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Foreword 

Dramatic advances have occurred over the last few years in the research 
field of cancer biology. There has been a constant accumulation of 
important new information, resulting in a gradual transformation on the 
perceptions that exist among scientists regarding mechanisms by which the 
malignant phenotype develops. The recent developments in cancer research 
have also had a substantial impact in efforts towards the development of new 
cancer therapies. One of the most explosive and rapidly advancing research 
areas has been the area of cytokines and cancer. Many perceptions have 
changed from the original discovery, decades ago, of the interferon, to the 
current state of the art cytokine research. It is now well recognized that 
many cytokines play important roles in normal cellular functions, while 
some of them have prominent roles in the pathophysiology of cancer. It is 
also now firmly established that several cytokines promote the growth of 
cancer cells, while others act as suppressors of malignant cell proliferation. 

The importance of the cytokine signaling field in cancer is reflected by 
the development of multiple treatments that have been introduced in clinical 
oncology over the last few years. Understanding the physiological functions 
of cytokines, as well as their precise roles in the pathogenesis of certain 
malignancies, is extremely important in the current clinical era. The 
paradigm of the development of imatinib mesylate for the treatment of 
chronic myelogenous leukemia has shown that translational approaches can 
occur rapidly, and new effective therapies for the treatment of cancer can be 
developed in a relatively short-time period. This volume includes an up to 
date comprehensive review on the knowledge on cytokines and cancer. The 
book is divided into two sections, with the first being focused on basic 
science research relating to cytokines in oncology, and the second on clinical 
and translational research. It is hoped that this review of various 
components of cytokine cancer research by prominent authors in basic and 
clinical science will prove useful to anyone with interest in this area. 



BASIC SCIENCE RESEARCH 



Chapter 1 

POLYPEPTIDE GROWTH FACTORS AND 
THEIR RECEPTORS 
Roles in Signaling and Cancer Therapy 

Anupama Gururaj and Rakesh Kumar 
The University of Texas M.D. Anderson Cancer Center, Molecular and Cellular Oncology, 
Houston, TX 

1. INTRODUCTION 

Cellular proliferation and survival are tightly controlled processes. 
Extracellular stimuli, such as cytokines and growth factors, provide signals 
to target cells, which regulate cell cycle transition and also protect cells from 
undergoing apoptosis. Cytokines are polypeptide growth factors that could 
be either secreted or membrane-bound and regulate the growth, 
differentiation, and activation of various cell types. On the target cells, 
cytokines bind to its receptors, which are often composed of two or more 
subunits. Binding of the cytokines to their cognate receptors activates 
downstream signaling events that result in the required biological response. 
Although cytokine receptors do not possess intrinsic kinase activity, they 
signal in analogous fashion to receptor tyrosine kinases. Epidermal growth 
factor (EGF) is one of the well-studied prototype polypeptide growth factor 
with a role in mitogenesis. Since the epidermal growth factor receptor 
(EGFR) was the first receptor tyrosine kinase to be discovered and remains 
the most investigated, with most of the mechanistic principles of receptor 
tyrosine kinases first established with EGFR as a model, this review will 
focus on EGFIEGFR and its family members as prototypes to elaborate the 
role of growth factorlcytokine ligands and receptors in cancer. 

Recent advances in molecular and cellular biology led to identification of 
several structurally and functionally related molecules now collectively 
called the EGF family growth factors, each encoded by a distinct gene. A 
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common feature among the EGF family of polypeptides is the presence of 
six spaced cystines (XnCX7CX2-3GXCX 10- 13 CXCX3YXGXRCX4LXn) 
in the EGF domain. These cystine residues form three disulfide bonds and 
thus, provide a specific secondary structure that is essential for the biological 
activity of the polypeptides (1). Currently, the EGF family of growth factors 
consists seven members- EGF, transforming growth factor-a (TGF-a), 
heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (All), 
betacellulin (BTC), epiregulin (ER), and heregulins (HRG). The EGF 
family of ligands binds to transmembrane receptor tyrosine kinases, 
commonly known as HER receptors (Human Epidermal growth factor 
Receptor). 

The EGFR family comprises four distinct receptors: EGFRlErbB-1, 
HER21ErbB-2, HER3lErbB-3 and HER4lErbB-4. HER1 is a single pass 
transmembrane receptor with two extracellular, cysteine-rich regions 
involved in ligand binding, and intervening region important for receptor 
dimerization, an intracellular tyrosine kinase domain, and a number of 
intracellular sites for autophosphorylation, phosphorylation by other kinases, 
and docking of intracellular signaling components. A range of growth 
factors serves as ligands for these receptors with the exception of HER2 No 
ligand has been identified for the HER2 receptor. HER receptors exist both 
as monomers and dimers, either homo- or heterodimers. The regulation of 
HER family members by the EGF family of ligands is complex, as binding 
of ligands to these receptors can lead to the formation of multiple distinct 
homodimers or heterodimers among the HER receptors and thus 
presumably, engagement of distinct signaling pathways. Ligand binding to 
HER1, HER3 or HER4 induces rapid receptor dimerization, with a marked 
preference for HER2 as a dimer partner (2). HER-2-containing heterodimers 
are characterized by extremely high signaling potency because HER-2 
dramatically reduces the rate of ligand dissociation, allowing strong and 
prolonged activation of downstream signaling pathways. 

The key role of the HER family of receptors in cancer has been widely 
acknowledged. Overexpression, activating mutations and gene amplification 
of members of the ErbB family is frequently found in malignant situations, 
which would suggest that they play some part in tumorigenesis and also in 
the transition from early disease to more aggressive forms. Studies 
demonstrated that HER kinases transform cells by enhancing cell-cycle 
progression by modulating the function of cyclin Dl  and CDK inhibitors, 
p21CipllWAFl and p27Kip1, via Akt and MAPK signaling pathways, 
respectively (3,4). Therapeutic strategies designed to target and inhibit HER 
activation are in clinical development and is the subject of a number of 
ongoing clinical trials. 



Polypeptide Growth Factors and Their Receptors 3 

2. EGFR AND HER3 DOMAIN STRUCTURE 

In common with other receptor tyrosine kinases, the HER family 
receptors are cell surface allosteric enzymes consisting of a single 
transmembrane domain that separates an intracellular kinase domain from an 
extracellular ligand-binding domain. Numerous theories have been 
postulated regarding the stoichiometry of ligand and receptor in various 
receptor dimers, the mechanism underlying the preferred HER2 
heterodimerization among HER family members and domains involved in 
ligand binding. Elucidation of the crystal structure of HER3 (5) and EGFR 
(6,7) provided the critical evidence necessary for our understanding of the 
functioning of these receptors and has been reviewed elsewhere (8). In brief, 
a molecule of the ligand (i.e. EGF) binds to a molecule of EGFR to form a 
stable 1 : 1 EGF: EGFR intermediate and dimerization of EGFR requires the 
binding of two such intermediates in a 2:2 EGFREGFR complex (7). This 
leads to the exposure of a critical dimerization loop that allows their 
juxtaposed intracellular portions to transphosphorylate each other on certain 
tyrosine residues. This dimerization loop sequence is conserved in the other 
HER family members and allows for transactivation of the various family 
members in all possible combinations of homo- and heterodimerization. Our 
improved understanding of the ligand-induced receptor activation and 
dimerization may lead to novel therapeutic strategies in the treatment of 
dysregulated HER family signaling. 

3. HETEROLOGOUS TRANSACTIVATION 

The role of HER family receptor tyrosine kinases in signaling is 
traditionally viewed as being exclusively at the level of the membrane, 
whereby the receptor transfers the signal represented by ligand binding from 
the external cell surface, across the membrane, to within the cells. Ligand 
binding induces receptor dimerization and autophosphorylation, association 
of a variety of signaling molecules and adaptor molecules and the tyrosine 
phosphorylation of cellular substrates by the receptor or associated kinases 
to trigger intracellular kinase/phosphorylation cascades. This ultimately 
leads to translocation of the kinases from the cytoplasm to the 
nucleus/nuclear envelope. Subsequent phosphorylation and activation of 
nuclear transcription factors enables the response to the initial signal to be 
effected at the level of gene expression (reviewed in 9). However, there is 
mounting evidence that the HER family receptors propagate not only signals 
initiated by their own ligands but also act as a point of integration for signals 
and cross-talk with various heterologous receptors. These trans-regulatory 
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interactions can be mediated through increased receptor ligand availability, 
direct phosphorylation of HERS by protein tyrosine kinases, and via novel 
heterodimerization partners and transactivation. The net result of these 
alternative activation strategies is enhanced HER signaling to multiple cell 
regulatory pathways. 

The most extensively studied mechanism of HER family transactivation 
involves activation of G protein coupled receptors (GPRs). GPRs that are 
activated by ligands like lysophosphatidic acid (LPA), carbachol and 
thrombin can in turn activate either matrix metalloproteases (MMPs), which 
cleave EGF-like ligands thus freeing them for receptor activation, or 
cytoplasmic kinases such as Src and Jak2, which directly phosphorylate and 
activate EGFR. Another cytokine, interleukin-6, elevates tyrosine 
phosphorylation of ErbB2 by increasing its intrinsic catalytic activity. 
Signaling events of other classes of receptors can also indirectly increase or 
decrease receptor phosphorylation through activation of additional kinases or 
phosphatases and thus influence HER-mediated cell signaling (9). These 
interconnections to other signaling modules help to integrate and coordinate 
cellular responses to extracellular stimuli. 

EGFR transactivation can also be mediated by prostaglandin (PG) Ez (10). 
This novel activation pathway seems to be similar to that described for 
GPRs. PGs activate Src kinase that in turn activates MMPs which now 
release a tethered EGFR ligand, TGFq from the cell membrane, thus 
initiating ligand-mediated activation of EGFR (6). This new data may 
complete a positive feedback loop for HER family-mediated cellular growth 
regulation. COX2 converts arachidonic acid to prostaglandins and a growing 
body of evidence indicates that COX2-derived prostaglandins can promote 
angiogenesis and the invasiveness of colorectal and other types of cancers. A 
number of studies have indicated that the HER and COX2 pathways may be 
interconnected. For example, studies have shown that HER2 overexpression 
is associated with COX2 overexpression in breast, colon, prostate and 
pancreatic cancer (11). Furthermore, suppression of COX2 results in 
decreased HER2 tyrosine-kinase activity, while activation of the 
HER2/HER3 signaling pathway has been shown to be associated with 
expression of COX2. Taken together, these data provide a basis for 
investigating the combination of HER family inhibitors with COX2 
inhibitors in the clinical setting. The selective COX2 inhibitor celecoxib was 
recently reported to decrease mammary tumor incidence and PGEz levels in 
mouse mammary tumor vims/HER2 transgenic mice (12). These new reports 
offer hope that selective targets could be used for therapy in the clinics. 

Direct association and activation of EGFR and HER2 by cytokine 
receptors for growth hormone and interleukin 6, respectively has been 
demonstrated (8). Further, new reports indicate that EGFR is involved in 
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downstream signaling cascade initiated by the protease urokinase 
plasminogen activator (uPA), its cell surface receptor (uPAR), and integrins. 
UPNUPAR overexpression has been implicated in progression and 
metastasis of a variety of tumors and is a predictor of poor prognosis (13). 
Overexpression of uPAR in Hep3 human carcinoma cells stimulates the aspl 
integrin complex to activate EGFR upon binding to fibronectin (14) via focal 
adhesion kinase. The fibronectin-stimulated EGFR activity was independent 
of EGFR overexpression or the release of EGF-like ligands, but was rather 
dependent upon overexpression of uPAR and a functional 
uPA/uPAR/integrin complex. Thus overexpression of the receptor alone may 
not account for all aberrant HER family receptor activation. Rather, 
screening for the expression and activity of HER family transactivation 
partners in developing malignancies may help in the use of specific, targeted 
therapies. It was recently reported that dual inhibition of focal adhesion 
kinase and EGFR signaling cooperatively enhance apoptosis in breast cancer 
cells (15). The emerging central role of HER family kinases as integrators of 
diverse signals stresses the importance of these receptors as therapeutic 
targets. 

Delineation of cytokine signaling pathways that control cellular growth, 
differentiation, survival and development has defned a novel class of 
proteins known as STATs that regulate these processes by modulating the 
expression of specifc target genes. STAT proteins are activated by cytokine 
engagement of cognate cell surface receptors and induce the expression of 
Iigand-dependent genetic programs that determine the biological response to 
the stimulus. Although originally discovered as effectors of normal cytokine 
signaling, subsequent studies have demonstrated the participation of STATs 
in signaling by polypeptide growth factors and oncoproteins. Signifcantly, 
constitutive Stat3 activation in human breast cancer cells correlates with 
elevated EGF receptor and c-Src expression or activity (16). Using specifc 
TK-selective inhibitors, inhibition of signaling downstream of Src or JAKs 
was shown to abrogate constitutive Stat3 DNA-binding, inhibit cell 
proliferation and induce apoptosis in model human breast carcinoma cell 
lines (17,18). Since EGF can 'super-activate' STATs in human breast cancer 
cells, it is possible that activated STATs participate in cooperative oncogenic 
signaling by EGF receptor and c-Src as a result of the aberrant expression of 
EGF-related ligands within the mammary gland microenvironment during 
breast cancer progression. Thus, better understanding of the mechanisms 
underlying aberrant STAT signaling during oncogensis may lead to the 
development of novel cancer therapies based on interrupting key steps in this 
pathway. 
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4. NUCLEAR FUNCTIONS FOR EGFR FAMILY 
MEMBERS 

Although many of the changes that are elicited by signaling cascades 
occur in the cytosol, it becomes increasingly clear that growth-factor- 
receptor signaling also greatly affects nuclear events such as mitogenesis and 
changes in transcription. These signals were thought to be transmitted 
through multistep cascades, such as ERK translocation into the nucleus. 
However, a new mode of growth factor signalling to the nucleus was 
discerned when it was reported that EGFR activates STAT proteins. 
Excitingly, recent reports have opened up the possibility of a third mode of 
transcription activation, one that requires 'zero transfers' of information 
between the plasma membrane and the nucleus - direct nuclear 
translocation of full-length growth-factor receptors or fragments of them 
(19). Although nuclear localization of EGFR had been noted in previous 
publications, Lin et al. (19) reported that an EGFR receptor variant could be 
internalized and transported to the nucleus. Interestingly, this accumulation 
also required both ligand and full-length, membrane-integral EGFR (20). 
Both intracellular and extracellular domains of EGFR appear to move to the 
nucleus in a ligand-bound form and the proposed mechanisms remain 
speculative and thus need to be demonstrated.It has also been proposed that 
EGFR may transport STAT-1 from the cytosol into the nucleus (21) after 
tyrosine-phosphorylating it, which could then carry out its functions as a 
transcription factor. 

ErbB-4, the most recently identified HER family member, was 
demonstrated to be proteolytically processed. Ectodomain cleavage involves 
TACE (a metalloprotease), while intramembrane proteolysis is affected by 7 
-secretase (PS-1). Processing by either route produces the cytosolic ErbB-4 
fragment (s80), which translocates to the nucleus (22). This carboxyl- 
terminal HER4 fragment then associates with the WW-domain-containing 
transcriptional regulatory protein YAP (Yes-associated protein) and acts as a 
co-transcriptional activator (23). Thus, in addition to initiating numerous 
cytoplasmic signaling cascades upon activation, HER family members may 
directly influence transcriptional activity and nuclear function via 
translocation to the nuclear compartment. 

5. HER FAMILY RECEPTORS AS TARGETS FOR 
CANCER THERAPEUTICS 

HER family receptors and their ligands are frequently dysregulated in a 
number of tumor types and therefore might play an important role in the 
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pathogenesis of these diseases. This clearly suggests that ErbB receptors 
and their cognate ligands represent suitable targets for experimental 
therapeutic approaches in human tumors. Novel agents that modulate 
signaling through HER family receptors have recently emerged as promising 
therapies for primary or adjuvant cancer treatment. These new agents are 
the subjects of several recent reviews (24, 26). A number of strategies have 
been developed that target various components of the HER-kinase axis. 
These therapies may be divided into two basic strategies: (1) antibody-based 
inhibition of HER-kinase receptors, and (2) small-molecule inhibitors of the 
tyrosine kinase activity of HER-family receptors. Anti-receptor antibodies 
including C225 (Erbitux, against EGFR) and 4D5 (Trastuzumab or 
Herceptin, against HER2) bind to the receptor extracellular domain and 
induce internalization and degradation, thus effectively blocking receptor 
activation of subsequent cellular signaling cascades. Small molecule 
inhibitors interact with the extracellular domain and effectively block ligand 
binding, or act against the cytoplasmic tyrosine kinase domain and inhibit 
receptor tyrosine phosphorylation and cytoplasmic signaling. Other 
approaches include toxins conjugated to anti-receptor antibodies or receptor 
ligands, antisense therapies, and directed transcriptional repression to down 
regulate receptor or ligand expression. Most of these agents target EGFR or 
HER2, since these receptors are most often disregulated in human cancers. 

Research on HER family inhibitors is rapidly evolving, with many new 
compounds in preclinical and clinical development. Several monoclonal 
antibodies (mAbs) targeted toward the EGFR extracellular region have been 
produced with the most recent ones being EGFR (EMD 55900) (27) and 
HER2 (2C4) (28) monoclonal antibodies. 

As tyrosine kinase activity is required for EGFR-mediated 
tumorigenicity, therapies that ablate this function are currently being tested 
in clinical trials. Mutations in the EGFR ATP-binding site were shown to 
eliminate receptor kinase activity and prevent cellular transformation. Thus, 
small molecule tyrosine kinase inhibitors (TKIs) that competitively block 
ATP binding were designed as potential anticancer agents. Importantly, since 
these agents target an intracellular region of the EGFR, they could 
potentially inhibit the highly tumorigenic EGFR mutant vIII, which is a 
truncated receptor fi-equently found in breast cancer and may be inaccessible 
to mAbs. Quinazoline compounds represent a class of competitive inhibitors 
of the ATP-binding site that are orally active, potent, and selective tyrosine 
lunase inhibitors. Among the most widely examined thus far are the EGFR- 
specific ZD1839 and OSI-774 (29), both EGFR and HER2 (PKI-166 (30) 
and GW572016 (3 1)) and an inhibitor of all four Her family receptors (called 
a pan-Her inhibitor), CI-1033 (32). Of the HER family-directed therapies, 
ZD1839 (IRESSA), a substituted aniloquinazoline, has progressed the 
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furthest in clinical development. IRESSA is effective against numerous 
tumor types in preclinical testing (33,34). This EGFR tyrosine kinase 
inhibitor has shown consistent and clinically meaningful disease stabilization 
and a low frequency of regression across a variety of tumor types, with 
manageable side effects (35-37). ZD1839 recently received FDA approval 
for use as a third line therapy in treating non-small cell lung cancer (38). As 
clinical experience with these and other new inhibitors increases, the ability 
to direct therapies towards individuals with specific HER family and genetic 
alterations may be possible. 

Evidence that HER2 overexpression correlates with poor clinical 
outcome, the existence of cross-talk between the HER2 and ER signalling 
pathways in breast cancer, and the lack of benefit achieved with hormonal 
therapy in patients with ER-positiveIHER2-positive disease, and hence the 
fact that these patients are receiving sub-optimal treatment, suggests that 
combining treatments that target these different pathways may provide 
additional clinical benefits for patients with breast cancer. Twenty percent to 
30% of human breast cancers overexpress ErbB-2, usually as a result of gene 
amplification. ErbB-2 expression is more common in ER- and PgR breast 
cancers, and these cancers naturally exhibit endocrine therapy resistance 
because of the absence of the relevant target. Indeed, ErbB-2-activated 
mitogen-activated protein kinase (MAPK) signaling may be directly 
responsible for ER downregulation (39). 

An example of rationale combinatorial chemotherapy is choice of 
inhibitors of growth factor signaling and angiogenesis for dual targeted 
therapy. Preliminary translational laboratory studies provided molecular data 
showing a clear link between HER2 overexpression and VEGF production in 
human breast cancer cells. Overexpression of HER2 in human tumor cells is 
closely associated with increased angiogenesis and expression of vascular 
endothelial growth factor (VEGF). This effect on VEGF expression may be 
mediated via upregulation of hypoxia-inducible factor 1 alpha or activation 
of p2 1 -activated kinase (Pak), a transcriptional activator and intracellular 
signaling molecule, respectively, that help control VEGF gene expression 
(40,41). Indeed, when the VEGF pathway is inhibited, tumor growth is 
suppressed. The anti-HER2 blocking antibody trastuzumab has been shown 
to inhibit tumor cell growth and VEGF expression. Cancer cell invasiveness 
can be promoted, even in the absence of HER2 overexpression, by 
transregulation of HER2 by heregulins that bind to HER3 and HER4. 
Accordingly, heregulin beta1 regulates the expression and secretion of 
VEGF in breast cancer cells, and trastuzumab inhibits heregulin-mediated 
angiogenesis both in vitro and in vivo (41, 42). The strategy of dual 
inhibition has also proven effective with antibodies against EGFR and 
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VEGF in pancreatic cancer (43). Thus, potential upregulation of VEGF in 
cancer epithelial cells likely supports angiogenesis, sustaining and 
promoting survival and metastasis of tumor cells. 

A variety of novel studies have elaborated on the complexity of ErbB 
family proteins and open up new windows for therapeutic intervention. 
Protein core of decorin, a prototype member of an expanding family of small 
leucine-rich proteoglycans, binds to a discrete region of the EGFR, partially 
overlapping with but distinct from the EGF-binding epitope. Decorin 
interacts with the EGFR in a protracted way, leading to a sustained down- 
regulation of EGFR kinase activity (44). This antagonist to EGFR signaling 
may be a key negative regulator of tumor growth. Future investigations may 
lead to the generation of protein mimetics that could antagonize EGFR 
activity in a variety of tumors in which EGFR is overexpressed. Also, a 
recent report of down regulation of EGFR-mediated growth-promoting 
signals by treatment with 1,25-dihydroxyvitamin D-3 (45) opens up new 
possibilities for EGFR regulation. 

Recently, the histone deacetylase inhibitors sodium butyrate and 
trichostatin A were identified as potent and relatively specific ErbB2 
promoter-inhibiting agents (46). This finding indicates that human breast 
cancers with ErbB2 amplification and overexpression represent unusually 
sensitive clinical targets for HDAC inhibitor therapy. HER21neu 
overexpression could also be repressed by attenuating the promoter activity 
of the HER21neu gene by potent transcriptional regulators like the 
adenovirus type 5 ElA (47). Targeted disruption of transcriptional 
complexes essential for HER2 expression using short, cell-permeable 
peptides has also been demonstrated (48). 

Finally, new insights into protein turnover and targeted degradation could 
lead to novel therapies. Csk homologous kinase (CHK) binds, via its SH2 
domain, to Tyr1253 of the activated ErbB-21neu and down-regulates the 
ErbB-21neu-mediated activation of Src kinases, thereby inhibiting breast 
cancer cell growth. This data strongly suggest that CHK is a novel negative 
growth regulator in human breast cancer (49 and references therein). ERRP 
(EGFR-related protein), a recently identified negative regulator of EGFR 
modulates EGFR function in colorectal carcinogenesis and expression of 
EGFR was found to be inversely related to ERRP in representative samples 
of normal and neoplastic tissues (50). Re-expression of novel negative 
regulatory proteins or induced expression of high affinity inhibitory proteins 
may restore normal receptor homeostasis in a deregulated setting and serve 
as potential future therapies. Pharmacologic manipulation of ubiquitination 
and degradation via ubiquitin ligases such as CHIP (51) and NEDD4 (52) 
also provide new routes for stimulated downregulation of dysregulated HER 
family members. Evidence to date suggests that direct targeting of growth 
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factor receptors is a promising therapeutic strategy for breast cancers with 
abnormalities in these pathways. The challenge is to identify the patient 
population most likely to benefit from this biological therapy approach. 

6. CONCLUSIONS 

A large body of knowledge has been accumulating in recent years on the 
role of the EGF family of ligands and receptors in embryonic development, 
physiology and pathology and much progress has made in understanding the 
mechanism of EGFR activation upon ligand binding. The EGFR is a 
complex signaling system important in normal physiology and in the 
maintenance of the tumorigenic state. Recent research has strengthened the 
basis for an intimate role of HER family kinases in a variety of cancers. In 
addition to propagating cytoplasmic signaling initiated by HER family 
receptor ligands, HER family members can also propagate signals initiated 
by multiple other signaling pathways and may serve as central nodes in 
conveying extracellular signals. Attenuation of HER family signaling is a 
developing strategy for the management of human malignancies and is the 
subject of ongoing clinical trials and preclinical mechanistic investigations. 
Finally, since the life of a cell is controlled by more than one signaling 
network, resolution of interaction between EGFR proteins and G-protein 
coupled receptors, cytokine receptors, cell adhesion molecules and other 
networks and shedding light on the way the convergence of networks is 
integrated and translates into specific outputs could potentially lead to the 
development of more effective treatment strategies in aberrant pathological 
situations. 
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1. INTRODUCTION 

Chemokines represent a large family of cytokines that play a 
fundamental role in controlling the directional migration of leukocytes to 
sites of infection and inflammation. The chemokine superfamily can be 
subdivided into four groups, based on the relative positioning of the first two 
cysteine residues. All chemokines exert their activities through the 
engagement of specific seven-transmembrane G protein-coupled receptors 
(Table 1, at the end of the chapter). Distinct from other cytokines, most 
chemokines can bind to and activate more than one cognate receptor, leading 
to a complex network of biological outcomes. 

Originally identified for their chemo-attractant properties, there is 
accumulating evidence that chemokines play a critical role in a number of 
pathological conditions, including cancer. Many, if not all cancers can be 
characterized by abnormal chemokine production, or aberrant expression 
and signaling through chemokine receptors. Chemokine receptors belong to 
a group of seven-transmembrane domain G-protein-coupled receptors. 
Chemokine binding to the extracellular domain of the chemokine receptor 
leads to a cascade of intracellular events mediated, in part, by G-protein- 
coupled signal transduction. These events include the activation of 
phospholipases, the hydrolysis of phosphatidylinositol (4,5)-bisphosphate, 
the formation of inositol trisphosphate and diacylglycerol, changes in 
intracellular calcium concentration, the activation of protein kinase C, and 
the activation of mitogen-activated protein kinases [I]. Additionally, 
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chemokine receptor activation of protein tyrosine kinase signaling 
intermediates has been identified [2] 

Through their interactions with chemokine receptors on target cells, 
tumor associated chemokines can promote tumor growth directly by 
mediating the infiltration of leukocytes to the tumor microenvironment and 
stimulating the release of growth factors, or indirectly, by initiating 
angiogenesis. The intent of this chapter is to highlight the key roles 
chemokines play in cancer biology including the control of leukocyte 
infiltration into tumors, tumorigenesis, initiation of primary tumor growth 
and survival, regulation of angiogenesis, and the control of tumor cell 
adhesion, invasion and migration (Figure 1). Understanding the complex 
role chemokines play at each stage of disease progression will assist with 
defining potential therapeutic strategies. We review recent advances made 
in the field of cancer therapy involving the manipulation of the chemokine 
system. 

2. CHEMOKINES AND LEUKOCYTE TUMOR 
INFILTRATION 

Infiltrating leukocytes are found in most solid tumors, comprised of 
monocytes/macrophages, T cells, dendritic cells, and mast cells. The 
infiltration of immune cells into solid tumors was initially believed to reflect 
the anti-tumor immune response. However, there is increasing evidence that 
tumor-derived chemokines attract leukocytes to the tumor 
microenvironment, thereby promoting tumor growth, angiogenesis and 
metastasis. 

Over two decades ago, Bottazzi et al. showed that CCL2 (MCP-1) is 
expressed and secreted by most tumor cell lines [3, 41. Specific 
monocyte/macrophage recruitment has been linked to local production of 
CCL2 by tumors and stromal cells, and is implicated in breast, ovarian, 
bladder, and lung cancer. [I, 3, 41 CCL2 production was also detected in 
tumor-infikrating macrophages, indicating the existence of an amplification 
loop for their recruitment. Interestingly, tumor associated macrophages 
from ovarian cancer patients displayed defective expression of CCR2 and 
did not migrate in response to CCL2, suggesting a possible mechanism for 
macrophage retention within the tumor microenvironment [5] .  Other CC 
chemokines that bind CCR2, CCL8 (MCP-2) and CCL7 (MCP-3), have also 
been shown to be produced by tumors and to recruit monocytes [6]. 
Furthermore, CCL2 expression seems to be a phenotype of tumor 
aggressiveness. In bladder and breast cancer, CCL2 expression levels 
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correlate with tumor stage and grade, with highly invasive tumors secreting 
the highest amounts of CCL2 [7, 81. Alternatively, low level production of 
CCL2 transformed non-tumorgenic melanoma cells into those forming 
progressing tumor lesions in vivo [9]. 

Figure I. Chemokines and Cancer cells 

Elevated production of another CC chemokine, CCL5 (RANTES), by 
breast carcinoma cells also correlates with disease severity, suggesting that 
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CCL5 plays a role in breast carcinoma progression [lo, 111. Accumulating 
data indicate that CCL5 produced by tumors and stromal cells is responsible 
for the infiltration of macrophages and T cells expressing CCRl and CCR5, 
both receptors for CCL5. In a recent study, the effect of the CCR5 
antagonist Met-CCL5 was tested for antineoplastic activity. In a murine 
model of breast cancer, Met-CCL5 significantly reduced tumor formation, 
and decreased the size of established tumors. In both cases, the extent of 
macrophage infiltration was reduced, supporting CCL5 involvement in 
tumor progression [12]. In vivo, mammary carcinoma cells expressing low 
levels of CCL5 exhibit a decrease in growth rate [I 31. 

Tumor associated macrophages are suggested to have pro-tumor 
functions by virtue of their release of growth factors, such as epidermal 
growth factor, and their production of angiogenic mediators, including 
vascular endothelial growth factor (VEGF) and basic fibroblast growth 
factor (bFGF) [14]. Tumor associated macrophages are also a source of IL- 
10 and prostaglandin E2 (PGE*), two potent immuno-modulating agents 
contributing to the general immunosuppression of the host [I 51. Autocrine 
production of IL-10, possibly triggered by continuous exposure to CCL2, is 
the major inhibitor of IL-12 production by tumor-associated macrophages 
[16]. Along with TGFP, large amounts of IL-10 are produced by tumor- 
infiltrating macrophages, leading to immunosuppressive activities, partially 
mediated by the inhibition of NFkB activity. As a consequence of IL-10 
mediated inhibition of IL-12 production, tumor associated macrophages 
contribute to the skewing the immune response toward a Th2 phenotype 
which interferes with the anti-tumor response and promotes tumor survival. 
Indeed, CCL2 knockout mice are unable to mount a Th2 response, 
suggesting that continuous CCL2 production by tumor associated 
macrophages may play a role in Th2 polarization [17]. Taken together, 
cytokine production within the tumor microenvironment appears to be 
critical for the development of cancer. 

3. CHEMOKINES IN NEOPLASTIC 
TRANSFORMATION 

Chemokine-receptor interactions play an important role in tumorigenesis. 
As previously noted, tumor cells secrete chemokines, thus attracting 
leukocytes into their microenvironment. There is evidence that this process 
is non-random and site-specific. Tumor cells express chemokine receptors 
that allow them to respond to their cognate ligands: Activation of these 
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receptors initiates a signaling cascade that may stimulate growth and 
promote tumor survival. 

The ability of tumor cells to proliferate in response to chemokines has 
been characterized in Kaposi's sarcoma, the most common neoplasm in 
patients with AIDS. The Kaposi's sarcoma herpes virus encodes a human 
G-protein coupled receptor, KSHV-GPCR, which shares a high degree of 
homology with human CXCR2 [I 81. Once expressed in cells, KSHV-GPCR 
can trigger a constitutive signal which is further upregulated by binding of 
CXCL8 and CXCLl [19]. Signaling activates mitogen- and stress-activated 
kinases, and induces transcription via multiple transcription factors including 
AP-1 and NFkB. Overexpression of KSHV-GPCR in hematopoietic cells 
can lead to the development of angioproliferative lesions in mice resembling 
Kaposi's sarcoma [20]. Furthermore, Burger et al. demonstrated that a point 
mutation of CXCR2 in the presence of autocrine and paracrine stimulation 
with specific CXC chemokine ligands, led to constitutive signaling of the 
receptor and neoplastic cellular transformation [2 11. 

Altered chemokine expression has also been reported in cells infected by 
the Kaposi's sarcoma herpes virus. The virus has acquired genes encoding 
three chemokines, viral macrophage inflammatory protein (vMP)-I, -11 and 
-111 [22]. When leukemia cells were stimulated with recombinant vMP-I 
and -11, induction of ca2+ mobilization through CCR5 and chemotaxis was 
reported. Chemokine producing macrophages were mainly localized to 
spindle-shaped cells outside Kaposi sarcoma lesions. Within Kaposi 
sarcoma nodules, spindle cells were positive for CXCR4 and CCR5 
expression [23]. These receptors expressed by Kaposi sarcoma cells may be 
essential for allowing cells to sense and migrate toward locally produced 
chemotactic stimuli. Taken together, virally encoded chemokineJchemokine 
receptor expression plays a role in tumorigenesis by enhancing tumor growth 
and propagation of Kaposi's sarcoma. 

CHEMOKINES AND TUMOR GROWTH 

There is accumulating evidence that chemokines act as growth and 
survival factors for various tumors, generally in an autocrine manner. 
CXCL8 (IL-8) expression has been implicated in numerous cancers, 
including pancreatic cancer, gastric cancer, melanoma, Hodgkin's disease, 
breast cancer, cervical cancer and prostate cancer (reviewed in [24]). A 
member of the CXC chemokine family, CXCL8 was initially identified as a 
neutrophil chemotactic factor in the supernatant of activated human 
monocytes. CXCLl (GROa) and CXCL8 are produced constitutively by 
and stimulate the growth of melanoma cells [25]. Schadendorf et al. showed 
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that inhibition of CXCL8 with anti-sense oligonucleotides or neutralizing 
CXCL8 antibodies decreased melanoma cell proliferation in vitro [26]. 
CXCL8 binds with high affinity to two receptors, CXCRl and CXCR2, both 
primarily expressed on neutrophils. Expression of both CXCL8 receptors 
has also been found in melanoma cells [27, 281. In one study, CXCRl or 
CXCLl neutralization in melanoma cell lines attenuated proliferation, 
suggesting their importance in tumor growth. In other studies, neutralization 
of CXCL1 and not CXCL8 decreased the proliferative capacity of melanoma 
cells, suggesting that melanoma cells may utilize different chemokine 
ligands to support growth [29]. Recent studies correlate levels of CXCRl 
and CXCR2 expression with the proliferative capacity and invasiveness of 
melanoma [30]. Highly metastatic A375SM cells expressed higher levels of 
CXCRl and CXCR2 in vitro and in vivo when compared to low metastatic 
A375P cells. Neutralizing antibodies to CXCRl and CXCR2 inhibited 
proliferation and the invasive potential of A375SM cells. Conversely, 
treatment of A375P cells with exogenously administered recombinant 
CXCL8 significantly enhanced their proliferation and invasive potential. 
Interestingly, endothelial cells were reported to secrete CXCL8 and may be 
responsible for the chemotaxis of melanoma cells mediated by CXCRl [3 11. 

CXCLl, CXCL8 and CCL20 (LARC) have all been shown to stimulate 
the growth of pancreatic tumor cell lines [32]. The expression level of 
CXCL8 appears to correlate with pancreatic tumor cell tumorgenicity and 
metastatic potential in xenograft models [33, 341. Kuwada et al. found that 
40% of human pancreatic cancer tissue samples studied were positive for 
both CXCL8 and CXCL8 receptors [35]. In addition, treatment of PANC-1 
melanoma cells with CXCL8 enhanced the invasiveness into matrigel and 
induced matrix metalloproteinase-2 (MMP2) release, suggesting the role of 
CXCL8 in facilitating extracellular matrix degradation and migration. 
Patient-derived pancreatic cancer cells expressing CCR6 have been shown to 
express and proliferate in response to CCL20 [36]. In epithelial ovarian 
cancer, tumor cells were positive for CXCR4 and proliferated in conditions 
of sub-optimal growth following stimulation by CXCL 12 (SDF- 1) [37]. 
Certain prostate cancer cell lines constitutively produce CXCL8, which 
correlates with their growth in vivo [38]. Of interest, both CXCL8 and 
CXCLl expression are significantly higher in diffuse rather than intestinal- 
type gastric carcinoma, which suggest that these chemokines influence the 
different growth patterns of gastric carcinoma [39]. 

CXCR4 is upregulated in various cancers, including colon carcinoma, 
lymphoma, breast cancer, glioblastoma, leukemia, multiple myeloma, 
prostate cancer, oral squamous cell carcinoma and pancreatic cancer [40-481. 
CXCR4 and CXCL12 mRNAs are expressed in two human glioblastoma cell 



Chemokines and Cancer 2 1 

lines: U87-MG and DBTRG-O5MG [49]. Exogenous CXCL12 can induce 
proliferation in a dose-dependent manner, while inhibition of CXCR4 with 
monoclonal antibodies inhibits proliferation. Similarly, CXCR4 is highly 
expressed in breast cancer cells and expression of its ligand, CXCL12, is 
highest in organs representing the most common metastatic sites. 
Neutralization with anti-CXCR4 antibodies reduces metastasis formation 
[50]. An increase in CXCL12lCXCR4 mediated proliferation correlated 
with phosphorylation and activation of both extracellular signal-regulated 
kinases 1/2 (Erkl/2) and Akt (PKB) in both human glioblastoma and 
neuroepithelioma cell lines [49, 5 11. Similarly, CXCL 12 activation of 
Erkll2 and Akt mediated by CXCR4 was observed in metastatic oral 
squamous cell carcinoma (SCC) cells [46]. Interestingly, CXCL12 
enhanced the adhesion of small-cell lung carcinoma cells to immobilized 
vascular cell adhesion molecule-l (VCAM-I), demonstrating that CXCR4 
can induce a4pl  integrin activation. B16 melanoma cells exposed to 
CXCL 12 rapidly increased their binding affinity for soluble VCAM- 1, 
suggesting that p l  integrins play a critical role in CXCR4-mediated B 16 
tumor cell metastasis in vivo [52]. 

While the majority of the chemokine interactions implicated in cancer 
thus far seem to involve the upregulation of chemokine or chemokine 
receptor expression, recent studies have demonstrated that certain 
chemokines are downregulated in tumors. Specifically, BRAK is a CXC 
chemokine that is expressed in a number of normal tissues, but has been 
found to be absent from a variety of tumor cell lines [I]. 

5. CHEMOKINES IN 
ANGIOGENESIS/ANGIOSTASIS 

Angiogenesis involves the formation of new vessels fi-om pre-existing 
ones and is regulated by a delicate balance between pro and anti angiogenic 
factors. There is accumulating evidence that CXC chemokines regulate 
angiogenesis and thus promote tumor formation and metastasis. CXC 
chemokines exhibit disparate angiogenic activity depending upon the 
presence or absence of the ELR (Glu-Leu-Arg) motif. As described by 
Strieter et al., CXC chemokines containing the ELR motif at their NH2 
terminus (ELR+) are potent promoters of angiogenesis. These chemokines 
were shown to be directly chemotactic for endothelial cells and promoted 
angiogenesis in corneal neovascularization experiments [53, 541. In 
contrast, CXC chemokines lacking this motif (ELR-) were found to be 
potent angiostatic factors [%I. These molecules were able to inhibit new 
vessel formation induced by ELR+ chemokines and other pro-angiogenic 
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mediators [56-581. ELR+ chemokines that promote angiogenesis include 
CXCLl, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8. 
Generally, the ELR- chemokines are IFN-y inducible and act to inhibit 
angiogenesis [57]. CXCL4, CXCL9, and CXCLlO are ELR- chemokines 
that have been shown to inhibit angiogenesis. Interestingly CXCL12, which 
is ELR-, is angiogenic [59, 601. Finally, CCL2 is a CC family chemokine 
that has recently been shown to stimulate angiogenesis directly [61]. 

The role of the ELR motif in angiogenesis has been demonstrated 
through mutagenesis studies involving the ELR motif of CXCL8, a potent 
angiogenic mediator. The resulting ELR- mutant CXCL8 behaves as a 
potent angiostatic regulator of neovascularization, inhibiting not only the 
angiogenic activity of ELR+ chemokines, but also that of bFGF [55]. When 
the ELR motif was introduced in the ELR- chemokine CXCL9, this 
chemokine gained angiogenic properties both in vitro and in vivo. These 
experiments support the direct role of ELR-containing CXC chemokines in 
mediating angiogenic activity. Furthermore, the expression of ELR+ 
chemokines CXCLl, CXCL5, and CXCL8 was inhibited by anti-angiogenic 
cytokmes such as interferons a, p, and y whereas expression of ELR- 
chemokines was upregulated. This suggests that interferons shift the 
biological balance of ELR+ and ELR- CXC chemokines towards an 
angiostatic environment. Recently, several groups have reported that 
angiogenesis is regulated by chemokine receptors expressed on endothelial 
cells [62, 631. CXCR2 and CXCR4 were shown to induce angiogenesis, 
while CXCR3 exhibited angiostatic function. The observation that all ELR+ 
CXC chemokines bind CXCR2, while ELR- angiostatic chemokines CXCL9 
and CXCLlO bind CXCR3, suggests that receptor hnction and expression 
rather than the presence or absence of ELR sequence may account for the 
role of specific chemokines in angiogenesis [64]. 

CXCL8 was the first chemokine to display potent angiogenic activity 
when implanted into rat cornea and to induce proliferation and chemotaxis 
of human umbilical vein endothelial (HUVEC) cells [53]. A CXCL8 anti- 
sense oligonucleotide specifically blocked the production of monocyte- 
induced angiogenic activity, suggesting a role for CXCL8 in angiogenesis- 
dependent disorders. The involvement of CXCL8 in tumor angiogenesis 
was initially described in human bronchogenic carcinoma [65, 661. 
Increased levels of CXCL8 were detected in tumor tissue compared with 
normal lung tissue, and CXCL8 was able to induce corneal 
neovascularization. Further, anti-CXCL8 antibodies almost completely 
abrogated angiogenic activity within tumors, establishing CXCL8 as a 
primary mediator of angiogenesis in bronchogenic carcinoma. Similarly, 
anti-CXCL8 antibodies reduced human prostate tumor growth and tumor- 
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related angiogenesis in SCID mice [38]. In human ovarian cancer xenograft 
models, CXCL8 expression within the tumor was inversely associated with 
survival [67]. It was recently demonstrated that CXCLl and CXCL8 are 
induced by KSHV infection of endothelial cells. Both chemokines are 
instrumental to the angiogenic phenotype developed by these cells in cell 
culture and upon implantation into SCID mice [68]. Studies with other 
angiogenic CXC chemokines also demonstrate their significance in tumor 
formation. Constitutive expression of CXCLl (GROa), CXCL2 (GRO-P) 
or CXCL3 (GRO-y) in mouse melanocytes results in nearly 100% tumor 
formation [25]. Antibodies to all three proteins slowed or inhibited 
tumorigenesis in SCID mice, and blocked the angiogenic response to 
conditioned medium from transfected melanocytes in vivo. 

Conversely, ELR- members of the CXC chemokine family, including 
CXCL4, CXCL9, and CXCL10, display angiostatic properties. CXCLlO 
was found to inhibit angiogenesis induced by the angiogenic factors VEGF 
and bFGF, as well as angiogenic CXC chemokines [57, 581. In lung 
carcinoma, the degree of malignancy inversely correlated with the level of 
CXCLlO secretion by the tumor, with less progressive lung carcinomas 
secreting more CXCLlO [69]. In subsequent studies, Arenberg et al. showed 
that intra-tumoral injection of CXCLlO led to reduced tumor growth in a 
SCID mouse model of non-small-cell lung cancer (NSCLC) [70]. CXCL10 
treatment also inhibited lung metastases, possibly due to the angiostatic 
effect of CXCLlO on the primary tumor, as the rate of apoptosis within lung 
metastases was unaffected. Similarly intra-tumoral injection of CXCL9 had 
anti-tumor effects in nude mice [71]. These data confirm the beneficial anti- 
metastatic effects of angiostatic therapy. Taken together, the strict balance 
of angiogenic and angiostatic CXC chemokines within the tumor 
microenvironment seems to determine the degree of angiogenesis and 
thereby regulate tumor progression. 

6.  CHEMOKINES IN TUMOR CELL INVASION 
AND METASTASIS 

In addition to their roles in tumor cell growth and angiogenesis, 
chemokines are becoming increasingly implicated in a number of processes 
related to tumor cell invasion and metastasis. Metastasis is complex and 
highly regulated process that begins with the local invasion of tumor cells 
into tissue surrounding the site of the primary tumor. For tumor cells to 
successfully form secondary tumors in distant organs, they must first be able 
to migrate through the extracellular matrix (ECM), penetrate the basement 
membrane underlying endothelial cells, enter the circulatory system, and 
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home to their preferred sites of metastasis. It is becoming clear that 
chemokines play an important part in each of these steps. 

6.1 Tumor Cell Adhesion, Migration, and Invasion 

A number of chemokines have been implicated in tissue invasion by 
tumor cells. The ability of tumor cells to detach, penetrate the basement 
membrane and move through the extracellular matrix, relies on enzymes 
such as matrix metalloproteinases (MMPs) and serinelcysteine proteinases. 
There is accumulating evidence for chemokine activation of tumor cells that 
results in the production of these enzymes. In addition, chemokines released 
by tumor cells attract mononuclear phagocytic cells that produce additional 
enzymes, suggesting the existence of an amplification loop that further 
enhances tumor cell invasion. 

CXCL8 (IL-8) will induce expression of the matrix metalloproteinases 
MMP-2 and MMP-9 in a number of tumor cell lines [35, 72-74]. These 
gelatinases are involved in the proteolysis of basement membranes. 
Treatment of a human pancreatic cancer cell line, PANC-1, with CXCL8 
resulted in enhanced invasiveness into matrigel, a reconstituted basement 
membrane, as well as increased activity of MMP-2 in the supernatant [35]. 
In the same study, 65% of surgically resected human pancreatic cancer tissue 
stained positive for the CXCL8 receptor CXCR2, and 55% stained positive 
for the CXCL8 receptor, CXCR1, while normal pancreatic tissue was found 
to have diminished irnmunoreactive signals for these proteins. These results 
provide evidence that overexpression of both CXCRl and CXCR2 is 
associated with pancreatic cancer and that CXCL8 regulates MMP-2 activity 
in these tumors. CXCL8 also upregulates MMP-2 activity in human 
melanoma cells [72]. When SB-2 melanoma cells, normally producing 
small amounts of CXCL8, were transfected with cDNA for CXCL8, 
upregulation of MMP-2 and collagenase activity, as well as increased 
invasiveness through matrigel-coated filters were reported. CXCL8 was 
shown to directly regulate MMP-2 gene expression, as MMP-2 promoter 
controlled chloramphenical acetyltranferase (CAT) gene expression was up- 
regulated in cells co-transfected with CXCL8, and not in control cells. 
Additionally, CXCL8 regulates MMP-9 expression in human prostate cancer 
cells both in vitro and in vivo [73]. 

Further support for the role of chemokines in the local invasion of tumor 
cells is provided by the observation that both CXCL8 and CXCLl cause an 
increase in migration, invasion through the basement membrane, and 
adhesion to a laminin substrate in PC3 prostate carcinoma cells [75]. In 
melanoma, CXCL8 secreted by endothelial cells has been shown to elicit a 
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chemotactic response in melanoma cells that is mediated by CXCRl [31]. 
Other studies have confirmed the involvement of chemokines in enhancing 
the ability of tumor cells to adhere to components of the extracellular matrix, 
thereby facilitating subsequent invasion and migration. Till et al. showed 
that the CXCR7 ligands CCL19 (ELC) and CCL21 (SLC), and the CXCR4 
ligand CXCL12 (SDF-I), are involved in orchestrating the migration of 
lymphocytic leukemia cells across the vascular endothelium [76]. Further, 
malignant B cells from patients with clinical lymph node involvement were 
found to respond to CCL19 and CCL21 to a greater extent than malignant B 
cells from patients without lymph node involvement and blocking CCR7 
inhibited transendothelial cell migration (TEM). Both CCL 19 and CCL2 1 
were found in high endothelial venules, while CXCL12, which was found to 
induce fewer cells to transmigrate, was localized only in the stroma of the 
lymph node. 

Integrins are transmembrane proteins that function in cell-cell and cell- 
matrix adhesion. CXCL12 treatment of ovarian cancer cell lines results in 
increased chemotactic potential and an increase in surface expression of D l -  
integrin, associated with cellular adhesion to the extracellular matrix [77]. 
CXCL12 has also been shown to increase pancreatic tumor cell migration 
[48]. Koshiba et al. reported that CXCR4 was localized primarily to 
pancreatic tumor cells and to the endothelial cells of large vessels 
surrounding tumors. The use of the CXCR4 antagonist, T22, inhibited the 
effects of CXCL12 on the migration of pancreatic cancer cells. CXCR4 has 
also been shown to enhance adhesion of B16 murine melanoma cells to 
endothelial cells via pl integrin [52]. Anti-p 1 and anti-CXCR4-B 16 
antibodies inhibited binding of murine B 16 cells to endothelial cells in vitro 
and prevented murine lung metastasis in vivo. 

Muller et al. showed that binding of CXCL12 and CCL21 to CXCR4 and 
CCR7, respectively, triggers actin polymerization and pseudopodia 
formation, with resultant directional migration and invasion by breast cancer 
cells [50]. The use of anti-CXCR4 or anti-CCL21 antibodies blocked this 
response in vitro. Changes in the organization of the actin cytoskeleton and 
in the level of F-actin present have also been shown in response to CCL3 
(MIP-la) and CCL4 (MP-1P) in human breast cancer cell lines [78]. Actin 
polymerization and adhesion mediated by the activation of a4pl  integrins 
has also been reported in small-cell lung cancer cells [79]. 

Until recently, the signaling pathways that are involved in cell adhesion 
and migration in response to chemotactic signals have largely been 
unknown. In non-small cell lung cancer, CXCL12 was found to induce 
tumor cell migration mediated by activation of PI-3 kinase and the ~44142 
mitogen activated protein (MAP) kinase [go]. Recent studies by Fernandis 
et al. indicate that CXCL12-induced and CXCR4-mediated breast cancer 
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cell motility and invasion involves the tyrosine phosphorylation of focal 
adhesion kinase (FAK) and RAFTWPyk2, as well as paxillin and crk, two 
cytoskeleton proteins [81]. In addition, CXCL12 will induce tyrosine 
phosphorylation of SHP2 and Cbl, a downstream signaling molecule and an 
adaptor protein, respectively. Additionally, CXCL12 was observed to 
activate both MMP-2 and MMP-9. 

Upregulation of CXCR4 expression, shown to be involved in many 
aspects of tumor cell adhesion, migration, and invasion, is regulated by NF- 
KB activation. This transcription factor also upregulates matrix 
metalloproteinase expression along with other proteins associated with 
tumor cell migration and invasion [82]. 

6.2 Organ Homing and Metastasis 

While it has been recognized since the late nineteenth century that certain 
tumors metastasize preferentially to specific organs, the mechanisms 
involved in this organ-specific homing have only recently been identified. 
In a seminal paper published in 2001, Muller et al. identified that differential 
chemokine and chemokine receptor expression corresponds to patterns of 
metastasis in breast cancer [50]. Breast cancer typically metastasizes to 
regional lymph nodes, bone marrow, lung, and liver. Muller et al. compared 
the expression levels of 17 chemokine receptors among seven human breast 
cancer cell lines and normal primary mammary epithelial cells and found 
that the breast cancer cells exhibited specific patterns of receptor expression. 
Specifically, CXCR4 and CCR7 are highly expressed in breast cancer cells, 
malignant breast tumors, and metastases. Muller et al. subsequently 
examined patterns of expression for the ligands CXCL12, CCL19, and 
CCL21, in different organs. The highest levels of expression of CXCL12 
were found to occur in lymph nodes, lung, liver, and bone marrow, 
corresponding to the typical sites of breast cancer metastasis. Low levels of 
CXCL12 were found in organs that are not typically associated with breast 
cancer metastases, such as the skin, brain, and kidneys. CCL19 and CCL21 
expression levels were highest in lymph nodes, although CCL21 was 
expressed at higher levels, suggesting that this chemokine pIayed a key role 
in the homing of breast cancer cells to the lymph nodes via its interaction 
with CCR7. To determine whether the pattern of chemokine receptor 
expression observed was unique to breast cancer, Muller et al. then looked at 
chemokine receptor expression in malignant melanoma cells. Melanoma has 
a similar pattern of metastasis to breast cancer, but also metastasizes within 
the shn. Interestingly, the authors showed that melanoma cells expressed 
CXCR4 and CCR7, similar to breast cancer cells, but also expressed higher 



Chernokines and Cancer 27 

than normal levels of CCR10, which interacts with the skin-specific 
homeostatic chemokine CCL27 (ESkine). Expression of CXCR4 in breast 
cancer cells has since been shown to be regulated by the transcription factor 
NF-KB, which is activated by extracellular signals [82]. 

CXCR4 has also been implicated in the development of colon carcinoma 
micrometastases [47]. Zeelenberg et al. found that CT-26 murine colon 
carcinoma cells that had been transfected with SDF-KDEL to prevent the 
expression of surface CXCR4, proliferated to the same extent as control CT- 
26 cells when injected into the spleens of mice. However, the transfected 
cells did not metastasize to the liver, whereas the control cells, which 
expressed CXCR4 on their surfaces, did. Notably, CXCR4 expression levels 
in CT-26 colon carcinoma cells were low in vitro but were highly up- 
regulated in vivo. In addition, this study suggested that CXCR4 does not 
play a role in the initial invasion of colon carcinoma cells into the lungs, but 
rather in the proliferation of tumor cells once they have already established 
micrometastases (i.e. small metastatic foci, generally defined as being 
between 0.2 and 2 mm). CXCR4-deficient cells were found to colonize the 
lungs to the same extent as did cells expressing CXCR4. However, the 
CXCR4-deficient cells did not proliferate and grow into macrometastases, 
while the CXCR4-expressing cells did. Inactivating Gi proteins, which are 
required for transducing migration signals induced by G protein-coupled 
receptors such as CXCR4, had no effect on the development of 
micrometastases. Therefore, the initial invasion of metastatic cells into the 
lungs occurred through a CXCR4-independent mechanism and subsequently, 
metastatic cells required CXCR4 activation signals to initiate proliferation. 

CXCL12lCXCR4 signaling has also been shown to play a role in the 
lymph node metastasis of oral squamous cell carcinoma via the activation of 
Src family kinases and subsequent activation of ERK 112 and PKB [46]. In 
addition, CXCR4 expression levels correlate with lymph node metastasis in 
human invasive ductal carcinoma, with tumors expressing high levels of 
CXCR4 showing more extensive nodal metastasis than tumors with 
relatively low expression of CXCR4 [83]. Finally, the von Hippel-Lindau 
tumor suppressor, pVHL, has been shown to down-regulate CXCR4 
expression in human renal cell carcinoma cells [84]. Viewed altogether, the 
data suggest that CXCR4 is involved in regulating metastasis and organ- 
specific homing for a variety of human cancers. 

Other chemokine receptors have also been implicated in tumor 
metastasis. CXCRl and CXCR2 were shown to be expressed at higher 
levels in highly metastatic human melanoma cell lines than they were in 
non-metastatic melanoma cells [30]. In the same study, neutralizing 
antibodies directed against these receptors were shown to inhibit both the 
proliferation and invasive potential of melanoma cells, regardless of whether 
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or not they had been stimulated by CXCL8. CCR7, in addition to its role in 
breast cancer metastasis, has been found to be associated with lymph node 
metastasis of esophageal squamous cell carcinoma, with high levels of 
CCR7 expression correlating with lymphatic permeation, lymph node 
metastasis, and poor survival [85]. In addition, in murine plasmacytoma 
cells, overexpression of CCR6 was found to correlate with liver metastases 
[86]. Further, Yao et al. recently demonstrated that CXCL12, which is 
constitutively expressed and presented by skin capillary endothelium, can 
trigger specific arrest and trans-endothelial migration of KSHV-infected 
cells under physiologic shear flow conditions [87]. It is intriguing to 
speculate that CXCL12KSHV-GPCR interactions may trigger specific 
adhesion molecules on circulating KSHV-infected cells to determine the 
preferential localization of Kaposi sarcomas to the skin. 

7. CHEMOKINES IN THE TREATMENT OF 
CANCER 

With a growing understanding of the role that chemokines and their 
receptors play in the development and progression of different cancers, a 
number of therapeutic approaches focusing on chemokine biology are under 
investigation. Individual chemokines that are known to be associated with 
tumor development and progression or metastasis are obvious targets for 
anti-tumor therapies. Therapeutic intervention strategies also include the use 
of chemokine receptor antagonists. By interfering with the ability of tumor 
cells to migrate or to invade tissues, or by interfering with angiogenesis, it is 
hoped to influence tumor development. Moreover, therapeutic strategies 
that involve modulating the trafficking of specific cytotoxic leukocyte 
subsets by taking advantage of the chemoattractive properties of chemokines 
may help to effect tumor regression. Despite the promise of these 
approaches for cancer treatment, the systemic delivery of chemokines, which 
are meant to act locally, inevitably will invoke adverse effects. Therefore, 
methods for local chemokine delivery are required. Two recent 
developments that address this issue include the development of tumor 
vaccines that incorporate chemokines along with tumor antigens, and the 
introduction of chemokine genes via gene therapy. 

7.1 Targeting of chemokine receptors 

As described above, CXCR4 is involved in the growth and metastasis of 
a number of different human cancers. Considerable attention has focused, 
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therefore, on interfering with CXCR4-CXCL12 interactions. Notably, 
CXCR4 is also a co-receptor, in association with CD4, for T-lymphotrophic 
strains of HIV [88]. Consequently, a number of CXCR4 antagonists 
developed for use in the treatment of HIV infection have potential benefit in 
cancer therapy. AMD3100 is a potent CXCR4 antagonist that was initially 
developed as an HIV drug and is now being scrutinized for anticancer 
activity. AMD3100 has been shown to block the chemotaxis, survival and 
proliferation of medulloblastoma and glioblastoma cells and to inhibit the 
intracranial growth of primary brain tumors in mice [89]. 

TI40 is another CXCR4 antagonist that was originally developed for 
anti-HIV therapy. Tamamura et al. interrogated three TI40 analogs for their 
ability to inhibit the migration of breast cancer, endothelial, and leukemia 
cells in vitro and breast cancer cells in vivo [90]. All three TI40 analogs 
were found to inhibit the migration of human breast cancer, leukemic T cells 
and endothelial cells in vitro, while the TI40 analog 4F-benzoyl- 
TN14003was found to partially reduce pulmonary metastasis of human 
breast cancer cells in a murine model. 

High levels of CCL5 (RANTES) are produced by 410.4 murine breast 
cancer cells, and in the in vivo mouse model, infiltrating cells express the 
cognate receptors, CCRl and CCR5 [12]. In this mouse model of breast 
cancer, administration of the CCRl and CCR5 antagonist, met-CCL5, was 
found to reduce the volume and weight of tumors as well as the number of 
infiltrating macrophages, which contribute to tumorigenesis. 

RNA interference mediated by small interfering RNA (siRNA), is 
effective in down-regulating CXCR4 gene expression in breast cancer cells 
in vitro [91]. This approach may have application for the down-regulation 
of other chemokine receptors. RNA interference has also been used to 
inhibit the production of VEGF by fibrosarcoma cells, thereby enhancing the 
effects of anti-angiogenic therapy with thrombospondin-1 [92]. Another 
strategy to inhibit tumor development, therefore, might be the use of siRNAs 
targeted to specific chemokine receptors in combination with anti- 
angiogenic therapies. 

Distinct from RNA interference, neutralizing antibodies are effective in 
inhibiting chemokine or chemokine receptor activities. Wiley et al. used 
antibodies directed against the CCR7 ligand CCL21 to block the lymphatic 
spread of B 16 melanoma cells [93]. Treatment of non-Hodgkin's lymphoma 
cells with anti-CXCR4 antibodies inhibited tumor cell migration and 
proliferation [94], while a similar approach inhibited lymph node metastases 
of breast cancer cells in an animal model [50]. 
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7.2 Manipulation of Leukocyte Infiltration 

Because of the important role that chemokines play in regulating the 
leukocyte infiltrate within tumors, therapeutic strategies aimed at altering the 
leukocyte balance have potential benefits in the treatment of cancer. Low 
level expression of CCL2 (MCP-1) in the tumor microenvironment has been 
shown to attract macrophages that produce MMP-9 and promote tumor 
growth and angiogenesis [95]. Therefore, strategies aimed at neutralizing 
CCL2 andlor its receptor may be of benefit in managing certain types of 
cancer. On the other hand, overexpression of CCL2 has been shown to 
attract large numbers of macrophages, resulting in the destruction of tumor 
cells [96]. In patients with pancreatic cancer, high serum levels of CCL2 are 
associated with increased survival rates [97]. 

Attempts to enhance anti-tumor immune responses by regulating 
chemokine activity have been considered. In one study, overexpression of 
CCL19 resulted in the rejection of murine breast tumors, in an NK cell C D ~ '  
T cell dependent fashion [98]. Similarly, overexpression of CCL20 (LARC) 
has been shown to attract dendritic cells and activate tumor-specific 
cytotoxic T cells, resulting in suppression of murine tumor growth [99]. 
Intra-tumor injection of CCL19 in a murine lung cancer model results in an 
influx of C D ~ '  and C D ~ '  T cells and dendritic cells at the tumor site, while 
depleting CXCL9 (MIG), CXCLlO (IP-lo), and IFN-7, inhibits the anti- 
tumor response[100]. Likewise, intra-tumor expression of CCL22 in a 
murine colon adenocarcinoma model leads to C D ~ '  T cell-mediated anti- 
tumor immunity [I 0 1 ]. 

In 3LL lung carcinoma cells, the introduction of a CX3CL1 (Fractalkine) 
transgene resulted in the production of both soluble and membrane-bound 
CX3CL1 and reduced tumor growth [102]. The anti-tumor effect of 
CX3CL1 was found to result from the chemo-attraction and activation of 
dendritic cells. In murine lymphoma cell lines, CX3CL1 has been found to 
mediate NK cell-dependent anti-tumor responses [103]. In this model, intra- 
tumor injection of DNA coding for a chimeric immunoglobulin-CX3CL1 
was found to generate strong anti-tumor activity. 

Taken together, these studies provide supportive evidence that 
modulating chemokine expression in the tumor microenvironment in order 
to influence the trafficking of macrophages, T cells, NK cells, and dendritic 
cells has great potential for limiting tumor growth. 
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7.3 Anti-angiogenic Therapies 

Another strategy for limiting tumor growth involves preventing 
angiogenesis. This may be achieved either by overexpressing angiostatic 
chemokines within the tumor, or by targeted inhibition of angiogenic 
chemokines produced by tumor cells. Ruehlmann et al. applied gene 
therapy to induce the expression of CXCL9 in a murine colon carcinoma 
model, which resulted in improved survival compared with antibody-11-2 
fusion protein therapy alone [104]. In a murine melanoma model, 
adenovims-mediated delivery of CXCLlO inhibited angiogenesis and 
contributed to tumor rejection [I 051. Intracranial administration of CXCL4 
has been shown to suppress the growth of murine gliomas [106]. 

In other studies, Oliver et al. showed that the use of carboxyamido- 
triazole to target the angiogenic chemokine CXCL8 prevented human 
melanoma xenograft growth in vivo in a murine model [107]. Finally, the 
CXCR2 receptor antagonist, hexapeptide antileukinate, has been shown to 
inhibit the growth of adenocarcinoma cells in vitro [108]. This peptide 
prevents the binding of ELR+ chemokines to CXCR2, thereby effectively 
inhibiting angiogenesis [I]. 

7.4 Tumor Vaccines 

The development of effective tumor vaccines has proven problematic, 
largely due to the poor immunogenicity of many tumors [I]. However, 
recent evidence indicates that certain chemokines are able to stimulate anti- 
tumor immunity, even in cases where the tumor would normally be non- 
immunogenic. A number of approaches have been described for stimulating 
the development of anti-tumor immunity. One approach involved 
converting a non-immunogenic tumor antigen into a vaccine by fusing it 
with CXCL10 and CCL7, thereby generating considerable protection against 
subsequent tumor challenge [109]. Subcutaneous injection with XCLl 
(Lymphotactin-a) and IL-2 secreting autologous neuroblastoma cells 
resulted in increased NK cell cytolytic activity and the production of IgG 
antibodies directed against tumor cells in patients with advanced or 
refractory neuroblastoma [110]. 

Dendritic cells play a central role in immune responses and may be 
useful adjuvants for tumor vaccine therapy. Tumor antigen-pulsed dendritic 
cells may be used alone, but improved protection is achieved by modifying 
dendritic cell based vaccines to express chemokines that attract naive T cells 
and dendritic cells to the tumor site. One strategy is to transduce patient 
derived peripheral blood dendritic cells with CCL21, for the treatment of 
advanced melanoma [I 1 11. Recently, embryonic stem cell-derived dendritic 
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cells transfected to express either CXCL9, CCL21, or XCLl were found to 
exhibit enhanced priming of cytotoxic lymphocytes in vivo in a murine 
model [112]. Of the three chemokines investigated, CCL21 was found to be 
the most effective at enhancing cytotoxic lymphocyte priming. In other 
studies, the absence of CCR5 on host cells was found to potentiate the 
effects of dendritic cell vaccination [113]. This finding has clinical 
implications, since blocking CCR5 may improve the efficacy of tumor 
vaccines. 

7.5 Gene Therapy 

Because of the important role that chemokines play in modulating tumor 
cell growth and proliferation, a number of recent studies have examined the 
therapeutic potential of expressing chemokine genes in tumor cells through 
introduction via adenovirus vectors, plasmids, and liposomes [ I l l ,  114- 
1 171. The rationale is that targeted chemokine expression will effectively 
stimulate the recruitment and subsequent activation of immune effector cells 
and/or influence angiogenesis. 

Liposome-mediated transfection of colorectal cancer cells with the CCL7 
gene retards tumor growth and inhibits tumor metastasis [117]. Notably, 
increased numbers of infiltrating immune cells are seen in CCL7-expressing 
tumors. Gao et al. introduced CCL27 and CX3CL1 into ovarian carcinoma 
(OV-HM) cells and investigated the effects of these cells in vivo in a murine 
model [I 161. OV-HM cells expressing both chemokines induced an 
accumulation of CD3' lymphocytes and NK cells, yet CX3CL1 induced 
angiogenesis, identifying it as an inappropriate candidate for cancer gene 
therapy. CCL27 transduced tumor tissue, on the other hand, was found to 
exhibit anti-tumor activity. 

A bicistronic adenovirus vector has been adapted to introduce herpes 
simplex virus thymidine kinase (HSV-tk) and CCL2 into hepatocellular 
carcinoma cells [I 171. HSV-tk will induce apoptosis in tumor cells. Co- 
expression of HSV-tk and CCL2 enhanced macrophage-dependent anti- 
tumor effects in a murine model of hepatocellular carcinoma. In other 
studies examining the benefits of multiple gene expression for anti-tumor 
activity, melanoma-bearing mice received intra-tumor gene therapy with 
plasmids expressing IL-12, IFN-y, CXCL10, and a VEGF receptor 
antagonist [115]. The VEGF receptor antagonist was included to sequester 
VEGF and thereby inhibit angiogenesis. This combination gene therapy 
approach resulted in tumor regression and improved long-term survival. 
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8. CONCLUSIONS 

The preceding serves to illustrate that chemokines and their receptors 
play a critical role in cancer development and progression. Chemokines are 
implicated in the neoplastic transformation of cells, tumor clonal expansion 
and growth, and in promoting abnormal angiogenesis. Additionally, 
chemokines orchestrate the passage of tumor cells through the extracellular 
matrix, intravasation into blood vessels or lymphatics, and the homing of 
tumor metastases to specific sites. The upregulation of chemokine receptors 
is sufficient for the development of Kaposi's sarcoma-like lesions in animal 
models [20], while dysregulated chemokine production by tumor cells has 
been implicated in both promoting the growth and survival of neoplastic 
cells and supporting angiogenesis. Different tumors produce different 
combinations of chemokines and many chemokines have multiple roles in 
tumor development and progression. Moreover, distinct chemokines exert 
variable effects on tumorigenesis, depending on their level of expression. 
Low levels of CCL2 promote tumor growth and development by attracting 
tumor-associated macrophages, which then secrete essential growth and 
survival factors [I 181. In contrast, increased production of CCL2 induces a 
massive influx of mononuclear phagocytic cells that cause tumor destruction 
[9, 961. Therapeutic strategies that involve altering the chemokine balance 
within the tumor microenvironment must, therefore, be carefully 
coordinated. 

