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To my parents



Supervisors’ Foreword

This thesis focuses on theoretical modeling, experimental realization, and selected
applications of a new experimental tool for studying complex time-delayed net-
works. Here, a network is composed of nodes that process incoming information
and links connecting the nodes along which signals propagate. The study of net-
works is one of the most active areas of research in the nonlinear dynamics and
complexity community, but there are very few experiments to test the substantial
number of theoretical predictions. This dissertation describes pioneering research
on the development of a new experimental platform for studying networks and has
used it to make several fundamental discoveries. It was jointly supervised in the
framework of a collaboration between Duke University (USA) and Technische
Universität Berlin (Germany), and funded by U.S. Army Research Office and
Deutsche Forschungsgemeinschaft via SFB 910.

In the approach described here, networks are realized on a massively integrated
electronic chip, where the nodes consist of logic elements that are interconnected by
on-chip wires, possibly containing logic elements that produce delay of signals. The
node function and network topology can be reprogrammed, allowing study of a
wide range of network types, including the realization of “super nodes” (a col-
lection of logic elements) that mimic the behavior of nodes in different network
types, such as in a neuronal network. This has led to new insights into the stability
and control of small neuronal-like networks, the transient behavior of a phase-
oscillator network as a function of network size, and random number generation in
a small one-dimensional network.

The first chapter orients the reader to the general field of network science and
dynamics on networks, establishing the need for experimental research on net-
works. Chapter 2 introduces autonomous Boolean networks, where the node
dynamics follow Boolean rules and there is no clock in regulating the node updates.
Chapter 3 describes the new experimental platform that uses a massively integrated
electronic chip that contains nearly 106 programmable logic elements and inter-
connects, known as a field programmable gate array (FPGA). With this platform,
networks with hundreds or thousands of nodes can be realized simply by modifying
the hardware description that defines how the chip behaves. Chapter 4 describes an
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autonomous Boolean network that displays chaos, establishing a minimum network
size required to observe high-dimensional chaos as characterized by the entropy of
a signal recorded from one of the network nodes. With an eye toward applications,
Chap. 5 describes a hybrid (autonomous/clocked) network used for generating truly
random numbers at a rate of 100 Mbits/s, which is duplicated 128 on the same chip
times, resulting in a physical random number generator operating at a rate of 12.8
Gbits/s. These bits require no further post-processing and pass directly several
internationally accepted statistical tests for randomness. This work is important
because it uses an inexpensive platform that can be easily integrated with infor-
mation-technology infrastructure and can be scaled to higher rates as the chip
technology continues to mature. In Chap. 6, a phase oscillator is realized by
combining logic elements. By changing a delay in the oscillator, the phase can be
adjusted in real-time, allowing the realization of a weakly coupled network of phase
oscillators. Larger networks of phase oscillators are studied in Chap. 7, where the
observation of chimera states, i.e., novel patterns of coexisting domains of spatially
coherent (synchronized) and incoherent (desynchronized) dynamics, is described.
These states are found to be transients on the path to full network synchronization,
where the mean time to achieve synchronization scales exponentially with network
size, confirming recent theoretical predictions. Furthermore, it is observed that the
chimera state is not stable during the transient—the network passes from com-
pletely unsynchronized behavior (likely a chaotic transient) to the chimera state—
termed resurgence of the chimera. This behavior has not been predicted yet in any
theoretical model and is likely to stimulate new research in this area. In Chap. 8, a
method for grouping Boolean logic elements to realize an excitable node is
described, mimicking the basic functionality of a neuron: threshold response, a
refractory period, and a standard output pulse. This sets the stage for realizing
directed networks (Chap. 9). Here, the observation of cluster synchronization is
described and compared with previous theoretical predictions and experimental
observations, where good agreement is obtained when the network timescales are
well separated (delay between nodes, refractory time, and pulse width). By
investigating cases when the network time scales are not separated, two new
dynamical behaviors are discovered. Furthermore, it is demonstrated that the net-
work dynamics can be controlled by adjusting the time scale of only a few network
nodes with a large number of input connections from elsewhere in the network.
This research is likely to have important implications for treating brain disease and
for developing artificial neural networks for applications in information processing.
The concluding chapter puts the work in the context of the broader field and gives
suggested future directions for this line of research.

Durham, September 2014 Prof. Daniel J. Gauthier
Berlin Prof. Eckehard Schöll
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Abstract

Network science provides a powerful framework for analyzing complex systems
found in physics, biology, and social sciences. One way of studying the dynamics
of networks is to engineer and measure them in the laboratory, which is particularly
difficult with established approaches. In this thesis, I approach this problem using a
hardware device with time-delay elements executing Boolean functions that can be
connected to autonomous Boolean networks with chaotic, periodic, or excitable
dynamics. I am able to make scientific discoveries for networks with each of these
three different node dynamics, driven by the large flexibility and the non-ideal
effects of the experiment complemented by analytical and numerical investigations.

Using network realizations with periodic Boolean oscillators, I study so-called
chimera states and find that they can disappear and reappear—the resurgence of
chimera states. I measure the transient times of chimera states and find a power-law
relationship between the average transient time and the phase space volume with an
exponent of κ ¼ �0:28� 0:10.

I also study cluster synchronization in networks of coupled excitable systems. In
these artificial neural networks, I find a breakdown of an established theoretical tool
when the heterogeneity of the link time delays is greater than the neural refractory
period. This phenomenon is used to derive a control scheme for spiking patterns
generated by neural networks.

Experimental implementations of these systems take advantage of the fast
timescale of electronic logic gates, large scalability, and low price. These properties
make the system attractive for technological applications, as I demonstrate by
realizing a physical random number generator that has an ultra-high bitrate of
12.8 Gbit/s and a silicon neuron that is a thousand times faster than the fastest
preceding silicon neuron. For the study of coupled oscillator networks, I develop a
phase-locked loop allowing for multiple drivers that may be advantageous for clock
synchronization. Instead of the common topologies with one driver per oscillator, it
allows for heavily connected clock networks to increase robustness against failure.
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Chapter 1
Introduction

1.1 Network Description of Complex Systems

In a network description, multi-agent systems, such as collections of interacting
genes, assemblies of interconnected neurons, or social communities, are approxi-
mated as sets of nodes and edges. Nodes interact with each other if they share an
edge [1, 2]. The network description has been beneficial to improve the understand-
ing of a wide range of systems in nature and society, such as biological cells [3–7],
phone call interactions [8, 9], and the World Wide Web [10, 11].

An important early study on networks is the small-world experiment [12], where
Milgram studied social networks. He measured the average path length in the social
graph of the people of the United States, where the nodes of the network are people
and the edges are social links. In his experiments, Milgram found that the average
shortest path length—the average degree of separation—between two randomly cho-
sen persons is close to six. With this study, Milgram was the first to report on the
existence of short average path lengths in large networks. Today, such networks,
which are known as small world networks, have been identified for many systems in
nature and technology, for example, for the World Wide Web, the power grid of the
western United States, and the collaboration graph of film actors [10, 13].

The study of network has led to important insight regarding the robustness of
global systems, such as the internet and airline transportation graphs. Specifically, the
short average path length in small-world networks is often ensured by an underlying
scale-free network topology, where the degree of a node, i.e., the number of links
per node, follows a power law. As a result, a small fraction of the nodes, e.g., 20%,
have a large fraction of the links, e.g., 80% [14], and a very few number of nodes,
so-called hubs, have a crucial number of links. These hubs are, in the example of the
internet, websites like Google.com. The hubbed structure of scale-free networks can
make them vulnerable to targeted attacks, which is a concern for the World Wide
Web and other computer networks when target of cyber-attacks [15]. However, such
scale-free networks are robust against accidental failures, which could explain their
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prevalence in nature [16]. As a result, scale-free airline transportation graphs allow
for fast and efficient travel with only a few layovers, but also accelerate the spread
of epidemic diseases [2, 17, 18].

Examples of networks in nature, in addition to the ones mentioned above, are food
webs [19, 20], where the nodes are species and the edges represent their predator-
prey relationship, science collaboration graphs [21], where the nodes are scientists
and edges represent co-authored articles, and neural networks, where the nodes are
neurons or populations of neurons and edges are synapses or gap junctions. For
example, the neural network of the worm C. elegans consists of 282 neurons with a
known network topology [13].

While there is much effort in studying the topology of the various networks in
nature, such as the degree distribution, the clustering, and the community structure
of networks [2, 22], another branch of network science focuses on the dynamics of
and on networks and the relation between dynamics and topology.

1.2 Dynamics of Complex Networks

A well-studied network dynamics is global synchronization or simply synchroniza-
tion, where coupled oscillators adjust their rythms [23, 24]. Synchronization of cou-
pled periodic oscillators was first documented in the 17th century by Huygens in two
mechanically coupled pendulum clocks [25, 26]. Later, synchronization of oscilla-
tors has been found throughout nature with popular examples of synchronization of
flashing fireflies and synchronization of walking crowds on the Millennium Bridge
in London [27–30]. Synchronization has not only been observed for periodic systems
but also for chaotic and excitable systems [31–33].

Ausefulmathematical tool to studynetwork synchronization is themaster stability
function, which separates the influence of the network topology and the influence
of the individual node dynamics to the overall synchronization dynamics [34]. The
master stability function has been successfully applied to study synchronization in
various delay-coupled networks of different node dynamics [35–46].

Astonishingly, even when time delays exist along the links, networks can syn-
chronize with zero time lag, which is emphasized with the expression zero-lag syn-
chronization [47–49]. This phenomenon has been observed in the brain, where, even
between distant neural populations, zero-lag synchronized neural activity has been
observed [50–55] and found to be associated with perception and neurological dis-
eases [56, 57]. The timedelays in neural networks result frompropagationof neuronal
pulses along the axons introducing several tens of milliseconds of latency, which is
significantly larger than the duration of the action potential (�1ms) [58]. Zero-lag
synchronization occurs also in coupled lasers, where signals take a significant amount
of time to be exchanged in the network due to spatial distance and the finite speed
of light [49, 59–62].
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One striking extension of this dynamics is zero-lag cluster synchronization, where
the network separates into groups of nodes (the clusters), which are individually zero-
lag synchronized. This dynamics has been observed in networks of coupled lasers
[63, 64], neural elements [65, 66], and optoelectronic oscillators [42].

The number of dynamical clusters in the networks can under certain conditions be
calculated from the network topology using a measure termed the greatest common
divisor of a network topology [67, 68] or with the master stability function [35, 69].
These analytic theories have been applied to networks with periodic [38, 44, 64],
chaotic [34, 67] and excitable node dynamics [35, 68].

Another network dynamics is partial synchronization, where a fraction of the
nodes is synchronized and the remaining nodes are desynchronized. The latter
dynamics occurs in networks of oscillators when the distribution of their natural
frequencies is broad and the coupling is weak [5, 70–72].

Coexistence of coherence (synchronization) and incoherence (desynchronization)
in networks of coupled oscillators can occur even when the oscillators are identical
and the network topology is homogeneous [73, 74]. As a requirement to observe this
dynamics, the network has to have, in most studies, a non-local network topology
and phase-lag or time delay along the links. To highlight the occurrence of two
very different domains of synchronization and desynchronization, this dynamics
was named after the chimera creature in Greek mythology, which is composed of
different animals [73]. Chimera states have been found in networks of various node
dynamics described by a wide range of theoretical models [75–79] and also observed
in experimental setups using coupled optical systems [80], electrical [81], chemical
[82–85], and mechanical oscillators [70].

In addition to observing the dynamics of networks, some recent work focuses on
its control. For example, researchers are interested in which network topologies can
be controlled [48, 86–88].

1.3 Challenges and Rewards of Experimental Network
Realizations

Networks of dynamical systems have also been realized in experimental setups with
threemajor goals. First, such realizations are needed to show that the various network
dynamics are robust enough to occur in an experimental system because experiments
include noise and heterogeneity, which are often not accounted for in models and
even unexpected differences between models and experiment can exist. Second,
an experimenter’s perspective on network dynamics is different from the dominant
theoretician’s point of view, possibly allowing for game-changing innovations. Third,
dynamics generated by physical networks have important applications. For example,
hardware neural networks are used to develop new computing structures inspired
by the human brain [89–92], opto-electronic networks are used to ensure private
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communication [42, 93–96], and chaotic dynamics of lasers is used to realize physical
random number generators [97–99], which are vital for cybersecurity [100, 101] and
Monte Carlo simulations [102].

While research on physical realizations of networks can be very rewarding, it is
also challenging because multiple systems have to be set up and coupled. This is
especially true for networks that generate complex dynamics, such as chimera states
or cluster synchronization, because they have to include a large number of highly-
connected nodes. For this, most of the traditional experimental systems from non-
linear dynamics research are not feasible, such as classical analog electronic circuits
and opto-electronic circuits [103–105]. Recent studies on coupled lasers, however,
allowed to couple as many as 1000 nodes [64, 106–109]. In studies on experimental
chimera states, namely in Ref. [70, 80–85], workarounds allow to couplemany nodes
into complex topologies. For example, these studies either use computer algorithms
to manage the coupling or they are restricted to simple network topologies or a small
number of nodes [70, 80, 82, 84]. Laurent Larger and collaborators use an elegant
mapping from node number to time domain that allowed them to realize a virtual
network with a single time-delayed feedback electronic circuit [81, 110]. However,
there has not yet been an all-physical realization of chimera states with a network
that has a similar topology to the originally studied network in Refs. [73, 74] and
includes more than 30 nodes.

In this thesis, I pursue a novel approach to experimental network realizations
usingBoolean networks built with electronic logic circuits. I take advantage of recent
developments in very-large-scale integration (VLSI) of digital electronics that allow
to realize large networks with hundreds of highly-connected nodes, beyond reach
of traditional setups. Furthermore, the fast timescale on the order of 100 ps means
that the physical networks have several potential applications, such as network-based
information processing [111, 112]. The study of Boolean networks is also interesting
from a fundamental point of view because these systems are a popular generic model
in complex systems theory, as is discussed next.

1.4 Boolean Networks

Boolean networks were first proposed in 1965 by Walker and Ashby [113] as a gen-
eral, interesting complex system; in a groundbreaking paper from 1969, Kauffman
popularized Boolean networks as a model for genetic circuits [114]. These so-called
Kauffman networks were extended by Ghil and Mullhaupt in 1984 with Boolean
delay equations by including time delays [115, 116]. Later, Glass and collaborators
popularized piecewise linear differential equations with a Boolean switching term
as another approach to Boolean networks [117, 118].

Boolean network descriptions are commonly used today to model complex sys-
tems that exhibit threshold behavior, have multiple feedbacks, and multiple time
delays [114, 119–122]. Boolean networks are seen as a way towards understanding
large coupled systems that are too complex to be modeled in every detail, especially
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including amplitude-specific interactions [120, 122–125]. For example, simplemod-
els such as Boolean networks are helpful in the fields of life sciences and geosciences.
In biology, Boolean networks are used to model genetic regulatory networks, where
genes interactwith each other via transcriptional factors [4, 114, 119, 121, 126, 127].
The study on Boolean networks led to the idea that the attractors in genetic networks
represent different cell expressions [4, 114]. In geosciences, Boolean networks have
been used as an idealized climate model for a wide range of timescales ranging from
climate change on interanual to paleoclimatic timescales [120, 128–130]; they have
also been used in seismicity for earthquake modeling and prediction [120, 131, 132].

Applications of Boolean networks include neural network models, which are
needed for novel approaches to computing, and systems biology, for example with
the mathematical description of Kauffman networks [133–137]. Last but not least,
with central processing units (CPUs),most of themodern-day electronic equipment is
based on Boolean algebra. In the development of these systems, the logic designs are
usually simulated extensivelywithBoolean delaymodels knownas timing simulation
[138].

In addition to a large bodyof theoreticalworkonBooleannetworks, theyhavebeen
used to build physical systems that can potentially be applied in signal processing
because of their fast timescale and very complex dynamics. A so-called autonomous
Boolean networks was built by Zhang and collaborators in 2009 [139], which is the
starting point for the research in this thesis.

1.5 Overview

The thesis is organized in ten chapters, where Chaps. 2 and 3 introduce autonomous
Boolean networks and their experimental implementation. Chapters4 and 5 focus
on chaotic autonomous Boolean networks, where each node executes a Boolean
function. In Chaps. 6 and 8, on the other hand, I develop autonomous Boolean
networks with periodic and excitable dynamics that are used in Chaps. 7 and 9 to
construct meta-networks of these systems. There, I consider the periodic or excitable
dynamical systems as nodes and themeta-networks simply as networks. The resulting
scientific findings are summarized in Chap. 10.

Specifically, Chap. 2 introduces Boolean network models and preceding work on
experimental realizations of Boolean networks with electronic logic gates, especially
the electronic realization of a chaotic autonomous Boolean network by Zhang and
collaborators [139]. Chapter 3 discusses a new experimental platform used for the
experimental implementation of networks in this thesis. The design flow of imple-
menting networks is discussed. The experimental platform allows to realize large
networks of hundreds of nodes.

Chapter 4 focuses on chaotic dynamics in autonomous Boolean networks with a
system that I term delayed-feedback XNOR oscillator. This chaotic dynamic system,
motivated by an early theoretical study on Boolean networks, consists of only a
single dynamical node with time-delayed feedback. In Chap. 5, the chaotic dynamics
are applied to physical random number generation. I characterize how the network
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dynamics changes as a function of the network size and characterize its complexity
with common measures, such as the entropy and the autocorrelation. I find that a
hybrid Boolean network generates high-quality physical random numbers with a
record bitrate of 12.8GHz.

Chapter 6 focuses on periodic dynamics of autonomous Boolean networks. I
introduce and study two concepts to realizing periodic Boolean oscillators: modi-
fied ring oscillators and Boolean phase oscillators. The latter is based on all-digital
phase-locked loops, allowing for weak coupling. With both concepts I study small
network motifs of coupled periodic Boolean oscillators and study the synchroniza-
tion regimes. In Chap. 7, the Boolean phase oscillators are applied to studying large
networks in a non-local coupling topology. I find that these networks show intriguing
network dynamics known as chimera states and discover a new dynamics that I call
resurgence of chimera states. I also find that the dynamics is transient with a transient
time that follows a power law of the phase space volume.

InChap. 8, I propose and characterize an autonomousBoolean network that shows
excitable dynamics and is a particularly fast silicon neuron. Its spiking dynamics is
characterized in small network motifs of two silicon neurons and is used to confirm
experimentally previous theory results on the dynamics of biological neural systems.
The silicon neurons are used in Chap. 9 to study cluster synchronization in directed,
interconnected ring networks. I find that an established theory for neurodynamics
breaks down when the time-delay heterogeneity is larger than the neural refractory
period.

I summarize the results of the thesis in Chap.10, where I also give an outlook
over possible continuation of my work.
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Chapter 2
Previous Work on Boolean Networks

Abstract This chapter summarizes both previous theoretical and expeirmental work
on Boolean networks. I distinguish between synchronous and autonomous Boolean
networks in Sect. 2.1 and introduce Boolean network models and preceding experi-
mental work with electronic circuits in Sects. 2.2 and 2.3.

2.1 Synchronous and Autonomous Boolean Networks

A Boolean network is a composition of nodes that can be in one of two Boolean
states—either “on” or “off”, “1” or “0”—and links that connect the nodes [1, 2].
The network dynamics is determined by Boolean functions of the Boolean states,
processing delays, and, especially, the updating method of the Boolean states.

I distinguish between two forms of Boolean networks depending on the updating
method: synchronous and autonomous Boolean networks. Synchronous Boolean net-
works evolve in discrete time steps, mathematically described by iterated maps and
experimentally realized with clocked logic circuits. The processing delays are then
given by one iteration step of the map. Autonomous Boolean networks evolve in con-
tinuous time, mathematically described by differential equations or Boolean delay
equations and experimentally realized with unclocked logic circuits. The process-
ing delays in autonomous Boolean networks originate from processing times of the
nodes and propagation delays along the links.

One important example for an autonomous Boolean network is a synthetic bio-
logical circuit termed the “repressilator,” which is similar to naturally occurring
biological circuits that function as biological clocks [3]. This circuit includes three
transcriptional repressors that inhibit each other in a cyclic way, leading to oscilla-
tions [4, 5].

A simplified network topology of the repressilator is shown in Fig. 2.1. It consists
of three autonomous nodes connected in a directional ring as shown in Fig. 2.1a. In
this example, each node executes the inversion Boolean function, hence, it adjusts its
Boolean state to be the opposite of the state of the input node, which is referred to as
inhibition in a biological context. The specific dynamics of the network depends on
the underlying modeling framework and corresponding parameters, which I discuss

© Springer International Publishing Switzerland 2015
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Fig. 2.1 a Example of an autonomous Boolean network with three nodes. Each node inhibits one
neighbor as indicated by arrows. b Schematic of the resulting dynamics. The Boolean states are
indicated by “0” and “1” in the first waveform

below, but, for large enough processing delays, the states of the nodes oscillate.
This oscillation is a result of an odd number of inversion operations and processing
delays of the nodes, as illustrated in Fig. 2.1b. A transition in the first node results
in a transition in the second node after one processing delay; after three processing
delays, the first node displays another transition, resulting in an oscillation period of
six processing delays.

2.2 Boolean Network Models

In this section, I describe three standard Boolean network models, known as Kauff-
man networks, Boolean delay equations, and piecewise-linear differential equations
by Glass and collaborators. The first assumes synchronous operation and the latter
two autonomous operation.

2.2.1 Kauffman Networks

In 1969, Kauffman popularized a synchronous Boolean network description for
genetic control circuits, where genes are approximated as Boolean nodes that switch
between active (“on”) and inactive (“off”) and links that describe the interactions of
genes via Boolean functions. The nodes change their Boolean states at fixed time
steps in synchronous temporal evolution. This is mathematically described with a
map, where one time step corresponds to the node processing delay.

In Kauffman’s description, N Boolean nodes interact via their Boolean states Xi ,
according to the Boolean map
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Xi (t + 1) = �i (Xi1(t), Xi2(t), . . . , XiK (t)), i = 1, . . . , N , (2.1)

where �i (·) : {0, 1}K → {0, 1} are Boolean functions with inputs from K nodes
in the network [2, 6]. The Boolean functions, which are associated with the genetic
interaction, are picked at random because they were (and still are) unknown. Kauff-
man assumed that theBoolean functions are evaluated simultaneously in discrete time
steps t . Under these conditions, this Boolean network model is known as Kauffman
N-K networks or simply Kauffman networks.

Mathematically, such a Booleanmap description is a finite-state machine or cellu-
lar automaton, with a phase space composed of 2N states and rules for the transition
between states [7, 8]. The finite number of states means that every trajectory will
at some point reach a previously visited state. From there, since the dynamics is
deterministic, the trajectory will fall into a limit cycle.

To characterize the dynamics, distance measures tailored for Boolean systems are
needed. This is especially necessary to characterize the complexity of the dynamics,
such as the divergence of nearby orbits [9]. A widely used Boolean distance measure
is the Hamming distance from coding theory, which reads for two network states
{Xi }N

i=1 and {Yi }N
i=1 with Boolean states Xi , Yi ∈ {0, 1},

h =
N∑

i=1

|Xi − Yi | . (2.2)

The Hamming distance corresponds to the number of nodes in the network that differ
in their Boolean states.

For Kauffman networks, the Hamming distance can under certain conditions
increase exponentially over time calculated between two initially close network
states, i.e. consider a small perturbation of the network dynamics by switching the
Boolean states of a few nodes. These networks satisfy hence the sensitivity to initial
conditions of chaotic systems [10]. On the other hand, because Kauffman networks
are finite-state machines, all orbits are closed and periodic, which violates one con-
dition for deterministic chaos. I discuss deterministic chaos and its requirements in
detail in Sect. 4.1. The periods can, however, be as long as T = 10150 iterations for
N -K networks of N = 103 nodes and in-degrees of K = N [2].

Kauffman networks can display a dynamical transition to such long trajecto-
ries with exponential growth of the Hamming distance. The dynamical instability
has implications for biology because Kauffman proposed that different attractors in
Boolean networks correspond to different cell types of organisms [2]. Specifically,
this dynamical instability in biological systems has been hypothesized to be the cause
for some types of cancer. Furthermore, researchers have proposed that a method of
controlling this dynamical instability could be a route towards curing cancer [10].

Kauffman’s description of genetic interaction is appealing from a network point of
view because it reduces complex interacting systems, especially genetic circuits, to
systems involving only network topology andBoolean functions. But, it also neglects
several aspects of the physical system that could be important for the dynamics. For

http://dx.doi.org/10.1007/978-3-319-13578-6_4
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example, Boolean descriptions neglect continuous-variable (non-Boolean) interac-
tions that account for the amplitude of the dynamics. Furthermore, Kauffman’s
description does not include continuous-time interactions and finite transmission
delays between nodes. Time delays have been proven to play a crucial role for the
dynamics in many systems because they lead to an infinite-dimensional phase space.
For example, time delays can dictate the periodicity of oscillations and stabilize and
destabilize fixed points and periodic orbits [11–17].

2.2.2 Boolean Delay Equations

Ghil and Mullhaupt introduced Boolean delay equations as an autonomous Boolean
network model [18]. The Boolean state of the node Xi evolves according to the
Boolean delay equation

Xi (t) = �i (Xi1(t −τi,1), Xi2(t −τi,2), . . . , XiN (t −τi,N )), i = 1, . . . , N , (2.3)

which has a similar structure as Kauffman networks in Eq. (2.1) with the Boolean
function �i on the right hand side. However, the resulting dynamics can be very
different from Kauffman networks because it includes continuous-time updating
and time delays τi, j , which correspond to the transmission times along the links.
Boolean delay equations can be used to model genetic circuits [19].

Ghil and Mullhaupt are especially interested in the dynamics of a particular
Boolean network given by the Boolean delay equation

X (t) = X (t − θ1) ⊕ X (t − θ2) ⊕ · · · ⊕ X (t − θδ), (2.4)

which includes δ ≥ 2 time delays θi with 0 < θδ < · · · < θ2 < θ1 = 1 [18]. The
operator⊕: {0, 1}×{0, 1} → {0, 1} denotes the “exclusive or” (XOR) operation that
maps two Boolean inputs that have combined 22 = 4 possible states, namely 00, 01,
10, and 11, to one Boolean output. This mapping is uniquely defined by a look-up
table that connects all possible Boolean input combinations (here, a total of four)
to one Boolean output value. Specifically, Fig. 2.2a shows the look-up table for the
XOR logic operation. Equation (2.4) includes δ −1 XOR operations with two inputs
each, which is equivalent to a single generalized δ-input XOR operation.

The Boolean delay equation (Eq. 2.4) is visualized with a circuit diagram in
Fig. 2.2b for δ = 2, where I use the standard graphical representation of an XOR
logic gate. It can be seen that the XOR logic operator is subject to two delayed
feedback lines.

This Boolean delay equation (Eq. 2.4) leads to aperiodic dynamics, when the
delays {θi }δi=1 are incommensurate, for all initial conditions except x(t) ≡ 0 [18,
20]. On the other hand, the initial condition x(t) ≡ 0 (t ∈ (−1, 0]) leads to a stable
fixed point, where the output and the input of the Boolean function stays at the low
Boolean value.
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Fig. 2.2 a Look-up table and a variation on the ANSI/IEEE Std 91-1984 representation for an XOR
logic gate. The look-up table determines the Boolean output of the logic gate for every possible
combination of Boolean inputs. b Illustration of the circuit that is represented by the Boolean delay
equation (2.4) with δ = 2 delays. The delayed feedback lines are represented by wire connections
and rectangles. c The solution x(t) of Eq. (2.4) with delays of θ2 = (

√
5 − 1)/2 and θ1 = 1; the

dynamics are initialized with one transition at time t = 0

The resulting dynamics is shown in Fig. 2.2c for an initial function that includes
one initial transition at time t = 0 and δ = 2 delays of θ2 = (

√
5− 1)/2 and θ1 = 1

in Eq. (2.4). The figure shows that with each time unit (corresponding to the delay
θ1 = 1), the number of transitions increases. In fact, this increase follows a power law
in time as reported by Ghil and collaborators [18, 20]. Because these increasingly
fast dynamics result in an unlimited growth of frequency over time, Zhang and
collaborators referred to that effect as an inevitable ultraviolet catastrophe [21].

This complex behavior is not practically observed in nature because the infor-
mation-transmitting wires (or media) and the processing element (the XOR logic
operator) have, when physically realized, a maximum operation frequency. Hence,
they cannot transmit or generate signals above a certain frequency. For electronics,
this effect is known as low-pass filtering. Amaximumoperation frequency also exists
in biological systems, such as biological genes.

2.2.3 Piecewise-Linear Differential Equations

To overcome these problems, Glass and collaborators proposed an autonomous
Boolean network model with continuous-time, continuous-state differential equa-
tions that includeBoolean switching terms [22–24]. Specifically, Kauffman networks
in Eq. (2.1) are expanded with piecewise-linear differential equations that include a
first-order approach to the Boolean levels, according to

dxi

dt
= −xi + �i (Xi1(t), Xi2(t), . . . , XiK (t)), i = 1, . . . , N , (2.5)

where, similar to Kauffman networks, �i (·) : {0, 1}K → {0, 1} are the Boolean
functions and {Xi }N

i=1 the Boolean states. The equation describes the continuous
temporal evolution of continuous states {xi }N

i=1, which are used to calculate the
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Boolean states according to the threshold condition

X (t) =
{
1, if x(t) ≥ 0.5,

0, if x(t) < 0.5,
(2.6)

Equation (2.5) is more realistic than Eq. (2.1) to describe physical systems, but
it is still a highly simplified model. Glass and collaborators justify this step towards
higher complexity with the model’s “remarkable mathematical properties that facil-
itate theoretical analysis” [22, 25]. For example, Eq. (2.5) can be solved analytically
with simple exponential functions.

To construct the analytical solution, consider the times {t1, t2, . . . , tk} of switching
events when any of the variables xi crosses the threshold 0.5 and hence the Boolean
functions can change values. The solution of Eq.(2.5) is then

xi (t) = xi (t j )e
−(t−t j ) + �i (Xi1(t j ), Xi2(t j ), . . . , XiK (t j ))(1 − e−(t−t j )), (2.7)

for t ∈ [
t j , t j+1

]
[22].

As an example, I discuss the resulting dynamics for a single variable x in the
network with � = 0 for t < 0 and � = 1 for t ≥ 0. Then, the dynamics, shown in
Fig. 2.3, approaches the Boolean level of � with a rise time of

T1/2 = ln(2). (2.8)

The figure also shows the corresponding Boolean variable X that switches Boolean
states when x reaches 0.5. Due to the finite rise time T1/2, the Boolean variable X
takes on the value of� only after T1/2, leading to the effective processing delay T1/2.

Mestl and collaborators have investigated the dynamics of Eq. (2.5) for random
networks of N nodes with a fixed in-degree of K [24, 26]. They have chosen the
Boolean functions of the nodes at random by filling the look-up table with 0’s and
1’s with a probability p. This probability p is known to produce more complex
dynamics the closer it is to 0.5 [27]. They also include a slight variation on the
Boolean levels for each gate by ±0.01 to introduce heterogeneity and thus increase

0 2 4 6

t

0.0

0.5

1.0

, x
, X

X x
T1/2

Fig. 2.3 Analytic solution Eq. (2.7) of Eq. (2.5) for a Boolean driving term � that switches from
0 to 1 at t = 0. Shown are �, x , and X and the rise time T1/2
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the complexity in the dynamics. They have shown that, for N = 64, 9 ≤ K ≤ 25,
and p = 0.5, chaos is the usual behavior [22, 24]. It is assumed that chaos occurs
for most network realizations when the network is above a certain size and p ≈ 0.5
[28]. In these studies, the network topologies exclude self-feedback loops and loops
that are composed of only two nodes because they can lead to fast oscillations that
dominate the dynamics [22].

The solution of this network of N nodes exists in a phase space of N dimensions.
An inclusion of time delays in Eq. (2.5), however, will result in a much larger phase
space and is hence likely to have a drastic effect on the dynamics. I include such
time delays to model the transmission time of the signals between nodes to model
experimental dynamics in Sect. 4.3.2.

2.2.4 Overview of Boolean Network Models

The three standard Boolean network models are summarized in Table2.1. The
Boolean networks interact via discrete states and, in the piecewise-linear differential
equations by Glass and collaborators, an additional continuous variable is used for
the temporal evolution of nodes. They evolve either in discrete time steps or in contin-
uous time, which determines their type to be either synchronous or an autonomous,
respectively.

2.3 Electronic Realizations of Boolean Networks

Central processing units (CPUs) are highly specialized, electronically realized syn-
chronous Boolean networks, similar to Kauffman networks. These systems are finite-
state machines where set rules determine the transition from one state to the next
every clock cycle, where clock speeds can be as high as several gigahertz. CPUs are
the method of choice to perform linear operations at a high rate and are included

Table 2.1 Overview of the three discussed models for Boolean networks

N -K networks Boolean delay
equations

Glass models

States x Discrete Discrete Discrete/continuous

Time t Discrete Continuous Continuous

Type Synchronous Autonomous Autonomous

Mathematical
description

Finite-state machine Boolean delay
equation

Ordinary differential
equation

I use the abbreviation ‘Glass models’ for piecewise-linear differential equations by Glass and
collaborators [22]

http://dx.doi.org/10.1007/978-3-319-13578-6_4
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in everyday electronic equipment. However, from a fundamental point of view,
the physical network problem becomes more interesting when synchronous clock-
ing is removed from the setup and replaced by continuous-time evolution, i.e. the
autonomous operation. Especiallywhen the signal transmission timesmatter, the sys-
tem’s dimensionality increases substantially. Furthermore, the operation frequency
increases to the limit of the Boolean nodes. Then, the system can be used for novel
network-based computing approaches and other applications.

For fundamental research, unclocked logic circuits can be used to test the validity
of autonomous Boolean network models, such as the piecewise-linear differential
equations by Glass and collaborators. With this goal, they have built an electronic
realization of a Boolean network of five nodes based on unclocked logic gates [29].
In this study, they found qualitative agreement between model and experiment in
both periodic and chaotic dynamical states, when parameters used in the simulation
are derived from the experimentally measured dynamics. However, they have not
shown that the experimental dynamics is indeed deterministic chaos. Furthermore,
their dynamics is, with a timescale on the order of tens of milliseconds, rather slow
for applications.

2.3.1 Autonomous Boolean Network by Zhang and
Collaborators

As an extension, Zhang and collaborators have realized an unclocked logic circuit
with a timescale on the order of nanoseconds and have shown that deterministic
chaos occurs [21].

Their Boolean network is composed of three nodes with a topology shown in
Fig. 2.4a. The system is an electronic circuit that realizes the Boolean nodes with
logic gates, specifically two XOR logic gates and one XNOR (inverted XOR) logic
gate as shown in Fig. 2.4b. For the physical implementation of this logic design,
they use several separate electronic integrated circuits that each execute one logic
function and connect them with electronic wires on a printed circuit board as shown
in Fig. 2.4c.

Zhang and collaborators find that, depending on the delays in the circuit, the circuit
displays either periodic dynamics or chaotic dynamics. Figure2.5a shows a time
series from chaotic dynamics recorded by Zhang and collaborators. The dynamics
fluctuates between the Boolean low and high voltage of 0 and 3V with an irregular
timing of transitions. Narrow pulses and dips in the chart do not reach the Boolean
voltages because of finite rise and fall times. This non-ideal behavior is due to low-
pass filtering of the electronic logic gates, specifically, capacitances in the micro
circuits that constitute a logic gate. In addition, amplitude noise is present as can be
seen in the graph when the system is close to the Boolean voltage levels. Figure2.5b
shows the power spectrum of this dynamics. It extends from dc to high frequencies
of ∼1.3GHz at −10dB dropoff. This large bandwidth is a characteristic of chaos,
which is reassured by the irregularity of the waveform.
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Fig. 2.4 a Schematic of the network topology considered by Zhang and collaborators in Ref. [21].
b Schematic of the corresponding logic circuit with XOR and XNOR logic gates. The look-up table
of an XNOR gate can be obtained by inverting the output row of the look-up table of an XOR gate
shown in Fig. 2.2a. c Experimental implementation with integrated circuits that perform Boolean
operations (logic gates, black rectangles) on an electronic circuit board (photo by Seth Cohen)
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Fig. 2.5 a Waveform of Boolean chaos generated by the system described in Fig. 2.4b. b Power
spectrum of the dynamics with a bandwidth at −10dB dropoff of 1.3GHz. The illustrations are
taken from Ref. [21]

Zhang and collaborators model Boolean chaos with an extension on Ghil’s
Boolean delay equations that includes non-ideal attributes of the experiments [21,
30]. Specifically, important effects included in the model are low-pass filtering and a
degradation function that includes a rejection of short-pulses and a history-dependent
gate delay.

2.3.2 Boolean Chaos

In Sect. 2.2.1, I have discussed that the quantification of complexity in Boolean
systems requires a distance measure specialized for Boolean systems, such as the
Hamming distance. However, the Hamming distance is a measure for synchronous
Boolean systems that does not work for small autonomous Boolean systems. As a
solution for autonomous Boolean networks, Zhang and collaborators use a distance
measure that is sensitive to the timing of Boolean transitions, termed the Boolean
distance [18, 21]. It is defined as
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d [x, y] (t) = 1

T

t+T∫

t

x(t ′) ⊕ y(t ′), (2.9)

where x and y are two Boolean waveforms that are compared, T indicates an integra-
tion interval, which should include on average about five transitions, and⊕ indicates
the XOR Boolean function of the Boolean scalars x(t ′) and y(t ′) [18, 21]. The result
is a contribution to the integral whenever the two waveforms have different Boolean
states; specifically, d [x, x] = 0.

Using the Boolean distance, they calculate the largest Lyapunov exponent � of
their system, which is a measure for the divergence of close orbits used to quantify
chaotic systems, as I introduce in Sect. 4.1.1. They calculate a Lyapunov exponent
of � = 0.16ns−1 from the experimental time series of their Boolean oscillator. The
positive sign confirms the divergence of close orbits and is usually considered a proof
of deterministic chaos.

They show that the complexity and chaoticity of the dynamics is encoded in irregu-
lar timing of transitions. Specifically, with the calculation of the Lyapunov exponent,
they show that small perturbations in the timing of transitions grow exponentially
over time, leading to completely different transition times after a long time [21]. On
the other hand, a small perturbation in the voltage from the Boolean level does, in
most cases, not affect the dynamics over time.

Zhang and collaborators termed the chaotic dynamics in an autonomous Boolean
system Boolean chaos. Boolean chaos can possibly be applied to random number
generation and chaotic radar (radio detection and ranging) because of the broad power
spectrum and the fast time-scale dynamics. Furthermore, Boolean chaos in the exper-
iment also gives fundamental insight into the dynamics generated by autonomous
Boolean networks [21].

2.4 Conclusion

In this chapter, I have discussed previous work on Boolean networks. I have des-
tinguished between synchronous and autonomous operation, which results in very
different dynamics. In the next chapter, I discuss a new method of realizing experi-
mental autonomous Boolean networks.
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Chapter 3
Autonomous Boolean Networks
on Electronic Chips

Abstract In this chapter, I discuss the experimental implementation of autonomous
Boolean networks on electronic chips. Specifically, I describe the setup and non-
ideal characteristics of the used microelectronic chips in Sect. 3.1 and the design
flow of implementing circuits in Sect. 3.2. With this chapter, I lay the technical foun-
dation for this thesis. As a simple exemplary system, I implement the autonomous
Boolean network by Zhang et al. (Phys Rev E 80:045202, 2009) that is introduced
in Sect. 2.3.1. Instead of implementing the logic circuit with discrete logic gates
on a printed circuit board as in their study, I realize it on a single electronic chip
known as a field-programmable gate array (FPGA), which has several advantages.
Specifically, the re-configurable chip allows for fast and inexpensive design cycles
when compared to printed circuit boards that have to be re-manufactured for each
instantiation. In addition, electronic chips allow for a much larger number of net-
work nodes on the order of 100000. Similar to the design by Zhang and collaborators,
the resulting network evolves on a fast timescale, which is indispensable for many
applications. The purpose of this chapter is to introduce the experimental platform
used in the rest of this thesis (A part of the content of this chapter is published in
D. Rontani et al. (IEICE, Japan, 2012) and D.P. Rosin et al. (Chaos 23:025102,
2013)).

3.1 Field-Programmable Gate Arrays

Autonomous Boolean networks can be realized experimentally with electronic logic
circuits on various microelectronic chips, which are the foundation of modern com-
puting hardware [1, 2]. In this thesis, I implement the logic circuits with pro-
grammable microelectronic chips called field-programmable gate arrays (FPGA);
specifically, I use the FPGA Cyclone IV with model number EP4CE115F29C7N. In
Sect. 5.3.1, I also use several other FPGAs and a device called a complex program-
mable logic device (CPLD) to show that some of the autonomous Boolean networks
I study generate similar dynamics independent of the specific hardware. CPLDs are
based on an older technology than FPGAs with a lower number of programmable
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logic elements. The autonomous Boolean networks can, in principle, also be imple-
mented as application-specific integrated circuits (ASIC), which are custom-built
microelectronic chips. ASICs allow for faster logic and, in large production sizes,
lower costs, but they have much longer and more expensive design cycles.

3.1.1 Architecture of Field-Programmable Gate Arrays

FPGAs are off-the-shelf devices that include a grid of CMOS-based programmable
logic elements and programmable connections. They can be configurated to realize
a custom hardware design for a wide range of applications, such as digital signal
processing, prototyping, and high-performance computing [3]. Here, I discuss both
programmable logic elements and programmable connections.

Logic gates are physical implementations of Boolean functions such as the XOR
Boolean function. By cascading electronic logic gates, mathematical algorithms can
be implemented physically to perform calculations, such as addition. A Boolean
function of K inputs is defined with a look-up table of 2K Boolean entries, leading
to 22

K
possible operations.

