬂ} 5= (ELA) ()", X', X', and Z/

80
are the p-type atomic orbitals in the primed coordinates, 1’ indicates the spin-up
function in the primed coordinates,

_ 2 /mn1/2 _ _ 2, 12
brs = pYors> P(AA/37)77, cre = tygre andt = 6(Ego +2A/3)%/x .

We can, therefore, write the expression for the optical matrix element (OME) as
OME

OME = (k) = (w1 (k, 7)|pluz (K, 7)) (5.17)

Since the photon vector has no interaction in the same band for the study of
inter-band optical transition, we can therefore write

(SIp|S) = (XIpIX) = (¥|p|Y) = (z|p|Z) = 0
and
(X|p|¥) = (YIplz) = (ZIp|X) = 0

There are finite interactions between the conduction band (CB) and the valance
band (VB) and we can obtain

>

(S|P|X)y=i-P=i- P
(s|PlY) =j-P=j-P,
(S|P|Z) =k-P=k-P,

where 7, j and k are the unit vectors along x, y and z axes respectively.
It is well known [14] that

)= [t o3 L1

and
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X cosfcos¢ cosfsing —sinf| X
Y| = | —sing cos ¢ 0 Y
7' sinfcos¢ sinfsin¢g cos V4

300

Besides, the spin vector can be written as S :g&' where

U*OIJO_ianda*IO
1T o0 0 S0 =1

From above, we can write
pev(R) = (u (€. 9|Pl (k7))
= (fantis 1o | (F55) 1| etz 1 Plac ) 1

N )

Using above relations, we get

pev(R) = (un (&,7)[Plus (k. 7) )

- b"*% (X =) |PliS)(1 | 1)} + ee e {{Z'|PiS)(L" [ 1)}
- % {GS[PI(X" + Y ) (V[ 1)} +a e {GSIPIZ)(L 11}
(5.18)

From (5.18), we can write
(X' —iY")|P|iS) = ((X')|P|iS) — {(iY")|P]iS)
= i/u}/PSf/fiu’;/fDiuX = i(X'|P|S) — (Y'|P|S)

From the above relations, for X', Y’ and Z’, we get
IX") = cos 0 cos ¢|X) + cos 0 sin$|Y) — sin 0|Z)

Thus,

<X/’P‘S> = cos 0 cos ¢<X}P|S> + cos 0'sin ¢<Y’P‘S> —sin0(Z|P|S) = Piy

where,
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71 = icosfcos ¢ +jcos B sing — ksin O
|Y') = —sin ¢|X) + cos ¢|Y) + 0|Z)
Thus,

(Y'|P|S) = —sin ¢(X|P|S) + cos ¢(Y|P|S) + 0(Z|P|S) = Pi,

where
Fy = —isin ¢ +jcos ¢
so that
(X' —iY")|P|S) = P(it, — 72)
Thus,
ai_ by A S ap by ~ . . 1
75 (X = PIS) | 1) = =2 Plin = )T | 1) (5.19)
Now since,

(iS|P|(X' +iY")) = i(S|P|X") — (S|P|Y') = P(ii1 — 1»)
We can write,

A Di (Bl vt 1] __ak+bk7Ai}_? L
[ g v 1] =[S B -y 1] (520)

Similarly, we get
|Z') = sin 0 cos ¢|X) + sin Osin p|Y) + cos 0|Z)
So that,
(Z'|P|iS) = i(Z'|P|S) = iP{sin 0 cos ¢i + sin O sin ¢ + cos Ok } = iP
where,
73 = isin 0 cos ¢ 4 sin 0 sin ¢ + k cos 0

Thus,
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ce.ar (Z'|PliSY(]" | 1) = cr.ar iPF3(]" | 1) (5.21)
Similarly, we can write,
cear, (SIPIZ' Y] | 1) = cx_ar, iPF3(]" | 1) (5.22)

Therefore, we obtain

ar_ by A ak, b (. s .
(X =i)[PIS) (1 1)} = == {GSIPI(X + iy ) (L 1)}
V2 b V2 (5.23)
=7 (—ar,bi (1" | 1) + ac_be (1" [ 1)) (71 — 72)
Also, we can write,
crax (Z'|PliS)(1" | 1) + e ar, (iSIPIZ)(L | 1)
= iP(ck,ar. + e ar, )[(L | 1)] (5.24)
Combining (5.23) and (5.24), we find
pev(F) = \%(m — i) { (Bra )1 11 = (b a )1 1)}
+ iPiy (ck+ak7 — ckfakf)@' [ 1) (5.25)
From the above relations, we obtain,
1 =e %2 cos(0/2) 1 + €/ sin(0/2)
) ) (5.26)
= —e7*25in(0/2) 1 + €'*/* cos(0/2)
Therefore,
(1" 11", = —sin(6/2) cos(8/2)(1 | 1), + e cos*(6/2)(L | 1), (5.27)

— € sin*(0/2)(1 | 1),+sin(0/2) cos(0/2)(] | ),
But we know from above that
1 1

and (|| 1),=0
Thus, from (5.27), we get
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(1), =5 e cos™(0/2) - & sin® (0/2)]
= —[(cos ¢ — isin ) cos*(0/2) — (cos ¢ + isin ) sin®(0/2)] (5.28)

[cos ¢ cos O — isin @]

NI'—NI'—‘NI

Similarly, we obtain

(11),= [zcos¢+sm¢cos()]

and (|" | 1"),=3[—sin 0]

Therefore,
LIy =0 ) 4T )+ R,
= % {(cos 0 cos ¢ —isin ¢)i + (icos ¢ + sin ¢ cos 0)j — sin HI}}
= % [{(cos 0 cos ¢)i + (sin ¢ cos 0)j — sin 01}} + i{—? sin ¢ + jcos qS}]

L. . L.
= E[rl +iR) = —El[zrl — 1)

Similarly, we can write

a1 = [zschosqS+Jsm951nq5+kcos0] *%7‘3and (1= —%7‘3

Using the above results and following (5.25) we can write

Pev(k) = (i?l — ) {(abr, ) (1 [1) = (bra, ) (1" | 1)}

+ Pr;{(c;qak, — Ck_ ak+)<l | T

= is(it — ?2){ (“k b, | b %) }
i

Ll

N~

+

(S} vE

F3(iry — ?2){(ck+ak + Cr ak+)

Thus,



304 5 The EP from HD Kane Type Semiconductors

N by_ by,
P3(iF) — i) {a;<+ (ﬁ + ck> +ap <% + ck+) } (5.29)
We can write that,
71| = |72] = |#3| = 1, also, Pis = P, sin 0 cos ¢i + P, sin 0sin ¢hj + P, cos Ok

where,

<S|P|X> (S|PlY) = (S|P|Z),

<S|P|X> = 7)Puyy (0, 7)d*r = Peyy (0)

\

and (S|P|Z) =

ThllS P Pcvx(O) = Pcvy(()) = pcvz(O) = Pcv(O) where Pcv(O) = fu’e(O, 7)
Puy(0,7)d*r = P.

For a plane polarized light wave, we have the polarization vector & = k, when
the light wave vector is traveling along the z-axis. Therefore, for a plane polarized
light-wave, we have considered & = k.

Then, from (5.29) we get

(5- ﬁcv(l?)) - 2—3 P (it —r2)[A(i€) +B(/}’)} cos ot (5.30)
and
AR) = a <bk—++ck+)
B0 - (£+Ck ) (5.31)
Thus,
lg.pcv(l}')‘zz ']AC § ity — 7o { (k )+B(k)} cos® ot
\P cos 0 [A(K) + B(®)] o5 oot (5.32)

So, the average value of ’? . ﬁcv(/}’)

for a plane polarized light-wave is given by
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2n T
<§-,aw(1€)‘2> :§|PZ|2[A(1}')+B(1}')]2 /d¢/005205in 0d0 @
ayv 0 0
o0 . 12
- ?n .| [A(k) + B(k)]
(5.33)
2 NER 2
where |P,| = (5)‘k -pw(O)‘ and
2
‘1? ﬁcv(O)‘zf - E By +4) (5.34)

 dm, (Eq + %A)

We shall express A(k) and B(K) in terms of constants of the energy spectra in the
following way:
Substituting ay, , by, . ¢, and yy, in A(K) and B(K) in (5.31) we get

1/2
s p Eg, 2 > o (Ex =9
AR) =B+ ) (=22 )92 — 92 2 (=2 5.35
(k) ﬁ( +\/§>{<Eg0 +5/> Yok, — Vor, Vok_ (Ego s (5.35)

1/2
7 p Eq, 2 > 2 (Ew =9
=i (B (BN s
NG E, +0 )% ~ Yokdo\F T

. . 2 élk7E§0 —1 B Eg0+(3/ 2 ilk+Ego —1 Egofﬁ/
in which, 75, = sy =2 |1~ (G )| 20 e oy =2 |1+ (5

Substituting x = & + &' in yéki, we can write,
- p E, 1 E,+0\ 1[(E,—0
Ak)=plt+— Zp =28 ) _Z
=i e w)a () (e

E, +0 E, —\"?
(1-55) (255
X X

1/2
A@):g(w%){l_%;;}

Thus,

where
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av = (B, +5°)(Eg, + )"

and a = (E, — ')’
After tedious algebra, one can show that

1/2
. 5( p) ,[ 1 1 ]1/2 1 (Egy +0)
AR) =% 1+ = )(Ey, — & - _ .
( ) 2 \/E ( 8 ) élk‘i’é/ EgU +5/ §1k+5/ (Ego _5/)2
(5.37)

Similarly, from (5.36), we can write,
- p E, \1 Eg,—0\ 1[E,—0
Bk)=p|t+— Bl [t (R B
D= E55)a (+207) (@55
R AV 12
X X

So that, finally we get,

I I

Using (5.33), (5.34), (5.37) and (5.38), we can write

2 o A
(), e ot o)

V2
1 Eg, — 0
() re-
12 2
{ 1 1 }‘/2 1 E,+5 1"
Eiu+0 Eg 40 Cutd (B, —0)
(5.39)
Following Nag [12], it can be shown that
12
2 _
Aj = 3 it (5.40)

where, I is the light intensity of wavelength 4, &y is the permittivity of free space and
c is the velocity of light. Thus, the simplified electron energy spectrum in III-V,
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ternary and quaternary materials in the presence of light waves can approximately
be written as

R k2
2m,.

= Bo(E, 4) (5.41)

where By(E, %) = [I11(E) — 0o(E, 2)],

> 17 By (B, +A)B P
bo(E, ) = 96m,nc? | /5o (gEgoi-%D) Z<H—\/_> ({bo( )

E, — & , 1 1]
{(1 siis) B e B )

1/2Y) 2

1 _ Eg + 0
$o(E) +0" (E,, — )

and ¢y (E) = Ego(l +2(1 ) Ll ) 2

Thus, under the limiting condition k— 0, from (5.41), we observe that E # 0
and is positive. Therefore, in the presence of external light waves, the energy of the
electron does not tend to zero when k — 0, where as for the un-perturbed three
band model of Kane, I;;(E) = [i*k?/(2m,)] in which E — 0 for k — 0. As the
conduction band is taken as the reference level of energy, therefore the lowest

positive value of E for k—0 provides the increased band gap (AE,) of the
semiconductor due to photon excitation. The values of the increased band gap can
be obtained by computer iteration processes for various values of I and A
respectively.

Special Cases:

(1) For the two-band model of Kane, we have A — 0. Under this condition,
Li(E) = E(1+aE) = h" .Since, f > 1,t—> 1,p —> 0,8 — 0 for A — 0,
from (5.41), we can wrlte the energy spectrum of III-V, ternary and quaternary

materials in the presence of external photo-excitation whose unperturbed
conduction electrons obey the two band model of Kane as

R k2
2m,

= w(E, %) (5.42)

where to(E, 1) = E(1 + aE) — Bo(E, 1),
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le|*1)*E, 1
Bo(E, 1) = 0
0(E;2) 384nc3m, /et Py (E)

{(5%) =l 2]}

¢, (E) EEgo{l +2mA

1/2
“aE(1 +aE)} .

m,

(2) For relatively wide band gap semiconductors, one can write, a — 0, b — 0,
c¢c— 0and I;;(E) — E.
Thus, from (5.42), we get,
k2

2m,

po(E; 2) (5.43)

|e|2M2 2m —3/2
WheI‘e po(E, j.) =F— m |:1 + (m:) aE:| .

5.2.2 The EP in the Presence of Light Waves in HD III-V,
Ternary and Quaternary Semiconductors

The (5.40), (5.41) and (5.42) can approximately be written as

g = U1, (E) - P; (5.44)
Z]f = t,E+ t,E* -9, (5.45)

and
Z]f =1,E -9 (5.46a)

_ _c BJ; [ JePIRE (g +4) g 2
where U; = (1+0;),0; =3 (t; + ), Co = {WMTU Jr%)
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B=[14+—],G; = _ .
[ mv] [(A+5’)3 (A—|—5’)]
Ci = [(Bgy + )" + (B, + ) (B, = ) (A + )"
C
P = 2050 = (D4 2By, — ) V).
2(Eg, — 9') 1 1
DX:<1+ 80 : 7fi:[ + - _C)L],
(A+9) (A+3) (By—0)
3me 1 le| 12
7 = 1 - __ = L=
ty,=(1+ m ;) E, , 0 06m, 10 ot and t,; = aty;

Under the condition of heavy doping, following the methods as developed in
Chap. 1, the HD dispersion relations in this case in the presence of light waves can
be written as

R2k?

= Ti(E,n,, 2) (5.46b)
C

R2k?

2n1.::7§(E,ng,A) (5.47)

H2k? .

5 = T5(E,n,, 2) (5.48)

where

T\(E, n,, A) = [U;[T31(E, n,) + iT3(E, n,)] — P;]
Tz(E, Mg /1) = [tli’VS (Ea ng) + ([2)1)290(13, ng)[l + EI'f(E/ﬂg)]71 - 5)}

and
T; (Ea Mg» )“) = [tl/l"/3 (Ea ng) - 57]

The EEM can be expressed in this case by using (5.46a, 5.46b), (5.47) and (5.48)
as

m* (Epupr, g, #) = m. Real part of [Ty (Erupi, 1, ) (5.49)
m % (Epupr, fg, ) = me[ T2 (Brape, g, 2)] (5.50)

m % (Bgupe, g, 2) = me[T3(Erupr, 1, A)] (5.51)


http://dx.doi.org/10.1007/978-3-319-11188-9_1
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The electron concentration is given by

3
v [2m.\? s
ny = 3gnz (7) Real part of [T} (Epupy, ngJ)]i (5.52)
gV ch‘ % 3
R [T2(ErmpL, g, £)]? (5.53)
gV ch % 3
=3\ T2 [T3(ErmpL, g, £)]? (5.54)

where Egyp; is the Fermi energy in HD III-V semiconductors in the presence of
light waves as measured from the age of the unperturbed conduction band in the
vertically upward direction.

The velocity along z direction and the density of states function in this case for
HD optoelectronic Kane type materials under intense light waves whose conduction
electrons in the absence of perturbation obey the three band model of Kane can
respectively be written as

2 [TV(E) 1. 1))
VZ(E/I) =\ 7 l/ ¢ P (5'55)
me Tl(Elvrlgafh)

2m,

N(E)) = 4ng, (G5 2\ T B g AT B ) (556)

where E| = E — Egiup, Eoiup = & + W — hv, &, is the root of the equation
Tl(élanp;“) =0 (557)

The EP in this case is given by

o

4 C. v
Jiap = %Real part of / T\(E}, ng, A)f (E)dE| (5.58)

EOIHD

Similarly the EP for perturbed two band model of Kane and that of parabolic
energy bands can respectively be expressed as

o

/ Ty(E). 1, 2)f (E)dE, (5.59)

Eoanp

drogem g,

Jrp = e

and
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o

/ T5(Ej, n,, A)f (E)dE] (5.60)

Eo3up

drogem g,

Jrup = =

where B, = E — Epup, Eoup = & + W — hv, &, is the root of the equation
T2(€27”g7)“) =0 (561)
and where E; = E — Epsup, Eosup = & + W — hv, & is the root of the equation

T5(¢s,m,, 4) = 0. (5.62)

5.3 Results and Discussion

Using the appropriate equations, the normalized EP from HD n-Hg,_Cd,Te has
been plotted as functions of normalized [, (for a given wavelength and considering
red light for which 4 is about 640 nm), A (assuming I, = 10 nWm™?) and the
normalized electron degeneracy at T = 4.2 K in accordance with the perturbed three
and two band models of Kane and that of perturbed parabolic energy bands in
Figs. 5.1, 5.2 and 5.3 respectively. The Figs. 5.4, 5.5 and 5.6 exhibit all the
aforementioned cases for HD n-In;_ Ga,As,P,_, lattice matched to InP
respectively.

It appears that the J increases with the increasing electron degeneracy in
accordance with all the band models. The combined influence of the energy band
constants on the EP from ternary and quaternary materials can easily be assessed
from all the figures. It appears that the EP decreases with increasing light intensity
for all the materials and also decreases as the wavelength shifts from violet to red.

The influence of light is immediately apparent from all the plots, since the EP
depends strongly on the light intensity for all types of perturbed band models,
which is in direct contrast with that for the bulk specimens of the said compounds
whose formulations depend on the general idea that the band structure is an
invariant quantity in the presence of external photo-excitation together with the fact
that the physics of EP is being converted mathematically by using the lower limit of
integration as Ey as often used in the literature. The dependence of J, on light
intensity and wavelength reflects the direct signature of the light wave on the band
structure dependent physical properties of electronic materials in general in the
presence of external photo-excitation and the photon assisted transport for the
corresponding HD optoelectronic semiconductor devices. Although J; tends to
decrease with the increasing intensity and the wavelength but the rate of increase is
totally band structure dependent.
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10

Hg, Cd Te: A =640nm

Normalized EP

001 0.11 021 0.31 0.41 051 061 0.71 081 0.91 1.01
Normalized Intensity

Fig. 5.1 Plot of the normalized EP from HD n-Hg;_Cd,Te as a function of normalized light
intensity in which the curves (@), (b) and (c) represent the perturbed three and two band models of
Kane together with parabolic energy bands respectively

HgHCdee

Normalized EP

1

440 460 480 500 520 540 560 580 600 620 640
Wavelength in nm

Fig. 5.2 Plot of the normalized EP from HD n-Hg;_,Cd,Te as a function of wavelength for all
cases of Fig. 5.1
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Hg1_)§dee: A =640nm

03 05

07 09 1.1 13 15

Normalized Electron Degeneracy

Fig. 5.3 Plot of the normalized EP from HD n-Hg;_,Cd,Te as a function of normalized electron
degeneracy for all cases of Fig. 5.1

Normalized EP

In GaAsh : A=640nm

1

0.01 0.1 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91 1.01

Normalized Intensity

Fig. 5.4 Plot of the normalized EP from HD In,_,Ga,As,P,_ lattice matched to InP as a function
of normalized light intensity in which the curves (a), () and (c) represent the perturbed three and
two band models of Kane together with parabolic energy bands respectively
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In , _x(;ynsyﬁ_v

Normalized EP

i ™~

440 460 480 500 520 540 560 580 600 620 640
Wavelength in nm

Fig. 5.5 Plot of the normalized EP from HD In,_,Ga,As,P,_ lattice matched to InP as a function
of wavelength for all cases of Fig. 5.4

In‘I 'xGag‘AquT A =640nm

Normalized EP

03 05 07 09 1.1 13 15 1.7
Normalized Electron Degeneracy

Fig. 5.6 Plot of the normalized EP from HD In,_,Ga,As,P;_, lattice matched to InP as a function
of normalized electron degeneracy for all cases of Fig. 5.4

It is worth remarking that our basic Eq. (5.46b) covers various materials having
different energy band structures. Under certain limiting conditions, all the results of
the EP for different materials having various band structures lead to the well-known
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expression of the same for wide-gap materials having simplified parabolic energy
bands. This indirect test not only exhibits the mathematical compatibility of the
formulation but also shows the fact that the presented simple analysis is a more
generalized one, since well known result can be obtained under certain limiting
conditions of the generalized expressions.

It is worth remarking that the influence of an external photo-excitation is to
change radically the original band structure of the material. Because of this change,
the photon field causes to increase the band gap of semiconductors. We have
proposed two experiments for the measurement of band gap of HD semiconductors
under photo-excitation in Chap. 9 in this context.

We have not considered other types of optoelectronic and III-V materials and
other external variables for the purpose of concise presentation. Besides, the
influence of energy band models and the various band constants on the EP for
different materials can also be studied from all the figures of this chapter. The
numerical results presented in this chapter would be different for other materials but
the nature of variation would be unaltered. The theoretical results as given here
would be useful in analyzing various other experimental data related to this phe-
nomenon. Finally, it appears that this theory can be used to investigate the ther-
moelectric power, the Debye screening length, the magnetic susceptibilities, the
Burstien Moss shift, plasma frequency, the Hall coefficient, the specific heat and
other different transport coefficients of modern HD optoelectronic devices operated
in the presence of light waves.

5.4 Open Research Problems

(R.5.1) Investigate the EP in the presence of intense external light waves for all the
HD materials whose respective dispersion relations of the carriers in the
absence of any field are given in R.1.1 of Chap. 1.

(R.5.2) Investigate the EP for the heavily—doped semiconductors in the presences
of Gaussian, exponential, Kane, Halperian, Lax and Bonch-Burevich types
of band tails [16] for all systems whose unperturbed carrier energy spectra
are defined in (R.1.1) in the presence of external light waves.

(R.5.3) Investigate the EP in the presence of external light waves for bulk speci-
mens of the HD negative refractive index, organic, magnetic and other
advanced optical materials in the presence of an arbitrarily oriented
alternating electric field.

(R.5.4) Investigate all the appropriate HD problems of this chapter for a Dirac
electron.

(R.5.5) Investigate all the appropriate problems of this chapter by including the
many body, broadening and hot carrier effects respectively.

(R.5.6) Investigate all the appropriate problems of this chapter by removing all the
mathematical approximations and establishing the respective appropriate
uniqueness conditions.


http://dx.doi.org/10.1007/978-3-319-11188-9_9
http://dx.doi.org/10.1007/978-3-319-11188-9_1
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Chapter 6
The EP from HD Kane Type Materials
Under Magnetic Quantization

6.1 Introduction

In this chapter, the EP under magnetic quantization in HD Kane type materials has
been investigated in the presence of external photo-excitation whose conduction
electrons obeys the energy wave-vector dispersion relations as given by (5.46b),
(5.47) and (5.48) respectively. The Sect. 6.2 contains the theoretical background.
The dependence of the magneto EP from HD n-Hg;,Cd,Te and n-In;,Ga,As,P;_,
lattice matched to InP on the inverse quantizing magnetic field, the carrier con-
centration, the intensity of light and the wavelength has been discussed in Sect. 6.3.
The Sect. 6.4 presents open research problems pertinent to this chapter.

6.2 Theoretical Background

Using (5.46b), the magneto-dispersion law, in the absence of spin, for HD III-V,
ternary and quaternary semiconductors, in the presence of photo-excitation, whose
unperturbed conduction electrons obey the three band model of Kane, is given

by [1]

1 n*k?
Tl (E7 1/]g) = ( 2>Fl(,{)() + 2mc (61)

Using (6.1), the DOS function in the present case can be expressed as

: Tm, 1 —-1/2
Ds(E.n,. ) 7g le|v/2m Z |:{T1 (E,ng, 72) {TI(E,ng,},) - <n+§)hwo} H(E — E,,)

252
2n*n n=0

(6.2)
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where E,, is the Landau sub-band energies in this case and is given as
1
T] (En”,ng,/l) = n—|—§ hwo (63)
The EEM in this case assumes the form

m* (EFHDLB7 1’]g, i) = me Real part of {Tl (EFHDLB; T]g7 )\,) }, (64)

where Eppgpyp is the Fermi energy under quantizing magnetic field in the presence of
light waves as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization. Combining (6.2) with the
Fermi-Dirac occupation probability factor and using the generalized Sommerfeld’s
lemma [1], the electron concentration can be written as

gv|2|2h2 Z M3 (Erupis, g, ) + Ni3 (Erupis; g, 2) | (6.5)
where M3 (EFHDLB, Ngs )) = Real part of [Tl (EFHDLB, Ngs /1) — (n + %)hwo] 1/2,
and N1z (ErupLs, 1y, 1) = Z L(r)M13(ErupLs, Ngs 4)-

The EP in this case is glven by

2 Mmax
dpe BkBT
TR Real part of Z Fo(61pL8) (6.6)
n=0

where 161 uprs = (kaT) ™' [Erups — (Eat1 + W — hv)].

(i) Using (5.47), the magneto-dispersion law, in the absence of spin, for HD III-
V, ternary and quaternary semiconductors, in the presence of photo-excita-
tion, whose unperturbed conduction electrons obey the two band model of
Kane, is given by

2k2

T, (E.n,) = ( 1>hw0 + (6.7)

2m,.

Using (11.62), the DOS function in the present case can be expressed as

. o) - 1 —1/2
Da(Eony. 7) 7g \ [v/2m Z {{Tz E. g, %) {Tz(Emg,l) - <n+§)hwo} H(E —E,,)

22
h n=0

(6.8)
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(i)

where E,

n, 15 the Landau sub-band energies in this case and is given as

1
T2 (Eny g, 2) = (n + 5) oy (6.9)
The EEM in this case assumes the form

m* (EFHDIBa N /1) = mc{TZ (EFHDI& N, /1) }/ (6.10)

where Epgprp is the Fermi energy under quantizing magnetic field in the
presence of light waves as measured from the edge of the conduction band in
the vertically upward direction in the absence of any quantization.
Combining (6.8) with the Fermi-Dirac occupation probability factor and
using the generalized Sommerfeld’s lemma, the electron concentration can
be written as

_ el /2
ny=-——->5—

Z (M3 (Erupis, N, 4) + Noz (Eprps, ng, 7)) (6.11)

n2h2 n=0
1/2
Where M23 (EFHDLB7 ﬂg, /1) = [Tz (EFHDLBa V]g, )) — (I’l —+ %) hCO()] / and
No3(Ertipis; g, 4) = Y. L(r)Ma3 (Ernpis, g, /).
r=1
The EP in this case is given by
2 Mmax
dpe BkBT
= oo Z Fo(Ne2upLB) (6.12)

n=0

where Ne2HDLB = (kBT)il[EFHDLB - (En12 +W-—- hV)]

Using (5.48), the magneto-dispersion law, in the absence of spin, for HD III-
V, ternary and quaternary semiconductors, in the presence of photo-excita-
tion, whose unperturbed conduction electrons obey the parabolic energy
bands, is given by

1 k2
T3(E,}’]g) = (n+§>hw0+ 5 <

(6.13)

me

Using (6.13), the DOS function in the present case can be expressed as

Fimax -1/2
D(E.n,,7) = g»-\elx/ﬂz {{73(57 ﬂg,z)}f{n(ﬂ Mg 2) — <n +%>th} H(E — E,,)

212
2nh =

(6.14)
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where E,

n, 15 the Landau sub-band energies in this case and is given as

1
T3 (E,m,l’]g,)v) = (I’l —‘ri)ha)o (615)
The EEM in this case assumes the form

m* (Ertpis, Ngs ) = me{ T3 (Epupis, Ng: 2) }/ (6.16)

where Epgprp is the Fermi energy under quantizing magnetic field in the
presence of light waves as measured from the edge of the conduction band in
the vertically upward direction in the absence of any quantization.
Combining (6.14) with the Fermi-Dirac occupation probability factor and
using the generalized Sommerfeld’s lemma, the electron concentration can
be written as

, /—2 Cnmmx A
ng = g‘e|—m Z [M33 (EFHDLB; I’Ig, }) + N33 (EFHDLBv ﬂg7 /L)] (617)
n=0

n2h?
1/2
where  M33(ErupLs, 1, 2) = [T5(Erups, Mgr A) — (n+ 1)y / and
N
N33 (ErtpL: g, 4) = > L(r)M33 (EpupLs; g, /).
r=1
The EP in this case is given by
2 Mmax
Xpe BkBT
T o ZFO<”163HDLB) (6.18)

n=0

where ngspprs = (ksT) ' [Erapis — (Enz + W — hv)].

6.3 Results and Discussion

Using the appropriate equations we have plotted the normalized magneto EP from
HD n-Hg,_4Cd,Te versus inverse quantizing magnetic field in accordance with the
perturbed three and two band models of Kane and that of perturbed parabolic energy
bands as shown in Fig. 6.1. The Figs. 6.2, 6.3 and 6.4 exhibit the variation of the
aforementioned quantity from HD n-Hg,_,Cd,Te as functions of the normalized
electron degeneracy, the normalized intensity of light and wavelength at T=4.2 K
respectively. The Figs. 6.5, 6.6, 6.7 and 6.8 represent the said variations of EP under
magnetic quantization from HD n-In,_,Ga,As,P;_, lattice matched to InP.
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It appears from Figs. 6.1 and 6.5 that the EP under magnetic quantization
oscillates with inverse quantizing magnetic field and the numerical values are
different in various cases which is the direct signature of the band structure. It may
be noted the origin of the oscillation is the same as that of SdH oscillations. From
Figs. 6.2 and 6.6, we observe that the EP oscillates with electron degeneracy,
although the nature of oscillation is different. Figures 6.3 and 6.7 exhibits the fact
that the normalized magneto EP decreases with increasing intensity and the slopes
directly reflects the influence of energy band constants.

The Figs. 6.4 and 6.8 reflect the fact that the magneto EP decreases with
increasing wavelength. Finally, we note that the form of the expression of the said
physical quantity in this case as given by (6.10)—(6.12) is generalized where the
Landau energy and the Fermi energy under magnetic field are the two band
structure dependent quantities.

6.4 Open Research Problems

Investigate the following open research problems in the presence of external photo-
excitation which changes the band structure in a fundamental way together with the
proper inclusion of the electron spin, the variation of work function and the
broadening of Landau levels respectively for appropriate problems.

(R.6.1) Investigate the multi-photon EP from all the HD materials whose
unperturbed dispersion relations are given in (R.1.1) of Chap. 1 in the
presence of arbitrarily oriented photo-excitation and quantizing magnetic
field respectively.

(R.6.2) Investigate the multi-photon EP from all the HD materials whose
unperturbed dispersion relations are given in (R.1.1) of Chap. 1 in the
presence of an arbitrarily oriented non-quantizing non-uniform electric
field, photo-excitation and quantizing magnetic field respectively.

(R.6.3) Investigate the multi-photon EP from all the HD materials whose
unperturbed dispersion relations are given in (R.1.1) of Chap. 1 in the
presence of an arbitrarily oriented non-quantizing alternating electric
field, photo-excitation and quantizing magnetic field respectively.

(R.6.4) Investigate the multi-photon EP from all the HD materials whose
unperturbed dispersion relations are given in (R.1.1) of Chap. 1 in the
presence of an arbitrarily oriented non-quantizing alternating electric
field, photo-excitation and quantizing alternating magnetic field
respectively.

(R.6.5) Investigate the multi-photon EP from all the HD materials whose
unperturbed dispersion relations are given in (R.1.1) of Chap. 1 in the
presence of an arbitrarily oriented photo-excitation and crossed electric
and quantizing magnetic fields respectively.
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(R.6.6)

(R.6.7)

(R.6.8)

(R.6.9)

(R.6.10)

(R.6.11)

(R.6.12)

(R.6.13)

(R.6.14)

(R.6.15)
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Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and quantizing magnetic field from the heavily-doped materials in the
presence of Gaussian, exponential, Kane, Halperin, Lax and Bonch-
Bruevich types of band for all materials whose unperturbed carrier energy
spectra are defined in Chap. 1.

Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and quantizing alternating magnetic field for all the cases of R.6.6.
Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and non-quantizing alternating electric field and quantizing magnetic field
for all the cases of R.6.6.

Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and non-uniform alternating electric field and quantizing magnetic field
for all the cases of R.6.6.

Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and crossed electric and quantizing magnetic fields for all the cases of
R.6.6.

Investigate the multi-photon EP from HD negative refractive index,
organic, magnetic, heavily doped, disordered and other advanced optical
materials in the presence of arbitrary oriented photo-excitation and
quantizing magnetic field.

Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, quantizing magnetic field and alternating non-quantiz-
ing electric field for all the problems of R.6.11.

Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, quantizing magnetic field and non-quantizing non-uni-
form electric field for all the problems of R.6.11.

Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, alternating quantizing magnetic field and crossed alter-
nating non-quantizing electric field for all the problems of R.6.11.
Investigate all the problems from R.6.1 to R.6.14 by removing all the
mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 7
The EP from QWs, NWs and QBs of HD
Optoelectronic Materials

7.1 Introduction

In this chapter, in Sects. 7.2.1, 7.2.2 and 7.2.3 of theoretical background, the EP from
QWs, NWs and QBs of HD optoelectronic materials has been studied, whose bulk
conduction electrons are defined by the dispersion relations as given by (5.46b),
(5.47) and (5.48) respectively. In Sect. 7.2, the EP from the afore-mentioned HD
quantum confined materials has been investigated with respect to various external
variables and Sect. 7.3 includes the result and discussions. The Sect. 7.4 presents
open research problems pertinent to this chapter.

