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Supervisor’s Foreword

Recent beautiful experiments from the groups of Immanuel Bloch and Tilman
Esslinger have discovered the superfluid to Mott insulator transition in optically
trapped arrays of cold atoms. This transition realizes the quantum critical point
(QCP) of the two-dimensional relativistic O(2) model. A disordered version of this
QCP was realized much earlier in studies of the superconductor to insulator tran-
sition (SIT) in granular superconducting films. The SIT phenomenon has spurred
enormous theoretical and experimental activity over the years, and led to the APS
Buckley prizes of 2015.

Experimental proof for a true QCP (rather than a first order transition or a
crossover in the same phase of matter) requires a diverging correlation length or
timescale. In the O(N) model, such a scale is provided by the amplitude-Higgs
mode, whose frequency (mass) softens as one approaches the QCP.

The Higgs mass is not protected by any symmetry, hence it is actually a reso-
nance which decays into pairs of Goldstone modes (phasons, or spin waves, for N =
2 and N = 3, respectively, where N is the number of components of the order
parameter). In three spatial dimensions (d = 3), the relative width of the Higgs
resonance sharpens at the QCP. Hence, one expects the Higgs mode to be well-
defined and experimentally visible all the way to the QCP.

In d = 2, however, quantum fluctuations are stronger, the Higgs does not sharpen
toward the QCP, and the Higgs’ visibility near criticality has been called into
question. In addressing this issue, Daniel Podolsky, Dan Arovas, and I have shown
that in the perturbative limit (i.e., deep in the broken symmetry phase), the Higgs
mode is most visible in scalar correlation functions. These measure correlations not
of the order parameter itself, nor its longitudinal component, but rather of its square.
The questions which Snir Gazit’s thesis set to answer were

1. Is there a well-defined Higgs peak in the scalar susceptibility close to the QCP?
2. Is there a well-defined Higgs threshold of the dynamical conductivity?

To approach the QCP, Snir used the quantum Monte Carlo “worm algorithm” of
N. Prokof’ev and B. Svistunov. It allows for accurate simulations at large
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correlation lengths, within 2 % of the QCP. Large sample averaging was needed to
reduce numerical noise and to reliably perform analytic continuation from imagi-
nary time data to real time dynamical correlations.

This thesis presents the first calculations of the scalar susceptibility and the
dynamical conductivity of the two-dimensional O(N) field theory very close to
QCP. Universal spectral functions, and amplitude ratios are computed.

The results are strong and gratifying:

1. The Higgs mode in two-dimensional O(N) models remains well-defined arbi-
trarily close to the QCP in d = 2.

2. The Higgs mass can be measured as a peak in the scalar response function.
3. For the O(2) model (bosons), the Higgs threshold is well-defined in the

dynamical conductivity.
4. Predictions for universal ratios were computed, and their values, which can be

compared to experiments, are presented.
5. Charge-Vortex duality between the superfluid and the insulator (“vortex

superfluid”) phases has been proposed several decades ago by Matthew Fisher
and Dung-Hai Lee. Using a reciprocity relation between the complex dynamical
charge and vortex conductivities, this Thesis finds that the duality holds only
approximately. The critical conductivity differs from q2/h, and the amplitude
ratios between are not equal on both sides of the transition.

While the main text is devoted to obtaining these results, the appendices include
details of technical advances that should be useful for other computations of static
and dynamical correlations in quantum systems. These include the generalization
of the worm algorithm to O(N) models for N > 2, and the Singular Value
Decomposition approach to analytical continuation from imaginary to real time.

Haifa, Israel Prof. Assa Auerbach
April 2015
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Abstract

Quantum phase transitions are ubiquitous in condensed matter and cold atomic
systems. Some physical systems undergo a zero temperature phase transition
between a disordered and a broken symmetry phase, which is tuned by a non-
thermal parameter. A remarkable signature of continuous phase transitions, both in
classical and in quantum systems, is the emergence of universality. In the quantum
case, not only static properties are universal but also dynamical properties. In this
thesis we study dynamical aspects of quantum criticality in two space dimensions.
Our focus is on systems with relativistic dynamics and O(N) symmetry that is
spontaneously broken in the ordered phase. To study the real-time dynamics we
employ a large-scale quantum Monte Carlo simulation combined with numerical
analytic continuation. We compute the universal scaling function of two experi-
mentally pertinent response functions: the scalar susceptibility and the optical
conductivity. From this analysis we deduce that the amplitude (Higgs) mode is a
universal spectral feature that can be probed arbitrarily close to the critical point.
Moreover, we characterize the universal properties of the amplitude mode line
shape and determine the universal amplitude ratio between the amplitude mode
mass and the single particle gap in the disordered phase. In addition, we study the
charge-vortex duality at finite frequency near the superfluid to insulator transition.
Using a generalized reciprocity relation between charge and vortex conductivities at
complex frequencies, we identify the capacitance in the insulating phase as a
measure of vortex condensate stiffness. We compute the ratio of boson superfluid
stiffness to vortex condensate stiffness for the relativistic O(2) model. The product
of dynamical conductivities at mirror points is used as a test of charge-vortex
duality. Our predictions motivate future experiments that probe dynamical prop-
erties near quantum criticality.
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Chapter 1
Introduction

Some physical systems undergo a zero temperature quantum phase transition (QPT)
between a disordered phase and a broken symmetry phase that is tuned by a non-
thermal quantum parameter. Studying the physical properties of the aforementioned
phases and tracking their evolution upon approach to the quantum critical point
(QCP) is a central research theme in condensed matter and cold atomic systems.

Experimental realizations of quantum phase transitions are plentiful, among them
are: the Nèel ordered to the spin gap phase in dimerized anti-ferromagnets [1, 2], the
superfluid to Mott insulator transition of cold atoms trapped in an optical lattice [3],
and the superconductor to insulator transition in Josephson junction arrays [4] and
disordered superconductors [5].

One remarkable aspect of continuous (second order) phase transitions, both in
classical and quantum systems, is the emergence of universality. It has been observed
that some properties near the critical point are universal, namely they do not depend
on the specific microscopic details of the system other than symmetry and dimen-
sionality. Physical systems that share the same critical properties are said to be in the
same universality class. For instance, near the critical point the correlation length ξ
diverges as a power law,

ξ−1 ∝ (g − gc)
ν . (1.1)

Here gc is the critical value of the quantum parameter g and ν is the correlation length
exponent. The value of ν is universal as it depends only on the universality class.

In the quantum case, in addition to the diverging length scale there is an emergent
softening energy scale �, which is inversely proportional to a diverging correlation
time ξτ :

� ∝ ξ−z , (1.2)

In the above equation z > 0 is the dynamical critical exponent. More generally,
near quantum criticality not only static properties are universal but also dynamical
properties. Specifically, the critical energy scales associatedwith the collectivemodes
and dynamical response functions such as the optical conductivity and the dynamical
charge susceptibility exhibit universal behavior.

© Springer International Publishing Switzerland 2015
S. Gazit, Dynamics Near Quantum Criticality in Two Space Dimensions,
Springer Theses, DOI 10.1007/978-3-319-19354-0_1
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2 1 Introduction

The critical dynamical properties near the QPT are governed by the collective
excitations on both sides of the phase transition. The excitation spectrum in the dis-
ordered phase consists of gapped modes. In the ordered phase, whenever the broken
symmetry is continuous, there are two types of collective excitations: Goldstone
modes, which describe fluctuations in the transverse direction with respect to the
broken symmetry direction and a single gapped amplitude (Higgs) mode that corre-
sponds to fluctuations of the order parameter amplitude.

Duality transformations, in statistical mechanics models, map the high tempera-
ture region onto the low temperature region. In the language of quantum field theory
the mapping is between small and large coupling constants. Examples of duality
mappings are: the Kramers-Wannier duality of the Ising model and the Coulomb gas
description of the XY model in two dimensions. The degrees of freedom of the dual
theory are “disorder variables” such as spin flips in the Ising model and vortices in
the XY model. The dual description provides further insight into the problem and in
certain cases it yields exact results.

The research thesis consists of two projects, in which we study some of the
foregoing aspects of dynamics near quantum criticality:

• Dynamics and conductivity near quantum criticality in two space dimensions

While the Goldstone modes are stable modes, protected by symmetry, the ampli-
tude mode can decay into a pair of Goldstone modes. This broadens the spectral
line and might reduce the visibility of the amplitude mode in real experiments.
The situation is particularly interesting in two space dimensions, where quantum
corrections are strong and thus can render the amplitude resonance over-damped.
In this research thesis we demonstrate that the amplitude mode is a well defined
spectral feature arbitrarily close to the critical point in the spectrum of two experi-
mentally relevant response functions: the scalar susceptibility and the optical con-
ductivity. In addition, we characterize the universal proprieties of the amplitude
mode. The results are pertinent to recent experimental studies of critical dynamics
in cold atomic systems and granular superconductors.

• Critical capacitance and charge-vortex duality near the superfluid to insula-
tor transition

The superfluid to insulator transition (SIT) in two space dimensions has an inter-
esting dual description in terms of vortex degrees of freedom. In this language
the insulator is a Bose condensate of vortices. The duality mapping is not self
dual, mainly due to the different interaction ranges of bosons and vortices. The
problem with this approach is that it lacks an experimental probe for the vortex
condensate. In our study, we identify the capacitance in the insulating phase as a
direct measure of vortex condensate stiffness. In addition, we show that product
of the optical conductivity evaluated at mirror points across the phase transition
can be used as quantitative measure for the deviation from self duality.
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In the followingwe present a short introduction to the research projects. A detailed
description of the research methods and results is given in Chaps. 2 and 3 and in the
appendices.

1.1 Spontaneous Symmetry Breaking

In many systems of interest, the effective long wavelength field theory near the
qunatum critical point (QCP) is captured by a φ4 Ginzburg-Landau theory (GLT):

Z =
∫

Dφαe−S[φα] (1.3)

S =
∫

d Dx
[
(∂μφα)2 + μφ2

α + g(φ2
α)2

]
.

HereZ is the partition function defined on a D = d +1 dimensional Euclidean space
time �x = {t, �r}, ∂μ = {∂τ , ∂r } and φα is an N component vector order parameter.
The action is O(N ) symmetric and the dynamics is Lorentz invariant.

Relativistic dynamics, z = 1, is natural in high energy physics whereas in con-
densed matter and cold atomic systems this property is typically an emergent sym-
metry. Some examples of such systems are: dimerized antiferomagnets for N = 3
and the Bose-Hubbard model at integer filling for N = 2.

The mean field phase diagram of Eq. (1.3) is derived by neglecting fluctuations of
the order parameter. Explicitly, the mean field order parameter is taken to be uniform,〈
φα(x)

〉 = φ̄α, and its value is determined by minimizing the mean field effective
potential:

VM F (φ̄) = μφ̄2 + g(φ̄2)2 (1.4)

This analysis predicts a quantumphase transitionbetween adisordered and anordered
phase. In the disordered phase, μ > 0, the effective potential of the order parameter,
depicted in Fig. 1.1a, has a single minimum, where the expectation value of the order
parameter vanishes φ̄ = 0. In the ordered phase, μ < 0, the effective potential, as
shown in Fig. 1.1b, has a continuous set of minima along the rim of the “Mexican
Hat” potential with a non vanishing expectation value φ̄ > 0. The ground state
spontaneously breaks the O(N ) symmetry by picking one specific minimum.

The mean field approximation must be corrected by taking into account the effect
of fluctuations. The stability of the mean field result with respect to fluctuations
depends on dimensionality: Above the upper critical dimension, D > 4, the fluctu-
ations are suppressed and the corrections are only quantitative. By contract, below
the lower critical dimension D < 2 the order is completely destroyed due to strong
fluctuations.

In this thesis we will focus mainly on two dimensional quantum systems (D = 3).
Here, the mean field predictions are valid only far from the phase transition and the
fluctuations have prominent effect near the critical point. The crossover between

http://dx.doi.org/10.1007/978-3-319-19354-0_2
http://dx.doi.org/10.1007/978-3-319-19354-0_3
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φ1
φ2

Vdis(|φ|)(a)

φ1 φ2

Vord(|φ|)(b)

Fig. 1.1 The mean field effective potential for N = 2 in Eq. (1.4). a In the disordered phase the
effective potential has a single minimumwhere

〈�φ〉 = 0. b In the ordered phase there is a continuous
set of minima along the rim of the “Mexican Hat” potential, where the order parameter has a non
zero expectation value

〈�φ〉 �= 0

the two limits is set by the Ginzburg criteria defined as the ratio between the order
parameter amplitude and the standard deviation of the fluctuations. Importantly, the
critical properties differ significantly from the mean field predictions. For instance,
the numerical estimate of the correlation length critical exponent for N = 2 is
ν ≈ 0.67, whereas the mean field prediction is ν = 1/2.

1.2 Superfluid to Mott Insulator Transition of Lattice
Bosons at Integer Filling

The Bose Hubbard model (BHM) is a concrete example for a condensed matter
model where relativistic dynamics is realized as an emergent symmetry.

The BHM describes a system of interacting lattice bosons. The Hilbert space is
a Fock space of bosonic occupation numbers, {|ni

〉}, at each site. We define b†i (bi )

as the bosonic creation (annihilation) operators at the site i , with the canonical com-

mutation relations
[
bi , b†i

]
= δi, j . The boson number operator at site i is then given

by ni = b†i bi . The Hamiltonian of the BHM is defined as:

H = −J
∑
〈
i, j

〉 b†i b j + b†j bi − μ
∑

i

ni + U
∑

i

ni (ni − 1) (1.5)

The first term corresponds to the kinetic energy of the bosons, describing hopping
processes between adjacent sites. The second term sets the average particle number
by tuning the chemical potential μ. The last term is an onsite repulsive interaction
term of strength U . Particle number is a conserved quantity since the Hamiltonian
commutes with the total number operator N = ∑

i ni . Equivalently, the model has
a global U (1) symmetry under the transformation bi → bi eiθ.
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The competition between the kinetic energy term and the interaction term results
in a zero temperature quantum phase transition between a superfluid (SF) and aMott
insulator (MI).