The programmable logic gates on FPGAs are called logic elements, which include
a look-up table block (LUT), a flip-flop, and a multiplexer as shown in Fig. 3.1. The
LUT can implement any of the 22

K
possible Boolean functions, defined by 2K bits

that are saved to random access memory (RAM) at the configuration phase (startup)
of the FPGA.Furthermore, each logic element includes a flip-flop to allow for clocked
operation. A multiplexer, controlled by another RAM bit, is used to switch between
clocked and un-clocked operation. The logic gate has some additional features that
are not shown here, such as different outputs routing back to itself, routing to the logic
gates close to it within a region called logic array block, and to the routing fabric.
Furthermore, logic gates have a carry-bit input and output that connects neighboring
logic gates with reduced delay used for the implementation of fast adders [4].

The Altera Cyclone IV FPGA, which I mainly use in this thesis, includes more
than 105 logic elements. Each element has K = 4 inputs and can drive up to 48 other
logic elements [4].

Logic Element

Look-up Table (LUT)
Multiplexer

D fip-fop

clock

n inputs
(n=4)

output

Fig. 3.1 Functional description of an FPGA logic element
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Fig. 3.2 Schematic of the interconnect on the Cyclone IV FPGA. The figure is modified from
Ref. [4]

The connections between logic gates are achieved via on-chip wires called inter-
connect. The interconnect is organized as shown in Fig. 3.2; logic elements are
grouped together in logic array blocks (LAB) of 16 logic elements, which are con-
nected via local interconnect. In addition, the local interconnect is connected to
adjacent LABs via direct links and to all other LABs via row and column intercon-
nect. The specific connection between logic elements is turned on and off by RAM
bits that are loaded onto the chip at startup [4].

In addition to logic elements and interconnect, FPGAs also contain various other
elements depending on the complexity of the chip. The Altera Cyclone IV device
used in this thesis, for example, includes four configurable phase-locked loops, con-
figurable memory, and several embedded multipliers [4].

3.1.2 Autonomous Mode of Operation

Logic circuits can be set to operate in different modes with important implications for
the dynamics, similar to differences between synchronous and autonomous Boolean
networks (see Sect. 2.1). In this thesis, I deal with two modes of operation of logic
elements: synchronous (clocked) and autonomous (un-clocked). Another mode of

http://dx.doi.org/10.1007/978-3-319-13578-6_2
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operation that I do not discuss further is known as asynchronous design, where
a self-clocked circuit generates its own clock signals that indicate completion of
operations [5].

Synchronous operation is used for most applications of digital designs, such as
for central processing unit designs. This mode is achieved by including clocks and
flip-flops in the logic circuit. Flip-flops store the state information and update only
once every period of the clock. The clock frequency is chosen slow enough to ensure
that logic gates have enough time to settle to unambiguous Boolean states between
consecutive clock cycles [6]. As a result, a properly clocked system behaves in
a digital fashion as a fully predictable finite-state machine, similar to Kauffman
networks (see Sect. 2.2.1).

In the autonomousmode of operation, in contrast, the logic circuit does not include
clocks. As a result, the circuit displays a continuous-time dynamical evolution gov-
erned by the logic gates’ continuous dynamics and propagation delays [7]. The logic
gates, however, still fulfill Boolean threshold conditions and output the Boolean volt-
ages most of the time, so that autonomous logic circuits can be regarded as Boolean
networks.

Different from the synchronous operation, autonomous logic circuits can be very
sensitive to small changes in the properties of the logic elements, caused, for exam-
ple, by ambient temperature fluctuations. In synchronous operation, the clocking
guarantees that the system will implement the same finite-state machine if the trans-
mission delays stay below the clock period. However, in the autonomous operation,
the system is sensitive to non-ideal effects, such as time delays, because they are an
important part of the dynamical system.Consequently, two autonomous logic circuits
of identical layout that are realized on different regions on the FPGA may display
slightly different dynamics because logic gates vary slightly in their non-ideal effects
due to production variation.

3.1.3 Non-ideal Effects of Autonomous Logic Gates

Physically-implemented autonomous logic gates are subject to non-ideal effects that
deviate from perfect Boolean switching. Figure3.3 shows these non-ideal effects
within an equivalent circuit for an autonomous logic gate. The logic gate is shown
with an equivalent circuit that includes idealBoolean operation on theBoolean inputs,
a sigmoidal gate activation function, a low-pass filter, and a gate propagation delay.

The low-pass filtering is caused by capacitors inside the logic gate that need a finite
time to charge until the output can change value, leading to a maximum frequency
that a logic gate is able to respond to. One result of the low-pass filter is short-pulse
rejection, where short pulses at the input to a logic gate do not affect the output of a
logic gate.

The delay and the low-pass filter properties can be state- and history-dependent,
meaning that its parameters, such as the propagation delay or the rise and fall times,
depend on the near history of Boolean states and the current Boolean state. One
example for state dependency of the low-pass filter is that rise and fall times can be

http://dx.doi.org/10.1007/978-3-319-13578-6_2
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K time-delayed 
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Fig. 3.3 Simplified model of a few non-ideal behaviors present in an electronic logic gate

different. Cavalcante and collaborators have identified memory effects as an impor-
tant dynamical feature of the system to generate chaotic dynamics [8]. They termed
the memory effect “degradation” and described it mathematically with a degradation
function.

Another non-ideal property of physically-realized Boolean networks is hetero-
geneity, where copies of the same logic gates differ in their properties, such as the
filter properties and the gate propagation times. I quantify the heterogeneity of the
propagation delay of logic gates in Appendix A.2. Furthermore, the dynamics are
subject to amplitude noise and phase noise.

3.2 Design Flow of Implementing Autonomous Boolean
Networks on Electronic Chips

In this section, I explain how I generate configuration binary files, which are loaded
onto an FPGA to implement a custom logic circuit, such as an experimental realiza-
tion of an autonomous Boolean network. This binary file is generated with the help of
computer aided design (CAD) tools, such as Altera Quartus II, which, among other
operations, optimizes the logic circuit for best functionality. However, the optimiza-
tion algorithms are usually written for synchronous and not autonomous designs.
To define the logic design, one can, for example, draw a logic diagram, known as
schematic design. I prefer a text-based approach with a hardware description lan-
guage because it allows me to generate hardware descriptions of many nodes using
for-loops, rather than the graphics-based schematic design, where the logic circuit
has to be specified by hand.

3.2.1 Hardware Description for Autonomous Boolean
Networks

I discuss the hardware description for the autonomous Boolean network by Zhang
and collaborators as a general example for an autonomous hardware design on an
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Fig. 3.4 a Schematic of Zhang and collaborators’ logic circuit [7] extended by two buffer gates.
b Chip layout that visualizes the placement of the logic circuit on the FPGAAltera Cyclone IV with
product number EP4CE115F29C7N (less than 3% of the FPGA real estate is shown). The three
XOR gates are routed on locations (x, y, z) = (108, 7, 8), (112, 10, 8), (102, 3, 8) and the buffer
gates are at (102, 10, 16) and (112, 3, 8) as indicated by arrows. The output pins are also marked
with arrows. The blue part of the chip are blocks of programmable logic gates, the brown line are
output pins, and the green line are memory elements. The black area has no functionality

FPGA [7]. In their original hardware design they used a printed circuit board, which
allowed them to control the delays by varying the supply current of the logic gates.
For simplicity, I realize the delays here by separating the logic gates spatially on the
electronic chip; I assume that the delay is proportional to the length of on-chip wire
connecting the logic gates. This is different from the following chapters, where I use
a more efficient way to realize time delays. I extend the original circuit, as shown
schematically in Fig. 3.4a, by adding two buffer gates, so that I can adjust time delays
by moving the buffers and the other logic gate with respect to each other on the chip.
In addition to the buffers, the circuit includes two XOR gates and one XNOR gate.

Figure3.5 shows the hardware description language to generate the circuit as an
example. The code snippet shows that the logic circuit can be easily defined in a
few lines. In the code, the outputs of the XOR, buffer, and output buffer logic gates
are named my_xor, my_buf, and dyn_out, respectively. The code also shows
statements that force the implementation of logic gates that are seen as redundant by
the compiler andwouldotherwise be removed.These logic gates are indeed redundant
in synchronous circuit design, but can be important in autonomous circuit design.
Compiling the high-level hardware description leads to a binary programming file
that includes the specific Boolean function and the routing of the logic gates on
the FPGA. After loading this on the FPGA, I obtain a true physical (not emulated)
network of logic gates, which is a physically realized autonomous Boolean network
on a chip.
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Fig. 3.5 This Verilog module specifies the logic gates (nodes) and connections (topology), con-
tained between the statements module and endmodule. The dynamics are routed to three output
pins named dyn_out, specified as a vector with three components in line 2. The XOR, XNOR, and
buffer gates are introduced in lines 3 and 4 and specified in lines 6–11. The directive/∗synthesis
keep∗/ (for Altera FPGAs) guarantees that the logic gates are implemented by the compiler. Some
logic gates such as the buffer gates are redundant in synchronous operation and would hence be
removed by the compiler. The implementation of an XOR logic gate is specified with the “^” oper-
ator; the XNOR logic gate is specified as a combination of an XOR and an inversion operation,
specified with “~”. The buffers are specified with a simple equal assignment in line 10. For deeper
understanding of the syntax of Verilog, I refer the reader to Ref. [9]

3.2.2 Chip Placement of Autonomous Boolean Networks

The specific placement of logic gates on the FPGA is usually handled by the compiler.
It can, however, be modified using the Altera CAD tool Quartus II Chip Planner,
which allows for better control over the circuit implementation. Each possible logic
gate has a physical address x , y, z, where in addition to the address of the logic
array block (LAB) x ∈ {1, 2, . . . , 114}, and y ∈ {1, 2, . . . , 72}, the z dimension
z ∈ {0, 2, 4, . . . , 30} specifies the index of a logic gate within a LAB (numeric
values for the Altera Cyclone IV FPGA with model number EP4CE115F29C7N).
By assigning the logic gates to specific coordinates on the chip, I specify the layout
shown in Fig. 3.4b.

I vary the specific placement of the logic gates on the chip, which changes the time
delays along the links, until chaotic dynamics appears. This method is equivalent to
the method by Zhang and collaborators of changing the time delays via the supply
current of logic gates [7]. For an estimate of the transmission delays between logic
gates, I measure the transmission delay between two logic gates that are spaced as
far as the two opposite corners of the chip. Depending on the specific wiring, the
delay varied between 2.5 and5 ns, which is one order of magnitude greater than the
characteristic timescale of a logic gate (rise time ofτLG = 280 ± 10 ps). The large
variation of the time delay is a problem of this method of separating logic gates on
the chip. This method is also very inefficient because the circuit could fit in a single
LAB if the delays were generated more efficiently, as introduced in the next chapter.
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Figure3.4b also shows output gates that are used on the FPGA to route the signals
outside the chip. Such gates are also implemented when signals are sent into the chip.
These input output (I/O) gates alter the time course of the waveforms because they
include the non-ideal effects discussed in Sect. 3.1.3, such as a sigmoid gate activation
function and lowpass-filtering. For example, some characteristics of the waveform
could be pruned when the lowpass filtering of the output gate is stronger than the
one of the programmable logic gates. The output logic gates, however, cannot be
circumvented because they protect the chip from overvoltage and scale the input and
output voltages to desired values. Furthermore, the chip manufacturers require these
logic gates to protect them against reverse engineering [3]. This is also the reason
why they do not provide specific information of the properties of the programmable
logic gates, such as the SPICE model parameters [10].

3.2.3 Resulting Dynamics

Figure3.6 shows the resulting dynamics of the logic design (a detailed discussion
of this dynamics is left for the next chapter). The measured dynamics shown in
the figure are similar to the dynamics measured by Zhang and collaborators on a
printed circuit board in Fig. 2.5a [7], which reassures me that the implementation of
autonomous Boolean networks on FPGAs is possible and results in dynamics that
agree with previous studies.

Fig. 3.6 Dynamics of the autonomous Boolean network in Fig. 3.4 realized on the FPGA. V0, V1,
and V2 are the outputs of the three XOR logic gates in the circuit. The dynamics oscillate between
the Boolean voltages VL ≈ 0 andVH ≈ 1.4V (depending on the specific output pin). I use the
FPGA Altera Cyclone IV model EP4CE115F29C7N

http://dx.doi.org/10.1007/978-3-319-13578-6_3
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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3.3 Conclusion

In this chapter, I have shown that autonomous Boolean networks can be implemented
on programmable logic devices. The resulting dynamics agree with previous exper-
imental implementations. By using reprogrammable chips, however, I am able to
build much larger networks in shorter time compared with previous studies. As a
first dynamics, I have observed Boolean chaos, which is the topic of the next chapter.
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Chapter 4
Chaotic Dynamics of Autonomous
Boolean Networks

Abstract In this chapter, I apply autonomous Boolean networks to one particularly
popular topic of complex systems research: deterministic chaos. I first introduce the
concept of deterministic chaos in Sect. 4.2 and then extend in Sect. 4.3 the previ-
ous work on Boolean chaos with a simple autonomous Boolean network that has
been proposed in a similar form in an early theoretical study by Ghil and Mullhaupt
(J Stat Phys 41:125, 1985). I measure and analyze the dynamics of an experimen-
tal implementation and develop a time delay piecewise-linear switching model for
autonomousBoolean networks in Sect. 4.4. Both experimental and simulated dynam-
ics agree qualitatively in power spectrum and autocorrelation. The main result of this
chapter is the development of a particularly simple autonomous Boolean network
for generating Boolean chaos using guidelines from Boolean network models. These
guidelines, however, cannot predict with certainty whether a network will display
complex dynamics. For example, a prediction of complex dynamics with a Boolean
network model breaks down when the network is realized in the experiment, where
the network instead shows transient relaxation towards a fixed point (Results of this
chapter are published in reference Rosin et al. Chaos 23:025102, 2013.).

4.1 Introduction to Deterministic Chaos

Deterministic chaos is a non-repeating, deterministic behavior of dynamical sys-
tems that can be found in meteorology, physics, engineering, economics, and
biology [1–4]. It can be defined with three properties [3]. First, chaotic systems
display aperiodic long-term behavior, meaning that they do not settle down asymp-
totically to fixed points or periodic orbits. Second, they are deterministic in that their
behavior arises from the system’s nonlinearity rather than from noise. Third, chaotic
systems are sensitively dependent on initial conditions, which is popularly known as
the Butterfly Effect.

The paramount example of a system generating deterministic chaos is the Lorenz
system, which was developed to describe atmospheric convection [5]. It is given by
a system of the following three ordinary differential equations

© Springer International Publishing Switzerland 2015
D.P. Rosin, Dynamics of Complex Autonomous Boolean Networks,
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Fig. 4.1 a Lorenz attractor and b waveforms generated by integrating differential equations (4.1a–
4.1c). Parameters are σ = 10, ρ = 28, and b = 8/3. The differential equation is integrated with
the Euler method with a time step of dt = 0.01

ẋ = σ(y − x), (4.1a)

ẏ = x(ρ − z) − y, (4.1b)

ż = xy − βz, (4.1c)

where the dot denotes the time derivative. The Lorenz system generates deterministic
chaos for certain parameter values. Figure4.1a shows its characteristic chaotic or
strange attractor known as Lorenz attractor. The attractor is a subset of the phase
space that trajectories are attracted to. It is generated by following a trajectory, shown
in Fig. 4.1b as waveforms of the three components, in phase space over time.

4.1.1 Lyapunov Exponent

A characteristic measure for chaotic systems is the Lyapunov exponent [3], which
measures the rate of separation between close trajectories. Consider two trajectories
that start at �Z0 and are separated at time t = 0 by a small amount �δZ0; then, this
initial separation will grow or decay over small time periods according to
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∣∣∣ �δZ(t)
∣∣∣ ≈ exp(λt)

∣∣∣ �δZ0

∣∣∣ , (4.2)

where λ is the local Lyapunov exponent in the direction of �δZ0 at �Z0. The average
of the local Lyapunov exponents along the attractor results in the (global) Lyapunov
exponents.When the largest Lyapunov exponent is greater than one, small differences
in initial conditions grow over time; otherwise they decay or stay constant. Specifi-
cally, a positive largest Lyapunov exponent describes mathematically the necessary
condition for deterministic chaos that the system is sensitive to initial conditions,
which can be confirmed for the Lorenz system with λmax ≈ 0.9 [3].

The Lyapunov exponent λ has practical applications for random number genera-
tion, which is the topic of Chap.5. Within a timescale given by 1/λ, a small pertur-
bation of the dynamical state approximately triples in magnitude so that it dominates
the system dynamics already after several 1/λ time periods. In an experimentally
realized system, such perturbations are constantly supplied by physical noise, such
as thermal and shot noise. Shot noise originates from the discrete nature of elec-
tronic charge, which leads to random fluctuations in an electronic current. Thermal
noise or Johnson noise originates from statistical deviations from thermodynamic
equilibrium of electronic distributions, which leads to random voltage fluctuations
[6]. These fluctuations are a weak physical entropy source that is inherently unpre-
dictable. When subjected to a chaotic system, the physical entropy is amplified to
a rate given by the Lyapunov exponent [7]. Therefore, physically-realized chaotic
systems can be applied to random number generation to achieve a random bit rate
that is high compared to direct measurement of the physical noise source. In addition,
non-ideal characteristics of the noise source can be removed by the system dynamics,
which is known as the mixing property of chaotic systems [8].

4.1.2 Strong and Weak Chaos

Arecent important addition to chaos theory in the framework of time-delayed coupled
systems is to distinguish between strong and weak chaos [9]. Coupling of oscillators
can, as discussed in Sect. 6.1, lead to synchronization with striking implications for
biology and important applications to communication. For example, a network of
two chaotic oscillators can display synchronization so that one oscillator displays
the same or a shifted chaotic waveform as the other oscillator [10, 11] which can
be applied as a private communication scheme [12–14]. Encryption using synchro-
nization of chaotic systems—so-called Chaos communication—is a popular field
of research and received considerable attention when a network of three chaotic
optoelectronic oscillators was implemented in the metropolitan fiber network of
Athens [15].

For communication applications, time delays are of particular importance because
the communicating parties are usually far apart and the timescale of the dynamics
is fast to encode information at high rates. Even at the speed of light, the distances
translate into time delays that are large compared to the internal timescale.

http://dx.doi.org/10.1007/978-3-319-13578-6_5
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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Two synchronized oscillators can be analyzed by considering the so-called
synchronization manifold, where the system equations reduce to the equations of
one oscillator as the dynamics of the second oscillator can be deduced from the first.
In this description,mutual coupling terms change to feedback terms and time-delayed
coupling changes to time-delayed feedback [9, 16, 17]. TheLyapunov exponent asso-
ciated with the synchronization manifold encodes the chaoticity of the synchronized
system and is hence of great importance for applications like chaos communication.

For coupled systems showing weak chaos, the maximum Lyapunov exponent in
the synchronization manifold decreases towards zero when the delay approaches
infinity (λ → 0 for τ → ∞). Therefore, when weak chaos is used for chaos commu-
nication, the communication channel will allow for decreased privacy or a decreased
rate when the communication partners increase their distance. Strong chaos, on the
other hand, does not show this effect as the maximum Lyapunov exponent in the
synchronization manifold tends towards a constant positive value when the delay
approaches infinity (λ → λ0 with λ0 > 0 for τ → ∞) [9].

Strong and weak chaos has been measured in optical and electrical systems. In
Refs. [9, 18], the existence of strong and weak chaos is demonstrated in a single
system by monotonically increasing an adjustable system parameter which shifts
the system from weak to strong chaos and back to weak chaos in agreement with
the system equations. The authors distinguish the system to be in a state of strong
or weak chaos by measuring whether the network desynchronizes or synchronizes
with another node, respectively. However, to my knowledge, strong and weak chaos
has not yet been measured experimentally by observing changes in the Lyapunov
exponent when the time delay is changed. Autonomous Boolean systems might be
ideally suited for this task as their realization on microelectronic chips allows for
an adjustment of time delays over a wide range. For this, two chaotic autonomous
Boolean systems have to be synchronized, which has not been realized yet, and could
be a possible extension of this thesis.

4.2 Delayed-Feedback XNOR Oscillator

In this section, I introduce a new chaotic oscillator, which I call a delayed-feedback
XNOR oscillator.

4.2.1 Motivation for Developing a New Chaotic Oscillator

The fundamental motivation for this chapter is to find a simple network showing
Boolean chaos that consists of a small number of nodes and links. Particularly, I
generalize the specific network topology studied previously by Zhang and collab-
orators of three interconnected nodes [19, 20] to a network of only one node with
three time-delayed feedback lines.
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This chapter is also motivated technologically by two problems of the device
developed by Zhang and collaborators for applications of chaos, such as random
number generation and chaos-based radar. First, their design is restricted to one
specific topology and, second, it only shows chaos in certain parameter ranges of the
feedback delays [19, 20].However, for applications of chaos, different topologies and
implementations should be explored to find the most efficient one. More importantly,
the system should display chaos consistently for a wide range of parameter values.

4.2.2 Search for a Simplified Network Topology

In this section, I search for a simple network topology with a small number of nodes
and links that displaysBoolean chaos. In the construction of networks, I amguided by
known properties of Boolean network models introduced in Chap.2. These models,
however, can only approximately describe the dynamics of experimentally-realized
autonomous Boolean networks because they do not include all non-ideal behaviors,
discussed in Sect. 3.1.3. I use these models to identify two guidelines by analyzing
previous studies on complexity in various Boolean network models and add another
guideline that I derive from an experimental observation. Then, I implement different
experimental networks in accordance with the guidelines until a simple network with
Boolean chaos is found.

Synchronous Boolean networks, introduced in Sect. 2.2.1, are Boolean maps,
where the network state—a vector of N Boolean variables—is modified each itera-
tion according to Boolean functions of the network state. Specifically, synchronous
Boolean networks called linear feedback shift registers can generate dynamics with
high complexity, which is why they can be used for deterministic random (pseudo-
random) number generation (see Sect. 5.1.2). Here, high complexity can be defined
via the length of limit cycles, with the maximum length of 2N − 1 for synchronous
Boolean networks of N nodes. Heavily studied synchronous Boolean networks are
Kauffman networks, where certain assumption are made to apply them to describe
biological gene networks [21, 22] (see also Sect. 2.2.1). These assumptions are that
each Boolean node evaluates a Boolean function of K inputs from the network with
synchronous updating and that the Boolean functions are random, but fixed. Under
the assumption of Kauffman networks, several known findings about dynamical
complexity exist in the literature.

The application of predictions resulting from Kauffman networks to experimen-
tally realized autonomousBoolean networks, however, have to be treatedwith caution
because they are synchronous Boolean network models and hence do not account for
the continuous evolution of time and time delays in the experimental system. Nev-
ertheless, the large body of work on Kauffman networks can still provide valuable
guidelines for the design of autonomous Boolean networks.

Complexity in Kauffman is assessed with the Lyapunov exponent λ using
the Hamming distance, where a larger positive Lyapunov exponent means that
the Boolean state vector diverges faster [23] (see also Sect. 2.2.1). However, the

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_3
http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_5
http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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synchronous network cannot show chaos because the phase space is restricted to
2N − 1 points. The Lyapunov exponent has been shown to follow the relation

λ = log E, (4.3)

where E is the average Boolean sensitivity, i.e., the larger E the larger the complexity
of the dynamics [24–26]. The Boolean sensitivity is defined for a point v ∈ {0, 1}K

by the number of neighboring points (points, where only one component of v is
changed) for which f differs, according to

∣∣{v′ : f (v′) �= f (v), dist(v, v′) = 1
}∣∣

[here, the Hamming distance is used, defined in Eq. (2.2)] [26]. The average Boolean
sensitivity E can also be expressed with the bias p of “0”s and “1”s in the look-up
table describing Boolean functions. Then the average Boolean sensitivity is

E = 2K p(1 − p), (4.4)

where the average is taken from a distribution of look-up tables with bias p and
in-degree K (the number of input connections to a node) [23, 25]. The Boolean
sensitivity is the highest for an XOR or XNOR gate with E = K .

To summarize, results obtained from synchronous Boolean networks can only
give guidelines for the design of an experimental autonomous Boolean network
that displays chaos because the models neglect the continuous nature of time. The
synchronous models display the most complex behavior when Boolean functions
have high average Boolean sensitivity, which can be achieved with randomly chosen
Boolean functions of bias p = 0.5 (equal number of zeros and ones) and high
in-degree K or most effectively by using XOR and XNOR Boolean functions.

Guideline (i)—Experimentally realized autonomous Boolean networks should
include XOR and XNOR Boolean functions to achieve chaotic dynamics.

More evidence for the preference of XOR and XNOR Boolean functions for
generating chaotic dynamics can be found from studies on autonomous Boolean net-
works modeled with piecewise-linear switching networks by Glass and collaborators
[27, 28]. They have shown that large autonomous Boolean networks have the highest
probability to generate chaos when the look-up table of Boolean functions includes
on average equal number of ones and zeros.

Guideline (i) is also supported by Ghil and Mullhaupt’s Boolean delay equa-
tions for autonomous Boolean networks [1]. They identified complex dynamics in
a system of a single n-input XNOR Boolean function with n incommensurate time
delayed feedback terms (see Sect. 2.2.2). In the framework of Boolean delay equa-
tions, complex dynamics corresponds to unordered timing of transitions, where the
rate of transitions grows without limit over time (see also Sect. 2.2.2).

Ghil and Mullhaupt’s study gives further important insight that time delays along
the links play a crucial role for chaotic dynamics. Specifically, the relation of time
delays is important because the dynamics changes from complex to regular when the
relation of time delays changes from commensurate to incommensurate [1].

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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Fig. 4.2 a Two-input XOR gate with two time-delayed feedback lines τ1 and τ2 (shown as rectan-
gles), as proposed by Ghil and Mullhaupt [1]. b Same setup as in (a) with a modified logic gate.
Specifically, the logic gate should exclude Boolean fixed. c Look-up table of the 2-input XOR gate.
d, e The two look-up tables that do not lead to fixed point when connected as in (b) and have an
equal number of “1” and “0”

The importance of time delays is also supported by previous work by Zhang
and collaborators [19], who found Boolean chaos in an experimental circuit of two
XOR and and one XNOR logic gates with time delays (see also Sect. 2.3.1). When
the relation of the time delays is changed, the dynamics can also show a transition
between chaos and regular oscillations. Note that Cavalcante and collaborators found
that Boolean chaos can originate from history-dependent delay, which they term
degradation [20].

Guideline (ii)—Experimentally realized autonomous Boolean networks should
include time delays that might need to be adjusted to achieve chaotic dynamics.

My first approach to finding a simple network with a low number of nodes and
links is to implement the network by Ghil and Mullhaupt shown in Fig. 4.2a and
introduced with Eq. (2.4) (δ = 2) in Sect. 2.2.2 [1]. This network is likely to lead to
Boolean chaos because it shows complex dynamics when described with a Boolean
delay equation in the framework of autonomous Boolean networks. The topology
is simple: it includes only one node—an XOR Boolean function—with two time-
delayed feedback links that can be adjusted, so that it conforms with guidelines
(i) and (ii). I realize the network with unclocked logic gates.

Figure4.3a shows the experimental dynamics after initialization with the high
Boolean state as explained in the figure caption. After a long transient of about
50µs, the dynamics relax to the low Boolean state. The transient length varies con-
siderably. Therefore, the dynamics do not show stable chaos, which contrasts the
theoretical results by Ghil and Mullhaupt, where the fixed point is not reached for all
but one initial condition [1]. This breakdown is due to the non-ideal behaviors in the
experimental realization of autonomous Boolean networks, such as finite rise times

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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Fig. 4.3 aDynamics of anXORgatewith two delayed feedback lines as shown in Fig. 4.2a. A clock
signal disables the XOR logic gate for about 0.5 s to output a constant Boolean “1;” subsequently, it
enables the XOR logic gates also for about 0.5 s. In the figure, the logic gate is enabled at time t = 0.
b Dynamics as in a on a short timescale of several nanoseconds. The delay lines are constructed
from 2 and 8 inverters as discussed in Appendix A.1

and jitter (see also Sect. 3.1.3), because it does not show up in the ideal mathematical
model of delay differential equations.

Figure4.3b shows the dynamics within the transient on a nanosecond timescale.
The dynamics showa complex non-repeating pattern that is reminiscent of the chaotic
dynamics found by Zhang et al. [19]. When the delay of the feedback is changed,
the dynamics are affected. They can, for example, show much shorter transients of
a few nanoseconds or stable periodic behavior. Because of the fixed point, however,
I believe that stable Boolean chaos is not a possible in this specific experimentally-
realized system as the dynamics will always collapse into the fixed point. I confirmed
this behavior of the setup with several delay combinations, where I kept one delay
constant, constructed with 8 inverters, and changed the other delay to vary between
2 and 20 inverters (see also Appendix A.1).

The ultimately regular dynamics in this network is caused by a Boolean fixed
point that satisfies the Boolean algebra of the network. To prevent the collapse of the
dynamics to such a fixed point, I introduce a guideline for the network topology to
remove Boolean fixed points from the network.

A Boolean fixed point in the feedback system corresponds to rows in the lookup
table, where all entries have the same value and hence inputs and outputs can be the
same. For example, in the XOR Boolean function, the fixed point corresponds to the
first row that is filled exclusively with “0”, as marked red in Fig. 4.2c. This leads to
the following guideline.

Guideline (iii)—Experimentally realized autonomous Boolean networks should
not include a Boolean fixed point, for which all Boolean functions are satisfied
simultaneously.

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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The rows in the look-up table corresponding to the Boolean fixed point in the
delayed-feedback oscillator should be changed. For general autonomous Boolean
networks, all states have to be tested to make sure that no Boolean fixed point exists,
which is also referred to as frustration [29].

I modify the logic gate in the feedback system, as shown in Fig. 4.2b. In agreement
with guideline (iii), I require that the first and last row in the lookup table is “1” and
“0”, respectively, and, as a weak form of guideline (i), I require an equal number
of “0”s and “1”s, which leads to higher Boolean sensitivity in synchronous Boolean
networks. Then, only two Boolean functions fulfill guideline (iii) and the weak form
of guideline (i), whose lookup tables are shown in Fig. 4.2d, e. These, however,
correspond to Boolean functions that are independent of one input, so that they are
equivalent to a circuit with a single feedback line, which I discuss in Chap. 6 as a
ring oscillator. I find that these autonomous Boolean networks lead to oscillations
rather than Boolean chaos.

The remaining 2-input Boolean functions that fulfill guideline (iii) have a large
bias, where either “0” or “1” appear three times more in the lookup table. These are
unlikely to show chaos, but they cannot be fully ruled out from theoretical analysis
with Boolean network models that do not include all aspect of the experiment.

Because the feedback circuit with two delay lines and a 2-input logic gate is
unlikely to show Boolean chaos, I increase the complexity of the system by allowing
for 3-input Boolean functions and adding another time-delayed feedback line to the
system. I find that the 3-input XNOR Boolean function is the only 3-input Boolean
function that fulfills guideline (i) and (iii) as it has no Boolean fixed point in contrast
to the 3-input XOR function. The 3-input XNOR Boolean function with a look-up
table as in Fig. 4.4a is a generalization of XOR andXNORBoolean functions tomore
than two inputs and corresponds to the least-significant bit of an addition operation
and its inversion or the parity and inverted parity operation on the Boolean input
states, respectively. The complexity of the dynamics of the resulting autonomous
Boolean network also depends on guideline (ii) that the delays are important and
might need to be adjusted.
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Fig. 4.4 a Look-up table of a 3-input XNOR Boolean function. b Setup of the delayed-feedback
XNOR oscillator composed of a 3-input XNOR logic gate with three time-delayed feedback lines.
c Topology of the autonomous Boolean network underlying the delayed-feedback XNOR oscillator

http://dx.doi.org/10.1007/978-3-319-13578-6_6
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4.2.3 Setup of the Delayed-Feedback XNOR Oscillator

Figure4.4b shows the schematic setup of the autonomous Boolean network termed
delayed-feedback XNOR oscillator. Three delayed feedback lines connect the output
of the XNOR logic gate to its three inputs. The network evolves autonomously
without clocks or external inputs. The network topology is similar to the Boolean
network proposed by Ghil and Mullhaupt with Eq. (2.4) in Sect. 2.2.2 with δ = 3,
only differing in inverted entries of the look-up table.

I realize delay lines by cascading ni inverter gates, where in total the signal gets
delayed by ni times the gate propagation delay of an inverter logic gate τLG =
0.28 ± 0.01 ns, corresponding to a total delay of

τi = niτLG, (i = 1, 2, 3). (4.5)

This construction of delay lines and the measurement of the gate propagation time
is explained in detail in the Appendices A and A.2. This construction of delay lines
is also used for other setups in this thesis.

I canvary the delayof the feedback lineswith parametersni .Here, I use parameters
as shown in Table4.1, which lead to a total number of logic gates included in the
oscillator of n1 + n2 + n3 + 1 = 27. The delay lines are chosen so that complex
dynamics emerge [corresponding to guideline (iii)]; different parameter choices can
lead to regular behavior as discussed in the next section. I show the corresponding
hardware description in Appendix B.2.

With 27 logic gates, the delayed-feedback XNOR oscillator has a considerably
larger logic gate count than the oscillator by Zhang and collaborators that uses three
logic gates and six time delays [19]. The oscillator presented here is hence not
preferable for applications, such as random number generation, but it provides a
fundamentally simple topology considering that most of the logic gates are used in
the construction of delay lines. From a fundamental point of view, this network is
very simple as it consists of a single autonomous Boolean node with three delayed
feedback links as shown in Fig. 4.4c.

Table 4.1 Numerical values used for the three delay lines in the delayed feedback XNOR oscillator
using Eq. (4.5)

i ni τi

1 18 5.04 ± 0.18

2 6 1.68 ± 0.06

3 2 0.56 ± 0.02

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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4.3 Dynamics of the Delayed-Feedback XNOR Oscillator

In this section, I investigate the dynamics of the delayed-feedback XNOR oscillator
in both experiment and simulation. For the numerical simulation, I develop a model
based on piecewise-linear Boolean network models with time delays.

4.3.1 Dynamics Measured from the Experiment

When implemented on the FPGA, I observe that the delayed-feedback XNOR os-
cillator displays complex and non-repeating dynamics as shown in Fig. 4.5a. The
dynamics alternate irregularly between the Boolean high and low voltage of VH =
1.3V and VL = 0V, respectively. Fast but finite-time transitions connect the Boolean
levels and also lead to short pulses and dips that can terminate in-between Boolean
levels. These effects are caused by the non-ideal effects of the logic gates as discussed
in Sect. 3.1.3.
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Fig. 4.5 a Dynamics of the delayed-feedback XNOR oscillator implemented on the FPGA and
measured after an input output logic gate (see Sect. 3.2.2). b, c Power spectrum and autocorrelation
of (a). Both are calculatedwith an acquisition of length T = 13µs and sampling timedt = 25 ps; the
power spectrum is averaged over 20MHz to remove noise. The delayed-feedback XNOR oscillator
is realized with parameters n1 = 18, n2 = 6, and n3 = 2. Here and in the following, when not
stated differently, I realize the experiments on the FPGA Altera Cyclone IV with the model number
EP4CE115F29C7N. The dynamics are measured with an oscilloscope of the device family DSO9
with 8GHz analog bandwidth

http://dx.doi.org/10.1007/978-3-319-13578-6_3
http://dx.doi.org/10.1007/978-3-319-13578-6_3
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4.3.1.1 Power Spectrum

Figure4.5b shows the power spectrum of the dynamics, which is the power spectral
density (PSD) as a function of the frequency, calculated from the temporal evolution.
The PSD in dBmmeasures the power of the waveform in a certain frequency window
� f , typically 1Hz, according to

PSD( f, f + � f ) = 10 log10 [P( f, f + � f )/(1mW)] , (4.6)

where P( f, f + � f ) is the power in the spectral range [ f, f + � f ] [30]. It can be
calculated with the Fourier transform of the waveform, according to

P( f, f + � f ) = A2
f � f/R, (4.7)

where A f is the Fourier amplitude of a sine wave corresponding to the frequency f
and R = 50 	 is the termination of the oscilloscope.

I calculate the Fourier amplitude with the Fast Fourier Transform algorithm
(A2

f �̃ f =̂ |FFT [V ] ( f )/N |2) with a frequency step �̃ f = 1/T , where T is the
total acquisition time. To rescale the power to correspond to � f = 1Hz, I calculate

P( f, f + � f ) = � f

�̃ f

|FFT [V ] ( f )/N |2
R

. (4.8)

The important measure that can be read from the resulting power spectrum in
Fig. 4.5b is the width of the spectrum characterized by the commonly used 3 dB
dropoff, corresponding to half the power. Beyond the 3 dB dropoff, frequency modes
have less than 50% of the maximum power and hence contribute significantly less
to the dynamics. With this measure, I find that the system has a wide spectrum of
about 400MHz.

The power spectral density P( f, f + � f ) has a low amplitude with a maximum
value of −76 dBm/Hz. The total power, however, has the expected numerical value
of about (VH /2)2/R ≈ 7mW with the high Boolean voltage VH = 1.3V, which
can be calculated by integrating the graph over a wide range of about 400MHz with
the PSD given in frequency units per Hz. The absolute power is of lower significance
for the dynamics because it changes when the output logic gates are configured to
different Boolean voltage levels.

4.3.1.2 Autocorrelation

The autocorrelation function is defined for a real-valued, infinite long signal f as

R f (τ ) = 1

A

∞∫

−∞
f (t) f (t − τ) dt. (4.9)
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Here, the constant A is chosen as a normalization, so that R f (τ = 0) = 1. For
a finite-time, discrete signal, such as the one measured with the oscilloscope, the
autocorrelation function is expressed as a sum and windowing procedures have to be
considered depending on the maximum shift τ . R f (·) can be calculated efficiently
using the Wiener-Khinchin theorem and the Fast Fourier Transform. The autocor-
relation is a measure for the similarity of the signal with a shifted copy of itself. In
a delayed chaotic system, the autocorrelation is an important tool that can uncover
time delay signatures of the system at certain time shifts, which can diminish the
applicability of chaos for random number generation, for example [31].

Figure4.5c shows the autocorrelation of the dynamics in the setup, which falls
off to close to zero within a fast decorrelation time of ∼1 ns and then stays close
to zero. Therefore, the system does not show time delay signatures, which makes
the dynamics potentially useful for applications, such as random number generation.
The fast drop of the autocorrelation function is a sign of strong chaos.

4.3.1.3 Chaos

Strong evidence exists that the dynamics is chaotic because I generate the signal with
a similar electronically realized autonomous Boolean network of simple topology
like the network by Zhang and collaborators, who proved the existence of chaos [19].
Furthermore, the waveform of the dynamics of the XNOR oscillator in Fig. 4.5a is
similar to the waveform of the oscillator by Zhang and collaborators in Fig. 2.5a
[19]; both waveforms show an irregular spacing of transitions, for example. Other
evidence is given by the fast-decaying and quasi-unstructured autocorrelation func-
tion. I tried to measure the Lyapunov exponent with the method of the Boolean
distance similar to Zhang and collaborators [19] using 26µs of data, correspond-
ing to approximately 15,000 transitions. Even with this amount of data, I was not
able to identify Boolean neighbors required for the calculation. The failure to apply
this method for the delayed-feedback XNOR oscillator could be due to a higher
dimensionality of the dynamics. Future work could explore different approaches to
measuring the Lyapunov exponent of an experimental Boolean network or consider
applying the Boolean distance withmuchmore data than 26µs at 20GSa/s sampling
rate.

4.3.2 Boolean Network Model for Chaotic Dynamics

In this section, I motivate the autonomous Boolean network model by Glass and
collaborators [27, 32] that is introduced in Sect. 2.2.3; I take an experimental point
of view and extend the model with time delays. This derivation is also the foundation
for the mathematical models in the following chapters, where I use similar descrip-
tions. The model is simulated numerically to compare the resulting waveforms to
experimental observations.

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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Boolean
operation

first-order 
low-pass filtertime delays

logic element

threshold 
condition

XNOR
LUT

Fig. 4.6 Equivalent circuit for the model. The output state x is delayed by three different time
delays τ1, τ2, and τ3. Within the equivalent logic gate, the states are subject to a threshold condition,
an ideal Boolean operation, and a first-order low-pass filter

The dynamic behavior of electronic logic gates can in principle be modeled from
first principles using SPICE models [33]. Here, however, I use simple piecewise-
linear switching models for two reasons. First, a single programmable look-up table
block (logic gate) on the FPGA includes at least 30 transistors [34], which would
each be modeled with several differential equations, leading to very slow numerical
simulations already for small Boolean networks. Second, the requiredmodeling para-
meters are not provided by the manufacturer to protect against reverse engineering;
hence, the SPICE models are unknown.

I describe the electronic logic gates on the FPGAwith an equivalent circuit shown
in Fig. 4.6, which separates its operation into ideal Boolean switching and subsequent
frequency filtering. I assume a simple first-order low-pass filter for the logic gate
because the actual filter characteristics is unknown and cannot be measured. Instead
only signals from the output gates can be measured, which may have different filter
characteristics. Therefore, a simple model is preferred.

A frequency filter can be expressed mathematically with a transfer function

H(ω) = F {Vout(t)} (ω)

F {Vin(t)} (ω)
(4.10)

that relates the Fourier spectrum F {·} (ω) of the output signal Vout to the Fourier
spectrum of the input signal Vin for frequencies ω. Specifically, for a first-order
low-pass filter, the transfer function reads

H L P (ω) = γ0

1 + iωτL P
, (4.11)

where γ0 is the attenuation of the low-pass filter and τL P is the filter constant given
by the inverse of the cutoff frequency

τL P = 1

ω
= 1

2π f+
. (4.12)
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I assume that the filter is loss-less (γ0 = 1), leading to

(1 + iωτL P )F {Vout(t)} (ω) = F {Vin(t)} (ω). (4.13)

Applying the property

iωF { f (t)} (ω) = F
{
d

dt
f (t)

}
(ω) (4.14)

and the linearity of the Fourier transform, I obtain

F
{(

1 + τL P
d

dt

)
Vout

}
(ω) = F {Vin} (ω), (4.15)

which becomes when comparing the arguments of the Fourier transform

(
1 + τL P

d

dt

)
Vout = Vin(t). (4.16)

This is equivalent to the differential equation

τL P ẋ(t) = −x(t) + xdr(t), (4.17)

where I have replaced the output voltage Vout(t) by a dimensionless variable x(t),
and the input voltage Vin(t) by a driving term xdr(t) and abbreviate the temporal
derivative with a dot. The dimensionless variable x can be scaled to correspond to
the experimental variable V by multiplying VH = 1.3V, depending on the used
output gate.

