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Preface

Our goal in producing this book is to provide a broad
overview of the most important approaches used in
protein- and ligand-structure-based drug design. Beyond
this we aim to illustrate how these approaches are currently
being applied in drug discovery efforts. We hope this book
will be a useful resource to practitioners in the field, as well
as a good introduction for researchers or students who are
new to the field. We believe it provides a snapshot of the
most important trends and capabilities in the application
of modeling and structural data in drug discovery.

Since the 1990s the role of structure and modeling in
drug discovery has grown enormously. There have been
remarkable scientific advances in both the experimen-
tal and computational fields that are the underpinnings
of modern drug design. For example, x-ray capabilities
have improved to the point that protein structures are
now routinely available for a wide range of protein tar-
gets. One only need look at the exponential growth of
the Protein Databank (RCSB) for evidence. Tremendous
strides have been made in all aspects of protein struc-
ture determination, including crystallization, data acquisi-
tion, and structure refinement. Modeling has made similar
gains. Recent years have brought more realistic force fields,
new and more robust free-energy methods, computational
models for absorption/distribution/metabolism/excretion
(ADME)-toxicity, faster and better docking algorithms,
automated 3D pharmacophore detection and searching,
and very-large-scale quantum calculations. When coupled
with the inexorable increase in computer power, new and
improved computational methods allow us to incorporate
modeling into the drug discovery process in ways that were
not possible just a short time ago.

In addition to improvements in methods, academic
and industrial groups have gained significant experience
in the application of these approaches to drug discov-
ery problems. Protein structures, docking, pharmacophore
searches, and the like have all become a staple of drug
discovery and are almost universally applied by large and
small pharma companies. A recent example of a new
approach that is gaining wider acceptance is fragment-
based drug design. The goal of fragment-based design is to
build up drug candidates from small low-affinity, but high-
information-content, hit structures. As such, fragment-

based design relies critically on structural, computational,
and biophysical methods to identify, characterize, and elab-
orate small low-affinity ligands.

The book is divided into three broad categories: struc-
tural biology, computational chemistry, and drug discov-
ery applications. Each section contains chapters authored
by acknowledged experts in the field. Although no book of
reasonable size can be completely comprehensive, we have
attempted to address the most significant topics in each
category, as well as some areas we see as emergent. We are
fortunate to have an introductory chapter from Professor
William Jorgensen that sets the tone for the book.

The structural biology section begins with a comprehen-
sive review of the strengths and weaknesses of x-ray crystal-
lography. This is the logical starting point for most protein-
structure-based design programs, as crystallography is
certainly the most common approach for obtaining the
three-dimensional structures of therapeutically important
proteins. This section also includes two chapters on
fragment-based drug design, including one devoted to the
important role nuclear magnetic resonance has played in
this new approach.

The computational chemistry section covers a range
of modeling techniques, including free-energy methods,
dynamics, docking and scoring, pharmacophore model-
ing, quantitative structure/activity relationships, compu-
tational ADME, and quantum methods. Each topic was
selected either because it is a commonly employed tool
in drug discovery (e.g., docking and scoring) or because
it is seen as an emerging technology that may have an
increasing role in the future (e.g., linear-scaling quantum
calculations). Taken together, these chapters provide a fairly
comprehensive overview of the computational approaches
being used in drug discovery today.

The final section on applications in drug discovery pro-
vides a few concrete examples of using the methods out-
lined in the first two sections for specific drug discovery
programs. This is the ultimate validation of any experimen-
tal or computational approach, at least with regard to drug
discovery. These examples from six diverse protein targets
are useful to the expert as examples of best practices and to
the novice as examples of what can be done. An overview
of G-protein-coupled receptor (GPCR) modeling and

ix
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structure is of keen current interest given that this class has
historically been a rich source of drugs, and it has recently
seen a major advance in access to experimental structures.
This bodes well for the future application of structure-based
design to GPCR targets.

Finally, we must thank all the authors who generously
agreed to participate in this project for their efforts and
patience. Without them, of course, there would be no book.
We have been particularly fortunate to enlist such a talented
group of authors.
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Progress and issues for computationally guided lead
discovery and optimization

William L. Jorgensen

INTRODUCTION

Since the late 1980s there have been striking advances,
fueled by large increases in both industrial and NIH-
funded academic research, that have revolutionized drug
discovery. This period has seen the introduction of high-
throughput screening (HTS), combinatorial chemistry,
PC farms, Linux, SciFinder, structure-based design, vir-
tual screening by docking, free-energy methods, absorp-
tion/distribution/metabolism/excretion (ADME) software,
bioinformatics, routine biomolecular structure determina-
tion, structures for ion channels, G-protein-coupled recep-
tors (GPCRs) and ribosomes, structure/activity relation-
ships (SAR) obtained from nuclear magnetic resonance
(SAR by NMR), fragment-based design, gene knockouts,
proteomics, small interfering RNA (siRNA), and human
genome sequences. The result is a much-accelerated pro-
gression from identification of biomolecular target to lead
compound to clinical candidate. However, a serious con-
cern is that the dramatic increase in drug discovery abilities
and expenditures has not been paralleled by an increase in
FDA approvals of new molecular entities.1 High demands
for drug safety, broader and longer clinical trials, too much
HTS, too little natural products research, and effective
generic drugs for many once-pressing afflictions have all
been suggested as contributors.2–4 Numerous corporate
mergers and acquisitions may have also had adverse effects
on productivity through distractions of reorganization and
integration. Nevertheless, one should consider what the
success would have been in the absence of the striking tech-
nical advances. Certainly, progress with some critical and
challenging target classes such as kinases would have been
greatly diminished, and the adverse impact on many can-
cer patients would have been profound. Indeed, further
gains in the treatment and prevention of human diseases
must require even more emphasis and commitment to fun-
damental research. As in other discovery enterprises, the
answer is to drill deeper.

The topic of this volume focuses on one of the areas
in drug discovery that has seen major transformation and
progress: structure- and ligand-based design. The design
typically features small molecules that bind to a biomolec-
ular target and inhibit its function. The distinction stems

from whether a three-dimensional structure of the target is
available and used in the design process. Structure-based
design can be carried out with nothing more than the
target structure and graphics tools for building ligands in
the proposed binding site. However, additional insights
provided by evaluation of the molecular energetics for the
binding process are central to most current structure-based
design activities. Ligand-based design does not require a
target structure but rather stems from analysis of struc-
ture/activity data for compounds that have been tested in
an assay for the biological function of the target. One seeks
patterns in the assay results to suggest potential modifi-
cations of the compounds to yield enhanced activity. The
upside is that a target structure is not required; the down-
side is that substantial activity data are needed. My research
group has focused on the development and application of
improved computational methodology for structure-based
design. Some of the experiences and issues that have been
addressed are summarized in the following.

LEAD GENERATION

Both lead generation and lead optimization may be pur-
sued through joint computational and experimental stud-
ies. As summarized in Figure 1.1, our approach has evolved
to feature two pathways for lead generation, de novo
design with the ligand-growing program BOMB (Biochem-
ical and Organic Model Builder)5 and virtual screening
using the docking program Glide.6 Fragment-based design,
which involves the docking and linking together of mul-
tiple small molecules in a binding site, is another popu-
lar alternative.7,8 Desirable compounds resulting from de
novo design normally have to be synthesized, whereas com-
pounds from virtual screening of commercial catalogs are
typically purchased. In both cases, it is preferable to begin
with a high-resolution crystal structure for a complex of the
target protein with a ligand; though the ligand is removed,
it is advisable to start from a complex rather than an
apo structure, which may have side chains repositioned to
fill partially the binding site. An extreme example occurs
with HIV-1 reverse transcriptase (HIV-RT) for which the
allosteric binding site for nonnucleoside inhibitors (NNR-
TIs) is fully collapsed in apo structures.9
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Figure 1.1. Schematic outline for structure-based drug lead discovery
and optimization.

De Novo design with BOMB

BOMB is used to construct complete analogs by adding 0–
4 substituents to a core that has been placed in a bind-
ing site. A thorough conformational search is performed
for each analog, and the position, orientation, and dihe-
dral angles for the analog are optimized using the OPLS-AA
force field for the protein and OPLS/CM1A for the analog.10

The resultant conformer for each analog with the lowest
energy is evaluated with a dockinglike scoring function to
predict activity. The core may be as simple as, for exam-
ple, ammonia or benzene, or it may represent a polycyclic
framework of a lead series. For the example in Figure 1.2,
ammonia was the original core, and it was positioned to
form a hydrogen bond with the carbonyl group of Lys101.
A library of molecules is then often built using a “template”
that has been envisioned by the user to be complemen-
tary to the binding site and often to also be amenable to
straightforward synthesis. For Figure 1.2, the template was
Het-NH-34Ph-U, where Het represents a monocyclic hete-
rocycle, 34Ph is a 3- or 4-substituted phenyl group, and U is
an unsaturated hydrophobic group. The template specifies
the components that constitute the desired molecules and
the topology by which they are linked together.

Tyr181

Tyr188

Trp229

Phe227
Leu100

Lys101

Val106

Figure 1.2. An inhibitor built using BOMB in the NNRTI binding site of
HIV-RT.

BOMB includes a library of approximately 700 possi-
ble substituents, with code numbers from 1 to about 700,
including most common monocyclic and bicyclic heterocy-
cles and about 50 common U groups such as allyl, propar-
gyl, phenyl, phenoxy, and benzyl derivatives. They are pro-
vided as groupings by the code numbers or the user can
create a custom grouping with desired code numbers. The
groupings correspond to template components such as
Het, 5Het (just 5-membered ring heterocycles), 6Het, biHet,
U, oPhX, mPhX, pPhX, mOPhX, pSPhX, OR, NR, SR, and
C = OX. The program then builds all molecules that corre-
spond to the template. In the example, if there were 50 Het
and 20 U options, the program would build the 1,000 Het-
NH-3-Ph-U and 1,000 Het-NH-4-Ph-U possibilities. This de
novo design exercise with HIV-RT as the target resulted in
identification of Het = 2-thiazolyl and U = dimethylally-
loxy as a promising pair. Subsequent synthesis of the thi-
azole 1 in Figure 1.3 did provide a 10-�M lead in an MT-2
cell-based assay for anti-HIV activity. As described below,
the lead was optimized to multiple highly potent NNRTIs,
including the chlorotriazine in Figure 1.2 (31 nM), the corre-
sponding chloropyrimidine (10 nM), and the cyanopyrimi-
dine analog 2 (2 nM).11–14

Some additional details should be noted. The host, typ-
ically a protein, is rigid in the BOMB optimizations except
for variation of terminal dihedral angles for side chains with

N
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1 2

Figure 1.3. Example of a 10-�M lead proposed by BOMB that was optimized to provide numerous potent anti-HIV
agents.
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Figure 1.4. Progression of a false positive from docking to potent anti-HIV agents.

hydrogen-bonding groups, for example, the OH of tyro-
sine or serine and ammonium group of lysine. The current
scoring function has been trained to reproduce experimen-
tal activity data for more than 300 complexes of HIV-RT,
COX-2, FK506 binding protein, and p38 kinase.5 It yields
a correlation coefficient r2 of 0.58 for the computed ver-
sus observed log(activities). The scoring function contains
only five descriptors that were obtained by linear regres-
sion, including an estimate of the analog’s octanol/water
partition coefficient from QikProp (QPlogP),15 the amount
of hydrophobic surface area for the protein that is buried
on complex formation, and an index recording mismatched
protein/analog contacts, such as a hydroxyl group in con-
tact with a methyl group. Interestingly, the most significant
descriptor is QPlogP, which alone yields a fit with an r2 of
0.47. Thus, the adage that increased hydrophobicity leads
to increased binding is well supported, though it requires
refinement for quality of fit using the host/ligand interac-
tion energy or an index of mismatched contacts. Overdone,
it also leads to ADME problems, especially poor aqueous
solubility and high serum protein binding.

The results from a BOMB run include the structure
for each protein/analog complex as a Protein Data Bank
(PDB) file or BOSS/MCPRO Z-matrix (internal coordinate
representation)16 and a spreadsheet with one row for each
analog summarizing computed quantities from the BOMB

calculations, including host–analog energy components
and surface area changes as well as predicted properties for
the analog, including log Po/w, aqueous solubility, and Caco-
2 cell permeability from QikProp, which is called as a
subroutine. The processing time for Het-NH-Ph-U using
ammonia as the core is approximately 15 s per analog on
a 3-GHz Pentium IV processor. The required time increases
roughly linearly with the number of conformers that need
to be constructed. For large libraries, multiple processors
are used.

Virtual screening

The common alternative is to perform virtual screening on
available compound collections using docking software.
Many reviews and comparisons for alternative software and

scoring functions are available.6,17–20 There is no question
that there have been many successes with docking such
that, given a target structure, it is expected to be compet-
itive with and far more cost effective than HTS and is now
an important component of lead discovery programs in the
pharmaceutical industry. New success stories are reported
regularly in the literature and at conferences. However, it
is generally accepted that correct rank-ordering of com-
pounds for activity is beyond the current capabilities. This
is not surprising in view of the thermodynamic complexity
of host/ligand binding, including potential structural
changes for the host on binding, which have usually been
ignored, and the need for careful consideration of changes
in conformational free energetics between the bound and
unbound states.21

In our experience, docking has been a valuable com-
plement to de novo design (Figure 1.1). When large com-
pound collections are docked, interesting structural motifs
often emerge as potential cores that may have been over-
looked otherwise. Our earliest docking effort started out
well, was formally a failure, and then recovered to pro-
vide an interesting lead series that yielded potent anti-HIV
agents.5,22 Leads were sought by processing a collection
of approximately 70,000 compounds from the Maybridge
catalog, which was supplemented with twenty known NNR-
TIs. The screening protocol began with a similarity filter
that retrieves 60% of the known actives in the top 5% of
the screened library. The approximately 2,000 library com-
pounds that were most similar to the known actives were
then docked into the 1rt4 structure of wild-type HIV-RT,
using Glide 3.5 with standard precision.6 The top 500 com-
pounds were then redocked and scored in Glide extrapre-
cision (XP) mode.23 The top 100 of these were postscored
with a molecular mechanics/generalized Born/surface area
(MM-GB/SA) method that was shown to provide high
correlation between predicted and observed activities for
NNRTIs.22 Though known NNRTIs were retrieved well (ten
were ranked in the top twenty), purchase and assaying of
approximately twenty high-scoring compounds from the
library failed to yield any active anti-HIV agents. Persisting,
the highest-ranked library compound, the inactive oxadia-
zoles 3 in Figure 1.4, was pursued computationally to seek
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Figure 1.5. Distributions of the Glide XP scores for the top-ranked 1,000
ZINC compounds, the top-ranked 1,000 Maybridge compounds, and the
10 known tautomerase inhibitors.

constructive modifications. Specifically, the substituents
were removed to yield the anilinylbenzyloxadiazole core. A
set of small substituents was reintroduced in place of each
hydrogen using BOMB; scoring with BOMB, followed by
free-energy perturbation (FEP)-guided optimization, led to
synthesis and assaying of several polychloro analogs with
EC50 values as low as 310 nM in the MT-2 HIV-infected
T-cell assay.5 Further cycles of FEP-guided optimization led
to novel, very potent NNRTIs, including the oxazole deriva-
tive 4, as described more below.24

A more recent virtual screening exercise was strikingly
successful.25 New protocols had evolved, including use of
the much larger ZINC database of approximately 2.1 mil-
lion commercially available compounds.26 The goal in this
case was to disrupt the binding of macrophage migration
inhibitory factor (MIF) to its receptor CD74, an integral
membrane protein, and a major histocompatibility com-
plex (MHC) class II chaperone. MIF is a pro-inflammatory
cytokine that is released by T-cells and macrophages. It
plays a key role in a wide range of inflammatory dis-
eases and is involved in cell proliferation and differentia-
tion and angiogenesis.27,28 Curiously, MIF is also a keto-
enol isomerase. There is evidence that the interaction of
MIF with CD74 occurs in the vicinity of the tautomerase
active site and that MIF inhibition is directly competi-
tive with MIF/CD74 binding.29 The docking was performed
using Glide 4.0 and the 1ca7 crystal structure of the com-
plex of MIF with p-hydroxyphenylpyruvate.30 In addition to
the ZINC collection, the Maybridge HitFinder library was
screened, which provided an additional 24,000 compounds.
After all structures were processed using SP Glide, the top-
ranked 40,000 from ZINC and 1,000 from Maybridge were
redocked and rescored using Glide in XP mode.23

Glide XP
scoring was also shown to provide good correlation with
experimental data for 10 known inhibitors of MIF’s tau-
tomerase activity.

A key observation from the docking is illustrated in Fig-
ure 1.5, which shows the distributions of Glide XP scores
for the top-ranked 1,000 compounds from ZINC, the top-
ranked 1,000 Maybridge compounds, and the ten known
MIF inhibitors. Clearly, the large ZINC collection yields
many compounds with much more promising XP scores
than the Maybridge HitFinder library. The average molec-
ular weights for the two sets of 1,000 compounds are 322 for
ZINC and 306 for Maybridge. The variation only amounts
to one additional nonhydrogen atom for the ZINC set, so
the improved performance with the ZINC collection pre-
sumably results from greater structural variety. In view of
the sensitivity of activity to structure, as reflected in Figures
1.3 and 1.4, it is highly unlikely that active compounds can
be found in small libraries like Maybridge HitFinder unless
the assays can be run with the compounds at millimolar or
higher concentrations, which is often precluded by solubil-
ity limits. Even with a viable core (Figure 1.4), the chance is
low that a small library will contain a derivative with a sub-
stituent pattern that yields an active in a typical assay.

Finally, the Glide poses for approximately 1,200 of the
top-ranked compounds were displayed and 34 compounds
were selected by human evaluation of the poses with input
from QikProp on predicted properties and structural lia-
bilities. The filtering included rejection of poses where
the conformation of the ligand was energetically unlikely
or where there were overly short intramolecular contacts
and compounds with generally undesirable features such
as readily hydrolizable functional groups or substructures
such as coumarins, which are promiscuous protein binders.
Only 24 of the 34 selected compounds were, in fact, avail-
able for purchase, which represents a typical ratio. Ulti-
mately 23 compounds were submitted to a protein-protein
binding assay using immobilized CD74 and biotinylated
human MIF with streptavidin-conjugated alkaline phos-
phatase processing p-nitrophenyl phosphate as substrate.
Remarkably, eleven of the compounds were found to have
inhibitory activity in the �M regime including four com-
pounds with IC50 values below 5 �M. Inhibition of MIF
tautomerase activity was also established for several of the
compounds with IC50 values as low as 0.5 �M. Representa-
tive active compounds are shown in Figure 1.6; optimiza-
tion of several of the lead series is being pursued. Notably,
these are the most potent small-molecule inhibitors of MIF-
CD74 binding that have been reported to date.

The first three compounds in Figure 1.6 were ranked
in 285th, 696th, and 394th place by the XP scoring, so
they were not “high in the deck.” However, prior de novo
structure building with BOMB had indicated that 6–5 fused
bicyclic cores should be promising, so the selections were
biased in this direction. The compound ranked first with XP
Glide was also purchased and assayed; it turned out to be
the 250-�M inhibitor in Figure 1.6. In addition, the com-
pounds ranked 26th and 32nd were purchased and found
to be inactive. Overall, it is expected that contributors to
the success with the virtual screening in this case were
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improvements with Glide 4.0 and the XP scoring, use of
the large ZINC library, the relatively small binding site and
consequently small number of rotatable bonds for potential
inhibitors, and the human filtering.

ADME ANALYSES

As indicated in Figure 1.1, as one pursues leads it is impor-
tant to be aware of potential pharmacological liabilities. The
significance of this issue became increasingly apparent in
the 1990s because of high failure rates for compounds in
clinical trials that could be ascribed to ADME and toxicity
problems.31 This led to the introduction of Lipinski’s rules
and recognition that compounds developed in the post-
HTS era frequently tended to be too large and hydropho-
bic, which is accompanied by solubility and bioavailability
deficiencies.32 In this atmosphere, more effort was placed
on quantitative prediction of molecular properties beyond
log Po/w using statistical procedures such as regression anal-
yses and neural networks, which were trained on experi-
mental data.33,34 The typical regression equation is a lin-
ear one, Equation (1.1), where the sum is over molecular
descriptors i that have values ci for the given structure and
the coefficients ai are determined to minimize the error
with the experimental data:

property =
∑

i

ai ci + a0. (1.1)

In Figure 1.1, the choice for ADME analyses is QikProp,
which was among the earliest programs to predict a
substantial array of pharmacologically relevant properties.

Version 1.0, which was released in March 2000, provided
predictions for intrinsic aqueous solubility, Caco-2 cell
permeability, and hexadecane/gas, octanol/gas, water/gas,
and octanol/water partition coefficients. The required
input for QikProp is a three-dimensional structure of an
organic molecule, and it mostly uses linear regression equa-
tions with molecular descriptors such as surface areas
and hydrogen-bond donor and acceptor counts. By ver-
sion 3.0 from 2006, the output covered eighteen quan-
tities, including log BB for brain/blood partitioning, log
Khsa for serum albumin binding, hERG K+ channel block-
age, primary metabolites, and overall percentage human
oral absorption.15 The prediction of primary metabolites
is based on literature precedents and recognition of cor-
responding substructures; for example, methyl ethers and
tolyl methyl groups are typically metabolized to the alco-
hols. Execution time with QikProp is negligible because the
most time-consuming computation is for the molecule’s
surface area. Average root-mean-square (rms) errors for
most quantities are about 0.6 log unit, as in Figure 1.7.

To gauge acceptable ranges of predicted properties,
QikProp 3.0 was used to process approximately 1,700
known neutral oral drugs,13 which were compiled by
Proudfoot.35 For submission to QikProp, the original
two-dimensional structures were converted to three-
dimensional structures and energy-minimized with BOSS

using the OPLS/CM1A force field.10,16 Some key results
from the analyses are summarized as histograms in Fig-
ures 1.8 and 1.9. Consistent with the log Po/w limit of 5 in
Lipinski’s rules,32 91% of oral drugs are found to have
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QPlogP values below 5.0. However, values below zero are
uncommon, presumably because of poor cell permeability,
and the “sweet” range for log Po/w appears to be 1–5. For
aqueous solubility, 90% of the QPlogS values are above −5.7,
that is, S is greater than 1 �M. QPlogS values less than −6 or
greater than −1 are undesirable. The QikProp results also
state that 90% of oral drugs have cell permeabilities, PCaco,
above 22 nm/s and no more than six primary metabolites.
These quantities and limits address important components
of bioavailablility, namely, solubility, cell permeability, and
metabolism.

For our design purposes (Figure 1.1), a compound is
viewed as potentially ADME challenged if it does not
satisfy all components of a “rule-of-three”: predicted log
S � −6, PCaco � 30 nm/s, and maximum number of pri-
mary metabolites of 6. For central nervous system (CNS)
activity requiring blood-brain barrier penetration, an
addendum is that QPlogBB should be positive. Also, some
caution is warranted for a compound with no metabolites
because of possible clearance problems.17 A further note
is that QPlogP and QPlogS are correlated with an r2 of
0.68, so there would be some redundancy in invoking limits
on both. Among reasons for preferring solubility, there
are quite a few examples of relatively small drugs that

have log Po/w values greater than 5 but have acceptable
solubility, for example, meclizine, prozapine, clocinizine,
bepridil, denaverine, bopindolol, phenoxybenzamine, and
terbinafine. Of course, compounds with reactive functional
groups, for example, those that are readily hydrolizable or
strongly electrophilic, are flagged by QikProp and normally
eliminated from inclusion in a lead structure. For example,
in rofecoxib (Vioxx) concern could be expressed for possi-
ble nucleophilic attack and ring opening at the furanone
carbonyl and for Michael addition to the �,�-double bond;
metabolic oxidation at the allylic methylene group is also
expected to yield the 5-hydroxy derivative (Scheme 1). For
celecoxib (Celebrex), metabolic oxidation to the benzylic
alcohol is noted by QikProp, and an “alert” is given that

O O

SO2CH3 SO2NH2H3C
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N

N
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Figure 1.10. (Left) A protein/ligand complex surrounded by approximately 1,000 water molecules in a spherical
shell or “cap.” (Right) Thermodynamic cycle used to compute relative free energies of binding, � �Gb. P is a host
and X and Y are two ligands.

the primary sulfonamide group can be associated with sulfa
allergies and indiscriminant metal chelation.36

Overall, for the 1,712 oral drugs, 278 violate one or more
of the four Lipinski rules (MW � 500, logPo/w � 5, H-bond
donors ≤ 5, H-bond acceptors ≤10) with QPlogP used for
log Po/w. There are 178, 82, and 18 oral drugs with one,
two, and three violations, respectively. The group with
two violations includes macrolides such as erythromycin
and azithromycin and some other well-known drugs like
atorvastatin, amiodarone, chloramphenicol, ketoconazole,
and telmisartan. These examples all fail one member of
the rule-of-three, either the solubility limit or number of
primary metabolites, for example, respectively, atorvastatin
and the macrolides. The group with three rule-of-five vio-
lations includes the HIV-protease inhibitors ritonavir and
saquinavir, which are known to have low bioavailability.
There are exceptions to such rules because they are based
on 90th-percentile limits. Nevertheless, in all stages of
lead generation, it would be imprudent to ignore property
distributions for known drugs such as those in Figures 1.8
and 1.9.

LEAD OPTIMIZATION

It is assumed that inhibitory potency increases with increas-
ing biomolecule-inhibitor binding. So, on the computa-
tional side, the key for lead optimization is accurate pre-
diction of biomolecule-ligand binding affinities. There are
many approaches, but the potentially most accurate ones
are the most rigorous.17 At this time, the best that is done
is to model the complexes in the presence of hundreds or
thousands of explicit water molecules using Monte Carlo
(MC) statistical mechanics or molecular dynamics meth-
ods (Figure 1.10).17 Classical force fields16 are used, and
extensive sampling is performed for key external (transla-
tion and rotation) and internal degrees of freedom for the
complexes, solvent, and any counterions. FEP and ther-
modynamic integration (TI) calculations then provide for-

mally rigorous means to compute free-energy changes.37

For biomolecule/ligand affinities, perturbations are made
to convert one ligand to another using the thermody-
namic cycle in Figure 1.10. The conversions involve a
coupling parameter, �, that causes one molecule to be
smoothly mutated to the other by changing the force
field parameters and geometry.38 The difference in free
energies of binding for the ligands X and Y then comes from
� �G b = �G X − �G Y = �G F − �G C. Two series of muta-
tions are performed to convert X to Y unbound in water and
complexed to the biomolecule, which yield �G F and �GC.

Absolute free energies of binding are not obtained, but
for lead optimization it is sufficient to assess the effects
of making changes or additions to a core structure in the
same spirit as synthetic modifications. Though the MC or
MD plus FEP or TI calculations are rigorous, the accuracy
of the results is affected by many issues, including the use
and quality of force fields; missing energy terms, such as
instantaneous polarization effects; and possible inade-
quate configurational sampling, which may be associated
with, for example, infrequent conformational changes
that are beyond the duration of the simulations. In the
author’s experience, more approximate methods are not
accurate enough to provide satisfactory guidance in lead
optimization.

The idea of using such calculations for molecular design
goes back more than twenty years, at least to the report
of the first FEP calculation for conversion of a molecule X
to molecule Y in 198538 and to the earliest application of
FEP calculations for protein-ligand binding by Wong and
McCammon.39 A final comment from McCammon’s review
on computer-aided molecular design in Science in 1987 was
perspicacious: “The attentive reader will have noticed that
no molecules were actually designed in the work described
here.”40 The situation has remained basically unchanged
since the late 1980s. As the convergence of FEP calcula-
tions was investigated, it was apparent that they were too
computationally intensive for routine use in molecular
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design given the computer resources available before ca.
2000. In 1985, the ethane-to-methanol FEP calculation in a
periodic cube with 125 water molecules required two weeks
on a Harris-80 minicomputer,38 and the Wong/McCammon
MD simulation for the trypsin-benzamidine complex cov-
ered only 29 ps but was performed on a Cyber 205
“supercomputer.”39

Thus, until recently the application of FEP or TI calcu-
lations on protein-ligand systems predominantly featured
retrospective calculations to reproduce known experimen-
tal inhibition data and generally addressed small numbers
of compounds. Kollman was a strong advocate of the poten-
tial of free-energy calculations for molecular design, and
he and Merz reported a rare, prospective FEP result on the
binding of a phosphonamidate versus phospinate inhibitor
with thermolysin.41,42 Pearlman also advanced the tech-
nology, though publications in 2001 and 2005 were still
retrospective and confined to a simple congeneric series
of 16 p38 kinase inhibitors.43,44 In addition, Reddy and
Erion have been steady contributors; they have used FEP
calculations to evaluate contributions of heteroatoms and
small groups to the binding of inhibitors to gain insights
on directions for improvement.45,46 Our own computations
on protein/ligand binding began to appear in 1997 using
MC/FEP methodology.47,48 Many issues and systems were
subsequently addressed, including substituent optimiza-
tion for celecoxib analogs,49 COX-2/COX-1 selectivity,50

and heterocycle optimization for inhibitors of fatty acid
amide hydrolase.51 An additional series of publications
used MC/FEP calculations to compute the effects of HIV-
RT mutations on the activity of NNRTIs.52–55 The latter work
included predictions for the structures of the complexes
of efavirenz and etravirine with HIV-RT, which were sub-
sequently confirmed by x-ray crystallography.52,54,56 Con-
fidence in the predicted structures came from agree-
ment between the FEP results and experimental activity
data.

FEP-guided optimization of azines as NNRTIs

With this preparation, large increases in computer
resources, the hiring of synthetic chemists, and collab-

oration with biologists, FEP-guided lead optimization
projects were initiated in 2004. Early successes in the opti-
mization of potent NNRTIs are reflected in Figures 1.2 and
1.3 for the Het-NH-3-Ph-U series.11–13 MC/FEP calculations
were used to optimize the heterocycle and the substituent
in the 4-position of the phenyl ring. The calculations are
run with MCPRO and all use the OPLS/CM1A force field for
the ligands and OPLS-AA for the protein.10,16 This quickly
led to selection of 2-pyrimidinyl and 2-(1,3,5)-triazinyl
for the heterocycle and chlorine or a cyano group at the
4-position. These combinations yielded NNRTIs with EC50

values near 200 nM.
Extensive FEP calculations then focused on optimiza-

tion of substituents for the heterocycle.13 For the 2-
pyrimidines, the immediate question concerned whether
4,6-disubstitution would be favorable or if mono substitu-
tion at the 4- or 6-position is preferred. In complexes with
HIV-RT, the 4- and 6-positions are not equivalent; for exam-
ple, in Figure 1.2, the methoxy group could be directed
toward the viewer (“out”) or away (“in”), as shown. From
display of structures of the complexes, the preferences for
in or out were not obvious. This was clarified by MC/FEP
results, which showed a strong preference for having a sin-
gle small substituent on the pyrimidine ring and that the
substituent would be oriented “in” (Figure 1.11). Synthe-
sis of a variety of such mono-substituted pyrimidines and
triazines yielded ten NNRTIS with EC50s below 20 nM.11–13

There was good correlation between the FEP results and the
observed activities.11,13 The methoxypyrimidine 2 in Figure
1.3 (2 nM) was the most potent, although it was also rela-
tively cytotoxic (CC50 = 230 nM). The corresponding 1,3,5-
triazine is also a potent anti-HIV agent (11 nM) and has a
large safety margin (CC50 = 42 �M).

Heterocycle scans

FEP results also established the orientation of the methoxy
methyl group in the pyrimidine and triazine derivatives
shown in Figure 1.2, that is, pointing toward Phe227 rather
than Tyr181. This suggested the possibility of cyclizing the
methoxy group back into the azine ring to form 6–5 and 6–6
fused heterocycles in the manner indicated in Scheme 2.
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The decision on which analogs to pursue was driven
by the prospective FEP results shown in Figure 1.12.
Subsequent synthesis and assaying of the series of 6–5
compounds showed close parallel between the predicted
and observed activities.11 The illustrated furanopyrimidine
derivative was predicted and observed to be the most
potent; it is a highly novel and potent (5 nM) NNRTI. The
results highlight the accuracy of the FEP predictions and
again the sensitivity of activity to structure. The pyrrolopy-
rimidine (130 nM) and pyrrolopyrazine (19 nM) pair is
particularly striking. After the fact, analyses showed a larger
dipole moment for the bound pyrrolopyrazine and more
negative charge on the pyrazinyl nitrogen leading to stronger
hydrogen bonding with the backbone NH of Lys101.14

This procedure can be referred to as a heterocycle scan,
which is clearly a powerful lead-optimization strategy.51 It
is also an area where computation is far easier than syn-
thesis, so computational screening to focus the synthetic
options is very beneficial. This is particularly true for poly-
cyclic heterocycles, as in Figure 1.12, where there are many
options and the synthetic challenges can be great. In this
example, heteroaryl halides were needed for reaction with
substituted anilines; several were not previously reported
and required considerable synthetic effort.14 Even with the
notion of pursuing bicyclic heterocycles, in the absence of
the FEP results, the synthetically less accessible ones might
have been skipped.

Changing heterocycles in the center of a structure is also
often challenging from a synthetic standpoint. For exam-
ple, synthesis of the oxadiazoles and oxazole in Figure 1.4
requires fundamentally different procedures for the ring

construction.24 This corresponds to a change in chemo-
type and there can be a significant delay as a viable syn-
thetic route is found for the new target. In the case of
this U-5Het-NH-pPhX series, FEP calculations were car-
ried out for eleven alternative five-membered-ring hete-
rocycles (5Het) by perturbation from the corresponding
thiophene.24 Remarkably, the only one that was predicted to
be more active than the oxadiazole was the 2,5-substituted
oxazole. The prediction was confirmed and provided a
major step forward for the optimization of this series, as
shown in Figure 1.13. It is noted that the approximately
eight-fold activity improvement, which corresponds to a
� �G of about 1.2 kcal/mol, is less than the computed � �G
of 2.5 kcal/mol. This is a common pattern that likely results
from the use of a cell-based assay, so the comparison is
not with actual binding data (Kd). Moreover, it is also prob-
able that the computed electrostatic interactions in the
complexes are not properly damped because of the lack of
explicit polarization effects.

In view of the synthetic challenges, only two alterna-
tives were synthesized, the thiadiazole and thiazole analogs,

ΔG = +4.9, not active +4.6, not active
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Figure 1.13. Heterocycle scan in the U-5Het-Ph X series; FEP results
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anti-HIV activity (nM).



10 William L. Jorgensen

N

N

H

N
H

H

O

N

N

H

N
H

Cl
O

N

N

N
H

Cl
O

30,000 nM 39 nM200 nM

N

N

H

N
H

CH3

CH3O

2,800 nM

Figure 1.14. The power of chlorine and methyl scans; experimental EC50 values for anti-HIV activity in an MT-2
cell assay.

which were both predicted and found to be inactive (Fig-
ure 1.13). It is noted that the MT-2 assay is run to a maxi-
mum concentration of 100 �M; the thiadiazole showed no
activity or cytotoxicity up to this concentration, whereas
the thiazole has a CC50 of 24 �M and no anti-HIV activity
to this point. Overall, this provides another example of the
sensitivity of activity to structure and the desirability of rig-
orous computational guidance. Graphical display of mod-
eled complexes is inadequate to gauge relative potency. In
retrospect, the results indicate that the longer C-S bonds in
the 2,5-disubstituted sulfur-containing heterocycles cause
crowding of the dichlorobenzyl group and Tyr181, and the
nitrogen in the 3-position has an electrostatically unfavor-
able interaction with Glu138.

An interesting aside is that in the original publication,
it was thought that the 2,5-disubstituted thiazole in Figure
1.13 showed weak activity with an EC50 of 3.1 �M, which
was out of line with the FEP results.24 It was subsequently
found that instead of the 2,5-isomer, the 2,4-isomer (S and
N interchanged in the structure in Figure 1.13) was the
actual compound that had been synthesized and assayed,
as confirmed by a crystal structure. The two isomers are not
unequivocally distinguishable by NMR. An alternative syn-
thetic route was then pursued to yield the 2,5-isomer, which
is indeed inactive, as predicted by the FEP calculations.

Small group scans

In addition to the heterocycle scans, small group scans
are highly informative. These are performed routinely with
BOMB to build the structures and provide initial scor-
ing, followed by refinement with FEP calculations. A stan-
dard protocol with BOMB is to replace each hydrogen of a
core, especially aryl hydrogens, with ten small groups that
have been selected for difference in size, electronic char-

acter, and hydrogen-bonding patterns: Cl, CH3, NH2, OH,
CH2NH2, CH2OH, CHO, CN, NHCH3, and OCH3. This is
generally adequate to define likely places for beneficial sub-
stitution of hydrogen by the least polar groups, Cl, CH3,
and OCH3. The situation with the polar groups is less clear
because of the competition for the ligand between hydro-
gen bonding in the complex versus unbound in water. As
long as some hydrogens appear viable for substitution, a
chlorine and/or methyl scan using FEP calculations is then
desirable to obtain quantitatively reliable predictions. The
potential value of using both a chlorine and methyl scan
is well illustrated by the results in Figure 1.14; knowing the
optimal position for a methyl group and a chlorine provides
an activity boost from 30 �M to 39 nM in this case.11–13

A chlorine scan was also particularly helpful in evolv-
ing the inactive oxadiazole 3 in Figure 1.4 into potent anti-
HIV agents. 3 had emerged in third place after the dock-
ing exercise and embedded among known, potent NNRTIs.
The docking pose and the structure of the complex as
built by BOMB also looked reasonable, although the score
from BOMB was modest because of poor accommoda-
tion of the methoxy groups in the vicinity of Tyr181 and
Tyr188. Assuming that the tricyclic core might be viable,
the substituents were removed and a chlorine scan was
performed using MC/FEP simulations.5,24 The predicted
changes in free energy of binding for replacing each hydro-
gen by chlorine are summarized in Figure 1.15; again for-
mally equivalent positions become nonequivalent in the
complexes. The scan indicated that the most favorable
positions for introduction of chlorines were at C3 and
C4 in the phenyl ring and at C2 and C6 in the benzyl
ring. A series of polychloro analogs were then synthe-
sized and the activities were found to closely parallel the
predictions (Scheme 3). The core and, for example, the
4,4´-dichloro analog were inactive; however, the illustrated
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trichloro and tetrachloro analogs followed the expectations
from the FEP results and yielded sub-�M NNRTIs. Thus,
with the aid of the FEP chlorine scan it was possible to
evolve the false positive from the docking calculations into
true positives.5,24

Small group and linker refinement

Given the positive outcome of chlorine and/or methyl
scans, it is natural to consider further optimization at
the replacement sites. This has been successfully guided
by FEP results several times, for example, in the opti-
mization of the substituent in the pyrimidine ring and at
the 4-position in the phenyl ring for the Het-NH-3-Ph-U
compounds in Figure 1.3.11–13,24 More recent examples
occurred with the azoles (Scheme 4). At C4 in the illustrated
2´,6´-dichlorobenzyloxadiazole, FEP calculations were per-
formed and predicted relative �Gb values in kcal/mol for
X = H (0.0), CH2CH3 (−0.3), CH3 (−1.6), CH2OCH3 (−1.7),
OCH3 (−1.8), CF3 (−2.2), F (−2.3), Cl (−4.0), and CN (−5.2).
The X = CH3, CH2OCH3, Cl, and CN analogs were synthe-
sized and the assay results with EC50 values of 4, 4, 0.8, and
0.1 �M, respectively, conformed well to the expectations.24

N N N N N

NH NH NHO O O

Cl Cl Cl

CN CN

Cl

X

Y
F F

R

Scheme 4.

FEP-guided optimization of the linker Y between the
oxadiazole and dichlorophenyl rings was also pursued. The
options considered were Y = CH2, (R)-CHCH3, (S)-CHCH3,
NH, NCH3, O, and S. Though display of the correspond-
ing complexes appears reasonable, the FEP predictions for

modification of the methylene group were all unfavorable
except for minor improvement for the methylamino (−1.6)
and thio (−1.4) alternatives. The Y = NH and racemic
CHCH3 analogs were synthesized and indeed found to
be less active than the methylene compound; the methy-
lamino compound turned out to have similar activity (0.2
�M) as the methylene analog (0.1 �M) with X = CN, and
the oxo and thio options were not pursued. Overall, com-
bination of the FEP-guided heterocycle, small substituent,
and linker optimizations delivered the 13-nM difluoroben-
zyloxazole derivative 4, which is shown in Figures 1.4 and
1.15(b).24

As a last thrust, FEP calculations were performed for pos-
sible replacement of the oxazole C4 hydrogen by R = F, Et,
Me, CF3, and CH2OH. The five analogs were predicted to be
less well bound than the unsubstituted compound by 0.8,
1.5, 1.8, 2.2, and 3.9 kcal/mol, respectively. Visual inspec-
tions of modeled structures were, once more, ambiguous.
The qualitative FEP result was confirmed experimentally for
the C4-methyl derivative, which was found to be seven-fold
less potent than the unsubstituted compound. The other
options were not pursued.

Overall approach and logistics

The experiences with FEP-guided lead optimization have
led to the scheme in Figure 1.1. De novo design or vir-
tual screening can be expected to provide one or more lead
compounds with low-�M activity. The substituents in the
lead are likely not optimal, especially from virtual screen-
ing. Consequently, removal of any small substituents from
the core followed by chlorine and methyl FEP scans are then
desirable. Synthesis and assaying of the most promising di-
or trisubstituted compounds from the scans can provide
significant activity improvements, as in Figures 1.13 and
1.14, often with modest synthetic effort. FEP-guided refine-
ment of the small substituents, linkers, and heterocycles is
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the logical next step; the order depends on the specific case.
Optimization of peripheral rings and their substituents is
likely to be easier synthetically than change of a central
heterocycle. For the small groups, replacement of chlo-
rine by fluorine (smaller, less lipophilic) and cyano (larger,
more polar) can often be constructive, while replacements
of methyl by OCH3, CF3, and CH2OCH3 can provide infor-
mative variety. It is straightforward to run a series of FEP
modifications in parallel for optimization of a small sub-
stituent. A typical series is shown in Figure 1.16 for opti-
mization of a substituent on an aromatic ring; the indicated
conversions are intended to minimize steric and hydrogen-
bonding changes. Avoidance of bromine, iodine, and nitro
groups can be justified because of potential reactivity and
metabolism drawbacks.

As a standard protocol, the necessary structure files are
built using BOMB, and the nine indicated FEP calculations
for the complexes are run simultaneously on nine proces-
sors; such calculations for an approximately 200-residue
protein, 1,000 water molecules, and normal run lengths
require six to seven days on a 3-GHz Pentium IV using
MCPRO. A script is also used to extract the ligand from the
complexes and to initiate the corresponding nine FEP cal-
culations for the perturbations between the unbound lig-
ands in water; these require one day each. So, with the com-
mitment of eleven processors, the nine � �Gb results are
available in one week. For heterocycle optimization, it is
convenient to use a reference that has the maximal num-
ber of hydrogens, for example, pyrrole, and perturb to other
heterocycles with the same ring size and with the same or
a smaller number of hydrogen atoms. Such isosteric FEP
calculations converge well, and running about ten hetero-
cycle perturbations in parallel is straightforward.14,24 The
default FEP procedure is to use eleven windows of overlap
sampling (11-SOS), which is described in detail elsewhere.57

If rapid turn-around is needed, it is easy to have a script dis-
tribute the eleven windows on eleven processors. An FEP
calculation for a complex can then be completed in one day,
and a twelfth processor can be used for the unbound leg
of the cycle in Figure 1.10; that is, one � � Gb result can be
obtained in one day using twelve processors.

As noted in Figure 1.1, throughout the lead genera-
tion and optimization process it is also advisable to stay
aware of the predicted ADME characteristics of the com-
pounds to avoid potential bioavailability problems. It is
often more difficult to change properties than potency

because potency is so locally sensitive. For example, the
predicted solubilities, QPlogS, and octanol/water partition
coefficients, QPlogP, for the four compounds in Figure 1.14
are within approximately 0.5 log unit, whereas the activ-
ity range is nearly 3 log units. Molecular design for some
drug classes can be particularly challenging, for example,
for CNS-active compounds in view of the simultaneous
needs for good potency, solubility, cell permeability, and
blood/brain barrier penetrability, and for Gram-negative
antibacterial agents because of the outer membrane struc-
ture. In general, a common problem that needs to be
avoided is being lured by the Siren of in vitro potency into
the Charybdis of insolubility.

CONCLUSION

Great progress has been made in the development and
application of methodology to facilitate both drug lead
generation and lead optimization. Computational chem-
istry has contributed significantly through advances in
de novo design, virtual screening, prediction of pharma-
cologically important properties, and the estimation of
protein-ligand binding affinities. Docking of large com-
mercial and in-house libraries has evolved into being an
essential approach for structure-based lead generation. All
pharmaceutical companies also routinely use software for
predictive ADME profiling. Furthermore, as summarized
here, the long-standing promise of the utility of free-energy
calculations for molecular design including thorough lead
optimization has been fulfilled. The methodology allows
broad exploration of the effects of potential modifications
to a compound without the need for synthesis and with-
out conceptual constraints associated with ease of synthe-
sis. Depending on the outcome of the computational explo-
rations, synthetic and biological resources can be focused
on the most promising directions. In view of the ever-
pressing needs for efficiency, free-energy-guided molecular
design can be expected to become a mainstream activity in
many contexts.
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X-ray crystallography in the service of structure-based
drug design

Gregory A. Petsko and Dagmar Ringe

Protein crystallography traditionally has been at the base
of structure-based drug discovery (SBDD) by providing the
structures of protein/ligand complexes that are often the
starting point for the design and improvement of specific
ligands. Consequently, an awareness of the strengths and
weaknesses of this method is important for the success of
ligand design. For instance, questions are often raised about
the validity of a particular protein structure and whether
that structure is relevant to the biological activity of the
protein or about the conformation of a bound ligand and
whether it represents a productive form. Some of these
questions can be answered or at least addressed, whereas
others cannot. There is an attempt to address those that can
be addressed and to make some suggestions about those
that cannot. Therefore, this chapter will focus more on the
criteria that can be used to assess the quality of a struc-
ture determined by x-ray crystallography and less on the
detailed methods used to achieve it.

BASIC CONCEPTS: CRYSTALLIZATION

The basic requirement for a crystal structure is a crystal.
Although crystallization of proteins is still more of an art
than a science, methods for routine searches of crystal-
lization conditions are indeed available. Historically, the
crystallization of proteins was a normal procedure used
when working with an enzyme. Because of the known salt-
ing out effects of ammonium sulfate, this salt was used to
induce selective crystallization, thereby purifying the pro-
tein. However, numerous other conditions exist that also
promote or prevent crystallization, including pH, presence
of counterions or organic compounds, additives with no
known rationale, and temperature. A combination matrix of
such conditions must be tested to find the best set of condi-
tions that produce not only crystals but crystals of the size
and quality required for x-ray diffraction.1

How much protein is needed for such a crystalliza-
tion search? It could be anywhere from micrograms to
buckets, depending on how readily conditions are found.
What should these crystals look like for a crystallographic
experiment? With today’s x-ray sources, crystals as small

as micrometers on a side are sufficient to obtain measur-
able diffraction. The most important criterion for success-
ful crystals is the ability to diffract x-rays, and that crite-
rion depends on well-ordered crystals. How to obtain such
crystals in a predictable fashion is still not known precisely
because each protein seems to have its own characteristics.
However, in general, the purity and concentration of the
protein, the stability of the protein, and the rate at which
crystals form are the dominant features that lead to success
(Figure 2.1).

It is a basic fact that if the protein does not crystal-
lize the project cannot proceed. To obtain some structural
information despite this roadblock, a number of avenues
are available. The most obvious is to obtain a homologous
protein from an organism that is different than the tar-
get organism and that behaves better with regard to the
above criteria. Proteins from thermophiles are especially
useful in this context, because they seem to be more ther-
mally stable than their mesophilic counterparts. A num-
ber of other approaches are useful in individual cases,
such as truncation of a protein to a core domain, selec-
tive mutations, and selective modifications. Finally, mod-
ification of the protein in a noncovalent fashion, specif-
ically the binding of an inhibitor to an enzyme, often
leads to successful crystallization when the apo enzyme is
resistant.

For instance, to obtain a crystal structure for the human
enzyme glucocerebrosidase, the protein could be purified
from tissue directly, or, more commonly when possible, it
can be cloned, expressed, and purified from another vec-
tor. In the case of glucocerebrocidase, both purified pro-
tein from tissue and, later, cloned material from COS cells
has been used.2,3 Mammalian proteins are often posttrans-
lationally modified in their physiological environment, and
these modifications, being heterogeneous as a rule, often
interfere with crystallizations. Consequently, the proteins
may have to be, for instance, deglycosylated to obtain crys-
tals.3 A protein obtained from a cloned source may lack
these modifications or have different ones unique to the
cloning cells, and such differences may spell success or fail-
ure for crystallization and a structure determination.

17
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bad crystal good crystal

Figure 2.1. Examples of crystallization trials. Proteins can aggregate in many ways but usually crystallize in only
one form. The example on the left shows protein aggregation without forming a crystal (cloudy areas). Aggregation
may be random protein association or denaturation of the protein under the conditions of the crystallization trial.
Also shown is formation of crystals that do not diffract, possibly because they are too small in two dimensions or
because they crystallized in a disordered fashion. The example on the right shows a beautifully formed protein
crystal. On occasion, even such a lovely crystal may show poor or no diffraction because of internal systematic
lattice disorder. In this case, the crystal diffracts to 0.9Å resolution.

DATA COLLECTION

Once crystals are obtained, they can be tested for their abil-
ity to diffract x-rays and data can be collected. There is
a fundamental principle about diffraction that allows it to
be transformed into structural information: the diffraction
pattern of an object is the Fourier transform of the object
(for details, see Stout & Jensen, 1989; Blow, 2002; Rhodes,
2006).4–6 Conversely, the inverse Fourier transform of the
diffraction pattern will give a model of the object.

In principle, a single object will diffract x-rays. Diffrac-
tion depends on the interaction of electromagnetic radi-
ation with an object and the scattering of that radiation.
Other scattering methods also exist, such as the scatter-
ing of neutrons from nuclei, but at present they constitute
only a very tiny fraction of the diffraction experiments done
today. For proteins or other organic molecules, x-rays are
the electromagnetic radiation of choice because the typical
wavelength of an x-ray is 0.15 nm, the approximate distance
of bond lengths in such molecules. Consequently, it should
be possible to detect such distances using x-ray diffraction.

Ideally, a single molecule should suffice for such an
experiment. However, the use of a single molecule results
in such a low intensity of the scattered beam that it is too
weak to be measured by any detector available today. Con-
sequently, scattering from many molecules is required to
obtain a signal strong enough to measure. For a scattered
beam to be measurable, somewhere in the vicinity of 1015

molecules are required. Not only are a large number of
molecules required, but also they all have to be in the same
or a limited number of orientations that repeat in a regular

pattern in three dimensions. That is the definition of a crys-
tal in which the repeating unit that builds the crystal is
the unit cell. When scattering comes from a crystal it is
called diffraction. The fundamental principle of diffraction
of a crystal of a protein states that the Fourier transform of
the electron distribution of the protein in the crystal is the
diffraction pattern and the inverse Fourier transform of the
diffraction pattern is the electron density of the protein.

Just as the protein is three-dimensional, so is the diffrac-
tion pattern. In addition, the diffraction pattern mirrors the
symmetry of the arrangements of the unit cells in the crys-
tal and the protein in the unit cell. These arrangements are
defined in terms of space groups and asymmetric units. The
asymmetric unit is the smallest unit from which a unit cell
can be constructed and represents the minimum number
of independently determined structures in a crystal. Thus,
an asymmetric unit may contain as few as one example of
a protein or as many as twelve or more. Sometimes such
arrangements make it possible to determine the oligomeric
state of a protein, particularly if one subunit is not identical
to another (Figure 2.2).

Because of the three-dimensional character of a diffrac-
tion pattern, a reflection, the effect of a diffracted beam on
a detector, may lie closer to the center of the pattern or fur-
ther away from it. The identity of a reflection is defined by
its Miller indices, its position on a three-dimensional grid,
starting with zero at the center and moving outward. The
angles the diffracted beams make with the direction of the
incident beam determines the level of information obtain-
able from them. The larger the angle, the more precise
the information carried relative to the distances within the
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Protein Crystals Contain Solvent-Filled Channels

Figure 2.2. Because protein molecules are generally of irregular shapes,
packing in the crystal leads to spaces and channels between molecules
that are filled with solvent from the crystallization mother liquor. Con-
sequently, small molecules, such as substrates and inhibitors, can dif-
fuse into the crystal and reach the protein surface. Shown are several
molecules of glucocerebrosidase, showing the arrangement of the pack-
ing, the unit cell, and the asymmetric unit. Data were taken from PDB
code 1OSG.

crystal and the higher the resolution of the resulting elec-
tron density, thus, the higher the indices of the reflec-
tions that can be observed, the higher the resolution of the
diffraction pattern, and the more precise the resulting elec-
tron density (Figure 2.3).

Ultimately, the quality of the diffraction pattern, in terms
of the intensities of the reflections and the resolution of the
data set, will determine the quality of the electron density
map that can be obtained. A number of criteria are used to
determine the quality of a data set: I(ntensity), R(adiation
damage), O(verlap), Rm(erge), C(ompleteness) (Table 2.1)
(a useful discussion of these parameters may be found in
Wlodawer et al., 2008).7

(I) The intensities of the reflections will clearly influence
the quality of the data. Intensity depends on a num-
ber of factors, mainly the size and quality of the crys-
tal, the length of exposure to the x-ray beam, and the
intensity of the x-ray beam. The quality of the intensity
relative to background is given as the signal-to-noise
ratio: I/	(I ). Because proteins are subject to interac-
tions with x-rays that lead to chemical changes, the
latter two factors are counterproductive relative to the
intensity of the reflection. Therefore, the I/	(I ) crite-
rion is sometimes used to define the resolution lim-
its of the data, the diffraction limit defined where this
value decreases to 2.0.

(R) Radiation damage is a significant factor for data qual-
ity and is usually dealt with by reducing the temper-
ature of the crystal during data collection. The most
common temperature is the “cryo” range, achieved by
using liquid nitrogen to cool to approximately 100 K.
Such a temperature requires special treatment of the
crystal, because it contains water, which can freeze
with disastrous results for the crystal. Flash freezing,

with and without additives to prevent crystallization of
water, is used.

(O) Beyond intensity of a reflection, the ability to dis-
tinguish individual reflections from each other is also
essential. The separation of reflections in a diffrac-
tion pattern depends primarily on the size of the unit
cell: the larger the unit cell axes, the closer the reflec-
tions are to each other, and overlap of reflections leads
to inaccurate intensity determination. Disorder in the
crystal, either of packing or from mechanical damage
(e.g., through freezing), can lead to a broadening of
the reflections, and excessive broadening will produce
overlap.

(Rm) Because the diffraction pattern contains elements
of symmetry, and because of the method used to mea-
sure reflections, most reflections are measured more
than once. Consequently, the reproducibility of these
measurements is a measure of the precision to which
the reflections can be determined. Statistically, the
more often a reflection is measured, and the closer
those measurements are to each other, the better the
data set. The redundancies for the data are given in
terms of an average, overall redundancy. The repro-
ducibility of the reflection measurements is given
in terms of a residual factor, Rmerge (Rm, sometimes
called Rsym), the difference between a measured inten-
sity and the average intensity, divided by the aver-
age intensity, for all related reflections. This factor will
change with resolution, so it should be given for all
data and for data in the highest resolution shell for

1.2 Å

2 Å

3 Å
3Å

2Å

1.2Å

Resolution vs electron density

Figure 2.3. The resolution to which a structure can be determined
depends on the reflections that can be measured. Shown at left is a
diffraction pattern of a typical protein. The rings indicate levels of reso-
lution. At right are electron densities for the same residue of a protein,
calculated from the data within a resolution range. Thus, if only the
data within the 3Å resolution circle are used, the electron density map
lacks detail at the atomic level. On the other hand, if all of the data
within the 1.2Å resolution circle are used, the electron density resolves
the positions of individual atoms (shown are two levels of the electron
density). Note that the reflections become weaker as the resolution gets
higher (measured as I/	(I )), and the total number of possible reflections
measured becomes less (completeness).
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Table 2.1. Data collection statistics for a typical protein
structure determination. The numbers in parentheses refer
to the highest resolution bin and are indicative of how well
the higher resolution data are measured. (Data adapted
from the structure determination of glucosidase at pH 4.5;
PDB code 2NT0)3

Space group P21

Cell dimensions 110.5,91.8,152.8Å
90, 111.2, 90◦

Resolution (Å) 34–2.2 (2.28–2.20)

Rsym 10.3 (47.3)

I/	(I) 9.8 (2.2)

Completeness (%) 96.4 (91.2)

Redundancy 2.5 (1.8)

which data are included. A good data set is charac-
terized by an overall Rmerge value of about 5% or less.
A value higher than ∼10% suggests less than optimal
data quality. At the highest resolution shell, Rmerge can
reach as high as 40% for low-symmetry crystals and
60% for high-symmetry crystals, the difference being
a reflection of the level of redundancy, which is higher
for high symmetry crystals.

(C) Finally, the completeness of the data is an impor-
tant factor in determining data quality. Completeness
is determined by comparison with the expected num-
ber of reflections for a particular space group and unit
cell size, and given as a percentage. Because the abil-
ity to measure reflections decreases with resolution,
completeness also decreases with resolution, so this
parameter should be given for all data and for the
highest resolution shell as defined for the Rmerge.

In general, the data should have as high a resolution
range as possible, with a high signal-to-noise ratio (�10),
well-separated reflections, a low Rmerge (�10), and high
completeness (overall, it is acceptable to have relatively low
completeness in the highest resolution shells). How well
these factors interact with each other will determine the
quality of the electron density map that is obtained. In prac-
tice, these measures may not be ideal, but in general, the
higher the quality of the data, the greater the likelihood that
they will lead to an interpretable electron density map.

However, the measures should never be used as a sub-
stitute for judgment in deciding whether to “believe” a
structure or not. They are merely rough guidelines. There
are many examples of acceptable structures from data of
marginal quality, and, unfortunately, a few examples of
wrong structures from excellent data. It is true, though, that
the most important quantity is the resolution. The higher
the resolution of the data the greater the likelihood that the
electron density will have been interpreted correctly. Most
serious mistakes in protein crystallography have resulted
from overinterpretation of poor-quality electron density at
relatively low resolution.

PHASING

Electromagnetic radiation can be defined in terms of waves
that are defined in terms of an amplitude and a wavelength.
The phase is the relative time of arrival of the crest of the
wave at a reference point, compared with any other wave.
Waves of identical phase will have their peaks and troughs
in common and will sum accordingly. Waves with opposite
phases will tend to cancel one another out, at least par-
tially depending on their amplitudes. Both parameters are
required to define a wave mathematically. To solve a crystal
structure, in principle all one has to do is add up all of the
diffracted waves; that is what a Fourier synthesis is. Before
that can be done, however, the two parameters must be
determined for every scattered wave (i.e., every reflection).

Experimentally, the amplitude manifests itself as the
square root of the measured intensity of the reflection.
That is easily determined with modern area detectors. How-
ever, when waves are added, they must be added with their
correct phases. Consequently, to apply the Fourier trans-
form to a reflection, both a measure of intensity and a
correct phase are required. Unfortunately, in a diffraction
experiment, although the intensities and positions of the
diffracted waves are measurable, the phases of the reflec-
tions are not. X-rays travel at the speed of light, so as far as
we are concerned, the relative time of arrival of all of the
scattered waves from the crystal at the detector will appear
to be the same. Consequently, the phases must be deter-
mined in some other way.

The most common method of phasing, particularly in
drug design, is molecular replacement. The method relies
on two factors: (1) that the structure of the protein of inter-
est, or that of a very similar protein, has already been
determined and (2) on the observation that the diffrac-
tion pattern of the object of interest is very similar to that
of a related or similar object. In molecular replacement
one measures the diffraction amplitudes from the crys-
tal of the protein of interest but “replaces” their unknown
phases with phases calculated from the previously deter-
mined structure of the related protein. The dominant issue
that determines success with this method, and that makes
it possible, is the level of similarity between the two objects.
When determining the structure of a protein/ligand com-
plex, for instance, the expectation that the binding of the
ligand produces only minor changes in the structure of the
protein is usually a good one, and in such cases the known
structure of the apo protein or that of the protein with
another ligand bound can be used as the model from which
to obtain phases.

The importance of the phases in the determination of a
structure cannot be overemphasized and can be demon-
strated. An electron density map, calculated from the
correct structure amplitudes but incorrect phases, is unin-
terpretable. Conversely, an electron density map deter-
mined from random structure amplitudes but correct
phases is often interpretable, albeit very noisy. For the
purposes of drug design, these two rules can be combined:
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Glucocerebrocidase with IFG bound

Figure 2.4. Common representation of a protein molecule, in this case,
acid �-glucosidase with the inhibitor isofagomine (IFG) bound.3 The rib-
bon represents the polypeptide, whose path is shown in three dimensions.
Secondary structural elements are shown by arrows (beta sheet), helices,
and coils (no secondary structure). The position of the inhibitor indicates
the location of the active site. Data were taken from PDB code 1OSG.

the structure amplitudes for a protein/ligand complex are
combined with the phases for the protein alone, giving an
electron density map of the protein with somewhat weaker
electron density for the ligand but enough to interpret the
structure of the added molecule (Figure 2.4).

How good does the model have to be for success in
this process? The answer is not definitive but can be esti-
mated from the figure. Clearly a protein/ligand complex
falls into the acceptable range as long as the ligand is a
small molecule. However, if the ligand produces major con-
formational changes to the protein, all bets are off. Our
experience is that if the model structure has at least a 50%
sequence identity to that of the new, unknown protein,
molecular replacement often works (Figure 2.5). Below that
rough dividing line, sometimes it works, but many times it
does not.8

There are many other methods of phase determination
that are available if molecular replacement fails or if no
related structure exists, but these are outside the scope of
this chapter. Suffice it to say that, in modern protein crystal-
lography, phase determination is rarely the bottleneck. We
personally have never failed to solve a structure once well-
diffracting crystals have been obtained.

ELECTRON DENSITY INTERPRETATION

The electron density map is the end product of an experi-
ment in x-ray diffraction followed by mathematical analy-
sis of the data. It results from a Fourier synthesis with the
measured diffraction amplitudes and experimentally deter-
mined or calculated phases of each reflection to the high-
est possible resolution. A number of smoothing operations
can enhance the quality of the map but cannot make a silk
purse out of a sow’s ear. For instance, solvent flattening can
sharpen the boundaries between solvent and molecule and

thereby improve the observed electron density. If more than
one molecule is contained in the asymmetric unit, averag-
ing of the electron densities of these molecules can increase
the signal-to-noise ratio of the map. Once the best possi-
ble electron density map has been calculated, it must now
be interpreted to extract a model of the molecule that pro-
duced it.

The electron density map is the objective result of a
diffraction study. Now comes the subjective part, the part
that is no longer experimental and requires some skill
in shape fitting. Building a model into electron density
requires interpretation on the part of the operator because
more than one fit may be possible. The ability to interpret
electron density therefore will depend on a number of the
factors already mentioned. Probably the most important is
the resolution. Resolution is a measure of the level of detail
with which a protein is viewed, and different levels pro-
vide different kinds of information. For instance, at 5Å res-
olution, the limits of the protein (i.e., the protein/solvent
boundary), the overall shape of the molecule, and elements
of secondary structure are apparent; at 3Å resolution, the
general course of the polypeptide chain and the shapes of
side chains are interpretable; at 1Å resolution, individual
atoms are recognizable not only as individual entities of
electron density but also as identifiable atom types. The
average structure determination does not achieve that level
of resolution, but 1.5–2Å resolution is common, especially
for ligand complexes. The electron density in such maps
should be easily interpretable (Figure 2.6).

A number of factors contribute to the ease with which
interpretation is possible. Because the electron density is
an average of any position over all of the unit cells that
make up the crystal, a sharp electron density depends on
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Figure 2.5. The structural similarity between the model and the unknown
determines the probability of success in a molecular replacement exper-
iment. Some guidelines are available but are not absolute. Note that the
comparison is made in terms of the identity of core residues, that is,
those that are expected to be most similar in terms of sequence and
structure between two related structures.8
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Resolution versus electron density

1.0Å 2.5Å 3.0Å 4.0Å

Figure 2.6. The ability to build a model into electron density depends
on the quality of that electron density and the resolution at which it is
calculated. Here the effect of resolution on the quality of the electron
density is illustrated. At high resolution, such as 1.0Å resolution, individ-
ual atoms are visible to the extent that carbon and nitrogen atoms are
distinguishable. At medium resolution, such as 2.5–3.0Å resolution, the
shape of the residue side chain is clearly interpretable even though the
individual atoms are not. At low resolution, such as 4Å resolution, the po-
sition of the side chain is clear, but the configuration is not and the fit of
the model to the electron density is unclear.

perfect alignment of all the molecules, and all of the parts
of molecules. If the electron density is unequivocal, there
is only one molecule or residue, and the shape is unique,
the model of the peptide or ligand may be “dropped” into
the electron density without a problem. However, if the
electron density is not so clear, if it is spread out or not
quite connected everywhere, or there may be more than
one molecule present in more than one orientation, inter-
pretation becomes complicated.

For instance, a side chain or stretch of peptide may have
more than one conformation. If the number is small (i.e., 2),
both will usually be apparent if their occupancies are
roughly equal. If the number becomes large (i.e., �3 or 4),
the electron density may no longer be distinguishable from
the noise of the map. A similar phenomenon applies if a lig-
and is bound to only some of the protein molecules in the
crystal and not all. Such partial occupancy produces weak
electron density for the ligand, and that may be hard to
interpret. At low resolutions the spread of the electron den-
sity as a result of multiple conformations is accounted for by
a term called the B factor or temperature factor: the greater
the spread, the larger the B factor. Average B factors for pro-
tein atoms are in the range of 20–30A2 depending on the res-
olution of the data. Occupancy is given in terms of a fraction
between 0 and 1. These two are related to each other and at
the resolutions generally observed for protein/ligand com-
plexes they cannot be distinguished from each other. The B
factor, which is given for each atom in the coordinate file,
consequently takes both into account. It is not uncommon
for the B factors for a ligand to be significantly higher than
those for the protein, accounting at least in part for partial
occupancy of the ligand (Figure 2.7).

Electron density maps can be displayed in a number
of different ways: the most common for interpretation of
protein/ligand complexes are those with coefficients Fo-Fc
and 2Fo-Fc. The former displays the difference between the
observed electron density and that calculated from a model.
Such a difference map highlights missing parts of the model
(positive difference electron density) and parts added by

1.8 vs 0.9 Å resolution

Figure 2.7. Because the structure determined for a protein represents an
average over all of the molecules in a unit cell, parts of the protein can
have different conformations. The ability to deconvolute these different
conformations depends partly on the resolution of the structure deter-
mination. Although the electron density at 1.8Å resolution clearly shows
the direction in which the side chain points, it does not show the exact
location of the end sulfur atom and methyl group. At 0.9Å resolution, this
problem is resolved, showing that the sulfur atom can be in two possible
conformations, in this case of approximately equal probability. It can also
happen that a side chain may point in completely different directions
or may have different conformations. Data were taken from PDB codes
1AMP (1.8Å resolution)9 and 1RTQ (0.95Å resolution).10

the model that are not supported by the data (negative dif-
ference electron density). The latter displays the electron
density emphasizing the difference between observed and
calculated (Figure 2.8).

REFINEMENT

The key structures needed for the purposes of drug design
are those of the protein, usually an enzyme, by itself and
in the presence of a ligand; and those models should be as
accurate as possible. The crystallographic experiment, how-
ever, does not provide an “accurate” model; it provides a
precise model. The difference refers to the closeness with
which the model can be fitted to the observed electron den-
sity and how well the two can be made to match, and the
“real” structure. What the experimentalist can do is to align
the model and the electron density as closely as possibly by
a protocol of refinement in which the model is iteratively
matched to the electron density, and the measure of fit is
recalculated to determine success by the procedure. Iter-
ation is continued until convergence occurs. Refinement
is generally carried out with stereochemical restraints that

IFG/GCase with electron density

Figure 2.8. The electron density for the inhibitor isofagomine bound to
glucocerebrosidase appears in an electron density map that has been
calculated from the data for the enzyme-inhibitor complex and the phases
from the protein alone. The electron density for the inhibitor has a shape
that is consistent with only one orientation of the inhibitor in the active
site. Data were taken from PDB code 2NSX.3
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X-rays phases fitting

refinement

crystals (enlarged view) diffraction patterns electron density maps atomic models

Iterative process of refinement

Figure 2.9. The process of refinement is an iterative one, in which small changes are made to the atomic model,
a new diffraction pattern is calculated from that model, and that pattern is compared to the measured diffraction
pattern. The discrepancy between the two is expressed as the R factor. The lower the R factor, the better the
agreement between the two. Taken from G. A. Petsko and D. Ringe, in Protein Structure and Function, New Science
Press Ltd, London, 2004.

guide how far a molecule may deviate from ideality in
attempting to fit an electron density feature. The limits are
determined from what is known about the structures of
small molecules that are representative of substructures of
the protein (Figure 2.9).11–14

The measure of success for this fitting procedure is the
R factor, a measure of the disagreement between model
and experiment. Although the fitting of the model to the
electron density, and the agreement between the two, is
seen at the level of the electron density map, this measure
of agreement can be calculated only at the level of the
measurements made to obtain that map (i.e., the structure
amplitudes). The calculation determines the difference bet-
ween the calculated reflection amplitudes derived from
the model and the measured ones derived from the x-ray
experiment. Thus, R factors reflect not only the quality of
the fit of the model but also the quality and resolution of
the data. For protein macromolecules, R factors are usually
within the range of 15% to the low 20% for data around
1.8–2.5Å resolution, which is a common resolution range
for protein/ligand complexes. These numbers mean that
roughly 80% of the measured scattering from the crystal has
been accounted for by the model. In many cases, the unac-
counted-for scattering will include not only errors of mea-
surement but also the failure to model the disordered sol-
vent in the channels within the crystal lattice (Figure 2.10).

Because of the overwhelming influence of the phases
(calculated) over the reflection amplitudes (observed data)
in determining the final electron density, the R factor can
be manipulated. Consequently, it is now common prac-
tice to calculate an R factor from data that have not been
used in the refinement process and therefore not been
biased by calculated phases. This measure is called the Rfree

and usually uses 5–10% of the data, randomly chosen and
excluded from all refinement steps, to calculate the mea-
sure of disagreement.16 Because of the incompleteness of
the data used, and the lack of phase bias, the Rfree is always
higher than the R factor by approximately 3–5% in the case
of well-refined structures. In the early stages of refinement
it may be 10% higher.

The molecules of protein in the crystal are packed in
such a way that solvent channels are found between them.
These are filled with the solution from which the protein
was crystallized, and that solution may contain other ions
and molecules that are associated with the protein. An
estimate of the volume of the crystal that is attributable to
solvent comes from the Matthews coefficient, calculated
from the crystal data.17 The most important component
of the solvent is the bound water molecules that are found
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Figure 2.10. Approximate correlations between resolution of the data,
the expected R factors for a refined structure, the expected differences
between the R factor and Rfree of the final refined structure, and the
approximate precision of bond distances ascertainable from a structure.7

These values can be used as criteria to assess the quality of a crystallo-
graphic model. For instance, a large difference between R and Rfree could
indicate possible overinterpretation of the data; if the difference is very
low, it could mean that the test data set used to calculate Rfree is not in
fact “free.” rmsd (root-mean-squared deviation) indicates the deviation of
protein geometry from ideality. For instance, high rmsd(bonds) indicates
model error. If it is too low, the refinement may have been dominated
by strict adherence to geometry rather than refinement to experimental
diffraction data. It should be noted that “ideal” bond lengths may have
errors of approximately 0.02Å, so the expectation that a model is better
than that is unreasonable. Redrawn from data in Wlodawer et al., 2008.7
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in discreet locations, usually on the protein surface. Water
molecules are placed according to a procedure that involves
identifying electron density features that are not accounted
for by protein. Are they necessarily all waters? Probably not:
at very high resolution, some “waters” have been shown
to be sodium or ammonium ions. But in the absence of
other information, they are interpreted as water, usually
based on criteria such as the height of the electron density
peak and the position of the putative water molecule to
protein atoms with which it can form hydrogen bonds.
This does not rule out misidentification, but most ions that
might be associated with a protein are sufficiently larger
or have a shape or electronic properties that might rule
out being a water molecule. Again, the number of water
molecules that can be identified as associated with a given
model will depend on the quality of the model, the quality
of the data, and the resolution of the data. For instance,
at 2Å resolution, the number of water molecules expected
to be observable is very low and may include only those
that are very tightly associated with the protein, often in
the active or other functional site. Resolution of 1.8Å is
usually required to place a significant number of water
molecules on the surface with any precision. At this level of
resolution, it is important to look for a certain ratio; namely
there should be approximately as many water molecules as
residues in the protein. Too many water molecules in a final
model may mean that “extraneous” electron density is sim-
ply being fitted with water when in fact it may tell a different
story. Because the R factor can be viewed as a measure of
how much electron density is accounted for, such water
molecules can drive an R factor down without adding accu-
racy to the model. The comparison between the R factor
and Rfree is therefore a good measure to assess the possibility
of overfitting or misinterpretation (Figure 2.11, Table 2.2).

The second measure of misinterpretation relies on cal-
culation of the biophysical data for the protein. If a model is
well fitted to an electron density map, then it should reflect
what we know about the properties of proteins. Those prop-
erties include the geometries of amino acids and secondary
structures in terms of distances and angles. Atom-to-atom
distances and angles for components of proteins are well
known from small molecule structures and can be com-
pared with those obtained for the model. The measure
given is a root-mean-squared deviation (rmsd) for all such
distances and angles. Such angles for the relationships of
backbone atoms in specific secondary structures has been
analyzed theoretically and is given in terms of allowed and
disallowed values in a Ramachandran plot.18 These can be
calculated for the model and compared to the theoretical
values (Figure 2.12).

A number of residues may fall outside of these criteria
for different reasons. For instance, the values for glycine,
because of the absence of a side chain, may fall outside
the accepted ranges. Proline may fall outside these ranges
because proline may exist in both cis and trans forms.
Occasionally, particularly if the resolution is high enough

Positions of water 
molecules on the 

surface of the 
GCase model at 
1.8Å resolution

Figure 2.11. Ribbon diagram of the glucocerebrosidase model with the
positions of bound water molecules. The surface of a protein model has
extraneous electron density that is modeled as water molecules. The
gray balls show the positions of such water molecules that have been
placed in spherical electron densities on the surface of the protein. An
electron density has been interpreted as a water molecule only if the
resulting water position (only the oxygen atom is interpretable) is within
hydrogen bonding distance of a protein atom that can donate or accept a
hydrogen bond. Some of these water molecules can be considered part
of the protein structure because they are found in the same position in
every structure determination of that protein. Data were taken from PDB
code 1OGS.2

to allow for a precise interpretation, any residue may fall
outside acceptable ranges. When that happens it is worth
paying some attention to such a residue, because there is
usually a functional reason for it to do so. The final coordi-
nates from the model, together with the data from which it
was obtained, can be made available by deposition into the
Protein Data Base.19,20

These measures address the precision of the model.
However, accuracy is the most important criterion for the
quality of the model, and the only measure of accuracy
is the agreement between the model of the protein and
the biochemical data for its function. If the model does
not explain those data, or at least agrees with them, the
model is probably wrong, no matter how precise it may
appear in terms of R factors, and so on. Does that mean
that all correct models always explain all biochemical data?
Certainly not, especially if the configuration of the model
seen in the crystal represents only one possible form from a
number of possible forms, only one of which is the func-
tionally relevant one for the protein. But in general, the
model should make biochemical sense in terms of what is
already known about the protein. If it generally does, it is
probably accurate (Figure 2.13).

STRENGTHS AND WEAKNESSES OF CRYSTALLOGRAPHY

From the above discussions it is clear that the crystallo-
graphic method has strengths and weaknesses. The greatest
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strength of the method is the ability to
visually understand the binding of ligands
and the conformational changes in both
the protein and the ligand that are associ-
ated with such interactions. The interpre-
tation of interactions in terms of geometry
and distances between interacting parts is
essential to the design of new interacting
species that can take advantage of these and
potentially new interactions, that is, the basis
of structure-based drug design.

However, there are also obvious weak-
nesses in the method. Unless there is obvious
disorder in the model of the protein, man-
ifested as poor or absent electron density
for parts of it, any one model is a rigid one
that may not be an accurate representation
of the plasticity of the protein. Thus, any one
structure may represent only one form of the
protein, of which there may be many. The
conditions used for crystallization are rarely
representative of the conditions under which
the protein functions in the cell. Conse-
quently, interpretation of function from the
structure has to consider that the pH, ionic
strength, and presence or absence of other
molecular species in the model are most
likely very different from the native condi-
tions. This usually does not lead to misinter-
pretation but must be kept in mind neverthe-
less, because conformational changes may
result from such conditions as well as from
binding of ligands.

A number of strategies are available to
attempt to address these problems. One is to
find more than one set of crystallization con-
ditions that vary the pH and constituents of
the crystallization solution. Conditions that
vary dramatically from high salt to low salt, or
at extremes of pH, may provide some insight
into the conformational changes that can
be associated with such differences in solu-
tion conditions. Another is to determine the
structure of the protein/ligand complex by
two methods: one is to soak the ligand into
an existing crystal, and the other is the form
the protein/ligand complex in solution and then to crystal-
lize it. If the binding site for the ligand happens to be at a
protein/protein interaction site, binding may disrupt this
interaction and the integrity of the crystal. Alternatively, the
packing of the crystal may prevent the protein from under-
going conformational changes that would occur on ligand
interactions in solution. Cocrystallization after binding in
solution gets around both of these problems – if the com-
plex crystallizes.
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Figure 2.12. Ramachandran plot for glucosidase showing that four residues have angles that
do not conform to the ones expected for amino residues in secondary structures. Three of
these residues are close enough to be accepted as possible conformations. One of them,
Leu281, is considered in an unusual conformation. Inspection of the structural model shows
that this residue is in a hydrophobic pocket stabilizing several structural elements. Data were
taken from PDB code 1OGS.2

FRAGMENT-BASED APPROACHES TO SURFACE MAPPING

Despite the limitations of the crystallographic method, it is
clear that the association of small chemical entities can be
visualized, just as large ones can, when bound to a protein.
The most frequently assigned small molecule on the surface
of a protein is water. Once all of the protein is assigned to
electron density, and all of the side chains are accounted for,
a significant amount of electron density scattered over the
surface of the protein is left unaccounted for. Much of that
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Table 2.2. Refinement statistics for a typical protein structure
determination. (Data taken from the structure determination of
glucosidase at pH 4.5; PDB code 2NT0)3

Resolution (Å) 20–2.2

Reflections 131814

Rwork/Rfree 22.0/27.6

No. of protein atoms 1988

Sulfate ions 28

Water 1181

B factors:

Protein 24.6

rms deviations

Bond lengths (Å) 0.016

Bond angles (◦) 1.7

electron density has a spherical shape and is observed near
the surface of the protein. When is such an electron density
a water molecule and when is it something else? Unless the
electron density feature has a nonspherical shape to indi-
cate that it might be a compound or ion with more than one
nonhydrogen atom, such as the commonly observed sulfate
or phosphate ions, or glycerol used for cryo-protection, it is
assigned to a water molecule. This assignment may not be
correct because other individual ions can interact with the
protein surface. The resolution range usually found for good
protein structure determinations is from approximately 2
to 1.5Å. In this range, electron density for hydrogens is not

visible. In fact, resolution of better than 1Å is required to
see electron density for hydrogens, and even that is not
always sufficient. Consequently, identification of one ion
from another is usually not possible, and, in the absence of
hydrogen positions, distinguishing water from a cation or
anion is usually not possible either.

This leaves an important question: When can the elec-
tron density feature be assigned to a water molecule or
when is it part of the noise inherent in an electron density
map? A number of criteria are applied to make this deter-
mination. The two most important ones are the height of
the electron density peak (given in terms of the sigma level
of the peak relative to the overall average electron density
level of the map) and the interactions that a putative water
molecule would make with nearby protein atoms if placed
into that electron density. Different researchers apply dif-
ferent criteria. Because the height of an electron density
peak depends on the occupancy and B factor (mobility) of
an atom, assignment of a water molecule must take these
two factors into account. In general, if an electron den-
sity is no longer visible at a 	 level of 3, indicating poor
occupancy, high mobility, or simply noise, it should not be
assigned. Second, if the water molecule at any given posi-
tion does not interact with the protein in terms of at least
some putative hydrogen bonds, of which water is capable
of a potential four, it is unlikely to be one. This still does not
identify a water molecule unambiguously, but it is the best
we can do (Figure 2.14).

It has been shown that small molecules, as small as two
or more nonhydrogen atoms, can also interact with the sur-
face of a protein.21,22 Determining the orientation in which
such a molecule binds depends on the shape of the electron

Comparison: structure of GCase at 
pH 7.5 (er) vs pH 4.5 (lysosome)

Figure 2.13. The structure of a protein may not be relevant to its catalytic form. In this case, the structure of
glucocerebrosidase is subject to changes in configuration as a response to environment, such as the binding of an
inhibitor or pH. For instance, the active site of glucocerebrosidase has a different conformation at the pH at which
it is synthesized in the endoplasmic reticulum from that at the pH of the lysozome. The conformational changes
observed reflect the inactive and active forms of the enzyme in the different compartments of the cell. Data were
taken from PDB codes 2NT1 (pH 7.5) and 2NT0 (pH 4.5).3
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Interpretation of electron density at different resolutions: 
2.0Å resolution vs 0.95Å resolution

Figure 2.14. Water molecules are placed in electron density features
based on a number of criteria. In the lower resolution structure, the
water molecule is assigned based on the height of the electron density
feature of a magnitude realistic for an oxygen atom and the location of
that feature near hydrogen bonding partners (a carbonyl oxygen atom in
this case) if it were a water molecule. At ultrahigh resolution, where the
feature is more clearly defined, that “water” molecule turns out to be a
cation, probably a sodium ion, identified on the basis of the dominant
ion in the mother liquor from which the crystal was obtained. Data
were taken from PDB codes 1AMP (1.8Å resolution)9 and 1RTQ (0.95Å
resolution).10

density feature, and, if the shape is not definitive, the chem-
ical interactions that atoms of the molecule can make with
atoms of the protein. The obvious interaction is a hydro-
gen bonding one, but hydrophobic or polar interactions are
equally useful to define orientation.

The sites at which small molecules bind can be ran-
dom. However, some spots on the protein are more prone
to interaction with such compounds than others,23–25 for
instance, the active site of an enzyme or an allosteric site
on a protein. These are sites that are designed to interact
with molecules – substrates or inhibitors or activators – in
such a way as to confer specificity to the interaction. Often
more than one part of such a site interacts with the recog-
nized molecule. Any one part may therefore be prone to a
different type of interaction, such as electrostatic or hydro-
phobic, depending on the characteristics of the overall
compound recognized. Small molecules may make such
interactions individually and therefore be attracted to a par-
ticular subsite within a larger interaction site.

Any organic ligand can be decomposed into substruc-
tures (fragments) that are reminiscent of smaller molecules.
Such a small molecule may therefore occupy the same site
on a protein as the substructure that it represents. The posi-
tion of such a small molecule may therefore be used to char-
acterize a particular site on the protein that has a specific
affinity for the chemical group represented by the small
molecule. If a set of such fragments is found bound to an
overall site on the protein, they should map out the bind-
ing surface of a region of the protein. The basic assumption
is that a specific chemical group will interact with a spe-
cific site on a protein in the absence of the rest of a larger
ligand molecule. If that is true, the small molecules can be
linked together to make a large molecule that fits all of the

regions defined by such a mapping procedure. This method
was first proposed by Fitzpatrick et al.21:

Thus, acetonitrile may act as a probe to map the
amphiphilic regions of the enzyme surface, which
would suggest an experimental approach to mapping
the complete binding surface of any crystalline pro-
tein. By the methods described here, crystals would
be transferred to a series of organic solvents, each
designed to mimic a particular functional group (e.g.,
benzene can be used to map binding sites for aro-
matic groups). Such experiments are directly analo-
gous to computational methods that map the inter-
action energies of small probe molecules to protein
surfaces, thus providing a direct experimental test
of such theoretical methods. Once the interaction
surface has been mapped by a series of solvent
experiments, the various functional groups can be
connected to provide specific lead compounds for
drug design. Unlike conventional substrate ana-
logues, which interact only with the active center,
compounds designed by solvent mapping can exploit
additional regions of the protein surface to provide
greater specificity and affinity.

Once a set of small molecules are found that associate
with a region on the surface of the protein, in principle they
can be linked to make a larger compound that contains the
combined affinities of the smaller parts as well as the syner-
gistic affinity of the combination (Figure 2.15). Alternatively,
the method can be used to build onto an existing frame-
work to optimize the affinity of a starting compound that
already binds to the protein. One of the earliest uses of this
strategy at the experimental level is the structure/activity
relationship by nuclear magnetic resonance (SAR by NMR)

Binding of solvent molecules to the surface of GCase

Figure 2.15. Results of solvent mapping of glucocerebrosidase. A
molecule of glycerol (blue) and one of phenol (green) bind to a site
on the surface of the protein. Solvent molecules are placed into electron
density the same way as inhibitor or water molecules are placed, based
on the shape and size of the electron density feature. If several solvent
molecules bind in or near the same site on the protein, such a cluster
can be used to identify hot spots such as active sites, allosteric sites,
or simply binding sites. Data were taken from unpublished structure
determinations by Raquel Lieberman.
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method,26 in which the binding positions of molecules,
representing fragments, are determined by NMR. Frag-
ments that interact closely are then linked to make a larger
ligand.

But the real power of the method comes from more
recent computational application of the method. In this
approach, the binding of fragments is determined com-
putationally, and the compounds derived from the map-
ping of such fragments are then synthesized and tested.27–29

The accuracy of these computations is matched against the
experimental results.

An extension of these methods is to use either the exper-
imental or the computational method to identify bind-
ing sites that can then be probed by molecular docking
procedures30,31 to find compounds that will bind at a par-
ticular site. In all cases, the success of the methods is deter-
mined by the effect of the final compound on the biologi-
cal system being studied. Examples of such procedures are
found in other chapters in this book.
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Fragment-based structure-guided drug discovery: strategy,
process, and lessons from human protein kinases

Stephen K. Burley, Gavin Hirst, Paul Sprengeler, and Siegfried Reich

INTRODUCTION

The experimental roots of fragment-based drug discovery
can be found in the work of Petsko, Ringe, and cowork-
ers, who were the first to report flooding of protein crys-
tals with small organic solutes (e.g., compounds such as
benzene with ten or fewer nonhydrogen atoms) to iden-
tify bound functional groups that might ultimately be trans-
formed into targeted ligands.1 The concept of linking frag-
ments together to increase binding affinity was described
as early as 1992 by Verlinde et al.2 Computational screening
of fragments, using tools such as DOCK3,4 or MCSS,5 was
also described in the early 1990s. Pharmaceutical indus-
try application of fragment screening began at Abbott Lab-
oratories, where Fesik and coworkers pioneered “SAR by
NMR” (structure/activity relationship by nuclear magnetic
resonance).6 In this spectroscopic approach, bound frag-
ments are detected by NMR screening and subsequently
linked together to increase affinity, as envisaged by Ver-
linde and coworkers.2 Application of x-ray crystallography
to detect and identify fragment hits was also pursued at
Abbott.7

Fragment-based drug discovery has now been under
way for more than a decade. Although Fesik and cowork-
ers popularized the notion of linking fragments (as in
their highly successful BCL-2 program), tactical emphasis
appears to have largely shifted from fragment condensa-
tion to fragment engineering (or growing the fragment) to
increase binding affinity and selectivity. Various biotech-
nology companies, including SGX Pharmaceuticals, Astex,
and Plexxikon, have recently demonstrated that fragment-
based approaches can indeed produce development can-
didates suitable for Phase I studies of safety and tolerabil-
ity in patients (www.clinicaltrials.gov). Within many larger
pharmaceutical companies, detection and optimization of
fragments as a path to discovering new chemical entities
appears to be gaining acceptance.

Before describing the SGX fragment-based drug dis-
covery strategy, process, and lessons from human pro-
tein kinases, we review our current understanding of the
nexus between chemical diversity of screening libraries and
the challenges of compound screening that explain both
the utility of starting the search for clinical development

candidates with small fragments and the pharmaceutical
industry’s failure to realize the much-vaunted potential of
combinatorial chemistry/high-throughput screening. Tra-
ditional drug discovery usually begins with a search for
small molecule “hits” that demonstrate modest inhibition
(IC50 ∼ 10 �M) of the molecular target in an in vitro bio-
chemical assay. Promising hits are subsequently optimized
into development candidates using iterative, trial-and-error
methods and/or structure-guided design. The most com-
monly used approaches for finding hits have involved
either high-throughput screening (HTS) of large com-
pound libraries [typically 100,000–2,000,000 compounds
with molecular weights (MW) of about 350–550] or oppor-
tunistic modification of substrate analogs and/or published
active compounds. Although these methods have yielded a
number of successfully marketed drugs, annual rates of new
drug approval over the past decade have remained essen-
tially unchanged despite dramatically increased research
budgets at large pharmaceutical companies.

The fundamental shortcoming of any conventional HTS
campaign derives from the reality that even the largest
screening library exhibits only limited chemical diversity.
For reference, the number of potential druglike molecules
is predicted to be ∼1060,8 which is comparable to accepted
estimates for the total number of atoms comprising the uni-
verse. Such limitations effectively bias sampling of poten-
tial starting points for drug discovery and, therefore, may
not yield the best lead series. Proprietary screening libraries
are often biased toward certain structural classes, because
these collections are composed of molecules synthesized
for targets of historical importance rather than molecules
chosen to sample leadlike chemical space.

Typical HTS libraries also consist of molecules (MW
∼350–550) larger than fragments (MW � ∼250), deliber-
ately chosen because they yield more potent starting points
for synthetic chemistry than do fragments (i.e., IC50 �

∼10 �M versus IC50 � ∼10 mM). Regrettably, subsequent
optimization of these larger molecules is often compli-
cated by the need to identify and remove functional groups
to minimize molecular weight and hydrophobicity, while
other functional groups must be added or modified to
increase binding affinity. Thus, optimization of larger HTS
hits into development candidates may require retrospective

30
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disassembly into smaller pieces. Another significant weak-
ness of the traditional drug discovery approach is the poor
compliance of most screening hits with what we now rec-
ognize as being highly advantageous leadlike properties.9–12

Such poor compliance frequently complicates and prolongs
the lead optimization process and contributes, at least in
part, to the relative paucity of new chemical entities plagu-
ing the pharmaceutical industry. Finally, HTS hit rates tend
to be very low (i.e., � 0.01%), which we now appreciate to be
a direct consequence of screening libraries of compounds
with MW ∼350–550.5

Screening of small fragments (i.e., simple one- or two-
ring heterocycles with MW � ∼250) instead of larger HTS
library compounds overcomes all three of the shortcomings
enumerated above. First, well-designed fragment libraries
embody significantly more potential for chemical diver-
sity than even the largest HTS libraries. For example, a
1,000-compound fragment library (each compound bear-
ing two or more sites of chemical modification) can be read-
ily elaborated into more than 108 accessible analogs (MW
� ∼500). This extremely conservative estimate dwarfs even
the largest HTS screening collections assembled within
the pharmaceutical industry. Second, fragment libraries
can be assembled with leadlike compounds exclusively,
thereby maximizing the likelihood of successful optimiza-
tion. Finally, small fragments exhibit an increased probabil-
ity of binding to a given target (hit rates for many targets ∼
1–5%) versus larger, more complex molecules.9 For a 1,000-
compound fragment library such hit rates yield ten to fifty
starting points for medicinal chemistry elaboration.

Such bounty does come at the expense of initial potency.
Small fragment hits identified using various screening
methods typically exhibit binding affinities of ∼10 �M to
10 mM or even greater and are in some cases not mea-
surable. The relatively weak character of fragment hits is
deemed so unpalatable in some circles that adoption of
fragment-based drug discovery approaches has been effec-
tively inhibited within some organizations. Many medicinal
chemists believe it more reasonable to attempt optimiza-
tion from ∼10 �M than an apparently 1,000-fold weaker
starting point. Experience at both SGX and other fragment-
based drug discovery companies has shown that 10 mM
screening hits can in fact be rapidly optimized to better than
10 nM (see below).

The relationship between molecular weight and bind-
ing affinity has been explored intensively in various quar-
ters. Astex has popularized the concept of ligand efficiency
(LE),13 which represents an indirect measure of the number
of constituent atoms that participate in interactions with
the target protein:

LE = −� G/(no. of nonhydrogen atoms)

∼ − RTln(IC50)/(no. of nonhydrogen atoms).

In general, even weakly bound fragment hits are lig-
and efficient (LE � 0.3), whereas most HTS hits are not
(LE � 0.3). During optimization of a fragment hit to gene-

rate nanomolar potency lead compounds, ligand efficiency
can be monitored with the goal of maintaining/improving
the balance between binding affinity and molecular weight
(i.e., adding only atoms that contribute substantially to
improved binding affinity).

As heralded by the MIT group’s successful studies of
protein crystals flooded with small organic solutes,1 x-
ray crystallographic screening has proven ideally suited
to fragment-based drug discovery. The three-dimensional
structure of the hit interacting with the target protein is
the product of its detection. (Unlike NMR spectroscopy, x-
ray crystallography provides a “direct look” at the protein/
ligand complex.) A promising hit can be immediately qual-
ified for further effort by establishing that it binds to the
protein target in a well-defined orientation that is com-
patible with synthetic optimization. Such hits have been
optimized by various structure-guided medicinal chemistry
approaches.13–16 Without three-dimensional structure vali-
dation and subsequent structural guidance, optimization of
weakly bound fragments is extremely challenging because
of the high propensity for nonspecific binding and false
positives detected by biochemical assays. Application of x-
ray crystallographic screening and/or cocrystallization with
fragment hits has made fragment-based approaches to drug
discovery both practical and successful.

SGX FAST FRAGMENT-BASED STRUCTURE-GUIDED DRUG
DISCOVERY STRATEGY

Design of the SGX core fragment library

Recent studies of hit-to-lead optimization proposed a gen-
eral definition of “leadlike” properties that increase the
probability of successful optimization of hits to clinical can-
didates and successful prosecution of clinical development.
These concepts have their origin in Lipinski’s “rules,”17

which describe properties of approved orally administered
drugs: MW � 500, calculated log P or Clog P � 5, hydrogen-
bond donors � 5, and nitrogens+oxygens � 10. Powerful
though they are, Lipinski’s rules are not appropriate for
either HTS hits or evolving leads.11,12 Hits usually increase in
molecular weight, Clog P, and in number of rings and freely
rotatable bonds during initial lead optimization and during
subsequent development candidate optimization. Screen-
ing hits and leads should, therefore, be smaller than the
molecular weight range embodied within Lipinski’s rules.
Teague et al.12 initially proposed that leads should satisfy
the following criteria: MW � 350 and Clog P � 3.0. Hann and
Oprea10 more recently proposed that leadlike molecules
should have the following properties: MW ≤ 460, Clog P ≤
4.2, freely rotatable bonds ≤ 10, ≤ 4 rings, hydrogen-bond
donors ≤ 5, and hydrogen-bond acceptors ≤ 9.

“Leadlike” properties were originally proposed for
molecules with binding affinities in the low micromolar
range derived from HTS or combinatorial chemistry
approaches. Fragment hits have binding affinities in the
low micromolar to low millimolar range, thereby requiring
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Figure 3.1. A typical member of the SGX core fragment library showing
three chemical handles that support rapid R group elaboration.

screening library selection criteria that focus on yet smaller,
simpler molecules. Hann and Oprea10 proposed a “reduced
complexity” screening set, with the following properties:
MW ≤ 350, Clog P ≤ 2.2, freely rotatable bonds ≤ 6, heavy
atoms ≤ 22, hydrogen-bond donors ≤ 3, and hydrogen-
bond acceptors ≤ 3. Congreve et al.18 proposed a simi-
lar “rule-of-three”: MW � 300, Clog P � 3, hydrogen-bond
donors � 3, and freely rotatable bonds � 3. General conclu-
sions from these studies provided guidance for the initial
design and ongoing refinement of the SGX core fragment
library, which follows a “rule-of-two” (Figure 3.1).

We have exploited two other important considerations
in the design and ongoing refinement of the SGX core frag-
ment library. First, hits from HTS and literature sources are
not infrequently incompatible with efficient follow-on syn-
theses and may require substantial custom, labor-intensive
chemistry for optimization. In practice, the probability of
optimizing a hit increases with the synthetic amenability of
the hit to follow-up elaboration. We, therefore, enriched the
SGX core fragment screening library with compounds that
support rapid, forty-eight- or ninety-six-at-a-time, auto-
mated parallel synthesis using liquid handling robotics
and well-established synthetic routes. Second, aromatic
bromine is a particularly useful substituent for an x-ray
crystallographic approach to fragment discovery and opti-
mization. The anomalous dispersion signal from one or
more bromine atoms enhances the utility of fragment x-ray
screening if the x-ray energy can be tuned to the bromine
absorption edge. In addition, a bromide can act as a leav-
ing group during carbon-carbon bond formation via Suzuki
coupling and related reactions.

Enabling the target, fragment screening, initial SAR
optimization, and the end game

Our FAST (Fragments of Active STructures) fragment-based
structure-guided drug discovery process encompasses the
following steps: (1) target enablement; (2) screening of

the core fragment library and selected fragments derived
from other sources; (3) structural guided selection of frag-
ments for SAR exploration; (4) SAR exploration design/
prioritization; (5) initial chemical elaboration of selected
fragments; (6) analysis of the results of initial fragment elab-
oration with x-ray crystallography and in vitro biochemical
assays of potency; (7) subsequent rounds of fragment elab-
oration/evaluation, now including cellular potency assays,
selectivity profiling, in vitro and in vivo pharmacokinetic
studies, and in vivo efficacy studies; and (8) further focused
optimization of development candidates versus the target
product profile, now including rat toxicology studies.

Properties of the deliverable

Recently published studies19,20 have documented that the
likelihood of success in clinical trials depends critically on
compound molecular weight. Specifically, clinical candi-
dates with MW ≤ 400 have a 50% greater probability of
obtaining approval as compared to those with MW �400.
Paolini et al. extended these analyses to a second dimen-
sion by analyzing both MW and Clog P for approved orally
administered compounds.21 Their work identified a “sweet
spot” for oral drugs, falling within the following MW and
Clog P ranges: 300 � MW � 400 and 2.5 � Clog P �

4.5. Insights from these studies provided general guidance
for the prosecution of the SGX fragment-based structure-
guided drug discovery process against all of our targets.

SGX FAST FRAGMENT-BASED STRUCTURE-GUIDED DRUG
DISCOVERY PROCESS

Properties of the SGX core fragment library

A diverse screening library of ∼1,500 leadlike compound
fragments has been assembled over the past five years
in various stages. Most library members possess two to
three built-in synthetic handles to aid rapid elaboration of
structurally validated fragment hits (Figure 3.1). Approxi-
mately one-third of library members contain one or more
bromine atoms to facilitate detection and routine synthetic
elaboration of crystallographic screening hits. The bulk of
the library was assembled with no bias toward particular
targets or target classes. During the most recent stage of
library expansion, however, ∼100 unrewarding fragments
were removed and ∼500 fragments biased toward protein
kinases were added. Figure 3.2 illustrates five histograms
summarizing various properties of the SGX core fragment
library. (See Blaney et al. for a detailed account of library
inclusion criteria.22)

The current size of our core library reflects the bal-
ance struck among potential chemical diversity, the time
required to screen the library using x-ray crystallography,
and target screening hit rates. At present, screening can
be completed in two to three days of x-ray beam time
by dividing the ∼1,500-compound core fragment library
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Figure 3.2. Properties of the SGX core fragment library.

into 150 shape-diverse mixtures of 10 compounds each.
As discussed earlier, the estimated number of possible
druglike molecules that could be included in an HTS
library is ∼1060.8 In contrast, the estimated number of
all possible leadlike molecules with MW � 160 is only
about 14,000,000.23 A fragment library containing a mod-
est number of compounds (i.e., ∼1,500) can, therefore, be
used to sample leadlike compound space much more effi-
ciently than an HTS library samples the space of druglike
molecules. A fragment library of 1,000–10,000 small com-
pounds (MW � 160) represents ∼0.001–0.01% of all possi-
ble leadlike compound spaces. In stark contrast, a typical
HTS library, containing 105–106 compounds, encompasses
∼10−55 of the total estimated druglike space. Empirically,
we have observed that hit rates for x-ray screening of our
core fragment library fall in the range of 1–5%, thereby pro-
viding fifteen to seventy-five possible hits for subsequent
fragment optimization. Taken together, these arguments/
observations document that our ∼1,500-compound core
fragment library represents an efficient means of generating
a reasonable number of starting points for fragment elabo-
ration from a not insubstantial fraction of the total leadlike
chemical space.

The potential chemical diversity of the SGX core frag-
ment library is estimated to fall in the range of 108–1017

compounds. Intrinsic to most of the ∼1,500 fragments are
two to three sites for R-group addition or chemical han-
dles. For each chemical handle, the number of commercial
reagents available for chemical modification ranges from a
minimum of ∼400 to a maximum of ∼40,000. In the most
pessimistic scenario (i.e., use of only two chemical handles
with only 400 possible independent modifications at each
handle), ∼1,500 fragments can be elaborated into ∼2.4×108

distinct compounds. In the most optimistic scenario (i.e.,
use of all three chemical handles with 40,000 possible
independent modifications at each handle), ∼1,500 frag-

ments can be elaborated into ∼1017 distinct compounds,
which is comparable to accepted estimates for the age of
the universe in minutes.