The MI phase is best understood in the atomic limit, J/U → 0. The ground state
is then a product state, with exactly n bosons at each site:

|ψ〉 ∝
∏

i

(b†i )
n|0〉 (1.6)

The MI is gapped since adding an extra boson has an energy cost U . Therefore, the
state is incompressible, i.e. ∂n/∂μ = 0. Tuning the chemical potential μ leads to a
sequence of Mott states with integer fillings, n = 1, 2, 3, . . ..

At finite J/U > 0 the hopping term delocalizes the bosons and further increase
of J/U drives a QPT, at a critical coupling Jc(U ), between the MI phase and the SF
phase. In the SF phase the bosons condense and theU (1) symmetry is spontaneously
broken. Deep inside the superfluid phase, J/U � 1, the ground state wave function
is approximately a zero momentum condensate:

|ψ〉 ≈
(∑

i

b†i

)N

|0〉 (1.7)

The full phase diagram as a function of J/U and μ/J is summarized pictorially in
Fig. 1.2

To capture the critical properties near the QPT and to relate them to GLT in
Eq. (1.3) we write an effective GLT action for the phase transition in terms of a
complex order parameter � preserving the U (1) symmetry of the model:

Fig. 1.2 Phase diagram of
the Bose-Hubbard model
in the J/U versus μ/J
plane. The green circles
at the tip of the Mott lobes
corresponds to the
multicritical points, where
the dynamics is relativistic

n = 1

n = 2

n = 3

Superfluid

Mott Insulator

J/U

μ
/J
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SB =
∫

dτ dd x

[
K0�

∗ ∂�

∂τ
+ K1

∣∣∣∣∂�

∂τ

∣∣∣∣
2

+ K2 |∇�|2

+r |�|2 + u |�|4
]

(1.8)

TheGLTcan be derived directly from themicroscopicmodel of Eq. (1.5), by applying
a Hubbard-Stratonovitch transformation [6] and expanding the action in the limit of
small order parameter and long wavelength. The linear time derivative term does not
break any symmetry and hence can not be excluded from the effective action.

The coefficient of the linear derivative term K0 is related to the coefficient of the
quadratic term, r , in Eq. (1.8) and hence it is not independent [7]:

K0 = − ∂r

∂μ
. (1.9)

In order for K0 to vanish we must have that ∂r
∂μ = 0. This condition is satisfied

exactly at the tip of the Mott lobe, marked by green dots in Fig. 1.2, where the phase
boundary between the SF and the MI is vertical. Hence, the resulting theory has
an emergent Lorentz symmetry, and it is equivalent to the relativistic QPT model
presented in Eq. (1.3) with N = 2. The two components of the vector field �φ are
identified with the real and imaginary part of the complex order parameter �.

1.3 Collective Excitations

The excitations spectrum, beyond the mean field ground state, is obtained by con-
sidering small fluctuations of the order parameter above the mean field solution.
Explicitly, we take φα = φ̄α + δφα and expand the action to quadratic order in δφα.

The resulting excitation spectrum in the disordered phase consists of N massive
excitations with a single particle gap � and the dispersion relation:

ω2
dis(k) = k2 + �2 (1.10)

In the ordered phase the broken symmetry direction is a preferred direction. There-
fore, we must distinguish between two types of excitations: N −1 gapless Goldstone
modes corresponding to transverse fluctuations, δφt , with respect to the broken sym-
metry direction and a single massive amplitude (Higgs) mode, with a mass m H ,
corresponding to fluctuations of the order parameter amplitude in the longitudinal
direction, δφ�. Both modes are depicted pictorially in Fig. 1.3a.

The dispersion relation of the two modes is shown in Fig. 1.3b and is given by:

ω2
t (k) = k2 (1.11)

ω2
� (k) = k2 + m2

H ,
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φ1 φ2

Vord(|φ|)(a)

k

ω

ω2 = k2 + m2
H

ω2
t = k2

(b)

Fig. 1.3 Excitation spectrum in the ordered phase. a The Golstone mode (blue) corresponds to
longitudinal fluctuations, whereas the amplitude mode (red) describe transverse fluctuations of the
order parameter amplitude. b Dispersion relations of the massless Goldstone mode and the gapped
amplitude mode

Here m H is the mass of amplitude mode.
The mean field analysis predicts that both energy scales soften to zero towards

the critical point, following a singular power law behavior:

�, m H ∝ (g − gc)
ν (1.12)

The softening energy scales signals the divergence of the correlation time.

1.4 Universality and the Scaling Limit

One of the defining properties of second order phase transitions is the divergence of
the correlation length ξ and correlation time ξτ near the critical point. In cases where
the dynamics is relativistic, space and time scales are equivalent up to rescaling by
the speed of sound. As a result, the low energy physics is characterized solely by the
vanishing critical energy scale � ∼ ξ−1

τ .
The scaling limit is then obtained by considering the theory in the limit where

ξ/a � 1, with a being the microscopic lattice constant scale. The assertion of
universality is that the result of the scaling limit is independent of the microscopic
details of the system other than symmetries and dimensionality.

One important result of the universality assumption is that the long wave length
critical properties of any correlation function, χ(ω), can be expressed in terms of a
universal scaling function:

χ(ω, g) ∝ �dχ f (ω/�). (1.13)
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Here dχ is the scaling dimension of the response function χ(ω) and f (x) is a uni-
versal scaling function. Importantly, the universal part of any response function is
determined by the critical collective excitations and their related energy scales.

1.5 Visibility of the Higgs Mode

The Goldstone modes are stable modes, protected by Goldstone’s theorem, whereas
the amplitude mode is unstable as it can decay into a pair of Goldstone modes by
quantum corrections that decrease the life time and hence broaden the experimental
line shape.

A natural response function for probing the amplitude mode is the longitudinal
susceptibility:

χ�(q) =
∫

d Dxeiq·x 〈δφ�(x)δφ�(0)
〉

(1.14)

In the above equation �q = {ω, �p} is the energy-momentum vector. The visibility of
the amplitude mode in the spectrum of the longitudinal susceptibility depends on
dimensionality. In D = 3+1 dimensions the amplitude mode becomes increasingly
sharper upon approach to the critical point [8]. By contrast, in D = 2+1 dimensions
the longitudinal susceptibility has a 1/ω divergence at low frequency such that the
amplitude mode is concealed in that limit [9].

Recently, itwas understood that the line shape of the amplitudemode is sensitive to
the symmetry of the probe [10]. It was suggested to consider the scalar susceptibility
in order to improve the visibility of the amplitude mode. The scalar susceptibility
measures the response to an experimental probes that couple to the order parameter
amplitude squared:

χs(q) =
∫

d Dxeiq·x 〈φ2(x)φ2(0)
〉

(1.15)

The scalar susceptibility was computed in the large N and weak coupling limits [10].
It was found that, unlike the longitudinal susceptibility, the scalar susceptibility rises
as ω3 at low frequency, rendering the amplitude mode visible at finite frequencies.
A comparison between the longitudinal and scalar susceptibilities, computed in the
large N limit, is shown in Fig. 1.4. The amplitude mode is visible in the spectrum
of the scalar susceptibility, whereas the line shape is completely washed out in the
longitudinal susceptibility.

The weak coupling expansion and the large N limit are valid only deep inside the
superfluid phase. This is due to the fact that the critical point, in D = 2 + 1, is a
strongly coupled fixed point [11], precluding a description in terms of weekly inter-
acting normal modes. As a consequence, these methods might not capture correctly
the universal properties near the critical point. In particular, it not obvious that the
amplitude mode survives as a well defined resonance arbitrary close to the critical
point.
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Fig. 1.4 A comparison
between the scalar
susceptibility (blue) as
defined in Eq. (1.15) and the
longitudinal susceptibility
(red) as defined in Eq. (1.14).
Both curve were computed
in the large N limit
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To compute the universal scaling function of the scalar susceptibility the authors
of Ref. [12] considered the leading order correction to the large N limit in a 1/N
expansion. The conclusion of this analysis was that the universal part of the scalar
susceptibility contains awell defined resonance that can be associatedwith the ampli-
tude mode.

The 1/N expansion is an asymptomatic expansion, which is well controlled only
in the large N limit. Hence, these results might be inaccurate for the experimen-
tally relevant cases, where N is small (N = 2 for the Bose Hubbard model and
N = 3 for dimerized antiferromagnets). Therefore, determining the ultimate fate of
the amplitude mode near quantum criticality requires an unbiased numerical compu-
tation. In Chap.2 we present a large scale quantum Monte Carlo (QMC) simulation
supplemented by a numerical analytic continuation, where we study the visibility
of the amplitude mode in the spectrum of the scalar susceptibility and the optical
conductivity near quantum criticality.

1.6 Experimental Motivation: The Amplitude (Higgs) Mode
Near the Two Dimensional Superfluid to Mott Insulator
Transition

Cold atom systems provide highly tunable experiments of strongly correlated quan-
tum systems [3, 13]. One prominent example is the superfluid to Mott insulator
transition of cold atoms trapped in an optical lattice. This system is well described
by theBHMpresented in Eq. (1.5). The hopping term corresponds to tunneling events
between adjacent sites of the optical lattice. The hopping rate is tuned by varying
the depth of the optical potential. The Hubbard U interaction term models on-site
repulsive interaction between the atoms [13].

The first experimental observation of the amplitude (Higgs) mode near quantum
criticality in two space dimensions was in recent breakthrough experiment of the SF
to MI transition at integer filling [14].

http://dx.doi.org/10.1007/978-3-319-19354-0_2
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Fig. 1.5 Experimental protocol for the detection of the amplitude mode near the superfluid to Mott
insulator transition in cold atoms trapped in an optical lattice. The system is perturbed bymodulating
the lattice depth and the spectral response function is obtained bymeasuring the temperature increase
by means of single site imaging techniques

The experimental protocol is depicted schematically in Fig. 1.5. First, a degenerate
gas of 87Rb atoms is loaded into a two dimensional optical lattice generated by a
standing wave pattern of laser light. The detuning from the QCP is determined by the
lattice depth. Next, the system is perturbed by weak modulations of the lattice depth
followed by a hold time which allows equilibration. Finally, the energy absorption is
measured by increasing the potential depth to reach the atomic limit and measuring
the temperature increase by single atom resolving techniques [15].

The experimentallymeasured response function in this case is given by the dynam-
ical kinetic energy correlation function [16]. In order to relate this response function
to the scalar susceptibility, we investigate the effective action near the quantum crit-
ical point in Eq. (1.8). The parameters K1, K2, r, u are all functions of the hopping
amplitude J and the on-site interaction U . For instance, if the transition is tuned by
varying the hopping amplitude J then r can be linearized about the critical point
as r = r0(J − Jc). Thus, the energy absorbed due to modulations of the hopping
amplitude J can be described by the dynamical response of an operator of the form:

�(x, τ ) = α|�|2 + β|∂τ�|2 + γ|∇�|2 + δ|�|4 (1.16)

Close to the QCP, the term proportional to |�|2 will dominate the low energy spectral
weight, since it is the most relevant operator in the long wavelength limit. As a
consequence, the universal part of the response function coincides with the scalar
susceptibility.
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Fig. 1.6 Critical energy scales measured from the spectral response function to lattice depth mod-
ulations. The softening energy scales correspond to twice the charge gap in the Mott phase and to
the amplitude (Higgs) resonance in the superfluid phase

The experimentaly resolved energy scales near the critical point are shown in
Fig. 1.6. The softening energy scales correspond to twice the charge gap in the Mott
phase and to the amplitude (Higgs) resonance in the superfluid phase.

Unfortunately, due to experimental limitations, the detuning from the QCP was
not small enough to probe the critical region. This motivates future experiments that
study the universal properties of the amplitude mode in close proximity to the QCP.

1.7 Charge Vortex Duality Near the Superfluid to Insulator
Transition

The duality mapping between bosons and vortices plays an important role in various
strongly interacting systems [17]. A few examples are: the Coulomb gas description
of the two dimensional XY model [18] and fractional charges in fractional quantum
Hall systems [19].

In this section we will discuss the dual vortex description of interacting bosons in
two dimensions [20]. The focuswill be on the particle-hole symmetric casewhere the
dynamics is relativistic, i.e. K0 vanishes in Eq. (1.8). The effective action of the dual
vortex representation is a complex |ϕ|4 theory minimally coupled to an emergent
abelian gauge field aμ [20–22]:



12 1 Introduction

Sv =
∫

d2x
∫

dτ

[∣∣(∂μ − iaμ)ϕ
∣∣2 + m2|ϕ|2 + u|ϕ|4 + 1

4e2
f 2μν

]
. (1.17)

Here fμν = ∂μaν − ∂νaμ is the dual electromagnetic tensor, the complex field ϕ
corresponds to the local vortex density and the dual abelian gauge field aμ is related
to the boson 3-current as Jμ = εμνλ∂νaλ. The duality mapping is not self dual,
namely the duality transformation does not map the model to itself. This is attributed
mainly to the different interaction range of bosons and vortices.

The model in Eq. (1.17) undergoes a zero temperature quantum phase transition
between Coulomb and Higgs phases, tuned by the mass parameter m2 at a critical
value m2 = m2

c .
In the Coulomb phase, m2 > m2

c , the vortices interact through a long range
Coulomb force that is mediated by the gauge field aμ. Pictorially, in this phase, the
vortices world line configurations are tightly bound vortex anti-vortex loops confined
by the strong attractiveCoulomb interaction. This phase corresponds to the superfluid
phase of the original bosonic theory. The gapless phase mode (Goldstone mode) is
identified with the gapless transverse mode of the gauge field aμ.