For the setupof the delayed-feedbackXNORoscillator, the low-passfilter is driven
by a 3-input invertedXORBoolean functionXNOR: {0, 1}×{0, 1}×{0, 1} → {0, 1}
as shown in Fig. 4.6. I model the three delayed feedback lines (τ1, τ2, τ3) with
mathematical time delays. The driving signal of the lowpass filter is then

xdr(t) = XNOR [X (t − τ1), X (t − τ2), X (t − τ3)] , (4.18)

where the Boolean variable X (t) is calculated from x(t)with the threshold condition

X (t) =
{
1, if x(t) > xth,

0, if x(t) ≤ xth,
(4.19)

with the low and high Boolean values 0 and 1 and a symmetric threshold xth = 0.5.
Combining Eqs. (4.17) and (4.18), I arrive at the delay differential equation

τL P ẋ(t) = −x(t) + XNOR [X (t − τ1), X (t − τ2), X (t − τ3)] , (4.20)
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Fig. 4.7 a Dynamics of the delayed-feedback XNOR oscillator from numerical simulation of
Eq. (4.20). b, c Power spectrum and autocorrelation of (a). The power spectrum is calculated with
T = 26µs and dt = 50 ps and averaged over 20MHz to remove noise. The model parameters are
τLP = 0.4 ns, τ1 = 10.119 ns, τ2 = 1.732 ns, and τ3 = 0.297 ns

which I use in the following to model the dynamics of the delayed-feedback XNOR
oscillator. This equation is an extension with time-delayed feedback terms of the
piecewise-linear differential equations introduced by Glass and collaborators for
autonomous Boolean networks [27, 32].

I integrate Eq. (4.20) numerically with a linear multistep method as discuss in
Appendix B.8. I choose the three time delays so that complex dynamics emerge. As
the low-pass filter constant, I use τLP = 0.4 ns, which corresponds to the 3 dB dropoff
of f+ = 400MHz measured from the experiment (see Eq. (4.12), Sect. 4.3.1.1 and
Fig. 4.5b). In addition, this value also corresponds to the propagation delay of a
logic gate τLG = τLP ln(2) [see Eq. (2.8)] with τLG = 0.28 ± 0.01 ns measured as
discussed in the Appendix A.2.

Figure4.7a shows thewaveform resulting fromnumerical integration of Eq. (4.20)
for time delays stated in the caption. The waveform displays complex behavior and
irregular spacing of transitions. The number of transitions per nanosecond, however,
is larger than for the experimental waveform in Fig. 4.5a. Moreover, the numerical
integration leads to chaotic dynamics only for narrow ranges of the feedback delays,
whereas the experiment shows chaotic dynamics consistently when the feedback
delays τ1, τ2, and τ3 are above a certain value as discussed in the next section.

These differences may be due to several non-ideal behaviors of the experimen-
tal system. For example, as discussed in Sect. 3.2.1, the voltages measured from
the FPGA are routed through output buffer gates before they are measured with
the oscilloscope. These can reduce the number of transitions, especially when they
have stronger filtering than the programmable logic gates or a different threshold

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_3
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voltage. The disagreement may also be due to history- and state-dependency of the
feedback delays in the experiment, heterogeneity, and noise, which are not captured
by the simplified model (see also Sect. 3.1.3). Lastly, the disagreement may also be
caused by a frequency characteristic of the logic gates that differs from a first-order
low-pass filter characteristic used to derive the model.

I also show the power spectrum calculated from the numerical data in Fig. 4.7b.
It has a 3 dB dropoff corresponding to the cutoff frequency f+ = 400MHz (τLP =
0.4 ns). The power spectrum fromnumerical integration is similar to the experimental
measurement in Fig. 4.5b. I also show the autocorrelation of the numerical data in
Fig. 4.7c. It drops quickly to values close to zero after a decorrelation time of 1 ns,
which is similar to the experimental data in Fig. 4.5c.

To summarize the comparison between experiment and simulation, I find that
both have similar power spectra and autocorrelations, but differ in the waveforms as
they show a different number of transitions per unit time. I find, however, that the
model is well suited to simulate regular dynamics, such as oscillations in autonomous
Boolean networks as discussed in later chapters.

4.3.3 Transition to Chaos

While I have shown in the previous section that the delayed-feedback XNOR oscil-
lator with the setup shown in Fig. 4.4b displays chaos for one particular choice of
feedback time delays, I discuss in this section the dynamics of the experimental
system for various different feedback delays.

The three time-delayed feedback lines are constructed from chains of ni inverter
gates, which result in time delays according to Eq. (4.5). The oscillator shows chaos
for parameters n1 = 18, n2 = 6, and n3 = 2, as discussed in the previous section.
I explore different dynamics of the oscillator by changing n1 from n1 = 0 to n1 =
14 in steps of 2 while keeping n2 = 6 and n3 = 2 fixed. Figure4.8 shows the
resulting dynamics as waveforms of the output voltage of the delayed-feedback
XNOR oscillator over time for different values of n1.

The first tested value of the feedback delay of n1 = 0 corresponds to a feedback
line that does not include inverter gates, but rather is built only with on-chip inter-
connect leading to a delay that is negligible compared to the delay of an XNOR logic
gate, so that the total delay corresponds approximately the delay of the XNOR logic
gate (the delay of a 3-input XNOR gate is τXNOR = 0.38 ± 0.02 ns, as measured in
Appendix A.4). The resulting output voltage of the oscillator is at a constant value
of V ≈ 0.7V, but also shows small voltage fluctuations on the order of 0.01V due
to electronic amplitude noise. This value is close to V = Vth = (VH − VL)/2, which
is the threshold voltage of the logic gate. Therefore, I observe that short delayed
feedback can stabilize the threshold value. Depending on the placing of this setup on
the electronic chip, I also sometimes observe constant Boolean levels of high or low
Boolean voltage, which is likely due to a difference between the threshold values of
the XNOR logic gate and the output logic gates.

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Fig. 4.8 Dynamics of the delayed-feedback XNOR oscillator for different values of feedback
delays measured from the experiment. From a to h, n1 is increased from zero to 14 in steps of two
leading to different delays according to Eq. (4.5). n2 = 6, n3 = 2 are fixed corresponding to delay
lines of length τn2 = (1.7 ± 0.1) ns, τn3 = (0.56 ± 0.02) ns. For the total feedback delay, the
gate delay of the XNOR logic gate (τXNOR = 0.38) has to be added. FPGA and oscilloscope as in
Fig. 4.5

In the waveform in Fig. 4.8b, I have increased the delay substantially from the
delay of one logic gate to τ = 2τLG + τXNOR = 0.94 ± 0.02 ns by including
n1 = 2 cascaded inverter gates in the feedback line. The waveform shows a periodic
evolution of the voltage over time, where the same pattern repeats with a period of
T = 4.3 ± 0.1 ns. This period is related to the largest delay in the system that consists
of six inverter gates, resulting in τ3 = 6τLG + τXNOR = 2.06 ± 0.08 ns (using
τLG = 0.28 ± 0.01 ns and τXNOR = 0.38 ± 0.02 ns, as measured in Appendix A.4).
As explained in Chap.6, the period in the oscillatory regime for such feedback
systems is given by twice the delay, i.e., T = 2τ3, which corresponds to themeasured
value.

For values from n1 = 4 to n1 = 8 in Fig. 4.8c–e, the resulting waveforms show
periodic oscillations, but with more complex patterns than in Fig. 4.8b. For example,
in Fig. 4.8c, the voltage shows a pattern of two minima and two maxima and one dip
to a level close to the threshold voltage and, in Fig. 4.8d, the periodic pattern shows
four maxima with different amplitudes and different spacing. An extension of this
thesis could be to study the formation of these complex patterns as a function of the
time delays.

http://dx.doi.org/10.1007/978-3-319-13578-6_6
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For values of n1 above ten in Fig. 4.8f–h, the voltage shows a complex temporal
evolutions without strict periodicity, which I have identified with Boolean chaos in
Sect. 4.3.1.3. For n1 = 10 and n1 = 12, the waveform includes recurring patterns
within the chaotic dynamics (not shown in the figure), which is not the case for
n1 = 14 and for several parameter values n1 ≥ 14 that I have tested. Therefore, I
conjecture that the dynamics is chaotic consistently for n1 ≥ 14. The dependence of
the dynamics on the time delays in the system is in agreement with guideline (ii).

The dynamics can be affected by placing the oscillator on a different area of the
chip, because the logic gates are heterogeneous (see Sect. 3.1.3). This can lead to
different wave patterns in the periodic dynamics and a different threshold value nk

at which the network displays Boolean chaos.
I characterize the complexity of the dynamics for different network sizes in the next

chapter,which also includes extensive numerical simulation and comparison between
model and experiment. For this reason, I have not included numerical simulation in
this section.

4.4 Conclusion

In this chapter, I have studied simple autonomous Boolean networks that display
Boolean chaos. The networks are designed with the help of three guidelines derived
from Boolean network models that are likely to increase the complexity in experi-
mentally realized autonomous Boolean networks. These guidelines, however, do not
guarantee complex dynamics because of differences between Boolean network mod-
els and experimental realizations. Specifically, a network that is predicted to show
stable complex dynamics with an autonomous Boolean network model relaxes to a
fixed point after a complex transient in the experiment. This breakdown of the theory
is one important result of this chapter. I have also identified a network topology with
stable complex dynamics in the experiment—termed the delayed-feedback XNOR
oscillator—that is a structurally simple network of only one node with three delayed
feedback lines. The delayed-feedback XNOR oscillator shows a dynamic transition
from regular dynamics to Boolean chaos when the feedback delays are increased.

Boolean chaos has several applications, such as chaos-based radar and physical
random number generation [35, 36]. In the next chapter, I explore the latter striking
application.
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Chapter 5
Ultra-Fast Physical Generation of Random
Numbers Using Hybrid Boolean Networks

Abstract I discuss in this chapter how chaotic dynamics in autonomous Boolean
networks can be used for high-speed physical random number generation. I start this
chapter in Sect. 5.1 with an introduction to random number generation (Results of
this chapter are published in reference Rosin et al. Phys Rev E 87: 040902(R), 2013.).
In Sect. 5.2, I develop a hybrid Boolean network that consists of both autonomous
and synchronous Boolean nodes. In Sect. 5.3, the Boolean network is utilized for
random number generation. The main contribution of this chapter are:

• introducing a network-based approach to randomnumber generation,which allows
for post-processing schemes that do not reduce the rate or increase the size of the
system;

• realizing a physical random number generator based on a chaotic Boolean sys-
tem with a compact circuit that is inexpensive and can be integrated with other
components as a system on a chip (SoC);

• realizing an ultra-high bit rate of 12.8GHz.

5.1 Introduction to Random Number Generation

Random numbers are the backbone of cryptographic protocols used for private
communications, such as everyday bank transactions and cloud services, and proof-
of-work protocols, which are the foundation of cryptocurrencies such as Bitcoin
[1–4]. They are also essential for Monte-Carlo simulations, which are used in vari-
ous fields, such as climate and biomedical sciences [5–7].

5.1.1 Application of Random Numbers
to Private Communication

A common situation in cryptography is when two parties, called Alice and Bob, com-
municate, while an eavesdropper, called Eve, is able to read all exchanged messages.

© Springer International Publishing Switzerland 2015
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Fig. 5.1 a Schematic of symmetric-key encryption with a shared key via a secure line. b Schematic
of public key exchange via a public line. The picture is a modified version of the public domain
content http://commons.wikimedia.org/wiki/File:Public_key_encryption.svg

Eavesdropping is easily possible for wireless communication and communication via
the internet. Therefore, private communication requires message encryption, which,
in its most reliable form, is achieved with symmetric-key encryption as visualized in
Fig. 5.1a. Alice and Bob share a secret key via a secure line, for example by meeting
each other or via quantum key distribution [8]. This key is then used by Alice to
encrypt the message, where it is converted to a ciphertext via a complex invertible
algorithm in combination with the key, and used by Bob to decrypt the message,
where the ciphertext is converted back to the message via the inverted algorithm
in combination with the key. Eve can read the ciphertext, but deciphering the text
without the key is computationally prohibitive. However, the key has to be changed
on a regular basis so that Eve has limited time for finding it. A historical example
of a simple invertible encryption algorithm supposedly used by Julius Caesar is to
shift the letters in the alphabet by a certain number given by the secret key, which is
easy to encrypt and decrypt when the key is known but harder to decipher if the key
is unknown. Today, encryption algorithms are, of course, much more complex [9].

In modern private communication, the key is exchanged publicly, as visualized in
Fig. 5.1b.Alice randomlygenerates a private key and infers from it a public key,where
the private key is hard to infer from the public key (the inverse operation). Bob uses an
encryptionmechanism to encrypt amessagewith the public key, such that Eve cannot
decipher the message in reasonable time without the private key. Alice then decrypts
Bob’s message using a combination of the private and public key. The message
includes a new secret key that is used to communicate via symmetric-key encryption.
The common algorithm for public key exchange, known as RSA1 encryption, relies
on multiplying two prime numbers, which is fundamentally hard to invert (known

1 The letters RSA are the initials of the inventors Ron Rivest, Adi Shamir, and Leonard Adleman.

http://commons.wikimedia.org/wiki/File:Public_key_encryption.svg
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as prime number factorization) scaling in computation time exponentially when the
number of digits increases [10–12].

Both the symmetric-key encryption andRSAencryption rely on the unpredictabil-
ity of encryption keys. On the other hand, predictable keys or unsecure storage of
keys can put these encryption schemes at jeopardy. For example, a recent major secu-
rity breach in RSA encryption was discovered on April 2014 with the Heartbleed
Bug, which allowed hackers for 2 years to spy out stored private keys from the server
and hence decrypt the communication, but it is unknown if hackers were aware of
this possibility for longer than a few hours after this possibility was officially dis-
closed [13]. The impact of this security breach could have been lower if keys would
be generated just before they are used instead of saving them in advance on the
server. Encryption keys are generated from random numbers, which are required to
be as unpredictable as possible for highest cryptographic security. Two ways of gen-
erating random numbers are pseudorandom number generated using mathematical
algorithms and physical random number generation using physical entropy sources.

5.1.2 Pseudorandom and Physical Random
Number Generation

Pseudorandom number generators are mathematical algorithms that can be used
to calculate a sequence of numbers with properties of true random numbers. The
algorithm starts the calculation from an initial value called a seed,which can originate
from a physical entropy source, such as user input. Because the sequence of random
numbers can be reproduced when the seed and algorithm is known, the entropy of
pseudorandom numbers is restricted to the entropy of the seed [3, 14]. This means
that poorly chosen seeds can lead to failure of pseudorandom-based protocols. For
example, a prominent security breach existed in the web browser Netscape between
1994 and 1995, where the seeds were chosen as a combination of the current time
and process IDs [15].

An example for a mathematical algorithm that generates numbers with properties
of randomness is a linear feedback shift register (LFSR), as shown in Fig. 5.2a with
the example of a Fibonacci LFSR. In the illustration, the shift register stores 16 val-
ues, where, in every iteration, the leftmost value is replaced by the XOR Boolean
function of certain bits in the shift register and the other bits take on the bits of their
left neighbor, and the rightmost bit is discarded. The leftmost bit in the shift register
can be used as the generated random bit. This algorithm can be initialized by defining
the bits in the shift register, which is the seed of the pseudorandom number gener-
ator. Interestingly, the Fibonacci LFSR is a synchronous Boolean network similar
to Kauffman networks introduced in Sect. 2.2.1. As such, it has a finite number of
states and will eventually enter a repeating cycle, which can, however, be very long
with a maximum of 216 − 1 = 65,535 states for a 16-bit LFSR. Figure5.2b shows
a similar setup called Galois LFSR, which can be implemented more efficiently in

http://dx.doi.org/10.1007/978-3-319-13578-6_2
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Fig. 5.2 aA16-bit Fibonacci linear feedback shift register (LFSR). The tab numbers above the shift
register characterize the specific Fibonacci LFSR as the bit positions of which the XOR operation is
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software than a Fibonacci LFSR. However, both LFSRs can be implemented very
efficiently in hardware to generate pseudorandom numbers at a high rate.

In physical randomnumber generation, in contrast, ameasurement fromaphysical
entropy source provides the random numbers. For example, the voltage of electronic
noise over time can be measured to generate physical random numbers, such as
implemented in the Intel random number generator [3], or quantum effects can be
exploited [16]. Other examples are to throw dice or take random user input via a
pointing device, such as a touch screen.

While physical random numbers are regarded secure, their generation is usu-
ally slow and expensive. An attractive secure alternative to pure physical random
number generators is to use them to repeatedly generate seeds for pseudorandom
number generators. One similar scheme, as already discussed in Sect. 4.1.1, is to use
chaotic systems that include a small-amplitude entropy source, i.e., deterministic
chaos under constant perturbation of microscopic noise. The microscopic noise pro-
vides the physical randomness and the deterministic chaos provides amplification of
the physical randomness similar to a pseudorandom number generator because deter-
ministic chaos follows mathematical equations [17]. The chaotic dynamics amplifies
the entropy to a rate given by the Lyapunov exponent and can also make its statistical
properties more desirable, known as the mixing property of chaos [17, 18].

An important early study on chaos-based random number generation is described
in Ref. [19], where a CMOS circuit realizes a one-dimensional chaotic, piecewise
linear map leading to a rate of 1Mbit/s. But this circuit is an exact physical imple-
mentation of a mathematical map and is hence not sensitive to electronic noise and
implements a pseudorandom number generator. High real-time random bitrates of
up to 300Gbit/s of physical randomness could been realized with continuous-time
chaotic photonic devices because of their large bandwidth [18, 20–23]. Theoret-
ical studies of the Lang-Kobayashi equations, which is a standard model for laser
dynamics, could prove that the randomness in these photonic systems originates from

http://en.wikipedia.org/wiki/File:LFSR-F16.gif
http://en.wikipedia.org/wiki/File:LFSR-G16.gif
http://en.wikipedia.org/wiki/File:LFSR-G16.gif
http://dx.doi.org/10.1007/978-3-319-13578-6_4
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physical entropy [17]. In Ref. [1], my collaborators and I have shown that very high
data rates can also be achieved with lower-speed chaotic electronic devices by using
parallelization, which is discussed in this chapter. Such parallelization is especially
easy to implement using electronic microchips. Since my publication, another group
has also reported on a high-speed random number generator based on an electronic
tunnel diodes in Ref. [24], claiming high bitrates also through parallelization. In con-
trast to my work, however, they require computationally-intensive post-processing.

5.1.3 Desired Statistical Properties of Random Numbers
and Post-Processing

The applications mentioned in the beginning of this chapter require certain statistical
properties for the random numbers. Good statistical properties are, for example, high
entropy and low bias, where entropy measures the unpredictability of the random
numbers and bias measures its deviation from a uniform distribution [25]. These sta-
tistical properties can be assessed with statistical randomness test suites that include
multiple tests, such as the statistical test suite by the National Institute of Standards
and Technology (NIST) for random number generators for cryptographic protocols
[14].

Statistical tests determine if a sequence of numbers fails certain criteria for true
randomness using a statistical approach of a null hypothesis H0. For example, H0
for testing a sequence of random numbers could be that the random numbers are free
of bias or free of correlations. A null hypothesis test can have two outcomes: First,
it can result in statistical evidence for the rejection of H0 with a confidence of, for
example, 3σ = 99.7%; second, it can result in no rejection of the null hypothesis.
The second case, however, does not imply 3σ = 99.7% confidence that the null
hypothesis holds, just as it is wrong to assume that no evidence of bias implies
evidence of no bias [25, 26]. A setting where the null hypothesis is not rejected,
but the random number generator has flaws, corresponds to a type-II error, which
statistical randomness tests try to minimize [14]. Type-II errors result from a finite
sample size used for the testing and from a finite number of tests; for example,
the NIST test searches for repetition of patterns only up to a certain pattern length.
Because of type-II errors, a flawless random number generator—a so-called ‘true
random number generator,’—is impossible to identify.

Good statistical properties are usually hard to achieve for physical randomnumber
generators because of intrinsic bias and correlations originating from the physical
source. Bias and correlations and other statistical flaws can be reduced using post-
processing, such as by combining multiple bitstreams from identical uncoupled sys-
tems [20] or hashing random bits from the bitstream produced by a single device [3].
These approaches either reduce (divide) the generation rate of random numbers or
increase (multiply) the system size by includingmultiple random number generators.

A frequently used post-processing algorithm is based on the XOR Boolean
function. For example, a generalized n-input XOR logic gate can hash n bitstreams
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resulting in one bitstreamwith reduced bias. The resulting bias is b̃ = 2n−1bn , where
b is the bias of the uncorrelated input bitstreams (see Appendix C.1). Specifically,
a bias of b = 1% can be reduced to a theoretical value of b̃ = 8 × 10−8 using a
4-input XOR gate, which corresponds to an undetectable level of bias when analyz-
ing a gigabit of data (typically used in standard statistical randomness tests, such as
NIST tests [14]).

Post-processing can limit the bitrate of physical random number generators sub-
stantially, such as when a fast-timescale optical system is hashed with a much slower
electronic post-processing unit. For this reason, many studies on ultra-fast random
number generation do not include the low rates of post-processing in the quoted
bitrate of the random number generator. A case in point is a study by Kanter and
collaborators who implement a photonics-based random number generator with a
raw data rate of 300Gbit/s. In post processing, they use a complicated algorithm
that takes the 15th derivative of the data, which is not accounted for in the ran-
dom bitrate [21]. On a 4-core, 2GHz processor, the rate decreases consequently to
about 600MHz including post-processing, assuming that the calculation of the 15th
derivative requires 15 processor operations.

To my knowledge, all approaches to fast random number generation by the non-
linear dynamics community are limited by their acquisition method with high-speed
oscilloscopes. These devices can acquire digital data at rates as high as 400Gbit/s
(assuming a 10 bit quantization with a digital bandwidth of 40GHz), but they can
maintain this rate only for a short time, until its fast random access memory is
filled, which usually takes only about 10µs. It is, however, not clear if this rate
could also be maintained for constant streaming into a communication interface by
altering the device. The use of high-speed oscilloscopes also increases the price of
random number generators to as much as 100,000 USD, where the actual physical
device can typically be manufactured for less than 10,000 USD. The high-speed
analog-to-digital converters in such oscilloscopes are very useful for random num-
ber generation, which has been showcased by Reidler and collaborators, who have
realized a photonic-based device with a rate of 12.5GHz, where the post-processing
simply discards several of the most significant bits of the 8-bit quantized acquisition
[18].

Uchida and collaborators have developed a physical random number generator
based on two copies of a photonic device that are monolithically-integrated. This
study is a first step towards adding electronic post-processing to the chip by hashing
the two bitstreams with an XOR logic gate. This would allow them to claim a real-
time (online) bitrate of 2.08GHz including post-processing on a compact device
[23].

5.1.4 Utilization of Autonomous Boolean Networks
for Random Number Generation

Autonomous Boolean networks with chaotic dynamics are technological favorable
for random number generation because:
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• their dynamics evolves on a sub-nanosecond timescale, which is fast compared to
other electronic circuits allowing for high random bit rates;

• when realized on microelectronic chips, they can be integrated together with other
logic-circuit-based electronic devices such as processors, resulting in a system on
a chip (SoC);

• they are inexpensive, especially when comparing the number of required logic
gates to the requirements for a central processing units (CPUs) (modern CPUs
include on the order of a billion transistors, whereas a single 2-input logic gate
can be implemented with less than ten transistors [27]).

Autonomous Boolean networks (even if not identified as such) have been used
before to generate physical random numbers. For example, methods have been
developed to generate physical random numbers from jitter in periodic autonomous
Boolean networks [28, 29]. In one approach, random numbers are generated using
multiple unidirectional ring oscillators, which are oscillatory systems that I describe
in Chap.6, built from ∼1,300 autonomous inverter gates together with multiple
clocked XOR logic gates to remove bias. However, this standard approach requires
a large number (∼170) of logic gates to generate random numbers at a rate of
100Mbit/s and, in addition, evidence exists that this approach has flaws [30]. Dichtl
andGolić have developed a chaos-based approach to random number generators with
autonomous Boolean networks [30]. The topology of their autonomous Boolean net-
works are based on Fibonacci and Galois linear feedback shift registers as introduced
in Sect. 5.1.2, but the networks are operated without clocks. Multiple copies of such
autonomous Boolean networks can be combined with a clocked XOR operation
to reduce bias and increase entropy. These setups have been reported to generate
uncorrelated random numbers at 20Mbit/s, but neither the chaotic dynamics nor the
quality of the resulting random bit sequence have been characterized [30].

In this chapter, I generate random numbers with an autonomous Boolean network
described in a US patent [31] with a ring topology and 3-input XOR and XNOR
logic functions as discussed in the next section. This network, which I call an XOR
ring network, is similar to the delayed-feedback XNOR oscillator in Chap. 4, but has
three substantial advantages:

1. The XOR ring network uses the 4-input logic gates on the FPGA as
3-input logic gates, leading to a high logic-gate utilization, which might increase
the complexity per logic gate (see Sect. 3.1.1);

2. The XOR ring network includes multiple autonomous nodes that can be sampled
to generate multiple bitstreams per system;

3. The randomness produced by the XOR ring network, when tested with the
NIST test suite, is found to have good statistical properties, such as low bias
and correlations.

The characterization of the dynamics of the XOR ring network has not been
documented prior to my publication [1] and the resulting random numbers have not
been confirmed to be of high quality. I also integrate the network with a different
sampling and processing strategy than that proposed in the patent because I find that
the sampling strategy proposed in the patent leads to biased random numbers.

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_3
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5.2 Hybrid Boolean Network Approach

The random number generator discussed in this chapter is illustrated in Fig. 5.3a–d.
It is a hybrid Boolean network composed of autonomous (unclocked) Boolean nodes
and synchronous (clocked) Boolean nodes. The autonomous Boolean nodes form
the XOR ring oscillator, which is an autonomous Boolean network. It includes N
autonomous nodes that are assembled in a ring topology with bidirectional nearest
neighbor coupling and feedback. Each node has an in-degree of K = 3, with two
inputs connections from the output of each of its two nearest neighbors and one input
from its own output, where N − 1 nodes execute the XOR and one node the XNOR
Boolean function, as shown in Fig. 5.3e–i for different N . This autonomous Boolean
network has four outputs tapped from four distant nodes, specifically, every fourth
node in a ring of N = 16 nodes. In the hybrid Boolean network, the synchronous
node has an in-degree of K = 4 and an out-degree of 1 and executes the 4-input
XOR Boolean function, where the inputs are the outputs of the autonomous Boolean
network. The autonomous Boolean signals are converted with four flip-flops into
synchronous Boolean signals—streams of well-defined “0” and “1” that can change
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Boolean values at every period given by the clock. The hardware description of this
network can be found in Appendix B.3.1.

The autonomous Boolean network, the XOR ring oscillator, can be scaled in the
number of nodes N . The network topology for N = 1, shown in Fig. 5.3e, is identical
to the delayed-feedback XNOR studied in the previous Chap.4 and introduced in
Sect. 4.2, so that the XOR ring network is its natural extension.

5.2.1 Dynamics of the XOR Ring Network

In this section, I describe the dynamical behavior of the XOR ring network, which
is the autonomous part of the hybrid Boolean network. The network shows a simi-
lar dynamical transition with the size of the network as discussed for the delayed-
feedback XNOR oscillator in Sect. 4.3.3.

For a small number of nodes N < 4 the network displays a steady state, which
involves constant node output voltages at the lowor highBoolean voltage. For N = 2,
as an example, the network shows dynamics where one node is in the high Boolean
state and one node is in the low Boolean state, as shown in Fig. 5.4.

The reason for steady-state dynamics is that complex dynamics is prevented by the
low-pass filter characteristics of the system, as described in Sect. 3.1.3. For example,
more complex dynamics that can appear in such a network are oscillations with a
frequency f = 1/(2τ), where τ is the total propagation delay through the network,
as I explain in Chap. 6. The delay τ = τLGN is given by the number of logic gates
in the network N and the propagation delay of a single node τLG. For small network
sizes N , this frequency can be larger than the cutoff frequency of the lowpass filter,
so that the system attenuates oscillations. For the autonomous Boolean network to
bifurcate to non-steady dynamics, the propagation time must be increased, which
can be achieved by increasing N .

Fig. 5.4 Temporal evolution of a network of four nodes with the topology shown in Fig. 5.3f. The
Boolean network is realized on the FPGAAltera Cyclone IVEP4CE115F29C7N. Data and Boolean
transitions are sampled at 40 GSa/s with 12-bit quantization and 8 GHz analog bandwidth using
oscilloscope DSO 9

http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_3
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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Fig. 5.5 Temporal evolution of a network of four nodes with the topology shown in Fig. 5.3g.
Realization as in Fig. 5.4

For a network sizes between N = 3 and N = 5 nodes, depending on the specific
realization of the network on the FPGA, the network shows oscillations. For N = 4,
the first and the third node display a constant Boolean voltage, where nodes two and
four display small-amplitude oscillations, as shown in Fig. 5.5. The two oscillatory
nodes both receive constant Boolean inputs from their two neighbors and oscilla-
tory inputs from themselves (see also the network topology in Fig. 5.3g). Note that
the network implementation includes output buffers as discussed in Sect. 3.2.2 that
can influence the measurement of the dynamics. For example, if an output buffer
has a slightly different threshold than the nodes in the network, small-amplitude
oscillations about the threshold might be observed as a constant Boolean state.

In this scenario, the propagation delay for a signal to travel through the network
is increased, so that the frequency of the oscillations is decreased below the cutoff
frequency of the lowpass filter, allowing for a single mode to oscillate with a low
amplitude.

The network dynamics in a network of N = 5 nodes is shown in Fig. 5.6, where
only four nodes are measured because the oscilloscope has only four channels. Three
nodes display regular oscillations with large amplitudes that reach the high and low
Boolean levels and one node shows oscillations with decreased amplitude of about
0.3V with an oscillation pattern that is composed of pulses of different heights. This
pattern is a result of the periodic inputs from the neighboring nodes.

The oscillations have a frequency f ≈ 1/(2NτLG) as discussed above, originating
from the low-pass filter characteristics of the logic gates. The first mode of oscillation

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Fig. 5.6 Temporal evolution of a network of five nodes with the topology shown in Fig.5.3h.
Realization as in Fig. 5.4

with frequency f = 1/(2NτLG) is amplified; the next mode with frequency f =
1/(NτLG) and higher modes are still attenuated. Hence, the autonomous Boolean
network has a size corresponding to a propagation delay that allows for exactly one
Boolean transition to propagate.

I find that the network dynamics are chaotic for N > 5, which is shown in Fig. 5.7
for N = 16. The four recorded nodes display irregular fluctuations between the two
Boolean voltage levels similar to the measurement of Boolean chaos in Chap.4.

The occurrence of chaos is not astonishing because the autonomous Boolean net-
work fulfills the three guidelines for Boolean chaos identified in Chap. 4: It includes
exclusively XOR and XNOR gates, it does not include a Boolean fixed point, and
various time delays exist for signals to travel from node to node. In accordance with
the third guideline, Boolean chaos only appears when the accumulated time delay in
the ring is long enough.

5.2.2 Characterization of Boolean Complexity

The complexity of the dynamics can be characterized by the distribution of time
intervals between two consecutive Boolean transitions, as shown in Fig. 5.8 for a
single node for different network sizes N . For the periodic oscillation with N = 5,

http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_4
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Fig. 5.7 Temporal evolution of a network of 16 nodes with the topology shown in Fig.5.3i. The
waveforms of four consecutive nodes including the node that executes the XNOR are shown.
Realization as in Fig. 5.4

shown in Fig. 5.8a for a single node, Fig. 5.8b shows the corresponding distribution
of time intervals between Boolean transitions. The time intervals are distributed with
a Gaussian shape with a mean at the period T = 2.7 ns and a width of �T = 17 ps.
The mean corresponds to the average oscillation period of the waveform in Fig. 5.8a
and the width corresponds to the timing jitter of the oscillations, which is a random
fluctuation of the phase due to thermal, shot, and flicker noise from each logic gate
[32]. Jitter is the inherent entropy in the system, which can be directly harvested
to generate random numbers using large ring oscillators, as described in Sect. 5.1.4.
Direct harvesting of the jitter, however, results in low random bit rates, which can be
increased by using chaotic dynamics.

Waveforms of chaotic dynamics for one node are shown in Fig. 5.8c, e for network
sizes of N = 6 and N = 16, respectively. These dynamics have the distribution
of intervals between transitions shown in Fig. 5.8d, f. These figures show a ∼200
times broader distribution than the jitter distribution in the periodic regime. The
distribution of transitions for N = 6 presents significant fluctuations (Fig. 5.8d)
that can introduce undesired statistical properties of the random numbers, when
compared to those provided by a network with N = 16 nodes (Fig. 5.8f). Because
of the broader distribution, more randomness can be extracted from the dynamics in
the chaotic regime than from jitter in the periodic regime.
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displaying periodic dynamics. b Distribution of the time differences �t between two consecutive
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network also displays chaos. Realization as in Fig. 5.4

The unpredictability of the information content of a message, such as a sequence
of zeros and ones, can be assessed with the Shannon entropy H(·), defined as

H(X) = −
n∑

i=1

P(xi ) log2 P(xi ), (5.1)

where X = {xi }n
i=1 are n distinct outcomes of a random variable and P(xi ) is the

probability of the outcome xi [33]. For example, the entropy of a binary process with
a probability of measuring “1” of P(1) = p and probability of measuring “0” of
P(0) = 1− p is H(X) = −p log2 p − (1− p) log2(1− p). For a bias-less random
number stream, the binary entropy results in H(X) = 1, which is the maximum
value. Therefore, the binary entropy of a random bitstream is simply a measure of
bias, which is at a maximum when the bias is zero. A bias-less stream of alternating
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Fig. 5.9 Entropy of the analog waveform generated of an autonomous node in the hybrid Boolean
network as a function of N as defined in the text

bits, however, should lead to a low entropy as it is completely predictable. This is
achieved by defining different outcomes xi depending on sequences of binary values
up to a certain length.

Here, the entropy is calculated similar to the approximate entropy test algorithm
in the NIST statistical test suite [14] by counting the occurrences for all 2m binary
sequences xi of length m in the tested bitstream and computing the probabilities
pi of pattern xi for i = 1, 2, ...2m . Specifically, the waveform acquired with the
oscilloscope is sampled periodically with period Ts = 10 ns and 1-bit quantization
using a threshold condition with symmetric threshold. The resulting bitstream of
n = 6,550 bits is tested for patterns of length m = 7 (parameters as suggested by
the NIST statistical test suite [14]), resulting in probabilities pi , which are used to
calculate an estimate of the entropy with Eq. (5.1).

Figure5.9 shows the entropy measured from one autonomous node as a function
of N . For N < 5, the entropy is H = 0 bit/sample. For oscillatory dynamics with
N = 5, it is H ≈ (0.30 ± 0.01) bit/sample, but a larger sequence length m and
especially smaller sampling period Ts for the calculation of H could potentially
lead to an entropy close to zero because this periodic pattern is predictable except
for small jitter. In the chaotic regime with N = 6, the entropy increases to H ≈
(0.82 ± 0.01) bit/sample, and for N > 7 it is H ≈ (0.96 ± 0.01) bit/sample close
to the maximum achievable value of H = 1 bit/sample when sampled with Ts [25].
The overall increase in entropy describes a dynamical transition with N and is a
consequence of the increase of complexity in the dynamics with N as discussed in
Sect. 5.2.1.

5.2.3 Modeling Results for the Dynamics
of the XOR Ring Network

The dynamics of the XOR ring network, the coupled autonomous nodes in the
hybrid Boolean network, can be modeled with dynamic equations similar to the
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framework developed in Sect. 4.3.2, which is an extension of piecewise-linear
switching networks by Glass and collaborators [34, 35]. The dynamic equation reads

τL P ẋi = −xi + xdr, (5.2)

where τL P = Trise/ ln(2) = 0.4 ns is the characteristic timescale of the dynamics
(see Sect. 4.3.2), xi is the continuous state of node i ∈ {1, ..., N }, and xdr is the
Boolean driving term. From the setup of the XOR ring network in Fig. 5.3e–i, the
Boolean driving term xdr is a 3-input XOR or XNOR Boolean function according to

xdr(t) = XOR
[
Xi−1(t − τi,1), Xi (t − τi,2), xi+1(t − τi,3)

]
(cyclic), (5.3)

for i ∈ {2, ..., N }; for i = 1, the XOR function is replaced with an XNOR function.
Here,

Xi (t) =
{
1 if xi (t) > xth

0 if xi (t) ≤ xth,
(5.4)

is the Boolean state of node i . The quantity xth = 0.5 is the Boolean threshold, which
is assumed to be symmetric between the two Boolean levels of 0 and 1. The time
delays τi, j are fixed random values sampled from a uniform distribution, so that

τi, j = τ0 + rτ1, (5.5)

with r ∈ [−1, 1] a uniformly distributed random variable, τ0 = 0.2 ns, and
τ1 = 0.02 ns. This distribution is adjusted to achieve qualitative agreement with the
experimental results, but the quantitative values also agree physically for the larger
time delays between logic array blocks [36, 37] (see also Sect. 3.1.1). With this dis-
tribution, I introduce heterogeneity in the time delays of the network. The system is
simulated with an Adam-Bashforth-Moulton method as explained in Appendix B.8.

The results of the simulations are shown in Fig. 5.10. The simulation of a small
network of N = 2 nodes results in periodic oscillations (Fig. 5.10a). The oscillations
show a peak in the distribution of transition times at half the period T/2 = 0.34 ns
of zero width given by the measurement quantization (Fig. 5.10b). This indicates
that the period of oscillation is constant, caused by the description of the dynamics
with a deterministic model without noise. For a large network of N = 16 nodes,
the dynamics show irregular chaos-like dynamics (Fig. 5.10c). The distribution of
transition times is continuous, but still shows a large maximum at t = 0.34 ns and a
smaller maximum at twice this values.

When compared to the experimental data in Fig. 5.8, I observe similar waveforms
in the simulations, but the distribution of transition times is broader in the experiment.
The latter difference could be due to a different time delay distribution and jitter in
the experiment, which is not yet included in the model.

http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Fig. 5.10 Dynamics from the numerical simulation of Eqs. (5.2)–(5.5). Temporal evolution of one
node and corresponding distribution of transition times in a network of a, b N = 2, and c, d N = 16
nodes, respectively. b and d show peaks at t = 0.34 ns. I simulate the system with a timestamp
dt = 0.001 ns and the timescale parameter τLP = 0.4 ns

5.2.4 Modeling Results for Boolean Complexity

The dynamical transition to high complexity with the network size N observed in the
experiment also occurs in the model. To find the transition, I sample the simulated
dynamics every 10 ns with a threshold condition, leading to a bitstream of 108 bit/s.
Figure5.11 shows the entropy of the dynamics for different node sizes N . The entropy
increases towards 1 for N ≥ 6. For N < 6, the entropy is below 0.5, corresponding
to regular oscillations.

Compared to the experimental data in Fig. 5.9, the entropy of the simulated dynam-
ics does not decrease to zero for small network sizes because the simulated dynamics
oscillates for small N about the switching threshold in the simulation and are not
constant. In fact, it could be that the experiment also shows oscillations for small
node number, but that this dynamics is measured as a constant Boolean voltage due
to output gates in the experiment that are not included in the simulation (see also
Sect. 3.1.1).

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Fig. 5.11 Analysis of the numerical simulation data similar to Fig. 5.9 showing the entropy of the
dynamics for different network sizes N . I simulate the system with a time step of dt = 0.01 ns

5.2.5 The Synchronous Part of the Hybrid Boolean Network

The autonomous Boolean network can be used for physical random number gen-
eration by sampling the Boolean output from one node. However, I observe a bias
of ≈1%, which prevents the system to pass standard randomness tests, so that the
autonomous Boolean network alone cannot be used for high-quality random number
generation. As a solution, I can—similar to most other studies on physical random
number generation—include a bias-reduction technique.

Bias removal usually results in a decrease in the bitrate or an increase in the
system size as discussed in Sect. 5.1.2 for previous setups. This is not the case when
the network character of multiple nodes is exploited, where multiple bitsteams from
the autonomous Boolean network are probed in parallel. Specifically, four bitstreams
are routed from the autonomous Boolean nodes to the synchronous Boolean node
constituting a clocked 4-input XOR logic gate. The synchronous node is a part of
the hybrid Boolean network operating in real time.

The synchronous node realizes a 1-bit quantization operation, which is adequate
for Boolean chaoswhose complexity originates from the timing of Boolean transition
rather than the voltage amplitude [38]. The clocked node performs anXORoperation,
which is known to reduce bias if the incoming bitstreams are sufficiently uncorrelated
[20] (see Sect. 5.1.3 and Appendix C.1). In the setup shown in Fig. 5.3a, autonomous
nodes with inputs to the synchronous nodes have a distance of four. The dynamics
between these nodes is sufficiently uncorrelated to result in low enough bias to
pass standard randomness tests. Specifically, the correlation between these nodes
is less than 7.5%, measured with the normalized cross-correlation function. The
clocked node includes a flip-flop that samples the autonomous nodes with a clock
frequency of 100MHz, as shown in Fig. 5.3d. This sampling rate corresponds to the
maximum transfer rate to the memory elements on the FPGA and leads to a bitrate of
100Mbit/s. Higher bit rates are allowed by the network because of a short correlation
time (≈590 ps) of the chaotic dynamics generated by an autonomous node. However,
the memory transfer speed of the inexpensive FPGA platform precludes me from
extracting this accessible entropy rate.
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5.3 Utilization as a Physical Random Number Generator

In this section, I test the hybrid Boolean network as a random number generator and
increase its rate through parallelization.