7.2 Theoretical Background
7.2.1 The EP from HD QWs of Optoelectronic Materials

The dispersion relation of the 2D electrons in QWs of HD optoelectronic materials,
the conduction electrons of whose bulk samples are defined by the dispersion
relations as given by (5.46b), (5.47) and (5.48) can, respectively, be expressed
following (7.1) as

2m.T (E, n J) g\
K4k = g2 (= 7.1
X + y hz dz ( )
2m.T» (E n )u) ;72 :
B4k = T = 7.2
x + y hZ dz ( )
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2m.T5(Eng, 2)  (wngs\’
2 2 ) g 773
K+ k= = - < 0 > (7.3)

where n;7;(J = 1, 2, 3) is the size quantum number.
The 2D electron statistics assumes the form

17 Imax
nopr = (ﬂ;igv) Real part of Z [71(EF2pL, n71) + $72(Epapr,nan)] - (74)

n;1= 1
Meg Nz72max
napr, = <#> Z (73 (EF2pL, 1:72) + $74(Epapr, ni2)] (7.5)
nz72:1
meg Nz73max
nopL = (#) > [d95(Erapes na3) + d6(Erape, ns)] (7.6)

n;73 =1

where Eppp; is the Fermi energy in HDQWs in the presence of lightwaves as
measured from the edge of the conduction band in the vertically upward direction in
the absence of any quantization,

2m, m 2
$71(E2pF, 1) = hz Ti(Erapr, Mg: 1) — ( dﬂl) 7
Z

¢ (Epapr, ngy) = Z L(r)[¢7(EFapr, na71)],
r=1

2
TZ(EFZDL,ngv/l) - (%) )

z

[2m

$73(ErapL, ne2) = h2

$74(Er2pL, ne72) = ZL [$73(EFanL, n272)]s

2m, nn 2
¢75(ErapL, n:73) = [? T3(ErapL, fg: 1) — ( dﬂ}) ], and
Z

$76(Er2pL, 11273) ZL [$75(Er2p1, 1273)]

The velocity of the electron in the n,;th, n,th andn73th sub bands for the 2D
electron energy spectra as given by (7.1-7.3) can respectively be written as

mo\ — 1/2 T1 (Eﬂz’][ 9 ng7 ;L)
v (En) = (5) T (B0 2) "
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mo\ —12 _\/ I3 (E”z72’ ’7g7;“)_
Uy (Enm) = (7) Té (Enm7 Mg l) (7'8)

(mc>*1/2 \/ T3 (E"m’ ’7g7;“)_ (7.9)

v:(Enyy) = B T(E,,, Ngs )

where the sub-band energies E, , ,E, , and E, , are respectively defined through
the following equations

hz ;11 2
T, (Enm Uy ;”) = % ( dZ ) (7 10)
z

¢

h2 ;72 2
TZ(En;7zu’1g7)“) = <2mc>< dzz ) (711)

and

hz mn;73 2
TS(Enm,ng,z)(zm)( : ) (7.12)

The respective expressions of the photoemission are given by

oogve (M
Topy, = 208v¢ (_> Real part of
2DL nhzdz 5 P
7.13
271 max T (Enzﬂ »Ng» )») [¢ (E ) N ¢ (E )] ( )
—_— 71\LF2DL, 1771 22 (EpapL, na
T min T{ (Enm yNg» }u) 7 .
h > d;\ [ 2m. T (W —h E lﬂ
where n;7y,,, = (?) (T)[ 1( — ho, 1, )] )
Jopyy — 208v€ (@>—1/2
2DL — nhzdz >
(7.14)

T 2max T (Enzna Mg / “)

ey N [<l'>73 (EFzDL, nz72) + ¢74(EF2DLa nz72)]
i | T3 (Encns g 2)

where n;7 . > (d—) (@) \/ T,(W — hv, n,, 4) and

s
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5 Y08 (ﬂ) —12
2DL — nhzdz 2

" T3 (Enma ’7g7 2 “)
73 1in Té (Enz73 ) r’g? /1)

(7.15)

(975 (ErapL, 1:73) + G720 (Er2pr, 1z73)]

where n;73,, > (i) (@) [T5(W — hv, Nes )] 1/2.

s

7.2.2 The EP from HD NWs of Optoelectronic Materials

The dispersion relations of the 1D electrons in NWs of HD optoelectronic materials
in the presence of light waves can be expressed from (7.1-7.3) as

2m.T, (E,n,, 2 2 a1\
K2 = ‘(hz o) _ <””Z“> _<’m “> (7.16)

d, dy
k2 _ 2ch2 (E7 nga }') - ;72 2_ 72 ’ (7 17)
y 72 d, dy
k2 _ 2mCT3 (E7 ng? )“) . ;73 27 Tx73 ’ (7 18)
y 72 d, dy

where ny7;(J = 1,2,3) is the size quantum number.
The electron concentration per unit length are respectively given by

2g,v/2m,

nipL = TCReal partof
MoTlimax 1T Imax (7.19)
[077(EFipL, nirt, i) + @ag(EFipr, gt, izt )]
ng1=1 n71=1
2g,v/2m, "L "Tu (oo (EFiprL, nar2, ne72)
mipL = = Z Z (7.20)
nho 2= = g0 (EFipL, a2, non)]
2gy+/2m, "oy "o (g, (Ep1pr, na73, N73)
nipy = Ve (7.21)
mh 3=l ng3=1 +¢s2 (EripL, 3, 1273)]

where Erpy, is the Fermi energy in NWs in the presence of light waves as measured
from the edge of the conduction band in the vertically upward direction in the
absence of any quantization,
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A 12
$17(Eripr nn s nzy) =[T1 (EpipLs g, 4) — Gai(nan, na)]
12| (g’ 4 (e g
d, 4 )

Gri(nai, nzi) =5—
®28(EF1pL, 71, nz71) ZL [&77(EF1pL: 171, n1 )],

2m,

, 1
$10(EripL, ne2, nz72) =[T2(EripLy g, 4) — G2 (nirz, nza )| ﬂ’

¢so(EFipL, Ni72, 1272) ZL [¢79(EFipL, Nx72, 1272)) s

¢g1 (EFipL, 173, nz13) =[po(Eripr, A) — G73(nv737nz73)]1a and

®s2(EFipL, 1473, 11273) ZL )@s1(EripL, nx73, n73)].

The generalized expression of photo current in this case is given by

B O(oegkaT MTimax "27imax
I = B Z Z Fo(n17;) (7.22a)

ni=1 ngi=1

Eripr—(Eq+W—hv)

/ . . .
where, 15, = T and E; are the sub-band energies in this case and are

defined through the following equations
Ty (E/m Mgs i) = G71(ne1,n:1)
Tz (E/727 1’]g, /L) = G72 (nx72, I’ZZ72) (722b)

T3 (E/737 Ne> /l) = G73(ny73,n273)

Real Part of the (7.22a and 7.22b) should be used for computing the EP from
NWs of HD optoelectronic materials whose unperturbed energy band structures are
defined by the three-band model of Kane [1].

7.2.3 The EP from QB of HD Optoelectronic Materials

The dispersion relations of the electrons in QBs of HD optoelectronic materials in
the presence of light waves can respectively be expressed from (7.16-7.18) as

chTl (EQI ’ ’1g7 ;“)
h2

= Hy; (nx717ny7lvnz7l) (7.23)
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chTZ (EQ27 ﬂg» )“)
hz

=Hyp (”;:727 ny72, nz72) (7.24)

2m T (Egs,n,, 2)

P = Hy3 (.3, ny73,1273) (7.25)

2
where Eg; is the totally quantized energy and Hy;(nyi,nyi,nai) = (”(’}—7) +

TNy7; 2 TNn,7; 2
(i) ()

The electron concentration can, in general, be written as

2g, MTimax MyZimax "7imax
nopL = Z Z Z F_1(700p) (7.26)
d.d,d,

nygi=1nyi=1nz;=1

EropL—Eoi
kBT
materials in the presence of lightwaves as measured from the edge of the con-

duction band in the vertically upward direction in the absence of any quantization.
Real Part of the (7.26) should be used for computing the carrier density from QBs
of HD optoelectronic materials whose unperturbed energy band structures are
defined by the three-band model of Kane.

The photo-emitted current densities in this case are given by the following
equations

where 17;,0p = and Epgp; is the Fermi energy in QBs of HD optoelectronic

(Oﬂoegv) me -1/2
Jopr = (—) Real part of
L = g dyd, \ 2 catparto
Ny7imax My7Imax 7z71max Tl (Enz” s y,g7 }') F ( ) (7'27)
77— | F-1(N710D
ng1=1ny;1=1 n71min Ti (E”zﬂ Mg j')
I (opegy) (mc>—1/2
0DL = =
dedyd, \ 2
Ny7omax My72max Mz72max T (Enm’ y,g7 )v) . ( ) (728)
70— | f-1N720D
n=1nymy=1 n:7omin Té (E"ﬂl’ Ngs /1)
and
I _ (a0egy) (ch>—1/2
L dedyd. \ 2
(7.29)

Ny73max My73max Mz73max T3 (Enm, rlg7 }v)

Z Z Z Té(En /1) F_1(730p)

n73=1 ny73=1 Nz73min a3 Mgs
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7.3 Results and Discussion

Using the numerical values of the energy band constants the normalized EP has
been plotted from QWs of HD n-Hg;_,Cd,Te, under external photo-excitation
whose band structure follows the perturbed HD three [using (7.13) and (7.4)] and
HD two [using (7.14) and (7.5)] band models of Kane and that of the perturbed HD
parabolic [using (7.15) and (7.6)] energy bands as shown by curves (a—c) of Fig. 7.1
as functions of film thickness. The plots of the Figs. 7.2, 7.3 and 7.4 exhibit the
dependence of the normalized EP on the normalized electron degeneracy, nor-
malized intensity and wavelength respectively for all cases of Fig. 7.1. The vari-
ations of the normalized EP from QWs of HD

n-In;_,Ga,As,P,_, lattice matched to InP as functions of film thickness, nor-
malized carrier degeneracy, normalized incident light intensity and wavelength
respectively have been drawn in Figs. 7.5, 7.6, 7.7 and 7.8 for all cases of Fig. 7.1.
The dependences of the normalized EP from NWs of HD n-Hg;_,Cd,Te with
respect to film thickness, normalized carrier degeneracy, normalized light intensity
and wavelength have been drawn in Figs. 7.9, 7.10, 7.11 and 7.12 in accordance
with perturbed HD three [using (7.22a) and (7.19)] and HD two [using (7.22a) and
(7.20)] band models of Kane together with HD parabolic [using (7.22a) and (7.21)]
energy bands as shown by curves (a—c) respectively. The variations of normalized
EP from NWs of HD n-In,-,Ga,As,P;, lattice matched to InP, have been drawn in
Figs. 7.13, 7.14, 7.13 and 7.16 as functions of film thickness, normalized carrier
degeneracy, normalized incident light intensity and wavelengths respectively.
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Fig. 7.1 Plot of the normalized EP from QWs of HD n-Hg,_Cd,Te as a function of film
thickness in which the curves a—c represent the perturbed HD three and two band models of Kane
together with HD parabolic energy bands respectively
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light intensity for all cases of Fig. 7.1
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Fig. 7.5 Plot of the normalized EP from QWs of HD n-In,-,Ga,AsP,_ lattice matched to InP as
a function of film thickness in which the curves a—c represent the perturbed HD three and two band
models of Kane together with HD parabolic energy bands respectively
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Fig. 7.6 Plot of the normalized EP from QWs of HD n-In;_,Ga,As,P;_, lattice matched to InP as
a function of normalized electron degeneracy for all cases of Fig. 7.5
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Fig. 7.9 Plot of the normalized EP from NWs of HD n-Hg;_Cd,Te as a function of film
thickness in which the curves a—c represents the perturbed HD three and two band models of Kane
together with HD parabolic energy bands respectively
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Fig. 7.10 Plot of the normalized EP from NWs of HD n-Hg;_,Cd,Te as a function of normalized
electron degeneracy for all cases of Fig. 7.9
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The dependences of the normalized EP from QBs of HD n-Hg;_,Cd,Te on the
film thickness, normalized carrier degeneracy, normalized light intensity and
wavelength have been drawn in Figs. 7.17, 7.18, 7.19 and 7.20 in accordance with
perturbed HD three [using (7.27) and (7.26)] and HD two [using (7.28) and (7.26)]
band models of Kane together with HD parabolic [using (7.29) and (7.26)] energy
bands as shown by curves (a—c) respectively. The variations of normalized EP from
QBs of HD n-In;-,Ga,As,P,_, lattice matched to InP, have been drawn in
Figs. 7.21, 7.22, 7.23 and 7.24 as functions of film thickness, normalized carrier
degeneracy, normalized incident light intensity and wavelengths respectively for all
the cases of Fig. 7.17. From Figs. 7.1 and 7.5, it appears that EP from QWs of HD
optoelectronic materials decreases with increasing film thickness in oscillatory
manners. From Figs. 7.9 and 7.13, it appears that the EP from NWs of HD opto-
electronic materials increases with decreasing film thickness exhibiting trapezoidal
variation for a very small thickness bandwidth for the whole range of thicknesses
considered. The widths of the trapezoids depend on the energy band constants of
n-Hg,-Cd,Te and n-In;_,Ga,As,P;_, lattice matched to InP respectively.

From Figs. 7.17 and 7.21, we observe that the EP from HD QBs of optoelec-
tronic materials decreases with increasing film thickness exhibiting prominent
trapezoidal variation for relatively large thickness bandwidth. These three types of
variations are the special signatures of 1D confinement in HD QWs, 2D confine-
ment in HD NWs and 3D confinement in HD QBs of optoelectronic materials
respectively in the presence of light. From Figs. 7.2 and 7.6, it appears that the
normalized EP from HD QWs increases with increasing carrier degeneracy and for
relatively large values of the same variable; it exhibits quantum jumps for all types
of band models when the size quantum number changes from one fixed value to
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together with HD parabolic energy bands respectively

Normalised Photocurrent Density

10

0.1 4

0.01 14

0.001 4

0.0001

Normalized Electron Degeneracy i BT T e
03_ — 04 _ o7 08 0.9 1
(a)
dy= 15nm
d,=10 nm
d -~ 10 nm
A =610nm

Fig. 7.18 Plot of the normalized EP from HD QBs of n-Hg;_,Cd,Te as a function of normalized
electron degeneracy for all cases of Fig. 7.17



7.3 Results and Discussion 343
T
dy= 15nm
6 1. d,=10 nm
oo d_=10 nm
el W5 = (c) z
e A =610nm
5 ——
o e
w T —— -—_
3 T e e
N4
E
o
z .....
34 T D)
2 — @
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Normalized Intensity

Fig. 7.19 Plot of the normalized EP from HD QBs of n-Hg;_,Cd,Te as a function of normalized
light intensity for all cases of Fig. 7.17

0.2215

0.22145 1=

0.2214

0.22136

0.2213

0.22125

0.2212

0.22115

Normalised Photocurrent Density

02211

0.22105

0.3481

- 0.348

0.3479

- 0.3478

0.3477

- 0.3476

"1 0.3475

0.3474

0.1614

[0.16135

[ 01613

[0.16125

| 01812

[0.16115

Mormalised Photocurrent Density

Mormalised Photocurrent Density

| 0.1811

410

430

470

490

510

530

550

Wavelength ( in nm)

570

580

10

0.16105

Fig. 7.20 Plot of the normalized EP from HD QBs of n-Hg,_Cd,Te as a function of light
wavelength for all cases of Fig. 7.17



344 7 The EP from QWs, NWs and QBs of HD Optoelectronic Materials

7
d = 15nm
6 d,=10 nm
i A =610nm
\
\
o o \\
o \
b \ I\
N |
s 4 NGTERN
E O |
(=} M |
= |
2 |
e
~ [
~ s
H""‘a‘_ : ‘H“‘l
2 T
Y e [~~~
S ) ] e[ =~
1 T T T T
10 15 20 25 30

Film thickness d, (nm)

Fig. 7.21 Plot of the normalized EP from HD QBs of n-In,-,Ga,As,P,  lattice matched to InP as
a function of film thickness in which the curves a—c represent the perturbed HD three and two band
models of Kane together with HD parabolic energy bands respectively

10
Normalized Electron Degeneracy =TT

é“ 1 - : ; - — - .

‘B 0 0.1 0.2 0.3 _04-—"05 0.6 (o3 0.8 0.8 1

= —_ PR

@ - e

o o

@ 01 A e e

3 e S :

8 // (b)

o i -

= P

= 017 I.-’/"

@ IH

o f

® P

g |

5 ¥

2 0.001 §f d,=15nm
d,=10 nm
dz= 10 nm
A =610nm

0.0001

Fig. 7.22 Plot of the normalized EP from HD QBs of n-In,-,Ga,As,P, — lattice matched to InP as
a function of normalized electron degeneracy for all cases of Fig. 7.21



7.3 Results and Discussion 345

7
dy= 15nm
6 4 d,=10 nm
\ dz=1ﬂ nm
\\ A=610nm
5 o
~
.

Normalized EP
-9
|
|
|
|

. (b)

1 T T T T T T T T T
0.01 0.1 0.21 0.31 0.41 0.51 0.61 0.7 0.81 0.91 1.01

Normalized Intensity

Fig. 7.23 Plot of the normalized EP from HD QBs of n-In,_,Ga,As,P,, lattice matched to InP as
a function of normalized light intensity for all cases of Fig. 7.21

0.041135

025312 012656
dy: 15nm
d,=10nm {0.2531 A
- 3
% i d_=10 nm p= 2
c o @
@ E =
(=1 a 8
= [ORE o Toazess o
2 0041125 o 5
5 : E
= 3 3
2 [026306 2 Toazess O
2 2 B
o S =
o 00412 o
@ B °
2 [025304 o [0.12652 i
T S =
[
£ £ E
2 ooattis N S
F 025302 F0.12651 =
(b) 3
0253
0.04111 : v ’ . . y : : ’ 04258

410 430 450 40 490 510 530 550 570 590 610
Wavelength (in nm})

Fig. 7.24 Plot of the normalized EP from HD QBs of n-In,_,Ga,As,P,_, lattice matched to InP as
a function of light wavelength for all cases of Fig. 7.21



346 7 The EP from QWs, NWs and QBs of HD Optoelectronic Materials

another. The Figs. 7.10 and 7.14 show respectively that the normalized EP in HD
NWs of optoelectronic materials increases with increasing normalized electron
degeneracy.

The Figs. 7.18 and 7.22 demonstrate that the EP from HD QBs of optoelectronic
materials increases with increasing electron degeneracy again in a different oscil-
latory manner. From Figs. 7.3, 7.7, 7.11, 7.15, 7.19 and 7.23, it appears that the EP
increases with decreasing intensity for all types of quantum confinement. From
Figs. 7.4, 7.8, 7.12, 7.16, 7.20 and 7.24, we can conclude that the normalized EP
decreases with increasing wavelength for HD QWs, NWs and QBs of optoelec-
tronic materials. Finally, it is apparent from all the figures that the EP from quantum
confined HD ternary materials is larger as compared with the quantum confined HD
quaternary compounds for all types of quantum confinement.

7.4 Open Research Problems

Investigate the following open research problems in the presence of external photo-
excitation which changes the band structure in a fundamental way together with the
proper inclusion of the electron spin, the variation of work function and the
broadening of Landau levels respectively for appropriate problems.

(R.7.1) Investigate the multi-photon EP from all the quantum confined HD
materials (i.e., HD multiple QWs, NWs and QBs) whose unperturbed
carrier energy spectra are defined in (R.1.1) of Chap. 1 in the presence of
arbitrary oriented photo-excitation and quantizing magnetic field
respectively.

(R.7.2) Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation and alternating quantizing magnetic field respectively
for all the problems of R.7.1.

(R.7.3) Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, alternating quantizing magnetic field and an additional
arbitrary oriented non-quantizing non-uniform electric field respectively
for all the problems of R.7.1.

(R.7.4) Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, alternating quantizing magnetic field and additional
arbitrary oriented non-quantizing alternating electric field respectively
for all the problems of R.7.1.

(R.7.5) Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, and crossed quantizing magnetic and electric fields
respectively for all the problems of R.7.1.

(R.7.6) Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and quantizing magnetic field from the entire quantum confined heavily-
doped materials in the presence of exponential, Kane, Halperin, Lax and
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(R.7.7)

(R.7.8)

(R.7.9)

(R.7.10)

(R.7.11)

R.7.12)

(R.7.13)

(R.7.14)

(R.7.15)
(R.7.16)
(R.7.17)

(R.7.18)

(R.7.19)

(R.7.20)

(R.7.21)

Bonch-Bruevich types of band tails for all materials whose unperturbed
carrier energy spectra are defined in (R.1.1) of Chap. 1.

Investigate the multi-photon EP for arbitrarily oriented photo-excitation
and alternating quantizing magnetic field for all the cases of R.7.6.
Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation, alternating quantizing magnetic field and an additional
arbitrarily oriented non-quantizing non-uniform electric field for all the
cases of R.7.6.

Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, alternating quantizing magnetic field and additional
arbitrary oriented non-quantizing alternating electric field respectively
for all the cases of R.7.6.

Investigate the multi-photon EP in the presence of arbitrary oriented
photo-excitation, and crossed quantizing magnetic and electric fields
respectively for all the cases of R.7.6.

Investigate the multi-photon EP for all the appropriate problems from
R.7.1 to R.7.10 in the presence of finite potential wells.

Investigate the multi-photon EP for all the appropriate HD problems
from R.7.1 to R.7.10 in the presence of parabolic potential wellsPoten-
tial well.

Investigate the multi-photon EP for all the above appropriate HD
problems for quantum rings.

Investigate the multi-photon EP for all the above appropriate HD
problems in the presence of elliptical Hill and quantum square rings
respectively.

Investigate the multi-photon EP from HD nanotubes in the presence of
arbitrary photo-excitation.

Investigate the multi-photon EP from HD nanotubes in the presence of
arbitrary photo-excitation and non-quantizing alternating electric field.
Investigate the multi-photon EP from HD nanotubes in the presence of
arbitrary photo-excitation and non-quantizing alternating magnetic field.
Investigate the multi-photon EP from HD nanotubes in the presence of
arbitrary photo-excitation and crossed electric and quantizing magnetic
fields.

Investigate the multi-photon EP from HD semiconductor nanotubes in
the presence of arbitrary photo-excitation for all the materials whose
unperturbed carrier dispersion laws are defined in (R.1.1) of Chap. 1.
Investigate the multi-photon EP from HD semiconductor nanotubes in
the presence of non-quantizing alternating electric field and arbitrary
photo-excitation for all the materials whose unperturbed carrier
dispersion laws are defined in (R.1.1) of Chap. 1.

Investigate the multi-photon EP from HD semiconductor nanotubes in
the presence of non-quantizing alternating magnetic field and arbitrary
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(R.7.22)

(R.7.23)

(R.7.24)

(R.7.25)

(R.7.26)

(R.7.27)

(R.7.28)

(R.7.29)

(R.7.30)

(R.7.31)

(R.7.32)
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photo-excitation for all the materials whose unperturbed carrier
dispersion laws are defined in (R.1.1) of Chap. 1.

Investigate the multi-photon EP from HD semiconductor nanotubes in
the presence of arbitrary photo-excitation and non-uniform electric field
for all the materials whose unperturbed carrier dispersion laws are
defined in (R.1.1) of Chap. 1.

Investigate the multi-photon EP from HD semiconductor nanotubes in
the presence of arbitrary photo-excitation and alternating quantizing
magnetic fields for all the materials whose unperturbed carrier
dispersion laws are defined in (R.1.1) of Chap. 1.

Investigate the multi-photon EP from HD semiconductor nanotubes in
the presence of arbitrary photo-excitation and crossed electric and
quantizing magnetic fields for all the materials whose unperturbed
carrier dispersion laws are defined in (R.1.1) of Chap. 1.

Investigate the multi-photon EP in the presence of arbitrary photo-
excitation for all the appropriate HD nipi structures of the materials whose
unperturbed carrier energy spectra are defined in (R.1.1) of Chap. 1.
Investigate the multi-photon EP in the presence of arbitrary photo-
excitation for all the appropriate HD nipi structures of the materials
whose unperturbed carrier energy spectra are defined in (R.1.1) of
Chap. 1 in the presence of an arbitrarily oriented non-quantizing non-
uniform additional electric field.

Investigate the multi-photon EP for all the appropriate HD nipi structures
of the materials whose unperturbed carrier energy spectra are defined in
(R.1.1) of Chap. 1 in the presence of an arbitrarily oriented photo-exci-
tation and non-quantizing alternating additional magnetic field.
Investigate the multi-photon EP for all the appropriate HD nipi structures
of the materials whose unperturbed carrier energy spectra are defined in
(R.1.1) of Chap. 1 in the presence of an arbitrarily oriented photo-exci-
tation and quantizing alternating additional magnetic field.

Investigate the multi-photon EP for all the appropriate HD nipi structures
of the materials whose unperturbed carrier energy spectra are defined in
(R.1.1) of Chap. 1 in the presence of an arbitrarily oriented photo-exci-
tation and crossed electric and quantizing magnetic fields.

Investigate the multi-photon EP from HD nipi structures for all the
appropriate cases of all the above problems.

Investigate the multi-photon EP in the presence of arbitrary photo-
excitation for the appropriate accumulation layers of all the materials
whose unperturbed carrier energy spectra are defined in (R.1.1) of Chap. 1.
Investigate the multi-photon EP in the presence of arbitrary photo-
excitation for the appropriate accumulation layers of all the materials
whose unperturbed carrier energy spectra are defined in (R.1.1) of
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(R.7.33)

(R.7.34)

(R.7.35)

(R.7.37)

(R.7.38)

(R.7.39)

(R.7.40)

(R.7.41)

(R.7.42)

(R.7.43)

Chap. 1 in the presence of an arbitrarily oriented non-quantizing non-
uniform additional electric field.

Investigate the multi-photon EP for the appropriate accumulation layers
of all the materials whose unperturbed carrier energy spectra are defined
in (R.1.1) of Chap. 1 in the presence of an arbitrarily oriented photo-
excitation and non-quantizing alternating additional magnetic field.
Investigate the multi-photon EPfor the appropriate accumulation layers
of all the materials whose unperturbed carrier energy spectra are defined
in (R.1.1) of Chap. 1 in the presence of an arbitrarily oriented photo-
excitation and quantizing alternating additional magnetic field.
Investigate the multi-photon EP for the appropriate accumulation layers
of all the materials whose unperturbed carrier energy spectra are defined
in (R.1.1) of Chap. 1 in the presence of an arbitrarily oriented photo-
excitation and crossed electric and quantizing magnetic fields by con-
sidering electron spin and broadening of Landau levels.

Investigate the multi-photon EP in the presence of arbitrary photo-
excitation from wedge shaped and cylindrical HD QBs of all the
materials whose unperturbed carrier energy spectra are defined in
(R.1.1) of Chap. 1.

Investigate the multi-photon EP in the presence of arbitrary photo-
excitation from wedge shaped and cylindrical HD QBs of all the
materials whose unperturbed carrier energy spectra are defined in
(R.1.1) of Chap. 1 in the presence of an arbitrarily oriented non-quan-
tizing non-uniform additional electric field.

Investigate the multi-photon EP from wedge shaped and cylindrical HD
QBs of all the materials whose unperturbed carrier energy spectra are
defined in (R.1.1) of Chap. 1 in the presence of an arbitrarily oriented
photo-excitation and non-quantizing alternating additional magnetic
field.

Investigate the multi-photon EP from wedge shaped and cylindrical HD
QBs of all the materials whose unperturbed carrier energy spectra are
defined in (R.1.1) of Chap. 1 in the presence of an arbitrarily oriented
photo-excitation and quantizing alternating additional magnetic field.
Investigate the multi-photon EP from wedge shaped and cylindrical HD
QBs of all the materials whose unperturbed carrier energy spectra are
defined in (R.1.1) of Chap. 1 in the presence of an arbitrarily oriented
photo-excitation and crossed electric and quantizing magnetic fields.
Investigate the multi-photon EP from wedge shaped and cylindrical HD
QBs for all the appropriate cases of the above problems.

Investigate all the problems from R.7.1 to R.7.42 by removing all the
mathematical approximations and establishing the respective appropri-
ate uniqueness conditions.
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Chapter 8
The EP from HD Effective Mass Super
Lattices of Optoelectronic Materials

8.1 Introduction

In Chap. 4, the photoemission has been studied from SLs having various band
structures assuming that the band structures of the constituent materials are invariant
quantities in the presence of external photo-excitation. In this chapter, this assump-
tion has been removed and in Sect. 8.2.1, an attempt is made to study the magneto
EP from HD effective mass QWSL of optoelectronic materials. In Sect. 8.2.2, the
photoemission from HD effective mass NW SLs of optoelectronic materials has been
investigated and in Sect. 8.2.3, the EP from HD effective mass QB SLs of opto-
electronic materials has been studied. The Sect. 8.2.4 explores the magneto EP from
HD effective mass SLs of optoelectronic materials. The Sects. 8.3 and 8.4 contain
respectively the result and discussions and open research problems pertinent to this
chapter.

8.2 Theoretical Background

8.2.1 The Magneto EP from HD QWs Effective Mass Super
Lattices

The electron dispersion law in III-V effective mass super lattices can be written
as [1]

L 2
k= [E [cos™ {fup1 (E, A, 0y, ky, k) })* — k7] (8.1)
0
© Springer International Publishing Switzerland 2015 351

K.P. Ghatak, Einstein’s Photoemission, Springer Tracts in Modern Physics 262,
DOI 10.1007/978-3-319-11188-9_8


http://dx.doi.org/10.1007/978-3-319-11188-9_4

352 8 The EP from HD Effective Mass Super Lattices ...
where

Jup1 (E, 4,1, ky, kz) = [[@apcos|aoCiup(E, gy, A ki) 4+ boDiup(E Mgy, A kL )]
— [@mpcos|aoCiap (E, g1, 2, k1) — boDiup(E, Mg, 2, k)]l

leHD _ mc2T{ (07 j’a 77g2) 2 .14 mCZT{ (07 ;“7 1182>]71
mclT{ (07 j,’ ngl) mClT{( 7;“7'1g1> ’

dop = [ chTi (Oa }w 77g2) o 1]2 ) [4 chT{( 7;“711g2)]—1
me1 T{ (Oa }w ngl) meq T{( ) ;“7 '/Igl) 7

_ . 2mq _
Ciup(E g1, A kL) = [7 T\(E Ny, 4) — K2)'? and  Dyppl(E, Nets k1)

2mc2

= [7 Tl (E7 ngZ’ )“) - ki]l/z

In the presence of a quantizing magneticfield B along k, direction, the magneto

electron energy spectrum can be written as

ki = @up(E, ng, 2, n) (8.2)

X

where @pp (E, 1, 2,n) = 35 [cos™ {fip1 (E. 2 g, m)}]* = %2 (n +3)],

Jup1(E, 2,1, n) = [[@1apcos|aoCiap(E, g1, A1) + boDiup (E, g, 2,n)]]

— [aanpcos[aoCiup(E, Mgy, 4,n) — boDiup(E, 1y, A, n)]]],

_ 2m, 2eB 1
ClHD(Ea Hgl,}v, I’l) = [ h21 T1 (E, ngh;“) - 7(7’1 +§)]1/2 and
_ 2m, 2eB 1
DlHD(E7 11g1, ﬂv, I’l) = [ h22 Tl (E, ng27 ;L) — 7 (I’l + 5)]1/2

The total energy erp; in this case can be expressed as

n,m .
(d—x)z = Opp(ero1; Mg, 4, 1) (8.3)

The Z part of the energy Ezp; in this case can be written as

N, T
( d

X

)Lo = cos ™ [fup1 (Ezo1, 4,14, 0)] (8.4)

where



8.2 Theoretical Background 353

fup1 (Ezg1, 2, 1¢,0)] = [[a1apcosaoCiap (Ezgr, g1, 4,0) 4+ boD1ap(Ezo1, Hga, £, 0)]]

— [@aupcoslaoCiap(Ezor, M1 4,0) — boDiap(Ezo1 ;s g 4, 0)]]],
_ 2myy 172 _
Ciup(Ezo1, g1, 4,0) = 771 (Ezo1,Mg15 4) and  Digp(Ezo1, M1, 4,0)

21’}’162

—5 T1(Ezg1, 2 DIk

:[h

The electron concentration is given by
Mmax  max

g.eB
Vh Real part of ZZFA(’ISSU) (8.5)

T n=0 n=1

ngp =

where ng,; = (ksT) ™' [Err — Erg1] and Egr is the Fermi energy in this case.
The EP can be written as

g\,echxo Mmax Mxmax
= Real part of Z Z F_y(ngsp1)vz(Ezo1) (8.6)

n=0 Ry in

Lo/ 1-12. (Ezo1,2,1,,0
where v,(Ezg) = = Jupn (E701.:1:.0)

i1 (Ezo1,251,,0)

J

8.2.2 The EP from HD NW Effective Mass Super Lattices

The dispersion relation in this case is given by
2L 2
ke = [ leos™ {fup1 (B, 2, g, my, n2) }]” — Gasi (8.7)
0
where
Jup1(E, 2, ng,ny,n;) = [[@iapcos|aoCiap (E, gy, 4y, nz) + boDiap(E, 9, 4,0y, )]
- [azHDCOS[a()ElHD(E7 ng] ) /17 ny7 nZ) - bOEIHD (E7 ng27 )”a n)” nZ)]”a
2m, n,m
[h_lel (E\ g1, 2) — Gssi]'?, Gss1 = [(2=)" + (7)2] and
Z

_ 2my
DlHD(E7 ;/,817 }"7’1}'7”1) = [ hzz Tl (E7 ng27 ;") - G881}1/2

nym

dy

CIHD(E7 ’1g17 }w I’L),-7 ”Z)

The sub-band energy Egs3; is given by
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1 ,
0= [ﬁ [cos™ {fupi1 (Esst, s Hg 1y, 1) }]> — Gisi] (8.8)
0

The (8.7) can be written as

kx = [A(Ea/langanwnz)] (89)

where A(E7 /17 ’7g7 ”yv nZ) = [i [Cosil{fHDl (Ea j‘a ’7g7 n}'a nz)}]2 - Ggsl]l/z

The electron concentration is given by

Mymax Mzmax

2gy
Real part of A(Erg1, A1, ny, 0
- eal parto ;’;[ (FSI Hgs My z) (8.10)

+ Al (EFgl ) /la 7]g7 ny, nZ)]

ng =

where A (Epsi, 4,1, ny,nz) = > _1_ L(r)[A(EFsi, 4, g, ny,n;)] and Epg; is the
Fermi energy in this case
The EP can be written as

Mymax 1

) Real part of Z Z Fo(YsLap1) (8.11)

ny=1n,=1

Zmax

Otog‘,ekBT
lLiup = (T

where Yszupr = [Ersi — (Essi + W — hv)] (kgT) .