In the Higgs phase, m2 > m2
c , the vortex field ϕ condenses. The non zero expec-

tation value, ϕ̄ > 0, of the vortex field serves as a mass term for the gauge field
aμ through the Higgs-Anderson mechanism [23]. As a consequence, the interaction
between the vortices is screened, resulting in a proliferation of large vortex anti-vortex
loops. Due to the mass term, the gauge field aμ supports an additional a longitudinal
mode thus it is no longer purely transverse. This phase is essentially a vortex Bose
condensate that corresponds to the insulating phase of the original bosonic model.
The two gapped modes (particle and hole excitations) of the insulator are identified
with the two gapped modes of the gauge field aμ.

Interestingly, the conductivity of the bosons, σ, is inversely proportional to the
conductivity of the vortices, σV:

σ × σv = q2

�2
. (1.18)

Here q is the charge of the bosons (= 2e in superconductors). This exact relation
is fully consistent with the physical picture of the dual vortex model. The bosonic
superfluid, with σ = ∞, is mapped to a vortex insulator, with σv = 0. Similarly, the
bosonic insulator, withσ = 0, ismapped to a vortex condensate, withσv = ∞. It was
further speculated [24] that if the duality is approximately self dual, i.e. σv = σ/q2,
then the conductivity at the critical point equals exactly to the quantumof conductance
σq = q2/h. A value that is close to the experimental observation [5].

The problem with the vortex description is that it lacks a concrete observable,
which probes the vortex condensate in terms of the physical bosonic degrees of
freedom. The purpose of the second project, presented in Chap.3, is to address
this issue. We use the reciprocity relation in Eq. (1.18) to identify the capacitance
in the insulating phase as a direct probe for the dual vortex condensate stiffness. In

http://dx.doi.org/10.1007/978-3-319-19354-0_3
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addition,we show that the universal ratio between the superfluid stiffness and the dual
vortex condensate stiffness, evaluated at mirror points across the phase transition, is
a quantitative measure for the deviation from self-duality.
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Chapter 2
Dynamics and Conductivity Near Quantum
Criticality

2.1 Introduction

In this chapter we study the dynamical properties of relativistic O(N ) models close
to the quantum critical point at low temperature, frequency, and zero wave vector.
We compute the universal line shape of the scalar susceptibility for O(N ) models
with N = 2, 3, and 4. In addition, we perform a careful analysis of the low frequency
behavior of the line shape in the ordered phase, where we confirm the ω3 rise for
N = 3 and N = 4 predicted in Ref. [1]. For N = 2 we cannot resolve the low
frequency power law. The scalar response in the disordered phase exhibits a sharp
threshold above a gap.

We present QMC and analytic results for the dynamical conductivity of the O(2)
model on both sides of the transition. In the superfluid phase, we find a threshold-
like behavior in the conductivity, which rises quadratically with frequency above the
Higgs mass m H . In the insulator there is a low-frequency threshold in the conduc-
tivity appearing at twice the single particle gap �, and a negative (capacitive) linear
dependence of the imaginary conductivity.

Throughout the analysis we identify a number of universal constants that charac-
terize the critical point. These include ratios of quantities measured on mirror points
on the ordered/disordered sides of the transition, such as m H /� and ϒ/�, where
ϒ is the helicity modulus in the ordered phase (superfluid stiffness in the super-
fluid phase). For N = 2, we compute the high frequency universal conductivity
σ∗
c (ω � T ) in the quantum critical regime.
Our results are relevant to recent experiments which probe critical dynamics.

In cold atomic gases, the Higgs mode has been excited by modulating the lat-
tice potential near the superfluid to Mott transition [2]. Fast real time pump-probe
response was used to see amplitude oscillations in charge density wave (CDW)
systems [3, 4]. Raman and neutron scattering have long identified a “two magnon
peak” in antiferromagnets [5–9]. Within our theory, this peak is a Higgs mode which
would soften at criticality. The conductivity in cold atom systems may be mea-
sured by lattice phase modulations [10]. For Josephson junction arrays and granular
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16 2 Dynamics and Conductivity Near Quantum Criticality

superconducting films, Coulomb interactions must be considered, as they give rise
to massless two-dimensional plasmons. We show that this increases the power law
rise of the conductivity above the Higgs threshold. While our theory is for transla-
tionally invariant systems, some of the finite frequency zero wave vector results may
be a good starting point for understanding very recent results on disordered granular
superconducting films [11].

This chapter is organized as follows. Section2.2 presents the O(N ) field theory
and the observables we study, together with their expected scaling near the quantum
critical point. Section2.3 introduces the discretized lattice model. In Sect. 2.4, we
locate the critical point as a function of cutoff parameters and compute the relevant
energy scales near the critical point. In Sect. 2.5, we present the universal scaling
functions of the scalar susceptibility. In Sect. 2.6, we compute the dynamical con-
ductivity on both sides of the superfluid-Mott transition Appendix A describes the
QMC algorithm in detail. Appendix B discusses the numerical analytical continua-
tion procedure and provides an error analysis of the kernel pseudo-inversion. Finally,
Appendix C describes a weak coupling analytic calculation of the conductivity.

2.2 Field Theory and Scaling

We consider microscopic systems with O(N ) symmetry whose long wave length and
low energy universal properties near the QCP are captured by a quartic field theory
with relativistic dynamics as presented in Eq. (1.3).

We study two dynamical observables: the scalar susceptibility and the dynam-
ical conductivity. For completeness we define these observables and discuss their
expected scaling behavior and experimental realizations.

2.2.1 Scalar Susceptibility

The scalar susceptibility describes the response function of experimental probes that
are sensitive to the amplitude of the order parameter, but not to its direction [1].
The scalar susceptibility as a function of Matsubara frequency is defined similarly
to Eq. (1.15) as the correlation function of the order parameter amplitude squared:

χs(τ ) =
∫

d2x
(〈 �φ 2

x,y,τ
�φ 2

0
〉 − 〈 �φ 2

0
〉2)

χs(iωm) =
∫ β

0
dτeiωmτχs(τ )

(2.1)

The real frequency spectral function is obtained by analytic continuation of Eq. (2.1)

χ′′
s (ω) = −I mχs(iωm → ω + i0+) (2.2)

http://dx.doi.org/10.1007/978-3-319-19354-0_1
http://dx.doi.org/10.1007/978-3-319-19354-0_1
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Scaling arguments indicate that the expected low energy form of Eq. (2.1) near the
QCP is [12]:

χs(ω/�) ∼ C + A±�3−2/ν�±(ω/�) (2.3)

where� ∼ |δg|ν is the gap in the disordered phase, ν is the correlation length critical
exponent, and �− (�+) is a universal function of ω/� on the ordered (disordered)
side of the transition. The non-universal constantC is real, and is a regular function of
g across the transition. The ordered phase is gapless due to the presence of Goldstone
modes. In order to provide a well-defined energy scale that characterizes fluctuations
on the ordered phase (δg < 0), we use the gap at the mirror point −δg across the
transition.

2.2.2 Conductivity

The dynamical conductivity measures the response to an external gauge field. Our
analysis will be restricted to the N = 2 case, as is relevant to dynamical conductivity
measurements in superconductors and also to neutral cold atoms probed by optical
lattice phase modulations [10]. To simplify the analysis we write the two scalar fields
in Eq. (1.3) as a single complex field (φ1,φ2) = √

2 (Re�, Im�). We introduce the
gauge field Aμ through minimal coupling ∂μ� → (

∂μ + ie∗ Aμ

)
� for a field �

carrying charge e∗.
The current is obtained by differentiating the action with respect to Aμ, viz.

〈
Jμ

〉 = δS(A)

δAμ

= ie∗〈�∗∂μ� − �∂μ�∗〉 + 2e∗2Aμ

〈|�|2〉 , (2.4)

from which we derive the response function:

�μν(x, x ′) = δ

δAν(x ′)
〈
Jμ(x)

〉∣∣
A=0

= 〈
Jμ(x) Jν(x ′)

〉 + 2e∗2〈 |�|2 〉
δμν δ(x − x ′) . (2.5)

The first term is the paramagnetic response kernel �P
μν(x, x ′) = 〈

Jμ(x) Jν(x ′)
〉
, and

the second term is the diamagnetic response. The conductivity is then given by

σ(iωm) = − 1

ωm
�xx (iωm, q = 0) . (2.6)

As in Eq. (2.2), the real frequency dynamics is obtained by analytic continuation,

σ(ω) = σ(iωm → ω + iε) . (2.7)

http://dx.doi.org/10.1007/978-3-319-19354-0_1
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Remarkably, in 2+1 dimensions the scaling dimension of the conductivity is zero
[13]. As a result, near the critical point the conductivity has the scaling form
[13, 14],

σ(ω) = σq �±(ω/�) . (2.8)

Here σq = e∗2/h is the quantum of conductance and�± are dimensionless universal
functions of ω/� for the disordered (+), and ordered (−) phases.

2.3 Model and Methods

In order to simulate the continuum field theory Eq. (1.3) we consider the following
discrete lattice model:

Z =
∫

D �φe−S[�φ ]

S =
∑
〈i j〉

�φi · �φ j + μ
∑

i

∣∣ �φi
∣∣2 + g

∑
i

∣∣ �φi
∣∣4 .

(2.9)

Here �φ is an N component scalar field, residing on the sites of cubic lattice of linear
size L with periodic boundary conditions. The model is the same as that considered
in Ref. [15], as seen by rescaling �φi → g−1/2 �φi . The long wavelength properties
of Eq. (2.9) are captured by the field theory Eq. (1.3). This model can be interpreted
either as a quantum mechanical partition function in discrete 2+ 1 Euclidean space-
time dimensions, or as a classical statistical mechanics model in three dimensions.
Near the phase transition between ordered and disordered phases, thisminimalmodel
captures the critical properties of Eq. (1.3) while explicitly treating space and time
on an equal footing and preserving exact particle-hole symmetry (� → �∗) for the
N = 2 case.

Next we define the discrete lattice version of the continuum observables. The
scalar susceptibility is given by

χs(τ ) =
∑
x,y

〈 �φ 2
x,y,τ

�φ 2
0
〉 − 〈 �φ 2

0
〉2

. (2.10)

To define the conductivity it is easier to consider the U (1) symmetric complex field
analog model of the N = 2 scalar field,

Z =
∫

D� D�∗ e−S[�,�∗]

S =
∑
〈i j〉

(
�∗

i � j + �i�
∗
j

)
+ 2μ

∑
i

|�i |2 + 4g
∑

i

|�i |4 . (2.11)

http://dx.doi.org/10.1007/978-3-319-19354-0_1
http://dx.doi.org/10.1007/978-3-319-19354-0_1
http://dx.doi.org/10.1007/978-3-319-19354-0_1
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We introduce the gauge field Aμ(i) through Peierls substitution �∗
i �i+μ →

�∗
i �i+μ eie∗ Aμ(i). The current is then

Jμ(i) = δS

δAμ(i)
= ie∗〈�∗

i �i+μ̂ eie∗Aμ(i) − c.c.
〉

(2.12)

and the response function,

�μν(i, j) = δ

δAν( j)

〈
Jμ(i)

〉∣∣∣
A=0

= �P
μν(i, j) + K δμν δi, j . (2.13)

�P
μν(i, j) = 〈

Jμ(i) Jν( j)
〉
and K = −e∗2〈�∗

i �i+μ̂
+ c.c.

〉
are the lattice versions of,

respectively, the paramagnetic and the diamagnetic response.
The simplicity of our model allowed us to simulate large system sizes, up to

L = 200. Considering such large systems enabled us to accurately track the critical
properties near the QCP. This is especially important in the ordered phase where the
system is gapless and the dynamical response functions have power-law behavior.
We implemented the highly efficient “worm algorithm” [16], sampling from a dual
closed loops representation. The correlation time of the worm algorithm scales well
with system size, suppressing the critical slowing down near the transition. We also
extend the work of Ref. [16] to treat general O(N ) models with N > 2. Details of
the QMC algorithm can be found in appendix A.We compared our numerical results
against previous QMC studies of O(N )models [17, 18] and with analytically solved
limits and found good agreement within error bars.

A key ingredient of our analysis is the numerical analytic continuation of imagi-
nary time QMC data to real frequency spectral functions. To do so we have to invert
the relation,

G(iωm) =
∞∫

0

dν

π

2ν

ω2
m + ν2

A(ν) . (2.14)

Here G(iωm) is a correlation function in Matsubara frequency space, evaluated by
the QMC simulation, and A(ν) is the spectral function. However, the kernel has
very small singular value eigenvalues, and the inversion can unwittingly amplify
the statistical QMC noise in G(iωm). A detailed discussion of methods which can
circumvent these artifacts is presented in Appendix B.
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2.4 Critical Energy Scales

2.4.1 Determination of the Critical Coupling

In order to study critical properties it is necessary to locate the QCP with high
accuracy. We determine the critical coupling by finite size scaling analysis of the
helicity modulus of the 2 + 1-dimensional quantum model. The helicity modulus

ϒ is defined by ϒ ≡ 1
L

∂2 lnZ(ϕ)

∂ϕ2 |ϕ=0 where Z(ϕ) is the partition function in the
presence of a uniform phase twist ϕ. Near the critical point, ϒ L is a universal
constant, with only next-to-leading order corrections in the system size L [13, 19].
The critical coupling is then determined from the crossing point of Lϒ for a sequence
of increasing system sizes L . Illustrative examples for N = 2 and N = 3 are shown
in Fig. 2.1. Curves for different system sizes cross at a single point with little variation
with system size, allowing us to determine the critical coupling accurately.

We studied a few different parameter sets (gc,μc) which are shown in Table2.1.
The use of multiple sets of model parameters for N = 2 allowed us to test the
universality of our results. In most cases we tuned the transition by varying g, except
in the case of dynamical conductivity, where we varied μ.