Enabling the target, fragment x-ray screening,
complementary biophysical screening, SAR optimization,
and the end game

Enabling the target
At SGX, de novo protein crystal structures are determined
using a gene-to-structure platform that supports prose-
cution of multiple protein samples in parallel. Our plat-
form consists of modular robotics and a comprehensive
laboratory information management system (SGX LIMS)
that facilitates data entry and electronic data capture at
all stages of the process. The SGX LIMS system also per-
mits comprehensive data mining for troubleshooting and
project management. The SGX target-to-structure platform
has facilitated high-resolution (typically better than ∼2Å
resolution) structure determinations for a large number of
drug discovery targets, including more than sixty unique
human protein kinases, more than twenty unique human
and pathogen protein phosphatases, a large number of
nuclear hormone receptor ligand binding domains, and
many bacterial and viral proteins. Successes have included
many targets not represented in the public domain Pro-
tein Data Bank (PDB; www.pdb.org), some of which have
been regarded as being extremely difficult if not “impossi-
ble” to express, purify, and crystallize (e.g., the I
B kinases).
Modular SGX platform robotics encompasses gene cloning,
protein expression and purification, crystallization, and
structure determination. Most of this work is conducted
using ninety-six-well-format liquid-handling robotics to
process multiple expression constructs for many protein
targets in parallel. Multiple constructs for a given target
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typically express various truncations of the N- and C-
terminus and/or internal loop deletions. Precise trunca-
tions are defined with the results of bioinformatics anal-
yses of target protein sequences and/or by experimental
domain mapping via limited proteolysis combined with
mass spectrometry.24 For a typical target of unknown struc-
ture, a minimum of twenty to thirty constructs are pre-
pared in multiple expression vectors (encoding N- and C-
terminal hexahistidine tags and a removable N-terminal
hexahistidine/Smt3 tag). Well-expressed, soluble versions
of the target protein are purified in parallel and then
tested for crystallizability, using a predetermined set of
∼1,000 crystallization conditions at two temperatures (4◦

and 20◦C). Rapid, fine sampling during the early stages of
the process allows us to express the right truncated form(s)
of a difficult target that are amenable to crystallization,
thereby enabling structure determination.

Once an initial crystal structure is obtained, addi-
tional experiments are conducted to enable the target for
fragment screening. This process encompasses the tran-
sition from small-scale crystal growth and data collec-
tion, required to determine a de novo crystal structure,
to a robust large-scale process for x-ray screening. Typ-
ical requirements for crystallographic screening include
the ability to routinely produce and soak crystals on a
large scale (∼300 diffraction quality crystals/screen) and
to obtain reproducible diffraction data to better than 2.5Å
resolution. In most cases, the crystal form used for de
novo structure determination suffices for crystallographic
screening of our core fragment library. In extreme cases,
the process may require using information from the ini-
tial structure to engineer a new crystal form. Such protein
reengineering may be necessary to improve crystal stability
[particularly in the presence of dimethyl sulfoxide (DMSO)]
and/or the packing of target molecules within the crys-
tal lattice (to permit fragments to diffuse through solvent
channels within the crystal and reach the enzyme active
site).

After obtaining a suitable crystal form, the system is
validated by soaking “control” compounds known to bind
and/or inhibit the target of interest. In the absence of
reference inhibitors, substrate analogs, cofactors, or other
known ligands (i.e., ATP analogs and staurosporine for pro-
tein kinases) serve as controls. If the reference compound(s)
is readily visible in difference electron density maps, the
soaking system is considered validated. After validation of
the crystal form, the ability to soak mixtures into the system
is tested. In some cases, crystallization and/or soaking con-
ditions must be further optimized to permit efficient soak-
ing of mixtures.

Fragment x-ray screening
Once a target is enabled for crystallographic screening,
crystals are prepared for data collection at our dedicated
x-ray beamline at the Advanced Photon Source (APS; SGX-
CAT). Duplicate crystals are soaked with mixtures of ten

Figure 3.3. SGX-CAT beamline data collection apparatus at the Advanced
Photon Source (APS). Shown are the x-ray beam carriage tubes, the
cryogenic gaseous nitrogen stream, the sample stage, the Mar sample
stage/automated sample changer, and the Mar CCD x-ray area detector.

structurally dissimilar fragments (typically with each frag-
ment present at ∼5–10 mM, DMSO concentration ∼5%),
flash-frozen, and stored in liquid nitrogen. All experiments
are tracked within the SGX LIMS system, which is acces-
sible from SGX-CAT. Direct T3 line connectivity permits
rapid data transfer between the two SGX facilities. Once
the frozen crystals are transported to SGX-CAT by courier,
pertinent sample information is accessed from the SGX
LIMS system and the samples are manually loaded into
data collection carousels. Multiple data collection carousels
are then stored in liquid nitrogen and queued for auto-
mated data collection. When a carousel is ready for anal-
ysis, it is automatically transferred from the storage dewar
to the crystal mounting robot. Figure 3.3 shows the SGX-
CAT x-ray diffraction facility on the 31-ID beamline at the
APS, which includes x-ray optical elements (for focusing
and wavelength selection), beam carriage tubes, a crystal
mounting robot, cryogenic nitrogen gas stream for crystal
cooling, and a MarCCD detector. To facilitate unattended
data collection, crystal centering software was developed by
SGX in conjunction with Mar Research.

Data collection/processing parameters are retrieved
from the SGX LIMS system to control both the progress
of the diffraction experiment and data processing in real
time. Reduced diffraction data are automatically transferred
back to SGX headquarters in San Diego via the T3 line and
experimental parameters are captured by the SGX LIMS
database. This system permits routine, unattended data
collection from approximately fifty crystalline samples per
day, enabling data acquisition for the entire SGX fragment
library in about three days (recording diffraction data from
the better of each pair of duplicate soaked crystals). Frag-
ment screening results are analyzed automatically using a
multi-CPU linux cluster located at SGX San Diego. Auto-
mated processing of diffraction data is performed using a
system that combines proprietary SGX software and the
CCP425 program package. For each screening attempt with
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a ten-compound, shape-diverse mixture, the structure of
the target protein is automatically redetermined by molec-
ular replacement using a reference target structure prede-
fined in the SGX LIMS. Once this step is complete, the struc-
ture is partially refined and a difference Fourier synthesis
is calculated to reveal any superficial electron density fea-
tures that cannot be explained by either the structure of
the protein target or surrounding water molecules. For each
unexplained electron density feature, an attempt is made to
automatically identify the fragment within the mixture that
best corresponds to the shape of the electron density fea-
ture.

Once the automated processing/fragment identifica-
tion is complete, “snapshots” of each difference electron
density feature, with accompanying ligand atomic stick-
figure interpretation, can be accessed via the SGX LIMS.
Visual inspection of these images represents the first point
at which manual intervention by a protein crystallogra-
pher is required. Expert inspection of the electron density
images facilitates prioritization of the three-dimensional
map viewing process and assessment of the results of auto-
mated fragment fitting. This combination of proprietary
and public domain software tools provides an efficient pro-
cess for analyzing the results of SGX core fragment library
x-ray screening.

In addition to providing the all important “direct look”
at the fragment binding to the target, x-ray screening has
proven remarkably sensitive. Fragments with measurable
IC50 values up to 50 mM have been detected, and in some
cases we have not even been able to measure the bind-
ing affinity of a fragment hit. The sensitivity of the x-ray
screening approach obtains from the very high local pro-
tein concentration within a typical crystal (∼0.1 M). The
other advantage of x-ray screening comes, paradoxically,
from the limitation of the crystallographic method itself.
Visualization of fragment hits via difference Fourier synthe-
ses depends critically on the fraction of individual protein
molecules comprising the crystal to which ligand is bound
(i.e., fractional occupancy) and on how well the fragment is
anchored to its binding site on the surface of the protein.
Average occupancy levels must exceed ∼30% for a ligand to
be detectable by x-ray screening. The ligand must also bind
to the target with a single, well-defined set of intermolec-
ular interactions. If a fragment binds to multiple subsites
within an enzyme active site, the resulting electron den-
sity feature(s) will be weak and blurry and will, therefore,
be scored as an uninterpretable negative. Thus, fragment
hits detected by x-ray screening exhibit both high fractional
occupancy and well-defined anchoring to the surface of the
target protein.

Complementary biophysical screening
As a complement to crystallographic screening, SGX fre-
quently conducts both biochemical and surface plasmon
resonance (SPR) screening of the ∼1,500-compound core
fragment library. Biochemical screening is performed using

a Beckman BioMek FX liquid-handling system equipped
with a Sagian rail. Our core fragment library can be screened
one compound at a time via the appropriate biochemical
assay in less than a day to complement results from crystal-
lographic screening. It is often challenging to use biochem-
ical assays to characterize weakly binding ligands, because
of the problem of spectral interference. We screen the SGX
core fragment library at 500 �M ligand concentration, using
biochemical assays formatted to minimize spectral interfer-
ence, while maximizing throughput. IC50 values are deter-
mined for all biochemical hits (defined as �∼50% inhi-
bition). Spectral interference is not a shortcoming of SPR
screening, which is performed with a Biacore T-100 instru-
ment using either 96- or 384-well compound array formats.
Our core fragment library can be screened one compound
at a time in a week to complement results from both crys-
tallographic screening and biochemical assays. Data from
biochemical/SPR screening are automatically imported
into the SGX LIMS for comparison with the results of x-ray
screening.

Comparison of x-ray, biochemical, and SPR screening
Combining x-ray screening with biochemical assays and
SRP studies typically reveals compound hits common to all
three approaches plus hits limited to two of three meth-
ods and hits peculiar to a single method. Follow-up x-
ray crystallographic studies of individual fragment soaks or
cocrystallization are used as the final arbiter of the util-
ity of hits coming independently from biochemical assays
and/or SPR screens. X-ray validated biochemical/SPR hits
are retained for further evaluation. Biochemical/SPR hits
that cannot be confirmed by crystallography are aban-
doned. Although rare, because the hit rate is ∼1–5%, x-ray
screening sometimes fails to detect a fragment hit because
of masking by the presence of a more potent compound in
the same shape-diverse fragment screening mixture. Bio-
chemical assays and/or SPR screening of single fragments
can overcome this shortcoming. The following section dis-
cusses criteria used to select fragment hits for structure-
guided optimization.

Structure/activity relationship optimization
As discussed above, a typical crystallographic screen yields
approximately fifteen to seventy-five hits per target with
binding affinities (IC50) ranging from low micromolar to
low millimolar levels. A fragment hit is useful only if it can
be elaborated through efficient synthesis in directions that
rapidly lead to dramatic improvements in activity. Compu-
tational prediction of which fragments represent the best
candidates for optimization is not feasible because of the
huge number of possible analogs that can be generated
from each fragment and the computational time required
for predicting binding free energies. Instead, we select four
to five of the most promising fragments to optimize in
parallel. Our experience has shown that careful selection
and prioritization of fragment hits typically provides two to
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three orders of magnitude enhancement in activity during
the first round of fragment elaboration.

The primary determinant for choosing a fragment for
chemical elaboration is a high-quality, unambiguous crys-
tal structure of the target-fragment complex at better than
2.5Å resolution, which clearly reveals the orientation of
the bound ligand and the conformation of the polypep-
tide chain segments forming the ligand binding site. As dis-
cussed earlier, the ligand efficiency of the fragment hit rep-
resents an important parameter with which to prioritize
among potential starting points for medicinal chemistry
elaboration. Biochemical measurements of IC50 and/or SPR
measurements of binding kinetics (kon and koff) permit esti-
mation of ligand efficiency. In aggregate, fragment hits are
prioritized for synthetic elaboration based on the follow-
ing criteria: location of the fragment binding site, frag-
ment binding mode, structural accessibility of chemical
handles for synthesis, a preliminary evaluation of synthet-
ically accessibility, potential novelty in terms of patentabil-
ity, the conformation of the protein, and ligand efficiency.

Ideally fragment hits will bind to either the active site
or a known allosteric site. Fragments that bind at previ-
ously unknown sites remote from a lattice packing inter-
face represent opportunities for discovery of novel/selective
lead compounds, but such sites require validation through
fragment elaboration into more potent compounds with
which to perform definitive biochemical or cellular assays.
The mode of fragment binding must orient synthetic han-
dles toward pockets or subsites on the surface of the tar-
get protein. If the intrinsic synthetic handles of the frag-
ment hit are oriented only toward solvent or are sterically
blocked, alternative handles may be found by searching for
available fragment analogs or introduced via synthesis of a
fragment analog. Synthetic feasibility is assessed by consid-
ering the diversity of available reagents that are compati-
ble with the fragment hit and related synthons. Ligand effi-
ciency is assessed by examining the ratio of biochemical
activity to the size of the fragment (see above). Novelty is
evaluated in terms of both the fragment hit and its binding
mode. A familiar fragment can be observed to bind in an
unusual way, which can provide novel elaboration opportu-
nities. Observing a common binding mode for similar frag-
ments sometimes provides an initial SAR and gives support,
albeit indirectly, for fragment hit selection. Previous experi-
ence with the same or a related target and the same or a sim-
ilar scaffold represented by the fragment hit can also help
support the choice of a fragment hit. Fragment biochemical
activity is usually less important than the criteria described
above, because poorly oriented or ligand-inefficient frag-
ments can be difficult if not impossible to optimize.

A detailed account of how we use computational chem-
istry tools to plan fragment elaboration chemistry has been
published by Blaney et al.22 Our current methods of predict-
ing binding free energies of partially elaborated fragment
hits are used to compare different elaboration routes for the

selected fragment hits, to select the best of these routes, and
to prioritize analogs for synthesis. This approach is current-
ly too expensive from the computational standpoint to ap-
ply to all of the possible virtual libraries for all fragment hits.

Our goals for the first stage of fragment optimization
are to improve binding affinity by at least 100-fold for each
chemical handle (i.e., IC50 ∼1−10 mM →∼10−100 μM), to
validate the selected fragment by establishing an initial SAR
at each available synthetic handle, and to correlate this SAR
with observed cocrystal structures and computational pre-
dictions of potency. As discussed previously, optimization
of fragment hits into nanomolar leads typically requires an
increase in binding energy of ∼4–9 kcal/mol (three to six
orders of magnitude). Without appeal to structural informa-
tion, this task would be daunting.

With timely access to the right cocrystal structures,
weakly binding fragments have been successfully optimized
into potent lead compounds. At SGX, access to our pro-
prietary x-ray beamline at the APS provides very rapid
turnaround between compound synthesis and cocrystal
structure determination. The median time required for x-
ray data collection and structure determination is forty-
eight hours, with 90% of requested cocrystal structures
being delivered to the project team within ninety-six
hours. With such rapid turnaround our multidisciplinary
design teams (consisting of medicinal chemists, computa-
tional chemists, and protein crystallographers) can make
decisions regarding the next round of compound synthesis
with a full three-dimensional view of the SAR for the evolv-
ing lead series.

SGX has had considerable success with the fragment
engineering method, wherein optimization involves “grow-
ing” each fragment with small focused analog libraries at
each synthetic handle, followed by synthesis of multiply
elaborated fragments using the better substituents iden-
tified for each chemical handle. This approach is step-
wise, systematic, and lends itself to maintaining and even
improving ligand efficiency. Once fragments have been
selected for synthesis, available reagents are assembled
to generate various small focused analog libraries. Com-
pounds are prioritized for synthesis using predicted bind-
ing free energies for each fragment analog and on the basis
of medicinal chemistry SAR considerations. In silico dock-
ing of fragments is not part of the SGX fragment-based drug
discovery strategy. Experience has shown that much more
reliable results can be obtained using experimentally deter-
mined structures of protein-fragment complexes as starting
points for planning synthetic chemistry.

The resource needs of such an exercise depend on the
particulars of the target. SGX metrics for this initial SAR
exploration are as follows: duration = 2–8 months (average
4 months), number of fragment analogs synthesized = 10–
150 (average 60 analogs), potency gain = 500–10,000 fold
(average 3,500 fold). Following experimental validation of
the optimization potential of a given fragment hit, further
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chemistry is executed to improve the druglike properties of
the evolving lead series, including selectivity, cell perme-
ability, cellular activity, and liver microsome and hepatocyte
clearance. Again, the time required to complete this stage of
the process is a function of the particular target.

End game
The final stages of any drug discovery process are focused
on identifying one or more compounds suitable for
development candidate nomination, thereby committing
significant resources to preparation of an investigational
new drug (IND) application. At SGX, there is no “bright line”
between SAR optimization and development candidate
seeking. Structure-guided optimization of lead series con-
tinues with added feedback from the results of in vivo intra-
venous and oral pharmacokinetic studies in both mouse
and rat, demonstrations of in vivo efficacy using various
mouse xenograft tumor models, and preliminary fourteen-
day toxicology studies in rat. The duration of the end game,
simply put, is as long as it takes to achieve the desired
balance among in vitro cellular potency, selectivity, oral
bioavailability, half-life, in vivo efficacy, and absorption/
distribution/metabolism/excretion (ADME)/safety prop-
erties [cytochrome P450 inhibition and induction, receptor
inhibition profile, genotoxicity, and human ether-à-go-go
related gene (hERG) channel binding].

Postscript
In closing this section, it is remarkable that the SGX
fragment-based structure-guided drug process is entirely
pragmatic in terms of when and where fragment informa-
tion is exploited. Insights from cocrystal structures of frag-
ments bound to the target of interest (and for some pro-
tein kinases, critical off targets) influence not only fragment
elaboration but also lead series SAR optimization. Cocrystal
structures coming from the initial x-ray screen of our core
fragment library and fragments from other sources pro-
vide valuable information regarding possible interactions
between small-molecule ligands and many of the func-
tional groups comprising the enzyme active or allosteric
site. In some cases, fragment hits that were not subject to
elaboration later serve as the inspiration for choice of R
groups during fragment/lead optimization. We have also
developed proprietary computational chemistry software
to overlay and merge experimentally identified fragments to
create entirely new fragments (also commonly referred to
as scaffolds) using a tool designated SMERGE (Scaffold
MErging via Recursive Graph Exploration). The products of
SMERGE have provided new starting points for structure-
guided optimization that build rapidly on a wealth of infor-
mation regarding the SAR implications of adding a partic-
ular R group to a particular site of a previously elaborated
scaffold. For certain lead series, such merged fragments
have helped us overcome unattractive druglike properties
or navigate intellectual property constraints.

Lessons from FAST

Key experiences coming from application of the SGX
fragment-based structure-guided drug discovery process to
twenty-four protein targets, twenty of which are protein
kinases, are presented below. Three “lessons” central to
fragment-based approaches are reviewed, including (1) the
importance of fragment library design, (2) the selectivity of
fragment hits identified in x-ray screens of protein kinases,
and (3) that the optimization potential of a fragment hit is
not correlated with initial binding affinity.

Lesson 1: Fragment library design

Figure 3.4 illustrates three histograms that compare vari-
ous properties of the SGX core fragment library and the hits
obtained from twenty-four targets drawn from four protein
families. It is remarkable that the properties of the fragment
hits closely mirror those of the entire fragment library. This
finding reflects the target agnostic nature of the composi-
tion of our core fragment library. We consciously sought to
create a fragment screening library with maximum poten-
tial for chemical diversity that was not biased toward any
one particular target class. As we continue to add fragments
to our screening library, we will seek to further increase the
potential for chemical diversity with ongoing attention to
tractability in terms of synthetic elaboration.

Lesson 2: Fragment selectivity revealed by x-ray screens
of protein kinases

Figure 3.5 summarizes our x-ray screening experience
across twenty protein kinase targets. When we embarked on
this odyssey, we naively assumed that fragment hits would
be intrinsically nonselective and that selectivity would
come only during the course of elaboration of such hits.
Our experience with the protein kinases argues otherwise.
Nearly 75% of the fragment hits detected by x-ray screen-
ing of protein kinases bound to only one of the twenty tar-
gets. Under the conditions of this very stringent screening
process, we appear to be identifying “privileged” ligands (or
scaffolds). This unanticipated benefit of our strong reliance
on x-ray screening may well explain our success in elab-
orating fragment hits under structural guidance to pro-
duce highly selective kinase inhibitors. During the iterative
design/chemical elaboration/biochemical assay/cocrystal
structure determination process of optimizing attractive
fragment hits, we strive to preserve the original anchoring
interactions between the growing fragment and its target.
With timely access to structural information we can mon-
itor the impact of synthetic changes to the growing frag-
ment to ensure that we do so. In rare cases (∼5%), we have
detected alterations in the mode of fragment binding, some
of which have been exploited as opportunities with which
to pursue alternative SAR regimes.
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Figure 3.4. Comparison of selected properties of fragment hits versus those of the SGX core fragment library.

Lesson 3: Fragment optimization potential is not correlated
with binding affinity

Figure 3.6 summarizes our experience with initial synthetic
optimization of various fragments for some protein kinase
targets. For each fragment we have plotted the relationship
between the initially measured binding affinity of the frag-
ment itself and the results of elaboration at one chemical

Observed in 
Kinases 

197 (13%)

Not yet 
observed in 

Kinases 
1279

1476  total 
fragments in 
SGX FAST ™ 

library

73% of All 
Fragment Hits 

are Selective for 
a Single Kinase

143

35

910

Selective for
one kinase

2 Kinases

3 Kinases

4 Kinases

Figure 3.5. Most x-ray screening fragment hits are selective for a single
protein kinase.

handle. These data conclusively demonstrate that there is
no correlation between the strength of initial binding and
the optimization potential of a fragment. There is, therefore,
no rational basis for preferentially devoting synthetic chem-
istry resources to fragment hits with higher affinities versus
those that bind the target more weakly. Ligand efficiency is
the issue, not affinity.

Future prospects

Notwithstanding the flurry of activity in fragment-based
approaches since 2004, practitioners of this new strategy
for drug discovery would appear to have only scratched the
surface. There are many more target classes that should
be pursued with fragment screening. Of particular interest

Fragment IC50 mM

IC50 Increase

100 100 1 0.1 0.01 0.001

1 × 0

10 × 1

100 × 2

1000 × 3

Figure 3.6. Relationship between initial binding affinity (IC50) and
increase in potency following elaboration at individual chemical handles
for fragment hits obtained with five targets.
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to biotechnology and pharmaceutical companies are ion
channels and G-protein-coupled receptors, both of which
have lately proven more amenable to x-ray crystallographic
study. There is still much work to be done in terms of the
design of fragment libraries. At present, we do not know
with any certainty the optimum library size or the best way
to maximize the potential of a library to generate chemi-
cal diversity during synthetic elaboration of fragment hits.
Moreover, we do not yet know how best to screen fragment
libraries. Various organizations have their respective biases,
which reflect institutional memory, resource constraints,
experience base, and the availability of particular skills, and
so on. There is always the sobering possibility that fragment
approaches will go the way of HTS, which appears to have
fallen well short of expectations. We think it unlikely that
fragment approaches will disappoint and we remain com-
mitted to exploring the potential of the method and contin-
uously evolving our own process to maximize the likelihood
of discovering development candidates suitable for entry
into oncology clinical trials of targeted therapeutic agents.
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NMR in fragment-based drug discovery

Christopher A. Lepre, Peter J. Connolly, and Jonathan M. Moore

AN INTRODUCTION TO FRAGMENT-BASED
LEAD DISCOVERY

For decades, molecular starting points for drug discovery
have been found by screening large numbers of natural and
synthetic compounds for biological activity in phenotypic
and biochemical assays. Then, beginning in the mid to
late 1990s, several pharmaceutical groups developed new
approaches [such as structure/activity relationship by
nuclear magnetic resonance (SAR by NMR),1 the SHAPES
strategy,2 and needle screening3] in which simple, low-
molecular-weight compounds were screened for binding
to the target of interest, and these relatively weak binding
molecules were then used to systematically construct
larger, more potent, drug leads. Such small screening
molecules are now commonly called fragments and the
related processes collectively called fragment-based lead
discovery (FBLD).

NMR was the first experimental method used to screen
fragments, and although a variety of other techniques
(including x-ray crystallography, surface plasmon reso-
nance, high concentration bioassays, and mass spec-
troscopy) have also been applied, NMR is still the most
widely used. This chapter reviews the use of NMR for
FBLD, beginning with an explanation of the principles
behind fragment screening. NMR screening methods are
then described, followed by a series of examples that illus-
trate the process through which fragment screening hits are
converted into leads.

Defining fragments

To explain the principles of FBLD, it is first necessary to
define what molecules are considered to be fragments.
Molecules are often classified using their physicochemi-
cal properties, such as molecular weight (MW), number
of hydrogen bond donors and acceptors (HBD and HBA),
calculated logP (ClogP), and number of rotatable bonds. A
popular rule of thumb for classifying molecules as “drug-
like” is the “rule-of-five” first described in a well-known arti-
cle from Pfizer.4 This study reported that a compound is
more likely to exhibit poor oral absorption and cell perme-
ability when its properties exceed limits (Table 4.1) defined

by four simple rules (dubbed the “rule-of-five” because
the values are multiples of five). Approximately 90% of the
approximately 2,000 Phase II clinical candidates analyzed
satisfied at least three of the four rules.

Because lead optimization by medicinal chemists typi-
cally results in molecules that are larger and more lipophilic
than the starting lead, it has been proposed5,6 that the com-
pounds screened should be “leadlike” rather than “drug-
like,” with properties well within the rule-of-five limits to
allow room for subsequent improvements in potency, selec-
tivity, and absorption/distribution/metabolism/excretion
(ADME) properties (Table 4.1).

Fragment-based screening evolved in parallel with the
practice of classifying compounds as drug- or leadlike
according to their physicochemical properties, so the much
smaller molecules used for FBLD were defined using the
same parameters. The term fragment originates from the
practice of computationally dividing known biologically
active molecules into their basic building blocks7,8 and then
using those components for screening. Although there is a
general consensus among practitioners of FBLD regarding
which properties should be used to define fragments, there
is some disagreement about the preferred values. The group
at Astex Therapeutics has reported that the hits obtained
from crystallographic screening of their MW = 100- to 250-
Da fragment library seem to conform to a “rule-of-three”
(Table 4.1).9 The rule-of-three has been adopted by many
groups and commercial vendors for designing fragment
libraries, particularly those used for crystallography-based
screening. Some groups, particularly those using NMR-
based screening methods, find that rule-of-three compli-
ant libraries are too limited and produce hits that are so
small and simple that they are difficult to optimize synthet-
ically, because of very weak (e.g., multimillimolar) affini-
ties, a lack of synthetically accessible functional groups,
and the need for structural information to guide synthe-
sis. To address this, they employ higher limits for molecu-
lar weight, HBA, and rotatable bonds to create libraries of
“reduced complexity” leads or scaffolds (Table 4.1).10–12 A
minimum MW cutoff of ∼150 Da is also often used to avoid
the possibility of binding in multiple orientations, a prob-
lem that occurs more frequently for the smallest and sim-
plest fragments.13–15 In addition to the properties listed in
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Table 4.1. Property ranges used to define druglike compounds, leadlike compounds, fragments, and scaffolds

Druglike (rule-of-five)
properties4

Leadlike
properties6

Fragment-like
(rule-of-three) properties9

Scaffold-like
properties10

Molecular weight ≤500 ≤450 �300 ≤350

ClogP ≤5 −3.5 to 4.5 ≤3 ≤2.2

Hydrogen bond donors (e.g., NH, OH) ≤5 ≤5 ≤3 ≤3

Hydrogen bond acceptors (e.g., N, O) ≤10 ≤8 ≤3 ≤8

Rotatable bonds (Not defined) ≤9 ≤3 ≤6

Table 4.1, many other factors are considered when select-
ing fragments for screening, including solubility (a critical
factor due to the high concentrations necessary to detect
weak binding), chemical stability, low reactivity, commer-
cial availability of compounds and analogs, synthetic acces-
sibility, and the presence of preferred binding motifs.

The three principles of FBLD: Efficiency, efficiency,
and efficiency

Conventional methods for lead discovery using phenotypic
or biochemically based assays have produced many success
stories. So why use fragment-based methods? Along with
the successes of conventional methods, there have been
many cases where leads could not be found or could not be
developed into drugs because of inadequate potency; rapid
metabolism or excretion; toxicity or off-target effects; dif-
ficulties with synthesis or formulation; and poor solubility,
oral availability, or cell permeability.

Fragment-based lead discovery produces more choices,
and potentially better choices, for lead optimization than
conventional methods alone. FBLD is a complementary
approach that generates independent sets of leads from
which medicinal chemists may choose, and the pursuit of
multiple chemically distinct lead classes for any given pro-
gram increases the likelihood that at least one will suc-
ceed. Furthermore, by starting from leads that have lower
molecular weights and bind more efficiently than typi-
cal high-throughput screening (HTS) hits, it is more likely
that the final, optimized compounds will have desirable
physicochemical (and hence ADME) properties. It has been
argued that fragment-derived drug candidates, in addition
to having lower molecular weights, tend to be more polar
and water soluble. For example, the mean ClogP value for
fragment-derived molecules patented by Astex in 2006 was
2.4, compared to a range of 3.5 to 4.2 for conventionally
derived compounds from four major pharmaceutical com-
panies.16,17

The key advantage of FBLD lies in its efficiency, as
embodied by three principles, each of which will be dis-
cussed in detail in the following sections:

Chemical efficiency : Fragments sample chemical space
more effectively than large molecules.

Searching efficiency : Fragments probe protein binding
sites more efficiently and produce higher hit rates than
large molecules.

Binding efficiency : By starting from fragments that bind
very efficiently, it is possible to construct highly effi-
cient lead molecules and thus better drug candidates.

The chemical efficiency of fragments
The number of possible druglike compounds containing up
to thirty C, N, O, and S atoms is enormous and has been
estimated to comprise around 1063 molecules.18 It is impos-
sible to effectively sample such a vast and diverse “chem-
istry space” with a screening library (to begin with, there is
not enough matter on Earth to make that many molecules).
Furthermore, maximizing chemistry diversity alone is an
inherently inefficient strategy for library design. If biologi-
cally active molecules were uniformly distributed through-
out chemistry space, then it has been estimated that at least
1014 compounds would have to be screened to find a sin-
gle hit.19 The fact that libraries of 105 to 106 molecules rou-
tinely produce multiple hits simply reflects the well-known
empirical observation that biologically active molecules are
actually clustered within small regions of chemistry space.

The number of possible fragments is, however, many
orders of magnitude smaller than the number of possible
druglike compounds. For example, a virtual library of all
26.4 million possible molecules containing up to eleven C,
N, O, and F atoms has been computationally enumerated,
and approximately half of the molecules conform to the
rule-of-three.20 It is therefore possible to sample more of
the available chemistry space with much smaller libraries
of compounds by screening fragments instead of larger
molecules. Furthermore, fragments can be combined to
make larger compounds, vastly expanding the represented
chemical space. For example, if a receptor contains two
binding sites that are close together, then rather than screen
large molecules containing two components intended to
bind to both sites simultaneously, fragments capable of
binding to one or the other site individually can be screened
and any hits subsequently linked together. Assuming that
the binding modes of the individual fragments mimic that
of a linked molecule, a 1,000-fragment library with sev-
eral possible synthetic linkers could represent the chem-
istry space of a multimillion-member combinatorial library.
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Figure 4.1. Contributions by individual functional groups to the binding of
NADPH to KPR (adapted from Cuilli et al.34). � �G: estimated contribution
to the binding energy by the group calculated from the difference in
the Gibbs free energy of binding34 for fragments that differ only by that
group (e.g., the contribution by 2′-phosphate was calculated from �G
(NADPH) – �G (NADH). Nheavy: number of heavy atoms in the group.
LE: ligand efficiency for the group (in kcal/mol-atom) calculated from
� �G/Nheavy. Percentage of the total binding energy contributed by the
group was calculated by dividing the � �G by the total binding energy of
NADPH (−9 kcal/mol).

To exploit the clustering tendency of bioactive mole-
cules, a popular library design strategy has been to select
diverse sets of fragments from within biologically active
regions of chemistry space. For example, some groups
have selected compounds for their fragment screening
libraries based on the fragments commonly found in known
drugs. Computational chemists at Vertex have found that
just thirty-two simple graph frameworks are represented
in approximately half of known drugs.7 This result sug-
gests that a relatively small collection of scaffolds could
be used as a universal screening library for a wide vari-
ety of therapeutic targets.2 A detailed discussion of frag-
ment library design lies outside the scope of this review,
but accounts have been published of the various meth-
ods used at Vertex,21,22 Novartis,12,23 Vernalis,24,25 Astex,26

SGX,27 Astra-Zeneca,28 and ZoBio/Pyxis.15

The searching efficiency of fragments
A high proportion of the binding energy driving the for-
mation of protein/ligand and protein/protein complexes
comes from relatively small regions of the protein surface,
often termed hot spots.29–32 Binding is thought to begin
when a “molecular anchor” motif on the ligand recognizes
a hot spot on the receptor. The binding of peripheral groups
on the ligand to nearby regions of the protein serves to
further increase affinity and confer specificity.33 In princi-
ple, fragments are more capable than large molecules of
probing binding hot spots and they can serve as molecu-
lar anchors from which more potent and selective ligands
may be constructed.13 In practice, fragments bind almost
exclusively to hot spots and can be used to identify them
and evaluate the “druggability” of new targets.34,35

The hot spot concept is clearly illustrated by the bind-
ing of NADPH (Kd = 0.26 �M, �G = –9 kcal/mol) and its
fragments to ketopantoate reductase (KPR).34 Calorimetry

experiments reveal that most of the binding energy comes
from two hot spots on the enzyme. From the results
reported, we estimate that the 2′-phosphate and nicoti-
namide groups (comprising only thirteen heavy atoms)
together contribute approximately three-quarters of the lig-
and binding energy of NADPH (Figure 4.1). As Ciulli et al.
conclude, the phosphoribose portion of the ligand con-
tributes little binding energy and serves mainly to connect
and orient the two hot spot groups, which bind 13–14Å
apart.36

The very fact that measurable binding can be observed
for a small fragment suggests that it makes highly favor-
able contacts with the receptor. On binding, ligands lose
a significant amount of rigid body rotational and transla-
tional entropy that must be outweighed by favorable bind-
ing interactions.37,38 Because this entropic penalty is only
weakly dependent on molecular weight, it is much more
significant for small fragments. Low-molecular-weight frag-
ments with millimolar affinities can thus possess very high
intrinsic affinities for the receptor37 and may bind in highly
optimal orientations. Such fragments represent better start-
ing points for chemistry than larger, more potent molecules
whose affinities reflect the sum of multiple low-affinity, sub-
optimal interactions spread out across the molecule.

Because they are less complex, small molecules are less
likely to be sterically blocked from binding to a receptor
and will therefore produce higher hit rates. Using a compu-
tational model, Hann and coworkers at GlaxoSmithKline13

predicted that the total probability of ligand binding
(dashed line in Figure 4.2) is highest for the simplest
molecules and decreases with increasing complexity. This
total binding probability includes the possibility of a ligand
binding to the receptor in multiple positions.

For drug discovery, it is preferable to find fragments
that bind in one distinct position. The probability of such
“unique binding” (Figure 4.2) peaks at some intermediate
level of complexity and then drops off in concert with the
total binding probability. The likelihood of observing “mea-
surable inhibition” starts to rise at the detection thresh-
old of the measurement method and increases with ligand
complexity before leveling off. For binding to be useful, it
must be both unique and measurable, and the “useful bind-
ing” curve is thus the product of the latter two probabilities.

Figure 4.2. Ligand binding probability as a function of molecular com-
plexity (adapted from Hann et al.13).
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The higher probability of binding by fragments predicted
by the Hann model is borne out experimentally. At Novar-
tis, the hit rates for NMR screens of fragments (MW = 100
to 300 Da) were 3 to 30%, compared to 0.001 to 0.151% for
HTS screens of full-sized compounds (200 to 600 Da).12 Sim-
ilarly, plotting hit rate versus complexity for the combined
results of five fragment screens run at ZoBio15 produced a
profile resembling the “useful binding” curve of Figure 4.2.
Because fragments bind more weakly than full-sized HTS
compounds, the higher fragment hit rates are thought to
be real and not just an artifact of the higher concentra-
tions used in fragment screens.39 The group at Abbott has
claimed that fragment screening may thus “deliver more
hits against larger numbers of protein targets” than conven-
tional HTS screening.39 For a set of forty-five Abbott targets
screened using both fragment screening and HTS, the frag-
ment screens identified interesting, chemically tractable
hits for 76% of the targets, compared to 53% for HTS.

Binding efficiency of fragments
Because fragment hits have relatively weak affinities, they
can easily be overlooked when compared to more complex
and more potent molecules, even though the latter may be
too large to serve as good starting points for lead optimiza-
tion. For this reason, it is useful to compare hits according
to their ligand efficiency (LE), defined as the free energy of
binding per heavy atom in the molecule40:

Ligand efficiency (LE) = �G/N heavy

where �G = −RT ln(Kd), where Kd is the dissociation con-
stant and Nheavy is the number of nonhydrogen atoms in the
molecule. Alternatively, the binding efficiency index (BEI) is
a unitless metric that is simpler to calculate41:

BEI = −(pKi, pKd, or pIC50)/MW (in kilodaltons).

These two metrics will be used interchangeably in this
chapter.

Using ligand or binding efficiency, it is possible to
rank hits that have dramatically different potencies and
molecular weights. For example, even though it is 100-
fold less potent, a 200-Da fragment hit (15 heavy atoms)
with Kd = 100 μM is a much more efficient binder (LE =
0.37 kcal/mol-atom, BEI = 20) than a 400-Da HTS hit (30
heavy atoms) with Kd = 1 μM (LE = 0.27 kcal/mol-atom,
BEI = 15).

Because molecular weight invariably increases during
the process of synthetically optimizing leads to improve
potency, and large molecules typically have poorer oral
bioavailability, it naturally follows that, all other consider-
ations being equal, the best leads are those with the high-
est ligand efficiencies. In a study of eighteen highly opti-
mized drug leads at Abbott,42 pKd was found to increase
linearly with molecular weight, with an average increase of
1 pKd unit for every 64 Da added, as the fragment leads
(average MW = 224) progressed to final compounds (aver-
age MW = 463). The binding efficiency, however, usually
remained constant or decreased, even as the potencies

increased by over three orders of magnitude. Other groups
have also reported that ligand efficiency usually does not
increase during lead optimization.16

A linear relationship between potency and molecular
weight makes it possible to predict the molecular weight
of a final drug candidate based on the MW and potency
of the lead.42 For example, the 400-Da, Kd = 1 �M HTS hit
from the previous example might initially seem to be an
attractive starting point, but optimization to a potency of
10 nM (maintaining the starting BEI of 15) would result in
a final compound of MW = 666 Da, well above the rule-
of-five limit. The 200-Da, pKd = 100 �M fragment (BEI =
20), however, would be expected to produce a 10 nM final
compound with MW = 500. This example underscores the
importance of starting optimization from the most efficient
fragment lead.

Another argument in favor of screening fragments is
the observation that ligand efficiency varies with size and
is higher, on average, for small ligands. Reynolds and
coworkers43 analyzed published pKd and pIC50 data for
8,653 ligands and found that ligand efficiency dropped dra-
matically as the number of heavy atoms increased from 10
to 20 and then leveled off for ligands with more than twenty-
five heavy atoms. A heavy atom count of twenty-five cor-
responds to a molecular weight around 333, a value that is
close to the average molecular weight (∼340) for marketed
oral drugs.44,45 It is tempting to speculate that twenty-five
heavy atoms may mark the point of diminishing returns
for lead optimization, after which adding more molecu-
lar weight results in smaller potency improvements at the
expense of potential decreases in oral bioavailability.

Reynolds et al.43 attribute the intrinsically higher ligand
efficiency of fragments to two primary causes. First, small
fragments are able to freely adopt orientations that make
ideal interactions with the receptor (e.g., optimal hydro-
gen bond and salt bridge geometries), while larger, more
complex molecules are sterically constrained, forcing them
into suboptimal, energetically strained orientations. Sec-
ond, small ligands present more accessible surface area for
interaction per heavy atom than large ligands, resulting in a
higher average binding energy per atom.

Building from fragments

Once fragment hits have been identified, they must be val-
idated, preferably using multiple methods. When NMR is
used for the primary screen, initial validation of the hits is
often obtained at the time of the screen from NMR exper-
iments that provide information about the binding site:
competition studies using known ligands or binding site
maps obtained using heteronuclear chemical shift pertur-
bation experiments. Other popular methods for confirm-
ing binding and measuring affinity include biochemical
(activity) assays, SPR, and isothermal titration calorimetry
(ITC). A crystal structure of the receptor with a ligand bound
in the active site is, of course, also proof of binding, but pro-
vides no affinity information.
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Once the fragment hits have been validated, the hit-to-
lead process begins. It is essential for the success of this pro-
cess to have an assay that can reliably measure the affinities
of very weak binders, is robust enough to tolerate high con-
centrations of compounds and solvent [i.e., dimethyl sul-
foxide (DMSO)], and has sufficient throughput to test tens
to hundreds of compounds. Hits are typically ranked on the
basis of ligand efficiency and other factors (e.g., synthetic
attractiveness, availability of structural information), and
analogs are screened to expand the scaffold classes, find
more potent compounds, and identify structure/activity
relationships. In choosing hits for follow-up, an LE � 0.3
kcal/mol-atom cutoff is sometimes imposed because this is
the minimum LE value predicted to produce a 10 nM final
inhibitor that conforms to the MW = 500 (rule-of-five) limit.

The most desirable result from the hit-to-lead process is
to find multiple scaffolds that bind to the same hot spot on
the receptor using a similar pattern of interactions and that
offer chemically tractable sites for adding functional groups
that can access nearby subsites. Using the bound structures
of overlapping hits it is sometimes possible to design hybrid
molecules that combine the features of multiple molecules.
As fragments are optimized into potent inhibitors, they usu-
ally maintain the original binding mode of the fragment hit.
Caution is indicated if the hits are found to bind at multi-
ple locations in the active site and/or in a variety of differ-
ent orientations, without making a consistent set of inter-
actions with the receptor, or if the binding mode changes
dramatically during optimization. These observations indi-
cate that the fragments can bind in many different modes
that have approximately the same energy, rather than a sin-
gle mode that is much lower in energy than the rest, and
the binding energy landscape of the receptor may not offer
a suitable hot spot for placing a molecular anchor.33 We
suspect that proteins exhibiting a high degree of confor-
mational flexibility may be particularly susceptible to this
problem, because they are more likely to possess multiple
conformational states that have similar energies.

For cases where two or more fragments are found to bind
in close proximity, the additivity of binding energies37,46,47

favors linking them together (e.g., linking two millimo-
lar fragments to make a micromolar binder). Because the
linked molecule suffers an entropic penalty on binding of
just one rather than two molecules, it is expected to be
much more potent than the sum of the fragments. Although
the linking approach is conceptually elegant, it is seldom
used because of the practical difficulty of connecting two
fragments using the limited set of synthetically accessi-
ble bond lengths and angles provided by nature, without
straining or perturbing the favorable interactions of either
fragment or introducing unfavorable entropic or enthalpic
effects from the linker. In practice, the actual potency
gained by linking fragments is usually significantly less than
theory (in one study the gains were, on average, fivefold
lower than expected).48 Also, in many cases the binding site
contains only one hot spot consistently targeted by frag-
ments, so a set of independent second site binders is not

available. For these reasons, it is far more common for frag-
ments to be optimized by elaborating or building out from
scaffolds bound to a single site.

EXPERIMENTAL METHODS: DETECTION OF FRAGMENT
BINDING BY NMR

In the early development of NMR fragment-based screen-
ing techniques, literature descriptions of new experiments
focused on methods of detection rather than the lead gen-
eration strategies. As the number of studies grew, and real
drug discovery problems were addressed, it became appar-
ent that experimental approaches and fragment follow-up
strategies could be combined in many different ways to
uniquely address each target and drug design program. For
this reason, it is best to consider the physical methods used
to detect binding in NMR-based screening separately from
the strategies used to elaborate fragment hits into medicinal
chemistry leads. In the following sections, the most com-
monly used experimental techniques are reviewed.

NMR has long been established as a sensitive method
for detecting binding of small molecules to macromolecu-
lar targets. Methods for detecting ligand binding by NMR
can be either target directed or ligand directed. Target-
directed methods rely on observing a change in an observ-
able NMR parameter of the target biomolecule that results
from its interaction with a ligand. Alternatively, ligand-
directed techniques rely on the observation of a change in
an NMR parameter of the ligand, which arises as a con-
sequence of its interaction with the target receptor. Each
method has advantages and disadvantages, and choosing
the optimal approach will depend on a number of factors
such as the molecular weight of the macromolecule, solu-
bility and expression yield of the target protein, and, most
importantly, the overall requirements of the drug discovery
project.

Target-directed methods

Target-directed detection of ligand binding is most often
accomplished by observing differences between the chem-
ical shift of one or more resonances of the receptor spec-
trum in the presence of a mixture of ligands relative to those
of a reference spectrum of the receptor in the unliganded
state. When differences are observed, additional spectra
are then acquired using the individual components of the
ligand mixture to deconvolute the mixture spectrum and
determine the identity of the binding ligand. In principle,
any NMR spectrum can be acquired for this purpose, but
the high sensitivity and resolution of two-dimensional 15N-
1H correlation spectroscopy using uniformly 15N labeled
protein makes it the most frequently chosen method. If
sequence-specific resonance assignments are available for
the target protein, the amino acid residues at the interaction
site of the ligand can be readily identified by comparison
with resonances observed to undergo chemical shift pertur-
bations.
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Figure 4.3. Outline of the SAR by NMR method. The SAR by NMR method
consists of several steps. First, a molecule is identified that binds to one
subsite. This scaffold is then optimized for affinity to the first subsite.
A second compound is then identified that binds to an adjacent subsite.
The second ligand is then optimized for maximum affinity. Finally, based
on structural input, a linker is designed to optimally connect the two
scaffolds (adapted from Shuker et al.1).

Direct detection of ligand binding can be a powerful
technique in providing information for the drug discov-
ery process. Because the sequence-specific assignments
of the spectrum are usually determined before screening
takes place, localization of ligand binding is revealed by
the observed chemical shift perturbations. In addition, this
information allows the discrimination of nonspecific and
nonrelevant ligand binding from binding that affects the
activity of the target protein and can be used as input to
processes to develop more potent binding ligands, such
as SAR by NMR.1 This approach (illustrated in Figure 4.3)

relies on the identification of two distinct fragment bind-
ing sites on the target protein that are close in proxim-
ity. Optimal linking of the two fragments may result in a
high-affinity ligand. SAR by NMR has become the principal
motivation for target-directed detection of fragment bind-
ing using uniformly labeled proteins. Numerous applica-
tions of SAR by NMR and similar target-directed strategies
have been reviewed in the literature.11,49–56

The use of chemical shift perturbation in uniformly
labeled proteins to detect binding is limited by several fac-
tors. Because many 15N-1H correlation spectra are required
to both screen the library and deconvolute the binding
mixtures, a relatively large quantity of 15N labeled protein
must be available before studies can be undertaken. Fur-
thermore, the target of interest must be sufficiently solu-
ble and present in high concentrations so that data can be
acquired without the need for excessive signal averaging.
The actual quantity of protein required will depend on the
library size and composition as well as the sensitivity of the
available NMR instrumentation. For example, if reasonable
data can be acquired at a target protein concentration of
100 �M on a 25-kDa protein, then screening 200 NMR sam-
ples of a 500-�l volume would require 250 mg of labeled
protein. This would be sufficient to screen a library of 1,000–
2,000 compounds (neglecting deconvolution) if each mix-
ture contained five to ten fragments. Additional labeled
protein would be required to obtain spectra of individual
compounds from the “hit” mixtures to identify the bind-
ing ligand. For these reasons, some groups have developed
strategies to minimize protein consumption and labeling
costs, such as using NMR flow systems.57

To take full advantage of the information provided by
target-directed screening methods, it is advantageous to
have the sequence-specific resonance assignments of the
target protein available. This requirement imposes further
limitations on the method. For well-behaved, highly solu-
ble proteins with molecular masses below approximately
25 kDa, three-dimensional triple resonance spectra of dou-
bly labeled proteins can often be used efficiently to provide
these assignments. At higher molecular masses, the require-
ment to perdeuterate the target protein to acquire triple
resonance spectra58 creates additional difficulties in pro-
tein expression. The lengthy data acquisition process, com-
bined with complexity of obtaining resonance assignments
of these large proteins, may make the process so time-
consuming as to reduce the impact of information gener-
ated by NMR detected fragment screening approaches.

One technique to circumvent many of the limita-
tions associated with uniformly labeled target protein has
been described previously.59 Provided that the binding
site of interest is known independently (for example, by
mutagenesis or structural studies) and it contains a sequen-
tially unique pair of amino acids, an amino acid–specific
labeling strategy may be employed to detect relevant bind-
ing without the need for determining complete sequence-
specific resonance assignments. In this method, the ith
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residue is labeled with 13C while the ith+1 amino acid is
labeled with 15N. Acquisition of a two-dimensional HNCO
spectrum (which correlates the H and N resonances of the
ith residue with the CO resonance of the ith-1 residue)60,61

will consist of a single peak, which acts as a “spy” on the
state of the binding site of interest. Because only one peak
is observed, the demands on the sensitivity and resolu-
tion of the data can be relaxed, increasing both the molec-
ular mass and solubility range of the method relative to
that of the uniformly labeled approach. Another approach,
described later in this chapter, that bypasses the need for
full resonance assignments of the target is to use a well-
characterized test ligand, for example, a known inhibitor,
to induce perturbations in the 15N-1H correlation spec-
trum and then screen for new ligands that perturb the
same resonances. This approach was used successfully for
screening and fragment-based design of potent inhibitors
for prostaglandin D synthase.62

Ligand-directed methods

Because of the limitations of target-directed methods
described in the previous section, ligand-directed methods
have become the most widely applied detection scheme
for fragment screening by NMR. Although they contain
less information about the ligand binding site than target-
directed methods, they are more generally applicable and
more rapidly implemented, making them highly valuable
in the early drug discovery process. Ligand-directed meth-
ods enjoy a significant advantage, in that there are no
limitations on the molecular mass of the target (and in
fact are usually better suited to large targets). In addition,
the protein required for ligand-directed methods need not
be isotopically labeled, which provides more flexibility in
the choice of expression systems that can be used to gen-
erate the sample. Finally, because it is the ligand that is
observed, and the experimental mixtures contain a large
excess of ligand relative to the protein, experiments can be
performed with much less protein than in target-directed
experiments, thus reducing the amount of protein that
must be expressed and purified and also extending the sol-
ubility range of the targets that can be screened.

Despite these advantages, ligand-directed methods have
two disadvantages relative to target-directed methods that
should be considered before studies are undertaken. The
first is that these methods require the ligand to be in
rapid exchange between the bound and free state and are
consequently limited to weakly binding fragments (Kd �

∼10−7 M). This is usually not a serious limitation as low
MW fragments are expected to bind weakly and have been
prescreened for good solubility. The second disadvantage
is that these methods do not provide information about
the nature of the binding site on the target receptor and as
a result cannot distinguish nonspecific and/or biologically
irrelevant association from binding at the desired site of the
target.

Saturation transfer difference methods
Ligand-directed methods may be divided into to two dis-
tinct classes of experiments. One type of experiment relies
on detecting a difference in an NMR observable parame-
ter that is dependent on a change in the rotational cor-
relation time (� c) of the small molecule ligand, resulting
from interaction with the target receptor. Another class of
experiments is based on transfer of magnetization between
the target receptor and ligand that occurs during the time
that the two molecules are bound to one another. In either
method, the off rate of the ligand/protein complex must be
fast on the NMR time scale (Koff � ∼100 s−1), such that the
signal observed represents the population weighted aver-
age of the free and bound states of the ligand.

An example of the latter type of experiment is satura-
tion transfer difference (STD) spectroscopy,63 which is one
of the most robust, and frequently employed, methods for
detecting fragment binding by NMR. In this method, a train
of frequency selective 1H radio frequency (RF) pulses is
applied for a number of seconds at a frequency that excites
some resonances of the protein target but none of the lig-
and resonances of the fragment (or mixture of fragments)
(Figure 4.4). During this saturation time, magnetization is
transferred by spin diffusion from the selectively irradiated
nuclei to all protons of the protein. In addition, this magne-
tization is transferred from the target protein to any small
molecules that bind to the target. Provided that the ligand is
in fast exchange on the NMR time scale, many target/ligand
binding events will take place during the saturation time,
resulting in a partial saturation of the fragments that have
bound. A 90◦ pulse is then applied and a proton spectrum
is recorded. A second data set is then acquired, this time
applying the same selective 1H RF saturation, except at a
frequency that does not disturb the magnetization state
of the nuclei of either the target protein or ligands. Ligands
that do not interact with the protein do not have their pro-
ton magnetization perturbed in either spectrum, and sub-
traction of the data sets results in a null difference spec-
trum. For ligands that do interact with the target protein, a
difference spectrum is observed and is used to determine
the identity of the binding compound in the mixture of
compounds (Figure 4.5). STD experiments (and virtually all
other NMR-detected fragment screening methods) are most
often applied to systems containing a soluble, purified pro-
tein but can be extended to more challenging and heteroge-
neous systems. For example, Claasen et al.64 have reported
using a double difference STD experiment to observe pep-
tide binding to the membrane protein integrin expressed on
the surface of intact platelets. Ligand binding can also be
observed to integrin reconstituted into liposomes.65

WaterLOGSY
An alternative method to transfer magnetization from the
target protein to the binding ligand has been described
by Dalvit and coworkers.66,67 In the WaterLOGSY (Water/
Ligand Observed via Gradient SpectroscopY) experiment,
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Figure 4.4. Detection of binding using the STD experiment. Circles and stars indicate
binding and nonbinding compounds, respectively. Frequency selective irradiation (lightning
bolt) causes selective 1H saturation (shading) of the target receptor. Irradiation is applied
for a sustained interval during which saturation spreads throughout the entire receptor
via 1H-1H cross-relaxation (spin diffusion). Saturation is transferred to binding compounds
(circles) during their residence time in the receptor binding site. The number of ligands
having experienced saturation transfer increases as more ligand exchanges on and off
the receptor during the sustained saturation period. Nonbinding compounds (stars) are
unaffected. Reprinted with permission from Chemical Reviews (2004), 104 (8) 3641–3675.
c© 2004 American Chemical Society.

the bulk solvent is employed to create nonequilibrium mag-
netization on the target receptor, which is then transferred
to a weakly binding ligand. At the beginning of the experi-
ment, the magnetization of the bulk solvent (and protons of
the target receptor whose resonance frequency is near that
of bulk water) is either saturated or inverted by a selective
180◦ RF pulse. During the mixing time of the experiment,
magnetization is transferred to the target protein by chem-
ical exchange of the labile HN and OH protons of the tar-
get protein, as well as via cross-relaxation between the bulk
solvent and protein protons. Magnetization is also trans-
ferred to ligands by either direct cross-relaxation with bulk
solvent or relayed cross-relaxation via the target receptor.
The magnetization transfer pathways are depicted in Fig-
ure 4.6. The resulting spectrum contains resonances from
all the ligands in the fragment mixture. The binding ligands
can be distinguished from the nonbinding ligands from the
difference in the sign of the resonance peak as shown in Fig-
ure 4.7. Although a somewhat more technically challeng-
ing approach than STD methods, the WaterLOGSY experi-
ment provides an excellent alternative when spin diffusion
in the target receptor is inefficient. This situation typically
arises where the target has a low proton density (i.e., nucleic
acids).68,69

Relaxation and diffusion-based methods
There are also a number of ligand-directed methods that do
not rely on intermolecular magnetization transfer between

the fragment and target receptor but instead
take advantage of a change in the transla-
tional and/or rotational mobility of the small
molecule resulting from target binding. For
example, the apparent diffusion coefficient of
a small molecule is altered as a consequence
of its interaction with a large molecule, while
that of a noninteracting molecule is unaf-
fected. Pulsed-field-gradient stimulated-echo
experiments may be used to measure the dif-
ference in diffusion rates for ligands in the
presence and absence of target protein recep-
tor and thus detect binding ligands in a mix-
ture of compounds.70,71

Interaction of a ligand with a large tar-
get molecule also alters the average rota-
tional correlation time of the small molecule,
and as a result, its relaxation properties.
Shortened transverse relaxation times (due
to longer average rotational correlation times
and chemical exchange processes) are man-
ifested in line broadening of the spectrum,
which is often easily observable in a one-
dimensional proton spectrum. Alternatively,
the same phenomena can be observed by
employing a CPMG (Carr-Purcell-Meiboom-
Gill) pulse train (or, in the case of measuring
T1� , a spin lock) and determining the differ-

ence in peak intensity of ligand resonances in the pres-
ence and absence of the target of interest.72 This effect can
be enhanced by incorporation of one or more paramag-
netic spin labels on the target protein by covalent modifi-
cation of side chains such as lysine, tyrosine, cysteine, his-
tidine, and methionine. This method (known as SLAPSTIC
or Spin Labels Attached to Protein Side chains as a Tool to
identify Interacting Compounds)73,74 has a distinct advan-
tage in sensitivity over detecting exchange line broaden-
ing in native proteins. Because the magnitude of the pro-
ton/electron dipole-dipole interaction is much larger than
the proton-proton interaction, the effect extends over a
much larger distance and allows lower bound ligand frac-
tions, resulting in a lower protein concentration require-
ment. To apply this method, it must first be demonstrated
that attachment of the spin label does not affect the bind-
ing properties or activity of the target receptor, which
in turn requires detailed knowledge of the target’s three-
dimensional structure.

Longitudinal relaxation rates (R1) can also be affected
by binding to the target receptor and can be used to
identify fragment binding in mixtures. As described by
Peng et al.,52 only selective R1 measurements are useful
in detecting ligand binding. However, it is impractical to
have a different selective inversion RF pulse for every com-
pound in a fragment library. An alternative method is to
collect two-dimensional nuclear overhauser effect (NOE)
spectra to identify those ligands that exhibit transferred
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NOEs.2 Interproton NOEs of small molecules
are positive and have cross-peaks with signs
that are opposite to those of the diago-
nal peaks. When a small molecule binds to
a high-molecular-weight receptor, a trans-
ferred NOE can be observed, which is neg-
ative and has the same sign as the diago-
nal peak. Thus, binding ligands are easily
recognized by a change in the sign of lig-
and NOEs. This method is less sensitive than
other methods, such as STD spectroscopy;
however, it is capable of providing informa-
tion regarding the structure of the bound lig-
and. Moreover, intermolecular NOEs can be
detected if two fragments bind in close prox-
imity. Generally speaking, it is impractical
to collect a large number of 2D spectra for
screening purposes, and this method is not
widely employed.

Competition binding methods
Competitive binding studies can be used to
address some of the shortcomings of ligand-
directed methods in a number of ways. As
previously mentioned, the problem of non-
specific binding must be addressed when
applying ligand-directed methods. Because
of the large ligand-to-protein ratio, nonspe-
cific binding of fragments to hydrophobic
patches on the protein surface is common
and can generate false positive results. To
properly interpret the results of a ligand-
directed fragment screen, low-affinity spe-
cific binding to the target site of interest
must be distinguished from binding to other,
nonfunctional sites. Although this could be
accomplished by dilution/titration studies,75

employing a competitive binding strategy is
the most straightforward method for identi-
fying specific binding. In this case, the aim is
to displace the weakly binding ligand with a
high-affinity ligand that is known to bind to
the desired site on the target. If the fragment
is displaced, the original NMR signal that
indicated binding is eliminated, and it can
be concluded with some confidence (assum-
ing the absence of an allosteric effect) that
the fragment was bound specifically and with low affin-
ity to the active site of the target. Conversely, if the NMR
signal is unchanged on addition of a high-affinity ligand,
it is likely that nonspecific binding is being observed. It
should be noted that the competing ligand itself is usually
not detected as a binder directly, because a high-affinity lig-
and is not expected be in fast exchange between the bound
and unbound states.

ISTD = I0 − ISAT

ISAT

I0

hit non-binder rf-saturation

a)

b)

c)

Figure 4.5. Schematic diagram depicting difference spectroscopy in the STD experiment.
Circles and stars indicate binding and nonbinding compounds, respectively. STD involves
two experiments: an off-resonance and an on-resonance experiment. (a) Off-resonance (ref-
erence) applies RF irradiation off-resonance from both receptor and compound protons.
Detection produces spectra with intensity I0. (b) In the on-resonance experiment, the RF
irradiation (lightning bolt) selectively saturates receptor and any binding compounds (indi-
cated by dark shading). This manifests as the decreased signal intensity ISAT. (c) The STD
response is the spectral difference ISTD = I0 – ISAT, which yields only resonances of the
receptor and binding compounds. Receptor resonances are usually invisible due to either low
concentration or relaxation filtering. The STD sensitivity depends on the number of ligands
receiving saturation from the receptor and can be described in terms of the average num-
ber of saturated ligands produced per receptor molecule. Reprinted with permission from
Chemical Reviews (2004), 104 (8) 3641–3675. c© 2004 American Chemical Society.

Competitive binding may also be used to extend the
affinity range that can be detected via ligand-directed
methods. A weakly binding ligand that is known to interact
with the target specifically, and in the desired binding site,
is selected as a “spy” on the binding state of the receptor.
A series of ligands is then screened against the target/weak
ligand mixture. If a reduction or elimination of the bind-
ing signal from the reference ligand is observed, then it
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Figure 4.6. Magnetization transfer mechanisms underlying WaterLOGSY.66 ,67 Magnetization
transfer from bulk water to ligand occurs via labile receptor protons within and remote from
the ligand binding site as well as from long-lived water molecules within the binding pocket.
Dark gray and light gray shading indicate magnetization transfer from inverted water to ligand
protons in the slow tumbling (i.e., receptor/ligand complex) and fast tumbling (i.e., free ligand)
limits, respectively. Only the hits experience both types of magnetization transfer. The pool
of free ligands having experienced inversion-transfer from bulk water builds up as ligand
continues to exchange on and off the receptor. Reprinted with permission from Chemical
Reviews (2004), 104 (8) 3641–3675. c© 2004 American Chemical Society.

can be concluded that a compound in the sample has dis-
placed the spy ligand. This method is capable of discrimi-
nating between specific and nonspecific binding as well as
being sensitive to high-affinity ligands, and there are a num-
ber of examples in the literature applying this strategy using
both relaxation76 and magnetization transfer77 experimen-
tal approaches. It is also possible to determine a rank order
of binding of ligands and, if the affinity of the reporter lig-
and is independently known, to make good estimates of the
Kd of competing ligands in a single measurement.

APPLICATIONS OF NMR FRAGMENT-BASED SCREENING:
ILLUSTRATIVE EXAMPLES

Although the early literature focused primarily on proof-
of-concept studies with model systems1,2 and development
of the experimental techniques required to detect ligand
binding by NMR,52 much of the published work from the
past few years describes applications of fragment-based
screening in bona fide discovery programs. Some of these
studies are “NMR-centric,” whereas others use NMR (or
other methods) to detect binding and x-ray crystallography
to guide hits-to-leads chemistry. Regardless of the strategy
chosen, however, the ultimate goal is to turn low-molecular-
weight fragments that bind receptor “hot spots” into potent,

elaborated leads with the potential to be fur-
ther optimized into drug molecules. From a
literature survey alone, it is difficult to assess
the probability of success for fragment-
based screening efforts, because many pub-
lished studies describe low-potency leads
from failed discovery programs. Many inter-
esting drug leads, even those with high
potencies, will eventually fail at a later stage
for reasons that cannot be addressed at the
hits-to-leads stage, for example, inadequate
selectivity against other isoforms of the tar-
get (or closely related proteins) or, more
commonly, unacceptable ADME properties
or animal toxicity. However, it is valuable
to understand and recognize situations in
which a fragment-based strategy has a lower
chance of success and, if possible, employ
alternative approaches in parallel as a hedge.
For example, consider the case where a tar-
get is screened by HTS and no hits are iden-
tified. Although the possibility exists that
not enough compounds were screened, or
the diversity of the library was not optimal
for the target, in cases where large corpo-
rate compound collections were screened,
these explanations are less likely. Alterna-
tively, the target may not possess the hot
spots required to accommodate a potent
drug molecule (i.e., the target is simply not
druggable).35 Another caveat when consider-

ing targets for fragment-based design concerns the validity
of the structural models used for elaboration of weak frag-
ment hits. For example, if one is using x-ray crystallographic

3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 ppm

Figure 4.7. Example of the WaterLOGSY experiment. One-dimensional
reference (upper) and WaterLOGSY (lower) spectra recorded for a ten-
compound mixture in the presence of 10 �M cdk2. Positive and negative
signals in the lower spectrum identify ckd2 binding and nonbinding com-
pounds, respectively. The arrow indicates the methyl group resonances
of the cdk2 ligand ethyl �-(ethoxycarbonyl)-3-indoleacrylate. Figure and
legend are reprinted with permission from J. Biomol. NMR 18: 65–68
(2000). The figure was kindly provided by Dr. Claudio Dalvit.
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structures to suggest ways to grow or link bound frag-
ments, it is usually assumed that the protein structure in
the presence of the bound fragment is the same as with
a more fully elaborated molecule. This might not be the
case at all for compounds soaked into crystals of an apo
protein. For example, are ligand-induced conformational
changes necessary to access additional subsites via linked
or elaborated substituents? Conformational heterogeneity,
either intrinsic or related to mechanism, should be recog-
nized and taken into account when choosing an appropri-
ate structural model. In such cases, having NMR structural
and dynamic data to complement the crystallographic data
can be useful.78 Alternatively, having x-ray structures from
multiple crystal forms might provide insight.78

Having discussed both the advantages and the potential
pitfalls of fragment-based design, we now turn to describ-
ing the different strategies that may be used to develop frag-
ment hits into more potent leads. The transformation of
validated hits into viable drug leads has been addressed
using several approaches, generally described as combin-
ing, elaborating, or varying the molecular fragments.22,69

Initially, the different methods for detecting ligand binding
were primarily associated with a particular strategy (e.g.,
SAR by NMR1 was associated with fragment combination
and SHAPES2 with fragment elaboration), but these distinc-
tions have faded as new methods and studies have evolved.
We therefore find that classifying applications by the hit
development strategy is more generally useful than classi-
fying by detection method. This classification, however, is
also imperfect because more than one strategy is often ap-
plied in a given application. This reflects the flexibility and
ease with which these methods may be tailored to address
the problem at hand. The following sections present exam-
ples of applications of each of the three strategies.

Applications of fragment linking: The combination strategy

Combining multiple, weakly binding molecular frag-
ments into larger, more complex molecules may poten-
tially increase binding affinity by orders of magnitude,
because binding energies are expected to be approximately
additive.1,48 To achieve this in practice, structural infor-
mation that can describe the relative orientations of and
distances between the bound fragments is required and is
commonly derived from NOE measurements,2,79–81 chem-
ical shift perturbation mapping experiments,56,82–85 or
from x-ray crystallographic structures.3,69,78,86–91 Structural
information can also be inferred when fragments bind at
overlapping subsites, such that the relative positions of
their functional groups are apparent from the molecular
topology, a procedure called fragment fusion.2,69,87

The earliest work in NMR-based fragment linking used
the SAR by NMR method, in which protein-detected
heteronuclear single-quantum correlation (HSQC) based
methods were employed to characterize binding, and either
x-ray crystallography or NOE-derived NMR structures were

used to determine the bound fragment orientations. Early
SAR by NMR examples were mostly proof-of-concept cases
and have been extensively reviewed.11,39,49 More recent SAR
by NMR work, such as the design of Bcl-xL

92,93 and Hsp90
inhibitors,78 are significantly more relevant from a pharma-
ceutical perspective and illustrate the real potential of these
methods in the ideal research environment.

Perhaps the best success story to date using the fragment
linking strategy involves the design of Bcl-xL inhibitors by
the Abbott group. Although many interesting case stud-
ies have been reported by this group,39 this is the first in
which potent inhibitors of a protein/protein interaction
were designed. In an initial study,93 NMR chemical shift per-
turbation screening identified a biaryl acid with Kd = 300
�M (LE = 0.30 kcal/mol-atom) for the BH3 peptide binding
groove (Figure 4.8). Using the SAR by NMR linking strategy,
a second fragment was identified that bound near the first-
site ligand, and a linked compound was synthesized pos-
sessing Ki = 1.4 �M. The NMR structure and a parallel syn-
thesis approach were used to further optimize the linked
Bcl-xL lead to produce a compound with Ki = 36 nM and
LE ∼ 0.27 kcal/mol-atom. In a second study,92 the affinity
of this compound was shown to be attenuated by a fac-
tor of �280 in the presence of 1% human serum. To sug-
gest ways to reduce serum albumin binding, the x-ray struc-
ture of the compound bound to HSA was solved, leading to
the addition of a basic 2-dimethylaminoethyl group to the
thioethylamino linker, and replacement of a fluorophenyl
group with a substituted piperazine. To further improve
binding to Bcl-2, an additional lipophilic group was added
to the piperazine to occupy an additional binding pocket
unique to Bcl-2 inhibitor complexes.94 The final compound,
ABT-737, bound to Bcl-xL, Bcl-2, and Bcl-w with Ki � 1 nM
and retained nanomolar potency against Bcl-XL (IC50 = 35
nM) in the presence of 10% human serum. ABT-737 was
active in killing cells from lymphoma, small-cell lung car-
cinoma, and patient-derived cell lines and also showed effi-
cacy in improving survival and tumor regression and effect-
ing cures in mouse cancer models.92

Another study from the Abbott group used a dual strat-
egy of fragment linking and fragment elaboration to design
inhibitors of Hsp90.78 Initial NMR-based screening yielded
two related chemotypes, an aminotriazine and an aminopy-
rimidine (Figure 4.9). Both fragments were shown to bind
with affinities �20 �M and high ligand efficiencies (BEI =
21 and 27, respectively). Using a fragment elaboration
strategy guided by x-ray crystallographic structures and
high-throughput organic synthesis, the authors discov-
ered a 60 nM inhibitor (Compound 5, BEI = 26), which
bound to the open state of the Hsp90 protein. An alterna-
tive approach, using SAR-by-NMR-style fragment linking,
resulted in two additional leads with Ki in the low micromo-
lar range [Compound 6, Ki = 1.9 �M (BEI = 15); Compound
7, Ki = 4 �M (BEI = 17)] (Figure 4.9). The lack of binding
synergy and lower affinities of Compounds 6 and 7 com-
pared to Compound 5 are attributed to less than optimal
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Figure 4.8. Compound flow chart showing fragment linking and optimization of Bcl-XL inhibitors.

chemical exploration of potential linkers for these frag-
ments. What is unique about this study is that two unique
binding modes were observed for several of the fragments
when bound simultaneously to Hsp90 (Figure 4.10). Each
of these modes led to the different linked leads targeting
the closed (Compound 6) or open (Compound 7) state of
the protein. The authors also reveal that Hsp90 is a partic-
ularly dynamic target, with many conformations sampled
by the protein as shown by both NMR measurements and

crystallographic observations. This intrinsic flexibility, and
ability of Hsp90 to access multiple conformational states
as determined by NMR (line broadening for residues 105–
121) and x-ray crystallography (multiple observed confor-
mations from multiple crystal forms), led to different bind-
ing modes of fragments observed by crystallography ver-
sus NMR. Based on these findings, the authors caution
against “rigid interpretation of any single piece of structural
data.”78

a) b)

Figure 4.9. Compound flow chart for design of Hsp90 inhibitors. Reprinted from Huth et al.78 with permission. The
figure was kindly provided by Dr. Phil Hajduk.
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a) b)

d)c)

Figure 4.10. Binding of fragment hits compared to binding of linked compounds to Hsp90. Atom coloring for the
fragment hits: carbons in magenta, nitrogens in blue, oxygen in red, and fluorines in light blue. Atom coloring
for the linked compounds is the same except that carbons are in orange. (a) X-ray crystallographic structure of
a ternary complex with Compounds 2 and 3 (compound chemical structures shown in Figure 4.9). (b) NOE-based
model of the same ternary complex with Compounds 2 and 3 showing an alternate binding mode in solution. The
side chains of L107, L103, F138, and V150 are colored in red to indicate key NOEs from HSP90 to 3 that were used
to construct the model. (c) X-ray crystallographic structure of a binary complex with Compound 6 overlaid with
the ternary complex shown in (a). Note the near perfect alignment of the linked and unlinked fragments. (d) X-ray
crystallographic structure of a binary complex with Compound 7 overlaid with the model of the ternary complex
shown in (b). Note that the oxazolidinone accesses the back of the pocket in an “open” conformation of HSP90 as
suggested by the NOE-based model (shown in B). Figure and legend reprinted with permission from Huth et al.78

The figure was kindly provided by Dr. Phil Hajduk.

Elaboration and variation of fragment hits

In the elaboration strategy, relatively simple primary hits
are elaborated by adding chemical functionality, producing
more complex molecules. The more elaborate molecules
can make additional ligand/protein interactions, leading
to higher potency. In the variation strategy, selected por-
tions of a primary screening hit are systematically mod-
ified. The goal of this strategy is to identify and screen
compounds that are of similar complexity to the primary
hits but possess more optimal interactions with the target.

Both strategies may be pursued by purchasing analogs,
screening similar scaffolds from corporate compound col-
lections, or synthesis of second generation compounds.
The elaboration strategy is particularly amenable to paral-
lel synthesis strategies.21,95–98 In both cases, structural infor-
mation is not required but can be highly valuable for opti-
mizing ligand/protein contacts and for selecting the type
and location of functionalities to be added.

One of the first reported methods using fragment elab-
oration was the SHAPES strategy, an adaptable approach
that follows ligand-detected NMR screening of druglike
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Figure 4.11. Compound flow chart showing fragment variation, elaboration, and optimization
of �-secretase inhibitors. Adapted from Edwards et al.100

molecules with successive rounds of activity assays and
structure-based optimization.2,69,87 A classical example of
the elaboration strategy is the SHAPES screen of fatty acid
binding protein (FABP-4).11,69 Based on the crystal struc-
tures of two primary screening hits with low micromolar
potencies, a follow-up library of 134 elaborated analogs
was screened calorimetrically, which in turn produced nine
leads with low micromolar to nanomolar affinities. The
crystal structures of five more bound ligands were subse-
quently solved, mapping out the essential ligand/protein
interactions and defining the binding pharmacophore.
Other early examples of fragment elaboration include the
design of urokinase inhibitors88,99 and the discovery of new
zinc-binding motifs for metalloprotease inhibitors.85

More recent publications report lead generation efforts
targeting �-secretase (BACE-1)100,101 and prostaglandin D
synthase.62 In the �-secretase example, an isocytosine frag-
ment, a weak but efficient hit (Kd = 4.45 mM, LE = 0.36
kcal/mol-atom, BE = 19) from an NMR-based screen (Fig-
ure 4.11), was elaborated with larger substituents at the
C6 position, yielding an approximately sevenfold improve-
ment in potency, although at the expense of lower efficiency

(Kd = 0.66 mM; LE = 0.27 kcal/mol-atom).101

These scaffolds, despite their low affin-
ity, represent reasonable starting points for
further optimization based on their bet-
ter ligand efficiency compared to known
BACE-1 inhibitors (for example, substrate
analog OM99–2 has Ki = 1.6 nM and
LE ∼0.19 kcal/mol-atom, BEI = 10). Also,
like a previous scaffold class of interest,
the aminopyrimidines,102,103 the isocytosines
possess a cyclic amidine capable of recog-
nizing catalytic aspartate residues, as well
as a hydrophobic substituent to access the
S1 subsite of BACE-1. Additional testing of
analogs, using a variation strategy,100 iden-
tified the dihydroisocytosines as a more
potent class of BACE-1 inhibitors, with some
smaller dihydroisocytosines showing 1,000-
fold improvement over similar isocytosines.
The most potent optimized lead possessed
an IC50 = 80 nM and is highly efficient (LE ∼
0.37 kcal/mol-atom, BEI = 20), representing
an excellent lead for further optimization.

Another recent study from researchers at
AstraZeneca with the target prostaglandin
D2 synthase (PGDS)62 provides an excel-
lent example of fragment-based design using
both variation and elaboration strategies.
An initial NMR fragment screen was car-
ried out using two libraries, a general 2,000-
compound NMR screening library, and a
targeted library of 450 compounds selected
based on the x-ray crystallographic structure
of PGDS. NMR screening of these libraries

yielded twenty-four primary hits (six from the targeted
library), with affinities in the range Kd ∼50–500 �M (Fig-
ure 4.12). The screening procedure was unusual, in that
a target-directed screen was carried out on 15N-labeled
protein but without chemical shift assignments. However,
it was clear based on perturbations from reference com-
pounds titrated against 15N-labeled PGDS that the screen-
ing compounds were binding at the same site as the refer-
ence compounds, because the same resonances were being
perturbed. X-ray structures with a known inhibitor and a
primary NMR screening hit identified key pharmacophore
interactions and helped guide selection of follow-up com-
pounds for further screening. In this first iteration, com-
pounds were selected from the corporate library based on
the initial NMR hits, as well as one hit from virtual screen-
ing (IC50 = 0.99 �M). Hits from this first iteration showed
an increase of up to 200-fold over the primary hits, with
affinities (IC50) ranging from ∼0.14 to 50 �M. In a second
iteration, x-ray structures suggested that the pyrazole group
of an NMR screening hit could be combined with the thia-
zole of an elaborated lead (Figure 4.12). Several compounds
in this series were submicromolar, with one combined
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Figure 4.12. Compound flow chart showing fragment variation, elaboration, and optimization of prostaglandin D
synthase inhibitors. Adapted from Hohwy et al.62

compound possessing an IC50 of 21 nM and a binding
efficiency of 0.66 kcal/mol-atom, representing an optimal
starting point for lead optimization of more druglike PGDS
inhibitors.

CONCLUSIONS

It has been more than a decade since NMR fragment-based
screening was introduced, and in that time the discipline
has grown from a collection of experimental methods and
drug design concepts into a mature discipline, one that pro-
vides a viable, and often preferred, alternative to HTS meth-
ods in early drug discovery. For each drug target and design
challenge, detection of binding by NMR provides a starting
point, but using that binding information to identify lead
compounds with desirable, druglike properties requires a
more complete strategy integrating computational, bio-
chemical, biophysical, and synthetic tools and technolo-
gies. For this reason, we have forgone an exhaustive exam-
ination of NMR methods and their application in drug
discovery and instead attempted to provide a synopsis of
the more widely adopted NMR approaches. Beyond the
physical and technical descriptions of the NMR experi-
ments, we have also provided examples of how fragments
have been linked, varied, elaborated, and optimized cre-
atively in successful lead generation programs. Hopefully,
the examples provided and references to the significant
body of literature now available will enable researchers to
implement these methods in their own laboratories and

develop drug design strategies uniquely matched to their
own drug targets and program goals.
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Free-energy calculations in structure-based drug design

Michael R. Shirts, David L. Mobley, and Scott P. Brown

INTRODUCTION

The ultimate goal of structure-based drug design is a sim-
ple, robust process that starts with a high-resolution crys-
tal structure of a validated biological macromolecular target
and reliably generates an easily synthesized, high-affinity
small molecule with desirable pharmacological proper-
ties. Although pharmaceutical science has made significant
gains in understanding how to generate, test, and validate
small molecules for specific biochemical activity, such a
complete process does not now exist. In any drug design
project, enormous amounts of luck, intuition, and trial and
error are still necessary.

For any small molecule to be considered a likely drug
candidate, it must satisfy a number of different absorp-
tion/distribution/metabolism/excretion (ADME) proper-
ties and have a good toxicological profile. However, a small
molecule must above all be active, which in most cases
means that it must bind tightly and selectively to a specific
location in the protein target before any of the other impor-
tant characteristics are relevant. To design a drug, large
regions of chemical space must be explored to find candi-
date molecules with the desired biological activity. High-
throughput experimental screening methods have become
the workhorse for finding such hits.1,2 However, their results
are limited by the quality and diversity of the preexisting
chemical libraries, which may contain only molecules rep-
resentative of a limited portion of the relevant chemical
space for a given target. Combinatorial libraries can be pro-
duced to supplement these efforts, but their use requires
careful design strategies and they are subject to a num-
ber of pitfalls.3 More focused direct in vivo or in vitro mea-
surements provide important information about the effect
of prospective drugs in the complete biological system but
provide relatively little information that can be directly used
to further engineer new molecules. Given a small number of
molecules, highly accurate assays of binding, such as sur-
face plasmon resonance (SPR) or isothermal calorimetry
(ITC), are relatively accessible though rather costly.

Ideally, small molecules with high potential biological
activity could be accurately and reliably screened by com-
puter before ever being synthesized. The degree of accuracy

that is required of any computational method will depend
greatly its speed. A number of rapid structure-based virtual
screening methods, generally categorized as “docking,” can
help screen large molecular libraries for potential binders
and locate a putative binding site (see Chapter 7 for more
information on docking). However, recent studies have
illustrated that although docking methods can be useful
for identifying putative binding sites and identifying ligand
poses, scoring methods are not reliable for predicting
compound binding affinities and do not currently possess
the accuracy necessary for lead optimization.4–6

Atomistic, physics-based computational methods are
appealing because of their potential for high transferabil-
ity and therefore greater reliability than methods based on
informatics or extensive parameterization. Given a suffi-
ciently accurate physical model of a protein/ligand com-
plex and thorough sampling of the conformational states
of this system, one can obtain accurate predictions of
binding affinities that could then be robustly incorporated
into research decisions. By using a fundamental physi-
cal description, such methods are likely to be valid for
any given biological system under study, as long as suffi-
cient physical detail is included. Yet another advantage of
physics-based models is that the failures can be more eas-
ily recognized and understood in the context of the physi-
cal chemistry of the system, which cannot be easily done in
informatics-based methods.

Despite this potential for reliable predictive power,
few articles exist in the literature that report successful,
prospective use of physics-based tools within industrial or
academic pharmaceutical research. Some of the likely rea-
sons for such failures are the very high computational costs
of such methods, insufficiently accurate atomistic mod-
els, and software implementations that make it difficult for
even experts to easily set up with each new project. Until
these problems are resolved, there remain significant obsta-
cles to the realization of more rigorous approaches in indus-
trial drug research.

There have been a number of important technical
advances in the computation of free energies since the
late 1990s that, coupled with the rapid increase in compu-
tational power, have brought these calculations closer to
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the goal of obtaining reliable and pharmaceutically useful
binding energies. In this chapter, we briefly review these
latest advances, with a focus on specific applications of
these methods in the recent literature. Under “How Accu-
rate Must Calculations of Affinity Be to Add Value” we first
discuss the level of reliability and accuracy that binding cal-
culations must have to add some degree of value to the
pharmaceutical process. Under “Free Energy Methodolo-
gies” we give an overview of the methods currently used
to calculate free energies, including recent advances that
may eventually lead to sufficiently high throughput for
effective pharmaceutical utility. Under “MM-PBSA Calcu-
lations” and “Alchemical Calculations” we review recent
ligand binding calculations in the literature, beginning
with relatively computationally efficient methods that are
generally more approximate but still attempt to calcu-
late a true affinity without system-dependent parameters
and then address pharmaceutically relevant examples of
most physically rigorous methods. We conclude with a
discussion of the implications of recent progress in cal-
culating ligand binding affinities on structure-based drug
design.

HOW ACCURATE MUST CALCULATIONS OF AFFINITY
BE TO ADD VALUE?

Physics-based binding calculations can be very compu-
tationally demanding. Given these time requirements, it
is important to understand quantitatively what levels of
precision, throughput, and turnaround time are required
for any computational method to systematically effect the
lead-optimization efforts of industrial medicinal chemists
in a typical work flow. To be useful, a method does not
necessarily need to deliver perfect results, as long as it
can produce reliable results with some predictive capacity
on time scales relevant to research decision-making pro-
cesses. These issues are frequently addressed anecdotally,
but rarely in a quantitative manner, and we will try to sketch
out at least one illustration of what the requirements of a
computational method might be.

A recent analysis of more than 50,000 small-molecule
chemical transformations spanning over 30 protein targets
at Abbott Laboratories found that approximately 80% of the
resulting modified molecules had potencies lying within 1.4
kcal/mol (i.e., 1 pK i log unit) of the starting compound.7

Potency gains greater than 1.4 kcal/mol from the par-
ent were found to occur approximately 8.5% of the time,
whereas gains in potency greater than 2.8 kcal/mol were
found with only 1% occurrence. Losses in binding affinity
on modification were approximately equal in magnitude
and probability to the gains for most types of modifica-
tions; presumably wholly random chemical changes would
result in a distribution with losses in binding that are much
more common than gains. We treat this distribution as typ-
ical of lead-optimization affinity gains obtained by skilled
medicinal chemists and use this distribution to examine the

ability of accurate and reliable computational methods to
influence drug research productivity.

Suppose our chemist sits down each week and envisions
a large number of modifications of a lead compound he or
she would like to make and test. Instead of simply selecting
only his or her best guess from that list, which would lead to
a distribution in affinity gains similar to the one described
above, this chemist selects N compounds to submit to an
idealized computer screening program. The chemist then
synthesizes the top-rated compound from the computer
predictions. What is the expected distribution of affinities
arising from this process for different levels of computa-
tional error?

To model this process, we assume the medicinal
chemist’s proposals are similar to the Abbott data and we
approximate this distribution of binding affinity changes as
a Gaussian distribution with mean zero and standard devi-
ation of 1.02 kcal/mol, resulting in 8.5% of changes having
a pK i increase of 1.0. We assume the computational pre-
dictions of binding affinity have Gaussian noise with stan-
dard deviation . In our thought experiment, we generate N
“true” binding affinity changes from the distribution. The
computational screen adds Gaussian error with width  to
each measurement. We then rank the “noisy” computa-
tional estimates and look at distribution of “true” affinities
that emerge from selecting the best of the corresponding
“noisy” estimates. Repeating this process a number of times
(for Figure 5.1, one million), we can generate a distribution
of affinities from the screened process.

Shown in Figure 5.1 is the modeled distribution of exper-
imental affinity changes from the chemist’s predictions
(blue) versus the distribution of the experimental affin-
ity changes after computationally screening N = 10 com-
pounds with noise  = 0.5 (pink),  = 1.0 (red), and  =
2.0 (purple). In other words, the blue distribution of affini-
ties is what the medicinal chemist would obtain alone;
the redder curves what the chemist would obtain synthe-
sizing the computer’s choice of his N proposed modifi-
cation. The shaded area represents the total probability
of a modification with affinity gain greater than 1.4 kcal/
mol.

With 0.5 kcal/mol computational noise, screening just
ten molecules results in an almost 50% chance of achieving
1 pK i binding increase in a single round of synthesis, versus
an 8.5% chance without screening. With 1 kcal/mol error,
we still have 36% chance of achieving this binding goal
with the first molecule synthesized. Surprisingly, even with
2 kcal/mol, computational noise almost triples the chance
of obtaining a 1 pK i binding increase. Similar computations
can be done with large numbers of computer evaluations;
unsurprisingly, the more computational evaluations can
be done, the more computational noise can be tolerated
and still yield useful time savings. For example, even with
2 kcal/mol error, screening 100 molecules results in the
same chance of producing a 1 pK i binding increase that is
the same as if ten molecules are screened with 0.5 kcal/mol
error.
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Figure 5.1. Modeled distribution of affinity changes of the proposed modifications (blue) compared to the distribution
of affinity changes after computational screening with Gaussian error  = 0.5 (pink),  = 1.0 (red), and  = 2.0
(purple). The shaded area represents the total probability of a proposed modification with affinity gain greater than
1.4 kcal/mol. Hence, in many situations, even with moderate error, a reliable method of filtering compounds could
significantly improve the efficiency of synthesis in lead optimization.

So even relatively small numbers of moderately accu-
rate computer predictions may be able to give significant
advantage in the pharmaceutical work flow. When we
translate the chance of obtaining binding improvement
into the number of rounds of synthesis required to
obtain that improvement, then screening 100 molecules
with 2 kcal/mol noise or 10 screened molecules with
0.5 kcal/mol noise in this model reduces the number of
molecules to be synthesized by almost an order of mag-
nitude. Clearly, these calculations assume the simulations
are not biased against active compounds, and errors that
are highly dependent on the binding system would result in
less reliable advantages. The type of computation matters
as well – computing relative binding affinities would require
only one calculation to compare affinity changes, whereas
absolute binding affinities would require two, increasing
the effective error. But physically based prediction meth-
ods should in principle be more reliable than parameterized
methods, as the basic physics and the atomistic details are
transferable between drug targets.

This analysis is in agreement with informal discussions
with pharmaceutical chemists, who mentioned reliability
as being more important than pure speed or the highest
accuracy. Many thought they could fit methods that took as
much as a month into a work flow, as long as they truly con-
verged reliably with 1 kcal/mol variance error. Even a slight
decrease in reliability, for example, being off by several
kcal/mol more than 20% of the time, greatly decreased the

amount of time that scientists would be willing to wait, per-
haps down to a day or two.

FREE-ENERGY METHODOLOGIES

A very large number of methods for computing binding
free energies with atomistic molecular models have been
developed. Most of them are still under active study, and
each has different trade-offs between accuracy and com-
putational efficiency. Because of the scale, complexity,
and speed of methodological developments, choosing and
applying methods can be confusing even to experienced
practitioners. Here, we focus on an overview of some of
the key methods available for computing binding affini-
ties, emphasizing references to primary literature. A num-
ber of useful recent reviews have focused specifically on
free energy methods.8–14 Of particular note is a recent, fairly
comprehensive book on free-energy methods, specifically
Chapters 1–7.15 Several molecular simulation and modeling
textbooks have useful introductions to free-energy calcula-
tions as well.16–18

In this discussion of methods, we will assume stan-
dard classical molecular mechanics models, with harmonic
bond and angle terms, periodic dihedral terms, and non-
bonded terms consisting of point charges and Lennard–
Jones repulsion/dispersion terms. In the vast majority
of ligand-binding free-energy methods, calculations have
been performed with these types of models. Adding
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classical polarizability terms has seldom been done, though
we will briefly mention attempts to include these. Comput-
ing free energies using mixed QM/MM simulations can be
done but its use has been even more restricted and so will
not be discussed here.19

Basic equations

The binding affinity Kd of a small molecule ligand L to a pro-
tein P can be expressed simply by

Kd = [L][P]
[P L]

, (5.1)

where the brackets denote an equilibrium concentration, L
is the ligand, P is the protein, and PL is the protein/ligand
complex. This definition makes the assumption that the dif-
ference between bound and unbound states can be well
defined, an assumption that is essentially always valid for
tight, specific binders but becomes more complicated for
very weak and nonspecific binders.

This binding affinity can then be related to the free
energy of binding by

�GBind = −kT ln
Kd

Co
, (5.2)

where C ◦ indicates the standard state concentration (by
convention, 1 M for solutions). We use the Gibbs free energy
G in our equations, because situations of pharmaceutical
interest are usually under constant pressure.

The free energy of binding can also be expressed as

�GBind = −kT ln
ZP ZL

Co ZPL
, (5.3)

where Z represents the partition function of the system. It is
this quantity that we wish to calculate via simulation.

MM-PBSA

As a compromise between speed and accuracy for physics-
based estimates of protein/ligand binding affinities, we
first discuss the end-point free-energy method molecular
mechanics with Poisson–Boltzmann and surface area (MM-
PBSA).20 As an end-point method, MM-PBSA requires direct
simulation of only the bound and unbound states. This sim-
plification comes with the expectation of significantly larger
intrinsic errors with MM-PBSA than with other more rigor-
ous methods we will address later in the chapter.

The free energy of binding can be written as a difference
in the solvation free energies of each of the components:

�GBind �GPL−solv − �GL−solv + �GP−solv. (5.4)

Each of these solvation energies can be written as

�Gsolv = � Hsolv − T�Ssolv. (5.5)

If we average out the coordinates of the solvent over
all the configurations, then we can approximate each of
these free energies as

�G X−solv = 〈EX−MM〉 + �G X−solvent − T�S X−MM, (5.6)

where 〈E X〉 is the average molecular mechanics energy of
X alone (without water), � S X is the internal entropy of

X (without water), and �G X−solvent is the energy and entropy
due to the solvation of X waters. These solvation energies for
P, L, and PL can then be combined to compute a full binding
energy.

In practice, a variety of implementations of the MM-
PBSA protocol have been reported, and particular care
needs to paid to a number of details in setting up the
calculations. In general, protocols can be separated into
three steps. First, coordinate sampling [such as molecular
dynamics (MD)] is performed on the protein/ligand com-
plex to sample configurations for energy analysis. In the
next step, calculation of gas-phase potential energies and
solvation free energies is performed on each structure col-
lected from the previous step to produce ensemble aver-
ages. Finally, some measure of estimated change in solute
entropy is computed for the set of structures. The final bind-
ing free energy is then obtained by combining these various
components.

To generate the structures in the first step, one can
perform separate MD simulations for the isolated ligand,
apo protein, and bound protein/ligand complex. Alterna-
tively, one can use a single trajectory of the bound com-
plex as the source of conformations for the unbound (and
bound) states.21 This second case is equivalent to assum-
ing that the conformations explored in the protein/ligand
complex in solution are sufficiently similar to those confor-
mations explored by the apo protein and isolated ligand.
This assumption is not necessarily reasonable and in fact is
guaranteed to be grossly incorrect in some contexts; how-
ever, the amount of noise added when taking differences
between averages produced from independent bound and
unbound trajectories substantially increases the sampling
required for convergence, so by simulating one structure,
lower variance is traded for some bias.22,23 In theory, one
could then perform a single MD run of the apo protein,
and all additional runs would involve only isolated ligands.
In any case, determining arrival at a stable average can
be challenging.24 A possible alternative formulation for the
case of running the three separate trajectories is to disre-
gard all energies but the interaction energies in an attempt
to dampen the contributions to noise due to noncanceling
internal-energy differences.

The potential energy E X−MM is that of only the protein
and ligand and consists of

EX−MM = E elec + E vdW + E int, (5.7)

where E elec is the electrostatic energy, E vdW is the van der
Waals dispersion and repulsion, and E int is composed of
internal-energy terms for the ligand and protein, such as
bond, angle, and torsion terms.

The solvation energy term �G X-sovlent is subdivided into
a sum of two components, one due to electrostatic interac-
tion and the other due to nonpolar interactions:

�G X−solvent = �GPBSA = �GPB + �GSA, (5.8)
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where �G PB represents the polar contribution and �G SA

represents the nonpolar contribution to the solvation free
energy.

The polar term in Equation (5.8) represents the energy
stored in the continuum dielectric in response to the
presence of the solute’s charge distribution and is typi-
cally obtained by solution of the Poisson–Boltzmann (PB)
equation. The PB equation provides a rigorous frame-
work for representing discrete solute molecules embedded
in a uniform dielectric continuum and has been shown
to be capable of producing relatively robust predictions
of electrostatic contributions to solvation free energies of
small molecules as well as biological macromolecules.25,26

The PB solutions are obtained in separate calculations
for the ligand, protein, and bound protein/ligand com-
plex, and the final solvation free-energy values are assem-
bled using the thermodynamic cycle for association in
solution.27,28

For any PB calculation, one must choose a particular rep-
resentation of the dielectric boundary between solute and
solvent, which can involve a number of subtleties.29,30 In
addition to the boundary representation, dielectric func-
tions for the solute and solvent must also be chosen. For
typical protein/ligand systems, constant values of 1.0 for
solutes and 80.0 for solvent are most commonly used,31

though there are also other arguments that using 2.0, 4.0, or
a residue-based dielectric for the solute may give superior
performance.32,33 It should be noted that most force fields
have been parameterized using an internal dielectric of 1.0.

Finally, the last term in Equation (5.8) is the nonpolar
component of solvation free energy, which is usually treated
as being proportional to the solvent exposed surface area34

of the solute,

GSA = ��SA, (5.9)

where � SA is the change in accessible molecular surface
area on binding, and � is a microscopic surface free energy
for formation of a cavity in water.35 The form of this equa-
tion derives from empirical data on transfer free energies
for linear, cyclic, and branched hydrocarbons.36,37 The pre-
cise value of � depends on the particular method used
to probe the solvent-accessible surface of the solute.25

The equation implicitly assumes that the nonpolar com-
ponent has negligible contributions from dispersion inter-
actions between solute and solvent relative to the energy
required in displacing solvent molecules to create the cav-
ity. A number of objections to this expression point out its
oversimplification,38–40 and a number of models have been
proposed to attempt to address these shortcomings with
more sophisticated frameworks.39–41

The last term on the right-hand side of Equation (5.6) is
the entropic cost of confining the free ligand, which rep-
resents a significant fraction of the total change in solute
entropy � S solute for formation of the bound complex. Addi-
tional estimates of solute entropy can be performed, which
typically use some form of normal-mode analysis and that
are very computationally expensive to perform.42,43 Alterna-

tively, one could use empirical estimates of average entropic
costs, such as the entropy required to constrain rotation
around any given torsional degree of freedom.44 However,
neither of these approaches produce quality estimates of
solute entropy; instead, they tend to add a significant ran-
dom scatter to results.21

Because of the complications in dealing with entropy,
it is often neglected for computational convenience. This
approximation may be reasonable in cases where we
are only interested in rank-ordering, and the amount of
entropy/enthalpy compensation remains roughly constant
across ligands. It will certainly be unreasonable for any
case where absolute comparisons of free energy are desired
across protein targets and in situations for which non-
negligible perturbations in binding modes and pocket
geometries occur across a ligand set. Recent developments
for treating the entropy more properly show significant
promise.45

In systems where there are relatively few populated
states, it may be sufficient to perform PB calculations alone
to generate robust affinity estimates. In a number of situa-
tions, PB solutions have been successfully used to estimate
affinities,28,46–48 although some implementations begin to
resemble empirical scoring methods.49 A major criticism
of these approaches is their potential inaccuracy in situ-
ations where conformational flexibility plays a significant
role.50

In generating the dynamics trajectories for the MM-
PBSA analysis explicit representation of water molecules are
typically used. Although explicit water molecules give the
most detailed glimpse into structural dynamics, it has been
shown that there can be pathologies in certain situations
when using implicit-solvent theory to “score” explicit water
configurations,21,51 because the ensemble average energies
should be computed with the same energy function used to
generate the ensemble structures. An alternative to this is to
sample in implicit solvent directly.52

As PB solutions are in general computationally demand-
ing calculations, a number of groups have put signifi-
cant efforts into developing faster approximations, such as
the suite of generalized Born (GB) approaches.53–56 How-
ever, there are numerous examples of pathologies using GB
methods.57–59

Other implicit solvent methods

Another approach requiring only simulations of the bound
and unbound states is to compute the partition function
directly. The partition function of a molecular system can be
computed as the sum of the integral of Boltzmann factors
over neighborhoods of only the low-energy states, which are
a relatively small fraction of the total configurations of the
molecules.60

With the full partition function for the protein, ligand,
and the complex in the case of absolute free energies, or
for two ligands and two complexes in the case of relative
free energies, the binding free energy or changes in binding
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free energy can be computed directly from these end states.
At least two methods for computing the configuration inte-
grals in the neighborhood of minima have been developed
that have been applied to ligand binding systems: mode
integration (MINTA),61 and the Mining Minima approaches
of Gilson and coworkers. Both start out with a method
for enumerating minima. In MINTA importance sampling
Monte Carlo integration is used to calculate the configu-
ration integrals. It has been used to screen for the free-
energy difference between ligand enantiomers, where its
accuracy was comparable to alchemical methods, but was
more efficient,62,63 though there are important caveats in
the original implementation.64 Gilson and coworkers have
emphasized calculating the integrals in bond/angle/torsion
coordinates to minimize errors.68 They have applied such
methods successfully to a number of simplified binding
systems.65–68

The methods’ two shared main problems are the need
to find all minima contributing to the partition function
and the correct computation of entropies of neighbor-
hoods near minima. Minima searches of proteins the size
of typical drug targets are notoriously difficult, and hence
the studies noted above focus mostly on problems where
many of the errors may cancel out or on smaller model
systems. The problems of estimating entropy in these
methods has much in common with the same problem
in MM-PBSA calculations, though because these methods
are perhaps more sensitive to the correct entropy calcu-
lation, the problems have been investigated to a signif-
icant degree.45,61,69,70 However, significantly fewer people
are investigating these alternative end-point methods than
MM-PBSA, and they are generally more computationally
expensive, so the short-term prospects are not necessar-
ily particularly encouraging despite the strong theoretical
underpinnings.

Alchemical methods

The methods described above are designed primarily for
implicit solvent systems and represent relatively computa-
tionally cheap approximations to the binding free energy.
However, implicit water models are unsuitable for a fully
molecular description of phenomena such as the formation
of correlated hydrogen bonding networks in binding active
sites and there are many protein/ligand systems where the
atomic detail of the water in the binding site plays an impor-
tant role in the binding process.71 For free-energy calcula-
tions to include these phenomena, more expensive explicit
water simulations must be used. Using explicit water, the
free-energy terms in MM-PBSA become dominated by
statistical noise from the water. The standard approach
for solvation free energies in explicit solvent simulations is
instead to compute the free energy of a particular change
of state directly, while holding the rest of the system fixed,
which does not depend directly on the energies of the
rest of the system. We note that although these methods

are the techniques of choice for explicit water simulations,
they can be performed equally easily for continuum water
simulations.

“Free-energy perturbation” is a very common term for
these methods that directly compute the free-energy differ-
ence as a function of changing molecular structure. “Per-
turbation” usually refers to an approximate theory that can
be written as a series of more easily calculated terms. Free-
energy perturbation (frequently abbreviated FEP), how-
ever, is exact. The term perturbation here instead refers
to the changes in the chemical identity, as simulations
frequently involve changes in chemical identity, such as
an amine to an alcohol or a methyl group to a chlorine.
Additionally, FEP is sometimes used to refer specifically to
application of the Zwanzig relationship (discussed below).
To avoid confusion, we will use the term alchemical to
refer to this class of methods, as the chemical identity
of the atomic models will change, appear, or disappear
during the process, and use EXP to refer to the Zwanzig
relationship.