8.2.3 The EP from HD QB Effective Mass Super Lattices

The totally quantized energy Erqgsrgs in this case is given by

Ny

dx

1 ,
)? = [ [cos™ {fup1 (Erosiss, 4: Mgy, 1) }]> — G (8.12)

(
L3

The electron concentration in this case is given by

Real part of i i iajF_l(nnHD) (8.13)

n=1ny=1n,=1

2g,
d.dyd,

Nop =

-1 . .
where N32up = (kBT) [EFQDSLEMHD — ETQSL88} and EFQDSLEMHD is the Fermi
energy in this case.

The EP in this case can be expressed as
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Mxmax ymax Mzmax

Realpartof » > "> " F_1(nsup)vz(Ezo1). (8.14)

ny=1n,=1

doegy
dyd,d,

J =

Mmin

8.2.4 The Magneto EP from HD Effective Mass Super
Lattices

The (8.2) can be written as
A3(E, ng, A,n) = ki (8.15)
where
A3(E,ng, 2,n) = [opp(E, ng,i,n)]l/z
The Landau sub-band energy Esspp in this case can be expressed as
A3(E33up; Mg, 4,) = 0 (8.16)
The electron concentration is given by

Mymax

Real part of Z (A3 (EEBsLEMED s g5 /5 1)
n=0

g.eB
no =
0T 22

(8.17)
+ A4 (EpBSLEMED Ngs 7> 11)]

where Ad(ErpsLemup, Mg, 2> 1) = 31—y L(r)[As(Eppsiemmp; g, A1) and
Erpsiemup 18 the Fermi energy in this case.
The EP assumes the form

2 Mmax
14 BkBT
T ) Real part of ZOFO(WOIHD) (8.18)

Jur = (
where 170,p = (ksT) ' [Erscemup — (Essup + W — ).

8.3 Results and Discussion

Using the appropriate equations the normalized EP from QW HgTe/Hg;_,Cd,Te HD
effective mass SL has been plotted as a function of inverse quantizing magnetic field
as shown in plot (a) of Fig. 8.1 whose constituent materials obey the perturbed HD
three band model of Kane in the presence of external photo-excitation. The curves (b)
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Fig. 8.1 Plot of the normalized EP from HD QW effective mass superlattices of HgTe/Hg;
—xCd,Te as a function of inverse magnetic field in which the curves a, b and ¢ represent the
perturbed HD three and two band models of Kane together with HD parabolic energy bands
respectively. The curves d, e and f exhibit the corresponding plots of HD In,Ga;_,As/InPSL

and (c) of the same figure have been drawn for perturbed HD two band model of Kane
and that of perturbed HD parabolic energy bands respectively. The curves (d), (e) and
(f) in the same figure exhibit the corresponding plots of QW In,Ga;_,As/InP effective
mass HD SL. The Figs. 8.2, 8.3, 8.4 and 8.5 show the variations of the normalized EP
from the said HD SLs as functions of normalized electron degeneracy, normalized
intensity, wavelength and thickness respectively for all the cases of Fig. 8.1. Using
the appropriate equations, the normalized EP from NW HD effective mass HgTe/Hg,
—xCd,Te SL as a function of film thickness has been depicted in plot (a) of Fig. 8.6
whose constituent materials obey the perturbed HD three band model of Kane in the
presence of external light waves. The curves (b) and (c) of the same figure have been
drawn for perturbed HD two band model of Kane and perturbed HD parabolic energy
bands respectively. The curves (d), (¢) and (f) in the same figure exhibit the corre-
sponding plots of In,Ga,_;As/InP NW HD effective mass SL. The Figs. 8.7 8.8, 8.9
and 8.10 exhibit the plots of the normalized EP as functions of normalized carrier
concentration, normalized intensity, wavelength and normalized incident photon
energy respectively for all the cases of Fig. 8.6.

Using appropriate equations, the normalized EP from HgTe/Hg,_Cd,Te and
In,Ga;_ As/InP effective mass QB HD SLs respectively has been plotted for all
types of band models as a function of film thickness as shown in Fig. 8.11.
Figures 8.12, 8.13, 8.14 and 8.15 exhibit the plots of normalized EP from the said
QB HD SLs as functions of normalized electron degeneracy, normalized intensity,
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Fig. 8.2 Plot of the normalized EP from QW HD effective mass superlattices of HgTe/Hg;_,Cd,Te
and InGa;_xAs/InP as a function of normalized electron degeneracy for all cases of Fig. 8.1
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Fig. 8.3 Plot of the normalized EP from QW HD effective mass superlattices of HgTe/Hg;_,Cd,Te
and In,Ga;_4As/InP as a function of normalized light intensity for all cases of Fig. 8.1
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Fig. 8.4 Plot of the normalized EP from QW HD effective mass superlattices of HgTe/Hg;_,Cd,Te
and In,Ga;_4As/InP as a function of light wavelength for all cases of Fig. 8.1
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Fig. 8.5 Plot of the normalized EP from QW HD effective mass superlattices of HD
HgTe/Hg,_«Cd,Te as a function of film thickness in which the curves a, b and ¢ represent the
perturbed three and two band models of Kane together with HD parabolic energy bands
respectively. The curves d, e and f exhibit the corresponding plots of InyGa,_ As/InP HDSL
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Fig. 8.6 Plot of the normalized EP from NW HD effective mass superlattices of HgTe/Hg, _Cd,Te
and In,Ga;_4As/InP as function of film thickness for all cases of Fig. 8.5
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Fig. 8.7 Plot of the normalized EP from NW HD effective mass superlattices of HgTe/Hg;,Cd,Te

and In,Ga;_4As/InP as function of normalized electron degeneracy for all cases of Fig. 8.5
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Fig. 8.8 Plot of the normalized EP from NW HD effective mass superlattices of HgTe/Hg,_,Cd,Te
and In,Ga;_4As/InP as function of normalized light intensity for all cases of Fig. 8.5
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Fig. 8.9 Plot of the normalized EP from NW HD effective mass superlattices of HgTe/Hg;_,Cd,Te
and InyGa,_4As/InP as function of light wavelength for all cases of Fig. 8.5
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Fig. 8.10 Plot of the normalized EP as function of normalized incident photon energy from NW
HD effective mass superlattices of HgTe/Hg;—,Cd,Te and In,Ga;_,As/InP for all cases of Fig. 8.5
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Fig. 8.11 Plot of the normalized EP from QB HD effective mass superlattices of
HgTe/Hg_Cd,Te as function of film thickness in which the curves @, b and ¢ represent the
perturbed HD three and two band models of Kane together with HD parabolic energy bands
respectively. The curves d, e and f exhibit the corresponding plots of In,Ga;_,As/InP
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Fig. 8.12 Plot of the normalized EP from QB HD effective mass superlattices of HgTe/Hg,,Cd,Te
and In,Ga,_,As/InP as function of normalized electron degeneracy for all cases of Fig. 8.11
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Fig. 8.13 Plot of the normalized EP from QB HD effective mass superlattices of HgTe/Hg;_,CdxTe
and In,Ga;_,As/InP as function of normalized light intensity for all cases of Fig. 8.11
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Fig. 8.14 Plot of the normalized EP from QB HD effective mass superlattices of HgTe/Hg, ,Cd,Te
and In,Ga;_4As/InP as function of light wavelength for all cases of Fig. 8.11
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Fig. 8.15 Plot of the normalized EP from QB HD effective mass superlattices of HgTe/Hg,_Cd,Te
and In,Ga,_xAs/InP as function of normalized incident photon energy for all cases of Fig. 8.11
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wavelength and normalized incident photon energy respectively for all cases of
Fig. 8.11. Using appropriate equations, the normalized EP from effective mass
HgTe/Hg,_Cd,Te HD SL under magnetic quantization has been plotted as a
function of quantizing inverse magnetic field as shown in plot (a) of Fig. 8.16
whose constituent HD materials obey the perturbed HD three band model of Kane
in the presence of external photo-excitation. The curves (b) and (c) of the same
figure have been drawn for perturbed HD two band model of Kane and perturbed
HD parabolic energy bands respectively. The curves (d), (¢) and (f) in the same
figure exhibit the corresponding plots of In,Ga;_xAs/InP HD SL. Figures 8.17,
8.18, 8.19 and 8.20 exhibit the said variation in this case as functions of normalized
electron degeneracy, normalized intensity, wavelength and normalized incident
photon energy respectively for all the cases of Fig. 8.16.

It appears from Fig. 8.1 that the normalized EP from QW effective mass HgTe/Hg,
—xCd,Te and In,Ga;_,As/InP HD SLs oscillate with the inverse quantizing magnetic
field due to SdH effect where the oscillatory amplitudes and the numerical values are
determined by the respective energy band constants. From Fig. 8.2, it appears that the
EP increases with increasing carrier concentration in an oscillatory way. The Figs. 8.3
and 8.4 show that the EP decreases with increasing intensity and wavelength in
different manners. From Fig. 8.5, it appears that the normalized EP from QW effective
mass HgTe/Hg,_Cd,Te and In,Ga;_,As/InP HD SLs decreases with increasing film

Wavelength : 610nm

° W\/\/\/W\/\/\J\C/JVWVWWMA/\W\/WWV\
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Fig. 8.16 Plot of the normalized EP from HD effective mass superlattices of HgTe/Hg, Cd,Te
as function of inverse magnetic field and in which the curves a, b and ¢ represent the perturbed
three and two band models of Kane together with parabolic energy bands respectively. The curves
d, e and f exhibit the corresponding plots of In,Ga;_,As/InP
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Fig. 8.17 Plot of the normalized magneto EP from HD effective mass superlattices of
HgTe/Hg;Cd,Te and In,Ga,_4As/InP as function of normalized electron degeneracy for all
cases of Fig. 8.16

Wavelength : 610nm
Magnetic Field : 5 tesla

Normalized EP

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Normalized Intensity

Fig. 8.18 Plot of the normalized magneto EP from HD effective mass superlattices of
HgTe/HgCd,Te and In,Ga;_,As/InP as function of normalized light intensity for all cases of
Fig. 8.16
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Fig. 8.19 Plot of the normalized magneto EP from HD effective mass superlattices of
HgTe/Hg,_Cd,Te and In,Ga;_4As/InP as function of light wavelength for all cases of Fig. 8.16
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Fig. 8.20 Plot of the normalized magneto EP from HD effective mass superlattices of
HgTe/HgCd,Te and In,Ga,_,As/InP as function of normalized incident photon energy for all
cases of Fig. 8.16
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thickness in oscillatory manner with different numerical values as specified by the
energy band constants of the aforementioned HD SLs. From Fig. 8.6, it appears that
the normalized EP from NW effective mass HgTe/Hg,—,Cd,Te and In,Ga;_ As/InP
HD SLs increases with decreasing thickness and exhibit large oscillations. From
Fig. 8.7, it appears that normalized EP for the said system increases with increasing
carrier concentration, exhibiting a quantum jump for a particular value of the said
variable for all the models of both the HD SLs. From Figs. 8.8 and 8.9, it can be
inferred that the normalized EP in this case increases with decreasing intensity and
wavelength in different manners. From Fig. 8.10, it has been observed that the nor-
malized EP from NW effective mass HgTe/Hg;—,Cd,Te and In,Ga;_,As/InP HD SLs
increases with increasing normalized incident photon energy and exhibits quantum
steps for specific values of the said variable.

From Fig. 8.11, it appears that EP from QB effective mass HgTe/Hg,_,Cd,Te and
In,Ga;_ As/InP HD SLs exhibit the same type of variations as given in Figs. 8.5
and 8.6 respectively although the physics of QB effective mass HD SLs is com-
pletely different as compared with the magneto QW effective mass HD SLs and NW
effective mass HD SLs respectively. The different physical phenomena in the former
one as compared with the latter two cases yield different numerical values of EP and
different thicknesses for exhibiting quantum jump respectively. From Figs. 8.12,
8.13 and 8.14, it appears that EP from QB effective mass HgTe/Hg;_,Cd,Te and
InyGa,_ As/InP HD SLs increases with increasing carrier concentration, decreasing
intensity and decreasing wavelength respectively in various manners. Figure 8.15
demonstrates the fact that the EP from QB effective mass HgTe/Hg,_,Cd,Te and
InyGa;_4As/InP HD SLs exhibit quantum steps with increasing photon energy for
both the cases.

Figure 8.16 exhibits the fact that the normalized EP current density from
effective mass HgTe/Hg,_,Cd,Te and In,Ga;_xAs/InP HD SLs oscillates with
inverse quantizing magnetic field. Figure 8.17 exhibits the fact that the EP in this
case increases with increasing carrier concentration. Figures 8.18 and 8.19 dem-
onstrate that EP decreases with increasing intensity and wavelength in different
manners. Finally, from Fig. 8.20, it can be inferred that EP exhibits step functional
dependence with increasing photon energy for both the HD SLs in this case with
different numerical magnitudes.

8.4 Open Research Problems

Investigate the following open research problems in the presence of external photo-
excitation which changes the band structure in a fundamental way together with the
proper inclusion of the electron spin, the variation of work function and the
broadening of Landau levels respectively for appropriate problems.
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Investigate the EP from quantum confined HD III-V, II-VI, IV-VI,
HgTe/CdTe effective mass superlattices together with short period,
strained layer, random, Fibonacci, polytype and sawtooth superlattices in
the presence of arbitrarily oriented photo-excitation and strain.
Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and quantizing magnetic field respectively for all the
cases of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and non-quantizing non-uniform electric field respec-
tively for all the cases of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and non-quantizing alternating electric field respec-
tively for all the cases of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and crossed electric and quantizing magnetic fields
respectively for all the cases of R.8.1.

Investigate the multi-photon EP from heavily doped quantum confined
superlattices for all the problems of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and quantizing magnetic field respectively for all the
cases of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and non-quantizing non-uniform electric field respec-
tively for all the cases of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and non-quantizing alternating electric field respec-
tively for all the cases of R.8.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and crossed electric and quantizing magnetic fields
respectively for all the cases of R.8.1.

Investigate the EP from quantum confined HD III-V, II-VI, IV-VI,
HgTe/CdTe superlatticesQuantum confined HD III-V, II-VI, IV-VI,
HgTe/CdTe superlattices with graded interfaces together with short
period, strained layer, random, Fibonacci, polytype and sawtooth su-
perlattices in this context in the presence of arbitrarily oriented photo-
excitation.

Investigate the multi-photon EP from heavily doped quantum confined
superlattices for all the problems of R.8.11 in the presence non-uniform
strain.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and quantizing magnetic field respectively for all the
cases of R.8.11.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and non-quantizing non-uniform electric field respec-
tively for all the cases of R.8.11.
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(R.8.15) Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and non-quantizing alternating electric field respec-
tively for all the cases of R.8.11.

(R.8.16) Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and crossed electric and quantizing magnetic fields
respectively for all the cases of R.8.11.

(R.8.17) Investigate all the problems from R.8.1 to R.8.16 by removing all the
mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 9
Few Related Applications and Brief
Review of Experimental Results

9.1 Introduction

In this book we have discussed many aspects of EP based on the dispersion rela-
tions of different technologically important HDS and their nanostructures. In this
chapter we discuss regarding few applications of the content of this book in the
Sect. 9.2. We shall also present the brief review of the experimental results in
Sect. 9.3. The Sect. 9.4 contains single deep open research problem.

9.2 Different Related Applications

The content of this book finds six applications in the field of materials science and
related disciplines in general.

I. Carrier contribution to the elastic constants: The knowledge of the carrier
contribution to the elastic constants is important in studying the mechanical
properties of the materials and has been investigated in the literature [1-23].
The electronic contribution to the second and third order elastic constants for
HDS can be written as [1-23]

G2 61’!0
ACy = — -2 Real part of ————— 9.1
“ 9 P O(Er, — &) -1
and
G3 62n0
ACys6 = =2 Real part of —————— | (9.2)
27 a(EFh - Ci)z
where G, is the deformation potential constant.
© Springer International Publishing Switzerland 2015 371

K.P. Ghatak, Einstein’s Photoemission, Springer Tracts in Modern Physics 262,
DOI 10.1007/978-3-319-11188-9_9



372

IL.

9 Few Related Applications and Brief Review ...

It is well-known that the thermoelectric power of the carriers in HDS in the
presence of a classically large magnetic field is independent of scattering
mechanisms and is determined only by their energy band spectra [24-54]. The
magnitude of the thermoelectric power G can be written as [24-54]

_ M;Tno 7 (E - Ex,)R(E) [— %] dE (9:3)

where R(E) is the total number of states. The (9.3) can be written under the
condition of carrier degeneracy [24—54] as

k3T ong
G= B~ ) Real part of (=—— 9.4
ey R Pt o, ) o4
Thus, using (9.1), (9.2) and (9.4), we can write
ACy = [—n9Gjle|G/ (3n°kzT)] (9.5)
and
32 413 ng 0G

Thus, again the experimental graph of G versus n allows us to determine the
electronic contribution to the elastic constants for materials having arbitrary
spectra.

Measurement of Band-gap of HDS in the presence of Light Waves: With the
advent of nano-photonics, there has been considerable interest in studying the
optical processes in semiconductors and their nanostructures in the presence of
intense light waves [55-63]. It appears from the literature, that the investi-
gations in the presence of external intense photo-excitation have been carried
out on the assumption that the carrier energy spectra are invariant quantities
under strong external light waves, which is not fundamentally true. The
physical properties of semiconductors in the presence of strong light waves
which alter the basic dispersion relations have relatively been much less
investigated in [64] as compared with the cases of other external fields needed
for the characterization of the low dimensional semiconductors.

With the radical change in the dispersion relation, it is evident that the band gap
will also change and in this section we study the normalized incremental band
gap (AE,) of HDS as functions of incident light intensity and the wave length
respectively in the presence of strong light excitation.

Using the (5.46b)—(5.48), the normalized incremental band gap (AE,) has been
plotted as a function of normalized I, (for a given wavelength and considering
red light for which 4 =660 nm) at 7 = 4.2 K in Figs. 9.1 and 9.2 for HD
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Fig. 9.1 Plots of the normalized incremental band gap (AEQ) for HD n-Hg;_,Cd,Te as a function
of normalized light intensity in which the curves a and b represent the perturbed HD three and two
band models of Kane respectively. The curve ¢ represents the same variation in HD n-Hg,_,Cd,Te
in accordance with the perturbed parabolic energy bands
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Fig. 9.2 Plots of the normalized incremental band gap (AEg) for HD In;-,Ga,As,P;-, lattice
matched to InP as a function of normalized light intensity for all cases of Fig. 9.1
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Fig. 9.3 Plots of the normalized incremental band gap (AEg) for HD Hg,_,Cd,Te as a function of
wavelength for all cases of Fig. 9.1

n-Hg,,Cd,Te and n-In,_,Ga,As,P;_, lattice matched to InP in accordance
with the perturbed three and two band models of Kane and that of perturbed
parabolic energy bands respectively. In Figs. 9.3 and 9.4, the normalized
incremental band gap has been plotted for the aforementioned optoelectronic
compounds as a function of A. It is worth remarking that the influence of an
external photo-excitation is to change radically the original band structure of
the material. Because of this change, the photon field causes to increase the
band gap of semiconductors. We propose the following two experiments for the
measurement of band gap of semiconductors under photo-excitation.

(A) A white light with colour filter is allowed to fall on a semiconductor and
the optical absorption coefficient (&) is being measured experimentally.
For different colours of light, oy is measured and %, versus /i (the
incident photon energy) is plotted and we extrapolate the curve such that
%y — 0 at a particular value iiw;. This hiw; is the unperturbed band gap of
the semiconductor. During this process, we vary the wavelength with fixed
Iy. From our present study, we have observed that the band gap of the
semiconductor increases for various values of A when I, is fixed (from
Figs. 9.3 and 9.4). This implies that the band gap of the semiconductor
measured (i.e. iw; = E,) is not the unperturbed band gap E,, but the
perturbed band gap E,; where E, = E,  + AE,, AE, is the increased band
gap at fiw;. Conventionally, we consider this E, as the unperturbed band



9.2 Different Related Applications 375

Normalized Incremental Band Gap
o

i, SaAS,,

400

450 500 550 600 650 700
Wavelength in nm

Fig. 9.4 Plots of the normalized incremental band gap (AEg) for HD In | Gs,As,P,_ lattice
matched to InP as a function of wavelength for all cases of Fig. 9.1

(B)

gap of the semiconductor and this particular concept needs modification.
Furthermore, if we vary I, for a monochromatic light (when 1 is fixed) the
band gap of the semiconductor will also change consequently (Figs. 9.1
and 9.2). Consequently, the absorption coefficient will change with the
intensity of light [64]. For the overall understanding, the detailed theo-
retical and experimental investigations are needed in this context for
various materials having different band structures.
The conventional idea for the measurement of the band gap of the
semiconductors is the fact that the minimum photon energy hv (v is the
frequency of the monochromatic light) should be equal to the band gap
E,, (unperturbed) of the semiconductor, i.e.,

hy = E, (9.7)
In this case, A is fixed for a given monochromatic light and the
semiconductor is exposed to a light of wavelength A. Also the intensity of
the light is fixed. From Figs. 9.3 and 9.4, we observe that the band

hv = E, (9.8)
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Furthermore, if we vary the intensity of light (Figs. 9.1 and 9.2) for the
study of photoemission, the minimum photon energy should be

th = Eg1 (99)

gap of the semiconductor is not E,; (for a minimum value of hv) but E,,
the perturbed band gap. Thus, we can rewrite the above equality as where
E,, is the perturbed band gap of the semiconductor due to various intensity
of light when v and v, are different.

Thus, we arrive at the following conclusions:

(a) Under different intensity of light, keeping A fixed, the condition of
band gap measurement is given by

hvi = Eg, = Eg, + AE,, (9.10)

(b) Under different colour of light, keeping the intensity fixed, the
condition of band gap measurement assumes the form

hv = E, = Eq, + AE, (9.11)

and not the conventional result as given by (9.7).

Diffusion Coefficient of the Minority Carriers: This particular coefficient in
quantum confined lasers can be expressed as

D;/Dy = dEg;/dEy (9.12)

where D; and D, are the diffusion coefficients of the minority carriers both in
the presence and absence of quantum confinements and Er; and Er are the
Fermi energies in the respective HD cases. It appears then that, the formulation
of the above ratio requires a relation between Ep; and Er, which, in turn, is
determined by the appropriate carrier statistics. Thus, our present study plays an
important role in determining the diffusion coefficients of the minority carriers
of HD quantum-confined lasers with materials having arbitrary band structures.
Therefore in the investigation of the optical excitation of the HD optoelectronic
materials which lead to the study of the ambipolar diffusion coefficients the
present results contribute significantly.

Nonlinear Optical Response: The nonlinear response from the optical excitation
of the free carriers is given by [65]

—e? r Ok, !
0
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VL

where o is the optical angular frequency, N(E) is the DOS function. From the
various E-k relations of different HD materials under different physical
conditions, we can formulate the expression of N(E) and from band structure
we can derive the term (k,2%:) and thus by using the DOS function as
formulated, we can study the Z; for all types of materials as considered in this
monograph.

Third Order Nonlinear Optical Susceptibility: This particular susceptibility can
be written as [60]

noet(e*)

24w w03 () + wy + w3)h4

anp (01, 2, 03) = (9.14)

where n0<84> = fOOO g’%N (E) fo dE and the other notations are defined in [70].

okd
HD materials as given in appropriate sections of this monograph. Thus one can
investigate the yyp(wi, w2, w3) for all materials as considered in this
monograph.
Generalized Raman Gain: The generalized Raman gain in optoelectronic
materials can be expressed as [67]

- 16722 r &2
Ro=I——F1—— (£ — )2m?R? 9.15
¢ (ﬁwpgwﬁnsnp) (F ) ((mcz) " ) (5:13)

where, I =" [fo(n, k. T) — fo(n, k; 1)), fo(n,k; 1) is the Fermi factor for spin-
n.t,

The term (GAE) can be formulated by using the dispersion relations of different

up Landau levels, fy(n,k; |) is the Fermi factor for spin down Landau levels,
n is the Landau quantum number and the other notations are defined in [71]. It
appears then the formulation of R is determined by the appropriate derivation
of the magneto-dispersion relations. By using the different appropriate formulas
as formulated in various HD materials in different chapters of this monograph
R can, in general, be investigated.

9.3 Brief Review of Experimental Results

The experimental aspects of the EP is very wide and even the condensed presen-
tation of which in a chapter highlighting the major points only permanently enjoys
the domain of impossibility theorems. Still for the purpose of coherent presentation
we embark on a difficult and deep work.

Houdr¢ et al. [68] have presented the first experimental evidence of tunnelling

and transport of electrons from quantum states in a GaAs/GaAlAs super-lattice or a
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quantum well to a GaAs surface activated to negative electron affinity. The pho-
tocurrent versus light excitation energy showed definite structures which appeared
exactly at the calculated energies of the allowed optical transitions between the
quantized levels of the valence and conduction bands. The 300- and 30-K results for
the super-lattice were successfully compared to luminescence experiments, and
could lead to the production of highly polarized electron beams. Lockwood [69] in
an important review article has pointed out that amongst a number of diverse
approaches to engineering efficient light emission in silicon nano-structures, one
system that has received considerable attention has been Si/SiO, quantum wells.
Engineering such structures has not been easy, because to observe the desired
quantum confinement effects, the quantum well thickness has to be less than 5 nm.
Nevertheless, such ultra thin structures have now been produced by a variety of
techniques. The SiO, layers are amorphous, but the silicon layers can range from
amorphous through nano-crystalline to single-crystal form. The fundamental band
gap of the quantum wells has been measured primarily by optical techniques and
strong confinement effects have been observed. A detailed comparison is made
between theoretical and experimental determinations of the band gap in Si/SiO,
quantum wells.

Confinement of electrons in small structures such as a thin film results in discrete
quantum well states. Such states can be probed by angle-resolved photoemission
and Chiang and Chiang [70] have reviewed the basic physics and applications of
quantum well spectroscopy. The energies and lifetime widths of quantum well
states in a film depend on the film thickness, the dynamics of electron motion in the
film, and the confinement potential. A detailed study allows a determination of the
bulk band structure of the film material, the lifetime broadening of the quasi-
particle, and the interfacial reflectivity and phase shift, as will be demonstrated with
simple examples. Quantification of the photoemission results can be achieved
through a simple phase analysis based on the Bohr-Sommerfeld quantization rule.
Explicit forms of wave functions can also be constructed for additional information
regarding the spatial distribution of the electronic states. From such studies, a
detailed understanding of the behaviour of simple quantum wells including the
effects of lattice mismatch can be developed, which provides a useful basis for
investigating the properties of multi-layers.

Low-temperature optical transmission spectra of several In,Ga,—, As/GaAs
strained multiple quantum wells (MQWs) with different well widths and In mole
fractions have been measured by Ji et al. [71] the excitonic transitions up to 3C-3H
are observed. The notation n c-m H (L) is used to indicate the transitions related to
the nth conduction and mth valence heavy (light) hole sub bands. Step like struc-
tures corresponding to band-to-band transitions are also observed, which are
identified as 1C-1L transitions. The calculated transition energies, taking into
account both the strain and the quantum well effects, are in good agreement with the
measured values. In these calculations the lattice mismatch between the GaAs
buffer and the InGaAs/GaAs MQW is taken into account and the valence-band
offset Qv is chosen as an adjustable parameter. By fitting the experimental results to
our calculations, we conclude that the light holes are in GaAs barrier region (type II
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MQW) and the valence-band offset Qv is determined to be 0.30. A possible system
in which the transition from type I to type II for light holes might be observed is
also discussed.

Excitonic Photoluminescence (PL) line widths in AlGaAs grown by molecular
beam epitaxy (MBE). The line widths of excitonic transitions were measured by
Reynolds et al. [72] in Al,Ga,;_,As, grown by MBE as a function of alloy com-
position x for values of x < 0.43 using high resolution PL spectroscopy at liquid
helium temperature. The values of the line widths thus measured are compared with
the results of several theoretical calculations in which the dominant broadening
mechanism is assumed to be the statistical potential fluctuations caused by the
components of the alloy. An increase in the line width as a function of x is observed
which is in essential agreement with the prediction of the various theoretical cal-
culations. The line widths of the excitonic transitions in Al,Ga;_, As observed in
the present work are the narrowest ever reported in the literature, for example
o = 2.1 meV for x = 0.36, thus indicating very high quality material.

Martin et al. [73] have measured the valence-band discontinuity at a wurtzite
GaN/AIN (0001) hetero junction by means of x-ray photoemission spectroscopy.
The method first measures the core level binding energies with respect to the
valence-band maximum in both GaN and AIN bulk films. The precise location of
the valence band maximum is determined by aligning prominent features in the
valence band spectrum with calculated densities of states. Subsequent measure-
ments of separations between Ga and Al core levels for thin over layers of GaN film
grown on AIN and vice versa yield a valence band discontinuity of
AEv = 0.8 + —0.3 eV in the standard Type I hetero junction alignment.

Electronic defects in n-type GaN were characterized by Gotz et al. [74] with the
help of photoemission capacitance transient spectroscopy. Conventional deep level
transient spectroscopy is of limited use in semiconductors with wide band gaps
(e.g., 3.4 eV for GaN at 300 K) because it utilizes thermal energy for charge
emission which restricts the accessible range of band gap energies to within
~0.9 eV of either band edge, for practical measurement conditions. For electron
photoemission to the conduction band, four deep levels were detected at optical
threshold energies of approximately 0.87, 0.97, 1.25, and 1.45 eV. It is suggested
that the above photo-detected deep levels may participate in the 2.2 eV defect
luminescence transitions, which are also demonstrated for our material.

Benjamin et al. [75] present results of UV photoemission measurements of the
surface and interface properties of hetero epitaxial AlGaN on 6H-SiC. Previous
results have demonstrated a negative electron affinity of AIN on 6H-SiC. In this
study Al,Ga;_N alloy films were grown by OMVPE and doped with silicon. The
analytical techniques included UPS, Auger electron spectroscopy, and LEED. All
analysis took place in an integrated UHV transfer system which included the
analysis techniques, a surface processing chamber and a gas source MBE. The
OMVPE alloy samples were transported in air to the surface characterization sys-
tem while the AIN and GaN investigations were prepared in situ. The surface
electronic states were characterized by surface normal UV photoemission to
determine whether the electron affinity was positive or negative. Two aspects of the
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photoemission distinguish a surface that exhibits a NEA: (1) the spectrum exhibits a
sharp peak in the low kinetic energy region, and (2) the width of the spectrum is
hv — E,. The in situ prepared AIN samples exhibited the characteristics of a NEA
while the GaN and Alj ;3Gag g7N samples did not. The Al 55Gag 45N sample shows
a low positive electron affinity. Annealing of the sample to >400 °C resulted in the
disappearance of the sharp emission features, and this effect was related to con-
taminant effects on the surface. The results suggest the potential of nitride based
cold cathode electron emitters.

The polarization of photo emitted electrons from thin GaAs layers grown by
MBE has been measured by Maruyama et al. [76]. Polarization as high as 49 % was
observed for a 0.2 um-thick GaAs sample at excitation photon wavelengths longer
than 750 nm. The maximum polarization is dependent on the thickness of the GaAs
layer, decreasing to about 41 % for a 0.9 pum-thick GaAs sample.

The base-collector junction of GaAs/AlGaAs single hetero junction bipolar
transistors has been observed to emit light at avalanche break down by Chen et al.
[77]. The spectral distribution curve exhibits broad peaks at 2.03 and 1.43 eV, with
the intensities dependent upon the reverse current. These observations suggest that
electrons, excited to the upper conduction band by the field, lose their energy by
impact ionizing electron-hole pairs and producing the 2.03 eV light, which corre-
sponds to the threshold energy for electron impact ionization. The band-edge
emission is the result of direct-gap free-carrier recombination and self-absorption of
the high energy transition.

Angle-resolved transmission of s-polarized light in triple-film hetero-opals has
been investigated by Khunsin et al. [78] in the spectral range including high-order
photonic band gaps, and compared to the transmission of its constituent single-film
opals. The interfaces do not destroy the predominantly ballistic light propagation
over the studied frequency and angular ranges, but hetero structuring leads to a
smoothed angular distribution of intensity of the transmitted light and to the
reconstruction of the transmission minima dispersion. The interface transmission
function has been extracted by comparing the transmission of the hetero-opal and
its components in order to demonstrate the difference. This deviation from the
superposition principle was provisionally assigned to light refraction and reflection
at the photonic crystal interfaces and to the mismatch between mode group
velocities in hetero-opal components.

A 1.7-fold enhancement in the spontaneous emission intensity of dye chromo-
phore loaded in a printable polymer is achieved by Reboud et al. [79] by coupling
the dye emission to surface plasmons of metallic nano particles. The nano com-
posite material, embossed into arrays of wires by nano imprint lithography process,
shows good imprint properties. The results prove the potential of the prepared
luminescent functional materials for micro- and nanofabrication and suggest the use
of nano composite materials in prospective nano plasmonic applications.