Fig. 2.1 Curves of Lϒ for an sequence of increasing system size L for O(N = 2, 3) models. The
curve cross at a single point, from which we determine the value of gc. Here we take μ = −0.5 and
gc = 2.568(2) for the N = 2 case and gc = 1.912(2) for N = 3
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Table 2.1 List of model parameters studied, along with their critical couplings

Model N Model parameters Critical coupling

A 2 μ = −0.5 gc = 2.568(2)

B 2 μ = −2 gc = 3.908(2)

C 2 g = 7.6923 μc = −5.883(2)

D 3 μ = −0.5 gc = 1.912(2)

E 4 μ = −0.5 gc = 1.516(2)

2.4.2 Excitation Gap in the Disordered Phase

The gap in the disordered phase provides a reference energy scale for all dynamical
properties. It can be extracted with high precision from the zero momentum two
point Green’s function [20],

G(τ ) =
∑
x,y

〈 �φx,y,τ · �φ0
〉
, (2.15)

without recourse to analytic continuation. At large imaginary times, G(τ ) is expected
to behave as

G(τ ) ∼ e−�τ + e−�(β−τ ) . (2.16)

The gap � is evaluated by a fit to the above functional form. The evolution of the
gap near the QCP is depicted in Fig. 2.2 for N = 2, 3. The gap softens as δg → 0
according to the scaling form �(g) ∼ �0 (δg)ν , from which we extract �0. For the
correlation length exponent ν, we use values determined in previous high accuracy
simulations [17, 18]: ν2 = 0.6723(3), ν3 = 0.710(2), and ν4 = 0.749(2) for N = 2,
N = 3, and N = 4 respectively.

We validated our results by performing a similar analysis of the long imaginary
time form of the scalar susceptibility [15] χs(τ ) ∼ τ−1 e−2τ�. We found good
agreement between the two approaches.

2.4.3 Helicity Modulus in the Ordered Phase

In two spatial dimensions, the helicity modulus is an energy scale that can be used
to characterize the ordered phase. For N = 2 (N = 3) it plays the role of the
superfluid stiffness (spin stiffness). Similarly to the gap in the disordered phase, the
helicity modulus near the QCP vanishes according to the scaling behavior ϒ =
ϒ0(δg)ν . The ratio ϒ0/�0 is universal. We find ϒ0/�0 = 0.44(1) for N = 2 and
ϒ0/�0 = 0.34(1) for N = 3. This universal ratio was also calculated by means of
non-pertubative renormalization group methods in Ref. [21].
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Fig. 2.2 Scaling of the gap �(δg) in the disordered phase for N = 2, 3 and μ = −0.5. Fitting to
the scaling form � = �0(δg)ν gives �0 = 1.86(1) for N = 2,μ = −0.5 and �0 = 1.96(1) for
N = 3,μ = −0.5. Error bars are smaller than the symbols

2.5 Scalar Susceptibility

In the following, the universal scaling functions of the scalar susceptibility are com-
puted for both phases (Fig. 2.3).

2.5.1 Matsubara Frequency Universal Scaling Function

InFig. 2.4a numerical results for the N = 2 scalar susceptibilityχs(iωm) as a function
of Matsubara frequency are presented for both phases. The scaling form Eq. (2.3)
applies also to the correlation function in Matsubara space. The universal scaling
function �(iωm) is then computed by rescaling the χs(iωm) curves according to
Eq. (2.3). The collapse requires the extraction of the non-universal real constant C ,
which is expected to be a smooth function of δg. We find C by fitting χs(iωm) at
small ωm to a polynomial in δg, and then subtracting it from χs(iωm). The ω axis is
then rescaled by � and the vertical axis is rescaled by �3−2/ν .

Figure2.4b, c shows the scaling procedure for N = 2, 3. The curves collapse into
two universal functions �±(iωm). To test the universality of our results we repeated
the scaling analysis at a different crossing point of the phase transition for the N = 2
case. The results are presented in Fig. 2.4b. The scaled curves for both sets of critical
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Fig. 2.3 Scaling of the helicity modulus ϒ(δg) in the ordered phase for N = 2, 3 and μ = −0.5.
Fitting to the scaling form ϒ = ϒ0(δg)ν gives ϒ0=0.83(1) for N = 2,μ = −0.5 and ϒ0=0.67(1)
for N = 3,μ = −0.5. Error bars are smaller than the symbols

(a) (b) (c)

Fig. 2.4 aThe scalar susceptibilityχs(iωm) for N = 2. The curves correspond to different values of
δg below and above the phase transition. b, c universal scaling function after rescaling for N = 2, 3.
In (b) we show the scaling function for two crossing points of the phase transition. The two rescaled
curves agree very well, especially at low frequencies. Simulations were performed with μ = 0.5
and μ = 2 for N = 2 and μ = 0.5 for N = 3
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couplings agree very well, especially for low frequencies. This provides a stringent
test for the consistency of our analysis.

2.5.2 Real Frequency Universal Scaling Function

Nextwe examine the imaginary part of the retarded response functionχ′′
s (ω) obtained

from analytic continuation of χs(iωm). To extract the universal part of the line shape
we rescale the ω axis by� and the vertical axis by�3−2/ν . Note that this rescaling is
done without any free fitting parameters, since the real constant C in Eq. (2.3) drops
out from the spectral function.

The rescaled line shape in the ordered phase is shown in Fig. 2.5 for N = 2
and N = 3. Curves for different values of δg collapse into a single universal line
shape especially at low frequencies. The line shape contains a clear peak that can
be associated with the Higgs mode. Our analysis demonstrates that the Higgs peak
is a universal feature in the spectral function that survives as a resonance arbitrarily
close to the critical point.

Some universal values can be obtained by this analysis. For example, we consider
the ratio between the Higgs mass in the ordered phase, defined by the maximum in
χ′′

s (ω), and the gap in the disordered phase at mirror points across the transition. This
ratio is found to be m H /� = 2.1(3) and m H /� = 2.2(3) for N = 2 and N = 3

Fig. 2.5 χ′′
s (ω) in the ordered phase for N = 2 and 3. We scale the curves according to Eq. (2.3)

for a range of tuning parameters δg near the critical point
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respectively.We also obtain the fidelity F = m H /�, where� is the full width at half-
maximum. We measure � with respect to the leading edge at low frequency, since at
low frequencies there is less contamination from the high frequency non-universal
spectral weight. Since the entire functional form of the line shape is universal, F is
a universal constant that characterizes the shape of the peak. We find F = 2.4(10)
for N = 2 and F = 2.2(10) for N = 3.

The rescaled spectral function in Fig. 2.5 shows higher variability at high fre-
quencies than at low frequencies. We attribute this to contamination from the non
universal part of the spectrum and to systematic errors introduced by the maximum
entropy (“MaxEnt”) regularization of the analytic continuation, which is noisy in
this regime.

In Fig. 2.6 we plot the rescaled line shape in the disordered phase for N = 2.
The universal spectral function is gapped for ω < 2� and rises sharply above the
threshold. This behavior is in accordance with analytic predictions [12] and with
previous QMC numerical simulation [22]. Previous studies found a Higgs-like res-
onance in the disordered phase above the threshold [22, 23]. However, we find that
the peak seen in Fig. 2.6 at ω/� ≈ 3 is very shallow relative to the background
spectral weight. Thus we do not consider this to be conclusive evidence of a res-
onance. We note that numerical analytic continuation tends to produce oscillatory
behavior near sharp features of the spectral function [24] and hence it is possible that
the shallow peak might be an artifact of such an effect. For comparison, in Fig. 2.7
we show representative curves for the line shape on mirror points of the transition.

Fig. 2.6 χ′′
s (ω) in the disordered phase for N = 2. We scale the curves according to Eq. (2.3) for

a range of tuning parameters δg near the critical point
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Fig. 2.7 Comparison of the scalar susceptibility line shape, χ′′
s (ω), on mirror points across the

phase transition or N = 2. The blue green curve corresponds to disordered phase and the green
curve to the ordered phase

If a resonance is at all present in the disordered phase, it is much less pronounced
than in the ordered phase.

We summarize by plotting in Fig. 2.8 the critical energy scales near the QCP for
N = 2 and 3.

2.5.2.1 Asymptotic Power Law Decay of the Scalar Susceptibility

In the ordered phase, the low frequency rise of the scalar susceptibility was pre-
dicted [1, 12, 25] to be

�′′−(ω) ∼ (ω/�)3 , ω � � � 1. (2.17)

The ω3 rise is due to the decay of a Higgs mode into a pair of Goldstone modes.
Equation (2.17) transforms into the large imaginary time asymptotic form χs(τ ) ∼
1/τ4. Hence, to test Eq. (2.17) we examine the large τ behavior of χs(τ ). We note
that this approach does not rely on analytic continuation, enabling us to study the
low frequency dynamics in a numerically stable and well controlled manner.

In Fig. 2.9 we present χs(τ ) on a log-log plot for N = 3, 4 in the disordered
phase with the detuning parameter δg = 0.1 × 10−2. For N = 3, 4 we indeed
find agreement with the asymptotic behavior χs(τ ) ∼ 1/τ4 within the error bars.
In Fig. 2.10 we present χs(τ ) for N = 2 on a log-log plot and on a semi-lrog plot.
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Fig. 2.8 Critical energy scales near the quantum phase transition in relativistic O(N) field theory
for N = 2, 3. δg ≡ (g−gc)/gc is the dimensionless tuning parameter. m H is the Higgs peak energy
(mass) in the ordered phase δg < 0, and � is the gap in the disordered phase δg > 0. Solid lines
describe the critical behavior m H = B−|δg|νN and � = B+|δg|νN

Fig. 2.9 Log-log scale plot for χs(τ ) in the ordered phase. For N = 3, 4 we indeed find the
asymptotic behavior χs(τ ) ∼ 1/τ4 to agree within the error bars
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(a) (b)

Fig. 2.10 χs(τ ) in the ordered phase for N = 2, plotted on a log-log scale in panel a and a semi-log
scale in panel b. The curve deviates significantly from the expected 1/τ4 power law form. Instead,
the curve fits better to an exponential decay as in the disordered phase

Interestingly, for N = 2 we do not find a conclusive asymptotic fall-off as 1/τ4.
Instead, the data fits better to an exponential decay, as in the disordered phase. This
indicates that the ω3 sub-gap spectral weight, if at all present, is small compared to
the spectral weight contained in the Higgs peak. Indeed we find excellent agreement
between the large τ exponential decay rate and the value of m H obtained from the
MaxEnt analysis, further supporting our results for the Higgs mass. We note that a
1/τ4 power law behavior might be regained at larger values of τ , but this lies below
the statistical inference of our data.

Accurate determination of the scalar susceptibility at zero Matsubara frequency
χs(iω = 0) is crucial for this analysis. Errors in χs(iω = 0) translate into an overall
vertical shift of χs(τ ). This error can dominate the value of χs(τ ), especially at
large τ where χs(τ ) is numerically small, and can lead to a bias in the power-law
analysis. Typically,χs(iω = 0) ismeasured fromafluctuation relationχs(iω = 0) =∑

x,y,τ

〈 �φ 2
x,y,τ

�φ 2
0

〉 − 〈 �φ 2
0

〉2 and hence does not self-average [26] upon increasing the
system size. To overcome this difficulty we computed χs(iω = 0) using a direct
numerical derivative χs(iω = 0) = −d〈 �φ 2 〉/dμ. To do so we evaluated

〈
φ2

〉
for a

set of values ofμwithin a narrow range [μ−�μ,μ+�μ] and extracted the derivative
by a polynomial fit in μ. We found that this method reduced the error in χs(iω = 0)
by an order of magnitude and significantly improved the power law decay analysis.
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2.6 Dynamical Conductivity

In Fig. 2.11 we present the dynamical conductivity in the disordered and ordered
phases. In both cases the frequency axis ω is rescaled by �, noting that there is no
need for a vertical rescaling since the conductivity is a universal amplitude. In both
phases the curves collapse into single a universal shape, especially at low frequencies.
The spectrum on the disordered side has a clear gap-like behavior up to a threshold
frequency 2�. Beyond this threshold, the spectrum rises sharply and saturates at a
universal value of σdis(ω � �) ≈ 0.35(5)σq, where σq = e∗2/h is the quantum
of conductance. These results should be compared with the line shape calculated
diagrammatically in Ref. [14],

σ+(ω) = 2πσq

(
ω2 − 4�2

16ω2

)
	(ω − 2�) . (2.18)

Similarly, in the ordered phase, the dynamical conductivity grows rapidly starting at
a threshold frequency ≈ 2�, and saturates at high frequency at a value σord(ω �
�) ≈ 0.25(5)σq. A calculation to leading order in weak coupling predicts [1, 27]
(see also appendix C)
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Fig. 2.11 The optical conductivity, Reσ(ω) in the ordered and disordered phases for N = 2.
Curves are scaled by according to Eq. (2.8) for several values of the quantum tuning parameter δg
near the critical point. The solid black curves show the analytic results from Refs. [1] and [14]
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σ−(ω) = 2πσq

(
ω2 − m2

H

4ω2

)2

	(ω − m H ) . (2.19)

In contrast to the disordered phase, there is a sub-gap component to the conductivity,
owing to the gaplessness of the Goldstone mode(s). This feature is first evident at
two loop order in a perturbative calculation of the conductivity. This was computed
in Ref. [1], where it was found that the corresponding sub-threshold (ω < m H )
contribution to σ(ω) is

σ−(ω)
∣∣
ω<m H

= σq · gm H

28π

{
N − 2

N

(
16ω

15m H
+ 32ω3

105m3
H

)
+

+ 3N − 5

N

16ω5

315m5
H

+ · · ·
}

+ O(g2) . (2.20)

Remarkably, for N = 2, the two leading order frequency terms in the sub-threshold
conductivity vanish, resulting in a pronounced pseudogap behavior. Our numerical
results appear to be qualitatively consistent with this analytic prediction. However,
the coefficient of the leading ω5 term is small, given by 3.2 × 10−5 g/m4

H , and is
not resolved within our numerical accuracy.

