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Supervisor’s Foreword

In the 1990s our current picture of galaxy formation was established. In this picture
small companions are constantly falling into the gravitational potential wells of
larger galaxies such as ours. As they orbit in the force field of the larger galaxies,
they are disrupted by tidal forces. The upshot is that twin streams of stars (and
presumably undetected dark matter) are pulled from opposite points of the small
companion. Ibata et al. 1994 discovered such a companion, the Sagittarius dwarf
spheroidal, quite close to the centre of our Galaxy but lying on the opposite side
of the Galactic Centre from us. Stars striped from the Sagittarius dwarf were soon
after identified at angular distances >10° from the dwarf, and by 2003 the tidal
streams formed by stars stripped from the Sagittarius dwarf had been traced right
around the sky. In the new millenium data from the Sloan Digital Sky Survey,
which contained accurate multi-colour photometry of stars down to 20th magnitude,
dramatically increased the rate at which new tidal streams were discovered. First
individual globular clusters were shown to have extensive tidal tails comprising
stars that could no longer be bound to the cluster (Odenkirchen et al. 2003;
Belokurov et al. 2006). Then streams were discovered that had no evident pro-
genitor (Belokurov et al. 2007; Grillmair and Dianotos 2006).

A fundamental task of Galactic dynamics is to map the Galaxy’s gravitational
field, and hence its distribution of dark matter. From very early on it was recognised
that tidal streams have enormous potential in this connection (Lynden-Bell and
Lynden-Bell 1995) but it was not clear how this potential should be realised. The
crudest approach rested on the assumption that at large radii the gravitational field is
essentially spherical, so each stream would be confined to a plane. A more
sophisticated approach assumed that the stars of a stream were essentially on the
same orbit as the stream’s progenitor. In 2008 I showed that proper motions and
distances could be predicted from measured sky positions, line-of sight velocities
and the assumption that all stream stars were on the same orbit. A student, Andy
Eyre, took up this idea, extended it to the case in which proper motions rather than
line-of-sight velocities had been measured, and tested the reconstructions with N-
body simulations of cluster disruption. These simulations revealed that the
approximation that all stars are on the same orbit becomes increasingly problematic
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as the errors on the measured quantities increase to realistic values. Following
Tremaine (1999), Eyre examined the formation of N-body streams in angle-action
coordinates and showed that in any gravitational potential streams have a charac-
teristic structure in angle-action space. In particular, there is a systematic shift in the
actions of the orbits of stream stars as one proceeds down each of the tidal tails. If
this structure is ignored when searching for the correct potential seriously incorrect
results can arise.

Eyre left the field after being awarded his doctorate because he felt called to
study medicine. So Jason Sanders took up where Eyre had left off. Given the
forensic power of angle-action coordinates, Jason gave significant time throughout
his thesis work to devising more powerful methods for the determination of angle-
action coordinates from ordinary phase-space coordinates, and a critical comparison
of the cost-effectiveness of these techniques is a useful feature of his thesis.

For the then known tidal streams Jason quantified the errors in the parameters
of the recovered potential that would arise from assuming all stream stars were on
the same orbit. Since these errors could be of order one, he proceeded to introduce a
new principle for the selection of the true potential. The new principle precisely
exploits the systematic variation of orbit along a stream, taking the form of linear
relationships between each angle variable and the associated orbital frequency.

The mapping between observed quantities such as distance, line-of-sight
velocity, and proper motion and angle-action variables is very nonlinear.
Consequently, when observational errors are significant one should avoid com-
puting the angles and actions of individual stars and instead project model streams
into the space of observable and adjust the parameters of the models to find the
range which is consistent with the observational data. Jason implemented this
approach for some mock data. His implementation is, however, not the definitive
one because it involves integrating the probability of the stream over the error
ellipsoid of each star. For realistic errors in the data, the probability of a given
stream is near zero through most of the error ellipsoid of the star, so it would be
much more efficient to integrate the star’s error ellipsoid through the volume in
which the stream has significant probability. This is yet to be done.

In a series of papers from 2010 we showed that kinematic data for stars near the
Sun can be modelled with considerable precision by assuming that the distribution
function of the stars is an analytic function of the actions. In this work we
acknowledged that stars have different ages, but not that they have different
chemical compositions. In the last section of his thesis Jason seeks an analytic
function of age, metallicity and actions that accounts for recent survey data. He is
not entirely successful, but a paper that will soon appear in Monthly Notices of the
Royal Astronomical Society shows that two small but important modifications to
the assumed history of star formation and the way radial migration is handled yield
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an extended distribution function that provides good fits to all the data except the
density of higher-metallicity stars far from the plane. It is not improbable that this
conflict between model and data will be resolved by changes to the data rather than
to the model.

Oxford, UK Prof. James Binney
May 2015
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Abstract

One of the key goals of Milky Way science is measuring the distribution of dark
matter in the Galaxy. Through the study of Galactic dynamics, inferences can be
made about the structure of the Galaxy, and hence the dark matter distribution. To
this end, we present a study of methods useful for modelling and understanding
dynamical systems in the Galaxy.

A natural choice of coordinate system when studying dynamical systems is the
canonical system of angle-action coordinates. We present methods for estimating
the angle-actions in both axisymmetric and triaxial potentials. These fall into two
categories: non-convergent and convergent. The non-convergent methods are fast
approaches, mostly based on approximations to Stäckel potentials. We investigate
the accuracy of these methods for realistic Galactic potentials. The slower con-
vergent methods operate by constructing generating functions to take us from
simple analytically-tractable potentials to our target potential.

Tidal streams should prove useful for constraining the large-scale dark matter
distribution in the Galaxy. Armed with our new angle-action tools, we investigate
the properties of known streams in a realistic Galactic potential. We present a
simple algorithm for constraining the Galactic potential using a tidal stream, which
exploits the expected structure of a stream in the angle-frequency space of the true
potential. We expand this approach into a fully probabilistic scheme that allows for
handling of large errors, missing data and outliers.

We close by discussing another tool useful for modelling the dynamics of the
Galaxy: extended distribution functions for the Galactic disc. We present a simple
extension of an action-based distribution function from Binney (2010) that includes
metallicity information, and compare the model predictions with current data. These
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models are essential for incorporating the selection effects of any survey, and reveal
the important chemo-dynamic correlations that expose the history and evolution
of the Galaxy.

Reference
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Chapter 1
Introduction

1.1 The Galaxy

TheUniverse has structure on a vast range of scales, from the elements andmolecules
found on the Earth, to huge cosmic webs of matter that extend over millions of light-
years. Our Galaxy, the Milky Way, is a complex structure that sits at the interface of
these extreme scales. Gas is fed along the cosmic webs into the Galaxy, cools and
forms stars, which go on to produce the important elements that fuel life on Earth.

The nature of our Galaxy has intrigued humans for many generations. Clearly
visible with the naked eye, theMilkyWay sits as a hugemurky swathe across the sky.
The Ancient Greeks were the first to suggest that the Galaxy is actually composed of
many stars, but it wasn’t until 1610, when Galileo Galilei used his recently-invented
telescope to resolve these stars, that this hypothesis was confirmed. We now know
that there are approximately 1011 stars in our Galaxy. These stars are gravitationally
bound and located mainly in a thin disc. The Sun resides in the disc of the Galaxy
such that our view of the Galaxy is a narrow band in the sky. Inspired by the work
of Thomas Wright and the structure of the Solar system, Kant concluded that such a
structure could occur if a systematic rotation of the Milky Way balanced the inward
gravitational forces. The Galaxy also has a significant proportion of gas and dust,
which causes our view of the Galaxy to be obscured and altered (e.g. Berry et al.
2012; Schlafly et al. 2014).

Kant also had the insight that many of the fuzzy nebulae first observed by Abd al-
Rahman al-Sufi in 964may be very distant stellar systems similar to our ownGalaxy,
as opposed to being part of our Galaxy. This hypothesis remained controversial until
the early 20th century and was the subject of the Great Debate between Shapley
and Curtis. Kant’s idea gained evidence with improved observations by Messier in
1781 and Herschel in 1786, but the first clear evidence came in 1845 when Lord
Rosse resolved substructure in the faintest nebulae. He discovered that they fell
into two distinct categories: elliptical and spiral. The structure of the spiral galaxies
reinforced Kant’s hypothesis that these systems had some systematic rotation similar
to the Milky Way.

© Springer International Publishing Switzerland 2015
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2 1 Introduction

Determining distances to astrophysical objects has long remained an issue in
astrophysics, and it proved to be the solution to the debate over the nature of the
nebulae. To find distances to nearby stars, Herschel assumed the absolute magnitude
of all stars is identical and so constructed the first 3D map of the Milky Way. To
pin down the nature of the nebulae, it was necessary to estimate their distances.
In the 1920s Edwin Hubble made two important contributions in this respect. His
first contribution was to use the 100-inch telescope on Mount Wilson to resolve
the outer parts of spiral galaxies. He found that they consisted of many point-like
faint objects very similar to stars, and concluded that the spiral galaxies must lie
at very large distances. Secondly, when observing the Andromeda galaxy, Hubble
found that some of these objects had a characteristic periodic luminosity similar to
local Cepheid variable stars. Based on these local stars, it was already known that
there is a tight relationship between absolute magnitude and period, such that Hubble
was able to estimate the distance to the Andromeda galaxy. He found a distance of
∼300 kpc—much larger than estimates of the size of the Milky Way. Therefore, the
nebulae must be distinct from our own Galaxy.

The work of these early astronomers has led us to the view that the Universe
is populated with galaxies, and that our Galaxy is just one of many. The evolution
and dynamics of these impressive structures is still an ongoing and highly active
research area. By all accounts our Galaxy is a typical star-forming galaxy, and as
such is somewhat of a representative sample of all galaxies in the Universe. However,
our observation point is unique and we are able to observe our own Galaxy in far
greater detail thanwe could ever hope to observe other galaxies. Therefore, theMilky
Way is an ideal test-bed for understanding the fundamental properties and behaviour
of all galaxies. In this thesis we seek to further understand the nature of the Milky
Way, and hence all galaxies.

1.2 Dark Matter

Despite our view of the Galaxy, and all galaxies, being dominated by stars and gas,
by far the most dominant component of any galaxy is the dark matter. This poorly-
understood component is hypothesised to exist based on the effects of its gravitational
influence. In the Milky Way it is believed that the dark matter contributes about ten
times the mass of the baryonic matter (Wilkinson and Evans 1999; Xue et al. 2008;
Watkins et al. 2010; McMillan 2011a).

The nature of dark matter is one of the biggest questions in modern physics. Its
existence was first posited in the early thirties by Oort (1932) and Zwicky (1933).
Both Oort and Zwicky found that the motions of astrophysical objects could not be
explained by the visible matter, and so it was necessary to invoke some additional
dark matter to explain the observations. Oort found that the stars in the Milky Way
had velocities inconsistent with the visible matter in the Galactic disc, whilst Zwicky
found that the velocities of galaxies in clusters were inconsistent with the visible
cluster mass. Later, Begeman (1989) used the Westerbork 21cm line observations to
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find the rotation curve of the gas in NGC 3198 is approximately flat. This observation
could not be accounted for by the visible mass, and hence implied the existence of a
dark halo. Invoking extra invisible matter is clearly a large leap, but it could explain
the observations. Subsequently dark matter has become an accepted, yet still not
understood, component of the Universe.

Dark matter is a crucial component in the currently accepted �-CDM cosmology
(Liddle 2003) and the theory for the formation of galaxies. Dark matter makes up
approximately 85% of the total matter in the Universe, and plays a central role
in explaining the power spectrum of the Cosmic Microwave Background radiation
(CMB), as well as enabling galaxies to form from the small fluctuations we observe
in the CMB. Early in the Universe, due to its lack of interaction, the dark matter
clumped into overdensities that were relics of some early quantum fluctuations in
the density field. The CMB shows the relics of these early density perturbations in
the baryons (Planck Collaboration et al. 2013). With baryons alone, the fluctuations
are not large enough to account for the structure seen in the Universe today, so dark
matter is required to produce sufficiently large overdensities. These overdensities
accreted more dark matter until they became small haloes of dark matter. Baryonic
matter was slowly accreted into the centre of these darkmatter haloes, and cooled into
smaller self-gravitating structures that formed into galaxies. It is therefore believed
that all galaxies, including the Milky Way, are surrounded by a halo of dark matter.

This hierarchical formation picture of the Universe is reinforced by large-scale
cosmological simulations (e.g. Springel et al. 2005; Boylan-Kolchin et al. 2009)
in which initial perturbations in a uniform dark matter density field are allowed to
grow for the age of the Universe. These simulations produce large overdensities
connected by web-like structures with each overdensity also surrounded by many
smaller subhaloes. Navarro et al. (1996) found that the structure of the haloes from
these simulations follows a universal profile.

Currently, many resources are devoted to understanding the nature of dark mat-
ter. A direct detection of dark matter is the ultimate goal. These particle physics
experiments are the necessary route for understanding the true nature of dark matter.
However, astrophysical insight is also required to form a full picture of the nature of
darkmatter. The density and the velocity distribution of the darkmatter at the Sun are
essential ingredients to understanding the results from a direct detection experiment.
Additionally, the shape of the dark matter halo in our Galaxy provides clues to the
physics that formed the halo (Sackett 1999; Bailin and Steinmetz 2005), and will
provide more universal insights into dark matter distributions in the Universe.

Although widely accepted, dark matter is not the sole explanation for many of
the observations mentioned here. Alternative theories of gravity such as MOND
(Milgrom1983) seek to explainmany of the observations by altering the gravitational
field equations. Newton’s gravity, or indeed Einstein’s Theory of General Relativity,
is well tested on Solar system scales, but its application to galactic and cluster scales
is still debated (Uzan 2009; Reyes et al. 2010).

Measuring the distribution of dark matter is a key goal of Milky Way science.
This thesis discusses methods and approaches that take steps towards achieving this
goal.
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1.3 Galactic Surveys

The most promising route to understanding dark matter is through measuring its
gravitational influence, either on the visible matter or the photons emitted by this
visible matter. Gravitational lensing of the light from distant galaxies around galaxy
clusters reveals the presence of large dark matter haloes surrounding the clusters (see
Massey et al. 2010, for a review). In the Galaxy, we are able to see the influence of the
darkmatter on the visiblematter, in particular the stars.We are now in a golden age of
large-scale Galactic surveys of stars, with many hundreds of thousands of stars being
accurately mapped in position, velocity and chemistry space. For understanding the
Galaxy as a whole, we require large number statistics, such that we can measure
densities, velocity dispersions etc., assuming that the population is in dynamical
equilibrium. However, within these large numbers of stars, there will be a subset of
stars that are members of non-equilibrium structures. These should provide powerful
diagnostics on the Galactic potential (see Sect. 1.6). For modelling the Galaxy as a
whole, we require large representative samples from large-scale Galactic surveys.

In the last thirty years, increasingly sophisticated technology has allowed large
Galactic surveys to become a reality. Large-scale photometric surveys, such as
2MASS (Skrutskie et al. 2006, observing in the infra-red) and the Sloan Digital
Sky Survey (Eisenstein et al. 2011), have measured the magnitudes of several hun-
dred million stars in the Galaxy. These are complemented with large proper motion
catalogues such as PPMXL (Roeser et al. 2010) and UCAC-2 (Zacharias et al. 2010),
such that we can map much of the Galaxy in 4D. To fully understand the Galaxy,
it is necessary to view the Galaxy in full 6D, which involves combining this 4D
information with line-of-sight velocities and distances.

In 1989 the Hipparcos satellite was launched (Perryman et al. 1997) with the aim
of recovering accurate distances to many stars. Hipparcos measured the parallaxes
of around 105 nearby stars. Its successor, Gaia (Perryman et al. 2001), was launched
in late 2013 and will measure parallaxes for around 109 stars, or one % of all stars
in the Galaxy. Parallaxes provide the most accurate distances to nearby stars. For
more distant stars we must rely on (spectro-)photometric distances (e.g. Burnett
et al. 2011).

Spectroscopic surveys are required to measure line-of-sight velocities. These are
expensive surveys, so we can only hope to survey a small fraction of the hundreds of
millions of stars in the photometric catalogues. However, in addition tomeasuring the
line-of-sight velocity, we are also in a position to measure many other properties of
the stars from a spectrum, such as effective temperature, surface gravity and chemical
abundances. The first big effort tomake a large spectroscopic surveywas the Geneva-
Copenhagen survey (Nordström et al. 2004, GCS) which took spectra for a fraction
of the stars with Hipparcos parallaxes. For the first time, a large sample of stars
were viewed in 6D phase-space plus chemistry space etc. We will return to the GCS
later in this thesis so will not discuss it further here. The Sloan Digital Sky Survey
launched a spectroscopic survey: the SloanExtension forGalacticUnderstanding and
Exploration (SEGUE) (Yanny et al. 2009). SEGUE is a low-resolution spectroscopic
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survey of stars fainter than 14th magnitude, complemented by SDSS photometry. As
such, it provides a view of the outer parts of the disc, dominated by the thick disc,
and the stellar halo of the Galaxy, and so complements the more local GCS sample.
The RAVE survey has collected medium resolution spectra (R ∼ 7500) for around
5 × 105 stars brighter than I = 12, enabling the accurate determination of line-of-
sight velocities of stars in a large volume of the Galaxy. The selection volume of this
survey means that it is dominated by the thin and thick discs of the Galaxy, so acts
as a complement to the more extended thick-disc-dominated SEGUE surveys.

Gaia will also measure line-of-sight velocities for many stars accurate to
0.5 km s−1 for V = 15 (Munari et al. 2001). However, Gaia is not able to make
accurate measurements of the stellar properties such as chemical abundances. Gaia-
ESO is an ongoing spectroscopic survey measuring line-of-sight velocities chemical
abundances of around 105 stars (Gilmore et al. 2012). It promises to complement the
Gaia data set.

1.4 Dynamics

The clear way to exploit all the available data from large surveys is throughmodelling
the dynamics. A natural time-scale for the evolution of the Galaxy is ∼200Myr.
This is the time taken for a star near the Sun to complete a single revolution around
the Galactic centre. This implies two things. The first is that stars near the Sun
have orbited the Galaxy approximately 50 times since the formation of the Galaxy.
Therefore, it is reasonable to assume that the Galaxy has reached an approximately
steady state. Secondly, the time taken for a star to orbit is significantly longer than
any human time-scale, so we have no hope of measuring the acceleration of many
stars. The time-scales in the Solar System are short enough for detailed observations
of the entire planetary orbits to be made. From this the acceleration, and hence the
masses of the Sun and the other planets, can be inferred. We are not nearly as lucky
when working with the Galaxy.1

The Solar System has been studied in great detail, and a great many tools have
been developed for this study. The motion of each of the planets around the Sun
can be simply described to zeroth order as Keplerian motion about a point mass.
However, the other planets, most importantly Jupiter, provide small corrections to
this behaviour. The most natural way to approach this problem is with a perturbative
scheme, and the variables most suited to perturbative solutions of dynamical systems
are the angle-action variables. These variables form an important part of the work in
this thesis so we will introduce them here.

1The exceptions to this are the S stars at the Galactic centre (Genzel et al. 2010), which orbit the
central Galactic black hole on time-scales of order 10 yr. These stars have been used to infer the
presence of a central black hole.
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1.4.1 Angle-Action Coordinates

An n-dimensional dynamical system can be described by the Hamiltonian, H ,
expressed in terms of canonical coordinates, (q, p). These coordinates satisfy the
2n Hamilton’s equations given by

d p
dt

= −∂H

∂q
, (1.1)

dq
dt

= +∂H

∂ p
. (1.2)

If the Hamiltonian is integrable, it permits n integrals of the motion (Arnold 1978).
Any function of the integrals of themotion is also an integral ofmotion.Wechoose the
action variables denoted by J . These coordinates are in involution i.e. they have zero
Poisson bracket [Ji , H ] = 0. Therefore, their corresponding conjugate coordinates,
the angles θ, obey the equations ∂H/∂θi = 0, and the Hamiltonian can be expressed
purely as a function of J . Hamilton’s equations for these canonical coordinates are

d J
dt

= −∂H

∂θ
= 0, (1.3)

dθ

dt
= +∂H

∂ J
≡ �(J), (1.4)

where we have introduced the frequencies, �. Therefore, we can write the equations
of motion simply as

J = const., (1.5)

θ = �(J)t + θ(0). (1.6)

An additional detail is that the angles are 2π-periodic, such that the actions J describe
an n-torus over which a particle moves. These equations already reveal the power of
the angle-action formalism—motion that is complicated in (q, p) becomes simple
when viewed in angle-actions. The angle-action variables also provide a basis for the
development of a perturbative solution to the equations of motion. In fact, the angle-
action coordinates of the Kepler problem were invented to explore the role played
by planet-planet interactions in the dynamics of the Solar System. These coordinates
will form the base of much of the work described in this thesis. For non-integrable
Hamiltonians and resonant orbits, the angle-action coordinates do not exist.

1.4.2 Angle-Action Coordinates in Galactic Dynamics

The simplicity of the equations of motion for angle-action coordinates make them
attractive variables to work with. They also possess many other useful properties,
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which are outlined in Binney and Tremaine (2008) and will be discussed later in this
thesis. Their use, however, remains awkward due to the difficulty of their calculation
in a general potential. To find the angles and actions, the potential must produce
separable Hamilton-Jacobi equations. In 1D this is a triviality and we are able to
express the radial action as an integral over the radial potential. However, only in a
few cases can this integral be performed analytically. The isochrone potential (Henon
1959) is the most general spherical potential for which we can find analytic relations
to take us between (x, v) and (J,θ). The Kepler and spherical harmonic oscillator
potential are two limits of the isochrone potential. In all other spherical potentials,
the actions and angles must be found numerically.

The most general class of axisymmetric and triaxial potentials that produce sepa-
rable Hamilton-Jacobi equations are the Stäckel potentials (Stäckel 1893; de Zeeuw
1985). There are no cases where the actions can be found analytically. Instead,
the actions must be found numerically in all Stäckel potentials by evaluating 1D
integrals. This attractive property of the Stäckel potentials has led several authors
(Dejonghe and de Zeeuw 1988; Famaey and Dejonghe 2003) to consider whether
realistic Galactic potentials could be fitted with a Stäckel potential. In Chap.2, we
pursue this idea further to estimate the actions via locally fitting a Stäckel potential
to a realistic Galactic potential.

The most general method for relating (x, v) and (J,θ) is through the torus
machinery developed in a series of papers byMcGill and Binney (1990), Binney and
Kumar (1993), Kaasalainen and Binney (1994) and McMillan and Binney (2008).
Thismachinery proceeds by constructing a generating function thatmaps a simple toy
torus to the target torus. At a given θ on this torus, (x, v) may be simply found using
the constructed generating function. This approach suffers from the disadvantage of
supplying (x, v) given (J,θ) which for many purposes is not ideal. For instance,
McMillan and Binney (2013) found such a routine was inhibitive to constraining the
Milky Way potential using Gaia-like data.

To take advantage of the attractive properties of angle-action coordinates, it is
necessary to produce algorithms for their approximation in general, realistic Galactic
potentials. In recent years various approximation schemes have been developed for
quickly estimating actions and angles in axisymmetric and triaxial potentials (Sanders
2012a;Binney2012a; Sanders andBinney 2014). Thefirst three chapters of this thesis
detail this work.

1.5 Dynamical Modelling of the Galaxy

Instead of working with individual stars, we must use collections of stars from large-
scale Galactic surveys to get some handle on the Galactic potential, and hence the
mass distribution. The collective behaviour of the stars will only be consistent with
known physics if we have correctly identified the Galactic potential. In this thesis,
we describe two different structures in the Galaxy that may be used to measure the
Galactic potential.

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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The first of these is the Galactic disc. The long-range force of gravity dominates
the behaviour of the Galaxy, and the force on an individual star is dominated by
forces from distant stars as opposed to the few nearby objects. As such, we can
model the stars in the Galaxy as being a collisionless fluid with some distribution
function (df), f (x, v), that obeys the collisionless Boltzmann equation (Binney and
Tremaine 2008)

d f

dt
= 0. (1.7)

By Jeans’ theorem, if we make f a function of the integrals of the motion, I , we
naturally satisfy this equation. One choice of integrals are the previously mentioned
actions, J . The actions depend on the potential of the Galaxy, �(x), such that we
can describe the Galaxy with a combination of the two functions f and �. The
collisionless Boltzmann equation ties together the spatial and velocity structure of
thedf. Therefore, onlywhenwe have chosen the correct potential will thedf produce
a consistent picture of the 6D phase-space structure of the Galaxy. This physically-
motivated restriction on the model allows us to constrain the potential of the Galaxy.

Action-based distribution functions for the Galactic disc have been constructed
in a series of papers by Binney (2010, 2012b), and fitted to both local data from the
Geneva-Copenhagen survey and predicted more extended data from RAVE (Binney
et al. 2014). Similarly, Bovy and Rix (2013) have used these models to constrain the
mass scale-length of the Galactic disc using SEGUE data.

The real power from dfmodelling comes from the complementary constraints of
many populations. Each distinct population of stars has its own df but crucially all
populations must reside in the same potential. For instance, Walker and Peñarrubia
(2011) divide stars in a globular cluster into two colour bins and simultaneously
construct distribution functions for these populations to constrain the potential. A
similar approach is certainly possible for the Galactic disc. Bovy et al. (2012) find
that the Galactic disc can be considered as a series of spatially simple populations
when separated into bins in the chemical abundance plane, ([α/Fe], [Fe/H]). When
chemistry is added to dynamics it provides a powerful combination for constraining
the Galactic potential.

Additionally, chemistry of the stars reveals important information regarding the
history of the Galaxy. Essentially each star retains memory of its birth place through
its internal composition. However, the actions of a star can change throughout its
lifetime through dynamical processes, such as radialmigration (Sellwood andBinney
2002). Schönrich and Binney (2009) constructed a full chemo-dynamical model of
the Galaxy that included the effects of radial migration and found that the Geneva-
Copenhagen survey was well fitted with such a model. By fitting these models to
the data, the evolution of the Galaxy can be uncovered. At the end of this thesis we
present an application of dfmodelling of the Galaxy, and we explore the possibility
of constructing an extended distribution function,which allows for chemo-dynamical
modelling of the Galactic disc. The aim is to produce a consistent picture both of the
current dynamical structure of the disc and also the past history and evolution of the
Galaxy.
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1.6 Tidal Streams

In the previous section, we have stressed the importance of smooth equilibrium
models for studying the Galaxy.We know from our ownGalaxy (e.g. Hou et al. 2009;
Belokurov et al. 2006), as well as images of external galaxies, that substructures, such
as spiral waves and infalling satellites, are important structures on top of these smooth
models. Indeed one of the first observations of an external galaxy by Lord Rosse was
of the Whirlpool galaxy, which exhibits spiral patterns and an infalling satellite. Just
as with the Solar System, the incorporation of perturbative effects is made simpler
through the use of angle-action variables. For instance, the velocity distribution in
the Solar neighbourhood shows significant non-equilibrium structure (Dehnen 1998;
Famaey et al. 2005). One such structure, the Hyades, can be accounted for by a
perturbation due to the inner/outer Lindblad resonance of a spiral wave, which can
be simply modelled in angle-action space (Sellwood 2010; McMillan 2011b, 2013).
Additionally, the angle-action variables provide the ideal tool to find non-equilibrium
structure in our Galaxy. Clumps in action-space, or non-uniformity in the angles, is
clear evidence of substructure (McMillan and Binney 2008; Sanderson et al. 2014).

Whenwe look into the halo of theGalaxy, it is rich in non-equilibrium substructure
(Belokurov et al. 2006). This is entirely to be expected in the �-CDM picture of the
Universe, where a large galaxy, such as our own, is accompanied by many smaller
structures. TheLarge andSmallMagellanicClouds, first observed byAbd al-Rahman
al-Sufi in 964, and the SagittariusDwarfGalaxy (Ibata et al. 1995) are the largest such
structures, but there are many smaller globular clusters and satellites orbiting out in
the halo (Koposov et al. 2008). Any satellite orbiting in the Galaxy will naturally
experience strong tidal forces from the gravitational field of the Milky Way, which
will cause the stars to be tidally stripped from the satellite. The stripped stars form
long filamentary structures called tidal streams. Substructure associated with the
LargeMagellanic cloud was first observed byMathewson et al. (1974), but this is not
believed to be associated with tidal stripping. Not long after its discovery, Johnston
et al. (1995) predicted that the Sagittarius dwarf would be heavily disrupted, and that
debris might be observed in the solar neighbourhood. The tidal tails of the Sagittarius
dwarf were found in the 2MASS data by Majewski et al. (2003). Since then, many
streams have been discovered, mostly through matched filtering techniques on the
Sloan Digital Sky Survey data, and the famous ‘field of streams’ image (Belokurov
et al. 2006) showed that, as anticipated, the halo of our Galaxy is rich in such objects.
We review the known streams of the Milky Way more fully in Chap.5.

These structures are also present in external galaxies, such as M31 (Ibata et al.
2001), though we only observe high-mass satellites due to their greater luminosity.
The number and distribution of these structures are interesting for comparison with
cosmological predictions of galaxy formation. However, here we are interested in
tidal streams as a probe of the Galaxy’s potential.

http://dx.doi.org/10.1007/978-3-319-18772-3_5
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1.6.1 Constraining the Galactic Potential with Tidal Streams

By its nature, a tidal stream is a correlated system of stars, and, as such, we can
construct dynamical models for its formation and structure. Around each pericen-
tric passage, or disc passage, some stars are stripped from the progenitor, and can
then be considered as moving freely in the external gravitational potential of the
Galaxy. Unlike the Galactic disc, we cannot consider the stars as being in a dynami-
cal equilibrium—quite the opposite, the distribution function of the stream is a strong
function of the angles. Importantly, the angles of the stars increase along the stream.
The structure of the stream reflects the underlying potential of the Galaxy, such
that inferences about the Galactic potential can be made from stream observations
(McGlynn 1990; Johnston et al. 1996, 1999). Additionally, they prove highly com-
plementary to the local measurements of the dark matter possible through disc mod-
elling, and instead probe the global dark matter distribution. As such, tidal streams
may be the best way to constrain the large-scale distribution of dark matter in our
Galaxy.

Naively, we could consider the stars in the stream as a series of snapshots in time
of a single star orbiting in the Galaxy. For a low-mass progenitor, the actions for
each of the stars in the stream will be approximately the same, whilst the angles
will increase linearly along the stream at a rate governed by the frequency of the
progenitor. With this assumption, we can essentially measure the acceleration due
to the Galaxy. This naive picture indicates how constraining the Galactic potential
using streams operates, but in detail it is wrong.

There are many proposed methods for constraining the potential using tidal
streams. The most primitive of these use the assumption that a stream delineates
an orbit (Jin and Lynden-Bell 2007; Binney 2008). Due to the simplistic nature of
this modelling approach, it has been employed successfully on real data, notably the
GD-1 stream (Grillmair and Dionatos 2006) by Koposov et al. (2010). The validity
of the simple stream-orbit approximation has been brought into doubt by several
authors (Dehnen et al. 2004; Choi et al. 2007; Eyre and Binney 2011). Importantly,
it is clear that a stream can never follow an orbit as, for a stream to form, the parti-
cles must be on different orbits. If all particles were on the same orbit, the ‘stream’
would not stretch in time but instead oscillate in length as it passed from apocentre
to pericentre and back. We require the particles in a stream to follow slightly dif-
ferent orbits for the stream to stretch in time. Eyre and Binney (2011) demonstrated
that assuming a stream delineates an orbit can lead to biases when estimating the
parameters of the Galactic potential. Additionally, these authors provided a clear
and thorough discussion of the structure of streams in angle-action space. Angle-
action coordinates are very attractive for viewing the formation of streams, and, in
the correct potential, there are very clear correlations between the angles and the
actions of a stream. However, the discussion in Eyre and Binney (2011) was limited
to potentials that have separable Hamilton-Jacobi equations (Stäckel potentials, of
which spherical potentials are limiting cases) for which the angle-action coordinates
are numerically tractable.
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The angle-action approach allows for a clearer understanding of the structure of
streams, as well as presenting a route to improving the modelling of the streams in
order to constrain the potential. This approach more correctly models the formation
and dynamics of the stream. Similarly, many authors have proposed approaches
to constraining the potential without assuming that the stream delineates an orbit.
Varghese et al. (2011) correct the orbit track of the progenitor by releasing stars
at pericentric passage assuming some model for the progenitor. This approach can
rapidly generate streammodels but relies on strongmodelling assumptions. Similarly,
Küpper et al. (2012) use a streak-linemethod for constructing streams by continually
releasing particles from the progenitor at the tidal radius. This approach has been used
to constrain properties of the Via Lactea II simulation from its constituent streams by
Bonaca et al. (2014). Johnston et al. (1999) and Price-Whelan and Johnston (2013)
use an ‘orbit-rewinding’ approach that integrates the orbit of each observed star
backwards in time until the particles comes within some phase-space distance of the
progenitor. This method requires knowledge of the progenitor, which is often not
available (e.g. GD-1), but can be treated as an unknown parameter to marginalize
over (Price-Whelan et al. 2014). The method also requires one to introduce some
arbitrariness in the choice of phase-space distance measure.

Despite not delineating an orbit, a stream still forms a very tight clump in action-
space. Peñarrubia et al. (2012) show that in the correct potential the spread in the
integrals, or actions, is minimized, and this spread increases when using the wrong
potential. This entropy minimization technique is also used by Sanderson et al.
(2014). It certainly avoids the stream/orbit question but only by neglecting the phase
information of the stream. The high degree of correlation in the angle structure of
the stream is indicative of its constraining power, so to throw out this information
is perhaps not wise. Finally, for high-mass progenitors such as Sagittarius, perhaps
the only approach to using the tidal tails to constrain the potential is through full
N -body modelling (e.g. Law andMajewski 2010). Such an approach models the full
dynamical effects of a cluster in a tidal field, but (perhaps crucially) neglects the
effects of dynamical friction that must affect such a high-mass progenitor (Jiang and
Binney 2000).

Following Eyre and Binney (2011) the key questions were: Is the stream = orbit
approximation valid for realistic Galactic potentials? How canwe exploit the insights
of Eyre andBinney (2011) to constrain a potential using tidal streamswhich improves
on orbit-fitting? How can we find the angle-action coordinates in a general potential?
Chapters5 and 6 of this thesis will aim to answer these questions.

1.7 Overview of Thesis

This thesis discusses approaches to modelling the dynamics of the Milky Way. The
common aim is to understand the structure of the Galaxy, particularly the distribu-
tion of dark matter, by various dynamical probes. We focus on two dynamical probes
to achieve this goal: extended distribution function modelling of the Galactic disc

http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_6
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provides constraints on the local structure of the Galaxy, which is complemented by
the more global constraints provided by tidal streams. Both of these approaches rely
on the construction of appropriate angle-action-based models. This thesis consists of
three key parts divided over seven main chapters. Firstly, Chaps. 2, 3 and 4 develop
algorithms for estimating angle-action coordinates in general axisymmetric and tri-
axial potentials. Chapters5 and 6 go on to discuss tidal streams and how we may
use them to constrain the Galactic potential. We discuss distribution functions for
the Galactic disc in Chaps. 7 and 8. Finally in Chap.9, we present the conclusions of
the thesis, along with a look to the future and the importance of the presented work.
Here we briefly summarize the content of each chapter.

1.7.1 Angle-Action Estimation in a General Axisymmetric
Potential

The usefulness of angle-action variables in galaxy dynamics is well known, but their
use is limited due to the difficulty of their calculation in realistic galaxy potentials. In
Chap.2,we presentmethods for estimating angle-action variables in realistic axisym-
metric Milky Way potentials. The presented methods are split into two categories:
convergent and non-convergent methods. The first non-convergent method proceeds
by locally fitting a Stäckel potential over the region an orbit probes, and estimating
the true actions as those in the fitted potential. The quality of the method is assessed
by estimating the angle-action variables of a range of disc and halo-type orbits,
and we present a brief application by projecting the Geneva-Copenhagen survey into
angle-action space.We further present a newmethod for estimating the actions based
on the adiabatic approximation of Schönrich and Binney (2012). This new method
improves on the assumption of separability in cylindrical polar coordinates and uses
a more general assumption of separability in spheroidal coordinates. We compare
the accuracy and computational time of these new methods with other known non-
convergent methods (Binney 2012a). Finally, we present a slower convergent method
for estimating the actions. The method operates by iteratively constructing tori using
action estimates from the non-convergent approaches. The work in this chapter is
based on that published by Sanders (2012a).

1.7.2 Actions, Angles and Frequencies from Numerically
Integrated Orbits

In Chap.3, we present a method for extracting actions, angles and frequencies from
an orbit’s time series. The method recovers the generating function that maps an
analytic phase-space torus to the torus to which the orbit is confined, by simulta-
neously solving the constraints provided by each time step. We test the method by

http://dx.doi.org/10.1007/978-3-319-18772-3_2
http://dx.doi.org/10.1007/978-3-319-18772-3_3
http://dx.doi.org/10.1007/978-3-319-18772-3_4
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_6
http://dx.doi.org/10.1007/978-3-319-18772-3_7
http://dx.doi.org/10.1007/978-3-319-18772-3_8
http://dx.doi.org/10.1007/978-3-319-18772-3_9
http://dx.doi.org/10.1007/978-3-319-18772-3_2
http://dx.doi.org/10.1007/978-3-319-18772-3_3
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recovering the actions and frequencies of tori in a triaxial Stäckel potential, and use
it to investigate the structure of orbits in a triaxial potential that has been fitted to our
Galaxy’s Sagittarius stream. We show how the method operates when working with
near-resonant and chaotic orbits. The method promises to be useful for analysing
N -body simulations. The work in this chapter is based on that published by Sanders
and Binney (2014).

1.7.3 Action Estimation Using a Triaxial Stäckel
Approximation

In Chap.4, we present a fast method for estimating the actions in a general triaxial
potential. The method is an extension of the axisymmetric approach presented by
Binney (2012a), and operates by assuming that the true potential is sufficiently close
to a Stäckel potential.We require rapid action evaluation in order to find themoments
of triaxial distribution functions. The method uses only the initial phase-space point
to estimate the classical integrals and hence does not involve any time-consuming
orbit integration. We briefly inspect the accuracy of the method by estimating the
actions of orbits in a triaxial Navarro-Frenk-White potential (Navarro et al. 1996).
We go on to show how the method can be used to construct triaxial distribution
functions that satisfy the Jeans equations, and so can be used effectively to build
models of external galaxies, as well as triaxial components of our own Galaxy.

1.7.4 Stream-Orbit Misalignment

Tidal streams don’t, in general, delineate orbits. A stream-orbit misalignment is
expected to lead to biases when using orbit-fitting to constrain models for the Galac-
tic potential. In Chap.5, we discuss the expected magnitude of the misalignment
and the resulting dangers of using orbit-fitting algorithms to constrain the potential.
We summarize data for known streams that should prove useful for constraining the
Galactic potential, and compute their actions in a realistic Galactic potential. We
go on to discuss the formation of tidal streams in angle-action space, and explain
why, in general, streams do not delineate orbits. The magnitude of the stream-orbit
misalignment is quantified for a logarithmic potential and multi-component Galac-
tic potentials. Specifically, we focus on the expected misalignment for the known
streams. By introducing a two-parameter family of realistic Galactic potentials, we
demonstrate that assuming these streams delineate orbits can lead to order one errors
in the halo flattening and halo-to-disc force ratio at the Sun. We present a discus-
sion of the dependence of these results on the progenitor mass, and demonstrate that
the misalignment is mass-independent for the range of masses of observed streams.
Hence, orbit-fitting does not yield better constraints on the potential if one uses

http://dx.doi.org/10.1007/978-3-319-18772-3_4
http://dx.doi.org/10.1007/978-3-319-18772-3_5
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narrower, lower-mass streams. The work in this chapter is based on that published
by Sanders and Binney (2013a).

1.7.5 Stream Modelling in Angle-Frequency Space

In Chap.6, we present new techniques for constraining the Galactic potential using
tidal streams, which crucially do not rely on the assumption that a stream delineates
an orbit. The key idea is that a stream takes on a very simple structure when viewed
in angle and frequency space in the correct potential. We present a simple algorithm
for constraining the Galactic potential using these observations and show that we
are able to recover the parameters of a logarithmic potential from a simulation. We
investigate the impact of observational errors on the algorithm and conclude that the
simple approach is not robust enough to large observational errors. We proceed by
writing down a fully probabilistic model for a stream in the space of observables
using the expected structure in angle-frequency space. We show that we are able to
recover the parameters of the potential by sampling from this model, and that the
probabilistic model can handle contamination of the data with non-stream members.
The work in this chapter is based on that published by Sanders and Binney (2013b)
and Sanders (2014).

1.7.6 Determining the Velocity Dispersion of the Thick Disc

A recent study by Moni Bidin et al. (2012a) used a sample of 412 red giants to
determine the vertical velocity dispersion of the thick disc as a function of Galactic
height. The results of this studywere thenused inMoniBidin et al. (2012b) tomeasure
themass density in theGalactic disc, and it was concluded that there ismuch less dark
matter in the solar neighbourhood than anticipated. In Chap.7, we present a study of
the method used in Moni Bidin et al. (2012a) by attempting to recover the velocity
dispersion of the thick disc from the realistic Galactic distribution function of Binney
(2012b). We show that the errors reported by Moni Bidin et al. (2012a) are far too
small, as two significant sources of error are neglected. We also demonstrate that
the method leads to biases in the vertical velocity dispersion gradient with Galactic
height. This work is based on that published by Sanders (2012b).

1.7.7 Extended Distribution Functions for the Galactic Disc

In Chap.8, we present an extension to the action-based distribution functions of
Binney (2012b) which includes metallicity information. Purely dynamical distrib-
ution functions have limited use when attempting to model data sets, due to the

http://dx.doi.org/10.1007/978-3-319-18772-3_6
http://dx.doi.org/10.1007/978-3-319-18772-3_7
http://dx.doi.org/10.1007/978-3-319-18772-3_8
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presence of selection effects. Surveys naturally select in the colour and magnitude
of the stars, which in turn affects the observed metallicity distribution. Metallicity
and age are believed to be correlated with velocity as, for instance, older metal-poor
stars are members of hotter populations. Therefore, inclusion of metallicity in a dis-
tribution function is necessary for modelling the dynamics of a survey. Additionally,
it provides a probe of the formation and history of the Galaxy, and useful leverage on
constraining the Galactic potential. We demonstrate that our extended distribution
functions provide good fits to data from the Geneva-Copenhagen survey, and show
the effects of simple selection functions on metallicity and velocity distributions. We
go on to construct a mock SEGUE G dwarf sample from our model and compare to
the data.
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Chapter 2
Angle-Action Estimation in a General
Axisymmetric Potential

2.1 Introduction

In the study of dynamical systems, it is becoming increasingly important to be able
to process and understand large multi-dimensional data sets efficiently. The stars
in our own Galaxy, the Milky Way, are being increasingly observed in full six-
dimensional phase-space through the combination of astrometry and radial velocity
measurements. Full 6D phase-space information is currently available for stars in the
solar neighbourhood from the Geneva-Copenhagen and RAVE surveys (Nordström
et al. 2004; Zwitter et al. 2008) and this is to be greatly expanded on by the space
mission Gaia (Perryman et al. 2001). Beyond our Galaxy, the advent of integral-
field spectroscopy has led to projects such as SAURON (Bacon et al. 2001 and
subsequent papers), which mapped the kinematics of a representative sample of 72
nearby elliptical and spiral galaxies, and subsequently ATLAS3D (Cappellari et al.
2011 and subsequent papers), which combined SAURON observations with CO and
HI observations to study the kinematics of a complete volume-limited sample of 260
local early-type galaxies.

Although no galaxy is ever in perfect dynamical equilibrium, equilibrium dynam-
ical models are central to the interpretation of observations of both our Galaxy and
external galaxies. N -body simulations of cosmological clustering yield a picture in
which dark-matter haloes are far from dynamical equilibrium only during short-lived
and quite rare major mergers. In general a dark-matter halo can be well approximated
by a dynamical equilibrium that is mildly perturbed by accretion. A major reason for
the importance of equilibrium models is that we can infer a galaxy’s gravitational
potential, and thus its dark-matter distribution, only to the extent that the galaxy
is in equilibrium. Moreover, equilibrium models are the simplest models and more
complex configurations, involving spiral structure or an on-going minor merger for
example, are best modelled as perturbations of an equilibriummodel. Schwarzschild
modelling (Schwarzschild 1979) constructs equilibrium models by describing the
configuration of a model by a weighted set of orbits. However, this approach is not
the most natural as each orbit is characterised by its initial phase-space coordinates.
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20 2 Angle-Action Estimation in a General Axisymmetric Potential

Additionally, observational data is often understood by performing large N -body
simulations. Whilst such models are straightforward to produce, the configurations
of the models are difficult to control and characterise. It is necessary that techniques
are developed which can simplify both observational and simulation data without
losing the richness of the phase-space information.

2.1.1 Angle-Action Variables

The natural way to model a dynamical equilibrium is via Jeans theorem, which
assures us that the system’s distribution function (df) can be assumed to be a non-
negative function of isolating integrals. Since one expects a smooth time-independent
gravitational potential to admit up to three functionally independent isolating inte-
grals, Jeans theorem states that we should be able to represent an equilibrium stellar
system by the density of stars in a three-dimensional space of integrals rather than in
full six-dimensional phase space. This reduction in dimensionality makes the system
very much easier to comprehend and model.

Since any function of integrals is itself an integral, infinitely many different inte-
grals may be used as arguments of the df. However, the action integrals Ji stand
out as uniquely suited to be used as arguments of the df. Along with the angles, the
actions form a set of canonical coordinates that can be used to express the equations
of motion in a trivial form: the actions are integrals of the motion whilst the angles
increase linearly with time. Such a formulation instantly reduces the complexity of
any dynamical data set. Along an orbit, the six phase-space dimensions are reduced to
three angle coordinates. Angle-action variables can be defined for any quasi-periodic
orbit. Initially introduced to study celestial mechanics, angle-action variables now
have great potential for galaxy dynamics due to their attractive properties. It is par-
ticularly convenient to use actions as arguments of the df as (i) they are adiabatic
invariants, (ii) the zero-point of an action is well defined and (iii) the range of values
an action may take is independent of the other actions. The angle-action variables
also provide a basis for the development of a perturbative solution to the equations of
motion (see Binney and Tremaine 2008 for a much fuller discussion of the merits of
angle-action variables). Finally, we mention that angle-action variables can be used
to hunt for substructure in the Galaxy (e.g. McMillan and Binney 2008), and will be
used in Chap.6 to model tidal streams.

Despite the aforementioned advantages, angle-action variables remain awkward
to work with in practical applications due to the difficulty of their calculation in a
general potential. They are easily calculated when the potential is spherical and with
morework can be numerically calculated when the potential is of Stäckel form. How-
ever, neither of these approaches is satisfactory when working with realistic galaxy
potentials, because such potentials do not satisfy these conditions. The development
of methods to estimate angle-action variables in a general potential is crucial if we
are to benefit from the advantages of angle-action variables and the wealth of tech-
niques that utilise them. For some applications, such as streammodelling, we require
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2.1 Introduction 21

accurate actions for a few data points, such that we can afford to spend a long time
evaluating the actions. However, for other applications, such as disc modelling, we
require a fast algorithm for estimating the actions of many data points. Therefore, a
variety of algorithms are required.

In this chapter, we present methods for estimating angle-action variables in a
general axisymmetric potential. The methods presented in this chapter fall into two
categories: slower convergent algorithms that produce very accurate actions, and
faster non-convergent algorithms that produce less accurate actions. The majority of
these methods are based on the analytic calculation of the actions in an axisymmetric
Stäckel potential, so, in Sect. 2.2, we give a brief overview of the determination of
angle-action variables in this class of potential. We continue by presenting a series
of non-convergent methods based on the Stäckel potential. In Sect. 2.3, we present a
method for estimating the angle-actions by locally fitting a Stäckel potential to the
region a given orbit explores in an axisymmetric potential. The actions and angles
in the general axisymmetric potential are estimated as those in the fitted Stäckel
potential. The results of the method are examined by analysing artificial data in
Sect. 2.3.3, and we demonstrate the practical application of the method by inspecting
the Geneva-Copenhagen Survey in angle-action space in Sect. 2.3.4. In Sect. 2.4,
we present the adiabatic approximation from Schönrich and Binney (2012) that is
based on separability in cylindrical polar coordinates. In Sect. 2.5, we present a new
method that improves on the adiabatic approximation by assuming separability in
a general prolate spheroidal coordinate system. In Sect. 2.6, we present the method
from Binney (2012) that assumes the potential is close to a Stäckel potential. Finally,
we showhow these non-convergentmethods can be combinedwith torus construction
(McMillan and Binney 2008) to produce a convergent method for finding the actions
from a phase-space point (x, v). The results of all of these methods are compared in
Sect. 2.8. The work on which this chapter is based was published by Sanders (2012).

2.2 Actions and Angles in a Stäckel Potential

The most general class of potentials in which we are able to calculate the angle-
action variables analytically is that of Stäckel potentials. In a confocal ellipsoidal
coordinate system, these potentials produce separable Hamilton-Jacobi equations.
A full discussion of Stäckel potentials is given in de Zeeuw (1985). Here we limit
the discussion to oblate axisymmetric Stäckel potentials which are associated with
prolate spheroidal coordinates (λ,φ, ν). A specific prolate spheroidal coordinate
system is defined by two constants (a, c). These coordinates are related to cylindrical
polar coordinates (R,φ, z) by

R2

τ − a2 + z2

τ − c2
= 1, (2.1)
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where λ and ν are the roots of τ such that c2 ≤ ν ≤ a2 ≤ λ. Surfaces of constant
λ are prolate spheroids and surfaces of constant ν are two-sheeted hyperboloids
of revolution that intersect the spheroids orthogonally. Given λ and ν we can find
expressions for R and z as a function of (λ, ν),

R2 = (λ − a2)(ν − a2)

c2 − a2 ,

z2 = (λ − c2)(ν − c2)

a2 − c2
.

(2.2)

To convert from the canonical coordinates, (R, z, pR, pz), to the coordinates (τ , pτ ),
we introduce the generating function S(λ, ν, pR, pz) given by

S(λ, ν, pR, pz) = pR R(λ, ν) + pzz(λ, ν). (2.3)

We can then find pτ = ∂S/∂τ as

pλ = 1

2
pR

√
ν − a2

(c2 − a2)(λ − a2)
+ 1

2
pz

√
ν − c2

(a2 − c2)(λ − c2)
,

pν = 1

2
pR

√
λ − a2

(c2 − a2)(ν − a2)
+ 1

2
pz

√
λ − c2

(a2 − c2)(ν − c2)
.

(2.4)

Similarly, differentiating Eq. (2.2) we find pλ = P2
λ λ̇ and pν = P2

ν ν̇ where the dot
denotes differentiation with respect to time and

P2
λ = λ − ν

4(λ − a2)(λ − c2)
,

P2
ν = ν − λ

4(ν − a2)(ν − c2)
.

(2.5)

Inversion of Eq. (2.4) allows us to write the Hamiltonian as

H = 1

2
(p2R + p2z ) + L2

z

2R2 + �(R, z)

= 1

2

(
P2

λ λ̇2 + P2
ν ν̇2 + L2

z

R2(λ, ν)

)
+ �(λ, ν)

= 1

2

( p2λ
P2

λ

+ p2ν
P2

ν

+ L2
z

R2(λ, ν)

)
+ �(λ, ν),

(2.6)

where Lz is the z-component of the angularmomentum.A potential,�S , is of Stäckel
form in a particular prolate spheroidal coordinate system if
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�S = − f (λ) − f (ν)

λ − ν
. (2.7)

�S is fully defined by a single function f (τ ). A single function may be used as λ and
ν take different ranges of values except at λ = a2, ν = a2, where we require f to
be continuous so the potential remains finite. As in all axisymmetric potentials, the
energy, E , and z-component of the angular momentum, Lz are isolating integrals. In
a Stäckel potential we are in the fortunate position of being able to find analytically
a third isolating integral, I3. To do this we solve the Hamilton-Jacobi equation.
We introduce the generating function, W (λ, ν, J) for the transformation between
the prolate spheroidal coordinates and the as yet unknown actions and corresponding
angles.With this generating function wewrite pτ = ∂W/∂τ and set the Hamiltonian
at fixed J to the energy E . We make the Ansatz that W = ∑

τ Wτ (τ ) and find that

λE + f (λ) − 2(λ − a2)(λ − c2)
(∂Wλ

∂λ

)2 +
(c2 − a2

λ − a2

) L2
z

2

= νE + f (ν) − 2(ν − a2)(ν − c2)
(∂Wν

∂ν

)2 +
(c2 − a2

ν − a2

) L2
z

2
. (2.8)

We introduce the separation constant

K = c2E − L2
z

2
+ I3, (2.9)

where I3 is the third integral.We now have expressions for themomenta as a function
of τ and the classical integrals i.e.

2(τ − a2)(τ − c2)p2τ = (τ − c2)E −
( τ − c2

τ − a2

) L2
z

2
− I3 + f (τ ). (2.10)

This expression allows us to find the third isolating integral as

I3 = (τ − c2)E −
( τ − c2

τ − a2

) L2
z

2
+ f (τ ) − 2(τ − a2)(τ − c2)p2τ . (2.11)

We define the action variables, Jλ and Jν , as

Jτ = 1

2π

∮
pτdτ , (2.12)

where the integration is over all values of τ for which p2τ ≥ 0. As pτ =
pτ (τ , E, I2, I3), the actions are solely functions of the isolating integrals and thus
constants of the motion. The third action, Jφ, is simply Lz . Therefore, given a
Cartesian phase-space point (x0, v0), we can find the three isolating integrals,
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I = (E, Lz, I3), using the coordinate transformation and perform the 1D integrals
in Eq. (2.12) to find the actions.

The actions give an absolute measure of the extent of the oscillations of the orbit
in each of the coordinates. At large radii, the prolate spheroidal coordinate system
becomes spherical such that λ ≈ R2+z2. Therefore, we can think of Jλ as a measure
of the radial oscillations. The ν coordinate increases as wemove away from the z = 0
plane, so we may think of Jν as a measure of the vertical oscillations.

The corresponding angle coordinates, θτ and θφ, are calculated using the generat-
ing function, W (λ,φ, ν, Jλ, Lz, Jν) for the canonical transformation from (λ,φ, ν,

pλ, Lz, pν) to (θλ, θφ, θν, Jλ, Lz, Jν). The angles are found by differentiating the
generating function with respect to the respective action such that

θτ = ∂W

∂ Jτ
for τ = {λ, ν}; θφ = ∂W

∂Lz
. (2.13)

A full list of formulae, as well as a discussion of how to perform the quadratures
numerically, is given in Appendix A. In this appendix, we also give expressions for
the frequencies, � = ∂H/∂ J , which will be useful in later chapters.

2.3 Estimating Actions in a Fitted Stäckel Potential

Wehave seen how to find actions in a Stäckel potential.We nowgo on to showhowwe
can use these insights to estimate actions in a general potential. Given the ease with
which we can calculate actions and angles in a Stäckel potential, it seems sensible
to investigate how well a Stäckel potential can fit a Galaxy model so that we may
estimate the actions and angles as those calculated in this best-fitting potential. It has
been known for some time that Stäckel potentials do not give a good fit to the potential
of the Galaxy globally due to the rigid conditions they must fulfil. Dejonghe and de
Zeeuw (1988) outline a method for fitting a general axisymmetric potential with
a Stäckel potential, which can be applied both globally and locally. These authors
produced global fits for the Bahcall-Schmidt-Soneira Galaxy model (Bahcall et al.
1982) with errors in the potential nowhere exceeding 3%, and Jasevicius (1994)
carried out a similar analysis on a broader range of MilkyWay potential models with
similar results. As expected, the fits are worst in the central 0.5 kpc of the Galaxy.
De Bruyne et al. (2000) sought to fit axisymmetric potentials locally using a set of
Stäckel potentials in order to calculate the third isolating integral, I3. When applied
to a Miyamoto-Nagai potential, I3 was found to vary by approximately 10% along
an orbit. Here we follow the method presented by Dejonghe and de Zeeuw (1988).

Suppose we have an axisymmetric potential �(R, z) that we wish to fit by a
Stäckel potential �fit. We begin by choosing a prolate spheroidal coordinate system
by specifying (a, c). The coordinate system is fully specified by the combination
(a2 − c2), so we are free to set c2 = 1, which reduces numerical difficulties. We
determine a by using a property of an axisymmetric Stäckel potential (de Zeeuw
1984). It follows from Eq. (2.7) that for a Stäckel potential, �S ,
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∂2

∂λ∂ν
[(λ − ν)�S] = 0. (2.14)

Therefore, for a general potential � we use this equation as a definition for the
coordinate system. We find this gives an estimate for a at a point (R, z)

a2 − c2 = R2 − z2 −
[
3z

∂�

∂R
− 3R

∂�

∂z
+ Rz

(∂2�

∂R2 − ∂2�

∂z2

)]/ ∂2�

∂R∂z
. (2.15)

Later, we calculate a sufficiently accurate value of a by evaluating this expression at
multiple positions along an orbit and averaging.1 With this choice of a we transform
�(R, z) to �(λ, ν) and specify the fitting region: λ− ≤ λ ≤ λ+, ν− ≤ ν ≤ ν+. A
global fit corresponds to ν− = c2, ν+ = λ− = a2,λ+ = ∞. We define the auxiliary
function

χ(λ, ν) ≡ −(λ − ν)�(λ, ν). (2.16)

If the potential � is of Stäckel form, this auxiliary function is simply χ(λ, ν) =
f (λ)− f (ν). We seek the function f that makes �fit most like � by minimising the
square difference of the potential auxiliary function and the fitting potential auxiliary
function, χfit, over the fit region. Therefore, we minimise the functional

F[ f ] =
∫ λ+

λ−
dλ

∫ ν+

ν−
dν �(λ)N (ν)(χ(λ, ν) − f (λ) + f (ν))2, (2.17)

where �(λ) and N (ν) are weighting functions allowing us to acquire a better fit in
certain areas. These functions must be finite when integrated over the fitting region.
We choose the normalised weighting functions

�(λ) = 4λ−5(λ−4− − λ−4+ )−1, N (ν) = (ν+ − ν−)−1. (2.18)

This choice of weighting functions gives preferential weight to smaller values of λ
where the potential is harder to fit. Analytic minimisation of the functional F results
in a best fit function

f (λ) = χ̄(λ) − 1

2
¯̄χ, f (ν) = −χ̄(ν) + 1

2
¯̄χ, (2.19)

1For an oblate Stäckel potential, this expression gives the exact a2 −c2 at every point. However, for
a general oblate potential, this expression can give negative values such that a2 < 0. This implies
that the best-fitting coordinate system is oblate (see Sect. 2.3.5). However, this only seems to occur
when the equipotentials are near spherical (e.g. at high angular momentum in McMillan potential).
For the logarithmic potential explored later this formula selects prolate coordinate systems for q < 1
and oblate for q > 1.
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where

χ̄(λ) =
∫ ν+

ν−
dν χ(λ, ν)N (ν),

χ̄(ν) =
∫ λ+

λ−
dλχ(λ, ν)�(λ), (2.20)

¯̄χ =
∫ ν+

ν−

∫ λ+

λ−
dλdν χ(λ, ν)�(λ)N (ν).