5.3.1 Testing the Physical Random Number Generator

The hybrid Boolean network-based random number generator is implemented on
various FPGA platforms, such as the Altera Cyclone IV, Altera Stratix IV, Xilinx
Virtex VI, and the CPLD Altera MAX II with a transfer protocol to the computer as
detailed in Appendix B.3.2. For all of the hardware chips, I assess the quality of the
random numbers with 1,000 bitstreams of 1Mbit of data (total of 1Gbit) using the
NIST test suite [14] and observe consistently successful passes at a rate of 100Mbit/s
with specific test results discussed in the next section. This shows that my approach
is robust to changes in technology.

The resulting random numbers generated by the clocked node of the hybrid
Boolean network are non-deterministic because of the mixing property of chaos,
where the electrical noise that induces jitter is mixed into the chaotic dynamics of
the autonomous nodes (see also Sect. 5.1.2).

5.3.2 Parallelization to Increase the Bitrate

The achievable random bit rate of a single hybrid Boolean network remains one
order of magnitude below that of photonic systems. However, the small fraction of
required logic gates is less than 0.02% of the logic gate on an Altera Cyclone IV
FPGA, allowing me to parallelize thousands of random number generators, thus
increasing the overall bit rate.

The parallelization scheme is shown in Fig. 5.12 with a hardware description
discussed in Appendix B.3.3. I implement 128 uncoupled hybrid Boolean networks
in parallel that have independent temporal evolution. Together, the networks generate
128 random bits per clock cycle that are saved to on-chip memory in parallel. As I
keep the sampling rate at 100MHz, I achieve a cumulative bit rate of 12.8Gbit/s.
A slower clock is then used to convert the parallel data to a single bitstream and to
send it to a computer. In principle, a better communication architecture will be able
to also stream the data at 12.8Gbit/s to a computer. In fact, this rate is only limited
by the memory capacity of the FPGA.

The cumulatively generated random numbers pass successfully the NIST tests
using 1Gbit of data with results shown in Table5.1. Each of the 15 tests is run on
all of the 1,000 bitstreams, resulting in 1,000 test results. The proportion of passed
repetitions of a test is one deciding factor of the quality of the random numbers.
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Fig. 5.12 Schematic of the parallelization on the electronic chip. 128 hybrid Boolean networks are
implemented on the FPGA and operate in parallel of which two are shown. The output bitstream of
100Mbit/s is written in parallel to the on-chip memory. After 1Mbit of data is written, a serializer
converts the saved parallel data into a single bitstream via a slow read clock and a multiplexer. The
serial data is sent to the computer for analysis

Not all tests are passed because of the statistical nature of the test, where a certain
fraction of tests are expected to fail. The P-value gives the probability to achieve
test results as extreme as the measured ones. According to Ref. [14], a sequence can
be considered to be non-random with confidence of 99.9% for a P-value < 0.001.
On the other hand, a P-value > 0.001 does not allow to refute the random number
generator as non-random with that confidence.

The random numbers are also visualized as a pixel matrix, where a “1” is shown
as a black dot and a “0” is shown as a white dot (Fig. 5.13). Certain patterns can
be spotted by the human eye, but, in the figure, no patterns are visible, which gives
further confirmation that he random numbers are of high quality.

In addition to using the statistical test suites, I compute the 3σ confidence intervals
for the bias b and serial-correlation coefficient ρ under the statistical null hypothesis
H0 of a perfectly uncorrelated, unbiased randomnumber generator using n = 3×109

bits. They are given respectively by b̂ ± 3σ̂ /
√

n = [−2.826, 2.651] × 10−5 and
ρ̂ ± 3

√
(1 − ρ̂2)/(n + 1) = [−4.177, 6.777] × 10−5 [39] with b̂, σ̂ , and ρ̂ being

the test statistics for the bias, standard deviation, and serial-correlation coefficient,
respectively. Because these two intervals contain b = 0 and ρ = 0, H0 is not rejected
(Fig. 5.13).
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Table 5.1 Results of the 800-22NIST test suite [14] using1Gbit of data (1,000 sequences of 1Mbit)
generated by the 128 hybrid Boolean network-based random number generators implemented in
parallel on an Altera Cyclone IV EP4CE115 FPGA

Statistical tests P-value Proportion Result

Frequency 0.0856 0.991 Success

Block frequency 0.7887 0.993 Success

Cumulative sums 0.3191 0.988 Success

Runs 0.2954 0.989 Success

Long runs 0.0081 0.992 Success

Ranks 0.1147 0.995 Success

Fast Fourier transform 0.4750 0.991 Success

Nonoverlapping templates 0.1445 0.983 Success

Overlapping templates 0.6621 0.987 Success

Universal 0.0288 0.990 Success

Approximate entropy 0.5728 0.989 Success

Random excursion 0.3694 0.982 Success

Random excursion var 0.3917 0.982 Success

Serial 0.5544 0.987 Success

Linear complexity 0.4944 0.992 Success

All tests are passed successfully because the P-value is larger than 10−4 and the proportion is greater
than 0.980

Fig. 5.13 Visualization of 1 million bits of random data

5.4 Conclusion

In this chapter, I have discussed the generation of random numbers with autonomous
Boolean networks. Specifically, I have studied experimentally and numerically
a hybrid Boolean network comprising autonomous and synchronous nodes. The
autonomous nodes form an autonomous Boolean network, which shows a transition
to complexity similar to the delayed-feedback XNOR oscillator studied in Chap.4.

http://dx.doi.org/10.1007/978-3-319-13578-6_4


5.4 Conclusion 77

The hybrid Boolean network generates high-quality physical random numbers; it
can be realized with a small number of logic gates on an FPGA, allowing for parallel
implementation. Both a parallel implementation and a single hybridBoolean network
generate high-quality random numbers that pass the tests in the NIST statistical test
suite for randomness. I achieve a maximum bitrate of 12.8Gbit/s without further
processing. With current chip technology, I conjecture that tens of thousands of
hybrid Boolean networks can be implemented in parallel because the implementation
of 128 random number generators exploits less than 1% of the available logic gates
on typical FPGAs. The approach using hybrid Boolean networks potentially opens
the path towards Tbit/s physical random number generation on a single electronic
device.

To my knowledge, the proposed random number generator is being considered
for use at NIST as an inexpensive replacement for commercial random number
generators that cost about 1,000USD, whereas my random number generator design
can be implemented on any spare FPGA. When bought new, programmable chips
are also inexpensive; for example, MAX II CPLDs that I have also tested to pass the
standard randomness test cost only 6USD.

I have mentioned above that the autonomous Boolean network is already patented
[31].Mycontribution is that I have reported to the community that the randomnumber
generator with my specific way of post-processing produces reliable random num-
bers. On the other hand, when I implement the post-processing technique proposed in
the patent, it does not generate high-quality random numbers. Further contributions
are that I have increased the bitrate in this system through parallelization, leading to a
new record bitrate for an inclusion of the XOR operation on the random number gen-
erator and that I have described the dynamics of the system with a piecewise-linear
switching model.

An autonomous Boolean network with chaotic dynamics can be implemented as
a network node in a meta-network.Whenmultiple such nodes with chaotic dynamics
are coupled together, chaos synchronization is in-principle possible as demonstrated
with electronic circuits on printed circuit boards [40]. On FPGAs, however, I am not
able to synchronize two chaotic systems because of heterogeneities of logic gates,
e.g., in their propagation delays, low-pass filter characteristics, and electronic noise.
These non-ideal effects result in significant parameter mismatch when implementing
multiple copies of chaotic oscillators on the same FPGA.

The coupling of meta-networks of autonomous Boolean networks is possible on
the FPGA for autonomous Boolean networks in the periodic regime. This is the topic
of the next chapter.
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30. M. Dichtl, J. Golić, High-Speed True Random Number Generation with Logic Gates Only,
in Cryptographic Hardware and Embedded Systems—CHES 2007, ed. by P. Paillier, I. Ver-
bauwhede (Springer, New York, 2007), pp. 45–62

31. C. Baetoniu, Method and apparatus for true random number generation, U.S. Patent 7,389,316,
2008

32. A. Hajimiri, T.H. Lee, A general theory of phase noise in electrical oscillators. IEEE J. Solid-St.
Circ. 33, 179 (1998)

33. S. Ihara, Information Theory for Continuous Systems, vol. 2 (World Scientific, Singapore, 1993)
34. L. Glass, C. Hill, Ordered and disordered dynamics in random networks. Europhys. Lett. 41,

599 (1998)
35. T. Mestl, C. Lemay, L. Glass, Chaos in high-dimensional neural and gene networks. Phys. D

98, 33 (1996)
36. M. Khellah, S. Brown, Z. Vranesic, Minimizing interconnection delays in array-based FPGAs,

in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 1994), pp. 181–184
37. C. Maxfield, FPGAs World Class Designs (Newnes, Burlington, 2009)
38. R. Zhang, H.L.D.S. de Cavalcante, Z. Gao, D.J. Gauthier, J.E.S. Socolar, M.M. Adams, D.P.

Lathrop, Boolean chaos. Phys. Rev. E 80, 045202 (2009)
39. J.S. White, A t-test for the serial correlation coefficient. Ann. Math. Stat. 28, 1046 (1957)
40. Z. Gao, H.L.D.S. de Cavalcante, S.D. Cohen, R. Zhang, J.E.S. Socolar, D.J. Gauthier, Using

synchronization of chaos to identify multiple delay times in Boolean-delay systems. Poster
Presentation, 2009



Chapter 6
Periodic Dynamics in Autonomous Boolean
Networks

Abstract This chapter focuses on periodic dynamics in autonomous Boolean
networks. The goal is to design and characterize a periodic Boolean oscillator that
can be coupled into networks to study the resulting network dynamics. The main
challenge is to implement a coupling mechanism that is adjustable and can be tuned
weak. In Sect. 6.1, I first introduce the existing theoretical and experimental work
on periodic dynamical systems and their synchronization. Then, in Sect. 6.2, I show
how periodic autonomous Boolean networks can be coupled in an “on”-“off” fash-
ion in network motifs consisting of two periodic oscillators. In Sect. 6.3, I intro-
duce and characterize a more advanced periodic Boolean oscillator that allows for
weak coupling with adjustable coupling strength. I term this experimental periodic
oscillator a Boolean phase oscillator because it bears resemblance to the Kuramoto
model. Its coupling mechanism is characterized within network motifs (Results of
this chapter are published in references Rosin et al. Chaos 23:025102, 2013; Phys
Rev E 89:042907, 2014). The main contributions of this chapter are: (a) studying the
dynamics of a simple periodic Boolean oscillator and small network motifs of this
dynamical system; (b) designing, characterizing, and coupling of a periodic Boolean
oscillator that allows for weak coupling; (c) developing models for the dynamical
systems in this chapter.

6.1 Introduction to Periodic-Oscillatory Dynamical Systems

In this section, I introduce previous work on dynamical systems with periodic
dynamics [1, 2].

6.1.1 Historical Perspective on Synchronization of Periodic
Oscillators

In the seventeenth century, the Dutch researcher Christiaan Huygens invented the
pendulum clock, studies of which lead him to the discovery of synchronization
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phenomena, such as mutual synchronization [3]. Following Huygens’ discovery,
Lord Rayleigh used acoustical systems to discover more complex synchronization
phenomena, such as oscillation quenching—also knownas amplitude death—in1870
[4]. Appleton and van der Pol used electronic components to find that the frequency
of an oscillator can be synchronized to a driving signal of a slightly different fre-
quency, which they also described theoretically as discussed in Sect. 6.1.4.1 [5, 6].
Early studies on synchronization were not limited to man-made systems, but were
also conducted on biological system as early as in 1729 [7].

6.1.2 Motivation for the Study of Synchronization of Periodic
Oscillators

Synchronization of periodic oscillations is ubiquitous in biological systems, such
as circadian clocks [8, 9], oscillations of the central pattern generator controlling
rhythmic body movements [10–12] (see also Sect. 9.1), or fireflies that flash in uni-
son [13, 14]. In neural systems, synchronization can have both positive and negative
effects as detailed in Sect. 9.1.1. Synchronization of electronic clocks is important in
electrical engineering for operation of electronic circuits, specifically synchronous
logic circuits, such as central processing units (CPU), and communication systems,
such as data transfer protocols. The synchronization of signals limits, for example,
both the data transfer rate and the size and speed of CPUs [15]. To allow for synchro-
nization, engineers use electrical circuits called phase-locked loops (PLLs), which
are discussed in Sect. 6.1.5.3. For many examples, the dynamics of simple coupling
topologies are already important such as one oscillator synchronizing to a periodic
signal and much current interest exists is the study of oscillators networks, such as
chemical and biological oscillators discussed in Chap. 7.

In this chapter, I study small coupling topologies of two oscillators and develop
experimental dynamical systems for the study of large networks.

6.1.3 Notation of a Periodic Oscillator, Phase, and
Synchronization

Aperiodic oscillator is a dynamical system that produces a periodic oscillatory output
even when it is isolated from its environment [7]. The dynamical system of a periodic
oscillator has a closed attractive orbit in phase space, known as a limit cycle. When
the dynamical system is on this limit cycle, its dynamics can be expressed in form
of the phase description with frequency f0 and phase φ

dφ

dt
= 2π f0, (6.1)

http://dx.doi.org/10.1007/978-3-319-13578-6_9
http://dx.doi.org/10.1007/978-3-319-13578-6_9
http://dx.doi.org/10.1007/978-3-319-13578-6_7
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shown with red dashed lines. The shaded region highlights the phase difference between the two
square waves

by scaling the system variables of a single oscillator in time as illustrated in Fig. 6.1a
[7]. In the figure, a limit cycle is mapped onto the unit circle, where the frequency f0
is constant. In this description, the phase increases constantly over time with slope
given by the frequency. Figure6.1b shows that the phase can also be extracted from
a square wave, which is discussed in detail in Sect. 6.1.5.2.

Synchronization of multiple oscillators can be defined as an “adjustment of
rhythms of oscillating objects due to their weak interaction” [7]. Two oscillators
are synchronized when their frequencies f1 and f2 take on the same value due to
small coupling adjustments; hence, they are frequency synchronized, according to

f1 = f2. (6.2)

This is also often expressed as phase locking, according to

φ2(t) − φ1(t) = constant, (6.3)

where the phases of two periodic oscillators have a constant phase shift [7].
The synchronization of weakly coupled oscillators appears only in a finite range

of parameter mismatch, such as mismatch of free-running frequencies. The synchro-
nization region is a function of the coupling strength, which is illustrated with the
Arnold tongues for an oscillator with periodic output signal of frequency fs that is
externally driven by a periodic signal of frequency fm (m, s stand for master and
slave oscillator) as shown in Fig. 6.2a.

The synchronization region can be measured by scanning fm and recording the
region where fs = fm , corresponding to Eq. (6.2), leading to the graph in Fig. 6.2b.
Also fractional synchronization regions are possible, where l · fm = k · fs with two
integers l and k. If such synchronization regions appear, the graph is also known as
the devil’s stair case, as discussed in Sect. 6.3.2.



84 6 Periodic Dynamics in Autonomous Boolean Networks

sm

external driver
(master oscillator)

frequency fm

driven oscillator
(slave oscillator)

frequency fs

fm fs

fm

f m
-f

s

synch

no synch no synch

fm

co
up

lin
g

st
re

ng
th

 C

f0synch region

(a) (b) (c)

Fig. 6.2 a Illustration of the measurement of the synchronization region with a master and slave
oscillator. b Typical measurement results, where fm − fs = 0 denotes the synchronization region.
c The Arnold tongue, showing the synchronization region as a function of the coupling strength. f0
denotes the free-running frequency of the slave oscillator

Arnold tongues denote the synchronization region as a function of the coupling
strength. Typically, the synchronization region grows with the coupling strength as
shown in Fig. 6.2c. For driving frequencies fm within the gray area (the Arnold
tongue), the slave oscillator frequency fs locks; otherwise, it runs at a different
frequency than the input frequency. When fractional synchronization is considered,
each integer pair k and l (using l · fm = k · fs) can lead to a synchronization region,
so that multiple Arnold tongues are possible [7, 16].

6.1.4 Dynamical Systems with Periodic Dynamics

In this section, I introduce two examples of periodic dynamical systems that were
historically important to increase the understanding of coupled oscillators.

6.1.4.1 Van der Pol Oscillator

In 1920, Appleton and Van der Pol studied several experimental realizations of a
nonlinear electronic oscillator, shown in Fig. 6.3a [5, 6]. In the figure, the oscillator
includes a neon lamp to realize the cubic nonlinearity, but it can also be realized
with triodes and tunnel diodes. They model the circuit with the following nonlinear
differential equation for the normalized voltage measured across the capacitor x

ẍ − ε(1 − x2)ẋ + x = 0, (6.4)

which includes nonlinear damping γ = ε(1 − x2). When x > 1, the damping is
positive and slows down the oscillations,when, on the other hand, x < 1, the damping
is negative, leading to an acceleration. The result is a limit cycle.

Using the transformation y = x − x3/3 − ẋ/ε, Eq. (6.4) can be rewritten as
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Fig. 6.3 a Experimental realization of a Van der Pol oscillator with a resistor (R), capacitor (C),
and a neon lamp to realize the nonlinearity. Setup proposed in Ref. [17] is a simplified version of the
original setup that uses a triode as nonlinearity. b Simulation results of Eq. (6.5) with ε = 1 for two
different initial conditions outside (green) and inside (blue) the limit cycle (red). c Setup of the Ikeda
system that uses an absorption cell as a nonlinear medium (denoted nonlinear cell) in a ring cavity.
d Example dynamics of the Ikeda system, simulated with Eq. (6.7), showing square-wave-like
oscillations with period 2τ . c and d are modified from Refs. [18, 19]

ẋ = ε(x − 1

3
x3 − y) (6.5)

ẏ = x

ε
. (6.6)

This is a special case of the FitzHugh-Nagumo model discussed in Sect. 8.1.4 for
neural systems. The resulting dynamics are shown in Fig. 6.3b, where the limit cycle
is shown in red and trajectories in phase space are attracted to it, thus leading to
stable periodic oscillations.

Using the electronic implementation of the system as shown in Fig. 6.3a, Appleton
and Van der Pol discovered frequency locking, i.e. frequency synchronization, with
different fractions of the driving and oscillator frequency and also documented signs
of deterministic chaos, but did not identify them as such [5, 6, 20].

As a predecessor of the FitzHugh-Nagumo model, the Van der Pol oscillator has
contributed substantially to the study of neural systems (see references in Sect. 8.1.4).
It also serves in nonlinear dynamics as a model system [21]. The study of synchro-
nization by Van der Pol and Appleton were also of great practical importance for the
development of radio communication systems [7].

http://dx.doi.org/10.1007/978-3-319-13578-6_8
http://dx.doi.org/10.1007/978-3-319-13578-6_8
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6.1.4.2 Ikeda System

Ikeda studied in 1979 an optical feedback system that includes a nonlinearity and a
time delay in the feedback due to finite transmission times [18]. The system includes
a nonlinear absorption cell and several mirrors as shown in Fig. 6.3c. The mirrors
implement a ring cavity through which light propagates in a circular fashion, leading
to a delay given by the roundtrip time. The absorption cell is a nonlinear medium
that the light propagates through in every roundtrip. The dynamics for the phase lag
imposed by the nonlinear medium x are described by the delay differential equation

ẋ = −x(t) + γ f [x(t − τ)] , (6.7)

with a specific nonlinear equation f [·], feedback gain γ , and time delay τ [19].
For low feedback gain γ , the system can show periodic oscillations at frequency

f = 1

2τ
, (6.8)

where the factor of two appears for negative feedback, where one roundtrip results
in a polarity-flipped signal and two roundtrips lead to the original signal as shown in
Fig. 6.3d. The square-wave oscillations are modulated with unordered deterministic
fluctuations [19]. For higher feedback gain, a similar system has been shown to
display breathing, where long periodic oscillations are modulated by unordered,
deterministic fluctuations, and deterministic chaos [22–24]. The system has also
been shown to display features of excitability [25]. The dynamics of Eq. (6.7) can
also be implemented with an optoelectronic oscillator, which includes both optical
and electronic components [24, 26, 27].

Recent studies on highspeed optoelectronic oscillators include bandpass-filtered
electronic devices that allow for increased speed. The bandpass introduces two
timescales: the high and low cutoff frequency, another timescale is provided by the
delay. These three timescales are often found to determine features of the dynam-
ics [24]. Today, optoelectronic oscillators are used in modern telecommunication
interfaces to realize ultra-stable periodic oscillations at high frequencies [28].

6.1.5 Previous Work on Periodic Autonomous Boolean
Networks

Synchronization of periodic electronic oscillators is an important topic in the
engineering community because of its relevance for various applications, such as
highspeed communication protocols. Periodic oscillators designed to lock onto an
external signal are called phase-locked loops (PLLs). Great interest exists in the
implementation of PLLs with all-digital circuitry because it allows to integrate them
on logic chips [29]. The foundation for all-digital PLLs are ring oscillators, which
are dynamical systems with a time delay and negative feedback.
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6.1.5.1 Ring Oscillators

Ring oscillators are unclocked electronic circuits illustrated in Fig. 6.4a. They consist
of an odd number of cascaded inverter gates assembled in a unidirectional ring
topology [30].When realized on anFPGA, the setup also includes a buffer output gate
as discussed in Sect. 3.2.1. They display periodic oscillations with approximately the
shape of a square wave with high and low voltage given by the high and low Boolean
voltage VH and VL , respectively (see Fig. 6.4b). The period of the oscillations is
given by twice the total delay in the ring, leading to the frequency [31, 32]

f = 1

2τ
, (6.9)

which is typical for delayed feedback systems with negative feedback (see Sect.
6.1.4.2). Specifically, the roundtrip delay is given by τ = nτLG with τLG = 0.28 ±
0.1 ns for ring oscillators realized with n inverter logic gates.

The system is an autonomous Boolean network without a Boolean fixed point,
for which all Boolean functions are satisfied simultaneously as defined in Sect. 4.2,
hence leading to non-steady-state dynamics. To understand the origin of oscillations
in the system, consider a finite-state machine with the topology of a ring oscillator
in Fig. 6.5. The circuit is initiated with Boolean values as shown in Fig. 6.5a. In each
of ten time steps, the Boolean states of each inverter logic gate are updated as the
inverse of the input logic state. The state of one logic gate is measured and considered
the output state of the synchronous ring oscillator as indicated by the arrow. After ten
time steps, the state in Fig. 6.5d is reached, which leads, in an eleventh time step, to
the initial state Fig. 6.5a. The output state of the network indicates that the period in
the synchronous operation is ten iterations. Within these ten timesteps, a change of
Boolean state—a Boolean transition—has time to travel around the network twice.

In ring oscillators in the autonomous operation, similar dynamics are observed,
where the period of the oscillation is twice the roundtrip time of a transition in
the network given by the propagation time delay, according to Eq. (6.9). However,
different from the discussion above, the experimental waveform in Fig. 6.4b includes
a finite rise time, fluctuations on the Boolean states and jitter. In addition, when the
ring oscillator consists of only one logic gate, the total delay is too short for the
system to sustain stable periodic oscillations, similar to the discussion in Sect. 4.3.3.

http://dx.doi.org/10.1007/978-3-319-13578-6_3
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_4
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6.1.5.2 Phase of a Ring Oscillator

The phase of ring oscillators can be calculated at the rising and falling transitions
of the resulting periodic square wave (see Fig. 6.1b). With the threshold value V0 at
mid-amplitude and an external reference waveform Vref (t) with the same period as
the oscillator T = Tre f , the threshold-crossing times tk and tre f,k can be calculated.
With these, the relative phase φ = 2π

(
tk/T − tre f,k/Tre f

)
mod2π reference to a

reference waveform can be measured. Alternatively, the phase can also accessed
continuously by representing the waveform with a series of sine waves via Fourier
decomposition.

6.1.5.3 Phase-Locked Loops (PLLs)

More sophisticated Boolean oscillators are all-digital PLLs. They are widely used in
digital communication systems for frequency multiplication and clock synchroniza-
tion, for example [29].

PLLs comprise three functional blocks: (i) a phase-detector block, (ii) a filter
block, and (iii) a controlled-oscillator block. These three blocks are assembled as
shown in Fig. 6.6. In addition, an optional divided-by-N block is shown that can
be used to scale the output frequency to multiples of the input frequency. The phase
detector generates an error signal that is proportional to the phase difference between
the output signal of the PLL and a reference signal. The error signal is filtered
before being applied to the controlled-oscillator block, which adjusts its phase and
frequency [29].

Recent advances in digital electronic systems have spurred the development of
all-digital PLLs, where all three blocks shown in Fig. 6.6 are realized with elec-
tronic logic circuits [33]. The phase detector in all-digital PLLs typically generates
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Fig. 6.6 Illustration of functional blocks comprising a phase-locked loop (PLL)

N -bit numbers representing the phase shift between the input and output signals.
The filter in all-digital PLLs is usually implemented with a digital up-down counter
that integrates the signal.

While there has been much effort in improving the locking performance of PLLs,
my goal in the Sect. 6.3 is to develop a very simple, resource-efficient PLL design
that allows me to create large networks.

In the following section, I discuss how ring oscillators can be coupled and syn-
chronized.

6.2 Coupling of Modified Ring Oscillators

In this section, I couple multiple ring oscillators (considered dynamical nodes) to
form a meta-network of autonomous Boolean networks. From now on, I refer to ring
oscillators as nodes and meta-networks connecting them simply as networks. The
nodes are almost identical logic circuits schematically shown as a circle in Fig. 6.7a.
Small differences between nodes originate from heterogeneity in the parameters of
logic gates, such as the propagation delay, as discussed in Sect. 3.1.3.

To couple ring oscillators, I first consider the addition of a 2-input OR logic gate
that allows me to apply a Boolean input signal to the ring oscillator, as shown in
Fig. 6.7b (see Appendix B.4 for the hardware description). In the figure, the delay
line is realized with a chain of k inverter logic gates. The total delay in the loop is
given by the delay of all components including the OR gate and the inverter gate.

The free-running frequency of each oscillator is given by Eq. (6.9) with feedback
delay τ = (k + 2)τLG, where k is the (even) number of inverter gates in the delay

NOTOR

Vout
VinVoutVin

(a) (b)

Fig. 6.7 Setup of Boolean oscillators constructed from an OR gate, an inverter gate and a delay
line that is separately constructed from k inverter gates. Each oscillator has a single input and an
output

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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line and the addition of 2 accounts for the additional inverter gate and the OR logic
gate. I assume that the propagation delay is approximately the same for inverters and
OR logic gates τLG = 0.28 ± 0.1 ns (see also Appendix A.4).

6.2.1 Unidirectional Coupling of Modified Ring Oscillators

In this section, I couple unidirectionally two modified ring oscillators, denoted by
(m) and (s) for master and slave oscillator, respectively, as shown in Fig. 6.8a, b.
Both modified ring oscillators are realized with an identical number of inverter logic
gates nm + 1 = ns + 1 = 21; with frequencies fm = (92.1 ± 0.9)MHz and
fs = (87.5 ± 1.2)MHz measured for the uncoupled oscillators, respectively. This
difference in the free-running frequencies is due to the additional OR gate in (s)
included to realize the coupling and also due to heterogeneity in the gate delay.

When the coupling is turned on, phase- and frequency-locking is achieved with
frequency fm = fs = (92.2 ± 0.1)MHz, as illustrated in Fig. 6.8c. Further con-
firmation of phase synchronization is given in Fig. 6.8d, where the phase portrait
(Vm(t), Vs(t − τ ∗)) shows a straight line with slope of approximately one. I mea-
sure the quality of synchronization by computing the cross-correlation coefficient
between Vm and Vs , which is ρVm Vs ≈ 0.995. A skew time τ ∗ ≈ 225 ps is used
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to compensate for the additional propagation time of the OR gate, the difference in
propagation time of the two signals to the output port of the FPGA to the oscilloscope,
and for a small propagation delay in the coupling.

The stable phase-locked dynamics corresponds to one Boolean transition propa-
gating in each oscillator with constant relative phase shift. The OR gate used in (s)
leads to the creation of a Boolean transition in (s) whenever (s) is in the VL state and
(m) generates a Boolean transition (VL → VH or VH → VL with the high and low
Boolean voltages VH and VL , respectively). This implies that multiple transitions
can potentially propagate in (s) if (m) and (s) are not phase locked. However, the
lowpass filter transfer function of logic gates in (s) likely has a higher gain at lower
frequencies, so that an oscillatory state with lower frequency is preferred [34]. In
addition, the choice of an OR gate for the coupling of ring oscillators prevents an
accumulation of Boolean transitions in (s) because, if one of the two inputs is in VH ,
then a Boolean transition in the other input has no influence on the output of the OR
logic gate.

6.2.2 Mutual Coupling of Modified Ring Oscillators

With themodified ring architecture, I can also couple two ring oscillators bidirection-
ally, as illustrated in Fig. 6.9a, b, with a flexible choice of the coupling time delays
τ12 and τ21 and identical constructions of the two oscillators (hardware description
shown in Appendix B.5).

When the coupling time delays are negligible τ12 ≈ τ21 ≈ 0 ns, the two oscillators
are synchronized in phase, as shown in Fig. 6.9c with the frequency of each oscillator
being slightly pulled from their respective free-running frequencies f1 = (81.9 ±
0.7)MHz and f2 = (87.54 ± 0.7)MHz to a common frequency f = (87.7 ±
0.7)MHz.

The synchronization patterns change when time delays along the links are
included. The two ring oscillators display either in-phase or anti-phase synchro-
nization depending on the coupling time delays τ12 and τ21 with respect to the
period of the oscillators T1 ≈ 2τn1 and T2 ≈ 2τn2 . Experimentally, it is found that
a relation of coupling delays τ12 ≈ τ21 ≈ pτn1 ≈ pτn2 with p ∈ N even (odd)
lead to a synchronization state, where the two oscillators are in-(anti-)phase syn-
chronized. To illustrate this, the temporal evolution of each oscillator is shown for
τ12 ≈ τ21 ≈ τn1 ≈ τn2 and τ12 ≈ τ21 ≈ 2τn1 ≈ 2τn2 in Fig. 6.9d, e, respectively.

The experimental result on mutual synchronization reminds of phase synchro-
nization states predicted theoretically for two coupled Kuramoto oscillators with
time-delay feedback loops and links [35]. In this reference, however, the periodic
oscillator can oscillate without the presence of time-delayed feedback, which is not
the case for the modified ring oscillator—without the time-delayed feedback, the
modified ring oscillator reduces to an OR and a NOT gate with a fixed Boolean state.
Similar behavior has been observed numerically for two delay-coupled FitzHugh-
Nagumo systems, each of which is in the excitable regime, i.e., does not exhibit
self-sustained oscillations in the uncoupled case as discussed in Sect. 8.1.4.

http://dx.doi.org/10.1007/978-3-319-13578-6_8
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Fig. 6.9 Illustration of bidirectional coupling of two modified ring oscillators. a Topology and b
circuit diagram of two coupled Boolean oscillators labeled (1) and (2) built with n1 = n2 = 21
inverter gates and coupled by two links with time delays τ12 ≈ τ21. c Temporal evolution of
both Boolean oscillators showing in-phase square-wave oscillations with identical period T1 =
T2 = 10.7 ± 0.4 ns for τi j = 0 ns. The time delay is due to the on-chip wires connecting the
two oscillators and is small (τ12 ≈ τ21 ≈ 0). d, e Temporal evolution for the oscillators with
τ12 ≈ τ21 ≈ τn1 ≈ τn2 (τ12 = 6.2 ns, τ21 = 6.5 ns) and τ12 ≈ τ21 ≈ 2τn1 ≈ 2τn2 (τ12 = 11.7 ns,
τ21 = 11.05 ns), respectively. The blue solid lines show the experimental time series. The red dotted
lines show the dynamics of xbu f 1 and xbu f 2 from numerical simulation of Eqs. (6.10)–(6.12) with
τ1 = τ2 = 5.4 ns and mutual time delays τ12, τ21 as stated above. The dimensionless quantities
xbu f 1 and xbu f 2 are scaled in amplitude and time (V1,2 → xbu f 1,2VH and t → tTrise/ ln(2), with
VH = 1.3V and Trise = 0.26 ns)

6.2.3 Model for Modified Ring Oscillators

The autonomous Boolean network of the ring oscillator modified with an OR gate
for the coupling can be modeled in various ways. Here, I use a similar modeling
framework as used for chaotic dynamics in Sect. 4.3.2 and introduced in general
in Sect. 2.2.3. Specifically, I describe the system with a piecewise-linear switching
model developed by Glass and collaborators and extended with a feedback delay
[36, 37]. I compare the dynamics measured from the experiment with the simulation
results.

The differential equations for the network in Fig. 6.9b with continuous and
Boolean states xi and Xi (see Sects. 2.2.3 and 4.3.2) are

ẋ1 = −x1 + NOR
[
X1(t − τ1), X2(t − τ2,1 − τ2)

]
, (6.10)

ẋ2 = −x2 + NOR
[
X2(t − τ2), X1(t − τ1,2 − τ1)

]
, (6.11)

ẋbu f 1,2 = −xbu f 1,2 + X1,2(t), (6.12)

http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_4
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with two inverted OR (NOR) Boolean functions NOR: {0, 1} × {0, 1} → {0, 1} and
delayed feedback according to the two OR gates with consecutive inverter gates and
two logic gate-based delay lines. The timedelays originate fromchains of consecutive
inverter gates in the setup (τ1, τ2, τ12, τ21). The third equation describes the temporal
evolution of two buffer logic gates xbu f 1 and xbu f 2 that perform the Boolean identity
operation on X1(t) and X2(t); the buffer gates correspond to output gates on the
FPGA.Different frommyconsideration inSect. 4.3.2, I havemodeled the systemwith
dimensionless equations and have included dimensions afterwards in the graphical
illustration 6.9.

In Fig. 6.9c–e, the dotted red line denotes the solutions obtained from themodel for
xbu f 1 and xbu f 2 by evolving the analytical solution of the piecewise linear differential
equations between the switching of the NOR Boolean function, similar to Ref. [36].
Apart from a low level of amplitude noise and jitter in the experiment, which are
both not included in the model, the dynamics generated by the model agrees well
with the experiment. Both display similar waveforms, rise times, and periodicity of
the oscillations. The discrepancy between model and experiment can be quantified
via differences in timing of transitions, which is a common measure in autonomous
Boolean systems [38], and amounts to average values of 0.20, 0.94, and 0.49 ns for
the waveforms in Fig. 6.9c–e, respectively. The error is small in comparison to the
oscillation period of T = 10.7 ± 0.4 ns.

6.2.4 Discussion

I have shown that the framework of experimentally-realized autonomous Boolean
networks can be used to realize coupled dynamical systems with periodic dynamics.
Specifically, I have realized periodic oscillators, which are autonomous Boolean
networks themselves, in simple network motifs of two coupled oscillators and have
observed phase synchronization.

A limitation of this approach, however, is the realization of adjustable coupling.
The coupling in the design of ring oscillators with OR logic gates is all-or-nothing
because an incoming transition determines the dynamics of the oscillator when the
second input to the OR logic gate is in the low Boolean state. A manifestation of
such a strong coupling is synchronization that is achieved for wide ranges of driving
frequencies, as discussed in Sect. 6.1.3. On the other hand, a weak coupling with
an adjustable strength is required to see other interesting network dynamics such
as chimera states [39, 40]. This motivates the next section, where I develop an
autonomous logic circuit with adjustable coupling strength even when exchanging
only Boolean signals.

http://dx.doi.org/10.1007/978-3-319-13578-6_4
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6.3 Boolean Oscillators with Variable Coupling Strength

In this section, I propose and study a periodic Boolean oscillator that can be cou-
pled with an adjustable coupling strength. The periodic oscillator is termed Boolean
phase oscillator to highlight its similarity to Kuramoto phase oscillators introduced
in Sect. 7.1.9 due to similar dynamical equations, as derived in Sect. 7.2.2. The design
is based on a modification of all-digital PLLs introduced in Sect. 6.1.5.3 and relies
on state-dependent delay. The delay is realized with cascaded copier gates instead
of cascaded inverter gates, which has the effect of a lowpass filter required in typi-
cal PLL designs (see Sect. 6.1.5.3). Without a lowpass filter, high frequency modes
can be excited [34]. The reason for the lowpass filter effect of buffers is large pulse
growth in cascaded buffer gates compared to cascaded inverter gates, as shown in
Appendix A.3.

6.3.1 Boolean Phase Oscillator

The design of the Boolean phase oscillator follows the structure of three functional
blocks: Phase detector, low-pass filter, and controlled oscillator as shown in Fig. 6.6.
For the phase detection block, I use a two-input XOR logic gate that is a single-bit
digital phase detector (see Fig. 6.10a) [29]. Thewaveform of the resulting error signal
Vc is shown in Fig. 6.10b for two Boolean input waveforms of different phase and
equal frequency. The error signal satisfies Vc = VH (Boolean signal “1”) when the
two input signals have different Boolean values and Vc = VL (Boolean signal “0”)
otherwise. This results in a pulse-shapedwaveform at the output of the phase detector
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Fig. 6.10 a Symbol of an XOR logic gate that is used as a one-bit phase detector and its associated
look-up table. The low (VL ) and high (VH ) Boolean voltage are denoted by symbols “0” and “1′′
respectively. b The error signal V0 ⊕ V1 resulting from the phase detector with two phase shifted
input signals V0 and V1 of frequency f0 = f1 = 30.0 ± 0.1 (MHz). The phase difference is
highlighted by shaded regions at a falling and a rising Boolean transition. The waveform is obtained
from an experimental implementation on a field-programmable gate array (FPGA), specifically the
model Altera Cyclone IV EP4CE115F29C7, which is used for all experimental implementations in
this paper

http://dx.doi.org/10.1007/978-3-319-13578-6_7
http://dx.doi.org/10.1007/978-3-319-13578-6_7
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Fig. 6.11 a Construction of delay line τn with a series of n cascaded buffers with individual prop-
agation time τLG. b Schematic of the controlled-oscillator block of the Boolean phase oscillator.
c Locking of the controlled-oscillator block to an externally-generated control signal Vc with fre-
quency f = 60.0±0.1MHz. Also shown are the output waveform V and the signals from the delay
lines that are input to the switch Vm0 and Vm1. The parameters of the controlled-oscillator block are
n = 65 and k = 10. The gate propagation delay asmeasured for buffer gates is τLG = 0.28±0.01 ns

with a pulse width proportional to the phase difference between the two inputs as
highlighted in the figure. Note that the XOR function does not give the sign of the
phase difference.

The second block, the filter, is not explicitly implemented in my design. Nev-
ertheless, each logic gate low-pass filters intrinsically the voltage generated by the
phase-detection block with a cutoff frequency related to the gate propagation delay
τLG = 0.28 ± 0.01 ns.

Third, the controlled-oscillator block is based on a simplified design proposed
in Ref. [41] and consists of an inverter gate with a state-dependent feedback delay.
Specifically, it is realized using one inverter gate, two series of n ∈ N and n − k ∈ N

cascaded buffer gates, and a Boolean switch as shown in Fig. 6.11a, b. In the resulting
delayed feedback system with negative gain, the dynamics has a periodicity equal
to twice the feedback delay because it requires two inversions to recover the initial
Boolean state [30]. Therefore, the frequency of oscillation is

f (Vc) = 1

2τ(Vc)
, (6.13)

where τ(Vc) is the state-dependent feedback delay that depends on the control signal
Vc. The cascaded buffer gates implement two feedback delays τn−k = (n − k)τLG
and τk = kτLG. The feedback lines can also be realized with cascaded inverter gates,
but the choice of buffer gates results in enhanced low-pass filtering (see Sect. III.B
for a detailed explanation). The switch, implemented as a three-input logic gate with
the look-up table of a multiplexer, selects between the two feedback delays τn−k and
τn = τn−k +τk depending on the control signal Vc, which results in a state-dependent
feedback delay of

τ(Vc) =
{

τn = nτLG if Vc ≤ Vth,

τn−k = (n − k)τLG otherwise.
(6.14)
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Here, the integer k ≈ (τn − τn−k)/τLG is proportional to the difference of the two
possible values of the feedback delay. The system will oscillate at a free-running
frequency of fn = 1/2τn or fn−k = 1/2τn−k when a constant control voltage of
Vc = VL or Vc = VH is applied to the controlled oscillator, respectively.

The dynamics of the controlled-oscillator block is first characterized by send-
ing an external periodic signal of frequency fc = 60.0 ± 0.1MHz to the Vc

port. Figure. 6.11c shows the external waveform, the resulting output voltage of
the controlled-oscillator block V (t), and the output voltages of the two delay
lines Vm0(t) and Vm1(t). These two signals are time shifted by the delay τk so
that Vm1(t) = Vm0(t + τk). In the figure, the output voltage is V (t) = Vm0(t)
[V (t) = Vm1(t)] when Vc = VL [Vc = VH], which is due to the functionality of the
switch in the setup. As a result, a rising-edge Boolean transition in Vc (highlighted
with dashed lines in Fig. 6.11c) leads to a positive phase shift, which triggers rising
and falling edges in the output voltage V (t). Therefore, switching between the two
feedback delays leads to frequency locking. For more details, see Ref. [41].

6.3.2 Unidirectional Synchronization of Boolean Phase
Oscillators and Weak Coupling Analogy

By combining the phase detector from Fig. 6.10a with the controlled-oscillator block
from Fig. 6.11b, I obtain the Boolean phase oscillator with hardware description in
Appendix B.6.1. I use the Boolean phase oscillator in the rest of this chapter to study
synchronization phenomena.