Zwanzig relationship
The most well-known method historically for calculating
free energies, and still a very common one, is the Zwanzig
relationship.72 The free energy between two Hamiltonians
H 0(x) and H 1(x) over a coordinate and momentum space
(x) can be calculated as

�G = �−1 ln
〈
e−�[H1(x)−H0( x)]

〉
0

= �−1 ln
〈
e−�� H(x)

〉
0

, (5.10)

where � = (kT)−1. We will denote this method EXP, for
exponential averaging. Although the equation is exact,
many studies have demonstrated that except in the case of
rather small changes, EXP convergence as a function of the
amount of data collected is far from ideal, and an average
that appears to have converged may only indicate very poor
overlap between the two states studied.73,74

Overlap in configuration space in the direction of
decreasing entropy is usually greater, and thus EXP in this
direction will generally be more efficient.75,76 For example,
inserting a molecule into a dense fluid is a more effec-
tive way to compute the chemical potential than deleting
molecules from the same fluid, because the important con-
formations for both ensembles are actually easiest to sam-
ple in simulations without the molecule present.

Multiple intermediates

In some cases, such as computing the chemical potential
of bulk fluids, the symmetry of the problem can be used
to greatly improve computational efficiency of FEP.77 How-
ever, in most instances where the states of interest are very
far from having any phase-space overlap, the transforma-
tion can be broken into a series of free-energy calculations
with nonphysical intermediates – for example, turning off
the atomic charges or turning a carbon into an oxygen. The
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total free energy can simply be written as a sum of the indi-
vidual free energies between intermediate states, which can
be completely nonphysical. We will first assume the exis-
tence of these intermediates, and the ability to perform sim-
ulations at these intermediates and then discuss the best
choice of intermediate states.

If phase-space overlap between consecutive intermedi-
ates is very high, then EXP can work well. For example, if
an ether is changed to a thioether, there is relatively lit-
tle change in phase-space, and EXP will be effective with
a small number of intermediates. However, if an entire
heavy atom is disappearing or appearing or if the charge
of an atom is changing significantly, phase-space overlap
will not be significant, and EXP is almost guaranteed to do
poorly without a large number of intermediates. Because of
the large number of intermediates required, computations
with EXP can be very inefficient, requiring the simulation
of many states for computing the free energy of a single
alchemical transformation.

Double-wide sampling is a commonly used technique
that consists of simulating only at every other intermedi-
ate state and computing EXP in both directions from these
intermediates.78 The biases of free energy computed from
EXP in different directions have opposite signs, so alter-
nating directions will tend to cancel bias somewhat. This
method nominally reduces the number of simulations nec-
essary by half, but because the variance in the direction
of increasing entropy is usually lower, this twofold gain in
efficiency is rarely obtained. Fortunately, there are a num-
ber of alternatives that are more efficient than EXP in most
cases.

Thermodynamic integration
By taking the derivative of the free energy with respect to
some continuous parameter � describing a series of inter-
mediate alchemical states, we can see that

dG/d � = d
d �

∫
e−�H(�,x)dx =

〈
dH(�, x)

d �

〉
�

�G =
∫ 1

0

〈
dH(�, x)

d �

〉
�

, (5.11)

where the pathway of intermediates between the states of
interest is parameterized between � = 0 and � = 1. This for-
mula can also be obtained by expanding the Zwanzig rela-
tionship in a Taylor series. Computing free energies using
this formula is typically called thermodynamic integration
(TI). In the rest of the discussion, we will denote H(�, x)
by simply H(�). Note that when the end states have differ-
ent masses, the momenta will have � dependence as well,
which must also be included in the derivative, but we omit
this detail for clarity in the discussion.

Thermodynamic integration essentially trades variance
for bias. Averaging over 〈 dH

d �
〉 will require fewer uncorrelated

samples to reach a given level of relative error than aver-
aging e−�� H(x), as as long as 〈 dH

d �
〉 is well behaved, an impor-

tant condition we will address later in the section “Choice of

Alchemical Pathways.” However, to compute the total free
energy from a series of individual simulations, we must use
some type of numerical integration of the integral, which
by definition introduces bias. A number of different numer-
ical techniques have been applied.79,80 A simple trapezoidal
rule is usually used or, occasionally, Simpson’s rule. Higher
order integration methods converge more quickly in the
distance between integration points, but this error term is
proportional to the derivatives of the function, which can
become large in some situations, such as when repulsive
atomic centers are removed from the system entirely. Other
techniques such as Gaussian integration have been used79

but require knowledge about the variance to determine the
Gaussian weighting and so become cumbersome to use.

For alchemical changes that result in smooth, mono-
tonic curves for 〈dH/d �〉, TI can be quite accurate using a
relatively small number of points. However, if the curvature
becomes large, as can frequently be the case in alchemical
simulations where Lennard–Jones potentials are turned on
or off, then the bias introduced by discretization of the inte-
gral can become large.73,81,82 Even in the case of small cur-
vature (i.e., charging of SPC water in water) reasonably large
errors can be introduced (i.e., 5–10% of the total free energy
with 5 � values).83

Many early free-energy calculations approximated the
integral by varying � throughout the simulation, called
“slow growth.” The total free energy is then estimated as

�G ≈
∫ t1

t=t0

〈
dH
d �

〉
�(t)

d �

dt
dt. (5.12)

This, however, proved to be a very bad approxima-
tion in most molecular simulations, introducing large
speed-dependent biases even for relatively long simula-
tions. Forward and reverse simulations show significant
hysteresis.84,85 This method should always be avoided,
except when used in the context of Jarzynski’s relationship,
which we will now discuss.

Jarzynski’s relationship

If we have a physical or alchemical process that takes place
in finite time, the amount of work performed will not be
reversible and hence will not be equal to the free energy.
Equation (5.12) can then be identified as the nonequilib-
rium work W for this transformation, not the equilibrium
free energy �G. Jarzynski noticed that the free energy of
the transformation can be written as the average of the
nonequilibrium trajectories that start from an equilibrium
ensemble:

�G = �−1 ln
〈
e−�W

〉
0
. (5.13)

If the switching is instantaneous, then Equation (5.13)
becomes identical to EXP because the instantaneous work
is simply the change in potential energy. A number of
studies have compared nonequilibrium pathways to single-
step perturbations. However, in both theory and practice it
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appears that under most circumstances, equilibrium sim-
ulations are about the same or slightly more efficient than
free energies calculated from ensembles of nonequilibrium
simulations.73,86,87 It is thus not clear that free energy cal-
culations using Jarzynski’s relationship will have much role
in ligand-binding calculations in the future. There has been
extensive research in this topic recently, partly because this
formalism has proven useful in treating nonequilibrium
experiments as well as simulations.

Bennett acceptance ratio
The free energy computed using EXP in either direction
between two intermediate states converges to the same
result with sufficient samples. The biases from opposite
directions will cancel, which suggests that simple ways to
improve EXP are to simply perform the calculation in both
directions and average the results or to perform double-
wide sampling. However, because of a direct relationship
between the distributions of potential energy in the forward
and reverse directions,88 there is a significantly more robust
and in fact provably statistically optimal way to use infor-
mation in both directions. Bennett’s original formulation
started with a simple relationship for the free energies:

�G0→1 = ln kT
Z 0

Z1
= kT ln

〈A(x) exp[−�(H0 − H1)]〉1

〈A(x) exp[−�(H1 − H0)]〉0
,

(5.14)

which is true for any function A(x). Bennett then used vari-
ational calculus to find the choice of A(x) that minimizes
the variance of the free energy,89 resulting in an implicit
function of �G that is easily solvable numerically. A sep-
arate approach demonstrates that the same formula pro-
vides the maximum likelihood estimate of the free energy
given the observations of the potential energy differences
between the two states.90 Either derivation additionally
gives a robust estimate for the variance of free energy. Stud-
ies have demonstrated both the theoretical and practical
superiority of BAR over EXP in molecular simulations.73,74

Significantly less overlap between the configurational space
of each state is required to converge results than in the case
of EXP, although some overlap must still exist.

It is difficult to directly compare TI and BAR on a the-
oretical basis. However, it appears that TI can be as effi-
cient as BAR under conditions where the integrand is very
smooth,12,73 such as charging or small changes in molecu-
lar size, but BAR appears to be significantly more efficient
than TI or EXP for free energies of larger molecular changes,
sometimes by almost an order of magnitude.73,74,91 If the
intermediate states can be written as functions of the final
states, as discussed previously, then the calculations of the
potential energy in these alternate states can be very effi-
cient, as only two computations of pairwise interactions are
needed. Otherwise, the energies of changing parts of the
system must be calculated for each state, which unfortu-
nately is not necessarily implemented in most simulation
codes currently.

WHAM
In most cases, alchemical free-energy computations require
simulation at a number of different intermediates, and we
would prefer to obtain as much thermodynamic informa-
tion as possible from all of these simulations simultane-
ously. If one intermediate is relatively similar to a number
of other intermediates, and not just the nearest neigh-
bors, then all of this information can be used to calculate
the free energy more precisely. Histogram weighting tech-
niques were first introduced by Ferrenberg and Swendsen92

to capture all of this information to compute free energies.
A version called the weighted histogram analysis method
(WHAM) was introduced in 1992 by Kumar and collabo-
rators for alchemical simulations.93 WHAM is provably the
lowest uncertainty method to calculate the free energy for
samples collected from discrete states. However, it intro-
duces biases in continuous states (such as those obtained
with atomistic simulations) because it requires discretiza-
tion into bins. Other variations of WHAM based on maxi-
mum likelihood94 and Bayesian methods95 have also been
developed. A version of WHAM-based free-energy calcula-
tion is available within the charmm molecular mechanics
package.96,97

MBAR
It was noted93,96 that one can reduce the histogrammed
equations of WHAM to a simpler form by reducing the
width of the histogram to zero, yielding a set of iterative
equations to estimate the K free energies:

Gi = −�−1 ln
K∑

k=1

Nk∑
n=1

exp[−�Hi(xkn)]
K∑

k ′=1
Nk ′ exp[�Gk ′ − �Hk ′ (xkn)]

,

(5.15)

where i runs from 1 to K, the Gi are the free energies, and
the Hi are the Hamiltonians of these K states. This approx-
imation is somewhat suspect, as the derivation of WHAM
involves finding the weighting factors that minimize the
variance in the occupancy of the bins, which are undefined
as the width goes to zero.

A recent mutitstate extension of the BAR has been
derived that solves this problem. In this derivation, a series
of N × N weighting functions Aij(x) are adjusted to min-
imize the free energies of all N states considered simul-
taneously. The lowest variance estimator can be seen to
exactly be the WHAM equation in the limit of zero-width
histograms [Equation (5.15)]. WHAM can therefore be seen
as a histogram-based approximation to this multistate Ben-
nett’s acceptance ratio (or MBAR).91 This MBAR deriva-
tion additionally gives the uncertainty of the calculated free
energies, which is not available in WHAM.

Choice of alchemical pathways

A key point in these methods is that for almost all
alchemical transformations between the initial and final
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Hamiltonian, there must be a series of intermediates with
mutual phase-space overlap leading connecting the two
physical end states. The simplest choice for most transfor-
mations between two Hamiltonians H 0 and H 1 is the linear
pathway:

H(�, x) = (1 − �)H0(x) + �H1(x). (5.16)

A significant problem with this formulation is that equal
spacing in � does not actually lead to equal spacing in
phase-space overlap. If a Lennard–Jones function is used
to represent the atomic exclusion and dispersion interac-
tion, as is typically the case in biomolecular force fields,
then when � = 0.1, nearly at the disappearing end state,
the excluded volume (i.e., the volume with energy above 2–3
kT ) will still occupy 60–70% of the original volume, depend-
ing on the original Lennard–Jones well depth.

Additionally, this choice of parameterization with an
r −12 potential leads to a singularity in 〈dH/d �〉 at r = 0,
which can be integrated formally but not numerically. By
using a power of � ≥ 4 instead of a strictly linear param-
eterization [such as H(�) = (1 − �)4 H0 + �4 H1], 〈dH/d �〉
can be numerically integrated correctly. However, it will
still converge slowly.80,99 For any nonzero �, whatever the
power, there will be small “fenceposts,” particles with
a small impenetrable core.99 One possible way to avoid
issues with these fenceposts has been to shrink the entire
molecular structure. However, this can create problems
with nonbonded interactions as the molecular framework
shrinks, causing instabilities in integration in molecular
dynamics,99–101 and is generally not practical for large num-
bers of bonds. A correction term must also be added for
these bond length changes, which can be complicated if the
bonds lengths are constrained.102

There are better ways to handle this transformation. The
concept of a “soft core” was introduced around 1994,82,103

with the infinity at r = 0 in the r −12 interaction being
“smoothed out” in a �-dependent way. The most common-
parameterizations for turning off the Lennard–Jones func-
tion are of the form

H(�,r)=4�n

{[
�(1−�)m+

( r
	

)6
]−2

+
[

�(1−�)m +
( r

	

)6
]−1
}

(5.17)

where  and 	 are the standard Lennard–Jones parameters,
� is a constant (usually 0.5), with the original choice of n = 4
and m = 2.82 Further research has shown that using n = 1
and m = 1 noticeably improves the variance.80,99,104 The
more flexible the molecule, the more using a soft atomic
core improves the efficiency of the free-energy calculation.
Approaches using a soft core for the Coulombic term82,105

or making all the interactions disappear into an imaginary
fourth dimension have also been tried,106 but it can be dif-
ficult to choose parameters for these approaches that are
transferable between systems.

Recent studies have demonstrated that one highly reli-
able, relatively high efficiency pathway for an alchemical

change where an atomic site disappears is to turn off the
charges linearly and then turn off the Lennard–Jones terms
of the uncharged particles using a soft-core approach. The
same pathway can be followed in reverse for atomic sites
that are introduced.97,99 It is the treatment of the singu-
larities at the center of particles that is the real challenge;
atomic sites that merely change atom type can be han-
dled with linear interpolation of the potential energy, as
the phase-space overlap changes are relatively small with
respect to phase-space changes with introduction of parti-
cles. The variance due to changes in the bonding terms is
not generally a problem; although the energy changes for
these terms can be quite large, the time scale of the motions
means that they converge quite quickly.

It is likely that further optimizations of pathways may
lead to additional efficiency gains. But they will probably
not increase efficiency by much more than a factor of 2 as
there are limits to the lowest possible variance path.105 Stud-
ies of optimal pathways have focused on minimizing the
variance in TI,82,105 but it appears that highly optimal path-
ways for TI work well for all other methods.

Pulling methods

Another choice of pathway for determining the free energy
of protein/ligand association is to physically pull the
molecule away from the protein. If the final state is suffi-
ciently far from the original protein, the free energy of this
process will be the free energy of binding. This can be done
either by nonequilibrium simulations, using the Jarzyn-
ski relationship, or by computing a PMF using umbrella
sampling with different overlapping harmonic oscillators at
specified distances from the binding site.107–110

There are a number of complications with pulling meth-
ods. Pulling a ligand out of a buried site can pose problems,
and it can be difficult to pull the ligand sufficiently far away
from the protein with a simulation box of computationally
tractable size. In the latter case, some analytical or mean-
field approximation must be applied for the free energy of
pulling the ligand to infinity. However, it has been argued
that pulling may be significantly more efficient for highly
charged ligands.108

Promising methods not yet routine

Researchers are experimenting with a number of intrigu-
ing methods that have significant potential to make ligand-
binding calculations much more efficient but that are not
yet routine. It is likely that many or all of these will become
much more commonplace in the near future. We will give
only brief a introduction along with references for further
investigation.

Using umbrella sampling for convergence
A general problem for any free-energy simulation method is
sampling important configurations. One standard method
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for improving sampling in atomistic simulations is umbrella
sampling,111 where bias terms are added to constrain the
simulation in some way and their effect is then removed.
This procedure can be used to either lower potential energy
barriers or to restrain simulations to slow-interconverting
configurations that are relevant to the binding affinity (for
example, different torsional states), allowing each of the
component energies to be properly computed and then
combined.97,112,113 Another application is computing the
free energy of constraining the free ligand into the bound
conformation directly before computing the free energy of
binding and then releasing these restraints, usually decreas-
ing the correlation times for sampling of the intermedi-
ate states and thus increasing the efficiency of the simula-
tion.97,108

Expanded ensemble, Hamiltonian exchange, and � dynamics
Alchemical simulations usually include a number of inter-
mediate states. It is possible to bring these intermediates
together in a single simulation system, either as series
of coupled simulations of the intermediate states, usually
called Hamilton exchange, or as a single simulation that vis-
its all of the intermediate states, called expanded ensemble
simulation. A number of studies have shown that Hamilton-
ian exchange and expanded ensembles can speed up sim-
ulations by allowing the system to go around barriers by
going through alchemical states where those barriers are
not as pronounced, significantly speeding up free-energy
simulations.114–120 Alternatively, the alchemical variable �

can be treated as a dynamic variable, which adds complica-
tions by introducing a fictitious mass corresponding to the
� degree of freedom but is essentially equivalent to Monte
Carlo techniques.118,121–123 There are a number of variations
of sampling in � that may show promise in the future, but
such methods are still in the preliminary stages of develop-
ment.124–128

Multiple ligands simulations
If binding calculations of multiple ligands with a single pro-
tein target can be performed in the same simulation, this
can significantly speed up the efficiency of calculations.
This has been most successfully done by running a single
simulation of a nonphysical reference state and then com-
puting the free energy via EXP to a large number of potential
ligands.97,129,130 However, this frequently fails to work when
the ligands are too dissimilar.131 More sophisticated multi-
ligand approaches will most likely be necessary.

RECENT HISTORY IN LIGAND BINDING CALCULATIONS
FOR PHARMACEUTICALLY RELEVANT SYSTEMS

MM-PBSA calculations

MM-PBSA has been used in a range of applications for
exploring the free energetics of biologically relevant
molecules, and reports in the literature appear for a variety

of nontrivial, structure-related problems. Although early
applications focused on rationalizing relative conforma-
tional stabilities in DNA132 and RNA,133 it was not long
before attempts to analyze protein/ligand interactions
began to appear. For instance, MM-PBSA was used to ver-
ify a hypothesis that electrostatic interactions were the pri-
mary driver for hapten association with Fab fragments of
antibody 48G7.134 It was also used to elucidate situations in
which hydrogen bonding was postulated to be an impor-
tant contributor to protein/ligand association,135 to gain
insights into the role of hydrophobic interactions in cAMP-
dependent protein kinase,47 and to investigate carbohy-
drate recognition in concanavalin.37 Other uses of MM-
PBSA include rationalizing the role of pK a shifts in protein/
ligand binding,137 and demonstrating the importance of the
choice of proper protonation states in the active site.138

Structure-based ligand design methods have also been built
on top of MM-PBSA. One technique, called computational
alanine scanning,139 probes potential interaction sites in
receptor binding pockets, and an analogous method was
developed for small molecules called fluorine scanning.140

The wide range of applications of MM-PBSA reported in
the literature reflect its increasing penetration into the sci-
entific community. Based on results from a search of a life
sciences citation database maintained by Entrez, the num-
ber of publications reporting some use of MM-PBSA to per-
form binding analysis has steadily increased from fourteen
total in the two years from 2001 to 2002 to fifty total in the
years 2006–2007. The consistent increase in the use of MM-
PBSA is likely due to several factors. MM-PBSA has rela-
tively low computational cost compared to other (more rig-
orous) binding free-energy methods, which broadens the
number of systems to which it can be reasonably applied.
Several initial reports on MM-PBSA appearing in the liter-
ature showed significant potential for the method. In par-
ticular, one of the earliest results demonstrated impressive
affinity predictions for the protein target avidin binding a
set of biotin analogs.141 Subsequent reports showed equally
promising results for affinity predictions for other sys-
tems.142–146

Because of the early reports a large number of groups
have applied MM-PBSA to a wide variety of systems. We
can investigate one aspect of the evolution of the use of
MM-PBSA by inspecting the literature reports that have
appeared over the years from 2001 to 2007. Shown in Fig-
ure 5.2 are values (estimated where possible from the publi-
cations found in the aforementioned citation search) for the
mean-square error (MSE) in reported affinity predictions, as
a function of the publication year.

From 2000 to 2003, MM-PBSA reports contained signif-
icantly smaller average MSE values in the literature, com-
pared to averages from the span of 2004 to 2007. There are a
number of possible explanations for this trend. Early appli-
cations may have been restricted to more well-behaved sys-
tems appropriate for initial verification and later studies
were more representative of the average over many systems.
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Figure 5.2. Errors obtained from literature data showing the progression
of estimated mean-square errors for MM-PBSA affinity predictions.

It could also be that MM-PBSA has arrived in the hands of
less experienced practitioners, who are less familiar with
the subtleties involved. It also may be the case that people
are currently more willing to publish less successful appli-
cations than has been the case in the past. Whatever the
root cause, it seems safe to conclude that (at least for
the published reports) there is a different expectation for
the potential magnitudes of errors produced by MM-PBSA
today than was initially apparent.

To explore the general question of reliability of MM-
PBSA, its performance must be examined in a variety of sys-
tems. Shown in Figure 5.3 is the change in experimental
binding affinity (relative to a known reference compound)
plotted versus the percentage change in MM-PBSA “score”
(relative to the same reference compound) from an inter-
nal Abbott study. The specific procedure used for these
calculations has been detailed elsewhere.146 Briefly, con-
formational sampling is performed in implicit solvent dur-
ing which a set of structures are saved and subsequently
analyzed for energetics as described under “MM-PBSA.” All
solute entropic changes on binding are ignored in these cal-
culations. The MM-PBSA energies are referred to as “scores”
to reflect the fact that they are not true free energies. To gen-
erate the data in Figure 5.3 MM-PBSA calculations were per-
formed on 480 structures (based on 292 structures obtained
from Abbott x-ray crystallography) that spanned eight pro-
tein targets, including representatives from a number of
families, such as kinases, proteases, peptide signaling pro-
teins, and phosphatases. For the compounds that did not
have explicit x-ray crystal structures of the bound small
molecule, the binding modes were prepared by selecting a
(similar) existing crystal structure and performing a three-
dimensional overlay of the small molecule onto the crystal-
lographic binding mode.

The data in Figure 5.3 are partitioned into false pos-
itives (FP), false negatives (FN), true positives (TP), and

true negatives (TN). The relatively small number of FN pro-
duced in the calculations is worth noting, as FN are highly
undesirable in a drug discovery setting, due to the fact that
they represent missed opportunities. The presence of FP
is less problematic as the threshold for desired MM-PBSA
score can be altered to accommodate a desired FP rate. To
illustrate this we describe several thresholds for percent-
age change in MM-PBSA score, yielding differing numbers
of FP and TP, as shown in Figure 5.3. It can be seen that
to reduce the rate of FP to below 10%, one must accept
only those compounds exhibiting positive changes in MM-
PBSA score greater than 40%. Given the results obtained
with MM-PBSA in this study, it appears that it could be used
for virtual library triage to produce enriched lists of ranked
compounds. An inspection of the spread of � �G Bind val-
ues at various thresholds reveals that a probable value for
an anticipated relative error might be in the 2–3 kcal/mol
range, which is comparable to recent errors reported in the
literature (see MSE for 2007 in Figure 5.2). Based on anal-
ysis presented in the introduction to this chapter, incorpo-
rating this level of calculation into the work flow of medic-
inal chemists might begin to add value to synthetic efforts
by reducing the average number of compounds that need
to be made.

There have been several recent studies investigating the
use of MM-PBSA as a potential routine tool in drug dis-
covery. Kuhn et al. found that small-molecule potency pre-
dictions with MM-PBSA are generally unreliable at predict-
ing differences smaller than around 3–4 kcal/mol of relative
potency,147 which is in rough agreement with the conclu-
sions presented above. The authors did find MM-PBSA to
be useful as a postdocking filter. In a different study, Pearl-
man found that MM-PBSA performed extremely poorly, and
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Figure 5.3. Data showing change in compound potency (relative to a ref-
erence compound) versus percentage change in MM-PBSA score (relative
to same reference compound) for 480 compounds across eight targets,
which span 292 x-ray crystallographic complexes.
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in fact somewhat nonintuitively.148 This study is somewhat
difficult to interpret, as mixed small-molecule force fields
were used in addition to normal-mode entropy estimates
for all the of data points. In a later publication it was
noted that both of the above studies selected molecules
with insufficiently wide potency ranges149; however, the
ranges of potencies in the reports of Pearlman and Kuhn
et al. are around 3 kcal/mol, consistent with our findings
that MM-PBSA, in general, cannot be expected to reliably
resolve compounds within 2–3 kcal/mol. For a sufficiently
wide range of potencies careful application of MM-PBSA
may provide help and bias discovery effort toward the more
potent compounds.150

The literature reports other issues with MM-PBSA, for
example, in systems including in the presence of a metal ion
in the binding site.151 Inadequacies of MM-PBSA to accu-
rately represent first-solvation-shell effects were shown to
introduce significant error into direct potency prediction.170

However, despite the first-solvation-layer error, MM-PBSA
was still able to successfully rank-order the ligands.

There appears to be an emerging consensus that MM-
PBSA likely has some applicability and utility in drug
discovery. However, results have ranged too widely, from
promising to poor to difficult, to interpret unambiguously.
There is as of yet insufficient data to conclusively demon-
strate the scope, the limitations of MM-PBSA, and the fun-
damental reliability in industrial drug discovery research,
though the studies described here demonstrate enough
promise to focus more effort on these methods in the future.

Alchemical calculations

Alchemical free energies are substantially more rigorous
than MM-PBSA calculations but also significantly more
computationally demanding. They were first applied to pro-
tein/ligand systems in the early to mid-1980s. Tembe and
McCammon152 laid out some of the basic theory for apply-
ing these calculations to protein/ligand interactions and
used them to examine the “binding” of two Lennard–Jones
spheres in a small bath of Lennard–Jones spheres in 1984.
This was probably the first “alchemical” free-energy calcu-
lation, although the term itself originated somewhat later.
The first applications to true protein/ligand complexes fol-
lowed shortly, with Wong and McCammon computing rela-
tive binding free energies of three trypsin inhibitors153 with
some success, and Hermans and Subramaniam computing
the binding free energy of xenon to myoglobin.154 This and
related work from others ushered in a wave of alchemical
applications in the late 1980s and early 1990s.

However, in a recent review, David Pearlman noted that
some of the early success with alchemical methods may
have been simply luck. He argues, “[W]e are now at a point
that is, in reality, where we thought we were 20 years ago!”155

At the very least, performing accurate alchemical free-
energy calculations has turned out to be a great deal more
difficult and computationally demanding than originally

thought,8,156 so enthusiasm waned after the initial success
before undergoing a resurgence since the early 2000s. This
recent change has been described as a “coming of age.”165

Alchemical methods have yet to see widespread use in phar-
maceutical applications, however.

Part of the recent increase in enthusiasm for free-energy
calculations has been due to some of the methodologi-
cal innovations addressed above, including the movement
away from EXP, and another large part has been due to
steadily increasing computer power bringing new problems
into range. Together, these factors mean that much of the
work on alchemical methods before the early 2000s is woe-
fully out of date, so in this discussion we focus mostly on
work since 2000. As noted above, alchemical free energies
can be calculated by TI, EXP (exponential averaging), or
BAR, among other methods, but the basic ideas remain
the same. Here we highlight some key applications areas
of alchemical methods without focusing on methodological
issues highlighted above.

Relative free energies
Relative binding free energies were one of the earliest appli-
cations of alchemical methods, and they have remained
a traditional application of alchemical free-energy meth-
ods. Relative free-energy calculations involve alchemically
transforming one ligand into another, allowing direct calcu-
lation of the relative binding free energies from an appropri-
ate thermodynamic cycle. This may be substantially more
efficient than computing two absolute binding free ener-
gies and subtracting in cases where the ligands are relatively
similar, as it eliminates statistical noise due to transforma-
tion of the rest of the ligands. If the limiting factor in the
precision of the calculations is a long time-scale conforma-
tional fluctuation of the protein, however, the relative effi-
ciency of relative free-energy calculations may be lessened
considerably.

There have been a number of practical success sto-
ries with these calculations. One particularly interesting
and comprehensive set of studies has been work from the
Jorgensen lab on binding of HIV-1 nonnucleoside reverse
transcriptase inhibitors (NNRTIs).157–163 One study used
docking and molecular dynamics equilibration to gener-
ate a model structure of sustiva bound to HIV-1 reverse
transcriptase and then alchemical free-energy methods
with Monte Carlo conformational sampling to compute
the change in binding affinity of sustiva due to several
known drug resistance mutants. Because the computed
drug resistance profile matched well with experiment (with
relative binding free energies accurate to 1–2 kcal/mol),
this suggested that the model binding mode was indeed
correct, a fact that was subsequently confirmed crystallo-
graphically.157 Two other studies examined effects of
known drug resistance mutations on several inhibitors and
derivatives158,159; both were accurate to within 1 kcal/mol in
relative binding free energies. One issue with these calcu-
lations concerns the approximations made, including the
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fact that the protein backbone was fixed and only side chain
atoms within 15Å of the ligand were allowed to move, which
is worrisome given the fact that HIV-1 NNRTIs allosteri-
cally disrupt enzymatic activity at a site that neighbors the
binding pocket. Three other studies describe the applica-
tion of free-energy calculations to lead optimization and
the resulting compounds’ activity in a cell-based assay;
no affinity measurements were made, so no quantitative
assessment of accuracy is possible.160,161,163

In several other cases, relative free-energy calculations
have been used to validate models and suggest mecha-
nisms. As noted above, relative free-energy calculations
were used to validate the modeled binding mode of sus-
tiva in HIV-1 reverse transcriptase. Relative free-energy cal-
culations were also used to validate a homology model of
a G-protein-coupled receptor by computing relative bind-
ing affinities of several known inhibitors164 with errors of
less than 1 kcal/mol. This approach was suggested to be a
general one for validating homology models.156–164 On the
mechanism side, Yang et al. used relative free-energy cal-
culations to help identify the tight binding site for ATP in
F1-ATPase,165 and Banerjee et al. used relative free-energy
calculations to elucidate the recognition mechanism of
oxo-guanine by a DNA repair enzyme.166

There has also been a significant amount of work with
relative free-energy calculations on the estrogen recep-
tor, mostly using artificial intermediate states designed to
allow rapid estimation of free energies of multiple differ-
ent inhibitors from just one or two simulations.87,129,167

The downside is that phase-space overlap issues due to
the limited number of simulations can present conver-
gence problems, so the quality of the results has been very
mixed depending on the choice of reference state, with
errors ranging from nearly 0 kcal/mol up to more than 20
kcal/mol.87

Another system of interest is fructose 1,6-bispho-
sphatase, where alchemical free-energy calculations have
been used over many years to help guide lead optimization
with some degree of success. A recent discussion is provided
by Reddy and Erion.168 Though extremely short simulations
were used, with some other methodological limitations,
alchemical calculations appear to have helped the lead
optimization process.

Alchemical calculations have also been applied success-
fully to inhibitors of neutrophil elastase. A multistep proce-
dure involving docking, then MM-PBSA scoring to identify
binding modes, followed by thermodynamic integration to
calculate relative binding free energies, gave results for rel-
ative binding free energies within 1 kcal/mol.169 In a follow-
up study, alchemical calculations were used to predict a
modification to an inhibitor to increase the affinity. When
synthesized, the new inhibitor had an IC50 value that was a
factor of 3 better.213

Alchemical calculations have given good correlations
with experimental relative free energies for relative bind-
ing free energies of theophylline and analogs to an RNA

aptamer.170,171 One recent study also examined two trypsin
inhibitors with a polarizable force field,172 and another
study with a polarizable force field examined a series
of inhibitors of trypsin, thrombin, and urokinase and
observed an excellent correlation with experimental rel-
ative binding affinities.173 A series of relative free-energy
studies have also examined binding of peptide and nonpep-
tide inhibitors of Src SH2 domains with mixed results.174–177

Several other studies have focused on the practical util-
ity of free-energy calculations. Pearlman and Charifson
compared alchemical free-energy calculations with more
approximate methods on a challenging system and sug-
gested that they have reached the point where they can
be useful, and more predictive than other methods, in
drug discovery applications; the test examined p38 MAP
kinase.178 A follow-up study showed that alchemical meth-
ods compared favorably with MM-PBSA in terms of accu-
racy and computational efficiency.148 Another study by
Chipot argues that the accuracy of alchemical methods
is now sufficient to be useful in drug discovery, and the
main remaining hurdle for their widespread application
is how difficult they are to set up.156 A further study by
Chipot and coauthors shows that these calculations can be
in some cases done quite rapidly and still yield accurate
rank-ordering,176 further highlighting the potential utility of
alchemical methods. Another particularly interesting appli-
cation was the computation of implicit solvent alchemi-
cal free energies of several different protein/ligand systems,
where free-energy methods compare very favorably with
docking, with much greater speed than with explicit solvent
methods.229

Absolute free energies
Alchemical binding free-energy calculations have mostly
been restricted to computing relative binding free energies.
Computing the absolute binding free energy of a single lig-
and to a particular protein introduces two additional com-
plexities not ordinarily encountered in relative free-energy
calculations. An early (1986) article on protein/ligand bind-
ing highlighted both of these issues.154 First, absolute bind-
ing free energies are reported relative to a standard state
or reference concentration of ligand, so a reference con-
centration must somehow be introduced into the relevant
thermodynamic cycle. Second, if a ligand does not inter-
act with the rest of the system (as in an alchemical abso-
lute binding free-energy calculation) it will need to sam-
ple the whole simulation box for convergence, presenting
potential sampling problems that are discussed in more
detail elsewhere.153 The authors’ solution to these problems
was to introduce biasing restraints that both kept the lig-
and in the binding site when noninteracting and simulta-
neously introduced the standard state when the effect of
the restraints is analytically accounted for. The clearest and
most detailed discussion of these issues is provided by the
excellent review of Gilson,180 which laid the foundation for
recent applications of binding free-energy calculations. A
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recent review of absolute free-energy calculations is pro-
vided by Deng and Roux.181

Despite the fact that these issues were raised in the 1986
work, a variety of “absolute” binding free-energy calcula-
tions since then have neglected one or both of these issues.
Nevertheless, beginning in the mid-1990s, there have been
a number of successful applications of absolute binding
free-energy calculations. These cluster in three general cat-
egories that each merit individual discussion: (1) binding
of water within buried sites or binding sites of proteins, (2)
binding of nonpolar ligands in a designed binding cavity
within T4 lysozyme, and (3) binding of ligands to FKBP.

Water binding. The area of water binding is particu-
larly interesting (and challenging) because it is extremely
difficult to access the thermodynamics of water binding
experimentally, meaning that computation uniquely pro-
vides access to important and interesting information. It
represents an important application of free-energy calcu-
lations that does not simply serve to predict a binding
affinity but also adds physical insights about the binding
process that can also be used in the further design. One
important computational challenge is to ensure that the
water molecule being removed is not replaced by any
other water molecules while being removed, or else the
net result of the calculation will simply be to remove a
water molecule from bulk. This methodological issue is not
always addressed in work on water binding and in some
cases may be a concern.

Work in the area of water binding was begun with the
absolute binding free-energy calculations of Helms and
Wade in 1995. They found that a crystallographic water
bound in a cavity in cytochrome P450cam with a particular
inhibitor had a binding free energy around −2.8±1.6 kcal/
mol while transferring a water into the cavity with the
natural substrate (camphor) would cost 3.8±1.2 kcal/mol.
A follow-up study found the preferred number of water
molecules in the cavity in the absence of ligand,182 find-
ing that six waters is thermodynamically preferable over
five and seven or eight by 1–2 kcal/mol. A third study then
computed the absolute binding free energy of camphor
by replacing it with six waters in the binding site.183 More
recently, Deng and Roux applied alchemical free-energy
calculations in combination with a grand canonical Monte
Carlo scheme to replace camphor with water molecules
while removing camphor from the cavity.184 Their com-
puted binding free energy for camphor agreed fairly well
with that of Helms and Wade, but they differed slightly on
the number of water molecules in the cavity.

Another water binding free-energy study examined the
binding of crystallographic waters in the subtilisin Carls-
berg complex with eglin-C and found that only some of the
waters appeared to bind favorably.185 Another study (on
bovine pancreatic trypsin inhibitor and a barnase mutant)
reached similar conclusions about crystallographic
waters,186 and a more recent study has also observed un-
favorable binding energies for crystallographic waters.187

The reasons for this apparent discrepancy are so far
unclear, but one suggestion has been limitations in the
force field,186,187 partly because the crystallographic waters
are often conserved across several different structures of
the same complex or binding site, suggesting that crystal
structure uncertainties may not be the problem.

Several studies have examined binding of a specific
water (water 301) in the complex of HIV-1 protease with
inhibitor KNI-272. Two studies agreed on the binding free
energy of this water (around −3.3 kcal/mol for one proto-
nation state of the protease),188,189 while a third study dis-
agreed by about 7 kcal/mol,187 possibly due to methodolog-
ical differences relating to the treatment of protein flexibil-
ity. The active site protonation state appears to substantially
modulate the binding free energy of this water molecule.189

There have been a variety of other examinations of water
energetics as well. Roux et al. looked at binding of several
waters within bacteriorhodopsin and found that transfer
of waters from bulk to the proton channel was thermody-
namically favorable (in some cases by up to 6 kcal/mol),
suggesting implications for proton transfer.190 De Simone
et al. looked at water binding within the prion protein.191 An
extensive study looked at binding free energies of fifty-four
water molecules in binding sites of six proteins, with and
without ligands present. As validation, some results were
compared with previously published work before moving to
new binding sites. Overall, water binding free energies var-
ied substantially, with a mean binding free energy of −6.7
kcal/mol, substantially more favorable than the mean bind-
ing free energy of water molecules that are displaced by lig-
ands (−3.7 kcal/mol). The range of binding free energies
runs from slightly positive to around −10 kcal/mol.187 One
major conclusion from this and the other studies in this
area is that water molecules make a highly variable contri-
bution to the thermodynamics of ligand binding, and fac-
toring water molecules into ligand design is likely not to be
an intuitive process, thus increasing the need for computa-
tional methods that can account for variable contributions
of bound waters.

A final study worthy of note for its novelty and poten-
tial practicality for drug discovery is the work of Pan et al.,
which used a grand canonical Monte Carlo technique to
qualitatively predict locations around binding sites where
waters can easily be displaced, suggesting routes for lead
optimization.192 Although this is not an application of abso-
lute alchemical free-energy methods, it is nevertheless an
extremely interesting application of free-energy methods to
water binding.

T4 lysozyme ligand binding. Another important set
of systems for studying binding free-energy calculations
are the two model binding sites in T4 lysozyme cre-
ated by point mutations. The first of these, the L99A
mutant, introduces a simple nonpolar cavity, while the sec-
ond (L99A/M102Q) adds a polar group at the margin of
the cavity and introduces the possibility of more hydro-
gen bonding. Both have been extensively characterized
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experimentally.113,193–199 Because these binding sites are rel-
atively simple and rigid, and structural data are so easy to
obtain, they have been attractive sites for the development
and testing of absolute free-energy methods. Most of the
work has been on the apolar version of this cavity.

One early absolute free-energy study, in 1997, examined
the binding of benzene in the apolar cavity.200 Depending
on the computational details, calculated values range from
−4.0 to −5.1 kcal/mol, and the experimental absolute bind-
ing free energy is −5.2 kcal/mol. A follow-up study exam-
ined binding of noble gases in the cavity, especially xenon,
which binds under pressure, in agreement with computed
binding free energies.201

The lysozyme cavity was also used as a test system for
the methodological work of Boresch et al. in 2003, which fell
short of actually computing a binding free energy, but laid
out a clear and straightforward thermodynamic cycle for
computing binding free energies; the cycle involves the use
of both orientational restraints and distance restraints.202

Work on the polar cavity extended some of the arguments in
favor of using orientational restraints and found that large
kinetic barriers can separate ligand orientations, so consid-
ering multiple candidate bound orientations can help when
computing absolute binding free energies.179

More recent work done by Deng and Roux203 looked
at a series of known binders to the lysozyme cavity, with
somewhat mixed success; some binding free energies were
too negative by a few kcal/mol. Another study used grand
canonical Monte Carlo techniques on the same system, but
while neglecting protein flexibility,204 again with mixed suc-
cess. A third looked at binding of a single ligand in the
lysozyme cavity and quantified the contributions of a slow
side-chain motion to ligand binding. It found that a single
side-chain rearrangement could affect binding free energies
by a few kcal/mol and that including the free energies asso-
ciated with this conformational change was key for obtain-
ing accurate binding free energies.205

The most extensive study to date has been the joint
theory-experiment work of Mobley, Graves, and others,113

which studied a variety of previously measured ligands and
reached a root-mean-square error of roughly 1.9 kcal/mol
after dealing with problems relating slow sampling of ligand
orientational changes, protein conformational changes,
and ligand electrostatics parameters. A unique feature of
this study was that bound crystal structures were not used
as starting points for the calculations, except for compar-
ison purposes. Absolute free-energy methods were then
applied successfully to predict binding affinities, with errors
less than 0.7 kcal/mol, and orientations of five previously
untested small molecules. The contribution of protein flex-
ibility was also assessed and turned out to be key for the
accuracy of the results.

Overall, a message from the lysozyme work has been that
even simple binding sites can present significant sampling
problems for molecular simulations, especially concerning
ligand orientations and side-chain degrees of freedom and

that a proper accounting of the thermodynamics here is key
for obtaining predictive results.

FKBP binding calculations. The FK506 binding protein
(FKBP) has been another popular test system for absolute
free-energy methods, in part because of the relative rigid-
ity of its backbone. FKBP-12 was important in the develop-
ment of the immunosuppresive drug cyclosporin and has
remained popular because of its role in the development
of the field of chemical biology. A series of ligands studied
experimentally by Holt et al. have been studied particularly
closely by a number of researchers.206

Absolute alchemical free-energy methods were first
applied to the system by Shirts,207 who obtained root-
mean-square error of 2.0 kcal/mol and a correlation coef-
ficient (R 2) of 0.75. A follow-up study by Fujitani and
collaborators208 achieved a root-mean-square difference
from a linear fit of only 0.4 kcal/mol, but with a large off-
set of −3.2 kcal/mol relative to experiment. As previously
noted,10 care must be taken when comparing this study
directly with other absolute free-energy studies, because it
neglects any treatment of the standard state, which could
be part of the reason for the offset.179

A further study by Wang, Deng, and Roux using the same
parameters as Shirts obtained a root-mean-square error
around 2.0–2.5 kcal/mol,97 but despite the fact that the
results used the same parameters, they were significantly
different from those of Shirts,207 suggesting methodologi-
cal or convergence differences. Another study by Jayachan-
dran and coworkers obtained a root-mean-square error of
1.6 kcal/mol using a novel parallelized free-energy scheme
that allows for contributions of multiple kinetically distinct
ligand orientations.209

Two other smaller studies also applied absolute free-
energy methods to the same system, although not alchem-
ical free-energy methods. The work of Lee and Olson
used PMF techniques to compute binding free energies of
two inhibitors106 with accuracies of 1–2 kcal/mol depend-
ing on the solvent model, and Ytreberg used nonequilib-
rium pulling techniques for two inhibitors with accuracies
around 1 kcal/mol.109

In many cases, computed values have varied substan-
tially, even when using the same parameters. Likely, full
convergence has not yet been truly reached. This provides
a warning for computations on the many systems that have
significantly more conformational flexibility and an indica-
tion that higher accuracy with systems that have not been
studied as systematically might result from some degree of
coincidence.

Other interesting binding calculations. Absolute free-
energy methods have also been applied in several other
interesting cases where there is less of a body of work.
Recently, Jiao et al. calculated the absolute binding free
energy of benzamidine binding to trypsin using AMOEBA,
a polarizable force field, and then computed the relative
binding free energy of a benzamidine derivative172 with
accuracies to within than 0.5 kcal/mol. Due to the small size
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of the study, it is difficult to be sure whether the high accu-
racy here is fortuitous or because of the use of a polarizable
force field itself.

Dixit and Chipot also applied absolute free-energy cal-
culations to compute the binding free energy of biotin to
streptavidin; they obtained −16.6±1.9 kcal/mol compared
to an experimental value of −18.3 kcal/mol.210

Solvation free energies
Alchemical free-energy methods have often been tested by
or applied to computing hydration free energies of small
molecules like amino acid side-chain analogs or other small
neutral compounds,81,205,211 occasionally in a predictive
context.212 These tests can provide insight into the funda-
mental level of accuracy that can be expected of current
force fields and also provide guidance for improvements to
force fields. Also, several studies have highlighted the fact
that solvation of small molecules can play an important
role in determining binding free energies. One recent study
found that the affinity of two trypsin inhibitors for water
was very different, but these differences nearly canceled
with differences in the binding site.172 Another study sug-
gested that solvation free energies played a substantial role
in determining the change in binding affinity when opti-
mizing fructose 1,6-bisphosphatase inhibitors.168

Predictive tests
Predictive tests of alchemical free-energy methods have
been relatively rare, but at the same time are especially valu-
able for two reasons. First, to apply these methods in the
context of drug discovery, they need to be predictive, and so
testing them in a predictive context is a more realistic. Sec-
ond, when doing retrospective studies, it is easy to be unin-
tentionally influenced by the existing experimental results.
For example, one might perform several sets of binding
free-energy calculations with altered parameters and con-
clude that the “correct” set is the set that agrees best with
experiment. Was any variation with parameters due to (a)
the parameters themselves or (b) random errors due to poor
convergence? And how would one proceed in a predictive
setting?

However, alchemical free-energy methods have been
applied predictively (together with or in advance of exper-
iment) in a few studies. Here we focus especially on cases
where experimental results are known and pass over those
where we are not aware of any experiment that tests the
computational results.

A number of studies have applied alchemical meth-
ods in the context of lead optimization. Some of the
work from the Jorgensen lab on HIV-1 NNRTI has
been predictive,157,160,161 where free-energy calculations
were used to help identify a binding mode and guide
lead optimization. Similarly, the work on fructose 1,6-
bisphosphatase has been predictive and applied in drug
discovery.168 Alchemical methods have been used to

successfully predict an optimization of a neutrophil elas-
tase inhibitor that was subsequently synthesized and
tested.213 Another application in lead optimization used
grand canonical Monte Carlo techniques to guide lead
optimization.192

Alchemical free-energy calculations were also used pre-
dictively, or at least in a joint theory-experimental study,
in examining binding of benzamidium derivatives and
their binding to trypsin.214 The computational results cor-
rectly captured experimental trends, though falling short
of quantitative accuracy. A joint theory-experiment study
that examined relative binding free energies of inhibitors to
a GPCR was used to help validate a homology model; the
computational results proved accurate to less than 1 kcal/
mol.164 Alchemical free-energy calculations were also used
to predict the tight binding site of ATP in F1-ATPase,165 a
prediction subsequently confirmed experimentally.215

The only predictive absolute binding free-energy calcu-
lation we are aware of to date is the work on the T4 lysozyme
system by Mobley, Graves, and collaborators, where abso-
lute free energies were used to predict binding affinities and
binding modes of several new ligands.113

Pitfalls and negative results

Negative results and failures can in some cases be extremely
informative, especially when it is possible to identify fail-
ures with specific issues, because in such cases the failures
highlight the importance of certain factors. Unfortunately,
negative results and failures are not always published, so it
can be difficult to gather information in this area, and it is
often even more difficult to trace failures back to specific
issues. Nevertheless, there are several articles that highlight
issues in this area – either by tracing failure to a specific
cause or by identifying and avoiding a potential pitfall.

One major, common pitfall is a dependence of com-
puted free energies on starting structure. Because a bind-
ing free energy is a ratio of partition functions, it involves
integrals over all of the relevant configurations of several
systems and thus must be independent of the starting con-
figurations of the system. Unfortunately, computed results
often depend on the starting configuration of the system –
for example, different starting ligand orientations or differ-
ent starting protein structures may give different results,
as noted in a number of studies. This kinetic trapping is
inevitable whenever energy barriers are sufficiently large.217

Mobley et al. found that results could depend significantly
(by more than 1 kcal/mol, in some cases) on starting lig-
and orientation.179 In FKBP, Shirts206 and Wang et al.97

found that computed binding free energies could differ by
more than 1 kcal/mol depending on the choice of start-
ing protein/ligand configuration, and Fujitani et al. also
observed a dependence on starting structure.208 An even
larger dependence on the starting protein conformation
was observed in lysozyme, where computed values could
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differ by 3–5 kcal/mol depending on the starting config-
uration of a valine side chain.112,113,203 In another study
of HIV-1 NNRTIs, computed relative binding free ener-
gies had the wrong sign (an error of roughly 4 kcal/mol)
when beginning from a crystal structure with an alternate
rotamer conformation near the active site.63 As noted previ-
ously, these are not simply issues of having a wrong protein
structure: when protein conformational changes occur on
binding, multiple metastable configurations are relevant.112

Thus, some authors have suggested starting simulations
from different regions of phase space as a test for these
sorts of issues111,155 or have in some cases performed this
test.112,155

Another potential pitfall is the possibility of multi-
ple potentially relevant bound ligand orientations that
can be separated by kinetic barriers.179 This has been
observed not only in absolute free-energy calculations on
the lysozyme binding site, where interpretation and anal-
ysis is simplest,113,179 but also in relative free-energy cal-
culations for ligands binding to neutrophil elastase169 and
the estrogen receptor.129 Ligand symmetries can also play a
complicating role.167,179

In many cases, failures are more difficult to interpret. In
a recent study on squalene-hopene cyclase inhibitors, rela-
tive free energies computed with a single-step perturbation
method had large errors and in some cases had the wrong
sign;131 this was also the case in a study by some of the
same authors on phosphodiesterase inhibitors.216 Another
study with single-step methods found results of varied qual-
ity depending on the (in principle arbitrary) choice of ref-
erence state, indicating poor convergence,87 and in some
cases resulting in very large errors. These errors may mostly
be due to poor phase-space overlap with the single-step
approach.

Using multiple routes around the same thermodynamic
cycle can be a helpful way to check for errors when doing
relative free-energy calculations. This approach was used by
de Graaf et al.218 and found very different results depending
on the choice of pathway (indicating convergence problems
along at least some pathways); cycle closure errors were up
to 4.9 kcal/mol and for some paths and mutations, the sign
of the relative free energies was even incorrect. Cycle clo-
sure errors were also large in the work of van den Bosch
et al.219 Of course, cycle closures only provide a lower bound
on the error, and in some cases true errors are much larger
than the cycle closure error, as is the case with the large
cycle closure error and even larger true error in the work of
Dolenc et al.220

In many cases, studies may have simply been somewhat
too ambitious. Donnini and Juffer attempted to use abso-
lute free-energy calculations to examine binding free ener-
gies between peptides and proteins and concluded that “it
generally proved rather difficult to predict the absolute free
energies correctly, for some protein families the experimen-
tal rank order was reproduced. . . . ”221

Other types of binding free-energy studies
There are several other types of rigorous binding free-
energy calculations that have occasionally been applied to
interesting biomolecular problems. Grand canonical Monte
Carlo (GCMC) techniques have been used in several appli-
cations to compute insertion free energies; in one study
these techniques were used to compute favorable sites for
displacing waters around a ligand in a binding site,192 and in
another case GCMC techniques were used to estimate bind-
ing free energies of ligands to the lysozyme model bind-
ing site, though in the absence of protein flexibility.204 More
recently, grand canonical techniques were used to insert
water molecules into a protein/ligand binding site while
the ligand was being alchemically removed, thereby speed-
ing convergence.184 Potential of mean force (PMF) meth-
ods have also been applied to several protein/ligand sys-
tems, including the binding affinities of FKBP inhibitors107

and the binding affinity of a phosphotyrosine peptide to the
SH2 domain of Lck.108 Nonequilibrium free-energy meth-
ods have also been applied to FKBP inhibitors and peptides
binding to the SH3 domain.109,110

As mentioned previously, the mining minima approach
of Gilson and collaborators is also particularly interesting
and has given promising results in calculations of bind-
ing free energies for host/guest systems66 and ligands to
artificial receptors.164 However, because of computational
limitations, it is difficult to apply it to the protein/ligand
systems that are of interest in drug discovery. One recent
study used this approach, however, to assess changes
in HIV protease inhibitor configurational entropy on
binding.68

DIRECTIONS FOR LIKELY IMPROVEMENT

There are a number of different aspects in which free-
energy calculations will need to improve to become more
accurate and reliable. One of the most important is in the
realistic treatment of the environment of the protein/ligand
systems. Typical ligand binding simulations include only
the protein, the ligand, water, and perhaps a few ions to
neutralize the simulated system. But many ligand binding
affinities have significant dependence on pH, salt concen-
tration, and metal-ion concentration. None of these addi-
tional aspects are typically modeled in ligand binding free-
energy calculations and will need to be treated better in the
future.

It is also likely that there will need to be further advances
in atomistic force field parameters. A number of tests of
solvation free energies have demonstrated that the cur-
rent generation of force fields have fundamental prob-
lems that may restrict the ability of these force fields to
obtain binding free energies that are accurate to within
1 kcal/mol.81,104,205,222 Most common force field protein
parameters are more than ten to fifteen years old, and
only the torsions have generally been improved.223,224 The
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criteria used for validity of protein parameters is usually
proper structural conformational preferences, which may
not be sufficiently accurate for their use in protein/ligand
binding calculations. A recent version of the gromos force
field, 53A6 has parameters that were fit to free-energy cal-
culations of the free energies of transfer between water
and cyclohexane, a first for an atomistic force field.232 It
seems likely that parameterizing to phase transfer prop-
erties should result in higher accuracy for binding affin-
ity calculations, which are essentially transfers to a hetero-
geneous liquid phase, though direct comparisons between
force fields optimized to pure liquid properties and transfer
free energies have yet to be made.

Even more problematic are sufficiently accurate ligand
parameters, as the number of functional groups is signifi-
cantly higher than for protein systems and the amount of
time that has been invested for parameterization signifi-
cantly lower. Typical ligand parameters might be taken from
the generalized Amber force field (GAFF),225 usually using
the antechamber program in the amber distribution for
atomtyping, although it is also sometimes done by hand,
and the AM1-BCC method226,227 (implemented in a variety
of software codes) to determine the charges. Schrödinger
also has automatic tools to assign atom types of novel com-
pounds within the OPLS-AA parameterization system. Rel-
atively few force fields have associated tools or even algo-
rithms for determining compatible (let alone validated)
ligand parameters.228

A number of research groups are actively developing
polarizable potential functions,228 which have the potential
to greatly improve macromolecular force fields’ abilities to
predict binding affinities by adding an extra level of physi-
cal detail. However, at this point, it is not clear that any of
them yet are quantitatively better than fixed charge force
fields, as few of them have been validated to the extent that
fixed charge models have. Polarizable molecular models are
significantly slower than fixed charge models, and therefore
both the iterative improvement of such force fields and the
development of tools useful for production runs for free-
energy calculations will be substantially behind that of fixed
change force fields.

CONCLUSIONS

As we have seen in this chapter, free-energy calculations are
not at the present time generally reliable methods to pre-
dict binding affinity and are not currently truly a part of
standard structure-based drug design methods. And they
certainly are not, and will not anytime in the near future,
“black-box” methods that will “automagically” allow deter-
mination of free energies without significant investment in
the physical chemistry and biology of the system. Although
many papers are being published computing binding free
energies in retrospective case studies, there is still a lack of
comparative studies presenting results over large numbers
of systems, with even fewer purely predictive studies. Partly

for these reasons, quantitative free-energy calculations are
not a vital part of the discovery work flow of most major
pharmaceutical company as far as we aware.

However, such calculations are certainly much closer to
usability than they have been in the past. In particular,
several recent studies mentioned in this chapter have
highlighted the advantages of alchemical relative free-
energy calculations compared to approximate methods like
MM-GBSA and docking.130,178,229 Alchemical methods have
also been successfully applied in a lead-optimization con-
text161,230 (and see references therein). It appears that in this
area free-energy calculations are already becoming useful
but with large remaining hurdles to their more widespread
adoption. Such hurdles include not only the computer time
needed but also the human time and biochemical knowl-
edge required to set up these simulations.156,176,218,229

As we have presented in this chapter, the methods used
for free-energy calculations are changing rapidly. Major
molecular simulation codes, such as amber, charmm, namd,

gromacs, and gromos, are undergoing major improve-
ments and changes in the features used to compute bind-
ing free energies. Although these changes will likely greatly
improve the ability to perform free-energy calculations,
ongoing changes make it difficult to put together stable
work flows for preparing ligands and simulation structures
and determining ideal free-energy protocols without signif-
icant human effort, and it is difficult to recommend partic-
ular codes for the easiest use at the present time. mcpro,
developed in the Jorgensen lab, which has recently begun
to be distributed by Schrödinger as mcpro+, although not
including much of the most recent methodology (such as
Bennett Acceptance Ratio methods or soft-core alchemi-
cal pathways), is likely the easiest to use and set up and
was used successfully for the HIV-1 NNRTI work in the
Jorgensen lab described in this chapter.

One ongoing problem has been the lack of extensive
experimental high-accuracy ligand binding affinities. As we
have discussed, a desirable goal for free-energy calcula-
tions is to reach an accuracy threshold of 1 kcal/mol. How-
ever, the majority of experimental measurements, unless
using highly accurate methods like ITC or SPR or extremely
well-tuned competitive binding affinity assays, many not be
more accurate than this, making large-scale validation of
computational methodologies difficult. A number of aca-
demic databases of protein/ligand structures and interac-
tions have been created, such as http://www.bindingmoad.
org/ and http://lpdb.chem.lsa.umich.edu/ at the Univer-
sity of Michigan, http://www.bindingdb.org at Johns Hop-
kins, http://www.agklebe.de/affinity at Phillips-Universität
Marburg,230 and http://www.pdbcal.org at Indiana, but the
degree of validation and utility of these databases are not
well established.

In the United States, a recently announced NIH NIGMS
RFA to establish a national Drug Docking and Screening
Data Resource represents an attempt to increase the public
availability of high-quality experimental data sets required
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for developing, validating, and benchmarking computa-
tional screening, docking, and binding affinity prediction,
including both curating crystal structures and experimental
binding affinities (see NIH NIGMS RFA-GM-08-008). NIST
has recently become interested in developing and curating
such data as well. Most importantly, there is a much larger
wealth of data in proprietary pharmaceutical databases that
no longer has significant intellectual property value, and a
system for releasing such data to the broader community
would be immensely valuable for development of improved
drug design methods.

Another problem in the development of free-energy
techniques is that most large-scale validations and com-
parisons of methodologies have been retrospective. There
are relatively few opportunities to participate in large-
scale prospective trials, as confidence of experimentalists
in quantitative predictions made by computer is usually not
high enough to motivate the high-quality experiments that
can validate the computational results.

The quality of techniques for protein structure predic-
tion has increased since the introduction of CASP (Crit-
ical Assessment of Structure Prediction) in 1994. Despite
some criticisms about some aspects of the program,232 it
is considered to have played an important role in devel-
oping computational structure prediction. Other success-
ful ongoing prospective computational challenges have
been CAPRI (Critical Assessment of PRedicted Interac-
tions) for protein/protein complexes,233 the Industrial Fluid
Properties Simulation Collective (IFPSC) (at http://www.
fluidproperties.org), the Cambridge Crystallographic Data
Centre’s blind tests of small-molecule crystal structure
prediction,234 and the McMasters high-throughput screen-
ing competition.235 It is clear that providing an oppor-
tunity for truly blind predictions of chemical and bio-
logical properties structure has been beneficial for the
computational methodology community. There has there-
fore naturally been an interest in developing a similar
true prospective trial for prediction of ligand binding
affinities.

One such attempt called CATFEE (Critical Assessment
of Techniques for Free Energy Evaluation) was attempted
in 2000 but failed because the experimental data never
became available.236 A more recent attempt, called SAMPL
(Statistical Assessment of the Modeling of Proteins and
Ligands), run by OpenEye Software, was conducted in
late 2007 to early 2008, with two protein targets (uroki-
nase, with data contributed by Abbott, and JNK3 kinase,
with data contributed by Vertex) and sixty-three ligand
binding points determined by IC50s, but with the same
assay for each target. The competition consisted of virtual
screening against decoys, pose prediction of known actives,
and prediction of binding affinity from crystal structures.
Although the summary of the results is still in prepara-
tion, by almost all measures they were somewhat discour-
aging, with correlations to predictions using various phys-
ically based methods significantly worse than 1 kcal/mol

root-mean-square error. Interestingly, the best method was
a less computationally demanding approximation to MM-
PBSA that essentially ignored the entropy contribution237

but even this method was very unreliable. The initial SAMPL
generated significant participation and interest and is very
likely to continue.

In the foreseeable future, fully atomistic free-energy cal-
culations may be most important not solely for reliable
predictions of binding affinity, but for a wealth of addi-
tional atomistic information such as probabilities of occu-
pation of binding pose and water structure in the binding
site that are impossible to gather from either experiment
or more approximate methods. Free-energy calculations
may also be of use in the future for the computation of
octanol/water partition coefficients of molecules that are
difficult to predict by standard rule-based algorithms like
CLOGP or for even more direct membrane permeability
simulations. Calculating the free energy, and thus stability,
of different tautomers represents another important appli-
cation of fully physical simulations. Questions of ligand-
binding specificity can frequently be seen as a multivari-
ate optimization problem, with binding to the intended
target maximized, while binding to the alternative targets is
minimized.

For further information, readers are encouraged to
read a number of reviews on the subject of free-energy
calculations published more recently,8–11,13,238–240 useful
textbooks,15–17,231 as well as older reviews and books that
may provide more historical perspective.32,241,242

A number of the reviews on the subject of free-energy
calculations in ligand binding since the late 1980s con-
clude that free-energy calculations of ligand binding have
finally overcome the problems and false starts of the past
and that the time for free energies in pharmaceutical indus-
try is nearly here or has already arrived. We will not make
nearly as strong a claim here. An extensive survey of the
latest results is somewhat mixed, and it is not clear that
these methods will necessarily be an important part of the
pharmaceutical work flow anytime in the near future. In
some cases, computational simulations may be approach-
ing the level of accuracy that they can provide some addi-
tional utility in some aspects of lead optimization, but the
accuracy and speed of the methods presented in this chap-
ter must both be improved drastically. Many computational
chemists working in industry that were questioned by the
authors thought that rigorous free-energy methods may
eventually become a routine part of drug discovery meth-
ods but perhaps not for another twenty years.

It does, however, appear that improvements in compu-
tational power and methodologies have made it possible to
compute increasingly reliable relative and absolute binding
affinities, albeit with significant computational and human
effort. Continuing improvements in techniques will make
physics-based simulations more and more attractive, lead-
ing to improved simulation tools and eventually to a vital
place in the pharmaceutical work flow.
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217. Leitgeb, M.; Schröder, C.; Boresch, S. Alchemical free energy
calculations and multiple conformational substates. J. Chem.
Phys. 2005, 122, 084109.

218. de Graaf, C.; Oostenbrink, C.; Keizers, P. H. J.; van Vugt-
Lussenburg, B. M. A.; Commandeur, J. N. M.; Vermeulen,
N. P. E. Free energies of binding of R- and S- propranolol
to wild-type and f483a mutant cytochrome p450 d26 from
molecular dynamics simulations. Eur. Biophys. J. 2007, 36(6),
589–599.



86 Michael R. Shirts, David L. Mobley, and Scott P. Brown

219. van den Bosch, M.; Swart, M.; Snijders, J. G.; Berendsen, H. J.
C.; Mark, A. E.; Oostenbrink, C.; van Gunsteren, W. F.; Canters,
G. W. Calculation of the redox potential of the protein azurin
and some mutants. ChemBioChem 2005, 6(4), 738–746.

220. Dolenc, J.; Oostenbrink, C.; Koller, J.; van Gunsteren, W. F.
Molecular dynamics simulations and free energy calculations
of netropsin and distamycin binding to an aaaaa DNA binding
site. Nucleic Acids Res. 2005, 33(2), 725–733.

221. Donnini, S.; Juffer, A. H. Calculations of affinities of peptides
for proteins. J. Comput. Chem. 2004, 25, 393–411.

222. Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F.
A biomolecular force field based on the free enthalpy of
hydration and solvation: the GROMOS force-field parameter
sets 53a5 and 53a6. J. Comput. Chem. 2004, 25(13), 1656–1676.

223. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A. E.;
Simmerling, C. Comparison of multiple amber force fields and
development of improved protein backbone parameters. Pro-
teins 2006, 65(3), 712–725.

224. Kaminski, G.; Friesner, R. A.; Rives, J.; Jorgensen, W. L. Evalu-
ation and reparametrization of the opls-aa force field for pro-
teins via comparison with accurate quantum chemical calcu-
lations on peptides. J. Phys. Chem. B 2001, 105(28), 6474–6487.

225. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case,
D. A. Development and testing of a general amber force field.
J. Comput. Chem. 2004, 25(9), 1157–1174.

226. Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, efficient
generation of high-quality atomic charges, AM1-BCC model.
I. Method. J. Comput. Chem. 2000, 21(2), 132–146.

227. Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of
high-quality atomic charges, AM1-BCC model. II. Parameter-
ization and validation. J. Comput. Chem. 2002, 23(16), 1623–
1641.

228. Ponder, J. W.; Case, D. A. Force fields for protein simulations,
in Advances in Protein Chemistry, Dagget, V.; Ed. San Diego,
CA: Academic Press 2003, 66, 27–86.

229. Michel, J.; Verdonk, M. L.; Essex, J. W. Protein-ligand binding
free energy predictions by implicit solvent simulation: a tool
for lead optimization? J. Med. Chem. 2006, 49, 7427–7439.

230. Li, L.; Dantzer, J. J.; Nowacki, J.; O’Callaghan, B. J.; Meroueh,
S. O. PDBCAL: a comprehensive dataset for receptor-ligand
interactions with three-dimensional structures and binding
thermodynamics from isothermal titration calorimetry. Chem.
Bio. Drug Des. 2008, 71(6), 529–532.

231. Rami Reddy, M.; Erion, M. D., Eds. Free Energy Calculations in
Rational Drug Design. Amsterdam: Kluwer Academic, 2001.

232. Marti-Renom, M. A.; Madhusudhan, M. S.; Fiser, A.; Rost, B.;
Sali, A. Reliability of assessment of protein structure predic-
tion methods. Structure 2002, 10(3), 435–440.

233. Méndez, R.; Leplae, R.; Lesink, M. F.; Wodak, S. J. Assessment
of CAPRI predictions in rounds 3-5 shows progress in docking
procedures. Proteins 2005, 60(2), 150–169.

234. Day, G.M.; Motherwell, W. D. S.; Ammon, H. L.; Boerrigter,
S. X. M.; Della Valle, R. G.; Venuti, E.; Dzyabchenko, A.; Dunitz,
J. D.; Schweizer, B.; van Eijck, B. P.; Erk, P.; Facelli, J. C.; Bazterra,
V. E.; Ferraro, M. B.; Hofmann, D. W. M.; Leusen, F. J. J.; Liang,
C.; Pantelides, C. C.; Karamertzanis, P. G.; Price, S. L.; Lewis,
T. C.; Nowell, H.;Torrisi, A.; Scheraga, H. A.; Arnautova, Y. A.,
Schmidt, M. U.; and Verwer, P. A third blind test of crystal
structure prediction. Acta Crystall. B-Struc., 2005, 61(5), 511–
527.

235. Parker, C. N. McMaster University data-mining and docking
competition: computational models on the catwalk. J. Biomol.
Screen. 2005, 10(7), 647–648.

236. Villa, A.; Zangi, R.; Pieffet, G.; Mark, A. E. Sampling and con-
vergence in free energy calculations of protein-ligand interac-
tions: the binding of triphenoxypyridine derivatives to factor
xa and trypsin. J. Comput. Aided Mol. Des. 2003, 17(10), 673–
686.

237. Naim, M.; Bhat, S.; Rankin, K. N.; Dennis, S.; Chowdhury,
S. F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C. I.; Jakalian, A.;
Purisima, E. O. Solvated interaction energy (sie) for scoring
protein-ligand binding affinities. 1. Exploring the parameter
space. J. Chem. Info. Model. 2007, 47(1), 122–133.

238. Jorgensen, W. L. The many roles of computation in drug dis-
covery. Science 2004, 303(5665), 1813–1818.

239. Chipot, C.; Pearlman, D. A. Free energy calculations: the long
and winding gilded road. Mol. Simulat. 2002, 28(1–2), 1–12.

240. Mobley, D. L.; Dill, K. A. Binding of small-molcule ligand to
proteins. “What you see” is not always “what you get.” Struc-
ture 2009, 17, 489–498.

241. Kollman, P. A. Free energy calculations: applications to chem-
ical and biochemical phenomena. Chem. Rev. 1993, 7, 2395–
2417.

242. Jorgensen, W. L. Free energy calculations: a breakthrough for
modeling organic chemistry in solution. Accounts Chem. Res.
1989, 22(5), 184–189.



6

Studies of drug resistance and the dynamic behavior of HIV-1
protease through molecular dynamics simulations

Fangyu Ding and Carlos Simmerling

INTRODUCTION

The human immunodeficiency virus (HIV) was first dis-
covered to be the causative agent of acquired immunod-
eficiency syndrome (AIDS) in the early 1980s.1,2 There are
currently three main avenues for preventing virus replica-
tion. The first is to block attachment of virus to the host
cell surface by inhibitors of binding to coreceptors, such
as CCR5.3,4 The second is to block the process of reverse
transcription,5 an approach taken by a major class of anti-
AIDS drugs, including, for example, azidothymidine (AZT),
delavirdine, nevirapin, and so on. The third way is to dis-
rupt the function of the viral protease (HIV-PR) that cleaves
the gag-pol polyproteins required to assemble an active
virus by binding an inhibitor to the center of the pro-
tease and freezing it closed; this is described in more detail
in this review. At present there are eleven FDA-approved
protease inhibitors in clinical use: Agenerase (ampre-
navir), Aptivus (tipranavir), Crixivan (indinavir), Fortovase
(saquinavir soft gel), Invirase (saquinavir hard gel), Kale-
tra (lopinavir-ritronavir), Lexiva (Fosamprenavir), Norvir
(ritonavir), Prezista (darunavir), Reyataz (atazanavir), and
Viracept.6 All these inhibitors can lose most of their potency
when confronted with mutations associated with drug
resistance.7 Therefore, a thorough understanding of the
mechanistic events associated with binding of HIV-PR sub-
strates and inhibitors is pharmacologically critical for the
design of novel inhibitors of the enzyme. There is evidence
that flexibility of the enzyme plays an important role in
inhibitor binding and resistance.8,9

This chapter focuses on recent advances and challenges
in understanding protease dynamics and its potential for
revealing new approaches to HIV-PR drug design. A partic-
ular focus is the application of computational techniques
that can provide detailed insight into the dynamic aspects
of HIV-PR behavior. Because recent molecular dynamics
simulations of HIV-PR have suggested that the dynamics
of this enzyme is crucial for its function, affecting flexi-
bility of the protease by, for example, allosteric inhibitors
could provide new opportunities to design a more potent
inhibitor.

Experimental data on structure of HIV-1 protease:
Large structural rearrangement on binding

An extensive set of x-ray crystal structures of HIV-1 pro-
tease in both bound and unbound forms has been solved,10

revealing a C2 symmetric homodimer with a large substrate
binding pocket covered by two glycine-rich beta-hairpins or
flaps.11–13 In almost all of the liganded forms, both flaps are
pulled in toward the bottom of the active site [“closed” form,
Figure 6.1(a)]. However, there are several crystal structures
that have been resolved in an unusual “flap-intermediate”
conformation with one flap partly and the other flap fully
closed.14,15 These observations provide experimental sup-
ports to the hypothesis that the substrate enters the pro-
tease binding site through the flaps and the subsequent
flap motion is asynchronous with one flap closing first.
In contrast to the bound structures, crystal structures of
the ligand-free protease are more heterogeneous16; three
conformations of the flap domains have been captured:
“closed,” “semiopen,” and “wide-open” forms. Although
the relationship between the conformational flexibility and
catalytic activity is still unclear, it has been suggested
that mutations might affect the flexibility of the unbound
enzyme; for example, the M46I mutation appears to sta-
bilize the closed form of the flaps.17 Most ligand-free HIV-
PR adopt the semiopen form [Figure 6.1(b)], in which the
flaps are pulled up and shifted away from the active site,
but still substantially cover the active site. A more strik-
ing difference between the semiopen and closed form of
unbound enzyme is that the relative orientation of the flaps
is reversed (top views in Figure 6.1). Despite the observa-
tion of semiopen conformation in five of the nine avail-
able crystal structures of unbound HIV-PR,11–13,18–23 it was
not entirely clear whether this reflects the preferred flap
conformation in solution or is a result of crystal-packing
effects.24–26 Although a large-scale flap opening is presum-
ably required for normal substrate access to the active site
[Figure 6.1(c)], a transient open form was observed only in
molecular dynamics (MD) studies27,28 [Figure 6.1(c)], and
an x-ray “wide-open” structure18,21,22 is more likely an arti-
fact due to the crystal-packing contact,29 in which each flap

87



88 Fangyu Ding and Carlos Simmerling

a) b) c)

I50

I50’

closed

I50’

I50

semi-open

I50’

I50

open

dimer 
interface

Catalytic
  tirads
D25 D25;

(2)

(1)

(3)

Flap
 elbow

B-hairpin flap

Figure 6.1. Top and side views of the three important conformations of HIV-1 protease. (a) The “closed” form is
observed in crystal structures with substrate bound (structure with pdb code 1TSU is shown). (b) The flaps of the
free protease assume a “semiopen” conformation in crystal structures (1HHP is shown). (c) The fully “open” form
in which the active site becomes accessible to substrate or inhibitors was not observed in crystal structures but
was implied from NMR experiments. The structure shown is from molecular dynamics simulations. The top views
of flaps highlight the change in flap handedness between “closed” and “semiopen” structures. The flaps in the
fully “open” form captured in our MD simulations adopt the semiopen handedness that is distinct from the x-ray
“wide-open” structure, 1TW7.21

tip is buried between the elbow and fulcrum regions of
a neighbor dimer (Figure 6.5), with the unusual P81′:I50
contact enclosed by five residues from the symmetry-
related neighbor (P39, R41, D60, Q61, I72). Because the
conformations of the elbow and fulcrum regions have been
shown to be correlated with flap opening,13,14 wedging a
flap tip between the fulcrum and elbow could further sta-
bilize the open conformation observed in the crystal. We
note that the heterogeneity of those x-ray crystal struc-
tures of ligand-free enzymes might be attributed to the crys-
tal packing effect, because the glycine-rich flaps often are
in direct contacts with symmetry-related neighbors; how-
ever, another possible explanation is that the unbound form
of HIV-PR is more flexible than the bound form, especially
the flap regions. This explanation is consistent with experi-
mental results obtained from nuclear magnetic resonance
(NMR)30–32 and pulsed electron paramagnetic resonance
(EPR) spectroscopy.33 Solution NMR data for the free pro-
tease obtained from Torchia’s group have suggested31,34,35

that the ensemble of unbound structures is dominated
by the “semiopen” family with subnanosecond time-scale
fluctuation in the flap tips, and with “closed” structures
possibly being a minor component of the ensemble. The
semiopen form is in slow equilibrium (∼100 �s) with a
less structured, open form that exposes the binding site
cavity. Ishima and Louis investigated the possible confor-
mations of the flaps of the dimer by comparison of the
NMR chemical shifts and relaxation data of the monomer
and dimer.32 For the first time, they demonstrated that the

tips of the flaps in the unliganded protease dimer inter-
act with each other in solution. Recently, Fanucci’s group
used EPR spectroscopy to investigate dipolar coupling of
the unpaired nitroxide electrons in spin labels attached
to K55C/K55′C on each flap. A different flexibility of the
flaps in the bound and unbound forms was clearly identi-
fied, and the data suggested that the unbound flaps sam-
pled a much larger degree of separation than those in the
bound form, with the distance between two spin labels
ranging from 26Å to 48Å. These data provide strong sup-
port for the hypothesis that the flaps in the unbound state
exist in a diverse ensemble of conformations fluctuating
between semiopen, closed, and open, and exhibit consid-
erable flexibility which allows substrate entry and product
exit. Despite these findings, many aspects of both the struc-
ture and dynamics of HIV-PR in aqueous solution remain
unresolved as the experiments provide only indirect evi-
dence of flap structures in solution.

Simulations of HIV-1 protease: Exploring flap flexibility

Although x-ray crystallography provides invaluable high-
resolution structures, they primarily reflect an average
structure of a single low-energy conformation under low-
temperature, crystalline conditions; therefore, a crystal
structure might not represent the most stable state in solu-
tion. NMR experiments provide a more realistic view of
the dynamic behavior in solution and at more biologically
relevant temperatures. Although several HIV-PR structures



89 Studies of drug resistance and the dynamic behavior of HIV-1 protease through molecular dynamics simulations

with bound inhibitors were fully solved by solution NMR,
thus far this technique has not provided structural data for
the unbound protease in solution, because of difficulties
related to protease autocleavage, as well as its high flex-
ibility in solution. As discussed above, site-directed spin
labeling (SDSL) double electron-electron resonance (DEER)
has also been applied to study the conformations of the
flaps of HIV-1 PR in the bound and unbound forms. How-
ever, the distance measured by this EPR method is based on
the dipolar coupling between the unpaired nitroxide elec-
trons, which are located ∼7Å from the C� atom of the pro-
tein backbone. It is likely that the observed label distribu-
tions report on flap dynamics, rather than changes in the
labels, but a lack of clear structural data prevents detailed
interpretation of the EPR data in terms of specific changes
to flap conformations on ligand binding. The shift in the
label distribution in the presence of inhibitor could reflect
the rearrangement of the flaps from semiopen to closed
handedness or could arise from decreased flap motion due
to direct interactions between flaps and inhibitor. How-
ever, the successful interpretation of SDSL-EPR data and
potential application to drug-resistant HIV-PR requires
additional data concerning that specific flap conformations
give rise to particular ranges of spin label distances and how
these ensembles are affected by inhibitor binding. Impor-
tantly, it is unclear whether the observed interspin dis-
tance distribution can be explained solely by an ensemble
consisting of conformations seen in the various crystal
structures or whether other conformations contribute sig-
nificantly to the ensemble in solution. Therefore, estab-
lishing a correlation between EPR-measured interspin dis-
tances and structural dynamic features of the flaps is
essential in the interpretation of the current and future EPR
data for this system and use of EPR to explore drug resis-
tance. Computational methods such as molecular dynam-
ics simulations can provide a detailed, atomic resolution
model for time-dependent structural variation and insight
into thermodynamic aspects involved not only in binding
but also in conversion between different protease confor-
mations. Unfortunately, until recently, realistic simulations
have been hampered by limitations in the model descrip-
tion and time scales that could be reached.

Numerous prior computational studies have aimed
at understanding flap-opening dynamics. Collins et al.
reported flap opening resulting from MD simulations in
the gas phase that involved forcing the atomic coordinates
for nonflap regions of a closed structure to the semiopen
state.36 Scott and Schiffer37 also observed irreversible flap
opening, but the extent of opening was not quantitatively
described. Instead the authors focused on the flap tip
regions, which “curled” back into the protein structure prior
to the opening event, burying several hydrophobic residues.
This flap curling was hypothesized to provide a key confor-
mational trigger necessary for the subsequent large-scale
flap opening. However, a more recent study38 by Carlson
et al. highlighted the challenges in obtaining accurate simu-

lation data by demonstrating that similar irreversible flap
opening could arise from insufficient equilibration dur-
ing system setup; these events were not observed when
more extensive solvent equilibration was performed. More
recently, Hamelberg and McCammon39 applied activated
dynamics to produce flap opening in HIV-PR. In this
case, a trans→cis isomerization of the Gly-Gly peptide
bond was hypothesized to trigger the flap opening. Perry-
man et al. reported dynamics of unbound wild-type and
V82F/I84V mutant in which the closed form opened some-
what, but the authors did not report whether the flaps in
these unbound mutant simulations actually adopted the
semiopen flap handedness as observed in crystal structures
of unbound proteases.40,41 Nevertheless, the high flexibil-
ity of the flaps, particularly for the mutant, was demon-
strated and used for active site inhibitor design for the
drug-resistant mutant.42 Notably, none of these prior com-
putational studies of the free protease reported that the
flaps were able to adopt the semiopen conformation from
either the open structures that were sampled or in other
cases from the initial closed conformation. Therefore it is
uncertain if the behavior in these simulations is relevant
to the true dynamics of the HIV protease; it might simply
represent an inability of the simulation models to repro-
duce experimental observations, or perhaps suggest that
the semiopen form is an artifact of crystal packing and
does not contribute to the solution ensemble probed by the
simulations.

Recently, several reports were published where multi-
ple and, most importantly, reversible opening of the pro-
tease flaps was observed. These works serve as a testi-
mony that simulation methods have finally reached a state
where they can provide valuable insights into enzyme func-
tion on biologically relevant time scales. McCammon and
coworkers43,44 developed a coarse-grain model of HIV pro-
tease in which each residue is modeled using a single
bead at the position of the C� carbon. This treatment sub-
stantially reduces the complexity of the system, permit-
ting the simulations to model behavior on the microsec-
ond time scale. Numerous opening and closing events were
seen; these were realized primarily by large lateral move-
ments of the flaps that exposed the binding cavity. With
the current coarse-grain model, however, the long time
scales are enabled through neglect of atomic detail, which
comes at the cost of not being able to describe more sub-
tle differences, such as those observed between closed and
semiopen crystal structures. There is also no straightfor-
ward way to determine how flap behavior is influenced by
dynamics on the atomic level in terms of specific side-chain
interactions or to gain an understanding of how solvation is
coupled to dynamics.

More recently, our group simulated a multiscale model
of HIV-PR dynamics, in which full atomic detail was main-
tained for the protease, and aqueous solvent was modeled
using a continuum approach.45 These simulations showed
spontaneous conversion between the bound and unbound
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Figure 6.2. Snapshots from molecular dynamics simulations of inhibitor bound and free protease, and from
simulations following the manual docking of the inhibitor into the binding site. The “closed” conformation (a) is
represented by ensemble of closed structures with high similarity (f ). In contrast, the “semiopen” conformation
(b) represents a much more flexible ensemble (g) with larger fluctuations of the flaps. Those eventually lead to full
opening of flaps (c and d); the open form is transient and returns to semiopen conformation (e). When the inhibitor
is manually placed into a binding site (h), it induces an asymmetric flap closure with initial closing of one of the
flaps (i) and finally converting to fully closed form (j ) with flaps pulled into the binding site and flap handedness
appropriate for the closed state.

crystal forms on removal of an inhibitor and reversible
opening of the flaps. Although the simulations of inhibitor
bound form were very stable with no substantial conforma-
tional changes [Figures 6.2(a) and (f)], the behavior of the
system changed dramatically if the ligand was not present.
Removal of the ligand from the protease resulted in spon-
taneous conversion of the closed flap conformation to the
semiopen form [Figure 6.2(b)], similar to that observed in
ligand-free protease crystal structures. Notably, this conver-
sion in the simulations is accompanied by the change in
flap handedness that is in excellent agreement with crystal
structures (Figure 6.1).

Another characteristic feature of the semiopen ensem-
ble generated in these molecular dynamics simulations was
that it exhibited much higher flexibility, particularly in the
flaps region [Figures 6.2(b) and (g)], as compared to the
closed ensemble. Simulations initiated from the free pro-
tease crystal structures showed the same behavior. When
these simulations were extended to longer times, flexibil-
ity of the flaps produced transient openings with large-
scale rearrangements of the flaps and flap-tip distances over
20Å [Figures 6.2(c) and (d)], which can easily accommodate
entry of substrates. Importantly, these fully open confor-
mations were only transiently populated and reproducibly
returned to the semiopen state [Figure 6.2(e)], providing
evidence that the opening events were not artifacts caused
by instability of the system or a poor quality model. Full flap
opening in the simulations occurred through a concerted
downward rotation around the center in the vicinity of the
dimer interface and resulted in noticeable mutual rota-
tion of the two monomers accompanied by large upward
motions of the flaps, in contrast to opening via lateral move-
ments of the flaps as observed in the coarse-grain model.44

Although implicit solvent models have been reported
to provide results that are in good qualitative agreement

with the explicit solvent simulations and experimental
data, some discrepancies, in particular with respect to
inadequate hydrophobic interactions, the stability of salt
bridges and biasing the secondary structure have also been
reported.46–50 Therefore, exploring dynamics with explicit
solvent model is essential to resolve many fundamental
questions associated with the quantitative details of the
enzyme dynamics. Most recently, our group performed one
microsecond MD simulations with explicit solvation model
(unpublished data). For the first time, spontaneous and
multiple interconversions among different flap conforma-
tions of ligand-free HIV-PR were obtained in explicit solvent
simulations. Consistent with our previous implicit solvent
simulations, in the absence of the ligand the protease spon-
taneously and reversibly converted between the closed
and semiopen states with the appropriate reversal of the
flap handedness. This observation provides further evi-
dence that the closed and semiopen crystal forms are both
sampled in the ensemble of the apo protease in solution
and that the conformational change associated with lig-
and binding involves conformational selection rather than
induced fit. Detailed structural analysis revealed that the
rearrangement of Ile50 between intramonomer and inter-
monomer hydrophobic clusters, defined by Ile50 and sev-
eral hydrophobic residues in the core domain from the
same monomer or its symmetry-related monomer, respec-
tively, is coupled to the transition between the semiopen
and closed form; thus the dynamics of those two hydropho-
bic clusters is critical in the mechanism of the conforma-
tional change and its function. Consistent with this view, a
new class of inhibitor just made its debut, which targets the
hydrophobic pocket (or so-called flap-recognition site)51 in
the semiopen state and prevents the flaps from assuming
the proper closed conformation. The experimentally con-
firmed activity of this novel inhibitor not only provides a
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testimonial for the transition mechanism revealed by our
MD simulations, but suggests that modulating the confor-
mational behavior of HIV-PR could be achieved by dis-
rupting the dynamics of intramonomer and intermonomer
hydrophobic clusters. In the same simulation, a sponta-
neous and large-scale opening of the flaps was also cap-
tured, which took place in the similar fashion as observed
in implicit solvent simulations.52 The flap opening dynam-
ics explored by this MD simulation suggested that the flap
opening form is likely an intermediate state along the path
of the dissociation of the dimer, and may therefore be a
manifestation of the dissociative propensity of the dimer
exhibited in experiments[1]. We proposed that the disrup-
tion of the dimer interfaces decreases the binding stability,
which in turn results in large rearrangements of the protein,
including the flap opening. This proposed mechanism is in
accord with experimental observations of the importance
of the dimer interactions, such as intra- and intermonomer
salt bridges involving R87, D29A and intermolecular
interactions involving Thr26 in the stabilization of the
dimer[2].

Even though the direct observation of the fully open
structures and conversion between different flap conforma-
tions in atomic detail simulations were very encouraging,
the question of how relevant the open state was for ligand
binding remained open. We carried out a study to address
these questions by performing unrestrained, all-atom MD
simulations following manual placement of a cyclic urea
inhibitor into the substrate binding site of the open pro-
tease [Figure 6.2(h)].52 In those simulations, the inhibitor
reproducibly induced the protease to undergo spontaneous
conversion to the closed form [Figure 6.2(j)], as seen in all
inhibitor-bound HIV-PR crystal structures. In control simu-
lations without the inhibitor, the open flaps always returned
to the semiopen form. In a typical trajectory, the inhibitor
formed specific hydrogen bonds with one of the catalytic
aspartic acids and one flap [Figure 6.2(i)], accelerating
the closing process. Subsequently, the other flap closed
and helped to pack bulky napthyl groups of the inhibitor
into the binding pockets [Figure 6.2(j)]. Significantly, the
asynchronous closing of two flaps observed in this MD
simulation is consistent with the x-ray crystallographic
study,14 which captured a novel intermediate conformation
in both the wild-type and drug-resistant variant complexes,
with one flap intermediate and the other flap closed. In
addition, our simulations reproduced not only the greater
degree of flap closure but also the striking difference in the
flap handedness between bound and unbound proteases.
The transitions between the three forms are summarized
in Figure 6.3. These simulations provide further evidence
that a rearrangement of the ensemble of conformations
sampled by the protease-binding pocket indeed occurs on
ligand binding.

Another report used molecular dynamics constrained
to dihedral angle space to speed up the sampling.57 The
authors also observed transitions between semiopen and

Figure 6.3. Schematic representation of simulated transitions between
the three protease forms. The closed flap conformation converts to
semiopen on removal of ligand. Ligand induces the closure of the open
form. Free protease exists primarily in semiopen form but transiently
changes to fully open and, occasionally, even to the closed form that is
only weakly populated in the absence of a ligand.

open conformations, although the semiopen structure
following the opening event did not show close agree-
ment with the crystallographic form, which might have
resulted from simplifications used in internal coordinate
space dynamics. The same authors followed this report with
another study reporting protease flap closing induced by
substrate binding.58 Once again, flap closing was observed
to follow an asymmetric path, in accord with our observa-
tions.

In summary, the recent molecular dynamics simulations
coming from different groups and using different simula-
tion methodologies and force fields provide compelling evi-
dence that the major features of protease dynamics are gen-
erally reproduced and are independent of specific system
setup details. These studies also serve as a clear indica-
tion that the flexibility and the dynamic behavior of HIV-
1 protease are amenable to computational analysis, and
the resulting data may form the foundation of a flexibility-
based drug design process.

The ensemble of HIV-PR unbound structures in solution

Both simulations and NMR results agree that a wide-open
flap conformation is a rare event. However, there is no
consensus about the predominant flap conformation of
the free protease in solution; that is, is it an ensemble
of semiopen forms, closed, or the curled conformation?
Although a semiopen flap conformation was most often
observed in crystal structures of the dimer, the free enzyme
might adopt a different conformation in solution, because
crystal packing contacts and crystallization conditions may
alter the conformations of the flaps in crystal structures
of HIV proteases.59–61 To address this question, we carried
out a series of simulations of the HIV-PR (PDB code:2G69)
with or without the inclusion of the crystal-packing envi-
ronment and observed that without the surrounding crys-
tal packing contacts, the semiopen x-ray structure in solu-
tion rapidly adopts a variety of conformations, including
the closed conformation (unpublished data). When crystal-
lographic neighbors were included in the simulation, the
semiopen form was stable throughout and did not undergo
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Figure 6.4 Detailed view of 2G69 crystal packing interactions involving
HIV-PR flaps (shown in green). Ile50 and Gly51 on the flap tip of one
monomer (purple) interact with Gln92 and Ile93 on the helical region of
a monomer in a neighboring dimer (yellow).

conformational changes due to the interactions between
Ile50, Gly51 on the flap (loop), and Gln92/Ile93 from the
surrounding lattice molecule (shown in Figure 6.4). Thus
crystallographic contacts likely play a role in the observed
flap conformations, but it remains unclear to what extent
this relatively small energetic influence can affect the over-
all ensemble.

On the basis of nuclear Overhauser effect spectroscopy
(NOESY) spectra, NMR relaxation data of the dimer,34,62

and available crystal structures, Ishima et al. have pro-
posed that the flaps are best described as an ensemble of
semiopen conformations that are mostly hydrogen-bonded
beta-hairpin structures but undergo rapid conformational
exchange in the tips of the flaps (residues 49–52). In addi-
tion, other simulations38,52,55 and our comparison study
of MD simulation ensembles and EPR experiments28 have
predicted that the predominant flap conformation of the
dimer in solution is likely to be represented by an ensem-
ble of semiopen forms. However, several recent simulations
also predicted that the flaps could adopt diverse curled
conformations,37 with or without the exposure of the active
site to solvent. Although there is no direct experimental
evidence to support curled conformations, the existence
of a curled conformation as a minor conformer should
not be ruled out, because the generalized order parame-
ters derived from simulations that predicted both semiopen
and curled conformations qualitatively reproduce those
derived from NMR relaxation data.52,63 Additionally, curled
and semiopen models both qualitatively satisfy the char-
acteristic beta-hairpin 1H-1H intrasubunit NOEs,34 because
the flaps mostly adopt a beta-hairpin conformation in both

models. One possible explanation for the structural hetero-
geneity of apo HIV-PR is that it has evolved to be as rigid
as possible while remaining flexible enough to recognize
its diverse substrates and adapt their structures to different
binding partners as observed in other proteins;64–66 thus,
it is possible that the true ensemble of apo HIV-PR might
cover the complete structural heterogeneity observed in
both crystals and MD simulations. In addition, it is assumed
that the conformational selection might be responsible for
the binding of the ligand rather than the induced fit; this
selection scheme might account for the “sloppy” recogni-
tion of HIV-PR,67,68 which still remains incompletely under-
stood.

Proposed molecular mechanisms of resistance

Classical and ab initio MD simulations reveal69,70 that pro-
tease flexibility modulates the activation free-energy bar-
rier of the enzymatic cleavage reaction. In drug-resistant
mutants, the active site mutations are often associated
with mutations that partially restore the enzymatic func-
tion (“compensatory mutations”) and frequently occur in
regions distant from the active site. The mutations in these
positions may enhance the catalytic rate of the protease
mutants by affecting the flexibility of the protein. Although
the authors provide a plausible explanation of how com-
pensatory mutations work, they do not suggest how this
understanding could be extended to the design of drugs
that escape protease mutations.

Schiffer, in her earlier MD simulation study,37 proposes
a model for overcoming resistance based on an observa-
tion of HIV-1 protease conformation with flaps “curled”
such that they allow substrate access to the active site. The
authors suggest that this “open” conformation is crucial
and the inhibitors should be designed to lock the flaps in
their “open” conformation and believe that such inhibitors
would be less susceptible to the development of drug-
resistant variants. Along this line, three crystal structures of
apo wild-type HIV-PR (PDB code 2PC0) and multiple drug
resistance (PDB code 1RPI and 1TW7) in a “wide-open”
conformation were reported recently.18,21,22 These observa-
tions provide insight into the flexibility of the flap regions,
the nature of their motions, and their critical role in bind-
ing substrates and inhibitors. Nevertheless, unlike all pre-
vious apo HIV-PR crystal structures, the binding pockets
in all three “wide-open” x-ray crystal sturctures are more
exposed because of much further separation of the flaps.
Even though the structure differs from the “open” structure
proposed by Schiffer, the idea of resistance remains roughly
the same. The authors indicate that the structural flexibility
with respect to flap dynamics and induced-fit recognition of
substrates and inhibitors might account for the emergence
of drug resistance. However, in a recent report, molecular
dynamics simulations were performed for the MDR isolate,
starting from the open crystal structure (PDB code 1TW7).
Although simulations including crystal packing contacts
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Figure 6.5. Detailed view of 1TW7 crystal packing interactions involving
HIV-PR flaps (shown in green). The flap tip of one monomer (purple)
is wedged into the elbow region of a monomer in a neighboring dimer
(yellow).

reproduced the crystal structure, simulations without crys-
tal packing contacts reproducibly reverted to the closed
form observed in crystal structures of the bound wild-type
protease.71 Further analysis suggests that the wide-open
structure observed for MDR 769 arises not from sequence
variation but instead is an artifact from crystal packing (Fig-
ure 6.5) at the elbow region. Therefore, whether the “wide-
open” conformation is relevant to the flap dynamics and
drug resistant remains an open question.

Kollman and coworkers used free-energy calculations for
HIV-PR inhibitors to study drug resistance.72 They decom-
posed binding affinities into contributions from different
side chains in the active site. Based on the results, they sug-
gested that inhibitors deriving significant fractions of their
binding affinity from interactions with side chains that were
not correspondingly important for substrate affinity would
be more susceptible to mutation. The authors suggested
that drugs should be designed to fall within the free-energy
“recognition profile” and not gain a large amount of their
affinity through interaction with nonconserved residues.
Recently, Schiffer’s group proposed an interesting variation
on this approach, the substrate envelope hypothesis.73 They
suggest that the recognition of an asymmetric substrate
is based on its complementary shape (i.e., whether it fits
well to the cleavage site). By analyzing the steric region
occupied by a variety of substrates and inhibitors, they
showed that resistance often arises when inhibitors venture
beyond this “permitted” volume. Therefore, inhibitors that
fit within the steric envelope of HIV-1 protease might be
more effective and less susceptible to drug resistance muta-
tions. The same group suggested another possible mech-
anism for drug resistance,74 based on observation of the
importance of the nineteen core hydrophobic residues in
facilitating conformational changes of HIV-1 protease. They
suggested that sliding of those hydrophobic core residues
by each other enables them to exchange the partner of
hydrophobic contacts, while maintaining many structurally
important hydrogen bonds. Mutations of these residues in
HIV-1 protease would alter the packing of the hydrophobic

core, thus affecting the conformational dynamics of the
protease.

Another appealing explanation of resistance was pro-
vided by Freire based on microcalorimetric measurements
of protease-binding thermodynamics.75,76 In solution the
peptide substrate has a higher flexibility than the syn-
thetic inhibitors and therefore suffers a higher conforma-
tional entropy loss on binding. However, because of its
higher flexibility, the peptide substrate is more amenable
to adapt to backbone rearrangements or subtle conforma-
tional changes induced by mutations in the protease. The
synthetic inhibitors are less flexible, and their capacity to
adapt to changes in the geometry of the binding pocket is
more restricted.

Both computational and experimental studies showed
that, in case of HIV-1 protease, there are differences in ther-
modynamic stability among the alternate protease forms
that should be included when considering ligand-binding
affinity. Because the structure of the transient open form
was suggested in only recent molecular dynamics studies,
the description thus far has focused on thermodynamic dif-
ferences between closed and semiopen forms. For exam-
ple, the free energy change �G calculated by reaction path
method estimated that the semiopen form is more favor-
able than closed, with stabilization contribution coming
primarily from the entropic term.77 This analysis is consis-
tent with NMR relaxation data and is very reasonable given
the high glycine content of the flap tips. As was shown by
calorimetric experiments, a large favorable entropy change
is also the major driving force for high binding affinity of
current HIV-1 PR inhibitors.78,79 However, in this case it is
the favorable solvation entropy associated with the burial of
a large hydrophobic surface on inhibitor binding. Detailed
thermodynamic analysis78 of wild-type and active site resis-
tant mutant (V82F/I84V) suggests that the mutation lowers
the binding affinity in two ways: first, directly by altering the
interaction between inhibitors and the protease (binding
enthalpy and entropy), and second, indirectly by altering
the relative stability of free (semiopen) and bound (closed)
form on inhibitor binding. Importantly, mutations that sta-
bilize the semiopen flap conformation will lower binding
affinity due to the increased energy penalty required for
flap reorganization on substrate/inhibitor binding. There-
fore, the free-energy penalty associated with shifting the
ensemble of conformations sampled by the protease should
be included in any accurate calculation of binding affinity.

These few examples of proposed mechanism of resis-
tance raise several important points. To preserve the func-
tion of the mutant protease (i.e., still efficiently cleave the
viral polyprotein) the enzyme can introduce alterations in
the active site but the correct dynamics or flexibility must be
preserved and/or the active site changes must be compen-
sated by the flexibility of the substrate. Because the compet-
itive advantage of the synthetic inhibitors’ strong binding
likely arises from their rigidity, it has been rather
challenging to design flexible inhibitors that bind stronger
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than the natural substrate while retaining the ability to
adapt to a binding pocket that varies in shape. An exam-
ple of such a flexible inhibitor is KNI-764 (also known
as JE-2147), which was shown to remain potent against
MDR protease strains.80 It was again demonstrated by
calorimetric measurements81,82 that, in contrast to pre-
vious inhibitors, these second-generation inhibitors bind
strongly mainly due to favorable enthalpy change.

Another strategy to evade mutations in the active site
is to design inhibitors that primarily form interactions
with the backbone rather than side chains of the active
site83,84 such that mutations in the binding site may not
effect the inhibitor binding. A conceptually different strat-
egy arises from consideration of HIV-PR flexibility. Rather
than accommodating changes in shape or affinity of the
binding site, one may try to interfere with the dynamics of
the protein. Assuming that enzyme dynamics must remain
conserved, the virus may have a more difficult time evolv-
ing mutations that would restore functional dynamics of the
protease.

Drug design targeting protein flexibility: New allosteric
inhibitors

In light of the discussion above, an attractive alternative
approach to designing protease inhibitors would target the
thermodynamic balance of the closed, semiopen, and open
ensembles. This might be achieved by designing allosteric
inhibitors that do not directly compete with substrate for
the same binding site but indirectly change the flexibility
of the protease such that the balance of the three states is
shifted.

The possibility of allosteric inhibitors of HIV pro-
tease was suggested previously.40,41 Based on molecular
dynamics simulations that showed anticorrelated behav-
ior between the flap opening and the compression of the
elbow region, the authors suggested targeting the protease
elbow region [see Figure 6.1(b)] as an allosteric site. How-
ever, no experimental evidence to support this hypothesis is
yet available. It is interesting to note, however, that the only
experimentally determined structure with an open binding
pocket85 (the crystal structure of the MDR isolate discussed
above and shown in Figure 6.5) indeed has a crystal packing
contact involving insertion of residues from a symmetry-
related neighbor into the elbow region.71 This observation
provides strong experimental support that this site may be
a promising candidate for allosteric inhibition.

Another potential target for allosteric inhibition is the
protease dimer interface [see Figure 6.1(b)]. NMR exper-
iments measuring backbone amide chemical exchange
transverse relaxation rates34 indicated that the flexibility in
the four-stranded beta-sheet dimer interface increases on
inhibitor binding. This suggests a coupling between the
ligand-binding site and the dimer interface. This coupling
(even though in the opposite direction) is also observed
in the crystal structure of a free HIV-1 protease in which

the N- and C-termini of the two protease monomers were
tethered.86 Unlike all other crystal structures of the free pro-
tease, this “monomeric” protease exhibits the closed flap
conformation. Last but not least, there has been a continu-
ing effort to design inhibitors of protease dimerization.87,88

An interesting recent report89 demonstrated that some of
the inhibitors initially designed to prevent dimerization
actually did not disrupt the dimer interface and yet showed
substantial protease inhibition. The authors thus con-
cluded that these compounds acted as allosteric inhibitors
binding at the dimer interface, indirectly reducing the bind-
ing affinity of the substrate.

Further evidence that these sites may provide useful tar-
gets for allosteric inhibitors has been shown by Rezacova
et al.,90 who developed monoclonal antibodies with potent
inhibition of the protease function. These targeted two non-
binding site regions of the enzyme: one corresponds to
residues 36–46 (flap elbow) and the other to residues 1–6 at
the dimer interface. Significantly, the inhibition mechanism
of this new class of inhibitor is revealed by the observa-
tion of anticorrelation behavior between the compression
of the same exo site and the flap opening during our simu-
lation (unpublished data). Therefore, those inhibitors may
function as an allosteric inhibitor by disrupting the native
fold or even dimerization interface. Yet another example
of potentially exploitable allosteric inhibition was reported
for �-lactam compounds.91 The authors demonstrated that
the inhibitors are noncompetitive and that they only inter-
act with ligand-bound enzyme and suggested the mech-
anism of inhibition through interaction of �-lactam com-
pounds with the closed flap region of the enzyme-substrate
complex.