As chemokines are involved at multiple stages in tumor development and 
metastasis, they present as excellent candidates for therapeutic intervention. 
Indeed, the past several years have seen a burgeoning of chemokine-based 
anti-tumor therapeutic approaches. Chemokine receptor antagonists, 
chemokine tumor vaccines, and chemokine-based gene therapies are under 
investigation in preclinical models. The expectation is that manipulation of 
the chemokine balance will be a useful adjunct to existing therapies for 
cancer. 

Table I. The roles of chemokines in cancer 
Chemokine Chemokine Alternate Name 
Ligand Receptor 
CXCLl CXCRI, GROa 

c x c R 2  

CXCL3 CXCR2 GROy 

Role in Cancer 

Constitutive production by some 
tumors, recruits Thl cells, 
angiogenesis, tumor cell growth 
and invasion 
Constitutive production by some 
tumors, angiogenesis, tumor growth 
Produced by some tumors, 
angiogenesis, tumor growth 
Angiostasis, tumor suppression and 

References 
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Chemokine Chemokine Alternate Name Role in Cancer References 
Ligand Receptor 

CXCW-B 

CXCL6 CXCR1, GCP-2 
CXCR2 

CXCL7 CXCR2 NAP-2 
CXCL8 CXCRI, IL-8 

CXCR2 

CXCL9 CXCR3-A MIG 

CXCLl 1 CXCR3-A I-TAC 
CXCL12 CXCR4 SDF-1 

CXCL14 Unknown BRAK 

CXCL15 Unknown None 
CXCL16 CXCR6 None 

CCL2 CCR2, CCR9, MCP-1 
CCRIO, 
CCRl 1 

CCL3 CCRl, CCM, MIP-la 
CCR9 

necrosis 

Produced by some tumors, 
angiogenesis 
Angiogenesis, tumor growth 

Angiogenesis 
Constitutive production by some 
tumors, angiogenesis, recruits 
tumor-associated macrophages, 
upregulates MMP production, 
tumor cell growth and invasion 
Angiostasis, recruits Thl cells, 
inhibits tumor growth 

Angiostasis, recruits Thl cells, 
inhibits tumor growth 

Angiostasis 
Enhances tumor cell proliferation in 
suboptimal conditions, tumor cell 
migration and organ homing in 
metastasis, overexpression can lead 
to anti-tumor response, 
angiogenesis 
Recruits B cells, produced by 
follicular lymphoma cells, organ 
homing in metastasis 
Expressed by infiltrating 
inflammatory cells, loss of 
expression in some tumors 
No known function 
Potential role in bone marrow 
homing for some tumor cells 
Rescues some tumor cells from 
apoptosis, induces anti-tumor 
immunity. 
Recruits Thl cells and tumor 
associated macrophaga, 
angiogenesis, low level production 
promotes tumorigenesis, 
overexpression can have anti-tumor 
effects 
Promotes migration, survival, and 
proliferation of some tumor cells, 
involved in immune evasion, 
overexpression can cause tumor 
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Chemokine Chemokine Alternate Name Role in Cancer References 
rigand Receutor 

CCL4 

CCLS 

CCM 

CCL7 

CCL8 

CCL9 
CCLlO 
CCLl I 

CCL12 
CCL13 

CCLl4 
CCLIS 

CCL16 

CCL17 

CCL18 
CCL19 

CCL20 

CCL2 1 

CCRl , CCRS, 
CCR9 

CCRl , CCR3, 
CCRS, CCR9 
CCRl 

CCRI, CCR2, 
CCR3, CCR9 

CCR2, CCR3, 
CCR9, CCRl1 
CCRl 
CCRl 
CCR3, CCR9, 
CXCR3 
CCR2 
CCR2, CCR3, 
CCR9, CCRl1, 
CXCR3 
CCR9 
CCRI, CCR3 

CCRl 

CCR4, CCR8 

Unknown 
CCR7 

CCR6 

CCR7, CXCR3 

MIP-I !3 

RANTES 

None 

MCP-3 

MCP-2 

None 
None 
Eotaxin-1 

None 
MCP-4 

HCC-1 
Lkn-1 

LEC 

TARC 

PARC 
ELC 

LARC 

SLC 

regression and induce anti-tumor 
immunity. 
Homologous sequence identified in 
KS associated Herpes virus, tumor 
cell migration 
Recruits Thl cells, associated with 
tumor progression 
Promotes tumorigenesis and 
metastasis, target of L-myc 
oncoprotein 
Recruits monocytes, produced by 
some tumors, organ homing in 
metastasis 
Recruits monocytes, produced by 
some tumors 
No known function 
No known function 
Angiogenesis, recruitment of Th2 
cells, organ homing in metastasis 
No known function 
Overexpressed by some tumors 

No known function 
Suppresses differentiation of 
C ~ 3 4 '  cells 
Angiogenesis, can induce anti- 
tumor immunity. 
Produced by some tumors, recruits 
Th2 cells, organ homing in 
metastasis 
Overexpressed by some tumors 
Tumor cell migration, organ 
homing in metastasis, 
overexpression can induce anti- 
tumor immunity and cause tumor 
rejection 
Promotes growth of some tumor 
cells, overexpression leads to 
recruitment of dendritic cells, anti- 
tumor immunity, and tumor 
regression 
Tumor cell migration, organ 
homing in metastasis, 
overexpression can induce anti- 
tumor immunity and lead to tumor 
rejection 
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Chemokine Chemokine Alternate Name Role in Cancer References 
Ligand Receptor 
CCL22 

CCL23 

CCL24 
CCL25 
CCL26 

CCL27 

CCL28 

XCLl 

XCL2 
CX3CLl 

CCR4 MDC 

CCRl MPIF-1 

CCR3 MPIF-2 
CCR9 TECK 
CCR3 Eotaxin-3 

CCRlO ESkine 

CCRlO MEC 

XCRl Lymphotactin-a 

XCRl Lymphotactin-P 
CX3CR1 Fractalkine 

Produced by some tumors, recruits 
Th2 cells, organ homing in 
metastasis 
Suppresses differentiation of 
CD34' cells 
No known function 
No known function 
Tumor-associated tissue 
eosinophilia (TATE), may promote 
angiogenesis 
Recruits CD3' cells and NK cells, 
immune evasion, overexpression 
can lead to anti-tumor activity 
Organ homing in metastasis, 
downregulated in some tumors 
Use in tumor vaccine can result in 
recruitment of NK cells and 
production of anti-tumor IgG 
antibodies 
No known function 
Angiogenesis, overexpression leads 
to recruitment of dendritic cells and 
anti-tumor effects 
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1. INTRODUCTION 

Interferons (IFNs) were the first group of cytokines that demonstrated 
efficacy in the treatment of malignancies and viral infections, and have been 
the prototypes for the clinical development of other immunomodulatory 
therapies. A substance called "interferon" was originally identified in 1957, 
and was named for its ability to interfere with viral replication in treated 
cells[l]. It is now well established that interferons are a group of naturally 
occurring cytokines with important irnmunomodulatory, antiviral, anti- 
angiogenic, antiproliferative and antitumor activities, which are released by 
cells upon exposure to various stimuli including viruses, double-stranded 
RNA, and polypeptides [2]. In addition to their therapeutic potential, IFNs 
have provided a model system for studying the mechanisms of mammalian 
signal transduction and transcriptional regulation[3]. Three types of 
interferons were originally identified, based on their separation profiles in 
high-pressure liquid chromatography (HPLC): a ,  J3 and y subtypes. Later it 
became evident that IFNa was produced principally by leukocytes, IFNJ3 by 
fibroblasts, and IFNy by cells of the immune system [2, 41. The IFNs are 
now classified into two major groups: Type I and Type I1 [2, 4-71. Type I 
IFN subtypes include IFNa, IFNP, IFNz and IFNo, whereas the only Type 
I1 IFN is IFNy [2, 4, 81. Type I IFNs are primarily induced in response to 
viral infection of cells, whereas the only Type I1 IFN is primarily induced by 
immune and inflammatory stimuli. Among the Type I IFNs, there are 
several IFNa subtypes, ranging from 14-20 in number, depending on the 
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species. They are named as a l ,  a2, a7, a 8  etc. [2, 4, 81. IFNa2 is the 
subtype that has proven clinical efficacy in humans and is used in the 
clinical setting as an antitumor and antiviral agent. All IFNa-subtypes are 
structurally related to each other and bind to a common heterodimeric 
receptor, called the Type I IFN receptor [2, 5, 91. Similarly, IFNP [8, 91 and 
IFNw [lo] bind to the Type I IFN receptor and mediate biological activities, 
similar to IFNa. Another member of the family of Type I IFNs, IFNT, is a 
novel IFN identified in trophectodenn during the peri-implantation stage of 
pregnancy in ruminant ungulate species [I 1, 121, whose physiological 
significance is unclear at this time. IFNy, the only known Type I1 IFN, was 
originally defined as 'macrophage activating factor' and is one of the most 
important cytokines released in response to immune stimulation [13]. IFNy 
is structurally unrelated and has no homology to the Type I IFNs and 
mediates its effects by binding to a distinct cell-surface receptor, called the 
Type I1 IFN receptor [2, 5, 9, 141. So, IFNy is in reality a very different 
cytokine than the Type I IFNs, and the only reason it was originally named 
as "interferon" was its ability to induce antiviral effects. 

2. INTERFERON RECEPTORS AND INTERFERON- 
ACTIVATED SIGNALING PATHWAYS 

2.1 Interferon receptors 

Both the Type I and Type I1 IFN receptors are transmembrane 
glycoproteins, whose extracellular domains serve as IFN-binding sites, while 
their cytoplasmic domains associate with members of the JAK family of 
lunases and initiate signal transmission upon binding of the cytokine[2, 51. 
There is evidence that both Type I and I1 IFN receptors have evolved fi-om a 
common origin belonging to the primitive adhesive molecules [I 5, 161. The 
genes encoding the two subunits of Type I IFN receptor are clustered in the 
q22.1 region of human chromosome 21 [17]. The two subunits of the 
receptor are the IFNARl [18] and IFNAR2 [17] chains. The chains of the 
receptor associate with each other upon binding of the ligand, leading to 
activationlphosphorylation of the receptor associated JAK kinases and 
downstream initiation of the signaling cascade [19]. The receptor-binding 
site is formed by an extensive and predominantly aliphatic hydrophobic 
patch, which interacts with a matching hydrophobic surface of IFNa2. An 
adjacent pattern of charged residues of alternating sign guides the ligand into 
its binding site [20]. Both IFNARl and IFNAR2 belong to class I1 helical 
cytokine receptors (HCRs)[20]. IFNARl is a 110 kDa glycosylated protein, 
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whose gene encoding sequence was originally cloned by Uze et a1[18]. The 
IFNAR2 subunit occurs in two different forms that are differentially spliced 
products of the same gene[l7, 21, 221. The major form of IFNAR2 is 
IFNAR~c, which is the longer form of this subunit. IFNAR2c has a relative 
molecular mass of 90-100 kDa, while the smaller form, IFNAR2b, has a 
molecular mass of approximately 51 kDa [17, 21, 221. The interactions of 
the distinct IFNAR2 receptor chains with IFNARl results in the formation 
of two distinct receptor complexes. One of them is the predominant 
"normal" Type I IFN receptor type that results from the formation of a 
complex between IFNARl and IFNARk, and the other one is the "variant" 
form that results from the combination of IFNARl and IFNAR2b[23]. Both 
Type I IFN receptor subtypes are capable of transducing signals and 
mediating the biological effects of IFNs[24]. 'However, IFNAR2c is the 
major ligand-binding component of the receptor complex, exhibiting 
nanomolar affinity to both IFNa and IFNP subtypes. This affinity increases 
to up to 20-fold upon formation of the ternary complex with IFNARl [19]. 

Like the Type I receptor, the Type I1 IFNreceptor (IFNGR) is also 
comprised of two distinct chains (IFNGR1 and IFNGR2) [14, 251. The 
IFNGRl and IFNGR2 chains belong to the class I1 cytokine receptor family. 
This class of receptors bind the associated ligands in the small angle of a V 
formed by the two Ig-like folds that constitute the extracellular domain of the 
receptor[l4,20]. The major ligand-binding subunit is the IFNGRl, a 90 kDa 
protein, whose function is critical for the generation of IFNy-responses [5, 
251. IFNGR2 is a 62 kDa protein that plays a minimal role in ligand 
binding, but has a major signaling function and is critical in the transmission 
of IFNy signals[5, 26, 271. The generation of the signaling response after 
binding of IFNy to the Type I1 receptor is limited by the levels of the 
IFNGR2 chain, as the IFNGRl chain is usually present in surplus[25, 281. 
Although IFNGR2 is constitutively expressed, its levels of expression may 
be tightly regulated, depending on the state of cellular differentiation or 
activation [25]. For example, some CD4+ Thl populations have very low 
levels of IFNGR2 chain cell-surface expression which leads to low 
expression of active IFNGR, resulting in a functional blockade of some 
aspects of IFNy signaling. As a result, T cells which express low levels of 
the IFNGR2 chain, continue to proliferate and are resistant to lFNy 
treatment. On the other hand, exposure of CD4+ Th2 populations displaying 
high levels of IFNGR2 to IFNy results in inhibition of cell proliferation and 
induction of apoptosis [25]. 
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2.2 Interferon-activated Jak-Stat pathways 

The intracellular domains of both Type I and I1 IFN receptors contain 
binding motifs for the Janus tyrosine kinases and signal transducers and 
activators of transcription (Stats) [4,9]. In the resting state, IFNARl is 
constitutively associated with the Tyk2 tyrosine kinase, while IFNAR2 is 
associated with the Jakl kinase [9]. Both Tyk-2 and Jak-1 are members of 
the Jak-family of kinases, which also includes Jak-2 and Jak-3, and which 
play important roles in signaling for various cytokines and growth factors 
[29]. Upon binding of Type I IFNs to the Type I IFN receptor, there is rapid 
and strong activation of Tyk-2 and Jak-1, and phosphorylation of the 
IFNARl and IFNAR2 receptor subunits [24, 30-381. The activated Jak- 
kinases subsequently phosphorylate various Stat-proteins which form 
complexes and translocate to the nucleus to regulate gene transcription [3,4, 
9, 39-41]. The principal Stat-proteins that participate in the generation of 
Type I IFN signals in a wide spectrum of cell types are Statl, Stat2, Stat3, 
and Stat5, while IFNy primarily utilizes Statl [3, 4, 9, 39, 401. The 
functional relevance of Stats in signaling for different IFNs was originally 
established by studies using cell lines resistant to IFN action. Such studies 
demonstrated that Statl is required for the generation of both IFNa and IFNy 
responses [42], while Stat2 is required for IFNa -signaling, but not IFNy - 
signaling [3,43,44]. 

After their tyrosine phosphorylation by Jak kinases, Statl and Stat2 
associate and form a Statl:Stat2 heterodimer. This complex then 
translocates to the nucleus and interacts with a member of the IRF-family of 
proteins, IRF9 (p48), leading to the formation of a transcriptional factor 
complex called ISGF3 (IFN-stimulated gene factor 3). The mature ISGF3 
complex initiates gene transcription by binding to specific sequences within 
the promoters of target genes, called IFN-stimulated response elements 
(ISRE) [3-5, 9, 39, 401 (Figure 1). In addition to ISGF3 complexes, 
multiple other Type I IFN-inducible complexes are formed, involving 
homodimers or heterodimers of Statl, Stat3, Stat5a and Stat5b [3, 4, 9, 39, 
401. These complexes primarily regulate transcription in the nucleus via 
binding to IFNy activated site (GAS) elements (Figure 1). 

In addition to tyrosine phosphorylation of Statl, its phosphorylation on 
serine 727 is essential for induction of its full transcriptional activity [45, 
461. Such serine phosphorylation of Statl is mediated by a member of the 
protein kinase C family of proteins, PKCG. This kinase plays a critical role 
in IFN- mediated gene transcription, as shown by studies demonstrating that 
a dominant-negative PKCG mutant inhibits IFN-dependent gene 
transcription via either ISRE or GAS elements [45]. However, it remains to 
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Figure 1 Activation of Jak-Stat pathways during engagement of the Type I IFN receptor. 

be determined whether other PKC-isoforms are also capable of regulating 
Stat-serine phosphorylation in a tissue-specific manner. Another possible 
candidate to act as a serine kinase for Statl was the p38 Map kinase, since 
serine 727 in Statl is in a phosphorylation consensus motif for p38 Map 
kinases. However, as discussed later in this chapter, there have been 
extensive studies that have established that the regulatory effects of the p38 
Map kinase on IFN-dependent gene transcription do not result from 
regulation of Stat-serine 727 phosphorylation or any other effects on the 
formation of Stat-containing DNA binding complexes [47]. 

During binding of IFNy to the Type I1 IFN receptor, the subunits of the 
receptor dimerize, resulting in activation of the associated Jakl and Jak2 
kmases. The IFNy-activated Jak kinases regulate phosphorylation of 
tyrosine 440 Statl docking residue which recruits the Statl protein, which in 
turn gets phosphorylated at tyrosine 70 1 [48]. The phosphorylated Statl 
forms homodimers, translocates to the nucleus and activates transcription by 
binding to the GAS sequences [3, 4, 9, 39, 401. The binding of IFNy to its 
receptor also leads to activation of the PI 3'1Akt kinase pathway, which 
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ultimately regulates phosphorylation of Stat1 protein at serine 727 via 
intermediate engagement of PKC-6 [48,49]. Thus, the activation of the Jak- 
Stat pathway by the Type 11 IFN receptor has many similarities to the Type I 
IFN-activated Jak-Stat pathway, but it only regulates gene transcription via 
GAS, and not ISRE, elements in the promoters of ISGs (Figure 2). 

Nucleus 1 
Growth Inhibition 

Figure 2 Signaling pathways activated by IFNy. 

2.3 The CBL-Crk signaling pathway 

In addition to the classic Jak-Stat pathway, Type I IFNs activate multiple 
other signaling cascades. One such pathway involves the c-cbl proto- 
oncogene, Crk-proteins (CrkL and CrkII), and the small G-protein Rap1 [50- 
521. CBL (p120cb1) is the cellular homologue of the product of the 
transforming gene of the Cas NS-1 murine retrovirus[53]. This protein 
participates in various signaling cascades activated by multiple different 
cytokine- and hormonal receptors [54-601. The structure of CBL includes 
SH3 [55-59, 611 and SH2 [57, 621 motifs for several signaling proteins, 
including src-kinases, CrkL, Grb2, and the regulatory subunit of the PI 3'- 
kinase. CBL is associated at baseline with the Tyk2 tyrosine kinase in the 
Type I IFN receptor complex. The protein undergoes phosphorylation after 
activation of Tyk-2 and acts as a docking protein for the src family kinase, 
Fyn[66] and the CrkL adapter[51]. The CrkL adapter is also tyrosine 
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phosphorylated by Type I IFNs, most likely during its interaction with the 
Tyk-2 tyrosine kinase, and provides a link to downstream engagement of the 
guanine exchange factor C3G and the small G-protein Rapl [51]. In 
addition to its activation by the Type I IFN receptor complex, CrkL is 
phosphorylatedlactivated by IFNy-dependent tyrosine kinases, ultimately 
resulting in Rapl activation [50]. Rapl is known to antagonize the Ras 
pathway and to promote induction of growth inhibitory responses [reviewed 
in 91. Thus, the CBL-Crk pathways link both the Type I and I1 IFN 
receptors to pathways that regulate growth inhibitory signals. The functional 
relevance of these pathways in interferon signaling has been further 
established by studies that examined the effects of inhibition of expression 
of CrkL and the related CrkII, in normal bone marrow hematopoietic 
progenitors, using antisense oligonucleotides[67]. These studies firmly 
established that the function of both Crk-proteins is essential for the 
generation of the suppressive effects of IFNs on normal hematopoiesis [67], 
further supporting the concept that these proteins are components of growth 
inhibitory pathways. Although both CrkL and CrkII mediate IFN-induced 
antiproliferative responses and apparently transduce common signals, they 
also have specificlnon-overlapping functions. CrkL, but not CrkII, forms 
Type I IFN-inducible complexes with a member of the Stat-family of 
proteins, Stat5 [52, 681. These IFN-inducible complexes translocate to the 
nucleus and regulate transcription of IFN-sensitive genes (ISGs) that have 
GAS-elements in their promoters [52]. The functional relevance of CrkL in 
Type I IFN-dependent transcriptional activation was established by studies 
using mouse embryonic fibroblasts (MEFs) from the recently established 
knockout mouse [69]. In luciferase reporter assays, it was demonstrated 
IFNa-dependent transcriptional activation was defective in MEFs lacking 
CrkL, compared to the parental wild-type MEFs with normal CrkL 
expression [70]. Interestingly, despite the fact that IFNy (Type I1 IFN) 
induces phosphorylation of CrkL and downstream C3GIRapl activation, 
there is no induction of CrkL-Stat5 DNA binding complexes during IFNy- 
treatment of cells [50]. 

2.4 The insulin receptor substrate (1RS)-pathway 

Another pathway of importance in Type I IFN signaling is the insulin 
receptor substrate (IRS)-signaling pathway. IRS-proteins are widely 
expressed proteins that have multiple tyrosine phosphorylation sites, and 
whose phosphorylated forms facilitate the activation of multiple downstream 
signaling pathways involving proteins with SH2-domains [9, 7 1-73]. There 
are six known members of this family of proteins: IRS-1[74], IRS-2[75], 
IRS-3 [76], IRS-4[77], Gab-1 [78], and Gab-2[79]. These IRS-proteins have 
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been previously shown to engage the SH2 motifs of various signaling 
proteins. Some examples of SH2-proteins that utilize IRS-elements for their 
engagement in hormone or cytokine signaling include Grb2, Shp2, the p85 
subunit of the phosphatidylinositol 3'-kinase (PI 3'-kinase), CrkII, and the 
src-family kinase Fyn [71, 72, 801. It is also likely that additional, yet 
unknown substrates, are regulated downstream of IRS-proteins. Two 
members of the IRS-family, IRS-1 and IRS-2, are phosphorylated by 
treatment of cells with IFNa, IFNP, or IFNo [81-851, and in turn link the 
receptor to multiple downstream pathways, via their SH2-docking function. 
The best characterized member of the IRS family, IRS-1, is phosphorylated 
on tyrosine during treatment of different cell types with Type I IFNs [81]. 
Such phosphorylation of IRS-1 provides a docking site for binding of the N- 
and C-terminus SH2 domains of the p85 regulatory subunit of the PI 3'- 
kinase[81], and such an interaction ultimately results in activation of the 
p110 catalytic subunit of the kinase[81]. Thus, engagement of IRS-1 by the 
Type I IFN receptor ultimately regulates activation of the PI 3'kinase, which 
in turn is known to regulate a serine kinase transduction cascade [86, 871. It 
should be pointed out that the catalyhc subunit of the PI3'-kinase has both 
phosphatidylinositol and serine kinase domains. Both domains of the PI 3'- 
kmase are activated by IFNa stimulation, resulting in induction of both 
phosphatidylinositol and serine kinase activities [8 1, 881. The other major 
member of the IRS-family, IRS-2, is also tyrosine phosphorylated by 
different Type I IFNs and regulates downstream engagement of the PI 3'- 
kinase pathway [82]. Altogether, there is strong evidence that IRS-proteins 
play important roles in Type I IFN signaling [reviewed in 89, 901. It is also 
likely that these proteins play interchangeableloverlapping roles in IFN- 
signaling, as they both activate at least one common pathway, involving the 
PI 3'-kinase. Nevertheless, the possibility that they also mediate distinct and 
specific IFN-signals cannot be excluded, and studies to directly address this 
issue should be performed. 

The precise downstream effectors that mediate the generation of the 
biological effects of Type I and I1 IFNs remains to be defined. Recent 
studies have demonstrated that both IFNaIP [91] and IFNy [92] induce 
activation of the FKBP 12-rapamycin-associated proteinlmammalian target 
of rapamycin (FRAP/mTOR) kinase and downstream engagement of the p70 
S6 kinase, a kinase that regulates phosphorylation of the S6 ribosomal 
protein [90, 911. Such activation of the p70 S6 kinase is inhibited by 
pharmacological inhibitors of the PI 3'-kinase and is defective in knockout 
cells with targeted disruption of both isoforms of the p85 regulatory subunit 
of the PI 3'-kinase (p85a -1- p85P -I-) [91,92]. The IFN-dependent 
activation of the p70 S6 kinase, and the downstream phosphorylation of the 
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S6 ribosomal protein on serines 2351236 and 2401244 have suggested the 
existence of a mechanism by which interferons may regulate rnRNA 
translation for ultimate generation of protein products that mediate 
biological responses. The phosphorylation of the S6 ribosomal protein is 
particularly important for translation of mRNAs with oligopyrimidine tracts 
in their 5' untranslated region. In addition to phosphorylation of the S6 
ribosomal protein, both Type I and I1 IFNs induce phosphorylation of the 
4E-BPI repressor of mRNA translation on threonines 37/46, threonine 70 
and serine 65 [91,92]. Such phosphorylation of 4E-BPI is important as it is 
required for inactivation of 4E-BPI and leads to the dissociation of 4E-BPI 
from the eukaryotic initiation factor-4E (eIF4E) complex, to allow rnRNA 
translation[91]. Thus, the PI 3'-kinase appears to play important roles in 
IFN-signaling, by regulating downstream activation of pathways that 
mediate Type I and I1 IFN-dependent initiation of mRNA translation 
(Figure 3) and may complement the function of the Jak-Stat pathway, which 
regulates IFN-dependent gene transcription. 

Figure 3 Type I IFN-dependent activation of the PI-3' kinasel 
mTOR pathway. 
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2.5 Map kinase pathways in interferon signaling 

The family of mitogen activated protein (MAP) kinases includes several 
proteins that are widely expressed in mammalian cells and play important 
roles in signaling [93-971. All members of this family exhibit serine- 
threonine kinase activities and regulate phosphorylation/activation of 
downstream kinases and other elements [93-971. The Map kinases are 
classified in three major groups, and include the extracellular signal 
regulated (Erk) kinases, the c-Jun NH2-terminal kinase (JNK) kinases, and 
the p38 Map kinases [93-971. These kinases have been shown to mediate 
important functional responses for cytokines, hormones, and other 
extracellular stimuli, such as stress. Over the last few years there has been 
also accumulating evidence that Map kinases play important roles in IFN- 
signaling. It has been previously demonstrated that the Erk-kinase pathway 
is activated in a Type I IFN-dependent manner [98], and a functional role for 
Erk in IFN-signaling has been suggested [98]. However, it appears that 
among Map kinases, the p38 Map kmase signaling cascade plays the most 
important role in the generation of IFN-responses [96]. Several studies have 
demonstrated the activation of p38 and its upstream and downstream 
effectors in a variety of IFN-sensitive cell lines and primary cells [47, 99, 
1001. 

The IFN-dependent activation of the p38 Map kinase signaling cascade 
appears to require the function of the small GTPase Racl, as shown in 
studies that established that Racl is activated during engagement of the Type 
I IFN receptor, and that overexpression of a dominant-negative form of Racl 
abrogates activation of p38 by IFNa[47]. The activation of p38 is also 
blocked by pre-treatment of cells with tyrosine kinase inhibitors, indicating 
that upstream IFN-inducible tyrosine kinase activity is necessary for 
activation of Racl and p38 [47]. This is not surprising, as the activation of 
Racl requires the activity of upstream guanine exchange factors (GEFs), 
whose activation is in many instances regulated by tyrosine kinases. 
Although the specific GEF that regulates Racl activation by IFNa is not 
known, a likely candidate is the vav protooncogene product (Vav). Vav is 
expressed in cells of hematopoietic origin and contains SH2 and SH3 
domains in its structure, as well as guanine exchange factor motifs [101- 
1031. It has been directly demonstrated that Vav functions as a GEF for 
Racl in other systems, catalyzing the transition of Racl from its inactive 
GDP-bound form to its active, GTP-bound state [104-1061. Importantly, 
previous studies have established that Vav is rapidly phosphorylated on 
tyrosine by different interferons (IFNa, IFNP, IFNo) and that it interacts 
with the Type I IFNR-associated Tyk-2 kinase [107, 1081. Such engagement 
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of Vav in IFN-signaling has important functional consequences, as shown by 
studies demonstrating that inhibition of Vav-expression reverses the 
generation of the antiproliferative effects of IFNa in cells of hematopoietic 
origin [109]. 

Extensive studies have been performed to identify signaling events 
occurring downstream of the IFN-activated p38 Map kinase. It is now well 
established that during Type I IFN stimulation of cells, p38 regulates 
downstream activation of the kinases MapKapK-2 [47, 99, 110, 1111, 
MapKapK-3 [47, 11 11, and Msk-1 [I 111 (Figure 4). It is apparent that these 
downstream effectors of p38 function as mediators of signals for the 
generation of biological responses, but the precise contributions of the 
different kinases to the generation of distinct IFN-responses remain to be 
defined. It is likely that these kinases mediate signals that ultimately 
facilitate transcription of IFN-sensitive genes (ISGs). It is now well 
established that activation of the p38 pathway is required for gene 
transcription induced by Type I IFNs (47, 99, 11 1). Studies using either 
pharmacological inhibitors of p38 or dominant-negative p38 mutants have 
demonstrated that the function of p38 is required for IFN-inducible 
transcription via either ISRE or GAS elements (47, 99). The functional 
requirement of the p38 pathway for the generation of such transcriptional 
effects was recently confirmed by studies using MEFs with targeted 
disruption of the p38a gene (111). Interestingly, IFNy-inducible gene 
transcription via GAS elements remains intact in p38a knockout cells (1 1 I), 
strongly suggesting that p38 plays a specific role in transcriptional regulation 
by the Type I, but not the Type 11 IFN receptors. 

The precise mechanism by which p38 regulates transcription of ISGs 
remains to be defined. Extensive studies so far have failed to demonstrate 
any regulatory effects of p38 on the activation of Stats and the formation of 
active Stat-complexes [47, 110, 1 111, implicating the existence of Stat- 
independent mechanism. Although it appears that the IFN-activated p38- 
and Stat-pathways do not cross-regulate each other, they apparently 
cooperate for optimal IFN-dependent gene transcription, as evidenced by the 
requirement of both pathways for transcriptional activation via ISRE or GAS 
elements. 

The important regulatory effects of the p38 pathway on IFN-dependent 
gene transcription have direct biological consequences. It is now established 
that activation of p38 is required for the generation of the antileukemic 
effects of IFNa in chronic myelogenous leukemia [I 101. This finding is of 
particular interest, as BCR-ABL expressing cells have selective sensitivity to 
the antileukemic effects of IFNa in vivo. In fact, for many years prior to the 
introduction of ST1571 in the management of this disease, IFNa was the 
treatment of choice for this form of leukemia outside of allogeneic bone 
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marrow transplantation [reviewed in 901. Interestingly, recent studies 
demonstrated that the normal function of p38 is suppressed by BCR-ABL in 
CML-cells, and that imatinib mesylate (ST1571) reverses such suppression 
and activates p38 [I 121. In addition, it was demonstrated that 
pharmacological inhibition of p38 activity using the SB203580 inhibitor 
reverses the suppressive effects of ST1571 on leukemic CFU-GM 
hematopoietic progenitors fkom patients with CML [112]. Thus, both 
IFNa and ST1571 utilize at least one common mechanism to mediate 
antileukemic responses in CML cells, and the p38 pathway plays a critical 
role in such responses. 

Cytoplasm 

Figure 4 The p38 Map kinase in Type I IFN signaling. 

In addition to their effects on leukemic hematopoiesis, IFNs are known 
potent suppressors of normal hematopoietic progenitors [reviewed in 91. 
Both Type I and I1 IFNs inhibit the growth of normal erythroid (BFU-E, 
CFU-E), granulocytic-monocytw (CFU-GM), and mixed lineage (CFU- 
GEMM) hematopoietic precursors, and such effects may account for the 
development of cytopenias when IFNa is administered to humans [9]. The 
pharmacological inhibitors of p38, SB203580 and SB202190, reverse the 
effects of IFNa and IFNP on primitive hematopoietic precursors, 
demonstrating that the p38 pathway is required for the effects of IFNs on 
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normal hematopoiesis [I  131. Interestingly, the p3 8 pathway also appears to 
function as a common effector pathway for the, generation of the effects of 
other myelosuppressive cytokines on normal hematopoiesis. Specifically, 
p38 is required for the generation of growth inhibitory effects of 
TGFP [113], TNFa [114] and IFNy [ll4] on normal hematopoietic 
progenitors. On the other hand, both TNFa and IFNy have been implicated 
in the pathogenesis of aplastic anemia and other bone marrow failure 
syndromes [9], prompting studies to examine whether the p38 pathway plays 
any role in the pathophysiology of such syndromes. Such studies have 
demonstrated that pharmacological inhibition of p38 partially reverses the 
hematopoietic defects in aplastic anemia bone marrows in vitro[ll4], 
suggesting that drugs that inhibit p38 may prove to be of therapeutic value in 
the treatment of aplastic anemia in the future. 

In addition to mediating the generation of growth inhibitory responses, 
there is ample evidence implicating the p38 pathway in the induction of the 
antiviral effects of Type I IFNs. Inhibition of p38 activation has been shown 
to reverse the induction of an IFN-antiviral state [loo, 1101, while studies 
using cells with targeted disruption of the MapKapK-2 gene have implicated 
MapKapK-2 as a downstream effector kinase for the generation of such 
responses [I 111. Altogether, the current evidence indicates that the p38 Map 
kinase pathway plays a central signaling role in the generation of the 
biological effects of Type I IFNs. Future studies to define the precise 
mechanisms by which this pathway controls transcription of interferon- 
sensitive genes will be of interest and may provide important insights on the 
mechanisms by which IFNs generate antiviral and antitumor responses. 

INTERFERONS AND APOPTOSIS 

3.1 Pro-apoptotic and anti-apoptotic effects of 
interferons 

There is accumulating evidence that IFNs exhibit either pro- or anti- 
apoptotic effects, depending on the cell types involved and the physiological 
context. For example, Type I IFNs can promote apoptosis in a variety of 
tumor cells of diverse origin, including melanoma cells [115], ovarian 
carcinoma cells [116], multiple myeloma cells [117, 1181 and CML cells 
[119]. Type I ENS, but not IFNy (Type 11), induce TRAIL-mediated 
apoptosis in multiple myeloma cell lines by the release of cytochrome C 
secondary to mitochondria1 membrane damage and caspase activation [117]. 
Such IFNa-dependent apoptosis is accompanied by cell cycle arrest in the 
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GOIGI phases in certain cell types [120,121], but may also occur in the 
absence of cell cycle arrest and p53 induction [122-1241. In addition to 
direct induction of apoptosis, there is also evidence that IFNa sensitizes 
cells to TNFa and Fas-induced apoptosis, via a mechanism involving 
inhibition of NFkB activation, as well as by the regulation of other, yet 
unknown, cellular events [125-1281. However, there has been also some 
evidence that under certain circumstances IFNa activates NFkB and 
promotes cell survival, underscoring the complexity of the process [129]. 
The induction of an anti-apoptotic state may occur in cases where an 
antiviral effect may be desirable, as inhibition of cell death may allow IFNs 
to exert a full antiviral response. Further studies are needed to clarify and 
define any possible correlation between antiapoptotic effects and induction 
of IFN-antiviral responses. 

3.2 Fas and FasL in interferon-dependent apoptosis 

It is well established that FasICD95 and Fas ligand (FasL) play 
important roles in the regulation of apoptosis by various stimuli [130], 
and there is evidence that IFNs also utilize this pathway to induce 
apoptosis. Both Type I and I1 IFNs are known to upregulate 
expression of Fas, as well as the soluble form of FasL (sFasL) in 
activated peripheral blood mononuclear cells. Moreover, it has been 
demonstrated that IFNa enhances apoptosis induced by an anti-Fas 
antibody, which mimics the action of the natural Fas, and augments 
apoptosis induced cell death via the FasIFasL pathway [13 1 - 1331. 
The FasLIFasR system has been shown to be of importance in the 
generation of the effects of IFNa2 in CML cells [132], as well as 
hepatocellular carcinoma cell lines [134], and basal cell carcinoma 
cell lines [133]. IFNy also regulates the Fas/FasL pathway to induce 
apoptosis in various malignant lines of diverse cellular origin, 
including multiple myeloma, neuroblastoma, cholangiocarcinoma and 
melanoma [135, 136, 40, 1411. There is also accumulating evidence 
that Fas expression may be playing a role in the generation of the 
suppressive effects of IFNy on normal and abnormal hematopoiesis. 
Upon exposure of human hematopoietic cells to IFNy, there is a 
marked increase in the percentage of Fas-expressing cells, as well as 
up regulation and activation of caspases 1, 3, and 8 that results in 
apoptosis of human erythroid progenitor cells. [137, 1381. 
Interestingly, bone marrow CD34+ cells from patients with aplastic 
anemia have increased Fas ligand expression, suggesting this event 
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may be implicated in the induction of aplasia [139]. As IFNy has been 
implicated in the pathogenesis of aplastic anemia in humans [reviewed 
in 1391, it is likely that Fas-induced apoptosis provides an important 
pathophysiologic mechanism by which this cytokine promotes the 
development of this disease. 

3.3 Roles of caspases in interferon-dependent apoptosis 

Caspases belong to the family of cysteine proteases and play important 
roles in initiation and final accomplishment of cell death in response to 
apoptotic signals [142]. Studies to define the role of caspases in IFNa- 
dependent apoptosis have demonstrated that such apoptosis is associated 
with activation of caspases-1, -2, -3, -8 and -9 [143]. The activation of these 
caspases by IFNa is critical for the induction of cell death. These studies 
also demonstrated that the activation of caspase-3 was dependent on activity 
of caspases-8 and -9, and that activation of caspase-8 is the upstream 
regulatory event that controls the IFNa-induced caspase cascade [143]. 
Pharmacological inhibition of the caspases resulted in almost complete 
reversal of the IFN induced apoptotic activity, establishing the importance of 
this mechanism in IFN-mediated cell death[143]. Similarly, IFNP-induced 
apoptosis in sensitive melanoma cells is dependent on activation of the 
caspase cascade with cleavage of caspases 3, 8, and the caspase 3 substrate, 
poly(ADP-ribose) polyrnerase[ll5]. On the other hand, IFNy also induces 
the activation of caspases 1, 3, and 8 to produce apoptosis in human 
erythroid progenitor cells [137]. Altogether, it appears that all different 
Type I and I1 IFNs modify the status of activation of the caspase cascade, 
and such cellular effects appear to play prominent roles in promoting cell 
death. 

3.4 Roles of IFN-signaling elements in mediating 
induction of apoptosis 

There is strong evidence that the Jak-Stat pathway plays important roles 
in IFN-induced apoptosis. For instance IFNy has been shown to induce 
interleukin-1-beta converting enzyme [ICE] gene expression to enhance 
cellular susceptibility to apoptosis [144], while such induction depends on an 
intact IFNy-signaling pathway and requires both Jakl and Statl [145, 1461. 
The IFNy-dependent activation of Statl is also necessary for gene 
transcription and upregulation of pro-apoptotic molecules such as Fas and 
FasL, and such an event has been implicated as a mechanism for generation 
of IFNy-growth inhibitory responses [147]. Moreover, activation of Statl is 
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essential for upregulation of caspase-8 by IFNy in breast carcinoma cells and 
sensitizes such cells to the mitochondria-operated apoptotic program [148]. 
In addition to the requirement of Statl for IFNy-induced apoptosis, there is 
evidence that IFN regulatory factor-1 (IRF-I), is an important mediator of 
IFNy-dependent cell death [149,150]. As IRF-I is a tumor suppressor whose 
expression is Stat 1 -dependent [15 1,1521, its involvement in IFNy-dependent 
apoptosis further underscores the importance of Statl in the ultimate 
regulation of apoptosis. Other Stat-dependent genes that may be involved in 
the regulation of FN-dependent apoptosis include the 2-5 oligoadenylate 
synthetase[l53] and the double stranded RNA-activated kinase, PKR [154]. 
In addition the X-linked inhibitor of apoptosis (XIAP) associated factor-1 
(XAF-1) is a novel IFN stimulated gene whose IFN-inducible expression 
renders cells lines sensitive to TRAIL induced apoptosis[l55]. 

Another IFN-signaling cascade that may be playing a role in the 
regulation of apoptosis is the PI3KlmTOR pathway. As mentioned earlier, 
mTOR is activated in an F N a -  and IFNy-dependent and regulates 
downstream activation of the p70 S6 kinase and phosphorylatiodde- 
activation of the translational repressor 4E-BPI [91,92]. A recent study 
demonstrated that pharmacological inhibition of mTOR activation using 
rapamycin, or overexpression of a kinase-deficient dominant-negative 
mTOR mutant blocks IFNa-dependent apoptosis [156]. The precise 
mechanism by which this pathway may be participating in the induction of 
IFN-induced apoptosis remains to be defined. One possibility is that this 
pathway regulates mRNA translation of ISGs for protein products that 
mediate IFN-responses, including apoptosis, but this remains to be directly 
studied in future studies. 

CONCLUSIONS 

There is a large amount of accumulated knowledge on the cellular 
mechanisms by which IFNs may regulate antitumor responses. Despite that, 
the precise mechanisms by which these cytokines mediate antitumor effects 
in vitro and in vivo remain unknown. In addition to the direct antitumor 
effects of IFNs that were discussed here, there is a large amount of evidence 
demonstrating that these cytokines exert immunomodulatory and anti- 
angiogenic activities. However, the contribution of such mechanisms in the 
generation of antineoplastic responses may not be as critical for the effects 
of lFNs as their direct effects on target malignant cells. There is no doubt 
that over the next several years there will be a plethora of new knowledge 
that will emerge in the field, due to recent advances in modern molecular 
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techniques and the optimization of methodologies for proteomics and gene 
array studies. Hopefully, further work will lead to the full elucidation of the 
mechanisms by which interferons induce their activities against malignant 
cells. This will be important to achieve as it may lead to a better 
understanding of the immune surveillance against cancer and facilitate the 
development of novel anticancer therapies. 
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1 INTRODUCTION 

Cytokines are diverse group of peptides and glycoproteins that are 
secreted by different hematopoietic cells, including lymphocytes, 
monocytes, and granulocytes. In addition to their role in inflammation and 
immunity, cytokines have a major role in lymphoid development, 
differentiation, and homeostasis as well as in lymphoid tumorigenesis. 
Cytokines can be grouped according to their structural relationship. One of 
these groups is the tumor necrosis factor (TNF) family of cytokines. The 
TNF family takes its name from TNF (cachectin, lymphotoxin-a), which 
was the first member of the group to be As more members and 
receptors were discovered, this family now consists of 18 ligands and 26 
receptors (Tables 1 and 2, at the end of the 

The receptors are transmembrane proteins (types I and 111) that can be 
catalytically cleaved and release in soluble forms. The extracellular portion 
of these receptors contain characteristic cystein-rich pseudo-repeats, which 
vary in number between different receptors.' The biologically active form of 
these receptors is homotrimers. The receptors share a 25% - 30% sequence 
homology at the trimerization site, but not at the binding sites. The 
intracellular tails for this receptor are unique and have little or no sequence 
homology. The only exception is the presence of a death domain (DD) 
sequences in the cytoplasmic tails of the death receptors. 

The TNF family receptors signal by two major mechanisms: 1) by 
recruiting TNF receptor associated factors (TRAFs) and calcium modulator 
and cyclophylin ligand interactor (CAML), and 2) by recruiting death 
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effector domains (DED)-containing molecules to their DD.~- '~  Finally, some 
receptors exist only in soluble forms (osteoprotegrin) or may lack 
intracellular domains (decoy receptors), such as the TRAIL receptor R3. 

The TNF family of ligands are transmembrane proteins (type 11). Similar 
to their receptors, the extracellular portion of these ligands can be 
enzyrnaticaly cleaved producing biologically active soluble ligands. 
Furthermore, similar to the receptors, the biologically active form of the 
ligands is homo (and to a less extent hetero) trimers. 

Although most ligands have specific receptors, some Iigands share 
receptors with other ligands (for example, RANK ligand and TRAIL bind to 
osteoprotegrin). 

In this chapter we will focus on some members of the TNF family 
ligands and their respective receptors that show major importance in the 
pathogenesis and potential therapy of lymphomas. These are TNFSF5 
(CD40L) with TNFRSF5 (CD40), TNFSF8 (CD30L) with TNFRSF8 
(CD30), TNFSF13 (APRIL) and TNFSF13B (BAFF) with BAFF, RANKL, 
and TRAIL. We will also review on 4 cytokines that they are implied in 
pathogenesis of lymphoma: Interleukins 6, 10, 12, and 13. 

2. CD4OL (TNFSFS) AND ITS RECEPTOR 
(CD40lTNFRSFS) 

2.1 General 

CD40L is a 32-33-kDa type I1 transmembrane protein, which also exist 
in two soluble active forms of 18 kDa and 31 kDa. 5,14,15 The human gene 
encoding CD40L is located on chromosome X26.3-27.1. The CD40 
receptor is a 50-kDa transmembrane protein, consisting of 227 residues. Its 
extracellular domain contains 193 amino acids, which have four cysteine- 
rich motifs. CD40 shares most sequence homology with CD30 and RANK. 
The gene encoding for CD40 is located on chromosome 20q11-13 (Table 3, 
at the end of the chapter).16 The expression of both CD40L-CD40 is 
regulated by AT-hook transcription factor AKNA." 

2.2 Expression 

CD40L is predominantly expressed by activated CD4+ T lymphocytes, 
but also expressed by most of hematopoietic cells (activated B-lymphocytes, 
NK cells, monocytes, eosinophils, basophils, dendritic cells and platelets).13- 
15,18-20 CD40L is also expressed out side the hematopoietic system, such as 
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endothelial cells, and smooth muscle ~ e l l s . ' ~ - ' ~ , ' ~ ' ~ ~  Although soluble CD40L 
is not detected in the serum of healthy individuals, many patients with 
lymphomas, chronic lymphocytic .leukemia, autoimmune diseases and 
essential thrombocythemia have elevated soluble CD40L in their sera (Table 
4, at the end of the ~ h a ~ t e r ) . ~ ~ - ~ ~  CD40 receptor is expressed by several 
types of hematopoietic cells, including B-lymphocytes, monocytes, 
dendritic, and a subset of T cells, and by epithelial cells of the urinary 
bladder, ovary, breast, and bronchi, as well as by endothelial ~ e l l s . ~ ~ ' ~ , ~ ~  
Consequently, CD40 is expressed by several types of hematologic and 
epithelial malignancies, including B-cell lymphomas, chronic lymphocytic 
leukemia, multiple myeloma, Hodgkin's disease, breast, bladder, and 
bronchial  carcinoma^.^"^"^^^^"^ 

2.3 Physiological function 

Under physiological conditions, the binding of the ligand to the receptor 
leads to the engagement of TRAF-2, -3, -5, and -6, and consequently to the 
signaling through MAPKs (p38, ERK112, and JNK) and N F - K B . ~ ~ ~ ~ ~  The 
biological effects of this signaling are diverse: In B-cells it promotes 
activation, survival, differentiation, proliferation and immunoglobulin 
isotype switching, in dendritic cells it enhances CD8+ T cell activation and 
antigen presentation of antigen-presenting-cells (APCs) through the 
upregulation of CD80 (B7.1) and CD86 (B7.2), and it also leads to secretion 
of IL-1, IL-6, IL-8, IL-12, IL15, RANTES and MIP-la. 

2.4 Function in disease 

CD40L has been reported to enhance the survival of several malignant B- 
cell neoplasms, and to enhance their resistance to In 
Hodgkin Disease, CD40 activation activates NF-KB and induces cytokines 
and chemokines expression and In vivo, these tumor cells are 
exposed to CD40L by either an autocrine or paracrine loop.39-42 This loop is 
more obvious in B-cell lymphomalleukemia, where the malignant B-cells 
frequently coexpress CD40 and CD40L. The ability of CD4OL to enhance 
malignant B-cell survival and make them resist chemotherapy is due to the 
induction of NF-KB and several antiapoptotic molecules such as Bcl-xL, 
Mcl- 1, surviving, and c-FLIP. 5,13,25,27,43-45 
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2.5 Applications 

Several strategies are currently being explored to manipulate 
CD401CD40L system in cancer therapy.5913,46-48 One strategy is to activate 
CD40 on tumor cells to upregulate CD8OlCD86 so they become more 
immunogenic, by upregulating CD80lCD86. This strategy is currently 
explored in tumor vaccines and in gene transfer therapy of chronic 
lymphocytic leukemia. Another strategy is to interrupt CD401CD40L 
survival signaling by blocking a n t i b ~ d i e s . ~ ~ ? ~ ~  

3. CD30L (TNFSFS) AND ITS RECEPTOR 
(CD3OlTNFRSF8) 

3.1 General 

CD30L is a 64-kDa 33 kDa type I1 transmembrane protein. The gene 
encoding for CD30L is located on chromosome 9q33. CD30 is a 120-kDa 
type I transmembrane protein and its extracellular domain contains 6 
cysteine-rich motifs. CD30 can also exist in a soluble 85-kDa form 
(sCD30). The gene encoding for CD30 is located on chromosome lp36 
(Table 3). 

3.2 Expression 

CD30L is expressed in the majority of hematopoietic cells, as well as in 
epithelial cells and Hassall's corpuscles in the thymus medulla. 
Malignancies that express CD30L include chronic lymphocytic leukemia 
(CLL), follicular B-cell lymphoma, hairy cell leukemia, T-cell 
lymphoblastic lymphoma, and adult T-cell leukemia lymphoma (Table 
4). '5349-52 Low levels of soluble CD30 (sCD30) are found in patients infected 
by hepatitis B and C, human immunodeficiency virus (HIV) and Epstein- 
Barr virus (EBV). Higher levels of sCD30 are detected in patients with 
systemic lupus erythematosis, rheumatoid arthtis, and Hashimoto's 
thyroiditis. sCD30 is also detected in patients with anaplastic large cell 
lymphoma (ALCL) and Hodgkin Disease, and is associated with poor 
prognosis.53~54 

The expression of CD30 receptor is restricted to a few numbers of 
activated B and T cells in healthy individuals. CD30 is aberrantly expressed 
by several malignancies, including Hodgkin Disease, anaplastic large cell 
lymphoma, immumoblastic lymphoma, multiple myeloma, adult T-cell 
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lymphoma leukemia, cutaneous T-cell lymphoma, germ cell malignancies 
and thyroid ~ a r c i n o m a . ~ ~ - ~ ~  

3.3 Physiological function 

Under physiological conditions, the binding of the CD30 ligand to CD30 
receptor engages TRAF-1, -2, -3 and -5 in the intracellular portion of the 
receptor, and consequently leads to the activation of ERIC112 and NF-KB."-~~ 
The physiologic hnction of CD30LED30 pathway remains controversial. 
Suggested physiologic functions include T-cell negative selection and 
removal of autoreactive thymocytes, T-cell costimulation, cytokine and 
chemokine secretion, regulation of class-switch DNA recombination and 
antibody production in subsets of human B - c ~ I I ~ . ~ ~ ~ ~ * ~ ~ - ~ ~  

3.4 Function in disease 

CD30L has pleiotropic activity against CD30+ lymphoid 
5,68,69 malignancies. In Hodgkin's disease, CD30L may enhance the survival 

of the malignant Reed-Sternberg cells. In contrast, CD30L may induce cell 
cycle arrest and apoptosis of anaplastic large cell lymphoma cells. In some 
cases, CD30L and CD30 are coexpressed by tumor cells of cutaneous 
anaplastic large cell lymphoma and lymphoid papulosis causing spontaneous 
regression of the primary cutaneous lesions.70 

3.5 Application 

Because CD30 expression is very limited in healthy individuals, targeting 
CD30 in patients with CD30+ tumors is very appealing strategy. Several 
investigators are evaluating different types of anti-CD30 antibodies with 
promising results. 5,71-78 However, it remains to be determined whether the 
presence of high levels of soluble CD30 receptors may interfere with these 
therapeutic strategies. 
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4. TRAIL (TNFSF10) AND ITS RECEPTORS 
(RlITNFRSFl OA, R2lTNFRSFl OB, R3lTNFRSFl OC 
AND R4lTNFRSFlOD) 

4.1 General 

TNF-related apoptosis inducing ligand (TRAIL or Apo2L) is a 33 kDa 
type I1 transmembrane protein, which can be proteolyticaly cleaved and 
yield a soluble or vesicle-associated f~rrn. '~, '*~ '~ The gene encoding for 
TRAIL is located on chromosome 3q26. TRAIL four exclusive receptors: 
TRAIL-R1, TRAIL-R2, TRAIL-R3 and TRAIL-R4. TRAIL also binds to a 
fifth receptor, OPG, which is shared with RANKL (Figure 1).s>79-81 

Figure 1. Selected members of TNF family ligands and their receptors. Some ligands have 
more than one receptor, and some receptors are shared with more than one ligand. The 

biologically active forms of the ligands or receptors are protein trimers. Death receptors are 
characterized by the presence of a death domain (DD) in the cytoplasmic tail (black boxes). 

Survival receptors usually signal by recruiting different TRAFs. 

All four TRAIL receptors are type I transmembrane proteins, each 
containing two cysteine-rich motifs in the extracellular domains. TRAIL-Rl 
and TRAIL-R2 have a death domain (DD) in their intracellular portion, 
TRAIL-R3 does not have intracellular tail but is attached on cell surface by a 
glycophospholipid anchor, and TRALR4 has a truncated death domain 
which can not signal apoptosis (decoy receptors). 5,80-83 All exclusive TRAIL 
receptors are clustered in the short of chromosome 8 (Table 3). 
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4.2 Expression 

TRAIL protein expression is restricted to activated T cells and natural 
killer ~ e l l s . ~ , ~ ~  However, TRAIL mRNA can be found in most normal 
tissues. Normal tissues rarely express TRAIL-Rl and -R2. In contrast, 
TRAILR3 and -R4 are widely expressed by normal cells. Several tumor 
cells (myeloid, lymphoid, breast, and brain tumor cells) aberrantly express 
functional TRAIL and its TRAIL receptors.63'81'84-99 

4.3 Physiological Function 

The primary function of TRAIL is induction of cell death, and therefore 
its function is critical for immunosurveillance.5~10~83~1000101 This can be 
achieved by activating its death receptors (R1 and R2) with subsequent 
recruitment of Fast-associated death domain (FADD), which in turn recruits 
caspases 8 and 10.10,81,90,95,102,103 Activated caspase 8 (or 10) then activates 

caspases 3, 6 and 7 (effector caspases) leading to cell death. The apoptotic 
signaling can be inhibited by cFLIP, that binds to FADD and impairs the 
recruitment of caspase 8.57'078',95 In addition to this "extrinsic" death 
pathway, TRAIL can activate the mitochondrial death pathway, or 
"intrinsic" pathway (Figure 2). In this pathway, activated caspase 8 cleaves 
Bid, which promotes Bax and Bak activation and oligomerization. 
Consequently, cytochrome-c is released from the damaged mitochondria1 
membrane. The released cytochrome-c binds to caspase 9 and the apoptosis 
protease-activating factor 1 (APAF-1) to form the apoptosome leading to 
activated caspase 9. Finally, activated caspase 9 cleaves and activate 
caspases 3, 6, and 7, leading to apoptosis (Figure 2).833'04 In addition to 
induction of cell death, TRAIL may also activate NF-KB and the MAPK 

105,106 JNK, and induces cytokine and chemokine secretion. This suggests that 
TRAIL may play a role in inflammation. 

4.4 Function in disease 

Although aberrant expression of TRAIL has been described in several 
tumors, no direct link between dysregulated TRAIL pathway and human 
cancer has been established. Surprisingly, Cancer cells seem to be more 
sensitive than normal cells to TRAIL-induced cell death. However, not all 
tumor cells are sensitive to TRAIL, and resistance to TRAIL has been linked 
to several defective mechanisms, including TRAIL, R1 and R2 receptor 
mutations, cFLIP overexpression, caspase-8 deficiency, Bax deficiency, Bcl- 
2 overexpression, inhibitor of apoptosis (IAP) family of proteins 
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overexpression, NF-KB activation, protein kinase C activation, caspase-8 
hypermethylation, and constitutive ERK 112 and AKT e ~ ~ r e s s i o n . ' ~ ~ - ' ~ ~  

Extracellular 

cnftDl9 RDclasaJ 

Figure 2. Death and survival signaling pathways initiated by activating different TNF family 
receptors. 

4.5 Applications 

Because TRAIL preferentially kills cancer cells while sparing normal 
cells, it is currently being developed for cancer therapy. 5,93,97,98,121,122 

Strategies to use TRAIL trimer or agonistic antibodies to TRAIL death 
receptors R1 and R2 are currently being evaluated. 123,124 
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5. RAN= (TNFSF11) AND ITS RECEPTOR 
(RANKITNFRSF11) 

5.1 General 

Receptor Activator of nuclear factor kappa-B Ligand (RANKL) is a 40- 
45-kDa type I1 transmembrane protein, which can also be shed as 31-kDa 
soluble form. 5,125-130 The gene encoding for RANKL is located on 
chromosome 13q14 (Table 3). RANK is a 66 kDa type I transmembrane 
protein. The gene encoding for RANK is located on chromosome l8q22.l. 
RANKL binds to a second soluble receptor called osteoprotegerin 
(oPG) . '~~ , '~~  OPG is a secreted dimmer, that can also bind TRAIL with a 
lower affinity (Figure 1).131,132 The gene encoding for OPG is located on 
chromosome 8q24. The extracellular domain of RANK and OPG contains 
four cysteine-rich motifs, but OPG has additionally two death domains. 

5.2 Expression 

RANKL protein is expressed by activated T-cells and osteoblasts (Table 
4). RANKL rnRNA is detected in stromal cells, osteoblasts, mesenchymal 
periosteal cells, chondrocytes and endothelial cells. 127,133 Recently, RANKL 
expression has been described in several tumor types, including Hodgkin's 
disease, prostate carcinoma, and multiple myeloma. 134-138 RANK receptor 
was also detected in primary and cultured Reed-Sternberg cells of Hodgkin's 
disease and its activation can induce cytokine and chemokine ~ecreti0n.l~~ 

5.3 Physiological Function 

RANK signaling is mediated by TRAF-1, -2, -3, -5, and -6 with 
subsequent activation of NF-KB, PKBIAKT, MAPKs and STAT3 
pathways. 63,139-143 RANKLIOPGIRANK loop plays a critical role in bone 
metabolism and calcium homeostasis (Table 3).126,131,1441145 RANKIRANKL 
is also involved in regulating dendritic cells, the development of 
lymphocytes and mammary gland, and in angiogenesis. 

5,126,127,130,138,146-148 

5.4 Function in disease 

Overexpression of RANKL or a decrease in OPG shifts the balance 
towards bone resorption and hypercalcemia. 

131,133,149 This imbalance is 
observed in several human diseases such as osteoporosis, Paget's disease, 
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and cancer associated bone lmc lesions and hypercalcemia (multiple 
myeloma and adult T-cell le~kemia/lym~homa).'~~,~~~,~~~,~~~ In fact, patients 
with multiple myeloma and lytic bony lesions have low serum levels of 
OPG, while patients with blastic bone lesions and advanced prostate 
carcinoma have elevated serum levels of O P G . ' ~ ~ ~ ' ~ ~ ~ ' ~ ~  

5.5 Applications 

The obvious application of RANKLMNWOPG loop is to regulate bone 
and calcium metabolism. Thus, strategies to use either OPG or blocking 
antibodies to RANK or RANKL are being explored to treat osteoporosis and 
hypercalcemia of ~ a n c e r . ' ~ ~ , ' ~ ~  

6. APRIL (TNFSF13), BAFF (TNSFS13B) AND 
THEIR RECEPTORS 

6.1 General 

APRIL is a 27-kDa secreted protein, whereas BAFF is a 31-kDa type I1 
transmembrane protein. 156-161 BAFF can be cleaved intracellularly and 
released into a soluble form. The gene encoding for APRIL is located on 
chromosome l7pl3.l and for BAFF is on 13q32-34 (Table 3). Both ligands 
share 2 receptors: BCMA and TACI, which are a type I11 transmembrane 
proteins with one and two TNF-characteristic cysteine-rich motifs in their 
extracellular domains, respectively (Figure 1). 157,162-169 BAFF has also a 
third exclusive receptor, BAFF-R, a type I11 transmembrane protein, but 
with the single cysteine-rich motif that is not fully expressed.'@ The genes 
encoding for BCMA, TACI and BAFF-R are located on chromosomes 
16~13.1, 17~11.2, and 22q13.1-q13.3 1 respectively (Table 3). 

6.2 Expression 

APRIL is secreted by monocytes, macrophages, dendritic cells, and T 
lymphocytes (Table 4).'70,'71 BAFF is also expressed by monocytes, 
macrophages, and dendritic cells, but not by benign T or B cells.171 BAFF 
and APRIL form homotrimers, but they can also form heterotrimers. B cells 
almost exclusively express the receptors for BAFF and APRIL. However, 
recent reports described TACI expression by T cells. 157,172 

Elevated levels of soluble BAFF has also been detected in the sera of 
patients with autoimmune diseases, several types of non-Hodgkin's 
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lymphoma. 173,174 Both, soluble BAFF and APRIL are detected in sera of 
patients with CLL and multiple m y e l ~ m a . ' ~ ~ , ' ~ ~  

6.3 Physiological function 

The binding of either APRIL or BAFF to BCMA or TACI receptors 
initiates the recruitment of TRAF-2, -3, -5, and -6 with subsequent 
activation NF-kappa-B, AP-1, NF-AT p38 MAPK, and JNK (but not 
ERK).6,157,177,178 Moreover, TACI is also associated with a CAML interactor, 
which activates the transcription factor NF-AT.'~~ The cytoplasmic tail of 
BAFF-R does not have any recognized TRAF binding sites. It may induce a 
Polo-like SerJThr kinase that plays role in mitosis. 

APRIL and BAFF have a role in B-cell survival and mat~rat i0n. l~~ 
BAFF -1- mice lack mature and marginal zone B-cells in spleen, as well as 
mature follicular B-cells in lymph nodes (Table 3).'79s180 BAFF -1- mice also 
have impaired T-cell depended and T-cell independent immunity. 
Surprisingly, APRIL -1- mice showed a normal phenotype.181 BAFF and 
APRIL were recently implicated in CD40- and T-cell independent IgG and 
IgA class switching. 182,183 

6.4- Function in disease 

BAFF and APRIL are upregulated in autoimmune diseases and several 
types of B-cell malignancies suggesting that these two ligands are involved 
in an autocrinelparacrine growth and survival loops. 157,161,163,184-191 However, 
the mechanism underlying this dysregulated expression remains unclear. 
Continuous somatic hypermutation of Ig V(D)J genes in NHLs that may 
alter APRIL and BAFF gene transcription, the amplification of the locus 
13q32-34 (BAFF gene) in NHLs, or the aberrant increase of BAFF and 
APRIL expression by normal infiltrating cells due to proper signaling from 
malignant cells (i.e. lymphotoxin, CD40L) are implicated in BAFFIAPRIL 
upregulation (Figure 3). 

6.5 Applications 

Like CD40LlCD40, it has been shown that the blockade of the 
interaction between BAFFIAPRIL and their receptors may decrease the 
survival of neoplastic B-cells. This interruption can be achieved by either 
neutralizing the receptor on malignant cells by antibodies, or by the 
administration of soluble receptors, which can act as decoy to the ligand. 
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Strategies to block BAFF/APRIL pathway is currently being explored for the 
treatment of autoimmune disease and B-cell malignancies. 

Figure 3. The complexity of TNF family of ligands and receptors in cancer. 
Frequently the cancer cells express the ligands and the receptors. In other cases, 
the cancer cells may express the receptors, but the ligands are expressed by the 

benign cells in the microenvironment. 

7. INTERLEUKIN 6 

7.1 General 

Interleukin 6 (IL-6) is a 26 kDa glycoprotein. It is a member of 
IL6/GCSF/MGF family (which also includes LIF, CNT, Oncostatin M, IL- 
11, and CT-I), which is characterized by glycoproteins of 170-180 amino 
acid, with 4 conserved cysteine residues involved in two disulfide bonds. 
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The gene encoding for IL-6 is located on chromosome 7p21-p14. The 
receptor for IL-6 is comprised by 2 subunits; the IL-6 cognate receptor 
subunit (IL-6R, CD126), an 80 kDa membrane bound glycoprotein which 
can be proteolyhcaly cleaved and shed in a soluble form (sIL-GR), and the 
signal transducing element gp 130 (CD l3O), a 130 kDa transmembrane 
glycoprotein. The genes encoding for IL-6R and gp130 are located on 
chromosomes 1 q2 1 and 5q11 respectively. 192-194 

7.2 Expression 

IL-6 is expressed by stimulated monocytes, fibroblasts, endothelial cells, 
macrophages, T-cells and B-lymphocytes, granulocytes, smooth muscle 
cells, eosinophils, chondrocytes, osteoblasts, mast cells, glial cells, and 
keratin0~ytes.l~~ The cognate IL-6R is restricted to hepatocytes, monocytes, 
neutrophils, T- and B-cells, while the gp130 is ubiquitous in the human 
tissues.196 

IL-6 is expressed by B-CLL,'~~ N H L , ' ~ ~  and H / R s ~ ~ ~ - ~ ~ ~  cells and 
elevated levels of IL-6 have been detected in elevated levels in sera of 
patients with Hodgkin Disease, B-cell lymphomas, DLCL, 202-205 multiple 
myeloma206, and autoimmune diseases.207 IL-6 is also expressed in renal, 
ovarian, and prostate cancer cells.208 

7.3 Physiological function 

The binding of IL-6 to its receptor initiates signaling through the 
JAKISTAT pathway. In brief, the binding of IL-6 to IL-6R leads to 
dimerization of gp130, which is bound to JAK1, JAK3 and TYK2, and in 
turn phosphorylates and activates STAT3 and STATl by forming homo- or 
heterodimers. STATl and STAT3 translocate into nucleus where they 
regulate the transcription of a number of genes. 209,210 

IL-6 role in hematopoietic tissue is differentiation and maturation of B- 
cells into antibody producing plasma cells, and induction of cytotoxic T-cell 
differentiation and growth. IL6 also induces the maturation of 
megakaryocytes in vitro and increases platelet counts in vivo. It is one of 
the major physiological mediators of acute phase reaction in 
inflammation. 19' 

7.4 Function in disease 

IL-6 expression in a variety of lymphomas and multiple myeloma may 
enhance survival of tumor cells by an autocrine or paracrine mechanism. 
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Elevated levels of IL-6 in patients with Hodgkin ~ isease ,~ l l  B-cell NHLs, 
C L L ' ~ ~  and multiple myeloma206 have been associated with the presence of 
B-symptoms or the increase of C reactive protein and poorer prognosis, 
while partial remissions have been associated with a decline in serum IL-6 
levels.205 

7.5 Applications 

The therapeutic approach for IL-6 focuses on inhibition of its effects, 
either through receptor blocking by monoclonal antibodies, or the 
development of specific antagonists, but results are far cont r~vers ia l .~~~ 

8. INTERLEUKIN 10 

8.1 General 

Interleukin 10 is an 18.5 kDa protein that forms homodimers of 37 kDa. 
It has structural homology with the newly discovered interleukins 19,20,22, 
24, and 26. It also shares homology with viral IL-10 homologs derived from 
EBV, HHV2, CMV, and Orf virus. The gene encoding for IL-10 is located 
on chromosome 1 q3 1 -q32. Interleukin 10 receptor, (CDw2 10, 90- 1 10 m a )  
comprises of a type I membrane protein (IL-1ORa) with an accessory type I 
membrane protein chain (IL-IORP), both of class I1 cytokine receptor 
family. IL-1ORb chain serves also as an accessory in IL-22 receptor. The 
gene encoding for IL-1ORa is located on chromosome 1 lq23, and for IL- 
lORP on 21q22.1-q22.2. 

