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Foreword

,Learning from Nature“ is a common theme in the natural sciences.
The ingenious machinery of photosynthesis is particularly attractive as
it has evolved to efficiently convert the sun light into chemically usable
energy. Can we mimic natural photosynthesis to open the door to an
unlimited energy source? Do we need to copy just structural elements
into man made supramolecular architectures? How important is
the interplay between structure and dynamics for the realization of
function? Finally, did Nature restrict itself to the classical laws of
Physics or did Quantum Mechanics provide some advantage? In fact it
has been the last question which triggered most interest in the Physics
community recently. Initiated by sophisticated nonlinear optical
experiments, which revealed signatures of quantum coherent evolution
at physiological temperatures, the first step of photosynthesis, i.e. the
harvesting of sunlight, has been in the focus of broad research efforts.

A quantum dynamical description of a system as complex as a light-
harvesting antenna protein provides quite a challenge. Models have to
be developed, flexible enough to incorporate results from experiments
as well as from atomistic simulations. Density matrix theory is
the method of choice for dynamics simulations in condensed phases.
With the recent development of efficient non-Markovian and non-
perturbative approaches one is in the position to follow the quantum
dynamics of the electronic excitations numerically exactly, which
facilitates a test of models without invoking further approximations.

The present thesis is concerned with the dynamics and spectroscopy
of electronic energy transfer in three model systems capturing dif-
ferent aspects of photosynthetic light harvesting. The simplest one,
a molecular heterodimer, allows for a very detailed investigation of
coherent oscillations in the dynamics. Here, it is possible to identify
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those quantum states, which are at the origin of these oscillations. In
particular a scheme is devised, that enables discriminating between
pure electronic and coupled electron-vibrational processes. This is of
relevance since these types of coherences are affected differently by the
protein environment, what might help to explain the observed long
lasting oscillations. The second model mimics an energy funnel, a
fundamental principle in photosynthesis. Special emphasis is devoted
to the interplay between the energy level structure and relaxation and
decoherence dynamics. The basic features of both models come to-
gether in the third application to the so-called Fenna-Matthews-Olson
complex, which is part of the light-harvesting apparatus of green sulfur
bacteria. This heterogeneous complex hosts different energy transfer
pathways as well as coherent oscillations, which could be identified as
being of electron-vibrational origin. Key to the success of this thesis
has been the development of a numerical program package for the
propagation of the density matrix and the extraction of linear and
nonlinear spectroscopic signals.

The prospective reader of this thesis will benefit from the combi-
nation of mathematical derivations, numerical implementation, and
specific applications to current problems in excitation energy transfer
research in natural and artificial systems.

Prof. Dr. Oliver Kiihn



Preface

Photosynthesis was studied intensively during the last decades by
biologists, chemists, and physicists. Although the general process is
well understood nowadays, the details, especially those concerning the
effects leading to the high efficiency of the photosynthetic apparatus
of plants, bacteria, and algae, require further investigations.

In the present work, an intermediate step in photosynthesis, that is
the energy transfer from the light-absorbing antenna complexes to the
photosynthetic reaction center is investigated from the perspective of
theoretical physics. The concepts of dissipation theory and exciton
dynamics are applied to a set of model aggregates to study various
aspects, like transfer efficiency and spectral features, of the energy
transfer in light-harvesting systems.

I like to thank the members of the molecular quantum dynamics
group and the dynamics of molecular systems group at the University
of Rostock, as well as the department of chemical physics at Lund
University, who supported me during this project. Special thanks to
Prof. Dr. Oliver Kiihn, Prof. Dr. Ténu Pullerits, B. Sc. Jan Schulze
and Dr. Sergei Ivanov for various discussions. Finally, I would like to
acknowledge the support of my family.

Marco Schroter



Institutional Profile

, Iraditio et Innovatio® is the motto of the University of Rostock.
While its history started as early as 1419, the beginnings of the
Institute of Physics date back to the late 19th century. The Institute’s
galery of forefathers includes such famous names as Stern, Schottky,
Hund, and Jordan. Nowadays, the interaction of radiation with
matter is in the focus of research activities, which are linked by
the Collaborative Research Center Sfb652 ,,Strong Correlations and
Collective Effects in Radiation Fields“. Further topics are, for instance,
polymers, nanomaterials as well as surfaces and interfaces. From 2007
on the University’s research profile has been shaped into four key
directions, each associated with a department under the roof of an
Interdisciplinary Faculty. The Department of ,Life, Light & Matter*
provides the frame for many research projects of the Institute of
Physics, which cross the traditional borders of disciplines.

The research agenda of the ,Molecular Quantum Dynamics® group
headed by Prof. Oliver Kiihn includes four topics. Non-reactive
and reactive dynamics of nuclear degrees of freedom, Photophysics
and Photochemistry of elementary processes, dynamics after X-ray
core hole excitation, and Environmental Physics. The dynamics of
nuclei is studied in the context of linear and nonlinear vibrational
spectroscopy as a means to unravel the relation between molecular
structure, dynamics, and function. Further, laser control theory is
applied to manipulate dynamics such as to trigger, for instance, bond
breaking. The arsenal of methods comprises those from quantum,
semiclassical, and classical theory. Applications are concerned, for
instance, with liquid water, ionic liquids or metal carbonyl compounds.
Photoinduced processes in electronically excited molecular states are
investigated with various electronic structure and dynamics methods.
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Particular emphasis is put on systems relevant for photocatalysis and
solar energy conversion. The present Master Thesis is an example for
the research in the context of excitation energy transfer in man-made
and natural light-harvesting antenna systems. With the advent of
novel X-ray sources core-level spectroscopy has experienced a revival
as a means to unravel, for instance, details of electronic structure
and dynamics in situ. We focus, for instance, on transition metals in
various environments, which are studied using first principles methods.
Finally, an interdisciplinary effort is devoted to the introduction of
atomistic simulation techniques into the field of soil science. Targets
are pollutants and their interaction with soil components such as
organic compounds or mineral surfaces.

In 2015 a new Physics building complex will be opened on the
campus of the university. It will be situated next to the research
building of the Department of ,Life, Light & Matter”, devoted to
the science of ,,Complex Molecular Systems“. We are looking forward
to the new opportunities for interdisciplinary research, which will be
provided by this excellent environment.
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1. Introduction

Light conversion via photosynthesis by special bacteria, algae and
green plants is the main source of the chemical energy used by higher
organisms. The photosynthetic machinery of these organisms consists
in general of light-harvesting antenna complexes and reaction centers,
which are arranged such that they form an energy funnel directing the
excitation energy flux towards the reaction center, Fig. 1.1. Sun energy
absorbed by characteristic pigments in the antenna complexes, where
an exciton is formed, is transferred to the reaction center. There, the
excitation energy is converted, via charge separation processes like
electron transfer, to a chemical redox potential, which drives chemical
reactions. The overall quantum efficiency of the light-harvesting
process is very high (> 95%) due to a very efficient energy transfer in
the photosynthetic complexes [1].

The mechanism of excitation energy transfer in photosynthetic
complexes has been studied extensively for decades using Forster or
Frenkel exciton theory [2-15]. It has caught renewed interest due
to the observation of long lasting coherent oscillations in various
light-harvesting complexes via electronic coherent 2D-spectroscopy
experiments [16]. In particular the question, whether the observed
oscillations in the 2D-spectra of light-harvesting complexes are of
electronic or vibrational origin and their connection to the excellent
energy transfer properties, remains controversial [17-30].

The protein environment and intra-molecular vibrations, which
cause, e.g., static and dynamic disorder of the excitation energies
and/or the inter-molecular couplings, create energy funnels within
the aggregates. This leads to a spatially directed energy transfer
connected with an energy relaxation towards the reaction center.
Recent investigations concerning small aggregates, i.e. dimers, unveiled

M. Schréter, Dissipative Exciton Dynamics in Light-Harvesting Complexes,
BestMasters, DOI 10.1007/978-3-658-09282-5 1,
© Springer Fachmedien Wiesbaden 2015
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Figure 1.1.: Schematic picture of the photosynthetic energy transfer
process. The outer antenna complexes absorb the photon energy (red
wavy arrows), which is transferred via an exciton transfer mechanism
(pathways indicated by blue straight arrows) to the reaction center
(RCO).

that in particular vibronic couplings and resonances between electronic
and vibronic levels play a distinct role for the energy transfer [22, 24,
26, 27].

The influence of the environment can be included into theoretical
models in the spirit of a system-bath ansatz, e.g., via a perturba-
tive treatment like in the Redfield approach [31]. Such approaches,
although applicable to many systems, are limited to weak interac-
tions and might not cover all important effects of the system-bath
interaction. Exact methods like path integral approaches, however,
are limited to rather small systems [32, 33]. The hierarchy equa-
tions of motion (HEOM) formalism, initially proposed by Kubo and
Tanimura [34] in 1989, provides an in principle exact treatment of
the system-bath interaction and is by virtue of recent improvements
efficient enough to investigate energy transfer processes in systems
like light-harvesting complexes [35-37].

In the following section the theoretical concepts, which are used to
study the exciton dynamics in molecular aggregates embedded in an
environment, will be introduced. First, the system-bath Hamiltonian
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ansatz will be summarized. Second, the quantum master equation
(QME) and HEOM formalisms, which provide propagation schemes
for the reduced density matrix describing the system of interest, will
be discussed. Both formalisms treat the system-bath interaction by
means of the bath correlation function, which is usually calculated
via the so-called spectral density, that will be introduced in Sec. 2.3.
A brief summary of the response function formalism in Sec. 2.4. It
provides the connection between the evolution of the reduced density
matrix and the linear and nonlinear spectra of the investigated systems
is given

The outlined theoretical concepts will be used to investigate the
dissipative exciton dynamics in dependence on the system and bath
properties of different model aggregates. First, a molecular dimer
system will be characterized in terms of population dynamics, linear
absorption, and 2D-spectra. In particular, the oscillatory features of
the population dynamics, which might be connected to oscillations in
2D-spectra, will be analysed. Second, an aggregate, which represents
an energy funnel as a generic model for light-harvesting antennae,
will be studied. Here, the focus is on the influence of the bath
properties on the excitation energy pathways within the aggregate.
Finally, a particular example for a light-harvesting complex, the
Fenna-Matthews-Olson (FMO) complex, will be treated, utilizing
experimental data for the spectral density.

All aforementioned examples have been studied with the HEOM
approach. The numerical implementation of this method is provided
by the Rostock HEOM package, which was developed during the
present master project. Detailed information about the package is
given in Appendix A. The code is available upon request.



2. Dissipative quantum dynamics

Complex biological systems, like the photosynthetic units of bacteria
or plants, usually consist of several pigment molecules, which form
aggregates, embedded in a protein environment. Within a quantum
mechanical treatment it is practically impossible to take all degrees of
freedom (DOFs) of such large systems explicitly into account. Note
that there exist highly efficient methods, e.g., the multiconfiguration
time-dependent Hartree method (MCTDH) [38], to treat the quantum
dynamics of isolated systems, e.g., the intra-molecular dynamics
of the aforementioned pigment molecules. The recently developed
multilayer expansion of MCTDH [39, 40] facilitates the treatment
of systems with a few thousand DOFs, which is sufficient to handle
small systems within an environment. This approach requires a
discretization of the spectral density, cf. Sec. 2.3, and is therefore
restricted in its applicability. An application of the MCTDH approach
to the dissipative quantum dynamics of a light-harvesting system is
given in Ref. [41]. However, it is preferable to reduce the dimensionality
of the problem considering only few relevant DOFs, which provide
insights into the physical processes, explicitly and to treat all other
DOFs as a heat bath interacting with the system DOFs via an energy
exchange. According to this separation the Hamiltonian of the full
system is given by

H = H,+ Hy, + Hgy, (2.1)

where Hy )y, denotes the system/bath Hamiltonian and Hy, the inter-
action between the system and the bath. The separation allows one
to solve the quantum mechanical equations of motion for the relevant
system DOFs considering the influence of the bath DOFs exactly or
approximately.

M. Schréter, Dissipative Exciton Dynamics in Light-Harvesting Complexes,
BestMasters, DOI 10.1007/978-3-658-09282-5 2,
© Springer Fachmedien Wiesbaden 2015



6 2. Dissipative quantum dynamics

In the following section the Hamiltonian describing aggregates
of pigment molecules embedded in a protein environment will be
discussed. Further, two different sets of equations of motion for the
reduced density matrix, namely the QME and the in principle exact
HEOM will be introduced in Sec. 2.2. Both incorporate the influence of
the bath via a spectral density function. The latter and its connection
to the Hamiltonian, as well as some models for the spectral density,
will be discussed in Sec. 2.3. Finally, the optical response function
formalism, which connects the time evolution of the density matrix to
the optical spectra of the system, will be briefly introduced in Sec. 2.4.

2.1. Hamiltonian

The system Hamiltonian, H, of an aggregate consisting of Nyge
monomers is given by the Frenkel exciton Hamiltonian. It is based on
the assumption that the interacting monomers, which form the aggre-
gate, retain their chemical identity. According to this assumption the
monomeric adiabatic states |m,) can be used to construct diabatic ag-
gregate states, which are coupled due to the inter-monomeric Coulomb
coupling (CC). Here, a = g, e, ... labels the adiabatic monomeric elec-
tronic state and m = 1,..., Nage denotes the monomer. The aggregate
states can be classified according to the number of electronic excita-
tions within the aggregate. Considering only one excited state, a = e,
per monomer, the aggregate ground state |g) and the one-exciton
states |ep,) are given by

l9) = [T 1mq) (2.2)

and

lem) = [me) T Ing) - (2.3)

n#Em

Higher-order excitations, such as the excitation of higher monomeric
adiabatic states, e.g., the S, states of pigment molecules, or multiple
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excitations within the aggregate, can be incorporated analogously into
the description. Including only the ground and one-exciton states, the
Frenkel Hamiltonian is given by

Hagg = H(9)|9) (gl + D Hm(em)lem ) eml
+ Z Jmn(€ms en)lem )(en| + Hint

=H" + HY + Hin, (2.4)

with the zero- and one-excition parts

H" = H(g)|g){ g (2.5)
and
HY =3 Hy(em)lem ) (em| + D Jmn(em. en)lem ) enl,  (2.6)

respectively. The coupling elements J,,,(em, €,) represent the inter-
action between different one-exciton states and Hjy describes, e.g.,
the interaction of the system with external fields.

The diagonal terms of the aggregate Hamiltonian are, according to
the definition of the exciton states, Eq. (2.2) and Eq. (2.3), given by

H(g) =) H(my) (2.7)
and

Hunlem) = Hme) + 3" Hng). (2.8)
n#m

Here, H(mgy) and H(m.) denote the Hamiltonian of the adiabatic
monomeric ground and excited state of monomer m, respectively. The
diabatic aggregate states depend on the set {R} = (R1,..., Rn,,,)
of all intra-molecular nuclear coordinates, i.e. |g) = |g({R})) and
lem) = lem({R})). This is due to the parametric dependence of the
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monomeric adiabatic states on the monomeric set of intra-molecular
nuclear coordinates R, = (ém,la R’myg, .., e [mg) = |mg(Ry))
and |m.) = |me(Ry,)). Note that the intra-molecular vibrations are
separated from the inter-molecular vibrations. The latter, as well as
the vibrations of the protein environment and their influence on the
system, can be conveniently described by the bath and the system-
bath Hamiltonian. The dependence of the diabatic aggregate states
on the intra-molecular nuclear DOFs can be treated implicitly by
including the intra-molecular vibrations into the heat bath as well,
or explicitly, e.g., by the shifted oscillator model [31]. In the former
case the on-diagonal terms H(g) and H,,(e,,) are given by the bare
electronic state energies I/, and FE,  , respectively. However, in the
latter case the electronic state energies need to be supplemented by
a contribution representing the change of the potential energy with
respect to {R} and the corresponding kinetic energy contribution.
The corresponding on-site elements of the system Hamiltonian are
given by

H(g.{R}) = Eq + Uy({R}) + T,({R}) (2.9)
and
Hp,(em,{R}) = E.,, + U, {R}) + T.,,({R}). (2.10)

A second order Taylor expansion of the potential energy U({R})
around its minimum with respect to {R} in combination with a
normal mode transformation yields the frequently used harmonic
oscillator model, i.e.

H(g,{q}) = Eg+ 5 Z Z (pggﬁf +w2ql9)? ) (2.11)

and

1
Hlem ) = e, +5 3 3 (007 +0f40)’)

1 e e e
+3 Zg: (P2 + w202 (2.12)
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Here, péagl denotes the momentum and wéagl the harmonic frequency

associated with the £&th mode of monomer m, being in the electronic
state a, in normal mode space {q}. Note that the normal coordinates
are mass-weighted and that & = 1 here and in the following. It is con-
venient to define the normal modes in the corresponding monomeric
ground states |mgy) and project all vibrational properties of the ag-
gregate states |g) and |e,,) onto this basis. Assuming additionally
that there are no changes in the curvature of the oscillator potentials
yields the shifted oscillator model. In the limit of the aforementioned
approximations the on-site Hamiltonian is given by

1
H(g{a}) = Ey+ 525 (e +@Em@m)  (213)
mo ¢
for the ground state and by
1
Hn(em: {4}) = Be,, + 5 (oo + wEnten)
1

+ 530 (P + Enltem — dem)?)  (2:14)

& n#Em

N |

for the excited states, respectively. Here, d¢ ,,, represents the shift of
the excited state oscillator along g¢ ,,, with respect to the ground state
potential energy surface. Introducing intrinsic harmonic oscillator

variables, i.e.
N 1
Pem = | —Dem (2.15)
w§7m

m = /D& maem (2.16)

and

yields

H(g @) = By + 20 " (R + @) (217)
mo ¢
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and

Hon(em, {0}) = Fe + 32 3 55 (2,0 + )

n#Em &
+ Z o (pg m + (Gem — Jg,m)2> : (2.18)

The dimensionless shift cZ&m can be expressed by the Huang-Rhys
factor S¢,, = ng /2, which is often used to characterize the coupling
between electronic and vibrational DOFs. Expanding Eq. (2.18) using
the definition of S¢ ,,, yields

(e (@) = Ee + 303 “5" (Bn + @)
g n
— Y Wem/2Sembem + D wWemSeme (2.19)
¢ €

Note that the last sum represents the reorganization energy associated
with the relaxation within the excited state after a vertical transition
from the ground to the excited state and is thus related to the Stokes
shift in linear spectroscopy.

The interaction between configurations of the aggregate, where the
excitation is located on different sites of the aggregate, i.e. between
different one-exciton states, is in general (in terms of the monomeric
adiabatic states) given by the Coulomb integral

syt"’naﬂ’nd (F)mnb,nc (F/)
7= 7| '

Jin (Manp, nemg) = /df’df" (2.20)

Here, 7 denotes an electronic coordinate and 91 stands for the gen-
eralised molecular charge density [31] depending on the adiabatic
monomeric states. Note that within the present model only elements,

which describe a simultaneous excitation of one and de-excitation of
another monomer, are considered. Thus, the inter-monomeric interac-
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tions between two sites m and n in Eq. (2.4) are represented by the
coupling elements Jy,,,, (e, €5), which are given by

Tmn(€m, €n) = /dFdF’ , (2.21)

where 91 denotes the generalized charge density associated with the
corresponding one-exciton state.

The Coulomb integral, Eq. (2.21), can be evaluated, e.g., by employ-
ing a transition dipole approximation, assuming that the separation
of the monomers is large compared to the spatial extension of the
transition density [31]. However, more elaborate methods, such as the
transition density cube [5], the transition charge from electrostatic
potential method [42], or time-dependent tight-binding-based den-
sity functional theory [43], facilitate the calculation of more accurate
Coulomb coupling matrix elements.