A novel class inhibitor targeting the hydrophobic core
of one monomer (or so-called flap-recognition pocket) has
recently been proposed.51 It suggests that the presence of a
ligand in the core hydrophobic pocket might alter the con-
formational behavior of the flap region and prevents the
substrate’s access to the active site or disrupts substrate
cleavage due to the inappropriate or incomplete flap clo-
sure. This class of inhibitor highlights the importance of
hydrophobic contacts between the flap and core domain in
the stability of different conformations and thus provides
further evidence of the transition mechanism the flaps sug-
gested by MD simulations.

Even though the existence of HIV-PR allosteric sites has
not yet been shown experimentally, it has been argued
that their presence is very likely for all dynamic proteins.92

The allosteric inhibitors do not compete with natural sub-
strate and thus their effect is not decreased by higher con-
centration of the substrate. They also have a potential for
better selectivity.92 Moreover, the hydrophobic character
of the HIV-PR active site leads to hydrophobic protease
inhibitors and therefore results in their undesirable poor
water solubility.93,94 Thus an additional advantage of the
three allosteric sites discussed above stems from their polar
character, which could improve bioavailability.
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CONCLUSIONS

The pronounced differences in bound and unbound pro-
tease crystal structures and NMR studies provide exper-
imental evidence that HIV-1 protease flexibility plays
a crucial role in its function. Numerous computational
studies reviewed here emphasized the importance of
protease dynamics in substrate and inhibitor binding.
Taken together, this opens new opportunities for develop-
ing protease inhibitors in which protease dynamics and
flexibility, as determined through computer simulation, are
explicitly targeted in the inhibitor design process. Specif-
ically, influencing the thermodynamics of the three pro-
tease states (closed, semiopen, and open) might disrupt
its function. It remains to be seen whether this approach
makes it more difficult for the enzyme to evolve resistant
mutations.

Computer simulations aimed at accurate quantitative
description of protease dynamics still face challenges, even
though atomic-level and coarse-grain simulations comple-
ment each other in their predictive abilities. All-atom sim-
ulations provide a model that is able to reproduce experi-
mentally observed structural changes, predict a new open
structure inferred from experiments, and show transitions
between all these forms. However, coarse-grain models
could provide a more statistically valid thermodynamic
description of the flap opening and thereby provide quan-
titative estimates for the shift in equilibrium arising from
protease mutations. Thus far, the accuracy of the coarse-
grain model does not appear to be sufficient to reproduce
the detailed conformational changes that accompany bind-
ing (i.e., changes between closed and semiopen forms).
Full atomistic models may therefore serve as an important
reference for calibrating and improving the coarse-grain
models.

In summary, because of improved quality of the com-
putational models and the ability to extend simulations
to biologically relevant time scales, computational tech-
niques have finally reached the stage where they can repro-
duce experimental observations. Perhaps more important,
however, is that simulations can now complement experi-
ments by providing valuable insights into dynamic events
as well as energetic aspects of ligand binding and drug
resistance.
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Docking: a domesday report

Martha S. Head

In 1085, most likely from a desire to audit his tax revenues,
William the Conqueror commissioned a survey of the land
and resources of the country over which he reigned.1 The
results of that survey come down to us in two tomes, the
Little Domesday and the Great Domesday, in which were
recorded voluminous amounts of data concerning the land,
people, buildings, and chattel throughout England. By no
means was this a complete record; large swathes of urban
England – London, for example – were not included, nor
was there any census of church personnel or property. The
Little and Great Domesday books accordingly are an odd
mix of completeness and incompleteness, leaving out such
large parts of English society yet cataloguing to an excruci-
ating level of detail within the areas surveyed.

Similarly, this chapter is a complete yet incomplete sur-
vey of the docking and scoring landscape. We do not review
the general principles of docking technologies; a sufficient
number of such reviews have been published in peer-
reviewed journals alone.2–20 Nor do we evaluate the state of
the art for docking programs and scoring functions; a num-
ber of well-regarded and careful evaluations describe the
current capabilities and limitations of the technology.21–26

Instead, under “Comments on the Theory of Docking” we
will make explicit the connections between docking and
a theory of noncovalent association. Under “Finding New
Leads with Docking” we take census of docking virtual
screens carried out in this decade, and under “Predicting
Bound Poses with Docking” we examine the role of exper-
tise in predicting docked poses of small molecules bound
to protein targets. From this mix of general overview and
detailed analysis, it is hoped that we will develop a realis-
tic snapshot of how docking is used in the pharmaceutical
industry as a tool for drug discovery and design.

COMMENTS ON THE THEORY OF DOCKING

The standard free energy of noncovalent association of a
protein and ligand in solution at constant pressure can be
written as27

� G◦
sol,PL = −RT ln

(
C◦

8�2

	P	L

	PL

)
− RT ln

(
ZPL

ZP ZL

)
+ P◦� V̄ ,

(7.1)

where C ◦ is the standard concentration (generally one
molar), 	X are symmetry numbers for each species, P ◦ is
the standard pressure (generally one atmosphere), � V̄ is
the change in equilibrium volume, and ZX are configuration
integrals for each species:

ZX ≡
∫

e−�E(r)d r. (7.2)

The work P ◦� V̄ associated with changes in equilibrium
volume due to complex formation is generally negligible,
and the first term of Equation (7.1) is fully specified for a
given protein/ligand pair at a particular standard concen-
tration; the task of computing the free energy of association
accordingly reduces to computation of the configuration
integrals ZP, ZL, and ZPL. For the rest of the discussion,
therefore, equations will be written in a simpler and more
compact format, for example:

� G◦
sol,PL = −RT ln

(
ZPL

ZP ZL

)
, (7.3)

but it should be kept in mind that those missing terms are
still implied.

In principle, Equation (7.1) provides an exact expres-
sion for the free energy of noncovalent association; putting
the theory into practice, however, presents a number of
computational challenges. In the previous chapter, Shirts,
Mobley, and Brown described several strategies for com-
puting both relative and absolute free energies,28 many of
which tie directly to the theory underlying Equation (7.1).
For example, alchemical techniques for computing relative
free-energy differences between two related ligands L1 and
L2 binding to the same protein can be expressed as ratios of
configuration integrals27:

��G = � GPL2 −� GPL1 = −RT ln
(

ZPL2

ZPL1

)
+ RT ln

(
ZL2

ZL1

)
,

(7.4)

while the Zwanzig relationship discussed by Shirts et al. cor-
responds to replacing those ratios with the average free-
energy difference extracted from simulations run under the
Hamiltonian of ligand L1:

ZPL2

ZPL1

= 〈
exp−�[HPL2 (x)−HPL1 (x)]〉

P L1

Z L2

Z L1

= 〈
exp−�[HL2 (x)−HL1 (x)]〉

L1
. (7.5)

98



99 Docking: a domesday report

The implicit-solvent predominant-states methods29–31

mentioned by Shirts et al. replace the full configuration
integrals of Equation (7.2) with a summation over con-
figuration integrals for the most favorable minima on the
potential energy surface:

ZX =
M∑

i=1

zi , (7.6)

where the M individual configuration integrals zi are com-
puted using techniques such as estimation by harmonic
approximation, harmonically biased sampling, or unbiased
Monte Carlo integration.

Similar connections can be made between docking and
Equation (7.1). As with the relative free-energy methods,
the contribution due to the protein in solution is constant
across a set of ligands binding to the same protein. For rel-
ative free-energy methods the protein configuration inte-
grals cancel in the expression for ��G, Equation (7.4); in
comparison, for docking ZP is assumed constant:

� G◦
sol,PL ≈ −RT ln

(
ZPL

ZL

)
+ K , (7.7)

where K has been explicitly written to emphasize that the
protein configuration integral ZP has been subsumed into
K with the symmetry-number and standard-concentration
portions of Equation (7.1). For most but not all docking
methods, the contribution due to the ligand free in solution
is also treated as constant. Finally, in analogy to an extreme
case of the predominant states methods, docking methods
generally replace the full configuration integrals of Equa-
tion (7.2) with the single energetically most favorable state:

� G◦
sol,PL ≈ −RT ln

(
zPL,0

zL,0

)
+ K (7.8)

and the entropic component of the integral is either
ignored:

zX,0 ≡
∫

exp−�E X (r0) dr0 ≈ exp−�E X,0 (7.9)

or is approximated by inclusion of terms to account for
the entropic penalty of confining the ligand within the
protein binding site (Chang, Chen, and Gilson and refer-
ences therein).32 On application of all of the approximations
that are typically inherent in docking calculations, Equation
(7.1) reduces to

� G◦
sol,PL ≈ EPL, (7.10)

where a docking “score” EPL is computed for a single pose
of a ligand docked into a protein binding site. In specific
docking implementations, that score might be as simple as
a counting of favorable interactions between protein and
ligand or as complicated as a force field energy calculation
supplemented by estimates of the free energy of the ligand
in solution, the solvation differences between uncomplexed
and complexed species, and the entropic cost for localizing
the ligand to a specific location.

Given the approximations made to the underlying the-
ory, it is no surprise that most studies have shown no

correlation between docking score and affinity for closely
related analogs.24,33 There have of course been reports of
specific examples where a correlation is seen between affin-
ity and docking score34,35 or between affinity and interac-
tion energy.36 As a general practice, therefore, the expe-
rienced computational chemist will explore all possible
correlations in the hope that one will prove reliable enough
to guide design and synthesis. The more typical case, how-
ever, is that there will be no reliable signal for decision-
making, and the computational chemist must fall back on
more computationally expensive methods such as those
described by Shirts et al. or on more heuristic strategies –
for example, docking large numbers of analogs and assess-
ing emerging patterns of interactions.

FINDING NEW LEADS WITH DOCKING

The availability of large numbers of protein crystal struc-
tures (almost 54,000 public structures in the RCSB as of
October 200837) strengthens the impetus to make use of
that structural information, particularly in those pharma-
ceutical companies that have made substantial internal
investments in structural biology personnel and infrastruc-
ture. The intuitive hope has been that protein structures
would prove particularly useful for finding novel starting
points – leads – for drug discovery efforts, and docking
and scoring technologies have seemed particularly relevant
tools for virtual screens of large databases of compounds
against these protein structures because docking-based vir-
tual screens are in principle not limited by a need for or sim-
ilarity to known ligands. Indeed, in many recent publica-
tions, authors have asserted that docking technologies have
improved and that virtual screening successes have become
more prevalent. In this section, a survey of the docking
landscape will examine whether such assertions are well-
founded pragmatism or unwarranted optimism.

Taking census of docking screens, 2000–2008

A census has been carried out for all docking-based virtual
screens reported during the period January 2000 through
October 2008; the census covered all peer-reviewed scien-
tific journals up through the time of the submission of this
chapter to the book editors. Literature searches using terms
such as “docking,” “virtual screening,” and so on, were car-
ried out in SciFinder,38 PubMed,39 and Google Scholar.40

Non-English-language journals were included in the cen-
sus only if abstracts provided sufficient detail concern-
ing the virtual screening process and results. The initial
manuscripts from these literature searches were supple-
mented to include examples from docking reviews that
were not found using simple docking-related search terms.
This set of literature searches returned substantially more
than 1,000 publications for review and compilation.

From the collection of virtual-screen reports compiled,
screens against DNA or RNA targets were removed; the
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census included only virtual screens to identify small
molecules interacting with protein targets. Protein target
classes were not categorized for the census, nor was any
differentiation made between virtual screens against pro-
tein crystal structures or homology models. The collection
of reports was further filtered to include only prospective
virtual screens to identify small molecules active against a
particular protein target; validation studies were included
only if they included some prospective lead-identification
component. In many examples included in the census,
additional techniques were used to prefilter compound
databases or postscore docking results – indeed, it was only
a rare occurrence when the screen practitioner did not at
least postscore the results by visual inspection. Reports in
which docking was the primary part of the virtual screen-
ing process were retained, but reports in which docking
was only a minor adjunct to a virtual screen using pharma-
cophores, molecular shapes, substructures, or 2D descrip-
tors were excluded. The actual docking programs used were
not categorized, and the census represents every major and
many minor docking programs.

Virtual screen results were extracted from the collection
of reports that survived this filtering process. A surpris-
ingly large number of peer-reviewed manuscripts reported
no experimental data and instead reported only computed
docking scores without any experimental verification of
the proposed inhibition; all such reports were removed
from the final tally. For the virtual screens with reported
experimental data, scientists performing the docking stud-
ies selected a widely varying number of compounds for
experimental assays, from as few as two molecules to more
than 500. The final tally did not include every experimen-
tal result for every selected molecule from any particu-
lar virtual screen but instead included only the single best
result for any molecule chosen in the virtual screening pro-
cess. In some studies, hits were followed up by substruc-
ture searching or synthesis of related molecules; only the
original hits from the virtual screen were included in the
tally. In many cases, authors reported experimental results
from the primary assay but had not performed orthogonal
assays to confirm those results. In these instances I made
no attempt to assess the plausibility of any particular result;
no reported hits were excluded, even in cases where hit
molecules contained features conducive to aggregation or
assay interference. The literature search and filtering pro-
cess described here of course could not produce a complete
and exhaustive set of all manuscripts describing a prospec-
tive docking-based virtual screen, but the process has gen-
erated a sufficiently representative set of publications to
allow for the analysis of trends in the real-life use of dock-
ing for lead identification.

Analysis of the census results

At the end of this literature search and filtering process, the
final census included ninety-eight publications represent-

Table 7.1. Docking-based virtual screens for
which experimental results were reported during
the period January 2000–October 2008,
aggregated into activity bins

Activity range Count Reference

�1 �M 18 41–58

1–10 �M 32 59–89

10–100 �M 37 90–126

�100 �M 9 104; 127–134

No hits 3 135–137

ing ninety-nine docking-based virtual screens for which
experimental data were reported.41–137 The best reported
activity for each screen has been tabulated and binned
into five activity categories: �1 �M, 1–10 �M, 10–100�M,
�100�M, and no hits; these aggregate affinity results are
listed in Table 7.1. The largest number of hits fell in the
10–100�M range; for this category, the average IC50 value
was 33 �M and the median value 24 �M. Eighteen virtual
screening hits were reported to have experimental activities
of �1 �M, which corresponds to two potent hits for each
year in the census period. The census compilation con-
tained very few results with affinities �100 �M, presumably
due to reporting bias and lowered publication acceptance
rates for negative results.

These aggregate data have been broken out by year (Fig-
ure 7.1); in this graph, the final two categories, “�100 �M”
and “no hits,” were combined into a single bin. As expected
based on simple averaging, roughly two submicromolar hits
per year were reported during the census period, with only
two years early in the decade for which no such hits were
reported. In 2007, the number of published docking-based
virtual screens increased substantially, relative both to the
previous year and to the pattern of increases over the period
2000–2005. Albeit with small changes in the actual distri-
bution between the two low-IC50 categories, the number
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Figure 7.1. Docking-based virtual screens for which experimental results
were reported during the period January 2000–July 2008, categorized
by year.
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Figure 7.2. Docking-based virtual screens for which experimental results
were reported, January 2000–July 2008; distribution of potencies by
half-decade.

of compounds with activities less than 10 �M was roughly
constant across the census period; the largest increase in
number of reports was for compounds with IC50 greater
than 10 �M. Given the increase in number of hits with
poorer activity, it at first blush appears that docking did not
improve but instead stagnated or even deteriorated during
the census period. Because there were as many as ninety-
nine individual reports in the census, a sufficient amount
of data was available to more carefully assess whether the
apparent trend toward less potent compounds was statisti-
cally significant.

The census data were further aggregated by half-decade
to smooth out the annual fluctuations in number of
reported screens and in distribution of hit activities, partic-
ularly for the dips in number of reports in 2002, 2004, and
2006. The binned data for the two half-decades, 2000–2004
and 2005–2008, are shown in Figure 7.2. The distribution
for 2000–2004, magenta bars in Figure 7.2, is roughly sym-
metric with a peak at the 1–10 �M bin, while the 2005–2008
distribution, periwinkle bars, peaks at 10–100 �M but has a
substantial tail on the more potent, lower IC50 side of the
graph. Both the shapes of the distributions and the average
activities appear to differ between the first and second half
of the decade.

Two statistical tests were applied to assess the signifi-
cance of the apparent differences in distributions and aver-
ages between the two half-decades. Differences in distri-
bution were assessed using the � 2 test for consistency in
2 × K table.138 The null hypothesis for this test asserts that
the histograms in Figure 7.2 reflect samples drawn from
two underlying distributions that are identical; a � 2 value
substantially greater than zero would support the visual
impression that the two half-decade distributions differ.
Expected frequency distributions for the two half-decades
were computed according to Equation (7.11):

ei j = Ni ni j

N1 + N2
, (7.11)

Table 7.2. Docking-based virtual screens for which
experimental results were reported; average IC50

values for each half-decade

Time Median 95% Confidence
period activity interval

2000–2004 5 �M 2–20 �M

2005–2008 13 �M 5–20 �M

where i takes on the values 1 and 2 representing each of the
half-decades, j ranges from 1 to 4 representing each activ-
ity bin in the histogram, nij is the number of samples for a
specific activity bin in a specific half-decade, N1 is the total
number of samples for 2000–2004, and N2 is the total num-
ber of samples for 2005–2008, resulting in eij, two new dis-
tributions in which the observed frequencies in Figure 7.2
have been normalized by the fraction of all reported vir-
tual screens that occurred during each half-decade. The � 2

3

statistic for three degrees of freedom was computed from
these normalized expected frequencies according to Equa-
tion (7.12):

� 2
3 =

4∑
j=1

(n1 j − e1 j )2

e1 j
+

4∑
j=1

(n2 j − e2 j )2

e2 j
. (7.12)

The computed � 2
3 statistic for the distributions in Figure 7.2

is 7.17, which corresponds to a cumulative probability of
0.93.139 We can therefore reject the null hypothesis at the
p � 0.07 significance level and conclude that the underlying
distributions likely differ between the periods 2000–2004
and 2005–2008.

For the 2005–2008 period, an increase was seen for
the number of hits in both the high-potency “�1 �M”
and the poorer potency “10–100 �M” categories. Therefore,
although the shapes of the distributions differ, the null
hypothesis that average activities for the half-decades are
identical remains plausible. Medians were used to exam-
ine average activities because medians are robust to exper-
imental errors (a likely issue with data for many different
proteins measured in many different labs), robust to out-
liers such as the three no-hit examples to which a mea-
sured activity value could not be assigned, and robust to
nonnormal distributions – we have no reason to expect a
Gaussian distribution for these data. Median activity values
were computed along with the 95% confidence intervals for
those averages (Table 7.2). The median activity for the sec-
ond half-decade was less potent than that for the first half-
decade, but there was significant overlap of the range in
which the true average probably lies. The Wilcoxon-Mann–
Whitney nonparametric rank-order test was therefore used
to assess the statistical significance of the differences in
average affinity140:

Z = |� − T | − 0.5
	

, (7.13)
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where

� = N1(N1 + N2 + 1)
2

	 =
√

N2�

6

and T is the smaller sum of ranks in an ordered list of the
merged set of activities for the two half-decades. For these
census data, T = 1468, N1 = 32, N2 = 67, and Z was there-
fore 0.98. By reference to a normal distribution table, this
corresponds to a 68% confidence that the average affini-
ties are different. Note that there were three virtual screens
for which the reported high-potency hits were not suffi-
ciently well characterized (vide infra); if these three values
are removed, it is 84% likely that the average affinities for
2005–2008 are less potent than for 2000–2004.

Recommendations from census results

In the previous section, we saw that distributions of hit
activities differed between the periods 2000–2004 and 2005–
2008 and that there was a 68% probability that the average
potency decreased for the latter half-decade. One hypoth-
esis that might explain these statistically significant differ-
ences is that docking algorithms have gotten worse over the
decade; however, the number of hits �10 �M has remained
relatively constant across the years, an observation that
is more consistent with the hypothesis that docking algo-
rithms as a class have performed at a consistent level across
the decade. Although there have almost certainly been
modifications and improvements to specific docking algo-
rithms, the census data for prospective virtual screens sug-
gest that those improvements have been incremental at
best. A second hypothesis to explain increased average hit
IC50s is that docking has been applied to harder targets dur-
ing the second half-decade. Although I have not painstak-
ingly catalogued the target classes in all ninety-nine virtual
screens, a quick scan of the specific targets in these screens
suggests that differences in target class do not explain dif-
ferences in average activity. Enzymes are the most repre-
sented class of targets, with kinases, proteases, transferases,
phosphatases, and so forth having been screened regularly
during the years in this survey. If anything, targets were
more difficult earlier in the decade, with a few brave (fool-
hardy?) researchers applying docking to lead identification
for ion channels, protein/protein interactions, and even
G-protein-coupled receptors (GPCRs). It is also plausible to
hypothesize that the pattern of activities, especially in 2007
and 2008, is due to a greater willingness to publish compu-
tational studies with less positive results. If so, that would
be a valuable practice for the field as it would allow a more
accurate assessment of how docking algorithms perform in
the real world of prospective screens rather than in retro-
spective tests. And one final hypothesis must be that dock-
ing has become a tool for the unwary; docking programs
have gotten easier to use, performance improvements have
been made to individual docking programs, more structural

data and larger collections of purchasable compounds have
become available, and all of these factors have led to more
opportunities for less experienced users to give it a try. No
matter what the underlying explanation for differing distri-
butions, a closer examination of the eighteen most potent
hits in the census, listed in Table 7.3, suggests strategies that
might improve the chances for identifying submicromolar
hits from docking-based virtual screens.

To identify docking strategies that might have been
conducive to the identification of submicromolar hits, all
ninety-eight references were read but the eighteen refer-
ences in Table 7.3 were examined much more carefully. Of
the eighteen virtual screens represented in Table 7.3, the
vast majority sought enzyme inhibitors; of the three nonen-
zyme protein targets, two virtual screens sought competi-
tive binders to the estrogen receptor and the third sought
ATP-competitive antagonists of the chaperone Hsp90; none
of the eighteen virtual screens targeted the much more
challenging ion-channel, protein/protein interaction, or
GPCR target classes. Of the enzyme targets in these eigh-
teen virtual screens, the most highly populated classes
were kinases (4) or oxidoreductases (3). One might there-
fore hypothesize that the secret to success would be to
carry out a docking-based virtual screen against a protein
kinase. Assessing that hypothesis more closely, 22% of the
targets in the �1 �M activity bin are kinases; in contrast,
20% of the targets in the combined 1–10 �M and 10–100 �M
bins are kinases, while there are no kinases among the nine
virtual screens with hits �100 �M. The more likely hypoth-
esis, then, is that a virtual screen of a protein kinase is
likely to produce hits with measurable experimental activ-
ity, but those hits are as likely to be 10 �M as 10 nM. Instead,
exact methodological details of how a virtual screen was run
seems a more important factor in success rates for identify-
ing the more potent hits:

� Of the virtual screens in Table 7.3, only four used any
variant of the NCI database as a source for search-
able compounds, while a higher proportion of screens
with less potent hits searched databases from that
source. Instead, the virtual screens with submicromo-
lar hits were more likely to search in-house or corpo-
rate collections for which care had been taken in choos-
ing the compounds that populate the search database.
Given the 2005 publication of the ZINC virtual screening
database,141 there is no longer any reason for even those
researchers without access to large corporate collections
to not search a carefully chosen and curated database.

� Once a database for searching had been selected, the
virtual screeners of Table 7.3 generally prefiltered that
database to remove unappealing molecules. In some
cases, this filtering was as simple as the removal of reac-
tive or non-drug-like molecules. In other cases, search
databases were filtered to remove compounds incom-
patible with chemical features of the protein binding
site – for example, removing anionic compounds before



103 Docking: a domesday report

Table 7.3. Structures and activities for most potent hits

Compound IC50 Target Compound IC50 Target
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a Data do not preclude interference with FRET assay.
b Data do not preclude inhibition due to aggregation.
c Estimate based on gel readout for assay.
d Structure of 110 nM hit not disclosed.
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screening against a binding site with a high proportion
of negatively charged amino acids. Moreover, in a few
cases, prescreen filtering used more sophisticated phar-
macophores or SMARTS patterns to enrich the database
in compounds with desired interacting features, for
example, features that could provide hydrogen bonds to
a kinase hinge region or electrostatic interactions with
catalytic residues of an oxidoreductase.

� Before commencing the actual prospective screen, sev-
eral of the virtual screeners of Table 7.3 carried out val-
idation docking runs. For two of these, the validation
involved confirming that the chosen docking protocol
could successfully recapitulate the docking mode for a
known protein/ligand crystal structure. A larger num-
ber of the virtual screeners salted a small number of
known actives into the search database and carried out
test docking runs; parameters of the docking protocols
and score cutoffs for hit selections were fine-tuned to
ensure that these known hits were recovered high in the
docking hit list.

� Once the prospective screens were completed and
potential hit lists compiled, all of the virtual screeners
of Table 7.3 used alternative means for winnowing the
lists to remove potential false positives. At the very least,
in virtual screens across all of the activity bins in Table
7.1, the top docking hits were visually inspected in the
protein environment, keeping only those compounds
that were predicted to make interesting interactions with
the protein. For those screens that produced submicro-
molar hits, most of the screeners used either alterna-
tive scoring strategies (e.g., consensus scoring, quan-
tification of specific desired protein/ligand interactions,
removal of compounds with high strain energy), subse-
quent more computationally intensive virtual screening
protocols (e.g., fast rigid docking followed by slower flex-
ible docking, docking followed by energy-based refine-
ment), or some combination of both.

� Not all of the methodological details for these screens
were conducive to true success; at least three com-
pounds in Table 7.3 exhibit properties that would war-
rant orthogonal confirmatory assays to ensure that inhi-
bition was due to the desired mechanism. For example,
compound 1 and a close analog were reported as
extremely potent inhibitors of the aspartyl proteases
cathepsin D and plasmepsin; these acridine-containing
compounds were identified by fluorescence resonance
energy transfer (FRET) assay.44 However, no data were
provided that would allow assessment of any intrinsic
fluorescence of the putative inhibitors nor of any pos-
sible interference with the FRET signal, even though
acridine itself fluoresces142 as do substituted versions
of acridine such as quinacrine.143 Compound 3, ellagic
acid, was reported to be a 40 nM, ATP-competitive
inhibitor of protein kinase CK2 based on a phosphoryla-
tion inhibition assay using 33P-labeled ATP49; virtual and
experimental screening results were reported for only

this single compound. This same compound has also
been reported to be an inhibitor of AmpC �-lactamase
under detergent-free assay conditions94,144; after further
mechanistic characterization, these authors concluded
that ellagic acid was a detergent-resistant promiscu-
ous aggregator and that this aggregation behavior was
responsible for inhibition in assays of �-lactamase, chy-
motrypsin, malate dehydrogenase, and cruzain. At a
reported IC50 of 40 nM, ellagic acid may well be inhibit-
ing through some mechanism other than aggregation,
but the data reported49 do not allow for assessment one
way or the other. Finally, compound 7, diiodosalicylic
acid, was reported as a 99 nM inhibitor of 20�-HSD;
activities for the related compounds aspirin and salicylic
acid were reported to be 21 and 7.8 �M, respectively.47

All three analogs are known metal chelators,145,146 and
the apparent SAR for inhibition of 20�-HSD is in line
with pKa trends for acetylsalicylic acid, salicylic acid, and
diiodosalicylic acid. In the absence of additional data to
the contrary, it is therefore equally plausible to hypoth-
esize that either metal-chelate forms of each analog or
the pure compounds themselves were responsible for
inhibition.

Of course, one might follow absolute best practice for
docking-based virtual screening – targeting a well-
characterized protein system, searching a database of
chemically reasonable molecules, carrying out detailed
validation studies, postscoring docking hits at a higher level
of theory – and still not be successful in experimentally
identifying compounds with submicromolar activity. As
a specific case in point, Barriero et al.136 report virtual
screening efforts directed at the identification of novel
nonnucleoside inhibitors of HIV-1 reverse transcriptase,
a target represented in Table 7.3. These researchers first
carried out a similarity search to identify compounds
similar to known NNRTIs, and then docked these similarity
hits and the known actives into the NNRTI binding site.
Docking hits were rescored using molecular mechanics and
an implicit solvation model; six of the twenty top-scoring
hits were purchased and assayed, but no active compounds
resulted from that experimental assay. Visual inspection of
the six docking hits gave these researchers some confidence
that one of those six hits represented a promising scaffold
and that the predicted interactions between protein and
putative ligand were favorable for activity. Barriero et al.
therefore committed synthetic resource to follow up on that
scaffold through synthesis of a small number of analogs
that differed in substitution pattern on two phenyl rings.
That at-risk gamble based on a gut-instinct assessment of
prediction reliability paid off in this particular instance; of
the newly synthesized analogs, at least one was a submi-
cromolar anti-HIV agent with an EC50 of 310 nM. Although
in this particular case the original virtual screen produced
no active inhibitors, in general following best practice
and carrying out one’s screens carefully is likely to at least
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marginally improve the chances of finding more potent
active compounds from docking-based virtual screens.

PREDICTING BOUND POSES WITH DOCKING

In the preceding sections, we have presented a theoreti-
cal framework underpinning docking algorithms and have
examined the real-world performance of docking as a
prospective virtual screening tool. In the pharmaceutical
industry, however, it is generally the case that the primary
use of docking is predicting the bound pose of a specific
molecule to a suitable degree of reliability. One may have a
known active compound from a high-throughput screen or
ongoing drug discovery effort and want to understand how
that compound interacts with the protein target. Or one
may have a collection of known actives and want to examine
protein/ligand complementarity to rationalize differences
in activity or selectivity. Or one might have multiple active
series and want to design novel hybrid molecules using
the best possible three-dimensional overlay. Or one might
have synthesis proposals from medicinal or computational
chemists and want to assess the likelihood for maintain-
ing potency or to propose modifications to increase the
likelihood of success. In all of these examples, the first
steps would be the prediction of a bound pose for one or
more molecules and the estimation of the reliability of that
prediction.

It is particularly important for successful lead optimiza-
tion that the computational and medicinal chemists have
an understanding of the level of confidence in their dock-
ing mode predictions. Is a prediction expected to be accu-
rate enough that I can make design and synthesis deci-
sions at an atomic level of detail? Is the prediction accuracy
such that I can draw only general conclusions about types
and locations of substitutions on the core scaffold? Or is the
confidence level low enough that the prediction can at best
provide multiple testable hypotheses, and I should there-
fore design molecules to probe those hypotheses? Numer-
ous evaluations of the ability to predict docked poses have
been published,24,147 and these evaluations support one
general conclusion: Many docking programs can generate
poses near the crystal conformation, but no scoring func-
tion can consistently score the correct pose at the top of
the list. Therefore, in everyday practice, a computational
chemist uses a docking program to generate poses for visual
inspection and then selects the pose thought to be “best”
based on chemical intuition and compatibility with any
available SAR data. And in practice we can all point to
examples of successful predictions, so it is our instinct that
human experience and expertise in combination with com-
putational tools is sufficiently predictive. This assertion,
however, has not been validated through analysis of suc-
cess rates for blind predictions. In this section preliminary
results for both manual and automated docking mode pre-
dictions from sampl-1, a blind prediction challenge, are
described.148 The full results and crystallographic data from

sampl-1 are not yet public, so the results for automated pro-
cedures are not discussed in any detail but instead results
for the single manual predictor to the aggregate perfor-
mance of automated docking procedures.

The SAMPL challenge

The sampl challenge was made possible by the gener-
ous contribution of two protein/ligand data sets, urokinase
plasminogen activator provided by Abbott Laboratories and
JNK3 protein kinase provided by Vertex Pharmaceuticals.
The challenge proceeded in three phases corresponding
to three typical drug discovery activities: (1) identification
of active compounds from a background pool of inactive
compounds, (2) prediction of the bound poses of active
compounds, and (3) rank-ordering of active compounds by
affinity. Data for the challenge were released to individual
predictors in a correspondingly phased manner: if a predic-
tor requested and received data for phase 2 or 3, that predic-
tor could not subsequently obtain data or make predictions
for phase 1. Only the results for phase 2, docking mode pre-
diction, will be discussed here.

Details of the docking mode challenge. The docking
mode prediction portion of the challenge also proceeded
in phases, an initial “cross-docking” phase followed by a
second “self-docking” phase. The cross-docking exercise
more closely mimics the real-life situation in drug discov-
ery while the second self-docking exercise allows for assess-
ment of the importance of protein flexibility for successful
prediction. Manual docking was applied only to the cross-
docking exercise so details for the self-docking exercise are
not discussed. For the cross-docking exercise, the sampl-1
organizers provided one urokinase and two JNK3 protein
structures; the primary difference between the two JNK3
structures was in the side-chain conformation of the “gate-
keeper” methionine. None of the three docking structures
contained a bound ligand. In addition, during the previous
virtual screening portion of the challenge, the organizers
had provided two urokinase and two JNK3 structures, each
with a ligand bound. sampl-1 organizers further provided
SD files containing thirty-four compounds for docking to
urokinase and sixty-two compounds for docking to JNK3.
The small molecule conformations contained in the pro-
vided SD files had been generated from 2D representations
and so differed from the conformation in any crystal struc-
ture. Some inactive compounds were included in those two
lists, but the organizers did not reveal which compounds
were inactive until after the completion of the full challenge.
After the cross-docking challenge closed, sampl-1 organiz-
ers provided the raw results to me; none of the automated
predictors – neither the names of the predictors nor the pro-
grams used – were identified in this output. Results were
reported as follows:

rmsd − DPI; rmsd � DPI

0; rmsd ≤ DPI,
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a) b)

Figure 7.3. (a) Overlay of urokinase crystal structures provided for virtual screening (cyan
and magenta ribbons) and cross-docking challenges (green ribbons and surface); (b) ligands
in crystal structures 1o5c (cyan carbons) and 1owd (magenta carbons) in cross-docking
structure.

where rmsd is the root-mean-squared deviation between
docked pose and crystallographically identified conforma-
tion and DPI is the coordinate precision error of the crys-
tal structure.149–151 For urokinase twenty-seven of the thirty-
four compounds were active and had been crystallized in
the protein; for JNK3 fifty-two of the sixty-two compounds
were active and had been crystallized in the protein. Results
are presented here for only the seventy-nine compounds
with protein/ligand crystal structures.

Manual docking process. Although other practitioners
might use other specific computational tools at each stage
of the process, in broad outline the manual docking pro-
tocol used here matches standard practice for supporting
a drug discovery team. Before beginning any actual dock-
ing, all available structural data were examined closely. For
the sampl-1 challenge, available data included the four
ligand-bound structures from the virtual screening chal-
lenge along with the three ligand-free structures provided
for the cross-docking exercise; no structural information
from the public domain or from in-house drug discov-
ery efforts was sought or used. Structures for each indi-
vidual protein target were aligned and compared to assess
the degree of protein flexibility, to identify protein features
likely to be important for interactions with ligands, and to
contemplate protonation states and side-chain conforma-
tions within the binding site. Before any docking began,
2D representations of the ligands to be docked were also
closely examined. The goal here was to divide the ligands
into related classes that would be expected to bind similarly,
to identify ligand features likely to be important for interac-
tions with the protein, and to identify ligand features – for
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Figure 7.4. Small molecules from urokinase crystal structures provided for the virtual screen-
ing challenge.

example, unusual functional groups, pos-
sible tautomers, protonation states – that
might cause difficulties or require special
treatment during docking.

In preparation for semiautomated dock-
ing, 3D conformations for all ligands were
generated with Omega 2.1.0152 using default
parameters, the standard omega fragment
library, and provided SD files as input. To
generate a good starting point for dock-
ing, Rocs 2.2153 was used to overlay the
omega ligand conformers to each ligand in
the ligand-bound protein structures from the
virtual screening challenge; overlays were
optimized using the Implicit Mills–Dean
color force field provided with Rocs, and

overlays were ranked using the combo shape-and-color
score. All overlays were visually inspected to select one
or more starting points for docking and to decide which
molecules would need to be built by hand. For JNK3, over-
lays were visually inspected in the context of the provided
protein structures to decide into which structure each lig-
and should be docked.

Starting from the selected Rocs overlays, the Febru-
ary 2003 version of Flo/qxp154 was used to explore pose
space for each of the ninety-six ligands in the cross-docking
challenge. For some of the ligands, the initial overlay was
considered sufficiently likely, and the ligand was there-
fore merely minimized in the binding-site environment. For
most of the other ligands, the central scaffold was allowed
to minimize and the mcdock algorithm in Flo was used to
search conformation space for substituents on that scaf-
fold. For a very few molecules for which no good starting
alignment was identified, a full docking run was carried out
using mcdock with 1,000 or 2,000 search cycles. And a final
few molecules were hand built; the core scaffold was man-
ually placed at a desired location in the protein and confor-
mations explored as substituents were added to that core.
For JNK3, constraints were included during docking and
minimization to enforce expected interactions between lig-
ands and backbone atoms in the hinge region of the kinase.

The final computational step was to clean the small-
molecule conformations for the selected docked pose for
each ligand by minimization in MOE. All hydrogen atoms
were added to the protein and to each ligand in turn. For
JNK3, constraints were imposed on the hinge-binding inter-
actions; for both JNK3 and urokinase, the protein was kept

rigid during minimization using the MMFF.
In those few cases where it appeared neces-
sary to do so, ligand atoms were held rigid
and selected portions of the protein were
allowed to minimize or side-chain confor-
mations were optimized using the charmm

force field.
At the end of this semiautomated, semi-

manual docking process, a single docked
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Figure 7.5. Rocs overlay to 1o5c ligand does not place small fragment
in S1 binding pocket. Transparent surface with gray carbons represents
the molecular shape of the 1o5c ligand; solid surface with green carbons
represents the molecular shape of compound uk.1-14.

pose had been selected and refined for each ligand in the
urokinase and JNK3 data sets. These final docked poses
were collated and shown to a local medicinal chemist who
has not worked on urokinase or JNK3 program teams. That
medicinal chemist visually inspected each docked pose
within the context of the binding site environment and
offered comments and critiques of the predicted poses; a
limited number of docked poses were further refined based
on those comments before submitting the predictions to
the sampl-1 organizers.

Urokinase plasminogen activator
Urokinase is a serine protease that converts plasminogen
to plasmin. I personally have neither worked with nor done
computational design for this or any other serine protease,
although other members of GSK Computational Chemistry
US have supported other serine protease programs. Two
public urokinase structures (PDB codes 1o5c and 1owd)
were provided as part of the virtual screening challenge
and a third structure provided as part of the cross-docking
challenge; a sequence- and structure-based overlay of those
structures is shown in Figure 7.3. Among the three struc-
tures, there was little variation in backbone conformation
in the binding-site region [Figure 7.3(a)]; there were small
differences in the orientations of some sides chains (not
shown), and three residues near the binding pocket were
seen in different rotamer states (not shown) – only one of
these three was expected to have an appreciable effect on
the docking of ligands to the urokinase binding site. Struc-
tures 1o5c and 1owd each contained a ligand bound in the
protease active site [Figure 7.3(b), 2D structures shown in
Figure 7.4]. In both structures the arylamidine arginine
mimic binds in the deep S1 pocket, while the bulk of each
inhibitor fills the length of the solvent-exposed binding

cavity. The amine in the 1owd interacts with an aspartic acid
on the protein surface [indicated by a yellow arrow in Fig-
ure 7.3(b)]. In both structures, the subpocket marked by a
yellow star in Figure 7.3(b) is not filled by any portion of the
ligand. When assessing docked poses for any ligands with
branched substituents near the arginine mimic, poses that
filled this subpocket were manually selected over those that
did not fill this region of the binding site.

All of the urokinase ligands to be docked contained some
sort of arginine mimic, generally a guanidine or arylamidine
although there were two ligands that contained heteroaryl-
amine arginine mimics. Most of the ligands to be docked
were large enough to be expected to dock across the entire
binding cavity; there were, however, six fragment-sized
molecules with molecular weight ≤250. The Rocs overlay
procedure did not work well for these six molecules, tend-
ing to place them in the center of the binding pocket rather
than in the S1 pocket (example Rocs overlay shown in Figure
7.5). Docking poses for these six small molecules were gen-
erated from a docked pose for a larger molecule containing
the relevant S1-binding scaffold; extraneous substituents
were removed from the larger docked molecule, and the
smaller fragment minimized within the binding site.

For each ligand for which there was a protein/ligand
structure, the average rmsd-DPI was computed for all auto-
mated predictions; this average is graphed in bold black in
Figure 7.6, with 95% confidence intervals shown in dashed
black lines; rmsd-DPI values for the manual predictions
are shown in bold magenta. The graphed results have been
sorted in order of increasing rmsd-DPI for the manual pre-
dictions, which has the effect of overemphasizing the man-
ual prediction results; the apparent jaggedness of the auto-
mated prediction average is a result of this ordering and has
no meaning.

For this serine protease target for which I have no spe-
cial expertise, the performance for manual and automated
predictions is similar. The manual predictions fall inside or
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Figure 7.6. Results for urokinase docking mode predictions: rmsd-DPI
values for manual predictions are shown in bold magenta; mean rmsd-
DPI values for automated predictions are shown in bold black with
±1	 in dashed black lines.



108 Martha S. Head

Figure 7.7. Docked pose for compound uk.1-7 fills extra subpocket near
S1.

below the 95% confidence interval for all docked ligands,
and the manual predictions are at or below the average
automated prediction for all but three molecules. Of these
three less-well-docked molecules, one was a small, frag-
mentlike compound with an acylguanidine arginine mimic;
none of the larger acylguanidine-containing molecules
were particularly well docked so there was no good starting
point in the S1 pocket for this small fragment. For the sec-
ond of the less-well-docked compounds, the predicted pose
for the solvent-exposed portion of the molecule is tilted to
the left of the binding site when compared to the crystal-
lographically determined poses illustrated in Figure 7.3(b);
in this case, a more careful comparison of this docked
pose to others in the set of ligands would almost certainly
have resulted in a better prediction. The third of the less-
well-docked compounds contained a positively charged
nitrogen; the lack of electrostatic screening in the Flo/qxp
scoring function dominated the bound conformations,
resulting in the arginine mimic being pulled slightly out of
the S1 pocket. In this instance, I would likely have found a
better docked pose if I had not protonated the basic nitro-
gen when docking using Flo/qxp.

a) b)

Figure 7.8. (a) Overlay of JNK3 crystal structures provided for virtual screening (in green and
cyan) and cross-docking challenges (in magenta and yellow); (b) ligands from structures 1jnk
(green carbons) and 1pmq (cyan carbons) in cognate crystal structures.

Conversely, there were three molecules for which the
manual prediction was better than one 	 below the mean
automated prediction. One of these three, shown in Figure
7.7, is a branched molecule that fills the extra pocket high-
lighted in Figure 7.3(b). The final two of the well-docked
molecules (uk.1-2 and uk.1-19) are similar to the 1owd lig-
and, so the starting conformations generated by Rocs over-
lay are likely to be close to the correct answers. Strangely,
however, the 1owd ligand itself was contained in the set to
be docked, but the prediction for that molecule was worse
than the predictions for uk.1-2 and uk.1-19. The 1owd lig-
and also contains a basic nitrogen; it is therefore my expec-
tation that the lack of electrostatic screening in the Flo/qxp
scoring function is again the culprit and has again resulted
in the arginine mimic being pulled slightly out of the S1
pocket.

JNK3 protein kinase
JNK3 is a serine/threonine protein kinase that phospho-
rylates Ser63 and Ser73 in the transcriptional activation
domain of c-Jun. I personally have not supported a JNK3
drug discovery effort, but I have directly carried out com-
putational design for more than five kinase programs, and
members of GSK Computational Chemistry US have sup-
ported more than twenty-five kinase programs. I therefore
have a substantial amount of kinase drug discovery experi-
ence and have closely examined hundreds if not thousands
of kinase-ligand crystal structures and docking models.

Two public JNK3 structures (PDB codes 1jnk and 1pmq)
were provided as part of the virtual screening challenge and
an additional two structures provided as part of the cross-
docking challenge. A sequence- and structure-based align-
ment of the four structures is shown in Figure 7.8(a); the
structures were aligned to emphasize the overlay of back-
bone atoms for the hinge residues, the catalytic lysine, and
the DFG motif. As would be expected for most kinases,
there was a substantial amount of variation in backbone
conformation among the four structures. The activation
loop in particular exhibited a wide conformational vari-
ance; for the virtual screening structures the activation

loop packed against the glycine-rich loop
and closed off the right side of the ATP bind-
ing site, while for the cross-docking struc-
tures there was missing density and therefore
an undefined conformation of the activation
loop. The glycine-rich loop itself exhibited a
span of conformations; in the virtual screen-
ing structures these two beta strands were
lifted away from the ATP binding site rela-
tive to the cross-docking structures. Struc-
tures 1jnk and 1pmq each contained a ligand
bound in the ATP binding site [Figure 7.8(b),
2D structures shown in Figure 7.9]. Both the
nonhydrolyzable ATP mimetic AMPPNP of
1jnk and the aminopyrimidine of 1pmq fill
the binding site and make hydrogen bonds
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Figure 7.9. Ligands in structures.

to the hinge backbone atoms. Structure 1pmq also con-
tains a molecule of AMPPNP in a ternary complex with
JNK3 and the aminopyrimidine inhibitor; this location of
the AMPPNP was likely an artifact of crystallization so it was
ignored during structural analysis and Rocs overlay of JNK3
inhibitors.

Two structures were provided for the cross-docking chal-
lenge. I was particularly happy to see that the sampl-1
organizers had provided one structure with an open “back
pocket” [Figure 7.10(a)] and one with a closed back pocket
[Figure 7.10(b)]; in these figures the ligand from structure
1pmq is shown in the binding-site cavity for reference.
Rotamer differences in the methionine gatekeeper residue
along with other conformational differences near the bind-
ing pocket resulted in a well-defined subpocket on the back
face of the ATP binding site. As seen in Figure 7.10(a), the
m,p-dichlorophenyl group of the 1pmq and related ligands
filled this open back pocket, while there was no room in the
closed-pocket structure to accommodate this functional
group. During the generation of docked poses, therefore, I
chose the protein structures into which to dock based on
the presence or absence of groups expected to access the
open back pocket.

The set of ligands to be docked encompassed at least
seven distinct compound classes, with an additional few
singleton compounds that did not fit into any of these
classes. Most of the compounds contained features that
would be expected to interact with backbone atoms in the
hinge region of JNK3, and a large number of compounds
contained aryl substituents that I expected would bind

a) b)

Figure 7.10. JNK3 structures for cross-docking challenge. (a) Structure with open “back
pocket.” (b) Structure with closed “back pocket”; ligand from structure 1PMQ included for
reference.
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Figure 7.11. Results for JNK3 docking mode predictions: rmsd-DPI values
for manual predictions are shown in bold magenta; mean rmsd-DPI values
for automated predictions are shown in bold black with ±1	 in dashed
black lines.

in the open-pocket structure. Potential starting conforma-
tions were generated by Rocs overlay to the AMPPNP of 1jnk
and the aminopyrimidine of 1pmq. None of the overlays to
AMPPNP produced starting points for docking that made
sense in the context of the ATP binding-site environment;
therefore, for all but the hand-built molecules, the starting
point for docking was selected from the 1pmq overlay.

The prediction results for all compounds with a crys-
tal structure are shown in Figure 7.11; the mean rmsd-
DPI values for automated predictions are again graphed in
bold black with 95% confidence intervals shown in dashed
black lines; rmsd-DPI values for the manual predictions are
shown in bold magenta. For this protein target class for
which I have a substantial amount of experience, almost
all of the manual predictions are better than the average
automated predictions. The manual predictions are often
well below the 95% confidence interval for the automated
predictions, with only three manual predictions above the
mean plus one 	 boundary.

Aminopyrimidines were by far the largest class of JNK3
inhibitors, encompassing thirty of the sixty-two to be
docked; twenty-five of the thirty aminopyrimidines can

be described by the reference structures
shown in Figure 7.12, while the other five
examples were singletons incorporating dif-
ferent nitrogen-containing five-membered
or six-membered aromatic rings at the
pyrimidine 4-position. There was a strong
similarity between this compound class and
the 1pmq ligand; the Rocs overlay was
therefore expected to generate good start-
ing points for the core scaffold. All but one
of the thirty aminopyrimidines contained an
aromatic back-pocket binder so the open-
pocket structure was used for these twenty-
nine docking calculations; the one outlier
had a methyl group in this region of the
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Figure 7.12. Aminopyrimidine class of JNK3 inhibitors.

ligand structure and was therefore docked into the closed-
pocket structure. The primary computational effort for this
compound class was in optimizing the orientation of the
R1 substituent at the solvent front of the binding pocket.
The mcdock algorithm in Flo/qxp was used to extensively
search R1 conformational space, with simultaneous search-
ing for R2 substituents larger than ethyl; the aminopyrimi-
dine core was allowed to minimize during each search cycle.
An Asn side chain with multiple rotameric states is located
near where R1 and R2 bind; this side chain was accordingly
left flexible during docking calculations, and careful atten-
tion was paid to the side-chain conformation when select-
ing docked poses.

The subset of results for this compound class are shown
in Figure 7.13; in addition to the manual and mean auto-
mated rmsd-DPI values, the best automated prediction is
graphed in bold cyan. For this compound class, the best
automated predictor was E220, although no information is
available concerning what program was used by that pre-
dictor. For the aminopyrimidines, the manual predictions
are always better than mean automated prediction, but this
specific predictor did very well, with only four blips where
the automated prediction was worse than the manual. One
of those blips in particular is worth commenting on. For
compound jnk.1-54, the back-pocket binder can extend
even further than the dichlorophenyl of 1pmq; because I
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Figure 7.13. Results for aminopyrimidine docking mode predictions:
rmsd-DPI values for manual predictions are shown in bold magenta;
mean rmsd-DPI values for automated predictions are shown in bold black
with ±1	 in dashed black lines; the best overall automated prediction
for this class (predictor E220) is shown in bold cyan.
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Figure 7.14. Manual docking mode prediction for compound jnk.1-54.

built this substituent conformation by hand it was relatively
easy to thread the flexible R group into and beyond the back
pocket (Figure 7.14), while an automated procedure must
search conformational space sufficiently well to explore the
necessary substituent conformation.

A second class of molecules bore a striking resemblance
to SB-203580 (Figure 7.15). SB-203580 is a p38 inhibitor syn-
thesized by the first chemistry team with which I worked
after joining SmithKline Beecham (SB) in 1997. The protein/
ligand structure of this compound in p38 was solved in
1997155; being one of the early kinase/ligand complexes
solved, this structure was much discussed during my first
years at SB. Therefore, even though I did not go out of my
way to look up the exact bound conformation of com-
pounds like SB-203580, I have known for more than a
decade how these compounds sit in the ATP binding site of
a protein kinase, and it would be reprehensible for me to not
be able to generate a good prediction. My docking models
for jnk.1-7, jnk.1-14, and jnk.1-48 were generated by con-
strained docking of the pyridine core followed by building of
the rest of the molecule by hand, placing the fluorophenyl
group into the back pocket.

The subset of results for these three predictions are
shown in Figure 7.16. Two automated predictors (E252 and
E302) did extraordinarily well, with equivalent predictions
that were within the coordinate precision error of the crys-
tal structures. Although there is again no identifying infor-
mation concerning who these predictors were or what pro-
gram they used for docking, it is the case that p38 inhibitors
were included in the training sets for several popular dock-
ing programs. It is therefore reasonable to wonder whether
these predictors used one of those programs for which
SB-203580 was part of the training set on which docking
parameters and algorithmic details were optimized.

The oximes, Figure 7.17, were the second largest class
in this data set, with nine of the sixty-two to be docked.
Neither the Rocs overlay nor a 1,000-cycle Flo/qxp dock-
ing search was able to identify a credible docking pose
for even the smallest of these molecules, so the scaffold
for this class was manually docked and substituents for
the nine molecules were built by hand. Manual docking
began by first examining the small-molecule crystal struc-
ture of a compound containing the oxime core (CCDC code
EOISOX, Figure 7.17) to check my assumptions about small-
molecule geometries. I assumed that the oxime OH donated
a hydrogen bond to a hinge backbone carbonyl while one or
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Figure 7.15. Pyrimidinyl-imidazole class of JNK3 inhibitors; the structure of SB-203580 is shown for reference.

both of the oxime nitrogen and carbonyl oxygen accepted
a hydrogen bond from a hinge backbone NH. I therefore
imposed constraints in Flo/qxp to force these hydrogen
bond interactions and then carried out multiple rounds
of short docking searches and minimizations to force the
oxime core into a docked orientation that matched my prej-
udices and that allowed me to build the benzodioxin sub-
stituent at the solvent front of the binding pocket. Most
of the oxime compounds were built into the closed-pocket
structure; compounds jnk.1-13, jnk.1-16, and jnk.1-53 were
docked into the open-pocket structure.

The docked conformation of the oxime core made good
interactions with the hinge [Figure 7.18(a)], and there was
an extremely appealing shape complementarity between
the benzodioxin and the protein surface [Figure 7.18(b)].
For the full oxime set, all of the cores were well placed; com-
pounds jnk.1-46 and jnk.1-62 made favorable interactions
with the catalytic lysine or the backbone of the glycine-rich
loop, the long substituent of jnk.1-53 threaded through the
back pocket in a manner similar to the predicted pose for
jnk.1-54, and the resident medicinal chemist agreed com-
pletely with my predicted orientation of the oxime scaffold.
I therefore felt quite confident in my predictions for all nine
of the molecules in this class.
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Figure 7.16. Results for pyridine docking mode predictions: rmsd-DPI
values for manual predictions are shown in bold magenta; mean rmsd-
DPI values for automated predictions are shown in bold black with ±1	
in dashed black lines; the best overall automated prediction for this class
(predictors E252 and E302) is shown in bold cyan.

The subset of results for these oxime predictions are
shown in Figure 7.19; the best overall automated predic-
tion (E219) is shown in bold cyan. All of the manual pre-
dictions were substantially better than the performance of
any automated predictor; this is an example where, given
a good prediction for the scaffold, manual building of sub-
stituents presents large benefits over an automated docking
procedure that has to start from outside the binding pocket
for every prediction. The rmsd-DPI values for the manual
predictions are less good for jnk.1-46 and jnk.1-62, longer
molecules with polar substituents; the falloff in prediction
accuracy may have been due both to the lack of electro-
static screening in Flo/qxp and to magnification along the
molecule of small errors in scaffold placement.

The four molecules for which manual predictions were
particularly atrocious all contained a pyrazole core (Figure
7.20). The subset of results for these oxime predictions is
shown in Figure 7.21; the best automated prediction (E218)
is shown in bold cyan. All of the manual predictions are
above the 95% confidence interval for automated predic-
tions; in comparison, automated predictor E218 did well
across all four molecules, with two of those predictions at
or near the coordinate precision of the crystal structures.

Manual docking proceeded by placing the pyrazole core
in the binding site and applying constraints to enforce
hydrogen bonding interactions with the hinge (Figure 7.22).
After the cross-docking challenge was over and prelimi-
nary results released, I compared the docked pose of the
pyrazole core to the crystallographically determined loca-
tion of that core; there was a good overlap of the pyrazole
core in this initial placement and in the crystal structure.
Starting from this pyrazole placement, substituents were
manually built off the core based on my assumptions on
how the compounds would interact with the protein; those
assumptions were formed from years of closely examining
kinase/ligand protein structures. For compound jnk.1-57, I
reasoned by analogy to the aminopyrimidines and assumed
that the phenyl group would dock into the open back pocket
and that the nitrile nitrogen would interact with the side
chain of the catalytic lysine. For compounds jnk.1-47 and
jnk.1-61, I assumed that the amide carbonyl would interact
with the catalytic lysine and that the pendant benzyl sub-
stituent would curl back up to tuck into the inward face of
the glycine-rich loop.
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Figure 7.17. Oxime class of JNK3 inhibitors; EOISOX is shown for a reference.

If I had been docking into ERK kinase, this would have
been a good but not perfect prediction [Figure 7.23(a)];
some details of the docking mode needed to be refined
more carefully, but there was a reasonable correspondence
of the intended docking features to what is seen in a public

ERK structure. However, the cross-docking challenge was
for JNK3, and in that protein this class of compounds inter-
acts with the hinge through the alternative tautomer of the
pyrazole core. The molecule is flipped relative to the ori-
entation in ERK [Figure 7.23(b)), the fluorophenyl interacts

a) b)

Figure 7.18. Docking mode prediction for jnk.1-28 in closed-pocket JNK3 structure.
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Figure 7.19. Results for oxime docking mode predictions: rmsd-DPI val-
ues for manual predictions are shown in bold magenta; mean rmsd-DPI
values for automated predictions are shown in bold black with ±1	 in
dashed black lines; the best overall automated prediction for this class –
predictor E219 – is shown in bold cyan.

with the catalytic lysine, and the benzyl group packs up
against the protein surface along a solvent-exposed edge of
the binding site. The comparison to an ERK protein/ligand
crystal structure affirms that the prediction was not unrea-
sonable; I would not have a priori selected a docked pose in
which the benzyl group was not buried in the binding site
without substantial SAR information that ruled out the pose
predicted manually for compounds jnk.1-47 and jnk.1-61.

Comments concerning manual versus automated
binding mode prediction
The work described here compared a single manual dock-
ing strategy to multiple automated methods, all applied
to the blind prediction of binding modes for inhibitors of
urokinase plasminogen activator and JNK3 protein kinase. I
do not claim for myself any special ability in docking small
molecules into proteins; I would expect that any experi-
enced computational chemist would be equally likely to
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Figure 7.20. Pyrazole class of JNK3 inhibitors.
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Figure 7.21. Results for pyrazole docking mode predictions: rmsd-DPI
values for manual predictions are shown in bold magenta; mean rmsd-
DPI values for automated predictions are shown in bold black with ±1	 in
dashed black lines; the best overall automated prediction for this class –
predictor E219 – is shown in bold cyan.

generate predictions as good as or better than the results
presented here. In this particular blind study, the best over-
all manual prediction success was seen for the protein
kinase target class with which I have a substantial amount
of experience, while my prediction success rate was com-
parable only with that of the automated predictions for
the serine protease system with which I have only limited
experience. I therefore would contend that the results for
the sampl-1 cross-docking challenge support a hypothe-
sis that expertise in combination with standard docking
technologies leads to generally successful prediction rates.
One might therefore suggest that mimicking features of the
manual process might improve the predictiveness of auto-
mated methods, and indeed, one such docking methodol-
ogy has been previously described in which docked poses
for kinase inhibitors are generated by overlaying related
scaffolds onto known ligand poses from kinase/ligand crys-
tal structures.156 Such an automated technique is likely
to be generally predictive, particularly for protein targets

Figure 7.22. Docking mode prediction for pyrazole core.
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a) b)

Figure 7.23. Docking mode prediction for jnk.1-47 in open-pocket JNK3 structure. (a) Com-
parison to ERK crystal structure for this molecule; (b) comparison to JNK3 crystal structure.
In both comparisons the carbons of the predicted pose are colored gray.

where inhibitors make specific conserved interactions with
binding site residues; it is not known whether a scaffold-
matching automated procedure was one of the automated
techniques used here, so it is not possible to comment on
the performance of such an algorithm in blind prediction.
However, the docking results for the pyrazole class of com-
pounds highlight an important caveat for automated meth-
ods that rely heavily on known crystal structures; if one had
had only a single crystal example for either ERK or JNK3, in
this case one might have been led astray when predicting
a bound pose in the other protein kinase. For short-term
progress in docking mode prediction, a scaffold-matching
or similar automated approach is consistent with standard
manual docking practices and is likely to prove pragmat-
ically useful but is not likely to be the complete answer
for long-term progress in improving our understanding of
the physical basis for docking of small molecules to protein
binding sites.

A FEW FINAL REMARKS

In this domesday report on docking, we have explored the
connection between docking and a theory of noncovalent
association, have carried out a rather detailed census of
docking-based virtual screens during this decade, and have
examined the relative performance of manual and auto-
mated procedures for blind prediction of protein-bound
ligand poses. The news from this report is not all doom and
gloom; there clearly have been virtual screens that identi-
fied compounds with micromolar and better activity, and
both manual and automated predictors were able to iden-
tify docked poses correctly enough to support decision-
making in the optimization of lead compounds. The real-
ity is that docking is an integral part of structure-based
design when used with care and pragmatism but is also not
a “black-box” technology with well-characterized error bars
around docking predictions; successful use of docking tech-
nology requires human intervention based on experience
and expertise.

To move forward, we need a strategy that allows us to
incorporate parts of the underlying theory that are currently

missing in a manner that also allows us to
test how each new theoretical or algorithmic
modification affects success, validating tech-
nologies both retrospectively and prospec-
tively. Some of the features plausibly miss-
ing from current docking algorithms relate to
questions such as: We assume that a single
conformation predominates in the docking
of a molecule to a protein binding site; is this
indeed a good approximation? If not, how
might we include additional conformations,
protonation states, tautomer forms, and so
on? We generally neglect the entropic cost for
localizing a ligand into a protein binding site
or at best treat such effects with back-of-the-

envelope estimates; how can we do better? We hope that
the scoring functions used in docking recapitulate physi-
cal reality; what changes are required to our scoring func-
tions and force fields so that our calculations are more
predictive? As we seek to address these and related ques-
tions, algorithmic progress is likely to require access to even
more data sets such as those provided by Abbott and Vertex
for the sampl-1 challenge. We are therefore encouraged by
the recent announcement of the awarding of a grant for
the Community Structure-Activity Resource157; this govern-
ment/academic/industrial partnership will over time pro-
vide access to sufficient amounts of data that will both
enable us to assess prediction error bars for current dock-
ing technologies and underpin new methodological devel-
opments.
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The role of quantum mechanics in structure-based
drug design

Kenneth M. Merz, Jr.

INTRODUCTION

The routine use of quantum mechanics (QM) in all phases
of in silico drug design is the logical next step in the evo-
lution of this field. The first principles nature of QM allows
it to systematically improve the accuracy of the description
of the nature of the interactions between molecules. More-
over, the systematic way in which one can approach the
use of QM methods to solve chemical and biological prob-
lems is quite appealing, but the practical use of many of
the appealing features of QM in in silico drug design appli-
cations is still to be realized in large part because of com-
putational limitations. In recent years it has become clear
that classical potential functions are being pushed to their
limits and as many pitfalls of using them are coming to
light, one is tempted to explore the use of QM procedures.
This is a somewhat naı̈ve view, however, because one of the
main observations of a large body of computational work
has shown that sampling of relevant conformational states
can be as important as providing an accurate representa-
tion of an inter-or intramolecular interaction. Hence, even
as QM becomes a routine tool used to calculate the energy
of individual states of a biological system, one still faces the
daunting task of sampling relevant conformational space,
which, in our view, will for the near term be largely confined
to classical models.

Since the mid-2000s there have been significant advan-
ces with respect to use of QM in all aspects of drug design.1,2

This has in part been fueled by the extraordinary increase in
computational power and the plummeting cost of CPU time
and storage space, which has in turn sped up development
and validation of more sophisticated algorithms for calcu-
lating wave functions of macromolecular systems. More-
over, there have been equally impressive improvements in
algorithms and software that allow researchers to address
large-scale biological questions using QM models. The fol-
lowing sections highlight the evolving role played by QM
in all aspects of in silico drug design and describe what,
in our view, are significant recent advances. The focus of
this review is on the use of QM in drug design, but QM
has found broad application, for example, in the study of
enzyme catalysis. The latter is not discussed here, but the

interested reader is directed to many of the recent reviews
on QM studies of enzyme catalysis.3,4

The use of QM in in silico drug design can be divided
into two broad categories: receptor- or structure-based
and ligand-based methods (see Figure 8.1). Structure-based
drug design (SBDD) methods involve the explicit treat-
ment of the receptor as well as its associated ligands and
include scoring protein/ligand poses using QM or quan-
tum mechanics/molecular mechanics (QM/MM) meth-
ods, homology modeling of the receptor (prior to docking
studies, for example), and energy decomposition methods
like COMBINE that is based on a quantitative structure/
activity relationship (QSAR) of pairwise interaction energies
between a receptor and a series of ligand. SBDD requires
either an x-ray or nuclear magnetic resonance (NMR) struc-
ture of the ligand in complex with the receptor and this
information is shown as inputs in Figure 8.1. An impor-
tant aspect of the structure determination process is the
refinement process, which we show below can be impacted
by QM-based methods as well. Although ligand-based drug
design (LBDD) methods include various QSAR methods,
they rely only on the knowledge of the ligand structure.
QSAR can be carried out using 2D, 2.5D (structures gener-
ated from 2D), or 3D structures and ligand structures can
come from NMR or x-ray studies, but they are generally
obtained from purely computational means. However, one
has to use 3D structures when using QM because of the
need to have an all-atom description of the nuclei and asso-
ciated electrons.

QUANTUM MECHANICS IN X-RAY AND NMR REFINEMENT

X-ray refinement of protein/ligand complexes

Three-dimensional structural information about therapeu-
tic targets and their bound substrates and inhibitors is
vitally important to structure-based drug design. To date
the majority of this information has been supplied by x-ray
crystallography, which captures static snapshots of the pro-
tein/inhibitor complexes and can be used to make hypothe-
ses about the interactions that are relevant to the observed
binding affinity. Spurred by recent advances in protein
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Figure 8.1. Hierarchy of QM methods used in drug design.

production techniques, interest in novel applications of
x-ray crystallography in a high-throughput fashion have
also been growing. The use of high-throughput crystallog-
raphy in fragment-based drug discovery, for example, has
been explored.5–7

For these high-throughput approaches to be practical
for drug discovery, structure determination must be rapid
enough to provide timely feedback to the design team;
meanwhile, the structure of the complex, especially the lig-
and, must be determined accurately enough to provide ade-
quate reliability on the subsequent hypotheses made about
the observed binding interactions. However, it is often over-
looked that protein crystallography operates at a resolu-
tion that is lower than that observed for small molecules,
which gives rise to poor data-to-parameter ratios in protein
structure refinements. In particular, the amount of x-ray

diffraction data observed is usually not sufficient to deter-
mine the coordinates, occupancies, and temperature fac-
tors for all the atoms. It can be shown that at a resolution
of 2Å, the data-to-parameter ratio is slightly better than 2,
while if the resolution drops to 2.7Å, a resolution that would
not be uncommon for high-throughput crystallography,
this ratio is less than 1. The issue of poor data-to-parameter
ratios is dealt with in the energetically restrained refine-
ment (EREF) formalism by introducing energy restraints to
complement the x-ray data:8

Etotal = Echem + wx-ray Ex-ray, (8.1)

where Etotal is the function minimized during the refine-
ment, Echem is the energy function conventionally approx-
imated with MM, Ex-ray is the x-ray target function, and
wx-ray is the weight that balances the contributions from
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Figure 8.2. Cross-eye stereo view of the key residues of inhibitor-bound �-secretase in a state with Asp32
protonated and Asp228 deprotonated suggested as being most probable by QM/MM x-ray refinement, together
with the 	A-weighted 2Fo-Fc electron density maps contoured at 2.7	 level.

Echem and Ex-ray. Although the electron density map com-
puted from the x-ray data can be used to determine the
structure on a larger scale, the energy function in Equa-
tion (8.1) is necessary to control the stereochemical details
of the structure. However, though not yet well recognized,
if Echem is accurate enough the EREF formalism allows
the use of energetic information to filter out unlikely tau-
tomeric and protonation states, which may not otherwise
be clear based solely on the coordinates of nonhydrogen
atoms. Conversely, if Echem is represented by approximate
or even inaccurate energy functions, the refined structure
can be significantly biased.9,10 Unfortunately even though
highly accurate parameters for bond lengths, angles, and
torsions are available for amino and nucleic acids,11–13

those for the small molecules are partially lacking, espe-
cially when extremely rare or novel chemical moieties are
encountered.14 QM constitutes an ideal choice for Echem and
a major improvement over MM because it does not require
a priori knowledge of the potential energy surface of the lig-
and, which may be actual or virtual, and it is generally more
accurate and reliable. Refinement studies on proteins15,16

and complexes17–21 have shown that QM-based energy
restraints performed comparably with or, in some cases,
showed some improvements over the MM-based ones.

Applications involving QM refinements of cocrystal
structures have mostly being carried out in the QM/MM
manner, which have been focused on two major areas. First,
accurate energies calculated with QM and QM/MM have
been used to suggest the probable protonation states of the
key protein residues22 and of the metal-bound ligands17,23

in the context of the crystalline environment. For exam-

ple, QM/MM x-ray structure refinement was employed to
construct realistic all-atom models of a complex of human
�-secretase bound to a peptidic inhibitor and the relative
stability of the resulting structures for different protonation
states was evaluated by QM/SCRF calculations, which sug-
gested one of the key aspartates, Asp32, was preferentially
protonated in the cocrystal structure.22 Although the non-
hydrogen atom coordinates of the refined structure are not
substantially different from those in the crystal structure,
QM/MM refinement provided an all-atom model as a rea-
sonable starting point for structure-based virtual screen-
ing and de novo design of �-secretase inhibitors. Second,
energy restraints derived from high-level QM calculations
have been used to refine ligand geometries to enhance the
quality of low-resolution structures. Ryde et al. applied this
approach to refine a 1.70Å structure of cytochrome c553

from Bacillus pasteurii. The refined structure was in bet-
ter agreement with the same structure solved at 0.97Å and
also reduced the R value of the lower-resolution structure
by 0.018 (Figure 8.2).

A combined molecular dynamics (MD) potential of
mean force (PMF) and QM/MM x-ray refinement study24

has helped further our understanding of the binding prefer-
ence for 1,6-dihydroxynaphthalene (DHN) to Orf2.25 From
the MD/PMF simulations three minima were located for
the binding of DHN to Orf2 [C1 (the x-ray structure) C2
and C3]. C1 leads to the preferential product for the preny-
lation of DHN, whereas C3 leads to the minor product.25

Each of these structures were then subjected to QM/MM x-
ray refinement using the semiempirical PM3 Hamiltonian.
The outcome of the QM/MM refinement versus a standard
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Table 8.1. The CNS and QM/MM x-ray refinement of the C1, C2, and C3 conformers of
1,6-dihyroxynaphthalene bound to Orf2

Distance (Å)
Refinement X-ray

Conformers protocol weights R Rfree D1 D2

C1 QM/MM 0.01 0.2540 0.2674 3.96 7.09

0.2 0.2419 0.2629 3.97 7.12

1.0 0.2290 0.2628 4.01 7.21

CNS 0.01 0.3735 0.4015 5.03 8.17

0.2 0.2606 0.3004 4.53 7.71

1.0 0.2307 0.2754 4.10 7.17

C2 QM/MM 0.01 0.2604 0.2894 6.89 9.82

0.2 0.2432 0.2798 6.78 9.73

1.0 0.2285 0.2734 6.80 9.79

CNS 0.01 0.3690 0.4021 8.15 10.48

0.2 0.2617 0.3015 7.53 10.28

1.0 0.2320 0.2763 7.10 10.11

C3 QM/MM 0.01 0.2496 0.2795 5.91 4.04

0.2 0.2414 0.2749 5.81 3.96

1.0 0.2283 0.2699 5.87 3.97

CNS 0.01 0.3709 0.4018 7.36 5.27

0.2 0.2642 0.3057 6.95 4.56

1.0 0.2315 0.2777 6.42 4.20

CNS refinement (using a classical Echem term) is shown in
Table 8.1 and Figure 8.3. In Table 8.1 the weights and the
resulting value of R and Rfree (indicators of the refinement
quality where lower is better) for the refinement of the three
structures using QM/MM and CNS indicate that the latter
refinement is superior to the former for all weights used.
The results from this study show the possible improvements
in structure quality possible with a QM/MM refinement,
but further validation is required on other protein/ligand
systems.

The development of high-throughput crystallography
has called for improvement of the conventional refine-
ment methods. Recently, Schiffer et al. reviewed the latest
advances in simulation techniques that would affect the
field of protein crystallography, and the use of QM meth-
ods was recognized as one of the three major forefronts.26

With the capability and efficiency of QM continuing to
increase, development and application of QM-based x-ray
refinement methodologies will present many new interest-
ing possibilities.

NMR refinement of protein/ligand complexes

Over the past decade, NMR spectroscopy has proven to
be a powerful and versatile tool for the study of protein/
ligand interactions. The three-dimensional structures of

protein/ligand complexes can be determined by combin-
ing interproton distance restraints derived from the nuclear
Overhauser effect (NOE) with other restraints from J cou-
pling constants, hydrogen bonds, and/or residual dipolar
couplings. Up to November 2006, there were over 800 NMR
structures of protein/ligand complexes deposited in the
Protein Data Bank. However, this determination process is
far from automated and high-throughput because it is dif-
ficult to obtain accurate NMR restraints. Because Fesik and
coworkers introduced SAR (structure/activity relationship)
by NMR,27 many NMR-based screening methods have been
developed to identify potential drug molecules in pharma-
ceutical research (for reviews, see Homans, Lepre et al.,
and Meyer and Peters).28–30 A recent interesting applica-
tion of NMR-based screening methods is to predict protein
druggability.31,32 All these techniques take advantage of the
fact that on ligand binding, significant perturbations can
be observed in NMR parameters of either the receptor or
the ligand. These perturbations can be used qualitatively to
detect the complex formation or quantitatively to measure
the binding affinity.

Among these NMR parameters, chemical shifts are
exquisitely sensitive on the chemical environments of
compounds. Therefore, theoretical calculations of chemi-
cal shift perturbations (CSP) on ligand binding can pro-
vide more insights about protein/ligand interactions at
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Figure 8.3. The snapshots of the C2 (green) and C3 (cyan) binding states
of DHN (top) and the results from the QM/MM x-ray optimization (bottom)
superimposed on top of the crystal structure 1ZB6 (gray) and the electron
density contour at 0.5	.

the molecular level. There are two categories of computa-
tional approaches to calculate NMR chemical shifts: classi-
cal models and quantum mechanics.

The classical models33–36 usually include ring current,
magnetic anisotropy, and electrostatic effects on NMR
chemical shifts, which are parameterized to experimental
data or high-level density functional theory (DFT) results.
These approaches are computationally fast so that they can
be easily applied to proteins and other biological systems
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Figure 8.4. Structure of GPI.

but provide only a limited understanding of the relation-
ship between NMR chemical shifts and molecular struc-
tures and conformations. Moreover, it is difficult to extend
these approaches to protein/ligand complexes because of
the vast diversity of the chemical structures of ligands.
Nevertheless, McCoy and Wyss37 have developed J-surface
analysis to map model molecules onto a protein by cal-
culating CSP based on these classical models. Ab initio
and DFT methods can be used to accurately predict NMR
chemical shifts. However, they are still too computation-
ally expensive to calculate NMR chemical shifts for protein/
ligand complexes.

Recently, a relatively fast and accurate approach has
been developed38 to calculate NMR chemical shifts using
the divide-and-conquer method at the semiempirical level.
This linear-scaling approach allows for the treatment of
large biological systems with quantum mechanics. To char-
acterize protein/ligand interactions, this approach was first
applied to the FKBP-GPI complex (see Figure 8.4).39 By com-
paring calculated proton chemical shifts of the ligand to
experimental data, it was possible to determine the binding
site structure and identify a key hydrogen bond in this com-
plex. Moreover, the native structure of the complex could
be selected from a set of decoy poses (see Figure 8.5). This
approach opens a new avenue to score protein/ligand inter-
actions. The typical scoring functions are based on bind-
ing energies that are calculated by either knowledge-based
or empirical functions derived from classical force fields.40

One of the limitations in these functions is that they cannot
reliably discriminate different poses, especially those that
are close to the native structure. By incorporating experi-
mental CSP analysis using QM-derived CSPs, this limitation
can be circumvented. To further validate this approach, we
have generated several hundred poses of GPI using differ-
ent docking programs and then scored them by calculating
CSPs and then comparing them to experiment.41 We have
found that the deviation of the computed CSPs from experi-
ment can better differentiate decoy poses from native poses
than typical scoring functions used in docking studies. This
demonstrates that CSP-based approaches can provide an
accurate way in which to predict protein/ligand complex
structure using in silico NMR approaches.

The J coupling constant is another important NMR
parameter that can provide a wealth of information about

molecular conformations and dynamics. The
Karplus equation, which describes the rela-
tionship between J coupling constants and
molecular dihedral angles, is widely used
in protein structure determination. Recent
advances in quantum chemistry make it pos-
sible to calculate this NMR observable quite
accurately. We have demonstrated that the
major conformation of a flexible molecule
in solution can be determined by com-
paring the calculated and experimental J
coupling constants.42 Chou et al.43 have
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Figure 8.5. Correlation plot of the chemical shift perturbation root-mean-
square deviations (rmsds) (in ppm) versus the structural rmsds (in Å) with
respect to NMR structure GPI5 for the nine remaining GPI NMR structures
and twenty computationally generated structures.

reparameterized the Karplus relationships for Ile, Val, and
Thr residues based on DFT calculations to gain improved
insights into side-chain dynamics. Trans hydrogen bond
scalar J couplings have been detected in nucleic acids and
proteins recently. DFT studies of these J coupling con-
stants on peptide models hinted at the cooperative nature
of hydrogen bond interactions.44

NMR spectroscopy is an important tool to study protein
and protein/ligand complexes and novel QM approaches
will continue to affect our understanding and interpretation
of experimentally observed NMR parameters.

USING QUANTUM MECHANICS TO MODEL PROTEIN
STRUCTURE

A major unsolved problem in biology is determining protein
structure from sequence (the protein folding problem).45–47

This includes, in the case of SBDD, predicting the fold
from structure or refining homology models. Currently,
classical or simplified potentials are used in attempting to
solve this problem and significant amounts of very creative
effort has been reported, which is beyond the scope of this
chapter.45–47 Instead we focus on the use of QM to discrimi-
nate decoy protein structures from native using semiempir-
ical QM methods. Indeed, with the introduction of linear-
scaling QM techniques, the modeling of full protein systems
is now possible; we briefly review large-scale validations of
the method to study protein structure and folding.

Protein geometry validation

To first assess the suitability of semiempirical methods it
is important to first demonstrate that the experimental
geometries of proteins are reproduced by semiempirical

QM theory. Semiempirical methods were developed to han-
dle a large variety of chemical systems by being parameter-
ized against a wide range of small molecules.48,49 Proteins
are large biopolymers with a small number of unique func-
tional groups, so any error in the semiempirical treatment
of those particular groups may potentially be magnified in
these systems. Although semiempirical methods are heavily
parameterized, they differ from classical approaches such
as MM approaches that may employ amino-acid-specific
parameters.13

A quote from Stewart’s development of the semiempir-
ical parameterized model 3 (PM3) method captures the
essence of this problem nicely, “The parameter set here
has three limitations: in the limit, it is only as good as the
reference data used; . . . and it should be used with caution
when applied to the prediction of any properties not used
either in the parameterization or in subsequent surveys.”49

An analysis of the training compounds used in the param-
eterization of PM3 highlights the absence of several func-
tional groups present in amino acids. Although the amino
acids alanine and glycine were included in the parame-
terization of PM3, guanidyl-like groups and imidazole-like
groups were not included.

Large-scale optimization of protein geometries at the
semiempirical level highlights the problems of minimiz-
ing in vacuo. Unlike classical methods, QM methods can
undergo conformational changes as well as changes in
bonding configuration. Bond cleavage and proton trans-
fer involving charged groups were common when optimiz-
ing with semiempirical methods in vacuo. These artifacts,
not suprisingly, were corrected for when optimizing with an
implicit solvent model.

Overall, semiempirical methods match the geometries
of proteins surprising well. The largest observed discrep-
ancies were in the torsional angles, in agreement with pre-
vious observations.49,50 Furthermore, optimization with SE
methods led to a smaller fraction of side chains in native
rotameric states. This is likely to be due to the low ener-
getic differences arising from perturbations in the torsional
angles. Also of note, the C–N peptide bonds in proteins are
longer by 0.06Å in semiempirical-minimized geometries,
and in general C–N bonds were predicted to be longer than
those found in crystal structures of proteins. Nonetheless,
the optimized structures, although far from perfect, repro-
duced experimental x-ray geometries satisfactorily.

Approximations to semiempirical geometries

Quantum mechanical calculations are more sensitive to
geometries of structures than classical methods. Very large
changes in the energy can result from small changes in
the structure, particularly with respect to bond lengths and
angles. In this regard, it is desirable to first optimize a sys-
tem before applying QM calculations on the structure. Ide-
ally, it would be preferable to optimize the structure at the
QM level so that the resulting structure would be consistent
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Figure 8.6. Semiempirical minimization profile of N-terminal fragment of
NS-1 protein (PDB code 1ail) starting with the crystal structure (circle),
the structure preminimized with AMBER (parm94 – triangles), and the
structure preminimized with parmPM3 (filled circles).

with the QM treatment employed. However, because of the
computational expense associated with minimizing large
biomolecules at the QM level, this is often difficult. A more
computationally tractable approach that we have devel-
oped is to optimize structures using an MM potential that
has been parameterized to reproduce geometries that are
more consistent with the semiempirical QM treatment.51

The AMBER force field has been reparameterized to
yield geometries more in register with a semiempirical QM
approach, and they are termed parmAM1 and parmPM3 in
reference to the semiempirical geometries for which they
were parameterized.51 The advantage of this parameter set
is twofold: (1) to reduce the time taken for optimizations by
using an MM minimization to arrive at lower energy start-
ing structures and (2) to reduce the overall strain on the sys-
tem by potentially removing energy and gradient instabili-
ties during subsequent QM minimizations that can lead to
bond cleavage or other artifacts.

This approach has been successful in producing ini-
tial structures that are generally more stable in subsequent
QM optimizations and exhibit much lower energies when
scored with QM methods. This is highlighted in Figure 8.6,
which compares the semiempirical minimization profile of
the N-terminal fragment of the NS-1 protein [Protein Data
Bank (PDB) code 1ail] starting with the crystal structure and
the structure preminimized with AMBER and preminimized
with parmPM3. The structure preminimized with parmPM3
has a lower initial energy and exhibits a smoother mini-
mization profile.

Discrimination of native structures

Another common method used in assessing scoring poten-
tials for proteins is to determine their ability to discrimi-
nate native structures from nonnative models.52 In ab ini-
tio folding, large numbers of protein models are generated
and a scoring function is used to identify near-native from

nonnative structures. The assumption is that the native
structure should be at the global minimum of the energy
function,53 so an inability to correctly identify native struc-
tures would indicate that there might be deficiencies in the
method and, by inference, be less useful in modeling stud-
ies of proteins. This is also a particularly challenging prob-
lem for QM methods as it entails the scoring of thousands
of protein models. This study marked the first large-scale
investigation into the utility of semiempirical QM methods
for studying protein folding.

Large databases of these computationally generated
nonnative protein structures, or decoys, are readily avail-
able.54,55 Many of these decoy sets are generated during
ab initio protein structure prediction calculations and con-
tain many of the characteristics of native protein struc-
tures, possessing secondary structural elements and favor-
able packing. During structure prediction simulations, a
large set of structures are computationally generated; the
aim is to be able to reliably identify those structures that
have lower root-mean-square deviations (rmsds) to the
native structure. This approach is generally constrained by
insufficient sampling and deficiencies in the energy func-
tion; a large conformational space must be sampled and
the energy function must be robust enough to discriminate
nativelike structures from nonnative.

Although classical MM potentials perform very well at
identifying the native structure from decoys, they do not
identify the native structure in all cases.56 In our approach,
we have used a linear combination of the heat of formation
obtained from QM calculations, a classical Lennard-Jones
attractive term (LJ6), and a QM-derived Poisson-Boltzmann
(PB) solvation term in the scoring function. The attractive
term was included to compensate for the poor treatment of
dispersive effects by semiempirical methods. Because the
individual components of the resulting “DivScore” method
were taken from different levels of theory, weighting coeffi-
cients were applied to maximize the Z-score of native struc-
tures in a test set relative to their decoys and are shown
below:

Etot = 0.250∗�Hf + 0.225∗�Gsolv + 0.525∗L J6.

This approach was used on thirteen large sets of decoys,
taken from the four-state reduced set and Rosetta set.
Because of the potential for bias when comparing struc-
tures generated through different means, an all-atom
gradient-based minimization was performed on all decoys
and native structures. Both AMBER and parmPM3 were
used to clean up the models from any structural anoma-
lies in a consistent fashion. In addition, bond lengths
and angles are minimized with a consistent parameterized
potential, removing any bias in the force field toward either
the native structure or its decoys.

The results of scoring with DivScore show that this scor-
ing function is particularly well suited for identifying the
native structure from among all decoys. The native struc-
tures can be correctly identified for all thirteen systems,
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(a) (b)

Figure 8.7. Energy versus rmsd plots for the fructose repressor DNA binding domain (PDB id: 1uxd) scored using
the DivScore potential (a) and AMBER (b). (▲) NMR minimized mean (taken as the reference for rmsd calculations);
(■) individual NMR models; (●) Rosetta decoy. Energies are reported as the difference in energy for a state compared
to the lowest energy structure in the decoy set. AMBER scores several decoys better than native models while
DivScore correctly identifies several NMR models as native.

although interestingly it is the x-ray structures and not the
NMR structures that are generally lowest scoring. The Z-
scores for all native structures are large, indicating that the
potential function scores the native structure much bet-
ter than the set of decoys. The energy gaps between the
native structure and the best-scoring decoy are large for
the four-state-reduced set, although noticeably smaller for
the Rosetta decoys. A sample of the resulting plots of Div-
Score versus rmsd from native is given in Figure 8.7.

It is interesting that semiempirical methods work so
well in identifying native structures from nonnative, con-
sidering that proteins contain functional groups that were
not explicitly parameterized in the semiempirical Hamil-
tonians used (AM148 and PM349). Furthermore, classical
approaches have an advantage in that they have been
parameterized for a focused set of functional groups found
in biological molecules,13 whereas SE parameters are imple-
mented at the level of individual elements. In addition,
macromolecular effects such as nonlocal van der Waals
interactions and multiple charged-charged interactions
become significant.

The ability to use semiempirical single-point measure-
ments to discriminate native structures from nonnative
indicates that these methods are suitable for applications
involving proteins and may be capturing important inter-
actions that lead to protein stability. It is worth considering
why semiempirical models score protein decoys as well as
we have found in the present study. Semiempirical meth-
ods are known not to give phi-psi plots that agree with
high-quality ab initio results,50 while force fields are gener-
ally parameterized to reproduce these plots at some level
of accuracy. This suggests that other factors play a role like
long-range electrostatics or cooperativity effects observed
in the folding of secondary structural elements.57 Possibly
these effects are overwhelming the conformational effects
when using semiempirical methods in scoring native and
decoy protein structures. With this approach in place one
can start to consider using semiempirical methods to val-
idate homology models or to use it to study the preferred
conformation of loops in proteins.

STRUCTURE-BASED DRUG DESIGN

Qualitative uses of QM in RBDD

The ability to characterize a macromolecule such as a pro-
tein using QM opens up a whole new range of descriptors
that can aid drug discovery. Many of these descriptors are
beyond the reach of classical potentials and by their very
nature can be used to gain a qualitative understanding of
protein/ligand interactions and then be used in the rational
design of drug molecules. Linear-scaling QM methods have
made therapeutically important protein targets accessible
to qualitative analysis, from a rational drug design perspec-
tive. These qualitative insights are often used to predict lig-
and binding or metal binding “hot spots” that can be targets
for small-molecule inhibitors. Workers have made use of
descriptors such as molecular electrostatic potential (ESP)
maps, local hardness and softness, Fukui indices, frontier
orbital analysis, density of electronic state analysis, and so
on, to probe proteins. Below we concentrate on recent stud-
ies that have employed QM derived descriptors.

ESP and relative proton potential

ESP maps have been widely used as a tool for charac-
terizing protein or DNA binding sites in RBDD. However,
these maps have traditionally been derived from classical
point charge models (for example, PARSE) that were used
to compute the electrostatic potential on the surface of pro-
teins by solving the linear or nonlinear PB equation. With
the advent of linear-scaling QM algorithms, combined with
self-consistent reaction field methods to model solvation,
ESP maps can now be computed quantum mechanically.
Khandogin and York, using linear-scaling QM technology to
generate ESP maps, have probed properties of therapeuti-
cally important protein targets such as HIV-1 nucleocapsid
(NC) protein.58,59 These authors have clearly demonstrated
the advantage of using the PM3/COSMO computed molec-
ular electrostatic potential (MEP) map over the PARSE/PB
map, in discerning between the electronegativity of the
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C-terminal and N-terminal zinc finger region of NC. These
results agree with earlier experimental work that suggests
the same.

Another notable aspect of this study is the use of the
relative proton potential as a descriptor to predict proton
affinity of titratable sites of the ovomucoid third domain
(OMTYK3). The agreement between experimental pKa and
relative proton potentials of these residues is very encour-
aging with a linear correlation coefficient of −0.996. There
is a wealth of experimental pKa data and high-resolution
x-ray crystallographic data available for other therapeuti-
cally important protein targets. A systematic study of all
these targets to confirm the predictive ability of relative
proton potential is in order. In related studies, Rajamani
and Reynolds have also used linear-scaling QM60,61 imple-
mented in the computer program DivCon to model proto-
nation states of catalytic aspartates in �-secretase.62 These
studies suggest that the aspartates prefer the monoproto-
nated state in the presence of the inhibitor, whereas in
its absence they favor the dideprotonated state. Raha and
Merz, again using DivCon, have also formulated a scheme
to calculate the proton affinity of the catalytic aspartates of
HIV-1 protease in the presence and absence of inhibitors
bound to the proteases and discussed the results in light of
their binding affinity calculations.63

Polarization and charge transfer
Although the role of polarization and charge transfer in
macromolecular interaction is well known, only recently
has it been quantified in SBDD by the use of QM methods.
Hensen and coworkers, using QM/MM methods, have stud-
ied the interaction of HIV-1 protease with three high-affinity
inhibitors: nelfinavir, mozenavir, and tripnavir.64 They find
that polarization of the ligand by the enzyme environment
contributes to up to 39% of the total electrostatic interac-
tion energy. Based on their analysis they propose modifi-
cations to one of the inhibitors that can possibly lead to
increase in binding affinity. In a similar study, Garcia-Viloca
et al. have investigated the role of polarization of the sub-
strate tetrahydrofolate, and the cofactor NADPH, at various
stages of dihydrofolate reductase catalyzed hydride transfer
reaction.65 The authors find that polarization contributes to
4% of the total electrostatic interaction and stabilizes the
transition state by 9 kcal/mol over the reactants.

Charge transfer in receptor ligand interaction in the con-
text of SBDD has been studied in significant detail by Raha
and Merz.63 In their recent study of 165 noncovalent pro-
tein/ligand complexes, they find that in 11% of the com-
plexes more than 0.1 electron units of charge is trans-
ferred from the protein to ligand. In the 49 metalloenzyme
complexes, there is on average up to 0.6 electron units of
charge transferred between the protein and the ligand. The
direction of CT depends on the protein/ligand complex.
For example, in matrix metalloproteases (MMP), charge
is transferred from the protein to the ligand, whereas in
human carbonic anhydrase (HCA) and carboxypeptidases
(CPA) charge is transferred from the ligand to protein. All

these studies indicate that QM effects are important in pro-
tein/ligand interaction and cannot be ignored in SBDD
efforts that hope to discover potent inhibitors to protein tar-
gets in silico.

Catalysis, QM, and SBDD
The mechanism of recognition of substrates by enzymes,
followed by catalysis and product formation, has drawn
considerable interest from the drug discovery community
as these enzymes are potential targets for therapy. As a
result, a thorough understanding of the mechanism with
respect to catalysis can lead to effective inhibitor design
strategies. QM has come to play a leading role in this area,
because the very nature of mechanistic enzymology makes
it suitable for sophisticated investigation via use of QM.
Recent reviews in this area describe the emerging field
of computational enzymology and detail modeling tech-
niques and important advances that involve QM/MM and
DFT based approaches.3,4

Review of the literature for the past year indicates a host
of enzymes that have been the subject of mechanistic inves-
tigation using QM-based methods and a thorough review is
beyond the scope of the overall topic of this article. How-
ever, we touch on two enzymes that have been the subject
of detailed investigation and are important SBDD targets.
These are �-lactamase and chorismate mutase.66–70 From
the point of view of RBDD, �-lactamases have been partic-
ularly well studied to elucidate their mechanism of resis-
tance to �-lactam antibiotics. In one such comprehensive
study, Hermann et al. have modeled the acylation mecha-
nism of class A �-lactamase enzyme TEM1 using semiem-
pirical QM/MM and hybrid DFT to correct the semiem-
pirical energies.71 The insights gleaned from this study
will be valuable in the design of �-lactam antibiotics that
are not hydrolyzed by �-lactamases. Merz and cowork-
ers have also used QM/MM, DFT, and quantum chemi-
cal solvation methods to study the mechanisms and bind-
ing preferences of a class of �-lactam antibiotics for these
enzymes.69,72

Quantitative uses of QM in RBDD
Although QM can provide valuable insights and a differ-
ent perspective regarding the interaction between recep-
tor and ligand in structure-based drug design, the holy grail
of computational drug discovery still remains the ability to
accurately calculate the free energy of binding between a
protein and its small-molecule inhibitor and thereby dis-
cover new inhibitors in silico. Part of this problem involves
the prediction of the correct binding mode or “pose” of
the inhibitor when bound to a protein target. Several dock-
ing programs have been reasonably successful in obtain-
ing the correct binding mode.73 However, calculating the
binding free energy or the correct score has proven to
be challenging.74 This is not surprising, considering that
the free energy of binding between two molecular sys-
tems depends on a complex interplay of interactions bet-
ween them and the medium they exist in. Computational
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methods that strive to calculate the free energy of bind-
ing usually use an energy function also known as a “scor-
ing function” that computes a score directly or indirectly,
related to the binding free energy. Scoring functions have
traditionally been either simplistic empirical or statisti-
cal potentials that relate observables to the free energy of
binding by using statistical methods, or they are extremely
detailed in nature and use physics-based descriptions of the
molecular energetics and extensive sampling of receptor-
ligand conformations via molecular simulation. Recently
we have reviewed all categories of scoring functions and
discussed their pros and cons with respect to RBDD.75

The use of quantum mechanics in structure-based
drug design has until recently been either qualitative as
described in the previous section or peripheral. For exam-
ple, in large-scale virtual screening of databases using dock-
ing programs, semiempirical QM methods have been used
during the database preparation phase to calculate atomic
charges. A database (ZINC) of commercially available drug-
like molecules prepared with QM charges and desolvation
penalties has been made publicly available.76 In a recent
study Irwin et al., using ZINC, have successfully enriched
known ligands that bind to metalloenzymes over non-
binders in retrospective docking screens.77 Although high-
quality charges and desolvation penalties are not the only
reason for this success, they no doubt play an important
role.

Further evidence of the importance of the quality of
charges comes from another study by Cho et al., in which
ligand charges calculated using QM/MM methods led to
significant improvement in the ability of docking programs
to obtain the correct binding mode of the inhibitor.78 The
docking method that employed QM charges performed
decisively better than force-field-based charges in ranking
native binding modes as the best pose. The difference was
more pronounced for poses that were predicted within 0.5
to 1.0 Å rmsd of the native pose. Raha and Merz have also
designed a classical scoring function – the molecular recog-
nition model – that used CM2 charges calculated using
semiempirical QM for modeling electrostatic and solvation
effects during binding.63 It is noteworthy that charges in this
case were computed for the entire protein/ligand complex
using linear-scaling methods thus accounting for polariza-
tion and charge transfer. The molecular recognition model
was able to calculate pKis that agreed with experimental pKi

(correlation coefficient R 2 of 0.78) for thirty-three inhibitors
modeled in the active site of HIV-1 protease.

QM/MM and binding affinity calculation
QM/MM methods are widely used to study mechanistic
aspects of enzyme catalysis or in peripheral aspects of
RBDD such as small-molecule charge calculation in molec-
ular docking as described above. However, few studies have
attempted to use QM/MM, either directly or indirectly, for
calculating the free energy of binding between a protein and
a ligand. In an earlier study, Mlinsek et al. used QM/MM to
generate the MEP on the van der Waals surface of thrombin
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Figure 8.8. Four-tier approach used by Khandelwal et al. Shown is the
correlation between the experimental and calculated inhibition constants
of a series of hydroxamates against MMP-9 as given by FlexX docking in
step 1 (green), QM/MM minimization step 2 (blue), MD simulations with
constrained zinc bonds step 3 (red), and by QM/MM energy calculations
for the time averaged stuctures from MD simulations step 4 (black).

and then used the MEP as input into an artificial neural
network/genetic algorithm engine for data reduction and
combination for predicting the pKi of thrombin inhibitors.79

Although artificial intelligence methods have shown good
success in such studies, often they lack generality. More-
over, the MEPs used in this study were descriptors that
ignored other aspects of binding.

In a very recent study, Khandelwal et al. used a four-
tier approach that involves docking, QM/MM optimization,
MD simulation, and QM/MM interaction energy calcula-
tion to predict binding affinity.80 The authors use a modi-
fied version of extended linear response (ELR) theory where
the van der Waals and electrostatic terms are replaced by
QM/MM interaction energy:

�Gbinding = � × � 〈EQM/MM〉 + � × � 〈SASA〉 + 
,

where 〈EQM/MM〉 is the time average of single-point QM/MM
interaction energies obtained from MD simulations. The
authors calculated the binding affinity of twenty-eight
hydroxamate-based inhibitors of matrix metallopro-
tease (MMP-9) using this approach with impressive
accuracy. The agreement between the calculated and
experimental pK i is excellent (R 2 = 0.9 and cross-validated
R 2 ranging from 0.77 to 0.88). What is also noteworthy
is that the authors clearly demonstrate an improvement
in predictive accuracy with every step of their four-tier
approach. As shown in Figure 8.8, the agreement with
experimental pKi improves from poor, after the first step of
docking (R 2 = 0.044; green circles in Figure 8.8) to very good
(R 2 = 0.90; black circles in Figure 8.2) after the final step of
QM/MM single-point interaction energy calculation. This
points toward the importance of a quantum mechanical
treatment and the sampling of active conformations in
accurate binding prediction. Specifically, the QM/MM
treatment of the active site is very important (step 3)
because it was shown that a proton is transferred from
the hydroxamate hydroxyl to the active-site glutamate.
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Modeling this phenomenon is more of a challenge when
classical potentials are used.

Linear-scaling QM and binding affinity calculation
The QM/MM approaches described above clearly show
promise for calculating the binding affinity in protein/
ligand interaction. However, it is obvious from the above
discussion that, first, these approaches still require exten-
sive sampling of ligand/receptor conformations through
molecular simulation and are very time-consuming and,
second, in all RBDD QM/MM studies reported to date,
only the ligand is treated quantum mechanically, because
including even small portions of the protein is compu-
tationally too expensive. Third, if bonded regions of the
protein/ligand complex are to be divided into QM and MM
regions, then there are well-documented pitfalls associated
with the boundary region in the QM/MM approach.81

These problems have to some extent been surmounted
by the development of linear-scaling QM technology in
the past decade. Semiempirical Hamiltonians such as AM1
and PM3 can now be employed to calculate the molecular
wave function for proteins with thousands of atoms. One
of the first applications of linear-scaling methods to RBDD
was reported by Raha and Merz, where they calculated the
binding affinity of ligands bound to the metalloenzyme
human carbonic anhydrase with reasonable accuracy.82 As
described by the authors, the free energy of binding in solu-
tion was calculated using the following set of equations:

�Gsol
bind = �Gg

b + �GPL
solv − �GP

solv − �GL
solv

�Gg
b = � Hg

b − T�Sg
b.

Here, the free energy of binding in solution was calcu-
lated as the sum of the gas phase interaction energy and
a solvation correction. The gas phase interaction energy
consisted of enthalpic and entropic components. The elec-
trostatic part of the enthalpic component was calculated
with the program DivCon, using semiempirical Hamilto-
nians. The solvation correction was calculated as a dif-
ference between the solvation free energies of the pro-
tein/ligand complex (PL) with the protein (P) and the lig-
and (L) free in solution. The solvation free energy was cal-
culated using a Poisson-Boltzmann based self-consistent
reaction field (PB/SCRF) method in which the polarization
of the solute electron density due to the presence of the sol-
vent reaction field is calculated self-consistently using a QM
Hamiltonian.83 This is a major advantage of using the QM-
based solvation method wherein the dielectric relaxation
(or the internal dielectric) of the protein in response to a
solvent reaction field is not preset.

In subsequent studies, the authors carried out a
very large-scale and detailed validation of this quantum-
mechanics-based scoring function, named QMScore, for
predicting binding affinity. They calculated interaction
energies for a diverse range of protein/ligand complexes

comprising of 165 noncovalent complexes and 49 metal-
loenzyme complexes.63 For the 165 noncovalent complexes
the interaction energies, without any fitting, agreed with
experimental binding affinity within 2.5 kcal/mol. When
different parts of the scoring function were fit to the exper-
imental free energy of binding using regression methods,
the agreement was within 2.0 kcal/mol. For metalloen-
zymes, the agreement with experiments without fitting was
within 1.7 kcal/mol and with fitting was within 1.4 kcal/
mol. The authors thus demonstrated the inherent predic-
tive ability of this first-generation full QM-based scoring
function that takes into account all aspects of binding.

In another study, Nikitina et al., using linear-scaling
QM methods, calculated the binding enthalpy of eight lig-
ands bound to protein conformations from the PDB.84

The authors chose enthalpy to examine the ability of the
semiempirical Hamiltonian PM3 to calculate the enthalpy
of binding. The choice of the enthalpy of binding instead
of the free energy of binding was a prudent choice because
the computation of entropy is far more challenging and
generally introduces further simplifying approximations.
Another important aspect of the study was inclusion of
water molecules in the calculation of enthalpy. The struc-
tural water molecules were included in the computation of
reference state enthalpies of the protein and ligand. They
tried two different schemes where water molecules that
were hydrogen bonded to both the protein and the ligand
in the complex were considered in both reference state cal-
culations of the protein and the ligand. One drawback of
the study is the exclusion of solvation effects or the sol-
vation correction to the enthalpy of binding. However, the
authors argue that solvation effects are modeled enthalpi-
cally by including explicit water molecules. The calculated
enthalpies agreed with the experimental enthalpies within
2 kcal/mol.