The derivation of these equations is given in Appendix B. The quality of the fit we
have achieved is then measured by F[ f ].

2.3.1 Procedure

Combining the above two sections, we can estimate the actions and angles of a phase
point (x, v) by first fitting a Stäckel potential to the given potential over the region the
orbit probes, and then calculating the angle-action variables in this fitted potential.
Therefore, given a point (x, v), we follow this procedure:

1. We begin by calculating the z-component of the angular momentum, Lz , and the
energy, E , in the ‘true’ potential.

2. We then integrate the orbit in the ‘true’ potential. We use the initial time-steps of
the orbit integration to find the best-fitting coordinate system: at several points
along the orbit we evaluate Eq. (2.15) and average to find a sufficiently accurate
value for a. With the coordinate system found, we continue integrating to find
the edges of the orbit, λ+,λ− and ν+, that define the fitting region. The edges of
the orbit are given approximately by the points where τ̇ = 0 in the best-fitting
prolate spheroidal coordinate system. The minimum and maximum τ edges are
distinguished by inspecting the sign of τ̈ . For all realistic potentials every orbit
crosses the z = 0 plane so we set ν− = c2.

3. We can now find a best-fitting Stäckel potential over this region. Using Eq. (2.19)
we tabulate f (λ) and f (ν) for 40 points in (λ−,λ+) and (ν−, ν+) respectively
so that we may interpolate these smooth functions. Any call outside the ranges is
calculated fully using Eq. (2.19) with a full re-computation of χ̄(τ ).

4. With the best fit potential now calculated, we find I3 using Eq. (2.11) for three
points on the boundary of the orbit (on theminimum λ edge, themaximum λ edge
and the maximum ν edge) and take an average.We have already found these three
points when determining the edges of the orbit, so this choice involves minimum
additional computational effort and provides a fair estimate for I3 over a large
region of the orbit. However, this choice of I3 can lead to the initial phase-space
point (x, v) being forbidden. Therefore, with this choice of I3, we check whether
p2(ν) > 0 and p2(λ) > 0 for the initial phase-space point using Eq. (2.11), and,
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if not, then we calculate I3 from Eq. (2.10) using only the initial phase-space
point. This procedure2 reduces the numerical noise around the turning points,
particularly in R.

5. With the three isolating integrals calculated, we are in a position to estimate
the actions and angles using the method outlined in Sect. 2.2. The limits of the
orbit are redetermined by finding from Eq. (2.10) the points where p2τ = 0 using
Brent’s method, and are not given by τ±. We do this because using τ± may result
in including points in the integration where p2τ < 0.

Table2.3 quantifies the efficiency of this procedure.

2.3.2 Discussion

Kent and deZeeuw (1991) propose severalmethods for estimating I3 by assuming the
potential is close to separable. For general disc orbits in realistic Galactic potentials,
they found that the most accurate of the techniques was the ‘least-squares method’.
This method sought to minimise

∫
dt

[
(τ (t)−c2)E−

( τ (t) − c2

τ (t) − a2

) L2
z

2
+ f (τ (t))−2(τ (t)−a2)(τ (t)−c2)p2τ (t)−I3

]2

with respect to the coordinate system and I3, where the integral is in reality a sum
over phase-space points from an orbit integration. In a general potential, we require
some approximation for f (τ ). The method of Kent and de Zeeuw (1991) does not
require an explicit fit of a Stäckel potential to the true potential. The authors chose to
approximate f (λ) ≈ −(λ − c2)�(R(λ, c2), 0). In Sect. 2.6 and Chap.4 we employ
a similar approach to estimating f (τ ) from a general potential. As we have already
performed an orbit integration as part of our procedure, we could choose to estimate
the best-fitting coordinate system and I3 in the manner presented by Kent and de
Zeeuw. With a best-fitting coordinate system chosen we could then find the best-
fitting Stäckel potential hopefully to further refine our estimate of I3. Then with
estimates of both f (λ), f (ν), I3 and the coordinate system we could use Eq. (2.12)
to find the actions.

The calculation of the actions is sensitive to the value of the momenta throughout
the orbit. Therefore, it is important that we find a good approximation to both the
coordinate system and f (τ ). Later wewill show that, from the proposedmethods, the
estimate of f (τ ) that produces the smallest spread in the action estimates is obtained
by fitting a Stäckel potential as done here. The method of Kent and de Zeeuw (1991),
whilst appropriate for finding a good choice of coordinate system and estimate for
I3, is probably not optimal for action estimation.

2Later we will adopt a slightly different procedure (see Chap. 6 and Appendix G for details).

http://dx.doi.org/10.1007/978-3-319-18772-3_4
http://dx.doi.org/10.1007/978-3-319-18772-3_6
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2.3.3 Application

We now investigate how successful the above routine is for estimating the angle-
action variables in a general axisymmetric potential. To demonstrate the applicability
of the method to data, we choose a realistic Milky Way potential from McMillan
(2011a). This potential consists of two exponential discs for the thick and thin discs
of the Galaxy and two spheroids for the bulge and dark matter halo. We select
the ‘best’ model from this paper, which had parameters for the components of the
potential set by current constraints. The equipotential contours for this model are
plotted in Fig. 2.1. It is clear that, as we move out from the centre, the contours
become more circular so we anticipate that they are better fit by surfaces of constant
λ and ν. Therefore, we expect more accurate estimates of the angle-action variables
for orbits at larger radii. Also, orbits that probe a large range of R and/or z should
have less accurate angle-action variable estimates as these orbits probe a large range
of curvature of the equipotential contours. Therefore, we expect the method to work
best for small Jλ and Jν but large Lz .

de Zeeuw et al. (1986) show that for the corresponding density of a Stäckel
potential to be everywhere non-negative, the density cannot fall off faster that r−4,
where r is the spherical radius. The best potential from McMillan (2011a) has a flat
rotation curve, and an Navarro-Frenk-White halo (Navarro et al. 1996). Therefore,
the density distribution towards the centre goes approximately as r−2 and falls to
r−3 in the outskirts. We, therefore, expect the best-fitting Stäckel potentials to be
suitable. However, as we are only locally fitting Stäckel potentials, we can produce

Fig. 2.1 Contours of
ln(�(R, z)/�(0, 0)) for
McMillan’s best-fitting
Milky Way potential. The
contours increase from the
centre in equally space units
of 0.15 with the central
contour at −0.15
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unphysical global Stäckel potentials i.e. ρ(x) < 0 for some x, that are still suitable
locally.

We assess the validity of the method by comparing the results with the ‘exact’
angle-action variables calculated using the ‘torus machine’ (McMillan and Binney
2008). Orbital tori are three-dimensional surfaces characterised by the three actions
J = (JR, Lz, Jz) obtained as the images of analytic tori under a canonical trans-
formation. The strength of the torus machine lies in constructing a torus given a
set of actions, J , such that the phase-space coordinates, (x, v), may be obtained as
functions of the angles, θ, over the surface of the torus. Therefore, a simple test for
the Stäckel potential fitting procedure is first to produce a list of phase space coor-
dinates with fixed actions but randomly chosen angles using the torus machine. The
success of the method is then measured by how accurately the angle-action variables
can be reproduced. We note that the canonical transformation produced by the torus
machine maps JR into Jλ and Jz into Jν . From now on, we will use the more intuitive
notation for the actions, JR and Jz , and similarly for the angles, θR and θz .

The errors in the actions of a given torus from the torus machine may be estimated
from the residuals of the Hamiltonian over the surface of the torus. The error in the
Hamiltonian, �H , is related directly to the error in the actions by

�H = ∂H

∂ J
�J = � · �J (2.21)

where we find the frequency� directly from the torus machine. Assuming the errors
in JR and Jz are approximately equal and uncorrelated, the error in the actions may
be estimated as

�J ≈ �H√
�2

R + �2
z

. (2.22)

The true angles of an orbit in a potential increase linearly with time. The errors in
the torus angles are estimated by the residuals of the angles away from this expected
straight line. Clearly, we require the angle and action errors from the torusmachine to
be smaller than the errors from the Stäckel-fitting procedure in order to state anything
meaningful about the systematic errors from our method.

2.3.3.1 Single Torus

Here we discuss the results of applying the procedure to 10,000 randomly generated
points from the torus3 J = (JR, Lz, Jz) = (0.078, 1.9, 0.097) kpc2Myr−1. This
torus was chosen to be representative of the actions of a disc star in the solar neigh-
bourhood. For this torus, the errors in the actions and angles are �J/J = 0.01%
and (�θR,�θφ,�θz) = (1.0, 0.2, 1.0) × 10−5 rad. The orbit in the (R, z) plane is

3Throughout this chapter, the actions are stated in units of kpc2Myr−1 = 977.8 kpc km s−1.
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Fig. 2.2 Fit region for a single orbit—the blue line shows the orbit with actions J = (JR, Lz, Jz) =
(0.078, 1.9, 0.097) kpc2Myr−1. The black lines are the equipotential contours of McMillan’s best-
fitting Milky Way potential. The red lines show the lines of constant λ and ν that define the region
over which the potential is fitted

shown in Fig. 2.2. This orbit has apses at R ≈ (6.5, 10.5) kpc and zmax ≈ 2.8 kpc.
Also shown in the figure are the curves defining the fit region and equipotential
contours for McMillan’s best-fitting potential.

The residuals in the fitted potential over the fitting region defined in Fig. 2.2 are
plotted in Fig. 2.3. Everywhere within the fitting region, the error in the potential is
less than 0.2% of the maximum difference in the potential across the fitting region.
We note here that a good fit for the potential does not necessarily correlate with an
accurate calculation of the actions. Small changes in the potential can cause large
changes in the motion of a particle, so, whilst a good fit for the potential is necessary,
we don’t expect the errors in the actions to be of similar order.

The 10,000 phase-space points are shown in scatter plots of (R, θR) and (z, θz) in
Fig. 2.4. We can see that R and z are periodic in the angles. We define the zero-point
of θR such that the radial periapsis and apoapsis correspond to θR = 0 and θR = π
respectively. θz is defined such that z = 0 corresponds to θz = 0,π and z = ±zmax
corresponds to θz = π/2, 3π/2. The zero-point of θφ is defined such that θφ = φ
at periapsis. The spread of the z coordinates of the points at a given angle is much
larger than the spread in the R coordinates.

When the Stäckel fitting method is applied to this set of phase-space points, we
find that the root-mean-square (RMS) deviations of the actions, �J , are given by
�JR/JR ≈ 4.9% and �Jz/Jz ≈ 4.2%. We also find that there is a very tight
anticorrelation between �JR and �Jz . All phase-space points have the same energy
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Fig. 2.3 Filled contour plot of the percentage difference between the best-fitting Stäckel potential
and McMillan’s best-fitting MilkyWay potential.�min and�max give the values of the potential on
the minimum and maximum λ edges respectively. Also plotted in black are the curves of constant λ
and ν which define the region over which the potential is fitted. This is the fit region corresponding
to the orbit shown in Fig. 2.2, with actions J = (JR, Lz, Jz) = (0.078, 1.9, 0.097) kpc2Myr−1. We
see that, within the fitting region, the difference between the fitted potential and the potential we
are attempting to fit is less than 0.2% of the maximum potential difference across the fitting region

Fig. 2.4 Scatter plot of R against θR and z against θz for 10,000 randomly selected phase-space
points from the torus detailed in Sect. 2.3.3.1

as we are using the potential that was used to integrate the orbit to find the energy.
Therefore, all the points lie along the intersection of the surface of constant energy
with the (JR, Jz) plane. If we overestimate JR , we must underestimate Jz in order to
have the correct energy. The RMS deviations in the angles for the 10,000 phase-space
points are (�θR,�θφ,�θz) = (4.1, 1.1, 5.1) × 10−2 rad.

Errors as a function of angle: It is informative to investigate how the errors in
the derived actions and angles vary with true angle around the torus. The derived
actions are approximately independent of the true angles as they depend only on
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Fig. 2.5 RMS error in the angles binned as a function of angle for the torus in Sect. 2.3.3.1. The
dashed line shows the total RMS error from all the points on the torus. For the bottom panel, we
have taken advantage of the symmetry in the z = 0 plane and mapped the θz = (0, 2π) interval
onto θz = (0,π) such that θz = π/2 corresponds to ±zmax etc. The largest error occurs at the apses
for both cases

the path of the orbit, which is determined by the fitted potential and not the initial
point on the orbit. Any small variation is due to the choice of prolate spheroidal
coordinate system and variations in the fitted potential. However, we find that the
error in the derived angle varies with true angle. In Fig. 2.5 we plot the RMS errors
in the angles binned as a function of true angle for both θR and θz . Maximum
errors occur at the turning points in the (R, θR) and (z, θz) plots shown in Fig. 2.4.
For the radial and vertical angle, the largest error occurs at apoapsis. In a Stäckel
potential, the momenta, pτ , depend on τ and the isolating integrals, which, once
determined, are taken to be constant. Therefore, at a given location in the orbit, the
angle is solely a function of the position coordinates and the velocity information
is essentially ignored. Around turning points in the orbit, the velocity coordinates
contain the majority of the information, whilst the position coordinates are changing
very slowly. Therefore at turning points the errors in the angles are large as the angle
coordinates are estimated using this reduced phase-space information. In general,
the errors in θz are larger than the errors in θR .

2.3.3.2 Multiple Tori

We have seen that the method gives reasonable estimates for the actions for a
particular torus, but, in order to use the method with confidence, we need to see
how the errors depend on the torus. Here we repeat the above procedure for a
range of different tori that probe the different regions of the potential. We work
with two groups of tori: those with low actions and torus machine errors less
than �J/J = 0.01% and (�θR,�θφ,�θz) = (27.0, 5.1, 990) × 10−6 rad and
those with high actions and torus machine errors less than �J/J = 1% and
(�θR,�θφ,�θz) = (2.0, 1.7, 1.7) × 10−2 rad. The low-action group consists
of 100 tori with actions JR = (0.001, 0.005, 0.01, 0.05, 0.1) kpc2Myr−1, Jz =
(0.001, 0.005, 0.01, 0.05, 0.1) kpc2Myr−1 and Lz = (1.0, 2.0, 3.0, 4.0) kpc2Myr−1.
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These tori probe the region 3 kpc < R < 22 kpc, |z| < 5 kpc and are chosen
to be representative of disc-type tori. The high-action group consists of 36 tori
with actions JR = (0.5, 1.0, 5.0) kpc2Myr−1, Jz = (0.5, 1.0, 5.0) kpc2Myr−1 and
Lz = (1.0, 2.0, 3.0, 4.0) kpc2Myr−1. These tori probe the region 2 kpc < R <

120 kpc, |z| < 100 kpc.We include the second group to demonstrate that the method
can deal with orbits that deviate very far from the plane and probe a very large region
of the potential. We would like to be able to apply the method to halo stars and tidal
streams, so it is important to understand the errors for these high-action tori.

Actions: As mentioned previously, we expect the errors in JR and Jz will be large
when JR/|Lz | and/or Jz/|Lz | are large. In this regime, the orbit probes a large central
region of the potential so we anticipate the potential fit will be poorer. In Fig. 2.6,
the RMS deviations in the actions for the complete orbit sample are plotted against
the combination of the actions (JR + Jz)/|Lz |. We can see that, as anticipated, the
absolute errors correlate with this action combination. In fact, the correlation is much
tighter than the individual correlations with JR/|Lz | and Jz/|Lz |, so the errors in the
method are dependent on the sum of the actions (JR + Jz). It is this measure that
tells us how much an orbit strays from a circular orbit and thus how much of the
potential it explores.

We also note from Fig. 2.6, that, at a given value of (JR + Jz)/|Lz|, the errors in
JR and Jz are of similar magnitudes. As explained above, the errors in JR and Jz

compensate for each other to recover the correct energy. In Fig. 2.7, we plot this cor-
relation between the RMS errors in JR and Jz . A consequence of this tight correlation
is that when one action is much greater than the other, the relative error in the smaller
action will be much greater than the relative error in the larger action. However, it
is worth noting that the absolute error is far more important than the relative error.
Given a distribution function for a steady-state galaxy, f (J), the absolute error in f
is given by
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Fig. 2.6 Absolute RMS deviations of the actions for the sample of tori detailed in Sect. 2.3.3.2.
The blue circles are data for which the relative errors in the actions from the torus machine are less
than 0.01% and the red squares are those with errors less than 1%. The errors correlate loosely with
both JR and Jz separately, but there is a much tighter correlation between the errors and (JR + Jz)
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Fig. 2.7 RMS deviations in
JR and Jz for the sample of
tori detailed in Sect. 2.3.3.2.
The blue circles are data for
which the relative errors in
the actions from the torus
machine are less than 0.01%
and the red squares are those
with errors less than 1%
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(� f )2 =
∑
i, j

∂ f

∂ Ji

∂ f

∂ J j
cov(Ji , J j ), (2.23)

where cov(X, Y ) is the covariance between variables X and Y . In the case of uncor-
related errors between the actions, this simply becomes

(� f )2 =
∑

i

( ∂ f

∂ Ji
�Ji

)2
. (2.24)

The distribution function for the Milky Way is approximately exponential in the
actions (Binney 2010 and Chap.8):

f (J) ∼
∏

i

eai Ji , (2.25)

where ai is independent of the action Ji . Therefore, the absolute error in f is given
by

(� f )2 =
∑

i

( f ai�Ji )
2. (2.26)

Similarly, the relative error in the distribution function is given by

(� f

f

)2 =
∑

i

( ∂ ln f

∂ ln Ji

�Ji

Ji

)2 =
∑

i

(ai�Ji )
2. (2.27)

Both the absolute and relative error in the distribution function are determined by the
absolute errors in the actions, so we need not be overly concerned that the relative
error in one action is much larger than the relative error in another.

http://dx.doi.org/10.1007/978-3-319-18772-3_8
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From the relationship illustrated in Fig. 2.6, we can estimate the error in a given
estimate of JR and Jz . Performing a linear fit to both sets of data points independently,
we find that, for (JR + Jz)/|Lz | � 10, a good fit for the RMS errors in both JR and
Jz is given by

�J ≈ 0.01
(JR + Jz)

3
2

|Lz | 12
. (2.28)

The errors in the actions have a weak dependence on Lz as orbits with higher Lz

explore regions of the potential that are more spherical and hence easier to fit with a
Stäckel potential (see Fig. 2.1).

Angles: We present the RMS deviations in the angles for the 100 tori in the low-
action group in Fig. 2.8. In general, the relative errors in the angles are larger than
the errors in the actions. The calculation of an action involves only a single integral,
whereas the corresponding angle calculation involves nine integrals. Each integral
folds in more error from the fitting method, so we expect the relative errors in the
angle variables to be significantly larger than the errors in the actions. From Fig. 2.8,
we see that the errors in the angles correlate with the relative error in the actions.
The error in θφ has been plotted against �JR/Lz , whilst the other two angles have
been plotted against the relative error in their respective action. As the errors in JR

and Jz are approximately equal (Fig. 2.7), the three sets of points are essentially θi

against �J/Ji . As with the errors in the actions, we may estimate the error in a
given calculation of the angles by fitting the data in Fig. 2.8. We find the errors are
approximately given by

�θR ≈
(�J

JR

)0.75
, �θz ≈

(�J

Jz

)0.75
, �θφ ≈

(�J

Lz

)0.5
. (2.29)

Fig. 2.8 RMS deviations in
the angles for the 100
low-action tori as a function
of the relative error in their
respective action. For θφ, we
have plotted the error against
�JR/Lz
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2.3.4 Geneva-Copenhagen Survey

Now that we have understood the systematic errors of the method, we apply it to real
data. The Geneva-Copenhagen Survey (GCS) (Nordström et al. 2004) is a sample of
16682 nearby F and G stars, and is perhaps the best data set with full 6D phase-space
information. It provides us with a platform tomotivate a discussion of errors involved
in a practical calculation. The GCS has been analysed by many authors and specif-
ically looked at in angle-action space by Sellwood (2010) and McMillan (2011b).
From the table produced by Holmberg et al. (2009), we select the 13,518 objects
that have full 6D phase-space information. We correct the data for the solar velocity
with respect to the local standard of rest as calculated by Schönrich et al. (2010) i.e.
(U, V, W )� = (11.1, 12.24, 7.25) km s−1.4 Using the ‘best’ model Galactic poten-
tial from McMillan (2011a) sets the solar radius as R0 = 8.29 kpc and the velocity
of the local standard of rest as vLSR = 239.1 km s−1. The results of estimating the
actions and angles using the Stäckel-fitting procedure are shown in Fig. 2.9. These
are very similar to the equivalent plots from Sellwood (2010) andMcMillan (2011b).
We see that the plot of JR against Lz has a markedly parabolic shape. The minimum
of this parabola corresponds to the circular orbit at the solar radius. The shaded red
region is inaccessible by stars that are at the solar position and have Jz = 0. We can
understand this using the epicyclic approximation (Binney and Tremaine 2008): a
star with a given Lz has some guiding-centre radius Rc. For JR = 0, the star follows
a circular orbit of radius Rc at an angular rate Lz/R2

c , such that φ = θφ = t Lz/R2
c .

Non-zero JR produces radial oscillations about this circular orbit, such that a star
circulates the guiding centre of the JR = 0 orbit. A star requires enough radial action
to produce a radial oscillation large enough to pass through the solar neighbourhood,
hence the parabolic shape. The angles θR and θφ − φ describe the location of the
star with respect to the guiding centre. They are correlated as, whilst a star leads the
guiding centre, θφ < φ and θR < π, whilst, when trailing, θφ > φ and θR > π. At
the solar position φ = π, hence the observed selection effect in Fig. 2.9. From the
plot of θφ against θR , we see that the majority of stars are at θR = 0,π corresponding
to the apses of their radial motion. However, there is still a lot of structure in between
these extrema: the peak at θR/π ≈ 0.54 corresponds to the Hyades moving group.

2.3.4.1 Structure in the GCS

Since Dehnen (1998) investigated the kinematics of the solar neighbourhood using
data from the Hipparcos satellite, it has been known that, when viewed in the (U, V )

velocity plane, the local distribution of stars consists of a series of groups and clus-
ters. These structures were classified by Famaey et al. (2005) and are all thought to
have a dynamical origin (De Simone et al. 2004; Antoja et al. 2010). From the GCS
sample, we can identify several of the larger structures from the peaks in the (U, V )

4Wework in a right-handedGalactocentric Cartesian coordinate systemwith the positive x direction
pointing towards the Galactic centre.



2.3 Estimating Actions in a Fitted Stäckel Potential 37

Fig. 2.9 Density contours for the actions and angles of 13,518objects from theGeneva-Copenhagen
Survey. The contours are linearly spaced. The red shaded region is inaccessible by stars that are at
the solar position and have Jz = 0. The strong peak at θR/π ≈ 0.54 is due to the Hyades. We also
see the Hercules stream at log JR/ kpc2Myr−1 ≈ −3.3 and θR/π ≈ 0.85

distribution. This is done by binning the stars in U and V and then performing a
wavelet transform. In Fig. 2.10, we show the results of the wavelet transform for
structure on scales ∼12 km s−1. The peaks in this plot are identified with the known
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Fig. 2.10 Density contours
for the (U, V ) plane of
13,518 objects from the
Geneva-Copenhagen Survey
smoothed to a scale of
∼12 km s−1 via a stationary
wavelet transform. The five
major structures are
identified by red points: 1
Hercules, 2 Hyades, 3
Pleiades, 4 Coma Berenice, 5
Sirius

groups, specifically the Hercules, Hyades, Pleiades, Coma Berenice and Sirius. As
discussed by McMillan (2011b), for a star located at the solar position, each point
in the (U, V ) plane represents a unique point in the (JR, Lz, θR, θφ) space. Lines
of constant Lz and θφ form an approximately Cartesian grid in the (U, V ) plane,
whilst lines of constant JR and θR form an approximately polar grid. Therefore, we
can find a reduced set of angle-actions (excluding any vertical action and angle) for
each of the peaks identified in Fig. 2.10. From inspecting the (U, V ) plane, we can
see that the distribution deviates from axisymmetric equilibrium, so estimating the
actions and angles assuming an axisymmetric potential is clearly an oversimplifica-
tion. However, this is a necessary first step to create a basis on which we can include
non-axisymmetric perturbations.

We represent each group by a 6D phase-space point placed at the solar posi-
tion with zero vertical velocity but U and V determined by the identification from
Fig. 2.10. We then estimate the actions and angles corresponding to this point, again
using McMillan’s ‘best’ potential. The results are shown in Table2.1. This gives us
an opportunity to discuss the various sources of errors in a realistic use of themethod.
There are two sources of error in this calculation—the systematic errors introduced
by the Stäckel fitting method and the errors in the input coordinates. Holmberg et al.
(2009) estimated the space-velocity errors for each star as 1.5 km s−1, which when
combined with the errors estimated in Schönrich et al. (2010) for the solar motion
gives velocity errors of (�U,�V ) = (1.7, 1.6) km s−1. The majority of this error
arises from the uncertainty in the distances. We convolve each peak position by these
errors to calculate 10,000 Gaussianly distributed points in (U, V ) space about these
peaks, and then estimate the errors in the output actions and angles by theRMS scatter
in the resulting (J,θ) coordinates. These errors can then be compared and combined
with the known systematic errors from Sect. 2.3.3.2 and are shown in Table2.1.
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Table 2.1 Velocities with respect to the local standard of rest and angle-action coordinates for
density peaks of known structures in the Geneva-Copenhagen Survey

U/ km s−1 V/ km s−1

Hercules −22.1 −40.1

Hyades −28.2 −10.8

Pleiades −9.8 −16.3

Coma Berenice −2.2 0.3

Sirius 14.7 5.7

JR/ kpc2Myr−1 Lz/ kpc2Myr−1 θR θφ − π

Hercules (4.0± 0.30.0060.3 ) ×
10−2

−1.69 ± 0.01 2.65 ± 0.040.0080.036 −(9.6 ±
0.70.050.68) × 10−2

Hyades (1.2± 0.10.0010.1 ) ×
10−2

−1.94 ± 0.01 1.91 ± 0.070.0050.07 −0.118 ±
0.0070.00010.0066

Pleiades (7.3± 0.10.0050.1 ) ×
10−3

−1.89 ± 0.01 2.68 ± 0.080.0040.077 −(4.2 ±
0.70.0060.7 ) × 10−2

Coma Berenice (1.7 ±
1.40.00021.4 ) × 10−4

−2.03 ± 0.01 1.5 ± 1.10.00091.1 −(9.3 ±
6.40.00086.4 ) × 10−3

Sirius (3.5± 0.80.0010.8 ) ×
10−3

−2.07 ± 0.01 5.28 ± 0.130.0030.13 0.06± 0.010.000020.006

The errors in U and V are 1.7 km s−1 and 1.6 km s−1 respectively. The errors in the angles and
actions are presented as ab

c where a is the total error and b and c are the contributions from the
systematic errors of the Stäckel fitting method and the errors in the space-velocities respectively,
such that a2 = b2 + c2. In all cases, the observational error dominates the systematic error

We find that, for all the coordinates, the error in the data dominates the systematic
error introduced by the method. As noted by McMillan (2011b) the relationship
between errors in (x, v) and (J,θ) is non-trivial. Specifically, at very low radial
actions, any error in the velocity can introduce a 2π error in the θR coordinate. We
see this occurring for the Coma Berenice peak—the error in the θR coordinate is
large as the peak is positioned very close to the origin of the (U, V ) plane. We also
see that the errors in JR and θφ are of order one for Coma Berenice.

We note that we have not included any error for the size of the structures in phase-
space, nor any error due to the choice of smoothing from the wavelet transform, nor
any error for the assumption that all the stars are situated at the solar position, nor
any error in the choice of gravitational potential. Investigating the error in the actions
due to the range of viable potentials for the Milky Way is beyond the scope of this
investigation. Even with this underestimated error, the errors from the data dominate
the systematic errors. We conclude that, given the accuracy of the current data, the
determination of the angle-action coordinates using the Stäckel-fitting method is not
limited by the well-understood systematic errors.
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Table 2.2 Deviations between actions and angles for stars in the Geneva-Copenhagen Survey
sample estimated with the Stäckel fitting method and the data from McMillan (2011b)

RMS difference Expected RMS error

�JR/10−4 kpc2Myr−1 5.4 4.9

�Jz/10−4 kpc2Myr−1 7.6 4.9

�θR/0.01 rad 2.6 0.9

�θφ/0.01 rad 1.2 0.6

�θz/0.01 rad 7.7 40.1

The second column gives the RMS of the expected systematic errors from the Stäckel fitting method

2.3.4.2 Comparison with McMillan (2011b)

McMillan (2011b) calculated the angles and actions of the GCS sample by using the
torus machine iteratively. Here we compare the results to our own estimates of the
angle-actions. The potential used by McMillan (2011b) was the ‘convenient’ poten-
tial detailed in McMillan (2011a), which places the Sun at a Galactocentric radius
R0 = 8.5 kpc with a velocity of the local standard of rest vLSR = 244.5 km s−1.
We calculate the RMS deviations between McMillan’s data and ours, and present
the results in Table2.2. We also show the expected RMS errors in the angles and
actions estimated using the Stäckel fitting method. The largest discrepancy between
our data and McMillan’s occurs for the θz coordinate. The expected error for this
coordinate is also large, and very much larger than the actual error. The largest error
in θz is produced by stars near their turning points. At low z the majority of stars are
well away from their turning points, and the resulting errors in the angles are smaller
than if we observed a sample of stars that were uniformly sampled in θz . Only those
stars with very low vertical action have corresponding large errors in θz . For all the
other variables, the discrepancy between our data and McMillan’s data seems to be
in agreement with the expected systematic errors of our method.

2.3.5 Prolate Axisymmetric Potentials

Later we will need to use the above algorithm on prolate axisymmetric potentials,
so here we extend the algorithm for this case. Oblate spheroidal coordinates are
associated with prolate axisymmetric potentials. These are defined by the roots

R2

τ − a2 + z2

τ − c2
= 1, (2.30)
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where λ and ν are the roots of τ such that a2 ≤ λ ≤ c2 ≤ ν. Note that now
surfaces of constant ν are oblate spheroids and surfaces of constant λ are two-sheeted
hyperboloids of revolution. A general prolate axisymmetric potential accommodates
two classes of orbit: inner and outer long-axis loops. An inner long-axis loop crosses
z = 0 inside the focus

√
c2 − a2 and has ν0 = c2. These orbits are approximately

radially bound by surfaces of constant λ and vertically by surfaces of constant ν. An
outer long-axis loop crosses outside this focus and has λ1 = c2. These orbits are
approximately radially bound by surfaces of constant ν and vertically by surfaces
of constant λ. We choose to set c2 = 1 and set a2 using Eq. (2.15).5 The equations
for the actions, angles and frequencies are identical to the oblate case. We, therefore,
adopt the same procedure as outlined in Sect. 2.3: we begin by integrating the orbit to
find a best choice of coordinate system, find the boundaries of the orbit, fit a Stäckel
potential to this region using Eqs. (2.19) and (2.21), and then estimate the actions,
angles and frequencies as those in this best-fitting potential. We must ensure that,
when a coordinate bounces instead of oscillating, we include an appropriate factor
of 2 and we must add an additional π to the appropriate angle when z < 0 to remove
the degeneracy in the choice of coordinates. Note that, for an outer long-axis loop
orbit, JR = Jν and Jz = Jλ, whereas for an inner long-axis loop orbit JR = Jλ and
Jz = Jν .

As an example, we look at loop orbits in the axisymmetric logarithmic potential
described by

�(R, z) = V 2
c

2
ln

(
R2 + z2

q2

)
, (2.31)

where Vc = 220 km s−1 and q controls the flattening. We generate tori with the
actions (JR, Lz, Jz) = (0.29, 3.8, 0.45) kpc2Myr−1 using the torus machine for
q = (0.6, 0.9, 1.1, 1.9). On each torus we generate an initial condition (x, v) with
(θR, θφ, θz) = (0.1, 0.0, 0.0) rad, and integrate this initial condition for 500 adaptive
time-steps. In Fig. 2.11 we show the recovered actions, angles and frequencies for
this orbit, along with the input actions and frequencies from the torus machine. For
q = 0.6, 0.9 the orbit is a short-axis loop, for q = 1.1 the orbit is an outer long-
axis loop, and for q = 1.9 the orbit is an inner long-axis loop. The actions for the
orbits in the near-spherical potentials (q = 0.9, 1.1) are accurate to ∼2%, whilst
for the flatter potentials (q = 0.6, 1.9) the errors increase to ∼5%. We see the anti-
correlation between the radial and vertical actions. As the flattening is increased ,we
see the expected decrease in the vertical frequency, �z . The frequency recovery has
small biases.

5Note that a2 can be less than zero, making a imaginary. However, all physical quantities depend
on

√
c2 − a2, so this is irrelevant.
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Fig. 2.11 Actions, angles and frequencies for orbits integrated in the logarithmic potential with
differing flattening, q . Each set of four panels corresponds to a different flattening. The top left is
q = 0.6, top right q = 0.9, bottom left q = 1.1, and bottom right q = 1.9. Within each set of four
panels, we show the orbit in the meridional plane in the top left panel, the JR and Jz estimates in
the top right (with the respective standard deviations given above each plot), the angle recovery in
the bottom left, and �R and �z estimates in the bottom right. The dashed lines are the true values
from the torus machine
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2.4 Polar Adiabatic Approximation

We now move on to discuss other methods for estimating the actions in an axisym-
metric potential. The adiabatic approximation provides an alternative method for
estimating the actions. In its simplest form (Binney 2010), the adiabatic approx-
imation is based on the observation that the oscillation of a star perpendicular to
the Galactic plane is much more rapid than the oscillation in the plane, so we may
consider the vertical motion to be determined by a slowly varying potential. This
approximation assumes that the motion in the plane is unaffected by the motion
perpendicular to the plane. The absence of energy transfer between the radial and
vertical motion leads to an underestimate of the centrifugal potential for the radial
motion and hence an underestimate of the maximum radius of an orbit. Binney and
McMillan (2011) attempted to resolve this issue by replacing Lz with (|Lz| + Jz)

in the effective radial potential. Schönrich and Binney (2012) improved on this by
including a correction to the radial energy due to the changes in the vertical energy
along an orbit. It is this final approach that we present here.

Following Schönrich and Binney (2012) we assume that the vertical motion at a
given radius, R0, is governed by the potential �z(z) = �(R0, z) − �(R0, 0) such
that the vertical energy, Ez , is

Ez = 1

2
v2z + �z(z). (2.32)

Then the vertical action is estimated to be

Jz = 2

π

∫ zmax

0
dz vz, (2.33)

where zmax is the vertical height where the vertical velocity, vz , is zero. By linear
interpolation we may reverse this calculation such that, for a given pair of Jz and R0,
wemay calculate Ez(Jz, R0). Over the course of an orbit we take Jz to be constant but
the vertical energy will be changing as the orbit explores different radii. For overall
energy conservation, this energy must be transferred from the vertical motion into
the radial motion. Therefore, the radial motion is governed by the one-dimensional
potential

�R(R) = �(R, 0) + L2
z

2R2 + Ez(Jz, R) − Ez(Jz, Rc), (2.34)

where Rc is the guiding-centre radius (the radius of a circular orbit with z-component
of angular momentum Lz). Using this potential, we estimate the radial action as

JR = 1

π

∫ Ra

Rp

dR vR, (2.35)

where Rp and Ra are the radii where the radial velocity, vR , is zero.
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2.5 Ellipsoidal Adiabatic Approximation

The adiabatic approximation of the previous section assumed the motion could be
considered separable in cylindrical polar coordinates. We call this method the polar
adiabatic approximation (PAA) to differentiate it from the method presented here. It
is not obvious that the coordinates in which the motions are ‘most separable’ are the
polar coordinates, (R, z). Prolate spheroidal coordinates (λ,φ, ν) provide an alter-
native set of coordinates for describing motion in an axisymmetric potential, which
are important as they are linked to Stäckel potentials. Here we present an alterna-
tive method based on the polar adiabatic approximation, but instead considering the
motion in the prolate spheroidal coordinates to be separable. We call this method the
ellipsoidal adiabatic approximation (EAA).

For a general axisymmetric potential, �(R, z), we recall from Eq. (2.6) that the
Hamiltonian in prolate spheroidal coordinates is given by

H = 1

2

( p2λ
P2

λ

+ p2ν
P2

ν

+ L2
z

R2(λ, ν)

)
+ �(λ, ν) (2.36)

where we have chosen a specific coordinate system, pλ,ν are the conjugate momenta
to λ, ν and P2

λ = λ−ν
(λ−a2)(λ−c2)

and P2
ν = ν−λ

(ν−a2)(ν−c2)
.

Now we assume the ‘vertical’ motion follows an ellipse of constant λ = λ0 such
that the ν coordinate is determined by the potential

�ν(ν) = L2
z

2R2(λ0, ν)
− L2

z

2R2(λ0, c2)
+ �(λ0, ν) − �(λ0, c2). (2.37)

The energy of the ν oscillations is given by

Eν = 1

2
P2

ν ν̇2 + �ν(ν) (2.38)

such that the vertical action is found as

Jz = 2

π

∫ ν+

c2
dν pν = 2

π

∫ ν+

c2
dν

√
2P2

ν (λ, ν)
√

Eν − �ν(λ, ν), (2.39)

where ν+ is the root of (Eν − �ν(λ, ν)). Therefore, given a 6D phase-space point
(x, v) we may find the best prolate spheroidal coordinate system using Eq. (2.15),
evaluate Eν at this point via the coordinate transformation and then carry out the
integration along the curve of constant λ that passes through the phase-space point.

Given a value of λ, Lz and the vertical energy Eν we are able to find the vertical
action. The vertical energy varies with λ whilst the vertical action should, by def-
inition, remain constant. Therefore, this calculation may be reversed such that at a
given λ we may determine the vertical energy Eν = Eν(λ, Lz, Jz). This is done by
tabulating Eν for a range of values of λ, Lz and Jz . Armed with this tabulation, we
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calculate the radial action in much the same way as when using the polar adiabatic
approximation. The radial motion is governed by the effective potential along the
z = 0 axis given by

�λ(λ) = �(λ, c2) + L2
z

2R2(λ, c2)
+ Eν(λ, Lz, Jz). (2.40)

The total energy of the orbit is then given by

Etot = 1

2
P2

λ λ̇2 + �λ(λ) (2.41)

and the radial action is calculated as

JR = 1

π

∫ λ+

λ−
dλ pλ = 1

π

∫ λ+

λ−
dλ

√
2P2

λ (λ, c2)
√

Etot − �λ(λ) (2.42)

where λ+ and λ− are the roots of (Etot − �λ(λ)).
An illustration of how this method differs from the polar adiabatic approximation

of the previous section is shown in Fig. 2.12. The blue line shows the line along
which the PAA vertical-action integration is performed. The red line shows the line
of constant λ along which the EAA vertical-action integration is performed. The
points at which they intersect gives the (R,±|z|) coordinates of the input phase-
space point. The EAA clearly captures the shape of the boundaries of the orbit.

As we will see in Sect. 2.8, the EAA offers a considerable improvement over the
PAA but unfortunately, due to the energy correction now being a function of three

Fig. 2.12 Illustration of the difference between the PAA and EAA. An example orbit is shown
by the black line. The blue line shows the line along which the PAA vertical-action integration
is performed. The red line shows the line of constant λ along which the EAA vertical-action
integration is performed. The points at which they intersect gives the (R,±|z|) coordinates of the
input phase-space point
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variables (λ, Lz, Jz), this approach takes slightly longer. However, the Eν tabulation
requires a very small number of Lz values (here we use five) over the required Lz

range (0.5 kpc2Myr−1 ≤ Lz ≤ 4.5 kpc2Myr−1) for a sufficient level of accuracy.
Note that the PAA is contained within the EAA. In the limit of very large focal
distance, the surfaces of constant λ and ν tend to those of constant R and z. In this
limit, the vertical action becomes independent of Lz and the EAA tends to the PAA.

2.6 Axisymmetric Stäckel Fudge

Binney (2012) presented a method for estimating the actions in a general axisym-
metric potential by assuming it is close to a Stäckel potential. The presentation here
differs from that in Binney (2012), but is chosen to match better to the triaxial exten-
sion presented in Chap. 4. For a general oblate axisymmetric potential, �, we define

χλ(λ, ν) ≡ −(λ − ν)�,

χν(λ, ν) ≡ (λ − ν)�.
(2.43)

If � were a Stäckel potential, these quantities would be given by

χλ(λ, ν) = f (λ) − f (ν),

χν(λ, ν) = f (ν) − f (λ).
(2.44)

Therefore, for a general potential we can write,

f (τ ) ≈ χτ (λ, ν) + Dτ , (2.45)

where Dτ are constants provided we evaluate χλ at constant ν and vice versa. We
can write the equations of motion (Eq.2.10) as

2(τ − a2)(τ − c2)p2τ = E(τ − c2) −
( τ − c2

τ − a2

) L2
z

2
− Bτ + χτ (λ, ν), (2.46)

where we have defined the integrals of motion Bτ = I3− Dτ . Given an initial phase-
space point, we use Eq. (2.15) to find a suitable coordinate system, calculate λ, ν, pλ

and pν , and use Eq. (2.46) to find the integrals Bτ . Equation (2.46) is then integrated
over an oscillation in τ to find the actions as in Eq. (2.12). We note that for the λ
integral we keep ν fixed at the input value, and vice versa. This is the procedure
followed in Binney (2012).

http://dx.doi.org/10.1007/978-3-319-18772-3_4
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2.7 Iterative Torus Machine

The methods presented so far suffer from the disadvantage that the error in the
action is not controlled. As the methods are not convergent, we are unable to find the
exact action regardless of howmuch computation we perform.McMillan and Binney
(2008) used the torus machine iteratively to find the actions and angles of a given
phase-space point. This typically involved around 20 torus fits per phase-space point
and relied on a good initial guess for the actions and angles for fast convergence.
Such a method is potentially the most accurate way to determine the angle-action
variables but also the most costly. The authors report that it takes around 15 seconds
to perform the iterative procedure on a single phase-space point. Improved methods
for the initial estimate will naturally improve the usability of an iterative approach.
We can use the results from the Stäckel-fitting approach presented in this chapter as
an input to an iterative torus scheme. Here we detail such an approach.

1. Given an initial phase-space point (xi , vi ), we use the Stäckel-fitting method to
find an approximate angle-actions (θS, J S).

2. We construct a torus of action J S .
3. We find the closest phase-space point to (xi , vi ) on the torus by minimizing the

tolerance
η = |�|2|x(θ) − xi |2 + |v(θ) − vi |2 (2.47)

with respect to the angle coordinates of the torus, θ, using θS as an initial guess.
Here � is the frequency of the torus and is used to equate position and velocity
separations. We perform the minimisation using the Nelder-Mead simplex algo-
rithm (Nelder and Mead 1965). This minimisation procedure produces a new
phase-space point (xS, vS).

4. For the phase-space point (xS, vS), we use the Stäckel-fitting method to find an
estimate of the angle-actions (θP , J P ).

5. The error in the action reported by the Stäckel approximation is given by
�J = J P − J S . Therefore, if we assume that the error made by the Stäckel
approximation is approximately constant over this small region of phase space,
we expect that our initial estimate, J S , is also in error by �J . A better approxi-
mation to the action is

Jnew = J S − �J = J S + (J S − J P ). (2.48)

6. We can then construct a torus of action Jnew and repeat the procedure to refine
our estimate of the mis-estimate �J .

This method should converge provided the errors in the Stäckel algorithm and the
errors in the torus construction vary smoothly with position and velocity.

This procedure is preferable to the Stäckel-fitting method as the accuracy of the
procedure can be assessed by evaluating the tolerance, η. However, this increased
accuracy will necessarily come with an increase in computation time. To test the
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procedure, we produce a series of phase-space points on the torus with actions
(JR, Lz, Jz) = (0.25, 3.5, 0.5) kpc2Myr−1 using the torusmachinewith an accuracy
�J/J = 10−7. In Fig. 2.13, we plot the action estimates for this series of phase-
space points from the Stäckel-fitting algorithm along with the recovered actions after
a single iteration of the above procedure, and the action estimates after the algorithm
has reached a tolerance of η = (0.1 km s−1)2, or the number of iterations exceeds 20.
We find that the Stäckel algorithm initially produces a spread in the action estimates
of approximately 4%. After one iteration of the above routine, we yield actions accu-
rate to ∼0.1%. Further iterations yield slightly more accurate actions (∼0.05%). It
appears a single iteration is satisfactory and the benefit of further iterations is small.
From the inset in Fig. 2.13, we see that the majority of initial conditions only took
a few iterations to converge to the required tolerance. Note that some phase-space
points took up to 20 iterations of the procedure and still did not converge to the
required tolerance. This is not to say that the iterative procedure wandered away
from the target actions, but just that the iterative procedure oscillated near the tar-

Fig. 2.13 Actions recovered using the iterative torus machine approach for a series of phase-space
points on the torus with actions (JR, Lz, Jz) = (0.25, 3.5, 0.5) kpc2Myr−1. The black points show
the actions from the first estimate using the Stäckel-fitting method from this chapter. The red points
show the recovered actions after one iteration of the procedure, and the blue points show the actions
after the procedure was deemed to converge to a tolerance of η = (0.1 km s−1)2. The standard
deviations of the three sets of points are shown above the plot. The bottom-left inset shows a zoom-
in of the highlighted rectangle in the main plot, and the top-right inset shows a histogram of the
number of iterations performed
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get actions without ever reaching the required tolerance. This is probably due to
non-linearities in both the Stäckel-fitting method and the torus construction. If one
chooses to construct more accurate tori i.e. lower �J/J , the number that fail to
converge is reduced. Finally, we note that the above scheme takes approximately 10
seconds to perform three iterations.

2.8 Method Comparison

When estimating actions, we are aiming for a balance between accuracy of the
action recovery and speed. The most accurate method is the convergent iterative
torus approach we presented in the previous section. However, this accuracy comes
at the expense of additional computational time required to construct tori. Here we
critically compare the methods presented in the chapter by investigating the accuracy
of the action estimates and time taken to perform many action evaluations. We do
not include the iterative torus approach in the following comparisons as the torus
machinery is used to generate phase-space points of known actions. Therefore, we
expect the approach to converge to the same accuracy as that used to generate the
tori.

2.8.1 Total Angular Momentum

Before investigating the methods presented in this chapter, we show how the Stäckel-
fitting method compares to the crudest estimate of the vertical action. Some authors
have hunted for structure in the distribution of stars in spaces defined by phase space
functions other than the actions. For example, Helmi and de Zeeuw (2000) use the
set of variables (E, Lz, L), where L = |x × v| is the total angular momentum,
to attempt to find substructure within numerical simulations of disrupted satellite
galaxies, whereas Helmi et al. (2006) considered the ‘APL space’ of apocentre, peri-
centre and z-component of the angular momentum in order to identify signatures of
past accretion events in the Geneva-Copenhagen Survey of the solar neighbourhood
(Nordström et al. 2004). The total angular momentum is only conserved when we
are considering spherical potentials. In a spherical potential, the vertical action is
simply Jz = L − |Lz |. Here we investigate how much better we are doing when we
estimate the vertical action using a Stäckel fit than if we simply use L . Figure2.14
shows the absolute RMS error in the vertical action for the 100 low-action tori taken
from the lower panel of Fig. 2.6 along with the RMS error in the spherical vertical
action, (L − |Lz|). The Stäckel-fitting method gives approximately two orders of
magnitude improvement in the vertical-action error compared to simply using L .
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Fig. 2.14 RMS deviations
of Jz for the Stäckel fitting
method (blue circles) and the
RMS deviations in the
spherical vertical action
(L − |Lz |) (red squares) for
the 100 low-action tori
detailed in Sect. 2.3.3.2
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2.8.2 Single Torus

We now compare the action recovery for two tori using four methods: the polar
adiabatic approximation (PAA), the ellipsoidal adiabatic approximation (EAA),
the Stäckel fudge (SF), and locally fitting Stäckel potentials (FIT). We do not
compare the accuracy of the convergent iterative torus approach as this approach
can be made arbitrarily accurate. We use the torus machine to generate 10,000
phase-space points on the tori (JR, Lz, Jz) = (0.001, 2.0, 0.001)kpc2Myr−1, and
(JR, Lz, Jz) = (0.1, 2.0, 0.1)kpc2Myr−1 in the ‘best’ potential from McMillan
(2011a), and estimate the actions using the four methods. In Fig. 2.15 we show the
two tori in the meridional plane along with the action estimates for each method. The
most accurate method for both tori is the FIT method, whilst the least accurate is the
PAA. For the low-action torus, the PAA produces actions accurate to ∼1%, whilst
the methods based on Stäckel potentials all produce actions accurate to ∼0.01%.
The main difference between the three methods based on Stäckel potentials is the
recovery of the radial action which is most accurate for the FIT method, and least
accurate for the EAA. For the high-action torus, the PAA produces actions accurate
to ∼10%, whilst the other three methods produce actions accurate to ∼4%. The SF
method is the least accurate of these three and the FIT method is the most accurate,
although the differences are very subtle.

2.8.3 Multiple Tori

We now inspect the accuracy of the action recovery for a selection of tori. We use the
‘low-action’ tori from Sect. 2.3.3.2. These 100 tori probe the region 3 kpc < R <

22 kpc, |z| < 5 kpc and are chosen to be representative of disc-type tori. For each
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Fig. 2.15 Accuracy of actions using the polar adiabatic approximation (PAA), ellipsoidal adi-
abatic approximation (EAA), Stäckel fudge (SF) and locally fitting Stäckel potentials. The top
two panels show 10,000 (R, z) points on two tori in McMillan (2011a) ‘best’ potential with actions
(JR, Lz, Jz) = (0.001, 2.0, 0.001)kpc2Myr−1 (left), and (JR, Lz, Jz) = (0.1, 2.0, 0.1)kpc2Myr−1

(right). The lower two panels show the radial and vertical action estimates for these phase-space
points using four methods: the PAA in blue, the EAA in red, the Stäckel fudge method (SF) from
Binney (2012) in green, and locally fitting Stäckel potentials (FIT) in black. We show the standard
deviations of the action estimates for each method between the plots
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Fig. 2.16 Absolute RMS deviations of the radial (left) and vertical (right) actions for the polar
adiabatic approximation (PAA, black squares), the ellipsoidal adiabatic approximation (EAA, red
diamonds), the Stäckel fudge method (SF, blue upwards-pointing triangles), and the Stäckel fitting
method (FIT, green downwards-pointing triangles). In the right panel, the red diamonds are not
visible as the error in the vertical action reported by the EAA is near identical to that reported by
the SF

Table 2.3 Comparison of the accuracy of the action recovery for three tori along with the time
taken to evaluate the actions of 10,000 phase-space points for each of the four methods presented
in this chapter

JR/|Lz | Jz/|Lz | �JPAA
R /�JFIT

R �JEAA
R /�JFIT

R �JSF
R /�JFIT

R

0.001 0.001 91 7.4 6.5

0.01 0.01 46 7.0 8.4

0.1 0.1 6.5 1.5 1.7

JR/|Lz | Jz/|Lz | TimePAA/s TimeEAA/s TimeSF/s TimeFIT/s

0.001 0.001 4.5 7.2 2.5 10.1

0.01 0.01 6.4 8.3 2.6 15.1

0.1 0.1 8.3 10.7 2.6 44.6

torus, we plot the standard deviation in the action estimates for 10,000 randomly
selected phase-space points from each of the four methods in Fig. 2.16.

For all methods, we find that the error in the actions correlates approximately
with (JR + Jz)/|Lz |. The PAA is clearly the least accurate of the four methods in
both the recovery of JR and Jz . The SF and EAA give near identical errors in Jz

such that we cannot see the EAA points in the plot as they are all behind the SF
points. We are using identical choices of a2 for the two methods so the accuracy
of the Jz recovery seems limited by this choice. The error in the JR recovery is, in
general, larger for the SF method than the EAA method, but not significantly. The
most accurate method for both JR and Jz is the FIT method. In Table2.3 we show
the ratio of the RMS spreads in the JR recovery for each method. We see for low-
action tori, Ji/|Lz | � 0.1, where i = R, z, the FIT method is 2 orders of magnitude
more accurate than the PAA, whilst for Ji/|Lz | ≈ 0.1 this reduces to a single order
of magnitude. For the low-action tori Ji/|Lz | � 0.1 the FIT method is 2 orders of



2.8 Method Comparison 53

magnitude more accurate than both the EAA and SF methods, but this reduces to
only a 1.5 increase in accuracy for J/|Lz | � 0.1. We expect that the FIT method is
the most accurate of the Stäckel methods as it uses the most information to calculate
an appropriate value of a2, whilst the EAA and SF use only the initial phase-space
point to estimate a2.

It is also worth noting that the relative errors for the PAA can be as much as order
one for orbits with large Jz—the PAA performs best for orbits that stay near the
plane. The accuracy of the actions estimated by the EAA are approximately an order
of magnitude better than those determined using the PAA.

2.8.4 Computational Cost

In Table2.3, we also give the time taken to evaluate 10,000 actions on a 2.5GHz
i5 processor. For all tori, the SF method is the fastest, followed by the PAA, then
the EAA, and finally the FIT method takes the longest time. We can understand this
hierarchy as the SF method requires no interpolation, the PAA uses a 2D interpola-
tion, the EAA uses a 3D interpolation and finally the FIT method requires an orbit
integration and interpolation of the resulting fitted potential. For Ji/|Lz| = 0.001
(i = R, z) the FIT method requires 4 times the computational expense for a factor of
6.5 increase in the accuracy over the SF method, whilst this increases to 20 times the
computational expense for only a 1.7 increase in accuracy for Ji/|Lz | = 0.1. The
EAA takes � 4 times longer than the SF for only a marginal increase in the action
accuracy.

In conclusion, the full Stäckel-fitting method presented in this chapter is only
marginally more accurate than both the ellipsoidal adiabatic approximation and the
Stäckel fudge method at the expense of more computation. Both the ellipsoidal
adiabatic approximation and the Stäckel fudge method provide a clear route to
tabulating the actions on a grid which then may be interpolated allowing significant
speed-ups (see Binney (2012) and Chap.8). However, the adiabatic approximations
require an initial tabulation of the vertical energies and any call outside this grid is
problematic. The Stäckel fudge does not suffer from this disadvantage as any action
calls outside the grids may be found on the fly. For low-action applications, such
as disc modelling, the ellipsoidal adiabatic approximation and the Stäckel fudge are
superior methods, but for more accurate high-action applications, such as stream
modelling, the Stäckel-fitting method is slightly superior.

2.9 Conclusions

We have detailed methods for estimating the angle-action variables in a general
axisymmetric potential given a 6D phase-space point, (x, v). The first and most
thoroughly explored method is based on locally fitting a Stäckel potential to the
region of the potential an orbit probes and then estimating the true actions and angles

http://dx.doi.org/10.1007/978-3-319-18772-3_8
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as those in the fitted Stäckel potential. We have investigated the systematic errors of
this method by producing phase-space points of known actions and angles using the
torus machine (McMillan and Binney 2008) and then assessing how well the method
can reproduce these variables. For a single representative disc-type torus, the errors
in the angles are largest for phase-space points near apsis and the errors in the actions
are of order a few percent. For a collection of tori chosen to be representative of both
disc and halo-type tori, the absolute error in the actions is found to scale with the sum
of the vertical and radial actions. The errors in the angles scale with the relative error
in their corresponding action. We demonstrated the use of the method by application
to the Geneva-Copenhagen Survey (GCS). As this survey is only local, the angle-
action space does not reveal much more information than velocity space. However,
we present angle-action coordinates for the peaks of the clumps and streams present
in the survey and use them to study the relative impact on estimated angles and
actions of observational errors and the known systematic errors of the method. We
show that the observational errors are dominant. In Chap. 8, we will inspect the GCS
data again in the context of extended distribution function modelling of the Galactic
disc.

In addition to the Stäckel-fittingmethod, we have also presented two newmethods
for finding angles, actions and frequencies in an axisymmetric potential. The first
builds on the adiabatic approximation presented in Schönrich and Binney (2012),
but, instead of assuming the motion is separable in cylindrical polar coordinates,
assumes the motion is separable in prolate spheroidal coordinates. We demonstrated
the improvement in the accuracy of the actions calculated for a range of orbits,
and showed that the accuracy rivalled the full Stäckel-fitting method for a much
smaller computational cost. One shortcoming of the methods based on fitting Stäckel
potentials is that they can not be made arbitrarily accurate. The accuracy is limited by
how close the true potential is to a Stäckel potential over the region of interest. The
torus machinery (McMillan and Binney 2008) constructs a series expansion for the
generating function from a toy to target torus, and can be made arbitrarily accurate
by using more terms in the generating function. Such a procedure is designed to find
(x, v) given (J,θ). We presented an iterative method for finding (J,θ) from (x, v)

by using the Stäckel-fitting procedure as a first estimate, and refining the estimate
using the torus machinery. We showed that, for a single torus, only a single iteration
was required to improve the error in the action by a factor of 20, and further iterations
did little to improve this.

We closed the chapter by comparing the presented methods for estimating the
actions in an axisymmetric potential. The Stäckel-fittingmethod gives results approx-
imately two orders of magnitude more accurate than assuming the potential is spher-
ical. The Stäckel fudge method from Binney (2012) provides the best compromise
between speed and accuracy for both low- and high-action disc tori. However, it is
not as accurate as the full Stäckel-fitting method, particularly at low actions. The
polar adiabatic approximation is improved on by the ellipsoidal adiabatic approx-
imation which offers an accuracy comparable to the Stäckel fudge method but at
greater computational expense.

http://dx.doi.org/10.1007/978-3-319-18772-3_8
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We have demonstrated that the methods presented here are suitable for many disc
and halo-type orbits. The procedurewill notwork for resonant orbits or chaotic orbits.
However, the occurrence of these orbits in realistic galaxy axisymmetric potentials
is rare and the great majority of stars are on quasi-periodic non-resonant orbits
(Ollongren 1962; Martinet and Mayer 1975).

It is hoped that these methods will lead to more widespread use of angle-action
variables when analysing data. Whilst the GCS can be easily analysed in velocity
space, angle-action variables should enable us to reveal structures, which are more
dispersed in phase-space, in larger surveys.

2.9.1 Future Work

The potential used for testing the methods in this chapter consists of two stellar
discs, bulge and halo. The gas disc is also a crucial component of any Galactic model
(Dehnen and Binney 1998), and is confined to the plane with a scale-height of 40 pc.
This component will affect the action recovery for low vertical action tori and some
methods presented in this chapter may be more appropriate than others for dealing
with this.