The diabatic one-exciton aggregate Hamiltonian, Eq. (2.6), can
be transformed to an adiabatic representation via diagonalization of
its potential energy part. This leads to a set of adiabatic (delocal-
ized) states |a) which are connected to the diabatic states via the
components ¢, of the eigenvectors of the diabatic Hamiltonian, i.e.

) = Camlem) - (2.22)

For example, for an electronic dimer system the energy of the adiabatic
excited states is given by [31]

Eio= % ¥ %\/(Eel —E.)? + 402, (2.23)
Note that the adiabatic levels are numbered according to their energy
in increasing order, i.e. the level with the lowest energy is labelled with
1, the second lowest with 2 and so forth. The aggregate ground state
|g) is the same in both representations as there exists no coupling to
the one-exciton states.
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The last term in Eq. (2.4) describes interactions with external fields.
In dipole approximation Hjy is given by

Hine = —de(t), (2.24)

for the interaction with an external laser field assuming that the field
¢(t) and the transition dipole moment d exhibit a constant orientation
with respect to each other, i.e.

—

d-Et) =c- |d||€@®)]. (2.25)

Here, ¢ denotes an orientation factor, which is assumed to be included
in the definition of d in Eq. (2.24). The aggregate dipole operator
with the site-dependent dipole transition strength d,,, 4 is given by

d="> de, glem){g| +hec.. (2.26)

Under certain conditions all kinds of environments, even those that
contain anharmonic effects, can be described by an effective harmonic
bath [32]. However, the specific form of the bath as well as of the
system-bath Hamiltonian depends on the underlying model. First,
consider the case that only the DOFs of the environment contribute
to the bath. This is the case if the intra-molecular nuclear DOFs can
be neglected, e.g., if their coupling to the electronic DOFs is negligible
or if they are included in the system explicitly. The Hamiltonian of
the environmental DOFs, Hél), is given by

B =" % (52 +72) . (2.27)

Here, w; denotes the harmonic frequency and &; the corresponding
bath coordinate. If the intra-molecular vibrations contribute to the
bath, it is convenient to separate the bath Hamiltonian into an intra-
molecular and an environmental part, i.e.

Hl()H) _ Héint) 4 Hl()env)_ (2.28)
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The intra-molecular part, Hl()int), is given by, cf. Eq. (2.19),
. w . )
Hk()ll’lt) — ZZ 527"1 (pém + qz,m) (2.29)
mog

and the environmental part by Eq. (2.27). Thus, the full bath Hamil-
tonian reads

HY =33 (B + @) + D5 (B +37). (2:30)
mo € i

The system-bath interaction Hamiltonian, Hg},, depends in general
on the system and bath operators. However, it can be decomposed
into a product of arbitrary functions of system and bath operators,
i.e.

Hqy, = (bb(X)Ks(Q)’ (2'31)

with no loss of generality. A linear Taylor expansion of the bath
function ®y(X) and of the system function K(Q) yields the widely
used Caldeira-Leggett model [44] for the system-bath Hamiltonian

Hyp =Y ¢jcX;0c. (2.32)
i ¢
Here, X; denotes an harmonic oscillator position operator and Q¢
an operator representing a part of the system. Note that the linear
expansion with respect to the system operators restricts the description
to energy gap fluctuations in the system. An expansion of Kg(Q) up
to higher orders of Q would take additional effects into account, e.g.,
a modulation of the curvature of the potential energy surface [45].
The general form of the Caldeira-Leggett system-bath Hamiltonian,
Eq. (2.32), needs to be adjusted according to the bath and system-
bath models (SBMs). Note that the same bath configuration leads
in combination with different SBMs to a different dynamics of the
system.
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env. bath

SBC

SBM la

env. bath

SBM lla

SBC

env. bath

SBC SBC

SBM Ib

env. bath

SBM llb/c

Figure 2.1.: Schematic view of the system-bath models (SBM) for a
dimer system. (a) In SBM Ia/b the DOFs of the two monomers are
coupled to the environmental DOFs by the system-bath coupling (SBC)
and to each other via the Coulomb coupling (CC). SBM Ia and b differ
in the description of the system. In the former the intra-molecular
vibrations are included in the system, whereas they are neglected in the
latter. (b) The intra-molecular vibrations are treated as separated bath.
In contrast to SBM Ila, where the environmental bath is not coupled
to the intra-molecular one, there exists an inter-bath coupling (IBC) in

SBM TIb/c.
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The system-bath Hamiltonian for bath model I, see Eq. (2.27),
assuming that the intra-molecular DOFs are included in the system
explicitly, is given by

Hs(iag = Z Z Ci,gmji(jf,mkm >< 6m|- (2‘33)

i &m

Here, the index ¢ in Eq. (2.32) is associated with the combination of
mode and monomer index (¢ = &, m), the general system coordinate
Q¢ equals G mlem )(em| and the general bath coordinates X; are
identical with the coordinates of the environmental DOFs, i.e. X; = ;.
If the intra-molecular DOFs can be neglected the expression simplifies
to

H™ =575 ¢ miilem ) (eml. (2.34)
i m
Both scenarios are depicted in Fig. 2.1 panel a. Bath model II, see
Eq. (2.30) leads to different coupling schemes (SBM Ila-c, Fig. 2.1
panel b). However, the discussion will be restricted to SBM Ila and b
in the following as the system-bath Hamiltonian for SBM Ilc can be
constructed analogously. SBM Ila refers to the situation where the
system couples separately to the baths of intra-molecular DOFs and
to the bath(s) of environmental DOFs, but that the former are not
coupled to the latter. The corresponding system-bath Hamiltonian is
given by

A =575 we s/ 2Semtiemlem ) )
m. ¢
+ D cimbilem ) eml- (2.35)

In contrast, SBM IIb refers to the situation that the system couples
to primary baths of intra-molecular DOFs which couple to secondary
bath(s) of environmental DOFs. The system-bath Hamiltonian for
SBM IIb is given by

HS(I,IE) = Zzwf,m\/255,m@§,m|em><em|a (2'36)

mog
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but note that the bath Hamiltonian needs to be supplemented by
an interaction term Hy,_ps between the primary and the secondary
bath [46], which is given by

bgb%js Z Z Z Ci §mQ£ mi. (237)

Note further that the introduced system-bath models account only
for fluctuations of the diagonal elements of the system Hamiltonian.
In principle also the off-diagonal Coulomb coupling matrix elements
could be affected by the system-bath interaction [23].

2.2. Equations of motion for the reduced density
matrix

The system and bath DOFs are still coupled due to system-bath
interaction term Hgp, in Eq. (2.1). However, it is possible to construct
equations of motion for the so-called reduced density matrix ps(t) =
trpath {£(t)}, which describes the influence of the bath on the system
dynamics implicitly. A perturbative treatment of the system-bath
interaction in combination with the Markov approximation leads to the
QME which is widely used to investigate the energy transfer in light-
harvesting complexes [11, 21, 22, 31, 47, 48]. QME approaches are
only suitable for weak system-bath interactions as memory effects of
the bath and higher-order interactions are neglected [49]. In contrast,
the HEOM formalism, whose development was initialized by Tanimura
and Kubo in 1989 [34], provides an in principle exact treatment of
the system-bath interaction.

2.2.1. Quantum master equation

The time evolution of the full density matrix

p(t) = U(t, to)p(to)UT(t,to) = U(t, to)p(to) (2.38)
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is determined by the full system Hamiltonian H via the time evolution
operator

Ul(t,tg) = e~ H(—t0) (2.39)

or its Liouville space equivalent U(t,ty). According to the separation
of the Hamiltonian, Eq. (2.1), the formal equation of motion of the
full density matrix is given by the Liouville-von Neumann equation

Soplt) = 1 [H, (1)

— — {[Hap(8)] = 1 [Hyo p()] = i [Hovop(t)] . (2.40)
In the interaction representation the corresponding equation is given
by
0
at”
where the initial full density matrix in the interaction representation
is defined as

O(t) = —i [Hon (1), 0O 0] (2.41)

p W (to) = U (¢, t0)p(to)Uo(t, o). (2.42)

The time evolution operator Uy(t,ty) is defined in analogy to U(t,ty),
Eq. (2.39), replacing H by the Hamiltonian of the non-interacting
subsystems Hg + Hy,. Inserting the formal integration of Eq. (2.41)
into the right-hand side of Eq. (2.41), that is essentially applying
second-order perturbation theory with respect to Hg_1,, yields

- /dt/ {Hsfb(t% [Hsfb(t,)ap(l) (t/)H : (243)

Assuming further uncorrelated initial conditions for the density matrix,
i.e.

pW(to) = ps(to)po(to), (2.44)
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where pg1,(to) denotes the equilibrium density matrix of the sys-
tem/bath, and that the bath stays in equilibrium independently of
the amount of energy transferred to it by the system, which is fulfilled
if the number of bath DOFs is sufficiently large, the density matrix at
an arbitrary time is given by

o) = i (1) (t0). (2.45)
This leads to
£ A0(8) = — trpan L1 [0, plto)nt0)]}

- / dt’ trpath { [Hsfb(t% {Hsfb(t'), pV (t')Pb(tO)” } '

(2.46)

The integral on the right-hand side of Eq. (2.46) depends on all former
time points due to pgl) (t'). Therefore, the reduced density matrix
memorizes its own evolution. Expanding the commutators using
Eq. (2.31) and taking into account that the system and the bath

operators commute leads to

;psm
K(Q(t))ps(to) trvatn {Pn (X (2))pb(to)}
+ lps( 0)Ks(Q(1)) trvaeh { P (X (£))pb(t0) }
— I(K(Q(1)), K (Q(t)), p{V (), @i (X (1)), D1 (X (1))
+I(K(Q(1), oV (1), Ks(Q()), Pu(X (), P (X (1))
+I(K(Q(), PN (1), Ko(Q(1)), (X (1)), PL(X (t')))
— I(KL(Q(t)), Ko(Q(1)), N (1), @1 (X (1)), D1 (X (1)),  (2.47)

where J(A, B,C, D, E) is defined as

3(A,B,C,D,E) = /dt’A-B-Ctrbath{D.E.pb(to)}. (2.48)



2.2. Equations of motion for the reduced density matrix 19

Note that the trace over @y, (X (t))pp(to) is actually the expectation
value of ®1,(X(¢)), which is zero by definition for a harmonic bath, cf.
Eq. (2.27). Thus, the first two terms of Eq. (2.47) vanish in this case.
Rewriting Eq. (2.47) and introducing the bath correlation function

C(t —t') = trvatn { (X (1)) Pp(X(t))pb(t0) } (2.49)
yields
o t
500 == [ A E(QUEQENAD(E)C( - )

Contracting the terms above leads to

t

000 =~ [ ar [, — ) KQU)NAO()]

aps
+ [t [K@).c = K@) . @25

The integral on the right-hand side of Eq. (2.51) cannot be evaluated
analytically due to the unknown behaviour of pél) (t'). However, due
to the system-bath interaction the system will loose the memory of its
evolution in the bath after a characteristic bath correlation time 7y,.

Thus one can approximate pg) (t') by pg) (t), assuming that 7}, is much
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shorter than the characteristic time scale of the system dynamics.
This approximation is known as the Markov approximation [31]. Fur-
thermore, the bath correlation function C'(t — ') can be approximated
by 0 for t —t' > 7, in the framework of the Markov approximation
as all correlations are dephasing within 7,. Therefore, the upper
bound of the integral over ¢’ can be extended to infinity. Applying
the Markov approximation to Eq. (2.51) leads to

;éww:—-Kd@ﬂp/&@@—ﬂmuQWM$W4
+—Kwa»AWw/dﬂﬁ@—wK4Qw»l (252

Since the bath correlation function C(t —t') is stationary and depends
only on the difference of 7 =t — t/, one can rewrite the correlation
function as

C(7) = trbath {Pp(X (7)) P (X (t0))pn(to) } - (2.53)

Introducing the operator
A= / drC(1)KL(Q), (2.54)
to

the corresponding QME in the Heisenberg picture is given by

0 .

20s(t) = =1 [Hy. ps(8)] = [Ke(Q). Aps(t) = ps(0AT] . (2.55)
Note again that the approximations which are necessary to derive
Eq. (2.55) restrict its applicability to systems with a weak system-bath
interaction and a bath correlation time which is short in comparison
to the time scale of the system dynamics.
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2.2.2. Hierarchy equations of motion

In contrast to the QME approach discussed in the previous section,
the HEOM formalism [34, 50-54] provides an in principle exact set of
equations of motion for the reduced density matrix in the presence
of arbitrary system-bath interactions. The basic idea of the HEOM
approach is to mimic the system-bath interaction via an infinite hier-
archy of auxiliary density matrices (ADM). Due to its computational
demands the HEOM method is only applicable to rather small systems,
composed, e.g., of a few chromophores, in a complex environment.
Nevertheless, it can serve as a benchmark method to test the validity
of more approximate methods.

The HEOM can be derived via path integral calculus utilising the
Feynman-Vernon influence functional formalism [34, 50-52]. Note that
Shao and co-workers [53, 54] proposed an alternative method to derive
the HEOM. This approach separates the system and bath degrees
of freedom via stochastic fields and leads to the same equations of
motion as the influence functional formalism.

In analogy to Eq. (2.38), assuming again an initial factorization
of p(tp) into system and bath parts, cf. Eq. (2.44), the formal time
evolution of the reduced density matrix ps(t) is given by

ps(t) = trpat {U(t,to)p(to)m(t,to)} =U(t,to)ps(to).  (2.56)

The time propagator in Liouville space U(t, 1) still depends on the
system as well as on the system-bath interaction part of the full
system Hamiltonian. However, a complete separation of the system
and bath DOFs can be achieved by virtue of the Feynman-Vernon
influence functional formalism [55] rewriting (¢, to) in path integral
representation. The time evolution operator U(t,ty) in path integral
representation is defined as [31]

at
Ult, to) = /Da eiSlel, (2.57)
o
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Here, o denotes arbitrary paths in phase space with fixed starting
and end points ag and «ay, respectively. The action functional S[a]
describes the evolution of the full system. According to Eq. (2.1) it can
be decomposed into a system, a bath, and a system-bath interaction
part. Thus, the time evolution of the full density matrix in path
integral representation is given by [52]

/

ag Qy
plag, o), t) = /Da / Do’ ei(SS[aHSb[aHSS*b[O‘])p(ao, g, o)
ag a
x o 1(Ss[]+Sp[a/][+Ssp[a])
:Z/{(Oét,Oé;,t;ao,aé),to)p(ao,alo,to). (2'58)

Taking the trace over the bath DOFs leads to [51]

/
@y

ay
U, o, t; a, aly, tg) = /Da/Da’eiSs[o‘]}"[a,a’] e~ 151 (2.59)
«Q a6

where the system-bath interaction is fully covered by the Feynman-
Vernon influence functional F|a, o] [55]. Note that while working in
Liouville space it is necessary to keep track of the order of the terms
as for instance the time evolution operator does not commute with
the density operator.

Using the Caldeira-Leggett model for the system-bath interaction,
Eq. (2.32), and restricting the description to a single system operator
@, the influence functional can be expressed as [52]

Fla,d] = exp (—/ dTQS) ; (2.60)

with

Q =Qla(7)] — Qla/(7)] (2.61)
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and
£ =Ala(r)] — Af[o/ (7). (2.62)
Here, the operator
t
Aa(t)] = / drC(t — 1)Qla(7)] (2.63)

characterises the interaction of system and bath DOFs in terms of the
bath correlation function C(t—7), Eq. (2.49), including memory effects.
Note that A is actually the non-Markovian equivalent of the operator
A defined by Eq. (2.54). Usually, C'(t — 7) has a rather complex form
depending on the actual system. However, an exponential form of the
correlation function, i.e.

K
C(t) =Y Cilto)e ™, (2.64)
k=1

is required for the construction of the HEOM to avoid non-hierarchical
terms [52]. In practice, C'(t) needs to be parametrized to fulfil this con-
straint. For simplicity a mono-exponentially decaying bath correlation
function, i.e.

C(t) = C(tg) e ", (2.65)

will be assumed in the following.

Taking the derivative of ps(t) with respect to time leads formally
to an equation of motion, which describes the time evolution of the
system DOFs and incorporates the influence of the bath. Therefore,
one needs to evaluate the derivative of the time evolution operator
Z;{(at, ay, t; ap, afy, to), which in turn contains the derivatives of the
action term and the influence functional 7. Whereas the former,

describing the evolution of the unperturbed system, is given by

0

T eiSsled — g iS5l (2.66)
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the latter, containing the effects of the system-bath interaction, reads,
cf. Eq. (2.60),
g}" = —QLF (2.67)
5 = . .
Equation (2.67) provides no closed solution as there exists no ana-
lytical expression for £ due to the memory effects contained in A,
cf. the discussion of Eq. (2.51) and Ref. [52]. Applying the Markov
approximation to Eq. (2.67) would reproduce the QME, Eq. (2.55),
immediately. However, introducing the so-called auxiliary influence
functional F; one obtains the formal non-Markovian solution

0
&]—" = —i[Q(—iL)] F = —iQF, (2.68)
which still provides no closed solution due to the aforementioned
reasons. Nevertheless, a closed and formally exact solution of the
problem can be obtained by taking the derivatives of F up to nth
order. This leads to an infinite hierarchy of higher auxiliary influence
functionals F,,. Considering the time dependence of £, the first
derivative of Fi, i.e. the second derivative of F, is given by

I ——i (ag) F — iQF

ot ot
=— i{C(to)Q — C*(to)Q}F — vF1 — iQF3, (2.69)
and the derivative of F,, i.e. the (n + 1)th derivative of F, by
0 . . )
5l =" i{C(t0)Q — C*(to)Q} Fn-1 — nyFn — iQFp+1.  (2.70)

Note that the time derivatives of £ in general could give rise to non-
hierarchical terms. Due to the special choice of the bath correlation
function, Eq. (2.65), i.e. the exponential shape of the function, these
terms obey a hierarchical form as well. The leading order of the system-
bath coupling of the auxiliary influence functional F,, is 2n [52]. Thus,
in addition to memory effects also higher orders of the system-bath
coupling are included in the HEOM formalism.
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The obtained infinite hierarchy of influence functionals leads to an
infinite hierarchy of auxiliary reduced density matrices,

pn(t) = Z;{npn(t(])a (2.71)

where the auxiliary time evolution operator 4, is obtained by replacing
the influence functional F in Eq. (2.59) by the corresponding auxiliary
influence functional F,,. The time evolution of the reduced density
matrix and the ADM can be expressed in terms of a system of coupled
differential equations, which is given by

0 . :
Zpn=— (iL+n7) pn — 1[Q, prs1]

ot
— in[C(0)Qpp-1 — C*(0)pp-1Q)] . (2.72)

Here, Lo = [Hg, o] denotes the Liouville superoperator. The initial
conditions for the reduced density matrices are po(ty) = ps(to) and
pn>0(to) = 0. Note that the density matrix pg represents the reduced
system density matrix ps. The ADM represent the influence of the
bath and thus the memory effects, but contain no direct information
on the system.