Other recent examples of using of linear-scaling QM in
RBDD include a study by Vasilyev and Bliznyuk where the
computer program MOZYME was used to rescore the top
100 predicted ligands from another docking program. The
authors evaluated the feasibility of using a linear-scaling
QM program for such a task.85 In another application of
MOZYME, Ohno et al. studied the affinity maturation of an
antibody by calculating the binding free energy of the hap-
ten bound to a germline antibody and the mature form.86

The authors emphasize the importance of polarization and
charge transfer in the maturation process.

Recent development of linear-scaling technology has
focused on higher levels of theory, such as Hatree-Fock or
DFT to calculate the wave functions of macromolecules.
Gao et al. have described the development and application
of a density matrix (DM) scheme based on molecular frac-
tionation with conjugate caps (MFCC).87 Using this method
the density matrix is calculated for capped fragments of a
macromolecule at high levels of theory. The total energy is
then calculated from the full DM that is assembled from the
fragment DMs. In an application of this method, Chen and
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Zhang calculated the ligand/DNA/RNA interaction at high
levels of theory.88 Although further validation is needed for
evaluating the ability of such a method to calculate binding
free energies, it clearly has potential.

Fukuzawa et al. have used another approach – ab intio
fragment molecular orbital (FMO) – to calculate the inter-
action energy of ligands that bind to the human estrogen
receptor.89 Although the agreement between the calculated
and observed binding affinity is modest, they have exam-
ined the feasibility of modeling the receptor using only a
few of the residues surrounding the ligand. They found no
significant difference in the computed interaction energy
between the complete receptor and the pruned receptor
that had residues surrounding only the ligand. This hints
toward a strategy to reduce the time taken for such calcu-
lations even further. However, a more thorough validation
study is still needed.2

Interaction energy decomposition with QM and QM/MM
Experimental measures of binding affinity give very little
insight into the relationship of the binding pose of an active
inhibitor and its interaction with the receptor. Such insights
can be very useful for the process of going from a lead to
a drug. Computational methods, in general, provide access
to the decomposition of the interaction energy between
the ligand and the receptor. However, with the application
of QM to RBDD, these insights are more grounded theo-
retically and can often be validated by experiments. These
insights can be utilized in design cycles comprising predic-
tion and testing for increasing the potency of submicromo-
lar leads in drug discovery.

Both QM/MM and linear-scaling QM methods have
been used to dissect the interaction of a ligand with its
receptor. Hensen et al. used MD and QM/MM to dissect
the interaction of inhibitors bound to the HIV-1 protease.64

They demonstrated that a 4-hydroxy-dihydropyrone sub-
structure of the most potent inhibitor, tripnavir, made
favorable interactions with the catalytic aspartates and
isoluecine residues of the HIV-1 protease. He et al. have
used the linear-scaling DM-MFCC approach to dissect the
interaction between the HIV-1 reverse transcriptase (RT)
and its drug-resistant mutants with the inhibitor nevirap-
ine. The authors calculate a QM interaction spectrum that
sheds light on crucial aspects of resistance to RT.90

Raha et al., using linear-scaling QM and a pairwise
energy decomposition (PWD) scheme, dissected the inter-
action of a series of fluorine-substituted ligands [N-(4-
sulfamylbenzoyl)benzylamine or SBB] with human car-
bonic anhydrase.91 They divided the enzyme and inhibitors
into subsystems and calculated the exchange energy that
consisted of the off-diagonal elements of the density
matrix and the one-electron matrix elements between
subsystems:
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Here, A and B are residue subsystems, and P and H are
the density matrix and the one-electron matrix, respec-
tively. Using this PWD scheme, the authors investigated the
effect of substitution of fluorines on the distal aromatic
rings of SBB inhibitors and on its interaction with human
carbonic anhydrase. The authors probed at the relation-
ship of various pairwise interactions with the free energy
of binding of the inhibitors. It was found that the substi-
tution of fluorine at the distal group did not directly affect
the free energy of binding. Rather, it geometrically influ-
enced the strongest interaction between the sulfonamide
group of the inhibitor and the Thr199 residue of the pro-
tein. This strong interaction, which was chemically iden-
tical in each of the inhibitors, was directly correlated with
the binding affinity of the ligand. Such insights can be
valuable in designing new and potent inhibitors. The PWD
scheme was also incorporated into the comparative bind-
ing energy analysis (COMBINE)92 methodology of Ortiz and
coworkers to create SE-COMBINE by Peters and Merz.93

This method elucidated the most important interactions
between trypsin and a series of trypsin inhibitors. The mul-
tivariate statistical tools, principal component analysis and
partial least squares (PLS), were used to mine the interac-
tions between the receptor residues and the ligand frag-
ments to generate QSAR models. The authors introduced
so-called IMMs (intermolecular interaction maps), which
enable the researcher to graphically view where a candidate
drug could be modified or optimized.

LIGAND-BASED DRUG DESIGN

One of the oldest tools used in rational drug design is QSAR.
QSAR models are derived for a set of compounds with
dependent variables (activity values, e.g., Ki, IC50), and a
set of calculated molecular properties or independent vari-
ables called descriptors. Each compound in the data set is
assumed to be in its active conformation. Models are gen-
erated using techniques such as multiple linear regression
(MLR), principal component regression (PCR), partial least
squares regression (PLSR), and computer neural networks
(CNNs) to name a few. Ligand-based methods can be fur-
ther divided into two categories, 3D-QSAR and field-based
methods. Both will be touched on under “3D-QSAR with
QM Descriptors.”

3D-QSAR WITH QM DESCRIPTORS

The descriptors used in 3D-QSAR are usually divided
into three categories: (1) electronic [e.g., highest occupied
molecular orbital (HOMO) and lowest unoccupied molecu-
lar orbital (LUMO) energies], (2) topological (e.g., connec-
tivity indices), and (3) geometric (e.g., moment of inertia).
The models in all cases are often created using multivari-
ate statistical tools due to the large number and high degree
of collinearity of descriptors. An excellent review by Karel-
son, Lobanov, and Katritzky provides details of QM-based
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descriptors used in QSAR programs such as CODESSA.94

These include those that can be observed experimentally,
such as dipole moments, and those that cannot, such as
partial atomic charges. Clark and coworkers have recently
used AM1-based descriptors to distinguish between drugs
and nondrugs and to understand the relationship between
descriptors and their physical properties.95

Most descriptors are calculated at the semiempirical
level of theory using programs such as AMPAC or MOPAC.
However, with computer speed increasing steadily the use
of ab initio and DFT methods are becoming increasingly
common. These methods allow the descriptors to be cal-
culated from first principals. Yang and coworkers exam-
ined various DFT-based descriptors to generate models for
a series of protoporphyrinogen oxidase inhibitors. It was
shown that the DFT-based model outperformed the PM3-
based model.96

FIELD-BASED METHODS: COMFA

Comparative molecular field analysis (CoMFA)97 and CoM-
SIA (comparative molecular similarity indices analysis)98

are field-based or grid-based methods where all the com-
pounds in the data set are aligned on top of one another
and steric and electrostatic descriptors are calculated at
each grid point using a probe atom. As a result there
are many more descriptors than molecules; therefore, a
PLS data analysis is used to generate linear equations. A
study by Weaver and coworkers compares different field-
based methods for QSAR, including CoMFA and CoMSIA,
finding that field-based methods provide a robust tool to
aid medicinal chemists.99 Absent from the traditional MFA
approaches are quantum mechanically derived descrip-
tors of electronic structure. QMQSAR is a relatively new
technique where semiempirical QM methods are used to
develop quantum molecular field-based QSAR models.100

Placing the aligned training set ligands into a finely spaced
grid produces quantum molecular fields, where each ligand
is characterized by a set of probe interaction energy (PIE)
values. A PIE is defined as the “electrostatic potential energy
obtained by placing a positively charged carbon 2s electron
at a given grid point and summing the attractive and repul-
sive potentials experienced by that electron as it interacts
with the field of the ligand L”:
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The nuclear charge z� is simply the number of valence
electrons on atom � and the notation � ∈ � indicates the
set of valence atomic orbitals centered on atom �. Density

matrix elements P��′ are given by the following sum over the
occupied MOs:

P��′ = 2
Nocc∑
k=1

c�kc�′k.

When applied to data sets containing corticosteroids,
endothelin antagonists, and serotonin antagonists, linear
regression models were produced with similar predictabil-
ity compared to various CoMFA models.

SPECTROSCOPIC 3-D QSAR

The spectroscopic QSAR methods include EVA (vibrational
frequencies),101 EEVA (MO energies),102 and CoSA (NMR
chemical shifts).103 It is a requirement of 3D QSAR that all
compounds that are being studied contain the same num-
ber of descriptors. However, none of the above techniques
provides this necessarily. The number of vibrational fre-
quencies is dependent on the number of atoms, N, in a
molecule (3N-6 or 3N-5 if linear). The number of NMR
chemical shifts depends on N while the number MOs also
depends on basis set size. A solution of this problem is to
force the information onto a bound scale using a Gaussian
smoothing technique, where the upper and lower limits of
this scale are consistent for all compounds in the data set.
A Gaussian kernel with a standard deviation of 	 is placed
over each calculated point, EVA, EEVA, or NMR chemical
shift. Summing the amplitudes of the overlaid Gaussian
functions at intervals x along the defined range results in
the descriptors for each molecule, f (x):

f (x) =
3N−6∑

i=1
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These descriptors contain a wealth of structural infor-
mation when we consider the physical basis of the meth-
ods. Infrared spectroscopy provides information concern-
ing the arrangement of molecular functional groups and
NMR chemical shifts are highly dependent on substituents
effects in a congeneric series of compounds. However, MO
energies give the electronic structure of the molecule such
as the HOMO/LUMO energies that play an important role
in the binding process.

The choice of theory used to calculate these descriptors
depends on the number of compounds in the data set and
the accuracy that is required; all can be calculated using
semiempirical or ab initio methods. The QSAR results also
depend on the choice 	 and x in the above equation.

These methods have provided predictive models for a
number of data sets and have an advantage over the field-
based methods because they are “alignment-free”; in other
words there is no need to superimpose the structures in the
data set. Asikainen and coworkers provided a comparison of
these methods in a recent article where they studied estro-
genic activity of a series of compounds.104
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QUANTUM QSAR AND MOLECULAR QUANTUM SIMILARITY

The Carbó group has been involved in the development of
the field of quantum QSAR and molecular quantum simi-
larity since the 1980s.105 The quantum similarity measure
(QSM) between any two molecules, A and B, can be calcu-
lated using the following:

zAB = 〈�A |� |�B〉 =
∫ ∫

�A(r1)�(r1r2)�B(r2)dr1dr2,

where � is some positive definite operator (e.g., kinetic
energy or Coulomb) and � is the electron density. The QSMs
can be transformed into indices ranging between 0 and 1
using

rAB = zAB√
zAAzBB

,

yielding the so-called Carbó similarity index (CSI). Calculat-
ing an array of QSMs or CSIs between all molecular pairs in
some data set provides descriptors for quantum QSAR.106

A drawback of the CoMFA-based methods is the need
to superimpose the molecules in the training set. This is
no easy task due to the many degrees of freedom (both
rigid and internal motions). However, the alignment of
the molecular structures in a common 3D framework pro-
vides a convenient method of determining which regions
of the molecules impact activity and which regions can be
developed to create new compounds with more favorable
properties. QSMs have been developed with a Lamarckian
genetic algorithm called the quantum similarity superpo-
sition algorithm (QSSA) to superimpose the classic CoMFA
data set.107 The QSSA is performed in such a way as to max-
imize the molecular similarity and does not rely on atom
typing as other empirical based methods do.

Accurate and efficient molecular alignment techniques
based on first-principles electronic structure calculations
represents a significant challenge due to the associated
computational expense. Hence, QSMs tend to use approx-
imate electron densities. Fusti-Molnar and Merz108 recently
described a new scheme that maximizes quantum simi-
larity matrixes in the relative orientation of the molecules
using Fourier transform (FT) techniques for two purposes:
first, build up the numerical representation of true ab ini-
tio electronic densities and their Coulomb potentials and,
second, apply the Fourier convolution technique to accel-
erate optimizations in the translational degrees of freedom.
Importantly, to avoid interpolation errors, the necessary
analytical formulae were derived for the transformation of
the ab initio wave functions in rotational coordinates. The
new alignment technique was then shown to be generally
applicable for overlap, Coulomb, and kinetic energy quan-
tum similarity measures and can be extended from QSM
computation to solving the docking problem with ab initio
scoring.

Popelier and coworkers have coupled the atoms-in-
molecules (AIM) theory of Bader with quantum molecular
similarity to produce quantum topological molecular sim-

ilarity (QTMS).109 It uses the so-called Bond critical points
of predefined bonds in a series of molecules as descrip-
tors followed by multivariate statistical analysis. The series
of compounds must have a common core for this method
to remain computationally tractable. QTMS has been used
to generate models to estimate the pKa values for a set of
aliphatic carboxylic acids, anilines, and phenols.110

OUTLOOK

As with any brief review it is difficult to catalog all the
most recent advances. But the use of quantum mechani-
cal approaches in drug design problems using both ligand-
and receptor-based drug design applications will certainly
experience tremendous growth in the coming years. The
ability, in principal, for QM to give extremely accurate
interaction energies between a receptor and ligand and its
ability to generate novel descriptor classes should attract
even more attention to the use of QM in structure-based
drug design in the coming years. However, for the use of
QM to become standard requires the development of even
faster QM methodologies and careful validation studies to
demonstrate improved performance over classical method-
ologies. In the case of RBDD the incorporation of entropy
and the role of conformational dynamics still represents a
significant hurdle for both classical and QM-based method-
ologies. Future effort to overcome these problems will cer-
tainly be a major focus of researchers involved in SBDD.

ACKNOWLEDGMENTS

The authors acknowledge the generous support of the NIH
(GM44974 and GM066859).

REFERENCES

1. Cavalli, A.; Carloni, P.; Recanatini, M. Target-related applica-
tions of first principles quantum chemical methods in drug
design. Chem. Rev. 2006, 106, 3497–3519.

2. Fedorov, D. G.; Kitaura, K. Extending the power of quan-
tum chemistry to large systems with the fragment molecular
orbital method. J. Phys. Chem. A 2007, 111, 6904–6914.

3. Mulholland, A. J. Modelling enzyme reaction mechanisms,
specifity and catalysis. Drug. Discov. Today 2005, 10, 1393–
1402.

4. Friesner, R. A.; Gullar, V. Ab initio quantum chemical and
mixed quantum mechanics/molecular mechanics (QM/MM)
methods for studying enzymatic catalysis. Ann. Rev. Phys.
Chem. 2005, 56, 389–427.

5. Blundell, T. L.; Jhoti, H.; Abell, C. High-throughput crystallog-
raphy for lead discovery in drug design. Nat. Rev. Drug Discov.
2002, 1(1), 45–54.

6. Hartshorn, M. J.; Murray, C. W.; Cleasby, A.; Frederickson, M.;
Tickle, I. J.; Jhoti, H. Fragment-based lead discovery using X-
ray crystallography. J. Med. Chem. 2005, 48(2), 403–413.

7. Nienaber, V. L.; Richardson, P. L.; Klighofer, V.; Bouska,
J. J.; Giranda, V. L.; Greer, J. Discovering novel ligands for
macromolecules using X-ray crystallographic screening. Nat.
Biotechnol. 2000, 18(10), 1105–1108.



134 Kenneth M. Merz, Jr.

8. Jack, A.; Levitt, M. Refinement of large structures by simulta-
neous minimization of energy and R factor. Acta Crystallogr. A
1978, 34, 931–935.

9. Kleywegt, G. J.; Jones, T. A. Where freedom is given, liberties
are taken. Structure 1995, 3(6), 535–540.

10. Kleywegt, G. J.; Jones, T. A. Databases in protein crystallogra-
phy. Acta Crystallogr. D Biol. Crystallogr. 1998, 54, 1119–1131.

11. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M. CHARMM: A program for
macromolecular energy, minimization, and dynamics calcu-
lations. J. Comput. Chem. 1983, 4, 187–217.

12. Engh, R. A.; Huber, R. Accurate bond and angle parameters for
x-ray protein-structure refinement. Acta Crystallogr. A 1991,
47, 392–400.

13. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.;
Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Koll-
man, P. A. A second generation force field for the simulation of
proteins, nucleic acids, and organic molecules. J. Am. Chem.
Soc. 1995, 117(19), 5179–5197.

14. Davis, A. M.; Teague, S. J.; Kleywegt, G. J. Application and lim-
itations of X-ray crystallographic data in structure-based lig-
and and drug design. Angew. Chem. Int. Ed. Engl. 2003, 42(24),
2718–2736.

15. Yu, N.; Li, X.; Cui, G.; Hayik, S. A.; Merz, K. M. Critical
assessment of quantum mechanics based energy restraints
in protein crystal structure refinement. Protein Sci. 2006, in
press.

16. Yu, N.; Yennawar, H. P.; Merz, K. M. Refinement of protein
crystal structures using energy restraints derived from linear-
scaling quantum mechanics. Acta Crystallogr. D Biol. Crystal-
logr. 2005, 61, 322–332.

17. Nilsson, K.; Ryde, U. Protonation status of metal-bound lig-
ands can be determined by quantum refinement. J. Inorg.
Biochem. 2004, 98(9), 1539–1546.

18. Ryde, U.; Nilsson, K. Quantum chemistry can locally improve
protein crystal structures. J. Am. Chem. Soc. 2003, 125(47),
14232–14233.

19. Ryde, U.; Nilsson, K. Quantum refinement: a method to deter-
mine protonation and oxidation states of metal sites in protein
crystal structures. J. Inorg. Biochem. 2003, 96(1), 39–39.

20. Ryde, U.; Nilsson, K. Quantum refinement: a combination of
quantum chemistry and protein crystallography. J. Mol. Struct.
2003, 632, 259–275.

21. Ryde, U.; Olsen, L.; Nilsson, K. Quantum chemical geometry
optimizations in proteins using crystallographic raw data. J.
Comput. Chem. 2002, 23(11), 1058–1070.

22. Yu, N.; Hayik, S. A.; Wang, B.; Liao, N.; Reynolds, C. H.; Merz,
K. M. Assigning the protonation states of the key aspartates
in beta-secretase using QM/MM x-ray structure refinement. J.
Chem. Theor. Comput. 2006, 2, 1057–1069.

23. Nilsson, K.; Hersleth, H. P.; Rod, T. H.; Andersson, K. K.; Ryde,
U. The protonation status of compound II in myoglobin, stud-
ied by a combination of experimental data and quantum
chemical calculations: quantum refinement. Biophys. J. 2004,
87(5), 3437–3447.

24. Cui, G.; Xue, L.; Merz, J., K. M. Understanding the substrate
selectivity and the product regioselectivity of orf2-catalyzed
aromatic prenylations. Biochemistry 2006, submitted.

25. Kuzuyama, T.; Noel, J. P.; Richard, S. B. Structural basis for
the promiscuous biosynthetic prenylation of aromatic natural
products. Nature 2005, 435(7044), 983–987.

26. Schiffer, C.; Hermans, J. Promise of advances in simulation
methods for protein crystallography: implicit solvent models,

time-averaging refinement, and quantum mechanical model-
ing. Methods Enzymol, 2003, 374, 412–461.

27. Shuker, S. B.; Hajduk, P. J.; Meadows, R. P.; Fesik, S. W. Discov-
ering high-affinity ligands for proteins: SAR by NMR. Science
1996, 274(5292), 1531–1534.

28. Homans, S. W. NMR spectroscopy tools for structure-aided
drug design. Angew. Chem. Int. Ed. Engl. 2004, 43(3), 290–
300.

29. Lepre, C. A.; Moore, J. M.; Peng, J. W. Theory and applications
of NMR-based screening in pharmaceutical research. Chem.
Rev. 2004, 104(8), 3641–3676.

30. Meyer, B., Peters, T. NMR spectroscopy techniques for screen-
ing and identifying ligand binding to protein receptors. Angew.
Chem. Int. Ed. Engl. 2003, 42(8), 864–890.

31. Hajduk, P. J.; Huth, J. R.; Fesik, S. W. Druggability indices for
protein targets derived from NMR-based screening data. J.
Med. Chem. 2005, 48(7), 2518–2525.

32. Hajduk, P. J.; Huth, J. R.; Tse, C. Predicting protein druggability.
Drug Discov. Today 2005, 10(23–24), 1675–1682.

33. Sitkoff, D.; Case, D. A. Density functional calculations of pro-
ton chemical shifts in model peptides. J. Am. Chem. Soc. 1997,
119(50), 12262–12273.

34. Wishart, D. S.; Watson, M. S.; Boyko, R. F.; Sykes, B. D. Auto-
mated 1H and 13C chemical shift prediction using the BioMa-
gResBank. J. Biomol. NMR 1997, 10(4), 329–336.

35. Iwadate, M.; Asakura, T.; Williamson, M. P. C-alpha and
C-beta carbon-13 chemical shifts in proteins from an empir-
ical database. J. Biomol. NMR 1999, 13(3), 199–211.

36. Xu, X. P.; Case, D. A. Automated prediction of 15N, 13Calpha,
13Cbeta and 13C’ chemical shifts in proteins using a density
functional database. J. Biomol. NMR 2001, 21(4), 321–333.

37. McCoy, M. A.; Wyss, D. F., Spatial localization of ligand binding
sites from electron current density surfaces calculated from
NMR chemical shift perturbations. J. Am. Chem. Soc. 2002,
124(39), 11758–11763.

38. Wang, B.; Brothers, E. N.; Van Der Vaart, A.; Merz, K. M. Fast
semiempirical calculations for nuclear magnetic resonance
chemical shifts: a divide-and-conquer approach. J. Chem.
Phys. 2004, 120(24), 11392–11400.

39. Wang, B.; Raha, K.; Merz, K. M., Jr. Pose scoring by NMR. J. Am.
Chem. Soc. 2004, 126(37), 11430–11431.

40. Abagyan, R.; Totrov, M. High-throughput docking for lead gen-
eration. Curr. Opin. Chem. Biol. 2001, 5(4), 375–382.

41. Wang, B.; Westerhoff, L. M.; Merz, K. M., Jr. A critical assess-
ment of the performance of protein−ligand scoring functions
based on NMR chemical shift perturbations. J. Med. Chem.
2007, 50(21), 5128–5134.

42. Cui, G.; Wang, B.; Merz, K. M., Jr. Computational studies of the
farnesyltransferase ternary complex part I: substrate binding.
Biochemistry 2005, 44(50), 16513–16523.

43. Chou, J. J.; Case, D. A.; Bax, A. Insights into the mobility
of methyl-bearing side chains in proteins from (3)J(CC) and
(3)J(CN) couplings. J. Am. Chem. Soc. 2003, 125(29), 8959–
8966.

44. Salvador, P.; Dannenberg, J. J. Dependence upon basis sets of
trans hydrogen-bond C-13-N-15 3-bond and other scalar J-
couplings in amide dimers used as peptide models: a density
functional theory study. J. Phys. Chem. B 2004, 108(39), 15370–
15375.

45. Fersht, A. R.; Daggett, V. Protein folding and unfolding at
atomic resolution. Cell 2002, 108, 1–20.

46. Baldwin, R. L. In search of the energetic role of peptide hydro-
gen bonds. J. Biol. Chem. 2003, 278(20), 17581–17588.



135 The role of quantum mechanics in structure-based drug design

47. Dill, K. A.; Ozkan, S. B.; Shell, M. S.; Weikl, T. R. The protein
folding problem. Annu. Rev. Biophys. 2008, 37, 289–316.

48. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.
AM1: a new general purpose quantum mechanical molecular
model. J. Am. Chem. Soc. 1985, 107, 3902–3909.

49. Stewart, J. J. P. Optimization of parameters for semiempirical
methods I. Method. J. Comp. Chem. 1989, 10(2), 209–220.
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Pharmacophore methods

Steven L. Dixon

INTRODUCTION

Paul Ehrlich introduced the pharmacophore concept in the
early 1900s while studying the efficacy of dyes and other
compounds as potential chemotherapeutic agents. By anal-
ogy with chromophores and toxophores, Ehrlich suggested
the term pharmacophore to refer to the molecular frame-
work that carries (phoros) the features that are essential for
the biological activity of a drug (pharmacon).1 The mod-
ern, widely accepted definition was offered by Peter Gund
in 1977: “a set of structural features in a molecule that is
recognized at the receptor site and is responsible for that
molecule’s biological activity.”2 In practice, the modern def-
inition is implicitly restricted to cover only specific, nonco-
valent interactions between a molecule and receptor. Thus
a pharmacophore model is not concerned with binding that
occurs solely as a result of short-lived surface-to-surface
hydrophobic interactions, nor binding that involves the for-
mation of covalent bonds.

Although a pharmacophore model codifies the key inter-
actions between a ligand and its biological target, neither
the structure of the target nor even its identity is required
to develop a useful pharmacophore model. For this reason,
pharmacophore methods are often considered to be indis-
pensable when the available information is very limited, for
example, when one knows nothing more than the struc-
tures of a handful of actives.3 However, pharmacophore
approaches can also be vital for accelerating discovery
efforts when more extensive data are available by provid-
ing a means of superimposing structures for 3D quantita-
tive structure/activity relationship (QSAR) development,4–7

or by acting as a rapid prefilter8 on real or virtual libraries
that are too large for routine treatment with more expensive
structure-based techniques, such as docking.

Pharmacophore methods actually comprise a fairly
broad range of computer-aided approaches, including, but
not limited to, automated pharmacophore perception,7,9,10

structure alignment,11,12 identification and representation
of sterically forbidden regions,13,14 3D similarity based
on pharmacophore fingerprints,15–18 and 3D database
screening.2,19–21 This chapter will cover the essential ele-
ments of these and other concepts that arise in the devel-
opment and application of pharmacophore-based method-

ologies. For additional information and numerous exam-
ples, readers are referred to other excellent reviews and
compendia.22–27

HISTORY AND EVOLUTION OF PHARMACOPHORE METHODS

For decades before modern pharmacophore methods
emerged as tools in drug discovery, chemists instinctively
sought reliable hypotheses to explain the activity of both
naturally occurring and human-made ligands of a given
biological target. Elucidation of what makes a class of lig-
ands active is of course critical to the discovery of new com-
pounds with affinity for the same target, along with other
desirable properties (novel structure, superior absorption,
lower toxicity, etc.). Application of these ideas in an auto-
mated fashion and on a large scale became possible in
the 1970s, when high-level programming languages such
as Fortran were increasingly in use in academic settings,
paving the way for development of numerous computer-
assisted techniques in chemistry.

In pioneering work in the early 1970s, Peter Gund intro-
duced concepts to describe the presentation of 3D chemical
features in a manner complementary to the receptor and
identified the variability of the atoms that can perform the
same pharmacophoric function and the variability in the
distances among chemical features.2,28 These concepts pro-
vided the foundation of what is now commonly referred to
as “3D searching” and were used to develop the first soft-
ware to search chemical structure files for matches to phar-
macophoric patterns.

Although Gund’s work answered critical questions about
the feasibility of pharmacophore pattern matching, the fun-
damental problem of deducing plausible pharmacophore
models from a set of flexible ligands remained. A number
of methods have emerged to address this issue,7,9–12,21,29–31

but the active analog approach3 developed in the late
1970s is among the earliest and best known techniques.
In practical applications, a set of torsion angles common
to all ligands is systematically varied using a grid search,
and various constraints are applied to limit the confor-
mational space explored (Figure 9.1). Each combination
of torsion angles produces a geometric arrangement of n
pharmacophoric features, which is described by the set of
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Figure 9.1. Schematic illustration of the active analog approach.3 A set
of torsion angles common to all ligands is systematically varied, and the
resulting interfeature distances are tabulated. Common pharmacophores
are identified by intersecting the interfeature distance tables from all
ligands.

[n(n − 1)]/2 distances between all pairs of features. Inter-
feature distances for each ligand are tabulated as a func-
tion of its torsion angles, and common pharmacophores are
identified by intersecting the interfeature distance tables
from all ligands.

In the mid-1980s, Sheridan and coworkers29 reported
an alternate approach, which employed distance geome-
try techniques32 to sample the low-energy conformational
space of a set of ligands, while constraining interpoint dis-
tances among a set of pharmacophore features present
in all the ligands. Their “ensemble distance geometry”
method was presented in the context of nicotinic receptor
agonists and was restricted to consider only three essen-
tial interactions with the receptor, although in principle
it can be extended to any number of chemical features
and distances, provided those features are stipulated at the
outset.

The active analog approach and ensemble distance
geometry provided solutions to a difficult problem, but nei-
ther was easily generalized to arbitrary sets of ligands, and a
great deal of input was required from the user for each new
data set. This frustration led Yvonne Martin to investigate
ways to fully automate the process, which resulted in the
development of DISCO (DIStance COmparisons).9 Starting
with a set of precomputed low-energy conformers for each
active, DISCO selects as a “reference” the ligand with the
fewest conformers and then compares each of its conform-
ers to all conformers of the other actives. A fast clique-
detection algorithm33 is used to identify distance-based
arrangements of pharmacophore features in a given refer-
ence conformer that also exist, to within some tolerance, in
at least one conformer of every other ligand. If no solutions
are found, matching tolerances can be increased, or the
number of ligands that are required to contain the pharma-
cophore can be decreased. In principle, then, DISCO identi-
fies common feature pharmacophores for an arbitrary set of

ligands represented by an arbitrary set of conformers, with
fairly minimal input from the user. However, one shortcom-
ing in the original implementation is that it did not assign a
ranking or score to each solution, which can be somewhat
bewildering when a data set yields many common pharma-
cophore models.

Catalyst/HipHop
10 was developed in the mid-1990s

with the goal of not only identifying common pharma-
cophores among flexible ligands but also ascribing to each
pharmacophore model an empirically calibrated “rarity” to
reflect the likelihood that it will be found in random drug-
like molecules. In short, rarity is estimated to be higher for
pharmacophores with larger numbers of features, a greater
variety of features, particularly those of an ionic nature, and
larger interfeature distances. A pharmacophore with high
rarity is preferred because it is more likely to be unique to
the actives and therefore a more plausible model of selec-
tive binding.21

HipHop carries out a pruned, exhaustive search, which
identifies all common two-feature pharmacophores within
sets of precomputed ligand conformers, builds on those to
produce common three-feature pharmacophores, and so
on. HipHop allows features to be “missed” by certain lig-
ands, so a given model produced by HipHop may not be
a true common feature pharmacophore but rather a union
of features pharmacophore. This relaxation in matching is
prized by many users because it increases the chances that
something will be found, even for a set of fairly diverse lig-
ands. However, care must be exercised to avoid imposing
a single pharmacophore model on ligands that are associ-
ated with different binding modes, a situation the user is
frequently unaware of.

Although Catalyst has enjoyed a great deal of com-
mercial success, HipHop is sometimes criticized for fail-
ing to yield the most sensible ligand alignments,34 in part
because it incorporates no mechanism for superimpos-
ing atoms that are not part of the pharmacophore. GASP

(Genetic Algorithm Superposition Program)11 overcomes
this problem by including a volume overlap term in the
pharmacophore fitness function, which favors alignments
that provide superior superpositions of overall shape. Phar-
macophore perception is done in the context of a genetic
algorithm,35 where a chromosome encodes the torsion
angles within a set of N ligands, and the mapping of the
pharmacophore features in a base ligand (the one with the
fewest features) to features in the other N−1 ligands. Align-
ments and potential pharmacophores are determined by
the common set of mapped features that can be closely
aligned, and the overall fitness is a weighted combination
of the overlapping volume, a similarity score based on the
number and similarity of overlaid features, and the van der
Waals energies of the structures. Execution of the GASP
algorithm yields a single nondeterministic solution phar-
macophore, so the algorithm is typically run many times
with different random starting conditions, to produce dif-
ferent pharmacophore models and alignments, all ranked
by fitness. The drawback, of course, is that an exhaustive
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search of pharmacophore space is not done, so any num-
ber of valid solutions can be missed.

It is important to recognize that all of the aforemen-
tioned methods are designed to operate on relatively small
numbers of high-affinity ligands, yet there is sometimes a
need to make sense of data arising from hundreds or thou-
sands of heterogeneous compounds of varying activity. In
the mid- to late 1990s, recursive partitioning36 was increas-
ingly recognized for its ability to identify patterns in com-
plex chemical data,37–41 and pharmacophore-based anal-
ysis of large data sets was a natural application for this
technique. SCAMPI (Statistical Classification of Activities
of Molecules for Pharmacophore Identification)42 leverages
the power of recursive partitioning to construct decision
trees that subdivide compounds according to their activi-
ties and the pharmacophores they contain. Each node in
a tree adds a feature to a pharmacophore from a parent
node, and compounds are split into left and right child
branches according to whether they contain the proposed
pharmacophore. Experimental activities are incorporated
into the process to ensure that a given splitting condition
yields a statistically significant separation of compounds
into less active and more active groups. Addition of fea-
tures to a particular branch terminates when further sep-
aration by activity cannot be achieved. A SCAMPI decision
tree produces a number of pharmacophores, usually con-
taining two or three features, which rationalize the observed
activities and suggest possible binding modes.

More recently developed pharmacophore perception
methods include GALAHAD

12 and Phase.7
GALAHAD

improves and extends methodologies introduced in GASP

by incorporating a multiobjective Pareto scoring function
to balance pharmacophore consensus, shape consensus,
and conformational energy, while relaxing the requirement
that every ligand match all features in the pharmacophore.
Phase provides exhaustive exploration of common phar-
macophore space by way of a novel distance-based parti-
tioning algorithm and takes an eclectic approach to scoring
with user-adjustable terms to optimize alignment and ori-
entation of features, shape overlap, pharmacophore selec-
tivity, reference ligand conformational energy, and refer-
ence ligand activity.

Finally, it should be noted that the past three decades
have seen the emergence of numerous other impor-
tant pharmacophore-based systems, including ALADDIN,43

DANTE,21
CAVEAT,44

Apex-3D,31 and Chem-X,18 to name
just a few. Many of the principles on which these systems
are based are used routinely in other software packages and
will be covered in subsequent sections of this chapter.

PHARMACOPHORE MODEL DEVELOPMENT

Pharmacophore models are created using a variety of
methods and workflows, including manual construction,
automated perception from ligand structure alone, and
receptor-based inference from a crystallographic structure.
The particular method or workflow used depends on any
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Figure 9.2. Dopamine D2 agonist pharmacophore model from Seeman
et al.45 Two receptor sites, X1 and X2, separated by about 8Å, form hydro-
gen bonds to an acceptor and a basic center, respectively, on the ligand.

number of factors, including the amount and quality of
available experimental data, computational resources, and
the ultimate goals and expectations placed on the phar-
macophore model itself. The next several sections are con-
cerned with the methodological details and applicability of
these different approaches to pharmacophore model devel-
opment.

MANUAL CONSTRUCTION

The simplest and probably the most widely employed
method to create a pharmacophore model is to construct
it by hand, using the structure of a known active or based
on general characteristics of known actives. Figure 9.2 illus-
trates the classic Seeman model45 of dopamine D2 ago-
nists, which consists of an aromatic ring bearing a hydrogen
bond acceptor and a basic nitrogen that form hydro-
gen bonds with complementary receptor sites X1 and X2,
respectively, which are separated by about 8Å. In practi-
cal applications, such as 3D searching, one would normally
designate some variability in the distances between phar-
macophore features, or positional tolerances that constrain
how far a matching feature may deviate from the corre-
sponding feature in the model after an alignment is per-
formed. Depending on the software used, it may also be
possible to define tolerances on the orientation of features,
such as a range in the allowed angles between the hydrogen
bond acceptor axis and the plane of the ring.

A manually constructed pharmacophore can be quite
advantageous, particularly if it’s derived from the x-ray
structure of a ligand or from a ligand with a rigid back-
bone. In either case, the locations of pharmacophore fea-
tures are essentially pinned down, so one of the biggest
uncertainties in pharmacophore model development, con-
formational flexibility, is eliminated. There is still the ques-
tion of the particular features to incorporate in the model,
which is not always easy to infer without additional infor-
mation, such as the structure of a ligand/receptor com-
plex, activities from a well-designed SAR series, or data from
mutagenesis experiments.

AUTOMATED PERCEPTION FROM LIGAND STRUCTURE

A review of the available methods for automated perception
of common pharmacophores has already been provided,
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so the details of each method shall not be repeated here.
Rather, the basic tasks that are common to most or all of
these methods are presented, with a discussion of various
alternatives for achieving a given task and, where applica-
ble, any recognized standard in the field.

PREPARING LIGANDS

Identification of the correct spatial relationships among key
ligand/receptor interaction points is ultimately governed by
the accuracy of the structures from which pharmacophore
models are derived. Thus once an appropriate set of ligands
has been identified, realistic models of 3D chemical struc-
ture must be developed. Doing so requires not only a proce-
dure for generating a set of low-energy conformers for each
ligand but also decisions about ionization and tautomeric
states and appropriate treatment of stereochemistry.

Methods for sampling the thermally accessible confor-
mational states of a ligand is a topic that deserves far more
attention than can be paid here, but in the context of phar-
macophore methods, conformational sampling techniques
are usually divided into two classes: those that are appropri-
ate for pharmacophore model development and those that
are appropriate for searching large 3D databases. Pharma-
cophore software frequently provides separate methods to
address each of these situations, with thorough sampling
and full minimization of structures being done46,47 for phar-
macophore model development and faster, less rigorous
approaches48–50 being used for large databases.

When developing a pharmacophore model from a set of
actives, the goal of conformer generation is to produce an
ensemble of structures that each ligand can adopt under
biological conditions, with a granularity fine enough to
ensure that at least one structure is reasonably close to
the bioactive conformation. Whether this can be achieved
depends on both the initial set of structures generated and
the force field (or Hamiltonian) that’s employed to mini-
mize them. If the initial sample contains no structure suf-
ficiently close to the bioactive conformation, it is unlikely
that subsequent minimization will dramatically improve
the situation. Conversely, even if the initial sample contains
a reasonable facsimile of the bioactive structure, an infe-
rior force field may drive that structure to a somewhat dis-
tant local minimum. As noted previously, pharmacophore
packages frequently provide a means for conformer gen-
eration, but MacroModel MCMM (Monte Carlo Multiple
Minimum)46 is generally recognized as a standard for thor-
ough exploration and sampling of conformational states
along a given potential energy surface, while MMFF (Merck
Molecular Force Field)51 and OPLS (Optimized Potential for
Liquid Simulations)52 are routinely used for energetics and
minimization.

A structure’s stability and interactions with the receptor
are affected by its ionic character, so identification of ionic
centers in a ligand is an important consideration. When
there is a priori knowledge about the correct ionization state

(e.g., a particular secondary amine in the structure is known
to be protonated), it is common practice to assign ion-
ization states explicitly based on that knowledge. In other
cases, software may be called on to either neutralize all lig-
ands or assign the most probable ionization states based on
a set of rules.53 Whether one starts with neutral or ionized
structures is less of an issue when the pharmacophore fea-
ture mapping procedure automatically recognizes ionizable
centers even if they are expressed in neutral form.

It is worth noting that although docking software rou-
tinely generates multiple ionic states for each ligand,
doing so within the context of common pharmacophore
perception is not a trivial matter. The difficulty stems from
the fact that each ligand and its conformers are normally
associated with only a single connection table (i.e., the
set of atoms and the bonds that connect them), which
allows a single set of mappings to be defined between the
atoms and the pharmacophore features in a given ligand.
When additional ionic states are introduced, each has a dif-
ferent connection table, which requires additional sets of
atom→feature mappings, not to mention additional sets of
conformers. When perceiving common pharmacophores,
then, somewhat arbitrary decisions may be required regard-
ing which ionic form to report for a given parent ligand
when a pharmacophore is matched equally well by child
structures with different ionization states.

Tautomerization raises many of the same questions as
ionization, although less attention is normally paid to this
issue, in part because the most commonly recognized tau-
tomeric states are usually just assumed (keto preferred over
enol, amide preferred over amidic acid, etc.). There are cer-
tainly cases where the location of a proton may be less obvi-
ous (e.g., imidzoles, pyrazoles, and triazoles), so if a partic-
ular choice is made, the possible consequences should be
considered. For example, if a pharmacophore model con-
tains a hydrogen bond donor feature that maps to a pro-
ton whose location is in question, one may wish to give
equal consideration to the corresponding model that results
when the proton is moved to an equally probable location.
As in the case of ionization states, a more general treat-
ment of tautomers requires a means for dealing with differ-
ent connection tables and their associated atom→feature
mappings and conformers.

From a mechanical perspective, treating different
stereoisomers of a given parent ligand is somewhat less
challenging because their structures can share a single
connection table. Consequently, their conformers may be
readily combined and treated as a single ligand if necessary.
Thus if a pair of enantiomers has been resolved and the
activities of both isomers are known, they can, and should,
be treated as separate ligands. But if the observed activity
is based on a racemate, the most sensible approach is to
merge the conformers from the two enantiomers. If one
enantiomer is far less active than the other, as is often
the case, and the data set contains other ligands whose
stereochemistry is not in question, the structures of the
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Figure 9.3. Placement of pharmacophoric features on a serotonin antag-
onist using the default feature mapping rules in Phase 3.0.7,55

latter may automatically impose restrictions that eliminate
conformers from the less active enantiomer. Nevertheless,
indeterminate stereochemistry should always be consid-
ered an impediment to pharmacophore perception and
should be avoided if possible.

MAPPING PHARMACOPHORE FEATURES

Assigning the locations of potential interaction sites on
the ligand is the most fundamental aspect of automated
pharmacophore perception. An omission or inconsistency
at this stage can prevent the identification of the correct
common pharmacophore model and sometimes the identi-
fication of common pharmacophores altogether. Therefore,
it is critical to recognize all of the ways each ligand may bind
to a receptor, which in turn requires a comprehensive set of
feature-mapping rules, with some level of customizability
to accommodate addition of new rules and modification of
existing rules.

The typical types of interaction sites recognized by
pharmacophore software include hydrogen bond acceptor
(A), hydrogen bond donor (D), hydrophobic (H), negative
ionic/ionizable (N), and positive ionic/ionizable (P). The
term ionic/ionizable refers to centers that are explicitly ion-
ized or are very likely to be ionized under biological con-
ditions, such as carboxylic acids. Some packages provide
a separate category for aromatic rings (R) to distinguish
them from aliphatic rings, which are typically treated as
hydrophobic centers. Figure 9.3 illustrates the placement of
various pharmacophoric features on a serotonin receptor
antagonist54 using version 3.0 of Phase,7,55 with its default
feature-mapping rules.

Many rules can be encoded in the form of a feature
dictionary, which associates a set of atoms or fragments
with a specific type of pharmacophoric feature. For conve-
nience and customizability, feature dictionaries are usually
implemented by way of atom typing schemes and/or one-

dimensional chemical structure syntax, such as Sybyl Line
Notation56 or SMARTS.57 For example, the SMARTS pattern
“[#1][O;X2]” matches all hydroxyl groups and thus might
be included in a hydrogen bond donor feature dictionary.
However, such a general rule requires restrictions to prevent
application where improper, such as the hydroxyl group of
a carboxylic acid that has been provided in neutral form.
Accordingly, a SMARTS pattern of the form “[#1]OC(=O)”
could be employed as a rule for excluding carboxylic acids
as hydrogen bond donors.

To express directionality in hydrogen bonding features,
a vector attribute may be assigned using an explicit math-
ematical construct, as in Figure 9.4(a), or by including two
points in the feature [Figure 9.4(b)]. Directionality may be
relaxed altogether by mapping features as pure projected
points [Figure 9.4(c)]. The advantage of using pure pro-
jected points is that it can model the situation where two
ligands form hydrogen bonds to the same receptor site but
from different directions.

Ionic features are normally assigned to acidic and basic
groups that are likely to be dissociated at biological pH,
even if the structures are provided in neutral form. The
location of an ionic feature may coincide with a single
atom, such as the nitrogen in an ammonium ion, or it may
be located at the centroid of atoms that share the ionic
charge, such as the oxygens in a carboxylate ion or the
nitrogens in an amidinium ion. Because ionic groups fre-
quently form hydrogen bonds with the receptor, some users
prefer to model negative and positive groups as hydrogen
bond acceptors and donors, respectively. However, in the
context of identifying common pharmacophores, one can
argue that there is no real advantage to the acceptor/donor
treatment, because there is usually not enough information
to distinguish, for example, which oxygen in a carboxylate
is forming a hydrogen bond. There is also the question of
whether neutral and ionic groups are likely to form hydro-
gen bonds to the same receptor site. For example, should
one give credence to a pharmacophore model that overlays
a pyridine nitrogen from one ligand with a carboxylate oxy-
gen from another? This is a question the user ultimately
must answer, but it is important to recognize that in the
absence of receptor information, certain assumptions may
offer no actual benefit.

b)a)

H

N

H

N

c)

N
H

N
HH H

Figure 9.4. Different conventions used to represent hydrogen bonding
features. Directionality may be expressed by associating an explicit vector
construct with the feature (a) or by including two points (b). Use of
pure projected points (c) models the situation where two ligands form
hydrogen bonds to the same receptor site but approach from different
directions.
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Not all types of pharmacophore features are easily
encoded using a fragment dictionary alone. Hydrophobic
character, in particular, is not readily identified with any
small number of fragments or patterns, and so special tech-
niques are usually called on to assign hydrophobic centers
within rings and aliphatic chains of arbitrary length. The
method described by Greene et al.20 has been adopted in
HipHop,10

SCAMPI,42 and Phase
7 and could therefore be

considered a standard in the field. Briefly, rings, isopropyl
groups, t-butyl groups, and chains as long as four carbons
are treated as a single hydrophobic feature. Chains of five or
more carbons are broken into smaller fragments containing
between two and four carbons, with each fragment desig-
nated as a separate hydrophobic feature. The location rH of
each hydrophobic feature is an average of the positions ri of
the non n-hydrogen atoms in the associated fragment, with
each atom weighted by its solvent-accessible surface area
si and an empirically assigned hydrophobicity factor ti that
ranges between 0 and 1:

rH =
∑

i
si tiri∑

i
si ti

.

The resulting position is thus skewed in the direction of
atoms with greater exposed surface area and away from
atoms with greater polarity.

One final note is that the locations of two different types
of pharmacophore features may be coincident or nearly
coincident. For example, it is common practice to map aro-
matic rings as both H and R. This allows common pharma-
cophores to be found if a key interaction incorporates an
aliphatic group in some ligands but an aromatic ring in oth-
ers. Yet it does not eliminate the possibility that an aromatic
ring may be required in every ligand to facilitate an interac-
tion that involves pi stacking.

PERCEIVING COMMON PHARMACOPHORES

Although each common pharmacophore identification
method discussed previously contains unique charac-
teristics, several of them incorporate an exhaustive or
semiexhaustive enumeration of potential common phar-
macophores. Doing so almost invariably leads to the use of
an interfeature distance representation [Figure 9.5(a)]. By
working with interfeature distances, it is possible to com-
pare two pharmacophores without explicitly superimpos-
ing them. Superposition normally involves a least squares
alignment of points,58,59 which is far more expensive com-
putationally than simply comparing the distances. Note,
however, that close correspondence of interfeature dis-
tances is a necessary, but not sufficient, condition for close
correspondence of superimposed features. As shown in Fig-
ure 9.5(b), pharmacophores that are mirror images exhibit
the same interfeature distances, but they may not superim-
pose well. Consequently, any algorithm that uses interfea-
ture distances to perceive common pharmacophores must
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Figure 9.5. (a) Interfeature distance representation of a four-point phar-
macophore. (b) Mirror image pharmacophores contain the same inter-
feature distances but may not superimpose well.

be followed by a superposition step to screen out spurious
solutions.

To account for ligand flexibility and differences in chem-
ical scaffolds, tolerances must be built into the proce-
dure that matches or associates common pharmacophores.
For example, the distance between an acceptor and a
hydrophobe may be 5.2Å in one ligand but 5.5Å in another
ligand; any sensible algorithm would consider these to be
the same. The manner in which tolerances are incorporated
depends on how pharmacophore space is explored.

When pharmacophores are enumerated from a single
reference ligand, such as in DISCO, a user-defined tolerance
may be used to identify arrangements of pharmacophoric
features in other ligands that exhibit the same interfeature
distances, plus or minus the tolerance. Treating all ligands
equivalently, though, requires other means to identify com-
mon arrangements. If the number of features in the phar-
macophore is relatively small, an analytical approach21,30

may be practical for determining an exact intersection of
interfeature distances from the conformationally accessi-
ble space of a set of ligands (Figure 9.6). In other cases,7,18

interfeature distance space may be formally represented as
a set of overlapping bins, into which the pharmacophores
from each ligand are mapped. Bins with predefined spac-
ing are readily encoded as a bit string,18 so common phar-
macophores may be identified from bits that are set by all
ligands. Alternatively, bins of successively finer granularity
may be constructed in a hierarchical manner,7 with elimi-
nation of large regions of interfeature distance space, and
many potential mappings, when those regions cannot yield
a common pharmacophore (Figure 9.7).
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Figure 9.6. Identification of common three-point pharmacophores by
intersection of the conformationally accessible spaces of two ligands.30

SCORING PHARMACOPHORES

A set of ligands for a given receptor frequently share a
single chemical scaffold, which typically affords any num-
ber of common pharmacophores that must be screened
out because they fail to encode the precise interactions

that are essential for activity. Even when the ligands com-
prise different scaffolds, the enumeration procedure may
still find many uninteresting arrangements of features that
are unlikely to represent models of specific binding and/or
that are ubiquitous in chemical compound space (e.g.,
three hydrobobes separated by a few angstroms). Yet other
arrangements of features may impose an unrealistic super-
position of chemical features that are not contained in the
pharmacophore, such as a long, hydrophobic tail in one lig-
and being overlaid with a carboxylate in another. It is desir-
able, therefore, to be able to assess the quality of each phar-
macophore using a scoring method that embodies one or
more of these considerations.

The notion of selectivity is central to the scoring func-
tions used in Catalyst/HipHop

10 and DANTE,21 and it is
incorporated as a user-weighted term in Phase.7 Though
the approaches taken are somewhat different, the objective
in each is to promote pharmacophores that are more likely
to be unique to the ligands being analyzed. A key quantity
to minimize, then, is the probability q that a given pharma-
cophore will be contained in structures of randomly cho-
sen druglike molecules. Although a meaningful estimate of
q may be obtained by searching a large medicinal chemistry
database for matches to the pharmacophore in question, it
is simply not practical to do so when scoring a large num-
ber of common pharmacophores. Instead, q is normally
approximated using either tabulated data21 or an empirical
probability function that is calibrated using statistics from a
large number of pharmacophore searches.10
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Figure 9.7. Algorithm used by Phase7 to identify common pharmacophores. In this example, three ligands, L1, L2,
L3, are analyzed for instances of three-point pharmacophores containing the features A, D, H. The A–H distance is
partitioned through a successively finer tree to identify distance ranges that are observed in at least one conformer
from every ligand (green branches). Subtrees that cannot yield a common pharmacophore (black branches) are
never traversed.
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Closely related to selectivity is the ability of a pharma-
cophore to distinguish actives from inactives when the two
classes of compounds are structurally similar and/or come
from the same structure/activity series. A tacit assumption
here is that the inactive compounds fail to bind because
they lack one or more key features not because of steric
clashes with the receptor, poor solubility, or other factors
that cannot be explained by the pharmacophore model
itself. SCAMPI

42 builds pharmacophore models, feature by
feature, incorporating a Student’s t-test on the separation
of actives and inactives directly into the feature selec-
tion process. Apex-3D

31 identifies pharmacophores com-
mon to the most active compounds using clique detection
and then employs Bayesian statistics to eliminate pharma-
cophores whose frequencies in the active and inactive pop-
ulations are not sufficiently different. Catalyst/HypoGen

6

constructs a series of HipHop pharmacophore models from
the most active compounds in a training set, eliminates
those that are found in more than half of the inactives, and
then refines each model by adding, subtracting, and mov-
ing features so the degree to which each compound fits
the pharmacophore correlates with experimental activity.
Thus all of these methods use activity to drive development
of pharmacophore models that can distinguish actives and
inactives, while discarding those that do not. Phase

7 uses
a more passive approach, scoring each common pharma-
cophore model according to how well it matches a set of
known inactives but ultimately deferring to the user the
decision about which pharmacophores are most relevant.

Reasonable superposition of the ligand features that
map to a common pharmacophore model is normally a
given, but this does not guarantee that the ligand struc-
tures themselves or their overall superpositions will be
satisfactory. A number of pharmacophore development
approaches7,11,12,29,60 incorporate a procedure for elimi-
nating or penalizing unrealistic high-energy structures,
although methods that accept external conformers7,9,10,31

will accomplish essentially the same objective if an appro-
priate energy filter is applied to the conformers before they
are supplied. To achieve consensus in the alignment of
chemical features that do not contribute to the pharma-
cophore, the scoring process may favor conformers that
match the pharmacophore and yield superior overlap of
molecular volumes throughout each ligand structure.7,11

Volumes may be distinguished by atom type to help ensure
that chemically similar fragments in different ligands are
superimposed.7

RECEPTOR-BASED PHARMACOPHORE MODELS

Previous sections focused on the identification of com-
mon feature pharmacophores within flexible ligand struc-
tures, which is often a necessary exercise in the absence of
crystallographic data. But when explicit knowledge of the
receptor binding site is available, it can be a tremendous
advantage in pharmacophore model development. Though

it is certainly possible to visually inspect a ligand/receptor
complex to identify key interactions, and manually con-
struct a pharmacophore model that encodes those interac-
tions, automated procedures to achieve this task are in high
demand. A number of important receptor-based pharma-
cophore techniques have been reported involving ligand
docking,61,62 fragment docking,63,64 and molecular dynam-
ics simulations,65,66 but this section is concerned primar-
ily with methodologies that provide an alternative to what
are essentially products of structure-based and de novo
design.

A fundamental step in developing a receptor-based
pharmacophore model is an analysis of the binding site
to identify potential interaction points. In structure-based
focusing,67 a sphere with user-adjustable location and
radius is used to mark key residues in the binding site, and
a LUDI68 interaction map is generated to describe favor-
able interactions in which a ligand is expected to engage.
The interaction map is translated to an interaction model,
which consists of a set of complementary points in the
binding pocket, representing possible locations of pharma-
cophore features on the ligand. A user-defined density con-
trols the number of points created, but it is usually quite
large, so hierarchical clustering is performed to select a
smaller number of representative points, typically on the
order of a dozen. Normally, this is still too many interac-
tion points for a single ligand, so a series of pharmacophore
models containing subsets of the representative features is
constructed, with restrictions on minimum and maximum
separations between points. Excluded volumes (see next
section) are added to each model to represent the recep-
tor surface, and a 3D database of known actives is searched
to determine which pharmacophore models are most fre-
quently matched.

LigandScout
69 takes a somewhat more direct approach,

deriving a pharmacophore model from a single ligand/
receptor complex. After perceiving hybridization, unsat-
urated bonds, and aromatic rings, the resulting ligand
structure is analyzed for the presence of features encod-
ing hydrogen bonding, hydrophobic character, and charge
transfer. Features are mapped in general accordance with
Catalyst rules, with customization to allow certain atoms
to be associated with more than one type of pharma-
cophoric feature. Whether a feature is incorporated into the
pharmacophore model depends on its location relative to a
complementary site on the receptor. For example, a hydro-
gen bond donor is included if the associated heavy atom
X is 2.5–3.8Å from an acceptor atom Y in the receptor and
the X−H−Y angle is within 34◦ of colinearity. Incorpora-
tion of hydrophobic and ionic features, which are nondi-
rectional, depends only on a user-defined distance range
from a compatible interaction site on the receptor. If the
receptor site is hydrophobic, a steric constraint is added to
the pharmacophore model by creating a series of excluded
volume spheres in the vicinity. A LigandScout model nor-
mally needs some manual refinement (removal of features,
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addition of excluded volumes) to improve its hit rate and
selectivity toward known actives.70

EXCLUDED VOLUMES

An accurate pharmacophore model represents a set of nec-
essary, but not sufficient, conditions for specific, high-
affinity binding to a given receptor. Thus a molecule may
be capable of presenting a set of features in a manner that
is entirely consistent with the pharmacophore yet still fails
to bind. One possible reason is that some portion of the
molecule would experience a steric clash with the recep-
tor if it were to bind in the mode described by the pharma-
cophore model. Excluded volumes are designed to emulate
this situation by indicating regions of space that a structure
may not occupy when it is aligned to the pharmacophore.

A crystallographic receptor structure13 is by far the
most reliable source of excluded volumes, even conced-
ing induced fit effects.71–73 Receptor-based excluded vol-
umes are most naturally represented as spheres centered
on appropriate atoms in and around the binding site, with
sizes dictated by the associated atomic van der Waals radii
[Figure 9.8(a)]. A hard-sphere approximation is normally
made, so a violation occurs whenever a molecule occupies
the same volume as any receptor atom. This approximation
may be too harsh if the conformational sampling in a 3D
database is inadequate to produce a structure that will fit
entirely within the binding pocket, so some sort of relax-
ation is required in such cases to accommodate a degree
of penetration into the receptor surface. Relaxation may
be accomplished by reducing the size of the excluded vol-
ume spheres, by eliminating spheres that are too close to a
bound ligand, or by tolerating a certain amount of overlap
between the molecule and the excluded volumes.

When the receptor structure is unavailable, as is often
the case, assigning meaningful locations of excluded vol-
umes is less straightforward because it’s difficult to verify
their correctness. One approach is to simply assume that
the ligands themselves reflect the overall shape of the bind-
ing pocket and can therefore be used to guide the place-
ment of excluded volumes. For example, the “Shrink-Wrap”
method14 analyzes the surfaces of one or more ligands
superimposed on a pharmacophore model and constructs a
series of solid angles that are pieced together to form a con-
tinuous envelope that encloses the ligands. When search-
ing a 3D database, an analogous surface is created for each
structure matching the pharmacophore, and the interpene-
tration of the two surfaces is computed. If the Shrink-Wrap
surface of the matching structure lies entirely within the
Shrink-Wrap surface of the ligand(s), or if the amount of
clashing volume is within a user-defined threshold, then the
matching structure is accepted.

A more simplistic approach7 is to define a grid of points
to surround one or more aligned ligands and place an
excluded volume sphere at each point sufficiently far from
the van der Waals surface of the ligands. Figure 9.8(b)

a)

b)

Figure 9.8. (a) Excluded volumes created from protein atoms within 5Å
of the bound ligand in the Factor Xa complex 1fjs. (b) Cutaway view of an
excluded volume shell created using only the structure of the 1fjs ligand.

contains a cutaway view to illustrate the placement of 1Å
spheres on a 1Å grid, with a 2Å buffer between the molec-
ular and excluded volume surfaces. The sphere radii and
the grid spacing may be reduced to achieve any desired
smoothness and precision in the excluded volume shell.

Perhaps the most elusive goal is to infer the locations
of excluded volumes from a set of known inactives. The
basic assumption normally made is that if one has a suf-
ficiently correct pharmacophore model, and an inactive
closely matches that model, there is a good chance that
its lack of activity is due to a clash with the receptor. This
could be a poor assumption, of course, but continuing with
that line of reasoning, regions of space that are occupied
only by inactives may therefore be considered as candidate
locations for excluded volumes. Many packages allow man-
ual placement of excluded volumes, so a user can visually
inspect a set of aligned structures and create spheres at the
desired locations. Automated methods are also available to
perform this task,7,74,75 though a healthy level of skepticism
should always be exercised, and it is generally not wise to
summarily reject a structure simply because it clashes with
excluded volumes derived from inactive structures.
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Figure 9.9. Encoding of pharmacophore triplets into a bit string with
distance bins that are 1Å wide. To prevent loss of information due to the
partitioning of distances, each triplet sets not only the bit whose midpoint
is closest to the distances in that triplet but also neighboring bits in each
distance dimension. For simplicity, neighboring bits are shown for only
the last dimension in each triplet.

PHARMACOPHORE FINGERPRINTS

A summary of the pharmacophoric information contained
in a structure may be represented in the form of a bit
string that encodes the presence, absence, and sometimes
the counts of various arrangements of pharmacophore
features. These bit strings are referred to by various names,
including pharmacophore fingerprints, pharmacophore
keys, and pharmacophore tuplets.15–17 The Chem-X

software system18 is most closely identified with this con-
cept, though many other packages contain their own imple-
mentations.

Pharmacophore fingerprints are usually based on either
triplets of features (three-point pharmacophores) or quar-
tets of features (four-point pharmacophores). Each bit in
a fingerprint corresponds to a particular set of n pharma-
cophoric feature types (acceptor, donor, hydrophobe, etc.)
separated by a specific set of [n(n − 1)]/2 interfeature dis-
tances. To limit the number of distinct bits, the distance
coordinate is divided into bins of predefined width, so a
range of distances, and thus a range of pharmacophores, is
mapped to a single bit. The bins may be of unequal width
to allow greater discrimination in certain regions of the dis-
tance coordinate, and the upper limit bin may be defined
to include all distances greater than some value, or it may
simply ignore distances above that value.18

Figure 9.9 illustrates the encoding of pharmacophore
triplets into a bit string characterized by distance bins
that are 1Å wide. To prevent loss of information due to
the partitioning of distances, a given triplet sets not only

the bit whose midpoint is closest to the distances in that
triplet but also neighboring bits in each distance dimen-
sion. Observe that certain combinations of distances are
physically impossible,2,4,10 so many bits will never be set.

A pharmacophore fingerprint may be created from a
conformational ensemble, so it represents the pharma-
cophore space that is conformationally accessible to a par-
ticular molecule. The fingerprint is normally a logical OR
(i.e., the union) of the bits set by different conformers, so
information to map individual bits back to their source con-
formers is not retained. Whether a pharmacophore finger-
print comes from a single structure or multiple conform-
ers, it may be used in precisely the same manner as 2D bit
string representations76–79 in applications involving similar-
ity, diversity, clustering, and so on.80–84

Pharmacophore fingerprints are perhaps most powerful
when used in the context of 3D database screening. When a
pharmacophore query is posed, the features and distances
in that query can be translated into a fingerprint, with mul-
tiple bits being set, as necessary, to account for tolerances
on matching the interfeature distances. The pattern of bits
set by the query creates a necessary condition for match-
ing the pharmacophore, so if fingerprints have been created
for a database of molecules to be searched, very fast log-
ical bit operations may be performed to rapidly eliminate
molecules that cannot possibly match the pharmacophore.
In general, not every molecule that satisfies the fingerprint
query will actually match the pharmacophore, but a major-
ity of false positives can be eliminated, which may result in
a drastic reduction in overall searching time.

3D DATABASE SCREENING

By far the most common role a pharmacophore model ulti-
mately plays is that of 3D database query. If the pharma-
cophore model accurately embodies the key interactions
required for binding, molecules in a database that match
the query, the so-called hits, should have a greater-than-
average chance of being active. The degree to which this
advantage is actually observed depends on a number of
additional factors, including the matching criteria, the pres-
ence/absence of steric constraints, and the quality of the
database.

Each molecule in a 3D database may be represented by
a set of precomputed conformers or by a single, low-energy
structure. In the latter case, conformers for a given molecule
can be generated during the database screen using system-
atic or stochastic searching,7,85,86 or the structure may be
flexed in an attempt to fit the query.87,88 The primary advan-
tage of storing precomputed conformers is searching speed,
which may be one to two orders of magnitude faster than
when conformers are generated during the search. How-
ever, speed comes at the expense of disk space, which grows
with the number of conformers stored, although not neces-
sarily in a linear fashion due to compression of redundant
data.
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At its most basic, a pharmacophore model is just an
arrangement of feature points whose relative locations are
defined by a set of interpoint distances, internal coordi-
nates, or Cartesian coordinates. A query is created only after
conditions on matching the pharmacophore are stipulated.
Most pharmacophore packages support user-defined toler-
ances on matching distances, positions, angles, and so on,
but a number of general guidelines have been established
that rely on a combination of experimental data and com-
mon sense.20,89 For example, observed variations in hydro-
gen bond distances X–Y and hydrogen bond angles X–H–Y
within crystallographic complexes may be used to conclude
that the positional tolerance on matching hydrogen bond
acceptors and donors should be about 2Å.20 It is also pos-
sible to use known actives and inactives to derive suit-
able constraints on matching interfeature distances.21 Posi-
tional tolerances between 1Å and 2Å for various types of fea-
tures are typical, but much stricter criteria are sometimes
used.86,88

When automated common pharmacophore perception
is employed, it is tempting to argue that matching tol-
erances should be inferable from positional variations in
the superimposed ligand features. However, such variations
are really characteristics of the ligands themselves and of
the conformational sampling method; they are not indica-
tive of the receptor’s flexibility, promiscuity, and so on. For
example, consider a common pharmacophore model that
is derived from a set of rigid, congeneric ligands. When the
ligands are superimposed on the pharmacophore model,
there should be essentially no variations in the feature loca-
tions from ligand to ligand. If a database query were then
posed with matching tolerances consistent with those tiny
variations, it is unlikely that any additional actives would
be found, unless the database contained molecules with
the same rigid framework. This sort of restriction elimi-
nates the possibility of scaffold hopping,90 an advantage
that pharmacophore-based searching is naturally assumed
to offer.

As shown in Figure 9.10, a point-based pharmacophore
query may be embellished with any number of additional
characteristics and constraints, such as a distance between
a point and a plane, an angle between planes, or a cone of
revolution about a hydrogen bond axis. However, before any
of these conditions can be applied, a suitable match to the
feature points must be found, which nearly always involves
identifying sets of interfeature distances in a database
structure that are consistent with the locations of the fea-
ture points in the pharmacophore model. Thus, the primary
criterion for a match is that a structure must contain all n
features in the pharmacophore model and that a particular
mapping of those features to the pharmacophore yields an
n × n distance matrix whose elements are sufficiently close
to the corresponding elements in the pharmacophore dis-
tance matrix. As noted previously, the user normally stip-
ulates how closely the points must match, either by spec-
ifying tolerances on the interfeature distances themselves
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Figure 9.10. A four-point pharmacophore model with additional con-
straints and features. The angle between two planes and the distance
between a hydrogen donor and a plane must lie within specified ranges,
while the hydrogen bond donor sweeps out a cone of revolution.

or by specifying positional tolerances on the feature points
after least squares alignment.58,59

Many pharmacophore packages allow partial matching,
wherein only m of n points in a query must be matched.
There may be user-imposed requirements to match spe-
cific points, or matching any subset of m may be suffi-
cient. In either case, the algorithm must be modified to
cycle through different subsets of m points in the phar-
macophore model and attempt matching on the associ-
ated m × m submatrices. Partial matching is frequently
invoked out of necessity when the pharmacophore model
contains more points than can reasonably be expected to
be matched by any molecule that does not contain the
same chemical scaffold as the ligand(s) from which the
model was derived. Thus a “kitchen sink” approach may
be taken when developing a pharmacophore model, with
the database screen being used to determine which parts
of the model actually occur in other molecules. This conve-
nience comes with a price, though, because the combina-
torics of matching m of n points is governed by the binomial
coefficient n!/[m!(n − m)!], so when m ≈ n/2, a search can
be exceedingly slow if n is too large. Furthermore, certain
subsets of feature points may correspond to very ordinary
pharmacophores, which may cause an inordinate number
of database molecules to be matched.

In practice, the matching algorithms just described are
normally invoked only after performing one or more rapid
prescreens to eliminate molecules that cannot possibly sat-
isfy the query. A prescreen may involve only 2D crite-
ria, such as rejection of molecules that are missing any
required feature in the pharmacophore, or it may be 3D in
nature. If the database contains precomputed conformers
and their associated pharmacophore fingerprints, the strat-
egy described in the previous section may be employed to
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perform a fast 3D prescreen. The more effective the pre-
screen is at eliminating false positives, the faster the overall
searching time.

Finally, a database screen may return different levels of
information, depending on the capabilities of the software
and the user’s requirements. When the pharmacophore-
based screen is being done as a precursor to docking, the
user may need to know only the identities of the molecules
that match the query. In other cases, the user may wish
to see each matching structure aligned to the pharma-
cophore model. If multiple conformers are searched, a
given molecule may yield more than one match, and the
user may wish to examine some or all of them. Sorting of
matches according to some fitness measure is also com-
mon, which allows the user to focus only on what he con-
siders to be a reasonable number of high-ranking hits.

CONCLUSIONS

The past few decades have seen extensive innovation in
pharmacophore modeling and continual expansion in its
scope of applicability. Thus while a substantial portion of
modeling efforts remain devoted to structure-based design,
pharmacophore methods continue to be relied on for anal-
ysis of complex SAR data, elucidation of key ligand/receptor
interactions when crystallographic data are unavailable,
measurement of 3D similarity, rapid screening of large
chemical libraries, and as a powerful means of combining
structure-based and ligand-based knowledge.

The sheer diversity of available pharmacophore meth-
ods is a tremendous asset to modern drug discovery, but
recognizing the limitations of a particular technique is
absolutely critical to its successful application. Likewise, it
is important to have realistic expectations about what can
and cannot be achieved. A given pharmacophore method
may provide any number of plausible solutions to the
structure/activity problem, but it rarely points a user
directly to the most correct solution. Nor is there any guar-
antee that all factors governing activity can be embodied
in a pharmacophore model, so the picture one obtains is
not always complete. Yet if the advantages are leveraged
appropriately in light of the limitations, pharmacophore
methods are indispensable tools in the drug discovery
paradigm.
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QSAR in drug discovery

Alexander Tropsha

INTRODUCTION

With nearly fifty years of rich history of methodology devel-
opments and applications (the Hansch article of 19631 is
often considered first in the field), quantitative structure/
activity relationship (QSAR) modeling is a well-established
area of research. As is true perhaps for any computational
field, QSAR modeling has been both blessed and some-
times cursed in the literature. In the first volume of the
famous book series titled Reviews in Computational Chem-
istry, Boyd summarized several documented cases when
QSAR modeling was instrumental in discovering new drugs
of drug candidates in advanced phases of clinical trials.2

The methodologies used by that time were relatively simple,
employing a small number of physical chemical descrip-
tors and statistical methods such as multiple linear regres-
sion. QSAR modeling was viewed solely as a tool for lead
optimization; that is, it was employed to elucidate the rela-
tionship between structure and activity in relatively small
congeneric compound series and predict relatively small
structural modifications leading to enhanced activity.

Since the late 1980s the field has changed dramati-
cally, fueled by changes in the size, complexity, and avail-
ability of experimental data sets of biologically active
compounds. These changes have been coincidental with
the advances in chemometrics, resulting in a signifi-
cant increase in the number of chemical descriptors
as well as growing implementation of machine learning
and advanced statistical modeling techniques available
for QSAR studies. The dramatic shift in the content and
complexity of QSAR modeling away from original sim-
ple and easily interpretable linear models built with a
small number of descriptors toward complex multipara-
metric and mostly nonlinear approaches was not recog-
nized and acknowledged by many users of the technique.
Indeed, many modern QSAR modeling approaches are
much closer to such subdisciplines of computational sci-
ence as data mining and knowledge discovery in databases
than to physical organic chemistry where the field actu-
ally originated. Ignorance of this paradigm shift led to
many studies that confused model fitness with its predic-
tive power, lacked model validation, and misinterpreted
correlation as causation as discussed in a recent critical

review3; the author even posed the question whether QSAR
is dead or alive.

Not surprisingly, the field was indeed criticized harshly
in several recent publications. Our group was one of the
first emphasizing the importance of statistical validation
of QSAR models.4 Another important article examined rea-
sons behind the failure of in silico absorption/distribution/
metabolism/excretion (ADME)/Tox models.5 The unfortu-
nate abundance of poorly executed QSAR studies led to a
recent editorial published by the leading cheminformatics
periodical, Journal of Chemical Information and Modeling
(also reproduced by the Journal of Medicinal Chemistry)
that introduced severe limitations on the quality of QSAR
articles to be considered acceptable.6 Another editorial
opinion outlined limitations and some reasons for failures
of QSAR modeling that relate to the so-called activity cliffs.
In most cases the authors looked deeply into possible
sources of errors or offered approaches to improve the
robustness of models.7 However, in a negative opinion let-
ter published in early 2008 the author made an unfortunate
attempt to equate the fraction of articles that did not pay
enough attention to the statistical quality of models with
the entire field.8

The limited if not falsified representation of modern
QSAR modeling in the latter publication only emphasizes
the need to present deeper analysis of the nature and
role that modern QSAR continues plays in drug discov-
ery, which is the focus of this chapter. Indeed, the atten-
tion to failures of QSAR modeling expressed in afore-
mentioned publications naturally begs an important and
perhaps critical question as to whether there is any room
for further advancement of the field via innovative method-
ologies and important applications. A large body of pre-
vious and ongoing research in the area of QSAR suggests
that the answer is a resounding yes. We believe strongly
that many examples of low-impact QSAR research have
been due to frequent exploration of data sets of limited
size with little attention paid to model validation. This
limitation leads to models having questionable “mecha-
nistic” explanatory power but perhaps little if any fore-
casting ability outside of the training sets used for model
development. We believe that the latter ability along with
the capabilities of QSAR models to explore chemically
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diverse data sets with complex biological properties should
become the chief focus of QSAR studies. This focus requires
the reevaluation of the success criteria for the modeling
as well as the development of novel chemical data mining
algorithms and model validation approaches. In fact, we
think that the most interesting era in QSAR modeling is just
beginning with the rapid growth of the experimental pub-
licly available SAR data space due to such projects as Pub-
Chem.9

This chapter examines the strategy and the output of the
modern QSAR modeling approaches especially as applied
to increasingly more complex biomolecular data sets. We
discuss a data-analytical modeling workflow developed in
our laboratory that incorporates modules for combinato-
rial QSAR model development (i.e., using all possible binary
combinations of available descriptor sets and statistical
data-modeling techniques), rigorous model validation, and
virtual screening of available chemical databases to iden-
tify novel biologically active compounds. Our approach
places particular emphasis on model validation as well as
on the need to define model applicability domains in the
chemistry space. We present examples of studies where the
application of rigorously validated QSAR models for virtual
screening identified computational hits that were con-
firmed by subsequent experimental investigations. The
emerging focus of QSAR modeling on target property fore-
casting brings it forward as a predictive, as opposed to eval-
uative, modeling approach that is suitable not only for tra-
ditional lead optimization but also for lead discovery.

The subsequent sections of this chapter present a brief
overview of the modern QSAR modeling field without going
into specific details of any particular technique, introduce
the predictive QSAR modeling workflow developed in our
group, present examples of successful applications of the
workflow to several data sets resulting in experimentally
confirmed computational predictions of biologically active
compounds by the means of virtual screening, address the
issue of fruitful collaborations between QSAR modelers in
developing and supporting “best practices” in QSAR mod-
eling, and summarize most important challenges that the
field of QSAR modeling is facing today.

THE COMPLEXITY OF MODERN DATA SETS

In the early days of QSAR modeling the experimental data
sets were relatively small and chemically congeneric and
the techniques employed were relatively unsophisticated.
Since then, the size and complexity of experimental data
sets has increased dramatically as have the complexity
and challenges of data-analytical approaches. Tradition-
ally, QSAR approaches have been applied to modeling
data sets tested against a single target (e.g., in specific
enzymatic or receptor-binding assays). Recent experimen-
tal advances in high-throughput screening and multitarget
testing of compound libraries have led to the establishment
of data sets of biologically active compounds (often publicly

available) that we define as complex. A complex data set
could include a library of compounds tested against mul-
tiple targets, have the target property measured in the
form of gene or protein expression profiles across many
genes (chemical genomics), or be formed by diverse com-
pounds tested against a complex assay where multiple
mechanisms leading to the measured response could be
involved (e.g., carcinogenicity or mutagenicity). The exam-
ples of complex data sets include Pubchem,9 PDSP,10 NCI,11

U.S. FDA,12 NIEHS,13 and EPA DSS-Tox 14 (see more exam-
ples in a recent review15). In most cases the biological end
point (e.g., any toxicity) is very complex with many possible
underlying biological mechanisms. Naturally, the complex
data sets call for the development of more sophisticated
computational tools and corresponding models that place
particular emphasis on statistical model validation and
external predictive power rather than mechanistic inter-
pretation.

BRIEF NOTES ON QSAR METHODOLOGY

Modern QSAR modeling is a very complex and compli-
cated field requiring deep understanding and thorough
practice to develop robust models. Multiple types of chem-
ical descriptors and numerous statistical model develop-
ment approaches can be found in specialized literature
and so need not be discussed in this chapter. Instead, we
present several unifying concepts that underlie practically
any QSAR methodology.

Any QSAR method can be generally defined as an appli-
cation of mathematical and statistical methods to the prob-
lem of finding empirical relationships (QSAR models) of
the form Pi = k̂ (D1, D2, . . . , Dn), where Pi are biological
activities (or other properties of interest) of molecules,
D1, D2, . . . , Dn are calculated (or, sometimes, experimen-
tally measured) structural properties (molecular descrip-
tors) of compounds, and k̂ is some empirically estab-
lished mathematical transformation that should be applied
to descriptors to calculate the property values for all
molecules. The relationship between values of descrip-
tors D and target properties P can be linear or nonlin-
ear. The example of the former relationship is given by
multiple linear regression (MLR) common to the Hansch
QSAR approach,16 where target property can be pre-
dicted directly from the descriptor values. On the contrary,
nearest-neighbor QSAR methods serve as examples of non-
linear techniques where descriptor values are used in char-
acterizing chemical similarities between molecules, which
are then used to infer compound activity.17 The goal of
QSAR modeling is to establish a trend in the descriptor
values, which parallels the trend in biological activity. In
essence, all QSAR approaches imply, directly or indirectly,
a simple similarity principle, which for a long time has pro-
vided a foundation for experimental medicinal chemistry:
compounds with similar structures are expected to have
similar biological activities.
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Modern QSAR approaches are characterized by the use
of multiple descriptors of chemical structure combined
with the application of both linear and nonlinear optimiza-
tion approaches and a strong emphasis on rigorous model
validation to afford robust and predictive models. As men-
tioned above, the most important recent developments in
the field concur with a substantial increase in the size of
experimental data sets available for the analysis and an
increased application of QSAR models as virtual screen-
ing tools to discover biologically active molecules in chem-
ical databases and/or virtual chemical libraries.18 The latter
focus differs substantially from the traditional emphasis on
developing so-called explanatory QSAR models character-
ized by high statistical significance but only as applied to
training sets of molecules with known chemical structure
and biological activity.

The differences in various QSAR methodologies can be
understood in terms of the types of target property val-
ues, descriptors, and optimization algorithms used to relate
descriptors to the target properties and generate statis-
tically significant models. Target properties (regarded as
dependent variables in a statistical data modeling sense)
can be generally of three types: continuous (i.e., real val-
ues covering certain range, e.g., IC50 values or binding con-
stants), categorical related or rank based (e.g., classes of
rank-ordered target properties covering certain range of
values, e.g., classes of metabolic stability such as unsta-
ble, moderately stable, stable), or categorical unrelated (i.e.,
classes of target properties that do not relate to each other
in any continuum, e.g., compounds that belong to dif-
ferent pharmacological classes). As simple as it appears,
understanding this classification is actually very important
because the choice of descriptor types and modeling tech-
niques as well as model accuracy metrics is often dictated
by the type of the target properties. Thus, in general the lat-
ter two types require classification modeling approaches,
whereas the former type of the target properties allows the
use of (multi-)linear regression type modeling. The corre-
sponding methods of data analysis are referred to as either
classification or continuous property QSAR.

Many QSAR approaches have been developed during the
past few decades.4,19 The major differences between various
approaches are due to structural parameters (descriptors)
used to characterize molecules and the mathematical
approaches used to establish a correlation between
descriptor values and biological activity. Most of the mod-
eling techniques assume a linear relationship between
molecular descriptors and a target property, which may be
an adequate methodology for many data sets. However, the
advances in combinatorial chemistry and high-throughput
screening technologies have resulted in the explosive
growth of the amount of structural and biological data,
making the problem of developing robust QSAR models
more challenging. This progress has provided an impetus
for the development of fast, nonlinear QSAR methods that
can capture structure/activity relationships for large and

complex data. New nonlinear methods of multivariate anal-
ysis such as different types of artificial neural networks,20–23

generalized linear models,21,24–26 classification and
regression trees,24,27–30 random forests,31–33 multivari-
ate adaptive regression splines (MARS),33,34 support vector
machines,35–38 and some other methods have become rou-
tine tools in QSAR studies. Interesting examples of applica-
tions have been reported for all types of the above methods.
In some cases the comparisons between different tech-
niques as applied to the same data set have been made but
in general there appears to be no universal QSAR approach
that produces the best QSAR models for any data sets.

CRITICAL IMPORTANCE OF MODEL VALIDATION

It should sound almost axiomatic that validation should be
a natural part of any model development process. Indeed,
what is the (ultimate) purpose of any modeling approach
such as QSAR if not to develop models with a significant
external predictive power? Unfortunately, as we and oth-
ers have indicated in many publications,39–41 the field of
QSAR modeling has been plagued with insufficient atten-
tion paid to the subject of external validation. Indeed,
most practitioners have merely presumed that internally
cross-validated models built from available training set data
should be externally predictive. As mentioned in the Intro-
duction, the large number of QSAR publications explor-
ing small- to medium-size data sets to produce models
with little statistical significance led to the editorial pub-
lished by the Journal of Chemical Information and Mod-
eling two years ago that explicitly discouraged researchers
from submitting the “introspective” QSAR/QSPR publi-
cations and requested that “evidence that any reported
QSAR/QSPR model has been properly validated using data
not in the training set must be provided.”6 We and oth-
ers have demonstrated (as we detail below) that the train-
ing set statistics using most common internal validation
techniques such as leave-one-out or even leave-many-out
cross-validation approaches is insufficient and the statisti-
cal figures of merit of such models serve as misleading indi-
cators of the external predictive power of QSAR models.40

In our highly cited publication “Beware of q2!” we
demonstrated the insufficiency of the training set statis-
tics for developing externally predictive QSAR models and
formulated the main principles of model validation.39 At
the time of that publication in 2002, the majority of arti-
cles on QSAR analysis ignored any model validation except
for the cross-validation, performed during model develop-
ment. Despite earlier observations of several authors warn-
ing that a high cross-validated correlation coefficient R2

(q 2) is the necessary, but not sufficient, condition for the
model to have high predictive power,42–44 many authors
continued to consider q 2 as the only parameter character-
izing the predictive power of QSAR models. In Golbraikh
and Tropsha (2002a) we have shown that the predictive
power of QSAR models can be claimed only if the model was
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successfully applied for prediction of the external test set
compounds, which were not used in the model develop-
ment.39 We have demonstrated that the majority of the
models with high q 2 values have poor predictive power
when applied for prediction of compounds in the exter-
nal test set. In another publication the importance of rig-
orous validation was again emphasized as a crucial, inte-
gral component of model development.4 Several examples
of published QSPR models with high fitted accuracy for the
training sets, which failed rigorous validation tests, have
been considered. We presented a set of simple guidelines
for developing validated and predictive QSPR models and
discussed several validation strategies such as the random-
ization of the response variable (Y-randomization) external
validation using rational division of a data set into train-
ing and test sets. We highlighted the need to establish the
domain of model applicability in the chemical space to flag
molecules for which predictions may be unreliable and dis-
cussed some algorithms that can be used for this purpose.
We advocated the broad use of these guidelines in the devel-
opment of predictive QSPR models.4,45,46

At the 37th Joint Meeting of Chemicals Committee and
Working Party on Chemicals, Pesticides & Biotechnology,
held in Paris November 17–19, 2004, the Organization for
Economic Co-operation and Development (OECD) mem-
ber countries adopted the following five principles that
valid (Q)SAR models should follow to allow their use in reg-
ulatory assessment of chemical safety: (1) a defined end
point; (2) an unambiguous algorithm; (3) a defined domain
of applicability; (4) appropriate measures of goodness-
of-fit, robustness, and predictivity; and (5) a mechanistic
interpretation, if possible. Since then, most of the Euro-
pean authors publishing in QSAR include a statement that
their models fully comply with OECD principles.47–50 For
instance, two aspects of QSAR modeling outlined in the
OECD principles are considered by Estrada and Patlewicz.51

The first aspect concerns the theoretical approaches used
in chemistry in general and in QSAR in particular, specifi-
cally, which method should be selected for theoretical stud-
ies: more sophisticated and complex or more simple. The
authors criticized the common belief that applying more
sophisticated methods should always lead to significantly
better results. They considered an example of polycyclic
aromatic hydrocarbons (PAHs), the toxicity of which is
believed to depend on the energy gap between HOMO and
LUMO values. The authors showed that a simple Hückel
molecular orbital theory gives practically the same values
of HOMO and LUMO as the sophisticated ab initio methods
yet the calculations are 10−4 to 10−7 times faster. They reach
the conclusion that if a more simple method is capable
of giving results better or similar to those of more sophis-
ticated method, one should naturally use a more simple
method!

We shall also comment on the issue of so-called
mechanistic QSAR. Some authors prefer descriptors that
are mechanistically interpretable.52 However, Estrada and

Patlewicz argued that in many cases a biological response
is a result of a multitude of different processes, some of
which cannot even be known, and its a posteriori mechanis-
tic interpretation is difficult if not impossible.51 The authors
suggested an alternative approach where a biological sys-
tem is considered as a black box and no specific underly-
ing mechanism is implied. At the same time, some variables
included in the model can describe several different mech-
anisms of biological action simultaneously (e.g., logP), so
in many cases it makes no sense to suggest that the use
of this descriptor in QSAR models affords any mechanis-
tic interpretation.53 We would add that descriptors that give
better models in terms of their predictive power are actu-
ally preferable. We consider building predictive models as
the main goal of QSAR analysis. Of course, the interpre-
tation of the model is also important, and, if possible, it
should be done. However, in many cases it is impossible,
even when models with high predictive power have been
obtained (e.g., the best models were found to be those built
using the molecular connectivity indices but these models
were disregarded by the authors for the lack of mechanistic
interpretability.52) We believe that mechanistic interpreta-
tion of the externally validated QSAR model is an important
a posteriori exercise that should be done after the model
has been internally and externally validated, and descrip-
tors that afford models with the highest predictive power
should be always used preferentially.

Validation of QSAR models remains one of the most crit-
ical problems of QSAR. Recently, we have extended our
requirements for the validation of multiple QSAR models
selected by acceptable statistics criteria of prediction of the
test set.54 Additional studies in this critical component of
QSAR modeling should establish reliable and commonly
accepted “good practices” for model development.

APPLICABILITY DOMAINS OF QSAR MODELS

One of the most important problems in QSAR analysis
is establishing the models’ domain of applicability in the
chemistry space. In the absence of the applicability domain,
each model can formally predict the activity of any com-
pound, even with a completely different structure from
those included in the training set. Thus, the absence of the
model applicability domain as a mandatory component of
any QSAR model would lead to the unjustified extrapola-
tion of the model in the chemistry space and, as a result,
a high likelihood of inaccurate predictions. In our research
we have always paid particular attention to this issue.40,55–61

The need for establishing the applicability domain for every
model adds another critical degree of complexity to the
model-building process.

The applicability domain problem has been addressed
by many researchers. Mandel introduced the so-called
effective prediction domain that was based on the ranges of
descriptors included in the regression equation.62 Afantitis
et al. built a multiple linear regression model for a data set of
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apoptotic agents.63 They defined the applicability domain
for each compound as a leverage defined as a correspond-
ing diagonal element of the hat matrix. In fact, it is a method
for detecting possible leverage outliers. If for some com-
pound leverage is higher than 3K/N, where K is the number
of descriptors and N is the number of compounds, the com-
pound is an outlier. To use this approach, for each external
compound it would be necessary to recalculate the lever-
age. Netzeva et al. and Saliner et al. defined the applicabil-
ity domain by ranges of descriptors (i.e., in fact, as a sub-
space occupied by representative points in the descriptor
space).49,64 This definition of the applicability domain has
a significant drawback, because the representative points
could be found only in a small part of the hyperparal-
lelepiped corresponding to descriptor ranges rather than
distributed uniformly. A similar definition of the applicabil-
ity domain was proposed by Tong et al.65 The authors built
QSAR models for two data sets of estrogen receptor ligands
using the decision forest method and studied the depen-
dence of the model predictive power versus the applicabil-
ity domain threshold. The prediction accuracy within the
domain is defined as a ratio of the number of correct pre-
dictions to the total number of compounds in the domain.
The accuracy was changing from about 90% for the ini-
tial applicability domain to about 50% when the applicabil-
ity domain increased by 30%. Interestingly, for one of the
data sets the prediction accuracy was increasing until the
domain was extended by about 20%. Another important
aspect of this study was that the authors defined the confi-
dence level of prediction. The probability that a compound
belongs to a certain class was defined as the percentage
of active compounds in the leaf node that the compound
belongs to. The authors found (as expected) that the confi-
dence level correlated with the prediction accuracy.

Helma used a lazy learning k-nearest-neighbor- (kNN)
like method for the prediction of rodent carcinogenicity and
Salmonella mutagenicity.66 The applicability domain was
defined by a so-called confidence index. A compound was
assigned to one of the two classes by a weighted majority
vote of its nearest neighbors. The confidence index is the
weighted majority vote divided by the number of nearest
neighbors. If the absolute value of the confidence index is
low (�0.05) a compound is said to be out of the applicabil-
ity domain. This definition of the applicability domain cap-
tures the areas in the descriptor space where compounds
of both classes are close to each other and possibly mixed.
In this area the precise and accurate prediction of a com-
pound’s class is impossible. A Tanimoto-like coefficient is
used as a similarity measure. Nearest neighbors are defined
by the value of this coefficient higher than 0.3, which limits
the possibility of overextrapolation.

In most of our QSAR studies we have defined the appli-
cability domain as the distance cutoff value Dcutoff = �D� +
Zs, where Z is a similarity threshold parameter defined by
a user and �D� and s are the average and standard devi-
ation of all Euclidian distances in the multidimensional

descriptor space between each compound and its nearest
neighbors for all compounds in the training set.46 This def-
inition of the applicability domain has several major draw-
backs that we continue to address in our ongoing studies:
(1) Currently, the applicability domain is direction indepen-
dent in the descriptor space. We shall consider the direc-
tions in the descriptor space in which the distribution of
representative points has smaller spread as less important
than those that have higher spread. Thus, the applicabil-
ity domain will be represented as a multidimensional ellip-
soid in the principal component space. (2) Too strict defini-
tion of the applicability domain: if a compound is outside
of the model applicability domain, we currently do not pre-
dict its activity. Naturally, we shall establish the lower and
upper bounds for the applicability domain. (3) Finally, it
seems reasonable to introduce a confidence level of predic-
tion, which will depend on the distance of the compound
under prediction from its nearest neighbor of the training
set. These considerations provide just a few examples that
illustrate the importance of ongoing research in this area
of QSAR modeling. Not surprisingly, the model applicability
domain was the subject of a special symposium organized
at a recent 235th meeting of the American Chemical Society
in New Orleans, Louisiana.

COMBINATORIAL QSAR AND MODEL
ACCEPTABILITY CRITERIA

The chief hypothesis of the combi-QSAR approach that we
introduced in recent publications67–70 is that, if an implicit
structure/activity relationship exists for a given data set, it
can be formally manifested via a variety of QSAR models
obtained with different descriptors and optimization pro-
tocols. Our experience indicates that there is no universal
QSAR method that is guaranteed to give the best results
for any data set. Thus we believe that multiple alternative
QSAR models should be developed (as opposed to a sin-
gle model using some favorite QSAR method) for each data
set to identify the most successful technique in the context
of the given data set. Because QSAR modeling is relatively
fast, these alternative models could be explored simultane-
ously when making predictions for external data sets. The
consensus predictions of biological activity for novel test set
compounds on the basis of several QSAR models, especially
when they converge, are more reliable and provide better
justification for the experimental exploration of hits.

Our current approach to combi-QSAR modeling is sum-
marized on the workflow diagram (Figure 10.1). Our expe-
rience suggests that QSAR is a highly experimental area of
statistical data modeling where it is impossible to decide
a priori which particular QSAR modeling method will
prove most successful. To achieve QSAR models of the
highest internal and, most importantly, external accuracy,
the combi-QSAR approach explores all possible binary
combinations of various descriptor types and optimiza-
tion methods along with external model validation. Each
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Dragon descriptors

Chirality descriptors

MolconnZ
descriptors

COMFA descriptors

Volsurf descriptors

Comma descriptors

MOE descriptors

Model validation
using Y-Randomization
and external test sets

Selection of best models

QSAR modeling

Compound representation

SAR Dataset

KNN

SVM

DECISION TREE

BINARY QSAR, etc

Figure 10.1. Flowchart of the combinatorial QSAR methodology. All
descriptor sets and methods currently implemented in our laboratory
are listed.

combination of descriptor sets and optimization tech-
niques is likely to capture certain unique aspects of the
structure/activity relationship. Because our ultimate goal is
to use the resulting models as reliable activity (property)
predictors, application of different combinations of model-
ing techniques and descriptor sets will increase our chances
for success.

In our critical publications we have recommended a set
of statistical criteria that must be satisfied by a predic-
tive model.4,39 For continuous QSAR, parameters that we
use in developing activity/property predictors are as fol-
lows: (1) correlation coefficient R between the predicted
and observed activities, (2) coefficients of determination71

(predicted versus observed activities R2
0 , and observed ver-

sus predicted activities R′2
0 for regressions through the ori-

gin), and (3) slopes k and k ′ of regression lines through
the origin. We consider a QSAR model predictive if the fol-
lowing conditions are satisfied: (i) q 2 � 0.5; (ii) R 2 � 0.6;

(iii) − (R2−R2
0 )

R2 � 0.1 and 0.85 ≤ K ≤ 1.15 or
(R2−R2

0 )

R2 � 0.1
and 0.85 ≤ K ′ ≤ 1.15; and (iv) |R2

0 − R ′2
0| � 0.3 , where q 2 is

the cross-validated correlation coefficient calculated for the
training set, but all other criteria are calculated for the test
set.

AN EXAMPLE OF “GOOD PRACTICES” IN QSAR MODEL
DEVELOPMENT AND THE IMPORTANCE OF
CONSENSUS PREDICTION

We discuss below the results of a recent important study of
aquatic toxicity.72 In our opinion this particular study may
serve as a useful example to illustrate the complexity and
power of modern QSAR modeling approaches and high-
light the importance of collaborative and consensual model
development.

The combinatorial QSAR modeling approach was
applied to a diverse series of organic compounds tested
for aquatic toxicity in Tetrahymena pyriformis in the same
laboratory over nearly a decade.73–80 The unique aspect of
this research was that it was conducted in collaboration

between six academic groups specializing in cheminfor-
matics and computational toxicology. The common goals
for our virtual collaboratory were to explore the relative
strengths of various QSAR approaches in their ability to
develop robust and externally predictive models of this par-
ticular toxicity end point. We have endeavored to develop
the most statistically robust, validated, and externally pre-
dictive QSAR models of aquatic toxicity. The members of
our collaboratory included scientists from the University of
North Carolina at Chapel Hill in the United States, the Uni-
versity of Louis Pasteur in France, the University of Insubria
in Italy, the University of Kalmar in Sweden, the Virtual
Computational Chemistry Laboratory in Germany, and
the University of British Columbia in Canada. Each group
relied on its own QSAR modeling approaches to develop
toxicity models using the same modeling set, and we agreed
to evaluate the realistic model performance using the same
external validation set(s) (cf. Table 10.1 for the summary of
approaches).

The T. pyriformis toxicity data set used in this study was
compiled from several publications of the Schultz group
as well as from data available at the Tetratox database
Web site (http://www.vet.utk.edu/TETRATOX/). After delet-
ing duplicates as well as several compounds with conflict-
ing test results and correcting several chemical structures
in the original data sources, our final data set included 983
unique compounds. The data set was randomly divided into
two parts: (1) the modeling set of 644 compounds and (2)
the validation set including 339 compounds. The former
set was used for model development by each participat-
ing group and the latter set was used to estimate the exter-
nal prediction power of each model as a universal metric
of model performance. In addition, when this project was
already well under way, a new data set had become available
from the most recent publication by the Schultz group.81 It
provided us with an additional external set to evaluate the
predictive power and reliability of all QSAR models. Among
compounds reported, 110 were unique (i.e., not present
among the original set of 983 compounds); thus, these 110
compounds formed the second independent validation set
for our study.81

Universal statistical figures of merit for all models

Different groups have employed different techniques and
(sometimes) different statistical parameters to evaluate the
performance of models developed independently for the
modeling set (described below). To harmonize the results
of this study the same standard parameters were chosen
to describe each model’s performance as applied to the
modeling and external test set predictions. Thus, we have
employed q 2

abs (squared leave-one-out cross-validation cor-
relation coefficient) for the modeling set, R 2

abs (frequently
described as the coefficient of determination) for the exter-
nal validations sets, and MAE (mean absolute error) for the
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Table 10.1. Overview of QSAR modeling approaches employed by six cheminformatic groups in the study of aquatic toxicity

Group IDa Modeling techniques Descriptor type Applicability domain definition

UNC k NN, SVM MolconnZ, Dragon Euclidean distance threshold between a test compound and compounds in
the modeling set

ULP MLR, SVM, kNN Fragments (ISIDA),
Molecular (CODESSA-Pro)

Euclidean distance threshold between a compound and compounds in the
modeling set; bounding box

UI MLR/OLS Dragon Leverage approach

UK PLS Dragon Residual standard deviation and leverage within the PLSR model

VCCLAB ASNN E-state indices Maximal correlation coefficient of the test molecule to the training set
molecules in the space of models

UBC MLR, ANN, SVM, PLS IND I Undefined

a Abbreviations: UNC = University of North Carolina at Chapel Hill; ULP = University of Louis Pasteur; UI = University of Insubria; UK = University of Kalmar;
VCCLAB = Virtual Computational Chemistry Laboratory; UBC = University of British Columbia.

linear correlation between predicted (Ypred) and experimen-
tal (Yexp) data (here, Y = pIGC50); these parameters are
defined as follows:

Q2
abc = 1 −

∑
Y

(Yexp − Y100)2 Q2
abc/

∑
Y

(Y exp − � y �exp)2

(10.1)

R2
abc = 1 −

∑
Y

(Yexp − Ypred)2/
∑

R

(Yexp− �Y �exp)2

(10.2)

MAE =
∑

Y

|Y − Ypred|/n. (10.3)

Many other statistical characteristics can be used to eval-
uate model performance; however, we restricted ourselves
to these three parameters that provide minimal but suffi-
cient information concerning any model’s ability to repro-
duce both the trends in experimental data for the test
sets as well as mean accuracy of predicting all experimen-
tal values. The models were considered acceptable if R 2

abs

exceeded 0.5.

Consensus QSAR models of aquatic toxicity; comparison
between methods and models

The objective of this study from a methodological perspec-
tive was to explore the suitability of different QSAR mod-
eling tools for the analysis of a data set with an impor-
tant toxicological end point. Typically, such data sets are
analyzed with one (or several) modeling techniques, with
a great emphasis on the (high value of) statistical parame-
ters of the training set models. In this study, we went well
beyond the modeling studies reported in the original pub-
lications in several respects. First, we have compiled all
reported data on chemical toxicity against T. pyriformis in a
single large data set and attempted to develop global QSAR
models for the entire set. Second, we have employed multi-

ple QSAR modeling techniques thanks to the engagement of
six collaborating groups. Third, we have focused on defining
model performance criteria not only using training set data
but most importantly using external validation sets that
were not used in model development in any way (unlike any
common cross-validation procedure).82 This focus afforded
us the opportunity to evaluate and compare all models
using simple and objective universal criteria of external pre-
dictive accuracy, which in our opinion is the most impor-
tant single figure of merit for a QSAR model that is of prac-
tical significance for experimental toxicologists. Fourth, we
have explored the significance of applicability domains and
the power of consensus modeling in maximizing the accu-
racy of external predictivity of our models.

We believe that results of our analysis lend strong sup-
port for our strategy. Indeed, all models performed quite
well for the training set (Table 10.2) with even the low-
est q 2

abs among them as high as 0.72. However, there was
much greater variation between these models when look-
ing at their (universal and objective) performance criteria
as applied to the validation sets I and II (Table 10.2).

Of fifteen QSAR approaches used in this study, nine
implemented method-specific applicability domains. Mod-
els that did not define the AD showed a reduced predictive
accuracy for the validation set II even though they yielded
reasonable results for the validation set I. Only CODESSA-

MLR (which did not employ any AD) approached in accu-
racy the lower bound of the models using the AD as mea-
sured by R 2

abs = 0.58 but still had one of the highest MAE
of 0.47 (Table 10.2). However, among models employing the
AD only kNN-MolconnZ had a relatively low accuracy of
prediction for the validation set II, with R 2

abs below 0.5. For
all other models the R 2

abs ranged between 0.55 and 0.83. On
average, the use of applicability domains improved the per-
formance of individual models although the improvement
came at the expense of the lower chemistry space coverage
(cf. Table 10.2).
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Table 10.2. Statistical results obtained with all toxicity QSAR models for the modeling and external validation sets

Modeling Set (n = 644) Validation Set I (n = 339) Validation Set II (n = 110)

Model Group ID Q2
abs MAE (Coverage %) R2

abs MAE (Coverage %) R2
abs MAE (Coverage %)

k NN-Dragon UNC 0.92 0.22 100 0.85 0.27 80.2 0.72 0.33 52.7

k NN-MolconnZ UNC 0.91 0.23 99.8 0.84 0.30 84.3 0.44 0.39 53.6

SVM-Dragon UNC 0.93 0.21 100 0.81 0.31 80.2 0.83 0.27 52.7

SVM-MolconnZ UNC 0.89 0.25 100 0.83 0.30 84.3 0.55 0.37 53.6

ISIDA-k NN ULP 0.77 0.37 100 0.73 0.36 78.5 0.63 0.37 42.7

ISIDA-SVM ULP 0.95 0.15 100 0.76 0.32 100 0.38 0.50 100

ISIDA-MLR ULP 0.94 0.20 100 0.81 0.31 95.9 0.65 0.41 51.8

CODESSA-MLR ULP 0.72 0.42 100 0.71 0.44 100 0.58 0.47 100

OLS UI 0.86 0.30 92.1 0.77 0.35 97.0 0.59 0.43 98.2

PLS UK 0.88 0.28 97.7 0.81 0.34 96.1 0.59 0.40 95.5

ASNN VCCLAB 0.83 0.31 83.9 0.87 0.28 87.4 0.75 0.32 71.8

PLS-IND I UBC 0.76 0.39 100 0.74 0.39 99.7 0.45 0.54 100

MLR-IND I UBC 0.77 0.39 100 0.75 0.40 99.7 0.46 0.53 100

ANN-IND I UBC 0.77 0.39 100 0.76 0.39 99.7 0.46 0.53 100

SVM-IND I UBC 0.79 0.31 100 0.79 0.35 99.7 0.53 0.46 100

Consensus modela – 0.92 0.22 100 0.87 0.27 100 0.70 0.34 100

a Consensus model: average of the nine models (k NN-Dragon, k NN-MolconnZ, SVM-Dragon, SVM-MolconnZ, ISIDA-k NN, ISIDA-MLR, OLS, PLS, and ASNN)
using their individual applicability domains.