For comparison, the analytic curves corresponding to Eqs. (2.18) and (2.19) are
plotted in Fig. 2.11. The value of m H was taken from the scalar susceptibility analy-
sis [15] and � from the gap analysis. There is a remarkable agreement between
analytic and numerical curves especially at low frequencies. It is important to notice
that analytic curves are presented without any fitting parameters (after setting m H
and �).

On general grounds, one expects the high frequency (ω � �) limit of the univer-
sal conductivity functions to be equal on both ordered and disordered phases. Here
we find slightly different values, σdis(ω � �) ≈ 0.35(5)σq and σord(ω � �) ≈
0.25(5)σq, although there is significant spread which we attribute to limitations of
the analytic continuation. This high frequency value should also match the universal
conductivity in the quantum critical regime at high frequencies (� = 0 and ω � T ).
Taking an average over both results, we estimate σ∗

c (ω � T ) ≈ 0.3(1)σq. This
value should be compared with the value σ∗

c = 0.39σq obtained in the large N limit
in Ref. [14], and with σ∗

c = 0.251 [28] obtained from leading correction in 1/N .
In addition, previous QMC simulations found σ∗

c = 0.33σq [19] and σ∗
c =

0.285σq [28].

2.6.1 Effect of Coulomb Interactions

Josephson junction arrays and granular superconducting films can often be described
by charged lattice bosons [29], which interact at long range via e2/r Coulomb
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interactions. When Coulomb interactions are present, the O(N ) model Lagrangian
should be augmented by a contribution

�L =
∫

d2x in
∂ϕ

∂τ
+ 1

2

∫
d2x

∫
d2x ′n(x)

e∗2

|x − x′| n(x′) (2.21)

where ϕ is the phase of the order parameter. We parameterize the �φ field in terms of
longitudinal (σ) and transverse (π) fluctuations:

�φ = (
φ0 + σ , π

)
, (2.22)

where φ0 ≡ ∣∣〈 �φ 〉∣∣. To lowest order, we have ϕ = π/η
√

N , where η ≡ φ0/
√

N
is proportional to the magnitude of the order parameter. Integrating out the density
field n(x, τ ), we find that the π propagator becomes

Gππ(q) = 1

q2
0 + q2 + α |q| q2

0

, (2.23)

where α = ηg�v/πe∗2 and v is the velocity (‘speed of light’) in the original O(N )

model. This new π-field propagator has a 2D plasmon pole located at q0 = √−|q|/α
for small q. Plugging this into the expression for the electromagnetic kernel, in Eq.
(E1) of Ref. [1], we find, to order g0,

σ(ω) = 2σq

( α

m H

)2
(ω − m H )4 > 	(ω − m H ) . (2.24)

Thus, the dynamical conductivity of two dimensional superconductors rises above
the Higgs threshold with a modified power law σ(ω) ∝ (ω − m H )4.

2.7 Discussion and Summary

In this chapter we studied the critical dynamical properties of O(N )-symmetric mod-
els with relativistic dynamics in two space dimensions. In particular we computed
the line shape of the scalar susceptibility and the optical conductivity on either side
of the quantum phase transition. Our results focus on properties that are universal
in nature and are therefore relevant for many experimental realizations of quantum
phase transitions.

We showed that the scalar susceptibility, in the ordered phase, contains a clear
resonance at the Higgs mass m H . By contrast, in the disordered phase the scalar
susceptibility has a threshold at ω = 2�with no conclusive evidence for a resonance
above the threshold. In addition we provide two universal dimensionless constants
that characterize the dynamics: the ratio between the Higgs mass and the single
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particle gap on mirror points across the transition, and the fidelity of the Higgs
resonance. These predictions could be tested by future, high resolution, experiments
of the superfluid to Mott insulator transition in cold atomic lattices [2].

It is important to note that, close to the critical point, the scalar susceptibility
captures the low frequency behavior of a generic experimental probe that couples to
the order parameter amplitude and not to its direction [15].

We have also presented results for the optical conductivity on both sides of the
phase transition. In both cases we find a sharp rise of the spectral function atω ≈ 2�.
The threshold frequency in the ordered phase can be associated with the Higgs
mass m H . This provides an independent estimate of the Higgs mass, one which
agrees very well with the value obtained from the scalar susceptibility analysis. In
additionwe have computed the high frequency (ω � T ) universal conductance σ∗

c =
0.3(±0.1)×σq. This value iswith agreementwith previous analytic calculations [14].
Unfortunately the low frequency (“hydrodynamic”) limit ω � T is not accessible
in the QMC simulation, as was discussed in Ref. [14].

Finally we have shown that for charged system with Coulomb interaction the
power law of the spectral rise above the threshold changes from 2 to 4.

We hope that our results will motivate measurements of the optical conductivity
in cold atoms by optical lattice phase modulation, as was suggested in Ref. [10].
Such experiments could accurately measure the universal optical conductivity near
the QCP and even the universal resistivity right at the critical point. Our analysis may
also shed light on recent experiments on the superconductor to insulator transition
in granular superconductors [11]. In this context will be interesting to extend these
calculations to systems with varying degrees of disorder.
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Chapter 3
Critical Conductivity and Charge Vortex
Duality Near Quantum Criticality

3.1 Introduction

Three decades ago, Fisher and Lee [1] showed that the SIT can be described as a
Bose condensation of quantum vortices. Despite the appeal of this description, ρv,
the vortex condensate stiffness, has remained an elusive observable, for which no
experimental probe has yet been proposed. Also, to our knowledge, ρv has not been
calculated near the critical point, for any microscopic model.

In this chapter, we address this problem, by using the exact reciprocity relation,
presented in Eq. (1.18), between complex dynamical conductivities of bosons (σ)
and vortices (σv) at finite frequency:

σ(ω) × σv(ω) = q2/h2 , (3.1)

where q is the boson charge (=2e in superconductors) [2]. At low frequencies, this
equation is dominated by the reactive (imaginary) conductivities. The superfluid
stiffness ρs in the superfluid phase can be measured by the low frequency inductance
Lsf , ρs = �/(2πσq Lsf), where σq = q2/h is the quantum of conductance. Equation
(3.1) allows us to identify the elusive vortex condensate stiffnesswith the capacitance
per square in the insulating phase, Cins = �σq/(2πρv).

We shall examine quantitatively the charge-vortex duality (CVD) hypothesis
[2, 3], which relates the superfluid to the insulating phase. The strict CVD hypoth-
esis predicts a universal critical conductivity at the SIT given by σq . Experiments,
however, have measured non-universal values of the critical conductivity [4].

Several factors can spoil CVD in experiments (i) Bosons (in the superfluid) and
vortices (in the insulator) have different masses and interaction ranges [5, 6]. (ii)
Potential energy (both confining and disordered) couples differently to charges and
vortices. (iii) In superconductors, fermionic (Bogoliubov) quasiparticles produce
dissipation, which can alter the phase diagram from the purely bosonic theory.

For strict CVD to hold, one expects ρs(−δg) = ρv(δg), where ±δg are mirror
points on either side of the SIT. Figure3.1 depicts all the critical energy scales of
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Fig. 3.1 Critical energy scales near the SIT computed by QMC. The superfluid is characterized
by the mass of the amplitude mode, m H , and the superfluid stiffness, ρs; the insulator by the single
particle gap, �, and the vortex condensate stiffness, ρv. The amplitude ratios m H (−δg)/�(δg) =
2.1(3), [7] ρs(−δg)/�(δg) = 0.44(1) [8], and ρv(−δg)/�(δg) = 2.1(1) are universal

the relativistic O(2) field theory, obtained by large-scale Monte Carlo simulation. In
addition to the Higgs mass mH and the charge gap �, which vanish at the critical
point, we compare the energy scales ρs and ρv which are also critical, but have
different relative amplitudes. The ratio ρs(−δg)/ρv(δg) = 0.21(1). The deviation
from unity quantifies the violation of CVD.

It is interesting to ask whether CVD is better satisfied at finite frequencies. To
address this, we propose the product function

R(z) ≡ σ(z,−δg) × σ(z, δg)/σ2
q , (3.2)

as a measure of CVD between mirror points. Here, z denotes either a real or a
Matsubara frequency. The high frequency conductivity (after removal of cut-off
dependent corrections) reaches a universal value σ∗ = 0.355(5)σq [9, 10]. We
compute the function R(iωm) and address its implications to CVD. To supplement
the numerical calculation, we compute the complex optical conductivity at one loop
order in weak coupling. We conclude by proposing an experimental measure of the
vortex condensate stiffness ρv for neutral bosons in an optical lattice.
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3.2 Vortex Transport Theory

Boson charge current �j is driven by an electrochemical field �E . Vortices are point
particles in two dimensions. The vorticity current �jv(t) is driven by the Magnus
field �Ev. Hydrodynamics dictate simple relations between electrochemical field and
vortex number current, and between boson charge current and Magnus field [11]:

Eα
v = h

q
εαβ jβ , Eα = h

q
εαβ jβv , (3.3)

where ε = iσy is the two dimensional antisymmetric tensor. We note that Eq. (3.3)
are instantaneous. Conductivity relates currents to their driving fields,

jα(v)(t) =
∫ t

−∞
dt ′σαβ

(v)(t − t ′)Eβ
(v)(t

′) . (3.4)

By Fourier transformation, the complex dynamical conductivities obey a reciprocity
relation ε�σvε = (q2/h2)σ−1. For the case of an isotropic longitudinal conductivity
σxx = σyy = σ, one obtains the reciprocity Eq. (3.1), which can be analytically
continued to Matsubara space ω → iωn .

3.3 Model and Observables

For numerical simulations we study the discretized partition function presented in

Eq. (2.9).Z = ∫ D �φD �φ∗e−S[�φ,�φ∗], where the real action S on Euclidean space-time
is

S =
∑
〈i, j〉

�φi �φ∗
j + c.c + 2μ

∑
i

| �φi |2 + 4g
∑

i

| �φi |4 . (3.5)

Here �φi are complex variables defined on a cubic lattice of size L × L × β. We take
β = L throughout. For μ < 0, this model undergoes a continuous zero temperature
quantum phase transition (QCP) between a superfluid with 〈 �φ〉 �= 0 for g < gc and
an insulator with 〈 �φ〉 = 0 for g > gc. We define the quantum detuning parameter
δg = (g − gc)/gc.

The critical energy scales near the SIT, as shown in Fig. 3.1, in the superfulid
phase are the amplitude mode mass m H and the superfluid stiffness ρs [7, 12]. In the
insulating phase excitations are gapped, with single-particle gap �.

In the superfluid phase, the reactive conductivity diverges as Im σsf(ω) =
2πσqρs(−δg)/(�ω). Previous calculations [13] show that the dissipative component
has a small sub-gap contribution below the Higgs mass, 0 < ω � m H (−δg) which
goes as Re(σsf(ω)) ∼ ω5. This is negligible as ω → 0 and the analytic continuation
to Matsubara frequency yields

http://dx.doi.org/10.1007/978-3-319-19354-0_2
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σ̃sf(ωm) ∼ 2πσq ρs

�ωm
, (for ωm � m H ). (3.6)

In the insulator, the dissipative conductivity vanishes identically below the charge
gap �(δg) [8, 14]. The reactive conductivity vanishes linearly with frequency
Im σins(ω) = −Cinsω, where Cins is the capacitance per square. Therefore, σins
can be analytically continued to Matsubara space as

σ̃ins(ωm) ∼ Cins ωm , (for ωm � �). (3.7)

Equation (2.8) implies that the capacitanceCins diverges near theQCPasCins ∼ 1/�.
The capacitance measures the dielectric response of the insulator. Its divergence
reflects the large particle-hole fluctuations near the transition.

In the vortex description the insulator is a bose condensate of vortices, with a low
frequency vortex conductivity σ̃v(ωm) = ρv/(�

2ωm). As a consequence, ρv can be
defined in terms of the capacitance by applying Eq. (3.1),

ρv ≡ �σq

2πCins
. (3.8)

We shall use this important relation to test for CVD in the 2+1 dimensional O(2)
field theory.

3.4 Methods

A large scale QMC simulation of Eq. (3.5) is used to evaluate Eq. (2.6). We consider
large systems, of linear size up to L = 512, which is crucial for obtaining universal
properties. To validate the universality of our results we performed our analysis on
two distinct crossing points of the SIT, by choosing μ = −0.5 and μ = −5.89391
and tuning g across the transition. We found excellent agreement within the error
bars. Henceforth we will only present results for μ = −5.89391, a value which has
been argued to reduce finite size corrections to scaling [15].

3.5 Results

We locate the critical coupling gc(μ), with high accuracy, by a finite size scaling
analysis of the superfluid stiffness following the numerical method presented in
Sect. 2.4.1. In this workwe find gc = 7.0284(3).We extract the gap� in the insulator
by analyzing the asymptotic large imaginary time decay of the two point Green’s
function as was explained in Sect. 2.4.2.

http://dx.doi.org/10.1007/978-3-319-19354-0_2
http://dx.doi.org/10.1007/978-3-319-19354-0_2
http://dx.doi.org/10.1007/978-3-319-19354-0_2
http://dx.doi.org/10.1007/978-3-319-19354-0_2
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(a) (b)

Fig. 3.2 The conductivity as a function Matsubara frequency. The curves differ by the detuning
parameter δg. In the insulator, the low frequency conductivity is linear, σins ∼ ωm indicating
capacitive behavior. In the superfluid, the conductivity diverges as σsf ∼ 1/ωm indicating inductive
response

In Fig. 3.2 we present the dynamical conductivity σ(ωm) as a function of Mat-
subara frequency, both in the insulator and in the superfluid, for a range of detuning
parameters δg near the critical point. To suppress finite size effects in the insulator
we used an improved estimator, in which we consider only loop configurations with
zero winding number [9, 10]. We find that the dynamical conductivity as a function
of ωm in Fig. 3.2, follows the form of the low frequency reactive conductivity both
in the superfluid, Eq. (3.6), and in the insulator, Eq. (3.7).