I first test the locking capabilities of the Boolean phase oscillator with an external
driving signal of frequencies fm . This setup, shown in Fig. 6.12a, b, can be interpreted
as a master-slave configuration, where two Boolean phase oscillators are coupled
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Fig. 6.12 a Experimental setup of the master-slave coupling scheme for two Boolean phase oscil-
lators. b Construction of the slave Boolean phase oscillator comprising the controlled-oscillator
block labeled (n, k) (see Fig. 6.11) and an XOR-based phase detector (PD) block. c Waveforms
of the master oscillator (generated externally with waveform generator Tektronix AFG3251) Vm
of frequency fm = 28.6 ± 0.1MHz, the output waveform of the slave oscillator Vs , and the error
signal Vc,ms = Vm ⊕ Vs . The parameters of the controlled-oscillator block in the Boolean phase
oscillator are the same as the ones in Fig. 6.11
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unidirectionally. Here, the equivalent master Boolean phase oscillator is an external
function generator, which provides finer frequency control of fm than can be obtained
by adding or removing buffers in the ring of the master Boolean phase oscillator.

In Fig. 6.12c, I show the dynamics resulting from the master-slave configuration.
Specifically, I show the phase-locked waveforms of the master and slave oscillator
with frequencies fm = fs = 28.6 ± 0.1MHz, and the error signal Vc. Here, the
dynamics of the Boolean phase oscillator leads to a constant phase shift between
master and slave oscillator that results in a pulsed signalVc (similar to Fig. 6.10b). The
pulses in Vc provide the phase correction that allows synchronization. Thewaveforms
of Vs and Vc display fast oscillations at the Boolean transitions, which are due to
unfiltered feedback between the phase detector and the control port of the controlled-
oscillator block.

I repeat the coupling experiment by tuning the frequency of the master oscillator
fm from 20 to 105MHz while keeping the parameters of the slave Boolean phase
oscillator unchanged. I measure fs and calculate the ratio fm/ fs as a function of
fm. This measurement leads to the so-called devil’s staircase shown in Fig. 6.13a
[7, 16] (see also Sect. 6.1.3). In the graph, synchronization regions with constant
ratios fm/ fs are represented by horizontal plateaus—the stairs. The most prominent
synchronization regions are associated with integer ratios fm: fs = p:q with q = 1
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Fig. 6.13 a Experimental Devil’s staircase for a Boolean phase oscillator with k = 10 showing
synchronization regions as horizontal lines. For the three integer synchronization regions fm: fs =
1:1, 2:1, and 3:1, the theoretical limits are shown with red dashed lines. b Experimental Arnold
tongues for the three integer synchronization regions as a function of k and the theoretical limits
of the regions marked with red dashed lines. Other Arnold tongues are not shown. Setup and
experimental parameters as in Fig. 6.11
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and p = 1, 2, 3. In the synchronization region 2:1, fm/ fs 	= 2 for a narrow range
of fm . This imperfection appears also in numerical simulations as discussed below.
Moreover, many narrow fractional synchronization regions p:q exist.

The widths of the synchronization regions—the stairs—are known as the locking
range U [41]. The maximum theoretical locking range Umax can be determined, so
that U ⊆ Umax with Umax = [

fn, fn−k
]
for the first integer synchronization region

1:1 with free-running frequencies of the Boolean phase oscillator fn and fn−k . Then,
the locking range is given by fm ∈ U1 ⊆ [

fn, fn−k
]
. For integer synchronization

regions of higher order p:1, the frequency locking of master and slave is given by
fm = p fs . This leads to larger synchronization regions of Up ⊆ [

p fn, p fn−k
]
.

In Fig. 6.13a, I display the theoretical boundaries
[

p fn, p fn−k
]
with dashed lines.

The figure shows that the right theoretical locking boundaries are not reached in the
experiment.

The non-saturation of the right theoretical boundaries in the p:1 synchronization
region originates from the generation of the control signal Vc,ms with little frequency
filtering. Specifically, the right boundary corresponds to large detuning between the
frequency of the master oscillator fm and the free-running frequency of the slave
oscillator fn . Then, the control signal Vc,ms displays the Boolean voltage VH for an
increased time to allow for greater frequency adjustment. However, this also results
in increased high-frequency oscillations due to unfiltered feedback in the oscillator as
discussed above and visible in Fig. 6.12c. These high-frequency oscillations decrease
the locking abilities when the frequency detuning is large.

To complete the analysis of the locking range, I also measure them as a function
of k. In Fig. 6.13b, I map out the integer synchronization regions and their analytic
boundaries as a function of k and fm . Here, the system parameter k is proportional
to the range of values of the state-dependent delay τk = kτLG in the controlled-
oscillator block.The resulting synchronization regions, also knownasArnold tongues
[16], have a triangular shape that opens with increasing k (see also Sect. 6.1.3).
The analytic boundaries corresponding to p fn are shown with dashed lines. The
Arnold tongues are subject to experimental variation of ±3.5% due to variations of
gate propagation delays τLG that appear in the experiment when implementing the
oscillators on different location on the FPGA for different values of k.

The increase of synchronization regions Up with k allows me to draw an analogy
of k to the coupling strength of phase oscillators because they display shapes of
the synchronization regions that increase with the coupling strength [7]. Therefore, I
have shown that adjustable weak coupling is possible in the Boolean phase oscillator.
Note that the Arnold tongues are asymmetric, which is unlike other models, such as
the Kuramoto model [42].

The mechanism to generate the coupling is via state-dependent delay as described
in Sect. II.C. Specifically, the phase detector generates a high Boolean voltage
Vc(t) = VH with a duration proportional to the phase difference between the input
periodic signal—generated either by another oscillator or a signal generator—and the
output signal of the Boolean phase oscillator. The signal Vc(t) induces an increase in
frequency of the Boolean phase oscillator because the feedback delay switches to a
shorter value. Themagnitude of the resulting frequency adjustment is proportional to
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k. Therefore, larger values of k lead to a larger frequency adjustment, which reduces
the phase difference between the state of theBoolean phase oscillator and the external
periodic signal. This is analogous to the phase-correction mechanism encountered
in theoretical models of phase oscillators [7].

6.3.3 Model for the Boolean Phase Oscillator

Similar to the model of ring oscillator in this chapter, I model Boolean phase oscilla-
tors with a piecewise-linear switching model developed by Glass and collaborators
and extended with a feedback delay [36, 37] that is introduced in Sects. 2.2.3 and
4.3.2. I also include (1) a state-dependent delay in the model that accounts for the
switching between two delay lines in the controlled oscillator and (2) the filtering
effect due to the use of buffer-based delay lines in the model (see Appendix A.3).

To model the master-slave setup, I describe the master oscillator simply by a
periodic continuous square wave ym ∈ [−1, 1] with low and high Boolean values
−1 and 1, respectively. These Boolean values can be scaled to correspond to the
experimental Boolean voltages of VL = 0V and VH = 1.3V. The delay differential
equations for the slave oscillator are

τxs ẋs = −xs + [¬Xs(t − τs(t))], (6.15a)

τys ẏs = −ys + [¬Xs(t − τs(t))], (6.15b)

where (xs, Xs) are continuous and Boolean internal variables of the slave Boolean
phase oscillator (see Sect. 2.2.3), (ys, Ys) are the variable associated with the output
of the slave Boolean phase oscillator, ¬X = −X denotes the Boolean inversion
(NOT) operation, τxs , τys are the characteristic timescales associated with first-order
low-pass filtering, and τs(t) is a state-dependent delay that I discuss in detail below.

Equation (6.15a) represents the low-pass filtering effect that results from the
construction of the two delay lines with cascaded buffer gates. The characteristic
timescale τxs associated with the filtering is different for rising and falling transitions
when measured for the CMOS-based logic gates [43]. To account for this behavior,
I include the following state-dependent switching condition depending on rise and
fall

τxs =
{

τLG/ ln 2 if xs(t − τs(t)) > 0,
(τLG/ ln 2)

(
1 + n�τr f /τLG

)
if xs(t − τs(t)) ≤ 0,

(6.16)

with �τr f = 24 ± 2 ps the time difference between rising and falling transitions
of a single logic gate. The numeric value for �τr f is measured by propagating a
periodic square pulse through n cascaded buffer gates that constitute a delay line. The
measured output signal is changed according to Eq. (6.16) resulting in an alteration
of time difference between falling and rising transitions by τLG/(ln 2)(n�τr f /τLG).

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_2
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Fig. 6.14 a Block representation of the mathematical model for the master-slave setup. LPFx,y
are low-pass filters with time constants τx and time constant τy , respectively. b Illustration of the
state-dependent delay. c Numerical simulation with parameters as in Fig. 6.11. The variables ym , ys ,
and yc,ms are the model representations of the experimental voltages Vm, Vs, and Vc,ms in Fig. 6.12b.
The parameters are the same as in the experiment, see Fig. 6.11

The accumulation of �τr f produced by each logic gate results in pulse growth and
enhanced low-pass filtering as described in Appendix A.3.

The dynamics of the switch in the controlled oscillator is modeled with state-
dependent delay according to the following condition

τs(t) =
{

τn if yc,ms(t) ≤ 0,
τn−k otherwise,

(6.17)

where yc,ms(t) = ys(t − τc,ms) ⊕ ym(t − τc,ms). The additional delay τc,ms = 2τLG
accounts for the time that it takes for V to propagate through the phase detector and
reach the control port of the controlled-oscillator block (see also Fig. 6.12b). As a
result, the delay switches between two values depending on the error signal yc,ms

generated by the XOR-based phase detector (see Fig. 6.10a for the look-up table of
the XOR operation).

In contrast to Eq. (6.15a), Eq. (6.15b) has no rising-falling asymmetry associ-
ated with the filtering as τys = τLG/ ln 2 is constant. This is because its associated
experimental voltage V is measured after the switch and not after the delay lines that
mainly contribute to the asymmetry.

Figure6.14a, b illustrate graphically the model of the Boolean phase oscillator in
master-slave configuration. It is shown that the state-dependent delay of the slave
oscillator is driven via the error signal yc,ms , which is implicitly included in Eq. (6.17)
as an XOR operation of the signal ys and the output of the master oscillator ym . The
resulting variable xs is filtered by two different low-pass filters with and without
asymmetric rise and fall times. Negative feedback results from the inverter gate.

The waveforms generated by numerical simulation of the model are shown in
Fig. 6.14c. The control signal yc,ms is obtained by low-pass filtering, similar to
Eq. (6.15b), the Boolean expression Ys(t −τc,ms)⊕Ym(t −τc,ms)where Ym,s are the
Boolean variables associated to continuous variables ym,s . The model reproduces
qualitatively the experimental measurements shown in Fig. 6.12b. For example, it
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Fig. 6.15 aDevil’s stair case and bArnold tongues fromnumerical simulations, similar to Fig. 6.13.
The parameters are the same as in Fig. 6.11

exhibits similar fast oscillations at the rising edge of output voltage of the slave
Boolean phase oscillator. With the model, I can also generate the devil’s staircase
and Arnold tongues as shown in Fig. 6.15a, b. I notice that the simulations and
experiments agree quantitatively (compare to Fig. 6.13a, b). The widths of the syn-
chronization region p:1 as a function of k differ only by 14% on average. Note that
the model does not include fitted parameters, but all parameters are measured using
independent experiments.

6.3.4 Synchronization in a Bidirectional Coupling
Configuration

To analyze the synchronization properties of Boolean phase oscillators further, I
now consider bidirectional coupling. Figure6.16a, b shows the experimental setup
schematically. The oscillators are coupled symmetrically, i.e., the coupling strength k
is identical in both oscillators. The free-running frequency between the oscillators, on
the other hand, is detuned by choosing parameters n1 = 65 and n2 ∈ {50, . . . , 80},
where n1 and n2 are proportional to the feedback delay in the two oscillators. A
difference of n1 and n2 of �n = n2 − n1 results in detuning of the free-running
frequency of the two oscillators of � f = �n/(2τLGn1n2). Besides varying the
frequency detuning, I also change the coupling strength from k = 0 to k = 15.
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Following the theoretical framework proposed in the previous section, I model
the bidirectional coupling setup by a four-dimensional system of coupled differential
equations, according to

τx1,2 ẋ1,2(t) = −x1,2(t) + [¬X1,2(t − τ1,2(t))], (6.18a)

τy1,2 ẏ1,2(t) = −y1,2(t) + [¬X1,2(t − τ1,2(t))], (6.18b)

where (x1,2, X1,2) and (y1,2, Y1,2) are the pairs of continuous and Boolean variables
describing the two coupled Boolean phase oscillators. Parameters τx1,2 , τy1,2 , τ1,2(t)
are analogous to τxs , τys , τs(t) in the previous section.

The two Boolean phase oscillators are considered to be synchronized when the
absolute value of the normalized beat frequency

fb = | f1 − f2| /
√

f 21 + f 22 (6.19)

of the two Boolean phase oscillators is below 0.25%. Coupled oscillators are gener-
ally expected to synchronize under large coupling k and small frequency detuning� f
[7]. Here, I show that this general property also holds for Boolean phase oscillators.

I analyze the synchronization properties in parameter space (�n = n2 −n1, k) of
frequency detuning and coupling strength. The experimental and numerical results
are shown in Fig. 6.16c, d. In both cases, the synchronization region (white area)
is V-shaped; it is maximally extended for small values of �n and large values of
coupling strength k as expected for coupled oscillators. Experiment and simulation
agree quantitatively. I find that the slope associated with the linear regression for the
boundaries of the synchronization region differ approximately by 8%. Furthermore,
outside of the synchronization region, simulation and experiment differ by less than
5%.

The border of the synchronization region can be approximated with a neces-
sary condition on the coupling strength for synchronization. Specifically, the cou-
pling strength has to exceed the detuning of the two Boolean phase oscillators, i.e.,
k ≥ |n2 − n1|. The resulting maximal border of synchronization k = |n2 − n1| is
shown in Fig. 6.16c, d with dashed lines. However, this condition is not sufficient
to guarantee synchronization, similar to my considerations for unidirectional cou-
pling. Therefore, the triangle delimited by the dashed lines is not entirely filled by
the locking region. Interestingly, the analytic synchronization region with bidirec-
tional coupling has a symmetric triangular shape different from the locking region
for unidirectional coupling (see Fig. 6.13b).

6.3.5 Discussion

I have proposed and studied a new dynamical system called Boolean phase oscillator
that includes state-dependent delays and is a simplified version of previous designs of
all-digital phase-locked loops (PLLs). The Boolean phase oscillator allows to study
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Fig. 6.16 a, b) Topology and block diagram of the setup of the two mutually coupled oscillators.
The coupling is realized with two directed links of equal strength k. c Experimental and d numerical
synchronization domain in parameter space (�n, k)measuring the absolute value of the normalized
beat frequency fb for �n ∈ {−15, . . . , 15}, k ∈ {0, . . . , 15}, and n1 = 65 (n2 = n1 + �n). The
frequency is color-coded; white color indicates that the normalized beat frequency fb < 0.0025.
The red dashed lines indicate the analytically predicted synchronization boundary k = |n2 − n1|.
The parameters are same as in Fig. 6.11

experimentally various coupling topologies with variable coupling strength based
on Boolean signals. I have observed and analyzed rich synchronization phenom-
ena similar to those encountered in coupled phase oscillators, such as asymmetric
and symmetric V-shaped synchronization regions in uni- and bidirectional coupling
schemes of two coupled periodic oscillators, respectively. The Boolean phase oscil-
lator also contributes to the study of state-dependent delay, which is a topic of great
current interest [44].

A limitation of the Boolean phase oscillator is, however, that its in-degree is
restricted to one (to a single input), so that it can only be coupled to small network
topologies. To study the very interesting network synchronization states discovered
recently, such as chimera states [39, 40], the possibility of large in-degrees are needed.
This necessary extension of the Boolean phase oscillator and the study of chimera
states is the topic of the next chapter.
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6.4 Conclusion

In this chapter, I have studied periodic dynamics in autonomous Boolean networks.
After an introduction to previous work on periodic dynamical systems, I have
designed and studied periodic oscillators based on autonomous Boolean networks
called ring oscillators that are coupled via the inclusion of an OR logic gate. These
systems allow only for strong coupling and the coupling strength cannot be adjusted.
As a solution, I have developed and studied Boolean phase oscillators that include
weak, adjustable coupling, which is demonstrated by mapping out the synchroniza-
tion regimes in different coupling topologies.

In the next chapter, I generalize the design of Boolean phase oscillators to allow
for a high in-degree so that large, strongly-connected networks of Boolean phase
oscillators can be built and used to study chimera states.
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Chapter 7
Chimera Dynamics in Networks
of Boolean Phase Oscillators

Abstract In this chapter, I study Boolean phase oscillators in a large, heavily
connected network and observe a network dynamics called the chimera state, where
two dynamical groups of nodes coexist in the network, one synchronized and the
other unsynchronized. Surprisingly, chimera states appear even when all oscillators
are identical, hence representing a form of symmetry breaking. In Sect. 7.2, I first
introduce previous work on chimera states in theoretical and experimental studies.
Then, I extend the setup of Boolean phase oscillators in Sect. 7.1 to allow for large
in-degrees, so that suitable network topologies can be realized, and show that the
oscillators can be modeled similar to Kuramoto phase oscillators. In Sect. 7.3 I doc-
ument complex dynamics that includes chimera states. I find in Sect. 7.4 that the
complex dynamics is only a transient state similar to recent theoretical predictions
in finite-size networks. I find that the complex transient includes chimera states for
about 14 % of the time for networks of N = 128 nodes and ends in a nearly synchro-
nized state. I find that the transient time follows a Poisson process with an average
transient time increasing exponentially with the network size, which is a result of
the synchronization rate that follows a power law of the phase space volume. These
findings are supported by numerical simulations as shown in Sect. 7.5 (Results of this
chapter are submitted for publication; the preprint can be found in reference Rosin
et al. Phys Rev E 90:030902, 2014.).
The main contributions of this chapter are:

• implementing large experimental networks of Boolean phase oscillators with non-
local coupling;

• observing chimera states in experimental networks with all-physical coupling;
• identifying an exponential scaling of the transient time according to a Poisson

process and identifying a power law relation between the average transient time
and the phase space volume.

7.1 Introduction to Chimera States in Theory and
Experiment

The term chimera originates from Greek mythology, where it is a fire-breathing
monster composed of three animals: lion, snake, and goat. Today, a chimera indicates

© Springer International Publishing Switzerland 2015
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fantastical things that are composed of different parts. The dynamical chimera state,
so named by Abrams and Strogatz in 2004, was an unexpected discovery of complex
dynamics in networks of identical oscillators by Kuramoto and Battogtokh in 2002
[1, 2]. Prior to this work, it was believed that oscillator networks can only show
interesting dynamics when the oscillator frequencies are heterogeneous [3].

Chimera states were found first in numerical simulations of the Kuramoto model,
which is a common mathematical model for large networks of coupled oscillators. In
this section, I introduce the Kuramoto model, discuss theoretical studies of chimera
states, their transient behavior in finite-size networks, and, finally, their realizations
in laboratory experiments.

7.1.1 Kuramoto Model

The Kuramoto model is motivated by the phenomenon of collective synchronization
of coupled oscillators, which is ubiquitous in nature and technology, as discussed in
Sect. 6.1.2 [4]. It is based on the phase description of Eq. (6.1) in Sect. 6.1.3 with
coupling depending on the difference of coupled oscillators [5], according to

φ̇i = ωi +
N∑

j=1

Gi j sin(φ j − φi ). (7.1)

Here, i ∈ {1, 2, ..., N } is the oscillator index with the total number of oscillators N ,
the phase φi and free-running frequency ωi of oscillator i , and the coupling strength
Gi j that oscillator j imposes on i .

The Kuramoto model is a special case of Eq. (7.1), where the coupling strength
is homogeneous for all links (Gi j = K/N ), according to

φ̇i = ωi + K

N

N∑

j=1

sin(φ j − φi ). (7.2)

I also assume here homogeneous frequencies ωi = ω0, which is a common
assumption in the framework of chimera states. Then, I can redefine the phases
φi → φi + ω0t , which is the rotating frame at frequency ω0, resulting in

φ̇i = K

N

N∑

j=1

sin(φ j − φi ). (7.3)

The Kuramoto model, even with heterogeneous frequencies (under certain assump-
tions on the distribution), can be solved analytically using the transformation

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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Fig. 7.1 a Phases φ j of 7 oscillators are visualized on the unit circle similar to the description in
Fig. 6.1 and Sect. 6.1.3. The Kuramoto order parameter r and the parameter ψ represent the average
angle and the average radius in the complex plane, respectively. b Order parameter r after a steady
state is reached for a Kuramoto network with frequency heterogeneity as a function of the coupling
strength K . Figure modified from Ref. [4]

reiψ = 1

N

N∑

j=1

eiφ j (7.4)

with order parameters r and ψ [4]. As illustrated in Fig. 7.1a, the parameter ψ is
the mean phase and the Kuramoto order parameter r indicates the phase coherence.
For r = 0, the phases are incoherent (φi uniformly distributed over the unit circle),
while, for r = 1, the phases are coherent (φi = φ j for all i and j , indicating phase
synchronization).

Multiplying Eq. (7.4) with e−iφi and taking the imaginary part, leads to

r sin(ψ − φi ) = 1

N

N∑

j=1

sin(φ j − φi ). (7.5)

This can be used to obtain the mean field description of Eq. (7.3)

φ̇i = Kr sin(ψ − φi ), (7.6)

where each oscillator is driven by the mean field ψ . From this equation, the dynamics
are always driven to the fully synchronized state φi = ψ = const. On the other hand,
when the frequencies are heterogeneous, the dynamics show a transition towards
synchrony as a function of the coupling strength K . As shown in Fig. 7.1b, the onset
of synchronization appears at a critical coupling strength

Kc = 2

πg(0)
, (7.7)

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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where g(·) is a symmetric distribution of frequencies ωi shifted so that it peaks at g(0)

[4]. Due to frequency heterogeneity, oscillations stay incoherent for K < Kc, start to
synchronize for K > Kc, and coherent oscillations, i.e., complete synchronization,
are only approached asymptotically for K � Kc.

From Eq. (7.6), the Kuramoto model with equal free-running frequencies (iden-
tical oscillators) has a globally stable synchronized state for K > 0. But, when the
coupling in the Kuramoto model is changed from all-to-all coupling to non-local
coupling and a phase lag parameter is introduced, chimera state can emerge even
when all oscillators are identical as discussed in the next section. However, chimera
states do not necessarily require identical oscillators [3].

7.1.2 Chimera States in Theoretical Models

In this section, I describe the conditions to observe chimera states in theoretical
models. I also discuss the characteristics of chimera states and their appearance in
various models.

7.1.2.1 Non-local Coupling

A certain type of coupling topology has been hypothesized to be necessary for
chimera states to appear. This coupling topology is called non-local coupling, where
oscillators, assembled in a one- or two-dimensional geometry receive stronger cou-
pling from geometrically close oscillators than from distant ones. However, the
requirement of non-local coupling has been questioned in recent studies [3].

Several modifications of the global coupling in the Kuramoto model, Eq. (7.2),
have been proposed to achieve non-local coupling. For example, in the initial article
on chimera states, Kuramoto and Battogtokh used the coupling kernel

gi j = κ

2
exp [−κ |x |] (7.8)

with x = 2π(i − j)/N −π , periodic boundary conditions on [−π, π], and parameter
κ . This function describes coupling that decreases exponentially with the distance
|i − j | between oscillators [1]. Strogatz and Abrams used the coupling function

gi j = 1

2π
[1 + A cos (x)] (7.9)

with parameter A, which allowed them to show analytically the existence and sta-
bility of chimera states in the limit N → ∞ [2]. This function is similar to Eq. (7.8)
because x ∈ [−π, π]. Similar coupling functions have also been realized with
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coupling range R

Phase oscillators
links

Fig. 7.2 Illustration of a ring network with coupling range R. In the figure N = 12, R = 3

two-dimensional topologies [3]. In this chapter, I use a form of non-local coupling
in a ring topology with a coupling range [6], which is particularly easy to implement
in Boolean systems.

Figure 7.2 illustrates the topology resulting from a coupling range R. Oscillators
are coupled to their nearest neighbors, next nearest neighbors, and so on until the
neighbors with distance R. This ensures that not only local oscillators are coupled
(non-local) and that not all oscillators are coupled as long as 1 < R < N/2.

7.1.2.2 Phase-Lag Parameter

Another hypothesized requirement to observe chimera states is the inclusion of a
phase-lag parameter α in the coupling, according to

φ̇i = ωi + 1

2R

k+R∑

j=k−R

sin(φ j − φi + α), (7.10)

where the coupling topology is realized with a coupling range R. The phase-lag
parameter can be interpreted as an approximation of a time delay along the links or
as a means to balancing the coupling between phase attraction and phase repulsion
[3].

7.1.2.3 Characteristics of Chimera States

The numerical simulation of Eq. (7.10) with asymmetric initial conditions (see cap-
tion) leads to a phase and frequency picture shown Fig. 7.3. Asymmetric initial con-
ditions are required because chimera states coexist with a stable synchronized state.

The main characteristics of chimera state is the appearance of synchronized and
desynchronized domains in the phase and frequency pictures. Figure 7.3a shows a
snapshot of the phase of the oscillators in a chimera state. The oscillators outside
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Fig. 7.3 a Phases φi and b frequencies fi = 〈φ̇i 〉/(2π) of the network at t = 300. Dynamics are
obtained from numerical simulation of Eq. (7.10) with N = 256, R = 90, ω0 = 0, α = 1.46.
Dynamics are initialized as in Ref. [2] with φi = 6p exp

(−0.76x2
)
, where p is a uniform random

variable on [−0.5, 0.5] and x = 2π i/N − π . The parameters are the same as in Ref. [6]

(inside) the dotted lines, marked as region I (region II), have equal (different) phases
and hence are phase synchronized (desynchronized). Therefore, the oscillators in
region I stay synchronized and the oscillators in region II drift apart because they have
different frequencies. These frequencies are shown in Fig. 7.3b. Similar to the phase
picture, the oscillators in region I (region II) are frequency synchronized (desynchro-
nized) as they have equal (different) frequencies within the digitalization precision
of ±0.2 MHz. The oscillators in region II show a regular arch shape, which is another
characteristics of chimera states [1, 2]. Chimera state in other dynamical systems,
however, also appear without the arch [7]. Another recent extension are amplitude
chimeras, where an arch-shaped shift appears for the oscillation amplitude similar
to Fig. 7.3b for the mean frequency and oscillators are phase synchronized [8].

7.1.2.4 Chimera States in Various Theoretical Models

Since their discovery in 2002 [1], chimera states have been found in various models
with various different characteristics [3]. In addition to ring topologies, they have
been found in two coupled oscillator populations [9], in two-dimensional shapes,
such as planes, spheres and tori with the possibility of a spiral chimera [3, 10–12],
and in various models, such as chaotic maps [7, 13, 14].

Chimera states also appear in coupled neural FitzHugh-Nagumo systems, where
multiple synchronized and desynchronized domains can exist [15] (see Sect. 8.1.4.1
for an introduction to the FitzHugh-Nagumo system).

http://dx.doi.org/10.1007/978-3-319-13578-6_8
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Recently, a connection between chimera states and oscillator death has been made
and was termed chimera death [8]. Oscillator death is a symmetry-breaking phenom-
enon, where coupling of oscillatory systems can suppress oscillations and lead to
newly created inhomogeneous stable steady states. Chimera death denotes a state,
where domains of coherent and incoherent inhomogeneous steady states coexist.

7.1.3 Transient Behavior of Chimera States in Finite-Size
Networks

In the thermodynamic limit (N → ∞), chimera states have been shown to be neu-
trally stable for certain phase-oscillator networks, meaning that they are neither
stable nor unstable [6, 16–18]. On the other hand, for finite-size oscillatory net-
works, chimera states have been found numerically to be unstable with long tran-
sients towards the synchronized state [6, 18]. Here, I summarize the finite-size effects
found in Ref. [6] for the model in Eq. (7.10).

Wolfrum and Omel’chenko simulated Eq. (7.10) for a finite-size network with
N = 40 and R = 14 and found several finite size effects shown in Fig. 7.4a. The figure
shows the frequency plot similar to Fig. 7.3b as a color plot over time. Specifically,
high frequencies are denoted by yellow color, while low frequencies are denoted by
purple color. The domain of high frequencies (the unsynchronized domain) and the
domain of low frequencies (the synchronized domain) move over time incoherently
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Fig. 7.4 a Frequency of oscillators over time with a color code. The y-axis denotes the oscillator
index normalized to an interval [−1, 1]. b Histogram of transient times T40 measured from 2,000
numerical simulations (circles) and predicted distribution function according to Eq. (7.11) (solid
line). c Average transient time 〈TN 〉 as a function of network size N (circles), fitted with Eq. (7.13)
(solid line) with κ = 0.23. Simulation parameters as in Fig. 7.3. Reprinted with permission from
Ref. [6]
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[19]. After a time denoted T40, the dynamics synchronize (the index denotes the size
of the network N = 40). This collapse time, however, varies strongly with the initial
conditions.

In Fig. 7.4b, a histogram of collapse times T40 is shown. The probability ρ to
observe a collapse times T40 follows the exponential distribution

ρ(TN ) = λe−λTN (7.11)

with a collapse rate λ that is given by the average lifetime

Tc = 〈TN 〉 = λ−1, (7.12)

which normalizes the exponential distribution.
The average lifetime and hence also the collapse rate λ scale exponentially with

the number of oscillators N in the network

Tc ∝ eκ N . (7.13)

Because of this exponential growth of the average lifetime, the transient times become
very long for N > 60, so that the numerical study of the average lifetime for N > 60
is not amenable to numerical simulation [6].

Wolfrum and Omel’chenko identified chimera states as chaotic transients because,
with Eqs. (7.11) and (7.13), chimera states show the same scaling properties as super-
transients [6, 18, 20].

7.1.4 Chimera States in Experiments

Recent experiments have proven that chimera states are robust enough to be observ-
able. There has, however, not yet been a conclusive observation of chimera states in
a natural, non-engineered system.

7.1.4.1 Previous Chimera States in Experiments

The first experimental realizations of chimera states were published simultaneously
in the same volume of Nature Physics, realized with an optical system called a liquid
crystal spatial light modulator realizing a chaotic map [7] and chemical systems with
a Belousov-Zhabotinsky reaction [21]. These realizations use computers to mediate
the coupling between the network nodes. Therefore, the part of the network dynamics
involving the coupling is calculated numerically using mathematical equations simi-
lar to the Kuramoto model, which has been criticized [22]. This has stimulated further
experiments with physical (not computer mediated) coupling that have also shown
chimera states. One of these experiments is a network of mechanical metronomes
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coupled via swings and springs [23]. Two other experimental realizations of chimera
states are based on electrochemical reactions [24, 25]. Chimera-like states can also
be realized in electronic and optoelectronic oscillators with delayed feedback using
an elegant mapping by associating time intervals [0, τ ] with a continuous spatial
variable to identify virtual oscillators [26].

7.1.4.2 Limitations of Previous Experiments

All previous experiments, besides the experiments by Larger et al. [26] on virtual
chimera states, evolve on a slow timescale on the order of seconds. For that reason, the
transient scaling of chimera states discussed in Sect. 7.1.3 has not yet been confirmed
in an experiment. Only for electrochemical oscillators in Ref. [25], a transient towards
synchrony has been observed but not quantified, which would require the acquisition
of several hundred transients. Also, virtual chimera states cannot be used to show the
scaling because the virtual oscillator networks used in this study include an infinite
number of nodes and are hence stable.

7.2 Boolean Phase Oscillator Networks

In this section, I discuss the extension of Boolean phase oscillators to large in-degrees,
derive a phase model description, and detail the electronic implementation of large
networks [27].

7.2.1 Setup of Boolean Phase Oscillators with Large
In-Degree

I study networks of N coupled Boolean phase oscillators in a non-locally coupled ring
topology with a coupling range R, as introduced in Sect. 7.1.2.1 and also illustrated in
Fig. 7.2. In this topology, nodes have an in-degree of 2R, which requires to extend the
previous setup of Boolean phase oscillators in Sect. 6.3.1, so that in-degrees greater
than one are possible. In the setup with one input, the coupling is realized with a
feedback delay τi that switches between two values depending on the phase difference
with the single coupled oscillator. Here, I extend this method by configuring the
feedback delay so that it can switch between 2K = 22R values depending on K
phase differences between the local oscillator and the coupled oscillators as shown
in Fig. 7.5.

The state-dependent delay τi of an oscillator is realized with a constant part τ̃0,i ,
and a variable part realized with XOR logic gates, Boolean switches, and short delay
lines of value σi . The XOR logic gate is a simple phase detector that compares the
phase of the oscillator xi with the phase of a neighboring oscillator x j . Its signal
xc

j,i , which corresponds to the phase difference between oscillators i and j , acti-

http://dx.doi.org/10.1007/978-3-319-13578-6_6
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Fig. 7.5 Circuit diagram of the Boolean phase oscillator showing the coupling mechanism. The
rectangles, trapezoids, triangles, and shapes with ⊕-signs denote delay lines, Boolean switches
(also known as multiplexers), inverter, and XOR gates, respectively. The K coupling inputs are
realized with K pairs of delay lines, multiplexers, and XOR gates, of which three are shown. The
dynamical output variable is xi

vates one of two paths in the Boolean switch: one path leads to an additional delay
σi and the other leaves the delay unchanged, where the shorter delay is selected
when a phase difference is detected. The hardware description of this system is dis-
cussed in Appendix B.6.2. The coupling mechanism is detailed and quantified in the
next section.

7.2.2 Derivation of a Phase Model for Boolean
Phase Oscillators

In this section, I derive the phase model for a network of N Boolean phase oscil-
lators shown in the setup in Fig. 7.5. The N oscillators are described by output
variables {xi }N

i=1, which are normalized output voltages {Vi }N
i=1 of oscillators so

that xi = 1 (xi = −1) corresponds to the high (low) Boolean voltage; specifically
xi = 2Vi/VH − 1 with high Boolean voltage VH [28]. The coupling of oscillators is
realized with state-dependent delay that depends on the phase differences between

the oscillator output xi and K oscillatory input signals
{

x in
j i

}

j
. Delay lines in the

setup are based on chains of buffer gates that each add a gate propagation delay to
the total delay as detailed in Appendix A. In the setup in Fig. 7.5, I include several
delay lines of value σ = 0.328 ± 0.012 ns, corresponding to a single buffer gate and
a long delay line of value τ = 8.4 ± 0.3 ns, corresponding to 30 cascaded buffer
gates. Several XOR logic gates are included as simple Boolean phase detectors [29]
to generate a control signal xc

ji ∈ {0, 1}. The control signal is given by a compari-

son of the output Boolean state of the oscillator xi and an input Boolean state x in
j i ,

according to
xc

ji = x in
j i ⊕ xi , (7.14)
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where ⊕ : {0, 1} × {0, 1} → {0, 1} denotes the XOR Boolean function. Several
multiplexers, which are 3-input logic gates, are included as Boolean switches to
modify the feedback delay of the system by a delay σ depending on the control

signals
{

xc
ji

}

j
. This leads to the total feedback delay of the i-th oscillator according

to

τi = τ0,i − σ

K∑

j=0

xc
ji , (7.15)

where τ0,i = τ̃0,i + Kσ denotes the maximum delay in the loop. This is a state-

dependent delay because the
{

xc
ji

}

j
depend on the state of the local oscillator [30].

I also include a single inverter logic gate in the feedback loop in Fig. 7.5, which
leads to oscillations with frequency

fi = 1

2τi
. (7.16)

for the i-th oscillator (see Sect. 6.1.5.1).
I assume that Eq. (7.16) is valid for state-dependent delay when the frequency

fi is replaced with the instantaneous frequency φ̇i . Equations (7.14)–(7.16) and a
Taylor approximation, with a maximum error of ≈ 3 MHz, leads to

φ̇i = ω0,i + σ̃i

jK∑

j= j0

x j (φ j ) ⊕ xi (φi ), (7.17)

with angular frequency ω0,i = 2π/(2τ0,i ) = 2π · 9.3 MHz (for in-degree K = 60)
and coupling strength σ̃i = 2σω2

0,i = 0.089 MHz (using a value σ = 0.515 ns to
adjust for the error by the Taylor approximation). The summation from j0 to jK is
over K coupling inputs in the network topology with a coupling range R. I replace{
x j

}
j with

{
φ j

}
j using the following definition of the phase φ j from Ref. [13]

sin
[
φ j (t)

] = 2x j (t) − max
[
x j

] − min
[
x j

]

max
[
x j

] − min
[
x j

] = x j (t), (7.18)

where x j oscillates between the Boolean values −1 and 1. I express the XOR Boolean
function with a difference of Heaviside functions and add a phase-lag parameter αi j ,
leading to the following phase oscillator model

φ̇i = ω0,i + σ̃i

jK∑

j= j0

∣∣�
[
sin(φ j )

] − �
[
sin(φi + αi j )

]∣∣ . (7.19)

http://dx.doi.org/10.1007/978-3-319-13578-6_6
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The phase-lag parameter αi j is vital for observing chimera states [1, 2] and is likely
caused experimentally by delays along wire connections (see also Sect. 7.1.2.2).

I couple the Boolean oscillators in a ring network with non-local coupling realized
with a coupling radius R, corresponding to a rectangular coupling kernel. Specifically,
the resulting dynamical equation for the network of N nodes (i ∈ {1, 2, ..., N }) with
periodic boundary conditions is

φ̇i = ω0,i + σ̃i

i+R∑

j=i−R

∣∣�
[
sin(φ j )

] − �
[
sin(φi + αi j )

]∣∣ . (7.20)

Equation (7.20) has a similar form as the modified Kuramoto model used to
discover chimera states (see Sect. 7.1.1 and compare to Eq. (7.10)) [1]. The nonlinear
coupling function in Eq. (7.20) differs from the coupling in Eq. (7.10) that includes
a single sine function of the phase differences. Because of the similarity between
the two models, the network of Boolean phase oscillators is ideally suited to study
chimera states experimentally.

The free-running frequency of an oscillator ω0,i as a function of R results from
the construction of the oscillator with logic gates as shown in Fig. 7.5. It is given by

ω0,i = 1/[2(30τbuf + 2Rτmux + 2Rτbuf)] (7.21)

with n0 = 30 the number of buffer gates used to build the delay line denoted τ ,
and the propagation delays of multiplexer and buffer are τmux = 0.404 ± 0.014 ns,
τbuf = 0.328±0.012 ns (for the specific wiring), respectively. In the model, I assume
identical oscillators (ω0,i = ω0 and σ̃i = σ̃ ) and homogeneous coupling (αi j = α).

For numerical simulation, it is advantageous to replace the Heaviside functions
and the absolute value in Eq. (7.20) with a smooth sigmoidal function (tanh here),
leading to

φ̇i = ω0,i + σ̃i

i+R∑

j=i−R

{
tanh

[−c sin(φ j ) sin(φi + α)
] + 1

}
/2 (7.22)

with slope c = 4 used in the numerical simulation. For c → ∞, Eqs. (7.22) and
(7.20) are identical.

7.2.3 Electronic Implementation of Boolean Phase Oscillators

I implement the network with electronic logic circuits on an FPGA with a hardware
description discussed in Appendix B.6.3. A Boolean phase oscillator is realized with
up to 218 logic elements, requiring 14 logic array blocks (see also Sect. 3.1.1 for more
details). The layout of the oscillators on the chip is shown in Fig. 7.6. Allocated logic

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Fig. 7.6 Picture showing the arrangement of logic gates on the FPGA for the implementation of
the network with N = 128 nodes. The picture was generated with the Altera Chip Planner

array blocks are marked in darker blue while unused logic array blocks are marked
in light blue. The blue frame marks a region reserved for the dynamical network.
The orange frame marks a region reserved for the readout and the acquisition of the
network dynamics. The physical implementation of N = 128 nodes with a non-
local coupling range R = 30 requires 27,000 logic gates and 7,552 wires, which
requires about 25 % of the resources on the FPGA, and is implemented together with
a custom-built processor for data acquisition.

This implementation does not account for the ring structure of the network, so
that the delay between some neighboring oscillators, e.g., 18 and 19 and especially
1 and 128, is long compared to the delay between most neighboring oscillators, such
as 1 and 2, even though these are neighbors in the ring network topology. I estimate
the maximum transmission delay between two oscillators to be 2 ns corresponding
to the delay between two gates separated across the chip, which is small compared
to the period of about 100 ns.
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I measure and reduce the heterogeneity in the free-running frequency of the N
oscillators by adjusting the constant part of the feedback delays τ0,i , resulting in a
heterogeneity of σ 2

f / f̄ = 0.3 % (average frequency f̄ = 9.14 MHz with standard

deviation σ 2
f = 0.03 MHz) for N = 128. Implementing large networks requires me

to sort the input connections to the oscillators, giving rise to heterogeneity in the
coupling time delays whose implications are discussed in Sect. 7.5.2. When I do
not sort the input connections, the computer-aided design tool used to assign logic
gates and interconnect lines generates an error message, restricting the network to
90 nodes. This could be due to a depletion of the interconnect lines and crossings on
the electronic chip.

7.3 Complex Dynamics in Boolean Phase Oscillator
Networks

In this section, I discuss the dynamics of networks of non-locally coupled Boolean
phase oscillators. I find that the dynamical system shows both chimera states and
unsynchronized dynamics, where the chimera can disappear in favor of unsynchro-
nized dynamics and reappear.

7.3.1 Chimera Dynamics in Boolean Phase Oscillator
Networks

I first describe the dynamics of the network when it is in a chimera state, as shown in
Fig. 7.7a with a snapshot of the phases of oscillators. The oscillators outside (inside)
the dotted lines, marked region I (region II), have equal (different) phases within the
digitalization precision of 
φ = ±0.25 rad and hence are considered phase synchro-
nized (desynchronized). Therefore, the oscillators in region I stay synchronized and
the oscillators in region II drift apart because they have different frequencies. These
frequencies are shown in Fig. 7.7b and are measured over a time period of 6 µs, which
represents approximately 60 oscillations. Similar to the phase picture, the oscillators
in region I (region II) are frequency synchronized (desynchronized) as they have
equal (different) frequencies within the digitalization precision of ±0.2 MHz. The
oscillators in region II show a regular arch shape, which is another characteristics of
chimera states [1, 2] (see also Sect. 7.1.2.3).