8.2 Expression 

IL-10 is secreted by Th2 cells?l3 monocytes, m a ~ r o ~ h a ~ e s ? ~ ~  ~ -ce l l s ? l~  
eo~ ino~h i l s , 2~~  mast cells?17 and keratin~cytes.~~' The IL-10 receptor is 
expressed in cells of hematological origin, including T and B cells, NK cells, 
monocytes and macrophages. Only cells that express both a and P chains 
can respond to IL-10 signaling, but the number of receptors needed for 
producing biological effect does not exceed some hundreds. IL-10 can be 
produced by malignant cells of B-, T- and NK cell 
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8.3 Physiological function 

The binding of IL-10 to its receptor activates the tyrosine kinases Jakl 
and Tyk2, which in turn phosphorylate and thus activate STAT 1, 3 and 5, 
with subsequent nucleus translocation and gene transcription. It also inhibits 
NF-KB by inhibiting IKK in the cytoplasm and the binding of NF-KB on the 
DNA in nucleus, but the mechanism is still unclear.220 IL-10 activities 
include, among others, suppression of the production of TNF-a, IL-1, 6, 8, 
and 12 and the expression of MHC class 11, CD86, CD54 and CD40 in 
monocytes and macrophages, suppression of the production of TNF-a and 
IL-1 and 8 in neutrophils, suppression of the production of IL-2 and IFN-y in 
T cells and induces growth in B cells.221 

8.4 Function in disease 

IL-10 has been implicated in the pathogenesis of autoimmune diseases 
and in several malignancies (melanoma, adenocarcinoma, and lymphoma), 
either as antitumor immune response suppressor, or even as growth and 
survival factor (melanoma222 and lymphoma208) in an autocrine way. Both 
human and viral IL-10 expression have been reported in malignant 
lymphoma cells (T, B, and NK cells)221 and elevated levels of IL-10 has 
been reported in sera of patients with NHL, CLL, Hodgkin Disease and 
cutaneous T-cell lymphomas. 223,224 

8.5 Applications 

Therapeutic manipulation of IL-10 pathway has been proposed for the 
treatment of patients with autoimmune disorders.221 The ideal use of this 
system in the treatment of lymphoma is currently undetermined. 

9. INTERLEUKIN 12 

9.1 General 

Interleukin 12 is a 74 kDa heterodimeric glycoprotein, first member of 
heterodimeric cytokines (together with IL-23, IL-27, CLC-sCNTFR, and 
CLC-CLF-1). It consists of an a-chain (p35) and a P-chain subunits (p40), 
which are linked together with a disulfidic bond. The monomers have not 
cytokine function. The gene encoding for IL-12 a-chain is located on 
chromosome 3p12-q13.2, while for P-chain is located on chromosome 
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5q3 1.1-q33.1. Interleukin 12 receptor (CD212) comprises from a P l  100 
kDa (IL-12RP1) and a P2 130 kDa (IL-12RP2) subunits, both type I 
transmembrane glycoproteins of the gp130 subgroup of the cytokine 
receptor superfamily. The two subunits for homodimers/oligomers on the 
cell surface, but are both required for forming the IL-12 receptor. The 
signal-transducing unit is IL- 12RP2. The gene encoding 12RP 1 is located 
on chromosome 19~13.1, and for 12RP2 on chromosome lp3 1.3-p3 1.2. 225,226 

9.2 Expression 

IL-12 is produced by B-cells, phagocytes, and dendritic cells, and IL-12R 
exists primarily on activated T-cells and NK cells, but also in dendritic cells, 

225-227 neutrophils, eosinophils, and B-cells. IL-12 in the protein level has not 
been detected so far in primary tumor cells, including HIRS  cell^.^" 

9.3 Physiological function 

The binding of IL-12 to its receptor, which is associated with JAK2 (IL- 
12Rb2) and TYK2 (IL-12Rbl) leads to the activation of STAT 1,3,4, and 5, 
with subsequent transcription of several genes. The biological effect of IL- 
12 is Thl-cell differentiation, production of IFN-y from activated T and NK 
cells, modify the activity of humoral immunity and enhance the activity of 
NK and lyrnphokine-activated killer cells. IL-12 is a pro-inflammatory 
cytokine. 225,226 

9.4 Function in disease 

IL-12 does not seem to have any role in carcinogenesis. In contrast, the 
stimulation of innate immunity against tumor cells (through activation of 
effector cells like CD8+ T- and NK cells) and the inhibition of 
neoangiogenesis (probably through IFN-g induction) are the properties that 
make it appealing in cancer therapy. The expression of IL-12 in tumor cells 
has not been reported, though its antitumor efficacy has been tested on 
several murine tumor models.227 

9.5 Applications 

IL-12 has been explored as an anti-neoangiogenic factor in solid 
tumors228 and either as an innate immunity stimulator or as an adjuvant to 
cancer i m m u n ~ t h e r a ~ ~ . ~ ~ ~  The combination of IL-12 with rituximab was 
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recently evaluated in patients with relapsed B-cell NHLs and showed 
promising results.230 

1 0 .  General 

Interleukin 13 is a 10 kDa protein, belongs to the class of type I cytokine, 
and forms a special group together with Interleukin 4. The gene encoding for 
IL-13 is located on chromosome 5q3 1. Interleukin 13 can bind on 2 
receptors: IL-13R that is shared with IL-4, (it is also called type I1 IL4 
receptor), and it is composed by 2 subunits, IL-4Ral 140 kDa (CD124) and 
IL-13Ral 65-70 kDa chains, and another, IL-14Ra2, which binds with high 
affinity only to IL-13 as soluble receptor. IL-14Ra2 does not have specified 
function, but acts rather like a decoy receptor. The gene encoding for IL- 
13Ral is located on chromosome Xq24, for IL-13Ra2 on chromosome 
Xq13.1-q28, and for IL-4Ral is located on chromosome 16~11.2-12.1 .231 

10.2 Expression 

IL-13 together with IL-4 are expressed by T and B cells, mast cells and 
basophils, while NK and dendritic cells produce only IL-13. IL-13Ral is 
expressed by almost all cell types, including hematopoietic cells but not on 
~ - c e l l s . ~ ~ ~  IL-4Ra2 is expressed in spleen, liver, lung, thymus, and brain.233 
IL-13 and IL-13R have been reported in several tumor cells, including 
lymphoma and H/RS ~ e l l s . ~ ~ ~ , ~ ~ ~  Despite this broad range expression, only in 
lymphoma there are enough data about the function of the IL-13 receptor.232 

10.3 Physiological function 

The binding of IL-13 to its receptor leads to the activation of the IL-4Ra 
and the subsequent signaling through JAKllTYK2 and STAT6 pathway. 
The role of IL-13 is mainly immunoregulatory. It promotes, together with 
IL-4, B-cell proliferation and induces, in costimulation with CD40/CD40L, 
class switching to IgG4 and IgE, and expression of surface antigens (CD23, 
MHC class 11). In macrophages and monocytes IL-13 facilitates the 
expression of the integrins, MHC class 11, and CD23, inhibits the production 
of proinflamatory mediators (prostanglandins, IL-1, -6, -8, -12, and TNF-a). 
In eosinophils it seems to promote survival, activation and recruitment, and 
it activates mast cells to produce IgE. IL-13 promotes atopic inflammation 
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but suppresses inflammation from bacteria and viruses, while controlling the 
helminthic  infection^.^^' 

10.4 Function in disease 

IL-13 was recently reported to enhance the survival and proliferation of 
Hodgkin's disease cell lines by an autocrine loop. 234-236 However, serum IL- 
13 is rarely elevated in patients with H D . ~ ~ '  

10.5 Applications 

The blocking of the autocrine loop of IL-13 in Hodgkin's disease has 
been proposed a potential therapeutic strategy. In fact, monoclonal 
antibodies blocking selectively IL-4Ra1, without interfering to the IL-4 
function, or administration of soluble IL-4Ra2 are current targets for 
investigation. Cytokine antagonists and small molecule interference are to 
be further investigated.238 

Table 1. TNF Family Ligand Nomenclature 
Ligand Systemic name CD Name Other Names 
TNFSFl LTA, TNFB, LT 
TNFSF2 TNF, TNFA, DIF 

TNFSF6 
TNFSF7 
TNFSF8 
TNFSF9 
TNFSFlO 
TNFSF 1 1 

TNFSF12 
TNFSF 13 
TNFSF 13B 

TNFSF14 
TNFSF 15 
TNFSF 18 

LTB, TNFC, p33 
OX-40L, gp34, TXGP 1 

CD 154, CD40L IMD3, HIGMI , CD40L, 
hCD40L, TRAP, gp39 
FasL, APT1 LGl 

CD70, CD27L 
CD153, CD30L 

4-1BB-L 
TRAIL, Apo-2L, TL2 
TRANCE, RANKL, OPGL, 
ODF 
TWEAK, DR3LG, AP03L 
APRIL 
BAFF, THANK, BLYS, 
TALL- 1, TALL1 
LIGHT, LTg, HVEM-L 
TL1, VEGI 
AITRL, TL6, Hgitrl 
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Table 2 TNF Family receptor Nomenclature 
Systemic Name CD Name Other Names 
TNFRSFl A CD 120a p55-R, TNF-R-I p55, TNF- 

TNFRSF 1 B 

TNFRSF4 
TNFRSF5 
TNFRSF6 
TNFRSF6B 
TNFRSF7 
TNFRSF8 
TNFRSF9 
TNFRSF 1 OA 
TNFRSF 1 OB 

TNFRSF 1 OC 

TNFRSFl OD 
TNFRSF 1 1 A 
TNFRSF 1 1 B 
TNFRSF 12 

TNFRSF12L 
TNFRSF 13B 
TNFRSF13C 
TNFRSF 14 

TNFRSF 16 
TNFRSF 17 
TNFRSF 18 
TNFRSF 19 
TNFRSF 19L 
TNFRSF2 1 
TNFRSF22 

R, TNFR1, TNF& TNF- 
R55, p55TNFR, TNFR60 
P75, TN-R, TNF-R-11, 
TNFRSO, TNFR2, TNF-R75, 
TNFBR, p75TNFR 
LTBR, TNFR2-RP, TNFR- 
RP, TNFCR, TNF-R-I11 
0x40,  ACT35, TXGPAL 
P50, Bp50 
FAS, APO-1, APT1 
DcR3 
Tp55, S152, CD27 
Ki-1, DlS166E 
4-lBB, ILA 
DR4, Ap02, TRAILR-1 
DR5, KILLER, TRICK2A, 
TRAIL-R2, TRICKB 
DcRA, TRAILR3, LIT, 
TRID 
DcR2, TRUNDD, TRAILR4 
RANK 
OPG, OCIF, TR1 
DR3, TRAMP, WSL-1, 
LARD, WSL-LR, DDR3, 
TR3, APO-3 
DR3L 
T ACI 
BAFFR 
HVEM, ATAR, TR2, 
LIGHTR, HVEA 
NGFR 
BCM, BCMA 
AITR, GITR 
TROY, TRAJ, TRADE 
FLJ14993, RELT 
DR6 
SOBa, Tnfrh2, 
28 100028K06Rik 
mSOB, Tnfrhl 
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Table 3. Phenotype in TNF ligandlreceptor deficient mice 
Member Human Gene Phenotype associated with 

loss of function 
CD30 lp36 Unknown 

BAFF 

APRIL 
BAFFR 

BCMA 
TACI 

RANK 

RANKL 

OPG 
TRAIL 

TRAIL-R1 
TRAIL-R2 
TRAIL-R3 
TRAIL-R4 

Conflicting data on possible 
role in T cell selection 
Defect in germinal center 
formation and 
immunoglobulin class switch 
Hyper IgM syndrome, 
defective cellular and 
humoral immunity 
Loss of mature follicular and 
marginal zone B cells 
Normal phenotype 
Similar phenotype to BAFF 
-1- 
Normal phenotype 
B cell proliferation and 
autoimmunity 
Osteopetrosis, absence of 
lymph nodes, defective B 
cell development, defective 
mammary gland 
development 
Osteoporosis, ansence of 
lymph nodes, defective 
lymphocyte development, 
defective mammary gland 
development 
Osteopetrosis, 
Decreases antitumor immune 
surveillance 
Unknown 
Unknown 
Unknown 
Unknown 
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Table 4. Expression of selected TNF cytokines and their receptors in cancer patients 
LigandRecept Healthy Cancer Patients 

individuals 
Cell types Serum Cancer types Serum 

CD4OL Activated B- Not detected 
lymphocytes, 
Natural killer 
cells, 
monocytes, 
eosinophils, 
basophils, 
dendritic cells, 
platelets, 
activated CD4+ 
and CD8+ T- 
cells, 
endothelial, 
smooth muscle 
B-cells, 
monocytes, 
dendritic cells, 
some T-cells, 
epithelial cells 
(urinary 
bladder, ovary, 
breast, bronchi), 
endothelial cells 
Wide variety of Fairly detected 
hematopoietic 
cells, epithelial 
cells, Hassall's 
corpuscles in 
thymus medulla 

TRAIL 

Activated B and ND 
T cells 

Activated T- ND 
cells, NK cells 

Hodgkin B and T cell 
Disease, NHLs, lymphoma 
CLL, essential 
thrombocythem 
ia 

HD. B and T ? 
NHLs, 
epithelial 
cancer. 

Hodgkin No 
Disease, CLL, 
follicular B-cell 
lymphoma, 
adult T-cell 
lymphomdleuk 
emia 
HD, ALCL, HD and ALCL 
Immunoblastic 
Lymphoma, 
Multiple 
Myeloma, adult 
T-cell 
lyrnphomdleuk 
emia, mycosis 
fungoides, germ 
cell 
malignancies, 
thyroid 
carcinoma. 
Myeloid, ? 
lymphoid, 
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APRIL 

BAFF 

LigandlRecept Healthy Cancer Patients 
individuals 

breast, brain 
tumors 

TRAIL-R1,- Rl,R2not ND Myeloid, ? 
R2, -R3, -R4 expressed lymphoid, 

breast, brain 
tumors 

RANKL Activated T- ND HD ? 
cells, 
osteoblasts 

RANK Dendritic cells, ND HD, prostate ? 
CD4+ and cancer, multiple 
CD8+ T-cells, myeloma 
osteoclast 
hematopoietic 
precursor cells 
Monocytes, Yes 
macrophages, 
lymphocytes, 
dendritic cells, 
T-cells 
Monocytes, Yes 
macrophages, 
lymphocytes, 
dendritic cells 

CLL, multiple B cell 
myeloma lymphoma 

Some NHL B cell 
(germinal center lymphoma 
B cell follicular 
lymphoma, low 
grade B cell 
lymphoma, 
diffuse large 
cell lymphoma, 
marginal zone 
lymphoma, 
mantle cell 
lymphoma), 
CLL, multiple 
myeloma 

BCMA B-cells B-cell Yes 
lymphomas, 
CLL 

T ACI B-, T-cells ? 
ND, not detected 
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PRO-APOTOTIC AND ANTI-APOPTOTIC 
EFFECTS OF TUMOR NECROSIS FACTOR IN 
TUMOR CELLS 
Role of Nuclear Transcription Factor NF-KB 
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Cytokine Research Section, Department of Experimental Therapeutics, The University oj 
Texas, MD Anderson Cancer Center, Houston, TX 

1 INTRODUCTION 

An intricate balance between cell growth and cell death drives the proper 
1 growth, development, and function of most tissues . A vast amount of 

information has accumulated regarding the molecular mechanisms 
governing cell growth, but the mechanisms by which cells regulate their own 
death still remain a matter of great intrigue and have recently begun to 
acquire great importance. One known mechanism, apoptosis, or 
programmed cell death, is a physiological process believed to be responsible 
for the deletion of unwanted cells during organ and tissue development, 
tissue homeostasis and removal of self-reactive immune cells and 
pathologically induced tissue damage. Virus-infected cells are eliminated by 
the interaction with cytotoxic T-lymphocytes that kill the virus infected cells 
by inducing apoptosis 2*3. Cells that have DNA damage undergo apoptosis 
so as to eliminate cells that have accumulated genetic mutations and may 
become cancerous 495. In addition to being activated during development- 
related cell reduction, apoptosis can be triggered in many cell types by 
various stresses, including chemotherapeutic agents, cytokines, ionizing 
radiation, osmotic stress, and expression of viral proteins such as E1A 6 .  

Extensive research within the last few years has revealed that cell death, 
whether at the single cell level, the tissuelorgan level, or the organism level, 
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is as important to life as cell survival. The critical role of apoptosis has been 
recognized in a wide variety of situations including immunomodulation, 
autoimmunity, sepsis, arthritis, inflammatory bowel disease, chronic heart 
failure, periodontal diseases, allograft rejection, neovascularization, obesity, 
tumorigenesis, meningitis, and parturition 7. 

NF-KB is a ubiquitously expressed transcription factor that plays a pivotal 
role in expression of various inducible target genes that regulate apoptosis 

8 among several other vital functions it also controls, cell proliferation, 
differentiation, and immune and inflammatory responses. This factor is a 
member of the Re1 family of proteins, which bind to specific DNA 
sequences. In non-stimulated cells, the heterodimeric NF-KB complexes are 
sequestered in the cytoplasm of most cell types by inhibitory proteins of the 
I& family (Figure 1) '. 

Figure I. Negative regulation of apoptosis by the NF-KB-regulated gene products. 

These inhibitors mask the NF-KB nuclear localization domain and inhibit 
its DNA-binding activity. In response to a large variety of stimuli, the IKB 
inhibitor is rapidly phosphorylated and degraded, thus allowing NF-KB 
nuclear translocation, DNA binding to specific recognition sequences in 

10,ll promoters, and transcription of the target genes . Rel/NF-KB 



Pro-Apototic and Anti-Apoptotic Effects 105 

transcription factors are induced in response to a large variety of stimuli and 
regulate a number of genes. The Rel/NF-KB transcription factor family is 
comprised of several structurally related proteins that exist in organisms 
from insects to humans. The vertebrate family includes five cellular 
proteins: c-Rel, RelA, RelB, p501p105, and p521p 100. These proteins can 
form homodimers or heterodimers giving diverse combinations of dimeric 
complexes that bind to DNA target sites, collectively called KB sites, and 
directly regulate gene expression. The most common transcription factor of 
this family is called NF-KB and consists of a pSO/RelA heterodimer. The 
different Rel/NF-KB proteins show distinct ability to form dimers, distinct 
preferences for different KB sites, and distinct abilities to bind to IKB 
inhibitor proteins 12. Thus, different R~~/NF-KB complexes can be induced 
in different cell types and by distinct signals (Figure 2), can interact in 
distinct ways with other transcription factors and regulatory proteins, and 
can regulate the expression of distinct gene sets. Numerous kinases have 
been implicated in the activation of NF-KB induced by different agents 
(Mgure 3). Furthermore, the activation of NF-KB is regulated both 
negatively and positively by other transcription factors and gene products 
(Figure 4). 

PvlHypoxia TNF IL-IpIRANKLILPS LT-pIBAFFICD40L 

Pro-Apoptosis Anti-Apoptosis 

Figure 2. Positive regulation of apoptosis by the NF-KB-regulated gene products. 
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Figure 3. Regulation of NF-KB activation by various protein kinases. 
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Figure 4. Regulation of NF-KB activation by p65-binding proteins 
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Mechanism of apoptosis: Besides dying by necrosis, multicellular 
organisms can initiate a series of events that activate intracellular proteases 
and ultimately result in the destruction of the cell. These are collectively 
known as apoptosis. Apoptotic cells undergo an orderly series of 
biochemical or morphological events including cell shrinkage, mitochondria1 
breakdown, and nuclear DNA fkagmentation 13. The dying cell degrades into 
subcellular membrane-bound vesicles called apoptotic bodies, which are 
ultimately removed by phagocytosis. Apoptosis is a molecular suicide 
program characterized by cytoplasmic shrinkage, nuclear condensation, and 
DNA fkagmentation into 200-base pair fragments 14-17. It is a genetically 
regulated mechanism, and its deregulation can result in multistep 
carcinogenesis 18-20. 

Apoptosis is brought about by activation of the family of proteins known 
as caspases (cysteinyl, aspartate-specific proteases) 21,22. There are about 14 
caspases involved in the process of apoptosis. Caspases are synthesized as 
proenzymes that are activated by proteolysis at two or three sites to remove 
an N-terminal peptide and divide the proenzyme into large and small 
subunits, which in some cases are joined by a linker domain. The mature 
caspase is a heterotetramer of two large and two small subunits 23,24. All 
caspases are activated by cleavage at a specific aspartate residue and act in a 
cascade. They are ultimately responsible for the proteolysis of the cellular 
subtrates responsible for apoptosis. 

Poly (ADP-ribose) polymerase (PARP) is the most well characterized 
substrate for several caspase in many cell systems. Intact PARP (1 16 kDa) 
is cleaved into two fragments (89 kDa and 24 kDa) during apoptosis 25,26. 
Cleavage of PARP is a valuable indicator of apoptosis, but its biological 
relevance is not known. Caspase-activated deoxyribonuclease (CAD) is a 
cytoplasmic endonuclease whose activation is thought to be responsible for 
generating the oligonucleosomal DNA fragments that are the hallmark of 
apoptosis 27. 

DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme that 
is degraded during apoptosis by caspase-3 28. Degradation of DNA-PK will 
result in a decrease in the capacity of the cell to repair damage of nuclear 
DNA, thus facilitating the breakdown of DNA that is associated with 
apoptosis. Caspase-6 is responsible for degradation of lamin, which are the 
major structural components of the nuclear envelope 29. Cleavage of the 
cytoskeletal proteins fodrin 30, Gas 2 31, and actin 32 during apoptosis may 
induce cell shrinkage and membrane blebbing and alter cell signaling 
pathways. U1-70kDa, a small ribonucleosomal particle that functions in the 
splicing of mRNA transcripts, is cleaved during apoptosis (Figure 1 and 
Figure 2) 33. Caspases also cleave the initiation factors 34. This may inhibit 
translation during apoptosis. Caspases also cleave certain cell-signaling 
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proteins, e.g., and MEKK-1, which are rendered constitutively active and 
pro-apoptotic. In contrast, protein kinase B, which is involved in the anti- 
apoptotic pathway, is cleaved and inactivated by caspases 35. 

A cell is induced to undergo apoptosis either by internal signals arising 
within the cells or external signals triggered by death activators that bind to 
receptors located at the cell surface. Internal signals initiate apoptosis in the 
mitochondria with the release of cytochrome c 36,37. The mitochondrial 
pathway is controlled by the Bcl-2 family of proteins 38. There are 15 
members of the Bcl-2 protein family that share homology in at least one of 
three conserved domains (BHI-BH4) and these may either promote survival 
e.g., Bcl-2, Bcl-xL or promote apoptosis, e.g., Bax, or Bak 39. The Bcl-2 
family of proteins register both positive and negative stimuli and integrate 
them to determine whether the mitochondrial apoptotic pathway is turned on 
or off. Oncogenes encode mutated versions of the signaling proteins that 
control normal cell proliferation e.g., Ras signaling. Another, the Raf 
oncoprotein eventually initiates apoptosis when the cell receives an 
abnormal proliferative signal 40. 

The apoptotic program can also be initiated by the action of extracellular 
messengers, termed death ligands. These bind to the cell surface receptors, 
termed death receptors, that activate intracellular signaling events that begin 
an apoptotic cascade 41,42. Death receptors belong to the TNF receptor 
superfamily that is characterized by a cysteine-rich extracellular ligand- 
binding domain 43. Death receptors contain a consensus module known as 
the death domain that is found in the intracellular portion of the molecule 
and is involved in transducing the apoptotic signal 6. Fas and the TNF 
receptor are the two best-characterized death receptors, the cognate ligands 
for which are FasL and TNF, respectively. 

Among all the known physiological inducers of apoptosis in mammalian 
cells, tumor necrosis factor (TNF) is perhaps the most potent and well 
studied. Many other members of the TNF superfamily also induce 
apoptosis, including LT (lymphotoxin), FasL (fibroblast-associated ligand), 
TRAIL (TNF-related apoptosis-inducing ligand), DR3L (for death receptor 3 
ligand or also known as TWEAK for a weak homologue of TNF), THANK 
(TNF homologue that activates apoptosis, NF-KB and JNK), and VEGI 
(vascular endothelial cell growth inhibitor) 44,45. Whether all these TNF 
family members induce apoptosis by the same mechanism as TNF is not 
known. Besides killer cytokines outlined above, apoptosis is also induced 
by various chemotherapeutic agents. 

Within the last few years, a series of biochemical steps have been 
identified in the apoptotic pathway induced by cytokines and 
chemotherapeutic agents. For instance in TNF-induced apoptosis the TNF 
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receptor is activated, which, through its cytoplasmic death domain, recruits a 
protein called TNF receptor-associated death domain (TRADD), which in 
turn sequentially recruits Fas-associated death domain (FADD) and FADD- 
like ICE (FLICE, also called caspase-8) 4648. The last activates caspase-9, 
which in turn activates caspase-3 (the executioner protease), resulting in 
apoptosis. 

In contrast to cytokines, chemotherapeutic agents induce cellular 
apoptosis by inducing formation of mitochondrial transition pores, a rapid 
decrease in the mitochondrial transmembrane potential, and release of 
cytochrome c. The latter, in the presence of the protein Apaf-1, activates 
caspase-9, which then activates caspase-3. Several recent studies, however, 
have suggested that these two receptor-mediated and non-receptor-mediated 
pathways initiated by cytokines and chemotherapeutic agents, respectively, 
are not exclusive of each other and share similar steps. 

Most agents that induce apoptosis also activate NF-KB. Thus it is not too 
surprising that almost all cytokines of the TNF superfamily and 
chemotherapeutic agents activate NF-KB. TNF-induced activation of NF-KB 
(primarily consisting of p50 and p65 subunits) involves recruitment of TNF 
receptor-associated factor (TRAF)-2 by TRADD, which then binds to NIK. 
TRADD also binds to receptor-interacting protein (RIP). Either NIK or RIP 
then activate a kinase called I d a  kinase (IKK), which in turn leads to the 
phosphorylation, ubiqutination, and degradation of IKBa (the inhibitory 
subunit of NF-KB), leading to NF-KB activation 48. Some recent studies 
exclude NIK from a role in TNF-induced NF-KB activation. How 
chemotherapeutic agents activate NF-KB is not fully understood, but most 
likely it also involves phosphorylation, ubiqitination, and degradation of 
IKBa. How NF-KB activation is linked with induction of apoptosis by TNF 
and chemotherapeutic agents is the subject of this review. 

Anti-apoptotic effects of NF-KB: Almost five years ago it was shown 
49-52 that TNF-induced apoptosis can be blocked by NF-KB activation . 

Rel/NF-KB transcription factors exercise their anti-apoptotic effects in a 
wide variety of cells to protect them from various apoptotic agents. They 
promote cell survival by inducing the transcription of anti-apoptotic genes 
(Figure 1). Activation of NF-KB either upregulates the activity of anti- 
apoptotic genes or downregulates the activity of apoptotic genes. Inhibition 
of NF-KB nuclear translocation enhances apoptotic killing by cytokines that 
belong to the TNF superfamily, ionizing radiation, overexpression of 
oncoproteins, chemotherapeutic agents, cytokines, phorbol esters, hyperoxia, 
hormones, and micro-organisms (Table 1, at the end of this chapter). 

Some earlier studies showed that the oncogene v-re1 from the avian 
retrovirus reticuloendotheliosis virus strain can block apoptosis 53 in 
chickens. Similarily, v-re1 rendered chicken B-cells resistant to radiation- 
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induced apoptosis 54. A large number of reports have demonstrated the anti- 
apoptotic effect of NF-KB in a wide variety of cell types. The protective role 
of NF-KB has now been shown in a large variety of cell types, including 
human breast carcinoma T-cells 51,55956 , fibroblasts and macrophages 49, 
endothelial cells 57, EBV-infected lyrnphoblastoid cells ", non-small lung 
cancer cells 59, glomerular mesangial cells 60, human ovarian cancer cells 61, 

63 human pancreatic cancer cell lines 62, Ewing sarcoma cells , 
cardiomyocytes 64, mouse embryos 65, and HT1080 fibrosarcoma 52. 

Treatment of RelA-deficient (the transcriptionally active subunit of NF- 
KB) mouse fibroblasts and macrophages with TNF significantly reduced cell 
viability, whereas  el^+'+ cells were unaffected. In addition, reintroduction 
of RelA into  el^-'- fibroblasts enhanced survival, demonstrating that Re1 A 
is required for protection from TNF 49. Another report showed that 
activation of the NF-KB by TNF, ionizing radiation, or daunorubicin protects 
cells from apoptosis, whereas inhibition of NF-KB enhanced apoptotic 
killing by these reagents but not by apoptotic stimuli that do not activate NF- 
KB 52. Van Antwerp et al., however, showed that the sensitivity and kinetics 
of TNF-induced apoptosis are enhanced in a number of cell types expressing 
a dominant-negative I K B ~  (an inhibitor of NF-KB) ". Continued expression 
of v-Re1 is necessary to maintain the viability of transformed lymphoid cells 
and enables primary spleen cells to escape apoptosis in culture 66. 

Liu et al. used the signaling proteins and showed that recruitment of 
FADD to the TNFRl complex mediates apoptosis, that recruitment of RIP 
and TRAF2 mediate NF-KB activation, and that activation of the latter 
protects cells against TNF-induced apoptosis 50. Substoichiometric TFIID 
subunit TAFIIlO5 is essential for activation of anti-apoptotic genes in 
response to TNF-a, serving as a transcriptional co-activator for NF-KB 67. 

Adenovirus E1A protein has inhibited activation of NF-KB and rendered 
cells more sensitive to TNF-induced apoptosis. This inhibition was brought 
about through suppression of IKB kinase (IKK) activity and IKB 
phosphorylation 68. NF-KB can attenuate TNF-a-induced apoptosis without 
de novo protein synthesis in the human pancreatic cancer cell lines MIA 
PaCa-2 and Capan-2. TNF-a-induced apoptosis was blocked by IL-1P, a 
potent inducer of NF-KB activation 62. These findings suggest that de novo 
protein synthesis is dispensible for anti-apoptotic effects of NF-KB and 
support the possibility that NF-KB exerts its anti-apoptotic action through 
protein-protein interaction. 

The NF-KB cascade is important in Bcl-xL expression and for the anti- 
apoptotic effects of the CD28 receptor in primary human C D ~ '  lymphocytes 
56 . HUT-78, a lymphoblastoid T-cell line with constitutive NF-KB activity, 
contains elevated levels of Bcl-xL protein and, similar to proliferating C D ~ +  
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T-cells, is resistant to apoptotic stimuli such as anti-Fas and TNFa. In 
contrast, the same stimuli readily induced apoptosis in Jurkat cells without 
producing any detectable Bcl-xL expression. 

The quinone reductase inhibitors dicoumarol and menadione block 
SAPKIJNK and NF-KB and thereby potentiate apoptosis 69. Javelaud and 
Besancon have demonstrated that the repression of JNK activation by NF- 
KB is involved in the anti-apoptotic effect of this transcription factor in 

63 TNFa-treated Ewing sarcoma cells . Also, NF-KB exercises its anti- 
apoptotic effects through NF-KB-inducing kinases (NIK). NIK induces 
PC12 cell differentiation and prevents apoptosis 70. Cardiomyocytes utilize 
transcription factor NF-KB to activate survival factors in the context of TNF- 
a stimulation. As locally increased levels of TNFa have been detected in 
heart failure,'NF-KB activity is essential for cellular homeostasis in the heart 
64 

NF-KB is required for TNF-mediated induction of the gene encoding 
human cIAP2. When overexpressed in mammalian cells, cIAP2 activates 
NF-KB and suppresses TNF cytotoxicity. Both of these cIAP2 activities are 
blocked in vivo by coexpression of a dominant form of IKB that is resistant 
to TNF-induced degradation ". Functional coupling of NF-KB and cIAP2 
during the TNF response may provide signal amplification loop that 
promotes cell survival rather than death. The IAP genes function to protect 
the cell from undergoing apoptotic death in response to a variety of stimuli. 
The IAP genes hIAPI, hIAP2, and XIAP were found to be strongly 
upregulated upon treatment of endothelial cells with the inflammatory 
cytokines TNFa, IL-lb and LPS, which in turn lead to activation of NF-KB. 
This suggests that xiap represents one of the NF-KB-regulated genes that 
counteracts the apoptotic signals elicited by TNFa and thereby prevents 
endothelial cells from undergoing apoptosis during inflammation 57. 

Treatment of WEH1 23 1 cells with N-tosyl-L-phenylalanine 
chloromethyl ketone, a protease inhibitor that prevents degradation of IKBa, 
or with low doses of pyrrolidine dithiocarbamate selectively inhibited NF- 
KB activation and induced apoptosis 71. Similarly, microinjection of WEHI 
23 1 cells with either IKBa-GST protein or a c-Re1 affinity-purified antibody 
induced apoptosis 71.  

Arlt et al. have shown that under certain conditions the resistance of 
pancreatic carcinoma cells to chemotherapy is due to their constitutive NF- 
KB rather than the transient induction of NF-KB by some anti-cancer drugs 
72 . Exposure of normal keratinocytes to IFN-)I plus TPA produced a 
synergistic activation of NF-KB. They acquired a resistance to W-light- 
induced apoptosis that was dependent on NF-KB because expression of a 

73 dominant negative form of IKBa overcame the resistance . There is 
enough evidence to suggest that activation and proper regulation of NF-KB 
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is essential for acquisition of an apoptotic-resistant phenotype for 
epidermal-derived keratinocytes. Kolenko et al. have demonstrated that 
inhibition of NF-KB activity by cell permeable SN50 peptide in human T 

74 lymphocytes induces caspase-dependent apoptosis . Kawai et al. have 
shown that p53 is involved in NF-KB inactivation and is required for X-ray- 
induced apoptosis in thymic lymphoma cells and normal thymocytes 75. 

Oxidative stress induces apoptosis in human aortic endothelial cells 
through the downregulation of Bcl-2, translocation of bax, and upregulation 
of p53, probably through NF-KB activation. Oxidative stress may play an 
important role in endothelial apoptosis mediated by hypoxia, through the 
activation of NF-KB 76.  NF-KB is a redox-sensitive transcription factor that 
is activated by oxidative insult, and NF-KB activation can protect cells from 
apoptosis. When human alveolar epithelial (A549) cells were exposed to 
hyperoxia, NF-KB was activated and within minutes was translocated to the 
nucleus 77. Reactive oxygen species could act synergistically with TNFa in 
causing cytotoxicity via inhibition of a cytoprotective branch of TNFa 
signaling pathways that starts with NF-KB activation. Ginis et al. have 
demonstrated that Hz02 inhibited TNFa-induced accumulation of p65 in the 
nucleus, although it had no effect on degradation of IKB in the cytoplasm 78. 

It is known that adenovirus protein E1B blocks TNF-induced apoptosis, 
whereas E1A enhances TNF-induced apoptosis through unknown 
mechanisms. Recent evidence indicates the effect of these proteins is 
mediated through modulation of NF-KB activation 6'. 

The growth arrest-specific 6 gene product (Gas6) is a growth and 
survival factor related to protein S. Gas6 induces a rapid and transient 
increase in nuclear NF-KB binding activity coupled to transcription 
activation. This plays a central role in promoting survival in NIH 3T3 cells 
79 . MKK6 activates myocardial cell NF-KB and inhibits apoptosis in a p38 
mitogen-activated protein kinase dependent manner Limb girdle 
muscular dystrophy type 2A results in decreased production of calpain 3. 
Calpain 3 is responsible for IKBK turnover. Over expression of IKBa results 
in sequestration of NF-KB outside the nucleus. Myonuclear apoptosis 
occurred because of the downregulation of NF-KB ". 

The stimulation of the CD95- and TRAIL-resistant human pancreatic 
adendcarcinoma cell line Panc TuI with an agonistic anti-CD95 antibody or 
TRAIL activates of protein kinase C and NF-KB. The activation of PKC 
operates directly in a death receptor dependent manner in PancTuI cells and 
pancreatic tumor cells, protecting them from anti-CD95 and TRAIL- 
mediated apoptosis by preventing the loss of A y  and cytochrome c release as 
well as by induction of NF-KB 82. Phannacologic or molecular inhibition of 
the NF-KB pathway blocked cell survival in MCF-7 APO+ cells, while only 
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molecular inhibition induced cytotoxicity in the APO- cells 40. TGF-a 
protected gastric mucosal cells against apoptosis induced by serum depletion 
or sodium butyrate in a dose-dependent manner. This anti-apoptotic effect 
of TGF-a was blocked by pre-treatment with reagents that can potentially 
inhibit NF-KB activation. This suggests that TGF-a plays an antiapoptotic 
role in gastric mucosal cells via the NF-KB-dependent pathway 83. 

Mice deficient in the NF-KB~ gene were challenged with the intracellular 
parasite Toxoplasma gondii. During the chronic phase of the infection, 
susceptibility of NF-KB knockout mice to toxoplasmic encephalitis was 
associated with a reduced capacity of their splenocytes to produce IFN-y 
associated with a loss of C D ~ '  and C D ~ '  T-cells. This loss of T-cells 
correlated with increased levels of apoptosis and with elevated expression of 
the pro-apoptotic molecule Fas by T-cells fi-om infected NF-KB knockout 
mice. This suggests a role of NF-KB in maintenance of T-cell responses 
required for long-term resistance to Toxoplasma gondii 84. 

How NF-KB suppresses apoptosis? Although it is clear that NF-KB 
activation plays a role in suppressing TNF-induced apoptosis, just how is 
only now beginning to emerge. Several genes that may play a role in 
blocking apoptosis and whose expression is regulated by NF-KB have been 
identified, including cellular inhibitors of apoptosis (c1AP)-1 and CLAP-2, 
TRAF-1, and TRAF-2 55,57385. cIAP-1, cIAP-2, and TRAF-1 are known to 
bind to TRAF-2 and TRAF-2 is required for NF-KB activation. Thus, how 
these proteins block apoptosis is not clear. Other reports show that TNF 
induces manganous superoxide dismutase (SOD), whose expression is also 
regulated by NF-KB, and the overexpression of SOD induces resistance to 
TNF-induced apoptosis 86. Also, altered SOD expression in HeLa cells after 
low dose y-irradiation is responsible for NF-KB-mediated cisplatin resistance 
87 . Insulin manifests its antiapoptotic signaling though the activation of the 
NF-KB-dependent survival genes encoding TRAF-2 and SOD ". The TNF- 
inducible zinc finger protein A20 is regulated by NF-KB, and the role of this 
protein in induction of resistance to TNF-induced apoptosis has been 
demonstrated 89,90. The expression of a protein critical in the regulation of 
the cell cycle, cyclin Dl,  is also regulated by NF-KB, and this activity may 
contribute to the cell growth and differentiation function assigned to NF-KB 
91,92 

The prosurvival Bcl-2 homolog Bfl-11A1 is another gene whose 
transcription is regulated by NF-KB and blocks TNF-induced apoptosis 93994. 
There are other studies which show that Bcl-2 activates NF-KB through the 
degradation of the inhibitor IKBa 95. Crawford et al. have demonstrated that 
Bcl-2 overexpression protects photooxidative stress-induced apoptosis of 
photoreceptor cells through NF-KB preservation. It has been known that the 
RasIPI-3WAkt pathway plays a critical role in cell survival. It now appears 
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that this pathway is linked to the activation of IKK, the kinase needed for 
IKBa phosphorylation and NF-KB activation. Akt may also play a 

96,97 cytoprotective role through activation of NF-KB . An NF-KB- 
independent cytoprotective pathway has also been described. The NF-KB 
activation induced by overexpression of TRAF2 was found to be insufficient 
to protect cells from apoptosis induced by TNF and cycloheximide together, 
thus indicating an essential role for additional components in the 
cytoprotective response 98. 

While NF-KB activation blocks apoptosis, it seems that activation of 
apoptosis also blocks NF-KB activation, suggesting a feedback loop. For 
instance, endothelial cells undergo apoptosis when deprived of growth 
factors. The surviving viable cells exhibit increased activity of NF-KB, 
whereas apoptotic cells show caspase-mediated cleavage of the NF-KB 
p651ReIA subunit, resulting in loss of carboxy-terminal transactivation 
domains and a transcriptionally inactive p65 molecule, which itself acts as a 
dominant-negative inhibitor of NF-KB, promoting apoptosis. In contrast an 
uncleavable, caspase-resistant p65 protects the cells from apoptosis. The 
generation of a dominant-negative fragment of p65 during apoptosis may be 
an efficient pro-apoptotic feedback mechanism between caspase activation 
and NF-KB inactivation 99. Similarly apoptosis has been shown to promote a 
caspase-induced amino-terminal truncation of IKBa that functions as a stable 
inhibitor of NF-KB loo, thus further enhancing apoptosis. And Fas, another 
member of the TNF receptor family, was found to induce caspase-3- 
mediated proteolysis of both p50 and p65 subunits of NF-KB in T Jurkat 
cells, thus sensitizing the cells to apoptosis lo'. 

Pro-apoptotic activity of NF-KB: The decision of life or death in 
response to an inducing signal within a cell is dependent upon a delicate 
balance of positive and negative influences. While there are several reports 
that NF-KB activation protects cells from undergoing apoptosis induced by 
TNF or chemotherapeutic agents, there are also reports suggesting that NF- 
KB activation mediates apoptosis in response to a variety of inducers in a 
number of cell types (Table 2, at end of the chapter). For instance, in 
murine clonal osteoblasts NF-KB activation mediated TNF-induced 
apoptosis lo2. The suppression of growth of C ~ 3 4 '  myeloid cells by TNF 
also correlated with NF-KB activation lo3. Apart from this, Fas activates NF- 
KB and induces apoptosis in T-cell lines by signaling pathways distinct from 
those induced by TNFa '04. Human melanoma cells are protected against 
UV-induced apoptosis through downregulation of NF-KB activity and Fas 
expression lo'. Oxidative stress induced apoptosis in human aortic 
endothelial cells through the downregulation of Bcl-2, translocation of bax, 
and upregulation of p53 probably takes place through NF-KB activation. 
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Oxidative stress may play an important role in endothelial apoptosis 
mediated by hypoxia, through the activation of NF-KB 76. That the activation 
of NF-KB is rather required for apoptosis has also been shown for other 
inducers such as H202 lo6,107 . Similarly, H202-induced apoptosis was not 
suppressed by hyperoxia-induced NF-KB activation 77. In pancreatic islets, 
A20 inhibited both apoptosis and NF-KB activation induced by cytokines, 
suggesting that NF-KB may actually mediate apoptosis log. Apoptosis in HL- 
60 cells induced by chemotherapeutic agents such as etoposide or 1-beta-D- 
arabinofuranosylcytosine was also found to require NF-KB activation, 
inasmuch as suppression of NF-KB by PDTC also blocked apoptosis Io9. 

Recently, Stark et al. demonstrated that aspirin induces cell death by an 
active apoptotic process that involves nuclear translocation of NF-KB 
preceding cell death 'lo. Helicobacter pylori induces NF-KB-mediated 
apoptosis in chronic gastritis "I. The apoptosis induced by alphavirus was 
also found to require the activation of NF-KB, since the thiol agents and Bcl- 
2 blocked both activities 'I2. During adenoviral infection, NF-KB mediates 
apoptosis through transcriptional activation of Fas ' I 3 .  Apoptosis in ~ a "  
reperfusion injury of cultured astrocytes was also found to be mediated 
through NF-KB activation 'I4. The cell death-promoting role of NF-KB has 
also been demonstrated in focal cerebral malaria 115, as it has for induction of 
apoptosis by double-stranded-RNA-dependent protein-kinase (PKR) 'I6. Lin 
et al. showed that NF-KB can be proapoptotic or antiapoptotic depending on 
the timing of modulating NF-KB activity relative to the death stimulus 'I7. 
How NF-KB may mediate apoptosis is not clear, but the role of p53 and c- 
myc induction through NF-KB has been demonstrated l18. In addition, NF- 
KB is required for the anti-CD3-mediated apoptosis of double-positive 
thyrnocytes through a pathway that involves the regulation of the 

119 antiapoptotic gene Bcl-xL . c-myc has also been implicated in survival of 
certain cells such as hepatocytes 120. These observations suggest that NF-KB 
activation not only negatively, but also positively regulates apoptosis. This 
idea has been further strengthened by studies on NMRI mice, Wistar rats and 
WI-38 fibroblasts in which aging induced a strong and consistent increase in 
the nuclear binding activity of NF-KB 121. 

We recently showed that doxorubicin and its structural analogues WP63 1 
and WP744, activate NF-KB, and this activation is essential for apoptosis in 
myeloid (KBM-5) and lymphoid (Jurkat) cells (138). Because the 
anthracycline analogue (WP744), most active as a cytotoxic agent, was also 
most active in inducing NF-KB activation and the latter preceded the 
cytotoxic effects, suggests that NF-KB activation may mediate cytotoxicity. 
Second, receptor-interacting protein-deficient cells, which did not respond to 
doxorubicin-induced NF-KB activation, were also protected from the 
cytotoxic effects of all the three anthracyclines. Third, suppression of NF- 
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KB activation by pyrrolidine dithiocarbamate, also suppressed the cytotoxic 
effects of anthracyclines. Fourth, suppression of NF-KB activation by 
NEMO-binding domain peptide, also suppressed the cytotoxic effects of the 
drug. Overall our results clearly demonstrated that NF-KB activation and 
I d a  degradation are early events activated by doxorubicin and its analogues 
and that they play a critical pro-apoptotic role. 

Evidence that apoptosis is unaffected by NF-KB: There are increasing 
reports that NF-KB activation plays little or no role in apoptosis. For 
instance, Cai et al. showed that overexpression of IKBa, an inhibitor of NF- 
KB, in human breast carcinoma MCF7 cells inhibits NF-KB activation but 
not TNF-induced apoptosis. Similarly, in endothelial cells A20 inhibited 
NF-KB activation without enhancing TNF-induced apoptosis 122. LPS- and 
IL-1- induced prolongation in survival of endothelial cells did not require 
NF-KB activation 123. The pro- and anti-apoptotic role of NF-KB appears to 
be determined more by the nature of the death stimulus than by the origin of 
the tissue 'I3. Bone morphogenetic protein (BMP)-2 and -4 inhibited TNF- 
mediated apoptosis by inhibiting caspase-8 activation in C2C12 cells, a 
pluripotent mesenchymal cell line that has potential to differentiate into 
osteoblasts depending on BMP stimulation. The BMPISmad signaling 
pathway can inhibit TNF-mediated apoptosis independently of the pro- 
survival activity of NF-KB. This suggests that BMPs not only stimulate 
osteoblast differentiation but also promote cell survival during the induction 
of bone formation, offering new insight into the biological functions of 
BMPs 124. There are proteins that associate with cytokine receptors such as 
SODD (for silencer of death domain) 12', sentris '26, and c-FLIP 12', that can 
also negatively regulate apoptosis, again independently of NF-KB. 

The redox-sensitive transcription factor Ref-1 plays a critical role in the 
survival of endothelial cells in response to hypoxia and cytokines including 
TNFa. Upregulation of Ref-1 promotes endothelial cell survival in response 
to hypoxia and TNF through NF-KB-independent and NF-KB-dependent 
signaling cascades 128. It has been observed in human non-small-cell lung 
carcinoma that apoptosis induced by topoisomerase poisons, e.g. Etoposide, 
is not mediated by NF-KB but can be manipulated by proteasome inhibitors 
129 . Why NF-KB plays a role in apoptosis induced by some agents and not 
others is not clear but suggests that the apoptotic pathway varies from one 
inducer to another and also perhaps from one cell type to another. 

Conclusion: It is clear that apoptosis is regulated by mitochondria- 
dependent and -independent pathways involving a series of proteins that 
preexist in the cells. Most agents that induce apoptosis, also activate NF-KB 
and the latter suppresses apoptosis in most cases. While it may appear 
paradoxical that the same agent could perform both functions, in reality it is 
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not. The same stress that induces cells to die provokes a self-defense 
response in the cell. How NF-KB plays an antiapoptitic role in some cells, 
pro-apoptotic in others and no role in some requires further understanding. 
It is possible that activation of NF-KB alone is not sufficient to regulate 
apoptosis and that other transcription factors are involved (141). Most NF- 
KB-regulated genes (such as cyclooxygenase-2) play critical roles in 
inflammation, suggesting that inflammation can also negatively regulate 
apoptosis. 

Abbreviations used: NF-KB, nuclear factor KB; TNF, tumor necrosis 
factor; I*, inhibitor of NF-KB; TRADD, TNF receptor-associated death 
domain; NIK, NF-*-inducing kinase; TRAF2, TNF receptor-associated 
factor 2; SOD, superoxide dismutase; RIP, receptor interacting proteins; 
SODD, silencer of death domain; FADD, Fas-associated death domain; 
FLICE, FADD-like ICE; c-FLIP, cellular FLICE inhibitory protein; LT, 
lymphotoxin; FasL, fibroblast associated ligand; TRAIL, TNF-related 
apoptosis-inducing ligand; DR3L, death receptor 3 ligand; TWEAK, weak 
homologue of TNF; THANK, TNF homologue that activates apoptosis, NF- 
KB and JNK; JNK, c-jun N-terminal kinase; VEGI, vascular endothelial cell 
growth inhibitor; CLAP, cellular inhibitors of apoptosis; PKR, double- 
stranded-RNA-dependent protein kinase; MEKK, mitogen-activated protein 
kinase/extracellular signal-regulated kinase kinase 

Table I. Anti-apoptotic activity of NF-KB 
Apoptosis Inducing Agent Cell Type Reference 
TNF Re1 A-1- fibroblasts and macrophages 49 
TNF MCF-7 50 
TNF HEF, Jurkat, T24 5 1 
TNFa, radiation, HT1080 52 
daunorubicin 
TNF Jurkat 55 
TNF CD4+ T lymphocytes 56 
TNF Endothelial cells 57 
TNF EBV infected lymphoblastoid cells 5 8 
TNF A549, MCF-7 59 
TNF Glomerular mesangial cells 60 
y-radiation (SK-OV-3.ipl) cells 61 
TNF MIAPaCa-2, Capan-2 62 
TNF Ewing sarcoma cells 63 
TNF Cardiomyocytes 64 
TNF, IL-1 Mouse embryos 65 
v-Re1 inducers HeLa cells, spleen cells 66 
TNF 293 67 
TNF SK-OV-3 .ipl 68 
TNF Human pulmonary macrophages 69 
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Apoptosis Inducing Agent Cell Type Reference 
NIK suppression PC12 70 

blockers) 
TPA and IFN-y Kerationocytes 73 
SN50 (NF-KB blocker) T Lymphocytes 74 
X-ray irradiation Lymphoma cells, Thymocytes 75 
Hyperoxia A549 77 
TNFa and ROI Brain capillary endothelial cells 78 
Gas 6 suppression NIH 3T3 79 
Anisomycin Myocardial cells 80 
Calpain 3 deficiency Myogenic satellite cells 8 1 
Anti-CD95 Panc TuI 82 
Serum depletion, sodium GSM 06 83 
butyrate 
Toxoplasma gondii T-cells 84 
Insulin CHP overexpressing insulin receptor 88 
TNF Prostate carcinoma cells 130 
TGF-P, serum withdrawal, MvlLu and MDCK 131 
anoikis, TNF-a 
Growth factor deprivation Hematopoietic cells 132 
v-Re1 Spleen cells, fibroblasts, C4-1 133 
TRAIL Renal Cell carcinoma 134 
Hyperoxia, TNF-a Lung epithelial cells 135 
TNF Endothelial cells 136 
MCF-7, human breast carcinoma; Panc TuI, human pancreatic adenocarcinoma; A549, 

nonsmall cell lung cancer; SKOV3ip1, human ovarian cancer cell line was generated from 
ascites developed in ndnu mouse by administering an intraperitoneal injection of SK-OV-3, a 

human ovarian carcinoma cell line; MIAPaCa-2 and Capan-2, human pancreatic cancer cell 
lines; HT1080, fibrosarcoma; MvlLu and MDCK, epithelial cells; C4-1 and WEHI 231, B- 
cells; PC12, rat adrenal pheochromocytoma; GSM 06, gastric mucosal cell line. 

Table 2. Pro-Apoptotic Activity of NF-KB 
Inducing Agent Cell Type Reference 
Oxidative stress Aortic endothelial cells 76 
TNFa, HTLV- I 
TaxITNFa 
TNFa 
FaslTNFa 
UV light 
H202 
Etoposide 
Aspirin 
Helicobacter pylori 
Sindbis-virus induction 
Adenovirus 

Osteoblast cell line 

Myeloid leukemic cell lines 
CEM-C7 
Human melanoma 
Jurkat, CEM C7, Oligodendrocytes 
HL-60 and thymocytes 
Colon cancer cells 
Gastric epithelial cells 
AT-3 
Hepatocytes 
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Focal cerebral ischemia ~ e u r o n s  (Mice Ischemic model) 115 
PKR BSC-40,3T3 116 
Kainic acid Rat striaturn 118 
a-CD3 Thyrnocytes from r n I ~ B a  mice 119 
Constitutive enhanced by Immature Rat thymocytes 137 
etoposide 
Doxorubicin KBM-5, SH-SYSY, IMR32 138, 139 
Mullerian Inhibiting T47D, MDA-MB-23 1 140 
substance 
Jurkat, CEM-C7, human T-cells; HI-60, human promyelocytic leukemia; KBM-5, human 
myeloid; SH-SYSY, IMR32, N-type neuroblastoma cells; T47D, MDA-MB-231, numan 
breast: BSC-40, African green monkey kidney cells; AT-3, prostrate carcinoma cell line; 
PKR, doublestranded-RNA-dependent protein pinase. 
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1. INTRODUCTION 

Cancer research over the past few decades has generated a rich and 
complex body of knowledge showing that cancer cells acquire numerous 
features that differentiate them from their normal counterpart. These 
functional differences arise fi-om the acquisition of multiple genetic changes 
affecting a variety of cellular pathways. It has been proposed that the 
diversity of cancer cell features is a manifestation of six essential alterations 
in cell physiology that collectively control malignant growth: abnormally 
activated growth signals, insensitivity to growth inhibition, evasion from 
programmed cell death, limitless replicative potential, sustained 
angiogenesis, and tissue invasion and metastasis '. Laboratory experiments 
have demonstrated that, at a minimum, several of these essential alterations 
are necessary for the direct tumorigenic transformation of normal human 
epithelial and fibroblast cells2. Conversely, one may expect that effective 
treatment of an established cancer would require simultaneous therapeutic 
actions on at least several of these essential alterations. The Transforming 
Growth Factor Beta (TGF-P) signaling pathway is one of the few pathways 
that either directly or indirectly modulate several of these essential 
alterations: abnormally activated growth signals, insensitivity to growth 
inhibition, evasion fi-om programmed cell death, and tissue invasion and 
metastasis 3. This explains why the TGF-P signaling pathway plays a central 
role in cancer development and progression. 



130 CYTOKINES AND CANCER 

Transforming Growth Factor Beta (TGF-B) is part of a large family of 
polypeptides that includes more than 30 members. This superfamily is 
broadly divided into two subfamilies, the TGF-DIActiviniNodal subfamily 
and the BMP (bone morphogenetic protein)/GDF (Growth and 
Differentiation Factor)/MIS (Muellerian Inhibiting Substance). There are 
three isoforms of TGF-0, TGFBl (TGF-PI), TGFB2 (TGF-P2) and TGFB3 
(TGF-P3). These isoforms are encoded by different genes but all bind to the 
same receptor: TGFBR2 4. Of the three isoforms, TGFBl is most fi-equently 
upregulated in cancer cells 5'6 and has been more extensively studied. 

TGF-P is secreted in a latent form and is activated by plasmin 738, 
thrombosponding, MMP-9 and MMP-2 lo. Interestingly, plasminogen is 
converted to plasmin at sites of cell migration and invasion, which may 
result in increased activated TGF-P concentrations at those sites. MMP-9 
and MMP-2 are expressed by malignant cells at sites of cell invasion "'12 

providing another mechanism for activation of latent TGF-P. 
Once TGF-P becomes activated it can then bind to the type I1 receptor 

(TGFBR2), which then phosphorylates the type 1 TGF-P receptor 
(TGFBRl) leading to phosphorylation of its kinase. The next step in the 
signal transduction pathway is the phosphorylation of downstream elements. 
Several intracellular proteins have been shown to interact with the TGF-P 
receptor complex, including FKBP12 13-15, STRAP l6 and TRIP-1 17. The 
current model of induction of signaling responses by TGF-D related factors 
is a linear signaling pathway initiated by the activated TGFBRl and 
resulting in ligand-induced t r ans~r i~ t ion '~~ '~ .  SMAD2 and SMAD3 are 
phosphorylated by TGFBRl and form complexes with SMAD4. Activated 
SMAD complexes enter the nucleus where they regulate transcription of 
target genes through physical interaction and functional cooperation with 
DNA-binding transcription factors and CBP or p300 coactivators. SMAD6 
and SMAD7 inhibit this pathway by interacting directly with TGFBRl and 
preventing SMAD2 and SMAD3 phosphorylation. 

The TGF-B however interacts with other signaling pathways. These 
pathways regulate SMAD-mediated responses but also induce SMAD- 
independent responses20. The TGF-P signaling pathway is tightly regulated 
by other cellular elements and pathways. The activation of the epidermal 
growth factor receptor (EGFR) 21interferony (IFN-y) signaling through 
STATs 22 and tumor necrosis factor a (TNF-a) through activation of NF-KB 
23 , inhibit the TGF-j3 signaling pathway by inducing expression of SMAD7. 
Other pathways that are tightly related to TGF-P include the RASMAPK 
pathway, which is able to inhibit SMAD signaling 24. Furthermore several 
studies show a direct interaction between TGF-j3 and the p38/MAPK 
pathway indicating that TGF-P can activate the p38 pathway independently 
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from the SMADs in mammary cells 2sas well as other cell types including 
prostate 26. 

TGF-j3 is a potent growth inhibitor of several cell types including 
epithelial cells. This inhibition is achieved through the induction of 
expression of CDKN2B (p15*4B) 27,28 and CDKNlA (p21C'P') 29. Other 
mechanisms that lead to cellular growth arrest include the inhibition of MYC 
expression, CDK4 and CDC25A. The inhibitory signal of TGF-P can also 
induce apoptosis in several cell types 30"5. This may be achieved through 
the DAXX adaptor protein which interacts with TGFBR2 36 and through 
increased levels of SMAD3 and SMAD4 37,38. 

2. THE ROLE OF TGF-P IN MAMMARY GLAND 
DEVELOPMENT 

There are several studies that point toward an important role of TGF-P in 
the development of the mammary gland. The morphologic and functional 
development of the breast tissue takes place during the postnatal period. 
During puberty, and with the influence of rising hormone levels, the 
mammary tree is established within an adipose stroma. During this period, 
the end-bud develops, which is the morphologic unit. The end-bud functions 
in extending the ductal epithelial tree. During pregnancy, growth and 
differentiation results in lobuloalveolar differentiation of the epithelium in 
order to produce milk. 

As in most tissues, TGF-P seems to play a dual role in mammary gland 
development. One of the first studies evaluating the role of TGF-P in 
mammary gland development came from Daniel et a1 39, who administered 
exogenous TGF-P via diffusion from miniature inorganic pellets, showing 
that end-buds undergo reversible regression during puberty, whereas 
alveolar buds in pregnancy do not. 

The role of TGF-P in this process is not fully understood. Several studies 
have localized TGF-P as well as its type I, I1 and I11 receptors to the breast 
epithelium and stroma 40-42. Furthermore all three TGF-j3 isoforms seem to 
be expressed in the epithelium during all phases of mammary development 
43. TGFB2 (TGF-P2) is less abundant whereas TGFB3 (TGF-P3) is the only 
isoform present in the myoepithelium. TGFB 1 (TGF-PI) transcription 
decreases during pregnancy but, whereas the expression of the other two 
isoforms increases. 

Another interesting observation is the difference in localization between 
latent TGF-P (LTGF-P) and active TGF-P. It has been shown that ionizing 
radiation induces activation of LTGF-P to TGF-P 44. Furthermore radiation 
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induces stromal extracellular matrix (ECM) remodeling, which can be 
blocked by the use of TGF-j3 neutralizing antibodies 45. 

TGF-P has also been shown to suppress the ability of mammary gland 
explants cultured with lactogenic hormones to secrete casein 46. It inhibits 
ductal morphogenesis by mammary epithelial cells and this function can be 
reversed by the use of neutralizing antibodies, which simulate duct 
formation 47. However it seems that this action is dose dependent: picomolar 
concentrations of TGF-P inhibit branching morphogenesis, whereas 
fentomolar concentrations stimulate it 48. 

TGF-P has also been implicated in tumor progression. Overexpression of 
TGF-P1 in the mouse mammary gland inhibits tumorigenesis, while 
interfering with TGF-P receptor function enhances it 49350. Furthermore it has 
been shown that TGF-P receptor levels are diminished in human breast 
cancer cell lines and some primary tumors 5',52. However expression of 
TGF-P is paradoxically increased in late stages of tumor progression 
especially in association with invasion and metastasis 53354. 

2.1 The role of TGF-P in Breast Cancer 

In normal cells TGF-P is a potent growth inhibitor. On the other hand it 
is now appreciated that TGF-P is prooncogenic and that metastases in most 
tumor types require TGF-P activity 55,56. It therefore seems that for every 
action of TGF-P there is a counteraction that TGF-P is capable of performing 
57 

2.1.1 Somatic mutations of the TGF-P pathway 

In an effort to explain the dual role of TGF-P in breast carcinogenesis, 
researchers have tried to find mutations that interfere with its function. 
Experiments in rodents indicate that increased TGF-j3 signaling correlates 
with decreased breast cancer risk. Transgenic mice that express a 
constitutively active form of Tgfbl are resistant to DMBA-induced breast 

49 tumor formation . Furthermore treatment of Tgfbl +/- mice with 
carcinogens results in enhanced tumorigenesis compared with T&l +I+ 
littermates 58. TGFBR2 downregulation is observed in breast cancer and 
seems to be due to a cellular trafficking defect in which most of the 
TGFBR2 remains in the cytosol 59. A TGFBRl tumor specific S387Y 
mutation was reported in 40% of metastatic breast cancers but in a follow-up 
study this finding was not reproduced 60,61. Furthermore, although SMAD4 
mutations have not been found in breast cancer, the MDA-MB-468 breast 
cancer cell line has a homozygous deletion of the gene 62363. Overall somatic 
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mutations in the TGF-P pathway in breast cancer are extremely rare and do 
not seem to contribute to carcinogenesis. 

2.1.2 Germline mutations and polymorphisms of the TGF-P 
pathway 

Recently a TGFBRI germline polymorphism was described, which is 
present in approximately 14% of the population. This common variant 
results from the deletion of three alanines within a 9-alanine stretch of exon 
1 coding sequence and was named TPR-I(6A) because it codes for 6 alanines 
64,65 . In 2003, it was renamed TGFBRI*6A in accordance with the HUGO 
nomenclature. Using a mink lung epithelial cell line devoid of endogenous 
TGFBRI, transiently and stably transfected TGFBRI and TGFBRI *6A cell 
lines were established for functional studies. Compared to TGFBRI, 
TGFBRI*6A was moderately impaired as a mediator of TGF-0 
antiproliferative signals 65966 . The additional findings of an 
overrepresentation of TGFBRI *6A heterozygotes and homozygotes among 
patients with a diagnosis of cancer as compared with the general population 
suggested that TGFBRI *6A might be a new tumor susceptibility allele6'. 
Over the past few years several studies have focused on the cancer risk of 
individuals heterozygous or homozygous for TGFBRI*6A. A meta-analysis 
of seven case-control studies showed that TGFBRI *6A carriers have a 26% 
increased risk for cancer. Breast cancer risk was increased by 48%, ovarian 
cancer risk by 53% and colon cancer risk was increased by 38% 67. A 
second meta-analysis of twelve case control studies has added further 
support to these findings and confirm TGFBRI*GA as the most common 
candidate tumor susceptibility allele reported to date that increases the risk 
of breast, colon and ovarian cancer 68. 

Several polymorphisms have been reported within the human TGFBl 
gene. One of them has been extensively studied in relation to breast cancer 
risk. This polymorphism is represented by the substitution of Leucine to 
Proline (T+C) at the loth amino acid position. The Leucine to Proline 
substitution results in higher TGFBl secretion 69. The CC (TGFBI*CC) 
genotype was found by one group of investigators to be associated with a 
64% decreased breast cancer risk in a cohort study of 3,075 white American 
women over age 65 at recruitment 70. In contrast, in a pooled analysis of 
three European case-control studies that included 3,987 cases and 3,867 
controls, the CC genotype was associated with a 21% increased risk of 
breast cancer 69. In a hospital-based study of 232 cases and 172 controls 

' 

conducted in Japan, there was no significant overall association between the 
CC genotype and breast cancer. However, the CC genotype was associated 
with a 65% reduced risk of breast cancer in comparison with the TT 
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genotype among premenopausal women (OR 0.45, 0.20-0.98)~'. Most 
recently, a large multiethnic case control study of 1123 breast cancer cases 
and 23 14 controls from Los Angeles and Hawaii did not find any association 
between the TGFBI *CC polymorphism and breast cancer risk 72. Of major 
interest is the recent report that patients with a diagnosis of breast cancer that 
carry the TGFBI T to C variant have a significantly decreased survival as 
compared with non-carriers73 If confirmed in subsequent studies, this would 
be the first evidence in humans that increased levels of secreted TGFBl are 
associated with more aggressive disease. 

TGF-P, ESTROGENS AND ANTIESTROGENS 

There seems to be a correlation between stage of breast cancer and 
TGFBl serum levels. More specifically individuals with more advanced 
lymph node status, more advanced TNM staging and poorer histologic grade 
have higher TGFB 1 serum levels 74. 

TGFBl serum levels are increased in individuals with metastatic or 
locally advance breast cancer, compared with healthy donors 75 and there 
may be a relationship between these levels and patients' response to therapy. 

TGF-j3 has also been implicated in the regulation of NCOA3, also named 
AIBl (amplified in breast cancer I), a nuclear receptor coactivator gene, 
which is amplified and overexpressed in breast cancer. Experiments with 
TGF-P and TGF-j3 neutralizing antibodies have shown that antiestrogens 
suppress AIB 1 gene expression through TGF-j3 76. 

It is unclear whether TGF-j3 levels change significantly with the 
administration of tamoxifen. A recent study evaluating TGFB 1 and TGFB2 
levels showed that although TGFB 1 levels did not correlate with tamoxifen 

77 treatment, TGFB2 levels increased with tamoxifen administration . 
Antiestrogens have also been shown to inhibit the chemotactic activity of 
TGF-j3 in MCF-7 cells 78. This may point toward the potential benefit of 
combining antiestrogens with direct TGF-j3 inhibitors. 

There is evidence that the TGF-j3 pathway interacts with ESR1, also 
named Estrogen Receptor a (ERa), through crosstalk with SMAD4. More 
specifically, SMAD4 and ESRl form a complex when ESRl binds to the 
estrogen-responsive element within the estrogen target gene promoter. 
Furthermore SMAD4 seems to inhibit antiestrogen-induced luciferase 
activity as well as estrogen downstream target gene transcription in breast 
cancer cells 79. 
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4. MECHANISMS OF TGF-P RESISTANCE IN 
CARCINOGENESIS 

Although the growth of normal epithelial and mesenchymal cells is 
arrested by TGF-P, cancer cells are able to escape this mechanism and 
become TGF-P unresponsive. The mutations mentioned above provide one 
such mechanism. More often, however, loss of responsiveness to the TGF-P 
growth inhibitory effect does not result from inactivating mutations or 
homozygous deletions of members of the TGF-P signaling pathway. One 
mechanism involved in acquired TGF-P resistance involves the upregulation 
of oncogenic expression. One such example is the elevated expression in 
melanoma of the proto-oncogene SKI This correlates with the decreased 
responsiveness to TGF-P, probably due to repression of SMAD-mediated 

81 transcription . SKI as well as SKIL, also named SnoN, are two 
protooncogenes that interact in the nucleus with SMADs and negatively 
regulate them. It has been shown that SMAD2, 3, and 4 bind to different 
regions of SKI and SKIL. Furthermore mutations in the SMAD-binding 
regions of these two protooncogenes impair their ability to promote 

82 carcinogenesis in chicken embryo fibroblasts . It has been shown that 
reduced expression of SKIL significantly correlates with longer distant 
disease-free survival in estrogen receptor-positive breast cancer patients. 
Furthermore high levels of nuclear SKIL are associated lobular histology 
and favorable features, whereas high levels of cytoplasmic SKIL are 
associated with ductal histology and adverse prognostic features 83. Also, 
downregulation of MYC expression by TGF-P, is lost in several cancer cell 
lines 84. Another oncogene, EWSRI, represses TGFBR2 expression and may 
account for decreased responsiveness to TGF-P in cancer cells 

5. THE ROLE OF TGF-P IN CELL CYCLE ARREST 

Although it has been shown that normal mammary epithelial cells are 
sensitive to the growth inhibitory effect of TGF-P, human breast cancer cell 
lines, show a relative resistance to the effect of TGF-P requiring 10 to 100- 
fold more TGF-P to produce an antimitogenic effect, some show complete 
loss of response to TGF-P signaling and some are growth stimulated by 
TGF-P 5',86. The effect of TGF-P in the cell cycle seems to come in a 
discrete period in the G1 phase 87388. TGF-P has been shown to downregulate 
MYC by inhibiting its transcription 89-91. ' MYC is needed for the progression 
from GI to S phase. This downregulations seems to be important in the cell 
cycle arrest caused by TGF-P. This is further emphasized by the fact that 
MYC overexpression seems to be one of the mechanisms responsible for 
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TGF-P resistance 89*92. TGF-P also causes loss of G1 cyclins 93194 and 
regulates CDK2 phosphorylation 93,95. 