A hetero junction between two 3-dimensional photonic crystals has been realized
by Romanov et al. [80] by interfacing two opal films of different lattice constants.
The interface-related transmission minimum has been observed in the frequency
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range between two directional lowest-order band gaps of the hetero-opal constit-
uents. The interface transmission minimum has been modelled numerically and
tentatively explained by formation of the standing wave across the photonic hetero-
crystal due to matching of group velocities of optical modes in both parts at this
frequency.

The results of optical phenomena investigations in QD and quantum well
structures under inter band optical pumping are presented by Aleshkin et al. [81].
Inter-band and intra-band light absorption in nanostructures with QDs has been
studied experimentally and theoretically. PL and inter-band light absorption in
stepped quantum wells have been investigated including PL studies under pico-
second optical pumping. Experimental results have been compared with results of
calculation of energy spectrum and transition probabilities. It is shown that inver-
sion of population exists between the third and second excited levels of stepped
quantum well.

The PL spectra of samples with ultrathin InGaN layers embedded in AlGaN and
GaN matrices are studied experimentally by Usov et al. [82] in the temperature
range of 80-300 K. It is shown that the temperature dependences can be understood
in the context of Eliseev’s model and that, in the active region of the structures
under study, the dispersion ¢ of the exciton-localization energy depends on the
average In content in InGaN-alloy layers. Furthermore, the Urbach energy E U,
which characterizes the localization energy of excitons in the tails of the density-of-
states, was determined from an analysis of the shape of the low-energy slope of the
spectrum. It is shown that 6 and E U, quantities representing the scale of the
exciton-localization effects, vary linearly with the PL-peak wavelength in the range
from the ultraviolet to the green region of the spectrum.

Nano wires have been formed by the infiltration of CdTe nano crystals into nano
tubes of chrysotile asbestos (Mg3Si,05(OH),). PL of a regular array of these
templated nano-wires was studied by Bardosova et al. [83] under the excitation of
the light from a xenon lamp at different wavelengths. Strong interactions of nano-
crystals with structural defects of the template were observed. No dependence of the
PL spectra upon polarisation of the laser beam was observed and no shift of the PL
band was detected in the light polarised along and across nano wires, thus indi-
cating the weakness of the interaction between nano-crystals in the nano tubes.

Upon deposition of silicon onto the (1 1 0) surface of a silver crystal, Leandri
et al. [84] have grown massively parallel one-dimensional Si nano wires. They are
imaged in scanning tunnelling microscopy as straight, high aspect ratio, nano-
structures, all with the same characteristic width of 16 A, perfectly aligned along the
atomic troughs of the bare surface. Low energy electron diffraction confirms the
massively parallel assembly of these self-organized nano wires. Photoemission
reveals striking quantized states dispersing only along the length of the nano wires,
and extremely sharp, two-components, Si 2p core levels. This demonstrates that in
the large ensemble each individual nano wire is a well-defined quantum object
comprising only two distinct silicon atomic environments. They also suggest that
this self-assembled array of highly perfect Si nano wires provides a simple,
atomically precise, novel template that may impact a wide range of applications.
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The coverage dependent electronic structure of Cu and Co on vicinal W(110)
surfaces has been investigated by Zilkens [85] with angle resolved photoelectron
spectroscopy. To prepare the quasi-one-dimensional Cu and Co systems, the method
of step edge decoration of the vicinal W(110) surfaces has been used. The vicinal
surfaces with step edges in (110), (100) and (111) direction has been investigated
using LEED. From the characteristic spot splitting a terrace width of 11 atom rows
was determined. The band structures of the flat and the vicinal surfaces have indicated
that the step edges have no bearing on the bulk band structure at k parallel = 0. But the
surface band structure shows a different dispersion and different energy positions of
surface states. An analysis of the W 4ft/2 core level spectra has resulted in an
additional contribution of the step edges in the spectra of the vicinal surfaces with a
surface core level shift between 120 and 150 meV. A Cu and Co coverage dependent
investigation of the core levels shows that there is no Co induced surface recon-
struction and up to 0.15 monolayer no Cu induced surface reconstruction. In the range
of 0.15-0.3 monolayer Cu the surface peak shifts to higher binding energies. This is
probably a result of a surface reconstruction of the W substrate In the core level
spectra with Co coverage the intensity of the surface peak decreases linear with Co
coverage and the intensity of a new contribution, the interface structure, increases
with Co coverage. With Co respectively Cu coverage the contribution of the step edge
shifts to lower respectively higher binding energies. This can be attributed to a charge
transfer between the adsorbate and the substrate in different directions.

Spherical Si nano-crystallites with Ge core (~20 nm in average dot diameter)
have been prepared by Darma [86] by controlling selective growth conditions of
low-pressure chemical vapour deposition (LPCVD) on ultrathin SiO, using alter-
nately pure SiH4 and 5 % GeH, diluted with He. XPS results confirm the highly
selective growth of Ge on the pre-grown Si dots and subsequently complete cov-
erage by Si selective growth on Ge/Si dots. Compositional mixing and the crys-
tallinity of Si dots with Ge core as a function of annealing temperature in the range
of 550-800 °C has been evaluated by XPS analysis and confirms the diffusion of
Ge atoms from Ge core towards the Si clad accompanied by formation of GeOy at
the Si clad surface. The first sub-band energy at the valence band of Si dot with Ge
core has been measured as an energy shift at the top of the valence band density of
state using XPS. The systematic shift of the valence band maximum towards higher
binding energy with progressive deposition in the dot formation indicate the
charging effect of dots and SiO, layer by photoemission during measurements.

Rowella et al. [87] have obtained Ge nano-crystals from the dewetting process
during thermal annealing of an amorphous Ge layer deposited by MBE on a thin SiO,
layer on Si(001). The Ge nano-crystals were then capped with a thin layer of
amorphous Si. The mean nano-crystal size—2.5 to 60 nm—depends on the initial Ge
layer thickness. Low-temperature PL. measurements were performed to investigate
quantum confinement effects on the Ge nano-crystal energy gap and defect states. For
the present range of particle sizes, the nano-particle PL emission appeared as a wide
near-infrared band near 900 meV although a weak confined band was also observed
for the smallest nano-particles. Further thermal annealing of the samples increased
the inter band recombination by nearly two orders of magnitude.
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Mala et al. [88] have obtained an intense PL peaking near 0.9 eV is emitted by a
single Si;_,Ge, nano-meter-thick layer (NL) with x ~ 8 % incorporated into Si/
Sig ¢Gep.4 cluster multi layers (CMs). The SiGe NL PL does not saturate in output
intensity with up to 50 mJ/cm?® of excitation energy density, and it has nearly a
1,000 times shorter lifetime compared to CM PL, which peaks at ~0.8 eV. These
dramatic differences in observed PL properties are attributed to different compo-
sitions and structures of the Si/SiGe NL and CM hetero-interfaces.

Carlsson et al. [89] have observed a strong oscillatory photon energy depen-
dence for the intensity of the photoemission peaks due to quantum well states in Na
overlayers on Cu(l111). The measurements are made at low photon energies
hv <8 eV with Na films, which are between four and eight atomic layers thick. The
intensity oscillations are ascribed to the interference between the contributions to
the outgoing wave associated with the two tails of a quantum-well state.

Woodruff et al. [90] have studied normal-emission photoemission spectra from
the quantum well state in a single monolayer of Ag on V(100) have been studied as
a function of photon energy. By comparing the measured binding energy and
calculated electron momentum perpendicular to the surface in this state with the
unoccupied s-p bands of Ag and V, they have showed that the peak intensity
corresponds to the condition expected for a direct transition in V(100). This result is
consistent with the fact that the state is in many ways similar to an intrinsic
Shockley surface state of a clean surface. PL spectra obtained at 6 K with excitation
at 405 nm exhibits the sharp drop at low energy near 700 meV is due to the cut-off
in the instrumental response. A strong low-energy PL doublet is seen, with peaks
near 780 and 820 meV, together with a much weaker peak at 872 meV. The ratio of
intensities of the strong and weak peaks is the same in both samples. The intensities
of all three PL peaks decrease with increasing temperature up to 25 K, but the weak
peak decreases in intensity faster than that of the strong peaks. The weak peak at
872 meV is most likely the dipole-allowed direct-gap transition expected at
0.863 eV in the superstructure. The small difference in energy between theory and
experiment could be the result of a difference in strain within the layer in the sample
compared with the ideal (perfect) modeled structure or from assumptions in
parameter values in the model. The strong peaks at 820 and 780 meV are assigned
to the no-phonon and transverse-optic-phonon emission lines, respectively, of the
Sip.4Geg ¢ buffer layer. The ~40 meV separation between the two strong peaks is
characteristic of the phonon energies in SiGe alloys. The energies of the peaks,
however, are much lower than that expected for a bulk Sij 4Geg ¢ alloy (~0.97 eV).
The energies and general appearance of these peaks is reminiscent of what has been
obtained from PL studies of SiGe nanostructures imbedded in Si. It is therefore
likely that this PL arises predominately at the Sigp4Geg ¢/superstructure interface
where there is type-II band alignment. In conclusion, they have obtained experi-
mental evidence of the predicted direct-gap optically-allowed transition in a special
super cell comprised of a number of ultrathin layers of Si and Ge.

The II-VI semiconductor nano-particles have recently attracted a lot of attention
due to the possibility of their application in various devices. Tiwari et al. [91] have
used chemical method in synthesis of CdS nano-particles and thiophenol was used
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as capping agent. X-ray diffraction studies of both samples were done. The dc
conductivity of CdS increases at a lower rate or is approximately constant up to
500 K and thereafter the conductivity increases at a rapid rate. Beyond T, it is seen
that the portion of the o4, versus 1,000/T is almost a straight line showing an
Arrhenius behaviour. The dielectric constant of nano-particles of CdS is found to be
larger than the corresponding values of CdS crystals. It is clearly observed that at
lower wavelengths nano-crystalline samples show a blue-shift. The three peaks of
sample (S2), A, B and C can be ascribed to the transition from Cd-O complex donor
formed by adsorbed oxygen to the valance band, Cd—excess acceptor and the
surface states, respectively.

Wilson et al. [92] have analyzed the dynamics and spectroscopy of silicon nano-
crystals that emit at visible wavelengths. Size-selective precipitation and size-
exclusion chromatography cleanly separate the silicon nano-crystals from larger
crystallites and aggregates and provide direct evidence for quantum confinement in
luminescence. Measured quantum yields are as high as 50 % at low temperature,
principally as a result of efficient oxide passivation. Despite a 0.9—electron-volt
shift of the band gap to higher energy, the nano-crystals behave fundamentally as
indirect gap materials with low oscillator strength.

Maillard et al. [93] have shown silver nano crystals, self-organized in compact
hexagonal networks, on gold and graphite exhibit anisotropic optical properties.
From polarized electron photoemission spectroscopy, a two-photon mechanism was
demonstrated and an enhancement due to the surface plasmon resonance (SPR) of
the nano crystal film was observed. Two SPR peaks appear, due to dipolar inter-
actions and induced by the self-organization of silver nano crystals. This property
was used to probe the substrate effect on the plasmon resonance. Its damping was
related to particle-substrate interactions.

Xiong et al. [94] have presented the first photoelectron spectroscopy mea-
surements of QDs in the gas phase. By coupling a nano-particle aerosol source to a
femto-second velocity map imaging photoelectron spectrometer, we apply robust
gas-phase photoelectron spectroscopy techniques to colloidal QDs, which typically
must be studied in a liquid solvent or while bound to a surface. Working with a
flowing aerosol of QDs offers the additional advantages of providing fresh nano-
particles for each laser shot and removing perturbations from bonding with a sur-
face or interactions with the solvent. In this work, they have performed a two-
photon photo-ionization experiment to show that the photoelectron yield per
exciton depends on the physical size of the QD, increasing for smaller dots. Next,
using effective mass modelling they have shown that the extent to which the
electron wave function of the exciton extends from the QD, the so-called
“evanescent electron wave function”, increases as the size of the QD decreases.
This group show that the photoelectron yield is dominated by the evanescent
electron density due to quantum confinement effects, the difference in the density of
states inside and outside of the QDs, and the angle-dependent transmission prob-
ability of electrons through the surface of the QD. Therefore, the photoelectron
yield directly reflects the fraction of evanescent electron wave function that extends
outside of the QDs. The work of this group shows that gas-phase photoelectron



9.3 Brief Review of Experimental Results 385

spectroscopy is a robust and general probe of the electronic structure of QDs,
enabling the first direct measurements of the evanescent exciton wave function.

Konchenko et al. [95] have studied quantum-confinement effect in the valence
band of germanium nano-dots and measured by means of photoemission
spectroscopy. The spherical dots of 3—10 nm in diameter were prepared on
a 0.3-nm-thick SiO, film on Si(111) substrate. Dot-size dependence of the band edge
matched the ones expected from the spherical QD model and calculated from the
semi-empirical simulation. Colvin et al. [96] have reported the first application of
valence-band photoemission to a quantum-dot system. Photoemission spectra of
Cds QDs, ranging in size from 12 to 35 A radius, were obtained using photon
energies of 20-70 eV. The spectra are qualitatively similar to those obtained for bulk
Cds, but show a shift in the valence-band maximum with size.

The measurements of the optical and structural characteristics of various porous
Si samples have been correlated by Lockwood et al. [97]. Although the PL peak
wavelength shows no correlation with the Si nano-particle size, the optical
absorption edge exhibits a strong inverse correlation that is in excellent agree-
ment with theoretical predictions for the optical gap in Si spheres or QDs. This
constitutes direct evidence for quantum confinement effects in porous Si. The
possibility induction of light emission from silicon, an indirect band-gap material in
which radiative transitions are unlikely, raises several interesting and technologi-
cally important possibilities, especially the fabrication of a truly integrated opto-
electronic microchip. Laser diode structures on GaAs substrates with an active
region employing laterally associated InAs, QDs obtained by Zhukov et al. [98] by
low-temperature MBE exhibit electroluminescence at a wavelength of 1.55-1.6 um
in a temperature range from 20 to 260 K.

Structural and optical properties of thin InGaAsN insertions in GaAs, grown by
MBE using an RF nitrogen plasma source, have been investigated by Volovik et al.
[99]. Nitrogen incorporation into InGaAs results in a remarkable broadening of the
luminescence spectrum as compared with that of InGaAs layer with the same
indium content. Correspondingly, a pronounced corrugation of the upper interface
and the formation of well defined nanodomains are revealed in cross-sectional and
plan-view transmission electron microscope (TEM) images, respectively. Raising
the indium concentration in InGaAsN (N < 1 %) to 35 % results in the formation of
well defined separated three-dimensional (3D) islands. The size of the nanodomains
proves that the InGaAsN insertions in GaAs should be regarded as QD structures
even in the case of relatively small indium concentrations (25 %) and layer
thicknesses (7 nm), which are below the values required for a 2D-3D transition to
occur in InGaAs/GaAs growth. Dislocation loops have been found in TEM images
of the structures emitting at 1.3 pm. They are expected to be responsible for the
degradation of the luminescence intensity of such structures in agreement with the
case of long-wavelength InGaAs-GaAs QDs.

QDs formed on GaAs(100) substrates by InAs, deposition followed by (Al,Ga)
As or (In,Ga,Al)As overgrowth demonstrate a PL peak that is red shifted (up to
1.3 pm) compared to PL emission of GaAs-covered QDs have been demonstrated
by Tsatsul’nikov et al. [100]. The result is attributed to redistribution of InAs
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molecules in the system in favour of the QDs, stimulated by Al atoms in the cap
layer. The deposition of a 1 nm thick AlAs cover layer on top of the InAs—GaAs
QDs results in replacement of InAs molecules of the wetting layer by AlAs mol-
ecules, leading to a significant increase in the heights of the InAs QDs, as follows
from transmission electron microscopy. This effect is directly confirmed by trans-
mission electron microscopy indicating a transition to a Volmer—Weber-like QD
arrangement.

Structural and optical properties of InAs QDs overgrown by thin (In, Ga, Al) As
layers were investigated by Tsatsul’nikov et al. [101]. Adding In as well as Al
during overgrowth of the QDs results in an increase in QD size and a change in QD
shape due to reduced of in diffusion from the QDs during overgrowth and transport
of in atoms from the wetting layer. This leads to a red shift of the emission and
allows to realise 1.3\im emission using QDs in the initial stage of formation.

A two-dimensional photonic crystal with hexagonal lattice of air-holes is pat-
terned into an active planar waveguide containing InAs/InGaAs QDs by Blokhin
et al. [102]. Variable-angle reflectivity spectroscopy is used to map out the photonic
band structure. Fano-type resonances observed in the measured reflectivity spectra
in TE (TM) polarizations along the =K (I'-M) lattice direction are attributed to
resonance coupling of the optically active photonic bands to external light. Angle-
resolved PL measurements are shown to trace the band structure of the leaky mode.
The revealed three-fold emission intensity enhancement of photonic crystals is
ascribed to both Purcell and Bragg scattering effects.

Krestnikov et al. [103] have reported on resonant PL of InGaN inclusions in a
GaN matrix. The structures were grown on sapphire substrates using metal-organic
chemical vapour deposition. Non resonant pulsed excitation results in a broad PL
peak, while resonant excitation into the non resonant PL intensity maximum results
in an evolution of a sharp resonant PL peak, having a spectral shape defined by the
excitation laser pulse and a radiative decay time close to that revealed for PL under
non resonant excitation. Observation of a resonantly excited narrow PL line gives
clear proof of the QD nature of luminescence in InGaN—GaN samples. PL decay
demonstrates strongly non exponential behaviour evidencing coexistence of QDs
having similar ground-state transition energy, but very different electron-hole wave-
function overlap.

Borchert et al. [104] have colloidally prepared CdS/HgS/CdS QD, quantum well
nano-crystals and CdS/HgS/CdS/HgS/CdS double quantum well nano-crystals
stabilized with polyphosphates have been investigated by photoelectron spectros-
copy with tuneable synchrotron radiation. High-resolution spectra reveal in addition
to a bulk species also a surface environment for Cd, whereas different S species
could not be resolved. Although not expected for the ideal structure model, Hg
occurs in two distinct environments. The total amount of Hg giving evidence for
sample in-homogeneities is of the order of 10 %. Furthermore, to some extent, the
XPS experiments allowed characterization of the onion like structure of the QD
quantum well nano-crystals. A method for layer thickness determination previously
developed for core shell nano-crystals is extended to the more complex case of QD
quantum well structures.
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Benemanskaya et al. [105] have prepared an array of non-overgrown InAs/GaAs
QDs which has been decorated with adsorbed metal atoms in situ in ultrahigh
vacuum. Their electron and photoemission properties have been studied. The rad-
ical modification of the spectra of the threshold emission from the QDs with
increasing cesium coating has been found. Two photoemission channels have been
established; they are characterized by considerably different intensities, spectral
locations, and widths of the selective bands. It has been shown that the decoration
of the QDs makes it possible to control the electronic structure and quantum yield
of photoemission, the nature of which is related to the excitation of the electronic
states of the GaAs substrate and InAs/GaAs QDs.

Giorgio et al. [106] have discussed the application of photoemission-based
microscopy techniques to the compositional characterization of semiconductor QDs
and rings. The experimental technique is discussed in detail by them in the said
paper. Using this technique, self-assembled III-V and Ge/Si QDs have been studied.
These results have also been discussed, both for randomly nucleated and site-
controlled QDs. Rowell et al. [107] have grown For Ge nano-dots approximately
20 nm in diameter by annealing a thin amorphous Ge layer deposited by MBE on a
mesoporous TiO, layer on Si(001), PL was observed as a wide near-infrared band
near 800 meV. Using a tight binding theoretical model, the energy-dependent PL
spectrum was transformed into a dependence on dot size. The average dot size
determined the peak energy of the PL band and its shape depended on the size
distribution, including band gap enlargement due to quantum confinement. Com-
bining the dot sample PL with an established dependence of emission efficiency on
dot diameter, it was possible to derive a dot size distribution and compare it with
results obtained independently from atomic force microscopy.

Heyderman et al. [108] have investigated the periodic square arrays of anti dots
in 10 nm-thick cobalt films with anti dot periods, p, ranging from 2 pum down to
200 nm and various ratios of anti dot size to anti dot separation, w/d. For p = 2 pum,
the extent of modification of the thin film magnetic domain structure increases with
increasing w/d, forming domains pinned diagonally between anti dots for w/d = 0.2
and resulting in a two-dimensional periodic checked domain contrast commensurate
with the anti dot lattice for w/d = 0.9. As p is decreased while maintaining d ~ w,
they observed a dramatic change in the magnetic domain configuration
at p = 400 nm resulting in chains of magnetic domains running parallel to the
intrinsic hard axis and with lengths corresponding to a multiple of the anti dot
period.

Lockwood et al. [109] have grown the super-lattices of Si/SiO, at room tem-
perature with atomic layer precision using state of the art MBE and ultraviolet ozone
treatment. PL. was observed at wavelengths across the visible range for Si layer
thicknesses 1 < d < 3 nm. The fitted peak emission energy E(eV) = 1.60 + 0.72 d 2 is
in accordance with effective mass theory for quantum confinement by the wide-gap
Si0, barriers and also with the bulk amorphous Si band gap. Measurements of the
conduction and valence band shifts by x-ray techniques correlate with E(d), con-
firming the role of quantum confinement and indicating a direct band-to-band
recombination mechanism.
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The many interesting and unique physical properties of nano-crystalline-Si/
amorphous-SiO, superlattices (SLs) stem from their vertical periodicity and nearly
defect-free, atomically flat, and chemically abrupt nano-crystalline-Si/SiO, inter-
faces. By combining a less than 5 % variation in the initial as-grown amorphous-Si
layer thickness with control over the Si nano crystal shape and crystallographic
orientation Lockwood and Tsybeskov [110] have produced via an appropriate
annealing process, systems of nearly identical Si nano-crystals having remarkably
different shapes (spheres, ovoids, bricks, etc.). Such details governing the fabri-
cation of nano-crystalline-Si/amorphous-SiO, SLs have dramatic effects on their
structural and optical-Raman scattering and PL-properties. The reliable fabrication
of Si-based nanostructures with control over the nano-crystal size, shape, and
crystallographic orientation is an important first step in their applications in Si
photonics.

GaAs/AlAs SLs grown simultaneously on GaAs substrates with the (311)A and
(311)B orientations have been studied by Lyubas et al. [111] by PL and high-
resolution transmission electron microscopy with a Fourier analysis of images. A
periodic interface corrugation is observed for (311)B SLs. A comparison of the
structure of (311)A and (311)B SLs indicates that the corrugation occurs in both
cases and its period along the [111] direction is equal to 3.2 nm. The corrugation is
less pronounced in (311)B SLs, wherein it exhibits an additional modulation (long-
wavelength disorder) with the characteristic lateral size exceeding 10 nm. The
vertical correlation of regions rich in GaAs and AlAs, which is well observed in
(B1DA SLs, is weak in (311)B SLs due to the occurrence of long-wavelength
disorder. The optical properties of (311)B SLs are similar to those of (100) ones and
differ radically from those of (311)A SLs. As distinct from (311)B, strong PL
polarization anisotropy is observed for (311)A SLs. It is shown that it is the
interface corrugation rather than the crystallographic (311) surface orientation that
determines the optical properties of (311)A corrugated SLs with thin GaAs and
AlAs layers.

Lyubas et al. [112] have determined PL properties of type II GaAs/AlAs SLs
grown on (311) surface by its polarity. The 3.2 nm lateral periodicity is revealed,
using a high resolution transmission electron microscopy and Fourier transform
images of SLs, however, it is rather illegible because of not clear corrugating and
due to the presence of long-wavelength (>10 nm) disorder. PL spectra of GaAs/
AlAs SLs grown on (311)A surface are strongly polarized in relation to the
direction of interface corrugation unlike the SLs grown on (311)B surface, where
corrugation was weak.

Optical phenomena in the mid-infrared range connected with inter level and inter
sub-band charge-carrier transitions in QD and quantum well (QW) hetero-structures
under optical and electrical pumping were investigated by Vorobjev et al. [113].
Spectra of inter band PL are also presented. The existence of a meta stable level in
funnel-shaped QWs is experimentally confirmed. The inter sub-band transition
dynamics in asymmetrical pairs of tunnel-coupled QWs was studied by means of
pump-and-probe time-resolved spectroscopy. The measurement of photoemission
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spectra of SrTiO5/LaTiO3 super-lattices with a topmost SrTiO3 layer of variable
thickness has been reported in [114, 115]. Finite coherent spectral weight with a
clear Fermi cut-off was observed at chemically abrupt StTiO5;/LaTiOj; interfaces,
indicating that an “electronic reconstruction” occurs at the interface between the
Mott insulator LaTiO5 and the band insulator SrTiO5. For SrTiO5/LaTiOj5 interfaces
annealed at high temperatures (~ 1,000 °C), which leads to Sr/La atomic inter-
diffusion and hence to the formation of La;_,Sr,TiO5 like material, the intensity of
the incoherent part was found to be dramatically reduced whereas the coherent part
with a sharp Fermi cut-off is enhanced due to the spread of charge. These important
experimental features are well reproduced by layer dynamical-mean-field-theory
calculation.

Photonic devices are becoming increasingly important in information and
communication technologies. But attempts to integrate photonics with silicon-based
microelectronics are hampered by the fact that silicon has an indirect band gap,
which prevents efficient electron-photon energy conversion. Light-emitting silicon-
based materials have been made using band-structure engineering of SiGe and SiC
alloys and Si/Ge SLs, and by exploiting quantum-confinement effects in nanoscale
particles and crystallites [116]. The discovery [117, 118] that silicon can be etched
electrochemically into a highly porous form that emits light with a high quantum
yield has opened up the latter approach to intensive study [119-125]. Lu et al. [126]
have reported the fabrication, by MBE technique, of well-defined SLs of silicon and
Si0,, which emit visible light through PL. The said group have shown that this light
emission can be explained in terms of quantum confinement of electrons in the two-
dimensional silicon layers and these superlattice structures are robust and com-
patible with standard silicon technology.

Lao et al. [127] have used internal photoemission spectroscopy to determine the
conduction band offset of a type-II InAs/GaSb super-lattice (T2SL) pBp photo-
detector to be eV at 78 K, confirming its unipolar operation. It is also found that
phonon-assisted hole transport through the B-region disables its two-colour detec-
tion mode around 140 K. In addition, photoemission yield shows a reduction at
about an energy of longitudinal-optical phonon above the threshold, confirming
carrier-phonon scattering degradation on the photo-response. These results may
indicate a pathway for optimizing T2SL detectors in addition to current efforts in
material growth, processing, substrate preparation, and device passivation 0.004
(£0.004). The natural considerations that constrain silicon from emitting light
efficiently are examined, as are several engineered solutions to this limitation by
Iyer and Xie [128]. These include intrinsic and alloy-induced luminescence;
radioactively active impurities; quantum-confined structures, including zone folding
and the recent developments in porous silicon; and a hybrid approach, the inte-
gration of direct band-gap materials onto silicon.

Lin et al. [129] have proposed a new approach for the fabrication of n-type
porous silicon layer. A hole-rich p-layer is arranged underneath the n-layer, and the
np-junction is under forward biased condition in the etching process. Therefore
sufficient holes can drift straight-upward and pass across the np-junction from
p-region to n-region to participate in electrochemical reaction during the etching
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process with an unfailing supply. Illumination is an optional hole-supplier in this
approach, so the problem of illumination-depth limitation can be overcome. Strong
visible PL emissions are demonstrated on the hole-poor n-type porous layer at about
650 nm.

Lockwood et al. [130] have reported the optical properties of porous GaAs
formed electrochemically on n- and p-type GaAs in HCI electrolyte. The porous
structure comprises GaAs crystallites ranging in size from micrometers to nano-
meters and under certain chemical conditions other transparent crystallites of
As,O3 and Ga,0O3 form. PL measurements at 295 K reveal an “infrared” PL
at ~840 nm and a “green” PL at ~540 nm, which could easily be seen by the
naked eye in some samples. The infrared and green PL peak wavelength and
intensity varied from sample to sample consistent with an assignment to quantum
confinement effects in GaAs micro- and nano-crystallites, respectively. The many
and diverse approaches to materials science problems have greatly enhanced the
ability in recent times to engineer the physical properties of semiconductors. Sili-
con, of all semiconductors, underpins nearly all microelectronics today and will
continue to do so for some time to come. However, in optoelectronics and, more
recently, in photonics, the severe disadvantage of an indirect band gap has limited
the application of elemental silicon.

Electroluminescent devices have been developed recently that are based on new
materials such as porous silicon and semiconducting polymers. By taking advan-
tage of developments in the preparation and characterization of direct-gap semi-
conductor nano-crystals, and of electroluminescent polymers, Colvin et al. [131]
have constructed a hybrid organic/inorganic electroluminescent device. Light
emission arises from the recombination of holes injected into a layer of semicon-
ducting p-paraphenylene vinylene (PPV) with electrons injected into a multilayer
film of cadmium selenide nano-crystals. Close matching of the emitting layer of
nano-crystals with the work function of the metal contact leads to an operating
voltage of only 4 V. At low voltages emission from the CdSe layer occurs. Because
of the quantum size effect the colour of this emission can be varied from red to
yellow by changing the nano-crystal size. At higher voltages green emission from
the polymer layer predominates. Thus this device has a degree of voltage tunability
of colour.

Rogach et al. [132] have reported that the colloidal semiconductor nano crystals
are promising luminophores for creating a new generation of electroluminescence
devices. Research on semiconductor nano crystal based light-emitting diodes
(LEDs) has made remarkable advances in just one decade: the external quantum
efficiency has improved by over two orders of magnitude and highly saturated
colour emission is now the norm. Although the device efficiencies are still more
than an order of magnitude lower than those of the purely organic LEDs there are
potential advantages associated with nano crystal-based devices, such as a spec-
trally pure emission colour, which will certainly merit future research. Further
developments of nano crystal-based LEDs will be improving material stability,
understanding and controlling chemical and physical phenomena at the interfaces,
and optimizing charge injection and charge transport.
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Highly luminescent (CdSe)ZnS nano crystals, with band edge emission in the
red region of the visible spectrum, were successfully synthesized by Reboud et al.
[133] and incorporated in a resist, namely mr-NIL 6000. The nano composite
material was imprinted by using conventional nano imprint lithography (NIL)
process. We report on the fabrication and characterization of nano imprinted
photonic crystals in this new functional material. Experiments showed good imprint
properties of the NC/polymer based material and that the surface nano structuration
improves the light extraction efficiency by over 2 compared to a nano imprinted
unpatterned surface.

Bertsch et al. [134] have calculated the two-photon ionization of clusters for
photon energies near the surface plasmon resonance. The plasmon was described in
a schematic jellium-RPA model assuming a separable residual interaction between
electrons determined so that the plasmon energy is reproduced. The ionization rate
of a double plasmon excitation was calculated perturbatively. In Na + 93 clusters
they found an ionization rate of the order of at most 0.05-0.10 fs~'. This rate was
used to determine the ionization probability in an external field in terms of the
number of absorbed photon pairs and the duration of the field. They discussed the
dependence of the results on the choice of their empirical separable force. The
number of emitted electrons per pair of absorbed photons was found to be small, in
the range 107°-107° H.

Fiorini et al. [135] have presented a brief survey of quantum effects in amor-
phous superstructures, with a particular attention to optical properties. The deter-
mination of interface properties by superstructure investigation is discussed, with a
special emphasis on the amorphous silicon/amorphous silicon-carbon system. In the
review Lockwood [136] has considered a number of diverse approaches to engi-
neering efficient light emission in silicon nanostructures. These different approaches
are placed in context and their prospects are assessed for applications in silicon-
based photonics.

Yoshimatsu et al. [137] have investigated changes in the electronic structures of
digitally controlled Lag ¢Sty 4MnO5; (LSMO) layers sandwiched between SrTiO5 as
a function of LSMO layer thickness in terms of hard x-ray photo-emission-spec-
troscopy (HX-PES). The HX-PES spectra show the evolution of Mn 3d derived
states near the Fermi level and the occurrence of metal-insulator transition at SML.
The detailed analysis for the thickness dependent HX-PES spectra reveals the
existence of the less conducting and nonmagnetic transition layer with a film
thickness of about 4ML in the interface region owing to significant interaction
through the interface.

The PL spectroscopy has been used by Rowell et al. [138] to study the incor-
poration of C in several samples consisting of strained Si,-, ,Ge,C, epi-layers
lattice matched to Si(001). To obtain the total C concentration, these samples were
characterized by both SIMS and Auger emission spectroscopy, and X-ray diffrac-
tion data was analyzed to obtain the substitutional C concentration. The difference
of the total and substitutional C concentrations, i.e., the non-substitutional carbon
fraction, was found to be directly correlated with specific spectral lines in both the
room-temperature Raman and low-temperature PL spectra. Shimoda et al. [139]
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studied the effects of structure and morphology on lithium storage in single-wall
carbon nano tube (SWNT) bundles by electrochemistry and nuclear magnetic
resonance techniques. SWNTSs were chemically etched to variable lengths and were
intercalated with Li. The reversible Li storage capacity increased from LiC(6) in
close-end SWNTs to LiC(3) after etching, which was twice the value observed in
intercalated graphite. All the nano tubes became metallic upon intercalation of Li,
with the density of states at the Fermi level increasing with increasing Li con-
centration. The enhanced capacity is attributed to Li diffusion into the interior of the
SWNTs through the opened ends and sidewall defects.