Next we calculate ρs and ρv in their respective phases. The superfluid stiffness
ρs was calculated using the standard method of winding number fluctuations [16].
In order to extract ρv we use the relation in Eq. (3.8). As a concrete Monte Carlo
observable for the capacitance we use the conductivity evaluated at the first non-zero
Matsubara frequency:

C(δg) = lim
L→∞

σ(ωm = 2π
L , δg)

2π
L

. (3.9)

Both the vortex condensate stiffness ρv and the superfluid stiffness ρs near the critical
point follow a power law behavior ρ{s,v} ∼ ρ0{s,v}|δg|ν . The non-universal prefactors
ρ0v and ρ0s are extracted by a numerical fit.
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Fig. 3.3 The charge susceptibility χρ(k, T ) as a function of wave number k. We fix δg = 1.12 ×
10−2, for which � = 0.103. Each curve corresponds to a different temperature T . The temperature
T and � are measured in units of the inverse lattice constant.

3.6 Charge Susceptibility and Finite Temperature Effects

The capacitance is a thermodynamic response as such it can measured by a static
observable. To see that, we note that in the insulator, the current and charge response
functions are related by the continuity equation, �xx (k,ω) = −ω2

k2
χρ(k,ω), where

χρ(k,ω) is the charge susceptibility. Hence,

Cins = lim
ω→0

lim
k→0

�xx (k,ω)

−ω2 = lim
k→0

χρ(k,ω = 0)

k2
, (3.10)

where the ω → 0 and k → 0 limits commute since the insulator is gapped [17] and
the charge operator in the O(2) model is defined as ρ = i (ϕ∗∂tϕ − ϕ∂tϕ

∗). Thus,
the capacitance is simply related to the finite k compressibility of the Mott insulator.

Real experiments are performed at finite temperature and hence it is important
to study the capacitance and the charge susceptibility χρ(k, T ) as a function of
temperature.

As an illustrative example, in Fig. 3.3 we depict χρ(k, T ) for a fixed detuning
parameter δg = 1.12 × 10−2 and a range of temperatures T . At finite temperatures
the compressibility χρ(k = 0, T ) is non-zero. In addition, the curvature at zero

momentum, d2χρ(k,T )

dk2
|k=0, decreases at finite temperatures. Both effects should be

taken into account in measurements of the capacitance at finite temperature.
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Fig. 3.4 Scaling function of the compressibilityχρ(k = 0, δg, T ) = � f (β�).Curves for different
values of the detuning parameter δg collapse to a single universal curve. The functional form of the
curve matches the analytic calculation for a free Klein-Gordon field

The insulator is a gapped phase, therefore we expect that at low temperatures
the compressibility will follow an activated behavior [18]. This is demonstrated in
Fig. 3.4, where we plot the compressibility as a function of the inverse temperature β.
The compressibility scales near the critical point as χρ(k = 0, T ) = � f (β�), and
both axes in Fig. 3.4 are rescaled to obtain the collapsed universal scaling function
f . Indeed, we find that at low temperatures, β� � 1, the compressibility decays
exponentially χρ(k = 0, T ) ∼ e−�/T .

Wedefine ageneralizationof the capacitance tofinite temperatures as the curvature
of charge susceptibility at zero wave number,

C(T ) = 1

2

∂2χρ(k, T )

∂k2
|k=0 . (3.11)

As T → 0, this coincides with the zero temperature definition. In Fig. 3.5 we depict
the generalized capacitance as a function of the inverse temperature β. As before,
both axes are rescaled to obtain the scaling function. The curves rapidly converge to
the zero temperature limit, allowing for an accurate determination of the capacitance
for β� > 6.

As a point of reference,we compare our compressibility to that of a simple analytic
calculation based on a free complex Klein-Gordon boson field with mass �, with
Euclidean action
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Fig. 3.5 Curvature of the charge susceptibility, C(T ) = ∂2χρ(k,T )

∂k2
|k=0. For T → 0, this becomes

the capacitance. Axes are rescaled to obtain scaling behavior. The noise is dominated by numerical
derivatives of the QMC data. The solid line shows an analytic calculation of C for a free Klein-
Gordon field

S =
∫ β

0
dτ

∫
d2x

[
|∂τϕ|2 + |∇ϕ|2 + �2 |ϕ|2

]
. (3.12)

This gives the leading result in a 1/N expansion, using the renormalized mass � as
an input. The static charge susceptibility is then obtained from a one-loop Feynman
diagram calculation, [14]

χρ(k, νm = 0, T ) = 1

β

∑
ωm

∫
d2 p

(2π)2

[
4ω2

m(
ω2

m + p2 + �2
) (

ω2
m + (k + p)2 + �2

) − 2

ω2
m + p2 + �2

]
,

(3.13)
where the second term is the diamagnetic contribution. At k = 0 this gives the
temperature dependent compressibility,

χρ(k = 0, νm = 0, T ) =
∫ ∞

0

p dp

2π

β

cosh(βωp) − 1
∼ �

π
(1 + 1/(β�)) e−β� .

(3.14)
where ωp = √

p2 + �2, and where the last expression is asymptotic in the limit
β� � 1. This expression is shown in Fig. 3.4 to match closely the numerical data,
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despite the simplicity of the model. In addition, from Eq. (3.13) we compute the
finite temperature curvature of the charge susceptibility, Eq. (3.11). We obtain the
integral expression

1

2

∂2χρ

∂k2

∣∣∣∣
k=0

=
∫ ∞

0

p dp

96πω5
p

{
βωp csch

2
(

βωp

2

) [
6�2 + β2 p2ω2

p

(
3 csch2

(
βωp

2

)
+ 2

)

−6βω3
p coth

(
βωp

2

)]
+ 12�2 coth

(
βωp

2

)}
(3.15)

where csch x ≡ 1/ sinh x . This is evaluated numerically in Fig. 3.5. In this case, the
analytic result captures the qualitative temperature dependence, although it does not
yield the correct overall scale.

3.7 High Frequency Non-universal Corrections
to the Dynamical Conductivity

The universal scaling function of the dynamical conductivity is obtained by rescaling
the Matsubara frequency axis by the single particle gap �. Curves for different
detuning parameters δg collapse into a single universal at low frequencies. On the
other hand, at high frequencies,ωm need not be a negligible fraction of the ultra-violet
(UV) cutoff scale �. This leads to non-universal corrections in the conductivity that
depend on powers of ωm/�. We take these into account by fitting the numerical
QMC data to the following scaling form

σ±(ωm, δg,�) = σq�±
(ωm

�

)
+ A

ωm

�
+ B

(ωm

�

)2
. (3.16)

Here, A and B are expected to depend smoothly on the detuning parameter δg. Since
we consider a narrow range of values of δg, we approximate A and B as constants.
This enables us to extract the universal functions �± on both phases by using only
two fitting parameters.

To verify our anasatz we determined the parameters A and B by a numerical fit
to Eq.3.16 for a range of frequencies ω/� on both sides of the phase transition.
The results of this analysis are presented in Fig. 3.6. We find that both A and B
are independent of (ω/�) and do not change when crossing the SIT. This provides
strong evidence for validity of our ansatz and demonstrates that the correction to
scaling originates from the short range physics at the cut off scale � and not from
the correction to the critical energy scale �. To increase the accuracy of our fit we
performed a joint fit, using all frequency data points.
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Fig. 3.6 Numerical fit of the parameters A and B in Eq.3.16. Both quantities show little variation
with respect to � or δg. Importantly, they vary smoothly across the phase transition, as the values
of A and B do not change significantly from the insulating (INS) phase to the superfluid (SF)

3.8 Universal Scaling Function of the Matrsubara
Conductivity and Charge Vortex Duality at Finite
Frequency

The universal scaling function of theMatsubara conductivity is obtained by subtract-
ing the non universal part of the conductivity using Eq. (3.16). The result is depicted
in Fig. 3.7. The conductivity curves, on each side of the phase transition, collapse,
with high accuracy, to the universal conductivity functions �±(ωm/�).

At high frequencies the universal conductivity curves saturates to a plateau, with
σ(ω � �) = 0.354(5)σq in the insulating phase and σ(ω � �) = 0.355(5)σq

in the superfluid phase. As a result, we conclude that the high frequency universal
conductivity, σ∗, is a robust quantity across the phase transition. Our scaling cor-
rection analysis differs significantly from that of Refs. [9, 10], yet the value of the
high-frequency conductivity is in agreement with their results.

Finally, we study the CVD as a function of Matsubara frequency. In Fig. 3.8
we depict the product of the Matsubara frequency conductivity evaluated at mirror
points across the critical point, R(ωm) = σ(ωm, δg)σ(ωm,−δg)/σ2

q . In order to
study the critical properties we subtract the non-universal cut-off corrections. Note
that for ωm � �,R → (σ∗/σq)2, whereas for ωm � �,R approaches the product
of reactive conductivities in the two phases. In both limits, the Matsubara and real
frequency results coincide,R(ω) = R(ωm). By contrast, at intermediate frequencies,
determination ofR(ω) requires analytical continuation. If the CVD were exact then
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Fig. 3.7 Scaling function of the dynamical conductivity in the superfluid (δg < 0) and insulator
(δg > 0). Data for different values of the detuning δg collapse to two universal curves

Fig. 3.8 Measure of charge vortex duality of the O(2)model. Universal scaling function forR(ωm)

defined in Eq. (3.2). Deviation of this function from unity quantifies the difference between charge
and vortex matter
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Eq. (3.1) would imply that this product is frequency independent and equal to 1. Our
results display a non trivial frequency dependence and deviate from the predicted
CVD value. We attribute this deviation to the different interaction range of charges
and vortices.

3.9 Implications of Charge-Vortex Duality on the Higgs
Mass

Assuming that CVD is exact yields a relation between the optical conductivities on
both sides of the transition:

σ(ω,−δg) = σ2
q

σ(ω, δg)
. (3.17)

Here, σ(ω, δg) is complex, containing both dissipative and reactive parts
σ = σ′ + iσ′′, such that

σ′(ω,−δg) = σ2
q σ′(ω, δg)

σ′2(ω, δg) + σ′′2(ω, δg)
(3.18)

σ′′(ω,−δg) = − σ2
q σ′′(ω, δg)

σ′2(ω, δg) + σ′′2(ω, δg)
(3.19)

Note that duality flips the sign of the reactive component.
Numerically we found it difficult to extract the reactive part of the conductivity.

The results for the analytic continuation were much less numerically stable than for
the dissipative component. Yet, the numerics do provide some evidence for the dual-
ity. According to Eq. (3.18) one prediction of duality is that whenever the dissipative
part vanishes for some frequency ω in one of the phases, it must also vanish at the
mirror point in the other phase. This is indeed seen to be the case in Fig. 2.11, where
the threshold frequency of the dissipative part of the optical conductivity equals
ωT ∼ 2� on both sides of the transition. The presence of small subgap conductivity
in the superfluid is a consequence of the inexactness of the duality.

3.10 Charge-Vortex Duality at One Loop Order in Weak
Coupling

As an additional test of the duality, in Appendix Cwe present analytic calculations of
the optical conductivity on both sides of the transition, to one loop order. In Figs. 3.9
and 3.10 we show the dynamical conductivity on the ordered and disordered phase,

http://dx.doi.org/10.1007/978-3-319-19354-0_2
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Fig. 3.9 The real and imaginary part of the optical conductivity in the disordered phase. Results
are shown from a one loop calculation in Appendix C
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Fig. 3.10 The real and imaginary part of the optical conductivity in the ordered phase. The green
curve displays the results of a one loop calculation carried in Appendix C. The values of m H /�

and ρs/� were taken from the QMC simulation. The blue curve depicts the optical conductivity
obtained from the duality relation in Eq. (3.17). This curve is multiplied by 0.15 for comparison
reasons
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respectively. In order to use the same reference energy scale in both figures, we used
the universal values m H /� = 2.1 and ρs/� = 0.44 obtained numerically in earlier
parts of the analysis. In Fig. 3.10 we also depict the conductivity in the ordered phase,
as obtained by applying the duality, Eq. (3.17), to the conductivity in the disordered
phase. As in the DC case, the overall scale of the conductivity has the right order
of magnitude, set by σq, but is not quantitative. However, the functional form of the
conductivity is well captured by the duality.

In addition, we compute the universal ratio of the reactive conductivities Cins
Lsf

from the weak coupling result. Indeed we find that at low frequencies the optical
conductivity in the disordered phase, computed in Appendix C, rises linearly as
σ′′
dis(ω) = −2πσq × �ω/(24π�) + O(ω2), that is, as a capacitor with capacitance

Cins = 2πσq × �/(24π�). This yields the ratio

Cins

Lsf
= 2πρs

12�
σ2
q ≈ 0.23σ2

q . (3.20)

where in the last equality we used ρs/� = 0.44 as obtained in Sect. 2.4.3. Interest-
ingly, this value is close to the numerically exact result Cins/Lsf = 0.21σ2

q .