So what seems to happen during tumorigenesis that causes the loss of 
TGF-P mediated G1 arrest? One mechanism that seems to contribute to this 
effect is overexpression of cyclins. It has been shown that cyclin Dl gene is 
amplified in 40% of breast cancers 96297. Furthermore there seems to be 
overexpression of CDK4 98 and activation of MYC, which in turn may 
regulate indirectly the expression of CCND1, CCNEl and CCNA2 99~100. 
Finally activation of HRAS, which commonly occurs in human 
malignancies, can increase CCNDl levels, which can provide another 

101-103 mechanism of TGF-P resistance . 

6. INVASION, ANGIOGENESIS AND TUMOR 
METASTASIS 

For a tumor to metastasize, a multistep process has to take place, which 
requires migration and invasion through the stroma, and then migration in 
and out of blood and lymphatic vessels. Increased production of TGF-P 
occurs in several tumor types and frequently correlates with tumor 

104 aggressiveness . The contribution of TGF-P to the invasive behavior of 
tumors has been studied in several mouse models 105-107 . Transgenic 
expression of activated TGFPl in mouse skin epidermis increases the 
conversion to carcinoma Io7. Also, tumor formation and metastasis to bone 
was shown that depend on intact TGFBR2 log. When the transplanted cells 
expressed a partially activated TGFBRI, there was acceleration of bone 
destruction by malignant cells followed by a reduction in survival108. 

Changes in the tumor microenvironment are also an integral part of the 
process of metastasis. TGF-j3 seems to play an integrar role in this process. 
Increase protease expression and plasmin activation by tumor cells 1 O!? 

promotes activation of TGF-P from its latent form. Furthermore increased 
levels of activated TGF-P enhance the synthesis of ECM proteins and chemo 
attraction of fibroblasts, which in turn promote tumor growth, invasion and 
angiogenesis '. Evidence of a crucial role for TGF-P in angiogenesis comes 
fkom several observations. Increased expression of TGFBl in transfected 
prostate carcinoma or Chinese hamster ovary cells enhances angiogenesis in 
immunodeficient mice whereas administration of neutralizing antibodies 
against TGFBl strongly reduces tumor angiogenesis 'I0. Re-expression of 
SMAD4 in SMAD4-deficient pancreas cancer cells suppresses tumor 
development primarily by inhibiting angiogenesis 'I1. Also in human breast 
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cancers, high levels of TGFBl m-RNA are associated with increased 
microvessel density 'I2. 

TGF-P has also been shown to induce the expression of VEGF, which is 
a direct stimulant of cell proliferation and migration 'I3. TGFBl is a potent 
chemoattractant for monocytes, which release angiogenic factors 114-117 

Another mechanism by which TGF-P induces cell migration is the induction 
of expression of the matrix metalloproteases MMP-2 and MMP-9 and the 
downregulation of protease inhibitor TIMP in tumor and endothelial cells 
123 . It was recently shown that TGFBl works in conjunction with tenascin-c 
(TN-C) to upregulate MMP-9 expression. Neutralization of TGF-P with a 
specific TGFBl antibody results in decreased expression of MMP-9. 
However, the addition of TN-C upregulates MMP-9 124. 

The role of TGF-P in angiogenesis is further highlighted by the presence 
of the transmembrane glycoprotein endoglin (ENG; CD105). Endoglin is 
primarily expressed in endothelial cells and binds TGFBl and TGFB3, 

125,126 through its association with TGFBR2 . It has been shown that endoglin 
interacts with INHBA (activin-A), BMP7 and BMP2 Inhibition of 
endoglin expression in cultured endothelial cells enhances the ability of 
TGFBl to suppress their growth and migration '27. Exogenous TGFBl has 

128 been shown to up-regulate endoglin expression . In fact, it has been 
suggested that the development of an angiogenic response depends on a 
balance between levels of TGF-P stimulation and endoglin expression 127. 

Furthermore in vivo studies in SCID mice carrying human breast carcinoma 
showed that anti-endoglin monoclonal antibodies produce anti-tumor effect 
probably mediated by angiogenesis inhibition and destruction of tumor- 
associated vasculature 129-131 

Immunohistochemical staining of TGF-P in breast cancer cells from 
lymph node metastases show that there is preferential staining at the edges of 
the tumor 132. TGF-P may play a role in directing metastatic cells to specific 
sites. It has been shown that TGF-P and MAPKl (p38) induce expression of 
PTHLH, a PTH-related protein which directs metastatic cells to the bone 
108,133 . Furthermore it has been shown that mRNA levels of Bone 
Morphogenetic Protein-2 (BMP2), a TGF-P family member with anti- 
proliferative effects in breast cancer cell lines, are significantly decreased in 

134 breast tumor tissue compared with normal breast tissue . This may 
provide a potential mechanism for the metastatic potential of breast cancers 
and their capacity to grow in bone. 
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7. ROLE OF TGF-P IN EPITHELIAL- 
MESENCHYMAL TRANSITION (EMT) 

Another important aspect of the contribution of TGF-P to cancer 
development is its impact on the loss of cell-cell contacts and acquisition of 
fibroblastic characteristics, a process that is commonly referred to as the 
epithelial-mesenchymal transition (EMT). Such transitions occur frequently 
during development and in certain cases are influenced by members of the 
TGF-P family. Indeed, TGF-P stimulation of both non-transformed and 

135-137 carcinoma-derived cell populations in culture leads to reversible EMT . 
Also, expression of TGFPl in the skin of transgenic mice enhances the 
conversion of benign skin tumors to carcinomas and highly invasive spindle- 
cell  carcinoma^'^^ and expression of a dominant-negative TGFBR2 prevents 
squamous carcinoma cells ftom undergoing EMT in response to TGF-P in 
vivo lo6. The crucial role of TGF-P as a mediator of stromal cell dependent 
epithelial carcinogenesis was recently unveiled. Conditional T&2 
inactivation in mouse fibroblasts resulted in intraepithelial neoplasia in 
prostate and invasive squamous cell carcinoma of the forestomach 138. 

8. ROLE OF TGF-P IN THE IMMUNE SYSTEM 

TGF-f3 plays a direct role in proliferation and differentiation in 
hematopoiesis 139-142 . TGFB1 influences both proliferation and 
differentiation of the uncommitted stem cell precursors and of myeloid 
progenitors 143,144 . Furthermore autocrine production of TGF-j3 by 
hematopoietic stem cells acts to maintain their quiescence 14'. TGF-P can 
also control the expression of the stem cell antigen CD34 146,147 and under 

certain circumstances prohibit differentiation 147,148 . Overall, TGF-P 
preserves self-renewal in primitive stem cells with moderate cell cycle 
blockade while it favors terminal differentiation of mesenchymal precursors 
and cell cycle arrest in terminally differentiated immune effectors. 
Mutations in the TGF-P pathway are very rarely encountered in 
hematopoietic tumors. There are only anecdotal reports of mutations in 

149 150 TGFBRl and TGFBR2 occurring in lymphoid malignancies . 
TGF-P can arrest stimulated B cells in G-1 Is', reduce Ig synthesis, and 

inhibit the switch from membrane-bound to secreted Ig lS2. NK cells lyse 
appropriate tumor cells in vitro 153,154 , are a source of T-cell-cytokines, 
including IFN-y lS5 and should be effective in surveillance against tumor 
cells that have lost expression of MHC lS6. In addition, NK cells can secrete 
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TGF-P 157 which acts by depressing the expansion and generation of 
cytolytic NK cells 158>159. 

Antigen specific CD8+ cells recognize peptides that are presented by 
MHC class I molecules on target cells. This cell-cell interaction causes 
destruction of the target cells mediated by perforin released by the cytotoxic 
CD8+ cells. Therefore any process that causes deactivation of the CD8+ T 
cells can promote growth and evasion of cancer. 

9. ROLE OF TGF-P IN ESCAPING 
IMMUNOSURVEILLANCE 

Tumor escape from immunosurveillance has been demonstrated using 
syngeneic tumors that grow in nude (T cell-less) and SCID (T and B cell- 
less mice) mice but grow only for a limited time in normal mice before they 

160,161 are rejected by tumor specific immunity . However it seems that if a 
large enough tumor is inoculated in the normal mice, this tumor 
progressively grows and the tumor cells no longer expresses the 
immunodominant epitope of the parent tumor l6'. 

Tumors have devised several approaches to escape from 
immunosurveillance. These approaches include: interference with antigen 
processing and presentation, antigenic variation, lack of costimulatory 
signals to T cells, induction of apoptosis and secretion of 
immunosuppressive cytokines. It has been shown that transport associated 
peptide (TAP), a critical component of antigen presentation is 

163,164 downregulated 16' as is the MHC I complex . Also, antigenic peptides 
expressed on the surface of tumor cells can be downregulated. It has also 
been shown that B7, a costimulatory molecule, is not present on the surface 

165,166 of tumor cells, contributing to T cell anergy . However the mechanism 
thought to contribute the most to the escape from immunosurveillance is the 
secretion by tumor cells of cytokines that inhibit immune response. Such 
factors include prostaglandin E2, interleukin-10 but the most potent 
immunosuppressor is TGF-P 167. 

TGF-P inhibits T-cell, NK cells, neutrophils, macrophages and B-cells 
117-123,140,168 . It has also been shown that TGF-P downregulates the 
expression of MHC class I1 antigen, which makes cell surface less 
immunogenic 169-171 . More evidence of the role of TGF-P in as a modulator 
of NK cell activity came from the observation that TGF-P antibodies only 
suppress tumor growth in mice with intact NK function 17'. This observation 
together with the findings that TGF-P may be a mediator of tamoxifen's 
antitumor effect 167,173 suggests a new explanation for tamoxifen resistance: 
the rise of tamoxifen-induced TGF-P secretion may contribute to the 
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emergence of tamoxifen resistance by altering NK cell antitumor cytotoxic 
effects. This hypothesis is supported by the observation that in patients with 
breast cancer and in experimental models, tamoxifen enhances NK function 
167,174-177 . But with prolonged exposure to tamoxifen, inhibition of NK cells 
has been observed 17'. 

Due to the apparent role of TGF-P in regulating the immune system, 
several investigators have used TGF-P targeted vaccine approaches to 
stimulate the immune system against the tumor cells. In one such approach, 
a TGF-P-targeted vaccine in rat glioma has been reported to result in the 
complete eradication of tumors when an antisense TGF-P construct was 
introduced into resected tumor cells ex vivo and then locally reintroduced 
into the tumor-bearing host 179. Furthermore in a mouse thymoma model, 
tumor cells engineered to secrete soluble TGFBR2, resulted in a suppression 
of tumorigenicity la'. Although so far these approaches have not been 
successfully introduced to clinical practice, they point to the emergence of a 
new concept in cancer imrnunotherapy, in which leukocytes, insensitive to 
TGF-P signals can be genetically engineered and may provide one approach 
against the "tumor firewall" lgl. 

10. IMMUNOTHERAPEUTIC APPROACHES 
TARGETING THE TGF-P PATHWAY 

TGF-P is probably a major cytokine responsible for evading the response 
of the host's immune system. Establishing a population of leukocytes 
insensitive to TGF-P, which would localize at the site of the tumor and exert 
their tumoricidal properties is an appealing approach. Such an approach was 
recently attempted with very encouraging results. Murine melanoma cells 
were transplanted into mice that had hematopoietic precursors rendered 
insensitive to TGF-P via retroviral-mediated gene therapy. Survival of the 
genetically engineered mice at 45 day survival was 70% compared with 0% 
for vector-controlled treated mice la'. Similar experiments using ex vivo 
transfer of an antisense TGF-P construct into isolated tumor cells followed 
by reimplantation into the brain of rats with established glioma has been 
shown to result in complete eradication of the tumors in vivo 179. These 
preliminary results are encouraging. This approach will be tested soon in 
clinical trials to determine its potential usefulness in human cancer. 
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10.1 Soluble protein inhibitors of the TGF-P pathway 

A soluble chimeric protein composed of the extracellular domain of 
TGFBR2 and the Fc portion of the murine IgGl heavy chain (Fc:TGFBR2) 
has been found to interfere with the binding of endogenous TGF-P with its 
receptor. Other cytokine antagonists that use this soluble receptor:Fc fusion 
protein class include Etanercept, the anti-TNF-a antibody which has 
received FDA approval for the treatment of rheumatoid arthritis. This fusion 
protein has shown protection against development of distant metastases in 
animal studies. In one study investigators used mice transplanted with breast 
cancer that were systemically given Fc:TGFBR2. It was shown that soluble 
Fc:TGFBR2 inhibits distant metastases in that experimental model. This 
was achieved not by alterations in cellular proliferation of tumor cells but 
through decreased tumor cell motility and intravasation, inhibition of MMP 
activity and increase in cancer cell apoptosis. Injection of this fusion protein 
for a total of 12 weeks in mice was not accompanied by any obvious toxicity 
183. In another study investigators exposed MMTV-neu transgenic mice (a 
commonly used breast cancer mouse model) to lifelong Fc:TGFBR2. The 
concern was that lifetime exposure to this antibody would have deleterious 
effects in the immune system similar to what was observed in Tgfbl null 
mice that develop lethal multifocal inflammatory syndrome with features 
consistent with autoimmune disease 184,185 . However, prolonged exposure to 
Fc:TGFBR2 conferred protection against metastasis arising from either an 
endogenous primary tumor or from injection of metastatic melanoma cells. 
Furthermore when studying the immune function of these mice the only 
difference observed was a small, clinically insignificant increase with age of 
memory T cell lymphocytes and a higher incidence of benign lyrnphocytic 
infiltrates in the lung, pancreas and kidney These two studies can lead to 
certain conclusions: 1) The use of a neutralizing antibody against the 
TGFBR2. does not spontaneously induce tumors, a phenomenon which had 
been observed in Tgfbl +I- and Tgfbr2 +I- mice 58; 2) Administration of 
Fc:TGFBR2 significantly reduces the incidence of metastases; 3) There 
doesn't seem to be any obvious toxicity with either short-term or long-term 
administration of Fc:TGFBR2. 

Although there have not been any reports of tumor formation with the 
use of antibodies against the TGF-P pathway, there are some concerns given 
the "two faces" of TGF-P in carcinogenesis. In a recent study it was shown 
that TGF-P signaling impairs Neu-induced mammary tumorigenesis while at 
the same time promoting pulmonary metastasis 3. When investigators 
crossed mice expressing activated forms of Neu receptor tyrosine kinase that 
selectively couple to Grb2 or Shc signaling pathways the activated type I 
receptor increased the latency of mammary tumor formation but also 
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enhanced the frequency of extravascular lung metastases. Furthermore 
expression of the dominant negative type I1 receptor decreased the latency of 
Neu-induced mammary tumor formation while significantly reducing the 
incidence of extravascular lung metastases. Maybe one way to avoid these 
effects would be to couple an antibody against the TGF-P pathway with a 
cytotoxic agent. These results, although encouraging, need to be validated in 
clinical trials to show whether in vivo alteration of TGF-P signaling is a 
feasible approach for the treatment of human malignancies. 

10.2 Small molecule inhibitors of TGF-P 

The first specific inhibitor of the TGF-P pathway is the compound SB- 
431542 lS7. This compound acts as a competitive inhibitor in the TGFBRl 
ATP binding site and inhibits in vitro phosphorylation. TGFBRl 
phosphorylation of SMAD2 and SMAD3 is inhibited by the administration 
of SB-431542. Furthermore it has been shown that this small molecule 
kinase inhibitor is specific the only other weakly inhibited kinase was MAP 
kinase p38a lss. Due to its similarity a p38 MAPK inhibitor (SB-203580) 
has also been shown to inhibit TGFBRl at high concentrations lS9. SB- 
431542 has also been shown to inhibit TGFB1-induced generation of 
collagen Ial (col Ial), a matrix marker 190. 

11. CONCLUSIONS 

The role of TGF-P in breast cancer development is complex. In early 
carcinogenesis TGF-P acts as a growth inhibitor. However, later on, TGF-P 
acts as a prooncogenic cytokine promoting metastasis and escape from 
immunosurveillance. So far therapeutic approaches using the TGF-P 
pathway have been met with great enthusiasm. The use of monoclonal 
antibodies, small molecule kinase inhibitors or gene therapy to block the 
TGF-P signal has lead to delayed development of metastatic disease and 
prolonged survival in murine models of carcinogenesis. These observations, 
together with the fact that there was no observed toxicity give us hope that in 
the future we will be able to test these molecules in clinical trials. For the 
time being, however, understanding the mechanisms behind the dual role of 
TGF-P in cancer development, as well as the potential role of TGF-P in 
prevention or delaying of cancer development need to be elucidated. 

Epidemiologic data indicate that naturally occurring common variants of 
the TGF-P signaling pathway modulate breast cancer risk and outcome. 
There is growing evidence that TGFBRl*6A may contribute to the 
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development of a sizeable proportion of breast cancers. Ongoing studies that 
assess TGF-P signaling through the prism of its functionally relevant 
common variants, TGFBRI *6A and TGFBI *CC, will identify subgroups of 
individuals with increased or decreased breast cancer risk based on the 
expected level of signaling. It is anticipated that these variants, in particular 
TGFBRl*6A, will become part of the overall breast cancer risk assessment. 
We foresee that these TGF-j3 pathway variants will account for a proportion 
of familial breast cancer cases. While we predict that individuals with 
overall decreased TGF-P signaling will be more prone to develop certain 
forms of cancer, we believe that the tumors of these individuals will behave 
less aggressively because they will not benefit as much from the 
prooncogenic properties of the TGF-j3 signaling pathway. On the other 
hand, individuals with higher baseline TGF-P signaling may have more 
aggressive tumors. 

TGF-j3 signaling will become a target for cancer therapies. Candidates 
for these therapies will include patients with aggressive tumors exhibiting 
intact TGF-j3 signaling. Small inhibitory molecules and anti-TGF-j3 
antibodies will enter the clinical arena either as adjuvant, second or third line 
therapies in metastatic cancers. TGF-P will become a bona fide molecular 
target in the next five years. 
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1. INTRODUCTION 

Prostate cancer is the most commonly diagnosed malignancy among 
American males and is the second leading cause of cancer-related death. It 
is estimated that over 230,110 men will be diagnosed with the disease in 
2004 ['I. While substantial advances have been made towards the diagnosis 
and treatment of prostate cancer, the underlying molecular initiation events 
leading to prostate cancer development and progression to advanced 
metastatic disease remain elusive. Prostate specific antigen (PSA) screening 
has resulted in earlier disease detection, yet approximately 30% of men will 
die of metastatic disease. Slow progression, an aging population, and the 
associated morbidity strongly underscore the need for improved therapeutic 
strategies and prognostic markers. An array of growth factors is involved in 
the regulating normal prostate growth, including epidermal growth factor 
(EGF), transforming growth factor-a (TGF-a), keratinocyte growth factor, 
basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF) and 
TGF-P families [21. The TGF-j3 family is important for inducing 
differentiation and inhibiting prostate epithelial cell proliferation and for 
maintaining normal prostate homeostasis [3"1. The first member of TGF-P 
superfamily of secreted polypeptide factors, TGF-j3 1, was discovered 
approximately 20 years ago 16]. This interesting growth factor family has 
grown considerably during the last two decades to a number of thirty distinct 
and yet structurally and functionally related members [71. The present review 
will summarize the current acknowledge on the paradoxical roles of TGF-P1 
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and its signaling pathway in the regulation of prostate normal and 
tumorigenic growth and will highlight the significance of a defective TGF- 

1 mechanism in the prognosis and treatment of prostate cancer. 

2. THE TGF-P SUPERFAMILY HISTORY 

TGF-P was originally named because of its ability to stimulate fibroblast 
growth in soft agar; but it can also serve as a potent inhibitor of epithelial 
cell proliferation [81. The TGF-P superfamily includes the TGF-P family 
(TGF-PI to P5), leading members of which are important in regulating the 
formation of extracellular matrix, and inhibiting cell proliferation and 
inducing apoptosis. The two major cell types, stromal and glandular 
epithelial cells fi-om the normal human prostate and benign prostatic 
hyperplasia, express rnRNA for TGF-P1 to P3, but the former primarily 
secreted TGF-PI, whereas the later secreted more TGF-P2, and P3 than 
TGF-P1 [91. -TGF-P1 is important in regulating cellular growth, 
differentiation, and apoptosis TGF-PI, TGF-P2, TGF-P3, and TGF-P5 
differentially enhance the expression of N-cadherin, N-CAM, fibronectin, 
and tenascin in precartilage condensations, suggesting that TGF-P isoforms 
play an important role in the establishment of cell-cell and cell-extracellular 

115-171 matrix interactions during precartilage condensations . 
Other members of the superfamily include the activin family, the bone 

morphogenetic proteins @MPs), the Vgl family, GrowtWdifferentiation 
factors (GDFs), glial-derived neurotrophic factor (GDNF), and Miillerian 
inhibitory factor (MIF). Significantly enough, activin inhibits androgen- 
responsive prostate cancer cell growth ["], and is important in apoptotic 
regulation of human prostate cancers [Ig1. Furthermore activin can be a 
physiological modulator of PSA gene transcription, secretion in the prostate, 
and may cooperate with androgen to up-regulate PSA in vivo, and can 
regulate prostate growth .I2', 211. BMPs are a family of growth factors, which 
may play a role in the formation of prostate cancer osteoblastic bone 
metastases. BMP-6 mRNA expressed strongly in prostatic 
adenocarcinomas, both in the primary tumor and in bone metastases. 
Evidence pointing to BMP-6 as a potential attractive marker and possible 
mediator of skeletal metastases in prostate carcinoma [22, 231. Prostate-derived 
factor (PDF), a member of BMPs [241, involved in differentiation of the 
prostate epithelium [2s1, may also be important in the progression of prostate 
cancer [261. GDFs like ,other members play an important role in cell growth 
and differentiation. GDF-15/MIC-1 is widely distributed in adult tissues 
including those of the prostate, being most strongly expressed in epithelial 
cells and macrophages [271; The Vgl cell-signaling pathway plays a central 
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role in left-right coordinator function 1281; while GDNF regulates apoptosis in 
epithelial cells [291; and MIF is an essential factor for male sexual 
differentiation 1301. 

TGF-I3 family ligands are translated as prepropeptide precursors with an 
N-terminal signal peptide followed by the prodomain and the mature 
domain, which is responsible for activation. Six to nine conserved cysteine 
residues in the mature domain form intra- and intermolecular disulfide bonds 
characteristic of this family of proteins [311. Several members of the family 
(i.e., GDF-9, BMP-15, GDF-3) have a substitution of a serine for the 
cysteine normally involved in intermolecular disulfide bond formation [321. 
TGF-P1 is the best-studied isoform; it is a disulfide-linked homodimer of a 
112-amino acid peptide (25 kDa) derived from a 2.4-kb mRNA transcript; 
TGFPl mRNA is translated into a 390-amino acid precursor with a 29- 
amino acid N-terminal signal peptide. The precursor is dimerized, 
glycosylated, and cleaved at amino acid 278 to yield an N-terminal latency- 
associated peptide (LAP) and a C-terminal mature TGF-PI peptide which 
remain complexed with each other as latent TGF-P1; the latent TGF-P 
complex is secreted [331. The active form of TGF-P is a dimer stabilized by 
hydrophobic interactions, which are further strengthened by an intersubunit 
disulfide bridge [341. 

There are three major classes of TGF-P receptor proteins TGFP receptor 
types 1-111 (abbreviated as TPRI, TPRII, and TPRIII, respectively)051. TPRI 
and TPRII are serine-threonine protein kinases that contain an extracellular 
ligand-binding domain, a single transmembrane domain, and a cytoplasmic 
serinethreonine kinase domain. Only TPRI has a GS domain that precedes 
the kinase domain; the GS domain contains the sequenceTTSGSGSG, a 
cluster of glycines (G), serines (S), and threonines (T). Compared to TPRIIs, 
TPRI has a shorter C-terminal tail at the end of the kinase domain, and an 
extracellular domain that is shorter and has a different distribution of 
conserved cystines 1361. The activation of the TPRI involves the 
phosphorylation of its GS domain by the TPRII; hence an active receptor- 
signaling complex comprises both types of receptors bound to the ligand. 
Several receptor variants have N-terminal or C-terminal extensions, most of 
them with as yet unknown function [311. 

The TPRIII, also known as P-glycan, is thought to have a biological 
function distinct from the other two receptors TRI and TRII [37-391. The 
TPRIII functions by selectively binding the autophosphorylated TPRII via its 
cytoplasmic domain, thus promoting the preferential formation of a complex 
between the autophosphorylated TPRII and TPRI, and then dissociating from 
this active signaling complex 1401, elucidate important functional roles of the 
cytoplasmic domain of the TPRIII and demonstrate that these roles are 
essential for regulating TGF-P signaling. 
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2.1 The Major Players: TGF-j3 Intracellular Signaling 

The current knowledge of the potential mechanism of intracellular TGF-P 
signaling is summarized in Figure 1. The biological action of this 
fascinating growth factor is primarily regulated by the Smad family of 
proteins 1411. Indeed Smads represent another intriguing and functionally 
connected family of structurally related signaling effectors, which like TGF- 
p family itself, is rapidly growing. 

Fgure I. TGF-beta signaling in Prostate Cells 

There are eight vertebrate Smads, Smadl to Smad8, with a small number of 
amino acid differences between two very similar Smads in the same species 
confering distinct activities [421. Smad2 and Smad3 are activated through 
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carboxy-terminal phosphorylation by the TGF-P receptors TPRI and ActRI 
p, whereas Smadl, Smad5 and Smad8 are activated by ALK-1, ALK-2, 
BMP-RINALK-3 and BMP-RIBIALK-6 in response to BMPl-4 or other 
ligands. These receptor-activated Smads (R-Smads) are released from the 
receptor complex to form a heterotrimeric complex of two R-Smads and a 
common Smad4 (CO-Smad), and translocate into the nucleus; Smad6 and 
Smad7 act as 'inhibitory' Smads [411. The R-Smads contain two conserved 
structural domains, the N-terminal MHldomain, and the C-terminal MH2 
domain; their C termini contain a characteristic SXS motif. The MHl 
(MAD-homology 1) domain of Smad4 and most R-Smads exhibits 
sequence-specific DNA binding activity, may play a role in nuclear import, 
and negatively regulates the function of the MH2 domain [351. Generally, the 
ligand binds a complex (types I and 11) and induces transphosphorylation of 
the GS segments in the TPRI; the activated TPRI complex phosphorylates R- 
Smads at C-terminal serines, forming a complex with Smad4. Activated 
Smad complexes translocate into the nucleus, where they regulate 
transcription of target genes. 

While TGF-P receptors remain active for at least 3-4 h after ligand 
binding, and continuous receptor activation maintains the Smad complexes 
in the nucleus, where they regulate gene expression [412431. Nuclear import of 
a Smad complex follows 'classical' nuclear translocation paradigms, 
established through studies of other proteins. Without ligand stimulation, R- 
Smads localize in the cytoplasm, whereas Smad4 is distributed in the 
nucleus and cytoplasm [431. In the nucleus, R-Smads are constantly 
dephosphorylated, resulting in dissociation of Smad complexes and export of 
inactive Smads to the ~ y t o p l a s m ~ ~ ' , ~ ~ ~ .  There is growing evidence to suggest 
that SMAD-independent pathways also exist, TGF-P activates other 
signaling cascades, including MAPK PP2A/p70S6K, RhoA and 
TAKlIMEKKlpathways [419 44* 451. 

2.2 A Prostate Insight of TGP-P Signaling 

The paradoxical role of TGF-P in the regulation of malignant prostate 
growth can be attributed to a change in the expression of TGF-P receptors 
and the response of the host to TGF- P. Normal prostate epithelial cells 
exhibit relatively high levels of the ligand TGF- P [461. On the other hand, 
TGF-P 1-2 is overexpressed in human prostate cancer, resulting in elevated 
levels of both urinary TGF-P1 and plasma TGF-P in prostate cancer patients 
[471. However, even though cancer cells exhibit upregulated expression of 
TGF-P, the down-regulated expression of TPRI and TRII abrogates the 
autocrine growth inhibitory effects of the TGF-Ps. This is most 
convincingly demonstrated by the observation that restoration of TRII 
expression in the TGF-P-resistant human prostate tumor cell line LNCaP 
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inhibits the in vivo growth of cancer xenografts via induction of apoptosis 
and upregulation of the cell cycle inhibitor p27fiP1 [lo] In addition, prostate 
cancer cells that exhibit up-regulation of the TGF-P and downregulation of 
their receptors, can also locally inhibit immune surveillance of prostate 
tumor growth 14']. Several experimental and clinical studies documented that 
although human prostate cancer cell lines exhibit partial loss of their ability 
to secrete and activate TGF-P, androgen-sensitive prostate cancer cells can 
compensate for this loss within the context of apoptosis regulation, by 
hormonal "adjustment" [491. In addition, other intercellular regulators in the 
regulation of apoptosis, such as p53, have also been intimately connected 
with the TGF-j3 mediated apoptotic signaling in several cellular system [501. 
Interestingly enough, recent work in Xenopus embryos reveals an 
unexpected developmental role for the tumor suppressor gene p53. p53- 
deficient cells display an impaired cytostatic response to TGF-P signals. 
Smad and p53 protein complexes converge on separate cis binding elements 
on a target promoter and synergistically activate TGF-P induced 
transcription. p53 can physically interact in vivo with Smad2 in a TGF-P- 
dependent fashion. The results unveil a previously unrecognized link 
between two primary mediary tumor suppressor pathways in vertebrates ['I1. 
This finding may have implications for the evolution of our understanding of 
p53, via its interaction with Smads in TGF-P dependent mesoderm 
specification. 

In the normal and malignant prostate Androgens negatively regulate TGF- 
p1 ligandCs2, 531and receptor expression[54' "I, along with Smad expression and 
activationrs6]. A series of elegant studies by several investigators 
documented the ability of dihydrotestosterone (DHT) to inhibit TGF-P 
signaling in prostatic epithelial cells through interaction of AR with Smad3. 
Of major mechanistic significance was the finding that the binding of ligand- 
bound AR to activated Smad3 inhibits TGF-j3 transcriptional responses by 

[57-591 blocking the association of Smad3 with Smad-binding element (SBE) . 
Moreover, another report provides strong evidence to suggest the existence 
of a dynamic cross-talk mechanism between the androgen axis and TGF-P 
signaling in prostate stromal cells that affects cell proliferation and 
myodifferentiation. [601 In addition, one has to also consider the complexity 
of this functional interaction as an array of other factors such as p21 
( r a ~ ) [ ~ l > ~ ~ ] ,  b ~ l - 2 [ ~ ~ ~ ~ ~ ~  ,  box[^^] have been implicated as players in TGF-J3 
signal transduction. Expression of the ligand TGF-j3 is significantly higher 
in prostate cancer compared to the normal gland [65,661. Furthermore in rat 
prostate adenocarcinoma cell lines a direct correlation between increased 
TGF-P expression and tumor aggressiveness was detected. The TGF-P1 
overproducing Dunning R3327 MATLyLu rat prostate carcinoma tumors 
had a faster growth rate, and exhibited a considerably higher metastatic 
ability than the parental tumor [671. 
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Compelling evidence emerging from studies on experimental and clinical 
specimens provides strong proof-of-principle that malignant transformation 
of prostatic epithelial cells was associated with loss of expression of 
functional TGF-P receptors and overproduction of TGF-P in malignant cells 
[68,691. A significant decrease in the expression of TPRI and TPRII mRNA, in 
primary prostatic tumors and lymph nodes positive for metastases, indicating 
that the decreased protein expression was due to down-regulation of gene 
expression for the two receptors [701. In other human malignancies including 
lung and laryngeal cancer, TPRII mutations were detected at high frequency, 
although that was not the case in prostate adenocarcinoma [71-731. Since bone 
metastases of prostate carcinoma is closely associated with osteoblastic 
metastasis, the evidence that a disruption of TGF-P signaling in prostate 
cancer plays a causal role in promoting tumor metastasis [741, has significance 
clinical dimensions. Mechanistically TGF-P1 may indirectly enhance the 
formation of osteoblastic metastatic lesions by regulating tumor-derived 
factors, such as parathyroid hormone-related protein (PTHrP), shown to be 
actively involved in the development of osteoblastic metastases. This 
concept gains support from evidence that TGF-P1 increased PTHrP mRNA 
expression in canine normal prostate epithelial cells and stromal while 
resulted in a downregulation of this factor in prostate carcinoma cells [751. 

2.2.1 Targeting Prostate Growth: TGF-P as a Regulator of Cell 
Differentiation and Apoptosis 

Evidence from experimental in vitro studies suggests that TGFPl may 
functionally contribute to the development of prostate cancer and BPH [761 

(Figure 2) via its ability to regulate both the stroma cells and epithelial cells 
[3,'01. Treatment of rat prostatic epithelial cells with EGF or TGF-a resulted 
in a concentration-dependent increase in cell growth, whereas addition of 
TGF-P 1 into the culture resulted in an inhibition of cell proliferation that 
could be reversed with increasing concentrations of EGF. Addition of TGF- 
p 1 into the EGF-depleted medium caused a further increase of cell death [771. 

Using a human papilloma virus 16 E6E7 immortalized prostate epithelial 
cell line, HPr-1, Ling et al. [781 reported that TGF Pl suppressed the 
expression of Id-1, a helix-loop-helix protein, which plays a key role in 
inhibition of cell differentiation and growth arrest. Considering that up- 
regulation of p21WAF', one of the downstream effectors of Id-1, is an early 
induction during the apoptotic response to TGFPI, indicates the involvement 
of Id-1 (transcription factor) in dictating the TGF P 1-induced growth arrest 
in human prostate epithelial cells. 

TGF-P is found in high concentrations in prostatic fluid and benign glands 
in areas of pathologically characterized B P H [ ~ ~ ~ ~ ~ ~ .  Basal cell cultures 
established from prostate explants either grown into cellular senescence, or 
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stimulated with TGF-j31, j32 and j33.result showed TGF-j3 stimulation 
resulted in an increase of SA-j3 galactosidase (SA-j3-gal) activity by 
supporting differentiation processes, but not cellular senescence [I2]. 

c 
Figure 2. TGF-0 signaling in Prostate Cancer Progression 

It has been postulated that TGF-j3s may induce human prostatic stromal 
cells to express the smooth muscle phenotype [791, an action that might 
contribute to the development of neoplastic growth in the aging gland. 

Prostate-derived factor (PDF) is a member of TGF-j3 superfamily and has 
been directly implicated in differentiation of the prostate epithelium. 
Proprotein convertases (PCs), such as furin, are thought to mediate the 
processing of TGF-j3 superfamily. Human prostate cancer cell lines 
differentially synthesize and secret prostate PDF, and that PDF secreted by 
LNCaP is processed by PCS[~~]  and the causal contribution of both growth 
factors and their signal transduction mechanisms in prostate tumorigenesis 
awaits further investigation. TGF-j3 has been shown to exert the role of an 
apoptosis inducer in a variety of human cell lines including lens epithelial 
[''I, liver [''I, lung [s21, and brain cells [s31. A significant down-regulation was 
detected in TPRII and Smad4 expression in high-grade prostate 
intraepithelial neoplasia (HGPIN) and prostate cancer compared with benign 
prostatic hyperplasia; Evaluation of the incidence of apoptosis revealed a 
significant decrease in the apoptotic index among the epithelial cell 
populations in HGPIN and a further decrease in prostate carcinoma [841. 

These results further define deregulation of TGF-P signaling effectors as a 
molecular basis for loss of apoptotic control contributing to the development 
of prostate tumors. 
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In vitro studies from this laboratory demonstrated that the androgen- 
sensitive prostate cancer LNCaP engineered to overexpress TGF-j3 RII cells; 
undergo cell cycle arrest and apoptosis in response to TGF-P treatment in the 
presence of physiological levels of dihydrotestosterone [lo]. This effect 
temporally correlated with an increased expression of the cell cycle regulator 
p21 and the apoptotic executioner, procaspase-1, with a parallel down- 
regulation of the antiapoptotic protein, bcl-2. Furthermore, apoptosis 
induction was suppressed by the caspase-1 inhibitor, z-YVAD, but not the 
caspase-3 inhibitor, z-DQMD [84,851; thus TGF-P-mediated apoptosis in 
prostate cancer cells can actually be enhanced by androgens through specific 
mechanisms involving cell cycle and apoptosis regulators. Provocative as it 
might seem this evidence suggests the ability of androgens (at physiological 
levels) to stimulate the intrinsic apoptotic potential of prostate cancer cells. 
Driven by these findings one may speculate on the synthesis of a molecular 
basis for the priming of prostate cancer cells for maximal apoptosis 
induction potentially by TGF-P, during hormone-ablation therapy ["I of 
prostatic tumors. 

2.3 In vivo Action of TGF-P: Lessons from Mice 

Analysis of bc12, bax, p53, and caspase knockout mice while establishing 
distinct role for each of these apoptotic players, they also provide valuable 
information for the design of specific inhibitors of apoptosis. Thus blocking 
one pathway, as in caspase knockout mice, what we observe is not a 
complete suppression of apoptosis but rather a delay in apoptosis induction 
[861. A significant insight into the in vivo functional importance of TPRII 
was provided by Bhomwich et al. ['I, who reported on the successful 
generation of mice conditionally inactive for Tgfbr2. Early development of 
the Tgfbr2fspKO mice appeared normal, but by 3 weeks of age, there was a 
rapid increase in the number of stromal fibroblasts in the prostate, followed 
by epithelial neoplasia. This evidence firmly supports the concept that a 
signaling pathway known to suppress cell-cycle progression when activated 
in epithelial cells, can also have an indirect inhibitory effect on epithelial cell 
proliferation when activated in the adjacent stromal fibroblasts in vivo. Loss 
of this inhibitory effect can result in increased epithelial proliferation and 
may even progress to invasive carcinoma in some tissues, highlighting the 
importance of a reactive stroma in determining the proliferative/apoptotic 
status of the glandular epithelium via TGF-P signaling. The transgenic 
Adenocarcinoma of Mouse Prostate (TRAMP) animal model [871 represents a 
powerful tool for studying the mechanism of prostate cancer initiation, 
progression as well as therapeutic, and chemoprevention targeting. In recent 
elegant studies Tu et al. [741 bred transgenic mice expressing the tumorigenic 
SV40 large T antigen in the prostate with transgenic mice expressing a 
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dominant negative TPRII mutant (DN I1 R) in the prostate, their findings 
clearly established that the loss of TGF-P signaling promotes prostate cancer 
metastasis. These findings confirmed the evidence reported in the clinical 
setting of prostate cancer that TPRII loss correlated with prostate tumor 
progression and increasing Gleason grade. 

Transplantation of murine bone marrow (BM) expressing a dominant- 
negative TPRII (TPRIIDN) leads to the generation of mature leukocytes 
capable of a potent antitumor response in vivo; treatment of male C57BLJ6 
mice with TPRIIDN-BM resulted in the survival of 80% of recipients versus 
0% in green fluorescent protein-BM recipients or wild-type controls [881, 
supporting the anti-tumor therapeutic potential of gene therapy-based 
approach to inducing TGF-P insensitivity in transplanted BM cells. Genetic 
studies based on targeted disruption of the key TGF-P signaling effectors, 
using the TPFUI and p27 knockout mouse models provide exciting new 
insights into the functional contribution of both the TPRII and p27 gene and 
their products in estrogen-induced tumorigenesis TGF-PI also plays an 
important role in regulating the survival and differentiation of other cell 
types such as the primitive proliferating hematopoietic progenitors via cell 
cycle-independent mechanisms [901. 

2.3.1 TGF-P Signaling: Therapeutic Significance in Prostate Cancer 

The current standard therapeutic approaches employed for the treatment 
of organ-confined prostate cancer include radiation or surgery, in some cases 
incorporating adjuvant hormonal therapy [91' 921. While these therapies are 
relatively effective in the short-term, a significant proportion of patients 
initially presenting with localized disease ultimately relapse. Moreover, 
each of these therapies may incur unwanted side effects. As a result, there is 
a demand for new therapies that more specifically target the cellular events 
involved in the development of malignancy. Gene therapy has been 
introduced into prostate cancer treatment recently [939 941. The knowledge of 
dysfunctional apoptosis pathway in cancer development and progression 
provides a molecular base for therapeutic targeting and apoptosis-based 
prevention approaches 19'* 961. The complexity of death signaling pathways 
suggest that apoptosis is not a single-lane, one-way street. Signals 
transduction from the cell surface to the nucleus that regulate cell growth, 
differentiation and survival and become subverted during the multistep 
processes of carcinogenesis and tumor progression provides a particularly 
attractive target and better diagnostic markers [971. 
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3. SUMMARY 

The TGF-P superfamily is the most versatile considering the ability of its 
members to regulate proliferation, growth arrest, differentiation, and 
apoptosis of prostatic stromal and epithelial cells as well as the formation of 
osteoblastic metastases. TGF-P mediated action in prostate cells follows a 
complex signaling pathway from binding and phosphorylation of receptor 
type I1 to the TPRI kinase to Smad activation, resulting in ligand-induced 
transcription. TGF-P as an indirect tumor suppressor, its role of regulating 
tumor induction, as well as tumor suppression depending on the tissue 
microenvironment merits fkrther exploration. The rationale for targeting 
growth factors and their receptors for therapeutic intervention is based upon 
the fact that these proteins represent the most proximate component of the 
signal transduction cascade. The alternate targeting of intracellular effectors 
in the signal transduction may be thwarted by cross talk between signaling 
pathways (such as the Smads in a dynamic interplay with the androgen 
receptor). TGF-P within the context of its well-documented apoptosis 
regulatory actions in the prostate and the significance its key receptor TPRII 
as a potential tumor suppressor, provides a highly attractive candidate for 
such targeting with high clinical significance for the treatment and diagnosis 
of prostate cancer. 

Abbreviations: TGF-P, transforming growth factor-P; PSA, Prostate specific antigen; EGF, 
epidermal growth factor; bFGF, basic fibroblast growth factor; IGF, the insulin-like growth 
factor; BMPs, bone morphogenetic proteins; GDFs, Growthldifferentiation factors; GDNF, 
lial-derived neurotrophic factor; MIF, Miillerian inhibitory factor; PDF, Prostate-derived 
factor; TPRI, TPRII, and TPRIII, TGFP receptor types I, 11, and I11 respectively; HGPIN, 
high-grade prostate intraepithelial neoplasia; BPH, benign prostatic hyperplasia. 
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1. INTRODUCTION: DISCOVERY AND FUNCTION 
OF ANGIOSTATIN 

The discovery of angiostatin in 1994 provided a major advance in the 
field of angiogenesis research. As Folkman first proposed in 1971, 
angiogenesis, the growth of new vessels from the pre-existing vasculature, is 
required for tumors to grow beyond a few millimeters in diameter and for 
tumor metastasis'. With a few exceptions (wound healing and reproductive 
cycles), the vasculature in the adult is maintained in a quiescent state by a 
net balance of angiogenic inducers and inhibitors secreted into the tissue 

Tumors shift this balance to favor vessel growth, by increasing 
inducer levels, decreasing inhibitor levels, or most often, a combination of 

Tumor angiogenesis involves many processes, including increased 
vascular permeability, endothelial cell activation, proliferation, migration 
and tube formation as well as matrix degradation. Designing therapies 
targeting any of these steps would inhibit angiogenesis, and thus inhibit 
tumor growth. Therefore, much research has been devoted to developing 
such agents for use in cancer therapy. 

Numerous inducers and inhibitors of angiogenesis have now been 
identified, both endogenous and exogenous. It is of interest to note that the 
endogenous regulators, both inducers and inhibitors, span extremely diverse 
groups of molecules, including growth factors and cytokines, proteins and 
enzymes, protein cleavage products, enzyme inhibitors, carbohydrates, 
lipids, hormones and Most of the naturally occurring 
angiogenesis inhibitors, such as thrombospondin-1 and pigment epithelium- 
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derived factor, have a wide variety of cellular activities and affect multiple 
cell types6,'. Few inhibitors have been identified which have high specificity 
to activated endothelial cell suppression. Angiostatin was the first natural 
inhibitor discovered and one of the few to show high selectivity for the 
endothelial cells lining the blood 

Angiostatin's discovery stemmed from research into several observations 
that had perplexed clinicians and researchers alike for many years. First, as 
described in some case reports as well as in animal tumor models, rapid 
growth of distant metastases has been observed following the removal of the 
primary tumor (reviewed in 8). The second observation is that a secondary 
tumor can be suppressed by the presence of a different primary tumor at a 
distant location (reviewed in 8). From these observations and their 
knowledge of tumor angiogenesis, Folkman developed the hypothesis that 
some tumors, while able to stimulate angiogenesis within their own capillary 
beds, produce angiogenesis inhibitors which enter the circulation and 
suppress angiogenesis in metastatic foci8. They tested this hypothesis using 
a variant of the murine Lewis lung carcinoma (LLC) cell line with a low 
metastatic potential (LLC-LM)~. They resected the primary subcutaneous 
LLC-LM tumors 14 days after implantation in mice and compared metastatic 
growth to sham operated mice in which the primary tumor was left intact8. 
Mice with resected primary tumors had 10-fold more metastatic growth 
compared to sham-operated mice, suggesting that the primary tumor had 
been inhibiting the growth of metastases8. In addition, corneal 
neovascularization toward an implanted pellet containing basic fibroblast 
growth factor (bFGF), a potent angiogenesis inducer, was inhibited in mice 
with intact primary tumors but not in mice with resected tumors, indicating 
that a circulating factor was indeed inhibiting angiogenesis8 

From more than 100 liters of urine collected from mice bearing LLC-LM 
tumors, O'Reilly and colleagues isolated a 38 kDa murine protein, which 
they named angiostatin8. By sequence analysis, they determined that this 
protein was an internal fragment of plasminogen (PLG), beginning with 
amino acid 98 (initial sequence of 98-102: valine-tyrosine-leucine-serine- 
glutamic acid) and with a C-terminus at approximately amino acid 4408. 
This fragment included the first four of five loop structures, called kringle 
domains, in the PLG protein (Figure l)8. The angiostatin produced in the 
mice was dependent on the presence of the Lewis lung tumor8. However, at 
this time, it was not known if the tumor itself was producing the angiostatin 
or if the tumor was producing protein(s) that could generate angiostatin or 
that could block inhibitors of PLG activators8. 

To generate human angiostatin for study, O'Reilly and colleagues 
digested human PLG with elastase, as it was known to liberate kringle 
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containing fragments, including a fragment comprised of kringle domains 1- 
3, isolated kringle 4 and mini-PLG, which is kringle 5 attached to the 
plasmin catalyhc domain". From the elastase digestion, they isolated a 
fragment of approximately 40 kl3as. This fragment included the first three 

Figure I. Structure of Human Plasminogen and Angiostatin K1-4. A) Plasminogen, the 
zyrnogen form of plasmin, contains five conserved kringle domains (K1 - KS), as well as 

the protease domain. The triangle indicates where plasminogen activators (uPA, tPA) 
cleave plasminogen to yield the active serine protease plasmin (picture thanks to M. Llinas 
and co-workers, Carnegie Mellon University, Pittsburgh, PA). B) Angiostatin as originally 

described by O'Reilly et aL8, consists of the first four of the five kringle domains of 
plasminogen. 

kringle domains of human PLG, with an N-terminus of amino acid 97 or 99 
of the human PLG protein, a region corresponding to the murine 
angiostatin8. The purified elastase-generated human angiostatin specifically 
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inhibited endothelial cell proliferation in vitro and inhibited 
neovascularization in the in vivo chick chorioallantoic membrane (CAM) 
assay8. In the LLC-LM model, following removal of the primary tumor, 
systemic treatment with the elastase-generated human angiostatin suppressed 
metastases8. Elastase-generated human angiostatin also inhibited bFGF and 
vascular endothelial growth factor (VEGF)-induced endothelial cell 
migration and tube formation in a collagen matrix system". By careful 
histologic analysis, this group found that dormancy of micro metastases in 
mice with intact LLC tumors was due to a balance between proliferation and 
apoptosis of the tumor cells12. When the primary tumor was removed, and 
thus the circulating angiostatin also removed, angiogenesis ensued and 
apoptosis was significantly decreased, allowing for expansion of the 
metastatic foci12. A later study showed that the elastase-generated human 
angiostatin could also inhibit primary tumor growth of human prostate, 
breast and colon cancer cells in subcutaneous mouse models treated with a 
systemic dose of 50 mgkg twice daily9. Consistent with their findings in the 
LLC model, this suppression was also due to an increase in apoptotic rate 
while the proliferation rate remained unchanged9. 

In another study, Folkman and colleagues generated an expression vector 
to produce recombinant murine angiostatin, and the purified protein 
encompassed the first four kringle domains with an amino acid sequence as 

13 follows: AspZO through Ser32-Ser-Arg97 through Gly4,, . This recombinant 
angiostatin was significantly larger than the in vivo generated angiostatin, at 
52 kDa versus 38 kDa13. The N-terminal addition of 14 amino acids 
contributed to this increase but could not account for the total difference in 
size; therefore, the remaining difference was thought to be due to 
glycosylation differenced3. The size difference did not affect activity, and 
in fact, the recombinantly generated angiostatin was more potent than the 
elastase-generated human angiostatin against endothelial proliferation in 
vitro and inhibited LLC-LM subcutaneous primary tumor growth in vivo13. 
They further showed that when T241 fibrosarcoma tumor cells were 
transfected with an angiostatin expression vector and implanted in mice, 
primary and metastatic tumor growth were both inhibited14. 

Subsequently, other researchers isolated angiostatin and angiostatin-like 
proteins. These related proteins, or angiostatin isoforms, had differing NH2- 
and COOH-termini of PLG and varied mainly in their kringle domain 
content. The differences in structure and in anti-endothelial cell and anti- 
tumor activity are discussed in detail below. Overall, studies by several 
groups, including our own, confirmed that angiostatin isoforms inhibit 
endothelial cell proliferation, migration and tube formation induced by a 
variety of angiogenesis inducers in ~i t ro"- '~  and also inhibit vessel formation 
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in vivo in the corneal pocket assay, in the embryonic body model and in the 
aortic ring m ~ d e l ' ~ " ~ " ~ .  The anti-tumor activity of angiostatin isoforms has 
now been demonstrated against a variety of tumor types in mouse models as 
well, including hemangioendotheliomaZ0, glioma21~22, liver c a n ~ e r ~ ~ - ~ ' ,  lung 
c a n ~ e r ~ ~ ' ~ ' ,  ovarian cancerz8, colorectal ~ a n c e ? ~  and breast ~ancer'~>~O. As 
angiogenesis is important in physiologic and pathophysiologic processes in 
addition to cancer, angiostatin isoforms have been investigated in other 
diseases. Potential therapeutic benefits have also been observed in models of 
corneal wound healing3', collagen-induced arthritis32133 and endometri~sis~~. 

In contrast to angiostatin, the parent PLG protein does not affect 
endothelial cell proliferation in vitro8. PLG is a 92 kDa zymogen produced 
in the liver, although other cells may be capable of producing it, such as 
eosinophils, kidney and corneal cells35. In the adult, the PLG plasma 
concentration is -200 mg/L, a concentration equivalent to -2 pM3'. FLG is 
activated to form the serine protease plasmin by endogenous PLG activators 
(PA), tissue-type PA (tPA) or urokinase-type PA (uPA), which cleave PLG 
between Arg561 and Va1562, with the complete protein remaining intact, 
linked by two disulfide bonds35. The PLG / plasmin protein consists of 791 
amino acids, with an 0-linked glycosylation at Thr346 and an N-linked 
glycosylation at ~ s n 2 8 9 ~ ' .  The main function of the PAlplasmin system is 
fibrinolysis via fibrin degradation3'. Plasmin also degrades the extracellular 
matrix (ECM) by degradation of fibronectin, laminin and type IV collagen 
and indirectly through activation of matrix metalloproteinases (MMP) 
(reviewed in 36,37). It can also activate and/or stimulate growth factor 
release from the ECM, including VEGF, bFGF, hepatocyte growth factor 
(HGF) and transforming growth factor beta (reviewed in 36). Thus, this 
system affects cell adhesion, cell migration and cell-to-cell signaling. 
However, while angiostatin is clearly anti-angiogenic and tumor suppressive, 
the role of the PA / plasmin system in tumor growth remains unclear. Some 
studies suggest that activation of the plasmin system promotes tumorigenesis 
while others suggest that inhibition of this pathway promotes tumorigenesis. 

Increased levels of the PLG activator uPA and its cell surface receptor, 
uPAR, are a negative prognostic factor for several cancer types, including 
breast, gastric, colon, lung, prostate and ovarian cancers (reviewed in 36). 
tPA is also produced by some melanoma and neuroblastoma t ~ m o r s ~ ~ - ~ ' .  
Increased uPA, uPAR or tPA could increase plasmin activity. Thus, 
tumorigenesis and/or angiogenesis could be stimulated through release of 
growth factors and/or activation of MMPs. A recent study demonstrated that 
plasmin can activate VEGF isoforms C and D, which stimulate lymphatic 
angiogenesis and vascular angiogenesis, respectively42. Several studies also 
suggest that plasmin can directly stimulate bovine aortic endothelial cell 
migration in vitro43144, and it can also induce bovine capillary endothelial cell 
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proliferation and spreading via induction of stress fiber formation, while 
PLG had no effect44. 

Contrasting studies show that increased levels of plasminogen activator 
inhibitor-1 (PAI-I), an inhibitor of PA, correlates with poor prognosis in 
several cancer types, including breast, ovarian and cervical cancers and 
gliomas (reviewed in 36,45,46). In addition, we have shown that plasmin 
activation is necessary for angiostatin generation on the cancer cell surface, 
production of which would potentially be inhibit01-y~~. We have also shown 
that an angiostatin isoform can inhibit plasmin-induced migration of bovine 
aortic endothelial cells43. These data suggest that the role of the PA 1 
plasmin system in cancer requires further study. We may find that the pro- 
or anti-tumor activity of this system depends on the cell type and/or on the 
relative expression levels of PA versus inhibitors and/or on the level of 
angiostatin production. The level of angiostatin generation may depend, in 
part, on factors outside the PA / plasmin system. For example, we recently 
demonstrated that PC-3 prostate cancer cells generate an angiostatin isoform 
on the cell surface, dependent on the presence of uPA and cell surface P- 
a ~ t i n ~ ~ ' ~ ~ .  Therefore, cells, that have increased plasmin activity due to 
increased uPA / uPAR expression but also have p-actin expression (or 
another angiostatin-generating cofactor), may have increased angiostatin 
levels which could suppress tumor growth and metastases. In tumors with 
increased uPA / uPAR expression but with no p-actin (or other cofactor), 
tumor progression may be facilitated by the increased plasmin activity. 
Ultimately, the plasmin activity levels depend on the balance of activators 
and inhibitors present. Therefore, to determine the role of this system in 
different cancer types, we will likely need to assess relative expression levels 
of each component of the system and/or measure plasmin activity levels and 
angiostatin production levels. 

2. GENERATION OF ANGIOSTATIN ISOFORMS 

The ability of elastase digestion of PLG to generate kringle-containing 
fragments has been known for decades1'. However, it has become very 
evident that a variety of mechanisms can be used to produce angiostatin 
isoforms, which vary in their N- and COOH-termini and in the number of 
kringle domains they contain. As it has also become clear that the exact 
kringle content of each isoform is critical to its activity, for clarity and ease 
of discussion, we will designate the different isoforms by their kringle 
domain (K) content henceforward. Using this designation system, the 
original murine angiostatin isolated from LLC-LM tumor bearing mice is 
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angiostatin K1-4, and the human angiostatin generated by elastase digestion 
is angiostatin K1-3. As discussed above, elastase digestion of human PLG is 
known to liberate K1-3, isolated K4 and mini-PLG". A modified version of 
this digestion has also been used to generate ~ 1 - 4 "  and isolated ~ 5 " .  
However, the relevance of elastase digestion to in vivo generation 
mechanisms is not clear. 

Folkman's group later found that the angiostatin K1-4 isolated from 
tumor bearing mice was generated via PLG cleavage by MMP-2 (gelatinase 
A) released by the LLC-LM cells5'. Several other MMPs have since been 
identified that cleave PLG to form angiostatin K1-4. These include MMP-3 
(stromelysin-1), MMP-7 (matrilysin), MMP-9 (gelatinase Bltype IV 
collagenase) and macrophage-derived MMP-12 (metall~elastase)~~-~~. 
Interestingly, a recent report shows that in vitro aggregated platelets, which 
release MMPs, also release angiostatin, though it was not determined if this 
generation was dependent on MMP activitys7. Macrophages have also been 
observed to generate angiostatin K1-4 during inflammation, in a tumor fiee 
setting, in a mouse models8. This formation was dependent on plasmin 
activity but not on MMP activitys8. Other enzymes, released by prostate 
cancer cells, that have been observed to generate angiostatin K1-4 include 
prostate specific antigen and cathepsin D ~ ~ ~ ~ ~ .  In addition, an as yet 
unidentified 13 kDa serine protease expressed by BT325 human glioma cells 
was shown to liberate ~ 1 - 9 ' .  

Our laboratory first showed that serum-free conditioned media collected 
from prostate cancer cell lines, PC-3, LNCaP and DU145, contained 
enzymatic activity that could convert PLG to angiostatin and that this 
conversion was dependent on serine protease activity''. We later showed 
that this occurred in a two-step reaction (Figure 2). First, uPA, secreted by 
the prostate cells, cleaves plasminogen to form the active serine protease 
plasmin, then, in the presence of a fiee sulfhydryl donor (FSD), plasmin 
undergoes autoproteolysis to yield angiostatin (Figure 2)47. In this system, 
the FSD was identified as L-cysteine in the culture media47. In tests using 
purified components, we determined that other plasminogen activators, tPA 
and streptokinase, and other FSDs (N-acetyl-L-cysteine, D-penicillamine, 
captopril, or reduced glutathione) could be used to generate angiostatin47. 
Using mutant PLG isoforms, we also determined that this generation was 
dependent on active plasmin formation47. In fact, if plasmin is used as the 
starting substrate, a FSD is sufficient to convert plasmin to angiostatin47. 
Another group has demonstrated this in vivo. In an orthotopic breast cancer 
model, using the MDA-MB-435 cancer cell line, N-acetyl-L-cysteine (NAC) 
treatment alone increased angiostatin formation and suppressed tumor 

We later determined that the angiostatin generated by our system 
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contains K1-4 and -85% of K5, with a COOH-terminus of -50% of each at 
~r~~~~ Or Lys531, prompting us to refer to this isoform as angiostatin4.563. 

Figure 2. Generation mechanism of angiostatin K1-4.85. A) Plasminogen is converted to 
plasrnin by a plasminogen activator (uPA or tPA). B) Plasmin, in the presence of a FSD (R- 
SH), undergoes autoproteolysis. C) Thus, angiostatin (AS) K1-4.85 is generated, consisting 

of the first four of the five kringle domains of PLG plus -85% of kringle five. 

Using the hingle designation, this isoform would be K1-4.85 as it contains 
the first four kringles plus 85% of K5. Interestingly, Aggarwal and 
colleagues believed that both K1-4 and K1-5 isoforms were produced in 
their NAC treatment studies, based on Western blot analysis (sequence 
analysis was not performed)62, suggesting that different tumor cell lines can 
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generate different isoforms. Westphal et aZ. noted that different human 
cancer cell types varied in their propensities toward angiostatin production, 
with only 217 colon and 219 renal cancer cell lines generating angiostatin 
while 616 bladder, 617 prostate and 24/25 melanoma cancer cell lines did64. 

We had previously observed that PC-3 subcutaneous tumors in athyrnic 
mouse models inhibit the growth of meta~tases~~,  and Folkman's group had 
shown that PC-3 tumors secrete a circulating angiogenesis i nh ib i t~ r~~ .  Thus, 
it is likely that K1-4.85 is the circulating factor responsible for this 
inhibition''. As mentioned above, we have recently shown that HT1080 
fibrosarcoma and MDA-MB231 breast cancer cells can also generate 
angiostatin K1-4.85 and have shown that this generation can occur on the 
cell surface in the absence of a FSD~'. We determined that cell surface 
generation by PC-3 cells is dependent on the expression of cell-bound uPA 
and cell surface p - a ~ t i n ~ ~ .  In a cell free system, p-actin can replace the FSD 
in angiostatin generation48. We also observed that normal fibroblasts and 
microvascular endothelial cells also generated K1-4.85 by this system, but at 
significantly lower levels than the cancer cells49. As the actin expression 
was similar, this was likely due to the significantly lower levels of uPA 
found on the surface of these normal cells49. 

Similar observations were published by Stathakis et al. who observed 
that a serine protease, a plasmin reductase, later identified as 
phosphoglycerate kinase, and a FSD catalyze the proteolysis of plasmin to 
yield angiostatin67-69. Of interest, Stathakis and colleagues identified the 
same COOH-terminus of angiostatin within K5 as our own 
suggesting that we have isolated the same angiostatin isoform, K1-4.85, via 
slightly different mechanisms. Consistent with our work and that of 
Stathakis, O'Mahony et al. demonstrated that conversion of PLG to 
angiostatin K1-4 by serum free conditioned medium from human pancreatic 
cancer cells was dependent upon serine protease activity in the media, i.e. 
requiring plasmin activation7'. Cao et al. also reported generating angiostatin 
using uPA-activated plasmin72. They referred to this angiostatin as K1-5; 
however, based on the reported sequence, it contains K1-4 and most of ~ 5 ' ~ ,  
with the same N- and COOH-termini as we reported for ~1-4.8563. 

The above data illustrates that cells can use different mechanisms by 
which to produce angiostatin isoforms. This could be merely a coincidence, 
a redundancy of evolution, or a means by which angiostatin production can 
be tightly regulated by different cell types. However, it still remains to be 
seen as to which isoforms and which mechanisms of generation occur in vivo 
and are of clinical significance. Table 1 summarizes how some of the 
different isoforms can be generated. 
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Table I. Isoform generation mechanisms 
Kringle 
Domain Produced by: Reference: 

K1-3 porcine elastase 10 
elastase, neutrophil-secreted 73 

K2-3 elastase + pepsin 74 

K1-4 MMP-2 (gelatinase A) 52 
MMP-3 (stromelysin 1) 55 
MMP-7 (matrilysin) 53 
MMP-9 (gelatinase Bltype IV collagenase) 53 
MMP-12 (metalloelastase) 56 
Prostate specific antigen 59 
Cathepsin D 60 
24 kDa endopeptidase (Chyseobacterium) 75 

K1-4.85 PA + FSD 15,47 
PA + p-actin (on cell surface) 48 
PGK + plasmin + FSD 67-69 
uPA-activated plasmin 72 

~ 1 - 5 '  13 kDa serine protease 6 1 

Isolated 
Kringles 
K1 Elastase + chymotrypsin 76 

V8 protease digestion (S. aureus) of K1-3 77 

K2 * 
K3 * 
K4 Elastase 10 

K5 Elastase + pepsin 5 1 
MMP-3 (stromelysin) 55 

Abbreviations: PA, plasminogen activator; FSD, free sulfhydryl donor; MMP, matrix 
metalloproteinase; PGK, phosphoglycerate kinase. #specific COOH-terminus sequence 
was not determined in this study. *No enzymatic isolation schemes reported for these 

kringle domains. 
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KRINGLE DOMAINS IN ANGIOGENESIS 

As described above, the PLGIplasmin protein contains five kringle 
domains. Kringle domains are -80 amino acid long loop structures formed 
by 3 intra-loop disulfide bonds mediated by six conserved cysteine resides, 
with the amino acids flanking the third and fourth cysteines also highly 
conserved (reviewed in 35,78). Several other proteins in the hemostatic 
system, such as ~~rothrombin, uPA and tPA, as well as other non-hemostatic 
system proteins, contain kringle domains, ranging in number from just one 
up to the 38 or more (reviewed in 35,78). Kringle domains bind to lysine 
residues and serve to bind the parent protein to its substrate (reviewed in 
35,78). In the case of PLGIplasmin, the kringle domains facilitate binding to 
the plasmin substrate fibrin (reviewed in 35,78). Some useful consequences 
of this binding property are that kringle-containing proteins can by isolated 
using lysine-sepharose columns, and their function(s) can in some cases be 
inhibited by lysine analogs, such as epsilon-amino caproic acid (reviewed in 
79). In addition to full kringle domains, domains called short consensus 
repeats (SCR), often found in complement proteins, have a similar folding 
module, but use only two disulfide bridges (reviewed in 78). The biological 
function of the SCR domains is unknown, including whether or not they 
affect angiogenesis; however, it is known that they can mediate protein- 
protein interactions (reviewed in 78). The fibronectin type I1 domain, found 
in fibronectin, HGF, MMPs, some cellular receptors and seminal fluid 
proteins, also have a kringle-like structure, held together with two pairs of 
disulfide bridges (reviewed in 78). 

As the angiostatin isoforms essentially consist of varying numbers of 
kringle domains, it is reasonable to hypothesize that the kringle domain 
structures are critical to the anti-angiogenic activity of these molecules. 
Folkrnan's group and others have demonstrated that any disruption of the 
kringle structures in multi-kringle domains demolishes the endothelial cell 
inhibitory As studies proceeded with angiostatin isoforms, it 
became evident that differences in the number of kringle domains as well as 
which kringle domains were included in a given angiostatin isoform affected 
its activity. The amino acid sequence of each of the five kringle domains 
within PLGIplasmin is highly conserved, with all five being around 50% 
identical to each other51. Despite this similarity, they are known to differ in 
their lysine binding affinities, as tested by binding to epsilon-amino caproic 
acid (reviewed in 79). 

Based on in vitro endothelial cell assays, the anti-angiogenic activity of 
the different isoforms can be compared. Elastase generated angiostatin K1-4 
inhibits endothelial cell proliferation with an ICjO (concentration for half 
maximal inhibition) of 135 n ~ ' O > ~ l .  In migration studies, Ji et al. found the 
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1Cs0 of recombinantly generated K1-4 to be 50 nklS0. Elastase generated 
K1-3 has an ICS0 of 70 nM in anti-endothelial cell proliferation studiess0. In 
migration studies, Ji et al., found that recombinantly generated K1-3 had 
only marginal activity against migration with an ICso at >I000 nM80. These 
data suggest that the kringle components contribute different activities and 
that kringle 4 does not contribute to the anti-endothelial cell proliferation 
activity while it is critical for anti-migration activity. To test this, Ji et al. 
tested a combination of K1-3 and isolated K4 against endothelial cell 
migration and found that this combination inhibited as well as ~ 1 - 4 8 0 .  These 
data are consistent with studies on individual kringle domains. K1 inhibits 
endothelial cell proliferation with an ICsO of 320 nMsO; however, in 
migration studies, the IC50 is >I000 nM80. Conversely, K4 is inactive 
against endothelial cell proliferations0, but inhibits migration with an IC50 of 
500 nM80. As Cao et al. noted, one difference between these two kringle 
domains is that K4 contains two clusters of positively charged lysine 
residues adjacent to cysteine 22 and 80 which results in an exposed and 
positively charged area not found in the other kringle domains7*. 

Interestingly, of the isolated single kringle fragments, K5 was found to 
have the most potent activity against endothelial cell proliferation in vitro 
with an ICso of 50 nMS1. These data suggest that subtle differences in 
kringle sequence may provide functional specificity. Two multi-kringle 
domain angiostatin isoforms contain part of (-85%) or all of kringle 5, K1- 
4.85 and K1-5, respectively. Our group has shown that K1-4.85 inhibits 
capillary endothelial cell migration with an ICSo of 0.35 pg/ml (-10 nM), 
and Cao et al. showed it potently inhibits endothelial cell proliferation with 
an IC50 of 50 P ~ 7 2 .  The activities of these isoforms and isolated kringles are 
summarized in Table 2. 