For the most part all models succeeded in achieving
reasonable accuracy of external prediction especially when
using the AD. It then appeared natural to bring all models
together to explore the power of consensus prediction. Thus,
the consensus model was constructed by averaging all avail-
able predicted values taking into account the applicabil-
ity domain of each individual model. In this case we could
use only nine of fifteen models that had the AD defined.
Because each model had its unique way of defining the AD,
each external compound could be found within the AD of
anywhere between one and nine models so for averaging
we only used models covering the compound. The advan-
tage of this data treatment is that the overall coverage of the
prediction is still high because it was rare to have an exter-
nal compound outside of the ADs of all available models.
The results (Table 10.2) showed that the prediction accu-
racy for both the modeling set (MAE = 0.22) and the val-
idation sets I and II (0.27 and 0.34, respectively) was the
best compared to any individual model. The same observa-
tion could be made for the correlation coefficient R 2

abs. The
coverage of this consensus model II was 100% for all three
data sets. This observation suggests that consensus models
afford both high space coverage and high accuracy of pre-
diction.

In summary, this study presented an example of a fruit-
ful international collaboration between researchers that
use different techniques and approaches but share general
principles of QSAR model development and validation. Sig-
nificantly, we made no assumptions about the purported
mechanisms of aquatic toxicity yet were able to develop
statistically significant models for all experimentally tested
compounds. In this regard it is relevant to cite an opin-
ion expressed in an earlier publication by T. Schultz that
“models that accurately predict acute toxicity without first
identifying toxic mechanisms are highly desirable.”80 How-
ever, the most significant single result of our studies is the
demonstrated superior performance of the consensus mod-
eling approach when all models are used concurrently and
predictions from individual models are averaged. We have
shown that both the predictive accuracy and coverage of the
final consensus QSAR models were superior as compared
to these parameters for individual models. The consensus
models appeared robust in terms of being insensitive to
both incorporating individual models with low prediction
accuracy and the inclusion or exclusion of the AD. Another
important result of this study is the power of addressing
complex problems in QSAR modeling by forming a vir-
tual collaboratory of independent research groups leading
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to the formulation and empirical testing of best modeling
practices. This latter endeavor is especially critical in light
of the growing interest of regulatory agencies to developing
the most reliable and predictive models for environmen-
tal risk assessment83 and placing such models in the public
domain.

PREDICTIVE QSAR MODELING WORKFLOW AND
ITS APPLICATION TO VIRTUAL SCREENING

Our experience in QSAR model development and validation
has led us to establishing a complex strategy that is summa-
rized in Figure 10.2. It describes the predictive QSAR mod-
eling workflow focused on delivering validated models and,
ultimately, computational hits confirmed for the experi-
mental validation. We start by randomly selecting a fraction
of compounds (typically, 10–15%) as an external validation
set. The remaining compounds are then divided rationally
(using the sphere exclusion protocol implemented in our
laboratory46) into multiple training and test sets that are
used for model development and validation, respectively,
using criteria discussed in more detail below. We employ
multiple QSAR techniques based on the combinatorial
exploration of all possible pairs of descriptor sets coupled
with various statistical data-mining techniques (combi-
QSAR) and select models characterized by high accuracy in
predicting both training and test sets data. Validated models
are finally tested using the evaluation set. The critical step of
the external validation is the use of applicability domains.
If external validation demonstrates the significant predic-
tive power of the models we use all such models for virtual
screening of available chemical databases (e.g., ZINC84) to
identify putative active compounds and work with collab-
orators who could validate such hits experimentally. The
entire approach is described in detail in several recent arti-
cles and reviews.18,19,40

In our recent studies we were fortunate to recruit
experimental collaborators who have validated compu-
tational hits identified through our mod-
eling of anticonvulsants,59 HIV-1 reverse
transcriptase inhibitors,85 D1 antagonists,37

antitumor compounds,86 and �-lactamase
inhibitors.88 Thus, models resulting from this
workflow could be used to prioritize the
selection of chemicals for the experimental
validation. However, because we cannot gen-
erally guarantee that every prediction result-
ing from our modeling effort will be vali-
dated experimentally we cannot include the
experimental validation step as a mandatory
part of the workflow in Figure 10.2, which is
why we used the dotted line for this compo-
nent. We note that our approach shifts the
emphasis on ensuring good (best) statistics
for the model that fits known experimen-
tal data toward generating testable hypo-

thesis about purported bioactive compounds. Thus, the
output of the modeling has exactly the same format as the
input [i.e., chemical structures and (predicted) activities
making model interpretation and utilization completely
seamless for medicinal chemists].

The development of truly validated and predictive QSAR
models affords their growing application in chemical data
mining and combinatorial library design.88,89 For example,
3D stereoelectronic pharmacophore based on QSAR mod-
eling was used recently to search the National Cancer Insti-
tute Repository of Small Molecules11 to find new leads for
inhibiting HIV type 1 reverse transcriptase at the nonnucle-
oside binding site.90

Our studies have shown that QSAR models could be
used successfully as virtual screening tools to discover com-
pounds with the desired biological activity in chemical
databases or virtual libraries.18,37,59,86,87,91 The discovery of
novel bioactive chemical entities is the primary goal of com-
putational drug discovery, and the development of vali-
dated and predictive QSAR models is critical to achieve this
goal. We present several examples of these studies below to
illustrate the use of QSAR models as virtual screening tools
for lead identification.

EXAMPLES OF APPLICATIONS OF THE PREDICTIVE QSAR
MODELING WORKFLOW FOR LEAD OPTIMIZATION

To illustrate the power of validated QSAR models as vir-
tual screening tools we shall discuss the examples of studies
that resulted in experimentally confirmed hits. We note that
such studies could only be done if there is sufficient data
available for a series of tested compounds such that robust
validated models could be developing using the workflow
described in Figure 10.2.

The first example is anticonvulsant compounds. In
the first phase of modeling, we have applied kNN17 and
simulated annealing-partial least squares (SA-PLS)89
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Figure 10.2. Flowchart of predictive QSAR modeling framework based on the validated
combi-QSAR models.
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Figure 10.3. Uniqueness of scaffolds for QSAR-based experimentally confirmed virtual screening hits (b) as com-
pared to training set compounds (a).

QSARapproaches to a data set of forty-eight chemically
diverse functionalized amino acids (FAA) with anticon-
vulsant activity that were synthesized previously, and
successful QSARmodels of FAA anticonvulsants have been
developed58 (see Fig. 10.3a for chemical structures). Both
methods used multiple descriptors such as molecular
connectivity indices or atom pair descriptors, which are
derived from two-dimensional molecular topology. QSAR
models with high internal accuracy were generated, with
leave-one-out cross-validated R 2 (q 2) values ranging
between 0.6 and 0.8. The q 2 values for the actual data set
were significantly higher than those obtained for the same
data set with randomly shuffled activity values, indicating
that models were statistically significant. The original data
set was further divided into several training and test sets,
and highly predictive models providing q 2 values for the
training sets greater than 0.5 and R 2 values for the test sets
greater than 0.6.

In the second phase of modeling, we have applied
the validated QSAR models to mining available chem-
ical databases for new lead FAA anticonvulsant agents.
Two databases have been explored: the National Cancer
Institute11 and Maybridge92 databases, including (at the
time of that study) 237,771 and 55,273 chemical struc-
tures, respectively. Database mining was performed inde-
pendently using ten individual QSAR models that have been

extensively validated using several criteria of robustness
and accuracy. Each individual model selected some num-
ber of hits as a result of independent database mining,
and the consensus hits (i.e., those selected by all mod-
els) were further explored experimentally for their anti-
convulsant activity. As a result of computational screen-
ing of the NCI database, twenty-seven compounds were
selected as potential anticonvulsant agents and submitted
to our experimental collaborators. Of these twenty-seven
compounds, our collaborators chose two for synthesis and
evaluation; their choice was based on the ease of synthe-
sis and the fact that these two compounds had structural
features that would not be expected to be found in active
compounds based on prior experience. Several additional
compounds, which were close analogs of these two, were
either taken from the literature or designed in our collabo-
rator’s laboratory. In total, seven compounds were resynthe-
sized and sent to National Institutes of Health (NIH) for the
maximum electroshock test (a standard test for anticonvul-
sant activity, which was used for the training set compounds
as well). The biological results indicated that on initial and
secondary screening, five of seven compounds tested showed
anticonvulsant activity with ED50 less than 100 mg/kg
(Fig. 10.3b), which is considered promising by NIH stan-
dards. Interestingly, all seven compounds were also found
to be very active in the same tests performed on rats (a
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complete set of experimental data on rats for the training set
were not available, and therefore no QSAR models for rats
were built).

Mining of the Maybridge database yielded two addi-
tional promising compounds that were synthesized and
sent to NIH for the MES anticonvulsant test. One of the
compounds showed moderate anticonvulsant activity of
ED50 between 30 and 100 mg/kg (in mice), while the other
was found to be a very potent anticonvulsant agent with
ED50 of 18 mg/kg in mice (intraperitoneal). In summary,
both compounds were found to be very active in both mice
and rats. Figure 10.3 summarizes the results of using val-
idated QSAR models for virtual screening as applied to
the anticonvulsant data set. It presents a practical exam-
ple of using the predictive QSAR modeling workflow (cf.
Fig. 10.2) that can be generalized for any data set where
sufficient data to develop reliable QSAR models is avail-
able. It is important to note that none of the compounds
identified in external databases as potent anticonvulsants
and validated experimentally belong to the same class of
FAA molecules as the training set. This observation was
very stimulating because it underscored the power of our
methodology to identify potent anticonvulsants of novel
chemical classes as compared to the training set com-
pounds, which is one of the most important goals of virtual
screening.

Anticancer agents

A combined approach of validated QSAR modeling and vir-
tual screening was successfully applied to the discovery of
novel tylophorine derivatives as anticancer agents.86 QSAR
models have been initially developed for fifty-two chem-
ically diverse phenanthrine-based tylophorine derivatives
(PBTs) with known experimental EC50 using chemical topo-
logical descriptors (calculated with the MolconnZ pro-
gram) and variable selection kNN method. Several valida-
tion protocols have been applied to achieve robust QSAR
models. The original data set was divided into multiple
training and test sets, and the models were considered
acceptable only if the leave-one-out cross-validated R 2 (q 2)
values were greater than 0.5 for the training sets and the cor-
relation coefficient R 2 values were greater than 0.6 for the
test sets. Furthermore, the q 2 values for the actual data set
were shown to be significantly higher than those obtained
for the same data set with randomized target properties
(Y-randomization test), indicating that models were sta-
tistically significant. Ten best models were then employed
to mine a commercially available ChemDiv Database (ca.
500,000 compounds) resulting in thirty-four consensus hits
with moderate to high predicted activities. Ten structurally
diverse hits were experimentally tested and eight were con-
firmed active with the highest experimental EC50 of 1.8 �M
implying an exceptionally high hit rate (80%). The same
ten models were further applied to predict EC50 for four
new PBTs, and the correlation coefficient (R 2) between
the experimental and predicted EC50 for these compounds

plus eight active consensus hits was shown to be as high
as 0.57.

AmpC �-lactamase inhibitors

This example provides an interesting comparison between
QSAR-based and structure-based virtual screening.87 The
use of inaccurate scoring functions in docking algorithms
may result in the selection of compounds with high pre-
dicted binding affinity that nevertheless are known exper-
imentally not to bind to the target receptor. Such falsely
predicted binders have been termed “binding decoys.” We
posed a question as to whether true binders and decoys
could be distinguished based only on their structural
chemical descriptors using approaches commonly used in
ligand-based drug design. We applied the kNN classifica-
tion QSAR approach to a data set of compounds charac-
terized as binders or binding decoys of AmpC �-lactamase.
Models were subjected to rigorous internal and external
validation as part of our standard workflow (Figure 10.2)
and a special QSAR modeling scheme was employed that
took into account the imbalanced ratio of inhibitors to
nonbinders (1:4) in this data set. Three hundred forty-
two predictive models were obtained with correct clas-
sification rate (CCR) for both training and test sets as
high as 0.90 or higher. The prediction accuracy was as
high as 100% (CCR = 1.00) for the external validation
set composed of ten compounds (ten true binders and
ten decoys) selected randomly from the original data set.
For an additional external set of fifty known nonbinders,
we have achieved a CCR of 0.87 using very conservative
model applicability domain threshold. The validated binary
kNN QSAR models were further employed for mining the
NCGC AmpC screening data set (69,653 compounds). The
consensus prediction of sixty-four compounds identified
as screening hits in the AmpC PubChem assay disagreed
with their annotation in PubChem but was in agreement
with the results of secondary assays.93 At the same time,
fifteen compounds were identified as potential binders
contrary to their annotation in PubChem. Five of them
were tested experimentally and showed inhibitory activ-
ities in millimolar range with the highest binding con-
stant K i of 135 �M. Our studies suggest that validated
QSAR models could complement structure-based docking
and scoring approaches in identifying promising hits by
virtual screening of molecular libraries. This study also
illustrates that robust QSAR models could be used to
recover false negatives resulting from the high-throughput
screening.

CONCLUSIONS: EMERGING QSAR RESEARCH STRATEGIES
AND FOCUS ON LEAD DISCOVERY

In the past fifteen years, innovative technologies that enable
rapid synthesis and high-throughput screening of large
libraries of compounds have been adopted in almost all
major pharmaceutical and biotech companies. As a result,
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there has been a huge increase in the number of com-
pounds available on a routine basis to quickly screen for
novel drug candidates against new targets or pathways. In
contrast, such technologies have rarely become available
to the academic research community, thus limiting its abil-
ity to conduct large-scale chemical genetics or chemical
genomics research. The NIH Molecular Libraries Roadmap
Initiative has changed this situation by forming the national
Molecular Library Screening Centers Network (MLSCN)94

with the results of screening assays made publicly avail-
able via PubChem.9 These efforts have already led to the
unprecedented growth of available databases of biologi-
cally tested compounds (cf. our recent review where we
list about twenty available databases of compounds with
known bioactivity).15

This growth creates new challenges for QSAR modeling
such as developing novel approaches for the analysis and
visualization of large databases of screening data, novel bio-
logically relevant chemical diversity or similarity measures,
and novel tools for virtual screening of compound libraries
to ensure high expected hit rates. Application studies dis-
cussed in this chapter have established that QSAR mod-
els could be used successfully as virtual screening tools
to discover compounds with the desired biological activ-
ity in chemical databases or virtual libraries.18,37,59,86,87,91

The discovery of novel bioactive chemical entities is the
primary goal of computational drug discovery, and the
development of validated and predictive QSAR models is
critical to achieve this goal. Due to the significant recent
increase in publicly available data sets of biologically active
compounds and the critical need to improve the hit rate
of experimental compound screening there is a strong
need in developing widely accessible and reliable compu-
tational QSAR modeling techniques and specific end-point
predictors.
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Predicting ADME properties in drug discovery

William J. Egan

INTRODUCTION

Drug discovery is an extremely risky business. Practically
every molecule ever made in a drug discovery research
project will be a failure. It is estimated that for every ten
research projects producing molecules of high-enough
quality to begin clinical testing in man, 10,000 to 20,000
molecules will need to be synthesized. Of those ten clin-
ical candidates, nine will fail, leaving just one new drug in
the end. In short, the pharmaceutical industry has a failure
rate on the order of 99.99%.1,2 These many failures do not
come cheaply. The cost of developing a new drug is esti-
mated to be between $500 million and $2 billion, depending
on the indication and company.3

As Dr. Arthur Patchett of Merck said, “Current, major
stumbling blocks in drug development are often the clumsy,
empirical, and time-consuming efforts required to go from
an exquisitely potent in vitro inhibitor to one with good
bioavailability and an adequate duration of action. This
is the unglamorous part of drug development but often
separates highly successful ventures from those which lag
behind them.”4 Medicinal chemists commonly synthesize
potent molecules only to find out later they have poor expo-
sure in vivo and thus poor efficacy.

The broad term exposure can be broken down into its
component factors: absorption, distribution, metabolism,
and excretion, which are commonly known as ADME. Sol-
ubility is also very important and tends to be implicitly
included in discussions of ADME.

Poor ADME properties contribute significantly to the
high failure rate. Kola and Landis2 reported that at ten large
pharmaceutical companies, ADME/formulation problems
were responsible for ∼40% of clinical failures in the year
1991 but only ∼12% of clinical failures in the year 2000. Clin-
ical safety and toxicity were responsible for ∼22% of clinical
failures in 1991 and ∼33% of clinical failures in 2000. Clin-
ical failures due to poor efficacy/pharmacodynamics were
just under 30% at both time points.

Computational modeling to predict ADME properties of
molecules began in earnest in the late 1990s. This work was
spurred by a number of factors. First, there was an increas-
ing awareness of the importance of poor ADME proper-
ties as a cause of failures in drug discovery. Second, higher

throughput in vitro assays for ADME properties became
available (e.g., the Caco-2 cell permeability assay designed
to estimate the intestinal absorption potential of drug can-
didates). Third, databases, computer processing power, and
algorithms all matured and enabled these modeling efforts.

As Dr. Richard Hamming said, “The purpose of comput-
ing is insight, not numbers.”5 By analogy, we should con-
duct our ADME modeling work to help answer the two
questions we always ask in drug discovery research: “Is this
molecule any good?” and “How can we make it better?” We
need insight and guidance, not yet another column of num-
bers to go into a spreadsheet.

ADME models can help drug discovery efforts by (1)
aiding chemists in triaging large numbers of molecules to
select interesting examples for testing, (2) providing alerts
of ADME risks so that those risks can be investigated earlier
in the drug discovery process, (3) helping chemists interpret
experimental ADME data, and (4) guiding decision-making
and prioritizing syntheses.

The physiological and physicochemical mechanisms of
ADME and solubility are amazingly complex and not fully
understood even today. This is a fertile area for industrial
and academic research due to its importance in drug dis-
covery. This review will discuss recent research (through
mid-2008) with a focus on practical findings and insights.

DRUG-LIKENESS MEASURES

One of the simplest and most common ways to evaluate
a molecule for ADME properties is a qualitative examina-
tion of its basic descriptor values such as molecular weight
(MW), lipophilicity (logP), polar surface area (PSA), counts
of hydrogen bond donors and acceptors (HBD, HBA), and
count of rotatable bonds (RB). This type of approach was
popularized by Lipinski’s famous Rule of 5.6 Lipinski’s cut-
offs were MW � 500, computed logP � 5, HBA � 10, and
HBD � 5. The Rule of 5 considers a violation of any two of
these cutoffs to be an alert for poor absorption or perme-
ability. These cutoffs were based on the 90th percentile of
distributions of molecules in the World Drug Index having
USAN or INN names.

More recent studies have expanded on this type of anal-
ysis by subcategorizing descriptor distributions by oral
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versus nonoral marketed drugs, temporal patterns of devel-
opment candidates versus marketed drugs, target family
differences, and targeted simple analyses. Wenlock et al.7

compared the mean and standard deviations of MW, logP,
logD 7.4, HBD, HBA, and RB for orally administered clinical
candidates from Phase I clinical trials to preregistration, as
well as a set of 594 marketed oral drugs. The results showed
that the mean molecular weight declined consistently as
drug candidates advanced through the clinical trial process,
going from 423 at Phase I to 337 in marketed oral drugs.
Mean lipophilicity, as measured by ACD logP, was roughly
constant (2.6 at to 2.5) but the discontinued development
candidates at each phase had higher mean logP values (3.5
at Phase I, 3.5 at Phase II, 3.2 at Phase III). These differ-
ences were statistically significant and indicate there is an
increased chance of clinical failure for high MW and/or
logP compounds. Vieth et al.8 examined the distributions
of computed descriptors for 1,729 marketed drugs, includ-
ing 1,193 orally administered drugs. They tabulated means,
min/max, and different percentiles for 12 descriptors by six
categories. One interesting and statistically significant dif-
ference was that injectable drugs have higher MW, greater
polarity, lower lipophilicity, and are more flexible than oral
drugs.

Two studies examined the changes in computed descrip-
tors over time. For oral drugs launched prior to 1983, mean
MW, HBA, RB, and number of rings are lower than for
drugs launched during 1983–2002, whereas mean %PSA,
ClogP, and HBD do not change significantly.9 Similarly,
Proudfoot10 found that mean MW increased steadily from
below 300 in 1950 to often above 400 in 1997 and that
only seven drugs were marketed between 1937 and 1951
with MW � 500 but that 32 drugs exceeding MW 500
were marketed 1983–1997. Lipophilicity did not increase.
Increasing MW and steady lipophilicity causes an increase
in polarity that would lower the probability of absorption.
Also, Proudfoot notes that less than 5% of oral drugs have
HBD � 4, which may be related to their propensity for
Phase II metabolism.

Studies of proteomic or target families show large differ-
ences in the distribution of computed descriptors between
classes. Vieth and Sutherland11 were able to assign a spe-
cific proteomic family to 642 of 1,210 marketed oral drugs.
Mean descriptor values were not statistically different from
overall oral drugs for drugs in the cytochrome P450, phos-
phodiesterase, kinase, and transporter families. Drugs tar-
geting G-protein-coupled receptors (GPCRs) and proteases
had significantly greater means for one or more of MW,
ClogP, HBD, or HBA. Drugs targeting ion channels were sig-
nificantly smaller than the overall distribution. Morphy12

analyzed the computed property distributions of a liter-
ature and internal compound database at Organon con-
taining data on 1,860 optimization projects. All target
families showed increases in MW during optimization. Dif-
ferences between families were due to differences in the
properties of the leads. High property values were consis-

tently observed for drugs targeting peptide GPCRs, inte-
grin receptors, proteases, and transferases, whereas drugs
targeting monoamine GPCRs, ion channels, oxidases, and
transporters had lower property values. Antibacterial com-
pounds have descriptor averages that are different from
the average descriptor values reported for oral drug. Gram-
positive antibacterials have average MW = 813, clogD7.4 =
−0.2, and PSA = 243. Gram-negative antibacterials have
average MW = 414, clogD7.4 = −2.8, and PSA = 165.13

Gleeson at GlaxoSmithKline has analyzed internal
ADMET data on thousands of drug discovery compounds
using only three simple descriptors: MW, logP, and ioniza-
tion state. The analyses show general trends in line with
common beliefs, but are imprecise.14 Correcting computed
logP for ionization by using computed logD7.4 � 5 as a cut-
off was shown to pass approximately 50% of molecules with
computed logP � 5 in a Lipinski-type analysis.15

Overall, several useful concepts emerge from these anal-
yses. Different targets and routes of administration may
require biased property distributions and screening
libraries for successful lead optimization. This could influ-
ence the eventual chances of project success and should
be taken into account early by project leaders. Once more,
optimization focused on potency has been shown again
to lead to larger molecules which increases the potential
for poor ADME properties. The extent of any ADME issues
would of course depend on the structure of lead molecules.
Larger, more lipophilic molecules historically have an
increased rate of failure in the clinic. Finally, more rules
using simple descriptors have been identified for culling
molecules with poor ADME properties.

SOLUBILITY

Solubility is a property that depends on many complex
factors. It is important to know the exact solid form of
the molecule that was tested, the solvent used, and the
performance characteristics of the experimental method.
Molecules are commonly amorphous in form early in the
research process, less pure, and are dissolved in dimethyl
sulfoxide (DMSO) to create stock solutions for archival stor-
age and high-throughput screening. These DMSO stocks
are then diluted with buffer for activity and ADME in vitro
screening assays. In later stage research, larger quantities
of promising molecules are synthesized with the aim of
producing a crystalline solid suitable for formulation and
dosing in animal studies for pharmacology, pharmacoki-
netics, and toxicity. Salt forms, pH-dependent ionization,
the existence of polymorphs with their varying solubil-
ities, melting point of the crystal lattice, and the many
available formulation solvents (water, polyethylene glycol,
methylcellulose, organics, etc.) all influence measured sol-
ubility. Solubility can be measured with varying degrees of
accuracy ranging from cheaper and faster, but less accu-
rate and more variable, kinetic approaches using neph-
elometry or flow cytometry detection to “gold standard”
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thermodynamic solubility using shake-flask with high-
pressure liquid chromatography with UV detector (HPLC-
UV) or liquid chromatograph/mass spectrometry detec-
tion. These factors can cause a single molecule to have
widely differing solubility values that are not comparable.

From a modeling standpoint, the prediction of a mole-
cule’s solubility is a very difficult task because of the issues
listed above.16–18 The problem of predicting solubility has
been attacked with some success with complex neural net-
work models. Although not interpretable, neural networks
can function as a black-box in silico assay. Other techniques
that are more interpretable have also been applied to the
problem.

An interesting approach for estimating the effects of
small modifications on molecular properties such as sol-
ubility was published by Leach et al.19 The technique is
called “matched molecular pairs analysis.” First, a set of
specific structural transformations are used to search a set
of molecules having some type of property data. Subsets
of almost identical molecules having each transformation
are identified (e.g., all molecules differing by p-fluorine on
a phenyl ring). The percentage of molecules with a posi-
tive property value change is computed, and the binomial
distribution is used as a statistical test to ascertain if the
change is significant. For example, the authors reported
that when an amide is methylated, 112 of 142 pairs had
increased solubility by an average of +0.64 log units. The
percentage of pairs with increased solubility was 79% with
a 95% confidence interval of 71–85%, indicating the effect
is statistically significant. This technique is not limited to
solubility but can be applied to any property of a molecule,
ADME or otherwise. The authors also show examples of
insights gained from matched molecular pairs analysis of
data on protein binding and oral exposure in rats. Matched
molecular pairs analysis is clearly interpretable and as the
authors state, “can be used as a tool to test many of the ‘rules
of thumb’ that abound within medicinal chemistry.”

Another simple approach to classifying molecules as sol-
uble or insoluble was published by Lamanna et al.20 They
used recursive partitioning to classify 3,563 molecules as
soluble/insoluble using a small set of descriptors. Multiple
models were found which were predictive. The best model
used only two simple descriptors: MW and the descriptor
“aromatic proportion” and had an accuracy of 81% for a test
set of 1,200 molecules using a cutoff of 30 �M.

Huuskonen21 assembled aqueous solubility data for
1,297 organic molecules and modeled it using neural net-
work and linear regression models trained on 55 connectiv-
ity, shape, and electrotopological state descriptors. Test set
results were r 2 = 0.92 and standard deviation (s) = 0.60 for
the neural network and r 2 = 0.88 and s = 0.71 for the lin-
ear regression model. Yan et al.22 were able to build neural
network and linear regression models of comparable qual-
ity for the Huuskonen data set using only 18 topological
descriptors. Test set results were r 2 = 0.94 and s = 0.52 for
the neural network model and r 2 = 0.89 and s = 0.68 for the

linear regression model. Further work by Yan et al.23 mod-
eled the aqueous solubility of a set of 2,743 drug discovery
molecules from Merck KGaA, resulting in a neural network
model using 18 2D topological descriptors with r = 0.92 and
s = 0.62. The authors note that the Huuskonen set is limited
in diversity in comparison to the Merck KGaA data set.

One problem highlighted by several reviewers17,24 is that
data sets like the Huuskonen set cover unnecessarily large
ranges of solubility. The Huuskonen set covers the range
logS (log of solubility in mol/l) from −11.62 to +1.58, which
converts approximately to 9.6 × 10−7 to 1.5 × 107 �g/ml
for a MW of 400 Da. Johnson and Zheng17 recommend a
pharmaceutically relevant range of 0.1 to 250 �g/ml as more
appropriate.

However, the issue is more complex than a simple range.
Lipinski25 provides better guidance for minimum accept-
able solubility based on maximal absorbable dose calcu-
lations. These take into account dose amount and perme-
ability both of which have significant effects on required
solubility. For example, the minimum acceptable solubil-
ity for a 0.1 mg/kg human dose (a 7 mg pill) of a high-
permeability molecule is 1 �g/ml, whereas the minimum
acceptable solubility for a 10 mg/kg human dose (a 700 mg
pill) of a low permeability molecule is 2,100 �g/ml. This
range is somewhat similar to the range recommended by
Johnson and Zheng, but it is important for both medicinal
chemists and modelers to be aware of the factors modifying
the minimum acceptable solubility values within the solu-
bility range relevant for drug discovery.

Goeller et al.26 at Bayer modeled buffer solubility at
pH 6.5 using a data set containing 5,000 molecules whose
solubility was measured in a consistent fashion. The Bayer
assay was a high-throughput assay starting from DMSO
stock diluted to 1% DMSO in phosphate-buffered saline at
pH 6.5 and using HPLC detection. The logS range is approx-
imately −6 to −3. The model used 65 VAMP/PROPGEN
descriptors computed from 3D structures plus eight com-
mon 2D descriptors. These descriptors were used to train
various neural networks. The best neural network had a
root-mean-squared error (rmse) of 0.73 and 83% of pre-
dictions had �1.0 log unit error on a test data set of 7,222
molecules.

Recently, Gaussian process nonlinear regression was
used to model a set of combined literature aqueous sol-
ubility data and shake flask buffer solubility data for 632
molecules at pH 7.0–7.4 from Schering AG.27 This machine
learning algorithm is just beginning to be used in drug
discovery modeling. Gaussian process models can provide
error estimates for predictions and can automatically select
features. Other studies on modeling solubility using Gaus-
sian processes have also been published. The error bars
shown in these articles are wide enough to be alarming.28,29

As mentioned, solubility in DMSO is important for
compound storage and high-throughput screening efforts.
Computational models for the prediction of DMSO sol-
ubility have been reported by Balakin et al. and Lu and
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Bakken.30,31 Balakin et al. modeled a large set of 65,500
molecules with measured DMSO solubility. Molecules were
classified as insoluble if they were not soluble at 0.01 mol/l.
A Kohonen neural network was able to correctly classify
93% of compounds using only eight descriptors. Such mod-
els work by mapping the input data into a smaller dimen-
sional space based on the nodes and making predictions
based on node membership. In essence, a molecule is pre-
dicted as soluble or insoluble in DMSO based on the neigh-
boring molecules in its assigned node. Surprisingly, a stan-
dard neural network performed worse on the same data,
having approximately 75% accuracy. At Pfizer, 33,329 com-
pounds dissolved in 30 mM DMSO stock solutions were
visually inspected for precipitates. They computed 200 2D
descriptors (78 E-state keys and a set of 122 from the MOE
software package) to build five models to classify com-
pounds that showed precipitation versus those that showed
no precipitation. Test set accuracy was reasonably good
across all five models: recursive partitioning 81%, random
forest 81%, binary quantitative structure/activity relation-
ship (QSAR) 74%, self-organizing map 69%, and linear dis-
criminant analysis 76%.

Little work has been performed to model solubility while
taking into account crystal packing. Johnson et al.32 pub-
lished an initial attempt using calculated intrinsic solubil-
ity corrected for effects of ionization, and crystal-packing
forces derived from an escalating temperature molecular
dynamics simulation. Although the model requires crys-
tal structure information, it can be applied to analogs that
do not have crystal structures simply by overlaying those
analogs onto the known crystal form to begin the simu-
lation. Results suggest this type of model could be useful
to understand the solubility of late-stage optimization and
early development candidates, although it is highly depen-
dent on pKa estimates.

INTESTINAL ABSORPTION

Theory and computational aspects of intestinal perme-
ability have been reviewed in detail by Egan and Lauri.33

A drug must be somewhat permeable through the mem-
brane of the intestinal tract if it is to be administered
orally and achieve systemic exposure. The rate of mem-
brane permeability is strongly related to the lipophilicity
and hydrophilicity of the molecule.

Egan et al.33,34 demonstrated that a statistically based
classification model built using only PSA and AlogP98
could predict the region of chemical space occupied by
well-absorbed (�90% absorbed) molecules and exclude
poorly absorbed molecules (�30% absorbed). Molecules
with absorption in the range 30–90% were not used because
of large data variability. Actively transported molecules
were excluded. These results were validated on Caco-2 per-
meability assay data from drug discovery projects at Phar-
macopeia. The Caco-2 permeabilities were shown to have
a hill-shape in PSA-AlogP98 space. The sides of the hill

declined rapidly at the edge of the well-absorbed region and
less than 10% of highly permeable molecules were outside
the well-absorbed region, while only 21% of poorly perme-
able molecules were inside the well-absorbed region.

In an excellent article, Zhao et al.35 assembled a care-
fully reviewed literature set of human absorption data on
241 drugs. They showed that a linear regression model built
with five Abraham descriptors could fit percent human
absorption data reasonably well (r 2 = 0.83, rmse = 14%).
The descriptors are excess molar refraction (E), polarizabil-
ity (S), hydrogen bond acidity (A), hydrogen bond basicity
(B), and McGowan volume (V), all related to lipophilicity,
hydrophilicity, and size. In a follow-up article, data on rat
absorption for 151 drugs was collected from the literature
and modeled using the Abraham descriptors.36 A model
with only descriptors A and B had r 2 = 0.66, rmse = 15%.

All in vivo data, including the human and rat absorp-
tion data used by both Egan and Zhao et al., have consid-
erable variability. Zhao et al. comment that measurements
of percent absorbed for the same molecule may vary by
30% and that the 95% confidence interval for a prediction
is approximately 30% given a model rmse of 15%. This is
approximately the same as the normal experimental error
for absorption values. This means that models predicting
percent absorbed have to be carefully interpreted (i.e., a
prediction of 30% absorbed really means the molecule is
predicted to have absorption from 15–45%). For this prob-
lem, regression models are really no better than classifica-
tion models because of the variability in absorption data.

A classification regression tree model using 28 descrip-
tors to predict the fraction absorbed for a large set of 1,260
drugs and drug candidates has been published.37 The train-
ing set was 899 molecules and fraction absorbed was split
into six classes (0–0.19, 0.2–0.31, 0.32–0.43, 0.44–0.59, 0.6–
0.75, 0.76–1). Predicted values were reported as the median
of each class. Average absolute error (AAE) for the test set of
362 molecules was 0.169 and 80.4% of molecules were pre-
dicted within one class of their actual class. For 37 propri-
etary molecules having human data, AAE = 0.14 and 86.4%
of molecules were predicted correctly within one class.

Descriptors such as PSA, ClogP, and the Abraham
descriptors can be interpreted in terms of chemical struc-
ture without much difficulty. Jones et al.38 showed that
quantum mechanical descriptors can be used to success-
fully predict intestinal absorption and at the same time pro-
vide an interpretable model. They used the data set of Zhao
et al.35 and computed molecular surface charges using den-
sity functional theory. The model quality was almost identi-
cal to the Abraham descriptor model reported by Zhao et al.
(rmse = 15% for the same test set). The surface charges were
mapped to the 3D structure of drugs creating an easily inter-
pretable image.

Intramolecular hydrogen bonds can have an effect on
membrane permeability. If a polar molecule can adopt a
conformation that forms intramolecular hydrogen bonds,
it will be able to present a more lipophilic surface to the
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membrane and solvent and thus have greater permeability
than standard measures of polarity would suggest. Rezai
et al.39,40 conducted two experiments testing this effect.
The first experiment synthesized nine cyclic hexapeptide
diastereomers and measured their parallel artificial mem-
brane permeability assay (PAMPA) permeabilities. The least
and most permeable cyclic hexapeptides had permeabili-
ties differing by two orders of magnitude. NMR and molec-
ular modeling studies suggested that the most permeable
cyclic peptide exposed only one amide to solvent, whereas
the least permeable cyclic peptide exposed three to five
amides to solvent.

In the second experiment, virtual libraries of 128 hexa-
peptides and 320 heptapeptides were analyzed computa-
tionally using extensive conformational sampling in low
(membrane) and high (water) dielectric environments.
They hypothesized that the partition coefficient between
two different environments (the free energy of insertion)
of the lowest energy conformer in the low dielectric envi-
ronment would be proportional to the PAMPA permeabil-
ity. Eleven peptides with varied predicted properties were
synthesized and their PAMPA permeabilities did have a high
correlation (r 2 = 0.96) with the computed free energy of
insertion. These approaches could give insights into the
mechanisms of permeability of drug candidates with larger
molecular weight and greater flexibility that are capable of
forming multiple intermolecular hydrogen bonds.

Computational models are increasingly being added to
drug discovery workflows. At Pfizer, computational models
for passive permeability and active efflux were developed
using internal Caco-2 data on 3,018 molecules.41 Two mod-
els were built because the apical to basolateral measure-
ments of permeability normally used to estimate passive
permeability will be affected if a compound is an efflux sub-
strate. Logistic regression was used to fit molecular operat-
ing environment (MOE) 2D graph fingerprints. Model pre-
dictions and results for similar compounds are reported to
chemists. Receiver operating characteristic curve analysis
was used to evaluate model quality: AUC = 0.9 for the efflux
model and AUC = 0.83 for the passive permeability model
(a perfect classifier has an AUC score of 1.0). Guidance is
provided to project teams based on the predictions (e.g.,
molecules predicted to have low passive permeability with-
out active efflux should be submitted to the cheaper PAMPA
assay and not to cellular assays during lead optimization
efforts).

BLOOD-BRAIN-BARRIER PENETRATION

Computational models for blood-brain-barrier penetration
have been well reviewed in detail by Clark.42 Penetra-
tion of the blood-brain-barrier (BBB) via passive diffusion
is dependent on the hydrophilicity and lipophilicity of a
molecule. However, the BBB is a thicker, more lipophilic
membrane than the intestinal membrane. Kelder et al.43

showed that very few of 776 orally administered central

nervous system (CNS) drugs had PSA � 90, while a sub-
stantial fraction of 1,590 orally administered non-CNS had
PSA � 90. These results demonstrate hydrophilic molecules
have poor BBB penetration.

A simple two-variable linear regression model using PSA
and ClogP was used to successfully predict logBB with r =
0.887, s = 0.354 (logBB = log10 [brain]/[blood]).44 Lobell
et al.45 compared a set of 14 models designed to predict
logBB and concluded two of the 14 models had advantages.
Lobell used a stepwise linear regression on 34 2D and 3D
variables to produce a model with five terms plus intercept
with r 2 = 0.837 and MAE = 0.26. This model was judged best
for low-medium-throughput applications. The 2D Cerius2

ADME model for predicting logBB was judged the best
compromise between speed and accuracy for ultra-high-
throughput processing of large data sets. The 2D Cerius2

ADME model fit AlogP98 and 2D PSA to predict logBB with
a robust regression and uses an exclusionary region to pre-
vent extrapolation.

The calculated cross-sectional area of a molecule (ADcalc)
based on the internal amphiphilic gradient of a molecule
has been used as the basis for a novel BBB model.46 For each
molecule, a conformational ensemble was generated and
the smallest ADcalc was chosen. A simple biplot of logD7.4 vs.
ADcalc was sufficient to correctly predict the BBB penetration
of 85.2% of 122 drugs.

Abraham et al.47 modeled literature data of rat in vivo
BBB penetration measured in blood, plasma, or serum.
They concluded that the three types could be combined
because the systematic differences were so small. A linear
regression model built using the Abraham descriptors for
116 molecules had r 2 = 0.73 and s = 0.34 and performed
well on a test set with AAE = 0.25 and s = 0.31. They note the
experimental error(s) for logBB should be approximately
0.3 log units, which is the error of the fitted model. Work
by Zhao et al.48 further demonstrates the ability of mod-
els built using one to five descriptors (Abraham, PSA, HBA,
HBD, RB, etc.) to provide useful predictions of BBB pene-
tration. Models were built using a 1,093-compound training
set and tested on a 500-compound set. Models built using
one to five simple descriptors had test set accuracies for
+/− classifications in the range 96.5–99.8% for BBB+
molecules and 65.3–79.6% for BBB− molecules.

A concern about the use of logBB values as the index
of brain permeability/penetration has been raised by
Pardridge.49 He argues that logBB is a simplistic and incor-
rect distributional measure that does not take into account
actual permeabilities. Pardridge advocates using the BBB PS
product that is a measure of unidirectional clearance from
blood across the BBB to the brain and predicts the level of
free drug in the brain. Modeling results for two small data
sets of BBB PS data suggest that models similar to those dis-
cussed above can readily predict BBB PS. Liu et al.50 mea-
sured the BBB PS and fit a linear regression model to pre-
dict logPS of 23 molecules with only three terms (logD, PSA,
and van der Waals surface area of basic atoms) and r 2 = 0.74
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and s = 0.50. Abraham51 achieved similar results modeling
literature data on logPS for 30 molecules using a lin-
ear regression model fit to five Abraham descriptors, with
r 2 = 0.87 and s = 0.52.

P-GLYCOPROTEIN EFFLUX

P-glycoprotein is an ABC cassette transporter encoded by
the MDR1 gene in humans that is responsible for the efflux
of drugs from cells. It plays a significant role in limiting
brain penetration and to a lesser extent limits intestinal
absorption of drugs. For oral drugs dosed in quantities
greater than 50 mg with reasonable dissolution rates,
P-glycoprotein transport will be saturated and thus unable
to limit absorption. It should be noted that drugs with
poor solubility effectively have a “low dose” and may
have limited absorption due to P-glycoprotein efflux (e.g.,
paclitaxel). Unfortunately, the blood concentrations of
drugs at the BBB do not achieve the levels found for most
drugs in the intestines. Thus, P-glycoprotein transporters
at the BBB cannot be saturated and will decrease the brain
penetration of substrates.52,53

In a study of P-glycoprotein substrates versus nonsub-
strates, Varma et al.54 concluded that substrate molecules
with high passive permeability overwhelmed the trans-
porter while substrate molecules with moderate pas-
sive permeability were more affected by P-glycoprotein.
Approximately half of 63 P-glycoprotein substrates studied
had MW � 400 and PSA � 75, indicating that larger, more
polar molecules are more likely to be P-glycoprotein sub-
strates.

Several QSAR models have been used to predict whether
a molecule is a P-glycoprotein substrate. Gombar et al.55

modeled a set of 95 P-glycoprotein substrates and nonsub-
strates using stepwise linear discriminant analysis. Class
assignment was based on efflux ratios measured by an in
vitro Madin–Darby canine kidney cell assay run at Glaxo-
SmithKline. The initial 254 descriptors were trimmed down
to a set of 27 descriptors with an accuracy of 98.9%. Per-
formance on a test set was also good, with 50/58 (86.2%)
correctly predicted. A single E-state descriptor, MolES, rep-
resenting molecular bulk, was particularly good at discrim-
inating substrates. For MolES � 110, eighteen of nineteen
molecules were substrates, and for MolES � 49, eleven of
thirteen molecules were nonsubstrates.

Cabrera et al.56 modeled a set of 163 drugs using
topological substructural molecular design (TOPS-MODE)
descriptors with a linear discriminant model to predict P-
glycoprotein efflux. Model accuracy was 81% for the train-
ing set and 77.5% for a validation set of 40 molecules.
A “combinatorial QSAR” approach was used by de Lima
et al.57 to test multiple model types (kNN, decision tree,
binary QSAR, SVM) with multiple descriptor sets from vari-
ous software packages (MolconnZ, Atom Pair, VoSurf, MOE)
for the prediction of P-glycoprotein substrates for a data set
of 192 molecules. Best overall performance on a test set of

51 molecules was achieved with an SVM and AP or VolSurf
descriptors (81% accuracy each).

Analyses of molecules that are P-glycoprotein substrates
have suggested a number of possible pharmacophores. For
example, based on an analysis of 100 molecules, Seelig58

proposed that molecules containing at least one Type I or
Type II unit would be P-glycoprotein substrates, and their
binding increases with the strength and number of these
groups. Type I units contain two electron donor groups
2.5 ± 0.3Å apart, and Type II units contain two or three
electron donor groups whose maximum distance apart is
4.6 ± 0.6Å. Pajeva and Wiese59 proposed a pharmacophore
containing two hydrophobic groups, three HBA groups, and
one HBD group. They conclude that binding depends on
the number of these pharmacophore points present and
that different drugs interact with varied groups with multi-
ple possible binding modes. This pharmacophore hypoth-
esis was shown to agree with a homology model of P-
glycoprotein created using Escherichia coli MsbA as the
template.60

Two 3D QSAR models were built using GRIND descrip-
tors for P-glycoprotein substrate recognition. Cianchetta
et al.61 selected 100 proprietary molecules and 29 pub-
licly available molecules having Caco-2 A-B/B-A ratios � 1
and screened them for inhibition of P-glycoprotein activ-
ity in a calcein-AM assay. The inhibition values were mod-
eled using GRIND and VolSurf descriptors. The 3D align-
ment independent GRIND descriptors fit the data well, with
r 2 = 0.83. VolSurf descriptors produced a model that was
slightly better than random. The pharmacophoric GRIND
features suggested the following features were important
for P-glycoprotein substrate recognition: two hydropho-
bic groups 16.5Å apart, two HBA groups 11.5Å apart, plus
the size of the molecule (21.5Å distance required between
edges of the molecule). Crivori et al.62 similarly compared
VolSurf and GRIND descriptors for the prediction of P-
glycoprotein substrates. Fifty-three drugs were classified as
substrates or nonsubstrates by a cutoff of two for their Caco-
2 efflux ratio and modeled using VolSurf descriptors; the
model was 89% accurate. When tested on a proprietary data
set of 272 molecules, the VolSurf model correctly classified
72% of the data set. Thirty of the 53 drugs were assayed in
a calcein-AM assay and the data were used to select nine
substrates and fourteen nonsubstrates for modeling with
GRIND descriptors. The model was tested on a set of 125
drugs from the literature and accurately predicted 82% of
them. Two GRIND features were important in the model:
two hydrophobic regions 11.5Å apart and two HBA groups
8Å apart.

The effect of P-glycoprotein efflux limiting brain pen-
etration has been examined by two analyses. A bagged
recursive-partitioning model was built using the R software
on 190 compounds with literature logBB data and three
sets of descriptors.63 The literature-based model was tested
on 250 Pfizer compounds, of which approximately 60%
showed significant P-glycoprotein mediated efflux based
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on brain penetration experiments in knockout versus wild-
type mdr1a mice. Results were much worse for the Pfizer
compounds than for the training set (Q 2 ∼0.5 vs. ∼0.2),
indicating the effect of P-glycoprotein efflux. Garg and
Varma64 used a prediction of P-glycoprotein efflux proba-
bility as an input into a neural network model with good
results (r = 0.89, s = 0.32 for test set of 50 molecules).

Raub53 has published an excellent review with exam-
ples discussing the SAR of P-glycoprotein substrate recog-
nition. He notes that “the SAR for P-gp is obviously com-
plicated and poorly understood” and “no single functional
group alone is recognized, but one group can accentu-
ate the recognition points existing within a scaffold. It
is likened to a rheostat, rather than an on/off switch,
where addition or removal of a key group can increase or
decrease the pumping efficiency.” Raub concludes that the
best approach to reduce P-glycoprotein efflux effects is to
increase passive diffusion to overwhelm the P-glycoprotein
transporter.

Raub’s point is well made. P-glycoprotein transports
many of the same substrates that the liver enzyme CYP3A4
metabolizes. CYP3A4 is responsible for half the metabolic
clearance marketed drugs. For the P-glycoprotein trans-
porter to recognize so many different types of substrates, it
requires multiple binding modes and/or multiple sites with
wide tolerances. However, the 2D and 3D models reviewed
above demonstrate that useful insights can be attained
from computational models. For specific chemical series,
local models could be tried to better predict P-glycoprotein
efflux.

PLASMA PROTEIN BINDING

The binding of drugs to plasma proteins has a significant
effect on pharmacokinetics and pharmacodynamics. The
biological effect of a drug is due to the free fraction. The
most abundant plasma proteins to which drugs can bind
are human serum albumin (HSA) and �1-acid glycoprotein.
The fraction of unbound drug, also called the free fraction,
directly affects Vd and thus half-life. The volume of distribu-
tion at a steady state (Vss) is related to the volume of plasma,
tissue, and fraction of the drug unbound in plasma and tis-
sue. The half-life (t1/2) of a drug is related to the volume of
distribution (Vd) and clearance (CL) by the equation t1/2 =
0.693 × Vd/CL.

The lipophilicity of molecules can strongly affect their
plasma protein binding. Van de Waterbeemd et al.65 showed
that percent plasma protein binding had similar, but off-
set, sigmoidal relationships to logD at pH 7.4 for acids,
bases, and neutral compounds. Molecules with logD � 3
were greater than 90% bound. Yamazaki and Kanaoka66

performed a more complete analysis of the relation-
ship between lipophilicity and protein binding for 302
drugs. They successfully used a simple nonlinear equation
to predict the percent protein bound for neutral/basic/
zwitterions using only logD at pH 7.4 (r 2 = 0.80, MAE =

10.4%). A similar attempt for acidic drugs gave a poorly
fitting model. When a simple pharmacophore was used
to classify acidic drugs, the protein binding of the acidic
drugs matching the pharmacophore could be fit using a
simple nonlinear model. Kratochwil et al.67 have reviewed
the effects of lipophilicity on protein binding and conclude
that for smaller data sets the correlation may depend on the
nature of the data sets.

The log of the primary binding affinities for HSA for a
set of 138 molecules was used to build a QSAR model for
protein binding.68 Topological pharmacophore descriptors
were subjected to dimensionality reduction and fit using
partial least squares. The model fit parameters were r 2 =
0.72, s = 0.62 and the experimental variability of the bind-
ing constants was estimated to be 0.54 log units. Validation
results gave error estimates on the order of s = 0.7–0.9. Inter-
estingly, for a subset of 76 molecules, measured logD values
had moderate to poor correlation with binding constants.

Leeson69 analyzed several large sets of protein bind-
ing data on GlaxoSmithKline internal compounds using
partial least squares and 30 descriptors related to ion-
ization, size, lipophilicity, and polarity. The percent pro-
tein bound values were converted to a pseudo-log equilib-
rium constant. For 1,081 compounds measured in rat, the
model performance was reasonable (r 2 = 0.44, rmse = 0.62)
with similar performance on test 347 test compounds. A
model based on human protein binding data for 686 com-
pounds had somewhat better results, r 2 = 0.56, rmse =
0.55. For these large data sets, protein binding increased
with increasing lipophilicity and acidity, while addition of
a basic group decreased binding, as did increasing a basic
pKa. Leeson comments that models with this level of pre-
dictive error can be used to rank compounds, because the
95% confidence limits for predictions of protein binding
less than 95% rule out the possibility of protein binding of
greater than 99%, which is usually the level of protein bind-
ing causing the greatest concern. A variety of other QSAR
type models for the prediction of plasma protein binding
have also been published recently, including neural net-
works/support vector machines,70 4D fingerprints,71 and
TOPS-MODE descriptors.72

A crystallographic study of drug binding to HSA pro-
vides a valuable resource for structure-based design efforts
to modify protein binding affinity of drug candidates. Ghu-
man et al.73 published 17 co-complexes of drugs and small
toxins with HSA. Both binding sites of HSA were occupied
by various compounds revealing specific binding interac-
tions. The binding pockets were determined to be flexible,
with distinct subspaces, and overlapped with binding sites
for fatty acids, the endogenous ligand.

Rodgers et al. proposed and tested the concept of correc-
tion libraries for QSAR models of plasma protein binding.74

The correction library is simply a list of prediction errors
for compounds previously modeled but that have not been
used to retrain the model. If the new compound is simi-
lar enough to training data as measured by Mahalanobis
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distance, three nearest neighbors are used to correct the
prediction. Improvements were statistically significant and
greater than achieved by simply retraining.

TISSUE DISTRIBUTION

Three recent articles have presented computational models
for the prediction of tissue distribution of drugs. Zhang and
Zhang75 modeled the distribution into brain, kidney, mus-
cle, lung, liver, heart, and fat of eighty diverse molecules.
A complex, nonlinear regression model was fit to a set of
physicochemical descriptors generated by the Hyperchem

software package. The model also incorporated known
weight fractions of lipid, protein, and water for each tissue
type. The model performance on the training set of sixty-
seven molecules for the prediction of the log partition coef-
ficient was r = 0.877 and s = 0.352, and on a test set of
thirteen molecules the model gave similar results, with r =
0.844 and s = 0.342.

Gleeson et al.76 reported the first purely computational
models for large data sets of volume of distribution at
steady state in rat and human. The rat data set con-
tained 2,086 in-house measurements for AstraZeneca com-
pounds and the human data set contained data from 199
marketed drugs. Individual models for each species were
built using Bayesian neural networks, classification and
regression trees, and partial least squares algorithms with
physicochemical descriptors. Best performance on the test
sets was given by a combined three-way model for rat,
rmse = 0.374 log units, and for human, rmse = 0.479 log
units. Lombardo et al.77 also developed a model of human
volume of distribution. Their model fit intravenous clini-
cal data reported for 384 drugs using a mixture linear dis-
criminant analysis/random forest model using thirty-one
descriptors. For the training data, the geometric-mean-
fold error was ∼2, and for a test set of twenty-three
proprietary compounds, the geometric-mean-fold-error
was 1.78.

CLEARANCE

Hirom78,79 demonstrated more than three decades ago that
the route of excretion of xenobiotics is dependent on MW by
testing up to seventy-five compounds in rats, guinea pigs,
and rabbits. Lower MW compounds (�350) were mainly
eliminated in the urine (�90%). As MW increased from
350 to 450, a sharp increase in the fraction of compound
eliminated in the bile occurred, and for MW � 450, com-
pounds were eliminated 50–100% in the bile in all three
species. Smith80 correlated the log of free metabolic and
renal clearance (ml/min/kg) with logD and found a simi-
lar relationship. Metabolic clearance increases with increas-
ing logD, while renal clearance decreases with increasing
logD.

Percent renal clearance was modeled for a set of 130
compounds from the literature using partial least squares

applied to 3D VolSurf or 2D Molconn-Z descriptors.81 The
model based on VolSurf descriptors gave the best predic-
tion quality: model r 2 = 0.844, training set s = 11%, test
set s = 13.4%. Yap et al.82 tested a variety of algorithms
and descriptors to develop a model for total clearance
using a large set of literature data on 503 drugs adminis-
tered intravenously to males. General regression neural net-
work and support vector regression algorithms performed
best, particularly when using the full set of 645 descriptors.
Average fold error was on the order of 1.6× for the best
models.

METABOLISM

Oxidative drug metabolism is extremely complex and pos-
sibly the most poorly understood ADME property. Rapid
metabolism is unacceptable for drug candidates, except for
drugs whose metabolite is the active moiety, because it
causes duration of action to be too short. Considerable work
has focused on the liver enzyme CYP3A4, which is respon-
sible for half the metabolic clearance of marketed drugs.
Recent approaches used to model and understand drug
metabolism include database matching, quantum mechan-
ics, QSAR, and structure-based analyses.

For a commercial database of known metabolic trans-
formations, Borodina et al.83 extracted all known sites of
aromatic hydroxylations. These observed transformations
were used to generate all possible transformations for
each molecule, giving an estimate of the probability that
each transformation would actually occur. The method
was 85% accurate in predicting site of aromatic hydroxy-
lation when tested against a second metabolism database
containing 1,552 molecules. Boyer et al.84 took a simi-
lar approach using reaction center fingerprints to esti-
mate the occurrence ratio of a particular metabolic trans-
formation. The method successfully predicted the three
most probable sites of metabolism in 87% of compounds
tested.

Quantum mechanical approaches have been success-
fully used to predict hydrogen abstraction potentials and
likely sites of metabolism of drug molecules.85–88 AM1,
Fukui functions, and density functional theory calcula-
tions could identify potential sites of metabolism. Activa-
tion energies for hydrogen abstraction were calculated by
Olsen et al.88 to be below 80 kJ/mol, suggesting most CH
groups can be metabolized; which particular one depends
on steric accessibility and intrinsic reactivities.

Shen et al.89 reported the use of a k-nearest-neighbor
QSAR model trained to predict the metabolic stability of 631
molecules in human hepatic S9 homogenate. The model
was accurate for ∼85% of molecules in both training and
test data sets. A GRIND QSAR model was shown to be
able to predict the stability of molecules incubated with
human CYP3A4 with 75–85% accuracy on test data sets.90 A
Bayesian regularized neural network using electrotopologi-
cal descriptors was used to predict the Km values of CYP3A4
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substrates.91 Lee et al. report a random forest model of
human liver microsomal stability (CLint,app) using 2D MOE
and E-state descriptors trained on a large data set that had
75% accuracy on a test set of 2,911 compounds.92 At Bayer,
a Gaussian process model has been trained to predict the
probability of stability of molecules in human, mouse, and
rat microsomes from internal Bayer data.93

Until recently, structure-based analyses of CYP450 meta-
bolizing enzymes were limited to homology model stud-
ies due to the lack of crystal structures of human
CYP450s.94–97 In the last few years, multiple crystal struc-
tures of human CYP4503A4 have been solved.98–100 Ekroos
and Sjoegren published several extremely interesting crys-
tal structures.100 They found that CYP3A4 is much more
flexible than previously reported and that the active site
can enlarge by greater than 80% on binding to ketocona-
zole, a potent CYP450 inhibitor. In fact, the crystal struc-
ture showed two molecules of ketoconazole were bound
within the active site. A CYP3A4-erythromycin complex
suggested multiple binding modes. These results suggest
further experimental studies will be needed to improve
modeling results for CYP3A4.

Cruciani et al.101 have developed the program MetaSite
for the prediction of the site of oxidative metabolism by
CYP450 enzymes. MetaSite uses GRID molecular interac-
tion fields to fingerprint both structures of CYP450s (from
homology models or crystal structures) and test substrates.
The fingerprints are generated from hydrophobic, hydro-
gen bond donor/acceptor, and charge GRID probes. The
accessibility of each reactive group to the heme is deter-
mined using the field measures from the probes, and quan-
tum and fragment recognition calculations are used to esti-
mate the reactivity of each atom. A final probability for each
site of metabolism is computed using both accessibility and
reactivity.

Zhou et al.102 showed that MetaSite was able to cor-
rectly predict the site(s) of metabolism 78% of the time
for 227 CYP3A4 substrates with 325 metabolic pathways.
For molecules with multiple sites of metabolism, the Meta-
Site model quality was evaluated using the three sites
wit the greatest probability of metabolism. In comparison,
the GLUE docking method in combination with a homol-
ogy model of CYP3A4 was 69% accurate. Kjellander et al.
also studied the GLUE docking method in comparison to
MetaSite.103 Caron et al.104 used MetaSite to analyze the
oxidative metabolism of seven statins and found Meta-
Site was 77% accurate. However, the 77% accuracy value
involved considering the top five sites of metabolism, not
the top three. The CYP2C9 metabolism of celecoxib and
analogs have been studied using MetaSite and docking
methods.105,106 The molecular alignment program ROCS

was used to align seventy CYP2C9 substrates with the
known CYP2C9 substrate flurbiprofen with good results:
thirty-nine of the first forty-four best scoring molecules had
alignments that agreed with the known experimental site of
metabolism.107

Sheridan et al. developed QSAR models to predict regio-
selectivity for CYP3A4, CYP2D6, and CYP2C9.108 Results
were comparable or superior to MetaSite but did depend on
the data set size. They noted that overall, the QSAR mod-
els and MetaSite are correct 70% of the time and more
work is needed. Docking plus an activation energy calcula-
tion compared favorably for CYP3A4 regioselectivity versus
MetaSite and Sheridan’s QSAR.109 Terfloth et al. conducted
a large comparison of multiple QSAR modeling algorithms
applied to a set of 379 drugs to predict which CYP450 iso-
form metabolized the drugs.110 All algorithms performed at
least reasonably well, with support vector machines giving
the best results. The significant differences in model per-
formance were caused by variable selection and how the
data set was partitioned into training and test sets. The
final model was 83% accurate on a test set of 233 com-
pounds.

CONCLUSION

Many advances have been made in computational ADME
modeling. For many ADME properties, models now exist
that provide reasonably good predictive quality and can
be deployed to aid medicinal chemists in drug discovery
projects.

The usefulness of computational ADME models depends
on many factors, including the quality and breadth of data
used to build them, how well the model approximates the
physiological or physicochemical mechanism of interest,
how the model is made available to chemists, and how
well the chemist understands and uses the model. Ideally,
ADME models are made available on the desktop, are easy
to use, and are fast enough to help a chemist to better
evaluate and prioritize a variety of molecular designs or
even libraries each day. ADME models can also play a cru-
cial role in helping the interpretation of experimental data
by directly highlighting structural features the model asso-
ciates with a particular ADME property, or at least allowing
a chemist to quickly sketch different analogs and remove
portions of a molecule to observe how the model’s pre-
dictions change. A number of companies are reporting
ADME/cheminformatics systems designed to aid in these
efforts.111–114

Two major issues for ADME modeling are data avail-
ability and optimization. The lack of larger data sets has
hampered development of ADME models and reduced
their potential quality; however, articles reviewed here show
that this situation is improving. More human and animal
ADME data would provide significant benefits. The fact
that many ADME properties interact means that we must
optimize a molecule’s ADME properties simultaneously or
much work will be wasted traversing chemical space fixing
one poor property but inadvertently causing a second to
worsen.115,117 This requires more work to develop systems
with scoring functions for molecule quality based on mod-
els for multiple ADME properties (e.g., Segall et al.)114
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Computer-aided drug design: a practical guide
to protein-structure-based modeling

Charles H. Reynolds

INTRODUCTION

The role of computation in drug discovery has grown
steadily since the late 1960s.1–3 In the early days empha-
sis was on statistical and extrathermodynamic approaches
aimed at quantifying the relationship of chemical structure
to biological properties.4–6 From these early efforts the field
has grown enormously as evidenced by the chapters in this
book. In addition, recent computational approaches place a
greater focus on the three-dimensional structure of the lig-
and and/or protein. Modeling has become a critical tool in
the drug discovery process.

The growth in protein-structure-based approaches has
mirrored the exponential growth in available protein struc-
tures, as evidenced by the number of structures deposited
in the Research Collaboratory for Structural Bioinformat-
ics (RCSB).7 Whereas in the late 1980s only a few protein
structures were available, we now have tens of thousands
across many classes of therapeutically relevant proteins.
This trend shows no sign of abating. To the contrary, new
target classes that have been resistant to structure deter-
mination are beginning to become available, including
G-protein-coupled receptors (GPCRs) and ion channels.8–13

This wealth of structures provides a good starting point for
modeling protein/ligand interactions, and the application
of computer models to identify improved ligands for these
targets (Figure 12.1).

CHALLENGES

There are many obstacles that stand in the way of success-
ful modeling of protein/ligand interactions. First is the high
degree of computational accuracy required to predict sig-
nificant changes in binding affinity. Ligand binding is an
equlibrium property that is related to free energy by the
relationship

�G = −RT ln K ,

where K is a binding measurement such as Kd or K i. The
logarithmic relationship means that very small changes in
free energy lead to large changes in affinity. For exam-
ple, a tenfold change in binding affinity results from only
a 1.4 kcal/mol difference in the binding free energy. As a

consequence meaningful affinity predictions require com-
puted free energies, or at least relative free energies, within
less than a kcal/mol. This is a daunting task, particu-
larly when one considers that the absolute energies that
go into calculating these differences are relatively huge.
For example, the total molecular mechanics energy for a
medium-sized protein ligand complex can be several thou-
sand kcal/mol. This would mean that a tenfold change
in potency represents a change of only 0.04% of the total
energy. This is analogous to weighing the ship’s captain by
measuring the difference in the ship’s weight when he is
aboard and then on the dock.14

Clearly one of the first challenges for calculating reliable
protein-ligand binding affinities is a high-quality molecu-
lar model. In most cases this means a classical force field
such as AMBER,15,16

CHARMM,17,18 or OPLS.19 In princi-
ple this model could also be a quantum method and, as
described in Chapter 8, progress is being made in this direc-
tion. This level of accuracy is a great challenge, and is rou-
tinely accomplished only with very high-level quantum cal-
culations for relatively small molecules.20,21 In the case of
proteins this problem is made even more difficult by the
complexity of the surrounding medium. Most biological
systems operate in an aqueous environment and the pro-
teins themselves are essentially polyelectrolytes with many
ionizable groups. The treatment of electrostatics in terms
of simple atomic point charges is one of the most signifi-
cant limitations of force field methods and is one of the rea-
sons quantum-based methods may hold so much promise
for the future.

A second overarching challenge for modeling protein-
ligand complexes is the issue of sampling. The number of
degrees of freedom in a large drug molecule can by itself be
great enough to provide a significant hurdle for sampling
all of the possible energetically accessible conformations.
Even a modest-sized protein has many times more rotatable
bonds. Because the number of conformations increases by
the relationship in Equation (12.1), the number of confor-
mations available for sampling undergoes a combinatorial
explosion:

Total confs.

= (Confs. per rotatable bond)(number of rotatable bonds) (12.1)
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Figure 12.1. Growth of total crystal structures in the RCSB PDB database
as of July 22, 2008 (www.rcsb.org).

Assuming only three conformations per rotatable bond,
even a ligand with only five rotatable bonds would have 243
possible conformations. This is a manageable number, but
the numbers increase rapidly going to 59,049 for ten bonds
and 3.5 ×109 for twenty rotatable bonds. Because even a
small protein would have hundreds of rotatable bonds the
magnitude of the problem is apparent.

The most common computational approaches for ad-
dressing this sampling problem are molecular dynamics22

and Monte Carlo23,24 simulations. But the cost of these
methods in terms of computer resources is very high. It
should also be pointed out that the benefit of either ap-
proach may be suspect unless the simulations are run long
enough to assure convergence, another factor that drives up
the computational cost. It is possible that inadequate sam-
pling may in some cases be worse than no sampling at all.
All of this means that it is important to carefully consider
strategies for dealing with conformational flexibility when
undertaking any modeling project.

ACCEPTING THE CHALLENGE

One could be forgiven for looking at the challenges out-
lined above and simply deciding that any efforts to model
protein-ligand binding interactions are doomed to failure.
Fortunately, this is not the case. Indeed the literature is full
of examples where modeling has been successfully applied
to the design of ligands and, ultimately, drugs. But it is
important to carefully design model systems to take as
much advantage as possible of cancellation in the errors
that exist. It is also true that the errors in computed geome-
tries are typically much less pronounced than energies.
This has been observed for many years with small-molecule
quantum calculations25,26 where the calculated geometries
of organic compounds tend to be very good even at rela-
tively low levels of theory. So one can be relatively more
confident in predicted structures and these structures are
of great practical value in drug discovery.

PROTEIN STRUCTURE

All protein crystal structures have errors of varying sever-
ity due to the inherent resolution of the structure (i.e., error

Table 12.1. Resolution of protein crystal structures

Resolution (Å) Structural features observable for a good data seta

5.5 Overall shape of the protein. Helices as rods.

3.5 Protein main chain (often some ambiguity).

3.0 Protein side chains partly resolved.

2.5 Side chains well resolved.

1.5 Heavy atoms well resolved.

a Data taken from Enzyme Structure and Mechanism, 2nd edition.27

in the diffraction data) and errors associated with fitting
a protein structure to that data. The latter model-building
step is subject to considerable trial and error and also relies,
in most cases, on relatively crude force fields. Thus it is
important to carefully prepare protein structures before
using them for any significant modeling. General guidelines
for preparing protein structures are outlined below. It is
also worth reminding medicinal chemists, who sometimes
do not know any better, that (1) crystal structures are not
handed down on stone tablets (they are models), (2) pro-
teins are flexible beasts while crystal structures are only a
single snapshot of the structure under some pretty extreme
conditions, and (3) the structures provide little information
with regard to many important protein properties that are
thermodynamic in nature. Simply having a picture of how a
ligand interacts with a protein says nothing about the ener-
getics of that interaction. A general guide to crystal struc-
ture resolution is provided in Table 12.1.27 Davis et al. have
published two excellent reviews28,29 that describe the issues
and limitations inherent in x-ray protein structures. These
reviews are highly recommended to any modeler or medici-
nal chemist who is involved in structure-based drug design.

For the modeler, there are a number of practical con-
cerns when working with a crystal structure, either from the
RCSB Protein Data Bank (PDB) or internal sources. First,
there may be missing residues or side chains. This is a com-
mon situation due to areas of the protein that are disordered
or poorly resolved for whatever reason. If these are remote
from the active site they may not be a problem. If near the
site of interest then one may need to attempt to fill in the
gaps.

Of course, the first step before any calculations can be
carried out is to correctly set the bond orders, charges, and
add hydrogens. Commercial modeling packages automate
most of this, although there may be a few decisions to make,
especially regarding the protonation states of titratable
residues. These decisions can have a significant effect on
the final results because charges fall off slowly with respect
to distance, at least if a constant dielectric is employed. In
some cases the protonation state of a given residue is a
significant scientific question in its own right such as the
catalytic aspartates in aspartyl proteases [e.g., renin, HIV-
protease, and beta-site APP cleaving enzyme (BACE)].30,31
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A great deal of experimental and computational effort has
been expended to try to determine the correct protonation
state for these residues.32–38

My experience suggests that many structures also con-
tain bad contacts and/or structural elements that are highly
strained. Structural problems are often most prevalent in
the bound ligand.39,40 Unfortunately this is precisely the
region of the protein that is of the greatest interest from a
modeling point of view. Many modeling studies have prob-
ably been done with the coordinates as they come from the
crystal structure, but it is generally a good idea to do at
least a small amount of geometry optimization to remedi-
ate the most serious structural problems. In most cases lim-
ited minimization will result in a protein structure that is
little changed in terms of the overall geometry, and even fit
to the x-ray data, but the overall strain and the most severe
geometric problems can be greatly reduced.

One of the final decisions is the following: water or no
water? For docking and many modeling tasks it is com-
mon to remove the water molecules from the protein. This
makes sense from the point of view of having an unbiased
structure for docking, for example. It is also simple – just
remove them all. However, there are circumstances where
waters do make critical contacts not only with the protein,
but in some cases also with the ligand. In such cases remov-
ing these critical waters is suspect. Leaving them all in can
also pose problems. For example, most docking programs
will not displace waters automatically, so any waters in the
protein are essentially treated as an unchangeable part of
the protein. Selective removal of waters is an intermediate
course. This makes sense when a few waters are seen con-
sistently across a number of crystal structures and/or where
the water is involved in a key mediating interaction between
protein and ligand. Of course this approach is not without
hazard because the choice of waters for inclusion can have
a big effect on the protein-binding site.

I have personally been bitten by this particular bug
in a study of the protonation state of BACE. In our first
publication31 we elected to include a key water in the active
site. Although this had no effect on our prediction that
the preferred overall protonation state of the two catalytic
asps in BACE was the −1 state (i.e., monoprotonated), it
did lead to a surprising difference in energy between two
specific states involving protonation of Asp32 or Asp228.
In retrospect, this significant asymmetry in the active site
appears to be due to this water that cooperates with Ser35
in stabilizing Asp32 when it is deprotonated. A later quan-
tum mechanics/molecular mechanics (QM/MM) structure
refinement study30 showed that the energy for protonation
of these aspartates were very nearly equivalent. It seems
likely that one of the primary reasons for this discrepancy
was the treatment of waters that were all included or all
replaced by a continuum model in the later QM/MM refine-
ment. This serves as a cautionary tale with respect to selec-
tive inclusion of waters in the active site. The protonation
state question also highlights one of the other potential

pitfalls in crystallography, namely that the crystallization
conditions and environment where the enzyme is actually
active may be quite different. In the case of BACE, many,
if not most, of the crystals have been grown34,41,42 at a pH
near 7 while the enzyme itself is most active under more
acidic conditions. This pH difference may be inconsequen-
tial, but that cannot be known for certain, particularly for a
property as sensitive to medium effects as the protonation
state.

In summary, it is important to carefully consider how
the protein structure has been prepared. Protein prepara-
tion can have a meaningful impact on the quality of any
subsequent modeling using that structure. This probably
becomes more critical as one asks more from the results,
such as computing relative binding affinities, or, as in the
case mentioned above, energetically sensitive properties
such as protonation states.

DOCKING AND SCORING

Docking and scoring is described in great detail in Chap-
ter 7, but it is worth reiterating some of the practical con-
clusions of the many validation studies that have been
done.43–47 First, in most drug discovery efforts docking is
used for one of two purposes. It may be used to determine
the most probable docking pose for a ligand in a protein-
binding site where a crystal structure is unavailable. Here
the goal is just to find the correct orientation and conforma-
tion of the ligand in the protein. The second use for dock-
ing is in a virtual screening mode. In this mode the specific
docking pose is not as important as ranking a set, usually
a very large set, of chemical structures in terms of their
propensity to bind to the target of interest. In the first mode
the correct structure is the key result. In the second mode,
enrichment of a screening set, in terms of potent ligands, is
the desired result.

The literature suggests that it is possible in many cases to
predict the best binding pose. At least the best binding pose
is often near the top of possibilities unless there is a signif-
icant change in the protein structure, such as an allosteric
modification or significant induced fit on the part of the
ligand. Apparently available scoring algorithms are able to
differentiate between good and bad binding poses for any
one specific ligand. It is also true that decent enrichment
factors often result from docking-based virtual screening,
albeit perhaps not as significant as we might hope in most
cases. It is very clear that scoring functions used in eval-
uating docking poses are exceedingly poor when asked to
rank compounds in terms of their affinities. Most eval-
uations show essentially no correlation between docking
score and affinity. Our experience at J&J has been consis-
tent with this result. Therefore, it is important to consider
docking-based virtual screening more as a filter than any
kind of ordered list. Docking does filter out compounds
that fit the active site poorly, but it does not differenti-
ate well between weak and potent binders. This fact is
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important to keep in mind when analyzing docking results,
and when presenting them to medicinal chemists.

One can speculate as to why scoring functions are better
in terms of predicting the ligand pose. One possibility is that
this is partly due to cancellation of errors because the lig-
and structure is a constant and the scoring function merely
compares different poses. In addition, although the classi-
cal electrostatics are probably a good guide to the orienta-
tion of a ligand in the active site, determining their energetic
contribution is a much more complex problem.

LIGAND BINDING AFFINITY

The Holy Grail, at least for protein-structure-based mod-
eling, is the accurate calculation of relative binding free
energies. This is at the heart of virtually all mechanis-
tic approaches to drug discovery, at least as it pertains to
potency. Unfortunately, the free energy of binding of a lig-
and to a protein is a very complex calculation,48 as men-
tioned already. Nevertheless there are a number of ap-
proaches that have been employed with some success.

The most theoretically rigorous, at least from a sampling
point of view, are the free-energy perturbation methods that
were described in Chapter 5. These methods have two sig-
nificant drawbacks that limit their impact in typical drug
discovery efforts. They are extremely expensive in terms
of computer resources. This becomes less of an issue with
each passing year as computers continue to become faster
and faster, but it still stretches the computer resources of
most companies. The other issue is that these calculations
work best for small perturbations and so are limited to very
conservative changes in the ligands of interest. In recent
work Jorgensen49 has proposed a paradigm for using small
structural changes and free-energy perturbation (FEP) to
guide the development of structure/activity relationships
(SAR).

There have been many approaches developed that,
unlike FEP, rely only on calculations for the “end points”
of ligand, protein, and complex. These methods might all
be described as linear interaction energy (LIE) models50–55

because they all rely on some fitted model based on com-
puted interaction energies,56 but people differ in their pre-
cise terminology. Some of the most well-known approaches
are the linear response method50,51 or the molecu-
lar mechanics-Poisson-Boltzman [(MM-PB) or molecular
mechanics/generalized Born model/solvent accessibility
(MM-GB/SA)] methods.57,58 Approaches that use interac-
tion energies for the reactants and products of ligand bind-
ing are much more commonly pursued in drug discovery
because of their more tenable computational cost. They
have also in many cases proven themselves to be quite
effective.

We have used simple linear interaction energy (LIE) cal-
culations as a tool for comparing the relative affinities of
prospective ligands. For example, we made great use of
this approach in our BACE program at J&J.56,59,60 BACE
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Figure 12.2. LIE model for BACE [Equation (12.2)].

is an aspartyl protease that plays a critical role in pro-
cessing the amyloid precursor protein (APP) that has been
implicated as a causative factor in Alzheimer’s disease. We,
and other groups, have shown that it is possible to con-
struct reasonable models for BACE using some variation of
the LIE approach. Our initial models were derived using
a series of peptidic inhibitors reported by Ghosh and his
collaborators.41 These structures and their corresponding
affinities are given in Table 12.2. Our procedure was to opti-
mize the ligand in the protein-binding site using OPLS and
GB/SA water. Either the protein can be held frozen or a sub-
set of residues near the active site can be allowed to relax.
The optimized ligand is then extracted from the protein and
allowed to minimize in GB/SA61 water. The van der Waals
and electrostatic interaction energies are then computed
and used to fit the LIE model.

We used OPLS and GB/SA calculations for the protein,
ligands, and protein-ligand complexes to fit the model for
BACE binding given in Equation (12.2):

�GBind = 0.2228∗�Uvdw + 0.0577∗�Uele + 12.7464. (12.2)

This model provides a root-mean-squared deviation
(rmsd) of 0.58 kcal/mol and an r 2 of 0.92 (Figure 12.2), and
it has shown itself to be reasonably predictive with respect
to compounds outside the training set.56,59,60

A similar model was derived for our internal series of
BACE inhibitors63 in spite of the fact that the structures are
very different. The initial low micromolar lead for our BACE
program (11) was identified in a high-throughput screen.
Unlike most of the previously reported ligands, it was a non-
peptidic inhibitor:

11

N

N

NH2

O

N

O
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Table 12.2. Experimental binding energies62

R1 R2 R3 Ki (nM) �G Expt (kcal/mol)

1

O

HN

H2NOC

BOC

Me Me 22423.0 −6.38

2

O

HN

H2NOC

BOC

Me CHMe2 3134.0 −7.55

3

O

HN

S

BOC

O

H3C

O
Me CHMe2 1129.0 −8.16

4

N
H

O

HNBOC

O

CONH2

Me Me 61.4 −9.90

5

N
H

O

HNBOC

O

CONH2

Me CHMe2 5.9 −11.30

6
N
H

O

HNBOC

O

SMe

Me CHMe2 50.1 −10.02

7
N
H

O

HNBOC

O

S

CH3

O
O

Me CHMe2 9.4 −11.02

8
O N

H

O

O

SMe

Me CHMe2 5808.0 −7.19

9

N
H

O

HN

O

SMe

BOC

Me CHMe2 2.5 −11.81

10

N
H

O

HN

O

S

BOC

O
O

CH3

Me CHMe2 8.0 −11.11
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Figure 12.3. Hydrogen bond network between heterocycle in 11 and
catalytic aspartates in BACE.

Compound 11 is a particularly interesting inhibitor of
BACE in that it forms a strong hydrogen-bond network with
the two catalytic aspartates via a unique protonated hetero-
cycle (Figure 12.3).

Compound 11 is also unusual with respect to its binding
mode. This ligand binds to BACE in a folded conformation
where the terminal cyclohexyl bends completely around to
bind in the S1 pocket (Figures 12.4 and Figure 12.5).

BACE presents a few particular problems with respect
to modeling. One is the previously mentioned issue of
the protonation state for the catalytic aspartates. Asp32
and Asp228 can adopt seven potential protonation states

Figure 12.4. Compound 11 bound to BACE. Aspartates 32 and 228 are
shown in red. The benzoyl substitutent binds under the flap that is
displaced relative to previous peptidic inhibitors.

Figure 12.5. Compound 11 in the BACE active site. Structure is rotated
90◦ relative to Figure 12.4 and the flap has been removed for clarity.
Notice the severe bend in the ligand.

(Figure 12.6). Modeling suggests that the most favor-
able states are the monoprotonated (charge = −1) states,
c-f,30,31,64 at least when the ligand contains a hydroxyl tran-
sition state mimic. The precise state might, of course, vary
depending on the structure of the ligand.

Another problem is that two of the ligands in the study
above are themselves potentially charged. Modeling sys-
tems where the formal charges differ is quite difficult. It is
one of the reasons that it is important to carefully select
charges for the protein. This can be illustrated very sim-
ply using OM00–3 from Table 12.2. There are two ioniz-
able fuctional groups in OM00–3 that have the potential to
form salt bridges with complementary residues in BACE.
Table 12.3 gives the �vdw and �coulombic interaction terms56

for OM00–3 with BACE for a variety of protonation states,
using OPLS and GB/SA water. This comparison highlights
the huge influence of these charged groups on the com-
puted interaction energies.

The electrostatic term becomes extremely negative for
the −2 state, even in the presence of the GB/SA solva-
tion model. The electrostatics also exert a significant influ-
ence on the �vdw term as van der Waals clashes are toler-
ated to make the coulombic term even more negative. This
effect can be modulated by including a counterion for the
unbound ligand. Indeed, inclusion of the counterion makes
the change in electrostatics positive. None of these states
are really satisfactory, but they illustrate how dominating

Table 12.3. Comparison of �vdw and �coul terms (kcal/mol) for
different charged treatments of OM00–3

Compound Charge Counter ion � vdw � coul

OM00-3 Neutral None −95.48 −58.23

OM00-3 −2 None −83.02 −333.61

OM00-3 −2 2 Na+ −94.23 20.58
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Figure 12.6. Protonation states of Asp32 and Asp228.

the electrostatics can be and why it is better to avoid mod-
eling systems where the overall charge varies.

One is on more solid ground when modeling structural
changes that are primarily mediated by changes in van der
Waals interactions or where the predicted structure itself is
more significant. An example of this is the modification of
our internal J&J lead compound for BACE to incorporate a
macrocycle.

BACE OPTIMIZATION

The HTS hit, 11,63 was modeled in the BACE active site
to identify potential modifications to improve potency. A
number of modifications were proposed based on this
modeling work, but only two are discussed here. First, the
hit structure binds exclusively on the N-terminal P (S) side
of the enzyme, including the binding pocket that is created

by the flap transition (Figure 12.5). The protein binding sites
(Sn) and corresponding binding residues (Pn) are defined
with respect to the scissile bond as suggested by Schecter
and Berger.27,65 Sites on the N-terminal side of the scissile
bond are denoted S1, S2, Sn as one moves away from the
catalytic site. Similarly the sites on the C-terminal side are
denoted as S ′

1, S ′
2, S ′

n:

H
N

N
H

H
N

N
H

O

OO

N
H

O

CO
N

O

P1

P2

Pn

S1

S2
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S1' Sn'

Pn'P1'

P2'

S2'
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b)

a)

Figure 12.7. S′
1 pocket is highlighted in blue (a). Structure 12 presents a

cyclohexyl in the hydrophobic S′
1 pocket (b).

Model structures showed that it was possible to substi-
tute 11 in such a way as to occupy the S′

1 pocket, an interac-
tion that was calculated to be energetically favorable (Fig-
ure 12.7). This led to the synthesis of analogs such as 12.
These analogs also have the potential to improve binding
by reducing the rotational barrier for adopting the bound
conformation.

Compound 12 is itself an interesting modeling prob-
lem. Substitution adjacent to the heterocylic core intro-
duces a stereocenter. One of the first questions with regard
to this compound was which isomer should be most
favorable. Both enantiomers of 12 were manually docked
into the BACE active site and subjected to simple min-
imization using the OPLS force field and GB/SA solva-
tion. This was done with the protein structure frozen and
by allowing the residues within 4Å of the ligand to relax.
The results were qualitatively the same. Both calculations

predicted that the S-enantiomer should be most energeti-
cally favorable by approximately 1.5 kcal/mol, a result that
was later confirmed experimentally. As was discussed pre-
viously, these simple interaction energy comparisons are
most likely to be successful for a homologous series where
one can expect a significant amount of cancellation of
errors. This represents the ideal case because the stereoiso-
mers are identical except for the configuration of the stere-
ocenter. Substitution with a cyclohexyl (12) produces a very
sizeable improvement in potency, with 12 being two orders
of magnitude more potent than 11 at ∼10 nM. This is con-
sistent with the modeling results (Figure 12.7) and repre-
sented a very large step in optimizing the affinity of this
series.

12

N

N

NH2

NO

O

The structure of 11 (Figure 12.5) also suggested another
avenue for optimization. This structure binds to the BACE
active site in a bent conformation. Another strategy for
improving affinity was to enforce this bend by introduc-
ing rigid structural elements that enforce this conforma-
tion for the ligand. One approach was just to incorpo-
rate the structural elements of 12 into a macrocycle by
connecting the phenoxy moiety back to the amide. The
chemists could have begun making macrocycles of vary-
ing sizes in an attempt to find the optimal macrocycle,
but instead we built and modeled a variety of macrocycles
in order to propose an optimal size before undertaking

Figure 12.8. Computed structure for a macrocycle bound to BACE.
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a large synthetic effort. Several combinations of spacer
methylenes on either side of the amide were identified that
fit the active site and appeared to be reasonably unstrained.
One of these (13) with two methylenes connecting the
amide to the phenoxy is shown in Figure 12.8 and was found
to be quite potent at ∼5 nM. This is an example where the
structure is probably more important than the computed
�E values. Just the ability to compute reasonably accurate
structures for the prototype macrocycles is enough to be
very useful in expediting the design of these compounds.

13

N

N

NH2

O

H2C

H2
C

N

CH2

CH2

O

LIGAND BINDING RULES OF THUMB

The binding free energy is usually dominated by hydropho-
bic effects. This is not well understood by most medic-
inal chemists, who often focus much more attention on
polar interactions, such as hydrogen bonds and salt bridges.
Although hydrogen bonds are important, the fact is that in
an aqueous environment they can be rather weak.66 This
may not be well appreciated by chemists who spent most
of their formative years working in organic solvents where
hydrogen bonds rein supreme. The issue is twofold: First
the strength of a hydrogen bond is greatly influenced by
the surrounding medium. In the gas phase (or a very non-
polar solvent) a typical hydrogen bond would be worth on
the order of 7 kcal/mol.67 This is huge in terms of binding
affinity. But in aqueous solution the same hydrogen bond
may be worth only a fraction of a kcal/mol. Second, while
hydrogen bonds in polar groups are typically very well sat-
isfied in water, they are sometimes only poorly satisfied
in the protein. This can mean that there is a significant
free-energy cost for removing the polar group from solu-
tion and placing it in the protein active site.68 The practi-
cal consequence of this is that one should be careful in drug

design about putting too much weight on hydrogen bonds
between the ligand and protein. In some cases they provide
little in terms of potency. However, it is generally always the
case that putting a polar functional group on a ligand in
a part of the protein that cannot satisfy the polar group is
very bad.

It is possible to make some general comments with
regard to the introduction of polar substituents into a lig-
and structure. Hydrogen bonds or salt bridges that are near
the solvent interface are much less favorable than the same
interactions in deep protein pockets. When the ligand can
satisfy the hydrogen bonding requirements of the protein in
a sterically constrained pocket, the interaction is favorable
because the polar partner in the protein is poorly solvated
and because there is an entropy gain from liberating one or
more tightly bound waters from the protein. As mentioned
above, any substitution of the ligand that forces a polar
group into a hydrophobic pocket in the protein is very detri-
mental to binding. Thus, the polar groups sometimes have
more influence on selectivity (i.e., only certain enzymes or
receptors have complementary polar regions) than overall
potency. This is also why the most certain way to increase
affinity is usually to add grease – a well-worn medicinal
chemistry strategy and the primary reason for guidelines
such as Lipinski’s rules. Finally, in my view, finding the
proper balance between polar groups in the protein versus
water is part of the reason computing binding affinities is so
difficult in the first place. It may be a particular problem for
most scoring functions used in docking since polar interac-
tions between the protein and ligand probably play a very
major role in assessing potential docked poses but are less
informative with regard to affinity. All of this is sometimes
summarized in the rule: hydrophobic interactions provide
potency; polar interactions provide specificity.

BEYOND POTENCY

Computational modeling is not confined to improving
potency. It has become clear in recent years that most drug
discovery organizations have become very adept at opti-
mizing ligand potency. But that is not enough for a drug
candidate. To have a chance at making its way to the mar-
ket a drug candidate must also have good bioavailabil-
ity, favorable pharmacokinetic properties, and, of course,
very low toxicity or off-target activity. Structure-based drug
design can play a significant role in these areas as well.
Access to a crystal structure and computational modeling
can allow us to design ligands with improved physical prop-
erties that do not destroy binding. For example, one might
add a metabolic handle to a molecule in a region where it
might actually contribute favorably to binding or add a sol-
ubilizing group where it either interacts with solvent or sat-
isfies a key polar interaction in the protein. An example of
this at J&J involves our efforts to improve the solubility of
a BACE lead series (e.g., 12). In this case we observed a Lys
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a)

b)

Figure 12.9. S1 region showing interaction between the tetrahydrofuran
ether oxygen and Lys224 with (a) and without (b) the molecular surface
displayed.

in the otherwise mostly hydrophobic S′
1 pocket that might

interact with the 4-position in a series of potent cyclohexyl-
susbstituted analogs. Modification of this ring to include 4-
hydroxyl or replacing it by the tetrahydropyranyl (14) ana-
log led to structures that were significantly more soluble
and maintained potency because of the favorable interac-
tion between the ether oxygen and positively charged Lys
(Figure 12.9). Again the goal of identifying favorable inter-
actions such as these is not always so much to improve
potency but to improve physical properties such as solu-
bility without reducing potency. As discussed earlier it is
often difficult to assess how introduction of a favorable elec-
trostatic interaction between the ligand and protein will
affect potency due to all the confounding factors (desolva-
tion penalty, etc.). But if we do introduce polar groups into a
ligand structure for other reasons we must be sure they are

accommodated in the protein-ligand complex or there will
almost surely be a severe loss of activity.

14

N

N

NH2

NO

O

O

In this case the tetrahydropyran oxygen is well accom-
modated and preserves potency (K i = 6 nM). Ethers can be
particularly useful in this context because they can form a
favorable polar or hydrogen bonding interaction with the
protein69,70 and are not as difficult to desolvate as other
polar groups such as acids or alcohols. This simple substitu-
tion has a remarkable impact on solubility with the result-
ing compound (14) being orders of magnitude more soluble
(Table 12.4).

hERG modeling

It is also possible to employ structural models to under-
stand and mitigate toxicity. An example of this at J&J is
the hERG channel. The human ether-à-go-go related gene
(hERG) controls repolarization of the cardiac action poten-
tial and therefore proper cardiac function. Impairment of
this repolarization process is a cause of long QT syndrome
and in some cases severe cardiac arrhythmia. Many drugs
are known to have affinity for this potassium channel, a sit-
uation that has serious implications for cardiac safety.71,72

We developed a multicomponent homology model73 for
the hERG channel that allows us to evaluate ligands with
respect to their propensity to bind and, even more impor-
tantly, predict a possible binding mode. This predicted
binding mode can be used to suggest structural changes
that might reduce hERG binding.

It is difficult to determine the structure of the hERG
channel experimentally because it is a membrane-bound
protein. Membrane-bound proteins are difficult targets
for crystallography because they are typically difficult to
express in large quantity and do not readily crystallize out-
side the membrane. There have been a few successes in
this area. The first, and perhaps best known, is the bovine
rhodopsin GPCR structure.11 More recently a �-adrenergic
GPCR structure has also been solved.8,12 Perhaps more rel-
evant to hERG, a series of bacterial ion channel structures
have also been solved through heroic means.9,10,13 These
ion channel structures provide a possible template for con-
struction of a homology model for hERG. The first effort
to build a homology model was reported by Culberson
and Sanguinetti.74 Since that time most modeling efforts
relative to hERG have focused on development of either
quantitative structure/activity relationship (QSAR) models
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Table 12.4. Measured solubility of BACE ligands. Potencies for 12 and 14 are essentially
equivalent at 10 and 6 nM, respectively

Solubility mg/ml

Compound Structure pH = 2 pH = 7.4

12 N

N

NH2

NO

O

0.008 0.01

14 N

N

NH2

NO

O

O

0.91 0.44

114× 44×

or pharmacophore models for the ion channel. Although
these may have some utility in drug discovery they are both
relatively weak approaches for understanding how hERG
activity might be mitigated in a particular series of inter-
est. We reexamined the issue of a homology model but with
one difference: Given the known flexibility of the channel,
both open and closed structures of the bacterial ion chan-
nels have been observed experimentally, and we decided
to include this flexibility explicitly in our model. We did
this through the simple expedient of constructing multiple
models where the channel is in different states with respect
to channel opening. It has been thought that part of the rea-
son hERG is so promiscuous is the fact that it can accom-
modate ligands of different shapes and sizes as the chan-
nel opens and closes. The first step is to align the hERG
sequence with one or more of the available bacterial ion
channel sequences (Figure 12.10). The homology in the fil-
ter region is very high and provides considerable insight
into the alignment. There are also a few key residues in the
S6 domain that are conserved. One residue of note is the
conserved Gly in the S6 domain. Examination of homol-
ogy models constructed from the closed KcsA13 and open
MthK 9,10 structures shows that the channel can be con-
verted from open to closed by rotation of this hinge Gly.

To obtain potential intermediate states for the hERG
channel, the conformation of the hinge Gly was rotated
to mimic the open MthK channel. This structure was then

                                         < Filter ><                         S6 helix >

hERG: ...YFTFSSLTSVGFGNVSPNTNSEKIFSICVMLIGSLMYASIFGNVSAII...
KcsA: ...WWSVETATTVGYGDLYPVTLWGRCVAVVVMVAGITSFGLVTAALATWF...

Figure 12.10. Sequence alignment.

Figure 12.11. Rotation of S6 about the glycine hinge. The closed KcsA
structure is shown in red, the partially open structure (10◦) in yellow, and
the open structure (19◦) in green.

rotated in small increments to close the channel until a
structure more similar to KcsA (closed) was obtained (Fig-
ure 12.11). At each 1◦ increment molecular dynamics simu-
lations were used to relax the side chains. The protocol at
each increment was 0.4 ps of heating followed by 5 ps of
equilibration using the CHARMM force field.17,18 Two states
were selected for study: the 10◦ partially open structure and
the 19◦ fully open structure.

These two states were then evaluated using a series
of compounds with known hERG affinities from the
literature.75 In each case the ligand was docked to both

states using Glide and then submitted for an
LIE calculation of the �Evdw and �Eelec values
using OPLS and GB/SA water. Our first effort
was to see if either state would provide a rea-
sonable model for hERG activity. The com-
pounds evaluated are listed in Table 12.5.
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Table 12.5. Compounds and their computed and
observed pIC50 for hERG binding

Compound pIC50 observed pIC50 computed � pIC50

Open state

Amitriptyline 5.00 4.59 0.41

Astemizole 9.04 8.10 0.94

Azimilde 6.25 6.06 0.19

Bepridil 6.26 5.99 0.27

Diltiazem 4.76 5.80 −1.04

Dolasetron 5.22 4.80 0.42

Domperidone 6.79 7.06 −0.27

Droperidol 7.49 6.67 0.82

Fexofenadine 4.67 5.58 −0.91

Gatifloxacin 3.89 4.21 −0.32

Grepafloxacin 4.11 4.29 −0.18

Halofantrine 6.70 6.89 −0.19

Haloperidol 7.55 5.05 2.50a

Mibefradil 5.84 6.68 −0.84

Moxifloxacin 3.93 5.04 −1.11

Norastemizole 7.55 4.65 2.90a

Pimozide 7.74 6.29 1.45a

Risperidone 6.79 6.77 0.02

Sertindole 7.85 5.15 2.70a

Sparfloxacin 4.58 4.82 −0.24

Verapamil 6.84 6.64 0.20

Partially open state

Chlorpromazine 5.83 5.75 0.08

Cisapride 8.19 7.36 0.83

Clozapine 6.72 5.47 1.25a

Cocaine 5.24 5.14 0.10

Granisetron 5.42 6.03 −0.61

Imipramine 5.47 5.06 0.41

Mizolastine 6.45 6.90 −0.45

Perhexiline 5.11 5.33 −0.22

Terfenadine 6.89 7.06 −0.17

Thioridazine 7.45 7.10 0.35

Ziprasidone 6.82 5.98 0.84

a Omitted from final model.
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Figure 12.12. Plot of LIE model against experimental pIC50.

Initial results were not very promising. The best LIE model
for the partially open state is given in Figure 12.12. The cor-
relation is poor with an r2 of 0.24, as was the model for the
open state.

As a next step, the compounds were partitioned between
the two homology models. Each compound was docked
in each state and the interaction energy was computed as
above. But the compounds were then partitioned into two
sets: set 1 that gave the most negative interaction energy
with the open model and set 2 that gave the most negative
interaction energy with the partially open model. We then
constructed two separate models for these two sets of com-
pounds. These models were much improved, as can be seen
in Figures 12.13 and 12.14.

Interestingly, the two models also had essentially the
same coefficients for the van der Waals and electrostatics
terms. This allowed us to fit a single LIE equation using
the interaction energy terms for each compound that arise
from the hERG state with the most negative interaction
energy. This model is given in Equation (12.3) and plotted in
Figure 12.15:

pIC50(Combined) = −0.163(�Evdw) + 0.0009(�Eele). (12.3)
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Figure 12.13. Open structure.



193 Computer-aided drug design: a practical guide to protein-structure-based modeling

3.5 4.5 5.5 6.5 7.5 8.5 9.5

pIC50

3.5

4.5

5.5

6.5

7.5

8.5

9.5
P

re
d

ic
te

d
 p

IC
50

Figure 12.14. Partially open model.

There are five structures that give a very poor fit between
computed and experimental IC50 values. It is not surprising
that some structures would not fit the model. This could be
due to many factors given the complexity of the system and
the computational procedure. A problem with docking or
the LIE calculations could lead to large errors. It is also pos-
sible that these structures bind in an alternative location or
perhaps yet another intermediate state of the pore.

The real strength of this approach over previous QSAR
and pharmacophore approaches is not the accuracy of the
predicted affinities but the fact that we also get hypotheti-
cal binding modes. This is very useful if the goal is to mit-
igate hERG binding in a series of interest. This approach
has been used with some success within J&J, particularly
for an opioid target that was plagued with significant hERG
liability. Structural changes suggested by the models were
critical to efforts that eventually led to a clinical candidate.
An example of the kind of docked structure that results
from this model is cisapride in the partially open state
(Figure 12.16).
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Figure 12.15. Plot of combined model. Triangles and circles represent
open and partially open states, respectively.

Figure 12.16. Cisapride docked into the partially open state (10◦).

CONCLUSION

There have been significant advances in recent years in the
application of modeling techniques to the discovery of new
drug candidates. In particular, our ability to model protein-
ligand interactions has improved greatly with access to
more structures, improvements in computational meth-
ods, and access to ever faster computers. Moreover, mod-
eling is not just a matter of optimizing potency, it is being
used increasingly to answer other questions, such as how
to improve physical properties and reduce the potential for
toxicity. Molecular modeling has become an indispensable
tool for drug discovery.
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Structure-based drug design case study: p38

Arthur M. Doweyko

INTRODUCTION

The overproduction of cytokines has been implicated in a
wide variety of inflammatory diseases such as rheumatoid
arthritis, inflammatory bowel disease, psoriasis, multiple
sclerosis, osteoporosis, Alzheimer’s disease, and congestive
heart failure. The ability of p38 mitogen-activated protein
kinase (p38 MAPK) to regulate the release and activity
of multiple pro-inflammatory cytokines has attracted the
interest of numerous pharmaceutical companies and inde-
pendent researchers during the past decade or so. Since
its initial discovery in 1994 as a potential molecular tar-
get for a novel class of cytokine suppressive inhibitors (SB-
203580),1 more than 150 patent applications from at least
thirty pharmaceutical companies have been published, all
claiming novel p38 inhibitors. Four distinct isoforms of p38
MAPK are known: p38� and p38� are widely expressed in
eukaryotic cells, including endothelial and inflammatory
cells; p38� is found in skeletal muscle; and p38� is pre-
dominantly found in the small intestine, kidneys, and lung
tissue.2,3 Of these four isoforms, p38� has been the most
studied and is believed to be the most physiologically rele-
vant. Numerous reviews have been published that focus on
both the biology4–7 and chemistry of p38 inhibitors.8–17 The
focus of this chapter is an illustration of p38 inhibitor design
guided by structural information obtained both from mod-
eling and actual x-ray crystallographic data. Structure refer-
ences with a “.pdb” suffix refer to those obtained from the
Research Collaboratory for Structural Bioinformatics.18

TRIAZINES AND PYRIMIDINES

We begin with a collaborative venture by Bristol-Myers
Squibb and Pharmacopeia aimed at the development of
a novel series of trisubstituted triazines. High-throughput
screening applied to a collection of 2.1 million com-
pounds derived from a combinatorial library based on
the template shown in Scheme 13.1 yielded the 1,3,5-
triaminotriazine aniline amide PS200981, having a p38�

IC50 of 1 �M.19 Further analyses identified PS166276 with
a p38� IC50 of 28 nM having 10× less cytotoxity and
superior inhibition of lipopolysaccharide-(LPS) induced
TNF� production in THP-1 monocytes (170 nM). These

inhibitors were found to compete for the ATP binding
site in p38�. Additionally, statistical analysis of the com-
binatorial data indicated a significant contribution to
activity in this series correlated to the presence of the
4-methyl-3-benzamido aniline moiety. When the x-ray
crystal structure of the protein-inhibitor complex for a
member of this triaminotriazine aniline amide series was
determined, the structure/activity relationship (SAR) for
the series was quickly rationalized. Specifically, N-methoxy-
4-methyl-3-(4-(methyl(neopentyl)amino)-6-(4-methyl-1,4-
diazepan-1-yl)-1,3,5-triazin-2-ylamino)benzamide (1) was
cocrystallized with unactivated p38� protein (Figure 13.1),
confirming that the series binds to the ATP pocket.20 In a
manner similar to ATP, 1 binds to the hinge region of p38�

(characterized by residues 106–110), forming an anchoring
H-bond interaction with Met109. Unlike ATP, 1 makes use
of an intervening water molecule to form the interaction
between Met109 backbone NH and the triazine N3. Also
characteristic of other kinases is the presence of a deep
hydrophobic pocket near the so-called gatekeeper residue
(Thr106, not shown) which provides for one of the more
interesting features of kinase inhibitor design in that it rep-
resents a space not occupied by ATP and, thus, of potential
value in the search for inhibitor selectivity against off-target
kinases. In the present case, the 4-methyl-3-benzamido
aniline moiety occupies that space. Further interactions in
the binding site include H-bonds among Lys53, Glu71, and
amido NH, between Asp168 backbone NH and amido C=O,
and between the protonated diazepan nitrogen and Asp168
carboxylate. Interestingly, the distance between triazine N1
and Lys53 is suggestive of an intervening water molecule;
however, none was evident from the crystallography. The
potential for H-bonding between Lys53 and an acceptor
atom in other ligands was eventually realized with subse-
quent inhibitors. Synthetic efforts targeted variation at all
three positions (2,4,6) of the triazine core, and the emer-
gent SAR dovetailed nicely with the crystallographically
determined binding mode. For example, the methylhydrox-
amate ester was found to have superior binding affinity
compared to amides in general, a consequence of both its
small size (complementing the relatively narrow pocket
at that position) and its electron-deficient NH proton
H-bond donor. The use of branched alkyl amines at the
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Scheme 13.1. Progression of synthetic efforts that culminated in the design and synthesis of trisubstituted tri-
azines with significant p38� inhibition. Combinatorial libraries of the type shown led to the identification of
triazines PS200981 and PS166276 (Pharmacopeia) having the unique 4-methyl-3-benzamido aniline head group.
Subsequent SAR work (BMS) led to triazines exemplified by 1, with superior p38� inhibition and in vitro activity.