So far C(t) was assumed to be a mono-exponential function, which
is rather unlikely for real systems. However, the only constraint
for the bath-correlation function, which is necessary to avoid non-
hierarchical terms, is the aforementioned general exponential form
of C(t). Following the presented construction algorithm, using the
general expansion of the correlation function, Eq. (2.64), leads to the
generalized HEOM [52]

aatpn = - iﬁpn — TnPn + p£1+) + p(i)' (273)
The index array n = (ni,...,nx) characterizes the leading order of
system-bath coupling 2nj of each component k£ of the correlation

(+) (-)

function. The contributions py ’ and py ' are given by

K
o) = =13 [Qu oy (2.74)
k=1
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and

K
o) = =i Yk (hQupy — cipy Q) - (2.75)
k=1

Here, the index array nf = (n1,n2,...,n, = 1,...,nx) denotes the

change of the kth component of the index array n. Note that the
components k = 1, ..., K of the correlation function do not necessarily
need to be associated with the same interaction. Instead, they might,
e.g., account for the interaction of the same environment with different
subsystems or for the interaction of different environments with the
same subsystem. In the former case the system part of the system-bath
Hamiltonian Q¢, cf. Eq. (2.32), differs for the different subsystems,
whereas in the latter case the correlation functions for the different
environments differ. For instance, let us assume a molecular dimer
system, in which the system operators are defined as Q¢—1 = |e1 )(e1]
and Q¢—2 = |e2)(e2| and each monomer is interacting with the same
environment. The correlation function shall be approximated by
two exponential terms with the prefactors C and C5. Therefore,
the overall correlation function consists of four terms (I = 4). The
corresponding HEOM coefficients ¢;, and operators @)y, are given by

c1 =0 Q1= lex)(ei]
c2=02 Q2 =ler)(ei]
c3 = O Q3 = |e2 ){ e
cs = Oy Q1= |ez)(e2l.

According to the index array n, the prefactor of the direct influence
term is given by

K
Tn = Z kY- (2.76)
k=1

The hierarchy size S is defined by two dimensions, namely the number
of expansion terms of the correlation function and the number of
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layers, where the Nth hierarchy layer consists of all density matrices
with the same order of the system-bath coupling, i.e.

N=> ny. (2.77)

k

The first three layers of a hierarchy with I = 2 are shown in Fig. 2.2.
According to the equations of motion, Eq. (2.73), the propagation of
the reduced density matrix ps(t) = poo(t) requires the auxiliary density
matrices pio(t) and po1(t), which form the first hierarchy layer. The
propagation of the latter matrices requires beside pgo(t) additionally
the second layer matrices and so on. Thus, the formally exact solution
would require an infinite number of ADM and the hierarchy needs to
be truncated for practical purposes.

Layer (N)

NG

Figure 2.2.: Hierarchical scheme of the density matrices in the HEOM
formalism for K = 2.

The simplest approach to truncate the hierarchy is to limit the
in principle infinite number of correlation function terms to a finite
number K and the number of layers to a finite number A/. The overall
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number of reduced density matrices in the truncated hierarchy is then
given by [35]

NN+ K1)
SW.K) =2, (N!(IC—l)!) '

N=0

(2.78)

This truncation method is rather inefficient as usually large K and
N are required to obtain converged results and the hierarchy size
grows undesirably fast with increasing K and N. More sophisticated
truncation schemes have been proposed for both hierarchy dimen-
sions [35, 36, 50, 56|, which improve the convergence properties of the
HEOM significantly. Applying the Markov approximation to the low-
est hierarchy layer, Tanimura and co-workers developed a truncation
method which takes into account the effects of the (N + 1)th layer
too [50]. A similar approach leads to a QME-like approximation of
the residual part of the bath-correlation function [56]. Furthermore,
introducing a normalized set of ADM, an efficient on-the-fly scaling
algorithm has been developed [35], which reduces the numerical effort.
This algorithm neglects all ADM whose largest element is below a
certain threshold. An improved version of the HEOM, taking into
account the residual approximation of the correlation function and
the rescaling of the density matrices, is given by [36]

0 _
57Pn = ~1Lpn — SRpn — Ynpn + o5+ 050, (2.79)
with
(+) &
pn’ =—1) \/(nk + 1)/ lerer | {Qmﬂnﬂ : (2.80)
k=1
(=) & Nk
pn’ = —i —=— (e QrPy- — Py~ Qi 2.81
kz—:l ‘ckck,| ( k k k ) ( )
and

ORe = Z Ac Q¢ [Qc o] (2.82)
¢
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The index k' is defined such that &' = if v, =~} and Qr = Q; [36],
which means that components belonging to a complex conjugated pair
of bath correlation frequencies 7y, cf. Eq. (2.64), are grouped. There
exists always such a pair of conjugated frequencies for oscillatory com-
ponents of the correlation function. For non-oscillatory components
vk is real, thus k' = k. In contrast to the other summations, which are
performed with respect to k, Eq. (2.80) and Eq. (2.81), the summation
which accounts for the influence of the residual part of the correlation
function, Eq. (2.82), is performed with respect to the physical system
operator index ¢, cf. Eq. (2.32), to avoid a multiple counting of the
residual contributions. The constant A can be calculated using the
coefficients of the residual part of the correlation function, cf. App. A.

In addition to the conceptional developments, improved computa-
tional algorithms made it possible to study rather large systems like
the B850 ring system of the light-harvesting antenna complex 2 of
purple bacteria [37, 57, 58]. These algorithms are based on parallelized
integration routines and the computation power of graphic processing
units (GPUs).

2.3. Spectral density models

In the context of the QME and HEOM formalisms, which were dis-
cussed in the previous section, the key property, which determines
the influence of the bath on the system dynamics, is the bath corre-
lation function C(t), Eq. (2.53). Unfortunately, in most cases C(t)
cannot be calculated directly as the evaluation of the right-hand side
of Eq. (2.53) would require a quantum dynamics simulation of the
full system. Such simulations are limited to rather small systems
consisting of some hundred particles.
However, the Fourier transform of C(t),

Cw) = / dte™tC(1), (2.83)
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contains all necessary information on the bath characteristics as well
and can be determined approximately, e.g., by classical molecular dy-
namics simulations or experiments [31, 46]. The spectral distribution
function C(w) satisfies the detailed balance condition

C(—w) = e P“C(w). (2.84)

Here, 3 = (kgT)~! denotes the inverse temperature. Introducing the
symmetric and antisymmetric contributions of the spectral distribution
function

ol (w)
and the Bose-Einstein distribution function
1
n(w) = o ] (2.86)

the spectral distribution function can be expressed solely via its
antisymmetric contribution, i.e.

Clw) = (1 +n(w))C ) (w). (2.87)

Thus, the bath correlation function is given by
17 .
Clt) = o / dwe (1 + n(w))CO) (w). (2.88)
T
—00

Expanding the integral on the right-hand side of Eq. (2.88), using
that C(7) is antisymmetric and

n(—w) = —en(w), (2.89)

allows one to express C(t) by the half-sided Fourier integral

C(t) = % / deo [ 41(1 4 n(w)) + e¥n(w)] € (w)
0

= % 7dw [cos(wt) coth (%) - isin(wt)} C(w). (2.90)
0
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However, the bath correlation functions C(t) for the system-bath
models introduced in Sec. 2.1 can be evaluated analytically. The bath
correlation function for SBM I and Ila can be evaluated introducing
creation and annihilation operators for the harmonic oscillator [31].
Due to the coupling of the different bath DOFs to the system DOFs
in SBM IIb/c the calculation of the corresponding correlation func-
tions requires more sophisticated methods, e.g., path integral tech-
niques [46]. Note that the following discussion is therefore restricted
to SBM I and Ila, whereas SBM IIb/c will be discussed separately
later on.

The creation and annihilation operators, whose action on a complete
set of harmonic oscillator eigenstates |N;) is defined by

al [Nj) = \/Nj + 1|N; + 1) (2.91)
and
CL]' |N]> :\/Nj|Nj—1>, (292)

are given by
(X(1) — iP(1)) (2.93)
and

aj(t) = —= (X;(0) + iP;(1)) (2.94)

Using the operators defined above, the position operator can be
expressed as

1
V2
Here, again X; denotes a harmonic oscillator position operator and
Pj the corresponding momentum operator. Inserting the bath part of

X;(t) = = (a;(0) + al (1)) (2.95)
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the generic Caldeira-Leggett Hamiltonian, Eq. (2.32), which is given
by

(X)) = e i X, (2.96)
J
in Eq. (2 49), and using Eq. (2.95), yields
chj trhath {X;(¢) X;(0)pb(to) }

Z %c ¢, tThath {(aj(t) + a}(t)) (aj(O) + a}(O)) pb(to)} .
: (2.97)

Note that the description is restricted to fluctuations of the system
coordinates, i.e. the overall correlation function separates into com-
ponents associated with the system coordinates )¢. For the present
scenario the overall correlation function is given by

=Y Ce(t). (2.98)
¢

In general also terms of the type C¢e exist, which describe the fluctu-
ations of the correlations between the system coordinates. However,
these terms are neglected in the present work.

The trace on the right-hand site of Eq. (2.97) can be evaluated
assuming that py,(t9) describes an equilibrium state which corresponds
to a thermal (Boltzmann) distribution of the bath harmonic oscilla-
tors, i.e. pp(tg) = Z lexp(—BH,), where Z denotes the partition
function. Taking into account the time dependence of the creation
and annihilation operators leads to

i) = 30 3ok, 2™t 1 e (o +af) e )
—|—Z CC] _1Z<Nj| eiwjta; (aj—i—a;f-) e Pt |N]>
N

= Z 56%( Z IN; ((1 + Nj)e it + N; eiwﬂ't> (2.99)
j N
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with fy; = Zilexp(—BENj). The sum over fy;Nj is just the defini-
tion of the Bose-Einstein distribution function [31], Eq. (2.86), and
thus the bath correlation function is given by

Colt) = Y0 5k [T+ mlwp)) e ™ 4w e] (2100

and the corresponding spectral distribution function by

Ce(w) = chg’j (14 n(wj))d(w —w;) +n(wj)d(w+w;)]. (2.101)

Introducing the spectral density

™

Je(w) = 5 Z cgyjcS(w —wj), (2.102)
j

using the properties of the J-distribution and Eq. (2.89), the spectral
distribution function Eq. (2.101) can be expressed via the spectral
density as

Ce(w) = 21+ n()][Je(w) — Je(~w)). (2.103)

Note that in analogy to Eq. (2.98) the overall spectral density of the
system reads

J(w) = Je(w). (2.104)

¢
The corresponding antisymmetric contribution of C¢(w) is given by
C (W) = 2 (w) — Je(~w)]. (2.105)

Inserting Eq. (2.105) into Eq. (2.90) leads to

Ce(t) = (Pu(X (1)) Pn(X (t0)))

:% 7dw [cos(wt) coth (%) — isin(wt)} Je(w).  (2.106)
0
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This equation provides the necessary link between the spectral den-
sity function J(w), which can be obtained by various theoretical and
experimental techniques, with the bath correlation function C(t),
needed for quantum dynamics simulations. Note that J(w) is de-
fined only for positive values of w, thus it is positive by definition.
Approximations for J(w) of natural systems are provided, e.g., by
fluorescence line-narrowing and absorption experiments [9, 13] or a
combination of molecular dynamics and electronic structure calcula-
tions [23, 59]. There exists also a number of model spectral densities,
which are frequently used if no experimental or simulation data are
available [60].

The bath-correlation function for a specific system-bath model
can be evaluated by inserting the corresponding bath part of Hy_y,
instead of the generic Caldeira-Leggett one in Eq. (2.49) and following
the presented algorithm. This leads for SBM Ib (( = m, j = i,
cf. Eq. (2.34)) to the monomeric spectral density

JI0) () = g S bW — wi) (2.107)

and for SBM Ila, cf. Eq. (2.35), to
nga) (w)=m Z wng&mé(w — Wem)

:
n g ; 2 bW — w). (2.108)

The aforementioned spectral densities are defined in terms of sums
of delta functions weighted by some coefficients. However, any macro-
scopic system will in practice have a continuous spectral density due
to the, at least for the environmental contribution, dense spectrum
of DOFs. The environmental part of the spectral densities can be
described by so-called Ohmic spectral densities, which are charac-
terised by a linear rise of J(w) for small frequencies and an exponential
or Lorentzian cut-off. For example, the monomeric Ohmic spectral
density with exponential cut-off is given by

Im(w) = O(w)nmw e Fm, (2.109)
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where the Heaviside function © assures that J,,(w) = 0 for w < 0.
1m represents the strength of the system-bath interaction and the
cut-off term exp(—w/4,,) determines the shape of .J,,(w) for values of
w which are similar to or larger than the cut-off frequency %,,. The
monomeric Ohmic spectral densitiy with a Lorentzian cut-off,

~2
- Vin
(@) = O(w)hmew — T (2.110)

is usually called Debye spectral densitiy. The monomeric correlation
function associated with the Debye spectral density can be calcu-
lated analytically using Eq. (2.106) and the residue theorem. One

obtains [46]
~2 ~
Con(t) =272 (cot (ﬁ;m) — i) e

2V o= Vv €
+ (2.111)
p Vzl’vy T

Here, the summation over the Matsubara frequencies, v, = 278~ v,
stems from the poles of the Bose-Einstein distribution function, i.e. the
hyperbolic cotangent in Eq. (2.106), whereas the first term stems from
the pole of the spectral density itself [46]. Note that the Ohmic and
Debye spectral densities describe the environmental part of the overall
spectral density fairly well, but provide a rather crude approximation
for the intra-molecular part as the latter is usually not continuous.
Comparing the intra-molecular monomeric spectral density,

TN W) =73 wE 1 Semd(w — wem), (2.112)
¢

and the shifted oscillator Hamiltonian, Eq. (2.19), one notes further
that the reorganization energy, associated with the relaxation of the
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intra-molecular modes after a vertical transition from the monomeric
ground to the excited state, can be evaluated by the integral

(int.) w m

(,Ugm

= Z S&mw§’m. (2.113)
¢

Accordingly, the corresponding sum of the monomeric Huang-Rhys
factors is given by

/d ‘]5’ Zng (2.114)

These properties of the spectral densities can be generalized, i.e. the
overall reorganization energy is given by

o0

1
Ereorg = ;/ (2.115)
0

and the overall coupling strength of the system to the bath by
7
0
So far a possible coupling between the different bath DOFs like
in SBM IIb/c was neglected. The evaluation of the corresponding
correlation functions requires, as mentioned above, the use of, e.g.,
path integral techniques. For instance, the monomeric spectral density

for SBM IIb, which corresponds to the frequently used Multi-mode
Brownian oscillator (MBO) model, is given by [46]

3=

(2.116)

D) (w) = S 8¢ ,nw? wwemem(w) . 2.117
W =2 mitm (2 —WE )2+ Wi (w) (2.117)
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Here, the function y(w), which accounts for the interaction between
the bath DOFs, is given by

Ve,m (W Zczgm w— w;). (2.118)

The HEOM formalism, Sec. 2.2.2, requires a parametrization of
the correlation function into a series of exponentials. Note that this
parametrization requires a constant ¢ ,,(w), i.e. ¢ m(w) needs to be
approximated by a characteristic frequency ¢ ,,,. This approximation
is rather severe as it leads to the non-physical picture that there exists
a practically dense spectrum of bath modes, which couple equally
strong to arbitrary intra-molecular modes.

Assuming a constant g, (w), inserting Eq. (2.117) into Eq. (2.106)
and applying the residue theorem, leads to

cm () =Y =, (_ Q(+)tT(+) e—QéTTELtTé;T)J
3

—ngmzﬂ”) (2.119)

The parameters Z¢ ,, Té W)L, Ve and F( Y) are defined as

_ Semwisn,

=¢m :Tgm;’ (2.120)

T¢E) = coth (16(;?;1) ~1, (2.121)

Ve :W (2.122)
and

) — e (2.123)

S (92 = wE )+ 2
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with
+ e, )
af) = S+ O (2.124)
and
=2
7
O¢m = || w2, — Z’”. (2.125)

The first two terms of Eq. (2.119) arise directly from the two poles
of the spectral density, Eq. (2.117), whereas the third term arises
from the poles of the Bose-Einstein distribution. These poles are as
in Eq. (2.111) treated by the Matsubara scheme. Note that there
exist other sum-over-poles schemes, like the Padé scheme, which have
better convergence properties with respect to the number of terms
required to model the correlation function with reasonable accuracy
than the Matsubara scheme [36].

The correlation functions of the Debye and the MBO model have
by construction the exponential form, Eq. (2.64), required by the
HEOM formalism, cf. section 2.2.2. This is not the case for arbitrary
spectral densities. Meier and Tannor [61] developed a numerical
parametrization scheme which is based on the assumption that the
actual dynamics of the system only depends on the value of the spectral
density at the transition energies of the system and not on the shape of
its individual components. They successfully parametrized an Ohmic
spectral density, Eq. (2.109), by an expansion into three Lorentzian
terms, using the parametrized spectral density,

T = T e A )

Here, the set of parameters {x}, {yr} and {2z} for any given spectral
density J(w) can be obtained via minimizing the functional

Flah wh (ah K] = [dolJ@) = J@]. (2120
0
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The correlation function according to the parametrized spectral density
J(w) is given by

K
C(t) = Z L [Coth(g(yk + sz)) _ 1] e(iykfzk)t

+ il i J(iry,) e vt (2.128)

2.4. Calculation of optical spectra - response
function formalism

The interaction between electromagnetic radiation and molecular sys-
tems provides valuable insights into their stationary and dynamical
properties. There exists a variety of linear and nonlinear spectroscopy
techniques, which are suitable to study, e.g., the energy transport in
molecular aggregates. The key property, which connects the macro-
scopic response of the system to the applied electric field &(t) with
the underlying microscopic dynamics, is the polarization P[&(t),t].
In dipole approximation, i.e. the interaction of the system and the
field is described by Eq. (2.24), P[&(t),t] of a homogeneous sample is
given by [31]

PlE(t), 1] = nmo tr {p(t)d} . (2.129)

Here, d denotes the microscopic dipole operator, Eq. (2.26), and
Nmol Stands for the volume density of the molecules in the sample
volume. Note that €(t), d and P[€&(t),] are in general vectors, but
for simplicity the vector character will be neglected in the following.

Whereas the microscopic dynamics of the system is described, e.g.,
by the Schréodinger equation or the equations of motion introduced
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in Sec. 2.2, the macroscopic connection between the field and the
polarization is determined by the Maxwell equations, i.e.

92 9?
(azr? - 62A> €(t) = —dm o PIE(1), 1], (2.130)

Here, ¢ denotes the speed of light and A the Laplace operator. In
principle, one needs to solve the coupled equations, given by the field
equation and the system’s equations of motion, self-consistently to
describe the light-matter interaction exactly. However, often such
a rigorous treatment is not necessary in the limit of weak system-
field interaction [46], i.e. it is sufficient to solve first the equations of
motion of the system driven by the external field and to calculate the
corresponding macroscopic signal afterwards.

The functional P[E(t),t] is in general a nonlinear functional of the
electric field, but can be decomposed into its linear and nonlinear com-
ponents. In the following sections the connection of the components
of the polarization to linear and nonlinear spectroscopy techniques
will be discussed.

2.4.1. Linear Response

Let us assume a linear relationship between the polarization and the
electric field, i.e.