Table 2. Anti-angiogenic and anti-tumor activity of angiostatin isoforms and kringle domains 
In vitro inhibitory In vivo inhibitory 

activity: activity: 
corneal 

Kringle or CAM Anti-tumor 
Domain proliferation migration assay activity References 

Kl-3 Yes marginal Yes Yes 8,9,80-82 
K2-3 no Yes ND ND 50,80 
K1-4 Yes Yes Yes Yes 8,80 

K1-4.85 Yes Yes Yes Yes 15,20,72 
K1-5* ND ND ND ND 

K 1 Yes marginal ND ND 80 
K2 Yes Yes ND ND 80 
K3 Yes Yes ND ND 80 
K4 no Yes ND ND 80 
K5 yes yes ND yes 51,83 
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Abbreviations: ND, not done. 
*An isoform containing K1-4 and full-length K5 has not been studied. 

While the in vitro results are a valid means of comparison, the in vivo anti- 
cancer activity of these molecules is of most importance. K1-3, K1-4, K1- 
4.85 and K5 have all been tested in mouse models of human cancers and 
have demonstrated anti-tumor activity against various tumor models, as 
listed above. However, as is well known, many molecules that work in mice 
do not work against cancer in humans. Therefore, final validation of the 
therapeutic value of these molecules awaits clinical trials. Progress in this 
area is discussed below. 

As it became evident that the kringle domains of angiostatin were critical 
to the anti-angiogenic function, researchers began screening other kringle- 
containing proteins or kringle-containing fragments for anti-angiogenic 
activity. A kringle domain (K2) from prothrombin, liberated by factor Xa 
cleavage, was found to inhibit endothelial cell proliferation, with an ICso of 2 
pglml, and inhibits neovascularization in the CAM assayg4. Naturally 
occurring kringle containing fragments of apolipoprotein(a) and HGF have 
also been found to possess anti-angiogenic a ~ t i v i t y ~ ~ , ~ ~ .  In addition, kringle- 
containing fragments of both tPA and uPA, recombinantly expressed, have 
demonstrated anti-endothelial cell activity. Together, these data suggest that 
the kringle structure itself possesses anti-angiogenic properties; thus, studies 
of the kringle structure and its interaction with endothelial cells could aid in 
the design of novel kringle-like drugs. Sheppard et al. has taken such an 
approach and has generated a tetrapeptide and a dipeptide, based on an 
amino acid sequence within kringle 5 (lysine-leucine-tyrosine-aspartic acid), 
that have similar anti-endothelial cell activities as K5 in vitrog7. Likewise, 
Dettin and colleagues have generated linear and cyclic peptides based on the 
K4 sequence and several of these peptides inhibited the migration of human 
microvascular endothelial cellsgg. Studies such as these could refine the anti- 
angiogenic sequence to a small-molecule type drug that could be easily 
synthesized for use in the clinic. 

4. ROLE OF THE HEMOSTATIC SYSTEM IN 
ANGIOGENESIS 

Angiostatin's parent molecule, PLG, functions in the hemostatic system, 
which encompasses both coagulation and fibrinolysis, processes critical for 
wound repair and the healing process. This system is physically and 
functionally connected with the vasculature. Many cancer types are 
associated with activation of the coagulation system, i.e. are hypercoagulable 
(reviewed in 36). Angiostatin and PLGIplasmin are among a growing 
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number of proteins in the homeostatic system known to affect angiogenesis. 
Other factors functioning in these pathways that have also been implicated in 
angiogenic regulation include tissue factor, thrombin, fibrin, plasminogen 
activators uPA and tPA, and activated platelets (reviewed in 36). Tissue 
factor, for example, in addition to activating coagulation via thrombin 
generation, can also increase VEGF expression by stimulating platelet 
activation (reviewed in 36). Interestingly, among the hemostatic system 
proteins involved in angiogenesis inhibition, several are cryptic fragments of 
larger molecules, as is angiostatin. For example, as described above, the 
prothrombin K2 domain is released by Factor Xa cleavageg4. Such dual 
functions of the parent molecule and cleavage product in hemostasis and 
angiogenic regulation suggest a coordinated regulation of these processes. 
However, the use of cryptic fragments appears to be a common theme 
among angiogenesis inhibitors in general. Many other inhibitors are 
proteolmc cleavage products of larger molecules that are not associated with 
the hemostatic pathway. Table 3 lists these inhibitors and their parent 
molecules. It is interesting to note that many of the parent molecules are 
extracellular matrix components, such as collagens IVY XV, and XVIII and 
fibronectin. This may suggest that in the hemostatic system, as well as in 
other tissue environments, the release of cryptic fragments may have 
evolved as a negative feedback loop to regulate protease activity andlor pro- 
angiogenic stimuli. 

Table 3. Angiogenesis inhibitors as fragments of larger molecules 
Generation 

Inhibitor Parent Molecule Mechanism References 

aaAT Antithrombin 111 thrombinielastase 89 
Alphastatin 
Angiostatin 
des(Ang 1)AGT 
Arrestin 

Fibrinogen recombinant 90 
Plasminogen see Table 1 8 
AGT renin 91 
Collagen type IV, MMP 92 
a 1  chain 

Canstatin Collagen type IV, MMP 93 
a2  chain 

Endostatin Collagen type XVIII elastase 94-97 

FgnE Fibrinogen plasmin 98 
Kininostatin HK recombinant 99 
PEX MMP-2 autocatalytic 100 
16 kDa Prolactin Prolactin cathepsin D 101 
Prothrombin K2 Prothrombin factor Xa 84 
Restin Collagen XV recombinant 102 
Tumstatin Collagen type IV, MMP 103-105 

a 3  chain 
Vasostatin Calreticulin not known 106,107 
Abbreviations: aaAT 111, anti-angiogenic antithrombin; AGT, angiotensinogen; 
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FgnE, Fibrinogen E fragment; HK, high molecular weight kininogen; MMP, 
matrix metalloprotease. 

5. MECHANISM(S) OF ANGIOSTATIN ANTI- 
ENDOTHELIAL CELL ACTIVITY 

Many different cell types are capable of generating angiostatin, either 
through secretion of enzymes or the presence of cell surface molecules. 
However, the angiostatin isoforms have shown high specificity for action on 
endothelial cells, with only a few exceptions noted thus far. The first 
exception was noted by Walter and Sane. They found that angiostatin 
inhibited HGF-induced proliferation and migration of smooth muscle cells in 
vitro and co-localized with these cells in v i v ~ ' ~ ~ .  Angiostatin isoforrns K1-4 
and K1-3 have also been observed to inhibit neutrophil migration induced by 
several chemokines and by the HIV-Tat protein in an in vitro chemotaxis 
assay and in an in vivo Matrigel implant m ~ d e l ' ~ ~ * " ~ .  Another study 
suggests that it may also inhibit osteoclast activity, thus inhibiting bone 
resorption"'. However, most studies have focused on its endothelial cell 
activity. As discussed above, angiostatins can inhibit endothelial cell 
proliferation, migration, and tube formation. The mechanism of this 
inhibition, however, is still under investigation. 

A few studies have suggested that angiostatin inhibits endothelial cells by 
blocking specific inducer-mediated activities or by modulating angiogenic 
regulator expression by endothelial cells themselves. Our group reported 
that angiostatin K1-4.85 could inhibit PLGIplasmin-enhanced in vitro 
invasion of endothelial cells and melanoma cells that express   PA^^. AS we 
also observed inhibition of tPA-catalyzed plasminogen activation, we 
hypothesized that this could be a mechanism of this inhibition as we also 
noted high affinity direct binding of K1-4.85 to   PA^^. Another group 
suggests that angiostatin acts by specifically blocking HGF-induced activity 
of endothelial cells"*. Hajitou et al. observed down-regulation of VEGF 
expression following angiostatin treatment19, and another group has shown 
that angiostatin reduces VEGF- and bFGF-induced activation of mitogen 
activated protein kinases, ERK-1 and -2'13. In retinal capillary cells, 
angiostatin treatment both down-regulated VEGF and up-regulated pigment 
epithelium-derived factor, another potent angiogenesis inhibitor'14. These 
studies suggest that angiostatin functions by blocking inducer activity. 

On the other hand, many studies have demonstrated that angiostatin 
treatment triggers apoptosis of endothelial cells. We showed that K1-3, K1- 
4 and K1-4.85 all induce apoptosis of endothelial Folkman's group 
also showed that angiostatin K1-3 induced apoptosis and further showed that 
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angiostatin treatment induced activity of focal adhesion kinase by an RGD- 
independent ~ a t h w a ~ " .  Subsequently, Lu et al. showed that K5 induced 
endothelial cell apoptosis as we11116. Our group went on to show that 
induction of apoptosis by angiostatin K1-4.85 involved activation of 
caspases-8, -3 and -9117. Moser et al. demonstrated angiostatin K1-3 binding 
to the alp-subunits of ATP synthase on the surface of human umbilical vein 
endothelial cells, and this binding was not inhibited by an excess of PLG 
indicating it was a unique binding site for angiostatin16. Though ATP 
synthase is usually contained within the cytoplasm, another group had 
previously demonstrated its expression on the surface of tumor cells"*. Cao 
and colleagues also demonstrated that angiostatin bound to the alp-subunits 
of ATP synthase and that this binding induced apoptosis1'9. Again, this 
isoform was referred to as K1-5; however, based on the referenced 
sequence7', it is K1-4.85. 

Consistent with our previous study, they showed that the apoptosis 
induction involved the sequential activation of caspases-8, -9 and -3'l9. 
Furthermore, they demonstrated endothelial cell apoptosis in vivo in a 
fibrosarcoma tumor model where co-administration of angiostatin with a 
caspase-3 inhibitor blocked endothelial cell apoptotic induction119. An 
interesting theory is that the low pH environment of the tumor promotes 
translocation of ATP synthase to the cell surface in caveolae, and subsequent 
angiostatin binding causes a precipitous drop in intracellular pH, thus 
triggering apoptosis120. Another group demonstrated that angiostatin 
treatment induced p53-, Bax- and tBid-mediated cytochrome c release and 
activated the Fas pathway'21. Weichselbaum's group suggest that 
angiostatin's pro-apoptotic induction is mediated by the sphingolipid second 
messenger ceramide and RhoA activation1", and Sharma and colleagues 
show an association with down-regulation of the cyclin-dependent kinase 
5123 

The majority of the apoptosis studies, with the exception of the Moser et 
al. and Veitonmaki et al. studies, did not identify the endothelial cell surface 
receptor for angiostatin. While ATP synthase has been linked to apoptotic 
induction, other potential receptors have been identified. These include 
annexin 11, angiomotin, and a,P3. However, the role of these candidate 
receptors in angiostatin activity is less clear. Tarui et al. found that 
angiostatins K1-3, K1-4 an K1-5 bind to avP3 on the surface of bovine 
arterial endothelial cells124. They later demonstrated that angiostatin may act 
by blocking plasmin-induced activity via blocking plasmin binding to 
avp344,124 . Using a yeast two-hybrid library, angiostatin was also found to 

bind to angiomotin, a protein localizing to the leading edge of migrating 
endothelial  cell^''^. This group suggests that angiomotin promotes 
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angiogenesis, and angiostatin binding inhibits this Sharma and 
colleagues demonstrated binding to annexin I1 on bovine aortic endothelial 
cells12'; however, a mechanism of action for this receptor is still unknown. 
Overall, the above data suggests that angiostatin may have multiple effects 
on endothelial cells and angiogenesis, at least in vitro. Differences in cell 
types used (species as well as vessel type) and in assays used could 
significantly influence results. The in vivo data, however, supports an 
apoptosis induction model of angiostatin activity, although additional studies 
are needed to elucidate the mechanism of this activity. 

6. ANGIOSTATIN ISOFORMS IN WVO 

As discussed above, many different angiostatin isoforms can be 
generated under laboratory conditions; however, it is of interest to determine 
which are produced in vivo under normal and/or pathophysiologic 
conditions. While angiostatin was initially isolated from tumor-bearing 
mice, several studies indicate that angiostatin isoforms are also present in 
human tissues and fluids. In a small pilot study, our group observed only the 
angiostatin K1-4.85 isoform in normal human plasma, at approximately 6 to 
12 n ~ ~ ~ .  This level was also observed in the plasma collected from cancer 
patients63. However, we observed markedly higher levels of K1-4.85 in 
ascites from ovarian cancer patients as well as in ascites from patients with 
nonmalignant etio~ogies~~. Another group confirmed this observation. They 
observed a 55 kDa angiostatin isoform in the ascites of patients with 
abdominal cancers12'. Several other studies have identified angiostatin 
isoforms in urine. Sten-Linder et al. compared angiostatin levels in urine 
between 117 cancer patients and controls by densitometry of Western blots 
and found that the levels in cancer patients (27k75 pg/L) were significantly 
higher than in the normal controls (353 pg~)129.  In their study, multiple 
immunoreactive bands were detected using an anti-K1-3 antibody129. Cao 
and colleagues also measured angiostatin and PLGIplasmin in urine130. They 
found low levels of PLGIplasmin and no detectable angiostatin in the normal 
controls compared to high levels of PLGIplasmin and detectable angiostatin 
in the cancer patients130, though the exact isoform was not determined. 

It is important to bear in mind that the regulation of angiogenesis is 
important in settings other than cancer. Sack et al. studied the diurnal 
variations in angiostatin levels in human tear fluid131. While open eye tear 
fluid from all normal individuals contained low levels of PLG and no 
detectable angiostatin, tears collected after overnight eye closure contained 
significant amounts of PLG, and various angiostatin-related isoforms, 
including K1-3, K1-4, and possibly isolated K5. They hypothesize that these 
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angiostatin isoforms may play a role in preventing neovascularization in the 
hypoxic environment of the closed eyel3l. From all of the above 
observations, it appears that angiostatin isoforms play a significant role in 
normal physiologic and pathophysiologic functions. 

PROGRESS IN ANGIOSTATIN THERAPIES 

Developing angiostatin isoforms for use clinically is the ultimate goal of 
angiostatin research. It has great potential use not only for cancer treatment, 
but also for the treatment of other diseases, which involve inappropriate 
angiogenesis, including diabetes, retinopathies, and rheumatoid arthritis. For 
cancer treatments, anti-angiogenic therapies offer many advantages over 
traditional therapies in principal. Firstly, they are not mutagenic so 
secondary tumors are unlikely. Secondly, they target the tumor vasculature 
specifically; therefore, there are fewer side effects. Thirdly, they can act 
synergistically with current chemo-, radiation- and gene-therapies132-136. 
Fourthly, as they do not target the tumor cell, but instead the genetically 
stable vascular endothelial cells, the tumor cells are unlikely to develop 
resistance to therapy'37"38. Lastly, they can be easily delivered via the 
circulation to their target cells (reviewed in 2,139). Unfortunately, to date, 
most clinical trials with angiogenesis inhibitors alone have not seen 
significant tumor regression; however, trials combining these agents with 
cytotoxic chemo-therapies have shown promising results (reviewed in 140). 

One disadvantage of anti-angiogenic therapies lies within one of the 
advantages. As they do target the genetically stable vascular endothelial 
cells, and not the tumor cells, they do not kill the tumor cells and are 
therefore not curative. However, viewing anti-angiogenic therapy as a long- 
term maintenance treatment or control treatment and/or combining these 
treatments with traditional therapies easily compensates for this deficit. 
Angiostatin has shown synergy with other treatment modalities. In 
collaboration with Mauceri and colleagues, we validated the theory that 

141,142 angiostatin could potentiate radiation therapy of cancer in mice . 
Additional studies have since confirmed these results and shown synergy 

143,144 with other chemotherapies . These studies indicate that combining 
angiostatin with traditional cytotoxic therapies such as radiation therapy 
andlor chemotherapy may prove to be effective clinically. However, the 
most effective dosing schedules for anti-angiogenic agents differ 
significantly from traditional cancer therapies. Traditional therapies are 
given on a maximum tolerated dose regimen, with high dose, short-term 
treatment scheduling with extended breaks between treatments to allow 
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recovery of normal tissues (reviewed in 145). In animal models, 
chemotherapeutic drugs, such as vinblastine and cyclophosphamide, when 
used to target the tumor vasculature, were found to be more efficacious 
when administered on a frequent, low dose schedule rather than on a 
maximum tolerated dose s ~ h e d u l e ' ~ ~ - ' ~ ~ .  This low, frequent, or 
"metronomic," dosing increases the efficacy against the tumor-associated 
vascular endothelial cells and greatly diminishes toxicity in animal 
models149. How efficacious it is in patients, however, remains to be seen. 

Whether angiostatin is used alone or in combination with traditional 
therapies, the pertinent question is still the same: what is the most 
efficacious method of delivering angiostatin to the patient? There are 
several options, the most direct of which is to administer angiostatin protein 
directly to the patient. Purified protein could be generated in two ways. One 
is the purification of angiostatin from cleavage of human PLG isolated from 
plasma. However, producing active angiostatin in large quantities by this 
strategy has proven to be technically difficult and labor intensive and has 
potential for contamination from plasma derived pathogens. Thus, this 
method is not practical for large-scale production. The second option would 
be to produce recombinant human angiostatin. In the initial effort, Sim et al. 
used the Pichia pastoris expression system150. Recombinant angiostatin K1- 
3 has been demonstrated to be biologically active and inhibited tumors in 
mice150,151 . Recombinant K1-3 and K1-4 proteins, also generated in the 
Pichia pastoris expression system, suppressed B 16-BL6 lung metastases by 
greater than 80% when administered at 30 n ~ / k g / d a ~ ' ~ ' .  However, as 
Pichia pastoris do not express proteins containing kringle domains, it is not 
clear if the post-translational processes required for proper kringle assembly 
are in place in this system. The degree of correct kringle conformation has 
not been studied, nor is it known how this would affect activity in cancer 
patients. As an alternative strategy, Meneses et al. used a mammalian 
expression system152. This mammalian-derived angiostatin K1-3 suppressed 
intracranial brain tumor growth in immune-competent rats up to 85%, with a 
32% decrease in tumor neovasc~larization~~~. This is encouraging, however, 
the in vivo half life of angiostatins and K5 are very short, -15 minutes 
(reviewed in 120). Therefore, to achieve therapeutic levels, high doses are 
needed. In addition, due to the nature of anti-angiogenic therapy, i.e. 
limiting tumor growth rather than killing the tumor, chronic administration is 
also needed. Thus, large quantities of purified protein would be required. 
These factors would make the use of recombinantly produced angiostatin an 
expensive form of therapy. 

Despite these obstacles, clinical trials have been progressing using 
recombinant angiostatin K1-3 (rK1-3), produced by Entremed. Two phase 1 
trials have been conducted at the Kirnmel Cancer Center at Thomas 
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Jefferson University in Philadelphia. The first, initiated in the year 2000, 
was to evaluate safety of rK1-3 doses in patients with cancer. Twenty-four 
patients with various solid tumors were enrolled with five patients receiving 
the therapy for more than a year153. Dosing was at 7.5 to 30 mg/m2/day 
divided into two injections dailylS3. Complications observed included two 
patients who developed hemorrhage in brain metastases and two who 
developed deep vein thromb~sis '~~.  No abnormalities in coagulation 
parameters were notedlS3. Thus, it appears that long-term therapy with rK1- 
3 is well tolerated. A second phase 1 trial was initiated to evaluate the 
combination of rK1-3 and radiation therapy in cancer patients with solid 
tumors, and currently, a phase I1 trial has been initiated to test rK1-3 in 
combination with paclitaxel and carboplatin treatment in patients with non- 
small-cell lung cancer, again at Thomas Jefferson University. The phase I1 
trial is currently enrolling patients. Entremed, however, has recently ceased 
development and testing of rK1-3 and has turned over the rights of rK1-3 to 
Children's Medical Center Corporation (announced Feb. 2,2004). 

Another possible approach to delivering angiostatin to the patient is 
through the use of gene therapy. Expression of angiostatin can be induced in 
cancer cells by in vitro transfection of an angiostatin-expression vector 
plasmid, or by use of recombinant retroviral or adeno-associated virus 
vectors that carry genes coding for angiostatin'4'221'54"55. Implantation of 
angiostatin-expressing cells into mice resulted in reduced tumor growth and 
tumor-associated angiogenesis. More recently, intratumoral injection of 
liposomes complexed to plasmids encoding angiostatin reduced the size of 
tumors implanted in the mammary fat pad of nude mice by 36%30. The use 
of gene therapy is an attractive model to induce angiostatin expression and 
suppress tumor growth; however, it is subject to the broader concerns about 
gene therapy in general, specifically whether high levels of expression can 
be achieved and the safety of the approach. 

One of angiostatin's interesting properties as an angiogenesis inhibitor, 
as a fragment of a larger protein, gives rise to another option for the delivery 
of angiostatin to the patient. As we and others have shown, angiostatin can 
be produced by proteolytic cleavage of PLG (see above). Therefore, one 
could develop therapies in which angiostatin is generated in vivo from the 
PLG present in the patient's own blood. As discussed above, we have 
demonstrated that PLG is converted to K1-4.85 in a two-step reaction 
requiring a plasminogen activator and a F S D ~ ~ .  Thus, by administering a 
plasminogen activator and a FSD, an "angiostatic cocktail" treatment, to a 
patient, angiostatin could be generated in vivo. This treatment modality is 
particularly attractive because plasminogen activators (uPA, tPA and 
streptokinase) and FSD (Captopril, n-acetyl-L-cysteine, Mesna and D- 
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penicillamine) are clinically available. Interestingly, Captopril alone was 
shown to inhibit angiogenesis in ratslS6, and one patient with Kaposi 
sarcoma showed stable disease over a six month period on captopril after 
failing chemo- and radiation therapieslS7. However, in these studies, 
angiostatin generation was not investigated as the association with FSD was 
just coming to light. 

- 

Day 1 Day 2 Day 3 

1 2 3 4 5 6  7 8 9  
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3 AS4.5 

+ Plasrninogen 

+ Angiostatin 

Figure 3. Angiostatic cocktail treatment generated angiostatin K1-4.85 in a patient with 
colon cancer. The Angiostatic Cocktail (tPA + captopril) was administered for five 

consecutive days (days 1-3 illustrated here). On each day, prior to administration of the 
Angiostatic Cocktail (9:OO; lanes 1,4,7), the angiostatin K1-4.85 levels were undetectable 
( 4 0  nM). During tPA infusion (10:30; lanes 2,5,8) and at completion of infusion (15:30; 

lanes 3,6,9), angiostatin K1-4.85 levels increased to 100 nM and the detectable plasminogen 
is reduced. Additional data indicate that the large (>I00 kD) bands on western blot which 

cross-react to anti-angiostatin K1-4.85 antibodies, are indeed a series of compiexes of 
angiostatin K1-4.85 with as yet undefined other proteins (Soff, unpublished observations). 

An initial pilot study experience with seven patients, presented at the 
American Association of Cancer Research meeting in 2000, validated this 
theory. The angiostatic cocktail treatment induced angiostatin K1-4.85 
formation and antiangiogenic activity was induced in plasma63. In this 
study, several patients had some tumor regression, including one with a 
complete remission63. A Western blot showing induction of K1-4.85 
formation in a patient with extensive, metastatic, refractory colon cancer is 
shown in Figure 3. Currently, a phase I trial is underway at Northwestern 
University Feinberg School of Medicine (Chicago, IL), testing tPA in 
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combination with Mesna. Thus far, there has been no evidence of bleeding- 
associated complications (Soff, unpublished observations). The possibility 
that K1-4.85 levels and activity can be induced in cancer patients, with 
existing, FDA approved drugs, offers the exciting possibility that the 
antiangiogenic and antitumor effects of angiostatin isoforms can be achieved 
without the expense and uncertainty of using recombinant protein or gene 
therapy. 

CONCLUSIONS 

The last decade has been an exciting one in anti-angiogenesis research. 
The discovery of angiostatin fueled the race to develop therapies targeting 
angiogenesis. Its structure, the kringle domains, and its mechanism of 
generation, as a cleavage product of a larger molecule, provided new clues in 
the search for other novel angiogenesis inhibitors. In addition, the 
methodology by which Folkman's group isolated angiostatin provided a 
screening tool by which to isolate new inhibitod6. This knowledge set the 
stage for an avalanche of angiogenesis inhibitor discoveries, including 
endostatin, canstatin, and others. Furthermore, the novel concept of 
delivering angiostatin to patients by in vivo generation, using currently 
available FDA-approved drugs, should facilitate angiostatin therapies 
reaching the clinic. 
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1 INTRODUCTION 

The landmark experiments by Isaacs and Lindenmann in 1957 
demonstrated the existence of a biologic substance, named interferon (IFN) 
because it 'interfered' with viral replication in the infected cells'. Soon after, 
it was realized that IFN is not a single molecule, but a family of distinct 
proteins with broad immunomodulatory, antineoplastic, antiproliferative, 
and antiviral properties2 produced by different cell types3-5. IFN research for 
at least two decades was based on crude extracts from virus-infected pooled 
white blood cells from blood donors6 because of inability to be purified. 
Technical advances in biochemistry (high performance liquid 
chromatography) and molecular biology (DNA cloning) led to its 
purification allowing for physicochemical characterization7 and gene 
sequencing8, 9 .  

Whereas IFN was initially considered for therapy of a variety of viral 
illnesses, including tumors presumed to be of viral etiology, in medical 
practice, type I IFNs have been approved for a range of viral illnesses, such 
as viral hepatitis1', multiple sclerosis", condyloma accuminat~rn'~, and have 
achieved a place in the amamentarium of hematology and oncology for 
therapy of a number of hematological malignancies and solid tumors. In 
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medical practice, type I IFNs have been approved for a variety of solid and 
hematological malignancies13 as well as other non-neoplastic diseases, such 
as viral hepatitis and multiple sclerosis. We will herein review the role of 
IFNs in the treatment of solid tumors, such as melanoma and renal cell 
carcinoma. 

2. CLASSIFICATION 

IFNs have been traditionally divided in type I and type 11, based on the 
cell type origin of their production and the cell surface receptor complex 
they bind to14. Type I consists of 12 IFN-a species and a single member of 
the IFN-P, IFN-K, IFN-E and IFN-o species, which are structurally similar15. 
The respective genes are clustered on chromosome 9q21 16, and their effects 
are exerted via the common IFN-alp receptor. Almost any cell type can be 
induced to produce IFN-a and IFN-P in response to viral infection. Type I1 
consists solely of IFN-y, which bears no sequence similarity with type I IFNs 
and its gene is located on chromosome 12~24". IFN-y can be produced by 
activated T lymphocytes and natural killer (NK) cells almost exclusively, 
exerts its effect via the IFN-y R receptor, induces polarization of immune 
responses towards a pro-inflammatory phenotype (i.e. macrophage 
activation, polarization of undifferentiated T helper cells (Tho) to Thl), 
upregulates class I and class I1 major histocompatibility complexes (MHC) 
in antigen presenting cells (APCs), and induces isotype IgG subclass 
switching in B cells (reviewed in1'). This review will focus on the role of 
type I IFNs in the treatment of solid tumors. 

3. BIOLOGICAL PROPERTIES 

Early experiments have shown that type I IFNs have cytostatic and 
antitumor activities beyond the originally described antiviral effectslg. Type 
I IFNs are constitutively expressed in low levels under physiologic 
conditions in the absence of infection or tumors and are responsible for 
maintaining the integrity of the organism through their interaction with the 
phylogenetically recent development of the specialized immune system 20. 

Host resistance against 'non-self' agents is comprised of two major defense 
systems: the innate and adaptive immuniel. Cytokines are major mediators 
of host defense, in that they regulate communication between APCs, 
lymphocytes, and other effector cells. Immunosuppressive cytokines 
secreted by tumor cells can impair the host antitumor responsez2, whereas 
cytokines promote development of T cell mediated immunity and may 
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enhance antitumor immunip .  IFN-a can exert both direct effects on tumor 
cells and indirect irnrnunomodulatory effects on tumors by acting on the 
host23. 

Type I IFNs exert imrnunomodulatory effects in vitro and provide a link 
between innate and adaptive immunifl. More specifically, type I IFNs 
affect almost all stages of dendritic cell (DC) generation, maturation, 
differentiation and function. IFN-a can replace IL-4 in the generation of 
immature myeloid-derived DCs (iDCs) from human monocytes cultured for 
7 days in the presence of granulocyte-monocyte colony stimulating factor 
(GM-CSF) 25. They optimize the antigen presentation on immature DCs by 
upregulating MHC class and molecular pattern recognition receptors, 
such as the Toll-like receptors27. They promote myeloid DC maturation and 
differentiation by modulating lineage- and maturation-specific surface 
markers and costimulatory  molecule^^^'^^ and enhance migratory function T 
cell zone dependent paracortical areas of regional lymph nodes3'. In their 
mature state, IFN-treated DCs produce significant amounts of IL-15, IFN-)I 
and chemokine receptors (CXCR, CXL10) recruiting NK, Thl and cytotoxic 
T cells to the site and therefore induce a 'polarized' cytokine 
microenvironment towards the pro-inflammatory Thl state3'. They also 
express the novel apoptosis inducing molecule, TNF-related apoptosis 
inducing ligand (TRAIL) and are capable of specifically killing TRAIL 
sensitive tumor cells3 l. 

The recent discovery that a lymphoid-derived DC subpopulation, termed 
plasmacytoid dendritic cells (pDCs), is able to migrate from peripheral 
blood32 to either lymph nodes during an infection33 or to the primary tumor 
site34 and produce vast amounts of type I IFNs under appropriate stimulation 
provides strong evidence about the role of type I IFNs as a link between 
innate and adaptive immunity3'. Under these conditions, type I IFNs may 
provide an autocrine survival factor for lymphoid-derived DCs, a 
differentiation-inhibitory but maturationlactivation-promoting signal for 
rnyeloid-derived DC precursors36 and a growth signal for non-antigen- 
primed IL-2 secreting T cells towards a Thl polarized cell type37. 

Similar to APCs, types I IFNs influence the polarization of effector 
immune cells towards the pro-inflammatory Thl phenotype. In the T helper 
cell compartment type I IFNs promote Tho-to-Thl differentiation by 
antagonizing the suppressive effect of Thz inducing cytokines and enhancing 
the response to Thl  signal^^^-^^. They also trend to 'foster' a Thl 
microenvironment at the primary inflammatory site by limiting the access 
only to lymphocytes with Thl-homing chemokine receptors4' and prevent 
activation-induced cell death in lymphocytes at the cost of retarding rapid 
lymphocyte expansion during a~t ivat ion~~.  In the cytotoxic T cell 
compartment type I IFNs induce polyclonal activation during viral 
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infections43 and potent antitumoral cell-mediated cytotoxiciv, whereas 
they promote NK cell-mediated proliferation and  t to toxic it^^^. 

4. PHARMACOKINETICS 

As with most proteins, oral delivery of IFNs is not practical due to 
alimentary proteolytic degradation46. Subcutaneous and intramuscular 
absorption of IFN-a and IFN-y is SO%, and 30% respectively47. Intravenous 
(i.v.) administration of IFN-a or -P results in a biexponential decrease in 
serum concentration, whereas IFN-)I levels decline monoexponentially. 
Terminal elimination half-life ranges from 4-16 hours (IFN-a)-, 1-2 hours 
(IFN-P), and 25-35 minutes for The relationship between dose 
and biological response varies among disease types. A number of serum 
IFN-specific markers have been investigated to better define the dose- 
response relationship, such as 2'-5'oligoadenylate synthetase (2-5A), 
neopterin, P2 microglobulin, and the MxA protein. The results of these 
efforts and in particular, the correlation of kinetic markers and antitumor 
response have been marginal, owing in part to the low clinical antitumor 
response EN-induced changes in parameters of the immune system 
utilized as potential surrogate endpoints of IFN treatment have been 
promising, but these studies have also been underpowered54~5s. With the 
advent of microarray technology it becomes evident that type I IFNs have 
effects that relate to multiple sites in the genome56 which might be used as 
molecular fingerprints to enable the prediction of response to treatment or, in 
adjuvant therapy, aimed to prevent relapse of a tumor, that might 
demonstrate non-response with the potential of early relapse573 '*. 

INTRGCELLULAR MECHANISMS OF ACTION 

Initial binding of type I IFNs to the P-subunit of the type I receptor 
(IFNA-R) results in recruitment of the a-subunit, receptor dimerization and 
non-covalent association with two Janus family kinases (JAK), Jakl and 
Tyk 2 (reviewed in5'). The JAKs are sequentially activated and in turn 
activate both subunits of the receptor IFNA-R by phosphorylation of specific 
tyrosine residues, which provide docking sites for signal-transducers and 
activators of transcription proteins (STATs). After ligand binding, STATs 
form homo- andor hetero-dimers (STAT 1-1, STAT 2-2, STAT 3-3, STAT 
5-5, STAT 1-2-IRF-9), which translocate to the nucleus and interact with 
palindromic consensus sequences of a special set of genes. 
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The importance of IFN-a induced changes in JAK-STAT signaling in 
malignancies is reflected by observations that IFN-a resistant cell lines 
frequently exhibit defects in JAK-STAT signaling6' and that STAT 3 
activation is a frequent phenomenon that may occur constitutively in a 
variety of tumors leading to immunological tolerance6'. Induction of 
selective STAT 1 deficiency in the host, but not the tumor, by targeted gene 
inactivation, abrogates IFN-a's antitumor effect in murine models implying 
that IFN-a acts immunologically as a major mechanism of action in the 
murine hod2.  It has been recently suggested from careful analyses 
following a genetic vaccination trial against human melanoma that IFN-a 
acts to recall and augment immune responses previously transiently induced 
by the vaccine, and it would be interesting to directly test whether IFN-a is 
capable of reversing immune tolerance via STAT 3-mediated mechanisms, 
as it has been reported to reverse effects of constitutive STAT 3 induction 
evaluated molecularly in pre-cancerous lesions631 64. 

There is a rising body of evidence that other signal transduction pathways, 
which either originate in or cooperate with JAWSTAT pathway, may further 
provide an explanation for the pleiotropic effects of type I ENS. Thus, the 
phosphatidylinositol 3-kinase (PI 3'-kinase) a mitogen activated protein 
kinase (MAPK) and the serine/threonine kinase 3 Akt PKB a nuclear 
factor-kappa B (NF-KB) pathways may account for the antiapoptotic and 
antiproliferative effects65' 66, whereas the STAT 5 3 CrkL 3 Rap 1 pathway 
mediates several of the growth inhibitory evend7. Finally, signaling cross 
talk with other cytokines may be important for modulation of immune 
responses68. 

6. INTERFERONS IN CLINICAL ONCOLOGY 

Over the last two decades IFN-a has been extensively studied and has 
become one of the most widely used cytokines, approved for a variety of 
malignant and viral disorders (reviewed in69) and more specifically is used 
for greater than fourteen different types of ~ance?~.  It is the first line therapy 
for metastatic renal cell carcinoma and high risk for relapse melanoma, in 
the adjuvant setting, and effective alternative strategy for chronic 
myelogenous leukemia and hairy cell leukemia. It has significant efficacy 
against some non-Hodgkin lymphomas when combined with chemotherapy. 
We herein summarize the evidence for a significant role of IFN-a in several 
solid tumors, particularly melanoma. 



212 CYTOKINES AND CANCER 

6.1 Cutaneous Melanoma 

Cutaneous melanoma is a unique malignancy in that its incidence is rising 
at a rate greater than that of any other malignancy and affects relatively 
young, members of the society who are in their most productive years. At an 
early stage, complete surgical resection is curative in more than 90% of 
cases. In its disseminated form, it is refractory to a wide range of 
chemotherapeutic agents, although immunotherapeutic approaches have 
shown some promise. Despite advances in staging and surgical therapy of 
completely resected primary cutaneous melanoma at high risk for relapse 
(Breslow depth 2 4.0-mm, and/or those patients with tumor-involved 
regional lymph nodes), 5-year survival rates range between 45% and 75%70 
necessitating effective adjuvant therapy strategies7'. Numerous randomized 
adjuvant therapy trials in patients with melanoma were performed over the 
last two decades. Results from regimens including chemotherapy, 
radiotherapy, and immunotherapy have been disappointing with the 
exception of those obtained with high-dose IFN-a2b (HDI) (Table 1). 

Table I. Phase I11 trials of adjuvant interferon-a2 therapy in patients with intermediate and 
high risk for relapse melanoma 

Patient Treatment arm1 Outcome 
(ref) number Stage DFS OS 

High dose 

Eastern 
Cooperative 

Oncology 
Group(EC0G) 

- ~ 1 6 8 4 ~ '  

Eastern COG 
~ 1 6 9 0 ~ ~  

Eastern COG- 
~1694"  

North Central 
Cancer 

IFNa-2b 20 

IIB MU/m2 iv qd Sdlwk, 
287 x4 wks S2 S 

I11 
then 10 MU/m2 sc tiw, 

x48 wks 
IFNa-2b 20 

MU/m2 iv qd 5d/wk, S 
x4 wks NS 

642 IIB 
I11 then 10 MU/m2 sc 

tiw, x48 wks 
VS. 

3 MU tiw, x2 yrs NS NS 
IFNa-2b 20 S S 

MU/m2 iv qd Sdlwk, 

IIB x4 wks then1 0 MU/m2 

I T T  sc tiw, x48 wks vs. 
GMK vaccine 1 cc sc 
on dl ,  8,15,22 q12 
wks (wks 12 to 96) NS NS 

IIB IFNa-2a 20 MU/m2 im NS 
qd, x3 m 

NS 
I11 
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Patient 
Stage Treatment arm1 Outcome 

(ref) number DFS OS 
Treatment 
Group 83- 

7052~~'  

European 
Organization 
for Research 

and Treatment 
of Cancer 
(EORTC) 
Melanoma 
Trial 18952 

Scottish 
Melanoma 

Cooperative 
Trial 76 

Austrian 
Melanoma 

Cooperative 
~ r i a 1 ~ '  
French 

Melanoma 
Cooperative 

~ r i a l "  
World Health 
Organization 

Melanoma 
Trial-16~~ 

AIM HIGH 
(UKCCCR)~~ 

EORTC 
18871lDKG- 

80" 

Intermediate 
dose 

IIB 
I11 

Low dose 

I1 
I11 

I1 

I1 

IIB 
I11 

IIB 
I11 

IIB 
I11 

IFNa-2b 10 MU sc 
Sdlwk, x4 wks 
then 10 MU sc tiw, 

xl yr 
VS. 

IFNa-2b 10 MU sc 
Sdlwk, x4 wks 

then 5 MU sc tiw, x2 
yr s 

IFNa-2b 3 MU sc tiw, 
x6 m 

IFNa-2a 3 MU sc 
qd x3 wks 

then 3 MU sc tiw, x l  
yr 

IFNa-2a 3 MU sc tiw, 
x18 m 

IFNa-2a 3 MU sc tiw, 
x3 yrs 

IFNa-2a 3 MU sc tiw, 
x2 yrs 

IFNa-2b 1 MU sc 
alternate days, x l  yr 

VS. 

IFNy 0.2 mg sc 

alternate days, xl  yr 
VS. 

Iscador M@ 

Abbreviations: COG, cooperative group; WHO, world health organization; EORTC, 
European organization for research and treatment of cancer; UKCCCR, United Kingdom 
committee for cancer research; NCCTG, north central cancer treatment group; DKG, German 
cancer society; Iscador MB, popular mistletoe extract (placebo); MU, million units; sc, 
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subcutaneously; tiw, three times a week; DFS, disease free survival; OS, overall survival; 
GMK, ganglioside GM2 coupled to keyhole limpet hemocyanin (KLH); S, statistically 
significant; NS, nonstatistically significant 

all clinical trials also include an observation arm, except the ECOG trial El694 
statistical comparisons with the observation group 

6.2 Adjuvant Treatment of High-risk Disease 

The first study to show that HDI prolonged survival in the adjuvant 
treatment of patients with high-risk melanoma was the Eastern Cooperative 
Group (ECOG) sponsored randomized controlled trial E 1684~'. E 1 684 
studied the effect of HDI {given in two phases beginning with an induction 
phase, 2 0 ~ ~ l m ~  intravenously (i.v.) five times per week for 4 weeks, 
followed by a maintenance phase, 1 0 ~ ~ l r n ~  subcutaneously (s.c.), three 
times per week (tiw) for 48 weeks) vs. placebo in high risk for relapse, 
completely resected melanoma. After a 7-year median follow-up HDI 
significantly prolonged 5-year OS (47% vs. 36%) and disease free survival 
(DFS, 37% vs. 26%), leading to the approval by the US Food and Drug 
Administration of HDI for the adjuvant treatment of patients with high risk 
for relapse. The Intergroup El690 study was designed to assess whether 
lower doses of IFN-a given for longer periods of two years would benefit 
survival without incurring the substantial toxicities associated with the HDI 
regimen. 608 patients with high risk for relapse completely resected 
melanoma were randomized to HDI, low dose IFN (LDI, IFN-a2b, 3 MU 
s.c., tiw for two- years), or observation. At a median follow up of 52 months, 
only a 5-year DFS advantage for the HDI arm was noted. The paradoxical 
absence of any OS benefit, while the effects of HDI upon DFS were 
corroborated in this trial was mainly attributed to the confounding effect of 
post-relapse 'crossover' to HDI treatment for patients assigned to the 
observation arm, since the El690 trial was conducted in part before, but in 
part after the FDA approval of HDI as the first effective adjuvant therapy for 
high-risk melanoma73. The Intergroup El694 study attempted to compare the 
efficacy of a less toxic chemically defined vaccine (ganglioside GM2, GMK 
vaccine, Progenics, Inc, Tarrytown NY), which had earlier showed 
promising results in a single-institution phase I11 and to exceed the 
benefit of HDI. This Intergroup trial accrued 880 patients with high relapse 
risk following complete resection of melanoma as defined for the earlier 
intergroup trial E1690. Patients were assigned to either the GMK vaccine or 
HDI treatment. The study was unblinded at a median follow up of 1.3 yrs at 
the decision of the external data safety and monitoring committee, when the 
interim analysis revealed the superiority of HDI in both DFS and 0 ~ ~ ~ .  
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Despite the improved toxicity profile, LDI given in variable treatment 
periods in intermediate and high risk for relapse, completely resected 
melanoma has uniformly failed to show significant benefit in terms of OS 
.,3,75a, 76-81 and the benefit that has been noted in DFS has generally been of 
limited duration, dissipating within 2 years after last treatment with IFN-a at 
low dosage77* 78. Similar to the LDI trials, preliminary results at 3 years 
median follow-up for the European Organization for Research and 
Treatment of Cancer (EORTC) Trial 18952, testing 'intermediate' doses of 
IFN-a2b given for one year (10 MU S.C. tiw) or two years (5 MU s.c., tiw), 
has shown neither a significant OS nor DFS benefit although an early report 
of this trial at less than 2 years median follow-up had suggested benefit for 
distant disease-free survival in the 2 year treatment arm (Eggermont, AMM 
communication to the Milan ESO Melanoma Congress, May, 2003 and 
European Perspectives in Melanoma 10-04). The intermediate dosage here 
chosen was one that attempted to emulate the delivered dosage of the El684 
HDI trial, but unfortunately never incorporated the induction phase of IV 
treatment that achieves dosage peaks of >1,000 ulml that are unattainable by 
lower dosages, especially when given in S.C. regimens. 

6.3 Metastatic disease 

In the metastatic setting of inoperable advanced stage IV melanoma, IFN- 
a has yielded response rates of 15-16% with 5% durable complete 
responses. In general, for partial responses attained with IFN-a the median 
duration of response is 6 to 9 months and responses are most frequent among 
patients with small disease volume, and sites of involvement in soft tissues, 
lymph nodes, and lung metastases. Although such response rates are not 
significantly different from those derived from chemotherapy alone, the 
durability of responses in a small fraction of patients82' " are reminiscent of 
high-dose IL-2. Combination of IFN-a2b with chemotherapy, IL-2, or 
chemotherapy plus IL-2 (biochemotherapy) may improve the response rate 
up to 50%, but has not led to OS benefit in the largest ever conducted 
cooperative group trial and is only associated with significant toxicie4. 
Administered after successful previous vaccination in a small number of 
patients with metastatic melanoma, as measured by enzyme-linked 
immunospot assays and flow cytometric tetramer assays for antigen-specific 
T cell populations has resulted in 'recall' of antitumor T-cell responses as 
noted earlier, along with objective clinical regression of disease that has 
previously failed to respond to either vaccine therapy, or initial IFN 
therapy64. 

The mechanism of HDI action in melanoma remains conjectural. Its 
effects appear increasingly to be indirect and immunomodulatory, mediated 
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by the enhancement of cellular cytotoxicity through improved 
immunological responses that are of the appropriate magnitude, duration, 

64, 85 and polarization . IFN-a has shown modest direct antitumor effects, 
although for solid tumors evaluated to the present time, it has been 
impossible to correlate clinical benefit with any observed direct cytotoxic or 
other antitumor (e.g., pro-apoptotic or anti-angiogenic) effectsp5. This may 
imply that response to IFN-a may be anticipated in patients with evidence of 
immunological response, such as increased number of tumor infiltrating 
lymphocytesp6, and ability to mount a specific64 or nonspecific immunologic 
response. 

7. RENAL CELL CARCINOMA 

Renal cell carcinoma (RCC) is a rare tumor, which may remain clinically 
occult for most of its course and present as metastatic disease in 30% of 
cases. Surgery is the only known effective therapy for localized RCC, 
whereas limited options are available for systemic therapy in the adjuvant 
and metastatic setting given its intrinsic resistance to chemotherapy 
(reviewed ins7). 

Early phase I1 studies in patients in metastatic RCC with single agent 
EN-a  showed response rate from 0-29% most of which were partial and 
only a few durable complete response with significant prolongation of DFS 
(reviewed in88). These results led to the evaluation of IFN-a (EN-a, lOMU, 
S.C. tiw) in randomized controlled trials (Table 2). 

Table 2. Phase I11 trials of adjuvant IFN-alpha therapy in patients with renal cell carcinoma 
Study (ref) Patient Stage Treatment arm Outcomel 

IFN-a IS' week 5 MU, 
5 MU and 10 MU, then 10 

MRC Renal 
Cancer 350 IV MU tiw for 1 1  weeks 

~ollaborators~~ VS. 
MPA 300 mg po qd for 12 

weeks 
IFN-a2a 5  MU/^^, day 

1 wks 1 & 4; 3  MU/^^ days 
1 ,3 ,5wks2&3;  10 

Atzpodien et 78 IV 
 MU/^^, days 1,3,5 wks 5- 

al.90 8 

8.5 vs. 6 months 
median survival 

of IFN-a vs. 
MPA 

24 vs. 13 
months OS of 

IFN vs. 
tamoxifen IL-2 10  MU/^^, bid 

days 3-5 weeks 1 & 4; 5 
 MU/^^, days 1 ,3 ,5  weeks 
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Study (ref) Patient Stage Treatment arm outcome' 
number 

Pyrhonen et 
aL9' 

Flanigan et al.92 

Eastern COG" 

Groupe 
Franqais 

d'Imrnunothera 
pie94 

2 & 3  
5-FU 1000 mg/m2, day 

1 weeks 5-8 

VS. 

tamoxifen 80 mg bid 
over 8 weeks 

VLB iv at 0.1 mgkg 

q3 wks 
VS. 

VLB plus IFN-a2a sc 3 MU 
tiw for 1 week, then 18 MU 
tiw.for 12 months 
IFN-a2b 5 MU sc tiw until 
tumor progression 

VS. 

IFN-a2b plus radical 
nephrectomy 
IFNa-NL sc qd for 5 days 
q3 wks for up to 12 cycles 

VS. 
observation 

IL-2 civ 18  MU/^' qd 
for 5 days 

VS. 

IFN-a2a 18 MU sc tiw 
for 23 wks vs. both 

(IFN-a2a at 6 MU sc tiw) 
IFN-a2a sc plus IL-2 sc 

plus 5-FU iv (a) 
VS. 

as above plus oral 13- 
cis-retinoic acid (b) vs. 

IFN-a2a plus VLB (c) 

67 vs. 37 wks 
OS of the VLB 
plus IFN-a vs. 

the VLB 

8 vs. 11 months 
OS of the 

combination vs. 
the IFN 

5.1 vs 7.4 years 
median survival 
of the IFN vs. 
observation 

no difference in 
0s 

25 and 27 
months vs. 16 

months median 
OS of the arm a 

and b vs. c 

Abbreviations: MRC, Medical Research Council; ~ ~ ~ , - r n e d r o x ~ ~ r o ~ e s t e r o n e  acetate; po, 
orally; qd, every day; bid, twice a day; VLB, vinblastine; 5-FU, 5-fluouracil; civ, continuous 
intravenous infusion; DGCIN, German Cooperative Renal Carcinoma Chemoimrnunotherapy 
Group 

'statistically significant unless reported otherwise 

Similar to phase I1 studies, the response rates resulting from these 
combinations were low (10-15%), but survival benefits were noted in a few 
of themg9 as well as when IFN-a-based regimens were compared with 
hormonesg0 or chemotherapy1. Furthermore, nephrectomy followed by IFN- 
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a2b ( S M U / ~ ~  S.C. tiw) prolongs survival in patients with metastatic RCC~', 
but IFN-aNL given daily for 5 days, for 4 weeks, surprisingly does not 
improve DFS and OS in the adjuvant setting of patients with resectable 
R C C ~ ~ .  

Attempts to increase the efficacy of IFN-a with IL-2 (high dose i.v. 
bolus) in metastatic RCC were accompanied by significant and prohibitive 
toxicities, but less aggressive combinations (low dose s.c.) were not 
associated with OS benefits94995. However, IL-2 plus IFN-a-based 
biochemotherapy has an OS benefit compared to only IFN-a-based 
b i o c h e m ~ t h e r a ~ ~ ~ ~ .  Addition of 5-fluorouracil to the combination of s.c. 
administered IFN-a plus IL-2 in phase I1 studies has controversial 
improvement in response rate97'99 and remains to be tested in randomized 
phase I11 studies, such as the Medical Research Council RE-04 comparing 
the above 3-drug combination with single agent IFN-a. Interestingly, the 3- 
drug regimen (IFN-a2a, IL-2 and 5fluorouracil) has only been compared 
against tamoxifen, to document significant OS benefit'''. 

The mechanism of IFN-a action in RCC appears similar to that in 
melanoma. IFN-a has a direct antitumor effect''', although increased cell 
mediated cytotoxicity 102, 103 and increased number of tumor infiltrated 

104;105 mononuclear cells were noted after IFN-a . Given in combination with 
interleukin-2, IFN-a restores defects in proliferative responses of tumor- 
infiltrated lymphocytes and in signal transduction molecules (TCR-C;, 
p561ck, p59fyn) of peripheral blood ~ - c e l l s ' ~ ~ .  In conclusion, IFN-a alone or 
in combination with surgery provides significant prolongation of survival in 
patients with metastatic RCC, whereas its combination with bio- 
chemotherapy needs to be further investigated. 

HIV-RELATED KAPOSI'S SARCOMA 

Kaposi sarcoma (KS), an angiogenic-inflammatory neoplasm, is the most 
commonly diagnosed neoplasm in patients infected with human 
immunodeficiency virus (HIV) and one of the defining conditions for AIDS 
development (reviewed in'07). KS originates in human herpes virus-8 (HHV- 
8) infected vascular endothelial cells or their circulating precursors which 
constitutively express a variety of angiogeniclinflamrnatory cytokines and 
growth factors that stimulate cell proliferation in an autocrine fashion. 

Treatment of KS with IFN-a was demonstrated in the early '80s and 
resulted in tumor regressi~n '~~.  Response rates were superior with higher 
doses'09 and in patients with a more intact immune system, defined by 
peripheral blood C D ~ '   count^"^. Combination with concurrent antiretroviral 
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therapy was superior to IFN-a alone irrespective of the HIV-related immune 
dysfunction1 ll. 

The mechanism of IFN-a action in patients with KS is multifactorial. 
IFN-a has shown antiviral activity for both H I V - ~ ~ ~ ~  and H ~ v - 8 " ~  as well 
as antiangiogenic activity by directly inhibiting basic fibroblast growth 
factor (bFGF) or vascular endothelial growth factor dependent (VEGF)- 
dependent endothelial cell proliferation114. Finally, type I IFNs have shown 
in vitro to increase natural killer and monocyte-mediated cytotoxicity against 
KS-derived targets115. 

9. NEUROENDOCRINE TUMORS 

Neuroendocrine tumors are uncommon neoplasms that share a number of 
histological and cytochemical features with other tumors, such as melanoma, 
carcinoid tumors and pheochromocytorna. They have the ability of amine 
precursor uptake and decarboxylation (APUD), capacity to synthesize and 
secrete polypeptide products with hormone activity causing hypersecretion- 
related symptoms and are malignant in most but not all cases. Surgical 
curative treatment can only be achieved in patients with small tumors. For 
inoperable, metastatic tumors biological therapy with somatostatin analogs 
or IFN-a attempts to control symptoms in functional tumors and control 
tumor proliferation (reviewed in116). 

Studies in early '80s showed that single agent IFN-a (3-12 MU s.c, once 
a day, (qd)) given either as first line therapy117' or in patients who have 
failed chemotherapy119 was associated with objective responses and 
improved 0 s .  Updated results in more than 300 patients with variable low-to 
-intermediate doses of IFN-a (3-9 MU s.c. 3-7 days a week) showed near 
50% biochemical response and 12% objective tumor response and prolonged 
survival compared to patients treated with chemotherapy alonelZ0. The 
results above were verified in another prospective study with fixed dosinglZ1 
leading to the approval of IFN-a for the treatment of mid-gut 
neuroendocrine tumors in several European countries. Attempts to further 
augment the therapeutic effect of IFN-a by combining it with 5-fluorouracil 
in patients with advanced neuroendocrine tumors showed conflicting results 

122-124 in terms of toxicity profile and response rate . Somatostatin analogues 
are indicated for treatment of neuroendocrine tumor causing functional 
syndromes andlor disease progression of metastatic disease even in the 
absence of any other symptoms (reviewed inlZ5). Early studies had shown 
that addition of EN-a  to patients who failed octreotide treatment resulted in 
significant biochemical and symptomatic improvement126 as well as disease 
stability127. A recent prospective randomized multicenter trial testing the 
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efficacy of IFN-a, lanreotide (somatostatin analogue) or their combination 
in patients with metastatic disease and disease progression suggested that 
either monotherapy (IFN-a or somatostatin analogue) has a comparable 
antiproliferative and biochemical efficacy and is not inferior to combination 
therapy12'. In summary, IFN-a can be used in patients with inoperable 
metastatic midgut neuroendocrine tumors as first line treatment or in patients 
refractory to somatostatin analogues, whereas its combination therapy with 
other biologics or chemotherapy agents has not proved superiority at the cost 
of toxicity. 

The antiproliferative effect of IFN-a in neuroendocrine tumors appears to 
be multifactorial. IFN-a has been suggested to exert an antiangiogenic effect 
by directly suppressing vascular endothelial growth factor expression in 
tumor cells'29 as well as mediating benefit through cell cycle inhibition'30, 13'. 
A variety of markers predictive of response to IFN-a have been suggested 
including activation of the STAT-1 and  STAT-^'^^ and the counterintuitive 
bcl-2 proto-oncogene ind~ct ion '~~.  

10. HEPATOCELLULAR CARCINOMA 

Hepatocellular carcinoma (HCC) is the most common solid-organ tumor 
worldwide. It is a slow growing tumor, but has great propensity for 
intravascular and intrabiliary extension and is more frequently diagnosed at 
an advanced stage when curative surgical treatment is not indicated. Similar 
to RCC, it is relatively chemoresistant and therefore a variety of non- 
chemotherapy approaches and special delivery systems have been tested 
(reviewed in'34). 

Early studies showed that variable schedules of IFN-a (9-18  MU/^^' 
intramuscularly (i.m.) qd or 25-50 MU/m2 i.m. tiw) was superior to 
doxorubicin in patients with inoperably HCC in terms of tumor regression 
and toxicity profile, although the responses are modest (12%) 13'. Higher 
dose scheduling in inoperable HCC (50 MU/m2 im tiw) resulted in higher 
response rates (30%) and OS benefit only compared to the non-treatment 

In the adjuvant setting a small prospective randomized study 
showed that in patients with completely resected HCC single agent IFN-a (3 
MU tiw for 24 months) reduced recurrence rate'37. Combination therapy of 
IFN-a (4  MU/^^ tiw) with continuous i.v. 5-fluorouracil showed higher 
response rate only in patients with fibrolamellar HCC cell type in a recent 
phase 11 study138, whereas combination chemotherapy (cisplatin, 
doxorubicin, 5-fluorouracil) with IFN-a (5 MU/m2 s.c. on days 1-4) was not 
associated with OS benefit, despite higher response rate (26%)13'. 
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The most significant role of IFN-a in HCC is thought to stem from its 
beneficial effect in chronic hepatitis C infection140, an important etiologic 
factor for HCC with rising incidence in the United States. IFN-a treatment 
decreased incidence of HCC in patients with chronic hepatitis C in a large 
retrospective study in ~ a ~ a n l ~ l .  Another prospective randomized study in 
Japan showed that in patients with compensated HCV-related liver cirrhosis, 
low HCV RNA load, and three or fewer nodules of HCC completely ablated 
with percutaneous ethanol injections IFN-a (6 MU, i.m. tiw for 48 wks) 
resulted in improved 5-year OS 14'. 

The activity of IFN-a against HCC may be explained by its diverse 
immunomodulatory, antiangiogenic and antiproliferative role described 
previously. In a HCC cell line IFN-a exerted a major growth inhibitory 
effect by affecting various phases of cell cycle 143, 144 in conjunction with 
initiation of apoptosis144' 14', whereas moderate antiproliferative effect was 
noted in others 146. Moreover, it restores or even augments impaired NK cell 
activity147. 

11. BLADDER CANCER 

Urinary bladder cancers represent a spectrum of neoplasms grouped into 
three general categories: superficial, invasive and metastatic. Each differs in 
clinical behavior, prognosis and primary management. Superficial bladder 
cancer (SBC), accounts for almost 70% of all cases and despite adequate 
endoscopic resection, 50-70% of patients will experience recurrence either 
because of new tumors arising from areas of dysplastic urothelium, or due to 
inadequate resection andfor implantation of tumor cells148. Immunotherapy 
in the form of intravesical bacillus Calmette-Guerin (BCG) instillation is the 
cornerstone in adjuvant therapy of SBC. 

Intravesicular IFN-a (escalating doses for 8 weeks) was first utilized in 
late '80s in patients with SBC with varying degrees of histologic atypia, 
carcinoma in situ, and led to 30-60% complete response, even in previously 
treated patients'49 in a dose-dependent fashionlS0. However, intravesicular 
IFN-a treatment was inferior in secondary prevention of SBC in patients 
with previously completely resected disease, when compared with 
r n i t ~ m ~ c i n - ~ ~ ~ ~  or BCG"', although EN-a  has a more favorable side effect 
profile. Combination therapy with BCG'", m i t ~ m ~ c i n - ~ ' ~ ,  epirubicinlss 
was more effective than single agent alone in prevention of recurrences 
suggesting that IFN-a may reduce the therapeutic dose of other more 
effective agents without compromising overall efficacy. In summary, 
intravesicular instillations of IFN-a are a safe and effective method in 
prevention of SBC recurrence and, though inferior to other treatments, it can 
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be used as a second line in patients with resistance or intolerance to 
treatment. 

The mechanism of action of IFN-a is multifactorial. EN-a  induces the 
differentiation program by restoring the balance of factors responsible for 
enhancing cell adhesion and prevention of rnetastasi~'~~. IFN-a 
downregulates expression of genes critical for angiogenesis157-159. By 
minimizing angiogenesis in the nearby normal urothelium, tumor spread by 
direct extension is minimized16'. IFN-a also stimulates immune system both 
locally and systemically161' '62 and has direct antiproliferative effects163' '64. 

12. HEAD AND NECK SQUAMOUS CELL CANCER 

Squamous cell carcinoma (HNSCC) is the predominant cancer type of the 
head and neck. It is characterized by a series of pathologic changes, from 
premalignant, dysplastic, early (in situ) to established frank malignancy, 
tendency to recur or coexist with other second primary malignancies within 
tobacco-exposed tissues of the upper aerodigestive tract (reviewed in16'). 
Development of HNSCC is associated with defects in the immune system, 
with initiation and tumor progression (reviewed in166). In the case of the 
IFN-a system and despite the presence of plasmacytoid DCs in the HNSCC 
tissue, their ability to produce F N - a  upon appropriate stimulation is 
severely impaired167. This observation relating to plasmacytoid DC 
function, the most prominent cellular source of local IFN-a production, 
implies that IFN-a may have a significant role in HNSCC. 

Early studies with single agent IFN-a showed that it has a significant 
activity against HNSCC'~~' 16'. Subsequent studies combining low dose IFN- 
a (3 MU s.c./i.m, for 5-7 days before chemotherapy) with most active 
chemotherapy regimes in recurrent or metastatic HNSCC, such as cisplatin 
and 5-fluorouracil, given as continuous iv infusion or daily administration, 
showed 20-50% response rate in phase I1 s t ~ d i e s ' ~ ~ - ' ~ ~ ,  although the addition 
of IFN-a to the cisplati-5-fluorouracil combination did not improve 
response rate or OS in a large multicenter phase I11 European study17'. Less 
'popular' combinations of IFN-a with other biologics176 or differentiation 
inducing agents177 resulted in less than 20% response rates '74. 

Despite its relative lack of efficacy in the treatment of advanced HNSCC, 
IFN-a has been used successfully with retinoids for secondary 
chemoprevention from second primary tumors, a major problem in HNSCC 
survivors, andlor prevention of recurrence from primary tumors. This drug 
combination is based on preclinical data about synergism in modulating cell 

178, 179 proliferation, differentiation and apoptosis . One year IFN-a (3 MU/m2 
s.c. biw) along with oral isotretitoin and oral a-tocopherol in patients with 
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advanced premalignant lesions of the upper aerodigestive tract, resulted in 
30% response rate in 12 months of observation, especially the laryngeal 
lesions179. Similar regimen used as adjuvant therapy in patients previously 
treated for advanced stage I11 and IV HNSCC was associated with 91% 2- 
year survival rate'". 

The mechanism of IFN-a action in HNSCC has also been investigated. In 
a clinical study administration of IFN-a for more than 6 weeks in patients 
with recurrent squamous cell carcinoma of the head and neck, and 
irrespective of the dose, and elevated pretreatment NK cell activity was 
associated with improved 0 ~ ' ~ ' .  IFN-a also has a direct growth inhibitory 
effectlg2 which was augmented with retinoidslg3 and modulates tumor 
associated antigens on the membrane of HNSCCs cell lines making them 
more susceptible to antibody-dependent cell mediated cytot~xicity'~~. IFN-a 
also may have some antiangiogenic role by directly suppressing bFGF in 
HNSCCs, which has correlated with high microvessel densitylp5. 

13. LUNG CANCER 

13.1 Small cell lung cancer 

Most patients with small cell lung cancer (SCLC) relapse shortly after 
discontinuing chemotherapy, despite the tumor's high degree of 
chemosensitivity, necessitating alternative, non-chemotherapy based 
approaches. Early studies in limited stage disease with natural IFN-a 
suggested that it has a rather growth delaying rather than cytotoxic effectIg6. 
In subsequent trials it was therefore used as maintenance therapy after 
cytotoxic chemotherapy. The 5-year OS benefit observed in an early Finnish 
study using natural IFN-a (5 MU i.m., 5 times a week for 1 month)lg7 was 
not confirmed by a cooperative group phase 111 prospective study using 
recombinant IFN-a (3 h4u/m2 tiw escalating to 9 M U I ~ '  s.c. for 2 years)188. 
Addition of 13-cis-retinoic acid to IFN-a (6 MIU s.c, tiw for 4 weeks, 
followed by 3 MIU s.c. tiw) similarly did not improve duration of response, 
time to progression or OS in a prospective phase I1 randomized study"9. 
Therefore, the role of IFN-a as maintenance therapy in SCLC is probably 
minimal. 

Addition of IFN-a to induction chemotherapy in SCLC has also been 
investigated. In a small prospective multicenter randomized trial conducted 
in Austria of patients with extensive stage SCLC, addition of IFN-a to 
induction chemotherapy (three cycles of each cyclophosphamide-vincristine- 
doxorubicin and cisplatin/etoposide combination) resulted in higher response 
rates and OS than the chemotherapy alone armlgO. Moreover, a small 
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prospective single institution study in Greece in patients with both extensive 
and limited stage, IFN-a added to induction chemotherapy (carboplatin- 
etoposide and ifosfamide or epirubicin) showed clear OS benefit. Subgroup 
analysis by stage revealed that the benefit was significant for limited disease 
only19'. Larger prospective studies on the role of addition of IFN-a to the 
induction chemotherapy regimen in SCLC need to be conducted. 

13.2 Non-small cell lung cancer 

IFN-a does not have significant single agent activity against non-small 
cell lung cancer (NSCLC) lg2,1g3. However, based on preclinical studies, 
which suggest potentiation of activity of a number of cytotoxic agents by 
I~~-a'94,'95 a number of small phase I1 studies have been conducted in 

patients with metastatic disease combining IFN-a at various schedules and 
196-198 doses with cisplatin or ~ a r b o ~ l a t i n ' ~ ~  had variable response rates (7- 

30%). Combination of IFN-a with retinoids has similar low response 
rates200, 201 . Addition of IFN-a to combination chemotherapy regimens 202-205 

has slightly higher response rate (19-51%), which do not result in OS benefit 
206,207 compared with chemotherapy alone . 

In summary, despite the direct antitumor effect of IFN-a in in vitro and 
208-210 animal lung cancer models , the IFN-a-related immune dysfunction in 

lung cancer patients 211,212 and the beneficial effects of IFN-a in restoration 
213, 214 of immune function in lung cancer patients , a clear beneficial role of 

IFN-a in the treatment of lung cancer has not been established. 

14. CLINICAL PROBLEMS 

Despite its demonstrable systemic efficacy in therapy of a variety of 
malignancies, IFN-a therapy has not been as widely adopted in routine 
clinical practice at high dosages due to its significant toxicity and potentially 
decreased quality of life. HDI is associated with side effects, which range 
fkom mild symptoms that may interfere with daily activities and after 
prolonged intervals decrease patient compliance, to potentially life- 
threatening toxicities that mandate dose interruption, aggressive supportive 
care and close follow-up before resumption with lower dosages of IFN"~ 
(Table 3). The symptoms are primarily dose-related, based on the incidence 
of side effect profile in the LDI clinical studies, are fully reversible with 
dose resumption, allowing for resumption of therapy at a predefined dose 
reduction. Some toxicities are more frequent than others (i.e. constitutional 
vs. hepatic), others are more acute, occur with peak dose exposure, 
demonstrate tachyphylaxis, and often dissipate over time (i.e., induction), 
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whereas others are associated with cumulative and continuous exposure to 
the agent. 

Table 3. Summary of adverse effects of type I IFNs and their management 
Adverse effects 

Constitutional Management 
Acute Chronic 

flu-like symptoms acetaminophen, 
(fever, chills, 

headache, fatigue, fatigue, anorexia, antiemetics 

arthralgias, myalgia, weight loss behavioral, 
nausea, vomiting) nutritional, dose 
malaise anorexia reduction 

Hematologic 

Cardiovascular 

Renal 

leucopenia 
(neutropenia), 

thrombocytopenia, 
anemia 

Supraventricular 
tachyrrythmia, 

bradycardia, and 
high-grade heart 

block, hypotension 

neutropenia dose reduction 

Screening before 
enrollment 
Hydration 

Acute renal failure, 
nephritic syndrome, Elevated Dose reduction 

Interstitial transaminase 
transaminase levels 

Gastrointestinal 
[smllpancreatitis, Elevated 

elevated transaminase 
transaminase levels 

Dose reduction 

Neurologic 
Mentation, Selective serotonin 

Depression, 
somnolence, impairment of reuptake inhibitors, 

confusion, psychosis bupoprion cognitive function behavioral 

Muscular 
Rhabdomyolysis Discontinuation 

Autoimmune 
thyroiditis, 

sarcoidosis, TIT, 
Raynaud's, 
vasculitis, 

exacerbation of 
psoriasis 

screening prior to 
enrollment 

Pulmonary 
pulmonary Discontinuation 
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Adverse effects 
infiltrates, 

pneumonitis, 
pneumonia 

Endocrine 
thyroid (hyper-, hormone 
hypothyroidism) replacement 

In the El684 trial up to 78% of patients experienced at least one event of 
2 grade I11 toxicity and 50% required dose reduction for grade 2-4 toxicities 
while 23% could not complete the 1 -year regimen. Growing experience with 
the administration of this regimen resulted in progressive reduction of 
percentage of patients not completing the l-year regimen, from 23% in the 
original El684 to 13% and only 1% for the subsequent El690 and E1694, 
respectively. Close follow up for early detection of side effects, especially 
the potentially life-threatening hepatic and hematologic and liver toxicities, 
is mandatory for dose modification/discontinuation or initiation of 
appropriate supportive therapy. 