We have limited the discussion in this chapter to axisymmetric potentials. Whilst
for our own spiral galaxy the axisymmetric approach may suffice, for analysing
elliptical galaxies a triaxial approach must be developed. There are also triaxial
Stäckel potentials (see de Zeeuw 1985 and Chap.4), so it should be possible to
expand the approach outlined in this chapter to triaxial potentials. The extension
of the angle-action estimation is simple, but the fitting procedure is more complex
when the potential is triaxial. deZeeuwandLynden-Bell (1985) discuss howageneral
triaxial potential may be fitted both locally and globally by a Stäckel potential. The
method for global fitting is the three-dimensional generalisation of the method used
in this chapter so involves multiple multi-dimensional integrals. Also, the best choice
of coordinate system involves minimising the least-square difference with respect to
two coordinate parameters, so a more computationally expensive procedure than the
simple method used in this chapter may be required for finding the best coordinate
system. In the next two chapters, we will go on to discuss other approaches to
estimating the actions in a general triaxial potential.
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Chapter 3
Actions, Angles and Frequencies from
Numerically Integrated Orbits

3.1 Introduction

In the previous chapter, we presented variousmethods for estimating the angle-action
variables in axisymmetric potentials.Whilst calculating angles and actions in axisym-
metric potentials is appropriate for constructingmodels of the Galactic disc, for other
components of the Galaxy, such as the Galactic bulge or dark matter halo, more
general modelling is required. The haloes that form in baryon-free cosmological
simulations almost always have triaxial shapes (Jing and Suto 2002; Allgood et al.
2006; Vera-Ciro et al. 2011). When baryons are added to the simulations, many dark
haloes become more spherical (Kazantzidis et al. 2004; Bailin et al. 2005; Valluri
et al. 2010). Law and Majewski (2010) and Vera-Ciro and Helmi (2013) present evi-
dence that the tidal tails of the Sagittarius dwarf galaxy can only be fitted if theMilky
Way has a triaxial dark matter halo. Moreover, there is considerable observational
evidence that the so-called “cored”, slowly-rotating elliptical galaxies are generi-
cally triaxial (Cappellari et al. 2011). Dynamical models of triaxial stellar systems
are of considerable astronomical interest. Hence we need to be able to determine
angle-action coordinates for stars in triaxial potentials. In this chapter, we show how
to evaluate the angles and actions of particles in a given triaxial potential. If the
potential is axisymmetric, the actions can be evaluated using the methods presented
in Chap.2.

The methods of the previous chapter were divided into two classes: convergent
and non-convergent. Torus construction (McMillan and Binney 2008) is a convergent
procedure that yields (x, v) as a function of the angle-action variables. This method
operates by constructing the generating function for the transformation from a toy
potential, in which the angle-actions are readily calculable, to the target potential.
In this chapter, we present a very similar convergent procedure to find the angle-
action variables given (x, v). The algorithm operates by finding the components of
the generating function that satisfy the canonical transformation from toy to target
angle-actions at a series of (x, v) from an orbit integration.
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In Sect. 3.2, we derive the equations that yield values of angles, frequencies and
actions. In Sect. 3.3, we test our solutions of these equations by comparing the
resulting angles, frequencies and actions for orbits in a Stäckel potential with ana-
lytic values. In Sect. 3.4, we use the equations to explore a constant-energy surface
in the action space of the triaxial potential for our Galaxy that Law and Majewski
(2010) fitted to the tidal stream of the Sagittarius dwarf. In Sect. 3.5, we relate our
work to previous work in the field and discuss possible extensions. Section3.6 sums
up and looks to the future. The work of this chapter was published in Sanders and
Binney (2014).

3.2 Formalism

Angles and actions can be assigned to orbits that are “regular” or quasiperiodic
because such an orbit is confined to a torus labelled by the actions (Arnold 1978).We
will work in three dimensions so will have three actions denoted as J = (J1, J2, J3).
Each action quantifies the magnitude of the oscillation in a suitable coordinate.

The transformation from ordinary phase-space coordinates (x, v) to angle-action
coordinates (θ, J) is possible analytically in only a few cases. McGill and
Binney (1990) used one of these cases as a starting point for the numerical con-
struction of more general transformations by “torus mapping”. The key point about
torus mapping is that it yields orbits with specified actions rather than orbits with
specified initial conditions (x, v). When analysing an N -body model, we require
actions given an initial condition and not vice versa. Here we adapt the approach of
McGill and Binney (1990) into a procedure that finds the actions, angles and fre-
quencies given a series of phase-space coordinates (xi , vi ) sampled along an orbit at
times ti , where 0 ≤ ti ≤ T . With this time series, we seek a generating function that
will map a “toy torus” of a simple “toy potential” into the “target torus” to which
the orbit is confined. The toy potential must have analytically tractable angles and
actions and permit orbits that have the correct geometry.

In the absence of figure rotation, a general triaxial potential admits two
basic classes of non-resonant orbit: loop orbits and box orbits (Schwarzschild 1979;
de Zeeuw 1985). Loop orbits have a definite sense of rotation either around the
long- or short-axis of the potential, whilst a box orbit has no sense of rotation and
can reach down to the centre of the potential. Hence, the class of an orbit can be
determined by inspection of components of the angular momentum along the orbit:
if all components of the angular momentum change sign, the orbit has no sense
of circulation and is a box orbit; when a component of the angular momentum
retains its sign, the orbit is a loop orbit around the corresponding axis (Carpintero
and Aguilar 1998). For each class of orbit, we use a toy potential that provides tori
with the same geometrical structure as the tori of the given orbit class.

For a box orbit, the actions J1, J2 and J3 quantify the oscillation in the x , y and
z directions, respectively. For loop orbits, J1 quantifies oscillation in a generalized
radial coordinate. For a short-axis loop, J2 quantifies the particle’s circulation around
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the short axis, whilst J3 quantifies oscillation parallel to this axis. For a long-axis loop
orbit, J3 quantifies circulation around the long axis, whilst J2 quantifies oscillation
parallel to this axis. We choose this definition such that our actions match Jλ, Jμ

and Jν for a Stäckel potential (de Zeeuw 1985), and each class of orbit occupies a
distinct region of action space (see Sect. 3.4).

3.2.1 Toy Potentials

We now present the toy angle-action variables appropriate for each orbit class.

3.2.1.1 Triaxial Harmonic Oscillator

For box orbits, we use the potential of the triaxial harmonic oscillator,

�ho(x) = 1
2

3∑
i=1

ω2
i x2i , (3.1)

which has three parameters, ωi . Here we have chosen the principal axes of the poten-
tial to lie along the Cartesian x, y, z directions on the assumption that the time series
has already been rotated into the coordinate system that is aligned with the principal
axes of the true potential. The actions and angles in this potential are given by

Ji = p2i +ω2
i x2i

2ωi
,

θi = arctan
(

pi
ωi xi

)
.

(3.2)

3.2.1.2 Isochrone Sphere

For loop orbits, we use the isochrone potential,

�iso(x) = −G M

b + √
b2 + r2

, (3.3)

where r is the spherical radius. This potential has two free parameters: the mass
M and the scale radius, b. The full expressions for the angle-action coordinates in
the isochrone potential are given in Appendix C. The three actions in the isochrone
potential are given by the radial action Jr , the z-component of the angularmomentum
Lz and the vertical action Jz ≡ L − |Lz|, where L is the total angular momentum.
With this choice we must orient our coordinate system, such that the orbit circulates
around the z-axis, before finding the actions.
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3.2.1.3 Offsets

One might also include the offset of the centre of the potential from the coordinate
centre as a free parameter, but we shall not do so here, presuming instead that the
time samples xi have already been adjusted to be relative to one’s best estimate of
the centre of the true potential.

3.2.1.4 Parameter Choice

Once a class of potential has been chosen, we set the parameters of the potential by
minimizing (McGill and Binney 1990)

χ2 =
∑

i

(Hi − 〈H〉)2, (3.4)

where the sum is over the times, Hi is the value of the toy Hamiltonian at (xi , vi ),
and 〈H〉 is the mean of these values. The minimization of χ2 is done using the
Levenberg–Marquardt algorithm (Press et al. 2002).

The experiments described below suggest that this method for selecting the para-
meters is sub-optimal in that it leads to a rather centrally concentrated toy potential
being selected. This central concentration then leads to high-order Fourier compo-
nents being required in the generating function. However, our attempts to find a better
procedure for selecting the toy potential have not met with success.

3.2.2 Generating Function

With a toy potential chosen, we construct the generating function to transform
between the angle-actions (θ, J) of the toy potential, and those (θ′, J ′) of the target
potential. The generating function for this transformation, S(θ, J ′), can be written

S(θ, J ′) = θ · J ′ − i
∑
n �=0

Sn(J ′)ein·θ, (3.5)

where the vector n has integer components. The first term on the right generates
the identity transformation, whilst the structure of the second part is required by the
periodicity of the angle variables.

McGill and Binney (1990) show that if the Hamiltonian is time-reversible, the Sn
must satisfy

Sn = −S−n. (3.6)
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For this condition to be satisfied, there must exist a point on the toy torus at which
J̇ = 0—in Appendix D we demonstrate that this is true for the toy potentials of the
previous section. Additionally, the requirement that the actions are real coupled with
the constraint from Eq. (3.6) requires the Sn to be real. With these constraints, the
generating function can be written

S(J ′,θ) = θ · J ′ + 2
∑
n∈N

Sn(J ′) sin n · θ, (3.7)

where the integer vectors n are now restricted to just half of a three-dimensional
lattice. We take this half to be the set N = {(i, j, k)}, where either (k > 0), (k =
0, j > 0) or (k = 0, j = 0, i > 0). Symmetries of the target potential require some
of the Sn to be zero. This is discussed further in Appendix D.

From the generating function (3.7), we find that the toy actions are

J = ∂S

∂θ
= J ′ + 2

∑
n∈N

nSn(J ′) cos n · θ, (3.8)

and the target angles are

θ′ = ∂S

∂ J ′ = θ + 2
∑
n∈N

∂Sn

∂ J ′ (J ′) sin n · θ. (3.9)

Note that by the choice of our generating function, the target angle zero-point coin-
cides with the toy-angle zero-point.

Given the choice of a toy Hamiltonian, we find the toy actions and angles
(J(ti ),θ(ti )). Each time then produces a separate equation (3.8) with common
unknowns: the target actions and the Fourier components of the generating function,
Sn. We cannot solve these equations exactly because we are dealing with equations
in an infinite number of unknowns. Because we can include only a finite number of
terms on the right-hand side of each equation, the right-hand sides should not agree
exactly with the left-hand sides, and the correct procedure is to minimize the sum of
the squares of the residuals of individual equations. This sum is

F =
∑

i

∑
k

(
Jk(ti ) − J ′

k − 2
∑
n∈N

nk Sn(J ′) cos n · θ(ti )
)2

, (3.10)

where the inner sum is over the dimension of the action space and the set N is limited
to a finite number of vectors n. We take this set to be the N vectors that satisfy the
condition |n| ≤ Nmax, where Nmax 
 6.
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We minimize F by setting to zero its derivatives with respect to the unknowns:

0 = ∂F

∂ J ′
k

= −2
∑

i

(
Jk(ti ) − J ′

k − 2
∑
n∈N

nk Sn(J ′) cos n · θ(ti )
)

0 = ∂F

∂Sm
= −2

∑
i

∑
k

2mk cos m · θ(ti )
(

Jk(ti ) − J ′
k − 2

∑
n∈N

nk Sn(J ′) cos n · θ(ti )
)
.

(3.11)

To solve these equations, we define amatrix cnk that has as subscripts the vector n
and the integer k = (1, 2, 3) that selects a particular spatial dimension. This N -by-3
matrix is

cnk(ti ) ≡ 2nk cos
(
n · θ(ti )

)
, (no sum over n). (3.12)

We further define two (3 + N )-vectors

x J ≡ (J ′, Sn), bJ ≡
∑

i

(J(ti ), cn(ti ) · J(ti )), (3.13)

and the symmetric matrix

AJ ≡
∑

i

(
I3 cT(ti )

c(ti ) c(ti ) · cT(ti )

)
. (3.14)

Here I3 is the 3-by-3 identity matrix. With these definitions, the Eqs. (3.11) to be
solved can be written as

AJ · x J = bJ . (3.15)

We solve these equations for x J by LU decomposition (Press et al. 2002).
A similar procedure yields the target angles from Eq. (3.9). We note that, at time

ti , the orbit has θ′(ti ) = θ′(0) + �′ti , where �′ is the target frequency, and θ′(0) is
the angle corresponding to the initial point in the orbit integration. The relevant sum
of squared residuals is

G =
∑

i

∑
k

(
θ′

k(0) + �′
k ti − θk(ti ) − 2

∑
n∈N

∂Sn

∂ J ′
k
(J ′) sin n · θ

)2
. (3.16)

The unknowns are θ′(0), �′ and the set of ∂Sn/∂ J ′, which we denote as (∂1Sn,

∂2Sn, ∂3Sn). For each time, we define the N -vector

sn(ti ) = −2 sin
(
n · θ(ti )

)
. (3.17)
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We also define the 3(2 + N )-vectors

xθ ≡ (θ′(0),�′, ∂1Sn, ∂2Sn, ∂3Sn),

bθ ≡ ∑
i (θ(ti ), tiθ(ti ), θ1(ti )s(ti ), θ2(ti )s(ti ), θ3(ti )s(ti )),

(3.18)

and the symmetric matrix

Aθ ≡
∑

i

⎛
⎜⎜⎜⎜⎝

I3 ti I3 s1T s2T s3T

ti I3 t2i I3 ti s1T ti s2T ti s3T

s1 ti s1 s · sT 0 0
s2 ti s2 0 s · sT 0
s3 ti s3 0 0 s · sT

⎞
⎟⎟⎟⎟⎠ (3.19)

where each sm is an N -by-3 matrix with the N -vector s in the mth column, and each
s is evaluated at the i th time. Setting the partial derivatives of G with respect to the
unknowns to zero yields the matrix equation,

Aθ · xθ = bθ. (3.20)

The toy angles will be 2π-periodic, and we require the same for the target angles
θ′(0) + �′ti . However, in order to solve the matrix equation we must first make
the θ(ti ) from the orbit integration continuously increase, and then we solve for the
target angles and take the 2π-modulus.

3.2.2.1 Axisymmetric Case

In axisymmetric potentials, the angular momentum about the z-axis is one of the
actions. This action is independent of the potential such that J2(ti ) = J ′

2 = Lz .
From Eq. (3.11), we see that this implies Sn = 0 for n2 > 0, so we need only
consider the Fourier components with n2 = 0.

3.2.3 Choice of NT , Nmax and T

Given the scheme presented above, the only questions that remain are how to select
the orbit integration time T , the number of time samples, NT , to use, and what value
to use for Nmax, which determines the number N of Fourier components we solve
for. Here we discuss how we can automatically choose these parameters such that
we have good recovery of the unknowns.
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A necessary condition is that the number of unknowns must be less than the
number of time samples, NT . For the action calculation, the number of unknowns
is approximately N 3

max/2, whilst for the angle-frequency calculation we have ∼
3N 3

max/2 unknowns. We also expect our ability to recover the unknowns to depend
upon the sampling of the toy-angle space.

Let us first consider an idealised 1D case. If we were able to sample uniformly in
the toy angle of a 1D system, we would select NT points in a single period separated
in toy angle by � = 2π/NT . With this sampling rate, we would be able to constrain
all modes einθ with n� ≤ π. We can choose to constrain only the Nmax modes
with n < π/� as then we would be super-sampling the highest considered modes.
Here we are using a time series that is a product of an orbit integration, so is not
uniformly spaced in toy angles—the toy-angle distribution depends on the target
Hamiltonian, the toy potential and the distribution of sampling times. The recovery
of Fourier components from non-uniform samples is discussed in Marvasti (2001).
To constrain modes from a 1D non-uniform sampling, we must sample on average
at or above the Nyquist frequency. If we have toy-angle samples, θi we require

n

NT − 1

i=NT −1∑
i=1

(θi+1 − θi ) ≤ π, (3.21)

to constrain mode n.
Here we are attempting to recover components from samples, θi , in 3D toy-angle

space. As we are restricted to using samples generated from an orbit integration,
our sampling is limited to some sub-space of the full 3D toy-angle space. The 3D
sampling can be considered as a series of 1D samples in n · θi (we first unroll the
angles such that they increase continuously). In order to recover the Sn from this
toy-angle sampling, we need to satisfy two conditions:

1. As in the 1D case, we need to sample on average at or above theNyquist frequency
such that

1

NT − 1

i=NT −1∑
i=1

n · (θi+1 − θi ) ≤ π. (3.22)

2. For every included mode, n, we would also like a good total coverage in n · θ.
We choose to require that the n · θ samples cover the full range from 0 to 2π:

max(n · θ) − min(n · θ) > 2π. (3.23)

If this condition is not satisfied, we are including a mode which will not be well
constrained by the toy-angle sampling i.e. the average of cos n ·θ will not be near
zero. We therefore expect that the corresponding Sn will not be well recovered
from this sampling. It could be that this Sn is not significant so will not affect the
recovered actions and frequencies significantly.However, a conservative approach
would ensure that Eq. (3.23) is satisfied for all included modes.
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The second of these conditions is the stricter. To ensure that the toy-angle sampling
satisfies Eq. (3.23) when an orbit is near-resonant, we require time samples which
span a very large number of periods. This is an inevitable drawback of the approach
taken here because we have very little control over the sampling in the toy angle
space.

Having identified a mode that will not be well constrained, one possibility is to set
Sn = 0 for this mode. However, by doing this, we risk throwing out a mode which
is significant, and the recovery of the actions and frequencies will deteriorate, so we
opt not to do this.

Another requirement is that the Sn (and ∂Sn/∂ J ′) decrease as we go to larger
n such that the truncation at Nmax is valid. If the Sn do not decrease with n, this is
evidence of aliasing such that these higher n modes are not well recovered and we
expect the actions, angles and frequencies will also not be well recovered.

3.2.3.1 Procedure

We will now summarize the above discussion into a procedure that can be imple-
mented:

• We first select a reasonable Nmax, for instance Nmax = 6 is used in the later
examples.

• We then integrate for some time T recording at least NT = 3N + 6 time samples
(or NT = N +3 if we only need the actions) such that we have as many equations
as unknowns. This is always satisfied if we choose

NT = max(200,
9N 3

max

4
). (3.24)

• For each time sample, we find the toy angles and check that Eqs. (3.22) and (3.23)
are satisfied for each mode. If Eq. (3.22) is not satisfied, T is much longer than the
fundamental orbital periods, so we require a finer time sampling from the orbit
integration. If Eq. (3.23) is not satisfied, we continue integrating the orbit until this
equation is satisfied for all the modes.

• We then perform the procedure outlined in Sect. 3.2.2 to find the Sn. We require
the Sn to be decreasing with n such that on the boundaries the values of the Sn are
small. If we find that the boundary values of Sn are large, we have not included a
sufficient number of modes in the generating function so we must increase Nmax
and repeat the above procedure until we are satisfied that all dominant modes are
included.

As we will see below this procedure is very conservative but should ensure that
the recovery of the actions, angles, frequencies and components of the generating
function are accurate.
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3.3 Example

As a test of the above, let us look at an example. The most general separable triaxial
potential is the triaxial Stäckel potential (see de Zeeuw 1985 and Chap.4 for more
details). We choose to work with the perfect ellipsoid, which has density profile

ρ(x, y, z) = ρ0

(1 + m2)2
, (3.25)

where

m2 ≡ x2

x2P
+ y2

y2P
+ z2

z2P
, xP ≥ yP ≥ zP ≥ 0. (3.26)

The associated coordinates are confocal ellipsoidal coordinates in which the
actions can be expressed as one-dimensional integrals. These may be calculated
numerically using Gauss-Legendre quadrature. Similarly, the frequencies can also
be determined from one-dimensional integrals. Equations for these quantities are
given in de Zeeuw (1985). Here we work with the potential with parameters
ρ0 = 7.2 × 108M
 kpc−3, xP = 5.5 kpc, yP = 4.5 kpc and zP = 1 kpc.

In this potential we examine three orbits—a short-axis loop orbit with ini-
tial condition (x, y, z) = (10, 1, 8) kpc, (vx , vy, vz) = (40, 152, 63) km s−1, a
box orbit with initial condition (x, y, z) = (0.1, 0.1, 0.1) kpc, (vx , vy, vz) =
(142, 140, 251) km s−1, and a long-axis loop orbit with initial condition (x, y, z) =
(−0.5, 18, 0.5) kpc and (vx , vy, vz) = (25.0, 20.0,−133.1) km s−1. Each orbit was
integrated for 8 periods of the lowest frequency, TF . We set Nmax = 6 and calcu-
lated the corresponding number of uniformly-spaced time samples required from
Eq. (3.24). We ensured that Eqs. (3.22) and (3.23) were satisfied for all the included
modes. In Figs. 3.1 and 3.2 we show the orbits in the (x, y) and (x, z) planes, the
sampling of the toy-angle space and the resultant actions. We also show, in faint red,
the result of integrating in the best-fitting toy potential. This gives us an idea of the
work that the generating function has to do to deform the toy torus into the target
torus.

For the short-axis loop orbit, the true and recovered actions are

J true = (212.09, 1307.54, 708.15) kpc km s−1

J recov = (213.33, 1307.29, 709.16) kpc km s−1,

and the true and recovered frequencies are

�true = (21.28048, 15.30346, 18.90759)Gyr−1

�recov = (21.28081, 15.30360, 18.90754)Gyr−1.

http://dx.doi.org/10.1007/978-3-319-18772-3_4
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Fig. 3.1 Example short-axis
loop orbit in the triaxial
Stäckel potential—the top
panels show the orbit
integrated in the test
potential in black. This is a
short-axis loop orbit so
circulates about the axis
z = 0. In faint red, we show
the initial point integrated in
the best-fitting isochrone
potential. In the middle
panels, we show the toy
angles calculated at each
time sample. In the bottom
panel, we show the toy
actions at each time-step as a
dotted line (black for J1,
blue for J2 and red for J3).
The solid lines show the true
actions and the arrows mark
the estimated actions

In the left panel of Fig. 3.3, we depict two cross-sections of n-space showing
the absolute value of the components of the generating function (for the isochrone
potential, we use the convention that subscript 1 refers to Jr , subscript 2 refers to Lz

and subscript 3 refers to Jz ≡ L − |Lz |.) We see that the two most significant modes
are n = (−1, 2, 0), which causes a mixing between the radial motion and azimuthal
motion, and n = (0, 0, 2). Note that the Sn decrease towards the boundary, so we
are content that we have included the relevant modes.

For the box orbit, the true and recovered actions are

J true = (336.39, 137.78, 237.96) kpc km s−1

J recov = (336.85, 137.26, 238.17) kpc km s−1,

and the true and recovered frequencies are

�true = (38.8673, 45.3762, 72.1720)Gyr−1

�recov = (38.8656, 45.3737, 72.1689)Gyr−1.
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Fig. 3.2 Example box orbit (left panels) and long-axis loop orbit (right panels) in the triaxial
Stäckel potential—the top panels show the orbit integrated in the test potential in black. In faint
red, we show the initial point integrated in the best-fitting toy potential. In the middle panels, we
show the toy angles calculated at each time sample. In the bottom panel, we show the toy actions at
each time-step as a dotted line (black for J1, blue for J2 and red for J3). The solid lines show the
true actions and the arrows mark the estimated actions

In the right panel of Fig. 3.3, we depict two cross-sections of n-space showing the
absolute value of the components of the generating function. The twomost significant
modes are n = (2,−2, 0), which causes a mixing between the x motion and the y
motion, and n = (2, 0,−2), which mixes the x and z motions. These modes are
required to distort the rectangular orbits of the triaxial harmonic oscillator into those
bounded by surfaces of constant confocal ellipsoidal coordinate. Note that the Sn
decrease at the boundaries as required. The structure of the Sn for the loop orbit is
much richer than the Sn for the box orbits as the generating function has many more
significant terms.

For the long-axis loop orbit, the true and recovered actions are

J true = (312.89, 146.48, 1839.2) kpc km s−1

J recov = (323.12, 146.03, 1842.0) kpc km s−1,
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Fig. 3.3 Cross-sections of the Sn as a function of n for the example loop orbit (left) and the example
box orbit (right). In the top panels we show the cross-section n3 = 0. The most significant mode
in this plane for the loop orbit is (−1, 2, 0), which causes a mixing between the radial motion
and azimuthal motion. For the box orbit the most significant mode in the plane n3 = 0 (top) is
(2,−2, 0), which causes a mixing between the x motion and the y motion. In the lower panels we
show the cross-section n2 = 0, in which the mode (0, 0, 2) is the most significant for the loop orbit,
and the most significant mode for the box orbit is (2, 0,−2). a Example loop orbit, b Example box
orbit

and the true and recovered frequencies are

�true = (18.0665, 12.29, 14.0504)Gyr−1

�recov = (18.0749, 12.3008, 14.0497)Gyr−1.

3.3.1 Accuracy of the Method

Figure3.4 shows errors in J ′
3 and�′

3 for the box orbit as a function of Nmax for various
choices of the total integration time T . We have linked Nmax–NT via Eq. (3.24).
However, we have not ensured that Eqs. (3.22) and (3.23) are satisfied for each
case. The weight of each point is proportional to the largest gap in coverage for
the N modes. We see that, in general, a longer integration time provides a more
accurate estimate of the action and particularly the frequency. We can understand
this as a longer line segment provides a better measurement of the gradient for noisy
data. From Fig. 3.4, we see that when working with high Nmax it is not sufficient to
satisfy Eq. (3.24). We must also satisfy equation (3.23) such that we have a sufficient
sampling in toy-angle space to constrain these higher modes.
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Fig. 3.4 Error in the
recovered values of J ′

3 and
�′

3 for the box orbit as a
function of Nmax and the
total integration time. We
work with even multiples of
the period, TF ,
corresponding to the lowest
frequency. The size of the
points is proportional to the
largest gap in coverage for
the N modes. In general, a
longer integration time
provides more accurate
actions and frequencies.
When attempting to
constrain higher modes, it is
necessary to integrate the
orbit for a longer period to
ensure that the sampling
in toy angle is sufficient
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For T = 2TF , Eq. (3.23) is not satisfied for Nmax ≥ 4. For large Nmax and
T = 2TF , many modes have insufficient coverage and the results are very poor.
For the other three integration times, Eq. (3.23) is not satisfied for Nmax ≥ 8. For
T = 4TF , this results in an immediate deterioration of the frequency recovery as
we have included a mode with max(n · θ) − min(n · θ) ≈ π/2. For T = 8TF and
T = 12TF , a lack of coverage has not affected the results apart from for T = 8TF

and Nmax = 12 where the frequency recovery is poorer. The mode that is not well
covered is also not well covered for Nmax = 8, but we only see the effects of this lack
of coverage when we try to include more modes. For T = 12TF , both the action and
frequency recovery are very good despite equation (3.23) not being satisfied when
Nmax ≥ 8. In particular, there is one mode for which max(n ·θ)−min(n ·θ) ≈ 4.3.
It seems that this coverage is sufficient to not degrade the results. In conclusion,
when Eq. (3.23) is satisfied we recover the frequencies and actions well, whilst when
it is not satisfied the recovery deteriorates in some cases, particularly that of the
frequency.

Finally, we find that, when we double the number of time samples used for the
examples shown in Fig. 3.4, the results change significantly only when Eq. (3.23) is
not satisfied. Therefore, we conclude that, provided we have more equations than
unknowns and have satisfied Eqs. (3.22) and (3.23), the actions and frequency recov-
ery will be satisfactory.
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3.3.2 Near-Resonant Orbit

To illustrate some of the points discussed, we show results for a near-resonant orbit.
This orbit is a box orbit with the initial conditions (x, y, z) = (0.1, 0.1, 0.1) kpc,
(vx , vy, vz) = (142, 150, 216.5) km s−1. Again we integrate for time T = 8TF and
set Nmax = 6. The results are shown in Fig. 3.5. The frequency vector of this orbit
is nearly parallel to n = (−4, 0, 2) so the coverage of this mode is very poor and
max(n ·θ)−min(n ·θ) ≈ 1.11 for n = (−4, 0, 2). However, the true and recovered
actions are

J true = (301.74, 147.63, 165.36) kpc km s−1

J recov = (300.69, 147.66, 165.89) kpc km s−1,

Fig. 3.5 Example
near-resonant orbit in the
triaxial Stäckel
potential—the top panels
show the orbit integrated in
the test potential in black. In
faint red, we show the initial
point integrated in the
best-fitting triaxial harmonic
oscillator potential. In the
middle panels, we show the
toy angles calculated at each
time sample. In the bottom
panel, we show the toy
actions at each time-step as a
dotted line (black for J1,
blue for J2 and red for J3).
The solid lines show the true
actions and the arrows mark
the estimated actions
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and the true and recovered frequencies are

�true = (43.318, 50.369, 86.724)Gyr−1

�recov = (43.386, 50.371, 86.777)Gyr−1.

As seen before, poor coverage in one of the modes is not detrimental to the action
and frequency recovery.

3.4 Application

As a brief application of the method outlined in this chapter, we will inspect the
action diagram for a realistic triaxial Galactic potential. We take the potential from
Law and Majewski (2010). This potential was found to produce the best fit to the
Sagittarius stream data. This potential has three components: a disc defined by the
Miyamoto-Nagai potential

�disc(x, y, z) = −G Mdisc√
x2 + y2 + (a + √

z2 + b2)2
, (3.27)

with Mdisc = 1011 M
, a = 6.5 kpc and b = 0.26 kpc; a spherical bulge described
by the Hernquist profile

�bulge(r) = −G Mbulge

r + c
, (3.28)

with Mbulge = 3.4 × 1010 M
 and c = 0.7 kpc; and the triaxial logarithmic halo

�halo(x, y, z) = v2halo ln
(

C1x2 + C2y2 + C3xy + z2

q2
z

+ r2halo

)
(3.29)

with vhalo = 121.7 km s−1, C1 = 0.99 kpc−2, C2 = 0.53 kpc−2, C3 = 0.11 kpc−2,
qz = 1.36 and rhalo = 12 kpc.

3.4.1 An Example Orbit

We inspect a single orbit in this potential in Fig. 3.6. The chosen orbit is a short-axis
loop orbit with initial condition (x, y, z) = (14.69, 1.80, 0.12) kpc, (vx , vy, vz) =
(15.97,−128.90, 44.68) km s−1. We use different, but overlapping, 8TF long seg-
ments of the orbit with NT = 500 to calculate the actions, angles and frequencies
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Fig. 3.6 An example orbit
in the Law and Majewski
(2010) potential. It is a
short-axis loop orbit with
actions J ′ ≈
(160, 2186, 36) kpc km s−1.
In the top panel, we show a
16TF long orbit segment in
the (x, y) and (x, z) planes.
In the central two panels, we
show the spread in J ′

1 and �′
1

calculated using 500
time-samples from an 8TF
orbit segment labelled by its
initial time sample. In the
bottom panel, we show the
calculated angles at these
times with black dots. We
also show the angles found
using θ′(0) + �′ti with one
of the calculated frequencies
and initial angles in smaller
blue dots
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using Nmax = 6. We ensure Eq. (3.23) is satisfied for these time samplings. This
orbit lies in the surface of constant energy explored in the next section. We find that
the action and frequency are

J ′ ≈ (160.18, 2186.16, 36.09) kpc km s−1

�′ ≈ (27.26, 19.12, 37.01)Gyr−1.

Theerror in the actions and frequencies canbe estimatedby the spreadof the estimates
from each segment. We find

�J ′ ≈ (0.07, 0.08, 0.03) kpc km s−1,

��′ ≈ (3 × 10−4, 6 × 10−5, 2 × 10−3)Gyr−1.

For each orbit segment, we find θ′(0) and these different values should all lie along
straight lines with gradients given by the derived frequencies. In Fig. 3.6, we show
that the condition is well satisfied.
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Using different orbit segments is perhaps the only way to estimate the error in
an action or frequency found using the present method. It is simplest to use con-
secutive orbit segments as we have here. However, a better method is to use orbit
segments separated by a large time interval. This can be achieved most effectively
by utilizing the estimated generating function to find an initial condition for a second
orbit integration. A simple choice is to increase one of the derived angle coordinates
by π/2.

3.4.2 A Typical Constant Energy Surface

Now we turn to constructing the action diagram for the chosen potential. For a given
energy (that of a particle dropped at 18 kpc on the intermediate axis), we launched
particles at a series of points linearly spaced between 0.2 and 18 kpc along the
potential’s intermediate axis with the velocity vector perpendicular to the axis and
inclined at linearly spaced angles to the z-axis between 0 and π/2.1 We integrated
each initial condition for ∼10Gyr saving NT = 1000 samples. For all orbits, the
energywas conserved to one part in 106.We set Nmax = 6 and ensured that Eqs. (3.22)
and (3.23) were satisfied. If Eq. (3.22) was not satisfied, we had undersampled the
orbit, so we took a finer sampling. If Eq. (3.23) was not satisfied, we did not have
sufficient coverage, so we continued integrating for another 10Gyr, taking another
1000 samples. We then calculated the actions from the time series. Figure3.7 shows
each orbit as a point in 3D action-space.2 We see that the surface of constant energy
is a triangle-shaped plane in action-space. The points are coloured based on their
orbit classification. An equivalent figure for a Stäckel potential can be found in de
Zeeuw (1985).

In a triaxial potential, the loop orbits can be divided into two classes: the short-axis
loops that loop around the short axis (in our case the z-axis) and the long-axis loops
that loop around the long axis (the x-axis). Along with the box orbits, these three
classes of orbit occupy distinct regions on the action-space plane of constant energy.
At each corner of the plane, only one action is non-zero and the corresponding orbit
is the parent orbit of each of the three classes: the J2 = 0, J3 = 0 orbit is a radial
orbit along the long axis, the J1 = 0, J3 = 0 orbit is a closed orbit in the (x, y)

plane and the J1 = 0, J2 = 0 orbit is a closed orbit in the (y, z) plane. We note
that near the interface between the different orbit classes some regions of the plane
are depleted of points (our choice of initial sampling causes an increased density of
points near the edges of the plane). Also, there is some overlap between the different

1Note that the intermediate axis of the halo model proposed by Law and Majewski is actually the
z-axis. However, at small radii (�18 kpc), the intermediate axis of the full potential is in the (x, y)

plane due to the disc contribution, and the z-axis is the short axis.
2To produce a continuous plane in action-space we must scale the ‘radial’ actions of the loop orbits,
J1, by a factor of 2. J1 for a loop orbit corresponds to a single oscillation fromminimum tomaximum
coordinate and back, whilst for a box orbit a single oscillation covers the interval 0 to maximum
coordinate four times.
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Fig. 3.7 Two projections of a surface of constant energy in the 3D action space of the potential
proposed by Law and Majewski (2010). Black circles show short-axis loop orbits, red crosses show
long-axis loop orbits and blue triangles show box orbits

orbit classes in the action space. These features are due to the presence of resonant
islands with surrounding chaotic orbits at the interface of the regular orbit regions
(see Sect. 3.5.3). Additionally, for orbits near the box/loop boundary, it can takemany
orbital periods to correctly identify the orbit class (Carpintero and Aguilar 1998),
and some may be misclassified.

3.5 Discussion

3.5.1 Relation to Previous Work

The problem addressed here goes back to Binney and Spergel (1982, 1984), who
Fourier transformed the time series x(ti ) of individual coordinates and assigned
to each line in the resulting spectrum appropriate integers n j so that ωt could be
identified with

∑
j n j� j t . Once this identification had been successfully accom-

plished, � j t could be replaced with θ j to yield the orbit’s angle representation. This
approach is inferior to that introduced here in several respects: (i) Whereas the gen-
erating function is a scalar, a star’s location is described by a vector, so it is wasteful
to construct the angle representations of all three coordinates rather than the angle
representation of the generating function: Binney and Spergel (1984) failed to take
advantage of the strong restrictions on tori that arise from angle-action coordinates
being canonical. (ii) It is not straightforward tomeasure correctly the complex ampli-
tudes A from the discrete Fourier transform of a time series such as x(ti ) because the
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required amplitude will, in general, not lie at one of the discrete frequencies sampled.
(iii) When an orbit is near-resonant, there is often dangerous ambiguity in the inte-
gers n j that should be assigned to a particular line. With the present technique, we
work from the outset with periodic functions and their Fourier series so the issue of
how frequencies fall on a discrete grid does not arise. Moreover, the assignment of
integers n j to Fourier terms is unambiguous.

The method described here has significant overlap with the work of Warnock
(1991) on the construction of magnetic coordinates and the related method of
Kaasalainen and Binney (1994) for the construction of angle coordinates. In both
these studies, angle-action variables were evaluated along numerically computed
orbits. The coordinates evaluated were not those of a toy potential but of a trial torus
that had been previously constructed: Warnock (1991) was refining the Fourier coef-
ficients Sn while Kaasalainen and Binney (1994) were solving for the ∂i Sn given the
Sn. In both these studies, several initial conditions for orbit integration were chosen
on each torus to overcome the problem that with a single short integration a resonant
orbit yields a highly non-uniform distribution of sample points on the torus. Since
we do not have a good representation of the target torus until the equations have been
set up and solved, we cannot take advantage of this possibility.

Warnock (1991) solved for the discrete Fourier transforms of the nSn rather than
for the Sn because the matrix that then has to be inverted is nearly diagonal when the
toy and target tori are close to one another and the sample points provide a nearly
regular grid in the space of toy angles. Since our toy and target tori can be quite
different, and it is hard to achieve a uniform sampling of toy-angle space, we have
not used Warnock’s technique.

3.5.2 Possibility of Using Stäckel Tori

We have used completely different toy potentials for each class of orbit, and it is
natural to ask whether it would not be advantageous to use always a Stäckel potential
since such a potential has tori of every type. We have not pursued this option for two
reasons. First, the actions and angles of Stäckel potentials require the evaluation of
integrals whereas the potentials we have used yield algebraic expressions for angles
and actions. Secondly, and more fundamentally, when integrating an orbit that lies
close to the box/loop interface, it would be non-trivial to ensure that the toy torus
with the actions of the target orbit had the same geometry as the target torus. By
using potentials that support only one type of torus, we are assured from the outset
that this condition is satisfied. However, this rests on our correct identification of the
orbit type from the time series. As we saw with the Law and Majewski potential, in
some marginal cases it may take many orbital periods to correctly identify the orbit.

Another option is to use the approximate methods, such as those detailed in the
previous chapter and the next, to find the toy angle-actions. However, this approach
suffers from the same disadvantages as using Stäckel potentials.
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3.5.3 Resonances and Chaos

We have focused here on orbits that are non-resonant members of the major orbital
families. In real galactic potentials, one encounters orbits that are either resonantly
trapped or chaotic (e.g. Sect. 3.7, Binney and Tremaine 2008). Chaotic orbits can be
thought of as sequences of sections of resonantly trapped orbits, so these two types
of orbit raise similar issues.

In a generic integrable potential, the frequencies �i depend on the actions, so on
some tori a resonant condition n ·� = 0 is satisfied. Consequently, individual orbits
on these resonant tori do not cover the entire torus since the condition n·θ = constant
constrains the angle variables. This lack of coveragemakes it impossible to determine
some of the Fourier coefficients Sn.

When thepotential is strictly integrable, orbits on tori that are adjacent to a resonant
torus completely cover their tori although they take a long time to do so. In a generic
potential, however, such orbits move over a series of tori without covering any of
them, as they librate around the strictly resonant orbit. Consequently, these orbits have
some of the characteristics of a strictly resonant torus. When the present technique is
usedon a resonantly trappedorbit, the generating functionwillmap the toy torus into a
close approximation to the strictly resonant torus, so, in an N -bodymodel, the density
of stars on this torus will seem to be larger than it really is. Hence with the present
technique, resonantly trapped orbits will give rise to apparent crowding in action
space that is analogous to the signature of resonances when particles are mapped
into frequency space by determining orbital frequencies by Fourier decomposition
of coordinates (Dumas and Laskar 1993): when the ratios �2/�1 and �3/�1 are
used to place orbits in frequency-ratio space, the existence of resonantly trapped
orbits leads to a crowding of points along the straight lines associated with certain
resonance conditions n · θ = constant (Binney and Tremaine 2008, Sect. 3.7.3(b)).

Chaotic orbits can be considered as moving through a series of quasi-periodic
orbits. Therefore the recovered actions and frequencies from our method will be a
function of the total integration time. We see that the region of the constant energy
surface occupied by the box orbits in Fig. 3.7 has considerable crowding and the
regular grid of initial conditions is not visible. This is indicative of chaotic orbits
which have been allocated very different actions from one initial condition to the
next.

In Fig. 3.8 we perform the same procedure as outlined in Sect. 3.7.3(b) of
Binney and Tremaine (2008) to inspect the ratio of frequencies plane of a loga-
rithmic potential. We use the potential

�(x) = 1

2
ln

(
x2 + y2

q2
y

+ z2

q2
z

+ r2c
)
, (3.30)

with qy = 0.9, qz = 0.7 and r2c = 0.1. We drop a series of test particles on the
surface �(x) = 0.5 regularly spaced in the spherical polar coordinates φ and cos θ,
and integrate each initial condition for a time T = 200 extracting NT = 2048
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Fig. 3.8 Frequency ratios in
the triaxial logarithmic
potential extracted from
orbital time series using the
method presented in this
chapter. Each point
corresponds to an initial
condition for a particle
dropped on the surface
�(x) = 0.5
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samples. We then use our method to find the corresponding orbital frequencies and
plot their ratios in Fig. 3.8. As noted in Binney and Tremaine (2008), the top-right
corner of this plane shows the regular spacing of the initial conditions whilst the
lower-left corner shows a more irregular distribution with no evidence of the regular
grid of initial conditions used to produce it. Also, we find that there are overdensities
along lines corresponding to resonances. Our plot is very similar to that shown in
Binney and Tremaine (2008). However, the structure of the irregular bottom-left
region differs. This is to be expected as it is these orbits which are irregular, and how
one assigns regular properties to them depends on the method employed.

To illustrate this further we inspect two orbits in the surface of constant energy
of the triaxial logarithmic potential. One orbit is chaotic with initial condition
θ = 1.066 rad,φ = 1.419 rad, whilst the other is regular with initial condition
θ = 1.441 rad,φ = 0.7601 rad. The orbits and spectra are shown in Fig. 3.9. The
spectra are simply the Fourier transforms of each coordinate (Binney and Spergel
1982).We see that the regular orbit has a very simple spectrum of single peaks broad-
ened by the finite integration time, whilst the chaotic orbit has a raggedy spectrum of
many lines. In Fig. 3.10, we show the toy angles for each orbit. We see for the regular
orbit that the toy angles increase at a near constant rate with small fluctuations around
this constant rate. However, the chaotic orbit has a trend in the toy angles with time.
Two straight line segments have been fitted to the points to indicate the change with
time. It appears that the orbit is regular for small times, but over larger times the
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Fig. 3.9 Two orbits dropped on the surface �(x) = 0.5 in the triaxial logarithmic potential. The
top six panels correspond to a regular orbit, whilst the bottom six correspond to a chaotic orbit. The
top three panels of each section show three spatial projections of the orbit and the lower three show
the Fourier transforms of each Cartesian coordinate
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Fig. 3.10 Toy angles for the two orbits from Fig. 3.9. The left panel shows the toy angles for the
regular orbit, whilst the right panel corresponds to the chaotic orbit. Two straight lines have been
fitted to the first 500 (red) and the final 500 toy angles (blue). They are barely visible for the regular
orbit as they near coincide, whilst for the chaotic orbit there is a clear change in the gradient of the
toy angles with time

gradient of the toy angles shifts such that at large times the orbit also appears regular.
The regular frequencies we assign to this orbit are a function of the integration time.
For the chosen integration time, the assigned frequency is some average of the initial
and final frequencies such that the initial condition is scattered randomly in Fig. 3.8.

3.6 Conclusions

We have presented a method for finding actions, frequencies and angles from numer-
ically integrated orbits in a general potential. The method relies on estimating the
Fourier components of the generating function that maps a toy torus into the torus
on which the computed orbit lies by solving systems of linear algebraic equations.
This method enables one to determine the angle-action coordinates (θ, J) of a given
phase-space point (x, v) and has numerous possible applications in astronomy.

We inspected the method by recovering the actions of different orbit classes in
a triaxial Stäckel potential, including a near-resonant orbit. The method has several
parameters that affect the accuracy of the recovered actions. We showed how these
parameters can be set automatically, and how the error in the actions varies with the
parameters. As an application of the method, we constructed the 3D action diagram
for a surface of constant energy in the Law andMajewski (2010) potential. Finally, we
closed with a discussion of the effects of chaotic and resonant orbits on the method.

Ours is the first method presented in the literature for finding the actions in a
general triaxial potential. Triaxiality is an essential ingredient of dark-matter dis-
tributions, and a realistic Galactic model which should include non-axisymmetric
features such as the bar, and the potentially triaxial halo. This method is a necessary
first step towards constructing distribution functions, f (J), for these more complex
Galactic components. However, the method lacks the speed to evaluate many actions
required for numerically integrating themoments of the distribution function. Binney
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(2012a) introduced an algorithm for rapidly estimating the actions in an axisymmet-
ric potential by assuming the potential is close to a Stäckel potential. In the next
chapter, we present an extension of this approach to triaxial potentials that is more
appropriate for constructing f (J) models.

3.6.1 Future Work

Herewediscussed time-independent triaxial potentials. In this case,we candetermine
a priori the phases of the terms in the generating function. Rotation of the figure of the
potential destroys the time-reversibility of the Hamiltonian and we lose the ability to
set the phases a priori. In the worst case, the Sn in Eq. (3.5) become complex numbers
that are only limited by the condition S−n = S∗

n required to make the generating
function real. Extending the current framework to this case, approximately doubles
the dimensionality of the matrices we must solve for given Nmax.

Action-based distribution functions have proved important for the understanding
and analysis of the Galactic disc (Binney et al. 2014). These simple axisymmetric
distribution functions make use of the speed of the Stäckel approximation methods
for finding angles and actions (Binney 2012a). Much of the dynamics of our Galaxy
is governed by the central bar (Fux 2004), and, as surveys probe deeper through the
Galactic disc, it is imperative that this structure is included in themodels. This triaxial
time-dependent feature needs dynamically consistent models for its description and
the method presented here provides a route for such an approach. One direction for
future work is to construct a simple distribution function for the bar and inspect the
velocity histograms at various locations in the bar for comparison with results from
ARGOS (Freeman et al. 2013; Ness et al. 2013a, b) and APOGEE (Ahn et al. 2014).
One inhibiting feature of this course of action is the speed of the method presented
in this chapter. In the next chapter, we present a faster, non-convergent method for
estimating actions in a general triaxial potential that may be more appropriate for
this application.

An important application of the presented method is to the analysis of N -body
simulations. A single N -body snapshot consists of 3D positions and velocities for
∼109 particles. Letting the simulation evolve for a few time steps produces another
snapshot with a completely different set of 109 positions and velocities. Thus the
particles’ phase-space coordinates constitute a highly degenerate and non-compact
representation of the simulation. Effective analysis of the simulation should start
by condensing the coordinates into a smaller set of numbers. This can be done by
replacing the 6NT numbers (xi , vi ) with just three numbers Ji and plotting each
particle as a point in 3D action space. The simulation then becomes a density of
particles in a 3D space. This representation will greatly facilitate the comparison
of different N -body models. Also, it may prove possible to find good fits to the
stellar action-space density in terms of analytic functions, as Pontzen and Governato
(2013) have done for numerical dark-matter haloes and appears to be possible for
the Galactic discs (Binney 2012b; Binney et al. 2014).
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It should be noted that it is not advisable to take the NT time samples of a given
orbit directly from the simulation. Rather, at some time t , the potential should be
computed on a spatial grid (e.g. Magorrian 2007), and the equations of motion in
this potential should be integrated for NT time-steps starting from the phase-space
location of each particle at time t . These integrations in a fixed potential lend them-
selves to massive parallelization, for example on a Graphical Processor Unit (GPU),
so it should be possible to compute angle-action coordinates for very large numbers
of particles.

Ueda et al. (2014) present a similar method to that outlined in this chapter to find
Fourier coefficients of the generating function for a set of representative tori. These
coefficients may then be interpolated to construct tori of any action. Such a scheme
is possible here for speeding up the calculation of actions for many particles.
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Chapter 4
Action Estimation Using a Triaxial
Stäckel Approximation

4.1 Introduction

Triaxial models are of considerable importance for modelling of slowly-rotating
elliptical galaxies, as well as potentially triaxial components of our own Galaxy such
as the bulge, stellar halo and dark halo. The first triaxial models were made by vio-
lent relaxation of an N -body model (Aarseth and Binney 1978), and these models
prompted Schwarzschild (1979) to develop the technique of orbit superposition so tri-
axial models with prescribed density profiles could be constructed. Schwarzschild’s
work gave significant insight into how triaxial systems work for the first time, and
this insight was enhanced by de Zeeuw (1985), who showed that Stäckel potentials
provided analytic models of orbits in a very interesting class of triaxial systems.

Work on axisymmetric models in the context of our Galaxy has increased aware-
ness of the value in stellar dynamics of the intimately related concepts of the Jeans’
theorem and action integrals. If the system is axisymmetric, the energy E and com-
ponent of angular momentum Lz are integrals that are defined for any axisymmetric
potential �(R, z), and equilibrium models of axisymmetric systems have been con-
structed from distribution functions (dfs) of the form f (E, Lz) (Prendergast and
Tomer 1970; Wilson 1975; Rowley 1988). However, these two-integral models are
not generic, and they are much harder to construct than generic models when the df
is specified as a function f (J) of the actions (Binney 2014). Moreover, knowledge
of the df as a function of the actions is the key to Hamiltonian perturbation theory,
and the ability to perturbmodels is crucial if we are to really understand how galaxies
work, and evolve over time.

The self-consistent axisymmetric action-based dfs of Binney (2014) relied on a
fast routine for estimating the actions in a general axisymmetric potential. Binney
(2014) used the ‘Stäckel fudge’ method detailed in Chap.2. The target potential is
assumed to be close to a Stäckel potential. This method has been used to construct
axisymmetric distribution functions for the Galactic disc and we will use this method
for constructing extended distribution functions in Chap.8.
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In order to construct triaxial action-based dfs for the type of modelling detailed
above we require an efficient algorithm for estimating the actions. The routine pre-
sented in the previous chapter finds the actions, angles and frequency to arbitrary
accuracy in a general triaxial potential. In Chap.2, we presented several methods for
estimating the actions in axisymmetric potentials that were not convergent. We had
to make approximations to estimate the actions, and, regardless of the amount of
computation, we could not get arbitrarily close to the true actions. Convergent meth-
ods are preferable for finding accurate action estimates, but this is at the expense of
additional computational time. For instance, the method for finding the Fourier com-
ponents of the generating function of the previous chapter involves time-consuming
orbit integration and construction of large matrices. For working with distribution
functions for triaxial features in the Galaxy, we need a fast routine for finding J(x, v)

to enable fast evaluation of moments of the distribution function. In this chapter, we
present an extension to the method from Binney (2012) to the triaxial case, and show
how it can be used to construct triaxial dfs in general triaxial potentials. The method
relies on insights gained from the triaxial Stäckel case.

We begin in Sect. 4.2 by showing how to find the actions in a triaxial Stäckel
potential. In Sect. 4.3, we extend the Stäckel fudge to general triaxial potentials. In
Sect. 4.4 we apply this algorithm to a series of orbits in a triaxial NFW potential, and
in Sect. 4.6 we construct the first triaxial stellar systems with specified dfs f (J),
and demonstrate that, notwithstanding the uncontrolled nature of the fudge as an
approximation, the models satisfy the Jeans equations to good accuracy. Finally, we
conclude in Sect. 4.7.

4.2 Triaxial Stäckel Potentials

In this section, we show how actions can be found in a triaxial Stäckel potential.
Triaxial Stäckel potentials are associated with ellipsoidal coordinates (λ,μ, ν). The
presentation here follows that given by de Zeeuw (1985).

4.2.1 Ellipsoidal Coordinates

Triaxial Stäckel potentials are expressed in terms of ellipsoidal coordinates. These
coordinates are related to the Cartesian coordinates (x, y, z) as the three roots of the
cubic in τ

x2

(τ + α)
+ y2

(τ + β)
+ z2

(τ + γ)
= 1, (4.1)

where α, β and γ are constants defining the coordinate system. For the potential
explored later, we choose to set x as the major axis, y as the intermediate axis
and z as the minor axis, such that −γ ≤ ν ≤ −β ≤ μ ≤ −α ≤ λ. Surfaces

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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of constant λ are ellipsoids, surfaces of constant μ are hyperboloids of one sheet
(flared tubes of elliptical cross section that surround the x axis), and surfaces of
constant ν are hyperboloids of two sheets that have their extremal point on the z
axis. In the plane z = 0 lines of constant λ are ellipses with foci at y = ±�1 ≡
±√

β − α, whilst in the plane x = 0 lines of constant μ are ellipses with foci at
z = ±�2 ≡ ±√

γ − β. The expressions for the Cartesian coordinates as a function
of the ellipsoidal coordinates are

x2 = (λ + α)(μ + α)(ν + α)

(α − β)(α − γ)
, y2 = (λ + β)(μ + β)(ν + β)

(β − α)(β − γ)
,

z2 = (λ + γ)(μ + γ)(ν + γ)

(γ − β)(γ − α)
. (4.2)

Note that a Cartesian coordinate (x, y, z) gives a unique (λ,μ, ν), whilst the point
(λ,μ, ν) corresponds to eight points in (x, y, z). Therefore, we will only consider
potentials with this symmetry i.e. triaxial potentials with axes aligned with the Carte-
sian axes.

The generating function, S, to take us between Cartesian, (x, y, z, px , py, pz),
and ellipsoidal coordinates, (λ,μ, ν, pλ, pμ, pν), is

S(px , py, pz,λ,μ, ν) = px x(λ,μ, ν) + py y(λ,μ, ν) + pzz(λ,μ, ν). (4.3)

Using pτ = ∂S/∂τ , we find, for instance,

pλ = px

2

√
(μ + α)(ν + α)

(α − β)(α − γ)(λ + α)
+ py

2

√
(μ + β)(ν + β)

(β − α)(β − γ)(λ + β)

+ pz

2

√
(μ + γ)(ν + γ)

(γ − α)(γ − β)(λ + γ)
. (4.4)

There are similar equations for pμ and pν . Inversion of these three equations gives us
expressions for px , py and pz as functions of pτ and τ . For a general triaxial potential,
�, we can express the Hamiltonian, H , in terms of the ellipsoidal coordinates as

H = 1
2

(
p2x + p2y + p2z

)
+ �(x, y, z) = 1

2

(
p2λ
P2

λ

+ p2μ
P2

μ

+ p2ν
P2

ν

)
+ �(λ,μ, ν).

(4.5)
where

P2
λ = (λ−μ)(λ−ν)

4(λ+α)(λ+β)(λ+γ)
, P2

μ = (μ−ν)(μ−λ)
4(μ+α)(μ+β)(μ+γ)

, P2
ν = (ν−μ)(ν−λ)

4(ν+α)(ν+β)(ν+γ)
. (4.6)
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4.2.2 Stäckel Potentials

The most general triaxial Stäckel potential, �S , can be written as

�S(λ,μ, ν) = f (λ)

(λ − μ)(ν − λ)
+ f (μ)

(μ − ν)(λ − μ)
+ f (ν)

(ν − λ)(μ − ν)
. (4.7)

�S is composed of three functions of one variable. Here we denote the three func-
tions with the same letter, f , as their domains are distinct. Additionally, for �S to
be finite at λ = μ = α and μ = ν = β, f (τ ) must be continuous at τ = α and
τ = β. With this form for the potential, we can solve the Hamilton-Jacobi equation
(de Zeeuw 1985). Let W (λ,μ, ν, J) be the unknown generating function for the
transformation between (τ , pτ ) and the as yet unknown actions J and their corre-
sponding angle coordinates. Then we have that pτ = ∂W/∂τ and at fixed J we can
equate the Hamiltonian to the total energy, E , in Eq. (4.5). We then multiply through
by (λ − μ)(μ − ν)(ν − λ) to find

(ν − μ)
(
2(λ + α)(λ + β)(λ + γ)

(
∂W
∂λ

)2 − f (λ) − λ2E
)

+ (λ − ν)
(
2(μ + α)(μ + β)(μ + γ)

(
∂W
∂μ

)2 − f (μ) − μ2E
)

+ (μ − λ)
(
2(ν + α)(ν + β)(ν + γ)

(
∂W
∂ν

)2 − f (ν) − ν2E
)

= 0.

(4.8)

We make the Ansatz W = ∑
τ Wτ (τ ) and define

U (τ ) = 2(τ + α)(τ + β)(τ + γ)
(∂W

∂τ

)2 − f (τ ) − τ2E, (4.9)

such that the Hamilton-Jacobi equation becomes

(ν − μ)U (λ) + (λ − ν)U (μ) + (μ − λ)U (ν) = 0. (4.10)

Taking the second derivative of this expression with respect to τ = {λ,μ, ν}, we
find that

U (τ ) = aτ − b, (4.11)

where a and b are constants. Therefore, the equations for the momenta can be
written as

2(τ + α)(τ + β)(τ + γ)p2τ = τ2E − τa + b + f (τ ). (4.12)

For an initial phase-space point, (x0, v0), we find τ0(x0, v0) and pτ0(x0, v0) using
the coordinate transformations and can then find the integrals a and b by solving
Eq. (4.12) (see de Zeeuw 1985, for more details). These integrals are related to the
classical integrals I2 and I3 in a simple way. As pτ is only a function of τ , the actions
are then given by the 1D integrals
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Jτ = 2

π

∫ τ+

τ−
dτ |pτ (τ )|. (4.13)

where (τ−, τ+) are the roots of pτ (τ ) = 0, which we find by using Brent’s method
to find points where the right side of Eq. (4.12) vanishes. Note that for loop orbits
we must divide the ‘radial’ action by two (Jλ for the short-axis loops and outer long-
axis loops, Jμ for the inner long-axis loops). The approach to finding the actions
presented here requires an explicit form for f . In the next section, we will show how
we can circumnavigate the need for this explicit form, which allows us to use the
same equations for a general potential.

4.3 Triaxial Stäckel Fudge

We now show howwe can use the insights from Stäckel potentials to estimate actions
in a more general potential. For a general triaxial potential, �, we can attempt to
find the actions by assuming that the general potential is close to a Stäckel potential.
Given a general potential, we define the quantities

χλ(λ,μ, ν) ≡ (λ − μ)(ν − λ)�(λ,μ, ν),

χμ(λ,μ, ν) ≡ (μ − ν)(λ − μ)�(λ,μ, ν),

χν(λ,μ, ν) ≡ (ν − λ)(μ − ν)�(λ,μ, ν).

(4.14)

where we have chosen a particular coordinate system, (α,β, γ) (see Sect. 4.4.1). If
� were a Stäckel potential, these quantities would be given by, for instance,

χλ(λ,μ, ν) = f (λ) − λ
f (μ) − f (ν)

μ − ν
+ ν f (μ) − μ f (ν)

μ − ν
. (4.15)

Therefore, for a general potential, we can write

f (τ ) ≈ χτ (λ,μ, ν) + Cτ τ + Dτ , (4.16)

where Cτ and Dτ are constants provided we always evaluate χτ with two of the
ellipsoidal coordinates fixed. For instance, we always evaluate χλ at fixed μ and ν.