In this monograph, we have studied the EP from quantum confined HD non-
linear optical, III-V, II-VI, GaP, Ge, PtSb,, stressed materials, GaSb, IV-VI, Tel-
lurium, II-V, Bi,Tes, III-V, II-VI, IV-VI and HgTe/CdTe quantum wire superlat-
tices HD with graded interfaces, III-V, II-VI, IV-VI and HgTe/CdTe HD effective
mass superlattices under magnetic quantization, quantum confined effective mass
HD superlattices and HD superlattices of optoelectronic materials under intense
electric field and light waves with graded interfaces on the basis of appropriate
carrier energy spectra. Finally it may be noted that although we have considered the
EP from a plethora of quantized materials having different band structures theo-
retically, the detailed experimental works are still needed for an in-depth study of
the EP from such low-dimensional HD systems as functions of externally con-
trollable quantities which, in turn, will add new physical phenomenon in the regime
of the electron motion in HD nano structured materials and related topics.

9.4 Open Research Problem

(R.9.1) Investigate experimentally the EP for all the HD systems as discussed in
this monograph in the presence of arbitrarily oriented strain.
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Chapter 10
Conclusion and Future Research

This monograph deals with the EP in various types of low dimensional HD
materials. The intense photo excitation, quantization and strong electric field alter
profoundly the basic band structures, which, in turn, generate pinpointed knowl-
edge regarding EP in various HDS and their nanostructures having different carrier
energy spectra. The in-depth experimental investigations covering the whole
spectrum of solid state and allied science in general, are extremely important to
uncover the underlying physics and the related mathematics. We have presented the
simplified expressions of EP for few HD quantized structures together with the fact
that our investigations are based on the simplified k.p formalism of solid-state
science without incorporating the advanced field theoretic techniques. In spite of
such constraints, the role of band structure behind the curtain, which generates, in
turn, new concepts are truly amazing and discussed throughout the text.

We present the last set of few open research problems in this pin pointed topic of
research of modern physics.

(R.10.1) Investigate the multi-photon EP from multiple HD QWs, NWs and
QBs of negative refractive index, organic, magnetic, heavily doped,
disordered and other advanced optical materials in the presence of
arbitrarily oriented photo-excitation.

(R.10.2) Investigate multi-photon EP from cylindrical and wedge shaped HD
QBs of all the appropriate problems of R.10.1 in the presence of
arbitrarily photo-excitation.

(R.10.3) Investigate the multi-photon EP in the presence of an arbitrarily
oriented photo-excitation and quantizing magnetic field for all the
appropriate cases of R.10.1.

(R.10.4) Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and alternating non-quantizing electric field for all the
appropriate cases of R.10.2.

(R.10.5) Investigate the multi-photon EP in the presence of an arbitrarily
oriented photo-excitation and non-uniform non-quantizing electric
field for all the appropriate cases of R.10.2.
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(R.10.6)

(R.10.7)

(R.10.8)

(R.10.9)

(R.10.10)

(R.10.11)

(R.10.12)

(R.10.13)

(R.10.14)

(R.10.15)

(R.10.16)

(R.10.17)

10 Conclusion and Future Research

Investigate the multi-photon EP in the presence of an arbitrarily
oriented photo-excitation and crossed electric and quantizing magnetic
fields for all the appropriate cases of R.10.1.

Investigate the multi-photon EP in the presence of an arbitrarily
oriented photo-excitation and quantizing magnetic field for all the
appropriate cases of R.10.1.

Investigate the multi-photon EP in the presence of arbitrarily oriented
photo-excitation and alternating non-quantizing electric field for all the
appropriate cases of R.10.1.

Investigate the multi-photon EP in the presence of an arbitrarily
oriented photo-excitation and non-uniform non-quantizing electric
field for all the cases of R.10.1.

Investigate the multi-photon EP in the presence of an arbitrarily
oriented photo-excitation and crossed electric and quantizing magnetic
fields for all the appropriate cases of R.10.1.

Investigate the multi-photon EP from all the systems and the open
research problems of Chaps. 1-5 in the presence of many body effects.
Investigate the multi-photon EP from quantum confined HD III-V, II-
VI, IV-VI, HgTe/CdTe superlattices with graded interfaces together
with short period, strained layer, random, Fibonacci, polytype and
sawtooth superlattices in this context in the presence of arbitrarily
oriented photo-excitation.

(a) Investigate the static photoelectric effect for all the appropriate
problems of this monograph.

(b) Investigate all the appropriate problems for open HDQB of dif-
ferent materials as discussed in this monograph.

Investigate the EP in the presence of a quantizing magnetic field under
exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [1]
for all the problems of this monograph of all the HD materials whose
unperturbed carrier energy spectra are defined in Chap. 1 by including
spin and broadening effects.

Investigate all the appropriate problems after proper modifications
introducing new theoretical formalisms for the problems as defined in
(R.10.14) for HD negative refractive index, macro molecular, nitride
and organic materials.

Investigate all the appropriate problems of this monograph for all types
of HD quantum confined p-InSb, p-CuCl and semiconductors having
diamond structure valence bands whose dispersion relations of the
carriers in bulk materials are given by Cunningham [2], Yekimov et al.
[3] and Roman and Ewald [4] respectively.

Investigate the influence of defect traps and surface states separately on
the EP of the HD materials for all the appropriate problems of all the
chapters after proper modifications.


http://dx.doi.org/10.1007/978-3-319-11188-9_1
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(R.10.18)

(R.10.19)

(R.10.20)

(R.10.21)

(R.10.22)

(R.10.23)

(R.10.24)
(R.10.25)
(R.10.26)
(R.10.27)
(R.10.28)
(R.10.29)
(R.10.30)
(R.10.31)

(R.10.32)

(R.10.33)

(R.10.34)

Investigate the EP of the HD materials under the condition of non-
equilibrium of the carrier states for all the appropriate problems of this
monograph.

Investigate the EP for all the appropriate problems of this monograph
for the corresponding HD p-type semiconductors and their
nanostructures.

Investigate the EP for all the appropriate problems of this monograph
for all types of HD semiconductors and their nanostructures under
mixed conduction in the presence of strain.

Investigate the EP for all the appropriate problems of this monograph
for all types of HD semiconductors and their nanostructures in the
presence of hot electron effects.

Investigate the EP for all the appropriate problems of this monograph
for all types of HD semiconductors and their nanostructures for
nonlinear charge transport.

Investigate the EP for all the appropriate problems of this monograph
for all types of HD semiconductors and their nanostructures in the
presence of strain in an arbitrary direction.

Investigate all the appropriate problems of this monograph for strongly
correlated electronic HD systems in the presence of strain.
Investigate all the appropriate problems of this chapter in the presence
of arbitrarily oriented photon field and strain.

Investigate all the appropriate problems of this monograph for all types
of HD nanotubes in the presence of strain.

Investigate all the appropriate problems of this monograph for various
types of pentatellurides in the presence of strain.

Investigate all the appropriate problems of this monograph for HD
Bi,Tes—Sb,Te; super-lattices in the presence of strain.

Investigate the influence of temperature-dependent energy band
constants for all the appropriate problems of this monograph.
Investigate the influence of the localization of carriers on the EP in
HDS for all the appropriate problems of this monograph.

Investigate EP for HD p-type SiGe under different appropriate physical
conditions as discussed in this monograph in the presence of strain.
Investigate EP for different metallic alloys under different appropriate
physical conditions as discussed in this monograph in the presence of
strain.

Investigate EP for different intermetallic compounds under different
appropriate physical conditions as discussed in this monograph in the
presence of strain.

Investigate EP for HD GaN under different appropriate physical
conditions as discussed in this monograph in the presence of strain.
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(R.10.35)

(R.10.36)

(R.10.37)
(R.10.38)
(R.10.39)
(R.10.40)
(R.10.41)

(R.10.42)

(R.10.43)

(R.10.44)

(R.10.45)

(R.10.46)

(R.10.47)

(R.10.48)

(R.10.49)

(R.10.50)
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Investigate EP for different disordered HD conductors under different
appropriate physical conditions as discussed in this monograph in the
presence of strain.

Investigate EP for various semimetals under different appropriate
physical conditions as discussed in this monograph in the presence of
strain.

Investigate all the appropriate problems of this monograph for HD
Bi,Te;_,Se, and Bi,_,Sb,Te; respectively in the presence of strain.
Investigate all the appropriate problems of this monograph for all types
of skutterudites in the presence of strain.

Investigate all the appropriate problems of this monograph in the
presence of crossed electric and quantizing magnetic fields.
Investigate all the appropriate problems of this monograph in the
presence of crossed alternating electric and quantizing magnetic fields.
Investigate all the appropriate problems of this monograph in the
presence of crossed electric and alternating quantizing magnetic fields.
Investigate all the appropriate problems of this monograph in the
presence of alternating crossed electric and alternating quantizing
magnetic fields.

Investigate all the appropriate problems of this monograph in the
presence of arbitrarily oriented pulsed electric and quantizing magnetic
fields.

Investigate all the appropriate problems of this monograph in the
presence of arbitrarily oriented alternating electric and quantizing
magnetic fields.

Investigate all the appropriate problems of this monograph in the
presence of crossed in homogeneous electric and alternating quantizing
magnetic fields.

Investigate all the appropriate problems of this monograph in the
presence of arbitrarily oriented electric and alternating quantizing
magnetic fields under strain.

Investigate all the appropriate problems of this monograph in the
presence of arbitrarily oriented electric and alternating quantizing
magnetic fields under light waves.

Investigate all the appropriate problems of this monograph in the
presence of arbitrarily oriented pulsed electric and alternating quan-
tizing magnetic fields under light waves.

Investigate all the appropriate problems of this monograph in the
presence of arbitrarily oriented inhomogeneous electric and pulsed
quantizing magnetic fields in the presence of strain and light waves.

(a) Investigate the EP for all types of HD materials of this mono-
graph in the presence of many body effects strain and arbitrarily
oriented light waves respectively.
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(b) Investigate all the appropriate problems of this chapter for the
Dirac electron.

(c) Investigate all the problems of this monograph by removing all
the physical and mathematical approximations and establishing
the respective appropriate uniqueness conditions.

The formulation of EP for all types of HD materials and their quantum confined
counter parts considering the influence of all the bands created due to all types of
quantizations after removing all the assumptions and establishing the respective
appropriate uniqueness conditions is, in general, an extremely difficult problem.
300 open research problems have been presented in this monograph and we hope
that the readers will not only solve them but also will generate new concepts, both
theoretical and experimental. Incidentally, we can easily infer how little is presented
and how much more is yet to be investigated in this exciting topic which is the
signature of coexistence of new physics, advanced mathematics combined with the
inner fire for performing creative researches in this context from the young sci-
entists since like Kikoin [5] we firmly believe that A young scientist is no good if his
teacher learns nothing from him and gives his teacher nothing to be proud of. In the
mean time our research interest has been shifted and we are leaving this particular
beautiful topic with the hope that (R.10.50) alone is sufficient to draw the attention
of the researchers from diverse fields and our readers are surely in tune with the fact
that Exposition, criticism, appreciation is the work for second-rate minds [6].
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Chapter 11
Appendix A: The EP from HDS Under
Magnetic Quantization

11.1 Introduction

It is well known that the band structure of semiconductors can be dramatically
changed by applying the external fields. The effects of the quantizing magnetic field
on the band structure of compound semiconductors are more striking and can be
observed easily in experiments [1-67]. Under magnetic quantization, the motion of
the electron parallel to the magnetic field remains unaltered while the area of the
wave vector space perpendicular to the direction of the magnetic field gets quan-
tized in accordance with the Landau’s rule of area quantization in the wave-vector
space [39-67]. The energy levels of the carriers in a magnetic field (with the
component of the wave-vector parallel to the direction of magnetic field be equated
with zero) are termed as the Landau levels and the quantized energies are known as
the Landau sub-bands. It is important to note that the same conclusion may be
arrived either by solving the single-particle time independent Schrodinger differ-
ential equation in the presence of a quantizing magnetic field or by using the
operator method. The quantizing magnetic field tends to remove the degeneracy and
increases the band gap. A semiconductor, placed in a magnetic field B, can absorb
radiative energy with the frequency (wo = (|e|B/m.)). This phenomenon is known
as cyclotron or diamagnetic resonance. The effect of energy quantization is
experimentally noticeable when the separation between any two consecutive Lan-
dau levels is greater than kg7. A number of interesting transport phenomena
originate from the change in the basic band structure of the semiconductor in the
presence of quantizing magnetic field. These have been widely been investigated
and also served as diagnostic tools for characterizing the different materials having
various band structures [68—72]. The discreteness in the Landau levels leads to a
whole crop of magneto-oscillatory phenomena, important among which are
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(i) Shubnikov-de Haas oscillations in magneto-resistance; (ii) De Haas-van Alphen
oscillations in magnetic susceptibility; (iii) magneto-phonon oscillations in ther-
moelectric power, etc.

In this chapter in Sect. 11.2.1, of the theoretical background, the EP has been
investigated in HD non linear optical semiconductors in the presence of a quan-
tizing magnetic field. Section 11.2.2 contains the results for HD III-V, ternary and
quaternary compounds in accordance with the three and the two band models of
Kane. In the same section the EP in accordance with the models of Stillman et al.
and Palik et al. have also been studied for the purpose of relative comparison.
Section 11.2.3 contains the study of the EP for HD II-VI semiconductors under
magnetic quantization. In Sect. 11.2.4, the EP in HD IV-VI materials has been
discussed in accordance with the models of Cohen, Lax, Dimmock, Bangert and
Kastner and Foley and Landenberg respectively. In Sect. 11.2.5, the magneto-EP
for the stressed HD Kane type semiconductors has been investigated. In
Sect. 11.2.6, the EP in HD Te has been studied under magnetic quantization. In
Sect. 11.2.7, the magneto-EP in n-GaP has been studied. In Sect. 11.2.8, the EP in
HD PtSb,, has been explored under magnetic quantization. In Sect. 11.2.9, the
magneto-EP in HD Bi,Tes has been studied. In Sect. 11.2.10, the EP in HD Ge has
been studied under magnetic quantization in accordance with the models of Car-
dona et al. and Wang and Ressler respectively. In Sects. 11.2.11 and 11.2.12, the
magneto-EP in HD n-GaSb and II-V compounds has respectively been studied. In
Sect. 11.2.13 the magneto EP in HD Pb;_,Ge,Te has been discussed. The last
Sect. 11.3 contains 52 open research problems for this Appendix.

11.2 Theoretical Background

11.2.1 The EP from HD Nonlinear Optical Semiconductors
Under Magnetic Quantization

The dispersion relation under magnetic quantization in non-linear optical materials
can be written as

B2 122 eBIE, (Eq +A.) Aj — AL

E) =S fi(E) + —2f4(E) £ ——L [ %0 E+E,+6+—L =+
y(E) 2 PE) 2m|*|f4( )+ —¢ [(Ego+§AL)H : Ty ]
(11.1)

where fy(E) = 50 (B + E)(E + Eg +30)) + 0(E + Eg + 5 A)) + §(Af — AD)]

Ey(Eg+A
and f,(E) = i (B + E) (B + E, +3A))]
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The (11.1) can be expressed as
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3 AL A s
P2 =24, 5+ 5 3, )

Therefore, the dispersion relation of the conduction electrons in HD non-linear
optical semiconductors in the presence of a quantizing magnetic field B can be
written following the methods as developed in Chap. 1 as

n*k2

zm‘*‘ - Ul,i(E7n711g) +iU2,ﬂ:(E7n7’7g> (1138’)
where
UuMMwaf‘?w+§fﬁﬂ+#ﬂ%¥ﬁ% 0
L oL
+ac” +bjc| — ab so(Esn) + _(1 _ﬂ [1+Erf(E/ng)]
i T T T g 2
— 0= 0= 2elp B + S ()
3 (8 - (IR L el )

heB 1. bjcy, . 0 Aﬁ - ZL
- HEDE E
n’lj (n 2 {(CHbL 2 6AH )ac(ﬂb 7'1g)

5ﬁﬁ;MEMHmWMMH¥%fMEM
elh oy Eo) £ 7 3 gy P Bt



http://dx.doi.org/10.1007/978-3-319-11188-9_1

406 11 Appendix A: The EP from HDS Under Magnetic Quantization

_ 1+ Erf(E/n,), ;1 a by
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C(Bi E,ng) = [ﬁ] exp(—u7) x >~ {eXp( 4 )}smh(p Dous = LEPE

p=1
and D(B;, E,n,) = [ exp(—u?)]
The EEM at the Fermi Level can be written from (11.3a) as

m’ (Ersup, n,n,) = mjU, . (Epgup,n, 1) (11.3b)

where Epppp is the Fermi energy in this case.

Therefore the double valued EEM in this case is a function of Fermi energy,
magnetic field, quantum number and the scattering potential together with the fact
that the EEM exists in the band gap which is the general characteristics of HD
materials.

The complex density-of-states function under magnetic quantization is given by

Ng(E) = Ngr(E) + iNp(E)

¢B iy (11.4a)
- N
e V2 Z 2\[ 2\[

where

WL (B0 ) + (Us 2 (E,n, ) + (U2 (., )
2

\/(Ul,i(Ean7 ng))2 + (U2,i(Eana 'lg))2 - (Ul,i(Evnvng))
2

X =

y:

and x’ and y’ are the differentiations of x and y with respect to energy E.
Therefore, from (11.4a) we can write
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eB 2mH a1

Ng(E) = —-—-) —
4n2h? = \/x

(11.4b)

and

eB 2mﬁ Moax </
y

Np(E) = —L5=> —
47T2h2 n:(]\/y

(11.4c)

The electron concentration under the condition of extreme carrier degeneracy is
given by

2m; np,

veB &=
ny = zgnzeth; [\/(Ul.i(EFBHD,nJ?g))z + (UZ,i(EFBHD7n>77g))2 + (U1 +(Ergup, n, ngl/z
(11.5)

The magneto EP in this case is given by
2 Pinax
ope-g,BkgT

Jg = ————=—Real part of F 11.6
B 2 p ; 0(11a) ( )

where

Ma = (ksT) "' [Brusp — (Epy + W — hv)]

where Ej; is the complex Landau sub-band energy which can be obtained from
(11.3a) by substituting k, = 0 and E = Ej;.

11.2.2 The EP from HD Kane Type III-V, Ternary
and Quaternary Semiconductors Under Magnetic
Quantization

(a) The electron energy spectrum in III-V semiconductors under magnetic
quantizaion is given by

n*k? eBhA
-+
2m. ~ 6mc(E + E; +3A)
(11.7)

E(E+E,)(E+E, + A)(E; +2A)
2

1
= (n+ <)hwy +
E(E+NE+E 3 T

The (11.7) can be written as
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Therefore the dispersion relation is given by
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The complex Landau energy E,pp; in this case can be obtained by substituting
k;=0and E = E,yp in (11.10a)
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The EEM at the Fermi Level can be written from (11.10a) as
mj[(EFBHD,n,ng) = mWUgi(EpBHD,n,ng) (1110[))

Thus the EEM is a function of Fermi energy, Landau quantum number and
scattering potential together with the fact it is double valued due to spin.
The complex density of states function under magnetic quantization is given by

NB(E) = NBRI(E) + iNpn (E)
fimay L : (11.11a)

T3

2h2

where

V WUs2(Enn)) + (s (En ) + (Use (B n,)

X1 = ) )
V(Um0 )) + (Va2 (Eyn, ) = (Us (., )
yi= 3

and x| and y| are the differentiations of x and y with respect to energy E.
From (11.11a) we can write

eB\/2m, 5 X

Nari (E) = Ve 11.11b

BRl( ) 47'[2h2 n:()\/x—l ( )
B 2 Fmax

and Ny (E) = =Y y (11.11¢)

A2 K2

The electron concentration under the condition of extreme degeneracy is given by

Mmax

\/“Z \/ (U3, (Epgup, n, ﬂg)) (U4,i(EFBHD7n77’Ig))2
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The magneto EP in this case is given by
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2
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where
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s = (ksT) ™' [Epusp — (Epa + W — hv)]

where Ep, is the complex Landau sub-band energy which can be obtained from
(11.10a) by substituting k, = 0 and E = Ej,

(b) Two band model of Kane

The magneto-dispersion law in this case is given by

1 1
=7,(E,n,) —(n+§)hwo ¥§g*uoB (11.13a)

where g* is the magnitude of the effective g factor at the edge of the conduction
band and u, is the Bohr magnetron.
The EEM at the Fermi Level can be written from (11.13a) as

m* (Erpup, Ny) = meYy(Ersap; 1) (11.13b)

Thus EEM is independent of quantum number.
The electron concentration under the condition of extreme degeneracy is given
by

Mmax

veB
=8 Ve Z (Us +(Ergup, 1, 1,))

2h2

=

(11.14a)

where

1 1,
—)hwo F =8 1B

Us +(Ersup, n,1g) = y2(Brsup, 1,) — (n + 2 )

The magneto EP in this case is given by

2 Tmax
_ ope-gBkpT
Jp = T HEZO Fo(n34) (11.14b)

where

Naa = (ksT) "' [Epmpp — (B3 + W — hv)]

where E;3 is the Landau sub-band energy which can be obtained from (11.13a) by
substituting k, = 0 and E = E3
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(c) Parabolic Energy Bands

The magneto-dispersion law in this case is given by

R2k?
2m,. -

1 1,
13(Estig) = (n+ S)how F 28" 1B (11.15a)
The EEM at the Fermi Level can be written from (11.15a) as

m*(Eppup, ) = me)s(Ersup, 1) (11.15b)

Thus the EEM in heavily doped parabolic energy bands is a function of Fermi
energy and scattering potential whereas in the absence of band-tails the same mass
is a constant quantity invariant of any variables.

The electron concentration under the condition of extreme degeneracy is given
by

Nmax

1
Ve Z Us,+ (Erprp, n,1,))? (11.16a)

gVeB
2 h2

where Us - (Ergup, n, 1) = 73 (Ersap, 1) — (n +3)hoo F 58" 1B
The magneto EP in this case is given by

Nmax

> " Fo(naa) (11.16b)
n=0

ope? gBkgT

J =
B 222

where 1,4 = (kgT)™ ' [Erusp — (ELs + W — hv)] where Ey4 is the Landau sub-band
energy which can be obtained from (11.15a) by substituting k, = 0 and £ = Ej4

(d) The model of Stillman et al.

The (1.107) under the condition of band tailing assumes the form

e [fin — \/(?11)2 — dt2y3(E, m,)]

— 11.17
211 ( )

Therefore the magneto dispersion law is given by

k2 = Us(E,n,n,) (11.18a)
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[t —+/ (in)* 45273 (E:n, )]
[ 11 uztlz 1273 %(Yl +%)]

The EEM at the Fermi Level can be written from (11.18a) as

where U7(E,n,n,) =

2

= U3 (Egsup, n, 1) (11.18b)

m*(Ergup, 1) = )

The electron concentration under the condition of extreme degeneracy is given
by

gveB Mmax
7 Z; (U1(Erup, n,1,))

l—

(11.19a)

ny =

The magneto EP in this case is given by

Tmax

ZFo(ﬂsA) (11.19b)
n=0

ope’g,BkgT

J =
B 212>

where

nsa = (ksT) ™' [Epusp — (Ers + W — hv)]

where Ejs is the Landau sub-band energy which can be obtained from (11.18a) by
substituting k, = 0 and E = Ej5

(e) The model of Palik et al.

To the fourth order in effective mass theory and taking into account the inter-
actions of the conduction, light hole, heavy-hole and split-off hole bands, the
electron energy spectrum in III-V semiconductors in the presence of a quantizing

magnetic field B can be written as

W1 m, 1 L
2) “hag + o :|:4(m ) ha)ogoztk3ooc(n+2)( ha)o) + k310 haw( .

. 1 hzkg
+ k30| Thayg Vl—‘ri +2m <11.20>

E=J3+(n+ <)
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where
1 2
I = g0 [(1 =)/ 2 +107] -4,
J3 = { B(l —xu)z —-(2 JFX%I)} 2+xn)-yn +%(1 7)&1)(1 toan)(l +y11)}7

=2l =[] [5]) -esw-a

3 1-— 2
{ <2+—x11 +x%1> w —gyu},

2 (2+X11)2

(1—)611) 3 (1—y11) 2
k3 = (1 — — 2+- o) —= 21—
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1 1 2 A _ me

ki = — Kl +2X%1>/<1 +2X11>] (I =yu)"xu=[1+ (E:)] Yand yy; = o

Under the condition of heavy doping, the (11.20) assumes the form

J3ak? + I35 £ (n)k2 + J36,4(n) — 73(E,nm,) =0 (11.21)

where
Jss = aksy (2 2m,)?, Jas +(n) = [% + aks hwo % + aksahing % (n+ %)},

1 m, . 1 1
J36,+ (n) = |J51 £ I (m—o)hwogo + k30cx(hwo)2(n + E) + k320€[(hw0)(n + E)]2:|

The (11.21) can be written as
k2 = Ass +(E,n,n,) (11.22a)

where

Ass +(E,n,n,) = (203) " {—Jasi(n) + \/(Jss,i(”))z — 4J34[J36.(n) — 73 (E, )]

The EEM at the Fermi Level can be written from (11.22a) as

2

N h
m (Ergup,n,1y) = 7A§5,i(EFBHD, n,1,) (11.22b)
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Thus, the EEM is a function of Fermi energy, Landau quantum number and the
scattering potential.
The electron concentration is given by

(Yaarip (Erprp, 1, ) + Zsanp (Ersap, 1, 11,)] (11.23a)

where  Yiaup(Erpsup, n, 1) = [\/A35HD,+(EFBHD7 n,n,) + \/ASSHD,— (Ersup; 1))

50
and Zssup (Ersrp, n, ) = 3 Le(r)[Yanp(Erpup, n, 1)
y=1

The magneto EP in this case is given by

2 Timax
dpe gVBkBT
Jp=——F"55— ZFO(%A) (11.23b)
2’ =

where

Nea = (ksT) ™' [Brusp — (Es + W — hv)]

where Ej¢ is the Landau sub-band energy which can be obtained from (11.22a) by
substituting k, = 0 and E = Ej.

11.2.3 The EP from HD II-VI Semiconductors
Under Magnetic Quantization

The magneto dispersion relation of the carriers in heavily doped II-VI semicon-
ductors are given by

2¢B 1 2eB 1.1
13(Eong) = ay = (n +3) + bok? £ Zg[—— (n + )]’ (11.24)
h 2 < h 2
The (11.24) can be written as
k2 = Usw(E,n,n,) (11.25a)

— 2eBd, 7 e 1
where UR:E(Evnv ”g) = (bé)) 1[?3 (E7 ng) T . (I’l + %) + /“0[% (l’l + %)]2]
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The EEM at the Fermi Level can be written from (11.25a) as

2

h
m*(Epup, 1,) = > Us.. (Epsrp, 1, 1) (11.25b)

The electron concentration is given by

B eBgv Nmax
T 2m2h &
n=0

no [Yasup(Ersrp, n, 1) + Zasup (Ersap, n,11,) | (11.26a)

where  Y3spp(Ergup, n,1,) = {\/US-&-(EFBHDana M) + \/US—(EFBHDana Wg)J and
S0

Z3s 1 (Ersrp, n, ) = > Le(r)[Yas up (Ersap, 1, 1,)]
r=1

The magneto EP in this case is given by

2 Tmax
ope~g,BkgT
= W;Fo(nm) (11.26b)

B

where

Ma = (ksT) ' [Erusp — Bz + W — hv)]

where E,; is the Landau sub-band energy which can be obtained from (11.25a) by
substituting k, = 0 and E = E7.

11.2.4 The EP from HD IV-VI Semiconductors
Under Magnetic Quantization

The electron energy spectrum in IV-VI semiconductors are defined by the models
of Cohen, Lax, Dimmock and Bangert and Kastner respectively. The Magneto EP
in HD IV-VI semiconductors is discussed in accordance with the said model for the
purpose of relative comparison.

(a) Cohen Model
In accordance with the Cohen model, the dispersion law of the carriers in IV-VI

semiconductors is given by

:i p? _o&Epi pf,(l-i—ocE)+ apy
2m;  2ms  2m) 2my dmym

E(1 + oF) (11.27)
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where p; = hk;, i = x,y,z, my,mp, and mj are the effective carrier masses at the
band-edge along x, y and z directions respectively and m)j is the effective-mass
tensor component at the top of the valence band (for electrons) or at the bottom of
the conduction band (for holes).

The magneto electron energy spectrum in IV-VI semiconductors in the presence
of quantizing magnetic fieldB along z-direction can be written as

2
WK
2m3
(11.28a)

1 1 3 1
E(1+oE) = <n + 2) hoo(E) £ 58" B + 8oc<n2 +n +2)h2w2(E)

el 1/2
where w(E) = \/%—m. [1 + ocE( - )} .
2

Therefore the magneto dispersion law in heavily doped IV-VI materials can be
expressed as

h*k?
—=L = U16i(E n 17g) (1128b>

2m;

where

Use s (E ) = (B (+1) heB 1 5 3( o +1) hieB \?
n — |v —(n —
16,£ (L5 1, 1, VPASTR/ P XN + 2g Ho 8 27\ /mimy

C(E )g( +1) heB 1_m2
735 Mg) 15 VTS mim; m)
2 e 2 m
20 s () (1)

The EEM at the Fermi Level can be written from (11.28b) as
m’s (Ergup, 1, 1g) = m3U'g 4 (Erprp, 1, 1,) (11.28¢)

Thus, the EEM is a function of Fermi energy, Landau quantum number and the
scattering potential.

The carrier statistics under the condition of extreme degeneracy in this case can
be expressed as

Nmax

vm Z Uio,+(Erpup; 1, 1g))?

_& eB
22

l—

(11.29a)



11.2  Theoretical Background 417

The magneto EP in this case is given by

2 Mma
dpe gVBkBT
Jp=——F55— E Fo(1s4) (11.29b)
2n°h =

where

Nsa = (ksT) ™' [Bpusp — (Es + W — hv)]

where E;g is the Landau sub-band energy which can be obtained from (11.28b) by
substituting k, = 0 and E = E;g

(b) Lax Model

In accordance with this model, the magneto dispersion relation assumes the form

272

1 h 1
E(1 E) = —)h E)+—+—puyg¢"B 11.30
(14 2) = (n 4+ 3o () + 5 5 g (11.30)

where wg3(E) = \/%
The magneto dispersion relation in heavily doped IV-VI materials, can be
written following (11.30) as

212

1 1,
12(E, 1) = (1 + 5)hos (E) + 2m; 28 B (11.31)
(11.31) can be written as
h2k2
Wi = Ui7,+(E,n,n,) (11.32a)

where

1

1 *
U17,i(Ea n, ng) = VZ(Ea ng) - (n + 5)7’3(003(]3) + 2g :uOB
The EEM at the Fermi Level can be written from (11.32a) as

m* (EFBHD; I/[g) =m3 U;7,i (EFBHD; n, Hg) (1 132b)
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The electron concentration under the condition of extreme degeneracy can be
written as

Nmax

Vvm Z Ui7,+ (Ergup, n, ng))% (11.33a)

gveB
22

The magneto EP in this case is given by

”mwx

Ope ngkB
== ZFO Hoa) (11.33b)

where

Noa = (ksT) ™' [Brump — (Bro + W — hw)]
where E;g is the Landau sub-band energy which can be obtained from (11.32a) by
substituting k, = 0 and E = E;9
(c) Dimmock Model
The dispersion relation under magnetic quantization in HD IV-VI semicon-

ductors can be expressed in accordance with Dimmock model as

2eB 1.7 1 w1 1
72(E,ng) + oy3(E, ﬂg)T (n+ 2) > (m; m—t_> + oy (E, ;/Ig)x7 <—+ - —>

my oy

I Y [h“k;‘ KRRk h“kf}
B 2m; ' 2m- 4

2m: - 2my 2m; 2m; mym  dmymt o dmmp o dmym

ZeB( +1);12 1 Ly 7 1
= —(n _— _—
h 272 \mf m; 2 mymy

t

4 2 4 4 4
Ff +<2eB( . )> { th, . h+eBh](n+%)+ ;i +x2]

2mm;h o 2mm, 4m; m,

(11.33¢)

where x = kz2
Therefore the magneto dispersion relation in heavily doped IV-VI materials,
whose unperturbed carriers obey the Dimmock Model can be expressed as

k2 = Up(E,n,n,) (11.34)
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o=

where
U17(E n ”g) [2179]71 [—Q9(E,”,’7g) + [Q§(Ean7ng) +4P9R9(E n ng)] :|
(11.35)
okt
P9 = dm- +7619(E n, ng)
h2 1 1. oRi’eB 1, 1 1 1 1
= (— 4+ — —_ E, —
3 G ) Ty G ) — s ) )
and
1 1 1
Ro(B.n,ng) = [12(E.11,) + 0eBys(Bone) (n + ) — )
mS  m,
) (11.36a)
HeB(n + ) (o + ) — 2 [eB(n + 2]
- n+-)(—+—)— eB(n
20mr om7t mym 2
The EEM at the Fermi Level can be written from (11.34) as
2
(11.36b)

m*(Erprp, n,1,) = > Uy, (Ergup, n,1,)

Thus, the EEM is a function of Fermi energy, Landau quantum number and the

scattering potential.
The electron concentration under the condition of extreme degeneracy can be

written as
(11.37a)

g;eB Tmax
ng = 7;2h (U17(Erup, n,1))

Ol

n=0

The magneto EP in this case is given by
2 Mmax
tpe gVBkBT
————5— ) Fo(nioa) (11.37b)

B =
2m2H? —
n=0

where
Moa = (ksT) ™' [Epmpp — (Epio + W — hv)]

where Ej g is the Landau sub-band energy which can be obtained from (11.34) by

substituting k, = 0 and E = Ey g
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(d) Model of Bangert and Kastner

In accordence with this model [73], the carrier energy spectrum in HD IV-VI
semiconductors can be written following (3.68) as

k2 k;
s + =1 11.38
p%l(Evng) p%Z(Evng) ( )
where
1 1
pll(Evrlg) =T P12(E,’7g) =T >
SI(E7 ﬂg) SZ(E7 '/Ig)
1R’ .
Si(E,ng) = [270(E,n,)] [E—{cl(ocl,E,Eg) —iDy (o, E, Eg) |
g
S. 2
+ % {e2(0a, E, E) — iDy (02, E, Eg) }
+ %’) {es3(03,E, Eg) — iD3 (03, E, Eg) }]
and
_12(A)? _
SZ(E7 ng) = [2’))0(Ea ng)} [ E {Cl(ahEa ng) - lDl(O“?E’ ng)}
g
S A2
+ (S * Q) {C3(OC35E’ ng) - iD3(OC37Ea ng)}]

"
A

Since S;(E,n,) and S>(E,n,) are complex, the energy spectrum is also complex
in the presence of Gaussian band tails.