Based on the results of the El684 and E1690, quality of life analysis was 
performed to determine the impact of HDI on the quantity of quality- 
adjusted time, taking into account patient's relative values for treatment 
toxicity vs. disease relapse. Using the Quality-Adjusted lime Without 
Symptoms or Toxicity (Q-TWiST) methodology, HDI results in a significant 
increment of quality-adjusted time216. Kilbridge et al. have studied the time 
utility for patients with melanoma, surveying patients who have had a 
melanoma of less than stage IIB-111, to determine the utility of time with 
toxicity, and the utility of time with relapse, showing strikingly poorer 
valuations of time with relapse than might generally be presumed, and rather 
better valuations of time with toxicity, portrayed in terms of the 
E 1684lE1690 toxicity profile217. 

15. ALTERED FORMULATIONS AND 
SCHEDULES OF DELIVERY FOR IFN 

Since treatment failure with relapse and ultimately mortality may occur 
within a brief period of two years after IFN-a discontin~ation'~ it is 
reasonable to speculate that longer treatment of patients for 5 years or 
indefinite longer periods may be necessary. Such long-term administration 
has become difficult to achieve with formulations requiring daily or every 
other day administration, but have become reasonable with the advent of 
pegylated IFN-a2b (PEG Intron, Schering-Plough, Kenilworth, NJ and 
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Pegasus, Roche). Pegylation, the covalent attachment of a polyethylene 
glycol to the IFN-a2b molecule, decreases clearance, thereby increasing 
area under the curve (AUC) compared with the standard tiw dosing and 
resulting in increased drug exposure without a proportional increase in 
toxicity, or reduction of activity218. Thus, typical IFN-a activities, such as 
upregulation of MHC class I expression and induction of cell-mediated 
cytotoxicity are relatively unchanged with pegylated IFNs. Under this 
concept, EORTC is currently testing the role of 5 years adjuvant pegylated 
IFN-a2b at dosages calculated not to reduce function more than modestly in 
stage I11 melanoma versus observation in patients with TxNIorZ MO disease 
after regional lymph node dissection (EORTC 1899 1) 219. 

An alternative scenario is that local delivery of IFN-a may be most 
appropriate for the actuation of the appropriate host response. Under this 
concept, non-viral based DNA delivery of IFN-a to muscle tissues, which 
subsequently express the protein for periods ranging from weeks to more 
than a year has been achieved (Vical Inc) 220. Local expression of IFN-a may 
locally influence DCs through polarization of the host immune response (DC 
and T cell) at the tumor site2'. 

16. CONCLUSIONS 

Over the last few years, significant advances have occurred in the field of 
IFN-a basic research, which have contributed to better understand its 
mechanism(s) of action. Given its diverse anti-proliferative, 
immunomodulatory, differentiation-promoting and anti-angiogenic effects 
more needs to be learned about the reasons why the importance of each of 
these processes is different for different tumors. Equally important is an 
attempt to explain the differential response of patients to IFN-a therapy at 
the same stage and ideally a way to a priori identify the patient subgroup(s) 
most likely respond to IFN-a. 

. IFN-a has been widely tested for a variety of malignancies and appears 
that its overall efficacy in solid tumors is inferior to the treatment of 
hematologic malignancies. The reasons for this apparent discrepancy are 
unclear. It may reflect the fundamental differences between these two types 
of malignancies. Solid tumors depend to a greater extend on angiogenesis 
and there is a higher degree of 'irnrnunoediting' resulting in multiple clones 
with different degree of responsiveness to anticancer agents and 
immunomodulatory treatments. 

Other pharrnacokinetic considerations relating to anatomical and 
physiological characteristics of solid tumors may result in insufficient 
exposure of malignant cells to IFN-a (i.e. abnormal vasculature and high 
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interstitial pressure). The explorations of dose and route for this molecule 
occurred long before current sophistication has allowed the measurement of 
antigen specific immune responses at the level of the CD8' and CD4' T cell, 
and the polarization of these cells and of dendritic cells, which may serve as 
the pivotal site of IFN-a action in vivo. Clearly, the efficacy of IFN-a 
follows a dose-dependent fashion in several solid tumors 73,136,150 , which may 
limit its widespread administration because of its side effect profile. 
Alternatively, longer periods of IFN-a exposure may be required to improve 
OS as suggested by preclinical datalS7. Under this concept, pegylated IFNs 
may facilitate patient compliance and prolonged administration schedules. 
Conversely, if peak dose effects are critical to the DC and T cell mediated 
effects of HDI, delivery of IFN by any route other than i.v., and by any 
formulation that retards its distribution, will abrogate the durable benefits of 
this agent. As the molecular correlates of clinical benefit for this molecule 
are defined, it will be possible to rapidly evaluate these hypotheses directly. 

IFN-a continues to be a very useful agent in the management of certain 
malignancies especially in the adjuvant setting with minimal tumor burden. 
The side effect profiles are substantial. It is important that the treating 
physician be aware of the four major categories of IFN toxicity: 
constitutional, neuropsychiatric, hepatic and hematologic. The development 
of combination IFN-based therapies will continue to expand. Future 
concentration in the development of target specific drugs to abrogate the 
toxicities of IFN without compromising its antitumor effect is required. In 
short, IFN-a is a promising, but incompletely understood anticancer agent. 
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1 INTRODUCTION 

Breast cancer is the most common malignancy in Western women, 
representing one third of all cancers in the United States. About 40,000 
women died from this disease in 2003 '. With the development of new 
therapeutic agents (taxanes, aromatase inhibitors, trastuzumab), the median 
survival for patients with metastatic breast cancer over the years has 
increased 2. Despite recent advances, we need better and innovative therapy. 

Finding the appropriate patients and ensuring that molecular therapeutics 
is delivered to the tumor in biologically relevant doses is the backbone of 
targeted therapies. Lately, the development of new strategies for the 
treatment of breast cancer has focused on target identification, and 
understanding the expression, regulation, and function of critical signaling 
pathways involved in breast cancer initiation and progression. 

The concept of targeted therapy for breast cancer is not new. It was more 
than 100 years ago since Beatson's historic observations on the regression of 
advanced breast cancer following oophorectomy, providing the first insight 
into the estrogen-dependent nature of breast cancer 3. It subsequently 
became clear that anti-hormonal manipulation was most effective for women 
whose tumors expressed estrogen receptors (ER) and/or progesterone 
receptors (PgR) 4. Without doubt, selective targeting of the estrogen 
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receptor pathway provides a more favorable benefitltoxicity ratio compared 
with systemic chemotherapy, and in some instances, it is more effective than 
chemotherapy in preventing recurrence or progression of disease. 

It is well established now that therapy for breast cancer should be guided 
by biologic features of the tumor, such as hormone-receptor-positivity, 
mentioned above. The purpose of this chapter is to review the more recent 
targeted therapies available for breast cancer management, as well as some 
future developments in the field. 

2. TARGETING HERWNEU 

The ErbB (HER) receptors are named after the Avian erythroblastosis 
tumor virus, which encodes an aberrant form of the human epidermal growth 
factor receptor (from which "HER" originates). The HER family of receptors 
is composed of 4 members: HER1 (also known as the epidermal growth 
factor receptor [EGFR]), HER2 (also known as ErbB2 or HEWIneu), HER3 
and HER4. They share the same molecular structure - an extracellular 
ligand binding domain, a short transmembrane domain, and an intracellular 
domain with a tyrosine kinase activity (except for HER3) 5. HEWIneu is a 
185-kDa oncoprotein (p185), which is overexpressed in about 30% of 
invasive breast cancers 6,7. HER-21neu overexpression is not only associated 
with resistance to cytotoxic and endocrine therapy, but also with an 
aggressive biological behavior, that usually translates into shorter disease- 
free interval and overall survival in patients with early and advanced breast 
cancer '. The HEWIneu molecule is composed of an extracellular ligand- 
binding domain, an amphipathic transmembrane region, and an intracellular 
tyrosine kinase domain, which contains a carboxy tail with five major 
autophosphorylation sites 9. To date, no direct ligand has been identified for 
HER2/neu, but some studies suggest that the HER21neu receptor protein acts 
as a co-receptor that leads to formation of homo- and heterodimeric receptor 
complexes with other members of the HER family, into which HER21neu is 
recruited as a preferential dimerization partner 'O. This process is followed 
by intrinsic tyrosine kinase-mediated autophosphorylation and mutual 
phosphorylation of the respective dimerization partners and ultimately 
results in activated receptor complexes ",12. In vitro studies have identified 
distinct receptor heterodimers that are associated with the malignant 
phenotype of several human breast cancer cell lines, and that might also play 
a significant role in malignant transformation in vivo. Combinations that 
have most often been associated with malignant behavior include EGFR- 
HEWIneu, EGFR-HER3, and HER21neu-HER3. Alternatively, in vitro 
HER21neu activation has also been demonstrated to occur as a consequence 
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of spontaneous cleavage of its extracellular domain (ECD), thereby resulting 
in the production of a truncated membrane-bound fragment (p95) with 
kinase activity. Since the p95 fragment has also been detected in breast 
cancer specimens, it has been suggested that shedding of the ECD may 
represent an alternative activation mechanism of HER21neu in vivo l 3 , l 4 .  

Monoclonal antibodies that target the HER21neu ectodomain sensitize 
HER2heu overexpressing cells to apoptotic stimuli, by interfering with 
HER21neu activation process and HER21neu-dependent gene expression 
associated with cell cycle progression and cellular differentiation. Several 
mechanisms are involved in this process: blockade of ligand binding, 
disruption of homo and heterodimer formation, induction of receptor 
internalization, and degradation of the ectodomain, which ultimately 
interferes with receptor phosphorylation l5?l6. Nowadays, trastuzumab 
(HerceptinB), a humanized antibody against HER21neu (murine Moab 4D5 
combined with a human immunoglobulin G), is a fundamental part of 
therapy for patients with metastatic HER21neu-overexpressing breast 
cancers. Trastuzumab has been shown to inhibit tumor growth when used 
alone 17, but had synergistic effects when used in combination with cisplatin 
and carboplatin, docetaxel, and ionizing radiation, and additive effects when 
used with doxorubicin, cyclophosphamide, methotrexate, and paclitaxel 1 8- 
23. Phase 1 clinical trials showed that the antibody was safe and confined to 
the tumor (unpublished data). 

A multinational study of the efficacy and safety of trastuzumab in 222 
women who had HER21neu overexpressing metastatic breast cancer that had 
progressed after one or two chemotherapy regimens for metastatic disease 
revealed that this strategy provided a 15% objective response rate and a 
median duration of response of 9.1 months, with a median duration of 
survival of 13 months. These results indicated that trastuzumab, as a single 
agent is quite active and comparable to standard second-line chemotherapy 
in a heavily pre-treated population, with much better tolerability 24. Adverse 
effects observed with trastuzumab are generally mild, and most commonly 
associated with the first infusion (fever and/or chills) in about 40% of 
patients. Cardiac toxicity is an uncommon but serious adverse side effect. 
In the study mentioned above, 4.7% of patients developed cardiac 
dysfunction, manifested as congestive heart failure, cardiomyopathy, and/or 
decrease in ejection fraction. Most of those patients had at least one risk 
factor, such as previous anthracycline therapy (with or without associated 
cardiomyopathy), hypertension, and radiation to the left chest, or age over 70 
years. The mechanism for cardiotoxicity with trastuzumab is unknown. 

From a clinical standpoint, it is important to characterize true HER2Ineu 
positivity, since only these patients will benefit from trastuzumab 
administration. The US Food and Drug Administration (FDA) approved the 
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use of immunohistochemistry (M) via a polyclonal antibody, the 
HercepTestm, for determining HER2 status. Unfortunately, false-positive 
rates as high as 50% were found when results were compared with either 
MoAb to HER2 (CB11) or with fluorescence in situ hybridization (FISH) 25. 

Only 24% of HER21neu 2+ score by IHC will have HER2 gene 
amplification by FISH analysis, whereas 89% of HER21neu 3+ score by IH 
are also positive by FISH 26y27. At this time, FISH seems best to select 
patients as candidates for therapy with trastuzumab. 

A landmark randomized phase 3 trial comparing first-line standard 
chemotherapy (adriamycin~cyclophosphamide or paclitaxel, based on 
previous use of anthracycline therapy in the adjuvant setting) with or without 
trastuzumab in 469 women with HER21neu-overexpressing metastatic breast 
cancer showed that the trastuzumab-based combination therapy not only 
reduced the relative risk of death by 20% at a median follow-up of 30 
months, but also significant increased the time to disease progression, rates 
of response, duration of responses and time to treatment failure. 
Nevertheless, the concurrent use of trastuzumab with the anthracycline 
regimen significantly increased the risk of cardiac dysfunction to 
unacceptable levels. The increase in overall survival seen with trastuzumab 
and first-line chemotherapy for women with HER21neu-overexpressing 
metastatic breast cancer has made its use standard of care in this setting 28. 

For women who cannot or are not willing to receive cytotoxic chemotherapy 
for metastatic breast cancer, the use of trastuzumab as single-agent in first- 
line treatment is a valid option. In women with HER21neu-overexpressing 
3+ tumors verified by IH or those with HER21neu gene amplification 
confirmed by FISH analysis, the response rate is about 35%. About 50% of 
responders are free of progression after 1 year. The median duration of 
survival is about 2494, suggesting that patients do not incur a major survival 
disadvantage if they receive trastuzumab alone as first-line therapy for 
metastatic disease 29. 

Subsequent trials evaluated the role of trastuzumab with other 
chemotherapy agents, such as vinorelbine. This combination turned out to 
be very safe and well tolerated, and in first-line treatment for women with 
metastatic breast cancer that overexpressed HER2/neu, response rates were 
in the order of 68%, with a median time to treatment failure of 5.6 months. 
An impressive finding is the fact that almost 40% of the patients enrolled in 
this phase 2 trial were free of progression after 1 year 30. Efficacy of 

34 combinations with other agents, such as docetaxel 3'"3, cisplatin , and 
35,36 gemcitabine , has also been assessed. Preliminary results of a 

randomized phase 3 trial comparing the doublet combination of trastuzumab 
and paclitaxel with the triplet combination of trastuzumab, paclitaxel, and 
carboplatin in patients with HER21neu-overexpressing breast cancer as 
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initial therapy for metastatic disease has recently been reported. Both 
regimens were well tolerated, but time to progression was significantly 
increased in patients receiving the triple combination 37. 

Preclinical phase 1/2 studies have demonstrated a dose-related, nonlinear 
pharrnacokinetic profile for trastuzumab. A dose-finding study supported 
the weekly administration of the antibody in weekly dosing. 
Phannacokinetic data found wide inter-patient variability, suggesting 
alternative schedules may be feasible. A phase 2 study evaluated the 
pharmacokinetics and safety of trastuzumab and paclitaxel given every 3 
weeks to 32 women with HEW-overexpressing metastatic breast cancer. 
Patients initiated the 3-weekly therapy after about 16 weeks of weekly 
therapy (till best response). The half-life of trastuzumab was estimated to be 
18 to 27 days, with no unexpected toxicities and no pharmacokinetic 
interaction. Ten patients had a 115% decrease in ejection fraction, but only 
one had symptomatic heart failure. Plasma trastuzumab trough levels and 
clinical response rates compared favorably with those achieved with the 
standard weekly trastuzumab regimen plus chemotherapy 38. A phase 2 trial 
also evaluated trastuzumab as monotherapy administered every 3 weeks in 
previously untreated patients with metastatic breast cancer. Of 64 evaluable 
patients, the response rate was 19%, 52% had stable disease, the median 
time to progression was 4 months, and the side-effect profile was as 
expected 39. There are no current randomized data comparing weekly with 
every 3-weeks administration schedules. 

Several pre-clinical studies supported the need for chronic administration 
of trastuzumab, but the optimal duration of therapy is unclear. There is 
paucity of data addressing this issue, and in clinical practice, oncologists 
continue to use trastuzumab even after disease progression. In a phase 3 
pivotal trial, 66% of patients who had evidence of disease progression chose 
to enter a nonrandomized, open-label study in which trastuzumab was 
administered at the same dose, alone or in combination with other therapies. 
The response rate in this group was 11%, but without a randomized 
comparison it is impossible to determine if this response rate is higher than 
what would have been seen with additional cytotoxic therapy alone 40. The 
issue of optimal duration therapy was addressed by a retrospective review of 
80 patients with HER2 overexpressing metastatic breast cancer that received 
trastuzumab monotherapy or combination chemotherapy beyond disease 
progression. Fifty-six percent of patients had previously been treated with 
chemotherapy for advanced disease. The most commonly used 
combinations in first- and second-line treatments were trastuzumab with 
paclitaxel and trastuzumab with vinorelbine, respectively. In total, 32 
responses were observed, most of them during the second or third line of 
treatment. Median survival from diagnosis of advanced disease was 43.4 
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months (range, 6.4-91.7+), whereas median survival from disease 
progression after trastuzumab administration was 22.2 months (range, 0.01- 
32.9+). These data indicate that continuation of trastuzumab beyond disease 
progression in patients with HER21neu-overexpressing metastatic breast 
cancer is feasible and safe 4'. Randomized trials are ongoing to further 
clarify the role of trastuzumab in progressive HER2 overexpressing 
metastatic breast cancer. Trastuzumab's targeted activity, with direct 
antiproliferative effects, synergistic interaction with chemotherapy agents, 
and antiangiogenic effects may support the counter-intuitive approach of 
treatment beyond disease progression. 

The use of trastuzumab in the adjuvant setting (early stage breast cancer), 
in order to prevent recurrence and improve overall survival for patients that 
overexpress HER2/neu, is being evaluated by several ongoing phase 3 trials 
42 (Table 1). 

Table 1. Adjuvant clinical trials in progress with combinations of trastuzumab and 
chemotherapy* 
Study Description 
NSABP B-3 1 

Intergroup 
N9831 

BCIRG-006 

Patients with LN positive HEW-overexpressing breast cancer. 
Group 1 : AC x 4 followed by T x 4 
Group 2: AC x 4 followed by T x 4 plus Trastuzumab for 1 year 
Tamoxifen to all patients who are ER or PR positive or ERRR negative but 
older than 50 years of age, or whose receptor status is unknown 
Patients with LN-positive HER2-overexpressing breast cancer. 
Group 1 : AC x 4 followed by T x 12 
Group 2: AC x 4 followed by T x 12 followed by trastuzumab for 1 year 
Group 3: AC x 4 followed by T x 12 plus trastuzumab for 1 year 
Tamoxifen to all patients who are ER or PR positive, started no later than 5 
weeks after the last dose of T 
Patients with HEW-overexpressing breast cancer and LN-positive or high- 
risk node negative disease. 
Group 1: AC x 4 followed by docetaxel x 4 
~ r o u i  2: AC x 4 followed by docetaxel x 4 plus trastuzumab for 1 year 
Group 3: docetaxel plus carboplatin or cisplatin plus trastuzumab for 1 year 

*NSABP, National Surgical Adjuvant Breast and Bowel Project; LN, lymph node; BCIRG, 
Breast Cancer International Research Group; A, doxorubicin; C, cyclophosphamide; T, 
paclitaxel; ER, estrogen receptor; PR, progesterone receptor 

3. TARGETING EGFR 

The epidermal growth factor receptor (EGFR) or HER1, is another 
membrane receptor of the HER family '. Its dysregulation has been 
implicated in key features of cancer, such as autonomous cell growth, 
invasion, angiogenic potential, and development of distant metastasis 43. 
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The EGFR extracellular domain contains 621 amino acid residues, and its 
key feature is the ligand-binding domain, which is formed by two domains 
called L1 and L2 44. The role of the transmembrane domain, which contains 
23 amino acid residues, in EGFR signaling remains uncertain, although 
recent studies suggest that it contributes to receptor stability 45. The 
intracellular domain of EGFR is composed of 542 amino acid residues and 
has tyrosine kinase (TIC) activity, which functions as an activator of the 
cytoplasmic targets of the receptor 44. The binding of ligands to the receptor 
induces the formation of either homo- or heterodimers in a strictly 
hierarchical order 43. The nature of the ligand and the relative abundance of 
one member of the family versus others influence the dimerization pattern, 
which in turn, activates different signaling pathways. For example, EGFR- 
HER2 heterodimers are associated with a more intense and sustained 
proliferative signal than EGFR-EGFR homodimers 46. Dimerization induces 
conformational changes in EGFR that result in the activation of the 
intracellular tyrosine kinase moiety and receptor autophosphorylation. 
Phosphorylation of the receptor leads to the formation of intracellular 
docking sites for cytoplasmic amplifying molecules that contain Src 
homology 2 (SH2) domains or phosphotyrosine-binding sites 47. In addition 
to activating the receptor, the binding of ligands initiates receptor 
internalization. After the ligand-receptor complex is internalized, it is either 
degraded, leading to signal termination, or recycled to the cell surface for 
another round of signaling 43. 

A large number of molecules, collectively known as the EGF-like growth 
factors, have been identified that can bind and activate the EGF family of 
receptors. Binding of activating ligands to the extracellular domain of EGFR 
activates the receptor and its signaling pathways, which results in the 
orchestrated activation or modulation of cellular processes such as 
proliferation, differentiation, migration, and survival 7. The MAPK pathway 
is one of the most relevant pathways activated by the EGF family, because it 
regulates cellular processes, such as gene transcription and proliferation, by 
activating a variety of substrates located in the cytosol, nucleus, and plasma 
membrane 48. Another important signal transduction pathway activated by 
the EGF family of receptors is the PI3KIAkt signaling pathway, which 
mediates cell survival 49. 

EGFR was found to be the cellular homolog of the avian erythroblastosis 
virus v-erbB oncogene, which encodes a carboxy-terminal, truncated form of 
HER1, a first clue that alterations in the EGFR signaling pathway resulted in 
malignant transformation Preclinical data also suggest that dysregulation 
of the EGF family of receptors is associated with growth advantages for 
malignant cells. Malignant transformation due to EGFR dysregulation can 
occur by different mechanisms, including receptor overexpression, activating 
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mutations, alterations in the dimerization process, activation of autocrine 
growth factor loops, and deficiency of specific phosphatases. For instance, 
EGFR gene overexpression without gene amplification, which is associated 
with activation by TGFa in an autocrine loop, is commonly associated with 
cancer development and progression ". 

Analysis of tumor tissues from patients with cancer indicates that aberrant 
expression and activation of EGFR is characteristic of many human cancers 
and is often associated with poor clinical outcome and chemoresistance 52. 
Variant forms of EGFR that contain mutations in the extracellular domain 
have recently been described, with EGFR variant 111 (EGFRvIII) being the 

53,54 predominant variant in most cancers . EGFRvIII is a 145-kd 
glycoprotein with constitutive, ligand-independent activation of the 
receptor's tyrosine kinase activity, resulting from the loss of 801 base pairs 

55 (bp; bases 275-1075) in the extracellular ligand-binding domain . 
Glioblastoma multiforme (GBM) was the first malignancy in which this 
mutation was observed, but it has also now been detected in breast, non- 
small-cell lung, ovarian, and prostate cancers, but not in normal tissue 56. 

The clinical relevance of this finding is yet to be determined, but it is 
certainly intriguing for targeted therapy development. 

Some studies suggest that EGFR expression is a marker of a more 
aggressive type of breast cancer. For instance, detectable expression of 
either EGFR or TGFa statistically correlates with absence of estrogen 
receptors in breast tumors, resistance to anti-estrogen therapy and shorter 
disease survival 57-59. Overexpression of EGFR and HER21neu is also 

60, 61 associated with resistance to endocrine therapies . Both EGFR and 
HER2 inhibitors have been shown to enhance the anti-tumor effect of anti- 
estrogens or reverse anti-estrogen resistance in erbB receptor 
overexpressing, ER-positive breast cancer cells 62-64. These data suggest that 
the EGFR is part of a signaling network causally associated with de novo or 
acquired anti-estrogen resistance whose interruption may increase the anti- 
tumor effect of hormonal therapies in breast cancer. EGFR blockade 
potentiates the anti-tumor effect of trastuzumab against HER2-dependent 
breast cancer xenografts 65, suggesting that EGFR signals might be 
associated with acquired resistance to trastuzumab. In summary, in certain 
clinical situations, such as escape from anti-estrogens and anti-HER2 
therapies, the EGFR receptor is associated with the progression of breast 
cancers. 

Since blockade of the EGFR was shown to stop cell proliferation in 
cancer models both in vitro and in vivo 66, an increasing number of 
compounds directed against the EGFR entered clinical development. Two 
strategies have been more extensively explored in clinical trials: the use of 
monoclonal antibodies (MoAbs) directed against the external domain of the 
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receptor, and the use of small molecules that compete with adenosine 
triphosphate (ATP) for binding to the receptor's kinase pocket, thus blocking 
receptor activation, also known as TK inhibitors (TKIs). 

3.1 Anti-EGFR monoclonal antibodies 

Preclinical studies with the first murine anti-EGFR MoAbs, 528 and 225, 
showed activity in a variety of relevant in vivo models acting synergistically 
with conventional chemotherapy or radiation therapy 67. TO prevent the 
formation of human anti-murine antibodies, chimeric and humanized forms 
of these antibodies were developed. 

IMC-C225 (cetuximab, ErbituxB) is a chimeric human-mouse antibody 
against EGFR. It binds competitively to the extracellular domain of EGFR 
67 , preventing the binding of activating ligands to the receptor, inhibiting 
autophosphorylation of EGFR and inducing its internalization and 
degradation 68. It ultimately promotes cell cycle arrest and apoptosis by 
increasing expression of the cell cycle regulator p27m1 and pro-apoptotic 
proteins (e.g., Bax and caspase-3, caspase-8, and caspase-9) or by 
inactivating anti-apoptotic proteins (e.g., Bcl-2) 69-71. 

In preclinical studies, cetuximab inhibited proliferation of cells, both in 
culture and in human tumor xenografts 65$72173 . Three successive phase 1 

74 studies revealed minimal toxicity and some evidence of antitumor 
efficacy. Phase 2 trials evaluating cetuximab in combination with cytotoxic 

75 therapy in patients with pretreated, advanced head and neck cancer , 
refractory nonsmall-cell lung cancer (NSCLC) 76 and irinotecan-refractory 
colorectal cancer (CRC) 77 reported objective response rates of about 15% to 
20%. In general, treatment with cetuximab is well tolerated, and the most 
common toxicities are allergic reactions or acneiform skin rash. Of note, in 
the phase 2 study of cetuximab in patients with colorectal cancer 77, patients 
who developed skin toxicity seemed to have a slightly better outcome than 
patients who did not (after adjustment for other confounding factors), but so 
far this association needs to be fully confirmed by other studies with anti- 
EGFR drugs before skin toxicity qualifies as a predictor of response to 
therapy. The results of a phase 3 trial that compared the objective confirmed 
response rate of the combination of cetuximab plus irinotecan, or of 
cetuximab as a single agent in patients with EGFR-positive, irinotecan- 
refractory CRC patients have been recently presented. Response rate and 
time to progression were longer in the combined therapy arm 78. Based on 
these data, the FDA recently approved cetuximab alone or in combination 

. with irinotecan for EGFR-overexpressing metastatic colorectal cancer 
patients refractory or intolerant to irinotecan-based chemotherapy. In a 
phase 3 study that randomized patients with squamous-cell cancer of the 
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head and neck (SCCHN) to cisplatin plus cetuximab or placebo, an increase 
in the response rate of subjects receiving cetuximab was documented (23% 
vs. 9%), although no differences in progression-free or overall survival were 
noted 79. A phase 3 study of radiation therapy with or without cetuximab in 
patients with advanced SCCHN has recently completed accrual. Cetuximab 
has not yet been investigated as a therapy for breast cancer. 

Other EGFR-targeted MoAbs currently being studied include ABX-EGF 
(fully human), EMD 72000 (humanized), and h-R3. These function 
similarly to cetuximab, but are less well studied at this time 

3.2 Small-Molecule Inhibitors of EGFR TK Activity 

The basic mechanism of action of these agents is competitive inhibition of 
the binding of ATP to the tyrosine kinase (TK) domain of the receptor, 
resulting in inhibition of EGFR autophosphorylation. Two agents are in 
advanced stages of clinical development-OSI-774 (erlotinib; TarcevaB) 
and ZD1839 (gefitinib; IRESSAB). Other specific inhibitors of the EGF 
family, such as GW572016, CI-1033, EKB-569, and PKI-166, have been 
developed and have entered clinical development. 

3.2.1 Erlotinib 

Erlotinib is a low-molecular-weight quinazolin derivative that acts as a 
.potent and reversible inhibitor of EGFR TK activity. In preclinical studies, 
OSI-774 demonstrated strong anti-tumor activity against cancer cells that 

8 1 express EGFR , and a recent report indicates that submicromolar 
concentrations of OSI-774 can also specifically inhibit the activation of 
EGFRvIII in vitro ". 

Phase 1 studies main toxicities consisted of diarrhea and rash, and an anti- 
tumor effect was demonstrated in several different types of malignancies 83. 
Erlotinib has demonstrated clinical activity as a single agent in patients with 
NSCLC, SCCHN, and ovarian cancer 84-86. Some of the phase 2 studies 
showed a statistically significant association between the development of 
rash and the overall survival of patients much like with cetuximab ". In 
phase 3 trials, preliminary data in patients with NSCLC, comparing standard 
chemotherapy with or without erlotinib, did not show a response or survival 
advantage (unpublished data). The only tumor type where amplification of 
the EGFR gene (often the EGFR mutant protein EGFRvIII) has been 
consistently documented is glioblastoma multiforme (GBM) Considering 
that erlotinib has demonstrated activity against this mutant form of EGFR, 
GBM is an attractive disease for erlotinib clinical trials. 
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Clinical experience in breast cancer patients is limited. A phase 2 study 
in patients with anthracycline, taxane, and capecitabine-pretreated disease 
found limited activity as a single agent. A phase 2 trial of OSI-774 with 
trastuzumab continues accrual but has not yet been reported. 

3.2.2 Gefitinib 

Gefitinib is a low-molecular-weight (447-kd) quinazolin derivative that 
specifically and reversibly inhibits the activation of EGFR TK through 
competitive binding of the ATP-binding domain of the receptor. 

Phase 1 clinical trials of gefitinib showed a good toxicity profile, mostly 
consisting of skin toxicity and diarrhea, as expected 89-91. TWO phase 2 
studies (IDEAL 1 and 2) have evaluated the clinical activity of gefitinib in 
patients with NSCLC who had failed chemotherapy regimens for advanced 
disease. Response rates were only 18.7% and 10.6%, respectively 92993, but 
improvement in disease-related symptoms was significant in both trials. 
Based on these data, the FDA approved gefitinib as monotherapy treatment 
for patients with advanced NSCLC refractory to platinum-based and 
docetaxel chemotherapy. Two phase 3 randomized trials (INTACT 1 and 2) 
evaluating chemotherapy plus either gefitinib or placebo have shown that the 
addition of gefitinib to standard chemotherapy has failed to induce an 
improvement in response or survival in chemotherapy-naWe NSCLC 
patients 94295. Nevertheless, the clinical development of gefitinib in patients 
with NSCLC has continued, and trials evaluating sequential treatment with 
chemotherapy and gefitinib vs. chemotherapy alone are underway. 

Gefitinib has been reported to inhibit autophosphorylation of HER2 in 
breast cancer cells in which HER2 is preferentially activated by 
heterodimerization with EGFR 96,97. Recent preclinical studies have 
indicated that simultaneously blocking the TK activities of EGFR and HER2 
with the combination of gefitinib and trastuzumab was associated with 

65,97,98 additive or synergistic effects in vitro and in vivo models . 

GW572016 is a dual kinase inhibitor that reversibly inhibits the 
phosphorylation of both EGFR and HER2. It has potent anti-tumor growth 
inhibitory activity both in vitro and in vivo. This agent is currently 
undergoing clinical evaluation, and in early clinical trials has shown a 
typical TKI toxicity profile, with diarrhea and rash being the most relevant 
adverse events 99. Disease-directed studies in patients with breast cancer are 
underway loo. 
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The development of single-drug EGFR-targeted therapies in breast cancer 
is challenging. There are no molecular data or preliminary clinical studies to 
indicate a major pathogenic role or anti-tumor activity for this receptor in 
human breast cancer. Nevertheless, several studies provide the mechanistic 
basis to support a role for EGFR inhibition in combination with other 
targeted therapies, such as anti-estrogens, anti-HER2 or anti-PI3K inhibitors. 

4. TARGETING VEGF 

The vascular endothelial growth factor (VEGF) is a homodimeric 
heparin-binding glycoprotein, and its biologic effects are mediated by the 
binding of VEGF to 1 of 3 endothelial surface receptors VEGF-R1 (flt-1), 
VEGF-R2 (flk-lkdr), VEGF-R3; binding to the co-receptor neurophilin 
enhances signaling. It is involved in endothelial cell mitogenesis and 
migration, induction of proteinases leading to remodeling of the extracellular 
matrix, increased vascular permeability and vasodilation, immune 
modulation via inhibition of antigen-presenting dendritic cells, and 
maintenance of survival for newly formed blood vessels by inhibition of 
endothelial cell apoptosis. 

Tissue remodeling and angiogenesis are pivotal for the growth and 
metastatization of breast cancer. More recently, the key role of angiogenesis 
in breast cancer progression has been confirmed by laboratory and indirect 
clinical data lo', providing potential new therapeutic targets in this disease 
and other malignancies. Several potential inhibitors of angiogenesis are now 
in clinical trials: protease inhibitors that either directly or indirectly inhibit 
the action of proteases critical for invasion, growth factorlreceptor 
antagonists that thwart signaling of VEGF, endothelial toxins that 
specifically target endothelial antigens, and natural inhibitors that stimulate 
or mimic substances known to naturally inhibit angiogenesis. While the 
number of ongoing phase 1 and 2 trials has grown rapidly, few phase 3 trials 
have been completed in breast cancer patients. 

4.1, Anti-VEGF Monoclonal Antibodies 

An antibody directed against VEGF inhibited the growth of several 
human tumors in animal models 102,103 . Bevacizumab (rhuMAB-VEGF, 
AvastinB), a humanized recombinant version, is well tolerated and produced 
the expected decrease in free plasma VEGF levels in a multicenter phase 1 
trial '04. The most common side effects noted were mild hypertension and 
proteinuria, with no significant bleeding episodes. A phase 2 trial in patients 
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with pretreated metastatic breast cancer yielded an objective response or 
stable disease in 17% of patients at 22 weeks lo'. 

The addition of bevacizumab to standard first-line chemotherapy 
(irinotecan, 5-fluorouracil, and leucovorin) for metastatic colorectal cancer 
resulted in increased overall survival, progression-free survival, response 
rate, and duration of response compared with chemotherapy alone '06. This 
is the first antiangiogenic agent that has been shown to induce an increase in 
overall survival, which led to its recent approval by the FDA. 

Phase 3 trials now address the role of bevacizumab in metastatic breast 
cancer in combination with chemotherapy. A phase I11 trial evaluating the 
efficacy of capecitabine with or without bevacizumab in anthracycline- and 
taxane-refractory breast cancer patients found no improvement in median 
time to progression, but response rates were significantly increased (19.8% 
vs. 9.1%) in this heavily pretreated population '07. Another phase I11 trial, 
E2100, is randomizing patients with newly diagnosed metastatic breast 
cancer to either paclitaxel alone or the combination of paclitaxel and 
bevacizumab; accrual has recently been completed. 

CONCLUSION 

The era of molecular targeted therapies for cancer is an exciting one. This 
strategy is an opportunity to achieve significant degrees of disease control 
without the toxicities encountered with chemotherapy. Good examples of 
this successful approach include imatinib (GleevecB) for chronic myeloid 
leukemia and gastrointestinal stromal tumors, and anti-estrogen therapy and 
trastuzumab (Herceptin@) for hormone-dependent and HER21neu- 
overexpressing breast cancers, respectively. Nevertheless, the optimal use of 
targeted therapies still faces great challenge regarding the right selection of 
patients, the selection of pharmacodynamically relevant doses and schedules, 
and even what to expect in terms of a clinical response. In addition, it is 
possible that different targeted therapies will need to be combined in order to 
attain the best clinical response in a given tumor. A better characterization 
of molecular details and kinase interactions is necessary to define signatures 
that correlate with clinical activity. If coupled with novel biochemical and 
imaging techniques, these advances should provide grounds for "smarter" 
clinical trials and rapid progress in therapeutics. 
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1. INTRODUCTION 

Interleukin-2, an immune-modulating glycoprotein discovered in 1976, is 
produced by T lymphocytes after stimulation with various antigens. It has a 
wide range of immunologic effects including the activation of cytotoxic T 
lymphocytes, natural killer cells and lymphokine-activated killer (LAIC) 
cells. The therapeutic use of IL-2 has generated substantial interest in the 
oncology community based on its ability to induce the regression of 
metastatic tumors in humans. Clear cell renal cell carcinomas and malignant 
melanomas are the most sensitive cancers. However, the response rates are 
modest even for these tumor types, with overall response rates in the range 
of 15-20%. Despite this fact, high-dose IV bolus IL-2 remains a valuable 
regimen to combat RCC and melanoma because it produces durable 
complete remissions in a small percentage of patients with metastatic 
disease. No other therapy can claim such a benefit. Unfortunately, there is no 
reliable way to predict which patients are likely to respond. This becomes 
particularly troubling given that high-dose IV bolus therapy, the most 
effective way to administer IL-2, has substantial toxicity. In this chapter, we 
review the pertinent preclinical and clinical data that led to the FDA 
approval of IL-2 for the treatment of metastatic renal cell carcinoma and 
metastatic melanoma. The potential mechanisms of action of IL-2 are 
discussed, as are the toxicities associated with therapy. Special topics of 



264 CYTOIUNES AND CANCER 

focus include predictors of response, the effect of previous immune therapy, 
the comparisons between different IL-2 regimens, and the potential future 
applications of IL-2, including combination therapy with vaccines, tumor 
infiltrating lymphocytes, histamine, various other cytokines, and 
antiangiogenic agents. 

2. BACKGROUND 

Renal cell carcinoma (RCC) and malignant melanoma portend an 
extremely poor prognosis for patients with metastatic disease. Melanoma 
patients with metastatic disease have a median survival of less than one year 
and a 5-year overall survival rate less than 5%. The numbers are only 
slightly more favorable for metastatic RCC, which has a 12 to 24 month 
median survival and an 11% 5-year overall survival rate.' There are few 
therapeutic options available to treat these malignancies once they reach an 
advanced stage. Chemotherapy has very modest efficacy in patients with 
melanoma. Dacarbazine @TIC) has a 15-20% response rate but the 
responses are not durable. Combination regimens such as CVD (cisplatin, 
vinblastine and dacarbazine) or the Dartmouth regimen (dacarbazine, 
cisplatin, carrnustine and tamoxifen) produce slightly higher response rates 
than single agent DTIC, but have not been shown to improve ~urvival.~' 
The efficacy of chemotherapy for renal cell carcinoma is even more dismal 
with an overall 6% response rate.4 

Renal cell carcinomas and malignant melanomas are unique tumors in 
that both are associated with rare cases of spontaneous tumor regression. 
This spontaneous tumor regression is believed to have an immunologic 
basis, and therefore it is hypothesized that these tumors may be uniquely 
susceptible to immune-based therapies such as interleukin 2. 

IL-2 is a glycoprotein made up of 153 amino acids and has a molecular 
weight of 15-kD. Antigen-activated T lymphocytes, which include CD4+ 
and CD8+ cells, produce IL-2, which in turn acts in a paracrine manner on 
T-cells and other immune-effector cells. Upon exposure to foreign antigen, 
T-cell receptors signal the expression of IL-2 receptors, which are usually 
not expressed in the absence of antigen. The IL-2 receptor consists of 3 
distinct subunits: the alpha, beta, and gamma chains. Resting T-cells 
constitutively express low levels of the gamma chain, but not the alpha or 
beta chain. All three chains are upregulated after exposure to antigen. In 
contrast, natural killer (NK) cells constitutively express the beta chain, with 
the alpha and gamma chains being induced by exposure to IL-2 or IL-12.~ 
The IL-2 receptor beta and gamma chains are required for signal 
transduction, whereas the alpha chain is not needed for signaling, but is 
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important for the formation of the high-affinity receptor. The binding of IL- 
2 to its receptor leads to downstream activation of tyrosine kinases and 
phosphorylation of numerous cellular proteins. This in turn leads to a 
complex cascade of events resulting in various changes to the immune 
system. The JAKISTAT signaling pathways and Src family of kinases are 
intimately involved in these processes.6 In preclinical and clinical trials, IL-2 
has been shown to induce the expansion of immune effector cells, and 
increase their cytolytic activity against tumors, especially melanomas and 
clear cell renal carcinomas. a 

High-dose IL-2 was approved by the U.S. Food and Drug Administration 
for the treatment of metastatic renal cell carcinoma in 1992, and received 
FDA approval for the treatment of metastatic melanoma in January 1998, 
based on its ability to produce durable responses in a small percentage of 
patients. 

3. PRECLINICAL STUDIES OF IL-2 

Early on there was skepticism regarding the existence of an immune 
response to cancer in humans. One review7 concluded "It would be as 
difficult to reject the right ear and leave the left ear intact as it is to 
immunize against cancer." Studies in the 1960s and 1970s conclusively 
demonstrated the existence of immune reactions against transplanted murine 
tumors.' Even then; there was considerable debate over the ability of 
spontaneous human tumors to provoke an immune response. Immune-based 
therapies using vaccines for the treatment of cancer have been in clinical 
trials for many years. Unfortunately, vaccines have failed to make a 
reproducible impact against malignant tumors. The discovery and production 
of IL-2 provided a novel approach to bolster the immune system against 
malignant disease. Morgan et a19 first identified IL-2 as an ex vivo T 
lymphocyte growth factor. In preclinical studies, the systemic 
administration of IL-2 has been shown to produce a range of immunologic 
effects. The administration of IL-2 to nude mice induced specific T-helper 
cells, cytotoxic cells and autoantibody production.10~12 Clason and colleagues 
demonstrated that IL-2 could restore at least some of the immune function in 
irradiated rats and Merluzzi and colleagues demonstrated that IL-2 could 
restore a cytotoxic T-cell response in mice treated with cyclophosphamide.13~ 
14 

Once the gene encoding IL-2 was identified in the early 1980s, it was 
not long before a recombinant form of the cytokine could be generated in 
large quantities, a factor that significantly impacted IL-2-based research.15 
In a pivotal study, Rosenberg and colleagues demonstrated that murine and 
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human lymphocytes incubated for 3 to 4 days with IL-2 generated a 
population of lymphocytes with antitumor rea~tivity. '~"~ These cytotoxic 
cells, termed lymphokine-activated killer (LAK) cells, demonstrated the 
ability to lyse fresh, noncultured, natural-killer-cell-resistant tumor cells, but 
not normal  cell^.'^"^ LAK cells represent a cytolytic system distinct from 
natural killer cells and conventional cytolytic T cells. They belong to a 
subpopulation of "null" lymphocytes that bear neither B-cell or T-cell 
surface markem2' In humans, these cells are widely distributed and can be 
found in the peripheral blood, bone marrow, and lymph nodes. In mice, the 
majority of these cells are characterized by a ~ h ~ l ' ,  CD3-, CD8-, CD4-, 
a s i a l o ~ ~ ~ +  phenotype.21, 22 

Expanding on the discovery of lymphokine-activated killer cells, 
Rosenberg et a123 demonstrated that high-dose recombinant IL-2, in 
combination with the adoptive transfer of LAK cells, could shrink 
pulmonary and hepatic metastases from a variety of established tumors in 
the murine model. Responses were seen against B16 and M3 melanomas, 
syngeneic sarcomas, the 1660 murine bladder carcinoma and the MC-38 
murine colon ader~ocarcinoma.~~-~~ Tumor regression was associated with the 
prolonged survival of experimental mice. Responses correlated with both 
increasing doses of cells and of IL-2 (maximizing at lo5 units every 8 
hours). In most cases, both LAK cells and IL-2 were necessary to reduce 
tumors. Further studies indicated that LAK cells proliferate in vivo when 
combined with IL-2 and that these expanded LAK cells retain their 
antitumor acti~ity.'~ 

4. CLINICAL TRIALS 

Given the beneficial effects of IL-2 with LAK cells in mice, it was not 
long before the combination was tested in humans. In a landmark 
publication in December 1985, Rosenberg et reported the outcomes of 
25 cancer patients treated with the combination of autologous LAK cells and 
high-dose interleukin 2. After an initial treatment course with IL-2, patients 
underwent leukapheresis during which large numbers of lymphocytes were 
obtained to be cultured with IL-2 to generate LAK cells. These LAK cells 
were then re-infused during a second treatment course of IL-2. Eleven of the 
25 patients had objective tumor responses (reduction of more than 50% of 
pretreatment volume) to this regimen, including one patient with complete 
regression of multiple subcutaneous melanoma metastases. Responses 
occurred in patients with metastatic colorectal carcinoma, renal cell 
carcinoma, lung adenocarcinoma, and melanoma. 
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Subsequent clinical trials at the NCI~' confirmed the activity of IL-2 in 
combination with LAK cells against both melanoma and renal cell 
carcinoma, with 6 of 26 melanoma and 12 or 36 renal cell carcinoma 
patients demonstrating objective responses, including 2 and 4 complete 
responses, respectively. Later trials were performed at the National Cancer 
Institute (NCI) and the IL-2 working Group using a plethora of different 
regimens. Protocols using high-dose IV bolus IL-2 were shown to have the 
most consistent evidence of objective responses. These regimens have 
induced objective regressions in 11-21% of patients with advanced 
melanoma, with a 4-8.3% complete response rate. In renal cell carcinoma, 
response rates range from 13-35%, with 3-1 1% complete remissions. 
Approximately 75% of responses to the IL-2 plus LAK combination have 
proven d~rable.~'"~ 

Although the initial trials suggesting a benefit from IL-2 explored its use 
in combination with LAK cells, a few trials at the NCI suggested that IL-2 
alone (without LAK cells) might have activity against cancers in 
experimental and clinical settings.31 Randomized trials33' 34 were therefore 
performed both by the NCI and Modified Group C to evaluate whether the 
addition of adoptively transferred autologous LAK cells to high-dose IV 
bolus IL-2 affected therapeutic responses or altered toxicity. The results of 
these randomized trials showed that the addition of LAK cells did not 
significantly enhance the activity of high-dose IL-2 alone. Responses to 
single agent IL-2 were observed in the primary tumor, liver, spleen, lymph 
nodes, skin, as well as other sites. The majority of the complete responses in 
these trials appear to be durable. Toxicity was similar in patients treated 
with or without LAK cells, and was manageable in intensive care unit-like 
settings. Toxicity was usually reversible over a 2-3 day interval following 
discontinuation of IL-2. Treatment related mortality rates were low (24%). 

Multiple studies have confirmed the activity of IL-2 in the treatment of 
metastatic melanoma and renal cell carcinoma. Although the overall 
response rates are modest, the durability of complete responses is 
encouraging. 

Rosenberg et a f5  reported the outcomes of 227 renal cell carcinoma and 
182 melanoma patients treated with high-dose IV bolus IL-2 (720,000 IU 
every 8 hours) at the National Cancer Institute. Overall there were 68% men 
and 32% women in the study. The age range was 11-70 years old, including 
41 patients (10%) in the 61-70 year old age group. Forty-three (19%) of the 
227 patients with renal cell carcinoma had a response to therapy, including 
21 (9.3%) complete responders and 22 (9.7%) partial responders. Seventeen 
of the 22 complete responders had an ongoing complete response ranging 
from 46-147 months. The durability of the partial responses ranged from 4- 
52 months. Of the 182 patients with malignant melanoma, 27 (14.8%) had a 
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response, including 12 (6.6%) with a complete response and 15 (8.2%) with 
a partial response. Again, the complete responses were durable with 10 of 
the 12 patients having ongoing complete responses of 83-161 months. The 
partial responses lasted between 2 and 35 months. 

In 2000, Fisher and colleagues36 reported the updated results of 255 
patients with metastatic renal cell carcinoma treated with high-dose IL-2. 
The recombinant IL-2 was administered at a dose of 600,000- 720,000 IUkg 
over 15 minutes every 8 hours for up to 14 doses over 5 days. A second 
identical cycle was administered after 5-9 days of rest. There were 37 
overall responses (1 5%) including 17 complete responses (7%). The median 
duration of the partial responses was 20 months and the median duration of 
the complete responses had not yet been reached, but was at least 80 months. 
The median survival time for all patients in the study was 16.3 months, 
which is consistent with the median survival time of patients with renal cell 
carcinoma. However, 10-20% of patients achieved a long-term survival 
benefit (mostly patients with a complete response, but a few with partial 
responses). 

Atkins et a13' reported the results of 270 melanoma patients treated with 
high-dose IL-2 in clinical trials conducted between 1985 and 1993. Overall, 
there were 16% responses with 6% of patients achieving a complete 
response. Ten of 17 complete responders (59%) and 2 of 26 partial 
responders (8%) had ongoing responses at >42 to >I22 months. After over 
5 years of follow up, 28 patients (10%) were confirmed to be alive including 
12 patients who remained disease- or progression-free. 

The clinical efficacy of high-dose 11-2 regimens has not been improved 
by the addition of any other cytokine, including IFN alpha, IL-4 or IFN 
gamma. Although initial trials using biochernotherapy appeared promising 
for melanoma based on relatively high overall response rates, subsequent 
studies have failed to demonstrate a survival advantage for this approach. 
Biochemotherapy involves the use of combination chemotherapy plus 
interleukin-2 and interferon-alpha. In general, biochernotherapy for 
metastatic melanoma produces more responses then combination 
chemotherapy or biologic therapy alone at the expense of considerable 
toxicity. A phase I11 comparing CVD with CVD plus IL-2 and 
interferon alfa-2b demonstrated a 48% response rate for biochernotherapy 
compared to a 25% response rate for CVD. The median survival was 11.9 
months for biochernotherapy vs. 9.2 months for CVD. However, 
biochernotherapy produced significantly more constitutional, hemodynamic 
and myelosuppressive effects. In addition, the complete response rate to 
biochernotherapy in this trial was only 7%, which is not significantly 
different from what would be expected from single-agent high-dose IL-2. A 
prospective randomized trial by Rosenberg et a f9  failed to show any benefit 
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of biochemotherapy over chemotherapy alone. In fact, there was a trend 
towards improved survival in the chemotherapy alone group. 

LONG TERM OUTCOMES OF RESPONDERS 

Rosenberg and colleagues began treating patients with high-dose TV 
bolus IL-2 at the NCI before 1985. In 1998~' they reported the long-term 
follow up of 409 patients with metastatic melanoma or renal cell carcinoma 
treated with this regimen. The median follow up at that time was 7.1 years 
and the longest complete responder had been followed for 12.4 years. 
Twenty-five of 33 patients with complete responses were followed for more 
than 4 years, and 15 were followed more than 7 years. There were no 
relapses in any patient with an ongoing complete response of more than 35 
months. This suggests that high-dose IL-2 can lead to potentially curative 
complete responses in patients with metastatic melanoma or renal cell 
carcinoma. Patients with partial responses did not fare as well as complete 
responders. Fourteen of 37 partial responders had their response last for 
more than 1 year, and 5 patients had responses last for more than 2 years. 
Unfortunately, all partial responders ultimately developed recurrent disease. 

For patients who respond and then relapse, the initial sites of relapse after 
a partial response involve new sites, old sites, or both new and old sites with 
a relatively equal distribution. This is in contrast to patients who relapse 
after a complete response. Relapses after a complete response occur at new 
sites in 70% of cases. Repeat treatment with IL-2-based therapies is rarely 
effective for patients who relapse, but salvage metastasectomy can result in 
durable progression-free survival in selected patients. One study established 
that surgical metastasectomy with therapeutic intent in 25 selected 
melanoma patients and in 31 selected RCC patients resulted in a 2-year 
progression-free survival of 18% and 37% for melanoma and RCC, 
respectively.40 In nearly all of these cases, the extent of disease prior to IL-2- 
based treatment would have precluded surgical resection. 

PROPOSED MECHANISMS OF ACTION 

Tumors cause immunodeficiency. Profound T-cell apoptosis and T-cell 
dysfunction occur in the setting of progressive neoplasms.41 It has been 
suggested that tumor cells express markers that suppress tumor-infiltrating 
lymphocytes. In this regard tumors cells resemble immune-privileged tissue. 
Supporting this hypothesis is a study by Rayrnan et a16 demonstrating that 
soluble products from renal tumors can inhibit the production of IL-2 and 
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interferon-gamma by peripheral blood lymphocytes, and can suppress T-cell 
proliferation. In theory, if this immune dysfunction could be reversed, then 
tumors would be controlled or even eradicated. Clinical trials using high- 
dose IL-2 provide evidence to support the theory that enhanced immune 
responses can lead to tumor abolition. 

IL-2 has no direct activity against tumors. Cancer cells grow unchecked 
in vitro despite high concentrations of IL-2. All of the antitumor effects of 
IL-2 stem from its ability to modulate the immune system.35 The exact 
mechanism by which IL-2 triggers the immune system to fight tumors are 
unknown. It has been proposed that the antitumor effects of IL-2 derive 
from two separate me~hanisrns.4~ The first of these involves the production 
of lymphokine-activated killer cells from precursor resting lymphocytes. 
These LAK cells can lyse fresh tumor but not normal cells in a fashion not 
restricted by the major histocompatibility complex (MHC). The second 
mechanism involves the activation and expansion of T-cells with T-cell 
receptors capable of recognizing putative tumor antigens on the surface of 
malignant melanoma or renal cell carcinoma ~el l s .4~  IL-2 acts in an autocrine 
or paracrine fashion on T-cells. It enhances T-cell proliferation and T-cell 
mediated cytolysis of tumor targets. It also maintains the survival of 
activated ~ - c e l l s . ~ ~  When these T-cells come in contact with tumor antigens; 
the result is the death of the target cell. Alternatively, these T-cells can 
secrete cytokines when interacting with specific target tumor cells and 
thereby indirectly enhance the immune-based elimination of tumor. The 
biochemical basis for the increased cytolytic function is unclear, but it is 
thought to be due in part to the upregulation of genes encoding the lytic 
components of cytotoxic granules such as perforin and granzymes. IL-2 is 
also thought to increase the expression of genes encoding adhesion 
molecules that facilitate the binding of immune effector cells to tumors and 
tumor endothelium. The major role of IL-2 may be to rescue antigen- 
activated T-cells from tumor-associated elimination via Fas pathways by 
increasing Bcl-2 or Bcl-xL expression in T-cells, making them less 
susceptible to apoptosis.45-49 In addition, IL-2 has been shown to play a 
critical role as a growth signal to activated T-cells that regulates their 
transition from G1 to the S phase of the cell cycle.6 

Besides its effects on T-cells and LAK cells, IL-2 activates other cells in 
the immune system such as natural killer (NK) cells, macrophages and B 
lymphocyes.50 It induces the cytotoxic activity of NK cells and stimulates 
alpha-interferon production by m a c r ~ ~ h a ~ e s . ' ~ ~  51 In addition, it stimulates 
the endogenous production of various other inflammatory cytokines such as 
tumor necrosis factor (TNF), interleukin-1 (IL-1), IL-6 and interferon- 
gamma.52 
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Despite all of the current knowledge regarding the immune effects of IL- 
2, much remains to be learned. By developing a better understanding of the 
mechanism of action of IL-2, scientists, and clinicians may be able to 
develop more successful strategies for combating tumors in the future. 

7. LABORATORY PARAMETERSIPREDICTORS OF 
RESPONSE 

IL-2 therapy causes an initial lymphopenia followed by a rebound 
lymphocytosis with peak lymphocyte counts occurring 2-5 days after the 
cessation of high-dose IV bolus I L - ~ . ' ~  The degree of rebound 
lymphocytosis has been correlated with clinical response, with responders 
having a higher maximum lymphocyte count immediately after therapy 
compared to non-responders. In a study of subcutaneous IL-2 in patients 
with renal cell carcinoma, there was a statistically significant 11% decrease 
in death for each 1000 lymphocytes per mm3 on maximum count 
registered.54 

Attempts to further identify immunophenotypic parameters that predict 
response to IL-2 have yielded inconsistent results. In a study involving 25 
patients with renal cell carcinoma receiving continuous infusion IL-2, Favrot 
et als5 concluded that there were no significant differences in the 
immunophenotypes of peripheral blood mononuclear cells (PBMCs) 
between responders and non-responders. In contrast, Herrnann et a156 
demonstrated that low blood monocyte counts and low levels of CD25(+) 
cells during continuous infusion IL-2 therapy predicted clinical response. 
Eisenthal, et a15' found a correlation between clinical response and increased 
CD8(+) cells in patients receiving combined irnmunotherapy (IL-2 + 
interferon alpha). Atzpodien et alS8 found a statistically significant increase 
in natural killer cells in responders compared to non-responders. However, 
this study used interferon alpha in combination with subcutaneous IL-2 
rather than using single agent high-dose IV bolus IL-2. To the best of our 
knowledge, there have been no studies documenting the PBMC 
immunophenotypic modifications associated with single agent high-dose IV 
bolus IL-2 therapy. 

8. TOXICITY 

The toxicities of high-dose IV bolus IL-2 are thought to result 
predominantly from a capillary leak syndrome as well as from lymphoid 



272 CYTOKINES AND CANCER 

infiltration, which has been documented histologically in several organs.59 
Although there is a wide variation in toxicities experienced by patients, the 
common reactions include: fevers, chills, rigors, nausea, vomiting, diarrhea, 
dyspnea, mental status changes, hypotension, tachycardia, weight gain, 
edema, pulmonary congestion, rash and oliguria. The laboratory findings 
include increased creatinine, anemia, thrombocytopenia, eosinophilia and 
abnormal liver function tests. Thyroid function test abnormalities are seen in 
up to one third of patients and may persist after therapy is stopped. The 
majority of the side effects readily resolve upon termination of IL-2, and the 
majority of patients can be discharged from the hospital 2 to 3 days after the 
last dose is given. The most dangerous of the IL-2 side effects are related to 
the capillary leak syndrome (also known as the vascular leak syndrome). 
This syndrome is characterized by marked edema and hypotension 
associated with high cardiac output and low vascular resistance. The 
hemodynamic changes are not unlike those seen in septic shock. Pressors are 
often required to control this situation because the simultaneous occurrence 
of hypotension and vascular leak syndrome makes it difficult to manage 
blood pressure with intravenous fluids alone. Multiorgan system failure may 
also result with excessive IL-2 dosing. Treatment-related mortality rates up 
to 5% have been documented for some IL-2 based regimem6' The number 
of doses, duration of therapy and dosing interval are important predictors of 
toxicity. 

Kammula et a16' reviewed the safety of administration of high-dose IV 
bolus IL-2 over a 12-year period (1985-1997) at the NCI Surgery Branch. 
The data included patients treated with high-dose IL-2 alone or in 
combination with other therapies. Significant decreases in grade 3-4 
toxicities occurred over the years as experience was gained with the use of 
IL-2. For example, patients treated between January 1985 and August 1986 
had an 81% incidence of grade 314 hypotension, an 18% incidence of grade 
314 line sepsis, a 19% incidence of grade 4 neuropsychiatric conditions and a 
12% incidence of intubation. In contrast, the numbers for patients treated 
between December 1993 and January 1997 were 31%, 4%, 8% and 3% for 
hypotension, sepsis, neuropsychiatric conditions and intubation, 
respectively. In addition, treatrnent-related mortality significantly decreased 
as well. During the first 4 years of the high-dose regimen, the treatment- 
related mortality ranged from 1-3%. In contrast, there were no treatment 
related deaths in over 800 patients treated between May 1989 and January 
1997.~ 

Various efforts have been made to try to reduce the toxicity of high-dose 
IL-2. Acetaminophen or NSAIDs are used to treat the fevers and rigors. 
Antiemetics and antidiarrheal agents are used on an as needed basis to treat 
gastrointestinal symptoms. Antihistamines may be employed to reduce 
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pmritis. Of note, corticosteroids should be avoided as their 
immunosuppressive effects may abrogate the beneficial outcomes of IL-2. 
Some institutions advocate prophylactic antibiotics to prevent catheter- 
related line sepsis. The more serious reactions such as hypotension and 
capillary leak syndrome require the judicious use of N fluids and pressor 
agents. Unfortunately, these reactions still contribute significantly to the 
toxicity of high-dose IL-2 regimens and new approaches are being sought to 
ameliorate these effects. The hypotension associated with IL-2 may be 
related to the overproduction of the endogenous vasodilator nitric oxide. 
Based on preclinical models, nitric oxide is not thought to alter the beneficial 
immune effects of ~ - 2 . ~ '  Therefore, Kilbourn et a163 investigated the use of 
NMA (N~-monomethyl-L-arginine), a competitive inhibitor of nitric oxide 
production, on the hypotensive effects of high-dose continuous infusion IL- 
2. They concluded that NMA may be effective for alleviating the 
hypotensive effects of high-dose IL-2, but further study is needed to verify 
their findings and to investigate the effects NMA has on treatment outcomes. 

Due to fears of significant toxicity, interleukin-2 has largely been 
avoided in patients with brain metastases. There is concern that IL-2- 
related capillary leak syndrome might lead to brain edema and increased 
intracranial pressure. The thrombocytopenia associated with IL-2 may 
predispose to hemorrhage. In addition, high-dose IV bolus IL-2 produces 
mental status changes including rare cases of coma. Unfortunately, brain 
metastases are a common occurrence in patients with melanoma, occurring 
in 8-46% of patients.64 Renal cell carcinoma patients have a 10-13% 
incidence of brain metastases. To investigate the safety and efficacy of 
high-dose intravenous IL-2 in patients with brain metastases, Guirguis et a165 
performed a retrospective review of 1069 patients with metastatic melanoma 
or renal cell carcinoma treated with high-dose IL-2 between 1985 and 2000. 
There were 27 patients with previously treated brain metastases (surgery or 
radiation) and 37 patients with untreated brain metastases in the study. 
Patients with a limited number of brain metastases that were small, had little 
or no edema, or were effectively treated with surgery or radiation were 
included in the study. Thus, it was a carefully selected group of patients. 
The results indicated that there was no difference in toxicity between 
patients with and without brain metastases. The overall response rate (ORR) 
for patients with previously treated brain metastases was 18.5% compared to 
a 5.6% and 19.8% ORR in patients with untreated brain metastases and 
without brain metastases, respectively. Two of 36 patients with previously 
untreated brain metastases demonstrated an objective regression of 
intracranial and extracranial disease with high-dose IL-2. Contrary to 
previous beliefs, this suggests that the brain may not be an imrnune- 
privileged site with regards to cancer immunotherapy. The conclusions 
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drawn fiom this study are that highly selected patients with brain metastases 
fiom malignant melanoma or renal cell carcinoma may be candidates for 
high-dose IL-2 treatment. 

Although increased experience with high-dose IL-2 therapy has led to a 
reduction in treatment-related mortality over time, it still remains a 
potentially hazardous approach to treating patients with metastatic cancer. 
Therefore, the application of high-dose IV bolus IL-2 therapy should be 
limited to patients with good performance status (Eastern Cooperative 
Oncology Group scale, 0 or 1) and adequate organ function. In addition, it is 
best administered at centers with extensive familiarity with this regimen. 

9. COMPARISONS OF DIFFERENT IL-2 
REGIMENS 

The IL-2 regimen with the best proven efficacy is high dose IV bolus IL- 
2 given at a dose of 600,000-720,000 IUkg over 15 minutes every 8 hours 
for a maximum 15 doses per cycle. Patients typically receive 8 to 12 doses 
in their first cycle of therapy and progressively less in subsequent treatments. 
The every 8 hour dosing schedule was devised based on the observation that 
a 3 times per day regimen was more effective than the same amount of IL-2 
administered as a single dose in the murine In addition, 
pharrnacokinetic studies in humans demonstrated that serum levels of IL-2 
disappeared by 8 hours after an IV bolus injection.67 

Unfortunately, the high-dose IV bolus administration of IL-2 causes 
significant toxicity, limiting its use to select patients with good performance 
status and no underlying organ dysfunction. In an effort to circumvent these 
toxicity-related limitations, numerous lower dose regimens have been 
investigated. Common regimens include low-dose IV bolus IL-2 72,000 
IUkg every 8 hours in the inpatient setting, and subcutaneous IL-2 125,000- 
250,000 IUkgId for outpatients. In general, the lower dosing schedules are 
very well tolerated. The side effects tend to be limited to constitutional (flu- 
like) symptoms. 

In 1997, Yang and colleagues published a preliminary comparison of 
different IL-2 regimens for the treatment of metastatic renal cell 
car~ inoma.~~ The trial began as a two arm randomized trial comparing high- 
dose intravenous IL-2 (720,000IUkg) to low-dose (72,000IUkg) 
intravenous IL-2. The high-dose IL-2 was found to have a higher overall 
response rate (19% versus 10%) and a higher complete response rate (8% vs. 
4%). The responses in the high-dose arm tended to be more durable. 
Hypotension, thrombocytopenia, malaise, pulmonary toxicity, and 
neurotoxicity were significantly more common in the high-dose arm 



Interleukin-2 in the Treatment of Renal Cell Carcinoma 275 

compared to the low-dose. Later, a third arm of outpatient subcutaneous IL- 
2 was added (week 1: 250,000 IUkgIday for 5 of 7 days; weeks 2-6: 
125,000 IU/kg/day for 5 of 7 days). The subcutaneous IL-2 produced an 
overall response rate of 11% with 5.7% complete responses, compared to 
16% (7.1%CR) and 4% (O%CR) for the high-dose intravenous and low-dose 
intravenous arms, respectively. The subcutaneous arm had a level of 
toxicity similar to the low-dose intravenous therapy. Yang et a16' reported 
the updated findings from this study in 2003, after the accrual of 400 
patients. They found a higher response rate with high-dose intravenous 
therapy (21%) versus low-dose intravenous therapy (13%) and subcutaneous 
therapy (lo%), but there was no difference in overall survival. Response 
durability and survival in completely responding patients was superior in the 
high-dose arm of the trial. This trial and other trials demonstrate that low- 
dose IL-2 regimens have activity against renal cell carcinoma, albeit modest. 
Overall, the lack of durable responses make low-dose regimens 
disadvantageous compared to high dose regimens. Nevertheless, given their 
toxicity profile, the low-dose schedules are preferred for patients with 
suboptimal performance status. 

Unlike the experience in patients with metastatic renal cell carcinoma, 
low- dose IL-2 regimens have little proven efficacy in patients with 
metastatic melan~ma.~' Although some studies demonstrated responses, the 
responses were uncommon and lacked durability. For example, in one study 
only 6% of responders survived more than 3 years.71 Other studies failed to 
show any responses. Therefore, IL-2 used for the treatment of metastatic 
melanoma should be administered as a high-dose regimen.72 

10. EFFECTS OF PREVIOUS IMMUNE THERAPY 

Biochemotherapy using low-dose IL-2 plus alpha-interferon in 
combination with chemotherapy is commonly employed to treat patients 
with metastatic melanoma despite conflicting results regarding its efficacy.73- 
75 In addition, alpha-interferon is frequently used as adjuvant therapy for 
stage 111 melanomas. Weinreich and ~ o s e n b e r ~ ~ ~  questioned if prior 
exposure to immunotherapy with low-dose IL-2 andlor alpha-interferon 
would affect the outcomes of patients with high-dose intravenous bolus IL-2. 
They found that 7 (15%) of 46 patients who had received prior low-dose IL- 
2 responded to high-dose IL-2. All were partial responses. In contrast, the 
results for patients who had never been previously exposed to IL-2 were 6% 
complete responders and 15% partial responders, for an overall 21% 
response rate. The difference did not reach statistical significance (p=0.39 
for overall response). Of 78 patients who had previously been treated with 



276 CYTOKINES AND CANCER 

alpha-interferon, 2 (3%) had a complete response to high-dose IL-2 and 8 
(10%) had a partial response. This compared unfavorably to the 6% 
complete response rate and 15% partial response rate seen in patients not 
previously exposed to alpha-interferon (p value 0.084 for overall response). 
Weinreich and Rosenberg concluded that prior low-dose IL-2 does not alter 
response rates to subsequent high-dose therapy, but noted that there was a 
slight trend for patients who received alpha-interferon before to have 
decreased response rates to high-dose IL-2. 