P = €, (2.131)
and that the electric field is given by
E(t) = E(t) e F—1t | c e (2.132)

Here, €&(t) represents the envelope function of the field with wave-
vector k. The absorption coefficient a(w) describing the decay of
the field intensity inside the sample according to Beer’s law is given
by [31]

a(w) = —Im(x(w)), (2.133)
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where n denotes the index of refraction of the sample. The dielectric
susceptibility x(w) depends on the system properties and can be
determined microscopically via the so-called linear response function
RW(t). Assuming a weak field, which is usually the case in the
experiment, it is convenient to expand Eq. (2.129) in powers of the
electric field strength. This leads to [31]

P(t) = 17(17' O()umor 11 { peq [dD(7),dD(0)| } €(t = 7). (2.134)
’ RM(t)

Here, ©(t) denotes again the Heaviside function and the dipole opera-
tor is given in the interaction representation, cf. Sec. 2.2.1, with respect
to the system-field interaction. It is assumed further that the initial
density matrix describes the equilibrium of the system, i.e. p(ty) = peq-
Note that the polarization is given by the response function itself in
the so-called impulsive limit, i.e. &(t — 7) = €5(t — 7). Applying the
convolution theorem, the Fourier transform of Eq. (2.134) is given by

P(w) = x(w)€&(w) (2.135)

with

(W) = / dt et RO(¢). (2.136)

Thus, the absorption coefficient is proportional to the Fourier trans-
form of the linear response function, R (t), i.e.

a(w) « 7dteiwt tr {peq [d(l) (1), dD (0)]} . (2.137)
0
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Expanding the commutator on the right-hand side of Eq. (2.137) in
the Schrodinger picture leads to

Mwyx/dmwum&@aﬂaﬁwﬂmmmm—dUwammUuiwg
0

= /dtei“’t tr{dU(t, to)dpeqU (t, to) — dU(t,to)pequT(t,to)}
0

= 7dteiwt tr {d0(+)(t) — da(_)(t)} . (2.138)
0

The time evolution operator U (t, to) is defined by Eq. (2.39). Note that
the second term under the trace of the right-hand side of Eq. (2.138)
gives rise to anti-resonant contributions and can be neglected [31].
Therefore, the absorption coefficient is given by

a(w) o« fdtem tr {da(+) (t)} . (2.139)
0

So far a homogeneous sample was considered. In the experiment
this condition is not fulfilled as the molecules are in general randomly
oriented and individual molecules are influenced differently by their
environment. While the latter effect is partly taken into account by
the system-bath model outlined in the previous sections, the former
effect needs to be incorporated by averaging the spectra over the

different orientations of the molecules with respect to the incoming
field [62].

2.4.2. Nonlinear Response

In the previous section only the linear contribution of the polarization
was considered. Expanding the polarization in powers of the field
strength, i.e.

pP=PY 4 P34 (2.140)
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and extending the perturbative treatment of the expectation value of
the polarization, the nth order component of the polarization is given
by [46]

pn) :/dtn...dth(")(tn, )
0

X E(t—tp)...Et—ty,—...—t1). (2.141)
The nth order response function is defined as
RO (b, . t1) = Mnana®(t1) . Ot) tr {peg AW} (2.142)
with
& = [[[|dD (n + 1), dD g+ 1))
x dD(ty)] ,d"(0)]. (2.143)
In analogy to the linear response function R(Y) the nth order one,
R contains all necessary information to evaluate the corresponding
signals. The electric field, &(¢), is in general defined by Eq. (2.132).
However, according to the multi-pulse schemes commonly used in

the experiments, it is convenient to separate the overall field into
individual components corresponding to the different pulses, i.e.

€(t) =Y (&)™t + E(t) e Bt (2.144)

j=1

Note that the wave-vector and the carrier frequency of the signal field,
resulting from the nonlinear polarization, need to obey the conditions

ks = £j1k1 £ joko £ ... & jnkn (2.145)
and

ws = Ej1w1 £ jows £ ... £ jnwn, (2.146)
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due to the conservation of energy and momentum. The integer num-
bers j; account for the possibility of multiple interactions of the sample
with the same pulse. The phase-matching condition, Eq. (2.145), lim-
its the observable signal in the experiment to certain contributions of
the overall nonlinear signal. This gives rise to a variety of different
nonlinear spectroscopy techniques focussing on special contributions.

Frequently, third order spectroscopy techniques are used to investi-
gate the excitation energy transport in molecular aggregates and other
processes. Such nonlinear spectroscopy methods are advantageous
in comparison to linear spectroscopy techniques as they probe, due
to the multiple interactions of the system with the field, directly
the dynamics of the system. Beside the commonly used transient
absorption scheme [63], the electronic 2D-spectroscopy technique [64,
65] provides a powerful tool to study the dynamics of rather complex
systems [16, 66, 67]. In the former method two laser pulses, which are
delayed with respect to each other, are applied to the sample, whereas
in the latter a three-pulse scheme is used. The third-order response
function, which describes both techniques, is given by

R (t3,t0,t1) = i*nmei©(t1)O(t2)O(t3)
X tr {peq H[d(l) (ts +ta + t1), dD (t2 + t1)} , d) (tl)} , d(I)(O)} } .
(2.147)

Expanding the commutators on the right-hand side of Eq. (2.147)
leads to

R (t3,t9,11) = > nmo©O(t1)O(t2)O (t3)

4

% Y (Ri(ts, ta, t1) — Ry (s, b2, 11)). (2.148)
=1

The individual components R;, which correspond to different com-
binations of interactions, can be associated with physical processes



2.4. Calculation of optical spectra - response function formalism 45

like ground state bleaching, excited state absorption or stimulated
emission and are given by

Ri(ts, ta, 1) = tr {dD(t3 + ta + 11)dD(0) peqd ") (11)dD (2 + 11) }
(2.149)

Dt + 15 + 11)d D (1) peqd D (0)d D (8 + 1) }
(2.150)

R (t3at2at1 {
Rty ta, 1) = tr {dD(t3 + to + 11)dD (t2 + t1) peqgd D (0)d D (11) }

(2.151)

Rty ta,t1) = tr {dD(t3 + ta + t1)dD (t2 + 11)dD (11)d D (0)peq -
(2.152)

Note that the terms under the trace are rearranged such that the last
interaction is the leftmost one. This arrangement can be pictured with
the commonly used double-sided Feynman diagram technique [46],
which provides an intuitive picture of the evolution of the density
matrix. In general the double-sided Feynman diagrams consist of
two vertical lines representing the bra and the ket of the density
matrix. Time is evolving from the bottom to the top of the diagram
and interactions are represented by diagonal arrows, which have their
origin at or are pointing to the solid bra or ket lines. Whereas arrows
pointing to the bra or the ket lines indicate an excitation process,
arrows which have their origin at the bra or the ket lines indicate
a de-excitation process. Arrows pointing to the right represent an
interaction with a field contribution of €; (t)exp(iEjF — iw;t) and
arrows pointing to the left an interaction with a field contribution of
éj(t)exp(— iEjF + iwjt). There exists a large set of Feynman diagrams
describing all possible third-order interactions. However, using the
phase matching condition, Eq. (2.145), assuming a fixed time ordering
of the pulses and neglecting off-resonant terms, i.e. applying the
rotating wave approximation [46], leads to a small subset of Feynman
diagrams describing all processes, which might be observed using a
particular spectroscopy technique for a given level scheme.
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Figure 2.3.: Double-sided Feynman diagrams representing the in-
teraction pathways leading to the rephasing and nonrephasing 2D-
spectroscopy signals.

The aforementioned electronic 2D-spectroscopy technique, which
applies three independent laser pulses to the sample, offers in prin-
ciple eight possible phase-matching directions. However, only two
directions are frequently used in the experiment, namely the photon
echo direction E(rp) = —El + Eg + Eg, which gives rise to the so-called
rephasmg Feynman diagrams, and the transient gradient direction
k(m) = k1 —ko+ k:g, which yields the so-called non-rephasing diagrams.

All rephasing Feynman diagrams, Fig. 2.3, have in common that
the first pulse creates a coherence of the type |g)(«|, whereas the
third pulse creates a coherence of the type |5 )(g| or |v)(«l|. Here,
lg) denotes the ground state of the system, |a) and |3) arbitrary
one-exciton states and |y) an arbitrary higher excited state. During
the so-called coherence time 7 between the first and the second pulse,
the system accumulates a phase corresponding to the energy gap
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between the states |g) and |a). The second pulse drives the system
into a population of the excited state or another coherence. After the
so-called population time T between the second and the third pulse,
the system is driven into the final coherence by the third pulse. The
system accumulates again a phase during the so-called rephasing time
t, but now with a different sign counteracting the phase, accumulated
during the coherence time 7, and thus leading to a rephasing, which
depends on the system-bath interaction. In non-rephasing Feynman
diagrams the last coherence is of the same type as the first one and
therefore no rephasing occurs. The three rephasing and three non-
rephasing Feynman diagrams can also be classified according to the
process which they represent. Whereas the first two diagrams account
for stimulated emission (SE) and diagrams three and four for ground
state bleaching (GSB), the last two diagrams represent excited state
absorption (ESA) which is absent for the aggregate model introduced
in Sec. 2.1 as this model is restricted to singly excited states.

In the impulsive limit, i.e. €;(t)  &;5(t), the rephasing and non-
rephasing 2D-spectra can be obtained via double Fourier transform
of the response function with respect to 7 and t [68]. Note that the
rephasing and non-rephasing spectra include both absorptive and
dispersive features. The dispersive features can be eliminated by
adding both the non-rephasing and the rephasing spectra [69], thus
the absorptive 2D spectrum is given by [70, 71]

S(wr, T,wy) o Jm ( / dt / dr [elorm it R 4 o iW“Mthfg)})
0 0
(2.153)
with

Rgg)(t&tz,tl) = Ra(ts, t2, 1) + Ra(ts, t2,t1) — Ri(ts,t2,t1) (2.154)
R (ts,ta,t1) = Ri(ta, ta,t1) + Ralts, to, t1) — R3(ts, ta, t1). (2.155)

A detailed discussion of different features in 2D-spectra arising from
the underlying level structure is given, e.g., in Refs. [64, 65, 68]. Briefly,
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the diagonal w; = w; of the 2D-spectrum for T" = 0 fs corresponds to
the linear absorption spectrum, i.e. represents the level structure of
the sample, whereas off-diagonal peaks indicate a coupling between
different levels. Therefore, a change in the intensity distribution of the
2D-spectra for different population times T' represents the dynamics
of the system. For example a growth of the off-diagonal features below
the diagonal indicates an energy transfer or relaxation between the
levels corresponding to the respective diagonal features.

The rephasing and non-rephasing response functions can be cal-
culated, analogously to the linear response function, Eq. (2.138), in
the Schrédinger picture. Defining the propagator G(t;,t;) for the
field-free propagation of the density matrix during the interval [t;,t;],
the response functions can be evaluated by

R$)(ts, ta,t1) =
i tr {d G (1, 12) [, G (22, 1) [d), G (11, 0) [T, peq ] |
(2.156)
R (t3,ta,t1) =
1 tr {d G (8, 12) [d), Gt 1a) [, (11, 10) [, pec] ]}

(2.157)

Here, the operators d(=) and d() are defined as
A =3 dge,lg) (eml (2.158)
A =3 "de,, glem ) {gl. (2.159)

Note that the calculation of 2D-spectra is much more demanding from
the computational point of view, as the propagations need to cover
both the ¢; as well as the t3 range.



3. Energy transfer in
light-harvesting complexes

Energy migration within the photosynthetic machineries of algae,
bacteria and plants has long been considered as a hopping process,
which can be described via rate equations. Further, it was assumed
that the structure of the photosynthetic units is optimized to maximize
the quantum yield of the overall process. However, this simplified
approach was questioned after the observation of long lasting coherent
oscillations in the 2D-spectra of the FMO complex by Engel and
co-workers in 2007 [16]. Since then the effect of coherence on the
energy transport properties and its origin has been one of the major
lines of investigation in the context of photosynthesis [18, 20, 21, 26—
28, 72, 73]. The dynamics within light-harvesting antennae after an
optical excitation is rather complex due to their sophisticated structure
and the influence of the environment. Therefore, it is instructive to
study, in addition to natural light-harvesting units, model systems to
disentangle the dynamics which lead to the high quantum efficiency
of these complexes.

In the following section the dynamics of a generic model dimer will
be investigated using the HEOM method, cf. Sec. 2.2.2, implemented
in the Rostock HEOM package, cf. App. A. Here, the issue of coherent
oscillations as well as the general influence of the bath on the system
dynamics in dependence on the system-bath interaction strength will
be addressed. Next, the energy transfer in an octamer forming an
energy funnel towards a sink will be studied as a model aggregate which
resembles, e.g., the function of photosynthetic antennae, cf. Fig. 1.1.
Finally, the energy transfer of the FMO complex itself will be modelled
using a spectral density extracted from experimental data.

M. Schréter, Dissipative Exciton Dynamics in Light-Harvesting Complexes,
BestMasters, DOI 10.1007/978-3-658-09282-5 3,
© Springer Fachmedien Wiesbaden 2015
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3.1. Dimer system

The dimer system represents the smallest possible molecular aggregate.
Due to its low dimensionality it can be treated numerically rather
exactly in comparison to larger aggregates. Hence the dimer is of
particular interest as a model system which provides a reference for
more complicated systems [20, 22, 24, 26, 27, 57, 71-78|.

To investigate the dissipative exciton dynamics in dimer systems
a generic model incorporating one intra-molecular mode modelled
via a single mode MBO spectral density, Eq. (2.117), is used in the
following. The electronic energy gap between the diabatic excited
aggregate states (AE = E,, — E,, = 500 cm™1), cf. Eq. (2.4), is chosen
such that it corresponds to the frequency of the intra-molecular mode
W11 = W12 = Wyib = 500 cm~!. This situation is rather typical for
light-harvesting complexes, e.g., in the FMO complex there exists
a mode with wyj, = 180 cm™!, which is resonant to the gap energy
between monomer three and four, cf. Sec. 3.3. This facilitates a
strong mixing of the electronic and vibrational DOFs, which has been
discussed as one possible origin of long-living oscillations in the 2D-
spectra of FMO [21]. Note that all parameters except of the electronic
state energies are assumed to be the same for both monomers, e.g.,
S11 = S12 =5, and therefore the monomer index m and the mode
index &£ will be skipped. The temperature of the bath is chosen to be
T =300 K.

In order to study the influence of the vibronic coupling strength, i.e.
the Huang-Rhys factor S, on the system dynamics, four different dimer
scenarios are considered. They are characterised by means of their
linear absorption spectra, population dynamics and 2D-spectra. The
scenarios cover in particular the cases of weak (I and II) and strong
(IIT and IV) vibronic coupling for two different Coulomb couplings,
see Tab. 3.1, Each scenario will be investigated for two different inter-
bath coupling strengths, namely ¥ = 50 ecm™! and 4 = 200 cm ™.
Example inputs for the Rostock HEOM package are provided in
app. B. Converged results for all scenarios were obtained with I = 2
and N =9, cf. Sec. 2.2.2.
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Table 3.1.: Huang-Rhys factors, Coulomb coupling strengths and ratios
of the Coulomb coupling strength and vibrational frequency for the
different dimer scenarios.

scenario | S | J [em™!] | J/weip
1 0.05 250 0.5
1I 0.05 750 1.5
111 0.5 250 0.5
v 0.5 750 1.5

The linear absorption spectra for I and II, Fig. 3.1 panels a and b',
show only a significant absorption at the energies corresponding
to the electronic dimer, cf. Eq. (2.23), whereas the spectra for III
and IV, panels ¢ and d, show pronounced additional side peaks due
to the strong vibronic coupling. In all cases the second adiabatic
electronic state and the associated vibronic states carry the main
part of the oscillator strength, cf. Fig. 3.4. This is characteristic
for so-called H-aggregates and a direct consequence of the Coulomb
coupling configuration (J > 0) [31]. Aggregates with J < 0, the
so-called J-aggregates, show pronounced peaks at the low-energy site
of the spectra, i.e. the first adiabatic state and the associated vibronic
states carry the main part of the oscillator strength. In contrast to the
spectra for I, IT and IV, the spectrum for III, where the reorganization
energy associated with the vibronic coupling is comparable to the
Coulomb coupling strength, shows a rather complex shape. Increasing
the inter-bath coupling strength 4 leads to a larger line width in all
cases. As a consequence of the chosen system-bath model, cf. Sec. 2.1,
this effect is again more pronounced for III and IV. The line width
is determined by both, the coupling of the electronic DOFs to the
primary bath, i.e. the Huang-Rhys factor S, and the coupling between
the primary and secondary bath, i.e. 4. For I and II the small
Huang-Rhys factor is limiting the interaction between the system

! Please visit www.springer.com and search for the author’s name to access the
chapters colored figures.
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Figure 3.1.: Absorption spectra corresponding to the four dimer sce-
narios (¥ = 50 em~! solid red line, ¥ = 200 cm~! dashed blue line)
calculated with the Rostock HEOM package using Eq. (2.139). The
spectra are normalized such that the peak value of the dominant peak
is equal to unity. The reference energy FEj is equal to the mean of the
diabatic electronic state energies (Ey = AE/2).

and the bath and therefore restricts the line width independently
of the magnitude of the inter-bath coupling strength. In contrast
for IIT and IV the interaction between electronic DOFs and primary
bath is strong, i.e. the interaction between primary and secondary
bath directly influences the decoherence rate of the system DOFs
and therefore the line width of the spectra. Note that peaks with a
significant vibrational contribution, cf. discussion of Fig. 3.4, i.e. the
peaks corresponding to the vibronic progression in the panels ¢ and d
of Fig. 3.1, show a stronger line broadening for increasing 4 than
peaks with mainly electronic character. This is due to the stronger
interaction of vibrationally excited states with the bath in comparison
to the vibrational ground state.
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Figure 3.2.: Population dynamics of the highest diabatic (upper row)
and adiabatic (lower row) states for the four dimer scenarios (5 =
50 cm~!: solid red line, ¥ = 200 cm~!: dashed blue line).

The population dynamics of the diabatic and adiabatic states,
Fig. 3.2, after initial excitation of the highest adiabatic state is signifi-
cantly influenced by the inter-bath coupling for all scenarios. Whereas
for 4 = 50 cm~! all populations except of those for IT (panels b and f)
feature pronounced oscillations over at least 500 fs, these oscillations
are damped out rapidly for # = 200 cm~!. Additionally, the relaxation
towards the first diabatic/adiabatic state is significantly faster for the
stronger inter-bath coupling.

The population dynamics of the diabatic state |es), as well as
of the adiabatic state [2), Eq. (2.22), for I, IIT and IV shows an
exponential decay of the state population. This is in contrast to III,
where the diabatic and adiabatic populations decay almost linearly.
In general the population relaxation for the scenarios featuring a
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Figure 3.3.: Fourier spectra of the oscillatory component of the popu-
lations shown in Fig. 3.2 (¥ = 50 cm~!: solid red line, 4 = 200 cm ™
dashed blue line). The Fourier spectra are normalized such that the
area under the curve is equal to unity.

strong vibronic coupling (IIT and IV) is faster than the one for the
scenarios featuring a weak vibronic coupling (I and II). Comparing
the population dynamics for I and II as well as those for III and
1V, respectively, one further notices that the population relaxation
is faster for the scenarios with a smaller Coulomb coupling. This is
due to the fact that the energy gap between the adiabatic electronic
states, cf. Eq. (2.23), for J = 250 cm~! is closer to wyj, than for
J =750 cm~!. Thus, the value of the spectral density, which has its
maximum at w = wyjp, at the transition energy between the states
is larger in the former case than in the latter case. This leads to
a stronger coupling to the bath for J = 250 cm™!, which in return
facilitates a faster relaxation for I and III in comparison to II and IV.
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Comparing the diabatic and adiabatic population dynamics one
notices that, although the general behaviour is the same for both, the
adiabatic populations feature fewer oscillations than the corresponding
diabatic ones. In order to characterise the oscillatory behaviour of
the population dynamics in more detail, it is instructive to inspect
the Fourier spectrum (FS) of the oscillations. It can be calculated by
subtracting the decaying component, i.e.

POSC(t) = P(t) - Pdec(t)> (31)

and taking the Fourier transform of the P,s(t). The decaying compo-
nent Pge.(t) of the population can be extracted, e.g., via an exponential
fit, i.e.