When we substitute these expressions into Eq. (4.12), we find

2(τ + α)(τ + β)(τ + γ)p2τ = τ2E − τ Aτ + Bτ + χτ (λ,μ, ν). (4.17)

For each τ coordinate, there are two new integrals of motion given by Aτ = a − Cτ

and Bτ = b + Dτ .
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Given an initial phase-space point, (x0, v0), and a coordinate system, (α,β, γ),
we can calculate the ellipsoidal coordinates (λ0,μ0, ν0, pλ0, pμ0, pν0). Inserting
this initial phase-space point into Eq. (4.17) gives us an expression for Bτ as

Bτ = 2(τ0 + α)(τ0 + β)(τ0 + γ)p2τ0 − τ20 E + τ0Aτ − χτ (λ0,μ0, ν0). (4.18)

It remains to find an expression for Aτ as a function of the initial phase-space point. To
proceed we consider the derivative of the Hamiltonian with respect to τ . In a Stäckel
potential we can stay on the orbit while changing τ and pτ (τ ) with all the other
phase-space variables held constant. Therefore, in a Stäckel potential ∂H/∂τ = 0.
Here we consider ∂H/∂λ and will give the results for μ and ν afterwards. Using
Eq. (4.5) we write

0 =
(∂H

∂λ

)
μ,ν

= 1
2

∂

∂λ

[
p2λ
P2

λ

]
+ 1

2

p2μ
(μ − λ)P2

μ

+ 1
2

p2ν
(ν − λ)P2

ν

+ ∂�

∂λ
. (4.19)

To evaluate ∂[p2λ/P2
λ ]/∂λ we use Eq. (4.18) to write

2(λ + α)(λ + β)(λ + γ)p2λ = 2(λ0 + α)(λ0 + β)(λ0 + γ)p2λ0
+(λ2 − λ2

0)E − (λ − λ0)Aλ − χλ(λ,μ0, ν0) + χλ(λ0,μ0, ν0),
(4.20)

such that

1
2

p2λ
P2

λ

= Q + (λ2 − λ2
0)E − (λ − λ0)Aλ

(λ − μ)(λ − ν)
− �(λ,μ0, ν0), (4.21)

where
Q = 2(λ0 + α)(λ0 + β)(λ0 + γ)p2λ0 + χλ(λ0,μ0, ν0). (4.22)

Upon substitution into Eq. (4.19), we note that the derivatives of� cancel. Therefore,
evaluating ∂H/∂λ at the initial phase-space point we find

Aλ = 2λ0E − (2λ0 − μ0 − ν0)

(
�(λ0,μ0, ν0) + 1

2

p2λ0
P2

λ0

)
− 1

2

p2μ0(λ0 − ν0)

P2
μ0

− 1
2

p2ν0(λ0 − μ0)

P2
ν0

. (4.23)

This can be simplified further to

Aλ = (μ0 + ν0)E + 1
2

p2μ0(λ0 − μ0)

P2
μ0

+ 1
2

p2ν0(λ0 − ν0)

P2
ν0

. (4.24)
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Note that Aλ is independent of λ0 and pλ0 (except implicitly in the energy, E).
Similarly

Aμ = (λ0 + ν0)E + 1
2

p2λ0(μ0−λ0)

P2
λ0

+ 1
2

p2ν0(μ0−ν0)

P2
ν0

,

Aν = (λ0 + μ0)E + 1
2

p2λ0(ν0−λ0)

P2
λ0

+ 1
2

p2μ0(ν0−μ0)

P2
μ0

.

(4.25)

For a true Stäckel potential, given an initial phase-space point we can find 6
integrals of motion, (Aλ, Aμ, Aν , Bλ, Bμ, Bν) from Eqs. (4.18), (4.24) and (4.25).
Note that a general Stäckel potential only admits three integrals of motion so the
6 derived integrals of motion are not independent. This procedure gives identical
results to evaluating the integrals as in de Zeeuw (1985). Note that the expressions
for these integrals do not explicitly involve the function f (τ )—they only involve
the potential, �. With the integrals of motion calculated, we are in a position to find
pτ (τ ) and hence the actions from Eq. (4.13).

For a general potential, we may find six approximate integrals of motion using the
same equations, and hence estimate the actions. In this case, although the potential
may admit only three true integrals of motion, the 6 approximate integrals of motion
are independent estimates of true integrals of motion. Again, as the expressions do
not require f (τ ) they can be evaluated for a general potential. In Appendix E, we
show how the angles and frequencies can be estimated using the same approach.

4.3.1 Relation to Axisymmetric Case

The above procedure extends the work of Binney (2012). Binney (2012) constructed
the “Stäckel fudge” algorithm for estimating actions in a general axisymmetric poten-
tial�(R, z), where R and z are the usual cylindrical polar coordinates.We now relate
the procedure to that of Binney (2012) to develop further understanding. The follow-
ing is a repeat of the method outlined in Sect. 2.6.

Oblate axisymmetric Stäckel potentials are associated with prolate elliptic coor-
dinates (λ, ν) given by the roots for τ of

R2

τ + α
+ z2

τ + γ
= 1, (4.26)

where −γ ≤ ν ≤ −α ≤ λ. Binney (2012) uses the coordinates (u, v) which are
related to (λ, ν) via

sinh2 u = λ+α
γ−α ,

cos2 v = ν+γ
γ−α ,

(4.27)

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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such that
R = √

γ − α sinh u sin v,

z = √
γ − α cosh u cos v.

(4.28)

An oblate axisymmetric Stäckel potential can be written as

�S(λ, ν) = − f (λ) − f (ν)

λ − ν
, (4.29)

and the equations for the momenta are given by (de Zeeuw 1985)

2(τ + α)(τ + γ)p2τ = E(τ + γ) −
( τ + γ

τ + α

)
I2 − I3 + f (τ ). (4.30)

For axisymmetric potentials I2 = 1
2 L2

z , where Lz is the z-component of the angular
momentum. For a general oblate axisymmetric potential, �, we define

χλ(λ, ν) ≡ −(λ − ν)�,

χν(λ, ν) ≡ −(ν − λ)�.
(4.31)

If � were a Stäckel potential, these quantities would be given by

χλ(λ, ν) = f (λ) − f (ν),

χν(λ, ν) = f (ν) − f (λ).
(4.32)

Therefore, for a general potential, we can write,

f (τ ) ≈ χτ (λ, ν) + Dτ , (4.33)

where Dτ are constants provided we evaluate χλ at constant ν and vice versa. We
can write the equations for the momenta as

2(τ + α)(τ + γ)p2τ = E(τ + γ) −
( τ + γ

τ + α

)
I2 − Bτ + χτ (λ, ν), (4.34)

where we have defined the integral of motion Bτ = I3 − Dτ . Bτ may be found given
an initial phase-space point and we then integrate the equations for the momenta
to find the actions. Note that, in this case, only two integrals of the motion, Bτ ,
need to be found, as, in the axisymmetric case, we can find two exact integrals of
motion, E and Lz . This is the procedure followed in Binney (2012) and, despite the
differing conventions and presentation, this method gives identical results to that of
Binney (2012).
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4.4 Tests

For the purposes of testing the triaxial Stäckel fudge, we use a triaxial NFW halo
(Navarro et al. 1996; Jing and Suto 2002):

�(x, y, z) = �(m) = −G Ms

m
ln

(
1 + m

m0

)
where m =

√
x2 + y2

y2s
+ z2

z2s
. (4.35)

We set ys = 0.95, zs = 0.85, m0 = 10 kpc and G Ms = (1109 km s−1)2 kpc. In
Fig. 4.1 we show the equipotential contours in the z = 0 and y = 0 planes. It is
perhaps more conventional to include the triaxiality in the density (e.g. Jing and Suto
2002), but, for simplicity, we have chosen to include triaxiality in the potential. For
our choice of parameters this does not lead to negative densities anywhere.

4.4.1 Selection of Coordinate System

The accuracy of the above routine for a general potential will depend upon our choice
of coordinate system, (α,β, γ). We can freely set γ = −1 kpc2 as the coordinate
system only depends on �1 and �2.

In Chap.2 we used the mixed derivative ∂λ∂ν[(λ − ν)�] to select an appropri-
ate coordinate system. For the triaxial case, we could construct a similar quantity:
∂λ∂μ∂ν[(λ − μ)(μ − ν)(ν − λ)�]. However, this expression would involve third
derivatives of the potential so is undesirable. Binney (2014) selected a coordinate

Fig. 4.1 Equipotential contours for the triaxial NFW potential in the two planes z = 0 (left) and
y = 0 (right). The central contour shows�/G Msm0 = −0.0096 and the contours increase linearly
by �(�/G Msm0) = 0.0008 outwards

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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system by fitting ellipses to shell orbits at each energy, E . We follow a similar
procedure: we assume that the best choice of coordinate system is solely a function
of E . Given a value for E , we find the two closed loop orbits—one around the short
axis and one around the long axis. We select a point along the intermediate axis,
y = yi , and launch an orbit with speed v = √

2(E − �(0, yi , 0)) in either the x (for
the short-axis loop) or z direction (for the long-axis loop). The next time the orbit
crosses the y-axis we note the y-intercept, y = y f , change yi and repeat till we have
minimised | − y f − yi | using Brent’s method. We only integrate half of the orbit to
avoid misidentifying fish-tail resonant orbits as closed loop orbits.

Fitting an ellipse to the short-axis closed loop will give an estimate of �1 =√
α − β, whilst fitting an ellipse to the long-axis closed loop will give an estimate

of �2 = √
γ − β. Additionally, for these closed loop orbits only one of the actions

is non-zero. We therefore integrate the closed long-axis loop orbit and minimise the
standard deviation of the Jν estimates from each time-step with respect to β using
Brent’s method. This procedure is not sensitive to the choice of α. Once we have
found β, we perform a similar procedure for the short-axis loop: varyα until we have
minimised the standard deviation of Jμ. We perform this procedure for a range of
energies from Emin = �(0, ymin, 0) to Emax = �(0, ymax, 0), tabulating the found
values ofα and β for interpolation. For the NFWpotential, we adopt ymin = 0.05 kpc
and ymax = 60 kpc.

In Fig. 4.2,weplot the standard deviation for the actions of the closed orbits against
�2 and�1 for the constant energy surfacewith E = �(0, m0, 0) = −(290 km s−1)2.
In both cases, there is a clear minimum in the standard deviation. In Fig. 4.2 we show
the standard deviation in Jν as a function of�2 = √

γ − β using two different values
for α. The results are indistinguishable. Provided we initially choose a sufficiently
negative value of α that the optimal β satisfies β > α, we are free to first set �2 and
then choose �1.

In the left panel of Fig. 4.3, we have plotted our choice of�1 and�2 as a function
of the energy. We see that for low energies (very centrally confined orbits) �i tends
to zero. Due to the cusp at the centre of the NFW potential, loop orbits exist right
down to the centre of the potential. The foci must lie within these loop orbits so �i

must decrease as we go to lower energy. As we increase the energy, �i increases
with �1 < �2.

To check this procedure, we launch a series of orbits of constant energy (E =
�(0, m0, 0) = −(290 km s−1)2) at linearly-spaced intervals along the y-axis with
velocity vectors in the (x, z) plane oriented at differing linearly-spaced angles, θ, to
the x axis. Each orbit is integrated and then we minimise the sum of the variances
of the actions with respect to α and β. The results of this procedure are shown in the
right panel of Fig. 4.3. We see that the majority of orbits yield optimal �i similar to
that found from inspecting the closed loop orbits. At the extremes of y, �i deviates
from this choice. These are the box orbits and they seem to favour lower�i . At fixed
y, the choice of �i is not so sensitive to θ.

We could improve our choice of �1 and �2 by making the choice a function of
an additional variable. For instance, we could make the choice a function of the total
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Fig. 4.2 Standard deviation in actions as a function of the focal lengths for the closed loop orbits:
The left panel shows the standard deviation in Jν as a function of �2 for the closed long-axis loop
orbit shown in the inset. The solid line shows the results if we set α = −80 kpc2, whilst the red
crosses show the results if we set α = −20 kpc2. The choice of �2 is insensitive to α. In the inset,
the two red arrows show the initial position vector for the orbit and that position vector rotated by
90◦ anticlockwise, and the black squares show the best choice of the location of the foci, z = ±�2.
The right panel shows the standard deviation in Jμ as a function of �1 for the closed short-axis
loop orbit shown in the inset. In the inset, the two red arrows show the initial position vector for the
orbit and that position vector rotated by 90◦ clockwise, and the black squares show the best choice
of the location of the foci, y = ±�1

Fig. 4.3 Choice of �1 and �2: in the left panel, we show our choice of �1 (solid black) and �2
(dotted red) as a function of energy, E , for the NFW potential described in Sect. 6.3. The range of
energies covered corresponds to the energies of particles dropped from 0.5 pc to 30 pc along the
intermediate axis. The vertical blue dotted line gives the energy of the surface explored in Sect. 4.5.
In the right panel, we show the choice of �1 and �2 that minimises the variation in the actions
for a range of orbits confined to a constant energy surface. Each orbit was launched at y on the
intermediate axis with angle θ from the long axis. The dashed black line gives the values chosen
by inspecting the closed loop orbits as specified in Sect. 4.4.1

http://dx.doi.org/10.1007/978-3-319-18772-3_6
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angular momentum, which is not an integral of motion. However, we will see that
we cannot significantly improve the action recovery with a better choice of �i .

4.5 Accuracy

Wenowbriefly inspect the accuracy of the action recovery using the above procedure.
We take three orbits from the surface of constant energy explored in the previous
section. The three orbits are a box orbit with y = 1.8234 kpc, θ = 0.6 rad (shown
in Fig. 4.4), a short-axis loop orbit with y = 4.8234 kpc, θ = 0.4 rad (shown in
Fig. 4.5), and a long-axis loop orbit with y = 3.8234 kpc, θ = 1.2 rad (shown in
Fig. 4.6). In each figure, we show the orbit along with the action estimates calculated
at each point along the orbit using our ‘best-choice’ �i , and the choice of �i that
minimises the spread in the action estimates. Additionally, we show the ‘true’ actions
calculated by using the method of Chap. 3 to determine the generating function for

Fig. 4.4 Action estimates for example box orbit using triaxial Stäckel approximation: the top three
panels show three projections of the orbit, and the bottom three panels show the action estimates
for points along the orbit. The dark blue points show the action estimates calculated using our
‘best-choice’ �i based on the energy, the light green points show the choice of �i that minimises
the spread in the action estimates, and the black lines show the ‘true’ actions found using the method
presented in Chap.3. Note the origin is not included in the plots. Between the top and bottom plots,
we give the absolute and relative error in the actions

http://dx.doi.org/10.1007/978-3-319-18772-3_3
http://dx.doi.org/10.1007/978-3-319-18772-3_3
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Fig. 4.5 Action estimates for example short-axis loop orbit using triaxial Stäckel approximation.
See Fig. 4.4 for information on each panel

the transformation from toy to true angle-action variables. In Appendix E, we show
how well the angle coordinates are recovered for these orbits.

The actions of the box orbit are (Jλ, Jμ, Jν) = (686, 192, 137) kpc km s−1

and our method yields errors of (�Jλ,�Jμ,�Jν) = (56, 39, 22) kpc km s−1 so
approximately 10–20%. With the choice of �i that minimises the spread in the
action estimates, we find errors of (�Jλ,�Jμ,�Jν) = (17, 19, 16) kpc km s−1 so
approximately �10%. We can achieve a factor of two improvement for Jλ and Jμ.

The actions of the short-axis loop orbit are (Jλ, Jμ, Jν) = (55, 752, 78) kpc
km s−1 and our method yields errors of (�Jλ,�Jμ,�Jν) = (2, 3, 1) kpc km s−1

so �4%. With the choice of �i that minimises the spread in the action estimates,
we find errors of (�Jλ,�Jμ,�Jν) = (0.8, 2.0, 0.9) kpc km s−1.

The actions of the outer long-axis loop orbit are (Jλ, Jμ, Jν) = (50, 102, 680) kpc
km s−1 and our method yields errors of (�Jλ,�Jμ,�Jν) = (4, 5, 6) kpc km s−1 so
�8%. With the choice of �i that minimises the spread in the action estimates, we
yield errors of (�Jλ,�Jμ,�Jν) = (2.0, 2.5, 4.2) kpc km s−1.

For all the orbits shown in the right panel of Fig. 4.3 (sampled from the constant
energy surface E = �(0, m0, 0) = −(290 km s−1)2), we have plotted the logarithm
of the fractional error in the actions in Fig. 4.7. We find the most accurate action
recovery occurs for the orbits with the initial condition y ≈ m0/2, where we have
mostly loop orbits. For these loop orbits, Jμ and Jν are accurate to �1% but the
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Fig. 4.6 Action estimates for example long-axis loop orbit using triaxial Stäckel approximation.
See Fig. 4.4 for information on each panel

‘radial’ action Jλ is small for these orbits so the relative accuracy can be large. For
the box orbits at the extremes of y, the relative error increases to ∼10% but can be
as large as order one in Jμ for low y.

In Fig. 4.8, we show the absolute errors in the actions as a function of action
for the constant energy surface along with the orbit classification. Each phase-space
point along the orbit is allocated a classification number based on the limits of τ
found in the Stäckel approximation: λ− = −α,μ− = −β and ν− = −γ correspond
to a box orbit (classification number 0), μ− = β, μ+ = −α to a short-axis loop
orbit (1), λ− = −α, ν+ = −β to an inner long-axis loop (2), and μ+ = −α,
ν+ = −β to an outer long-axis loop (3). The orbit classification number is calculated
as an average of these classifications along the orbit. With this scheme, orbits near
the boundaries of the orbit classes that are chaotic or resonant are allocated non-
integer orbit classification numbers. We see that the largest action errors occur at the
interfaces between the orbit classes. In particular,�Jλ and�Jμ are largest along the
box-short-axis-loop interface, whilst �Jν is largest at the box-inner-long-axis-loop
interface. It is at these boundaries that the orbits pass close to the foci so clearly our
choice of foci affects the action recovery for these orbits. Additionally, we find that
the absolute action errors, particular for Jν , are larger for the inner long-axis loops
that the outer long-axis loops. This is because the inner long-axis loops probe more
central regions of the potential and also lie close to the chaotic box-long-axis-loop
interface.
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Fig. 4.7 Error in the actions for a selection of orbits in the constant energy surface E =
�(0, m0, 0) = −(290 s)2 for the triaxial NFW potential. The left panel shows the logarithm of
the mean of the action estimates for each orbit in red, and the standard deviation in black. The
right panel shows the logarithm of the fractional error. The x-axis shows the position along the
intermediate axis at which the orbits were launched (y), and the colour-coding in the right panel
shows the angle, θ, in the x − z plane at which the orbits were launched

Fig. 4.8 Absolute errors in the actions as a function of action in the constant energy surface
E = �(0, m0, 0) = −(290 kms)2 for the NFW potential. The leftmost panel shows the constant
energy surface coloured by orbit class: boxes in black, short-axis loops in blue, inner long-axis loops
in green, and outer long-axis loops in red. Note the classification is a continuum as it is calculated
from an average of classifications along an orbit. The second, third and fourth panels show the
absolute error in the three actions, Jλ, Jμ and Jν respectively

In general, we find that the action recovery for loop orbits is good as these orbits
probe a small radial range of the potential. For box orbits the recovery deteriorates
as these orbits probe a larger central region of the potential. Additionally, we have
seen that by altering �i we can achieve up to a factor of two improvement in the
accuracy of the actions for both the loop and box orbits.
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Fig. 4.9 Surfaces of section for the three test orbits in the triaxial NFW potential. In the left panel
we show the box orbit, the central panel shows the short-axis loop orbit and the right panel shows
the long-axis loop orbit. In each panel, the solid black line gives the true curve of consequents
found from orbit integration. The narrower coloured lines give the consequents from the Stäckel
approximation coloured by |xi | of the initial phase-space point, where xi = x for the short-axis
loop and box orbit, and xi = y for the long-axis loop orbit. The text above each plot gives the plane
that defines the surface of section

4.5.1 Surfaces of Section

For understanding the behaviour of dynamical systems, Poincaré (1892) introduced
the concept of a surface of section. These diagrams simplify the motion of a high-
dimensional dynamical system. A regular orbit in an integrable triaxial potential
permits three constants of the motion, thus confining the motion to a 3-torus. If we
choose to only plot the series of points where the orbit passes through a 4-surface
in phase-space, e.g. defined by y = 0 and z = 0, the phase-space points will be
confined to a line, or a consequent, which may be visualized in a 2D plot.

We can test the Stäckel approach outlined here by seeing how well it reproduces
the surfaces of section. To produce the true surface of section, we integrate the orbit in
the true potential and find the phase-space points where the orbit crosses our chosen
4-surface. Here we use 4-surfaces defined by one of the spatial axes. To produce the
corresponding surface of section from the Stäckel method, we determine τ along
our chosen spatial axis using Eq. (4.2) between the determined limits in τ , and use
Eq. (4.17) to find the corresponding pτ . From pτ , we can use expressions such as
Eq. (4.4) to calculate px , py and pz : if we wish to draw the consequent defined
by y = 0, z = 0 we have that μ = −β and ν = −γ such that x = √

λ + α,
and px = √

4(λ + α)pλ. If we wish to draw the consequent defined by x = 0,
z = 0 we have that for |y| > �1, μ = −α and ν = −γ such that y = √

λ + β,
and py = √

4(λ + β)pλ, whilst for |y| < �1, λ = −α and ν = −γ such that
y = √

μ + β and py = √
4(μ + β)pμ.1

In Fig. 4.9 we plot the consequents of the three orbits inspected in Sect. 4.5. We
see that the Stäckel approximation consequents for the short-axis loop lie close to
the true consequent. Those of long-axis loop are slightly worse. The box orbit seems
problematic. For the phase-space points that lie close to the centre of the potential,
the consequents turn over in the centre as required. However, they underestimate px

1If we wish to draw the consequent defined by x = 0, y = 0 we have for |z| < �2, λ = −α and
μ = −β so z = √

ν + γ and pz = √
4(ν + γ)pν , whilst for |z| > �2, μ = −α and ν = −β so

z = √
λ + γ and pz = √

4(λ + γ)pλ.
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at a given x . The phase-space points which lie further out fail to turn over at low x .
The Stäckel tori for these orbits are near radial such that px is maximum for x = 0.
However, we see from Fig. 4.4 that the orbit crosses through x = 0, y = 0 at an angle
such that px is smaller than its maximum value. This behaviour is only captured for
the initial phase-space points at low x .

4.6 A Triaxial Model with Specified df

The main purpose of the algorithm presented here is to calculate efficiently the
moments of triaxial distribution functions. We have seen that the errors in the actions
reported by the scheme can be large. However, when calculating moments of a
distribution function, many action evaluations are required and there is scope for
errors to substantially cancel, leaving the final value of the moment quite accurate.
In this section, we demonstrate this phenomenon by constructing triaxial models
from an analytic df f (J).

We adopt a simple distribution function (Posti et al. 2015)

f (x, v) = f (J(x, v)) = (J0 + |Jλ| + ζ|Jμ| + η|Jν |)p, (4.36)

where J0 = 10 km s−1 kpc is a scale action, ζ controls whether the model is tangen-
tially/radially biased and η controls the flattening in z of the model. We set p = −3,
which causes the density to go as r0 in the centre and fall off as r−3 for large r . Note
that the mass of this model diverges logarithmically. We set η = 1.88 and explore
two values of ζ = 0.7 (tangential bias) and ζ = 3.28 (radial bias). Note that for the
orbit classes to fill action space seamlessly, we must scale the radial action of the
loop orbits by a factor of two (Binney and Spergel 1984). We proceed by calculating
the moments of this distribution function in the test triaxial NFW potential at given
spatial points, x. These non-zero moments are

ρ(x) = ∫
d3v f (x, v),

σ2
i j (x) = 1

ρ

∫
d3v viv j f (x, v).

(4.37)

Note that, as the potential is time-independent, theHamiltonian is time-reversible and
we need only integrate over half the velocity space. We integrate up to the maximum
velocity at x, given by

√
2�(x). Wewill calculate these moments extensively later to

demonstrate that the action-based distribution functions obey the Jeans equations. In
Fig. 4.10, we plot the density of the radially-biased (ζ = 3.28) and tangential-biased
(ζ = 0.7) models. We display contours of constant density in two planes along with
the density along a line parallel to the x-axis decomposed into its contributions from
each orbit class. The density is calculated using the adaptive Monte-Carlo Divonne
routine in the cuba package of Hahn (2005). The class of each orbit is determined
by the limits of the motion in τ : λ− = −α, μ− = −β and ν− = −γ correspond to
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Fig. 4.10 Density for the radially-biased model (ζ = 3.28, top panels) and for the tangentially-
biased model (ζ = 0.7, bottom panels). The left panels show equally-spaced contours of the
logarithm of the density in the (x, y) plane and, similarly, in the (x, z) plane in the central pan-
els. The outermost contour corresponds to log10(ρ/ kpc−3) = −5 for the radially-biased model
and log10(ρ/kpc−3) = −5.5 for the tangentially-biased model, and the contours increase by 0.5
inwards. The right panels show the total density in black along the line y = 1 kpc, z = 1 kpc
as well as the contributions from the box orbits in blue, the short-axis loop orbits in red and the
long-axis loop orbits in green

a box orbit, μ− = β, μ+ = −α to a short-axis loop orbit, and ν− = −γ, ν+ = −β
to a long-axis loop. As we are calculating the density close to the x-axis, the long-
axis loop orbits, which loop the x-axis, do not contribute significantly to the density
integral. We see that for the radially-biased model the box orbits are the dominant
contributors whilst for the tangentially-biased model the short-axis loop orbits are
the major contributors.

We will now perform some checks to see whether our distribution functions are
accurate.

4.6.1 Normalization

One check of our action estimation scheme is how accurately it recovers the nor-
malization. To keep the normalization finite, we set p = −3.5 for this section. We
are able to calculate the normalization of our df in two distinct ways. Firstly, we
calculate the normalization analytically from the df as
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Mtrue = (2π)3
∫

d3 J f (J) = (2π)3
∫ ∞

0
dJλ

∫ ∞

0
dJμ

∫ ∞

0
dJν f (J). (4.38)

Note that, for each J in the appropriate range, there are two loop orbits—one circulat-
ing clockwise and one anti-clockwise. Therefore,wemustmultiply the normalization
by two for these orbits. However, we have defined the ‘radial’ action to be four times
the integral from τ− to τ+ for these orbits so these factors cancel (Binney and Spergel
1984; de Zeeuw 1985). Additionally, we calculate the integral as

Mest = 8
∫

(x,y,z)>0
d3x

∫
d3v f (J(x, v)). (4.39)

For each spatial coordinate, we make the transformation ui = 1/(1+ xi ) to make the
integrand flatter. The limits of the integral are now ui = {0, 1}. To reduce numerical
noise, we split the integral such that we calculate the contribution near the axes
separately. We perform the integral using the Monte Carlo Divonne routine. For the
tangentially-biased model (ζ = 0.7), we find Mest ≈ 1.006Mtrue.

4.6.2 The Jeans Equation

Our distribution function must satisfy the collisionless Boltzmann equation

d f

dt
= 0. (4.40)

In turn, this means the distribution function must satisfy the Jeans equations (see
equation (4.209) of Binney and Tremaine 2008)

∂(ρσ2
i j )

∂xi
= −ρ

∂�

∂x j
. (4.41)

A simple test of our action-based distribution functions is checking whether they
satisfy these equations. The right hand side is calculated from analytic differenti-
ation of the potential and multiplying by the density. The left hand side is found
by numerically differentiating the three-dimensional integrals ρσ2

i j and summing the
appropriate contributions. Numerical differentiation of an integral leads to significant
noise. To combat this, we use an adaptive vectorised integration-rule cubature scheme
implemented in the cubature package from Steven Johnson (http://ab-initio.mit.
edu/wiki/index.php/Cubature). Using a fixed-rule adaptive routine means the noise
in the integrals is controlled such that the numerical derivatives are less noisy.

InFig. 4.11,we showhowaccurately the Jeans equations are satisfied along several
lines through the potential for our two models. We plot each side of each Jeans
equation for a choice of j along a range of lines, along with the percentage error

http://ab-initio.mit.edu/wiki/index.php/Cubature
http://ab-initio.mit.edu/wiki/index.php/Cubature
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Fig. 4.11 Accuracy of Jeans’ equation calculation for the radially-biased model (ζ = 3.28, top
six plots) and the tangentially-biased model (ζ = 0.7, bottom six plots). In the top half of each
panel, we show −ρ ∂�/∂x j as a series of black dots and ∂(ρσ2

i j )/∂xi as a red line. In the bottom
half, we show the percentage error difference between these quantities. Each panel shows a single
component, i.e. a single j , along the line given above the top-right corner of each panel. The second
row and fourth row of three panels all correspond to the same line
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difference between the two sides of the equation.We avoid calculating the derivatives
of the moments along the axes as the numerical differentiation is awkward there. In
general, we find �10% error for nearly all tested points with the majority having
�4% over a range of ∼8 orders of magnitude.

Despite the large errors introduced by the action estimation scheme, we have pro-
duced a distribution function that satisfies the Jeans equations to reasonable accuracy.
Even for the heavily radially-biased model, which has large contributions from the
box orbits, the Jeans equations are well satisfied. This gives us confidence that mod-
els based on triaxial distribution functions can be constructed using the scheme we
have presented.

4.7 Conclusions

We have presented a method for estimating the actions in a general triaxial potential
using a Stäckel approximation. The method is an extension of the Stäckel fudge
introduced by Binney (2012) for the axisymmetric case. We have investigated the
accuracy of the method for a range of orbits in an astrophysically-relevant triaxial
potential. We have seen that the recovery of the actions is poorest for the box orbits,
which probe a large radial range of the potential, and much better for the loop orbits,
which are confined to a more limited radial range. The only parameters in the method
are the choice of the focal positions �i . We have detailed a procedure for selecting
these based on the energy of the input phase-space point. This choice is not optimal
but, by adjusting �i , we can, at best, increase the accuracy of the actions of a factor
of two.

The advantage of this method over other methods for estimating the actions in
a triaxial potential is speed. Unlike the convergent method introduced in Chap.3,
we obtain the actions without integrating an orbit—we only use the initial phase-
space point. We have only to evaluate several algebraic expressions, find the limits
of the orbits in the τ coordinate and perform Gaussian quadrature. These are all fast
calculations. However, this speed comes at the expense of sometimes disappointing
accuracy. If accurate results are required, the Stäckel fudge can be combined with
torus construction to form a rapidly convergent scheme for the determination of
J(x, v), as demonstrated in Chap.2.

We went on to construct triaxial stellar systems from a specified dfs f (J) in
Sect. 4.6. We demonstrated the mass of these models is well recovered using the
Stäckel fudge.Notwithstanding the errors in individual actions, both a radially-biased
model and a tangentially-biased model satisfy the Jeans equations to good accuracy.
This is because individual errors largely cancel out during integration over velocities
when computing moments such as the density ρ(x) and the pressure tensor ρσ2

i j (x).
Whilst the scheme presented here does not give accurate enough actions for work-

ing with streams (see Chaps. 5 and 6) we have shown that it is an appropriate and
powerful tool for constructing models from specified dfs f (J). A key property of
dfs of the form f (J) is that they can be trivially added to build up amulti-component

http://dx.doi.org/10.1007/978-3-319-18772-3_3
http://dx.doi.org/10.1007/978-3-319-18772-3_2
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_6
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system. Hence the ability to extract observables from dfs of the form f (J) is likely
to prove extremely useful for interpreting data on both external galaxies (Cappellari
et al. 2011) and our Galaxy, in which components such as the stellar and dark haloes
may be triaxial, and the bulge certainly is. It is believed that ∼15% of all galaxies
are slow rotators with a generic triaxial shape (Houghton et al. 2013). The models
introduced in this chapter are applicable to these structures.

4.7.1 Future Work

As discussed in the conclusions of the previous chapter, one purpose for designing
algorithms tofind actions is that they form the basis for the construction of distribution
functions for triaxial components of the Galaxy, such as the bulge or possibly the
dark halo, as well as for triaxial external galaxies. We have shown that the algorithm
introduced in this chapter is appropriate for this purpose. Therefore, the next step
is to begin building more realistic models with the intention of fully modelling the
available data.

Binney (2014) has shown how one can use an iterative scheme for constructing
a self-consistent triaxial distribution function. Such a scheme should be possible to
implement with the triaxial dfs introduced here. Posti et al. (2015) has experimented
with double power-law action-based dfs of the form

f (J) ∝ (Jλ + ζ|Jμ| + η|Jν |)p(J0 + Jλ + ζ|Jμ| + η|Jν |)q , (4.42)

where J0 is a scale action and p and q control the inner and outer slopes of the
density. The parameters can be chosen such that these models provide a good match
to Hernquist profiles (Hernquist 1990), as well as other profiles of interest. One
future step for building a realistic model would be to adopt a df of this form and
iteratively adjust the potential to construct a self-consistent df. These models should
then be compared to the available data on slow rotators from Cappellari et al. (2011).
Additionally, as shown by Binney (2014), models with a sense of rotation can be
constructed using odd functions of the actions. Certainly, many more experiments
should be performed to understand the range of possible models one can construct
with only a simply parametrised action-based df.

Finally, the stellar halo and bulge of our own Galaxy are prime candidates for
action-based df modelling of the form discussed in this chapter. Deason et al.
(2012) adopted a distribution-function-based modelling approach for extraction the
large-scale structure of the Galactic potential and the velocity anisotropy of the stel-
lar halo from a sample of BHB stars. Such an analysis could potentially be improved
by the adoption of the models presented here. Similarly, the quantity of data for the
bulge is increasing and the route to successfully modelling this structure must be
through the construction of triaxial dfs.
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Chapter 5
Stream-Orbit Misalignment

5.1 Introduction

Wewill nowmove away frommethods for action estimation and discuss tidal streams
and how they may be used as probes of the Galactic potential. The action estimation
schemes described in the first part of this thesis will form an important part of
this work.

The halo of the Milky Way is rich with substructure. Large optical surveys have
revealed enhancements in the density of stars in the halo, which trace out filaments
across the sky. It is believed that each such filament is generated by stars being tidally
stripped from a progenitor that has entered the influence of the MilkyWay and hence
these structures are called tidal streams.

Tidal streams probe the outer parts of the Galactic potential, where the potential is
expected to be dark-matter dominated. By understanding their formation, it should be
possible to constrain properties of the Galactic potential (McGlynn 1990; Johnston
et al. 1996, 1999). One way of approaching this problem has been to assume the
members of the stream delineate an orbit (Jin and Lynden-Bell 2007; Binney 2008).
If we are given phase-space coordinates for objects that lie at different phases of
a single orbit, then the path of the orbit, and hence the underlying potential, may
be recovered. Even if the observables are not well known, the orbit and underlying
potential can be recoveredwith reasonable accuracy. If the data lie along an orbit then
full six-dimensional phase-space information is redundant: Eyre and Binney (2009b)
showed that the orbit and potential could be recovered with positions, distances and
line of sight velocities andEyre andBinney (2009a) did the samewith propermotions
instead of line of sight velocities. The technique of orbit fitting to stream data has
been utilised most successfully by Koposov et al. (2010), who used data for the
stream GD-1 (Grillmair and Dionatos 2006b) to constrain a simple two-parameter
logarithmic potential for theMilkyWay as well as a more complex multi-component
Milky Way potential.

© Springer International Publishing Switzerland 2015
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The studyof tidal streamshas a natural expression in angle-action variables (Helmi
andWhite 1999; Tremaine 1999; Eyre andBinney 2011) and in the correct potential a
stream should reveal a clear signature in angle-action space. Eyre and Binney (2011)
discussed and demonstrated the formation of streams in angle-action space through
N -body simulations. The authors investigated the degree to which orbits delineate
streams and found that assuming the stream lies along a single orbit can lead to
systematic biases in estimates of the potential parameters. However, these authors
were limited to quantifying the degree of misalignment for potentials in which the
angle-action coordinates are analytically tractable (spherical and Stäckel potentials).
The effect of themisalignment inmore realistic Galactic potentials remained an open
question. In particular, is themisalignment for known streams in the Galaxy expected
to significantly bias orbit-fitting algorithms?

In the next section, we review the known tidal streams of the Milky Way and
summarise the data from the literature that will be of use in answering this question.
In Sect. 5.3, we present the angle-action formalism and discuss the formation of tidal
streams in this framework. In Sect. 5.4, we motivate the need for an improvement
on orbit-fitting algorithms by investigating the degree to which streams delineate
orbits in realistic Galactic potentials, specifically focussing on which of the known
streams can be reliably analysed using orbit-fitting algorithms. In Sects. 5.5 and 5.6,
we discuss the validity of the presented formalism using N -body simulations and
demonstrate the results obtained are independent of the progenitor’s mass. We close
by investigating the anticipated errors introduced by orbit-fitting when attempting to
constrain the parameters of a two-parameter family of realistic Galactic potentials
from stream data. The work of this chapter is based on that published in Sanders and
Binney (2013).

5.2 Known Streams

Before we discuss the theory of tidal streams and how they may be used to con-
strain the Galactic potential we give a short description of known long streams. It
is important that we understand the available data before we concern ourselves with
the details of analysing stream data. For each stream, we have summarised the infor-
mation from the literature that is useful for the following discussion. There are other
streams, which we have not included. These streams are closely associated with
globular clusters and dwarf galaxies and as such are short and not as useful for con-
straining the Galactic potential. The majority of the listed streams were discovered
using matched-filter star counts (Rockosi et al. 2002) on Sloan Digital Sky Survey
data (SDSS, Eisenstein et al. 2011).
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5.2.1 GD-1

Grillmair and Dionatos (2006b) detected a 63◦ stellar stream in SDSS data using star
counts. This stream is referred to in the literature as GD-1. The stream is extremely
narrow, from which the authors conclude that the progenitor was a globular cluster.
However, the progenitor has not been identified suggesting that it has been completely
disrupted. Because it is exceptionally long and thin, theGD-1 streamhas been used by
bothWillett et al. (2009) andKoposov et al. (2010) to constrain theGalactic potential.
Additionally, GD-1 is relatively close to the Sun for a tidal stream (∼10 kpc), which
allowed these authors to construct a full 6D phase-space map of the stream. Both
sets of authors used the assumption that the stream delineates an orbit.

The data for GD-1 is currently the best data set for a tidal stream: Koposov
et al. (2010) provides us with 6D phase-space coordinates for different fields along
the stream. The authors fit an orbit to this stream using a 3-component potential.
The best-fitting orbit has its pericentre at 14 kpc, apocentre at 26 kpc and reaches a
maximum height above the Galactic plane of ∼11 kpc.

5.2.2 Orphan

The Orphan stream was discovered independently by both Grillmair (2006a) and
Belokurov et al. (2007a) using SDSS photometry and spectroscopy. The nearest part
of the 50◦-long stream is ∼20 kpc from the Sun. The Orphan stream is so-called due
to the lack of a progenitor. Belokurov et al. (2007a) suggested that Ursa Major II
galaxy (UMa II)maybe the progenitor.However, using distances and radial velocities
Newberg et al. (2010) fitted an orbit to the stream which seemed to rule out UMa
II as the progenitor. The more recently discovered star cluster Segue-1 (Belokurov
et al. 2007b) seems a more-likely candidate.

Newberg et al. (2010) find a best-fitting orbit for theOrphan streamwith pericentre
at 16.4 kpc, apocentre at 90 kpc and reaching a maximum height above the Galactic
plane of ∼45 kpc.

5.2.3 Anticenter

TheAnticenter streamwas detected by Grillmair (2006b) as a∼65◦ long overdensity
approximately ∼9 kpc away in the direction of the Galactic anticentre. Grillmair
(2006b) concluded that it was not associated with the Monoceros Ring, despite lying
in the same region of the sky, and this conclusion was strengthened by the kinematics
measured byCarlin et al. (2010),whomeasured a 6Dphase-space point on the stream.
This single point may be used to construct an approximate orbit for the stream.
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5.2.4 NGC 5466

A 45◦ stream was detected by Grillmair and Johnson (2006). It appears to coincide
with the much smaller tidal tails of NGC 5466 found by Belokurov et al. (2006a),
so it is believed to be associated with this extremely metal-poor globular cluster. In
this case, we are in the fortunate position of confidently identifying the progenitor
and we may use the orbit of the progenitor as a proxy for the path of the stream. An
approximate orbit for the progenitor may be constructed from the 6D coordinates of
NGC 5466 given by Harris (1996) and Dinescu et al. (1999).

5.2.5 Palomar 5

Palomar 5 (Pal 5) is a very low-mass, sparse halo cluster lying 18.6 kpc from the
Sun, which was found to have short (∼2.5◦), strong leading and trailing tidal tails
by Odenkirchen et al. (2001). It was the first example of tidal tails being resolved
around a cluster and has received much attention in the literature as an example of
the formation of tidal streams (Dehnen et al. 2004). Further observations found that
the stream extended up to 22◦ (Grillmair and Dionatos 2006a). As with NGC 5466,
we may use the 6D phase-space coordinates of the progenitor, given by Odenkirchen
et al. (2001), to construct an approximate orbit for the progenitor, and hence for the
stream members.

5.2.6 Sagittarius

The Sagittarius dwarf galaxy was discovered by Ibata et al. (1995) and is the third
largest satellite of theMilkyWay. Johnston et al. (1995) predicted that the Sagittarius
dwarf would be heavily disrupted, and that debris might be observed in the solar
neighbourhood. Majewski et al. (2003) observed extended leading and trailing tidal
tails, which Belokurov et al. (2006b) found wrapped at least once around the Galaxy.
Its length and number of constituent stars make the Sagittarius stream useful for
constraining the Galactic potential. However, the Sagittarius stream is very broad
and could potentially reflect the internal properties of the progenitor (Peñarrubia
et al. 2010). Complex models, which account for dynamical friction (see later), are
required to use the Sagittarius stream to constrain the Galactic potential.

Belokurov et al. (2006b) found that the Sagittarius stream had what they dubbed
a bifurcation. These authors were limited to observing the stream in the northern
Galactic hemisphere. Recently, Koposov et al. (2012) have extended the observations
to the southern Galactic hemisphere and found that the bifurcation is also present
there. It is believed that the bifurcation is actually due to a fainter stream that runs
alongside the Sagittarius stream. This secondary stream is chemically distinct from
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the Sagittarius stream (Koposov et al. 2012), which seems to rule out the possibility
that the secondary stream and the Sagittarius stream share a common progenitor. It is
believed that the secondary streamoriginated from a different progenitor, presumably
a companion of Sagittarius.

We take the sky coordinates of the Sagittarius dwarf galaxy from Majewski et al.
(2003), the distance from Siegel et al. (2007), the line-of-sight velocity from Ibata
et al. (1997) and the proper motions from Pryor et al. (2010), giving us a 6D phase-
space point on the orbit of Sagittarius.

5.2.7 Acheron, Cocytos, Lethe and Styx

Four streams were discovered by Grillmair (2009) using a matched-filter technique
and were named Acheron, Cocytos, Lethe and Styx in order of increasing distance
from the Sun. The first three of these are very narrow and lie between 3 and 15 kpc
from the Sun spanning between 37 and 84◦. Styx is much more distant (∼45 kpc),
broader and spans at least 53◦. None of the four streams has an identified progenitor,
although the Styx stream is believed to be associatedwith the concurrently discovered
cluster Bootes III. In the discovery paper, Grillmair (2009) fits orbits to the available
data to predict a 6D phase-space point in each of the streams.

5.2.8 Aquarius

The Aquarius stream was detected as an overdensity in the line-of-sight velocity
data from the Radial Velocity Experiment (RAVE) by Williams et al. (2011). The
stream passes very close to the Sun (within 0.5 kpc), is particularly broad and has no
identified progenitor. Williams et al. (2011) fits an orbit to this streamwith pericentre
at 1.8 kpc, apocentre at 9.0 kpc and reaching a maximum height above the Galactic
plane of ∼5 kpc.

5.2.9 Cetus, Virgo and Triangulum

The Cetus stream was discovered by Newberg et al. (2009) in velocities from the
Sloan Extension for Galactic Understanding and Exploration (SEGUE, Yanny et al.
2009). These observationswere corroborated byKoposov et al. (2012), who observed
the Cetus stream in the SDSS southern Galactic hemisphere data. The stream lies
∼34 kpc from the Sun and follows an approximately polar orbit.

Jurić et al. (2008) discovered a faint overdensity in the constellation of Virgo from
SDSS stellar number counts. The Virgo overdensity was also observed as a velocity
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overdensity in measurements of RR Lyrae stars (Duffau et al. 2006). The overdensity
has a large spatial extent but it is unclear whether it is a stream or not.

The Triangulum stream was very recently discovered by Bonaca et al. (2012) by
searching SDSS data using a matched-filter technique. The stream extends over 12◦
and lies approximately 26 kpc from the Sun.

These three streams do not have sufficient data in the literature to reliably construct
their 6D phase-space structure. A simple orbit fit may be possible but this is beyond
the scope of this exercise.

5.3 Tidal Streams in Angle-Action Coordinates

Helmi and White (1999) and Tremaine (1999) explained the formation of tidal
streams in angle-action space. In this formulation, streams are formed because stars
do not share a common orbit. It is this formulation which we present here.

Given 6D phase-space information, the angle-action coordinates for each star
along the tidal streammay be found. We assume that each star does not feel the grav-
itational influence of the stars in the stream but only the external Galactic potential.
Angle-action variables provide a simple way to follow the dynamics of the stream as
the actions are constants of the motion whilst the angles increase linearly in time. For
a single star in the stream, the angle-action coordinates, (θ, J), obey the equations

J = const., θ(t) = θ(0) + �t, (5.1)

where� = ∂H/∂ J are the frequencies of the Hamiltonian, H , and t is the time since
the star was stripped from the progenitor. All the stars in the stream are assumed to
derive from a progenitor with actions J0. The progenitor is assumed to be of low
mass, so that we may neglect dynamical friction and the actions of the progenitor are
constant throughout the motion. Also, we assume that, once a star has been stripped,
the influence of the progenitor can be neglected, so the star’s actions are constant
from the time the star was stripped.

The stream is formed by the difference in angles between the progenitor and the
stars in the stream, �θ, increasing with time. For a single star, we have

�θ = θ − θ0 = ��t + �θ(0). (5.2)

�θ(0) is the initial difference in angles between the progenitor and a given star. ��

is the difference in frequencies. Both �θ(0) and �� depend upon the progenitor
mass (see Sect. 5.5). When a stream has formed, �θ(0) has become small compared
to the term ∝ t so we have

�θ ≈ ��t. (5.3)
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As the frequencies and the angles depend on the potential, this equation provides
a constraint for the potential. However checking whether this equation is obeyed
for all stars in the stream in a given potential is complicated for two reasons:
1. The progenitor of the stream may be unknown, and 2. the time that the star left
the progenitor, t , is not known.

Nevertheless, Eq. (5.3) provides a useful constraint on the potential. If the differ-
ence between the actions of the stream stars and those of the progenitor is small, the
frequencies of a stream star are well approximated by the Taylor expansion

� ≈ �0 + D · �J, (5.4)

where D is the Hessian matrix

Di j (J) = ∂2H

∂ Ji∂ J j
. (5.5)

This matrix is symmetric, so at each point of action space it is characterised by three
orthogonal eigenvectors, êi , with associated real eigenvalues, λi . With the Taylor
series for the frequencies given in Eq. (5.4), the difference in angles is related to the
difference in actions by

�θ ≈ ��t ≈ D · �J t. (5.6)

In this framework, we can understand the conditions required for a stream to form.
Once a star has been stripped from the cluster, the action difference, �J , is frozen in
and the angle difference increases with time. The Hessian determines along which
directions the cluster spreads. For a long thin stream to form from an approximately
isotropic cluster in action space, one eigenvalue of the Hessian must be much larger
than the other two, λ1 � λ2 � λ3. In this case, the stream will stretch along the
eigenvector ê1 and

�θ

t
≈ �� ≈ ê1(λ1 ê1 · �J). (5.7)

Hence, the frequency difference should be aligned with the principal eigenvector of
the Hessian for all stars in the stream, independent of their action. The structure of
the stream distribution in action-space is not generically isotropic (Eyre and Binney
2011). In the absence of self-gravity, the action distribution of the cluster is constant
and reflects the initial conditions used to seed it. As demonstrated in Eyre and Binney
(2011) the action distribution of a cluster depends upon its orbital phase and can be
elongated in the (JR, Lz) plane. The distributions in (JR, Jz) and (Lz, Jz) are near
isotropic. When self-gravity is introduced, the anisotropy in the (JR, Lz) plane is
increased and anisotropy is introduced in the (JR, Jz) and (Lz, Jz) planes. However,
we will see later that the Hessian is highly anisotropic so small anisotropies in
the action distribution are washed out. Additionally, we are not wholly reliant on
the assumption of isotropy in later sections, but it helps to understand the stream
geometry.
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5.4 The Problem with Orbit-Fitting

We have seen that if the Hessian matrix is dominated by a single eigenvalue, λ1, the
stream will stretch along the corresponding eigenvector, ê1. In general, this vector
will be misaligned with the progenitor frequency vector, �0, with the angle, ϕ,
between them given by

ϕ ≡ arccos
(
�̂0 · ê1

)
. (5.8)

Themisalignment between these two vectors gives an indication of the error expected
when the Galactic potential is constrained by assuming that the stream (aligned with
ê1) delineates an orbit (aligned with �̂0). The potential in which the stream appears
to delineate an orbit will, in general, be different to the true potential. Orbit-fitting
algorithms also assume that the actions of all the constituent stars are the same
which can also lead to errors. However, this effect is small as the stream spans a
small range in actions, so we assume that the misalignment angle gives rise to all the
error in orbit-fitting algorithms. Importantly, this misalignment is independent of the
progenitor mass, and depends only on the progenitor orbit, and hence the underlying
potential (see Sect. 5.5). Moving to lower-mass, and hence narrower streams, does
not decrease the misalignment.

One key result of Eyre and Binney (2011) is that when this misalignment is
ϕ = 1.5◦ in the isochrone potential, the mass of the Galaxy is overestimated by
approximately 20% when using an orbit-fitting algorithm. Thus, even a small value
of ϕ can lead to significant error in the potential. Eyre and Binney (2011) found the
misalignment angle to be ϕ ≈ 1−3◦ at every point in action space in the isochrone
potential, whereas in a Stäckel potential the angle could be as large as ϕ ≈ 20◦.
These are special cases, so it is necessary to explore the magnitude of this angle for
realistic Galaxy potentials to assess the need to go beyond orbit-fitting algorithms.
Here we estimate ϕ for example realistic Galactic potentials.

We calculate ϕ by first finding the Hessian matrix at each point in action-space.
This calculation is simply performed using the torus machine (McMillan and Binney
2008). The torus machine constructs orbital tori of given actions for a general poten-
tial. Position and velocity coordinates are determined as functions of the angles on the
surface of the torus. Given a set of actions, the torus machine returns the correspond-
ing frequencies. It is these properties which make it an appropriate tool for this task.

For each point in action-space, we use the torus machine to differentiate estimates
of the frequency numerically. The error in the estimated actions of points that lie on
a torus created by the torus machine is estimated as

�J ≈ �H√
�2

R + �2
z

(5.9)

where �H is the RMS variation in the energy across the torus and �i are the
frequencies. For each action-space point, we create a torus with the required actions,
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J , and accuracy, �J , as well as neighbouring tori that lie δJ away from the action-
space point in each action-space direction. We use the calculated frequencies of
these tori to construct numerically the Hessian matrix, ∂�i/∂ J j , at the action-space
point. We require �J � δJ to ensure the numerical differentiation is accurate. The
angle between the principal eigenvector of this matrix and the frequency vector at
the action-space point is ϕ. We also calculate λ1/λ2, which gives a measure of the
width of a stream formed at this action-space point. If this ratio is large, a long thin
stream forms and Eq. (5.7) is satisfied. However, if the ratio is small, the stream will
be broad.

For a given choice of �J and δJ , the error in ϕ is estimated by calculating it for
a known case. In the Kepler potential the angle is zero (Eyre and Binney 2011) and
we use this fact to estimate the error in ϕ in a general potential.

We perform the above procedure on three potentials: the two-parameter logarith-
mic potential, the best-fitting potential from McMillan (2011) (hereafter referred to
as PJM11), and a potential taken from Piffl et al. (2014) (hereafter referred to as
Piffl). The logarithmic potential is defined as

�(R, z) = V 2
c

2
ln

(
R2 + z2

q2

)
, (5.10)

where Vc is the asymptotic circular speed and q is the flattening parameter.We choose
Vc = 220 km s−1 and q = 0.9, which gives a good representation of the potential
of the Milky Way (Koposov et al. 2010). The PJM11 potential is a multi-component
potential generated by a bulge, thick and thin discs and an NFWhalo, which has been
fitted to current experimental constraints. The Piffl potential has the same functional
form as the PJM11 potential but with the addition of a gas disc of scale-height 40 pc.
Additionally, the potential has a flattened halo (Q = 0.8 in the density profile) and
the parameters have been chosen to match the constraints from PJM11 as well as
match the dynamics of RAVE stars. Figures5.1 and 5.2 show ϕ and the eigenvalue
ratio in two action planes for these three potentials.1

For the logarithmic potential, ϕ is small (about 1.5◦), but crucially non-zero at
all points in the action-space planes explored. This is similar to the value found by
Eyre and Binney (2011) for the isochrone potential. ϕ decreases with increasing Jz

and increasing Lz as orbits move further out in the potential, but the trend is very
subtle. The errors in ϕ are �0.005◦. The eigenvalue ratio, λ1/λ2, is greater than 20
for all action-space points shown. Therefore, we expect long thin streams which are
misaligned with the orbit of their progenitor.

For the PJM11 potential,ϕ is�1◦ for all the action-space points shown in Fig. 5.2,
and can be as large as ∼40◦ for orbits with low Jz . These low-Jz orbits are planar
disc-like orbits, so clearly the discs in the PJM11 potential have a large effect on
the misalignment angle. For these orbits, the ratio of eigenvalues is small so broad
structures will form from debris stripped from disc-like orbits. ϕ decreases rapidly

1Throughout this chapter, the actions are stated in units of kpc2Myr−1 = 977.8 kpc km s−1.
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Fig. 5.1 Misalignment angle and ratio of two largest eigenvalues for the logarithmic potential with
Vc = 220 km s−1 and q = 0.9. Two planes are displayed: JR = 0.26 and Jz = 0.498 kpcMyr−1.
The bottom two panels give the misalignment angle in the Kepler potential. This should be zero
everywhere so gives a measure of the error in the misalignment angle calculated in the logarithmic
potential. The black dot shows the approximate action coordinates of GD-1, which the simulations
in Sect. 5.5 and Chap.6 were chosen to emulate

with increasing Jz such that, for orbits that spend most of their time out in the halo,
ϕ has a similar value to that found for the logarithmic and isochrone potentials.
Similarly, the ratio of the eigenvalues increases with increasing Jz . In the halo, long
thin streams will form. The planes of constant Jz show that orbits with large Lz will
form narrower streams that aremore alignedwith their progenitor orbit. Interestingly,
despite the magnitudes of ϕ being similar far out in the halo, the shapes of the ϕ
surface and the λ1/λ2 surface are very different for the two potentials.

For the Piffl potential, the surfaces of ϕ and λ1/λ2 have a similar structure to
those in the PJM11 potential. We find that even with a flattened halo (Q = 0.8 in
the density profile) the misalignment angle is small, and in fact is smaller at high
vertical action than in the PJM11 potential. It seems that the effect of the discs ismore
significant. The thin and thick discs in the Piffl potential have a shorter scale-height
than in the PJM11 potential, but also there is a thin gas disc included.

In all three potentials examined here, ϕ is a few degrees far out in the halo.
However, for the PJM11 and Piffl potentials, this can increase to several tens of

http://dx.doi.org/10.1007/978-3-319-18772-3_6
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Fig. 5.2 Misalignment angle and ratio of two largest eigenvalues for the best potential from
McMillan (2011, PJM11, top six panels) and a realistic Galactic potential with a flattened halo
(Q = 0.8 in the density profile) from Piffl et al. (2014, Piffl, bottom six panels). Two planes are
displayed: JR = 0.29 and Jz = 0.45 kpcMyr−1. In each section, the bottom two panels give the
misalignment angle in the Kepler potential. This should be zero everywhere, so gives a measure of
the error in the misalignment angle calculated in the potentials. The black dot in the top section of
panels shows the approximate action coordinates of GD-1, which the simulations in Sect. 5.5 were
chosen to emulate. Note we have plotted log10 ϕ in the top left panels
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degrees for orbits that spend more time in the disc. Therefore, simulations which use
the logarithmic potential may not give a good representation of the evolution of a
tidal stream. The stream will potentially delineate the orbit more than it should in a
realistic potential giving the impression that orbit-fitting algorithms are appropriate.
We note that both the logarithmic potential used here and the PJM11 potential have
approximately spherical halo potentials. However, even with a more flattened halo,
as in the Piffl potential, the misalignment at high vertical action is still small.

5.4.1 Known Streams

We have seen that ϕ is definitely non-zero and can be large for realistic Galaxy
potentials, and thus systematic errors can be made when an orbit-fitting algorithm is
used.Wenowexplore themagnitude of themisalignment angle for the known streams
described in Sect. 5.2 to decide whether orbit-fitting algorithms are appropriate for
analysing available stream data. For this task wemust make estimates of their actions
and then use the torus machinery as above.

With the information collected in Sect. 5.2, we can construct approximate 6D
phase-space points for each of the streams. For those streams with known progeni-
tors (Palomar 5, Sagittarius, NGC5466), we use the 6D coordinates of the progenitor.
TheAcheron, Cocytos, Lethe and Styx streams have predicted 6D stream points from
an orbit fitted by Grillmair (2009). The Anticenter stream has a single measured 6D
stream coordinate. The remaining streams (GD-1, Orphan, Aquarius) have approx-
imate orbit fits from the literature. In our chosen potential we can produce similar
orbits and find a single 6D point on these orbits.

The actions in the PJM11 potential for each of these points are found using the
Stäckel-fitting algorithm fromChap.2 (small alterations to the algorithm appropriate
for the problem at hand are briefly discussed in Appendix G). There is an error
of ∼5–10% in the actions introduced by the Stäckel-fitting algorithm, but this is
irrelevant when compared with the observational uncertainties in the coordinates of
these streams. With these actions we find ϕ to a precision of better than 0.1◦ using
the torus machine. For each stream, Table5.1 gives the approximate actions, the ratio
of the two largest eigenvalues of the Hessian and ϕ. The misalignment angle varies
from ϕ ≈ 13◦ to ϕ ≈ 0.15◦ with the largest misalignment angle producing the
smallest eigenvalue ratio, and hence the broadest streams. As a check, we performed
the same calculations using the more accurate iterative torus procedure described in
Sect. 2.7, which yielded very similar results.