7.3.2 Resurgence of Chimera States

The temporal evolution of the frequency is visualized using a gray-scale image in
Fig. 7.8a for a period over 7 min, corresponding to more than 4 billion oscillations.
The figure shows that, for this specific realization, complex dynamics exist from time
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Fig. 7.7 Dynamics measured from coupled Boolean phase oscillators with N = 128, R = 30,
ω0 = 2π(9.3 ± 0.03) MHz, σ̃ = 2π(0.089 ± 0.003) MHz. a Snapshot at t ≈ 304 s, b frequency
profile fi = 〈φ̇i 〉/(2π). I initialize the network by first deactivating the coupling, which results
in a randomization of the phases because of small frequency heterogeneity, and then activating
the coupling. The oscillator indices are shifted by a constant integer, so that the location of the
unsynchronized region is centered

t = 0 until t = 6 min (marked III) because the frequency varies both from node to
node and in time. At time t = 6 min, the dynamics collapses to a nearly synchronized
state (dark gray region, marked IV), which I discuss in Sect. 7.3.4. The time until
the nearly synchronized state is reached varies considerably for different repetitions
of the experiment and is studied in detail in Sect. 7.4. In the following, I discuss the
dynamics of the oscillator network on a microsecond timescale, at times marked in
the figure.

Figure 7.8b shows the frequency of the Boolean phase oscillators for about 60
periods after 304 s, corresponding to a millionth of the total transient time. The
network shows high frequencies (dark gray) for oscillator indices from i ∼= 20 to
i ∼= 100 and low frequencies (light gray) for the remaining oscillators. This picture
corresponds to the dynamics in Fig. 7.7a, which I identified as a chimera state. The
unsynchronized domain of the chimera (high frequency, dark gray) moves irregularly
in the network, which is an effect of the finite size of the network [31, 32] (see also
Sect. 7.1.3), and indicates that the chimera dynamics is not pinned to heterogeneity.

At an earlier time in the transient shown in Fig. 7.8c, the dynamics alternates
between complete desynchronization and chimera states. For times 0 < t < 2.8 µs
(marked V), the figure shows large variations in the frequencies of neighboring nodes
without obvious chimera domains, corresponding to a dynamics with time intervals
of both desynchronization and chimera-like states. In the remaining part (marked
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Fig. 7.8 a Frequency evolution over a time period of 7 min; averaged over 6 µs windows (60
oscillations) every 4 s. b, c Frequency evolutions shown over a time period of 5 µs; averaged over
500 ns windows (5 oscillations). The arrows in (b) and (c) indicates the phase measurements in
Figs. 7.7a and 7.9, respectively. Parameters of the experiment as in Fig. 7.7

VI), two domains of high and low frequencies can be identified, which correspond
to a chimera state lasting over at least 30 oscillations. Again, the unsynchronized
domain moves in the network.

I discuss the dynamics in Fig. 7.8c at points in time indicated by (a)–(i) using
the phase snapshots in Fig. 7.9a–i, respectively. In the snapshot in Fig. 7.9a, there
exists a region, where the oscillators have the same phase to within the experimental
phase resolution of 
φ = 0.25. Outside the dotted lines, the oscillators are not
phase-synchronized. Therefore, this state corresponds to both synchronization and
desynchronization, which is a chimera-like state. This state exists for six periods,
where the synchronized region drifts considerably in the network. In Fig. 7.9b, I find
an intermediate state, where the phases of the oscillators are distributed randomly so
that I cannot identify a phase-synchronized region; hence, it is an unsynchronized
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Fig. 7.9 a-i Phase pictures at time indicated in Fig. 7.8c at times 0.94, 1.14, 1.37, 2.05, 4.10, 4.42,
4.84, and 5.26 µs, respectively. Experimental parameters as in Fig. 7.7

state. In Fig. 7.9c, a chimera-like state is reached again, with similar properties to the
phase snapshot in Fig. 7.9a. Therefore, the dynamics change on a timescale similar
to the period of oscillation from chimera-like states to unsynchronized states and
back.

Figure 7.9d shows the phases of the oscillators in the network at a time when two
regions (marked with dotted lines) show the same phases within the measurement
error. Outside the two regions, the oscillators show large differences in the phase and
are hence unsynchronized. This state corresponds to a multi-chimera state of two
synchronized and two desynchronized regions, which has been reported before with
numerical simulations [8, 12, 32, 33]. Similar to the findings in these references, the
two synchronized cores are phase shifted by π .

Figure 7.9e–i show the phases of oscillators in the network in the region VI in
Fig. 7.8c. The synchronized region of the chimera state moves from the range i ∼= 90
to i ∼= 127 to the range i ∼= 115 to i ∼= 20 (periodic). In Fig. 7.9h, one oscillator in
the synchronized region does not synchronize, which is non-ideal.
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This phenomenon of disappearance and reappearance of chimera states has not
been reported previously. I call it resurgence of chimera states.

7.3.3 Determining the Fraction of Chimera States
in the Transient

The phenomenon of resurgence of chimera states implies that chimera states do not
exist through the entire transient. In this section, I determine a lower boundary for
the fraction of time that chimera states exist in the transient. For that, I use a measure
similar to Ref. [34].

The chimera states in Boolean phase oscillator networks have a typical arch shape,
where one domain of adjacent oscillators are synchronized at low frequency, and
another domain is unsynchronized with higher frequencies as shown in Fig. 7.7b.
Such a shape can be detected by measuring the standard deviation of frequencies

σ =
√〈

( fi − 〈 fi 〉)2
〉
, (7.23)

and the average frequency difference between adjacent oscillators


 = 〈| fi − fi−1|〉 . (7.24)

An arch-shaped function has a large σ but a small 
, so that a large

ψ = σ/
, (7.25)

is a measure to detect chimera states.
I calculate this function for the partly synchronized temporal evolution in

Fig. 7.10a. Figure 7.10b shows ψ for this temporal evolution, exhibiting a peak above
a value of ψ = 1.5 approximately when I detect chimera states. Therefore, I use a
threshold of ψ > 1.5 to distinguish chimera states. With this numeric value, I find
that chimera states appear for about 14 % of the transient, measured from 100 mea-
surements of length 6 µs on a network of N = 128 oscillators within the transient
shown in Fig. 7.8a.

7.3.4 Nearly Synchronized State

As discussed above, the network displays complex dynamics that collapses to a
nearly synchronized state, corresponding to the uniform dark gray area at t > 6 min
in Fig. 7.8a. Figure 7.11a shows the phases of oscillators in this state. The phases
of oscillators have different values over the whole range of 2π and are hence not
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synchronized. Figure 7.11b shows the frequency of oscillators, which are apart from
two nodes frequency synchronized with f = 11.085 ± 0.002 MHz (compare to
f = 9.14 ± 0.03 MHz for uncoupled oscillators). The two unsynchronized nodes,
marked in the figure with arrows, have a ∼ 1 % larger frequency. In the model, on the
other hand, both frequency and phase synchronize [6]. The appearance of the nearly
synchronized state may be due to heterogeneity in the phase lag parameter αi j .

7.4 Transient Scaling of Boolean Oscillator Networks

In this section, I discuss the scaling of the transient time and the scaling of the average
transient time in networks of non-locally coupled Boolean phase oscillators. I record
similar scaling functions as found by Wolfrum and Omel’chenko for chimera states
in networks of phase oscillators, as discussed in Sect. 7.1.3 [6]. I find that the event of
synchronization can be modeled with a Poisson process and that the synchronization
rate follows a power law of the phase-space volume.

7.4.1 Scaling of the Transient Time

As discussed above and shown in Fig. 7.8a, the complex dynamics collapses to the
nearly synchronized state after a transient time TN . I find that TN for N = 128 varies
between extreme values of T128 = 1 s and T128 = 32 min for 1,000 measurements,
where complex dynamics are obtained for every acquisition from random initializa-
tions. This is different from Ref. [25], where chimeras appear only for a fraction
of the initializations. Figure 7.12a shows the distribution of transient times, where
each dot corresponds to the normalized number of transients of TN within a certain
interval. I find that TN follows an exponential distribution (shown as a solid line)
according to

ρN (TN ) = 〈TN 〉−1 exp(−TN / 〈TN 〉), (7.26)

with the average transient time 〈T128〉 = 5.4 min as indicated in the figure. The
exponential distribution follows analytically by considering the collapse to synchro-
nization as a Poisson process, which occurs continuously in time at a constant average
synchronization rate λ with

〈TN 〉 = 1/λ. (7.27)

The exponential distribution has been found to describe the transient times for
chimera states in the Kuramoto model under the assumption of identical oscilla-
tors with symmetric coupling [6]. The appearance of the same scaling in my studies
is surprising because the experiment has heterogeneity and shows chimeras only for
a fraction of the time, which are aspects not included in previous models.
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Fig. 7.12 a Histogram of transient times T128 measured from 1,000 experimental acquisitions
(circles) and distribution function Eq. (7.26) (solid line). b, c Average transient time 〈TN 〉 as a
function of N measured from (b) 1,000 experimental transients each, c 200 simulated transients each
(circles). Both are fitted with Eq. (7.28) (solid line) with b κ = 0.28 ± 0.1, (c) κ = 0.30 ± 0.08. The
right axis shows the approximate number of periods per transient. Experimental parameters R/N ≈
0.24, ω0 ≈ 1, 000/[19.7 + 2.9 · R] (see Eq. (7.21)), σ̃ = σω2

0/π with σ = 0.515 ± 0.018 ns,
initial conditions as in Fig. 7.7. Numerical parameters are R/N = 1/3, σ̃ = 0.089 MHz · 40/R (to
adjust for the change in coupling range), α = 0.1 and initial conditions as in Fig. 7.13. N in c is
limited by available computation time

7.4.2 Scaling of the Average Transient Time

I measure the average transient time 〈TN 〉 for networks of different size N , i.e.,
the number of nodes changes but the network topology is the same. Figure 7.12b
shows 〈TN 〉 for six different network sizes from N = 105 to N = 128. The average
transient time 〈TN 〉 follows approximately an exponential scaling over three orders
of magnitude according to

〈TN 〉 ∝ exp(κ N ), (7.28)

with κ = 0.28 ± 0.10 shown with a solid line. Using Eqs. (7.27) and (7.28), the
synchronization rate
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λ ∝ exp(−κ N ) ∝ V −κ (7.29)

follows a power law of the state space volume V = (2π)N , which is plausible
[assuming for a single oscillator’s phase space volume V = 2π in accordance with
Eq. (7.20), but the power law can also be derived when each system is assumed
to be of dimension d < ∞]. This super-transient scaling holds for many spatially-
extended systems [35] and also for networks, such as neural networks [36] and
Kuramoto oscillators [6]. Therefore, I conjecture that Eq. (7.29) may be a general
law for networks under certain conditions, such as that nodes are nearly identical
and that a stable synchronized state exists.

7.5 Numerical Simulation of Networks of Boolean
Oscillators

In this section, I simulate Eq. (7.20) numerically and compare the results with the
experiments.

7.5.1 Chimera States in the Model of Boolean Phase
Oscillators

In order to see chimera states in the model Eq. (7.20), the phase-lag parameter has
to be chosen in the vicinity of αi j = 0.1, which is different from the common value
of α = π/2 − 0.18 used by Abrams and Strogatz to achieve chimera states [2]. This
may be due to the differences in the coupling function of the two models, cf. [12].
Furthermore, I also have to use a coupling range R = 42 (N = 128, R/N ≈ 1/3) that
is larger than in the experiment (R = 30), but agrees with values used in other models
[12]. Note also that the experiment does not include self-coupling, but it is common
to assume self-coupling in previous numerical studies of Kuramoto networks.

Figure 7.13 shows the simulated dynamics in phase and frequency representa-
tions analogously to Fig. 7.7. The figure shows a chimera state with co-existence of a
synchronized and desynchronized domains with a typical arch in the frequency pic-
ture (see also Sect. 7.1.2.3). The dynamics is similar to chimeras in phase oscillator
models that also show an arch in the frequency picture (compare to Fig. 7.3).

Figure 7.14 shows the temporal evolution of the frequency of the nodes. Similar
to Fig. 7.8b, the system shows a chimera state that moves in the network. After a
certain time that depends heavily on the initial conditions, the chimera ends in favor
of a synchronized state, which happens after 4.2 ms in Fig. 7.14.

The model also reproduces the characteristic scaling of the transient of Eq. (7.28),
as shown in Fig. 7.12c with κ = 0.30 ± 0.08, which is analogous to Fig. 7.12b.

These results suggest that the model is well suited to describe the experiment
qualitatively. The model is, however, only a first step towards a complete theoreti-
cal description of the experimental dynamics because of several differences in the
generated dynamics.
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Fig. 7.13 a Phases φi and, b frequencies fi = 〈φ̇i 〉/(2π) of the network at t = 50 µs. Dynamics
are obtained from numerical simulation of Eq. (7.22) with N = 128, R = 42, ω0 = 2π · 9.3 MHz,
σ̃ = 2π ·0.089 MHz, α = 0.1. Dynamics are initialized as in Ref. [2] with φi = 6p exp

(−0.76x2
)
,

where p is a uniform random variable on [−0.5, 0.5] and x = 2π i/N − π . For simplicity, I do not
assume frequency heterogeneity and noise in the model

Fig. 7.14 Frequency evolution from numerical simulation of Eq. 7.22 with parameters N = 27,
others as in Fig. 7.4c. Initial condition as Fig. 7.13

7.5.2 Differences Between Modeled and Experimental
Dynamics

First, different from the experiment, the simulation shows chimera states for the
entire transient (see Fig. 7.14). A second difference is that the simulation (the exper-
iment) collapses to a synchronized state (nearly synchronized state), where nodes
are phase and frequency synchronized (nearly frequency synchronized but not phase
synchronized) as discussed in Sect. 7.3.4. Third, chimera states appear in different
parameter regions in model and experiment as discussed above. Finally, the initial
conditions to see chimera states have to be prepared carefully in the model but can
be chosen randomized in the experiment.
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These differences may be caused by heterogeneity in the experiment αi j �= const,
while αi j = const is assumed in the model. Specifically, the experiment implements
heterogeneous wiring, where the j-th input x in

j i of node i (Fig. 7.5c) is given by the
j-th element of the sorted version of the list {(i − R) mod N, (i − R + 1) mod N, ...,

(i + R) mod N } (see also Sect. 7.2.3). Furthermore, differences may be caused by
noise and frequency heterogeneity of 0.3 %, and transmission delays along the links
(< 5 ns) in the experiment.

Evidence for the importance of heterogeneity in the phase-lag parameter αi j is
given in Appendix C.2, where I show that randomized initial conditions also lead to
chimeras in the simulation when αi j is chosen heterogeneous. However, I was not
able to obtain the resurgence of the chimera in the model by including heterogeneity.

Theoretical models do not show the observed alternations between chimera states
and unsynchronized states—the so-called resurgence of the chimera. Future work
has to fill this gap to uncover the underlying mechanisms.

7.6 Conclusion

In conclusion, I have proposed and studied a network of Boolean phase oscilla-
tors that approximately follows equations similar to the Kuramoto model [1]. Large
experimental networks of up to 128 non-locally coupled Boolean phase oscilla-
tors show complex dynamics, where chimera states of synchronized and desynchro-
nized regions disappear and reappear, which is not yet theoretically understood. The
dynamics collapses to a synchronized state after a long transient time, which follows
an exponential scaling with the network size as previously predicted in Kuramoto
oscillators [6], neural networks [36], and reaction-diffusion systems [20].

The measurement of the scaling of chimera states in a large network of 128 nodes is
only possible because of the fast timescale of ∼100 ns and it is even computationally
prohibitive to study the transient behavior for that many oscillators in a simulation.
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Chapter 8
Excitable Dynamics in Autonomous
Boolean Networks

Abstract In this chapter, I use autonomous Boolean networks to realize experimen-
tal excitable systems that I refer to as Boolean neurons. I couple Boolean neurons
into meta-networks that I call Boolean neural networks. After an introduction to
excitability in Sect. 8.1, I design and test the Boolean neuron in Sect. 8.2 and couple
two Boolean neurons in a small Boolean neural network in Sect. 8.3. (Results of this
chapter are published in reference Rosin et al. Europhys. Lett. 100:30003, 2012; I
have published previous work on this subject for neuronal and optoelectronic oscil-
lators in references Panchu et al. Int. J. Bif. Chaos 23:1330039, 2013 and Rosin et al.
Europhys. Lett. 96:34001, 2011) that helped me with the analysis of the results in
this chapter.) The main contributions of this chapter are:

• designing an autonomous Boolean network with excitable dynamics, which con-
stitutes an accelerated-time artificial neuron termed Boolean neuron;

• modeling of the Boolean neuron;
• confirming experimentally theoretical results for the dynamics of neural network
motifs.

8.1 Introduction to Excitability

Excitable systems have three states: the rest state, the excited or firing state, and a
refractory or recovery state [1–3]. The system stays in the rest state if unperturbed or
stays close to it if perturbed below a threshold. For above-threshold perturbations, the
system goes through the excited state, the refractory state, and back to the rest state.
This trajectory describes a nonlinear excursion through phase space, corresponding
to a spike while in the excited state. While in the refractory state, the system cannot
be excited until it reaches the rest state [4, 5]. Excitability is found throughout nature,
with prominent examples of the heart and biological neurons [6–8]. For example, the
study of arrhythmias in the heart is one major application of the theory of excitable
media in biomedical science [8–10]. Excitable media are studied in model systems
such as the Belousov-Zhabotinsky reaction, which is a chemical reaction that shows
rich wave patterns [11–13]. An early study of neural excitability was conducted by
Hodgkin and Huxley on the giant squid axon, which they describe as an excitable
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medium to explain the conduction of an action potential along the neuron [14].
Excitability has also been formulated for point-like systems. For example, the one-
dimensional excitable medium along the extension of a neuron can be approximated
as a point-like excitable dynamical system. This approximation is frequently used
for neurons that are connected to neural networks to reduce the complexity of the
problem [5, 15]. Then, the finite transmission times between neurons due to the finite
transmission velocities can be approximated with a delay description [16]. A very
descriptive network of excitable systems are fans at a sports event that can pass along
a Mexican wave [17].

8.1.1 Neurons

The human brain includes about 100billion interconnected neurons that each have
more than 10,000 inputs from other neurons, thereby building a huge neural network
that is the core component of the nervous system. Neurons process and transmit
information within this network [5]. As biological cells, they can be studied on
various levels, such as cell biophysics and molecular biology, but also on higher
levels, such as small neural circuits, the whole brain, or the behavior of an entire
organism [5]. I introduce here the problem at the level of individual neurons.

Neurons are usually divided into three parts: the soma, the dendrites, and the axon,
where the soma is the cell body, the dendrites receive signals and axons conduct
them over large distances up to1m in the human body [18], as shown in Fig. 8.1.

dendrites

soma

axon

electrical excitation

synapse

axon terminals

Fig. 8.1 Anatomic drawing of two connected phramidal cells. The figure is a modified version of
the open source content http://en.wikipedia.org/wiki/File:Sobo_1906_33.png

http://en.wikipedia.org/wiki/File:Sobo_1906_33.png
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Information is conducted in the form of a spike—the so-called action potential—
which is a pulse-shaped temporal change in the electrical membrane potential of the
neuron. These spikes are initiated via sufficiently strong stimuli at the dendrites and
then travel away from the soma along the axon. At the axon terminals, the spikes can
induce a new spike in another connected neuron via a synapse [18].

Hodgkin and Huxley measured the initiation and conduction of signals along the
axon experimentally in 1952 on the squid giant axon and derived a mathematical
model called the Hodgkin-Huxley model [14]. The model describes the membrane
of axons with an equivalent electrical circuit model with resistors, capacitors, and
voltage sources, which arise from ion channels in the biological membrane. The
ion channels are activated according to nonlinear differential equations. Systems
described with the Hodgkin-Huxley model are excitable and generate a large voltage
spike when an applied stimulus is greater than a threshold. A threshold condition for
firing, also known as the all-or-none principle, is a key component in neurological
systems, but the level of the threshold often depends on the shape of the input signal
and can even depend on resonance conditions of input spikes, such as a preference
of certain periods for input pulse trains, which is the case in the Hodgkin-Huxley
model [5].

8.1.2 Hodgkin Classification

Hodgkin classified neurons according to their response to constant input currents of
different strength [5, 19]. Neurons usually respond to constant input excitations with
a train of repeating output pulses as shown in Fig. 8.2a. When the firing frequency of
pulses f increaseswith the excitation current I , the neuron is of type I (Fig. 8.2b) and,
when f is independent of I , the neuron is of type II (Fig. 8.2c). But, in both classes,
the input current has to be greater than the threshold. Type-III neural excitability
corresponds to neurons that generate at most one or two action potentials in response
to a constant current instead of a train of pulses. An example for type-III neural
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Fig. 8.2 Illustration of type-I and type-II neural excitability. a For themeasurement of the excitabil-
ity type, a neuron (or a dynamical model for a neuron) is exposed to a constant stimuli with current
I and responds with a train of pulses of a certain frequency f . The resulting f -I -curves for b type-I
and c type-II excitability are shown schematically
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excitability is the squid giant axon, which is surprising because the Hodgkin Huxley
model is of type II even though it is derived from the same system under different
conditions [20, 21].

The framework of excitability types is generalized by characterizing excitable
systemsby their bifurcationmechanism [5, 22]. Excitability canbegeneratedwith the
following bifurcations: subcritical Andronov-Hopf, supercritical Andronov-Hopf,
saddle-node of limit cycles, saddle-node infinite-period (SNIPER), where the latter
results in type-I excitability and the other bifurcations in type-II excitability [5, 23].

8.1.3 Key Components of Excitability

Typical excitable systems have a stable fixed point in which they rest until a perturba-
tion above a threshold excites them. In response to the stimulus, they generate large
excursions in phase space that result in output spikes [5]. After generating a spike,
excitable systems usually recover for a certain time, the so-called refractory time.
During the refractory time, excitable systems have a higher excitation threshold or
cannot be excited at all, corresponding to the absolute and relative refractory period,
respectively [18]. Therefore, three states can be identified for excitable systems: the
resting, excited, and refractory state.

These three states of excitable systems are used in theGreenberg-HastingsCellular
Automaton tomodel excitability,with a synchronous temporal evolution. The cellular
automaton evolves for time steps t = 1, 2, 3, ... according to the following rules [24]:
The excitable system

(i) changes from the resting state to the excited state if at least one input connection
is in the excited state.

(ii) changes from the excited state to the refractory state.
(iii) changes from the refractory state to the resting state.

When evaluated on a grid, this simple model can lead to rich wave patterns [25].
Similar rules to the ones used in the Greenberg-Hastings cellular automaton are
used in this chapter to build a continuous-time excitable dynamical system with
autonomous Boolean networks.

8.1.4 Dynamics of Two Delay-Coupled Neurons

To be able to better interpret my experimental results in this chapter, I first present in
this section simulation results with a standard neuron model. I use the same network
topology studied in later sections experimentally. I start by motivating the network
topology of only two neurons.1

1 The content of this section is published in Ref. [2].
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FitzHugh-Nagumo 
system 1

FitzHugh-Nagumo 
system 2

Fig. 8.3 Schematic of two coupled FitzHugh-Nagumo systems that include feedback and mutual
coupling

8.1.4.1 Motivation for Studying Network Motifs

A structure of a few coupled neurons constitutes a network motif, which is a simple
recurring substructure present in large networks, such as the brain [26]. The intrinsic
dynamics of the network motif may contribute significantly to the dynamics of the
larger network and could hence be important for the overall network dynamics. For
this reason, dynamics of network motifs is heavily studied [27–38].

The network motif in Fig. 8.3 of two coupled neurons includes time delays along
the links to account for the finite propagation time of spikes along the neuron axons
[1, 2, 27, 31, 39–41]. This configuration can also be understood as two effective
populations of neurons with internal and mutual connections [42]. Synchronization
in larger networks of type-I [43] and type-II [44] excitable elements was also studied.

8.1.4.2 Dynamics Generated by a Standard Neuron Model

The neurons are described by the FitzHugh-Nagumo model, which simplifies the
Hodgking-Huxleymodel to include the essentialmathematical features of excitability
and has a similar structure as the Van-der-Pol oscillator (see Sect. 6.1.4.1) [45–47]. It
is, however, not motivated by physiological processes [48]. The dynamic equations
of the FitzHugh-Nagumo model are paradigmatic for neural systems with type-II
excitability (see Sect. 8.1.2), where oscillations result from a Hopf bifurcation.

The two coupled FitzHugh-Nagumo systems are described by the delay differen-
tial equations

ε1 ẋ1 = x1 − x31
3

− y1 + C
[
x2

(
t − τC

2

)
− x1(t)

]

+ K
[
x1

(
t − τ K

1

)
− x1(t)

]
, (8.1a)

ẏ1 = x1 + a, (8.1b)

http://dx.doi.org/10.1007/978-3-319-13578-6_6
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ε2 ẋ2 = x2 − x32
3

− y2 + C
[
x1

(
t − τC

1

)
− x2(t)

]

+ K
[
x2

(
t − τ K

2

)
− x2(t)

]
, (8.1c)

ẏ2 = x2 + a, (8.1d)

where εi � 1 denotes a timescale ratio between a slow inhibitor variable yi and
a fast activator variable xi (i = 1, 2). The activator variables xi correspond to the
neural membrane potential and encodes the action potential as spikes. The inhibitor
variables yi can inhibit the system from emitting a pulse if yi is large, leading to a
refractorymechanism. The parameter a is known as threshold parameter. For |a| > 1,
the uncoupled system operates in the excitable regime. The parameters K , C , τ K

i ,
and τC

i are coupling strength and coupling delays of mutual coupling and feedback
according to Fig. 8.3.

Figure8.4 shows typical dynamics of two coupled neurons modeled with
Eqs. (8.1a)–(8.1d). The arrows indicate excitations due to the different delayed cou-
pling links. The temporal evolution of the activator xi and inhibitor yi is shown for
two different parameter regimes. The activator xi shows periodic pulses, forming a
pulse train. The inhibitor is also periodic and peaks when a pulse in the activator
ends. In Fig. 8.4a the outputs of system 1 and 2 are synchronized in phase, while in
Fig. 8.4b the outputs have a phase shift of π .

Coherent spiking of this system, such as shown in Fig. 8.4a, b, appears for identical
self-coupling delays τ K

1 = τ K
2 = τK when the following condition for the time

delays is fulfilled

N K τ K = N C2τC , (8.2)

with integer numbers N K and N C . Coherent spiking is expected even if the cou-
pling delays differ from Eq. (8.2) by an amount on the order of the pulse width

Fig. 8.4 Time series of Eq. (2.2) for identical self-feedback delays τ K
1 = τ K

2 = τK . The activator
xi and inhibitor yi are shown with blue (solid) and red (dashed) lines, respectively. The parameters
are chosen as a K = 0.5, τK = 3, b K = 0.5, τK = 2. The black and lightbluearrows indicate the
excitations due to self-feedback and mutual feedback, respectively. Other parameters are ε = 0.01,
a = 1.3, τC = 3, and C = 0.5. Time and activators and inhibitors are dimensionless

http://dx.doi.org/10.1007/978-3-319-13578-6_2
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of the neurons [2]. The period (inter-spike interval) of the resulting self-sustained
coherent is

T = τK /NC = 2τC/NK . (8.3)

Specifically, the two systems pulse in phase (in antiphase) when N K is even (odd)
as shown in Fig. 8.4a, b, respectively [2].

For the general case of τ K
1 �= τ K

2 , the system can display complex dynamics,
such as neural bursting [2].

8.1.5 Artificial Neural Networks

Artifical networks of excitable systems engineered with, for example, analog elec-
tronic circuits are called artificial neural networks and, when realized on micro-
electronic chips, the excitable systems are called silicon neurons [49]. They are
developed (1) for high-speed modeling of the biological equivalent neural network
as fundamental studies and (2) to develop important applications, such as neuro-
inspired computers, real-time behaving systems, and bidirectinal brain-machine
interfaces [49].

Silicon neurons can be realized in very large scale integration (VLSI), with the
example of the so-called Neurogrid discussed in Ref. [51], where 1,024 excitable
systems are implemented on a custom electronics board including an analog-
electronic chip to implement the neural dynamics and a digital microchip similar
to an FPGA to manage the connections [49, 50]. Off-the-shelf FPGAs are used
because they are much cheaper than custom made chips [49, 50].

This configuration, however, presents major hindrances due to speed limitations,
the cost and long design cycle time of the custom analog-electronic chip, and its
connections to the digital reconfigurable chip. Of particular concern is the fact that
the analog signal is digitized in time and voltage, leading to discretization errors in
the coupling.

As a solution, I develop an excitable autonomous Boolean network that can be
implemented on an FPGA together with the connections, so that a single chip can
be used to include both, the silicon neurons and the connections. Specifically, they
can be implemented on inexpensive off-the-shelf VLSI (very large scale integration)
chips, such as FPGAs resulting in an inexpensive design. The resulting Boolean
neuron evolves on a fast timescale on the order of nanoseconds, which is much
faster than the dynamics of common silicon neurons and biological neurons; hence,
it is an accelerated-time neuron. The fast timescale is advantageous for ultra-fast
neuro-inspired data processing [52] such as reservoir computing [53–55].
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8.2 Design of a Boolean Neuron

In this chapter, I implement Boolean neurons, which are electronic excitable systems
based on autonomous Boolean networks realized with autonomous logic circuits.

8.2.1 Setup of Boolean Neurons

Embedded in the design of the Boolean neuron are three properties that are important
properties of excitability [5]:

(i) the all-or-none principle, where the system responds only if an input is above
a threshold and stays quiescent otherwise;

(ii) pulse dynamics, where output pulses have fixed width independent of the input
pulse shape; and

(iii) a refractory phase, where the excitable system remains unresponsive during
a refractory period after generating an output pulse.

These properties are continuous-time rules for the behavior of an excitable system
corresponding to the discrete-time rules of the Greenberg-Hastings cellular automa-
ton introduced in Sect. 8.1.3. The properties are visualized schematically in Fig. 8.5
showing the desired response of an excitable system in the fixed-point state to exter-
nal perturbations. Specifically, the all-or-none principle (i) is illustrated in Fig. 8.5a,
where a perturbation below threshold leads to no or only a small response of the
excitable system and a perturbation above threshold leads to the generation of a
pulse. This pulse is independent of the length of the external perturbation according
to principle (ii). This is shown inFig. 8.5b,where a narrowand awide above-threshold
signal lead to the same output pulse. Principle (iii), the refractory time, is visualized
in Fig. 8.5c, where two perturbations lead to only one pulse when the perturbations
are close together, but they lead to two pulses when they are spaced far enough apart.

Autonomous logic gates arewell suited to fulfill these properties. For example, the
all-or-none principle (i) is intrinsic to logic gates [56]. Their output voltages V transi-
tion between V = Vhigh (the high level) and V = Vlow (the low level) as their inputs
cross the threshold voltage Vth. Pulse dynamics (ii) and the refractory phase (iii) can
be realized through pulse generators, which exploit the intrinsic propagation delays
of logic gates τgate. Non-ideal behaviors of the neuron, however, affect the dynamics
so that an input pulse that is too short is rejected instead of triggering an output pulse
(see also Sect. 3.1.3).

As shown in Fig. 8.6a, the pulse generator is implemented using aD-type flip-flop,
an inverter-based delay line of delay τn = n · 0.28 ns as introduced in Appendix A,
and an autonomous logic gate executing the XOR operation [57]. Its dynamics con-
sists of the generation of a single pulse of width Tn = τn in response to a positive
edge (low-to-high transition). Specifically, in response to a positive edge at its clock
(clk) input, the flip-flop, with connection from output (Q) to inverted input (D),

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Fig. 8.5 Illustration of three characteristics of excitability with typical responses to different input
waveforms, where blue-colored (dotted) graphs are input waveforms and the red-colored (solid)
graphs are the resulting output waveforms. Two input and output waveforms each are used to
demonstrate a threshold behavior, b characteristic responses (output pulses), and c the refractory
time
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n ref
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Fig. 8.6 a Setup of the pulse generator characterized by an integer n, which represents the number
of pairs of inverters in the delay line and thus its time delay τn ∼ 2nτgate. The pairs of inverters act
as time delays that do not change the Boolean state. The input of a rising edge leads to the output
of a pulse. b Design of a Boolean neuron; it combines one pulse generator labeled npulse to realize
the pulse dynamics with another one labeled nref to realize the refractory phase. The refractory
period of the Boolean neuron Tref and its pulse width Tpulse are determined by the integers nref and
npulse, respectively. The voltages Vin and Vref are inputs to an AND gate, where the second input is
inverted, as indicated by a circle. The input of a pulse leads to the output of a pulse under certain
conditions

generates a Boolean transition at its output (Q). This signal reaches the XOR gate
inputs with a time-delay difference ∼τn , due to the presence of the delay line. As
a consequence, the XOR gate has different input logic values during the time delay
and hence generates a high voltage Vhigh of width Tn = τn ∝ n.

I combine two pulse generators with an AND gate, as illustrated in Fig. 8.6b
with a hardware description discussed in Appendix B.7.1 and B.7.2, so that the
system exhibits excitable dynamics in its output voltage Vout in response to an above-
threshold input voltage Vin. The pulse generator labeled npulse (nref ) produces a
voltage pulse Vpulse (Vref ) of width Tpulse (Tref ). The voltage Vref indicates whether
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or not the system is in its refractory phase (Vref high or low, respectively); its interplay
with Vin governs the dynamics of the Boolean neuron.

When Vref is low and Vin has a positive edge, the AND gate also generates a
positive edge so that each pulse generator produces a pulse. Vpulse is sent to the
output of the Boolean neuron and the high value of Vref now blocks inputs Vin to the
AND gate for the refractory period Tref and hence prevents pulse generation during
that time. When the refractory phase ends, i.e., Vref is back to a low voltage, the
system becomes responsive to input excitations Vin again.

The design of the Boolean neuron is motivated by the dynamics of integrate-and-
fire neurons [58], where the membrane potential evolves as a function of its synaptic
input. When inputs are present, the membrane potential increases (integration) until
it reaches a threshold, the condition for generating a pulse (firing). In my approach,
in contrast, the Boolean neuron compares its input voltage directly to a threshold
without an electronic analog of amembrane potential. Consequently,when increasing
Vin above the switching threshold of a logic gate, oscillations start with a constant
(finite) period, so that the Boolean neuron exhibits a behavior analogous to type-II
excitability [5] (see also Sect. 8.1.2).After generating a pulse, themembrane potential
of integrate-and-fire neurons returns to a resting value and its dynamics is deactivated
for a finite duration [58], which is the same mechanism used in the Boolean neuron
to realize a refractory period.

8.2.2 Model for Boolean Neurons

In this section, I derive a Boolean map to describe the Boolean neuron theoretically.
In contrast to the experimental implementation, this model allows only for Boolean
states, i.e., V ∈ {

Vhigh, Vlow
}
, the low and high voltage of logic gates.

I model the three components of the setup (Fig. 8.6c), namely the AND gate and
the two pulse generators, separately. First, I describe the ANDgate with output signal
V ( j)
AND(t), where the superscript j denotes the nodes in the network. It is modeled by

the map where ∧ and ¬ denote the Boolean AND and NOT operations, respectively,
and � is the time step of the map. The NOT operation accounts for an inverted
input to the AND gate, as shown in the setup. Second, the pulse generators denoted
by npulse and nref in the setup are modeled by taking the flip-flop and the delay line
combinedwith theXORgate into account. The flip-flop creates events after a positive
edge in V ( j)

AND. The delay line, together with the XOR gate, results in output pulses
of the two pulse generators, i.e., a high voltage for the time intervals

[
s, s + Tpulse

]

and [s, s + Tref ], respectively, after a positive edge in V ( j)
AND at time s (denoted in the

following as V ( j)
AND(s) = PE). The combination of flip-flop, delay line and XOR gate

is described mathematically by
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V ( j)
out/ref(t) =

⎧
⎪⎨

⎪⎩

Vhigh if ∃s ∈ (
t − Tpulse/ref , t

] :
V ( j)
AND(s) = PE

Vlow otherwise,

(8.4)

for the two pulse generators denoted in the setup as npulse and nref , respectively.
This description does not account for the processing time h of the flip-flop, so that
significant discrepancies between model and experiment can be appear in certain
extreme coupling cases, such as sustained excitation, and when coupling delays or
pulse lengths are short compared to h, as discussed later.

8.3 Dynamics of Network Motifs of Boolean Neurons

In the following, I study the dynamics of small networks of one and two Boolean
neurons.

8.3.1 Dynamics of One Boolean Neuron

In this section, I conduct experiments on a single Boolean neuron driven first by
a constant input and second by self-feedback, constituting a simple network. The
experiments are realized on an Altera Cyclone IV FPGA (EP4CE115F29C7N) as
introduced in Sect. 3.1. Signals generatedwithin the FPGApass through an additional
input-output logic gate (hardwired to the output pins of the FPGA) before being
acquired by a high-speed oscilloscope (DSO80804A) with 8 GHz bandwidth and 40
GSa/s sampling rate.

When a constant, above-threshold input voltage Vin is applied to the Boolean neu-
ron, it generates periodic pulses with a width of a few nanoseconds (see Fig. 8.7a, b).
In this regime, the system generates periodic oscillations, similar to biological neu-
rons with constant stimulus [5]. To understand the dynamics, I analyze the output
voltage Vout and voltage Vref that indicates the refractory phase.

The pulses in Vout and Vref are generated almost simultaneously at times indicated
by vertical dashed lines in Fig. 8.7b. The pulse in Vref indicates the refractory phase
and its pulse width equals the refractory period. Therefore, the refractory phase starts
at the red dashed lines and ends when Vref is low. Then, the system generates a new
pulse, which is induced by a negative edge transition in Vref , since Vin > Vth. It
requires an additional processing time h to generate the output pulse, which is due to
the flip-flops in the pulse generators and is measured to beh = (3.2 ± 0.4) ns. This
processing time, together with the refractory period Tref , constitutes the period of the
pulses in this experiment (T = Tref + h). The pulse width in Vout is given by Tpulse.
In the theory, the processing time h is not included, leading to a wrong prediction of
the period.

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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(2.34 ± 0.05) ns (npulse = 8). c Output Ṽout of a minimal implementation of the Boolean neuron
withTref = (0.68 ± 0.04) ns (nref = 2),Tpulse = (0.80 ± 0.04) ns (npulse = 2)

In this setup of constant high input, the resulting pulse train generated by the
Boolean neuron is determined in its period by the refractory period Tref and in the
output pulse width by Tpulse. These two quantities are determined by parameters nref
and npulse according to Tref ≈ nrefτgate and Tpulse ≈ npulseτgate, as follows from the
construction of pulse generators shown in Fig. 8.6a and the delay of cascaded logic
gates discussed in Appendix A. This can be seen experimentally when conducting
the same experiment with different parameters npulse and nref . For example, with
npulse = nref = 2, which constitutes a minimal number of seven logic gates, the
pulse widths Tpulse are on a sub-nanosecond scale and the period T is dominated by
the flip-flop processing delay h (Fig. 8.7c).
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Fig. 8.8 a Illustration of one Boolean neuron with delayed feedback where the delayed feedback
link is represented as an arrow. b Representation of (a) with logic elements used for the feedback.
The pink triangles with circles represent 80 inverter gates that are incorporated to implement a time
delay ofτ = (21.3 ± 0.5) ns (nτ = 80). c, d Resulting dynamics with parameters as in Fig. 8.7b,
c, respectively. e Same withTref = (10.75 ± 0.05) ns (nref = 40),Tpulse = (1.95 ± 0.03) ns
(npulse = 8). f SamewithTref = (24.04±0.05) ns (nref = 90),Tpulse = (2.05±0.05) ns (npulse = 8)
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Experimental fluctuations in Tref and Tpulse exist and are characterized in the two
following ways. First, when comparing different measurements of Tref and Tpulse
on a single implementation, I observe temporal fluctuations of ±1% that originate
from the experimental non-ideal effects as explained in the next paragraph. Second,
when comparing the measurements of Tref and Tpulse on several different copies of
the same Boolean neuron on the same chip, I obtain a significantly larger error of
±3.5%. The origin of this error is heterogeneity in the propagation delays from logic
element to logic element.

The dynamics of the Boolean neuron is analog-like and fluctuates in pulse shape
and timing. These non-ideal experimental behaviors originate from lowpass filtering,
jitter, and history- and state-dependency of the propagation time delays within logic
gates [59, 60] (see also Sect. 3.1.3). The autonomous logic operation of the Boolean
neurons is limited in speed only by the high-frequency cutoff of the logic gates
and is much faster than common neural processors that are built in the synchronous
operation.

I also investigate the behavior of a simple network consisting of a Boolean neu-
ron with self-feedback that includes a time delay τ (Fig. 8.8a), i.e., Vin(t) = Vout
(t −τ) [61]. The time delay accounts for non-instantaneous transmission times along
network links (for example, the propagation time along axons connecting different
areas of the brain [62]).

The delayed feedback link is realized as shown in Fig. 8.8bwith nτ = 80 cascaded
pairs of inverter gates, each imposing its propagation delay to the path, leading to
a total time delay of τ = (21.3 ± 0.5) ns, as characterized in Fig. 8.6b. The delayed
feedback signal and an initial stimulus are both applied to the Boolean neuron. As
Boolean neurons have only one input, an OR gate is used to combine the two signals.
The OR operation allows both signals to excite the node, but also other logic gate
operations to combine inputs are possible, as discussed later. Here, the system is
operated in its excitable regime.

When no initial stimulus is applied, the feedback system rests in a stable quiescent
state. When a pulse of width (1.6 ± 0.1) ns is injected once, the system generates a
periodic pulse train as shown in Fig. 8.8c. Initializations with multiple pulses result
in similar pulse trains with shorter periods.