Paec(t) = P(0)e 7. (3.2)

According to the population dynamics shown in Fig. 3.2, the F'S of
the adiabatic populations, Fig. 3.3, show in general less features than
the FS of the corresponding diabatic ones. In particular for I, IT and
IV the distinct peaks at the high frequencies in the FS of the diabatic
populations are absent in the spectra of the adiabatic populations.
This indicates that the oscillations corresponding to these peaks have
their origin in the mixing of local vibronic transitions by the Coulomb
coupling.

This statement can be illustrated considering the exact population
dynamics of the excited states of an electronic dimer without coupling
to a bath. The dynamics of this system in both representations is
given by the Schrédinger equation

HIW(0) = 15 1(0), (33)

where the Hamiltonian in the diabatic basis is given by
Hyw = [ P 7 (3.4)
J B,
and the corresponding adiabatic Hamiltonian by

Hgia = E 0 . (35)
0 E»



56 3. Energy transfer in light-harvesting complexes

The adiabatic state energies are connected to the diabatic ones
via Eq. (2.23). Expanding the time-dependent wave function |¥(t))
in terms of the diabatic and adiabatic states yields

(U()) gia = ( Ae(t) e ea) ) (3.6)

Ay (t) e™ P2t [eg)

and

e~ iFt
() e = ( jgg o :;i ) , (3.7)

respectively. The population of an arbitrary state is given by the
absolute square of the corresponding expansion coefficients, i.e.

P = |A;]* = A AL (3.8)

Inserting the wave function and the Hamiltonian in Eq. (3.3) leads to
equations of motions for the expansion coefficients A;. In the adiabatic
representation the corresponding equations are given by

—A;(t) =0, 3.9

9 At (39)
which yields immediately that the expansion coefficients and thus the
populations of the adiabatic states are constant. However, due to the
Coulomb coupling the equations of motion of the diabatic expansion
coefficients, i.e.

9 : iw
aAe1 (t) = —iJ ezt A, (1) (3.10)
and 9
EA” (t) = —iJe W2t A, (1) (3.11)

with we, ey, = Ee, — Ee,, are coupled to each other. Solving the system
of equations leads to

A, (t) = by ™4t 4 by ei2!, (3.12)
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where the coefficients b; need to be adjusted according to the initial
conditions and the frequencies €2; are defined as

1
Qup = "2+ 2y fud, + 4T (3.13)

Thus, the population of the state |es) reads

P62 (t) :A62 (t)AZQ (t)
= by |* + |bo]? + bibh e 1792t | prp, e~ IRt (3 1y)

and the population oscillates with a frequency of 1 — 5, which corre-
sponds to the energy gap between the adiabatic states, cf. Eq. (2.23).

The oscillation frequencies of the rightmost peaks in the F'S of the
diabatic populations for I and II, Fig. 3.3 panels a and b, coincide
indeed very accurately with the gap energy of the adiabatic electronic
states, whereas the corresponding peak for IV is shifted towards
higher frequencies. This is a result of the mixing of the electronic and
vibrational DOFs due to the strong vibronic coupling, which leads to a
higher energy of the vibronic levels in comparison to the corresponding
levels in the purely electronic model. In III the electronic peak in the
FS of the diabatic population can barely be identified due to the large
effect of the vibronic coupling, although there are some changes in
the FS of the adiabatic population in comparison to the FS of the
diabatic population. To summarize, one peak in the FS of the diabatic
populations can be assigned to be of electronic origin. This peak is
absent in the F'S of the adiabatic populations due to the nature of the
transformation between diabatic and adiabatic representation. Thus,
in contrast to the diabatic populations, the adiabatic populations,
Fig. 3.2, feature no oscillations of electronic origin.

However, the vibronic and the system-bath couplings lead not only
to a relaxation onto energetically lower states, but also to additional
oscillations even for a weak vibronic coupling (I and II) although this
effect is more pronounced for a strong vibronic coupling (III and IV).
The peaks in the F'S, which have their origin in the vibronic coupling,
show a stronger dependence on the bath coupling strength 4 than the



58 3. Energy transfer in light-harvesting complexes

electronic peaks. In particular, a larger peak broadening indicates a
stronger damping of the corresponding oscillations with increasing
in comparison to their electronic counterparts.

In analogy to the electronic dimer, the key property to understand
the population dynamics of the vibronic dimer and especially its
oscillatory behaviour for arbitrary Huang-Rhys factors is the full
adiabatic vibronic level structure, cf. app. C. Similar to the frequency
of the electronic oscillations in the diabatic electronic representation,
which corresponds to the energy gap of the adiabatic electronic states,
the frequency of the vibronic oscillations in the diabatic vibronic
picture corresponds to the energy gap between certain adiabatic
vibronic levels. Due to the implicit treatment of the intra-molecular
vibrations, the diabatic populations, displayed in Fig. 3.2, correspond
to a diabatic vibronic representation and therefore feature the vibronic
oscillations. Note that the electronic adiabatic populations shown in
Fig. 3.2 are not adiabatic with respect to the vibronic basis and thus
still feature vibronic oscillations, cf. app. C. The individual populations
of the adiabatic and diabatic vibronic states are not available in the
context of an implicit treatment of the intra-molecular vibrations as
a heat bath. Nevertheless, the diabatic vibronic level scheme can be
mimicked in the present system-bath model, as the properties of the
intra-molecular modes, S and wy,, are known.

Introducing the diabatic vibronic states |abuv), where a and b
denote the electronic state and p and v the vibrational state of the
first and second monomer, respectively, allows one to calculate the
energy and oscillator strength. The latter is given by the normalized
Boltzmann-weighted transition dipole square of the adiabatic vibronic
states

&) = Cappw labpr) (3.15)

abuv
which can be obtained via numerical diagonalization of the diabatic
vibronic Hamiltonian [79, 80]. The diabatic vibronic aggregate states
represent either a vibronic excitation of the first monomer (|egu0)),
the second monomer (|ge0v)), a vibrational excitation of the vibroni-
cally unexcited monomer (|geur) with p > 0 or |egur) with v > 0), or
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a vibrational excitation of the aggregate ground state (|gguv)). Fur-
thermore, the character of the adiabatic vibronic aggregate states can
be classified according to the overall number of vibrational excitations
in the excitonically excited aggregate states, i.e.

X = Cgeoo + ngoo (3.16)
X = 63610 + 63601 + 02910 + 03901 (3.17)
x? = Cgezo + 63602 + ngzo + 03902 + 03611 + ng11 (3.18)

The contribution of the states with zero vibrational excitations
x© can be identified as the electronic contribution. Inspecting the
properties of the adiabatic vibronic levels, Fig. 3.4, one can see that
the distribution of the oscillator strength corresponds to the intensity
distribution in the absorption spectra, Fig. 3.1.

For the weak vibronic coupling (I and II), levels with a large elec-
tronic contribution carry the major part of the oscillator strength,
whereas for the strong vibronic coupling (III and IV) also levels with a
large vibrational contribution gain significant oscillator strength. This
leads to the appearance of vibronic peaks in the corresponding absorp-
tion spectra. Further, the peak broadening characteristics for I1I and
IV, in particular that some peaks show a stronger broadening with
increasing 4 than others, can be explained considering the character
of the underlying adiabatic vibronic levels. For example, the peak
at (E — Ep)/wyib ~ 3 in Fig. 3.1 panel d, which corresponds to the
17th adiabatic vibronic level (Fig. 3.4 panel d), shows a larger peak
broadening with increasing 4 than the peak at (F — Ep)/wyib =~ 2,
which corresponds to the eleventh level. This is correlated to the char-
acter of these levels, i.e. the eleventh level has a dominant electronic
contribution, whereas the 17th level has a dominant x"). According
to the present system-bath model, in which the intra-molecular vi-
brations are coupled to the environmental DOFs, adiabatic vibronic
aggregate states with a stronger vibrational excitation are stronger
coupled to the environmental bath. Thus, states, which have a larger
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Figure 3.4.: Energy, oscillator strength, x(?) (red squares), x*) (blue
triangles) and x(?) (black circles) of the adiabatic vibronic states corre-
sponding to the four dimer scenarios. The properties were obtained via
direct diagonalization of a diabatic vibronic Hamiltonian incorporating
ten vibrational levels for the ground and each excited monomeric state,
respectively. The reference energy Ej is defined as in Fig. 3.1.

x(™>9) in comparison to some other states, are stronger affected by
the inter-bath coupling than the latter.
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In order to interpret the oscillatory behaviour of the populations, it
is necessary to select the contributing diabatic and the corresponding
adiabatic vibronic states. Owing to the large number of adiabatic
vibronic states and their, especially for strong vibronic couplings,
dense energy spectrum, this task requires the implementation of
certain rules. These can be developed inspecting the diabatic vibronic
Hamiltonian, Eq. (C.4). First, at least one of the involved diabatic
vibronic levels needs to be initially populated. Second, having in mind
the analytical solution of the electronic model one notes that only
coupled diabatic vibronic levels feature oscillations. The coupling
between the diabatic vibronic levels is determined by the product of
the Coulomb coupling strength J and the Franck-Condon overlaps of
the vibrations in the monomeric ground and excited states, Eq. (C.6).
Note that the Franck-Condon overlap depends crucially on the Huang-
Rhys factor S. For small Huang-Rhys factors only the Franck-Condon
overlaps of configurations, which differ in none or one vibrational
quantum, have a pronounced amplitude. Therefore, only pairs of
adiabatic vibronic aggregate states, of which one has a significant
x*) and the other has a significant x(*) or y(**1), couple strongly. In
contrast, the Franck-Condon overlaps of configurations, which differ in
more than one vibrational quantum, are no longer negligible for larger
Huang-Rhys factors. Thus, additional couplings become important
and one needs to consider also pairs of states, of which one has a
significant x(*) and the other has a significant x(**"). The value of n
depends crucially on S.

Due to the choice of the initial conditions for the investigation of
the population dynamics of the four scenarios, i.e. a population of the
second adiabatic electronic level, only vibronic states with a significant
electronic contribution are initially populated. Following the rules
introduced above it is possible to reveal the origin of the peaks in the
FS. First, one needs to identify the levels with large oscillator strengths.
Second, all energetically lower levels, whose energy gap to one of the
identified levels matches the peak frequency need to be considered.
Finally, one needs to compare the y(*) of the identified levels with the
x*) and x(**") of the considered energetically lower levels. Via the
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first two steps of the presented algorithm the first peak in the FS of
the populations for I, Fig. 3.3 panels a and e, can be assigned to the
energy difference between the fourth and second, and the fourth and
third level, respectively. Whereas level four has a dominant electronic
contribution the levels two and three are of dominantly vibronic
character. Thus, the corresponding oscillations in the populations,
cf. Fig. 3.2, are of vibronic origin, which is in agreement to the result
obtained by a comparison between the adiabatic and diabatic F'S.
The same algorithm works for the first and second peak in the FS for
IT, which can be assigned to the energy gaps between the eleventh
and the sixth, the eleventh and 21st and the eleventh and 22nd level,
respectively. For III and IV, the adiabatic vibronic level structure
is much more complex leading to a variety of superpositions, which
yield the complex oscillatory behaviour of the populations.

The initial condition used so far, i.e. the population of the sec-
ond adiabatic state, is rather different in comparison to an optical
excitation of the system and thus the dynamics after absorption of
light might differ significantly from the dynamics displayed in Fig. 3.2.
The 2D-spectroscopy technique provides a powerful experimental tool
to study the population dynamics after an optical excitation and
the correlations between the different states [64, 65, 68]. However,
the interpretation of the obtained 2D-spectra suffers from the high
complexity of the investigated systems. Thus, comparison between ex-
perimental and calculated 2D-spectra provides not only a benchmark
for the used theoretical model, but also facilitates the interpreta-
tion of the experimental spectra. The 2D-spectra for the different
dimer scenarios were calculated using the response function formalism
presented in Sec. 2.4 with the Rostock HEOM package.

Note that the calculation of 2D-spectra is computationally demand-
ing even for small systems as the response functions, Eq. (2.157),
need to be evaluated for various combinations of ¢1, {5 and t3 to
obtain sufficient data. The resolution of the calculated 2D-spectra

depends crucially on the length of the time intervals [tgmin);tgmax)]

and [témin);tgmax)] covered by the propagation. Additionally the time
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Figure 3.5.: 2D-spectra for the four dimer scenarios and weak inter-
bath coupling ¥ = 50 cm ™! for T = 0 fs, T = 200 fs, T = 500 fs and
T = 1000 fs. The spectra were normalized according to the maximum
of the spectra for T'= 0 fs. The diagonal and off-diagonal peaks for 1
and II are indicated by D and O in the upper panels, respectively

step between different ¢, /3, i.e. the sampling of the corresponding
intervals, needs to be accurate enough to cover all spectral features.

The 2D-spectra for the different dimer scenarios, Fig. 3.5 and
Fig. 3.6, were calculated using a sampling of 0.5 fs and an interval



64 3. Energy transfer in light-harvesting complexes

[ — T | E— ]
-1 0.5 0 05 1
I: J/,p=0.5 $=0.05 1I: J/wo=1.5 S=0.05 Ill: J/,;p=0.5 $=0.5 IV: Jieo;p=1.5 $=0.5
4 T=0.0ps - T=0.0ps - T=0.0ps T=0.0ps ]
1 9) s : *'
0 y
-1 0 *
2k ; i
4 T=0.2ps T=0.2p8 7" T=0.2ps T=0.2p8 i
f ¥ T .
e i ‘ | i
g1 3 » B
S 2p : : v
44 T=0.5p8 " T=0.5ps T=0.5ps " T=0.5ps "
1 w = i
0 ot
- g o »
2k . i
4 T=1.0ps T=1.0ps T=1.0ps i T=1.0p8 7]
2 i o & &
1 gk = i
0 .
-2

2-101234-2-101234-2-101234-2-101234
(0-Eg)/(oyip)

Figure 3.6.: Same as Fig. 3.5 for ¥ = 200 cm~".

length of 2048 fs for both 7 and t. According to this setup 40962, i.e.
approximately 17 million, calculation steps are needed to calculate one
2D-spectrum. The resolution of the 2D-spectra is Aw;/, ~ 4 cm ™!,
which is sufficient for an analysis with respect to possible oscillatory
features of the peaks. However, due to the computational effort no
sufficient resolution for T could be obtained during the present work.
Furthermore, the response functions do not decay sufficiently during
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the interval length of 2048 fs, which leads to instabilities of the Fourier
transform with respect to 7 and t, Eq. (2.153). In comparison, the
linear absorption spectra, Fig. 3.1, were obtained with a propagation
time of 16 ps. Due to the instabilities of the Fourier transform,
negative features arise in the 2D-spectra, which should be absent as
the excited state absorption is not present in the current model. The
convergence level of the hierarchy was decreased as well, i.e. N =5
instead of A = 9, to reduce the overall computational effort.

The diagonals (w; = wy) of the 2D-spectra for the different scenarios
for T' = 0 fs resemble the linear absorption spectra, cf. Fig. 3.1. Similar
to the linear absorption spectra, the 2D-spectra for I, IT and IV have
less features than the spectra for I11. Again, the spectra for I and I1
are not so strongly affected by an increase of the inter-bath coupling
constant 4 as their peaks correspond mainly to levels with dominant
electronic character. The spectra for III show a variety of distinct
cross-peaks, which indicate, similar to the F'S of the populations, a
coupling of the corresponding aggregate states, whereas the spectra
for I, IT and IV reveal only a few weak cross-peaks. Furthermore, the
spectra for all scenarios show a rapid intensity redistribution within
the first 200 fs but reveal in contrast to the population dynamics
no significant changes for T = 500 fs and 7" = 1000 fs. This is
due to the difference in the initial conditions. For the population
dynamics simulation, Fig. 3.2, the initial condition was chosen such
that only the second adiabatic electronic level was populated, whereas
the interaction with a field excites the vibronic levels. To achieve a
similar distribution of the initial populations and take into account
the interactions of the system with the second and third pulse, one
needs to propagate the system treating the system-field interaction
explicitly, e.g., via the interaction operator Hin, Eq. (2.24). Note that
this feature is not implemented in the Rostock HEOM package so far.
Another difference between the population dynamics and the dynamics
of the spectra arises due to the fact that the lower vibronic states, to
which the population relaxes, carry only a small part of the oscillator
strength according to the positive Coulomb coupling (H-aggregate).
Therefore, the dynamics of these states is not observable.
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To summarize this section, the population dynamics of dimer sys-
tems depends strongly on the interplay between the system and the
bath. In particular the value of the spectral density at the transition
energy between the adiabatic levels, which corresponds to the coupling
strength of the transition to the bath, is crucial for the relaxation
dynamics. Thus in the context of the used MBO model for a par-
ticular set of system variables, i.e. the Coulomb coupling strength
J and the energy of the diabatic states E., and E,, an increase of
the vibronic coupling strength (the Huang-Rhys factor S) will lead
to a faster relaxation. Further, for a constant vibronic coupling and
a fixed diabatic state configuration, the Coulomb coupling strength
J determines the dynamics as it tunes the energy gap between the
adiabatic states. The oscillatory features, which appear in the popu-
lation dynamics, can be interpreted using the full adiabatic vibronic
level structure of the system. However, this structure is not available
for larger aggregates. Nevertheless, as a rule of thumb one can assign
oscillations, which appear in the diabatic but not in the adiabatic
electronic population, to be of electronic origin. The exact correlation
between the population dynamics and the dynamics of the 2D-spectra
will be in the focus of further investigations.

3.2. Funnel-like aggregate

In the previous section the population dynamics of a dimer system with
a single component MBO spectral density was investigated. However,
light-harvesting complexes usually consist of several molecules in a
rather complex environment. The specific tasks of these specialized
complexes in the overall photosynthetic process might vary. Whereas
some complexes are specialized on the absorption of light and serve as
light-harvesting antennae, e.g., the LH2 complex of purple bacteria,
others, like the FMO complex of green sulphur bacteria, serve as energy
funnels, which collect the energy of the antennae and transfer it to the
reaction centre. There the energy is used for charge separation, which
drives the chemical processes of photosynthesis [1]. To address the
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question of how the environment influences the population dynamics in
a funnel-like aggregate, a model system consisting of eight monomers
will be considered in the following. The monomers are grouped into
four dimers, cf. Fig. 3.7 panel a. Note that such a dimerization is
common in various light-harvesting complexes, e.g., the LH2 complex
of purple bacteria [5, 6] and the FMO complex. The one-exciton part
of the system Hamiltonian, cf. Eq. (2.6), is given by

SAE ;0 0 0 0
Ji 3AE J, 00 0
Jo SAE J; 0 0
Ji 3AE J, 0
0 Jo —3AE 0
0 0 i —3AE J
0 0 0 J —3AE J;
0 0 0 0 Ji —3AFE
(3.19)

o o o O
o O o o o O

0
0
0
0
0
0

o o o o O

where E. denotes the average of the diabatic excitation energies, the
intra-dimer Coulomb coupling strength is denoted by .J; and the
inter-dimer Coulomb coupling strength by Jo. The diabatic electronic
excitation energies are assumed to be the same within a dimer. In
contrast the excitation energies of neighbouring dimers differ by some
constant energy AFE. Again four different scenarios are considered,
see Tab. 3.2. The scenarios A and B cover the situation that the
inter-dimer Coulomb coupling is equal to the intra-dimer Coulomb
coupling, i.e. J; = Jo, whereas for C and D the intra-dimer Coulomb
coupling is ten times larger than the inter-dimer Coulomb coupling,
ie. J; = 10Js.