Other than prior treatment with immunotherapy, there are no other 
pretreatment factors that reliably predict which patients are likely to achieve 
a complete response when treated with high-dose IV bolus ~ - 2 . ~ ~  

Repeat treatment with IL-2 for progressive disease after an initial 
response has had disappointing results. Lee and colleagues40 demonstrated 
that re-treatment of relapses with the same IL-2-based regimen that was 
originally used was effective in only one (2%) of 54 selected patients. They 
did find that re-treatment with a different IL-2-based regimen (most often 
IL-2 plus TILs) resulted in a 14% response rate. The conclusion from their 
study was that patients who fail IL-2-based regimens should not be retreated 
with IL-2 alone since the frequency of re-response is very low. 

Although not truly an immunotherapy from a conventional standpoint, 
nephrectomy prior to high-dose IL-2 treatment in patients with metastatic 
renal cell carcinoma improves outcomes. It is believed that RCC tumors 
produce immunosuppressive factors such as gangliosides and transforming 
growth factor beta.6,76 These immunosuppressive factors may decrease the 
efficacy of immune-based therapies. Belldegrun et a177 demonstrated that 
the 1 and 2-year survival rates for patients undergoing IL-2 based 
immunotherapy with their primary tumor in place were 29% and 4% 
respectively (n=36). For metastatic renal cell carcinoma patients undergoing 
nephrectomy prior to IL-2, the 1 and 2-year survival rates were 67% and 
44%, respectively (n=235). These findings are provocative and suggest that 
surgical removal of the primary tumor prior to imrnunotherapy significantly 
improves survival in patients with metastatic renal cell carcinoma. 

11. FUTURE DIRECTIONS 

There have been many different approaches to the administration of IL-2 
to patients with metastatic cancer, including the use of IL-2 in conjunction 
with lymphokine activated killer cells or tumor infiltrating lymphocytes 
(TIL). IL-2 has also been combined with other cytokines such as alpha- 
interferon, IL-4 and tumor necrosis factor. Unfortunately, none of these 
combinations of IL-2 with other agents has been conclusively shown to be 
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more effective than treatment with IL-2 alone.35 Even biochemotherapy for 
melanoma, which initially looked promising based on high overall response 
rates, has failed to make a significant impact on survival compared to IL-2 
alone. Given the modest overall response rates and significant toxicity of 
single-agent high-dose IL-2 therapy, investigators continue to search for 
ways to enhance its efficacy by combining IL-2 with other therapeutic 
modalities. 

12. VACCINE THERAPY INCLUDING DENDRITIC 
CELL VACCINES 

The most promising application of IL-2 is perhaps as an adjuvant to 
vaccines or dendritic cell-based therapies. Dendritic cell vaccination is an 
area of great interest. Studies have shown that the administration of 
melanoma peptide-pulsed dendritic cells to patients with metastatic 
melanoma produced clinical responses in a small percentage of patients.78 
Steinman and others demonstrated that mature dendritic cells play a critical 
role for the induction of primary T-cell-dependent immune r e ~ ~ o n s e s . ~ ~ - ~ '  
One major problem with the current application of adoptive irnmunotherapy 
is the source of the T-cells. Utilizing T-cells expanded from tumor sites 
where they are undoubtedly ineffective has its shortcomings. The 
development of novel T-cell reactivity is a principal goal of dendritic cell 
vaccine- based therapies. Dendritic cells have been shown to maintain the 
viability of IL-2 activated T-cells, perhaps by inhibiting apoptosis.78782 When 
dendritic cells are pulsed with tumor cell lysates they can sensitize immune 
effector cells and bring about tumor lysis. Fields et alg3 demonstrated that 
the antitumor effects eIicited by lysate-pulsed dendritic cell-based vaccines 
are mediated by tumor-specific proliferative, cytotoxic, and cytokine- 
secreting host-derived T-cells. Because of the critical role of T-cells in the 
antitumor response, investigators questioned whether the addition of 
systemic IL-2 could augment the efficacy of dendritic cell-based vaccines. 
Using a murine model, Shimizu and colleagues84 demonstrated that the 
combination of systemic IL-2 with tumor lysate-pulsed dendritic cells 
significantly enhanced the antitumor response against pulmonary metastases 
from the MCA-207 sarcoma cell line and the B16 melanoma cell line. In a 
clinical study, Stif? et a17' evaluated the effects of mature dendritic cell 
immunotherapy in combination with low-dose IL-2 for 20 patients with 
advanced malignancy (pancreatic, hepatocellular, cholangiocellular and 
medullary thyroid carcinoma). The treatment induced a delayed-type 
hypersensitivity response in 18 patients and tumor marker responses were 
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observed in 8 patients. Further studies of IL-2 in conjunction with dendritic 
cell vaccine-based therapies are ongoing. 

IL-2 has also shown promise in combination with more traditional 
peptide-based vaccine therapies for melanoma. In a study by Rosenberg and 
colleagues,85 13 (42%) of 31 patients immunized with the peptide vaccine 
gp100:209-217 in incomplete Freund's adjuvant and then treated with high- 
dose IL-2 had an objective tumor response. There were no objective 
responses seen with the peptide vaccine alone or in patients who received 
GM-CSF in combination with the vaccine. There was 1 response to the 
peptide vaccine plus IL-12 out of 21 patients tested. In a cohort of patients 
treated with high-dose IL-2 alone during the same time period as the peptide 
vaccine treated patients, a 12% response rate was f o ~ n d . ~ " ~  Further 
randomized confirmatory studies are underway to determine if the promising 
42% response rate seen in the peptide vaccine plus high-dose IL-2 group is 
consistent when larger numbers of patients are treated. 

13. TUMOR-INFILTRATING LYMPHOCYTES 

Despite mixed results from early studies, a more recent investigation of 
the combination of IL-2 with the adoptive transfer of tumor infiltrating 
lymphocytes (TILs) has shown significant promise. TILs are lymphocytes 
from resected tumors that recognize cancer antigens. These cells can be 
expanded in vitro and administered back to patients. When studied in vitro 
for cytolytic activity against autologous tumor cells, tumor-infiltrating 
lymphocytes are up to 100-fold more potent than LAK cells. Preclinical 
murine studies also demonstrate the in vivo superior potency of TILs 
compared to LAK celkg6 In clinical trials, Dudley et ala7 found that the 
combination of high-dose IL-2 with highly selected tumor-reactive T-cells 
produced objective responses in 6 of 13 HLA-~2' patients with advanced 
melanoma. Four other patients had mixed responses. Five patients exhibited 
the onset of antimelanocye autoimmunity. In this study, the tumor 
infiltrating T-cells were expanded in vitro with IL-2 and then adoptively 
transferred after a nonmyeloablative lymphodepleting conditioning regimen 
using cyclophosphamide and fludarabine. After the cell infusion, high-dose 
IV bolus IL-2 was administered at a dose of 720,000 IUkg every 8 hours to 
tolerance. The theory behind the conditioning regimen is based upon murine 
studies that demonstrated a marked effect of lymphodepletion on the 
efficacy of T-cell transfer therapy. This may be due to the purging of 
regulatory T-cells and the elimination of other normal tolerogenic 
mechanisms. The therapy produced a rapid growth in vivo of clonal 
populations of T-cells specific for melanoma antigens that persisted for over 
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4 months. The results were particularly impressive considering that at the 
time of enrollment, the 13 patients in the study all had progressive disease 
refractory to standard therapy, including high-dose IL-2. 

14. HISTAMINE COMBINATIONS 

Clinical data suggests that monocytes within and around malignant 
tumors portend a poor prognosis. It is hypothesized that monocytes suppress 
the activation of T-cells and NK cells by producing reactive oxygen species 
such as hydrogen peroxide, hypohalous acids and hydroxyl radicals. 
Although these reactive oxygen species are key components to intracellular 
and extracellular killing, they also inhibit T-cell and NK cell functions, 
including the killing of tumor cells, cell proliferation and transcription.88 
Histamine inhibits the formation of reactive oxygen species and thereby 
blocks the monocyte-induced suppression of T-cells and NK cells. 
Preclinical data has suggested that histamine synergizes with IL-2 to kill a 
variety of malignant cells. Based on this data, histamine was tested in 
combination with subcutaneous IL-2 and interferon-alpha for the treatment 
of malignant melanoma. Compared to subcutaneous IL-2 and interferon- 
alpha alone, the combination with histamine demonstrated a survival 
advantage (13.3 months vs. 6.8 months). Furthermore, two patients with 
liver metastases showed a complete remission of their liver tumors. 
Additional studies are being done to explore this promising drug 
c~mbination.~~ 

15. REGIONAL IL-2 

Delivering a high regional, as opposed to systemic, concentration of IL-2 
may more closely mimic the natural physiologic production of IL-2, which is 
ordinarily produced at high concentrations in a localized milieu. Such a 
strategy is certainly appealing in light of the systemic toxicity of high-dose 
IL-2 regimens. Huland and othersg0 have investigated the use of inhaled IL-2 
to treat pulmonary metastases. Their results are promising. Inhaled IL-2 has 
relatively low toxicity and has demonstrated clinical efficacy against renal 
cell carcinoma pulmonary metastases. Response rates higher than 20% have 
been seen, and some trials suggested a survival benefit compared to 
historical controls. Inhaled IL-2 has also had encouraging results in patients 
with melanoma pulmonary metastases. 



280 CYTOKllVES AND CANCER 

16. COMBINATION CYTOKINE THERAPY 

Despite a history of unsatisfactory results when combining IL-2 with 
various other cytokines, investigators still maintain hope that the right 
combination may lead to improved clinical outcomes with regards to cancer 
care. 

IL-2 in conjunction with IL-10 may potentially alleviate the toxicities 
observed with IL-2 and also prevent CD8(+) T cell apoptosis.91-93 The 
combination of IL-2 with IL-12 may enhance the anti-tumor immune 
response by promoting dendritic cell maturation and possibly effector 
function.45 In addition, IL-12 supports the expression of IL-18 receptors. 
IL-18, also known as interferon-gamma-inducing factor, has been shown to 
have anti-tumor Clinical trials exploring the combination of IL-2 
with IL-12 are currently underway. 

17. ANTI-ANGIOGENESIS 

Combining IL-2 with anti-angiogenic approaches is an appealing 
strategy. The transient decrease in lymphocytes followed by a rebound 
lymphocytosis after IL-2 therapy suggests that lymphocytes have marginated 
to vessel walls. Proliferating endothelial cells may be particularly vulnerable 
to T- cells and NK cells activated by IL-2. Indeed, cultured endothelial cells 
have been shown to be susceptible to IL-2-primed peripheral blood 
lymphocytes in isotope release assays.96 One important clinical clue that IL- 
2 activated T-cells attack the endothelium in vivo is the vascular leak 
syndrome. Another clue is the fact that patients who relapse afier a complete 
response to IL-2 usually relapse at new sites rather than at sites of pre- 
existing lesions. This suggests that one of the mechanisms of tumor 
destruction may involve interference with tumor vasculature and that 
microscopic sites of disease escape destruction because of an 
underdeveloped blood supply. Experimental studies of the antitumor effect 
of TNF have demonstrated that this is indeed one mechanism of tumor 
escape?7 Whether or not the antitumor effects of IL-2 have an anti- 
angiogenic component remains to be seen, but it is an intriguing hypothesis. 
Anti-angiogenesis-based therapies have already demonstrated promise in 
treating RCC. Bevacizumab, a recombinant humanized monoclonal antibody 
against vascular endothelial growth factor, showed modest clinical efficacy 
against renal cell carcinomas in a recently published study.69 Like renal cell 
carcinomas, melanomas are highly vascular tumors. Combining anti- 
angiogenesis-based therapy with IL-2 could potentially provide a more 
effective treatment for patients with these cancers. 
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18. CONCLUSIONS 

Although surgery, chemotherapy and radiation therapy have been the 
cornerstone of cancer management for decades, new approaches are 
desperately needed for the majority of patients with advanced disease. 
Tumors secrete factors that suppress immune system functioning. One 
plausible approach to combat cancer is to attempt to boost the immune 
system's antitumor response. In accordance with this strategy, various 
vaccine therapies have been investigated over the years with the hope of 
enhancing the immune system's antitumor capabilities. Unfortunately, 
vaccine trials have yet to demonstrate a reproducible clinically significant 
benefit to date. Interleukin 2, an immunomodulating glycoprotein with 
antitumor properties, has demonstrated clinically significant activity against 
certain malignancies. It is secreted by antigen-activated T cells and 
produces a wide range of effects on the immune system. The initial clinical 
trials of IL-2 for the treatment of cancer created a high degree of optimism. 
Subsequent studies demonstrated that the benefits of IL-2 are modest and are 
mostly restricted to patients with RCC and malignant melanoma. 
Nevertheless, IL-2 was FDA approved to treat these cancers based on its 
ability to produce durable complete remissions in a small number of patients. 
The goals of research now are to identify which factors predict a response to 
high-dose IL-2, so as to target this relatively toxic regimen to patients who 
are likely to benefit, and to identify other treatments that, when combined 
with IL-2, will yield higher response rates without significantly increasing 
toxicity. 
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1. INTRODUCTION 

Lung cancer is the leading cause of cancer related mortality, accounting 
for 30% of all cancer deaths in the United States each year '. Nearly half of 
all lung cancers occur in women, and more women die from lung cancer 
than from breast and all gynecologic malignancies combined. In fact, lung 
cancer accounts for more cancer deaths than colorectal, breast, and prostate 
cancers combined. Unfortunately, most patients present with tumors which 
are either incurable at diagnosis or are likely to relapse. Using conventional 
therapy, the five-year survival rate for all patients remains approximately 
1 5 % , ~  and surgery for early stage disease remains the only dependable 
curative option. Although chemotherapy has an established role in the 
treatment of locally advanced and metastatic disease, it is apparent that new 
and effective therapies are needed. Furthermore, multiple recent studies 
suggest that the benefits attained with conventional cytotoxic combination 
regimens may have reached a plateau 3 .  In recent years, cancer research has 
generated a rich and complex body of knowledge showing that cancer cells 
acquire numerous features that differentiate them from their normal 
counterparts. These functional differences arise from the acquisition of 
multiple genetic changes affecting a variety of cellular pathways. The 
simplification and rationalization of the cellular processes leading to cancer 
has hitherto remained an elusive goal. Nonetheless, it has been proposed 
that the diversity of cancer cell features is a manifestation of six essential 
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alterations in cell physiology that collectively control malignant growth: 
abnormally activated growth signals, insensitivity to growth inhibition, 
evasion from programmed cell death, limitless replicative potential, 
sustained angiogenesis, and tissue invasion and metastasis 4. Laboratory 
experiments have demonstrated that, at a minimum, several of these essential 
alterations are necessary for the direct tumorigenic transformation of normal 
human epithelial and fibroblast cells 5 .  

Recent molecular developments have increased our knowledge of the 
changes somatically acquired by lung cancer cells during their pathogenesis 
6 

Accordingly, treatments have been developed that target these 
abnormalities. Some treatment modalities currently under study in lung 
cancer are 1) inhibitors of signal transduction pathways such as epidermal 
growth factor receptor (EGFR), HER2/neu, and protein kinase C pathways; 
2) antiangiogenic agents, such as monoclonal antibodies against the vascular 
endothelial growth factor (VEGF); 3) matrix metalloproteinase inhibitors; 4) 
novel retinoids; 5) gene therapy and vaccines such as p53 and GVAX; and 
6) agents with multiple effects, such as the cyclooxygenase (COX-2) 
inhibitors. 

Some of these modalities rely on cytokine targets for growth inhibition. 
This chapter will review the role of cytokine-targeted treatments, including 
interferon, GVAX, inhibition of VEGF, and inhibition of COX-2, in the 
treatment of lung cancer. 

INTERFERONS 

Interferons (IFN), as detailed earlier in this edition, are a family of 
cytokine mediators that are formed constitutively by most cells, and function 
physiologically by autocrine or paracrine mechanisms. The biological 
effects of IFNs result primarily from the enhanced expression of a group of 
genes and proteins that in responsive cells are involved in inflammatory and 
antimicrobial activities. IFNs constitute a family of proteins produced by 
nucleated cells that have antiviral, antiproliferative and immune-regulating 
activities. IFNs interact with cells through high affinity cell-surface 
receptors. Following activation, multiple affects can be detected, including 
the induction of gene transcription. They inhibit cellular growth, alter the 
state of cellular differentiation, interfere with oncogene expression, alter cell 
surface antigen expression, increase the phagocytic activity of macrophages, 
and augment the cytotoxicity of lymphocytes for target cells. Given the 
direct antiproliferative and immunopotentiating effects of interferons and the 
suboptimal results of chemotherapy, studies in lung cancer were initiated in 
the 1980's. 
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2.1 Interferons in Small Cell Lung Cancer 

Despite high initial response rates to chemotherapy, most patients with 
small cell lung cancer (SCLC) relapse soon after discontinuation of therapy. 
Even though combination chemoradiotherapy can cure some patients with 
limited-stage disease, the vast majority will experience lethal relapse from 
chemotherapy-resistant micrometastatic disease. Five year survival for 
patients with extensive-stage disease remains only between 2% and 8%'. 
Neither dose intensification nor alternating combination chemotherapy have 
improved survival ', 8. Given the antitumor effects of IFN, studies in SCLC 
were initiated initially. 
IFN has been evaluated in several trials after initial response to 

chemotherapy. Mattson et a1 conducted the first randomized study in SCLC 
patients that used IFN as maintenance therapy. SCLC patients who 
objectively responded to chemotherapy and radiotherapy were randomized 
to receive no maintenance therapy, chemotherapy maintenance or low dose 
natural interferon-alpha (nIFN-a) for 6 months '. Although there were no 
overall differences in survival, subgroup analysis revealed a survival 
advantage for those patients with limited stage disease who received 
maintenance IFN (p = 0.04). Ten percent of the patients in the IFN group 
survived for five years or more, but the 5-year survival in the maintenance 
chemotherapy and observation alone arms was only 2%. In another study, 
patients with extensive stage small cell lung cancer were treated with four 
cycles of cisplatin, doxorubicin, cyclophosphamide, and etoposide (PACE) 
10 . Patients who achieved complete or partial response were started on 
recombinant interferon-gamma (rIFN-y daily. The response rate to PACE 
was 72%. Forty-one patients (1 1 in CR and 30 PR) were started on IFN. 
The response rate to IFN was 2/30 or 6.7%. The authors concluded that IFN 
was inactive in SCLC, even when the tumor burden was substantially 
reduced by prior chemotherapy. 

In a phase I11 trial conducted by the European Organization for Research 
and Treatment of Cancer, patients who had achieved complete or partial 
response to chemotherapy with or without radiotherapy were randomized to 
receive rIFN-y 4 million units subcutaneously every other day for 4 months 
or to observation I*. 127 patients were randomized. The IFN was 
reasonably well tolerated by the majority of patients, but 3 patients 
developed pneumonitis, one of which had a fatal outcome. The median 
survival time was 8.9 months for the IFN arm and 9.9 months for the 
observation arm. Furthermore, the authors felt that IFN could potentially 
increase the deleterious effects of radiation on normal lung tissue because of 
the development of pneumonitis in three patients on the IFN arm. The 
Southwest Oncology Group conducted a phase I11 trial of adjuvant IFN in 
patients with limited stage SCLC who had achieved an objective response to 
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chemoradiotherapy. One hundred thirty two patients were randomized to 
receive rIFNa thrice weekly for two years or to observation alone. Forty- 
three of 64 patients assigned to the IFN arm discontinued therapy secondary 
to intolerable side effects. IFN failed to prolong response duration or 
survival in this study, although the authors conceded that this could have 
been related to poor tolerance and inability to complete therapy. 

The effectiveness of treatment with recombinant IFN-alpha-2c (rIFN-a- 
2c) in combination with standard induction chemotherapy in patients with 
advanced SCLC has been evaluated in a phase I11 trial 12. Patients were 
randomized to receive combined treatment (3 cycles of cyclophosphamide, 
vincristine, doxorubicin followed by 3 cycles of cisplatin, etoposide plus 
subcutaneous IFN) or chemotherapy alone. After the induction phase, 
patients in the IFN arm had higher rates of complete (30% vs 15%) and 
partial response (42% vs 29%) than those who received chemotherapy alone. 
There was no significant difference in time to progression between the two 
arms (7.6 vs 5.4 months); however, the patients in the IFN arm survived 
longer than those in the chemotherapy alone arm (p< 0.02). Two-year 
survival was 14% in the IFN arm and 0% in the chemotherapy alone arm. A 
similar randomized, phase I1 study was designed to determine time to 
progression, the duration of response, and the feasibility of an intensified 
maintenance regimen consisting of a combination of IFN-a and retinoic acid 
after high-dose combination chemotherapy and radiotherapy. The 
differences between the IFN group and the control group were not 
statistically significant. The patients in the IFN group lived longer after the 
onset of progressive disease, and the treatment was well tolerated 13. In 
another randomized multicenter Phase I11 trial, 153 patients with any stage 
of SCLC were randomized to receive low dose IFN-a from the first day of 
treatment as long as possible irrespective of changed in treatment dictated by 
disease progression in addition to standard cisplatin and etoposide therapy or 

14 to chemotherapy alone . There was no difference in median survival 
between the two arms. More leukopenia occurred in the IFN arm 
necessitating dose reduction of chemotherapy, however. The authors 
concluded that although IFN could be administered with chemotherapy, it 
was probably better kept for maintenance therapy. 

2.2 Interferons in Non-Small Cell Lung Cancer 

Interferon monotherapy trials in non-small cell lung cancer (NSCLC) 
15, 16 demonstrated no antitumor activity . However, given in vitro and in 

vivo animal studies that demonstrated IFN synergy with multiple 
chemotherapeutic agents, clinical investigations combining agents were 
undertaken17 ' 8. 
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IFN-gamma andlor IFN-alpha have been compared in combination with 
standard chemotherapy in 80 patients with previously untreated Stage I11 or 
IV NSCLC 19. The addition of IFN-gamma alone or IFN-alpha plus IFN- 
gamma to platinum-based chemotherapy did not improve response rated or 
produce any significant survival benefit for the patients. Increased 
hematologic toxicity also was observed. A phase 11-111 trial of IFN-beta and 
IFN-gamma with chemotherapy was performed in patients with advanced 
NSCLC 'O. In this trial, 37 patients were randomized to receive either two 
cycles of etoposide and cisplatin or 6 weeks of IFN-beta plus IFN-gamma 
followed by two cycles of etoposide and cisplatin. Response rates in both 
arms were similar, and it was concluded that pretreatment with interferon 
increased hematological toxicity without improving efficacy. In another 
trial, 38 treatment-nake patients with advanced NSCLC were treated with 
cisplatin, etoposide, and IFN-alpha. The three drugs produced a response 
rate of 34% and median survival of 11 months which were felt to be no 
better than that of standard therapy with cisplatin and etoposide 

Despite the fact that IFNs have both anti-proliferative and anti-angiogenic 
effects, the numerous studies to date do not support a role for them in the 
treatment of lung cancer. 

3. GMCSF GENE MODIFIED TUMOR VACCINES 

Non-small cell lung cancer (NSCLC) appears to evoke humoral and 
cellular antitumor immune responses in some patients. Often, oncogenic 
proteins are expressed by cancer cells themselves and act as tumor-expressed 
antigens. Autoantibodies have been reported for NSCLC and include 
antibodies to tumor associated antigens such as eIF-4gamma ", aldolase, and 
Rip-1 23. Humoral, or antibody, responses to autologous lung cancer cells 
may be associated with prolonged survival 24 as is the development of 
cytotoxic T-lymphocyte response 25 26. 

Unfortunately, most patients with lung cancer do not generate anti- 
NSCLC immune reactions that are sufficiently strong to prevent lethal 
disease progression. Therapeutic cancer vaccines have been investigated 
with provocative results. Vaccines derived from whole tumor cells 27 28 29 30 

have been tested in patients with resected early stage NSCLC and 
demonstrated immunologic activity and the suggestion of a survival 
advantage. However, genetically modified tumor cell vaccines, in particular 
GMCSF gene transduced vaccines, appear to be a promising strategy 
maximizing cytokine response. 
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3.1 GM-CSF 

GM-CSF, or granulocyte-macrophage colony stimulating factor is a 
cytokine with multiple actions. In 1985, the gene for GM-CSF was localized 
to the long arm of chromosome 5 in linkage with the gene for IL-3. GM- 
CSF supports the survival, clonal expansion, and differentiation of 
progenitors in the granulocyte-macrophage pathways as well as 
megakaryocytic and erythroid progenitor cells. GM-CSF is primarily 
produced by bone marrow stroma and activated B-cells, T-cells, monocytes, 
and macrophages. The GM-CSF receptor is expressed on granulocytes, 
erythrocytes, megakaryocytes, macrophage progenitor cells as well as 
mature cells including neutrophils, monocytes, macrophages, dendritic cells, 
vascular endothelial cells, and certain T-cells. GM-CSF has multiple actions 
on mature neutrophils including protection again apoptosis, induction of 
degranulation, increased production of reactive oxygen species, and 
enhanced bacteriocidal activity of neutrophils. 

After exposure to GM-CSF, neutrophil adhesion to vascular endothelium 
is enhanced, and macrophages are activated and release secondary cytokines 
including granulocyte colony-stimulating factor and interferon-alpha. GM- 
CSF also stimulates dendritic cell formation from lymphoid or myeloid 
CD34+ progenitor cells and monocytes. GM-CSF is not detectable in 
serum, even during neutropenia or active infection, leading to the theory that 
GM-CSF is produced locally in tissues as part of the regulation of 
inflammation and acts to immobilize and prime local neutrophils. 

Sargramostim is a human granulocyte-macrophage colony-stimulating 
factor (rhuGM-CSF) produced by recombinant DNA technology. Clinically, 
rhuGM-CSF is used to reduce the duration of neutropenia and incidence of 
infection in patients receiving myelosuppressive chemotherapy or bone 
marrow transplantation, for mobilization of peripheral blood progenitor cells 
for collection, and for bone marrow graft failure or engraf'tment delay. 

3.2 Antitumor activity of GM-CSF 

It is felt that cancer patients have defective macrophage function 31. As 
previously described, macrophages are functionally activated following 
stimulation with GM-CSF. Preclinical data demonstrate that peripheral 
blood monocytes and macrophages can be utilized following stimulation 
with GM-CSF to induce an immune cytotoxic effect against malignant cells 
329 33. It appears GM-CSFYs effects are mediated in part by dendritic cell 
stimulation. GM-CSF is involved in the proliferation, maturation, and 
migration of dendritic cells 349 35, and has shown promising survival results as 
a single agent in a phase II trial in patients with melanoma 36. 
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3.3 GM-CSF transduced tumor vaccines 

The transfection of autologous or allogenic tumor cells with GM-CSF 
gene in preclinical models has demonstrated induction of cancer specific 
antitumor immunity requiring both CD4- and CD8-positive cells mediated 
through dendritic cell stimulation 37 38 39 40 . Comparative trials of GM-CSF 
versus other immune modulating agents such as interleukin 4, interleukin 2, 
interferon y, and tumor necrosis factor a have revealed that GM-CSF gene 
provided the most potent capacity to stimulate systemic antitumor immunity 

37 in variety of cancers . GM-CSF gene transduced vaccines have 
demonstrated activity in both preventive and established animal models 41 42. 

Theoretically, GM-CSF induces differentiation of bone marrow derived 
antigen presenting cells at the vaccination site and thus peptide antigen 
presentation to T-cells. 

3.4 GM-CSF Vaccines in Lung Cancer 

Clinical trials in lung cancer after GMCSF gene transduced tumor 
vaccination demonstrated safety and activity in animal studies. In a study by 
Salgia et a1 adenoviral -mediated gene transfer was used to engineer 
autologous GM-CSF-secreting tumor cell vaccines ex vivo 43. Vaccines 
from resected metastases were successfully manufactured for 34 of 35 
enrolled patients. Vaccines were then administered interdermally and 
subcutaneously at weekly and biweekly intervals. Toxicities were restricted 
to grade 1 to 2 local skin reactions. Nine patients were withdrawn early due 
to rapid disease progression. Vaccination elicted dendritic cell, macrophage, 
granulocyte, and lymphocyte infiltrates in 18 of 25 assessable patients. 
Immunization stimulated the development of delayed-type hypersensitivity 
reactions to irradiated, dissociated, autologous, nontransfected tumor cells in 
18 of 22 patients. Metastatic lesions resected after vaccination demonstrated 
T lymphocyte and plasma cell infiltrates with tumor necrosis in 3 of 6 
patients. Two patients with resected metastatic disease at enrollment had no 
evidence of disease at 42 and 43 months. Five patients showed stable 
disease durations from 3 to 33 months. One mixed response was reported. 
The authors concluded that vaccination with autologous NSCLC cells 
engineered to secrete GM-CSF augments antitumor immunity in some 
patients with metastatic NSCLC. 

A similar multicenter trial was reported by Nemunaitis et al. Vaccines 
were again generated from autologous tumor harvest and genetically 
modified with an adenoviral vector to secrete GM-CSF. Intradermal 
injections were given every 2 weeks for a total of 3 to 6 vaccinations. 
Tumors were harvested from 83 patients, 20 with early stage NSCLC and 63 
with advanced-stage NSCLC. Vaccines were successfully manufactured for 
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81% of patients, and 43 patients were vaccinated. Minimal toxicities were 
noted. Three of 33 advanced stage patients, two with bronchioloalveoalar 
carcinoma, had durable complete tumor responses (6, 18 and > 22 months). 
Furthermore, vaccine-associated GM-CSF secretion was significantly 
associated with survival such at patients who received vaccination that 
secreted GM-CSF at a rate of at least 40 md24 hours per lo6 cells had a 
median survival of 17 months whereas patients with lower levels of GM- 
CSF secretion had a median survival of 7 months. 

The trials in combination provide evidence for both immunologic and 
clinical activity of this approach in NSCLC. Confirmatory trials are 
underway. In one such trial, patients are being randomized to receive GM- 
CSF gene modified autologous lung cancer vaccine with or without low- 
dose cyclophosphamide, a chemotherapeutic agent which in the doses to be 
employed has been shown to enhance the immune response. The second 
Phase 2 trial, by the Southwest Oncology Group (SWOG) will focus on 
patients with the bronchioloalveolar carcinoma (BAC). This trial is 
expected to begin in the second quarter of 2004. The two trials may enroll 
up to approximately 75 patients each. 

Recent attention has been drawn to other inflammatory mediators, such as 
prostaglandins (PG) and cyclooxygenase (COX), which are felt to play a 
critical role in the initiation in the initiation and maintenance of cancer cell 
survival and growth. Early reports identified increased PG production in the 
plasma and tumor cells of patients with cancer 44' 45. Malignant 
transformation induced by carcinogens and viruses was associated with 
increased production of PGs in the 1,970's 46. Accordingly, inhibitors of 
prostaglandin production were tested in cancers. Aspirin and indomethacin, 
which inhibit PG production, were shown to prevent the development of 

47, 48 tumors in animals exposed to carcinogens . Lynch et a1 demonstrated 
high concencentrations of prostaglandin E2 (PGE2 in murine fibrosarcoma 
tumors which could be reduced with indomethicin treatment 47. The 
increased concentration of PGE2 was unique to tumor cells and was not 
present in normal cells. Furthermore, PGE2 was shown to enhance the 
neoplastic transformation of carcinogen-exposed epithelial cells 49. 

These observations were later corroborated by several epidemiologic 
studies that documented a lower incidence of certain types of cancers in 
patients who used nonsteriodal anti-inflammatory drugs (NSAIDs) on a 
regular basis Based on these reports, investigators evaluated the role of 
the NSAID sulindac in patients with familial adenomatous polyposis 54-56. 

Sulindac caused regression of existing polyps and a reduction in new polyp 
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formation. However, upon discontinuation of sulindac, the number and size 
of the polyps increased. Therapy with sulindac and other NSAIDs is 
associated with serious side effects such as gastrointestinal bleeding and 
ulcer formation. Subsequent efforts to develop NSAIDs that are devoid of 
such side effects led to the identification of 2 isoforms of the COX enzymes, 
COX-1 and COX-2. Selective inhibitors of COX-2, while retaining the anti- 
inflammatory effect of nonselective NSAIDs, have a much lower risk of 
gastrointestinal side effects. 

4.1 Cyclooxygenase Pathway in Lung Cancer 

Arachidonic acid is an unsaturated fatty acid that is present in an 
esterified form in the membrane phospholipids of the cell. When released 
by phospholipase, it is metabolized to various prostanoids, which play an 
important role in several biologic functions. Cyclooxygenases catalyze the 
conversion of arachidonic acid to PGH2, which acts as a substrate for the 
synthesis of various biologically active prostanoids and thromboxane 
(Figure 1). Cyclooxygenase exists in two isoforms, COX-1 and COX-2. 
COX-1 is constitutively expressed in several tissues and is important for 
maintaining various normal cellular functions that include protection of 
mucosal integrity, platelet function, and maintenance of renal blood flow, 
glomerular filtration, and ovulation. By contrast, COX-2 is an early 
response gene, which is inducible by cytokines, growth factors, and tumor 
promoters, and is largely responsible for the production of prostaglandins 

57 during inflammation . COX-2 affects carcinogenesis at multiple steps 
through the formation of PGE2. '*' ". 

The majority of initial research on the role of COX-2 in neoplasia was 
done in colorectal cancer. Oshima et a1 found that polyps in adenomatous 
polyposis coli-knockout mice were significantly smaller and fewer when 
COX-2 was also rendered null through a knockout. Furthermore, 
carcinogen-induced colon tumor formation was reduced by the 
administration of celecoxib, a selective inhibitor of COX-2. Celecoxib 
inhibited the incidence and multiplicity of colon tumors by approximately 
93% and 97%, respectively, and also suppressed the overall colon tumor 
burden by > 87% 60. Such direct evidence linking COX-2 activity with 
tumor formation and the ability to inhibit tumor growth by COX-2 inhibition 
has led to extensive evaluation of the role of COX-2 in various malignancies 
61 

COX-2 is overexpressed in many solid tumors, including lung cancers 62.  

COX-2 expression has also been found in atypical adenomatous hyperplasia, 
a possible precursor to adenocarcinoma of the lung 63. COX-2 expression 
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has been found to be significantly higher in NSCLC (both adenocarcinoma 
and squamous cell carcinoma) than in normal lung tissue. In one study, 
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Figure I. Cyclooxygenase Pathway 

COX-2 expression by immunohistochemistry was noted in 19 of 21 lung 
adenocarcinomas and 11 of 11 squamous cell carcinomas 64. Notably, MC 
staining was significantly more intense in the adenocarcinomas than in the 
squamous cell carcinomas. In another study of 59 lung cancers, COX-2 
expression was noted in 70% of invasive adenocarcinomas, but was found to 
be expressed infrequently and at low levels in squamous cell carcinomas 65. 

The authors noted that there was greater COX-2 expression in lymph node 
metastases of adenocarcinomas than in the corresponding primary tumors, 



Cytokine Targeted Treatments for Lung Cancer 299 

and they concluded that COX-2 expression was associated with the invasive 
and metastatic phenotype. COX-2 expression has since been implicated as a 
prognostic factor in NSCLC. 

Achiwa et a1 evaluated the prognostic significance of elevated COX-2 
expression in a cohort of 130 patients who underwent curative resection for 
adenocarcinoma of the lung 66. Although no relationship was found between 
the increase in COX-2 expression and clinical outcome when the entire 
cohort was considered (p = 0.099), there was a suggestion of shorter survival 
among patients with stage I disease that overexpressed COX-2. Among 
patients with stage I cancer, the 5-year survival rates of patients with 
overexpression were 66% and 88%, respectively (P=0.034), implicating the 
role of COX-2 as a prognostic marker. 

Surival data from 160 cases of stage I lung cancer were correlated with 
COX-2 expression by Khuri et a1 67. Cyclooxygenase-2 mRNA expression 
was assessed by in situ hybridization in this study. Sixty percent of 
adenocarcinomas and 64% of squamous cell carcinomas were positive for 
COX-2 expression. When the degree of COX-2 expression was 
subcategorized as strongly positive, intermediately positive, or weakly 
positivelnegative, strong COX-2 expression was associated with worse 
overall survival (p=0.001) and disease-free survival (p=0.022). The median 
survival times for patients with strong, intermediate, or weak~null expression 
were l.O,5.5, and 8.5 years, respectively. 

COX-2 expression is increased in lung cancer, particularily in 
adenocarcinomas. Notably, COX-2 overexpression appears restricted to 
tumor tissue and is not found in the surrounding normal tissue. This 
difference in expression is of particular import in the development of 
targeted therapies. 

4.2 Cyclooxygenase-2 in Lung Carcinogenesis 

There is evidence that nitrosamine, a tobacco specific carcinogen, is 
metabolized in part by COX-2 to other bioactive products. In an in vitro 
experiment, induction of COX-2 in tobacco-specific nitrosamine 4- 
(methy1nitrosamino)- 1 -(3-pyridy1)-1 -butanone (NNK)-treated cells resulted 
in increased production of NNK metabolites. Addition of the selective 
COX-2 inhibitor, NS-398, inhibited the bioactivation of NNK. This 
suggests that COX-2 may an important non-P450 pathway for the activation 
of NNK. Furthermore, nitrosamine was used to induce lung tumorigenesis 
in AIJ mice in experimental studies by Rioux 68. Pretreatment of the mice 
with the COX-2 inhibitor, NS-398, followed by continued administration 
during carcinogen exposure, resulted in reduction in lung tumor formation. 
Prostaglandin E2 levels, which were elevated on carcinogen exposure, 
decreased to basal levels, suggesting that susceptibility to lung cancer upon 



300 CYTOKINES AND CANCER 

carcinogen exposure may be related to COX-2 expression. COX-2 
expression was also present through out all stages of tumor progression 
(hyperplastic lesions, adenomas, and carcinomas) upon exposure to 
nitrosamine in AIJ mice. 

Evaluation of COX-2 expression in carcinogen-induced preneoplastic and 
neoplastic lesions in rats was done by immunohistochemistry 69. Elevated 
COX-2 expression was noted in a majority of alveolar/bronchial adenomas 
and adenocarcinomas, whereas only weak expression was found in 
hyperplastic lesions and squamous cell carcinomas. COX-2 expression has 
also been shown to become progressively greater during progression through 
various stages of carcinogen-induced lung cancer tumorigenesis in 
experimental mice 70. 

It appears that not only could susceptibility to lung cancer be related to 
COX-2 expression, but also that carcinogen-induced tumor formation, in 
animal models, is decreased by COX-2 inhibition. These early observations 
provide the rationale for evaluation of COX-2 in lung cancer trials. 
Furthermore, COX-2 inhibitors such as celecoxib have been administered to 
thousands of patients with inflammatory arthritis with few adverse events, 
and this tolerability has made this class of agents a very attractive adjunct to 
chemotherapy. 

4.3 Clinical Trials of Cylcooxygenase-2 Inhibitors 

The interaction of COX-2 inhibitors with various chemotherapy drugs has 
been studied. The addition of nimesulide to NSCLC cell lines increased the 
chemosensitivity to etoposide, SN-38 (an active metabolite of irinotecan), 

71 docetaxel, and cisplatin . Supra-additive effects were noted when 
nimesulide was combined with SN-38 and a near-supra-additive effects was 
seen in combination with docetaxel. Additive effects were seen with 
etoposide and cisplatin. Sulindac sulfide, a combined COX-1 and COX-2 
inhibitor, enhanced the chemosensitivity of carboplatin and paclitaxel in 3 
different NSCLC cell lines 72. Additionally, NS-398 has been shown to 
enhance the growth-inhibitory effect of gemcitabine in 2 different pancreatic 
cancer cell lines 73. 

Based on the available preclinical evidence, COX-2 inhibitors are being 
tested in a variety of clinical settings in lung cancer. Because the majority of 
patients who undergo resection for potentially curable NSCLC develop 
lethal recurrent metastatic disease, clinical trials are being performed to 
identify potentially better strategies. There are at least two clinical trials that 
are evaluating the role of COX-2 inhibitors in early stage lung cancer. In 
one study, patients with stages 1-111 NSCLC received 3 cycles of 
chemotherapy consisting of carboplatin plus paclitaxel in combination with 
celecoxib before surgery. Preoperative therapy with this regimen resulted in 
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a response rate of 65%, including 17 partial responses and 5 complete 
responses. Pathologic response with >95% necrosis of the tumor tissue was 
noted in 38% of patients. Furthermore, the addition of celecoxib to the 
chemotherapy regimen of paclitaxel and carboplatin abrogated the marked 
increase in levels of PGE2 detected in primary tumors after treatment with 
paclitaxel and carboplatin alone 74. A confirmatory trial is ongoing as is 
another randomized trial of preoperative celecoxib and carboplatin plus 
paclitaxel. 

Celecoxib is also being evaluated in combination with chemotherapy in 
patients with advanced NSCLC (Table 1). In a phase I1 trial, patients with 
advanced NSCLC in whom first-line chemotherapy failed were treated with 
the combination of docetaxel75 mgIm2 every 21 days and celecoxib 400 mg 
b.i.d. 75. TWO of 15 patients experienced partial response (13%). The levels 
of tumor PGE2 decreased from 100.7 nglmg to 18.1 nglmg after therapy 
with celecoxib and docetaxel in the patients analyzed thus far. The final 
results of this study are awaited. In a study by Johnson et al, 49 patients 
received docetaxel and celecoxib in the second line setting 76. The response 
rate in this trial was 11%. In another study, docetaxel was administered 
weekly at a dose of 36 mglrn2 along with celecoxib to elderly patients or 
those with poor performance status as first line therapy for advanced 
NSCLC 77. Three of 13 evaluable patients experienced partial responses in 
this ongoing study. 

Table 1. Clinical Trials of Celecoxib in NSCLC 
Study Regimen Stage Number of Response Median 

Patients Rate Survival 
Altorki Celecoxib, IB-IIIA 29 65% NR 

carboplatin, 
paclitaxel 

Nugent Celecoxib, IV 30 13% 11.3 
docetaxel 

Johnson Celecoxib, IV 49 11% 7.7 
docetaxel 

Gadgeel Celecoxib, IV 20 10% NR 
docetaxel 

Shahadeh Celecoxib, IV 14 13% NR 
docetaxel 

Based on the proven ability of COX-2 inhibitors to enhance tumor 
radiation sensitivity in the preclinical setting, a clinical trial is currently 
underway in patients with inoperable stage IIIA NSCLC with multimodality 
therapy that includes celecoxib. Participants in the trial receive celecoxib, 
carboplatin, and paclitaxel with concurrent radiation therapy. There is also a 
phase I trial of celecoxib in combination with radiation therapy for patients 
with inoperable NSCLC with poor performance status. Radiation will be 
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started after 5 days of celecoxib therapy in this group of patients. Dose 
escalation of celecoxib will proceed from 200 mg b.i.d. to 400 mg b.i.d. The 
objectives of the study are to determine the maximum tolerated dose of 
celecoxib in this combination, tumor response, and the correlation between 
tumor response and COX-2 expression. There are also several ongoing 
clinical tnals that are studying the role of celecoxib in the preventative 
setting. If proven effective, COX-2 inhibitors will be a valuable addition to 
the treatment armamentarium of lung cancer. 

VASCULAR ENDOTHELIAL GROWTH FACTOR 

Another strategy for improving treatment outcomes in NSCLC that has 
been investigated is interfering with the ability of a tumor to form new blood 
vessels, a process known as angiogenesis. Recent evidence supports the 
concept that the growth of solid tumors is dependent on angiogenesis to 
nourish the tumor 7g3 79. Delivery of oxygen and nutrients by the new vessels 
is a rate limiting step for tumor cell proliferation and thus a target for anti- 
tumor therapy. The identification of this concept has led to the identification 
of angiogenic factors responsible for stimulating new blood vessel 
formation. Recent work has indicated that vascular endothelial growth 
factor (VEGF), a cytokine, is known to be the most important proangiogenic 
factor, critical to the process of angiogenesis. Four alternatively sliced 
isoforms of VEGF exist, that bind to the three receptors VEGFR-1 (Flt-1), 
VEGFR-2 (Flk-l/KDR), and VEGFR-3 (Flt-4) that are found on the surface 
of endothelial cells Receptor binding triggers kinase activation through 
tyrosine phosphorylation and begins the signaling cascade that initiates 
angiogenesis. 

VEGF is expressed in normal tissues, and in almost every type of human 
tumor. Its expression is seen in alveolar macrophages, normal bronchiolar 
and differentiated columnar epithelial cells 82. VEGF has been shown to be 
expressed in NSCLC 83, and tumor angiogenesis has been shown to correlate 
with VEGF levels in NSCLC g4. VEGF expression has also been found to be 
associated with poor prognosis in both SCLC and NSCLC g4-g7 as well as in 
other tumors. Whereas VEGF mRNA is expressed in most tumor cells, 
mRNA for VEGF-receptors is upregulated in endothelial cells associated 
with the tumorgg. It appears that VEGF is primarily a paracrine mediator. 
Furthermore, there is evidence that lymphocytes that infiltrate tumor provide 
an additional source of VEGF, contributing to angiogenesis ". 

VEGF appears to play several key roles. It has been shown to increase 
vascular permeability, which may facilitate tumor dissemination via the 
circulation 90> ". It may also inhibit endothelial cell apoptosis by inducing 
expression of the survival gene bcl-2 92. This may promote tumor growth 
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and also lead to resistance to chemotherapy. Clearly, VEGF and its 
receptors play a critical role in tumorigenesis and are therefore logical 
targets for novel anti-cancer therapies. 

6. RHUMAB VEGF (BEVACIZUMAB) 

Bevacizumab is a recombinant humanized monoclonal antibody to VEGF, 
developed by Genentech, Incorporated. Preclinical in vivo models 
demonstrate that bevacizumab inhibits growth of a variety of human cancer 
cell lines in a dose-dependent manner, and even may act synergistically with 
chemotherapy. In phase I trials, bevacizumab effectively reduced serum 
VEGF concentrations to undetectable levels when administered at doses of 
3mglkglweek or more, and showed no pharmacologic interactions when 
studied in combination with doxorubicin, carboplatin, paclitaxel, 5- 
fluoruracil, or leocovorin 93, 94. In NSCLC, a small, randomized phase I1 trial 
was conducted by DeVore et a1  able 2). 

Table 2. Phase I1 Trial of RhuMAb VEGF and chemotherapy for advanced NSCLC 
Chemotherapy RhuMAb VEGF 7.5 RhuMAb VEGF 15 
Alone mgikg + Chemo mgikg + Chemo 

Number 32 32 32 
Response Rate 31.3 
Time to Progression 6.0 
(mas> 
Median survival 14.9 

Patients in this study were treated with paclitaxel plus carboplatin alone, or 
the same chemotherapy with either low dose bevacizumab, 7.5 mgkg every 
3 weeks or high dose bevacizumab, 15 mgkg every 3 weeks. Chemotherapy 
was offered for 6 cycles or until disease progression, and bevacizumab was 
continued up to one year in patients with stable disease or partial or 
complete response. The control group was allowed to cross over to the high 
dose bevacizumab arm on disease progression. The trial was closed in 
August 1999 after enrollment of 99 patients. In general, patient 
characteristics were comparable across treatment arms although there were 
more patients with squamous histology and stage N disease in the low-dose 
bevacizumab. Ninety-six patients were evaluable for response. The 
response rate of chemotherapy plus bevacizumab 15 mgkg was associated 
with the highest response rate. Response rates for chemotherapy alone and 
chemotherapy with low dose bevacizumab, were 3 1% and 22% respectively. 
Median survival in all three arms was impressive and superior to the 35 
week median survival in patients treated with carboplatin and paclitaxel on 
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recent cooperative group studies 33  96. The impressive survival rates in the 
control arm certainly could be explained by cross-over to bevacizumab. 

An unusual and unexpected toxicity was seen in this study. Six patients 
who received bevacizumab experienced life-threatening hemoptysis. This 
resulted in four fatalities, all in patients with squamous cell carcinoma. The 
investigators suggested that this toxicity might be unique to patients with 
lung cancer, and in particular to those with squamous histology in particular. 
However, bleeding has been reported in other trials of bevacizumab for other 
tumor types '' 98. 

A phase I11 trial of bevacizumab is currently underway in the Eastern 
Cooperative Oncology Group (ECOG). Patients with a history of 
hemoptysis and those with squamous cell histology are excluded from study. 
Patients are randomized to receive bevacizumab 15 mg/kg q 3 weekly or 
placebo with carboplatin and paclitaxel, and crossover of patients on the 
placebo arm is not allowed. In an interim analysis, toxicities were no 
different between arms. 

Similarly, a phase I1 pilot trial of cisplatin, etoposide, and bevacizumab is 
planned in patients with advanced SCLC. 

7. VEGF-RECEPTOR 

The VEGF system can also been targeted through inhibition of VEGFR, 
by the use of monoclonal antibodies or specific tyrosine kinase inhibitors. 
Several monoclonal antibodies are in early development. Phase I and I1 
trials of small molecule inhibitors of the VEGF receptor, in particular 
VEGFR2 (Flk-1), are underway. SU5416 is one such inhibitor of VEGFR2. 
SU5416 is a parenterally administered quinolone derivative that potently 
inhibits VEGFR2 tyrosine kinase and also appears to inhibit c-kit mediated 
signaling 99. SU5416 has shown broad anti-tumor activity in a phase I trial 
loo. It was evaluated with gemcitabine and cisplatin in 19 patients with 
advanced malignancies. Numerous vascular events including pulmonary 
emboli, myocardial infarcations, and cerebrovascular events were seen1". 
Given its severe toxicity profile and requirement for frequent intravenous 
administration through central venous catheters, this agent will not be 
developed further in lung cancer. SU6668 is an oral small molecule tyrosine 
kinase inhibitor with multiple receptor targets including VEGFR-1, platelet 
derived growth factor (PDGF) receptor, and fibroblast growth factor (FGF- 
1) receptor phosphorylation. In preclinical testing, SU6668 inhibited the 
growth of established human tumor xenografts in mice. However, this drug, 
too, has associated with an unacceptable toxicity profile, and further clinical 
investigations of this agent are not planned. 
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ZD6474 is another orally administered small molecule inhibitor of 
VEGFR2 (Flk-l/KDR), and to a lesser extent, it inhibits the epidermal 
growth factor receptor (EGFR). In preclinical xenograft models ZD6474 
showed dose-dependent inhibitory effects on tumor growth, and in phase I 
studies ZD6474 appeared to be well-tolerated. With dose escalation, grade 3 
thrombocytopenia, diarrhea, and rash were observed (the latter, perhaps due 
to its anti-EGFR properties). Studies comparing the efficacy of this drug 
with that of gefitinib (an EFGR tyrosine kinase inhibitor) are ongoing as is a 
study of this drug in combination with gefitinib. A randomized study of 
ZD6474 alone or in combination with paclitaxel and carboplatin in patients 
with advanced NSCLC is planned. ZD6474 is also being tested in patients 
with chemotherapy responsive SCLC. 

Other oral anti-angiogenic small molecule inhibitors of the VEGFR-2 
tyrosine kinase that are in the earliest phases of development include CP- 
547,632, CO-358,774 and ZD4190. 

8. CONCLUSIONS 

Interferons have been tested in lung cancer trials without significant 
benefit. GMCSF gene modified tumor vaccines appear to utilize cytokine 
response to improve survival in lung cancer. In addition, newer agents that 
target specific enzymes in the cancer cascade, such as COX-2 inhibitors and 
anti-VEGF are currently under investigation based on promising early 
studies. Most of these agents, in some fashion, target angiogenesis by 
blocking complex processes involved in new blood vessel formation. 
Interactions between COX-2, VEGF and other mitogenic pathways exist, 
and we are now acquiring the knowledge to target treatment for lung cancer 
successfully. 
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CYTOKINES IN THE TREATMENT OF ACUTE 
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1. INTRODUCTION 

Over the past decade, several cytokines have been evaluated as adjuncts 
to the chemotherapeutic combination regimens used to treat patients with 
acute leukemias. Myeloid growth factors, in particular granulocyte colony- 
stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating 
factor (GM-CSF), have been used to shorten the duration of chemotherapy- 
induced neutropenia and thereby reduce the incidence and severity of 
infections that often occur with acute myeloid leukemia (AML) and acute 
lyrnphoblastic leukemia (ALL) regimens. Furthermore, these growth factors 
have been used to recruit dormant myeloid leukemia cells into the S-phase of 
cell cycle where, theoretically, they are more susceptible to the antileukemic 
effects of such agents as cytarabine. The benefit and safety of the addition of 
these cytokines before, during, and after chemotherapy has been examined in 
several prospective randomized trials. In general, a reduction in duration of 
neu.tropenia and absence of risk of leukemia stimulation has been reported. 
However, few studies have reported a benefit in prolonging the duration of 
disease-free survival @FS) or overall survival (0s). 

Other cytokines, including interleukins and thrombopoietin, have also 
been evaluated for their ability, in theory, to recruit the immune mechanisms 
to eradicate the residual leukemia burden after chemotherapy and stimulate 
platelet production. Despite significant advances in the discovery of 
cytokines and in understanding their mode of action, their clinical 
application has been generally restricted to the adjuvant setting to enhance 
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the patient's immune system. This limitation is mainly related to the inherent 
difficulties of administration of such biological agents. Here we summarize 
the clinical experience with these growth factors and cytokines in treating 
patients with acute leukemias, and we attempt to arrive at general 
conclusions and recommendations based on the available data. The role of 
cytokines in the stem cell transplantation setting is discussed elsewhere in 
this volume. 

2. MYELOID COLONY-STIMULATING FACTORS 

2.1.1 Acute Myeloid Leukemia (AML) 

The use of myeloid colony-stimulating factors such as GCSF and CM- 
CSF in the setting of induction or consolidation therapy for patients with 
AML has been investigated for more than a decade.'"' A large number of 
clinical trials have examined whether these agents can shorten the duration 
of chemotherapy-induced neutropenia and reduce the incidence of infections 
(Table 1). A second objective of a number of studies was to evaluate the 
efficacy of these growth factors to enhance the antileukemic effects of 
chemotherapy by recruiting dormant leukemia cells into a sensitive phase of 
the cell cycle (Table 2). This is based on the premise that clonogenic 
leukemic cells are quiescent, and as a result resistant to the effects of 
standard chemotherapeutic agents. The use of growth factors may therefore 
activate these cells and promote their responsiveness to chemotherapy.' 
Several preclinical studies demonstrated that simultaneous exposure of 
leukemic cells to chemotherapy and cytokines enhances the cytotoxic effects 
of chemotherapy, in particuIar the ceIl cycle-specific drugs such as 
~ytarabine.~-'O Furthermore, concomitant exposure of leukemic cells to 
cytarabine and growth factors resulted in an increased level of the active 
cytarabine-triphosphate (Ara-CTP) and increased DNA uptake of 
radiolabeled cytarabine. ' ' 
2.1.2 Post-chemotherapy trials 

Initially, a significant concern in the use of CSFs during AML induction 
therapy was that stimulation of residual normal precursors in the marrow 
may increase their sensitivity to chemotherapy and lead to prolonged 
cytopenias. Another concern, based on anecdotal reports in patients, was the 
stimulation of growth of leukemia cells. However, the safety of 
administering growth factors before, during and after induction 
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chemotherapy has now been borne out by the results of small exploratory 
studies as well as large randomized trials (Tables 1 and 2). 

Table I .  Prospective randomized trials of myeloid colony-stimulating factors after induction 
therapy for AML 

Patient Age 
Reference number (years) CSF type Findings 

GM-CSF Shorter duration of neutropenia 
GM-CSF 

G-CSF 

G-CSF 

G-CSF 

GM-CSF 
GM-CSF 
G-CSF 

G-CSF 
G-CSF 
G-CSF 

Shorter duration neutropenia, 
reduced infectious and treatment- 
related toxicity, improved OS 
Shorter duration neutropenia, 
increased CR rate 
Shorter duration on neutropenia, 
decreased duration but not 
incidence of infections, shorter 
duration of fever and antibiotic 
use 
Shorter duration of neutropenia; 
reduction in duration of fever, 
parenteral antibiotic use and 
hospitalization 
Decreased CR rate 
Shorter duration of neutropenia 
Shorter duration of neutropenia, 
shorter duration of antibiotic use 
Shorter duration of neutropenia 
Shorter duration of neutropenia 
Shorter duration of neutropenia, 
intravenous antibiotic/antifingal 
therapy and hospitalization 

* Consolidation therapy in CR only studies 

The almost universal observation in trials in which either G- or GM-CSF 
was administered after the completion of chemotherapy has been that 
neutrophil recovery was accelerated by approximately 2-5 days.'2-21 No 
comparative trials have been reported, but there are no indications that one 
cytokine may be superior to the other in this regard. Similarly, the theoretical 
concern of an adverse effect on platelet recovery seems not to be relevant to 
the clinical setting. Despite the consistent findings, however this strategy has 
not become the standard of care because it is not clear that such acceleration 
of neutrophil recovery is clinically meaningfuL3 The shorter duration of 
neutropenia in several studies was not accompanied by a reduction in the 
incidence of documented severe or fatal infections. 

12, 15, 20 Furthermore, in 
the majority of these studies, the complete remission (CR) rate, 

12, 15-19 

disease-free survival (DFS), 15-18, 20 and overall survival (0s)  12, 14-18 did not 
differ between patients receiving and not receiving the growth factor. Some 
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studies showed an increase in the CR rate,13' l4 and even the OS for patients 
who received the growth factor.13 However, the possibility of other 
confounding issues contributing to this difference has been r a i ~ e d . ~  In 
particular, a higher rate of severe infections and a shorter median survival 
than expected in the placebo group were noted as possibly contributing to 
the differences in the overall survival rate reported in the study by Rowe et 
aL3 

Table 2. Prospective randomized trials of CSFs used in "priming" AML for therapy 
Referen Patient Age 

ce number (years) CSF type Findings 
23 102 15-60 GM-CSF No response /survival benefit 

2 60 
16-66 
Median 
65 
18-60 

GM-CSF 
GM-CSF 
GM-CSF 
GM-CSF 
GM-CSF 

GM-CSF 
G-CSF 
G-CSF 

G-CSF 

GM-CSF 
GM-CSF 

No response /survival benefit 
No response /survival benefit 
No response /survival benefit 
Improved 2-year DFS 
No response /survival benefit, 
increased side effects 
No response /survival benefit 
No response /survival benefit 
No response /survival benefit 

No response /survival benefit, 
increased side effects 
No response /survival benefit 
Increased time to progression 
(trend) 

*Studies in relapsedlrefractory patients 

' 

Similarly, uncontrolled 22 and prospective randomized trials 20 have 
investigated the benefit of administering growth factors after intensive 
consolidation chemotherapy to patients who achieved CR. In the study by 
Harousseau et al, 194 patients in CR after induction therapy were 
randomized to receive G-CSF (100 patients) or no G-CSF (94 patients) after 
two courses of intensive consolidation chemotherapy. 20 The median 
duration of neutropenia, the median duration of hospitalization and the 
median duration of antifungal therapy were lower for the G-CSF group 
whereas, the incidence of microbiologically documented infections, toxic 
death rate, two-year DFS, and the two-year OS were not affected by G-CSF 
admini~tration.~' 

Another important issue is the difficulty of discerning the effect of 
schedule and dose of chemotherapy because the agents and their 
dose/schedule varied considerably in the reported trials (Table 3). 
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Table 3. Chemotherapy schedules in various trials 
Reference Chemotherapy Schedule CSF type and dose 

D 45mglm2 x 3 days, 
12 A 200mglm2 x 7 days GM-CSF 5pgkg daily, start day 8 

D 60mg/m2 x 3 days, 
A 25mglm2 x 1 then GM-CSF 250pglm2 daily, start day 11 after 

13 100mg/m2 x 7 days AML-free marrow 
D 45mglm2 x 4 days, 

14 A 200mgh2 x 7 days G-CSF Spgkg daily, start day 8 
D 45mglm2 x 3 days, G-CSF 400pglm2 daily, start day 11 if marrow 

15 A 200 mglm2 x 7 days blasts 4 %  on day 10 
D 45mglm2 x 3 days, 
A 200mglm2 x 7 days, 

16 E 100mglm2 x 5 days G-CSF Spgkg daily, start day 8 
D 45mg/m2 x 3 days, 

23 A 200mg/m2 x 7 days GM-CSF Spgkg daily, start day 8 or day -1 
D 45mdm2 x 3 days, 

2 1 A 200&/m2 x 7 dais GM-CSF 5pgkg daily, start day 8 or day - 
D 30mglm2 x 3 days, GM-CSF Spgkg daily, start day before 

30 A 200rnglm2 x 7 days Daunorubicin 
Id 12mglm2 x 3 days, 
A 3glm2 x 8 doses, 

17 E 75mg/rn2 x 7 days G-CSF Spgkg daily, start day 8 
G-CSF 200pglm2 daily, start 48 hours after 

18 Variable chemotherapy 
DAT vs. ADE vs MAC for 

19 induction G-CSF 293pg daily, start day 8 
Id 8mg/m2 x 3 days, 
A 200mglm2 x 7 days 
ICC1: M 12mglm2 x 2 days, 
A 3glm2 x 8 doses 
ICC2: Am 150mglm2 x 5 G-CSF Spgkg daily, start day after 

20 days, E 100mglm2 x 5 days chemotherapy 
A: cytarabine; D: daunorubicin; E: etoposide; Id: idarubicin; M: mitoxantrone; T: 
thiog&ine, ICC: intensive consolidation chemotherapy 

However, a similar reduction in the duration of neutropenia by several 
days as well as a lack of effect in the incidence of relapse in the majority of 
these studies suggests that the effect of the cytokines is independent of the 
regimen or schedule. This is best demonstrated by the results of the study by 
the Australian Leukemia Study Group (ALSG) who administered G-CSF 
after the completion of high-dose cytarabine containing chemotherapy and 
reported a reduction in the duration of neutropenia of 4 days (p=0.0005) in 
patients who received the cytokine.17 This is of a similar magnitude to other 
studies employing standard-dose cytarabine. 12-16,21,23 Other issues that hinder 
direct comparison of these studies include the differing frequencies of 
monitoring blood counts, different age ranges of the study populations 
(Table I), lack of uniformity of time of initiation and duration of growth 
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factor support, differing outcome among the placebo groups, and diverse 
decision-making processes regarding antibiotic therapy and h~s~italization.~ 
Nevertheless, the uniform conclusion of most of these trials was that growth 
factors may be safely administered after chemotherapy to patients with AML 
and that they accelerate the recovery of neutrophils. Then the question would 
be whether there are any disadvantages to their use in this setting. The 
answer would relate to the economics of such a strategy and whether any 
benefits justify the significant cost that may be associated with such a 
universal approach. 

Several of these randomized studies have reported a beneficial effect on 
the duration of fever, parenteral antibiotic use, and hospitalization (Table 1) 
leading to the suggestion of an economic impact related to the use of growth 
factors.15, 17, 18, 20 An economic analysis of the study by the Southwest 

Oncology Group (SWOG) did not demonstrate a reduction in the overall 
cost of supportive care despite the beneficial effect of G-CSF on the duration 
of neutropenia and infections.15, 24 Conversely, according to the study by the 
Eastern Co-operative Oncology Group (ECOG), the use of GM-CSF was 
associated with lower costs, in addition to a survival benefit and a reduction 
in duration of neutropenia and severity of infections. 13, 25 The costs of 
therapy in the placebo groups in the two trials were significantly different 
leading to the suggestion that the cost-analysis could be institution specific.3 

In general, based on the available data, no specific recommendations 
regarding the use of G-CSF and GM-CSF in the post-induction period can be 
made with certainty. Although it is reasonable to conclude that these agents 
are safe to administer and efficacious in shortening the neutropenic period, 
whether universal prophylactic administration translates into a clinical 
benefit remains unclear. Based on the available data, it may be more 
appropriate to consider initiating these growth factors in elderly patients who 
develop fever and infection, in particular those whose expected duration of 
cytopenias is likely to be long.3 

2.1.3 "Priming" trials 

Disease recurrence is the most important cause of treatment failure in 
AML. This is particularly true for the younger patients who are able to 
withstand the toxic effects of therapy and avoid therapy-related mortality. 26 

The likely cause of such failure is the minimal residual disease related to the 
leukemia cells' escape from the cytotoxic effects of chemotherapy. 
Furthermore, primary resistance to chemotherapy, particularly in the elderly 
patients, accounts for another major cause of treatment failure and may be 
related to the existence of a small population of quiescent clonogenic blasts 
that are resistant to the effects of chemotherapy.' 
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A number of in vitro and in vivo studies demonstrated the ability of 
growth factors to recruit these cells into a sensitive phase of the cell cycle, 
thereby rendering them more susceptible to the cytotoxic effects of 
chemotherapy. 11, 27 Exposure of leukemic cells to growth factors and 
cytarabine increases intracellular ara-CTP and DNA uptake of radiolabeled 
cytarabine into the leukemia cells.61 73 These preclinical studies provided the 
rationale for a number of trials investigating the safety and efficacy of 
concomitant administration of colony-stimulating factors with chemotherapy 
(Table 2). 

In general, this strategy has not been consistently effective, and in most 
trials no significant clinical benefit was reported (Table 2). Witz et al, in a 
study by the Groupe Ouest Est Leucemies Aigues Myeloblastiques 
(GOELAM), reported a significant improvement in the two-year DFS of 
patients who received GM-CSF during and after induction chemotherapy, 
compared to that of the placebo group (48% versus 21%; ~ = 0 . 0 0 3 ) . ~ ~  This 
effect was highly significant in the cohort of patients aged 55 to 64, but only 
marginal in patients 2 65 years of age. A trend toward a longer OS in the 
GM-CSF group was observed (P=0.082). The investigators concluded that 
concomitant administration of GM-CSF with chemotherapy and thereafter 
shortened the time to neutrophil recovery and prolonged DFS and OS, 
particularly in patients 55-64 years of age. However, the CR rate was not 
improved.28 More recently, Lowenberg et al, conducted a multicenter trial in 
which patients aged 18 to 60 with newly diagnosed AML received 
cytarabine-based chemotherapy with G-CSF (321 patients) or without G- 
CSF (319 patients).29 The regimen consisted of two cycles of chemotherapy 
with cycle one including cytarabine 200 mg/m2 daily on days 1-7 and 
Idarubicin 12 mg/m2 on days 6, 7, and 8. Cycle 2 consisted of cytarabine 
1000 mg/m2 every 12 hours on days 1-6 and amsacrine 120 mg/m2 on days 
4, 5, and 6. G-CSF was given concurrently with chemotherapy only. After a 
median follow-up of 55 months, a higher rate of DFS was reported in the 
patients who received G-CSF (42% versus 33% at 4 years, P=0.02), owing 
to a reduced probability of relapse [relative risk, 0.77; 95% confidence 
interval (CI) 0.61 to 0.99; P=0.04]. Overall, the OS and DFS were not 
significantly better in the G-CSF treated patients ( ~ = 0 . 1 6 ) . ~ ~  However, in the 
subgroup of patients with standard risk disease, the OS at 4 years was better 
for the patients receiving G-CSF (45% versus 35%; relative risk of death, 
0.75; 95% CI, 0.59 to 0.95; P=0.02) and DFS was 45% versus 33% (relative 
risk, 0.70; 95% CI, 0.55 to 0.90; P=0.006). The outcome for patients with 
unfavorable prognosis was not improved and the small number of patients in 
the favorable subgroup limited a meaningful analysis. 

In contrast, several ixials examining the role of "priming" using either 
GM-CSF or G-CSF in newly diagnosed patients have not reported any 
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improvements in CR rate, DFS, or OS.~', 30-33 Similar studies in previously 
treated patients with relapsed or refractory AML have also failed to 
demonstrate a significant However, in these studies as well some 
uncontrolled trials 36' 37 the safety of this approach was demonstrated, with 
no evidence of an adverse effect on the outcome. However, Zittoun et al, 
found a significant decrease in the CR rate when GM-CSF was administered 
to patients after chemotherapy (with or without concomitant therapy during 
ind~ction).'~ This lower CR rate appeared to be related to increased 
resistance and persistent leukemia. 