3.11 Computation of the Dynamical Conductivity from the
Dual Vortex Theory

An illuminating way to understand the low frequency conductivity is through the
dual vortex representation. In this representation the effective field theory is given
by a complex ψ4 theory coupled to an electromagnetic gauge field [19, 20]:

S =
∫

d3x

{∣∣(∂μ + iaμ)ψ
∣∣2 + m2|ψ|2 + λ|ψ|4

+ 1

16π2K
fμν fμν

}
. (3.21)

Here, the complex field ψ is the vortex condensate order parameter field, fμν =
∂μaν − ∂νaμ, and K is the coupling constant of the bosons. The gauge field aμ is
related to the original boson 3-current by:

Jμ = 1

2π
εμνλ∂νaλ (3.22)

Since the current is equal to the dual electric field Jx (iωm) = −ωmay/2π, the
conductivity is

http://dx.doi.org/10.1007/978-3-319-19354-0_2
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σ(iωm) = − 1

ωm

〈
Jx (iωm) Jx (−iωm)

〉

= ωm

(2π)2

〈
ay(iωm) ay(−iωm)

〉
.

(3.23)

In the disordered vortex phase, corresponding to the superfluid phase of the original
bosons, the gauge field remains gapless with the propagator in Feynman gauge:

〈
aμ aν

〉 = 4π2K

k2
δμν , (3.24)

hence the conductivity is σsf(iωm) = K/ωm . After analytic continuation and intro-
ducing physical units e∗2/� = 2πσq, this becomes

σsf(ω) = 2πσq × ρs

�

[
i

ω
+ πδ(ω)

]
, (3.25)

where we have set K = ρs , its value in the superfluid phase. In the condensed vortex
state, corresponding to the disordered phase of the original bosons, the fieldψ gets an
expectation value leading to a mass term for the gauge field through the Anderson-
Higgs mechanism. The effective action of the gauge field is then given by a Proca
action:

S =
∫

d3x

{
1

16π2K
fμν fμν + 1

2
ρva2

μ

}
. (3.26)

where we now take the vortex condensation density ρv = 2|〈ψ〉|2. The gauge field
propagator is 〈

aμ aν

〉 = 4π2K

k2 + M2

(
δμν − kμkν

M2

)
, (3.27)

where the gauge fieldmass M is given by M2 = 4π2Kρv . Note that, since the current
is quadratic in boson operators, this mass is related to the single-boson gap � by
M = 2�. Now the conductivity is given by σdis(iωm) = ωm K/(ω2

m + M2), which
yields after analytic continuation σdis(ω) = iωK/(ω2 − M2). At low frequencies
ω � M this becomes, in physical units,

σins(ω) ≈ −2πiσq

K

M2 �ω = −iσq

�ω

2πρv

. (3.28)

Combining the results from Eqs. (3.25) and (3.28) we obtain

Cins

Lsf
= ρs

ρv

σ2
q . (3.29)
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This reestablishes a physical interpretation for the universal ratioCins/Lsf as the ratio
between the superfluid stiffness and the vortex condensation density on opposite sides
of the transition.

3.12 Summary

The universal ratio of the reactive conductivityCins/Lsf motivates future experiments
as it provides a direct probe of the charge-vortex duality.

Recent THz spectroscopy measured the complex AC conductivity near the SIT
in superconducting InO and NbN thin films [21]. In these systems, the superfluid
stiffness in the superconducting phase can be measured from the low frequency
reactive response [22, 23]. Detecting the diverging capacitance in the insulator side
may require careful subtraction of substrate signal background [24].

Another experimental realization of the SIT is the Mott insulator to superfluid
transition of cold atom trapped in an optical lattice. We propose a direct approach to
extract the capacitance of the Mott insulator using static measurement of the charge
susceptibility. This can be measured, e.g. by applying an optical potential at small
wave vector k and probing the rearrangement of boson density using in-situ imaging
[25].

Alternatively σ′(ω), for which experimental protocols were proposed, [9, 26] can
be used to compute σ′′(ω) by means of the Kramers-Kronig integral.

In summary, we computed the vortex condensate stiffness ρv, the high frequency
universal conductivity and provided a quantitative measure for deviation from CVD
as a function ofMatsubara frequency. In addition,we suggested concrete experiments
that test our predictions in Thz spectroscopy of thin superconducting films and in
cold atomic systems.
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Chapter 4
Summary and Outlook

In this thesis we explored a few aspects of dynamics near quantum criticality in
two space dimensions. More specifically, we studied the universal properties of the
amplitude (Higgs) mode in the ordered phase of relativistic O(N ) models and the
charge-vortex duality near the SIT.

The universal scaling function of the scalar susceptibility and the optical conduc-
tivity were computed by means of a large scale QMC simulation combined with a
numerical analytic continuation. It was shown that the amplitudemode can be probed
arbitrarily close to the critical point in the spectrum of the foregoing response func-
tions. In particular, the scalar susceptibility contains a well defined resonance that
can be associated with the amplitude mode and the optical conductivity has a sharp
threshold at the amplitude mode resonance frequency. The universal amplitude ratio
between the amplitude mode mass and the single particle gap was determined to be
m H /� ≈ 2.1.

The critical capacitance in the insulating phase was identified as a measure of the
vortex condensate stiffness ρv. The capacitance was computed directly from a QMC
simulation without the use of a numerical analytic continuation. We determined the
amplitude ratio between the superfluid stiffness and the vortex condensate stiffness
to be ρs/ρv ≈ 0.21σ 2

q . This value deviates from the charge-vortex duality prediction

of ρs/ρv = σ 2
q thus it provides a quantitative measure of CVD violation. In addition,

we calculated the high frequency universal conductivity, σ ∗ ≈ 0.35σq. Finally, we
suggest a concrete cold atomic experiment for measuring the capacitance by in-situ
imaging techniques.

As technical progress, we present a novel QMC method based on the worm algo-
rithm for simulating O(N )models and a technique for analyzing the errors of numer-
ical analytic continuation based on singular value decomposition.

Given the universal nature of our results, they motivate future experiments that
probe dynamical properties near quantum criticality, such as in disordered supercon-
ductors and cold atomic systems.

An intriguing extension to this work, would be to study the effect of varying
degrees of disorder on our results. This is especially important since disorder is
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present in any realistic experimental setting and in certain cases it drives the phase
transition. It would be interesting to study the visibility of the amplitude mode and
to further test the charge vortex duality in the presence of disorder.

Another interesting research direction would be to study the signature of the
amplitudemode in one dimensional quantum systems. This in particularly interesting
since according to the Mermin-Wagner theorem the strong fluctuations destroy the
long range order leaving only a power-law quasi-long range order.



Appendix A
Worm Algorithm for O(N) Models

We present a novel QMC algorithm for O(N ) lattice models Eq. (2.9). The algorithm
is based on the worm algorithm [1] extending it for general O(N > 2) models. The
first step is to expand Eq. (2.9) in strong coupling:

Z =
∫
D �φ

∏
b

∏
α

∑
nα

b

1

nα
b !

(
φα

ib
φα

i ′b

)nα
b
∏

j

e−V (|�φ j |2) (A.1)

with D �φ ≡ ∏
i d Nφi . Here {b} represent the set of all lattice bonds, the site ib is

linked to the site i ′b through the bond b, the index α ∈ {1, . . . , N } labels the N

components of each �φi , and V (s) = μs + gs2 is the local on-site interaction. Next
we integrate out the fields �φi . This can be achieved by noting that now the functional
integral factorizes into a product of single site integrals, such that

Z =
∑
{nα

b }

∏
b,α

1

nα
b !

∏
i

W
({kα

i }) . (A.2)

where we define kα
i = ∑′

b(i) nα
b as the sum over all bonds b emanating from site i .

The single site weight is then

W
({kα

i }) =
∫

d Nφi

∏
α

〈φα
i |kα

i e−V (|�φ|2) . (A.3)

We may write

W
({kα

i }) =
∫

d Nφi

∞∫

0

ds e−V (s) δ
(
s − | �φi |2

) ∏
α

(φα
i )kα

i

= 1

2π

∞∫

0

ds e−V (s)

∞∫

−∞
dλ eiλs

∏
α

I(kα
i ) , (A.4)

© Springer International Publishing Switzerland 2015
S. Gazit, Dynamics Near Quantum Criticality in Two Space Dimensions,
Springer Theses, DOI 10.1007/978-3-319-19354-0

55

http://dx.doi.org/10.1007/978-3-319-19354-0_2
http://dx.doi.org/10.1007/978-3-319-19354-0_2


56 Appendix A: Worm Algorithm for O(N ) Models

where

I(kα
i ) =

∞∫

−∞
dφα

i e−iλ(φα
i )2 (φα

i )kα
i

= (iλ)−(kα
i +1)/2 �

(1
2

+ 1

2
kα

i

)
δkα

i ,even .

(A.5)

We now encounter the integral

∞∫

−∞
dλ eiλs (iλ)−J = 2 s J−1 �

(
1 − J

)
sin(πJ ) , (A.6)

where J = 1
2 (N + Ki ), and Ki = ∑

α kα
i . The above integral converges only if

0 < ReJ < 1, however our initial expression in Eq. A.3 is clearly convergent for all
possible values of J , which licenses us to analytically continue the above expression,
using the identity �(J ) �(1 − J ) = π/ sin(πJ ). We then obtain

W
({kα

i }) = Q
(1
2

N + 1

2
Ki

)∏
α

�
(1
2

+ 1

2
kα

i

)
δkα

i ,even , (A.7)

with

Q(J ) = 1

�(J )

∞∫

0

ds e−V (s) s J−1 . (A.8)

The one-dimensional integrals Q(J ) can be evaluated numerically to high precision
and tabulated prior to the QMC simulation. In this representation the partition func-
tion sum runs over all integer values of the bond’s strength nα

b , replacing the
�φi field

integrations. The sum is restricted only to closed path loops due to constraint δkα
i ,even.

The updating procedure closely follows the worm algorithm, considering an
extended partition function:

ZG =
∑
i, j

〈
φα

i φα
j

〉
(A.9)

The fields insertion φα
i φα

j breaks the closed path condition by adding a single open
loop. The open loop’s head is located at i and its tail at j .

For simplicity we choose the open loop to be one of the flavors α. The updating
procedure consists out of two elementary steps. The first move is a shift move in
which we move the worm’s head to one of the neighboring sites connected with the
bond b. During the move we either increase or decrease the bond’s strength nα

b . The
second move is a jump move, which is relevant only for closed loops where the head
and the tail are located in the same site. We choose one of the lattice sites and jump
with the head tail pair to that site. The QMC acceptance ratios can be easily derived
from Eqs. (A.7) and (A.2) similarly to the argument in Ref. [1].
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We tested the correctness of our numerical implementation by comparing with
previous QMC simulation and to analytic results of the Gaussian model limit of
Eq. 2.9 (g = 0). The results agree within the statistical errors.

We also provide an explicit expression for the sampling of the scalar susceptibility
in the closed path representation. The operator insertion �φ 2

i effectively introduces a
factor of s to the integrand in Eq. A.4, in which case Eq. A.8 is replaced by Ji Q(Ji +
1). Inserting ( �φ 2

i )2 introduces a factor of s2 and results in Ji (Ji +1) Q(Ji +2). Thus,
the insertion �φ 2

i
�φ 2

j yields

〈 �φ 2
i

�φ 2
j

〉 =
〈

Ji J j Q(Ji + 1) Q(J j + 1)

Q(Ji ) Q(J j )

〉
(i �= j)

=
〈

Ji (Ji + 1) Q(Ji + 2)

Q(Ji )

〉
(i = j)

(A.10)
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Appendix B
Analytic Continuation of Imaginary Time
Quantum Monte Carlo Data

B.1 General Formulation

We use imaginary time action Eq. 2.9 in the QMC simulations in order for the
QMCweights to be real and positive, avoiding the dynamical sign problem. The real
frequency, dissipative response function A(ν), can be obtained by numerical analytic
continuation [1], which amounts to inverting the equation,

G(iωm) =
∞∫

0

dν

π

2ν

ω2
m + ν2

A(ν) . (B.1)

The kernel

K (m, ν) = 1

π
· 2ν

ω2
m + ν2

, (B.2)

needs to be inverted in order to formally obtain,

A(ν) = K −1G(iωm) . (B.3)

Unfortunately K is an ill conditioned operator. The inversion is extremely sensitive
to inevitable statistical noise in G.

The stability of the inversion problem can be analyzed by the Singular Value
Decomposition (SVD)

K = U W V T (B.4)

where U and V are unitary matrices whose rows are the eigenvectors 〈un|, and 〈vn|.
The first five eigenvectors vn(ν) are plotted in Fig.B.1. W is diagonal with real, non-
negative SVD eigenvalues wn . These are plotted on a logarithmic scale as a function
of n in Fig.B.2. W has up toN non zero singular values, whereN is the number of
QMC data points.
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Fig. B.1 The first five vectors vn(ν) corresponding to the largest singular values in W

Fig. B.2 SVD analysis of the numerical analytical continuation. n labels the SVD eigenmodes.
The filled circles are the rapidly decreasing SVD eigenvalues of K , denoted wn . Magnitudes of
projections of noisy data, for the test model, Eq. (B.13), are denoted by | p̃n |. σ is the variance of
the artificial noise added to the Matsubara data. The breakpoints n∗ denotes the mode index where
noise dominates the signal, and the projections start to flatten. The values of n∗increase when the
noise level decreases
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From Eq. (B.4), the pseudo inversion of K is given by

K̄ −1 = V W̄ −1U T . (B.5)

Here W̄ is a square diagonal matrix which contains only the non zero eigenvalues
wn �= 0.

The SVD eigenvalueswn can be calculated by diagonalizing the Hermitianmatrix
(K K †)i j :

(K K †)i j =
∞∫

−∞

dω

2π

ω2

(ω2
i + ω2)(ω2

j + ω2)

= 1

2
(|ωi | + |ω j |

) = β

4π

1

|i | + | j | . (B.6)

Since G(τ ) is real, Gn = G−n , and by projecting out the zero mode, we may restrict
both i and j to be positive integers in Eq. (B.6).