The dynamics arise from the delayed feedback. When a pulse is generated by the
system, it travels through the delay line during τ . Then, it is input to the node to
generate another output pulse after the processing time (system response time) h.
Therefore, the period of the pulses is T = τ + h for this coupling scheme, which is
confirmed by the experiment.

This behavior is reproduced for systems with parameters nref = npulse = 2 that
have a shorter refractory period and small pulse widths (Fig. 8.8d) and for systems
with parameters nref = 40 and npulse = 8 that have a longer refractory period
(Fig. 8.8e). However, when the refractory period is increased further to nref = 90 >

nτ = 80, i.e., Tref > τ , self-sustained pulsing dynamics are no longer stable solutions
of the system (Fig. 8.8f). Instead, the system responds only to the initial stimulus and
then returns to the quiescent state. The reason for this behavior is that the delayed

http://dx.doi.org/10.1007/978-3-319-13578-6_3
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feedback of the first response fall in the, for these parameters long, refractory period
of the Boolean neuron, which cannot generate pulses during this time.

8.3.2 Dynamics of Two Delay-Coupled Boolean Neurons

In this section, I study a network of two delay-coupled Boolean neurons with delayed
feedback, as shown schematically in Fig. 8.9a with a hardware description discussed
in Appendix B.7.3. This structure is motivated in Sect. 8.1.4.1. The coupling and
feedback delays are denoted by τ

(1,2)
C and τ

(1,2)
K , respectively.

Here, I study the parameter regime of synchronization between the two nodes,
as modeled with the FitzHugh-Nagumo system in Sect. 8.1.4. Specifically, I test,
whether the network of Boolean neurons leads to the same spiking pattern for the
same relation of delays.

To test the simulation results experimentally, I realize this coupling topology with
a setup shown in Fig. 8.9b. I use nτ,C and nτ,K pairs of inverter gates to create
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Fig. 8.9 a Illustration of two Boolean neurons with delayedmutual coupling and delayed feedback
where delay links are represented as arrows. b Representation with logic elements used for the
coupling. The pink triangles with circles represent inverter gates that are incorporated in numbers
nτ,C and nτ,K to adjust the delay times indicated on the links. Node parameters are npulse = 8
(Tpulse = (2.1 ± 0.2) ns) and nref = 20 (Tref = (5.3 ± 0.2) ns). c Stable output of both nodes
with coupling delays realized with nτ,C = nτ,K = 80 pairs of inverters leading to link delays

τ
(1)
C = (21.6 ± 0.2) ns,τ (2)

C = (21.7 ± 0.2) ns,τ (1)
K = (21.6 ± 0.2) ns,τ (2)

K = (21.4 ± 0.2) ns.

d Same as (c) withnτ,C = 80, τ (1)
C = (22.1 ± 0.2) ns,τ (2)

C = (21.2 ± 0.2) ns,nτ,K = 160,τ (1)
K =

(43.0±0.4) ns, andτ
(2)
K = (43.5±0.4) ns. Electrical cross talk between the node outputs is visible

as small oscillations near the noise floor. Additional logic gates are used to measure the link delays
of this specific implementation
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the delay lines for coupling and feedback satisfying τ
(1)
C ≈ τ

(2)
C and τ

(1)
K ≈ τ

(2)
K ,

respectively; thus, the same number of inverter gates are employed in both cases.
However, these delays are not exactly equal because of heterogeneity in the logic
gates’ propagation delays.

Furthermore, I use two- and three-input logic gates to combine the two delay
lines and connections for external stimuli at the input of nodes. For that purpose, I
use OR gates, so that any pulse at the input of this logic gate will be passed to the
Boolean neuron. However, for larger networks, an N -input logic gate that combines
N inputs to a Boolean neuron can be defined as desired using a 2N -entry look-up
table. This so-called synapse (when the Boolean neuron is considered the soma of
a silicon neuron, see also Sect. 8.1.1) [49] allows for implementing inhibitory and
excitatory connections and also to vary the coupling strength. The coupling strength
is understood as the number of high inputs required for the “synapse” to pass on a
pulse to the “soma” (Boolean neuron).

This setup with delay lines and synapses as described above shows coherent
spiking in Fig. 8.9c, d, when perturbed with a single pulse out of the quiescent state.
The numeric values for the delays satisfyτC ≈ τK ≈ 22 ns (NC = 1, NK =
2) andτK ≈ 2τC ≈ 44 ns (NC = 1, NK = 1) for Fig. 8.9c, d, respectively. With
these two numerical values, I expect fromEq. (8.3) oscillationswith period T of22 ns
and44 ns, respectively. This behavior is found approximately in the experiment,
where in-phase and anti-phase oscillations are seen with periods ofT = (23.0 ±
0.2) ns andT = (44.8± 0.2) ns, respectively. For both sets of parameters, I observe
small mismatch (< 5%) between experiment and theory, likely due to the large
processing time h.

8.3.3 Simulation of the Dynamics of Network Motifs of
Boolean Neurons

I integrate numerically the dynamics of the three experiments of delay-coupled
Boolean neurons with the model of the Boolean neuron introduced in Sect. 8.2.2.
For the first experiment of one Boolean neuron with constant input, I set Vin = Vhigh
in the model, which results in dynamics shown in Fig. 8.10a. The second experi-
ment with delayed feedback of a single node is modeled with Vin(t) = Vout(t − τ)

(Fig. 8.10b). Due to the delayed feedback, the theoretical description is a Boolean
delay equation [63], which requires an initial history function for initialization. Here,
I initialize Vin(t) with a pulse on the interval [−τ, 0]. Finally, the third experi-
ment is modeled in Fig. 8.10c with V (1)

in (t) = (V (1)
out (t − τK) ∨ V (2)

out (t − τC)) and

V (2)
in (t) = (V (2)

out (t − τK) ∨ V (1)
out (t − τC)), where ∨ indicates the OR operation. As

above, I initialize the system with a pulse input to one Boolean neuron.
The dynamics generated by the map is similar to the experiment in the overall

picture, but in detail the waveforms differ, as the experiment shows imperfections,
such as amplitude and timing noise and low-pass filtering effects. To capture these
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effects, I could use a piecewise-linear switching model as proposed by Glass and
collaborators [64–66], introduced in Sect. 2.2.3, and extended in Sect. 4.3.2; this
model could be further extended with stochastic driving terms to capture most of the
non-ideal behaviors of the system.

8.4 Conclusion

In this chapter, I have proposed and built Boolean neurons based on autonomous
Boolean networks and implemented with electronic logic circuits. The Boolean neu-
rons can be controlled in pulse width and refractory period. A single Boolean neuron
responds to a one-time stimulus with a single pulse and, when connected to a time-
delayed network, the Boolean neurons show self-sustained oscillations with phases
and periods that are controlled by the coupling delays.

The Boolean neurons display basic type-II excitable dynamics that is not as rich
as the dynamics from silicon neurons built with custom analog electronic circuits,
which can display dynamics almost identical to biological neurons [49]. However,
my approach has the advantage that Boolean neurons can be implemented with logic
circuits and do not rely on custom analog components.

The logic gates and, hence, also the Boolean neurons operate at time-scales on the
order of nanoseconds, which is six to nine orders of magnitude faster than common
silicon neurons that operate on a timescale of seconds, and a thousand times faster
than the fastest accelerated-time silicon neurons [49].

Not only because of their speed, the Boolean neuron may become invaluable for
neuro-inspired computing, such bio-inspired data-processing and machine learning.
The Boolean neurons may be especially suitable for network-based data-processing
called reservoir computing [52, 53] because of its fast nanosecond time-scale, the
possibility to implement large networks, and the possibility to combine them with

http://dx.doi.org/10.1007/978-3-319-13578-6_2
http://dx.doi.org/10.1007/978-3-319-13578-6_4
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a conventional processor as a system on a Chip (SoC). A processor is needed for a
linear operation at the output of the reservoir.

While I have coupled Boolean neurons in this chapter into very small networks of
only two elements, I explore in the next chapter the dynamics resulting from larger
networks and compare the resulting dynamics to theoretical predictions.
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Chapter 9
Cluster Synchronization in Boolean
Neural Networks

Abstract This chapter focuses on the dynamics of spiking neural networks built
with the Boolean neurons introduced in Chap.8. I first introduce preceding work on
the dynamics of spiking neural networks with realistic neuron models in Sect. 9.1
and discuss the master stability function and the tool of the greatest common divisor
(GCD) in Sect. 9.2. Then, I present experimental results of the dynamics of networks
of Boolean neurons in Sects. 9.3–9.7. Specifically, I show the occurrence of cluster
synchronization, which is a network dynamics where the network can be separated
into groups of synchronized dynamics, where nodes from different groups are not
synchronized. This state is achieved in interconnected ring networks of Boolean neu-
rons (Sect. 9.3), breaks down under certain scalings of internal timescales (Sects. 9.4
and 9.5), and can be controlled using a small number of nodes in the network
(Sect. 9.6) (Results of this chapter are published in reference Rosin et al. Phys Rev
Lett 110:104102, 2013.). These results are also reproduced with a model (Sect. 9.7).
The main contribution of this chapter are:

• realizing experimentally networks of 32 Boolean neurons showing cluster syn-
chronization on a logic chip;

• pointing out limitations—specifically a breakdown—of a common network theory
for cluster synchronization;

• discovering of a control mechanism of cluster network dynamics.

9.1 Dynamics of Spiking Neural Networks

In spiking neural networks, information between neurons is transferred in forms
of spikes, generated, for example, by the Hodgkin-Huxley model or the FitzHugh-
Nagumo model or by the previously introduced Boolean neuron [1]. The temporal
location of spikes is not limited to discrete time steps but can appear at any continuous
time. One fundamental question studied with spiking neural networks is to determine
whether neurons communicate by a temporal code [2]. One answer to this questions
has been given by studies on the central pattern generator.

The central pattern generator is a biological neural network that generates com-
plex spiking patterns (temporal codes) to control (in other words, communicate)

© Springer International Publishing Switzerland 2015
D.P. Rosin, Dynamics of Complex Autonomous Boolean Networks,
Springer Theses, DOI 10.1007/978-3-319-13578-6_9
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(a) (b)

Fig. 9.1 aMeasurement to acquiremotor patterns from the lobster stomachwith electromyographic
(EMG) recording in the behaving animal. b Resulting motor patterns that resemble those recorded
in vivo from the lobster stomach. The patterns have been measured from three pyloric neurons
denoted LP, PY, and PD. Reprinted from Ref. [3]

rhythmic motor behaviors, such as walking, breathing, flying, and swimming [3–5].
For example, Fig. 9.1 shows the motor patterns that control the stomach muscles of
a lobster. Similar patterns are also generated by a neural circuit in vitro [3]. The
generated patterns have been found to depend on the network refractory time [6].
The complex synchronized neural spiking patterns in the central pattern generator
are not yet fully understood.

9.1.1 Zero-Lag Cluster Synchronization

In neural networks, time delays result from the time it takes for neural pulses to
propagate along the axons introducing several tens of milliseconds of latency, which
is significantly larger than the duration of the action potential (�1ms) [7]. Time
delays have been found to influence the dynamics considerably and to increase the
complexity of numerical simulations and analytical studies of the systems to a large
extent. Consequently, effects due to time delays have attracted great attention in the
studies of neural networks [8–13]. Astonishingly, even between distant parts of the
brain that involve large signal transmission delays, synchronization of neural activity
without a time lag has been observed [14–18]. This striking dynamical phenomenon
is known as zero-lag synchronization in time-delay networks [8–10, 12, 14, 19–24].
Synchronization of neural activity is important because, on one hand, it has been
shown to lead to pathological states, such as Parkinson’s disease or epilepsy; on the
other hand, it has also been shown to be beneficial for recognition, learning, or neural
information processing [25, 26].

An extension of zero-lag synchronization is zero-lag cluster synchronization,
where the network separates into groups of neurons, where all neurons in a group are
synchronized with each other, but neurons of different groups are not synchronized.
This is illustrated in Fig. 9.2 with a network of three neural populations, where the
spiking dynamics are separated into two independent synchronized clusters. Specifi-
cally, the neurons in population 1 and 3 are synchronizedwith each other and neurons
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Fig. 9.2 Visualization of a network of three neural populations, modified fromRef. [19]. Each pop-
ulation includes multiple neurons, shown as circles with multiple connections within a population
and a few long-range connections to other populations

in population 2 are synchronized, but neurons in population 2 are not synchronized
with neurons from population 1 and 3. With this network, Vicente and collaborators
have shown dynamical relaying, which is a special case of cluster synchroniza-
tion, where population 2 relays the synchronization of populations 1 and 3 without
being synchronized with them [19]. Group synchronization is a generalization of
cluster synchronization where nodes of different dynamics show synchronization in
groups [21].

9.1.2 Neural Topologies of Connected Ring Networks

Studies on neurological networks, such as in C. elegans, found recurring topological
structures of nodes assembled in loops (or rings)with directed connections [27]. Kan-
ter and collaborators have shown that such networks of connected ring structures can
show cluster synchronization for a wide variety of node dynamics, such as excitable,
periodic, and chaotic dynamics [13, 28–30]. A typical network of connected loops
is shown in Fig. 9.3, which includes 32 nodes that are assembled in four directed
loops of 8, 10, 12, and 16 nodes. The loops are interconnected because several nodes
belong to multiple loops.

9.2 Theoretical Tools to Determine Cluster
Synchronization in Networks

The large interest in these problems has motivated researchers to develop analytical
tools for network synchronization. Two of these tools are themaster stability function
and the theory of the greatest common divisor (GCD) for cluster synchronization in
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Fig. 9.3 a A network of several connected loops with unidirectional, time-delay links indicated by
arrows. The circles represent network nodes, which are labeled to identify them in the following
figures. The node that receives the initial pulse is also indicated. b, c In the electronic realizations,
multiple input connections are combined by 2- and 3-input OR gates before sending them to the
Boolean neuron that has only a single input

connected ring networks. While the first tool is very general and widely known, the
second approach is the tool of choice in this chapter because of its simplicity and
because it is specific to cluster synchronization in networks with time-delay links.

9.2.1 Master Stability Function for Network Synchronization

In 1998, Pecora and Carroll developed the master stability function, which is a
mathematical tool that separates the dynamics of identical nodes from the network
topology [31, 32]. The master stability can be solved to determine which topologies
have a stable synchronized state. The master stability approach has been generalized
to study systemswith constant delay along the links [33–36] and to assess the stability
of group and cluster synchronization [21, 37].1

9.2.1.1 Linear Stability Analysis of Networks

The master stability function is a tool to determine the stability of the synchronous
solution of networks of N identical nodes with time delay τ [31, 38]

d

dt
xi (t) = f [xi (t)] +

N∑

j=1

gi j h
[
x j (t − τ)

]
, (9.1)

1 This section is written in accordance with Ref. [38].
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where the xi ∈ R
n with the dimension n of individual nodes represent the state of

i = 1, 2, . . . , N nodes, f (·) : Rn → R
n represents the local dynamics of each node,

gi j ∈ R is the coupling matrix that determines the topology and strength of the links,
and h(·) : Rn → R

n is the coupling function that encodes which components of xi

are coupled. A synchronized solution x1 = x2 = . . . = xN = xs can only exist,
if all nodes evolve according to the same differential equations in this state, which
requires

N∑

j=0

gi j = σ (9.2)

for all i , referred to as equal row sum with a constant σ . The synchronized solution
evolves then according to

d

dt
xs(t) = f [xs(t)] + σh [xs(t − τ)] , (9.3)

which is called the synchronization manifold (see also Sect. 4.1.2).
I calculate the stability of the synchronized solution by considering the temporal

evolution of small perturbations ξi (t) on the synchronous solution for all individual
systems

xi (t) = xs(t) + ξi (t). (9.4)

When all ξi (t) transverse to the synchronization manifold decay over time, the syn-
chronous solution is stable under small perturbations. To find the dynamics of ξi (t),
I insert Eq. (9.4) into Eq. (9.1) and linearize, leading to

d

dt
ξi (t) = D f [xs(t)] ξi (t) +

N∑

j=1

gi j Dh [xs(t − τ)] ξi (t − τ), (9.5)

where D f and Dh are the Jacobians. In the following, it is convenient to rewrite
Eq. (9.5) in a vector format as a vector of vectors, using

�(t) = (ξ1(t), ξ2(t), . . . , ξN (t)) , (9.6)

leading to

d

dt
�(t) = IN ⊗ D f [xs(t)]�(t) + g ⊗ Dh [xs(t − τ)]�(t − τ), (9.7)

where ⊗ is the direct product, IN is the N -dimensional identity matrix, g = (
gi j

)
.

The coupling matrix g can be diagonalized when bidirectional links are assumed,
leading to a symmetric g. On the other hand, network topologies with unidirectional

http://dx.doi.org/10.1007/978-3-319-13578-6_4
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links do not necessary allow this step. Using a unitary transformation U , g can be
diagonalized with its eigenvalues on the diagonal

UgU−1 = diag(σ, γ1, γ2, . . . , γN−1). (9.8)

The first eigenvalue of g is the row sum σ corresponding to the eigenvector
(1, 1, . . . , 1) that describes the longitudinal dynamics in direction of the synchro-
nization manifold, also known as the Goldstone mode. The remaining eigenvalues
γk are called the transverse eigenvalues of g. The unitary matrix U can be used
to block-diagonalize Eq. (9.7), where each of the N eigenvalues corresponds to an
n × n block in a block-diagonalization of the nN × nN matrix g ⊗ Dh. The block-
diagonalization only affects the last term in Eq. (9.7) because the other two terms
are already block diagonal. This leads to the following N equations

d

dt
ξ(t) = D f [xs(t)] ξ(t) + σ Dh [xs(t − τ)] ξ(t − τ), (9.9)

d

dt
ξ(t) = D f [xs(t)] ξ(t) + γk Dh [xs(t − τ)] ξ(t − τ), (9.10)

with k = 1, . . . , N − 1, where ξ is the dynamics of the perturbations in the direction
corresponding to the eigenvalues σ and γk given by the network topology g. Specif-
ically, ξ in Eq. (9.9) corresponds to the growth of perturbations longitudinal to the
synchronizationmanifold and hence does not determine stability of the synchronized
network state, but determines the temporal complexity of the synchronized state.

The N − 1 Eq. (9.10), on the other hand, determine the stability of the synchro-
nized state transverse to the synchronization manifold. The synchronized state is
stable if ξ decays for all k, so that the maximum Lyapunov exponent calculated
from the variational Eq. (9.10) is negative for all eigenvalues γk (see also Sect. 4.1.1
for the notion of the Lyapunov exponent). The Lyapunov exponents are calculated
numerically for the different γk of the network topology.

9.2.1.2 Master Stability Function

The breakthrough idea of Pecora and Carroll was to determine the maximum Lya-
punov exponent of Eq. (9.10) for a regime of eigenvalues γk = α + iβ independent
of the network topology according to the variational equation

d

dt
ξ(t) = D f [xs(t)] ξ(t) + (α + iβ)Dh [xs(t − τ)] ξ(t − τ), (9.11)

resulting in the function 	(α + iβ), which is calculated numerically for a large and
finely sampled domain inC. Then, the eigenvalue spectrum γk of any topology g can
be used to test 	(γk) < 0 for all k. If this is the case, the synchronized state is stable
for this specific topology. Therefore, for any topology, the determination of stability
is simple once the master stability function is calculated.

http://dx.doi.org/10.1007/978-3-319-13578-6_4
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9.2.1.3 Assumptions and Limitations of the Master Stability Function

The approach with the master stability function makes the following assumptions:

• The system is of the form of Eq. (9.1), which, for example, does not allow for non-
linear interaction of coupling and system dynamics or history- or state-dependent
delays;

• All oscillators, link time delays, and coupling functions h(·) are identical;
• The coupling topology g has equal row sum and is diagonalizable;
• The perturbations ξ are small so that the linear approximation holds.

These assumptions limit its applicability to real-world networks, which are often not
homogeneous [31]. In my experiments, for example, some of the assumptions above
are not fulfilled. First, the experiment includes heterogeneity in the time delays and
node dynamics. Second, the topologies in my study are not diagonalizable. Consider,
for example, the topology in Fig. 9.3, where nodes with label 25, 29, 31 are all driven
by node 10. Therefore, there will be three rows in g that are identical, which limits
the rank of g; hence, g is not diagonalizable. Third, the system equation cannot be
converted in the form of Eq. (9.1) because the model of the Boolean neurons includes
a switching condition similar to a Boolean delay equation (see Sect. 8.2.2).

Because of these limitations, I use in this chapter a different approach with the
greatest common divisor, which is tailored for cluster synchronization states in time-
delay connected ring networks as shown in Fig. 9.3.

9.2.2 Greatest Common Divisor for Cluster Synchronization

Kanter and collaborators showed that connected ring networks as discussed in
Sect. 9.1.2 have a stable cluster synchronized state when the dynamics of the nodes
is excitable and the links have time delays τ that are all equal [13, 28–30]. Under
this assumption of homogeneous link time delays and homogenous node dynamics,
the network relaxes to a cluster synchronization state when initialized with a single
stimulus to one node (a pulse). The number of clusters nC is given by the greatest
common divisor (GCD) of the number of nodes in each loop li (i = 1, . . . , nL with
the number of loops nL )

nc = GCD(l1, l2, . . . , lnL ), (9.12)

and the resulting period of the spiking oscillations is given by

T = τnc. (9.13)

Therefore, the theory of the GCD allows to predict the dynamics of the network from
the network topology alone and is a non-local criterion [13].

http://dx.doi.org/10.1007/978-3-319-13578-6_8
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The theory of the GCD originates from the distribution of one initial pulse in
the network via identical, unidirectional time-delayed links. Nodes with multiple
inputs combine signals from multiple loops in the network that each have different
associated time delays. For example, in Fig. 9.3, node 13 has two inputs originating
from loops of 12 and 16 nodes, associated with time delays 12τ and 16τ with the
time delay of a single link τ , respectively. When the link time delays τ are identical,
the delays in a ring are integer related according to the number of nodes, so that
pulses have a fixed spacing given by the GCD. This rule can be derived by following
the generation and combination of pulses in such ring networks [13].

The theory of the GCD, however, does not account for heterogeneity in the link
time delay. Numerical simulations confirm that it is robust under small amounts of
heterogeneity below the characteristic timescale of the node dynamics [13]. In addi-
tion, local variations of the coupling strength and noise can affect the synchronization
patterns of the network, leading to the possibility of a breakdown of the non-local
criterion of the GCD for the description of the synchronization state [39]. The theory
of theGCDhas also been confirmed experimentally with biological neurons obtained
from newborn rats that are coupled synthetically with ideal computer-mediated con-
nections [30].

The theoretical approaches with the master stability function and the GCD have
helped to uncover and understand the diverse collective behaviors in networks of
excitable systems, such as bursting, cluster synchronization, and phase transitions
[12, 13, 19, 21, 40]. These findings have also been confirmed by simulations with
paradigmatic models for excitability, such as the one proposed by FitzHugh and
Nagumo [41, 42]. Many models and theoretical approaches, however, do not fully
integrate experimental imperfections and heterogeneities like noise and system para-
meter variation, which may have significant impact on the dynamics.

9.3 Observation of Cluster Synchronization in Boolean
Neural Networks

I realize networks of Boolean neurons with a setup introduced in Sect. 8.2.1 and a
topology of interconnected rings discussed in Sect. 9.1.2 with a hardware description
discussed in AppendixB.7.4. Boolean neurons are connected with directed time-
delayed links, where link time delays τ = nτ τLG are realized with nτ cascaded
inverter gates as discussed in AppendixA. When nodes have multiple input connec-
tions, these signals are combinedwith electronic equivalents of neurological synapses
[43]. I implement the electronic equivalent of an excitatory synapse using an OR gate
so that any of the inputs can excite the node as shown in Fig. 9.3b, c.

I study cluster synchronization in the network topology shown in Fig. 9.3 with
N = 32 Boolean neurons assembled in four directed loops of 8, 10, 12, and 16
elements. First, I consider the case of a separation of timescales with node refractory
times of Tref = (5.6 ± 0.2) ns. The i th loop has a propagation time Ti , given by

http://dx.doi.org/10.1007/978-3-319-13578-6_8
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Fig. 9.4 Network dynamics of a 2-cluster state with node parameter npulse = 8[
Tpulse = (2.2 ± 0.1) ns

]
, nref = 20 [Tref = (5.6 ± 0.2) ns] and link delay times nτ = 60

[τ = (16.7 ± 0.6) ns] after initial stimulationof onenodewith onepulse ofwidthw = (1.6±0.1) ns.
The inset is a replica of the topology of the network, where nodes are colored by cluster. a The
output waveform of four nodes in the network. Input-output gates are used for the readout with the
oscilloscope (8GHz analog bandwidth, 40GSa/s sampling rate). b Raster diagram of the network,
where each point represents the temporal occurrence of a spike with a 2 ns resolution. The network
is realized using an Altera Cyclone IV FPGA (EP4CE115F29C7N)

Ti = Li (τ + δ) + �i , (9.14)

where Li is the number of nodes in the loop, τ = (16.7 ± 0.6) ns is the delay of a
single link, δ is the processing delay of one node, and �i is the average time delay
heterogeneity in loop i . I measure the maximum heterogeneity in the network to be
� = maxi, j (

∣∣�i − � j
∣∣) = (2.8 ± 0.1) ns as explained in Appendix A.2.

With a timescale separation satisfying τ > Tref > �, the experimental network
displays two near zero-lag synchronized clusters as shown in Fig. 9.4a. The wave-
forms of four nodes, two out of each cluster, show coherent spiking with period
Tcluster ≈ GCD · τ = 2τ . This behavior is also predicted by the GCD theory from
the number of elements in each loop, as [13]

GCD(8, 10, 12, 16) = 2. (9.15)

The spiking dynamics of the entire network is shown in the raster diagram in
Fig. 9.4b, where each dot represents a spiking event, subject to a discretization error
of ±1 ns. The first (last) 16 elements, as also shown in the inset, are in near zero-lag
synchronization and belong to a cluster. The variation (±4 ns) in spike generation
time between nodes is due to differences in the link time delays and measurement
error that originates from signal propagation delays on the FPGA. The dynamics
is considered near zero-lag synchronization because the variation in spike times is
small compared to the oscillation period Tcluster ≈ 33.4 ns.
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To my knowledge, at the time of the initial publication of this work in Ref. [1],
this network was the largest experimentally implemented complex network showing
cluster synchronization that operates without computer assistance, which is com-
monly used to manage the network coupling in experiments [30, 43, 44]. This
illustrates that the setup is well-suited to build large networks compared to other
experimental approaches [29]. Since then, multiple realizations of large-scale exper-
imental networks have been realized using networks of optoelectronic, chemical, and
mechanical oscillators as discussed in Sect. 7.1.4. In the corresponding Chap. 7, it
is also discussed that my approach has various advantages over these experimental
networks, as it offers flexibility in the network topology and the coupling function
and does not require the mediation of a computer.

9.4 Breakdown of Cluster Synchronization in Boolean
Neural Networks

Network dynamics not predicted by the non-local theory of the GCD appear in the
network when the separation of timescales is given by τ > Tref > �. Timescales
are re-ordered by adjusting the value of the refractory time of the Boolean neurons.
In this section, I study short refractory times Tref on the order of the heterogeneities
� of the link time delays.

When I decrease the refractory time to a value of Tref = (2.8 ± 0.1) ns, the
network dynamics change. Instead of cluster synchronization with oscillations on
the order of τ , the network displays fast, incoherent spiking dynamics with inter-
spike intervals on the order of Tref , as shown in the waveform and raster diagram
of Fig. 9.5. For easy comparison with the previous figure, the time axis is kept the
same. The new dynamical state generates excitations constantly, leading to pulsing
dynamics with high frequencies close to the maximum frequency allowed by the
Boolean neurons, given by 1/Tref .

The breakdown is caused by heterogeneity in the loop propagation times at
the high-in-degree nodes. With Eq. (9.14), a maximum time difference � =
maxi, j (

∣∣�i − � j
∣∣) = (2.8 ± 0.1) ns exists in the propagation times Ti of the net-

work loops and leads to a mismatch of the arrival times of pulses. When � < Tref ,
the refractory time can compensate for the mismatch, by blocking pulses that arrive a
time� after the first pulse during every period of the clusters Tcluster. In this case, the
spiking dynamics stays coherent. Otherwise, when � > Tref , the pulse that arrives a
time difference � after the first pulse will trigger additional pulse trains, leading to
incoherent high-frequency spiking.

http://dx.doi.org/10.1007/978-3-319-13578-6_7
http://dx.doi.org/10.1007/978-3-319-13578-6_7


9.5 Altered Cluster Synchronization Patterns in Boolean Neural Networks 163

0 50 100 150 200 250

time (ns)

0

8

16

24

32

no
de

 #
0
1

0
1

0
1

0
1

V
   

  (
V

)
ou

t 
i

i=25

i=17

i=10

i=1

(a)

(b)

Fig. 9.5 Same as Fig. 9.4, except with nref = 10 (Tref = (2.8±0.1) ns), showing a desynchronized
state (synchronization breakdown) of the network dynamics
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Fig. 9.6 Same as Fig. 9.4, except with nref = 140 (Tref = (39 ± 2) ns), showing four clusters in
zero-lag synchronization (4-cluster state)

9.5 Altered Cluster Synchronization Patterns in Boolean
Neural Networks

Besides the breakdown for small Tref , the cluster synchronization patterns are also
affected for large Tref . When the refractory time is increased to Tref = (39± 2) ns ≈
2.3τ , the network displays four synchronized clusters (4-cluster state) instead of the
2-cluster state that is inferred from the topology and observed in Fig. 9.4, as shown
in the waveforms and raster diagram in Fig. 9.6.

To understand this behavior, I consider the maximum output frequency of the
Boolean neuron, given by 1/Tref . When the predicted oscillation frequency, given
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by 1/Tcluster ≈ 1/(GCD · τ), is above the maximum frequency 1/Tref , the network
cannot show the predicted cluster state and the dependency on Tref comes into effect.
Specifically, stimuli corresponding to higher frequency oscillations (T < Tref ) still
appear at nodes with a high in-degree, but they are suppressed because these stimuli
fall into the refractory periods of earlier excitations. Thus, the GCD has to be recal-
culated by neglecting some loops, using only the loops that lead to a GCD larger than
Tref/τ . Because this pulse-blocking mechanism is based on short oscillation periods,
the loops that are effective for the cluster dynamics and used for the calculation are
those that lead to the smallest value of the GCD that is greater than Tref/τ , i.e., that
lead to the shortest period greater than Tref . Therefore, with the size of loops Li , the
number of clusters is given by

min{Li }∈Network
[GCD({Li })] : GCD({Li }) > Tref/τ. (9.16)

This extended criterion,which combines considerations fromboth the topology (non-
local) and timescale-separation (local), describes successfully the stable synchroniza-
tion patterns observed in Fig. 9.6. From the topology in Fig. 9.3, GCD(8, 10, 12, 16)
= 2 < Tref/τ ≈ 2.3, so that Eq.9.16 predicts that a loop is dynamically blocked due
to the large refractory period, so that it does not contribute to the network dynamics.
Hence, a loop has to be removed from the calculation, leading to the next larger GCD
value of GCD(8, 12, 16) = 4 > Tref/τ ≈ 2.3, which corresponds to the experimen-
tal observation of a 4-cluster state. The loop leading to the minimum value of the
GCD that satisfies the conditions GC D > Tref/τ is the one that is dynamically
pruned, which is the loop of 10 nodes. Surprisingly, it is not the shortest loop with 8
nodes but the loop with 10 nodes that first becomes dynamically pruned and removed
from the GCD calculation first.

The constraint given by Tref depends on the network topology. For example, a
network with predicted zero-lag synchronization (1-cluster state) transitions to a
different cluster state already when Tref/τ > 1. When Tref is further increased, more
andmore loops lose their effect until the refractory time is longer than the propagation
delay through the largest loop; then, spiking dynamics is no longer self-sustained
and the network relaxes to the quiescent state.

9.6 Control of Synchronization Patterns in Boolean Neural
Networks

A global adjustment of the refractory time Tref of all nodes influences the network
dynamics substantially. However, similarmodification of the synchronization pattern
to those of Sect. 9.5 can be achieved by adjusting the refractory time of only a
selected groupof neurons in the network.Hence, local control over the global network
dynamics is possible.
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I notice that the influence of the refractory time on the network dynamics is most
prominent at the nodes with high in-degree. This motivates me to only adjust the
refractory times of the nodes with in-degree greater than one, which represents a
simple degree-correlation [45].

First, I investigate the network dynamics for short refractory times. I set the
refractory times of nodes to Tref = (2.8 ± 0.1) ns, a value for which the break-
down of cluster synchronization is observed. When I increase the refractory times
of the two nodes with an in-degree greater than one [node 13 and 30 in Fig. 9.3a] to
Tref = (5.6 ± 0.2) ns, the stable synchronization patterns of two clusters reappear
as a solution. An initial pulse sent to this network in the quiescent state leads to a
2-cluster synchronization pattern similar to that observed in Fig. 9.4.

Second, I investigate network dynamics for large refractory times. I set the refrac-
tory times of all nodes to Tref = (5.6±0.2) ns, a value for which a 2-cluster synchro-
nization state is observed. When I now increase the timescales of the two nodes with
an in-degree greater than one to Tref = (39±2) ns, the stable synchronization pattern
changes to a 4-cluster state, which I have observed in Fig. 9.6, when increasing the
timescales of all nodes.

Both cases allow for the control of the synchronization patterns locally by a small
fraction of the network nodes by adjusting the refractory time of only 2 out of 32
nodes.

9.7 Numerical Simulation of Boolean Neural Networks

The network dynamics is analyzed theoretically using the Boolean map derived in
Sect. 8.2.2. Themodel focuses on the pulse timing of theBoolean neuron by including
the mechanism of pulse generation and the refractory period.

I integrate numerically the dynamics of the three experiments of delay-coupled
Boolean neuron with the model of the Boolean neuron introduced in Sect. 8.2.2.
For the specific ring network, I distinguish between nodes by their in-degree. For
nodes with in-degree of one, the input V ( j)

in (t) is given by a delayed version of the

output of the connected node V (i)
out(t − τ (i, j)) with time delay τ (i, j). For the two

nodes with in-degree greater than one, the input is pre-processed with an OR gate, as
shown in Sect. 9.3, leading to V (13)

in (t) = V (20)
out (t −τ (20,13))∨V (22)

out (t −τ (22,13)) and

V (30)
in (t) = V (9)

out (t −τ (9,30))∨V (13)
out (t −τ (13,30))∨V (15)

out (t −τ (15,30)), corresponding
to the topology in Fig. 8.7b.

The link time delays τ (i, j) = (16.7± 0.6) ns are chosen randomly from a normal
distribution with mean of 16.7 ns and standard deviation σ = (0.6 ns)/3 = 0.2 ns.
This value of σ = 0.2 ns is adjusted to give the best fit with the experimental data.
The link time delays have, in addition to heterogeneity, a temporal fluctuation that is
a factor of three smaller than the error due to heterogeneity and is hence not included
in the model. Similar to the link time delays τ (i, j), the refractory periods Tref and the

http://dx.doi.org/10.1007/978-3-319-13578-6_8
http://dx.doi.org/10.1007/978-3-319-13578-6_8
http://dx.doi.org/10.1007/978-3-319-13578-6_8
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Fig. 9.7 Network dynamics calculated from the map for a Tref = (5.6 ± 0.2) ns, b Tref =
(39 ± 2) ns, and c Tref = (2.8 ± 0.1) ns. The Boolean waveform of each node is shown versus
time. The map is evaluated with a time step � = 100 ps, starting with an initial pulse to node 1,
and shown after a transient time of 3µs. The link time delays are τ (i, j) = (16.7 ± 0.6) ns

pulse widths Tpulse = (2.2 ± 0.1) ns of the nodes are also obtained from a normal
distribution with a mean and standard deviation given by their experimental values.

Figure9.7 shows the waveforms generated by the map of the 32 nodes as labeled
in Fig. 8.7b for different refractory periods Tref as discussed in the following. The
nodes display pulses between Vlow and Vhigh.

Figure9.7a, b show the waveforms for Tref = (5.6 ± 0.2) ns and Tref = (39 ±
2) ns, corresponding to Figs. 9.4 and 9.6. In the theoretical description, the nodes that
belong to a cluster generate pulses at approximately the same time, corresponding
to near zero-lag cluster synchronization with two and four clusters, respectively,
as observed in the experiment, but with no amplitude noise. The map displays the
essential features of the experiment, namely the zero-lag cluster synchronization
patterns and the period of the oscillations.

For a value of the refractory phase of Tref = (2.8 ± 0.1) ns, a fast spiking state
that is qualitatively similar to the experimental dynamics is also obtained in the
simulations as shown in Fig. 9.7c in comparison with Fig. 9.5. The map displays
unsynchronized dynamics with a period on the order of Tref . The period is, however,
shorter than in the experiment because, in the model, the experimental processing
time h is neglected (the period from the map calculation is Tmap ≈ 3.0 ns, whereas
the period in the experiment is Texp ≈ 4.5 ns).

http://dx.doi.org/10.1007/978-3-319-13578-6_8


9.7 Numerical Simulation of Boolean Neural Networks 167

The Boolean map generates dynamics with the essential features of the experi-
mental time series. Differences between experiment and simulations are due to the
neglected processing time h, electronic noise, the degradation and low-pass filtering
effects in the experiment.

9.8 Conclusion

In this chapter, I have connected Boolean neurons into a network with a topology
consisting of interconnected rings and have used the resulting networks to study a
breakdown and the possibility of control of cluster synchronization dynamics. Cluster
synchronization patterns change when the refractory time of the nodes is larger than
the link time delays or smaller than the heterogeneity of the link time delays. For
large refractory times, cluster synchronization patterns are modified, and, for short
refractory times, cluster synchronization breaks down to an incoherent fast-pulsing
state. In both cases, I identify the mechanism leading to the transition and, in the
first case, I have put forth a modified GCD criterion that includes the constraints
imposed by the refractory time. The synchronization patterns can be controlled by
the refractory time of a small fraction of nodes, identified by their in-degree.

The findings in this chapter have two fundamental implications for neuroscience.
First, the dynamics of neural networks does not solely depend on the global topology
as suggested by Kanter and collaborators [13, 30]. I find that, depending on the
timescale of the nodes, some links are dynamically pruned, leading to a new effective
topology with altered synchronization patterns, as described by Eq. (9.16). Second,
the driver nodes relevant for control can be identified easily by their large in-degree
and allow one to control the global network dynamics locally. This is similar to a
recent study on the controllability of networks that predicts that the number of driver
nodes is given by the network’s degree distribution [46].

Various synchronization patterns and more general dynamics are expected for
high in-degrees of nodes and for a different choice of the synapses than an OR gate.
For example, the flexibility of the logic function will allow implementing inhibiting
connections. One step in this direction is the study of synchronization patterns of
a network of 80 Boolean neurons that are connected in four coupled populations,
which is described in Appendix C.3.
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Chapter 10
Summary and Outlook

In this thesis, I study the dynamics of autonomous Boolean networks, which are
networks of nodes that executeBoolean functions in continuous timewithout external
clocking. In these systems, link time delays, heterogeneity, and non-ideal effects play
an important role. Starting from existing work on autonomous Boolean network with
chaotic dynamics implemented on a printed circuit board, I integrate this existing
design on an electronic chip, which allows for faster and cheaper design cycles and
much larger networks.

I study chaotic dynamics in a particularly simple autonomous Boolean network
with a topology of only one node with time-delayed feedback, which I design based
on guidelines that I develop based on previous studies. This autonomous Boolean
network is the building block of a resource-efficient network that I explore as a high-
speed physical randomnumber generator, which is, tomy knowledge, nowused at the
National Institute of Standards and Technology (NIST) for quantum communication
experiments and will be developed further within a US Army research grant between
Duke University and a small company.

I also use autonomous Boolean networks to develop dynamical systems. I first
study a periodic Boolean oscillator that is based on a delayed feedback. This periodic
oscillator, however, does not include an adjustable coupling strength for the coupling
to external signals. As a solution, I study a periodic oscillator that is similar to phase-
locked loops, used for clock synchronization, and I find that an internal parameter
can be identified with a coupling strength by measuring the synchronization regions.
Second, I study a Boolean excitable system, which is a silicon neuron with spiking
dynamics with several advantages over existing silicon neurons, such as high speed.

I couple these generic dynamical systems into large networks. Because of large
resources on my experimental platform with about 100,000 logic gates, I can study
network sizes that are difficult to realize with traditional experimental setups. In
a network of periodic oscillators, I find so-called chimera states and a dynamics
I discovered called resurgence of chimera states. I find that these networks show
complex transient dynamics towards synchrony with a power-law scaling between
transient time and phase space volume.

© Springer International Publishing Switzerland 2015
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In an artificial neural network, I study so-called cluster synchronization states
in interconnected ring networks that generate synchronized spiking patterns. For
this dynamics, I find that an established theory tool breaks down when an internal
timescale of neurons is smaller than the heterogeneity of link time delays in the
network. I also discover a control strategy for the dynamics of neural networks.

Futureworkwill focus on network-based computing approaches, such as reservoir
computing, where a fixed high-dimensional dynamical system, such as a network,
processes input information. A linear output layer is then trained to read the reservoir
and map the dynamics to a desired output. For such a design, spiking neuron models
and delay-line based processors, similar to the Boolean neurons and Boolean oscil-
lators studied here, have already been used successfully in computer simulations for
speech recognition and time series prediction [1–4]. Autonomous Boolean networks
are especially suited for reservoir computing because of their fast timescale, the
possibility to realize large networks, and because they can be implemented together
with central processing units (CPUs) for the linear readout layer, forming a compact
system-on-a-chip (SoC) device.
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Appendix A
Delay Lines Realized with Electronic
Logic Circuits

This appendix discusses the realization of time-delay lines with unclocked logic
circuits, in particular with cascaded copier and inverter logic gates. In Sect. A.1,
I discuss the method of implementing delay lines. In Sect. A.2, I use delay lines to
measure the gate propagation time. In Sect. A.3, I discuss the difference between
copier and inverter-based delay lines. In Sect. A.4, I measure the gate propagation
delay of XOR and multiplexer logic gates.1

A.1 Implementation of Delay Lines

Delay lines in electronic logic circuits can be implemented with various methods,
such as by separating logic gates spatially as discussed in Sect. 3.3.2 or by discretizing
time and saving the Boolean state to memory [2]. Here, I implement delay lines by
utilizing the propagation delay of logic gates.