2.1.4 Recommendations 

Differences in the design of the above trials including the sequence of 
administration of growth factors (before, during and after), differences in 
chemotherapeutic agents and patient characteristics make direct comparison 
of these studies difficult and limit the value of any general conclusions. 
Additional studies remain necessary before the strategy of priming with 
growth factors can be recommended as standard of care.3, Furthermore, it is 
possible that certain subsets of patients may be more susceptible to the 
benefits of such therapy.38 It may therefore be more appropriate to design 
studies in specific subgroups, perhaps those with unfavorable cytogenetic 
abnormalitie~.~ 

2.1.5 Acute lymphoblastic leukemia (ALL) 

The success of treatment of ALL in children and younger adults has been 
largely related to risk-adapted application of intensified regimens for 
induction and consolidation therapy as well as improvements in supportive 
care.39' 40 Adaptation of successful pediatric regimens has led to significant 
improvements in the treatment of adult patients manifested by CR rates 
similar to the pediatric population.40 However, in contrast to the pediatric 
population, the duration of disease-free survival has remained relatively 
short with only 25% to 50% of adults achieving long-term DFS.~', 41 Further 
attempts in improving the outcome, centered on the improvements in 
understanding the biology of the disease, are leading to the development of 
risk-based and molecularly targeted regimens.40 Infectious complications 
during the prolonged periods of neutropenia associated with these dose- 
intense regimens have been a major cause of morbidity and mortality. As a 
result, several groups have investigated the role of growth factors in 
accelerating neutrophil recovery and improving the overall outcome.4245 

Several prospective, randomized studies in and a d ~ l t s ~ ~ - ~ ~  
with ALL have investigated the overall safety and benefit of administration 
of growth factors together with or after dose-intensive ALL therapy (Tables 
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4 and 5). Most of the investigators concluded that administration of growth 
factors reduced the hematological toxicity of dose intensification and led to 
better patient compliance with the treatment schedule. Ohno et a1 compared 
the efficacy of three doses of G-CSF (2, 5 ,  and 10 pgkg per day) and 
recommended a dose of 5  pgkg per day as the optimal dose.54 Delome et a1 
performed an economic evaluation of the strategy and suggested that the 
higher chemotherapy dose intensity in children with high-risk ALL was not 
associated with an increased cost of therapy.59 Overall, the use of growth 
factors to accelerate neutrophil recovery after intensive chemotherapy for 
ALL appears to reduce the duration of neutropenia and may allow an 
increase in chemotherapy dose intensity. In some studies, the method was 
associated with an improved CR rate and longer survival. 

Table 4. Pediatric studies of growth factors in ALL 
Patient 

Reference Number CSF type Results 
46 34 G-CSF Reduced incidence and duration of febrile 

neutropenia, reduced incidence of culture-confirmed 
infections, and shorter duration of antibiotic use 

47 56 G-CSF Reduced duration of neutropenia during continuation 
phase 

48 17 G-CSF Reduced duration and severity of neutropenia and 
reduced hospital stay 

49 67 G-CSF Increased chemotherapy dose intensity; reduced 
duration of neutropenia, fever, intravenous antibiotics, 
and hospitalization, prolonged thrombocytopenia; no 
benefit for EFS 

50 46 G-CSF Reduced hospitalization rate 
5 1 287 G-CSF Reduced duration of neutropenia; no benefit in 

incidence of febrile neutropenia, duration of 
hospitalization, therapy completion time, EFS, or OS 

52 164 G-CSF Reduced duration of hospitalization and fewer 
documented infections 



322 CYTOKINES AND CANCER 

Table 5. Studies of growth factors in adult ALL 
Patient CSF 

Reference Number type Results 
53 67 G-CSF Reduction of duration of neutropenia, reduced delays 

and earlier completion 
54 4 1 G-CSF Faster neutrophil recovery, reduced incidence of 

febrile neutropenia 
55 53 G-CSF Reduction in duration of neutropenia, reduced 

incidence of febrile neutropenia and documented 
infections 

56 198 G-CSF Reduction of duration of neutropenia and 
thrombocytopenia and hospitalization, higher CR 
rate and fewer deaths during induction, no effect on 
DFS and OS 

57 67 GM- Improved incidence of mucositis during induction 
CSF 

5 8 64 G-CSF Reduced duration of neutropenia, lower infection 
rate, faster completeion of induction consolidation, 
shorter hospital stay, higher 2-year survival, lower 2- 
year relapse rate 

3. OTHER CYTOKINES USED IN ACUTE 
LEUKEMIAS 

The use of interleukin-2 (IL-2) in hematological malignancies, in 
particular acute leukemias, has been limited by the inability to mount a host 
cell-mediated immune response as a result of host-related and 
chemotherapy-induced immunosuppression. The known ability of IL-2 to 
recruit T-cells, particularly natural killer (NK) cells, as well as the capacity 
of the immune system to eradicate minimal residual leukemia as seen in the 
setting of donor lymphocyte infusions, provided the rationale for studies of 
IL-2 in acute le~kemias.~O-~~ In a number of studies clinical responses were 
reported but generally responses were observed only in patients with limited 
disease.63' Toxicity in the form of fever, hypotension, vascular leak, 
thrombocytopenia, rash, and sepsis has generally been acceptable, in 
particular with the use of lower-dose regimens.66 

Because of the higher likelihood of efficacy of such biological therapy in 
patients with minimal leukemia burden, IL-2 has been investigated more 
recently as maintenance therapy for patients in second or later remission671 68 

or after autologous or allogeneic t r an~~lan ta t ion .~~-~~  The efficacy of 
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administration of IL-2 in these trials then suggested that the use of IL-2 in 
first CR might be relatively more benefi~ial.~' Cortes et al, administered IL-2 
4.5 x 10' u/m2 daily by continuous infusion for 12 weeks, plus boluses of 1 
x lo6 ulm2 on day 8 and weekly thereafter to 18 patients with AML in first 
CR and compared them to historical controls. Although IL-2 administration 
was feasible and tolerable, no statistically significant improvements in DFS 
and CR duration were reported.75 The Cancer and Leukemia Group B 
(CALGB) examined the tolerability of IL-2 after intensive chemotherapy in 
35 elderly patients with AML in first C R . ~ ~  Patients received low-dose IL-2 
(1 x lo6 ~ ~ / m ~ / d a ~  subcutaneously for 90 days) or low-dose IL-2 with 
intermittent pulse doses (6-12 x lo6 IU/m2/day subcutaneously for 3 days) 
every 14 days for a maximum of 5 pulses. Both regimens were well tolerated 
with similar toxicity profile including grade 1-2 fatigue, fever, nausea, 
anemia, injection site reactions, and thrombocytopenia. Grade 3-4 
hematological toxicity was unc~mmon.'~ The median OS for the group was 
1.1 years. Similarly, Sievers et a1 administered IL-2 9 x lo6 W/m2 daily by 
continuous infusion intermittently to 21 children in CR and reported 
reasonable t~lerabili ty.~~ 

Unfortunately randomized clinical trials examining the benefit of 
administration of IL-2 to patients in first CR have been hampered by slow 
accrual, generally related to the moderate side effects associated with 
administration of this cytokine and the exact role of IL-2 in the management 
of patients with acute leukemia remains unclear. 

Other cytokines have been evaluated in the clinical management of 
patients with acute leukemias. Recombinant human megakaryocyte growth 
and development factor (rHuMGDF) is a potent thrombopoietic agent and 
has been modified by the addition of a polyethylene glycol moiety to 
increase its circulating half-life. Randomized, placebo-controlled trials 
examining the role of pegylated rHuMGDF (PEG- rHuMGDF)in acute 
leukemia therapy have been reported.78' 79 Archimbaud et a1 randomized 108 
adult patients with de novo AML to receive one of two dose schedules of 
PEG- rHuMGDF or placebo. The median time to transfusion independent 
platelet recovery (> 20 x 1 0 ~ 1 ~ )  was not affected. Similarly, there was no 
apparent effect on stimulation of leukemia, time to neutrophil recovery, or 
red blood cell transfusion re~pirements.~~ Schiffer et al, randomized newly 
diagnosed AML patients to receive either 2.5 or 5 pglkglday of PEG- 
rHuMGDF or a placebo after the completion of chemotherapy.78 Patients 
receiving the cytokine achieved a higher platelet count in remission but 
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platelet transfusion requirements or CR rate did not improve. Both studies 
reported good tolerability of the agent.78' 79 

Human interleukin-11 (IL-11) is a multi-potential cytokine that is 
involved in numerous biological activities including hematopoiesis and also 
displays anti-inflammatory properties. IL-11 is used clinically to treat 
chemotherapy-induced thrombocytopenia. In an effort to reduce the toxicity 
of treatment in older patients (2 60 years), Estey et a1 treated 5 1 patients who 
had AML or advanced myelodysplastic syndrome (MDS) with gemtuzumab 
ozogamicin (GO) with or without IL-11 Although addition of IL-11 to GO 
was associated with an increased CR rate, no benefit for survival was 
reported. Similarly, when compared with historical patients treated in the 
same institution with standard chemotherapy, no benefit could be 
demonstrated for GOIIL-11 treated patients.80 Administration of IL-11 has 
been reported to reduce the incidence of bacteremia in patients with acute 
leukemias undergoing chemotherapy.81 Other studies have examined the 
toxicity and possible benefits of IL-6, IL-1 P, and I L - ~ . ~ ~ - ~ ~  

4. CONCLUSIONS AND PERSPECTIVES 

Over the past several decades, increased understanding of the biological 
effects of a number of cytokines and chemokines has led to the evaluation of 
their role as adjuncts in the management of patients with hematological 
malignancies. A number of clinical trials have examined the role of myeloid 
colony-stimulating factors in treating patients with acute leukemias and 
have, in general, suggested a beneficial effect by reduction of duration of 
neutropenia as well as an improvement in dose intensity of chemotherapy. 
However, the majority of these studies have not reported a meaningful 
benefit in increasing the OS or DFS, although a recent trial indicated an 
improvement for in OS and DFS in patients standard risk AML when G-CSF 
was administered during induction chemotherapy.29 Therefore, the exact 
clinical role of colony-stimulating factors in the management of acute 
leukemias remains undefined. 

Other cytokines and interleukins have also been evaluated for their 
theoretical effects in recruiting the immune system to eradicate minimal 
residual leukemia. In general, the clinical application of these agents has 
been limited by the difficulties inherent to the biological function and 
delivery of such pleiotropic agents, which in the doses needed to achieve the 
desired immune enhancement, are generally associated with significant side 
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effects. More recently, antibodies to a number of cytokine receptors such as 
GM-CSF and IL-3 have been used to selectively deliver toxins to leukemia 
cells.85' 86 Their benefit for patients with leukemia await evaluation in large- 
scale clinical trials. Better understanding of the mechanism of action of 
various cytokines and better delineation of the intracellular signaling 
pathways downstream of their receptor will likely lead to the development of 
more specific and less toxic agents to be evaluated in the treatment of 
patients with leukemia. 
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1. INTRODUCTION 

The availability of cytokines influencing hematopoiesis - particularly 
myeloid growth factors - has transformed hematopoietic stem cell 
transplantation (HSCT) dramatically [I]. The length of neutropenia 
following myeloablative therapy and the infusion of marrow-derived stem 
cells used to be of the order of 2-4 weeks in the 1980s before the availability 
of granulocyte (G-CSF) and granulocyte-monocyte (GM-CSF) colony- 
stimulating factor. This was associated with the development of serious 
infections during a period where there was concomitant significant tissue 
damage from the high-dose conditioning regimen as well as acute graft- 
versus-host disease (GVHD) in case of allogeneic transplantation. 
Simultaneous occurrence of more than one of these complications often 
predisposed to the development of a life-threatening situation. Myeloid 
growth factors shortened the duration of neutropenia by several days - to 
roughly 2 weeks or so. 

Subsequently, the use of cytokines facilitated collection of mobilized 
stem cells from the blood in significantly greater quantities than available 
from the marrow - hastening myeloid engraftment even more. These days, 
with the exception of cord blood transplants where the small quantity of 
progenitor cells available still results in prolonged neutropenia post- 
transplant, neutropenia following HSCT is not a source of significant 
complications because of its brevity and predictable reversibility. Cytokine- 
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mobilized blood-derived progenitor cells have replaced marrow-derived 
stem cells completely for autotransplantation, and to a substantial extent for 
allogeneic transplantation [2]. 

Despite reduction in the extent of red cell transfusions required after 
allogeneic HSCT, the impact of erythropoietin (EPO) on the outcome of 
autologous HSCT has been less clear although EPO use is common (Table 
1). Cytokines aimed at abbreviating thrombocytopenia (IL-11; oprevelkin) 
have had no discernible clinical impact at all; largely because of their poor 
efficacy and specificity, and significant adverse effects. 

Certain proinflammatory cytokines not directly involved in 
hematopoiesis play a critical role in initiating, augmenting and maintaining 
GVHD [3]. These are interleukin-2 (IL-2), tumor necrosis factor-a (TNFa), 
interleukin-1 (IL-I), interleukin-6 (IL-6), interferon-a (IFN-a), and 
interferon-y (IFN-y). Antagonists to some of these cytokines have been used 
to prevent or treat GVHD [4], and some of the cytokines have been used to 
stimulate GVHD or graft-versus-tumor (GVT) reactions [ 5 ] .  The utility of 
cytokines and their antagonists as imrnunomodulatory agents in the setting 
of HSCT is much less clear and their use for this purpose is still scattered 
(Table 1). 

Table 1. Cytokines used in hematopoietic stem cell transplatation 
Autografts Allografts 

G-CSF Very common Common 
Erythropoietin Common Common 
GM-CSF Uncommon Uncommon 
Oprevelkin Uncommon Rare 
IFN-a Uncommon Rare 
IL-2 Rare Rare 
IFN-y Rare Rare 

Details of cytokine use for immunomodulation in HSCT, the use of 
investigational cytokines such as IL-8, ancestim, IL3, thrombopoietin, and 
flt3 ligand, and the use of cytokines to reduce non-hematologic toxicity 
(protection from tissue damage or enhancement of repair) have been 
discussed in depth in a recent specialized text on HSCT [6-81. The 
discussion in this chapter will be confined to the use of cytokines for 
mobilization of stem cells and acceleration of engraftrnent after HSCT. 

2. MOBILIZATION OF STEM CELLS 

How exactly hematopoietic progenitor cells normally resident within the 
marrow move into the bloodstream in large quantities with cytokine 
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stimulation is not known [9]. It is a complex process involving changes in 
the adhesion and migratory capacity of the progenitor cells within the 
marrow, and has been reviewed in depth recently [lo]. Modulation of 
adhesion molecules results in decreased affinity of these cells for the marrow 
microenvironment enabling them to enter the circulation. Change in 
metalloproteinase expression with altered proteolysis of basement 
membranes and leukocyte migration also contribute. Direct action of 
cytokines on cells probably plays a minor role because cytokines with 
differing cellular targets and biologic activity result in the mobilization of a 
similar spectrum of hematopoietic progenitor cells into the blood [9]. 

In the steady state, under 1 in 1000 circulating nucleated cells in the 
blood is a CD34+ cell (putatively containing the hematopoietic stem cell 
population). The original attempts at stem cell harvest by leukapheresis were 
made during spontaneous (i.e. not cytokine-aided) recovery from 
chemotherapy [l 11 or in the steady state [12] and were effective at collecting 
very modest quantities of cells which resulted in slow andlor incomplete 
hematopoietic reconstitution when used for transplantation after 
myeloablative therapy. G-CSF stimulation was found to increase the number 
of progenitor cells circulating in the blood several-fold facilitating collection 
of substantial numbers of cells with a limited number of apheresis 
procedures [13]. Stem cells are now always collected after cytokine 
stimulation; with or without preceding chemotherapy. 

3. COLLECTION OF STEM CELLS FOR 
AUTOTRANSPLANTATION 

Stem cells for autotransplantation are harvested from patients who have 
almost always been exposed to chemotherapy previously, and in whom use 
of further chemotherapy is usually possible. This means that stem cells can 
be collected during cytokine-stimulated hematologic recovery from 
myelosuppressive chemotherapy [14-181 or after the administration of 
cytokines alone [19-231. Table 2 compares the two techniques - with and 
without chemotherapy - for mobilizing stem cells. The two methods are not 
mutually exclusive. If one mobilization approach fails, another can always 
be attempted. 
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Table 2. Comparison of cytokine and chemotherapy-cytokine regimens for stem cell 
mobilization and collection 

Cytokines Chemotherapy-cytokine 
Applicability Autografts and Allografts Autografts only 
Convenience More convenient 
Predictability of collection Predictable 
timing 
Complications Minimal 
Number of stem cells Less 
collected 
Prior chemotherapy Preferred with more 

extensive prior therapy 
Bone marrow function Preferred if compromised 

Cytokine dose Usually higher 

Less convenient 
Less predictable 

Significant 
More 

Preferred with less extensive 
prior therapy 
Preferred if not 
compromised 
Usually lower 

The chemotherapy used for stem cell mobilization can be disease-specific 
chemotherapy (e.g. ESHAP in lymphoma or high-dose cytarabine in acute 
myeloid leukemia) or mobilization chemotherapy. The latter usually consists 
of cyclophosphamide with or without other agents such as etoposide. This is 
followed by agents such as G-CSF or GM-CSF or both together 
(simultaneously or sequentially). G-CSF is the most commonly used 
cytokine. The usual dose of cytokine used ranges from 5 to 10 pgkg daily 
starting a day or two after completion of chemotherapy, and it is continued 
until stem cell collection is completed. The use of chemotherapy to mobilize 
stem cells has been associated with the collection of cytogenetically normal 
cells even in the presence of marrow involvement with malignant cells 
[16,24,25]; something that usually cannot be achieved with the use of 
growth factors alone. Recent evidence suggests that relatively low doses of 
cytokines are sufficient for stem cell mobilization and collection when used 
in conjunction with chemotherapy [17,18] whereas the use of cytokines 
alone usually necessitates much higher doses. 

Typically G-CSF is used as a single agent for mobilization, and is more 
effective than GM-CSF. While the usual doses used range from 10 to 16 
pgkg , it can be used in doses as high as 24-32 pgkg [22,23]. There is 
evidence to suggest that the .addition of G-CSF to patients receiving GM- 
CSF can increase progenitor yields dramatically [2 11. 

Collection of stem cells in patients with good marrow function rarely 
poses a problem. Patients with compromised marrow function from disease 
or prior therapy pose a greater challenge. Figure 1 shows our approach to 
stem cell collection in patients with myeloma whose marrow function is 
poor [26] - and can be used as a prototype for other diseases. 
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Figure I. Approach to stem cell mobilization and collection in patients with multiple 
myeloma and compromised bone marrow function [26]. The key is cytoreduction, if needed, 
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4. COLLECTION OF STEM CELLS FROM 
NORMAL INDIVIDUALS 

While a low dose of stem cells is usually associated only with slow 
hematopoietic recovery after autotransplantation, it can result in higher 
transplant-related mortality and lower disease-free survival after allogeneic 
transplantation [27]. It is therefore critical to get a good quantity of stem 
cells from healthy donors. Using chemotherapy to obtain stem cells for 
allogeneic transplantation is obviously not an option. The usual approach 
therefore is to use relatively high doses of cytokines. Healthy donors are 
usually treated with G-CSF at doses ranging from 5 to 15 pgkg daily for 
mobilization of stem cells. G-CSF stimulation increases the quantity of cells 
collected from the blood dramatically compared with an unstimulated 
marrow harvest. Tables 3 shows that the cellular constitution of 
unstimulated marrow and G-CSF-stimulated peripheral blood is significantly 
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Table 3. Comparison of cell subpopulations (median, range) in unstimulated marrow and G- 
CSF-peripheral blood collections in 40 normal donors [28] 
Cell population Marrow harvest G-CSF-stimulated P 

(YO) blood hawest (YO) 
CD34 1.2 (0.3-2.9) 0.7 (0.2-2.1 <0.0001 

This results in significantly higher collections from the blood than fiom the 
marrow (Tables 4 and 5). 

Table 4. Comparison of nucleated and progenitor cell yields from unstimulated marrow and 
G-CSF-stimulated peripheral blood [28]. Figures represent medians and ranges expressed per 
kg actual patient weight. 
Cell population Marrow Blood P 
TNC (1 0') 3.1 (1.6-4.5) 7.0 (2.6-14.1) <0.0001 
CD34 (1 06) 1.4 (0.3-4.2) 4.2 (1.4-19.0) <0.0001 
CD34+ CD33- (lo6) 0.9 (0.1-2.7) 2.9 (0.1-12.4) <0.0001 
CD34+ CD33+ (lo6) 0.4 (0.1-1.5) 1.3 (0.1-10.6) 0.0003 

Table 5. Comparison of irnrnunocompetent cell yields from unstimulated marrow and G-CSF- 
stimulated peripheral blood [28]. Figures represent medians and ranges expressed per kg 
actual patient weight. 
Cell population Marrow Blood P 
CD3 (10') 0.3 (0.1-0.6) 1.8 (0.7-3.7) <0.0001 
CD4 (1 06) 16 (4-31) 1 10 (36-238) <0.0001 
CD8 (lo6) 13 (3-29) 68 (26-152) <0.0001 
CD 19 (1 06) 7 (2- 17) 57 (9-154) <0.0001 
CD16 (lo6) 5 (1-1 1) 21 (5-86) <0.0001 
CD25 (lo6) 4 (1-8) 25 (7-59) <0.0001 

Circulating CD34+ cells reach a peak on day 4 or 5 following initiation 
of cytokine administration indicating maximal mobilization of stem cells - 
and the best days to collect cells by apheresis [29]. Depending upon the 
target progenitor cell dose to be collected, adequate numbers can usually be 
collected in 1-2 days [30] although a small proportion of healthy donors 
requires additional apheresis. The reason for poor response to cytokine 
stimulation in otherwise normal individuals is unknown. 
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While long-term follow-up of normal individuals who received cytokines 
to donate stem cells has shown no adverse consequences [31], common 
acute side effects include bone pain, headache, low-grade fever, and nausea. 
These are usually tolerable, can be managed symptomatically, and reverse 
rapidly after discontinuation of G-CSF administration. Splenic rupture is an 
uncommon event. 

While stem cells are usually collected from the blood by leukapheresis, 
occasionally bone marrow is harvested after G-CSF stimulation. There are 
limited data to indicate possible superiority of stimulated marrow over 
stimulated blood [32], but these need to be confirmed and G-CSF-stimulated 
marrow is not commonly used in practice. Marrow is slowly being 
abandoned in favor of G-CSF-stimulated blood for allogeneic transplantation 
because of evidence suggesting superior outcome in terms of reduced relapse 
or transplant-related mortality and improved disease-free survival [2,30,33]. 
Figures 2 and 3 depict updated outcome data from a randomized 
comparison of G-CSF-mobilized blood and unstimulated marrow showing 
lower relapse and better disease-free survival with blood. The use of 
cytokine-stimulated blood does appear to increase the incidence of chronic 
GVHD significantly (albeit only modestly as long as GVHD prophylaxis is 
rigorous) [34-361. 

I Years 

Figure 2. Updated relapse rates from a randomized comparison of bone marrow (BMT) 
versus G-CSF-mobilized peripheral blood stem cell (PBSCT) allogeneic transplantation for 

hematologic malignancies [30]. 
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I Years 

Figure 3 Updated disease-free survival from a randomized comparison of bone marrow 
(BMT) versus G-CSF-mibilized peripheral blood stem cell (PBSCT) allogeneic 

transplantation for hematologic malignancies [30]. 

5. CYTOKINE USE AFTER 
AUTOTRANSPLANTATION 

Bone marrow suppression with an obligatory period of severe leukopenia 
(neutropenia), anemia and thrombocytopenia is a consistent feature of 
myeloablative high-dose chemotherapy. The use of blood-derived stem cells 
[1,2,37] and the appreciation of the importance of the number of cells 
infused [38] has shortened the period of pancytopenia after 
autotransplantation dramatically. However, there is still a period of 
pancytopenia and transfusion-dependence even with the use of an adequate 
quantity of blood-derived stem cells which can be potentially shortened with 
the use of hematopoietic growth factors. 

The use of G-CSF after autologous bone marrow transplantation reduces 
the time to neutrophil recovery by 5-8 days [39-421. While this effect is 
consistent, other attendant beneficial effects such as reduction in febrile 
episodes, antibiotic use, and hospitalization are less consistent. There is no 
impact on the duration of anemia (red cell transfusion-dependence) or 
thrombocytopenia. Most importantly, there is no survival benefit from the 
use of G-CSF after an autograft. 
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G-CSF is used at doses ranging from 5 to 10 pgkg daily, and is usually 
rounded off to the nearest vial size. It is our practice to use a single vial of 
300 or 480 pg based on patient weight as there is no evidence that higher 
doses provide greater benefit [43-451. The original practice was to start G- 
CSF within a few hours of the actual transplant (stem cell infusion). 
However, it has been shown subsequently that delaying the start of the 
growth factor until 3-5 days after the transplant does not decrease the extent 
of acceleration of myeloid recovery [46-481. Delaying the start of G-CSF is 
associated with decreased cytokine use and lower cost - a major benefit 
bearing in mind the expensive nature of the transplant procedure. The 
standard practice has been to administer G-CSF daily until the absolute 
neutrophil count (ANC) is 20.5 x 10'1~ on 3 consecutive days. We have 
shown that this results in the ANC reaching very high - and perhaps 
unnecessary - levels on the second and third days after ANC recovery [49]. 
As Figure 4 illustrates, stopping growth factor the day ANC recovers to 
20.5 x 109/L, does not compromise myeloid recovery in any way - and in 
fact decreases the amount of growth factor used further. 
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Figure 4.Duration of growth factor administration after myeloid recovery. While ANC 
continues to increase with continued growth factor administration it does not if growth factor 

is stopped as soon as ANC recovers. However, ANC does not decline in those stopping 
growth factor early [49]. 
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The data supporting the use of GM-CSF after autotransplantation are 
similar to those for G-CSF; indicating significantly more rapid resolution of 
neutropenia [50-531. Both growth factors are useful after the use of blood- 
derived stem cells too [54-581. The balance of the evidence indicates that 
myeloid recovery is faster with G-CSF than with GM-CSF [59-621. 

The effect of the type of cytokine used on immune reconstitution is 
unclear: one study suggested more rapid recovery of CD8+ cells with G-CSF 
and of CD4+ cells with GM-CSF [63]. Another study showed better T cell 
recovery with G-CSF than with GM-CSF without specifying T cell subsets. 
Since there is evidence that early immune recovery is associated with better 
outcome after autologous as well as allogeneic HSCT [64,65], it would be 
more beneficial to use the cytokine that accelerates immune recovery. In the 
study showing faster T cell recovery after G-CSF administration, time to 
disease progression was longer in patients receiving G-CSF compared to 
those getting GM-CSF. However, the patients studied had breast or ovarian 
cancer; diagnoses in which the value of high-dose therapy and 
transplantation is questionable - which makes it difficult draw any definitive 
conclusion. 

Interestingly, while erythropoietin is used fairly commonly after 
autotransplantation, the available evidence indicates that this does not reduce 
transfusion requirements despite inducing reticulocytosis [66-681. The 
reason for this is most likely due to the fact that erythropoietin levels are 
more often elevated than depressed after autotransplantation and anemia is 
the result of an inadequate hematopoietic response to erythropoietin rather 
than of erythropoietin deficiency [69]. Because of the cost of erythropoietin, 
it is particularly important to be aware of the limitations of its use after 
autotransplantation. 

The practical aspects of growth factor administration after 
autotransplantation are summarized in Table 6. The clinical development of 
ancestim (stem cell factor) and thrombopoietin has been abandoned because 
of marginal clinical benefits and/or significant adverse effects. 

In an era when myeloid growth factors were not routinely administered 
after autologous transplantation, the use of GM-CSF resulted in improved 
outcome in patients with graft failure [70]. However, these days, G-CSF or 
GM-CSF are administered routinely to all patients. In patients with slow 
engraftment or graft failure, it is reasonable to start one of the two growth 
factors if not being administered already or to add the other growth factor if 
one is already being used. 
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Table 6. Practical aspects of growth factor administration after autotransplantation 
I 1. GCSF as well as GM-CSF are acceptable agents to hasten myeloid recovery, and should I 

be administered to all patients. 
2. There is no added benefit from using G-CSF or GM-CSF doses higher than Spgkg 
daily. 
3. G-CSF and GM-CSF are administered subcutaneously. 
4. The usual daily doses used are 300 or 480 pg for G-CSF and 250 or 500 pg for GM- 
CSF; corresponding to whole vial sizes. 
5. G-CSF or GM-CSF administration should be started around day 5 (day 0 being the day 
of transplant) 
6. G-CSF or GM-CSF administration can usually be stopped the day the absolute 
neutrophil count reaches 20.5 x 1 0 ~ 1 ~  in patients who have exhibited a normal recovery 
pattern and tempo, but this should be avoided in patients experiencing slow myeloid 
recovery. 
7. Routine use of erythropoietin in not beneficial. 

6. CYTOKINE USE AFTER ALLOGENEIC 
HEMATOPOIETIC STEM CELL 
TRANSPLANTATION 

Allogeneic HSCT is fraught with problems of life-threatening toxicity; 
either from the conditioning regimen or from GVHD. The resultant 
treatment-related mortality - ranging from 10% to 50% - makes the 
procedure probably the single most hazardous medical intervention [2]. 
Leukopenia correlates strongly with transplant-related mortality [7 1; Figure 
51. It is therefore attractive to use growth factors to reduce the period of 
neutropenia to make the procedure safer. 
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14 15 16 17 18 19 20 2 1 22 
Day after allograft 

Figure 5 The relationship between the total leukocyte count ( 1 0 ~ 1 ~ )  after allogeneic bone 
marrow transplantation and the likelihood of treatment-related mortality [71]. Each of the 3 

comparison on each of the 9 post-transplant days studied is highly significant showing a much 
greater risk of death in those with lower leukocyte counts. 

Both GM-CSF and G-CSF have been used to shorten the period of 
neutropenia following allogeneic HSCT. In 3 controlled studies, the effect of 
GM-CSF in reducing neutropenia was modest and there were no other 
obvious benefits [72-741. Indeed, in the study fkom the Royal Marsden 
Hospital [72], the duration of fever was longer in GM-CSF recipients than in 
placebo recipients. These studies included patients who underwent bone 
marrow grafts from HLA-identical sibling donors. However, a placebo- 
controlled study in recipients of unrelated donor marrow grafts showed a 
trend towards increased non-relapse mortality and poorer 100-day survival 
in cytokine-treated patients [75]. The initial thought that this problem was 
confined to GM-CSF was dispelled when a similar adverse finding was 
reported in unrelated (but not related) bone marrow recipients receiving G- 
CSF [76]. 

Subsequent controlled studies of G-CSF after allogeneic HSCT [39,77- 
791 did not show any important adverse effect of growth factor 
administration, but certainly showed no beneficial effects other than 
acceleration of myeloid recovery. Most recently, a registry analysis [80] 
showed increased acute and chronic GVHD and increased transplant-related 
mortality with reduction in survival amongst acute leukemia patients 
allografted using marrow from HLA-identical siblings. Such a detrimental 
effect was not seen in blood stem cell allograft recipients [80]. 
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Based upon the obvious lack of survival benefit, the lack of long-term 
(25 years) follow-up, and adverse data fi-om bone marrow allograft 
recipients receiving growth factors post-transplant suggests strongly that 
routine myeloid growth factor use should be avoided for most allografts. 
Cord blood allografts could be an exception. Our policy, based on our own 
data on the effect of leukopenia on survival (Figure 5) is to administer G- 
CSF only if the leukocyte count on day 14 is 10.2 x lo9/L after an allograft. 

Erythropoietin has clearly been shown to reduce red cell transfusion 
requirements after allogeneic transplantation [8 1-83]. However, the use of 
blood-derived stem cells has now reduced transfusion-dependence to such an 
extent that erythropoietin is most likely to be required in patients 
experiencing bone marrow suppression from prolonged ganciclovir therapy 
or those with major ABO incompatible donors who are experiencing pure 
red cell aplasia [84,85] and is best likely to be used late (beyond 5 weeks) 
rather than early [86]. 

7. CONCLUSIONS 

Despite the number of different cytokines available and their varying 
potential actions on hematopoiesis, immune recovery, and tissue repair after 
HSCT, the cytokines that are clinically useful and relevant are few. G-CSF 
or GM-CSF are used routinely after autotransplantation to promote myeloid 
recovery, but should be used after allogeneic transplantation only if there is 
delayed engraftment or graft failure. Erythropoietin should not be used 
routinely after HSCT but is useful in selected patients beyond 4-5 weeks 
after transplant. No other cytokine has a place in routine clinical use 
presently. 
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1. INTRODUCTION 

For the last twenty years, cytokines have been examined as therapeutic 
agents because of their potential to manipulate the immune response to 
malignant cells. Typically, cytokine therapy has been aimed at either 
activating cytotoxicity or cytokine production by existing immune cells, or 
by increasing the number of immune cells by stimulating their growth and 
survival. In addition to numerous studies that have attempted to optimize 
therapeutic strategies of currently known cytokines, recent efforts have 
concentrated on defining novel cytokines with unique immune modulatory 
properties. The immune function and anti-tumor activity of these novel 
agents are currently being investigated in the context of clinical trials. 

Interleukin-1 8 (IL-18), initially described as EN-y-inducing factor, is an 
attractive candidate for the immunotherapy of cancer. In pre-clinical 
development for almost a decade, IL-18 has now entered the clinical arena 
for the treatment of patients with solid tumors. Armed with the progress 
made in pre-clinical models, investigators are hoping to harness the basic 
biology of IL-18 for enhancement of anti-tumor immunity. IL-21 represents 
one of the first cytokines isolated strictly from a bioinformatics screening 
approach after the discovery of its receptor. Since its discovery and 
characterization in early 2000, IL-21 has undergone rapid pre-clinical 
development and is now making its way into the clinic. IL-24, first 
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characterized as the product of a novel tumor suppressor gene, mda-7, has 
now developed into a therapeutic tool because of its potent tumor-specific 
growth inhibitory properties. 

Here we summarize the basic science and pre-clinical evidence 
supporting the use of IL-18, IL-21 and IL-24 in patients with cancer. In 
addition, we will also review the phase 1/11 clinical trials utilizing these 
novel agents for the treatment of patients with advanced malignancies. 
Further, we theorize on the potential role for these novel agents in the 
immunotherapy of cancer and highlight future directions for their clinical 
application. 

2. INTERLEUKIN-18: A POTENT INTERFERON-7 
INDUCING FACTOR 

2.1 Discovery and Cloning 

In 1989, Nakamura et al. described an IFN-y inducing activity in the sera 
of mice treated with endotoxin that functioned not as a direct inducer of 
IFN-y, but rather as a co-stimulant together with IL-2'. The inability of 
neutralizing antibodies directed against IL-1, IL-4, IL-5, IL-6, or TNF to 
neutralize this serum activity suggested that it was a distinct factor. 
Subsequent publications reported that the endotoxin-induced co-stimulant 
for IFN-y production was present in extracts of livers from mice 
pre-conditioned with the bacterium, P. acnesZr3. The factor, named IFN- 
y-inducing factor (IGIF), was purified to homogeneity from P. acnes-treated 
mouse livers. Its molecular mass and amino acid sequence were reported by 
Nakamura and colleagues in 1 9933. 

Degenerate oligonucleotides derived from the amino acid sequence of 
IGIF were used to clone the murine IGIF CDNA~. Importantly, induction of 
IFN-y was found to be independent of IL-12 (an already known potent 
inducer of IFN-y). The human cDNA sequence for IGIF was subsequently 
reported in 1996~. Comparative analysis of the protein-folding pattern of 
IGIF to that of other cytokines showed the highest homology to mature 
human IL-1P. Sequence identities were also assembled for the IGIF 
sequence to other members of the IL-1 family of cytokines. After numerous 
biochemical approaches determined that IGIF did not bind to the IL-1 type I 
receptor, IGIF was termed 1 ~ - 1 8 ~ , ~ .  
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2.1.1 Receptors and Signaling 

The IL-18 receptor (R) complex is a heterodimer containing an IL-1Rrp 
chain that is responsible for extracellular binding of IL-18 and a non-binding 
chain (AcPL) responsible for signal transducti~n~'~. Transfection studies in 
human peripheral blood mononuclear cells (PBMCs) have shown that both 
chains are required for functional IL-18 signaling9. IL-18R is expressed on a 
variety of cells including NK cells, neutrophils, macrophages, endothelial 
cells, and smooth muscle ~ells''"~. The IL-18R complex can be up-regulated 
on nai've T and B cells by 1~-12". In contrast, T cell receptor (TCR) ligation 
in the presence of IL-4 results in down-regulation of the I L - 1 8 ~ ' ~ .  
Modulation of this complex during various immune processes is therefore 
likely to be functionally significant. For example, administration of an 
anti-IL-18R antibody in vivo resulted in reduced mortality upon exposure to 
a lethal LPS dose and a subsequent shift in balance from a T helper-type 1 to 
a T helper-type 2 immune response14. 

Upon binding of IL-18, the IL-18R is recruited to form a high-affinity 
complex, inducing signaling pathways shared with other IL-1R family 
members. These pathways involve recruitment and activation of myeloid 
differentiation 88 (MyD88) and IL-1R-associated kinase (IRAK) to the 
receptor complex1s. Following activation, IRAK auto-phoshorylates, 
dissociates from the receptor complex, and interacts with the adaptor protein 
tumor necrosis factor receptor-associated factor 6 (TRAF6)I6. Activation of 
NF-KB-inducing kinase and rapid induction of I K B ~  degradation, allow NF- 
KB nuclear translocation and genetic transcription of IL-18-sensitive genes17. 
In addition to IRAIUTRAF6 signaling, recent evidence suggests a role for 
mitogen-activated protein kinases (MAPK) in IL-18 signaling. Indeed, IL- 
18-induced activation of the MAPK p38 and the extracellular signal- 
regulated kinases (ERKs) p441p42 was detected in a human NK cell line1'. 
In addition to IL-18-induced MAPK signaling, diminished NK cell activity 
and IFN-y production in response to IL-18 by mice deficient in the 
transcription factor tyk-2 suggest that, like IL-12, IL-18 may also signal via 
tyk-2, a member of the &nus bnase-signal transducer and activator of 
panscription (JAK-STAT) family of signaling proteins19. Additional 
evidence for cooperation between IL-12 and IL-18 signaling pathways has 
been presented by numerous investigators. Using in vitro promoter analysis 
studies in mouse T cell lines, Nakahira et a1 showed that IL-12-induced 
STAT4 enhanced IL-18-induced transcription factor activation and binding 
to IFN-y promoter response elements2'. Ongoing studies are investigating 
the effects of IL-18-dependent signaling on in vivo anti-tumor immune 
responses in several tumor models (see below). 
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2.1.2 Biological Activity and Rationale for Clinical Development 

Although initially regarded as a co-factor for the potent production of 
IFN-)I by murine and human immune cells, the effector role of IL-18 has 
gradually expanded. For example, single-agent IL-18 has been shown to 
enhance T and NK cell cytotoxicity as well as cytokine production12'21. IL- 
18 also increased FasL on NK cells and consequent FasIFasL-mediated 
cytotoxicity of both viral and tumor targets22. Accordingly, IL-18-deficient 
mice exhibited reduced NK cell cytolytic activity that could be at least 
partially restored by administration of exogenous ~ - 1 8 ~ ~ .  In combination 
with other factors, IL-18 can exert important immune functions. For 
example, IL-18 in conjunction with IL-2 induced potent IL-13 production 
from murine T and NK cells24. On non-T cell populations, IL-18 in 
conjunction with IL-3 has been shown to induce type 2 cytokine production 
and pro-inflammatory mediators from bone marrow-derived basophi12'. 
Direct effects on macrophages and dendritic cells @Cs) have also been 
observed. For example, stimulation of bone marrow-derived macrophages 
or splenic DCs with IL-12 and IL-18 can induce IFN-)I production26. IL-18 
also promoted neutrophil activation, reactive oxygen intermediate synthesis, 
cytokine release, and de-gran~lation~~. Recent studies have suggested that 
IL-18 can up-regulate intracellular adhesion molecule-1 (ICAM-1) and 
VCAM-1 expression on endothelial cells and synovial fibroblasts, 
implicating a role for IL-18 in cellular adhesion and trafficking2*. 

These potent immune modulatory properties of IL-18 suggest that this 
cytokine could have strong anti-tumor activity. Indeed, several murine 
tumor models have given preliminary indications that IL-18 may serve as an 
immune modulatory agent with potential clinical anti-tumor utility. In a 
early model of chemically-induced intraperitoneal (IP) sarcoma, IL-18 
administration stimulated NK cell-mediated cytokine production, induced 
cytotoxic C D ~ '  T cells, and evoked lasting immunological memory (as 
shown through resistance to re-challenge with tumor cells of mice cured of 
the chemically-induced sarcoma, but not with a non-relevant ~arcinoma)~~.  
Interestingly, IL-18 administration had little direct effect on the proliferation 
of tumor cells in vivo, indicating an indirect activity through stimulation of 
the immune system. Subsequently in depth analysis of IL-18-induced 
immune responses by the same group revealed that IL-18 initially stimulated 
a non-specific arm of the immune response (activation of NK cells), 
followed by the development of a specific CTL-mediated anti-tumor 
response3'. In accordance with these data, administration of human 
pancreatic carcinoma cells transfected with the IL-18 gene to T cell-deficient 
mice did not produce long-lasting anti-tumor immunity, further confirming 
the requirement of the adaptive immune response for effective tumor 
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clearance3'. Interestingly, IL-18 gene-transfected renal cell carcinoma cells 
demonstrated a reduced tumorigenicity in syngeneic mice32. Depletion of 
both C D ~ '  and CD8' T cells markedly attenuated the effects of IL-18, 
whereas depletion of only C D ~ '  cells did not. Similarly, blockade of IFN-y 
with monoclonal antibodies completely abrogated the anti-tumor effect in a 
similar in vivo model of IL-18-expressing tumor33. The anti-tumor effects of 
IL-18 were also evaluated in more aggressive tumor models such as the 
CL8-1 melanoma or MCA-205 fibro~arcoma~~. IL-18 given as a single agent 
resulted in the rejection of 80% of CL8-1 tumors when given either pre- or 
post-tumor inoculation, with induction of tumor-specific immunity. 
Depletion of NK cells in vivo using neutralizing antibodies (anti-asialoGM1) 
completely abrogated the growth inhibitory effects of IL-18. Investigators 
are hopeful that these observations will help in developing new strategies 
aimed at augmenting the successive stages of IL-18's anti-tumor effects. 

From the aforementioned studies, it is clear that the ability of single- 
agent IL-18 treatment to suppress tumor growth in animal models varied 
depending on tumor type and stage. In contrast, administration of IL-18 in 
combination with IL-12 has proven to be a highly reliable and effective anti- 
tumor regimen in pre-clinical models. Combined treatment with IL-18 and 
IL-12 (at doses of 1 pg and 0.1 pg, respectively) has been associated with 
dramatic inhibition of tumor g r ~ w t h ~ ~ ? ~ ~ .  Numerous potential anti-tumor 
mechanisms have been proposed for the IL-181IL-12 combination. More 
recent reports show that IL-12 and IL-18 synergistically induce tumor 
regression in a mammary carcinoma model via inhibition of angiogenesis, 
rather than through an antigen-specific immune response37. Histological 
examination of regressing tumors revealed extensive areas of necrosis with 
dense infiltrates of polymorphonuclear cells. Inhibition of angiogenesis was 
more directly demonstrated through destruction of tumor microvasculature 
via a semi-quantitative in vivo matrigel-based assay37. Expression of IFN-y 
and IP-10 (an antiangiogenic chemokine) were elevated following 
administration of IL-18 + IL-12, confirming the anti-angiogenic activity of 
this combination treatment. Unfortunately, the clinical utility of the IL- 
18lIL-12 regimen has been hampered by the persistence of treatment- 
limiting toxicities in pre-clinical animal models, including death. Mice 
treated with high-dose IL-18lIL-12 died of diarrhea and weight loss after 
development of severe hemorrhagic Carson et a1 characterized the 
cells involved in mediating the toxicities associated with administration of 
IL-12 plus IL-18 as daily therapy38. These investigators found that, while 
the individual cytokines were well tolerated, the administration of IL-12 plus 
IL-18 induced a potent, systemic inflammatory response characterized by 
elevated levels of pro-inflammatory cytokines and acute-phase reactants that 
mediated multi-organ pathology. Interestingly, depletion of NK cells in this 
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model completely abroaged treatment-induced inflammation, suggesting a 
critical role for this cell compartment in the fatal systemic response. 
Subsequent studies utilizing dose reductions (0.2 pg and 0.01 pg for IL-18 
and IL- 12, respectively) reported 83% of mice with a marked suppression of 
tumor However, persistent side effects in half of these mice once 
again prompted early discontinuation of treatment. Importantly, elevated 
levels of serum IFN-y did not correlate with the severity of these toxic side 
effects as mice treated with both low-dose and high-dose cytokine 
combinations had similar elevations in serum IFN-y. 

Recently, another clinically useful cytokine has been combined with IL- 
18 for the potential treatment of malignancy. High- to moderate-dose IL-2 
has been given to patients with advanced cancers with minimal success, 
mostly due to severe treatment-limiting toxicities. To reduce related 
toxicity, low-dose IL-2 has been combined with IL-18 in a murine model of 
malignant disease4'. Co-administration of these two cytokines completely 
eradicated 12-day established fibrosarcomas without notable toxicity. 
Notably, all treated mice achieved complete and long-lasting protective 
immunity. Interestingly, anti-tumor immunity correlated with enhanced 
proliferation, cytolytic activity, and IFN-)I production from murine NK cells. 
Use of transgenic and knock-out animal strains showed that IFN-y and Fas 
ligand-dependent pathways were more important than those of perforin, 
suggesting that direct cancer cell killing may not have been the primary anti- 
tumor mechanism. Although combination cytokine imrnunotherapeutic 
approaches with IL-18 represent viable strategies for the treatment of cancer 
patients, their safety and clinical utility in humans has yet to be determined 
in phase 1/11 clinical trials. 

2.1.3 Clinical Trials 

Although IL-18 was discovered and cloned over ten year ago, only a 
limited number of trials have been attempted in patients with cancer. In 
200 1, a phase I dose-escalation study of recombinant human IL-18 (rhuIL- 
18) was initiated in patients with solid tumors to determine safety, define 
biologically effective dose, and to assess pharmacokinetics, antigenicity, and 
anti-tumor activity4'. Cohorts of three patients were given rhuIL-18 as a 2- 
hour infusion daily for 5 consecutive days at seven different planned dose 
levels (3, 10, 30, 100, 300, 600 and 1000 pg/kg/day). To date, thirteen 
patients have been treated up to the 100 pg/kg/day dose level. The most 
common adverse events have included fever, chills, and nausea. Plasma 
concentrations of IL-18 increased in a dose-dependent manner, with an 
average half-life of approximately 36 hours. Dose-dependent increases in 
GM-CSF, IL-18 binding protein (a negative regulator of soluble IL-18), and 
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IFN-y were observed in a majority of treated patients. These preliminary 
data demonstrate the safety of single-agent rhuIL-18 and suggest immune 
modulatory activity in the setting of malignancy. However, future studies 
will need to correlate the induction of IFN-y and IL-18 binding protein with 
efficacy in order to establish IL-18 as a viable cancer therapeutic agent. 

3. INTERLEUKIN-21: A REGULATORY CYTOKINE 
FOR T, B, AND NK CELLS 

The discovery of IL-21 represents the utility of computer algorithm tools 
for the discovery of sequences that encode orphan receptors. Thus, before 
the IL-21 protein was even discovered, a receptor subunit was first identified 
via a bioinformatics approach42. This receptor is further characterized 
below. The ligand for the IL-21R (i.e. IL-21) was found using a functional 
assay in which the BaF3 cell line (hematopoietic progenitor origin) was 
stably transfected with full-length ~ - 2 1 ~ ~ ~ .  Conditioned media from more 
than 100 primary and immortalized cell lines were tested for the ability to 
bind IL-21R on BaF3 cells. Interestingly, conditioned media derived from 
cultures of activated T cells (specifically C D ~ '  cells activated with PMA and 
ionomycin) were the only positive source of activity. Subsequent Real-Time 
PCR data provided definitive evidence that IL-21 is expressed exclusively 
by activated C D ~ '  T cells43. General activation using PMA and ionomycin 
enhanced message levels, but higher-level expression was seen in cells 
stimulated with anti-CD3 monoclonal antibody. IL-21 expression was 
increased to an even greater extent by treatment with a combination of anti- 
CD3 and anti-CD28 Abs, indicating that this message is likely up-regulated 
following T cell activation. 

3.1.1 Receptors and Signaling 

The full-length cDNA sequence for IL-21R encodes a 538 amino acid 
cytokine receptor with an extracellular domain consisting of one copy of the 
conserved WSXWS cytokine-binding domain42. This domain is followed by 
a transmembrane region and then by a large intracellular domain that 
contains structural motifs previously shown to be important in signal 
t r ansd~c t ion~~ '~~ .  The IL-2 1R has the highest amino acid sequence similarity 
to the p subunit of the IL-2R. The functional IL-21R complex consists of a 
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heterodimeric complex of the IL-21R with the common y chain of the 
IL-2lIL-15 receptor43. 

Determination of the tissue distribution of the IL-21R offered a strong 
indication of the potential sites of action of the IL-21 ligand. Northern 
analysis revealed transcripts in human spleen, thymus, lymph node, and 
peripheral blood  leukocyte^^^. Flow cytometric analysis using fluorescently 
labeled IL-21 revealed receptor expression on resting B cells as well as on B 
cell lymphoma, natural killer-92, and T cell lines43. The IL-21R was also 
detected on human peripheral B cells as well as mouse splenic B cells. In 
addition, IL-21R expression was detected on the surface of both CD4' and 
C D ~ '  T cells, but only following a~tivation~~. The very low levels of this 
receptor on naWe T cells argues that IL-21 may not be involved in the T cell 
development phase, but rather in modifying T cell responses downstream of 
antigen activation. Western analysis confirmed that IL-21R protein was 
expressed in each of these cellular sources. 

IL-21 employs signaling elements common to the class of cytokine 
receptors utilizing the common gamma chain for intracellular signaling, 
including IL-2 and ~ - 1 5 ~ ' .  Not surprisingly, IL-21 has been found to have 
similar immune effects and acts on some of the same cells types on which 
IL-2 and IL-15 act46. IL-2 1 mediates its immune signal transduction mainly 
via the JAKISTAT signaling pathway. IL-21 induced the activation of JAKl 
and JAK3 receptor-associated k i n a ~ e s ~ ~ ' ~ ~ .  Further downstream, IL-21 
promoted STAT1, STAT3, and STAT4 activation and their translocation to 
regulatory sits of IL-21-responsive genes in NK and T cells, most notably 
I F N - ~ ~ ~ .  Recently, Strengell et a1 have shown that IL-21 induced the 
production of critical transcription factors that regulate innate and Thl 
adaptive immune responses, most notably MyD88 and  bet^'. Current 
studies are attempting to examine the relative roles of these signaling 
molecules in diverse immune responses, ranging from INF-y secretion to 
direct, tumor-specific cytotoxicity. 

3.1.2 Biological Activity and Rationale for Clinical Development 

Since their discovery, there has been significant interest in characterizing 
the immune functions of the IL-21R and IL-21. Studies attempting to 
describe these effector functions have primarily focused on the cell types 
known to express the IL-21R, notably T cells, NK cells, and B cells. 

One of the first studies examining the biologic roles of IL-21 showed that 
IL-21 is a direct product of activated C D ~ '  T cellss0. This was the first 
indication that one of the primary functions of this unique cytokine may be 
associated with T helper immune responses. In this regard, IL-21 has been 
shown to enhance the proliferative effects of IL-2, IL-15, or IL-7 on 



Novel Cytokines in the Treatment of Malignancies 361 

peripheral T cells, even in the absence of TCR-CD3 ~timulation~~. In 
addition to its role as a helper-like cytokine, evidence is accumulating that 
IL-21 enhances primary T-cell responses and effector cell differentiation. 
Kasaian et a1 have reported that IL-21 significantly increased alloantigen 
stimulation of murine T cells, resulting in increased CTL activity, an effect 
similar to that achieved with IL-2, IL-15, or I L - I ~ ~ ' .  Furthermore, IL-21 
was able to enhance IFN-y production by T cells, alone or in combination 
with IL-2 or IL-15. Collectively, these data indicate that IL-21 may be 
important for the development of T helper cell type 1 (Thl) responses and 
for augmenting cell-mediated effector functions. 

In addition to enhancing a primary antigen response, IL-21 may also 
modulate memory T cell functions. Recently, it has been shown that IL-21 
prevented the proliferation of murine C D ~ ~ + C D ~ +  memory T cells mediated 
by IL-15 and the subsequent up-regulation of cytokine receptors for IL-2, 
IL-15, and IFN-y5'. This result suggested that IL-15-induced proliferation of 
memory CD8' cells is independent of TCR activation and that these T cells 
display characteristics of innate immune cells. Therefore, the inhibition of 
these T cells by IL-21, combined with the abrogation of some NK cell 
responses (see below), has suggested that IL-21 promotes the transition 
between innate and adaptive immunity. Current studies examining the role 
of IL-21 in dendritic cell-mediated proliferation of antigen-specific T cells 
are attempting to provide a mechanism to validate this 

To date, the overall effects of IL-21 on NK cells have been difficult to 
interpret, mainly because studies with NK cells have shown both positive 
and negative effects. For example, an early report showed that IL-21 
inhibited the IL-15-mediated expansion of nalve mouse NK cells, failed to 
stimulate the cytolytic activity of freshly isolated mouse NK cells, and 
antagonized the viability of IL-15-treated mouse NK cells5'. In contrast to 
these inhibitory effects, some reports have shown that IL-21 can mediate the 
rapid maturation of murine NK cells in In addition, IL-21 was 
more recently shown to stimulate cytotoxicity and IFN-y production in 
previously activated NK cells and to enhance these responses in combination 
with IL-1548954. TO complicate matters further, somewhat different effects 
have been observed in human NK cells. For example, IL-21 stimulated the 
cytolytic activity of freshly isolated, peripheral human NK cells43. 
Moreover, the combination of IL-21 plus IL-15 stimulated expansion of 
~ D 5 6 + ~ ~ 1 6 +  NK cells from bone marrow cultures55. Interestingly, these 
cells exhibited enhanced effector cell activity as compared to the typical 
~ ~ 5 6 + ~ ~ 1 6 -  cells that arise following exposure to IL-15 alone. An 
intriguing explanation that has been proposed for the apparent species 
difference in NK cell responses is the relative nalve nature of laboratory 
mouse NK cells compared with human NK cells, which are exposed to 
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significantly more environmental pathogens55. Thus, the differential effects 
observed among species may result from differences in IL-21R expression, 
which is activation-sensitive (see above). Although a direct comparison of 
conditions between species is difficult, it appears that the experiments 
described with mouse NK cells were performed using relatively higher doses 
of IL-21 than those performed on human NK cells. Therefore, the activity of 
IL-21 on murine and human NK cells may be similar when dose and 
activation state are matched. During the transition between innate and 
adaptive immunity, IL-21 is thought to enhance the effector functions of NK 
cells and CD8' T cells (as described above), but also limit the expansion of 
resting and activated NK cells49~50~56. Thus, the IL-21 effect on NK cells may 
vary depending on the timing and magnitude of the T cell response and the 
subsequent concentrations of IL-21. For example, antigen activation of 
relatively few T cells may promote NK cell expansion and effector cell 
function, whereas a larger number of activated T cells may actually down- 
regulate NK cell expansion and function. These hypotheses, of course, are 
currently being validated in both human and murine systems. 

The effects of IL-21 on peripheral B cell proliferation vary markedly 
depending on the type of co-stimulus provided to the B cells. For instance, 
IL-21 inhibits the proliferation of human B cells treated with anti-IgM and 
I L - ~ ~ ~ .  Thus, IL-21 may down-modulate T-independent, B cell proliferation 
that is associated with innate immunity. In addition, Mehtta et a1 showed 
that IL-21 induced the apoptosis of resting primary murine B cells5'. The 
activation of these B cells with IL-4, LPS, or anti-CD40 Ab did not prevent 
the IL-21-mediated apoptosis, suggesting a dominant role for IL-21 in 
regulating B-cell homeostasis. More recently, numerous studies have 
elucidated the role of IL-21 on immunoglobulin production by B cells58. For 
example, IL-21 was found to directly inhibit IL-4-induced IgE production 
from B cells5'. Pene et a1 further showed that IL-21 specifically induced the 
production of IgGl and IgG3 Ab isotypes by CD40-activated C ~ 1 9 '  naive 
human B cells, suggesting that IL-21 acts as a "switch factor" for the 
production of specific IgG isotypes6'. In addition to normal B cell function, 
IL-21 may regulate aspects of B cell tumorigenesis. IL-21R is not expressed 
on acute B-cell leukemia cell lines, but is readily detectable on many B-cell 
lymphoma cell lines43. IL-21 appears to be a growth and survival factor for 
myeloma cell lines and some myeloma specimens, which are cancers 
derived from terminally differentiated B Current studies are 
further assessing the relative role that IL-21 plays during the various stages 
of B cell maturation and, more importantly, during the subsequent processes 
of transformation. 
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3.1.3 Clinical Trials 

To date, no clinical data exist for IL-21 administration to patients with 
cancer. However, a phase I trial in patients with metastatic melanoma and 
renal cell carcinoma has currently been approved by the FDA. Future trials 
in pre-clinical development plan for the use of single-agent IL-21, as well as 
combination strategies utilizing IL-21 with chemotherapy or other biological 
agents (e.g. therapeutic anti-tumor antibodies). Despite the lack of clinical 
correlates, numerous pre-clinical models have strongly suggested the anti- 
tumor utility of IL-21 administration in the context of advanced malignancy. 
Nelson et a1 have shown that treatment of tumor-bearing mice with systemic 
administration of IL-21 suppressed tumor growth without the toxic side 
effects commonly seen with other moderate-dose cytokine treatrnend2. 
Since IL-21 and IL-2 (a commonly utilized anti-cancer cytokine) both signal 
to the same immune cells via the IL-2 common y chain receptor subunit, the 
toxicity profile following IL-21 administration was compared directly to that 
of IL-2. Vascular leakage, lung and liver inflammation, and systemic 
pro-inflammatory cytokines all occurred at a lower frequency in 
IL-21-treated mice, suggesting the potential for anti-tumor efficacy without 
severe treatment-limiting side effecd2. A study by Wang and colleagues 
suggested that the anti-tumor activity of IL-21 in vivo is mediated through 
activation and effector functions of NK cells63. Indications that IL-21 could 
lead to adaptive immune responses were provided by DiCarlo et a1 who 
showed rejection of a murine mammary adenocarcinoma by specific 
cytotoxic T cells via IFN-y-dependent mechani~ms~~. 

These pre-clinical studies suggest that IL-21 administration can activate 
immune mechanisms leading to tumor regression. The planned clinical trials 
of recombinant human IL-21 (rhuIL-21) will attempt to demonstrate safety 
and confirm these findings of anti-tumor immune activity in human patients. 

4. INTERLEUKIN-24: FROM TUMOR 
SUPPRESSOR GENE TO APOPTOSIS INDUCING 
CYTOKINE 

4.1 Discovery and Cloning 

Neoplastic cells often exhibit a less differentiated state resulting in an 
enhanced proliferative ability and tumorigenic potential65. Jiang et a1 treated 
human melanoma cells with the combination of fibroblast interferon (IFN-P) 
and the protein kinase C activator mezerein (MEZ) to induce an irreversible 
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loss in growth potential, suppression of tumorigenic potential, and terminal 
differentiation in the melanoma cells66. Subtraction hybridization analysis 
using this model system resulted in the identification and cloning of 
numerous genes regulated during the process of growth arrest and terminal 
differentiation (i.e. melanoma differentiation associated (mda) genes)66,67. 
The expression of one particular gene, mda-7, correlated strongly with the 
induction of irreversible growth arrest, cancer reversion, and terminal 
differentiation in human melanoma It was subsequently 
determined that mda-7 was highly expressed in normal melanocytes and its 
expression decreased progressively during the processes of melanoma 
transformation and progression to metastatic disease7'. Interestingly, mda-7 
expression increased in growth-arrested and differentiation inducer-treated 
human melanoma cells in a p53-independent manner. The endogenous 
levels of mda-7 was higher in normal melanocytes as compared to levels in 
metastatic human melanoma cells. To date, differential expression of this 
gene in human cells has been documented only in the context of melanoma. 
This is most likely due to its relatively high basal-level of expression in 
normal melanocytes compared to that in other cell types. For example, only 
a sub-population of blood cells have been shown to constitutively express 
the mda-7 gene71. Although the specific physiological role played by the 
mda-7 gene product in normal melanocytes or other cell types has yet to be 
clearly defined, the gradual loss of expression observed with melanoma 
progression supports the possibility that mda-7 might play a tumor 
suppressive effect in the context of melanoma7'. Characterization of 
structural and sequence homology suggested that the mda-7 gene product 
belonged to the IL-10 family of cytokines, and was therefore re-designated 
as 1~-24~* .  

4.1.1 Receptors and Signaling 

Based on the demonstrated homology to IL-10, it was hypothesized that 
the mda-71IL-24 receptor would share some sequence or structural 
similarities to the IL-1OR. The IL-10 receptor was initially identified as a 
complex of single-chain R1 type and single-chain R2 type receptor 
subunits73. Other members of the IL-10 family of cytokines, such as IL-20 
and IL-22, also bind to and signal through heterodimeric receptors each with 
a R1 and R2 type of receptor subunit. Similarly, the mda-7lIL-24 receptor 
complex was found to consist of two chains, IL-20R1 and I L - 2 0 ~ 2 ~ ~ .  
Furthermore, mda-7/IL-24 also bound to a second receptor complex, 
consisting of IL-20R2 and I L - ~ ~ R I ~ ' .  When activated by their ligands, both 
IL-24 receptor complexes signal through the JAWSTAT pathway, primarily 
via  STAT^^^. Although all the signaling pathways involved in mediating the 
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effects of mda-7JIL-24 have not yet been fully elucidated, current evidence 
suggests that the protein kinase R pathway, components of the MAPK 
pathway, PI3 kinase, and angiogenic pathways are i n~o lved~~- '~ .  
Interestingly, the activities of these diverse pathways cannot be attributed 
entirely to the cytokine properties of mda-7JIL-24. In fact, clinical 
conditions associated with JAKJSTAT dysregulation typically involve 
neoplastic changes and not the anti-proliferative and apoptosis-inducing 
effects seen following mda-7lIL-24 treatment. For example, STAT3 has 
been shown to participate most frequently in the development and 
maintenance of numerous malignancies, including multiple myeloma and 
chronic myelogenous leukemia (CML)~~~".  Thus, it remains to be 
determined whether mda-7lIL-24, which utilizes STAT3 signaling, induces 
apoptosis through this same pathway. Using cells deficient in JAWSTAT 
signaling, investigators hope to clarify these issues regarding the effects of 
mda-7lIL-24. 

4.1.2 Biological Activity and Rationale for Clinical Development 

Huang et a1 analyzed a large collection of normal and cancer cell types 
for expression of IL-2468. Although most cell types lacked constitutive 
expression of IL-24, melanocytes expressed constitutive levels of both IL-24 
mRNA and protein. To further define the normal tissues that express mda- 
7lIL-24, an extensive northern blot analysis of normal tissues revealed IL-24 
expression in tissues of the immune system, including spleen, thymus and 
peripheral blood  leukocyte^^^. Furthermore, activation of human PBMCs 
in vitro with PHA or LPS, or in vivo by microbial infection, resulted in 
secretion of active IL-24 protein72. Subset analysis confirmed that IL-24 was 
up-regulated in monocytic cells after stimulation with LPS. Slight and 
delayed expression was also apparent in activated T cells cultured on anti- 
CD3 mAb coated plates or activated by ConA exposure. Current studies are 
underway to better understand the role of IL-24 in a normal physiological 
context, and eventually its implications in malignant disease. 

IL-24 mRNA can also be induced in cells that are not of the melanocpe 
or hematopoietic linage. Although induced expression was not apparent in 
most normal and tumor-derived cells examined, treatment of primary cells as 
well as cell lines derived fiom breast, cervical and prostate carcinoma, 
osteosarcoma, nasopharyngeal carcinoma, as well as normal breast 
epithelium and cerebellum astrocytes with IFN-a + MEZ induced IL-24 
mRNA expression68. These results confirmed that IL-24 is not expressed 
constitutively in most normal and cancer cell types, but that expression can 
be induced in a spectrum of normal and tumor cell types. Importantly, this 
induction was independent of alterations in classic tumor suppressor genes 
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such as retinoblastoma (Rb) and/or p53g2. TO date, however, the specific 
cellular cues responsible for IL-24 expression, and the potential 
patho-physiological role for this molecule in the context of malignancy 
remain to be elucidated. 

Regardless, expression of the IL-24 gene in human melanoma cells 
following transient or stable transfection has resulted in potent growth 
suppression79. When expressed at super-physiologic levels, IL-24 induced 
growth suppression and apoptosis in a broad spectrum of human cancers, 
including melanoma, glioblastoma, and carcinomas of the breast, colon, 
lung, and prostate68. In contrast, IL-24 gene transfection had little effect on 
the growth and survival of normal breast and prostate epithelium, 
endothelium, melanocytes, and skin and lung fibroblast cells69. Current 
studies are attempting to find common patterns of gene expression following 
IL-24 transfection in order to provide clues regarding susceptibility and 
cell-specific activity. As an in vivo proof-of-principle, Su et a1 have shown 
that IL-24 gene-expressing human breast carcinoma cells engrafted into 
nude mice grew at a significantly slower rate than non-transfected tumor 
cellsg3. In another in vivo tumor model, inhibition of lung tumor growth 
following systemic administration of mda-71IL-24 was associated with 
significant decreases in microvessel density and hemoglobin content, 
indicating an anti-angiogenic mechanism in vivog4. 

4.1.3 Clinical Trials 

Based on the tumor-selective inhibitory properties of IL-24, as 
documented in cell culture gene transfer models and animal xenograft 
models, a phase I dose-escalation study was initiated coordinately by 
Introgen Therapeutics Inc. and the Baylor Sammons Cancer centerg5. An 
adenoviral vector encoding IL-24lmda-7, termed Ad.mda-7 (drug 
designation: INGN 241), was administered to patients with advanced 
carcinoma. Patients that had a surgically resectable lesion received a single 
injection of Ad.mda-7 directly into tumors at doses ranging from 2x10'~ to 
2x12'~ viral particles. Twenty-four hours post-injection, the lesions were 
surgically removed, serially sectioned, and analyzed for viral vector 
distribution, IL-24 protein expression, and the level of apoptosis induction. 
This study demonstrated that intra-tumoral administration of Ad.mda-7 was 
safe with only mild toxicities observed, including injection site pain, 
transient low-grade fever, and mild flu-like symptoms. In addition, a recent 
update from this phase I study documented that Ad.mda-7 could induce 
apoptosis in a large percentage of the tumor volume examined (70%) 
following intra-tumoral administrationg6. This initial study in patients 
confirmed the growth inhibitory effects of IL-24 observed in animal models. 
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In addition, these data have provided rationale for the development of phase 
I1 clinical trials attempting to define the potential anti-tumor efficacy of IL- 
24 expression in tumors of patients with advanced malignancies. 

CONCLUDING REMARKS 

Cancer is a complex genetic disease involving aberrations in multiple 
pathways that control cellular growth and differentiation (reviewed in 
Knudson et alS7). Traditional treatment modalities including radiation and 
chemotherapy have attempted to curb the growth of tumor cells via 
relatively non-specific mechanisms. However, numerous studies have 
shown that cancer cells develop multiple mechanisms of resistance to these 
treatmentss8. Although increasing doses and alterations in treatment 
regimens have been somewhat successful at circumventing this resistance, 
long-term anti-tumor efficacy has often been hampered by toxic side 
 effect^'^-^'. In contrast, utilization of the host immune system represents an 
attractive method to combat cancer because of the potential for low 
treatment-limiting toxicities. Cytokines, the protein hormones of the 
immune system, have been the most easily utilized immune component for 
therapy because they can be mass-produced and administered as either 
systemic or localized therapy. 

Over the last fifteen years, however, several cytokines have been used in 
cancer therapy with only moderate success, the most prominent of which 
include IL-2, IFN-a, and IL-12. Clearly, induction of optimal immune 
activation with minimal toxicity following cytokine administration to 
humans is not a simple matter. Can investigators find a way to harness the 
potential that IL-18, IL-21, and IL-24 have shown in the pre-clinical arena? 
Current attempts in phase I/II clinical trials will determine the safety and 
potential efficacy of these agents for single-agent therapy. In addition, 
combination of these cytokines with low-dose chemotherapy or therapeutic 
antibodies directed against tumor-associated surface markers are also being 
developed for clinical trials. Correlative studies associated with these trials 
will attempt to define the underlying mechanisms by which these agents 
mediate their anti-tumor effects. Hopefully, insights from current and future 
pre-clinical studies combined with the correlative data from humans trials 
will translate into enhanced clinical activity. 
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