4-position of the triazine was found to yield a number of
active congeners, locating an angular lipophilic element
of the inhibitor along a secondary hydrophobic pocket in
p38�. This pocket is created by the lower rim of the P-loop

Figure 13.1. Major interactions observed in the complex between p38�
and triazine 1. H-bonds include Met109 backbone NH/H2O/triazine N3,
Glu71/hydroxamate NH, Asp168/protonated diazapan, and backbone
Asp168 NH/Glu71/hydroxamate O. Hydrophobic interactions include deep
pocket/4-methyl-3-benzamido aniline and neopentylmethylamino/hinge
hydrophobic pocket. Arrow indicates a potential through water H-bonding
motif between triazine N3 and Lys53 not observed.

closing down on the binding site near Ala111. For the sake
of consistency and facile orientation, the coloring scheme
(yellow P-loop and Ala111) is maintained in subsequent
figures.

The through-water H-bond to Met109 observed for 1
represented an intriguing observation that led to a con-
sideration for its replacement by an H-bond acceptor
built onto an inhibitor core. Such replacements have been
reported as successful in using a cyano moiety to pro-
vide the H-bonding acceptor and span the necessary dis-
tance with inhibitors of scytalone dehydratase21 and epider-
mal growth factor receptor kinase.22 In the present case, a
pyrimidine core was substituted for the triazine of 1 and a
cyano group installed at the 5-position leading to the p38�

active pyrimidine series illustrated in Scheme 13.2.23 The
5-position was suggested by modeling to have an optimal
trajectory, which was confirmed by the x-ray crystal struc-
ture of the p38� complex with 2 (Figure 13.2). The posi-
tion of the cyano N was found almost precisely where the
displaced water O had resided in the 1 complex. The two
hydrophobic pockets (deep and hinge) are occupied in a
similar manner, with the additional benefit of a likely H-
bond between aniline NH and Thr106. In addition to the
H-bonding array between ligand amide and Lys53, Glu71,
and Asp168, a water molecule is clearly visible between
pyrimidine N1, Lys53 and Asp168. The strong p38� bind-
ing affinity (IC50 0.41 nM) and hPBMC TNF� inhibition
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Scheme 13.2. The x-ray crystal structure of 1 revealed the presence of a key water molecule providing an H-
bonding interaction between backbone NH at Met109 and triazine N3. The pryimidine scaffold (upper right) provided
a means to replace that water molecule with a 5-cyano. Further synthesis identified 2 as a potent p38� inhibitor.
The inset illustrates the major hydrophobic and H-bonding interactions observed at the 4-methyl-3-benzamido
aniline head group and points to a possible water-mediated H-bonding interaction between triazine N1 and Lys53
(not observed).

Figure 13.2. The complex between 2 and p38� confirms that the 5-
cyano group that makes a key H-bonding interaction between inhibitor
and p38� is located in the same position as the water molecule in 1. A
water molecule was observed in an H-bonding position among pyridyl
N1, Asp168, and Lys53, while backbone NH at Asp168 and Glu71 anchor
the pendant amide.

(IC50 8.7 nM) is consistent with the number of strong inter-
actions observed in the p38� ATP binding site, despite
the absence of a substituent at the 2-position (6-position
in the triazine). As the overall binding affinity for either
the triazines or the pyrimidines is significantly affected by
the combination and type of substituents it is difficult to
directly assess the binding contribution due to a specific
substituent. However, in this series, the best combinations
included an amine at the 2-position and a branched alkyl-
amine at the 4-position. The ultimate choice of best amine
relies not only on observed p38� binding affinity but on
cytotoxicity screens and cellular activity.

FUSED HETEROCYLICS

A novel structural class of p38� MAP kinase inhibitors
was developed as a result of the high-throughput screen-
ing (HTS) hit, pyrrolo[2,1-f ][1,2,4]triazine oxindoles, shown
in Scheme 13.3, which exhibited p38� IC50 values in the
60- to 80-nM range.24 Substituted phenylaminopyrrolo[2,
1-f ][1,2,4]triazines had been used previously as a template
for kinase inhibitor design,25 and it was envisioned that
the incorporation of a 4-methyl-3-benzamido aniline (as
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Scheme 13.3. High-throughput screening efforts led to the identification of compounds containing the triazine
oxindole core pictured above. Incorporation of the 4-methyl-3-benzamido aniline head group led to a series of
analogs with variations at both ends of this chemotype, namely the use of amides, reverse amides, carbamates,
and hydroxamate esters. Two examples for which x-ray structures with p38� were obtained were 3 and 4.

Figure 13.3. The x-ray crystal structure of the p38� complex with 4
reveals Met109 NH H-bonding to the carboxamide O and the pres-
ence of a water molecule engaged in H-bonding between pyrrolotri-
azine N3, Asp168, and Lys53. The deep pocket is occupied by the 4-
methyl-3-benzamido aniline head group while the (S)-�-methylbenzyl
group is located in a hydrophobic channel between P-loop and Ala111
(2RG6.pdb). [Source: H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland,
T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne. The Protein Data Bank
Nucleic Acids Research, 28, pp. 235–242 (2000); see also www.pdb.
org]

employed in 1 and 2) together with this novel core would
provide an alternative class of p38� inhibitors. A number
of analogs were generated with variation at the ester to
increase metabolic stability. These analogs included the use
of amides, reverse amides, and carbamates at the ester posi-
tion as well as variations at the 4-methyl-3-benzamido ani-
line (amides, reverse amides, carbamates, and hydroxam-
ate esters). The series exhibited potent p38� inhibition (IC50

1–680 nM) and submicromolar cell activity (LPS/TNF�).
The question of binding mode arose early in the synthetic
effort and was answered with x-ray crystal structures of
the p38� complexes of 3 and 4, having p38� IC50 values of
3.1 and 2.2 nM, respectively. The crystal structure of 4 is
shown in Figure 13.3. Despite the distinct possibility that
Met109 NH could H-bond with N1 of the pyrrolotriazine
core, the x-ray data confirmed that this key H-bonding
interaction was occurring with the pendant amide carbonyl
O. This observation was consistent with the emerging SAR
as broader types of substitutions were tolerated at the C6
position, presumably reflecting their trajectories along the
hinge region and out into solvent. Once again, as found
for 2, a water molecule was found in an H-bonding com-
plex between the N3 of the pyrrolotriazine core, Lys53,
and Asp168. The hydroxamate methyl ester was locked in
by H-bonding interactions with backbone Asp168 NH and
Glu71. The deep hydrophobic pocket was occupied by the
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Scheme 13.4. The structures of the Boehringer Ingelheim “allosteric” inhibitors (BI urea-pyrazole and BIRB-796)
are shown at top along with an indication of BIRB-796 interactions with p38�. The DFG-out conformation of p38�
refers to the displacement of several residues along the activation loop (Asp168-Phe169-Gly170) providing for a
hydrophobic pocket as an extension of the ATP binding site. The BMS pyrrolotriazines were further developed to
include a structure (3-morpholinobenzamide, 5) that was found to occupy the same DFG-out pocket.

4-methyl-3-benzamido aniline while the ethyl of 3 (not
shown) and the (S)-�-methylbenzyl of 4 rested in the outer
hinge pocket.

ACCESSING THE DFG-OUT BINDING POCKET

In 2002 researchers at Boehringer Ingelheim reported a lim-
ited set of inhibitors that used a novel p38 MAP kinase
allosteric binding site.26 The urea-pyrazole and the more
elaborate BIRB-796 are illustrated in Scheme 13.4. The x-
ray crystal structure for BIRB-796 (1KV2.pdb) is shown
in Figure 13.4. Although part of the inhibitor is located
in the ATP-binding site and H-bonds with Met109, the
opposite end locates itself in a pocket created by the dis-
placement of part of the activation loop, namely Asp168-
Phe169-Gly170 (or DFG). This relocation of the DFG loop
(sometimes referred to as DFG-out) vacates a hydrophobic
pocket formerly occupied by Phe169. The DFG-out config-
uration of p38 results in an extended ATP-binding site. Its

reference as an allosteric site may be somewhat mislead-
ing, as the inhibitory effect of binding a small molecule to
Phe169 site is not allosteric in the classical sense. When
a molecule binds to this newly formed site located adja-
cent to the ATP binding pocket, it directly interferes with
ATP binding by providing a steric block. Normally, allosteric
interactions are relegated to those requiring indirect com-
munication between isolated sites. The remaining interac-
tions observed in the x-ray structure for BIRB-796 entail
those that have been seen before, namely hinge region
Met109 H-bonding to pendant morpholino O and an H-
bonding matrix among urea, Glu71, and Asp168 back-
bone NH.

Accessing the DFG-out conformation of p38 was accom-
plished through an extension of the pyrrolotriazines exem-
plified by 3 and 4. It was found that the installation
of larger amide groups off the 4-methyl-3-benzamido
aniline head group led to congeners with potent p38�

inhibition (Scheme 13.4). For example, the use of a
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Figure 13.4. (Top left) The BIRB-796 x-ray structure in p38� illustrates the DFG-out motif, wherein a t-butyl group
occupies the Phe169 pocket while the pendant morpholino O H-bonds to backbone NH at Met109 (1KV2.pdb). (Top
right) Pyrrolotriazine 5 occupies the same Phe169 pocket while the displaced activation loop adopts a different
pose with Leu171 backbone NH engaged in an H-bond to pyrrolotriazine N1 (3BV2.pdb). (Center) A comparison
of overall shape between BIRB-796 and 5 illustrating similar occupation of the deep hydrophobic and DFG-out
pockets.

3-morpholinobenzamide in combination with a C6-(S)-�-
methylbenzylamide (5) exhibited a p38� Ki of 0.44 nM and
a LPS/TNF� IC50 of 18 nM.27 The x-ray crystal structure
of the p38� complex of 5 confirmed the DFG-out config-
uration (Figure 13.4). The binding mode of 5 is similar to
that of 4 in that the H-bonding patterns to Met109, Glu71,
and backbone NH at Asp168 are conserved. The notable
distinction here is that the pendant morpholinobenzamide
group is found deep within the hydrophobic Phe169 pocket.
In addition, part of the activation loop has relocated itself
along the outer rim of the ATP-binding site so as to form
a seal, as evidenced by the H-bond between pyrrolotri-
azine N1 and backbone NH at Leu171. This feature is dis-
tinct from that reported for BIRB-796. A further comparison
between BIRB-796 and 5 is shown in Figure 13.4, wherein
the molecular volume overlap between the two inhibitors is
highlighted. Although BIRB-796 does not make use of the
hinge hydrophobic pocket, both inhibitors occupy the deep
hydrophobic pocket and the Phe169 pocket in similar ways.
It is clear that relatively large inhibitors can be accommo-
dated by the DFG-out version of p38�.

PYRAZOLOPYRIMIDINES

A further elaboration of the pyrimidine chemotype exem-
plified by 2 led to the discovery of the pyrazolopyrimidine

core (Scheme 13.5). The presumption was that presenta-
tion of an H-bond acceptor at roughly the same location
and trajectory as the cyano group in 2 could lead to a
novel series of inhibitors that retain the Met109 NH inter-
action thought to be a key H-bonding interaction for nearly
all kinase inhibitors. This was achieved by conceptually
cyclizing the 5-cyano to the 6-aminoalkyl function, yield-
ing a pyrazolopyrimidine core, which was further elabo-
rated both at the N1 and the 4-methyl-3-benzamido ani-
line head group to more fully develop an SAR.28 The x-ray
crystal structure of the unphosphorylated p38� complex
of 6, shown in Figure 13.5, confirms that the N2 accep-
tor in the pyrazolopyrimidine core forms an H-bond with
Met109 and the pendant methyl amide forms the usual H-
bonding complex with Glu71 and Asp168. Additionally, the
N1-phenyl is located along the hinge region hydrophobic
pocket. Although 6 exhibited a good inhibition profile (p38�

IC50 14 nM, LPS/TNF� IC50 513 nM), further SAR explo-
ration identified the 1,2-oxazolamide (same as in 2) as supe-
rior (p38� IC50 5 nM, LPS/TNF� IC50 6 nM).

THIAZOLES

The discovery of an active thiazole central core repre-
sents an unobvious elaboration of the pyrrolotriazine motif.
Focused deck screening identified a C2-alkylaminothiazole
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Scheme 13.5. The conceptual “cyclization” of the 5-cyanopyrimidine core led to the synthesis of the pyrazolopy-
rimidine scaffold, capable of a similar H-bonding trajectory to backbone NH at Met109. An x-ray structure of the
p38� complex of 6 confirmed the presence of this key H-bonding interaction.

with moderate p38 activity. This observation suggested
that replacement of the triazinyl-aniline link with a car-
boxanilide may be a way to retain possible “backside” H-
bonding through water or directly to Lys53, substituting the
carboxanilide O for the triazinyl N3. In addition, the fused
5-membered pyrrolo ring could be replaced with a thia-
zole containing a potential H-bond acceptor N. These two
concepts were embodied in the conceptual transformation

Figure 13.5. The x-ray structure of the p38� complex of pyrazolopyrimi-
dine, 6, illustrates the successful replacement of the 5-cyano group in 2
with the pyrazolyl N2. (3CG2.pdb)

illustrated in Scheme 13.6. Synthetic efforts led to the dis-
covery of 7 which was found to be a potent inhibitor (p38�

IC50 3.5 nM, LPS/TNF� IC50 2.9 nM).29 The x-ray crystal
structure of its p38� complex is illustrated in Figure 13.6.
Although 7 is slightly shorter than 3, the added flexibility of
the carboxanilide linker allows the molecule to adapt itself

Figure 13.6. The x-ray structure of the p38� complex of C2-alkyl-
aminothiazole, 7, illustrates the characteristic deep hydrophobic pocket
occupancy by the 4-methyl-3-benzamido aniline head group and H-
bonding interactions between inhibitor and Met109, Thr106, Glu71, and
Asp168. Interestingly, both backbone carbonyl O and NH at Met109 are
involved in a tandem set of H-bonds. (3BX5.pdb)
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Scheme 13.6. The thiazole pictured at top was identified through focused deck screening with modest p38� activity.
Coupling this observation with the structure of the pyrrolotriazine, 3, led to the synthesis of 7. Conceptually, the
strategy was to replace the pendant amido carbonyl O–Met109 interaction with the thiazolyl N and incorporate a
possible H-bond acceptor replacement (potential for H-bonding to Lys53/water) for the triazinyl N1 with the central
carboxamido O.

sufficiently to the binding site to engage in productive H-
bonding not only to Met109, Glu71, and Asp168 but also to
Thr106 and backbone C=O at Met109 as well. This observa-
tion also reflects previous analyses highlighting the flexibil-
ity of p38�, specifically regarding the variation in the width
of the ATP pocket as determined by a comparison of avail-
able x-ray structures.11

INDOLES

Scios recently reported the synthesis and SAR of indole-
based heterocyclic inhibitors of p38� shown in Scheme
13.7.30 The authors found that rigidifying the piperidine
linker in Scios 1 led to a significant increase in binding affin-
ity (∼fourteenfold, Scios 2). Further modifications eventu-
ally led to Scios’s first p38 clinical compound, Scios-469
(p38� IC50 9 nM). These observations suggested that a sim-
ilar conformational restraint might be achieved through
the incorporation of a fused ring system, specifically, a
connection between the benzyl methylene position and
a proximal piperazine or piperidine ring (as illustrated in
Scheme 13.7). A number of such analogs were synthe-
sized and found to exhibit double-digit nanomolar p38�

inhibition.31 The binding mode of 8 (p38� IC50 13 nM)
was determined by x-ray crystallography (Figure 13.7). Sev-
eral key H-bonding interactions are evident and consistent
with previous observations: through-water Lys53/Asp168
H-bond to the exposed imidazo N and Met109 backbone
NH H-bonding to the central carboxamide O. The major
hydrophobic interaction occurs through the pendant diflu-
orophenyl occupancy of the deep pocket created by Thr106

(not shown) and the aliphatic chain of Lys53. Curiously, the
oxalamide portion extends upward and out along the hinge
region, making no direct interactions with protein. It would
appear that the occupancy of the deep hydrophobic pocket
is critical in this series and that the Scios design, incorporat-
ing a conformationally constrained linker, directs the pen-
dant benzyl group into that pocket.

Figure 13.7. The x-ray structure of the complex between p38� and an
analog of Scios-469 using a conformational constraint in the form of
a fused ring system (imidazopyrazine, 8) illustrates several key interac-
tions: central amido carbonyl O H-bonding to Met109 and water molecule
H-bonding among imidazo N, Asp168, and Lys53. The deep hydrophobic
pocket created between Thr106 (not shown) and Lys53 is occupied by
the pendant difluorophenyl. (2QD9.pdb)
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Scheme 13.7. Scios reported enhanced p38� inhibition through the incorporation of conformational constraints in
their series (Scios 1, Scios 2, and Scios-469). The installation of a fused ring system (such as shown in parentheses)
was considered as an alternate approach to conformational constraint, culminating in the potent p38� inhibitor, 8.

THE 5-MEMBERED HETEROCYCLIC CORE

A very popular p38� inhibitor design is based on the
early work of SmithKline Beecham (SKB) that described
the trisubstituted imidazole, SB-203580 (Scheme 13.8).1,32

Much effort has been expended on the successful replace-
ment of the central imidazole core with other five-
membered ring systems. Recent efforts have expanded
the approach by focusing on fused ring systems as cen-
tral cores. Examples in this regard include the Roche
pyrrolopyridine.33 Replacement of the Met109-targeting
moiety has also been pursued, exemplified by the two
Pfizer structures shown in Scheme 13.8.34,35 Parallel efforts
at Bristol-Myers Squibb (BMS) yielded the benzothiazole
series that included the use of oxazoles and imidazoles as
central cores.36 An example oxazole, 9 (p38� IC50 6.4 nM,
LPS/TNF� IC50 40 nM), was successfully crystallized with
p38� (Figure 13.8). As expected, the fluorophenyl moiety is
located in the deep hydrophobic pocket. Interestingly, the
hinge region Met109 is engaged in two H-bonds to the lig-
and 2-aminothiazole system. Lys53 is found close enough

to the oxazole N to consider a possible additional H-bond
at that location. Unexpectedly, the P-loop of p38� is col-
lapsed on the inhibitor in such a way that Tyr35 makes a
tight van der Waals contact with the thiazole sulfur. This
may represent a unique hydrophobic interaction scheme
not typically used by p38 inhibitors. Finally, there is the
subtle, yet important, hydrophobic interaction engaged by
the 2-isopropylamine at the hinge entry. Small alkyl sub-
stituents at this position were observed to modulate the
binding affinity (ethyl-butyl, 1.6–16 nM).

In summary, a number of structure-based design strate-
gies were highlighted that focused on the use of novel lig-
and head groups to access the deep hydrophobic pocket
(most notably, the 3-methyl-5-benzamide system), the
incorporation of H-bond acceptor atoms in the core that
target both the hinge region Met109 interaction as well
as Lys53/Glu71/Asp168 deeper in the binding site, the
exploitation of the Tyr169 pocket available in the DFG-out
configuration, the subtle effect of alkyl/aryl group occu-
pancy of the hinge region hydrophobic channel, and unique
interactions such as the Tyr35 van der Waals interaction
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Scheme 13.8. The early work of SKB led to the synthesis of SB-203580 whose p38� x-ray structure revealed
key interactions with Met109, Lys53, and the deep hydrophobic pocket. Subsequent efforts by Roche and Pfizer
represent just a few of the variations around the SKB theme that led to potent inhibitors. The use of a fused
heterocycle to access the backbone Met109 NH H-bond was successfully realized with 9. In addition to the usual
interactions, 9 exhibited a unique P-loop collapse that included a tight van der Waals contact between thiazolyl S
and the ring face of Tyr35.

with thiazole sulfur. All of these approaches have led to the
development of leads currently being investigated as poten-
tial drug candidates, testifying to the value and impact of a
structure-based design approach in modern drug discovery.

Figure 13.8. The x-ray crystal structure of the p38� complex with
benzothiazole-oxazole, 9, illustrates the expected H-bonding interac-
tions at Met109 and Lys53. In addition, the collapse of the P-loop unto
the inhibitor is evident, along with a tight van der Waals contact between
thiazolyl S and Tyr35. (3C5U.pdb)
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Structure-based design of novel P2-P4 macrocyclic inhibitors
of hepatitis C NS3/4A protease

M. Katharine Holloway and Nigel J. Liverton

INTRODUCTION

Approximately 170 million people worldwide are chroni-
cally infected with hepatitis C virus (HCV),1 a (+)-strand
RNA virus of the Flaviviridae family, which is spread pri-
marily by direct contact with human blood.2 HCV causes
chronic liver disease, including cirrhosis and hepatocellu-
lar carcinoma.3 At present, HCV is a leading cause of death
in HIV co-infected patients4 and is the most common indi-
cation for liver transplantation.5 In the United States alone,
data from death certificates suggest that there are 10,000 to
12,000 deaths annually due to hepatitis C.6

Unlike HIV, HCV can be “cured”; that is, patients can
achieve a sustained virologic response (SVR), in which the
virus remains undetectable after termination of therapy.
The current standard of care for the most prevalent geno-
type 1 infection is a regimen of pegylated interferon (IFN)
plus ribavirin for 48 weeks.7 Due to limited efficacy (only
about half of genotype 1 patients are able to achieve SVR
at twenty-four weeks post-therapy) and significant side
effects (e.g., injection site inflammation, flu-like symptoms,
depression, and anemia), many patients discontinue treat-
ment. Thus, there is a significant need to improve efficacy,
reduce the duration of treatment, and develop an IFN-free
regimen with a more convenient route of administration.

DRUG DESIGN TARGET

Several promising antiviral targets for HCV have emerged
in recent years.8 As with HIV, most efforts have focused on
inhibiting the key viral enzymes (see Figure 14.1). Inhibitors
of one such target, HCV NS3/4A, have perhaps shown the
most dramatic antiviral effects.9,10 The full-length NS3/4A
protein is comprised of an N-terminal trypsin-like serine
protease (residues 1–180), a C-terminal NTPase/helicase
(residues 189–626), and a fifty-four residue NS4A cofactor.
The NS3/4A serine protease is responsible for cis cleav-
age at the NS3/4A junction, as well as trans cleavage at
the NS4A/4B, NS4B/5A, and NS5A/5B junctions11 and is
essential for viral replication.12 Clinical proof of concept
for NS3/4A protease inhibitors has also been demonstrated,
both for rapidly reversible noncovalent protease inhibitors

such as BILN-2061 (1)13 and for slowly reversible cova-
lent serine-trap inhibitors such as VX-950 (telaprevir, 2),14

shown in Figure 14.2.

INITIAL MODELING

Examination of published views of a close analog of 1
bound to the 1–180 protease domain of NS3 protease15 sug-
gests that the P2 thiazolylquinoline portion of the inhibitor
lies on a relatively featureless enzyme surface with bind-
ing interactions that provide little apparent basis for the
dramatic potency derived from that moiety (�30,000-fold)
in a related series of tripeptide inhibitors.16 As the crys-
tal structure of this complex was unavailable, we recapit-
ulated the binding pose by creating a model of 1 in the
NS3/4A protease domain active site, based on the published
view and employing a previously deposited NS3/4A pro-
tease domain crystal structure (PDB identifier 1JXP).17 Fig-
ure 14.3 illustrates the solvent-exposed positioning of the P2
thiazolylquinoline in the model of 1 bound to the NS3/4A
protease domain. Based on this view of binding to the rel-
atively shallow, solvent-exposed, protease domain pocket,
developing a tight-binding, drug-like inhibitor of NS3/4A
protease was once likened to the probability of success of
a climber scaling a featureless dome-shaped rock with few,
if any, hand- or toe-holds.

In an effort to reconcile the bound pose with the
observed structure/activity profile, we chose to model 1
bound to the full-length NS3/4A protein, including the
significantly larger helicase domain, to determine what
role the helicase might play in inhibitor binding. No full-
length NS3/4A structures with inhibitors bound are cur-
rently available. Consequently, a published apo enzyme
structure18 of a single-chain form of NS3/4A was used as
the starting point (Figure 14.4). In this structure, the six C-
terminal residues (DLEVVT) of the helicase domain occupy
the NS3 protease active site, forming twelve hydrogen
bonds and creating a contact surface of ∼500Å2. To mimic
the conformational change required to permit inhibitor
binding, these six residues were deleted. Additionally, to
accommodate the model of 1, the crystallographic confor-
mation of some protein side chains (e.g., R155 and Q526)
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Figure 14.1. HCV genome organization (structural proteins = blue, non-
structural proteins = green) with key enzyme targets labeled.

was manually adjusted. During subsequent energy mini-
mization of the complex using the Merck Molecular Force
Field (MMFF),19–23 all side chains within 4Å of any atom of
the inhibitor were allowed to relax. The resulting model of 1
bound to full-length NS3/4A is depicted in Figure 14.5.

VIRTUAL DESIGN

Analysis of this model indicated that the helicase domain
can provide a surface (shown in blue in Figure 14.5) over the
P2 moiety, including a pocket to accommodate the thiazolyl
substituent. Specific inhibitor-helicase interactions include
His528-carbamate oxygen and Gln526-quinoline. Thus, our
working hypothesis was that modeling inhibitors in the full-
length NS3/4A crystal structure produced binding poses
more consistent with the observed structure/activity pat-
tern and was consequently more relevant to our computer-
aided drug design efforts. More importantly, it was appar-
ent from this study that there is space to accommodate a
connection between the carbamate cyclopentane and the
quinoline ring. Reexamination of the helicase C-terminus
from the apo structure (Figure 14.6), overlaid with the
model of 1, demonstrates that the side chain of Glu628
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Figure 14.2. NS3/4A protease inhibitors.

Figure 14.3. Model of 1 (magenta) bound to the protease domain of
NS3/4A (green) with a molecular surface and key protein/inhibitor inter-
actions shown. Note the shallowness of the binding pocket and the
solvent-exposed face of the inhibitor, in particular the P2 thiazolylquino-
line substituent in the upper right-hand quadrant.

occupies the same space as the proposed linker. Together,
these observations strongly suggested the possibility of an
alternative P4 cyclopentyl – P2 quinoline macrocyclization
to form a structurally distinct series of inhibitors.

Initially targeted were carbamate derivatives 3a-3d (Fig-
ure 14.7), in which the P1-P3 macrocyclic linker was
disconnected, the proposed P2-P4 linker formed, and
a 3-phenylquinoline P2 used to facilitate rapid synthe-
sis of a range of analogs. Models of these proposed
inhibitors were derived from the model of 1 bound
to the full-length enzyme. The flexibility of the macro-
cyclic linker in 3a-3d was explored by generating twenty-
five conformers using a distance geometry algorithm.24,25

Bound poses were energy minimized using the MMFF19–23

with a distance-dependent dielectric con-
stant (ε = 2r) in the rigid NS3/4A active
site defined by selecting all residues within
10Å of any atom of the model of 1. All
titratable enzyme residues were charged
and all inhibitors were defined as carboxy-
lates. The pose that resulted in the lowest
conformational energy for the ligand was
selected and scored based on the corre-
sponding enzyme/ligand energy (Einter) and
X-Score26 in the same active site. The pre-
dicted bound poses are shown overlaid
in Figure 14.8. Both scoring methods pre-
dicted that the 5- and 6-carbon linkers
would show greatest activity (Table 14.1).
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Figure 14.4. X-ray structure of full-length HCV NS3/4A18 (NS3 protease =
green; linking region = yellow; NS3 helicase = blue; NS4A = red; struc-
tural Zn = purple). Note that the C-terminus of the NS3 helicase occupies
the catalytic site of the NS3 protease, which performs the cleavage at
the NS3/4A junction.

PROOF OF CONCEPT

The desired compounds were prepared27 via a high-yielding
ring closing metathesis (RCM) strategy. Compound 3a, with
the three-carbon linker, proved to have very modest activ-
ity of 2,000 nM in a genotype 1b NS3/4A enzyme inhibition

Figure 14.5. Model of 1 (magenta) bound to full-length NS3/4A (pro-
tease = green, helicase = blue) with key protein/inhibitor interactions
shown.

Figure 14.6. Model of 1 (magenta) bound to full-length NS3/4A with
the helicase C-terminus (green) restored and the side chain of Glu628
highlighted with a mesh surface (orange). The molecular surface of the
helicase domain (blue) has been omitted for better viewing.

assay28 (Table 14.1). However, in agreement with the mod-
eling study, incremental lengthening of the linker afforded
dramatic improvement, with optimized activity of 8.5 nM in
the case of the pentyl linker 3c. A corresponding improve-
ment in genotype 1b cell-based replicon activity29 was also
observed. The point of attachment on the quinoline was
shown to be critical through synthesis of the corresponding
5-substituted derivative 4 by an analogous synthetic route,
which proved dramatically less active (Ki 4,400 nM). In addi-
tion, synthesis of an acyclic analog 5 demonstrated that
potency enhancement, particularly in the cell-based repli-
con assay, could be achieved through macrocyclization.

LEAD OPTIMIZATION

Previous work has established that the carboxylic
acid functionality can be effectively replaced with a
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Figure 14.7. Initial P2-P4 macrocyclic targets 3a-3d.
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Table 14.1. In vitro activitya

Modeling 1b replicon IC50 (nM)

Compound Einter X-Score 1b K i (nM) 10% FBS 50% NHS

1 0.3 3 19

2 93 1,100 4,800

3a −69.5 8.09 2,000 – –

3b −70.5 8.26 145 6,100 �100,000

3c −71.1 8.36 8.5 1,150 5,600

3d −71.4 8.44 25 1,200 9,100

4 4,400 – –

5 40 4,800 �100,000

6 �0.016 6.7 26

7 �0.016 13 25

8a 0.07 4.5 14

8b 0.18 8.7 46

a Data are geometric averages of three or more determinations.

cyclopropylacylsulfonamide30 and application of this
strategy to 3c afforded 6, with subnanomolar inhibition of
NS3/4A protease (Ki �0.016 nM). Disappointingly, given
the critical need for liver exposure, oral administration of a
5 mg/kg dose of 6 to rats provided low (0.2 �M) compound
levels in liver at 4 h with barely detectable plasma exposure
(Table 14.2). In contrast, when the P3 n-butyl residue was
replaced with t-butyl, the resultant inhibitor 7, with a very
similar in vitro activity profile, was effectively partitioned
into liver with a tissue concentration at 4 h of 3.9 �M,

Figure 14.8. Models of P2-P4 macrocycle targets 3a-3d overlaid with
the model of 1 (magenta). The optimum macrocyclic ring in 3c (yellow)
appears to best overlay with 1, consistent with the scoring results and
in vitro activities reported in Table 14.1. The molecular surface of the
helicase domain (blue) has been omitted for better viewing.

although plasma levels were unimproved. The dramatic
impact of this minor structural change on liver levels
strongly suggests that uptake is via an active transporter
mediated process.

Having successfully demonstrated that this macrocy-
clization approach could yield potent compounds with sig-
nificant liver exposure, we sought to broaden the strategy
to include alternative P2 moieties. The use of an isoquino-
line P2 to generate potent inhibitors has been reported
previously.31 In addition to potency enhancement, in their
unsubstituted form they also offer somewhat reduced
molecular weight inhibitors that might lead to improved
systemic exposure. To this end, the isoquinoline analogs
8a and 8b, possessing the optimal five-carbon macrocy-
cle linker length, were prepared. Both analogs showed very
potent inhibition in both in vitro enzyme and replicon
assays, but, more importantly, liver exposure was dramat-
ically improved with 4 h liver concentrations of 18.6 and
13.4 �M, respectively, for 8a and 8b. Furthermore, drug was
now clearly detectable in plasma for both compounds with

Table 14.2. Pharmacokinetic profiles of key compoundsa

Plasma AUC 0–4h 4 h liver
Compound Cmax (nM) (�M∗h) concentration (�M)

6 7 0.006 0.2

7 6 0.01 3.9

8a 240 0.36 18.6

8b 110 0.27 13.4

a Compounds dosed at 5 mg/kg P.O. in PEG400 (n = 2–3).
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8a  double bond
8b  single bond
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Figure 14.9. Additional quinoline and isoquinoline based NS3/4A inhibitors, 4–8.

AUCs of 0.36 and 0.27 �M∗h, respectively. Sustained expo-
sure in liver is clearly an important factor for any potential
treatment of HCV and high drug levels relative to activity in
the replicon assay (500 nM, 35 × replicon EC50 in presence
of 50% NHS) are maintained in rat liver for 24 h following a
5 mg/kg dose of 8a.

A detailed evaluation of the more potent analog 8a
revealed no significant activity versus other serine pro-
teases (�50,000-fold selectivity over trypsin and chy-
motrypsin), hERG binding (IC50 � 30 �M), or in a broad-
based Panlabs screen (�4,000-fold selectivity). Although
8a has a number of functionalities that might be viewed
as potentially susceptible to metabolism, it is primar-
ily excreted in bile as unchanged parent after rat IV
dosing.

An additional attraction of this class of macrocycles is
the potential to use a range of macrocyclization strategies in
any advanced development (including intramolecular Heck
or Suzuki reactions, proline amide coupling, or RCM), in
contrast to P1-P3 macrocyclic compounds such as 1, where
an RCM step appears unavoidable.32 Although there are
reports of compounds employing a related P2-P4 cycliza-
tion strategy,33,34 the inhibitors had only modest micro-
molar potencies. Synthesis of the cyclopropylacylsulfon-
amide analog of one of these compounds had little effect on
potency.27

CONCLUSION

In summary, molecular modeling of inhibitor-bound full-
length NS3/4A protease structures proved to be a key tool
in the design of a novel series of potent macrocyclic NS3/4a
protease inhibitors 3a-3d that was optimized to compound
8a. The in vitro activity and selectivity as well as the rat
pharmacokinetic profile of 8a compare favorably with the
data for other NS3/4A protease inhibitors currently in clini-
cal development for the treatment of HCV.
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Purine nucleoside phosphorylases as targets for
transition-state analog design

Andrew S. Murkin and Vern L. Schramm

INTRODUCTION

Among the most powerful enzyme-targeted drugs are those
that bear a strong resemblance to the transition state of
the chemical reaction undergoing catalysis. This chapter
illustrates that experimental determination of enzymatic
transition-state structure permits chemically stable analogs
to be designed. Mimics of these transition states exhibit
binding affinities exceeding those of the substrates by fac-
tors of greater than 106. To appreciate this approach to
drug design, it is necessary to understand the nature of
transition-state formation and how it relates to the strong
binding interactions between enzymes and transition-state
analogs.

Enzymatic transition-state formation

All chemical reactions proceed through at least one transi-
tion state, an unstable structure of maximal energy along
the reaction coordinate. Having a lifetime of under 100 fs
(10−13 s), the time required for a single bond vibration, the
transition state is the most unstable species along a chem-
ical reaction coordinate. In the absence of a catalyst, the
probability of transition-state formation is extremely low.
Enzymes achieve great catalytic reaction rates by provid-
ing appropriately positioned functional groups within the
active site, which interact with and distort the substrate
toward the transition state by dynamic motions of the com-
plex.

Although the physical means of enzymatic transition-
state formation remain the subject of scientific debate, sev-
eral theories have been proffered. In the early 1940s, Linus
Pauling postulated that enzymes bind most optimally not to
the normal substrate molecule but rather to the substrate
molecule in a strained configuration corresponding to the
“activated complex.”1 He suggested that various attrac-
tive forces with the enzyme cause the substrate to adopt the
strained configuration, thereby favoring the chemical reac-
tion and accounting for the lowered activation energy of the
catalyzed reaction. Wolfenden later expanded this theory
by considering a thermodynamic equilibrium between the

nonenzymatic transition state and the enzyme-bound tran-
sition state (Figure 15.1).2,3 A nonenzymatic reaction pro-
ceeds from substrate (S) to products with a rate constant
knon via a transition state (S‡), governed by the equilibrium
constant Knon

‡. The corresponding enzymatic process pro-
ceeds first through a Michaelis complex (E·S), given by the
dissociation constant Kd, followed by the enzymatic tran-
sition state (E·S‡), which is given by rate constant kenz and
equilibrium constant Kenz

‡. A hypothetical binding equilib-
rium (Kd

‡) between the enzyme and transition state com-
pletes the thermodynamic box. The rate acceleration for
the enzyme-catalyzed reaction over the nonenzymatic reac-
tion, kenz/knon, therefore indicates the degree of tightness to
which the transition state is bound relative to the substrate,
typically between 1010 and 1015.

A related factor that may play a role in transition-
state formation is ground-state destabilization. In much
the same way that the transition-state stabilization model
of Wolfenden explains lowering of the activation-energy
barrier through stabilizing interactions with the enzyme,
Jencks and others have suggested that destabilizing inter-
actions with the bound substrate could promote distor-
tions toward the transition state (Figure 15.2).4,5 Strategies
by which these binding interactions can assist the chemical
reaction include desolvation of substrate functional groups,
positioning substrates in the active site, and geometri-
cally or electrostatically destabilizing substrates.6 This third
strategy has been proposed for orotidine-5′-phosphate
(OMP) decarboxylase,7 in what Jencks has termed the
“Circe effect,” whereby the enzyme attracts the substrate
by forming energetically favorable binding interactions at
one region of the substrate but simultaneously destabilizes
the reactive group that undergoes chemical transformation.
Richard and coworkers have since observed formation of a
carbanion intermediate that OMP decarboxylase stabilizes
by at least 14 kcal/mol, suggesting transition-state stabiliza-
tion is the dominant factor in the 1017-fold rate acceleration
by this enzyme.8 Thus, it is possible that transition-state
stabilization and ground-state destabilization function
in complementarity to achieve rate enhancements, as is
depicted in Figure 15.2.

215
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Figure 15.1. Thermodynamic box relating equilibria for nonenzymatic
(black) and enzymatic (red) transition-state formation (Knon

‡ and Kenz
‡,

respectively), dissociation of substrate from the Michaelis complex (Kd),
and the hypothetical dissociation of the transition state from the enzyme
(Kd

‡). Assuming equal transmission coefficients, Kd
‡ is equal to Kd mul-

tiplied by the ratio of the reaction rate constants for nonenzymatic (knon)
and enzymatic (kenz) reactions. E = enzyme; S = substrate.

A third explanation for enzymatic transition-state for-
mation involves the substrate’s adoption of a reactive con-
formation. According to Bruice and coworkers, a chemical
reaction will occur only with a limited range of substrate
conformers, termed near-attack conformers (NACs), which
are characterized by having a geometric arrangement of
reactive functional groups sufficient for formation of a
transition state.9 An example of a NAC is given by the
intramolecular cyclization of dicarboxylic acid monoesters
to generate five- and six-membered rings [Figure 15.3(a)].
Computational modeling revealed that a NAC existed when
the distance between the nucleophilic oxygen and carbonyl
carbon was 2.8–3.2Å and the angle of attack was within a
30◦ cone of the optimal angle of 15◦ [Figure 15.3(b)].10 The

Figure 15.2. Enzyme catalysis by transition-state stabilization and
ground-state destabilization. The free-energy profile for the nonenzy-
matic reaction (black) proceeds from substrate (S) to product (P) via the
transition state [S]‡ with energetic barrier �Gnon

‡. In the enzymatic reac-
tion (red), the transition state [E·S]‡ is stabilized by ��G‡, resulting in a
barrier �Gk/K

‡ on kcat/Km (that is, from E+S to [E·S]‡) and a barrier �Gk1
‡

on kcat (that is, from E·S1 to [E·S]‡). With ground-state destabilization on
the Michaelis complex (E·S2, dotted line), the barrier on kcat/Km remains
unchanged, but the barrier on kcat is reduced to �Gk2

‡.

a)

b)

Figure 15.3. Proximity effect demonstrated by near-attack conformers
(NACs). (a) Conformers of dicarboxylic acid monoesters with inappro-
priate geometry between the reactive groups must rotate into NACs to
cyclize. (b) Geometric features of NACs for the cyclization reaction in
(a) include an interatomic distance of 2.8–3.2Å and an angle of approach
within 30◦ from the optimal angle of 15◦ to the perpendicular to the
carbonyl plane. Modified from Lightstone and Bruice.10

proximity effect demonstrated by the neighboring-group
participation of these compounds, it is argued, is also cre-
ated in the active sites of enzymes. The greater the popula-
tion of substrate conformers existing as NACs, the greater
the rate of reaction; hence, enzymes accelerate reaction
rates, at least in part, by increasing the likelihood that an
E·S complex is a NAC.

A recent theory of transition-state formation that has
gained support is the coupling of dynamic motions to
the reaction coordinate. It has been reasoned that certain
discrete atomic vibrations, often called protein-promoting
vibrations (PPVs), within the protein work in concert
to cause bond cleavage and/or bond formation along
the reaction coordinate.11 These promoting motions are
the result of the enzyme’s dynamic excursions along the
allowed vibrational modes. When PPVs function together,
the substrate and enzymatic groups promoting catalysis are
pushed toward the transition state as the chemical reac-
tion proceeds. Examples for which there is evidence sup-
porting PPVs include hydrogen-transfer reactions catalyzed
by alcohol dehydrogenase,12 dihydrofolate reductase,13,14

and lactate dehydrogenase,11 as well as the phosphate-
ribosyl transfer reaction catalyzed by purine nucleoside
phosphorylase (PNP),15 which is the subject of discussion
in the remaining sections of this chapter. Figure 15.4 illus-
trates reaction-coupled dynamic motions located in the
His104Arg mutant of PNP, whereby the movement of Arg104
(magenta), a distant residue from catalytic site ligands
(green), is coupled to Phe159 (red), which in turn affects the
dynamics of the active site residues (orange).16 It is impor-
tant to keep in mind that the above theories of transition-
state formation are mutually compatible and any or all may
be involved to varying degrees.
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Figure 15.4. Dynamic perturbation of the purine nucleoside phosphory-
lase reaction coordinate, simulated by molecular dynamics calculations
by Saen-Oon et al.16 The motion of Arg104 (magenta) is coupled to the
movement of Phe159 (red), located in a catalytic loop at the interface
of two subunits (A, blue and C, tan) in the trimeric protein. Phe159
in turn impinges on the ligands (green) ImmG and phosphate (partially
obscured) and surrounding active-site residues (orange) in the adjacent
subunit. The vector of dynamic perturbation is shown as yellow arrows.
Modified from Saen-Oon et al.16

Transition-state mimicry

The various transition-state theories share an essential fea-
ture in their description of an enzyme’s structure and func-
tion: enzymes have evolved to interact most optimally to
generate the transition state. This is achieved by strategic
placement of appropriate functional groups, which oper-
ate collectively to convert the stable substrate molecule into
an unstable structure within a relatively short (typically ms)
time scale. It has been recognized for many decades that if
a chemically stable version of the transition state could be
engineered and introduced into the active site, very strong
associations with the enzyme would be expected.2,3,17

The tight binding of transition-state mimics is best
explained by the thermodynamic model of transition-
state stabilization (see “Enzymatic transition-state forma-
tion”). In the hypothetical binding equilibrium between the
enzyme and its transition state (Figure 15.1), the transition
state is held more tightly than the substrate by a factor equal
to the rate acceleration, kenz/knon, and the energy of this
“association” is given by ��G‡ (Figure 15.2). Although a vir-
tual thermodynamic equilibrium cannot exist because of
the subbond vibrational lifetime of the transition state, it is
instructive to imagine capturing the system at the moment
the transition state is formed. This energetic interaction
is approximated by the real binding equilibrium with a
transition-state analog, which, if it were a perfect mimic,
would completely convert the transition-state stabilization
energy, ��G‡, into binding energy.18,19

The dynamic view of transition-state theory explains the
tight-binding property of transition state analogs by a con-
formational collapse of the enzyme around the chemically
stable mimic.20 The chemically inert transition-state ana-
log converts the dynamic excursions found at the transition
state to a stable convergence of the enzyme conformation,

Figure 15.5. Enzymatic transition states and their chemically stable
analogs. Dissociation constants for inhibitors of adenosine deaminase,135

� -glutamylcysteine synthetase,136 and sialidase (neuraminidase)137 are
given.

resulting in the conversion of catalytic dynamics into static
binding energy.

Regardless of the precise mechanism by which enzy-
matic transition states are formed, the incredibly potent
inhibition exhibited by their analogs – in contrast to sub-
strate and product analogs, for instance – underscores the
importance of their development. Figure 15.5 illustrates
examples of transition-state analogs from among the hun-
dreds of known enzyme targets.21 To design transition-state
analogs, we must first have knowledge of the structure of
the transition state.

Determination of transition-state structure from kinetic
isotope effects

Unfortunately, the structure of the transition state can-
not be determined by the analytical methods used for sta-
ble compounds, including crystallography, nuclear mag-
netic resonance (NMR), infrared/Raman, ultraviolet/visible
spectroscopy, and mass spectrometry. With a lifetime less
than a single bond vibration, methods probing the ground
state are clearly insufficient. Indirect kinetic methods pro-
vide some structural information. For instance, variations
in the reactivity of functional groups (e.g., varying pKa

or electron-withdrawing properties, analyzed by Hammett
plots) in the substrate have been introduced to examine
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Figure 15.6. Tight-binding inhibitors of dihydrofolate reductase and
purine nucleoside phosphorylase that are not transition-state analogs.
The substrates and Km values are given, along with the dissociation
constants (Kd) for methotrexate,138 9-deaza-9-phenylguanine,139 and
rivaroxaban.140

the position of the transition state in the reaction coordi-
nate of chemical reactions.22,23 Substrate specificity usu-
ally limits the utility of this method in enzyme-catalyzed
reactions, however. Tight-binding inhibitors, as mentioned
above, have also been used to survey transition-state struc-
ture, whereby particularly potent inhibition (low nM or pM)
is proposed to reflect features of the transition state. How-
ever, without direct information on transition-state struc-
ture, one cannot be confident that inhibition is due to
transition-state mimicry. Tight-binding inhibitors that are
not transition-state analogs are well known (Figure 15.6).

Kinetic isotope effects
Features of the transition state, however, can be captured in
the vibrational frequencies of atomic stretching and bend-
ing modes within the substrate at the transition state rel-
ative to those in the ground state. It has long been rec-
ognized that isotopic substitution at specific positions in
the substrate often result in different reaction rates for the
light and heavy species; these phenomena are known as
kinetic isotope effects (KIEs; Figure 15.7). When the bond-
ing environment surrounding the atom of interest becomes
less restrained at the transition state, the gap in zero point
energies (ZPEs) of the bonds to the light and heavy iso-
topes becomes smaller; thus, the rate constant for the light

Figure 15.7. Origin of normal and inverse kinetic isotope effects (KIEs).
Differences in the zero-point energies (ZPEs) of bonds to light (H) and
heavy (T) isotopes at the ground state (S) and the transition state (TS)
result in differences in the corresponding rate constants, kH and kT. For
a looser bond at the transition state (left diagram), the ZPEs of the light
and heavy isotopes are closer, giving rise to a normal KIE (kH/kT �1).
In contrast, for a stiffer bond at the transition state (right diagram), the
ZPEs are more greatly separated, yielding an inverse KIE (kH/kT �1).

species is greater than that for the heavy species, and a nor-
mal KIE (i.e., k light/k heavy � 1) is obtained. In contrast, when
the bonding environment becomes more restrained at the
transition state, the difference in ZPEs becomes larger,
yielding an inverse KIE (i.e., k light/k heavy � 1). The magni-
tude of the KIE indicates the degree to which the bond-
ing environment has changed between the ground state
and the transition state. This information reports on the
extent of bond formation/cleavage, as well as geometrical
changes at and remote from the reactive center. If KIEs are
determined for multiple positions in the substrate, one can
deduce a structure for the transition state with the aid of
computational modeling.21,24

Methods for the measurement of enzymatic KIEs and
their interpretation in relation to transition-state structure
have been well described in the literature.25–29 Two major
approaches for the measurement of KIEs are the com-
petitive and noncompetitive (direct) methods. The direct
approach involves measurement of the reaction kinetics for
the light and heavy isotopologs in separate experiments,
and the ratio of the rate constants gives the experimental
KIE. The competitive method, in contrast, involves a mix-
ture of the heavy (e.g., 3H) and light (e.g., 1H with remote
14C) isotopologs, with the remote label acting as an inter-
nal standard. A normal KIE will cause an enrichment in
the light, faster-reacting isotope (i.e., larger 14C/3H ratio) in
the product, whereas the isotopic ratio of unreacted sub-
strate will decrease. Experimental KIEs are calculated from
comparison of the ratios before reaction and after par-
tial enzymatic conversion. Because the reaction conditions
are always identical for both species in the competitive
method, it is an order of magnitude more precise than the
direct method and is a superior technique usually employed
in transition-state analysis.26,30
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a)

b)

c)

Figure 15.8. Free-energy diagrams for hypothetical enzymatic reactions,
illustrating the effect of kinetic complexity on experimental kinetic isotope
effects. (a) In the simplest scenario, the isotope-sensitive step is both
the rate-limiting step and the first irreversible step. The intrinsic KIE will
be fully expressed in the V/K KIE. (b) If the rate-limiting step occurs after
the first irreversible step (which is the same as or follows the isotope-
sensitive step), the intrinsic KIE will still be fully expressed in the V/K KIE.
(c) If the substrate is sticky (k3 � k2), forward commitment will cause
masking of the intrinsic KIE. Modified from Berti and Tanaka.30

Intrinsic isotope effects
To establish the transition state for a reaction, it is impera-
tive that the KIEs be intrinsic; that is, they must reflect only
the chemical step. The simplest case is where the chem-
ical step is both the rate-limiting step and the first irre-
versible step [Figure 15.8(a)]. However, it is common for
enzymatic reactions to involve different rate-limiting and
first irreversible steps [Figure 15.8(b)] and to involve addi-
tional kinetically significant steps [Figure 15.8(c)]. A fea-
ture of the competitive method is that it reflects isotope
effects on the enzyme’s specificity constant, kcat/Km (or
Vmax/Km; these isotope effects are commonly referred to as
V/K KIEs) and therefore reports on atomic vibrational fre-
quency changes between the unbound substrate and the
first irreversible step. Following the first irreversible step,

the bound species is committed to proceeding to comple-
tion and no further isotopic discrimination can occur; thus,
situations such as that depicted in Figure 15.8(b) would not
interfere with the measurement of V/K KIEs. A possibility
that may prevent V/K KIEs from being intrinsic, however, is
with a “sticky” substrate, which, once bound to the enzyme,
has a greater tendency to partition toward products than to
dissociate back into solution [i.e., k3 � k2 in Figure 15.8(c)].
This occurrence, called “commitment to catalysis” or sim-
ply “commitment,” causes the magnitude of the observed
V/K KIE to always be lower than the intrinsic KIE; as a result,
one must choose alternative reaction conditions to reduce
or eliminate commitments or conduct additional experi-
ments (e.g., isotope trapping31) to quantitate and correct for
this effect. It is of interest to note that more catalytically effi-
cient enzymes have increasing commitments to catalysis,
with “perfect enzymes” (i.e., kcat/Km ∼ 109 M−1 s−1) being
fully committed and therefore exhibiting no KIE.

Computational modeling of transition states
At present, there are no algorithms for generating
transition-state structure directly from experimentally
determined KIEs. Instead, one relies on iterative compu-
tational modeling of predicted structures to calculate KIEs
that, when the structure is optimized, match the exper-
imental values. This method requires modeling of both
the substrate, whose structure can often be obtained from
crystallographic, spectroscopic, or other means, and the
transition state. The latter structure can be obtained by iter-
ative model manipulation, such as fixing bond lengths and
angles, and frequency calculation of all vibrational modes,
with the assistance of structure software applications, such
as Gaussian,32 which can be run on common desktop
computers but may require advanced computational
capabilities for more complex systems. The vibrational
frequencies can be then be analyzed by programs such as
QUIVER

33 or ISOEFF98,34 which are based on equations
of the form in Equation (15.1),35 originally derived in the
midtwentieth century by Bigeleisen:36–38
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(15.1)

where the subscripts L and H indicate light and heavy iso-
tope, respectively; the superscripts R and ‡ indicate reac-
tant and transition state, respectively; n is the number
of atoms in the system; v ‡ is the imaginary frequency
of bond lysis at the transition state; and ui = hvi/kBT ,
where h is Planck’s constant, vi is the frequency of the
ith vibrational mode in wave numbers, kB is Boltzmann’s
constant, and T is the absolute temperature.35 Systematic
variation of model geometry is necessary to identify the
ranges of bond lengths, bond angles, and dihedral angles
that would give rise to the observed KIEs, within experi-
mental error. The extent of computational space may be
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greatly reduced with knowledge of geometries permitted
in the active site, which is often available from crystallo-
graphic data, especially from bound substrate and substrate
analogs.

General approach to transition-state-based inhibitor design
In summary, solving the transition-state structure of an
enzymatic reaction requires the following steps:

1. Chemical or biochemical synthesis of substrate mole-
cules containing isotopic labels at specific positions.

2. Determination of experimental conditions wherein
intrinsic isotope effects – that is, KIEs reflecting only the
chemical step – can be measured.

3. Measurement of KIEs for each position labeled in step 1.
4. Iterative computation of theoretical KIEs from quantum

mechanical calculations with model structures until the
KIEs match those from experiment in step 3.

The demands of these conditions often limit the enzy-
matic systems that can be analyzed by this approach to
inhibitor design. For instance, unstable or elaborate sub-
strates may render isotopic label incorporation prohibitive.
In other cases, the structure of substrates and their transi-
tion states may be too simple (e.g., in kinase reactions), such
that structural information obtained from transition-state
analysis is of no utility for inhibitor design. Additionally,
intrinsic KIEs may be obscured by kinetically significant
steps other than chemistry; however, alternative substrates,
active site mutants, altered pH, and single-turnover anal-
yses have been used to avoid these complications.21,39

Finally, multiple steps in the enzymatic reaction coordinate,
including substrate binding, and multiple chemical steps
may contribute to the observed KIE, and these must be sep-
arated to establish the intrinsic KIE.40–42

Once the transition-state structure has been deter-
mined, aspects of its geometric and electrostatic properties
can be incorporated into the design of appropriate chemi-
cally stable analogs. The remainder of this chapter demon-
strates the methods of transition-state structure determina-
tion by the example of purine nucleoside phosphorylases
and how this approach has led to the development of sev-
eral generations of tight-binding inhibitors now in clinical
trials for the treatment of various diseases.

PURINE NUCLEOSIDE PHOSPHORYLASE

Physiological role and basis for drug targeting

The cleavage of purine nucleosides (i.e., inosine and guano-
sine) and their 2′-deoxy counterparts is achieved by the
phosphorolytic reaction catalyzed by PNP. This reaction
forms a purine base (i.e., hypoxanthine or guanine) and
(deoxy)ribose 1-phosphate (Figure 15.9) and is an essen-
tial process in human nucleoside metabolism and purine
salvage. A rare genetic disorder of T-cell immunodeficiency
has been attributed to a deficiency of PNP.43,44 Without
PNP, deoxyguanosine (dGuo) accumulates in the blood

Figure 15.9. Phosphorolysis of the purine nucleosides inosine (Ino),
guanosine (Guo), and adenosine (Ado) catalyzed by PNP.

and is phosphorylated to deoxyguanosine monophosphate
(dGMP) by deoxycytidine kinase most actively in rapidly
dividing T cells (Figure 15.10).43 Further phosphorylation
to deoxyguanosine triphosphate (dGTP) causes inhibition
of T-cell proliferation45 and apoptosis.46 This T-cell-specific
effect has been exploited in the development of pharma-
ceuticals for the treatment of a variety of T-cell immun-
odisorders, including T-cell lymphoma, rheumatoid arthri-
tis, lupus, psoriasis, and multiple sclerosis.21

Kinetic mechanism

The acid-catalyzed hydrolysis of purine nucleosides pro-
ceeds via N-7 protonation of the leaving group, fol-
lowed by cleavage of the N-ribosidic bond to generate an
oxacarbenium-ion intermediate, which is immediately

Figure 15.10. Simplified schematic of deoxyguanosine (dGuo) meta-
bolism in human T cells. In the absence of PNP activity, high levels
of dGuo are available for entry into T cells. Deoxycytidine (dCyd) kinase
phosphorylates dGuo to dGMP, which, unlike the enzyme’s normal prod-
uct dCMP, does not cause product inhibition. Thus, dGMP is available for
efficient conversion to dGTP, which allosterically inhibits ribonucleotide
reductase-mediated production of deoxynucleosides and ultimately halts
DNA synthesis and T-cell replication.
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Figure 15.11. Mechanism of acid-catalyzed hydrolysis of purine nucleosides. Protonation at N7 increases the
leaving-group ability of the purine base (substituents have been omitted for clarity). Donation of electrons from
the ribosyl ring oxygen into the 	∗ orbital at C1′ results in cleavage of the C–N glycosidic bond, generating an
oxacarbenium ion. Nucleophilic attack by water on either face of the intermediate yields �- and �-ribose.

intercepted by a nucleophilic water molecule (Figure
15.11).47 The transition-state structure of the acid-catalyzed
hydrolysis of dAMP was recently solved, and direct evidence
for the oxacarbenium-ion intermediate was obtained.48

These findings have prompted enzymologists to question
whether the PNP-catalyzed phosphorolysis reaction pro-
ceeds through a similar SN1 mechanism.

To approach this problem, it was first necessary to estab-
lish the kinetic scheme of substrate and product bind-
ing, reaction, and release from the enzyme. Early studies
on PNP from human erythrocytes indicated that phospho-
rolysis proceeds through a ternary complex consisting of
phosphate and nucleoside bound to the enzyme,49 with-
out forming a covalent intermediate.50 Kinetic studies on
PNP from various sources, however, have not resulted in
a consistent mechanism. For instance, an ordered Bi-Bi
mechanism [Figure 15.12(a)]50 is commonly reported; Lewis
and Lowry have proposed a Theorell-Chance mechanism,
where phosphate binding, reaction, and release of ribose
1-phosphate occur so rapidly that the effective concentra-
tion of ternary complex is zero.51 Whereas Kim et al.50 and
Lewis and Glantz52 favored binding of the nucleoside prior
to phosphate, Porter53 and Carlson and Fischer54 reported
the opposite. Kline and Schramm demonstrated unequiv-
ocally through kinetic isotope effect determinations of

the arsenolysis reaction catalyzed by PNP that a random
mechanism was in effect [Figure 15.12(b)].55 Structural data
provided by Ealick and coworkers supported this con-
clusion by showing that the active site could accommo-
date phosphate when inosine was already bound and vice
versa but that binding of ribose 1-phosphate precluded the
subsequent binding of hypoxanthine.56 Fluorescence and
radioactive binding titrations with hypoxanthine and gua-
nine revealed that the release of nucleobase product, which
is the rate-limiting step in steady-state kinetics, is facilitated
by the presence of phosphate [Figure 15.12(b)].57,58

Transition-state structure of bovine PNP

Synthesis of labeled substrates
Determination of the transition-state structure of PNP
required the synthesis of several substrate isotopologs
(Figure 15.13).55,59 The procedure was performed in two
stages, each involving several enzymes and substrates in
a single reaction mixture. In most cases, an appropriately
radiolabeled glucose and/or 15N-substitued adenine is con-
verted to ATP, which is isolated by HPLC. Because H-3
of glucose is lost on formation of ribulose 5-phosphate,
[2′-3H]ATP is synthesized from [2′-3H]ribose 5-phosphate

a)

b)

Figure 15.12. Proposed kinetic mechanisms for substrate binding, reaction, and product release from PNP. (a) Bi-Bi
ordered sequential mechanism proposed by Kim et al.,50 featuring nucleoside (e.g., inosine, Ino) and nucleobase
(e.g., hypoxanthine, Hx) binding to free enzyme in phosphorolysis and synthesis directions, respectively. (b) Random
sequential mechanism proposed by Kline and Schramm.55 This mechanism, whose upper path is identical to that
in (a), additionally allows for ternary complex formation through binding of phosphate prior to nucleoside and
accounts for the observation of looser binding of the nucleobase in the presence of phosphate.57 ,58
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Figure 15.13. Synthetic scheme for the preparation of labeled inosine. In a single reaction mixture, glucose is
converted to ATP, which is isolated by chromatography. In a second stage, ATP is dephosphorylated to adeno-
sine, which is deaminated to inosine. Enzyme abbreviations: HK = hexokinase, PK = pyruvate kinase, G6PDH =
glucose-6-phosphate dehydrogenase, GDH = glutamate dehydrogenase, 6PGDH = 6-phosphogluconic dehydroge-
nase, PRI = phosphoriboisomerase, PRPPase = 5-phosphoribosyl-1-pyrophosphate synthetase, MK = myokinase,
APRT = adenine phosphoribosyltransferase, AP = alkaline phosphatase, ADA = adenosine deaminase. Chemical
abbreviations: PEP = phosphoenolpyruvate, �KG = �-ketoglutarate, Glu = L-glutamate, G6P = D-glucose 6-
phosphate, 6PG = 6-phosphogluconate, Ru5P = D-ribulose 5-phosphate, R5P = D-ribose 5-phosphate, PRPP =
5-phosphoribosyl 1-pyrophosphate. [1′-14C]-, [5′-14C]-, [1′-3H]-, [4′-3H]-, and [5′-3H2]inosine can be prepared from
[2–14C]-, [6–14C]-, [2–3H]-, [5–3H]-, and [6–3H2]glucose, respectively. Remotely labeled [5′-14C, 9–15N]inosine is
made from [6–14C]glucose and (9–15N)adenine (as shown), and [2′-3H]inosine is prepared from [2–3H]R5P, which
is derived from the PRI-catalyzed incorporation of tritium from [3H]H2O.60

(R5P), prepared by solvent isotope exchange of unlabeled
R5P with [3H]H2O catalyzed by phosphoriboisomerase.60

The purified nucleotides are then dephosphorylated to
adenosine, which is converted to inosine by adenosine
deaminase.

Measurement of experimental kinetic isotope effects
KIEs for the phosphorolysis of [1′-2H]inosine and [1′-2H]
adenosine by Escherichia coli PNP61,62 or of [1′-3H]
inosine with Bos taurus PNP (BtPNP)55 indicated masked
KIEs, ranging from 1.008 to 1.094 at pH 7.3, with elevated
KIEs at higher and lower pH. These findings indicate that
events other than ribosidic bond cleavage, such as sub-
strate binding, conformational changes, or product release,
dominate at physiological pH. These commitment factors
(recall 15.1.3) complicate the interpretation of KIEs, espe-
cially for reversible reactions such as this.39 To minimize

these shortcomings, phosphate was substituted with arsen-
ate, which reacts as a nucleophile to form ribose 1-arsenate,
which readily hydrolyzes irreversibly to ribose and arsen-
ate (Figure 15.14).63 Accordingly, Kline and Schramm exam-
ined the transition state of BtPNP by measuring KIEs from
the arsenolysis of inosine.55 The procedure involved incu-
bating the enzyme with a mixture of 3H- and 14C-labeled
inosine in the presence of saturating arsenate. For 3H KIE
measurements, [5′-14C]inosine served as a remote radi-
olabel for the 1H species, whereas for 14C or 15N KIEs,
[4′-3H]- or [5′-3H]inosine served as a remote radiolabel
for the 12C or 14N species. Following about 30% reaction
completion, a portion of the mixture was quenched by
application to a charcoal column, which binds hypoxan-
thine and unreacted inosine through hydrophobic inter-
actions while allowing the radiolabeled ribose product to
be collected. The remainder of the mixture was allowed to
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Figure 15.14. Arsenolysis reaction catalyzed by purine nucleoside phosphorylase. Ribose 1-arsenate is unstable
and immediately hydrolyzes to ribose on release from the enzyme, rendering the overall reaction irreversible.

react to completion before being applied to a charcoal col-
umn. The 3H/14C ratios in the partially (Rp) and completely
(Ro) converted samples were determined by scintillation
counting, and the experimental V/K KIEs were calculated
from Equation (15.2):

V/K KIE = ln (1 − f )

ln
(
1 − f Rp/Ro

) , (15.2)

where f is the fraction conversion of the light isotopolog,
determined by the ratio of counts from the remote radio-
label in partially versus completely converted samples.35

Correcting V/K KIEs for commitment to catalysis
To convert the V/K KIEs to intrinsic KIEs, Kline and
Schramm determined the forward commitment for BtPNP

Figure 15.15. Determination of forward commitment by isotope trapping
of the PNP·inosine binary complex. The pulse solution contained BtPNP
and [8–14C]inosine, and the chase solution contained excess unlabeled
inosine and varying sodium arsenate concentrations from 0.1 to 10 mM.
(Inset) double-reciprocal plot, whose y-intercept indicates the concen-
tration of [14C]hypoxanthine resulting from the trapped inosine. Modified
from Kline and Schramm.55

using the isotope-trapping technique described by Rose.31

The experiment is designed to determine the partition-
ing of the first substrate in the binary complex react-
ing toward products versus dissociating into solution [Fig-
ure 15.8(c)]. The enzyme was briefly preincubated with
[14C]inosine, and this “pulse” solution was introduced
into a “chase” solution consisting of varying concentra-
tions of the second substrate, arsenate, and a pool of
excess unlabeled inosine. The excess cold reactant ensures
that radioactivity in the product results only from enzy-
matic turnover of the initial binary complex. After several
turnovers, the relative amounts of [14C]hypoxanthine prod-
uct and unreacted [14C]inosine were measured. The amount
of [14C]hypoxanthine formed increases hyperbolically with
the concentration of arsenate, and the value at saturation
indicates the concentration of bound inosine leading to
products (Figure 15.15). Thus, by dividing this concentra-
tion by the concentration of dissociated inosine, the for-
ward commitment, C f, was found to be 0.19.55 This value
was used to calculate the intrinsic KIEs from the V/K KIEs
by Equation (15.3), derived by Northrop:39

3 (V/K ) =
3k + Cf + Cr

3 Keq

1 + Cf + Cr
=

3k + Cf

1 + Cf
, (15.3)

where 3(V/K) is the experimental V/K KIE (tritium in this
example), 3k is the intrinsic KIE, 3Keq is the equilibrium iso-
tope effect (EIE), and Cr is the reverse commitment, repre-
senting the partitioning of products returning to reactants
versus dissociating from the enzyme. The rapid release of
ribose 1-arsenate together with its irreversible hydrolysis
was presumed to make C r negligible,55 thereby simplify-
ing the equation as indicated. Equation (15.3) is valid only
when there are no isotopically sensitive steps prior to chem-
istry. As will be discussed later in the chapter, however, this
assumption is not always true, as in the case of isotope
effects on binding.

Interpretation of KIEs for inosine arsenolysis
The magnitudes of [1′-14C]-, [9-15N]-, and [1′-3H]inosine
isotope effects are diagnostic for the degree of nucleophile
association and leaving group dissociation at the transi-
tion state of the PNP reaction. At one extreme is the con-
certed, associative ANDN (SN2) mechanism, which is char-
acterized by synchronous nucleophile bond formation and
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Figure 15.16. Possible mechanisms for the phosphorolysis (arsenolysis) of inosine. An ANDN mechanism (upper
pathway) involves a single transition state characterized by concerted phosphate association and hypoxanthine
dissociation. In a synchronous ANDN reaction (SN2), the association and dissociation events are exactly balanced,
and the transition state exists when the bond order to each group is equal, as in the middle structure. A DN

∗AN

mechanism (SN1, lower pathway) involves two distinct steps with two transition states; dissociation of hypoxanthine
generates an oxacarbenium-ion intermediate (middle structure), and association of phosphate yields the ribose
1-phosphate product. In a DNAN reaction, the degree of dissociation exceeds the degree of association, and the
transition state exists with unequal bond order to each group; because of the highly dissociative nature of this
mechanism, it is also sometimes referred to as SN1-like (differing from “true” SN1 in the number of steps and
transition states). Modified from Berti and McCann.109

leaving-group bond cleavage such that the net bond order
to the reaction center (C-1′) is conserved (Figure 15.16).
At the other extreme is the stepwise, dissociative DN

∗AN

(SN1) mechanism, in which the bond to the leaving group is
completely broken to give a carbocationic intermediate, to
which the nucleophile forms a bond in a second step. Many
enzymatic substitution reactions lie somewhere between
these two extremes as DNAN mechanisms,64 having vary-
ing degrees of bond order to both groups throughout the
reaction, with nucleophile bond formation trailing leaving-
group departure. The 1′-14C KIEs for ANDN and DNAN mech-
anisms vary inversely with the degree of dissociation, in the
range 1.025–1.16, with highly synchronous reactions near
the upper limit65 and highly dissociative reactions near the
lower limit.60,66–79 DN

∗AN mechanisms, however, result in
near-unity 1′-14C KIEs, ranging around 0.99–1.02.59,73,80–84

The 9-15N KIEs increase as the N-ribosidic bond order
decreases, ranging between 1.00 and 1.04 for zero and
complete dissociation, respectively. The �-secondary KIEs
resulting from hydrogen labeling at C-1′ are typically large
(1.15–1.34) for both DN

∗AN and DNAN mechanisms, due to
the change in orbital hybridization from sp3 to sp2 and the
decrease in steric crowding that would otherwise dampen
the out-of-plane bending mode of the C1′–H1′ bond at the
transition state. In contrast, a synchronous ANDN mecha-
nism would yield a low or inverse 1′-3H KIE due to restricted
bending resulting from increased steric crowding from

nucleophile and leaving-group participation at the transi-
tion state.

The experimental V/K and intrinsic KIEs for the arsenol-
ysis of inosine by BtPNP are given in Table 15.1. The 1′-
14C KIE of 2.6% and 1′-3H KIE of 14.1% are consistent
with a dissociative ANDN mechanism. The 9-15N KIE of

Table 15.1. Kinetic isotope effects for inosine arsenolysis
catalyzed by bovine PNP

Isotope Remote label V/K KIE Intrinsic KIEa

1′-14C 5′-3H 1.022 ± 0.005d 1.026 ± 0.006

9-15N, 5′-14Cb 5′-3H 1.009 ± 0.004d 1.010 ± 0.005

1′-3H 5′-14Cc 1.118 ± 0.003 1.141 ± 0.004

2′-3H 5′-14Cc 1.128 ± 0.003 1.152 ± 0.003

4′-3H 5′-14Cc 1.007 ± 0.003 1.008 ± 0.004

5′-3H 5′-14Cc 1.028 ± 0.004 1.033 ± 0.005

Notes: Reactions were in presence of 50 mM sodium arsenate at pH 7.5.
Data adapted from Kline and Schramm.55

a Intrinsic KIEs were corrected from V/K KIEs using Equation (15.3) and
C f = 0.19.

b 14C serves as a remote radiolabel for 15N.
c The 5′-14C KIE is assumed to be 1.
d Due to the KIE from the remote label, the V/K KIEs were corrected by

multiplying by the 5′-3H KIE.
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Figure 15.17. 3′-Endo and 3′-exo conformations of a ribooxacarbenium-
ion transition state. Hyperconjugation between the 2′-C–H 	 bond and
the adjacent p orbital at C-1′ is greater for the 3′-exo conformation due
to better orbital overlap, as can be seen in the Newman projections
(bottom). This generates a larger 2′-3H KIE.

1.0%, however, is very low for a highly dissociative mech-
anism as depicted in Figure 15.16. To account for this,
it is proposed that hypoxanthine departs as the neutral,
N7H tautomer rather than the anion during transition-
state formation. N7 protonation enhances the leaving
group ability of hypoxanthine and causes a decrease in
C8–N9 bond order, which in turn results in a decreased
9-15N KIE.

The remaining isotope effects in the ribosyl moiety pro-
vide information on the ribose conformation at the tran-
sition state. Of these, the most important is the 2′-3H KIE,
which results from hyperconjugation between the 2′-C–H
	-bond and the p orbital developing at C-1′. This electron
donation serves to stabilize the oxacarbenium-ion transi-

tion state but weakens the C–H bond, resulting in a less
restricted vibrational environment and therefore a fairly
large, normal KIE. The extent of hyperconjugation and con-
sequently the magnitude of the KIE are related to the geom-
etry of orbital overlap, being maximal at 0◦ and minimal at
90◦. Thus, a KIE �10% is typically indicative of a 3′-exo con-
formation, whereas a KIE �5%, is consistent with a 3′-endo
conformation (Figure 15.17). The large 15.2% 2′-3H KIE
observed for BtPNP clearly indicates that a 3′-exo confor-
mation is assumed at the transition state. Being three and
four bonds removed from the reaction center, respectively,
the 4′-3H and 5′-3H KIEs would be expected to be close to
unity, and this is observed for the former but not the latter.
The significant 5′-3H KIE of 3.3% cannot be explained sim-
ply by effects within the substrate alone; rather, it reflects
contributions from interactions with the enzyme, a finding
that is common among many nucleoside transferases and
hydrolases,59,60,65–71,80 and this will be described in more
detail in later sections of this chapter.

Computational modeling enabled Kline and Schramm
to assemble the structure of the BtPNP-catalyzed transi-
tion state for inosine arsenolysis (Figure 15.18). The ground-
state model of inosine was taken from crystallographic
coordinates,85 and this was compared by bond-vibrational
analysis to varied approximations of the transition state
until calculated KIEs best matched experimental values.
The transition state occurs early in the reaction coordinate,
as indicated by the significant C1′–N9 bond (1.77Å; bond
order = 0.38) that still exists to the leaving group. The 3.0Å
distance between C-1′ and the nucleophilic oxygen of arse-
nate indicates that essentially no bonding has yet formed at
the transition state.

With characteristics of the transition state in hand, it
was possible to design and evaluate various stable analogs

a) b)

Figure 15.18. Experimental KIEs for the arsenolysis of inosine (a) and transition-state geometry (b). Only the atoms
used in the computational analysis by Kline and Schramm are shown.55
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a)

b)

Figure 15.19. Immucillin-H (ImmH) and Immucillin-G (ImmG). (a) Structures of ImmH and ImmG with features
based on the transition state shown in red. (b) Molecular electrostatic potential (MEP) surfaces for ground-state
inosine, BtPNP transition state, and ImmH calculated using Gaussian03 and visualized with GaussView at a density
of 0.008 electrons/bohr3. Ball-and-stick models are superimposed with the surfaces. The color scale indicates
regions that are electron rich (red) and electron deficient (blue). Positive-charge character can clearly be seen at
N7 of the transition state and at the 4′-position of the ring in the analog, but these regions are electron rich in the
reactant state.

incorporating these chemical features. The next section
describes the first series of such analogs developed as
potent inhibitors against BtPNP.

FIRST-GENERATION TRANSITION-STATE ANALOGS
OF PNP: IMMUCILLINS

Immucillins as mimics of bovine PNP transition state

Comparison of ImmH with bovine PNP transition state
The key features of the BtPNP transition state that would
be desirable to be included in the design of an analog
include a partially charged ribooxacarbenium ion with
significant bonding to the leaving group, protonation at
N7 of hypoxanthine, and van der Waals contact to phos-
phate. Accordingly, Schramm and coworkers developed
Immucillin-H (ImmH) and Immucillin-G (ImmG) [Figure
15.19(a)].86 These compounds possess an imino group with
a pKa of 6.9,87 providing some positive charge character
at physiological pH. The replacement of N9 with a carbon
provided a C–C ribosidic linkage, preventing the suscep-
tibility to hydrolysis or phosphorolysis exhibited by sub-
strates. This modification also altered the conjugation in
the imidazole ring such that the pKa of N7 was elevated

from ∼2 in inosine and guanosine to ∼9 in ImmH and
ImmG.88 Although the pKa of N7 at the transition state is
not known, it has been estimated to be ≥7 as the ribosidic
bond becomes cleaved. The effect of including a proton at
N7 is similar to that observed with N7-methyl derivatives of
inosine and guanosine,89 which function as substrates with
enhanced reactivity, due to their ability to assist the purine
to accept electrons from the ribosidic bond.

Although the modifications introduced into ImmH
impose no steric alterations relative to inosine, they do
result in a major change in the molecular electrostatic
potential (MEP) surface [Figure 15.19(b)]. Whereas the reac-
tant state bears an abundance of electron density at the ring
oxygen and at N7, the transition state and ImmH exhibit
a great reduction in electron density in these regions. The
MEP similarity shared between a transition state and its
analog has been demonstrated for several enzymes to cor-
relate with the observed affinity of the enzyme for the
inhibitor.90,91 Thus, ImmH was expected to be a potent
transition-state inhibitor of PNP.

Synthesis of Immucillins
ImmH and ImmG were first synthesized by a linear scheme
of over twenty steps (Figure 15.20, Path A).92 Although this
provided proof of concept, this method is impractical for
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Figure 15.20. Synthesis of ImmH by linear (Path A) and convergent (Path B) strategies.

large-scale production. Evans et al. reconfigured the prepa-
ration as a convergent synthesis (Figure 15.20, Path B),
enabling efficient scale-up for use in biological and phar-
maceutical studies.93

Inhibition of bovine PNP by Immucillins

Determination of dissociation constants
for slow-onset inhibition
As mimics of the transition state, ImmH and ImmG bind
competitively versus substrate to the active site of PNP. The
PNP-catalyzed phosphorolysis of inosine in the presence
of these analogs was monitored by coupling the hypox-
anthine product to xanthine oxidase, converting it to uric
acid, which provides a chromophoric species for contin-
uous UV detection [Figure 15.21(a)].86 Following a brief
period of moderate inhibition, a second, strongly inhibited
stage was observed in inhibited samples [Figure 15.21(b)].
These characteristics are common to slow-onset, tight-
binding inhibitors, which bind reversibly as competitive
inhibitors during the first stage, but then a slow conforma-
tional change in the enzyme increases binding and restricts
their dissociation [Figure 15.21(a)]. Fitting initial and final
rates to the equation for competitive inhibition [Equation
(15.4)] enabled the determination of K i and K i

∗, the dis-
sociation constants for the initial, weakly bound complex
and the final, tightly bound complex, respectively [Figure
15.21(c)]:

vi = vo[S]
[S] + Km (1 + [I]/K i)

, (15.4)

where vi and vo are rates in the presence and absence of
inhibitor, respectively, and Km is the Michaelis constant.
Equation (15.4) is valid when the concentration of inhibitor
is at least tenfold greater than the concentration of enzyme;
otherwise, the concentration of free inhibitor must be cor-
rected for the amount bound to the enzyme [Equation
(15.5)]:

[I]free = [I]total − (1 − vi/vo) × [E]. (15.5)

ImmH was found to be a potent inhibitor having a K i of
41 nM and K ∗

i of 23 pM.86 Thus, ImmH binds 740,000 times
more tightly to PNP than inosine, as indicated by the Km/K ∗

i

ratio. The rate of conformational rearrangement leading to
the 2,000-fold increase in affinity from E·I to E∗·I was calcu-
lated to be governed by a rate constant of formation, k5, of
0.06 s−1 and of release, k 6, of only 0.000 04 s−1, correspond-
ing to a t1/2 of 4.8 h.

Stoichiometry of transition-state analog binding
The active form of mammalian PNPs consists of a
homotrimer of 32-kDa subunits,94 and the stoichiometry of
transition-state analog binding was determined. Following
an incubation period of 3–4 h in the presence of phos-
phate, mixtures of BtPNP and ImmH or ImmG at vary-
ing ratios were mixed with inosine and assayed for activ-
ity. A plot of initial rate versus moles of inhibitor per mole
of trimer revealed that binding of only one molecule per
trimer gives complete inhibition (Figure 15.22). The one-
third-the-sites inhibition indicates cooperativity between
subunits, whereby occupation of one subunit is sufficient
to prevent catalysis at all three sites. This conclusion is addi-
tionally supported by the observation that, in the absence of
phosphate, one PNP trimer hydrolyzes one molecule of ino-
sine, resulting in the formation of a tightly bound hypoxan-
thine (K d = 1.3 pM) at one of the subunits.58 Occupation of
one of the three active sites precludes reactivity with a sec-
ond molecule of inosine. Earlier kinetic studies and x-ray
structures had revealed that various ligands, including sub-
strates, products, and inhibitors, bind symmetrically at all
three sites.95 It is apparent, therefore, that the binding sites
exhibit differing ligand affinities depending on occupancy,
with the first site filling with the tightest affinity (i.e., pico-
molar), followed by the second and third sites with much
weaker binding (i.e., micromolar).88,96

Crystal structure of bovine PNP with ImmH

Bovine PNP was crystallized in the presence of excess
ImmH and phosphate to ensure symmetric occupancy of
the three subunits of the trimer.97 Comparisons of the 1.5Å
structure to previously solved structures of PNP complexes
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Figure 15.21. Kinetics of slow-onset inhibition of PNP by ImmH and ImmG. (a) In the kinetic
scheme, I = inhibitor, Ino = inosine, R1P = ribose 1-phosphate, Hx = hypoxanthine, PNP∗ =
tight-binding conformation of PNP, XO = xanthine oxidase. Phosphate is present at all steps
but has been omitted for clarity. Equations in terms of rate constants are given for K i,
the dissociation constant for the initial weakly bound complex, and K ∗

i , the dissociation
constant for the tightly bound complex. (b) Slow-onset inhibition kinetic profiles measured
for BtPNP in the presence of ImmH at the concentrations indicated. Hypoxanthine formation is
monitored by conversion to uric acid by xanthine oxidase. (c) The rate during the second stage
of inhibition (vs) is plotted against the inhibitor concentration to calculate the dissociation
constant, K ∗

i . Graphs are from Miles et al.86

with inosine and ribose 1-phosphate95 reveal important
structural changes that occur as the enzyme progresses
from the Michaelis complex, through the transition state,
to products. In particular, six hydrogen bonds were either

introduced or made stronger in the
PNP·ImmH·PO4 complex [Figure 15.23(b)]
compared to the PNP·inosine·SO4 complex
(Figure 15.23). Additionally, the nucleophilic
oxygen of the phosphate has been brought
nearly 1Å closer to C-1′ and forms an ion
pair with the cationic N-4′. The 3.2Å distance
between the nucleophile and the anomeric
carbon of ImmH is consistent with the
structure for the early dissociative transition
state determined by Kline and Schramm.55

Continued progress to products is accompa-
nied with relaxation of nine atomic contacts
with the enzyme [Figure 15.23(c)].

Of particular interest from the structural
comparisons is the discovery of unprece-
dented motion in the reaction coordinate.
First, the protein immobilizes the phosphate
and hypoxanthine groups within the active
site through a network of hydrogen bonds.
Then, generation of the ribooxacarbenium-
ion transition state occurs as the enzyme
brings the 5′-hydroxyl and nucleophilic
oxygen of the phosphate into alignment with
the ring oxygen (nitrogen in ImmH) in an
“oxygen stack” (Figure 15.24).24 Dynamic
vibrational compression of the three oxygen
atoms introduces localized electron density
that increases the leaving-group ability of
the purine base through stabilization of
the developing oxacarbenium-ion transition
state. This hypothesis is further supported by
quantum mechanical/molecular mechan-
ical calculations, which demonstrated
a correlation between catalysis and the
motions of O-5′ and OP toward O-4′.15 The
negative charge that this stack motion intro-
duces into the purine ring is neutralized
by the stronger H-bond interactions to N1,
O6, and N7 observed in the transition-
state analog complex. The nucleophilic
phosphate anion, located directly below
the anomeric carbon, attracts electrophile
migration to form the phosphate ester bond.
The positions of the phosphate and of the
5′-end of the ribooxacarbenium ion remain
fixed during the 1.7Å movement of C-1′,
which is best visualized by a superposition
of the transition-state analog and ribose
1-phosphate (Figure 15.25). As there are no

enzyme residues in proximity of the anomeric carbon, this
migration occurs without the need for protein motion.
This “nucleophilic displacement by electrophile migra-
tion” mechanism, as it has been termed,97 is common to
many N-ribosyltransferases including PNPs from other
species, purine phosphoribosyltransferases,64,98–100 orotate
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Figure 15.22. Titration of BtPNP trimer with ImmG. Mixtures of PNP and
varying concentrations of inhibitor were preincubated for 3–4 h, inosine
was added, and production of hypoxanthine was monitored by the xan-
thine oxidase coupled assay. Initial reaction rates are plotted against the
ratio of moles of ImmG to moles of PNP trimer.

phosphoribosyltransferase (OPRT),101 sirtuins,102 DNA-
uracil glycosylase,82,103 and lysozyme.104

Protein dynamics with bound ImmH

As indicated by the slow-onset, tight-binding nature of
inhibition, the association of ImmH in PNP’s active site
induces a conformational change that causes the protein
to condense around the transition-state analog in a rela-
tively static, stable complex. This structure not only greatly
restricts release of inhibitor from its active site but also hin-
ders access from solvent.

Figure 15.24. Dynamic vibrational modes leading to generation of the
transition state. Reaction-promoting motions are represented by the
larger, green arrows, while examples of anticatalytic vibrational modes
are shown as smaller, red arrows. Localized electron density gener-
ated from dynamic compression (green dashed lines) of the “oxygen
stack,” consisting of O-5′ and O-4′ of inosine and OP of the phos-
phate nucleophile, stabilizes the developing oxacarbenium ion and intro-
duces electron density into the purine leaving group. Neighboring enzy-
matic residues stabilize this negative charge density by the formation of
hydrogen bonds, which were either much weaker or nonexistent in the
Michaelis complex. Modified from Schramm.24

The limited dynamic motion in the transition-state
analog-bound enzyme was revealed in a hydrogen/
deuterium (H/D) solvent exchange study by Wang and
coworkers.96 Introduction of a protein sample into D2O
causes deuterium incorporation into the solvent-accessible

Figure 15.23. Structures of BtPNP complexed with (a) substrate analogs (inosine and SO4), (b) transition-state
analog (ImmH and PO4), and (c) product analogs (9-deazahypoxanthine and ribose 1-phosphate), based on atomic
positions in the x-ray crystal structures (PDB IDs 1A9S,95 1B8O,97 and 1A9T,95 respectively). Hydrogen-bond
distances are indicated in angstroms. Conversion from the reactant state to the transition state introduces six
stronger H-bonds and closer contacts (red). Once past the transition state, nine H-bonds and contacts relax (blue)
in the product complex. Modified from Fedorov et al.97
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Figure 15.25. Electrophile migration in the mechanism of inosine phos-
phorolysis by PNP. The crystal structures of the PNP·ImmH·PO4 and
PNP·hypoxanthine·ribose 1-phosphate complexes were overlaid; shown
are only the ligands ImmH/PO4 (cyan) and Hx/R1P (red). C-1′ is indicated
in green.

backbone amides. Although surface amides exchange
readily, on the order of seconds or faster, those buried in
the hydrophobic protein interior do not exchange with-
out treatment with denaturants. Intermediate residues
exchange slowly, on the order of minutes to hours, requir-
ing motion of the protein for solvent exposure; it is these
dynamically accessible amides that may be distinguished
when comparing H/D exchange of various enzyme/ligand
complexes. The BtPNP apoprotein was found to exchange
122 of its amides rapidly, followed by a slower exchange
of fifty additional positions (Figure 15.26). Introduction of
formycin B, a substrate analog, or hypoxanthine blocked
the exchange of ten of these amides, but in the presence
of ImmH, thirty-two protons were protected. Although
formycin B and ImmH are isosteric, it is apparent that the

Figure 15.26. H/D exchange of BtPNP bound with substrate, product, and
transition-state analogs. The number of deuterium atoms introduced into
each protein complex in D2O as a function of time was determined by
electrospray ionization mass spectrometry (ESI-MS). Hx = hypoxanthine;
formycin B = 8-aza-9-deazainosine. Modified from Wang et al.96

Table 15.2. Kinetic isotope effects for inosine arsenolysis
catalyzed by human PNP

Isotope Remote label V/K KIE Intrinsic KIEa

1′-14C 4′-3H 1.002 ± 0.006d 1.002 ± 0.006

9-15N, 4′-3Hb 5′-14C 1.025 ± 0.006d 1.029 ± 0.006

1′-3H 5′-14Cc 1.160 ± 0.004 1.184 ± 0.004

2′-3H 5′-14Cc 1.024 ± 0.004 1.031 ± 0.004

4′-3H 5′-14Cc 1.021 ± 0.003 1.024 ± 0.003

5′-3H 5′-14Cc 1.054 ± 0.002 1.062 ± 0.002

Notes: Reactions were in presence of 50 mM sodium arsenate at pH 7.5.
Data adapted from Lewandowicz and Schramm.59

a Intrinsic KIEs were corrected from V/K KIEs using Equation (15.3) and
C f = 0.147; errors do not include error from C f.

b 3H serves as a remote radiolabel for 15N.
c The 5′-14C KIE is assumed to be 1.
d Due to the KIE from the remote label, the V/K KIEs were corrected by

multiplying by the 4′-3H KIE.

106-fold difference in their binding affinities accounts for
the observed differences in H/D exchange. Thus, this study
demonstrated that formation of the Michaelis complex
results in some degree of restricted protein motion but that
binding of transition-state analogs captures the enzyme in
a collapsed state with greatly reduced dynamics.

HUMAN PNP AND SECOND-GENERATION
TRANSITION-STATE ANALOGS: DADME-IMMUCILLINS

Human PNP

The transition-state structure analysis with bovine PNP
and development of the Immucillin inhibitors served
as a confirmation of the principles relating enzymatic
transition-state formation to tight-binding interactions
with transition-state analogs. As indicated earlier (see
“Physiological role and basis for drug targeting”), PNP has
been linked to a rare T-cell immunodeficiency and conse-
quently has been implicated as a drug target for T-cell lym-
phoma and various autoimmune diseases. Thus, in the con-
text of drug development, it is essential to establish that the
transition-state analog methodology extends to the human
ortholog of PNP.

Human PNP transition state
Human PNP (HsPNP) shares 87% amino acid sequence
identity with BtPNP, with active-site residues being almost
completely conserved. Despite this strong similarity,
though, the transition states of the two orthologs were
found to be different. As before, arsenolysis of labeled
inosines was used to measure kinetic isotope effects
for HsPNP (Table 15.2).59 The most diagnostic of these
KIEs is that from the anomeric carbon. A 1′-14C KIE of
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0.2% is consistent with a DN
∗AN mechanism,

wherein a discrete oxacarbenium-ion inter-
mediate is generated, whose corresponding
transition state bears complete dissociation
of the leaving group and no significant bond
order to the nucleophile; both groups are
only in van der Waals contact (�3.0Å) with
the ribooxacarbenium ion (Figure 15.27).
The relatively large KIEs for 1′-3H (18.4%) and
9-15N (2.9%) lend additional support for this
SN1 mechanism. These values are both larger
than those found in BtPNP, where a Pauling
bond order of 0.4 was found for the ribosidic
bond at the transition state. Furthermore, a
2′-3H KIE of 3.1% established that, in contrast
to BtPNP, the ribosyl moiety adopts a 3-endo
conformation, placing the 2-C–H bond at a
dihedral angle of 57.3◦ to the empty p orbital
at C-1.

Comparing bovine and human PNP tran-
sition states indicates that BtPNP has the
earlier transition state, closer to reactants
than to products, while HsPNP has a later
transition state, resembling a fully developed
ribooxacarbenium-ion intermediate (Figure
15.28). According to transition-state theory,
this distinction in transition-state structure
between the two enzymes may be mani-
fested in inhibition with analogs designed
with specific features of the transition state.

Inhibition of Human PNP with Immucillins
When the transition state of HsPNP was
solved in 2004, a family of Immucillin-
based inhibitors with substitutions and
small modifications in the iminoribitol and
deazahypoxanthine moieties had been char-
acterized with BtPNP (Figure 15.29).105,106

Along with the parent compounds ImmH
and ImmG, these analogs were tested as
inhibitors for both BtPNP and HsPNP.
Most of these compounds exhibited the
slow-onset, tight-binding inhibition profiles
familiar for ImmH and ImmG, resulting
in picomolar or low nanomolar inhibition
constants. In all cases, the final dissociation
constants, K ∗

i , were higher with HsPNP
than with BtPNP. With ImmH and ImmG,
for example, K ∗

i values of 58 and 42 pM,
respectively, were measured, but with BtPNP,
the corresponding values were 23 and
30 pM.41,106,107 This trend in dissociation
constant differences between the two PNP
enzymes suggested that the degree of inhibi-
tion is correlated to the structural similarity
between the transition state and its mimics.

a) b)

Figure 15.27. Experimental KIEs for inosine arsenolysis by human PNP (a) and computa-
tionally determined transition-state geometry (b). The unity 1′-14C KIE indicates complete
dissociation of hypoxanthine and no significant bond order to arsenate; thus, these groups
are only in van der Waals contact (� 3.0Å) with the ribooxacarbenium ion. The 2′-C–H bond
makes a 57.3◦ dihedral angle with the p orbital at C-1′. This angle places the ribosyl ring
in a 3-endo conformation.

Figure 15.28. Comparison of the reaction coordinates for the reactions catalyzed by bovine
and human PNPs. The BtPNP-catalyzed reaction (DNAN, red) proceeds through an early
transition state, resembling reactants more than products, with a C–N distance of 1.8Å.
The HsPNP-catalyzed reaction (DN

∗AN, green) proceeds through an oxacarbenium ion inter-
mediate, with � 3.0Å separation from both leaving group and nucleophile. The transition
state resembles the intermediate (either just before or after), occurring later in the reaction
coordinate than that of BtPNP. Adapted from Taylor Ringia and Schramm.141
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Figure 15.29. Selected Immucillin inhibitors and dissociation constants for bovine and human PNPs. The tightest
values are reported – K ∗

i in cases of slow-onset inhibition, K i in other cases. Sources: a Miles et al.,86 b Evans
et al.,106 c Taylor Ringia et al.,114 d Lewandowicz et al.,117 e Kicska et al.,105 f Kicska et al.,142 g Barsacchi et al.,143

h Erion et al.,56 i Stoeckler et al.144

DADMe-Immucillins

Comparison of DADMe-ImmH with human PNP
transition state
To establish the most powerful inhibitors for human
PNP, distinct features of its transition state need to be
exploited. A good HsPNP transition-state mimic should
include a cationic ribose analog with chemical stability at
the anomeric position and only van der Waals contact to
phosphate. Distinct from the BtPNP transition-state analog
the distance from the leaving group to the 1′-carbocation
is greater for HsPNP and needs to be increased in analogs
specific for this enzyme. DADMe-Immucillin-H (DADMe-
ImmH, abbreviated from 4′-Deaza-1′-Aza-2′-Deoxy-1′,
9-Methylene-ImmH) and DADMe-Immucillin-G (DADMe-
ImmG) were prepared as second-generation transition-
state analogs specific for HsPNP [Figure 15.30(a)]. DADMe-
ImmH and DADMe-ImmG were found to inhibit HsPNP
with K ∗

i values of 1141 and 7 pM,107 respectively, corre-
sponding to 2,000,000- to 3,600,000-fold tighter binding
than substrates, based on Km/Kd values. These inhibition
values are five- to tenfold lower than the corresponding
ImmH and ImmG values with the human enzyme, indicat-
ing that HsPNP transition-state features are better captured
by these second-generation inhibitors.

The DADMe-Immucillins possess an N-substituted
hydroxymethylpyrrolidine ring, which is known to have
a pKa near 10 and therefore is nearly fully protonated at

physiological pH values.108 The nitrogen cationic mimic
of the carbocation was moved from the 4′ position to the
anomeric position, which has been demonstrated to be the
center in the ribooxacarbenium ion that bears the greatest
positive charge.30,109 Placing nitrogen at this position of the
nucleoside analog creates chemical instability in the pres-
ence of an �-alcohol group. Because 2′-deoxy derivatives
of nucleosides (i.e., deoxyinosine and deoxyguanosine) are
good substrates for PNP, chemical instability is avoided by
preparing these modified Immucillin analogs as 2′-deoxy
compounds. Another significant alteration to the Immu-
cillin structure is the introduction of a methylene linker
between N-1′ and C-9. The result of this modification is
to increase the distance to the leaving group from 1.5Å in
ImmH to 2.5Å in DADMe-ImmH.

The electronic impact of the alterations is illustrated in
the MEPs for DADMe-ImmH [Figure 15.30(b)]. Both ImmH
and DADMe-ImmH capture electrostatic features of the
transition state much more than inosine because of the imi-
noribitol ring. A major distinction between the two analogs
is the location of the positive charge; DADMe-ImmH, as in
the oxacarbenium-ion transition state, places this charge at
the 1′ position, making it a better match to the transition
state for HsPNP.

Synthesis of DADMe-Immucillins
DADMe-ImmH and DADMe-ImmG were first synthesized
by an extension of the methods used for preparation
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a)

b)

Figure 15.30. DADMe-Immucillin-H (DADMe-ImmH) and DADMe-Immucillin-G (DADMe-ImmG). (a) Structures of
DADMe-ImmH and DADMe-ImmG with features based on the transition state shown in red. Dissociation constants
are indicated for BtPNP and HsPNP. Sources: DADMe-ImmH, Murkin et al.41; DADMe-ImmG, Lewandowicz et al.107

(b) Molecular electrostatic potential (MEP) surfaces for ground-state inosine, HsPNP transition state, ImmH, and
DADMe-ImmH, calculated using Gaussian03 and visualized with GaussView at a density of 0.008 electrons/bohr3.
Positive-charge character found at C-1 of the ribooxacarbenium-ion transition state, though close to this vicinity
in ImmH, is found at this position in DADMe-ImmH.

of ImmH and ImmG. The lithium-protected purine
(Figure 15.20) was formylated to the aldehyde, which was
reductively aminated with (3R,4R)-3-hydroxy-4-(hydro-
xymethyl) pyrrolidine and deprotected to give DADMe-
ImmH (Figure 15.31, Path A).110 This method required the
convergent synthesis of the pyrrolidine (thirteen steps) and
aldehyde (nine steps) and was therefore of similar efficiency

as the preparation of ImmH. A more elegant method was
achieved through the formaldehyde-mediated Mannich
reaction between the pyrrolidine and 9-deazahypoxanthine
(Figure 15.31, Path B).111 This mild reaction, complete in a
single step with no need for protecting groups, shortened
the synthesis by six steps before the Mannich condensation
step.112

Figure 15.31. Synthesis of DADMe-ImmH by reductive amination (Path A) or Mannich reaction (Path B). Synthesis
by the Mannich reaction is more efficient by seven steps. The pyrrolidine nitrogen of DADMe-ImmH becomes
protonated when dissolved in aqueous solutions at pH � 10.
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Crystal structure of human PNP with DADMe-ImmH

Human PNP was crystallized in the presence of
DADMe-ImmH and sulfate (PDB 1RSZ), mimics of the
oxacarbenium-ion transition state and phosphate.41 For
comparison, the human enzyme was crystallized with
ImmH and phosphate (PDB 1RR6) or sulfate (1RT9);
the structures are nearly identical to that of bovine PNP
described earlier. The fold of the HsPNP protein struc-
ture is unchanged by substitution of DADMe-ImmH in
place of ImmH [Figure 15.32(a)]. Close examination of
the active site reveals that the hydrogen-bond network
is tightened in the complex with DADMe-ImmH [Figure
15.32(b) and 15.32(c)]. In particular, three hydrogen bonds
to the 9-deazahypoxanthine moiety have become 0.2 to
0.6Å shorter, and the phenolic oxygen of Tyr88 has moved
0.3Å closer to O-3′. The absence of the 2′-hydroxyl group
in DADMe-ImmH, which is H-bonded only to O3 of phos-
phate in the ImmH complex, permits a water molecule
to occupy this site and to form hydrogen bonds with N-1′

and O-3′ of DADMe-ImmH and O4 and O3 of sulfate. These
bridging H-bonds are proposed to compensate for losses
due to the absence of the 2′-hydroxyl group.

The ion-pair interaction between the transition-state
analog and phosphate (sulfate) is also of significance. Plac-
ing the cationic atom of DADMe-ImmH at the 1′ posi-
tion in addition to insertion of the methylene group
results in closer proximity of the pyrrolidine cation toward
the nucleophilic anion. The C-1′–O4 distance in the
HsPNP·ImmH·PO4 complex is 3.5Å, while the N-1′–O4 dis-
tance in the HsPNP·DADMe-ImmH·SO4 complex is 3.0Å.
The presence of a methylene bridge linking the pyrroli-
dine and deazahypoxanthine groups introduces a geomet-
ric change to separate these moieties by 1.0Å relative to
ImmH, enabling them to interact more favorably with enzy-
matic residues and the nucleophile. ImmH is cationic in
the active site of HsPNP87 and forms a 3.5Å ion pair with
phosphate [green dashed line in Figure 15.32(b)]. DADMe-
ImmH establishes a 3.0Å ion pair [green dashed line in Fig-
ure 15.32(c)]. A similarly improved ion-pair association was
also observed for these ligands with PNP from Mycobac-
terium tuberculosis.113 According to Coulomb’s law, the
tighter ion pair could stabilize the binding energy by as
much as 15.7 kcal/mol (assuming a dielectric constant of 1).