The propagation time τLG of CMOS-based logic gates is caused by internal
capacitors that take a finite time to be charged and discharged before the output
signal reaches the Boolean level [3].

I construct delay lines by cascading logic gates as shown inFig.A.1a. The resulting
time delay for a signal that travels through n cascaded logic gates is then

τn = nτLG, (A.1)

where τLG is the delay of a single logic gate including the delay of interconnect
between two logic gates.

The logic gates are configured to use a single input and single output, so that they
can implement either the Boolean identity or inversion operation, corresponding to a
copier or inverter gate. For most implementations of delay lines, I use inverter-based
delay lines, which have the advantage of averaging the asymmetry in rise and fall

1 The method of constructing delay lines is published in Ref. [1].
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times as discussed in Sect. A.3. However, this makes it necessary that n is an even
number to build non-inverting delay lines, which doubles the increments of adjusting
time delays. On the other hand, copier-based delay lines are useful when rectification
due to differences in rise and fall times are wanted.

Thehardware description for an inverter-baseddelay line canbe found inSect. B.1.

A.2 Measurement of the Gate Propagation Delay

In this section, I show the linear relation in Eq. (A.1) and obtain the constant τLG
and the heterogeneity in τLG. For this, I measure the time delay τn resulting from a
delay line of n cascaded inverter gates for different n.

Figure A.1b shows the related setup that includes the delay line and an XOR logic
gate. A voltage signal Vin is sent into the delay line, where Vin describes a single
Boolean transition. The output of the delay line is then given by Vτ (t) = Vin(t − τn)

as a delayed version of the input voltage; hence, the two voltages differ in Boolean
states for a time period given by the delay τn . I measure this difference of Boolean
states with an XOR logic gate, which outputs a high Boolean voltage (VXOR = VH )
when the two input voltages differ [see its look-up table in Fig. 2.2a]. The resulting
output voltage VXOR of the XOR gate is a pulse with a width corresponding to the
length of the delay line, which I measure with an external oscilloscope.
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Fig. A.1 a Construction of a delay line with cascaded inverter gates. b Circuit to measure the time
delay. cMeasurement results of the time delay as a function of n (dots) and fit according to Eq. (A.1)
(line)
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I measure the full width at half maximum (FWHM) of the resulting pulse in
VXOR for different n. The generated data, shown in Fig. A.1c, describes the linear
relationship of Eq. (A.1) with the best fit value τLG = 0.28 ± 0.01 ns and an error
estimate obtained from the goodness of the fit.

The propagation delay can also be obtained by constructing a ring oscillator and
measuring the resulting frequency, as described in Sect. 6.2.5.1.

A.3 Difference Between Copier- and Inverter-Based Delay
Lines

To understand the difference between copier and inverter-based delay lines, I send
a periodic signal into copier and inverter logic gates and measure the duty cycle of
input and output. The duty cycle of a Boolean signal is defined as

D = TH

T
, (A.2)

where the signal spends a time TH and TL in the Boolean high and low state, respec-
tively, and hence the period is T = TH + TL .

After the signal propagates through a logic gate, the time spent in the high and
low Boolean voltage can change (T̃H = TH + r , T̃L = TL − r ) due to a difference
in rise and fall time of r , which I call pulse lengthening, leading to an altered duty
cycle of

D̃ = TH + r

T
. (A.3)

I find that a single logic gate leads to pulse lengthening of r = 24 ps for copier
logic gates. Figure A.2 shows the output waveform of copier-based delay lines of
different length n with a periodic input signal. The pulse lengthening effect increases
with n, resulting in a duty cycle of

D̃ = TH + nr

T
. (A.4)

When the signal propagates through long enough copier-based delay lines, pulses
grow so much that the duty cycle becomes D = 1, pulses merge, and the oscillations
are pruned. Then, the output stays constantly in the Boolean high state even though
the input is oscillatory as shown in Fig. A.2d. I utilize this effect in Chap. 6 as a
low-pass filter in phase-locked loops.

For cascaded inverter logic gates, on the other hand, the pulse lengthening cancels
out in every pair of two inverter logic gates. Therefore, chains of inverter gates display
a much smaller change in pulse width that I measure to be only r = ±1.4 ps per pair
of inverter logic gates (depending on the specific realization), which is more than two

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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Fig. A.2 Pulse lengthening for an input signal of frequency 9MHz and duty cycle 96.4%. The
input signal shown in (a) propagates through 50, 100, and 150 copier gates, leading to output signals
shown in (b), (c) and (d), respectively

orders of magnitude decreased and more than one order of magnitude smaller than in
cascaded copiers. This value of r results from heterogeneity in the pulse lengthening.

A.4 Delay of Different Logic Gates

The propagation delay of inverter gates is measured in Sect. A.2 by comparing a
Boolean transition and its delayed version with an XOR gate. The delay can also be
measured by constructing ring oscillators as described in Sect. 6.2.5.1 andmeasuring
the frequency. With this second method, I measure the propagation delay of different
logic gates used in this thesis as shown in Table A.1.

Buffer and inverter gates with an in-degree of one have the shortest gate prop-
agation delay. For gates with higher in-degree, the propagation delay increases,
which is because of longer paths in the look-up table block for larger in-degrees
(see Sect. 3.2.1). Note that the measurement in Sect. A.2 leads to a propagation
delay of inverter logic gates of τLG = 0.28 ± 0.01 ns, which is 7% higher than the
measurement with ring oscillators. This difference is mainly due to the number of
logic gates used to construct delay lines. In this section, the delay lines are constructed
with 16 logic gates, fitting into a single logic-array block (LAB), hence excluding
the delay of wire connections between LABs. On the other hand, the measurement
in Sect. A.2 included 100 logic gates to average heterogeneity (see also Sect. 3.2.1).

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_3
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Appendix A: Delay Lines Realized with Electronic Logic Circuits 177

Table A.1 Measurements of the period generated by a ring oscillator that includes a ring of 15
logic gates of the type named in the left column and either one inverter gate or one buffer gate to
generate inverted delayed feedback. The right column shows the derived gate propagation delay.
The open inputs are connected to switches on the FPGA development board

Type T (ns) τ (ns)

Inverter 8.31 0.26 ± 0.01

Buffer 8.39 0.26 ± 0.01

2-input OR 11.28 0.36 ± 0.02

3-input XNOR 12.58 0.38 ± 0.02

3-input MUX 12.08 0.38 ± 0.02



Appendix B
Hardware Descriptions and Numerical
Algorithms

This appendix shows the hardware description of the autonomous logic circuits in
this thesis using the hardware description language Verilog. It also discusses the
numerical algorithm for numerical simulations.

The hardware description can be used to implement the circuit on various FPGAs,
but it was tested specifically on the Altera Cyclone IV FPGA with model number
EP4CE115F29C7N. For an explanation of the syntax of Verilog, see Sect. 3.3.1 and
Ref. [4].

B.1 Inverter-Based Delay Lines

The following hardware description realizes an inverter-based delay line used inmost
of the following hardware designs.

1 module my_delay_line(s_in , s_out ) ;
2 parameter n=20;
3 genvar i ;
4 input s_in ;
5 output s_out ;
6 wire [n−1:0] delay /∗ synthesis keep ∗/ ;
7 assign delay[0] = ~s_in ;
8 assign s_out = delay[n−1];
9 generate
10 for ( i=0; i < n−1; i=i+1)
11 begin : generate_delay
12 assign delay [ i+1] = ~delay [ i ] ;
13 end
14 endgenerate
15 endmodule
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This module, called “my_delay_line,” implements a delay line of inverter
gates as discussed in Sect. A.1. The hardware module has an input wire “s_in” and
output wire “s_out,” where the input signal is sent into the chain of “n” inverter
gates and the output is the resulting signal after the last inverter gate. The parameter
“n” can be defined when this hardware module is initiated. The inverter logic gates
are generated with the “assign” statement within a “generate” “for” loop. For
further information see Sect. 3.3.1.

B.2 Delayed-Feedback XNOR Oscillator

The following hardware description realizes the delayed-feedback XNOR oscillator
as introduced in Sect. 4.3. It implements the delay line module defined above.

1 module main(out ) ;
2 output out ;
3 wire [3:0] net /∗synthesis keep∗/ ;
4 assign net[0] = ~(net[1] ^ net[2] ^ net [3]);
5 my_delay_line #(10) delay1(net [0] , net [1]);
6 my_delay_line #(6) delay2(net [0] , net [2]);
7 my_delay_line #(12) delay3(net [0] , net [3]);
8 assign out = net [0];
9 endmodule

Here, the instantiations of “my_delay_line” are called “delay1,” “delay2,”
and “delay3,” so that they can be referred in other design tools. The delay lines are
instantiated with the parameter “n” using the notation of “#(10)” to set the number
of inverter gates included in the delay lines. I include an XNOR gate that is defined
with an inversion “˜” and XOR “ˆ” operator and has the three inputs “net[1],”
“net[2],” “net[3]” and the output “net[0].” The output of the XNOR logic
gate “net[0]” is input to the three delay lines that feed back to the inputs of the
logic gate. The output port of the FPGA, called “out,” is connected to the output of
the XNOR logic gate “net[0].”

B.3 Random Number Generator

In this section, I discuss thehardwaredescriptions used for randomnumber generation
in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-13578-6_3
http://dx.doi.org/10.1007/978-3-319-13578-6_4
http://dx.doi.org/10.1007/978-3-319-13578-6_5
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B.3.1 XOR Ring Oscillator

The following is the hardware description for the hybrid Boolean network used for
random number generation in Sect. 5.3.

1 module rng(CLOCK_100, word_out) ;
2 parameter N=16;
3 input CLOCK_100;
4 output reg word_out;
5 wire [N:0] net /∗synthesis keep∗/ ;
6 reg [3:0] tr ig ;
7 genvar i ;
8
9 /∗autonomous Boolean nodes∗/
10 assign net[0] = ~(net [N−1] ^ net[0]^ net [1]);
11 assign net [N−1] = (net [N−2] ^ net [N−1] ^ net [0]);
12 generate
13 for ( i=1; i < N−1; i=i+1)
14 begin : generate_ring
15 assign net [ i ] = (net [ i−1] ^ net [ i ] ^ net [ i +1]);
16 end
17 endgenerate
18
19 /∗synchronous Boolean node∗/
20 always @ (negedge CLOCK_100)
21 begin
22 tr ig [0] = net [0];
23 tr ig [1] = net [4];
24 tr ig [2] = net [8];
25 tr ig [3] = net [12];
26 end
27 always @ (posedge CLOCK_100)
28 begin
29 word_out = tr ig [0] ^ tr ig [1] ^ tr ig [2] ^ tr ig [3];
30 end
31
32 endmodule

It has a 1-bit input for the clock and a 1-bit output for the synchronous random
bit. The parameter N gives the number of autonomous nodes and is set to N = 16,
so that the synchronous node gets input from every fourth autonomous node in the
network.

Lines 9–17 implement the autonomous Boolean nodes with the XNOR gate in
line 10 and the last XOR gate in line 11. The autonomous nodes have outputs given
by an vector of N wires “net.” Lines 12–17 implement the remaining N − 2 XOR

http://dx.doi.org/10.1007/978-3-319-13578-6_5
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gates using a “for” loop. The XOR gates have have inputs from the left and right
neighbor and from itself.

The synchronous node has an output register “word_out” and an input register
“trig.” These are implemented using flip-flops with “always@” statements with
the wire “clock_100” connected to the clock port. Flip-flops are implemented
before and after the synchronous node. The clock can have any frequency, where
frequencies that are too high lead to inferior random numbers and clcok frequencies
that are too low do not exploit the achievable speed as discussed in Sect. 5.3. The
used hardware board, the Terasic DE2-115, supplies a 50MHz clock that can be used
to generate clock signals of different frequencies using a phase-locked loop using a
so-called mega-function.

B.3.2 Transfer of Random Numbers to a computer

The hybrid Boolean network from the previous section generates a binary stream of
random numbers. These are transferred to a computer using another FPGA board, as
shown in Fig. B.1. The hybrid Boolean network has one input, the 100MHz clock,
and one output, the random number bit stream, which are connected to the SMA
input and output connectors on the FPGA board. Another FPGA board generates the
clock and receives the random numbers.

This board saves 1Mbit of data (coming from the other board) into SRAM, then
sending this data via TCP/IP protocol to a computer. This is repeated 1,000 times to
achieve a file size of 1Gbit. The trasfer protocol requires a processor structure on
the FPGA, which is achieved using the NIOS II softcore processor. The processor
is programmed to be the socket server and a desktop computer is programmed to be
the client. The C-code used for both server and client can be found in Ref. [5].

B.3.3 XOR Ring Networks in Parallel

For implementing random number generators in parallel, the hardware description
in Sect. B.3.1 called “rng” is instantiated 128 times as follows.

1 module rng_parallel (clk , rng_out ) ;
2 parameter n_rng=128;
3 input CLOCK_100;
4 output [127:0] rng_out ;
5 genvar i ;
6 generate
7 for ( i=0; i < n_rng−1; i=i+1)
8 begin : generate_multiple_rngs
9 rng inst (CLOCK_100, rng_out[ i ] ) ;
10 end
11 endgenerate
12 endmodule

http://dx.doi.org/10.1007/978-3-319-13578-6_5
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Fig. B.1 Schematic of the transfer of random numbers to the computer. Two FPGA boards are
connected via general purpose input outputs (GPIO) to send random numbers from one board to the
other at 100Mbit/s. The receiving board implements a NIOS II softcore processor for the transfer of
random numbers via TCP/IP protocol to a computer. The left board implements the hybrid Boolean
network shown with a graphic similar to Fig. 5.3a

A “for” loop implements 128 random number generators.
For the transfer of random numbers, the data is first saved to on-chip memory

with word sizes of 128 bits at 100MHz, which is a FIFO (first in, first out) buffer.
Then, the memory is read at a lower rate of 100Mbit/s to another board as described
in Sect. B.3.2 (see also Fig. 5.11).

B.4 Modified Ring Oscillators

The hardware description for a modified ring oscillators is as follows, with a logic
circuit shown in Fig. 5.7 and discussed in Sect. 6.3.

1 module mod_ring_osc( in , out ) ;
2 parameter n=20;
3 input in ;
4 output out ;

http://dx.doi.org/10.1007/978-3-319-13578-6_5
http://dx.doi.org/10.1007/978-3-319-13578-6_5
http://dx.doi.org/10.1007/978-3-319-13578-6_5
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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5 wire delay_in , my_or /∗synthesis keep∗/ ;
6
7 my_delay_line #(20) delay1( delay_in, out ) ;
8 assign delay_in = ~my_or;
9 assign my_or = out | in ;
10 endmodule

The code implements an inverter-based delay line that includes 20 inverters as
introcuded in Sect. B.1.

B.5 Network Motif of Modified Ring Oscillators

The following code shows how two of these oscillators can be coupled mutually by
calling the module “mod_ring_osc” twice.

1 module coupled_osc(osc_out ) ;
2 output [1:0] osc_out ;
3
4 mod_ring_osc #(20) osc_A(osc_out[1] ,osc_out [0]);
5 mod_ring_osc #(20) osc_B(osc_out[0] ,osc_out [1]);
6 endmodule

The output of each oscillator is input to the other. Here, the coupling is without time
delays along the links. Time delays can, however, be included easily with a hardware
description similar to Sect. B.7.3.

B.6 Boolean Phase Oscillators

Here, I discuss the hardware descriptions for Boolean phase oscillators starting with
an in-degree of one, then discussing larger in-degrees and non-local networks of
Boolean phase oscillators that display chimera states.

B.6.1 Boolean Phase Oscillator with In-Degree One

The following shows the hardware description of a Boolean phase oscillator with
in-degree one as described in Sect. 6.4.1.

1 module Boolean_phase_osc( in,out ) ;
2 parameter n = 50;
3 parameter k = 10;
4 input in;

http://dx.doi.org/10.1007/978-3-319-13578-6_6
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5 output out;
6
7 wire [n:0] osc /∗synthesis keep∗/ ;
8 wire mux_out, xor_sig /∗synthesis keep∗/ ;
9
10 assign out = mux_out;
11 assign osc[0] = ~mux_out;
12 assign xor_sig = out ^ in;
13 assign mux_out = xor_sig ? osc[n−k] : osc[n] ;
14
15 genvar i;
16 generate
17 for( i=0;i<n; i=i+1)
18 begin : building_delay
19 assign osc[ i+1] = osc[ i ] ;
20 end
21 endgenerate
22 endmodule

Here, the two parameters “n” and “k” determine the natural frequency and the cou-
pling strength as described in Sect. 6.4.1 and can be adjusted to change the oscillator’s
properties. The code implements one inverter gate (line 11), a multiplexer (line 13),
an XOR gate (line 12), and 50 buffer gates for the delay (line 15–20), leading to 53
logic gates in total. The multiplexer chooses between the output of the buffer-based
delay line “osc[n-k]” and “osc[n],” leading to a delay difference corresponding
to “k” buffer gates.

Boolean phase oscillators can be coupled unidirectionally as follows

1 module unidir_coupling(driver,osc ) ;
2 input driver ;
3 output osc ;
4
5 Boolean_phase_osc #(.n(50) ,.k(10)) osc_A(driver , osc ) ;
6 endmodule

Here, the Boolean signal “driver” is input to the Boolean phase oscillator with out-
put “osc.” The notation “#(.n(50),.k(10))” redefines the parameters within
themodule. By scanning a range of frequencies of “driver” and comparing the out-
put frequency of “osc,” a devil’s staircase can be recorded as discussed in Sect. 6.4.2.

Boolean phase oscillators can be coupled bidirectionally as follows

1 module bidir_coupling(osc ) ;
2 output [1:0] osc ;
3
4 Boolean_phase_osc #(.n(50) ,.k(10)) osc_A(osc[1] ,osc[0]);
5 Boolean_phase_osc #(.n(50) ,.k(10)) osc_B(osc[0] ,osc[1]);
6 endmodule

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_6
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By changing the parameters n and k in the two oscillators, the bidirectional cou-
pling plane in Sect. 6.4.4 can be measured. The measurment in that section, however,
was automized with labview by implementing several oscillator combinations on the
FPGA and selecting and measuring them without changing the hardware implemen-
tation on the FPGA.

B.6.2 Boolean Phase Oscillator with Large In-Degree

The following hardware description results in a Boolean phase oscillator with an
in-degree of 60 as discussed in Chap. 7.

1 module bpo_node(node_out , c_signal, c_disable ) ;
2 parameter n_delay=30, k=1;
3 genvar i ;
4 input [59:0] c_signal /∗synthesis keep∗/ ;
5 output node_out;
6 input [59:0] c_disable ;
7 wire [n_delay−1:0] main_delay /∗synthesis keep∗/ ;
8 wire [59:0] mux_out /∗synthesis keep∗/ ;
9 wire [59:0] k_delay0 /∗synthesis keep∗/ ;
10 wire [59:0] k_delay1 /∗synthesis keep∗/ ;
11 . . .
12 wire [59:0] k_delay59 /∗synthesis keep∗/ ;
13
14 assign node_out = mux_out[0];
15
16 / / define multiplexer
17 assign mux_out[0] = c_disable[0] ? k_delay0[k−1] :
18 (c_signal[0] ? mux_out[1] : k_delay0[k−1]);
19 assign mux_out[1] = c_disable[1] ? k_delay1[k−1] :
20 (c_signal[1] ? mux_out[2] : k_delay1[k−1]);
21 . . .
22 assign mux_out[59] = c_disable[59] ? k_delay59[k−1] :
23 (c_signal[59] ? main_delay[n_delay−1] :
24 k_delay59[k−1]);
25
26 / / define main main_delay
27 assign main_delay[0] = ~mux_out[0];
28 generate
29 for( i=0; i<n_delay−1; i=i+1)
30 begin : build_main_delay
31 assign main_delay[ i+1] = main_delay[ i ] ;
32 end

http://dx.doi.org/10.1007/978-3-319-13578-6_6
http://dx.doi.org/10.1007/978-3-319-13578-6_7
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33 endgenerate
34
35 / / define k−coupling delays
36 assign k_delay0[0] = mux_out[1];
37 generate
38 for( i=0; i<k−1; i=i+1)
39 begin : build_k_delay0
40 assign k_delay0[ i+1] = k_delay0[ i ] ;
41 end
42 endgenerate
43
44 assign k_delay1[0] = mux_out[2];
45 generate
46 for( i=0; i<k−1; i=i+1)
47 begin : build_k_delay1
48 assign k_delay1[ i+1] = k_delay1[ i ] ;
49 end
50 endgenerate
51
52 . . .
53
54 assign k_delay59[0] = main_delay[n_delay−1];
55 generate
56 for( i=0; i<k−1; i=i+1)
57 begin : build_k_delay59
58 assign k_delay59[ i+1] = k_delay59[ i ] ;
59 end
60 endgenerate
61 endmodule

The Verilog code for the Boolean phase oscillator with an in-degree of 60 has three
connections “node_out,” “c_signal,” and “c_disable.” “node_out” is an
output wire with the dynamics of the oscillator. “c_signal” and “c_disable”
are vectors of 60 input wires, corresponding to the in-degree of the oscillator.
“c_signal” includes the state of the phase comparisons to adjust the delay line and
“c_disable” includes signals to disable the input connections used to uncouple
oscillators. For example, all wires “c_disable” can be set to the Boolean high
state to measure the natural frequency of the oscillator.

The circuit diagram with indicated wire names is shown in Fig. B.2. The figure
shows that the “c_disable” wires are input to the multiplexers together with the
coupling signals “c_signal.”When one “c_disable”wire is chosen at Boolean
“1,” the longer time delay line of that multiplexer is selected independently of the
corresponding “c_signal.” On the other hand, when it is “0,” the multiplexer can
switch depending on the corresponding “c_signal.” ABoolean “1” “c_signal”
signal selects the output of the previous multiplexer or the output of the fixed delay
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Fig. B.2 Figure similar to Fig. 7.5 with labels of the wire names in the hardware description

line, corresponding to a coupling input. A Boolean “0” “c_signal” signal selects
the longer delay called “k_delay” (see also the explanation of the functionality of
the Boolean phase oscillator in Sect. 7.3.1). This functionality of the multiplexer is
described in lines 16-24 in the hardware description using the “( ? : )” construct,
which is similar to an “if” statement in many programming languages.

Lines 26–33 describe a buffer-based delay line for the constant delay, similar to
an inverter-based delay line, discussed in Sect. B.1.

Lines 35–60define the buffer-based delay lines before themultiplexerswith length
“k.” Because “k” is 1, the generate statements result in only one buffer each. The
Verilog code, however, allows to also implement longer coupling delays by changing
the parameter “k”.

B.6.3 Non-local Network of Boolean Phase Oscillators

To build a non-local network of Boolean phase oscillators, the module discussed in
the previous section is instantiated N times. For a network size of N = 128, the
hardware description is shown in the following.

1 module bpo_network(node_dyn, reset ) ;
2 parameter nr_nodes = 128;
3 output [nr_nodes−1:0] node_dyn;
4 input [29:0] c_range ;
5
6 bpo_node #(.n_delay(30) ,.k(1)) node0 (node_dyn[0] ,{
7 node_dyn[127] ^ node_dyn[0] ,
8 node_dyn[126] ^ node_dyn[0] , . . . ,
9 node_dyn[98] ^ node_dyn[0] ,
10 node_dyn[30] ^ node_dyn[0] , . . . ,

http://dx.doi.org/10.1007/978-3-319-13578-6_7
http://dx.doi.org/10.1007/978-3-319-13578-6_7
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11 node_dyn[1] ^ node_dyn[0]} ,
12 {c_range[0] , . . . , c_range[29] , c_range[29] ,
13 c_range[28] , . . . , c_range[0]});
14
15 bpo_node #(.n_delay(30) ,.k(1)) node1 (node_dyn[1] ,{
16 node_dyn[127] ^ node_dyn[1] ,
17 node_dyn[126] ^ node_dyn[1] , . . . ,
18 node_dyn[99] ^ node_dyn[1] ,
19 node_dyn[31] ^ node_dyn[1] , . . . ,
20 node_dyn[0] ^ node_dyn[1]} ,
21 {c_range[1] , . . . , c_range[29] , c_range[29] , . . . ,
22 c_range[1] , c_range[0] , c_range[0]});
23
24 . . .
25
26 bpo_node #(.n_delay(30) ,.k(1)) node127 (node_dyn[127],
27 {node_dyn[126] ^ node_dyn[127], . . . ,
28 node_dyn[97] ^ node_dyn[127],
29 node_dyn[29] ^ node_dyn[127], . . . ,
30 node_dyn[0] ^ node_dyn[127]},
31 {c_range[0] , . . . , c_range[29] , c_range[29] , . . . ,
32 c_range[0]});
33 endmodule

Here, the module has an output vector of 128 wires that are connected to
the Boolean dynamical variables of the nodes and an input vector of 30 wires
“c_range” to adjust the coupling range (see also Sect. 7.2.2.1).

The 128 nodes are instantiated with the coupling strength “k= 1” and constant
delay “n_delay= 30”. The latter parameter can be adjusted in the network so that
frequency heterogeneity is reduced.

For the first Boolean phase oscillator in lines 6–13, the output wire is connected
to “node_dyn[0].” The 60 node input wires are connected to an XOR phase
detector given by “node_dyn[127] ˆ node_dyn[0],” where the first number
denotes the number of the oscillator that the signal is compared with. These XOR
operations are sorted by node numbers such that the operation with the highest node
number comes first. The signals “c_range” that disable input couplings are assem-
bled such that the coupling range is set by the number of 1 bits in “c_range”
filled up from the first bit. For example, a coupling radius of R = 1 is achieved
with “c_range[0]=1” and “c_range[i“]=0” for i > 0, where only the cou-
pling inputs with “node_dyn[127]” and “node_dyn[1]” are activated (for
“node_dyn[0]”).

This code is repeated for all 128 oscillators as shown in lines 15–31.
The oscillators are assembled on the chip using the chip planner as discussed in

Fig. 7.6.

http://dx.doi.org/10.1007/978-3-319-13578-6_7
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For the readout of the network dynamics “node_dyn,” the wire states are saved
to on-chip memory and then sent to a computer via a RS-232 connection.

B.7 Boolean Neurons

In this section, I discuss the hardware description of Boolean neurons, of a network
motif of Boolean neurons, and of an interconnected ring network of Boolean neurons.

B.7.1 Pulse Generator

The Boolean neurons, as described in Sect. 8.3.1, are based on pulse generators. The
hardware description of such a device is shown in the following.

1 module pulse_generator ( sig_in,pulse_out ) ;
2 parameter n_delay = 5;
3 input sig_in ;
4 output pulse_out ;
5 reg state , state_inverse ;
6 wire delayed_state ;
7
8 always @(posedge sig_in )
9 state <= ~state ;
10
11 my_delay_line #(n_delay) inst0 ( state ,delayed_state ) ;
12 assign pulse_out = state ^ delayed_state ;
13 endmodule

Here, the “always” construct implements aflip-flop,where the register “state”
changes its Boolean value when the input signal “sig_in” has a positive edge.
The module “my_delay_line” instantiates a delay line of “n_delay” inverter
gates, as introduced in Sect. B.1. The result is the circuit shown in Fig. 8.7a with
“n_delay” inverter gates.

B.7.2 Boolean Neuron

Using two pulse generators, a Boolean neuron can be implementedwith the following
hardware description.

http://dx.doi.org/10.1007/978-3-319-13578-6_8
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1 module Boolean_neuron( in , out ) ;
2 parameter n_ref = 10;
3 parameter n_pulse = 2;
4 input in ;
5 output out ;
6 wire and_out , refr ;
7
8 assign and_out = ~refr & in ;
9 pulse_generator #(n_pulse) unit0 (and_out , out ) ;
10 pulse_generator #(n_ref) unit1 (and_out , refr ) ;
11 endmodule

TheBoolean neuron has an input and output wire and can be configuredwith para-
meters “n_ref” and “n_pulse.” It implements the neuron according to Fig. 8.7b
with an NAND gate (inversion of AND) in line 8.

B.7.3 Network Motif of Two Bidirectionally-Coupled Boolean
Neurons

The following shows the hardware description of the bidirectional coupling topology
in Sect. 8.4.2 according to the circuit diagram in Fig. 8.10b.

1 module bidir_coupling(exc_out , reset ) ;
2 output [1:0] exc_out ;
3 input reset ;
4 wire [1:0] exc_in , couplingK, couplingC;
5
6 / / nodes
7 assign exc_in[0] = ( init ialpulse | couplingC[1] |
8 couplingK[0]) & ~reset ;
9 Boolean_neuron #(10,4) node0(exc_in[0] , exc_out [0]);
10 assign exc_in[1] = ( couplingC[0] |
11 couplingK[1]) & ~reset ;
12 Boolean_neuron #(10,4) node1(exc_in[1] , exc_out [1]);
13
14 / / links
15 my_delay_line #(40) C0(exc_out[0] ,couplingC[0]);
16 my_delay_line #(40) K0(exc_out[0] ,couplingK[0]);
17 my_delay_line #(40) C1(exc_out[1]couplingC[1]);
18 my_delay_line #(40) K1(exc_out[1] ,couplingK[1]);
19 endmodule

This hardwaremodule has an output vector of twowires “exc_out” and an input
wire “reset,” where the first provides the dynamics of the twoBoolean neurons and

http://dx.doi.org/10.1007/978-3-319-13578-6_8
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the second allows to reset the network into the quiescent state. Lines 6–12 instantiate
the two neurons and their their input connections according to the circuit diagram in
Fig. 8.10b. Lines 14–18 implement four delay lines according to the delay links.

B.7.4 Connected Ring Network of Boolean Neurons

The network of Boolean neurons in Fig. 9.3 is implemented with the following
hardware description

1 module network_32nodes( initialpulse , reset , exc_out ) ;
2 parameter nref=10, npulse=4, ndelay=30;
3 input init ialpulse ;
4 input reset ;
5 output [31:0] exc_out ;
6 wire [31:0] couplingC, exc_in ;
7 genvar i ;
8
9 / / define Boolean neurons and link delays
10 generate
11 for( i=0; i <= 31; i=i+1)
12 begin :exc_system_loop
13 my_delay_line #(ndelay) link (exc_out[ i ] ,
14 couplingC[ i ] ) ;
15 Boolean_neuron #(nref , npulse) node(exc_in[ i ] ,
16 exc_out[ i ] ) ;
17 end
18 endgenerate
19
20 / / couple topology
21 assign exc_in[0] = ( init ialpulse |
22 couplingC[15]) &reset ;
23 assign exc_in[1] = (couplingC[0]) &~reset ;
24 assign exc_in[2] = (couplingC[1]) &~reset ;
25 assign exc_in[3] = (couplingC[2]) &~reset ;
26 assign exc_in[4] = (couplingC[3]) &~reset ;
27 assign exc_in[5] = (couplingC[4]) &~reset ;
28 assign exc_in[6] = (couplingC[5]) &~reset ;
29 assign exc_in[7] = (couplingC[6]) &~reset ;
30 assign exc_in[8] = (couplingC[7]) &~reset ;
31 assign exc_in[9] = (couplingC[8]) &~reset ;
32 assign exc_in[10] = (couplingC[9]) &~reset ;
33 assign exc_in[11] = (couplingC[10]) &~reset ;
34 assign exc_in[12] = (couplingC[11]) &~reset ;

http://dx.doi.org/10.1007/978-3-319-13578-6_8
http://dx.doi.org/10.1007/978-3-319-13578-6_9
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35 assign exc_in[13] = (couplingC[12]) &~reset ;
36 assign exc_in[14] = (couplingC[21] |
37 couplingC[13]) &~reset ;
38 assign exc_in[15] = (couplingC[14] | couplingC[24] |
39 couplingC[30]) &~reset ;
40 assign exc_in[16] = (couplingC[3]) &~reset ;
41 assign exc_in[17] = (couplingC[16]) &~reset ;
42 assign exc_in[18] = (couplingC[17]) &~reset ;
43 assign exc_in[19] = (couplingC[18]) &~reset ;
44 assign exc_in[20] = (couplingC[19]) &~reset ;
45 assign exc_in[21] = (couplingC[20]) &~reset ;
46 assign exc_in[22] = (couplingC[31]) &~reset ;
47 assign exc_in[23] = (couplingC[22]) &~reset ;
48 assign exc_in[24] = (couplingC[23]) &~reset ;
49 assign exc_in[25] = (couplingC[2]) &~reset ;
50 assign exc_in[26] = (couplingC[25]) &~reset ;
51 assign exc_in[27] = (couplingC[26]) &~reset ;
52 assign exc_in[28] = (couplingC[27]) &~reset ;
53 assign exc_in[29] = (couplingC[28]) &~reset ;
54 assign exc_in[30] = (couplingC[29]) &~reset ;
55 assign exc_in[31] = (couplingC[2]) &~reset ;
56 endmodule

The module has three connections, “initialpulse” to initialize the network,
which can be generated with a pulse generator and a rising edge signal, for example
generated with a mechanical switch; “reset” to reset the network to the resting
state; and “exc_out,” which is a vector of 32 wires with the dynamics of the 32
nodes in the network. The network has three parameters, “nref” and “npulse”
are used to parameterize the neurons and “ndelay” is the length on the link delay
lines.

In lines 10–18, the 32 network nodes and delay links are generated using previous
modules, specifically the Boolean neuron above and the delay line in Sect. B.1. Lines
21–55 define the coupling topology according to Fig. B.3. The node labeled “0” in
Fig. B.3 with input wire “exc_in[0]” has an input given by the external wire
“initialpulse,” “couplingC[15],” corresponding to the delayed dynamics
of node 15, and “˜reset” the Boolean inverse of the reset signal. The Boolean
operation is a combination of OR, AND, so that a high Boolean value in either
“initialpulse” or “couplingC[15]” can excite the node and a high value
in “˜reset” will inhibit any excitation as shown in Fig. B.3b. The remaining nodes
have a similar construction of input connections.
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Fig. B.3 Figure similar to Fig. 9.3. a Network topology with node labels according to the hardware
description. b–d The three nodes with an in-degree above one are implemented wiht OR gates.
Before each excitation, a reset signal can stop any excitation to reset the network into the quiescent
state

B.8 Numerical Simulation with Adams-Bashforth method

Numerical simulations of a differential equation ẋ = h(x, t) approximate the exact
solution x(t) by a sequence {xn} corresponding to the times {ndt}, where dt is the time
step. I perform numerical simulations with a first order Euler method and a fourth
order Adams-Bashforth method depending on the differential equation. The latter
method is a two-step predictor-corrector algorithm that first predicts the iteration
xn+1 from the previous caluclations xn−3, xn−2, xn−1, and xn , according to

xn+1 = xn + dt

24

[
55h(xn) − 59h(xn−1) + 37h(xn−2) − 9h(xn−3)

]
(B.1)

In the next step, the approximation xn+1 is improved using the predicted value,
according to

xn+1 = xn + dt

24

[
9h(xn) + 19h(xn) − 5h(xn−1) + h(xn−2)

]
. (B.2)

The coefficients in front of h(·) are chosen to obtain the highest order of
convergence [6].

To handle delay differential equations with a constant delay τ , I add another
variable x(t − τ) ≈ xn−N with N = �τ/(dt)�. When dt is chosen smaller, the
approximation becomes better, but computation time increases. Under certain con-
ditions, such as a timescale separation in the differential equation, an algorithm with
a variable time step may better choice.

http://dx.doi.org/10.1007/978-3-319-13578-6_9
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C.1 Bias Reduction of the XOR Operation

For the realization of a random number generator in Chap. 5, I use a 4-input XOR
gate to reduce bias and correlations. Here, I evaluate the resulting bias.

For the four inputs of theXORgate, I assume uncorrelated binary variables {xi }3i=0
sampled from identically biased uniform distributions with a probability of a 0 or 1
given by

P(xi = 0) = 1

2
− b and P(xi = 1) = 1

2
+ b. (C.1)

The resulting probabilities associated with 4-bit words with different counts of 1
are calculated in Table C.1.

I compute the probability

π0 = P

(
3⊕

i=0

xi = 0

)
, (C.2)

which can be used to calculate the bias b = |π0 − 0.5|.
Equation (C.2) can be evaluated by considering the words leading to an output

of either 1 or 0. For this, I use that the XOR operation is the parity of the inputs.
Therefore, words in S0, S2, and S4 in Table C.1 lead to a 0 output and hence

π0 = P ([x3x2x1x0] ∈ S0 ∪ [x3x2x1x0] ∈ S2 ∪ [x3x2x1x0] ∈ S4) . (C.3)

Assuming uncorrelated bitstreams, these three events are disjoint. Using values from
Table C.1, I calculate
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Table C.1 Probability associated to all 4-bit words considering bias b

4-bit words Probability

S0 = {0000}
( 1
2 − b

)4

S1 = {0001, 0010, 0100, 1000} 4
( 1
2 − b

)3 ( 1
2 + b

)

S2 = {0011, 0101, 0110, 1001, 1010, 1100} 6
( 1
2 − b

)2 ( 1
2 + b

)2

S3 = {0111, 1011, 1101, 1110} 4
( 1
2 − b

) ( 1
2 + b

)3

S4 = {1111}
( 1
2 + b

)4

π0 = P([x3x2x1x0] ∈ S0) + P([x3x2x1x0] ∈ S2) + P([x3x2x1x0] ∈ S4),

=
(
1

2
− b

)4

+ 6

(
1

2
− b

)2 (
1

2
+ b

)2

+
(
1

2
+ b

)4

,

= 1/2 + 8b4. (C.4)

Therefore, the bias of the 4-input XOR gate is 8b4, corresponding to a reduction
of a 1% bias at the input to a bias of 8 × 10−8 at the output. In general, an n-input
XOR gate reduced a bias b to a bias b̃ = 2n−1bn , which can be shown by induction.

C.2 Chimera States with Randomized Initial Conditions

To obtain chimera states, the initial conditions usually have to be prepared carefully
[7]. Homogeneous initial conditions, on the other hand, do not lead to chimera states
in a homogeneous networkmodel, such as theKuramotomodel. I showhere, however,
that both random and homogeneous initial conditions can lead to chimera states in
the model when the phase shift parameter αi j is heterogeneous.

I initialize the simulationofEq. (7.22)with random initial conditions (φi ∈ [0, 2π ]
uniformly distributed) and synchronous initial conditions [φi = 0 (i = 1, . . . , N )]
for heterogeneous phase lag parameter αi j = 0.1± 0.2 with a Gaussian distribution
of mean 0.1 and standard deviation 0.2. The result is shown Fig. C.1a, b leading to
a chimera state for both initial conditions as a result of the heterogeneous phase lag
parameter.

The finding that random and homogeneous initial conditions can lead to chimera
states for heterogeneous networks increases the probability to observe chimera states
in nature.

http://dx.doi.org/10.1007/978-3-319-13578-6_7
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Fig. C.1 Numerical simulation of the Eq. (7.22) with heterogeneous αi, j . a Random initial condi-
tions, b homogeneous initial conditions. The oscillator index is shifted so that the unsynchronized
region of the chimera appears in the middle of the network. Other parameters as in Fig. 5 in the
main article

C.3 Cluster Synchronization in Coupled Neural Populations

In this section, I study the dynamics of an artificial neural network of 80 excitable
nodes. With this, I show that I can build large meta-networks of silicon neurons.2

I assemble Boolean neurons in a network of four distinct neural populations, as
illustrated in Fig. C.2a, b. Dynamical properties of similar network topologies have
been investigated theoretically [9, 10] because of their similarity to neural circuits
such as the thalamic circuitry embedded in the brain [11, 12].

In the experiment, each population consists of 20 excitable nodes, totaling 80
nodes for the entire network. Nodes within a population are connected with proba-
bility p = 0.3, where links are realized with on-chip wires leading to small link time
delays. Nodes of different populations are connected with probability p = 0.015
with time-delay links with τ = (16.8 ± 0.6) ns. These probabilities lead to strong
connections of nodes within a population with negligible link delay and loose con-
nections between nodes of different populations with significant time delay τ .

The dynamics of the artificial neural network is described theoretically by Kanter
and collaborators [13, 14]. According to the theory, the network dynamics is given
by the network topology of the community structure by the greatest common divisor
(GCD) of the sizes of directed loops. In the network topology in Fig. C.2, inspired
by Fig. 1a in Ref. [13], there are three directed loops of two, three, and four neural
populations, respectively. Therefore, the theory predicts a number of synchronized
zero-lag synchronized clusters of GCD(2, 3, 4) = 1, i.e., all the populations are
predicted to be synchronized with zero time lag (see also Sect. 9.3.2).

2 This study is published in Ref. [8].
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Fig. C.2 a Topology of four coupled populations that involves loops of four, three and two ele-
ments. b Implemented topology, where nodes of the same (different) populations are connected
with directed links. An initial pulse is sent to one node to perturb the network out of its qui-
escent state. c Raster diagram of the network for nτ = 60 [τ = (16.8 ± 0.6) ns], npulse = 4[
Tpulse = (1.12 ± 0.04) ns

]
, and (b) nref = 20 [Tref = (5.6 ± 0.2) ns]

The experimental dynamics of the network is reported in the raster diagram of
Fig. C.2c, where each circle corresponds to a pulse generated by a node.

I observe that all the artificial neurons of the four populations generate pulse
trains with period τ ± �τ with �τ = 5 ns. The dispersion �τ in the period of the
pulse trains originates from heterogeneities in the values of the link time delays and
limited resolution of the integrated measurement system. The network is near-zero-
lag synchronized, which is consistent with the theoretical predictions.
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