The Anticenter, Aquarius and NGC 5466 streams all have ϕ > 2.8◦ and small
eigenvalue ratios (∼6). Therefore, just from their actions we anticipate that the
streams formed will be broad. This is definitely true of the Aquarius stream, and

http://dx.doi.org/10.1007/978-3-319-18772-3_2
http://dx.doi.org/10.1007/978-3-319-18772-3_2
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Table 5.1 Known tidal streams: the approximate actions of the progenitor (given in units of
kpc2Myr−1), the ratio of the two largest eigenvalues,λ1/λ2, and themisalignment angle,ϕ, between
the principal eigenvector and the frequency vector at the stream’s action coordinates

JR |Lz | Jz
λ1
λ2

ϕ/◦ k Q ϕ∗/◦ k∗ Q∗ �ϕ/◦

Anticenter 0.06 3.4 0.15 6 13.0 0.72 0.15 6.18 1.01 0.42 7.0

Aquarius 0.34 0.61 0.28 7 8.0 2.06 0.10 7.14 2.20 0.06 2.1

GD-1 0.29 3.8 0.45 22 3.5 0.96 0.49 2.50 0.72 0.50 1.6

NGC 5466 3.4 0.30 2.8 6 2.8 0.92 1.05 1.42 1.10 1.15 2.9

Lethe 0.14 1.2 1.3 29 1.1 0.90 0.70 1.97 0.68 1.28 2.3

Cocytos 0.13 0.83 0.99 28 0.93 0.82 1.35 2.18 0.55 0.60 1.5

Palomar 5 0.24 1.2 1.7 30 0.89 1.14 1.61 1.13 0.74 0.75 1.6

Acheron 0.11 0.50 0.76 28 0.73 1.31 0.84 2.73 1.06 0.35 2.0

Orphan 4.0 5.9 0.88 34 0.64 1.03 1.10 0.65 0.72 0.89 0.3

Sagittarius 2.3 2.1 4.0 29 0.43 0.96 1.03 1.32 1.05 0.92 0.9

Styx 0.91 0.22 5.6 37 0.15 1.01 0.99 1.17 0.81 0.99 1.3

ϕ∗ is the measured misalignment angle from the simulations presented in Sect. 5.6. k and Q give the
potential parameters found using an orbit-fitting algorithm on a stream aligned with the principal
eigenvector (Sect. 5.7), and k∗ and Q∗ give the parameters found using an N -body simulation. The
true underlying potential has parameters (k, Q) = (1, 1). The final column, �ϕ, gives the angular
difference between the principal eigenvector of theHessian and themeasured direction of the stream
from the N -body simulation

the Anticenter stream is a complex which is believed to consist of three separate
streams with the whole complex having a width of ∼5◦ (Grillmair 2006b). For all
other streams, we find ϕ � 1◦ and the eigenvalue ratio is large (>20) so narrow
streams are expected.

5.5 Mass Dependence

When presenting the angle-action formalism of stream formation, we made little
mention of the progenitor mass. We would like to know for what range of progenitor
masses this approach and the above results are valid. Stream progenitor masses span
a large range: GD-1 is observed to have a mass of 2×104M
 (Koposov et al. 2010),
whilst the mass of the Sagittarius dwarf is believed to be 108−109M
 (Law et al.
2005; Fellhauer et al. 2006).

Here we discuss each of the assumptions made in the angle-action formalism in
the context of mass-dependence:

1. The progenitor actions are assumed to be constant for all time. This is valid in
the limit that dynamical friction is negligible. We can neglect dynamical friction
if we are in the regime where
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Mc � rpV 2
c

G
, (5.11)

where Vc is the circular speed of the potential, and rp is the pericentre radius.
This mass is approximately 1011M
 for a GD-1-like orbit, so we expect dynam-
ical friction to be negligible for Mc � 109M
. Many streams lie much further
out in the halo where this limit is expected to be much larger. Additionally, the
effects of dynamical friction are expected to be comparable for the cluster and
the stream, such that the relative structure of the stream is not affected, but the
global cluster-stream complex is. We expect that dynamical friction is irrelevant
for most streams, but its effects on the Sagittarius streammay be important (Jiang
and Binney 2000).

2. We have assumed that a particle is instantaneously released from the cluster, and
subsequently has constant actions. However, the self-gravity of the cluster will
always be significant, regardless of mass. It is the self-gravity of the cluster that
determines whether a particle leaves the cluster on each pericentric passage. A
particle will always leave the cluster in the same way (approximately through
the Lagrange points at pericentre), irrespective of the mass. In the absence of
self-gravity, we do not have this restriction as particles leave the cluster more
uniformly. Therefore, we expect that the inclusion of self-gravity will have an
impact on the overall shape of the angle-action space structure of the stream,
independent of the mass (see Sect. 5.6). We also expect that increased cluster
self-gravity will produce broader streams as particles leave the cluster with a
larger range of actions. Thus, the role of progenitor mass is to set the scale of the
stream’s structure without affecting its morphology in any other way. Despite the
cluster self-gravity always being important, it should produce mass-independent
effects on the overall shape of the stream (see below).

3. We assume that we can neglect the finite angle size of the cluster, �θ(0), after
some time t as it is negligible compared to the contribution of secular evolution to
�θ. Assuming the secular evolution of the stream stretches the angle distribution
along one direction (see below), �θ(0) will act to broaden the stream perpen-
dicular to this principal direction. This is mass-dependent, and is related to the
above self-gravity arguments, but when a stream has formed this term is always
unimportant. As long as the initial spread in angles is symmetric about the stream
path, this term will not affect the presented formalism.

4. We employ a Taylor expansion in �J when finding the relationship between the
frequencies and actions. This is important as it leads to the conclusion that�� for
each particle will lie along the same vector ê1. This assumption is valid provided

∂Di j

∂ Jk
�Jk � Di j . (5.12)

If the Hamiltonian is a function of some low power of J , this reduces to

�Ji � Ji . (5.13)
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If we are in the progenitor-mass regime where we can neglect the above effects,
what effect does the progenitor mass have on the resulting angle-action space distrib-
ution?�J ,�� and�θ are all functions of the progenitormass.We expect that larger
progenitormasses produce larger spreads in the actions, frequencies and angles of the
resulting stream, but we would like to know their exact mass dependence. Following
Eyre and Binney (2011) we have that

�Ji ≈ 1

2π

∮
�pidxi ≈ 1

2π

∮
σdxi , (5.14)

where σ is the velocity dispersion of the progenitor. For axisymmetric systems, this
is approximately

�J ≈ 1

2π
(2σ�R, 2πσrp, 4σ�z) (5.15)

where �R is the difference between the apocentric and pericentre radius, and �z
is the maximum height above the plane reached by the orbit. �Lz is calculated at
pericentre as this is where themajority of particles are stripped.Under the assumption
of Eq. (5.12), �� is linearly related to �J via the (mass-independent) Hessian Di j ,
and �θ is linearly related to �� via the time since stripping, t . Therefore, both ��

and �θ will have the same dependence on mass as �J .
From the virial theorem, we relate the velocity dispersion of the cluster to its mass

and radius via

σ2 ≈ GMc

rt
. (5.16)

and the tidal radius, rt , is related to the mass of the cluster via

rt = rp

( Mc

Mg

) 1
3
, (5.17)

where Mg is the mass of the host galaxy contained within rp. Therefore, the progen-

itor mass is proportional to the velocity dispersion cubed or σ ∝ M1/3
c . As �J ,

�θ and �� are proportional to σ in the regime we are considering, we expect all
these quantities to also depend on M1/3

c . Choi et al. (2007) showed from N -body
simulations that the energy difference of stripped particles obeyed this same scaling
with progenitor mass in a spherical halo. Similarly, Johnston (1998) demonstrated
that the density profile along a stream was described by the same analytic form
scaled by M1/3

c , and Johnston et al. (2001) utilised this scaling relation to develop a
semi-analytic formalism for predicting the morphology of a recently-formed stream.

These arguments convince us that the progenitor mass acts only to scale the angle-
frequency distribution, and the shape is independent of the mass, provided we are in
the aforementioned regime. Therefore, the misalignment angle is mass-independent.

Using these results, we relate the assumption of Eq. (5.12) to a constraint on the
progenitor mass for a given orbit. We expect the neglected terms in the Taylor series
to be non-negligible when
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�J ≈ 1

2π
(2σ�R, 2πσrp, 4σ�z) = J . (5.18)

Therefore, we expect the assumption to break down when

σ � min

{
πJR

�R
,

Lz

rp
,

πJz

2�z

}
, (5.19)

where all the quantities on the right-hand side depend only on the chosen orbit. We
see that the cluster needs to be on a sufficiently eccentric orbit for the approximation
to hold. However, we expect that the majority of tidal streams are formed from
progenitors on eccentric orbits, so this constraint is not too restrictive.

All the above predictions may be tested by inspecting some N -body simulations.
We construct a stream by placing a King cluster at apocentre on a stream-like orbit
in the logarithmic potential defined by Eq. (5.10) and integrating with self-gravity
until a stream has formed. King models (King 1966) are characterised by one shape
parameter and two scale parameters: the ratio of central potential to squared-velocity
parameter, W0 = �0/σ

2 = 2, the cluster mass, Mc, and a tidal limiting radius, rt ,
set by Eq. (5.17). Given W0, a scaled tidal-limiting radius is found by integrating
equation (4.112) from Binney and Tremaine (2008) with the boundary condition
dW0/dr = 0. This model is then scaled by the two parameters, Mc and rt , setting the
velocity dispersion parameter,σ, and the central density, ρ0.We seed the clusterswith
N = 10,000 particles, and explore the range of masses 2×104 � Mc � 2×109M
.
The softening parameter, ε, is chosen to be ε = (Mc/ρ0N )1/3. The parameters for
the simulations are given in Table5.2.

The orbit was chosen to be similar to the orbit of the GD-1 stream (Koposov et al.
2010). The orbit has initial conditions (R, z) = (26.0, 0.0) kpc and (U, V, W ) =
(0.0, 141.8, 83.1) km s−1, where positive U is towards the Galactic centre and pos-
itive V is in the direction of the Galactic rotation at the Sun. This orbit has rp ≈
14 kpc. We evolve the simulation for t = 4.27Gyr (just after the 11th pericentric
passage) using the code gyrfalcON (Dehnen 2000, 2002), made available through
the NEMO Stellar Dynamics Toolbox (Teuben 1995).

Table 5.2 Parameters of King models used in the simulations detailed in Sect. 5.5

N W0 rp/ kpc
Mc
M
 rt/ kpc σ/ km s−1 ε/ pc

10,000 2.0 14 2 × 104 0.07 1.39 1.5

2 × 105 0.14 3.01 3

2 × 106 0.32 6.50 6

2 × 107 0.69 14.0 14

2 × 108 1.48 30.1 30

2 × 109 3.20 65.0 66
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For each resulting particle distribution, we cut out the remnant of the progenitor,
and estimate the actions, angles and frequencies of the stream particles using the
Stäckel-fitting algorithm from Chap.2. We quantify the spread in each coordinate
using the standard deviation. In Fig. 5.3,we plot the frequency difference as a function
of progenitor mass. The correlation is very tight and, from the guiding line with slope
1/3, we see the data follow the expected trend. In Fig. 5.4, we plot the gradient of
the frequency distribution. It is this quantity that gives the degree of stream-orbit
misalignment. We see that, as expected, the gradient is constant with mass. There is
a small deviation at the low-mass end, which is due to the numerical errors introduced
by theStäckel-fitting algorithm.Wehave near-perfect scaling of the resultswithmass,
so there are no mass-dependent effects in the mass regime considered.

Fig. 5.3 The size of the frequency distribution against the progenitor mass. The size is estimated
using the standard deviation in each frequency coordinate. As expected, ��i is proportional to
M1/3

c , shown by the black line

Fig. 5.4 The slope of the frequency distribution against the progenitor mass. We see the slopes
are independent of mass. There is a small deviation at low mass due to errors introduced by the
Stäckel-fitting algorithm used to estimate the frequencies. At the high-mass end, there is also a
slight deviation that may be due to the higher-order action space structure

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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For this orbit, we use Eq. (5.19) to find the maximum progenitor velocity dis-
persion for the first order expansion of �� in terms of �J to be valid. We find
that radial and vertical actions give similar constraints of σmax ≈ 70 km s−1, which
translates into a maximum mass of Mmax ≈ 5× 109M
. We have not quite reached
this regime with the N -body simulations, but there is the suggestion of its impact at
the high-mass-end of Fig. 5.4.

Wehave seen that the formalism is valid for Mc � 109−1010M
, when dynamical
friction, the higher order action-space structure and perturbations from the cluster
remnant become important. However, below this limit we find that the progenitor
mass acts to scale the frequency, action and angle-distributions, such that the shapes
of these distributions are essentially mass-independent. Therefore, we expect the
angle-action formalism and the results of the previous sections to be valid for all
observed streams, although dynamical friction may be relevant for the Sagittarius
stream.

5.6 Anisotropies in the Action Distribution

In Sect. 5.4 we showed that ϕ is non-zero for the logarithmic potential. From the
above simulations ϕ = 0.18◦ but using the torus machine we find that ϕ ≈ 1.6◦. The
source of this discrepancy is found by running the simulation without self-gravity.
In that case, ϕ ≈ 1.8◦ in better agreement with the prediction. Therefore, the self-
gravity of a cluster causes ϕ to decrease. The gradient of the frequency distribution
is mass-independent, so this self-gravity effect is also mass-independent.

A similar experiment run in the PJM11 potential shows a similar ∼1.5◦ decrease
in ϕ (see Fig. 5.5). However, in this case, the simulation with gravity included still
shows a significant ϕ. It just seems a coincidence that, for the simulation in the
logarithmic potential, the expected value of ϕ is almost cancelled by the inclusion
of self-gravity.

This effect can be understood by considering the action-space structure of the
cluster (Eyre and Binney 2011). In the formalism of Sect. 5.3, we showed that the
streamwould lie along the principal eigenvector of the Hessian, but only if the stream
action-space distribution is isotropic. Eyre andBinney (2011) showed that the action-
space distribution is not isotropic. Self-gravity introduces different anisotropies to
those present when self-gravity is neglected. Different action-space distributions will
give rise to different frequency-space distributions under the action of the Hessian.
For Hessians with large eigenvalue ratios, a highly elongated frequency distribution
will be produced, but its orientation will depend on the shape of the action-space
distribution.

We can understand the difference between the self-gravity and no-self-gravity
simulations by considering how the particles are stripped from the cluster when self-
gravity is included. For a particle to be stripped, it must leave the cluster through
the Lagrange points L1 and L2 at pericentre. For the orbit considered, the motion is
dominated by the radial motion, and at pericentre the Lagrange points lie in a plane
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Fig. 5.5 Angle-angle plot for a similar simulation to those outlined in Sect. 5.5 but in the PJM11
potential run with and without self-gravity. This snapshot shows the clusters at the fifth apocentric
passage. The dashed blue line gives the orbit of the progenitor. The black and red lines are straight
line fits to the data for the self-gravity and no self-gravity simulations respectively. We note that
there is a misalignment between the stream and the progenitor orbit which decreases when self-
gravity is included. The same effect is observed in the logarithmic potential, but it is clearer to see
in the PJM11 potential

which is nearly parallel to the plane z = 0. Therefore, a particle needs to have an
increase in its radial velocity to have sufficient energy to be stripped. This increased
radial motion will in turn increase/decrease the radial frequency �R depending on
whether the particle leaves throughL1 or L2. Similarly, the angular frequency�φ will
increase/decrease as the particle moves to a smaller/larger radius without changing
its transverse velocity. If we consider the motion in z to be completely decoupled
from the radial motion, which in the orbit considered is a fair assumption, increased
motion in R as the particle leaves the cluster will not alter the vertical action Jz and
frequency �z .

Now we can understand Fig. 5.5 as the result of this frequency-space evolution.
Particles in the stream have increased/decreased angular frequency whilst their ver-
tical frequency has remained constant. This causes the distribution in (θφ, θz) space
to rotate clockwise thus decreasing the misalignment angle.

We investigate how the anisotropy of the action-space distribution affects the
estimatedmisalignment angle for the presented streams.We could attempt to estimate
the effects of the anisotropy analytically following a similar analysis to Eyre and
Binney (2011). However, as we are only dealing with eleven streams, we choose to
run some N -body simulations, which will fully account for these effects. For each
known stream, we integrate the orbit in the PJM11 potential to find the pericentre
radius, rp, and a phase-space point at apocentre.We seed a 10,000 particle 2×105M
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King clusterwith a tidal radius related to rp viaEq. (5.17), and place it at the apocentre
phase-space point. The simulation is then evolved in gyrfalcON, until a stream has
formed. Themisalignment angle is measured in angle-space as the angle between the
angle distribution of the stream particles and the frequency vector of the progenitor.
We note here that this result is independent of the mass of the progenitor, and the
phase of the orbit of the progenitor.

We present the results of this procedure in Table5.1, where we give the angular
difference between the N -body stream structure and the principal eigenvector, �ϕ.
For all known streams, we find that, as with the simulation shown in Fig. 5.5, the
angle-space distribution rotates by a few degrees. The Anticenter stream exhibits
the largest angular change of ∼7◦. The misalignment between the streams and the
progenitor orbit is still a few degrees, despite the anisotropies in the action-space
distribution. Therefore, we expect that orbit-fitting algorithmswill not be appropriate
for real streams.

5.7 Errors in Potential Parameters

Whilst a good indicator of whether an orbit-fitting algorithm is appropriate or not,
ϕ does not give a good measure of how much we will err if we use an orbit-fitting
algorithm. We would like to know how the magnitude of the misalignment relates to
the error in potential parameters found by simply fitting an orbit to the stream.

We use the suite of two-parameter potentials described in Appendix F. These are
multi-component Galactic potentials that all have the same circular speed at the Sun,
but which vary in two key respects: the flattening of the halo density, Q, and the ratio
of the magnitude of the force due to the disc and the halo at the Sun, k, normalised
such that the PJM11 potential is the potential with (k, Q) = (1, 1).

An orbit fit is valid if all the particles have the same frequency, and the angles
increase at this frequency along the stream. The first of these conditions is entirely
dependent on the mass of the cluster, with high-mass progenitors producing large
spreads in frequencies. However, the second condition is mass-independent, and it
depends only upon the potential and the progenitor actions. Therefore, for low-mass
progenitors the second condition is more significant, so we will focus on it here.

For each stream we use the Nelder-Mead algorithm (Nelder and Mead 1965)
to adjust (k, Q), until the progenitor frequency vector is aligned with the angle
distribution of the stream. We use the Stäckel-fitting algorithm to find the angles and
frequencies. This simulates the operation of an orbit-fitting algorithm. The observed
stream is misaligned with the orbit but by using an orbit-fitting algorithm we are
requiring the ‘best-fitting’ potential to make this stream an orbit. This means we
need to find a potential where the frequency vector of the stream members is aligned
with the stream. This approach neglects the spread in frequencies of the stream
members, which one might also want to minimise when orbit-fitting. Additionally,
we have ignored the difference between the leading and trailing tails of the stream.
The leading and trailing tails have distinct actions and hence are better fitted by two
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orbits as opposed to a single orbit. However, in the limit of low mass, the distinction
between the actions of these tails becomes small, whereas the misalignment, which
is mass-independent, remains significant.

We use two stream distributions for each known stream—one which is aligned
with the principal eigenvector of the Hessian in the true potential, and one taken from
an N -body simulation that includes the effects of the self-gravity. For the first of these
we create a series of 100 (θ, J) points with the same actions as the progenitor, and
angles lying at regular intervals along the principal eigenvector of the Hessian. We
then use the torus machine to find the corresponding (x, v) in the true potential
(k, Q) = (1, 1). For the second approach, we use a sample of 100 particles from
each of the simulations given in the previous section.

The results of this experiment are shown in Table5.1. If the orbit-fitting algorithm
is appropriate for a given stream, we should recover (k, Q) = (1, 1). In Fig. 5.6
we plot the errors, (�k,�Q), in the parameters (k, Q) against the misalignment
angle for all the streams using both the artificial stream distribution and the N -body
distribution. We see that the error in the parameters scales approximately with the
misalignment angle, so we expect large misalignment angles lead to large errors in
the potential parameters using orbit-fitting algorithms. However, the scatter about
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Fig. 5.6 Errors in the parameters (k, Q) of the two-parameter Galactic potentials obtained when
using an orbit-fitting algorithm to analyse known streams plotted against the misalignment angle,ϕ,
in the true potential with (k, Q) = (1, 1). The potential parameters are adjusted until the frequency
vector of the progenitor of the stream aligns with angle-space structure of the stream. This simulates
the operation of an orbit-fitting algorithm. The round black points show the errors obtained when
using an artificial stream perfectly aligned with the principal eigenvector of the Hessian in the true
potential. The square red points show the errors when using an N -body simulation. The labels refer
to the round black points only, and the light grey lines indicate the correspondence between the
round black points in the top and bottom panels
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this line is reasonably large so the relationship is not simple and other factors are
at play.

We begin by discussing the results from the artificial stream distributions (the
unstarred values). The Anticenter, Aquarius and GD-1 streams all have ϕ > 3.5◦
and, as such, have large errors in the potential parameters, particularly the flattening.
Notably, for the Aquarius stream the errors are of order one, due to the low actions
of the stream. NGC 5466 also has large ϕ but the errors in the potential parameters
are <10%. However, this orbit is awkward to deal with on account of its low Lz ,
yet high JR and Jz . It is in this regime where the largest errors in the actions are
expected (Sanders 2012), and correspondingly the largest errors in the frequencies
and Hessian. Therefore, the error inϕ is expected to be large for NGC 5466. Only the
Orphan, Sagittarius and Styx streams have small enough misalignment angles that
their potential parameters are accurate to <10%. We therefore expect orbit-fitting
algorithms to be appropriate for these streams. The other streams have intermediate
potential parameter errors which range from 10 to 60%, and the use of orbit-fitting
algorithms may be appropriate depending on the quality of the data.

From analysing the N -body simulations, we find a similar set of results. The
Orphan, Styx, Palomar 5 and Sagittarius streams all have small potential parameter
errors of <30%, so orbit-fitting algorithms should be appropriate for these streams.
Again NGC 5466 has very small errors of <15%. For those streams with ϕ∗ � 2◦,
the errors in the parameters are �30%.

The results of Fig. 5.6 have not accounted for the masses of the progenitors. We
note that some streams have very massive progenitors, particularly the Sagittarius
stream. For these streams the spread in frequencies will be more important than the
misalignment in angle-space. In the case of Sagittarius, Fig. 5.6 suggests that the
misalignment is small enough for an orbit fit to be valid. However, an orbit fit on the
entire Sagittarius stream will be flawed due to the spread in the frequencies. Still,
for low-mass progenitors on similar orbits to the Sagittarius stream (e.g. perhaps the
neighbouring bifurcation) an orbit fit to the stream is appropriate.

Finally, we show the error in the flattening as a function of the vertical action of
the progenitor in Fig. 5.7.We see that lower vertical action corresponds to larger error
in the halo flattening. For a progenitor with low vertical action the resulting stream
has shallower gradient in (θφ, θz) space due to the stripping through the Lagrange
points barely affecting the vertical action.Whenwe fit an orbit to this distribution, we
attempt to make the vertical frequency smaller such that is aligned with the shallow
angle distribution. This corresponds to increasing the vertical action and is achieved
through increasing the mass in the plane. This can be achieved through increased
halo flattening.

We note that it is not clear how the phase of the progenitor affects the recovery of
the potential parameters. Our procedure for constructing streams similar to the known
streams did not take into consideration the observed position of the stream and only
ensured the progenitor orbit was realistic. A small test with a second snapshot of the
simulated GD-1 stream produces similar biases in the recovered potential parameters
to those found from the first snapshot. Therefore, it seems that the results are not too
sensitive to the phase of the progenitor. There may be specific choices of progenitor



5.7 Errors in Potential Parameters 131

Fig. 5.7 Error in halo
flattening as a function of
vertical action of progenitor
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phase for which the biases are smaller, but a method that relies on special conditions
is not suitable for general use.

In conclusion, we have found that for a realistic Galactic potential, order one
errors in the parameters of the potential can arise from naively using an orbit-fitting
algorithm on known streams.

5.8 Conclusions

In the next few years, more tidal stream data will be collected by surveys of the
Galactic halo, so there is considerable scope for using tidal streams to constrain the
Galactic potential at these large scales, and it is imperative that appropriate algorithms
are developed and tested for this end. Here we have provided an in-depth discussion
of the applicability of orbit-fitting algorithms, which rely on the assumption that a
stream delineates an orbit. We have shown that this assumption is necessarily false
and can lead to systematic biases.

We presented the angle-action formalism of stream formation, in which streams
form due to their member stars being on different orbits. We demonstrated that
in the angle-action framework streams do not delineate orbits, and the degree of
misalignment depends only on the progenitor orbit and the Galactic potential, not
the mass of the progenitor.

The degree of misalignment was quantified for the logarithmic potential, which is
used in many simulations, and twomulti-component realistic Galactic potentials.We
found that the misalignment angle is small but non-zero for the logarithmic potential.
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For the realistic Galactic potentials, we found similar results for orbits that lie far
out in the halo, but the misalignment increases significantly as we approach the disc,
where the potential flattens. We concluded that tests of orbit-fitting methods that use
the logarithmic potential may give unrealistically good results due to its very small
misalignment angles.

We have presented a summary of known streams that may be useful for constrain-
ing the Galactic potential. For each of these streams, we have estimated the actions
of the progenitor using data from the literature. At each of these action-space points,
we quantified the expected misalignment between the stream and the underlying
progenitor orbit for a realistic Galactic potential.

Whilst a useful indicator as to whether an orbit-fitting algorithm is appropriate
or not, the misalignment angle does not quantify the error involved in estimating
the potential parameters from orbit-fitting. We introduced a family of two-parameter
realistic Galactic potentials described by the halo-flattening and the halo-to-disc
force ratio at the Sun. For each of the known streams, we explored this space of
potentials until we found the potential which fits an orbit to the stream. As expected,
the error in the potential parameters correlates approximately with the magnitude of
the misalignment angle. We showed that this can introduce order one errors in the
potential parameters.

We demonstrated that all these results are essentially independent of the mass
of the progenitor up to the mass scale where dynamical friction becomes relevant.
Mass acts to scale the angle-action distributions, whilst leaving the shape unaffected.
We therefore expect that even for large progenitor masses, the results are valid. We
also showed from N -body simulations that anisotropies in the action distribution
introducedby the self-gravity of the cluster cause themisalignment of streamparticles
to change by a few degrees. However, the misalignment for the known streams is
non-negligible when the effects of self-gravity are included.

The angle-action formalism is a clear framework in which to view and discuss
stream formation. It has enabled us to quantify the errors involved in orbit-fitting
methods for interesting potentials and led to the conclusion that orbit-fitting algo-
rithms are not appropriate when analysing many streams in the Milky Way. Hence
streams need to be modelled without resort to orbit fitting, and in the next chapter
we present such an alternative algorithm.

5.8.1 Future Work

We have seen that the structure of the Hessian matrix D is critical to the structure of
streams and that significant flattening leads to stream-orbit misalignment. However,
in general, it is not clear how the structure of the potential governs the structure
of D. Eyre and Binney (2011) inspected the isochrone potential, which has a small
misalignment angle. For the isochrone, the misalignment angle is governed by the
scale-radius b, and reduces to zero when b = 0 i.e. the Kepler case. However, we
must rely, in general, on numerical results like those presented in this chapter.
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One class of potentials for whichwe can gain some insight is the class of scale-free
potentials, �(r) ∝ rα. These potentials admit self-similar orbits. Under the scaling
x → ax and v → aα/2v, the energy scales as E → aαE . Similarly, the actions
must scale like J → a1+α/2 J , and so we must have Hamiltonians of the form

H = [h(J)]β, (5.20)

whereβ = α/(1+α/2) and h(J) is a homogeneous function of order one. If h(J) is a
linear function of the actions,D has a principal eigenvector alignedwith the frequency
vector. Williams et al. (2014) show that a linear function is a good approximation
for h(J) but small corrections are required. The form of these corrections is not
clear. Williams et al. include a term of the form ε

√
JR L . Given the potential, it is

unclear what the structure of the Hamiltonian and hence the Hessian is, and whether
the Hessian has its principal eigenvector parallel to the frequency vector. This is a
direction for further work.
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Chapter 6
Stream Modelling in Angle-Frequency Space

The formation of tidal streams reflects the underlyingGalactic potential, such that the
resulting structures may be used to constrain the potential. One way of using streams
to constrain the Galactic potential is to assume that a stream delineates an orbit. This
assumption was discussed in Chap.5, and the results indicate that an improvement
over orbit-fitting is required, which accounts for the stream-orbit misalignment.

Several authors have constructed modelling approaches for constraining the
Galactic potential using streams, without assuming the stream delineates an orbit.
Johnston et al. (1999) accounted for themisalignment between the streamandprogen-
itor orbit by calculating a progenitor-mass-dependent energy offset at pericentre. The
observed stream stars are assigned an energy in this range, and the stream is integrated
backwards for a Galactic lifetime. The quality of the trial potential is assessed by the
number of ‘captured’ particles at time t = 0. This algorithm has been updated and
applied to simulations by Price-Whelan and Johnston (2013) and set in a truly prob-
abilistic framework by Price-Whelan et al. (2014). Varghese et al. (2011) developed
a similar method that took into account the misalignment between the stream and
progenitor orbit by correcting a proposed orbit track in real-space with a progenitor-
mass dependent term. Similarly, Küpper et al. (2012) produced model streams by
continuously releasing particles from the Lagrange points of an assumed cluster
model. Bonaca et al. (2014) have applied this method to stream data taken from the
Via Lactea II simulation to demonstrate the recovery of potential parameters from a
non-analytic potential model.

Peñarrubia et al. (2012) present an entropy-based algorithm for constraining the
Galactic potential with tidal streams. Assuming the distribution function is separable
in energy and position, the best-fitting potential is the one that minimises the entropy
of the energy distribution, or, equivalently, minimises the range of energies of the
streammembers. Sanderson et al. (2014) employ a similar algorithm,which seeks the
potential that minimises the Kullback-Leibler divergence of the action distribution
of a disrupted cluster. Both these methods use the expected clumping of a stream
in integral-of-motion space, but neglect to use the phase information of the stream
members. A stream is highly non-uniform in its phase coverage, and this fact is not
used by these authors.
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To fully model stream formation with limited assumptions, we must turn to
N -body models. Law et al. (2005), Fellhauer et al. (2006) and Law and Majewski
(2010) have all employed N -body models of the tidal disruption of the Sagittarius
dwarf to produce constraints on the Galactic potential. However, full searches over
the entire parameter space, both potential parameters and initial cluster conditions,
are very expensive as we must create a new simulation each step, and it is difficult
to assess how well a given simulation fits the data.

Angle-action coordinates are very useful quantities in galactic dynamics, and,
in Chaps. 2, 3 and 4, we detailed several methods for their practical calculation in
realistic Galactic potential. As we saw in Chap. 5, stream formation is very simply
expressed in the angle-action formalism. The structure of a tidal stream in angle-
action space will only be physically correct if we have used the correct potential,
regardless of whether the stream delineates an orbit or not. This formalism provides
us with a route to develop a new algorithm to constrain the Galactic potential: we
search for the potential that produces the correct correlations in angle-action space.
In Sect. 6.1, we recap the angle-action framework of stream formation, and more
closely inspect an N -body simulation to motivate and understand this formalism. In
Sect. 6.2, we discuss how we can improve on orbit-fitting by exploiting the known
angle-action correlations for streams and arrive at a suitable algorithm to constrain
the potential. In Sect. 6.3, we test the algorithm by attempting to recover the potential
from the simulation.

Due to their large distances from the Sun, observations of tidal streams have large
errors. It is therefore important that any stream-fitting algorithm can copewith appro-
priate observational errors. Some authors have tested their methods on simulated
observational data with appropriate errors (Binney 2008; Eyre and Binney 2009). In
Sect. 6.4, we conclude with a full discussion of the effect of observational errors on
our proposed algorithm, and compare to the errors from current and future surveys.

At the end of the chapter (Sect. 6.6), we improve on our proposed algorithm by
setting it in a probabilistic framework.Weuse insights from the angle-action structure
of a stream when viewed in the correct potential to write down a probabilistic model
expressed in the observable space.Wedemonstrate how this framework can be used to
constrain the parameters of a simple two-parameter potential, and how this improved
method canmore capably dealwith errors aswell as the possibility of contaminants in
our stream sample. Concurrent to this research, Bovy (2014) presented a machinery
very similar to that shown here for constructing models of tidal streams. However,
Bovy did not demonstrate the ability to infer potential parameters from a stream
using the model.

The work in this chapter is based on that published in Sanders and Binney (2013)
and Sanders (2014).

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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6.1 Streams in Angle-Action Space 137

6.1 Streams in Angle-Action Space

In Chap.5, we presented the angle-action formalism of stream formation. In this
formalism, streams form due to stars being on different orbits. Importantly, this can
lead to a misalignment, ϕ, between the stream and the underlying progenitor orbit
given by

ϕ ≡ arccos
(
�̂0 · ê1

)
, (6.1)

where �0 is the frequency vector of the progenitor orbit. ê1 is the principal eigen-
vector of the Hessian, D, given by

Di j (J) = ∂2H

∂ Ji∂ J j
. (6.2)

This misalignment only depends upon the progenitor orbit, and hence the potential,
and not the progenitor mass. In Chap.5, we demonstrated that a non-zero misalign-
ment angle leads to biases in the estimation of potential parameterswhen fitting orbits
to streams. We, therefore, require an alternative to orbit-fitting, and the angle-action
formalism provides us with a clear route.

For long narrow streams to form, the Hessian must be dominated by a single
eigenvalue, λ1, with corresponding eigenvector, ê1. Under this approximation, both
the angle and frequency differences of all the stars in the stream lie along the same
straight line:

�θ

t
≈ �� ≈ ê1(λ1 ê1 · �J). (6.3)

In the correct potential, this correlation between the angle and frequency-space struc-
ture of the stream should be apparent. Inspecting the stream in angle-action space
for a trial potential should tell us whether this potential is the true potential.

Throughout this chapter we use the Stäckel-fitting method of Chap.2 to find
the angles, actions and frequencies. In Appendix G we discuss adjustments to this
algorithm appropriate to the problem at hand.

6.1.1 A Simulation

In Chap.5, we introduced a range of N -body simulations to show that the angle-
action formalism is mass-independent for all interesting progenitor mass scales.
Before discussing the details of the proposed algorithm, we briefly reintroduce one
of these N -body stream simulations to motivate the discussion. We take the lowest
mass stream from Chap.5, which was produced as follows: we construct a stream
by evolving an N -body simulation of a King cluster on a stream-like orbit in the
logarithmic potential using the code gyrfalcON (Dehnen 2000, 2002). The simple

http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_2
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
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two-parameter logarithmic potential is given by

�(R, z) = V 2
c

2
ln

(
R2 + z2

q2

)
, (6.4)

where Vc is the asymptotic circular speed and q is the flattening parameter.We choose
Vc = 220 km s−1 and q = 0.9 which gives a good representation of the potential
of the Milky Way (Koposov et al. 2010). We set W0 = 2.0 and Mc = 2 × 104M�
and seed the cluster with N = 10,000 particles. Following Dehnen et al. (2004), we
relate rt to the pericentric radius of the orbit, rp, via

r3t ≈ G Mc

V 2
c

r2p. (6.5)

Weplace the cluster at the apocentre of the orbit shown in Fig. 6.1,which has initial
conditions (R, z) = (26.0, 0.0) kpc and (U, V, W ) = (0.0, 141.8, 83.1) km s−1.
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Fig. 6.1 Progenitor orbit used for the simulation in Sect. 6.3. The positions of the cluster at t =
4.02Gyr and t = 4.27Gyr are marked by red dots
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Positive U is towards the Galactic centre and positive V is in the direction of the
Galactic rotation at the Sun. This orbit has rp ≈ 14 kpc, and was chosen due to its
similarity to theGD-1 orbit found byKoposov et al. (2010).We evolve the simulation
for t = 5Gyr (approximately 12 radial oscillations of the progenitor). The chosen
cluster model parameters along with quantities derived from these parameters are
given in the first row of Table5.2.

Figure6.2 shows the time evolution of the angle differences between the progeni-
tor and several particles in the simulation. Each particle oscillates in the cluster until
it escapes at pericentre, after which it moves as a free particle in the Galactic poten-
tial. The slope of the particle’s motion in angle-space is given by the frequency. We
see that the first particles to leave have a higher frequency than those released at later
times. This is because the first particles to leave require a higher energy to escape
the cluster. One unexpected feature of Fig. 6.2 is the noise in the angle calculation
when the particles are moving freely. There are small bumps in the angle difference
at each orbit pericentre, which alternate in sign and increase in magnitude with time.
This is due to errors introduced by the Stäckel-fitting algorithm for estimating the
angles and frequencies, which we discuss in Appendix G.

In the right panel of Fig. 6.3 we show the stream in real-space at t = 4.27Gyr (just
after the 11th pericentric passage). Figure6.4 shows the corresponding angle-space
and frequency-space structures calculated using the correct potential. We see that, as
predicted by Eq. (6.3), the stream stars all lie along a straight line in both angle and
frequency-space. InFig. 6.4we see that the spread in frequencies in the cluster ismuch
larger than the spread in the estimated frequencies along the progenitor orbit (given by
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Fig. 6.2 Difference between the radial angle of the progenitor and six particles selected from
the simulation. At early times, the particles oscillate inside the cluster until they are released at
pericentre (given by the units on the x-axis). Particles are stripped symmetrically in angle space.
After release, the particles orbit freely in the external Galactic potential. The small blips in the
plot are due to numerical errors introduced by the Stäckel-fitting algorithm. The particles that are
released first have larger frequency differences (i.e. steeper slopes in the plot) than those released
at later times
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Fig. 6.3 Cluster at t = 4.02Gyr (just after 10th apocentric passage) and t = 4.27Gyr (just after
subsequent pericentric passage). The solid line is the orbit of the progenitor and the red dots are the
sample of 500 stars used to constrain the potential in Sect. 6.3

Fig. 6.4 Cluster at t = 4.27Gyr (just after the 11th pericentre passage) in angle and frequency
space. The red line is the projection of the progenitor orbit shown in Fig. 6.3 into angle space and
frequency space. The angles and frequencies were calculated using the true potential. The inset
plots show a zoom-in of the frequency space, so the orbit projections are more easily visible. In
frequency space, errors in the determination of frequencies cause the red points to form a line rather
than all coincide as they should



6.1 Streams in Angle-Action Space 141

the red line). This suggests that the Stäckel-fitting algorithm is sufficiently accurate.
However, the broadening at the extremes of frequency distributions indicates that
there is a systematic error present that will skew the gradient estimation. A fuller
discussion of the errors is given later.

6.2 Algorithm

The N -body stream observations now provide us with a way to utilise the
angle-action formalism to constrain the potential. Equation (6.3) states that the fre-
quency and angle differences of all the stars in the stream must lie along ê1, and
this is observed in the above N -body simulation (Fig. 6.4). For all the stars, we can
calculate the angles and frequencies and then obtain independent estimates êθ

1 and
ê�
1 of ê1 by performing linear fits to the angles and frequencies. The potential closest
to the Galaxy’s potential is then the potential that maximises êθ

1 · ê�
1 . The present

kinematics are given by ê�
1 —it gives us the direction that stars will move in if the

true potential suddenly changed to the trial potential. However, êθ
1 gives a measure

of the positions the stars have reached by moving in the true potential i.e. the history
of the stars. In the true potential, the current motions of stars (along ê�

1 ) will match
the positions they have in fact reached (along êθ

1).
Equation (6.3) was derived on the assumption that the stream structure is isotropic

in action-space. In Chap.5, we saw, in general, there are anisotropies in the action-
space distribution, which cause a deviation of the frequency structure from the prin-
cipal eigenvector of the Hessian. For long thin streams, the Hessian must have a large
principal-to-second-eigenvalue ratio. Therefore, we expect that, whatever the shape
of the action-space distribution, the resulting frequency-distribution will be highly
elongated, although not necessarily along the principal eigenvector of the Hessian.
The approach suggested here is comparing the angle and frequency distributions,
which should have the same principal axis in the correct potential. Therefore, the
approach should be insensitive to anisotropies in action-space if we are observing
long thin streams.

This approach has several clear advantages:

1. We haven’t assumed that the stars in the stream delineate an orbit.
2. The position of the progenitor is irrelevant. It reduces to a constant in the linear

fits.
3. We can use any subsection of the stream.
4. The time since each star was stripped does not matter. Changing the assumed

stripping time only moves the progenitor angles up and down the straight line in
angle space and so does not affect the linear fit.

5. Only a single calculation is required for each trial potential, whereas when orbits
are fitted in real space, orbits must be generated in each potential until the best fit
is found.

6. The quality of the potential is determined solely by the degree of alignment, so it
is an unambiguous single measure of the fit. When fitting orbits, the quality of the

http://dx.doi.org/10.1007/978-3-319-18772-3_5
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Table 6.1 Algorithm to find the best-fitting potential given stream data

Given a set of 6D phase-space points xi , we

1. pick a trial potential �trial,

2. calculate the angles θi (xi ,�trial) and frequencies �i (xi ,�trial) using the local

Stäckel-fitting algorithm,

3. fit four straight lines to the graphs of

1. �φ against �R ,

2. �φ against �z ,

3. θφ against θR ,

4. and θφ against θz

to find the gradients denoted by a1, a2, b1, b2,

4. calculate the quantity

cosψ ≡ a1b1 + a2b2 + 1√
(a2

1 + a2
2 + 1)(b21 + b22 + 1)

,

5. pick a new trial potential and repeat until the angle, ψ, between the vectors is minimised.

potential is evaluated by measuring the proximity of the orbit found to the data in
the 6D phase space, so an arbitrary metric must be introduced to relate position
and velocity differences.

However, our approach suffers from the disadvantages that

1. the angles and frequencies can only be found with full six-dimensional phase-
space information,

2. stream data are often poor and it is not clear how the errors affect the accuracy of
the method,

3. and unlike orbit fitting, we must process the data before assessing the quality of
the potential, as opposed to directly checking the quality of the fits in observable
space.

In what follows, we will assume that we have full phase-space information for
all the stars in the stream, so we are not concerned with the first of these points. In
Sect. 6.4, we explore how errors in the 6D data for the members of the stream affects
the accuracy of themethod. The last point is addressed in the final part of this chapter,
when we construct a fully probabilistic model in observable space. We summarise
the above discussion into the simple algorithm presented in Table6.1.

6.3 Test

We test the algorithm of Table6.1 by seeing how accurately the method recovers
the chosen parameters of the potential from the N -body simulation. We examine the
stream at two times—once at t = 4.02Gyr, just after the tenth apocentric passage
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of the progenitor, and once at t = 4.27Gyr, just after the subsequent pericentric
passage. From these snapshots, we form samples of stream stars by first removing
the remnant of the progenitor with a spatial cut and then randomly sampling 500
of the remaining ∼5000 stars. The real-space structures of the disrupted cluster and
these samples are shown in Fig. 6.3.

Wenowuse the two samples to diagnose the potential. For each trial pair of (Vc, q),
we find the misalignment, ψ, between the directions of the angle difference vector
and the frequency difference vector. We pick trial pairs of parameters by exploring
a regular grid around the true point (Vc = 220 km s−1, q = 0.9). Figure6.5 is a plot
of ϕ in the plane of the parameters.

In the apocentric case (left panel), the global minimum occurs at Vc =
220.3 km s−1, q = 0.899. The landscape around the minimum is quite complex.
There are a series of local minima for q > 1.0. Therefore, care will be needed when
searching for the minimum automatically. In the pericentric case (right panel), we do
not recover the true potential parameters as successfully: the global minimum lies at
Vc = 220.4 km s−1, q = 0.915 and the ψ landscape is significantly more complex.
Again, for q > 1.0 there are a series of local minima. Worryingly, there is another
deep local minimum at Vc ≈ 212 km s−1, q ≈ 0.74. Clearly, there are sources of
error in the algorithm that are systematically shifting the best-fitting value of q in the
pericentric case. Before applying this algorithm to more realistic data sets, we must
understand the cause of this systematic shift. More generally, we need a method to
assess the magnitude of the systematic error in the algorithm when the underlying
potential parameters are not known. In the following section, we discuss the causes
of the error and present a method to estimate its magnitude.
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Fig. 6.5 Misalignment, ϕ, between the angle difference and frequency difference vectors. The
results at t = 4.02Gyr (just after the 10th apocentric passage) are shown in the left panel and at
t = 4.27Gyr (just after the subsequent pericentric passage) in the right panel. The true potential
parameters are Vc = 220 km s−1, q = 0.9 marked by a white dot. The thick black lines mark an
error contour showing the uncertainty in the position of the found minimum
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6.3.1 Error Estimation

Even in the correct potential with perfect data, the particles will not lie on exact
straight lines in angle and frequency space on account of systematic errors intro-
duced by the approximations used including the Stäckel-fitting algorithm. In the
above test, we have seen that this can lead to a slight misdiagnosis of the under-
lying potential parameters. When we include observational errors, the error ellipse
obtained by resampling the random errors may not encompass the true parameters
due to these systematic errors. We need to quantify the accuracy of the method
even when perfect data are used. A naive error may be taken from the error in the
linear regression. However, this error only takes account of the random errors and
ignores any systematics. In Chap.5, we discussed the effects of the progenitor mass
on the angle-action framework, and hence the algorithm presented in this chapter. It
was shown that the approach is mass-independent up to about 109M�. Therefore,
we expect the self-gravity, the finite cluster size and the linear approximation (see
Eq. (6.3)) to not affect the algorithm.

There are still two sources of systematic error in the method. The first is that the
action-space structure is not perfectly isotropic. In Chap.5, we saw that particles are
not isotropically stripped, but rather escape through the Lagrange points. This led
to the entire stream structure being rotated in the angle and frequency space. Eyre
and Binney (2011) showed that the action-space of a tidally-disrupted cluster has a
‘bow-tie’ structure. When this action-space structure is transformed into frequency
space via the Hessian (see Eq. (6.3)), the broadness of the wings of the action-space
distribution is still apparent at the extremes of the frequency structure. This is due
to the smaller eigenvalues of the Hessian. This effect is small as we are considering
a Hessian with a ratio of eigenvalues, λ1/λ2 ≈ 30. However, this effect should
also be observed in the angle-space structure. As we are comparing the angle and
frequency structures, this shouldn’t have a significant impact on the implementation
of the algorithm.

Second, the Stäckel-fitting algorithm introduces systematic errors (see Chap.2
for more discussion). The errors depend upon the orbital phase, such that the errors
in the frequency differences between the progenitor and the stream particles exhibit
a characteristic beating with time. The particles that were released recently are still
approximately in phase with the progenitor, whilst those at the extremes of the fre-
quency distribution, which were released many pericentres ago, have drifted out
of phase with the progenitor. Therefore, the Stäckel-fitting algorithm introduces a
larger error in the frequency difference for the particles at the extremes, which leads
to a broadening of the distribution at the extremes. In Appendix G.2, we give a
full discussion.

In conclusion, the extremes of the frequency distribution are broader, and so less
reliable, than the central portion of the stream, due to systematic errors introduced
by the Stäckel-fitting algorithm and anisotropies in the action-space distribution.
Therefore, we estimate the magnitude of the error in the parameters from the spread
in gradients that can be obtained by considering the angle and frequency structure

http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_2
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of different parts of the stream in the best-fitting potential. Specifically, we take the
error in the gradient to be the difference between this gradient and that calculated
using the central particles nearest to the progenitor. We may then find a ‘threshold
angle’, ψT , as the angle between the two particle distributions. A threshold angle
may be found for both the angle- and frequency-space distributions. However, in the
simulation, the frequency distribution is the main cause of error so we only calculate
a threshold angle for this distribution. This threshold angle gives an estimate of the
minimumangle thatwe can reliably calculate. The range of valid parameters are those
for which ψ < ψT , which define an error contour in the potential parameter space.
Inside the error contour, the angle between the frequency and angle distributions is
smaller than the width of the frequency distribution.

This also helps to solve an additional problem with the algorithm. As we are
blindly fitting straight lines to distributions which may not have a linear structure,
there may be some data sets for which the best-fitting straight lines fortuitously give
a minimum in cosψ. However, if we calculate an error contour associated with this
minimum, we expect the error to be very large. Therefore, we should be able to rule
out this fortuitous minimum without explicit inspection.

Applying this error estimation method to the data in Fig. 6.4, we plot an error
contour in the parameter plane, given by the thick black curve in Fig. 6.5. Assuming
the errors in each parameter estimate are independent, we estimate the parameters in
the apocentric case as Vc = (220±4) km s−1, q = (0.90±0.07) in good agreement
with the truth. Similarly, for the pericentric case, the parameter estimates are Vc =
(220 ± 3) km s−1, q = (0.92 ± 0.04).

We have shown that we can use our algorithm to constrain the parameters of a
simple potential using an error-free sample of 500 stars from a stream simulation.
When the stream is observed at either apocentre or pericentre, the error contour is
elongated along theq-direction. The relative error in the circular speed of the potential
is smaller than the relative error in the shape of the potential. The recovery of the
parameters at apocentre is slightly more successful than at pericentre. However, the
errors at apocentre are slightly larger.

6.4 Errors in Stream Data

We have assumed in the above test that the input data are perfect. Obviously this
check that the algorithm works in the most optimistic situation is necessary, but it
does not give an indication of how the algorithm will perform on a real data set. To
give a more realistic test, we now add errors to the data and rerun the algorithm.
We simulate an observation of the particles at t = 4.27Gyr in the simulation from
the position of the Sun (R, z) = (8.0, 0.0) kpc, which has velocity (U, V, W ) =
(11.1, 232.4, 7.25) km s−1 (Schönrich et al. 2010). There is considerable uncertainty
in the circular speed at the Sun (see Bovy et al. 2012 for a summary), but for a
fixed solar position, the solar V is well constrained by the motion of Sgr A* (Reid
and Brunthaler 2004). Therefore, in what follows, we fix the velocity of the Sun,
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irrespective of the choice of potential as this more accurately simulates a realistic
application of the above algorithm.

The pericentric snapshot is chosen as the GD-1 stream is currently around peri-
centre. At pericentre, the stellar density in the stream is increased, so the overdensity
is more likely to be observed. However, this effect is counteracted by the short time
a stream spends around pericentre. We project the positions and velocities of the
particles relative to the Sun into observable space on the sky—sky position (l, b),
distance s, proper motions (μl ,μb) and line-of-sight velocity v||. The particles are
then scattered in observable space by appropriate Gaussian errors (σl,b,σs,σμ,σ||)
to form an ‘observed’ data set.

The most accurate data are obtained from streams that are closest to the Sun.
For instance, GD-1 lies between 8 and 12 kpc away from the Sun. Therefore, when
we perform the above data scattering we place the Sun as close to the centre of the
stream as possible. This involves rotating the stream around the Galaxy until the
centre of the stream lies at the same azimuthal angle as the Sun. This better simulates
observations that could feasibly be performed.

We make ‘observations’ with the errors listed in Table6.2, along with errors in
current and future data. The data from the O2 observation are shown in Fig. 6.6.
We now use each of these data sets to constrain the potential. We transform the
data set back into the Galactocentric coordinate system, and determine the angle
and frequency distributions and ψ for each trial potential. We use the Nelder Mead
algorithm (Nelder and Mead 1965) to find the maximum of cosψ as a function of
q and Vc. We restrict the range of parameter space explored1 to 0.7 < q < 1.1
and 170 km s−1 < Vc <270 km s−1. The initial point passed to the algorithm is the
true minimum position. We estimate the error in the position of the minimum for
each set of observational errors by repeating this process 100 times and finding the
minimum of each data set. These points sample the distribution of the parameters
given the observational errors. Using these points, we can reconstruct the distribution
and estimate the mean and error of the distribution. We have seen in the previous
section that the systematic error estimates around pericentre are�Vc ∼ 3 km s−1 and
�q ∼ 0.04. We sum these in quadrature with the estimated impact of observational
error on the resulting parameter estimates.

We first explore the effects of including an observational error to each observable
independently (O1). The current position errors σl,b = 100mas do not produce a
significant change to the position of theminimumfoundusingperfect data. Therefore,
for all other observationsweuse amore optimistic position error of 10mas.Adistance
error of∼5% (O1b) does not alter the estimate of the circular speed significantly but
slightly decreases the estimate of q, such that it is not consistent with the truth within
the quoted error. A proper-motion error of 0.21mas yr−1 (which corresponds to a
transverse velocity error of 4.7 km s−1( kpcmas yr−1)−1×0.21mas yr−1×10 kpc ≈
10 km s−1) applied independently produces a result that is consistent with the truth

1Note that, as discussed in Evans (1993), the logarithmic potential produces negative densities
for q < 1/

√
2 or q > 1.08. Therefore, for a realistic application, we would want to restrict the

parameters to ensure we only explore physical models.
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Fig. 6.6 Stream sample at
t = 4.27Gyr (just after 11th
pericentric passage). The
small blue and red points
show the sample observed
from the Sun with
observational errors O2
given in Table6.2, and the
larger black points show the
reduced data set produced by
averaging the data in
observable space on the sky
with errors OA3
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(O1c). An equivalent line-of-sight velocity error (O1d) shifts the minimum in the
circular speed up slightly, and moves the minimum in q down significantly. The
effects of errors in these three coordinates are different and probably reflect the
observation geometry. We are observing at pericentre at the same azimuthal angle
as the centre of the stream. Therefore, the line-of-sight velocity around the centre of
the stream (the densest part) will be very small so small errors can have a significant
effect. The effect of observational errors on the Galactocentric Cartesian coordinates
is also reasonably complex, particularly for the distance error which affects both the
observed position and velocity of a star.

When these three errors are combined (O2), the circular speed is shifted upwards
and q is recovered within the errors. Increasing the error in the proper motion (O3)
shifts the circular speed upwards further and also systematically shifts the minimum
in q upwards. An increase in the distance error (O4) again shifts the circular speed
estimate upwards but the recovery of q is good. O5 shows a combination of errors that
recovers the underlying potential parameters. These errors are perhaps too optimistic
and unlikely to be achieved in the near future. The line of sight velocity error may
be achieved by RAVE, whilst the proper motion error may be achieved by Gaia.
However, it is unlikely that such a small distance error will be achieved soon from
either parallax measurements, or spectroscopic or photometric distances. However,
if one were able to identify standard candles, such as RR Lyrae stars, in a stream, this
distance error is achievable now (Drake et al. 2013).With a low-mass stream, such as
GD-1, we expect very few RR Lyrae stars, so using this method may only be useful
for more massive streams. Also, we require 500 observations of this quality from a
tidal stream to replicate this test, which makes such a data set even more improbable.
O6 shows an example of large errors. Both the circular speed and the q estimate are
shifted to very large values. However, these results do not give a good indication
of the parameter estimates with these errors as we are approaching the edge of the
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allowed range of parameters. We can still see that large errors degrade the landscape
significantly, so that no minimum is found within the appropriate region.

The effect of experimental errors on the position of the minimum is clearly very
complex and to use this method with confidence one would need to investigate the
systematics on an appropriate simulation before application to data. We see that,
when large errors are added, the minimum can shift away from the true parameters
significantly with very small associated formal errors. The error in the location of
these minima does not encompass the true parameter values. In conclusion, it seems
that current and near-future data could lead to limited use of this method: to use
the method with confidence we require accuracy in the observables that may not be
attained for many tidal streams for some while.

6.5 Data Averaging in Observable Space

Despite the results of the previous section, the method could still prove relevant if
slightly adjusted. The motion of the stars in a stream in real space is coherent, and
the above algorithm does not utilise this fact. This additional information may be
exploited by first binning in real space. The stream is essentially a one dimensional
structure regardless of whether it delineates an orbit or not. Therefore, binning along
the stream is valid even when the stream does not delineate the orbit. We form bins
along the stream and estimate the observables at the centre of the bin by the average
of the observables of the stars in the bin. One of the advantages of the above routine is
that the linear regression in angle space and frequency space beats down the random
errors in the estimated angles and frequencies. Averaging the data in observable
space on the sky provides an alternative method for reducing the random errors,
which, for large observational errors, is probably the preferable technique. Indeed,
when analysing the GD-1 streamKoposov et al. (2010) mitigate the problem of large
errors by binning and averaging the data along the stream in observable space to
obtain a handful of much more accurate data points—the proper-motion errors for
instance can be reduced by a factor of five.

When large observational errors are added, particles can be scattered to very high
actions. Chapter2 showed that the systematic errors in the angle-action variables
increases with the actions. Therefore, larger observational errors will also introduce
larger systematic errors. In the extreme case, observational errors can make orbits
unbound.2 These orbits have infinite actions and must be ignored when performing
the linear regression in angle and frequency space. Averaging data in observable
space should remove these issues as we will have a data set which spans a smaller
range in actions.

2A logarithmic potential does not tend to an asymptotic limit at large R or z, so technically every
orbit in a logarithmic potential is bound. However, in practice, orbits that reach very large R and z
take an extremely long time to integrate. Therefore, we consider all orbits which stray more than
200 kpc from the Galactic centre to be ‘unbound’.

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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Unfortunately, averaging in observable space results in a smaller number of data
points with which to perform the linear regression. In the above examples, we have
used 500 data points which provides a very tight linear regression. However, even
just a handful of data points should provide a good estimate of the gradient.

Here we explore the results of observational data averaging for three observa-
tions listed in Table6.2. We bin the ‘observed’ data in each observational coordinate
using ten equally populated bins in Galactic longitude, l. The bins are sufficiently
small for the stream to be approximately linear in each subspace for each bin so
averaging within a bin works well. This procedure reduces the error in the input
coordinates by a factor of ∼1/

√
50 ≈ 0.14. After transforming back to the Galac-

tocentric Cartesian coordinates, we perform the algorithm on the averaged data to
find the best combination of potential parameters. We then repeat the scattering and
binning process 100 times to estimate the error. In Fig. 6.6 we plot the binned data
for the observation OA3.

We can see from Table6.2 that averaging in observable space produces superior
results. First, the systematic shifts in the minima are removed, and we recover an
average for the parameters which is close to the truth, particularly for q. The average
position of the minimum does not depend as sensitively on the magnitude of the
observational errors (compare OA1 and OA2). If we compare O4 and OA2, the
observation errors are the same, but the recovery of the parameter estimates with
the two methods are different: the circular speed is better recovered by averaging
in observable space. This is achieved without an increase in the quoted error of the
parameter estimates. Second, we can weather much larger observational errors. The
errors in observation OA3 seem achievable with future data and we correctly recover
the potential parameters using the averaging method. For all three observations, the
estimated errors encompass the true potential parameters.