Matrices of the form

Hi j (τ , θ) = τ i+ j

i + j + θ
, (i, j) ∈ {0, . . . , N }. (B.7)

are known as Hilbert matrices. We are interested in the case of τ = 1 and θ = 2.
An exact bound on the dependence of the smallest eigenvalue on the matrix size was
obtained by Ref. [2],

w
(N )
min ∼ κ

√
N

(
1 + √

2
)−4N × (

1 + o(1)
)
,

ln
(
w

(N )
min

) ∼ −3.52549 N + 0.5 ln N + 0.7909,
(B.8)

with

κ = 215/4 π3/2

(
1 + √

2
)4 = 2.205385 . . . (B.9)

As we see, theminimal eigenvalue decreases faster than exponentially with N , which
is consistent with the behavior found numerically in Fig. B.2.

B.2 Pseudo-inversion by Truncated Singular Value
Decomposition

In practice, the noisy QMC data, called G̃ can be decomposed as

G̃ = Gsig + ξ (B.10)
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where Gsig is the true signal, and ξ is a random noise. The noise interferes with the
numerical inversion of Gsig. To see this, the data G̃ is projected onto the eigenvectors
un , which yields the real numbers

p̃n = 〈 un | G̃ 〉 = 〈 un |Gsig 〉 + 〈 un | ξ 〉
≡ psign + ξn .

(B.11)

The pseudo inversion Eq. (B.5) yields

A(ν) =
∑

n

p̃n

wn
vn(ν) =

∑
n

(
psign

wn
vn(ν) + ξn

wn
vn(ν)

)
. (B.12)

Since Gsig is the analytic continuation of a normalizable function,
∑

n |psign /wn|2
must converge. This implies that |psign | < wn at large n. On the other hand ξn

is not the analytic continuation of a normalizable function, and therefore is not
necessarily bounded bywn . For white noise, ξn are random numbers whose variance
is independent on n.

Therefore, one can readily identify a breakpoint, n∗, which for n < n∗, p̃n ≈ psign ,
and for n > n∗, p̃n ≈ ξn . The breakpoint serves to truncate the inversion and
eliminate the dominance of noise terms. It can also allow an estimate of the truncation
error.

Let us illustrate this procedure by a test model,

Amodel(ν) = ν3
(

e−(ν−�)2 + e−(ν+�)2
)

. (B.13)

If Fig. B.2, Eq. (B.13) to the un basis. wn and |psign | rapidly decay, as expected from
the Riemann-Lebesgue lemma for a smooth spectral function. We add an artificial
white noisewith increasing varianceσ. As expected, the (approximately) exponential
decay of p̃n stops abruptly at n∗, where | p̃n∗ | ≈ |ξn∗ |.

As seen in Fig. B.2, the breakpoints n∗ are chosen where the curves average slope
flattens abruptly. n∗ increase as the noise is reduced.

A truncated SVD inversion provides a controlled approximation for the spectral
function:

Ãsvd(ν) �
nsvd∑
n=1

p̃n

wn
vn(ν), (B.14)

The modes higher than nsvd are discarded because their coefficients, (which only
contribute random noise to the spectral function), blow up exponentially with n. If
we know the bound on the signal’s convergence rate |psig/wn|2 < c e−αn , we can
estimate the error in the norm as
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Fig. B.3 Comparison between the projections pn (sold likes) and the singular values of the kernel
wn (circles) for the high quality QMC data for the O(2) model. The linear system size is L = 120,
and coupling constant is δg = 1.17%. We see that due to the effect of the noise, p̃n flattens at the
breakpoint at n∗ ≈ 11

||δ Ã||2 =
N∑

n=nsvd+1

∣∣∣∣∣
psign

wn

∣∣∣∣∣
2

<
p̃2nsvd

αw2
nsvd

. (B.15)

Thus, the smaller the noise level, the larger nsvd and therefore the smaller the error
in the spectral function, Eq. (B.15).

In Fig.B.3 we show the SVD analysis of the QMC data for the real O(2) model.
The projections p̃n flatten roughly at n∗ ≈ 11, as they behave in the test model in
Fig. B.2.

Ãsvd can exhibit spurious oscillations due to themissingmodes {vn(ν), n > nsvd}.
This effect, which is part of the error ||δ Ã||2, is similar to spurious oscillations
obtained by a truncated inverse Fourier transform. In cases where it is known that
A(ν) > 0, (as for the scalar susceptibility and real conductivity), the SVD truncation
can produce unsightly negative regions.

In Fig. B.4we plot the Ãsvd(ν) for increasing values of nsvd.We see that indeed the
reconstructed solution converges as we increase n and remains stable up to n ≈ 11,
which iswherewe locate the breakpoint in the SVDanalysis. For n = 12, the inverted
errors dominate the spectral function, which yields a wildly erroneous result.
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Fig. B.4 Analytic continuation obtained from the first n singular values, for the QMC data of
Fig. B.3. We see that spectral functions converge to until n ≤ 11, in agreement with assigning
n∗ = 11 where p̃n starts to flatten in Fig. B.3. For nsvd = 12, (dashed line) the condition p̃n < wn
is violated, and the resulting spectral function wildly differs from the converged function, since it
is dominated by random amplified errors

B.3 Maximum Entropy and other Regularizations

The QMC simulation produces noisy variables G(iωm), whose covariance matrix is
defined as

�−1 = 〈G(iωm)G(iωn)
〉
. (B.16)

A condition for the inverted spectral function is that

χ2 = (G − K A)T � (G − K A) ≈ N , (B.17)

where N is the number of data points.
As we have seen before, since K has very small SVD eigenvalues, there is a large

family of functions A(ν)which have the sameχ2/N ≈ 1. The SVD truncation is one
way to choose among these functions, but the result may have spurious oscillations,
and turn negative in some regions. To improve on this approximation one needs to
impose extra conditions on A(ν), which amounts to extrapolation of Eq. (B.14) to
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include higher SVD modes. A common approach, which ensures positivity, is to
introduce a cost functional f (A), and to variationally minimize

Q = 1

2
χ2 + λ f (A) (B.18)

with respect to A. Thisminimization lifts the degeneracy inχ2, and depends critically
on the choice of λ. λ can be chosen by the L-curve method [3], which is analogous
to the determination of the breakpoint n∗ described above.

Two cost functions are commonly used. (1) The ‘Maximum Entropy’ (Max-
Ent) [7],

f MaxEnt(A) = −
∑

i

A(νi ) ln A(νi ) (B.19)

which is based on a Bayesian statistics, and (2) the ‘Laplacian’,

f Lap(A) =
∑

i

d2A(ν)

dν2

∣∣∣∣
ν=νi

(B.20)

which penalizes unsmooth spectral functions (or long real-time decay). In these
functionals, the real frequency ν is discretized as a finite sequence νi .

A different strategy is the stochastic regularization [4, 5]. In this method the
spectral function is obtained by averaging over a large sample of randomly-chosen
solutions consistent with χ2/N ≈ 1. First a random positive spectral function is
generated. Then the goodness of fit is minimized using the steepest decent method
while imposing positivity at each step. This procedure is repeated until χ2/N ≈ 1.
Averaging over the random initial conditions leads to the final spectral function.

A complementary approach is to estimate the pole structure of A(ν), using a Padé
approximation. G̃ is fitted to a rational function

G̃(iωm) = Pn p (iωm)/Qn p (iωm), (B.21)

where Pn p and Qn p are polynomials of order n p. Since G̃ is an analytic function

of iωm we can perform the analytic continuation explicitly by taking Ã(ω) =
Im G̃(iωm → ω + i0+). For the best inversion, one can increase the value of n p

until χ2/N ≈ 1. Further increase of n p leads to over fitting and the appearance
of spurious poles. n p needs to be determined, with similar considerations to those
determining nsvd.

In Fig. B.5 we show a comparison of the different regularization approaches for
the same QMC data as used in Fig. B.4. We note that the position of the Higgs peak
varies only slightly between different analytic continuation methods, but functions
differ somewhat in the higher frequency structure.
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Fig. B.5 Comparison of different regularization methods. Note that the Higgs peak position varies
only slightly between the different methods, described in Sect.B.4

As a final note we comment on the form the kernel K (iω, ν) for QMC simulation
with discretized imaginary time axis. In this case the imaginary time axis gets a
discrete set of values τi = �τ × i with i ∈ {0, . . . , M − 1} with �τ = β/M . The
corresponding Matsubara frequencies are ωm = 2πn/β with m ∈ {0, . . . , M − 1}.
The kernel is given by a sum over all aliases of the original kernel:

K̃ (iωm, ν) = 1

π

∞∑
k=−∞

2ν(
2π(n + Mk)/β

)2 + ν2

= β

Mπ
· sinh(βν/M)

cosh(βν/M) − cos(2πm/M)
. (B.22)

B.4 Spherical Averaging

A desirable feature of the Eq. (1.3) and its discretized approximation Eq. (2.9) is
the Euclidean spacetime symmetry. As a consequence, it is not necessary to single
out any one specific direction as the “time” direction. In particular, ignoring weak
anisotropies arising from the underlying cubic lattice, correlation functions such
as that in Eq. (2.10) are spherically symmetric and only depend on the Euclidean
distance from the point r = (τ , x, y) to the origin. This is especially correct near the
QCP, where the large correlation length ensures that the correlation function at long
distances is insensitive to the discrete nature of the lattice.

http://dx.doi.org/10.1007/978-3-319-19354-0_1
http://dx.doi.org/10.1007/978-3-319-19354-0_2
http://dx.doi.org/10.1007/978-3-319-19354-0_2
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This observation suggests that one may reduce the statistical noise by performing
a spherical average over all possible time directions. In this method, the correlation
function at time τ is obtained by averaging over all the points within a thin spherical
shell between radius r = τ and r = τ + δτ . This leads to a large enhancement in
statistics—for a L × L × L system,O(L3) data points are used instead of theO(L)

points typically used in computing the correlation function. In order to implement
this method accurately it is necessary to account for the weak anisotropy arising
from the underlying cubic lattice. This is done by projecting out the lowest cubic
anisotropies prior to the averaging.

The bulk of the data presented in this paper was obtained by averaging over the
three principal axes only, and not taking advantage of the full spherical averaging.
However, preliminary numerical tests show that spherical averaging does indeed
yield high quality results while requiring shorter simulations. This effect may be
significant in light of the high sensitivity of numerical analytic continuation to noise.
We intend to develop this strategy further in future work.
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Appendix C
Complex Conductivity

In this sectionwewill derive the complex conductivity for the disordered and ordered
phase in weak coupling.

To one loop order, the paramagnetic response in the disordered phase in given
by [1]:

�P
xx (p) =

∫
d3q

(2π)3

4q2
x

q2 + �2 · 1

(q + p)2 + �2 (C.1)

where � is the renormalized single particle gap in the disordered phase and p =
(ωm, 0, 0). Introducing the Feynman parameter x and shifting q → q − xp,

�P
xx (p) =

1∫

0

dx
∫

d3q

(2π)3

4q2
x[

q2 + x(1 − x)p2 + �2
]2 . (C.2)

Performing the q integration up to a cutoff � we obtain:

�P
xx (p) = 2

3π2

1∫

0

dx

[
� − 3π

4

√
p2x(1 − x) + �2

]
(C.3)

up to corrections that vanish as� → ∞. To obtain the full response wemust subtract
the diamagnetic part. Since the superfluid stiffness vanishes in the disordered phase,
this is given by �D

xx = �P
xx (p → 0). This cancels the linearly divergent term, to

yield*-4pt

�xx (p) = − 1

2π

1∫

0

dx

[√
p2x(1 − x) + �2 − �

]
(C.4)

= �

4π
− i

4�2 + p2

16π p
ln

(
2� − i p

2� + i p

)
. (C.5)
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We analytically continue by taking p → −iω + ε, resulting in

�xx (ω) = �

4π
+ 4�2 − ω2

16πω
ln

(
2� − ω − iε

2� + ω + iε

)
. (C.6)

The conductivity is then

σ(ω) = 1

iω
�xx (ω) = Reσ(ω) + i Im σ(ω)

= 1

ω
Im�xx (ω) − i

ω
Re�xx (ω)

(C.7)

We note that Reσ(ω) vanishes for ω < 2�. Above the threshold we obtain:

Reσ(ω) = ω2 − 4�2

16ω2 (ω > 2�) . (C.8)

The imaginary part is given by:

Im σ(ω) = 1

16πω2

[
(4�2 − ω2) ln

∣∣∣∣2� − ω

2� + ω

∣∣∣∣ + 4�ω

]
(C.9)

In the ordered phase the paramagnetic response is given by [2. 3]:

�P
xx (p) =

∫
d3q

(2π)3

4q2
x

q2 + m2 · 1

(q + p)2
. (C.10)

Here m is the Higgs mass. As before we introduce the Feynman parameter x and
shift q → q − xp:

�P
xx (p) =

1∫

0

dx
∫

d3q

(2π)3
× (C.11)

4q2
x[

q2 + (1 − x)(xp2 + m2)
]2 .

Performing the q integration we obtain:

�xx (p) = ρs + m(3m2 + 5p2)

24π p2
− i

(p2 + m2)2

16π p3
ln

(
m − i p

m + i p

)
. (C.12)

In thefinal expressionwe absorbed the constant term (including the linear divergence)
and the diamagnetic contribution into the superfluid stiffness ρs .
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After analytic continuation the real conductivity is given by:

Reσ(ω) = πρsδ(ω) + (ω2 − m2)2

16ω4 �(ω − m) , (C.13)

with ρs being the superfluid stiffness. The imaginary part of the conductivity is

Im σ(ω) = −ρs

ω
+ (m2 − ω2)2

16πω4 ln

∣∣∣∣m − ω

m + ω

∣∣∣∣
+ m(3m2 − 5ω2)

24πω3 (C.14)
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