The adiabatic electronic level structure is characterized by the
energy of the levels and the amplitude of the exciton states, that is
the square of the expansion coefficient in Eq. (2.22). It features a
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Figure 3.7.: (a) Schematic view of the funnel model system. (b)
Spectral density models (parameters given in the text and Tab. 3.3).
(¢) Amplitudes of the exciton states at the different monomer sites for
Ji1 = Jo. (d) Same as (c) for J; = 10.J3

distinct separation into an upper and a lower manifold for C and D,
Fig. 3.7 panel d. In contrast to this separation the gap energies
between the levels for A and B are of the same order of magnitude,
Fig. 3.7 panel c. The adiabatic levels of the upper/lower manifold
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Table 3.2.: Intra-dimer Coulomb coupling strengths for various scenar-
ios. The inter-dimer Coulomb coupling strength (J; = —50 cm~!) and

the gap energy (AE = 50 cm™!) are the same for all scenarios.

scenario | Ji [em™!] | Spectral density model
A -50 MBO
B -50 Debye
C -500 MBO
D -500 Debye

Table 3.3.: Components of the MBO spectral density for the funnel

model system.

component & | Sg¢ | we [em™1] | e [em™]
0.197 206.0 100.0
2 0.215 211.0 100.0
3 0.037 552.0 100.0
4 0.208 1371.0 100.0
5 0.083 1570.0 100.0

for C and D stem from the upper/lower exciton states of the individual
dimers. These states are localized on the associated dimers, i.e. the
amplitude of the exciton states at the monomers which belong to the
other dimers is small. In A and B the adiabatic states are delocalized
over the whole aggregate. Further, two different spectral densities are
considered for each system configuration, namely a Debye spectral
density, Eq. (2.110) with n = 0.7 and 4 = 100 em~! (B and D), and
a five-mode MBO spectral density (A and C) which is specified in
Tab. 3.3. Note that it is again assumed, that all monomers couple
to individual but equal baths and thus the monomeric index m is
skipped for the parameters of the spectral densities.
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Figure 3.8.: Absorption spectra for the different scenarios for the
funnel model system (A: red solid line and triangles; B: red dashed
line and circles; C: blue solid line and crosses; D: blue dashed line and
squares).

The MBO spectral density is adapted from the spectrum of the
intra-molecular vibrations of a perylene bisimide pigment, which is
a versatile building block for artificial aggregates used as molecular
wires or antennae [76, 81-83]. Whereas the Debye spectral density
has its maximum around 100 cm~! and has no significant amplitude
for frequencies higher than 600 cm™!, the MBO spectral density has
a significant amplitude up to 2000 cm~!, Fig. 3.7 panel b.

Converged results for B and D were obtained with N’ = 6 and K = 8,
i.e. one correlation function term per monomer. The results for the
MBO scenarios (A and C), which were calculated with A/ = 4 and
K = 80, that is two correlation function terms per mode and monomer,
are not fully converged. However, the corresponding hierarchy size
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of approximately two million matrices, cf. Eq. (2.78), approaches the
limit of the current version of the Rostock HEOM package, whereas the
hierarchy size of approximately 3000 matrices for the Debye scenarios
is far below that limit. This indicates the advantages of the Debye
spectral density in the context of the HEOM formalism, but note
that this spectral density is not suitable to model structured spectral
densities. The error of the calculations for A and C, which can be
estimated via comparison of the shown results with results obtained
with N = 3, is below ten percent.

The absorption spectra, Fig. 3.8, for B and D show only a single
peak at the low energy side of the spectrum, which is specific for
negative Coulomb couplings (J-aggregates). In contrast, the spectra
for A and C feature in addition to the low-energy peak a vibronic
progression due to the vibronic structure implied by the MBO spectral
density, cf. Sec. 3.1. The stronger red-shift of the spectra for C and D
with respect to the ones for A and B follows from the larger value of
the intra-dimer Coulomb coupling J; in the former cases.

In order to study the spatial energy transfer within the aggregate
the initial condition was chosen such that the highest adiabatic exciton
state is populated. This state is mainly located at the first dimer in
all scenarios, cf. Fig. 3.7. Note that the spatial energy transfer, that is
the redistribution of the population among the diabatic (local) states,
comes along with the relaxation between the adiabatic states.

The population dynamics of the dimers, Fig. 3.9, shows in all
scenarios the same general behaviour, i.e. the population slides down
in the energy funnel formed by the dimers towards the energetically
lowest dimer. This process is faster for B and D in comparison to A
and C. The difference between the population dynamics for A and B,
as well as for C and D, respectively, is not that pronounced. However,
the adiabatic populations, Fig. 3.10, show a significantly different
behaviour for the different scenarios. For A and B the population of
the states two to six increases to a similar value within a few tens of
femtoseconds. This is due to the small energy gap between the states,
e.g., approximately 200 cm ™! between state one and six. Both spectral
densities, Fig. 3.7 panel b, feature a significant amplitude in this
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Figure 3.9.: Population dynamics of the dimers, cf. Fig. 3.7, calculated
via the dynamics of the diabatic one-exciton states for the different
scenarios (A: left panel red lines and squares; B: left panel blue lines
and circles; C: right panel red lines and squares; D: right panel blue
lines and circles).

frequency region and thus enable an effective relaxation, cf. Sec. 3.1.
In contrast, for C and D, where the energy gap between the upper and
lower manifold is approximately 800 cm ™!, the population is gradually
transferred to the energetically lower states. For C this transfer occurs
mainly in the lower exciton manifold after a fast relaxation of the
population from state one to state five, whereas for D the population
transfer occurs within the first few hundred femtoseconds in the upper
and lower exciton manifolds. The different behaviour in both scenarios
is due to the different amplitude of their spectral densities in the high-
frequency region, i.e. the MBO spectral density features a significantly
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Figure 3.10.: Population dynamics of the adiabatic one-exciton states
for the different scenarios (A: red solid lines and triangles; B: red dashed
lines and circles; C: blue solid lines and crosses; D: blue dashed lines and
squares). Note that the states are labelled in energetically decreasing

order, cf. Fig. 3.7.

larger amplitude at the transition energy between state one and five
than the Debye spectral density. Owing to the localization of these
states on the same dimer, which leads to a strong coherence of these
states for C, Fig. 3.7 panel d, there exists a pronounced oscillatory
behaviour of the corresponding populations.

In order to investigate the influence of the different system and
bath specifications on the exciton delocalization and the population
dynamics, it is instructive to study not only the population of the
states, i.e. the diagonal elements of the reduced density matrix, but
also the off-diagonal elements of the reduced density matrix, the
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Figure 3.11.: Snapshots of the real part of the diabatic density matrix
for various scenarios and propagation times.

so-called coherences. For all scenarios the initial diabatic density
matrix, Fig. 3.11, is delocalized over several monomers according to
the corresponding eigenvector decomposition, Fig. 3.7 panels ¢ and d.
Further, the coherences between the different monomers decay very
fast within the first 100 fs. Whereas for A and B mainly coherences
between neighbouring monomers survive, for C and D a strong coher-
ence between the monomers which belong to the same dimer develops.
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In contrast to A and C, for B and D additional coherences between
monomers of different dimers remain significant. For long propagation
times these additional coherences vanish and there appears a strict
dimerization for C and D, i.e. there are only coherences between
monomers which belong to the same dimer. This dimerization is not
present for A and B, where only coherences between neighbouring
monomers survive.

To summarize, the dynamics of the model aggregate depends, sim-
ilarly to the dimer system, cf. Sec. 3.1, crucially on the interplay
between the system and the bath. In particular, the shape of the
spectral density is rather critical for the system dynamics, especially
if there exist coupled levels with a large energy gap.

3.3. Fenna-Matthews-Olson complex

In the previous sections, the dependence of the system dynamics on
the bath characteristics for a dimer model and a model of a funnel-like
aggregate was investigated using model spectral densities. However,
light-harvesting antennae like the Fenna-Matthews-Olson complex
feature a more heterogeneous system structure as well as a complex
spectral density. The FMO complex, which serves as an energy funnel
linking the light-harvesting chlorosome with the reaction center in
green sulphur bacteria [1], consists of three identical subunits. Each
of the subunits is formed by an aggregate of seven bacteriochloro-
phyll a (BChl a) molecules embedded in a protein environment [84],
Fig. 3.12. Note that there exists an eighth BChl a molecule, which
serves as a linker molecule to the chlorosome baseplate [85, 88, 89].
This additional molecule changes the weight of the energy pathways
through the FMO complex and might suppress the observed coherent
oscillations in the diabatic populations of sites one and two, Fig. 3.12,
which are strongly coupled to each other [89]. However, the eighth
BChl a molecule will not be considered in the present FMO model.
For a detailed study of its influence on the dynamics of the FMO
complex see Ref. [41].
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Figure 3.12.: Structure of the monomeric subunit of the FMO com-
plex of Prosthecochloris aestuarii consisting of eight BChl a molecules
(labelled) embedded in a protein environment of folded S-sheets (blue).
The structural data was obtained via X-ray crystallography experi-
ments [85] and is available via the RCSB protein data bank (PDB ID:
3EOQJ) [86]. The figure was created using the VMD program [87].

Due to the structure of the monomeric subunit of the FMO complex
and the influence of the protein environment, the Coulomb coupling
between the BChl a molecules as well as the site energies are, in
contrast to the model used in Sec. 3.2, rather heterogeneous. This
leads to two primary energy transport pathways towards the BChl a
molecule with the lowest site energy (site three), that is from site one
via site two to site three and from site five via sites six and seven to
site three. The diabatic one-exciton Hamiltonian, which corresponds
to the labeling of the BChl a molecules in Fig. 3.12 and the structural
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data from Prosthecochloris aestuarii, is given (in cm~!) by [89]

3100 =979 55 =58 6.7 -—12.1 —-10.3
-97.9 230.0 30.1 73 2.0 115 438
55 301 00 -588 —-15 —-9.6 4.7
Hs(l) =1E+| —58 7.3 —588 180.0 —64.9 —17.4 —64.4
6.7 20 —-15 —64.9 405.0 89.0 —-6.4
—12.1 115 —-9.6 —17.4 89.0 320.0 31.7

~103 48 47 —644 —6.4 31.7 270.0
(3.20)

with E; = 12195 cm ™.

Although there were attempts to calculate the spectral density
of the FMO complex via molecular dynamics simulations [23], the
most reliable available data stems from measurements of the spectral
density via a combination of fluorescence line narrowing (FLN) and
temperature-dependent linear absorption experiments [9]. Whereas
the fluorescence line narrowing experiments provide access to the shape
of the spectral density, the overall Huang-Rhys factor, i.e. the integral
over the spectral density, cf. Eq. (2.114), needs to be evaluated via
absorption measurements [9]. The FLN experiments were performed at
a temperature of 4 Kelvin and the excitation was tuned such that only
the pigment with the lowest energy has been excited. Therefore, the
measured spectral density represents the monomeric spectral density of
a BChl a molecule in the FMO complex, i.e. the couplings between the
molecules are neglected. Further, the measurements do not account for
the heterogeneity of the environment, i.e. it is assumed that all BChl a
molecules within the complex have the same spectral density. However,
recent calculations [23] show that there are differences between the
spectral densities of the individual monomers. Note again that in
contrast to Eq. (2.114), the experimentally obtained spectral density
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Figure 3.13.: (a) Spectral density of a BChl a molecule in the FMO
complex (black dotted line: experimental data [9], red solid line: fit to
MBO spectral density, blue dashed line: fit components). (b) Ampli-
tudes of the exciton states at the different monomer sites, cf. Fig. 3.7.

is usually defined such that the overall coupling strength is given by
S = /de(w), (3.21)
0

that is both definitions differ by a prefactor of mw?. Thus, to extract
the parameters for quantum dynamics simulations, e.g., via a fit of the
experimental data, one needs to adjust either the experimental data or
the applied fit functions. For example the fit function corresponding
to the MBO spectral density, cf. Eq. (2.117), is given by

Se.m ww ,m’? ,m
Jw) =% é; e sm € : (3.22)
mog
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Table 3.4.: Components of the extracted MBO spectral density for a
BChl a molecule in the FMO complex.

component £ | S¢ | we [em™1] | e [em™]

0.252 37.6 60.5
2 0.018 73.5 15.7
3 0.009 118.5 15.4
4 0.004 159.6 34.9
5 0.007 173.2 12.9
6 0.009 185.9 14.1
7 0.009 195.3 12.1
8 0.006 238.3 12.0
9 0.002 261.8 10.4
10 0.005 285.2 11.7

The measured spectral density of the BChl a molecules in the FMO
complex, Fig. 3.13 panel a, was parametrized via a fit to a ten mode
MBO spectral density. Note that the measured spectral density is
normalized such that its integral corresponds to the Huang-Rhys
factor of 0.45 [9]. Further, it is assumed that the spectral density
is the same for all BChl a molecules in the complex and thus the
monomer index m can be skipped. The obtained fit parameters are
listed in Tab. 3.4. Note that the fit of the measured spectral density
is quite accurate except for the frequency range below 50 cm™! where
the double-peak structure of the experimental data is approximated
by a single MBO component. However, this approximation should be
sufficient as the energy gaps between the adiabatic states, Fig. 3.13
panel b, which can be associated with the first main energy pathway,
i.e. state six, three and one, are larger than 100 cm™!.

To investigate the dynamics of the system corresponding to the first
main energy pathway, namely from site one via site two to site three,
the initial condition was chosen such that the first diabatic state is
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diabatic population

adiabatic population

Figure 3.14.: Diabatic and adiabatic population dynamics of the FMO
complex after an initial population of the first diabatic state.

populated. This corresponds to an initial population of the sixth
and third adiabatic state, cf. Fig. 3.13 panel b. Note that the results
are not converged for the given hierarchy setup (N = 3, K = 140)
but a larger hierarchy cannot be treated with the current version
of the Rostock HEOM package. Again, the error was estimated via
comparison with a calculation with a lower convergence level. It is
approximately twenty percent.

The dynamics of the diabatic population, Fig. 3.14, shows a pro-
nounced oscillation between populations of the first and second dia-
batic state, whereas the population of the third diabatic state, as well
as those of the states four to seven, shows an almost linear behaviour.
This is in agreement to the population dynamics reported in the litera-
ture [89, 90]. The frequency of the oscillation, which is approximately
250 cm™!, does not fit to the energy gap between the corresponding
adiabatic states six and three, cf. Fig. 3.13 panel b, which is 210 cm ™.
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This indicates, in combination with the oscillations of the adiabatic
population of states six and three, Fig. 3.14, that the oscillation is
of vibronic origin, cf. Sec. 3.1. The small population of the diabatic
states four to seven and the corresponding adiabatic states two, four,
five and seven point towards the possibility to model the dynamics of
the FMO complex by a reduced three-site model, which would reduce
the numerical effort by far. A comparison of the full FMO model with
such a reduced model, including the first, second and third site, is
given in Ref. [41]. Note that the reduced model ansatz is valuable
to study individual transfer pathways, but might by insufficient to
study the dynamics after an optical excitation. The latter would lead
to an initial excitation of various monomers and thus also pathways,
which are not covered by a reduced model, might be important. As it
was mentioned in Sec. 3.1, the connection of the oscillations in the
population dynamics to the oscillations observed in 2D-spectroscopy
experiments [16] is non-trivial and needs to be revealed by further
investigations.



4. Summary

Since the observation of long lasting oscillations in the 2D-spectra
of the FMO complex in 2007 [16], the influence of coherence on the
exciton dynamics in natural photosynthetic antennae, which was
long considered to be of hopping-like nature sufficiently described
by rate equations, is of peculiar interest in the context of artificial
photosynthesis. In order to study the dynamics, sophisticated meth-
ods, which are able to describe the dissipative quantum dynamics
of molecular aggregates embedded in a protein environment rather
accurately, are required. The HEOM formalism, outlined in Sec. 2.2.2
and implemented, e.g., in the Rostock HEOM package, provides such
a powerful tool. Here, the influence of the environment is mimicked
via an in principle infinite hierarchy of auxiliary density matrices.
This leads to a considerable numerical effort even for small systems,
which restricts the applicability of the HEOM method. However,
recent improvements, concerning the method itself as well as the
computational algorithms, facilitate the treatment of the dynamics of
light-harvesting complexes.

In the present master thesis, the exciton dynamics of a dimer system,
a model aggregate resembling light-harvesting antennae and the FMO
complex were investigated using the HEOM method. The population
dynamics, as well as the linear and 2D-spectra, of the dimer shows a
strong dependence on the system and bath properties. In particular,
the value of the spectral density at the transition energies of the system
is crucial for the relaxation dynamics, as it reflects the coupling of
the corresponding transition to bath. The oscillatory features, which
appear in the population dynamics, can be interpreted using the
adiabatic vibronic level structure of the dimer. Unfortunately, this
structure is not available for larger aggregates. However, the origin
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of the oscillatory features can be determined by a comparison of the
adiabatic and diabatic electronic populations. Oscillations, which stem
from a superposition of vibronic levels, are present in both, whereas
ones of electronic origin are only present in the latter. The connection
of the oscillations in the populations to the ones in 2D-spectra needs
to be investigated in more detail in the future.

Similar to the dimer system, the dynamics of the model aggregate
is determined by the interplay of the system and the bath. Especially
the weight of the transfer pathways within the aggregate depends
crucially on the shape of the spectral density. The dynamics of the
FMO complex, which was calculated using experimental data for the
spectral density, indicates that coherences might play an important
role in some of the transfer steps. In particular, the transfer step
from the first to the second site seems to be governed by a coherence,
which can be assigned by a comparison of the diabatic and adiabatic
populations to be of vibronic origin.



A. The Rostock HEOM package

This appendix describes the Rostock HEOM package which was
developed during the present master thesis. The package is available
upon request. First, an overview of the package itself and some
features of the implementation will be given. Second, the installation
and the usage of the main program and some analysis tools will be
described. Finally, the appendix contains the input documentation of
the package.

A.1. Overview

The Rostock HEOM package is written in FORTRAN 90/95 and the
subroutines are organized in several modules, Tab. A.1, corresponding
to their function. In general the program execution consists of four
parts, Fig. A.1. First, the input file is read by the program. Second,
the system and bath parameters are processed, i.e. all operators are
transformed to the eigenbasis of the Hamiltonian, the correlation
function is calculated for the given spectral density, and the hierarchy
is constructed. Third, the propagation corresponding to the defined
task, i.e. the calculation of the population dynamics, the linear or
2D-spectra, is performed in the excitonic eigenbasis. Finally, the
calculated values and a summary are printed to the output files. Note
that some values are continuously printed, i.e. the population of the
states or the autocorrelation function. The modules are designed to be
independent of each other, i.e. the data is in general passed via global
variables. Exceptions from this concept are made for the propagation
routines.