In conclusion, we can achieve more accurate results by first averaging in observ-
able space and then performing the algorithm on the reduced data set. This represents
an improvement over the previously presentedmethod aswe remove unphysicalmea-
surements (those with infinite actions) and hence we only spend time calculating the
angles and frequencies for reliable phase-space points. Similarly, we need only calcu-
late the angles and frequencies—a time-consuming process—for a handful of points.
Scattering and binning is, in comparison, very fast. These principles apply to any
process trying to calculate actions, or any other non-trivial variable, from noisy data:
binning the data in the space of observables removes outliers and results in fewer,
more reliable points to run through the complicated calculation.

Finally, we briefly investigate how the recovery of the potential parameters
depends upon the initial mass of the cluster. In Chap.5, we showed that the stream-
orbit misalignment is independent of the cluster mass. The effect of increasing the
cluster mass is to scale the angle and frequency distributions without altering the
morphology. We take the Mc = 2 × 105M� simulation from Chap.5, which was
evolved on the same orbit for the same time as the above simulation. Due to the higher
mass, the resulting stream is longer, spanning ∼190◦ in Galactic longitude, so we
expect that the estimates of the parameters will be superior as the stream probes a
larger range in both angles and frequencies. In Table6.2, we show the estimates of the

http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
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parameters from this higher-mass simulation using the observational errors from O4
and OA3 with the observable-space binning (these are labelled in the table as O4M
and OA3M). For O4M, the increased stream length has weakened the systematic
shift of the circular velocity found in O4, producing a mean value which is closer
to the truth. Despite the increased width of the stream, the error in the parameters is
small. For OA3M, the recovery of parameters is similar to the OA3 observation, but
the error in these estimates has been reduced without excluding the truth from the
error ellipse. These two experiments show that longer streams, which have a larger
spread in angle space, produce superior parameter estimates.

6.6 A Probabilistic Approach

The method presented above suffers several drawbacks: we were doing the inference
in model space, not the data space; it was difficult to assess the errors in the obtained
potential parameters; it was awkward to handle errors in the data, and the method
did not behave well for large errors. This state of affairs leads us to analyse the data
by constructing probabilistic models that correctly handle large errors, missing data,
and contaminants. Such an approach is much more robust than the previous effort,
and lends itself perfectly to being combined with other independent measurements
of the Galactic potential. Here we present a probabilistic model for tidal streams
that may be used to infer the properties of the Galactic potential. The model is
expressed in the space of observables, but relies heavily on the expected structure of
streams in angle-action space. In this section, we motivate our choice of model by
considering an idealised case of a Gaussian structure in angle-action space evolving
in time. In Sect. 6.7, we use these insights to write down a practical model for the
stream, and discuss how it may be used to infer properties of the Galactic potential.
In Sect. 6.8, we infer the parameters of a simple two-parameter potential from mock
streamobservations using ourmodel. In Sect. 6.9,we discuss proposed improvements
to the approach taken in this paper.

Given a set of observations, D, of N stars believed to be members of a stream,
what canwe infer about theGalactic potential? For star i , we have a 6D set ofGalactic
coordinates Li = (l, b, s, v||,μ) with associated errors described by the covariance
matrix Si . Note that we can fit any missing data into this formalism by taking the
associated error with the data point to be infinite.

Given the data, we want to know the posterior distribution of the potential, �,
given by p(�|D). From Bayes’ theorem, we have

p(�|D) = p(D|�)p(�)

p(D)
, (6.6)

where p(�) is the prior on the potential, and the evidence p(D) is not important for
the present exercise. We wish to evaluate the likelihood p(D|�).
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The probability of the data given the potential is related to the properties of
the stream progenitor, C . C contains information about the current phase-space
coordinates of the progenitor (i.e. the progenitor’s actions, J0, frequencies, �0, and
angles, θ0), as well as the size (and internal properties) of the progenitor. Therefore,
we write

p(D|�) =
∫

dC p(C )p(D|�,C ),

p(D|�,C ) =
N∏
i

p(Li |�,C , Si ),

p(Li |�,C , Si ) =
∫

dL′
i p(Li |L′

i , Si ) det
(∂(xi , vi )

∂L′
i

)
p(xi , vi |�,C ),

(6.7)

where

p(Li |L′
i , Si ) = 1√

(2π)kdet(Si )
exp

(
− 1

2
(Li − L′

i )
T S−1(Li − L′

i )
)
, (6.8)

the Jacobian factor is given by

det
(∂(xi , vi )

∂L′
i

)
= s′4 cos b′, (6.9)

and the (x, v) coordinates are related to the Galactic coordinates in the usual way.
Wewant to workwith actions, angles and frequencies. As in the previous sections,

we use the Stäckel-fitting method from Chap. 2. Therefore, we write

p(xi , vi |�,C ) = det
(∂(�i ,θi )

∂(xi , vi )

)
p(θi ,�i |�,C ), (6.10)

where the angles and frequencies are related to (x, v) via the potential � using the
Stäckel-fitting approximation and the Jacobian is given by

det
(∂(�i ,θi )

∂(xi , vi )

)
= det

(∂(�i ,θi )

∂(J i ,θi )

)
det

(∂(J i ,θi )

∂(xi , vi )

)

= det
(∂�i

∂ J i

)
= det(Di ).

(6.11)

We have used the fact that (J,θ) are canonical coordinates, such that the phase-space
volume is conserved under the transformation, and introduced the Hessian matrix D
defined as

D ≡ ∂2H

∂ J2 . (6.12)

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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This matrix can be calculated analytically in a Stäckel potential, so we extend the
Stäckel-fitting algorithm of Sanders (2012) to estimate D. We give details of this in
Appendix G. We proceed by splitting p(θi ,�i |�,C ) into two components

p(θi ,�i |�,C ) = p(θi |�i ,�,C )p(�i |�,C ). (6.13)

To proceed further, wemust consider what we know about stream formation in angle-
action space (Tremaine 1999). Assuming the spread in actions in the stream is small,
for each star in the stream we have

��i = �i − �0 ≈ D0 · (J i − J0) = D0 · �J i

�θi = θi − θ0 = ti��i + �θi (0),
(6.14)

where ti is the time since the particle was stripped from the progenitor and �θi (0)
is the separation between the i th particle and the progenitor when the particle is
released. D0 is the Hessian from Eq. (6.12) evaluated at the progenitor actions, J0.

To motivate our choice of model, we begin by assuming that J i follows an
isotropic normal distribution such that

p(J i |�,C ) ≈ p(J i |C )

=
√
det(A)

(2π)
3
2

exp
(

− 1

2
�J T

i · A · �J i

)

=
( a

2π

) 3
2
exp

(
− a

2
|�J i |2

)
,

(6.15)

where a gives the spread of the action distribution. This is related to the progenitor
mass, M , bya ∝ M−2/3 (seeChap.5). Such a simplemodel for the action distribution
is unrealistic (Eyre and Binney 2011), but our understanding of this simplistic model
will aid in the construction of a more realistic model. Similarly, we assume that
�θi (0) is distributed as an isotropic Gaussian such that

p(�θi (0)) =
( b

2π

) 3
2
exp

(
−b

2
|�θi (0)|2

)
. (6.16)

This Gaussian model for a stream in actions and initial angles was studied by Helmi
and White (1999). From Eq. (6.14), the frequency is linearly related to the actions
via the Hessian, D0, so we can write down the distribution for the frequencies as

p(�i |�,C ) = det
(∂ J i

∂�i

)
p(J i |�,C )

≈ det(D−1
0 )

( a

2π

) 3
2
exp

(
−a

2
��T

i D−1
0 D−1

0 ��i

)
,

(6.17)

where, as the spread in actions is small, we have approximated the Jacobian by its
value at the progenitor actions.

http://dx.doi.org/10.1007/978-3-319-18772-3_5
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This distribution is amultivariate normal distributionwith principal axes along the
principal eigenvectors of D0 and with width given by the corresponding eigenvalues.
D0 is a symmetric matrix so has real eigenvalues and orthogonal eigenvectors. Note
here that, for long thin streams to form, D0 has one eigenvalue much greater than
the other two. In Chap.5, we demonstrated that in a realistic Galactic potential this
condition was satisfied for a large volume of action space. Therefore, we write

D−1
0 =

3∑
j

1

λ j
ê j · êT

j

≈ 1

λ2
ê2 · êT

2 + 1

λ3
ê3 · êT

3

(6.18)

where λ j and ê j are the eigenvalues and eigenvectors of D−1
0 , and we have λ1 �

λ2 > λ3. Therefore, we find that

p(�i |�,C ) ≈ λ1λ2λ3

( a

2π

) 3
2
exp

(
− a

2λ2
2

(��i · ê2)2 − a

2λ2
3

(��i · ê3)2
)
.

(6.19)
The distribution of frequencies is 2D Gaussian perpendicular to a straight line in
frequency space defined by ê1. In the simple model presented here, the distribution
along ê1 is also Gaussian (with a very large dispersion). However, we will later adopt
a superior distribution along ê1 which better reflects the stream distribution.

Next we address the angle distribution. The angles depend upon the additional
variables, ti and �θi (0). Therefore, we write

p(θi |�i ,�,C ) =
∫

dti d
3�θi (0) p(θi |�i ,�θi (0), ti ,C )p(ti )p(�θi (0)).

(6.20)
Given a time since stripping, a frequency separation, and an initial angle separation,
the present angle separation is completely determined by Eq. (6.14) so

p(θi |�i ,�θi (0), ti ,C ) = δ3(�θi − ti��i − �θi (0)). (6.21)

Substituting this and Eq. (6.16) into Eq. (6.20) and performing the integral over
�θi (0) using the δ-function, we have that

p(θi |�i ,�,C ) =
∫

dti p(ti )
( b

2π

) 3
2
exp

(
− b

2
|�θi − ti��i |2

)
. (6.22)

Now we rearrange the argument of the exponential as

|�θi − ti��i |2 = |��i |2
(

ti − �θi · ��i

|��i |2
)2 − (�θi · ��i )

2

|��i |2 + |�θi |2, (6.23)

http://dx.doi.org/10.1007/978-3-319-18772-3_5
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and note that ��i ≈ λ1 ê1(ê1 · �J i ) so

(�θi · ��i )
2

|��i |2 ≈ (�θi · ê1)2, (6.24)

and

− (�θi · ��i )
2

|��i |2 + |�θi |2 ≈ (�θi · ê2)2 + (�θi · ê3)2. (6.25)

Therefore, Eq. (6.22) becomes

p(θi |�i ,�,C ) ≈
( b

2π

) 3
2
exp

(
− b

2

∑
k=2,3

(�θi · êk)
2
)

×
∫

dti p(ti ) exp
(

− b|��i |2
2

(
ti − �θi · ê1

��i · ê1

)2)
.

(6.26)

The first part is a 2D Gaussian perpendicular to the eigenvector ê1 (as with the
frequencies), whilst the second part depends onwhen the particleswere stripped from
the progenitor and only affects the angle distribution along the vector ê1 i.e. (�θi · ê1).
If we assume that p(ti ) is uniform, the integral can be performed analytically to give

p(θi |�i ,�,C ) � b

4π|��i |
[
erf

(�θi · ��i

|��i |
√

b

2

)

+ erf
(
|��i |tmax

√
b

2
− �θi · ��i

|��i |
√

b

2

)]

× exp
(

− b

2
[(�θi · ê2)2 − (�θi · ê3)2]

)
.

(6.27)

If we assume �θ � �θ(0) (i.e. the particle was stripped long enough ago that the
time part of Eq. (6.14) dominates the initial angle separation from the progenitor (this
is an assumption we made in earlier in the chapter), this expression is approximately

p(θi |�i , �,C ) ≈ b

2π|��i |tmax
exp

(
− b

2

∑
k=2,3

(�θi · êk)2
)
if 0 <

�θi · ê1
��i · ê1

< tmax,

(6.28)
where the condition ensures that the stripping time for each stream member is posi-
tive, and less than somemaximum stripping time, tmax. This expression demonstrates
explicitly that the distribution perpendicular to ê1 is independent of the distribution
along ê1. In conclusion, in this model both the angle and frequency distributions are
highly elongated along the vector ê1. This validates the procedure followed earlier
in the chapter.

The assumption of a uniform stripping-time distribution, p(ti ), does not well
model the highly-concentrated stripping events around pericentric passage observed
in N -body simulations of clusters on eccentric orbits.However, as shown inEq. (6.26)
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the exact form adopted for p(ti ) only affects the structure of the angle distribution
along n̂. For diagnosis of the Galactic potential and mass distribution, we are
interested in the shape of the stream, so the real diagnostic power comes from the
clumping in frequency space (i.e. the width of the frequency distribution, described
above by a) and the alignment of the frequency and angle distributions (described
by the eigenvector ê1). Our simple assumption of uniform stripping times should
not affect the recovery of the potential parameters significantly as the stripping time
describes the phase-space distance along the stream path for each stream particle
and not the shape of the stream path, which is the true probe of the potential. We
will see in Sect. 6.8 that p(ti ) for a stream generated from an N -body simulation is
not uniform. However, the potential parameters are recovered successfully using this
stream data when the assumption of a uniform stripping-time distribution is made.

6.7 Model

In the formalism of the previous section, we made several assumptions that, while
useful for illustrative purposes, we would like to relax. The assumption of isotropic
�J distribution is not valid as evidenced in Eyre and Binney (2011). For a general
action distribution, we would still expect a highly anisotropic frequency distribution
but the principal eigenvector of this distribution will not be that of the Hessian
matrix D, but some other vector n̂, with vectors d̂1 and d̂2 perpendicular to this. The
intricacies of the action distribution will be reflected in the frequency distribution
along the vector n̂. Additionally, the angle distribution will also be highly elongated
along this direction n̂. Analogous to a combination of Eqs. (6.19) and (6.26), wewrite

p(θi ,�i |�,C ) = Kθ(θi |�i )

2πu2 exp
[

−
∑
j=1,2

1

2u2 (θi · d̂ j − γ j )
2
]

× K�(�i )

2πw2 exp
[

−
∑
j=1,2

1

2w2 (�i · d̂ j − ω j )
2
]
,

(6.29)

where the functions Ki define the stream distribution along the vector n̂ in the angle
or frequency space. The quantities u and w are the widths perpendicular to this
vector in angle and frequency space respectively. Note we have assumed the stream
is isotropically distributed perpendicular to the vector n̂. ω j and γ j are related to the
present frequency and angle coordinates of the progenitor.

We define the angles φ and ψ such that

n̂ = (sin φ cosψ, cosφ cosψ, sinψ), (6.30)
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and we choose
d̂1 = (cosφ,− sin φ, 0),
d̂2 = (sin φ sinψ, cosφ sinψ,− cosψ).

(6.31)

Note this choice of vectors perpendicular to n̂ is arbitrary.We have set the distribution
perpendicular to n̂ to be isotropic, so our choice of vectors is unimportant. We now
specify the functions Ki defining the stream distribution along the vector n̂. The
frequency distribution along n̂ consists of two separated peaks corresponding to the
leading and trailing tails of the stream (see next section). For simplicity, we assume
that each of these peaks is Gaussian. The angle distribution depends upon both the
frequency distribution and the distribution of stripping times. As in Eq. (6.28), we
make the simple first-order assumption of a uniform stripping time distribution such
that the angle distribution along the stream given a frequency separation is also
uniform between zero and some maximum stripping time, tmax (see next section).
Therefore, we write

K�(�i ) = 1√
2πw2

0

∑
k=±1

exp
[

− 1

2w2
0

(�i · n̂ − ω0 + k�s)
2
]
,

Kθ(θi |�i ) =
⎧⎨
⎩

1

|�i · n̂ − ω0|tmax
, if 0 <

(θi · n̂ − γ0)

(�i · n̂ − ω0)
< tmax,

0, otherwise.

(6.32)

2�s gives the separation between the Gaussian peaks along n̂ in frequency space.
WhenEq. (6.29) is combinedwithEqs. (6.7) and (6.10),we have completely specified
our model. Given a set of 6D stream data with associated errors, we can assess the
likelihood of a given potential by evaluating the integral of Eq. (6.7). It is defined by
13 progenitor parameters given by C = {φ,ψ, γ j ,ω j , u, w,w0, tmax,�s} and N
potential parameters.

6.7.1 MCMC

We sample from the posterior usingMarkov chainMonte Carlo (MCMC).We use an
affine-invariant sampler implemented in the emcee package from Foreman-Mackey
et al. (2013). For each of the following tests, we use a group of 144 walkers, and
vary the nuisance parameters C as well as the potential parameters. For all scale
parameters (i.e. u, w,w0, tmax) we use a logarithmic flat prior, whilst for the other
parameters we use uniform flat priors.

To perform the integral over the errors in the calculation of the likelihood we
use the Vegas Monte Carlo integration algorithm (Lepage 1978) implemented in
the Gnu Science Library (Galassi et al. 2009). Our stream model is typically very
narrow,whilst the error distribution for each observable coordinate can be very broad.
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Therefore, there is a very small region of the 4D integrand which has any support.
Using an adaptive integration scheme, such as Vegas, means we can rapidly focus
on this small region.

6.8 Tests of Probabilistic Approach

We test the above procedure using particles taken from the t = 4.2Gyr snapshot of
the stream simulation detailed in Sect. 6.1.1. We work again with the two-parameter
(N = 2) logarithmic potential of Eq. (6.4). The two parameters of this potential are
Vc and q, and we set Vc = 220 km s−1 and q = 0.9 for the simulation.

We take the resulting distribution of particles, remove the progenitor remnant
with a spatial cut, and rotate the coordinate frame such that the Sun is placed at the
same azimuthal angle as the progenitor. We show the resultant stream simulation in
Fig. 6.7. From the resulting particles, we randomly select 30 particles that lie in the
range −200◦ < l < −140◦. The chosen sample of particles is shown in Fig. 6.8. For
the tests shown below, we include the observational errors by scattering the observed
coordinates by the appropriate Gaussian errors.

In the top panels of Fig. 6.9, we plot the angles and frequencies in the correct
potential, along with a cross-section through the model specified in Eq. (6.29). The
parameters of the model were chosen as those that maximised the likelihood in
the correct potential. We see that, in the correct potential, the angle and frequency
structure of the stream takes on a simple linear distribution. In the bottom panels of
Fig. 6.9, we plot the projections of the frequency histograms along the vectors n̂, d̂1

and d̂2 for all particles in the stream from the simulation. We see that the distribution
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perpendicular to n̂ is approximately Gaussian. The distribution along n̂ consists of
two peaks due to the leading and trailing tail. Each peak is skewed such that there
is a longer tail towards larger values of |�� · n̂|. The structure of these peaks was
discussed by Johnston (1998).

Our model assumes a uniform stripping-time distribution. In Fig. 6.10, we plot
the time since release for the particles in the stream, which we have estimated as
ti = |�θi |/|��i | found in the true potential. We see that the distribution is peaked
around pericentric passagewith slightlymore particles being stripped at later times as
the cluster mass decreases. If the stream has undergone several stripping events, the
distribution of stripping times is approximately uniform, ifwe average on a time-scale
comparable to the radial period. As mentioned previously, we expect the assumption
of a uniform stripping-time distribution to be appropriate for measuring the Galactic
potential, but more detailed modelling is required if we wish to reproduce the density
distribution along the stream.

Byonly sampling a portion of the stream track on the sky,wehave limited the range
of available angles of the stream particles, but we expect that the range of frequencies
sampled is fair. We will miss some high frequency separations corresponding to
particles stripped earliest. In this situation, the tmax parameter tells us about the time
since the first of the observed particles were stripped (∼2Gyr).
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Fig. 6.9 Mock data andmodel in angle-frequency space. In the top two panels, we show two planes
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particles calculated using the correct potential. The green shows the logarithm of the value of the
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Fig. 6.11 Posterior
distributions of the potential
parameters for error-free
data. The contours contain
68 and 95% of the samples
from an MCMC chain. The
red dashed lines show the
parameters used to produce
the simulation
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6.8.1 No Contaminants

We test the abovemethod by considering a data set where each of our stream particles
has full 6D data, (l, b, s, v||,μ).We first demonstrate that themethodworks for error-
free data. In Fig. 6.11 we show the posterior distributions of the potential parameters.
The correct potential is recovered with ∼0.5 km s−1 and 0.005 errors in Vc and q
respectively.

Next, we consider an optimistic data set where we assume each of the stars is an
RR Lyrae observed by Spitzer (Price-Whelan and Johnston 2013). We assume that
the covariance matrix is diagonal and identical for all data such that S jk = δ jkσ

2
j .

We adopt 2% distance errors (σs/s), 5 km s−1 line-of-sight velocity errors (σ||),
and 0.1mas yr−1 proper motion errors (σμ). Such a data set is unrealistic for such
a low mass stream. However, it is suitable for demonstrating the method. We fix
the parameters w0 = 0.08Gyr−1, u = 0.02 rad and w = 0.006Gyr−1, and let the
others vary as before. This prior essentially sets the mass of the cluster. The posterior
distribution of the recovered potential parameters is shown in Fig. 6.12. We recover
the correct potential parameters as Vc = (219.4 ± 1.4) km s−1 and q = (0.909 ±
0.009), where we have approximated the posterior as an uncorrelated Gaussian.

6.8.2 Inclusion of Outliers

Stream data are inevitably contaminated with stars that are not associated with the
stream. Many authors attempt to remove these outliers by performing cuts in the
observable space. However, it is much better to model the outliers. To include m
outliers in our test, we randomly select m stars from our simulation sample. We use
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Fig. 6.12 Posterior
distributions of the potential
parameters for data with the
errors shown in the top right
corner. The black contours
enclose 68 and 95% of the
samples. The red dashed
lines show the parameters
used to produce the
simulation
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the l and b values of these m stars for our outlier stars. For each star, we sample a
distance, s, from a uniform distribution between 6 and 12 kpc. We convert the tuple
(l, b, s) to a Cartesian position, x. At this position x, we draw a set of velocities v

from an isothermal distribution function given by

piso(xi , vi |�) = ph(E |�) ∝ exp(−E/σ2
h), (6.33)

with dispersion σh = 100 km s−1.
In our model, we assume that the likelihood of a star at angle-frequency coordi-

nates (�i ,θi ) is given by

p(�i ,θi |�) = (1 − ε)pS(�i ,θi |�) + εph(�i ,θi |�), (6.34)

where pS is the likelihood given it is a member of the stream as outlined above, and
ph is the likelihood given that it is not a member of the stream (either a member of a
smooth background population or another structure). ε is the probability of being an
outlier, which is given a logarithmic uniform prior. We choose to specify the outlier
model in angle-frequency space as it is simpler to normalize in these coordinates,
and we are less sensitive to systematics arising from the Stäckel approximation. We
set ph to be uniform in both the angle and frequency space, such that

ph(�i ,θi |�) =
{

ε
(2π)3�3

max
, if �i < �max,

0, otherwise.
(6.35)

The natural prior on �max is a logarithmic prior with a large cut-off. However, we
choose to set �max = 30Gyr−1. This model is clearly simplistic, and we are not
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Fig. 6.13 Stream and outlier particles in Galactic coordinates

correctly accounting for selection effects in the angles due to observing stars in some
region of the Galaxy.

To our 30-particle stream data set, we add 20 outliers from our halo model, such
that εtrue = 0.4, and consider the simple case where we have an error-free data set.
The input data set is shown in Fig. 6.13 and the resulting posterior distributions for
the potential parameters are given in the left panel of Fig. 6.14. In the right panel of
Fig. 6.14, we show the posterior distribution for the outlier fraction. It peaks nicely
around the input outlier fraction, but has fairly large scatter around this value. This
is probably due to the simplistic nature of the background model, but also, as we can
see in Fig. 6.13, there is significant overlap in observable space between the stream
and outlier distributions. Further information such as metallicities would potentially
provide a simpler way to disentangle the stream from the background.
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Fig. 6.14 Posterior distributions of the potential parameters (left) and outlier fraction (right) for
error-free data with outliers included. The contours contain 68 and 95% of the samples from an
MCMC chain. The red dashed lines show the parameters used to produce the simulation

6.9 Discussion

The formalism presented in this chapter provides the first steps towards constraining
the potential of the Galaxy from a generative stream model expressed in angle-
frequency space. Through the course of developing the necessary machinery, it has
become apparent that many improvements can be made. These are as follows:

(i) The model for a cold stream is very narrow, whilst the error distribution for
the observational quantities is expected to be large. The convolution of the error
and model distributions only has support over a very narrow range in each observ-
able coordinate. Here we have performed the integration using the sophisticated
Monte-Carlo integration method (Vegas) to concentrate rapidly on this small region.
However, a more efficient scheme would be full forward modelling. To do this we
would perform the Monte Carlo integration by sampling ‘true’ coordinates from the
stream distribution and sum the appropriate Gaussian error distributions for each
of the observed coordinates. For this we need an efficient scheme for going from
a frequency-angle sample to observable space. The torus machine (McMillan and
Binney 2008) was developed to convert from angle-actions to (x, v) efficiently. Such
machinery seems ideal for our purpose. A torus is constructed by finding the coeffi-
cients of the generating function from a toy torus.We can construct a series of nearby
tori that cover the small range in action space occupied by the stream particles. For
a given set of angles, we can find a corresponding (x, v) on each torus. For any
action point that lies between tori, we can construct an appropriate torus on-the-fly
by interpolating the generating function coefficients of the nearby tori. A small com-
plication here is that we wish to work with frequencies instead of actions so a scheme
for finding J(�) is required. We expect that, for the region of interest, this function
is simple and may be obtained by interpolation between tori. With this function, we
may also calculate the Hessian as a function of �. Bovy (2014) exploits the narrow
range of frequencies in the stream to construct a simple linear map between (�,θ)

and (x, v). The Gaussian structure in (�,θ)-space can then be simply translated
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into a Gaussian structure in (x, v) making marginalization over missing data sim-
pler. Helmi andWhite (1999) present a similar approach to analysing a streammodel
consisting of a Gaussian structure in action space and initial angle space.

(ii) The distributions in frequency and angle, Ki , along the principal stream direc-
tion, n̂, were taken in this chapter to be simple Gaussians and a uniform distribution.
This procedure is adequate for our purposes, but more realistic distributions are
required to reproduce the peaky distribution from Fig. 6.10, and the expected feath-
ering in the stream (e.g. Fig. 6.3). For instance, we could adjust the distribution over
stripping times to be more concentrated around pericentric passage of the progenitor.

(iii) Our choice of model parametrisation is perhaps more flexible than it should
be. All the widths (w, u, w0) are related to M1/3 (see Chap.5), so there could be a
way to link all three parameters into a single mass parameter. Also, we have allowed
the stream to be oriented along some random direction, n̂. We gain information about
n̂ through the use of the angle and frequency structure as discussed earlier in this
chapter. However, we could instead choose to make n̂ a function of the progenitor
actions in the chosen potential. For a cluster with an isotropic action distribution, n̂ is
alignedwith ê1. However, as shown inEyre andBinney (2011), the action distribution
of an orbiting cluster is not isotropic, such that n̂ may not be aligned with ê1. These
authors show that we can estimate the shape of the action distribution, �J , using
Eq. (5.15), which depends on the velocity dispersion and orbit of the progenitor. The
direction of n̂ is then along the vector D · �J . This would constrain the models in a
more physically motivated fashion, and would provide more information when the
quality of the data is reduced.

(iv)We have analysed a simulated stream in a near-spherical logarithmic potential.
As discussed in Chap. 5, this does not exhibit substantial offset between the stream
and orbit tracks. Such an offset is more apparent in flattened potentials. Therefore,
more tests are requiredwithmore realistic potentialswith disc components to validate
the modelling approach presented here.

6.10 Conclusions

Tidal streams are very attractive structures for probing the Galactic potential on
large scales, but it is essential that appropriate algorithms are developed for their
study. In Chap.5, we showed that orbit-fitting is inappropriate for many streams
in the Milky Way, and can lead to order one errors in estimation of parameters
of the Galactic potential. Motivated by the need for an improvement over orbit-
fitting, we have presented an algorithm for using tidal-stream data to constrain the
potential of the Galaxy without assuming that the stream delineates an orbit. Instead,
it identifies the true potential as the one that yields corresponding patterns in angle
and frequency space. The algorithm was tested by evolving an N -body simulation
of a King cluster in a two-parameter logarithmic potential until a stream is formed.
The degree of correlation between the angle and frequency structure was maximised

http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
http://dx.doi.org/10.1007/978-3-319-18772-3_5
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with respect to trial potentials. The correct parameters were recovered within the
estimated systematic errors of the method.

As tidal streams are very distant structures, we expect large errors in the observ-
ables. Therefore, it is imperative that any stream-fitting method is shown to function
for large observational errors. We have shown that the observational errors in the
distances and proper motions for individual stars in tidal streams are currently too
large to use the above technique with any confidence. However, if the data are first
binned and averaged in observable space on the sky, we can recover the correct
potential parameters even for large observational errors. The current observational
errors may be small enough for close streams such as GD-1 and it seems promising
that in the era of Gaia the data for more streams will be sufficiently accurate to use
this algorithm.

We have shown that longer streams produce superior potential parameter esti-
mates, so there is hope for using higher-mass streams to produce better constraints
on the potential. We have seen that observing a stream at different orbital phases
of the progenitor results in different constraints on the potential. Therefore there is
much to be gained by using several streams simultaneously to constrain the potential.
Hopefully, this would also remove local minima and make a global minimum more
apparent. Similarly the approach taken here uses a constant prior for the potential
parameters. In reality, a more informative prior could be used, that would rule out
regions of the parameter space which are populated by local minima.

Inspired by our naive algorithm, we went on to present a probabilistic model for a
tidal stream and used this to constrain the potential from a simulation. The generative
model produces streams in observable coordinates by using the simple structure of
a stream in frequency and angle space. The presented Bayesian formalism improved
on the previous approach by: 1. performing the inference in the data space, not the
model space; 2. naturally accounting for the errors in stream data; 3. incorporating
the possibility of stream data being contaminated with stars from a smooth halo
population or another tidal structure; and 4. allowing the possibility of partial 6D
data. The results from this formalismmay be simply combined with other constraints
on the potential. For example, we might produce many independent constraints on
the potential from different streams that may then be combined by multiplying their
likelihoods. We have successfully recovered the potential parameters used to run an
N -body simulation of a GD-1-like stream from error-free data, data with small errors
included, and data with outliers included.

As currently formulated, the computational cost of implementing our approach
increases significantly with the magnitude of the observational errors. We have
described modifications that promise to mitigate this effect, and thus to make the
approach a powerful technique for constraining the Galaxy’s gravitational potential.



168 6 Stream Modelling in Angle-Frequency Space

6.10.1 Future Work

The approach presented in this chapter seems promising but there is much future
work to be done. We detail the intended future work here in order of importance.

1. The high computational cost of calculating the likelihoods with large errors was
due to our inability to find (x, v) coordinates given (�,θ). The torus machinery
(McMillan and Binney 2008) naturally provides this transformation, and, as
detailed in the discussion section, stream models can be rapidly generated using
this machinery.

2. We have only investigated how well a very simple two-parameter potential may
be constrained. Aswe have seen in the previous chapter, a more realistic Galactic
potentialwith highlyflattened disc components producesmore interesting stream
geometries. The machinery presented in the second half of this chapter needs
testing on these more realistic Galactic potentials. Also, the question of exactly
what constraints on the potential a given streamproduces is still an open question.

3. After these two steps are complete, we will then be in a position to analyse real
data, for example the GD-1 data from Koposov et al. (2010). Whether we will
see the power of these improved techniques in the short term whilst the quality
of data is poor is unclear, but with improved data from focussed surveys (e.g.
Sesar et al. 2013), the hope is that these newmethods will be crucial to extracting
important diagnostics of the Galactic potential.

4. Finally, we can simply incorporate incomplete 6D data into our presented
scheme. It would be interesting to investigate the quality of the recovery of
the potential parameters when we have, for instance, no line-of-sight velocities,
or no proper motions.
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Chapter 7
Determining the Velocity Dispersion
of the Thick Disc

7.1 Introduction

We are now going to shift focus from the modelling of streams, which act as mere
tracers of the potential, to one of the Galaxy’s main components, the Galactic stellar
disc.

Ever since Oort (1932) measured the local velocity dispersions of stars, it has
been known that dark matter forms a key contribution to the local vertical force.
There have been many attempts to measure the local dark matter density using tracer
populations (Kuijken andGilmore 1989;Moni Bidin et al. 2012b;Garbari et al. 2012;
Bovy et al. 2012; Zhang et al. 2013; Piffl et al. 2014). The route to constraining the
local dark matter density is through constructing consistent dynamical models of the
Galactic disc. Only in the correct potential will the velocity structure and the density
structure of a dynamical model match those of a tracer population. These distribution
functions must obey the collisionless Boltzmann equation, and by the strong Jeans’
theorem this implies we can use the actions, J , as arguments for the distribution
function.

Distribution functions of the Galaxy are incredibly useful for constraining the
Galactic potential. Additionally, they provide a model from which one can generate
mock catalogues. Currently, themost popularmock catalogue generator for theMilky
Way is the Besançon model (Robin et al. 2003), which is implemented in an efficient
way in the Galaxia code (Sharma et al. 2011). However, these models are essentially
kinematic, so donot provide the crucial physical links between the spatial andvelocity
structure. In this Z, we present the dynamically consistent distribution functions of
Binney (Binney 2010, 2012a; Binney et al. 2014), and go on to test a recent method
applied to data by applying the method to mock catalogues generated from the
distribution function.

Moni Bidin et al. (2012b) used the Jeans equation to constrain the stellar mass
density at heights 1.5 kpc � z � 4 kpc from the Galactic plane using a sample of
412 red giants and concluded that there is a lack of dark matter in the solar neigh-
bourhood. Bovy and Tremaine (2012) have pointed out that one of the assumptions
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made by Moni Bidin et al. (2012b) in their Jeans-equation analysis (specifically the
assumption that the mean azimuthal velocity is independent of Galactocentric radius
at all heights) is false, and a reanalysis of the data without this assumption leads to
a non-zero local dark matter density. Despite the fact that the data now appear to
conform with standard expectation, it is wise to check that all parts of the analysis
are sound before the matter is put to rest. To use the Jeans equation with confidence,
one needs to be sure that an underlying population has been isolated and that the
mean velocities and velocity dispersions of that population can be reliably calcu-
lated. Here we investigate the method used by Moni Bidin et al. (2012a; hereafter
MB) to calculate the mean velocities and velocity dispersions of the thick disc. It is
these quantities which are then used by Moni Bidin et al. (2012b) (along with liter-
ature values for the density profile of the thick disc) and Bovy and Tremaine (2012)
in their Jeans-equation analysis, so it is crucial that they are calculated correctly and
that their associated errors are realistic.

MB use the probability plot method, which we detail in Sect. 7.2. We proceed by
producing a sample drawn from the realistic Galaxy distribution functions of Binney
(2012b) chosen to be similar to the sample of MB. These distribution functions are
briefly discussed in Sect. 7.3. In Sect. 7.4, we attempt to recover the known mean
velocity and velocity dispersions of the thick disc using the method presented by
MB. We also implement the error analysis used by MB, and show that it does not
include any estimates of the Poisson noise. In Sect. 7.5.2, the analysis is repeated
for a large number of samples to investigate the effects of the Poisson noise and to
uncover any systematics introduced by themethod. Finally in Sect. 7.6, the same data
set is analysed by a similar method inspired by Girard et al. (2006) and the results
are compared.

The work of this chapter was published in Sanders (2012).

7.2 Probability Plot Method

The data analysis used by MB uses the probability plot to determine the mean and
standard deviation of a sample. Here we briefly present the method and give a simple
example to demonstrate its use.

Suppose we have N ordered data points. If these N data points are drawn from
a normal distribution of mean μ and standard deviation σ, then, for large N , the i th
data point, xi , should satisfy

F(xi ;μ,σ) � i

N + 1
. (7.1)

F(x;μ,σ) is the cumulative distribution function for a normal distribution, which is
given by

F(x;μ,σ) = 1

2

[
1 + erf

( x − μ√
2σ

)]
, (7.2)
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where erf is the error function. Hence the i th data point should lie at ci standard
deviations from the mean, where

ci ≡ √
2 erf−1

( 2i

N + 1
− 1

)
≈

( xi − μ

σ

)
. (7.3)

Therefore, a plot of xi against ci should have gradient σ and intercept μ, which may
be found by linear regression. Such a plot is termed a probability plot.

Clearly, this approach only works exactly if N is large and the data have been
drawn from a single normal distribution. However, we can use it to estimate the mean
and standard deviation of a sample drawn from any underlying distribution that is
approximately Gaussian. Here we show how the method operates for a simple case.
We draw 50 data points from a normal distribution of mean μ = 0 and standard
deviation σ = 1, and assess how well the above method can recover these quantities.
Figure7.1 shows the result for one randomly drawn sample. The measured standard
deviation for this sample is s = 1.061. From the linear regression, the mean is
estimated as m = 0.061 ± 0.141 and the standard deviation s = 1.130 ± 0.152,
where the errors are given by the deviations of the points away from a straight line.
With N data points, the expected error in the mean is

√
σ2/N and the expected error

in the variance is approximately
√
2σ4/N . Therefore, for this sample we expect an

error in the mean of 0.141 and an error in the standard deviation of 0.1. This is well
represented by the errors in the linear regression. Thus, the method does work well
when the data are drawn from an underlying Gaussian distribution, and the errors
from the linear regression are comparable to the expected Poisson noise.

When the data have been drawn from the sum of two Gaussian distributions, we
can estimate the means and standard deviations by fitting straight line segments to
different parts of the plot. This is the procedure followed byBochanski et al. (2007) to
calculate the velocity dispersions of the thin and thick discs using a tracer population
of 7398 M dwarfs.

Fig. 7.1 Demonstration of finding the mean and standard deviation of a sample. The left panel
shows a histogram of data drawn from a normal distribution ofmean zero and unit standard deviation
shown by the line. The right panel shows the ordered data plotted against the expected deviation in
units of the standard deviation, ci , given by Eq.7.3. A straight line fit to this plot yields an estimate
for the standard deviation as the gradient and an estimate for the mean as the intercept. For this
example, the standard deviation is estimated as 1.130 and the mean as 0.0611
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7.3 Dynamical Galaxy Models

To test the method used by MB, we require a sample drawn from a realistic Galaxy
distribution function (df) for which we know the underlying velocity moments. We
use the models of Binney (2012b). These models were developed and discussed
by Binney (2010) and Binney and McMillan (2011). The distribution function is a
function of the actions in an axisymmetric potential: the radial action JR , the vertical
action Jz and the z-component of the angular momentum, Lz (in this chapter and
the next, we set positive Lz as the direction of Galactic rotation). The advantage of
this approach is that the distribution function clearly satisfies the Jeans’ theorem as
the actions are isolating integrals. The transformation from (x, v) to J is performed
using the algorithm from Binney (2012a), which was described in Chap.2. These
models consist of a thick and thin disc composed of quasi-isothermal distribution
functions. A single quasi-isothermal distribution function is given by

fσR ,σz (JR, Jz, Lz) = fσR (JR, Lz) fσz (Jz, Lz), (7.4)

where

fσR (JR, Lz) ≡ �

2π2R2
dσ2

Rκ

∣∣∣∣
Rc

[1 + tanh(Lz/L0)]e−κJR/σ2
Re−Rc/Rd (7.5)

and
fσz (Jz, Lz) ≡ ν

2πσ2
z
e−ν Jz/σ

2
z . (7.6)

Here Rc(Lz) is the radius of a circular orbit with z-component of angularmomentum,
Lz . κ(Lz), ν(Lz) and�(Lz) are the radial, vertical and circular epicycle frequencies
respectively. The factor of [1 + tanh(Lz/L0)] eliminates retrograde stars as L0 =
10 km s−1 kpc. Note that the df is correctly normalised such that

∫
d3x d3v f =

(2π)3
∫
d3 J f = 1. These distribution functions are called ‘quasi-isothermal’ as, in

the epicyclic approximation, we can introduce the radial energy ER = κJR and the
vertical energy Ez = ν Jz such that the df reduces to an isothermal df (i.e. solely a
function of the radial and vertical energies). In this case,σi are the height-independent
velocity dispersions. σR(Lz) and σz(Lz) are exponentially decaying functions of Rc

that control the radial and vertical velocity dispersions:

σR(Lz) = σR0e
(R0−Rc)/Rσ ,

σz(Lz) = σz0e
(R0−Rc)/Rσ ,

(7.7)

where σR0 and σz0 are approximately equal to the radial and vertical velocity dis-
persions at the solar radius, R0, and Rd is the scale length of the disc. Each quasi-
isothermal is controlled by four parameters: Rd , Rσ , σR0 and σz0.

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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Binney (2012a) showed that a good fit to the GCS data and the Gilmore-Reid
density curve was afforded by modelling the thin and thick discs as quasi-isothermal
components. We choose to model the thick disc as a single old quasi-isothermal, and
the thin disc as a superposition of differently-aged quasi-isothermals. Aumer and
Binney (2009) found from Hipparcos data that the velocity dispersion of the thin
disc increases with age, τ , as τβi . Therefore, we set

σi (Lz, τ ) = σi (Lz)
( τ + τ1

τ1 + τT

)βi
, (7.8)

where τ1 = 0.11Gyr sets the velocity dispersion for stars at birth, and τT is the
maximum age of the thin disc, chosen to be 10Gyr. Here we set βR = 0.33 and
βz = 0.33. The age of the Galaxy, τm , is assumed to be 12Gyr such that the thick
disc is defined as the population of stars born in the first 2 Gyr of the lifetime of the
Galaxy. The thin and thick discs have differing velocity dispersion parameters such
that the velocity dispersion against age for the disc is discontinuous at 10Gyr ago.
We assume that this time corresponds to the last strong heating event in the disc.

Additionally, Aumer and Binney (2009) showed that the star-formation rate in the
thin disc near the Sun varied approximately exponentially with age with a time-scale
of τ f = 8Gyr. Therefore, the full distribution for the thin disc is given by

fthin(J) =
∫ τT

0
dτ �thin(τ ) fthin,σR(τ ),σz(τ )(J)

=
∫ τT

0
dτ

eτ/τ f

τ f (eτT /τ f − 1)
fthin,σR(τ ),σz(τ )(J), (7.9)

whilst, for the thick disc, we have

fthick(J) =
∫ τT

0
dτ �thick(τ ) fthick,σR ,σz (J) =

∫ τm

τT

dτ
1

τm − τT
fthick,σR ,σz (J).

(7.10)
The full df is given by

f (J) = (1 − F) fthin(J) + F fthick(J), (7.11)

where F gives the global fraction of thick disc stars. We note that the thin/thick disc
divide in age is discrete, and represents a more continuous violent heating event at
some point in the early life of the Galaxy.

The fraction of stars in the disc belonging to the thick disc is controlled by the
parameter F = 0.387, and implies a Solar neighbourhood thick disc fraction of
29%. We set the parameters to the values given in Table7.1. The density profile and
velocity dispersion for this distribution function as a function of Galactic height are
shown in Fig. 7.2.
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Table 7.1 Parameters for the Binney distribution function used in this section

Thin σR0 42.3

σz0 20.3

Rd 2.17

Rσ 50

Thick σR0 26.3

σz0 34.0

Rd 3.66

Rσ 3.43

F 0.387

Velocity dispersions have units km s−1 and scale lengths have units kpc

Fig. 7.2 Density profile and
velocity dispersion for the
Binney distribution function
used in this section as a
function of Galactic height.
The dashed line gives the
contribution from the thin
disc and the dotted line from
the thick disc. The data
points are taken from
Gilmore and Reid (1983) and
Kuijken and Gilmore (1989)

We limit our investigation to just the W component of the velocity (the component
along the z direction). We are not interested in the full distribution function, so we
marginalise over the other two velocity components (U and V ) to find the number
of stars per unit W velocity per unit volume as

nW (R, z, W ) =
∫ ∞

−∞
dU

∫ ∞

−∞
dV f (JR, Jz, Lz) (7.12)

where, in practice, the limits of the integrals are finite as the distribution function falls
off rapidly at large velocities. The transformation from polar positions and velocities
to actions is carried out by the algorithm presented by Binney (2012a). We use an
adjusted version of Potential II from Dehnen and Binney (1998) that consists of a
thin and thick disc, a gas disc and two spheroids representing the bulge and the halo.
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Table 7.2 Parameters of
Galactic potential used in this
chapter

Thin Rd/ kpc 2.4

zd/ kpc 0.36

�d /M� pc−2 1106

Thick Rd/ kpc 2.4

zd/ kpc 1.

�d /M� pc−2 73

Gas Rd/ kpc 4.8

zd/ kpc 0.04

�d /M� pc−2 114

Rm / kpc 4

Bulge ρ0/M� pc−3 0.76

r0/ kpc 1

γ 1.8

β 1.8

q 0.6

rt / kpc 1.9

Halo ρ0/M� pc−3 1.26

r0/ kpc 1.09

γ −2

β 2.21

q 0.8

rt / kpc ∞

We have increased the scale-height of the thin disc to 360 pc and increased the mass
of the thin disc such that the circular velocity at the solar radius is 220 km s−1. The
functional form for the discs is given by

ρd(R, z) = �d

2zd
exp

(
− Rm

R
− R

Rd
− |z|

zd

)
, (7.13)

where Rd is the scale-length, zd the scale-height, �d is the central surface density
and Rm controls the size of the hole at the centre of the disc which is only non-zero
for the gas disc. The spheroids obey the functional form

ρs(m) = ρ0

(m

r0

)−γ(
1 + m

r0

)γ−β
exp

(
− m2

r2t

)
, (7.14)

wherem = (R2 + q−2z2)1/2.ρ0 is the central density, r0 a scale-length,q aflattening,
γ and β control the inner and outer slopes, and rt is a truncation radius. The adopted
parameters are given in Table7.2.

From the distribution function of Eq. (7.12), we are able to draw a sample of stars.
The sample is selected by following a rejection algorithm. If we wish to draw stars
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that all lie at the solar radius, R0, and that lie in the ranges zmin � z � zmax and
|W | � Wmax then we first note that the maximum of the distribution function in
this range occurs at z = zmin and W = 0. This gives us a normalisation. We then
proceed by drawing trial values of z = zt and W = Wt from uniform distributions
over the required ranges and accepting this trial as a data point with probability
nW (R0, zt , Wt )/nW (R0, zmin, 0).

The obvious advantage of drawing sample data from a known distribution function
is that we know exactly the underlying properties of the distribution. In this section,
we focus on calculating the mean W velocity and the W velocity dispersion of the
thick disc, σz . As the distribution function is a symmetric function of W , we expect
〈W 〉 = 0. σz is given by

σ2
z (R, z) =

∫ ∞
−∞ dU

∫ ∞
−∞ dV

∫ ∞
−∞ dW W 2 fthick(JR, Jz, Lz)∫ ∞

−∞ dU
∫ ∞
−∞ dV

∫ ∞
−∞ dW fthick(JR, Jz, Lz)

. (7.15)

7.4 MB Method

MB use a sample of 412 red giants that lie in the range 1.3 kpc � z � 5 kpc and
|W | � 150 km s−1. The cut in W is performed to remove contamination from the
halo. MB estimate an error of 0.7 km s−1 in the line-of-sight velocity measurements
and an error of approximately 20% in the distances.1 We use the procedure outlined
above to draw 412 stars from the Binney distribution function which all lie at the
solar radius and inside the range probed by MB. As the W velocity is nearly entirely
line-of-sight velocity error we include a random Gaussian error of 0.7 km s−1 to
the W velocities and we assume that the full distance error of 20% corresponds to
a 20% error in the z values. In order to correctly account for stars that may have
entered our sample due to the error in their distances, we increase the sample range to
1 kpc � z � 6 kpc and then cut out any stars which lie outside 1.3 kpc � z � 5 kpc
after the error has been included. Histograms of the resulting sample are shown in
Fig. 7.3.

We now follow the same procedure as MB to extract the mean W velocity and the
W velocity dispersion, σz .We first bin the data in z with bin centres spaced by 0.1 kpc
in the range 1.5 kpc � z � 4.5 kpc. The bin sizes are allowed to vary such that we
have 100 data per bin for z � 2.1 kpc, 80 data per bin for 2.2 kpc � z � 2.4 kpc
and 50 data per bin for z � 2.5 kpc. For each binned subset of the sample, we
follow the probability plot method outlined in Sect. 7.2 by ordering the sample in W
and performing a linear regression between the sample velocities and the expected
deviations to find the mean velocity of the bin and the velocity dispersion.

1MB state that there is an additional 10–20% systematic error in the distances to thin disc stars due
to the thin disc stars not following the assumed age and metallicity distributions. We ignore this
additional error here. This error will increase thin disc contamination at low z, but should not affect
the determination of the velocity dispersion or conclusions presented here significantly.
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Fig. 7.3 Sample of 412 stars
drawn from the Binney
distribution function that
emulates the MB sample

For z � 2.5 kpc, we expect a non-negligible thin disc contamination. MB try to
isolate the thick disc contribution by only fitting the wings of the distribution, where,
as the thick disc has a higher velocity dispersion than the thin disc, the data are
assumed to be contributed by thick disc stars. Therefore, we first sort all the data in
the bin and assign each an expected deviation but only fit a straight line to the data
with |W | > 30 km s−1. Each wing is fitted separately. MB do not make it completely
clear how they combine the fits of eachwing but herewe adopt the procedure of fitting
each wing independently and then calculating the mean and standard deviation by
an average of the intercepts and gradients respectively.

MB also ignore any points that seem to be outliers in the probability plot when per-
forming the linear regression. We simulate this effect by ignoring the most negative
and most positive data point when fitting a straight line to the probability plot.

7.5 Errors

7.5.1 Observational Errors

MBestimate the errors in their calculatedW moments by essentially only considering
the observational error in the W velocity as follows. In each bin, MB add random
Gaussian errors for the distance and line-of-sight velocity to each data point to
generate 1000 samples but do not re-bin the data at all. The errors are then estimated
as the standard deviation of the estimates obtained from each sample. Following
MB, we take the W velocity error to be 0.7 km s−1. The results of this procedure
are shown in Fig. 7.4. The error bars are very small giving the impression we have
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Fig. 7.4 Mean W velocity
and W velocity dispersion,
σz , against height above
Galactic plane. The points
give the values calculated in
each bin using the MB
method along with the errors
estimated by 1000 samples
adding random errors of
0.7 km s−1 to the W velocity.
The red dashed lines show
the exact mean velocity and
velocity dispersion
calculated from the Binney
distribution function from
which the sample was drawn.
Clearly, the error bars do not
give a good estimate of the
deviation from the true value

very precise results. However, the data are clearly scattered around the true result
by amounts much greater than the error bars. This is because we have ignored two
much larger sources of error: the errors in the distances moving stars from bin to bin
and the Poisson noise.

MB estimate the distance error to be approximately 20%. As well as a W velocity
error, we add a random Gaussian error of 20% to the z coordinates of the data, re-
bin the data and recalculate the mean velocities and dispersions. Repeating this 1000
times,we calculate the errors as the standard deviations of the estimates. These results
are shown in Fig. 7.5. The observational errors are now much larger and the results
are consistent with the truth within the errors. We have not yet made any estimate
for the Poisson noise of the estimate, but it seems that, as the data are consistent with
the truth, the observational errors are of the same order as the Poisson noise.

Lines marking one standard deviation are shown in Fig. 7.5. Adding errors in z to
the data shifts stars from bin to bin. With such a large distance error, we have many
samples in which higher velocity stars have been pulled down to lower Galactic
heights and lower velocity stars are displaced to greater heights. This has the effect
of flattening the velocity distribution when averaged over the many samples.

7.5.2 Poisson Noise and Systematics

With such a small sample, it is difficult to disentangle the Poisson noise from sys-
tematic errors arising from the MB procedure. However, as we have direct access to
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Fig. 7.5 Mean W velocity and W velocity dispersion, σz , against height above Galactic plane for
the sample of 412 stars. The points give the values calculated in each bin using the MB method.
The dotted lines show the one standard deviation limits. These were estimated by calculating the
standard deviations of the calculated values for 1000 samples formed by adding random errors of
0.7 km s−1 to the W velocity and a 20% error on the distance with re-binning. The red dashed
lines show the exact mean velocity and velocity dispersion calculated from the Binney distribution
function from which the sample was drawn

the distribution function, we can estimate the Poisson noise by repeatedly drawing
samples from the distribution function and evaluating the observables for each sam-
ple. Therefore, we draw 100 samples of 412 stars and repeat the above procedure for
each sample. We then estimate the average sample mean and dispersion in each bin
along with the Poisson error in both quantities by calculating the standard deviations.
The results are shown in Fig. 7.6.

The calculation of the mean W velocity is entirely consistent with being zero as
required, but the recovery of the W velocity dispersion curve is less successful. For
lowGalactic heights, we are overestimating the velocity dispersion, whilst, for larger
Galactic height, we are slightly underestimating the dispersion.

For low z, we are ignoring all data for which |W | < 30 km s−1 when fitting a
straight line to the data. This means we give more weight to data with higher W
velocities and so the distribution seems broader than it actually is. The probability
plot is particularly sensitive at the wings. If we consider an ordered data set that is
drawn from a known underlying Gaussian distribution, we can assign each a value of
ci by the method outlined in Sect. 7.2. If we add a single point that is smaller than all
the other data points but still drawn from the underlying distribution, the probability
of the new point lying above the line with correct mean and standard deviation, but
still lower than its neighbouring data point, is equal to the probability of it lying
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Fig. 7.6 MB method: Average mean W velocity and W velocity dispersion, σz , against height
above Galactic plane for the 100 samples of 412 stars. The points give the average values calculated
in each bin using the MB method. The error bars show the standard deviation of the calculated
values in each bin. The red dashed lines show the velocity moments of the thick disc calculated
using the underlying distribution function. The dispersion is overestimated at low z and slightly
underestimated at high z leading to an underestimated gradient

beneath the line. As there is a much larger range of values below the line than above,
the estimated gradient in this region will in general be overestimated. We need to use
a sufficient number of stars to perform the linear fit in order to reduce this effect.

At high z, we have very few stars in the sample, so, in order to fill the bin with
enough stars, we must include stars at lower z. In general, these stars have smaller
velocities so the resulting velocity dispersion for the bin is reduced. A very minor
effect may also be due to removing stars with |W | > 150 km s−1 to avoid halo conta-
minants, so the distribution is unfairly weighted by low-velocity stars and the disper-
sion is underestimated. From Fig. 7.6, we can perform a simple linear fit to the (z,σz)

plot to find that the data points imply a gradient of dσz/dz = 2.25 km s−1 kpc−1. A
linear fit to the true dispersion curve gives a gradient of dσz/dz = 6.82 km s−1 kpc−1,
so the MB method underestimates the gradient by a factor of three.

7.6 Comparison with Other Work

MB state that their gradient of σz with z is shallower than previous authors’ work.
The sample studied by MB is a subset of the sample studied by Girard et al. (2006;
hereafter G06). These authors found a gradient of the V velocity dispersion a factor of
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two higher than MB, which MB claim is due to G06 not removing thin disc and halo
contaminants in their analysis. We conclude by following a method inspired by the
method used by G06 to test whether their results are more secure than those reported
by MB. The G06 method is very similar to that used by MB. The authors have a
sample of approximately 1200 stars. They split each data point into 100 subunits to
account for the distance error and form bins of 100 subunits to estimate the U and V
velocity dispersion. The probability plot method is used to estimate the dispersion,
but crucially only the central 80% of the data is used in the linear fit and the central
region is not excluded for any of the bins. We follow a similar, but simpler, method
on each of the 100 samples of 412 stars. We do not split the data points into subunits.
We use bins with centres spaced by 0.1 kpc of variable width such that they each
contain 32 data points as we have only a third of the number of data points in the
G06 sample. We use only the central 80% of the data in each bin for the linear fit in
the probability plot method. Figure7.7 shows the result of this experiment.

The estimate of the velocity dispersion provided by the G06 method is more reli-
able than theMBmethod. At low z, the dispersion is nowmarginally underestimated

Fig. 7.7 Girard et al. method: average mean W velocity and W velocity dispersion, σz , against
height above Galactic plane for the 100 samples of 412 stars. The points give the average values
calculated in each bin using a method inspired by Girard et al. (2006) outlined in Sect. 7.6. The error
bars show the standard deviation of the calculated values in each bin. The red dashed lines show
the velocity moments of the thick disc calculated using the underlying distribution function. The
dispersion is slightly underestimated due to the neglected thin disc contamination and preferentially
sampling stars from lowerGalactic heights, but in general the recovery of the truth ismore successful
than using the MB method. In particular the calculated gradient in σz is approximately a factor of
three larger
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which is to be expected due to the thin disc contamination. However, even with fewer
stars in the bin, the error in the dispersion at low z is smaller than the equivalent errors
in the MBmethod. This is a clear reflection of the dangers of only using the wings of
the distribution to calculate the dispersion. At high z, the problem of preferentially
sampling stars at lower heights seems to also have been slightly reduced as the bin
size is small enough for the dispersion to be calculated using only local stars. A
simple linear fit to the (z,σz) plot gives a gradient of dσz/dz = 7.87 km s−1 kpc−1.

7.7 Conclusions

Wehavedrawna sample of 412 stars from thedistribution functionofBinney (2012b).
The sample was chosen to replicate the sample presented by MB. We performed the
same procedure as MB to extract the mean vertical velocity and vertical velocity
dispersion of the thick disc as a function of Galactic height and compared it to the
known moments of the vertical velocity of the thick disc of the underlying distribu-
tion. We find that the variation of the dispersion with z is far noisier than that found
byMB. There are three sources of errors: Poisson errors, distance errors and velocity
errors. We show that the observational errors in the velocities, which MB claim as
the total error, cannot account for the deviation. Distance errors moving stars from
bin to bin and the Poisson noise have a comparable effect on the dispersion estimate,
which is much larger than effect of the velocity errors. Both of these sources of errors
are neglected by MB.

A large number of samples reveals that the method systematically overestimates
the dispersion at low z and underestimates it at high z. The two effects combined
lead to a flatter curve of dispersion against z. We recalculated the mean velocity
and velocity dispersion using a method inspired by G06, which reveals the causes
of these two effects: at low z, only fitting the wings of the distribution to remove
thin disc contaminants makes the distribution appear broader, and at high z, large
bin sizes preferentially sample stars at lower Galactic height that, in general, have a
lower velocity. The G06 method produces a much better fit to the expected velocity
dispersion and there is approximately a factor of three discrepancy in the gradient
of the dispersion as a function of z between the results of the MB and G06 methods.
This discrepancy is not a result of more precise measurements or analysis but purely
a result of systematics in the data analysis introduced by MB. We have not touched
upon the values given by MB for the U and V dispersions, but similar effects are
expected to occur.