Therefore the magneto dispersion law in the presence of a quantizing magnetic
field B which makes an angle 0 with k, axis can be written as

k2 = Uis(E,n,n,) (11.39a)
where

Uis(E,n,n,) = [pi,(E,n,) sin> 0 + p1,(E, n,) cos” 0]
[ZeB 1

S0+ 3) [ (P Enpin(En) " {oh (Eony) sin® 0

+p1,(E, n,) cos® 0 }2”


http://dx.doi.org/10.1007/978-3-319-11188-9_3

11.2  Theoretical Background 421

The EEM at the Fermi Level can be written from (11.39a) as

2

m* (EFBHDa n, ng) = ? Real part of [Ulg(EpBHD7 n, 113)]/ (1 139b)

Thus, the EEM is a function of Fermi energy, Landau quantum number and the
scattering potential and the orientation of the applied quantizing magnetic field.

The electron concentration under the condition of extreme degeneracy can be
written as

Mmax

ny = n, )" (11.40a)
n= O
The magneto EP in this case is given by
2 Mmax
ope”g,BkgT
Jp =—————— Real part of » F 11.40b
B PPy p ; o(M114) ( )

where
s = (ksT) ' [Ermsp — (Ep1r + W — hw)]

where Ej;; is the complex Landau sub-band energy which can be obtained from
(11.39a) by substituting k, = 0 and E = E; 1,

() Model of Foley and Langenberg
The dispersion relation of the conduction electrons of IV-VI semiconductors in

accordance with Foley et al. can be written as [74]

E+% =E_(k) + [[E+(k) +E

5 2] + P1k; + Pik 2]k (11.41)

2
where E (k) = i E_(k) = h kg + 5= represents the contribution from the

2m
interaction of the conductlon and the valence band edge states with the more distant
bands and the free electrons term, -1- = L =1

1

1 1 1 1

Following the methods as given in Chap. 1, the dispersion relation in heavily
doped IV-VI materials in the present case is given by

2 2
(B + o] n2k3+h2k§ _ h2k§+h2k§ +E_§0
SR D) 2my 2my 2mi 2mp| 4

(11.42)
Rk hzkg
—5 4

+ +
2m7 2mH

2 2 1,2
+ Eg, + P2 + PLK
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Therefore the magneto-dispersion relation in heavily doped IV-VI materials can
be written as

E; heB, 1 Ix Ey fieB(n+3)
2 g 2 2
s (E —= + E 0 (E — )4+ —17 — 2y (E it L4
13(Esng) + -+ Egys( ,m,)ﬂmI ("+2)+sz] 3 (E,ne) + 511 - ]
heB(n+3)  Wx, heB, 1 Rx 2 2B, 1
=2+ HE[ T+ Pix+ P >
e +2mﬁ} FELFO) o WH rHPL ()
(11.43)

where k2 =X.
Therefore the magneto dispersion relation in IV-VI heavily doped materials,
where unperturbed carriers follow the model of Foley et al. can be expressed as

k= Ug(E,n,ny) (11.44a)

where

l—

]

Uio(E,n,n,) = 2po1]) ' [~ qo1 (E,n, n,) + {45, (E,n,n,) + 4poiRo1 (E,n,n,) }

/| 1
Po1 Zz[ﬁ——z]» 6191(E»n»'1g)
3(m| ) (mu ) 3p 2 ( 1) 2
h’eB 1 WE, h°eB(n+5 h E
=[——=m+5) +pf+ —+—(1i(E,ny) + )]
my W 2 I 2m H+ mLmW zn 3 8 2
2heB E 1
R91(Ev ngan) = [V%(Ev Wg) +Egy3(E7 ”g) - m- (’))3(E7 '/’g) +73)(n+5)
1
heB 1 2eB 1
—E,—- - P -

The EEM at the Fermi Level can be written from (11.44a) as

2

m*(Eppup, 0, 1,) = ?U;Q(EFBHDana’/Ig) (11.44b)

Thus, as noted already in this case also the EEM is a function of Fermi energy,
Landau quantum number and the scattering potential.

The electron concentration under the condition of extreme degeneracy can be
written as

Nmax

Z (U19(EFBHD7 n, r’g))

n=0

gveB
n2h

=

ngp = (11453)
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The magneto EP in this case is given by

2 Pmax
dpe~ g BkBT
Jp = 7; 3 E Fo(1124) (11.45b)
2n%h =

where

Moa = (ksT)”'[Epupp — (B + W — o)

where Ej |, is the Landau sub-band energy which can be obtained from (11.44a) by
substituting k, = 0 and E = Ej 1.

11.2.5 The EP from HD Stressed Kane Type Semiconductors
Under Magnetic Quantization

The dispersion relation of the conduction electrons in heavily doped Kane type
semiconductors can be written following (1.206) of Chap. 1 as

k> K K2
Py e
q (E, ’1g) bH(E’ ’7g) CH(E’ Mg)
where
1 1 1
aH(E,ng) = bH(E, ng) = —————and ¢| (E, ng) =
(11.46)

The electron energy spectrum in heavily doped Kane type semiconductors in the
presence of an arbitrarily oriented quantizing magnetic field B which makes an
angle &, f, and 7, with k,, k, and k, axes respectively, can be written as

(K))* = Uyt (E,n,1,) (11.47a)
where Uy (E,n,n,) = L(En,)[1 — I(E.n,n,)]

L(E,n,) = [[an (E,n,))” cos a; + [by1(E,n,)]” cos® By + [c11(E, n,)]” cos® 7]
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and

2eB 1

L(E,n,n,) = == (n +5)lai (B, ng)bii (B, ng)]en (E, 1)) [l (E. )]

The EEM at the Fermi Level can be written from (11.47a) as

2

. h
m*(Eppup, 0, 1,) = > Uy, (Epsup, n, 1) (11.47b)

From (11.47b) we observe that the EEM is a function of Fermi energy, Landau
quantum number, the scattering potential and the orientation of the applied quan-
tizing magnetic field.

The electron concentration under the condition of extreme degeneracy can be
written as

Mmax

gveB 1
=" ; (U1 (Erup, n,1,))? (11.48a)
The magneto EP in this case is given by
2 Nmax
ope-g,BkgT
Jp=—7"5—) F 11.48b
B n? L 0(1134) ( )

where

Miaa = (ksT)"'[Epupp — (Buis + W — )]

where Ej 3 is the Landau sub-band energy which can be obtained from (11.47a) by
substituting k, = 0 and E = E; 3

11.2.6 The EP from HD Tellurium Under Magnetic
Quantization

The magneto dispersion relation of the conduction electrons in HD Te can be
expressed following (1.231) of Chap. 1 as

I = Usg (E,n,n,) (11.49a)
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where

_ eB 1
Up+(E.nn,) = (2¥]) 7 [{2935(E.n,) V1 + P35 — 471, - (3}

—{¥3+ 4%, ¥35;(E )
8eB 1

+7(" +§) P22y,

The EEM at the Fermi Level can be written from (11.49a) as

. n
m’, (Eppup,n,1,) = EUAH(EFBHDJ% Mg) (11.49b)
Thus from (11.49b) we note that the EEM is a function of three variables namely
Fermi energy, Landau quantum number and the scattering potential.
The electron concentration under the condition of extreme degeneracy can be
written as
B gveB Mmax

1
= 2nth 2 (U2, (Epup, n,1,))? (11.49¢)

no

The magneto EP in this case is given by

2 Mmax
ope-g,BkgT
B="5 5—0 Fo(f14a) (11.49d)

where
Maa = (ksT) ™' [Epupp — (Epia + W — ho)]

where E; 4 is the Landau sub-band energy which can be obtained from (11.49a) by
substituting k, = 0 and E = Ej 4.

11.2.7 The EP from HD Gallium Phosphide Under Magnetic
Quantization

The magneto dispersion relation in HD GaP can be written following (1.248) of
Chap. 1 as

k2 = Us3(E,n,n,) (11.50a)
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where

_ eB 1
Uss(E, m,m,) = (26%) " [{293(En)b + ¢ = 2Db — dab—(n + 3)}
8B 1
+{[P + 4beys (E,n,) + 4D°D? — 4cDb) — % (n+5)(2abD + 413 (E. n,)b%a

+abe — 26%ay (B, n,) — b*e)} 7

The EEM at the Fermi Level can be expressed from (11.50a) as

2

. h
m* (Eppin, n,0g) = = Uss (Eesap, 1, 1) (11.50b)

Thus, from (11.50b) it appears that the EEM is the function of Fermi energy,
Landau quantum number and the scattering potential.
The electron concentration under the condition of extreme degeneracy can be
written as
_ geB
o = n2h &
=

1
(Us3(Erup, n,1,))? (11.50c)
0

The magneto EP in this case is given by

2 Nmax
ope-g,BkgT
jB - 72 B E FO('/IISA) (11.50d)
2n°h =

where

Msa = (ksT) "' [Epmpp — (BLis + W — hv)]

where E; 5 is the Landau sub-band energy which can be obtained from (11.50a) by
substituting k, = 0 and E = Ej ;5.

11.2.8 The EP from HD Platinum Antimonide

Under Magnetic Quantization

The magneto dispersion relation in HD PtSb, can be written following (1.270) as

k2 = Uwu(E, n,n,) (11.51a)
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where

1
Uss(Ean,ng) = 5 [Ty (B, ng) + /T3 (B, ng) + 4T T (B,

2Ty
2eB 1
T (E, n,ng) = Ts1(E, ng) — T3 - (n+ E) and T72(E, n, ng)
2eB 1
= [To1(E.ng) +——=(n +5)To1 (E, g )]

The EEM at the Fermi Level can be written from (11.51a) as

" 1
m’ (Ersp, 1, 1g) = — Uy (Esup, n, 1) (11.51b)
Thus, from the above equation we infer that the EEM is a function of Landau
quantum number, the Fermi energy and the scattering potential.

The electron concentration under the condition of extreme degeneracy can be
written as

V@B Nmax |
ho = £ 2 (Uaa(Erpup, n,1g))? (11.52a)
wh ‘=
The magneto EP in this case is given by
2 Mmax
ope”g,BkgT
Jp=—2 7 F 11.52b
B et L 0(1164) ( )

where 1,64 = (kBTfl [Erusp — (ELie + W — hv)]
where E} ¢ is the Landau sub-band energy which can be obtained from (11.51a)
by substituting k, = 0 and E = E 6.

11.2.9 The EP from HD Bismuth Telluride Under Magnetic
Quantization

The magneto dispersion relation in HD Bi,Te; can be written following (1.285) as

Kk, = Uss(E,n,,n) (11.53a)
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where

12(E,ng) — (n+3) 51
Uss(E,ng,n) = 2(E1g) 7( 2, and M3 = o

(]

7 1
(22033 — —5~)
The EEM at the Fermi Level can be written from (11.53a) as

2

h
m*(Epup; 1,) = 5 Uys(Ersrp, n,1,) (11.53b)

The electron concentration under the condition of extreme degeneracy can be
written as
B gve B Mmax

1
np = 7T2h (U44(EFBHD; n, ng))z (11543)

0

The magneto EP in this case is given by

2 Mmax
ope-g,BkgT
Jp=—0°r—"° F, 11.54b
B Pyy ;:0 0(m7a) ( )

where
Miza = (ksT)™' [Epupp — (Ei7 + W — o)

where E; 17 is the Landau sub-band energy which can be obtained from (11.53a) by
substituting k, = 0 and E = E; 7.

11.2.10 The EP from HD Germanium Under Magnetic
Quantization

(a) Model of Cardona et al.

The magneto dispersion relation in HD Ge can be written following (1.300) as
k> = Usl(E, N> 1) (11.55a)

where

*

Zm‘

E, [E2 E,h2eB 1
U46(E7 n, '/Ig) = h—zl [V3 (E7 ;/Ig) + £ 7 12

> by m )l
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The EEM at the Fermi Level can be written from (11.55a) as

2

m*(Epprp,n,Mg) = —

) Uss(Ersrp, n, 1) (11.55b)

From (11.55b) it appears that the EEM is a function of Fermi energy and Landau
quantum number due to band non-parabolicity.

The electron concentration under the condition of extreme degeneracy can be
written as

veB Fmax |
no =4 > (Uas(Erpup; n,1g))? (11.56a)
m’h —
The magneto EP in this case is given by
ope’g,BkpT &%
Jp = BT ZFO (M184) (11.56b)

where 74 = (kBT)_1 [Erusp — (ELis + W — hv)]where Ej ;g is the Landau sub-
band energy which can be obtained from (11.55a) by substituting k, = 0 and
E=Ep;

(b) Model of Wang and Ressler

The magneto dispersion relation in HD Ge can be written following (1.321) as
ks = Ui (E,n,n,) (11.57a)

where

U (B.non) = (i) 1 = 3s(n-+ Yo — (00— 4B}, o
B
:e—*and

0(n) = [1 + (35){(n + )th} — 2as5(n + )th) + 4ag(n + l)hau
— 4860 — 43673 {(n + g)hwi} ]

The EEM at the Fermi Level can be written from (11.57a) as

2

5 Uy (Eprp, n,1,) (11.57b)

m*(Erprp,n,Ng) = >
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From (11.57b) we note that the mass is a function of Fermi energy and quantum
number due to band non-parabolicity.

The electron concentration under the condition of extreme degeneracy can be
written as

Nmax

Z (Us7(Erup, 1, ﬂg))% (11.58a)
n=0

gveB
no =
0T 2

The magneto EP in this case is given by

2 Mina
e gBkgT
Jp = I Tsa nE:O Fo(119) (11.58b)

where

Moa = (ksT) ™' [Epmpp — (Epio + W — hv)]

where Ej 9 is the Landau sub-band energy which can be obtained from (11.57a) by
substituting k, = 0 and E = Ej 0.

11.2.11 The EP from HD Gallium Antimonide Under
Magnetic Quantization

The magneto dispersion relation in HD GaSb can be written following (1.338) as

K = Uss(E, n, ) (11.59)
where
—2eB 1 B B OClO(E/ )2
Uss(E,n,n,) = [ 7 (n+ E) + (20(%) 1[{2a9y§(E, fg) + a9E;;0) + Tgo}
— 0(2 (E/ )4 B OCQO(l()(E/ )3
— {ag(E;o)z + % + o901075 (E, ’7;;)(152,0)2 4 —&’0}1/2]],
h [
og =——andoy==—(———

2my E;,;o me  mg
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The EEM at the Fermi Level can be written from (11.59a) as

2

h
= = Uis(Erpup,n,1,) (11.59b)

m" (Erprp; 1,) 5

The electron concentration under extreme degeneracy can be written as

VeB Mmax f
gnzh Z (Uss(Erup, n,1,))? (11.60a)
n=0

ng =

The magneto EP in this case is given by

Nmax

OC()e‘ 8 BkBT
Jg = n;hz ZFO Mhoa) (11.60b)

where

Maoa = (ksT)™' [Epupp — (Erao + W — hv)]

where E;, is the Landau sub-band energy which can be obtained from (11.59a) by
substituting k, = 0 and E = E; 5.

11.2.12 The EP from HD II-V Semiconductors
Under Magnetic Quantization

The dispersion relation of the holes are given by [75-77]

E = 01K2 + 022 + 05k + Suk F [{05K2 + 0k? + 07k2 + 35k} + G3k2 + AZ)?
+ A
(11.61)

where k,, k, and k; are expressed in the units of 10" m™,

1 1 1 1

0, = E(aler) 92:§(a2+b2),93:§(a3+b3),54:§(A+B),
1 1 1 1

0s :E(al —by), Os 25(612—52% 0, 25(03 b3), 05 :E(A—B),

a;i(i=1,2,3,4),b;,A, B, Gy and A3 are system constants
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The hole energy spectrum in HD II-V semiconductors can be expressed fol-
lowing the method of Chap. 1 as

73(Bang) = 01k7 + 02k + 03K + Saky F [{05k; + Ock; + 07K2 + 05k, }* + G3k;
1
+ A3 + As

(11.62)
the magneto dispersion law in HD II-V semiconductors assumes the form

ky = Uso+(E,n,n,) (11.63a)
where

Usg +(B,n, 1) = [Bsy3(B, ) + 36.2(n) £ [73(E, 1) + 73(B, ) lag . (n) + Lo s (m)],

L33+ (n)

0> 2\ -1 2 2
Ls = ————, L. = ey = (40 40,133 + 805151 . — 013, s
35 ) 36.+(n) 20— 0 8.+ (1) = (405)" [402133 . (n) hI1,+(n) — 05131+ (n)]
I}gi (n) = (492)71 [1§3,L<”) + 402134.i (n) - 40;134: (n)],133i(n) = [G% + 205132(}1) - 262131_i (n)],
) . ! &2 ! 2
Las(n) = [I5 . (n) + A3 — Ly (n)], By (n) = [(n + 5)5‘031 ~ a0, £ A3], In(n) = [(n+ 5)7““32 - m]»
eB eB " I 2 "
= ) = M3y =— M3 =— ,M33 =— and M3y = —.
3] M M , 032 \/M33M34’ 31 20,’ 32 20, 33 205 an 34 20,

The EEM at the Fermi Level can be written from (11.63a) as

" ?
mi(EFBHD7n717g) = ?U:@,i(EFBHDan?ng) (1 163b)
From (11.63b) we note that the EEM is a function of Fermi energy, Landau
quantum number and the scattering potential.
The electron concentration under extreme degeneracy can be written as
B gveB Mmax
- 2n2h g

no (U49¢ (EFBHDan, ﬂg))i (1164&)

The magneto EP in this case is given by

2 Tmax
dpe~ g BkBT
Jp = # E FO(nzlA) (1164b)
2n%h =

where
Myia = (ksT) ™' [Epmpp — (Epo1 + W — hv)]

where Ej,, is the Landau sub-band energy which can be obtained from (11.63a) by
substituting k, = 0 and E = Ej5;.
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11.2.13 The EP from HD Lead Germanium Telluride
Under Magnetic Quantization

The dispersion relation of the carriers in n-type Pb,_,Ga,Te with x = 0.01 can be
written following Vassilev [78] as

[E — 0.606k; — 0.0722k7] [E + E; + 0.411k; + 0.0377k7] = 0.23k. + 0.02k>

+ [0.06E, + 0.061k; + 0.0066k> |,
(11.65)

where E,(= 0.21 eV) is the energy gap for the transition point, the zero of the
energy E is at the edge of the conduction band of the I" point of the Brillouin zone
and is measured positively upwards, k,, k, and &, are in the units of 10° m™!

The magneto dispersion law in HD Pb;_,Ge,Te can be expressed following the
methods as given in Chap. 1 as

200(E7 ’7;;)
L+ Erf(E/n,)

)} - 0'4263 (n+ %) 10.02x

1
+ 73(E, ng)[ O345x703903( 3

1

_ B 1 2B, 1)}
+ {0.0615&, +0.122 % (n+3)+ 0.0066x} (% (n+ E))

+ {Z + 0'8;233 (n+ %) + 0.377x} {1'21283 (n+ %) + 0.722;;}
(11.66)
The (11.66) assumes the form
k2 = Uso+(E,n, Ng) (11.67a)

where
— 1
Uso+ (Ea n, Wg) = (21710) : [qu(Ea n, ”Ig) - [Q%O(Ev n, ”g) + 4p10R10,$ (Ea n, ng)] 2:|

l—

2¢B 1
p1o = (0.377 x 0.722), q10(E, n, ;) = [0.02 4 0.345y;(E, n,) £ 0. 0066(7( n+ 5))

1.212¢B 1 _ eB 1
; (n+ 5) +0.722[Eg, + 0.822— (n + 2)]]

0.377
+ % TR

and

200(E, n,)

R E.nmn,) = I S VA =

=B ) = pope ) i

2eB 1. _ eB 1., 1.212¢B 1 0.46¢B
2

(03— (e 08222 (g 1) P22 ]y O n+%].

1 — eB 1
(B ) By — 0390 (n-+ )]  (0.06By, +0.122 (n+2)
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The EEM at the Fermi Level can be written from (11.67a) as

2
m’(Eppup, 1,) = > Uso 5 (Erprp, 1, 1) (11.67b)
Thus from (11.67b) we note that the EEM is a function of the Fermi energy,
Landau quantum number and the scattering potential.
The electron concentration under extreme degeneracy can be written as

Mmax

gveB

1
ny = 2 2 (Uso; (Ergup, n, ng))z (11.68a)
The magneto EP in this case is given by
ope?g,BkpT &
Jp =20 izth ZFO o) (11.68b)

where

Nya = (ksT) ™' [Epupp — (Epoa + W — hv)]

where E;,, is the Landau sub-band energy which can be obtained from (11.67a) by
substituting k, = 0 and E = E;»,.

11.3 Open Research Problems

(R.11.1) Investigate the EP in the presence of an arbitrarily oriented quantizing
magnetic field for all the materials as given in problems in R.1.1 of
Chap. 1 in the presence of the Gaussian type band tails.

(R.11.2) Investigate the EP in the presence of an arbitrarily oriented quantizing
magnetic field in HD nonlinear optical semiconductors by including
broadening and the electron spin. Study all the special cases for HD
[I-V, ternary and quaternary materials in this context.

(R.11.3) Investigate the EPs for HD IV-VI, II-VI and stressed Kane type
compounds in the presence of an arbitrarily oriented quantizing mag-
netic field by including broadening and electron spin.

(R.11.4) Investigate the EP for all the materials as stated in R.1.1 of Chap. 1 in
the presence of an arbitrarily oriented quantizing magnetic field by
including broadening and electron spin under the condition of heavily
doping.
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(R.11.5)

(R.11.6)

(R.11.7)

(R.11.8)

(R.11.9)

(R.11.10)

(R.11.11)

(R.11.12)

(R.11.13)

(R.11.14)

(R.11.15)

(R.11.16)

(R.11.17)

(R.11.18)

Investigate the EP in the presence of an arbitrarily oriented quantizing
magnetic field and crossed electric fields in HD nonlinear optical
semiconductors by including broadening and the electron spin. Study
all the special cases for HD III-V, ternary and quaternary materials in
this context.

Investigate the EPs for HD IV-VI, II-VI and stressed Kane type
compounds in the presence of an arbitrarily oriented quantizing mag-
netic field and crossed electric field by including broadening and
electron spin.

Investigate the EP for all the materials as stated in R.1.1 of Chap. 1 in
the presence of an arbitrarily oriented quantizing magnetic field and
crossed electric field by including broadening and electron spin under
the condition of heavy doping.

Investigate the 2D EP in QWs of HD nonlinear optical, III-V, II-VI,
IV-VI and stressed Kane type semiconductors.

Investigate the 2D EP for HD QWs of all the materials as considered in
problems R.1.1.

Investigate the 2D EP in the presence of an arbitrarily oriented non-
quantizing magnetic field for the QWs of HD nonlinear optical semi-
conductors by including the electron spin. Study all the special cases
for III-V, ternary and quaternary materials in this context.

Investigate the EPs in QWs of HD IV-VI, II-VI and stressed Kane type
compounds in the presence of an arbitrarily oriented non-quantizing
magnetic field by including the electron spin.

Investigate the 2D EP for HD QWs of all the materials as stated in
R.1.1 of Chap. 1 in the presence of an arbitrarily oriented magnetic
field by including electron spin and broadening.

Investigate the EP for all the problems of R.1.1 under an additional
arbitrarily oriented electric field in the presence of heavy doping.
Investigate the EP for all the problems of R.1.1 under the arbitrarily
oriented crossed electric and magnetic fields in the presence of heavy
doping.

Investigate the 2D EP for all the problems in R.1.1 the presence of
finite potential well under the conditions of formation of band tails and
applied external parallel magnetic field.

Investigate the 2D EP for all the problems in R.1.1 the presence of
parabolic potential well under the conditions of formation of band tails
and applied external parallel magnetic field.

Investigate the 2D EP for all the problems in R.1.1 the presence of
circular potential well under the conditions of formation of band tails
and applied external parallel magnetic field.

Investigate the 2D EP for accumulation layers of HD nonlinear optical,
II-V, IV-VI, II-VI and stressed Kane type semiconductors in the
presence of an arbitrary electric quantization.
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(R.11.19)

(R.11.20)

(R.11.21)

(R.11.22)

(R.11.23)

(R.11.24)

(R.11.25)

(R.11.26)

(R.11.27)

(R.11.28)
(R.11.29)

(R.11.30)

(R.11.31)

(R.11.32)

11 Appendix A: The EP from HDS Under Magnetic Quantization

Investigate the 2D EP in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 under the condition of heavy doping and in
the presence of electric quantization along arbitrary direction.
Investigate the 2D EP in the presence of an arbitrarily oriented electric
quantization for accumulation layers of HD nonlinear optical semi-
conductors. Study all the special cases for III-V, ternary and quaternary
materials in this context.

Investigate the 2D EPs in accumulation layers of HD IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily oriented
electric quantization.

Investigate the 2D EP in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented
quantizing electric field under the conditions of formation of band tails
and applied external parallel magnetic field.

Investigate the 2D EP in the presence of an arbitrarily oriented mag-
netic field in accumulation layers of HD nonlinear optical semicon-
ductors by including the electron spin. Study all the special cases for
HD III-V, ternary and quaternary materials in this context.
Investigate the 2D EPs in accumulation layers of HD IV-VI, II-VI and
stressed Kane type compounds in the presence of an arbitrarily oriented
non-quantizing magnetic field by including the electron spin.
Investigate the 2D EP in accumulation layers of all the materials as
stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented non-
quantizing magnetic field by including electron spin and heavy doping.
Investigate the 2D EP in accumulation layers for all the problems from
R.11.22 to R.11.26 in the presence of an additional arbitrarily oriented
electric field.

Investigate the 2D EP in accumulation layers for all the problems from
R.11.22 to R.11.26 in the presence of arbitrarily oriented crossed
electric and magnetic fields.

Investigate the 2D EP in accumulation layers for all the problems from
R.11.22 to R.11.26 in the presence of surface states.

Investigate the 2D EP in accumulation layers for all the problems from
R.11.22 to R.11.26 in the presence of hot electron effects.

Investigate the 2D EP in accumulation layers for all the problems from
R.11.22 to R.11.26 by including the occupancy of the electrons in
various electric subbands.

Investigate the 2D EP in Doping superlattices of HD nonlinear optical,
II-V, II-VI, IV-VI and stressed Kane type materials.

Investigate the 2D EP in Doping superlattices of all types of materials
as discussed in problem R.1.1 as given in Chap. 1 under the conditions
of formation of band tails and applied external parallel magnetic field.
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(R.11.33)

(R.11.34)

(R.11.35)

(R.11.36)

(R.11.37)
(R.11.38)

(R.11.39)

(R.11.40)

(R.11.41)

(R.11.42)

(R.11.43)

Investigate the 2D EP in the presence of an arbitrarily oriented non-

quantizing magnetic field for Doping superlattices of HD nonlinear

optical semiconductors by including the electron spin. Study all the
special cases for HD III-V, ternary and quaternary materials in this
context.

Investigate the 2D EPs in Doping superlattices of HD IV-VI, II-VI and

stressed Kane type compounds in the presence of an arbitrarily oriented

non-quantizing magnetic field by including the electron spin.

Investigate the 2D EP for Doping superlattices of all the materials as

stated in R.1.1 of Chap. 1 in the presence of an arbitrarily oriented non-

quantizing magnetic field by including electron spin under the condi-
tions of formation of band tails and applied external parallel magnetic
field.

Investigate the 2D EP for all the problems from R.11.32 to R.11.35 in

the presence of an additional arbitrarily oriented non-quantizing electric

field.

Investigate the 2D EP for all the problems from R.11.32 to R.11.35 in

the presence of arbitrarily oriented crossed electric and magnetic fields.

Investigate all the problems from R.11.1 to R.11.37, in the presence of

arbitrarily oriented light waves and magnetic quantization.

Investigate all the problems from R.11.1 up to R.11.37 in the presence of

exponential, Kane, Halperin and Lax and Bonch-Bruevich band tails

[79].

Investigate all the problems of this chapter by removing all the math-

ematical approximations and establishing the uniqueness conditions in

each case.

(a) Investigate the EP in all the bulk semiconductors as considered in
this appendix in the presence of defects and magnetic
quantization.

(b) Investigate the EP as defined in (R.11.2.1) in the presence of an
arbitrarily oriented quantizing magnetic field including broaden-
ing and the electron spin (applicable under magnetic quantization)
for all the bulk semiconductors whose unperturbed carrier energy
spectra are defined in Chap. 1.

(R.11.42) Investigate the EP as defined in (R.11.2.1) in the presence of
quantizing magnetic field under an arbitrarily oriented (a) non-uniform
electric field and (b) alternating electric field respectively for all the
semiconductors whose unperturbed carrier energy spectra are defined
in Chap. 1 by including spin and broadening respectively.

Investigate the EP as defined in (R.11.2.1) under an arbitrarily oriented
alternating quantizing magnetic field by including broadening and the
electron spin for all the semiconductors whose unperturbed carrier
energy spectra as defined in Chap. 1.
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(R.11.44)

(R.11.45)

(R.11.46)

(R.11.47)

(R.11.48)

(R.11.49)

(R.11.50)

(R.11.51)

(R.11.52)

11 Appendix A: The EP from HDS Under Magnetic Quantization

Investigate the EP as defined in (R.11.2.1) under an arbitrarily oriented
alternating quantizing magnetic field and crossed alternating electric
field by including broadening and the electron spin for all the semi-
conductors whose unperturbed carrier energy spectra as defined in
Chap. 1.

Investigate the EP as defined in (R.11.2.1) under an arbitrarily oriented
alternating quantizing magnetic field and crossed alternating non-uni-
form electric field by including broadening and the electron spin whose
for all the semiconductors unperturbed carrier energy spectra as defined
in Chap. 1.

Investigate the EP as defined in (R.11.2.1) in the presence and absence
of an arbitrarily oriented alternating quantizing magnetic field under
exponential, Kane, Halperin, Lax and Bonch-Bruevich band tails [69]
for all the semiconductors whose unperturbed carrier energy spectra as
defined in Chap. 1 by including spin and broadening (applicable under
magnetic quantization).

Investigate the EP as defined in (R.11.2.1) in the presence of an
arbitrarily oriented quantizing magnetic field for all the semiconductors
as defined in (R.11.2.6) under an arbitrarily oriented (a) non-uniform
electric field and (b) alternating electric field respectively whose
unperturbed carrier energy spectra as defined in Chap. 1.

Investigate the EP as defined in (R.11.2.1) under an arbitrarily oriented
alternating quantizing magnetic field by including broadening and the
electron spin for all semiconductors whose unperturbed carrier energy
spectra as defined in Chap. 1.

Investigate the EP as defined in (R.11.2.1) under an arbitrarily oriented
alternating quantizing magnetic field and crossed alternating electric
field by including broadening and the electron spin for all the semi-
conductors whose unperturbed carrier energy spectra as defined in
Chap. 1.

Investigate all the appropriate problems of this section under magnetic
quantization after proper modifications introducing new theoretical
formalisms for functional, negative refractive index, macro molecular,
organic and magnetic materials.

Investigate all the appropriate problems of this section for HD p-InSb,
p-CuCl and stressed semiconductors under magnetic quantization
having diamond structure valence bands whose dispersion relations of
the carriers in bulk semiconductors are given by Cunningham [79],
Yekimov et al. [80] and Roman [81] respectively.

Investigate all the problems of this section by removing all the math-
ematical approximations and establishing the respective appropriate
uniqueness conditions.
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Chapter 12

Appendix B: The EP from Super-Lattices
of HD Semiconductors Under Magnetic
Quantization

12.1 Introduction

In this chapter, we shall study the EP under magnetic quantization in III-V, II-VI,
IV-VI, HgTe/CdTe and strained layer, HDSLs with graded interfaces in
Sects. 12.2.1-12.2.5 respectively. From Sects. 12.2.6 to 12.2.10, we shall investi-
gate the same DMR in III-V, II-VI, IV-VI, HgTe/CdTe and strained layer, HD
effective mass SLs. The last Sect. 12.2.3 contains open research problems.

12.2 Theoretical Background

12.2.1 The EP from HD III-V Superlattices with Graded
Interfaces Under Magnetic Quantization

The magneto EP in this case is given by

2 nmax
ope-g,BkgT
Jp = R Real part OfZFO(”hSLHD) (12.1)
n=0

where

Msap = (ksT) "' [Br1 — (Bspi + W — hv)]

where Eg;; is the complex Landau sub-band energy which can be obtained from
(4.3) by substituting k, = 0 and E = Eg;; is the Fermi energy in this case.