The bath correlation function needs to be parametrized to fulfill the
requirements of the HEOM formalism, cf. Sec. 2.2.2. So far the pack-
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Figure A.l.: General structure of the current implementation. The
italic numbers refer to the main modules, which are involved in the
current step, cf. Tab. A.1.

age is able to process the MBO, Debye and Ohmic spectral density,
cf. Eq. (2.117), Eq. (2.110) and Eq. (2.109). Whereas the correspond-
ing correlation functions for the MBO and the Debye model are given
by Eq. (2.119) and Eq. (2.111), respectively, the one corresponding
to the Ohmic spectral density needs to be evaluated, e.g., via the
Meier-Tannor parametrization scheme, cf. Eq. (2.126). Note that the



A.1. Overview 87

Table A.1.: List of modules (as of 2014-06-30).

module No. | description

types_and_ constants.fo0 | 1 Data type definition, conversion
factors and physical constants.

profiling.f90 2 Routines for a basic run time
profiling of the code.

speed.f90 3 Routines to log the time needed
for the individual propagation
steps.

fft.f90 4 Interface to the FFTW3 library
routines.

global _variables.f90 5 Declaration of global variables.

read_ input_ sections.f90 | 6 Routines to process the input
file.

eigensystem.f90 7 Routines to calculate the eigen-
system of the Hamiltonian via
LAPACK routines and to trans-
form all matrices and operators
to the eigenbasis of the Hamil-
tonian.

poles of the Bose-Einstein distribution function, cf. Eq. (2.106), are
treated via the Matsubara scheme. All correlation functions obey the
required general form

K
C(t) = Z cpe 4+ 5C. (A1)
k=1

An explicit treatment of many expansion terms results in a huge
hierarchy which is not desirable at all. Therefore, only a small number
of expansion terms, which needs to be specified in the input, will be
treated explicitly. However, the residual part of the correlation func-
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Table A.2.: Continued list of modules (as of 2014-06-30).

module

No.

description

correlation  function.f90

8

Routines to calculate the cor-
relation function expansion
into a sum of exponentials for
the MBO Debye and Ohmic
spectral density.

build_ hierarchy.f90

Routines to build the required
hierarchy, i.e. label the ADM,
build the references tables
and initialize the matrices.

rhs heom.f90

10

Routine which evaluates the
right-hand side of the HEOM.

ontheflyfiltering.f90

11

Routines for a numerical fil-
tering of the hierarchy to re-
duce the computational ef-
fort.

spectra.fo0

12

Routines to calculate the lin-
ear and nonlinear spectra.

summary.f90

13

Routines to create the log file.

propagation_ algorithms.f90

14

Propagation routines.

population_ dynamic.f90

15

Execution routines to calcu-
late the population dynamics.

linear_ signal.f90

16

Execution routines to calcu-
late the linear spectrum.

nonlinear_ signal.f90

17

Execution routines to calcu-
late the nonlinear spectrum.

tion can be approximated following the method outlined in Ref. [36],

ie.

K
0C = Z cpe K4 507,

k=K+1

(A.2)
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employing all terms up to a specific number K. This approximation
yields for the coefficient A, cf. Eq. (2.82),

A=Y & (A.3)

k=41 T

Note that the coefficient A is determined for each correlation function
C¢(t), if there exist multiple environments connected to the same
system.

The process of labeling the ADM (RDM) is divided into two parts.
First, the algorithm follows the K-dimensional quasi-tree structure
corresponding to the hierarchy in pre-order setup (root-left-right
labeling). The quasi-tree will be set up recursively and direct knot -
leaf references will be created immediately. However, following the
algorithm there will be some references, which are not created directly.
These references will be added in a second step, which is the actual
bottleneck of this algorithm. The labeling scheme is sketched in
Fig. A.2.

The propagation algorithms, i.e. the Runge-Kutta 4 and the Runge-
Kutta-Fehlberg 4/5 algorithm, require multiple copies of the ADM
array to perform one propagation step. Therefore, beside the larger
amount of time needed to propagate a larger hierarchy, the available
memory limits the hierarchy size that can be treated with the current
version of the package. The propagation routines are parallelized
using two different schemes. There exists a shared parallelization via
OpenMP, which is suited, e.g., for machines with rather low memory,
and a parallel memory parallelization via MPI. The parallelization type
can be chosen in the "make" file during the installation of the package,
cf. App. A.2. As the calculation of 2D-spectra via the response
function formalism requires a large number of propagations there
exists also a parallel memory parallelization for the corresponding
routine.

The hierarchy is automatically numerically filtered by a on-the-
fly truncation algorithm, if the keyword FILTERING is given in
the input. In the present implementation, all ADM which have no
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Figure A.2.: Scheme of ADM labeling system for A/ = 2 and K = 2.
The labels of the ADM (red numbers) as well as the direct references
(black lines) are created via running trough the quasi-tree corresponding
to the hierarchy in pre-order setup. The indirect references which do
not appear in the quasi-tree (red lines) are created by an additional
routine.

element which is bigger than 10~® are deleted from the hierarchy and
the corresponding references are eliminated. The truncation routine
is executed after every hundredth integration step.

A.2. Installation and usage of the programs

Please note that it is necessary to edit the compiler and library setup
in the "make" file to adjust the program to the local environment.
Note that some of the required libraries, that are FFTW3, LAPACK,
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and BLAS, might be included in more sophisticated libraries like the
Intel Math Kernel Library (MKL).

The program makes use of both parallel and shared memory paral-
lelization. Shared memory parallelization via OpenMP is used for the
integrator routines and will be enabled by a compiler flag (e.g. -openmp
for ifort). Parallel memory parallelization might either be used for
parallelization of the integrator routines (compiler flag -Dmpi_ int) or
the 2D-spectra calculation (-Dmpi_2D). Note that mpi parallelization
will be in general controlled by a pre-compiler (e.g. -fpp for the ifort
compiler). To compile the programs it is recommended to execute the
installation script install.sh. This script will create the executables.
It is possible to add the executables to your shell environment via
passing the location and name of your shell configuration file to the
script, e.g.

./install.sh  /.bashrc

The main HEOM program needs to be called with an input file as
argument.

HEOM inputfile
or
mpirun -np N_proc HEOM inputfile

For a detailed description of the requirements of the input file see
App. A.3.

Two analysis programs are provided to calculate linear and non-
linear spectra, respectively. They need to be called with several
arguments which are listed below.

linspecHEOM inputfile outputfile numberofsteps stepwidth
leftoutputborder rightoutputborder unitsystem abs/emi

2DspecHEOM inputfile outputfile zsteps ysteps wstepwidth ystepwidth
zdirection ydirection leftoutputborder rightoutputborder unitsystem
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As unit systems so far eV, ecm~! and nm are implemented. abs/emi
refers to absorption and emission for the linear spectrum (note that
the latter is not implemented so far), x — /y — direction indicates the
directions of the underlying Fourier transform. The step width needs
to be given in fs. Note that there exist two utility scripts 2Dspec.sh
and joindat.sh which facilitate the calculation of the 2D-spectra.

A.3. Input documentation

A.3.1. Run section

The run section contains all general information needed for the prop-
agation, like the dimensionality of the reduced density matrix and
all operators, the integration scheme and so on, as well as keywords
to enable features like the on-the-fly filtering of the hierarchy. It is
specified by

run-section
keywords (each in a single line) #comments
end-hierarchy-section

The keywords are listed below.

Table A.3.: List of run-section keywords (as of 2014-06-30)

keyword description

NSTATE =N required; specifies the dimensionality of the
reduced density matrices and the operators,
the value N needs to be a positive integer
number

NSTEP =N required; specifies the number of output steps
(which may differ from the number of inte-
grator steps), the value N needs to be a
positive integer number; NOT required for
2D-spectra calculations
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Table A.4.: Continued list of run-section keywords (as of 2014-06-30)

keyword description

TOUT =R required; specifies the output time
step in fs, the value R needs to
be a positive real valued number
and an integer multiple of tint;
NOT required for 2D-spectra cal-
culations

DEBUG optional; if this keyword is given,
the list of references and the RDM
labels will be written to separate
log files

THREADS = N optional; specifies the number of
threads used for parallelization of
the integration scheme, the value
N needs to be a positive integer
number; note that to avoid over-
load the number of threads will be
adjusted by the program, never-
theless the value of N is the maxi-
mum number of possible threads
used by the program

TEMPERATURE = R required; specifies the temperature
in K of the system, the value R
needs to be a positive real valued
number

TRUNCORDER =N required; specifies the depth of the
hierarchy, the value N needs to be
a positive integer number

DELTAAPPROX optional; enables the approxima-
tion of the residual part of the
bath correlation function by a 6-
function, cf. Eq. (2.82)
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Table A.5.: Continued list of run-section keywords (as of 2014-06-30)

keyword description

FILTERING optional, not available for 2D-
spectra calculations; enables
the on the fly numerical filter-
ing algorithm which deletes
all reduced density matrices
which contains only elements
that are smaller than 1078
from the hierarchy (compare
[35, 36]); the adjustment rou-
tine is called after each 100
integrator steps
ADIABATICINITIALRDM optional; declares that the
systems reduced density ma-
trix given in the initial RDM
section is already represented
in the adiabatic basis
INTEGRATOR = C; R1; R2 required,required,optional;
specifies the integrator used
to solve the HEOMs; the
first argument denotes the
integration scheme, the
second one the initial inte-
gration step size and the last
one the error tolerance for
adaptive schemes, Runge-
Kutta 4 (C' = RK4) and the
Runge-Kutta-Fehlberg 4/5
(C = RKF4) schemes are

implemented
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Table A.6.: Continued list of run-section keywords (as of 2014-06-30)

keyword description
SPECTRARANGE = R1; R2;C | optional; specifies the range
and unit system for spec-
tra output; R1 denotes the
left plot border, R2 the
right plot border and C
(cm-1, nm, V') the unit sys-
tem, default are 0;50000;cm-1
ADIABATICCOUPLING optional; declares that the
system-bath interaction oper-
ators given in the interaction
section are represented in the
adiabatic basis, which means
that the bath couples to the
adiabatic states directly

A.3.2. Task section

The tasks section contains the information which tasks shall be per-
formed by the program. It is specified as follows.

task-section
keywords (each in a single line)
end-tasks-section

The keywords are listed below.

Table A.7.: List of task-section keywords (as of 2014-06-30)

keyword description
population outputs the population of the diabatic and
adiabatic states to the file pop.dat
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Table A.8.: Continued list of task-section keywords (as of 2014-06-30)

keyword

description

autocorrelation

outputs the autocorrelation function to the
file auto.dat; note that a dipole operator is
required to perform this task

absorptionspectrum

sets autocorrelation and calculates the
linear absorption spectrum with the
linspecH EFOM algorithm; output will be
written to spec.dat; note that a dipole op-
erator and a specified plot-section are re-
quired

emissionspectrum

sets autocorrelation and calculates
the linear emission spectrum with the
linspecH EFOM algorithm; output will be
written to spec.dat; note that a dipole
operator and a specified plot-section are
required

2Dspectrum

calculates third order response functions
(see Ishizaki and Tanimura, J. Chem. Phys.
125, 084501 (2006)) which are required to
calculate the 2D-spectrum, a dipole opera-
tor as well as the 2D section are required.

2D spectrumdetazil

calculates the individual components of the
third order response functions (see Chen
et al. J. Chem. Phys. 132, 024505 (2010),
eq. 15) which are required to calculate the
2D-spectrum, a dipole operator as well as
the 2D section are required.

A.3.3. Parameter section

The parameter section contains all parameter definitions which might
be used in the Hamiltonian, dipole, interaction, bath and initial-RDM
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section. Each parameter should be written in a single line. The section
is specified as follows.

parameter-section
identifier=value:unit #comments
end-parameter-section

The identifiers must not be longer than 16 characters. So far as units
electron volts (eV) and wave numbers (cm™!) are supported. Note
that all values without a unit (skip the colon) will be handled as they
were in atomic units.

A.3.4. Hamiltonian section

The Hamiltonian section defines the system Hamiltonian in diabatic
representation. Each element of the Hamiltonian should be written in
a single line. The section is specified as follows.

hamiltonian-section
identifier [space] i [space] j [space| value/parameter
end-hamiltonian-section

There are two possible identifiers. S denotes symmetric matrix ele-
ments, that means M;; = Mj; = wvalue, and A denotes just the
matrix elements M;;. The value can be specified either directly or
via a parameter identifier specified in the parameter section. All lines
which do not start with one of the identifiers will be ignored and can
be seen as comments. Note that all matrix elements which are not
specified will be zero.

A.3.5. Dipole section

The dipole section defines the dipole operator in diabatic represen-
tation. Each element of the dipole operator should be written in a
single line. The section is specified as follows.
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dipole-section
identifier [space]| i [space] j [space] value/parameter
end-dipole-section

There are two possible identifiers. S denotes again symmetric matrix
elements of the type M;; = M;; = value and A denotes just the
matrix elements M;;. The value can be specified either directly or
via a parameter identifier specified in the parameter section. All lines
which do not start with one of the identifiers will be ignored and can
be seen as comments. Note that all matrix elements which are not
specified will be explicitly zero.

A.3.6. Interaction section

The interaction section defines the system-bath interaction operators
Q. Each element of a specific operator should be written in a single
line. The section is specified as follows.

interaction-section

usedens=N

identifier [space] i [space] j [space| value/parameter
end-interaction-section

You can specify an arbitrary number of operators. Note that each
operator will be connected to a spectral density given in the bath
section by the keyword usedens = N. N refers to the number of a
defined spectral densities. It is possible to connect multiple operators
to one spectral density, e.g., couple multiple monomers to the same
kind of bath. There are two possible identifiers for the matrix elements.
S denotes symmetric matrix elements M;; = Mj; = value and A
denotes just the matrix elements M;;. The value can be specified
either directly or via a parameter identifier specified in the parameter
section. All lines which do not start with one of the identifiers will be
ignored and can be seen as comments. Note that all matrix elements
which are not specified will be explicitly zero.
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A.3.7. Bath section

The bath section contains the definitions of the spectral densities.
Each spectral density component should be written in a single line.
The section is specified as follows.

bath-section
identifier [space| parameter list [space] N
end-bath-section

The identifier might either be debye, ohmic or brownian. The specific
parameter lists are explained below, cf. Sec. 2.3 for the definition of
the individual parameters. Note that you can use parameters defined
in the parameter section. N defines the number of frequencies which
will be explicitly handled within the HEOM formalism.

Table A.9.: List of supported spectral densities with parameters (as
of 2014-06-30)

identifier parameter list

debye Nm [space] wem [space] N

ohmic Nm [space] wem, [space] N

brownian 2S¢ m [space] w((;% [space] we ,, [space] N

A.3.8. Initial-RDM section

The initial-RDM section defines the initial top level reduced density
matrix in diabatic representation. Each component of the initial RDM
should be written in a single line. The section is specified as follows.

initial-RDM-section
identifier [space] i [space] j [space| value/parameter
end-initial-RDM-section
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The initial top level RDM is given explicitly (all other RDMs will be set
to zero). There are two possible identifiers for the matrix specification.
S denotes symmetric matrix elements M;; = M;; = value and A
denotes just the matrix elements M;;. The value can be specified
either directly or via a parameter identifier specified in the parameter
section. All lines which do not start with one of the identifiers will be
ignored and can be seen as comments. Note that all matrix elements
which are not specified will be explicitly zero.

A.3.9. 2D section

The 2D section defines the propagation times for the 3rd order response
functions. It is specified as follows.

2D-section

t1=t1_ start;tl_stepwidth;number_of t1_ steps
t2=t2_ start;t2_ stepwidth;number__of t2_ steps
t3=t3__start;t3__stepwidth;number_ of t3_ steps
end-2D-section

The _ start and _ stepwidth values need to be defined in fs. The
number of steps is an integer value.



B. Example inputs

This appendix provides example inputs for the Rostock HEOM pack-
age, cf. App. A, for the calculations presented in Sec. 3.1. Note that
the inputs are written for the current version of the Rostock HEOM
package (as of 2014-06-30), upwards compatibility with future versions
is not granted. The numbers in front of the input keywords denotes
the line numbers of the input file.

M. Schréter, Dissipative Exciton Dynamics in Light-Harvesting Complexes,
BestMasters, DOI 10.1007/978-3-658-09282-5,
© Springer Fachmedien Wiesbaden 2015
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B. Example inputs

B.1. Population dynamics dimer system

1 run-section

2 TEMPERATURE=300.0
3 TRUNCORDER=9

4 NSTATE=2

5 TOUT=1.0

6 NSTEP=4000

7 INTEGRATOR=RKF4;0.05;1.0e-5
8 THREADS=8

9 FILTERING

10 DELTAAPPROX

11 ADIABATICINITIALRDM
12 end-run-section

13

14 task-section

15 population

16 end-task-section

17

18 parameter-section

19 E1=10000.0:cm-1

20 E2=10500.0:cm-1

21 J12=250.0:cm-1

22 eta=0.1 # Note eta=2S
23 gamma=200.0:cm-1

24 omega=>500.0:cm-1

25 end-parameter-section
26

27 hamiltonian-section
28S11E1

29 S22 E2

30S12J12

31 end-hamiltonian-section
32

33 bath-section



B.1. Population dynamics dimer system

103

34 brownian eta gamma omega 2
35 end-bath-section

36

37 interaction-section

38 usedens=1

395111.0

40 usedens=1

41S221.0

42 end-interaction-section
43

44 initialRDM-section
45S5221.0

46 end-initialRDM-section
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B.2. Linear absorption spectrum dimer system

1 run-section

2 TEMPERATURE=300.0
3 TRUNCORDER=9

4 NSTATE=3

5 TOUT=0.25

6 NSTEP=66000

7 INTEGRATOR=RK4;0.05
8 THREADS=8

9 FILTERING

10 DELTAAPPROX

11 SPECTRARANGE=5000.0;15000.0;cm-1
12 end-run-section

13

14 task-section

15 absorptionspectrum

16 end-task-section

17

18 parameter-section

19 E0=0.0:cm-1

20 E1=10000.0:cm-1

21 E2=10500.0:cm-1

22 J12=250.0:cm-1

23 eta=0.1

24 gamma=200.0:cm-1

25 omega=>500.0:cm-1

26 end-parameter-section
27

28 hamiltonian-section
20S22E1

30 S 33 E2

31S523J12

32 end-hamiltonian-section

33



B.2. Linear absorption spectrum dimer system

105

34 bath-section

35 brownian eta gamma omega 2
36 end-bath-section

37

38 interaction-section

39 usedens=1

40S221.0

41 usedens=1

42S5331.0

43 end-interaction-section
44

45 dipole-section
46S121.0

47S131.0

48 end-dipole-section

49

50 initialRDM-section
51S111.0

52 end-initial RDM-section
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B. Example inputs

B.3. 2D-spectrum dimer system

1 run-section

2 TEMPERATURE=300.0
3 TRUNCORDER=5

4 NSTATE=3

5 INTEGRATOR=RK4;0.05
6 THREADS=1

7 DELTAAPPROX

8 FILTERING

9 end-run-section

10

11 parameter-section

12 E0=0.0:cm-1

13 E1=10000.0:cm-1

14 E2=10500.0:cm-1

15 J12=250.0:cm-1

16 eta=0.1

17 gamma=200.0:cm-1
18 omega=500.0:cm-1

19 end-parameter-section
20

21 task-section

22 2Dspectrum

23 end-task-section

24

25 bath-section

26 brownian eta gamma omega 2
27 end-bath-section

28

29 interaction-section

30 usedens=1
315221.0

32 usedens=1

335331.0
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34 end-interaction-section
35

36 hamiltonian-section
37S5S11E0

38S22E1

39S 33 E2

40 S 2 3 J12

41 end-hamiltonian-section
42

43 dipole-section
44S121.0

45S131.0

46 end-dipole-section

47

48 initialRDM-section
49S111.0

50 end-initialRDM-section
51

52 2D-section

53 t1=0.0;0.5;1024

54 t2=0.0;25.0;41

55 t3=0.0;0.5;1024

56 end-2D-section



C. Electronic vs. vibronic basis

This appendix focusses on the connection of the electronic and vibronic
basis in the adiabatic and diabatic representation for a dimer system.
The one-exciton Hamiltonian of a dimer system in the electronic
diabatic representation is given by, cf. Eq. (2.6),

e = [ Fa Nz} (C.1)
Jo1 Ee,

with Jio = Jo1 = J. Diagonalization of this Hamiltonian yields the
adiabatic electronic Hamiltonian

B = ( By 0 ) (C.2)
0 By

where the adiabatic energies E; and Ej are given by Eq. (2.23). The
relation between the adiabatic and diabatic electronic Hamiltonian
can mathematically expressed as
1,el —1 1,el
Hzgdil;) = Sel Ijl(giae )Sel- (CS)
Here the transformation matrix S, is given by the eigenvectors of

the diabatic Hamiltonian. Their elements can be identified as the
expansion coefficients c&azn in Eq. (2.22).
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The diabatic vibronic Hamiltonian including the zeroth and first
vibrational level at each site, cf. Sec. 3.1, is given by
Eeoo JE| 0 0 JEQJIFSY 0 JFi
JE) EeyoolJF3d JFSE 0 0 JF 0
0 JEP|Eei0 0 JEYJFR 0 JFY
Héila’“b) _ 0 JEY| 0 B JERLJEY 0 JFH e
JER 0 |JFJFY} Eeyio 0 JE 0
JEY 0 |[JFRJF) 0 EonJE){ 0
0 JFYX 0 0 JFRJFYE. 11 JFY
JF;100 0 JFRJFY 0 0 JFY Een

where E,,,,, denotes the energy corresponding to the diabatic aggregate
state a with the vibrational excitation p/v in the first /second monomer

and J the Coulomb coupling matrix element. F,Tj;:”' represents
the vibrational overlap (the Franck-Condon factors) between the
vibrational configurations of the different aggregate states [79, 80].
The overall coupling elements are given by

1,vib
(Manppiavs) H(gia ib) |mamy vy ) =J (manp, many) (pal e ) (vslvh)
—JFla,. (C.5)

Note that the Franck-Condon overlap integral, which is given for a
single vibrational mode by

/ i Hg e (_1)NmM+N
</,Lg‘,u€> = ¢ Z Z M'N'

M=0 N=0
fig'pe!
T (©6)

depends on the Huang-Rhys factor S. Similar to the diabatic electronic
Hamiltonian, the diabatic vibronic Hamiltonian can be diagonalized
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introducing the transformation matrix Sy, yielding the adiabatic
vibronic Hamiltonian, i.e.
(1vib) _ =1 y(1,vib)

Hyg” = SepHaia ™ Svin- (C.7)
However, for small Huang-Rhys factors (S < 0.05), i.e. the Franck-
Condon overlaps of the the type F, ﬁflf /F, ,ﬁfyyf are close to unity and
all other close to zero, the upper left part of the adiabatic vibronic
Hamiltonian can be approximated by the corresponding adiabatic
electronic one. For larger Huang-Rhys factors (S > 0.05) the mixing
with the vibrationally excited vibronic states becomes important.