The results presented here should serve as a useful demonstration of the expected
errors and potential biases that arise when using a method similar to the MBmethod.
We have demonstrated the need to understand the errors and systematics of methods
that are applied to observational data, and that pseudo-samples from realistic Galaxy
distribution functions are a useful tool in this respect. The effect that the biases and
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errors demonstrated in this section have on the dark matter mass estimates (Moni
Bidin et al. 2012b; Bovy and Tremaine 2012) is beyond the scope of this chapter.
However, the results of this study are relevant to both these mass estimate determi-
nations and, more generally, to the understanding of Galactic disc kinematics.
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Chapter 8
Extended Distribution Functions
for the Galactic Disc

8.1 Introduction

In the previous chapter, we have seen the importance of fully dynamical distribution
functions for the Galaxy. Binney (2010) constructed appropriate action-based dis-
tribution functions for the Galactic disc and Binney (2012b) showed they provided
good fits to the Geneva-Copenhagen Survey data. In Binney et al. (2014), these dis-
tribution functions were used to predict the RAVE data. The distribution functions
provide a physically-motivated model of the Galaxy with which we can test meth-
ods that are applied to data. In the previous chapter, we presented these distribution
functions and used them to inspect a recent method used to extract from data the
velocity dispersions of a population.

These distribution functions are purely dynamical—the thin disc is divided by
age but, without chemical information, this acts purely a parametrisation. Such dis-
tribution functions have limited use when modelling real data sets. All data sets
are subject to some selection function such that the population we observe is not a
fair sample of the entire Galactic population. In particular, all surveys have a selec-
tion in magnitude, which affects the resulting age and metallicity distributions. It is
well known that stars of different chemical properties, such as age and metallicity,
have very different kinematic properties. For instance, scattering mechanisms in the
Galactic disc cause older metal-poor populations to have larger velocity dispersions
than their younger metal-rich counterparts. These chemo-dynamical correlations are
important, as itmeans any selection in age ormetallicity is also a selection in kinemat-
ics. Therefore, any distribution function that does not includemetallicity information
is of limited utility.

Additionally, the correlations between chemistry and kinematics reveal informa-
tion regarding the history and evolution of the Galaxy. The correlations between
these observables in the data help constrain, for instance, the magnitude of the radial
migration in the disc (Sellwood and Binney 2002; Schönrich and Binney 2009) as
well as the heating mechanisms that thicken the discs. One area of recent interest is
the metallicity correlations with Galactocentric radius and Galactic height (e.g. Lee
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et al. 2011; Boeche et al. 2013). Due to the differing selection functions for each
survey, the reported gradients are different, and it is difficult to disentangle whether
the differences are due purely to differing selection volumes or metallicity-scale
discrepancies between the surveys. A full df with chemical information helps to
disentangle these effects.

The Galaxy is described by a single potential, whereas the distribution function
can be composed of many distinct components each associated with a distinct stellar
population. For dynamical modelling, we can choose to divide up the Galaxy using
any stellar properties except the actions e.g. metallicity, age, mass, chemical abun-
dances etc. Attempting to identify a population of stars from kinematics alone is
flawed as populations mix in phase-space due to dynamical processes. However, the
chemical composition of a star is fixed, and may be used to tag stellar populations
(Mitschang et al. 2013, 2014). Each population must be described by a distribution
function that produces a consistent velocity and density structure when viewed in
the correct potential. As each population must live in the same potential, this puts a
strong constraint on the Galactic potential (e.g. Walker and Peñarrubia 2011). The
Galactic disc is conventionally divided into two populations: the thin disc and thick
disc. These populations overlap in velocity space, but are believed to have distinct
ages. The prospect for obtaining sufficiently accurate ages in the near term are poor.
However, the addition of chemistry provides more information about the separation
of these two populations. Bovy et al. (2012) split up the SEGUE G dwarf sample
into ‘mono-abundance populations’—bins in [α/Fe] and [Fe/H]. They argued that
each population had a simple spatial and velocity structure, and Ting et al. (2013)
showed that such populations could be modelled using the distribution functions
of Binney. Bovy and Rix (2013) used these distribution functions to constrain the
mass profile of the disc by requiring that each mono-abundance population produced
consistent dynamics.

In this chapter,we present an approach to extending the distribution functions from
Binney (2012b) to include metallicity information. We include the expected corre-
lations between the actions, age and metallicity inspired by the models of Schönrich
and Binney (2009). These models can be used to correctly account for the selec-
tion effects of a survey, to uncover the chemo-dynamical correlations that reveal
information on the Galactic history and evolution, and as a basis on which to con-
strain the Galactic potential. This approach is different to that taken by Bovy et al.
(2012) as the properties of each stellar population are chosen to vary smoothly with
analytic dependence on the metallicity, rather than considering discrete metallicity
bins. In Sect. 8.2, we present these extended distribution functions. In Sect. 8.3, we
discuss the data that will be relevant for using our extended distribution functions. In
Sect. 8.4, we discuss selection functions and how one can model the kinematics of a
data set without explicitly modelling the selection function. In Sect. 8.5, we go on to
fit the parameters of our extended distribution function to the GCS data. In Sect. 8.6,
we construct mock catalogues for the GCS and SEGUE G dwarfs from the extended
distribution functions.
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8.2 Model

In this section, we present and discuss the extended distribution function (edf). An
edf is the joint distribution function of the phase-space coordinates (x, v), and any
additional properties of each star, such as ([Fe/H], [α/Fe], Teff , log g, . . .). Here we
discuss extending the usual phase-spacedistribution function (df)with themetallicity
of the stars, [M/H] (for our purposes we will assume zero α-enhancement for the
stars, and so use [M/H] and [Fe/H] interchangeably). This edf then forms our chemo-
dynamical model of the Galaxy. We use as our starting point the df from Binney
(2012b) discussed in the previous chapter. Our edf is inspired by the models of
Schönrich and Binney (2009), who fully model the joint chemical and dynamical
evolution of the Galactic disc. Our aim here is to model effectively the chemical
evolution part of the Schönrich and Binney (2009) model. In our edf, the metallicity
of stars born at a given location and time are described by the metallicity of the
ISM. We begin by discussing how we can effectively model the metallicity of the
interstellar medium (ISM).

8.2.1 ISM Metallicity

We begin by assuming that the metallicity of the ISM is solely a function of radius
at all times. Following the fuller chemical evolution model of Schönrich and Binney
(2009), we choose to model the metallicity of the ISM as a function of age and
radius as

[Fe/H](R, τ ) = F(R, τ ) ≡ F(R) + [F(R) − Fm]
[
tanh

(τm − τ

τF

)
− 1

]
. (8.1)

This is an analytic form that approximates the fuller chemical evolution model of
Schönrich and Binney (2009). The model assumes that the entire Galaxy began with
a metallicity of Fm a time τm = 12Gyr ago. The parameter τF controls the rate of
enrichment at early times, and, as tanh(τm/τF ) ≈ 1 for the choice of parameters
used later, the metallicity in the disc with radius at the present time is approximately
F(R). We adopt a current metallicity-radius relation given by

[Fe/H](R, 0) ≈ F(R) ≡ Fm tanh
{ FR(R − RF )

Fm

}
, (8.2)

with FR and RF as constants. There is an approximately linear metallicity gradient
with radius at radii near the Sun governed by FR , with the parameter RF controlling
the metallicity of stars born at the solar position today. The tanh in the formula for
F(R) stops the metallicity decreasing with time for the outermost radii such that the
metallicity remains approximately constant with time at large radii.
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Fig. 8.1 Metallicity against age for our edf (left) and the Schönrich andBinney (2009)model (right,
reproduced with permission from Ralph Schönrich). On the left, each line shows the metallicity
against age for birth radii linearly spaced by 1 kpc between the uppermost line, corresponding to
R = 0 kpc, and the lowest line, corresponding to R = 30 kpc. On the right, the lines are separated
by 1.25 kpc

In Fig. 8.1, we plot the metallicity against age for a series of birth radii for the
choice of parameters used later, along with the equivalent plot from Schönrich and
Binney (2009). In the models of Schönrich and Binney (2009), the innermost radii
are enriched with metals most rapidly, metals are advected inwards by flows in the
disc and the outer radii are diluted by infalling metal-poor gas. These authors also
use a particularly steep metallicity gradient with radius of FR ≈ −0.082dex/kpc.

8.2.2 Extended Distribution Function

With these analytic metallicity relationships, we can extend the df of Eq. (7.11). The
df is a function of the actions, J , such that f (x, v) ≡ f (J(x, v)), where we find the
actions given (x, v) using the algorithm of Binney (2012a) described in Chap.2. For
speed, we use an interpolation scheme to find the actions detailed in Binney (2012a).
We decompose our df into thin and thick disc components as

f (J) = (1 − F) fthin(J) + F fthick(J), (8.3)

where

fi (J) =
∫

dτ �i (τ ) fi,σR(τ ),σz(τ )(J), i = (thin, thick), (8.4)

The star-formation rates, �i , are given by

�thin(τ ) =
⎧⎨
⎩

eτ/τ f

τ f (e
τT /τ f −1)

if τ ≤ τT ,

0 otherwise,
and �thick(τ ) =

{
1

τm−τT
if τT ≤ τ ≤ τm,

0 otherwise.

(8.5)

http://dx.doi.org/10.1007/978-3-319-18772-3_7
http://dx.doi.org/10.1007/978-3-319-18772-3_2
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The velocity dispersion parameters for the thin disc are age-dependent and follow
the form given in Eq. (7.11). Here we set βR = 0.33 and βz = 0.4. For the thick
disc, the velocity dispersion parameters only depend upon angular momentum and
are constant with age. We drop the σ subscripts in what follows for clarity, and
instead write fi,σR(τ ),σz(τ )(J) as fi (J, τ ) (here the age argument for the thick disc
only controls the star-formation rate, which is zero for τ < τT ).

We extend the distribution function in Eq. (8.4) by writing

fi (J, [Fe/H]) =
∫

dτ �i (τ ) fi (J, τ )δ([Fe/H] − F(Rc, τ )). (8.6)

This equation assumes all stars were born cold in the disc at some radius R = Rc with
somemetallicity [Fe/H],which together define aunique age.The stars are thenheated
in time, whilst their guiding radii remain fixed. However, we know that churning
plays an important role in the evolution of the Galaxy (Sellwood and Binney 2002;
Schönrich and Binney 2009). Around corotation of a rotating perturbing potential,
stars may change their angular momentum without being significantly heated. This
phenomenon brings metal-rich stars born in the inner Galaxy and metal-poor stars
born in the outer Galaxy to the solar radius. Therefore, a star’s current angular
momentum, Lz , will, in general, be different from its birth angular momentum, L ′

z ,
which we assume is drawn from a Gaussian distribution with dispersion σL that
grows with time:

σL(τ ) = σL0

( τ

τm

)γT
. (8.7)

We assume a true random walk and set γT = 0.5.
With churning included, the edf becomes

fi (J, [Fe/H]) =
∫

dL ′
z

∫
dτ �i (τ )N (L ′

z)
e−(Lz−L ′

z )
2/2σ2

L√
2πσ2

L

fi (J ′, τ )δ([Fe/H] − F(Rc
′, τ )),

(8.8)
where J ′ ≡ (JR, L ′

z, Jz), Rc
′ ≡ Rc(L ′

z) and N (L ′
z) is a normalization factor

given by

N (L ′
z) = 2

[
1 + erf

( L ′
z√

2σL

)]−1
, (8.9)

which ensures (2π)3
∫
dL ′

z dτ d[Fe/H] d3 J f = 1 as shown in Appendix H. The
error function appears inN as the angular momentum is constrained to be positive.
N has very little impact at the solar position for the value of σL chosen later.

An important consequence of the introduction of the convolution of the df with a
Gaussian in Lz is that the edf is no longer exponential in guiding-centre radius. The
basic dfwas only approximately exponential in radius due to the velocity dispersions
in R and z. After deriving the best-fitting parameters later, we will check whether
the disc is exponential.

http://dx.doi.org/10.1007/978-3-319-18772-3_7
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There is a small complication here due to the simplistic approach to the modelling
we have taken. In the df approach from Binney (2010), the dynamical processes
(e.g. heating, migration etc.) are all included implicitly in the df equation. However,
we have now identified the migration of stars and included it explicitly in the edf
equation as it helps us to include the metallicity dependence. For each birth angular
momentum, we are evaluating the df at the birth actions, which will be different from
the current actions. This means that the heating mechanisms included implicitly in
the df will behave as if the star had spent its entire lifetime at its birth radius. In
reality, the total heating will be some combination of heating from the different
environments experienced throughout its lifetime.

For a particle undergoing a random walk, the most probable path between Lz and
L ′

z is linear such that, on average, a star at the Sun has experienced the mean of
the heating events at the angular momentum passed through. However, the number
of migrated stars must be determined by the star-formation rate at its birth actions.
Therefore,we opt for a compromise: the ‘density’ part of thedf (e−Rc/Rd ) is evaluated
at the birth actions, whilst the ‘heating’ part (e−κJR/σ2

Re−ν Jz/σ
2
z ) is evaluated at the

current actions. Solway et al. (2012) showed that under radial migration a star’s
vertical action is conserved. Therefore, in the absence of any heating, the vertical
action of a star observed today should be identical to that at birth. Additionally,
Minchev et al. (2012) showed from a numerical simulation that the final velocity
dispersions of stars that hadmigrated into a given radial binmatched the final velocity
dispersions of those stars that had spent their entire lifetime in that radial bin. This
gives us confidence that our approximation is a valid one.

8.2.3 Full df Evolution with a 3D Action-Space Kernel

The most rigorous procedure for constructing an extended distribution function
would be to assume a form for the distribution function for each population at birth
(e.g. cold exponential discs), and evolve these with a 3D action-space kernel. The
general solution to the Fokker-Planck equation is given by

f (J, τ ) =
∫

d3 J ′ T (J, J ′, τ ) f0(J ′, τ ), (8.10)

where T (J, J ′, τ ) is the probability of a star of age τ scattering from J to J ′ in time
τ , and f0(J ′, τ ) is the df of a population of age τ at birth. Here we have in essence
followed this procedure but with several simplifying assumptions tomake themodels
faster to calculate. Our action-space kernel only depends on the age, initial action
and final action, and not the series of actions that a given star could pass through.
Each population is born as a δ-function in J ′

R and J ′
z and an exponential in R′

c such
that

f0(J ′, τ ) = �(τ )δ(J ′
R)δ(J ′

z)
2�(L ′

z)R′
c

κ2(L ′
z)R2

d(τ )
e−R′

c/Rd (τ ). (8.11)
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We assume Rd(τ ) = Rd—inside-out formation would require a scale-length that
decreases with age. The kernel for the population of age τ is given by

T (J, J ′, τ ) = κ(Lz)

σ2
R(Lz, τ )

e−κ(Lz)(JR−J ′
R)/σ2

R(Lz)
N (L ′

z)√
2πσ2

L(τ )

e−(Lz−L ′
z)
2/2σ2

L (τ )

× ν(Lz)

σ2
z (Lz)

e−ν(Lz)(Jz−J ′
z)/σ

2
z (Lz ,τ ). (8.12)

The JR and Jz kernels depend upon the final angular momentum. We can perform
the integral over both J ′

R and J ′
z using the δ-functions, and the resulting distribution

function for the population of age τ is the one given in Eq. (7.4). Note here that the
choice of kernel T should conserve total z-component of the angularmomentum.Our
choice does not, as it causes the disc to broaden. Schönrich and Binney (2009) make
the transition probability depend upon the product of the mass of adjacent annuli,
such that T depends upon f , and explicitly conserves angular-momentum. Whether
there are more general, physically-motivated choices of angular-momentum kernel
is unclear.

8.2.4 Performing the Integrals

To evaluateEq. (8.8),we need to evaluate a double integral over τ and L ′
z . Fortunately,

one of these integrals is trivial as the integrand contains a δ-function. When we use
the δ-function to evaluate the integral, we obtain derivatives of F with respect to
either τ or L ′

z in the denominator of the integrand. The choice of whether to perform
the τ or L ′

z integral first depends upon the properties of these derivatives over the
integration range. We note that ∂F/∂Rc(τ = τm) = 0, and ∂F/∂τ (τ = 0) ≈ 0.
Therefore, for the thin disc we use the δ-function to perform the L ′

z integral and for
the thick disc we use it to perform the τ integral. For the thin disc, we obtain

fthin(J, [Fe/H]) =
∫ τT

0
dτ

�thin(τ ) fthin(J ′, τ )

|∂F/∂Rc||∂Rc/∂Lz |
e−(Lz−L ′

z)
2/2σ2

L√
2πσ2

L

, (8.13)

where L ′
z is given by F(Rc(L ′

z), τ ) = [Fe/H], which may be inverted analytically.
Additionally, we have that

∂F

∂Rc
(R, τ ) = −FR sech2

( FR(R − RF )

Fm

)
tanh

(τm − τ

τF

)
,

∂Rc

∂Lz
= 2�

Rcκ2 .

(8.14)

http://dx.doi.org/10.1007/978-3-319-18772-3_7
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For the thick disc, we have

fthick(J, [Fe/H]) =
∫ ∞

0
dL ′

z �thick(τ )
e−(Lz−L ′

z)
2/2σ2

L√
2πσ2

L

fthick(J ′)
|∂F/∂τ | , (8.15)

where
∂F

∂τ
= 1

τF
(F(R) − Fm) sech2

(τm − τ

τF

)
. (8.16)

For convenience, we limit the integration range to ±3σL0 and perform the integral
over R′

c. These two 1D integrals are then performed numerically using a 5-point
Gaussian quadrature scheme.

8.2.5 Halo edf

One practical problem with the above edf is that any star that falls outside the
allowed range in [Fe/H] (e.g. [Fe/H] < Fm) is deemed unphysical by the model.
This problem can be solved by the inclusion of a halo distribution function. The data
we are considering are not very sensitive to the halo, but its inclusion allows us to
assign any ‘unphysical’ star to the halo.

We construct a simple action-based distribution function for the halo of the form
(Posti et al. 2015)

fhalo(J) = khalo
(J0 + JR + 0.68|Lz | + 0.7Jz)3

. (8.17)

This model has a simple power-law density profile with a core that is specified by
the parameter J0. We choose J0 = 180 km s−1 kpc. This model has a density profile
ρ ∝ r−3 (i.e. NFW Navarro et al. 1996) outside a scale radius of r ≈ 5 kpc, and
ρ ≈ const. inside, and has velocity dispersions at the Sun of σU ≈ σW ≈ 130 km s−1

(Brown et al. 2010). The factors multiplying |Lz | and Jz are approximately �φ/�R

and�z/�R at the solar position such that the halo model is approximately isotropic.
In addition to this action-based part, we include a simple Gaussian in metallicity
such that our halo edf is given by

fhalo(J, [Fe/H]) = fhalo(J)
e−([Fe/H]−Fh)/2σ2

F√
2πσ2

F

. (8.18)

We set the mean metallicity as Fh = −1.5 dex and the width of the metallicity
distribution function as σF = 0.5 dex. We assume all stars in the halo are of age
12Gyr. Inwhat follows, theweight of the halo, khalo, is allowed to vary, but we expect
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that it will be such that the halo contributes∼0.1% in the solar neighbourhood (Jurić
et al. 2008).

8.3 Data

Here we present and discuss the data that will prove useful for fitting and comparing
with our model. For working with the extended distribution functions, we require
7D data (6D phase-space coordinates and the metallicity [M/H]). We use 7D data
from the GCS and SEGUE survey, complemented by the stellar density data from
Gilmore and Reid (1983). Additionally, we use the peculiar solar velocity from
Schönrich et al. (2010), we place the Sun at R0 = 8 kpc and z0 = 0.014 kpc (Binney
et al. 1997), and we use the adjusted Dehnen and Binney (1998) potential detailed
in the previous chapter.

8.3.1 Geneva-Copenhagen Survey

TheGeneva-Copenhagen Survey (GCS) (Nordström et al. 2004) is a sample of 16682
nearby F and G stars extending out to ∼200pc. Through a combination of uvbyβ
photometry, radial velocity, Hipparcos parallax and proper motion observations, the
catalogue provides a view of the chemo-dynamical structure of the solar neigh-
bourhood. We use the most recent re-analysis of the survey from Casagrande et al.
(2011). These authors used the infrared flux method (IRFM) to produce more con-
sistent effective temperature and metallicity scales. This re-analysis found that the
stars were on average 0.1 dex more metal rich than in previous analyses. We use
all stars in the catalogue with proper motions and that were flagged by Casagrande
et al. (2011) as having reliable metallicity determinations. This reduces the data set
to 12723 stars.

The local nature of the GCS means that it is dominated by thin disc stars, and
the influence of the thick disc is subtle (Binney 2012a). Due to the accuracy of the
Hipparcos parallaxes, the GCS provides us with accurate velocity histograms for
the solar neighbourhood. The accuracy of the parallaxes has led to the discovery
of substructure in the solar neighbourhood (Dehnen 1998). Both the vR and vφ

velocity distributions are rich with substructure (see Chap.2). In particular, the peak
of the vφ distribution is due to the Hyades moving group, and the flat-top of the vR

distribution is due to the Hyades and Sirius moving groups. The vz distribution is
free of substructure (Dehnen 1998). The presence of this substructure is important
when attempting to fit a zeroth order model as it makes the comparison of model and
data more difficult to interpret.

The 7D data we use for each star are (l, b,�, v||,μ, [Fe/H]), along with the
corresponding errors, where � is the parallax and the other symbols have their usual

http://dx.doi.org/10.1007/978-3-319-18772-3_2
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meanings. We adopt the reported errors in (l, b,�, v||,μ, and following Casagrande
et al. (2011) we use σ[Fe/H] = 0.12 dex for all stars.

8.3.2 SEGUE G dwarfs

The Sloan Extension for Galactic Understanding and Exploration (SEGUE) (Yanny
et al. 2009) is a low-resolution spectroscopic survey of stars fainter than 14th mag-
nitude, complemented by ugriz photometry. As such, it provides a view of the outer
parts of the disc, dominated by the thick disc, and the stellar halo of the Galaxy, and
so complements themore local GCS sample. The SEGUEdata are available as part of
SDSS DR10 (Ahn et al. 2014). These data were reduced using an improved SEGUE
Stellar Parameter Pipeline (SSPP) (Smolinski et al. 2011), which, like the latest
GCS re-analysis, used the IRFM to produce more consistent effective temperatures.
However, this did not significantly affect the obtained metallicities.

Here we use all SEGUE data that satisfy the SEGUE target selection criteria for
G dwarfs. A SEGUE program ‘G dwarf’ is defined as lying in the colour-magnitude
range 14 < r < 20.2 and 0.48 < g − r < 0.55. These selected stars produced valid
parameter estimates from the SSPP, are fainter than r < 15 to ensure completeness
at the bright end, and were not flagged as noisy or with a temperature mismatch. In
addition, we also impose a cut in surface gravity (log g ≥ 4.2) to ensure we are only
observing dwarf stars, remove all stars with SNR< 15, remove those stars in fields
with E(B − V ) ≥ 0.3 from the Schlegel et al. (1998) extinction maps, and remove
those stars with no measured radial velocity or proper motions. The final sample
contains 18,575 stars.

We estimate the distances using the method presented in Schlesinger et al. (2012).
The majority of the stars are from the outer disc, so we expect them to be old. We,
therefore, assume all stars have an age of 10Gyr. Using the 10Gyr YREC isochrone
provided by An et al. (2009), we first bracket the provided metallicity for each
star with two isochrones. For each isochrone, we find the closest entry to the star’s
reported (g − r) colour. The ugriz magnitudes are found by linearly interpolating
between the two entries in each isochrone. The distance s is determined by averaging
the five estimates from each of the extinction-corrected ugriz bands. We make no
consideration of the errors in the colours, magnitudes and metallicities. A Bayesian
distance-estimation algorithm, such as that presented by Burnett and Binney (2010),
would be preferable. However, for dwarf stars, we expect the cruder estimates to be
equally valid. Schlesinger et al. estimate the errors in the obtained distances using
the method presented here. They estimate that there is a random distance uncertainty
of 18% for stars with [Fe/H] > −0.5 dex, and 8% for more metal-poor stars.
Additionally, there are systematic distance uncertainties arising from the single-age
assumption (expected to produce a −3% shift for the metal-rich stars), the presence
of undetected binaries and errors in the isochrones.

The 7D datawe use for each star are (l, b, s, v||,μ, [Fe/H]), and associated errors.
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8.3.3 Gilmore-Reid Density Curve

Gilmore and Reid (1983) measured the stellar density as a function of distance away
from the Galactic plane, by observing a sample of K dwarfs towards the South
Galactic Pole. This was the first study to indicate the existence of a thick disc.

8.4 Selection Functions

Before comparing our model to data, we must understand the selection effects of a
survey. Here we will discuss how we include the selection function in our modelling
approach, the selection functions for the GCS and the SEGUE survey, and how we
can potentially avoid explicitly using the selection function. The selection function
of a survey is the probability of a star being in the catalogue given its properties.
The selection is nearly always done on the basis of the observed properties of a star.
If we denote S as meaning ‘in the survey’, the probability of the data, D, given the
model, M , and given it is in the survey, S, is given by

p(D|M, S) = p(S|D)p(D|M)

p(S|M)
, (8.19)

where we call p(S|D) the selection function, p(D|M) the distribution function, and
p(S|M) is a normalising constant that only comes into play when fitting the model
to the data.

Often stars are selected on the basis of their colours and magnitudes. In the case
of spectroscopic surveys, e.g. SEGUE and RAVE, the colours and magnitudes from
a large photometric survey are used to choose stars that are then spectroscopically
observed. To relate colours and magnitudes to the physically interesting stellar prop-
erties, e.g. age and metallicity, we must engage with isochrones. An isochrone gives
the properties of a population of stars of age, τ , and metallicity, [Fe/H], each born
with some initial mass, m. We use 19 BaSTI isochrones (Pietrinferni et al. 2004)
spaced by ∼0.25Gyr for τ < 2Gyr and 1Gyr for τ > 2Gyr of 12 different metal-
licities listed in Table8.1. We assume that all populations of fixed metallicity and age
were born with a universal initial mass function (IMF), ξ(m). We adopt the Kroupa
et al. (1993) IMF given by

ξ(m) ∝
⎧⎨
⎩
0.035m−1.3 if 0.08 ≤ m < 0.5
0.019m−2.2 if 0.5 ≤ m < 1.0
0.019m−2.7 if m ≥ 1.0.

(8.20)
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Table 8.1 Metallicities of the BaSTI isochrones used

Z Y [Fe/H]

0.00001 0.245 −3.27

0.0001 0.245 −2.27

0.0003 0.245 −1.79

0.0006 0.246 −1.49

0.001 0.246 −1.27

0.002 0.248 −0.96

0.004 0.251 −0.66

0.008 0.256 −0.35

0.01 0.259 −0.25

0.0198 0.2734 0.06

0.03 0.288 0.26

0.04 0.303 0.40

Here m is the mass of the star in units of the solar mass. With this choice, we can
write down our full distribution function as

f (x, v, [Fe/H], τ , m)= f (x, v, [Fe/H], τ )ξ(m)=
∫
dL ′

z f (J, [Fe/H], τ , L ′
z)ξ(m).

(8.21)
For later purposes, the selection functions considered will be in colour, apparent

magnitude, l and b. A combination of m, [Fe/H] and τ uniquely determine a colour
and an absolutemagnitude from the isochrones. Coupledwith a distance, the absolute
magnitude uniquely defines an apparent magnitude. Therefore, we can consider a
selection in colour andmagnitude as a selection inmass,metallicity, age and distance.
We will assume that the form of this selection function is independent of the line of
sight (l, b) and the line of sight only affects the scaling of the selection function i.e.
the completeness. For later purposes, we will use the reported l and b to construct
catalogues so the completeness is not an issue.

If we want to determine the distribution of the arguments of our distribution
function, X = (x, v, τ , [Fe/H], L ′

z) with a selection of this form we write

p(X|M, S) ∝
∫

dm p(S|s, m, τ , [Fe/H])ξ(m) f (X) = p(S|s, τ , [Fe/H]) f (X),

(8.22)
where p(S|s, τ , [Fe/H]) = ∫

dm p(S|s, m, τ , [Fe/H])ξ(m). p(S|s, τ , [Fe/H]) can
be calculated independent of the dynamical model. This is useful as we must engage
with the isochrones only once. The resulting pre-tabulation can then be interpolated
for any choice of (τ , s, [Fe/H]) and any call outside the grid uses the nearest grid
point. This formulation is also useful as we can still use the results from the previous
section but with f replaced by p(S|s, τ , [Fe/H]) f .
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Fig. 8.2 GCS selection function for a star at 60 pc. The left panel shows the selection in age
coloured by metallicity, and vice versa for the right panel

8.4.1 GCS Selection Function

For the GCS, we use the selection function in Schönrich and Binney (2009). This
selection function was approximately constructed using the selection rules from
Nordström et al. (2004) and comparison with the target catalogues. The result is a
simple selection function in Strömgren colour (b − y) and apparent magnitude, v.
Following Schönrich and Binney (2009), we cut the isochrones at the bottom of the
red giant branch reported in the BaSTI isochrones. This cut is not strict enough as
it still includes many horizontal branch isochrone points not observed in the GCS.
Therefore, we also cut all isochrone points with My < 1 and My < −62.5(log Teff −
3.78) to approximately reproduce the edge of the sample observed by Casagrande
et al. (2011). For each isochrone, we form a grid in the logarithm of distance between
a minimum and maximum value when the selection function falls to zero. At each
distance s, we find

∫
dm p(SGC S |s, m, τ , [Fe/H])ξ(m) for each isochrone. Thus, we

construct a 3D grid that may be interpolated for any choice of (s, τ , [Fe/H]). The
resulting selection function is shown in Fig. 8.2 for a star located at s = 60 pc. We
see that it peaks at around 2Gyr, where the majority of stars in GCS lie (Casagrande
et al. 2011).

8.4.2 SEGUE Selection Function

In Bovy et al. (2012), it is shown that the SEGUE G dwarf selection is uniform in
(g −r) and a near step function in r . The position of this step depends upon the plate
P , in particular whether it is a bright or faint plate, and has the functional form

p(S|r, g − r, P) = WP

2

[
1 − tanh

(r − rcut + 0.1

exp(−3)

)]
(8.23)
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Fig. 8.3 SEGUE selection function for a star at 2.5 pc for the faint plate #1881. The left panel
shows the selection in age coloured by metallicity, and vice versa for the right panel

where rcut depends upon the plate, and WP is the proportion of spectroscopic objects
to number of targets in SDSS. The selection function is set to zero outside the r
magnitude interval [14.5, 17.8] for bright plates and [17.8, 20.2] for faint plates. We
use the publicly available code from Bovy et al. (2012) to find the location of rcut
for each plate by comparison to SDSS. In Fig. 8.3, we show the selection function
for a star at 2.5 kpc observed in the faint plate #1881. We see that it is approximately
flat with age and falls to zero for [Fe/H] > −0.3 dex. Even without a physically-
motivatedmodel i.e. one inwhich the stars at high altitude aremetal-poor, the SEGUE
selection function is such that metal-poor stars are preferentially selected.

8.4.3 Using Minimal Knowledge of the Selection Function

We have detailed appropriate selection functions for the GCS and the SEGUE sur-
vey based on the targeting strategy for these surveys. However, often the selection
function of a survey can be very complex and depend on many historical and social
factors. In these cases, it may be difficult to accurately construct the selection func-
tion to allow for an appropriate model and data comparison. However, there is still
an appropriate route to take which we will discuss here.

Say, from a survey, we have a complete set of observables for each star denoted X .
If we know that the survey is constructed by selecting in a subset of these observables,
denoted y ⊂ X , then there is a subset of observables that have not been explicitly
selected in, which we denote x = X − y. For instance, we may know that the
selection was performed in colour but not in velocity. Therefore, the velocities are
free from an explicit selection but they are implicitly biased by the selection due
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to any relationship in the model between velocity and colour, e.g. bluer stars are
younger and so have a lower velocity dispersion, hence we preferentially choose
smaller velocities given a colour cut that selects blue stars.

In this case, we can still proceed by considering the conditional probability
p(x| y, S). We write

p(x| y, S) = p(x, y, S)

p( y, S)
= p(S|x, y)p(X)

p(S| y)p( y)
= p(S|x, y)p(X)

p(S| y)
∫
dn x p( y, x)

. (8.24)

We know that the selection is only in the observables y so p(S|x, y) = p(S| y).
Therefore, we find that

p(x| y, S) = p(X)∫
dn x p( y, x)

= p(x| y). (8.25)

The conditional probability of the observables x given the other observables y and the
fact this star is in the selection S is just the conditional probability of the observables
x given the other observables y. We do not need to know the explicit form for the
selection function, just that we have selected only in y.

This argument is the underpinning for modelling the disc using only the velocity
histograms (Binney 2012a; Binney et al. 2014). For a survey such as RAVE, the
selection is not performed on the line-of-sight velocities or proper motions. There-
fore, given a set of observables y, we can sample a set of velocities from the model
from which we can construct histograms to compare with the data. However, we
must be sure we use all the selected observables y. By not using all the selected
observables, we will not restrict ourselves to stars of certain ages, which will affect
the velocity distributions.

This route around the problem of the selection function seems useful, as we have
avoided explicitly engaging with the selection function. It is particularly useful when
constructing mock catalogues for surveys. However, the disadvantage is that we end
up not using all of the available information to the full. For instance, consider the
case of the RAVE velocity sampling. With a full dynamical distribution function,
the power comes from the link between the spatial and velocity distributions, which
are tied to the potential. For a fixed potential, we may be able to find a velocity
distribution that matches the data, but the spatial distribution will then not match the
data unlesswe have found the true potential. If we consider only velocity information,
we lose this power and can only rely on spatial gradients in the velocity distribution
for any constraint. Therefore, for constraining the potential, it seems necessary to
use all the available information, which means engaging with the selection function.

The second problem with the above approach is that it has increased the computa-
tion we need to do when fitting the data. If we use Eq. (8.19) to fit the data, we must
calculate the denominator p(S) once to an appropriate precision such that, when
multiplied by the number of data points, the noise does not dominate our posterior
probability (McMillan and Binney 2013). However, this is a single computation for
each considered model. When we do not explicitly use the selection function, as in



202 8 Extended Distribution Functions for the Galactic Disc

Eq. (8.25), we must compute the denominator
∫
dn x p( y, x) for each datum. One

way of approaching this is to tabulate the integral on a grid in y and interpolate.
However, the dimensionality of the grid can be large, and it is challenging to reduce
interpolation errors such that the noise does not dominate the posterior probability.

In conclusion, not explicitly using the selection function seems an attractive route,
but we are not using all the available information to the full, and the increase in
computation for a given model can be large. However, in certain cases it may be
the only way to proceed. For the rest of the chapter, we will consider the selection
function explicitly.

8.5 Choice of Parameters

We now turn to fitting our edf to the discussed data. To choose the parameters of
our model, we use the GCS and Gilmore-Reid data, and vary the 15 parameters:

Thin: Rd,thin, Rσ,thin,σR0,thin,σz0,thin; (8.26)

Thick: Rd,thick, Rσ,thick,σR0,thick,σz0,thick,F; (8.27)

Metallicity: σL , τF , FR, Fm, RF ; (8.28)

Halo: khalo. (8.29)

We seek to maximise p(D|SGCS, M) given by

p(D|SGCS, M) =
∏

i

p(li , bi ,�i , v||i ,μi , [Fe/H]i |SGCS), (8.30)

where

p(l, b,�, v||,μ, [Fe/H]|SGCS, M) = 1

p(SGCS)

∫
d5g′ G5(g − g′,σg)

×s′6 cos b
∫

dτ p(SGCS|s′, τ , [Fe/H]′)
× f (x′, v′, τ , [Fe/H]′),

(8.31)

where G5 is a 5D Gaussian to give the convolution of the observables g =
(�, [Fe/H], v||,μ) with the errors σg and the primed quantities are functions of
g′. p(SGCS|s′, τ , [Fe/H]′) is the selection function as detailed in Sect. 8.4.1. We per-
form the integral over the errors (g′) using Monte Carlo integration. We use a fixed
sampling of 100 per star to remove numerical noise (McMillan and Binney 2013)
and it allows for pre-computation of the actions. If we were to resample the Monte
Carlo sampling points for each set of parameters of our distribution function, we
would be very sensitive to the noise in the integration. By using a fixed sampling,
we have removed this numerical noise such that the log-likelihood should vary more
smoothly as we traverse the parameter space.
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We assume that the completeness along each line-of-sight is the same such that

p(SGCS|M) =
∫

dl db ds s2 cos b
∫

d3v d[Fe/H] dτ dL ′
z p(S|s, τ , [Fe/H])

× f (x, v, τ , [Fe/H], L ′
z). (8.32)

We perform this integral using theVegas algorithm implemented in the cuba pack-
age Hahn (2005).

We also use the Gilmore-Reid data in the fits. The log-likelihood of the Gilmore-
Reid data is given by

logLGR =
∑

z

∣∣∣ log10[ρGR(z)/ρDF(z)]
σGR(z)

∣∣∣2, (8.33)

where ρGR is the density profile from Gilmore and Reid (1983), σGR are the errors
in log10(ρGR) and ρDF is the density profile calculated using the edf integrated over
all metallicities. The quantity we seek to maximise is

logL = log p(DGCS|SGCS, M) + χ logLGR. (8.34)

We perform this procedure using the Nelder-Mead multi-dimensional minimization
routine (Nelder and Mead 1965) implemented in the Gnu Science Library (Galassi
et al. 2009). χ is some weight which we set to 10. This is to encourage the fitting
procedure to take the rather few Gilmore-Reid data points seriously. The results of
this procedure are shown in Table8.2.

Table 8.2 edf Parameters:
parameters found from the
fitting procedure presented in
Sect. 8.5 and used to produce
mock catalogues in Sect. 8.6

Thick Rd/ kpc 2.9662

Rσ / kpc 5.82241

σR0/ km s−1 49.1744

σz0/ km s−1 52.1151

Thin Rd/ kpc 2.55303

Rσ / kpc 9.25603

σR0/ km s−1 45.9825

σz0/ km s−1 28.4704

Other FR /dex kpc−1 −0.0576

Fm /dex −0.951

F 0.1945

γT 0.5

σL /100 kpc km s−1 9.96

τF /Gyr 4.48

RF /kpc 6.94

khalo 1.43 × 10−3
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We note that whilst this procedure is statistically sound, we know the model will
not perfectly match the data because (i) we are using a fixed potential, (ii) our model
ignores substructure like that seen in the GCS velocity distribution, and (iii) the
Nelder-Mead algorithm is likely to select a local minimum, particularly for high-
dimensional problems. For our purposes, we want a model that is a good, but not
statistically optimal, representation of the data. The initial choice of parameters was
chosen by eye, so the results reflect some of this personal judgement.

In Appendix I, we present the results of a much fuller MCMC search of the
parameters. From the full MCMC procedure, we find that the scale-length of the thin
disc (Rd = 2.9 kpc ± 0.2 kpc) is longer than that of the thick disc (Rd = 2.3 kpc ±
0.3 kpc) (as in Bovy et al. 2012). The velocity-dispersion scale-length of the thin disc
is found to be Rσ = (9.5 ± 0.5) kpc and for the thick disc Rσ = (4.8 ± 0.2) kpc.
The velocity dispersions were well constrained as σR0 = (47.3 ± 0.5) km s−1 and
σz0 = (31.5 ± 0.4) km s−1 for the thin disc and σR0 = (57 ± 3) km s−1 and σz0 =
(48 ± 2) km s−1 for the thick disc. Also, the thick disc fraction seems well pinned
down as F = (0.19 ± 0.01). However, as we will discuss later, the metallicity
distribution results are not favourable, so we have opted for the local minimum
solution from the Nelder-Mead algorithm.

8.6 Results

We now show results from the best-fitting model found using the procedure in
Sect. 8.5. We begin by inspecting the global properties of the model. In Fig. 8.4,
we show the global R and z profiles of the full model and of the individual compo-
nents. We see that the discs have a strong core that may in part be due to the radial
migration prescription. At the solar radius, the total radial profile is approximately
exponential with a scale-length of 3.7 kpc. The radial migration prescription has
broadened the discs slightly but maintained the exponential profile. Figure8.5 shows
the Gilmore-Reid density curve is well matched, although the density at low z is
slightly overestimated.

Fig. 8.4 R (at z = 0) and z (at R = R0) density profiles for the full extended distribution function
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Fig. 8.5 Full vertical density
profile at the solar radius
along with the data from
Gilmore and Reid (1983)

8.6.1 Sampling Mock Catalogues

To compare our model and data, we sample mock catalogues from the model. At
the reported l and b of each star we sample distance, metallicity and velocities. We
use a simple rejection-sampling technique using a uniform distribution in distance
and Gaussians in metallicity and Galactocentric velocities. We sample from the
distributions p(s, [Fe/H], vR, vφ, vz |li , bi , Sk) (where i denotes the datum and k the
survey), convert the quantities toGalactic coordinates and scatter by the reported error
in the datum. For this procedure to be valid, we require the errors in the observables
to be independent of s, [Fe/H], vR , vφ and vz . In the histograms that follow, we use
black points for the data, whilst the coloured points correspond to mock catalogues
drawn from the edf.

8.6.2 Apparent Magnitude Cut

Before comparing to actual data, we perform a brief experiment to demonstrate the
importance of selection functions and including metallicity information in the df.
We construct a sample of 10,000 stars along the line-of-sight l = 0, b = π/4 with
the selection function given by

p(S|V ) = 1 if V < 8 else 0. (8.35)

Such a selection function corresponds to a magnitude-limited sample. The resulting
metallicity and velocity distributions are shown in red in Fig. 8.6. We now turn the
selection function off (set p(S|s, τ , [Fe/H]) = 1) and resample the velocities given
l, b, distance and metallicity. The resulting distributions are also shown in Fig. 8.6
in blue. This procedure is performed to highlight the effects of a selection function
on the velocity distributions. If there are no correlations between the kinematics and
chemical properties of the stars, the velocity distributions of the twomock catalogues
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Fig. 8.6 Mock catalogues for a magnitude-limited survey. The red points gives the mock catalogue
constructed by samplingdistances,metallicities andvelocities along the line-of-sight l = 0,b = π/4
for a magnitude-complete sample out to V = 8. The blue points give the mock catalogue formed
by resampling the velocities given the metallicities and distances of the first mock catalogue with
the selection function switched off. In each plot, we show the Kolmogorov-Smirnov probabilities,
pKS, that the two samples were drawn from the same distribution

should be identical. However, in our model we have included chemo-dynamical
correlations, and we see there are small differences between the two samples. The
Kolmogorov-Smirnov probabilities that the two samples are drawn from the same
distribution are �10−7.

When we select in apparent magnitude, we are implicitly selecting in age. The
magnitude-limited sample hasmore young stars, and hence narrower velocity distrib-
utions. Althoughwe have not explicitly selected in kinematics, the chemo-dynamical
correlations in the model cause an implicit selection in the kinematics. When we turn
off the selection function, we are not biased in age and the resulting velocity distrib-
utions are broader. The adopted selection function is probably the simplest selection
function, and real surveys use muchmore complicated selection functions. This indi-
cates that the inclusion of these implicit selection effects are crucial for themodelling
of any data set, and that dfs must be extended to include metallicity information to
take account of these subtle biases.

We performed this experiment with a fainter cut of V = 10 and found that the
difference between the two velocity distributions was negligible. This fainter cut
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decreases the relative proportion of nearby young stars and increases the propor-
tion of distant old stars. The resulting age distribution of the sample is thus more
representative of that of the underlying population. As such the resulting velocity
distributions are more representative.

8.6.3 GCS

We now construct a mock catalogue for the GCS.We use the selection function given
in Sect. 8.4.1 and sample new distances, Galactocentric velocities and metallicities
given the l and b values for each star in the GCS catalogue. After we have drawn a
sample distance, metallicity and Galactocentric velocities, we calculate the proper
motions and line-of-sight velocities and scatter the observables by the reported errors
for each star. This procedure neglects any correlation between the errors and distance,
metallicity or velocity. The most prominent correlation for the GCS sample is the
parallax error with the V magnitude (Pearson correlation coefficient between log V
and logσ� ≈ 0.6). However, the parallax error does not seem to correlate as well
with the parallax (correlation between log� and logσ� ≈ −0.2), so we neglect this
effect and simply use the reported parallax errors for each star.

In Fig. 8.7, we show the distance distribution of the data and mock sample. The
data distribution is offset from the mock distribution such that we have too few
distant stars and too many close stars. Over the small volume that the GCS probes
the distance distribution is a far stronger function of the selection function than it is
of the underlying model. Therefore, the differences in the data and model distance
distributions indicate that the selection function is not optimal. Note that due to
our method of assigning observational errors to each star, we anticipate that the
low distance stars will have, on average, been assigned higher distance errors than
expected, whilst the opposite is true for the high distance stars. From the correlation
coefficients calculated previously, we expect this effect is small. However, it would
produce a signal of this kind.

Fig. 8.7 GCS distance distributions: black shows the data, red the mock catalogue
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In Fig. 8.8, we show the metallicity and velocity distributions.1 The model (red
points) fails to produce the metal-rich wing of the metallicity distributions. It is not
clearwhether themetallicity error estimation for these extremal stars is reliable.How-
ever, assuming they are valid measurements, our model has too few high-metallicity
stars. We have chosen to evaluate the velocity dispersion parameters at the current
angular momentum. However, as noted earlier, this is an approximation and, in fact,
the heating is due to a series of environments through which the star migrates. Stars
from the inner discwill have been heatedmore thanwe have allowed,which increases
the number of high-action stars and high-metallicity stars at the solar position.

Another more important problem with the edf is the restrictive nature of our
model for the ISM as a function of radius. The full MCMC procedure detailed in
Appendix I shows that the data favours a very large σL , whilst FR (the gradient of
the ISM metallicity with radius) is well constrained by the low-action GCS stars as
FR = (−0.055± 0.005)dex/kpc. Our model for the ISM assumes an approximately
linear gradient with radius from the solar radius to the Galactic centre, such that the
metallicity at the Galactic centre in the model is ∼0.38 dex. Therefore, there are
essentially no stars in our edf with metallicities greater than this (the halo df has
small but non-zero weight at high metallicities). Our model believes that all of the
data with metallicities higher than this are due to observational errors. With small
FR , models with a very large σL are favoured as these have more metal-rich stars in
the solar neighbourhood. However, suchmodels are disfavoured on physical grounds
as larger σL broadens the disc such that the scale-length becomes large and the disc
loses its exponential profile. The GCS data is not sensitive to these effects due to its
local nature.

The situation should be remedied by making the ISM metallicity model more
flexible. We require the metallicity to increase non-linearly towards the Galactic
centre (for instance, we could use an exponential). Note that Schönrich and Binney
(2009) used a very steepmetallicity gradient in the ISM, so this problemwas avoided.
Clearly, with a simplistic model for the ISM, there is some tension between the
gradient today and the number of metal-rich stars observed locally.

The velocity distributions in Fig. 8.8 are fitted well by the model, particularly
the vR and vz distributions. The model vφ distribution fails to match the peak of
the data distribution, but this peak is due to the Hyades stream, a non-equilibrium
feature thatwe are not concernedwithmatching. Figure8.9 shows themock catalogue
weighted by the thin-disc, thick-disc and halo membership probabilities.We see that,
as expected, the thin disc dominates. For [Fe/H] � 0.6 dex and vz � 50 km s−1, the
thick disc dominates.

In each of the plots in Fig. 8.8, we also show a mock catalogue generated by
sampling new metallicities and velocities at the solar position with the selection
function turned off (blue points). It is believed that the GCS velocity histograms
are fair samples of the local velocity distributions. If this is the case, the velocity
histograms for the two mock samples should be similar. Note that we have scattered

1We choose positive radial velocity, vR , to be away from the Galactic Centre and positive azimuthal
velocity, vφ, and hence positive angular momentum, Lz , to be in the direction of Galactic rotation.
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Fig. 8.8 GCSmetallicity and velocity distributions with a linear scale (left) and logarithmic (right):
the top row shows the metallicity distribution, second row the vR distribution, third row the vφ

distribution and the final row the vz distribution. The black shows the data, red the mock catalogue,
and blue if we only sample at the Sun
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Fig. 8.9 GCS weighted metallicity and velocity distributions: The model histograms are weighted
by the probability of being a member of the thin disc (black circles), the thick disc (red crosses) and
the halo (blue triangles). The top left shows themetallicity distribution, top right the vR distribution,
bottom left the vφ distribution and the bottom right the vz distribution

the sampled metallicities by the reported errors but not the velocities. The vR and vz

distributions of this mock sample are broader than the true GCS mock sample. This
is in part due to not including velocity errors in this second sample, but also we have
increased the number of high-age stars by turning off the selection function. This is
also seen in the metallicity distribution, which has a broader metal-poor wing.

We find a best-fitting vertical velocity dispersion parameter for the thin disc
of σz,thin ≈ 30 km s−1. Other fits to the Geneva-Copenhagen Survey data pro-
duce lower velocity dispersion parameters for the thin disc (e.g. Chap. 7 uses
σz,thin ≈ 20 km s−1). The reason for our higher σz,thin is the inclusion of a selection
function. The GCS preferentially selected low age stars (∼2Gyr, see Sect. 8.4.1), so
the model is weighted towards younger, colder populations. The velocity dispersion
of theGCS sample is smaller than that of the full population. This can be seen by com-
paring the two mock catalogues. From both the experiment of the previous section
with a magnitude-limited survey and the experiment shown here with the Geneva-
Copenhagen Survey, we see the importance of the selection function. Although the

http://dx.doi.org/10.1007/978-3-319-18772-3_7


8.6 Results 211

Fig. 8.10 2D histograms of metallicity [Fe/H] and azimuthal velocity vφ, and [Fe/H] against
absolute height above the plane |z|—the coloured histogram shows the data and the black contours
are for the mock catalogue. The red and green lines give the mean [Fe/H] in equal-width bins
centred on the dots for the data and model

velocities are not explicitly used to select the stars, there is an implicit velocity
selection due to the relationship between the velocity and the hidden parameter, age.

Figure8.10 shows the 2D histograms of [Fe/H]-vφ and [Fe/H]-|z|. The data and
models match well in these planes, and the means of vφ and |z| binned in metallicity
are well recovered with a small systematic of∼0.05 dex, due to the lack ofmetal-rich
stars.

Fig. 8.11 2D histograms of metallicity [Fe/H] and guiding-centre radius Rc and 1D [Fe/H] his-
tograms for three bins in Jz (top row Jz < 0.3 km s−1 kpc, middle row 0.3 km s−1 kpc < Jz <

1.3 km s−1 kpc, and bottom row Jz > 1.3 km s−1 kpc). The left two plots show the GCS data whilst
the right two show the mock GCS catalogue. We show the gradient d[Fe/H]/drc for the samples in
each bin excluding [Fe/H] < −1 dex and only using data with 6 kpc < Rc < 9 kpc above the rele-
vant plot, and the number of stars in each bin in the second and fourth column panels. The vertical
line shows the location of the peak of the data metallicity distribution in the lowest action bin
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Figure8.11 shows the gradients of the metallicity with respect to the guiding-
centre radius and the metallicity distributions in three bins in vertical action. In
all three action bins, the gradient is well recovered. Additionally, we find that the
metallicity distributions for all three action bins are well matched. Note that the peak
of the metallicity distributions remains fixed with increasing vertical action for both
the data and the model.

8.6.4 SEGUE G dwarfs

Using our extended distribution function from the previous section, we now construct
a mock SEGUE G dwarf catalogue. For each star in the G dwarf sample, we take the
l and b values and draw a new distance, metallicity and Galactocentric velocities,
convert to the observables and scatter by the reported errors. We found that the halo
weight, khalo, was too large, so we reduced khalo by a factor of six. The GCS does
not constrain the halo properties well, and the strongest constraint on khalo comes
from the Gilmore-Reid data. By making this alteration, the higher-z densities are
underestimated. However, the degree to which we can trust these high-z densities is
unclear. Additionally, the problem could be that our models are not appropriate. The
halo distribution is intentionally very crude, and there is the suggestion from Binney
et al. (2014) that the Jz distribution for the thick disc is not appropriate. Therefore,
there is plenty of scope for adjusting the models, and it is clear that the model we
have presented here is not optimal.

We plot the resulting data and model distance distributions in Fig. 8.12. Despite
using only the local GCS sample and the Gilmore-Reid density curve to fit our
parameters, we see that the resulting distance distribution of our model matches
the SEGUE data well. Additionally, we have used different isochrones to find the
distances to the G dwarfs and then to construct our model. This indicates the errors
in the distances obtained from the isochrones are accurate.

Fig. 8.12 SEGUE distance distributions: black shows the data, red the mock catalogue
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�Fig. 8.13 SEGUE metallicity and velocity distributions with a linear scale (left) and logarithmic
(right): the top row shows the metallicity distribution, second row the vR distribution, third row the
vφ distribution and the final row the vz distribution. The black shows the data and red the mock
catalogue

In Fig. 8.13, we plot the metallicity and velocity distributions of both the data
and the model. The velocity distributions are a good match—the vR distribution
matches very well; the mock vφ distribution fails to match the data peak and is
slightly broader than the data, which is perhaps due to a sub-optimal potential; the vz

distribution broadly matches the data but the mean of the data distribution is clearly
offset from zero. There has been much in the literature recently associating mean
vertical velocity shifts with modes in the disc (e.g. Widrow et al. 2012; Williams
et al. 2013). However, this shift in the peak could be equally well accounted for by
systematic distance errors or zero-point errors in the SDSS proper motions.

The metallicity distribution in Fig. 8.13 is a very poor match to the data. We see
that our metallicity distribution peaks at a much lower metallicity than the data. This

Fig. 8.14 SEGUE weighted metallicity and velocity distributions: The model histograms are
weighted by the probability of being a member of the thin disc (black circles), the thick disc
(red crosses) and the halo (blue triangles). The top left shows the metallicity distribution, top right
the vR distribution, bottom left the vφ distribution and the bottom right the vz distribution
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discrepancy can be amended by adjusting the star-formation rate in the thick disc in
our model. This is entirely valid as currently we have adopted an overly simplistic
uniform star-formation rate. The other option for resolving the discrepancy is to
revise themetallicity estimates from the SEGUE pipeline. Schönrich and Bergemann
(2014) argue that there is a bias in the SEGUE stellar parameter pipeline that causes
an artificial build-up of stars at [Fe/H] ≈ −0.5 dex.

In Fig. 8.14, we show the metallicity and velocity distributions weighted by the
probability of being a member of the thin disc, thick disc or halo. The thick disc
is dominant with the thin disc forming an important contribution to the metallicity
distributions at metallicities [Fe/H] � −0.5 dex.

In Fig. 8.15, we show the 2D histograms of metallicity and vφ, and metallicity
and |z|. The broad trends are reproduced, but there is a clear offset in the means of
∼ 0.1 dex for intermediate z (1 kpc < |z| < 2 kpc) and high vφ (vφ > 180 km s−1).
Finally, in Fig. 8.16 we show the 2D metallicity—guiding-centre-radius histograms
separated by vertical action. As noted in Lee et al. (2011), the α-enhanced stars
exhibit a positive gradient of vφ with metallicity. We see that, for all vertical-action
bins, the metallicity gradient with guiding-centre radius is positive, unlike for the
GCS. Our model fails to match this. This is due to the simplicity of our model
for the thick disc. We have assumed the thick disc is a single homogeneous quasi-
isothermal. However, much like the thin disc, it should be made a superposition
of quasi-isothermals. To account for the positive gradient, we require inside-out
formation such that the scale-length of the thick disc is a decreasing function of age.
The populations migrating from inside are dominated by metal-poor stars, whilst
those from outside are dominated by metal-rich stars. Additionally, we could make
the velocity dispersion parameters or star-formation rate a function of age for the
thick disc.

Also, in Fig. 8.16, we show the metallicity histograms in each vertical-action bin.
The high-action bin provides a good match to the data, but, for the low-action bin,
the data are mono-modal, whilst we produce a flat-topped, near bimodal distribution

Fig. 8.15 2D histograms of metallicity [Fe/H] and azimuthal velocity vφ, and [Fe/H] against
absolute height above the plane |z| for the SEGUE data and mock sample—the coloured histogram
shows the data and the black contours are for the mock catalogue. The red and green lines give the
mean [Fe/H] in equal-width bins centred on the dots for the data and model
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Fig. 8.16 2D histograms of metallicity [Fe/H] and guiding-centre radius Rc and 1D [Fe/H] his-
tograms for three bins in Jz (top row Jz < 22.3 km s−1 kpc, middle row 22.3 km s−1 kpc < Jz <

100 km s−1 kpc, and bottom row Jz > 100 km s−1 kpc). The left two plots show the SEGUE G
dwarf data, whilst the right two show the mock SEGUE G dwarf catalogue. We show the gradient
d[Fe/H]/dRc for the samples in each bin excluding [Fe/H] < −1 dex above the relevant plot, and
the number of stars in each bin in the second and fourth column panels. The vertical line shows the
location of the peak of the data metallicity distribution in the lowest action bin

due to the competing contributions from the thin and thick discs. This could also be
remedied by making the thick disc a superposition of populations.

8.7 Conclusions

We have presented a simple extension of the action-based distribution functions
presented in Binney (2012a) to include metallicity information. Inspired by the full
chemo-dynamical evolution models of Schönrich and Binney (2009), we included
analytically the relationship between metallicity and dynamics. The model explicitly
includes a radial migration prescription that causes the solar metallicity distribution
to broaden due to stars migrating from the inner and outer disc. This is the first time
an action-based df has been extended to include metallicity and compared to data.

All surveys are subject to selection functions in magnitude, and hence metallicity.
The kinematics depend upon the metallicity, so, in general, any selection in metal-
licity affects the velocity distributions. Therefore, any distribution function that does
not include metallicity information has limited use for modelling large Galactic data
sets. Additionally, the correlations between metallicity and kinematics reveal infor-
mation about the history of the Galaxy. The metallicity indicates where a star was
born, which, when combined with its current kinematics, provides information on
the history of a star in the Galaxy. Finally, extended dynamical distribution functions



8.7 Conclusions 217

are a useful platform on which to constrain the Galactic potential, as each unique
chemical population has different dynamics that must be consistent with the same
Galactic potential. Our presented edfs are an important step towards fully modelling
current and future Galactic data.

We fitted the parameters of our extended distribution function to the Geneva-
Copenhagen survey (GCS) and the Gilmore and Reid (1983) stellar density curve.
From the resulting model, we sampled a mock GCS catalogue and compared to the
data. Our model reproduced many features of the data, but failed to produce the
required number of high metallicity stars. This is believed to be due to the simplistic
model of the metallicity of the ISM adopted.

The edf allows us to test the effects of selections in magnitude and colour on
the kinematics of the observed sample. To observe the effects of a simple selection
function on the kinematics, we constructed a magnitude-limited sample of stars
along a single line-of-sight and compared the resulting velocity distributions of the
sample to a catalogue formed by neglecting the implicit selection in velocities that
results from the selection function. We found that the sample which neglected the
selection function had slightly broader velocity distributions as there are more old
stars included in the sample than in the selected sample. Even with the simplest
selection function, one must take into account the selection function to truly model
the dynamics.

TheGCSvelocity distributions are believed to be a fair sample of the local velocity
distributions. To test this, we drew a sample of stars from our edf that are all at the
solar position, and are not subject to any colour-magnitude selection. We found that
this sample had broader velocity distributions than the full colour-magnitude-selected
sample, due to the hidden selection in age. Finally, we constructed a mock SEGUE
G dwarf sample and compared to the data. The data and model provided a good
match with the velocity distributions, but not such a good match with the metallicity
distribution. This could be due to inconsistent metallicity scales between the GCS
and SEGUE, or point to the need for a more refined model to fit the wealth of data.
Additionally, our model failed to reproduce the positive gradients of [Fe/H] with Rc
observed for the SEGUE G dwarfs.