It appears that the evaluation of EP in this case requires an expression of the
electron concentration which is given by
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m =8 ($1c(Er1,n) + dc(Ern)] (122)
where
brc(Errn) = [(Gutn + /Gy — ) /2]
¢2c EFlv Z 92» ¢1C EFy, )]» 92r7i = 2(kBT)2r(1 - 2172r)C(2r) aa;;?
andi=1,2,3,...

12.2.2 The EP from HD II-VI Superlattices with Graded
Interfaces Under Magnetic Quantization

The magneto EP in this case is given by

Nmax

Real part OfZFO(ﬂzsLHD) (12.3)
n=0

oaoe? g, BkpT
Jp=—"" 7
2n°h

where

Maszup = (ksT) ™' [Ery — (Esi2 + W — hv)]

where Eg;, is the complex Landau sub-band energy which can be obtained from
(4.10) by substituting k, = 0 and E = Eg;, and Er is the Fermi energy in this case.
The electron concentration in this case can be written as

VeB Mmax
no = gnZh > [$3c(Er2in) + $ac(Epa,m)] (12.4)
n=0

where

12
$3c(EFa,n) = [(GwEn,n + \/ Glogy,n — H 19EF2J!) / 2}

and ¢4 (Ep2,n) Zezrz $3c(Epa,n)]
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12.2.3 The EP from HD IV-VI Superlattices with Graded
Interfaces Under Magnetic Quantization

The magneto EP in this case is given by

ooe’g,BkpT &
Jp = YT ZFO N3sLHD) (12.5)

where

Mseap = (ksT) "' [Ers — (Esiz + W — hv)]

where Eg;; is the Landau sub-band energy which can be obtained from (4.16) by
substituting k, = 0 and E = Eg;3 and Eps is the Fermi energy in this case.
The electron concentration is given by

Tlmax

8B NN s (Ers. ) + doc(Erso)] (12.6)

n2h

ng =

where

Poc(EF3,n) Z 02r3(Psc (EF3, n)]

12.2.4 The EP from HD HgTe/CdTe Superlattices
with Graded Interfaces Under Magnetic Quantization

The magneto EP in this case is given by
Nmax

Real part of Z Fo(Masrup) (12.7)
n=0

ope’g,BkgT

] pr—
B 2212

where

Nastip = (kpT) "' [Eps — (Esa + W — hv)]

where Eg;4 is the complex Landau sub-band energy which can be obtained from
(4.21) by substituting k, = 0 and E = Eg;4 and Er, is the Fermi energy in this case.
The electron concentration is given by
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[¢7C(EF47 n) + ¢sc(Ers,n)] (12.8)

where

12
$7c(Epayn) = {(Gwzm,n + \/ Glozkysn — H1925F47”) / 2}

and g (Eps,n) Zezw ®rc(Eps,n)]

12.2.5 The EP from HD Stained Layer Superlattices
with Graded Interfaces Under Magnetic Quantization

The magneto EP in this case is given by

aoezngkBT Mimax

J =
B 2212

Fo(nestap) (12.9)
n=0

where

Nescip = (ksT) ™' [Ers — (Esie + W — hv)]

where Eg;¢ is the Landau sub-band energy which can be obtained from (4.26) by
substituting k, = 0 and E = Eg;6 and EFg is the Fermi energy in this case.
The electron concentration is given by

Mmax

[boc(Ers,n) + $1oc(Ere, n)] (12.10)
n=0

g.eB
2k

nyg =
where

bsc(Ere, 1) Zgzm ®1¢(EFs,n)]
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12.2.6 The EP from HD III-V Effective Mass Superlattices
Under Magnetic Quantization

The magneto EP in this case is given by

o 62 ka T Nmax
B %Real part OfZFO(’ﬁSLHD) (12.11)
n=0

where

Maszap = (ksT) ™' [Err — (Eszy + W — hv)]

where Eg;7 is the complex Landau sub-band energy which can be obtained from
(4.31) by substituting k, = 0 and E = Eg;7 and Er is the Fermi energy in this case.
The electron concentration is given by

veB Mmax
no = gnzh [¢11(EF7,n) + ¢15(Ep7,n)] (12.12)
n=0
where
12
¢11(EF77 I’l) = |:<57EF7J’ + \/ 5%EF7J£ - 58EF7~,”> /2:|

and ¢, (E7,n) = Z O2r7(b11(EF7,1)].
r=1

12.2.7 The EP from HD II-VI Effective Mass Superlattices
Under Magnetic Quantization

The magneto EP in this case is given by

o 62 ‘,Bk T Nmax
Jp = E‘;TZBReaI part onFo(ngsLHD) (12.13)
n=0

where

Nssup = (ksT) ' [Eps — (Eszs + W — hv)]

where Eg;g is the complex Landau sub-band energy which can be obtained from
(4.35) by substituting k, = 0 and E = Eg; 3 and Erg is the Fermi energy in this case.
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The electron concentration is given by

Mmax

Z[¢13(EF87’7)+¢14(EF87”)] (1214)
n=0

gveB
n2h

ng =

where

12
$13(Erg,n) = [<A13Epg nt \/AlgEFg " A14Epg.n) /2]

and ¢,4(Ers,n) ZOQN $13(EFs, n)]

12.2.8 The EP from HD IV-VI Effective Mass Superlattices
Under Magnetic Quantization

The magneto EP in this case is given by

2 Mmax
dpe ngkBT
s = TZFO(%SLHD) (12.15)
2n’h =

where

Noseip = (ksT) ™' [Epo — (Eso + W — hw)]

where Eg;9 is the Landau sub-band energy which can be obtained from (4.39) by
substituting k, = 0 and E = Eg;9 and Ero is the Fermi energy in this case.
The electron concentration is given by

Nmax

Z [#15(EFo, 1) + ¢16(Ero,n)] (12.16)

n=0

gveB
n2h

ng =
where

$16(Ero, 1) Zgzrs ¢15(Ero,n)]
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12.2.9 The EP from HD HgTe/CdTe Effective Mass
Superlattices Under Magnetic Quantization

The magneto EP in this case is given by

ooelg,BkgT M
B %Real part OfZFO(mosLHD) (12.17)
n=0

where

Mosziap = (ksT) ™ [Erio — (Eszio + W — hv)]

where Eg; ¢ is the is the complex Landau sub-band energy which can be obtained
from (4.43) by substituting k, = 0 and E = Eg; 19 and Eryq is the Fermi energy in
this case.

The electron concentration is given by

Nmax

Z [¢17(EF10,n) + ¢13(EF10,n)] (12.18)

n=0

gveB
no =
T h

where

12
¢17(EF10an) = |:<A13HEFIU~H + \/A%3HEF1(),I‘I - A14HEF10J1) /2:|

and ¢y(Er10,n) = ) 02,.7(17(Eri0,n)].
r=1

12.2.10 The EP from HD Stained Layer Effective Mass
Superlattices Under Magnetic Quantization

The magneto EP in this case is given by

B e’ g, BkpT &%

Js s
2n2h o

Fo(ny1s2mp) (12.19)

where

Nszap = (ksT) ™ [Epiy — (Esenn + W — ho)]
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where Eg; 1 is the Landau sub-band energy which can be obtained from (4.48) by
substituting k, = 0 and E = Eg; | and Eg,, is the Fermi energy in this case.
The electron concentration is given by

Nmax

Z [b19(EFi1,n) + oo (EFi1,n)] (12.20)

n=0

g.eB
no =
O 22

where

$20(EF11,n) = Z 02r6[¢19(EF11,n)].
r=1

12.3 Open Research Problem

(R.12.1) Investigate the EP for all types of HD super-lattices under alternating
magnetic field and alternating non uniform electric field applied
simultaneously in arbitrary directions.
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Chapter 13

Appendix C: The EP from HDS and Their
Nano-structures Under Cross-Fields
Configuration

13.1 Introduction

The influence of crossed electric and quantizing magnetic fields on the transport
properties of semiconductors having various band structures are relatively less
investigated as compared with the corresponding magnetic quantization, although,
the cross-fields are fundamental with respect to the addition of new physics and the
related experimental findings. In 1966, Zawadzki and Lax [1] formulated the
electron dispersion law for III-V semiconductors in accordance with the two band
model of Kane under cross fields configuration which generates the interest to study
this particular topic of semiconductor science in general [2-38].

In Sect. 13.2.1 of theoretical background, the EP in HD nonlinear optical
materials in the presence of crossed electric and quantizing magnetic fields has been
investigated by formulating the electron dispersion relation. The Sect. 13.2.2
reflects the study of the EP in HD III-V, ternary and quaternary compounds as a
special case of Sect. 13.2.1. The Sect. 13.2.3 contains the study of the EP for the
HD II-VI semiconductors in the present case. In Sect. 13.2.4, the EP under cross
field configuration in HD IV-VI semiconductors has been investigated in accor-
dance with the models of the Cohen, the Lax nonparabolic ellipsoidal and the
parabolic ellipsoidal respectively. In the Sect. 13.2.5, the EP for the HD stressed
Kane type semiconductors has been investigated. The Sect. 13.3 contain three open
research problems.
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13.2 Theoretical Background

13.2.1 The EP from HD Nonlinear Optical Semiconductors
Under Cross-Fields Configuration

The (1.2) of Chap. 1 can be expressed as

2 2
Pi P
Too(B,ny) = 2t 21\2\\

To(E, 1) [T21 (B, )] (13.1)

where, p; = hk; and p, = hk,
We know that from electromagnetic theory that,

B=V xA (13.2)

where, A is the vector potential. In the presence of quantizing magnetic field
B along z direction, the (13.2) assumes the form

T Y
0i+0j+Bk=|L 2 & (13.3)
A, A, A,
where i, j and k are orthogonal triads. Thus, we can write
0A, 04,
dy 0z
0A, 0A,
— ——==0 13.4
0z  Ox ( )
oA, o, _
ox oy

This particular set of equations is being satisfied for A, =0, A, = Bx and
A, =0.

Therefore in the presence of the electric field E, along x axis and the quantizing
magnetic field B along z axis for the present case following (13.1) one can
approximately write,

~ ~ A2 ~
A

Ty (E Eoxp(E,n,) =
22( 7ng)+ |e| Xp( ng) 2mj 2mj 2(1(E7 ng)

(13.5)
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where

p(E) = o [Toa(E, )] and a(E, 1) = m (T E )] [Tor (E.m,)]

Let us define the operator 0 as

m' E,p(E, )

0=—p B3 —
py+|e|'x B

(13.6)
Eliminating the operator X, between (13.5) and (13.6) the dispersion relation of

the conduction electron in tetragonal semiconductors in the presence of cross fields
configuration is given by

2 2 2
Ta(Bong) = | (04 g)hon ) + (f"(ﬁ)) - (B _ (M k)
(13.7)
where,
w1 = |€|*B (1383.)
1

The EEMs along Z and Y directions can, respectively be expressed from (13.7) as

_ _ _ 1
m(Epprp, g, n, Eo) = Real part of [a'(Erpup, ) [T22(Ersup, ) — (n + E)hwm

n M p*(Erprp, n,)Eg
2B

M 1 p(Erpup, n)p'(Ersup, 1) Ej
- ) )

] + a(EFBHDa ng) [Té2 (EFBHD7 ’/Ig)

(13.8b)

and

_ B _ - _
my (Epprp, g, 1, Eo) = (E—O)zReal part of [p(Ergup, 1,)] *[T22(Ersap M)

M p*(Erpup, ﬂg)Eé

1 _
—(n+ E)ﬁwol + |llo(Ersup, ng)

2B?
. M p(Ergup,n,)p' (Epsrp, 1) E)
(T3, (Erprp, 1) + ng 8290
= 1
— [T22(Erup, 1) — (n +§)hw01
M p*(Ersup,n,)ES, , -
+ ( B 3 %0’ (Erpip, 1,)l] (13.8¢)
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where Eppyp is the Fermi energy in the presence of cross-fields configuration and
heavy doping as measured from the edge of the conduction band in the vertically
upward direction in the absence of any quantization.

When Ey — 0, m} (Ersup, Ng> 1, Eg) — oo, which is a physically justified result.
The dependence of the EEM along y direction on the Fermi energy, electric field,
magnetic field and the magnetic quantum number is an intrinsic property of cross
fields together with the fact in the present case of heavy doping, the EEM exists in
the band gap. Another characteristic feature of cross field is that various transport
coefficients will be sampled dimension dependent. These conclusions are valid for
even isotropic parabolic energy bands and cross fields introduce the index depen-
dent anisotropy in the effective mass.

The formulation of EP requires the expression of the electron concentration
which can, in general, be written excluding the electron spin as

B _gv Nmax %
no = ; I(E,n,) aEdE (13.9)

where L, is the sample length along x direction, Ej is determined by the equation

I(E07 ng) =0
where
x/,(E.ng)
I(E,n,) = / k,(E)dk, (13.10)
xi(Eong)
in which, x(E,n,) = %ﬁ;w’w and x,(E,n,) = ‘e‘gL“ +xi(E,n,)
Thus we get
1(E, )

3

; 2a(E7 g) ¢ m* E2 ; 272
2 {D |:|:T22(E7 Mg) = (n+l) hlelB le| EoLp(E, n,) _ miE[p(E,n,)]”

3 | PEop(E.ny) 2) m: 28

293

1\ hle|B  miE}[p(E,n,)] |’

Ton(E,n,) — (n+= el
2(E ) <" 2) m* 2B2

€L

(13.11)
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Therefore the electron concentration is given by

2 VB\/— Mimax _ _
<3Lgn2h2 ) Real part of Z (Tarp (n, Epsap, 1g) + Taonp (n, Ersap, 1) |
n=0
(13.12)
where
_ a(E["HHD',ﬂg) - my 2 Ersip, 0¥
Ty (nvEFBHDﬂ']g) = m |: T (EFBHDM?g) (ﬂ + 2> h)\/[‘B+ \L\EULAp(ErRHD 17g) W
_ 232
— | T2 (Ersup, ng) — <n+2> hyliB mE§ [/’(54;”’)’"»?” ] :|
where Erppp is the Fermi energy in this case and
Tyoup (H,EFBHDJ]g) = Z [L(r)TMHD (naEFBHDang)]
r=1
The EP in DMR this case can be written as
—apeg, i aE o (E)
J(Ey,B) = Real part of ———~dE 13.13
(50, ) = [ Realpartof 3 / Bl g g dE] (13,13

e"+W—ho

where ¢” is the Landau sub-band energy under cross-fields configuration.

Thus using (13.12), (13.13) and the allied definitions we can study the EP in this
case.

13.2.2 The EP from HD Kane Type III-V Semiconductors
Under Cross-Fields Configuration

(a) Under the conditions 6 =0, Aj=A; =A and mﬁ =m| =m, (13.7)
assumes the form

2
Ts3(E.n,) = (n —&—%) Tiwg +M

2m,
2
meE[{Tss(E.n,) Y|
2B?

E
— ok (T (B} - (13142

where T33(E, n,) = T31(E, ng) + iT32(E, n,)
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The use of (13.14a) leads to the expressions of the EEM’s along z and y
directions as

m? (Erpup, g, n, Eg) =mcReal part of [{Ts3(Ersup, Wg)}”

mcE3{ T33(Erup, 1,) },{T33 (ErgHp, 1) }”
+ 2

]
(13.14b)

(T B,
my (Erprp, g, n, Eo) = ( ) Real partof [{T33(Ersup, 1, DE (T33(Erprp, 1)

n
mch[{Tzs EFBHDwg }] ”—{Tzs EFBHDvng)}z [T33(EFBHDJ1g)

—(n+ E)hwo +

2B? “[{T33(EFBHDa fg) },]
1 E2{ T3 (Erpup, 1) Y E2{ T33(Erpup, n1,) "
_ (n+§)hw0 +m o[{ 3%(21;81-11) ﬂg)}] }+ | +m 0{ 33(8;8111) 77g)} }
(13.14c¢)
The Landau energy (E,, ) can be written as
T E . 1 A [{T33( n1)’1g)}]2 13.15
33( ma'lg)—(”‘i‘i) CU()— B2 ( : )
The electron concentration in this case assumes the form
2 B\/—* Hmax
ng = Sy 7 2.2, Real part sz Tusup (n, Erp, ) + Taanp (n, Ers, 1) |
3L, h°E =
(13.16)
where,
Tann(n,Ernip.1) = [T Ernn) = (o +§>hwo - 232 (T B 1)) + el BT B )Y

A TEERT R L] I ———

—[Ts3(Eps, n,) — (n + )hwo— (T Erm )]

2 ZB2

Taarip (1, Ergup, ) = Z [L(r)Ts3up (n, Ersp, 1) ] -

r=1

Thus using (13.13), (13.16) and the allied definitions we can study the EP in this
case.



13.2  Theoretical Background 455

(b) Under the condition 4 > E,, (13.14a—c) assumes the form

1 Eo meEj 2 [k (E))?
VZ(E7 '78) = (I’l + 5) hwo - Ehkyyg(E> ’7g) - 2B20 (y/Z(Ea ’18)) +2Z7n1c
(13.17a)

The use of (13.17a) leads to the expressions of the EEM’s along z and y
directions as

v meES {72 (Erpup, Ne) }/{VZ(EFBHDa fg) }”

+ ]
B2

(13.17b)

m;(EFBHDa Ngs 1,y Ey) = mc[{VZ(EFBHD7 ﬂg)}

1
[{Vz(EFBHD, ng)},}
n meEg ({7, (Ersa, Ug)},]21 . {v2(Ersp, 1) }H

* (T B I 1
my (Epgup, g, 1, Eo) = (E_0)2 (72(Erup; 11y) — (n + z)hwo

[2(ErsaD, Vlg)

2B “[{VZ(EFBHDyng)},]z
1 meEg[{72(Epgup, 1 )}/]2 mE3 {7, (Erpup; 1)}
= (n o + = o L ]
(13.17¢)
The Landau energy (E,,) can be written as
_ 1 mL.Eg e 2
Vz(Enzv ng) =|n+ 2 hao — B2 (VZ(E”Z’”g)) (13'18)

The expressions for ng in this case assume the forms

26,8/ e

T 3LE, 2 [Ta7tp (1, Ergrp, 1) + Tasup (0, Ersap, 1) | (13.19)

no

where

_ _ 1 _ mEL -
Tyrup(n, Ergup, 1) = [[Vz(EFBHD, 1) — (n+ E)hwo + le|lEoLx (75 (EFsup, 1,)) — Q(TQO(VIZ(EFBHM ﬂg))2]3/2

m.E}
2B

~ (B, 1)) — (0 + 30 — 2 (B )2 | B, 1))
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and

s

Tusup (n, Ersup, 1) = Z L(r) [Tszup (n, Epsap, ) |-
r=0

Thus using (13.13), (13.19) and the allied definitions we can study the EP in this
case.

(¢) For o — 0 and we can write,

! Eo mEj 2, [k (E)?
73(Emg) = (n + E) hay — Ehkyyg(Ea Mg) — Tzo (Vg(Ea ’/Ig)) +2Zimc
(13.20a)

The use of (13.20a) leads to the expressions of the EEM’s along z and y
directions as

. ~ m.E3{73(Ersap,n,) Y {3 (Ersun,ng) )
m.(Ergup, Mg, n, Eo) = m, |:{V3(EFBHD771g)}N+ o7 g ISG g }

B2
(13.20b)
+(Evas g, Eo) (3)2 ! s Eranm.) — (n-+3 o
My \LFBHD, Ngs M L0) =\ = | 7 — ;7 V3\EFBHD, —\nt3 0
’ ’ Eo [{h(EFBHDJ?g)}] ! 2
_ 12 ) ,
mcE} {{V_%(EFBHDvng)}] ”—{’/3(EFBHD~,’7g)} =
+ B 5= 75 (73 (Ersap, 1)
{73(Ersup, ﬂg)} ]
1 cE2 E ) 2 ,»E2 ) E , n
B (n+§)hw0+m O[{y3(2;l23HD,ng)}] 141 LM 0{}3(BI;BHD ne)} }
(13.20¢)
The Landau energy (E,,) can be written as
I 1 mLE(% ! /T 2
73(Euss ) = (145 ) oo = =252 (5B 1) (13.21)

The expressions for ng in this case assume the forms

B ngB /zmc Mmax

= 3L E 2 (Taonp (n, Epsap, 1g) + Tsonp (n, Ersup, 1) | (13.22)

no
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where

3/2

_ _ 1 = m.E} - 2
Taonp(n, Ergrp, 1,) = |:V3(EFBHD7 ) — (n + 5) firy + |e|EoLy (73 (Ersup, 1)) — # (+3(Erprp, 1))

2 32
- |:(V3(EFBHD-, n,)) — (n + %) hwo — YZC—BEZO (+3(Ersup, ilg))Q] (3 (Erpap, 1,)] !
and
— s —
Tsoup (n, Ersup,n,) = Y  L(r) [Taonp (n, Ersup, 1) ]-
r=0

Thus using (13.13), (13.22) and the allied definitions we can study the EP in this
case.

13.2.3 The EP from HD II-VI Semiconductors Under
Cross-Fields Configuration

The electron energy spectrum in HD II-VI semiconductors in the presence ofelectric
field Ey along x direction and quantizing magnetic field B along z direction can
approximately be written as

Ey mjEg 2, [k (E)
N(E.ng) = By (. o) = ks (Eony) =5 (5 (Eomy) T
(13.23a)
where
1 E2m* 1 E2m\ "2 B
Bi(n, Eo) = <”+§>hwoz - ( 2°Z;> +D{ (n+§)hwoz + ( ;ZZL>} , W2 = tji .
and
Jor/2m’*,
D=+—"——=
h

The use of (13.23a) leads to the expressions of the EEM’s along z and y
directions as
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m (Epprp, g, n, Eo) = mi[{ys (EFHp, ﬂg)}//
mﬁEg{% (ErBrD, ﬂg)}/{“/s (ErBHD, 7’Ig)}”
+ I ]

(13.23b)

B y 1
Eo’ [{3(Ersup, '7[;')},}
n mﬂE(zJ[{%(EFBHD, ﬂg)}'f] f{“/g(EFBHm Wg)}”

m; (Eggrp, g, 1, Eo) = ( [v3(Ersap, ng) — By (n, Eo)

[73(Ersrp, 1g) — Pi1(n, Eo)

28 JL[{V3(EFBHD7 Wg)},}z
m*Ez[{“/ (EFBHDJ? )}’]2 m*Ez{V (EFBHDJ? )}”
+ e
(13.23¢)
The Landau energy (E,,) can be written as
_ mﬁEg o 5
V3(En4771g) = ﬁl(naEO) - B2 (V3(En4777g)) (1324)

The expression for ng in this case assumes the form

2g,B 2mﬁ Ninax

1o [Ts3up (1, Epsap, 1) + Tsarp (n, Erprp, 1) ] (13.25)

T 3LmRE,
where

32
_ _ miE3 _ 2
3(Ersup, n,) — P1(n, Eo) + le|EoL (73 (Ersnp, ﬂg)) - 2%92 (+(Ergup, ’1;;))

Ts3up(n, Ergup, 1) = [

« 2 3/2
- |:(V3(EFBHD~, ﬂg)) = Bi(n, Eo) — ﬂ;‘gzo (r'x (EFBHD>17g))2:| :| [V;(EFBHDa ”Ig)} B

and

S

Tsarip (n, Erprp; ) = Y L(r)[Ts3up (n, Ersap, 1) |-
r=0

Thus using (13.13), (13.25) and the allied definitions we can study the EP in this
case.
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13.2.4 The EP from HD IV-VI Semiconductors Under
Cross-Fields Configuration

The (3.68) can be written as

p; P’
I o S 13.26a
i (Eny) 2 () S (13260
where
: ®) |
M) = (R e (a0, £, ) — iy (. E. )
8
57 .
+ A {Cz(dz,E,Eg)*lDz(OCz,E,Eg)}
2
ey B, — 1D s, B )
i 2(A)? ,
M (En) = PO ey, BB — i1 (. E. )
8
5+0) . _
CX D ey, B, ) — 1D, B B
and

" (E,n,) = 21%yy(E, n,)

In the presence of quantizing magnetic field B along z direction and the electric
field along x-axis, from above equation one obtains

A (py — le|B%)* P
2M{(E,n,)  2M;(E,n,)  2M3(E,n,)

= g"(E,n,) + |e|Eoxp} (E, n,)

(13.26b)
where pi(E,n,) = % [g"(E,n,)]
Let us define the operator 6 as
R “(E,n,)Eq|M;(E,
9:—[A7y+|e|B)AC—p1( ’18) 0[ 1( '/Ig)] (1327)

B
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Eliminating X, between the above two equations, the dispersion relation of the
conduction electrons in HD stressed Kane type semiconductors in the presence of
cross fields configuration can be expressed as

By = (14 D (E ) + e B i
8 ”/’g =n 2 Wiy ’ng ZM*(E ng) Bpl a’/’g y
2
Y O [0} (E,no) | M; (E, ) (13.28a)

where @i (E, n,) = eB[M; (E,n,)]” '
The use of (13.28a) leads to the expressions of the EEM’s along z and y
directions as

e . “F I, -
M (Erpgup, g, 1, Eo) = Real part of [[M3(Ersup, ﬂg)]/[g (Ersrp, 1) — (n + z)hwil (Erpup; 1g)
2

E _
top O [0} (Ersup, ny)]M; (Ersap, 1,)]

[Mg (v n )" Erso,n, )] — (n-+ (i B, )
232 [[P1(EFBHDJIg I (M} (EFBHD,VIg)] ]
+ 2[M5 (Ersrp, n,) |07 (Ersup, 1) [0} (Ersap, n,)]']]

(13.28b)

and

(R * (T — * (T 1
my (Erprp, g, n, Eo) =(B/E,)’ Real part of (07 (Erup; 1,)] ’lg (EFgup, 1g) — (n+ )hwtl(El'BHD7'7g)
2

2122 [ (Ersip, ﬂg)] M (Ersup, 1))[0} (Ersap, ng)|lg" (Ersap, 1))

(- DT B 1)) + 2 197 B 1) P v )

L
— [0} (Ersup, 1)) (8" (Ersups 1) — (n +5)h(’)i1 (Ersup, 1,)
2

;;2 [0} (Erstp, ﬂg)] M; (Epsap, 1,)]]

(13.28c¢)

The Landau level energy (E,9) in this case can be expressed through the
equation

2

* 1 E * *
g (Enyyng) = (n+ )flwzl( ng,ng)—2—302[pl(Eng,ng)}le(Eng,ng) (13.28d)
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The electron concentration can be written as

2B Nmax o o
ny = ———— Real part of T. nE N,) + T nE ,
0 L2 h2E, p HZ:;[ 413180 (1, Eppup ']g) 41418D (1, EFrp 7]8)]
(13.28e)
where

2M;(Erup, 1)

Ta1up(n, Erprp, ) = | (Ts1(n, Ergup, 1)

P (EFup, ’7g)
Ey
B
— [Ts1(n, Epsap, )
Ey
B

Sl1u)

+ ,DT(EFBHD,ﬂg)hthDl(EFBHmﬂg)PT(EFBHD,ﬂg)}“

- — — 3
+ — 1 (Erup, Ng)hxiup1 (Ersup, M) 1 (ErsuD, M)]7]5

_ o L
Ts1(n, Ergup, Ng) = (8" (Ersup, Ng) — (n + )i (Ersrp, 1)

2
M (Eppup,ng)E5 -~ , —
BEMEL e (01 (ErBD, ﬂg)]z]

2B?
— —M; (Erup, 1) Eolp} (Ersap, ;)]
xiup1 (Ergap, 1) = . £ B ! =,
— |e|BL, —
Xnup1 (EFBHD, 1) = n T xip1 (EFgrp, 1)

and Ty (1, Ersap, 1) = ZL(")T4131HD(717EFBHD,’1g)

r=1

Thus using (13.13), (13.28¢) and the allied definitions we can study the EP in
this case.

13.2.5 The EP from HD Stressed Semiconductors Under
Cross-Fields Configuration

The use of (2.48) can be written as

2
l’)zc Py Pz
2mj (E, ng) 2mj(E, ng) 2mj(E, ng)

= G*(E,ny) (13.28f)
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where

i (E,ng) = R0 (B, 1) —1()T]]
Tin = |E, — Cie— (ao + C1)e +3bosﬂ—7s+<f/2)sxydo}
m3(E,ng) = [2h [o(E,ng) = I(1)Taa]] ™
Ty = |E, —Cls—(ao+C1)?+3b0?xx (\f/z) }
M§(E,ng)=[_2h [o(Esng) = 1() T3]

3- b
T3 = |E;, — Cie — (Zl() + CI)S +§b0’gzz - 08]

2

and the other symbols are written in (1.196a).
In the presence of quantizing magneticfield B along z direction and the electric
field along x-axis, from (13.28d) one obtains

~ ~ A2 ~
P (Py — |e|BY) P
* * * - G (E’ ’/Ig)
2'nl (Ea ng) ZmZ(Ea ng) 2m3 (E7 ng)
2
eEOJAC £ ,0* Ea”l
le] [ ) (E;ng)
(13.29)
where p*(E, 1) = 55 [G*(E, )]
Let us define the operator 0 as
1
. “(E,n,)Eq|\m:(E,n,)mi(E,n,)|?
ez—ﬁy+|e|35c—p( 1) Eo [mi (E, 1) (E, )] (13.30)

B

Eliminating X, between the above two equations, the dispersion relation of the
conduction electrons in HD stressed Kane type semiconductors in the presence of
cross fields configuration can be expressed as

1 R E m; (E,ng) 4
“(E,ny) = (n+ 3)hiai(E i U NE ik,
G (E, 1) = (n + 5)hi( 7ng)+2m,§(E’ng) 5 P (Esng)l *(E,ng)] )
2
O 0" (E, ) 'mi (E,ny) (13.31a)

2R
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where
1

i(E,ng) = eBlmy (E, ng)m;y (E, )]
The use of (13.31a) leads to the expressions of the EEM’s along z and y
directions as
m: (Ersup, Ng: 1, Eo) = [[m5(Ersup, 1)) [G* (Ersup, 1)
2

| N ) .-
—(n+ E)hwi(EFBHDv ng) + 2—1;2 (0" (EFsnp, '/Ig)]zml(EFBHDa )]

& s B, n) G (Erso 1) — (2 -+ o B, n,)]

2

232
+ [m} (Ersap, 1)) 10" (Ersup, 1)) )]

> [2[p* (Ersrps 1,))[0* (Ersup, 1)) Im} (Ersap, 1))
(13.31b)
m; (Eppp; g, 1, Eo) = (B/Eo)* [m(Ersnp: 1)) " |G" (Ersmp, 1)
1 _
—(n+ E)EE(EFBHD» M)
2

+ﬁ[ﬂ (Ersup, 1)) ml(EFBHD’ng)”[m4(EFBHD?]7g)]H

*(ErsHp, Wg)},

0+ T B 1)1+ 1" B, ) Pl v 1))

|
— [my(Erpup, 1)) |G* (Ergup, n) — (n +§)h60i(EFBHD7’1g)

E} _ _
+ W (0" (Erpup, "Ig)}zan(EFBHDv )]
(13.31¢)

where

_ _ m; (Ergup, 1,) 1
my(Ergup, Ng) = [[0" (Ersup, 1,)][- i = =J
4 8 8 m; (Ergup, 1)

The Landau level energy(E,, ) in this case can be expressed through the equation

* 1 E2 * *
G (Enes 1) = (1 + ) 0i(Eug, 1) = 5 35 10" (B 1) (Ewot) - (13314)

The electron concentration can be written as
2B Fmax _ o
(Tar3up(n, Ergup, Ng) + Taraup(n, Ersup, 1)) (13.31e)

np=——-5—
O LR E, =
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where

Ta13up(n, Erprp, 1) = |
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2m; (EFBHDv ﬂg)mT ( z )
= d5(n, Erpup, N
0*(Erprp; 1) ¢

(s

EO ENE Enl * (T
+§ﬂ (Erup, Ng)MXnup (Ersup, Ng) P (ErsHD, 1))

Ey

= — - 3
N 0" (Errp, Ng)MXitp (Erpap, Ng)p* (Ersup, 1),

— [Ts(n, Erpap, 1) +

_ - L
Ts(n, Erprp, g) = [G*(Erprp, ) — (n + )i (Erpap, 1,)

2

RS e B,
rlg

2B?
—= _m*(EFBHD~,n )EO[P*(EFBHD 1,)]
xip(ErHp; 1) = ! £ B s
— e|BL, —
Xurp (ErBrp, Mg) = | |h A‘l'leD(EFBHDJ’]g)

and

S

Tararp (n, Erprp,n,) = Z L(r)Ts13up (n, Ersup, 1)

r=1

Thus using (13.13), (13.31e) and the allied definitions we can study the EP in

this case.

13.3 Open Research Problems

R.13.1

R.13.2

R.13.3

Investigate the EP in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields in HD tetragonal semiconductors by
including broadening and the electron spin. Study all the special cases for
HD III-V, ternary and quaternary materials in this context.

Investigate the EPs for all models of HD IV-VI, 1I-VI and stressed Kane
type compounds in the presence of an arbitrarily oriented quantizing
magnetic and crossed electric fields by including broadening and electron
spin.