Bibliography

[1] R. E. Blankenship, Molecular mechanisms of photosynthesis
(Wiley-Blackwell: Oxford, 2011).

[2] T. Forster, “Zwischenmolekulare Energiewanderung und Fluo-
reszenz”, Ann. Phys. 437, 55 (1948).

[3] G.McDermott et al., “Crystal structure of an integral membrane
light-harvesting complex from photosynthetic bacteria”, Nature
374, 517 (1995).

[4] M. Chachisvilis et al., “Excitons in photosynthetic purple bacte-
ria: Wavelike motion or incoherent hopping?”, J. Phys. Chem.
B 101, 7275 (1997).

[5] B. P. Krueger et al., “Calculation of couplings and energy-
transfer pathways between the pigments of LH2 by the ab initio
transition density cube method”, J. Phys. Chem. B 102, 5378
(1998).

[6] V. Sundstrom et al., “Photosynthetic light-harvesting: Recon-
ciling dynamics and structure of purple bacterial LH2 reveals
function of photosynthetic unit”, J. Phys. Chem. B 103, 2327
(1999).

[7] G. D. Scholes and G. R. Fleming, “On the mechanism of light
harvesting in photosynthetic purple bacteria: BSO0O to B850
energy transfer”, J. Phys. Chem. B 104, 1854 (2000).

[8] J. L. Herek et al., “B800->B850 energy transfer mechanism
in bacterial LH2 complexes investigated by B800 pigment ex-
change”, Biophys. J. 78, 2590 (2000).

M. Schréter, Dissipative Exciton Dynamics in Light-Harvesting Complexes,
BestMasters, DOI 10.1007/978-3-658-09282-5,
© Springer Fachmedien Wiesbaden 2015



114

Bibliography

[11]

[12]

M. Wendling et al., “Electron vibrational coupling in the Fenna
Matthews Olson complex of Prosthecochloris aestuarii deter-
mined by temperature dependent absorption and fluorescence
line-narrowing measurements”, J. Phys. Chem. B 104, 5825
(2000).

M Dahlbom et al., “Collective excitation dynamics and polaron
formation in molecular aggregates”, Chem. Phys. Lett. 364, 556
(2002).

O. Kiihn et al., “Fluorescence depolarization dynamics in the
B850 complex of purple bacteria”, Chem. Phys. 275, 15 (2002).

M. Wendling et al., “The quantitative relationship between
structure and polarized spectroscopy in the FMO complex of
Prosthecochloris aestuarii: Refining experiments and simula-
tions”, Photosynth. Res. 71, 99 (2002).

T. Renger and R. A. Marcus, “On the relation of protein dynam-
ics and exciton relaxation in pigment—protein complexes: An
estimation of the spectral density and a theory for the calculation
of optical spectra”, J. Chem. Phys. 116, 9997 (2002).

D. Rutkauskas et al., “Fluorescence spectral fluctuations of
single LH2 complexes from Rhodopseudomonas acidophila strain
100507, Biochemistry 43, 4431 (2004).

V. Novoderezhkin et al., “Dynamics of the emission spectrum
of a single LH2 complex: Interplay of slow and fast nuclear
motions”, Biophys. J. 90, 2890 (2006).

G. S. Engel et al., “Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems”, Nature 446, 782
(2007).

D. Egorova, “Detection of electronic and vibrational coherences
in molecular systems by 2D electronic photon echo spectroscopy”,
Chem. Phys. 347, 166 (2008).



Bibliography 115

[18]

[21]

[22]

[23]

[24]

F. Milota et al., “Two-dimensional electronic photon echoes of
a double band J-aggregate: Quantum oscillatory motion versus
exciton relaxation”, Chem. Phys. 357, 45 (2009).

A. Nemeth et al., “Double-quantum two-dimensional electronic
spectroscopy of a three-level system: Experiments and simula-
tions”, J. Chem. Phys. 133, 094505 (2010).

V. Butkus et al., “Molecular vibrations-induced quantum beats
in two-dimensional electronic spectroscopy”, J. Chem. Phys.
137, 044513 (2012).

N. Christensson et al., “Origin of long-lived coherences in light-
harvesting complexes”, J. Phys. Chem. B 116, 7449 (2012).

S. Polyutov et al., “Exciton-vibrational coupling in molecular
aggregates: Electronic versus vibronic dimer”, Chem. Phys. 394,
21 (2012).

T. Renger et al., “Normal mode analysis of the spectral density
of the Fenna-Matthews-Olson light-harvesting protein: How the
protein dissipates the excess energy of excitons”, J. Phys. Chem.
B 116, 14565 (2012).

V. Tiwari et al., “Electronic resonance with anticorrelated pig-
ment vibrations drives photosynthetic energy transfer outside
the adiabatic framework”, Proc. Natl. Acad. Sci. USA 110, 1203
(2013).

L. Valkunas et al., “Vibrational vs. electronic coherences in 2D
spectrum of molecular systems”, Chem. Phys. Lett. 545, 40
(2012).

V. Butkus et al., “Distinctive character of electronic and vibra-
tional coherences in disordered molecular aggregates”, Chem.
Phys. Lett. 587, 93 (2013).

A. Chenu et al., “Enhancement of vibronic and ground-state vi-
brational coherences in 2D spectra of photosynthetic complexes”,
Sci. Rep. 3, 2029 (2013).



116

Bibliography

[28]

A. W. Chin et al., “The role of non-equilibrium vibrational struc-
tures in electronic coherence and recoherence in pigment—protein
complexes”, Nat. Phys. 9, 113 (2013).

R. Hildner et al., “Quantum coherent energy transfer over vary-
ing pathways in single light-harvesting complexes”, Science 340,
1448 (2013).

P. Nalbach et al., “Vibronic speed-up of the excitation en-
ergy transfer in the Fenna-Matthews-Olson complex”, http://
arxiv.org/abs/1311.6363 (2013).

V. May and O. Kiithn, Charge and energy transfer dynamics in
molecular systems, 3rd edition (Wiley-VCH: Weinheim, 2011).

N. Makri, “The linear response approximation and its lowest
order corrections: an influence functional approach”, J. Phys.
Chem. B 103, 2823 (1999).

P. Nalbach et al., “Iterative path-integral algorithm versus cu-
mulant time-nonlocal master equation approach for dissipa-
tive biomolecular exciton transport”, New J. Phys. 13, 063040
(2011).

Y. Tanimura and R. Kubo, “Time evolution of a quantum system
in contact with a nearly Gaussian-Markoffian noise bath”, J.
Phys. Soc. Japan 58, 101 (1989).

Q. Shi et al., “Efficient hierarchical Liouville space propagator
to quantum dissipative dynamics”, J. Chem. Phys. 130, 084105
(2009).

K.-B. Zhu et al., “Hierarchical dynamics of correlated system-
environment coherence and optical spectroscopy”, J. Phys. Chem.
B 115, 5678 (2011).

J. Strimpfer and K. Schulten, “Open quantum dynamics cal-
culations with the hierarchy equations of motion on parallel
computers”, J. Chem. Theory Comput. 8, 2808 (2012).



Bibliography 117

[38]

[43]

[44]

[45]

M. H. Beck et al., “The multiconfiguration time-dependent
Hartree (MCTDH) method: A highly efficient algorithm for
propagating wavepackets”, Phys. Rep. 324, 1 (2000).

H. Wang and M. Thoss, “Multilayer formulation of the multi-
configuration time-dependent Hartree theory”, J. Chem. Phys.
119, 1289 (2003).

O. Vendrell and H.-D. Meyer, “Multilayer multiconfiguration
time-dependent hartree method: implementation and applica-
tions to a henon-heiles hamiltonian and to pyrazine”, J. Chem.
Phys. 134, 044135 (2011).

J. Schulze, “Highdimensional exciton dynamics in photosynthetic
complexes”, Master Thesis (University of Rostock, 2014).

M. E. Madjet et al., “Intermolecular Coulomb couplings from ab
initio electrostatic potentials: Application to optical transitions
of strongly coupled pigments in photosynthetic antennae and
reaction centers”, J. Phys. Chem. B 110, 17268 (2006).

P.-A. Plotz et al., “A new efficient method for calculation of
Frenkel exciton parameters in molecular aggregates”, J. Chem.
Phys. 140, 174101 (2014).

A. Caldeira and A. Leggett, “Path integral approach to quantum
Brownian motion”, Phys. A 121, 587 (1983).

A. Ishizaki and Y. Tanimura, “Modeling vibrational dephasing
and energy relaxation of intramolecular anharmonic modes for
multidimensional infrared spectroscopies”, J. Chem. Phys. 125,
084501 (2006).

S. Mukamel, Principles of nonlinear spectroscopy (Oxford Uni-
versity Press: New York, 1995).

T. Renger and V May, “Ultrafast exciton motion in photosyn-
thetic antenna systems: The FMO-complex”, J. Phys. Chem. A
102, 4381 (1998).



118

Bibliography

[48]

J. Adolphs and T. Renger, “How proteins trigger excitation
energy transfer in the FMO complex of green sulfur bacteria”,
Biophys. J. 91, 2778 (2006).

A. Ishizaki and G. R. Fleming, “On the adequacy of the Red-
field equation and related approaches to the study of quantum
dynamics in electronic energy transfer”, J. Chem. Phys. 130,
234110 (2009).

Y. Tanimura, “Stochastic Liouville, Langevin, Fokker-Planck,
and Master Equation approaches to quantum dissipative sys-
tems”, J. Phys. Soc. Japan 75, 082001 (2006).

R.-X. Xu et al., “Exact quantum master equation via the calculus
on path integrals”, J. Chem. Phys. 122, 41103 (2005).

R.-X. Xuand Y. Yan, “Dynamics of quantum dissipation systems
interacting with bosonic canonical bath: Hierarchical equations
of motion approach”, Phys. Rev. E. 75, 031107 (2007).

J. Shao, “Decoupling quantum dissipation interaction via sto-
chastic fields”, J. Chem. Phys. 120, 5053 (2004).

Y.-a. Yan et al., “Hierarchical approach based on stochastic
decoupling to dissipative systems”, Chem. Phys. Lett. 395, 216
(2004).

R. Feynman and F. Vernon, “The theory of a general quantum
system interacting with a linear dissipative system”, Ann. Phys.
24, 118 (1963).

Y. Tanimura and A. Ishizaki, “Quantum dynamics of system
strongly coupled to low-temperature colored noise bath: Reduced
hierarchy equations approach”, J. Phys. Soc. Japan 74, 3131
(2005).

Y. Jing et al., “Equilibrium excited state and emission spectra of
molecular aggregates from the hierarchical equations of motion
approach”, J. Chem. Phys. 138, 045101 (2013).



Bibliography 119

[58]

[59]

C. Kreisbeck et al., “High-performance solution of hierarchi-
cal equations of motion for studying energy transfer in light-
harvesting complexes”, J. Chem. Theory Comput. 7, 2166 (2011).

C. Olbrich et al., “Theory and simulation of the environmental
effects on FMO electronic transitions”, J. Phys. Chem. Lett.
2011, 1771 (2011).

U. Weiss, Quantum dissipative systems, Vol. 13, Series in Mod-
ern Condensed Matter Physics (World Scientific Publishing:
Singapore, 2008).

C. Meier and D. J. Tannor, “Non-Markovian evolution of the

density operator in the presence of strong laser fields”, J. Chem.
Phys. 111, 3365 (1999).

B. Hein et al., “Modelling of oscillations in two-dimensional
echo-spectra of the Fenna—Matthews—Olson complex”, New J.
Phys. 14, 023018 (2012).

R. Berera et al., “Ultrafast transient absorption spectroscopy:
Principles and application to photosynthetic systems”, Photo-
synth. Res. 101, 105 (2009).

D. M. Jonas, “Two-dimensional femtosecond spectroscopy”,
Annu. Rev. Phys. Chem. 54, 425 (2003).

M. Cho, “Coherent two-dimensional optical spectroscopy”, Chem.
Rev. 108, 1331 (2008).

T. Brixner et al., “Two-dimensional spectroscopy of electronic
couplings in photosynthesis”, Nature 434, 625 (2005).

J. Dostdl et al., “Two-dimensional electronic spectroscopy reveals
ultrafast energy diffusion in chlorosomes”; J. Am. Chem. Soc.
134, 11611 (2012).

P. Hamm and M. Zanni, Concepts and methods of 2D infrared
spectroscopy (Cambridge University Press: Cambridge, 2011).

M. Khalil et al., “Obtaining absorptive line shapes in two-
dimensional infrared vibrational correlation spectra”, Phys. Rev.
Lett. 90, 047401 (2003).



120

Bibliography

[70]

[71]

[72]

73]

[75]

[76]

A. Ishizaki and Y. Tanimura, “Dynamics of a multimode sys-
tem coupled to multiple heat baths probed by two-dimensional
infrared spectroscopy”, J. Phys. Chem. A 111, 9269 (2007).

L. Chen et al., “Two-dimensional electronic spectra from the
hierarchical equations of motion method: Application to model
dimers”, J. Chem. Phys. 132, 024505 (2010).

A. Halpin et al., “Two-dimensional spectroscopy of a molec-
ular dimer unveils the effects of vibronic coupling on exciton
coherences”, Nat. Chem. 99, 1 (2014).

J. Yuen-Zhou et al., “A witness for coherent electronic vs
vibronic-only oscillations in ultrafast spectroscopy”, J. Chem.
Phys. 136, 234501 (2012).

L. Chen et al., “Optical line shapes of molecular aggregates:
Hierarchical equations of motion method”, J. Chem. Phys. 131,
094502 (2009).

C. C. Jumper et al., “Intramolecular radiationless transitions
dominate exciton relaxation dynamics”, Chem. Phys. Lett. 599,
23 (2014).

M. Schréter and O. Kiithn, “Interplay between nonadiabatic
dynamics and Frenkel exciton transfer in molecular aggregates:
Formulation and application to a perylene bismide model”, J.
Phys. Chem. A 117, 7580 (2013).

J. Schulze et al., “Exciton coupling induces vibronic hyper-
chromism in light-harvest- ing complexes”, New J. Phys. 16,
045010 (2014).

E. Basinskaite et al., “Vibronic models for nonlinear spectroscopy
simulations”, Photosynth. Res. 121, 95 (2014).

M. R. Philpott, “Some modern aspects of exciton theory”, Adv.
Chem. Phys. 23, 227 (1973).

F. C. Spano, “Absorption and emission in oligo-phenylene viny-
lene nanoaggregates: The role of disorder and structural defects”,
J. Chem. Phys. 116, 5877 (2002).



Bibliography 121

[81]

[82]

H. Marciniak et al., “One-dimensional exciton diffusion in pery-
lene bisimide aggregates”, J. Phys. Chem. A 115, 648 (2011).

D Ambrosek et al., “Quantum chemical parametrization and
spectroscopic characterization of the Frenkel exciton Hamilto-
nian for a J-aggregate forming perylene bisimide dye”, J. Phys.
Chem. A 116, 11451 (2012).

F. Fennel et al., “Biphasic self-assembly pathways and size-
dependent photophysical properties of perylene bisimide dye
aggregates”, J. Am. Chem. Soc. 135, 18722 (2013).

M. T. W. Milder et al., “Revisiting the optical properties of the
FMO protein”, Photosynth. Res. 104, 257 (2010).

D. E. Tronrud et al., “The structural basis for the difference in
absorbance spectra for the FMO antenna protein from various
green sulfur bacteria”, Photosynth. Res. 100, 79 (2009).

H. M. Berman et al., “The Protein Data Bank”, Nucleic Acids
Res. 28, 235 (2000).

W. Humphrey et al., “VMD — Visual Molecular Dynamics”,
Journal of Molecular Graphics 14, 33 (1996).

M. Schmidt am Busch et al., “The eighth bacteriochlorophyll
completes the excitation energy funnel in the FMO protein”, J.
Phys. Chem. Lett. 2, 93 (2011).

J. Moix et al., “Efficient energy transfer in light-harvesting
systems, III: the influence of the eighth bacteriochlorophyll on
the dynamics and efficiency in FMO”, J. Phys. Chem. Lett. 2,
3045 (2011).

A. Ishizaki and G. R. Fleming, “Theoretical examination of
quantum coherence in a photosynthetic system at physiological
temperature”, Proc. Natl. Acad. Sci. U. S. A. 106, 17255 (2009).



	Foreword
	Preface
	Institutional Profile
	Contents
	1. Introduction
	2. Dissipative quantum dynamics
	2.1. Hamiltonian
	2.2. Equations of motion for the reduced density matrix
	2.2.1. Quantum master equation
	2.2.2. Hierarchy equations of motion

	2.3. Spectral density models
	2.4. Calculation of optical spectra - response function formalism

	2.4.1. Linear Response
	2.4.2. Nonlinear Response


	3. Energy transfer in light-harvesting complexes
	3.1. Dimer system
	3.2. Funnel-like aggregate
	3.3. Fenna-Matthews-Olson complex

	4. Summary
	A. The Rostock HEOM package
	A.1. Overview
	A.2. Installation and usage of the programs
	A.3. Input documentation
	A.3.1. Run section
	A.3.2. Task section
	A.3.3. Parameter section
	A.3.4. Hamiltonian section
	A.3.5. Dipole section
	A.3.6. Interaction section
	A.3.7. Bath section
	A.3.8. Initial-RDM section
	A.3.9. 2D section


	B. Example inputs
	B.1. Population dynamics dimer system
	B.2. Linear absorption spectrum dimer system
	B.3. 2D-spectrum dimer system

	C. Electronic vs. vibronic basis
	Bibliography