MECHANISTIC IMPLICATIONS FROM TWO GENERATIONS
OF PNP INHIBITORS

Transition-state discrimination by selective inhibition of PNPs

Transition-state studies with bovine and human PNPs
established that the same chemical reaction can be altered
through subtle differences in enzyme/substrate interac-
tions. The BtPNP-catalyzed reaction proceeds through a
DNAN mechanism, with transition-state formation early in
the reaction coordinate and significant bond order to the

leaving group (Figure 15.28). Despite the 87% sequence
identity between the enzymes, HsPNP uses a stepwise
DN

∗AN mechanism, in which the transition state occurs
later in the reaction coordinate, closely resembling the
ribooxacarbenium-ion/hypoxanthine intermediate.

Transition-state theory predicts that differences in
transition-state structure should be manifested in the tight-
ness of binding of transition-state analogs. This hypothe-
sis was probed by exploring the relative affinities of BtPNP
and HsPNP for various representatives from the Immu-
cillin and DADMe-Immucillin families.114 The Immucillins
were modeled after the BtPNP transition state, with the key
features being a short iminoribitol-base distance, iminori-
bocationic character, and N7 protonation. The DADMe-
Immucillins incorporated aspects of the more dissociative
HsPNP transition state, including greater pyrrolidine-base
separation and relocation of the positively charged nitro-
gen to the 1′-position. When tested against BtPNP, ImmH
is a stronger inhibitor than DADMe-ImmH, with disso-
ciation constants of 23 and 110 pM, respectively (Table
15.3). However, HsPNP has opposite affinities for these
inhibitors, with K ∗

i values of 58 and 11 pM, respectively.
A similar inhibition pattern was observed with ImmG and
DADMe-ImmG. 2′-Deoxy-ImmH and 2′-deoxy-ImmG were
tested against the enzymes to assess the contribution of
the 2′-hydroxyl. Both compounds bound less tightly (K i

∗ =
120–210 pM) to BtPNP and HsPNP than their 2′-hydroxy
counterparts without preference for human or bovine PNPs.
Finally, ImmH and DADMe-ImmH analogs without pyrroli-
dine hydroxyl groups were tested against the two enzymes.
Although removal of the hydroxyls elevated the dissociation
constants into the nanomolar range, geometric differences
between these compounds were sufficient to show prefer-
ential binding of the ImmH analog to BtPNP and of the
DADMe-ImmH analog to HsPNP.

Enantiomers of ImmH and DADMe-ImmH

Many pharmaceutically active sugars and nucleosides
maintain potency in their enantiomeric forms. For instance,
2′-deoxy-l-cytidine and other l-nucleoside derivatives have
shown potent, selective inhibition of replication of the
hepatitis B virus, and Levovirin exhibits different antivi-
ral activity and improved safety characteristics compared
to its d-enantiomer, Ribavirin (Figure 15.33). ImmH and
DADMe-ImmH were synthesized as l-nucleoside analogs,
having inverted stereochemistry at all stereocenters rela-
tive to the familiar d counterparts.115 When these enan-
tiomeric analogs were tested against inosine phospho-
rolysis by HsPNP, they were found to be inhibitors with
dissociation constants of 12 nM for l-ImmH and 380 pM
for l-DADMe-ImmH (Table 15.4).116 Although these com-
pounds are 210- and 35-fold less effective than their d coun-
terparts, their binding affinity is remarkable considering
that many ImmH and DADMe-ImmH derivatives exhibit
high nanomolar-to-micromolar dissociation constants.117
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a)

b) c)

Figure 15.32. Structures of HsPNP complexed with ImmH and DADMe-ImmH. (a) Overlaid x-ray crystal structures
of HsPNP·ImmH·PO4 (ImmH in green; PDB ID 1RR6) and HsPNP·DADMe-ImmH·SO4 (DADMe-ImmH in cyan; PDB ID
1RSZ).41 (b) Hydrogen bonds and closest contacts for ImmH (b) and DADMe-ImmH (c) complexes, with distances
indicated in angstroms. Significantly stronger hydrogen bonds have been indicated in red, along with a new water
molecule in the DADMe-ImmH complex. Hydrogen bonds present in the ImmH complex but not in the DADMe-ImmH
complex are in blue. The ion-pair interactions and distances are in green.
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Table 15.3. Dissociation constants for various Immucillins and DADMe-Immucillins with bovine and human PNPs

Dissociation constant (Kd)

Compound Structure HsPNP (pM) BtPNP (pM)

ImmH

NH

N

O

H
N

H
N

OHOH

HO

57.9 ± 1.5a 23 ± 5b

DADMe-ImmH

N

OH

HO

NH

N

H
N

O

10.7 ± 1.1a 110 ± 10c

ImmG

NH

N

H
N

O

H
N

OHOH

HO
NH2

42 ± 6d 30 ± 6b

DADMe-ImmG

N

OH

HO

NH

N

O
H
N

NH2

7 ± 1e 23 ± 5c

2′-d-ImmH

NH

N

H
N

H
N

OH

HO

O

140 ± 10 f 120 ± 20c

2′-d-ImmG

NH

N

H
N

H
N

OH

HO

O

NH2

180 ± 10 f 210 ± 40c

9-(pyrrolidin-2-yl)-9-deazaHx

NH

N

N

H

H
O

N
840,000 ± 110,000c 380,000 ± 20,000c

9-(pyrrolidin-1-ylmethyl)-9-deazaHx N

H
NH

N

N

O

5,500 ± 900c 21,000 ± 3,000c

Notes: Dissociation constants represent final, equilibrium values following slow-onset inhibition when applicable (all cases with
Kd � 10 nM).
a Data from Murkin et al.41

b Data from Miles et al.86

c Data from Taylor Ringia et al.114

d Data from Evans et al.106

e Data from Evans et al.110

f Data from Lewandowicz et al.117
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Figure 15.33. l-Enantiomers of pharmaceutically active nucleosides,
including ImmH and DADMe-ImmH.

Enzyme/inhibitor interactions that permit l-enantiomer
Immucillin binding were determined by cocrystallization
with HsPNP and phosphate.116 The x-ray crystal struc-
tures (l-ImmH, PDB 2Q7O; l-DADMe-ImmH, PDB 3BGS),
although nearly identical in overall protein structure to the
corresponding complexes with the d-nucleoside analogs,
revealed differences in H-bonding patterns and ionic inter-
actions. Comparison of the enzyme-bound configurations
of l- and d-ImmH shows that the bases bind in the same
manner, but the plane of the iminoribitol ring is rotated
180◦ about the C1′–C9 bond [Figures 15.34(a) and 15.34(b)].
This geometry prevents the 2′-, 3′-, and 5′-OH groups of l-
ImmH from forming the same favorable H-bonds as with
d-ImmH; in particular, a hydrogen bond between His257
and the 5′-OH has been shown by mutational analysis to
be critical for the tight-binding inhibition exhibited by d-
ImmH (see “Remote interactions important in transition-
state formation and potent inhibition by Immucillins”),41

Table 15.4. Dissociation constants for d- and l-Immucillins and
DADMe-Immucillins

Dissociation constants

Compound Ki (nM) K∗
i (nM) l/d Kd ratioa

d-ImmH 3.3 ± 0.2b 0.0579 ± 0.0015c 210

l-ImmH 190 ± 30d 12 ± 2d

d-DADMe-ImmH 1.10 ± 0.12b 0.0107 ± 0.0011c 35

l-DADMe-ImmH 0.38 ± 0.03d Not observed

a For ImmH, K ∗
i /K ∗

i was used and for DADMe-ImmH, K i/K ∗
i was used.

b Data adapted from Evans et al.110

c Data adapted from Murkin et al.41

d Data adapted from Rinaldo-Matthis et al.116

but this important interaction is lost with the l-isomer.
Comparison of the d- and l-DADMe-ImmH structures indi-
cates only small deviations in the positions of the 3′- and
5′-OH groups (Figures 15.34(c) and 15.34(d)]. A significant
structural deviation is that the phosphate in the l-DADMe-
ImmH complex has rotated such that the N1′–O4 distance
is increased from 3.0Å to 3.9Å, resulting in a weaker ion-
pair interaction. Although disruption of some of the H-
bonding and ionic interactions found in the d-enantiomer
transition-state analog complexes results in moderately
compromised binding affinities with the l-enantiomers,
these compounds are capable of some structural compen-
sation. In the case of l-ImmH, the altered iminoribitol
geometry allows for alternative hydrogen bonds to the 2′-
OH (from phosphate and water) and to the 3′-OH (from
Nε of His257). In the case of l-DADMe-ImmH, flexibil-
ity imparted from the methylene bridge enables spatial
adjustment of the pyrrolidine ring, placing the 3′- and 5′-
OH groups in nearly the same location as with the d iso-
mer and maintaining their hydrogen bonds. This charac-
teristic of the d- and l-DADMe-ImmH compounds likely
accounts for the smaller reduction in binding affinity com-
pared to d- and l-ImmH (35-fold vs. 210-fold, respec-
tively).

Remote interactions important in transition-state formation
and potent inhibition by Immucillins

Isotope effect studies with bovine and human PNPs
revealed significant 5′-3H V/K KIEs for the arsenolysis
of inosine (2.8% and 5.4%, respectively). The 5′-position
of the substrate is not directly involved in the reaction
chemistry, and the surprisingly large isotope effects reflect
enzyme/substrate interactions in the molecule on binding
and/or at the transition state. The 5′-hydroxyl of inosine is
involved in a hydrogen bond to His257, and this residue
was mutated to assess the importance of this interaction
on transition-state formation and the binding of ImmH and
DADMe-ImmH.41

The mutants His257Phe, His257Gly, and His257Asp
exhibited intrinsic 5′-3H KIEs differing from those of the
native enzyme (Table 15.5). His257Phe and His257Gly
yielded inverse KIEs of −3.2% and −14.1%, respectively,
while the native enzyme and His257Asp gave normal KIEs
of 4.6% and 6.9%. These findings divided the variants
into two groups: those incapable of 5′-hydroxyl hydrogen
bonding and those capable of forming a hydrogen bond
to the 5′-hydroxyl. H-bonding polarizes the 5′-OH, thereby
loosening the adjacent 5′-C–H bonds through hypercon-
jugation, resulting in a normal KIE. Thus, the 5′-3H KIE is
sensitive to the H-bonding environment at the transition
state and underscores the importance of His257 in develop-
ment of the transition state. Recall that O-5′ participates in
an “oxygen stack” with O-4′ and OP (Figure 15.24), providing
electron density to stabilize the incipient oxacarbenium ion
and to assist cleavage of the ribosidic bond. This action is
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Figure 15.34. Overlapping views of enantiomers of ImmH and DADMe-ImmH from overlayed
structures of their respective complexes with HsPNP. In (a) and (b), d-ImmH is in gray and
l-ImmH is in magenta. In (c) and (d), d-DADMe-ImmH is in gray and l-DADMe-ImmH is
in yellow. Phosphates are shown in orange and red, and sulfate (from the d-DADMe-ImmH
structure) is shown in tan and red. Modified from Rinaldo-Matthis et al.116

Table 15.5. 5′-3H KIEs for inosine arsenolysis catalyzed by His257 mutants of
human PNP

V/K KIE Intrinsic KIE

PNP variant KIE % KIE %

Native 1.054 ± 0.002a 5.4% (Normal) 1.046 ± 0.004 4.6% (Normal)

His257Asp 1.046 ± 0.004 4.6% (Normal) 1.069 ± 0.007 6.9% (Normal)

His257Phe 0.992 ± 0.003 –0.8% (Inverse) 0.968 ± 0.005 –3.2% (Inverse)

His257Gly 0.925 ± 0.005 –7.5% (Inverse) 0.859 ± 0.007 –14.1% (Inverse)

Notes: The intrinsic KIE was calculated from the V/K KIE after correcting for forward commitment
and a 5′-3H binding isotope effect; see Murkin et al. for full details.41 All values except the
following are from Murkin et al.41

a Lewandowicz and Schramm.59

proposed to be dynamically driven by
motion from enzyme residues including
His257.16,118

It was reasoned that if mutation of
His257 affects transition-state formation,
it would also interfere with the binding
of the transition-state analogs. Binding of
DADMe-ImmH resulted in subnanomolar
inhibition of all PNP mutants (Table 15.6),
which, after accounting for differing Km val-
ues, gave Km/Kd values ranging from 337,000
to 2,800,000. These values are within a factor
of 11 of the native value; therefore, binding
of DADMe-ImmH is relatively unaffected
by alteration of His257. In contrast, these
mutants bound ImmH more poorly than
native PNP, yielding as much as 370-fold
lower Km/Kd values. Mutation also abolished
the slow-onset inhibition characteristic of
ImmH. Thus, His257 is most important
in early stages of the reaction coordinate,
where significant bond order still remains
to the leaving group, as it is better mim-
icked by the first-generation analog. In later
stages of the reaction coordinate, which are
better mimicked by the second-generation
inhibitor, DADMe-ImmH, His257 serves
a diminished role, and interactions at the
reaction center dominate.

Transition-state features from binding isotope
effects of ImmH and DADMe-ImmH

Mutations at His257 highlighted the impor-
tant role of enzymatic interactions at
the 5′-end of the transition state and its
analogs. The 5′-3H KIEs for the arsenolysis
of inosine indicate the degree of vibra-
tional bond distortion as the substrate
proceeds from solution to the enzymatic
transition state. Murkin et al. examined the
extent of 5′-hydroxyl group distortions that
occur on binding of the transition-state
analogs ImmH and DADMe-ImmH.119

Chemical synthesis afforded [5′-3H]ImmH
and [5′-3H]DADMe-ImmH, as well as the
remotely labeled isotopologs [5–14C]ImmH
and [methylene-14C]DADMe-ImmH (Figure
15.35). Mixtures of each 3H/14C pair were
separately incubated with HsPNP and phos-
phate to establish an equilibrium between
free and tightly bound inhibitor.

Different bond vibrational environments
between unbound and bound states gives
rise to an equilibrium binding isotope
effect (BIE), in much the same way that a
difference between the ground state and
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Table 15.6. Dissociation constants of transition-state analogs with HsPNP
and His257 mutants

DADMe-ImmH ImmH

Km/Kd x-fold Km/Kd x-fold
PNP variant Kd value change Kd value change

Native 10.7 pM 3,700,000 1 57.9 pM 690,000 1

His257Asp 900 nM 1,500,000 2 86 nM 15,700 45

His257Phe 950 nM 337,000 11 172 nM 1,860 370

His257Gly 270 nM 2,800,000 1 11.0 nM 68,100 10

Notes: These dissociation constants are final, equilibrium constants after any slow-onset phase
of inhibition, if applicable (those where Kd � 1 nM). Data adapted from Murkin et al.41

transition state generates a KIE. ImmH was found to yield
a 5′-3H BIE of 12.6%, and DADMe-ImmH gave an unprece-
dented, large 29.2% BIE (Table 15.7).119 These values dwarf
the 1.5% and 4.6% isotope effects resulting from binding
of the substrate and from formation of the transition state,
respectively.41 Thus, much greater bond distortional forces
are operative with the binding of transition-state analogs
than in formation of the actual transition state.

These BIEs provide some insight regarding the nature
of transition-state formation. In the thermodynamic model
of transition-state theory, the transition state is viewed –
at least conceptually – in equilibrium with the enzyme, to
which it binds tightly. This theory would predict the mag-
nitude of the transition-state analog BIEs to be similar to
that of the KIE for formation of the transition state (∼5%). A
dynamic model of transition-state formation explains tight
binding of analogs by a conversion of dynamic transition-
state excursions into a more stable protein structure con-
densed around the chemically inert transition-state mimic.
It is conceivable that this effect captures the ligand in a
more bond-distorted form, giving rise to larger BIEs.

PHARMACOLOGICAL APPLICATIONS OF IMMH
AND DADME-IMMH

The rare genetic PNP deficiency is associated with T-cell
immunodeficiency due to an accumulation of dGuo in
blood, which ultimately causes inhibition of DNA replica-
tion through the inhibition of ribonucleotide reductase by
dGTP in dividing T cells (Figure 15.10). PNP inhibitors such
as the Immucillins could exploit this behavior in prolifera-
tive T-cell disorders by causing arrest of cell division specifi-
cally in T cells. Ongoing efforts have been made to study the
in vivo effects of these potent PNP inhibitors.

In vivo studies with ImmH

Effects of ImmH on cultured human T cells
The effects of ImmH on the growth of the human T-cell cul-
ture lines CCRF-CEM and MOLT-4 were evaluated by treat-

ment with varying concentrations of ImmH
in the presence and absence of dGuo.120

Inclusion of dGuo is required for the cellular
accumulation of dGTP that occurs with PNP
deficiency. Proliferation of both cell lines was
selectively blocked by ImmH (IC50 = 0.4–
5 nM) and only in the presence of dGuo
(Figure 15.36). Inhibition of DNA synthe-
sis by ImmH was also demonstrated by the
reduced incorporation of [3H]thymidine in
its presence [Figure 15.36(b)]. At concentra-
tions up to 50 �M, ImmH exhibited no toxic
effects on a variety of non-T-cell tumors from

Figure 15.35. Inhibition of human T-cell leukemia cell lines by the joint
action of ImmH and dGuo. Geo and BL-2 are human colon carcinoma and
B-cell leukemia cell lines, respectively, while MOLT-4 and CEM are human
T-cell leukemia cell lines. Cell lines were incubated with 20 �M dGuo
and varying concentrations of ImmH and were analyzed for cell viability
by (A) WST-1 and (B) incorporation of [3H]thymidine. (C) Inhibition of
proliferation only occurs when ImmH is treated in the presence of dGuo,
but the activity can be regained by deoxycytidine (dCyd) rescue (dCR);
dCyd, the preferred substrate for dCyd kinase, is converted to dCMP
which inhibits the phosphorylation of dGuo, thereby preventing inhibition
of ribonucleotide reductase by dGTP (see Figure 15.10). Reproduced from
Kicska et al.120
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Table 15.7. 5′-3H binding isotope effects for substrate and
transition-state analogs with human PNP

BIE/KIE
Ligands Kd or Km Type of IE Isotope effect

[5′-3H]-, [5′-14C]Inosine 40 �M BIEa 1.015 ± 0.003 (9)b

Intrinsic KIE 1.046 ± 0.004 (9)b

[5′-3H]-, [5-14C]ImmH 58 pM BIE 1.126 ± 0.005 (32)c

[5′-3H]-, [14C]DADMe- 11 pM BIE 1.292 ± 0.012 (27)c

ImmH

Notes: The BIE (or intrinsic KIE) is expressed as ± standard error with the
number of replicates in parentheses.
a BIE measurements with inosine were performed using sulfate as a sub-

strate analog in place of phosphate.
b Data adapted from: Murkin et al.41

c Data adapted from: Murkin et al.119

various tissues, further supporting the inhibitor’s T-cell-
specific mode of action.

The effect of ImmH on normal human T cells was inves-
tigated in the presence of dGuo with and without cell-
division stimulants.120 Without stimulation, T cells were
unaffected; however, rapid cell division caused by the intro-
duction of monocytic cells and interleukin-2 was greatly
reduced by increasing doses of ImmH (IC50 = 5 nM; Fig-
ure 15.37). These findings, together with direct observation
of elevated levels of dGTP, demonstrated that inhibition of
PNP by ImmH causes dGTP-mediated apoptosis specifi-
cally in rapidly dividing T cells.

Figure 15.36. Inhibition of [3H]thymidine incorporation in activated
human T-cells by ImmH. Proliferation was determined with no stimu-
lation (�, A), with physiological levels of interleukin-2 (IL-2, �, upper
panel), or with excess IL-2 and monocytic cells (�, B). Reproduced from
Kicska et al.120

Figure 15.37. Effect of ImmH on SCID mouse survival following engraft-
ment with human peripheral blood lymphocytes. Treated mice were given
20 mg/kg ImmH orally for five days prior to engraftment to boost levels of
dGuo. Dosing then continued until the animals died. Modified from Bantia
et al.121

Effects of ImmH on mice and human T-cell xenografts
The whole-organism effectiveness of ImmH as a potential
therapeutic agent for autoimmune disorders was tested in
immunologically compromised mice.121 A single dose of
10 mg/kg ImmH caused dGuo to accumulate up to 5 �M
in the blood, where it is normally present at undetectable
levels in both mice and humans. Similar levels (3 to 17 �M)
of dGuo accumulate in the plasma of humans afflicted with
genetic PNP deficiency.

A similar protocol with severe combined immunode-
ficient (SCID) mice grafted with human peripheral blood
lymphocytes (hPBLs) served as a model for human immune
transplantation rejection.121 Host antigens stimulate divi-
sion of the hPBLs, causing death of the SCID mice due
to xenogeneic graft-versus-host disease. Mice treated with
ImmH had a doubled lifespan (Figure 15.38). The mouse
xenograft study established that ImmH provides sufficient
total-organism PNP inhibition to maintain elevated levels
of dGuo.

Clinical trials with ImmH (aka Forodesine)

Human patient clinical trials with ImmH have been ini-
tiated by BioCryst Pharmaceuticals Inc. under the trade
name Forodesine (initially as BCX-1777). Intravenous and
oral formulations have been administered to patients suf-
fering from various T-cell and B-cell lymphomas and
leukemias, as well as from solid tumors.122–129 Early tri-
als demonstrated that ImmH has a good safety profile,
with few serious adverse effects, and is effective physio-
logically. Phase IIa trials in patients with advanced T-cell
leukemia resulted in a 35% overall response rate (22% com-
plete response, 13% partial response) when treated once
daily over a 5-day-per-week cycle. ImmH is reported to be
in clinical trials for other leukemias and lymphomas.130



241 Purine nucleoside phosphorylases as targets for transition-state analog design

Figure 15.38. Oral availability and inhibition of mouse blood PNP by ImmH
and DADMe-ImmH. t1/2 onset is the time following oral administration that
50% of PNP activity remains. The t1/2 for activity recovery is 100 h for
ImmH (◦) and 275 h for DADMe-ImmH (•). Reproduced from Lewandowicz
et al.107

In vivo studies with DADMe-ImmH

The in vivo inhibition of mouse PNP by DADMe-ImmH was
used to determine inhibitor bioavailability and physiologi-
cal response.107 Oral administration of 0.8 mg/kg ImmH or
DADMe-ImmH caused blood PNP activity to drop rapidly,
reaching 50% in 14 and 10 min, respectively (Figure 15.39).
Both analogs are orally available and associate with blood
PNP faster than they can be excreted or metabolized. Con-
tinued monitoring of blood PNP activity indicated that after
100 h (4 days) with ImmH, 50% of the original level had been
recovered, but DADMe-ImmH required 275 h (11.5 days) to

reach this point. This long recovery time reflects replace-
ment of blood cells with new erythrocytes. As the lifespan
of mouse erythrocytes is approximately 25 days, in the 11.5
days for half-recovery, 46% of the blood cells would have
been replaced. This mouse model suggests that DADMe-
ImmH attains the ultimate physiological goal in inhibitor
design. A single oral dose results in inhibition of the target
enzyme for the lifetime of the cell.

THIRD-GENERATION PNP TRANSITION-STATE ANALOGS
AND BEYOND

Acyclic and achiral Immucillins

DATMe-ImmH
The Immucillin and DADMe-Immucillin generations of
PNP transition-state analogs have proven effective both
in vitro and in vivo. However, the chemical structures of
the purine base and iminoribitol and pyrrolidine rings
demand significant synthetic effort. A third generation of
PNP inhibitors was designed to replace the pyrrolidine
present in the DADMe series with an acyclic hydroxylated
amine.

Acyclic DADMe-based compounds, 3′,4′-seco-DADMe-
ImmH and its 5′-truncated analogs, had the C3′–C4′ bond
removed and were modest inhibitors of HsPNP, with K i

values between 120 and 1.3 nM (Figure 15.40).117,131 Alter-
ations in the aminoalcohol group gave an array of dis-
sociation constants with many in the low-nanomolar to
picomolar range.132 Derivatives with a secondary amine
gave the best binding to PNP (compare second and third
rows to first row in Figure 15.40). The tightest binding
secondary amines possessed three alcohol groups. One of

Figure 15.39. Schematic diagram of the measurement of binding isotope effects (BIEs) by ultrafiltration. The inset
shows the locations of the radioisotope labels in the transition-state analogs ImmH and DADMe-ImmH. A mixture
of HsPNP, phosphate, and 3H/14C labeled inhibitor was added to the top chamber in an ultrafiltration apparatus.
After applying pressure, solution containing only unbound inhibitor passed through the dialysis membrane to the
bottom chamber, leaving a mixture of bound and unbound inhibitor (of equal concentration to that below) above.
Equal-volume aliquots were removed, and radioactivity was measured by scintillation counting.
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Figure 15.40. Examples of acyclic analogs of DADMe-ImmH. Of all analogs only DATMe-ImmH exhibited slow-onset
inhibition, and the dissociation constant (K ∗

i ) for the final, tight complex is given. Compound names do not follow
IUPAC standards but are used to indicate changes relative to the parent compounds DADMe-ImmH and DATMe-
ImmH. Numbering is maintained from the parent; in the case of DATMe-ImmH, the amino-substituted carbon is
given the lowest locant (i.e., 2′); prefixes as defined by IUPAC are as follows: seco = bond breakage in a ring;
nor = methylene removal; homo = methylene insertion; abeo = bond migration; ent = enantiomer, epi = epimer.
Sources: a Lewandowicz et al.,117 b Semeraro et al.,131 c Taylor et al.132

these trihydroxy secondary amines, DATMe-ImmH,133 gave
tight, slow-onset inhibition of HsPNP. With a K ∗

i of 8.7 pM,
DATMe-ImmH is more potent than ImmH and DADMe-
ImmH, yet requires fewer synthetic steps. Seemingly minor
stereochemical modifications of DATMe-ImmH (second
row of Figure 15.40) abolish the slow-onset inhibitory
behavior and result in weaker affinity. Crucial binding inter-
actions may be revealed by protein structural studies with
these new inhibitors.

Achiral Immucillins
The recent discovery of potent inhibition by the third gen-
eration of PNP transition-state analogs provides promise
for the further development of synthetically accessible
inhibitors. Particularly desirable are analogs lacking stere-
ocenters to permit facile preparation from readily available

precursors. Removal of the C3′–C4′ bond of the DADMe-
pyrrolidine ring destroys the stereogenicity at these two
carbons, as exemplified by the first three compounds
in Figure 15.40. One of the DATMe-ImmH derivatives,
4′(3′→2′)-abeo-DATMe-ImmH, contains Tris base as its tri-
hydroxyalkylamine group. Further elaboration on this small
family of PNP transition-state analogs may uncover pico-
molar inhibitors that would be suitable for pharmaceutical
undertakings.

Conclusions

Scrutiny of the mammalian PNPs has led to novel insights
for enzymatic reaction mechanisms, transition-state struc-
ture, and inhibitor design. The PNPs catalyze ribosyl
transfer chemistry via migration of the anomeric carbon
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between the purine leaving group and the anionic nucle-
ophile. This mechanism was first described for PNP and
has since been shown to apply to other glycosyltrans-
ferases. With fixed nucleophiles in the catalytic site, a
ribooxacarbenium-ion transition state is formed at some
point during the ribosyl migration. The exact nature of PNP
transition states is dictated by the migration distance and
protein vibrational modes that form the transition state.
Remarkable differences in transition-state structure can
occur with nearly identical protein structures. These dif-
ferences can guide the design of transition-state analogs
that demonstrate specificity for enzyme variants from dif-
ferent species. Knowledge of the transition-state structures
has permitted access to picomolar compounds with favor-
able pharmokinetic properties. Two of these have entered
clinical trials for T-cell disease. PNP has also served as one
of the first enzymes for exploration of catalytic-site-induced
substrate distortions by binding isotope effects. These
results are providing new insights into the fundamental
notions of enzymatic catalysis, induced fit, and transition-
state structure.
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GPCR 3D modeling

Frank U. Axe

INTRODUCTION

G-protein-coupled receptors (GPCRs) are a superfamily of
membrane proteins that provide cells with the ability to
communicate with each other and their environment.1,2

The core feature of these proteins is their seven trans-
membrane helices (7TM) that form a bundle located in the
cell membrane (Figure 16.1). The seven helices are linked
together by three extracellular loops (ECLs) and three intra-
cellular loops (ICLs) and also include N- and C-terminal
regions. This 7TM region is responsible for receiving a wide
range of signals from small-molecule amines, peptides, pro-
teins, small odorant and taste molecules, and light, which
either bind in the interior of the 7TM bundle or to its extra-
cellular surface or interact with chromophores located in its
interior. These external signals trigger the coupling of the
ICLs (in particular ICL5) with the heterotrimeric G-protein
transducin, which in turn initiates a cascade of signaling
events that lead to proliferation, differentiation, develop-
ment, cell survival, angiogenesis, and hypertrophy.1,2 In
light of these facts it is not surprising to find that GPCRs are
implicated as targets in a wide range of indications, includ-
ing heart disease, allergies, depression, mental illness, cog-
nition, and hypertension.1–3

The estimated number of GPCRs in humans is ∼1,000
members or ∼1% of the genome. There are five major
classes of GPCRs that are defined by their sequence homol-
ogy and the type of endogenous ligand.1,2 The most impor-
tant of these classes are A, B, and C. GPCRs are dysfunc-
tional or dysregulated in many diseases making them the
target of drug therapies.

Many of today’s approved drugs target GPCRs and
account for somewhere between 30 and 40% of the rev-
enues from pharmaceutical sales.3 This amounts to over
(U.S.)$23.5 billion in sales annually.3 Many of the well-
known blockbuster drugs in use today like Zyrtec, Claritin,
Singulair, and Risperdal target GPCRs.3 So it is clear that
many of the future drug treatments of existing and new dis-
eases will involve GPCRs as targets for those therapies. As a
result there is an ever-growing need to streamline the dis-
covery process while leveraging all available resources to
bring these new drug therapies to market.

Structure-based drug design is an integral part of the
drug discovery process today and has played an essential
role in the discovery of new pharmaceutical medicines.4–7

In the past modeling of GPCR-based therapeutics more
often than not involved traditional approaches like 2D
searches (similarity, substructure),6 quantitative struc-
ture activity relationships (QSAR),6 pharmacophore,8 and
shape9 analysis due to the absence of experimental struc-
tures of compounds bound to GPCRs. These methods can
pinpoint new compound series or identify essential fea-
tures for recognition by the receptor; however, they can-
not predict outside the range of the probe or training set of
molecule(s)4 used in the analysis. Three dimensional (3D)
modeling involving the target can enable the identification
and refinement of leads without the necessity of a large set
of active and inactive compounds.5–7

Since the year 2000 three new crystal structures of GPCRs
have been published.10–14 These structures have helped
advance the state of the art of 3D modeling of GPCRs. This
chapter reviews these new advances as well as the past liter-
ature on 3D modeling of GPCR drug interactions, including
the current experimental structural information, techni-
ques for building GPCR models, docking and virtual screen-
ing methods, and molecular dynamics studies. In addition
future directions in 3D GPCR modeling are discussed.

CRYSTAL STRUCTURES

The experimental structural characterization of the 7TM
bundle has proved elusive for several reasons, including
conformational flexibility, purity, and solubility.10–14 Thus,
there is a paucity of crystal structures available for drug
design work, especially when compared to what is available
for enzyme targets. An essential ingredient to any target-
based drug discovery project is a crystal structure of the tar-
get or one that is homologous to the target of interest.4,5 In
2000 the first complete crystal structure of the mammalian
GPCR, bovine rhodopsin, was solved.10,11

Rhodopsin is a light-activated GPCR in which 11-cis-
retinal acts as a chromophore absorbing light, causing it to
change conformation in the binding pocket and triggering
a conformational change of the 7TM region. This initial
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Figure 16.1. GPCR structure, stimuli, and function. GPCRs receive messages from endogenous ligands that can
vary significantly. The receptor activates the G-protein (Transducin) and signals gene expression resulting in a full
array of biological responses.

structure corresponds to the inactive form of the receptor.
The structure revealed that the seven helices are arranged
antiparallel and that the retinal molecule was covalently
linked to an amino acid side chain (LYS 296) in an interior
binding pocket that had little access to the intra- and extra-
cellular and membrane regions. There are also a number of
kinks found in several helices, which are initiated by proline
residues and may be involved in conformational changes
that take place when the receptor is activated.

More recently the crystal structure of the �2-andrenergic
receptor was solved in two ways. First, with the aid of an
antibody complexed to helices 5 and 6 and, second, as an
engineered fusion protein in which the intracellular loop
between helices 5 and 6 was replace with a T4-lysozyme
protein. Each of these modifications served a similar func-
tion: to stabilize helices 5 and 6 and provide a more polar
environment for crystallization.12–14

The qualitative arrangement of the 7TM bundle is very
similar for the two types of GPCR structures (rhodopsin and

�2-AR) as evidenced visually in Figure 16.2. Specifically all
seven helices have similar positions and tilts relative to each
other (Figure 16.2). A noticeable difference in the two struc-
tures is in the loops on the extracellular side of each protein
between helices 4 and 5. In rhodopsin there exists a beta-
sheet structure that seals off the active site from the extra-
cellular solvent, while in �2-AR there is an additional small
helical structure making the binding pocket more acces-
sible. These differences underscore the variation that can
occur in homologous proteins and is undoubtedly impor-
tant when building homology model (vida infra). Finally,
the structure of �2-AR contains the surrogate T4-lysozyme
(T4L) protein for the ECL between helices 5 and 6. Because
this structure has a bound inverse-agonist then T4L could
be construed as stabilizing the inactive form of the recep-
tor.

The ligand-binding sites in both rhodopsin and �2-AR
are in very similar locations within the 7TM bundle and
occupy roughly the same size and shape. The 11-cis-retinal
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a) b)

Figure 16.2. Crystal structures of bovine rhodopsin (1F88) (a) and �2-
andrenergic (2RH1) (b) receptors shown parallel to the lipid membrane.
The 11-cis-retinal chromophore of rhodopsin and the inverse-agonist
carazolol of �2-AR are shown in green and orange, respectively. The T-4
lysozyme domain of �2-AR is highlighted in red. Images were created
with PYMOL 0.99 (http://pymol.sourceforge.net/).

and carazolol molecules occupy very similar regions of
space within the two receptors as evidenced by the struc-
tures of the two proteins viewed from similar vantage points
(Figure 16.3).

Not surprisingly the carazolol ligand bound to �2-AR is
found to make a key salt-bridging interaction with its basic
amine and Asp113 on helix 3. The 2-hydroxyl group of the
propyl chain makes hydrogen-bonding interactions with
Asn312 on helix 7 (Figure 16.3). Finally, the HN group of the
carbazole ring is within hydrogen bond distance of Ser203
on helix 5. All of these interactions were determined to be
important for the binding of adrenalin and noradrenalin
as well and are believed to be an important part of antag-
onist binding in general.5 The encumbrance of ECL2 in
rhodopsin is clearly visible (Figure 16.3).

3D STRUCTURE MODELING

Essentially all GPCR drug targets have no known struc-
ture, so one has to be constructed based on the available
sequence data and the structure of a homologously rela-
ted protein(s) or construct a model from first principles.5,15

Before the bovine rhodopsin structure was available homol-
ogy models were based on the structure of bacterial
rhodopsin,16–20 the C� coordinates of bovine rhodopsin,21

or even the low-resolution crystal data on bovine rhodop-
sin.22,23 These structural data were used to construct the
first full models of GPCRs.24–27 Many of these models were
guided only by these structures and in some cases early de
novo approaches were employed.24–27

Homology modeling

When the structure of a target of interest is unknown often
a suitable model of that target structure can be built if there
exists at least one closely related structure. This homology
relationship has been exploited by modelers for some
time.15 Until very recently all of the homology models
of GPCRs relied exclusively on bovine rhodopsin28–30 for
building a homology model. This limits the amount of vari-
ation of structural information going into building a homol-
ogy model and also suggests that GPCRs belonging to more
remote classes (i.e., B and C) will not be as good a match.
When the recent crystal structures of �2-AR12–14 are com-
pared with bovine rhodopsin,10,11 both class A GPCRs, there
is good structural correspondence between the two recep-
tors, which strengthens the opinion that homology mod-
els based on bovine rhodopsin should be reasonable espe-
cially for class A GPCRs; however, there are differences. The
number of homology models based on rhodopsin is exten-
sive and they were primarily developed for the purpose

a) b)

Figure 16.3. The ligand binding sites in the crystal structures of bovine rhodopsin (left) with 11-cis-retinal bound
(1F88) and �2-andrenergic (right) with carazolol bound (2RH1) viewed from similar vantage points. Images were
created with PYMOL 0.99 (http://pymol.sourceforge.net/).
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of ligand docking and refinement as well as site-directed
mutagenesis.31–35

A recent publication compares a homology model of �2-
AR based on bovine rhodopsin with the new �2-AR crys-
tal structures.36 Two models were created, one with the
rhodopsin-like second ECL and the other had the second
ECL built de novo, and the inverse-agonist carazolol was
docked into each of these models. In the former of the
two structures the ECL interfered with binding of carazolol,
whereas in the later of the two models the ECL did not
affect the binding of carazolol. These results are consistent
with the experimental differences in the second ECL (Fig-
ures 16.2 and 16.3) for rhodopsin and �2-AR.

De novo structure prediction
The inherent limitations of homology modeling and the
unique structural template of the GPCR 7TM region has
prompted several groups to develop de novo-based ap-
proaches to generating GPCR models that may be applied
to receptors in families other than Family A, which
have more remote homology with the bovine rhodopsin
template.

Two de novo methods have emerged lately that are very
similar in their approach to constructing a GPCR model
structure, which are the PREDICT

37,38 and MembStruk
39–41

methods. The protocol for predicting GPCR structures by
these methods consists of roughly the following steps: (1)
predict the TM regions using hydrophobicity analysis and
other sequence analysis techniques; (2) construct the indi-
vidual helices and pack them together; (3) have each puta-
tive structure in the previous step undergo coarse grain
optimization; and (4) perform full optimizations of the
structures.

Validation of the structures predicted by these methods
was twofold. First, for the structure of bovine rhodopsin
built by these techniques, a direct comparison with the
crystal structure was made and found to be in close agree-
ment. Second, for models in which there is no experimen-
tal crystal structure, the docking and assessment of ligand-
binding energies was performed and found to be consis-
tent with experimental values. Furthermore, some of these
docked structures provided useful insights regarding the
nature of the ligand binding interactions.37–41

DOCKING STUDIES

Manual docking

Molecular docking is perhaps one of the most illumi-
nating and sublime procedures used by computational
chemists.4–7 It has the ability to reveal aspects of ligand
binding that are neither obvious nor trivial and cannot
be ascertained from the ligands alone. The literature is
filled with numerous studies in which the binding of small
molecules and peptides was examined.43–52 This usually
involved a homology model of the receptor and the docking

Figure 16.4. Histamine H3 antagonist docked in the binding site of a
homology model followed by 200 ps of molecular dynamics simulation.36

Image was created with PYMOL 0.99 (http://pymol.sourceforge.net/).

of the ligand was either manual and/or semiautomated.
Moreover, site-directed mutagenesis data were often used
to determine key residues responsible for endogenous lig-
and activity as well as antagonist activity too.

For example, homology models have been used to
study ligand binding in several types of aminoergic recep-
tors, including dopamine,44,45 histamine,33,36 �-andrener-
gic,34,43,44 and serotonin.45 Several docking studies involv-
ing the �-andrenergic receptors and antagonists and their
natural ligand34,43,44 usually include the basic amine inter-
action with the aspartic acid side chain on helix 3 (D3.32),
which is consistent with the �2-AR structure with cara-
zolol bound (Figure 16.3). In addition, the catachol hydroxyl
groups make hydrogen bonding interactions with the two
serine side chains on helix 5 (S5.42 and S5.46).

Other examples of docking include the histamine
receptors.33,36 Currently, there are four known histamine
subtypes (H1, H2, H3 and H4).36 Antagonists of H1 and H2

comprise some of the better known “blockbuster” drugs
on the market today. Like all aminoergic receptors there is
a highly conserved aspartic acid on helix 3 (D3.32)5 that
interacts with the basic amine of the natural ligand his-
tamine as well as exogenous antagonists and antagonists
(Figure 16.4).

In the H3 docking model there is an additional basic
amine that is based on the model and existing struc-
ture/activity relationships are postulated to interact with a
glutamic acid (GLU 206) side chain on helix 5.

Fast docking and virtual screening
There is an ever-increasing use of 3D drug targets to rapidly
dock compound collections into their active site to discover
novel leads for that target especially when no lead com-
pounds are known.6,7 Several studies involving this type
of virtual screening applied to GPCRs has appeared in the
literature.46–52 Most of these studies relied on homology
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models built from the bovine rhodopsin structure or newer
de novo methods. However, because of the advent of the �2-
AR structures there are some new virtual screening studies
reported in the literature as well.

Three-dimensional virtual screening applications using
homology models of the GPCR based on the bovine
rhodopsin structure are plentiful.46–49 In a systematic study
of the dopamine (D3), muscarinic (M1), and vasopressin
(V1a) receptors by Bissantz et al., three different docking
methods with seven scoring functions were used.46 The
binding sites of the GPCR models were preoptimized to
be able to accommodate antagonists better. Each model
was then used to dock a randomly chosen set of 990 drug-
like molecules plus ten known antagonists for each recep-
tor. The hit rates from these procedures ranged between
5 and 40%. Another systematic study employing PREDICT
built models for five different receptors, including biogenic
amine, peptide, and chemokine receptors.38 One dock-
ing method and multiple scoring functions were used to
screen ∼1.6 million druglike compounds available from
�20 vendors worldwide. Hits rates between 12 and 21%
were achieved for the five receptors, and in most cases the
best hit was a novel and potent (1–100 nM) compound.
A recent study of the melanin-concentrating hormone
receptor identified six novel chemotypes of 187,084 drug-
like compounds screened, which amounted to a tenfold
improvement over random high-throughput screening.47

In a final 3D virtual screening study on the histamine H4

receptor, close to nine million compounds that were avail-
able commercially were screened in silico, of which 255
compounds were ordered and 16 were considered active.48

Another common technique is to use a hierarchi-
cal approach in which a large compound collection is
first screened using pharmacophores and the compounds
obtained from that filtering process are then docked in
the receptor active site.50,51 This approach takes advan-
tage of the speed and well-established success of pharma-
cophore searching while potentially eliminating many hits
that match the pharmacophore but are poor candidates for
the target due to steric clashes with the protein target.

In a recent article, the newly published �2-AR struc-
ture was used to test the ability to dock �2-AR antago-
nists in to the binding site.52 First, a series of seven known
�2-AR antagonists were docked and compared with the
experimentally bound carazolol compound. The docked
structures of the seven beta-blockers, which included cara-
zolol, were in very good agreement with the binding mode
adopted by carazolol in the crystal structure. Similar inter-
actions with the conserved aspartic acidic group on helix
3 and hydrogen bond donor/acceptor groups on helix 5
were achieved. Also, the placement of hydrophobic groups
that extended beyond the region of the carbazol macrocy-
cle were reasonable. Next, high-throughput docking with
an in-house proprietary (∼400,000 compounds) database
was performed. In the top 30 compounds, 11 known beta-
blockers were found. Finally, a second high-throughput

docking experiment involving 4 million compounds was
performed. The docking identified compounds that appear
to bind in two very different parts of the binding site. One
binding region is the traditional site occupied by the known
antagonists like carazolol; the second is a region near one
of the extracellular loops. Many of the compounds pre-
dicted to bind in the second region are unique chemo-
types for �2-AR antagonists. This second binding site is in
the loop region of the �2-AR structure that differs from the
bovine rhodopsin structure (Figure 16.2). So it is unlikely
that these compounds would be found in a virtual screen-
ing of a rhodopsin-based homology model. The experimen-
tal results of these new findings are not yet published; how-
ever, the ability to make very novel predictions like this is
the single most important advantage of the 3D structure-
based approach.

MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics (MD) simulation is an important tool
for studying the flexibility, stability, and large-scale motions
of molecules often in a condensed-phase environment.4

These approaches are still very computationally intensive
and are still not used routinely in industry for drug discov-
ery. However, these methods are often needed to predict
properties of a system that an individual structure cannot
provide such as average properties like structure and ther-
modynamic properties like binding energies.4 Two ways of
carrying out these calculations4 are (1) to surround the pro-
tein system with explicit solvent and impose a periodic
boundary condition and (2) to use continuum methods like
the generalized Born model. MD has also become a very
important technique used to construct and anneal model
structures.4

Explicit bilayer and solvent

Simulation of protein/ligand interactions are often greatly
influenced by the environment in which a protein system
resides. This is particularly true for GPCRs that straddle
two very different physical regions that have different
hydrophilic/hydrophobic properties, namely water and
lipid.

In a recent article53 a 40 ns simulation on the bovine
rhodopsin structure examined the average structure of the
protein, the average structure of the retinal binding site,
the large-scale motions, and the lipid/water interactions.
During the simulation the structure of the protein was well
maintained, especially the helices. There were larger devia-
tions in the loop and N- and C-terminal regions. A change
was observed in the hydrogen bonding near the retinal
chromophore that leads to some shifts in the tilts of several
helices. This was hypothesized to be important for the reac-
tion cycle of the receptor.

Simulations of �2-AR with epinephrine and butoxam-
ine bound were run using a de novo model.54 Butox amine
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Figure 16.5. Schematic representation of the continuum dielectric
regions used in a generalized Born model approach to modeling a GPCR
embedded in a lipid bilayer.

maintained a stable complex in the binding site between
the residues of helices 3 and 5. However, in the case of
epinephrine, an agonist, water molecules during the sim-
ulation inserted themselves into the hydrogen bonds of the
catechol groups and serine residue side chains on helix 5.
This result implies that the model GPCR structure corre-
sponds to the inactive form of the receptor.

A study of the cholecysokinin receptor and its natural lig-
and the nonapeptide CCK9 was simulated for 31 ns.55 The
structure of the GPCR was well preserved, especially the
in the helical regions and there were larger motions in the
loop regions. Water-mediated interactions are shown to be
involved in the binding. Free-energy perturbation calcula-
tions were performed in which several different amino acids
of CCK9 were mutated. The calculated relative free ener-
gies were in good agreement with experiment. These results
offer some validation of the docking model of the ligand.

Finally MD simulations of the CXCR4 receptor with
an inverse-agonist T140, a peptide, and a partial agonist
AMD3100, a small molecule, were published.56 T140 was
predicted to bind in the ECL region, while AMD3100 was
predicted to bind more inside the helical bundle.

Implicit bilayer and solvent
Performing simulations of the GPCR 7TM region using an
explicit membrane are computationally demanding; there-
fore methods that treat the solvents around a protein as
a continuum have been extended to include a protein
embedded in a lipid membrane.57,58 These methods have
the advantage of being computationally faster and a more
straightforward way to analyze results and making it much

easier to manage the calculation. These approaches use an
extension of the Born model for solvation59 that is imple-
mented by considering the membrane region and the pro-
tein embedded in it to be a low dielectric region and the sur-
rounding aqueous regions, corresponding to the intra- and
extracellular regions, to be high dielectric regions (Figure
16.5).57 In addition to the electrostatic treatment of these
two regions there is an empirical hydrophobic term based
on surface area.57,58

One of the first applications of this implicit membrane
model method was on bovine rhodopsin.57 This study was
primarily aimed at validating the newly developed method.
The orientation of the rhodopsin crystal structure in the
implicit membrane was first tested in the implicit mem-
brane model. The 7TM bundle was systematically varied
relative to the membrane region through rigid-body trans-
lations and rotations. The energy function predicted an ori-
entation of the 7TM helices that are perpendicular to the
bilayer region. The model also predicted the central part
of the GPCR with its hydrophobic side chains well local-
ized in the hydrophobic bilayer region, while hydrophilic
side chains of the loop regions preferred the high dielectric
region corresponding to aqueous solution.

The implicit bilayer model was applied to the study of
several antagonists in the binding site of a histamine H3

receptor model.36 The antagonists were manually docked
into the binding site that is in close proximity to where 11-
cis-retinal binds in rhodopsin. The key amino acid residues
responsible for binding were previously determined by site-
directed mutagenesis for the histamine receptors and they
are analogous to the key residues involved in ligand bind-
ing in aminoergic GPCRs (vida supra).36 Over the course of
a 200-ps molecular dynamics simulation the helices of the
receptor remained embedded in the membrane slab while
the intra- and extracellular loops remained in the aqueous
regions of the model (Figure 16.4).

Model building
Another use of molecular dynamics methods is for build-
ing a model of the active state of GPCRs from the inactive
rhodopsin structure.60,61 Several groups have used exper-
imentally determined constraints for active forms of the
receptor and applied them during the course of MD simu-
lations to coerce the receptor structure into its active state.
Recently a crystal structure corresponding to the active
form of rhodopsin was determined and compared to the
inactive form and these models. The initial finding is that
the changes in going to the active state in the crystal are
smaller than what is implied by the experimental distance
constraints.62

FRAGMENT-BASED METHODS

The consistent success of 3D modeling of GPCRs in homol-
ogy and docking suggests that these approaches could
also be useful for fragment-based discovery.63,64 That is



254 Frank U. Axe

small fragments, which by themselves are weak binders, are
determined to bind to specific regions of the active site.
These fragments are generally very weak binders in that
they do not constitute leads in and of themselves; however,
they may be linked together to form a significantly more
active compound. These methods offer the ability to vir-
tually screen weak binders and provide the mechanism to
link them together. If experimental data pertaining to the
binding location are available then the GPCR models can
be used.

CONCLUSIONS

Over the course of this decade there have been significant
advances in the experimental structural characterization of
GPCRs, namely the bovine rhodopsin and, more recently,
the �2-AR crystal structures. These structures have in turn
propelled the development of homology models of GPCRs
in a wide range of studies. In addition advances in docking
technology, in particular rapid methods, have made the in
silico screening of large libraries now possible. These meth-
ods are now poised to give a greater impact in the discovery
of new GPCR ligands.

The use of bovine rhodopsin to produce homology mod-
els of GPCRs since 2000 has been shown to be reasonable.
The ability of these models to provide insights regarding
ligand/receptor interactions lends credence to their accu-
racy and reliability at least for class A receptors. The new
crystal structures of �2-AR with a ligand bound not only
provides confirmation of past modeling approaches involv-
ing homology models followed by ligand docking but also
provides additional information that will improve on this
established modeling approach in the future.

More crystal structures of GPCRs are needed to improve
homology modeling, our overall understanding of how
GPCRs work, how they interact with ligands and drugs,
and how they differ among the various classes. There is a
need for more crystal structures of GPCRs with ligands that
bind in the helices and in the extracellular region, involving
GPCRs of different classes, in active and inactive states.

Virtual screening studies have demonstrated the ability
of GPCR models and docking calculations to identify leads
for drug discovery with hit rates comparable to what is seen
for enzyme targets. A new virtual screening study for the �2-
AR receptor has identified very novel ligands that previously
have not been reported. Some of these ligands bind in non-
traditional regions of the binding site. This is certainly very
encouraging and what one would anticipate virtual screen-
ing to afford; however, the jury is still out on the ultimate
outcome of the predicted results.
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Structure-based design of potent glycogen
phosphorylase inhibitors

Qiaolin Deng

INTRODUCTION

Diabetes is a disorder of metabolism and is widely recog-
nized as one of the leading causes of death and disability.
It is estimated that more than 180 million people world-
wide have diabetes.1 In the United States, more than 20 mil-
lion people – about 7.0% of the population – have diabetes.2

Diabetes is a lifelong condition that, if left untreated, can
lead to serious complications such as nerve damage, kid-
ney failure, blindness, and cardiovascular diseases.3 Type
2 diabetes is a chronic metabolic disorder characterized
by fed and fasting hyperglycemia. Glycogen phosphory-
lase (GP) is a key enzyme in the regulation of glycogen
metabolism by catalyzing the breakdown of glycogen to
glucose-1-phosphate. In muscle, glucose 1-phosphate is
used to generate metabolic energy, whereas in liver it is also
converted to glucose for export to peripheral tissues. There
are three human isozymes of GP: liver, muscle, and brain,
named to denote the tissues in which they are preferentially
expressed. The muscle and brain isozymes serve the tissues
in which they are found, whereas the liver isozyme meets
the glycemic demands of the body as a whole. Previous
reports have indicated that GP inhibition can lower blood
glucose in diabetic models, thus validating it as a potential
therapeutic target for treatment of type 2 diabetes.4–6 The
liver isozyme of human glycogen phosphorylase (HLGP) is
considered to be the preferred target for therapeutic inter-
vention with GP inhibitors because inhibition of muscle or
brain GP could lead to undesirable side effects.

HLGP and human muscle glycogen phosphorylase
(HMGP) are dimers composed of two identical monomers,
with more than 800 amino acid residues in each. Glycogen
phosphorylase exists in two interconvertible forms: a Ser14
phosphorylated high-activity form (GPa) and a dephos-
phorylated low-activity resting form (GPb). Both forms
exist in equilibrium between two different conformational
states: a more active R state and a less active T state.7

The more active R state is induced by the substrate and
by allosteric effectors such as adenosine monophosphate
(AMP), whereas the less active T state is stabilized by
inhibitor binding. X-ray crystallographic studies of inactive
and active conformations of HLGPa demonstrated large
conformational changes between the two states, including

order/disorder transitions and changes in secondary
structures.8 The inactive conformation of GP was used as
the target for inhibitor design and optimization.

Glycogen phosphorylase contains at least six potential
regulatory sites (Figure 17.1): (1) the Ser14 phosphate recog-
nition site (Ser14 phosphorylation induces conformational
changes that alter GP activity); (2) the catalytic site that
binds the substrates glycogen and glucose-1-P, as well as
glucose and glucose analogs; and (3) the AMP allosteric site
that binds AMP, IMP, ATP, and glucose-6-P. This site is about
35Å away from the catalytic site (Figure 17.1). The Bayer
diacid compound W1807 [Figure 17.2(a)], a potent inhibitor
of rabbit muscle glycogen phosphorylase (RMGP), binds at
this site as determined by crystallographic analysis.9,10 (4)
The inhibitor site (also referred to as the purine nucleo-
side site) binds heterocyclic compounds such as caffeine
[Figure 17.2(b)] and flavopiridol. This site is more than 10Å
away from the catalytic site.11 (5) The glycogen storage site.
(6) The dimer interface site that binds indole derivative
CP320626 [Figure 17.2(c)] and its analogs.12 This site was
identified as a new allosteric site by x-ray crystallographic
analysis.13–15 Four of these six regulatory sites are known
to be inhibitor binding sites: the catalytic site, the AMP
allosteric site, the inhibition site and the dimer interface site
[Figure 17.1].

In this chapter, we describe the use of molecular model-
ing in the development of a series of potent GP inhibitors.
We started from a lead series consisting of phenyl diacids
with various substitutions on the pyridine ring (Table
17.1). Of these, the most potent compound is 4-(2-{[(4-
nitropyridine-2-yl)carbonyl]amino}phenoxy)phthalic acid
[compound 1a, Figure 17.3(a)]. Due to the lack of com-
petitive binding studies, modeling studies were undertaken
to predict the most probable binding site for compound
1a. These involved superposition16 of compound 1a onto
inhibitors that are known to bind at different sites based on
the x-ray crystal structures, as well as examination of the
protein environment to determine the possibility of inter-
action with nearby residues. Ultimately, these analyses sug-
gested that compound 1a binds at the AMP allosteric site.
The docking of compound 1a inside the AMP allosteric site
was further explored by Internal Coordinates Mechanics
(ICM) calculations17 with subsequent energy optimization.
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Figure 17.1. Regulatory sites of glycogen phosphorylase. The glycogen
phosphorylase (PDB entry 3AMV) is shown in ribbon diagram with the
two subunits colored in white and gray, respectively. To show all the
regulatory sites in one picture, compounds that bind at different sites are
copied from different PDB entries. In CPK models: Ser14 in blue at the
phosphate recognition site; glucose in pink at the catalytic site; Bayer
W1807 in magenta at the AMP allosteric site (PDB entry 3AMV); caffeine
in cyan at the inhibitor site (PDB entry 1GFZ) and Pfizer CP320626 in
yellow at the dimer interface site (PDB entry 1C50).

Additional characterization of the binding pocket by grid-
based surface calculations18 revealed a large unfilled
hydrophobic region near the central phenyl ring, which
provided an opportunity to potentially enhance binding
of early leads by increasing the hydrophobic bulk in this

Table 17.1. The activity of phenyl diacid compounds

HLGPa HMGPa
R (IC50 nM) (IC50 nM)

O O-

O-

O

ON O

N

R

1a -NO2 3 25

1b -Cl 17 181

1c -OMe 20 200

1d -CF3 48 591

1e -Et 56 433

1f -Me 121 1090

1g -H 1280 11790

region. A series of naphthyl compounds was designed and
synthesized, and they displayed a significant improvement
in potency.

STRUCTURE-BASED DESIGN OF GLYCOGEN
PHOSPHORYLASE INHIBITORS

Prediction of putative binding pocket

The lead compounds are a series of phenyl diacids with
activity on HLGPa ranging from 3 to 1280 nM with var-
ious substituents on the pyridine (Table 17.1). The most
potent compound in the series incorporates a nitro group
on the pyridine, compound 1a [Figure 17.3(a)], with an IC50

of 3 nM for HLGPa and 25 nM for HMGPa (Table 17.1).
Two hundred conformers of compound 1a were gener-
ated using our implementation of the distance geometry
approach, which incorporates the theory and algorithm as
previously described.19 The conformer set was energy min-
imized using a distance-dependent dielectric of 2r with the
Merck Molecular Force Field (MMFF).20–26 Of the 200 con-
formers generated and energy minimized, the energetically
favored conformation of compound 1a was found to be
in a “V” shape [Figure 17.3(b)]. In this conformation, the
NH group of the amide interacts with the nitrogen atom in

a) b) c)

Figure 17.2. Examples of known GP inhibitors. (a) Bayer diacid compound W1807 ((-)(S)-3-isopropyl 4-(2-
chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarboxylate) that binds at the AMP allosteric site
(PDB entry 3AMV). (b) Caffeine that binds at the inhibitor site (PDB entry 1GFZ). (c) CP320626 (5-chloro-1H-
indole-2-carboxylic acid [1-(4-fluorobenzyl)-2-(4-hydroxypiperidin-1-yl)-2-oxoethyl]amide) that binds at the dimer
interface site (PDB entry 1C50).
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a) b)

Figure 17.3. Lead compound 1a. (a) Chemical structure of lead compound
1a. (b) The lowest energy conformation of compound 1a from gas phase
calculations. The molecule is shown in stick model with carbons in green
and noncarbon atoms in standard colors.

the pyridine, presumably in a hydrogen-bonding fashion, to
stabilize the molecule. The two aromatic rings at the dis-
tal ends of the molecule are nearly perpendicular to each
other with an edge-to-face distance of about 4Å, indicating
a potentially favorable �-� stacking interaction within the
molecule.

Competitive binding studies were not available to iden-
tify the binding site of the inhibitors. Before detailed dock-
ing studies could proceed, it was therefore necessary to
first identify the most likely binding site of compound 1a.
To this end, 3D similarities between conformers of com-
pound 1a and three probes derived from known crystal
structures were assessed. The glucose analog that acts as
an inhibitor at the catalytic site was dismissed from con-
sideration because of the obvious lack of similarity between
it and compound 1a. The 3D similarity/superposition tool
SQ16 was employed to superpose conformers of com-
pound 1a onto three probes derived from publicly available
x-ray crystal structures of known inhibitors in complex with
GP: Bayer W1807 at the AMP allosteric site [Protein Data
Bank (PDB) entry 3AMV9], caffeine at the inhibitor site (PDB
entry 1GFZ11), and Pfizer CP320626 at the dimer interface
site (PDB entry 1C5013). Each probe represents a class of

inhibitors at a different binding site and their chemical
structures are shown in Figure 17.2. The best overlay of
compound 1a onto each of the three probes is depicted in
Figure 17.4.

Compound 1a overlays onto W1807 [Figure 17.4(a)] with
the aromatic regions and diacid groups fairly well aligned.
W1807 is most similar to compound 1a among the three
probes, so this is not an unexpected result. Like W1807, the
diacid moiety of compound 1a presumably interacts with
positively charged arginines at the AMP allosteric site. In
contrast, the energetically preferred V shape of compound
1a precludes it from being able to align well onto the planar
structure of caffeine [Figure 4(b)]. Although the superposi-
tion of compound 1a onto CP320626 [Figure 4(c)] is visually
appealing, it requires compound 1a to adopt a conforma-
tion energetically disfavored by more than 10 kcal/mol. In
this alignment, the diacid groups and the A ring are over-
lapped onto the 4-hydroxy-piperidyl moiety of CP320626,
known to bind in a space filled with water molecules at the
dimer interface site.13 As a result, the diacid group in com-
pound 1a would not make significant favorable interactions
with the enzyme. Based on this analysis of each binding site,
it appeared that compound 1a is likely to bind at the AMP
allosteric site.

Docking of compound 1a into AMP allosteric site

Having identified the AMP allosteric site as the most likely
binding site for compound 1a through the SQ overlay, a
more extensive docking study was carried out using ICM
software.17 The amino acid sequences of HLGP, HMGP,
and RMGP were aligned using Clustal W.27 HLGP has
80% sequence identity and 90% sequence similarity to
HMGP and RMGP. The homology between the two mus-
cle enzymes (HMGP and RMGP) is even higher, with a
sequence identity of 97% and sequence similarity of 99%.
The residues located within 5Å of W1807 in the AMP
allosteric site are conserved among the three enzymes, so
it is likely that the binding pocket would be very similar

a) b) c)

Figure 17.4. Superposition of compound 1a onto known inhibitors by SQ calculations. Compound 1a (carbons in
green) overlaid onto (a) W1807 (carbons in magenta) at the AMP allosteric site, (b) caffeine (carbons in cyan) at
the inhibitor site, and (c) CP320626 (carbons in yellow) at the dimer interface site. Only heavy atoms are shown
and noncarbon atoms are in standard colors.



260 Qiaolin Deng

Figure 17.5. Docking model of compound 1a inside the AMP allosteric
site. Compound 1a is shown in stick model with heavy atoms only,
with carbons in green and noncarbon atoms in standard colors. The GP
structure is displayed as solid ribbon with helices in red and beta sheets
in cyan. Several important arginines in the binding pocket are shown in
stick model with standard colors. Hydrogen atoms have been omitted for
clarity.

among them. Because of the lack of an x-ray crystal struc-
ture of HLGP complexed with an inhibitor bound in the
AMP allosteric site at the time of this study, the crystal struc-
tures of RMGP complexed with W1807 were used as the
templates for docking. Two crystal structures were available
for W1807 complexed with RMGP, one in the phosphory-
lated form GPa (PDB entry 3AMV) and one in the dephos-
phorylated form GPb (PDB entry 2AMV).9,10 Both crystal
structures are in the less active T state and are structurally
similar, with an rmsd for the main-chain atoms of ∼0.3Å.9

Interactions between W1807 and the residues of the AMP
allosteric site are essentially identical in the two structures.
The most recent crystal structure of T-state GPa complexed
with W1807 at high resolution (2.1Å) (PDB entry 3AMV9)
was selected for use in the docking calculations.

The dimer structure was constructed for docking stud-
ies because the AMP allosteric site is formed by residues
from both monomers. Starting from the x-ray crystal struc-
ture (PDB entry 3AMV), ligand and water molecules were
removed. The dimer was built based on crystallographic
symmetry operations. In the following context, regular
residue numbers will be used to describe residues from the
first monomer, and a residue number with a prime (′) will
be used to denote residues from the symmetry-related unit.
Because the complete dimer structure consists of more than
1,600 amino acids, a smaller enzyme site was created for
docking calculations. Residues with any atom falling within
a 15Å shell around W1807 were retrieved to construct the
enzyme site.

The first docking pose of compound 1a at the AMP
allosteric site was taken from the superposition onto
W1807. Ultimately, this pose proved unsuitable as a start-
ing point for further energy minimization and analysis. This
was due, in part, to the lack of any consideration of the

nearby protein environment in the superposition calcu-
lations. Instead, ICM17 calculations that perform flexible
docking in internal coordinates were carried out to gener-
ate initial docking poses to sample various conformations
and locations for compound 1a inside the AMP allosteric
binding pocket. One hundred initial docking poses within
the AMP allosteric site were generated. Each of the resultant
complexes was then energy optimized using the MMFF.20–26

In the energy optimization, the ligand was fully optimized
inside the binding pocket that was allowed limited flexi-
bility. The side chains of residues with any atom located
within 5Å of the ligand were fully minimized in con-
junction with the ligand. Residues falling within 5–10Å
of the ligands were included in the calculations as rigid
elements, and the residues beyond a 10Å cutoff from the
ligand were ignored in the calculations. The total energy
of the complex, the individual energies of the ligand and
the enzyme, and the interaction energy between the lig-
and and the enzyme were calculated. The best docking
mode was determined by selecting those poses with the
most stabilizing interaction energy and minimal amount
of strain on the ligand and by visual inspection of the
interactions.

A preferred docking mode of compound 1a inside the
AMP allosteric site is shown in Figure 17.5. The puta-
tive binding pocket for compound 1a is formed by helix
2 (residues 47–78), helix 8 (residues 289–314), beta-sheet
4 (residues 153–160), beta-sheet 11 (residues 237–247), a
short beta-sheet 7 (residues 191–193), and a cap′ region
(residues 36′–47′) from the symmetry-related unit. The lig-
and maintained the energetically preferred V shape, with
the A and C rings buried inside the AMP allosteric site
and the B ring located at the entrance to the binding site.
The diacid group of the A ring interacts with a cluster of
arginines, Arg81, Arg309, and Arg310, and is near two polar
residues, Gln71 and Tyr155, which may provide additional
stabilizing interactions. The central phenyl ring B binds in
a hydrophobic pocket formed by the aliphatic portion of
the Gln72 side chain, the phenyl ring of Tyr75, and the side
chain of Val45′. The pyridine (C ring) is bordered by residues
Trp67, Ile68, and Val40′. The nitro group on the meta posi-
tion of the pyridine is close to Arg193, to which it may
form a hydrogen bond. This may explain why compound
1a is the most potent compound in the phenyl diacid series
(Table 17.1).

The overlay of docked compound 1a onto the crystal
structure of W1807 (PDB entry 3AMV) and AMP (PDB entry
8GPB) is depicted in Figure 17.6. Compound 1a and W1807
are both inhibitors, whereas AMP is an allosteric effec-
tor. The acid group binding region is the only common
region for the three compounds. Compound 1a is predicted
to bind quite differently from AMP by occupying differ-
ent locations inside the binding pocket. The two inhibitors,
compound 1a and W1807, occupy a similar location inside
the AMP allosteric site with their diacid groups interact-
ing with arginines. However, the diacid functionality of
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Figure 17.6. Comparison of docked compound 1a with crystal structure
of W1807 and AMP. Compound 1a (carbons in green), W1807 (carbons
in magenta, PDB entry 3AMV), and AMP (carbons in orange, PDB entry
8GPB) are shown in stick model with noncarbon atoms in standard colors.
Hydrogen atoms have been omitted for clarity.

compound 1a is almost perpendicular to that observed with
W1807.

Characterization of the binding pocket

Grid-based surfaces were calculated by FLOG
18 using the

docking model to further characterize the binding pocket.
Each grid was visualized as a series of isoenergetic surfaces
that describe the binding pocket by its polar (hydrogen
bond donor and acceptor) and hydrophobic nature. The
hydrophobic contour and hydrogen bond contour maps are
shown in Figure 17.7. For clarity, the docked compound 1a
is shown, whereas the nearby residues in the binding pocket
are omitted in the picture.

In the hydrogen bond contour map, the red area shows
that the residues in the binding pocket would favor inter-
action with a hydrogen bond acceptor on the ligand. For
example, the large red grid around the diacid on the A
ring indicates that the surrounding residues, a cluster of
arginines, would prefer to interact with a hydrogen bond
donor that is a diacid functional group on the ligand. Sim-
ilarly, the small red grid around the nitro group on the C
ring shows that the residues in this region favor interaction
with a hydrogen bond acceptor. In this region, the residue
is Arg193 while the hydrogen bond group on the ligand is a
nitro group.

In the hydrophobic contour map, the green area around
compound 1a denotes the regions in the binding pocket
that would favor interaction with a hydrophobic group on
the ligand. For example, the green region near the pyridine
(C ring) suggests that activity can be enhanced with appro-
priate hydrophobic substitutions on the pyridine. This is
in good agreement with the SAR in which compounds un-
substituted on the C ring (i.e., compound 1g) have the least
activity while potency increases more than tenfold with

hydrophobic substitutions at the meta position, for exam-
ple compounds 1e and 1f (Table 17.1).

Similarly, there is a large area near the central phenyl ring
B that is unfilled by compound 1a and for which SAR was
unavailable. As was the case with the pyridine, this visu-
ally suggests that additional hydrophobic groups attached
to the central phenyl B ring could fill this space and make
favorable interactions with the residues that line this region
of the binding pocket, thereby improving the binding and
thus the potency.

Design and synthesis

One possible modification was to fuse a hydrophobic ring
onto the central phenyl ring B to provide access to the puta-
tive hydrophobic region. Both saturated and unsaturated
five- and six-member rings were considered. The designed
compounds were obtained by modifying compound 1a.
Energy evaluation was carried out by fully optimizing
each virtual ligand within the flexible binding pocket, as
described before.

The interaction energy between each of the designed
compounds and the enzyme was about 5–6 kcal/mol more
favorable than that for the parent phenyl compound (Table
17.2). The fused ring moieties are nicely located among the
aliphatic portion of the Gln72 side chain, the phenyl ring of
Tyr75, and the side chain of Val45′ and make favorable inter-
actions with the hydrophobic pocket. Based on synthetic
considerations, compounds fused with an unsaturated six-
member ring (naphthyl compounds) were synthesized.

The synthesis of naphthyl compounds was described by
Z. Lu et al. in 2003.28 The potencies of naphthyl analogs

Figure 17.7. Hydrophobic and hydrogen bond acceptor contours from
grid-based calculations on the docking model. The hydrophobic surface
is shown as a green grid and the hydrogen bond acceptor surface is
shown as a red grid. Compound 1a is shown in stick model with carbons
in green and noncarbon atoms in standard colors. Hydrogen atoms have
been omitted for clarity.
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Table 17.2. Energy calculation on the designed compounds

Interaction energy
Fused ring Bond (kcal/mol)O O-

O-

O

ON O

N

N+

Cn
n=1 or 2

O

O-

Compound 1a no No −112.6

Design 1 5 Saturated −117.6

Design 2 5 Unsaturated −118.6

Design 3 6 Saturated −117.5

Design 4 6 Unsaturated −118.6

are listed in Table 17.3 for a head-to-head comparison
with the parent phenyl compounds. Overall, the potency
is improved by three- to fourteenfold for HLGP and seven-
to nineteenfold for HMGP over the corresponding phenyl
compounds. The enhancement in potency is consistent
within the entire series and for both HLGP and HMGP.
The naphthyl and phenyl series share a similar trend in
potency change with different substitutions on the C ring:
the unsubstituted compounds (i.e., compounds 1g and 2g)
are least active while the potency increases over tenfold
with hydrophobic substitutions on the meta position (e.g.,
compounds 1e and 1f, 2e and 2f); the compounds with a
nitro group are most potent (i.e., compounds 1a and 2a).
This indicates that the naphthyl and phenyl derivatives
bind at the AMP allosteric site in a similar manner. The
naphthyl series fills more space with the fused ring than the
parent phenyl series, making more favorable interactions
with the surrounding residues and thereby increasing their
potency.29

COMPARISON OF THE DOCKING MODEL WITH X-RAY
CRYSTAL STRUCTURES

At the time when we finished the design and synthesis of
the naphthyl series, an x-ray crystal structure of RMGPb
complexed with compound 1a was solved in-house.28 The

Table 17.3. Comparison of activity of naphthyl and phenyl diacid
compounds

Phenyl Naphthyl
O O-

O-

O

ON O

N

R

HLGPa HMGPa HLGPa HMGPa
R (IC50 nM) (IC50 nM) (IC50 nM) (IC50 nM)

-NO2 1a 3 25 2a 1 3

-Cl 1b 17 181 2b 2 12

-OMe 1c 20 200 2c 2 12

-CF3 1d 48 591 2d 12 80

-Et 1e 56 433 2e 4 29

-Me 1f 121 1090 2f 10 57

-H 1g 1280 11790 2g 167 844

predicted docking pose of compound 1a was confirmed by
the x-ray crystal structure. Compound 1a is verified to be
bound at the AMP allosteric site. Compared to the x-ray
crystal structure, the docked compound 1a occupies the
same location and maintains all major interactions. The
ring A and ring B are overlaid well with the diacid groups
interacting with the positively charged arginines, Arg81,
Arg309, and Arg310. The amide group next to ring B displays
a different orientation, which causes the pyridines (ring C)
to be poorly overlapped. However, the nitro group on ring C
points to the same residue, Arg193, to form favorable inter-
actions. The conformational difference in the amide and
ring C region is accompanied by the substantial shift of the
side-chain orientation of Arg193 in the binding pockets.

Later on, crystal structures of RMGPb complexed with
similar diacid compounds were published by Kristiansen
et al.30 Our proposed binding mode for compound 1a at
the AMP allosteric site is similar to that of the compounds
described therein.

SUMMARY

In this chapter we describe modeling aided development of
a new series of potent glycogen phosphorylase inhibitors.
Due to the lack of suitable competition-based binding
assays, superposition was used to predict the potential
binding site for the lead compound 1a. The overlay of com-
pound 1a onto the crystal structures of inhibitors that are
known to bind at different sites in GP, together with analysis
of nearby residues at each respective site, correctly deter-
mined the AMP allosteric site as the binding site for com-
pound 1a. By using the x-ray crystal structure of RMGP
(PDB entry 3AMV), possible docking modes of compound
1a were extensively explored by ICM calculations. A reason-
able docking model was computationally determined and
subsequently confirmed by in-house x-ray crystallography.
Further analysis of the binding pocket of the docking model
by grid-based surface calculation revealed a large unfilled
region near the central phenyl ring of compound 1a. Fused
ring analogs were designed with the goal of increasing
hydrophobic bulk in this unfilled region to improve bind-
ing. After evaluation of energetics and ease of synthesis for
the fused ring analogs, a series of naphthyl compounds
was synthesized. As predicted, this exercise resulted in a
new series of GP inhibitors with significantly improved
potency.
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principles of, 42–44
property ranges in, 42
screening in, 41–42

HTS, 42
searching efficiency of fragments in,

43–44
validation of fragments in, 44–45

fragment-based structure-guided drug
discovery, 30–39

advantages of, 31
fragment engineering in, 30
fragment libraries for

HTS libraries vs., 31
ligand efficiency in, 31

fragment linkage in, 30
history of, 30
HTS libraries and, 30–31

fragment libraries vs., 31
SGX FAST, 31–39

aromatic bromine and, 32
biochemical assays for, 35
complementary biophysical screening,

35
deliverable properties for, 32
end game for, 32, 37
fragment library design in, 31–32, 37
fragment x-ray screening in, 32,

34–35
future prospects for, 38–39
leadlike properties in, 31–32
protein kinases in, 37
SAR optimization in, 35–37
selectivity in, 37
SMERGE program for, 37
SPR screening for, 35
target enabling in, 32, 33–34
x-ray screening in, 35

free-energy calculations, in SBDD, 61–79.
See also alchemical free-energy
calculations, for SBDD; alchemical
methods, for SBDD; Molecular
Mechanics with Poisson
Boltzmann and Surface Area;
partition function computation

accuracy of, 62–63
for affinity distribution models, 62–63
for binding affinity, 62

alchemical, 66, 72–76
absolute free, 73–76
for fructose 1, 6 bisphosphatase, 73
negative results from, 76–77
predictive tests for, 76
relative binding free, 72–73
solvation free, 76
studies on, 77

docking and, 98, 99
future applications for, 77–79

with CASP, 79
with GAFF, 78

for HIV-1 protease drug design, 93
ligand binding calculations, 70–77

for MM-PBSA, 70–72
methodologies for, 63–70

alchemical methods, 66
for basic equations, 64
expanded ensemble as, 70
Hamiltonian exchanges as, 70
Jarzynski’s relationship, 67–68
�-dynamics, 70
MM-PBSA, 64–65
multiple intermediates, 66–67
multiple ligand simulations, 70
partition function computation, 65–66
pulling methods, 69
umbrella sampling, 69–70

simulation codes for, 78
free-energy perturbation (FEP), 66

with ligand binding affinity, 184
fructose 1, 6 bisphosphatase, 73
fused heterocyclics, 199–201

GAFF. See Generalized Amber Force Field
GALAHAD method, 139
GASP method. See Genetic Algorithm

Superposition Program method
gas-phase potential energies, 64
GCMC techniques. See Grand canonical

Monte Carlo (GCMC) techniques
Generalized Amber Force Field (GAFF), 78
Genetic Algorithm Superposition Program

(GASP) method, 138–139
GLIDE program, for lead generation, 1

filtering, 4
virtual screening, 3, 4–5

GLUE docking program, 173
GPCRs. See G-protein-coupled receptors
G-protein-coupled receptors (GPCRs), 1

�2-andrenergic, 249
ligand-binding sites in, 249–250

crystal structures in, 248–250
docking studies for, 251–252

fast, 251–252
manual, 251–252
virtual screening for, 251–252



269 Index

as drug target, 248
features of, 248
fragment-based methods for, 253–254
future applications of, 254
modeling for, 248–254

3D, 250–251
molecular dynamic simulations for,

252–253
bilayer and solvent models, 252–253
model building for, 253

rhodopsin, 248–249
ligand-binding sites in, 249–250

SBDD and, 248
3D modeling for, 250–251

with de novo structure prediction, 251
fragment-based methods for, 253–254
with homologies, 250–251

Grand canonical Monte Carlo (GCMC)
techniques, 77

GRIND descriptors, 170
Gund, Peter, 137

Hamiltonian exchanges, as SBDD
methodology, 70

Hamming, Richard, 165
Hansch QSAR approach, 152
hepatitis C virus (HCV)

HIV-1 protease drug design for, 209–213
lead optimization in, 211
modeling for, 209–210
pharmokinetic profiles in, 212
proof of concept in, 211
targets for, 209
virtual medium for, 210
in vitro activity in, 212

incidence rates for, 209
SVR for, 209

hERG. See human ether-à-go-go related
gene

heterocycle scans, 8–10
polycyclic, 9

HGLP. See human glycogen phosphorylase
(HGLP), SBDD for

high-throughput screening (HTS), 1
in FBLD, 42
for fragment-based structure-guided

drug discovery, 30–31
compliance issues with, 31
disadvantages of, 30
fragment libraries vs., 31
molecule size and, 30–31

for SBDD, 61
HIPHOP method, 138–139

features of, 138
pharmacore scoring with, 143, 144

HIV-1 protease, drug design for, 87–95
allosteric inhibitors in, 94

enzyme binding sites for, 94
monomer cores as target for, 94
protease dimer interfaces in, 94

for HCV, 209–213
lead optimization in, 211
modeling for, 209–210
pharmokinetic profiles in, 212
proof of concept in, 211
targets for, 209
virtual medium for, 210

in vitro activity in, 212
proposed molecular mechanisms of

resistance and, 92–94
binding affinity in, 93
crystal packing in, 92–93
entropy change in, 93
free-energy calculations for, 93
microcalorimetric measurements in,

93
wide-open structure for, 92

simulations of, 88–91
with DEER, 89
dihedral angle space constraints in, 91
with EPR method, 89
flap flexibility and, 88–91
with implicit solvent models, 90–91
with multiscale models, 89–90
with NMR, 88–89

structure of, 87–88
flap formation, 87, 88
semi-open, 87, 88, 90
unbound vs. bound, 88
wide-open, 87–88, 91, 92

unbound structures in, 91–92
bound vs., 88
NOESY for, 92
simulations of, 91–92

viral inhibitors for, 87
protease disruption in, 87
receptor binding in, 87
reverse transcription processes for,

87
HIV-1 reverse transcriptase (HIV-RT), 1

relative binding free energies and, 72,
73

HIV-RT. See HIV-1 reverse transcriptase
HTS. See high-throughput screening
human ether-à-go-go related gene (hERG),

190–192, 193
human glycogen phosphorylase (HGLP),

SBDD for, 257–262
AMP sites and, 259–261
design of, 261–262
for diabetes, 257
docking of, 257–258, 259–261

x-ray crystal structures and, 262
energy calculations for, 262
features of, 257
phenyl diacid compounds and, 258, 262
putative binding pocket prediction for,

258–259
characterization of, 261
hydrogen bond contour map and, 261

synthesis of, 261–262
human muscle glycogen phosphorylase

(HMGP), SBDD for, 257
human PNP, transition-state structure of,

230–234
crystal structure of, 234
DADMe immucillins and, 232, 234
features of, 230–231

hydrogen bond acceptors, 41
hydrogen bond contour map, 261
hydrogen bond donors, 41

IFPSC. See Industrial Fluid Properties
Simulation Collective

immucillins, transition-stage analog design
for, 226–230

achiral, 242
acyclic, 241–242

DATMe, 241–242
BIEs and, 238–239
bovine PNP and, 226, 227

crystal structures in, 227–229
inhibition of, 227

clinical trials with, 240
DADMe, 232–234

human PNP and, 232, 234
pharmacological applications of,

239–241
synthesis of, 232–233
in vivo studies of, 241

dissociation constants in, 227, 236, 237,
239

enantiomers of, 234–237
human PNP inhibition by, 231

DADMe immucillins and, 232–234
pharmacological applications of,

239–241
protein dynamics with, 229–230
stoichiometry of, 227
synthesis of, 226–227
in vivo studies on, 239–240

for human T cells, 239–240
for mouse T cells, 240

indinavir, 87
indoles, 204
Industrial Fluid Properties Simulation

Collective (IFPSC), 79
inosine arsenolysis interpretation, 223–224,

226, 230, 238
computational modeling for, 225

intestinal absorption, in ADME models,
168–169

classification regression tree, 168
computational models in, 169
descriptors in, 168
intramolecular hydrogen bonds in,

168–169
PAMPA permeabilities and, 169

Invirase. See saquinavir hard gel
ionization identification, in pharmacore

methods, 140
isothermal calorimetry (ITC), for SBDD,

61

Jarzynski’s relationship, 67–68
BAR in, 68
MBAR in, 68
WHAM in, 68

JNK3 proteins, 108–113
aminopyrimidines, 109–110
compound classes in, 109
oximes, 110–111
p38 inhibitors, 110
public structures in, 108–109
pyrazol placement in, 111–113
with SAMPL challenge, 105

Journal of Information and Modeling, 151,
153

Kaletra. See lopinavir-ritonavir
KIEs. See kinetic isotope effects
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kinetic isotope effects (KIEs), 217–220
in bovine PNP, 222–223

inosine arsenolysis interpretation and,
223–224, 226, 230, 238

V/K KIEs and, 223
computational modeling for, 219–220
features of, 218
inhibitor design approach to, 220
for inosine arsenolysis interpretation,

223–224, 226, 230, 238
as intrinsic, 219

kinetic mechanisms, for PNP drug design,
220–221

laboratory information management
system (LIMS), 33

fragment X-ray screening and, 34–35
LBDD. See ligand-based drug design
lead generation, 1–5

BOMB, 1, 2–3
core binding sites, 2
docking, 3–4
protein hosts, 2–3
results, 3
scoring function, 3
substituent library, 2

GLIDE program, 1
filtering, 4
virtual screening, 3, 4–5

HIV-RT, 1
virtual screening, 3–4

docking, 3–4
GLIDE program, 3, 4–5
NNRTIs, 3–4
ZINC database, 4

lead optimization, 7–12
complex modeling, 7
conversions, 7
FEP calculations, 7–11

azines as NNRTIs, 8
heterocycle scans, 8–10

in HCV drug design, 211
macrocyclization approach to,

212–213
heterocycle scans, 8–10
linker refinement, 11
logistics, 11–12
molecular design calculations, 7–8

FEP, 7–11
protocols, 12
small group scans, 10–11

BOMB, 10
Lennard-Jones parameters, for SBDD, 69
Lexiva. See fosamprenavir
libraries. See combinatorial libraries, for

SBDD; fragment libraries
LIE calculations. See linear interaction

energy calculations
ligand binding affinity, 184–185, 187

BACE inhibitors and, 184–186
with FEP, 184
LIE calculations for, 184

ligand binding calculations, for SBDD,
70–77

absolute free energies and, 73–74
MM-PBSA as, 70–72

computational costs of, 70

MSE values for, 70–71
positive/negative partitioning in, 71
scores for, 71

ligand preparation, in pharmacore
methods, 140–141

docking and, 140
ionization identification for, 140
with MCMM, 140
with MMFF, 140
model development in, 140
with OPLS, 140
sampling methods for, 140
tautomerization in, 140

ligand-based drug design (LBDD), 120
QSAR methods for, 120
quantum mechanics and, 131

with QSAR, 131–132
ligand-directed methods, of NMR, 47–50

advantages of, 47
disadvantages of, 47

ligands, in drug discovery and optimization
design for, 1
in FBLD, 44

NMR and, 45–46
in fragment libraries, efficiency of, 31
quantum mechanics and, 123–125
SAR optimization and, 36

LIGANDSCOUT model, 144–145
LIMS. See laboratory information

management system
linear interaction energy (LIE) calculations,

184
linear scaling, 130–131

MOZYME program for, 130
technology development for, 130–131
with water molecules, 130

Lipinski’s rules, 31
lopinavir-ritonavir, 87
LUDI interaction map, 144

mammalian proteins, crystallization of,
17

mapping. See also surface mapping
of pharmacore features, 141–142

feature dictionary for, 141
fragment dictionary for, 141–142
of interaction sites, 141
of ionic groups, 141

Martin, Yvonne, 138
matched molecular pairs analysis, 167
Maybridge HitFinder library, 4

anticonvulsive models and, 161
MBAR. See multistate Bennett Acceptance

Ratio
MCMM. See Monte Carlo Multiple Model
Merck Molecular Force Field (MMFF), 140
metabolism, in ADME models, 172–173

aromatic hydroxylation extraction and,
172

cytochrome analysis and, 173
GLUE docking program for, 173
MetaSite program for, 173
QSAR models, 173
quantum mechanics and, 172

MetaSite program, 173
Mining Minima method, 66
MMFF. See Merck Molecular Force Field

MM-PBSA. See Molecular Mechanics with
Poisson Boltzmann and Surface
Area

molecular design calculations, 7–11
molecular dynamic simulations, for GPCRs,

252–253
bilayer and solvent models

explicit, 252–253
implicit, 253

model building for, 253
Molecular Mechanics with Poisson

Boltzmann and Surface Area
(MM-PBSA), 64–65

bound/unbound stimulation and, 64–65
coordinate sampling in, 64
in drug discovery, 71–72
dynamic trajectory analysis in, 65
entropic costs with, 65
gas-phase potential energies in, 64
as ligand binding calculation, 70–72

computational costs of, 70
MSE values for, 70–71

solute entropy change in, 64
solvation energy term in, 64–65
structure generation in, 64

molecular quantum similarity, 133
molecular replacement, 20
Monte Carlo Multiple Model (MCMM),

140
MOZYME program, 130
multiple intermediates, as SBDD

methodology, 66–67
double-wide sampling in, 67
thermodynamic integration in, 67

curvature from, 67
slow growth simulation in, 67
Zwanzig relationship expansion in,

67
multistate Bennett Acceptance Ratio

(MBAR), 68

NACs. See near-attack conformers
near-attack conformers (NACs), 216
neutrophil elastase inhibitors, 73
nevirapin, 87
NNRTIs

FEP calculations, 8
virtual screening, 3–4

NOEs. See nuclear Overhauser effects
NOESY. See nuclear Overhauser effect

spectroscopy
Norvir. See ritonavir
nuclear magnetic resonance (NMR), with

FBLD, 41–50, 55
applications of, 50–55

fragment fusion in, 51
fragment linking in, 51–52
variation and elaboration in, 53–55

competitive binding methods of, 49–50
diffusion-based methods of, 48–49
for HIV-1 protease, 88–89
ligand binding in, 45–46
ligand-directed methods of, 47–50

advantages of, 47
disadvantages of, 47

quantum mechanics in, 123–125
CSP in, 123–124
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DFT and, 124
NOE in, 123
screening methods for, 123

relaxation-based methods of, 48–49
saturation transfer difference methods of,

47
with spectroscopy, 47

surface mapping and, 27–28
target-directed methods of, 45–47

chemical shift perturbation in, 46
ligand binding in, 45–46

WaterLOGSY method in, 47–48
nuclear Overhauser effect spectroscopy

(NOESY), 92
nuclear Overhauser effects (NOEs), 48–49,

123

OPLS. See Optimized Potential for Liquid
Simulation

Optimized Potential for Liquid Simulation
(OPLS), 140

PAHs. See polycyclic aromatic
hydrocarbons

PAMPA. See parallel artificial membrane
permeability assay

parallel artificial membrane permeability
assay (PAMPA), 169

partition function computation, 65–66
Mining Minima method, 66
mode integration in, 66

Patchett, Arthur, 165
Pauling, Linus, 215
PDB file. See Protein Data Bank (PDB) file
Pearlman, David, 72
P-glycoprotein effluxes, in ADME models,

170–171
BBB penetration and, 170–171
pharmacores for, 170
QSAR models for, 170
3D-QSAR for, 170

GRIND descriptors in, 170
TOPS-MODE descriptors in, 170

pharmacore methods, 137–148
active analog approach in, 137
ALADDIN, 139
APEX-3D, 139
automated perception, from ligand

structures, 139–140
CATALYST, 138–139
CAVEAT, 139
CHEM-X, 139
common identification for, 142

with DISCO, 142
DANTE, 139
definition of, 137
DISCO, 138
ensemble distance geometry, 138
evolution of, 137–139
excluded volumes in, 145

crystallographic receptor structure as,
145

inactive structures and, 145
shrink-wrap method for, 145

fingerprints, 146
with CHEM-X software, 146
creation of, 146

with 3D database screening, 146
for triplet sets, 146

GALAHAD, 139
GASP, 138–139
HIPHOP, 138–139

features of, 138
history of, 137–139
ligand preparation in, 140–141

docking and, 140
ionization identification for, 140
with MCMM, 140
with MMFF, 140
model development in, 140
with OPLS, 140
sampling methods for, 140
tautomerization in, 140

manual construction for, 139
with Seeman model, 139

mapping features for, 141–142
feature dictionary for, 141
fragment dictionary for, 141–142
of interaction sites, 141
of ionic groups, 141

model development for, 139
for P-glycoprotein effluxes, 170
receptor-based, 144–145

development of, 144
docking in, 144
with LIGANDSCOUT model, 144–145
with LUDI interaction map, 144

SCAMPI, 139
scoring of, 143–144

with APEX-3D, 144
with CATALYST, 143, 144
with DANTE, 143
with HIPHOP, 143, 144
with PHASE method, 143, 144
with SCAMPI, 144

3D chemical features in, 137
3D database screening in, 146–148

automated perception in, 147
hits in, 146
information returns with, 148
partial matching in, 147
as point-based, 147
precomputed conformers in, 146

torsion angles in, 137–138
PHASE method, pharmacore scoring by,

143, 144
phasing, in x-ray crystallography, 20–21

electron density map for, 20, 21–22
molecular replacement and, 20
structure determination from, 20–21

for protein models, 21
waves and, 20

phenyl diacid compounds, 258, 262
plasma protein binding, 171–172
PNP. See purine nucleoside phosphorylase

(PNP), drug design for
point charge models, 127–128
polycyclic aromatic hydrocarbons (PAHs),

154
polycyclic heterocycle scans, 9
predictive tests, 76
Prezista. See darunavir
protease dimer interfaces, 94
protein(s)

computer-aided drug design with, 182,
183

geometry optimization for, 183
protonation state determination with,

182–183
configuration integrals for, 99
crystallization of, 17

cloned, 17
docking and, 99
homologous, 17
mammalian, 17
refinement data for, 26
truncation for, 17

JNK3, 108–113
aminopyrimidines, 109–110
compound classes in, 109
oximes, 110–111
p38 inhibitors, 110
public structures in, 108–109
pyrazole placement in, 111–113
with SAMPL challenge, 105

phasing and, 21
quantum mechanics and, structure

modeling of, 125–127
AMBER force fields in, 126
geometry validation in, 125
native discrimination in, 126–127
semiempirical geometry

approximations in, 125–126
protein configuration integrals, 99
Protein Data Bank (PDB) file, 3

in SGX FAST, 33
p38, SBDD for, 197–206

DFG-out binding pocket and, 201–202
access to, 201–202

five-membered heterocyclic core,
205–206

trisubstituted imidazole, 205
fused heterocyclics and, 199–201
indoles and, 204
with pyrazolopyrimidines, 202
with pyrimidines, 197–199
with thiazoles, 202–204
with triazines, 197–199

purine nucleoside phosphorylase (PNP),
drug design for, 220–239. See also
immucillins, transition-stage
analog design for

binding isotope effects and, 238–239, 240
bovine, transition-state structure of,

221–226
immucillins and, 226, 227
KIEs and, 222–223
labeled substrate synthesis in, 221–222
V/K KIEs and, 223

human, transition-state structure of,
230–234

crystal structure of, 234
features of, 230–231
immucillin inhibition of, 231

immucillins and, 226–230
achiral, 242
acyclic, 241–242
BIEs and, 238–239
bovine PNP and, 226, 227
clinical trials with, 240
DADMe, 232–234
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purine nucleoside phosphorylase (cont.)
dissociation constants in, 227, 236, 237,

239
enantiomers of, 234–237
human PNP inhibition by, 231
pharmacological applications of,

239–241
protein dynamics with, 229–230
stoichiometry of, 227
synthesis of, 226–227
in vivo studies on, 239–240

kinetic mechanisms for, 220–221
mechanistic implications of, 234–239

enantiomers as, 234–237
transition-state discrimination as,

234
remote interactions for, 237–238
third-generation, 241–242

pyrazolopyrimidines, 202
pyrimidines, 197–199

pyrazolopyrimidines, 202

QIKPROP, 5–7
required input, 5
submission to, 5–6

QSAR. See quantitative structure/activity
relationship

QSM. See quantum similarity measure
QTMS. See quantum topological molecular

similarity
quantitative structure/activity relationship

(QSAR). See also quantitative
structure/activity relationship
(QSAR) models

in drug discovery, 151–162
applicability domains in, 154–155
combinatorial criteria for, 155–156
criticism of, 151–152
development of, 151
Hansch approach to, 152
mechanistic models for, 154
methodologies for, 152–153
model validation in, 153–154
modern data sets in, 152
multiple descriptors in, 152–153
PAHs and, 154
target properties for, 153

LBDD and, 120, 131–132
models for, 157

acceptability criteria for, 155–156
for AmpC �-lactamase inhibitors, 161
for anticancer agents, 161
for anticonvulsive compounds,

159–161
applicability domains in, 154–155
consensus prediction in, 156–159
future research for, 161–162
good practices in, 156–159
mechanistic, 154
predictive workflow, 159
statistical figures of merit for, 156–157
toxicity results for, 158
validation of, 153–154
virtual screening for, 159

quantum mechanics and, 131–132
3D model, 131–132

spectroscopic, 132

quantitative structure/activity relationship
(QSAR) models, 157

acceptability criteria for, 155–156
for AmpC �-lactamase inhibitors, 161

classification of, 161
for anticancer agents, 161
for anticonvulsive compounds, 159–161

Maybridge HitFinder library and, 161
applicability domains in, 154–155

confidence index for, 155
definition of, 155

consensus prediction in, 156–159
future research for, 161–162
good practices in, 156–159
mechanistic, 154
for metabolism, in ADME models, 173
for P-glycoprotein effluxes, 170
predictive workflow, 159

for lead optimization, 159–161
statistical figures of merit for, 156–157
toxicity results for, 158
validation of, 153–154
virtual screening for, 159

quantum mechanics, in SBDD, 120–131,
133. See also electrostatic potential
(ESP) maps

catalysis and, 128
CoMFA method in, 132

disadvantages in, 133
CoMSIA method in, 132
ESP maps and, 127–131

relative proton potential and, 127–131
interaction energy decomposition in, 131
LBDD and, 131

with QSAR, 131–132
linear scaling in, 130–131

MOZYME program for, 130
technology development for, 130–131
with water molecules, 130

metabolism and, 172
molecular quantum similarity and, 133

AIM theory and, 133
in NMR refinement, 123–125

CSP in, 123–124
DFT and, 124
NOE in, 123
screening methods for, 123

protein structure modeling with, 125–127
AMBER force fields in, 126
geometry validation in, 125
native discrimination in, 126–127
semiempirical geometry

approximations in, 125–126
QSAR and, 131–132

QSM for, 133
spectroscopic, 132
3D model, 131–132

QTMS and, 133
in RBDD

qualitative uses of, 127
quantitative uses of, 128–129

in x-ray refinement, 120–123
EREF formalism for, 121–122

quantum similarity measure (QSM), 133
CSI for, 133

quantum topological molecular similarity
(QTMS), 133

R factor, 23
RBDD

linear scaling in, 130–131
quantum mechanics in

qualitative uses of, 127
ESP maps and, 127–131

quantitative uses of, 128–129
relative proton potential and, 127–131

receptor-based pharmacore methods,
144–145

development of, 144
docking in, 144
with LIGANDSCOUT model, 144–145
with LUDI interaction map, 144

recursive partitioning, in ADME models,
167

relative binding free energies, 72–73
estrogen receptors and, 73
for fructose 1, 6 bisphosphatase, 73
HIV-1 and, 72, 73
for neutrophil elastase inhibitors, 73

relative proton potential, 127–131
catalysis and, 128
charge transfers in, 128
docking programs in, 128–129
interaction energy decomposition in, 131
linear scaling in, 130–131

MOZYME program for, 130
technology development for, 130–131
with water molecules, 130

point charge models in, 127–128
polarization in, 128
proton affinity in, 128
ZINC database and, 129

relaxation-based methods, of NMR, 48–49
Reviews in Computational Chemistry, 151
Reyataz. See atazanavir
rhodopsin, 248–249

ligand-binding sites in, 249–250
ritonavir, 87
rofecoxib, 6

SAMPL. See Statistical Assessment of the
Modeling of Proteins and Ligands

saquinavir hard gel, 87
saquinavir soft gel, 87
SAR. See structure/activity relationships
saturation transfer difference methods, of

NMR, 47
with spectroscopy, 47

SBDD. See structure-based drug design
Scaffold MErging via Recursive Graph

Exploration (SMERGE) program,
37

SCAMPI. See Statistical Classification of
Activities of Molecules for
Pharmacore Identification

scans
heterocycle, 8–10
small group, 10–11

BOMB, 10
scattered beams, crystal structures and, 18
Science, 7
scoring, with computer-aided drug design,

183–184
screening

for docking, censuses for, 99–100
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for drug discovery and optimization
in FBLD, 41–42
for lead generation, 3–4

with fragment X-rays, 32, 34–35
LIMS and, 34–35
sensitivity of, 35

for GLIDE program, for lead generation,
3, 4–5

HTS, 1, 42
in FBLD, 42
for fragment-based structure-guided

drug discovery, 30–31
for SBDD, 61

for NNRTIs, 3–4
for SGX FAST

complementary biophysical screening,
35

fragment x-ray screening in, 32,
34–35

with fragment x-rays, 32, 34–35
with SPR, 35
with x-rays, 35

with SPR, 35
virtual

for docking, 3–4, 99–100, 104–105
GLIDE program and, 3, 4–5
ZINC database in, 4

Seeman model, 139
SGX FAST fragment-based structure-guided

drug discovery
aromatic bromine and, 32
biochemical assays for, 35
complementary biophysical screening,

35
with SPR, 35

deliverable properties for, 32
end game for, 32, 37
fragment library design in, 31–32, 37

chemical diversity of, 33
Lipinski’s rules and, 31
properties of, 32–33
size of, 32–33

fragment x-ray screening in, 32, 34–35
LIMS and, 34–35
sensitivity of, 35
visualization clarity of, 35

future prospects for, 38–39
leadlike properties in, 31–32
protein kinases in, 37
SAR optimization in, 35–37

binding sites in, 36, 38
fragment choice in, 36
fragment engineering in, 36
goals for, 36
ligand efficiency in, 36
in target enabling, 32

selectivity in, 37
SMERGE program for, 37
SPR screening for, 35

with complementary biophysical
screening, 35

target enabling in, 32, 33–34
LIMS in, 33
modular robotics in, 33–34
PDB domains in, 33
SAR optimization in, 32

x-ray screening in, 35

siRNA. See small interfering RNA
small group scans, 10–11

BOMB, 10
small interfering RNA (siRNA), 1
SMERGE program. See Scaffold MErging via

Recursive Graph Exploration
(SMERGE) program

solubility, in ADME models, 166–168
in BACE ligands, 191
crystal packing and, 168
in DMSO stock, 166, 167–168
Gaussian process for, 167
matched molecular pairs analysis and,

167
minimum accepted level for, 167
prediction of, 167
recursive partitioning in, 167

solute entropy change, 64
solvation energy terms, 64–65

free, 76
solvent flattening, 21
spectroscopic 3D-QSAR, 132
SPR. See surface plasmon resonance
Statistical Assessment of the Modeling of

Proteins and Ligands (SAMPL),
79

docking and, 105–107
JNK3 structures and, 105
manual process for, 106
semi-automated process for, 106
small-molecule conformations in,

106–107
Statistical Classification of Activities of

Molecules for Pharmacore
Identification (SCAMPI), 139

pharmacore scoring by, 144
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