8.7.1 Future Work

The models presented in this chapter should prove extremely powerful for modelling
data from current and future Galactic surveys.We now discuss the direction this work
should be developed in the future, and what we can hope to achieve with the edfs.

1. Initially, we should make adjustments to the model that seem necessary in light
of the results of the chapter. Here we have treated the thick disc as a single
homogeneous quasi-isothermal, but, like with the thin disc, the thick disc should
be made a superposition of quasi-isothermals. This seems necessary in light of
the SEGUE G dwarf data, which require a positive gradient of [Fe/H] with
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guiding-centre radius. This requires the thick disc to be composed of a series of
edfs with decreasing scale-length. We have also seen the importance of correctly
modelling the selection function for understanding of the thin disc. Additionally,
we have seen that our model of the ISM with radius at the current time is not
appropriate, so it is necessary make the model more flexible to account for a
changing gradient with Galactocentric radius.

2. The next step for the extended distribution function modelling is to fit the model
to the RAVE (Kordopatis et al. 2013) and upcoming Gaia-ESO (Gilmore et al.
2012) data. Both surveys provide ∼105 stars at intermediate distances from the
Galactic plane, so nicely complement the thin-disc-dominated view from theGCS
and the thick-disc dominated view from the SEGUE survey. Binney et al. (2014)
has shown that the dfs provide a good account of the RAVE data, whilst Piffl et al.
(2014) used the RAVE stars to constrain the Galactic potential. These analyses
essentially assumed the selection function of the RAVE survey is uniform in
age, and they did not use the metallicity information. The edf models should
be used to repeat this analysis to simultaneously constrain the Galactic potential
and uncover signatures of evolutionary processes in the Galaxy, such as radial
migration. Gaia-ESO will provide higher-resolution spectra than RAVE, so will
produce more accurate metallicities, as well as being able to see fainter stars. The
constraints from these two surveys should be highly complementary.

3. Additionally, the edf should be extended further to account for the [α/Fe] abun-
dances of the stars. [α/Fe] is a crucial quantity for measuring the age of a star, and
the ([α/Fe], [Fe/H]) plane is a powerful space to disentangle different Galactic
populations (Schönrich and Binney 2009; Bovy et al. 2012).

4. As discussed in Sect. 8.2, the extended distribution function presented here is only
an approximation to amore physically rigorous extendeddistribution function that
explicitly follows the full action-space diffusion. Construction of such models
is possible through either a Monte-Carlo route or by solving the Fokker-Planck
equation on a discrete action-space grid. Both of these routes require action-space
kernels, which may be produced by theoretical calculations or extracted from full
N -body simulations.
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Chapter 9
Conclusions

9.1 Overview

MilkyWay science is blossoming. The recent launch of theGaia satellite has heralded
a new era in the study of the Milky Way and presents exciting prospects for the field
of galactic astronomy. Gaia will take an unprecedented stereoscopic census of one
billion stars in our Galaxy. The huge quantity of data will enable us to view the
present structure of the Galaxy, investigate the formation and history of the Galaxy,
understand the structure of the dark matter that envelopes the Milky Way and test
theories of galaxy formation.

The Milky Way is a highly complex object with many dynamical and chemical
processes continuously occurring. As with any complex physical system, an under-
standing can be gained only through simplification. This takes the form of modelling
that focusses on the key physics of the problem and neglects any processes that are
of secondary importance. In the era of Gaia, the union of sophisticated models and
large quantities of data are necessary for extracting all possible information from the
data, and advancing our understanding of the Milky Way and all galaxies.

To this end, appropriatemethodsmust be developed to synthesise data fromseveral
surveys and extract the important information. In this thesis, we have presented a
variety of methods for exploiting data with sophisticated modelling techniques. We
briefly detail the conclusions of each chapter below.

9.1.1 Angle-Action Estimation in a General
Axisymmetric Potential

Angle-action coordinates are known to be very useful variables in Galactic dynam-
ics. However, we can calculate these variables exactly only in a very limited
set of potentials. In Chap. 2, we presented algorithms for estimating the angle-
action variables in general axisymmetric potentials. The first, and most thoroughly
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explored method proceeds by first fitting the region an orbit probes with a Stäckel
potential, and then estimating the angles and actions in the true potential as those in
the fitted Stäckel potential. We investigated the accuracy of the method for a range of
tori in a realistic Galactic potential, and we presented an application of the method
by inspecting the Geneva-Copenhagen survey in angle-action space. We presented
another new method for finding the actions based on the adiabatic approximation
(Binney 2010; Schönrich and Binney 2012) but assuming the orbit is separable in
spheroidal coordinates. We compared the accuracy of the action estimates and the
computation time for these two methods as well as the axisymmetric Stäckel fudge
from Binney (2012a) and the adiabatic approximation from Schönrich and Binney
(2012). Finally, we showed how these approximate non-convergent methods can be
combined with more accurate results from torus construction (McMillan and Binney
2008) to produce an efficient, and powerful, iterative scheme for finding the actions.

9.1.2 Actions, Angles and Frequencies from Numerically
Integrated Orbits

When the potential is axisymmetric, the routines fromChap. 2 are suitable for finding
actions and angles. For a more general potential e.g. triaxial, such as those from an
N -body simulation, we must develop more general algorithms to find the angles and
actions from a series of phase-space points. In Chap.3, we presented a method that
proceeds by constructing a generating function to take us from an analytic torus to
our target torus, and solves for the components of this generating function using a
series of time samples from an orbit integration.We demonstrated the accuracy of the
method by comparing to known actions for a triaxial Stäckel potential, and presented
a brief application of the method by inspecting a typical surface of constant energy
in a triaxial potential of astrophysical interest (Law and Majewski 2010). We closed
the chapter with a short discussion of the impact of irregular orbits on the method.

9.1.3 Action Estimation Using a Triaxial Stäckel
Approximation

Finding the Fourier components of a generating function from a numerically inte-
grated orbit is a general, but slow, method for finding the actions from an initial
phase-space point. When constructing distribution functions for triaxial compo-
nents of the Galaxy or external galaxies, we require fast algorithms for finding the
actions such that we can rapidly calculate integrals over the distribution function. In
Chap.4, we presented an extension to the method of Binney (2012a) for estimating
the actions using a Stäckel approximation. The method uses only the initial phase-
space point to find estimates for the two classical integrals in an integrable triaxial
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potential. These estimates are based on the equivalent equations for the triaxial
Stäckel potential. We inspected the accuracy of this method for estimating actions in
a triaxial Navarro-Frenk-White potential, and showed that the accuracy obtained for
the loop orbits, which only probe a limited region of the potential, is significantly
better than the accuracy obtained for the box orbits, which reach down to the centre
of the potential. We went on to construct triaxial stellar systems from specified dfs
f (J) in Sect. 4.6, and we showed the mass of these models is well recovered using
the triaxial Stäckel approximation. We demonstrated that, notwithstanding the errors
in individual actions, both a radially-biased model and a tangentially-biased model
satisfy the Jeans equations to good accuracy. When computing moments, individual
errors largely cancel out during integration over velocities.

9.1.4 Stream-Orbit Misalignment

Wepresented a discussion of stream formation inChap.5 and, in particular, discussed
the misalignment between streams and orbits. The formation of tidal streams is
simple in angle-action space, which provides a natural platform on which to quantify
the misalignment. We discussed the expected misalignment between a stream and
progenitor orbit for a range of potentials of interest inGalactic dynamics. Specifically,
we focussed on the expected misalignment for the known streams. By introducing a
two-parameter family of realistic Galactic potentials, we demonstrated that assuming
these streams delineate orbits can lead to order one errors in the halo flattening and
halo-to-disc force ratio at the Sun. We presented a discussion of the dependence
of these results on the progenitor mass, and demonstrated that the misalignment is
mass-independent for the range of masses of observed streams. Hence, orbit-fitting
does not yield better constraints on the potential if one uses narrower, lower-mass
streams.

9.1.5 Stream Modelling in Angle-Frequency Space

In Chap.6, we embarked on constructing an algorithm for constraining the Galactic
potential without assuming the stream delineates an orbit. We used the angle-action
formalism of stream formation to show that the angle-frequency structure of the
stream is very simple. In the correct potential, the angle structure of the stream should
alignwith the frequency structure, such that we can use themisalignment between the
angle and frequency structure as a measure of the fit of the potential. We showed how
this algorithm functioned by recovering the parameters of a simple two-parameter
logarithmic potential from a GD-1-like stream simulation. We went on to investigate
how the algorithm performed when we include observational errors from current and
future surveys. We found that observational errors lead to biases in our method, as
observational errors do not translate into simple error distributions in angle-frequency
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space. This is the disadvantage of taking the data into the model space. To fix these
problems, we developed the approach further into a fully probabilistic model that
can fully handle observational errors, missing data and outliers. We used the insights
of the expected angle-frequency structure of the stream to construct a model in the
space of observables. We showed that the probabilistic model could constrain the
parameters of the potential from a simulation for error-free data, data with outliers
and data with small observational errors.

9.1.6 Determining the Velocity Dispersion of the Thick Disc

In Chap.7, we attempted to recover the mean vertical velocity and vertical velocity
dispersion as a function of the distance from the Galactic plane for a sample drawn
from a realistic Galaxy distribution function by following the method presented in
Moni Bidin et al. (2012). We found that, for the sample size used, the observational
error in the velocities is much smaller than the Poisson noise while Moni Bidin et al.
assumed that observational errors dominated. We repeated the analysis on a large
number of samples to estimate the contribution of the Poisson noise and to uncover
any systematics. We found that the dispersion is systematically overestimated at
low Galactic distances from the plane and slightly underestimated at high Galactic
distances, leading to an underestimate of the gradient of the dispersion with Galactic
height. The causes of the systematics were revealed by repeating the calculation
using a method inspired by Girard et al. (2006). This method recovered the expected
dispersionmuchmore successfully and inparticular yields a gradient of the dispersion
with Galactic height that is approximately three times that found using the method
presented by Moni Bidin et al.

9.1.7 Extended Distribution Functions for the Galactic Disc

In Chap.8, we presented a simple extension to the fully dynamical action-based dis-
tribution functions of Binney (2012b) to functions that analytically include metal-
licity information and the expected correlations between metallicity and kinematics
inspired by the models of Schönrich and Binney (2009). This extension to include
metallicity is essential for correctly modelling the selection effects of any survey,
as well as providing vital constraints on the history of the Galaxy. We discussed
the inclusion of the selection function when modelling the data from a survey, and
showed how we could avoid explicitly using the selection function when we know
what observables the data are selected in. We fitted our extended distribution func-
tions to the Geneva-Copenhagen Survey data, and demonstrated the effects of a
simple selection function on the kinematics of a sample drawn along a single line
of sight. We showed that a simple magnitude-limited survey produced small biases
in the resultant velocity distributions due to the hidden selection in age. To close,
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we presented mock catalogues for the Geneva-Copenhagen Survey and a G dwarf
sample from the SEGUE survey, and compared with the data. We discussed how
the models could be improved to give a better account of the data. In particular, we
found that the required metallicity gradient in the ISM today is in tension with the
number of high-metallicity stars in the solar neighbourhood, assuming a linear radial
metallicity gradient from the Sun to the Galactic centre. Also, we found that our
assumption that the thick disc is a single homogeneous quasi-isothermal population
was not appropriate to model the SEGUE data.

9.2 Context

To conclude, we will now set the work of this thesis in a broader context. The goal of
a Milky Way scientist is to understand how the Galaxy operates as a machine. This
involves understanding at first how the Galaxy is presently structured, and then how
it formed and evolved to be in this configuration. Here we will describe the prospects
for these grand goals with reference to the work in this thesis.

9.2.1 Galactic Structure

Measuring the distribution of dark matter in the Galaxy is a key aim of Milky Way
science. It is believed that theMilkyWay, like all galaxies, is enveloped in a dark halo,
but its exact properties are still very much uncertain. The local dark matter density
is still debated, whilst the shape of the halo is a crucial parameter for which we have
very little information. Very little is known about the nature of dark matter, although
multiple particle physics experiments have attempted to detect these elusive particles.
Astrophysics seems the most immediate route to advancing our understanding of
dark matter. Dark matter can currently only be detected through its impact on the
dynamics of gas (Begeman 1989; e.g. the rotation curve of NGC3198), photons (e.g.
gravitational lensing) and stars. The enormous number of stellar tracers available
from current data, as well as those promised from future missions such as Gaia,
means the last of these probes is being pushed to the fore, and we should be able to
pin down the distribution of the dark matter in the Milky Way from the dynamics of
these tracers.

In this thesis, we have described two complementary modelling techniques that
should prove useful in this respect. Extended distribution function modelling of the
Galactic disc will provide us with improved constraints of the local dark matter
density as we use the requirement that each distinct chemical population must have
consistent dynamics in the same potential. Additionally, the inclusion of chemistry
in the distribution function is essential for the modelling of the selection function
of any survey, which is necessary for extracting unbiased dynamics from a trace
population. The modelling of tidal streams will provide more global constraints on,
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in particular, the shape of the darkmatter halo.More andmore tidal streams are being
discovered and so provide a very thorough probe of the gravitational field of a large
volume of the Galactic halo. Unbiased, probabilistic methods for the measurement
of Galactic properties from tidal streams are key for the maximal exploitation of the
data, as well as for combining with other constraints on the Galactic potential. Our
work on the computation of angle-action variables in both axisymmetric and triaxial
potentials should prove valuable in these studies.

Over the coming years, the combined effort of these modelling approaches should
provide strong constraints on the dark matter halo of our Galaxy and hence give
insights into the structure of dark matter halos throughout the Universe. With these
insights, we will take a step closer to understanding the nature of dark matter.

9.2.2 Galactic History

Galactic dynamics helps us to understand the present structure of the Galaxy. In
order to understand how the Galaxy came to be in this state, we must broaden our
models and approaches. Stars in the Galaxy experience a series of environments
throughout their lives as they are scattered by gas clouds and spiral arms. Over time,
the stars gradually losememory of their birth properties as these dynamical processes
scatter the stars in action space. Given a snapshot of the Galaxy, how then do we
infer the history of the Galaxy? Fortunately, the internal properties of stars retain
memory of the environment in which they were born such that the present chemo-
dynamical correlations reveal information regarding the history of the Galaxy. These
correlations are best uncovered through the fitting of an appropriate model, such as
the extended distribution functions presented in this thesis, to current data. Many
surveys are now viewing the Galaxy in a rich multi-dimensional chemo-dynamical
space. Constraints on the historical dynamical processes in the Galaxy should be
extracted by fitting these models to this wealth of data.

The dynamical processes in the Galaxy are known to scatter stars in action space.
However, the effect of say a spiral wave on the action distribution of a stellar pop-
ulation is still unclear. Inspection of N -body simulations provides a promising way
to determine the appropriate action-space diffusion coefficients generated by realis-
tically complex spiral structure. In this thesis, we have detailed many methods for
finding actions which are highly applicable to an N -body simulation. From a series
of controlled N -body simulations, the diffusion coefficients for a series of dynamical
processes can be measured using the methods outlined in this thesis. These must then
be used to refine the extended distribution functions.

The combination of an understanding of the Galactic present and the Galactic
past will enable us to piece together the history and evolution of the Milky Way.
Insights from the Milky Way can then be paired with those from studies of external
galaxies to draw conclusions regarding the evolution and structure of all galaxies,
and produce a coherent picture of the history of structure in the Universe.
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9.3 Future Work

At the end of each chapter, we have detailed further work that could be pursued in
light of the work in the chapter. Here we summarise what should be done next with
regards to the work in this thesis.

1. One route to understanding our Galaxy is through N -body modelling. With an
N -body model, the ‘stars’ have no errors associated with their phase-space coor-
dinates and we know the potential. Therefore, we are in a position to calculate
the angle-action structure of the N -body model. Pontzen and Governato (2013)
did this for an N -body dark matter halo under the simplification that the halo
is assumed to be spherical, and found that the particles followed a simple dis-
tribution in action space. With the techniques for finding angle-action variables
presented in this thesis, a next step would be to project an N -body model into
angle-action space. Additionally, measuring the change in actions for the particles
in the model provides crucial information on processes such as radial migration
driven by non-axisymmetric features such as the bar and spiral arms (Solway
et al. 2012).

2. The discs of our Galaxy seem to have simple distribution functions in action
space (Binney 2010, 2012b; Binney et al. 2014). The next step is to build action-
based distribution functions for the other components of the Galaxy, such as the
bar, bulge and halo. These features may well be triaxial. Following the work in
Chaps. 3 and 4 a next step would be to construct triaxial action-based distribution
functions for these components and fit to data such as that from the ARGOS
survey (Freeman et al. 2013).

3. The approach to stream modelling presented in Chap. 6 seems promising but in
its current state is computationally expensive. Constructing the stream models
using the torus machine McMillan and Binney (2008) seems a more promising
way to go. Additionally, in Chap.6 we have only inspected a single stream model
and shown that our modelling approach is valid. Before being fully applied to
data, the modelling approach should be further validated by inspecting a range
of stream models in a range of potentials. For instance, we should create a much
broader suite of progenitor models that could have richer internal properties such
as rotation, and launch these progenitors on eccentric orbits in a realistic Galactic
potential. The results of Chap. 5 show that the impact of the Galactic disc is
significant, so inspecting low-Jz stream models will be interesting.

4. After the above two points have been fulfilled, we will be in a position to use
the modelling approach in anger on the data. There are many streams with good
data, in particular GD-1 (Grillmair and Dionatos 2006; Koposov et al. 2010), and
many more will be discovered by Gaia. Simultaneous application of the method
to many streams should provide improved constraints on the Galactic potential.

5. The next step for the extended distribution function modelling is to fit the model
to the SEGUE, RAVE and upcoming Gaia-ESO data. We have already seen that
attempting to fit precisely the very local GCS sample is a challenge, despite the
flexibility in our model. This points towards interesting correlations that have not
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been accounted for in ourmodel. In Chap.8, we have described various alterations
to the extended distribution functions that should be implemented immediately.
With data that covers a larger volume of the Galaxy, our model can be further
refined and tested. When performing this procedure, we should simultaneously
constrain the Galactic potential.

6. Additionally, the edf should be extended further to account for the [α/Fe] abun-
dances of the stars. [α/Fe] is a crucial quantity for measuring the age of a star, and
the ([α/Fe], [Fe/H]) plane is a powerful space to disentangle different Galactic
populations (Schönrich et al. 2010; Bovy et al. 2012).

If this plan of future work is fulfilled before the arrival of theGaia data, we will be
in a very strong position for fully exploiting the newGaia data, and further advancing
our understanding of the Milky Way.

References

Begeman KG (1989) A A 223:47
Binney J (2010) MNRAS 401:2318
Binney J (2012a) MNRAS 426:1324
Binney J (2012b) MNRAS 426:1328
Binney J et al (2014) MNRAS 439:1231
Bovy J et al (2012) ApJ 759:131
Freeman K et al (2013) MNRAS 428:3660
Girard TM, Korchagin VI, Casetti-Dinescu DI, van Altena WF, López CE, Monet DG (2006) AJ
132:1768

Grillmair CJ, Dionatos O (2006) ApJL 643:L17
Koposov SE, Rix H-W, Hogg DW (2010) ApJ 712:260
Law DR, Majewski SR (2010) ApJ 714:229
McMillan PJ, Binney JJ (2008) MNRAS 390:429
Moni Bidin C, Carraro G, Méndez RA (2012) ApJ 747:101
Pontzen A, Governato F (2013) MNRAS 430:121
Schönrich R, Binney J (2009) MNRAS 396:203
Schönrich R, Binney J (2012) MNRAS 419:1546
Schönrich R, Binney J, Dehnen W (2010) MNRAS 403:1829
Solway M, Sellwood JA, Schönrich R (2012) MNRAS 422:1363

http://dx.doi.org/10.1007/978-3-319-18772-3_8


Appendix A
Computing the Angle-Action Variables
in a Axisymmetric Stäckel Potential

In this appendix, we give expressions for the angle-action variables in an
axisymmetric Stäckel potential, which are used in Chap.2. The approach taken here,
as well as the majority of the formulae, have been taken from Eyre (2010). Following
on from Eq. (2.12), the action Jτ is given by an integral over a full oscillation in τ . A
full oscillation in λ involves integrating twice over the interval (λ0,λ1). λ0 and λ1
are the roots of pλ, which may be found by Brent’s method using Eq. (2.10). There
is a complication when calculating Jν due to the definition of ν. ν is only uniquely
defined for z � 0 such that a full oscillation in ν corresponds to half an oscillation
in z. Therefore we calculate Jν by integrating four times over the interval (ν0, ν1),
where ν0 = c2, as all orbits cross the z = 0 plane, and ν1 is the root of pν found by
Brent’s method. The actions are given explicitly by

Jλ = 1

π

∫ λ1

λ0

pλdλ, Jν = 2

π

∫ ν1

ν0

pνdν. (A.1)

In order to calculate the angle coordinates, we use the generating function, W ,
defined as

W (τ ,φ, E, Lz, I3) = Wφ +
∑

τ=λ,ν

Wτ =
∫ φ

0
Lzdφ

′ +
∑

τ=λ,ν

∫ τ

τ0

pτ ′dτ ′. (A.2)

This generating function defines the canonical transformation between the canonical
coordinates (τ ,φ, pτ , Lz) and (Jτ , Lz, θτ , θφ). The angles are now computed as

θτ = ∂W

∂ Jτ
= ∂W

∂E

∂E

∂ Jτ
+ ∂W

∂Lz

∂Lz

∂ Jτ
+ ∂W

∂ I3

∂ I3
∂ Jτ

, (A.3)

for τ = λ, ν. The derivatives of the classical integrals with respect to the actions
may be found by inverting the 3-by-3 matrix of the derivatives of the actions with
respect to the classical integrals. These derivatives are simpler to calculate as they
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follow from Eq. (A.1) and the definition of pτ from Eq. (2.10):

∂ Jλ

∂E
= 1

4π

∫ λ1

λ0

dλ

(λ − a2)pλ
,

∂ Jλ

∂Lz
= − Lz

4π

∫ λ1

λ0

dλ

(λ − a2)2 pλ
,

∂ Jλ

∂ I3
= − 1

4π

∫ λ1

λ0

dλ

(λ − a2)(λ − c2)pλ
,

∂ Jν

∂E
= 1

2π

∫ ν1

ν0

dν

(ν − a2)pν
, (A.4)

∂ Jν

∂Lz
= − Lz

2π

∫ ν1

ν0

dν

(ν − a2)2 pν
,

∂ Jν

∂ I3
= − 1

2π

∫ ν1

ν0

dν

(ν − a2)(ν − c2)pν
.

The derivatives of the generating function with respect to the classical integrals
may be calculated in the same spirit as

∂W

∂E
=

∑
τ=λ,ν

1

4

∫ τ

τ0

dτ ′

(τ ′ − a2)pτ ′

∂W

∂Lz
= φ −

∑
τ=λ,ν

Lz

4

∫ τ

τ0

dτ ′

(τ ′ − a2)2 pτ ′
(A.5)

∂W

∂ I3
= −

∑
τ=λ,ν

1

4

∫ τ

τ0

dτ ′

(τ ′ − a2)(τ ′ − c2)pτ ′
.

We note that the second equation is simply the angle conjugate to Lz , θφ.
With the scheme given above there is a degeneracy in θν between points in the

orbit at±z. This is simply resolved by adding 2π to θν if z < 0, and dividing θz by 2.
As p2(τ ) vanishes at the endpoints of many of these integrals, we want to avoid

evaluating the integrands at the endpoints. We do this by performing a change of
variables and estimating the integral using a Gauss-Legendre quadrature scheme.
Here we will outline the procedure for calculating Jλ but the same principle follows
for the rest of the integrals. We perform a change of variables to

λ = λ̂ sin ϑ + λ̄; λ̄ = 1

2
(λ0 + λ1); λ̂ = 1

2
(λ1 − λ0), (A.6)

such that the integral is now over ϑ = (−π
2 , π

2 ):

Jλ = 1

π

∫ π/2

−π/2
λ̂ cosϑ p(λ(ϑ))dϑ. (A.7)
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This integral can now be computed numerically using a 10-point Gaussian-Legendre
quadrature scheme.

The frequencies, �, are related to the derivatives of the actions with respect to the
integrals of the motion by

�R = 1

�

∂ Jz

∂ I3
,

�φ = 1

�

( ∂ Jz

∂Lz

∂ JR

∂ I3
− ∂ Jz

∂ I3

∂ JR

∂Lz

)
, (A.8)

�z = − 1

�

∂ JR

∂ I3
,

where

� =
(∂ JR

∂E

∂ Jz

∂ I3
− ∂ JR

∂ I3

∂ Jz

∂E

)
. (A.9)
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Appendix B
Derivation of Best-Fitting Stäckel Potential
Functions

In this appendix, we give a derivation of the local best-fitting Stäckel potential to
a general potential used in Chap.2. To find the best-fitting Stäckel potential, we
must minimise Eq. (2.17) with respect to the function f . It is useful to consider
minimisation with respect to the two parts of the function, f (λ) and f (ν). This
yields

∫ λ+

λ−
dλ �(λ)[χ(λ, ν) − f (λ) + f (ν)] = 0,

∫ ν+

ν−
dν N (ν)[χ(λ, ν) − f (λ) + f (ν)] = 0. (B.1)

Rearranging each of these, and noting that �(λ) and N (ν) are normalized over the
integration range, we find

f (λ) = χ̄(λ) +
∫ ν+

ν−
dν N (ν) f (ν),

f (ν) = −χ̄(ν) +
∫ λ+

λ−
dλ �(λ) f (λ),

(B.2)

where the definition of χ̄(τ ) is given in Eq. (2.20). Substitution of the expression for
f (ν) into the expression for f (λ) we find

f (λ) = χ̄(λ) − ¯̄χ +
∫ λ+

λ−
dλ �(λ) f (λ), (B.3)

where ¯̄χ is defined in Eq. (2.20). This equation along with Eq. (2.17) implies that

∫ λ+

λ−
dλ �(λ) f (λ) −

∫ ν+

ν−
dν N (ν) f (ν) = ¯̄χ. (B.4)
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As we are only constraining the difference [ f (λ) − f (ν)] we are free to choose the
values of these integrals as long as their difference equals ¯̄χ.We opt for the symmetric
choice

f (λ) = χ̄(λ) − 1

2
¯̄χ, f (ν) = −χ̄(ν) + 1

2
¯̄χ. (B.5)



Appendix C
Angle-Actions in the Isochrone Potential

In this appendix, we give expressions for the angle-actions in the isochrone potential
useful for Chap.3. We first convert our phase-space point into spherical polar coor-
dinates given by (r,φ,ϑ, vr , vφ, vϑ). The three actions are the radial actions, Jr , the
angular momentum, L , and the vertical action, L − |Lz |, where Lz is the angular
momentum about the z-axis. If E is the orbital energy, the radial action is given by

Jr = 1√−2E
+ 1

2
(L +

√
L2 + 4GMb). (C.1)

The expressions for the angles are more involved. We define

c ≡ GM

−2E
− b,

e ≡
√
1 − L2

GMc
(1 + b/c), (C.2)

η = arctan
( rvr√−2E(b + c − √

b2 + r2)

)
.

The radial angle, θr , is then given by

θr = η − ec sin η

c + b
. (C.3)

Additionally, the frequencies, ∂H/∂ J , are given by

�r = (−2E)3/2

GM
,

�φ = 1

2
�r

(
1 + L√

L2 + 4GMb

)
. (C.4)
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Note �φ = ∂H/∂Lz = 0. To find θφ and θz , we further define

ψ ≡ arctan
( L cosϑ

−vϑr sin ϑ

)

a ≡
√
1 + e

1 − e
, (C.5)

ap ≡
√
1 + e + 2b/c

1 − e + 2b/c
,

such that

θz = ψ + �φθr

�R
− arctan(a tan(η/2)) − arctan(ap tan(η/2))√

1 + 4GMbL−2
. (C.6)

Finally, we define

sin u ≡ Lz tan ϑ

L
√
1 − (Lz/L)2

, (C.7)

such that
θφ = φ − u + sign(Lz)θz . (C.8)

In both the expression for θφ and θz , we must be careful in defining the branch cuts
of the trigonometric functions to ensure the angles increase continuously from 0 to
2π. We define

arctan(p tan q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan(p tan q) if − π
4 < q < π

4 ,

π
2 − arctan

(
p tan

[
π
2 − q

])
if q < −π

4 ,

−π
2 + arctan

(
p tan

[
π
2 + q

])
if q > π

4 .

(C.9)



Appendix D
Symmetries

In Sect. 3.2.2, we asserted that for a time-reversible Hamiltonian the Fourier com-
ponents of the generating function, Sn, are real. However, it must also be true that
there is a point on the target torus where J̇ = 0. McGill and Binney (1990) show that
this is true if the toy potential is an isochrone and the target Hamiltonian is axisym-
metric. Additionally, they demonstrated that, when the potential is symmetric about
the plane z = 0, Fourier components of the generating function with odd nz vanish.
Here we repeat these arguments extended to the 3D triaxial case. Let’s first consider
the loop orbits. Suppose we have a target Hamiltonian of the form

H(r,φ,ϑ) = 1

2
p2r + p2φ

2r2 sin2 ϑ
+ p2ϑ

2r2
+ �(r,φ,ϑ), (D.1)

where (r,φ,ϑ) are standard spherical polar coordinates. The equations of motion for
the toy actions are

J̇i = − ∂H

∂θi

=
(

p2ϑ
r3

+ p2φ
r3 sin2 ϑ

− ∂�

∂r

)
∂r

∂θi
+

(
p2φ cosϑ

r2 sin3 ϑ
− ∂�

∂ϑ

)
∂ϑ

∂θi
(D.2)

− ∂�

∂φ

∂φ

∂θi
− pr

∂ pr

∂θi
− pϑ

r2
∂ pϑ

∂θi
− pφ

r2 sin2 ϑ

∂ pφ

∂θi
.

Now let us consider the point θ = (0, 0,π/2): at this point the particle is at
pericentre, at a maximum in its vertical oscillation and at φ = 0. At this point, we
have that

∂r

∂θi
= ∂ϑ

∂θi
= pr = pϑ = ∂ pφ

∂θi
= 0, (D.3)
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so

J̇i = −∂�

∂φ

∂φ

∂θi
. (D.4)

In a triaxial potential, x = 0 is a symmetry plane of the potential so ∂�/∂φ|φ=0 =
0 and J̇i = 0. This is the requirement introduced in Sect. 3.2.2 for the Fourier
components of the generating function to be real. Now let’s consider the point θ =
(0, 0, 0). Here the particle is at pericentre, crossing the z = 0 plane, and at φ = 0.
At this point we have

∂r

∂θi
= cosϑ = pr = ∂ pϑ

∂θi
= ∂ pφ

∂θi
= 0, (D.5)

so

J̇i = −∂�

∂φ

∂φ

∂θi
− ∂�

∂ϑ

∂ϑ

∂θi
. (D.6)

As we saw before, the first term is zero as x = 0 is a symmetry plane of the potential.
The second term is also zero as z = 0 is also a symmetry plane. By a similar argument
at θ = (0,π/2, 0), ∂�/∂φ|φ=π/2 = 0 as y = 0 is a symmetry plane of the potential.

We calculate J̇ from Eq. (3.8) as

J̇ =
∑
n∈N

2n
(
ın · θ̇

)
Sn(J ′) sin n · θ (D.7)

At the point θ = (0, 0,π/2), we know J̇ = 0, so we require sin πn3/2 = 0 such that
n3 must be even. Similarly, we know J̇ = 0 at θ = (0,π/2, 0) so n2 is restricted to
even values. However, n1 can take any integer value.

Now let us consider the box orbits. We have a target Hamiltonian of the form

H = 1

2

∑
i

p2i + �(x, y, z) (D.8)

where pi = (px , py, pz) and the equations of motion for the toy actions are

J̇i = −
∑

j

∂�

∂x j

∂x j

∂θi
− p j

∂ p j

∂θi
(D.9)

Consider the point θ = (0, 0, 0). Here the orbit is turning in all three coordinates so
p = 0 and ∂x/∂θi = 0 so J̇ = 0 as required in Sect. 3.2.2. Now let’s consider the
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point θ = (π/2, 0, 0). Here the orbit is turning in y and z and is passing through the
x = 0 plane at which point ∂ px/∂θi = 0 as px is at a maximum. Therefore, we have

J̇i = −∂�

∂x

∂x

∂θi
. (D.10)

For a triaxial potential alignedwith our choice of Cartesian axes, x = 0 is a symmetry
plane so ∂�/∂x |x=0 = 0. Therefore J̇ = 0 here and by similar arguments to the
loop orbit case we are restricted to even n1. We can employ the same arguments by
considering the stationary points θ = (0,π/2, 0) and θ = (0, 0,π/2) to show that
n2 and n3 must be even.

Reference
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Appendix E
Angles and Frequencies from Stäckel Fudge

With the framework presented in Sect. 4.3, we are also in a position to find the angles,
θ, and frequencies, �. Following de Zeeuw (1985), we write

∂E

∂E
= 1 =

∑
τ=λ,μ,ν

�τ
∂ Jτ

∂E
,

∂E

∂a
= 0 =

∑
τ=λ,μ,ν

�τ
∂ Jτ

∂a
, (E.1)

∂E

∂b
= 0 =

∑
τ=λ,μ,ν

�τ
∂ Jτ

∂b
.

Inversion of these equations gives, for instance,

�λ = 1

�

∂(Jμ, Jν)

∂(a, b)
where � = ∂(Jλ, Jμ, Jν)

∂(E, a, b)
, (E.2)

and �μ and �ν are given by cyclic permutation of {λ,μ, ν}. To find the derivatives
of Jτ with respect to the integrals, we differentiate Eq. (4.13) under the integral sign
at constant τ . From Eq. (4.17), we know pτ (τ , E, Aτ , Bτ ). We note that

∂

∂a

∣∣∣
τ

= ∂ Aτ

∂a

∣∣∣
τ

∂

∂ Aτ

∣∣∣
τ

= ∂

∂ Aτ

∣∣∣
τ
,

∂

∂b

∣∣∣
τ

= ∂Bτ

∂b

∣∣∣
τ

∂

∂Bτ

∣∣∣
τ

= ∂

∂Bτ

∣∣∣
τ
, (E.3)

as Aτ = a − Cτ and Bτ = b + Dτ where Cτ and Dτ are independent of τ . The
required derivatives are
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∂ pτ

∂E

∣∣∣
τ

= τ2

4pτ (τ + α)(τ + β)(τ + γ)
,

∂ pτ

∂a

∣∣∣
τ

= −1

τ

∂ pτ

∂E

∣∣∣
τ
, (E.4)

∂ pτ

∂b

∣∣∣
τ

= 1

τ2
∂ pτ

∂E

∣∣∣
τ
.

Note that pτ can vanish at the limits of integration. The change of variables

τ = τ̂ sin ϑ + τ̄ ; τ̄ = 1

2
(τ− + τ+); τ̂ = 1

2
(τ+ − τ−)

causes the integrand to go smoothly to zero at the limits. To find the angles, we use
the generating function, W (λ,μ, ν, Jλ, Jμ, Jν), given by

W =
∑

τ=λ,μ,ν

Wτ =
∑

τ=λ,μ,ν

∫ τ

τ−
dτ ′ p′

τ + Fτ (pτ , x)

∫ τ+

τ−
dτ ′|p′

τ |. (E.5)

Fτ are factors included to remove the degeneracy in the τ coordinates such that θτ

covers the full range 0–2π over one oscillation in the Cartesian coordinates. These
factors can be written in the form

Fλ(pλ, x) = �(λ− + α)�(−x) + �(−pλ),

Fμ(pμ, x) = �(μ− + β)[�(−y) + �(−pμ)]
+ �(ν+ + β)�(μ+ + α)

[
1

2
+ �(−x)

]
(E.6)

+ �(ν+ + β)�(λ− + α)�(−pμ),

Fν(pν, x) = �(−z) + �(−pν),

where � is the Heaviside step function and � is one when its argument is zero and
zero otherwise. The � function in Fλ takes care of the cases when the orbit is a box
or inner long-axis loop. The � functions in Fμ take care of the cases when the orbit
is a short-axis loop or a box, an outer long-axis loop, and an inner long-axis loop
respectively. The angles are given by

θτ = ∂W

∂ Jτ
=

∑
I=E,a,b

∂W

∂ I

∂ I

∂ Jτ
. (E.7)

The first term on the right is, up to factors, the indefinite integral of the derivatives
of Jτ with respect to the integrals found previously, whilst the second term is found
from inverting these derivatives. We have chosen the zero-point of θτ to correspond
to τ = τ−, pτ > 0 and ẋi ≥ 0 for all i , except for the outer long-axis loop orbits
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Fig. E.1 Angles calculated using the triaxial Stäckel fudge presented in Chap.4 for three different
orbits in the triaxial NFW potential. The solid red lines show the angles calculated from the initial
angle estimate and the frequency estimates for approximately one period

which have θμ = 0 at μ = −α, pτ > 0 and ẋi ≥ 0. Note that the angles are the 2π
modulus of the θτ found from the above scheme.

In Fig.E.1, we show the angles calculated from the Stäckel fudge for the three
orbits investigated in Sect. 4.5. We use the automatic choice of �i for the box and
short-axis loop orbit, and the choice that minimises the spread in actions for the long-
axis loop orbit. The short-axis loop orbit shows the expected straight-line structure
in the angle coordinates, whilst for the long-axis loop and box orbits there is clear
deviation from this expected straight line. We also show the angles calculated using
the initial angle estimate and the median of the frequency estimates along the orbit.
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We see that they are well recovered but, after approximately one period, the error in
the frequencies is sufficient for these angles to deviate from the angle estimates.

Reference

de Zeeuw T (1985) MNRAS 216, 273



Appendix F
A Family of Two-Parameter Potentials

We wish to construct a suite of realistic Galaxy potentials that are defined by two
parameters: the density flattening of the halo, Q, and the ratio k of the force on
the Sun due to visible matter and dark matter. This gives us a range of appropriate
potentials that we explore to find the best-fitting Galaxy potential. It acts as a prior
in our exploration of all possible Galaxy potentials.

For our base model, we adopt the usual multi-component model: a bulge, thick
and thin discs, and a dark halo. For each of these components, we use the functional
forms discussed by McMillan (2011). The bulge is taken to be a Bissantz-Gerhard
model, andwe adopt exponential discs for the thick and thin discs. For the darkmatter
profile, we adopt the NFW profile (Navarro et al. 1996) with a flattening introduced:

ρh = ρh,0

x(1 + x)2
where x =

√
R2 + (z/Q)2

rh
. (F.1)

This introduces the first of our two parameters, the halo flattening Q. The second is
defined as

k ≡ 1

N

gdisc(R0, z0)

ghalo(R0, z0)
(F.2)

where gi is the magnitude of the gravitational force on the Sun due to the i th com-
ponent, and the normalisation N is chosen such that k = 1 for the ‘best’ potential
from McMillan (2011). The model with (k, Q) = (1, 1) corresponds exactly to
McMillan’s best potential. We take (R0, z0) = (8.29, 0.0) kpc.

Wewould like all these potentials to satisfy the observational constraints that have
been collected and listed byMcMillan (2011). These include maser observations and
terminal velocity curves. However, themost important constraint is the circular speed
at the solar position which is largely constrained by the motion of Sgr A* (Reid and
Brunthaler 2004). Therefore, we only adjust the parameters until the circular speed
at the solar position is correct, which McMillan found to be vc = 239.1 km s−1.
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F.1 Procedure

For a given pair of the parameters (ks, Qs), we follow this procedure to find a realistic
Galactic potential with these parameters:

1. Construct McMillan’s best potential corresponding to (k, Q) = (1, 1).
2. Set Q = Qs .
3. Adjust ρh,0 until k = ks .
4. Calculate the circular speed at the solar position in this model, vcs .
5. Scale ρh,0 and 	d by the same factor p = (vc/vcs)

2 so that the circular speed at
the solar position is restored to vc = 239.1 km s−1.

F.2 Tabulation

As the constructed potentials are simply described by two parameters, it is convenient
to construct a 2D grid of these potentials in (k, Q) space. We construct the potentials
using the above procedure for N values of k and N values of Q. At each of these points
in parameter space, we store ρh,0 and 	d in an N × N array. This grid may then be
linearly interpolated for a given pair of (k, Q). For any call that falls outside the grid
range, we use the full procedure outlined above. In TableF.1, we list the parameters of
a sample of (k, Q)models, and, in Fig.F.1, these parameters are plotted as a function
of k.

Table F.1 Parameters for 64 (k, Q) models: ρh,0 is the central dark matter halo density (in units of
106M� kpc−3) and 	d,thin and 	d,thick are the surface densities of the thin and thick disc (in units
of 106M� kpc−2)

k Q ρh,0 	d,thin 	d,thick

1 1 8.46 817 209

0.25 0.25 37.4 344 88.3

0.25 0.50 22.0 344 88.3

0.25 0.75 16.8 344 88.3

0.25 1.00 14.3 344 88.3

0.25 1.25 12.7 344 88.3

0.25 1.50 11.7 344 88.3

0.25 1.75 10.9 344 88.3

0.25 2.00 10.4 344 88.3

0.50 0.25 30.5 560 144

0.50 0.50 17.9 560 144

0.50 0.75 13.7 560 144

0.50 1.00 11.6 560 144

0.50 1.25 10.3 560 144
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Table F.1 (continued)

k Q ρh,0 	d,thin 	d,thick

1 1 8.46 817 209

0.50 1.50 9.49 560 144

0.50 1.75 8.88 560 144

0.50 2.00 8.43 560 144

0.75 0.25 25.7 709 182

0.75 0.50 15.1 709 182

0.75 0.75 11.6 709 182

0.75 1.00 9.78 709 182

0.75 1.25 8.71 709 182

0.75 1.50 8.00 709 182

0.75 1.75 7.49 709 182

0.75 2.00 7.10 709 182

1.00 0.25 22.2 817 209

1.00 0.50 13.0 817 209

1.00 0.75 9.99 817 209

1.00 1.00 8.46 817 209

1.00 1.25 7.53 817 209

1.00 1.50 6.92 817 209

1.00 1.75 6.47 817 209

1.00 2.00 6.14 817 209

1.25 0.25 19.5 899 231

1.25 0.50 11.5 899 231

1.25 0.75 8.80 899 231

1.25 1.00 7.45 899 231

1.25 1.25 6.63 899 231

1.25 1.50 6.09 899 231

1.25 1.75 5.70 899 231

1.25 2.00 5.41 899 231

1.50 0.25 17.5 964 247

1.50 0.50 10.3 964 247

1.50 0.75 7.86 964 247

1.50 1.00 6.65 964 247

1.50 1.25 5.93 964 247

1.50 1.50 5.44 964 247

1.50 1.75 5.09 964 247

1.50 2.00 4.83 964 247

1.75 0.25 15.8 1020 261

1.75 0.50 9.27 1020 261

1.75 0.75 7.10 1020 261

1.75 1.00 6.01 1020 261

(continued)
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Table F.1 (continued)

k Q ρh,0 	d,thin 	d,thick

1 1 8.46 817 209

1.75 1.25 5.35 1020 261

1.75 1.50 4.92 1020 261

1.75 1.75 4.60 1020 261

1.75 2.00 4.36 1020 261

2.00 0.25 14.4 1060 272

2.00 0.50 8.46 1060 272

2.00 0.75 6.48 1060 272

2.00 1.00 5.48 1060 272

2.00 1.25 4.88 1060 272

2.00 1.50 4.48 1060 272

2.00 1.75 4.20 1060 272

2.00 2.00 3.98 1060 272

The top lines with (k, Q) = (1, 1) are identical to McMillan’s best potential
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Fig. F.1 ρh,0 and 	d as a function of k for the two-parameter (k, Q) potentials. The top panel
shows lines of constant Q. The lines are spaced by �Q = 0.25 with the uppermost line showing
Q = 0.25. The red dashed line gives Q = 1. The bottom panel shows the variation of 	d for the
thin and thick discs, which has no Q dependence
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Appendix G
Finding Angles and Frequencies for Stream
Particles

G.1 Estimating I3

In the algorithm presented in Chap.2, I3 was estimated by averaging three estimates
along the orbit. I3 is an integral of the motion in a Stäckel potential so, in Chap. 2,
it was desirable to avoid the estimates of I3 depending on the initial position on the
orbit. This producedmuch smaller errors in the estimated actions so was a favourable
scheme for the task presented. However, problems arise around the turning points of
the orbit with a poor choice of I3. A small error in I3 can move the boundary of the
orbit away from the true boundary, so points which are close to the boundary appear
further away than they should be. As I3 is a separation constant, it can be estimated
in two different ways, using λ̇ or ν̇:

I3 ≈ (λ − c2)

(
E − L2

z

2(λ − a2)
+ f (λ)

λ − c2
− λ̇2(λ − ν)2

8(λ − a2)(λ − c2)2

)
,

≈ (ν − c2)

(
E − L2

z

2(ν − a2)
+ f (ν)

ν − c2
− ν̇2(ν − λ)2

8(ν − a2)(ν − c2)2

)
.

(G.1)

In a Stäckel potential, these two estimates are identical but, in a general potential, we
expect a discrepancy. Using only the λ̇ estimate leads to errors in θz near the turning
points and, similarly, using only the ν̇ estimate leads to errors in θR near the turning
points.

When analysing the stream data, we are primarily interested in the angles and the
behaviour of the stream near apsis. Also, we are only interested in relative differences
between stars in the stream. Therefore, we use a modified scheme to that presented
in Chap.2. We choose to only estimate I3 at the given phase-space point. We also
calculate two different estimates for I3 using the λ̇ and ν̇. The equation of motion
for λ uses the λ̇ estimate and similarly for ν. In this way, we remove noise around
the turning points and the stream structure is recovered much more cleanly.
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Several other small alterations have been made to the algorithm presented in
Chap.2, which improve the performance for the present task. We have increased
the number of α-estimates per particle, and increased the size of the potential-fitting
region and selected the weight function�(λ) = 3λ−4(λ−3+ −λ−3− )−1 to reduce noise
in the frequencies.

G.2 Impact of Errors on Suggested Algorithm

The Stäckel-fitting algorithm used to estimate the angles and frequencies introduces
errors that systematically depend on the orbital phase. Using the same method to
estimate the errors as that presented in Chap.2, we find that the standard errors in the
angles for the orbit used in Sect. 6.3 are (σθR ,σθφ ,σθz ) = (9.4, 5.7, 5.4)×10−3 rad.
For a single orbit, the frequencies should be constant at all points along the orbit.
We estimate the error in the calculated frequencies as the standard deviation of
their estimates around the orbit which yields (σ�R ,σ�φ ,σ�z ) = (3.7, 4.0, 2.6) ×
10−3 Gyr−1. These errors are much smaller than the size of the distributions shown
in Fig. 6.4. The errors in the frequency and angle estimation depend upon the phase
of the particle, with the largest error occurring at pericentre.

However, these absolute errors do not give a good indication of the accuracy of the
algorithm presented in Chap.6. As we are measuring the gradients of the frequency
distribution and the angle distribution, we are instead concerned with the errors in
the differences of the frequencies/angles of the particles in the stream, which are
subject to more subtle effects. For simplicity, we limit the discussion to the errors
in the frequencies but similar effects are found in the angles. Let us consider two
particles in the stream: one in the cluster with frequency �0 = (�R0,�φ0,�z0)

and another particle that has just been stripped from the progenitor with frequency
� = (�R0+��R,�φ0+��φ,�z0+��z). The Stäckel-fitting algorithmproduces
deviations in the frequencies, given by σ(t,�), that depend on the orbital phase so
fluctuate in time at a rate determined by the frequencies.

At a given time, the difference in the estimated frequencies is given by

δ�i = [�i + σi (t,�)] − [�0i + σi (t,�0)]
≈ ��i + 2gi (��, t), (G.2)

where gi (��, t) is an oscillating function of the frequency difference, and we have
dropped the fast-oscillating part. Therefore, there is an error in the difference which
oscillates in time at a frequency related to the beat frequency. In Fig.G.1, we plot
the azimuthal frequency difference, ��φ, as a function of time for a single particle
from the simulation integrated for a long time. The particle was stripped at the third
pericentric passage and then integrated independent of the simulation for many more
periods.We observe that the fluctuations in the frequency introduced by the algorithm
are producing beats in��φ with a frequency of∼0.3Gyr−1.We expect that, at early
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Fig. G.1 The azimuthal frequency difference between the progenitor and a single particle taken
from the simulation, and integrated for a long time. For all shown times, the particle is moving
freely in the external Galactic potential. The error in the frequency difference exhibits beats at a
frequency of ∼0.3Gyr−1 characteristic of two particles oscillating at close frequencies drifting in
and out of phase. The units give the times of pericentric passage of the progenitor

times (t 
 5Gyr), the error in the difference will be small as the systematic errors
in the progenitor and particle frequency-estimates are in phase and so nearly cancel.
At large times (t ≈ 5Gyr), the error fluctuations in the particle and progenitor
frequencies have drifted out of phase, so the error in the difference is large. The error
in ��φ reaches a maximum of ∼10%. A consequence of this systematic is that,
at early times, the particles with the largest frequency difference will introduce the
largest errors, as they were the first to leave the cluster. This explains the broadening
of the extremes of the frequency distributions in Fig. 6.4. A similar effect is observed
in the angles shown in Fig. 6.2. The largest error in the angles occurs at pericentre
(Chap. 2). Around each pericentric passage, the Stäckel-fitting algorithm produces a
small blip in the angle difference. This blip increases in magnitude with time as the
systematic errors introduced by the algorithm shift out of phase with each other.

The discussion has been limited to the errors introduced when finding the gradient
using a single particle and the progenitor. It is more difficult to assess how the linear
regression of the angles and frequencies of many particles in the stream is affected,
but it is clear that it is systematic and not random, as the errors of neighbouring stream
particles are correlated. The errors depend upon the initial cluster conditions which
govern ��, the time since the cluster started being stripped, and the phase at which
the stream is observed. We also expect this source of error to decrease with the mass
of the progenitor. Larger progenitor masses produce larger frequency distributions
(see Chap.5), so the errors introduced by the Stäckel-fitting algorithm become less
significant.
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G.3 Calculating the Hessian

As part of our likelihood in Sect. 5.3, we require the Hessian matrix, D = ∂2H/∂ J2.
In a Stäckel potential, this matrix may be found numerically by following the pro-
cedure presented in the Appendix of Eyre (2010). This involves finding the second
derivatives of the analytic integral expressions for the actions with respect to the
integrals of motion: the energy, E , the z-component of the angular momentum, Lz ,
and the third integral, I3. The resulting integrals are performed analytically using
Gaussian quadrature, but care must be taken due to the divergence of the frequency
integrand at the end-points. These considerations are taken care of by introduction
of a dummy variable as described in Eyre (2010).

For our purposes, we are using a Stäckel approximation to the true potential
(Chap. 2), sowe estimate the trueHessianmatrix as that calculated in the approximate
Stäckel potential. In the true potential, the error in each component of the Hessian
matrix is less than 10%. However, the error in the determinant is larger (∼30%).
As the potentials considered are near-spherical, the determinant of the Hessian is
small (it is zero for the spherical case), which arises due to cancelling terms in the
calculation. Therefore, small errors in each component can give rise to larger errors in
the determinant. We recover the appropriate trends in the determinant of the Hessian
matrixwith the potential parameters. There is a slight bias in Fig. 6.11 that is probably
due to the errors in the Hessian matrix. However, it is not significant. The results
shown in this paper demonstrate that the magnitude of the observational errors in
the data dominates any systematic errors in estimating the angles, frequencies, or the
determinant of the Hessian matrix.

A better, but more time-consuming, estimate of the Hessian matrix may be found
using the torus machine (McMillan and Binney 2008) as described in Chap.5.
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Appendix H
edf Normalization

Here we show that the edf presented in Chap.8 is correctly normalized i.e.

∫
d3 J dL ′

z d[Fe/H] dτ f (J, L ′
z, [Fe/H], τ ) = 1.

The full df is

f (JR, Lz, Jz, L ′
z, [Fe/H], τ )

= 	(τ )
e−(Lz−L ′

z)
2/2σ2

L√
2πσ2

L

1
2 [1 + tanh(Lz/L0)]
1
2 [1 + erf(L ′

z/
√
2σL)]

2�c(L ′
z)

8π3R2
dκ2(L ′

z)

ν(Lz)κ(Lz)

σ2
R(Lz)σ2

z (Lz)
×

e−R′
c/Rd e−κ(Lz)JR/σ2

R(Lz)e−ν(Lz)Jz/σ
2
z (Lz)δ([Fe/H] − F(R′

c, τ )) (H.1)

This edf assumes that all the heating occurred at the current angular momentum (i.e.
σR and σz are functions of Lz). Note the error function in the denominator, and the
arguments of the epicyclic frequencies.

For the thin disc, we have

	(τ ) = 	thin(τ ) = (1 − F)eτ/τ f

τ f (eτT /τ f − 1)
(H.2)

and for the thick disc

	(τ ) = 	thick(τ ) = F
τm − τT

. (H.3)

We now show that this edf integrates to unity. To perform the integral, we carry out
the following steps.
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1. Perform integral over [Fe/H]: integrates to one if R′
c > 0 and τ < τm .

2. Integrate over JR , Jz from 0 to∞: Exponentials produce factors
σ2

R(Lz)

κ(Lz)
and

σ2
z (Lz)

ν(Lz)
that cancel with part of the fraction.

3. Integrate over Lz from −∞ to ∞: The only terms that now depend upon Lz

are the tanh and the Gaussian. The tanh limits the integration limits to 0 to ∞
such that the integral over the Gaussian is given by the error function term in the
denominator so cancels.

4. Change integration variable from L ′
z to R′

c:
dL ′

z
dR′

c
= R′

cκ(L ′
z)

2�c(L ′
z)
. This piece cancels

with the appropriate terms in the fraction. Again the integral is from −∞ to ∞
but this time we don’t have a tanh to cancel out the negative piece. However, all
stars are born in the disc with positive angular momentum. The negative birth
angular momenta are forbidden. We are left with the integral

∫ ∞

0
dR′

c f (τ , R′
c) =

∫ ∞

0
dR′

c g(τ )
R′

c

8π3R2
d

e−R′
c/Rd (H.4)

which integrates to f (τ ) = g(τ )/8π3.
5. Integration over the three angle variables removes the factor 8π3.
6. Finally, integration over τ gives

∫
dτ f (τ ) =

∫ τT

0
	thin(τ ) +

∫ τm

τT

	thick(τ ) = F + (1 − F) = 1. (H.5)



Appendix I
Markov Chain Monte Carlo edf Parameter
Search

In Sect. 8.5 of Chap.8, we showed how we chose the parameters of the edf using
the GCS and Gilmore-Reid density data. The parameters were chosen by using
the Nelder-Mead downhill simplex minimization routine (Nelder and Mead 1965).
Such a procedure risks finding local minima. Here we present the results of a
much fuller Markov Chain Monte Carlo (MCMC) search. We use an affine-invariant
ensemble sampler implemented in the emcee package from Foreman-Mackey et al.
(2013) and evaluate the log-likelihood given in Eq. (8.34). We use a group of
128 walkers and choose logarithmic priors for all scale parameters. We limited
σL < 1800 kpc km s−1. We show the resulting covariance matrix of the MCMC
samples after a sufficient burn-in in Fig. I.1. In Table I.1, we show the recovered
parameter estimates assuming the distributions to be uncorrelated Gaussians.

I.1 Discussion

We will now discuss the results of our full MCMC procedure. The majority of
the 1D histograms shown in Fig. I.1 are approximately Gaussian. The most notable
exceptions to this are the histograms for Fm and σL .

We chose to limit σL < 1800 kpc km s−1 and clearly the data require σL to be
large. With σL this large, it means stars are able to migrate ∼R0 in the lifetime of
the Galaxy. The low-Jz stars of the GCS constrain d[Fe/H]/dRc (see Fig. 8.11),
and hence FR such that FR ≈ −0.055 dex/ kpc. The GCS contains some metal-
rich stars of ∼0.5 dex. These stars must migrate from the inner Galaxy but as the
metallicity is assumed to grow linearly towards the Galactic centre, these stars cannot
physically exist in our model. The solution to this is to increase the gradient of the
ISM (e.g. Schonrich and Binney (2009) use a steep gradient of −0.082 dex/ kpc)
but this contradicts the low-Jz d[Fe/H]dRc gradient. Another solution is to alter the
model such that the gradient is steeper towards the centre. Additionally, the errors in
the metallicities for these high metallicity stars could be larger than that reported.
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Fig. I.1 Covariance matrix for the MCMC results of the edf parameter search. The top row and
right-most column show the 1D histograms for each parameter. The other panels show the 2D
histograms with contours containing 68, 95 and 99% of the samples

The Fm distribution is determined by the very few metal-poor stars in the survey.
It is therefore no surprise that the recovered parameter estimate is noisy.

We can also see that there are some parameters that are highly correlated. One
notable correlation is τF with the thin disc scale-length, Rd . Increasing the scale-
length flattens the radial profile. We see that τF is anti-correlated with Rd . Increasing
τF flattens the metallicity of the ISM with time such that there are more metal-
poor stars and fewer metal-rich stars in the solar neighbourhood now. This can be
combated by decreasing the scale-length, which reduces the number of metal-poor
stars and boosts the number of metal-rich stars. Additionally, we see that there are
strong correlations between Rσ and σR0 or σz0 for the thick disc. Increasing Rσ

lowers the number of hot stars coming from inside which must be compensated
for by increasing σ0. Similarly, Rd and Rσ are anti-correlated for the thick disc as
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Table I.1 edf parameter estimates from MCMC procedure on GCS data

Thick Rd/kpc 2.3 ± 0.3

Rσ/kpc 4.8 ± 0.2

σR0/km s−1 57 ± 3

σz0/km s−1 48 ± 2

Thin Rd/kpc 2.9 ± 0.2

Rσ/kpc 9.5 ± 0.5

σR0/km s−1 47.3 ± 0.5

σz0/km s−1 31.5 ± 0.4

Other F 0.19 ± 0.01

σL/(100 km s−1 kpc) 17.31 ± 0.27

τF/Gyr 4.6 ± 0.3

Fm/dex −0.77 ± 0.04

RF/kpc 6.6 ± 0.1

FR/dex kpc−1 −0.055 ± 0.004

khalo/4.27 × 10−4 2.4 ± 0.3

We assume the recovered distributions are uncorrelated Gaussians

increasing Rd reduces the number of hot stars from inside. Finally, we see a weak
anti-correlation between F and σz for the thick disc, and between khalo and both σ0
for the thick disc. Lowering the weight of the thick disc (F) requires σz to increase
to fill the wings of the vz distribution, whilst lowering khalo has the same effect.
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