Investigate the EP for all the ultrathin of HD materials whose bulk
dispersion relations are stated in R.1.1 of Chap. 1 in the presence of an
arbitrarily oriented quantizing magnetic and crossed electric fields by
including broadening and electron spin.
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Chapter 14

Appendix D: The EP from HD III-V,
Ternary and Quaternary Semiconductors
Under Strong Electric Field

14.1 Introduction

In the investigation of transport properties of nano-devices under electric field, we
assumed that the electron energy spectrum becomes an invariant quantity, which is
not true especially in the presence of strong electric field. In nano-devices the in-
built electric field is so large that the electron dispersion relation changes funda-
mentally and in this chapter we shall investigate the influence of intense electric
field on the EP under various physical conditions in III-V, ternary and quaternary
materials. In Sect. 14.2.1, of theoretical background Sect. 14.2, we shall study the
EP under strong electric field in HD said semiconductors. The Sect. 14.2.2, explores
the EP in the presence of quantizing magnetic field under strong electric field in HD
said materials. In Sect. 14.2.3, we study the EP in QWs of HD III-V, ternary and
quaternary materials under strong electric field. In Sect. 14.2.4, the EP has been
investigated in NWs of HD III-V, ternary and quaternary materials. In Sect. 14.2.5,
the EP has been investigated in QBs of HD III-V, ternary and quaternary materials
In Sect. 14.2.6, we study the magneto EP in QWs of HD III-V, ternary and qua-
ternary materials under strong electric field. In Sect. 14.2.7, the magneto EP in
effective mass superlattices of HD said materials under strong electric field has been
investigated. The last Sect. 14.3, contains 43 open research problems.

14.2 Theoretical Background

14.2.1 The EP Under Strong Electric Field in HD III-V,
Ternary and Quaternary Materials

In the presence of strong electric field Fy along x direction, the electron energy
spectrum in Kane type III-V semiconductors whose unperturbed conduction elec-
trons obey the three band models of Kane can be expressed following [1] as
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B k? B
o = [e1E4 + B + e3E* + e4E + es — %—l— e7(1 + CE) 2] (14.1)
where
Me 4 -2 —4 1 |
= wal’ Qf = m_rEg [Seng - 6Gf + 7thg ]7 mr(: (m_c + m_v) )

is the reduced mass, m,, is the effective heavy hole mass at the edge of the valance
band e = AfPf,

Ap = [F +Eg(Eg - 5,)]2"%(6’”2(5/)4)_17

F = eF, F; is the electric field along x direction.

AE; 1 11
8 =—% y=6E, + 9AE, + 4N’ — = (—+ —
X mr mC mV

), Gy = er(40' + Cy),

2
,
G = (ZEgQ2 + PO(E; — E;) - 2P2Eg)aP = EO(

= (B + B)(E +5A)F

X
1 6 2 1 y 1 2
Q= 1= (B +30) hy = (40¢rCr)(By) . By = (P+ Q)
ab
Py = E;S(engz -Gy + thQ“),(D] = a%val = o
1 1 2
=— b=—— c=(E,+=-A
“TETE+AC (B +38)

er = Qrwa, my = 2a1by, by = (¢)(ac + bc — ab),
e = (1= Pp)ay + Qros, 3 = (b +2arcy),

1 a b
o= (-90-2),
2Clb1 cCq
ey = [(1 = Pr)by + Qpas), w6 = (l—b—l),w4:2b1c1,
(

es = [(1 = Py)er + Qrws],

ws = (¢] —2c1b1),e7 = Qpwr, w7 = c%,e6 = [(1 = Pr)cr — Qrwe],
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Using (14.1) and (1.4) we get

s /E F(v)dv =e; /E (E—=v)*F(v)dv + e, /E (E = v)F(v)dv

2me —00
+ e /E (E—Vv)*F(v)dv + e4 /E (E — v)F(v)dv
tes /E F(v)dv—%j%

+e7 / FO)dv[l + ¢(E —v)]?

—00

Let us put

1(11) = / (E —v)*F(v)dv

E E E
=E / F(v)dv + / VF(v)dv + 6E* / VIF(v)dv
-0 —00 -0
E E
—2F° vF(v)dv — 4E / VE(v)dv

8 Mg 4Em n;
i 1t BBy = 2 By _ o (E,n,)
=8 [ Kf(:) —37EeXP( '1§ ) o\Es Mg
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(14.2)

(14.3)

(14.4)

(14.5)
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E _ _ 2
/ V(F(v))dv = 2\Z%exp(n—§) (14.6)

E
3 2 2
3 ' —E E

VEW)dv = —=exp(—-)[1l + = 14.7
[ vEwa = i (14.7)
—00

Thus

_ E* E 3’74 E 21/] _E?
I(11) = 7[1 JrEi’f(n—g)] JFS—;“ JrE”f(n_g) - 3—Egexp(n—§)]

3 2 E ES"X —E?
+§(Eng) 1+ Erf(ﬂ:)] + N exp(ﬁ) (14.8)

2En}  —E? E?
+ Eexp(—)[1 +—

= (/)O(Ev ng)

In Chap. 1 we have proved that

—?

(o, E ) = / Flv)dv 2 e li%sinh(pu)} - i\/—_ﬁe_”2

. L+e(E—v) cn,/n = g
(14.9)
where u = %
8
The theorem of differentiation under the sign of integration tells us
3 B(x) B(x) 5 aB( )
X
o | Fendy= [ S FGdy + FBw L)
Ox ox Ox
Al Al (14.10)
0A(x)
— F(x,A
(v AW 5

where the notations have their usual meaning and the integrals are convergent.
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Using (14.9) and (14.10) and differentiating (14.9) with respect to E we get

E
F(v)dv 1 —E?
—c / ( ) 2+ CXP( - )
K [1 + C(E — V)] 7'“/]27 ng
—?
2 2 1 . er
= e " 2u sinh(pu)]
VT e L’Z; b (14.11)
2 2l SR P 1
+ e —ZeT cosh(pu) — iﬁe_”22u—
N/ Mg =1 g UF
F(v)dv
o Y (B, ¢) +iDs(E, 1,
/ s eE—wp e FiDsE )

where

1 —E? due ™ & -p* .
c3(E n,,c) =] ex — exp(——)p~ sinh(pu
( ng ) lncng p( ’7§ ) C2n§ﬁ[; ( 4 ) (p )]

2 2o
- e ZeT cosh(pu)]
czngﬁ =
2u 1+cE
Ds(E)n,,c) = exp —uz, u=
( g ) C2’7§ ( ) C”g
Again (14.9) can be written as
F(v)dv )
/ m:C](C,E,T’]g) —lC2(C,E77]g) (1412)
2 o e N
where ¢|(c, E, n,) = %—ﬁe’” I)E::l < -sinh(pu) | and c>(c,E,n,) = %e’” .
We know that
¢ E E 3
| &= FO =1+ B CONE + 5
2 B 2
—00
" 2 (14.13)
8 o (A2 2
e TR )

:(pl(E7 ng)
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Therefore the dispersion relation in HD II-IV semiconductors whose unper-
turbed conduction electrons obey the three band models of Kane in the presence of
an electric field along x axis can be expressed as

nK
2mc = J4(Ea ¢ ng)

where J4(E, ¢, n,) = Ji(E, ¢, n,) + il2(E, ¢, n,),

(14.14)

E . _
]l (Ea c, ng) :2[1 + E’f(n_)] l[el(pO(E7 17g) + eZ(PI(Ea '/Ig)
8
+ 63(‘)()(E, ng) + 64’))0(E7 ng)
=

+ eé’%[l + Erf )] — €6C1 (Ev ¢ ng) + €7C3(E, ¢ ng)]

8
and J2(E7 ¢, ng) = 2[1 + E#(%)]_1[66C2(E7 ¢, ng) + 67D3(E7 ¢, ng)}

For two band model of Kane, the dispersion relation in the presence of electric
field F, along x direction is given by

k2
2m,

= PiyE(1 + aE) — Quyy (14.15)

h P - Sm, _ (ﬁF)z
where Pry = [1 4 (Quy) i)l Quy = T

Therefore under the condition of heavy doping (14.15) assumes the form

=Js5(E,n,) (14.16a)

where J5(E, n,) = P1is)2(E, n,) — Quiy-

Thus (14.14) and (14.16a) are key equations for investigating the electronic
properties in III-V Kane type heavily doped semiconductors in the presence of a
strong electric field.

The EEM in III-V Kane type HD semiconductors in the presence of a strong
electric field whose energy band structures in the absence of any perturbation are
defined by three and two band models of kane can be written from (14.14) and
(14.16a) as

m* (Epg, F) = m. Real part of [J4(Epg,c,n,)| (14.16b)
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and
m*(Eg, F) = m.[Js(Erg,n,)] (14.16c)

where Erg is the Fermi energy in the present case.
Thus following (14.14) electron concentration is given by

g 2mg
(

3
=32 (2 )? Real part of [Js(Erg, c,n,) + J71(EFg, ¢, 1,)] (14.17)

no

3 s
where J@(EFE, C, 17g) = [J4(EFE7 c, 1’]8)]2 and J7(EFE7 C, ng) = E L(I")J@(EFE, c, 1’]g)
r=1

For the dispersion relation (14.16a) the corresponding electron concentration can
be written as

gv 2me3
=32 (7)2[J8(EFE77]g) +Jo(Ere,1,)] (14.19a)

no
3
where Jg(Erg,1,) = [Js(Ere,1,))* and Jo(Ere, ) = >_)— L(r)Js(Ere,1,)-

The velocity along z direction and the density of states function in this case for
HD optoelectronic Kane type materials under intense electric field whose con-
duction electrons in the absence of perturbation obey the three band model of Kane
can respectively be written as

5 [J.(E . C, 1/2
v.(E)) = 2 ValBg, )] 4(, IZy o) (14.19b)
me 14(E150aca’1g)

2m,
N(Ell) = 47IgV< 2 )3/2 \/ J4(EI1E07 ¢ ng)[Jé/l(EllEovcv 77g>] (]4'19C>

where E’IEO = E — Eoinpk,, Eotaps, = Q1 + W — hv, Q, is the root of the equation

J4(Q1,¢,1,) =0 (14.19d)

The EP in this case is given by

o

4rogem g,
Junp = —— 5= Real part of / J4(Elg,, c,n,)f (E)dE}; — (14.19)

Eo16pE,
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Similarly the EP for perturbed two band model of Kane and that of parabolic
energy bands can respectively be expressed as

o
4rogem. gy
T [ (g (BN By, (14.197)

Eoonpe,

Jiap =

where E’zE0 = E — Enupk,, Ennpe, = Q2 + W — hv, £, is the root of the equation

JS(Q27C7 ng) =0. (1419g)

14.2.2 The EP from the Presence of Quantizing Magnetic
Field Under Strong Electric Field in HD III-V,
Ternary and Quaternary Materials

The electron energy spectrum under magnetic quantization can be written as

#@+4 +1m = J4(E,c,n,) (14.20)
3 ) n 5 Wy = J4 L, C, 1’]g .
) + (n+ B (Oh) .)5 ’1/]8 zla

The EEM in this case can be written using (14.20) and (14.21a) as
m*(Epgs, F) = m, Real part of [J4(Ergs, c,n,)]' (14.21b)
and
m* (Epgp, F) = mc[Js(Ergs,n,)] (14.21¢)

where Epgp is the Fermi energy in the present case.
The electron concentration for the dispersion relation (14.20) is given by

eB . /zmc Nmax
ny = izﬁ Real part of Z V10(Erep, ¢, ng,n) + Ji1(Ergs, ¢, 1y, 1)
n=0

(14.22)

where  Jio(Eres, c,1,,n) = \/J4(EFEBvc: Hes1t) — (1 +Dhoo and  Jyy (Epgs, c, g, 1) =
> vy L(r)J10(ErEs, ¢, 1y, n).
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The magneto EP in this case is given by

Mmax

2

ope"Bg,kgT

—————— Real part of E F 14.23
22 p 2 0(’1034,1) ( )

Jupe, =
where nppy | = [Ergp — (Lppsag + W — hv)] [ksT]™" and Lppy,; is the Landau sub-
band energy which can be obtained from (14.20) by substituting k, =0
and £ = LDB4.1~

The electron concentration for the dispersion relation (14.2.1) is given by

eB v\/_nmax
ny = izhz > 2Bz, ngsn) + I3 (Eres, ng,n)] (14.24a)
n=0

where Ji2(Ergp, 1y, 1) = \/JS(EFEBJIg,n) — (n+3)hwy and Ji3(Epgp, ng,n) =

> vy L(r)J12(EFes, g, n).
The magneto EP in this case is given by

Mmax

ope BgkaT
Jupgy = —— 57— ZFo MpB42) (14.24b)

where 1pps > = [Ergs — (Lppas + W — hu)][kBTr1 and Lpgs, is the Landau sub-

band energy which can be obtained from (14.21a) by substituting
kzzoal’ldEZLDB{z.

14.2.3 The EP from QWs of HD III-V, Ternary
and Quaternary Materials Under Strong Electric Field

For QWs the 2D dispersion laws for (14.14) and (14.16a) assume the forms

Bk R nm
. (—; )? = J4(E,c, Ng) (14.25)
Z

2m.  2m,
and

kR
s (S5 = s (Eo) (14.262)
Z

2m,  2m,
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The EEM in this case can be written using (14.25) and (14.26a) as
m*(Ergsg, F) = m Real part of [J4(EFzsg,c,n,)] (14.26b)
and
m* (Ergsg, F) = me[Js(Ergsg, )] (14.26¢)

where Ergsp is the Fermi energy in this case.
The 2D electron concentration for (14.25) can be written as

m Nzmax
nyg = cBy Real part of [J17(EpEsQ, € Mg, 1) + J1s(Eresq, €, Mg, 0,)] (14.27)
- g g

n,=1

where J17(EFesq; ¢, Ngs Nz) = [Ja(Eresq; ¢, M) — %(%ﬂ)z] and Ji5(Epgsq, ¢, Mg, N,) =

> v L(0) 17 (Bresq, €, g, ).
The EP in this case is given by

Tlzmax J4(Ean 1,61 )
Soemegy Me\1/2 o 8
Japg, = [2nd = 3) ”*] Real part of > | T Er o) 1/17(EFesos ¢, Mg, 112)
z Tzmin 4 nzto,lyr > g
+ J18(ErEsQ; ¢, 1g; 112)] (14.28)

where E, g, 1 is the sub-band energy in this case and is obtained by substituting
ks =0and E = E,g, in (14.25).
The 2D electron concentration for (14.26a) can be written as

Nzmax

Z [J19(Eresqs ¢, N5 1z) + J20(Eresqs ¢, Ngs 1)) (14.29a)

n,=1

_ meg,
ng = >
mh

where J19(Ergsq, ¢, N, nz) = [J5(Epesq, ¢, Ng) — % (I:in)z} and Joo(Eresq, ¢, Ng, n) =

SO L(1)[T10(Eesos ¢ Mg, Nz)]-
r=1

The EP in this case is given by

ooem.gy (ﬁ)l/z] ’f ( Js (Bnetg2, €5 11,)

2nd.h? 2 ~ " Ji(Bugy2,001,)
+ J20(EFESQ; €5 g5 112)] (14.29b)

Jopg, = | J19(EFesg, €, Mg, 1)

where E,;z, > is the sub-band energy in this case and is obtained by substituting
ks =0and E =E, g, » in (14.26a).
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14.2.4 The EP from NWs of HD III-V, Ternary
and Quaternary Materials Under Strong Electric Field

The dispersion relations of the 1D electrons in NWs of HD optoelectronic materials
in the presence of light waves can be expressed from (14.14) and (14.16a) as

2mcJ4(E,c,n,) ma\o (e
K= 8/ _ < — il 14.29
y hZ dz dx ( C)
2m.Js(E,c,n,) man\o (g
k2 _ 8/ _ Z — d 14.30
; = 7 4. ( )

where n,7; (J = 1,2,3) is the size quantum number.
The electron concentration per unit length are respectively given by

2gv\/2m,

nip, = ———— Real part of
nh

M7 1max 127 1max

Z Z (771 (Er1pLE, s et s nat) + bas 1 (ERiDLE, , 71, et )|

myn=1ngz=1

(14.29¢)

Mx72max 1272max
[$79.2(EFipLE, 72, 1272)

=1 n7=1

+ ¢so2(EripLEy s 72, 1272) |

2gy\/2m,

n =
PP (14.31)

where Eriprg, is the Fermi energy in NWs in the present case.

1=

$77.1 (EFiDLE, a1, 7)) = [14(EF10LE0,C,7]g) G7l(nx7l7nz7l)] ;
R (g’ 4 (e g
d, d, ’

Gri(naingi) = 5—
$78,1 (EF1DLE) Ma71, 11271 ZL (77,1 (Er1DLE,, M7t m) ]

2m,

1
$29.2(Er1pLE,, 472, 1:72) = [J5 (EFipLE,, ¢, ﬂg) — Gn(n,n)]* and

$s0.2(EF1DLE, s 1472, 11272) Z L(r) (792 (EF1DLEy s 172, 1272)] -
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The generalized expression of photo current in this case is given by

OC()egkaT MyTimax Mz7imax

h Fy ('77iEO) (14-32)

L
ny7i=1 nz;=1

Eripie, — (E;,.EOJrW—hU
ksT
and are defined through the following equations

) and E7;; are the sub-band energies in this case

where, 17,5, =

Ja (EQIEO7 c, ng) = G71(ny1,n:71)

(14.33)
Ja (Eéon, c, ng) = Gn(ne2,n:12)

Real part of the (7.22) should be used for computing the EP from NWs of HD
optoelectronic materials under intense electric field whose unperturbed energy band
structures are defined by the three-band model of Kane.

14.2.5 The EP from QBs of HD III-V, Ternary
and Quaternary Materials Under Strong Electric Field

The dispersion relations of the electrons in QBs of HD optoelectronic materials in
the presence of intense electric field can respectively be expressed from (14.14) and
(14.16a) as

2m.Jy (EQ1E07 C, ”g)
hz

= Hy (na1, myn, nzn) (14.34)

2m.Js (Engw C, ’7g)
2

= Hiy (nx2, my72,n:72) (14.35)
where Eppg, is the totally quantized energy and Hy; (nx7,~,ny7,-7nz7i) =

TUL7i 2 i 2 ngi :
<) t\=) 7)) -

The electron concentration can, in general, be written as

2 . MxTimax MyTimax Mz7imax
NopL = <d :ng) Z Z Z Ffl(’ﬁiODEo) (14.36)
xUyly

myi=1 ny7i=1 nz;=1

_ EropLey —Egir, . . .
where 170pg, = —f7—  and Epoprg, is the Fermi energy in QBs of HD

optoelectronic materials in the presence of intense electric field as measured from
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the edge of the conduction band in the vertically upward direction in the absence of
any quantization.

Real part of the (7.26) should be used for computing the carrier density from
QBs of HD optoelectronic materials whose unperturbed energy band structures are
defined by the three-band model of Kane.

The photo-emitted current densities in this case are given by the following
equations

) A —1/2
JopL = (t0cg,) <m7> Real part of

Nyx71max "y71max 1z71max J4 (En:” ,C, ]/’g) (1437)

N e
‘Ié,l (Enm , C, rlg) 1 (17710DE(1)

ny71=1 ny71=1 Nz71min

1 /2" T Mo Js (Enﬂ, c, 1’]8)

J5(Ensyycimg)

Jopr =

(o0egy) (@)

didyd, \ 2 Fo (’77201)150) :

n=1ny;p=1 n:72min

(14.38)

14.2.6 The Magneto EP from QWs of HD III-V, Ternary
and Quaternary Materials Under Strong Electric Field

Under magnetic quantization, (14.14) and (14.16a) assume the forms

2
e n.m

1 —
(1’1 —+ E)hwc + m (7)2 = J4(E501 ,C, ng) (14393)
c Z
and
1 P on.m, —
(n+ E)hw( + oo (7) = Js(Egy; ¢, 1) (14.39b)
(o Z

where Eg,; and Eg,, are totally quantized energy in the respective cases.
The energy along z direction for both the cases can be expressed as

W n.m _
(dL)Z = J4(En.Ey1,C,1,) (14.39¢)
Z

2m,
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and

W onm —_
()" = J5(Enrscony) (14.39d)
Z

2m,

where E, g, and E, g, are the energies along z direction for (14.39a) and (14.39b)
respectively.
The electron concentration for (14.39a) is given by

g eB Mimax Tzmax
= :rh Real part of ;;FAWEODJ) (14.39)
where 1z0p,; = [ksT] "' [Eprp — Egy1], Eprp is the Fermi energy in this case.

The EP in this case can be expressed as

aoeng\! \/§ Mzmax Mmax J4 (Eanol ,C, ng)

J = —F_ 14.39f
B ANy QARSI o) (14390
The electron concentration for (14.39b) is given by
gveB Mmax Mzmax
== Z Z F_1(ngop2) (14.39¢)
n=0 n,=1
where 17E0D,2 = [kBT]il[EFTD — EE02]-
The EP in this case can be expressed as
ane’B ’ \/z Manax Mmax 4 [ J5 (EanOZ; C, 1’]8)
Trop, = 228 F_1(Ngopa)- (14.39h)

hd, VM o n=0 J§ (Eanng ¢, ”Ig)

14.2.7 The Magneto EP from Effective Mass Superlattices
of HD III-V, Ternary and Quaternary Materials
Under Strong Electric Field

The electron dispersion law in III-V effective mass super lattices can be written as

1
£ = [ feos i (E, g, ks k) — K] (14.40)
0
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where
Jup(E, ¢, g, ky, k;) = [[arapcos(agCiup(E, g5 c1, k1) + boDiup(E, g, ¢2, k1 )]]

- [aZHDCOS[a()ClHD(Ev r]gl ,Cl1, kL) - bODlHD(E7 11g27 C2, kL)]Hv

m(ZJAIt(O C27’1g2) + 1]2 mLZJ!t(O C27ng2)

aygp = 4
1D [ mc1J4(0 Cl7’1gl) [ mL1J4 0 Clv'/’gl)
4 _ [ chJA/t(O CZangZ) mCZ‘,A,t 0 , €2, 1 2)
2HD mcljz/t(o Cl7’7g1) mClJA’t(O Clangl)

mcl

Ciup(E, 15 01,k1) = [ Jo(E,ngy5c1) — ki]l/2 and

mC
Diup(E, g1, c1,k) = [ - S

J4 E Ng2s 62)

In the presence of a quantizing magnetic field B along k, direction, the magneto
electron energy spectrum can be written as

k2 = wpp(E, g, c,n) (14.41a)
where wpp(E, 1,,¢,n) = [le lcos™{fup(E, ¢, g, n)}* — 2 (n + 1)]

fup(E, ¢,ng,n) = [[a1upcos(aoCiup(E, Ny, c1,n) + boD1up(E, g, 2, 1)]]

— [a2upcos[aoCiup(E, Ny, c1,n) — boD1up(E, gy, c2,1n)]]],
Zm(l 2eB 1)}1/2

Ciup(E, g1, ¢1,n) = [h—J 4(E Ng1, 1) — 7("4'5

2my 2eB 1
and DIHD(EvnglaClan) _[ h22J4(E ng2762) 7 ( +5)]1/2

The EEM in this case can be written from (14.41a) as

hZ
m’* (ESL7 Mg, C, I’l) = ?Real part of [wHD(ESL; Mg, €y n)]l (1441b)

where Eg; is the Fermi energy in this case.
The electron concentration is given by

nmax

o = ng’ )+J41(ESL717g5 )] (1442)

nO

1 .
where J40(ESLa ng7n) = [wHD(ESL7 77g7ca n)]z and J41 (ESLa ngvn) = Zj:l L(r>
[J40(E5La ngvn)]'
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The EP in this case is given by

2 HMmax
owpe Bg kgT
JEsE, = 271:27;2 E Fo(nsrr1) (14.43)
n=0

where 15, = (ksT) '[Esz — (wsz; + W — hv)] and wg; is the sub-band energy
in this case.

The electron dispersion law in III-V effective mass super lattices whose con-
stituent materials obey (14.16a) can be expressed as

1 _
ki = [ﬁ [cos™ {fups(E, ngvk)’akz)}]z — K] (14.44)
0

where

Jups(E,ng, ky, k;) = [[a1upscos[aoCiups(E, Mgy, k1) + boDiups(E, g2, k1)]]
— [azupscos|aoCiups (E, g1, k1) — boDiups (E, g, k1)]]],

chJg (07 1782) + 1]2 .14 mcz‘]g(o’ ;732)

-1

a = ’
LHDS [ mcng (0, 7’]81) mcl‘]_g(oa ngl)]

opips — [ mcz.lg (0, ngZ) . }2 4 mCZJg(Ov ngZ)}fl
HD: madL(0,151) merJ5(0, )

2m,
Ciups(Engy, k1) = [#JS(E, Ne1) — k7] and

2m02
DIHDS(E7 nglakL) = [FJS(E7 ng27) - ki]

In the presence of a quantizing magnetic field B along k, direction, the magneto-
electron energy spectrum can be written as

k2 = wpps(E, g, n) (14.45a)
where

Lo 2¢B 1

wups(E, g,n) = [p [cos™ {funs (E, ﬂg,")}}z - T(" + 5)]7
0

Jups (E, Mg, n) = [[alHDSCOS[a()ClHDS (E7 ﬂgl,n) ~+ boD1pps (E, Ng2s n)]]

— [aaupscos|aoCiups (E, g1, 1) — boDiups (E, g, n)]]],

2me 2eB 1
Citps(E, g1, n) = [h—;Js(E, Mg1) — T (n+ 5)}

2m,. 2eB 1
and Dugos (s, 1) = [ I5( ) = = (n 4 5)
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The EEM in this case can be written from (14.45a) as

2

h
m*(Esp, 1y, n) = > [@nps(Est,ng,n)] (14.45b)

The electron concentration is given by

VeB Mmax
ny = é;rTh [J50(EsL, g, 1) + Js1(Esz, Mg, n)] (14.46)
n=0
1 s
where  Jso(Esr, My, n) = [opps(Esp, Ny, n)]?  and  Jsi(Esz,ng,n) = Y 0_ L(r)
[J50(EsL, Mg, )]
The EP in this case is given by

2 Mmax
ope Bg,kgT
WZ{) Fo(Nsrra) (14.47)

JEsg, =

where 1g 1, = (kBTf1 [Est. — (wsi2 + W — hv)] and wg;, is the sub-band energy
in this case.

14.3 Open Research Problems

(R.14.1) Investigate the EP for the HD bulk materials whose respective dispersion
relations of the carriers in the absence of any field is given in Chap. I in
the presence of intense electric field which change the original band
structure and consider its effect in the subsequent study in each case.

(R.14.2) Investigate the EP as defined in (R.14.1) in the presence of an arbitrarily
oriented non-uniform light waves for all the HD materials as considered
R.14.1.

(R.14.3) Investigate the EP as defined in (R.14.1) in the presence of an arbitrarily
oriented non-quantizing alternating non-uniform electric field for all the
cases of R.14.1.

(R.14.4) Investigate the EP as defined in (R.14.1) for all the HD materials in the
presence of arbitrarily oriented non-quantizing non-uniform electric field
for all the appropriate cases.

(R.14.5) Investigate the EP as defined in (R.14.1) for all the HD materials in the
presence of arbitrarily oriented non-quantizing alternating electric field
for all the appropriate cases of problem R.14.4.

(R.14.6) Investigate the EP as defined in (R.14.1) for the negative refractive
index, organic, magnetic and other advanced optical HD materials in the
presence of arbitrarily oriented electric field.


http://dx.doi.org/10.1007/978-3-319-11188-9_1

484
(R.14.7)

(R.14.8)

(R.14.9)

(R.14.10)

(R.14.11)

(R.14.12)

(R.14.13)
(R.14.14)
(R.14.15)
(R.14.16)

(R.14.17)
(R.14.18)

(R.14.19)
(R.14.20)

(R.14.21)

(R.14.22)

(R.14.23)
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Investigate the EP as defined in (R.14.1) in the presence of alternating
non-quantizing electric field for all the problems of R.14.6.

Investigate the EP as defined in (R.14.1) for all the multiple quantum
confined HD materials whose unperturbed carrier energy spectra are
defined in R.14.1 in the presence of arbitrary oriented quantizing mag-
netic field by including the effects of spin and broadening respectively.
Investigate the EP as defined in (R.14.1) in the presence of an additional
arbitrarily oriented alternating quantizing magnetic field respectively for
all the problems of R.14.8.

Investigate the EP as defined in (R.14.1) in the presence of arbitrarily
oriented alternating quantizing magnetic field and arbitrary oriented non-
quantizing non-uniform electric field respectively for all the problems of
R.14.8.

Investigate the EP as defined in (R.14.1) in the presence of arbitrary
oriented alternating non-uniform quantizing magnetic field and addi-
tional arbitrary oriented non-quantizing alternating electric field
respectively for all the problems of R.14.1.

Investigate the EP in the presence of arbitrary oriented and crossed
quantizing magnetic and electric fields respectively for all the problems
of R.14.8.

Investigate the EP for all the appropriate HD low-dimensional systems
of this chapter in the presence of finite potential wells.

Investigate the EP for all the appropriate HD low-dimensional systems
of this chapter in the presence of parabolic potential wells.

Investigate the EP for all the appropriate HD systems of this chapter
forming quantum rings.

Investigate the EP for all the above appropriate problems in the presence
of elliptical Hill and quantum square rings respectively.

Investigate the EP for multiple carbon nano-tubes.

Investigate the EP for multiple carbon nano-tubes in the presence of non-
quantizing non-uniform alternating light waves.

Investigate the EP for multiple carbon nano-tubes in the presence of non-
quantizing non-uniform alternating magnetic field.

Investigate the EP for multiple carbon nano-tubes in the presence of
crossed electric and quantizing magnetic fields.

Investigate the EP for all types of HD semiconductor nano-tubes for all
the HD materials whose unperturbed carrier dispersion laws are defined
in Chap. 1.

Investigate the EP for HD semiconductor nano-tubes in the presence of
non-quantizing alternating light waves for all the materials whose
unperturbed carrier dispersion laws is defined in Chap. 1.

Investigate the EP for HD semiconductor nano-tubes in the presence of
non-quantizing alternating magnetic field for all the materials whose
unperturbed carrier dispersion laws are defined in Chap. 1.


http://dx.doi.org/10.1007/978-3-319-11188-9_1
http://dx.doi.org/10.1007/978-3-319-11188-9_1
http://dx.doi.org/10.1007/978-3-319-11188-9_1

14.3  Open Research Problems 485

(R.14.24)

(R.14.25)

(R.14.26)

(R.14.27)

(R.14.28)

(R.14.29)

(R.14.30)

(R.14.31)

(R.14.32)

(R.14.33)

(R.14.34)

(R.14.35)
(R.14.36)
(R.14.37)

(R.14.38)

Investigate the EP for HD semiconductor nano-tubes in the presence of
non-uniform light waves for all the materials whose unperturbed carrier
dispersion laws are defined in Chap. 1.

Investigate the EP for HD semiconductor nano-tubes in the presence of
alternating quantizing magnetic fields for all the materials whose
unperturbed carrier dispersion laws are defined in Chap. 1.

Investigate the EP for HD semiconductor nano-tubes in the presence of
crossed electric and quantizing magnetic fields for all the materials
whose unperturbed carrier dispersion laws are defined in Chap. 1.
Investigate the EP for all the appropriate nipi structures of the HD
materials whose unperturbed carrier energy spectra are defined in
Chap. 1.

Investigate the EP for all the appropriate nipi structures of the HD
materials whose unperturbed carrier energy spectra are defined in
Chap. 1, in the presence of an arbitrarily oriented non-quantizing non-
uniform additional electric field.

Investigate the EP for all the appropriate nipi structures of the HD
materials whose unperturbed carrier energy spectra are defined in
Chap. 1 in the presence of non-quantizing alternating additional mag-
netic field.

Investigate the EP for all the appropriate nipi structures of the HD
materials whose unperturbed carrier energy spectra are defined in
Chap. 1 in the presence of quantizing alternating additional magnetic
field.

Investigate the EP for all the appropriate nipi structures of the HD
materials whose unperturbed carrier energy spectra are defined in
Chap. 1 in the presence of crossed electric and quantizing magnetic
fields.

Investigate the EP for HD nipi structures for all the appropriate cases of
all the above problems.

Investigate the EP for the appropriate accumulation layers of all the
materials whose unperturbed carrier energy spectra are defined in
Chap. 1 in the presence of crossed electric and quantizing magnetic
fields by considering electron spin and broadening of Landau levels.
Investigate the EP for quantum confined HD III-V, II-VI, IV-VI, HgTe/
CdTe effective mass super-lattices together with short period, strained
layer, random, Fibonacci, poly-type and saw-tooth super-lattices.
Investigate the EP in the presence of quantizing magnetic field respec-
tively for all the cases of R.14.34.

Investigate the EP in the presence of non-quantizing non-uniform
additional electric field respectively for all the cases of R.14.34.
Investigate the EP in the presence of non-quantizing alternating electric
field respectively for all the cases of R.14.34.

Investigate the multiphoton EP in the presence of crossed electric and
quantizing magnetic fields respectively for all the cases of R.14.34.
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(R.14.39)
(R.14.40)

(R.14.41)

(R.14.42)

(R.14.43)
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Investigate the EP as defined in (R.14.1) for HD quantum confined
super-lattices for all the problems of R.14.35.

Investigate the EP as defined in (R.14.1) in the presence of quantizing
non-uniform magnetic field respectively for all the cases of R.14.34.
Investigate the EP as defined in (R.14.1) in the presence of crossed
electric and quantizing magnetic fields respectively for all the cases of
R.14.34.

Investigate the EP as defined in (R.14.1) for all the systems in the
presence of alternating strain.

Investigate all the problems of this chapter by removing all the mathe-
matical approximations and establishing the respective appropriate
uniqueness conditions.
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